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Abstract

Droughts are one of the most damaging natural hazards, and anthropogenic climate
change has and will continue to alter their characteristics. Better understanding of changes
in drought characteristics under potential future climates is vital for managing drought
risks and impacts, yet projections are very uncertain. This thesis examines the effects of
climate change on European drought characteristics through a multi-scenario and multi-
model approach. It explores the uncertainty associated with emission scenarios, global
and spatial climate projections, and with the identification and characterisation of droughts.

Climate projections simulated by the simple climate model MAGICCG6.0 and pattern-
scaling climate scenario generator ClimGen are assessed, emulating eighteen CMIP3 gen-
eral circulation models (GCMs) under ten emission scenarios. Drought severity (mag-
nitude times duration) and spatial extent are analysed for both 3-month and 12-month
events.

Drought projections vary substantially depending on the GCM, emission scenario,
region, season and definition of drought. Overall, climate change enhances drought con-
ditions across the study region, with marked increases simulated for the southern latitudes;
reductions are projected for the northern latitudes, especially in winter and spring. Pertur-
bations in the interannual variability of precipitation tend to enhance drought conditions
caused by mean precipitation changes, or to moderate or reverse their reductions. Hy-
drological drought parameters are highly sensitive to potential evapotranspiration (PET),
which shows the importance of the PET calculation method. Greater agreement in the
direction of change tends to occur in the high- and low-latitudes, and in summer and au-
tumn. Both meteorological and hydrological drought results generally indicate the same
direction of change, with the latter having larger magnitudes. Projection ranges tend to in-
crease with time and magnitude of warming; intra-GCM spread dominates other sources
of uncertainty. The implications of the large uncertainties include that decision-making
should be based on multi-scenario and multi-model results, and with consideration of

drought definition.
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Chapter 1

Introduction

1.1 Rationale

Extreme weather/climate events have significant environmental and societal impacts,
and anthropogenic climate change has and will continue to alter their characteristics.
Droughts (e.g. the 2003 European heatwave and drought;dtiak, 2004; Stottet al.,

2004) are one of the most damaging natural hazards in human, environmental and eco-
nomic terms (Sheffield and Wood, 2008b; Kiroebal, 2011). Regional changes in
drought patterns in the 20th century have been observed (see Section 2.3) and their future
changes have been simulated (see Section 2.4). Climate change is stimulating demand
from public and private sector decision-makers, as well as other stakeholders, for better
understanding of potential future drought characteristics. Such knowledge is the initial
step to assessing the impacts of drought (Betdil., 2009). It also has both strategic and
policy implications by informing effective adaptation and planning strategies (Graham
et al,, 2007) for managing drought risks and impacts.

Until recently, studies on the projections of extreme weather events, such as drought,
have often been based upon a few general circulation models (GCMs), regional climate
models (RCMs), and/or emission scenarios, partly due to availability. Only a few studies
(e.g. Burke, 2011) have considered the changes in drought under a perturbed climate using
a large ensemble of simulations. In addition to the uncertainties due to climate modelling,
droughts can be represented by a wide range of indices depending on the purpose of ap-
plication, and events can be quantified in various ways (see Section 2.2). The different

concepts and methods of representing drought events applied in different studies make
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inter-comparing results from different analysis challenging (IPCC, 2012). Few studies
have investigated the uncertainties associated with the definitional issues of drought, such
as the use of a fixed or a seasonally-varying drought threshold, or how the results could
differ between meteorological and hydrological droughts (e.g. Védrad, 2011). There-

fore, a systematic approach to analyse the uncertainties in drought projections under a
changing climate is desirable.

Changes in the variability of variables are also an important consideration in a chang-
ing climate as they may mask/moderate or exacerbate the direction and/or magnitude of
an anthropogenic signal. For example, perturbations in interannual climate variability
could have implications on the Iberian hydroelectric production (Teigal., 2004), agri-
culture (Skuras and Psaltopoulos, 2012), food production and forestry (Salinger, 2005);
exacerbated precipitation variability could raise drought risks (Bettak, 2008). Future
interannual precipitation variability could enhance or alleviate changes in drought charac-
teristics caused by mean precipitation changes, but their spatial and temporal effects have
not been well studied.

Climate and hydrological models may be physically sound, but their use in climate
change and hydrological impacts studies are subject to various sources of uncertainties
that range from the choice of emission scenarios, models and model calibration method-
ologies (Schaake, 1990; Sankarasubramagiah, 2001), to the difficulties in the inter-
pretation of multi-model results (see Section 2.6 for further discussion). Decision mak-
ers often have time and/or resource constraints, making climate change vulnerability and
adaptation assessments based on a physical model a less appropriate support tool in prac-
tical applications. Assessing the sensitivity of a system to a particular trigger thus offers
an alternative approach, which may provide some indication of the urgency of the issue
(Weiss and Alcamo, 2011) without the level of complexity associated with physical mod-
elling. Runoff sensitivity to climatic (e.g. precipitation) changes has been estimated (e.g.
by Wigley and Jones, 1985) using various approaches on both global (Eh&w2006)
and regional scales (Sankarasubramaseiaal., 2001; Chiew and McMahon, 2002; Fu
et al, 2007a; Zhengpt al,, 2009; Liu and Cui, 2011; Renner and Bernhofer, 2012), but
few studies have focused on Europe (except for Arnell, 1992; Weiss and Alcamo, 2011).

Hence, there is a need to study the spatial and temporal variations of runoff sensitivity
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for the European study region. Also, the applicability of such an approach for estimating
runoff under a perturbed climate has barely been explored.

This thesis advances from the author’s Master of Research dissertation, which ex-
amined the implications of future changes in drought frequency in Europe under both
unmitigated and mitigated climate change scenarios. The former set of scenarios were
represented by four Intergovernmental Panel on Climate Change (IPCC) Special Report
on Emissions Scenarios (SRES) emission scenarios (Nakicenovich and Swart, 2000) and
the latter, by three stabilisation scenarios ateQuivalent levels of approximately 450,

500 and 550 ppm. This previous work, now published in Waeteal. (2012), was based

on the standardized precipitation index (SPI) and precipitation scenarios simulated using
four previous generation GCMs. Results indicated marked increases in drought frequency
over the 21st century, particularly in Southern Europe, under all climate change scenarios
examined. It also demonstrated that stringent mitigation measures would be required to

reduce these increases in drought conditions.

1.2 Research Aim

GCMs are widely applied in climate change studies. In spite of advanced GCMs
and improved knowledge, considerable levels of uncertainty remain in climate change
projections, particularly in relation to extreme events. Uncertainties arise not only from
the various emission scenarios and GCMs, but also from the different classifications of
drought (namely meteorological, agricultural, hydrological, socio-economic and ground-
water droughts), and a number of indices have been developed to quantify them. This PhD
aims to examine the impacts of climate change projections on drought characteristics for
the European study region, and to explore the various sources of uncertainties in drought
projections. Specifically, the robustness of these projections is illustrated by quantifying

the effects of using different emission scenarios, GCMs and definitions of drought.
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1.3 Study Approach

Building on current scientific knowledge, this thesis addresses some of the gaps in
existing research by not only examining the potential changes in European drought char-
acteristics due to climate change, but also the associated uncertainties in the projections
through the application of a range of emission scenarios and GCMs. The study approach
adopted in this thesis is outlined below. The general methods applied are described in
Chapter 3; more details related to specific analysis are elaborated in the relevant chapters.

GCM simulations are available for limited emission scenarios due to the compu-
tational cost of running large ensembles. Therefore, climate projections simulated by
the simple climate model MAGICCG6.0 and pattern-scaling climate scenario generator
ClimGen are assessed as they can emulate simulations beyond the available GCM en-
semble. These include emulations of eighteen Coupled Model Intercomparison Project
(CMIP3) GCMs under six IPCC SRES emission scenarios (Nakicenovich and Swart,
2000) and four Representative Concentration Pathway scenarios (RCP&tdh2010).

Drought severity (i.e. magnitude times duration) and spatial extent are analysed for
both short (3-month) and long (12-month) events, for the European study region (see Sec-
tion 3.9). Results for two future periods, 2001-2050 and 2051-21100, are compared to
the baseline period of 1951-2000. Changes in meteorological droughts are quantified by
the Standardised Precipitation Index (SPI) (see Chapter 4). A subset of these climate pro-
jections are also used as input to a global hydrological model, Mac-PDM.09, to generate
runoff data for characterising changes in hydrological droughts (see Chapter 5). As there
are various ways of defining drought, Chapter 5 also investigates the uncertainties arising
from definitional issues, including the classification of drought (i.e. meteorological and
hydrological droughts), the choice of threshold and the definition of when a drought ter-
minates. Drought analyses based on the monthly time step of precipitation and runoff are
considered appropriate given the relatively large spatial coverage and temporal extent (see
Sections 3.9 and 3.6, respectively).

To assess the spatial and temporal effects of climate-change-induced changes in inter-
annual precipitation variability in the projected meteorological and hydrological droughts,

results from two experiments are compared (see Chapter 6). In the first experiment, the



1.4 Thesis Structure 5

future precipitation scenarios account for changes in both precipitation mean and vari-
ability (as represented by the coefficient of variation, CV, or equivalently by the shape
parameter of a gamma distribution; see Section 3.2). In the second experiment, the future
precipitation scenarios consider only the changes in mean precipitation while keeping the
CV constant (hence precipitation standard deviation changes in proportion to the mean;
see Section 3.2).

The spatial and temporal variations of runoff sensitivity for the European study region
are studied by the elasticity approach using a non-parametric (empirical) estimator. The
applicability of this elasticity approach for estimating runoff under a perturbed climate is
assessed by comparing the level of agreement between mean runoff values estimated by

the elasticity method and those simulated by hydrological modelling using Mac-PDM.09.

1.4 Thesis Structure

This thesis is presented in eight chapters, including this Introduction, and is organised
as follows. Chapter 2 provides an overview of the drought concept, the various clas-
sifications of drought and methods for their quantification. It presents the observed and
projected changes in drought, along with the drivers of their occurrence. This chapter also
discusses the various sources of uncertainties in climate modelling and the challenges in
projecting future drought characteristics. Chapter 3 describes the general methods ap-
plied in this study, including the modelling framework, the approach for identifying and
measuring drought, the study area and regions.

Chapter 4 examines the effects of climate change on European meteorological drought
characteristics for both 3-month (SPI3) and 12-month (SP112) events. It assesses the un-
certainties that arise from ten emission scenarios and eighteen GCMs, as well as their
relative contribution. Using runoff data simulated by Mac-PDM.09, Chapter 5 assesses
the effects of climate change on European hydrological droughts, for both 3-month and
12-month events. In order to do so, the uncertainties associated with drought definitional
issues are considered, which includes the choice of threshold that identifies drought con-
dition from “normal” climate, the definition of when a drought terminates, and a com-
parison between the results derived using the meteorological and hydrological drought

classifications.
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Chapter 6 explores the spatial and temporal effects of climate-change-induced changes
in interannual precipitation variability on the projected meteorological and hydrological
droughts, based on the 12-month results obtained in Chapters 4 and 5. Chapter 7 stud-
ies the spatial and temporal variations of sensitivity of runoff for the study region using
the elasticity approach, and explores the applicability of elasticity values for estimating
runoff under a perturbed climate. Chapter 8 summarises the key findings revealed from
this thesis, and presents some concluding remarks about the policy implications and areas

for future research.



Chapter 2

Literature Review

2.1 Introduction

Climate variability and extreme weather/climate events are of great concern (Katz and
Brown, 1992) as they produce disproportionately large climate-related damages (Easter-
ling et al, 2000; Meehket al,, 2000). There is growing confidence (Smithal., 2009a)
that human-induced climate change can alter/raise the risk of extreme events évidehl
2000; Trenberth, 2006; Smitt al, 2009a), which have implications for regional and lo-
cal adaptation and risk reduction strategies (van Aalst, 2006; BerrangeFalgd2011).

This chapter describes the importance of drought events, and provides an overview of
the drought concept, the various classifications of drought and methods for their quan-

tification. The observed and projected drought trends are then presented, along with the
drivers of drought and their variations. This chapter also discusses the various sources of
uncertainties in climate modelling and the challenges in projecting future drought charac-

teristics.

Drought is one of the most damaging natural hazards, in human, environmental and
economic terms (Sheffield and Wood, 2008b; Kiraial., 2011). It affects agriculture
(Dai et al,, 2004; Finket al,, 2004; Motha and Baier, 2005), irrigation (Doll, 2002) and
food production (Liet al, 2009; Piacet al, 2010). Droughts also have implications
for hydrological (e.g. groundwater and reservoir storage; Matsdl., 2007; Vidal and
Wade, 2009) and ecological (Ciasal, 2005; Gobroret al., 2005; Archer and Predick,
2008) systems, e.g. aquatic ecosystems (Kirenal, 2011). Their impacts on socio-

economic systems (Alston and Kent, 2004; Fetlal., 2004; Dinget al,, 2011) include
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municipal and industrial water supply (Blenkinsop and Fowler, 2007a; Zbiaig 2011),
hydro-power generation, recreation, industry (Panu and Sharma, 2002), and navigation
(Grahamet al,, 2007). Increasing drought conditions can lead to human health concerns
(Quevauviller, 2011), e.g. famine in northern Nigeria (Tarhule and Woo, 1997), as they
could counteract the effects of the anticipated longer growing seasons. Droughts can also
impact on ecosystem goods and services (e.g. in the Alps; Jesgde2004; Bigleret al.,

2006; Moseret al, 2011) include the loss of sequestered forest carbon and associated
atmospheric feedbacks (Cias al,, 2005; Allenet al, 2010). Global wildfire potential

may also increase (Liat al,, 2010), e.g. more fires in eastern Iberian Peninsula with dry
summers (Pausas, 2004).

Notable episodes of droughts include the 1930s and 1950s soil moisture and runoff
droughts over continental U.S. and the early 2000s in western U.S. (Andrtadis
2005), the Sahel drying since the late 1960s (Dore, 2005), the Australian “Big Dry” since
1995 (Caiet al,, 2009), the 1975-1976 UK drought (Gallagle¢ral., 1976; Perry, 1976;
Ratcliffe et al, 1978; Marshet al,, 2007) and the 2003 European heatwave and drought
(Fink et al, 2004; Stotet al., 2004). Globally, there were 296 large-scats 00,000 ki
and >3 months) soil moisture droughts during 1950-2000, based on simulations driven
by a hybrid observation-reanalysis meteorological dataset that combines gridded observa-
tions with data from the National Centers for Environmental Prediction National Center
for Atmospheric Research (NCEP-NCAR) reanalysis of global terrestrial hydrologic us-
ing the VIC model (Sheffiel@t al, 2009).

Current management practices may be insufficient to cope with future changes in sus-
tainability, quantity and quality of water resources (Bageal., 2008), and many devel-
opments are planned in drought-prone areas (e.g. the Thames Gateway; Walden, 2009).
Drought by itself does not necessarily imply a disaster. While drought risk generally
increases with warming and drying (Deti al, 2004), local and global social and envi-
ronmental changes influence vulnerability (Iglegtal., 2006; Garcia-Ruiet al,, 2011).
Human activities (e.g. overfarming, excessive irrigation, deforestation, over-exploiting
available water and erosion) can alter the land’s ability to capture and hold water (Mishra
and Singh, 2010). The slow-onset nature of drought can allow human actions to shape the

impacts, especially if reliable seasonal forecasts can be madd dlj 2009). Climate
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change can be incorporated into existing disaster risk reduction and development planning
strategies (van Aalst, 2006). For instance, (improved) water management, water pricing
and water recycling policies may reduce the population exposed to water stress (Arnell,
2004a; Garcia-Ruiet al,, 2011).

Despite advances in science and improved technology, drought remains one of the
major challenges of climate variability worldwide (Piabal,, 2010). Impact assessment
and adaptation decisions require specific information about the spatial and temporal char-
acteristics of drought risk (Loukas and Vasiliades, 2004; Mecttied., 2010). A better
understanding of potential future drought evolution could facilitate the implementation of

effective adaptation, preparedness and disaster risk reduction measures (Wilhite, 1997).

2.2 Drought

2.2.1 Drought as a Concept

Palmer (1965), Yevjevich (1967), Dracap al. (1980), Wilhite and Glantz (1985),
Le Houérou (1996), Panu and Sharma (2002), Wilhite (2005), Paulo and Pereira (2006),
WMO (2006), Mishra and Singh (2010) and Dai (2011) have comprehensively reviewed
the concept of drought, whcih can be defined and understood in many ways. Sections
2.2.1-2.2.7 are based on these and other studies.

Drought is a natural, temporary and recurrent feature of variability, characterised by
a cumulative precipitation deficit from the long-term mean (Beitchl., 2009; Vidal and
Wade, 2009). The predominant driver is low precipitation, but high evaporation rates
(available energy; Burke, 2011) also play a role (van Lagtesl.,, 2007; Liet al,, 2009).
Although drought (depending on the variability and how it is defined) is common in arid
and semi-arid regions, it can affect virtually all climate regimes (Vidal and Wade, 2009),
e.g. in cold regions, sub-zero temperatures can produce winter droughts (varetahen
2007). This also universal phenomenon therefore needs to be considered a relative, rather
than an absolute, condition; its characteristics also vary significantly from one region to
another (Mpelasokat al., 2008). The effects of rainfall deficiency may take weeks or
months to become apparent. A prolonged and more spatially extensive meteorological

drought may induce other types of drought (Mpelasekal., 2008) (see Section 2.2.2).
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Desertification generally refers to progressive land degradation in arid, semi-arid and dry
sub-humid areas caused by climate variability and/or human activities, whereas drought
impacts are typically temporary, affecting production rather than long-term productivity
(Le Houérou, 1996). However, drought may trigger desertification; since the 1970s, dry-
ing over west Africa, southern Europe, East and South Asia, and eastern Australia have

substantially increased global aridity (Dai, 2011).

2.2.2 Drought Classifications, Characterisation and Indices

A single drought event can span different climate zones and affect various human
activities (Fleiget al,, 2006). A standard methodology for characterising droughts un-
der different hydroclimatological and hydrogeological conditions would help monitor-
ing and forecasting of regional episodes (Fleigal, 2006). However, each event has
unigue climatic characteristics, spatial extent and impacts (Wilhite, 2005). The wide range
of geographical and temporal distribution of droughts (thus the varying concepts), their
complexity and interdisciplinary nature, and differing perspectives held by various stake-
holders, make the onset and end of a drought difficult to determine. Hence, a precise,
systematic and universal drought definition is lacking (Heim Jr., 2002; Andreadis
2005; Quiring, 2009b). Definitions also vary according to the variable (e.g. precipitation,
streamflow or soil moisture) used to describe the drought (Mishra and Singh, 2010).

Conceptually, a drought refers to a water shortage (the demand) relative to the supply
(Dracupet al., 1980) that originates from the absence or reduction in precipitation due to
atmospheric conditions. Droughts are commonly classified into meteorological, agricul-
tural, hydrological and socio-economic droughts (AMS, 2004; see Sections 2.2.3-2.2.7).
Meteorological drought is a more common and natural event, whereas agricultural, hydro-
logical and socio-economic droughts emphasise more the human or social aspects (WMO,
2006). The sequence begins with meteorological drought; persistent dry conditions may
induce agricultural, hydrological and water resources droughts (Andreadis 2005;

Vidal and Wade, 2009).
Mishra and Singh (2011) discussed the various components and methodologies in

drought modelling, including forecasting, probabilistic characterisation, spatio-temporal
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analysis, the use of general circulation models (GCMs) and land data assimilation sys-
tems. Drought indices are commonly used by public and private sector stakeholders
(Quiring, 2009b) for event detection, monitoring and evaluation as they enable spatial
and temporal comparisons (Roudier and Mahe, 2010). Besides its scientific merits and
ability to quantify events at different timescales, which requires a long timeseries (Mishra
and Singh, 2010), a “good” indicator should also be valuable and informative to decision-
makers (Steinemargt al,, 2005; Steinemann and Cavalcanti, 2006).

Many statistical techniques exist for drought analysis (Panu and Sharma, 2002). The
choice of a suitable drought characteristic for a specific study is subjective and compli-
cated by hydroclimatology and the nature of the region, type of event considered, societal
vulnerability, study aim and data availability (Dracepal., 1980; Fleiget al., 2006). As
different types of drought may not occur simultaneously nor exhibit the same severity,
they should be characterised separately (Fétigl, 2006). Many studies (e.g. Hayes,
1998; Byun and Wilhite, 1999; Heim Jr., 2002; Keyantash and Dracup, 2002; Steine-
mann, 2003; Quiring, 2009b) have reviewed and/or evaluated the various indicators; some
of these are mentioned in Sections 2.2.3-2.2.7. Besides the classical drought definitions,
drought analysis methods may be based on frequency/probability, regression and moisture
adequacy index (MAI) (Panu and Sharma, 2002).
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Figure 2.1: Drought characteristics using the run theory for a given threshold level. Source:
Figure 1 in Mishra and Singh (2010).

Drought is generally analysed using timeseries of different variables on timescales
that vary from months to years (Mishra and Singh, 2010; Panu and Sharma, 2002) based

on a threshold approach that originated from the theory of runs (Yevjevich, 1967; Dracup
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et al,, 1980; Hisdalet al., 2004). This allows various statistical drought parameters, in-
cluding frequency, duration, intensity and severity, to be determined. Figure 2.1 (from
Mishra and Singh, 2010) presents a schematic diagram of a drought varighlevhich

is intersected at several places by the truncation le¥g) (hat produces three drought
events. A negative (positive) run occurs when all values of the timeseries of drought vari-
able (X;) are below (above) the pre-determined threshaid)( Drought initiation time

(t;) specifies the start of the deficit period, i.e. when the drought begins; drought termina-
tion time ¢.) denotes the time when the drought ends. Drought durafigi i6 defined

as the number of consecutive time-steps with below-threshold values (Byun and Wilhite,
1999), i.e. the time period between the initiation and termination of a drought. While
drought severity §,) indicates the cumulative departure from a threshold, drought inten-
sity (1) represents the averaged cumulative anomaly for that duration, i.e. the average
magnitude of an event (Andreadis al,, 2005). With a gridded dataset, the components

in Figure 2.1 enable the determination of the areal extent of droughts, which is important
as it (together with duration) can influence the range and scale of impacts (Btaakh
2007). It can be measured by the Drought Area Index (DAI). DAI estimates the propor-
tion of the area affected by drought by simply counting the number of cells with values of
the timeseries, in any given timescale (e.g. month or year), falling below a given threshold
divided by the total number of cells over a given domain (Ceb#l., 1997; 2004).

Frequency provides no information on the event intensity or duration; it also varies
with the chosen timescale, e.g. shorter (longer) events tend to generate higher (lower)
frequency (Vicente-Serrano and Lopez-Moreno, 2005). Nevertheless, frequency analysis
of critical events helps to determine design criteria in water resource projects (i.e. hy-
drological drought) and selecting a cropping system or pattern (i.e. agricultural drought)
(Panu and Sharma, 2002). Duration strongly correlates to severity (Bonacci, 1993; Woo
and Tarhule, 1994; Tarhule and Woo, 1997), which is important for studying hydrological
drought (Andreadi®t al, 2005). Panu and Sharma (2002) defined severity as a func-
tion of duration and probability distribution of the drought variable and its autocorrelation
structure. Critical duration, even with lower severity, is important for agricultural drought
(Panu and Sharma, 2002). Areal drought characteristics, rather than point values, is useful

for water resources management of large regions (Hisdal and Tallaksen, 2003). Droughts
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can be spatially identified on a local, regional or national scale (Mishra and Singh, 2010);
their maximum size is limited by the size and shape of continental landmasses (Sheffield
et al,, 2009).

The size, duration and location of a drought depends on a pre-defined threshold of a
sequence (e.g. SPI or runoff timeseries) below which an event occurs (Yevjevich, 1967;
Dracupet al, 1980). The threshold, either a constant or a function of time of the year,
is of significant importance as it distinguishes the variable timeseries into “deficit” and
“surplus” (Panu and Sharma, 2002). It may be in absolute (e.g. deficit volumes in mm) or
relative (e.g. the 80th percentile) terms. The former may be more meaningful for practi-
tioners engaged in drought monitoring, forecasting and management operations, whereas
the latter enables comparisons with other regions that have different hydro-climatic char-
acteristics. Different thresholds (e.g. mean, median and percentiles) characterise events
of different intensities (Mishra and Singh, 2010), depending on the needs or applications

and location (WMO, 2006).

2.2.3 Meteorological Drought

Meteorological drought typically refers to below-normal precipitation over a period
of time over a region (Bordét al, 2009); it may also be described by temperature and
evapotranspiration. It can develop quickly and end abruptly. The high temporal and
spatial variability of precipitation and insufficient observation stations can pose analytical
challenges.

Meteorological indices include percentile ranking methods (e.g. quartiles and deciles;
Gibbs and Maher., 1967), percent of normal precipitation, consecutive dry days (CDD),
Rainfall Anomaly Index (RAI; van Rooy, 1965), Effective Drought Index (EDI; Byun
and Wilhite, 1999), and Standardized Precipitation Index (SPI; see Section 4.2.2) (Mckee
et al, 1993).

2.2.4 Agricultural Drought

Agricultural drought is often characterised by insufficient moisture in the surface soil
layers to support crop and forage growth (Das, 2003), even with saturated deeper soll

layers, through its control on transpiration and thus vegetative vigor (Sheffield and Wood,
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2008a), without referring to surface water resources. Factors that cause meteorologi-
cal (Section 2.2.3) and hydrological (Section 2.2.5) drought events, differences between
actual and potential evapotranspiration (PET), plant biology and physics, and soil prop-
erties (e.g. water-holding capacity), all influence soil moisture, which is determined by
the fluxes of precipitation, evapotranspiration and runoff (Sheffield and Wood, 2008a).
However, precipitation amounts do not directly relate to soil infiltration.

Agricultural drought indices often combine precipitation, temperature and soil mois-
ture to measure soil moisture and crop yield. Numerous indices exist (ldages2011),
including a soil moisture index, normalised difference vegetation index (NDVI), water
balance, heat stress, Palmer Moisture Anomaly Index (Z-index, which also measures me-
teorological drought; Palmer, 1965), Crop Moisture Index (CMI; Palmer, 1968), Soll
Moisture Anomaly Index (Bergmaat al, 1988), and Palmer Drought Severity Index
(PDSI; Palmer, 1965).

The PDSI has been widely applied especially in the U.S. (Soulé, 1992; Kangas and
Brown, 2007; Gutzler and Robbins, 2011), but also in Europe (Beiffal., 1994; Lloyd-
Hughes and Saunders, 2002; Dubrovskgl., 2008; van der Schrieat al,, 2010; Sousa
et al, 2011) and China (Zoet al, 2005; Liet al, 2007a; Fanget al,, 2009; Lei and
Duan, 2011), and more recently, globally ([Zaial, 2004; Burkeet al., 2006; Sheffield
et al, 2012). Alley (1984), Karl (1986) and Heddinghaus and Sabol (1991) discussed
its limitations and assumptions. PDSI, although originally developed to monitor long-
term meteorological events, is a soil moisture algorithm calibrated for relatively homo-
geneous regions, and has been extensively used to describe agricultural droughts (Panu
and Sharma, 2002). Although the traditional PDSI excludes snow accumulation and sub-
sequent runoff, van der Schriet al. (2013) produced a new global dataset of monthly
self-calibrating Palmer Drought Severity Index (scPDSI) that accounts for seasonal snow-

pack dynamics in the water balance model for 1901-2009.

