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Abstract 

 

Escherichia coli is routinely isolated from vegetables and there is increasing evidence 

that plants are a secondary reservoir for commensal and pathogenic strains, but the 

ecological factors involved in the persistence of E. coli on plants are not clear. In this 

thesis, a comparative study was undertaken combining phenotypic and phylogenetic 

analyses of E. coli isolates from salads grown in the UK and the faeces of mammalian 

hosts. In vitro phenotypic profiling revealed significant differences according to the 

source of isolation: strains from plants were in the majority from phylogroup B1, 

displayed lower siderophore production, greater motility, higher biofilm production, 

and better growth on the aromatic compounds and sucrose. However, plant-associated 

isolates reached lower growth yields on many carbon sources, including several 

amino acids and common carbohydrates such as glucose and mannitol. The data 

obtained indicate that in addition to lateral gene transfer, variation (regulation or 

uptake) in core metabolic functions plays an important role in E. coli ecological 

adaptation. When the discriminating phenotypes were combined to generate a plant 

association index (PAi) to rank strains according to their potential to persist on plants, 

a strong association between PAi and phylogeny was found, notably high levels in 

phylogroup B1 and low levels in phylogroup B2 which could potentially constitute a 

good predictor for host specialisation and generalisation in E. coli. As a more applied 

and preliminary investigation, the question of how a strain with a medium level of 

PAi (GMB30) can influence the resident microflora of field- and laboratory-grown 

spinach was also addressed. Overall, this study shows that despite frequent acquisition 

and loss of traits associated with nonhost environments, the E. coli phylogroups differ 

substantially in their transmission ecology, and in the adaptation levels to their host.  
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1. Introduction 

 

1.1. Evolutionary biology and population genetics of E. coli 

 

1.1.1. Generalities on E. coli 

 

1.1.1.1. Brief historical background 

 

At the times of Robert Koch (1843-1910), first theoretician of the link between 

diseases and pathogenic bacteria, first observer (or rediscoverer) of Bacillus anthracis 

(1877), Mycobacterium tuberculosis (1882), Vibrio cholerae (1883) and Nobel Prize 

laureate in 1905, bacteriology was a controversial field of science. The popular 

“miasmatic theory” suggested that diseases such as cholera were caused by abiotic 

“poisonous vapour” in the air (or “miasma”) and its subsequent inhalation by humans. 

Belief in the miasmatic hypothesis, despite having been disproved by John Snow 

during the 1854 cholera epidemic of London, was widespread among physicians even 

at the end of the 19th century. Koch’s work was routinely criticised by then-influential 

physicians. The debate was so virulent at the time that Max von Pettenkofer, a 

renowned professor in Munich, personally drank a suspension of V. cholerae which 

he had received from Koch (who had diluted it), thus contracting a weak dysentery 

(Friedmann, 2006). More and more accumulation of evidence gradually came to 

validate the “germ theory of disease” at the beginning of the 20th century. 

 

A brilliant yet nowadays rather publicly unknown Bavarian physician called Theodor 

Escherich (1957-1911) (Figure 1.1) played a considerable role in the acceptance of 

the germ theory. As a peadiatrician, Escherich’s main focus was to understand the 
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cause of then-devastating neonatal infections. Indeed in the early 1900s, a mortality 

rate of 80% at birth was not uncommon in Europe and child mortality remained 

around 20% until one year of age. As a consequence, newborn and infants were rarely 

admitted to hospitals before one year old. Physicians were usually inefficient and 

powerless against bacterial infections, and hygienic practices were not widespread in 

hospitals. 

 

 

Figure 1.1. Theodor Escherich (1857-1911) pictured around 1900. (Shulman et al., 2007) This 

picture is in the public domain. 

 

In 1885, after having learnt the basics of pure culturing and sterile manipulation from 

one of Koch’s students, Escherich compared the microflora of both meconium and 

feaces of newborns at different stages after birth. He observed and isolated a variety 

of organisms from healthy and sick patients, including a rod-shaped bacillus he 

named Bacterium coli commune (coli, from Latin “of the colon”) which was present 

in great abundance in all faecal samples he tested. He predicted that B. coli commune 

was an inhabitant of the lower parts of the gastrointestinal tract and used the staining 
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techniques recently developed by Christian Gram. Escherich was also among the first 

to develop anaerobic culture methods. He demonstrated that under anaerobic 

conditions, the growth of some bacteria was solely dependent on carbohydrate 

fermentation, of which he identified the produced gas (Shulman et al., 2007). 

Investigating the pathogenic properties of the newly found bacteria, Escherich 

injected various suspensions to animals, successfully causing disease in guinea pigs 

and cats. In 1895, he also postulated that B. coli commune was responsible for bladder 

infections by isolating unusually large quantities of it from the urine of symptomatic 

young girls.  

 

There is a strong belief that E. coli became an interest of research only with the 

development of molecular biology in the 1940s, yet B. coli commune was already an 

intensive topic of study in bacteriology laboratories across the world right after its 

discovery, because of its ease of isolation and cultivation and its very short generation 

time, rather than of general interest for faecal microflora. A good summary of pre-

molecular biology era studies on E. coli can be found elsewhere (Friedmann, 2006). It 

is worth noting that Escherich is also probably the discoverer of another major 

bacterial pathogen, Campylobacter jejuni, after the 1884 Naples epidemic (Kist, 

1986). Theodor Escherich died of a heart stroke at 53 years-old in 1911, weakened by 

the death of his youngest son from appendicitis. He had led a brilliant career as a 

socio-paediatrician, teaching professor and children’s hospital director. Escherich is 

considered as one of the very first paediatric physician with an interest in infectious 

diseases (Shulman et al., 2007). 
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The next year in 1912, two physicians specialised in tropical medicine, Aldo 

Castellani and Albert J. Chalmers suggested Bacterium coli commune to be renamed 

to Escherichia coli in honour of Theodor Escherich. However, the appellation 

Bacterium coli persisted in the literature for a few decades (Jacques Monod himself 

did not refer even a single time to the genus Escherichia in his 1942 doctoral thesis, 

preferring the genus Bacterium). In the 1930s, a clear distinction was commonly 

accepted between bacteria and eukaryotes in the sense that bacteria were evolving and 

mutating faster, which often lead to the use of the Escherichia coli mutabile 

nomenclature. The apparition of authoritative studies in the 1940s on the genetics of 

laboratory strains like E. coli K-12 and B probably contributed to the generalisation 

of the use of the Escherichia genus over Bacterium.  

 

The genus name Escherichia was officially introduced by the Judicial Commission of 

the International Committee on Bacteriological Nomenclature in 1958. As of 2011, 

the taxonomy based on molecular methods places the genus Escherichia and the 

species name coli in the Proteobacteria phylum (γ-Proteobacteria class), in the 

Enterobacteriaceae family within the Enterobacteriales order. Its full Linnaean name 

is “Escherichia coli (Migula 1895) Castellani and Chalmers 1919”. Despite this clear 

and accepted taxonomy, it is not trivial to reconstruct accurate detailed phylogenies 

and infer correct ancestries for E. coli, Enterobacteriaceae, and more generally 

among bacteria, as illustrated in section 1.1.2. In the next section, a brief introduction 

to other Enterobacteriaceae and Escherichia sp. is provided. 
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1.1.1.2. E. coli and other Enterobacteriaceae 

 

Members of the Enterobacteriaceae family show common morphological features, as 

they all are typically 1 to 5µm-long Gram-negative bacilli, facultative anaerobes that 

do not produce spores. There is however a high ecological versatility among them as 

many live in the gastrointestinal tract (GIT) of animals, but also in soil, water or 

sediment. Enterobacteriaceae are generally associated with the animal 

gastrointestinal tract, with some strains in genera Escherichia, Salmonella, Klebsiella, 

Serratia, Citrobacter or Yersinia being important animal pathogens. While the name 

itself can be misleading, Enterobacteriaceae also comprise plant-associated bacteria 

and phytopathogens, such as members of the genera Erwinia, Pectobacterium, 

Dickeya, Enterobacter, Brenneria or Pantoea. Enterobacteriaceae are within the γ-

Proteobacteria class, itself close to the β-Proteobacteria class (Wu et al., 2009) which 

is notably composed of the pathogenic families Neisseriales and Burkholderiales.  

 

Over the last century, many species have been described and added in the Escherichia 

genus. However, after reclassification of some of them based on their genetic 

dissimilarity (notably E. blattae, E. hermanii and E. vulneris), it is now considered 

that there are only 3 distinct species in the Escherichia genus: E. coli, E. albertii and 

E. fergusonii. More recently, it has been observed that some strains initially identified 

as E. coli were phylogenetically distant from the majority of E. coli strains although 

phenotypically indistinguishable from them (Walk et al., 2009). These strains were 

initially thought to be hybrids (Walk et al., 2007) or ancestral variants of E. coli that 

survived a possible selective sweep (Wirth et al., 2006) but more recent studies 

suggest that they are not strictly the coli species but members of five distinct 



 

13 
 

Escherichia sp. cryptic lineages which likely represent nascent evolutionary lineages 

(Walk et al., 2009). By examining current strain collections based mostly on faecal 

samples, these strains appear in clear minority, indicating that their ecologies or their 

environmental abundance is probably different from E. coli (Clermont et al., 2011; 

Luo et al., 2011). 

 

Additionally, it is interesting to note that Shigella strains, initially based on their 

ability to cause disease, have been wrongly classified as a separate genus from 

Escherichia (Lan and Reeves, 2002). Since the early observation by Salvador Luria in 

1957 that the conjugation frequencies between Shigella flexneri and E. coli strains 

were similar to the frequencies within E. coli strains (Luria and Burrous, 1957), it has 

been observed that Shigella strains were phylogenetically part of E. coli, either using 

multilocus enzyme electrophoresis (MLEE) (Ochman et al., 1983) or more recent 

methods (Touchon et al., 2009; Sims and Kim, 2011). Shigella is a good example of 

the occasional inertia in medical terminology, as this appellation is still confusingly 

widely used in clinical setting, and thus medical research. The correct classification is 

to consider Shigella as nothing more than a pathotype of E. coli, with strong 

similarities to enteroinvasive E. coli (EIEC) and a specific evolutionary history. More 

details are provided in section 1.2.1 of this thesis. 

 

Comparative genomics have shown that E. coli (and enterobacteria) has an “open 

pan-genome”, meaning that the analyses of new genome sequences of E. coli 

increases the number of genes associated with the species. In other words, the 

diversity of E. coli genes is increasing. It is generally observed that an open pan-

genome is associated with species that can colonise multiple environments, and thus 
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have an increased likelihood of exchanging genes, whereas the contrary is observed 

for bacterial species living in more specific, isolated niches such as Mycobacterium 

tuberculosis or Chlamydia trachomatis (Medini et al., 2005). The consequence of an 

open pan-genome for E. coli is a tremendous diversity at the genotypic and 

phenotypic levels. In the next sections, we will briefly address these. 

 

1.1.2. Genome dynamics in E. coli and other bacteria 

 

1.1.2.1. Core and flexible genome 

 

A logical start in understanding the genomic plasticity in E. coli is to know how many 

genes it has. The chromosome length of E. coli has been observed to be 4.5 to 5.5 Mb 

on average (Bergthorsson and Ochman, 1998). This difference of up to 1 Mb (18% to 

23% of the total genome size) indicates that genomic variability is surprisingly high 

in E. coli. Some decades ago, one could have imagined this variability to be caused 

by the addition of up to 1 Mb of variable genetic content, while most of the genome 

remained conserved. As a matter of fact, the estimated number of “core” genes, 

common to all E. coli is decreasing as more full genomes are available and examined. 

An early study comparing 15 genomes of mostly pathogenic E. coli found 2,200 

genes common to all among a total of 13,000 genes in the pan-genome (Rasko et al., 

2008). Touchon and colleagues (2009) revised this estimation by identifying 2,000 

genes common to 21 genomes. The latest examination of 61 E. coli genomes 

estimated the core genome to be composed of only 993 genes, within a pan-genome 

of more than 15,000 genes (Lukjancenko et al., 2010). This estimation suggests that 

more than 90% of the pan-genome is composed of accessory genes (or the so-called 
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“flexible” genome), reflecting the high level of strain-specific genetic information in 

E. coli.  

 

Interestingly, the E. coli pan-genome has been described as “open”, meaning that this 

species is still evolving mainly by genetic acquisition and diversification (this point is 

discussed further in the next section). In the light of these observations, it is of prime 

interest to understand what the genome dynamics in E. coli are. In other words, what 

are the evolutionary forces shaping the acquisition and loss of genetic content, and 

thus the E. coli genomes (Figure 1.2). 

 

 

Figure 1.2. Processes involved in genome dynamics (acquisition or loss of genetic content) in 

bacteria (Mira et al., 2001). This figure is copyrighted by Elsevier Science Ltd. 

 

1.1.2.2. Mechanisms contributing to gene acquisition 

 

As shown in Figure 1.2, there are two major ways in which a bacterium can gain 

additional genetic information. Gene duplication, i.e. the creation of multiple 
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paralogous copies from an existing gene, has been observed in bacterial and archaeal 

genomes (Yanai et al., 2000; Jordan et al., 2001; Gevers et al., 2004). Ribosomal 

genes are a good example of genes that were duplicated before copies diverged 

(Gevers et al., 2004) and evolve concertedly (Liao, 2000). Concerted evolution is not 

always observed, and there are many other examples of gene duplication in E. coli 

and other bacteria (Gevers et al., 2004; Serres et al., 2009). However, it seems that the 

major route of gene acquisition in bacteria is via horizontal gene transfer (HGT), 

which occurs in 3 distinct ways: by conjugation of exogenous plasmid-borne traits, by 

transformation, or the natural uptake of DNA fragments secreted by other bacteria 

(Stentz et al., 2009) or released by dead ones, and finally by transduction of lysogenic 

bacteriophages into bacterial cells.  

 

DNA acquired from HGT (and therefore called “mobile genetic elements”) can be 

integrated into the chromosome by homologous recombination or on some occasions 

kept in a circular form in the bacterial cytoplasm. Upon arrival in a bacterial cell, 

acquired DNA has different plausible fates directly depending on its degree of 

homology with sequences present in the recipient genome. When the foreign DNA is 

not homologous enough, its likelihood of successful homologous recombination 

decreases while the likelihood of degradation of non-methylated fragments by 

restriction enzymes increases (Skippington and Ragan, 2011). In other words, a 

certain degree of sequence homology is required for homologous recombination to 

work on horizontally acquired DNA (Shen and Huang, 1986; Thomas and Nielsen, 

2005). This sequence homology can be observed at different levels, from the strain-

specific to the species level and even within larger taxonomic families (Beiko et al., 

2005; Toth et al., 2006). Furthermore, it has been suggested that physical proximity 
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rather than phylogenetic relatedness contributes more to the successful integration of 

horizontally acquired genes (Matte-Tailliez et al., 2002). Conceivably, this argument 

does not exclude a certain degree of phylogenetic relatedness too: in a non-stressful 

environment, the physically close neighbours at the microbial scale are often clones 

from the same events of binary fission (Didelot and Maiden, 2010). From genomic 

comparison studies it would, however, seem that although possible, gene transfer 

between taxonomic families is rarer than between or even within species (Skippington 

and Ragan, 2011). 

 

The reason why bacteria engage in homologous recombination is still debated 

(Redfield, 2001; Narra and Ochman, 2006; Michod et al., 2008). As mentioned 

above, one of the major hypotheses is that homologous recombination is involved in 

DNA repair and that the incorporation of foreign DNA via HGT is just a way for 

bacteria to procure templates for the reparation or complementation of damaged DNA 

(Vos and Didelot, 2009). This function may very well be the most important 

biological role of homologous recombination (Michod et al., 2008; Didelot and 

Maiden, 2010) and is conflicting with the “physical proximity only” argument 

presented above (Matte-Tailliez et al., 2002). The alternative (but not exclusive) 

“food hypothesis” suggests that the presence of recombinant DNA in bacterial 

genomes could be a by-product of DNA metabolism, as natural competence and the 

ability to uptake and use the DNA molecule as a source of nutrients is believed to be 

an important fitness advantage for competing bacteria (Redfield, 1993; Finkel and 

Kolter, 2001; Palchevskiy and Finkel, 2006).  
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The direct impact of HGT on the ecology of E. coli is evident, as most of the 

virulence-associated genes, but also resistance to antibiotics and colonisation-

associated factors, are located on mobile genetic elements (sometimes referred as the 

“mobilome”). Prophages, plasmids, transposons or genomic islands can be 

maintained and/or integrated in the genome via recombination and spread in multiple 

strains and species, replicatively or not. 

 

1.1.2.3. Loss of gene content  

 

Two main mechanisms are involved in the loss of genetic content as shown in Figure 

1.2, either “genetic erosion” (i.e., a gene develops into a truncated, inactivated or 

degraded version, called a “pseudogene”), or the deletion of genes in a single-step 

recombinational event, both of which are briefly described below.  

 

Bacteria, unlike eukaryotes, show a linear correlation between the number of protein-

coding genes and their genome sizes (Mira et al., 2001). For instance, Carsonella 

ruddii has a genome size of about 160 kb and is an obligate intracellular insect 

symbiont, with very little metabolic versatility and complexity (Nakabachi et al., 

2006). On the other hand, Pseudomonas aeruginosa has an average genome size of 

6.3 Mb and a great capacity to adapt to multiple environments, without the need for 

much specialisation (Dobrindt and Hacker, 2001). This robust correlation between 

genome size and protein-coding genes implies that (a) there is a very limited amount 

of “junk DNA” in bacterial genomes compared to eukaryotes and (b) that there is a 

constant evolutionary force leading to the erosion of genes, called the “deletional 

bias”, which is counterbalanced by selection on gene function (Mira et al., 2001). In 
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other words, all genetic information on bacterial genomes is bound to degrade, unless 

it is selected for (and assumed useful for the bacterium). The mutational bias towards 

deletions rather than insertions is also supported by the observation that pseudogenes 

seem to be eliminated from bacterial genomes more rapidly than the accepted neutral 

model of stochastic loss, suggesting a possible positively selected mechanism to 

eliminate non-functional genes, although no molecular mechanism has ever been 

suggested (Lerat and Ochman, 2004; Kuo and Ochman, 2010). Interestingly, as 

pseudogenes can only be identified by comparative genomics, the more genomes that 

are available for a given bacterial species, the more pseudogenes are found (Lerat and 

Ochman, 2004). Their number has been estimated to be between 80 and 100 in the 

genome of E. coli K-12 strain MG1655 (Ochman and Davalos, 2006; Touchon et al., 

2009). It was more recently observed that the number of pseudogenes varied from 45 

to 95 in 7 genomes of E. coli (Touchon et al., 2009).  

 

There are other mechanisms of genomic rearrangements including inversions, 

deletions or translocations of large genetic regions (Hughes, 2000). The most 

common effect of genomic rearrangement is to modify gene synteny, or the order of 

genes on a chromosome. The comparison of 8 Yersinia sp. genome sequences 

identified no less than 79 genomic inversions (Darling et al., 2008), which indicates 

that this process is likely to be important in shaping the genomic structure of 

enterobacteria. Usually, rearrangements occur by recombination between two 

repeated sequences on the chromosome. One explanation for the existence of these 

repeats is that they offer a selective advantage in enhancing diversity, generating 

different sequences at various loci (Ussery et al., 2004). Interestingly, repeats have 

been lost in endosymbionts (Tamas et al., 2002), suggesting a link between genomic 
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rearrangements and the ecological need for plasticity to adapt to changing 

environments. When recombination occurs between two repeats, it can lead to 

different events: if the two repeats are oriented in opposite direction, recombination 

will produce an inversion; if they are in the same direction, recombination will 

produce a circularisation of the sequence included between the two repeats, and this 

DNA will be lost during cell division, leading to a deletion at this locus.  

 

A good experimental method to observe the global effects of genomic rearrangements 

is REP-PCR and its derivatives (Versalovic et al., 1993), which are PCR-based 

fingerprinting methods using primers in the repeat regions. Amplicons obtained by 

REP-PCR correspond to DNA fragments between repeats. After electrophoresis, a 

fingerprint showing multiple bands is obtained, and can visually illustrate the 

diversity of genomic rearrangements if multiple strains are used. This method is used 

on various E. coli isolates in Chapter 3 of this thesis.  

 

1.1.2.4. Impact of recombination on diversity and phylogenetics 

 

The loss of genetic information is not necessarily correlated with the loss of gene 

content. Gene conversion (i.e. the replacement of one allelic variant by another by 

recombination without addition or loss of genetic content) is both a divergent and 

convergent evolutionary force. On one hand, it can lead to an increase in the number 

of allelic variants in the species but it can also act as a homogenising force, replacing 

allelic variants by others conferring a higher environmental fitness, which has been 

observed to be rather prevalent in E. coli (Touchon et al., 2009). This mechanism of 

homogenising gene conversion makes a lot of sense in the context of the selfish gene 



 

21 
 

theory, for which genes are the basic unit of natural selection rather than organisms or 

groups of organisms (Werren, 2011). Conceivably, “successful” genes (i.e., genes 

conferring an increased selective advantage and thus being spread among a large 

number of bacteria) can predominate within E. coli populations after events of lateral 

transfer and gene conversion.  

 

 

Figure 1.3. Influence of recombination on the reconstruction of phylogenies (Tenaillon et al., 

2010). At the top, a sequence alignment between 12 isolates from 3 phylogenetic clades (A, B and C) 

identifies a recombinational “integration site”. Phylogenies based on sequences from this integration 

site or ungapped alignments without any recombinational effect are incongruent (i.e. inconsistent). 

Strains from distinct clades appear to be related as an effect of HGT. This figure is copyrighted by 

MacMillan Publishers Ltd. 

 

This phenomenon can become problematic when reconstructing phylogenies and 

inferring the ancestry of bacterial strains. Indeed, as illustrated by Figure 1.3, if 
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recombination events are not accounted for, two strains with no shared ancestry 

would appear to be phylogenetically related on the basis that their difference at the 

recombined locus is minimal. Conversely, two bacteria that are closely 

phylogenetically related but diverge at recombined loci can appear to be more distant 

than they really are (Dykhuizen and Green, 1991). This lack of phylogenetic 

congruence caused by recombination between different regions of the genome is 

typical of species with a high level of gene flow such as E. coli. 

 

The recombination problem is obviously important when using single genes to 

reconstruct phylogenies, even if there are some exceptions (Lescat et al., 2009; 

Sankar et al., 2009). The use of multilocus approaches, such as multilocus sequence 

typing (MLST) used in this thesis, or even whole genomes (Touchon et al., 2009; 

Sims and Kim, 2011), can contribute to decrease the phylogenetic signal “blur” 

caused by recombination. It is indeed unlikely that the same recombination events 

occurred at multiple loci, providing they are distant enough on the chromosome. In 

fact, the longer the sequences used for phylogenetic reconstruction are, the more 

accurate is the produced phylogeny, as the relatively short size of DNA fragments 

involved in recombination becomes less and less able to interfere with the 

phylogenetic signal (Tenaillon et al., 2010). For example, if the whole sequence 

alignment represented in Figure 1.3 was to be used for phylogenetic reconstruction, 

as most of it reflects the true phylogenetic history of the strain despite the 

recombination events, the resulting phylogeny would probably not be far from reality.  

 

This “averaging” strategy consisting of masking the recombination noise by adding 

more meaningful information works (the minimum corresponding to MLST and the 
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maximum to a whole-genome approach), but also reflects the difficulty of finding 

phylogenetic markers that are good representatives of the true phylogenetic history. 

Even in the high-throughput genomics era, getting large genomic sequences from a 

large number of strains is still costly for some laboratories, including ours. MLST has 

long been a method of choice for phylogenetic reconstruction, and a lot of efforts 

have been made regarding MLST in picking the right combination of genes (called 

MLST “schemes”) that reflect the “purest” phylogenetic signal, if it exists (Spratt, 

2004). Providing the right loci are chosen and the right methods are used, the 

obtained trees can be very similar, or even better to what is obtained using whole 

genome information (Konstantinidis et al., 2006). Computational methods have also 

been developed to identify and minimise as much as possible the recombination noise 

in sequence alignments. Notably, ClonalFrame (Didelot and Falush, 2007) is a 

method to infer clonal relationships (i.e., genealogy) between bacteria from 

multilocus data (MLST or whole-genome) by identifying and taking into account the 

recombination signal (the “clonal frame” refers to the true strain genealogy as if there 

was no recombination and bacteria could be traced by clonal descent). The major 

observable difference between a ClonalFrame-based phylogenetic tree and classical 

ones is that strains with a recombination signal that blurs the phylogenetic signal will 

be placed equidistant from their common node (i.e., a “multifurcation”) whereas 

classical approaches (such as maximum likelihood or neighbour-joining) will infer a 

(wrong) relationship regardless of the recombination events (Didelot and Falush, 

2007; Didelot and Maiden, 2010). We used ClonalFrame in this thesis to analyse 

MLST data and described this method more in Chapter 3. 
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1.1.3. E. coli population structure 

 

1.1.3.1. Clonal population structure and phylogenetic groups  

 

The first studies on bacterial population structure were performed about 30 years ago 

on E. coli using multilocus enzyme electrophoresis, or MLEE, which was then mostly 

used for eukaryotic studies (Selander and Levin, 1980; Selander et al., 1986). This 

ancestor method of MLST relies on the differential electrophoretic migration of 

various enzymes (Selander et al., 1986). It has been observed that E. coli from various 

hosts exhibited a relative diversity of their electrophoretic profiles using various 

enzymes (Selander and Levin, 1980), which were not randomly associated between 

them, leading to the possibility to define clear groupings of strains (Whittam et al., 

1983). In an effort to study further the E. coli population structure, a standard 

reference collection of 72 strains (called “ECOR” for “E. coli Reference”) was 

created from a larger set of more than 2600 strains (Ochman and Selander, 1984). The 

ECOR strains were assembled together on the basis of their diversity of MLEE 

profiles, possibly encompassing the highest genetic diversity within the E. coli 

species (Ochman and Selander, 1984). Phylogenetic studies based on MLEE profiles 

first identified 3 major phylogenetic clades of strains (or “phylogroups”) called A, B 

and C (Selander and Levin, 1980). Phylogroup C was later refined into phylogroup D 

and “ungrouped strains” (Herzer et al., 1990). These ungrouped strains were 

clustering inconsistently in the early phylogenies and were gathered in the “minor” 

phylogroup E (Wirth et al., 2006). Their importance was however revised when 

pathogenic strains of E. coli serovar O157:H7 were found to group in clade E, and 
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subsequent studies have focused on the evolution of EHEC within this group (Wick et 

al., 2005; Sims and Kim, 2011). 

 

The order in which phylogroups diverged from a common ancestor to all E. coli 

strains has also been debated as different phylogenies indicated different results. It 

was first thought that phylogroup A was diverging from the others (Herzer et al., 

1990) but soon it emerged that either phylogroups B2 and D were basal (Lecointre et 

al., 1998; Wirth et al., 2006) while phylogroups A and B1 diverged later and are more 

closely related to each other. Other studies seemed to suggest that B2, rather than D 

was the first group to diverge (Tenaillon et al., 2010; Sims and Kim, 2011). A whole-

genome phylogeny study places D as the most ancient phylogroup, followed by B2 

(Touchon et al., 2009). 

 

As mentioned above, early MLEE-based studies observed a high level of linkage 

disequilibrium in many tested alleles (Selander and Levin, 1980; Whittam et al., 

1983; Whittam et al., 1983; Herzer et al., 1990). It was then assumed that 

recombination in E. coli was low, explaining the stability of the groupings and the 

high linkage disequilibrium observed (i.e., the non-random association of enzymatic 

profiles, and thus allelic variants) (Selander and Levin, 1980; Hartl and Dykhuizen, 

1984). This clonal view of bacterial population structure has been put into question 

(Maynard Smith et al., 1993) as it has since been shown that E. coli strains were 

actually composed of a very diverse mosaic of mixed ancestry due to recombination 

(Wirth et al., 2006). In fact, a significant amount of gene flow between the different 

phylogroups has been detected (Leopold et al., 2011). This phenomenon seems to be 

a common feature across enteric bacteria, in which phylogenetic incongruence is 



 

26 
 

observed between phylogenies of orthologous genes and the clonal genealogy of 

species (Retchless and Lawrence, 2010). However, it would seem that this 

discordance between enteric bacteria is not linked to ongoing recombination events. 

Alternatively, authors suggest a fragmented speciation model, defined as the 

“stepwise acquisition of genetic isolation” upon sudden adaptive changes (Retchless 

and Lawrence, 2010). Recently, this model has been questioned using strains within 

the Escherichia genus (Luo et al., 2011).  

 

1.1.3.2. Ecological considerations 

 

Whether enteric bacteria evolve by recombination or “fragmented speciation” events, 

the genetic flow between E. coli phylogroups has interestingly been observed to be 

unbalanced (Leopold et al., 2011). In other words, some phylogroups exchange more 

genes between them than with others. This could be a reflection of different degrees 

of phylogenetic relatedness of the different phylogroups but also of different 

ecological strategies by strains of the different phylogroups. It is possible that the 

absence of observed gene flow between two groups of strains is simply because the 

ecology of these two groups leads to different proportions of these strains in various 

environments, and therefore fewer opportunities for the physical contact required for 

HGT (Leopold et al., 2011). Indeed, a great variation in the proportions of different 

phylogroups has been observed in various environmental samples, suggesting that 

complex ecological factors shape the distribution of phylogenetic groups in different 

environments. The observation of various phylogroup distributions in various 

environments could be the consequence of different levels of adaptation of each 

phylogroup to these various environments. 
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The link between the phylogeny and different ecologies has been made in humans, in 

which it has been observed that faecal and urine isolates were preferentially from 

phylogroup A and B1 (Duriez et al., 2001). However, these figures have been 

criticised for their sampling bias (Zhang et al., 2002) and it seems that urinary and 

rectal E. coli in humans are in fact more dominated by B2 isolates rather than A and 

B1 (Table 1.1). This trend seems to be confirmed by the fact that B2 are 

overwhelmingly better intestinal persisters than any other group (Nowrouzian et al., 

2005). In this last study, authors observed that 60% of “resident” strains (defined as 

persisting for more than 3 weeks in the gut, as opposed to “transient” strains) were 

from phylogroup B2 in Swedish infants (Nowrouzian et al., 2005). Comparatively, 

phylogroup B1 was the less represented among the resident strains, with only about 

5% of strains being resident (Table 1.1) (Nowrouzian et al., 2005).  

 
 
 
 
 
 
 
Table 1.1. (next page) Comparison of results from various studies examining the population 

structure of E. coli populations in different environments. The heatmap reflects the level of 

prevalence in different environments for each phylogroup, with red for high, white for medium and 

blue for low. The number of strains tested is indicated to contextualise the possible significance of 

observed percentages. 
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Source 
Type of 

environment 
n 

(total) 
A B1 B2 D References 

Swedish infants 
("resident") 

Human host 58 18% 5% 60% 18% 
(Nowrouzian et al., 

2005) Swedish infants 
("transient") 

Human host 19 23% 23% 21% 34% 

Humans from Mali Human host 55 24% 58% 16% 2% 

(Duriez et al., 2001) 
Humans from 

Croatia 
Human host 57 35% 32% 14% 19% 

Humans from 
France 

Human host 56 40% 34% 15% 11% 

Humans from Brazil Human host 94 40% 9% 13% 38% (Carlos et al., 2010) 

Women from 
Michigan, USA 

Human host 181 14% 8% 59% 20% (Zhang et al., 2002) 

Birds Animal host 134 8% 49% 22% 20% 

(Gordon and Cowling, 
2003) 

Mammals Animal host 497 16% 33% 35% 17% 

Fish Animal host 12 0% 92% 8% 0% 

Frogs Animal host 13 8% 85% 0% 8% 

Turtles Animal host 4 25% 50% 25% 0% 

Snakes and lizards Animal host 33 15% 70% 6% 9% 

Crocodiles Animal host 10 20% 70% 10% 0% 

Cow Animal host 50 28% 58% 0% 14% 

(Carlos et al., 2010) 

Chicken Animal host 13 77% 23% 0% 0% 

Pig Animal host 39 54% 23% 5% 18% 

Sheep Animal host 29 14% 69% 0% 17% 

Goat Animal host 16 13% 81% 0% 0% 

Field soil Nonhost 353 2% 41% 16% 26% (Bergholz et al., 2011) 

Freshwater Nonhost 190 23% 56% 6% 15% (Walk et al., 2007) 

 



 

29 
 

Interestingly, the great majority of extraintestinal pathogenic strains of E. coli 

(ExPEC) are from phylogroup B2 (Picard et al., 1999; Bingen-Bidois et al., 2002). 

Epidemiological studies showed that strains with known ExPEC virulence factors are 

also clustered in phylogroups B2 and to a lesser extent D (Zhang et al., 2002; Johnson 

et al., 2006). Interestingly, most of the B2-specific virulence factors (iron metabolism, 

adhesion, lipopolysaccharide biosynthesis) are also involved in the host colonisation 

process by commensal strains, which led to the idea that pathogenicity was an 

evolutionary by-product of commensalism in phylogroup B2 (Le Gall et al., 2007). 

These points strongly suggest that the major ecological strategy of phylogroup B2 is 

probably evolving towards strict host specialisation (Clermont et al., 2008) and 

adaptation to the gastrointestinal niche, as compared with other phylogroups. 

Conceivably, the presence of host-specialised ExPEC in high proportion in this group 

(if not a sampling bias effect) may contribute to this specialisation via an increased 

genetic flow within B2 strains.  

 

Conversely, the very low proportion of strains from phylogroup B1 in humans is not 

observed in wild animals (Gordon and Cowling, 2003) and in nonhost environments 

such as soil and fresh water (Table 1.1) (Walk et al., 2007; Bergholz et al., 2011), 

which leads to the suggestion that B2 and D strains are host “specialists” (based on 

their preferred association with humans) whereas A and B1 strains could be 

considered as host “generalists” (based on their preferred association with non-human 

hosts and nonhost environments) (Gordon and Cowling, 2003). Although the impact 

of sampling bias towards samples of human origin seems high in all these reported 

studies, this trend of host specificity or generalism appears relatively valid when 

different sampling sources are examined, with the exception of phylogroup A being a 
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more likely “specialist” than “generalist” (White et al., 2011). Indeed, in a 

comparative study, strains from both B2 and A were found to harbour key 

phenotypical traits associated with host-specific life, such as the decreased production 

of an extracellular matrix and low expression of the major stress regulator protein 

RpoS (σS or σ70) (White et al., 2011). 

 

Phylogroup A seems to be peculiar in its adaptation to the primary environment. It 

has been observed that strains from group A had the smallest genomes among E. coli 

(Bergthorsson and Ochman, 1998). Incidentally, fewer accessory genes are found in 

phylogroup A, in which core genes are also found in all other phylogroups (Sims and 

Kim, 2011). This phenomenon has been characterised as “commensal minimalism”, 

and of which E. coli K-12 strains (belonging to phylogroup A) are a perfect example: 

increased levels of host-adaptation usually leads to increased shedding of unnecessary 

pathogenesis-related genes (Moran, 2002). The apparent effect of commensal 

minimalism is a genome size reduction, the extreme of which is observed in 

endosymbionts or obligate intracellular organisms. Generally speaking, bacteria with 

the biggest genome size are ecologically associated with the necessity to adapt to 

short-term changing of their living conditions, requiring a certain plasticity that is 

achieved by maintaining a large number of diverse genes (Ochman and Davalos, 

2006). Opportunistic pathogens (such as most of E. coli pathogens) have usually a 

genome comprising between 2 and 5 Mb, which is considered as an average among 

bacteria (Ochman and Davalos, 2006). The best illustration of this commensal 

minimalism hypothesis is that very few pathogenic strains are found in E. coli 

phylogroup A, which is not the case for any other phylogroup (Sims and Kim, 2011). 

It has then been suggested that, similarly to obligate pathogens, phylogroup A may be 
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evolving towards “obligate commensalism” (Sims and Kim, 2011). To contrast this 

hypothesis, it has very recently been shown that a strain from phylogroup A was able 

to cause mastitis in bovines (Dufour et al., 2011), but more genomic characterisation 

needs to be done on more samples to determine how these pathogenic strains fit with 

the “commensal minimalism” model. 

 

As we hope to have shown in this section, the analysis of genome dynamics and its 

link with bacterial population structure is crucial to get an integrated view of E. coli 

ecology. It is equally important to understand what are the major molecular and 

physiological mechanisms involved in environmental adaptation.  
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1.2. The ecology of environmental adaptation in E. coli  

 

Two major dichotomies can be drawn when addressing the topic of environmental 

adaptation for E. coli, reflecting different lifestyles this bacterium can adopt. In this 

section, we give an overview on the differences and similarities between pathogenic 

and commensal lifestyles in E. coli, and also on the host (primary environment) or 

nonhost (secondary environments) mechanisms of association, and possibly 

adaptation. 

 

1.2.1. Pathogenic and commensal E. coli 

 

1.2.1.1. Functional and genetic diversity of E. coli pathogens 

 

The primary environment of E. coli is the gastrointestinal tract of warm-blooded 

animals, that it colonises only hours after birth, but it can also be excreted ex vivo via 

faecal matter in secondary environments as diverse as the ecology of the primary 

hosts allows. Around this basic ecological framework, multiple adaptive strategies are 

observed in E. coli, all linked to survival and transmissibility abilities. Most of the 

time, E. coli persists asymptomatically in its hosts, without any obvious effect on 

their health or physiology. However, a surprising diversity of pathogenic strains (or 

“pathotypes”, or “pathovars”) has been described in the last 30 years as pathogenic E. 

coli can cause various types of intestinal or extra-intestinal infections in humans 

(Figure 1.3) via a very diverse set of virulence factors, affecting a range of cellular 

processes (Kaper et al., 2004). These virulence factors are acquired laterally, via the 

transfer of pathogenicity islands or recombination and are mostly involved in the 
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colonisation process, providing fitness-increasing metabolic abilities, motility, 

adhesion and persistence mechanisms (Kaper et al., 2004). The diversity of the 

different pathologies makes E. coli an important pathogen worldwide, with an 

estimated burden of around 2 million child deaths per year caused mainly by 

diarrhoeal infections and sepsis after urinary tract infections (Touchon et al., 2009) as 

well as a considerable economic impact (Russo and Johnson, 2003).  

 

 

Figure 1.3. Human body sites of colonisation by various E. coli pathotypes (Croxen and Finlay, 

2010). “EC” in acronyms refers to “Escherichia coli” with the different pathotypes being, for intestinal 

pathogens: “enterohaemorrhagic” (EHEC), “enteroinvasive” (EIEC), “enteroaggregative” (EAEC), 

diffusely adherent” (DAEC); and for extraintestinal pathogens (ExPEC): “neonatal meningitis” 

NMEC, “uropathogenic” (UPEC). This figure is copyrighted by MacMillan Publishers Ltd. 

 

Intestinal pathologies caused by E. coli are generally observed after infection by well-

described pathotypes. The best-studied E. coli intestinal pathogenic strains, 

popularised by their association with meat and vegetables, are E. coli from serotype 
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O157:H7, which is the archetype of the enterohaemorrhagic E. coli (EHEC) 

pathotype.  

 

Strains of the O157:H7 serotype are predominant EHEC pathogens in North America, 

UK and Japan, but several other serotypes, particularly those of the O26 and O111 

serogroups, can also cause disease and are more prominent than O157:H7 in many 

countries (Kaper et al., 2004). The ability of producing two families of Shiga-toxins, 

Stx1 and Stx2 that can spread systemically and, upon entry of host cells, disrupt 

protein synthesis by cleaving the 28S ribosomal subunit (Donohue-Rolfe et al., 1991), 

and the presence of a group of genes on a 35-kb pathogenicity island called the locus 

of enterocyte effacement (LEE) are the two factors required for human toxicity of E. 

coli O157:H7 strains (O'Brien and Holmes, 1987; McDaniel et al., 1995). Other non-

O157 strains can produce Shiga or Shiga-like toxins and are usually regrouped under 

the appellation of Shiga toxin-producing E. coli (STEC) or verotoxin-producing E. 

coli (VTEC). In 10% of the cases, mostly in immuno-compromised patients, children 

and the elderly, the intestinal diarrheic infection by STEC can evolve into haemolytic-

uraemic syndrome (HUS), leading to acute renal failure, haemolytic anaemia and 

possible death. Most EHEC strains contain the LEE, which encodes transcriptional 

regulators, the adhesin intimin, a quite conserved filamentous type III secretion 

system (T3SS), chaperones, translocators (EspA, EspD, EspB) and six effector 

proteins (Garmendia et al., 2005). Other intestinal pathotypes of E. coli have different 

mechanisms of infection, ranging from the production of other enterotoxins 

[enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC)], increased 

adhesion and biofilm formation on the epithelial layer [enteroaggregative E. coli 

(EAEC), diffusely adherent E. coli (DAEC)]. More details on the molecular 
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mechanisms of infection by these pathogens have been presented in very good 

reviews (Kaper et al., 2004; Croxen and Finlay, 2010).  

 

The two most important extraintestinal pathogenic E. coli (ExPEC) pathotypes 

[neonatal meningitis E. coli (NMEC) and uropathogenic E. coli (UPEC)] are able to 

colonise the bloodstream (UPEC, NMEC), bladders and kidneys (UPEC) and the 

brain (NMEC) (Figure 1.3). The process of infection by NMEC is complex as the 

bacteria need to transfer and live in the bloodstream, actively cross the blood-brain 

barrier and persist in the cerebrospinal fluid (Croxen and Finlay, 2010). UPEC are 

able to live in the bloodstream (Smith et al., 2010) from which they can infect kidneys 

and more frequently the bladder, being the most common cause of urinary tract 

infections (UTI). Other ExPEC include E. coli veterinary isolates causing mastitis in 

cattle by persisting in udders without being killed by the immune system (Buitenhuis 

et al., 2011), and for which specific genomic islands have been recently observed 

(Dufour et al., 2011). Much rarer ExPEC-related pathogenicity mechanisms have 

recently been described, such as the production of “flesh-eating” dermonecrotic 

toxins (Grimaldi et al., 2010), or the infection of the endometrium (i.e., the inner 

membrane of the mammalian uterus) by a newly-described endometrial pathogenic E. 

coli (EnPEC) (Sheldon et al., 2010). However, more research on these strains is 

required to understand fully how they can cause disease, and what their ecology is. 

 

E. coli pathogens share evolutionary similarities and are believed to evolve mainly via 

two non-exclusive mechanisms: (a) the acquisition via HGT of genes or pathogenicity 

islands containing fitness-enhancing virulence factors and sometimes (b) the 

apparition of deletions, or “black holes” (Maurelli et al., 1998; Dobrindt and Hacker, 
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2001). Conceivably, these two mechanisms are occurring on different time scales. 

Environmental fitness can change drastically and suddenly upon the acquisition of 

pathogenicity islands but, it could take longer evolutionary time for “black holes” to 

be fixed and selected for. Similarly to the “obligate commensalism” hypothesis 

presented in the previous section, it is commonly accepted that Shigella and EIEC are 

evolving toward a more intimate, obligate pathogenesis, for which genome reduction 

is positively selected as the loss of functions improves the overall fitness of the 

organism (Maurelli et al., 1998). As a matter of fact, Shigella and EIEC are the only 

obligate pathogens among E. coli pathogens, which are otherwise considered as 

“opportunistic” as they can persist for a long time in healthy hosts (Touchon et al., 

2009).  

 

The acquisition via HGT of virulence genes harbouring mobile genetic elements, such 

as genomic islands or plasmids, seems to be a common feature in many E. coli 

pathotypes (Figure 1.4). For instance, all EIEC and Shigella strains harbour a 230-kb 

pINV plasmid that is strictly required for their pathogenicity (Lan et al., 2003). EPEC 

and ETEC virulence is greatly dependent on the presence of pEAF and pENT 

plasmids, both harbouring toxin genes (Figure 1.4). UPEC strains possess an 

increased number of iron acquisition systems located on genomic islands, a signature 

of their adaptation to the urinary tract (Lloyd et al., 2007). Virulence factors of E. coli 

O157:H7 are mostly encoded by chromosomally inserted genomic islands (e.g., 

LEE), prophage elements (Shiga toxins) or plasmids (various toxins) (Law, 2000).  

 



 

37 
 

 

Figure 1.4. Contribution of HGT to the evolution of different E. coli pathotypes (Ahmed et al., 

2008). pENT and pEAF are the plasmids conferring virulence to ETEC and EPEC, respectively. The 

invasion plasmid (pINV) confers invasive properties to EIEC and Shigella. LEE: locus of enterocyte 

effacement; PAIs, pathogenicity-associated islands; StxΦ: bacteriophage harbouring Shiga toxin genes. 

See text for more information. This figure is copyrighted by the Nature Publishing Group. 

 

Upon acquisition of genomic islands harbouring virulence factors, a commensal E. 

coli bacterium can in theory become pathogenic and change drastically its lifestyle. It 

has been suggested that the acquisition of virulence was not identical for all E. coli 

leading to the idea that certain phylogroups, such as B2 and D, were more associated 

with ExPEC pathogenicity than others (Escobar-Paramo et al., 2004). Similarly, the 

presence of similar toxins in closely related Shigella dysenteriae serotype 1 and E. 

coli O157:H7 seems to indicate that a specific genetic background is required to 

express those toxins (Touchon et al., 2009). This view is contrasted by the fact that 

various pathogens are found to be from almost all phylogroups (Sims and Kim, 2011). 

As the pathogenesis develops, a successful pathogen has to escape host immunity and 

defences. Because of this, pathogenic E. coli presumably have drastically different 
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ecological strategies compared to commensals, as they must cope with additional 

environmental pressures linked to their pathogenic lifestyle.  

 

Immune evasion seems to be one of the major evolutionary constraints on pathogens 

(Frank and Schmid-Hempel, 2008), as reflected by the observed variety of 

mechanisms to avoid host defences. For instance, 80% NMEC strains possess a K1 

capsule providing them with a physical protection against lysozymal fusion and 

therefore aids during the crossing of the blood-brain barrier (Croxen and Finlay, 

2010). NMEC strains also harbour a prophage-encoded acetyltransferase that 

modifies the O-antigen as a way to escape immune recognition (Deszo et al., 2005). 

Additionally, among all sorts of E. coli pathotypes, a huge variety of adhesins, 

flagellar proteins and other fimbriae are observed to be involved in the pathogenesis 

process itself (Le Bouguenec, 2005), highlighting the importance of motility during 

host colonisation by pathogens, something which is not necessarily obvious for 

commensals. Interestingly, it appears that the processes involved in nonhost 

persistence and host transmission are not entirely specific to pathogens (van Elsas et 

al., 2011), suggesting that the evolutionary constraints for transmissibility and 

nonhost adaptation are shared between pathogens and commensals. This point is 

supported by the fact that many “virulence-associated” functions have been found to 

also be important for intestinal persistence in commensals (Wold et al., 1992; Lipsitch 

and Moxon, 1997) indicating that virulence is probably not the major selective force 

on these functions. 
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1.2.1.2. Common themes between pathogenic and commensal E. coli 

 

Examples of the functional overlap between traits associated with virulence in 

pathogens and colonisation in commensals have been identified when comparing 

multiple genomes (Rasko et al., 2008; Touchon et al., 2009). For instance, the 

examination of the genome of E. coli strain HS, an archetypical commensal strain 

with few assumed laboratory adaptation and high host colonisation abilities, has 

shown that it shares with pathogenic strains many genes previously thought to be 

virulence factors, notably pilus and fimbriae genes involved in colonisation (Rasko et 

al., 2008). Interestingly, the presence of a type II secretion system in E. coli HS, with 

no apparent link to mobile genetic elements suggests that it could represent a true 

niche specialisation adaptation and not a “random” gene transfer (Rasko et al., 2008). 

A similar comment can be drawn from the presence of ETT2 in strain HS, a non-

functional type III secretion system used as a specific marker for E. coli pathogens 

(Rasko et al., 2008).  

 

As pathogens are understandably more heavily scrutinised by microbiological 

research, many laterally-acquired genes such as those harboured by genomic islands 

are thought to be important for virulence, as knockouts impair colonising fitness and 

thus the progression of infection. However, the detection of these islands in strains 

with no obvious pathogenetic behaviour underlines the multiple functional roles of 

genomic islands. Indeed, many genomic islands can be functionally characterised, for 

example as ecological, saprophytic, symbiotic or pathogenicity islands (Hacker and 

Carniel, 2001). This is for instance the case with the genes encoding the production of 

yersiniabactin, an iron-scavenging siderophore molecule. It is located on a genomic 
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island that was observed to be an important colonisation factor for UPEC in the 

urinary tract. Genomic analyses showed that yersiniabactin is present in numerous 

non-pathogenic E. coli strains, with nevertheless a higher presence in phylogroups B2 

and D, suggesting an ecological relevance in host-specialisation and perhaps the early 

acquisition by a B2 ancestor (van Elsas et al., 2011). Interestingly, another very good 

host coloniser, the probiotic strain E. coli Nissle 1917 (Altenhoefer et al., 2004; 

Ukena et al., 2007; Schultz, 2008) is able to produce the 4 different siderophores 

described for E. coli (Valdebenito et al., 2006) including yersiniabactin, suggesting 

that this trait is involved in host adaptation by E. coli in general and not just in 

pathogens. 

 

The mosaic structure of E. coli commensal genomes shows that most of the virulence 

factors are in fact colonisation functions and that it is the horizontal genetic flow 

producing the right combination of these factors that makes a successful pathogen. 

Interestingly, this flow is not unidirectional: commensals can become pathogens, but 

the contrary is also observed. E. coli strain 83972 was isolated from the urinary tract 

of a young girl who had carried it for 3 years without symptoms (Hancock et al., 

2008). It was observed that 83972 was a very good coloniser of the urinary tract, and 

could even outcompete some UPEC in urine (Roos et al., 2006). Subsequently, this 

phenomenon was found to be frequent and it was observed that these “asymptomatic 

bacteriuria” (ABU) strains were phylogenetically related to UPEC but had 

experienced genome reduction events (Zdziarski et al., 2008), which probably reflects 

their ongoing host specialisation (as previously presented in this chapter). The 

phenomenon of “commensal conversion” captured by the examination of strain 83972 

and other ABU strains is likely to be widespread even among intestinal E. coli, as we 
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have an inevitable sampling bias towards successful pathogens (how can one sample 

specifically for commensal strains that were once pathogenic?). The fact that we 

observe a mosaic of virulence-associated or colonisation-associated genes in E. coli 

genomes is an indirect indication that there could be a constant balance across 

evolutionary times between pathogenic and commensal status in E. coli strains. 

 

This point is supported by the observation that when phylogenies are reconstructed, 

pathogens and commensals are generally found to belong to the same phylogenetic 

backgrounds, with no obvious distinction between strains with different lifestyles. 

This observation suggests that in most cases, pathogenicity is not a strong speciating 

force, with functions associated with all kinds of E. coli being positively selected for. 

In other words, from an evolutionary and global point of view, the difference between 

pathogens and commensals is very small as within the open pangenome of E. coli, 

very few traits seem to be pathogen-specific. It seems indeed logical that most of the 

time (and probably never for the majority of them), facultative E. coli pathogens do 

not express pathogenicity-specific genes  but are however committed to the same 

requirements as commensal E. coli for survival, replication and general physiology. 

Notably, this point may be different for EIEC and Shigella. Accordingly, it has been 

observed that “black holes” (i.e., large deletions observed consistently in Shigella and 

EIEC genomes) are constituted by the deletion of important functions such as amino 

acid and carbohydrate transport or nucleoside metabolism (Touchon et al., 2009). 

These functions are believed to be important in the metabolic plasticity and 

environmental adaptation flexibility of E. coli, strongly indicating that Shigella and 

EIEC are following an obligate host-association evolutionary pathway, moreover at a 

seemingly accelerated rate (van Passel et al., 2008).  
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The fact that pathogenic and commensal lifestyles have coevolved simultaneously 

within the same species, probably since the divergence of the E. coli ancestral 

progenitor, implies that this duality was probably under positive selection as it gave a 

presumed ecological advantage over other competing intestinal bacteria, most of 

which do not seem to have pathogenic variants. In this part, the ecological dichotomy 

between these two lifestyles was briefly detailed, with an emphasis on the possible 

impact they had on E. coli evolution. There is another major ecological dichotomy in 

E. coli, introduced almost 30 years ago (Savageau, 1983). It is crudely estimated that 

because of the inevitable faecal shedding of E. coli, half of all existing strains are 

associated with secondary non-intestinal, nonhost environments. The potential 

impacts on E. coli ecology and evolution are presented in the next section. 

 

1.2.2. The ecology of E. coli host and nonhost environmental persistence 

 

1.2.2.1. Life in the primary (“host”) gastrointestinal tract 

environment 

 

The primary niche of E. coli is the mucus layer of the lower intestine of mammals, 

comprising the colon and distal parts of the ileum. It has been reported that when 

embedded in the intestinal mucus layer, E. coli had a generation time of 40 to 80 min 

(Poulsen et al., 1994; Poulsen et al., 1995). There are 100 to 1,000 times more E. coli 

in the colon than in the ileum, yet some arguments based on lactose utilisation and 

intestinal flow models have been advanced to suggest that E. coli was more adapted 

to life in the small than large intestines, and that the observed high concentrations in 
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the colon were due to mechanical displacement during digestion rather than active 

adaptation processes (Koch, 1987). Increased colonisation of the ileum by some 

strains of E. coli has also been observed (Staley et al., 1969; Barnich et al., 2007).  

 

Nevertheless, most ingested E. coli strains are thought to transit through the 

mammalian gut without much effect on their host (Caugant et al., 1981; Savageau, 

1983). Some strains are able to persist for a few months or years, while others are 

readily and constantly excreted to the external nonhost environment. This observed 

duality between “residents” and “transients” has been made in early host-association 

studies (Wallick and Stuart, 1943; Sears et al., 1950; Sears and Brownlee, 1952; 

Cooke et al., 1972; Smith, 1975) using serotyping as a method of discrimination 

between strains. More recently, and as mentioned in section 1.2.1 of this thesis, a 

study distinguished resident and transient strains in infants according to their 

phylogenetic group and it was observed that phylogroup B2 strains were more likely 

to be resident whereas other phylogroups could be more considered as transient 

(Nowrouzian et al., 2005). In contrast to mucus-embedded cells, E. coli living in the 

luminal contents have not been observed to grow, and are believed to be excreted 

with faeces (Poulsen et al., 1995). This differential ability in terms of mucus 

colonisation, whether active or passive, may be the basis of the dichotomy between 

“resident” and “transient” strains. 

 

The main reason why active viable bacteria persist in one given environment is 

because they can scavenge and use suitable nutrients for the maintenance of their 

physiology. Therefore, metabolic abilities are important to consider when examining 

environmental adaptation, especially in the gut where the global dominant gene 
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expression by resident bacterial communities is in majority linked to carbohydrate 

metabolism (Booijink et al., 2010). E. coli K-12 has been shown to use micro-

aerobically and anaerobically specific C-sources in mucus-based medium mimicking 

conditions in the intestine (Chang et al., 2004; Jones et al., 2007). Gluconate was the 

preferred source of carbon, followed by N-acetylglucosamine, N-acetylneuraminic 

acid and glucuronate, mannose, fucose and ribose (Chang et al., 2004; Alpert et al., 

2009). Fucose and ribose share common metabolic processes and were used 

dynamically by E. coli in the gut (Autieri et al., 2007). Glycogen could potentially 

also be used, since mutants unable to synthesise or store glycogen have reduced 

colonisation abilities (Jones et al., 2008). Apparently, not only catabolic functions are 

important, as mutant strains impaired in purine and pyrimidine biosynthesis were 

eliminated from the mouse intestine (Vogel-Scheel et al., 2010). Additionally, maybe 

not all metabolic functions important for intestinal colonisation are commensal 

functions in E. coli. It was shown that EHEC and E. coli K-12, albeit using similar 

carbon sources in the mouse gut, were also using specific ones (Fabich et al., 2008). 

Additionally, EHEC strains seem to gain advantage from using novel metabolic 

compounds, such as ethanolamine as a nitrogen source in the cattle intestines (Bertin 

et al., 2011). Interestingly, E. coli O157:H7 colonised a sterile mouse intestine 

successfully but was outcompeted in mice pre-treated with E. coli K-12 (Miranda et 

al., 2004). E. coli O157:H7 showed less metabolic flexibility in vivo than E. coli K-

12, which seemed, in this study, more metabolically adapted to host conditions 

(Miranda et al., 2004). 

 

Other mechanisms have been pinpointed as important during the colonisation by E. 

coli of primary host environments. Type-1 pili are important for the initial attachment 
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to the intestinal surface and the colonisation of mucosa (Tullus et al., 1992; Herias et 

al., 1995), and are harboured by commensal and UPEC strains (Hartl and Dykhuizen, 

1984). The presence of an extracellular capsule (antigen K5) and of P fimbriae also 

increases intestinal colonisation by E. coli in gnotobiotic rats (Herias et al., 1997). 

Flagellar motility seems however to be impairing colonisation, with nonmotile 

O157:H– EHEC variants colonising cattle intestines very much better than motile 

ones (Dobbin et al., 2006). This observation was confirmed by a study using 

“intestine-adapted” strains derived from E. coli K-12 MG1655 which were observed 

to become nonmotile only a few days after feeding mice (Gauger et al., 2007). This 

lack of motility upon host colonisation was associated with mutations in the flhDC 

regulator (Dobbin et al., 2006; Gauger et al., 2007; De Paepe et al., 2011).  

 

1.2.2.2. Secondary (“nonhost”) environments 

 

Interestingly, although attachment through pili and fimbriae seems important, biofilm 

formation (i.e., the formation of an extracellular adhesive matrix) is not considered to 

be an advantage during intestinal colonisation. The production of the matrix 

components is very tightly regulated in E. coli and Salmonella and responds to many 

environmental signals (Barnhart et al., 2006). Notably, matrix expression is generally 

high at low temperatures (28-30°C) and inhibited at host temperature (37°C) 

(Arnqvist et al., 1992; Barnhart et al., 2006). Several other conditions preferably 

linked to ex-vivo conditions have been identified to enhance matrix production 

(Barnhart et al., 2006). Accordingly, it has been shown that the formation of an 

extracellular matrix in Salmonella (which is very similar to the matrix of E. coli) was 

not favoured during intestinal colonisation (White et al., 2008). Instead, matrix 
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formation conferred a higher resistance to desiccation (Gibson et al., 2006) and long-

term survival (White et al., 2006), clearly highlighting its role in inter-host 

transmission or environmental survival rather than host colonisation. 

 

Much sampling effort in pathogenic and non-pathogenic E. coli ecology studies has 

been concentrated on animal and human hosts only. However, it has been suggested 

that half of all living E. coli could theoretically live outside hosts, in secondary 

environments such as soil, water and sediments (Savageau, 1983). In his landmark 

1983 review, Michael Savageau presents different hypotheses on host and nonhost 

lifestyle adaptations in E. coli (Savageau, 1983). E. coli originates from the primary 

environment, an intestine, and is excreted via faecal matter in environments congruent 

with the warm-blooded animal host ecology, most of the time water, sediments or 

soils. A large majority of strains probably die in this step, and a fraction of the 

survivors will presumably be able to recolonise an intestine (Savageau, 1983; 

Winfield and Groisman, 2003). However, some strains are found to persist better (or 

in higher proportions) in secondary environments than others (we call them “nonhost-

associated” strains), which indicate that life in these environments is not a random, 

accidental event but probably has an ecological significance on the species as a 

whole. Savageau hypothesised that species-wide selective pressures in E. coli were 

maintaining a high growth rate in hosts and a long half-life in nonhost environments 

(Savageau, 1983). This view is very consistent with the host specialisation and 

generalisation mechanisms introduced in section 1.1.3.2. 

 

If E. coli is able to live in ecologically important host and nonhost environments, it 

must be reflected in a variable association with specific traits. The acquisition of 
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nutrients is a good candidate, as different nutrients are presumably available in 

primary and secondary environments (Savageau, 1983; Winfield and Groisman, 

2003). It is also possible that the abundance of different nutrients vary, with 

secondary environments harbouring less available compounds (Savageau, 1983). 

Accordingly, different ecological processes are thought to influence the requirements 

for transition between the primary and secondary environments for E. coli. The 

“demand theory” (Savageau, 1974; Savageau, 1983) implies that environmental 

changes can influence how core metabolic genes are regulated, balancing between 

positive regulation for high-demand gene products and negative regulation for low-

demand gene products in a way that could mirror energy source availability in natural 

environments. Alternatively, the “selection theory” suggests that some isolates are 

fitter than others (i.e., harbour additional traits) for life in particular host or nonhost 

environments and thus retrieved in higher quantities when these environments are 

sampled (Whittam, 1989; Gordon et al., 2002). These proposed ecological processes 

are neither exhaustive nor exclusive; it is likely that a mixture of core gene regulation 

variation and presence or absence of fitness-enhancing traits governs environmental 

adaptation. 