2.2.5 Hydrological Drought

Surface waters (e.g. lakes and streams) are used for many purposes, including hy-
dropower, irrigation and drinking water supply (Hisdal and Tallaksen, 2003). Hydrolog-

ical drought is generally defined as a period of inadequate surface and subsurface water
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supplies for use of a given water resource management system @aidi2009). Po-

tential triggers include precipitation and/or soil moisture deficits (Andrestdas, 2005)
(possibly due to more intense but less frequent precipitation), storage conditions, high
evaporative losses (Hisdal and Tallaksen, 2003), poor water management and erosion. It
usually lags behind meteorological and agricultural events (Hisdal and Tallaksen, 2003),
develops slowly as it involves stored water that is depleted but not replenished (Dai, 2011),
and persists longer (Steinemaenal,, 2005). Although surface and subsurface compo-
nents recover slowly due to the long recharge periods, runoff may recover in response to
precipitation more quickly than soil moisture (Andreaeisl., 2005).

Hydrological droughts may be reflected by total water deficit or cumulative stream-
flow anomaly based on streamflow, reservoir and lake levels. Other indicators include
the surface water supply index (SWSI), Palmer Hydrological Drought Severity Index
(PHDI), Reclamation Drought Index (RDI; Weghorst, 1996), aggregate dryness index
(ADI) that considers all meteorological, hydrological and agricultural aspects (Keyantash
and Dracup, 2004), normalized ADI (NADI), low-flows (Smakhtin, 2001), and stream-
flow drought index (SDI; Nalbantis and Tsakiris, 2008). A new “composite index” based
on streamflow, precipitation, reservoir levels, snowpack, and groundwater levels has been
recommended (Hayest al, 2011). van Huijgevooret al. (2012) presented a method
that combines characteristics of the classical variable threshold-level method, and CDDs,

which consistently identifies global-scale drought across climate regimes.

2.2.6 Groundwater Drought

Surface water drought may progress to groundwater drought, which is less exten-
sively studied than other drought categories, particularly its spatial distribution (Peters
et al, 2005; 2006; Mishra and Singh, 2010). It occurs when groundwater levels, storage
and discharge decline with some combination of low precipitation, high evapotranspira-
tion, low soil moisture content and thus reduce groundwater recharge. The propagation
of groundwater drought from recharge to discharge and the influence of aquifer charac-
teristics on the propagation has been studied by (Eltahir and Yeh, 1999; Petdrs
2003; Peters and van Lanen, 2003). Abstraction and overexploitation may create/enhance

a groundwater drought.
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Mendicinoet al.(2008) derived the Groundwater Resource Index (GRI) from a simple
distributed water balance model for monitoring and forecasting. van Lanen and Peters
(2002) identified natural groundwater droughts (recharge deficits) by applying transient
recharge models and reservoir theory (Sequent Peak Algorithm). Rétals(2005)
evaluated groundwater recharge and discharge for three reservoir coefficient values with
respect to droughts. They used reliability, resilience and vulnerability, and a combination
of these three indicators (Loucks’ sustainability index), along with three newly-defined

overall performance indicators that combine drought severity and frequency.

2.2.7 Socio-economic Drought

Socio-economic drought characterises the supply and demand of some precipitation-
dependent commodity or economic good (e.g. water, livestock forage or hydroelectric
power) that may affect society’s productive and consumptive activities (Dratua,

1980). Supply depends on precipitation or water availability that fluctuates annually. De-
mand is a function of human use and often correlates positively with increasing popu-
lation and development. Temporal and spatial scales of supply and demand should be
considered when defining a socio-economic drought. Water stress indicators include an-
nual withdrawals-to-availability ratio, the consumption-to-Q90 ratio, and per capita water
availability (Alcamoet al, 2007b). It is worth noting that demand for freshwater re-
sources could change over time even with an unchanged climate. For instance, demand
could increase with an increase in development, or the construction of reservoirs could

enhance resilience to future climate change.

2.2.8 Discussion

The choice of drought index determines the spatial patterns of drought characteristics
(Soulg, 1992). The wide range of drought definitions discussed in this subsection implies
that one or more indices may be consulted as each has its own advantages and weak-
nesses (Bonacci, 1993; Hayetsal,, 2007). Drought definitions thus need to be region-
and application- or impact-specific (WMO, 2006), with the appropriate timescales cho-
sen (Kangas and Brown, 2007). Nonetheless, few definitions adequately address drought

impacts (Wilhite and Glantz, 1985).
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PET is an input to the PDSI and is an important consideration in hydrologic modelling
or water resource management studies; the uncertainty of which was also highlighted
by Miller et al. (2011). PET is commonly estimated with Thornthwaite (Thornthwaite,
1948) and Penman-Monteith parameterisations (Adleal, 1994a;b). van der Schrier
et al. (2011) found little difference in global scPDSI values computed using these two
approaches due to the calculations in the simple water balance model of the PDSI algo-
rithm. However, output from the global hydrological model, Mac-PDM.Q9, is sensitive to
the PET calculation method (Penman-Monteith or Priestley-Taylor; Gosling and Arnell,

2011).

2.3 Past Changes in Drought

This subsection presents an overview of the historic changes in drought globally.

While long-term global drought trends are complex and there are no emergent coher-
ent patterns of behaviour (IPCC, 2012), there have been regional-scale spatial and tempo-
ral variations (Easterlingt al, 2000). During the last 500-1000 years, North America,
West Africa (Shanahaet al., 2009), and East Asia have experienced multi-year to multi-
decade dry periods (Dai, 2011).

Globally, the maximum number of CDD has generally reduced, except for parts of
South Africa, Canada and eastern Asia (Frathal, 2002). Areas affected by severe
drought increased slightly over 1900-1995 (Dore, 2005). PDSI trends revealed drying
along the Guinea Coast, southern Africa, parts of Canada, and southern and central Europe
during 1900-1949 (Dast al., 2004).

Global very dry (PDSk—3.0) areas decreased by 7% over 1950-1972, but have in-
creased by 12-30% since 1970s, particularly in early 1980s with an ENSO-induced pre-
cipitation decline and surface warming (Dbaial., 2004; Dai, 2011). Since the mid-20th
century, increased wetness occurred over the central U.S., Argentina and northern high-
latitude areas whereas most of Africa, southern Europe, southeast Asia, and eastern Aus-
tralia, (Daiet al, 2004; Dai, 2011; 2013; as shown in Figure 2.2) with more frequent and
intense drought (Dore, 2005). The U.S. and Europe had both increases in the percentage of
areas with severe drought or moisture surplus (Huntington, 2006). Less frequent/intense,

or shorter droughts have occurred in central North America and northwestern Australia
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Figure 2.2: Trend maps for precipitation and scPDSI [scPDSI with PET estimated using the
Penman—Monteith equation] and time series of percentage dry areas. Long-term trends from 1950
to 2010 in annual meaa, observed precipitation arlg, calculated scPDSI using observation-
based forcing. The stippling indicates the trend is statistically significant at the 5% level, with
the effective degree of freedom computed. Note a change of 0.5 in the scPDSI is significant in
the sense that a value of PDSI between -0.5 to -1.0, —1.0 to -2.0, -2.0 to —3.0 and -3.0 to —
4.0 indicates, respectively, a dry spell, mild drought, moderate drought and severe drought.
Smoothed time series of the drought area as a percentage of global land areas based on the scPDSI
computed with (red line) and without (green line) the observed surface warming. The drought
areas are defined locally as the cases when scPDSI is below the value of the twentieth percentile
of the 1950-1979 period (results are similar for drought defined as £B3&D and for using a

longer base period from 1948 to 2010). Source: Figure 1 in Dai (2013).



2.3 Past Changes in Drought 19

(IPCC, 2012). For global soil moisture, although increasing precipitation over 1950-2000
has reduced drought extent by 0.021-0.035% yhigh northern latitudes in particular,
have dried with warming since the 1970s; West Africa has dried substantially with lower
Sahel precipitation (Sheffield and Wood, 2008a).

However, after accounting for changes in available energy, humidity and wind speed,
Sheffieldet al. (2012) found little change in global drought since 1950, and that previ-
ously reported increases were overestimated due to the simple representation of PET in
PDSI that responds only to perturbed temperature. Based on a new global scPDSI dataset
calculated for 1901-2009, although van der Schetaal. (2013) found more widespread
drought in some regions such as the Mediterranean due to increasing temperature and
PET, they did not find evidence for unusually strong or widespread drying. They also
found that the selection of a calibration period of the scPDSI (rather than the formulation
of PET) to be the cause for the differences in global drying trends in the literature. More-
over, robustness in the observed trends can be constrained by data inhomogeneities and
relative sparseness of station density (Mobetrgl., 2006). There are also considerable
regional variations in the reconstructed 20th-century runoff trends (ledlzdht 2004).

These studies have reported spatial and temporal variations in the drying and drought
trends. Such differences may be associated with the different datasets used for drought
analysis, e.g. Daet al. (2004) used observed/historical precipitation and temperature
datasets, whereas Sheffield and Wood (2008a) used soil moisture simulation from the
Variable Infiltration Capacity (VIC) land surface hydrological model driven by a hy-
brid dataset of precipitation, near-surface meteorological and radiation data derived from
the National Centers for Environmental Prediction—National Center for Atmospheric Re-
search (NCEP—-NCAR) reanalysis and a suite of global observation-based products. Also,
the different definitions and methodologies applied for drought quantification and compu-
tation (e.qg. in the calculation of PDSI) can also contribute to some of the inconsistencies
in the trends. Despite the variations in the trends found in different studies, drying and/or

worsening drought conditions have consistently been found in southern Europe.
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2.3.1 Europe

This subsection focuses mainly on the historic trends in precipitation/drought found
for Europe, which has been used as the study region in this thesis (see Section 3.9).

Over the 20th century, while drought (SR} 1) area coverage increased (Boetlal,,

2009), the area affected by extreme and/or moderate droughts (according to both SPI
and PDSI; Lloyd-Hughes and Saunders, 2002) and summer moisture availability (van der
Schrieret al,, 2010) revealed insignificant changes; widespread and unusual drying over

the last few decades is also not evident (van der Scétiak, 2010).

Between 1976-2000 and 1951-1975, much of the European region experienced re-
duced summer precipitation while the opposite trend occurred over Western Russia and
Finland (Palet al, 2004). Trends of precipitation and scPDSI for the 20th century indi-
cate a drying trend across much of the western and central Mediterranean ¢salisa
2011). For England and Wales, while 12-month drought (based on rainfall deficiencies)
frequency reveals no clear trend during 1800—-2006, summer drought severity increased
with 20th-century warming (Marshkt al, 2007). Central eastern Europe and western
Russia experienced significant drying (based on trends in SPI and PDSI values), with
trends being strongest in winter/spring and weakest in summer/autumn (Lloyd-Hughes
and Saunders, 2002). Extreme droughts (RDSA) became more frequent within the in-
terior of continental Europe, and less frequent along the northwest European and Mediter-
ranean coast, and the Alps (Lloyd-Hughes and Saunders, 2002). It is worth noting that the
chosen calibration period of the PDSI can influence the interpretation of the index values
based on Palmer’s classification (van der Scheteal,, 2013).

For Europe as a whole, long-term trends in streamflow drought are generally inconclu-
sive (Hisdalet al., 2001), and hydrological (represented by SPI24) drought area coverage
varies with the time section considered due to the high spatial variability (Edrali,

2009). However, distinct regional differences have been found. Since the 1960s, low
flows reduced; annual streamflow generally decreased (increased) in southern and eastern
regions (across Europe) and in summer (winter) (St¢ahl., 2010). During 1962—-1990,
drought deficit volumes increased in Spain and eastern part of Eastern Europe, but de-
creased in much of Central Europe and western part of Eastern Europe; results for the UK

are mixed, with more severe droughts in areas with limited storage capacity (e.g. Wales
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and southwest England), and less severe droughts in areas that have large aquifers (e.g.
southeast England). These trends are related to seasonal precipitation deviations or arti-
ficial influences in the catchments (Hisddlal., 2001). More severe summer streamflow
droughts occurred in southern and eastern Norway due to altered snowmelt hydrology
(Wilson et al,, 2010). Extended drought periods (that affectetD% of grid cells) oc-
curred in autumn 1975 to late summer 1976, and spring/summer of 1990 (Talktkden
2011).

Summer moisture availability increased from end of 17th century to beginning of
19th century; continuous drying has since occurred (Bgffal, 2009). The mid-1940s
to early 1950s was a persistent and exceptionally dry period (van der Setwle2010).
Widespread summer drought in the last two decades with anomalous warming, particu-

larly in central Europe (Briffaet al, 2009).

2.4 Projected Changes in Drought

This subsection presents an overview of the projected changes in drought under future

climates globally.

Proportion land in drought
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Figure 2.3: The proportion of the land surface in drought each month. Drought is defined as
extreme, severe, or moderate, which represents 1%, 5%, and 20%, respectively, of the land surface
in drought under present-day conditions. In each case results from the three simulations made
using the A2 emissions scenario are shown. Source: Figure 9 in Bugtg2006).

Compared to high precipitation extremes, projected trends for global dry events ap-
pear weaker and less consistent (Plargbal., 2008). Due to the range of definitions that

correspond to different classifications of drought and inconsistencies in the model projec-

tions when based on different dryness indices (e.g. short- vs. long-term events), there is
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mediumconfidence in future drought projections IPCC (2012). Despite the considerable
regional variations, studies generally suggest a net overall global drying trend is projected
over the 21st century. Over the 21st century, dry day frequency increases under A2 and
A1B emission scenarios but varies little under B1 (Tebatdil,, 2006). The area of land
surface in extreme drought increases from 1-30% (present-day) to 30—50% (by 2100) un-
der A2 scenario, with slightly less frequent but much longer events (Beirké, 2006;
Bateset al,, 2008; as shown in Figure 2.3). Using a drought risk index (based on a revised
PDSI) that accounts for the effects of drought-disaster frequency, drought severity, pro-
duction (yield) and extent of irrigation, results from 20 GCMs indicate that global drought
disaster-affected area increases from 15% (present-day) to 44% (21@®y{L-2009).

The frequency of dry days are projected to increase (decrease) in sub-tropical latitudes
of northern and southern hemispheres (high-latitude northern hemisphere), according to
nine GCMs (Tebaldet al, 2006). Future droughts (on the annual timescale and based
on both soil moisture anomalies and CDD) intensify in southern and central Europe, cen-
tral North America, Central America and Mexico, northeast Brazil, and southern Africa
(during December-January-February; Lyon, 2009) (IPCC, 2012). Decadal-mean scPDSI
calculated using the ensemble-means from 22 GCMs suggest increasing aridity between
the 1950s and 2090s over most of Africa, southern Europe and the Middle East, most
of the Americas, Australia, and Southeast Asia; persistent droughts may also occur in
the U.S. in the first half of the 21st century Dai (2011). Continental summer drying and
droughts are likely with reduced precipitation, higher temperature and evaporation (Meehl
et al, 2000), especially in the sub-tropics (Shindell, 2007), low- and mid-latitudes (Bates
et al, 2008). In southern Europe and central North America, dry soil, frequency of low
precipitation and long dry spells (due to fewer daily rainfall events, rather than lower mean
precipitation) in summer could increase (Gregetwl., 1997).

According to 21 GCMs under SRES A1B scenario, by 2100, soil moisture is pro-
jected to decline globally, causing droughts in tropics and subtropics, including southwest
North America, Central America, the Mediterranean, Australia, much of the Amazon
and South and West Africa in June-July-August and the Asian monsoon (in winter) re-
gion (Wang, 2005). The frequency of long-term soil moisture droughts is projected to

triple, and the spatial extent of severe soil moisture deficits and frequency of short-term
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(4-6-month) droughts double based on eight GCMs, with lower precipitation, higher tem-
peratures and evaporation; greater evaporation may offset precipitation increases in some
regions (Sheffield and Wood, 2008b).

Considerable streamflow variations are expected by 2100 (@badld 2011). Annual
mean precipitation, evaporation, and runoff (by 10-30%; Millyal, 2005) decrease in
mid-latitudes and sub-tropics (Arnell, 1999b), e.g. southern Europe, southern Africa and
mid-latitude western North America (Nohaea al., 2006). River discharge simulated
by a land surface sub-module (MATSIRO) of the MIROC GCM indicate that North and
South America, central and southern Africa, the Middle East, central to western Australia,
and Indochina to southern China to experience significantly more frequent drought days
by 2070-2100 (Hirabayaskt al, 2008). Frequency of flow below the current 10-year
return period minimum annual runoff, simulated by an enhanced version of the Macro-
PDM hydrological model, is projected to be three (two) times more frequent in Europe
and southern Africa (North America) by the 2050s (Arnell, 2003a).

Results from these studies have revealed the range of projected future changes in dry-
ness/drought. Some of the inconsistencies may be attributed to the use of different vari-
ables (e.g. precipitation, soil moisture, streamflow), drought definitions and parameters
(e.g. dry day frequency, proportion of land being drought-affected, the use of percentile),
the different timescales and periods studied (e.g. seasonal, annual), as well as the vari-
ous emission scenarios and climate/hydrological models applied. Despite the difficulties
in inter-comparing drought projections from different analysis, positive trends in dryness
and/or drought conditions are commonly projected for southern Europe. The projected
future Europeandrought characteristics from other studies are compared with the results

obtained in this thesis, which are presented in Chapters 4 and 5.

2.5 Causes of Drought and its Characteristics

Meteorological droughts are mainly driven by precipitation and available energy; per-
turbations in the mean and/or the variability of either, or both, of these drivers can alter
drought patterns (Burke, 2011). For instance, decreasing mean precipitation, increas-
ing standard deviation of precipitation, increasing mean available energy and decreasing

standard deviation of available energy tend to increase drought (Burke, 2011). On longer
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timescales, runoff is roughly equal to the difference between land precipitation and evap-
otranspiration; hydrological droughts occur with a decline in precipitation and/or an in-
crease in evapotranspiration, which depends on energy and water availability, near-surface
atmospheric conditions and the control of transpiration by plants (Geelngly 2006).

The interactions between perturbations in precipitation, temperature and hydrologic pro-
cesses through their frequency, intensity and seasonality (especially in snow-dominated
regions) makes it difficult to assess the relative importance of temperature and precipita-
tion in changes in drought events (Sheffield and Wood, 2008b), e.g. the recent drought in
western North America, particularly the Southwest (Overpeck and Udall, 2010).

Global warming can alter future PET, an increase of which may induce soil mois-
ture deficits and vegetation desiccation (Rétdal, 1990). Drought intensification has
been understated in most GCM simulations, due to their lack of realistic land surface
components (Ringkt al, 1990). However, a detailed parameterisation of land evapo-
transpiration in mesoscale or global climate models is challenging (Dickinson, 2013).
The various methods for PET estimation (e.g. Thornthwaite, Blaney-Criddle, Hargreaves,
Samani-Hargreaves, Jensen-Haise, Priestley-Taylor, Penman, and Penman-Monteith) im-
plies that the characterisation of the PET climate change signal is an important source
of uncertainty, particularly in regions where precipitation is closely in balance with PET
(Kingstonet al, 2009). The sensitivity of PET to climate changes depends on both data
requirements and calculation method; it can also vary by location and by time of year
(McKenney and Rosenberg, 1993). In addition to temperature, changes in humidity, solar
radiation, wind speed and vegetation can offset or intensify the effects of warming on PET
(McKenney and Rosenberg, 1993). Although Kingsatral. (2009) found a consistent
global increase in PET with &€ global warming according to six different calculation
methods, the magnitude of the PET climate change signal differ substantially; for certain
regions and GCMs, choice of PET method determines the direction of projections of fu-
ture water availability. Similarly, Let al. (2005) found significantly different PET values
calculated from six different methods across 36 forested watersheds in the southeastern
U.S. Moreover, runoff simulated by hydrological models (such as Mac-PDM.09; Gosling

and Arnell, 2011) may be highly sensitive to the choice of PET calculation method.
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While PET generally increases with temperature, actual evaporation may be ampli-
fied/alleviated with higher/lower precipitation (Sheffield and Wood, 2008b). For example,
fluctuations in the Yellow River flow tend to be influenced by temperature (precipitation)
changes in the long- (short-) term (Liaatal, 2010). For some vegetation covers, the re-
lationship between actual and potential evapotranspiration may be sensitive to the chang-
ing atmospheric C®levels Lockwood (1999). Some of the processes/influences that can
lead to the perturbations in these climatic/hydrological variables, which can subsequently

modify the characteristics of droughts are discussed below.

2.5.1 Natural Causes of Drought

Global-scale atmospheric circulation changes can alter large-scale pattern of precip-
itation, temperature and cloudiness (Dai, 2011). Atmospheric circulation patterns that
affect precipitation (which has a notable seasonality) are easier to distinguish than those
responsible for spatial variations of drought, which tend to be more continuous (Vicente-
Serrano, 2006). Changes in annual/heavy precipitation, or differences between precipita-
tion and evapotranspiration cannot simply explain drought and flood changes, e.g. in some
regions, both drought and flood frequencies increase with less frequent precipitation days
but more frequent heavy precipitation days (Hirabayashi., 2008).

Teleconnection-drought relationships have been observed (Biaés2008). These
include inter-decadal and multi-decadal climate variability (Dore, 2005) and anomalous
tropical sea surface temperatures (SSTs) (Hoerling and Kumar, 2003; Dai, 2011) that, for
example, could weaken the East Asian summer monsoon (EASMJ éli 2010). Some
of the effects of El Nifio Southern Oscillation (ENSO), North Atlantic Oscillation (NAO)
and other phenomenona are briefly described below.

ENSO is one of the major modes of climate variability. Since the late 1970s, a shift
in ENSO towards more warm events, which corresponded with record high global-mean
temperatures, has altered severely drought-affected areas (Dore, 2005). More (less) short-
term droughts have coincided with El Nifio (La Nifia) episodes (Shefiehdl, 2009). EI-
Nifio-like conditions promote drought in Australia, Indonesia (Salinger, 2005), East China
and South Africa (Herweijeet al, 2007; Collieret al, 2008; Lyon, 2009; Dai, 2011).

La Nifa-like conditions promote drought in North America (Schule¢rl., 2009), e.g.
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Colorado River Basin during fall and winter (Elk al,, 2009); in the Yellow River Basin,
average annual precipitation (and also streamflow) in La Nifa years is 18.8% higher than
in El Nifio years (FLet al, 2007c).

NAO (Greatbatch, 2000) has made a significant contribution to high inter-decadal
variability on precipitation and streamflow in Europe (Trigial., 2004). Since the 1950s,
the effects of positive (negative) NAO phases on droughts have strengthened (weakened)
due to perturbed wintertime sea-level pressure fields, producing more (less) drought con-
ditions in southern (northern) Europe (Lopez-Moreno and Vicente-Serrano, 2008). The
winter NAO pattern has significant implications for European climate (Hurrell, 1995) and
water resources throughout the year (L6pez-Moreno and Vicente-Serrano, 2008), e.g. the
interannual flow variability in Spain and Portugal may affect hydroelectric production
(Trigo et al,, 2004). As the western and central Mediterranean have precipitation max-
ima during winter (and to a lesser extent, Fennoscandia and the Baltic states during late
summer), fluctuations in precipitation totals between positive and negative phases can
significantly influence drought conditions during the succeeding months (L6pez-Moreno
and Vicente-Serrano, 2008). Along with the NAO, the Scandinavian Pattern (between
winter and summer) influence Western and central Mediterranean (not Turkey) (Sousa
et al, 2011). The NAO also regulates Middle Eastern interannual to decadal rainfall-
driven runoff (December—March) through local precipitation and temperature (Cullen
et al, 2002). Although the Alps exhibits the strongest European interannual variabil-
ity of winter precipitation, this is only weakly correlated with the Northern Annular Mode
(NAM) and the NAO (Bartoliniet al,, 2009).

However, drought response to the positive and negative phases of NAO across Europe
is asymmetrical, e.qg. it varies spatially, and with the month, decade and timescale of the
analysis (Lobpez-Moreno and Vicente-Serrano, 2008). The positive (negative) phase corre-
lates with negative (positive) SPI values in central and southern Europe (northern Europe
and the UK), producing winter/spring soil moisture droughts and summer/autumn hy-
drological droughts (Lopez-Moreno and Vicente-Serrano, 2008). For instance, persistent
meteorological and hydrological drought conditions in the 1980s and 1990s in southern
Romania coincided with the positive phase (Stefaal.,, 2004).

Regional climate patterns may not only vary with ENSO and NAO, as discussed



2.5 Causes of Drought and its Characteristics 27

above, but can also be affected by the interactions between different modes of climate
variability. For instance, according to European dendroclimatic precipitation reconstruc-
tion, interaction between ENSO and NAO may have produced a multi-centennial me-
dieval megadrought during the Medieval Climate Anomaly, and significant drying in
northern Europe (Helamet al, 2009). Risk for severe and synchronised mid-latitude
drying increases if tropical mean SSTs or their interannual variability increase the equato-
rial ocean’s west-east contrast, e.g. the 1998—-2002 droughts spanning the U.S., southern
Europe, and Southwest/Central Asia (Hoerling and Kumar, 2003). Drought conditions
increase in the U.S. and southern South America with a cold equatorial Pacific anomaly,
and in southern Central America, northern South America, and central Africa with a cold
Atlantic anomaly; these are reversed by warm Pacific and Atlantic anomalies (Findell and
Delworth, 2010). The Sahel droughts occurred as the warmest Atlantic SSTs migrated
southward and the Indian Ocean warmed (Dai, 2011). ENSO, Pacific Decadal Oscilla-
tion (PDO), and NAM drove the North American (e.g. the Great Plain; Hu and Huang,
2009) droughts (Gutowslet al., 2008). Variations in the Southern Annular Mode (SAM)
and ENSO may perturb regional synoptic patterns and affect Victorian climate, Australia
(Kiem and Verdon-Kidd, 2010). The NAO (and ENSO) determine southern European
climate (Rodéet al,, 1997).

2.5.2 Anthropogenic Influences

Although natural causes have contributed to some of the recent regional trends in
dryness or drought, anthropogenic influences may have exacerbated or dampened these
trends (Sheffield and Wood, 2008a). Climate change will redistribute precipitation glob-
ally (Dore, 2005). Human-induced rapid warming since the 1970s has increased at-
mospheric moisture demand and likely altered atmospheric circulation patterns (Schar
and Jendritzky, 2004; Dai, 2011). According to the Clausius-Clapeyron relation (Held
and Soden, 2000), warming implies higher atmospheric moisture-holding capacity, and

where available, more water vapour for the precipitating weather systems (Alexander
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et al, 2006). The decreasing ratio between precipitation and precipitable water (Dou-
ville et al, 2002) suggests an enhanced global hydrological cycle (Dore, 2005; Hunting-
ton, 2006). On a global scale, this could be a result of strengthened horizontal mois-
ture transports, assuming that atmospheric circulation remains constant (Held and Soden,
2006). This occurs as more moisture (with increased atmospheric water vapour concentra-
tions) is transported from areas where evaporation exceeds precipitatiai<€0; e.g. in

the sub-tropical oceans) to areas where precipitation exceeds evaporatidin=Q; e.g.

the higher latitudes) (Hegedt al, 2013). Therefore, drying intensifies in areas where
P—FE<0 and wetting amplifies in areas whefe- £>0. Although an increase in pre-
cipitable water may increase precipitation initially, greater convection would warm the
mid-upper troposphere due to the condensation of water vapour. If the net radiative cool-
ing of the troposphere does not increase, the rate of convection would slow as it stabilises.
Assuming that relative humidity changes little in the long term (Allen and Ingram, 2002),
this process could limit global precipitation under increased warming (Hetgl] 2013).