 

Interestingly, the differential abilities among E. coli strains to acquire nutrients has 

also been linked with mutations affecting the expression levels of the alternative 

sigma factor RpoS (σS or σ38), which can be found in a relatively large proportion of 

natural E. coli isolates (Waterman and Small, 1996; Bhagwat et al., 2005; Ferenci, 

2005; Ferenci et al., 2011). Strains with low RpoS levels were found to be more able 

to compete for nutrients with other bacteria, but were less capable of surviving 

stresses such as acid shock or starvation (King et al., 2004). This led to the hypothesis 
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that E. coli faces a trade-off between self-preservation and nutritional competence 

(SPANC) and suggested that strains with different positions on the SPANC balance 

might occupy different ecological niches (Ferenci, 2005) or experience selective 

pressures to maintain diversity (Levert et al., 2010; De Paepe et al., 2011). It is 

conceivable that the balance between host and nonhost environments parallels the 

SPANC balance, as it has been shown that this mechanism could promote strain 

diversification in the mouse gut (De Paepe et al., 2011) with possibly different 

ecological behaviours.  
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1.3. E. coli lifestyle in agricultural fields 

 

1.3.1. Persistence and agricultural sources of contamination 

 

1.3.1.1. Increased persistence of E. coli in soil and water in relation to 

population structure 

 

As E. coli is being shed actively and in tremendous amounts from animal hosts, at 

least detectable concentrations of E. coli should be found in natural environment, 

especially in agricultural areas. This point is the basis of the use of E. coli as a faecal 

indicator in water, soils and the food industry. Faecal indication relies on the fact that 

E. coli precisely has a high rate of die-off and does not persist long enough in 

secondary environments so that it can accurately predict faecal contamination. The 

validity of this requirement has increasingly been challenged by the report that E. coli 

could be isolated from secondary environments independently of seasonality or 

obvious source of faecal input. For instance, long-term persisting E. coli strains have 

been isolated from undisturbed forest soils (Byappanahalli et al., 2006). When DNA 

fingerprint profiles between strains from this forest soil and the surrounding wildlife 

were compared (and thus the genomic rearrangements patterns between strains as 

explained in section 1.1.2.), soil strains formed a distinct cohesive group, whereas 

strains from wild animals did not cluster in any way (Byappanahalli et al., 2006). This 

suggests that the observed E. coli forest soil populations are possibly autochthonous 

and might form a distinct persisting population in soil. Numerous other studies in 

different geographical locations have reported the same observations of an 

autochthonous, non-transient presence of so-called “naturalised” E. coli persisting and 
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even growing in tropical soils (Byappanahalli et al., 2006; Ishii et al., 2006; Ishii and 

Sadowsky, 2008; Goto and Yan, 2011), water (Bermudez and Hazen, 1988; Power et 

al., 2005; Vital et al., 2008) and sediments (Solo-Gabriele et al., 2000; Whitman and 

Nevers, 2003; Whitman et al., 2003; Ishii et al., 2007) at low but still detectable 

levels. These “naturalised” populations of E. coli probably have to be considered 

when interpreting faecal indication tests in tropical environments (Goto and Yan, 

2011).  

 

It has been suggested that the increased number of studies reporting “naturalised” E. 

coli in tropical environments were probably reflecting the fact that tropical 

environmental conditions “mimicked the colon environment” (Winfield and 

Groisman, 2003). However, this reductionist approach is probably too simple to be 

true, as intestinal contents are tremendously more different in microbial phylogenetic 

composition, density and physicochemical constraints than an open environment such 

as water or soil, in any type of climate. Moreover, recent reports describe the presence 

of environmentally persistent E. coli in low-temperature Irish soils, which are far 

from being tropical (Brennan et al., 2010; Brennan et al., 2010). “Naturalised” E. coli 

were also found to grow in watershed soils and beach sands from the temperate Lake 

Superior region in USA (Ishii et al., 2006; Ishii et al., 2007; Ishii et al., 2010). 

Another contradicting and surprising example comes from alpine pasture soils in the 

French Alps, in which E. coli was expectedly detected during the cattle grazing 

season but more surprisingly all-year long, even when a snow layer had formed, and 

thawed (Texier et al., 2008). Finally, in the most longitudinal study ever performed to 

our knowledge, E. coli was found to persist at low levels for about 13 years (from 

1978 to 1991) in experimentally inoculated rye-grass soils in Vermont, USA 
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(Sjogren, 1995). These studies indicate that far from being restricted to tropical 

environments, it is likely that faecal deposition events can generate self-replicating, 

sustainable, low-density populations of soil-borne E. coli that can be considered as 

part of the resident soil microbiota (Byappanahalli et al., 2006; Ishii et al., 2006). 

 

In any case, why does the majority of “naturalised” E. coli seem to be associated to 

soils? First, this could be a bias linked to increased sampling in soils, but there could 

also be a real ecological reason. E. coli is mostly present in the intestines of birds and 

endothermic wildlife, which live predominantly on land. Thus soils and to a lesser 

extent freshwaters, are the most likely environments to be contaminated by faecal 

matter and drive adaptation, if any, of nonhost-associated or “naturalised” strains. In 

that sense, vegetation can also be considered as important, yet no population-wide 

study has ever been reported to our knowledge, placing this thesis work in a good 

context of novelty. Another reason, linked to the previous one, explaining why 

“naturalised” E. coli would be maintained predominantly in soils would be that 

environmental conditions are somehow suitable for E. coli in this milieu. Indeed, 

some strains of E. coli possess very complicated machinery for the biodegradation of 

aromatic compounds, with up to 5 distinct catabolic pathways (Diaz et al., 2001). 

Aromatic compounds are supposed to be an obvious nutrient for E. coli colonising 

soils, water and plants, given their high concentration in those environments (Diaz et 

al., 2001). Aromatic compounds can also be present in the gut, in the form or aromatic 

amino acids, such as tryptophan, and sometimes steroids and drugs (Diaz et al., 2001) 

but as presented before, the preferred sources of nutrients in the intestines for E. coli 

do not seem to include aromatic compounds (Chang et al., 2004; Alpert et al., 2009), 

which may then only be of minor ecological importance in the gut. In that respect, it 
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would be interesting to examine how the aromatic compound metabolic abilities are 

distributed in nonhost-associated strains, and whether it could be considered as an 

important ecological factor. This point is examined further in Chapter 4 of this thesis. 

 

Unfortunately, most of the studies assessing these large populations of “naturalised” 

isolates did not address the question of population structure. In the future, this 

interesting information will shed more light on the global ecological processes 

occurring in E. coli, and determine if, similarly to a “host specialisation” process, 

there could be an “increased generalisation” process in E. coli. Additionally, it would 

be interesting to examine if the acquisition of specific traits could be associated with 

this long-term persistence phenotype. A few studies examine more in depth the 

population structure of strains isolated in freshwater and pasture soil (Walk et al., 

2007; Bergholz et al., 2011). There is no indication on the “naturalised” status of the 

tested strains but it is nevertheless interesting to examine whether the population 

structure of persisting nonhost-associated E. coli can be linked to their ecology. 

Interestingly, the majority of E. coli isolates in these two studies are from phylogroup 

B1 (41% in pasture soil (n=353); 56% in freshwater (n=190); see Table 1.1). Few 

studies on the population structure of nonhost-associated E. coli are available, but this 

strong consistency in B1 dominance prompts the eventuality that phylogroup B1 

strains may harbour traits that grants them a competitive advantage or an increased 

survival in secondary environments (Walk et al., 2007). We discuss this topic further 

along with our research in Chapter 4 of this thesis. 
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1.3.1.2. E. coli from wildlife and domesticated animals 

 

An alternative hypothesis explaining the presence of certain genotypes or 

phylogroups in nonhost environments could simply be their presence in the dominant 

contaminating sources. This would imply that nonhost environments have little effect 

on the E. coli population structure. As nonhost environments are so different in terms 

of physicochemical conditions, this seem unlikely but accordingly, it has been 

observed that wild birds (Gordon and Cowling, 2003) and farm animals (Walk et al., 

2007; Carlos et al., 2010) were generally populated by a large majority of strains from 

phylogroup B1 (Table 1.1). Coupled with the observation that soil and water also 

harboured more strains from phylogroup B1, the above hypothesis about 

contaminating sources could be true. Nonetheless, more longitudinal studies focusing 

on the source of isolation are required. Interestingly, it has recently been suggested 

that phylogroup B1 was composed of “host generalists”, with no specific host 

association preferences as opposed to phylogroup B2, composed of “host specialists” 

(White et al., 2011). It could be that host generalism in E. coli is associated with 

nonhost adaptation. We also address this topic in Chapter 4 of this thesis. 

 

1.3.1.3. Possible sources and vectors of agricultural field 

contamination 

 

As briefly mentioned in the previous section, the most heavily contaminated natural 

environments by faecal input from most endothermic species are presumably soils, 

freshwaters and plants, making E. coli contamination in agricultural fields inevitable. 

Indeed, low levels of E. coli are constantly observed when analysing vegetable 
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samples during faecal indication tests (Ibenyassine et al., 2007; Rai and Tripathi, 

2007; Ilic et al., 2008; Valentin-Bon et al., 2008; Mandrell, 2009; Caponigro et al., 

2010; Oliveira et al., 2010), suggesting that the association with plants in particular is 

not uncommon. Anthropic or natural contamination of agricultural fields by E. coli 

can occur in multiple ways, the most obvious sources being the water used for 

irrigation, and direct (wildlife, humans) or indirect faecal contamination resulting 

from untreated manure used for fertilisation (Figure 1.5). 

 

 

Figure 1.5. Possible routes of agricultural field contamination by E. coli (Brandl, 2006). Red 

squares represent the major sources of E. coli contamination and yellow stars represent the factors 

contributing to the spread (vectors) of E. coli from the major sources. This figure is copyrighted by 

Annual Reviews. 

 

Water is one of the most likely sources of E. coli contamination in agricultural fields 

(Steele and Odumeru, 2004), and a number of outbreaks of pathogenic E. coli have 

been linked to fresh produce contaminated by irrigation (Rice et al., 1992; Soderstrom 
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et al., 2005). In the UK, 71% of salad fields are irrigated from surface waters (Tyrrel 

et al., 2006) which likely received treated wastewater effluents. Levels of coliforms in 

irrigating water are monitored on very regular bases, with an accepted threshold of 

less than 103 cells per 100 ml (Tyrrel et al., 2006), which is nevertheless conducive of 

a low-level contamination in agricultural fields. E. coli was also detected on lettuce 

leaves 30 days after it had been contaminated by a single application of contaminated 

water, with a possible growth in the phyllosphere (Solomon et al., 2003). 

Additionally, E. coli could internalise in the inner tissues of spinach leaves when 

contaminating water, and not soil, was applied (Mitra et al., 2009) indicating that 

plants contaminated from above may increase the likelihood of E. coli resisting 

surface decontamination procedures, as compared to contamination from the roots. 

However, this point is contrasted by the observation that roots experimentally 

inoculated with E. coli resulted in the systemic presence of the bacterium endo- and 

epiphytically (Cooley et al., 2003), suggesting that plants can be colonised by E. coli 

from the soil. 

 

Indeed, field soil is also a potential source of contamination by E. coli which, in 

addition to the potentially “naturalised” resident populations described in section 

1.3.1.1, can likely come from the dispersion of animal wastes such as slurry or 

manure. Typically, and depending on various conditions, the concentration of E. coli 

in faecal matter can naturally vary between 102 and 105 cells/g, in slurry between 10 

and 104 cells/g and in manure between 102 and 107 cells/g. A very large number of 

studies have focused on the survival abilities of E. coli in soils after manure 

application (Whipps et al., 2008). Results seem to vary according to the experimental 
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protocol but the overall trend is that persistence can be long, ranging from 10 days to 

several years (Whipps et al., 2008; Mandrell, 2009). 

 

In addition to these two major sources of contamination, a multitude of possible 

vectors (or more “minor” sources) have been identified. Insects such as flies 

(Janisiewicz et al., 1999; Sasaki et al., 2000; Sela et al., 2005) and honeybees 

(Johnson et al., 1993) have been shown to contribute to the spread of phytopathogens 

and E. coli on plants. Flies may constitute an under-represented source of E. coli 

transmission, as they can travel for relatively long distances and are attracted to faecal 

matter and farm animals. Additionally, when in natural environments, bacteria have to 

cope with the constant predation by nematodes and protozoa living abundantly in 

soils. Subsequently, it has been shown that Caenorhabditis elegans could carry live E. 

coli and Salmonella in its gut, protecting them from disinfection (Caldwell et al., 

2003) and even transmitting them vertically to its progeny (Kenney et al., 2005), thus 

acting as an important potential vector for dispersion (Kenney et al., 2006). Protozoa 

like Tetrahymena sp. (Gourabathini et al., 2008; Rehfuss et al., 2011) but also fungi 

(Brandl, 2006) have also been shown to interact with E. coli and Salmonella, and 

could contribute to their spread in agricultural fields. Finally, important vectors for 

contamination by E. coli may be the plants themselves. Seeds were observed to be 

colonised during in vitro contamination of roots and shoots by E. coli and Salmonella 

(Cooley et al., 2003). EHEC could attach and persist on seed surfaces and germinating 

seedlings (Jeter and Matthysse, 2005) and much effort has been concentrated to 

effectively decontaminate at this stage of food processing (Taormina and Beuchat, 

1999; Beuchat et al., 2001; Scouten and Beuchat, 2002). Studies focusing on seed 
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colonisation appear to be of prime importance, as the consumption of contaminated 

sprouted seeds is often linked to food-borne outbreaks of pathogenic E. coli. 

 

1.3.1.4. Public health impact of E. coli contamination of plants 

 

Worldwide public demand for “ready-to-eat” produce has increased in the last two 

decades. Better awareness of food contents and healthy diet requirements in 

conjunction with public health programs, such as “five-a-day” in the United 

Kingdom, are believed to contribute to this increase and promote a higher 

consumption of fruits and vegetables among the population. In the meantime, food-

borne infections associated with fresh vegetables are regularly reported (Brandl, 

2006; Heaton and Jones, 2008; Mandrell, 2009). The two largest food-borne 

outbreaks ever observed to be caused by pathogenic E. coli in humans occurred in 

Sakai (Japan) in 1996 (Itoh et al., 1998; Fukushima et al., 1999) and in Germany in 

2011 (Rohde et al., 2011), and both involved the association of E. coli with vegetable 

sprouts. Most of the time, EHEC strains of serovar O157:H7 (and rarely Shigella) are 

involved with food-borne diseases linked to E. coli (Brandl, 2006; Heaton and Jones, 

2008; Mandrell, 2009) (Figure 1.6).  
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Figure 1.6. Frequency of outbreaks linked to fresh produce in USA between 1990-2004 (Brandl, 

2006). The graph shows the different frequencies of implication of a given pathogen in outbreaks 

linked to the consumption of a given product. 

 

Between 1990 and 2004, about 90 outbreaks of enteric bacterial infections linked to 

consumption of fruits, salads or sprouted seeds (Figure 1.6) have been reported in the 

United States, most being Salmonella enterica and EHEC infections (Brandl, 2006). 

Additionally, multiple outbreaks of Salmonella in UK and USA were linked to 

consumption of raw tomatoes, cantaloupe melons, strawberries and sprouts (Hedberg 

et al., 1999; Beuchat, 2002). EHEC strains of serovar O157:H7 were shown to be 

transmitted by fresh produce in 21% of the food-borne outbreaks from 1982 to 2002 

in USA (Rangel et al., 2005). Salmonella is more often involved in outbreaks 

implicating the consumption of fruits and sprouts, whereas E. coli is the leading cause 

of salad-associated outbreaks (Figure 1.6). Campylobacter has also been sporadically 

linked to vegetable-related outbreaks (Brandl, 2006). 
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In 1996, an EHEC strain associated with radish sprouts contaminated the meals of 

schoolchildren in Sakai, Japan resulting in the death of 3 persons and thousands of 

illnesses (Fukushima et al., 1999). The strain, named “Sakai” and used for microarray 

work in this thesis, was subsequently shown to be able to internalise radish tissues 

(Itoh et al., 1998). Another strain of EHEC O157:H7 caused the 2006 spinach 

outbreak in USA, during which 3 persons died and 203 became ill (Calvin et al., 

2009). The economic impact of the 2006 outbreak was important, as it was the first 

multistate outbreak causing death in the US linked to food products otherwise 

perceived by consumers as “healthy” and it was largely covered by national media. 

More recently, a German outbreak in 2011 added a new, rarer O104:H4 variant to the 

list of vegetable-related outbreak strains. The O104:H4 strain genome was sequenced 

within days of the outbreak (Rohde et al., 2011) and revealed a pathogenic mosaicism 

of both EHEC and EAEC traits, possibly explaining the surprisingly high virulence of 

the strain (the E. coli O104:H4 outbreak caused 50 deaths, 908 HUS cases and 3,167 

non-HUS cases and is the deadliest outbreak of E. coli ever documented). In Chapter 

4 of this thesis, we present results of metabolic profiling using this O104:H4 strain. 

 

Since the 1996 outbreak and exponentially since the 2006 outbreak, investigations on 

how EHEC could persist, attach, colonise, invade plants and interact with their 

resident microflora were carried out. In the next section, we present a brief overview 

of some molecular mechanisms that have been identified to be important for the 

ecology of pathogenic and non-pathogenic E. coli on plants. 
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1.3.2. Specific association of E. coli with leaf surfaces 

 

At the molecular level, much has been done on the investigation of the required 

functions for attachment and early colonisation of plant surfaces. In this part, we will 

briefly review these studies with an emphasis on the role of the extracellular matrix 

and biofilm formation, the role of flagellar motility, internalisation within plant 

tissues and metabolism. 

 

1.3.2.1. Role of the extracellular matrix in plant attachment and 

persistence 

 

As mentioned earlier, White et al. (2008) have shown that multicellular behaviour via 

the production of an extracellular matrix does not promote virulence or intestinal 

fitness in enteric bacteria. When mice are infected with Salmonella, wild-type strains 

are out-competed by isogenic mutants unable to produce an extracellular matrix, 

suggesting that aggregation via the “red, dry and rough” (rdar) morphotype is not 

essential during host colonisation (White et al., 2008). The authors suggest that the 

primary role of the extracellular matrix is to enhance Salmonella survival outside the 

host, thereby aiding in bacterial dissemination (White et al., 2008). This hypothesis is 

strongly supported by recent studies showing that curli and cellulose were among 

other factors that were required for long-term desiccation survival in vitro (Gibson et 

al., 2006; White et al., 2006). A complex regulatory interplay occurs at the csg locus 

encoding curli fimbriae, involving different regulatory networks triggered by various 

environmental stresses, thereby adding even more complexity to the understanding of 

multicellular behaviour regulation in enteric bacteria. The optimal conditions for curli 
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and cellulose expression were established by extensive studies on E. coli and 

Salmonella (Vidal et al., 1998; Landini et al., 2006). The general idea that conditions 

suitable for matrix production seem to be more often present outside the digestive 

tract has led to the hypothesis that it could be one of the most important factor of 

extra-intestinal adhesion and survival in natural environments (Olsen et al., 1993), 

and this role was examined for persistence on plants in E. coli and Salmonella. In the 

next two paragraphs, the specific roles of curli and cellulose, the two major 

components of the extracellular matrix, will be detailed. 

 

In an elegant experiment using attachment-specific function disruption by random 

transposon insertions, it was shown that production of curli fibres was an important 

factor for Salmonella attachment. Mutants having a transposon insertion in the 

regulatory region of the csg operon did not produce curli or cellulose and showed a 

10-fold reduction of attached cell numbers on alfalfa sprouts 4 hours post-infection 

(hpi) (Barak et al., 2005). In a previous study, the same authors had shown different 

abilities of enterohemorrhagic strains of E. coli (EHEC) and Salmonella to attach to 

alfalfa sprouts (Barak et al., 2002). In this study, EHEC strains could be easily 

washed away whereas Salmonella remained strongly attached (Barak et al., 2002). 

Most EHEC strains have a point mutation in the csg regulatory sequence leading to 

the absence of curli and cellulose synthesis (Uhlich et al., 2001). When attachment to 

alfalfa sprouts was tested, curli-producing E. coli strains attached as well as 

Salmonella, suggesting bacteria that can produce curli are more likely to attach at 

high populations to plant surfaces (Barak et al., 2005). The laboratory-adapted strain 

E. coli K-12 has not been observed to attach to tissues (Dong et al., 2003; Matthysse 

et al., 2005; Torres et al., 2005). However, two studies showed that the addition of 
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plasmids expressing csg genes restored the ability of K-12 to bind alfalfa sprouts, 

suggesting once again the important role of curli fimbriae in the early attachment to 

plant tissues (Dong et al., 2003; Matthysse et al., 2005; Torres et al., 2005).  

 

Cellulose biosynthesis (bcs genes, regulated by AdrA) was shown to contribute to 

bacterial attachment to and colonisation of plants (Barak et al., 2007). bcs mutants of 

Salmonella enterica were unable to form biofilms at the air/liquid interface, and their 

ability to attach (4 hours post infection, or “hpi”) and colonise (24 and 48 hpi) alfalfa 

sprouts was drastically diminished (Barak et al., 2007). Using transcriptional GFP 

fusions and quantitative RT-PCR, authors showed that cellulose biosynthesis pathway 

genes adrA and bcsA, and the cellulose and matrix regulator gene csgD were 

upregulated during colonisation of alfalfa sprouts at 48 hpi (Barak et al., 2007), 

indicating that these functions are important for colonisation of plant surfaces. The 

same results were obtained for E. coli O157:H7 (Matthysse et al., 2008). A deletion 

mutant analysis indicated that cellulose and poly-β-1,6-N-acetyl-D-glucosamine 

(PGA) were required for binding to alfalfa sprouts (Matthysse et al., 2008). 

Moreover, when expressed in E. coli K-12 (which normally does not attach to plant 

tissues), a cellulose synthase from Agrobacterium tumefaciens caused a 100-fold 

increase in the ability to attach to sprouts (Matthysse et al., 2008). However, 

induction of the synthesis of an exogenous PGA-like polymer originating from 

Bordetella bronchiseptica did not produced clear improvements for attachment of E. 

coli K-12 to alfalfa sprouts (Matthysse et al., 2008). This interesting result suggests 

that polysaccharides involved in E. coli interaction with sprouts may play a very 

precise and species-specific role rather than being redundant or “accidentally” useful.  
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Numerous studies have observed that leaf age is an important factor for bacterial 

colonisation (Brandl and Amundson, 2008). It has been shown that nitrogen 

availability varied at the surface of lettuce leaves according to leaf age and that it 

could be a limiting factor for E. coli O157:H7 growth. Young-aged lettuce leaves do 

no leach as much nitrogen as middle-aged leaves (Brandl and Amundson, 2008). 

Interestingly, it was shown that nitrogen starvation, along with other nutrients was a 

signal switching on the csgD promoter, and thus curli and extracellular matrix 

expression (Gerstel and Romling, 2001). Conceivably, CsgD-activated structures, 

among them curli and the extracellular matrix could be, in some cases, useful during 

persistence in the phyllosphere until the level of nutrients required for growth 

increased with leaf senescence-dependent leachates.  

 

1.3.2.2. Differences in plant attachment mechanisms between 

pathogens and commensals 

 

Differences in attachment to plants have been found between pathogenic and non-

pathogenic E. coli strains, possibly suggesting different strategies of colonisation 

(Jeter and Matthysse, 2005; Matthysse et al., 2005; Torres et al., 2005). Attachment to 

alfalfa by curli-deficient ∆csg mutants in E. coli O157:H7 was not reduced compared 

to wild-type, whereas attachment of E. coli K-12 strains was not possible. However, 

when csg genes were overexpressed in E. coli K-12, attachment to alfalfa was 

observed at high levels (Torres et al., 2005) suggesting that curli could be sufficient to 

promote binding to plants but that redundant systems may exist in E. coli O157:H7 

allowing bacteria to compensate for the loss of curli and to retain the ability to bind to 

plant. Nevertheless, despite the wide distribution of csg genes in E. coli, curli are not 
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expressed in many EHEC because of point mutations in the csgD promoter (Uhlich et 

al., 2001; Uhlich et al., 2008). In some E. coli K-12 strains, curli are also not 

expressed because of an amber mutation in the rpoS gene (Landini et al., 2006), but 

expression of csgD from a plasmid (Prigent-Combaret et al., 2000) or in an ompR234 

curli-overexpressing background (Vidal et al., 1998) can induce their synthesis. These 

observations suggest that the use of E. coli K-12 and other non-pathogenic strains as 

surrogates for the study of EHEC attachment on plants should be considered very 

carefully, as biological mechanisms involved in both cases are very likely to be 

different (Barak et al., 2002). Additionally, despite interesting results, the use of the 

laboratory-adapted E. coli K-12 strain itself is a major criticism of most of the studies 

presented here. This unrealistic choice may lead to unconvincing ecological 

conclusions, as do in general all single-strain mechanistic studies. 

 

Interestingly, features that are only associated with EHEC and O26 pathogens, such 

as the LEE-encoded EspA filaments synthesised by EHEC serotypes, were required 

for attachment to salad leaves. Deletion mutants in espA were unable to bind rocket 

salad, lettuce and spinach leaves whereas trans-complementation fully restored the 

colonisation ability (Shaw et al., 2008). No adherent ∆escN mutants were observed. 

EspB was shown to be important for tropism toward stomata by EHEC, possibly by 

actively recognising a specific stomatal receptor. Tropism, whose mechanisms remain 

to be elucidated, was not observed with E. coli O26 cells. Effector translocation was 

not observed with both serotypes, which is coherent with the physical properties of 

the plant cell wall, which is unlikely to allow protein translocation via the EHEC 

T3SS (Shaw et al., 2008). This assumption was contrasted by the observation that a 

EHEC mutant defective in the T3SS ATPase EspN, and thus unable of protein 
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translocation, was strongly impaired in its spinach and lettuce leaves colonisation 

abilities (Xicohtencatl-Cortes et al., 2009).  

 

Different pathogen-specific attachment mechanisms have been investigated in various 

E. coli pathotypes for their role in plant attachment. In EHEC, a fliC mutant unable to 

produce its flagellum showed no attachment to spinach and lettuce compared to a 

motile wild-type strain (Xicohtencatl-Cortes et al., 2009). Similar observations were 

made in ETEC, in which a fliC mutant, but not mutations in etpA or cfa, which are 

additional ETEC-associated attachment functions normally involved in the 

pathogenesis process in animal hosts, showed a significant reduction in plant 

attachment (Shaw et al., 2011). Conversely, no effect of the flagella was observed in 

EAEC plant attachment, but a reduction in tropism to stomata was observed (Berger 

et al., 2009). Additionally, EAEC-specific AAF pili, normally involved in the 

adhesion of EAEC to mucosa ex vivo (Czeczulin et al., 1997) were involved in plant 

attachment (Berger et al., 2009). Similarly to the variation observed in EAEC and 

EHEC in Salmonella, the role of the flagella in leaf attachment was observed to be 

serovar-dependent (Berger et al., 2009). A fliC mutant of S. enterica serovar 

Senftenberg, involved in a basil-associated outbreak, was impaired in its attachment 

to basil leaves whereas serovar Typhimurium was not (Berger et al., 2009). It has 

been shown otherwise that Typhimurium flagella have a role in the active 

chemotaxis-dependent internalisation of Salmonella into lettuce leaves (Kroupitski et 

al., 2009), suggesting that there are multiple layers of flagellar interaction with the 

surface of plants. 
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It is somehow puzzling that a system as specialised as the T3SS in EHEC has just an 

ectopic attachment role, seemingly without any protein translocation involved. The 

fact that a mutant in espN is impaired in plant attachment would tend to confirm this 

but on the other hand, contaminating EHEC have not been observed to cause any 

symptom associated with plant disease or PAMP-mediated bacterial recognition by 

plants (Zipfel, 2008), suggesting that EHEC and E. coli in general are only 

opportunistic epiphytes. On this latter point, it would seem that E. coli is different 

from Salmonella, which has been observed to cause chlorosis and disease symptoms 

when infiltrated into A. thaliana (Schikora et al., 2008; Berger et al., 2011).  

 

These remarkable recent results demonstrate that there are mechanisms involved in 

EHEC attachment to plants that cannot be studied using non-pathogenic strains 

lacking a functional T3SS and the LEE region. This section constitutes an interesting 

indication that mechanisms of early attachment to plants within the E. coli species are 

very diverse. 

 

1.3.2.3. Endophytic lifestyle of E. coli 

 

Since the observation that enteric bacteria could still be isolated on agar medium after 

decontamination of the leaf surface, many studies have reported the internalisation of 

enteric bacteria Salmonella or E. coli in the inner parts of plant leaves. Salmonella 

was found to internalise in tomatoes by stem inoculation (Guo et al., 2001), in 

sprouting mung beans (Warriner et al., 2003), parsley leaves (Lapidot et al., 2006), 

barley (Kutter et al., 2006) and Arabidopsis thaliana (Cooley et al., 2003; Schikora et 

al., 2008). E. coli (not only pathogenic strains) was also supposedly able to actively 
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reach the apoplast in lettuce and A. thaliana after soil contamination (Wachtel et al., 

2002; Cooley et al., 2003), spinach (Warriner et al., 2003) and mung bean sprouts 

(Warriner et al., 2003). Root inoculation with both E. coli and Salmonella resulted in 

shoot contamination and this was found to be dependent on flagellar motility (Cooley 

et al., 2003). Also, Salmonella mutants in chemotaxis systems lost the ability to 

internalise in lettuce, interestingly in a light-dependent process (Kroupitski et al., 

2009). Many plant sites were observed to be internalised by E. coli and Salmonella 

(Figure 1.7), with a preference in leaves and vascular tissues, presumably richer in 

nutrients. 
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Figure 1.7. Schematic representation of the different plant sites in which internalisation of E. coli 

or Salmonella has been observed (Deering et al., 2011). The yellow shapes represent bacteria, not to 

scale. This figure was adapted from a meta-analysis study and is copyrighted by Elsevier Ltd. 

 

The experimental proof of internalisation is not easy to achieve and has produced 

conflicting results in many studies as many factors can presumably affect the outcome 

and reproducibility of internalisation experiments, such as the age and species of 

plants or the strains used (Warriner and Namvar, 2010). Protocols of infection also 

seem to play a role, as the internalisation of the same strain of E. coli in spinach was 

only observed when water was used to inoculate leaves and not via soil and roots 

(Mitra et al., 2009). A recently published meta-analysis thoroughly listed all studies 
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examining the internalisation of E. coli or Salmonella into plants, and estimated that 

internalisation was observed with a 70% success rate, depending on protocol (Deering 

et al., 2011). Nevertheless, the use of fluorescent reporters and microscopy has 

produced convincing evidence (Schikora et al., 2008; Kroupitski et al., 2009) that 

under certain strain-specific and environmental circumstances, E. coli and Salmonella 

can internalise into plants and thus potentially evade surface decontamination 

techniques. 

 

1.3.2.4. Metabolic opportunities for E. coli growth on plants 

 

Plant leaves carry a wide variety of inorganic and organic compounds that are leached 

or exuded from the internal tissue (Morgan and Tukey, 1964) and that can act as 

nutrient sources to bacteria on leaves. Consumption of nutrients from a leaf surface 

by bacteria has been demonstrated using radio-labelled carbonated sources (Rodger 

and Blakeman, 1984). It has also been observed that the structure of bacterial 

populations on leaves could be manipulated by changing nutrient availability on the 

plant surface (Wilson and Lindow, 1994; Wilson et al., 1995), indicating that 

microbes growing on plant surfaces could be competing for a very limited amount of 

nutrients, which in turn, would determine the structure and size of microbial 

populations. Depending on leaf age, growing conditions and the presence of wounds, 

various amounts of carbohydrates, organic acids, amino acids, methanol and various 

salts are available for bacteria on or within leaves (Mercier and Lindow, 2000). 

Several studies to assess nutrient, water or salts availability on leaves have been 

conducted using reporter biosensor strains. Sugar availability and localisation on 

leaves has been investigated using an engineered strain of Erwinia herbicola 
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expressing a green fluorescent protein (GFP) under the control of the fructose- and 

sucrose-responsive promoters PfruB and PscrY (Leveau and Lindow, 2001). Microscopic 

observations revealed that bacterial consumption of sugars was generally in localised 

sites on the plant rather than randomly dispersed across the leaf, which suggests that 

most areas of a leaf harbour only small amounts of nutrients, and that nutrients may 

be abundant in only a few locations (Leveau and Lindow, 2001). In the same way, 

water availability on a leaf has been assessed using strains of Pantoea agglomerans 

expressing a green fluorescent protein (GFP) reporter gene linked to a promoter 

(PproU) responsive to water availability (Lindow and Brandl, 2003). Most cells do not 

experience the expected water stress on dry leaves, suggesting that bacteria can 

survive using the desiccation-resistant aqueous thin layer surrounding leaves whose 

function is to retain moisture emitted through stomata (Lindow and Brandl, 2003). 

Ferric iron availability has also been assessed using biosensor strains. Using the Fe3+-

sensitive regulation of the promoter Ppvd controlling the expression of a siderophore 

membrane receptor in Pseudomonas syringae, a spatial heterogeneity of available 

iron on plant surfaces was observed, even if iron is apparently not limiting bacterial 

growth of bacteria on leaves (Joyner and Lindow, 2000). 

 

Nitrogen availability, however, was variable at the surface of young, medium-aged 

and old lettuce leaves and was found to be a limiting factor for growth of E. coli 

O157:H7 on leaves (Brandl and Amundson, 2008). On lettuce leaves, nutrients may 

leach by guttation (i.e., the exudation of water from leaves by hydathodes as a result 

of root pressure) which is considered to be a common phenomenon in this plant. Such 

fluids contain diverse substances, including amino acids, carbohydrates and inorganic 

substances like NO3
+ and NH4

+ ions, which may contribute to nitrogen availability on 
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the leaf surface. It was suggested that guttation fluids were contributing to high levels 

of nitrogen availability on young lettuce leaves, providing good conditions for 

bacterial immigration and persistence when the crop is young (Brandl and Amundson, 

2008). The role of trichomes as nutrient sources has been hypothesised, as these 

structures are believed to leach nutrients to the plant microflora (Morris and Monier, 

2003; Monier and Lindow, 2004). Indeed, microscopic studies have shown that 

epiphytic bacteria and E. coli O157:H7 were more likely to form aggregates near the 

base of glandular trichomes (Morris and Monier, 2003; Monier and Lindow, 2004; 

Brandl and Amundson, 2008). However, the presence and amount of hydathodes and 

trichomes on the leaf surface differs among species, suggesting that different bacterial 

colonisation strategies could exist for different types of plants.  

 

Research from naturally plant-associated bacteria or phytopathogens can provide 

clues on what the conditions are at the bacterial scale of E. coli when immigrating 

onto a leaf. Numerous studies on plant roots have highlighted what could be expected 

in the phyllosphere regarding the role of exudates, as root and leaf exudates are both 

composed of a complex mixture of sugars, amino acids, organic acids and other 

compounds (Mercier and Lindow, 2000; Lugtenberg et al., 2001). Metabolic 

versatility seems to be an advantage in both rhizosphere and phyllosphere 

colonisation (Lugtenberg et al., 2001). Mutations affecting the metabolism of sugars 

or organic acids of bacteria resulted in a decreased fitness in the rhizosphere 

(Lugtenberg et al., 2001). Synthesis of sugar transport and catabolic enzymes are also 

enhanced in response to root exudates in the rhizosphere (Espinosa-Urgel, 2004), thus 

mutants in these proteins are believed to be poorer colonisers (Lugtenberg et al., 

2001; Espinosa-Urgel, 2004). Metabolic activity of Pseudomonas sp. seems to vary 
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according to the position on roots, presumably because of differences in O2 solubility 

and exudate composition in the different parts of the root (Kragelund et al., 1997). 

 

As presented in this non-exhaustive review of the literature, the mechanisms of short-

term colonisation of plants by E. coli involving attachment and early persistence are 

starting to be very well understood. It is equally interesting to understand how E. coli 

persists on plants and generally in secondary environments in the longer term. The 

identification of plant- or nonhost-specific metabolic abilities or associated behaviour, 

if any, is part of this effort, and may give important knowledge in defining the roles 

of secondary environments in the ecology of E. coli, and the possibility to control 

problematic pathogens more efficiently. 
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1.4. Context of this work 

 

As presented in this introduction, the general evolution and ecology of E. coli as well 

as its mechanisms of plant association are extensively studied. Regarding this last 

topic, because of the economic pressure on finding new ways to control human 

pathogens on plants and more generally on food, regular updates on the advancement 

are published and the need for more research highlighted (Niemira et al., 2009; 

Teplitski et al., 2009). In this work, we chose to address topics that are relevant 

academically (the ecology of E. coli) and industrially (the improvement of food safety 

and monitoring): 

 

• Where does E. coli contaminating agricultural fields generally come from? 

Microbial source tracking has not proven very successful for E. coli. Given the 

mosaic nature of E. coli genomes, it is very hard to identify genotypes of markers that 

are specific to certain hosts with certainty. A new approach can be considered by 

trying to find population-associated traits in various environments. In the 

Introduction, we showed that different environments shape different population 

structures in E. coli. In that context, it would be interesting to identify the population 

structure in a sampled collection of E. coli isolates from plants, as no other study to 

our knowledge has sought to characterise such a collection. This topic is addressed in 

Chapter 3. 

 

• Are there specific functions or traits in plant-associated E. coli? 

Many molecular mechanisms involved in attachment, persistence and colonisation of 

plants and soil have been demonstrated using single-strain studies, as introduced 
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above. In this work, we adopt a population-wide approach by characterising a large 

collection of E. coli from plants. Conceivably, some of the traits that were found to be 

involved in the interaction could be over-represented in plant-associated isolates, 

confirming their true ecological importance. Additionally, if such traits are identified, 

it would be plausible to develop a way to quantify this “adaptation” to plants, or more 

generally nonhost environments, for single E. coli strains, in order to simply predict 

their likelihood of plant contamination. This part was developed in Chapter 4. 

 

•  Does E. coli interact with the plant resident microflora? 

The primary environment of E. coli is densely populated with the gut microflora, and 

resident or transient E. coli strains are in constant direct or indirect interaction with 

some of its members. Similarly, many diverse microbes colonise the plant 

environments, from soils and roots to shoots. There are mechanisms of colonisation 

resistance in the gut, for which the resident microflora can affect the colonisation 

outcome of foreign and potentially pathogenic microbes, and it is interesting to 

examine how the plant resident microflora reacts when exogenous E. coli are 

colonising. This subject is addressed in a preliminary way in Chapter 5. 
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2. Experimental procedures 

 

2.1. Bacterial strains and isolation of environmental E. coli 

 

2.1.1. Phyllosphere isolates 

 

2.1.1.1. Microbiological methods of isolation 

 

In this work, we gathered 106 E. coli strains isolated from the aerial parts of field-

grown plants into a collection called “GMB”. These strains were isolated from 

various salad crops, mostly growing in agricultural fields in England, between 

summer 2008 and autumn 2009. Most isolates were retrieved from agricultural fields 

where plants were grown to be commercialised as food. Strains GMB01 to GMB58, 

and GMB87 to GMB110 were isolated from post-harvest material in a partner food 

safety inspection laboratory. All strains were sent to us on agar stabs. Selective 

isolation of E. coli isolates from plants was performed as recommended by the BS 

ISO 16649:2001 standard procedure, which involves stomaching (i.e. crushing and 

stirring leaf material) in a recovery diluent, which is typically a derivative of peptone 

buffer saline (PBS) diluent. Bacterial suspensions in PBS are then filtered to remove 

plant debris, diluted, plated on tryptone bile X-glucuronide (TBX) agar plates and 

incubated at 44°C for 18-24 hours. Growth on TBX agar is selective for bacteria able 

to survive the presence of bile salts, which are typically inhibiting Gram-positive 

bacteria. The addition of 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (or X-

glucuronide) in the medium provides a chromogenic identification of bacteria 

possessing the X-glucuronidase enzyme encoded by the uidA gene. E. coli strains 
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generally possess uidA, and are able to cleave X-glucuronide, resulting in blue 

colonies on TBX agar. There can be false negatives on TBX as a small fraction of E. 

coli, notably E. coli O157:H7 and some Shigella do not possess uidA and appear as 

white colonies on TBX. Also, it has been reported that the uidA gene could be present 

but the enzyme not expressed (Martins et al., 1993) possibly because of mutations in 

the promoter region. 

 

Strains GMB59 to GMB86 were isolated by Jeanette Newman (IFR) and Lucile 

Mayeux (IFR) in September 2008 from a field near Martham, Norfolk (UK) 

according to the same standard procedures. Upon retrieval of organisms, turbidity and 

gas production on brilliant green bile broth containing 2% of lactose (BGLBB; cat: 

CM0031; Oxoid Ltd.) was tested and all isolates were positive for both, which when 

coupled with the growth phenotype on TBX, confirmed that the biochemically tested 

isolates were E. coli. 

 

2.1.1.2. Geographical, temporal and plant origin of isolation 

 

GMB strains were isolated from plants grown in various agricultural fields located 

mainly in 5 different locations in England and in Italy, from the aerial parts of various 

plants (Figure 2.1).  
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Figure 2.1. Information on isolation of GMB strains. (a) Geographical location of isolation, (b) 

proportion of isolates from these geographical locations and (c) plant of isolation. Red dots on the map 

indicate sampling sites, the yellow dot indicates the location of our laboratory. 

 

GMB strains were mostly associated with spinach (Spinacia oleracea) and rocket 

(Eruca sativa), and to a lesser extent with other types of salad that included mizuna 

(common name for Brassica rapa nipposinica and B. juncea var. japonica), tatsoi 

(Brassica narinosa), amaranth leaves (Amaranthus sp.), red chard (Beta vulgaris) and 

watercress (Nasturtium officinale). GMB82 to GMB86 were isolated from the soil of 

a rocket field located around Martham, Norfolk, UK in September 2008. GMB103 

has a different isolation history from the rest, as it was isolated from corn (Zea mays) 

grown in south-eastern Asia. GMB strains were mostly isolated from plants grown 

during summer and autumn 2008 (n=84). Twenty-two strains were isolated in 2009. It 
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is not known when the asian corn plant colonised by GMB103 was growing. A full 

description with strain names can be found in Table 2.1. 

 

Table 2.1. Individual GMB strain information. 

Strain name Plant of 
isolation 

Location of 
isolation Date of isolation 

GMB01 Rocket Italy June 2008 

GMB02 Rocket Italy June 2008 

GMB03 Rocket King's Lynn July 2008 

GMB04 Rocket King's Lynn July 2008 

GMB05 Mizuna King's Lynn July 2008 

GMB06 Spinach Berkshire July 2008 

GMB07 Spinach Dover July 2008 

GMB08 Spinach Martham July 2008 

GMB09 Spinach Martham July 2008 

GMB10 Spinach Martham July 2008 

GMB13 Spinach Berkshire July 2008 

GMB14 Mizuna King's Lynn July 2008 

GMB15 Spinach Martham July 2008 

GMB16 Mizuna Martham July 2008 

GMB17 Mizuna Martham July 2008 

GMB18 Spinach Dorset July 2008 

GMB19 Other Dorset July 2008 

GMB20 Rocket Martham July 2008 

GMB21 Spinach Martham July 2008 

GMB22 Spinach Dorset July 2008 

GMB23 Spinach Dover July 2008 

GMB24 Spinach Martham July 2008 

GMB25 Spinach Martham July 2008 

GMB26 Other Dorset July 2008 

GMB27 Mizuna Martham July 2008 

GMB28 Spinach Berkshire July 2008 

GMB29 Mixed Martham August 2008 

GMB30 Spinach Dover August 2008 

GMB31 Spinach Dover August 2008 

GMB32 Spinach Dorset August 2008 

GMB33 Spinach Dorset August 2008 

GMB34 Spinach Dorset August 2008 
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GMB35 Other Martham August 2008 

GMB36 Mizuna Dorset August 2008 

GMB37 Spinach Dover August 2008 

GMB38 Spinach Berkshire August 2008 

GMB39 Spinach Dorset August 2008 

GMB40 Spinach Dover August 2008 

GMB41 Other Dorset August 2008 

GMB42 Spinach Berkshire August 2008 

GMB43 Spinach Dorset August 2008 

GMB44 Mixed Mixed August 2008 

GMB45 Spinach Mixed August 2008 

GMB46 Spinach Mixed August 2008 

GMB47 Spinach Dover August 2008 

GMB48 Spinach Martham August 2008 

GMB49 Spinach Martham August 2008 

GMB50 Spinach Berkshire August 2008 

GMB51 Spinach Berkshire August 2008 

GMB52 Spinach Dover August 2008 

GMB53 Spinach Martham August 2008 

GMB54 Spinach Martham August 2008 

GMB56 Spinach Mixed August 2008 

GMB57 Spinach Mixed August 2008 

GMB58 Other Mixed August 2008 

GMB59 Rocket Martham September 2008 

GMB60 Rocket Martham September 2008 

GMB61 Rocket Martham September 2008 

GMB62 Rocket Martham September 2008 

GMB63 Rocket Martham September 2008 

GMB64 Rocket Martham September 2008 

GMB65 Rocket Martham September 2008 

GMB66 Rocket Martham September 2008 

GMB67 Rocket Martham September 2008 

GMB68 Rocket Martham September 2008 

GMB69 Rocket Martham September 2008 

GMB70 Rocket Martham September 2008 

GMB71 Rocket Martham September 2008 

GMB72 Rocket Martham September 2008 

GMB73 Rocket Martham September 2008 

GMB74 Rocket Martham September 2008 

GMB75 Rocket Martham September 2008 
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GMB76 Rocket Martham September 2008 

GMB77 Rocket Martham September 2008 

GMB78 Rocket Martham September 2008 

GMB79 Rocket Martham September 2008 

GMB80 Rocket Martham September 2008 

GMB81 Rocket Martham September 2008 

GMB82 Soil Martham September 2008 

GMB83 Soil Martham September 2008 

GMB84 Soil Martham September 2008 

GMB85 Soil Martham September 2008 

GMB86 Soil Martham September 2008 

GMB87 Spinach Dover August 2009 

GMB88 Spinach Martham September 2009 

GMB89 Spinach Martham August 2009 

GMB90 Spinach Martham August 2009 

GMB91 Spinach Mixed September 2009 

GMB92 Rocket Dorset August 2009 

GMB93 Spinach Martham October 2009 

GMB94 Spinach Dover September 2009 

GMB95 Spinach Dover August 2009 

GMB96 Spinach Italy October 2009 

GMB97 Spinach Dover August 2009 

GMB98 Spinach Dorset September 2009 

GMB99 Rocket Italy August 2009 

GMB100 Spinach Mixed August 2009 

GMB101 Mixed Mixed August 2009 

GMB102 Rocket Dorset August 2009 

GMB103 Other Other Unknown 

GMB104 Spinach Martham September 2009 

GMB105 Spinach Italy October 2009 

GMB106 Spinach Martham August 2009 

GMB107 Mixed Mixed September 2009 

GMB108 Spinach Martham August 2009 

GMB110 Spinach Mixed August 2009 
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2.1.2. E. coli reference (ECOR) collection 

 

In this work, we compared strains of E. coli with various isolation histories to 

examine the impact of secondary environments on selected phenotypes and 

genotypes. To represent strains from the primary environment of E. coli, I chose the 

72 members of the well-described E. coli reference (ECOR) collection. The ECOR 

collection was assembled in 1983 from a larger collection of 2,600 strains for the 

purpose of gathering strains representing the whole genotypic variability in the E. coli 

species, as based on variability in multilocus enzyme electrophoretic (MLEE) profiles 

(Ochman and Selander, 1984). ECOR strains were all originally collected by Roger 

Milkman from faecal samples of healthy zoo animal or humans, with the exception of 

10 ECOR strains that were isolated from the urine of women with urinary tract 

infections (acute pyelonephritis or acute cystitis). One strain was isolated from a 

woman with asymptomatic bacteriuria (ECOR71). 

 

2.1.3. Other strains used in this work 

 

For metabolic profiling using BIOLOG microplates, we used 2 reference strains: E. 

coli K-12 strain MG1655 and a Shiga toxin-deficient deletion mutant of E. coli 

O157:H7 strain Sakai. Both strains were kindly provided by Martin Goldberg 

(University of Birmingham, UK). We characterised siderophore production of various 

pathogenic strains, including 3 other Shiga-toxin deletion mutants of O157:H7 

isolates from food which were kindly given by Kirrilly Wilson (IFR). In the same 

part, we also used 10 APEC strains, kindly sent by Timothy Johnson (University of 

Minnesota, USA) and the probiotic E. coli strain Nissle 1917, kindly given by Ulrich 
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Sonnenborn (Ardeypharm GmbH, Germany). Finally, we are grateful to Dr Geraldine 

Smith (Health Protection Agency Colindale, London, UK) for sending our colleague 

Dr Stephanie Schüller (IFR) the 2011 O104:H4 strain (isolate H1 1218 0280), of 

which she kindly performed a metabolic profiling experiment in the IFR category-3 

laboratory. 

 

2.1.4. Long-term storage of strains 

 

Strains were all stocked using the same procedure, to ensure a very high concentration 

of bacteria in the stock collection tube. A pure culture was plated on agar medium 

(LB or TBX) and incubated for 24 h at 37°C. After incubation, 3 ml of LB were 

poured over the plate and bacteria were scrapped using a sterile spreader. One 

millilitre of the resulting suspension was transferred in 1 ml of 40% glycerol in a 

cryovial. Frozen stocks were kept at −80°C. For each culture set up from this frozen 

collection, tubes were preliminarily transferred to dry ice and minimum manipulation 

was performed. 

 

2.2.  BOX-PCR 

 

2.2.1. Principle of the method 

 

It has been found that bacterial genomes contain repetitive DNA sequences that can 

be located in inter- or intragenic regions (Tobes and Ramos, 2005) and can represent 

up to 5% of the whole genome (Ussery et al., 2004). The biological role of these 

repetitive elements remains unknown, but some have hypothesised that it may be 
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involved in RNA or DNA metabolism (Tobes and Ramos, 2005; Ishii and Sadowsky, 

2009). Repetitive sequences in bacterial genomes are often the cause of genome 

rearrangements, either inversions of genomic regions or deletions of large fragments 

(see Introduction section 1.1.2 for more details). By using PCR with primers targeting 

the repetitive elements, one can generate a mixture of amplicons of different sizes that 

depend on the distance between each repetitive element. Electrophoretic migration of 

this mixture of amplicons generates a “profile” for any individual strain. The REP-

PCR method targets repetitive extragenic palindromic DNA sequences disseminated 

throughout bacterial genomes (Tobes and Ramos, 2005). Many derivatives of the 

REP-PCR method were developed (Ishii and Sadowsky, 2009), including BOX-PCR, 

a single-primer method targeting mosaic repetitive elements called BOX elements 

(Martin et al., 1992). The principle is summarised below. 

 

Bacterial genomic rearrangements can happen during homologous recombination, 

when portions of the genome are inserted or deleted after horizontal gene transfer. 

BOX-PCR is used to examine genomic diversity or clonality between strains, and the 

relatedness of electrophoretic profiles within a population or a collection of strains 

(Louws et al., 1994; van Belkum et al., 1996). Two microbiological clones will be 

very likely to share the same BOX-PCR profile, as no major rearrangements are likely 

to have occurred. Conversely, one can hypothesize that 2 divergent strains will have 

different recombination histories. Genomic rearrangements will result in insertions or 

deletions that influence the BOX amplicons and their sizes, and thus the resulting 

profiles. It is important to keep in mind that this method is not phylogenetically 

accurate, as similar profiles from phylogenetically distant strains have already been 

observed (Lynch, 1988). Nevertheless and despite these approximations, it is 
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generally safe to use BOX-PCR as a cheap and fast method to distinguish between 

clones within a known context, for instance during epidemics (Currie et al., 2007), 

host colonisation studies (Martinez-Medina et al., 2009) or as a general method to 

observe genetic diversity. 

 

2.2.2. BOX-PCR protocol used in this study 

 

In this study, we used a previously published protocol (Versalovic et al., 1993). 

ECOR and GMB strains were cultured on LB agar plates overnight at 37°C. BOX-

PCR was performed in 75 µl-reactions from fresh colonies using the 2X Go-Taq 

Green Master Mix (Promega, UK), 5 µl of lysed colony suspension, with addition of a 

final concentration of 0.8 nM of BOXA1R primer (5'-

CTACGGCAAGGCGACGCTGACG-3') (Versalovic et al., 1993) and 0.1 µg/µl of bovine 

serum albumin (cat: 10711454001; Roche Applied Science). PCR conditions were as 

follows: 1 cycle at 95°C for 20 min, 30 cycles at 90°C for 30s, 52°C for 1 min and 

72°C for 8 min, and 1 cycle at 72°C for 16 min. 

 

Before electrophoresis, an experimental plan was designed to randomly distribute the 

tested strains in batches of 22 or 23 wells corresponding to samples in a 25-well 

agarose gel. Two wells at each end and one lane in the middle of each gel were 

reserved for migration of 2-log DNA Ladder (cat: N3200; New England Biolabs) to 

facilitate the comparison of profiles across gels. All samples were run on 1.5% TAE-

agarose electrophoresis for 1H at 100V on the same day using the same 

electrophoresis buffer batch to minimize variability when comparing profiles across 

gels. Pictures of the agarose gels were aligned in a graphical editing program and 
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analysed using TotalLab Quant/Phoretix software (Nonlinear Dynamics Ltd., 

http://www.nonlinear.com/). Where isolates (3/181) did not show any bands on an 

electrophoresis gel, this was attributed to technical problems and the result excluded 

from the statistical analyses. Background-subtracted pixel intensity data, retention 

factor (Rf) values and peak height were extracted to a Microsoft Excel spreadsheet, 

which was processed in MATLAB with help from E. Katherine Kemsley from the 

Bioinformatics and Statistics department at IFR. 

 

2.2.3. Controls and statistical analysis 

 

Electrophoresis is a technique coupling a timely application of electric current 

through an agarose gel, thereby potentially causing considerable technical variation 

between samples. We looked at a potential “gel effect”, i.e. an artificially created 

similarity of samples that are run on the same agarose gel and whose picture is taken 

at the same time. This phenomenon was observed during the development of this 

method and its subsequent statistical analysis, which is why we randomised the 

samples, and made and ran the agarose gels as reproducibly as possible. Defining 

previously known parameters for our dataset, we performed unsupervised modelling 

(partial least squares, or PLS modelling) to the 8 different gels, each defined as a 

distinct parameter for the PLS model in order to look for a potential “gel effect”. 

There were no significant differences between profiles that could be explained by the 

presence on any particular gel (data not shown). 
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2.3. E. coli phylogroup assignment using a triplex PCR method 

 

2.3.1. Background 

 

Following the observation that almost all E. coli strains cluster together in relatively 

stable phylogenetic clades, major and minor phylogroups were defined. Among all 

clades, phylogroups A, B1, B2 and D seemed to gather the majority of strains and 

were considered as major phylogroups. Experimental methods to accurately assign 

isolates to a phylogroup rely on ribotyping or multilocus techniques such as MLEE or 

MLST which are costly, complex and/or time-consuming. Clermont et al. (2000) 

suggested a simple and accurate method to assign E. coli strains to major phylogroups 

A, B1, B2 and D using a multiplex PCR amplification of 3 genetic markers in a way 

that different combinations of markers are associated with different phylogroups 

(Table 2.2). 

 

Table 2.2. The possible outcomes of a triplex PCR experiment to determine phylogroups. “+” 

denotes the detection of a band for the corresponding primer pair, and “- ” denotes the absence of 

band. 

Phylogroup ChuA YjaA TspE4.C2 

A 
- - - 

- + - 

B1 - - + 

B2 
+ + - 

+ + + 

D 
+ - - 

+ - + 
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The accuracy of the method has been examined in a few studies. In the original report 

(Clermont et al., 2000), 230 strains, including 66 ECOR isolates, of which the 

phylogroup assignment was known by other methods were found to be classified 

correctly the overwhelming majority. A later report used more strains in a goal to 

refine accuracy (Gordon et al., 2008). Authors observed that strains assigned to 

phylogroup D based on the presence of ChuA and TspE4.C2 (or a “+–+” 

amplification pattern) could be in some cases B2 phylogroup false negatives, and 

suggested the testing for the presence of the ibeA gene to correctly reassign “+–+” 

isolates to phylogroup B2 (Gordon et al., 2008). A more recent study on the diversity 

of E. coli wild-type isolates from freshwaters in Michigan highlighted the rare 

possibility of apparent phylogroup transfer based on gain or loss of markers used in 

the triplex PCR method (Walk et al., 2007).  

 

2.3.2. Protocol used in this study 

 

We used PCR conditions as described previously (Clermont et al., 2000). Primer 

sequences are detailed in Table 2.3. 

 

Table 2.3. Primer sequences for triplex PCR determination of E. coli phylogenetic group. 

Name Sequence (5'>3') Amplicon 
length (bp) 

ChuA.fw GACGAACCAACGGTCAGGAT 
279 

ChuA.rev TGCCGCCAGTACCAAAGACA 

YjaA.fw TGAAGTGTCAGGAGACGCTG 
211 

YjaA.rev ATGGAGAATGCGTTCCTCAAC 

TspE4.C2.fw GAGTAATGTCGGGGCATTCA 
152 

TspE4.C2.rev CGCGCCAACAAAGTATTACG 
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Strains to test were grown on LB agar overnight at 37°C after which a single colony 

was picked and resuspended in 50 µl of sterile ultrapure water. Two-microliters of 

each of these suspensions were used as templates for PCR in a 50 µl reaction volume 

containing 25 µl of the 2X Go-Taq Green Master Mix (cat: M712; Promega) and 20 

pmol of each primer diluted in sterile ultrapure water.  

 

Amplification was carried out as follows: 1 cycle at 94°C for 5 min, 30 cycles at 94°C 

for 30s, 55°C for 30s, 72°C for 30s, and 1 cycle at 72°C for 7 min. Five-microliters of 

the amplified reaction were used for electrophoresis migration for 45min to 1h on a 

1.5% agarose gel (prepared in 1X Tris-acetate-EDTA buffer, or TAE buffer), using 

5µl/lane of 2-log DNA ladder (cat: N3200; New England Biolabs) as a size marker.  

 

2.4. Multilocus sequence typing (MLST) and diversity analyses 

 

2.4.1. Principle of MLST 

 

The apparition of a multilocus method like MLEE greatly improved the ability to 

phylogenetically discriminate between bacteria. Its sequence-based variant MLST 

added reproducibility and ease of use, and has since been proven to be one of the most 

phylogenetically discriminating methods so far. It is now widely used in bacterial 

epidemiology, with public databases covering a few dozen organisms.  

 

The general principle of MLST is to obtain for each tested isolate the sequences of 6 

to 8 internal fragments from housekeeping genes, believed not to be under adaptive 

(or positive) selection. This point is central to MLST, as variations in sequences 
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evolving in the absence of positive selection are caused either by genetic drift, which 

likely constitutes a more stable phylogenetic signal, or by purifying selection, which 

tends to maintain synonymous substitutions. Methods such as the dN/dS ratio 

calculation can highlight if specific loci are under positive selection or not by 

comparing the rates of synonymous and non-synonymous substitutions (Yang and 

Bielawski, 2000). Each distinct sequence for each housekeeping gene is called an 

allele type (AT) and the combination of 8 AT constitutes a sequence type (ST). 

Isolates with identical ST are called “clones” and isolates with similar ST (5, 6 or 7 

similar AT) are in the same “clonal complex” (CC). It is worth noting that two MLST 

clones are not necessarily biological clones, but may be representative of a stable and 

common sequence type or clonal complex in the tested species. Additionally, this 

terminology illustrates that MLST is mainly a method to examine bacterial clonality, 

in order to establish the possibly common evolutionary history of the tested isolates, a 

feature extremely useful when examining the epidemiology of pathogens. 

 

There are currently 3 available schemes for E. coli MLST studies, which are 

commonly called by their country of origin (“American”, “German” and “French”), 

and use the sequencing of different genes. All schemes generally produce consistent 

observations on the population structure of E. coli (Gordon et al., 2008). An extended 

scheme suggesting the additional sequencing of up to 22 genes for a single isolate has 

also been published (Walk et al., 2009). 
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2.4.2. MLST protocol used in this study 

 

In this work, we used the E. coli scheme proposed by Jaureguy et al. (2008) based on 

the sequencing of internal fragments of 8 housekeeping genes (Table 2.4). 

 

 

Table 2.4. Genes from MLST scheme used in this study and their product. 

Name Gene product 
dinB DNA polymerase 
icdA isocitrate dehydrogenase 
pabB p-aminobenzoate synthase 
polB polymerase PolIII 
putP proline permease 
trpA tryptophan synthase unit A 

trpB tryptophan synthase unit B 

uidA β-glucuronidase 
 

The primers detailed in Table 2.5 were used for amplification (primers oF and oR 

were used for the sequencing of all fragments). 
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Table 2.5. Primer sequences used in the MLST experiment. 

Gene Direction Sequence (5' > 3') 

dinB 
fw GTTTTCCCAGTCACGACGTTGTATGAGAGGTGAGCAATGCGTA 

rev TTGTGAGCGGATAACAATTTCCGTAGCCCCATCGCTTCCAG 

icdA 
fw GTTTTCCCAGTCACGACGTTGTAATTCGCTTCCCGGAACATTG 

rev TTGTGAGCGGATAACAATTTCATGATCGCGTCACCAAAYTC 

pabB 
fw GTTTTCCCAGTCACGACGTTGTAAATCCAATATGACCCGCGAG 

rev TTGTGAGCGGATAACAATTTCGGTTCCAGTTCGTCGATAAT 

polB 
fw GTTTTCCCAGTCACGACGTTGTAGGCGGCTATGTGATGGATTC 

rev TTGTGAGCGGATAACAATTTCGGTTGGCATCAGAAAACGGC 

putP 
fw GTTTTCCCAGTCACGACGTTGTACTGTTTAACCCGTGGATTGC 

rev TTGTGAGCGGATAACAATTTCGCATCGGCCTCGGCAAAGCG 

trpA 
fw GTTTTCCCAGTCACGACGTTGTAGCTACGAATCTCTGTTTGCC 

rev TTGTGAGCGGATAACAATTTCGCTTTCATCGGTTGTACAAA 

trpB 
fw GTTTTCCCAGTCACGACGTTGTACACTATATGCTGGGCACCGC 

rev TTGTGAGCGGATAACAATTTCCCTCGTGCTTTCAAAATATC 

uidA 
fw GTTTTCCCAGTCACGACGTTGTACATTACGGCAAAGTGTGGGTCAAT 

rev TTGTGAGCGGATAACAATTTCCCATCAGCACGTTATCGAATCCTT 

oF GTTTTCCCAGTCACGACGTTGTA 

oR TTGTGAGCGGATAACAATTTC 

  

Reactions were prepared and performed in 96-well PCR plates (Microplate Abgene 

Thermo-Fast, cat: TUL-962-005Y; Fisher Scientific) as follows: for a 50µl reaction, 

25µl of 2X GoTaq Colorless Master Mix (Promega), 2µl of 10 µM primer mix 

(forward and reverse), 18µl of ultrapure water and 5µl of boiled cell lysate. 

Amplification was performed as follows: 1 cycle at 95°C for 2 min, 30 cycles at 95°C 

for 30s, 50°C or 55°C for 30s and 72°C for 5 min, and 1 cycle at 72°C for 5 min. 

 

Most of MLST studies also use Taq polymerase, because of its very good efficiency 

for the high-throughput amplification of many templates from boiled lysates (Ibarz 

Pavon and Maiden, 2009; Walk et al., 2009). However, Taq polymerases do not 

exhibit a 3'-5' exonuclease activity, which allows for the correction of incorrectly 

incorporated bases during polymerisation, leading to errors at the rate of 1 for each 

9000 nucleotides (Tindall and Kunkel, 1988). If an error arises during the first cycles, 
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it is amplified and can lead to misinterpretation. To circumvent this issue, we halved 

reaction mixes and performed two independent amplification steps and mixed back 

the amplicons, in an effort to reduce the frequency of potential mistakes during the 

first steps of amplification. Using this procedure, we did not subsequently detect any 

problem potentially linked to the lack of a Taq proofreading ability. All amplicons 

were checked on a 2% agarose gel (prepared in 1X TAE buffer) using 5 µl/lane of 2-

log DNA ladder (cat: N3200; New England Biolabs) as a size marker. Samples with 

no amplification were reamplified with a lower annealing temperature (50°C instead 

of 55°C). If there was still no amplification, the whole isolate was discarded and its 

other fragment not sequenced.  

 

Amplicons were purified before sequencing using a high-throughput 96-well plate 

method. We used the vacuum-based Qiagen MinElute 96 UF PCR purification kit 

(cat: 28051; Qiagen) according to the manufacturer’s recommendations. Briefly, we 

transferred 50 µl of PCR products (i.e. the mixture of 2 PCR suspensions) in the PCR 

purification plate, placed the plate in a vacuum manifold (cat: 9014579; Qiagen) and 

applied vacuum pressure at 800 mbar using a Millipore XX60-220-50 Vacuum 

Pressure Pump for 10 minutes. Membrane-bound DNA was resuspended in 55 µl of 

ultrapure water by vortexing the plate at low-speed (~600 rpm) on an appropriate 

multiplate adapter. We sequenced 2×25 µl of the DNA suspension, with sequencing 

primers oF and oR respectively. Sequencing was performed using a ABI 3730XL 

sequencer at the Genome Analysis Centre (TGAC, Norwich, UK). 

 

DNA sequences were reverse-complemented when required and both strands were 

aligned to a reference sequence (Pasteur MLST website: 
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www.pasteur.fr/recherche/genopole/PF8/mlst/) using a web-based version of the 

MUSCLE algorithm www.ebi.ac.uk/Tools/msa/muscle/) and manually trimmed using 

the BIOEDIT software (Hall, 1999). All sequences aligned correctly, with no gaps. 

Novel alleles and sequence types (STs) were defined using the Pasteur database. 

When a new polymorphism was detected, we checked the ABI trace file for a clear 

signal, confirming the new SNP. When there was ambiguity in the sequencing signal, 

we reamplified and sequenced fragments. To include ECOR strains in our analyses, 

we retrieved 66 sets of 8 sequences already present in the Pasteur database.  

 

 

2.4.3. Intraspecies diversity estimation using the EstimateS freeware 

 

The main unit of diversity within E. coli isolates tested by MLST is the sequence type 

(ST) as illustrated in a recent study (de Muinck et al., 2011). When comparing strains 

from different environments, it is interesting to examine if there is variation in intra-

population diversity, to infer on possible selection bottlenecks on diversity imposed 

by these different environments. A simple way of doing so is to calculate the 

rarefaction in the sample, as well as other diversity estimators, for which we used the 

EstimateS version 8.2.0 freeware (Colwell, R. K.; http://purl.oclc.org/estimates). 

  

2.4.3.1. Diversity estimation 

• Chao richness estimator 

A non-parametric method to estimate diversity and richness was proposed by Anne 

Chao (1984). The classic Chao estimator is calculated as follows (Chao, 1984): 

������ � ���	 
 ��
�� 
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where Sobs is the number of observed species (or any taxonomic unit, in our case ST); 

a is the number of species observed just once (or singletons), and b is the number of 

species observed just twice (or doubletons). 

 

For the classical calculation of the Chao estimate a and b are both strictly positive. 

This calculation is commonly refered to as the Chao-1 estimate of richness. Chao-2 

refers to the application of Chao-1 to several collections rather than one. In that case, 

singletons and doubletons (representing for the Chao-1 estimator calculation the 

observation of distinct species just once or twice in the collection) correspond for 

Chao-2 to the observation of species in just one or two different collections. The 

formula remains unchanged. A sample-size bias correction was proposed as below, 

and is computed by default in EstimateS (and used in this work): 

������ � ���	 
 ���  ��
��� 
 �� 

Additionally, EstimateS calculates a 95% confidence interval on the Chao estimator 

(both bias-corrected and uncorrected versions) using the following: 

�����	��%	����� � 	���	 
	������ 	���	� ; 
 �����	��%	����� � 	���	 
�������� 	���	�;  

where  � �  !" #1.96()* +1 
 ,-.�/01234�
�/012345/467�89:. 

 

• Abundance-based coverage estimator and rarefaction curves 

The ACE estimator calculation employs more complicated equations to estimate 

diversity. The reader can refer to appropriate references for more details (Colwell, R. 

K.; http://purl.oclc.org/estimates). The ACE estimator has been found to be slightly 

more accurate than the Chao estimator, but the two are typically shown together in 
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diversity studies (de Muinck et al., 2011), and are calculated jointly using the 

EstimateS software. Similarly to the ACE estimator, the equations to calculate 

rarefaction curves are complex but the EstimateS freeware automates their calculation 

(Colwell et al., 2004). 

 

 

2.4.4. ClonalFrame analysis and construction of phylogenetic trees 

 

Most of the published basic phylogenetic analyses and phylogenetic tree 

representations rely on quick reconstruction methods, such as neighbour-joining (NJ) 

or maximum likelihood (ML). For rapid or ectopic analyses, these methods are often 

fine and easy to perform. However, their biggest pitfall is that they do not take into 

account the perturbation of the phylogenetic signal by homologous recombination. 

For instance, if two phylogenetically distant isolates share some alleles used in 

multilocus analyses because of some recent recombination events, methods such as 

NJ and ML, having very similar sequences as an input, will assume those two isolates 

are closely related, independently of their real genealogical ancestry. A Bayesian-

based method implemented in the ClonalFrame software (Didelot and Falush, 2007), 

seeks to address this problem and produce clonal genealogies of a set of isolates, 

while identifying and minimising the “recombination noise” blurring the phylogenetic 

signal. ClonalFrame uses multilocus sequence data as input, or even a small number 

of full genomes (Didelot and Maiden, 2010). As recombination information is taken 

into account, ClonalFrame suggests phylogenetic relationships between strains based 

on the whole set of tested isolates provided. When isolates are removed or added from 

that set, the topology of the output trees can vary, as for instance ClonalFrame may 
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find or lose useful information to define or not a particular branch of the tree. It is 

important to bear in mind that in contrary to NJ or ML methods of phylogenetic 

reconstruction, ClonalFrame will not “force” relationships of closely related isolates. 

If two isolates in a ClonalFrame tree are found to be closely related, but information is 

missing to relate them further (possibly because the recombination signal is too high), 

they will simply be placed at equidistance of the same node. For these reasons, 

ClonalFrame is a much more appealing way to accurately represent phylogenetic 

relationships between same-species isolates and therefore is now commonly used as a 

way of producing trees based on MLST data (Jaureguy et al., 2008; Didelot et al., 

2009; Didelot et al., 2011). 

 

In this study, we used the ClonalFrame software to reconstruct the clonal genealogy 

of our strains. For each isolate, sequences were first concatenated in FASTA format 

and then formatted for input into the ClonalFrame software (Didelot and Falush, 

2007). ClonalFrame was run with default settings and a Newick consensus tree was 

exported from the output. Some of the trees presented in this work were visualised 

and annotated in MEGA5 (Tamura et al., 2011), others online at the iTOL website 

(http://itol.embl.de/) on which trees imported in the Newick format can be easily 

annotated (Letunic and Bork, 2011) to produce publication-ready figures. 

 

 

2.5. Microarrays-based comparative genomic hybridisation 

(CGH) 
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2.5.1. Principle of CGH 

 

The use of miniaturised DNA microarrays was first reported in 1995 (Schena et al., 

1995) and since then became one of the most affordable and practical methods to 

enable the comparison of genomes and transcriptomes. Microarrays physically consist 

of a high density print of DNA amplicon probes on a glass slide. One can then 

experimentally hybridize genomic DNA (gDNA) or complement DNA from 

messenger RNA to repectively examine and compare genomes and the transcriptomic 

state of cells in given conditions. In the work presented below, we used microarrays to 

compare the genomic content of multiple wild-type strains of E. coli.  

 

Briefly, gDNA from a strain to test and DNA from a reference strain (typically a 

strain or a mixture of DNA encompassing all probes printed on the microarray used) 

are labelled with two different fluorescent dyes, mixed and jointly hybridised on the 

microarray. After scanning of the microarray, spots showing a mixture of both 

fluorescent labels correspond to genes present in the tested strain, and spots showing 

only single fluorescent labels correspond to genes present in only the sample strain, or 

the reference. In order to carry out good and homogenous comparison between 

strains, one should minimize the presence of genes that are present in the tested strain 

but not in the reference, but in the case of multi-genome or custom-made microarrays 

this is sometimes impossible. This was the case in our study using ShEcoliO157 

microarrays, for which an additional signal correction procedure was developed. 

Using CGH, we analysed the hybridised genomes of 20 ECOR strains (ECOR-02, 04, 

07, 10, 17, 23, 24, 28, 30, 34, 38, 41, 45, 55, 58, 62, 67, 68, 71 and 72) and 21 GMB 
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(GMB02, 07, 16, 18, 23, 34, 41, 46, 54, 58, 59, 61, 64, 66, 74, 78, 81, 88, 91, 92, 

100). 

 

2.5.2. ShEcoliO157 microarrays 

 

2.5.2.1. Description of microarrays and printing procedure 

 

ShEcoliO157 multi-genomic microarrays are an upgraded version of previously 

published microarrays, and were designed at IFR (Anjum et al., 2003; Lucchini et al., 

2005). Each microarray comprise 6379 amplicons probes encompassing the complete 

genomes of E. coli K-12 strain MG1655 (4265 specific “b” genes), E. coli O157:H7 

strain EDL933 (1128 specific “Z” genes), Shigella flexneri 2a strain 301 (555 specific 

“SF” genes) and a selection of various E. coli virulence genes (431 “VIRECO” 

genes). Microarrays were printed using the IFR Microarray Facility Stanford-type 

microarrayer (Thompson et al., 2001) by Yvette Wormstone and Carl Harrington in 

2006 and 2009, respectively. 

 

2.5.2.2. Reference strain used 

 

Because of the composite nature of the ShEcoliO157 microarray, it was not possible 

to use a reference that would cover all the probes. As ShEcoliO157 microarrays 

harbour various known E. coli virulence genes, the use of a strain of the pathogenic 

serovar O157:H7 could represent a theoretical close match. We used a E. coli 

O157:H7 strain Sakai deletion mutant in stx1,2 genes (constructed and kindly given 
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by Dr Martin Goldberg, University of Birmingham, UK) in order to allow 

manipulation with the appropriate safety in our cat-2 laboratory.  

 

2.5.3. Protocol used in this study 

 

2.5.3.1. gDNA extraction 

 

Because gDNA preparations purified using spin column-based kits generate poor 

quality hybridisations on microarrays in our hands, we extracted genomic DNA using 

the gravity column-based Qiagen Genomic-tip DNA Extraction kit (cat: 10223; 

Qiagen). Additionally, we observed that following the manufacturer’s instructions 

often did not completely lyse cells, leading to the clogging of the gravity columns, 

and thus to a waste of time and material. To optimize cell lysis for genomic DNA 

extraction, bacterial pellets were frozen at -80°C for at least one night. The next day, 

frozen cell pellets were thawed in the B1 lysis buffer (containing 100 mg/ml RNase 

A) from the kit. Extractions were then performed according to the manufacturer’s 

instructions with the exception of longer lysis incubation times (3-4 hours instead of 

30 min for the first lysis step at 37°C and 2-3 hours for the second lysis step at 50°C). 

DNA concentration was measured using a Nanodrop (Labtech Ltd, Ringmer, UK). 

Microarray blocking, gDNA labelling, hybridisations and washes were performed 

according to the protocol developed by the IFR Salmonella group 

(http://www.ifr.ac.uk/safety/microarrays/) and are detailed below. 

 

2.5.3.2. Microarray blocking 
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Microarrays were printed on epoxysilane-treated glass slides (Corning GAPS II; cat: 

CLS40005; Sigma-Aldrich) to allow direct, correct and precise printing of DNA onto 

them (Taylor2003). Therefore, the slides need to be “blocked” prior to utilisation, to 

prevent unspecific binding of labelled DNA, i.e. elsewhere than on the DNA probes. 

The principle of any blocking procedure is to alter the epoxysilane coating to reduce 

nonspecific interaction with DNA. In this work and more generally in the Salmonella 

group at IFR, the blocking reagent used is 1,2-dichloroethane (DCE; cat: 284505; 

Sigma-Aldrich). 

 

The two microarrays printed on each slide are usually visible to the naked eye but 

become invisible after blocking as the salts present in the printing solution dissolve 

during the blocking procedure. The position of the two microarrays present on each 

slide was therefore marked with a diamond-tipped pencil prior to DNA 

immobilisation. In order to strongly immobilize DNA probes on the microarray, slides 

were irradiated twice using the “auto cross-link” setting (corresponding to a 

2×120,000 microjoules/cm2 irradiation) in a UV cross-linker (Stratalinker UV 

Crosslinker, Stratagene). Slides were then incubated for 1 hour at room temperature 

with gentle agitation in a “blocking solution” composed of 0.5% (w/v) succinic 

anhydride (cat: 239690; Sigma-Aldrich) in 300ml of anhydrous DCE containing 

3.75ml of 1-methylimidazole (cat: M50834; Sigma-Aldrich). Slides were then 

transferred for 2–3 minutes in fresh DCE, 2 minutes in boiling water and 1 minute in 

96% ethanol before being dried by centrifugation at 1,200 rpm for 5 min. 

 

2.5.3.3. gDNA labelling  
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DNA labelling is performed using the Klenow fragment to incorporate fluorescently 

tagged deoxyribonucleotides in the 3’ to 5’ direction from random primers annealed 

along the target DNA. In this work, we used 1 µg of each DNA species per 

microarray hybridisation (2 µg total DNA). 

 

Purified gDNA was vortexed for a few seconds to fragment the DNA. In a sterile 

tube, 1 µg of DNA (test or reference) was vacuum-concentrated and resuspended in 

10 µl of sterile molecular biology grade water (cat: W4502; Sigma-Aldrich) and 10 µl 

of 2.5X Random primer/reaction buffer mix from the BioPrime DNA Labelling kit 

(cat: 18094-011, Invitrogen) were added. Samples were boiled for 5 min to denaturate 

DNA and put on ice for 5 min to allow reannealing of the random primers. Then, still 

on ice, we added 2.5 µl of 10X dNTP mix (1.2 mM of dATP, dTTP, dGTP; 0.6 mM 

of dCTP; 10mM Tris pH8.0; 1mM EDTA). We also added 1.5 µl of 1mM of the 

corresponding fluorescent label (usually Cy5-dCTP for reference DNA and Cy3-

dCTP for test DNA; cat: PA55321, GE Healthcare Lifesciences) and 0.5 µl of the 

Klenow fragment from the BioPrime kit. The total reaction volume is 24.5 µl. The 

reaction mixtures were incubated at 37°C overnight protected from light. Labelled 

DNA was purified using a QIAquick PCR Purification Kit (cat: 28104; Qiagen) to 

remove unincorporated fluorescent Cy-dyes, with the precaution of eluting twice 

using 2×50 µl of sterile water to maximise recovery from the membrane of the spin-

column. Samples were vacuum-concentrated and resuspended in 9.75 µl of sterile 

water. Test and reference DNA were combined in a 1:1 mix.  

 

2.5.3.4. Microarray hybridisation and washes 
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To the 9.75 µl mix of labelled test and reference DNA, we added 1.125 µl of 25 

mg/ml yeast tRNA (cat: R8759; Sigma-Aldrich), 2.25 µl of 20X saline-sodium citrate 

(SSC) buffer, 0.36 µl of 1M 4-(2-hydroxyethyl)-1-piperazine-ethane-sulfonic acid 

(HEPES) pH 7.0 buffer, 1.5 µl of Denhardt solution and 0.338 µl of 10% sodium 

dodecyl sulfate (SDS). The role of tRNA with Denhardt solution and SDS, both 

mixtures of high-molecular weight polymers, is to increase specific binding of 

labelled DNA on the probes by saturating non-specific binding sites. Hybridisation 

mixes are incubated at 99°C for 2 min and left at room temperature for 5 to 10 min. 

This step denatures labelled DNA into single stranded molecules. Tubes are then 

centrifuged 2×10 min at maximum speed to pellet precipitated SDS. Slides are placed 

in metal hybridisation chambers and hybridisation reactions are transferred to the 

microarrays (the final volume per array is 15.32 µl). A coverslip is added and 30 µl of 

SSC buffer is added to maintain adequate humidity in the chamber. Hybridisation 

occurs for 14 to 18 h (typically overnight) at 63°C in a water bath. After incubation, 

and quickly disassembling hybridisation chambers, slides are washed in 2x SSC 

buffer containing 0.1% SDS at 68°C for 5 min, followed by 1x SSC at room 

temperature for 5 min twice on an orbital shaker at 60 rpm, and finally in 0.2x SSC at 

room temperature for 5 min twice on an orbital shaker at 60 rpm. Slides are then dried 

by centrifugation at 1500 rpm for 5 minutes, and scanned within 3 hours using a 

GenePix 4000B microarray scanner (Molecular Devices, Inc.). Grid alignment and 

signal normalisation are performed using BlueFuse for Microarrays v3.6 

(BlueGnome, Cambridge, UK). In this work, a second hybridisation was realised for 

each tested E. coli isolate, as a technical replication.  
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2.5.3.5. Raw signal correction 

 

One would imagine that when gDNA is hybridised on a microarray, there are only 2 

kinds of results, either there is a fluorescent signal at a given spot and the 

corresponding gene is considered present, or signal is missing and the corresponding 

gene is considered absent. In practice, distribution of signals are different, with a high 

peak of high intensity signals, corresponding to present genes, with a tailing 

distribution of lower intensity signals of genes that are absent or too divergent to 

anneal correctly to their corresponding probes. Additionally, for the analysis of 

microarray results, only the log-ratio of fluorescence signals between the reference 

DNA channel and the test channel for each gene matters. Using an absolute reference 

DNA encompassing all probes on the microarray, it is then easy to identify genes that 

are present in the reference but not in the tested isolate (Figure 2.2).  

 

In our case however, the reference DNA was a gDNA extraction from cultures of E. 

coli O157:H7 ∆stx1,2 which is not encompassing all probes present on a 

ShEcoliO157 microarray. This non-absolute coverage of the probes by the reference 

comes with the possibility that a gene is present in the test isolate but absent from the 

reference, something which is not happening with absolute references. Therefore, it is 

not possible to use ratios to discriminate between genes present and absent from the 

tested both isolate and the reference: 

 

);<= >?@ A *B	C*	@ D @ *E FGA *B	C*	B AB	 H I 0;	);<= >FGA *B	C*	@ D @ *E ?@ A *B	C*	B AB	 H K 0; 

);<= >?@ A *B	C*	@ D @ *E ?@ A *B	C*	B AB	 H � );<= >FGA *B	C*	@ D @ *E FGA *B	C*	B AB	 H � 0 
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To overcome this, we developed a signal correction procedure, of which we provide 

here a step-by-step description. First, we gathered fluorescent signals from 92 

independent E. coli O157:H7 strain Sakai gDNA hybridisations and performed a basic 

normalisation for all of them by dividing each signal value by the sum of all signals of 

the same hybridisation. We obtained the following frequency plot shown in Figure 

2.2. 

 

 

Figure 2.2. Frequency plot of ShEcoliO157 microarray hybridisation signals and its smooth fit 

(“medians of medians”).  

 

Frequencies in signal intensities peaked according to 3 different populations: present 

genes (high frequency peak “1”), absent or highly divergent genes (smaller frequency 

peak “2”), and a “shoulder” peak of present genes, “3”). We observed that this 

“shoulder” of present genes was composed almost exclusively by Z genes, belonging 

to the E. coli O157:H7 EDL933 genome subset of ShEcoliO157 microarrays (Figure 

2.3). 
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Figure 2.3. Frequency plot of microarray hybridisation signals for different groups of genes. The 

inset represents the proportion (%) of gene groups in the “shoulder” of the biggest peak (see text). 

 

The inset in the plot corresponds to the proportion of total genes from the different 

ShEcoliO157 genome subsets present in the shoulder (indicated in red on the previous 

frequency plot between intensities -10.8 and -12). More than 80% of all Z genes on 

the microarray had a higher than average signal intensity and located in the 

“shoulder”. This probably reflects differences in the probe design, with O157 probes 

providing higher signals. 

 

The normalised signal intensities were centred by offsetting the “present” peak so that 

it would be centred on 1. The “shoulder effect” was also attenuated by offsetting with 

a lower value, so that most of the present genes would be in the higher “present” peak. 

On the frequency plots below, the frequency of normalised signals before correction 
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and centring is representing in blue and the frequency of normalised signals after 

centring and attenuation of the “shoulder effect” is represented in red (Figure 2.4). 

 

Figure 2.4. Representation of the offset modification to center signal values and attenuate the 

“shoulder effect” during correction of hybridisatio n signals (see text). The blue curve represents the 

frequency plot of hybridisation signals before correction, and the red curve is after correction. 

 

With the basic normalisation and centring steps, the problem of ratios is corrected, 

and we can import directly this dataset in any subsequent analysis software. Present 

genes have now a normalised value for signal intensity of roughly 1, and the 

normalised value for signal intensity of absent or divergent genes is now negative.  

 

We applied the same correction steps presented above to all other individual 

hybridisations performed in this study and obtained the following frequency plot, 

showing an overall uniformity of signal frequencies and a relative normalisation of 

the “shoulder effect” (Figure 2.5). 
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Figure 2.5. Corrected combined frequency plots of hybridisation signals for all hybridised strains 

of E. coli tested in this study. 

 

2.5.4. Dynamic cut-off for gene presence 

 

The ideal output for gene content comparison and analysis is binary, with genes that 

are present in the tested strain, and genes that are absent or too divergent to hybridise 

correctly on the microarray. This requires the determination of a threshold value (or 

“cut-off”) from signal distributions to determine gene presence. In early CGH studies, 

this threshold value was constant and determined empirically without taking into 

account the variation of signal intensities distribution between isolates. But because 

distributions do slightly vary between samples and replicates, a threshold valid for 

one distribution may produce false negatives or positives when applied to another. In 

this study, we used the “Genomotyping Analysis by Charlie Kim” (GACK) software 

(Kim et al., 2002) to define dynamic cut-off values for each distribution and create a 

binary dataset accordingly. 
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Briefly, we averaged both technical replicate signals for each tested strain and 

formatted an input file according to the GACK manual and a recent comprehensive 

review of this process (Stabler et al., 2010). In GACK, the dynamic cut-off 

determination is dependent of the “estimated probability of presence” (EPP) value, 

calculated as follows: 

 

L??�%� � 100 M ?@ NCEB N	EO@P 	D;@	E;Q") B 	"@ A *E 
RGA @P N	EO@P 	;D	AC<*S)	C*B *ACBC A  

 

The percentage of EPP (below in blue) is defined by dividing a predicted curve for 

which all genes are present (“EPP curve” different for all samples, below in black) by 

the observed data distribution (in red in Figure 2.6 with the example of observed 

frequencies of signal intensities for strain GMB106): 

 

 

Figure 2.6. Graphical illustration of GACK dynamic cut-off procedure (see text). 
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A particularity of GACK is that as soon as the %EPP curve reaches 100% (blue curve 

above, starting from the right), its shape becomes variable and unpredictable so only 

the portion of the curve on the right is considered valid for analysis. 

 

Users of GACK can define their desired value for %EPP, therefore for the dynamic 

cut-off determination. When the %EPP curve reaches the value defined by the user, it 

then defines the cut-off value, from which all genes on the left are considered present 

and all genes on the right are considered absent or divergent. A value of EPP=100%, 

as illustrated above, will set a cut-off value close to the peak of present genes (for 

GMB106, around 35) and allow for an analysis limiting the number of falsely positive 

genes. Conversely, if EPP is set to 0%, the cut-off value will be set further away from 

the peak of present genes, and will allow an analysis limiting the number of falsely 

negative genes. The estimated presence of genes between EPP=0% and EPP=100% is 

unknown, and a setting of GACK (called “trinary output”) allows to assign them a 

particular value for information purposes. For our analysis, we decided to minimise 

false positives and therefore used the EPP=100% setting in GACK, with a binary 

output. 

 

2.5.5. Genetic association tests with various parameters 

 

In order to identify genes across our tested strain set whose pattern of presence or 

absence after the GACK process correlated to various parameters, such as 

phylogenetic groups, the source or location of isolation or metabolic profiles on 

Biolog plates, we used non-parametric association tests (Mann-Whitney-Wilcoxon 
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when comparing 2 groups, and Kruskal-Wallis when comparing more than 2 groups). 

When attempting to associate patterns of genes with normally distributed phenotypes 

(for instance, siderophore production), we used a parametric test (Student’s t-test). 

These statistical tools are implemented in Genespring v.7.3 and were used that way.  

We kept a high stringency filtering of the results to limit false positives for the 

association analysis by applying multiple testing corrections (MTC) to the obtained p-

values list. Indeed, because of the nature of statistical tests, if 6500 genes are 

examined at a p-value cut-off of 0.05 and without MTC, the expected level of genes 

identified as significantly positive by chance only is: 

L!" EB N	DS)A 	";ACBCP A � "	 M T � 0.05	 M 6500 � 325	< * A	 
When mentioned in the text, we used the Benjamini-Hochberg MTC on test results, as 

recommended by the Genespring manual, with a threshold at p=0.01 (Benjamini and 

Hochberg, 1995). Briefly, after a test is computed, the p-values of each gene are 

ranked from the smallest to largest and the following nth p-values are corrected as 

follows (the 1st p-value remains unchanged): 

	"XY..ZX[Z\ � "]^XY..ZX[Z\ 	M *
*  1 ; D;@	* I 1 

In our case, for each "XY..ZX[Z\ K 0.01, the corresponding genes were considered 

significantly associated with the tested parameter. 
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2.6. Carbon metabolic profiling using Biolog plates 

 

2.6.1. Principle of the Biolog system 

 

Biolog phenotype arrays were developed to allow the simultaneous comparison of 

multiple metabolic phenotypes per single culturable isolate (Bochner, 2009). 

Individual tests in 96-well pre-prepared plates consist of a mixture of a compound 

(carbon, nitrogen, phosphorus, sulphur source or else) combined with a redox 

chromogenic dye, triphenyl tetrazolium chloride (TTC) and a Biolog proprietary 

incubation medium. For each test, the compound to be tested is present as a sole 

metabolic source of its kind. For instance, if carbon metabolism is to be tested, all 

elements required for growth excluding carbon will be provided. In aerobiosis, when a 

metabolic compound is taken up and transported in a cell, respiration will initiate and 

nicotinamide adenine dinucleotide (NADH) is generated, which in turn generates 

reducing power in the cell (Bochner, 2009). TTC turns blue/violet upon direct 

reduction by NADH. This reaction is irreversible (Bochner and Savageau, 1977) and 

TTC reduction is used as a colorimetric indicator for the ability to respire on the 

various compounds present in a Biolog plate. The applications of the Biolog system 

are multiple and can range from the comparison of metabolism between strains of the 

same species (Sabarly et al., 2011) to microbial identification (Pinot et al., 2011) and 

community metabolic profiling (Bossio and Scow, 1995; Di Giovanni et al., 1999). In 

this study, we used Biolog GN2 microplates (Techno-Path, UK) encompassing 95 C-

sources representative of the requirements to discriminate and identify most Gram-

negative bacteria. 
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2.6.2. Biolog data analysis and statistics 

 

As the Biolog analysis procedure we developed in this work (in collaboration with E. 

Kate Kemsley) represents a novel approach, we included details of the analysis 

(including threshold determination) in the results section. For statistical calculations, 

we used MATCAD with the Statistics module installed, and GraphPad Prism version 

5.01. Representation of graphs was performed using Microsoft Excel 2007/2010 or 

GraphPad Prism version 5.01. 

 

2.7. Phenotypic analyses of colonisation-associated traits 

 

2.7.1. Biofilm formation on polystyrene surfaces 

 

Biofilm formation was assessed using crystal violet staining of bacteria attached to the 

polystyrene surface of a 96-well microtitre plate. Bacteria were grown in LB 

overnight at 37°C. The next day, optical density was standardised to OD600=0.175, 

and this suspension was diluted 1:10 in 100 µl of colony-forming-antigen (CFA) 

medium (Evans et al., 1977). Static cultures were grown in 96-well microtitre plates at 

different temperatures for up to 72 h (biofilm formation at 28°C was monitored after 

72 h, at 37°C after 48 h). 

 

At the desired time point, plates were washed 2 times using sterile water, blotted on 

absorbent paper after each wash to remove excess water. Plates were dried at 60°C for 

30 min, or until complete dryness was observed. Plates were filled with 130µl/well of 

a 1% filtered crystal violet solution, and incubated for 30 min at room temperature. 
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Plates were emptied, washed 3 times using sterile water, blotted on absorbent paper 

after each wash, and then dried for 1h at 37°C. Crystal violet was dissolved by adding 

150 µl/well of a 20:80% acetone/ethanol mix and left at room temperature for 10 min. 

Optical density was measured at 590-600nm. 

 

2.7.2. Bacterial motility 

 

We were interested in assessing the proportion of motile and non-motile strains in our 

different E. coli collections. The ability of bacteria to swim is a phenotype easily 

assessable using low concentration agar gels. We used commercially available soft 

(0.4% w/v) agar tubes (BBL™ Motility Test Medium, Becton Dickinson) to detect 

bacterial motility on pure culture of E. coli isolates. Fresh colonies on LB plates 

incubated overnight at 37ºC were picked at their centre with a flame-sterilised 

platinum wire, which was then used to stab BBL™ Motility Test Medium tubes. 

Motility tubes were then incubated at 37ºC for 24 h before visual inspection of the 

motility phenotype. When the tested strain was non-motile in the tested condition, 

bacterial growth was visible inside the stab mark, but not elsewhere in the tube. 

Conversely, when the tested strain was motile, growth extended in the soft agar, away 

from the stab mark. Motility was visually scored, and a second biological replicate 

was performed. 

 

2.7.3. Siderophore production 

 

The ability to produce and secrete iron-scavenging molecules called siderophores is 

known to occur in many environmental organisms for which iron is a limiting factor 
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of growth. E. coli is known to produce up to 4 siderophores: enterochelin (or 

enterobactin), salmochelin, yersiniobactin and aerobactin, respectively encoded by the 

ent, iro, irp and iuc operons (Valdebenito et al., 2006). We used chrome azurol S 

(CAS)-based solid medium to assess siderophore production in vitro. CAS is an 

indicator molecule with moderate affinity for iron molecules. When CAS is bound to 

iron, the complex is dark blue to green, the presence of siderophore (for which iron 

has a greater affinity than for CAS) disrupts the CAS binding with iron, which then 

turns bright yellow. In our assay, we grew colonies of strains on CAS indicator agar 

for 48h at 37°C and measured the halo diameter as a linear proportion of the ability to 

produce siderophore using the ImageJ software.  

 

The recipe we used for CAS indicator agar preparation is derived from a previously 

published protocol (Payne, 1994). This complex medium relies on the mixture of 3 

independently prepared solutions: a 10X modified M9 (MM9) salts solution, a CAS-

HDTMA solution (which is a mix of 2 other solutions) and a deferrated casamino 

acids solution. To prepare the 10X MM9 solution, 3 g of KH2PO4, 5 g of NaCl and 10 

g of NH4Cl are added to 1 l of milliQ water and autoclaved. The CAS-HDTMA 

solution is prepared by first dissolving 605 mg of CAS powder in 500 ml of milliQ 

water, to which are added 100 ml of a ferric solution composed of 1 mM FeCl3 in 10 

mM HCl; and then this mixture is added to 400 ml of a HDTMA buffer solution (729 

mg of HDTMA powder in 400 ml of milliQ water heated at 40°C) and autoclaved. 

The deferrated casamino acid solution is prepared by first dissolving 10 g of casamino 

acids in 100 ml milliQ water. Casamino acids are then extracted from this solution by 

adding 100 ml (equal volume) of 3%(w/v) 8-hydroxyquinoline in chloroform to 

remove contaminating iron, and then extracted again with 100 ml (equal volume) of 
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chloroform to remove traces of 8-hydroxyquinoline. Finally, CAS indicator agar is 

prepared by first adding 6g of NaOH (dissolved in the water), 30.24 g of PIPES 

buffer, 100 ml of 10X MM9 salts solution and 15 g of agar to 750 ml of milliQ water 

to be autoclaved and kept at 50°C. When the agar is still liquid, 30 g of deferrated 

casamino acids solution are quickly added along with 10 ml of filtered-sterilised 

solution of 20% glucose, 1ml of 1M MgCl2 and 1ml of 100 mM CaCl2. The solution 

is mixed, 100 ml of CAS-HDTMA solution are added and plates are poured and dried 

before utilisation. Colonies of siderophore-producing bacteria grown on this medium 

are surrounded by a yellow or orange halo (Figure 2.7). 

 

 

Figure 2.7. Example of halo obtained by a siderophore 

producing strain streaked on CAS indicator agar. The 

strain used is E. coli strain GMB30. 

 

 

2.7.4. Multiplex PCR for detecting siderophore biosynthesis genes in E. 

coli 

 

To develop a method to detect the 4 described siderophore operons, we used E. coli 

strain Nissle 1917, a probiotic strain commercialised under the brand name 

“Mutaflor” and kindly provided by Ardeypharm GmbH, which possesses the 4 

operons in its genome (Valdebenito et al., 2006). We used the MPprimer website 
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(Shen et al., 2010) and sequences of enterobactin from E. coli K-12 strain MG1655 

(gb: U00096.2), salmochelin from E. coli strain Nissle 1917 (gb: AJ586887.1), 

yersiniabactin from Yersinia pestis (gb: CP001585.1) and aerobactin from an E. coli 

plasmid sequence (gb:144692 and X76100.1)  to design multiplex primers. 

 

MPprimer found primer sequences for all tested genes, and produced the 

corresponding virtual electrophoresis patterns (Figure 2.8). 

 

 

Figure 2.8. Virtual electrophoretic patterns for siderophore biosynthesis gene multiplex PCR 

calculated by the MPprimer website. Aerobactin profiles: iucB, iucD, iucA, iucC; yersiniabactin 

profiles: irp3, irp5, irp2, irp1; salmochelin profiles: iroE, iroB, iroD, iroC; enterobactin profiles: entD, 

entA, entB, entC, entE. 

 

We ordered the obtained primers (Table 2.5). 
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Table 2.5. Primer sequences for siderophore biosynthesis gene multiplex amplification. The 

primers were ordered from Sigma-Genosys (UK). 

  Primer 
target 

Amplicon 
size (bp) 

Tm 
(FP/RP) 

(°C) 

Forward primer (FP) / Reverse primer 
(RP) 

Aerobactin 

iucA 338 59.9/60.0 5'-GGACTGCGCGATCTTAACGGCA-3' / 
5'-AATCCGACCGGCAGATCCCCAA-3' 

iucB 178 60.1/60.0 5'-ATCTTGGCTGGGGGCTGGACAA-3' / 
5'-ACCTGTCCGAAAAGCGTCAGCG-3' 

iucC 458 59.9/59.9 5'-AACGTGGTATCTGGGGCTGGCT-3' / 
5'-ACTGAAGCGGGCAAACTCCTGC-3' 

iucD 230 59.6/59.7 5'-CGGATGGCATCACTGCCCGATT-3' / 
5'-ACGCAGAACGGTAACCTGTGGC-3' 

Yersiniabactin 

irp5 255 60.0/60.0 5'-TATGGCGGAAGGCCTGCTCTGT-3' / 
5'-CTGACATTGTCGCCTGTGCGGT-3' 

irp3 124 60.0/59.9 5'-TTGCTGGCTCTGGGCGTTGATG-3' / 
5'-GATAGCGCTGAAGCAGCAGGCA-3' 

irp2 316 60.0/60.0 5'-ACTTCCTCGCCCGGCGTAATCT-3' / 
5'-GCCGCAATGTGTGGCTGAGAGT-3' 

irp1 412 60.0/60.0 5'-CCATATTGGCCGCACGCTCGAT-3' / 
5'-GGCGTTAAACCGTTCGGGCTGA-3' 

Salmochelin 

iroC 500 60.1/60.0 5'-GTCGGGCAATCACCAGCAGCAT-3' / 
5'-GGGCGCATCGGGTTCAGGAAAA-3' 

iroB 265 60.1/60.1 5'-ATGGCCGAAGCCTACGGTTTGC-3' / 
5'-CGGGTTGGTGGTGTTTGACGCT-3' 

iroD 330 60.1/60.0 5'-AGTGGCTGAGCACCAGACCGAA-3' / 
5'-TCGTGCTGCCCGATGGTGAAAC-3' 

iroE 129 60.0/59.9 5'-TGCCTGGCGAAAGGAGGCATTG-3' / 
5'-GCTGTCGGGGTGCTGTCGAAAA-3' 

Enterobactin 

entA 274 60.2/60.1 5'-GTCGGCGGTGCGTTTAACCTGT-3' / 
5'-GCTGTTCTTCGGCGTCATCGCT-3' 

entB 370 59.9/59.8 5'-TGCGCGACTACTGCAAACAGCA-3' / 
5'-TGCTCGTCACGGCTGAAATCGG-3' 

entC 493 59.9/60.1 5'-GAATGTGGTGGAACGCCAGGCA-3' / 
5'-AGTTGCGAGATGCCACAGCGTC-3' 

entE 600 59.9/60.0 5'-ACGTCTTTCTGCCACCCTTGCG-3' / 
5'-ACACACTCCACGCGATCCGGTA-3' 

entD 138 59.7/59.9 5'-ATTTAGCCGGACGGATCGCTGC-3' / 
5'-ATGCCGTAGTCCCACAGTGGCT-3' 

 

We tested different conditions of multiplex PCR on an E. coli strain Nissle 1917 

genomic DNA preparation until we obtained satisfactory amplification of most of the 

bands (Figure 2.9). 

 



 

118 
 

 

Figure 2.9. Electrophoresis gel after simplex and multiplex amplification of siderophore 

biosynthetic operons from E. coli strain Nissle 1917. Annealing temperature for the PCR was 50°C. 

DNA ladder is the 2-log DNA ladder from NEB. 

 

Our selected amplification conditions were 1 cycle at 95°C for 5 min, 30 cycles at 

95°C for 30s, 50°C for 30s and 72°C for 90s and 1 cycle at 72°C for 5 min. We used 

the GoTaq Green Mastermix (Promega) to prepare our amplification reaction. We 

could not amplify a single band for entC using these multiplex amplification 

conditions (Figure 2.10). However, we could amplify 4 genes out of 5 from the ent 

operon, which we judged enough for our detection purposes (Figure 2.10). Similarly 

and despite our prolonged efforts, iucB could be amplified in simplex but not in 

multiplex (Figure 2.9) so we excluded the corresponding primer pairs from the 

multiplex mix.  

 

 

Figure 2.10. Electrophoresis gel pattern for a successful 15-gene multiplex detection of 

siderophore biosynthetic operons in E. coli. 
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In the results chapter, we present an application of this method to detect siderophore 

genes in 28 ECOR and GMB E. coli strains. 

 

2.8.  DGGE profiling of phyllosphere-associated bacterial 

community  

 

2.8.1. Principle of community profiling 

 

Bacteria populate agricultural environments in considerable amounts, reaching 

concentrations of 104-109 CFU/g in soil (Garbeva et al., 2004) and around 108 CFU/g 

on the aerial parts of plants (Lindow and Brandl, 2003). DNA extracted from the 

communities present in various ecosystems is usually used as a template for the PCR 

amplification of phylogenetic markers that can then be analysed by various methods 

including DGGE or HT-sequencing. In this work, we used DGGE to first examine 

microbial community profiles in agricultural soils and on various crops, and then to 

observe plant microbial community response to an artificial leaf contamination with 

E. coli. In this section, we describe the procedures used for sampling, DNA extraction 

and DGGE of epiphytic bacterial samples. 

 

2.8.2. Environmental sampling 

 

2.8.2.1. Field collection of soil and crops 

 

The fields we sampled, located in East Norfolk (UK; Figure 2.11), were used for 

growing different crops, mainly spinach and rocket salad but also occasionally red 
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Batavia lettuce or red chard. We used ethanol-sterilised scalpels and hand trowel to 

sample leaf and soil material, which was placed in sterile stomacher bags on site. All 

samples were placed in a cooled ice box for transport back to our laboratory, where 

they were processed on the same day as presented in section 2.8.3. 

 

 

Figure 2.11. Geographical location of the agricultural sampling fields mentioned in this study. 

Fields are represented with a blue marker. This map is copyrighted by Google. 

 

2.8.2.2. Chemical characterisation of tested field soils 

 

We determined the textural and chemical characteristics of two field soils we sampled 

for microbial communities analyses. The British Standard BS3882:2007 procedure for 

soil analysis (“Specification for topsoil and requirements for use”) was used by NRM 

Laboratories (Berkshire, UK) to analyse soil samples from these fields (Table 2.6). 
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Table 2.6. Chemical characteristics of two sampled field soils 

 

Characteristic Field 1 Field 2 

Textural class Sandy loam Sandy silt loam 

pH 6.2 6.4 

Soil density (g/L) 1118 1136 

Sand 2.00-0.063mm (%w/w) 61 40 

Silt 0.063-0.002mm (%w/w) 29 47 

Clay <0.002mm (%w/w) 10 13 

Conductivity (µS/cm) 2332 2505 

   Available iron (mg/kg) 39.9 69.5 

Available manganese (mg/kg) 11.8 12.5 

Available phosphorus (mg/kg) 48.3 60.7 

Available potassium (mg/kg) 209.3 400.5 

Available magnesium (mg/kg) 41.1 93.3 

Available copper (EDTA) (mg/kg) 2.1 4.5 

Available zinc (EDTA) (mg/kg) 2.3 6.2 

Available sulphate (mg/kg) 30.4 64.4 

 

The texture of the fields was loam to sandy loam, which corresponds to rather high 

levels of sand and low levels of clay with variable levels of silt (Table 2.6). The soils 

had an average pH of 6.3, which is usually associated with a high diversity of 

microbes (Fierer and Jackson, 2006). The concentrations in phosphorus, magnesium 

and iron were average to high, possibly because of the exogenous addition of fertiliser 

by the farmers. 

 

2.8.2.3. Artificial contamination of leaves by E. coli 

 

Spinach (Spinacia oleracea cv. Picasso) plants were grown for day/night cycles of 10 

h at 20°C and 14 h at 15°C (75% constant humidity) in controlled environment rooms 
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by the John Innes Centre Horticultural Services staff (Norwich, UK). Four weeks-old 

plants were transferred to the laboratory and sprayed with a 106 cells/ml suspension of 

bacteria (E. coli or Salmonella) using an artist’s airbrush (cat: HUM300133; equipped 

with 400ml Airbrush Pressure Bottle; cat: HUMAIR400; Humbrol, eModels) for fine 

and even particle deposition on the leaf surface. Plants were then incubated until 

sampling at 22°C in a heated propagator (Vitopod Propagator, cat: 579519; Suttons) 

and watered regularly from below. 

 

2.8.3. Extraction of environmental DNA 

 

2.8.3.1. DNA extraction from soil 

 

DNA was extracted from soil using the FastDNA® SPIN Kit for Soil (cat: 6560-200; 

Q-Biogene). The major constraint to a good DNA extraction from soil is the efficient 

lysis of bacteria. Indeed, soil is highly heterogeneous with multiple microhabitats 

potentially protecting living cells, and needs to be mechanically homogenised prior to 

cell lysis. Additionally, many bacteria from environmental sources themselves are 

likely to be recalcitrant to lysis too, as they are likely to have to cope with multiple 

environmental stresses, or even be present in soils as stress-resistant spores. To ensure 

good lysis and minimal shearing of DNA molecules, the FastDNA® SPIN Kit for Soil 

employs a bead-beating procedure using a high-speed “up-and-down” shaker 

(FastPrep® FP220A Instrument; cat: 6001-220; Q-Biogene), in order to homogenise 

soil particles. Briefly, up to 500 mg of soil were weighed and placed into a “Lysing 

Matrix” tube consisting of sterile ceramic and silica beads of multiple sizes. Buffers 

were added (978 µl of “sodium phosphate buffer” and 122 µl of “MT buffer”, both 
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provided in the kit) for good homogenisation and protein solubilisation. Samples were 

shaken for 40 s at a speed of 6 m/sec using the FastPrep® instrument before being 

placed on ice and centrifuged for 1 min (speed was 14,000 × g for every 

centrifugation step in this protocol). Supernatants were carefully transferred to tubes 

containing 250 µl of “protein precipitation solution (PPS) reagent” from the kit, and 

solutions were mixed by gently inverting 10 times. Tubes were then centrifuged for 5 

min to pellet the protein precipitate. Supernatants were carefully transferred to 15 ml 

Falcon-tubes containing 1 ml of “binding matrix suspension”, consisting in a mixture 

of fast-sedimenting mineral particles on which DNA will adsorb. Tubes were 

manually inverted for 2 min and sedimentation was allowed by placing tubes in a 

vertical position for 5 min. Some of the supernatant (500 µl) was transferred to a clean 

tube, and the sedimented matrix was resuspensed in the remaining supernatant (this 

step was meant to reduce the volume for the following steps). After the mix appeared 

visually homogenous, 700 µl were transferred to a membrane-based spin column and 

centrifuged for 1 min. The flow-through was discarded and the rest of the supernatant 

was passed through the membrane by centrifuging for 1 min. A washing solution (500 

µl of “salt/ethanol wash solution”, or “SEWS-M” from the kit) containing ethanol was 

added to the spin column, which was centrifuged for 1 min and, after discarding the 

flow-through, for an additional 2 min to dry the membranes. Tubes were dried for an 

additional 5 min at room temperature and membrane-bound DNA was eluted in 100 

µl of nuclease-free water by centrifugation for 1 min. Samples were checked by low-

voltage (60V) electrophoresis on a 0.7% TAE-agarose gel. Electrophoresis was 

preferred as compounds co-purified using this method can be detected by Nanodrop 

spectrophotometry, leading to false concentration estimates. 
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2.8.3.2. DNA extraction from leaves 

 

The protocol described above was modified for leaf material homogenisation and the 

extraction of DNA from the phyllosphere. About 15 g of leaf material were placed in 

a stomacher filter bag (cat: W40545; Fisher Scientific) containing 50 ml of sterile 

water and crushed for 2 min at max speed in a lab blender (cat: MPR-410-012Q; 

Seward Medical). The filtered liquid containing bacteria was centrifuged at low speed 

(2 min at 500 × g) to pellet plant particles. The rest was centrifuged for 20 min at 

13,200 × g and the resulting supernatant was discarded. Freezing samples at -20ºC 

after this point did not affect subsequent DNA purification yield. The pellet was 

carefully transferred in a “Lysing Matrix” tube of the FastDNA® SPIN Kit for Soil 

containing “sodium phosphate buffer” and “MT” buffers as described above. DNA 

extraction was performed as described above for soil. 

 

2.8.3.3. PCR from environmental DNA 

 

We used DNA extracted from environmental sources (soil and leaves) as a template 

for PCR targeting fragments of the 16S ribosomal RNA (rRNA) gene. This gene, 

encoding a component of the 30S bacterial ribosome, is quasi-universally conserved 

in bacteria and archaea (Woese and Fox, 1977). Its structure is not uniform, with 

conserved regions and more flexible, so-called hypervariable regions (Neefs et al., 

1990). The sequence in these hypervariable regions is considered to be relatively 

species-specific. There are 9 hypervariable regions in the 16S rRNA gene, which can 

all be targeted by universal primers (Figure 2.12). 
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Figure 2.12. Representation of hypervariable regions within the prokaryotic 16S rRNA gene. The 

plot represents the conservation of bases within bacteria: high values represent conserved bases and 

low values represent variable bases. E. coli rDNA base positions are taken as reference in the x-axis. 

This figure was taken from the Bioinformatics Toolkit website of Cardiff University, 

www.bioinformatics-toolkit.org/Help/Topics/hypervariableRegions.html created by K.E. Ashelford 

(last accessed on 13-09-2011). 

 

For method development purposes, we also used primer pairs 63F-338R targeting the 

V1-2 region, 63F-534R targeting the V1-3 region, 341F-907R targeting the V3-5 

region and 1055F-1406R targeting the V7-8 region (Table 2.7). In our work, we 

focused on the utilisation of universal primers 341F and 534R (Muyzer et al., 1993) 

targeting the V3 hypervariable region of the 16S rRNA gene (Table 2.7).  

 

  



 

126 
 

Table 2.7. Universal primers used for DGGE. A 40-bp GC-clamp was added at the 5’ end of primers 

in bold (see text for more details) 

Name Sequence (5' > 3') 

63F CAGGCCTAACACATGCAAGTC 

338R GCTGCCTCCCGTAGGAGT 

534R ATTACCGCGGCTGCTGGCA 

341F CCTACGGGAGGCAGCAG 

907Ra CCGTCAATTCMTTTGAGTTT 

1055F ATGGCTGTCGTCAGCT 

1406Ra ACGGGCGGTGTGTRC 
a Standard nucleotide codes; M=A or C and R=A or G. 

 

V3 is the most commonly used variable region for discriminating between bacterial 

species from various natural environments (Kadivar and Stapleton, 2003; Yu and 

Morrison, 2004). A 40-bp GC-clamp (5’-CGCCCGCCGCGCCCCGCGCCCGT 

CCCGCCGCCCCCGCCC-3’) was added at the 5’ end of primers written in bold in 

Table 2.7 to allow immobilisation of the two strands at the same position on a 

denaturing gel (see section 2.8.4).  

 

Reactions and amplification were prepared using the following parameters: for a 50-

µl reaction, 25 µl of 2X GoTaq Colorless Master Mix (Promega), 0.5 µl of 10 mM of 

each primer, and 5 µl of gDNA extraction. The manual of the DNA extraction kit 

used above states that the purified DNA can be readily amplified by PCR. However, 

we observed difficulties in doing so, and found that the addition of 5 µg/µl of bovine 

serum albumin (BSA; cat: 10711454001; Roche Applied Science) in the PCR mix 

greatly improved the amplification success (Kreader, 1996). Amplification conditions 

were as follows: 1 cycle at 94°C for 5 min; 35 cycles at 94°C for 20s, 50°C or 55°C 

for 20s, 72°C for 20s; 1 cycle at 72°C for 5 min. 
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2.8.4. Denaturing gradient gel electrophoresis (DGGE) 

 

DGGE is an electrophoresis-based method using polyacrylamide gels to discriminate 

DNA fragments differing by sequence content (indirectly from GC content) but not 

sequence length (Fischer and Lerman, 1979; Fischer and Lerman, 1980). The 

principle rests on the creation a gradient of denaturing conditions in an 8% 

polyacrylamide gel using urea and formamide. DNA samples to test are amplified by 

PCR with specific primers that add a long additional sequence of GC bases at the 3’ 

end of the fragments. This so-called “GC clamp” prevents the complete denaturation 

of the DNA molecule. While double-stranded clamped DNA samples migrate along 

the electric current, denaturing conditions increase proportionally with the denaturing 

of the two strands. When the whole sequence but the GC clamp is denaturated, the 

migration stops. Fragments with different sequences with different contents in GC 

bases, will therefore stop at different migration fronts. Typically, DGGE can be 

performed on 16S rDNA amplicons from environmental DNA extractions, thus 

creating specific and comparable community profiles. We used the Ingeny PhorU 2x2 

DGGE apparatus (GRI Molecular Biology) according to the manufacturer’s 

recommendations and Stefan Green’s comprehensive guide to DGGE 

(http://sites.google.com/site/stefanjgreen/sd, last accessed 13/09/2011).  

 

Briefly, a gel cassette was vertically assembled with between glass plates carefully 

washed with ethanol and wiped for dust. A 32-samples comb was inserted between 

the two glass plates. Two reservoirs were loaded with 25 ml of polyacrylamide 

containing distinct concentrations of denaturing agent, 80µl of 20% (w/v) ammonium 

persulphate (APS) and 8 µl of tetramethylethylenediamine (TEMED) were added to 
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each reservoir. A peristaltic pump created a vertical denaturing gradient in the gel 

cassette. We observed that gradients of 59% to 40% and 59% to 44% provided a good 

range of denaturing conditions to discriminate most of the amplicons of our study. 

These were created by mixing appropriate amounts of pre-made polyacrylamide 

solutions containing 70% of urea/formamide or not (considered as “0%”). After the 

gel has polymerised (60 to 90 min), a stacking gel (7ml “0%” polyacrylamide, 80 µl 

of loading dye, 80µl of 20% APS, 8 µl of TEMED) was quickly added on top with a 

syringe. After polymerisation of the stacking gel, the comb was removed and the gel 

cassette transferred to the electrophoresis tank containing 15 L of 0.5X TAE buffer at 

60°C. After loading samples, electrophoresis was performed at 80V (50mM, 10W) for 

17.5 h (or at the appropriate voltage/time to deliver V×H=1400 with constant 

amperage). After migration, gels were transferred in 300 ml of 0.5X TAE containing 

10 µl of SYBR® Green I (cat: S9430; Sigma-Aldrich) for DNA staining, and washed 

in 300 ml of distilled water for 5-10 min. Gels were scanned in a Pharos FX Plus 

Molecular Imager (Bio-Rad). 

 

2.8.5. Data analysis 

 

We used Phoretix 1D (Nonlinear Dynamics) demo version to analyse denaturing 

gradient gels. A very good description of the principle behind gel analysis using 

Phoretix 1D or similar softwares has been published recently (Tourlomousis et al., 

2010). We summarised this process in Figure 2.13.  
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Figure 2.13. Summary of the data analysis process using gel analysis softwares. See text for more 
details. 

 

Briefly, gel pictures are loaded and lanes are created. The gel background is 

substracted and bands are detected. This step needs to be visually controlled and 

edited as sometimes, the software either misses or adds unwanted bands (specks, poor 

gel images, etc). Then, the user defines bendable migration front lines (or “Rf lines”). 

This step is crucial to the analysis as it is used as a frame by the software to match 

similar bands and consider different bands as such. The output of this analysis is first 

a synthetic lane regrouping all different band positions of one gel, from which a band 

presence matrix is created. From this, Pearson correlations can be calculated on the 

profiles, and clustering of correlated profiles can be performed (Figure 2.13). 
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3. Genomic and phylogenetic diversity of E. coli strains 
seasonally isolated from agricultural crops 

 

3.1. Context 
 

Since the first analyses of the E. coli population structure and the resulting 

observation of distinct phylogenetic groups, hypotheses have emerged as to why these 

phylogroups exist, and why different distributions are observed in collections of 

isolates of different origin. The question of how the living environment acts on the 

distribution of phylogenetic groups, and thus the population structure of a particular 

bacterial species remains poorly understood. These questions can be extended to our 

topic of study. Are nonhost secondary environments acting on the population structure 

of E. coli GMB isolates? Are strains of E. coli isolated in nonhost secondary 

environments a specific subset of all E. coli or do they encompass the whole diversity 

of the species? In other words, is nonhost adaptation a part of the natural life cycle of 

E. coli? Agricultural fields are arguably very good nonhost environment models. E. 

coli is not believed to be commonly associated with plants, although it has been 

shown to survive and persist for relatively long times in agricultural environments 

(see Introduction section 1.3.1). Therefore, when E. coli strains are isolated from the 

aerial parts of plants without any obvious source of contamination, it is possible that 

they do not come directly from faecal matter, but already survived the selection 

pressures, if any, of other nonhost environments before, such as water or soil. In this 

section, we first present data showing that E. coli can be seasonally isolated in 

abundance during planting seasons from the leaves of salad crops. Based on this 

information, we hypothesised a meteorological effect on the seasonality of E. coli 

spikes of detection on plants. Then, to characterize further the association of 
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environmental E. coli with plants, we compared isolates from distinct sources, 

symbolised by two collections of strains (GMB and ECOR). The ECOR collection is 

composed of strains associated with human and animal hosts (primary environment), 

whereas GMB strains isolated in this study come from the agricultural environment, 

more precisely from salad crops and soil (secondary environment). We first examined 

the distribution of the phylogenetic groups of GMB isolates and decomposed it 

according to various known parameters about these strains to see how they could 

influence the abundance of specific phylogroups. We then compared the diversity 

between ECOR and GMB strains, first at the genomic structure level (using a PCR 

fingerprinting method derived from REP-PCR) and then at the phylogenetic level 

(using MLST). 
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3.2. Seasonality of E. coli contamination of crops 

 

3.2.1. E. coli environmental isolates are commonly isolated from salads 

growing in the UK 

 

The observation that led to the initiation of this project was the finding that, after 

routine microbiological safety tests conducted by anonymous industrial partners, E. 

coli (monitored as a faecal indicator and called “generic E. coli” in food safety 

regulations) could be isolated from UK-grown salads during the growing season 

(approx. May to October). It was also observed that the quantity of E. coli retrieved 

from all the tests on spinach and rocket was varying greatly from one year to another 

(Figure 3.1). It is worthy to note that the data presented are a compilation of various 

growers for the same crop, and that no single geographical location was identified as 

an increased source of E. coli.  
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����Figure 3.1. Detection of E. coli on spinach and rocket field-grown in UK and overseas during 

routine microbiological safety tests. The corresponding number of total tests for rocket and spinach is 

shown in the columns and table below the line plot. Areas shaded in dark correspond to the growing 

seasons in the UK (May to October of each year) Areas in white correspond to produce grown overseas 

(typically Spain or Italy), shipped to UK for microbiological testing and commercialisation. This figure 

was created using data from anonymous industrial partners. 