Note that Simmonst al. (2010) found a reduction in relative humidity over low-latitude

and mid-latitude land areas around the first decade of the 21st century, which would fur-
ther limit an increase of global precipitation.

An enhanced global hydrological cycle, together with higher atmospheric demand for
evapotranspiration — which may be dampened (enhanced) by higher (lower) precipita-
tion or atmospheric humidity — especially during warmer seasons (Sheffield and Wood,
2008b; Weis=et al,, 2009), suggest enhanced drought conditions (Sheffield and Wood,
2008a; Vasiliadest al., 2009) as the interannual variability of precipitation minus evap-
oration becomes stronger (Seageanl., 2012). For example, global warming may have
intensified the Australian Murray-Darling Basin drought severity and impacts through
enhanced evaporation and evapotranspiration (Nicholls, 2004); however, the 2000—-2007
nation-wide episodes may not be human-induced as they have a return period of 200-300
years (Hunt, 2009).

Human-induced changes in global land precipitation could be a result of GHG and
black carbon/sulphate aerosols emissions (Frieteal., 2011), which have led to the
global drying trend since 1952 (Burlet al, 2006). For instance, the Asian monsoons are

affected by black carbon/sulphate aerosols (Xu, 2001; Chealg 2005; Lawet al., 2006;
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Lau and Kim, 2006; Liet al,, 2007b; Ramanathan and Feng, 2009; Kuhlmann and Quaas,
2010). These, together with land use changes, have weakened the East Asian summer
and winter monsoon, producing droughts in North China (Debgl., 2007; Liuet al,

2009). Since 1960, the second aerosol indirect effect (i.e. more numerous and smaller
cloud droplets reduce precipitation efficiency), higher SSTs in the South China Sea and
Indian Ocean, and GHGs have altered low-level cloud cover (LCC) and reduced early
summer precipitation in the drought region of Southern China (Cle¢ag, 2005; Shen

et al, 2008).

Anthropogenic influences can also alter both runoff volume and distribution. Rela-
tively small temperature/precipitation changes can have large impacts on runoff (Freder-
ick and Major, 1997). Although the geographical distribution of precipitation and runoff
variations tend to correspond with that in the river discharge, upstream runoff changes
influence downstream flows (Nohagaal., 2006). Temperature strongly affects the sea-
sonal distribution of snow-related runoff and hydrologic variables (Adaral., 2009),
even with unchanged precipitation amount, particularly in lower lying valley areas and
low-altitude mountain ranges where baseline climate is closer to freezing thresholds (Bu-
reau of Reclamation, 2011). Decreased fraction of annual precipitation falling as snow
have been found in recent decades in the Norwegian Arctic (Svalbard region), despite the
increased measured annual precipitation (Forland and Hanssen-Bauer, 2003). This sug-
gests that warming could lead to more rainfall due to the more efficient rainfall processes
compared to snow falling. If more precipitation falls as rain than snow, temporary storage
of precipitation as snow and ice will reduce (Feyen and Dankers, 2009;€f@ig2011),
minimum cool-season rainfall-runoff and probability of floods increase, e.g. in Norway
(Roaldet al.,, 2004; Engen-Skaugest al,, 2005; Roalckt al,, 2006; Beldringet al., 2008)
and Denmark (Thodsen, 2007), together with an earlier and less intense spring peak in
flow. Retreating glacierised areas (e.g. European glacierss&im?® could halve in area
by 2050; Huss, 2011) implies lower warm-season snowmelt-runoff and annual minimum
flows occur later in summer/autumn (Hisdal and Tallaksen, 2000; Cétaalg 2002; Eck-
hardt and Ulbrich, 2003; Jaspetal., 2004; Barnetet al,, 2005; van Lanewet al.,, 2007;
Laghariet al,, 2012). However, interannual runoff variability can increase even with un-

changed interannual precipitation variability, for instance, in areas where flow volumes
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are determined by groundwater recharge (Arnell, 2003a).

Although climate change can alter the volume and timing of streamflows and ground-
water storage, its influence on exposure to water-related hazards, access to and future
water resource availability also depends on demographic and socio-economic factors (Ar-
nell, 2006). Population and economic growth, freshwater and groundwater withdrawals
(Frederick and Major, 1997) may induce, enhance or prolong drought, e.g. the 1930s
North American Dust Bowl drought (Dai, 2011). Without climate change, changes in
population alone suggests 36—40% of the world’s population (2.9-3.3 billion people) liv-
ing in water-stressed watersheds by 2025, and 3.4-5.6 billion people by 2055 (Arnell,
2004a). While natural multi-decadal climate variability primarily drives average annual
runoff in the 2020s, and population growth is primarily responsible for water stress under
a 2C warming; climate change becomes more dominant ifiGworld and/or by the
2080s (Arnell, 2003a; Funet al., 2011).

Warming can enhance water stress in river basins (g, 2011). This could
affect a bigger population; perturbations in precipitation could also alter the number of
people living in water-stressed watersheds, e.g. in the Mediterranean, parts of Europe,
central and southern America, and southern Africa (Arnell, 2004a). Aleralb(2007b)
projected water stress increases (decreases) over 62.0-75.8% (19.7—-29.0%) of total river
basin area by 2050s primarily due to greater domestic water-use with higher income and
growing water withdrawals. In southern and eastern Asia, insufficient storage implies
that increased wet season runoff may not be available for the dry season (Arnell, 2004a).
Land use/land cover change (and snowmelt) may alter regional/local moisture recycling
(van der Entt al, 2010); it has altered Australian droughts (McAlpigteal., 2009) and
Middle Eastern streamflow variability during April-June (Culkral,, 2002).

2.5.3 Summary

This subsection has discussed some of the natural and anthropogenic drivers that can
alter precipitation, temperature and runoff characteristics, thus modifying drought condi-
tions. Natural causes of drought include changes in atmospheric circulation and modes
of climate variability (e.g. ENSO and NAO) — the characteristics of which may also be

modified by human activities. Humans can also influence drought patterns through GHG
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and black carbon/sulphate aerosols emissions, as well as changes in land use and land
cover, population and socio-economic activities. However, it may be difficult to distin-
guish between the effects of climate change and human activities, for example, on runoff
variations (Piacet al,, 2010). In addition, basin-scale effects of climate, soil and vege-
tation (i.e. suppressed plant transpiration due tg-@@uced stomatal closure; Gedney

et al, 2006) may alter streamflow (Liu and Cui, 2011). Furthermore, droughts have been
produced by past large, widespread, abrupt climate changes, which may be triggered by
human influences (Allegt al,, 2003). Therefore, drought occurrence and changes in their
characteristics can be a result of any combination of climatic and hydrological elements,

land surface conditions, and anthropogenic activities.

2.6 Uncertainties in Climate Modelling

Despite advanced climate models and improved knowledge, considerable levels of
uncertainty remain in climate change projections, particularly in relation to extreme events
such as future drought characteristics (Vasiliadesl, 2009). Uncertainties on large
spatial and longer temporal scales may be estimated (Knutti, 2008). Uncertainties arise
from future human activities and the associated response of the climate system. The
former are represented by future GHG and aerosol emissions (Section 2.6.1); the latter are
explored with different climate model parameters and structures (Sections 2.6.2—-2.6.11)

and include natural climate variability (Section 2.6.12) (Seneviratraé, 2012).

2.6.1 Forcing Uncertainty

Human activities have influenced 20th-century temperature (Stott, 2003) and precip-
itation trends (Zhangt al,, 2007). Forcing uncertainty arises from non-climate factors
that affect the climate system (Stainfodhal, 2007a), e.g. population changes (Arnell,
2004a). It is often examined by applying various scenarios of prescribed atmospheric
GHG concentrations (Stainfor#t al,, 2007a) that may contain assumptions about future
world economic and social development, and political decisions. A range of emissions

scenarios — notably the IPCC SRES (Nakicenovich and Swart, 2000) and Representative
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Concentration Pathways (RCPs; M&tsl., 2010) (see Section 3.4) — have been devel-
oped. The relative likelihood of these is difficult to determine (Christensen and Chris-
tensen, 2007; Tebaldi and Knutti, 2007; Knutial,, 2010). Temperature-related impacts
tend to scale with the amount of anthropogenic emissions and the associated global-mean
temperature change (Arnell, 2003a; Tebalthl., 2006; Sheffield and Wood, 2008b; Chen

and Sun, 2009; Vidal and Wade, 2009; ¥ual., 2009).

2.6.2 Initial Condition Uncertainty (ICU)

ICU arises from the initialisation of models (the initial state, or ensemble of states)
from which they are integrated forward in time (Stainfoethal, 2007a). The incom-
plete knowledge of the current state of the system introduces macroscopic ICU, which
affects the predicted state variable distributions that have relatively “large” slowly mixing
scales; microscopic ICU is due to the imprecise knowledge of “small” rapidly mixing
scales (Stainfortet al, 2007a). While ICU may affect modelled climate distributions
(Stainforthet al, 2007a), it is the primary error source in weather forecasting (Collins
and Allen, 2002). The initial ocean state provides the “memory” of the system, which
may be useful on interannual timescales (e.g. the forecasting of ENSO; Collins and Allen,
2002), butitis less relevant for longer-term (decadal) climate projections and multi-model

simulations (Tebaldi and Knutti, 2007; Knuéi al., 2010).

2.6.3 Boundary Condition Uncertainty (BCU)

Boundary conditions are prescribed externally to the model, experiments of which
are otherwise self-contained (Tebaldi and Knutti, 2007). External influences can cause
climate change beyond the “noise” of climate variability (Collins and Allen, 2002). These
can be natural (the solar cycle or volcano eruptions; see Section 2.6.12), which may not
be predictable in a deterministic sense (Collins and Allen, 2002), or anthropogenic (GHG

emissions; see Section 2.6.1).

2.6.4 Model Imperfections

Model imperfection results from our limited understanding of, and ability to simu-

late, the Earth’s climate (Stainfor#t al, 2007a). Model imperfection takes two forms:
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inadequacy and uncertainty.

2.6.4.1 Model Inadequacy

Even the most sophisticated models are unrealistic representations of many relevant
aspects of the climate system (Stainfoethal., 2007a). Model inadequacy (structural
uncertainties) relate to grid resolution (therefore particularly relevant for regional sim-
ulations) and missing/approximated processes (Stainfrtd, 2007a) that cannot be
accurately described in the model (Knutial, 2010). Different choices made by model-
ing groups (Meinshausest al., 2008) may be due tiimited knowledgehat includes in-
complete understanding of deterministic processes, and limited resources to measure and
obtain empirical information (see van Asselt and Rotmans, 2002). For example, the sim-
ulation of convection and its effect on the water vapour and cloud distribution within the
atmosphere, feedbacks from vegetation change to climate change and land cover changes,
aerosol (e.g. black carbon) effects on clouds and precipitation (Batds 2008; Knutti
et al, 2010) are often omitted or implicitly represented in climate models. In addition,
climate models exclude some natural processes (e.g. vegetation dynamics and wildfire)
and anthropogenic forcings (e.g. irrigation, water diversion and land use that directly af-
fect drought occurrence), which are difficult to quantify, even historically (Sheffield and

Wood, 2008b).

2.6.4.2 Model Uncertainty

Model (parameter) uncertainty represents the impact of known uncertainties (Stain-
forth et al, 2007a). It is introduced during model calibration/tuning when estimating
parameters based on either limited observations or physical understanding (Knutti, 2008;
Meinshauserrt al., 2008; Knuttiet al, 2010).

Processes to be included in a model and their parameterisation (e.g. factors that affect
albedo and subgrid-scale mixing in oceanic GCMs; CCSP, 2008) may be subjectively
chosen based on expert knowledge and experience (Tebaldi and Knutti, 2007). Similar
sets of primitive dynamical equations may be solved by different numerical algorithms
(CCSP, 2008). Different parameterisations contribute to diverging model response due

to different realisations of a given forcing scenario (Goodsss., 2003a; Déquét al.,
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2007), e.g. the grand ensemble of clinpaalictionnet (Stainforthet al,, 2004) reveals
climate sensitivities that range from below 2 K to over 11 K (Stainfettal., 2005).

Perturbed physics ensembles (PPE) have been employed to address parameter uncer-
tainties (Tebaldi and Knutti, 2007); however, they cannot characterise inter-model vari-

ability to the extent that a multi-model ensemble can (Foley, 2010).

2.6.5 Multi-Model Ensembles (MMES)

Simplifications, assumptions and parameterisation choices made during model con-
struction lead to model and projection errors (Tebaldi and Knutti, 2007). Thus, it is im-
possible to designate a “best model” when simulation skill for mean precipitation, for in-
stance, varies both temporally and spatially (Blenkinsop and Fowler, 2007a). Since each
simulation provides a projected distribution, a multi-model approach can present the range
of behaviour in the variables of interest across different models (Stairdoeh, 2005;
2007b), and enables sensitivity analysis of the models’ structural choices (Khattj
2010). This may capture much of the uncertainty (CCSP, 2008), and multi-model mean
implicitly imply improved skill, reliability and consistency of model projections (Tebaldi
and Knutti, 2007; Knuttet al., 2010). An ensemble of different models or model versions,
MMEs (e.g. Stainforttet al, 2005), refers to a set of model simulations from structurally
different models where each model has one or more initial condition ensembles (Tebaldi
and Knutti, 2007). A multi-model approach has been recommended (Hagtiatk2006;
Blenkinsop and Fowler, 2007a; Feyen and Dankers, 2009; Lefpaz 2009; Valleet al,,

2009; Toddet al, 2011; Wilby, 2010; Gudmundssaat al, 2011; Zhanget al, 2011),
possibly due to the cancelling the offsetting errors in the individual GCMs (Patrak

2009) although the exact reason remains unclear (Reichler and Kim, 2008). Examples
include a regional study that includes measures of variability (Pietad., 2009), in
reproducing observed European annual low flows (Gudmundsisah 2012a), and in
planning public water supply in the UK (Lope al,, 2009). Stainfortret al. (2007b)
provided an analysis pathway for how climate model ensembles may inform decisions.
MMEs, and their frequency distributions, are valuable for model development (Stainforth
et al, 2007a) as they reveal the amplitude of the uncertainties, hence areas for improving

predictability (Déquéet al,, 2007; Knuttiet al,, 2010).



2.6 Uncertainties in Climate Modelling 35

MME mean (e.g. Gudmundsseat al,, 2012a) is often used and uncertainty is often
represented by the standard deviation or some other measure of spread of individual model
results; ensemble median may outperform ensemble mean (CorsodRaakz2011).
Models can also be weighted; weighted averages may perform better if there is sufficient

available information to derive the weights (Knutial,, 2010).

2.6.5.1 Probabilistic Assessments

Probabilistic climate change information is the estimation of a frequency/probability
distribution, and thus is potentially more informative than a scenario-based impact as-
sessment (Newet al., 2007) by providing quantitative “risk” profiles to inform decision
making (Toddet al., 2011). An example of this is the UK Climate Projections (UKCP09)
(Murphy et al, 2009). However, an end-to-end probabilistic assessment, such as the
UKCPO09, may be resource-intensive (Newal., 2007). Probabilistic projections based
on MMEs are derived from a variety of statistical methods (Tebaldi and Knutti, 2007) for
guantifying uncertainty and constructing probability density functions (PDFs) of future
climate change. The Bayesian approach is one example (e.g. Tebaldi2005; Buser
et al, 2009; Raje and Mujumdar, 2010; Sméhal., 2009b; Tacet al,, 2009; Tebaldi and
Sanso6, 2009; Harrist al., 2010; Potteet al, 2010). It assigns probability to propositions
that are uncertain and interprets probability as a measure of a “state of knowledge”, which
can be subjective (Foley, 2010). However, the creation of probabilistic projections from
MME information is not an easy proposition, relying on assumptions about how to weight
models and how to take account of structural uncertainties that lie beyond the available
MME. In the case of the UKCPOQ9, future climate projections are weighted based on their
ability to reproduce the past climate. These issues are noted above and in the following

subsections.

2.6.6 Challenges in Interpreting Multi-Model Projections

It is tempting to infer more from ensemble results as outcomes that are not simulated
are similarly plausible (Parker, 2010a). Since uncertainty in multi-model or PPEs is ex-

pected to widen with model development, increased physical realism (Staiefoath
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2007a;b) and incorporation of additional processes or methods (#tatg2011), cur-
rent ensembles provides a lower bound on the maximum range of uncertainty (Stainforth
et al, 2007a), which may be constrained by the methods used to assess a model’s ability
to inform us about real-world variables (Stainfoetal., 2007b).

Therefore, when constructing and interpreting MME climate results (in the form of
climate change probability distributions or averages and measures of variability across
models), a number of issues need to be considered (Stairfioath 2007a), as discussed

below.

2.6.7 Interpreting Multi-Model Ensemble (MME) Results

The shape, spread and central tendency of estimated climate projection density func-
tions (e.g. global moisture budget and dry zone extension; Liepert and Previdi, 2012) from
a MME is governed by the methodology applied (Brekkel., 2008). This includes the
number and characteristics of the forcing scenarios, ICU, base model and the parameter-
isation explored, as well as the concerned timescale. The probability estimated may not
relate to the probability of real-world behaviour, thus not providing the decision-relevant
distributions desired (Stainfortt al,, 2007a; Tebaldi and Knutti, 2007; Vidal and Wade,
2009; Knuttiet al,, 2010; Xuet al, 2011). While an ensemble mean may outperform
single model results, it does not appropriately generalise climate change impact, may
demonstrate characteristics (some may be physically implausible) that are not reflected in
any single model, and may cause a loss of signal that has barely been addressed (Knutti
et al, 2010). Uncertainty is often not adequately characterised (e.g. by standard deviation)
due to the same biases in groups of GCMs (Cha¢wal, 2009; see Section 2.6.9), e.g. as
in projected changes in summer runoff and indicators of low flows (Arnell, 2011). The
assumed normal distribution of MME may not be true in projected hydrological changes,
which are not even necessarily uni-modal (Arnell, 2011). The commonly reported mean
annual river flows may mask the magnitude of uncertainty in flows of most importance to
water managers (Xat al, 2011).

PDFs can be misleading as they imply much greater confidence than the underlying
assumptions justify with the unknown reliability of these probabilistic projections (Parker,

2010a). Meaningful PDFs for future climate cannot be constructed by simply combining
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MMEs/PPEs results due to the inability to weight models and to define the space of possi-
ble models (Stainfortlet al., 2007a). PDFs therefore should be interpreted cautiously —
they indicate what outcomes may be more plausible than others, and are a way to commu-
nicate uncertainty, rather than as a strict mathematical representation of it (Knutti, 2008).
The choice between subjective and objective (Beegat., 2001; Berger, 2006) Bayesian
approaches for constructing PDFs introduces further statistical assumptions (Foley, 2010),
resulting in a different risk-based decision (Newal, 2007). PDFs are also conditional

on the model, observational constraints (Knattal., 2010) and the sources of uncertain-

ties considered (Knutti, 2008). Therefore, blind use of a single generation of probabilistic
impact information could lead to mal-adaptation (Netal., 2007).

Nevertheless, ensembles are valuable for understanding present-day limitations (Stain-
forth et al, 2007a). Uncertainty in climate response can be presented as histograms of
change, as empirical distribution functions fitted to the distributions of change, or as in-
termediate ranges (Arnell, 2011). Histograms reveal all the information, but similarities
in the climate model representations and the model sample used, rather than clustering
in potential physical responses, may produce artificial clustering. Empirical distribution
functions can be seen as simply smoothed histograms, and clustering in scenarios will
manifest itself in “steps” in the empirical distribution function. An intermediate range
(e.g. the 10-90% or inter-quantile ranges) better represent the spread of possible out-
comes as using extremes (highest to lowest) may be misleading if “outliers” are present;
the use of several quantiles provides information on the distribution of responses within

the range.

2.6.8 The “Ensemble of Opportunity”

“Ensembles of opportunity” refers to multi-model datasets, such as the re-
gional climate change simulations from the CORDEX (Coordinated Regional Cli-
mate Downscaling Experiment) initiative of the World Climate Research Program
(http://www.meteo.unican.es/en/projects/CORDEX). MMEs are created by those willing
to contribute, and neither systematically nor randomly (Tebaldi and Knutti, 2007). The

models neither span the full range of likely behaviour nor uncertainty due to the small
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number of models involved (Tebaldi and Knutti, 2007; Knutti, 2008). Subsequent ver-
sions of a model usually build on previous versions, suggesting a process of convergence
(Tebaldi and Knutti, 2007). Moreover, the likelihoods of impacts may change over time

with more data and resources or an alternative research desigretigw2007).

2.6.9 Inter-Model Dependencies and Common Biases

The use of MMEs to obtain uncertainty estimates or PDFs (that rely on assumptions,
except, for example, some weighting schemes) may assume that all GCM projections are
equally credible and independent (Knutti, 2008; Arnell, 2011), and models can be aver-
aged (i.e. one model, one vote). The idea of uncertainty decreases with more models relies
on the fundamental assumption that random errors tend to cancel with independent models
(Tebaldi and Knutti, 2007; Knutgt al, 2010). While random errors may cancel, system-
atic errors associated with limited knowledge and misrepresented/unresolved processes
will not improve with more models of similar quality (Tebaldi and Knutti, 2007). Models
have similar resolution and the same theoretical arguments for their parameterisations;
their inter-dependence (e.g. shared grids and numerical calculations) imply correlated er-
rors; Stainforthet al., 2007a; Tebaldi and Knutti, 2007). Provided that models are based
on the same knowledge, make similar assumptions, or share parts of the code of existing
models, our confidence should therefore not be infinitely improved by large number of
models (Knuttiet al,, 2010) and that we should not be over-optimistic about consensus

estimates (Stainfortit al,, 2007a; Tebaldi and Knutti, 2007).

2.6.10 Lack of Verification, Model Tuning and Evaluation

The equations, parameterisations and assumptions built into a model are assumed to
be extrapolated beyond the observed climate regime of where they are evaluated (Knutti,
2008). Hydrological models calibrated over the historical period are commonly assumed
to be valid for use under a perturbed climate (Vakal, 2010). Model accuracy (evalua-
tion) is commonly measured by the ability to replicate observed climate variability and the
terrestrial water cycle, for instance (Tebaldi and Knutti, 2007). Typical simulation biases
relate to errors in the large-scale circulation in the GCMs — up t6G.fbr temperature

and 100% for precipitation (Kjellstrorat al, 2011). How models should be assessed
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remains questionable (Blenkinsop and Fowler, 2007a).

Objective methodologies for climate model tuning and model evaluation (often based
on expert judgement and/or not documented; Knetital, 2010) are yet to be devel-
oped (Tebaldi and Knutti, 2007). Models may use the same set of observations for de-
riving parameterisations, tuning and evaluation (Tebaldi and Knutti, 2007), hence a risk
of double-counting information, overconfidence, or circular logic (Knettal., 2010).
Ideally, independent datasets should be used for model evaluation (Tebaldi and Knutti,
2007). Also, observations and reanalysis datasets contain biases (Tebaldi and Knutti,
2007; Knuttiet al, 2010). Model calibration (Section 2.6.4.2) may change parameters
unrelated to the problem as not all processes are included in models (Tebaldi and Knutti,
2007). Bias correction in climate projections may merely represent an ad hoc curve-
fitting exercise of convenience, rather than a result of impeccable physically-based theory
(Kundzewicz and Stakhiv, 2010); uncertainty in bias-corrected GCM outputs may be of
the same order of magnitude as those related to GCM or GHM choice (Hagemnainn
2011).

Agreement across climate models and with observations suggest that models may be
an empirically adequate rather than accurate representation of the processes governing
the observed climate system behaviour (Knutti, 2008). While models lacking key mech-
anisms that are indispensable for meaningful climate projections can be omitted from an
ensemble (Kundzewicz and Stakhiv, 2010), discounting a model based on inconsistent
results may be unwise as models were designed based on an incomplete understanding of
the climate system (Foley, 2010).

There appears to be an argument for constraining poorly performing models based on
present-day skill (Foley, 2010), e.g. Nohataal. (2006) used a weighted ensemble mean
(WEM) to reduce model bias and uncertainty. Weighting models based on observations
(Knutti et al, 2010) is difficult and results depend on the choice of metric/criteria for
defining model performance (Blenkinsop and Fowler, 2007a; Tebaldi and Knutti, 2007).
Arnell (2011) described the practical and conceptual challenges in “optimum weighting”
different model projections and to cull “poorly-performing” models from the analysis.
While optimum weighting can in principle reduce projection errors, it requires accurate

knowledge of the single model skill, the relative contributions of the joint model error and
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unpredictable noise (Kundzewicz and Stakhiv, 2010). Multiple diagnostics and metrics of
performance are needed as weights for future projections may differ from those optimal
for present-day climate (Tebaldi and Knutti, 2007). Studies have shown, however, that
weighting/culling has relatively little effect on the estimated range of climate change im-
pacts (Brekkeet al,, 2008; Chiewet al,, 2009; Weigelet al., 2010), due to an absence of
correlation between observed quantities and the models’ future projections (&traitfi
2010). Weighted combinations of results may not provide decision-relevant probabilities
(Stainforthet al., 2007a).

Furthermore, model convergence or present-day skill does not guarantee equal legiti-
macy in future climates (Charles al., 1999; Stainforttet al, 2007a; Foley, 2010; Knutti
et al, 2010) since long-term climate projections cannot be validated directly through ob-

servations (Tebaldi and Knutti, 2007; Knutti, 2008).

2.6.11 Uncertainties in Downscaling

Downscaling refines, spatially and/or temporally, coarse GCM output to scales more
useful to decision makers, and improves physical realism at sub-grid scale (Wilby and
Wigley, 1997; Goodesst al,, 2003a; Wilby, 2010). Downscaling may be dynamical or
statistical (Hewitson and Crane, 1996). Dynamical downscaling involves nesting a finer-
scale regional climate model (RCM) within the coarser GCM (STARDEX, 2005) that
defines the (time-varying) boundary conditions (Wilby and Wigley, 1997; Kundzewicz
and Stakhiv, 2010). Statistical downscaling is used either to directly downscale GCM in-
formation or to downscale further from RCM simulations (Paetthl, 2011). It assumes
stationarity (Charlest al, 1999) as it involves applying statistical relationships between
the large and smaller-scale, identified in the observations (i.e. empirical), to GCM output
(STARDEX, 2005) in a targeted area, using the predictor fields from GCMs for scenarios
construction (Schmidiet al, 2007).