 

 

Between 2006 and 2009, routine tests lead to the detection of E. coli in 958/16,827 

(5.69%) tested spinach and rocket samples. There was a massive detection rate of E. 

coli on spinach and rocket during summer 2006, with a peak in August 2006 where 

74/279 (26.52%) samples of rocket and 168/311 (50.16%) samples of spinach tested 

positive for at least 10 CFU of E. coli per gram of tested leaves. In the 4-year period 

investigated, the overall distribution of positive tests for spinach and rocket was 

strongly correlated (Spearman correlation; rS=0.8187, p<0.0001), even if only 

considering the UK-based production (May to October) for each year (rS=0.7223, 

p<0.0001). 

 

After 2006, detection rates remained below the one observed in summer 2006, but 

there were detection peaks of medium importance during summer 2008 and 2009, 

with more than 10% of samples being positive for E. coli in August 2008, and in July 

and August 2009 (Figure 3.1). Also, no specific increased detection was observed 

during summer 2007 (Figure 3.1).  Overall, tests performed in the UK for produce 

grown overseas (the white areas on Figure 3.1) never detected E. coli at comparable 

levels as in tests of plants grown in UK during summer. 
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3.2.2. E. coli contamination of conventional and organic salad 

 

In the light of produce-related outbreaks by pathogenic E. coli, there is an industrial 

and societal interest on whether the type of agriculture can influence contamination by 

E. coli. Indeed, one may think that organic foods could potentially harbour more 

faecal organisms because of the increased use of manure for fertilisation to 

compensate for not using chemical fertilisers. We also collected data on E. coli 

isolation rates from rocket salad grown conventionally and organically throughout the 

UK (Figure 3.2). 

 

 

Figure 3.2. Detection of E. coli on conventionally and organically grown rocket from UK (green 

shades) and overseas (white shades) fields during routine microbiological safety tests. See legend 

of Figure 3.1 for more details. 

 

There were slightly more positive tests for E. coli on organically grown than 

conventionally grown rocket leaves during the period tested but the two distributions 
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were not statistically different (rS=0.6672, p<0.0001). Similarly, when we compared 

the distributions of summer months only (UK-based production, May to October for 

each year), the correlation was still not significant (rS=0.4578, p=0.245). From these 

data, we can conclude, there were no significant differences between the numbers of 

positive tests for E. coli on organic compared to conventionally grown rocket salad. 

In a similar study, fresh lettuce grown organically or conventionally in Spain were 

examined and authors found that the levels of Enterobactericeae present on leaves 

were the biggest source of variation between organically and conventionally grown 

plants (Oliveira et al., 2010). In this study, more Enterobacteriaceae were retrieved 

from organic than conventional plants (Oliveira et al., 2010). Similarly a pre-harvest 

local farm-based study in USA showed that organic produce had a higher prevalence 

of E. coli than conventional salads, especially in farms where manure or compost 

aged less than 12 months had been used as a fertiliser (Mukherjee et al., 2004). On the 

other hand, an earlier study on UK-grown salads concluded without comparison with 

conventionally-grown crops that organic ready-to-eat vegetables were of very 

satisfactory microbiological quality (Sagoo et al., 2001). Our short analysis based on 

routine microbiological safety monitoring data tends to confirm that there is no 

difference in E. coli detection (and thus the inferred “microbiological safety”) 

between conventional and organic UK-grown salads. 

 

3.2.3. Meteorological conditions in UK from 2006 to 2009 and hypotheses 

for seasonality 

 

To our knowledge, no link has ever formally been established between meteorological 

factors such as temperature and rainfall and E. coli contamination of agricultural 
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crops in fields. Additionally, our systematic E. coli detection dataset covers multiple 

locations in the UK and thus allows for a more general analysis regarding country-

wide variations in E. coli detection rates on spinach and rocket, rather than sporadic 

contamination events. It was observed that the total microbial load on minimally 

processed spinach was higher in summer and autumn than on spring and winter, 

suggesting that temperature and rainfall variation impact greatly on bacterial growth 

on plants (Caponigro et al., 2010). Additionally, fast-growing bacteria such as E. coli 

tend to grow to higher levels at higher temperatures in laboratory conditions. 

 

We then looked at the correlation between recorded meteorological conditions from 

2006 to 2009 (obtained on the website of the UK Meteorological Office, or 

“MetOffice”, http://www.metoffice.gov.uk/climate/uk/; last accessed: 28/09/2011) 

with E. coli detection rates on crops based on data shown in the previous parts. We 

first looked at average anomaly data for the whole of UK. Here, the anomaly is 

defined as the observed difference with the average values for all years between 1971 

and 2000.  
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Figure 3.3. Average in anomaly (1971-2000) of mean temperature and rainfall for Summer (June 

to September) 2006 to 2009 in the UK. Colours are defined in the legends on the right, and 

correspond to the difference observed from the average of all values between 1971 and 2000 for the 

year mentioned on top. Data presented here is subjected to a crown copyright by MetOffice. 

 

Overall, the variations in anomalies for mean temperature and rainfall for summers 

2006 to 2009 followed three different profiles (Figure 3.3). In 2006, temperature was 

high in summer, and rainfall was very low (with the exception of Norfolk). In 2007, 

temperature was average, but rainfall was very high. Similar slightly higher 

temperature and higher rainfall were observed in 2008 and 2009. Using distributions 

for all months between 2006 and 2009, we found that for the whole of the UK the 

pattern of E. coli detection on spinach or rocket salad was strongly correlated with the 

temperature evolution from 2006 to 2009 (rS=0.8275, p<0.0001), unlike rainfall 

(rS=0.1743, p=0.2361). When we used only the months of UK-based production (May 

to October), similar correlations trends were obtained for temperature (rS=0.6368, 

p=0.0008), and rainfall (rS=0.1435, p=0.5036). 
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Figure 3.4. Number of days from sowing to harvest according to the time of the year for spinach 

(red) and rocket salad (green). Data courtesy of anonymous farm partners. 

 

There is a correlation between temperature and the retrieval of E. coli from 

agricultural plants. E. coli primary habitat being the warm-blooded animal 

gastrointestinal tract, it is better adapted to grow at higher temperatures than the 

environmental average, and it is plausible that a higher temperature simply acts on the 

growth rate of bacteria living on plants, with more E. coli being retrieved during the 

warmer months of the year. The correlation could also be indirect, as spinach and 

rocket cultivars used commercially can grow around 30 days faster in July/August 

than in April/May (Figure 3.4). The summer photoperiod being longer during 

summer days, photosynthesis produces more energy, which is transported within the 

plant by sucrose, possibly affecting bacterial growth. Similarly, a more rapid growth 

of vegetables could produce more nutrients leakage, and an overall higher 

concentration of nutrients available for E. coli to colonize.  
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3.3. Description of a collection of E. coli isolates from plants 

(“GMB” collection) and their phylogroup distributio n 

 

Our first insight into E. coli association with plants of agricultural interest indicates 

that E. coli association with plants is not uncommon, as reported previously by the 

literature (Mandrell, 2009). In our opinion and from an ecological point of view, 

agricultural plants constitute a very likely secondary habitat (or nonhost environment) 

for E. coli. Sources of salad contamination by enteric bacteria are likely to be multiple 

and complex. Direct faecal contamination of plants by wildlife faecal deposition is 

possible, but the most likely ways of field contamination are through the spreading of 

manure in soils, and irrigation (Brandl, 2006). One can then imagine that the history 

of various environmental strains isolated from plants is likely to be very diverse and 

shaped by the multitude of different nonhost environments these strains have persisted 

in before their arrival in the phytosphere. The examination of intra-species diversity in 

nonhost environmental isolates of E. coli retrieved from plants is the precise focus of 

most of the work presented in this PhD thesis, with this present section being on the 

basic phylogenetic characterisation of the strains. 

 

3.3.1. Combination of triplex PCR and MLST to determine phylogroups 

 

Since the first observation of the clonal structure of E. coli natural population, various 

methods have been employed to assign phylogenetic groups to environmental isolates. 

Multiple loci-based methods such as MLVA or MLST have been proved to be the 

most accurate and powerful in discrimination. However, they remain time-consuming 

and laborious. The utilisation of 3 phylogenetic markers detectable by triplex PCR, 
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whose patterns of presence can accurately predict for one of the 4 major phylogroups, 

A, B1, B2 or D, was proposed (Clermont et al., 2000). This accuracy was verified by 

comparing assignments using the triplex method and MLST on a large number of 

isolates (Gordon et al., 2008). In this work, we used the triplex method to assign all 

GMB isolates (n=106) to the 4 major phylogroups, and we constructed phylogenetic 

relationships for a subset of them (n=76, 71.7% of the full collection) based on MLST 

data. The attribution of phylogroups with MLST was inferred from the clades in the 

phylogenetic tree in Figure 3.18. The distribution of phylogroups among GMB 

isolates as observed using the triplex PCR method can be seen on Figure 3.5 (column 

1).  

 

 

Figure 3.5. Phylogenetic groups in E. coli strains isolated from plants (GMB). Phylogroup 

distribution according to: triplex PCR method on all GMB isolates (column 1), MLST on a subset of 

GMB isolates (column 2), triplex PCR on isolates that were not included in the MLST analysis 

(column 3) and a combination of column 2 and 3 (column 4). “Out” encompasses isolates from cryptic 

Escherichia sp. clades (see section 3.4.2.2). 
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As we limited the number of isolates tested by MLST for cost reasons, there are 

isolates that we did not include in the MLST analysis (Figure 3.5, column 3), which 

are mostly from phylogroups A, B1 and D to minimize the bias of not taking into 

account those strains (Figure 3.5, column 2). Additionally, the determination of 

phylogroups using triplex PCR (Figure 3.5, column 1) and MLST (Figure 3.5, 

column 2) were not statistically different (χ²=1.755; p=0.6247), stressing once more 

the reported accuracy of the triplex PCR method. We therefore combined (Figure 3.5, 

column 4) the results of phylogroup assignment according to MLST and to the triplex 

PCR method, for isolates not included in the MLST experiment. All distributions 

presented after Figure 3.5 are based on this distribution. Among GMB strains, 

phylogroup B1 was the most prevalent (44/106, 41.5%). Phylogroups A and D were 

similarly represented (26/106, 24.5% and 21/106, 19.8% respectively) whereas strains 

from phylogroup B2 were in the clear minority (9/106, 8.5%). Interestingly, 3 isolates 

clustered with phylogroup E, which is only identifiable by MLST (triplex PCR 

showed the corresponding isolates to belong to phylogroup B2). Additionally, 3 

isolates (GMB46, 56 and 57) were also not clustering within the habitual phylogenetic 

groups of E. coli (although triplex PCR assigned them to phylogroup B2) and were 

labelled “Out” for “outgroup”. A more thorough analysis of the outgroup is presented 

in section 3.4. 

 

3.3.2. Phylogroup distribution according to various parameters 

 

GMB strains were isolated from various geographical locations, on different salad 

crops and times during the year. In the following sections, we examined the 
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distribution of phylogenetic groups according to these different parameters to provide 

the reader with an accurate representation of the major variables within the 106 strains 

of the GMB collection. 

 

3.3.2.1. Plant of isolation 

 

GMB isolates were isolated mainly from spinach (Spinaciaoleracea) and rocket 

(Erucasativa) plants, but also from other salad crops, mixtures of leaves (in salad 

bags) or field soil. Figure 3.6 shows the distribution of phylogroups in strains from 

these various origins of isolation.  

 

 

Figure 3.6. 

Proportions of E. coli 

phylogenetic groups in 

the GMB collection of 

isolates according to 

plants of isolation. 

Numbers in columns 

represent the number of 

isolates for each 

phylogroup. 

 

The 4 major phylogroups A, B1, B2 and D were all present in isolates from spinach 

(Figure 3.6, column 1). The phylogroup distribution among isolates from spinach was 

strongly correlated to the phylogroup distribution of all GMB strains (rS=0.9706, 

p=0.0028). All 3 “outgroup” strains were found on spinach, and strains from 
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phylogroup E were found on both spinach (1 strain) and rocket (2 strains). Notably, a 

smaller proportion of strains from phylogroup A and B2 were found in isolates from 

rocket, and a larger proportion of D (Figure 3.6, column 2), but the phylogroups of 

isolates from rocket were still representative of all GMB strains (rS=0.8971, p=0.033), 

as were isolates from sources other than spinach and rocket (rS=0.9549, p=0.0167). 

Phylogroup distributions in isolates from spinach and rocket were nevertheless not 

statistically similar (rS=0.7941, p=0.058) but those in isolates from spinach and other 

types of salads were (rS=0.9241, p=0.0167). These correlations could just be caused 

by the strong bias in sampling towards spinach and rocket-associated isolates (i.e., 

what is observed in spinach and rocket is similar to what is observed in the whole), 

but may also indicate that the plant of origin has little effect on the phylogroup 

distribution of colonizing E. coli strains. 

 

3.3.2.2. Geographical location 

 

To investigate the possibility of a geographical effect on the population structure of 

GMB isolates, we decomposed the distribution of phylogenetic groups according to 

different parameters.  Among 30 isolates from rocket, 22 (73.3%) were isolated on the 

same day in the same field (GMB59 to 81), potentially explaining why we previously 

did not observe a statistical correlation between phylogroup distributions in isolates 

from spinach and rocket (Figure 3.7).  
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Figure 3.7. Proportions of E. 

coli phylogenetic groups in 

strains isolated from one 

rocket field at the same 

time, compared to the rest. 

Numbers in columns 

represent the number of 

isolates for each phylogroup. 

 

The phylogroup distribution of these field-specific isolates from rocket salad was 

obviously correlated to the distribution of all rocket isolates (rS=1, p=0.0028), but also 

to the whole GMB phylogroup distribution regardless of the plant of isolation 

(rS=0.8971, p=0.0333), suggesting that there is no “field effect”. In other words, 

GMB59 to 81, isolated on the same day in a rocket field, were overall good 

representatives of the phylogroup diversity we could find in our whole GMB 

collection of isolates from plants. 

 

3.3.2.3. Time of isolation 

 

GMB strains were isolated in 2008 and 2009 during the salad planting season in the 

UK (usually from May/June to September/October depending on meteorological 

conditions). When sampling size was large enough, rather similar phylogroup 

distributions were observed for the various times of isolation (Figure 3.9). 
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Figure 3.9. Phylogenetic groups in E. coli strains isolated at different times of 2008 and 2009. 

Numbers in columns represent the number of isolates for each phylogroup.  

 

Isolates from June 2008, September and October 2009 were not abundant enough for 

any statistical significance. However, phylogroup distributions of strains isolated in 

July (rS=0.9549, p=0.0167), August (rS=0.9706, p=0.0028), September 2008 

(rS=0.8971, p=0.0333) and August 2009 (rS=0.9852, p=0.0028) were all statistically 

correlated to the distribution of all GMB isolates. Additionally, a majority of GMB 

isolates were isolated during summer 2008 (82/105, 78.1%), and the rest during 

summer 2009 (22/105, 21.0%) (Figure 3.9). Both phylogroup distributions of 2008 

(rS=1, p=0.0028) and 2009 (rS=0.9852, p=0.0028) isolates were statistically correlated 

to the phylogroup distribution of all GMB isolates. These observations strongly 

suggest that, within the boundaries of our study and sampling, there was no effect of 

isolation time on the phylogenetic structure of plant-associated E. coli strains. This 
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also suggests that, in terms of phylogroup distribution, the GMB collection is a good 

representation of E. coli strains associated with plants from one year to another. 

 

In Chapter 4, we investigate this hypothesis by identifying traits specifically 

associated with plant-associated strains and specifically phylogroup B1. Working 

under the assumption that (a) nonhost strains isolated from plants are likely to have 

been in contact with nonhost environments (outside mammalian intestines), (b) traits 

conferring fitness in a given environment will be enriched in strains isolated from this 

environment and (c) traits associated with phylogroup B1 could provide an insight in 

to nonhost adaptation in E. coli, we adopted in the next parts a collection-wide 

comparative analyses approach, by comparing the GMB collection of plant isolates 

with the 72 faecal isolates of the E. coli Reference (ECOR) collection, meant to 

encompass the whole genetic variability of E. coli as a species (Ochman and Selander, 

1984). 
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3.4. Diversity and phylogeny of plant-associated E. coli and 

comparison with host-associated ECOR strains 

 

3.4.1. Clonal diversity of plant-associated E. coli 

 

Our investigation to identify differences between host (ECOR) and nonhost (GMB) E. 

coli strains starts at the phylogenetic diversity level. The triplex PCR assay used in the 

previous sections provided insights into the population structure of our strains by 

indicating the distribution of their phylogenetic groups. However, there could be 

subgroups within the phylogroups, or even relatedness or distance between them, all 

of which the triplex PCR assay would not indicate. Importantly, knowing the 

phylogroup distributions of our strains does not indicate anything on the genetic 

diversity or the relationships between them. Indeed, the triplex method does not 

indicate whether plant isolates are composed of stable clones or if their diversity is 

high. 

 

In this part, we examined the phylogenetic relationships of GMB strains and 

compared them to the E. coli reference collection (ECOR) strains using more 

powerful typing methods. We first compared genomic structure and large-scale 

recombination events using BOX-PCR, a DNA fingerprinting method. Using BOX-

PCR, we could also approximately examine the strain diversity within our collections. 

We then used MLST, a sequence-based approach, to investigate further the 

relationships between strains. From MLST data, basic population genetics 

calculations were made to gather more information and estimates about the structure 

and diversity of the natural plant-associated E. coli population. We then constructed a 
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phylogenetic tree to visually assess the phylogenetic position of GMB strains within 

the E. coli species, as symbolised by the ECOR collection. 

 

3.4.1.1. BOX-PCR to examine diversity  

 

Using BOX A1R primers to amplify DNA sequences located between repeated 

regions in the genome indicates how different the genomic architecture between 

isolates is. BOX-PCR profiles are thought to be stable over many bacterial 

generations but can vary over longer time. Between two given repeats in the genome, 

events such as prophage insertion, plasmid insertion or recombination between 

repeated sequences can occur and modify the sequence size between these two 

repeats, which will be reflected by different migration fronts on electrophoresis gels. 

It is therefore possible to use BOX-PCR to observe those changes between E. coli 

strains, under the assumption that similar strains or even clones will have similar 

BOX-PCR profiles. 

 

Because of its capacity to show major recombination and insertion events in bacterial 

genomes, BOX-PCR is also an appropriate method to compare the genomic structure 

of various strains in order to get a crude idea of the genomic diversity. Using the 

TotalLab software, we transformed electrophoretic profiles for each strain into 

numerical tables based on the number of bands and their migration position. The 

profiles of each strain were then compared by PLS-DA (Figure 3.10). 
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Figure 3.10. PLS-DA analysis on BOX-PCR DNA fingerprints using GMB isolates with different 

isolation histories. GMB isolates from the same field (n=28) are represented by filled circles; GMB 

strains isolated in various locations (n=76) are represented by open triangles. Success rate in PLS-DA 

was maximised at 2 PLS dimensions, with an insignificant cross-validation rate of 66%. 

 

We first observed that most of the strains had different profiles, and were generally 

not originating from clones. GMB isolates were very diverse, and only a few of them 

shared identical BOX-PCR profiles (Figure 3.10). This could be an indication that E. 

coli contaminates plants from multiple or complex sources and that there is possibly 

limited growth on plants, as isolates from the same field do not generally produce 

similar BOX-PCR profiles neither. Indeed, isolates from September 2008, isolated on 

the same day, from the same field in Norfolk showed comparable genomic structure 

diversity as isolates from the whole of the UK (Figure 3.10). In other words, diversity 
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in one field is more or less a good surrogate for global diversity of plant-associated 

isolates. 

 

Moreover, when we added ECOR strains to the analysis, we could not associate any 

variation specifically with either ECOR or GMB isolates (data not shown), suggesting 

that the genomic structure variability is similar within E. coli and is not associated 

with the source of isolation. This is expected if we consider that all E. coli are 

primarily faecal isolates and that their association with plants is not long enough to 

cause distinct deep environment-specific genomic rearrangements observable by 

BOX-PCR. As obvious as it seems, this examination was not trivial, as it was reported 

that “naturalised” populations of E. coli could be isolated from soils (see Introduction 

section 1.3.1) and discriminated by REP-PCR method derivatives. Our result would 

seem to indicate that there is no genetic isolation from plant isolates, indicating that 

faecal contamination, rather than long-term persistence leading to genetic isolation is 

occurring on plants. However, BOX-PCR is a crude way of observing genetic 

similarities and comparing the relatedness of isolates, which prompted us to use more 

powerful phylogenetic analysis methods. 

 

3.4.1.2. Properties of the MLST scheme used in this study 

 

Phylogenetic analysis based on the sequence of typically 6 to 8 neutrally-varying 

housekeeping gene sequences (regrouped in “MLST schemes”) is a common way to 

make assumptions on the sampled population properties and phylogenetic history, 

providing that enough samples are sequenced and more importantly that the tested 

genes are indeed showing a reliable phylogenetic signal (Spratt, 2004). 
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To investigate any possible differences in selection patterns between collections or 

phylogroups, we calculated the dN/dS ratio, commonly used as an indicator of 

selective pressure on a particular gene (Yang and Bielawski, 2000). This calculation is 

based on the comparison of synonymous (dS) and non-synonymous (dN) substitution 

rates in specific populations of sequences: if dN>dS, the rate of non-synonymous 

substitutions is higher than the rate of synonymous substitutions (i.e., the protein 

sequence is likely to vary greatly across isolates), the ratio is superior to 1 and 

indicates diversifying positive selection at this locus; if dN<dS, the rate of non-

synonymous substitutions is lower than the rate of synonymous substitutions (i.e., the 

protein sequence is likely to be very conserved across isolates), the ratio is inferior to 

1 and indicates purifying (or negative) selection at this locus; if dN=dS, the ratio is 

equal to 1 and indicates neutral selection at this locus. An ideal MLST scheme 

encompasses loci that are under purifying selection, to make sure no positive selection 

occurs (Perez-Losada et al., 2007). Loci under neutral selection can be considered 

only cautiously, as an apparent neutral selection can likely be caused by an equal 

balance of positive and purifying selection and such a scenario would hinder the 

phylogenetic signal. Here, we calculated the dN/dS ratio for each locus based on 142 

ECOR and GMB sequences (Table 3.1) in order to check if our tested strains gave 

expected results using the Pasteur MLST scheme. 
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Table 3.1.Sequence variation at 8 loci based on 142 ECOR and GMB sequences. Details 

of the calculation performed with the START2 package. 

Locus Alleles (S+N)a PCb Sc Nd dNe σ dNf dSg σ dSh dN/dS 

dinB 33 450 528 114.2 335.8 0.00 0.00 0.14 0.08 0.026 

icdA 62 516 1891 122.5 393.5 0.00 0.00 0.12 0.05 0.022 

pabB 38 468 703 112.3 355.7 0.01 0.01 0.08 0.04 0.116 

polB 42 450 861 107.5 342.5 0.01 0.00 0.15 0.06 0.041 

putP 49 456 1176 118.3 337.7 0.00 0.00 0.11 0.06 0.043 

trpA 40 561 780 147.7 413.3 0.01 0.00 0.18 0.10 0.029 

trpB 35 594 595 145.7 448.3 0.00 0.00 0.15 0.08 0.030 

uidA 40 600 780 140 460 0.00 0.00 0.09 0.04 0.048 
 

aNumber of coding sites analysed (S+N); bnumber of pairwise comparisons made (PC); cmean number 

of synonymous sites (S); dmean number of non-synonymous sites (N); emean non-synonymous 

substitutions per non-synonymous site (dN); fstandard deviation of dN; gmean synonymous 

substitutions per synonymous site (dS); hstandard deviation of dS. 

 

For each locus, the dN/dS ratio was far lower than 1, indicating a strong purifying 

selection. The ratio for pabB, encoding for a p-aminobenzoate synthase was slightly 

higher than other genes. To examine if selection pressures are of similar nature within 

ECOR or GMB strains, or within phylogroups, we used different groups to compute 

the dN/dS ratio (Table 3.2). 
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Table 3.2.dN/dS ratio for 8 loci in different groups of isolates. Calculations performed 

with the START2 package. The phylogroups groupings used here are composed of ECOR 

and GMB strains indiscriminately. 

 
ECOR 
(n=66) 

GMB 
(n=76) 

All 
(n=142) 

A 
(n=37) 

B1 
(n=49) 

B2 
(n=21) 

D 
(n=25) 

E     
(n=7) 

dinB 0.026 0.026 0.026 0.022 0.044 0.014 0.035 0.058 

icdA 0.032 0.007 0.022 0.031 0.046 0.012 0.033 0.009 

pabB 0.102 0.118 0.116 0.192 0.186 0.110 0.138 0.373 

polB 0.049 0.029 0.041 0.049 0.050 0.124 0.007 0.068 

putP 0.057 0.020 0.043 0.029 0.081 0.073 0.056 0.011 

trpA 0.024 0.033 0.029 0.000 0.034 0.084 0.033 0.009 

trpB 0.031 0.021 0.030 0.324 0.078 0.000 0.009 0.028 

uidA 0.049 0.042 0.048 0.095 0.044 0.100 0.072 0.055 
 

 

Even within different groups of strains, there was a higher dN/dS ratio at the pabB 

locus, especially in phylogroup E strains (Table 3.2). Overall, this higher trend, 

possibly caused by a slight ongoing positive selection at this locus, was constant in all 

phylogroups. Interestingly, we could detect possible traces of ongoing positive 

selection in trpB encoding the tryptophan synthase subunit B, but only in strains from 

phylogroup A. This observation highlights the importance of checking the nature of 

selection, as sub-groups in a tested population can exhibit varying selection pressures 

signatures at the same loci. Overall, all tested loci from this MLST scheme were 

under strong purifying selection, which is a common feature for housekeeping genes 

(Perez-Losada et al., 2007). From this analysis, we can conclude that the E. coli 

MLST scheme that we used targets genes that are likely to be good indicators of the 

phylogenetic signal, exempt of a strong positive selection effect. 
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3.4.1.3. Clonal relationships as examined by MLST 

 

For each gene analysed by MLST, we obtained different “alleles” (or variants of the 

same gene) with unique sequences. One allelic sequence at one locus is assigned a 

number, or “allele-type” (AT) and the combination of 8 ATs is called the “sequence 

type” (ST). Two MLST clones are defined as isolates with the same ST, meaning that 

the 8 sequences at the different tested loci (i.e. the 8 ATs) are identical. Two isolates 

can also be very closely related but not clones, as for instance they can share 6 or 7 

out of 8 ATs. Such clones are often grouped in related clonal complexes (Spratt, 

2004). As the principle of MLST is to compare the sequences of multiple loci that are 

thought not to be under strong positive selection and thus accumulate variation much 

more slowly, even if one particular allele comes from homologous recombination 

from a completely unrelated isolate, it is very unlikely that the 6 or 7 other genes are 

similar to that isolate too, and the real phylogenetic relationships are preserved. One 

has then to be very cautious when interpreting phylogenies based on variation at a 

single locus, or at genes subjected to high levels of recombination or mutation 

(typically those under positive selection, e.g. surface proteins that are in direct contact 

with their host immune system) as these phylogenies presumably do not take into 

account recombination the way MLST does and can convey false information on the 

relationships between isolates because of it (Spratt, 2004). 

 

In this study, we used MLST to compare 76 GMB and 66 ECOR strains. The scheme 

we used involves the sequencing of internal fragments of 8 housekeeping genes for a 

concatenated total of 4,095 bp (Jaureguy et al., 2008). The Pasteur MLST database 

was used to assign our GMB isolates to already existing ATs and STs and determine 
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which were new. Information used in this work (ST and AT numbers already present 

in the database) is based on the 20/07/2011 update of the MLST database. For new 

ATs and STs, a number was assigned in this work, before submission of our 

sequences to the database curator, so it may not correspond to the final number 

appearing in the most up to date database version (after 20/07/2011). At the time of 

our study, there were 104 ATdinB, 202 ATicdA, 127 ATpabB, 157 ATputP, 138 ATtrpA, 137 

ATtrpB, 128 ATuidA for a total of 522 unique STs. Using our GMB strains, we defined 

new ATs with a number starting from 300, and new STs starting with 600 (Table 

3.3). 
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Table 3.3.Allelic profiles of ECOR and GMB strains tested by MLST (see text for more 
details). The list below is ordered by ST number. 

 

Isolate STa Yearb Isolated 
fromb Location 

AT a 

dinB 
icd
A 

pab
B 

pol
B 

put
P 

trp
A 

trp
B 

uidA 

ECOR61 1 1980s 
Human 

(Female) Sweden 1 1 2 1 1 2 3 1 

ECOR62 1 1980s 
Human 

(Female) 
Sweden 1 1 2 1 1 2 3 1 

ECOR10 2 1980s 
Human 

(Female) 
Sweden 8 2 7 3 7 1 4 2 

GMB90 2 2009 Spinach 
Norfolk, 

UK 
8 2 7 3 7 1 4 2 

GMB15 3 2008 
Organic 
spinach 

Norfolk, 
UK 

3 8 5 11 8 3 5 3 

GMB50 3 2008 
Organic 
spinach 

Berkshire
, UK 

3 8 5 11 8 3 5 3 

GMB103 21 2009 Babycorn 
Outside 

UK 
7 33 18 2 5 28 2 2 

GMB22 21 2008 
Teen 

spinach 
Dorset, 

UK 
7 33 18 2 5 28 2 2 

GMB38 21 2008 
Baby 

spinach 
Berkshire

, UK 
7 33 18 2 5 28 2 2 

GMB21 48 2008 
Baby 

spinach 
Norfolk, 

UK 
2 11 23 15 10 15 10 12 

GMB30 48 2008 
Baby 

spinach 
Dover, 

UK 
2 11 23 15 10 15 10 12 

ECOR56 52 1980s 
Human 

(Female) 
Sweden 2 4 6 4 1 21 1 1 

GMB24 66 2008 
Organic 
spinach 

Norfolk, 
UK 

6 5 3 2 6 7 2 4 

GMB104 83 2009 Spinach 
Norfolk, 

UK 
11 3 4 3 15 1 4 16 

GMB43 86 2008 
Baby 

spinach 
Dorset, 

UK 
24 31 4 26 16 29 2 2 

GMB81 86 2008 Rocket 
Norfolk, 

UK 
24 31 4 26 16 29 2 2 

GMB17 108 2008 Mizuna 
Norfolk, 

UK 
25 65 48 10 16 8 2 2 

GMB10 117 2008 
Organic 
spinach 

Norfolk, 
UK 

5 47 3 10 6 7 4 2 

GMB45 122 2008 
Organic 
spinach 

Various 2 73 2 55 43 18 46 1 

ECOR18 132 1980s 
Celebese 

ape 
USA 

(Wash.) 
10 2 7 3 7 1 4 2 

ECOR01 163 1980s 
Human 

(Female, 
19yr) 

USA 
(Iowa) 

8 85 7 3 58 1 57 2 

ECOR11 164 1980s 
Human 

(Female) 
Sweden 8 2 7 3 59 1 4 2 

ECOR12 165 1980s 
Human 

(Female) 
Sweden 8 86 7 3 7 1 4 2 

ECOR14 166 1980s 
Human 

(Female) 
Sweden 57 2 7 3 60 1 58 23 

ECOR15 167 1980s 
Human 

(Female) 
Sweden 10 87 7 3 18 1 57 2 

ECOR16 168 1980s Leopard 
USA 

(Wash.) 
10 2 7 17 18 1 57 67 

ECOR17 169 1980s Pig Indonesia 10 28 7 3 18 1 57 23 

ECOR19 170 1980s 
Celebese 

ape 
USA 

(Wash.) 
10 2 7 3 61 1 57 2 
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ECOR02 171 1979 
Human 
(Male) 

USA 
(N.Y.) 

8 2 7 66 59 1 4 2 

ECOR20 172 1980s Steer Bali 10 88 7 3 7 1 59 2 

ECOR21 173 1980s Steer Bali 10 29 7 3 7 1 60 2 

ECOR22 174 1980s Steer Bali 10 28 7 67 18 1 4 23 

ECOR23 175 1980s Elephant 
USA 

(Wash.) 
10 89 64 3 18 1 4 23 

ECOR24 176 1980s 
Human 

(Female) 
Sweden 58 28 3 17 16 1 57 4 

ECOR25 177 1980s Dog 
USA 

(N.Y.) 
8 90 7 3 7 1 4 2 

ECOR26 178 1980s 
Human 
(infant) 

USA 
(Mass.) 

25 91 3 10 62 29 61 2 

ECOR27 179 1980s Giraffe 
USA 

(Wash.) 
25 92 3 10 26 29 62 2 

ECOR28 180 1980s 
Human 

(Female, 
4yr) 

USA 
(Iowa) 

25 93 3 10 6 64 57 68 

ECOR29 181 1980s 
Kangaroo 

rat 
USA 

(Nev.) 
25 47 48 68 5 29 63 2 

ECOR03 182 1980s Dog 
USA 

(Mass.) 
8 2 7 3 7 65 4 2 

ECOR30 183 1980s Bison Canada 25 47 48 68 5 29 64 2 

ECOR32 184 1980s Giraffe 
USA 

(Wash.) 
5 47 48 68 63 29 63 2 

ECOR33 185 1980s Sheep 
USA 

(Calif.) 
5 47 48 68 5 29 63 2 

ECOR34 186 1980s Dog 
USA 

(Mass.) 
7 94 65 68 63 8 2 2 

ECOR37 187 1980s Marmoset 
USA 

(Wash.) 
59 95 66 63 64 66 65 69 

ECOR04 188 1980s 
Human 

(Female, 
5yr) 

USA 
(Iowa) 

10 2 3 69 18 1 57 23 

ECOR41 189 1982 
Human 

(Female, 
22yr) 

Tonga 31 46 17 12 12 67 26 70 

ECOR42 190 1979 
Human 
(Male) 

USA 
(Mass.) 

35 42 67 70 65 36 66 71 

ECOR43 191 1980s 
Human 

(Female) 
Sweden 8 2 7 3 61 1 4 2 

ECOR44 192 1980s Cougar 
USA 

(Wash.) 
17 96 68 71 66 12 13 32 

ECOR45 193 1980s Pig Indonesia 60 97 4 10 67 7 4 2 

ECOR46 194 1980s Ape 
USA 

(Wash.) 
18 12 17 14 68 68 67 14 

ECOR50 195 1980s 
Human 

(Female) 
Sweden 17 9 28 3 9 13 68 72 

ECOR51 196 1980s 
Human 
(infant) 

USA 
(Mass.) 

2 4 69 72 69 6 69 1 

ECOR52 197 1980s Orangutan 
USA 

(Wash.) 
2 46 6 4 1 6 69 1 

ECOR53 198 1980s 
Human 

(Female, 
4yr) 

USA 
(Iowa) 

4 19 1 73 2 2 1 1 

ECOR54 199 1980s Human 
USA 

(Iowa) 
2 98 70 74 1 6 69 1 

ECOR55 200 1980s Human  Sweden 2 4 6 74 1 6 1 1 

ECOR57 201 1980s Gorilla 
USA 

(Wash.) 
2 4 6 74 70 6 1 1 

ECOR58 202 1980s Lion 
USA 

(Wash.) 
2 3 4 68 71 57 4 2 
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GMB59 202 2008 Rocket 
Norfolk, 

UK 
2 3 4 68 71 57 4 2 

ECOR59 203 1979 
Human 
(Male) 

USA 
(Mass.) 

4 19 1 6 72 2 1 1 

ECOR60 204 1980s 
Human 

(Female) 
Sweden 4 19 71 6 73 2 1 1 

ECOR63 205 1980s 
Human 

(Female) 
Sweden 2 15 72 75 2 20 1 73 

ECOR65 206 1980s 
Celebese 

ape 
USA 

(Wash.) 
1 23 73 55 74 18 46 1 

ECOR66 207 1980s 
Celebese 

ape 
USA 

(Wash.) 
16 99 74 76 75 9 6 74 

ECOR67 208 1980s Goat Indonesia 16 100 3 76 76 69 62 74 

ECOR68 209 1980s Giraffe 
USA 

(Wash.) 
25 101 4 77 77 53 62 2 

ECOR07 210 1980s Orangutan 
USA 

(Wash.) 
10 2 7 3 61 1 4 2 

ECOR70 211 1980s Gorilla 
USA 

(Wash.) 
6 5 75 2 6 28 62 4 

ECOR71 212 1980s 
Human 

(Female) 
Sweden 25 65 3 78 78 28 62 2 

ECOR72 213 1980s 
Human 

(Female) 
Sweden 25 34 4 23 6 7 62 23 

ECOR08 214 1980s 
Human 

(Female, 
20yr) 

USA 
(Iowa) 

8 2 7 79 59 1 57 2 

ECOR31 250 1980s Leopard 
USA 

(Wash.) 
22 41 21 3 23 87 89 18 

ECOR35 251 1980s 
Human 

(Female, 
36yr) 

USA 
(Iowa) 

31 113 24 36 98 24 90 70 

ECOR38 253 1980s 
Human 

(Female, 
21yr) 

USA 
(Iowa) 

31 46 24 36 12 67 90 70 

ECOR40 253 1980s Human Sweden 31 46 24 36 12 67 90 70 

ECOR39 254 1980s Human Sweden 31 46 24 36 12 67 26 70 

ECOR47 255 1980s Sheep 
New 

Guinea 
59 114 89 11 99 3 5 3 

ECOR48 256 1980s 
Human 

(Female) 
Sweden 64 10 90 85 100 88 91 11 

ECOR49 257 1980s 
Human 

(Female) 
Sweden 17 115 28 12 101 13 9 84 

ECOR69 258 1980s 
Celebese 

ape 
USA 

(Wash.) 
24 31 4 26 50 29 62 2 

GMB07 303 2008 Spinach 
Dover, 

UK 
25 3 48 10 26 57 4 90 

GMB47 319 2008 Spinach 
Dover, 

UK 
73 135 102 76 121 72 1 95 

GMB14 338 2008 Mizuna 
King's 

Lynn, UK 
24 3 3 26 16 108 4 2 

GMB40 352 2008 
Baby 

spinach 
Dover, 

UK 
2 23 73 55 43 18 46 1 

GMB76 352 2008 Rocket 
Norfolk, 

UK 
2 23 73 55 43 18 46 1 

GMB89 363 2009 Spinach 
Norfolk, 

UK 
50 65 3 2 5 111 2 2 

GMB101 366 2009 
Organic 
seasonal 

Various 5 47 48 68 5 29 109 2 

GMB48 446 2008 
Baby 

spinach 
Norfolk, 

UK 
10 2 3 3 7 1 4 2 

GMB102 512 2009 Rocket 
Dorset, 

UK 
25 37 4 10 84 7 4 2 

GMB41 600 2008 Tatsoi 
Dorset, 

UK 
202 33 18 2 5 8 2 2 
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GMB65 601 2008 Rocket 
Norfolk, 

UK 
104 3 3 10 5 8 2 2 

GMB107 602 2009 
Salad mix 

bag 
Various 200 37 4 10 78 8 2 2 

GMB37 603 2008 
Baby 

spinach 
Dover, 

UK 
8 2 3 3 7 1 4 2 

GMB20 604 2008 Wild rocket 
Norfolk, 

UK 
8 28 7 3 7 1 4 2 

GMB108 605 2009 Spinach 
Norfolk, 

UK 
8 201 7 3 7 1 4 2 

GMB23 606 2008 
Teen 

spinach 
Dover, 

UK 
8 204 7 3 7 1 4 2 

GMB35 607 2008 Red Chard 
Norfolk, 

UK 
8 205 7 3 7 1 4 2 

GMB01 608 2008 Wild rocket 
Outside 

UK 
10 2 3 52 7 1 4 2 

GMB02 609 2008 Wild rocket 
Outside 

UK 
10 2 7 83 7 1 4 2 

GMB06 610 2008 
Organic 
spinach 

Berkshire
, UK 

11 196 200 17 18 1 4 2 

GMB58 611 2008 
Red 

Amaranth 
Various 204 209 3 10 78 1 4 2 

GMB03 612 2008 Wild rocket 
King's 

Lynn, UK 
60 200 4 10 67 7 4 2 

GMB25 613 2008 Spinach 
Norfolk, 

UK 
7 47 3 52 16 57 4 2 

GMB05 614 2008 Mizuna 
King's 

Lynn, UK 
24 3 3 26 16 200 4 2 

GMB32 615 2008 Spinach 
Dorset, 

UK 
10 2 3 3 7 1 201 2 

GMB33 615 2008 Spinach 
Dorset, 

UK 
10 2 3 3 7 1 201 2 

GMB34 615 2008 Spinach 
Dorset, 

UK 
10 2 3 3 7 1 201 2 

GMB92 616 2009 Rocket 
Dorset, 

UK 
5 47 4 10 26 1 206 2 

GMB100 617 2009 Spinach Various 1 13 2 31 1 4 1 6 

GMB73 618 2008 Rocket 
Norfolk, 

UK 
51 13 204 4 21 2 3 6 

GMB04 619 2008 Wild rocket 
King's 

Lynn, UK 
18 8 112 11 8 12 13 11 

GMB12 619 2008 Mizuna 
Berkshire

, UK 
18 8 112 11 8 12 13 11 

GMB44 620 2008 
Salad mix 

bag 
Various 2 206 23 15 10 15 10 12 

GMB84 621 2008 Soil 
Norfolk, 

UK 
10 148 3 3 18 1 4 23 

GMB91 621 2009 
Spinach 
baby leaf 

Various 10 148 3 3 18 1 4 23 

GMB28 622 2008 
Organic 
spinach 

Berkshire
, UK 

5 65 3 10 16 8 2 30 

GMB80 622 2008 Rocket 
Norfolk, 

UK 
5 65 3 10 16 8 2 30 

GMB54 623 2008 Spinach 
Norfolk, 

UK 
18 208 112 94 66 12 13 32 

GMB77 624 2008 Rocket 
Norfolk, 

UK 
22 64 205 202 202 37 205 46 

GMB78 624 2008 Rocket 
Norfolk, 

UK 
22 64 205 202 202 37 205 46 

GMB79 625 2008 Rocket 
Norfolk, 

UK 
25 210 3 203 16 57 4 50 

GMB29 626 2008 
Rocket and 

chard 
Norfolk, 

UK 
50 47 3 10 5 7 4 55 

GMB88 627 2009 Spinach 
Norfolk, 

UK 
25 3 3 10 78 1 16 57 
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GMB16 628 2008 Mizuna 
Norfolk, 

UK 
5 47 4 56 6 7 4 58 

GMB53 629 2008 
Organic 
spinach 

Norfolk, 
UK 

25 47 48 10 26 57 4 113 

GMB18 630 2008 Spinach 
Dorset, 

UK 
5 202 4 56 6 29 2 200 

GMB19 631 2008 Tatsoi 
Dorset, 

UK 
17 203 201 11 8 201 200 201 

GMB39 632 2008 
Baby 

spinach 
Dorset, 

UK 
201 67 202 39 200 202 202 202 

GMB46 633 2008 
Organic 
spinach 

Various 203 207 203 200 201 203 203 203 

GMB56 633 2008 Spinach mix Various 203 207 203 200 201 203 203 203 

GMB57 633 2008 Spinach mix Various 203 207 203 200 201 203 203 203 

GMB60 634 2008 Rocket 
Norfolk, 

UK 
205 74 58 15 2 204 10 204 

GMB61 635 2008 Rocket 
Norfolk, 

UK 
206 10 90 201 30 16 204 205 

GMB63 635 2008 Rocket 
Norfolk, 

UK 
206 10 90 201 30 16 204 205 

GMB66 635 2008 Rocket 
Norfolk, 

UK 
206 10 90 201 30 16 204 205 

GMB74 635 2008 Rocket 
Norfolk, 

UK 
206 10 90 201 30 16 204 205 

GMB64 636 2008 Rocket 
Norfolk, 

UK 
25 3 4 68 71 1 16 206 

GMB83 637 2008 Soil 
Norfolk, 

UK 
25 3 48 10 26 57 4 207 

GMB93 638 2009 Spinach 
Norfolk, 

UK 
88 15 127 76 4 205 1 208 

GMB98 639 2009 
Baby 

spinach 
Dorset, 

UK 
4 13 9 29 1 32 1 209 

 

a ST numbers below 600 (and AT below 200) correspond to ST (AT) present in the database after its 
last update at the time of the study (20/07/2011); ST numbers above 600 (and AT above 200) were 
arbitrarily attributed for this study only and may not reflect what is present on the database after its 
20/07/2011 update. 

bFor ECOR strains, information is as indicated on the ECOR website 
(http://foodsafe.msu.edu/whittam/ecor/; last accessed 28/09/2011) 
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In our MLST analysis of 76 GMB strains, we identified 7 new ATdinB, 11 new ATicdA, 

6 new ATpabB, 4 new ATpolB, 3 new ATputP, 6 new ATtrpA, 7 new ATtrpB and 10 new 

ATuidA (arbitrarily labelled from AT number 200 in Table 3.3). The analysis of GMB 

strains defined 40 new STs that were not described in the Pasteur database (arbitrarily 

labelled 600 to 639 in Table 3.3), both from ATs already present in the database but 

in a unique combination, and from new ATs. Among GMB strains, 34/76 (44.7%) had 

at least one new AT (not present in the database) and 42/76 (55.3%) were already 

fully defined in the MLST database. 

 

To examine if plant isolates could be related to representative strains of the E. coli 

species as symbolised by ECOR strains, we compared sequences of 76 GMB isolates 

with those of 66 ECOR strains already present in the Pasteur MLST database (Table 

3.3). In total, 15 STs had more than one strain assigned to them. We inferred that 

GMB strains sharing the same ST and isolated at the same time and location were 

likely to be very recent clones, corresponding to the same strain isolated at the same 

time (Table 3.4).  
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Table 3.4.Clones likely to be very recent among strains tested by MLST . Recentness was deduced 

for clones that were isolated at the same time and location. 

Isolate ST Year Source Location 
GMB32 

615 2008 Spinach Dorset, UK GMB33 

GMB34 

GMB46 

633 2008 Spinach Various GMB56 

GMB57 

GMB61 

635 2008 Rocket Norfolk, UK 
GMB63 

GMB66 

GMB74 

GMB77 
624 2008 Rocket Norfolk, UK 

GMB78 
 

Only 2 STs (ST-2 and ST-202) regrouped GMB and ECOR strains. Also, there were 

seemingly unrelated GMB strains sharing the same ST (Table 3.5) and in 2 

occurrences, strains isolated in 2008 and 2009 shared the same ST (Table 3.5). 

 

Table 3.5.Clones within tested GMB strains with no apparent isolation links. 

Isolate ST Year Source Location 
GMB15 

3 2008 Spinach 
Norfolk, UK 

GMB50 Berkshire, UK 

GMB103 

21 

2009 Babycorn Outside UK 

GMB22 
2008 Spinach 

Dorset, UK 

GMB38 Berkshire, UK 

GMB21 
48 2008 Spinach 

Norfolk, UK 

GMB30 Dover, UK 

GMB43 
86 2008 

Spinach Dorset, UK 

GMB81 Rocket Norfolk, UK 

GMB40 
352 2008 

Spinach Dover, UK 

GMB76 Rocket Norfolk, UK 

GMB04 
619 2008 

Rocket 
King's Lynn, 

UK 
GMB12 Mizuna Berkshire, UK 

GMB84 
621 

2008 Soil Norfolk, UK 

GMB91 2009 Spinach Various 

GMB28 
622 2008 

Spinach Berkshire, UK 

GMB80 Rocket Norfolk, UK 
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Together, these observations suggest that some clones are probably ubiquitous and 

conserved in E. coli, such as ST-2 and ST-202 which are both regrouping ECOR and 

GMB strains isolated 30 years apart on different continents (ST-202). Other GMB 

clones can be isolated from one year to another (2008 and 2009) and simultaneously 

from soil and plant. This last point is interesting as it would suggest that there is 

persistence of E. coli in soils and transfer from soil to plants. However, there are not 

enough soil samples in the GMB collection to make clear assumptions, and the two 

isolates in ST-621 (GMB84 from soil in 2008 and GMB91 from spinach in 2009) 

were not isolated in the same location. 

 

We performed a complementary analysis of clonality by comparing the BOX profiles 

of MLST clones (Figure 3.11). MLST focuses on a limited number of neutrally-

evolving housekeeping genes, which gives a powerful signal for phylogenetic history 

inference, but does not take into account the other parts in the genome that may vary, 

and BOX-PCR may be a good way to capture that variability. 
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Figure 3.11. BOX-PCR electrophoretic profiles of MLST clones. (a) clones from both GMB and 

ECOR collections and (b) ECOR only clones. Red arrows indicate varying bands on the profiles. 

 

Profiles of strains from the same ST were most of the time very similar, with a few 

differences in the number of bands or intensity in some cases (Figure 3.11a and 

3.12a). Profiles of strains within ST-2 or ST-202 (containing both GMB and ECOR 

strains) were remarkably similar, once again suggesting that despite being isolated 30 

years apart at different geographical locations, some E. coli strains remain fairly 

identical. Similarly, ECOR clones also had identical BOX profiles (Figure 3.11b). 
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Figure 3.12. BOX-PCR electrophoretic profiles of GMB clones. (a) clones isolated at different 

times, locations and plants (b) GMB clones likely to be recent (same time and location of isolation). 

Red arrows indicate varying bands on the profiles. 

 

Interestingly, there were no differences at all in BOX profiles for GMB clones that are 

believed to be recent (Figure 3.12b) but there were slight differences for GMB clones 

that are less related in time and location from each other. It is not surprising to see that 

isolates that are phylogenetically very close but isolated at different times and 

locations, have experienced genomic rearrangements that are not detected using 

MLST. On the other hand, recent clones are believed to have emerged from the same 
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ancestor cell, and in our case maybe even on the plant it was isolated from. It is then 

not surprising as well to observe that these strains share identical BOX profiles. 

 

The fact that these differences are not detected by MLST does not hinder the power of 

it. Two MLST clones, even distantly isolated in time and location are very likely to be 

similar as they are not observed to be phylogenetically divergent. Evolutionary forces 

that generate variability at neutral loci such as the ones observed with MLST did not 

have time or ecological opportunity to exert on two clones from the same ST. Some 

genomic rearrangements can obviously occur independently of the phylogenetic 

history as captured by MLST (acquisition of foreign DNA, prophage insertions, 

genomic rearrangements). This additional information (unrelated to phylogenetic 

history) can be observed just as we did, using DNA fingerprinting methods, or by 

sequencing and comparing whole genomes. 

 

3.4.1.4. Diversity estimators 

 

It is also possible to numerically represent diversity within a population or collection 

of samples via diversity estimators. Based on allelic profiles of tested isolates, we 

used rarefaction analysis, calculated the Chao1 estimator and the abundance coverage 

estimator (ACE) which are both considered to be the least biased after comparison 

studies with other ways of estimating richness (see Methods section 2.4.3). 

 

We first computed rarefaction curves as an indirect method to observe diversity in E. 

coli environmental isolates (Figure 3.13). In a recent review (Hughes and Hellmann, 

2005), a rather clear analogy was mentioned to explain the concept of a rarefaction 
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curve. If you consider a bird-spotter walking in a forest and recording the species of 

encountered spotted birds, data can be summarised by a classical “accumulation 

curve”, corresponding to the plot of the cumulative number of bird species observed 

as each bird species is spotted and recorded in the forest environment. Classical 

accumulation curves are not very meaningful for microbiologists as, contrary to bird-

spotters, the geographical transect along which bacterial species are detected in a 

given environment does not usually carry as much ecological sense as it does for 

higher organisms. This is not true for rarefaction curves, which are the estimated 

smoothed average of all possible accumulation curves and represent the average 

number of bird species observed when individuals are drawn with replacement from 

the same pool of individuals (or “sample”) over and over. Recent and common uses 

include the estimations of species richness based on 16S rDNA sequencing samples 

(Qin et al., 2010; Quaiser et al., 2011). The method assumes that there is a finite 

number of distinct species (or any other taxonomic unit) in a given environment and 

that experimental sampling only gives an incomplete representation of the total 

richness. Thus, more sampling is likely to uncover more distinct species, but as the 

species number in a given environment is finite, it will take increasingly more 

sampling effort to uncover new distinct species.  

 

In this study, we used rarefaction curves to estimate the required sampling effort to 

reach the estimated maximum number of possible STs for E. coli. We compared 

rarefaction curves for GMB and ECOR strains, by assuming that a curve closer to the 

proportionality line reflects a higher diversity. ECOR is expected to have the highest 

diversity, as the collection was assembled de novo from a much larger sampling of 

isolates with the precise purpose of representing the highest possible diversity in E. 
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coli. In that retrospect, ECOR is not a coherent ecological population (i.e., all strains 

were isolated in the same conditions or hosts), but it is nevertheless a good substitute 

for approximating the whole E. coli species diversity, and this is why we included it 

in our diversity analyses. 

 

 

Figure 3.13. Rarefaction analysis of two E. coli collections. Red line correspond to ECOR with data 

in the Pasteur MLST database, black line correspond to all GMB strains included in the MLST 

analysis. 

 

ECOR had a higher diversity than GMB (Figure 3.13). As the 72 ECOR strains were 

precisely selected from a larger collection to encompass the maximum genetic 

diversity within the E. coli species, the observation that any punctually sampled E. 

coli strains are less diverse is not surprising. 
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We then estimated the maximum sampling effort required to capture all diversity in E. 

coli, should evolutionary constraints sampled environments remain identical. Based 

on the EstimateS calculation of rarefaction curves, we fitted polynomial curves of 

known equations and calculated the maximum y values for each rarefaction curves to 

obtain the theoretical highest number of STs for each sampling environment (Figure 

3.14). 

 

 

Figure 3.14. Estimation of the theoretical sampling effort to capture all diversity in E. coli GMB 

and ECOR collections. Red line corresponds to ECOR with data in the Pasteur MLST database, black 

line corresponds to all GMB strains included in the MLST analysis. 

 

The sampling effort required to capture all diversity was expectedly very high for 

ECOR (1000 strains of 500 different STs). Obviously, the calculation reflects the 

synthetic nature of the ECOR collection. More relevantly, the sampling effort 

required to capture the whole diversity of E. coli on plants (based on GMB diversity) 

was found to be 180 strains for 85 STs. Our current sampling then represents 37.2% 

of the predicted sample size that would approximately capture all diversity of E. coli 

from plants. 
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It is important to keep in mind that the notion of sampling effort is a theoretical way 

to compare diversity and is not likely to carry a strong biological meaning. Sampling 

effort approximation is calculated from the observed collection, isolated under precise 

conditions and using a specific MLST scheme. In order for this calculation to be 

correct, the constraints on the sampling environment would have to remain identical 

for the whole additional sampling effort, which is unlikely. Also, rarefaction has been 

extrapolated to MLST studies from species diversity studies (de Muinck et al., 2011), 

which arguably behave differently than same-species individuals. 

 

Another commonly accepted way of estimating diversity is through the calculations of 

diversity estimators. Similarly to rarefaction analysis, these calculations are usually 

used to examine bacterial diversity in a mixed sample, but can also be extrapolated to 

the analysis of MLST data. The output of our calculations is also presented in 

numbers of strains required to capture the maximum diversity in a given sample. 

Using AT and ST definitions and distribution in GMB and ECOR strains, we 

calculated and compared the Chao1 and ACE indices of diversity (Figure 3.15), both 

described as least biased estimators in comparative statistical studies (See Methods 

section 2.4.3), and also for comparison with previous studies (Walk et al., 2007; de 

Muinck et al., 2011). These estimators are calculated based on the number of tested 

strains, and our method of calculation presented here (using the EstimateS software 

method) evaluates and adjusts average richness estimators for all steps of species 

accumulation, and therefore produces a curve as output (Figure 3.15).  
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Figure 3.15. ECOR and GMB strain diversity using Chao1 and ACE estimators. Plain lines refer 

to the estimator (Chao1 or ACE) and dotted lines refer to the 95% confidence interval (CI) associated 

to the estimator calculation. Calculations were made using the EstimateS v7.5 software. 

 

Overall, there was not much numerical difference between the two estimators. ACE is 

described to be more accurate but we included Chao1 as it is one of the most common 

estimator calculated in diversity studies. As observed with rarefaction and as 

expected, the diversity of GMB strains was lower than ECOR. GMB strain diversity 

seems to reach a constant top value around 180 to 250 strains using both estimators 

(Figure 3.15), very similarly to what was found with the sampling effort analysis 

(Figure 3.14). 

 

Even if the concept of sampling effort yield approximate results, it is useful to 

compare calculations across studies. Previous work on E. coli faecal isolates and their 

vertical transmission after birth identified that transmitted strains were much less 

diverse in infants than in their mothers, but that diversity levels increased as the 

children aged (de Muinck et al., 2011). Overall, Chao1 and ACE diversity was much 

lower in this study than in our GMB strains. This difference could be artificial 

(diversity was calculated using one gene only) or biological, as it has been observed 
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that E. coli diversity was very low when sampled from individual hosts, in which only 

one or two single clones are dominant (Wallick and Stuart, 1943; Sears et al., 1950; 

Sears and Brownlee, 1952; Cooke et al., 1972; Smith, 1975). One can then imagine 

that it would take a large sample of numerous individuals to cover a large diversity of 

isolates, which is not the case in the study mentioned above (de Muinck et al., 2011). 

Another study on isolates from freshwaters found a Chao1 diversity average ranging 

from 200 to 400 STs between different sampling sites (Walk et al., 2007), which is 

slightly more than our calculations for GMB diversity (Figures 3.14 and 3.15). From 

this comparison, we can suggest that E. coli diversity is observed to be much greater 

when nonhost secondary environments are sampled (freshwaters, plants) than when 

faecal isolates from mammalian hosts are examined. 

 

3.4.2. Reconstruction of phylogenetic relationships between GMB and 

ECOR strains 

 

It is possible to infer relationships between strains at a deeper phylogenetic level 

using the output of MLST. Either allele-based or sequence-based information provide 

information at different levels. Allele-based approaches such as eBURST and 

minimum spanning trees (MSTREE) analyses are useful to examine relatedness of 

isolates in the light of gene flow and allelic exchange or recombination. Sequence-

based approaches examine single nucleotide polymorphisms and substitutions across 

a set of isolates to provide finer phylogenetic reconstructions. 
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3.4.2.1. Allele-based population genetic structure of GMB and ECOR 

strains 

 

Using allelic information (ST numbers and their corresponding defining ATs), it is 

possible to examine relatedness between isolates (or STs) and the population structure 

of microbial species with intermediate levels of recombination, such as E. coli (Wirth 

et al., 2006). Different STs can be closely related if they share most of their ATs or 

relatively distant if none of their ATs are the same. This could be simply explained by 

gene flow, or recombination events at particular alleles. Conversely, 2 divergent 

clones can share most of their AT but differ at one locus where mutations have 

accumulated and constitute distinct ATs at this locus.  

 

Simple algorithms have been developed to examine and relate STs based on how 

many AT they share. Typically, when 2 STs share n–2 alleles (where n is the total 

number of alleles defining the ST; in our case, n=8 and n–2=6), they are defined to be 

in the same clonal complex. In this work, we used the PhyloViz software 

(http://www.phyloviz.net/wiki/) to construct minimum spanning trees, or MSTREE 

based on a BURST (for “Based Upon Related Sequence Types”) calculation (Figure 

3.17). Using the BURST algorithm, ancestral STs were defined, and variants are 

mapped around it on different levels with single locus variants (SLV), corresponding 

to STs sharing n–1 ATs, closer than double loci variants (DLV), corresponding to STs 

sharing n–2 ATs.  

 

There were 4 clonal complexes in our dataset of ECOR and GMB strains with ST-2, 

ST-132, ST-185 and ST-446 as ancestral STs (Figure 3.17). These clonal complexes 
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are representative of how diversity arises in single-species populations in the sense 

that some allelic profiles are shown to be more stable over time and selective 

pressures than others. In our study, this is for instance the case for ST-2 from which 

11 other STs are related at n–1 and n–2. It is possible that strains from ST-2 possess 

traits that confer a broad ecological stability in the E. coli species, as both ECOR and 

GMB strains, isolated 30 years and continents apart, are from ST-2 or related.  

 

MSTREES are calculated using a model assuming that allelic profiles evolution is 

explained with as few events as possible. The obtained tree is therefore representing 

the simplest, shortest combination of allelic profiles changes between all tested allelic 

profiles. This simplicity results in the fact that contrary to other models of 

phylogenetic inference, MSTREE calculation does not hypothesise putative internal 

nodes of expected common ancestors. Therefore, all samples are linked together 

according to their similarity, regardless of their true phylogenetic history. Because of 

these limitations, one has to provide all the possible intermediate samples, which must 

not have a lot of variation between them in order to be meaningfully linked. The 

simpler analysis also has advantages, in the sense that MSTREES are focused primarily 

on micro-evolution and short-term divergence, giving more power to variation forces 

that can be considered low using evolution-based models. Also, when coupled with a 

BURST analysis, MSTREES are a way of mapping the simplest possible links between 

each clonal complex, therefore providing a simple and informative insight into how 

all complexes and STs are related to each other. MSTREES are commonly used in 

epidemiology studies based on MLST, and are often seen as a simple and preliminary 

phylogenetic analysis method (Wirth et al., 2006; Millet et al., 2009; Bunnik et al., 

2011; Mellmann et al., 2011). Here, we present the same MSTREE coloured by 5 
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different parameters: collection (ECOR or GMB), source, location and year of 

isolation, and phylogroup (Figure 3.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�Figure 3.17 (5 next pages). Minimum spanning tree (MSTREE)of BURST outputs based on 142 

allelic profiles after MLST . Different colouring were applied to the same MST: (a) collection (ECOR 

or GMB); (b) source of isolation (human, primate, non-primate, spinach, rocket, other salad and soil); 

(c) year of isolation (1980s, 2008 and 2009); (d) location of isolation (UK, Sweden, Italy, USA, 

Canada, Asia and Pacific); (e) phylogroups (A, B1, B2, D, E, outgroup). The thickness of the link 

between two nodes reflects the relatedness of the corresponding STs with black for SLV or DLV and 

grey for links at n>2 shared allele types. The figures were obtained using the PhyloViz software 

(http://www.phyloviz.net/wiki/). See text for more details.  
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According to the collection (GMB/ECOR) colouring (Figure 3.17a), we could 

generally observe ECOR STs that were related to GMB STs and vice versa. For 

instance, ST-2 was composed of both an ECOR and a GMB strain, and branching STs 

were found in both ECOR and GMB too. This suggests that host and nonhost isolates 

are not differentially positioned in the phylogeny of E. coli. There was also weak or 

absence of visible clustering according to source (Figure 3.17b), year (Figure 3.17c) 

and location (Figure 3.17d) of isolation, which is expected as these 3 properties are 

all directly linked to collection. 

 

However, there were strong visible clusters according to phylogroups, confirming that 

our strains evolve in a quasi-clonal way. This result is expected, as phylogroup 

evolution is deeper than any other tested parameter for E. coli and has also been 

reported previously (Jaureguy et al., 2008). It suggests that the micro-evolution of STs 

is mostly constrained within phylogroups and confirms that E. coli is evolving in a 

semi-clonal way, forming rather distinct phylogenetic groups most of the time.  

 

3.4.2.2. Construction of phylogenetic trees 

 

BURST analyses and the construction of MSTREES can only inform on the relatedness 

of sampled strains based on their allelic differences. The construction of phylogenetic 

trees adds the power of determining if two isolates share a common ancestor in the 

absence of this common ancestor among the samples (something impossible with 

minimum spanning analyses). The genealogy of strains can be reconstructed, and the 

resulting population structure is more precise than observed with MSTREES. 
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There are multiple methods and algorithms available to reconstruct phylogenetic trees 

(Baldauf, 2003; Grunwald and Goss, 2011), but we chose to use ClonalFrame, a 

powerful Bayesian-based inference algorithm including an evolutionary model 

allowing the identification of clonal relationships between isolates by taking into 

account the recombination events that have disrupted the clonal inheritance. We 

produced a phylogenetic tree based on ClonalFrame output (see Material and methods 

for more details), using MEGA5 software (Figure 3.18). In the light of multiple and 

recent produce-related outbreaks, we also added pathogenic E. coli sequences to this 

analysis (Figure 3.18). We extracted the sequences required by the MLST scheme 

used in this study from the publicly available genomes of 4 E. coli strains that have 

been associated with produce-related outbreaks. Among these strains, E. coli 

O157:H7 strain Sakai was isolated in 1996 from a radish-related outbreak in Japan 

(Michino et al., 1999), E. coli O157:H7 strain TW14359 in 2006 from a spinach-

related outbreak in USA (Kulasekara et al., 2009), and E. coli O104:H4 strains 

LB226692 and TY-2482 from a recent 2011 sprout-related outbreak in Germany 

(Rohde et al., 2011).  
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Figure 3.18.ClonalFrame phylogenetic tree showing evolutionary relationships between E. coli 

strains. The tree is based on MLST sequences of ECOR and GMB strains with the addition of 4 

O157:H7 strains and 2 O104:H4 strains from public databases. Red squares indicate ECOR, green 

circles, GMB and blue triangles the pathogenic strains. The inset is a zoom on the phylogenetic 

neighbours of German outbreak O104:H4 strains.  
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The topology of the tree was consistent with the previously reported clonal-like 

structure of E. coli population. There were 4 major clades, or phylogenetic groups, 

called A, B1, B2 and D. There were GMB isolates in every major phylogenetic group, 

as observed with the triplex PCR assay. In every clade gathering GMB strains there 

were ECOR strains, confirming the diversity calculations. Minor clades regrouped 

phylogroup E and the recently described phylogroup F (Jaureguy et al., 2008), 

although no tested GMB strain clustered in it. Compared to phylogroups B2 and D, 

phylogroups A and B1 were closely related, suggesting a recent divergence and 

possibly higher levels of recombination. 

 

There was an additional smaller clade diverging from phylogroup A and that we also 

considered as B1, as it is composed of ECOR isolates previously assigned to B1 using 

other schemes and of GMB strains assigned to B1 using the triplex PCR. This 

additional B1 clade has also been reported in earlier studies, and called the “ET-1 

clade” in reference to its electrophoretic type in MLEE experiments (Walk et al., 

2007). It has been found that isolates from the ET-1 clade were over-represented in 

natural environmental isolates, as observed with isolates from freshwater beaches 

(Walk et al., 2007). However, no phenotypical differences were observed for ET-1 

isolates compared to the rest of B1 isolates, so there is no way to fully confirm that 

our observed additional B1 clade is indeed composed of ET-1 isolates. 

 

As previously shown (Sims and Kim, 2011), isolates of serotype O157:H7 clustered 

within phylogroup E, along with 2 other GMB clones and ECOR37, which is the only 

ECOR isolate with a LEE locus and believed to be an O157:H7 progenitor from the 

O55:H7 serotype. O104:H4 strains from the recent produce-related outbreak in 
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Germany (Rohde et al., 2011) clustered in phylogroup B1, more specifically with 

ECOR28 (O104:H−), ECOR58 (O112:H8) and 7 other GMB clones. Apart from 

indicating that phylogenetic trees are inappropriate to make any clear assumption on 

the pathogenicity of isolates, this observation shows that strains from the same 

phylogenetic background as the recent German outbreak can be isolated on 

agricultural plants. 

 

Three GMB clones (GMB46, 56, 57) were found to be distant from the rest, an 

observation already made in several E. coli population studies (Wirth et al., 2006; 

Walk et al., 2007; Walk et al., 2009; Luo et al., 2011). Earlier reports of strains 

identified biochemically as E. coli but phylogenetically distant have suggested their 

possible existence as ancestral variants of E. coli, remnants of an eventual selective 

sweep in E. coli that would have occurred 10 to 30 million years ago (Wirth, Falush et 

al. 2006). More recently, such phylogenetically distant isolates have been defined as 

members of cryptic lineages within the Escherichia genus, phylogenetically located 

between E. coli and its closest species E. albertii (Walk, Alm et al. 2009). To 

determine if our strains belonged to these cryptic lineages, we extracted sequences 

corresponding to our MLST scheme from the recently available genomes of 

representative strains from Escherichia sp. cryptic clades and E. albertii (Luo, Walk 

et al. 2011) and reconstructed a phylogenetic tree (Figure 3.19). 
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Figure 3.19. Maximum likelihood phylogenetic tree showing relationships between E. coli 

GMB46, 56 and 57 with representatives strains from Escherichia cryptic lineages and E. albertii. 

The tree is based on MLST sequences from this work and from the recent sequences of Escherichia sp. 

and E. albertii strains (Luo, Walk et al. 2011). The tree was realised using iTOL (Letunic and Bork, 

2011). 

 

Strain representatives of the cryptic lineages within the Escherichia sp. genus have 

been recently described and sequenced (Walk, Alm et al. 2009, Luo, Walk et al. 2011, 

Clermont et al. 2011, Ingle et al. 2011). Prevalence has been examined, and it was 

hypothesised that these strains were environmentally-adapted and found in the 

majority in wild animals rather than humans (Clermont et al., 2011; Ingle et al., 

2011). Our result is the first to report isolates of Escherichia sp. cryptic lineages on 

plants. Indeed, strains GMB46, GMB56 and GMB57 clustered with strains TW10509 

and TW15838 (Figure 3.19), which are representatives from the Clade-I lineage, 

isolated from human faeces in India and freshwater sediments in Australia 
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respectively (Luo, Walk et al. 2011). These cryptic isolates have not been reported to 

strongly differ phenotypically from E. coli (Ingle, Clermont et al. 2011), and are 

therefore co-isolated with E. coli using standard isolation procedures, which led some 

to suggest that their presence could bias faecal indication tests (Walk, Alm et al. 

2009). However, there is no convincing proof that the primary niche of these isolates 

is not the vertebrate gastrointestinal tract. On the contrary, their high degree of 

metabolic similarity with E. coli suggests it is and more studies are required to 

elucidate the ecology of these lineages. 

 

The order of divergence of the different phylogroups has been a subject of debate 

since the first E. coli phylogenies were published, mainly in an effort to determine if 

the E. coli ancestor was pathogenic or not (Lecointre et al., 1998; Touchon et al., 

2009; Sims and Kim, 2011). It seems probable that either B2 (Lecointre, Rachdi et al. 

1998) or D (Touchon, Hoede et al. 2009) is the most ancestral group, whereas A and 

B1 diverged later and are considered as evolutionary “sister” clades. The use of 

unrooted radial visualisation of trees is not suitable to investigate the order of 

emergence of the different phylogroups (Figure 3.19). We thus produced a circular 

tree, rooted on GMB46, as it is evolutionarily more distant than the rest of the tested 

E. coli strains (Figure 3.20). 
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Figure 3.20. ClonalFrame phylogenetic tree regrouping plant-associated GMB isolates and host-

associated ECOR strains. ECOR labels are written in red and GMB in black. The tree was visualised 

and annotated using iTOL (Letunic and Bork, 2011).  

 

Using our MLST scheme, it is clear that phylogroup D appears at the bottom of the 

tree, and is likely to be the most ancestral phylogroup. No clade was paraphyletic 

except phylogroup E. A-B1 appeared as sister groups and to have diverged later. The 

newly described phylogroup F also seems to be related to phylogroup B2, which both 

appear to have diverged after D. Our observation of phylogroup emergence is globally 
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consistent with the findings reported (Touchon, Hoede et al. 2009, Sims and Kim 

2011), and we find good support that phylogroup D rather than B2-F diverged first. 

 

3.4.2.3. Examination of clonality structure of E. coli populations 

based on our comparative analysis 

 

Before the discovery of the extent of homologous recombination and its role in 

shaping bacterial genomes and phenotypic properties within populations bacteria were 

assumed to evolve clonally, meaning that most of the observed variation among 

natural populations was assumed to be caused by mutation only. Recombination has 

been shown to be prevalent in most bacterial genomes, leading to a spectrum of 

population structures from highly clonal, such as monomorphic pathogens like 

Salmonella enterica serovar Typhi, Mycobacterium tuberculosis or Yersinia pestis 

(Achtman, 2008) to panmictic (or so called “epidemic”) structures like Neisseria sp. 

(Maynard Smith et al., 1993) for which every clone is very different.  

 

E. coli has been described to have a rather clonal population structure on the basis that 

distinct and stable phylogenetic groups were delimited by phylogenetic reconstruction 

methods based on multilocus analyses (Tenaillon et al., 2010). However, this 

hypothesis has been questioned by Wirth et al. (2006) who found that phylogenetic 

approaches were not statistically robust to accurately represent the population 

structure of organisms that often interbreed via homologous recombination, which 

seems to be the case for E. coli (Wirth, Falush et al. 2006). It was shown that E. coli 

housekeeping genes (in the context of MLST) were composed of an admixture (i.e., 

the interbreeding of different populations within a species) of multiple ancestral 
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groups, between which recombination seemed to have often occurred (Wirth et al. 

2006). In fact, admixture analysis did not even clearly identify a phylogenetic 

background for isolates with highly admixed housekeeping genes (therefore 

classifying them as “ABD” or “AxB1” hybrids) even if those same isolates were 

clearly assigned to a phylogroup using traditional phylogenetic analyses (Wirth et al. 

2006). Interestingly, this study also observed a tendency of E. coli pathogens to be 

among this hybrid population of admixed ancestry (Wirth et al. 2006). In the light of 

this discrepancy, some recent studies have preferred to classify isolates according to 

ancestry groups rather than phylogroups as defined traditionally by MLST and triplex 

PCR (Martinez-Medina et al., 2009). In this work, we kept using the classical 

phylogroup denominations (A, B1, B2, D, E and F) for comparison purposes with 

other studies.  

 

Multiple factors can be examined to estimate the clonality of a population structure 

based on multilocus data. In a theoretically fully clonal population, there is no 

observable genetic exchange caused by recombination, and variation is solely caused 

by mutation. The first indication of a clonal population is to detect linkage 

disequilibrium in the tested population, which is the non-random association of alleles 

at different loci. Populations that are highly clonal exhibit a very high level of linkage 

disequilibrium, as their alleles at different loci are very similar (not randomly 

associated). On the other hand, populations of Neisseria are panmictic, implying that 

they show linkage equilibrium at multiple loci: every clone has a different allele 

(Maynard Smith et al., 1993; Didelot and Maiden, 2010). We detected significant 

linkage disequilibrium between the 8 housekeeping genes of our MLST experiment 
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on the whole E. coli dataset using calculations implemented in the START2 package 

(http://pubmlst.org/software/analysis/start2/).  

 

A second property of clonal populations is a tree-like phylogeny, with distinct clades 

and a relatively high level of congruence between single gene phylogenies and the 

clonal genealogy of the population (Didelot and Maiden 2010). To investigate this, we 

created ClonalFrame single-gene phylogenies for each locus analysed using the 

Pasteur MLST scheme, and we calculated the congruence index (Icong) between each 

of them and the 8-gene phylogeny (from Figure 3.18) using the method suggested by 

de Vienne et al. 2007 (Table 3.6). This test basically compares tree topologies 

between them and determines if the observed congruence between two tree topologies 

is higher than what would be expected by chance only (de Vienne et al., 2007). 

 

Table 3.6. Topological congruence between single-gene phylogenies and the clonal genealogy of 

ECOR and GMB strains. MLST data was used and trees were constructed after a ClonalFrame 

analysis. Indices were calculated using the online tool created by de Vienne et al. 2007: 

http://www.ese.u-psud.fr/bases/upresa/pages/devienne/index.html. 

Locusa Icong
b p-value Congruence? 

dinB 1.60330 3.38E-07 Yes 

icdA 1.43151 2.66792E-05 Yes 

pabB 0.85891 56.36239966 No 

polB 1.43151 2.66792E-05 Yes 

putP 1.08795 0.166365379 No 

trpA 1.83234 9.97E-10 Yes 

trpB 1.37425 0.00011446 Yes 

uidA 0.85891 56.36239966 No 

 

a. Gene analysed using ClonalFrame to produce a single-gene phylogenetic reconstruction, which was 

compared to the concatenated 8-genes phylogeny previously described. 

b. Congruence index, as calculated using the method and online tool. 
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Single-gene phylogenies at 5 different loci showed phylogenetic congruence with the 

clonal genealogy of strains as determined by MLST (Figure 3.18) but the fact that 3 

single-gene phylogenies (pabB, putP and uidA) were not congruent, suggests that E. 

coli (as summarised here by our ECOR and GMB strains) is not evolving in a highly 

clonal manner, providing that evolution at these 8 loci is a good representative of the 

population structure dynamics. This is consistent with the previous observations that 

E. coli clonality is not very strong (Wirth, Falush et al. 2006). 

 

In the light of these observations, it becomes interesting to assess what is the impact 

of recombination on the population structure of our strains of E. coli. The model used 

for our ClonalFrame determination of phylogeny (Figure 3.18) represents the true 

clonal genealogy of strains independently of any noise on the phylogenetic signal. 

Conversely, there are ways to represent this recombinational noise on the 

phylogenetic signal, for instance by using phylogenetic networks for which no 

arbitrary decision is taken on the clustering of different leaves, as it can be the case 

with most phylogenetic reconstruction methods (neighbour-joining, maximum 

likelihood). In phylogenetic networks contrary to phylogenetic trees, leaves are linked 

by parallelograms rather than straight lines, indicating conflicting signals mainly due 

to recombination for which the algorithm was not able to decide a clear branch 

(Huson, 1998). In a way, phylogenetic networks show the opposite of ClonalFrame 

trees, that is to say very loose relationships between isolates, regardless of 

recombination. Based on concatenated sequences at 8 loci for our ECOR and GMB 

isolates, we used the SplitsTree4 software with the NeighbourNet algorithm to 

reconstruct a phylogenetic network (Figure 3.21). 
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Figure 3.21. Phylogenetic network of ECOR and GMB strains based on concatenated 

MLST sequences at 8 loci. The network was constructed using SplitsTree4 and the 

NeighbourNet algorithm. Parallelograms denote incongruent phylogenies for particular 

branches most likely due to recombination.  
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There were high levels of recombination between phylogroups, as shown by the 

amount and size of parallelograms between each phylogroups instead of unambiguous 

linear branches (Figure 3.21). In spite of these high levels of recombination, clear 

phylogroups could nevertheless still be delimited, strengthening the fact that E. coli is 

evolving in a semi-clonal manner. Using this method, we observed that B2 had more 

highly congruent phylogenies than other phylogroups, as shown by the smaller 

parallelograms defining this clade (Figure 3.21). Clade-I isolates were still appearing 

to branch from B2, as were phylogroup F strains, something which was not observed 

on the ClonalFrame tree. There seemed to be similar levels of congruent phylogenies 

within phylogroup B1 and D, and we still observed an additional clade of B1 isolates. 

Indirectly, recombination then seemed slightly higher in phylogroup A, where more 

and bigger parallelograms were observed. Interestingly, this observation can be 

indirectly reflected in the ClonalFrame tree (Figure 3.18), where most of isolates in 

phylogroup A are placed at identical distances from their closest node. Indeed, 

because of high recombination levels in these strains, ClonalFrame cannot infer any 

satisfying clonal history between them, and thus places them at equidistance of the 

same node (Figure 3.18).  
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3.5. Comparative genomic hybridisation (CGH) to investigate 

genetic differences between collections or phylogroups 

 

From the observations made in the previous section, it emerges that E. coli strains 

from various environments expectedly show clonal and genomic cohesion, and that 

signature traits of nonhost association in E. coli (if any) are not obvious when 

phylogenetic information is considered alone. In the last part of this chapter, we 

examined if there were any obvious differences in gene content between collections 

and phylogroups. We performed CGH on 21 GMB and 20 ECOR strains using 

ShEcoliO157 microarrays (see Methods). We used the Mann-Whitney-Wilcoxon 

(MWW) test with Bonferroni multiple testing correction to find gene content 

correlated with either collection or phylogroups.  

 

We could not detect genes whose presence or absence was significantly correlated 

with the origin of isolation (GMB vs. ECOR). Removing the Bonferroni correction 

led to a list of 114 genes weakly associated with either GMB or ECOR strains. 

Among these weakly associated genes, the phn phosphonate metabolic cluster was 

notably more present in GMB than ECOR strains (data not shown), possibly 

suggesting that additional phosphorus metabolism is an important factor for life and 

persistence in secondary environments such as soils or plants. As the association is 

only weak using our conditions, the risk of false positives is high and we did not 

pursue this observation. No genes were found to be associated among GMB strains 

with the plant source of isolation, nor specifically in isolates from the same 

geographical location. Moreover, there were no specific genes associated with tested 

GMB strains isolated from the same field at the same time compared to the rest.  
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However, we identified 19 genes whose patterns of presence/absence were strongly 

associated with phylogenetic groups. As we had a higher proportion of strains from 

phylogroups A and B1 tested by CGH, association studies were based on the patterns 

of gene presence/absence in only 3 handmade groups: A, B1 and a third group 

composed of B2, D, E and F strains (Table 3.7).  

 

Table 3.7. Genetic association with phylogroups based on ShEcoliO157 and CGH data.  

ID Name Description p-value 
Distribution 

A (n=11) B1 (n=19) 
B2-D-E-
F (n=9) 

b1268 yciQ 
predicted inner membrane 

protein 
0.00728 10 (90.9%) 0 (0%) 9 (100%) 

Z5029 Z5029 putative adhesin 0.00728 1 (0.1%) 19 (100%) 0 (0%) 

SF3640 SF3640 hypothetical protein 0.0211 2 (18.1%) 19 (100%) 0 (0%) 

SF3641 SF3641 hypothetical protein 0.0276 1 (0.1%) 19 (100%) 
1 

(11.1%) 

b0070 
yabM, 
setA 

broad specificity sugar 
efflux system 

0.0479 11 (100%) 19 (100%) 0 (0%) 

b0608 ybdR 
predicted oxidoreductase, 

Zn-dependent and NAD(P)-
binding 

0.0479 11 (100%) 19 (100%) 0 (0%) 

b0730 
farR, 
mngR 

mannosyl-D-glycerate 
transport/metabolism system 

repressor 
0.0479 11 (100%) 19 (100%) 0 (0%) 

b0731 
hrsA, 
mngA 

fused 2-O-A-mannosyl-D-
glycerate specific PTS 

enzymes: IIA 
component/IIB 

component/IIC component 

0.0479 11 (100%) 19 (100%) 0 (0%) 

b2339 yfcV 
predicted fimbrial-like 

adhesin protein 
0.0479 11 (100%) 19 (100%) 0 (0%) 

b3143 yraI 
predicted periplasmic pilin 

chaperone 
0.0479 11 (100%) 19 (100%) 0 (0%) 

b3145 yraK 
predicted fimbrial-like 

adhesin protein 
0.0479 11 (100%) 19 (100%) 0 (0%) 

VIREC
O255 

chuA 
outer membrane 

heme/hemoglobin receptor 
0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4910 chuS 
putative heme/hemoglobin 

transport protein 
0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4911 chuA 
outer membrane 

heme/hemoglobin receptor 
0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4913 chuT 
iron complex transport 

system substrate-binding 
protein 

0.0479 0 (0%) 0 (0%) 9 (100%) 
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Z4914 chuW 
oxygen-independent 

coproporphyrinogen III 
oxidase  

0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4915 chuX hypothetical protein 0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4917 chuY hypothetical protein 0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4918 chuU 
putative permease of iron 
compound ABC transport 

system 
0.0479 0 (0%) 0 (0%) 9 (100%) 

Z4919 hmuV 
hemin importer ATP-

binding subunit 
0.0479 0 (0%) 0 (0%) 9 (100%) 

 

 

One gene, yciQ, encoding a putative inner membrane protein, was specifically absent 

from B1 strains only, as already previously reported (Touchon et al. 2009); whereas 3 

genes including Z5029 encoding a putative adhesin were specifically present in B1 

strains only (Table 3.7). However, Z5029 has previously been reported to be a 

pseudogene following analyses of two previously sequenced E. coli strains (Touchon 

et al. 2009), indicating a possible ongoing process of gene loss within the B1 

phylogroup. Seven genes were present only in A and B1 strains, 4 of which are 

involved in metabolism and 3 are predicted adhesion factors (Table 3.7). Conversely, 

the whole chu-hmuV locus involved in heme metabolism was absent from all tested A 

and B1 strains (Table 3.7) including chuA, a gene used as a marker to identify strains 

from phylogroups B2 and D by the triplex PCR method (Clermont et al. 2000). 
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3.6. Industrial relevance 

 

It is a question of growing interest for food industry and farmers to know if all E. coli 

isolates found on plants during routine tests are similar or not. Our results provide the 

first report that isolates representing the 4 major phylogenetic groups A, B1, B2 and D 

can be found in abundance in agricultural settings and on plants. This observation 

suggests that field contamination is a non-uniform event, likely originating from 

multiple and complex contamination sources, in line with the hypothesis that 

agricultural fields are contaminated mainly by irrigation or manure application and 

not so much by direct faecal contamination (See Introduction section 1.3). Moreover, 

our observation that isolates from one single field on the same day are statistically as 

diverse as isolates from the whole UK further support this observation. As E. coli 

strains able to be transferred via water or soil are likely to be of diverse origins 

themselves, it is not surprising to observe high phylogenetic diversity in the resulting 

retrieved plant-associated population. This also indicates that the selection pressure on 

E. coli by environments linked to agricultural settings (water, soil or plants) is not 

strong enough to drive the selection for specific strains, implying that very diverse E. 

coli isolates can potentially colonize agricultural soils and crops. Nonetheless, among 

plant-associated isolates we found B1 isolates in proportions far superior to those of 

phylogroup A, B2 or D, suggesting that within the observed phylogenetic diversity of 

E. coli from plants, a subset of strains could possess a higher fitness on plants than the 

rest, and thus be retrieved at higher levels.  
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Previous literature on population structures of nonhost isolates of E. coli indicated 

that strains from phylogroup B1 were also isolated in majority from soils (Bergholz et 

al., 2011) and freshwaters (Walk, Alm et al. 2007). Interestingly, strains from B1 

were also isolated in greater numbers from fish, frogs, reptiles, birds and carnivorous 

mammals in an Australian survey (Gordon et al. 2008) (Table 1.1), from healthy and 

diseased cattle in France, United States, Brazil and Iran (Table 1.1) and pigs in 

France (Bibbal et al., 2009). It is therefore plausible that a higher incidence in wildlife 

and farm animal faecal depositions coupled with increased nonhost persistence could 

be the cause of phylogroup B1 isolates being retrieved at higher levels from 

environmental nonhost sources. Based on our observations and the available 

literature, we formulate here the hypothesis that B1 is a nonhost-associated 

phylogroup. It is thus found mainly in environments outside E. coli either because it 

tends to harbour more traits enhancing nonhost fitness or simply because it is more 

prevalent in non-human hosts, especially in hosts of agricultural concern. In any case, 

faecal contamination on plants can be considered as non-direct and it is likely that 

plant isolates have undergone multiple nonhost-associated selection processes before 

colonizing plants. 

 

An interesting application results from the observation of this specific population 

structure associated with plants. When comparing the proportions of phylogroups 

from different secondary environments (from other published studies) in a radar plot 

(Figure 3.22), we can observe a slight variation between the distributions in soil and 

water. When our newly described E. coli phylogroup distribution from plants is 

superimposed, it is almost identical to the distribution in water (Figure 3.22), 



 

201 
 

suggesting that the ecological constraints on E. coli life on water produced the same 

population structure as the one observed on plants. 

 

Figure 3.22. Radar plot of E. 

coli phylogroup distribution in 

three different secondary 

environments. The soil and 

freshwater data were taken from 

published studies (Bergholz, 

Noar et al. 2011; Walk, Alm et 

al. 2007) and the plant data from 

this study. 

 

To simply conclude from this meta-analysis that irrigation contributed more 

significantly to E. coli contamination on plants is a big leap and requires confirmation 

by controlled field-scale experiments (although selective pressures on freshwater 

should theoretically be similar everywhere on Earth, the water study was conducted in 

Michigan, USA and our study in UK). However, this novel type of approach could 

prove useful, as previous studies on microbial source tracking (or MST) were always 

conducted on single strains, and their relatedness with strains from a known source. 

By looking at the population structure, rather than single strains to identify sources of 

contamination, the bias introduced by genomic rearrangements and the intrinsic 

genomic variability within E. coli is greatly reduced. This approach was tested to 

identify the source of sewage contamination by E. coli using population structures 

from various farm animals, with very promising results (Carlos et al. 2010). 
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4. Phenotypic variability between plant and faecal isolates of 
E. coli as a reflection of host and nonhost association 

 

4.1. Context 

 

In the previous section, we characterised the phylogenetic relationships and the 

population structure of plant-associated strains of E. coli and compared them to the 

faecal isolates of the ECOR collection. Apart from an unbalanced distribution of 

phylogroups showing a majority of plant strains from phylogroup B1, we could not 

find any clear differences at the phylogenetic level that would distinguish plant 

isolates from host-associated E. coli. This observation is consistent with earlier work 

supposing that the presence of E. coli in nonhost environment is caused by constant 

faecal fluxes, balanced by relatively rapid death (Winfield and Groisman, 2003). 

Nevertheless, E. coli strains do not seem equally able to survive and persist in the 

environment, as illustrated by the wide range of observations in survival studies using 

different strains (Whipps et al., 2008). It is possible that this variability is reflected in 

our sampling of plant isolates (GMB strains), which presumably have had a variable 

life history from faecal excretion before being retrieved on plants and thus have 

potentially resisted various earlier selection pressures, hopefully enriching for 

observable traits. 

 

In this section, we focused on characterising the possible phenotypical differences 

existing between plant and host-associated isolates of E. coli. To narrow the range of 

phenotypes to assess, as suggested in the Introduction section 1.3.2, we hypothesised 

that metabolic abilities and phenotypes associated with colonisation in nonhost 
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environments to be key factors in environmental persistence and survival. We 

therefore used metabolic profiling using Biolog GN2 plates on GMB and ECOR 

strains and characterised their ability to form biofilms, produce siderophores and 

swim in vitro. 

 

4.2. Variability in carbon metabolic profiling of plant and host 

strains of E. coli 

 

4.2.1. Utilisation of Biolog: principle, controls and threshold 

determination 

 

4.2.1.1. Principle of Biolog 

 

The screening for metabolic abilities determines if a given strain has the potential to 

use nutrients for respiration and/or growth. In this section, we used 96-well plates 

manufactured by Biolog (Techno-Path, UK) to simultaneously assess growth on 95 

different C-sources from the same inoculum. The plates used are of the GN2 type, 

initially designed to allow identification of Gram-negative bacteria. The substrate 

panel of GN2 plates has been designed to provide maximum discrimination between 

Gram-negative bacteria, is well utilised by typical E. coli strains. Six different types 

of substrates are represented on the GN2 type of plates we used (Table 4.1). 
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Table 4.1.C-sources on Biolog GN2 plates. 

 

Well Name Chemical 
formula 

Substrate guilda 

    A01 Water H2O Control 
A02 α-Cyclodextrin C36H60O30 Polymers 
A03 Dextrin C6H10O5 Polymers 
A04 Glycogen (C6H10O5)n Polymers 
A05 Tween 40 C26H50O3 Polymers 
A06 Tween 80 C64H124O26 Polymers 

A07 
N-Acetyl-D-

Galactosamine 
C8H15NO6 Carbohydrates 

A08 N-Acetyl-D-Glucosamine C8H15NO6 Carbohydrates 
A09 Adonitol C5H12O5 Carbohydrates 
A10 L-Arabinose C5H10O5 Carbohydrates 
A11 D-Arabitol C5H12O5 Carbohydrates 
A12 D-Cellobiose C12H22O11 Carbohydrates 
B01 i-Erythritol C4H10O4 Carbohydrates 
B02 D-Fructose C6H12O6 Carbohydrates 
B03 L-Fucose C6H12O5 Carbohydrates 
B04 D-Galactose C6H12O6 Carbohydrates 
B05 Gentiobiose C12H22O11 Carbohydrates 
B06 α-D-Glucose C6H12O6 Carbohydrates 
B07 m-Inositol C6H12O6 Carbohydrates 
B08 α-D-Lactose C12H22O11 Carbohydrates 
B09 Lactulose C12H22O11 Carbohydrates 
B10 Maltose C12H22O11 Carbohydrates 
B11 D-Mannitol C6H14O6 Carbohydrates 
B12 D-Mannose C6H12O6 Carbohydrates 
C01 D-Melibiose C12H22O11 Carbohydrates 
C02 β-Methyl-D-Glucoside C7H14O6 Carbohydrates 
C03 D-Psicose C6H12O6 Carbohydrates 
C04 D-Raffinose C18H32O16 Carbohydrates 
C05 L-Rhamnose C6H12O5 Carbohydrates 
C06 D-Sorbitol C6H14O6 Carbohydrates 
C07 Sucrose C12H22O11 Carbohydrates 
C08 D-Trehalose C12H22O11 Carbohydrates 
C09 Turanose C12H22O11 Carbohydrates 
C10 Xylitol C5H12O5 Carbohydrates 
C11 Pyruvic Acid Methyl Ester C4H6O3 Miscellaneous 

C12 
Succinic Acid Mono-

Methyl-Ester 
C5H8O4 Miscellaneous 

D01 Acetic Acid C2H4O2 Carboxylic acids 
D02 Cis-Aconitic Acid C6H6O6 Carboxylic acids 
D03 Citric Acid C6H8O7 Carboxylic acids 
D04 Formic Acid CH2O2 Carboxylic acids 
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D05 
D-Galactonic Acid γ-

Lactone 
C6H10O6 Carboxylic acids 

D06 D-Galacturonic Acid C6H10O7 Carboxylic acids 
D07 D-Gluconic Acid C6H12O7 Carboxylic acids 
D08 D-Glucosaminic Acid C6H13NO6 Carboxylic acids 
D09 D-Glucuronic Acid C6H10O7 Carboxylic acids 
D10 α-Hydroxybutyric Acid C4H8O3 Carboxylic acids 
D11 β-Hydroxybutyric Acid C4H8O3 Carboxylic acids 
D12 γ-Hydroxybutyric Acid C4H8O3 Carboxylic acids 

E01 
p-HydroxyPhenylacetic 

Acid 
C8H8O3 Carboxylic acids 

E02 Itaconic Acid C5H6O4 Carboxylic acids 
E03 α-Keto Butyric Acid C4H6O3 Carboxylic acids 
E04 α-KetoGlutaric Acid C5H8O5 Carboxylic acids 
E05 α-KetoValeric Acid C5H8O3 Carboxylic acids 
E06 D,L-Lactic Acid C3H6O3 Carboxylic acids 
E07 Malonic Acid C3H4O4 Carboxylic acids 
E08 Propionic Acid C6H6O2 Carboxylic acids 
E09 Quinic Acid C7H12O6 Carboxylic acids 
E10 D-Saccharic Acid C6H10O8 Carboxylic acids 
E11 Sebacic Acid C10H18O4 Carboxylic acids 
E12 Succinic Acid C4H6O4 Carboxylic acids 
F01 Bromosuccinic Acid C4H5O4Br Miscellaneous 
F02 Succinamic Acid C4H7NO3 Amines/amides 
F03 Glucuronamide C6H11NO6 Amines/amides 
F04 L-Alaninamide C3H8N2O Amines/amides 
F05 D-Alanine C3H7NO2 Amino acids 
F06 L-Alanine C3H7NO2 Amino acids 
F07 L-Alanylglycine C5H10N2O3 Amino acids 
F08 L-Asparagine C4H8N2O3 Amino acids 
F09 L-Aspartic Acid C4H7NO4 Amino acids 
F10 L-Glutamic Acid C5H9NO4 Amino acids 
F11 Glycyl-L-aspartic Acid C6H10N2O5 Amino acids 
F12 Glycyl-L-Glutamic Acid C7H12N2O5 Amino acids 
G01 L-Histidine C6H9N3O2 Amino acids 
G02 Hydroxy-L-Proline C5H9NO3 Amino acids 
G03 L-Leucine C6H13NO2 Amino acids 
G04 L-Ornithine C5H12N2O2 Amino acids 
G05 L-Phenylalanine C9H11NO2 Amino acids 
G06 L-Proline C5H9NO2 Amino acids 
G07 L-Pyroglutamic Acid C5H7NO3 Amino acids 
G08 D-Serine C3H7NO3 Amino acids 
G09 L-Serine C3H7NO3 Amino acids 
G10 L-Threonine C4H9NO3 Amino acids 
G11 D,L-Carnitine C7H15NO3 Amino acids 
G12 γ-Amino Butyric Acid C4H9NO2 Amino acids 
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H01 Urocanic Acid C6H6N2O2 Miscellaneous 
H02 Inosine C10H12N4O5 Miscellaneous 
H03 Uridine C9H12N2O6 Miscellaneous 
H04 Thymidine C10H14N2O5 Miscellaneous 
H05 Phenyethylamine C8H11N Amines/amides 
H06 Putrescine C4H12N2 Amines/amides 
H07 2-Aminoethanol C2O7NO Amines/amides 
H08 2,3-Butanediol C4H10O2 Miscellaneous 
H09 Glycerol C3H8O3 Miscellaneous 
H10 D,L-α-Glycerol Phosphate C3H9O6P Miscellaneous 
H11 α-D-Glucose-1-Phosphate C6H13O9P Miscellaneous 
H12 

 
D-Glucose-6-Phosphate 

 
C6H13O9P 

 
Miscellaneous 

 
 
a. Substrate guilds were defined according to previously published groups (Preston-Mafham et al., 
2002) 

 

It has been estimated that several hundred mutations in E. coli genomes could alter 

the profiles obtained using Biolog 96-well plates (Cooper and Lenski, 2000) 

suggesting that Biolog plates are a suitable way to examine E. coli intra-species 

diversity using large collections of isolates. The Biolog system is based on simple 

redox chemistry (Bochner 2009). In each well, the C-source and bacterial inoculum 

are provided with a rich proprietary medium containing additional nutrients required 

for growth but excluding any additional C-source. This medium also contains 

tetrazolium chloride (or TTC), a redox indicator. When the C-source is used as an 

aerobic substrate by cells, NADH is produced during respiration, creating a reducing 

power in the well which leads to the irreversible reduction of tetrazolium to a 

colourful purple dye (Bochner 2009). Two phenotypes can be assessed using Biolog 

plates: respiration (the ability to use aerobically the corresponding C-source) and 

growth (the ability to replicate using the corresponding C-source). The two are almost 

always linked, although respiration can usually be detected before growth (Bochner 

2009). Biolog plates are either available as 20 full panels of more than 2000 

biochemical tests or, as we chose for costing reasons, as individual 96-well plates for 
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bacterial identification or small-scale comparison purposes. Biolog also 

commercialises the Omnilog system, a multiplex incubator with individual CCD 

cameras for each plate, monitoring the kinetics of tetrazolium reduction over time. 

Again, for costing reasons, we used a classical spectrophotometer to measure optical 

density (OD600) in the plates, and not respiration as indicated by tetrazolium 

reduction.  

 

4.2.1.2. Experimental controls 

 

To control that we correctly followed the procedures, we compared the GN2 profiles 

we obtained with 2 reference strains (K-12 strain MG1655 and O157:H7 strain Sakai) 

with previously published literature (Mukherjee et al., 2008) for 4 different C-sources 

(Figure 4.1). 
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Figure 4.1.Visual controls of Biolog GN2 procedure. (a) Pictures of E. coli K-12 strain MG1655 

(top) and E. coli O157:H7 strain Sakai (bottom) Biolog GN2 plates after 24 hours of inoculation at 

37°C; (b) Previously published Omnilog kinetics data for the same strains (Mukherjee, Mammel et al. 

2008). Coloured circles indicate correspondence between results. 

 

We observed the same result as in published literature: positive utilisation of D-

saccharic acid, D-sorbitol and D-serine for E. coli K-12 and not for O157:H7, and 

positive utilisation of sucrose for O157:H7 and not for K-12 (Figure 4.1). We 

assessed this assay reproducibility performing two independent biological replicates 

for 13 randomly chosen strains in our collections (Figure 4.2). 
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Figure 4.2. Correlation matrix between Biolog GN2 profiles (OD600 values) of strain replicates 

after 24h at 37°C. Two replicates “-a” and “–b” were performed for 13 randomly chosen strains. 

Values of the table are Spearman correlation coefficients (rS) between whole profiles. The heatmap 

indicates high (green) to low (white) values of rS. The H1-1218 strain was analysed with the help of 

Stephanie Schüller (IFR). 

 

Apart from 2 isolates (GMB83 and the O104:H4 outbreak strain H1-1218), the 

highest rS coefficient for every strain was always with the corresponding experimental 

replicate (corresponding p-values were always inferior to 0.0001; data not shown). 

Correlation coefficients between experimental isolates ranged from 0.74 to 0.99, 

whereas correlation with other non-replicate strains ranged from 0.58 to 0.89. This 

indicates that reproducibility is overall very good. In the following, due to the large 

amount of strains tested (n=170), we performed one incubation per strain only, but 
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ECOR10-a 0.72 0.76 0.74 0.83 0.84 0.79 0.70 0.73 0.71 0.80 0.78 0.74 0.94 0.69 0.76 0.75 0.81 0.83 0.76 0.69 0.72 0.64 0.79 0.73 0.71

ECOR18-a 0.72 0.66 0.58 0.74 0.74 0.65 0.65 0.72 0.69 0.70 0.68 0.64 0.70 0.79 0.63 0.62 0.68 0.76 0.66 0.66 0.73 0.62 0.72 0.75 0.71

ECOR32-a 0.76 0.66 0.85 0.82 0.88 0.85 0.84 0.65 0.74 0.80 0.89 0.70 0.72 0.66 0.90 0.85 0.80 0.83 0.84 0.84 0.65 0.68 0.85 0.83 0.81

ECOR38-a 0.74 0.58 0.85 0.75 0.82 0.79 0.74 0.72 0.77 0.77 0.79 0.64 0.71 0.60 0.84 0.96 0.79 0.78 0.73 0.73 0.72 0.73 0.81 0.73 0.75

ECOR57-a 0.83 0.74 0.82 0.75 0.87 0.77 0.69 0.74 0.72 0.78 0.79 0.73 0.81 0.69 0.76 0.74 0.83 0.85 0.73 0.68 0.73 0.68 0.81 0.72 0.69

ECOR67-a 0.84 0.74 0.88 0.82 0.87 0.84 0.83 0.76 0.77 0.86 0.89 0.76 0.81 0.73 0.84 0.82 0.84 0.97 0.81 0.83 0.76 0.70 0.90 0.85 0.79

ECOR72-a 0.79 0.65 0.85 0.79 0.77 0.84 0.84 0.62 0.75 0.81 0.85 0.73 0.76 0.66 0.83 0.76 0.74 0.79 0.95 0.83 0.61 0.68 0.81 0.82 0.78

GMB07-a 0.70 0.65 0.84 0.74 0.69 0.83 0.84 0.62 0.70 0.74 0.89 0.72 0.67 0.66 0.84 0.75 0.79 0.78 0.83 0.98 0.63 0.66 0.81 0.88 0.83

GMB23-a 0.73 0.72 0.65 0.72 0.74 0.76 0.62 0.62 0.69 0.67 0.69 0.71 0.70 0.78 0.69 0.74 0.71 0.74 0.59 0.62 0.99 0.60 0.69 0.67 0.64

GMB52-a 0.71 0.69 0.74 0.77 0.72 0.77 0.75 0.70 0.69 0.77 0.72 0.66 0.69 0.67 0.76 0.75 0.72 0.75 0.70 0.69 0.69 0.95 0.82 0.74 0.76

GMB76-a 0.80 0.70 0.80 0.77 0.78 0.86 0.81 0.74 0.67 0.77 0.79 0.68 0.78 0.70 0.76 0.78 0.75 0.80 0.78 0.75 0.67 0.69 0.93 0.78 0.74

GMB83-a 0.78 0.68 0.89 0.79 0.79 0.89 0.85 0.89 0.69 0.72 0.79 0.75 0.75 0.72 0.86 0.81 0.82 0.84 0.84 0.87 0.69 0.66 0.83 0.88 0.82

H1-1218-a 0.74 0.64 0.70 0.64 0.73 0.76 0.73 0.72 0.71 0.66 0.68 0.75 0.71 0.64 0.69 0.64 0.70 0.74 0.73 0.72 0.72 0.60 0.70 0.77 0.74

ECOR10-b 0.94 0.70 0.72 0.71 0.81 0.81 0.76 0.67 0.70 0.69 0.78 0.75 0.71 0.68 0.72 0.72 0.77 0.80 0.72 0.66 0.70 0.62 0.77 0.72 0.66

ECOR18-b 0.69 0.79 0.66 0.60 0.69 0.73 0.66 0.66 0.78 0.67 0.70 0.72 0.64 0.68 0.65 0.64 0.65 0.71 0.67 0.66 0.77 0.62 0.67 0.71 0.67

ECOR32-b 0.76 0.63 0.90 0.84 0.76 0.84 0.83 0.84 0.69 0.76 0.76 0.86 0.69 0.72 0.65 0.82 0.76 0.80 0.79 0.82 0.69 0.71 0.81 0.84 0.81

ECOR38-b 0.75 0.62 0.85 0.96 0.74 0.82 0.76 0.75 0.74 0.75 0.78 0.81 0.64 0.72 0.64 0.82 0.79 0.78 0.73 0.74 0.74 0.70 0.80 0.75 0.77

ECOR57-b 0.81 0.68 0.80 0.79 0.83 0.84 0.74 0.79 0.71 0.72 0.75 0.82 0.70 0.77 0.65 0.76 0.79 0.86 0.71 0.77 0.71 0.68 0.82 0.75 0.76

ECOR67-b 0.83 0.76 0.83 0.78 0.85 0.97 0.79 0.78 0.74 0.75 0.80 0.84 0.74 0.80 0.71 0.80 0.78 0.86 0.75 0.79 0.73 0.67 0.86 0.81 0.78

ECOR72-b 0.76 0.66 0.84 0.73 0.73 0.81 0.95 0.83 0.59 0.70 0.78 0.84 0.73 0.72 0.67 0.79 0.73 0.71 0.75 0.82 0.58 0.67 0.78 0.81 0.76

GMB07-b 0.69 0.66 0.84 0.73 0.68 0.83 0.83 0.98 0.62 0.69 0.75 0.87 0.72 0.66 0.66 0.82 0.74 0.77 0.79 0.82 0.63 0.64 0.81 0.89 0.82

GMB23-b 0.72 0.73 0.65 0.72 0.73 0.76 0.61 0.63 0.99 0.69 0.67 0.69 0.72 0.70 0.77 0.69 0.74 0.71 0.73 0.58 0.63 0.60 0.69 0.68 0.65

GMB52-b 0.64 0.62 0.68 0.73 0.68 0.70 0.68 0.66 0.60 0.95 0.69 0.66 0.60 0.62 0.62 0.71 0.70 0.68 0.67 0.67 0.64 0.60 0.75 0.68 0.71

GMB76-b 0.79 0.72 0.85 0.81 0.81 0.90 0.81 0.81 0.69 0.82 0.93 0.83 0.70 0.77 0.67 0.81 0.80 0.82 0.86 0.78 0.81 0.69 0.75 0.80 0.78

GMB83-b 0.73 0.75 0.83 0.73 0.72 0.85 0.82 0.88 0.67 0.74 0.78 0.88 0.77 0.72 0.71 0.84 0.75 0.75 0.81 0.81 0.89 0.68 0.68 0.80 0.83

H1-1218-b 0.71 0.71 0.81 0.75 0.69 0.79 0.78 0.83 0.64 0.76 0.74 0.82 0.74 0.66 0.67 0.81 0.77 0.76 0.78 0.76 0.82 0.65 0.71 0.78 0.83
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replicated once again if results indicative of a possible contamination (multiple 

positive reactions in uncommon E. coli substrates) were obtained. 

 

4.2.1.3. Qualitative observation of respiration and necessity for an 

optical density threshold determination 

 

The presence of purple colour is indicative of tetrazolium reduction and thus of the 

utilisation of the substrate as a sole C-source. We first visually assessed the plates 

after 24h incubation at 37°C to produce a binary output indicating the utilisation 

(purple colour is seen) or not (the well remains colourless) of the 95 C-sources for 

170 tested strains (GMB and ECOR). On average, the 170 tested strains were able to 

grow on 44/95 C-sources, or 46.3% of all substrates available on a GN2 plate. The 

number of C-sources used by either ECOR or GMB was also around 43 to 44 C-

sources (Figure 4.3), although the difference between the two collections was 

statistically significant (two-tailed t-test; t=2.296; p=0.0229). 

 

 

Figure 4.3. Number of C-sources from a Biolog GN2 

plate utilised by ECOR (n=72) and GMB (n=98) strains 

after 24h incubation at 37°C (positive tests determined 

visually by assessing tetrazolium reduction). Boxplots 

represent the 25th to 75th percentile and outliers are 

represented by dots. The asterisk indicates statistical 

significance (p<0.05; see text). 
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Despite this coherent observation, the qualitative visual examination of test results is 

not very powerful and is very subjective for C-sources supporting slow growth, the 

purple colour being very faint. Not in possession of an Omnilog system, we chose to 

adopt the measurement of optical density using a classical 96-well plate 

spectrophotometer to get a quantitative dataset of C-source utilisation across our 

tested strains, as also performed in multiple studies (King et al., 2004; Ihssen et al., 

2007; Maharjan et al., 2007). We found a very high correlation between tetrazolium 

reduction and OD600 general levels (data not shown), which led us to use OD600 

measurements only and not rely on the visual inspection of the plates. 

 

There is a similar problem of subjectivity when determining which C-source is used 

or not using OD600 data. Previous studies used arbitrarily decided thresholds for 

determining positive tests, such as OD600>0.2 (Maharjan, Seeto et al. 2007). In order 

to reduce any subjective bias as much as possible, we developed a method to 

empirically determine a threshold for positive tests using OD600 and Biolog plates, 

with the help of Kate Kemsley (Bioinformatics & Statistics, IFR). First, a subset of 26 

C-sources were identified as “non-utilised” from examination of the tetrazolium 

reduction and comparison between strains (Table 4.2) 

 

Table 4.2. C-sources considered as “non-utilised” (utilised by less than 2% of all 170 strains) for 

empirical threshold determination. 

α-Cyclodextrin Succinamic Acid Itaconic Acid L-Pyroglutamic Acid 

Glycogen L-Alaninamide α-Keto Butyric Acid L-Threonine 

Tween 40 L-Histidine α-KetoValeric Acid γ-Amino Butyric Acid 

i-Erythritol Hydroxy-L-Proline Malonic Acid Urocanic Acid 

Xylitol L-Leucine Quinic Acid Phenyethylamine 

α-Hydroxybutyric Acid L-Ornithine Sebacic Acid 
 

γ-Hydroxybutyric Acid L-Phenylalanine 2,3-Butanediol 
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The distribution of the OD600 data from these sources is shown in Figure 4.4A. This 

figure is a good illustration of the need to setup an empirically defined threshold. All 

these C-sources are not utilised by any tested E. coli when the plates are visually 

assessed for tetrazolium reduction. Yet, the OD600 values range between 0 and 0.65 

(Figure 4.4A), possibly because of inoculum carry-over or technical variability. If an 

arbitrary threshold was to be defined at OD600>0.2 as suggested in previous studies 

(Maharjan, Seeto et al. 2007), C-sources such as the ones below that are not utilised 

by E. coli would appear positive. 

 

Figure 4.4. Empirical definition of a statistical threshold for positive carbon source utilisation; 

(A) Histogram (red columns) shows OD600 values across 26 non-utilised carbon sources; kernel density 

estimation of the probability density function is represented by the black line and its cumulative density 

function in panel (B), showing values for 5% and 1% tails. See text for details. This figure was 

produced with the help of E. Kate Kemsley (IFR). 
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In contrast to the approach reported by Sabarly et al 2011, we did not find it possible 

to adequately model the OD600 values using parsimonious Gaussian mixture models. 

Instead, kernel density estimation was used to obtain a non-parametric probability 

density function. The kernel bandwidth was optimised by cross-validation; a normal 

kernel function was employed. The thresholds demarcating the upper 5% and 1% tails 

of the distribution were found to be 0.40 and 0.63 respectively (Figure 4.4B). We 

have used this latter, more conservative threshold to pre-process the complete OD600 

dataset, by setting all values less than 0.63 to zero; that is to say, only OD600 values 

higher than this threshold are taken as indicative of carbon source utilisation after 24 h 

incubation.  

 

4.2.2. Variation in C-source utilisation by ECOR and GMB strains 

 

4.2.2.1. General qualitative comparison of metabolic abilities 

 

Using the threshold defined in section 4.2.1.3., we compared the number of positive 

tests between ECOR and GMB strains, as we did after visual assessment for 

tetrazolium reduction (Figure 4.4). 
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Figure 4.4. Number of C-sources from a Biolog 

GN2 plate utilised by ECOR (n=72) and GMB 

(n=98) strains after 24h incubation at 37°C 

(positive tests determined as tests with 

OD600>0.63). Boxplots represent the 25th to 75th 

percentile and outliers are represented by dots. 

The asterisk indicates statistical significance 

(p<0.0001; see text). 

 

 

 

The average numbers of C-sources used were 40.96 ± 0.5276 for ECOR strains and 

38.54 ± 0.3656 for GMB strains, and their difference was very significant (two-tailed 

t-test; t=3.890; p<0.0001). The number of positive C-sources was slightly lower than 

what we had visually assessed earlier (Figure 4.3), which reflects the 

conservativeness of the approach we chose to adopt to define positive tests. We then 

compared how substrates from the different chemical guilds (Table 3.1) were utilised 

by ECOR and GMB strains (Figure 4.5). 
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Figure 4.5. Utilisation of substrates from various chemical guilds by ECOR and GMB strains (see 

text and Table 3.1). Asterisks indicate statistical significance after a Dunn’s post-hoc comparison test 

(p<0.0001). 

 

A Kruskal-Wallis test expectedly confirmed the statistical differences between the 

utilisation of the different substrate guilds (statistic=2800; p<0.0001). More 

interestingly, a Dunn’s post-hoc comparison test showed that significant differences 

between ECOR and GMB were restricted to the utilisation of amino acids (p<0.0001), 

whereas other guilds were not statistically different. 
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4.2.2.2. Identification of individual C-sources showing different 

utilisation patterns 

 

To further the investigation on metabolic differences between ECOR and GMB 

strains, we compared utilisation at the individual C-source level (Table 4.3). We 

initially calculated the difference in percentage of strains from each collection able to 

use individual C-sources for growth at OD600>0.63 after 24 h at 37°C (Table 4.3). 

 

Table 4.3. C-sources showing more than 10% difference between the percentage of positive 
ECOR and GMB strains. Positive isolates grew at OD600>0.63 after 24 h at 37°C (see text). 

GN2 well C-source %ECOR %GMB Differencea 

F09 L-Aspartic Acid 51.4% 7.1% 44.2% 

G09 L-Serine 72.2% 39.8% 32.4% 

G06 L-Proline 51.4% 20.4% 31.0% 

G08 D-Serine 63.9% 36.7% 27.2% 

E08 Propionic Acid 36.1% 9.2% 26.9% 

H10 D,L-α-Glycerol Phosphate 93.1% 67.3% 25.7% 

F05 D-Alanine 73.6% 52.0% 21.6% 

F08 L-Asparagine 22.2% 3.1% 19.2% 

B09 Lactulose 38.9% 20.4% 18.5% 

E12 Succinic Acid 94.4% 76.5% 17.9% 

F01 Bromosuccinic Acid 84.7% 67.3% 17.4% 

H03 Uridine 93.1% 76.5% 16.5% 

F10 L-Glutamic Acid 15.3% 0.0% 15.3% 

A03 Dextrin 91.7% 77.6% 14.1% 

F11 Glycyl-L-aspartic Acid 52.8% 38.8% 14.0% 

C07 Sucrose 45.8% 68.4% -22.5% 

E01 p-Hydroxy-Phenylacetic Acid 43.1% 67.3% -24.3% 

C04 D-Raffinose 51.4% 76.5% -25.1% 
 

a. Positive values indicate C-sources preferentially used (by more than 10%) by ECOR strains; negative values 
indicate C-sources preferentially used (by more than 10%) by GMB strains. 

 

There were more C-sources preferentially used by ECOR than by GMB strains. The 

overall biggest differences between the two collections were for amino acid utilisation 
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as C-source, as 8 amino acids out of 20 present on GN2 plates were preferentially 

used by ECOR strains (Table 4.3), possibly explaining the statistical difference 

between ECOR and GMB amino acid utilisation observed earlier (Figure 4.5). For 

example, more than half of all ECOR strains were able to use L-aspartic acid after 24 

h at 37°C compared to slightly more than 7% of GMB only (44.2% difference). 

Similarly, generally around 30% more strains in ECOR were able to use L- and D-

serine and L-proline (Table 4.3). Only 3 C-sources were preferentially used by GMB: 

sucrose, p-hydroxy-phenylacetic acid (p-HPA) and D-raffinose (Table 4.3). 

 

To test if these differences were important in the overall metabolic profile variation 

between ECOR and GMB strains, we used multivariate analysis. The OD600 dataset 

was treated with partial least square discriminant analysis (PLS-DA) to look for 

evidence of grouping according to ECOR or GMB (Figure 4.6). PLS is a supervised 

modelling method that differs from the well-known PCA in the sense that the user a 

priori  specifies the groupings to test (hence the supervision), in our case, ECOR and 

GMB. The consequence is that even a PLS plot resulting from random values will 

show groupings, which is why cross-validation is required to test the robustness of the 

specified groups. 
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Figure 4.6. PLS-DA plot using 

ECOR and GMB as groups. The % 

in axes labels indicate how much of 

the total dataset variation is 

represented by the corresponding 

axes. This figure was created with 

the help of E. Kate Kemsley (IFR). 

 

In our case, it was found that 2 PLS dimensions alone are sufficient to discriminate 

the collections with a cross-validation success rate of 81.8%. Adding a third PLS 

dimension increased the success rate to 83.5% which was the maximum 

discrimination ability that could be obtained (Table 4.4). 

 

Table 4.4. Cross-validation success rates in PLS-DA using ECOR and GMB as groups for model 

dimensions up to 10. The maximum cross-validation success rate is highlighted and represents 3 PLS-

DA dimensions. On Figure 4.6, we represented only 2 dimensions for clarity, which corresponded to a 

81.8% success rate. This table was created with the help of E. Kate Kemsley (IFR). 

PLS-DA 
model 

dimensions 

By collection 
Across all 

observations 
ECOR GMB 

% correct 
% correct 

1 75 78.6 77.1 
2 80.6 82.7 81.8 

3 79.2 86.7 83.5 

4 77.8 82.7 80.6 
5 76.4 83.7 80.6 
6 76.4 82.7 80 
7 76.4 83.7 80.6 
8 72.2 82.7 78.2 
9 70.8 83.7 78.2 
10 68.1 81.6 75.9 
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This PLS-DA analysis confirms that ECOR and GMB strains form distinct groups 

and do not have the same Biolog GN2 profiles. In other words, isolates from 

secondary nonhost environments have different metabolic profiles than host isolates  

after 24 h incubation at 37°C. In order to get some ecological meaning from these 

trends, we performed nonparametric Mann-Whitney-Wilcoxon tests for each 

individual C-source to determine which were showing the most significant difference 

between ECOR and GMB (Figure 4.7, Table 4.5). This analysis varies from the 

result of Table 4.3 in which we only compared proportions of strains from each 

collection. In Figure 4.7 and Table 4.5, we show the output of a statistical 

comparison taking into account the levels of OD600 reached after 24 h incubation at 

37°C. C-sources significantly associated with collection-associated variation are 

presented in Figure 4.7, along with the frequency distribution of OD600 of these C-

sources. 
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Figure 4.7. C-sources statistically associated with collection-associated variation in OD600 levels 

after 24 h of incubation at 37°C on Biolog GN2 plates. Red line is ECOR, black line is GMB. 

Indicated p-values are from individual Mann-Whitney-Wilcoxon tests for each C-source with a 

Bonferroni correction. 

 

Strikingly, the C-sources found to cause the most variation between ECOR and GMB 

were not completely overlapping the results of Table 4.3, indicating that the levels of 

OD600 reached after 24 h at 37°C are important factors in defining the difference 

between the two collections. These C-sources found to differ in levels of utilisation 

were always generally used at higher levels by ECOR strains than GMB strains after 

24 h, as suggested by the frequency plots on Figure 4.7. This observation was 
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particularly true for α-D-glucose, D-mannitol, D-trehalose, D-fructose, and succinic 

acid.  

 

Table 4.5. C-sources found to show most variation between ECOR and GMB and their utilisation 

abilities. This table was created in collaboration with E. Kate Kemsley (IFR). 