As demonstrated in the PRUDENCE project (Christereteai., 2007) and other stud-
ies, different methodologies have varying strengths and weaknesses (Hewitson and Crane,
1996; Woodet al., 2004; Fowler and Wilby, 2007). Regional simulations also inherent
the limitations from the parent GCM(s) (CCSP, 2008). Skill varies temporally and spa-
tially (Mearnset al, 1999; Schmidliet al, 2007; Paettet al,, 2011; Stollet al,, 2011;
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Teutschbeiret al,, 2011), and with variables (Murphy, 1999; 2000; Hayletlal., 2006;

lizumi et al, 2011). Considering additional finer scale-processes increases uncertainty
(Rowell, 2006), particularly regarding extreme events (Vicente-Semaahb 2004), and

may not improve confidence (Hewitson and Crane, 2006; Zieaag, 2011), e.g. RCMs
cannot capture all the important physical processes responsible for precipitation despite
their finer resolution (Blenkinsop and Fowler, 2007a; Maratial., 2010). As no single
downscaling model is more superior (STARDEX, 2005; Hayletlal, 2006), a multi-

model approach is recommended (Ceeal, 2011; Zhanget al,, 2011). Itis worth noting

that, although skills vary amongst the various downscaling techniques, studies have shown

that GCMs tend to be the largest source of uncertainty.

2.6.12 Uncertainties in Natural Climate Variability

Even without anthropogenic forcings, natural climate variations (both in terms of
mean and extremes) are present and can alter climate on a range of timescales (Stuiver
et al, 1995; Overpeclet al, 1997; Foley, 2010). This variability can be internally-
generated or externally-forced, as described below. Annual to multi-decadal natural vari-
ability may contribute significant uncertainty (Kendetal., 2008) especially in the near-

future (Kjellstromet al,, 2011), e.g. for mean European runoff (Huleteal,, 1999).

2.6.12.1 Internal variability

Internal interactions between components of the climate system produce internal vari-
ability, both in terms of mean and extremes (Hegdrél,, 2007). It includes processes
intrinsic to the atmosphere (annular modes of circulation variability in mid- and high-
latitudes), the ocean (Bradley, 2000), and the coupled ocean-atmosphere system, e.g.
ENSO in the tropics, (Deseat al, 2012). It is more dominant in seasonal than annual
results and earlier in the 21st century, and less important when climate changes are av-
eraged over larger areas (Raisanen, 2001). Internal variability accounts for at least half
of the inter-model spread in projected climate trends during 2005-2060 in the CMIP3

multi-model ensemble (Deset al,, 2012).
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2.6.12.2 External variability

External forcings refer to solar variability and stratospheric aerosol from volcanic
eruptions, the primary forcings of decadal-to-centennial climate variations during the pre-
industrial era (Shindekt al,, 2003; Foley, 2010). Solar variability may have affected the
earth’s climate on decadal-centennial timescales (Kelly and Wigley, 1992; Crowley and
Kim, 1996; Haigh, 1999; Bondt al., 2001), possibly via global cloud coverage (Svens-
mark and Friis-Christensen, 1997; although Lockwood (2012) provided an alterative view
on this), such as during the Maunder Minimum (1645-1715; Letaal., 1995; Shindell
et al, 2001).

Volcanic forcing is important for climate change on both interannual, regional, and
long-term global scales (Shindeli al., 2003). For instance, the eruptions of Toba (Suma-
tra) 73,500 years ago (Rampino and Self, 1992) and more recently, Mount Pinatubo in
1991 (Hanseet al, 1992; Kellyet al,, 1996; Hanseemt al,, 1997), amongst others, gener-
ated aerosols that warm the stratosphere and cool the surface globally, causing a tendency
for regional surface cooling during the subsequent years (Robock, 2000).

The relative contribution of external natural variability are greatest early in the century

(Stott and Kettleborough, 2002), and may be intrinsic and irreducible (Knutti, 2008).

2.6.13 Discussion

Model simulations have a number of limitations. GCMs generally reproduce the over-
all and broad geographic (e.g. spatial mean annual) patterns of observed climate trends
(Arnell, 2004a; Milly et al,, 2005). However, models may accurately simulate one met-
ric but not another (Brekket al,, 2008; Foley, 2010). Projected precipitation changes,
which are important for hydrological modelling (Zhaetal., 2011), are less spatially co-
herent (Alexandeet al,, 2006; Sheffield and Wood, 2008b), weaker and more uncertain
than temperature (Tebaldi al, 2006; Plantoret al., 2008; Bureau of Reclamation, 2011;
Zhanget al,, 2011; Lavaysset al,, 2012). Models have difficulties simulating precipita-
tion response to large-scale climate variability (e.g. ECHAMS; Hagenetuah, 2006),
and river flows (Todcet al, 2011; Xuet al, 2011; Gudmundssoet al., 2012a). Model
skill may also vary regionally (Burket al,, 2006; Alexander and Arblaster, 2009; Foley,
2010), seasonally (Jaca al, 2007; Chiewet al,, 2009; Grimm, 2010) and temporally
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(Blenkinsop and Fowler, 2007b), and with horizontal (Blenkinsop and Fowler, 2007a) or
vertical (Hagemaneet al,, 2006) resolution. Simulated magnitude (and sometimes direc-
tion) of change often diverges.

Models that reproduce the mean climate may not necessarily perform well at replicat-
ing the observed climate extremes (McCrary and Randall, 2010; Willetras, 2010),

e.g. dry days (Tebaldit al,, 2006), and their associated impacts such as drought. The spa-
tial distribution of model errors for drought indices differ from those for simulated mean
precipitation (Blenkinsop and Fowler, 2007a), possibly due to natural variability, model
errors in simulating large-scale flows and poorly represented regional processes and feed-
backs (Burkeet al,, 2006). Projections for future extreme events (e.g. Q95 flow) are more
uncertain than for the mean (e.g. annual flow) @€wal, 2011), e.g. Sheffield and Wood
(2008b) found large model spread and overestimated drought duration and frequency.

A climate model that reasonably simulates present-day regional precipitation variabil-
ity may produce less uncertain future drought projections (Burke, 2011), however, this
also depends on the models’ ability to simulate tropical SSTs (Dai, 2011) (see Section
2.5). Haddelancbt al. (2011) assessed the results simulated by six land surface models
and five global hydrological models (GHMs) that participated in the Water Model In-
tercomparison Project (WaterMIP). They found evaporation and runoff results diverged
mainly due to model differences, with the largest absolute (relative) runoff differences in

the tropics (arid regions).

2.7 Uncertainties in Hydrological Modelling

In addition to uncertainties related to climate modelling, those arising from hydro-
logical modelling are also important. In recent years, model intercomparison studies that
consider the global water balance have emerged. For instance, Haddekdn(?011)
assessed the results simulated by six land surface models (LSMs) and five global hydro-
logical models (GHMs) from the Water Model Intercomparison Project (WaterMIP). They
found evaporation and runoff results diverged mainly due to model differences, with the
largest absolute (relative) runoff differences in the tropics (arid regions). Gudmundsson
et al. (2012b) assessed the ability of nine large-scale hydrological models in capturing

the mean annual runoff cycle based on observed runoff from a large number of small,
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near-natural catchments in Europe. Although they found large differences in model per-
formance, the ensemble mean (mean of all model simulations) yielded rather robust pre-
dictions; also a relatively good regional average performance was found despite some
large local uncertainties. However, model performance was poor in cold regions, due to
shortcomings in simulating the timing of snow accumulation and melt. Prudhasheie
(2011) assessed the ability of three GHMs from the WaterMIP (Joint U.K. Land Environ-
ment Simulator (JULES), Water Global Assessment and Prognosis (WaterGAP), and Max
Planck Institute Hydrological Model (MPI-HM)) in reproducing large-scale hydrological
extremes. They found that all models can broadly reproduce the spatio-temporal evolu-
tion of historical droughts (based on the regional deficiency index; RDI) and high flows
(regional flood index; RFI) in Europe to varying degrees. Van Lebal. (2012) found

that most drought propagation processes in contrasting catchments in Europe are reason-
ably well reproduced by the ensemble mean of ten large-scale LSMs and GHMs that
participated in the model intercomparison project of WATCH (WaterMIP). Nonetheless,
hydrological drought simulation at large scales remains highly uncertain, especially in
catchments with cold and semi-arid climates and catchments with large storage in aquifers
or lakes.

Relatively few studies have applied multiple impact models in climate change impact
studies. Hagemanaet al. (2012), for instance, systematically assessed the hydrological
response to climate change and project the future global water availability using three
global climate and eight hydrological models. Their results demonstrated larger spread
of the impacts than that of the climate models in some regions, primarily cased by the
different representations of hydrological processes (e.g. evapotranspiration) in the GHMs.

These studies indicate that, similar to climate projections, climate change impact stud-
ies should not be based on the output of single impact models (Hageshahn2012).
Specifically in relation to drought simulation using large-scale models, there is a need
for better representation of evapotranspiration, snow accumulation and melt, storage and
the parametrisation of storage processes (e.g. land and aquifer characteristics) (Van Loon

etal, 2012).
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2.8 Challenges in Projecting Future Drought Conditions

Droughts are one of the most damaging natural hazards in human, environmental
and economic terms. Anthropogenic climate change has and will continue to alter their
characteristics. A better understanding of potential future drought characteristics and the
uncertainties associated with the various methodologies to derive them are vital for iden-
tifying effective measures to manage drought risks and any direct/indirect impacts. How-
ever, confidence in drought projections is constrained by definitional issues (see Section
2.2), lack of observational data and the limitations of climate models (IPCC, 2012). Some
of the uncertainties associated with drought identification and quantification are presented
in Section 2.2, those related to climate modelling are discussed in Section 2.7. Hence, it
is important to characterise the uncertainties associated with future drought simulations
(Vasiliadeset al,, 2009).

Projecting future climate remains very challenging. Present-day climate and its natu-
ral variability, climate change, and the sensitivity of drought metrics to these changes all
define future drought changes (Burke, 2011). The strength of the change (signal) against
the background of natural variability (noise) governs the detectability of any changes, and
hence their statistical significance (Sheffield and Wood, 2008b). Future shifts in modes of
climate variability (e.g. ENSO; Collins, 2004; Dore, 2005) remains uncertain. Moreover,
climate change effects may not be felt in the near future at regional scales (Sheffield and
Wood, 2008b).

Understanding and quantifying climate change impacts (hatural and/or anthropogenic)
on the hydrological cycle and water resources requires robust modelling which considers
the underlying physical mechanisms that drive the regional hydroclimatology (Kiem and
Verdon-Kidd, 2010). Despite the limitations discussed in Section 2.7, GCMs are valuable
tools for studying climate change and the related impacts as each simulation presents a
“what-if” scenario (Stainforttet al., 2007a). However, GCMs were originally constructed
for assessing the global climate system response to varying emissions (Wilby, 2010) and
facilitating mitigation efforts, rather than informing adaptation-type analysis (Kundzewicz
and Stakhiv, 2010). They also differ in their design and outcomes. GCMs (especially their
representation of changes in the large-scale circulation) often dominate other sources of

uncertainties in climate change impacts on hydrological change and water resources, e.g.
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emission scenarios or hydrological model parameterisation (Arnell, 2004a; Gedlahm

2007; Vidal and Wade, 2009; Xet al., 2011; Arnell, 2011; Goslingt al, 2011b). Since

each model has its own set of strengths and weaknesses (Knutti, 2008), no one model is
particularly good or bad (Alexander and Arblaster, 2009), and a multi-model approach is
desirable.

To evaluate the robustness of projections of European drought characteristics under
climate change, the effects of applying different emission scenarios and GCMs are ex-
plored in this thesis (particularly Chapters 4 and 5). In most cases, however, resource and
financial constraints have prevented the running of large ensembles of GCM experiments.
The simple climate model MAGICCS6 thus offers a practical solution as it enables em-
ulation of a wide range of emission scenarios and GCMs. As GCM simulations do not
span all the emission scenarios, ClimGen is used to emulate GCM simulations beyond
the available GCM ensemble by using the pattern-scaling approach. Since the spatial res-
olution varies with the GCM, ClimGen is also used to interpolate the GCM pattern at
the original resolution onto a 0% 0.5° grid. MAGICC6 and ClimGen are described in
Chapter 3. Uncertainties associated with the different types and definitions of drought are

examined in Chapter 5.



Chapter 3

General Methodology

This chapter presents the general methodology, including the modelling framework,
study area and drought identification, applicable to Chapters 4—7. More specific details

are elaborated in the individual sections.

3.1 MAGICCG6

MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) is
a simple/reduced complexity coupled gas-cycle/climate model (Wigley and Raper, 1987;
1992). It has been used in the previous IPCC Assessment Reports to produce projections
of future global-mean temperature and sea level rise, e.g. the 4.2 version was used in the
IPCC Fourth Assessment Report (AR4), Working Group 1.

The climate model in MAGICC is an upwelling-diffusion, energy-balance model that
produces global- and hemispheric-mean temperature output and results for oceanic ther-
mal expansion. MAGICC is based on a simple global-mean energy balance approxima-

tion:

AQ = AT + F (3.1)

where AQ is the global-mean radiative forcing at the top of the troposphere. It is
the balance between the climate system heat content chagad outgoing long-wave
radiative heat loss to spacaAT). This outgoing energy flux is a linear function of

surface temperature perturbatiohl) and the global-mean feedback factay,(which
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itself is inversely proportional to the climate sensitivity.
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Figure 3.1: The schematic structure of MAGICC’s upwelling-diffusion energy balance module
with land and ocean boxes in each hemisphere. The processes for heat transport in the ocean
are deepwater formation, upwelling, diffusion, and heat exchange between the hemispheres. Not
shown is the entrainment and the vertically depth-dependent area of the ocean layers. Source:
Figure Al in Meinshauseet al. (2011a).

MAGICC'’s atmosphere consists of four boxes (one over land and one over ocean
for each hemisphere) with zero heat capacity (Figure 3.1). The hemispherically averaged
upwelling-diffusion ocean is coupled to an atmosphere layer. It determines the air temper-
ature over land and ocean separately, by considering a radiative energy-balance combined
with heat transfers between the land and ocean and between the two hemispheres (the
latter occurring only between the ocean boxes of the hemispheres) and ocean heat up-
take. Vertical diffusion and advection drive the heat exchange between the oceanic layers.
MAGICC also has a globally averaged carbon cycle model. MAGICCG6 is an updated ver-
sion of MAGICC. MAGICCS6 and its calibration to higher complexity models are detailed
in Meinshauseeet al. (2011a) and Meinshausenhal.(2011b). Therefore it is only briefly
described here.

MAGICC encompasses a suite of coupled gas-cycle, climate and ice-melt models that
account for feedbacks between the carbon cycle and the climate. The radiative forcing,

climate sensitivity and ocean heat uptake efficiency determine thead@centrations
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and global-mean temperature change that result from a given timeseries of GHG emis-
sions. MAGICC®6 has enhanced representation of time-varying climate sensitivities, car-
bon cycle feedbacks, aerosol forcings and ocean heat uptake characteristics. The internal
consistency of MAGICC, while in its coupled mode, implies that the climate model re-
sponse drives the climate feedbacks on the carbon cycle, thus@®entrations. Model
component results can be uncoupled separately for consistent analysis of the joint re-
sponse and feedback of different combinations of high complexity carbon cycle models
and GCMs. MAGICCE6 has therefore been calibrated to emulate the World Climate Re-
search Programme’s (WCRP’s) phase 3 of the Coupled Model Intercomparison Project
(CMIP3; Meehlet al, 2007) GCMs and the Coupled Carbon Cycle Climate Model In-
tercomparison Project (MIP; Huntingfordet al, 2009) carbon cycle model responses
with considerable accuracy.

MAGICCS6 has been used in this thesis for four reasons (Meinshaisdn2011a).
Firstly, MAGICC6 can emulate GCM results, which avoids the computational cost of
running large ensembles with GCMs. Secondly, it can capture the structural uncertainties
associated with parametrisation across the range of CMIP3 &wdFOmodels. Thirdly,
it can help isolate the effects of various components, e.g. different forcings or climate
responses. Lastly, MAGICC6 can be uncoupled to examine the effects of different com-
binations of forcings and more complex models.

MAGICCG6 converts the C®concentrations from an emission scenario to, @ohis-
sions that drive a carbon cycle model. The global-mean surface temperature changes
simulated by MAGICC6 for the 21st century were used as inputs in ClimGen (Section

3.2).

3.2 ClimGen

ClimGen version 1-02 (hereafter, ClimGen) has been applied, as a stand-alone appli-
cation, as a climate scenario generator. It is detailed in Osborn (2009) as an extension
to the approach described by Mitchetlal. (2004). It outputs monthly climate datasets
and scenarios for the observed (1901-2005) climate, for both CRU TS2.1 (Mitchell and
Jones, 2005) and CRU TS3.10 (Hamisal,, 2013; as used in this thesis), as well as fu-

ture (2001-2100) climate scenarios (Mitchetlal., 2004), for the entire terrestrial land
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surface except Antarctica. ClimGen currently produces eight climate variables: mean,
maximum and minimum temperature (thus information for diurnal temperature range),
precipitation, vapour pressure, cloud cover and wet day frequency, at monthly, seasonal,
or annual time-scale, or averaged over a specified time slice. Monthly precipitation, and
temperature (for the hydrological drought analysis), are the primarily variables considered
in this thesis.

ClimGen is based on the pattern scaling method (Sagttal, 1990; Goodesst al.,
2003a; Mitchell, 2003), which separates the global-mean and spatial-pattern components
of future climate change, and in some cases, the latter can be further distinguished into
GHG and aerosol components. GCM simulations provide the geographical, seasonal and
multi-variable structure of change for most scenarios of future climate change. ClimGen
contains a database of standardised climate change patterns from 22 CMIP3 GCMs. For
two time-periods, e.g. 2071-2100 and 1961-1990, it calculates the difference between
the future 30-year average climate for 2071-2100, and the 1961-1990 mean climate, both
simulated by the GCM and then divide by the global-mean warming for the particular cli-
mate change experiment between 2071-2100 and 1961-1990. The resultant standardised
climate change pattern (that consists of GHG and aerosol comporiergsgxpressed
per°C global warming. The patterR for regional temperature change, per degree C, for
GCM g, scenarios, cell i, and monthn, is given by:

Tysim (2071 — 2100) — Tyirm (1961 — 1990)

Pysim = 3.2
g Tglobegs(2071 — 2100) — T'globeys(1961 — 1990) (3.2)

Following the recommendations of Mitchell (2003), the CMIP3 GCM patterns in
ClimGen are derived using all running 30-year mean periods and linear regression be-
tween these and the global-mean temperatures (instead of the simpler difference equa-
tion (3.2)). To strengthen the signal to noise ratio (where signal is the response to the
externally-forced global warming and noise is the internal variability in an individual
model simulation), all ensemble members from simulations under the SRES A2 and A1B
were pooled together for each GCM. Global-mean temperature change from MAGICC6
(Section 3.1) for a given year, emissions scenario and set of climate model parameters is
then used to re-scale these pattefh generate a space-time pattern of changing mean

climate that reflects a particular emission scenario.
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ClimGen employs distance-weighted averaging to interpolate each of the patterns of
standardised coefficients obtained from each GCM simulation at the original resolution
onto a 0.5x0.5° grid. Any changes relative to the baseline would be attributable to
climate change and not to internal climate variability as ClimGen uses the same sequence
of observed variability to generate each series of data, whether for 1951-2000, 2001-2050
or 2051-2100.

A climate change signal is combined with interannual variability and a climatolog-
ical mean from the observational archive to generate future climates. Future scenarios
can be generated by tlealditive (or “absolute changes”) method, where GCM-derived
changes in mean climate are added to the observations, i.e. interannual variability re-
mains unchanged in the future. For precipitation, thdtiplicativemethod (or “relative
changes”) is also an option (“Option 3" in ClimGen; as applied in Chapter 6). Perturbed
mean precipitation is obtained by multiplying the observations by the GCM-derived mean
precipitation changes. This requires the pattern-scaled GCM precipitation change to be
expressed as a fractional change from present-day precipitation (e.g. a fractional change
of 1.2 implies a 20% increase) rather than as an absolute change (e.g. an increase of 20
mm/month). The magnitude of mean precipitation change varies exponentially with the
global-mean temperature change. The exponential function, calibrated using a start and
end value provided by GCM data, avoids zero precipitation being generated as the rate of
change decelerates with warming in regions of decrease. Interannual variability is modi-
fied in such a way that the coefficient of variation (CV, standard deviation:mean ratio) is
roughly constant. Therefore, for tineultiplicativemethod (where only the mean precipi-
tation changes as CV is kept constant), the patiefor regional temperature change, per
degree C, for GCM, scenarics, cell i, monthm and yeauw, is given by:

Pgsimy = 6im0;my€PgimATgsy (33)

whereo;,, is the 1961-1990 observed mean precipitation foricatid monthmn, o;my
is the observed precipitation anomaly (relative to the mean precipitation) far osdinth
m and yeary, Py, is the standardised climate change pattern for G&£idr cell i and
monthm, andAT,,, is the global-mean temperature change under scen#oroGCM g

in yeary.
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In regions where the temporal distribution of precipitation becomes more skewed (i.e.
with increased low or high extremes, or both) or less skewed (i.e. with decreased low
and/or high extremes), interannual variability may change independently of mean precip-
itation, and the “Osborn-Gamma” method (“Option 4” in ClimGen) is applied, as in this
thesis. It uses the Gamma shape method (described by Gaetdds003b) where the
observed interannual variability is perturbed so that it becomes consistent with the GCM-
derived perturbed precipitation probability distributions. It is parameterised via the shape
parameterq, of the gamma distribution, which measures the distribution skewness. Sim-
ilar to the multiplicative method, altered mean precipitation are derived the same way; the
changes in mean precipitation and precipitation distribution shape are linear (exponential)
functions of global-mean temperature in regions where they increase (decre&sdg-
rived from the GCM simulations and then scaled by the global-mean temperature change
in the same way as the changes in mean climate are pattern-scaled. Hence, the projected
gamma shape parameterper degree C, for GCN, scenarics, cell i, yeary and month
m, IS given by Equations 3.4 (for areas with increasing precipitation) and 3.5 (for areas

with decreasing precipitation):

Qgsimy = @zm(l + SgimATgsy) (34)

Agsimy = @imeSgim'Aquy (35)

wherea;,, is the shape parameter of the 1951-2000 observed precipitation calculation
period for celli and monthn, Sy, is the standardised pattern of change in gamma shape
parameter pre-calculated from GCfor cell i and monthm (c.f. Equation 3.2). The
gamma shape parameter is fitted to monthly precipitation values after they have been
expressed as fractional deviations from the 30-year smoothed precipitation (i.e. they are
divided by the latter). Thus, the gradual changes in mean precipitation are removed.

Similar to Equation 3.3, the pattefnfor regional temperature change for thsborn-
Gammamethod (where both precipitation mean and variability change), per degree C, for
GCM g, scenarics, cell i, monthm and yeaw, is given by Equations 3.6 (for areas with

increasing precipitation) and 3.7 (for areas with decreasing precipitation):
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Pgsimy = 5im6imy(1 + PgimATgsy) (3.6)

Pgsimy = 6im6imy€PgimATgsy (37)

whereo;,,, is the observed precipitation anomaly for cgllmonthm and yeary
after transformation so that its gamma shape parameter is modified to match the projected
shape parameter.

ClimGen is constrained by pattern scaling, which assumes a linear (or exponential)
relationship between local climate change and global-mean temperature change, that the
spatial pattern of change would remain over time, and that all GHGs have the same climate
responses (Goodesstal, 2003a). Also, future changes in aerosols are not represented as

most emission scenarios have low aerosol emissions due to clean air assumptions.

3.3 Global Hydrological Model: Mac-PDM.09

The Macro-scale—Probability-Distributed Moisture model (Mac-PDM), a global hy-
drological model (GHM), is a grid-based conceptual water-balance accounting model.
Evolution of the various water balance components is calculated at a daily time step. The
first version was described in Arnell (1999a) and a revised version was used in Arnell
(2003a). Here, the latest version, Mac-PDM.09, which is detailed in Gosling and Arnell
(2011) and briefly outlined below, have been used.

Mac-PDM.09 can be forced with monthly or daily climate data. The inputs used for
this study were 50-year monthly climate data from ClimGen (see Section 3.2). These
include monthly timeseries of temperature and precipitation, along with long-term mean
(present or future) monthly averages of temperature, precipitation, number of wet days,
vapour pressure, cloud cover (converted internally to net radiation) and baseline (1961
1990) windspeed (the latter assumed to remain unchanged in the future). For the snow
component, Mac-PDM.09 interpolates monthly temperature data to the daily time step and
adds a random component to the rather smooth temperature series; a normal distribution

with a standard deviation o€ is assumed for the departures from the smoothed data.
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Mac-PDM.09 stochastically calculates daily precipitation for each cell using monthly pre-
cipitation data and wet-day frequency, and the hydrological output is calculated from the
mean of 20 repetitions of a model run. Daily precipitation intensity is assumed to follow
an exponential distribution based on the gridded observed coefficient of variation (CV) of
daily rainfall.

The water balance of each cell (either regular or catchment shaped) is calculated inde-
pendently, hence no routing of runoff between grid cells. This is considered appropriate
as the aim is to examine the spatial pattern of climate change impacts, rather than to
estimate runoff at specific locations (Arnell, 2003a). Precipitation, which is equally dis-
tributed across the cell, falls as snow if temperature falls below a defined threshold; if
temperature rises above another threshold, snow melts at a constant rate per degree per
day. Precipitation that exceeds interception capacity falls to the ground. Information on
soil and vegetation characteristics is obtained from spatial datasets. The type of land
cover (i.e. vegetation type) determines the amount of precipitation intercepted, potential
evaporation (calculated using the Penman-Monteith method), and soil moisture storage
capacity through soil texture and root depth. Actual evaporation is determined by po-
tential evaporation and soil moisture content (Arnell, 1999a). When water reaches the
ground, saturated soil generates “quickflow” (but not necessarily overland flow) whereas
unsaturated soil allows infiltration. Evaporation and drainage to groundwater (which is
not stored) and stream (“slowflow”) deplete soil moisture. As soil moisture storage ca-
pacity varies statistically across the cell/catchment, quickflow can be generated from the
saturated proportion of cell area. Quickflow and slowflow are then routed separately to
the outlet of the cell to create daily river runoff, which is “indicative” and monthly runoff
is a much more credible output. All runoff generated within the grid cell is assumed to
reach the cell outlet.

Key caveats of Mac-PDM.09 include the exclusion of transmission losses along the
river network or evaporation of infiltrated overland flow, which could overestimate runoff
and underestimate the percentage effect of climate change on the amount of water in
rivers in dry regions (Arnell, 2003a), and human interventions. In addition, Mac-PDM.09
does not incorporate the effects of seasonal freezing and thawing of permafrost, or glacial

melt, therefore underestimates future runoff in catchments below melting glaciers (Arnell,
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2003a).

3.4 Emission Scenarios

This thesis has examined the effects of a range of emission scenarios including the

IPCC SRES scenarios and RCPs, as outlined below.