GN2 
well C-source 

Utilisation  (OD600>0.63) 
MWW  
p-value 

Median OD600 

%ECOR %GMB Diff. ECOR GMB 

A03 Dextrin 91.7% 77.6% 14.1% <0.0001 0.98 0.76 

B02 D-Fructose 100.0% 98.0% 2.0% <0.0001 1.79 1.13 

B06 α-D-Glucose 100.0% 99.0% 1.0% <0.0001 1.95 1.37 

B11 D-Mannitol 100.0% 100.0% 0.0% <0.0001 1.86 1.18 

C08 D-Trehalose 100.0% 100.0% 0.0% <0.0001 2.14 1.86 

E08 Propionic Acid 36.1% 9.2% 26.9% <0.0001 0.54 0.38 

E12 Succinic Acid 94.4% 76.5% 17.9% <0.0001 1.32 0.90 

F09 L-Aspartic Acid 51.4% 7.1% 44.2% <0.0001 0.62 0.22 

G06 L-Proline 51.4% 20.4% 31.0% <0.0001 0.70 0.23 

G09 L-Serine 72.2% 39.8% 32.4% <0.0001 0.96 0.49 

H03 Uridine 93.1% 76.5% 16.5% <0.0001 1.39 0.98 

H10 
D,L-α-Glycerol 

Phosphate 
93.1% 67.3% 25.7% <0.0001 1.13 0.88 

H11 
α-D-Glucose-1-

Phosphate 
100.0% 100.0% 0.0% <0.0001 2.03 1.85 

F08 L-Asparagine 22.2% 3.1% 19.2% <0.0001 0.22 0.20 

F05 D-Alanine 73.6% 52.0% 21.6% 0.0001 0.96 0.58 

H02 Inosine 98.6% 100.0% -1.4% 0.0001 1.80 1.60 

F10 
L-Glutamic 

Acid 
15.3% 0.0% 15.3% 0.0003 0.21 0.18 

H04 Thymidine 98.6% 98.0% 0.7% 0.0003 1.61 1.51 

 

Interestingly, many C-sources showing the most variation between ECOR and GMB 

often used by most, if not all the strains (Table 4.5) suggest that the uptake of C-

sources is differentially affected in the two collections rather than the presence or 

absence of metabolic genes in one and not the other. This suggestion is consistent 

with the observation that most of the C-sources in Figure 4.7 and Table 4.5 are 

common substrates for growth (α-D-glucose, D-mannitol, D-trehalose, D-fructose). 
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The lower levels of growth on common C-sources exhibited by GMB strains can be 

caused by a slower metabolism. To confirm this observation, we selected a subset of 5 

ECOR and 10 GMB strains that we grew using Biolog GN2 plates at 24 h, 48 h and 

72 h (Figure 4.8). 

 

Figure 4.8. Comparison of average growth levels reached after 24 h, 48 h and 72 h by 5 ECOR 

strains and 10 GMB strains on Biolog GN2 plates on selected C-sources. Red bars represent 

averages of 5 ECOR results after 3 different times of incubation (24, 48 and 72 h). Green bars represent 

averages of 15 GMB results after 3 different times of incubation (24, 48 and 72 h). Thirteen C-sources 

showing the most difference between ECOR and GMB at 24 h were included, as well as 5 C-sources 

showing no difference between ECOR and GMB at 24 h. 

 

Although the 13 C-sources we examined in this experiment all had lower levels at 24 

h in the GMB strains, they showed the same levels of utilisation as ECOR strains after 

72 h. The only statistically significant difference we found was for the utilisation of 

L-aspartic acid by GMB and ECOR strains at 72 h (two-sided t-test; t=3.277; p<0.05), 

which reached very high levels in GMB comparatively to ECOR. However, we did 

not find any statistical significance in the rest of the data, even for the 24 h time point, 
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most probably because of the low number of strains used. In any case, the general 

trend was that although growth levels at 24 h were lower for GMB strains, in almost 

all the cases, they were slightly higher than ECOR at 72 h, indicating that the low  

metabolic abilities observed for GMB strains at 24 h are possibly caused by a slower 

assimilation and utilisation, and not by lower efficiency of metabolic pathways. To be 

certain of this, a reproduction of this experiment with a higher number of strains 

grown in Biolog GN2 for longer than 24 h would be necessary. 

 

In this section, we introduced a novel way to use OD600 data from Biolog experiments 

to compare metabolic profiles of large numbers of isolates and showed phenotypical 

differences between plant and faecal isolates of E. coli. We observed after 24 h of 

incubation at 37°C that there were differences in the preferential utilisation of amino 

acids by ECOR and of sucrose, D-raffinose and the aromatic compound p-

hydroxyphenylacetic acid by GMB. We also showed that most of the C-sources 

explaining the biggest difference between the two collections of isolates were 

common C-sources used by all strains, possibly because of the different speed of 

uptake or metabolism. To investigate this last point further, we checked if there were 

any links between genetic content and the Biolog metabolic profiles using 

comparative genomic hybridisation (CGH). 

 

4.2.2.3. Genetic association with metabolic data using CGH  

 

In order to associate genetic information with observed metabolic phenotypes, we 

conducted association tests using Genespring built-in MWW tests with Bonferroni 

corrections. The Bonferroni correction is the most stringent multiple testing correction 
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method, which is suitable for microarray studies as given the experimental variation 

intrinsic to DNA hybridisation, weakly significant false positives can be common. 

Using these settings on the data produced by the genomes of 21 GMB and 20 ECOR 

strains hybridised on ShEcoliO157 microarrays (see Methods section 2.5), we sought 

to associate Biolog data to genomic information (Figure 4.9). 

 

 

Figure 4.9. CGH data for genes statistically associated with sucrose, raffinose and D-serine 

Biolog utilisation patterns. Blue denotes absent genes, yellow denotes present gene. The dendrogram 

above the gene information panel corresponds to clustering according to the Pearson correlation on the 

whole hybridised genomes. Below genetic information, black squares denote positive Biolog test for 

the corresponding C-source and white denotes a negative test. The dsdA gene was not statistically 

associated but was added to the figure to show the whole dsd operon (see text). 

 

We could associate the D-serine utilisation patterns with the well-described csc-dsd 

locus (Figure 4.9). Although dsdA was not found by association, it was added to 

confirm that the observed csc gene insertions were in accordance with the previously 

known mechanism of insertion into the dsd locus (Jahreis et al., 2002), which results 

in the deletion of dsdX and dsdC leaving dsdA intact. Surprisingly, not a single gene 

was statistically associated with sucrose utilisation after Bonferroni correction, 

although the inverted relationship between these two metabolisms is clear (Figure 
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4.9) and has been extensively documented (Alaeddinoglu and Charles, 1979; Jahreis 

et al., 2002). When a different false discovery rate correction method was used 

(Benjamini and Hochberg FDR correction), which in our experience is less stringent 

than the Bonferroni method, the same genes as those associated with the D-serine 

utilisation patterns were identified. This difference in association stringency could be 

explained by the fact that E. coli has 2 different pathways for sucrose metabolism 

(Reid and Abratt, 2005), but only one to metabolise D-serine. This explanation is 

supported by the observation that the inverted sucrose/D-serine phenotype was not 

systematic as some isolates could metabolise both sucrose and D-serine (Figure 4.9), 

indicating that some of our dsd+ strains can still use sucrose via another pathway, 

including plasmid-borne systems. Cross-utilisation between sucrose and D-raffinose 

has also been previously documented (Arr et al., 1970). However, D-raffinose 

utilisation was only weakly and not statistically significantly associated with the csc-

dsd locus. Also associated with sucrose and D-serine were 2 prophage genes (SF2039, 

a putative Q antiterminator of prophage and SF1885, a putative tail component. It has 

been documented that E. coli O157:H7 possessed phage-like elements in the 

proximity of the csc-dsd locus, which seemed to be conserved in other strains due to 

the proximity with a prophage insertion hotspot (Moritz and Welch, 2006).  

 

p-HPA is one of the compounds preferentially used as a sole carbon source by GMB 

over ECOR strains (Table 4.3). Only when no multiple testing corrections were 

applied, the genes most associated with p-HPA metabolism were expectedly found to 

be among the hpa catabolic locus (data not shown).This lack of strong association 

suggests that there may be additional regulatory factors to consider for explaining 

aromatic compound degradation pathways, such as the possible degradation by other 



 

226 
 

proteins encoded by genes from other aromatic compounds clusters (Diaz et al. 2001) 

that are not present on the microarrays. Another explanation on why genetic 

associations with metabolic phenotypes are weak may be that the chosen growth 

conditions in Biolog plates are not optimal to reflect the corresponding metabolic 

genetic content of our strains. Indeed in 5 strains, there was a discrepancy between the 

metabolic observation and the presence of hpa genes (GMB02, 18 and ECOR17 

showed no p-HPA degradation in vitro despite harbouring hpa genes; and GMB23 

and ECOR71 showed the phenotype but did not harbour hpa genes; data not shown). 

Accepting that we use a conservative approach in our Biolog experiment (some 

phenotypes may not be detected after 24 h even if the strain is actually able to use the 

corresponding C-sources) it is understandable that genetic and phenotypic information 

are not perfectly matched. It may also just be that we did not include enough samples 

in the CGH study (41 strains out of 178 strains, or only about 23% of all strains in our 

collection are represented). Lastly, the E. coli pangenome has been estimated to 

include an estimation of 18,000 gene families (Lukjancenko et al. 2010), which 

obviously are not represented on a ShEcoliO157 array.  

 

We tested all other C-sources present on a Biolog plate but not a single other one 

showed any association with genetic information. The biggest limitation of the 

approach detailed in this section is that association can only be made when we 

observed phenotypical variation. This suggests that within the boundaries of our 

study, the csc-dsd locus was the most highly variable and possibly correlated genetic 

cluster with Biolog GN2 carbon source utilisation patterns. 
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4.2.3. Phylogenetic distribution of metabolic abilities 

 

A key consideration in any microbial population study is the link between phylogeny 

and ecology. Being informed about the phylogenetic relationships between strains 

(Chapter 3 of this thesis) and some of their phenotypes, we were interested in 

connecting both by examining whether strains from different phylogenetic 

backgrounds have different ecological strategies, as monitored by their metabolic 

profiles. This type of association has rarely been shown in E. coli (Sankar et al. 2009; 

Sabarly et al. 2011). We used the same PLS-DA statistical pipeline as the one we used 

to examine variability across collections (Figure 4.6, Table 4.4), this time using 

phylogroups as a potential discriminating factor (Figure 4.10, Table 4.6). 

 

 

Figure 4.10. PLS-DA plot using phylogroups A, B1, B2, D and E as groupings to test. Blue 

diamonds are strains from phylogroup A, red squares from B1, green triangles from B2, purple circles 

from D and cyan crosses from E. The % in axes labels indicate how much of the total dataset variation 

is represented by the corresponding axes. The corresponding cross-validation calculations are shown in 

Table 4.6. This figure was created with the help of E. Kate Kemsley (IFR). 
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Visually, from the PLS-DA plot (Figure 4.10), it was strikingly obvious that profiles 

from phylogroup A and B1 were very different. Phylogroup B2 strains also seemed to 

discriminate, and it was less obvious for phylogroup D strains. As expected, 2 PLS 

dimensions alone were sufficient to discriminate the collections with a cross-

validation success rate of 62.5%. The maximum successful discrimination was 

obtained using 4 PLS dimensions, for a cross-validation rate of about 75% (Table 

4.4). 
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Table 4.6. Cross-validation success rates in PLS-DA using phylogroups as groupings for model 

dimensions up to 10. The maximum cross-validation success rate (74.4%) is highlighted and 

represents 7 PLS-DA dimensions. On Figure 4.6, we represented only 2 dimensions for clarity, which 

corresponded to a 62.5% success rate. Done with the help of E. Kate Kemsley (IFR) 

 

PLS-DA 
model 

dimensions 
A B1 B2 D All 

1 63.3 65.5 31.8 35.5 55.0 

2 77.6 69.0 63.6 45.2 62.5 

3 75.5 67.2 77.3 58.1 63.1 

4 71.4 77.6 81.8 61.3 67.5 

5 75.5 77.6 77.3 58.1 70.6 

6 75.5 77.6 72.7 58.1 72.5 

7 73.5 75.9 72.7 51.6 74.4 

8 71.4 79.3 72.7 51.6 73.8 

9 71.4 81.0 77.3 51.6 73.1 

10 69.4 81.0 72.7 54.8 70.6 

 

 

These calculations indicate that whole Biolog profiles can be discriminated according 

to the phylogroups of the corresponding isolates. In other words, strains from different 

phylogenetic backgrounds have different metabolic abilities. In order to identify these 

differences, we performed individual Kruskal-Wallis tests for each C-source using 

thresholded OD600 data. We found 13 C-sources whose utilisation distribution was not 

random across phylogroups (Figure 4.11).  
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���� Figure 4.11. Phylogenetically distributed C-source utilisation patterns in our tested E. coli 

collection (n=170). ECOR and GMB strains are mixed. C-sources are ordered according to the p-

values after individual Kruskal-Wallis tests. The p-values have been adjusted using the Bonferroni 

correction. Boxplots represent the distribution of OD600 values for each phylogroup. Phylogroups E and 

F were excluded from the analysis because of their low sample size. The asterisks represent statistically 

significant differences between groups after a Dunn’s post-hoc comparison test and the number of 

asterisks represent different significance thresholds (* for p<0.05; ** for p<0.001; *** for p<0.0001). 

 

 

Visually, the differences in C-source utilisation distribution after 24 h of incubation at 

37°C for the most significantly associated C-sources (D-serine, p-HPA, sucrose, D-

raffinose and L-serine) is strikingly clear, and is reflected by a very low Kruskal-

Wallis p-values. D-serine utilisation, the most significantly associated with a 

phylogroup-dependent variation was generally used by phylogroup A and B2 strains 

and not by phylogroup B1 and D strains (Figure 4.11). As expected, the D-serine and 

sucrose/raffinose distributions are inverted, with strains from phylogroups B1 and D 

using sucrose and raffinose in clear majority. Surprisingly, p-HPA is also very 

strongly associated with a non-random phylogenetic distribution, and follows the 

same pattern as for sucrose utilisation. This observation interestingly suggests that the 

acquisition and maintenance of accessory metabolic genes (such as the sucrose and 

aromatic compounds metabolic clusters) is not uniform within bacterial species but is 

linked to specific phylogenetic histories. 

 

It was shown previously that p-HPA is generally not used by phylogroup B2 strains 

(Sabarly et al. 2011), as we also observed. However, for sample homogeneity reasons, 

Sabarly et al. (2011) grouped strains A and B1 together, missing the differences 
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between these phylogroups. When groups were compared between them, it is actually 

B1 that was statistically different (p<0.001) from all others (Figure 4.11).  

 

Differences in the utilisation patterns of other associated C-sources did not follow the 

same trends. L-rhamnose and N-acetyl-D-galactosamine showed a very strong 

difference in utilisation by strains from phylogroup A. Common C-sources, such as 

glucose, fructose and lactose also showed phylogenetically-distributed utilisation 

patterns (Figure 4.11). Interestingly, we observed a generally great difference in 

utilisation patterns between phylogroup A and B1 strains, which is unexpected as 

these phylogroups are believed to have recently diverged, and thus share higher 

degrees of functional similarity, which we show here is not the case. 

 

4.2.4. Conclusive remarks on host vs. nonhost metabolic variability  

 

Based on the observations of the metabolic study presented in section 4.2., we can 

conclude that there are two different levels of metabolic differences between nonhost 

and host isolates of E. coli. First, the metabolism of common “core” C-sources (used 

by all strains of E. coli) mostly occurs at lower speeds in nonhost strains compared to 

host strains. Secondly, the possession of specific genetic information (the laterally 

acquired sucrose and aromatic compound metabolic clusters) is also significantly 

playing a role in differentiating nonhost from host strains. 

 

Intra-species differences in levels of nutrient acquisition have previously been linked 

to variations in the self-preservation and nutritional competence (SPANC) balance 

(Ferenci, 2005). It is believed that within bacterial populations such as E. coli, there is 
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a trade-off between the acquisition of nutrients and resistance to stressful conditions, 

as a correlation between those two traits has been observed (De Paepe et al., 2011) 

and even linked to intracellular RpoS concentration (Ferenci, 2005; De Paepe et al., 

2011; Ferenci et al., 2011). It sounds indeed ecologically plausible that GMB strains 

have adapted to better resist stressful conditions such as those found in nonhost 

environments, especially if they transferred from multiple environments such as water 

and soil before being isolated from plants. However, although we have a possible 

indirect indication of it with the lower nutrient acquisition abilities we observed, we 

did not test for stress resistance in this work. This information could confirm or not 

the hypothesis that the SPANC balance has an important ecological role in nonhost 

adaptation by environmental E. coli strains isolated from plants. 

 

As a major difference from faecal isolates of the ECOR collection, GMB plant 

isolates were observed to be better metabolisers of sucrose, a carbohydrates used as an 

energy transport molecule found in great abundance in plant vascular tissues and 

raffinose, a plant-associated trisaccharide sharing metabolic requirements with 

sucrose. It is worth noting that in E. coli, sucrose utilisation has been described to be 

inversely linked to D-serine utilisation, because of a genetic insertion of the csc genes 

of sucrose metabolism in the dsd (D-serine utilisation) metabolic cluster (Jahreis et 

al., 2002). In our Biolog dataset, the sucrose profiles were indeed most significantly 

correlated with the D-raffinose profiles (Spearman correlation; rS=0.6068, p≈10-18) 

and the D-serine profiles (rS=–0.4652, p≈10-10). This high correlation observed 

between raffinose and sucrose profiles is consistent with a shared metabolic pathway, 

as it indicates that many sucrose-positive or -negative strains are also correspondingly 

raffinose-positive or -negative. Plant isolates were also observed to be better 
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metabolisers of p-HPA, an aromatic compound generally found in abundance in soils 

(Diaz et al., 2001). These differences have obvious ecological meaning for these 

agricultural isolates and allow us to get a clearer picture on the signatures of nonhost 

association in plant-associated E. coli. 

 

4.3. Colonisation-associated phenotypes 

 

To further our phenotypic characterisation and comparative analysis of plant and 

faecal isolates of E. coli, we performed assays to test for phenotypes that have been 

reported to generally enhance the colonisation of new environments: biofilm 

formation, flagellar motility and siderophore production. 

 

4.3.1. Comparison of biofilm formation by plant and host isolates and 

their motility  

 

Indeed, components of the extracellular matrix, the most important factor in biofilm 

formation by Enterobacteriaceae, have been linked to an increased persistence and 

attachment on plants (see Introduction section 1.3.2.1) and an increased survival to 

dessication, an important type of stress in the phyllosphere. We used the crystal violet 

assay (see Methods section 2.7.1) to quantify biofilm formation among our isolates. 

Briefly, this in vitro assay relies on the irreversible staining of bacteria with crystal 

violet. When forming a biofilm on polystyrene surfaces (i.e., at the surface of 

microtitre plates wells, bacteria become firmly attached and cannot be washed away, 

as opposed to planktonic bacteria, and can thus be quantified). We used conditions 

previously known (Landini et al. 2006) to induce higher biofilm production in E. coli: 
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lower temperature (28°C-30°C) and growth in CFA medium (see Methods section 

2.7.1 and Introduction section 1.3.2.1). 

 

 

Figure 4.12. Biofilm formation by ECOR (n=72) and GMB (n=106) strains after 72 h of 

incubation at 30°C and 37°C. Asterisks indicate statistical significance after a Dunn’s post-hoc 

comparison after a Kruskal-Wallis test. “30” or “37” after GMB or ECOR label denotes the 

temperature at which biofilm formation was examined. The number of asterisks reflects the 

significance threshold, with *: p<0.05; **: p<0.001 and ***: p<0.0001. 

 

Expectedly, all strains formed very significantly less biofilm at 37°C than at 30°C 

(Figure 4.12). Also, GMB strains formed statistically more biofilm than ECOR 

strains, and this difference was more significant at 37°C than at 30°C. This result 

indicates that GMB strains are able to form more biofilms in vitro than ECOR strains. 
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As we mentioned above, the advantage of biofilm formation has been suggested for 

the establishment of E. coli and Salmonella in the phyllosphere. First described as an 

advantage in aquatic ecosystems, it is also believed that biofilm formation could help 

bacteria resist desiccation in stressful living conditions such as those that can arise in 

agricultural conditions on plants, but also in soils. In that sense, it is not surprising to 

see that E. coli strains isolated from nonhost environments tend to be more efficient at 

producing an extracellular matrix than faecal isolates. The possibility that biofilm 

formation by E. coli provides a selective advantage during nonhost life has already 

been hypothesised based on the dissection of the genetic regulation affecting 

biosynthetic genes related to the extracellular matrix (Landini et al. 2006). Indeed, the 

capsule synthesis master regulator CsgD and the biosynthetic csg operons encoding 

curli, the major proteinaceous fimbriae of the enterobacterial extracellular matrix are 

upregulated at low temperature, low osmolarity and during stationary phase of 

growth, which would tend to correspond more to extra- than intra-host life conditions 

(Landini et al. 2006). Our observation that nonhost-associated strains produce more 

biofilm than host-associated strains also contributes to the hypothesis that biofilms are 

ecologically important in E. coli for nonhost lifestyles and persistence (see 

Introduction section 1.3.2.1). 

 

Flagellar motility has been linked to an increased colonisation of rocket salad and 

spinach leaves by pathogenic E. coli and of basil and lettuce leaves by Salmonella 

enterica (see Introduction section 1.3.2.1). We then examined the frequency of 

motility among ECOR and GMB strains. We qualitatively assessed the ability of 

strains to swim in commercial motility agar after stabbing of an overnight culture 

(Figure 4.13). 
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Figure 4.13. Flagellar motility 

frequencies at 37°C for ECOR (n=71) 

and GMB (n=101) strains. The asterisk 

indicates statistically significant 

frequencies (p<0.05). 

 

GMB strains were found to be more motile at 37°C than ECOR strains 

(GMB=80/101, 79.2%; ECOR=45/71, 63.4%; Two-sided χ² test; χ²=5.259; p=0.0218). 

In the light of the previously published literature on the importance of flagella for 

plant colonisation, this observation is ecologically significant and as for the increased 

biofilm formation, may reflect enrichment for ecologically relevant plant colonisation 

mechanisms in plant isolates of E. coli. 

 

4.3.2. Effect of plant auxin-derivatives on biofilm formation by plant 

isolates of E. coli 

 

If and how plants interact with non-pathogenic immigrating bacteria or even with 

seemingly neutral (i.e. non-interacting) microbial communities living on or next to 

them remains poorly understood. It is believed that the synthesis of plant hormones, 

some of which are volatile, can affect phytosphere microbial communities and 
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immigrating bacteria. Two major hormones of plants, jasmonic acid (JA) and salicylic 

acid (SA) have been shown to effect on the structure and diversity of epi- and 

endophytic microbial communities of Arabidopsis thaliana (Kniskern et al., 2007). It 

was shown that impairing the Arabidopsis SA-mediated pathways reduced endophytic 

diversity, whereas the lack of the JA-mediated defenses pathway increased the 

diversity of epiphytic bacteria (Kniskern, Traw et al. 2007). Regarding immigrating 

bacteria, it has been shown in vitro that the plant auxin derivatives had an impact on 

E. coli in vitro cultures. The addition of the plant auxin indole-3-acetic acid (IAA) to 

growing cultures of E. coli K-12 increased their resistance in vitro to various stresses 

and antibiotics, and slightly but significantly increased their biofilm formation 

(Bianco et al., 2006). More recently, contradicting results have been produced, as IAA 

and more importantly 3-indoleacetonitrile (IAN) could very significantly decrease 

(and not increase) in vitro biofilm formation of E. coli O157:H7 (Lee et al., 2011). 

From a comparison of the protocols used in these two studies, it would seem that the 

difference is more attributable to strain-specific effects rather than a concentration or 

a temperature effect.  

 

It is then very interesting to examine the effect of plant auxin derivatives on biofilm 

formation in large number of strains, including the ecologically relevant GMB 

collection. In this section, we first examined the toxicity of auxin IAA on our E. coli 

strains (Figure 4.14). We then added non-toxic concentrations of plant auxin IAA and 

derivative IAN to bacterial cultures during Kolter assays to monitor their effect on 

biofilm formation (Figure 4.15). 
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Figure 4.14. E. coli growth in LB in the presence of various concentrations of plant auxin indole-

3-acetic acid (IAA). The growth curves show the averages of 16 E. coli strains (ECOR and GMB). 

Error bars denotes standard deviation from the average. 

 

Unfortunately, we did not include IAN in our toxicity tests, but the response to 

various concentrations in two other auxins, IAA and a closely related molecule, 

phenylacetic acid (PAA), was striking between them (data not shown). For both IAA 

and PAA, the maximum concentration with no negative effect on growth was 2mM 

(data not shown). Concentrations below 2 mM seemed to improve growth, compared 

to the control (medium alone). This is maybe caused by the IAA (or PAA) starting to 

be metabolised by the strains at these concentrations (E. coli can harbour paa genes, 

involved in PAA, and possibly IAA metabolism). Bianco et al. (2006) cautiously used 

0.5 mM in their assays whereas Lee et al. (2011) showed that IAN was not toxic to E. 

coli, even at concentrations as high as 150 µg/mL. Based on this information and our 

toxicity experiment, we decided to use 2 mM IAA and IAN in the following biofilm 
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experiments. We added 2 mM IAA or IAN to bacterial cultures and let them grow 

statically for 72 h at 30°C or 37°C before performing a Kolter assay on the plates. 

 

 

Figure 4.15. Effect of 2 mM IAA and 2mM IAN on biofilm formation by ECOR (n=72) and GMB 

(n=106) strains after 72h of incubation at 30°C and 37°C. Asterisks indicate statistical significance 

compared to control values based on a Dunn’s post-hoc comparison after a Kruskal-Wallis test. The 

number of asterisks reflects the significance threshold, with 2 asterisks corresponding to p<0.001 and 3 

asterisks, p<0.0001. 

 

The effect of 2 mM IAA and 2mM IAN on biofilm formation was not statistically 

different from the control for either GMB or ECOR strains at 30°C. However, IAN 

(but not IAA) had a very significant effect on GMB (p<0.0001) and ECOR (p<0.001) 



 

241 
 

biofilm formation at 37°C. The disparity of IAN effect at 37°C compared to 30°C can 

be compared to the previously published effect of IAN on E. coli O157:H7 at 37°C, 

which was very clear and much stronger than with IAA (Lee et al. 2011). As 

mentioned above, results from previously published literature are different, but may 

be attributed to the examination of single strains, which is always open to variable 

results, and to differences in protocol. Indeed, Bianco et al. (2006) compared adhesion 

of cells to polysterene after 20 h at room temperature, whereas Lee et al. (2011) 

compared adhesion after 24 h at 37°C. As we showed using our large collection of 

strains, the response at these two temperatures is very different and likely to be strain-

specific. 

 

4.3.3. Siderophore production 

 

Iron in its ferric form (Fe3+) is essential for many biochemical processes but is very 

insoluble. Its bioavailability is a major limiting factor for bacterial growth in natural 

environments and bacteria such as E. coli have evolved mechanisms to scavenge iron 

molecules in order to maintain their vital iron intracellular concentration between 10–7 

to 10–5 M (Garenaux et al., 2011). It has been estimated that in order to survive and 

multiply within hosts, pathogenic strains of E. coli require 105 to 106 Fe3+ ions each 

generation. E. coli strains are able to synthesise up to 4 distinct siderophore 

molecules, named after genus names of Enterobacteriaceae: enterobactin, 

salmochelin, yersiniabactin and aerobactin (Garenaux, Caza et al. 2011). For E. coli, 

siderophores have been mainly described in pathogens as virulence factors and are 

suggested as target molecules for antibacterial compounds to limit pathogenic growth. 

Similar approaches have been undertaken in soil for rhizospheric bacteria and plant 
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pathogens (Jurkevitch et al., 1992; Cornelis, 2010; Diallo et al., 2011). Indeed, it is 

believed that iron is also very limiting for growth in nonhost environments such as 

soil and is therefore the object of intense competition by resident communities. 

Nevertheless, it was shown using biosensors that the availability of ferric iron was 

spatially heterogeneous on plant leaves, and that iron starvation at the bacterial scale 

on the phyllosphere was probably not uniform, with subsequently varying levels of 

competition (Joyner and Lindow 2000). Siderophore production by bacteria seem to 

be important for both host and nonhost interactions. To our knowledge, no published 

study has addressed the role of siderophore production during E. coli or S. enterica 

interactions with nonhost environments or even plants, so we included it in our 

comparative phenotypical analyses. 

 

4.3.3.1. Siderophore production differences in plant and faecal 

isolates 

 

We used chrome azurol S (CAS)-based solid medium to assess siderophore 

production in vitro (see Methods section 2.7.3) and compared the distribution of 

siderophore production between ECOR and GMB strains (Figure 4.16). 
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Figure 4.16. Siderophore production by ECOR (n=72) 

and GMB (n=106) strains. The asterisk denotes statistical 

significance based on a Bonferroni post-hoc comparison 

after a Welch’s t-test (see text). 

 

GMB strains produced significantly less siderophores (unpaired t-test with Welch's 

correction; t=3.09, p=0.0025) than ECOR strains in vitro on CAS indicator agar 

medium (Figure 4.16), with the top 11 (out of 178) siderophore producers being 

ECOR strains (data not shown). 

 

4.3.3.2. Siderophore production by pathogenic strains of E. coli 

 

Siderophore production in E. coli has been described in the literature as a virulence 

factor, notably for ExPEC (including UPEC and related APEC) (Caza et al., 2008; 

Wiles et al., 2008; Garenaux et al., 2011). It has been shown that siderophore 

production is important for host colonisation during the pathogenic process, and 

interestingly, we can observe that host-associated ECOR strains produce more 

siderophores than nonhost GMB strains (Figure 4.16). If siderophore production is a 

trait strongly associated with host-associated lifestyles, there is a possibility that 

siderophore production by pathogenic isolates is higher than GMB. It then becomes 

interesting to compare siderophore production between plant isolates and pathogenic 

isolates to see if the decreased utilisation by GMB fits this ecological hypothesis. We 
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performed a CAS indicator assay using APEC and Shiga-toxin mutants of E. coli 

O157:H7 (Figure 4.17). 

 

Figure 4.17. Siderophore production 

by ECOR (n=72), GMB (n=106), 

APEC (n=10) and EHEC (n=4) 

strains. The asterisk denotes statistical 

significance based on a Bonferroni 

post-hoc comparison after a one-way 

ANOVA (see text).  

 

We did not detect any statistical difference between siderophore production of GMB 

or ECOR and pathogenic isolates (Figure 4.17). The only statistically significant 

difference was between GMB and ECOR as shown before (Figure 4.16). This 

observation suggests that ecological differences in siderophore production within the 

E. coli species are not great, possibly confirming their vital role in bacterial 

persistence and growth. 

 

It is possible that the observed difference between host and nonhost strains is caused 

by our way of assaying siderophore production. We grew strains at 37°C, a 

temperature which is maybe not very conducive of siderophore production. E. coli has 

been documented to produce up to 4 different siderophore molecules (Garenaux, Caza 
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et al. 2011). It is therefore possible that only some of these siderophores are expressed 

and exported at 37°C on CAS indicator plates, therefore making plausible ecological 

explanations difficult to formulate, although it could indicate that GMB isolates are 

less able to produce siderophores at host temperature. Unfortunately, we did not 

perform siderophore production tests at lower temperature, but we have developed a 

method to detect the presence of the 4 different siderophore biosynthesis operons in a 

subset of E. coli strains. Using this method, we can try to correlate the siderophore 

production phenotype with the presence or absence of specific siderophores 

biosynthesis operons. 

 

4.3.3.3. Development of a multiplex PCR tool for the detection of 

siderophore biosynthesis genes in E. coli 

 

It is interesting to know if the differences in siderophore production indices observed 

in the previous sections are correlated with the ability to synthesise more types of 

siderophores, or just higher amounts of individual siderophores. To address this, we 

developed a multiplex PCR method to detect in 4 electrophoresis gel lanes 15 

siderophore biosynthetic genes encoding for 4 different siderophore molecules (see 

Methods section 2.7.3). We used this method to test for the presence of siderophore 

genes in 28 ECOR and GMB strains classified as low (average siderophore 

index=0.686), medium (average siderophore index=1.783) and high (average 

siderophore index=2.825) siderophore producers (Figure 4.18). 
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Figure 4.18. Graphical representation of band detection after a multiplex PCR detection test for 

siderophore biosynthetic genes. Orange colour indicates presence of a band, yellow colour indicates 

absence of band. The “index” column indicates values of the siderophore production index as measured 

on CAS indicator plates. 

 

Visually, it seemed that high producers yielded more bands (i.e. harboured more 

siderophore biosynthetic genes). Using this multiplex PCR method, there were strains 

with only single genes detected and not the full set of genes of the operons. We 

observed that multiplexing sometimes prevents the amplification of target sequences, 

especially if these targets are closely located on the chromosome (data not shown). 

We also observed that enterobactin genes are almost always present in all tested E. 

coli strains, even those that did not grow or produce a halo on CAS agar (Figure 

index strain iucC iucA iucD irp1 irp2 irp3 iroC iroD iroB iroE entE entB entA entD

0.000 GMB69 0 0 1 0 0 0 1 1 0 0 1 1 1 1

0.000 GMB37 0 1 0 0 0 0 0 0 1 0 1 1 1 1

0.000 ECOR29 0 0 0 0 0 0 0 1 1 0 1 1 1 1

0.000 ECOR52 0 1 0 1 1 1 1 1 1 1 0 1 1 1

1.248 ECOR49 0 1 0 1 1 1 0 0 1 1 0 1 1 1

1.405 GMB50 0 0 1 0 0 0 0 0 1 1 1 1 1 1

1.417 GMB22 0 1 0 0 0 0 1 1 0 0 1 1 1 1

1.422 ECOR22 0 1 0 0 0 0 0 1 0 0 0 1 1 1

1.772 ECOR19 0 1 0 0 0 0 1 1 0 0 1 1 1 1

1.774 ECOR65 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1.780 GMB30 0 1 0 0 0 0 1 1 1 1 1 1 1 1

1.783 GMB89 0 1 0 0 0 0 1 1 0 0 1 1 1 1

1.783 GMB33 0 1 0 0 0 0 1 1 1 0 1 1 1 1

1.786 GMB28 1 1 1 1 0 1 0 0 0 0 1 1 1 1

1.786 ECOR58 0 0 0 0 0 0 0 0 1 1 0 1 1 1

1.788 ECOR26 0 1 0 0 0 0 1 1 0 0 0 1 1 1

1.790 ECOR33 0 0 1 0 0 0 0 1 1 0 1 1 1 1

1.791 GMB79 0 1 0 0 0 0 1 1 0 0 1 1 1 1

2.585 GMB55 0 1 1 0 0 0 1 0 0 0 0 0 0 0

2.590 ECOR24 1 1 1 1 1 1 0 1 0 0 0 1 1 1

2.656 ECOR41 1 1 1 1 1 1 1 1 0 0 0 1 1 1

2.721 ECOR63 0 1 0 1 1 1 1 1 1 1 1 1 1 1

2.741 ECOR39 1 1 1 1 1 1 1 0 1 0 0 1 1 1

2.746 ECOR51 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2.840 ECOR37 1 1 0 0 0 0 1 1 0 0 1 1 1 1

3.033 ECOR70 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3.104 ECOR05 1 1 1 0 1 0 0 1 1 1 1 1 1 1

3.232 ECOR56 1 1 0 1 1 1 0 0 1 1 0 1 1 1

Low producers

Medium producers

High producers
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4.18), suggesting that the presence of genes alone is only one factor for siderophore 

production and that gene regulation is important. To further this observation, we 

calculated the average number of bands detected for low, medium and high 

siderophore producers (Figure 4.19). 

 

 

Figure 4.19. Average number of bands for low (n=8), medium (n=10) and high (n=10) 

siderophore-producing strains after multiplex PCR detection tests. As most of the values were 

significantly different after a two-way ANOVA, we only indicated the non-significant differences (n.s.) 

on the figure for clarity purposes. 

 

Enterobactin and salmochelin genes were present in all types of siderophore 

producers. There was a notable increase in detection of genes for aerobactin and 

yersiniabactin in high producers compared to low and medium producers, suggesting 

that the ability to produce a diversity of siderophore and not necessarily a high 

amount of each is perhaps also causing the large halo phenotype on CAS indicator 

agar. In any case, there seems to be a link between phenotype on CAS agar and the 
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number of siderophore biosynthetic genes detected by PCR in the corresponding 

strains. However, for some siderophores like enterobactin, gene regulation seems to 

be involved, as strains harbouring a full ent operon can still not produce siderophore 

on CAS agar under our tested conditions. 

 

4.3.3.1. Possible ecological explanations for the observed difference 

in siderophore production between host and nonhost isolates 

 

The competition for iron seems to be ubiquitous, occurring in various environments. It 

is therefore surprising to see significant differences in siderophore production 

between E. coli strains of ecologically different origins of isolation. It seems very 

clear that ECOR produces more siderophores under our experimental conditions, but 

why? Is the competition for iron more important for E. coli in the gastrointestinal tract 

than in nonhost environments? We propose in this section two different but not 

exclusive explanations. 

 

The first explanation is that the difference we observe could be caused by an 

experimental bias. We performed our CAS assay at 37°C on agar plates and obtained 

a large variation in siderophore production between our strains. However siderophore 

production, costly for a cell to maintain, may be under complex gene regulation 

processes and therefore our assay perhaps did not encompass all optimal conditions 

for siderophore production in E. coli. It seems to be the case, as we found full 

enterobactin synthesis operons in strains that were not even growing on CAS 

(meaning that they were not able to scavenge iron from the CAS-iron complexes, 

likely because they did not synthesise any siderophore molecule). If those 
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enterobactin genes are functional and not cryptic, they were therefore not expressed 

on CAS agar at 37°C, but it then does not mean that the strain is unable to produce 

siderophores. 

 

Despite gene regulation considerations, it is also possible that the difference in 

siderophore production by GMB and ECOR strains reflects a biological reality. We 

show in this section that GMB isolates are producing less siderophores than ECOR 

strains at a temperature relevant for host colonisation. Additionally, siderophore 

production could be maintained at a high level when competition for iron is high. 

Because the possibility of “cheating” may be higher among phylogenetically related 

species than for distant bacteria, cross-feeding on excreted siderophores (as most of 

them are) is theoretically higher when the concentration of members of the same 

species is also high. E. coli most probably do not live in close contact with other E. 

coli cells in nonhost environments as it does in host gastrointestinal tracts. 

Alternatively, this mechanism could be species-independent, with physical proximity 

and population density being a key factor. Therefore, the need to synthetise high 

levels of siderophores in nonhost environments is not as crucial as in the gut, where 

most secreted siderophores can be more easily taken up by neighbouring “cheater” 

cells. One can then imagine that when competition for ferric iron is not strong, the 

optimal number of siderophore molecules synthesised for an E. coli cell is the 

minimum number that procures the minimum concentration of iron required for 

growth. However, in the gut, in order to grow, a cell must probably synthesise more 

siderophores for the same concentration of scavenged iron. In other words, the 

selective pressure to maintain high siderophore production could be caused by life in 
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environments where iron is limited, and where intra-species competition is very 

strong.  

 

As an argument supporting this hypothesis, it has been shown that rhizospheric 

bacteria able to synthesise low-affinity siderophores were no longer able to grow if 

purified high-affinity siderophores were added to the medium (Joshi et al., 2006; Joshi 

et al., 2008). This growth inhibition was only relieved by the addition of iron to the 

medium (Joshi, Archana et al. 2006). This study suggests that in competitive 

environments, species producing low-affinity siderophores can be outcompeted by 

species producing higher-affinity siderophores. Interestingly, in stable communities 

and based on this study, one cannot help to wonder whether siderophore producers 

evolved to an optimal affinity level corresponding to their living environment. In that 

case, it would not be surprising to observe strains from the same species but from 

different environments having different capacities to scavenge iron as a result of 

competitive interactions with their ecological communities. These hypotheses are of 

course subject to experimental verification, but if proven true, they could provide an 

ecological explanation of the difference in siderophore production by GMB and 

ECOR strains. 

 

4.4. Ecological ranking and the “plant association index” 

 

4.4.1. The purpose of ecological ranking of isolates 

 

Based on our observations from a collection of E. coli isolates from plants, we were 

able to dissect specificities and infer possible signatures or traits linked to the nonhost 
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environment where those strains were isolated. The “typical” plant-associated strain 

would be from phylogroup B1, motile, forming biofilm, having relatively low 

nutritional abilities after 24 h of growth on various C-sources including common 

ones, being a low siderophore-producer and a metaboliser of sucrose and the aromatic 

compound p-HPA.  

 

4.4.1. Selection of phenotypes to rank and their phylogenetic distribution 

 

In this section, we selected 5 phenotypic observations that we believe are ecologically 

relevant for E. coli plant persistence, and that we found to be associated with plant 

isolates of E. coli in our comparative analyses. We ranked individual strains based on 

their phenotypic values of biofilm formation, siderophore production, growth on 

sucrose and p-HPA and finally on their average OD600 on the 13 C-sources found to 

be variable between ECOR and GMB and shown in Figure 4.7. We showed in this 

section that some metabolic traits could be very significantly phylogenetically 

distributed, which prompted us to decompose the distributions of the phenotypes we 

chose to define a so called “plant association index”, or “PAi” according to 

phylogroups (Figure 4.20). 
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Figure 4.20. Phylogenetic distribution of 5 phenotypic factors used in the calculation of the “plant 

association” index (PAi). Asterisks indicate statistical significance based on a Dunn’s post-hoc 

comparison after a Kruskal-Wallis test. The number of asterisks indicates the significance threshold 

with *, p<0.05; **, p<0.001 and ***, p<0.0001. ECOR and GMB strains are combined. 

 

As mentioned before, sucrose and p-HPA metabolism were very significantly 

distributed according to phylogroups, and along the same trends: positive utilisation 

by phylogroup B1 and D strains, and negative utilisation by phylogroup A and B2 

strains (Figure 4.20, Figure 4.21). Interestingly, nutritional abilities (the OD600 

average on C-sources significantly discriminating between ECOR and GMB) were 

also distributed non-randomly across phylogroups, with major differences between 

phylogroups A/B1 and B2/D (Figure 4.20, Figure 4.21). A Kruskal-Wallis test found 

a non-random association with phylogroups for biofilm formation (p=0.0005), caused 

by a very significant difference between phylogroup A and B1 distribution of biofilm 

formation. The distribution of siderophore production however, was not 

phylogenetically distributed (p=0.439). 
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Figure 4.21. Distribution of selected phenotypic ranks on the ClonalFrame phylogenetic tree of 

ECOR and GMB isolates. The diameter of circles is proportional to the ranking, with a large diameter 

associated with a high ranking and a low diameter to a low ranking. Colour of the circles reflects the 

selected phenotype as indicated in the legend. 

 

It was visually clear in Figure 4.21 that these phenotypes have a tendency to 

distribute differentially according to phylogroups (except siderophore production). 

Very small circles, representing a low ranking for the chosen phenotypes, tend to 

cluster in phylogroup B2, F and to some extent in A, while large circles were 
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observed in phylogroup B1 and D. Siderophore production (red circles) was however 

more evenly distributed, consistent with the observation in Figure 4.20.  

 

4.4.2. Combination of phenotype ranks and calculation of the PAi 

 

In an effort to quantify and compare the potential for plant association among E. coli 

strains, we generated a plant association index (PAi) for each strain based on the traits 

discriminating GMB from ECOR as shown before: low siderophore production, high 

biofilm formation, low nutritional abilities, high metabolism on sucrose and p-HPA. 

The PAi was calculated as the sum of the phenotypical rank of each trait (Figure 

4.22) and decomposed according to the strain phylogeny (Figures 4.23 Figure 4.24). 

 

 

Figure 4.22. Frequency plot showing plant association index (PAi) order according to collection 

(A) or  phylogroup (B). ECOR and GMB strains are combined in panel B. “Out” represent strains from 

Escherichia sp. Clade-I 
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As expected, the PAi was higher for GMB than for ECOR strains (Figure 4.22A). We 

also observed that the PAi was generally high for phylogroup B1 isolates and low for 

phylogroups A and B2 isolates (Figure 4.22B). This is also expected, as we showed 

in the previous sections that metabolic data such as sucrose and p-HPA, which 

accounts for 40% of the PAi calculation, was strongly phylogenetically and inversely 

distributed between phylogroup B1 and phylogroups A and B2 (Figure 4.11). 

However, it was surprising to observe that the combination with other phenotypes 

maintained this phylogenetic distribution. Additionally, strains from the newly 

described phylogroup F notably all had a relatively low PAi (Figure 4.22B). The 

examination of the distributions of the PAi according to collection and phylogroups 

confirmed these observations (Figure 4.23). 
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Figure 4.23. Distribution of PAi according to (A) phylogroups and (B) collection and 

phylogroups. Asterisks indicate significantly different means based on a Bonferroni post-hoc 

comparison after a one-way ANOVA (p<0.0001). The number of asterisks reflects significance 

threshold with *: p<0.05; **: p<0.001 and ***: p<0.0001. Significances between phylogroups were 

very similar between representations in panels A and B. For clarity, only the ECOR vs. GMB statistical 

significances were represented on panel B. 

 

Similarly to what we showed for individual phenotypical rankings, we mapped PAi 

indices values onto the ClonalFrame phylogenetic tree of ECOR and GMB strains 

(Figure 4.24). 
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Figure 4.24. Distribution of the plant association index (PAi) on the ClonalFrame phylogenetic 

tree of ECOR and GMB isolates. As indicated in the middle of the tree, PAi is represented by shades 

of the following colours: green = highest PAi value and black = lowest. 

 

Examination of the tree confirms visually that phylogroups B1, but also to some 

extent D and E are potentially more suited for plant association according to our 

selected criteria. On the other hand, phylogroup A, B2 and F strains had low levels of 

PAi. It is difficult to extrapolate on the direction of this adaptation: are B2 and A 

isolates evolving towards host specialisation, or are B1 isolates distinguishing 

themselves from host adapted phylogroups? An initial answer may result from the 
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phylogenetic reconstruction we performed and the overlap with PAi values, as 

presented in Figure 4.24. The most ancestral group is phylogroup D, from which 

phylogroups B2 and F, and then E, A and B1 diverged (Figure 4.24). If this 

phylogeny is correct, this would mean that D, having relatively high PAi values 

(Figure 4.23), is the most ancestral phylogroup, from which the others diverged. B2 

and A would then have lost their high PAi, while B1 conserved it. However, if the 

phylogeny is as reported by Lecointre et al. (1998), placing B2 as the most ancestral 

group, it would then be D and B1 that evolved towards more host generalism and a 

higher nonhost adaptation. 

 

It is nevertheless remarkable that an ecologically-relevant definition of possible 

environmental adaptation traits follow such a clear phylogenetical distribution. Our 

results taken altogether seem to strengthen the hypothesis that E. coli strains of 

various phylogenetic background and ancestries have different ecological behaviour. 

In the light of our observations, it is plausible that these differences are linked to 

different life histories in different ecological niches. 

 

4.4.3. Ecological ranking of the E. coli O104:H4 2011 German outbreak 

strain 

 

In May to June 2011, an outbreak of E. coli O104:H4 linked to the consumption of 

uncooked vegetable sprouts in Germany caused 50 deaths, 908 cases of haemolytic 

uremic syndrome and 3167 non-HUS cases of infection (Rohde et al. 2011). This 

outbreak was the largest and deadliest E. coli outbreak ever recorded. The genome 

sequences were quickly made public and a large crowdsourcing effort produced 
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valuable and rapid insights into the nature of this pathogenic strain (Rohde et al. 

2011). As mentioned earlier in this thesis, we obtained the genome sequences of 2 

related outbreak strains and, using MLST sequences, placed the outbreak strains in 

phylogroup B1. In the previous section, we found B1 strains to have singularities in 

terms of possible plant adaptive traits, and as this outbreak originated from fresh 

vegetables, it became very interesting to try and see where this strain would place in 

our ecological ranking of strains according to PAi. In August 2011, we received 

O104:H4 strain H1-1218 from the Health Protection Agency (HPA) and obtained its 

Biolog GN2 profile (Figure 4.25) thanks to Stephanie Schüller (IFR) who helped in 

manipulating the strain in a CL-3 laboratory. 

 

 

Figure 4.25. Characteristics and growth values on Biolog GN2 plates after 24h incubation at 

37°C for selected C-sources by E. coli O104:H4 strain H1-1218 involved in an outbreak in 

Germany in 2011. Panel A represents Figure 4.4 and panel B represents Figure 4.7 presented in this 

thesis. The values for strain H1-1218 are indicated in blue. 
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Strain H1-1218 was overall a very low metaboliser, able to reach OD600>0.63 after 24 

h of incubation at 37°C on 33 C-sources only, which places it at a lower level than 

any ECOR strain, and among the bottom 25% of all GMB strains (Figure 4.25A). 

When C-sources shown to discriminate ECOR and GMB metabolic profiles to the 

greatest extent were examined, H1-1218 was always amongst the lower metabolisers 

(Figure 4.25B), which was also observed when looking at sucrose and p-HPA 

metabolism (Figure 4.26). 

 

Figure 4.26. Nutritional abilities, sucrose and p-HPA metabolism as used to define the PAi and 

comparison of values of E. coli O104:H4 strain H1-1218 involved in an outbreak in Germany in 

2011 after 24h of incubation on Biolog GN2 plates at 37°C. H1-1218 values are indicated in red. 

“Nutritional abilities” represents the average of Figure 4.25B. 

 

Surprisingly, we observed no growth after 24 h on sucrose or on D-serine or p-HPA. 

After examining the public genome sequence of H1-1218, we could identify the 

presence of sucrose metabolic csc genes disrupting the D-serine utilisation genes, but 
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we could not find the hpa cluster for p-HPA utilisation. However, when incubated for 

more than 24 h on Biolog GN2 plates, H1-1218 could indeed grow on sucrose 

(reaching OD600=1.697 at 72 h), but not D-serine or p-HPA, in accordance with 

genomic observations (data not shown). Interestingly, the growth of H1-1218 on 

sucrose was among the slowest we observed (data not shown), suggesting possible 

differences in the metabolic utilisation of sucrose between the O104:H4 strain and the 

rest of our collection.  

 

Unfortunately, because of time and safety constraints, we were not able to quantify 

biofilm formation of the O104:H4 pathogenic strain, so we could not calculate its PAi 

as we did before. However, we can account for 60% of its PAi (the metabolic factors; 

Figure 4.26): nutritional abilities would place the O104:H4 strain at rank 35/170, 

sucrose metabolism at 110/170 and p-HPA metabolism at 112/170, which means that 

even if the O104:H4 strain had the top ranks for biofilm formation and siderophore 

production, it would be ranked 22/170 for PAi.  

 

From this seemingly poor “plant association index” according to our criteria, we can 

speculate that the O104:H4 strain may not be very well adapted to nonhost 

environments, or did not persist long in the environment before living in or infecting 

its hosts. However, it is also plausible that the observation that the overall metabolic 

abilities are very low at 24 h (Figure 4.25) is a direct consequence of the stress 

resistance abilities being very high, as a result of the SPANC balance introduced 

earlier (section 4.2.4 of this thesis). These hypotheses have to be verified 

experimentally, but in any case the fact that this outbreak strain does not perfectly 
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“fit” the expected profile we assembled from our collection of nonhost strains from 

plants is informative. 

 

4.5. Conclusions and industrial relevance 

 

4.5.1. Ecological considerations and possible link between genetic 

regulation and genome dynamics 

 

In summary, we were able to observe clear phenotypic differences between plant 

(GMB) and faecal (ECOR) isolates. We first observed variation in metabolic abilities, 

as monitored using Biolog GN2 plates. The biggest difference we observed was that 

ECOR strains were faster metabolisers than GMB strains, especially when growing on 

amino acids as sole C-source, and could reach much higher OD600 values on average 

after 24 h incubation on common C-sources such as glucose, fructose or mannitol.  

 

As mentioned in previous sections, it is possible that this observed lower metabolism 

is an indirect consequence of a higher stress resistance by GMB strains (Ferenci 

2005), which we unfortunately did not test for in this work. This speculation is 

ecologically plausible as nonhost environments, even if estimated to harbour half of 

all living E. coli (Savageau 1983), are presumably more stressful environments than 

the gastrointestinal tract of mammals, the primary reservoir of E. coli. Additionally, 

GMB strains were in proportion more able to use sucrose and the aromatic compound 

p-HPA and this ability was strongly correlated with phylogroups B1 and D. These two 

C-sources have tremendous ecological significance. Aromatic compounds are 

believed to be most abundant and available to E. coli in soils (Diaz et al. 2001) and 
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sucrose is the most abundant carbohydrate in plants and vegetation. The primary 

environment of E. coli being the mammalian gastrointestinal tract, conceivably soil, 

vegetation and water are the most common nonhost environments encountered by any 

excreted E. coli.  

 

Looking at a range of colonisation-associated phenotypes, we also observed that 

GMB strains were on average more motile, could produce more biofilm in vitro but 

were poorer siderophore producers than ECOR strains. These observations that 

flagellar motility, sucrose metabolism are potentially important factors for E. coli life 

on plants and that amino acids metabolism is affected bore interesting similarities 

with the transcriptional profile of E. coli O157:H7 strain EDL933 grown in the 

presence of shredded lettuce juice (Kyle et al., 2010). In this work, the most highly 

upregulated categories of orthologous genes (COG) in the presence of plant lysates 

were cell motility and the related intracellular trafficking and secretion, and sucrose 

metabolism genes (Kyle, Parker et al. 2010; Maria T. Brandl, unpublished 

observations). Surprisingly, amino acids and nucleic acid transport and metabolism 

genes were globally and most severely downregulated. The combination of our results 

with the study on the transcriptomic response to lettuce lysates (Kyle, Parker et al. 

2010) also stresses that important traits required by E. coli pathogens to colonize 

plants may not necessarily be pathogenesis-associated functions as sometimes 

suggested (Berger et al. 2010), but functions that are commonly shared within the E. 

coli species, possibly from the flexible gene pool. This also suggests that there is a 

link between the transcriptomic response to environmental conditions and the shaping 

of genome contents in populations associated with the corresponding environment. 

Environments that provide advantages to a certain metabolic ability cause an 
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upregulation of the corresponding metabolic genes, providing the strain possess them 

as selective advantage. In that sense, it sounds plausible that gene regulation has a role 

to play in genome dynamics, the shaping of gene content in bacterial genomes and 

possibly the different types of selection pressures that can be observed on various 

parts of the genome. 

 

4.5.2. Industrial relevance  

 

The most significant meaning of the PAi is that it represents a combination of traits 

characterising E. coli isolates according to their fitness in secondary environment, 

with B2 and A having the lowest values and B1 and to some extent D having the 

highest (Figure 4.23, Figure 4.24). As presented in the Introduction (section 1.1.3.2), 

strains from phylogroup B2 and A seem to be evolving toward an increased host 

specialisation, whereas strains from phylogroup B1 seem to be generalists, without 

any clear host preference (White et al. 2011). Previously published studies suggest 

that E. coli phylogroups differ in their host association abilities, as some phylogroups 

are host specialists (the archetype being B2) whereas others seem to be host 

generalists (B1) (White et al. 2011; Sims and Kim, 2011). The analyses presented in 

this chapter contribute to further this dichotomy, by showing that host generalisation 

in phylogroup B1 is additionally associated with nonhost adaptation. In a study 

involving intestinal colonisation of infants, phylogroup B2 has been shown to be 

much more frequent among resident strains, persisting for long periods in hosts as 

opposed to transients, only transiting for a few days or weeks in the intestines 

(Nowrouzian et al. 2005). In this study, B1 was in very low quantities in residents, 
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and slightly more in transient, but reflected an overall poor host association 

(Nowrouzian et al. 2005).  

 

Taken altogether, our observation and the presented literature can highlight the very 

interesting possibility that PAi levels can predict both plant and host adaptedness, and 

thus the possibility for any given strain to be more likely to be either a resident or a 

transient if ever recolonizing a host. For the food industry, this has a potentially 

important impact, as E. coli from food are potentially ingested. When currently 

monitoring for E. coli, the industry is aware of the levels of E. coli on its food 

products, and is trying to keep it as low as possible. Conceivably, further information 

could be obtained, as it can be imagined that the population structure of isolates from 

specific locations (e.g., agricultural fields) is monitored, and would provide additional 

useful data on (a) the overall likelihood of successful recolonisation if the produce is 

eaten as well as (b) the possible source of contamination (see Chapter 3 section 3.6). 

Of course, this hypothesis relies on the combination of published data by other groups 

as well as interpretation of our results, and it remains important to confirm it 

experimentally. 
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5. Dynamics of E. coli colonisation of salads and interactions 

with the natural phyllosphere microflora 

 

5.1. Context of this study 

 

The agricultural field environment is heavily populated by soil-borne and plant-

associated microbes. Being outdoor open environments, daily temperature 

fluctuations, but also variation in chemical contents of soils, humidity or radiation 

exposure are common and impact on the structure of natural microflorae and 

functional communities. When immigrating bacteria colonise agricultural fields, they 

have to interact with an existing community presumably fully adapted to versatile and 

stressful conditions, with which competition for resources has to be fierce. However, 

colonisation by invading bacteria, including plant or human pathogens, can be 

successful prompting questions about their interactions with the resident microflora, 

and the mechanisms they developed to maintain an environmental fitness conducive 

to growth and survival. It has been suggested that epiphytic bacteria could stimulate 

or suppress colonisation by plant pathogenic bacteria (Lindow and Brandl, 2003). 

Conceivably, epiphytic bacteria could have a similar role on the persistence of human 

pathogens and commensals colonising plants.  

 

In order to gain insight on how colonising human pathogens and gut-adapted bacteria 

such as E. coli can persist and successfully colonise plants, it is relevant to investigate 

their dynamics of nonhost contamination, as well as their interactions with the 

rhizosphere or phyllosphere natural microbial communities. E. coli O157:H7 has been 

shown to grow in vegetables (Li et al., 2001; Cooley et al., 2003) or at least persist for 
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long periods (Solomon et al., 2003; Islam et al., 2004; Ibekwe et al., 2007). 

Additionally, studies focused on the microbial ecology of plants have reported a 

significant reduction of E. coli counts in the presence of epiphytic bacteria (Cooley et 

al., 2006) or even alteration of the microbial community structures caused by E. coli 

(Lopez-Velasco et al., 2010). However, there is limited knowledge on this last point, 

even if preliminary studies seem to indicate that there could be an explicative link 

between how E. coli can colonise certain salad crops and how natural phyllosphere 

communities react to such a colonisation (Lopez-Velasco, Davis et al. 2010). 

 

In this chapter, we investigate that link by experimentally contaminating spinach 

grown either in the field or in controlled laboratory conditions. Here, we present 

analyses of the salad colonisation dynamics by E. coli and of the interactions between 

the natural microbial communities living in agricultural soils and field-grown plants 

and contaminating E. coli.  
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5.2.  Testing of DGGE protocol using field samples 

 

In this chapter, we present data resulting from experimental contamination with E. 

coli of field-grown plants. As our access to field-grown plants was limited to summer, 

we could not spend a lot of method development time on the actual experimental 

contamination and decided to test the DGGE protocol on soil and leaf samples from 

regular commercial spinach and rocket salad grown in fields in Norfolk (Figure 2.14). 

 

 

Figure 5.1. Relatedness between representative community profiles of field-grown spinach and 

rocket salad. This dendrogram was calculated with the neighbour-joining method on the Pearson 

correlation between individual profiles of the same 16S rDNA DGGE gel. “dps”: days post-sowing. 

This figure was created using Nonlinear Dynamics Phoretix 1D v11.1 (demo version). 
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The protocol for DNA extraction from soil and leaf material and the subsequent PCR-

DGGE worked well as we observed multiple bands in each profile from soil or leaves 

(Figure 5.1). We observed a higher richness (number of bands) in soils than on leaves 

(Mann-Whitney U=2.00; p=0.0003). Rocket and spinach soil profiles showed 

averages of 40.75 and 37.5 distinct bands respectively, compared to 23 and 14.5 

bands in rocket and spinach leaves profiles. This difference in richness can of course 

be caused by different DNA extraction protocols, but it also possibly highlights that 

soils generally harbour higher levels of microbial diversity, as they offer a more 

protected environment than aerial parts of plants, which are more exposed to outdoors 

variation and subject to more intense stress exposure. Consistently, we observed a 

very clear grouping according to the origin of the profiles (Figure 5.1). Samples from 

rocket and spinach leaves clustered separately, and both leaves-associated profiles 

were more distant than from soil samples, which also tend to weakly correlate to the 

type of plant grown in them (Figure 5.1).  

 

This simple test of protocol indicated that we had chosen a suitable way to monitor 

the dynamics of bacterial populations on leaves (and soil), which could be applied to 

our experimental contamination investigation plan. 
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5.3. Experimental E. coli contamination of spinach plants grown 

in controlled conditions 

 

5.3.1. Spinach cultivar used in this study 

 

We asked our partner farms for different spinach cultivars to grow in our laboratory-

scale experiment and they provided us with seeds from cultivars Toucan, Lazio, 

Picasso, Douglas and Sardinia. To determine which of these varieties would be the 

easiest to handle in laboratory conditions, we tested their germination abilities at 20°C 

(Figure 5.2). 

 

Figure 5.2. Germination frequencies of different spinach cultivars. Seeds (n=~100) from 5 cultivars 

were placed on filter paper in sterile Petri dishes and watered regularly for 13 days. The number of 

germinated seeds was determined after 3, 7 and 13 days. 
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Cultivar Picasso had the higher germination rate at 3 days and 13 days (Figure 5.2), 

and was the cultivar we chose for culture chamber growth. We collaborated with staff 

and facilities from the John Innes Centre Horticultural Centre (Norwich, UK) to grow 

spinach in culture chambers with controlled temperature, humidity and light cycles. 

Plants were grown in non-sterile soil to maximise the likelihood of getting a 

representative and biologically meaningful microflora on leaves. It was confirmed by 

the JIC Horticultural Centre staff that cultivar Picasso was the fastest to germinate in 

soil, although cultivars that were observed not able to germinate well in vitro (i.e. 

Douglas) could also, to some extent, germinate better in soil (data not shown). 

 

As an additional control step and to determine if E. coli could be present in or within 

commercially available seeds, we crushed roughly 250 seeds from each cultivar, 

placed the powder into BGLBB medium for E. coli enrichment and plated after 

incubation on TBX medium. We did not retrieve any blue colony on TBX (data not 

shown) indicating that E. coli was not likely to be present in any of our seed batches 

and would not perturb our colonisation experiments. 

 

5.3.2. E. coli strain used in this experiment 

 

As this study was scheduled to be performed before performing most of the 

experiments and analyses presented earlier in this thesis, we had limited knowledge 

on the GMB strains to select one with relevant properties (for instance, metabolic). 

We chose strain GMB30 as the main strain used in our experimental contamination 

experiments, based on the decision that we would like to use a strain arguably 

representative of the “average plant-associated isolate”. We then based our selection 
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at the time on the fact that GMB30 scored averagely in biofilm experiments (rank 

50/173). Retrospectively and after the DGGE experiments were performed, we could 

examine how GMB30 performed in all other assays: siderophore production (rank 

101/173), nutritional abilities (109/173), sucrose utilisation (76/173) and p-HPA 

utilisation (149/173). Combined together, these values indicated a PAi rank of 

118/173, placing the strain slightly above the bottom 30% of strains that are 

presumably less adapted for plant persistence, according to the criteria described in 

Chapter 4.  

 

At first, this retrospectively indicated to us that GMB30 was perhaps not the best 

choice for our experiment. Nevertheless, we observed interesting results with this 

strain, as described in this section. 

 

5.3.3. Colonisation dynamics of E. coli on laboratory-grown spinach 

 

From most of the studies looking at interaction between E. coli and plants, it is 

assumed that E. coli can infect plants from an original epiphytic contamination 

(irrigation, rain splashes, or faecal contamination of avian origin). We also followed 

this assumption in our experiment by inoculating E. coli GMB30 by spraying leaves 

of grown plants. We then sought to know if GMB30 was actively growing, surviving 

or dying after being sprayed on spinach plants. During 12 days, we monitored 

bacterial counts on 3 infected plants per time point by plating bacterial suspensions on 

violet red bile with glucose (VRBG) agar medium, selective for bile-resistant 

coliforms (Figure 5.3). Negative control plates on uninfected plants did not show any 
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E. coli count on VRBG, although we could isolate colony morphotypes distinct from 

E. coli throughout the experiment (data not shown). 

 

 

Figure 5.3. Colonisation dynamics of E. coli GMB30 infecting spinach cultivar Picasso plants 

grown in controlled environmental conditions. (A) Bacterial counts from 0 to 12 days post-infection 

(dpi). Error bars represent the standard deviation from the mean after 3 technical replicates. (B) 

Pictures of representative VRBG plates obtained during counts presented in panel A. “1” and “2” 

represent the two distinguishable phases in which we obtained different types of colonies growing on 

agar plates. 

 

We observed that GMB30 counts were first declining and stabilising (days 0 to 5 after 

infection) and then increasing (days 6 to 12 after infection). However, to our great 
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surprise, we could reproducibly get two different kinds of colony patterns on VRBG 

plates, depending on the days after infection by E. coli (Figure 5.3B). From days 0 to 

5 after infection, we observed purple E. coli-looking colonies growing homogenously 

on VRBG but from days 6 to 12 after infection, we observed the same colonies in 

majority, but mixed with different other colonies of different sizes, colour and smell. 

This observation was first dismissed as a possible contamination during our 

processing of the plants on the grounds that we reproducibly observed it specifically 

occurring roughly a week after E. coli infection. Additionally, we never observed 

such high counts of non-E. coli strains on negative control plates, from plants sprayed 

with only water (data not shown) suggesting that this could be an E. coli-specific 

effect. When identified by 16S rDNA sequencing, these colonies were identified to be 

mostly from genus Stenotrophomonas sp. (family: Xanthomonadaceae) and genus 

Rahnella sp. (family: Enterobacteriaceae). These genera are usually associated with 

soil or water environments, but are also found in great quantities on plants in 

agricultural settings (Suckstorff and Berg, 2003; Ryan et al., 2009; Vyas et al., 2010). 

Additionally, Rahnella sp. are usually psychrotrophic bacteria that are often involved 

in produce spoilage (Randazzo et al., 2009). 

 

This observation suggests that contamination by E. coli can perturb the structure of 

bacterial populations residing on spinach plants. Because we saw counts of bacteria 

such as Stenotrophomonas and Rahnella increasing, this also suggests that E. coli was 

somehow able to enhance the growth of these bacteria, maybe by synthesising a 

growth-promoting substance. 
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5.3.4. Perturbation by colonising E. coli of natural resident communities 

associated with spinach 

 

We reproduced these resident bacterial population perturbations observed during 

spinach experimental E. coli contamination, this time by extracting total DNA from 

the phyllosphere and monitoring bacterial community dynamics using DGGE. The 

main objective of this study being to understand how E. coli interacts with natural 

phyllosphere microbial communities in the agricultural field environment, we 

performed spraying experiments on both field-grown plants (n=2), and plants grown 

in controlled environmental conditions (n=5), monitoring bacterial communities from 

1 dpi to 8 dpi by DGGE. In this section, we will show the results of one spraying 

experiment on field-grown plants and 2 spraying experiments on laboratory-grown 

plants. 

 

5.3.4.1. Experimental contamination of field-grown spinach  

 

We transferred 3-weeks old field-grown spinach plants into individual pots and 

brought them back in the laboratory for spraying with E. coli GMB30. We sprayed 

5mL/plant of bacterial suspensions containing different concentrations (104 to 107 

cells per mL) of E. coli GMB30. After 1, 4 and 7 days, we extracted bacterial DNA 

from leaves and amplified the V3 region of the 16S rDNA gene to use for DGGE (see 

Methods). We obtained the gel shown in Figure 5.4. 
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Figure 5.4. Denaturing gradient gel electrophoregram showing community-profiling of field-

grown spinach sprayed with different concentrations of E. coli strain GMB30. Red arrows indicate 

the major bands amplified from a single pure culture of E. coli GMB30 (Lane “E”); black arrows 

indicate the major bands of chloroplastic DNA; “d”: days post-infection (with E. coli); m: clone ladder 

prepared and given by P. Tourlomousis and used solely for gel analysis. 

 

First, we observed that the profile from E. coli GMB30 pure culture was not 

composed of a single band, as we expected. The fact that a V3 amplification of pure 

cultures of E. coli yields multiple bands has been reported in another study, in which a 

thorough analysis is presented (de Araujo and Schneider, 2008). It has been suggested 

that the observation of multiple band amplification from pure cultures is caused by the 

fact that E. coli has 7 copies of ribosomal genes having different sequences (Kang et 

al., 2010) and being amplified in the same reaction step (de Araujo and Schneider 
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2008). Because of this phenomenon (i.e. different bands not necessarily representing 

different bacterial species) DGGE is probably not a very accurate method for inferring 

detailed bacterial abundance (de Araujo and Schneider 2008) although, it is a very 

flexible and quick method to compare community profiles accurately and efficiently 

(the variation in abundance of one band across comparable profiles, regardless of its 

biological significance, is interesting). In our case, a major band was present and 

possibly representing the best amplification, or amplification of similar sequences in 

different copies. Nevertheless, we observed that these bands were expectedly present 

in all infected samples as early as 1 dpi and not in the controls (Figure 5.4).  

 

In confirmation with our expectations based on plate counts, we observed very 

notable increases in the number of bands at 7 dpi compared to 4 dpi or 1 dpi in the E. 

coli-treated samples, but not in the controls (Figure 5.4, Figure 5.5). This increase in 

band number was observed regardless of inoculum concentration. Interestingly, 

although the bands appearing at 7 dpi were at the same position for each tested 

inoculum concentrations, their intensity seem to vary very much (this point is 

particularly well illustrated when comparing profiles at 7 dpi between inoculums 105 

and 106 on Figure 5.4). 

 

Figure 5.5. Number of detected bands for plants infected vs. non-infected with E. coli. Infected 

samples represent the average of all inoculum concentrations; “dpi”: days post-infection. 
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To see how community profiles were related to each other, we grouped similar 

samples according to the Pearson correlation of their DGGE profiles in a neighbour-

joining dendrogram (Figure 5.6). 

 

 

Figure 5.6. Relatedness between community profiles of field-grown spinach sprayed with 

different concentrations of E. coli strain GMB30. This dendrogram was calculated with the 

neighbour-joining method on the Pearson correlation between individual profiles of the same 16S 

rDNA DGGE gel. “dpi”: days post-infection (with E. coli). This figure was created using Nonlinear 

Dynamics Phoretix 1D v11.1 (demo version). 

 

We expectedly observed that infected 7 dpi sample profiles clustered together and 

were the most different profiles from the rest (Figure 5.6). Additionally, the control 

sample profiles also grouped together (Figure 5.6) except for the control at 7 dpi, 

which although similar, showed a slight increase in its number of bands. Profiles of 

infected plant samples at 1 dpi and 4 dpi generally grouped together, with the notable 
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exception of the 1 dpi and 4 dpi samples infected with 107 cells per mL, which 

grouped with the 7 dpi samples (Figure 5.6). This last observation is very interesting, 

as it suggests that if the increase in bands is indeed caused by the addition the E. coli, 

it is also faster when more E. coli are added. In other words, the higher the inoculum 

concentration is, the more perturbed are profiles at 1 dpi and 4 dpi compared to 

uninfected profiles.  

 

Unfortunately for this experiment, we did not perform plate counts of E. coli 

colonising plants. This information could have helped us to determine if the 

differences in profiles a week after infection was linked to E. coli growth patterns on 

leaves, or was even similar to what we observed in Figure 5.2. 

 

5.3.4.2. Experimental contamination of spinach grown in controlled 

environmental conditions  

 

We attempted to perform another experimental contamination using plants grown in 

another field, but half-way through the experiment we observed heavy fungal or 

oomycete contamination on our spinach plants, which we discarded. We therefore 

decided to continue growing spinach in laboratory conditions (as we had initially 

observed the microflora perturbation) to further investigate this phenomenon.  

 

In Figure 5.7, we present profiles at 4 to 8 dpi for 2 representative experiments 

(labelled “S2” and “S3”), to which we added profiles from the inoculated field-grown 

plants (labelled “S1”) presented in Figure 5.4 and Figure 5.6. 
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Figure 5.7. Community-profiling of field-grown (S1) and culture-chamber-grown (S2 and S3) 

spinach sprayed with E. coli strain GMB30. This dendrogram was calculated with the neighbour-

joining method on the Pearson correlation between individual profiles of the same 16S rDNA DGGE 

gel. “dpi”: days post-infection (with E. coli); “S” stands for “spraying experiment”. This figure was 

created using Nonlinear Dynamics Phoretix 1D v11.1 (demo version). 

 

Similarly to field-grown plants, we observed an increase of the number of bands (and 

thus possibly bacterial diversity) about a week after inoculation of culture chamber-

grown plants. Profiles from the 3 spraying experiments showing an increase in 

number of bands were the most correlated and clustered together in the dendrogram 

(Figure 5.7), despite the fact that the appearing bands were not similar between field- 
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and culture chamber-grown plants. Interestingly, the difference occurred one day 

earlier (6 dpi instead of 7 dpi), which is possibly due to bacteria being able to grow 

faster or at least survive better in a propagator with a constantly controlled 

temperature (22°C) rather than daily fluctuating temperatures in field conditions. 

Also, there did not seem to be an observable change in community structure from 4 to 

7 dpi. Profiles from non-inoculated plants also expectedly grouped together, despite 

their significant difference in number of bands (Figure 5.8). Indeed, non-inoculated 

plants grown in the field had much more bands on average (15.8) than culture 

chamber-grown plants (6) and this difference was statistically significant (Mann-

Whitney U=1.5; p=0.0278). 

 

 

Figure 5.8. Comparison of community profiles between non-inoculated field-grown and 

laboratory-grown plants using DGGE. The number of bands were determined from experiments 

shown in the previous sections. Each point represent the number of bands of a profile from non-

inoculated plants. The asterisk indicates a significant difference after a MWW test. 

 

This observed difference in the number of bands is possibly caused by varying levels 

of bacterial richness in field and controlled environments. When growing in fields, 
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plants are subjected to irrigation from above, the sustained presence of wildlife and 

birds and heavily varying meteorological conditions. It is therefore not surprising that 

the bacterial richness in such dynamic environments is observed to be bigger than the 

bacterial richness on plants grown in very controlled conditions. The fact that we did 

not observe the same bands appearing in field- and laboratory-grown plants infected 

with E. coli is a good indication that the natural microflora, assumed to be different in 

different growing conditions, is perturbed. We do not see any perturbation in non-

inoculated plants, which is also supporting this hypothesis. 

 

5.3.4.3. Comment on the amplification of contaminating eukaryotic 

DNA 

 

We very consistently observed very bright bands in the phyllosphere samples, around 

54% denaturing conditions (created by urea and formamide in an 8% acrylamide gel) 

for spinach and around 50% denaturing conditions for rocket salad. These bands were 

identified as contaminants from chloroplastic and mitochondrial DNA by comparison 

with other studies (Lopez-Velasco et al., 2010; Rastogi et al., 2010) although 

mitochondrial contamination was estimated to be low for salad samples (Rastogi, 

Tech et al. 2010). Judging by some of our profiles, this contamination can represent 

up to around 80% of total amplicons in abundance, which can lead to an 

overestimation of microbial abundance in certain profiles. However, in our analysis, 

we focused on the position and the number of bands in each profiles rather than their 

weight. Indeed, DGGE has been considered as a semi-quantitative method for 

comparison across samples on different gels (Tourlomousis et al. 2010) but we 

preferred to stay cautious and not use densitometric information from the gels. 16S 
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rDNA PCR-based community analyses do not tend to reflect very accurately the 

abundance of different species, but more the efficiency of the annealing of universal 

primers to particular templates. Furthermore, it has been estimated that PCR misses 

half of the ribosomal diversity in environmental samples, because of annealing 

differences (Hong et al., 2009). 

 

Nevertheless, we tried to investigate whether we could get rid of these contaminants. 

It has been recommended to use primer pairs targeting different hypervariable regions 

to overcome this unwanted amplification. We tried to compare amplification targeting 

the V1-2, V1-3, V3, V3-5, V6-8 and V8 hypervariable regions (see Methods) and 

although we did not obtain the same bands (but roughly the same number) we equally 

observed a majority of chloroplastic DNA in the amplicons for both hypervariable 

regions targeted, as indicated by wider bands on the denaturing gels (data not shown). 

Additionally, we did not find differences in amplification when the annealing 

temperature was raised from 50°C to 55°C. We then tried different methods for 

microbial DNA retrieval, with sonication or stomaching of leaf material (mechanical 

disruption of leaves). In both cases we did not get rid of chloroplastic material (data 

not shown). This observation has been confirmed later by a study where authors could 

amplify plant DNA after just gently washing the surface of leaves with diluent 

(Rastogi, Tech et al. 2010). A clever way to remove these contaminants has been 

suggested in the same recent study. They identified recognition sites of uncommon 

restriction enzymes in the lettuce chloroplastic 16S rDNA sequence. After extraction 

from environmental samples, the DNA was digested using these restriction enzymes 

and the band corresponding to mostly undigested bacterial 16S rDNA fragments was 

excised to be used for DGGE. The advantage of such a method is that providing 
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digestion is complete, contaminant chloroplastic DNA is theoretically completely 

removed. A disadvantage however is that one cannot assert that fragments of bacterial 

origin do not get digested as well (Rastogi, Tech et al. 2010).  

 

In this study, because of the preliminary nature of the analysis and the lack of a high 

number of samples and field-scale replicates, we largely focus on the comparison of 

community profiles alone. Our assumption was that as long as contamination by 

eukaryotic DNA is more or less similar across samples, it should not bias too much 

our interpretation and the relevance of the results presented here. 
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5.4. Conclusive remarks and industrial relevance 

 

5.4.1. Ecological hypotheses 

 

A study including very similar results and denaturing gel pictures than those presented 

in this chapter has been published recently (Lopez-Velasco et al. 2010). It presents the 

analysis of lettuce microflora community profiles after contamination with E. coli 

O157:H7 in refrigerated environments. Similarly to our study, authors used DGGE 

(Lopez-Velasco et al. 2010) to analyse changes in the lettuce microflora caused by E. 

coli and cold exposure. Authors observed that the structure of microbial communities 

was changing after 15 days of storage at 10°C but interestingly, the addition of E. coli 

O157:H7 caused a specific increase in epiphytic bacterial richness at 10 days, where it 

became the dominant microorganism (Lopez-Velasco et al. 2010). The combination 

of these observations with our results constitutes a strong argument to say that E. coli, 

regardless of its pathogenic status, can influence the structure of epiphytic bacterial 

communities. 

 

It is somewhat surprising that GMB30, a strain that we do not believe as very adapted 

to persist on plants, showed such a drastic effect on resident bacterial communities, 

which prompts the hypothesis that this perturbation is not strain-specific and is 

something possibly caused by any infecting E. coli strain. It is also possible that 

GMB30 has phenotypic abilities unknown to us and conferring a particularly great 

ability to influence the structure of plant resident microbes. As we observed an 

increase in population, we earlier formulated the hypothesis that E. coli strain GMB30 

was secreting a growth-promoting substance on plants. Good candidates for such a 
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substance are siderophores and it has been suggested that Salmonella and E. coli 

siderophores might be used by epiphytic bacteria (Brandl 2006), as this phenomenon 

seems to be happening frequently among leaf-associated bacteria (Loper and Buyer, 

1991; Loper and Henkels, 1999). The secretion of siderophores is typically what is 

called in ecological terms a “public good” (Gardner and Kummerli, 2008). A strain 

colonising environments poor in iron will secrete iron-scavenging siderophore 

molecules that can be used by other individual members of the community and not 

necessarily the producer itself. As iron bioavailability has been described as 

heterogeneously distributed on leaves, it is possible that some areas in the 

phyllosphere are experiencing iron stress. The emigration of siderophore producers in 

such areas could therefore boost the growth of naturally occurring bacteria, at the 

expense of the contaminating bacteria.  

 

In order to investigate this, it would be interesting to monitor community profiles on 

plants contaminated experimentally with other E. coli strains, or even non-E. coli 

bacteria such as Salmonella. We started to do this, but the DGGE gels were 

inconclusive (we could not observe any bands except for the chloroplastic DNA, even 

in infected samples) suggesting that we had not extracted enough DNA, and thus used 

enough plants per time point. However, we performed colony counts on various 

strains experimentally contaminating spinach grown in laboratory conditions: the high 

siderophore producer GMB37 (rank 1/170; PAi rank of 47/173), the low siderophore 

producer ECOR-63 (rank 164/170; PAi rank of 124/173) as well as E. coli O157:H7 

strain Sakai and Salmonella Typhimurium., we did not observe any variation in 

spinach colonisation trends for any of these strains as their counts all decreased 

between 6 and 8 dpi (data not shown). More experiments are required to understand 
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the strain-specific component, if any, of the complex interactions between E. coli and 

phyllosphere resident microflora. 

 

5.4.2. Industrial relevance and opportunities for biocontrol 

 

There has been a growing interest over the last decades on the possibility to add 

exogenous biological agents, manipulate or alter non-pathogenic microbial 

communities in soils and on leaves in order to control or suppress the occurrence of 

unwanted microbes. Competitive exclusion using bacteria and fungi has proven 

successful to regulate insect-associated damage to crops (the most famous case being 

the entomopathogenic Bacillus thuringiensis), but it has also been examined to 

diminish plant disease, and more recently the spread of human pathogens on plants 

(Cooley et al., 2003; Hudson et al., 2009). Naturally, the first biocontrol strains to 

have been tested against human pathogens were the strains already proven to be 

efficient in controlling plant pathogens. Biocontrol Pseudomonas fluorescens strains 

(Liao and Fett, 2001; Matos et al., 2005; Fett, 2006; Liao, 2008) and different 

Lactobacillus species (Vescovo et al., 1995; Vescovo et al., 1996; Cai et al., 1997; 

Torriani et al., 1997) have been successfully used as antagonists against various 

human pathogens such as Salmonella (Liao and Fett, 2001; Matos et al., 2005; Fett, 

2006), Listeria monocytogenes (Cai1997), Staphylococcus aureus (Vescovo, Torriani 

et al. 1996).  

 

The treatment with biocontrol strains has also been investigated to limit the growth or 

occurrence of E. coli on salad leaves (Vescovo, Orsi et al. 1995) and also green 

peppers (Liao and Fett 2001) by competitive exclusion. In this last study, authors 

selected their antagonistic biocontrol strain from the analysis of the culturable natural 
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resident microflora of produce (Liao and Fett 2001). They screened 120 strains for the 

ability to inhibit the growth in vitro of various pathogens including E. coli and 

Salmonella, found 6 good candidates from Bacillus and Pseudomonas genus and 

confirmed their antagonistic effect on green pepper disks (Liao and Fett 2001).   

 

In our study, although we did not thoroughly identify bacterial species corresponding 

to the bands appearing on denaturing gradient gels after treatment of the plants by E. 

coli, we observed that strains from the Stenotrophomonas and Rahnella genus 

increased in numbers when E. coli had infected their habitat. It somehow would mean 

that the presence of E. coli on plants triggers events leading to the growth of these 

bacteria on leaves. This seemingly “synergic compatibility” (i.e., the fact that the 

fitness of an exogenously added bacteria also benefits the fitness of the resident flora) 

can also be the reflection of competition for the same resources, and it remains 

unknown whether, if applied in high number on leaves, Stenotrophomonas or 

Rahnella strains would inhibit the growth of E. coli or not. In that respect, it is 

plausible to imagine naturally plant-associated strains applied as biocontrol agents, 

responding to E. coli contamination by outgrowing it and using its resources. 

Interestingly, it is worth mentioning that strains from the Stenotrophomonas and 

Rahnella genus have been successfully used in the past as biocontrol agents against 

fungal plant pathogens or Xanthomonas campestris (Kobayashi et al., 2002; El-

Hendawy et al., 2005), Ralstonia solanacearum on potatoes (Messiha et al., 2007) or 

Penicillium sp. and Botrytis cinerea on apples (Calvo et al., 2007). In the light of the 

observations presented in this chapter, it seems plausible to further investigate the role 

of these bacterial species in the possible control or inhibition of E. coli contamination 

on salad leaves.  
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6. Conclusive remarks and perspectives 

 

 

In this work, we addressed multiple questions with both academic and applied 

industrial views, the implications of which are detailed in this section. 

 

• Where does E. coli contaminating agricultural fields generally come from? 

 

We have shown that the population structure of E. coli contaminating plants was 

strongly biased in favour of phylogroup B1, and against phylogroup B2. This 

observation, if confirmed using plants from different other species, geographical 

locations, and time of isolation, could constitute an E. coli “ecological footprint” of 

plant environments, with possible implications for microbial source tracking. Indeed, 

a population-wide approach rather than single-strain associations seems to be the way 

forward, as it seems from the yet scarce literature on this topic that the association of 

certain environments and hosts with specific population structures is much more 

robust than with single-strain genotypes or markers. In Figure 6.1, we present the 

average population structures for primary and secondary environments in E. coli, with 

data taken from Table 1.1 updated with our present analysis (additionally, see 

Chapter 3 section 3.6). 
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Figure 6.1. Radar plot of combined E. coli population structures from various 

environments. Data was extracted and averaged from Table 1.1. 

 

Based on the overall genomic similarity, and not isolation, of plant-associated and 

faecal isolates, we can exclude the possibility that E. coli retrieved from plants come 

from “naturalised” populations endogenous to soil, as it was suggested earlier (Ishii et 

al. 2009). Unfortunately, apart from this point, we cannot answer fully the difficult 

question of where E. coli from plants comes from, but we provide a good method to 

do so. It would be interesting to conduct field-scale experiments over a growing 

season, in which the population structure of E. coli contaminating irrigation, wildlife 

or soils would be compared to the population structure on plants. Similar approaches 

have been preliminary investigated regarding cattle contamination of water (Carlos et 

al. 2010) with promising results, and it would be of prime interest to transpose this to 

agricultural food safety. 
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• Are there specific functions or traits in plant- or nonhost-associated E. coli? 

 

A very diverse E. coli population, maybe broadly attributable to nonhost 

environments, was observed on plants and prompted the question of how host and 

nonhost environments can shape the population structure of E. coli. The simplest 

assumption is to consider that strains from different phylogroups possess on average 

different fitness-enhancing traits that modulate their abundance in various 

environments. In order to identify these traits, we used a combined comparative 

approach incorporating phylogeny and a large range of phenotypes that were reported 

to be involved in the colonisation and persistence of E. coli in various settings (see 

Introduction section 1.3 and Chapter 4). From our analysis, we could determine that 

plant and faecal isolates differed significantly on multiple levels:  

 

(a) plant-associated adaptation to sucrose and aromatic compounds metabolism: 

We observed that GMB isolates were strikingly much better at utilising sucrose and 

aromatic compounds, two traits with a very strong ecological relevance in nonhost 

environments. Sucrose is the major carbohydrate found on plants (leaves and roots) 

and aromatic compounds are present at naturally very high concentrations in soils, 

plants and water (Diaz et al. 2001). In vitro competition assays are required to confirm 

the fitness-enhancing properties of these traits, but it is nevertheless striking to 

observe such an enrichment of these laterally acquired functions in plant-associated 

bacteria. 
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(b) nonhost-associated adaptation to stress: we extrapolated that a significantly 

slower metabolism on common nutrients by plant-associated isolates could be a 

reflection of the trade-off between stress resistance and nutritional abilities involved 

in the SPANC balance theory (Ferenci 2005). We unfortunately did not perform stress 

resistance assays but if this link is proven true, it could mean that one of the major 

selection pressures for high fitness in nonhost environments is the ability to better 

resist better various stressful conditions, reflected indirectly by a slower metabolism 

in GMB isolates. 

 

(c) phylogenetic-associated adaptation to nonhost environments: 

Based on the assumption that traits enhancing fitness in a given environment are over-

represented in isolates from this environment, we calculated a “plant association 

index” or PAi based on the traits found to significantly discriminate GMB from 

ECOR. We could roughly estimate the likelihood of plant association for individual 

strains, and this potential was strikingly very strongly phylogenetically distributed in 

E. coli, with a high PAi values in phylogroups B1 and to some extent D, and very low 

PAi values in phylogroups B2 (and F), and A. We could separately confirm this 

distribution in plant and host isolates, indicating that this association is probably 

ancient in E. coli and was not caused by our sampling of plant-associated isolates. As 

presented in the conclusion of Chapter 4 (section 4.5), there is a convergence of 

evidence implying that E. coli phylogroups differ in their host association, and thus 

possibly in their transmission ecology, as some phylogroups are host specialists (the 

archetype being B2) and others are host generalists (B1) (White et al. 2011, Sims and 

Kim 2011). Our study contributes greatly to further this dichotomy, by showing that 
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host generalisation in phylogroup B1 is associated with nonhost adaptation (Figure 

6.2). 

 

 

Figure 6.2. Schematic representation of the dichotomy between host specialisation and 

generalism in E. coli. 

 

Resulting from the analysis presented in this thesis, we can present a model of host 

association and transmission ecology (Figure 6.2) in which different strains of E. coli 

range widely in their association (i.e. fitness optimum) with host and nonhost 

environments. In this model, the extremes of host specialisation are the obligate 

pathogens Shigella and EIEC, and host generalism and nonhost adaptation are 

represented by phylogroup B1 strains. It is interesting to notice that a large number of 

traits could potentially be associated with this ecological strategies dichotomy. It has 

been reported that Shigella had lost the ability to degrade aromatic compounds 

(Sabarly et al. 2011, Touchon et al. 2009), indicating that this trait is probably not 

important for E. coli strains that are strongly associated with their hosts. Accordingly, 

we observed a very low or nonexistent metabolism of aromatic compounds in B2 and 

A strains, and a high metabolism in B1, indicating that this trait could potentially be a 
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good marker for assessing the host adaptation status of any individual strain. There 

are additional minor functions that we hypothesised to be associated with specific 

ecological strategies (Figure 6.2). The high production of siderophores could be 

linked to adaptation to live in densely populated niches, like host intestines (see 

discussion in section 4.3.3), a fast metabolism and the absence of motility (see 

discussion in section 1.2) could additionally be associated with the intestinal 

environment.  

 

•  Does E. coli interact with the plant resident microflora? 

We addressed this question very preliminarily in Chapter 5 of this thesis. Using 

DGGE, a PCR-based community fingerprinting method, we could observe that 

around one week after artificial contamination with E. coli, a surprising increase in 

levels of indigenous epiphytic resident bacteria occurred, possibly including bacterial 

species like Stenotrophomonas sp. and Rahnella sp. More research is required to 

investigate the mechanisms causing E. coli to actively (either directly or indirectly) 

modulate the natural epiphytic community structure. 

 

 

 

 

  



 

295 
 

References 

 

Achtman, M. (2008). "Evolution, population structure, and phylogeography of genetically 
monomorphic bacterial pathogens." Annu Rev Microbiol 62: 53-70. 

Ahmed, N., U. Dobrindt, J. Hacker and S. E. Hasnain (2008). "Genomic fluidity and 
pathogenic bacteria: applications in diagnostics, epidemiology and intervention." 
Nature Reviews Microbiology 6(5): 387-394. 

Alaeddinoglu, N. G. and H. P. Charles (1979). "Transfer of a gene for sucrose utilization into 
Escherichia coli K12, and consequent failure of expression of genes for D-serine 
utilization." J Gen Microbiol 110(1): 47-59. 

Alpert, C., J. Scheel, W. Engst, G. Loh and M. Blaut (2009). "Adaptation of protein 
expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice." 
Environ Microbiol 11(4): 751-761. 

Altenhoefer, A., S. Oswald, U. Sonnenborn, C. Enders, J. Schulze, J. Hacker and T. A. 
Oelschlaeger (2004). "The probiotic Escherichia coli strain Nissle 1917 interferes 
with invasion of human intestinal epithelial cells by different enteroinvasive bacterial 
pathogens." FEMS Immunol Med Microbiol 40(3): 223-229. 

Anjum, M. F., S. Lucchini, A. Thompson, J. C. Hinton and M. J. Woodward (2003). 
"Comparative genomic indexing reveals the phylogenomics of Escherichia coli 
pathogens." Infection and Immunity 71(8): 4674-4683. 

Arnqvist, A., A. Olsen, J. Pfeifer, D. G. Russell and S. Normark (1992). "The Crl protein 
activates cryptic genes for curli formation and fibronectin binding in Escherichia coli 
HB101." Mol Microbiol 6(17): 2443-2452. 

Arr, M., T. Perenyi and E. K. Novak (1970). "Sucrose and raffinose breakdown by 
Escherichia coli." Acta Microbiol Acad Sci Hung 17(2): 117-126. 

Autieri, S. M., J. J. Lins, M. P. Leatham, D. C. Laux, T. Conway and P. S. Cohen (2007). "L-
fucose stimulates utilization of D-ribose by Escherichia coli MG1655 ∆fucAO and E. 
coli Nissle 1917 ∆fucAO mutants in the mouse intestine and in M9 minimal 
medium." Infection and Immunity 75(11): 5465-5475. 

Baldauf, S. L. (2003). "Phylogeny for the faint of heart: a tutorial." Trends Genet 19(6): 345-
351. 

Barak, J. D., L. Gorski, P. Naraghi-Arani and A. O. Charkowski (2005). "Salmonella enterica 
virulence genes are required for bacterial attachment to plant tissue." Appl Environ 
Microbiol 71(10): 5685-5691. 

Barak, J. D., C. E. Jahn, D. L. Gibson and A. O. Charkowski (2007). "The role of cellulose 
and O-antigen capsule in the colonization of plants by Salmonella enterica." Mol 
Plant Microbe Interact 20(9): 1083-1091. 

Barak, J. D., L. C. Whitehand and A. O. Charkowski (2002). "Differences in attachment of 
Salmonella enterica serovars and Escherichia coli O157:H7 to alfalfa sprouts." Appl 
Environ Microbiol 68(10): 4758-4763. 

Barnhart, M. M., J. Lynem and M. R. Chapman (2006). "GlcNAc-6P levels modulate the 
expression of Curli fibers by Escherichia coli." Journal of Bacteriology 188(14): 
5212-5219. 

Barnich, N., F. A. Carvalho, A. L. Glasser, C. Darcha, P. Jantscheff, M. Allez, H. Peeters, G. 
Bommelaer, P. Desreumaux, J. F. Colombel and A. Darfeuille-Michaud (2007). 
"CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa 
colonization in Crohn disease." Journal of Clinical Investigation 117(6): 1566-1574. 

Beiko, R. G., T. J. Harlow and M. A. Ragan (2005). "Highways of gene sharing in 
prokaryotes." Proc Natl Acad Sci U S A 102(40): 14332-14337. 

Benjamini, Y. and Y. Hochberg (1995). "Controlling the False Discovery Rate - a Practical 
and Powerful Approach to Multiple Testing." Journal of the Royal Statistical Society 
Series B-Methodological 57(1): 289-300. 



 

296 
 

Berger, C. N., D. J. Brown, R. K. Shaw, F. Minuzzi, B. Feys and G. Frankel (2011). 
"Salmonella enterica strains belonging to O serogroup 1,3,19 induce chlorosis and 
wilting of Arabidopsis thaliana leaves." Environ Microbiol 13(5): 1299-1308. 

Berger, C. N., R. K. Shaw, D. J. Brown, H. Mather, S. Clare, G. Dougan, M. J. Pallen and G. 
Frankel (2009). "Interaction of Salmonella enterica with basil and other salad leaves." 
ISME J 3(2): 261-265. 

Bergholz, P. W., J. D. Noar and D. H. Buckley (2011). "Environmental patterns are imposed 
on the population structure of Escherichia coli after fecal deposition." Appl Environ 
Microbiol 77(1): 211-219. 

Bergthorsson, U. and H. Ochman (1998). "Distribution of chromosome length variation in 
natural isolates of Escherichia coli." Molecular Biology and Evolution 15(1): 6-16. 

Bermudez, M. and T. C. Hazen (1988). "Phenotypic and genotypic comparison of 
Escherichia coli from pristine tropical waters." Appl Environ Microbiol 54(4): 979-
983. 

Bertin, Y., J. P. Girardeau, F. Chaucheyras-Durand, B. Lyan, E. Pujos-Guillot, J. Harel and C. 
Martin (2011). "Enterohaemorrhagic Escherichia coli gains a competitive advantage 
by using ethanolamine as a nitrogen source in the bovine intestinal content." Environ 
Microbiol 13(2): 365-377. 

Beuchat, L. R. (2002). "Ecological factors influencing survival and growth of human 
pathogens on raw fruits and vegetables." Microbes and Infection 4(4): 413-423. 

Beuchat, L. R., T. E. Ward and C. A. Pettigrew (2001). "Comparison of chlorine and a 
prototype produce wash product for effectiveness in killing Salmonella and 
Escherichia coli O157:H7 on alfalfa seeds." J Food Prot 64(2): 152-158. 

Bhagwat, A. A., L. Chan, R. Han, J. Tan, M. Kothary, J. Jean-Gilles and B. D. Tall (2005). 
"Characterization of enterohemorrhagic Escherichia coli strains based on acid 
resistance phenotypes." Infect Immun 73(8): 4993-5003. 

Bianco, C., E. Imperlini, R. Calogero, B. Senatore, A. Amoresano, A. Carpentieri, P. Pucci 
and R. Defez (2006). "Indole-3-acetic acid improves Escherichia coli's defences to 
stress." Arch Microbiol 185(5): 373-382. 

Bibbal, D., V. Dupouy, M. F. Prere, P. L. Toutain and A. Bousquet-Melou (2009). 
"Relatedness of Escherichia coli strains with different susceptibility phenotypes 
isolated from swine feces during ampicillin treatment." Appl Environ Microbiol 
75(10): 2999-3006. 

Bingen-Bidois, M., O. Clermont, S. Bonacorsi, M. Terki, N. Brahimi, C. Loukil, D. Barraud 
and E. Bingen (2002). "Phylogenetic analysis and prevalence of urosepsis strains of 
Escherichia coli bearing pathogenicity island-like domains." Infection and Immunity 
70(6): 3216-3226. 

Bochner, B. R. (2009). "Global phenotypic characterization of bacteria." FEMS Microbiol 
Rev 33(1): 191-205. 

Bochner, B. R. and M. A. Savageau (1977). "Generalized indicator plate for genetic, 
metabolic, and taxonomic studies with microorganisms." Appl Environ Microbiol 
33(2): 434-444. 

Booijink, C. C., J. Boekhorst, E. G. Zoetendal, H. Smidt, M. Kleerebezem and W. M. de Vos 
(2010). "Metatranscriptome analysis of the human fecal microbiota reveals subject-
specific expression profiles, with genes encoding proteins involved in carbohydrate 
metabolism being dominantly expressed." Appl Environ Microbiol 76(16): 5533-
5540. 

Bossio, D. A. and K. M. Scow (1995). "Impact of carbon and flooding on the metabolic 
diversity of microbial communities in soils." Appl Environ Microbiol 61(11): 4043-
4050. 

Brandl, M. T. (2006). "Fitness of human enteric pathogens on plants and implications for food 
safety." Annu Rev Phytopathol 44: 367-392. 

Brandl, M. T. and R. Amundson (2008). "Leaf age as a risk factor in contamination of lettuce 
with Escherichia coli O157:H7 and Salmonella enterica." Appl Environ Microbiol 
74(8): 2298-2306. 



 

297 
 

Brennan, F. P., F. Abram, F. A. Chinalia, K. G. Richards and V. O'Flaherty (2010). 
"Characterization of environmentally persistent Escherichia coli isolates leached 
from an Irish soil." Appl Environ Microbiol 76(7): 2175-2180. 

Brennan, F. P., V. O'Flaherty, G. Kramers, J. Grant and K. G. Richards (2010). "Long-term 
persistence and leaching of Escherichia coli in temperate maritime soils." Appl 
Environ Microbiol 76(5): 1449-1455. 

Buitenhuis, B., C. M. Rontved, S. M. Edwards, K. L. Ingvartsen and P. Sorensen (2011). "In 
depth analysis of genes and pathways of the mammary gland involved in the 
pathogenesis of bovine Escherichia coli-mastitis." BMC Genomics 12: 130. 

Bunnik, E. M., L. C. Swenson, D. Edo-Matas, W. Huang, W. Dong, A. Frantzell, C. J. 
Petropoulos, E. Coakley, H. Schuitemaker, P. R. Harrigan and A. B. van 't Wout 
(2011). "Detection of inferred CCR5- and CXCR4-using HIV-1 variants and 
evolutionary intermediates using ultra-deep pyrosequencing." Plos Pathogens 7(6): 
e1002106. 

Byappanahalli, M. N., R. L. Whitman, D. A. Shively, M. J. Sadowsky and S. Ishii (2006). 
"Population structure, persistence, and seasonality of autochthonous Escherichia coli 
in temperate, coastal forest soil from a Great Lakes watershed." Environ Microbiol 
8(3): 504-513. 

Cai, Y., L. K. Ng and J. M. Farber (1997). "Isolation and characterization of nisin-producing 
Lactococcus lactis subsp. lactis from bean-sprouts." J Appl Microbiol 83(4): 499-
507. 

Caldwell, K. N., G. L. Anderson, P. L. Williams and L. R. Beuchat (2003). "Attraction of a 
free-living nematode, Caenorhabditis elegans, to foodborne pathogenic bacteria and 
its potential as a vector of Salmonella poona for preharvest contamination of 
cantaloupe." J Food Prot 66(11): 1964-1971. 

Calvin, L., H. H. Jensen and J. Liang (2009). The Economics of Food Safety: The 2006 
Foodborne Illness Outbreak Linked to Spinach. Microbial Safety of Fresh Produce, 
Wiley-Blackwell: 399-417. 

Calvo, J., V. Calvente, M. E. de Orellano, D. Benuzzi and M. I. Sanz de Tosetti (2007). 
"Biological control of postharvest spoilage caused by Penicillium expansum and 
Botrytis cinerea in apple by using the bacterium Rahnella aquatilis." Int J Food 
Microbiol 113(3): 251-257. 

Caponigro, V., M. Ventura, I. Chiancone, L. Amato, E. Parente and F. Piro (2010). "Variation 
of microbial load and visual quality of ready-to-eat salads by vegetable type, season, 
processor and retailer." Food Microbiol 27(8): 1071-1077. 

Carlos, C., M. M. Pires, N. C. Stoppe, E. M. Hachich, M. I. Sato, T. A. Gomes, L. A. Amaral 
and L. M. Ottoboni (2010). "Escherichia coli phylogenetic group determination and 
its application in the identification of the major animal source of fecal 
contamination." BMC Microbiology 10: 161. 

Caugant, D. A., B. R. Levin and R. K. Selander (1981). "Genetic diversity and temporal 
variation in the E. coli population of a human host." Genetics 98(3): 467-490. 

Caza, M., F. Lepine, S. Milot and C. M. Dozois (2008). "Specific roles of the iroBCDEN 
genes in virulence of an avian pathogenic Escherichia coli O78 strain and in 
production of salmochelins." Infection and Immunity 76(8): 3539-3549. 

Chang, D. E., D. J. Smalley, D. L. Tucker, M. P. Leatham, W. E. Norris, S. J. Stevenson, A. 
B. Anderson, J. E. Grissom, D. C. Laux, P. S. Cohen and T. Conway (2004). "Carbon 
nutrition of Escherichia coli in the mouse intestine." Proc Natl Acad Sci U S A 
101(19): 7427-7432. 

Chao, A. (1984). "Nonparametric Estimation of the Number of Classes in a Population." 
Scandinavian Journal of Statistics 11(4): 265-270. 

Clermont, O., S. Bonacorsi and E. Bingen (2000). "Rapid and simple determination of the 
Escherichia coli phylogenetic group." Appl Environ Microbiol 66(10): 4555-4558. 

Clermont, O., D. M. Gordon, S. Brisse, S. T. Walk and E. Denamur (2011). "Characterization 
of the cryptic Escherichia lineages: rapid identification and prevalence." Environ 
Microbiol. 



 

298 
 

Clermont, O., M. Lescat, C. L. O'Brien, D. M. Gordon, O. Tenaillon and E. Denamur (2008). 
"Evidence for a human-specific Escherichia coli clone." Environ Microbiol 10(4): 
1000-1006. 

Clermont, O., M. Olier, C. Hoede, L. Diancourt, S. Brisse, M. Keroudean, J. Glodt, B. Picard, 
E. Oswald and E. Denamur (2011). "Animal and human pathogenic Escherichia coli 
strains share common genetic backgrounds." Infection Genetics and Evolution 11(3): 
654-662. 

Colwell, R. K., C. X. Mao and J. Chang (2004). "Interpolating, Extrapolating, and Comparing 
Incidence-Based Species Accumulation Curves." Ecology 85(10): 2717-2727. 

Cooke, E. M., I. G. Hettiaratchy and A. C. Buck (1972). "Fate of ingested Escherichia coli in 
normal persons." J Med Microbiol 5(3): 361-369. 

Cooley, M. B., D. Chao and R. E. Mandrell (2006). "Escherichia coli O157:H7 survival and 
growth on lettuce is altered by the presence of epiphytic bacteria." J Food Prot 
69(10): 2329-2335. 

Cooley, M. B., W. G. Miller and R. E. Mandrell (2003). "Colonization of Arabidopsis 
thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 
and competition by Enterobacter asburiae." Appl Environ Microbiol 69(8): 4915-
4926. 

Cooper, V. S. and R. E. Lenski (2000). "The population genetics of ecological specialization 
in evolving Escherichia coli populations." Nature 407(6805): 736-739. 

Cornelis, P. (2010). "Iron uptake and metabolism in pseudomonads." Appl Microbiol 
Biotechnol 86(6): 1637-1645. 

Croxen, M. A. and B. B. Finlay (2010). "Molecular mechanisms of Escherichia coli 
pathogenicity." Nature Reviews Microbiology 8(1): 26-38. 

Currie, B. J., D. Gal, M. Mayo, L. Ward, D. Godoy, B. G. Spratt and J. J. LiPuma (2007). 
"Using BOX-PCR to exclude a clonal outbreak of melioidosis." BMC Infect Dis 7: 
68. 

Czeczulin, J. R., S. Balepur, S. Hicks, A. Phillips, R. Hall, M. H. Kothary, F. Navarro-Garcia 
and J. P. Nataro (1997). "Aggregative adherence fimbria II, a second fimbrial antigen 
mediating aggregative adherence in enteroaggregative Escherichia coli." Infection 
and Immunity 65(10): 4135-4145. 

Darling, A. E., I. Miklos and M. A. Ragan (2008). "Dynamics of genome rearrangement in 
bacterial populations." Plos Genetics 4(7): e1000128. 

de Araujo, J. C. and R. P. Schneider (2008). "DGGE with genomic DNA: suitable for 
detection of numerically important organisms but not for identification of the most 
abundant organisms." Water Res 42(20): 5002-5010. 

de Muinck, E. J., T. Øien, O. Storrø, R. Johnsen, N. C. Stenseth, K. S. Rønningen and K. 
Rudi (2011). "Diversity, transmission and persistence of Escherichia coli in a cohort 
of mothers and their infants." Environ Microbiol Rep 3(3): 352-359. 

De Paepe, M., V. Gaboriau-Routhiau, D. Rainteau, S. Rakotobe, F. Taddei and N. Cerf-
Bensussan (2011). "Trade-off between bile resistance and nutritional competence 
drives Escherichia coli diversification in the mouse gut." Plos Genetics 7(6): 
e1002107. 

de Vienne, D. M., T. Giraud and O. C. Martin (2007). "A congruence index for testing 
topological similarity between trees." Bioinformatics 23(23): 3119-3124. 

Deering, A. J., L. J. Mauer and R. E. Pruitt (2011). "Internalization of E. coli O157:H7 and 
Salmonella spp. in plants: A review." Food Research International(0). 

Deszo, E. L., S. M. Steenbergen, D. I. Freedberg and E. R. Vimr (2005). "Escherichia coli K1 
polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form 
variation involving a mobile contingency locus." Proc Natl Acad Sci U S A 102(15): 
5564-5569. 

Di Giovanni, G. D., L. S. Watrud, R. J. Seidler and F. Widmer (1999). "Comparison of 
Parental and Transgenic Alfalfa Rhizosphere Bacterial Communities Using Biolog 
GN Metabolic Fingerprinting and Enterobacterial Repetitive Intergenic Consensus 
Sequence-PCR (ERIC-PCR)." Microb Ecol 37(2): 129-139. 



 

299 
 

Diallo, S., A. Crepin, C. Barbey, N. Orange, J. F. Burini and X. Latour (2011). "Mechanisms 
and recent advances in biological control mediated through the potato rhizosphere." 
FEMS Microbiol Ecol 75(3): 351-364. 

Diaz, E., A. Ferrandez, M. A. Prieto and J. L. Garcia (2001). "Biodegradation of aromatic 
compounds by Escherichia coli." Microbiol Mol Biol Rev 65(4): 523-569, table of 
contents. 

Didelot, X., M. Barker, D. Falush and F. G. Priest (2009). "Evolution of pathogenicity in the 
Bacillus cereus group." Syst Appl Microbiol 32(2): 81-90. 

Didelot, X., R. Bowden, T. Street, T. Golubchik, C. Spencer, G. McVean, V. Sangal, M. F. 
Anjum, M. Achtman, D. Falush and P. Donnelly (2011). "Recombination and 
population structure in Salmonella enterica." Plos Genetics 7(7): e1002191. 

Didelot, X. and D. Falush (2007). "Inference of bacterial microevolution using multilocus 
sequence data." Genetics 175(3): 1251-1266. 

Didelot, X. and M. C. Maiden (2010). "Impact of recombination on bacterial evolution." 
Trends Microbiol 18(7): 315-322. 

Dobbin, H. S., C. J. Hovde, C. J. Williams and S. A. Minnich (2006). "The Escherichia coli 
O157 flagellar regulatory gene flhC and not the flagellin gene fliC impacts 
colonization of cattle." Infection and Immunity 74(5): 2894-2905. 

Dobrindt, U. and J. Hacker (2001). "Whole genome plasticity in pathogenic bacteria." Curr 
Opin Microbiol 4(5): 550-557. 

Dong, Y., A. L. Iniguez, B. M. Ahmer and E. W. Triplett (2003). "Kinetics and strain 
specificity of rhizosphere and endophytic colonization by enteric bacteria on 
seedlings of Medicago sativa and Medicago truncatula." Appl Environ Microbiol 
69(3): 1783-1790. 

Donohue-Rolfe, A., D. W. Acheson and G. T. Keusch (1991). "Shiga toxin: purification, 
structure, and function." Rev Infect Dis 13 Suppl 4: S293-297. 

Dufour, D., P. Germon, E. Brusseaux, Y. Le Roux and A. Dary (2011). "First evidence of the 
presence of genomic islands in Escherichia coli P4, a mammary pathogen frequently 
used to induce experimental mastitis." J Dairy Sci 94(6): 2779-2793. 

Duriez, P., O. Clermont, S. Bonacorsi, E. Bingen, A. Chaventre, J. Elion, B. Picard and E. 
Denamur (2001). "Commensal Escherichia coli isolates are phylogenetically 
distributed among geographically distinct human populations." Microbiology 147(Pt 
6): 1671-1676. 

Dykhuizen, D. E. and L. Green (1991). "Recombination in Escherichia coli and the definition 
of biological species." Journal of Bacteriology 173(22): 7257-7268. 

El-Hendawy, H. H., M. E. Osman and N. M. Sorour (2005). "Biological control of bacterial 
spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella 
aquatilis." Microbiol Res 160(4): 343-352. 

Escobar-Paramo, P., O. Clermont, A. B. Blanc-Potard, H. Bui, C. Le Bouguenec and E. 
Denamur (2004). "A specific genetic background is required for acquisition and 
expression of virulence factors in Escherichia coli." Molecular Biology and 
Evolution 21(6): 1085-1094. 

Espinosa-Urgel, M. (2004). "Plant-associated Pseudomonas populations: molecular biology, 
DNA dynamics, and gene transfer." Plasmid 52(3): 139-150. 

Evans, D. G., D. J. Evans, Jr. and W. Tjoa (1977). "Hemagglutination of human group A 
erythrocytes by enterotoxigenic Escherichia coli isolated from adults with diarrhea: 
correlation with colonization factor." Infection and Immunity 18(2): 330-337. 

Fabich, A. J., S. A. Jones, F. Z. Chowdhury, A. Cernosek, A. Anderson, D. Smalley, J. W. 
McHargue, G. A. Hightower, J. T. Smith, S. M. Autieri, M. P. Leatham, J. J. Lins, R. 
L. Allen, D. C. Laux, P. S. Cohen and T. Conway (2008). "Comparison of carbon 
nutrition for pathogenic and commensal Escherichia coli strains in the mouse 
intestine." Infection and Immunity 76(3): 1143-1152. 

Ferenci, T. (2005). "Maintaining a healthy SPANC balance through regulatory and mutational 
adaptation." Mol Microbiol 57(1): 1-8. 



 

300 
 

Ferenci, T., H. F. Galbiati, T. Betteridge, K. Phan and B. Spira (2011). "The constancy of 
global regulation across a species: the concentrations of ppGpp and RpoS are strain-
specific in Escherichia coli." BMC Microbiol 11: 62. 

Fett, W. F. (2006). "Inhibition of Salmonella enterica by plant-associated pseudomonads in 
vitro and on sprouting alfalfa seed." J Food Prot 69(4): 719-728. 

Fierer, N. and R. B. Jackson (2006). "The diversity and biogeography of soil bacterial 
communities." Proc Natl Acad Sci U S A 103(3): 626-631. 

Finkel, S. E. and R. Kolter (2001). "DNA as a nutrient: novel role for bacterial competence 
gene homologs." Journal of Bacteriology 183(21): 6288-6293. 

Fischer, S. G. and L. S. Lerman (1979). "Length-independent separation of DNA restriction 
fragments in two-dimensional gel electrophoresis." Cell 16(1): 191-200. 

Fischer, S. G. and L. S. Lerman (1980). "Separation of random fragments of DNA according 
to properties of their sequences." Proc Natl Acad Sci U S A 77(8): 4420-4424. 

Frank, S. A. and P. Schmid-Hempel (2008). "Mechanisms of pathogenesis and the evolution 
of parasite virulence." J Evol Biol 21(2): 396-404. 

Friedmann, H. C. (2006). "Escherich and Escherichia." Adv Appl Microbiol 60: 133-196. 
Fukushima, H., T. Hashizume, Y. Morita, J. Tanaka, K. Azuma, Y. Mizumoto, M. Kaneno, 

M. Matsuura, K. Konma and T. Kitani (1999). "Clinical experiences in Sakai City 
Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 
infections in Sakai City, 1996." Pediatr Int 41(2): 213-217. 

Garbeva, P., J. A. van Veen and J. D. van Elsas (2004). "Microbial diversity in soil: selection 
microbial populations by plant and soil type and implications for disease 
suppressiveness." Annu Rev Phytopathol 42: 243-270. 

Gardner, A. and R. Kummerli (2008). "Social evolution: this microbe will self-destruct." Curr 
Biol 18(21): R1021-1023. 

Garenaux, A., M. Caza and C. M. Dozois (2011). "The Ins and Outs of siderophore mediated 
iron uptake by extra-intestinal pathogenic Escherichia coli." Vet Microbiol 153(1-2): 
89-98. 

Garmendia, J., G. Frankel and V. F. Crepin (2005). "Enteropathogenic and enterohemorrhagic 
Escherichia coli infections: translocation, translocation, translocation." Infection and 
Immunity 73(5): 2573-2585. 

Gauger, E. J., M. P. Leatham, R. Mercado-Lubo, D. C. Laux, T. Conway and P. S. Cohen 
(2007). "Role of motility and the flhDC Operon in Escherichia coli MG1655 
colonization of the mouse intestine." Infection and Immunity 75(7): 3315-3324. 

Gerstel, U. and U. Romling (2001). "Oxygen tension and nutrient starvation are major signals 
that regulate agfD promoter activity and expression of the multicellular morphotype 
in Salmonella typhimurium." Environ Microbiol 3(10): 638-648. 

Gevers, D., K. Vandepoele, C. Simillon and Y. Van de Peer (2004). "Gene duplication and 
biased functional retention of paralogs in bacterial genomes." Trends Microbiol 
12(4): 148-154. 

Gibson, D. L., A. P. White, S. D. Snyder, S. Martin, C. Heiss, P. Azadi, M. Surette and W. W. 
Kay (2006). "Salmonella produces an O-antigen capsule regulated by AgfD and 
important for environmental persistence." Journal of Bacteriology 188(22): 7722-
7730. 

Gordon, D. M., S. Bauer and J. R. Johnson (2002). "The genetic structure of Escherichia coli 
populations in primary and secondary habitats." Microbiology 148(Pt 5): 1513-1522. 

Gordon, D. M., O. Clermont, H. Tolley and E. Denamur (2008). "Assigning Escherichia coli 
strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex 
method." Environ Microbiol 10(10): 2484-2496. 

Gordon, D. M. and A. Cowling (2003). "The distribution and genetic structure of Escherichia 
coli in Australian vertebrates: host and geographic effects." Microbiology 149(Pt 12): 
3575-3586. 

Goto, D. K. and T. Yan (2011). "Genotypic diversity of Escherichia coli in the water and soil 
of tropical watersheds in Hawaii." Appl Environ Microbiol 77(12): 3988-3997. 



 

301 
 

Gourabathini, P., M. T. Brandl, K. S. Redding, J. H. Gunderson and S. G. Berk (2008). 
"Interactions between food-borne pathogens and protozoa isolated from lettuce and 
spinach." Appl Environ Microbiol 74(8): 2518-2525. 

Grimaldi, D., S. Bonacorsi, H. Roussel, B. Zuber, H. Poupet, J. D. Chiche, C. Poyart and J. P. 
Mira (2010). "Unusual "flesh-eating" strain of Escherichia coli." J Clin Microbiol 
48(10): 3794-3796. 

Grunwald, N. J. and E. M. Goss (2011). "Evolution and population genetics of exotic and re-
emerging pathogens: novel tools and approaches." Annu Rev Phytopathol 49: 249-
267. 

Guo, X., J. Chen, R. E. Brackett and L. R. Beuchat (2001). "Survival of salmonellae on and in 
tomato plants from the time of inoculation at flowering and early stages of fruit 
development through fruit ripening." Appl Environ Microbiol 67(10): 4760-4764. 

Hacker, J. and E. Carniel (2001). "Ecological fitness, genomic islands and bacterial 
pathogenicity. A Darwinian view of the evolution of microbes." EMBO Rep 2(5): 
376-381. 

Hall, T. A. (1999). "BioEdit: a user-friendly biological sequence alignment editor and 
analysis program for Windows 95/98/NT." Nucl Acids Symp Ser 41: 95-98. 

Hancock, V., A. S. Seshasayee, D. W. Ussery, N. M. Luscombe and P. Klemm (2008). 
"Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia 
coli strain 83972." Mol Genet Genomics 279(5): 523-534. 

Hartl, D. L. and D. E. Dykhuizen (1984). "The population genetics of Escherichia coli." Annu 
Rev Genet 18: 31-68. 

Heaton, J. C. and K. Jones (2008). "Microbial contamination of fruit and vegetables and the 
behaviour of enteropathogens in the phyllosphere: a review." J Appl Microbiol 
104(3): 613-626. 

Hedberg, C. W., F. J. Angulo, K. E. White, C. W. Langkop, W. L. Schell, M. G. Stobierski, 
A. Schuchat, J. M. Besser, S. Dietrich, L. Helsel, P. M. Griffin, J. W. McFarland and 
M. T. Osterholm (1999). "Outbreaks of salmonellosis associated with eating 
uncooked tomatoes: implications for public health. The Investigation Team." 
Epidemiol Infect 122(3): 385-393. 

Herias, M. V., T. Midtvedt, L. A. Hanson and A. E. Wold (1995). "Role of Escherichia coli P 
fimbriae in intestinal colonization in gnotobiotic rats." Infection and Immunity 
63(12): 4781-4789. 

Herias, M. V., T. Midtvedt, L. A. Hanson and A. E. Wold (1997). "Escherichia coli K5 
capsule expression enhances colonization of the large intestine in the gnotobiotic rat." 
Infection and Immunity 65(2): 531-536. 

Herzer, P. J., S. Inouye, M. Inouye and T. S. Whittam (1990). "Phylogenetic distribution of 
branched RNA-linked multicopy single-stranded DNA among natural isolates of 
Escherichia coli." Journal of Bacteriology 172(11): 6175-6181. 

Hong, S., J. Bunge, C. Leslin, S. Jeon and S. S. Epstein (2009). "Polymerase chain reaction 
primers miss half of rRNA microbial diversity." ISME J 3(12): 1365-1373. 

Hudson, J. A., C. Billington and L. McIntyre (2009). Biological Control of Human Pathogens 
on Produce. Microbial Safety of Fresh Produce, Wiley-Blackwell: 205-224. 

Hughes, D. (2000). "Evaluating genome dynamics: the constraints on rearrangements within 
bacterial genomes." Genome Biol 1(6): REVIEWS0006. 

Hughes, J. B. and J. J. Hellmann (2005). "The application of rarefaction techniques to 
molecular inventories of microbial diversity." Methods Enzymol 397: 292-308. 

Huson, D. H. (1998). "SplitsTree: analyzing and visualizing evolutionary data." 
Bioinformatics 14(1): 68-73. 

Ibarz Pavon, A. B. and M. C. Maiden (2009). "Multilocus sequence typing." Methods Mol 
Biol 551: 129-140. 