3.4.1 IPCC SRES Scenarios

The Intergovernmental Panel on Climate Change (IPCC)’s Special Report on Emis-
sion Scenarios (SRES; Nakicenovich and Swart, 2000) has detailed the SRES scenarios.
Forty non-mitigation possible future world states were developed and structured into six
subgroups based on plausible common storylines. The SRES scenarios are presented as
four equally plausible storylines labelled Al, A2, B1 and B2. They represent different
world futures in two dimensions: a focus on economic (the “A’ scenarios) or environ-
mental (the “B” scenarios) concerns, and global or regional development patterns. The

characteristics of the four storylines and scenario families are summarised as follows:

e Al: A global and independent world with very rapid economic growth, global pop-
ulation peaks in mid-century and declines thereafter, rapid technological change,
convergence of regions, capacity building, increased social interaction, reduced re-
gion differences in per capita income. The three Al groups have distinguished
technological change in the energy system: fossil intensive (A1Fl), non-fossil fuels

(ALT) or a balance across all sources (A1B).

e A2: A heterogeneous, market-led world with self-reliance and local identities pre-
served, high population growth, regionally oriented economic growth, fragmented

economic and technological development.

e B1: A convergent world with low population growth as Al, transition to service
and information economy, resource productivity improvements, clean and efficient

technology towards global solutions.

e B2: A divergent world with emphasis on local solutions to economic, social, and
environmental sustainability, moderate population growth, intermediate economic

development, less rapid technological change.
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3.4.2 Representative Concentration Pathways (RCPs)

The Representative Concentration Pathways (RCPs; ktoals 2010) represent the
full range of potential future radiative forcing pathways that are considered to be feasible,
which are compatible with the full range of stabilisation, mitigation and baseline emission
scenarios available in the scientific literature. Unlike the SRES scenarios that were de-
veloped sequentially (i.e. from detailed socio-economic storylines which determine GHG
emissions to radiative forcing), the RCPs were developed through the parallel approach,
where important characteristics for scenarios of radiative forcings, such as the level of
radiative forcing in the year 2100, was first identified.

Four individual modeling groups developed four independent pathways for the RCPs
(Table 3.1) using integrated assessment models that combine economics, technology, and
physical processes. The scenarios include a full suite of GHG concentrations, spatially ex-
plicit emissions for pollutant gases and aerosols, and spatially explicit land-use and land-
use change information. The differences between the RCPs may be partly attributable
to differences between models and scenario assumptions (scientific, economic, and tech-
nological), but cannot directly be interpreted as a result of climate policy or particular
socioeconomic developments.

Although the RCPs were not developed to mimic specific SRES scenarios, tempera-
ture projections for RCP8.5, RCP6 and RCP4.5 are similar to those for the SRES AlFI,
B2 and B1 scenarios, respectively. Temperature estimates for the RCPs span a larger range
than for the SRES scenarios, as the former span a large range of stabilisation, mitigation
and non-mitigation pathways while the latter cover only non-mitigation scenarios (Rogelj

etal, 2012).
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Scenario Modelling team / models Characteristics References

RCP8.5 International Institute for Ap-High GHG concentration levels; increasRiahiet al. (2007)
plies Systems Analysis (IIASA) / ing GHG emissions over time

MESSAGE
RCP6.0  National Institute for Environ-Stabilisation scenario; total radiativeFujino et al.
mental Studies (NIES) / AIM forcing stabilises after 2100 (2006), Hijioka
et al. (2008)
RCP4.5 Pacific  Northwest  NationalStabilisation scenario; total radiativeClarke et al.
Laboratory  (PNNL)'s  Joint forcing stabilises before 2100 (2007), Smith and
Global Change Research Institute Wigley  (2006),
(JGCRI) / MiniCAM Wiseet al. (2009)

RCP3- Netherlands Environmental As-Very low GHG concentration levels; ra-van Vuurenet al.
PD (or sessmentAgency (PBL)/IMAGE diative forcing level first reaches.3.1 (2007)
RCP2.6) W/m? mid-century before returning to

2.6 W/n? by 2100; GHG emissions (and

indirectly emissions of air pollutants) are

reduced substantially over time

Table 3.1: Representative Concentration Pathways (RCPSs)
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Figure 3.2: Some of the sources of uncertainty in drought projections. The blue shading highlights

those examined in this thesis, along with their respective Sections (e.g. “5.8” denotes Section
5.8). The “threshold” category indicates whether the threshold used to identify drought conditions
in seasonally-varying or fixed throughout the year. The “event” category indicates whether a
temporary return to wetter conditions is included in a drought or not.

There is no single “best model” for reproducing mean precipitation and drought
statistics across Europe; model skills also vary temporally, even on the catchment scale

(Blenkinsop and Fowler, 2007b). Projections of future climate inevitably contain uncer-

tainty that is typically addressed by using a variety of scenarios to generate a range of
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Emission scenarios Carbon cycle models GCMs

SRES AlFI BERN-CC CCCMA-CGCMB3.1(T47)

SRES Al1B CLIMBER2-LPJ CNRM-CM3

SRES A1T CSM-1* CSIRO-MK3.0

SRES A2 FRCGC GFDL-CM2.0

SRES B1 HADCM3LC GFDL-CM2. 1

SRES B2 IPSAL INM-CM3.0

RCP 8.5 LLNL IPSL-CM4

RCP 6 MPI LASG-FGOALS-g1.0

RCP 4.5 UMD MPI-OM-ECHAM5

RCP 3-PD UVic-2.7 MRI-CGCM2.3.2
NASA-GISS-ER
NASA-GISS-EH
NCAR-CCSM3
NCAR-PCM

NIES-MIROC3.2(hires)
NIES-MIROC3.2(medres)
UKMO-HadCM3
UKMO-HadGEM1

Table 3.2: Emission scenarios, carbon cycle models and GCMs used. All ten carbon cycle models
were used in an initial study but results presented in this thesis are only based on CSM-1.

possible outcomes. Using MAGICC6 and ClimGen, Chapters 4 and 5 examine some
of the uncertainties associated with drought projections, specifically those introduced by
climate modelling and the definition of drought, respectively (Figure 3.2).

Modelling uncertainties were assessed by using a range of emission scenarios and
models. A subset of the options shown in Table 3.2 were applied in Chapters 4-7.
It should be noted that although ClimGen can derive climate change patterns from 22
CMIP3 GCMs, MAGICCSG6 has only been tuned to emulate 18 of them, therefore this thesis
was limited to those listed in Table 3.2. For the same €@issions, different carbon cy-
cle models produce different atmospheric£f@ncentrations and radiative forcings. This
carbon cycle uncertainty is estimated to-b€0% of that of the physical climate properties
(e.g. equilibrium climate sensitivity and global heat capacity; Huntingédral.,, 2009).
However, an initial study (not shown) involving ten carbon cycle models (Table 3.2) in-
dicated that this source represente®% of total variance that also encompassed GCM
and emission scenario uncertainties, therefore is negligible for the concerned timescale.
Consequently, this thesis has been based on the MAGICC emulation of only one carbon
cycle model, CSM-1, which yields moderate global-mean temperature change.

Since there is no universal definition of drought (Section 2.2), two classifications were
studied: meterorological and hydrological events. Meteorological droughts have been

quantified by the precipitation-only Standardised Precipitation Index (SPI; see Section
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4.2.2). A subset of the climate projections (Table 3.2) were used as input to the global
hydrological model, Mac-PDM.09, to generate runoff data for characterising changes in

hydrological droughts (Chapter 5).

3.6 Timescales and Study Periods

Different timescales may be useful for monitoring different drought classifications
(Vicente-Serrano and Lopez-Moreno, 2005). A 3—-6 month drought describes a surface-
water drought, whereas atémonth drought represents a water resource drought that
could affect groundwater resources (Fowler and Kilsby, 2004; Blenkinsop and Fowler,
2007a). For meteorological events, SPI timescales of 1-3 (7—10) months better represent
river discharges, e.g. in a mountain hydrological system with intense runoff, high precipi-
tation and quick runoff generation (large reservoir storages) (Vicente-Serrano and Lopez-
Moreno, 2005). Intense spring/summer rainfall deficiencies of 4-9 months can threaten
water supplies in areas dependent on surface water (e.g. parts of northern and southwest
England); notably dry winters may prevent adequate recharge of groundwater resources
(e.g. in eastern/southern England; Magthal., 2007). SPI timescales of 32months
seem not effective in monitoring droughts of any classification in mountainous areas (e.g.
the Aragon River Basin, central Spanish Pyrenees; Vicente-Serrano and Lépez-Moreno,
2005).

Both short (3-month) and long (12-month) droughts were studied here; meteorologi-
cal events were denoted by SPI3 and SPI12, respectively. Prior to SPI computation (for
meteorological drought; Section 4.2.2) or hydrological drought quantification (for hydro-
logical drought; Section 5.3), a 3/12-month lagged moving average of the raw monthly
precipitation/runoff timeseries was derived. This accounts for conditions in the preceding
months, as a drought is a cumulative precipitation/runoff deficit.

Droughts were characterised for the baseline period (1951-2000), and two future pe-
riods (2001-2050 and 2050-2100). The 50-year period was chosen in order to sample
a range of (e.g. multi-year) events and a range of natural variability; a shorter timescale
may result in zero drought events being identified in some cells of the study region (see
Section 3.9) during 1951-2000, thus the percentage change in future events would not be

able to be determined.
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3.7 Drought Identification

Both meteorological and hydrological droughts were characterised using a threshold
approach (see Section 2.2.2): a meteorological/hydrological event occurs when the value
of the lagged moving average SPIl/runoff timeseries falls below the threshold. For me-
teorological events, the focus is on theverelyor extremelydry conditions (see Table
4.1) — i.e. a drought was considered to begin when<SP1.5. For SPh (wherem
represents the timescale concerned), when the SPI values afhosensecutive months
remained SP+—1.5, an event terminated in the first month when the SPI value rises above
SPI-1.5. Hence, two separate events occurred only when there werenowvemths of
SPb>—1.5; persisting dry conditions (e.g. several years) with occasional wet periods that
could only temporarily alleviate the drying were regarded as a single event, i.e. lower
frequency despite extensive drought conditions. The effects of including/excluding these
excess periods for both meteorological and hydrological events are explored in Section
5.6. Hydrological droughts were identified using a runoff threshold based on1SPI
(see Section 3.7.1).

3.7.1 Drought Threshold Expressed as Runoff

Hydrological drought thresholds in absolute runoff values may provide more infor-
mation and/or a better indication for end-users on the level of runoff deficit. Therefore, a
fixed runoff threshold was derived for each cell of the study region (Figure 3.3) — simi-
lar to the drought threshold in absolute precipitation values (Figure 4.1, Section 4.3), the
runoff threshold for each cell is comparable to SRI5 as both imply the same percentile
exceedence.

To obtain the runoff thresholds, a percentile was determined based on the number of
months of the SPI timeseries with values bewig 1.5 in the 1951-2000 period. This
percentile was then applied to the 1951-2000 lagged moving average runoff timeseries
to extract the threshold in absolute runoff. This means that for any particular cell, the
probability of the runoff timeseries falling below the identified runoff threshold is the
same as the SPI value beirg-1.5 in the 1951-2000 period.

Figure 3.3 shows that runoff threshold varies from just above zero to over 16 mm.

Both 3- and 12-month events demonstrate similar spatial patterns, with 12-month having
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Figure 3.3: Threshold in runoff (mm/month), used for defining hydrological drought, that has
the same percentile exceedence as-SPb during 1951-2000 for (a) 3-month and (b) 12-month
events.
higher runoff threshold values due to the longer duration. For 3-month events, a majority
of the study area has threshold values of under 8 mm. Higher valt&sfm) tend to
concentrate along the southwestern coast of Norway, the British Isles except southeastern
England, and the Alps. For 12-month events, runoff threshold valuesl@& mm are
widespread in the higher latitudes of Scandinavia and Russia, much of the British Isles
and western Europe, the Alps, as well as areas towards east of Mediterranean and the
Black Sea.

The patterns of absolute runoff threshold correspond to those for absolute precipitation
threshold (Figure 4.1). However, the patterns of absolute precipitation threshold are more

spatially-coherent than their runoff counterparts.

3.8 Drought Parameters

As discussed in Section 2.2.2, precipitation/runoff deficit has been characterised by

different parameters. This thesis has quantified meteorological and hydrological droughts
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by considering their severity and spatial extent. Drought severity for cepiresents the

cumulative deficit from the threshold over a 50-year period, and is given by:

t=e
Severity; = Z Xo — Xy (3.8)
t=i

whereX is the thresholdX; is the drought variable at monthandt = i andt = e
represent the start and the end of the drought event, respectively (c.f. Figure 2.1). Severity
provides no information on the timing of the events. For hydrological events, severity is
equivalent to deficit volume in units of mm. Therefore, drought intensity represents the

averaged magnitude and is denoted by:

Severity

_ 3.9
te —t; +1 ( )

Intensity =

The spatial extent of drought is expressed by the Drought Area Index (DAI), which
measures the proportion of a region being affected by precipitation/runoff drought at

monthq:

Nd;

7

DAI = - 100% (3.10)

whereD AI; represents the percentage of the region being drought-affected at month
1, Nd; is the number of cells of the region being drought affected at mgrahd ; is
the total number of cells of the region. DAI does not consider the intensity of the events,
and no area weighting has been applied. DAI25 (DAI50) denotes the percentage of the
50-year period during whick25% (50%) of the region being drought-affected.

DAI25 and DAIS50 are regional drought parameters. Drought severity values obtained
for each grid of the study region were averaged spatially for regional drought analysis.
The use of these parameters provides no information on the timing of the events as they
describe drought conditions over the 50-year period. For instance, in Section 5.8, it would
not be possible to determine whether a meteorological drought event coincides with/lags

a hydrological event. The study area and regions are detailed in Section 3.9.
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3.9 Study Area and Regions

The European study area is defined as-3®N, 25°W-7C0°E. For each simulation,
meteorological (hydrological) severity results and the percentage of the region being
drought-affected were generated for each of the 9140 (8385) cells within this area, be-

fore being averaged geographically and/or climatically (Figure 3.4).

Kdppen climates
BSh Csa Cfa Dsa
BSk Csb Cfb Dsb
BWh Cfc Dsc
BWk

Figure 3.4: Study area and regions. Geographic (PRUDENCE) regions (Table 3.3) are found
westwards of 3E. Climate (Kdppen) zones, as specified in the legend, span the entire study area.

Dfa ET
Dfb EF

Dfc

Geographically-averaged results are based on the sub-regions of the PRUDENCE
project (Christensemt al, 2007; Table 3.3); they are referred to as “PRUDENCE re-
sults” in this thesis. Since significant climatic variations may occur within a PRUDENCE
region (e.g. IP), climatically-averaged results may compliment the PRUDENCE results.
The Koppen climate classification is one of the most frequently used. Classification infor-
mation was obtained from the Supplementary Material of Beal. (2007); information
at the 0.5 was extracted from the (.X0.1° map. Based on vegetation, temperature and
precipitation, 17 classes were differentiated for the study area (Figure 3.4); “EF” climate
occurs in only five cells, hence was omitted from the analyses. Regional results in this

thesis therefore enable comparisons with previous and subsequent studies.
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Area West East South North
British Isles (BI) -10 2 50 59
Iberian Peninsula (IP) -10 3 36 44
France (FR) -5 5 44 50
Mid-Europe (ME) 2 16 48 55
Scandinavia (SC) 5 30 55 70
Alps (AL) 5 15 44 48

Mediterranean (MD) 3 25 36 44
Eastern Europe (EA) 16 30 44 55

Table 3.3: European sub-regions defined in the “PRUDENCE" project (Christensen and Chris-
tensen, 2007)

3.9.1 Koppen Climates

The Koppen climate classification, detailed in Henderson-Sellers and Robinson (1986)
and Peeet al. (2007) (particularly Table 1), is briefly described here. The study area con-
tains four main climate types: arid B, temperate C, cold D and polar E. The second letter
indicates the precipitation patterarrepresents a dry summer andfor dry winter. The
third letter indicates the degree of summer heat: for B climates)dk signify low and
middle latitude climates, respectively; for C and D climate$,andc represent hot, warm
and cold summer, respectively. Polar E climates concentrate in the high latitudes/altitudes.

Much of the mid-latitude central-western Europe heagine west coagtlimate with
precipitation all year round (Cf). Thelediterranearnclimate is characterised by warm-
hot dry summers and cool, wet winters (Csa, Csb; Spain, Italy, Gre€Eod).west coast
climate dominate the eastern half of the mid- and high-latitudes with low summer precipi-
tation (Df; Scandinavia, Russia, eastern Europe and the Caucasus). Much of Central Asia
is under the influence of colititerior desertclimate (BWk and BSk). The mechanisms

contributing to these climates are provided in Robinson and Henderson-Sellers (1999).

3.10 Summary

This chapter has outlined the emission scenarios and models, including MAGICCS6,
ClimGen and Mac-PDM.09, used in this thesis for generating precipitation and runoff
timeseries. It has also described the identification and quantification of short and long
droughts as applied in Chapters 4—6. The next chapter examines the effects of climate
change on European meteorological drought characteristics and the associated uncertain-

ties in the projections.



Chapter 4

Projections of European
meteorological droughts: robustness

and uncertainties

4.1 Introduction

Over the 20th century, higher European latitudes experienced increased wetting, par-
ticularly in winter (Lloyd-Hughes and Saunders, 2002; Briffaal, 2009) while the
Mediterranean became drier, especially in summer (&ad, 2006; Sousat al,, 2011).
However, Bladét al. (2012) found enhanced summer precipitation in the Mediterranean,
particularly Italy and the Balkans, associated with high summer (July—August) North At-
lantic Oscillation (SNAQO) (Follanét al., 2009; Linderholrnet al,, 2011). They attributed
this to a strong upper-level trough over the Balkans that develops in association with
the SNAO, which causes mid-level cooling and increased potential instability. Since the
1950s, the area covered by dry (wet) events has increased (decreasedg(BhrdD09).
Climate change could shift and widen the precipitation distribution, increasing the risk
of both flood and drought events (Gabal,, 2006), and may alter the characteristics of
future dry and wet spells in Europe (Heinrich and Gobiet, 2011). The common view is
that precipitation will decrease (increase) in southern (northern) Europe.

Warming may increase the drought-affected area globally, including more severe events
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(Burke and Brown, 2008). Although there are different classifications of drought (Sec-
tion 2.2) depending on the nature of the water deficit and the study objective (Wilhite
and Glantz, 1985; AMS, 2004), precipitation is the fundamental driver of drought and
analysing future precipitation characteristics is crucial in drought risk assessment (Bordi
et al, 2009), especially when considering meteorological droughts (Panu and Sharma,
2002). Many studies have focused on the hydrological aspects (such as river discharge and
low flow regimes) rather than assessing meteorological events (Vasikadds 2009).

Yet, the application of meteorological drought indices require less input data, which in
turn limits the additional uncertainties arising from the availability, quality, resolution and
parameterisations of data/models. Furthermore, Histlal. (2001) found good agree-

ment between precipitation deviations and droughts trends. Therefore, this chapter fo-
cuses on meteorological drought assessment, but see Section 5.8 for a comparison with
hydrological drought assessment.

Our incomplete understanding of the behavior of the climate system has led to the

development of various emission scenarios and GCMs. Studies with equally weighted
multi-models generally outperform the single models (Weigedl, 2010). However,
projections for both mean (Kjellstroet al., 2011) and extreme (Fret al., 2006; Benis-
tonet al, 2007; Blenkinsop and Fowler, 2007a;b; Burke and Brown, 2008) precipitation
are often uncertain in both the direction and magnitude of change. Changes in the sea-
sonal distribution of precipitation and drought occurrence will significantly affect water
resource management (Blenkinsop and Fowler, 2007a). Although some European drought
studies (e.g. Dubrovskgt al., 2005; Blenkinsop and Fowler, 2007a;b; Dubrovsiyal.,
2008; Vidal and Wade, 2009; Heinrich and Gobiet, 2011) have attempted to address this
through a multi-model and multi-scenario analysis, the number of climate models and
emission scenarios applied are often limited, and few (e.g. Burke and Brown, 2008) have
explored uncertainty in drought projection using large simulation ensembles.

Using the SPI (Section 4.2.2), this chapter examines the effects of climate change on
European meteorological drought characteristics for both 3-month (SPI3) and 12-month
(SPI112) events, and assesses their robustness based on precipitation scenarios simulated
using ten emission scenarios and eighteen GCMs (Sections 4.4—-4.5). GCMs and emis-

sion scenarios tend to dominate the uncertainty of climate change (Pkrdbn2008),
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and therefore projections of drought should incorporate fully these effects. The relative

contribution of emission scenario and GCM variance is also quantified (Section 4.6).

4.2 Methodology

4.2.1 Modelling Framework

MAGICCB6 and ClimGen simulations of 21st century monthly precipitation timeseries
based on 10 emission scenarios (hereafter, scenarios) and 18 GCMs were assessed (see
Section 3.5 for details). Consequently, an ensemble of 180 precipitation scenarios were
used for the SPI computation (Section 4.2.2.5) and subsequent drought analysis (Section

4.2.3).

4.2.2 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) is one of most widely used drought in-
dices in drought assessment. It has been applied to Africa (e.g. Rouault and Richard,
2005; Lyon, 2009; Roudier and Mahe, 2010), Australia (e.g. Kéial, 2008), Eu-
rope (e.g. Bordet al, 2001; Loukas and Vasiliades, 2004; Vicente-Serrano and Lopez-
Moreno, 2005; Lopez-Moreno and Vicente-Serrano, 2008; Betrdi, 2009; Vasiliades
et al, 2009; Koutrouliset al,, 2011), Central (e.g. Méndez and Magafa, 2010) and North
America (Motha and Baier, 2005; Kangas and Brown, 2007; Wetisd.,, 2009; Logan
et al, 2010; McCrary and Randall, 2010), the Middle East (e.g. Turke and Tatl, 2009;
Razieiet al, 2010) and other regions. SPI is commonly used operationally to monitor
the onset and duration of droughts (Hageal., 1999) worldwide by organisations or co-
operative efforts including the Global Drought Monitor (Benfield UCL Hazard Research
Centre), the APEC Climate Center (APCC) Global Drought Monitoring, the North Amer-
ica Drought Monitor (NADM), the U.S. National Drought Mitigation Center (NDMC),
the Drought Management Centre for Southeastern Europe (DMCSEE), and the Caribbean
Drought and Precipitation Monitoring Network (CDPMN).

The SPI was developed at Colorado State University in 1993 as an alternative to
Palmer’s index (see Section 2.2.3) that addresses many of the PDSI's weaknesses (Mc-

keeet al, 1993; 1995). It measures meteorological events and is normalised to identify
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SPI values Intensity Probability % Cumulative probability
2.0 or more Extremely wet 2.3 0.9986
1.5t01.99 Very wet 4.4 0.9332
1.0t0 1.49 Moderately wet 9.2 0.8413
—0.99t00.99 Near normal 68.2 0.6915
—1.0t0 —1.49 Moderately dry 9.2 0.1587
—1.5t0—1.99 Severely dry 4.4 0.0668
—2.0 or less Extremely dry 2.3 0.0228

Table 4.1: SPI intensity and corresponding event probabilities (Makeal., 1993; Sheret al,

2008)

both dry and wet periods (Bordit al., 2009) for any location with a long-term precipi-
tation record (typically>30 years). Dry (wet) spells, represented by negative (positive)
SPI values, are expressed in terms of precipitation deficit (surplus), percent of normal and
probability of hon-exceedance (Heim Jr., 2002), with one/two/three standard deviations
occurring approximately 68%/95%/99% of the time (Hageal,, 1999; Table 4.1).

A probability density function (PDF; e.g. Pearson Type Il or Gamma) is fitted —
separately for each month of the lagged moving average precipitation timeseries — to
the frequency distribution of precipitation summed over the timescale concerned. Each
PDF is then transformed into a standardised Gaussian distribution (Edwards and McKee,
1997). Therefore, a percentile on the fitted distribution corresponds to the same percentile
(Z-score) on the standard Gaussian distribution and the SPI value (Wilhite, 2005); the SPI
represents a cumulative probability in relation to a reference period for which the prob-
ability distribution parameters are estimated. SPI normalises an anomaly both spatially
(by considering the precipitation frequency distribution and the accompanying variation
at the location) and temporally (as it can be computed at any timescale). The SPI for any
given location (and duration) is expected to have a mean of zero and a variance of one, at
least during the calibration period. Table 4.1 shows the categories of drought intensities;
a drought is generally defined when SPR11.0 and to end when the SPI becomes positive
(Mckeeet al., 1993).

Vicente-Serrancet al. (2010) proposed the multi-scalar standardised precipitation
evapotranspiration index (SPEI), the computation of which is mathematically similar to
the SPI. The SPEI uses precipitation and temperature data, and can be compared to the
self-calibrated Palmer drought severity index (sc-PDSI) as it is based on a normalisation

of the simple water balance developed by Thornthwaite (1948). The SPI, rather than
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the SPEI, has been adopted in this thesis as a measure of meteorological drought (which
typically refers to rainfall deficit), and also for reasons described in Sections 4.2.2.1 and
4.2.2.2; the effect of temperature and potential evapotranspiration (PET), is explored in

Chapter 5.

4.2.2.1 Suitability

Keyantash and Dracup (2002) and Quiring (2009b) assessed the overall utility of me-
teorological indices using six criteri@jz. robustness, tractability, transparency, sophis-
tication, extendability and dimensionality. They found SPI (along with rainfall deciles /
percentiles) to be highly valuable for monitoring meteorological drought (see below). The
National Meteorological and Hydrological Services (NMHSs) globally have been recom-
mended to characterise meteorological droughts using the SPI (ldages2011). The
intensity, magnitude and duration of a drought can be determined, along with the historical
data-based probability of emerging from a specific drought (Heim Jr., 2002).

For the mountainous Aragon River Basin, central Spanish Pyrenees, (Vicente-Serrano
and Lépez-Moreno, 2005) found that short SPI timescales (1-3 months) generally cor-
responded to river flow droughts, and longer timescales (7—10 months) were useful for
analysing droughts in reservoir storage. However, seasonality was found in the suitability
of the SPI for monitoring droughts, e.g. river flows in autumn responded well to 1-7 month
SPI timescales as both the moisture conditions found at the beginning of the season and
the short-scale precipitation conditions govern the hydrological response. On timescales
of 9-12 months, SPI corresponds closely to the PDSI (Guttman, 1998; Heim Jr., 2002;
Dubrovskyet al, 2008), i.e. precipitation causes much of the variability in the PDSI
results (Lloyd-Hughes and Saunders, 2002). Hastesl. (1999) discussed the advan-
tages of SPI over the complex Palmer index (Alley, 1984) (see Section 4.2.2.2); Guttman
(1998) and Lloyd-Hughes and Saunders (2002) indicated that SPI provides a better spa-
tial standardisation than the PDSI. SPI also correlates well with fluctuations in shallow
groundwater tables in irrigated areas of Australia where rainfall variability is a very influ-
ential variable, and can capture major dry periods; therefore the SPI could potentially be
adopted for environmental reporting and relating climatic impacts on groundwater levels

(Khanet al., 2008).
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4.2.2.2 Advantages of the SPI

Lloyd-Hughes and Saunders (2002) found the SPI to be a simple and effective tool for
studying European drought. Simplicity is its fundamental strength, with precipitation be-
ing the only required input data. Its independence of soil moisture conditions implies that
SPI is effective during both winter and summer, nor is it adversely affected by topography.
Its variable timescale makes it suitable for assessing various classifications of drought —
durations of weeks or months can be defined for meteorological and agricultural applica-
tions; durations of years for hydrological and water management purposes (@tales
1999; Heim Jr., 2002). The standardisation enables comparison across the time period
of study, location and climate as both SPI and the lagged moving average precipitation
timeseries have the same probability of exceedence (i.e. number of months with values
below the threshold level; Steinemaanal., 2005); it is also very practical since events
can be associated to a return period (Roudier and Mahe, 2010).