Ibekwe, A. M., C. M. Grieve and C. H. Yang (2007). "Survival of Escherichia coli O157:H7 
in soil and on lettuce after soil fumigation." Can J Microbiol 53(5): 623-635. 



 

302 
 

Ibenyassine, K., R. A. Mhand, Y. Karamoko, B. Anajjar, M. M. Chouibani and M. Ennaji 
(2007). "Bacterial pathogens recovered from vegetables irrigated by wastewater in 
Morocco." J Environ Health 69(10): 47-51. 

Ihssen, J., E. Grasselli, C. Bassin, P. Francois, J. C. Piffaretti, W. Koster, J. Schrenzel and T. 
Egli (2007). "Comparative genomic hybridization and physiological characterization 
of environmental isolates indicate that significant (eco-)physiological properties are 
highly conserved in the species Escherichia coli." Microbiology 153(Pt 7): 2052-
2066. 

Ilic, S., J. Odomeru and J. T. LeJeune (2008). "Coliforms and prevalence of Escherichia coli 
and foodborne pathogens on minimally processed spinach in two packing plants." J 
Food Prot 71(12): 2398-2403. 

Ingle, D. J., O. Clermont, D. Skurnik, E. Denamur, S. T. Walk and D. M. Gordon (2011). 
"Biofilm formation by and thermal niche and virulence characteristics of Escherichia 
spp." Appl Environ Microbiol 77(8): 2695-2700. 

Ishii, S., D. L. Hansen, R. E. Hicks and M. J. Sadowsky (2007). "Beach sand and sediments 
are temporal sinks and sources of Escherichia coli in Lake Superior." Environmental 
Science & Technology 41(7): 2203-2209. 

Ishii, S., W. B. Ksoll, R. E. Hicks and M. J. Sadowsky (2006). "Presence and growth of 
naturalized Escherichia coli in temperate soils from Lake Superior watersheds." Appl 
Environ Microbiol 72(1): 612-621. 

Ishii, S. and M. J. Sadowsky (2008). "Escherichia coli in the Environment: Implications for 
Water Quality and Human Health." Microbes Environ 23(2): 101-108. 

Ishii, S. and M. J. Sadowsky (2009). "Applications of the rep-PCR DNA fingerprinting 
technique to study microbial diversity, ecology and evolution." Environ Microbiol 
11(4): 733-740. 

Ishii, S., T. Yan, H. Vu, D. L. Hansen, R. E. Hicks and M. J. Sadowsky (2010). "Factors 
controlling long-term survival and growth of naturalized Escherichia coli populations 
in temperate field soils." Microbes Environ 25(1): 8-14. 

Islam, M., M. P. Doyle, S. C. Phatak, P. Millner and X. Jiang (2004). "Persistence of 
enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley 
grown in fields treated with contaminated manure composts or irrigation water." J 
Food Prot 67(7): 1365-1370. 

Itoh, Y., Y. Sugita-Konishi, F. Kasuga, M. Iwaki, Y. Hara-Kudo, N. Saito, Y. Noguchi, H. 
Konuma and S. Kumagai (1998). "Enterohemorrhagic Escherichia coli O157:H7 
present in radish sprouts." Appl Environ Microbiol 64(4): 1532-1535. 

Jahreis, K., L. Bentler, J. Bockmann, S. Hans, A. Meyer, J. Siepelmeyer and J. W. Lengeler 
(2002). "Adaptation of sucrose metabolism in the Escherichia coli wild-type strain 
EC3132." J Bacteriol 184(19): 5307-5316. 

Janisiewicz, W. J., W. S. Conway, M. W. Brown, G. M. Sapers, P. Fratamico and R. L. 
Buchanan (1999). "Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its 
potential for transmission by fruit flies." Appl Environ Microbiol 65(1): 1-5. 

Jaureguy, F., L. Landraud, V. Passet, L. Diancourt, E. Frapy, G. Guigon, E. Carbonnelle, O. 
Lortholary, O. Clermont, E. Denamur, B. Picard, X. Nassif and S. Brisse (2008). 
"Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains." 
BMC Genomics 9: -. 

Jeter, C. and A. G. Matthysse (2005). "Characterization of the binding of diarrheagenic strains 
of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with 
alfalfa sprouts." Mol Plant Microbe Interact 18(11): 1235-1242. 

Johnson, J. R., O. Clermont, M. Menard, M. A. Kuskowski, B. Picard and E. Denamur 
(2006). "Experimental mouse lethality of Escherichia coli isolates, in relation to 
accessory traits, phylogenetic group, and ecological source." Journal of Infectious 
Diseases 194(8): 1141-1150. 

Johnson, K. B., V. O. Stockwell, D. M. Burgett, D. Sugar and J. E. Loper (1993). "Dispersal 
of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to 
apple and pear blossoms." Phytopathology 83(5): 478-484. 



 

303 
 

Jones, S. A., F. Z. Chowdhury, A. J. Fabich, A. Anderson, D. M. Schreiner, A. L. House, S. 
M. Autieri, M. P. Leatham, J. J. Lins, M. Jorgensen, P. S. Cohen and T. Conway 
(2007). "Respiration of Escherichia coli in the mouse intestine." Infection and 
Immunity 75(10): 4891-4899. 

Jones, S. A., M. Jorgensen, F. Z. Chowdhury, R. Rodgers, J. Hartline, M. P. Leatham, C. 
Struve, K. A. Krogfelt, P. S. Cohen and T. Conway (2008). "Glycogen and maltose 
utilization by Escherichia coli O157:H7 in the mouse intestine." Infection and 
Immunity 76(6): 2531-2540. 

Jordan, I. K., K. S. Makarova, Y. I. Wolf and E. V. Koonin (2001). "Gene conversions in 
genes encoding outer-membrane proteins in H. pylori and C. pneumoniae." Trends 
Genet 17(1): 7-10. 

Joshi, F., G. Archana and A. Desai (2006). "Siderophore cross-utilization amongst 
rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth 
stimulation under iron-limited conditions." Curr Microbiol 53(2): 141-147. 

Joshi, F. R., S. P. Kholiya, G. Archana and A. J. Desai (2008). "Siderophore cross-utilization 
amongst nodule isolates of the cowpea miscellany group and its effect on plant 
growth in the presence of antagonistic organisms." Microbiol Res 163(5): 564-570. 

Joyner, D. C. and S. E. Lindow (2000). "Heterogeneity of iron bioavailability on plants 
assessed with a whole-cell GFP-based bacterial biosensor." Microbiology 146 ( Pt 
10): 2435-2445. 

Jurkevitch, E., Y. Hadar and Y. Chen (1992). "Differential siderophore utilization and iron 
uptake by soil and rhizosphere bacteria." Appl Environ Microbiol 58(1): 119-124. 

Kadivar, H. and A. E. Stapleton (2003). "Ultraviolet radiation alters maize phyllosphere 
bacterial diversity." Microb Ecol 45(4): 353-361. 

Kang, Y. J., J. Cheng, L. J. Mei, J. Hu, Z. Piao and S. X. Yin (2010). "Multiple copies of 16S 
rRNA gene affect the restriction patterns and DGGE profile as revealed by analysis of 
genome database." Mikrobiologiia 79(5): 664-671. 

Kaper, J. B., J. P. Nataro and H. L. Mobley (2004). "Pathogenic Escherichia coli." Nature 
Reviews Microbiology 2(2): 123-140. 

Kenney, S. J., G. L. Anderson, P. L. Williams, P. D. Millner and L. R. Beuchat (2005). 
"Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella 
Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission 
to progeny and uninfected nematodes." Int J Food Microbiol 101(2): 227-236. 

Kenney, S. J., G. L. Anderson, P. L. Williams, P. D. Millner and L. R. Beuchat (2006). 
"Migration of Caenorhabditis elegans to manure and manure compost and potential 
for transport of Salmonella newport to fruits and vegetables." Int J Food Microbiol 
106(1): 61-68. 

Kim, C. C., E. A. Joyce, K. Chan and S. Falkow (2002). "Improved analytical methods for 
microarray-based genome-composition analysis." Genome Biol 3(11): 
RESEARCH0065. 

King, T., A. Ishihama, A. Kori and T. Ferenci (2004). "A regulatory trade-off as a source of 
strain variation in the species Escherichia coli." J Bacteriol 186(17): 5614-5620. 

Kist, M. (1986). "[Who discovered Campylobacter jejuni/coli? A review of hitherto 
disregarded literature]." Zentralbl Bakteriol Mikrobiol Hyg A 261(2): 177-186. 

Kniskern, J. M., M. B. Traw and J. Bergelson (2007). "Salicylic acid and jasmonic acid 
signaling defense pathways reduce natural bacterial diversity on Arabidopsis 
thaliana." Mol Plant Microbe Interact 20(12): 1512-1522. 

Kobayashi, D. Y., R. M. Reedy, J. Bick and P. V. Oudemans (2002). "Characterization of a 
chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in 
biological control." Appl Environ Microbiol 68(3): 1047-1054. 

Koch, A. (1987). Why Escherichia coli should be renamed Escherichia ilei. Phosphate 
metabolism and cellular regulation in microorganisms. F. G. R. A. Torriani, S. Silver, 
A. Wright, and E. Yagil (ed.). Washington, D.C., ASM Press. 



 

304 
 

Konstantinidis, K. T., A. Ramette and J. M. Tiedje (2006). "Toward a more robust assessment 
of intraspecies diversity, using fewer genetic markers." Appl Environ Microbiol 
72(11): 7286-7293. 

Kragelund, L., C. Hosbond and O. Nybroe (1997). "Distribution of metabolic activity and 
phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter 
bacteria in the barley rhizosphere." Appl Environ Microbiol 63(12): 4920-4928. 

Kreader, C. A. (1996). "Relief of amplification inhibition in PCR with bovine serum albumin 
or T4 gene 32 protein." Appl Environ Microbiol 62(3): 1102-1106. 

Kroupitski, Y., D. Golberg, E. Belausov, R. Pinto, D. Swartzberg, D. Granot and S. Sela 
(2009). "Internalization of Salmonella enterica in leaves is induced by light and 
involves chemotaxis and penetration through open stomata." Appl Environ Microbiol 
75(19): 6076-6086. 

Kulasekara, B. R., M. Jacobs, Y. Zhou, Z. Wu, E. Sims, C. Saenphimmachak, L. Rohmer, J. 
M. Ritchie, M. Radey, M. McKevitt, T. L. Freeman, H. Hayden, E. Haugen, W. 
Gillett, C. Fong, J. Chang, V. Beskhlebnaya, M. K. Waldor, M. Samadpour, T. S. 
Whittam, R. Kaul, M. Brittnacher and S. I. Miller (2009). "Analysis of the genome of 
the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates 
candidate genes that may enhance virulence." Infection and Immunity 77(9): 3713-
3721. 

Kuo, C. H. and H. Ochman (2010). "The extinction dynamics of bacterial pseudogenes." Plos 
Genetics 6(8). 

Kutter, S., A. Hartmann and M. Schmid (2006). "Colonization of barley (Hordeum vulgare) 
with Salmonella enterica and Listeria spp." FEMS Microbiol Ecol 56(2): 262-271. 

Kyle, J. L., C. T. Parker, D. Goudeau and M. T. Brandl (2010). "Transcriptome analysis of 
Escherichia coli O157:H7 exposed to lysates of lettuce leaves." Appl Environ 
Microbiol 76(5): 1375-1387. 

Lan, R. and P. R. Reeves (2002). "Escherichia coli in disguise: molecular origins of Shigella." 
Microbes and Infection 4(11): 1125-1132. 

Lan, R., G. Stevenson and P. R. Reeves (2003). "Comparison of two major forms of the 
Shigella virulence plasmid pINV: positive selection is a major force driving the 
divergence." Infection and Immunity 71(11): 6298-6306. 

Landini, P., G. Jubelin and C. Dorel-Flamant (2006). The Molecular Genetics of Bioadhesion 
and Biofilm Formation. Biological Adhesives. J. A. C. e. A. N. Smith. Berlin 
Heidelberg, Springer-Verlag: 21-35. 

Lapidot, A., U. Romling and S. Yaron (2006). "Biofilm formation and the survival of 
Salmonella Typhimurium on parsley." Int J Food Microbiol 109(3): 229-233. 

Law, D. (2000). "Virulence factors of Escherichia coli O157 and other Shiga toxin-producing 
E. coli." J Appl Microbiol 88(5): 729-745. 

Le Bouguenec, C. (2005). "Adhesins and invasins of pathogenic Escherichia coli." 
International Journal of Medical Microbiology 295(6-7): 471-478. 

Le Gall, T., O. Clermont, S. Gouriou, B. Picard, X. Nassif, E. Denamur and O. Tenaillon 
(2007). "Extraintestinal virulence is a coincidental by-product of commensalism in 
B2 phylogenetic group Escherichia coli strains." Molecular Biology and Evolution 
24(11): 2373-2384. 

Lecointre, G., L. Rachdi, P. Darlu and E. Denamur (1998). "Escherichia coli molecular 
phylogeny using the incongruence length difference test." Molecular Biology and 
Evolution 15(12): 1685-1695. 

Lee, J. H., M. H. Cho and J. Lee (2011). "3-indolylacetonitrile decreases Escherichia coli 
O157:H7 biofilm formation and Pseudomonas aeruginosa virulence." Environ 
Microbiol 13(1): 62-73. 

Leopold, S. R., S. A. Sawyer, T. S. Whittam and P. I. Tarr (2011). "Obscured phylogeny and 
possible recombinational dormancy in Escherichia coli." BMC Evol Biol 11: 183. 

Lerat, E. and H. Ochman (2004). "Psi-Phi: exploring the outer limits of bacterial 
pseudogenes." Genome Research 14(11): 2273-2278. 



 

305 
 

Lescat, M., C. Hoede, O. Clermont, L. Garry, P. Darlu, P. Tuffery, E. Denamur and B. Picard 
(2009). "aes, the gene encoding the esterase B in Escherichia coli, is a powerful 
phylogenetic marker of the species." BMC Microbiology 9: -. 

Letunic, I. and P. Bork (2011). "Interactive Tree Of Life v2: online annotation and display of 
phylogenetic trees made easy." Nucleic Acids Res 39(Web Server issue): W475-478. 

Leveau, J. H. and S. E. Lindow (2001). "Appetite of an epiphyte: quantitative monitoring of 
bacterial sugar consumption in the phyllosphere." Proc Natl Acad Sci U S A 98(6): 
3446-3453. 

Levert, M., O. Zamfir, O. Clermont, O. Bouvet, S. Lespinats, M. C. Hipeaux, C. Branger, B. 
Picard, C. Saint-Ruf, F. Norel, T. Balliau, M. Zivy, H. Le Nagard, S. Cruvellier, B. 
Chane-Woon-Ming, S. Nilsson, I. Gudelj, K. Phan, T. Ferenci, O. Tenaillon and E. 
Denamur (2010). "Molecular and Evolutionary Bases of Within-Patient Genotypic 
and Phenotypic Diversity in Escherichia coli Extraintestinal Infections." Plos 
Pathogens 6(9): -. 

Li, Y., R. E. Brackett, J. Chen and L. R. Beuchat (2001). "Survival and growth of Escherichia 
coli O157:H7 inoculated onto cut lettuce before or after heating in chlorinated water, 
followed by storage at 5 or 15 degrees C." J Food Prot 64(3): 305-309. 

Liao, C. H. (2008). "Growth of Salmonella on sprouting alfalfa seeds as affected by the 
inoculum size, native microbial load and Pseudomonas fluorescens 2-79." Lett Appl 
Microbiol 46(2): 232-236. 

Liao, C. H. and W. F. Fett (2001). "Analysis of native microflora and selection of strains 
antagonistic to human pathogens on fresh produce." J Food Prot 64(8): 1110-1115. 

Liao, D. (2000). "Gene conversion drives within genic sequences: concerted evolution of 
ribosomal RNA genes in bacteria and archaea." Journal of Molecular Evolution 
51(4): 305-317. 

Lindow, S. E. and M. T. Brandl (2003). "Microbiology of the phyllosphere." Appl Environ 
Microbiol 69(4): 1875-1883. 

Lipsitch, M. and E. R. Moxon (1997). "Virulence and transmissibility of pathogens: what is 
the relationship?" Trends Microbiol 5(1): 31-37. 

Lloyd, A. L., D. A. Rasko and H. L. Mobley (2007). "Defining genomic islands and 
uropathogen-specific genes in uropathogenic Escherichia coli." Journal of 
Bacteriology 189(9): 3532-3546. 

Loper, J. E. and J. S. Buyer (1991). "Siderophores in Microbial Interactions on Plant 
Surfaces." Mol Plant Microbe Interact 4(1): 5-13. 

Loper, J. E. and M. D. Henkels (1999). "Utilization of heterologous siderophores enhances 
levels of iron available to Pseudomonas putida in the rhizosphere." Appl Environ 
Microbiol 65(12): 5357-5363. 

Lopez-Velasco, G., M. Davis, R. R. Boyer, R. C. Williams and M. A. Ponder (2010). 
"Alterations of the phylloepiphytic bacterial community associated with interactions 
of Escherichia coli O157:H7 during storage of packaged spinach at refrigeration 
temperatures." Food Microbiol 27(4): 476-486. 

Louws, F. J., D. W. Fulbright, C. T. Stephens and F. J. de Bruijn (1994). "Specific genomic 
fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and 
strains generated with repetitive sequences and PCR." Appl Environ Microbiol 60(7): 
2286-2295. 

Lucchini, S., H. Liu, Q. Jin, J. C. Hinton and J. Yu (2005). "Transcriptional adaptation of 
Shigella flexneri during infection of macrophages and epithelial cells: insights into 
the strategies of a cytosolic bacterial pathogen." Infection and Immunity 73(1): 88-
102. 

Lugtenberg, B. J., L. Dekkers and G. V. Bloemberg (2001). "Molecular determinants of 
rhizosphere colonization by Pseudomonas." Annu Rev Phytopathol 39: 461-490. 

Lukjancenko, O., T. M. Wassenaar and D. W. Ussery (2010). "Comparison of 61 sequenced 
Escherichia coli genomes." Microb Ecol 60(4): 708-720. 

Luo, C., S. T. Walk, D. M. Gordon, M. Feldgarden, J. M. Tiedje and K. T. Konstantinidis 
(2011). "Genome sequencing of environmental Escherichia coli expands 



 

306 
 

understanding of the ecology and speciation of the model bacterial species." Proc Natl 
Acad Sci U S A 108(17): 7200-7205. 

Luria, S. E. and J. W. Burrous (1957). "Hybridization between Escherichia coli and Shigella." 
Journal of Bacteriology 74(4): 461-476. 

Lynch, M. (1988). "Estimation of relatedness by DNA fingerprinting." Molecular Biology 
and Evolution 5(5): 584-599. 

Maharjan, R. P., S. Seeto and T. Ferenci (2007). "Divergence and redundancy of transport 
and metabolic rate-yield strategies in a single Escherichia coli population." Journal of 
Bacteriology 189(6): 2350-2358. 

Mandrell, R. E. (2009). Enteric human pathogens associated with fresh produce: sources, 
transport and ecology. Microbial safety of fresh produce: challenges, perspectives, 
and strategies. B. N. X. Fan, C. J. Doona, F. Feeherry, and R. B. Gravani (ed.), 
IFT/Blackwell Publishing, Ames, IA.: 3-42. 

Martin, B., O. Humbert, M. Camara, E. Guenzi, J. Walker, T. Mitchell, P. Andrew, M. 
Prudhomme, G. Alloing, R. Hakenbeck and et al. (1992). "A highly conserved 
repeated DNA element located in the chromosome of Streptococcus pneumoniae." 
Nucleic Acids Res 20(13): 3479-3483. 

Martinez-Medina, M., X. Aldeguer, M. Lopez-Siles, F. Gonzalez-Huix, C. Lopez-Oliu, G. 
Dahbi, J. E. Blanco, J. Blanco, L. J. Garcia-Gil and A. Darfeuille-Michaud (2009). 
"Molecular diversity of Escherichia coli in the human gut: new ecological evidence 
supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease." Inflamm 
Bowel Dis 15(6): 872-882. 

Martins, M. T., I. G. Rivera, D. L. Clark, M. H. Stewart, R. L. Wolfe and B. H. Olson (1993). 
"Distribution of uidA gene sequences in Escherichia coli isolates in water sources and 
comparison with the expression of beta-glucuronidase activity in 4-
methylumbelliferyl-beta-D-glucuronide media." Appl Environ Microbiol 59(7): 
2271-2276. 

Matos, A., L. Kerkhof and J. L. Garland (2005). "Effects of microbial community diversity on 
the survival of Pseudomonas aeruginosa in the wheat rhizosphere." Microb Ecol 
49(2): 257-264. 

Matte-Tailliez, O., C. Brochier, P. Forterre and H. Philippe (2002). "Archaeal phylogeny 
based on ribosomal proteins." Molecular Biology and Evolution 19(5): 631-639. 

Matthysse, A. G., R. Deora, M. Mishra and A. G. Torres (2008). "Polysaccharides cellulose, 
poly-beta-1,6-n-acetyl-D-glucosamine, and colanic acid are required for optimal 
binding of Escherichia coli O157:H7 strains to alfalfa sprouts and K-12 strains to 
plastic but not for binding to epithelial cells." Appl Environ Microbiol 74(8): 2384-
2390. 

Matthysse, A. G., M. Marry, L. Krall, M. Kaye, B. E. Ramey, C. Fuqua and A. R. White 
(2005). "The effect of cellulose overproduction on binding and biofilm formation on 
roots by Agrobacterium tumefaciens." Mol Plant Microbe Interact 18(9): 1002-1010. 

Maurelli, A. T., R. E. Fernandez, C. A. Bloch, C. K. Rode and A. Fasano (1998). ""Black 
holes" and bacterial pathogenicity: a large genomic deletion that enhances the 
virulence of Shigella spp. and enteroinvasive Escherichia coli." Proc Natl Acad Sci U 
S A 95(7): 3943-3948. 

Maynard Smith, J., N. H. Smith, M. O'Rourke and B. G. Spratt (1993). "How clonal are 
bacteria?" Proc Natl Acad Sci U S A 90(10): 4384-4388. 

McDaniel, T. K., K. G. Jarvis, M. S. Donnenberg and J. B. Kaper (1995). "A genetic locus of 
enterocyte effacement conserved among diverse enterobacterial pathogens." Proc Natl 
Acad Sci U S A 92(5): 1664-1668. 

Medini, D., C. Donati, H. Tettelin, V. Masignani and R. Rappuoli (2005). "The microbial 
pan-genome." Curr Opin Genet Dev 15(6): 589-594. 

Mellmann, A., D. Harmsen, C. A. Cummings, E. B. Zentz, S. R. Leopold, A. Rico, K. Prior, 
R. Szczepanowski, Y. Ji, W. Zhang, S. F. McLaughlin, J. K. Henkhaus, B. Leopold, 
M. Bielaszewska, R. Prager, P. M. Brzoska, R. L. Moore, S. Guenther, J. M. 
Rothberg and H. Karch (2011). "Prospective genomic characterization of the German 



 

307 
 

enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation 
sequencing technology." PLoS One 6(7): e22751. 

Mercier, J. and S. E. Lindow (2000). "Role of leaf surface sugars in colonization of plants by 
bacterial epiphytes." Appl Environ Microbiol 66(1): 369-374. 

Messiha, N., A. van Diepeningen, N. Farag, S. Abdallah, J. Janse and A. van Bruggen (2007). 
"Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia 
solanacearum, causal agent of potato brown rot." European Journal of Plant 
Pathology 118(3): 211-225. 

Michino, H., K. Araki, S. Minami, S. Takaya, N. Sakai, M. Miyazaki, A. Ono and H. 
Yanagawa (1999). "Massive outbreak of Escherichia coli O157:H7 infection in 
schoolchildren in Sakai City, Japan, associated with consumption of white radish 
sprouts." Am J Epidemiol 150(8): 787-796. 

Michod, R. E., H. Bernstein and A. M. Nedelcu (2008). "Adaptive value of sex in microbial 
pathogens." Infection Genetics and Evolution 8(3): 267-285. 

Millet, J., S. Baboolal, P. E. Akpaka, D. Ramoutar and N. Rastogi (2009). "Phylogeographical 
and molecular characterization of an emerging Mycobacterium tuberculosis clone in 
Trinidad and Tobago." Infection Genetics and Evolution 9(6): 1336-1344. 

Mira, A., H. Ochman and N. A. Moran (2001). "Deletional bias and the evolution of bacterial 
genomes." Trends Genet 17(10): 589-596. 

Miranda, R. L., T. Conway, M. P. Leatham, D. E. Chang, W. E. Norris, J. H. Allen, S. J. 
Stevenson, D. C. Laux and P. S. Cohen (2004). "Glycolytic and gluconeogenic 
growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the 
mouse intestine." Infection and Immunity 72(3): 1666-1676. 

Mitra, R., E. Cuesta-Alonso, A. Wayadande, J. Talley, S. Gilliland and J. Fletcher (2009). 
"Effect of route of introduction and host cultivar on the colonization, internalization, 
and movement of the human pathogen Escherichia coli O157:H7 in spinach." J Food 
Prot 72(7): 1521-1530. 

Monier, J. M. and S. E. Lindow (2004). "Frequency, size, and localization of bacterial 
aggregates on bean leaf surfaces." Appl Environ Microbiol 70(1): 346-355. 

Moran, N. A. (2002). "Microbial minimalism: genome reduction in bacterial pathogens." Cell 
108(5): 583-586. 

Morgan, J. V. and H. B. Tukey (1964). "Characterization of Leachate from Plant Foliage." 
Plant Physiol 39(4): 590-593. 

Moritz, R. L. and R. A. Welch (2006). "The Escherichia coli argW-dsdCXA genetic island is 
highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA." J 
Clin Microbiol 44(11): 4038-4048. 

Morris, C. E. and J. M. Monier (2003). "The ecological significance of biofilm formation by 
plant-associated bacteria." Annu Rev Phytopathol 41: 429-453. 

Mukherjee, A., M. K. Mammel, J. E. LeClerc and T. A. Cebula (2008). "Altered utilization of 
N-acetyl-D-galactosamine by Escherichia coli O157:H7 from the 2006 spinach 
outbreak." Journal of Bacteriology 190(5): 1710-1717. 

Mukherjee, A., D. Speh, E. Dyck and F. Diez-Gonzalez (2004). "Preharvest evaluation of 
coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic 
and conventional produce grown by Minnesota farmers." J Food Prot 67(5): 894-900. 

Muyzer, G., E. C. de Waal and A. G. Uitterlinden (1993). "Profiling of complex microbial 
populations by denaturing gradient gel electrophoresis analysis of polymerase chain 
reaction-amplified genes coding for 16S rRNA." Appl Environ Microbiol 59(3): 695-
700. 

Nakabachi, A., A. Yamashita, H. Toh, H. Ishikawa, H. E. Dunbar, N. A. Moran and M. 
Hattori (2006). "The 160-kilobase genome of the bacterial endosymbiont 
Carsonella." Science 314(5797): 267. 

Narra, H. P. and H. Ochman (2006). "Of what use is sex to bacteria?" Curr Biol 16(17): 
R705-710. 

Neefs, J. M., Y. Van de Peer, L. Hendriks and R. De Wachter (1990). "Compilation of small 
ribosomal subunit RNA sequences." Nucleic Acids Res 18 Suppl: 2237-2317. 



 

308 
 

Niemira, B. A., C. J. Doona, F. E. Feeherry, X. Fan and R. B. Gravani (2009). Research 
Needs and Future Directions. Microbial Safety of Fresh Produce, Wiley-Blackwell: 
419-425. 

Nowrouzian, F. L., A. E. Wold and I. Adlerberth (2005). "Escherichia coli strains belonging 
to phylogenetic group B2 have superior capacity to persist in the intestinal microflora 
of infants." J Infect Dis 191(7): 1078-1083. 

O'Brien, A. D. and R. K. Holmes (1987). "Shiga and Shiga-like toxins." Microbiol Rev 51(2): 
206-220. 

Ochman, H. and L. M. Davalos (2006). "The nature and dynamics of bacterial genomes." 
Science 311(5768): 1730-1733. 

Ochman, H. and R. K. Selander (1984). "Standard reference strains of Escherichia coli from 
natural populations." J Bacteriol 157(2): 690-693. 

Ochman, H., T. S. Whittam, D. A. Caugant and R. K. Selander (1983). "Enzyme 
polymorphism and genetic population structure in Escherichia coli and Shigella." J 
Gen Microbiol 129(9): 2715-2726. 

Oliveira, M., J. Usall, I. Vinas, M. Anguera, F. Gatius and M. Abadias (2010). 
"Microbiological quality of fresh lettuce from organic and conventional production." 
Food Microbiol 27(5): 679-684. 

Olsen, A., A. Arnqvist, M. Hammar and S. Normark (1993). "Environmental regulation of 
curli production in Escherichia coli." Infect Agents Dis 2(4): 272-274. 

Palchevskiy, V. and S. E. Finkel (2006). "Escherichia coli competence gene homologs are 
essential for competitive fitness and the use of DNA as a nutrient." Journal of 
Bacteriology 188(11): 3902-3910. 

Payne, S. M. (1994). "Detection, isolation, and characterization of siderophores." Methods 
Enzymol 235: 329-344. 

Perez-Losada, M., M. L. Porter, L. Tazi and K. A. Crandall (2007). "New methods for 
inferring population dynamics from microbial sequences." Infection Genetics and 
Evolution 7(1): 24-43. 

Picard, B., J. S. Garcia, S. Gouriou, P. Duriez, N. Brahimi, E. Bingen, J. Elion and E. 
Denamur (1999). "The link between phylogeny and virulence in Escherichia coli 
extraintestinal infection." Infection and Immunity 67(2): 546-553. 

Pinot, C., A. Deredjian, S. Nazaret, E. Brothier, B. Cournoyer, C. Segonds and S. Favre-
Bonte (2011). "Identification of Stenotrophomonas maltophilia strains isolated from 
environmental and clinical samples: a rapid and efficient procedure." J Appl 
Microbiol. 

Poulsen, L. K., F. Lan, C. S. Kristensen, P. Hobolth, S. Molin and K. A. Krogfelt (1994). 
"Spatial distribution of Escherichia coli in the mouse large intestine inferred from 
rRNA in situ hybridization." Infection and Immunity 62(11): 5191-5194. 

Poulsen, L. K., T. R. Licht, C. Rang, K. A. Krogfelt and S. Molin (1995). "Physiological state 
of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice." 
Journal of Bacteriology 177(20): 5840-5845. 

Power, M. L., J. Littlefield-Wyer, D. M. Gordon, D. A. Veal and M. B. Slade (2005). 
"Phenotypic and genotypic characterization of encapsulated Escherichia coli isolated 
from blooms in two Australian lakes." Environ Microbiol 7(5): 631-640. 

Preston-Mafham, J., L. Boddy and P. F. Randerson (2002). "Analysis of microbial 
community functional diversity using sole-carbon-source utilisation profiles - a 
critique." FEMS Microbiol Ecol 42(1): 1-14. 

Prigent-Combaret, C., G. Prensier, T. T. Le Thi, O. Vidal, P. Lejeune and C. Dorel (2000). 
"Developmental pathway for biofilm formation in curli-producing Escherichia coli 
strains: role of flagella, curli and colanic acid." Environ Microbiol 2(4): 450-464. 

Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. 
Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. 
Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J. M. Batto, T. Hansen, D. 
Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, 
K. Turner, H. Zhu, C. Yu, M. Jian, Y. Zhou, Y. Li, X. Zhang, N. Qin, H. Yang, J. 



 

309 
 

Wang, S. Brunak, J. Dore, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. 
Weissenbach, P. Bork and S. D. Ehrlich (2010). "A human gut microbial gene 
catalogue established by metagenomic sequencing." Nature 464(7285): 59-65. 

Quaiser, A., Y. Zivanovic, D. Moreira and P. Lopez-Garcia (2011). "Comparative 
metagenomics of bathypelagic plankton and bottom sediment from the Sea of 
Marmara." ISME J 5(2): 285-304. 

Rai, P. K. and B. D. Tripathi (2007). "Microbial contamination in vegetables due to irrigation 
with partially treated municipal wastewater in a tropical city." Int J Environ Health 
Res 17(5): 389-395. 

Randazzo, C. L., G. O. Scifo, F. Tomaselli and C. Caggia (2009). "Polyphasic 
characterization of bacterial community in fresh cut salads." Int J Food Microbiol 
128(3): 484-490. 

Rangel, J. M., P. H. Sparling, C. Crowe, P. M. Griffin and D. L. Swerdlow (2005). 
"Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002." 
Emerging Infectious Diseases 11(4): 603-609. 

Rasko, D. A., M. J. Rosovitz, G. S. Myers, E. F. Mongodin, W. F. Fricke, P. Gajer, J. 
Crabtree, M. Sebaihia, N. R. Thomson, R. Chaudhuri, I. R. Henderson, V. Sperandio 
and J. Ravel (2008). "The pangenome structure of Escherichia coli: comparative 
genomic analysis of E. coli commensal and pathogenic isolates." Journal of 
Bacteriology 190(20): 6881-6893. 

Rastogi, G., J. J. Tech, G. L. Coaker and J. H. Leveau (2010). "A PCR-based toolbox for the 
culture-independent quantification of total bacterial abundances in plant 
environments." J Microbiol Methods 83(2): 127-132. 

Redfield, R. J. (1993). "Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial 
transformation." J Hered 84(5): 400-404. 

Redfield, R. J. (2001). "Do bacteria have sex?" Nat Rev Genet 2(8): 634-639. 
Rehfuss, M. Y., C. T. Parker and M. T. Brandl (2011). "Salmonella transcriptional signature 

in Tetrahymena phagosomes and role of acid tolerance in passage through the 
protist." ISME J 5(2): 262-273. 

Reid, S. J. and V. R. Abratt (2005). "Sucrose utilisation in bacteria: genetic organisation and 
regulation." Appl Microbiol Biotechnol 67(3): 312-321. 

Retchless, A. C. and J. G. Lawrence (2010). "Phylogenetic incongruence arising from 
fragmented speciation in enteric bacteria." Proc Natl Acad Sci U S A 107(25): 11453-
11458. 

Rice, E. W., C. H. Johnson, D. K. Wild and D. J. Reasoner (1992). "Survival of Escherichia 
coli O157: H7 in drinking water associated with a waterborne disease outbreak of 
hemorrhagic colitis." Letters in Applied Microbiology 15(2): 38-40. 

Rodger, G. and J. P. Blakeman (1984). "Microbial colonization and uptake of 14C label on 
leaves of sycamore." Transactions of the British Mycological Society 82(1): 45-51. 

Rohde, H., J. Qin, Y. Cui, D. Li, N. J. Loman, M. Hentschke, W. Chen, F. Pu, Y. Peng, J. Li, 
F. Xi, S. Li, Y. Li, Z. Zhang, X. Yang, M. Zhao, P. Wang, Y. Guan, Z. Cen, X. Zhao, 
M. Christner, R. Kobbe, S. Loos, J. Oh, L. Yang, A. Danchin, G. F. Gao, Y. Song, H. 
Yang, J. Wang, J. Xu, M. J. Pallen, M. Aepfelbacher and R. Yang (2011). "Open-
source genomic analysis of Shiga-toxin-producing E. coli O104:H4." N Engl J Med 
365(8): 718-724. 

Roos, V., G. C. Ulett, M. A. Schembri and P. Klemm (2006). "The asymptomatic bacteriuria 
Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human 
urine." Infection and Immunity 74(1): 615-624. 

Russo, T. A. and J. R. Johnson (2003). "Medical and economic impact of extraintestinal 
infections due to Escherichia coli: focus on an increasingly important endemic 
problem." Microbes and Infection 5(5): 449-456. 

Ryan, R. P., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M. B. Avison, G. Berg, D. 
van der Lelie and J. M. Dow (2009). "The versatility and adaptation of bacteria from 
the genus Stenotrophomonas." Nature Reviews Microbiology 7(7): 514-525. 



 

310 
 

Sabarly, V., O. Bouvet, J. Glodt, O. Clermont, D. Skurnik, L. Diancourt, D. De Vienne, E. 
Denamur and C. Dillmann (2011). "The decoupling between genetic structure and 
metabolic phenotypes in Escherichia coli leads to continuous phenotypic diversity." J 
Evol Biol 24(7): 1559-1571. 

Sagoo, S. K., C. L. Little and R. T. Mitchell (2001). "The microbiological examination of 
ready-to-eat organic vegetables from retail establishments in the United Kingdom." 
Lett Appl Microbiol 33(6): 434-439. 

Sankar, T. S., G. Neelakanta, V. Sangal, G. Plum, M. Achtman and K. Schnetz (2009). "Fate 
of the H-NS-repressed bgl operon in evolution of Escherichia coli." Plos Genetics 
5(3): e1000405. 

Sasaki, T., M. Kobayashi and N. Agui (2000). "Epidemiological potential of excretion and 
regurgitation by Musca domestica (Diptera: Muscidae) in the dissemination of 
Escherichia coli O157: H7 to food." J Med Entomol 37(6): 945-949. 

Savageau, M. A. (1974). "Genetic regulatory mechanisms and the ecological niche of 
Escherichia coli." Proc Natl Acad Sci U S A 71(6): 2453-2455. 

Savageau, M. A. (1983). "Escherichia coli Habitats, Cell Types, and Molecular Mechanisms 
of Gene-Control." Am Nat 122(6): 732-744. 

Schena, M., D. Shalon, R. W. Davis and P. O. Brown (1995). "Quantitative monitoring of 
gene expression patterns with a complementary DNA microarray." Science 
270(5235): 467-470. 

Schikora, A., A. Carreri, E. Charpentier and H. Hirt (2008). "The dark side of the salad: 
Salmonella typhimurium overcomes the innate immune response of Arabidopsis 
thaliana and shows an endopathogenic lifestyle." PLoS One 3(5): e2279. 

Schultz, M. (2008). "Clinical use of E. coli Nissle 1917 in inflammatory bowel disease." 
Inflamm Bowel Dis 14(7): 1012-1018. 

Scouten, A. J. and L. R. Beuchat (2002). "Combined effects of chemical, heat and ultrasound 
treatments to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds." J Appl 
Microbiol 92(4): 668-674. 

Sears, H. J. and I. Brownlee (1952). "Further observations on the persistence of individual 
strains of Escherichia coli in the intestinal tract of man." Journal of Bacteriology 
63(1): 47-57. 

Sears, H. J., I. Brownlee and J. K. Uchiyama (1950). "Persistence of individual strains of 
Escherichia coli in the intestinal tract of man." Journal of Bacteriology 59(2): 293-
301. 

Sela, S., D. Nestel, R. Pinto, E. Nemny-Lavy and M. Bar-Joseph (2005). "Mediterranean fruit 
fly as a potential vector of bacterial pathogens." Appl Environ Microbiol 71(7): 4052-
4056. 

Selander, R. K., D. A. Caugant, H. Ochman, J. M. Musser, M. N. Gilmour and T. S. Whittam 
(1986). "Methods of multilocus enzyme electrophoresis for bacterial population 
genetics and systematics." Appl Environ Microbiol 51(5): 873-884. 

Selander, R. K. and B. R. Levin (1980). "Genetic diversity and structure in Escherichia coli 
populations." Science 210(4469): 545-547. 

Serres, M. H., A. R. Kerr, T. J. McCormack and M. Riley (2009). "Evolution by leaps: gene 
duplication in bacteria." Biol Direct 4: 46. 

Shaw, R. K., C. N. Berger, B. Feys, S. Knutton, M. J. Pallen and G. Frankel (2008). 
"Enterohemorrhagic Escherichia coli exploits EspA filaments for attachment to salad 
leaves." Appl Environ Microbiol 74(9): 2908-2914. 

Shaw, R. K., C. N. Berger, M. J. Pallen, Å. Sjöling and G. Frankel (2011). "Flagella mediate 
attachment of enterotoxigenic Escherichia coli to fresh salad leaves." Env Microbiol 
Rep 3(1): 112-117. 

Sheldon, I. M., A. N. Rycroft, B. Dogan, M. Craven, J. J. Bromfield, A. Chandler, M. H. 
Roberts, S. B. Price, R. O. Gilbert and K. W. Simpson (2010). "Specific strains of 
Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic 
inflammatory disease in cattle and mice." PLoS One 5(2): e9192. 



 

311 
 

Shen, P. and H. V. Huang (1986). "Homologous recombination in Escherichia coli: 
dependence on substrate length and homology." Genetics 112(3): 441-457. 

Shen, Z., W. Qu, W. Wang, Y. Lu, Y. Wu, Z. Li, X. Hang, X. Wang, D. Zhao and C. Zhang 
(2010). "MPprimer: a program for reliable multiplex PCR primer design." BMC 
Bioinformatics 11: 143. 

Shulman, S. T., H. C. Friedmann and R. H. Sims (2007). "Theodor Escherich: the first 
pediatric infectious diseases physician?" Clinical Infectious Diseases 45(8): 1025-
1029. 

Sims, G. E. and S. H. Kim (2011). "Whole-genome phylogeny of Escherichia coli/Shigella 
group by feature frequency profiles (FFPs)." Proc Natl Acad Sci U S A 108(20): 
8329-8334. 

Sjogren, R. E. (1995). "Thirteen-year survival study of an environmental Escherichia coli in 
field mini-plots." Water, Air, & Soil Pollution 81(3): 315-335. 

Skippington, E. and M. A. Ragan (2011). "Lateral genetic transfer and the construction of 
genetic exchange communities." FEMS Microbiol Rev 35(5): 707-735. 

Smith, M. G. (1975). "In vivo transfer of R factors between Escherichia coli strains 
inoculated into the rumen of sheep." J Hyg (Lond) 75(3): 363-370. 

Smith, S. N., E. C. Hagan, M. C. Lane and H. L. Mobley (2010). "Dissemination and 
systemic colonization of uropathogenic Escherichia coli in a murine model of 
bacteremia." MBio 1(5). 

Soderstrom, A., A. Lindberg and Y. Andersson (2005). "EHEC O157 outbreak in Sweden 
from locally produced lettuce, August-September 2005." Euro Surveill 10(9): 
E050922 050921. 

Solo-Gabriele, H. M., M. A. Wolfert, T. R. Desmarais and C. J. Palmer (2000). "Sources of 
Escherichia coli in a coastal subtropical environment." Appl Environ Microbiol 
66(1): 230-237. 

Solomon, E. B., H. J. Pang and K. R. Matthews (2003). "Persistence of Escherichia coli 
O157:H7 on lettuce plants following spray irrigation with contaminated water." J 
Food Prot 66(12): 2198-2202. 

Spratt, B. G. (2004). "Exploring the concept of clonality in bacteria." Methods Mol Biol 266: 
323-352. 

Stabler, R., L. Dawson and B. Wren (2010). "Comparative Genome Analysis of Clostridium 
difficile using DNA microarrays." Methods Mol Biol 646: 149-162. 

Staley, T. E., E. W. Jones and L. D. Corley (1969). "Attachment and penetration of 
Escherichia coli into intestinal epithelium of the ileum in newborn pigs." Am J Pathol 
56(3): 371-392. 

Steele, M. and J. Odumeru (2004). "Irrigation water as source of foodborne pathogens on fruit 
and vegetables." J Food Prot 67(12): 2839-2849. 

Stentz, R., U. Wegmann, M. Parker, R. Bongaerts, L. Lesaint, M. Gasson and C. Shearman 
(2009). "CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA 
translocation through the cell envelope." Mol Microbiol 72(3): 779-794. 

Suckstorff, I. and G. Berg (2003). "Evidence for dose-dependent effects on plant growth by 
Stenotrophomonas strains from different origins." J Appl Microbiol 95(4): 656-663. 

Tamas, I., L. Klasson, B. Canback, A. K. Naslund, A. S. Eriksson, J. J. Wernegreen, J. P. 
Sandstrom, N. A. Moran and S. G. Andersson (2002). "50 million years of genomic 
stasis in endosymbiotic bacteria." Science 296(5577): 2376-2379. 

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011). "MEGA5: 
Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary 
Distance, and Maximum Parsimony Methods." Mol Biol Evol In press. 

Taormina, P. J. and L. R. Beuchat (1999). "Comparison of chemical treatments to eliminate 
enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds." J Food Prot 62(4): 
318-324. 

Tenaillon, O., D. Skurnik, B. Picard and E. Denamur (2010). "The population genetics of 
commensal Escherichia coli." Nat Rev Microbiol 8(3): 207-217. 



 

312 
 

Teplitski, M., J. D. Barak and K. R. Schneider (2009). "Human enteric pathogens in produce: 
un-answered ecological questions with direct implications for food safety." Curr Opin 
Biotechnol 20(2): 166-171. 

Texier, S., C. Prigent-Combaret, M. H. Gourdon, M. A. Poirier, P. Faivre, J. M. Dorioz, J. 
Poulenard, L. Jocteur-Monrozier, Y. Moenne-Loccoz and D. Trevisan (2008). 
"Persistence of culturable Escherichia coli fecal contaminants in dairy alpine 
grassland soils." J Environ Qual 37(6): 2299-2310. 

Thomas, C. M. and K. M. Nielsen (2005). "Mechanisms of, and barriers to, horizontal gene 
transfer between bacteria." Nature Reviews Microbiology 3(9): 711-721. 

Thompson, A., S. Lucchini and J. C. Hinton (2001). "It's easy to build your own 
microarrayer!" Trends Microbiol 9(4): 154-156. 

Tindall, K. R. and T. A. Kunkel (1988). "Fidelity of DNA synthesis by the Thermus aquaticus 
DNA polymerase." Biochemistry 27(16): 6008-6013. 

Tobes, R. and J. L. Ramos (2005). "REP code: defining bacterial identity in extragenic 
space." Environ Microbiol 7(2): 225-228. 

Torres, A. G., C. Jeter, W. Langley and A. G. Matthysse (2005). "Differential binding of 
Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated 
by a variety of surface structures." Appl Environ Microbiol 71(12): 8008-8015. 

Torriani, S., C. Orsi and M. Vescovo (1997). "Potential of Lactobacillus casei, Culture 
Permeate, and Lactic Acid To Control Microorganisms in Ready-To-Use 
Vegetables." Journal of Food Protection 60(12): 1564-1567. 

Toth, I. K., L. Pritchard and P. R. Birch (2006). "Comparative genomics reveals what makes 
an enterobacterial plant pathogen." Annu Rev Phytopathol 44: 305-336. 

Touchon, M., C. Hoede, O. Tenaillon, V. Barbe, S. Baeriswyl, P. Bidet, E. Bingen, S. 
Bonacorsi, C. Bouchier, O. Bouvet, A. Calteau, H. Chiapello, O. Clermont, S. 
Cruveiller, A. Danchin, M. Diard, C. Dossat, M. El Karoui, E. Frapy, L. Garry, J. M. 
Ghigo, A. M. Gilles, J. Johnson, C. Le Bouguenec, M. Lescat, S. Mangenot, V. 
Martinez-Jehanne, I. Matic, X. Nassif, S. Oztas, M. A. Petit, C. Pichon, Z. Rouy, C. 
Saint Ruf, D. Schneider, J. Tourret, B. Vacherie, D. Vallenet, C. Medigue, E. P. C. 
Rocha and E. Denamur (2009). "Organised Genome Dynamics in the Escherichia 
coli Species Results in Highly Diverse Adaptive Paths." Plos Genetics 5(1): -. 

Tourlomousis, P., E. K. Kemsley, K. P. Ridgway, M. J. Toscano, T. J. Humphrey and A. 
Narbad (2010). "PCR-denaturing gradient gel electrophoresis of complex microbial 
communities: a two-step approach to address the effect of gel-to-gel variation and 
allow valid comparisons across a large dataset." Microb Ecol 59(4): 776-786. 

Tullus, K., I. Kuhn, I. Orskov, F. Orskov and R. Mollby (1992). "The importance of P and 
type 1 fimbriae for the persistence of Escherichia coli in the human gut." Epidemiol 
Infect 108(3): 415-421. 

Tyrrel, S. F., J. W. Knox and E. K. Weatherhead (2006). "Microbiological Water Quality 
Requirements for Salad Irrigation in the United Kingdom." Journal of Food 
Protection 69(8): 2029-2035. 

Uhlich, G. A., J. E. Keen and R. O. Elder (2001). "Mutations in the csgD promoter associated 
with variations in curli expression in certain strains of Escherichia coli O157:H7." 
Appl Environ Microbiol 67(5): 2367-2370. 

Uhlich, G. A., J. R. Sinclair, N. G. Warren, W. A. Chmielecki and P. Fratamico (2008). 
"Characterization of Shiga toxin-producing Escherichia coli isolates associated with 
two multistate food-borne outbreaks that occurred in 2006." Appl Environ Microbiol 
74(4): 1268-1272. 

Ukena, S. N., A. Singh, U. Dringenberg, R. Engelhardt, U. Seidler, W. Hansen, A. Bleich, D. 
Bruder, A. Franzke, G. Rogler, S. Suerbaum, J. Buer, F. Gunzer and A. M. 
Westendorf (2007). "Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by 
enhancing mucosal integrity." PLoS One 2(12): e1308. 

Ussery, D. W., T. T. Binnewies, R. Gouveia-Oliveira, H. Jarmer and P. F. Hallin (2004). 
"Genome update: DNA repeats in bacterial genomes." Microbiology 150(Pt 11): 
3519-3521. 



 

313 
 

Valdebenito, M., A. L. Crumbliss, G. Winkelmann and K. Hantke (2006). "Environmental 
factors influence the production of enterobactin, salmochelin, aerobactin, and 
yersiniabactin in Escherichia coli strain Nissle 1917." International Journal of 
Medical Microbiology 296(8): 513-520. 

Valentin-Bon, I., A. Jacobson, S. R. Monday and P. C. Feng (2008). "Microbiological quality 
of bagged cut spinach and lettuce mixes." Appl Environ Microbiol 74(4): 1240-1242. 

van Belkum, A., M. Sluijuter, R. de Groot, H. Verbrugh and P. W. Hermans (1996). "Novel 
BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae 
strains." Journal of Clinical Microbiology 34(5): 1176-1179. 

van Elsas, J. D., A. V. Semenov, R. Costa and J. T. Trevors (2011). "Survival of Escherichia 
coli in the environment: fundamental and public health aspects." ISME J 5(2): 173-
183. 

van Passel, M. W., P. R. Marri and H. Ochman (2008). "The emergence and fate of 
horizontally acquired genes in Escherichia coli." PLoS Comput Biol 4(4): e1000059. 

Versalovic, J., C. R. Woods, Jr., P. R. Georghiou, R. J. Hamill and J. R. Lupski (1993). 
"DNA-based identification and epidemiologic typing of bacterial pathogens." Arch 
Pathol Lab Med 117(11): 1088-1098. 

Vescovo, M., C. Orsi, G. Scolari and S. Torriani (1995). "Inhibitory effect of selected lactic 
acid bacteria on microflora associated with ready-to-use vegetables." Lett Appl 
Microbiol 21(2): 121-125. 

Vescovo, M., S. Torriani, C. Orsi, F. Macchiarolo and G. Scolari (1996). "Application of 
antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use 
vegetables." J Appl Bacteriol 81(2): 113-119. 

Vidal, O., R. Longin, C. Prigent-Combaret, C. Dorel, M. Hooreman and P. Lejeune (1998). 
"Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert 
surfaces: involvement of a new ompR allele that increases curli expression." Journal 
of Bacteriology 180(9): 2442-2449. 

Vital, M., F. Hammes and T. Egli (2008). "Escherichia coli O157 can grow in natural 
freshwater at low carbon concentrations." Environ Microbiol 10(9): 2387-2396. 

Vogel-Scheel, J., C. Alpert, W. Engst, G. Loh and M. Blaut (2010). "Requirement of purine 
and pyrimidine synthesis for colonization of the mouse intestine by Escherichia coli." 
Appl Environ Microbiol 76(15): 5181-5187. 

Vos, M. and X. Didelot (2009). "A comparison of homologous recombination rates in 
bacteria and archaea." ISME J 3(2): 199-208. 

Vyas, P., R. Joshi, K. C. Sharma, P. Rahi and A. Gulati (2010). "Cold-adapted and 
rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-
promotion potential." J Microbiol Biotechnol 20(12): 1724-1734. 

Wachtel, M. R., L. C. Whitehand and R. E. Mandrell (2002). "Association of Escherichia coli 
O157:H7 with preharvest leaf lettuce upon exposure to contaminated irrigation 
water." J Food Prot 65(1): 18-25. 

Walk, S. T., E. W. Alm, L. M. Calhoun, J. M. Mladonicky and T. S. Whittam (2007). 
"Genetic diversity and population structure of Escherichia coli isolated from 
freshwater beaches." Environ Microbiol 9(9): 2274-2288. 

Walk, S. T., E. W. Alm, D. M. Gordon, J. L. Ram, G. A. Toranzos, J. M. Tiedje and T. S. 
Whittam (2009). "Cryptic lineages of the genus Escherichia." Appl Environ 
Microbiol 75(20): 6534-6544. 

Walk, S. T., J. M. Mladonicky, J. A. Middleton, A. J. Heidt, J. R. Cunningham, P. Bartlett, K. 
Sato and T. S. Whittam (2007). "Influence of antibiotic selection on genetic 
composition of Escherichia coli populations from conventional and organic dairy 
farms." Appl Environ Microbiol 73(19): 5982-5989. 

Wallick, H. and C. A. Stuart (1943). "Antigenic Relationships of Escherichia coli Isolated 
from One Individual." Journal of Bacteriology 45(2): 121-126. 

Warriner, K., F. Ibrahim, M. Dickinson, C. Wright and W. M. Waites (2003). "Interaction of 
Escherichia coli with growing salad spinach plants." J Food Prot 66(10): 1790-1797. 



 

314 
 

Warriner, K., F. Ibrahim, M. Dickinson, C. Wright and W. M. Waites (2003). "Internalization 
of human pathogens within growing salad vegetables." Biotechnol Genet Eng Rev 20: 
117-134. 

Warriner, K. and A. Namvar (2010). "The tricks learnt by human enteric pathogens from 
phytopathogens to persist within the plant environment." Curr Opin Biotechnol 21(2): 
131-136. 

Waterman, S. R. and P. L. Small (1996). "Characterization of the acid resistance phenotype 
and rpoS alleles of shiga-like toxin-producing Escherichia coli." Infect Immun 64(7): 
2808-2811. 

Werren, J. H. (2011). "Selfish genetic elements, genetic conflict, and evolutionary 
innovation." Proc Natl Acad Sci U S A 108 Suppl 2: 10863-10870. 

Whipps, J. M., P. Hand, D. A. Pink and G. D. Bending (2008). "Human pathogens and the 
phyllosphere." Adv Appl Microbiol 64: 183-221. 

White, A. P., D. L. Gibson, G. A. Grassl, W. W. Kay, B. B. Finlay, B. A. Vallance and M. G. 
Surette (2008). "Aggregation via the red, dry, and rough morphotype is not a 
virulence adaptation in Salmonella enterica serovar Typhimurium." Infection and 
Immunity 76(3): 1048-1058. 

White, A. P., D. L. Gibson, W. Kim, W. W. Kay and M. G. Surette (2006). "Thin aggregative 
fimbriae and cellulose enhance long-term survival and persistence of Salmonella." 
Journal of Bacteriology 188(9): 3219-3227. 

White, A. P., K. A. Sibley, C. D. Sibley, J. D. Wasmuth, R. Schaefer, M. G. Surette, T. A. 
Edge and N. F. Neumann (2011). "Intergenic sequence comparison of Escherichia 
coli isolates reveals lifestyle adaptations but not host specificity." Appl Environ 
Microbiol. 

Whitman, R. L. and M. B. Nevers (2003). "Foreshore sand as a source of Escherichia coli in 
nearshore water of a Lake Michigan beach." Appl Environ Microbiol 69(9): 5555-
5562. 

Whitman, R. L., D. A. Shively, H. Pawlik, M. B. Nevers and M. N. Byappanahalli (2003). 
"Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in 
nearshore water and beach sand of Lake Michigan." Appl Environ Microbiol 69(8): 
4714-4719. 

Whittam, T. S. (1989). "Clonal dynamics of Escherichia coli in its natural habitat." Antonie 
Van Leeuwenhoek 55(1): 23-32. 

Whittam, T. S., H. Ochman and R. K. Selander (1983). "Geographic components of linkage 
disequilibrium in natural populations of Escherichia coli." Molecular Biology and 
Evolution 1(1): 67-83. 

Whittam, T. S., H. Ochman and R. K. Selander (1983). "Multilocus genetic structure in 
natural populations of Escherichia coli." Proc Natl Acad Sci U S A 80(6): 1751-1755. 

Wick, L. M., W. Qi, D. W. Lacher and T. S. Whittam (2005). "Evolution of genomic content 
in the stepwise emergence of Escherichia coli O157:H7." Journal of Bacteriology 
187(5): 1783-1791. 

Wiles, T. J., R. R. Kulesus and M. A. Mulvey (2008). "Origins and virulence mechanisms of 
uropathogenic Escherichia coli." Exp Mol Pathol 85(1): 11-19. 

Wilson, M. and S. E. Lindow (1994). "Coexistence among Epiphytic Bacterial Populations 
Mediated through Nutritional Resource Partitioning." Appl Environ Microbiol 
60(12): 4468-4477. 

Wilson, M., M. A. Savka, I. Hwang, S. K. Farrand and S. E. Lindow (1995). "Altered 
Epiphytic Colonization of Mannityl Opine-Producing Transgenic Tobacco Plants by a 
Mannityl Opine-Catabolizing Strain of Pseudomonas syringae." Appl Environ 
Microbiol 61(6): 2151-2158. 

Winfield, M. D. and E. A. Groisman (2003). "Role of nonhost environments in the lifestyles 
of Salmonella and Escherichia coli." Appl Environ Microbiol 69(7): 3687-3694. 

Wirth, T., D. Falush, R. Lan, F. Colles, P. Mensa, L. H. Wieler, H. Karch, P. R. Reeves, M. 
C. Maiden, H. Ochman and M. Achtman (2006). "Sex and virulence in Escherichia 
coli: an evolutionary perspective." Mol Microbiol 60(5): 1136-1151. 



 

315 
 

Woese, C. R. and G. E. Fox (1977). "Phylogenetic structure of the prokaryotic domain: the 
primary kingdoms." Proc Natl Acad Sci U S A 74(11): 5088-5090. 

Wold, A. E., D. A. Caugant, G. Lidin-Janson, P. de Man and C. Svanborg (1992). "Resident 
colonic Escherichia coli strains frequently display uropathogenic characteristics." 
Journal of Infectious Diseases 165(1): 46-52. 

Wu, D., P. Hugenholtz, K. Mavromatis, R. Pukall, E. Dalin, N. N. Ivanova, V. Kunin, L. 
Goodwin, M. Wu, B. J. Tindall, S. D. Hooper, A. Pati, A. Lykidis, S. Spring, I. J. 
Anderson, P. D'Haeseleer, A. Zemla, M. Singer, A. Lapidus, M. Nolan, A. Copeland, 
C. Han, F. Chen, J. F. Cheng, S. Lucas, C. Kerfeld, E. Lang, S. Gronow, P. Chain, D. 
Bruce, E. M. Rubin, N. C. Kyrpides, H. P. Klenk and J. A. Eisen (2009). "A 
phylogeny-driven genomic encyclopaedia of Bacteria and Archaea." Nature 
462(7276): 1056-1060. 

Xicohtencatl-Cortes, J., E. Sanchez Chacon, Z. Saldana, E. Freer and J. A. Giron (2009). 
"Interaction of Escherichia coli O157:H7 with leafy green produce." J Food Prot 
72(7): 1531-1537. 

Yanai, I., C. J. Camacho and C. DeLisi (2000). "Predictions of gene family distributions in 
microbial genomes: evolution by gene duplication and modification." Phys Rev Lett 
85(12): 2641-2644. 

Yang, Z. and J. P. Bielawski (2000). "Statistical methods for detecting molecular adaptation." 
Trends Ecol Evol 15(12): 496-503. 

Yu, Z. and M. Morrison (2004). "Comparisons of different hypervariable regions of rrs genes 
for use in fingerprinting of microbial communities by PCR-denaturing gradient gel 
electrophoresis." Appl Environ Microbiol 70(8): 4800-4806. 

Zdziarski, J., C. Svanborg, B. Wullt, J. Hacker and U. Dobrindt (2008). "Molecular basis of 
commensalism in the urinary tract: low virulence or virulence attenuation?" Infection 
and Immunity 76(2): 695-703. 

Zhang, L., B. Foxman and C. Marrs (2002). "Both urinary and rectal Escherichia coli isolates 
are dominated by strains of phylogenetic group B2." J Clin Microbiol 40(11): 3951-
3955. 

Zipfel, C. (2008). "Pattern-recognition receptors in plant innate immunity." Curr Opin 
Immunol 20(1): 10-16. 

 

 