In summary, the SPI is useful for monitoring drought (and wetness) on multiple
timescales and comparing climatic conditions of areas governed by different hydrolog-

ical regimes (Bordet al., 2009).

4.2.2.3 Limitations of the SPI

Despite its simplicity, SPI excludes other drivers of drought, (e.g. modified evapora-
transpiration and available energy; Burke, 2011), shows much smaller global land sur-
face areas in drought than other indices that account for atmospheric demand for mois-
ture (Burke and Brown, 2008), and does not consider snowfall. Although hydrological
droughts may be represented by the SPI (Nalbantis and Tsakiris, 2008; Tetbaizi
2010), drought indicators that include additional processes may be more appropriate for
sectoral (e.g. agriculture) impacts assessments (Vidal and Wade, 2009; Burke and Brown,
2010).

Other drawbacks include (Hayes al, 1999): (1) The identification of a “suitable”
theoretical probability distribution for modeling the raw precipitation data prior to stan-
dardisation; (2) The quantity and quality of the precipitation data used in the calculation
determines its accuracy (which also applies to other indices); (3) Aggregating or averaging

precipitation records over space (and time) to obtain mean values may smooth data and
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distort the true precipitation distribution (Quiring, 2009b); (4) Since any drought intensity
occurs with the same frequency (Table 4.1) for all locations when considered over a long
time period, SPI by itself is incapable of identifying the more “drought-prone” regions; (5)
Application at short timescales (1-3 months) to regions with low seasonal precipitation
may produce misleadingly large positive or negative SPI values; and, (6) The statistical
Z-score may not be intuitive to decision-makers. Also, equal categorical intervals have
differing probabilities of occurrence, e.g. the probability differential between-SIP0

and—1.5is 9.1%, and betweenl.5 and—2.0 is 4.4% (Steinemaret al., 2005).

4.2.2.4 Suitability of Gamma Distribution

Precipitation has a fixed lower boundary (i.e. zero), thus produces a positively skewed
distribution (Quiring, 2009a). Significantly skewed precipitation distribution is commonly
transformed to a more symmetrical, Gaussian-like distribution by fitting a statistical dis-
tribution. This provides a method for estimating the relative frequency (rarity) of a given
drought event based on the observations (Hesai., 2007).

A variety of distributions have been recommended for fitting precipitation (drought)
data, including gamma, log-normal, Pearson type Ill, and Box-Cox (Guttman, 1999;
Lloyd-Hughes and Saunders, 2002; Hust#l., 2007); different distributions would yield
different SPI values (Quiring, 2009b). Guttman (1999) concluded that the Pearson Type
1l distribution provides the “best” model for SPI computation. However, it is not suitable
for climate change analysis as the distribution is undefined if the future monthly precip-
itation total is lower than the fitted location parameter — the likelihood of which is high
since a strong drying trend has been projected, particularly for the Mediterranean region.
Lloyd-Hughes and Saunders (2002) found that the gamma distribution best modeled Eu-
ropean monthly precipitation compared to Gaussian and log-normal distributions. This is
especially the case for arid regions at short timescales, except for regions soutiNof 45
that have a more skewed precipitation distribution in arid areas (e.g. eastern Turkey and
northwest Spain).

The gamma distribution is popular as it can represent a variety of distribution shapes,
from exponential decay=1) to near-normal¢=20), using only the shape) and scale

() parameters (Husadt al, 2007). According to central limit theorem, the longer the
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length of the timeseries, the distribution of the timeseries mean tends towards a more
normal distribution (e.g. as tends to infinity; Lloyd-Hughes and Saunders, 2002). It is
positively skewed and is bounded on the left by zero, which is important since negative

precipitation is impossible (Quiring, 2009a).

4.2.2.5 Computation

For a chosen timescale (e.g. 3-month),a lagged moving average was computed for
the monthly precipitation timeseries (hereafter, “precipitation timeseries”), therefore the
value at month also accounts for conditions in the preceedinry months.

The gamma distribution was then applied, usingdhenma function in R (R Devel-
opment Core Team, 2012) that gives the distribution function, to model this precipitation

timeseries; its PDF is defined as:

1
g(z) = mma_le_x/ﬁ for >0 (4.1)

wherea >0 is a shape parametél>0 is a scale parameter, amg-0 is the (projected

or present-day) precipitation amount in mornthI'(«) is the gamma function and is

defined as:

n—1 1,y—1 00
INa) = lim nn = / y“ e Vdy (4.2)
n—o0 0 Y + v 0

The parametera andg for the calendar monthcan be estimated with the following

approximations to the maximum likelihood method (Thom, 1958):

R 1 4A;
az_4Ai<1+ 1+ 3> (4.3)
. z
Q4
where, forn observations
A; = In(x’,) — M (4.5)

n

Integrating the PDF with respecticand entering the estimates®fandgs; produces
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an expression for the cumulative probabilif{x) of the precipitation amount occurring
for a given month and timescale. This cumulative probability distribution is then trans-
formed into the standard normal distribution, using gherm function in R, to generate
the SPI.

The gamma distribution is undefined fox0, and P(x=0)>0, whereP(z=0) is the
probability of zero precipitation. Abramowitz and Stegun (eds) (1965) and Heisalk
(2007) offered approximate conversion for these undefined entries; instead, this study car-
ried out a linear interpolation between the preceding and subsequent SPI values. Where
these undefined entries occurred at the start (or end) of the timeseries, the subsequent (or
preceding) SPI value was adopted. Cells with0% of the timeseries that cannot be mod-
elled by the gamma distribution (i.e-10% of the values of the precipitation timeseries
were zero) were excluded as drought analysis for very dry regions would not be so mean-
ingful. Fora with values>100, they were adjusted to 100 to avoid very latigand very
small 8 values as the product ef and 3 gives the mean; such adjustment would have

little impact on the gamma distribution as=100 is similar to a Gaussian distribution.

4.2.3 Drought Analysis

Drought identification and the parameters (i.e. drought severity and frequencies of
DAI25 and DAI50) used and the timescales considered, along with study area/regions are
detailed in Sections 3.6-3.9. Both short (SPI3) and long (SP112) droughts, defined as
SPIKK—1.5 (aseveréextremedrought, Table 4.1), were studied. Climate change effects
were determined by comparing results in 2001-2050 and 2051-2100 to those in 1951
2000. Drought severity was derived for each of the 9140 cells within the study area.
Regional severities, DAI25 and DAI50 frequencies (see Section 3.8), based on the PRU-
DENCE regions and Koppen climates types (see Section 3.9), are presented for analysis

in Sections 4.4-4.6.

4.3 Drought Threshold Expressed as Precipitation

Since SPI is standardised (Section 4.2.2.3), it provides no information on the con-
cerned threshold/intensity in absolute precipitation terms, which could be more useful

in practical applications. This is shown in Figure 4.1 — for each cell, the precipitation
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a) SPI3
-10°W 0° 10°E 20°E 30°E 40°E 50° E 60°E 70°E

b) SPI12
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Figure 4.1: Threshold in precipitation (mm/month) that has the same percentile as less than
SPI-1.5 during 19512000 for (a) SPI3 and (b) SPI12 events.
threshold value is comparable to SHIL5 as both have the same percentile exceedence.
Similar to the runoff thresholds (Section 3.7.1), the absolute precipitation threshold for
each cell was derived by identifying the percentile based on the number of months of the
SPI timeseries with values being—1.5 in the 1951-2000 period. This percentile was
then applied to the 1951-2000 lagged moving average precipitation timeseries to extract
the threshold in absolute precipitation, i.e. the probability of the precipitation timeseries
falling below the identified precipitation threshold is the same as the SPI value being
<-—1.5in the 1951-2000 period. Alternatively, absolute precipitation could also be ob-
tained by interpolating the shape and scale parameters of the gamma distribution.
According to Figure 4.1, the 3-month or 12-month lagged moving average precipita-
tion that corresponds with the SP1.5 drought definition varies widely across Europe,
ranging from under 10 mm to over 50 mm. In general, higher precipitation threshold
values occur in northwestern Bl, western coast of Norway, AL, and parts of Russia and
the Caucasus. Sub-regional variations in Scotland and southeastern England, for exam-

ple, may require water resource and drought management strategies to be designed for
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very different precipitation levels. Therefore, “relative drought conditions” in different
regions may correspond with rather different absolute amounts of rainfall; it is also likely

to depend on socio-economic factors such as demand and population.

4.4 Future Changes in Drought

This section presents the projected changes in drought parameters under the 21st cen-
tury climates. Firstlyy, ECHam5 under RCP6 is used to demonstrate the spatial varia-
tions in the simulated changes in drought severity across the study region (Section 4.4.1).
ECHAMS5 was chosen as according to Reichler and Kim (2008), it simulated the cur-
rent climate for 14 climate variables very well compared to most other GCMs. Gleckler
et al. (2008) found ECHAMS to be superior in many respects in the extra-tropics and has
smaller errors than other “typical” models. Pierteal. (2009) assessed the performance
of 21 GCMs using 42 metrics based on seasonal temperature and precipitation, the ENSO
and Pacific Decadal Oscillation for western U.S., and ECHAMS was amongst the better
performing models. Hurkmaret al. (2010) provided a brief discussion on the choice of
ECHAM5-MPI-OM over other GCMs by drawing on results from other research (e.g.
Coveyet al, 2003; van Ulden and van Oldenborgh, 2006; Reichler and Kim, 2008) that
compared model performance based on a range of climate variables. RCP6 was selected to
represent moderate radiative forcing (see Section 3.4.2). Secondly, the regional changesin
drought parameters based on 180 simulations described in Section 4.2.1 are summarised

in Section 4.4.2.

4.4.1 Spatial Variations of Changes in Drought Severity

Figures 4.2-4.4 show the present-day SPI112 and seasonal drought severities, along
with their percentage changes in the 21st century projected by ECHAMS under RCP6.
The small spatial and seasonal variations in the 1951-2000 values for both SPI12 and
SPI3 (Figures 4.2a and 4.3) are due to the standardised nature of the SPI (see Section
4.2.2).

For the 21st century drought severities, Figures 4.2b, 4.2c and 4.4 generally reveal in-
creases in the lower-latitudes and decreases in the high-latitudes. The largest magnitudes

of change (in both directions) in 2051-2100 are of course considerably more widespread
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Figure 4.2: SPI12 drought severity (in standard deviation months) in (a) 1951-2000, along with
the percentage changes in (b) 2001-2050 and (c) 2051-2100, from 1951-2000, projected by
ECHAMS under RCP6.
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Figure 4.3: Seasonal drought severity (in standard deviation months) in 1951-2000.
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Figure 4.4: Percentage changes in seasonal drought severity in 2001-2050 (left panels) and 2051
2100 (right panels), from 1951-2000, projected by ECHAMS5 under RCP6.

than in 2001-2050. Seasonally, the largest decreases occur in the cold seasons whereas
the largest increases are found in the warm seasons. Marked increas&s5Hiymes for

SPI12 and>2.6 times for SPI3, in drought severity are simulated for areas around the
Mediterranean and Black Sea basins; such increases are projected to occur in 2051-2100

across large parts of this regions even in the cold seasons.

4.4.2 Projections by 18 GCMs under 10 Emission Scenarios

Figure 4.5 shows the level of agreement in the direction of change according to the

180 simulations for PRUDENCE- and Koppen-averaged results. A “robust change” is
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defined as occurring when all 180 simulations indicate the same direction of change.
A “general positive/negative change” is defined whe®0 of the total 180 simulations
project an increase/decrease. “Mixed / no change/events” (green) may refer to (1) no
identified droughts (notably in frequencies of DAI50, but also in some DAI25 cases), (2)
no changes in drought parameters, or (3) when exactly 90 of the 180 simulations project
an increase/decrease. The number represents the percentage of total simulations showing
increase/decrease. Figure 4.5 does not provide information about the magnitude of change
nor about individual simulations. Magnitudes of change — in interquartile ranges (IQRs)
and ensemble means (in brackets) — for robust trends are presented in Figures 4.6 and
4.7; IQRs are considered a more representative and robust measure of uncertainty. The
discussion in this Section is based on Figures 4.5-4.7; absolute DAI25 frequencies (not
shown) quoted below also refer to IQRs.

Figure 4.5 shows that increasing severity and occurrence of large-scale drought are
projected for most regions, except for some PRUDENCE (SC) and Koppen (Cfc, Dfc,
ET) regions. Overall, robust increases (decreases) in drought conditions are concentrated
in southern (northern) Europe; they also tend to vary little with different seasons. Sim-
ilarly, other studies have shown that the 20th century drying (wetter) trend is likely to
continue in western/central Europe (western Russia)dPall, 2004); GCMs and RCMs
generally simulate strong increases (decreases) in mean annual precipitation in higher
(lower) European latitudes in future (Raisaretmal, 2004; Gacet al, 2006; Beniston
et al, 2007; Heinrich and Gobiet, 2011), with uncertain sign of change in5@0 km-
zone in between (Kjellstroret al, 2011). Intensifying wet events in northern Europe, and
longer, more frequent, severe and widespread droughts in southern Europe have been pro-
jected with high statistical significance and confidence (Heinrich and Gobiet, 2011); much
of France, southern England and the western/central Mediterranean could experience the
largest increases in maximum dry spell length (Louddaal., 2008).

Increasing localised precipitation may occur in areas with declining mean precipita-
tion (Buonomoet al,, 2007; Garcia-Ruizt al,, 2011), e.g. westward side of mountain
chains of western and central Europe due to enhanced westerly winde{@la@006).
Subsequently, both increasing intense precipitation and more severe “dry and hot” ex-

tremes (Kundzewicet al, 2006), along with increasing drought and flood magnitude,
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(a) PRUDENCE-averaged Results

2001-2050:
SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50
Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON
BI 61.1 61.1 61.7 83.3 81.1 75.0 61.1
P 95.6

FR 88.9 88.9 94.4
ME 55.6 55.0 55.6

60.6 59.4 76.7 99.4
78.3 58.9 77.8
87.2 94.4 88.9 81.1

53 B
81.1 | 944 [ 944
611 | 878 | | 533
2051-2100:
SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50
Severity DAI25 _DAI50 DJF__MAM _JJA  SON DJF__MAM _JJA  SON DJF__MAM _JJA  SON

Bl 60.0 61.1 64.4 88.9 67.2
99.4 98.9
51.7 72.8 95.6
95.0 90.0 65.6 77.8
96.7 98.3 93.3 98.9
62.2 60.6 93.9
95.6 98.3 99.4

739 | 889 [ 556 | 833

(b) Koppen-averaged Results

2001-2050:
SPIT2 SPI3 Severity SPI3 DAI25 SPI3 DAI50
Severity DAI25 DAI50 DJF  MAM JJA  SON DJF  MAM JJA  SON
778
611 | 611 | 944 | 889
93.9
58.9 | 69.4 | 944 | 944
96.7 944 | 850
822 | 889 806 | 944 | 67.2
733 94.4 | 91.1 61.1
978 | 706 | 833 | 811 88.9
88.3 90.6 s22 [N 933 | ese
97.8 88.9 533 | 750 | 97.8 | 833
722 | 672 | 66.7 66.7 60.6 944 | 889
Dfa | 556 | 61.1 544 | 833 | 783 | 944 97.8 | 59.4 90.6
Dib | 556 | 722 | 667 98.9
50.6
85.6
2051-2100:
SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50
Severity DAI25 DAI50 DJF  MAM JJA  SON MAM  JUA MAM  JJA  SON
91.9
544 | 606 | 944 | 889
944
67.2 | 861 | 944
86.7 | 88.9
694 | 561 | 96.1 | 98.9 778
87.8 76.1
95.0 I 57 | sso
944 98.9 | 54.4
511 894 | 650 | 689 | 56.1
Dfa | 589 | 611 Dia | 744 | 728 | 861 | 944 728 | 77.2 93.9
Dib | 533 | 71.7 | 722 | Db 944 | 606 | 767 84.4 52.2
Dfc 944 | 950
ET 89.4 | 86.1 98.3

Robust increase: all 180 simulations projecting increase.
General increase: >90 simulations projecting increase.
Robust decrease: all 180 simulations projecting decrease.
General decrease: >90 simulations projecting decrease.
Mixed / No change/events

61.1 |Percentage of 180 simulations showing increase/decrease.

Figure 4.5: Direction of change, from 1951-2000, projected by 18 GCMs under 10 emission
scenarios for (a) the PRUDENCE- and (b) Kdoppen-averaged drought parameters. The number
represents the percentage of the total 180 simulations showing positive/negative changes.
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(a) SPI12 Results

2001-2050 2051-2100
Severity DAI25 DAI50 Severity DAI25 DAI50
Bl Bl
P 1.9-2.9 (2.4) 2332 (27) 2.1-47 (3.4) P | 346448 386.1(5.0) | 6.3-15.7 (10.9)
FR FR
ME ME
sc | 0507(0.7) 0.4-0.6 (0.5) 0.7-0.7 (0.7) sc | 0.205(0.3) 0.2-0.3 (0.2) 0.7-0.8 (0.7)
AL AL
MD | 1.6-2.4 (2.0) 15-2.6 (2.0) 1624 (2.2) MD | 2754 (3.7) 2267 (4.6) 2565 (3.5)
EA EA
(b) SPI3 Severity
2001-2050 2051-2100
DJF MAM JJA SON DJF MAM JUA SON
Bl Bl
P 1.3-1.6 (1.4) 1.3-1.8 (1.5) 1.6-2.4 (2.0) 1.4-1.7 (1.5) P 1.7-2.6 (2.1) 1.8-3.4 (2.4) 2.7-5.4 (3.8) 1.9-3.3 (2.5)
FR 1.4-2.3 (1.7) 1.2-2.1 (1.6) FR 1.8-5.0 (2.8) 1.6-4.1 (2.6)
ME ME
sc | 07-08(07) 0.7-0.8 (0.7) sc
AL 1.42.3 (1.6) AL 1.8-49 (2.8)
MD [ 1.2-1.6(1.3) 1.3-1.6 (1.4) 1522 (1.7) 1.3-1.9 (1.5) MD [ 1.5-2.7(1.8) 1.7-2.8 (2.2) 2.3-4.7 (3.2) 1.9-3.7 (2.6)
EA EA
(c) SPI3 DAI25
2001-2050 2051-2100
DJF MAM JUA SON DJF MAM JJA SON
Bl Bl
P 13-2.0 (15) 1.9-3.8 (3.2) P 19-33(24) | 4579 (6.3) 23-39 (3.2)
FR 1.6:3.4 (2.5) 1323 (1.8) FR 26-65 (4.5) 1.9-43 (3.0)
ME ME
sc | 0506 (0.5) 0.6-0.8 (0.7) sc | 0204(0.2)
AL 1.4-27 (1.8) 1.4-2.2(1.8) AL 2.0-5.3 (3.4) 1.9-4.2(3.1)
MD 1.7-21 (1.9) 2.0-3.2 (2.4) 1.4-2.4 (1.7) MD 22-33(2.6) 3.3-7.5 (5.0) 2453 (37)
EA EA
(d) SPI3 DAI50
2001-2050 2051-2100
DJF MAM JJA SON DJF MAM JJA SON
Bl Bl
P 1422 (20) | 7.0-10.0(8.0) | 1.4-1.6(1.4) P 11.0-39.3 (18.0) | 2.2-4.0 (3.0)
FR FR 2.2-5.4 (3.3)
ME ME
SC SC
AL 1541 (2.5) AL 25-15.1 (5.5)
MD MD
EA EA

Figure 4.6: Magnitude of change, expressed as ratio to 1951-2000 values, for the interquartile
ranges (IQRs) and ensemble means (in brackets) of drought parameters simulated using 18 GCMs
under 10 emission scenarios for the PRUDENCE regions. Categories with robust increases (red)
and decreases (blue) are shown.
may occur in central Mediterranean and central-western Europes(R&) 2004). This
may partly explain the smaller percentage of simulations indicating increases in SP112
DAI25 frequency than SPI12 severity for Cfb (Figure 4.5b), which covers much of central-
western Europe.

Seasonally, Figure 4.5 reveals that robust increases (decreases) for all the drought pa-
rameters are more common in summer/autumn (winter/spring). Change magnitudes are
often largest in summer, followed by autumn, and smallest in winter; regional variations

are more apparent in summer/autumn than in winter/spring (Figures 4.6 and 4.7). Like-

wise, Freiet al. (2006), Benistoret al. (2007), Blenkinsop and Fowler (2007b), Ekstrom
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(a) SPI2 Results

2001-2050
Severity DAI25 DAI50
BWh| 202422 1.6-1.9 (1.8) 25-35(3.2)
BWk
BSh | 1.8-2.1(1.9) 1.9-2.1 (2.0) 1.3-1.6 (1.4)
BSk
Csa | 1.826(21) 3.1-5.2 (4.0)
Csb | 1.826(22) 2.4-38 (3.0) 1.6-2.8 (2.0)
Cfa 1.4-2.5(1.8) 2.1-6.0 (3.5)
Cfo
Cfc 0.7-0.8 (0.7) 0.6-0.8 (0.7) 0.7-0.9 (0.8)
Dsa | 1.6-2.2(1.9) 1.6-2.0 (1.8) 1.8-3.1 (2.3)
Dsb 1.4-2.2 (1.9) 1.6-2.7 (2.3)
Dsc
Dfa
Dfb
Dfc 0.4-0.6 (0.5) 0.3-0.5 (0.4)
ET 0.5-0.6 (0.5) 0.4-0.5 (0.5) 0.9-0.9 (0.9)
(b) SPI3 Severity
2001-2050
DJF MAM JJA SON
BWh| 1.6-2.4(2.0) 1.6-2.1 (1.9) 1.3-1.7 (1.5)
BWk
BSh | 1.4-1.8(1.6) 1.7-2.0 (1.8) 1.3-1.6 (1.5)
BSk
Csa | 1.31.7(15) 1.4-1.7 (1.5) 1.5-2.0 (1.8) 1.3-1.6 (1.4)
Csb | 1.2-15(1.4) 1.3-1.6 (1.5) 1.7-2.3 (2.0) 1.4-1.9 (1.5)
Cfa 1.423(1.7) 1.4-2.3(1.6)
Cfb
Cfc
Dsa 1.4-2.0 (1.6) 1.3-2.0 (1.8)
Dsb 1.3-2.0 (1.5) 1.5-2.4 (2.0)
Dsc
Dfa
Dfb 0.8-0.9 (0.8)
Dfc 0.6-0.7 (0.6) 0.6-0.7 (0.7) 0.7-0.9 (0.8)
ET 0.6-0.7 (0.7) 0.7-0.8 (0.7)
(c) SPI3 DAI25
2001-2050
DJF MAM JUA SON
BWh| 1.6-2.3(1.9) 1.6-2.0 (1.8) 1.2-1.4 (1.3)
BWk
BSh 1.8-2.3 (2.0)
BSk
Csa 1.4-1.9 (1.7) 2.6-3.7 (3.0) 5.0-11.1 (8.5) 1.8-3.0 (2.3)
Csb 1.4-2.1 (1.8) 1.6-2.2 (1.9) 2.4-4.4 (3.6) 1.5-2.4 (1.9)
Cfa 1.4-3.4 (2.1)
Cfb
Cfc
Dsa 15-25(1.9)
Dsb 1.7-3.4 (3.0)
Dsc
Dfa
Dfb | 0.8-0.9(0.8)
Dfc 0.3-0.5 (0.4) 0.4-0.5 (0.5) 0.6-0.8 (0.6)
ET 0.0-0.5 (0.3) 0.5-0.7 (0.6)
(d) SPI3 DAI50
2001-2050
DJF MAM JUA SON
BWh| 1.6-2.1(1.9) 15-1.9 (1.7) 1.9-2.5 (2.1)
BWk 1.0-1.4 (1.2)
BSh Inf
BSk
Csa
Csb 1.5-3.0 (2..0)
Cfa
Cfb
Cfc
Dsa 2.0-3.5 (2.0)
Dsb
Dsc
Dfa
Dfo
Dfc 0.0-0.0 (0.0) 0.0-0.0 (0.0)
ET

Figure 4.7: Same as Figure 4.6, but for Kbppen-averaged drought parameters.
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2051-2100
Severity DAI25 DAI50
3.3-5.3 (4.1) 2.6-3.7 (3.1) 4.9-9.4 (6.7)
2.8-4.8 (3.7) 2.6-5.2 (3.7) 2.0-3.6 (2.7)
1.3-25(1.7)
3157 (41) | 6.7-147(9.6) | 2.8-10.5(5.0)
3361 (4.3) 4989 (66) | 4.0-12.4 (6.6)
2.1-5.2 (3.0) 4.5-14.7 (7.8)
0.4-0.7 (0.6) 0.4-0.5 (0.5) 0.5-0.6 (0.5)
2.4-47 (3.4) 2.4-4.6 (3.4) 2.9-7.8 (4.7)
2.2-5.0 (3.5) 2.5-5.9 (4.0)
0.3-0.3 (0.3)
0.2-0.2 (0.2) 0.9-0.9 (0.9)
2051-2100
DJF MAM JJA SON
2.4-5.2 (3.6) 2.6-4.5 (3.5) 1.9-3.1 (2.3)
2.0-3.6 (2.7) 2.6-4.2 (3.3) 1.7-2.9 (2.3)
1.3-2.2 (1.5)
1.7-2.9 (2.2) 2.0-3.3 (2.5) 2.2-43 (3.1) 1.7-3.0 (2.2)
1.6-2.6 (2.0) 1.8-3.0 (2.2) 2.8-5.3 (3.9) 2.1-3.9 (2.6)
21-5.0 (3.0) 21-4.9 (3.0)
2.1-3.9 (2.8) 1.9-4.3 (2.9)
1.9-3.8 (2.6) 2.3-5.2(3.4)
0.6-0.7 (0.6)
0.2-0.4 (0.3) 0.3-0.5 (0.4)
0.4-0.6 (0.5) 0.5-0.7 (0.6)
2051-2100
DJF MAM JJA SON
2.4-38(3.1) 2.3-3.6 (2.9) 1.6-2.3 (1.8)
3.0-5.1 (3.9) 4.3-85 (6.5)
1.4-3.3 (1.8)
2.0-5.6 (3.6) 437.0(56) |11.0-39.0 (24.8) | 3.0-11.8(56)
2.2-3.3(2.8) 2.3-3.7 (2.8) 5.3-9.7 (7.2) 2.8-5.9 (4.0)
29-8.8 (4.8) 2.9-9.3 (4.8)
2.84.7 (3.5) 2.0-4.6 (3.1)
2.1-4.7 (3.0) 3.3-6.7 (4.5)
0.5-0.8 (0.5)
0.0-0.2 (0.2) 0.0-0.2 (0.1)
0.0-0.3 (0.0) 0.3-0.4 (0.3)
2051-2100
DJF MAM JJA SON
2.3-5.0 (3.4) 2.3-3.8(3.1) 25-4.9 (3.5)
Inf
3.0-85 (4.5) | 4.8-34.0 (12.5)
3.5-11.6 (6.0)
0.0-0.0 (0.0) 0.0-0.0 (0.0) 0.0-0.0 (0.0)

“Inf” denotes no

drought events in 1951-2000 thus magnitude cannot be mathematically expressed as a ratio.
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et al. (2007), Schmidliet al. (2007) and Smiatekt al. (2009) have projected summer
drying and winter wetting, especially in the lower and higher latitudes, respectively.

These seasonal changes are consistent with an area of reduced mean precipitation
that migrates northward from southern Mediterranean in winter to cover much of central-
western Europe in summer as anti-cyclonic circulation strengthens over the central-southern
Europe in winter and northeastern Atlantic in summer (Gietgal, 2004; Giorgi and
Coppola, 2009). Associated with this is enhanced mean winter precipitation (Schmidli
et al,, 2007) — by 15-30% in 2071-2100 (from 1961-1990 values; Gigtrgi., 2004),
or an average of 2.14%/decade based on 18 GCMs over the 21st century (Giorgi and Bi,
2005) — and also extreme winter precipitation (Fetal., 2006) over much of western,
central and northern Europe (Gibelin and Déqué, 2003), except the central and north-
ern Scandinavian mountains, northwest and eastern Baltic Sea (Ekstréin2007).

In summer, precipitation slightly declines in northern Europe (Giorgi and Bi, 2005) while
southern, western and central Europe experience substantial and widespread reduction (up
to 30—-45% in 2071-2100 under A2 and B2 emission scenarios, compared to 1961-1990
values) as a ridge forms over western Europe and a trough over eastern Europe that defect
Atlantic storms northward (Giorgit al., 2004; Giorgi and Lionello, 2008). A larger land—

sea contrast in lower tropospheric summer warming and an earlier and more rapid decline
in soil moisture during spring are primarily responsible for continental and southeastern
Europe summer drying (Rowell and Jones, 2006). Warming-induced regional circulation
and pressure distribution changes could yield drier, warmer summers, and significantly
more intense and persistence summer European droughts, as well as floods, especially
in central Mediterranean and central-western Europe ¢Pal., 2004). Spring and au-

tumn have relatively small precipitation change<d 6% in 2071-2100 under A2 and B2
emsision scenarios, compared to 1961-1990 values; Gibadi 2004).

From 2001-2050 to 2051-2100, positive (negative) changes tend to become more
(less) robust with time (Figure 4.5), i.e. greater forcing promotes/exacerbates drought con-
ditions, or reverses changes from negative to positive in some simulations. Both SPI12
and SPI3 timescales reveal similar regional patterns in agreement. Similar to Heinrich
and Gobiet (2011), SPI12 results show higher magnitudes of change than SPI3. SPI12

drought severity values are larger than their SPI3 counterparts as drought severity (i.e.
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intensityxduration) strongly correlates to duration (Bonacci, 1993; Woo and Tarhule,
1994; Tarhule and Woo, 1997). This, together with the larger changes in SPI12 sever-
ity, suggest that longer duration droughts impose a greater drought risk than SPI3, thus
are of greater concern.

The DAI50 frequency results are the least robust and are less conclusive than other
drought parameters. This, along with their large magnitudes of change, especially in
summer (e.g>10-fold increase in IP), is related to their relatively rare (most§%o)
present-day occurrence; they tend to occuw:20% of the time during 2051-2100. Fig-
ure 4.5 indicates greater chances of no changes in DAI50 events or the absence of DAI5S0
events, hence analysis hereafter focuses on severities and DAI25 frequencies. DAI25 fre-
guencies often have larger increases than changes in severity, which may be complicated
by months with temporary above-threshold SPI values occurring within a drought event
that negatively contribute to the changes — the effects of including or excluding such
“excess periods” are explored in Section 5.6.

The following sections present the results obtained here on a region-by-region basis.

Theses are also compared to findings in other studies.

4.4.3 Lower Latitudes

South of 43N (PRUDENCE: IP and MD; Koppen: BWh, BSh, Csa, Csb, Dsa, Dsb),
projections of enhanced drought conditions are typically robust across the 180 simula-
tions (Figure 4.5). The increasing drought conditions obtained here is consistent with the
general precipitation reduction simulated for regions from the Mediterranean to Caspian
Sea region (Noharet al, 2006). This also suggests that southern Europe — which
already suffers from droughts due to low precipitation and high temperature extremes
(Kundzewiczet al,, 2006) — might be especially vulnerable to global warming (Giorgi

and Lionello, 2008).

4.4.3.1 Mediterranean

For SPI12 severity, magnitudes increase by up3sfold in 2001-2050 and-6-fold
in 2051-2100; DAI25 frequencies have larger increases (Figures 4.6 and 4.7). In absolute

terms, 25% of IP and MD being drought-affected occurs in roughly 9% of the time during
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1951-2000, but in 25-60% during 2051-2100; Kdppen results have similar frequencies.
Similarly, other studies have indicated declining precipitation intensity (Benetah,

2007) and annual mean precipitation (Buonoetal., 2007; Lavaysset al,, 2012), by
10-20% or more (Chenowett al, 2011; Garcia-Ruiet al, 2011), due to fewer wet
days in southern Europe (Kjellstrom, 2004), as well as drying of soil moisture (Gibelin
and Déqué, 2003; Wang, 2005) and longer hot-and-dry spells (Kundzetétz 2006).
Significant and widespread precipitation reduction (e.g>B%%, or>125 mm annually,

over southwestern Turkey; Evans, 2008) in the Middle East and Turkey occurs due to
future decreases in storm track activity in the eastern Mediterranean (Evans, 2010; Hem-
ming et al,, 2010; Chenowetkt al, 2011). The projected increases in drought (Sheffield
and Wood, 2008b; Sowert al, 2011; Warreret al,, 2012), which fluctuates with pre-
cipitation deviations (Hemmingt al., 2010), and earlier and longer events (Christensen
et al, 2002; Plantoret al,, 2008), e.g. maximum drought length in Ebro/Gallego (Spain)
may be~30 months longer with enhanced severity (Blenkinsop and Fowler, 2007b), are
often consistent across all the models used (Blenkinsop and Fowler, 2007b), drought in-
dices applied (Burke and Brown, 2008) and timescales considered (Letikhs2008),

in agreement with the robust changes shown in Figure 4.5.

While precipitation in the southern Mediterranean and the Middle East generally de-
clines across all seasons (Gibelin and Déqué, 2003; Giorgi and Bi, 2005; Kundzewicz
et al, 2006; Benistoret al, 2007; Kjellstromet al,, 2011), it may increase in winter
(Gibelin and Déqué, 2003), particularly in northeastern and northwestern Mediterranean
coasts (Kjellstroret al, 2011) (e.g. northern Balkans; Buonomioal,, 2007; Giorgi and
Lionello, 2008), due to extremes (e.g. southern France; &a., 2006) and/or storm
activities (Sumneet al,, 2003). Such sub-regional variations could explain the less robust
(yet with relatively high agreement 0f80%) winter positive drought trends (Figure 4.5).

Increases in SPI3 drought parameters are typically less than 3-fold in 2001-2050 and
5-fold in 2051-2100; magnitudes of change in summer are considerable in most cases.
Csa, Csb and Cfa in particular, have marked increases in summer, especially in 2051—
2100, e.g. summer DAI25 frequencies may increase-ti@-fold or more (Figure 4.7)
from ~5% of the time during 1951-2000 to 58% of 2051-2100. These results are consis-

tent with the projected increasing summer aridity (Ruosteenoja and Raisanen, 2013) and
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drying (Kundzewiczet al, 2006; Blenkinsop and Fowler, 2007b; Ekstr@tal.,, 2007),

e.g. summer droughts duration may becar® days longer (Hansaet al,, 2007). How-

ever, Ruosteenoja and Raisanen (2013) noted that this summer drying may be underes-
timated as CMIP3 models exclude stomatal resistance with highgradfcentrations
(which reduces transpiration, thus further decreases air humidity and cloudiness and in-
creases solar radiation). The drying is associated with precipitation reduction — e.g. by
30% by 2070-2099 (Giorgi and Lionello, 2008; Sombtl., 2008), or—4.25%/decade

under SRES A2 (Giorgi and Bi, 2005) — and decreased heavy precipitation (Beniston

et al,, 2007), along with the northward extension of aridity (Gao and Giorgi, 2008).

4.4.3.2 Western-Central Asia (BWk, BSKk)

Similar to the Middle East, literature on Central Asia, particularly those on future
climate simulations, is less abundant than for the European Mediterranean due to less
research capacity and data availability in this region.

BWk and BSk generally show increases in drought (Figure 4.5), which is in agreement
with the projected drying trend and increasing aridity especially in western Turkmenistan
Lioubimtseva and Henebry (2009). The relatively low agreement between projections in
these results, especially in winter/summer, may be related to the highly uncertain simu-
lated precipitation changes (Lioubimtsesqal,, 2005; 2012) — e.g. Lioubimtseva and
Henebry (2009) simulateet1 mm/day, and with high temporal and spatial variability —
due to the difficulties in climate change modelling in arid zones (Lioubimtseva and Cole,
2006). Furthermore, precipitation trends in this region are complicated by the wetting
tendency in both northern (European Russia and Central Siberia) and southern (e.g. Iran)
parts of the region, but drying in between (Lioubimtseva and Henebry, 2009). Seasonally,
BWK results suggest negative changes in winter drought but positive changes in other
seasons (Figure 4.5). These seasonal changes agree with the precipitation projections:
increase or vary little in winter, reduce in spring, decline substantially in summer and

autumn (Lioubimtseva and Henebry, 2009; Lioubimtsetval., 2012).
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4.4.3.3 France (FR)

France has similar, though less robust, drought changes to the lower latitudes (Figure
4.5). This could be due to the averaging of sub-regional precipitation variations: decreases
have been projected in the south and increases northwards (by 25%), with small deviations
in the central part and over the Alps (Etchevetsal, 2002). Increases in SPI12 results
have relatively high £89%) agreement in the projected direction of change across the
simulations. This agrees with the longer droughts projected for France (Plentin
2008).

For SPI3, winter/spring (mostly winter for FR) results have lower agreement (often
<60%) than in summer/autumn (typicalty90%), particularly in DAI25 frequencies.

This lack of robustness in winter results could be related to the sub-regional variations

and uncertainties in the simulated winter precipitation increase éGalg 2006; Planton

et al, 2008; Huss, 2011). In summer/autumn, DAI25 frequency increase2®86 dur-

ing 2001-2050 (by up to 3.4 times from 1951-2000 value) and 40% during 2051-2100

(6.5 times). These results are consistent with the projected substantial summer precipi-
tation reduction (Raisanest al., 2004) and increase (by50%) in maximum number of

consecutive dry days over much of France (Plarioal,, 2008).

4.4.4 Higher Latitudes

Of the study region, areas north of°® (PRUDENCE: SC; Koppen: Dfc, ET) are
the least drought-prone under future climates.

For SPI12, of those cases identified as drought (e.g. DAI25) during 1951-2000, most
(>50%) remain as drought under climate changes projected for 2001-205820%%
remain as drought (in absolute terms, DAI25 events occut48o of the time) under
the strongest changes projected for 2051-2100 (Figures 4.6 and 4.7). These results fol-
low the projected increasing mean precipitation simulated for Scandinavia and northeast-
ern Europe (Arnell, 1999c; Raisanen al, 2004; Hanssen-Bauet al, 2005; Nohara
et al, 2006; van Lanemt al,, 2007; Wilsonet al,, 2010) due to more frequent wet days
(Buonomoet al, 2007) and increased precipitation intensity (Kjellstrom, 2004; Alcamo
et al, 2007b).

Unlike other regions, negative changes in drought parameters occur throughout the
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year, including summer/autumn (Figure 4.5). Agreement is higher in winter/spring (also
in autumn), with magnitudes, in both relative and absolute terms, similar to that for SP112
results; but slightly smaller reductions occur in autumn. Although summer reductions
lack absolute robustness, projection agreement is hi@®%). Large parts of EA and
southern Russia (Dfb climate) also share similar winter/spring characteristics to the high
latitudes, despite lower consistency in simulated direction of change. These seasonal
results are consistent with the anticipated precipitation increases that are most pronounced
in winter (Raisaneret al, 2004; Hanssen-Bauet al, 2005; Blenkinsop and Fowler,
2007b) due to more frequent and intense events and extremes{@&lei2006; Giorgi

and Coppola, 2009).

In summer, precipitation increases have generally been projected for the high-latitudes
of the study region (Kundzewicet al., 2006; Benistoret al, 2007; Lioubimtseva and
Henebry, 2009; Kjellstronet al,, 2011), e.g. by>25% in 2070s (Alcamet al,, 2007a).
Compared to winter/spring results, the less robust summer/autumn regional drought re-
duction in Figure 4.5 may be related to sub-regional variations and uncertainties in the
projected precipitation changes: e.g. increases in northern Scandinavia and decreases or
unclear sign of change in the south (Hanssen-Batat, 2005; Freiet al., 2006; Rowell
and Jones, 2006; Worgg al., 2011), causing shorter summer droughts to occur in parts
of Scandinavia (Hansoet al, 2007). Moreover, in western Russia, dry spell length was
found to vary little even with 10-35% increases in summer precipitation, which suggests
that the persistence of summer drought is more responsive precipitation reduction than

increases (Pat al,, 2004).

4.45 The Alps (AL)

The Alpine ridge experiences and separates the competing climate regimes of Mediter-
ranean, Continental, Atlantic and Polar air masses (Beniston, 2005). Recent sub-regional
precipitation trends — slight wetting (drying) in northwest (southeast) (European Envi-
ronment Agency, 2009) — may alter in the future. However, the complex climatic in-
fluences, along with topography (Gabal, 2006), are likely to have contributed to the
uncertain trends with larger projection spread in most cases, except the projected changes

in summer and autumn which are in more agreement (Figure 4.5).
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SPI12 results indicate positive changes with relatively higB9%) simulation agree-
ment (Figure 4.5). This agrees with the projected mean precipitation decline found by
others (e.g. Beniston, 2005; Smiatekal., 2009; Kotlarskiet al, 2010) that is caused
by substantially lower wet-day frequency (Schmtlial,, 2007), such as in southwestern
Alps (European Environment Agency, 2009). The strongest drying (by 41%) occurs in the
Swiss Alps (Hortoret al,, 2006), although magnitudes are model-dependent, e.g. for the
French Alps (Martiret al,, 1996). This may induce earlier and longer droughts (Beniston
et al, 2007), e.g. longer droughts in the Brenta region (northern Italy) may have higher
maximum severity and frequency (by up to 2—3 events/decade) (Blenkinsop and Fowler,
2007D).

Seasonally, mean precipitation generally increases (decreases) in winter (summer);
spring and autumn have less clear trends (Beniston, 2005; Hertaln 2006), although
European Environment Agency (2009) suggested higher autumn precipitation. Figure 4.5
reveals lower agreement (53—79%) in winter/spring, which could be associated with un-
certain magnitudes of wetting (Jaspgerl., 2004; Beniston, 2005; European Environment
Agency, 2009; Smiatekt al,, 2009; Kotlarskiet al.,, 2010).

Robust summer/autumn increases have magnitudes almost comparable to that for
IP/MD, by up to 2.7 times in 2001-2050 and 5.3 times in 2051-2100 (Figure 4.6); DAI25
events may occur in up to 23% and 46% in the respective periods. These correspond with
findings in other studies, that include declining mean summer and autumn precipitation
(Beniston, 2005; Smiate&t al., 2009; Kotlarskiet al., 2010) due to less frequent wet-
days (Calanca, 2007; Schmidit al, 2007), increasing summer dry periods (Beniston,
2005; Smiatelet al, 2009), particularly in northern Alps where droughts are currently
rare (European Environment Agency, 2009), and more frequent (by 15-50%) and severe

(by 20%) droughts (Calanca, 2007).

4.4.6 Mid-Europe (ME) and Eastern Europe (EA)

The SPI analysis generally reveals intensifying drought conditions in ME and EA for
both long and short events, except for winter/spring (Figure 4.5). These results agree with
findings in other studies. For example, Nohatal. (2006) projected lower annual mean

precipitation for the Danube basin. Much of central Europe is projected to experience an
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increase in the duration of the longest dry period (Kundzewical., 2006). In eastern
Europe, more frequent very dry years (Maraczgtal., 2005), strong increases in 100-year
droughts in Hungary, Bulgaria, Romania, Ukraine and southern Russia have been simu-
lated (Lehneet al,, 2006). The low agreement66%) in the projected SPI12 changes for

ME (Figure 4.5) follows an unclear sign and magnitude of precipitation change for much
of the year (Kjellstronet al,, 2011), as more frequent/intense heavy precipitation coun-
teracts the declining precipitation in central Europe (McGrega@il., 2005; Kundzewicz

et al, 2006).

For SPI3 results, the negative changes in drought parameters in winter for both regions
(Figure 4.5) are consistent with the increasing winter (due to more frequent and intense
precipitation) and spring precipitation (Raisaretral., 2004; Giorgi and Coppola, 2009;
Ruosteenoja and Raisanen, 2013).

Increasing summer/autumn drought conditions projected for both regions may be as-
sociated with modified land-atmosphere feedbacks, which also influences climate change.
As warming shifts European climatic regimes northwards, central-eastern Europe be-
comes a new transitional zone between dry/wet climates, similar to the present-day Mediter-
ranean (Kyselset al,, 2010). Strong land-atmosphere interactions in this zone have been
found to increase summer precipitation variability (Senevirainal, 2006). A larger
land—sea contrast in lower tropospheric summer warming causes an earlier, more rapid
decline in soil moisture during spring and a positive summer feedback mechanism (Row-
ell and Jones, 2006). Both positive (McGregral., 2005; Giorgi and Coppola, 2009)
and negative (Rowell and Jones, 2006; van Leagtead., 2007; e.g. Raisanest al. (2004)
simulated by up to 70% under SRES A2) precipitation changes have been projected for
continental and southeastern Europe. The abundant summer precipitation with more fre-
guent/intense precipitation events in central Europe was found to relate to some feedbacks
between convection, radiation and surface fluxes — mechanisms of which are not well
identified and may vary among models (Plantral., 2008), hence the lack of robust-

ness in results obtained here.
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4.4.7 British Isles (BI)

Reduction in SPI112 severity and DAI25 frequency are projected, but withd®2%)
agreement (Figure 4.5). These are consistent with the uncertain direction of change for
mean precipitation in Scotland and northern England, as well as the inconsistent changes
in occurrence and severity of longer-duration drought simulated for the UK (Blenkin-
sop and Fowler, 2007a). Blenkinsop and Fowler (2007a) and Vidal and Wade (2009)
reported shorter and less severe long droughts (though with high uncertainty, particu-
larly for southern England; Blenkinsop and Fowler, 2007a). However, Betrkk (2010)
found events based on 12-month precipitation accumulations would become slightly more
severe; Fowler and Kilsby (2004) simulated increasing drought frequency, duration and
severity in most regions by 2070-2100. Longer events could become more frequent in
regions that rely on groundwater resources, representing potentially serious challenges
for the companies concerned (Blenkinsop and Fowler, 2007a). The low agreement found
here (Figure 4.5) could be associated with the averaging of sub-regional spatial variations
— increasing drought duration and severity are more likely in southern/southeast Eng-
land (with frequency to triple by 2070-2100; Fowler and Kilsby, 2004), than in Scotland
(Vidal and Wade, 2009; Burket al., 2010; Burke and Brown, 2010).

Seasonal changes (Figure 4.5) generally follow the simulated mean precipitation in-
crease in winter and decrease in summer (Blenkinsop and Fowler, 2007a). Although
studies indicate more frequent short droughts over the UK (Vidal and Wade, 2009; Burke
et al, 2010), e.g. by>35% under SRES A2 (Fowler and Kilsby, 2004), the direction
of change in Scotland and Northern Ireland and some eastern coastal areas is uncertain
with increasing winter precipitation (Blenkinsop and Fowler, 2007a). The uncertainty
in the projected summer drying is caused by two competing forces: land-sea contrast
in the lower tropospheric summer warming produces increased rainfall whereas large-
scale atmospheric changes, including remotely forced circulation changes, reduces rain-
fall (Rowell and Jones, 2006). The simple interpretation of future “wetter winters” and
“drier summers” implies the expectation of short summer droughts and no dry winters;
however, multi-season to multi-year droughts (as described by SPI112 and SPI124) could

occur even with winter wetting (Vidal and Wade, 2009).
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4.4.8 Koppen Climate Zones

The 16 Koppen climate zones (Figure 3.2) can be broadly categorised into “high”,
“moderate” and “low” based on their overall projected magnitudes of change in drought
parameters. The “high” category includes BWh, BSh, Csa, Csb, Cfa, Dsa and Dsb. These
climates tend to occur in the low-latitudes around the Mediterranean and Black Sea basins,
and have robust increases in drought. The “moderate” climates consists of BWK, BSK,
Cfb, Dsc, Dfa and Dfb. These mostly correspond to the mid-latitudes and Central Asia,
where drought decreases in winter/spring and increases in summer/autumn. The “low”
category is characterised by polar climates (Cfc, Dfc and ET) found in the high lati-
tudes and the Alps. These regions generally show reduced drought conditions. Patterns
of change for the Kdppen climate zones generally correspond with those for the PRU-
DENCE regions due to the geographic clustering of these climate types in each of the

three categories.

4.5 Projection Range

Uncertainties in climate change projections create a significant challenge to how sci-
entific information can be used in practical applications (Blenkinsop and Fowler, 2007a).
While Figures 4.6 and 4.7 show the IQRs and mean magnitudes of change of drought pa-
rameters from the 180 simulations, Figures 4.8—4.10 and 4.11-4.13 demonstrate both the
1951-2000 values and the full projection range for PRUDENCE- and Koppen-averaged
results, respectively. As the Figures suggest, projected drought characteristics and changes
are highly influenced by the choice of emission scenario and GCM but they also enable
some generalisations to be made.

Greater uncertainty roughly corresponds with greater magnitude of change, i.e. a
larger projection range tends to accompany higher warming (e.g. in 2051-2100 and in
summer/autumn) for both SPI12 and SPI3. Therefore, regional variations and the as-
sociated uncertainties generally increase with time, and are more apparent in the warm
seasons, similar to studies for mean precipitation change (e.g. Wang, 2008t Bfei
2006; Benistoret al,, 2007; Schmidliet al, 2007; Smiatelet al., 2009). Furthermore,

low-latitude regions tend to have the largest uncertainties in change magnitude, whereas
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the high latitudes show relatively small uncertainties and little seasonality, as warming is
greatest in former and smallest in the latter.

In summary, results for 2001-2050 are relatively insensitive to the choice of emission
scenario or GCM, whereas the magnitudes, or even direction, of change in 2051-2100
are strongly influenced by the emission scenario or GCM applied. Compared to the warm
seasons and warmer regions, results in the cold seasons and colder regions are also less

affected by the chosen scenario or GCM.
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Figure 4.11: Same as Figure 4.8, but for Kdppen-averaged severity.
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4.5 Projection Range
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Figure 4.12: Same as Figure 4.9, but for Kdppen-averaged DAI25 frequency.
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Figure 4.13: Same as Figure 4.10, but for Kdppen-averaged DAI50 frequency.
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4.6 Sources of Uncertainty

The range of emission scenarios and GCMs applied in the present study has enabled
the assessment of their relative contribution in the total variance of the drought projec-
tions. Emission scenario uncertainty produces varying degrees of future radiative forc-
ings. GCM uncertainty arises when different GCMs respond differently to the same ra-
diative forcings, producing a range of global temperature warming and a range of geo-
graphical and seasonal patterns of precipitation changes.

The overall variance in drought parametef&) was quantified by fitting a linear
model to the projections and partitioning the sum of squared deviations (Equation 4.6) into
emission scenario uncertainty ' £N?), GCM uncertainty (¢CM?) and an interaction
term ([?) that arises if scenario and GCM variances are not independent, i.e. the interac-
tion between scenario and GCM. These methods are fairly simple but findings herein are
expected to be qualitatively and quantitatively robust. The relative contribution of each of
these sources to the projected changes in drought severity are presented in Figures 4.14
and 4.15 for each regional average. Results for DAI25 frequencies (not shown) have very
similar regional variations and magnitudes to those for drought severity; those for DAIS0
frequencies are excluded due to their relatively rare occurrence under both present-day

and future climates.

T? = SCEN? + GCM? + I* (4.6)

Figures 4.14 and 4.15 show that patterns of the relative contribution from these sources
of uncertainty vary considerably between 2001-2050 and 2051-2100, and also across the
regions. However, different seasons, and both SPI12 and SPI3 results, produce similar
patterns.

GCM uncertainty is the dominant source of variance regardless of the region, future
period, season and drought parameter. It typically accounts %6 of total variance
in 2001-2050, and-70% in 2051-2100; it is particularly substantial in Bl. Scenario un-
certainty is negligible in 2001-2050, but becomes more important in 2051-2100 (5-35%

of total variance). In 2051-2100, the scenario contribution roughly reflects the absolute
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Figure 4.14: Sources of uncertainty in PRUDENCE-averaged drought severities.
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magnitudes of drought severity and DAI25 frequency that correspond to the level of forc-
ing — being largest{20-30%) around the Mediterranean basin (PRUDENCE: IP, MD;
Koppen: Csa, Csbh) and Middle East (Kboppen: BWh, BSh, Dsa, Dsb); the relative GCM
contribution in these regions is correspondingly lower. Although smaller than for the
lower-latitudes, scenario variance is also relatively larg&0—20%) in the high-latitudes
(PRUDENCE: SC; Koppen: Dfc) in winter/spring. These could be related to the rela-
tively robust drying (wetting) trend in the lower (northern) latitudes throughout the year
(in winter/spring), thereby results are relatively more dependent on radiative forcing than
on the choice of GCM.

An initial study that involved ten carbon cycle models (as mentioned in Section 3.5),
in addition to the emission scenarios and GCMs considered in this chapter, also revealed
similar relative contributions to those described above: with GCM uncertainty being the
greatest source in all cases, scenario uncertainty becoming more important in 2051-2100
compared to 2001-2050, and carbon cycle model uncertainty represeri#gof the
total variance in both halves of the 21st century.

Burke and Brown (2010) reported that simulated warming-induced meteorological
drought changes for the UK are indistinguishable from natural variability or projection
uncertainty. Nevertheless, similar to the present findings, many studies (e.g. Dubrovsky
et al, 2005; Lioubimtseva and Cole, 2006; Benistdral,, 2007; Blenkinsop and Fowler,
2007a;b; Buonomet al,, 2007; Giorgi and Lionello, 2008; Vidal and Wade, 2009; Burke
et al, 2010; Kyselyet al,, 2010) also found climate model (GCM/RCM) uncertainty (par-
ticularly GCM and their representation of changes in the large-scale circulation; Kjell-
stromet al, 2011) to dominate in all lead times, especially for precipitation. Variance
due to natural internally-generated variability (not explicitly explored here because the
ClimGen approach allows this to be controlled for, by constraining the internal variability
to follow the sequence of observed precipitation anomalies selected to create the scenario)
and emission scenarios in temperature and precipitation projections are more important
for the first and last few decades, respectively (Hawkins and Sutton, 2010; Kjellstrom
etal, 2011).

The interaction component typically represert8% of total uncertainty in 2001—

2050 and~9% in 2051-2100, suggesting the increasing significance of combined effects
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of say, a particular emission scenario and GCM with time. One possible explanation is re-
lated to the spatial- and/or temporal-averaging of results for each region and non-linearity
introduced by pattern-scaling in ClimGen. In the BI for instance, different combinations
of emission scenario and GCM pattern may generate different precipitation decline rates
with warming; an overall drying trend occurs if the reduction rate (an exponential function
of warming, e.g. for southeastern England), exceeds that of increase (a linear function, e.g.
for Scotland); the opposite would indicate an overall wetting. Greater warming could pro-
duce a larger discrepancy in the exponential/linear functions. Nevertheless, the fractional

contribution of this element remains small.

4.7 Conclusions

This chapter has characterised the spatial and temporal changes in European meteoro-
logical drought between 1951-2000 and two future periods, 2001-2050 and 2051-2100.
Drought was measured by the SPI, which involves relatively simple calculations and data
requirements; drought was defined as SPL.5. Precipitation scenarios, simulated by
MAGICC6 and ClimGen, based on eighteen GCMs under ten emission scenarios were
used. Geographically- and climatically-averaged drought severity (i.e. intemkitgtion)
and spatial extent for both 3-month and 12-month events were analysed. Since ClimGen
incorporates climate change information diagnosed from GCM simulations that were un-
dertaken for CMIP3 (Osborn, 2009), it uses the same sequence of observed variability to
generate each series of data, whether for 1951-2000, 2001-2050 or 2051-2100. There-
fore, all deviations relative to the baseline can be attributable to anthropogenic climate
change and not to internal climate variability.

The projected drought changes generally reflect the precipitation changes simulated in
other studies, since SPI is transformed from precipitation accumulated over a given period
(Dubrovskyet al, 2008). Results vary substantially depending on the GCM, emission
scenario, region and season. Projected changes increase with larger forcing; the agree-
ment between results (robustness) and largest magnitude changes tend to occur in both
high- (Scandinavia and Russia) and low-latitudes (the Mediterranean and Black Sea re-
gion). The former is projected to become less drought-prone, whereas marked increases in

drought severity and DAI25 frequency (typically by 2—3 times in 2001-2050, and 10-fold
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or more in 2051-2100 for both SPI3 and SPI12 events) are simulated for the latter. Across
much of the study region, increasing forcing promotes/exacerbates drought conditions, or
reverses changes from negative to positive in some high-latitude cases. Robust increases
(decreases) in drought parameters tend to occur in summer/autumn (winter/spring); neg-
ative trends may occur in high latitudes even in summer/autumn. Results averaged across
Koppen climate zones demonstrate more robust trends, better reflecting climate change
signals, than geographically-averaged results. Sub-regional variations may be consider-
able, causing inconclusive regional trends (e.g. for the British Isles).

The confidence level of the results depends on the level of uncertainty of the method-
ologies (Plantort al, 2008). Here, GCM and emission scenario uncertainties were stud-
ied. The application of 180 precipitation scenarios has demonstrated the projection range.
Despite agreement in the change direction for some regions, their magnitudes are highly
uncertain. Uncertainties tend to widen with forcing, therefore are higher in 2051-2100
and summer/autumn. Although emission scenario uncertainty becomes more important
post-2050, GCM variance dominates across all dimensions, as commonly found in litera-
ture. These results suggest that findings based on a single scenario/model could be highly
misleading.

Neither the emission scenarios nor the models were weighted, and each emission
scenario and model pattern was assumed to be independent and equally plausible; inter-
scenario and inter-model spread were assumed to be representative of the true model
uncertainty. This was largely on conceptual grounds (Arnell, 2011) (see in Sections 2.6.6—
2.6.10 for discussions on the challenges in weighting models), and equal weighting is the
“safer” and more transparent approach for many applications (Weigsl, 2010). The
assumption that all the emission scenarios were equally likely is due to the difficulty in
estimating the levels of emissions in future, as well as the incomplete understanding of
how the climate system would respond to these emissions.

It is worth noting that increasing drought conditions in regions that already suffer
from the hazard maybe of less concern compared to regions that do not currently expe-
rience their effects. Since orographically-induced fine scale structures are often absent
in GCM-simulated precipitation scenarios (Giorgi and Lionello, 2008), detailed climate

change impact studies would require high resolution models with better representation
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of topography (Redaust al., 2002; Raisanest al,, 2004; Gacet al,, 2006); inevitably,
downscaling could introduce additional uncertainty into the assessment (Pktrabn

2008) and/or represent uncertainty more fully. Local/regional drought impact assessments
would require the use of locally appropriate drought indices (Burke and Brown, 2008)
and consideration of processes and practices currently excluded from the climate models
(e.g. irrigation). The diverse meteorological drought response to climate change found
here implies the need for policy-relevant research on climate change impacts and robust
adaptation decisions that consider a wide range of expression of modeling uncertainty
(Burke and Brown, 2008; Hawkins and Sutton, 2010), or risk-based information (e.g. by
considering frequency distributions of climate change impacts) rather than deterministic

information (Goslinget al, 2011a).

4.7.1 Limitations

This study is subject to caveats. Results presented here are indicative of plausible
climate change impacts on meteorological drought characteristics, and should not be con-
sidered as definitive predictions since the primary concern here is to assess changes in a
relative sense. Also, the focus on events with<SP1.5 implies that another threshold
would yield different findings. The 1951-2000 baseline was assumed to be representative
of future conditions in the absence of climate change (Arnell, 1999c). When fitting the
gamma distribution, a linear interpolation of the preceding and subsequent SPI values was
applied for undefined entries in months with zero rainfall; an improvement could be made
by treating these separately (e.g. Abramowitz and Stegun (eds), 1965; ¢tudak007).

Results are also subject to limitations associated with MAGICC6 and ClimGen. For
instance, precipitation scenarios are conditional upon MAGICC6-simulated emulations,
which may differ from the direct GCM outputs (kt al,, 2009). Also, the pattern-scaling
approach in ClimGen assumes a constant spatial pattern of precipitation change over time
(Goodes=t al,, 2003a) that responds linearly (exponentially) to global-mean temperature
increase (decrease) (Mitchell, 2003), which may not hold for large changes or where the
rate of temperature change slows or even reverses (Arnell, 2011).

Results presented here also under-represent the true uncertainty in drought projec-

tions. Amongst others, uncertainty related to climate model physics (Gostirad,
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2011a) and the fitting of a different statistical distribution to the precipitation data have
not been explored. Furthermore, results here are SPI-based (limitations of which are
discussed in Section 4.2.2.3); using another drought index (e.g. PDSI) could yield dif-
ferent results. Also, SPI may be less appropriate for regions where temperature is more
influential than precipitation. Plant response to higher @®els, which can reduce evap-
otranspiration and increase soil moisture, and widen global feedbacks onto the climatic
drivers of drought, may also influence drought development and have not been accounted
for here (Burke, 2011). Lastly, the application of ClimGen has generated gridded outputs
at 0.5 resolution due to the pattern-scaling approach, hence downscaling uncertainty has
not been explored. Results presented here could be compared to those based on regional
climate change simulations (which may be more realistic), such as the CORDEX (Co-
ordinated Regional Climate Downscaling Experiment) initiative from the World Climate
Research Program (http://www.meteo.unican.es/en/projects/CORDEX).

This chapter has studied the effects of climate change on meteorological droughts that
were defined with precipitation data only. The effects of changes in temperature, and thus
potential evapotranspiration on drought are considered in the next chapter, which investi-
gates the future changes in hydrological droughts using hydrological model simulation of

runoff.



Chapter 5

Hydrological droughts in Europe
under climate change and the

uncertainties in the projections

5.1 Introduction

Much of Europe could experience more severe “dry and hot” extremes as climate
changes (Kundzewicet al, 2006). Generally, increasing precipitation and less severe
streamflow droughts are projected for northern Europe while the opposite is expected in
southern Europe (e.g. Arnell, 1999c¢; 2003a; Kundzewia., 2006; Lehneket al., 2006;
Noharaet al., 2006; Feyen and Dankers, 2009; Garcia-Ratial, 2011; Weisset al,,

2007; Bate=t al,, 2008; Dai, 2013). Low flows and droughts could negatively impact on
agriculture, river navigation, water and energy supplies, exacerbate water stress (Feyen
and Dankers, 2009), as well as deteriorate water quality (Blenkinsop and Fowler, 2007b).

Drought risk management requires knowledge and understanding of droughts, their
severity and spatial extent (Womgal., 2011). Hydrological droughts are generally mea-
sured by river runoff or streamflows (Panu and Sharma, 2002). Long-term average runoff,
which indicates water availability from a resource perspective, is generally equivalent to
the difference between precipitation and evapotranspiration (lilgl., 2005).

Simulation of climate change impacts on drought patterns is inherently uncertain. In

addition to uncertainties due to climate and hydrological modelling, uncertainty is also
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introduced by the methodology used to characterise drought. In order to study climate
change effects on European hydrological droughts (Research Question 1), uncertainties
associated with drought definition and quantification need to be considered. This chapter
examines the uncertainties introduced by the choice of threshold that identifies drought
condition from “normal” climate (Research Question 2) and the definition of when a
drought terminates (Research Question 3). In addition, uncertainties arising from drought
classification are assessed by comparing hydrological results to those based on a mete-
orological definition (Chapter 4; Research Question 4). This allows the importance of
temperature variations, which in turn modify potential evapotranspiration (PET), to be
investigated (Research Question 5). Analysis in this chapter has focused on projections
based on eighteen GCMs but only one emission scenario, RCP6, which represents mod-
erate radiative forcing (see Section 3.4.2). This is because findings in Section 4.6 indicate
that GCM uncertainty is the dominant source of variance regardless of the region, future
period, season and drought parameter, thus is of greater concern compared to emission
scenario uncertainty.

In this study, a “category” may refer to a season, region or a 12- or 3-month drought
parameter (severity, DAI25 or DAI50). Specific research questions for this chapter in-

clude:
1. How might climate change alter European hydrological drought characteristics?

2. Which drought category(-ies) might be more sensitive to droughts during high-flow

seasons?

3. Asintermittent “wet” conditions may occur within a drought event, which category(-
ies) might be more susceptible to a longer drought event being reclassified as a

number of mutually dependent minor droughts?

4. Do meteorological and hydrological definitions of drought produce consistent pro-

jections of future changes?

5. How does changing temperature, via its influence on PET, impact on the direction

and/or magnitude of runoff change?

The chapter is organised as follows. The generation of future climate scenarios is

described in Chapter 3. Sections 5.2 and 3.7.1 present the methodology and the runoff
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thresholds in absolute values, respectively. Sections 5.5 and 5.6 present the analysis for
Research Questions (2) and (3), respectively. Subsequently, hydrological droughts in Eu-
rope under future climates are explored in Section 5.7. Section 5.8 discusses the level
of consistency in hydrologically- and meteorologically-defined drought results, and the

temperature influence is examined in Section 5.8.7. Finally, Section 5.9 presents the con-

cluding remarks and potential for future research.

5.2 Drought Identification

Low flowanddeficitare commonly used to quantify hydrological droughts (Hisdal
et al, 2004). Low flow (e.g. a timeseries of annual minimuaday discharge, mean
annual minimum-day discharge or a percentile from the flow duration curve (FDC)) de-
scribes the low flow part of the regime (Tallaksetral,, 1997) but does not consider their
evolution over time. It is therefore useful for studying the magnitude of a certain drought
duration (Clausen and Pearson, 1995). Deficit is commonly obtained by the threshold
level method and enables a series of drought events (e.g. duration or deficit volume; Perez
et al, 2011) to be derived. Severity of hydrological droughts may also be quantified using
the Streamflow Drought Index (SDI; Nalbantis and Tsakiris, 2008), an analogy to SPI, for
instance.

This chapter has adopted a methodology similar to that for meteorological drought
analysis (Chapter 4). Hydrological droughts were quantified using the threshold approach
as it has practical applications when a certain minimum flow is required, e.g. for reservoir
design or when permissions for river abstractions are considered (Clausen and Pearson,
1995). The threshold is chosen based on the characteristics of the streamflow regime
(Fleig et al, 2006), and a drought occurs when runoff is below a predefined threshold
(Perezet al, 2011).

Analysis for both short (3-month) and long (12-month) events were based on a lagged
moving average of the runoff timeseries (hereatfter, “runoff timeseries”), therefore runoff
value for montht also accounts for conditions in the preceeding 2 (11) months for 3-
month (12-month) events. Deviations between the future periods (2001-2050 and 2051—
2100) from the baseline (1951-2000) represent the effects of climate change. Drought

parameters examined include severity, DAI25 and DAI50 (see Section 3.8). Even though
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absolute deficit volumes may not be comparable across regions as dry regions have lower
deficit volumes, their magnitudes of change can be assessed temporally, across seasons

(3-month events) and regions.

5.3 Hydrological Drought Thresholds

The methodology for deriving the hydrological drought thresholds in absolute runoff val-

ues is described in Section 3.7.1.

5.4 Methodology

The methodology for defining drought fundamentally affects the results and subse-
guent analysis. This chapter presents a sensitivity analysis on the effects of using different
truncation levels and/or drought definitions on the drought parameters. Unless otherwise
stated, analyses were carried out for scenarios derived from the 18 GCMs under RCP6

that represents moderate radiative forcing (see Section 3.4.2).

5.4.1 Classification Uncertainties

Research Question 4 in Section 5.1 involves investigating the uncertainties due to
two types of drought classification, hydrological and meteorological. To enable their
comparison, both SPI and runoff timeseries have the same probability of exceedance (see
Section 3.7.1).

Similar to meteorological droughts (Chapter 4), it was only whén(or 12) months
of runoff timeseries does not fall below the threshold that events were considered sepa-
rate. This accounts for prolonged dry periods with flow(s) exceeding the threshold level
temporarily, therefore a large drought is unlikely to be divided into a number of minor
droughts that are mutually dependent (Tallakseal., 1997).

Compared to Chapter 4, Mac-PDM.09 yields less grid cells for the same study region,
as ClimGen classifies coastal cells as a “land” cell even if the land component represents
a very small fraction of the cell. To facilitate comparison between meteorological and
hydrological drought characteristics under climate change, those SPI cells that do not

exist in the Mac-PDM.09 outputs were excluded, resulting in 8385 cells for 12-month
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events. For 3-month events, dry cells with a considerable number of months with zero
flow result in the absolute runoff threshold being zero. These cells were excluded because
the selection of a non-zero runoff threshold cannot guarantee that the threshold would
correspond to the same percentile of exceedence aslIRlalso excluded were two cells

with runoff threshold of 0.1 mm — a value so low that makes drought severity difficult to
determine as it measures the cumulative departure from the threshold. Hence, short (long)
drought analysis involves 7516 (8385) cells of the study region. Alternatively, a higher

threshold (lower percentile) can be chosen (e.g. Fdeig., 2006).

5.4.2 Event Uncertainties

Research Question 3 in Section 5.1 can be addressed by comparing drought results that
exclude the excess periods to those that include them (see Section 5.4.1 methodology).
Here, excess periods refer to months with temporary above-threshold runoff that occurs
within a drought event.

As in Section 5.4.1, fixed runoff thresholds (Section 3.7.1) were used. To generate
results that exclude the excess periods, a drought event was defined to start at the pointin
time when runoff falls below the predefined threshold. However, unlike in Section 5.4.1,
the event ends when the threshold is returned to/exceeded even if temporarilyeRerez

2011).

5.4.3 Threshold Uncertainties

A threshold may be fixed or varying over the year (Peztal, 2011). A variable
threshold detects streamflow deviations or departures during both high and low flow sea-
sons (Hisdal and Tallaksen, 2000). This may more accurately describe the relative na-
ture of drought so, for example, the January threshold in the Northern Hemisphere extra-
tropics may be higher than that for July, thus identifying droughts that occur in wet pe-
riods. It may be used to reflect seasonally-different water demands @leig 2006),
as both the annual recurring (summer/winter) low-flow period and any deviation from
the normal seasonal pattern are important for drought management (Van Loon and Van
Lanen, 2012). Streamflodeficiencyor anomaly rather than streamflow drought, may

more appropriately describe periods with discharge below a seasonally-varying threshold
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level streamflow (Hisdal and Tallaksen, 2000; Hisdahkl, 2004) as a continuous sea-
sonal low-flow event (e.g. those caused by a delayed onset of the snowmelt flood; Fleig
et al, 2006) does not necessarily constitute a drought (Smakhtin, 2001). Nonetheless, de-
ficiencies during high flow seasons could have implications for later drought development
(Hisdal and Tallaksen, 2000).

This section describes the methodology of using a monthly variable threshold. To
address Research Question 2 in Section 5.1, results produced from this methodology were
compared to those from Section 5.4.2. Hence, for both Sections, a drought begins (ends)
when runoff timeseries falls below (returns to or exceeds) the threshold value for that
particular month, i.e. short periods when runoff exceeds the threshold between two longer
periods of drought are not considered to be part of the drought in this comparison.

The range of 70 to 95-percentile are reasonable thresholds to identify low flows for
cells with a perennial runoff (e.g. Hisdat al,, 2004; Fleiget al, 2006). Here, the 95-
percentile (i.e. that is exceeded by runoff 95% of the time) of the runoff values for each
of the twelve months were derived from the 1951-2000 period as it roughly corresponds
to the annual SPI-derived fixed threshold in terms of frequency of occurrence. An inter-
mittent or ephemeral runoff implies that the 95-percentile could easily be zero in one or
more months, therefore identifying no drought events (Perek, 2011). This affects the
number of 3-month events; such cells were excluded because droughts in such dry regions

are less meaningful, hence this analysis involves 7111 cells of the study region.

5.4.4 Hydrological Droughts in the Future

The effects of both emission scenario and GCM uncertainties were studied for changes
in European hydrological droughts. The former involved constructing scenarios by pattern-
scaling with the ECHAM5 GCM pattern under six SRES emissions scenarios and four
RCPs; the latter used 18 GCMs patterns under RCP6 (see Table 3.1). ECHAM5 was

chosen on the basis described in Section 4.4.

5.5 Fixed vs. Seasonally-Varying Thresholds

This section investigates the effects of threshold uncertainties based on the methodol-

ogy described in Section 5.4.3. It addresses Research Question 2 in SectidWtich “
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Class Criteria

Robust increase All 18 GCMs simulating increase in both definitions.

General increase* One definition with robust increase; the other definition with 10—
17 GCMs simulating increase.

General increase  10-17 GCMs simulating increase in both definitions.

Robust decrease All 18 GCMs simulating decrease in both definitions.

General decrease* One definition with robust decrease; the other definition with 10—
17 GCMs simulating decrease.

General decrease  10-17 GCMs simulating decrease in both definitions.

Robust opposite All 18 GCMs simulating increase (or decrease) in one definition
and vice versa in the other.

General opposite* One definition with robust increase (or decrease); the other defi-
nition with 10-17 GCMs simulating decrease (or increase).

Mixed No trend, and/or no change/event in either definition.

Table 5.1: Legend classes of Figures 5.1, 5.5 and 5.16 explained. A (positive or negative) trend
is defined as over half of the total 18 GCMs projecting the same direction of change. A robust
trend occurs when all 18 GCMs simulate the same direction of change. The letter indicates the
definition (I/E = including/excluding excess periods; M/H = meteorological/hydrological events;
and F/V = fixed/variable thresholds) with a robust change or a change.

drought category(-ies) might be more sensitive to droughts during high-flow sedsons?

Here, the term “runoff deficit” was adopted as reasoned in Section 5.4.3.

5.5.1 Effects on Direction of Change

mon h mon h mon h mon h

Severity DAI25 DAI50 DJF  MAM  JJA SON DJF  MAM JJA  SON DJF  MAM JJA  SON
Bl
P F \ F
FR \
ME \
SC \
AL \ \ F
EA \ \ vV v \

mon h mon h mon h mon h
Deficit DAI25 DAIS0 DJF  MAM JJA SON DJF  MAM JUA SON DJF  MAM JUA SON

\ \ H

Robust increase General decrease” Robust opposite
General increase” - General decrease General opposite”
| ]eeneralincrease Mixed

Figure 5.1: Direction of change, from 1951-2000 to (a) 2001-2050 and (b) 2051-2100, in drought

metrics based on hydrological deficits that exclude seasonally-excess periods projected by 18

GCMs under RCP6 according to fixed (F) and seasonally-variable (V) thresholds (see Table 5.1).
Compared to fixed thresholds, a seasonally-variable threshold may yield smaller

deficits during low-flow seasons as the threshold is relative to the seasonal flow. Mean-

while, a fixed threshold is less likely to capture deficiencies during high-flow seasons; this
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effect is considered to outweigh those associated with low-flow seasons (as some of the
low-flow season events may be captured by both thresholds). This is reflected in Figure
5.1, which shows the direction of change in the three drought metrics used previously but
now determined by hydrological deficits based on fixed and seasonally-variable thresh-
olds for the PRUDENCE regions projected by 18 GCMs under RCP6. Figure 5.1 does
not provide information on the magnitude of change nor individual GCM results. The
criteria for each legend class in Figure 5.1 are elaborated in Table 5.1.

Figure 5.1 suggests an increasing drying tendency for most drought parameters and
more robust (i.e. all 18 GCMs showing the same direction of change) drying in the second
half of the century; uncertainty is higher in DAI25 than severity results, and in DAI50 than
DAI25 results. A variable threshold yields more robust positive trends in both 12-month
and 3-month events. For 3-month results, increases tend to be more robust in summer
and autumn for both thresholds but particularly for variable threshold. Contrasting trends
— variable threshold indicating positive changes while fixed threshold showing negative
changes — tend to occur in spring, namely in AL (both severity and DAI25), and Bl and
SC (severity), but also in winter in ME (severity). This suggests that spring deficiencies

are more common in these regions.

5.5.2 Effects on Magnitude of Change

The effects of fixed/variable thresholds on the magnitude of change were examined
for categories where both thresholds demonstrate robust trends. Magnitudes of change of
interquartile ranges (IQRs) and ensemble means (in brackets) derived from fixed (top row
of each category) and variable (bottom) thresholds are presented in Figure 5.2. Hence,
subsequent discussions on the spread of results refer to the IQRs as a more representative
and robust measure of uncertainty that is considered appropriate given the number of
GCMs used in this thesis.

In addition to more robust increases, a seasonally-variable threshold generates larger
increases from 1951-2000 than a fixed threshold for both 12-month and 3-month events.
For 12-month events, a variable threshold generates increases roughly twice (or more) of
that for fixed threshold. However, in absolute terms, variable thresholds tend to produce

lower absolute deficits and less frequent widespread events (12-month DAI25 frequencies
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mon h
Severity DAI25 DAI50 Severity DAI25 DAI50
Bl
P 2.2-3.2(2.8) 2.4-31(2.8) 9.7-14.7 (12.4) 46-8.2(7.2) 43-6.2 (5.3) | 29.6-54.2 (44.4)
3.9-6.6(5.5) | 16.2-26.1 (21.4) n/a 10.5-20.8 (18.0) | 38.8-60.7 (50.1) n/a
FR
ME
SC
AL
MD|[ 1.9-3.0 (2.6) 2.4-4.8 (3.8) 1.7-2.8 (2.3) 41-82(6.5) | 6.7-12.8(10.1) | 3.4-8.5(6.9)
2.9-5.4 (4.3) 3.5-6.0 (5.1) 8.6-13.5 (11.6) 7.5-17.3 (13.3) 8.7-23.6 (18.0) | 17.0-33.5 (30.4)
EA| 1.4-33(24) 1.6-3.4 (2.6) 2.6-9.3 (6.7) 2.7-8.8 (5.9)
2.0-6.7 (4.5) 2.9-11.1 (7.6) 5.0-22.9 (15.7) | 8.1-35.4 (23.0)
mon h
DJF MAM JJA SON DJF MAM JJA SON
Bl
P 1.8-2.4 (2.1) 2.0-3.4 (3.0) 2.3-35 (2.9) 2.1-2.9 (2.4) 3.7-6.3 (5.0) 4.7-12.4 (9.9) 4.5-8.5 (6.6) 4.0-6.2 (4.9)
2.2-3.0 (2.6) 2.2-35 (3.1) 3.7-6.5 (5.5) 3.0-4.9 (3.7) 4.4-8.0 (7.0) 4.4-95(8.5) | 10.3-24.6 (18.6) | 7.9-16.3 (11.8)
FR 1.5-2.7 (2.1) 1.5-2.9 (2.1) 2.3-6.7 (4.7) 2.6-6.6 (4.4)
1.5-3.2 (2.4) 2.0-6.4 (4.0) 2.7-9.8(7.3) 4.9-23.2 (14.0)
ME 1.5-2.5 (2.0) 1.9-4.7 (3.9)
1.4-31(27) 2.4-7.6 (7.2)
SC
AL 0.6-0.6 (0.6) 1.4-2.7 (2.1) 1.6-2.8 (2.3) 3.0-7.9 (5.8) 3.0-7.5 (5.7)
2.1-3.2 (2.8) 4.5-9.8 (6.7) 3.2-8.7 (6.4) 21.3-50.8 (34.3) | 10.1-40.0 (27.4)
MD[ 1.7-2.3 (2.0) 2.4-39 (3.3) 2.0-3.0 (2.5) 2.0-3.0 (2.5) 2.6-4.5 (3.6) 4.9-10.5 (8.8) 3.7-6.9 (5.7) 3.6-6.7 (5.2)
2.1-3.3(2.7) 2.6-4.0 (3.6) 3.5-6.5 (5.1) 3.3-6.2 (4.8) 4.3-7.9 (6.1) 5.6-10.5 (9.1) 8.9-21.2 (16.0) 8.8-21.5 (15.3)
EA 1.7-4.6 (3.1) 15-2.6 (2.1) 3.9-20.6 (12.0) 2.8-7.3 (5.4)
2.4-7.5 (4.9) 2.8-7.6 (5.7) 6.2-27.8 (17.4) | 7.5-31.6 (21.6)
mon h
DJF MAM JJA SON DJF MAM JJA SON
Bl
P n/a n/a 21-2.7 (2.4) 1.7-2.1 (1.8) n/a n/a 3.4-4.4 (4.1) 2.3-2.9 (2.5)
3.3-4.6 (4.0) 5.1-8.9 (7.3) n/a n/a 6.9-12.4 (9.6) | 9.5-19.0 (15.1) n/a n/a
FR|[ 1.1-1.7(1.6) 1.32.2(1.7) 1.7-6.2 (4.6) 1.9-3.9 (3.0)
2.0-3.6 (2.7) 1.3-4.7 (3.3) 3.26.9 (5.9) 3.5-15.0 (10.2)
ME
SC
AL 0.4-0.5 (0.5) 1.9-3.2 (2.6) 3.2-8.8 (6.6)
5.0-9.5 (7.2) 6.1-10.7 (8.4) 15.5-43.6 (28.6)
MD[ 1.5-35(2.4) 1.5-2.9 (2.2) 2.4-4.2 (3.4) 1.9-2.8 (2.4) 3.8-6.8 (5.2) 3.5-7.6 (6.5) 5.8-8.8 (7.5) 3.3-4.2(3.7)
9.3-14.7 (11.8) | 5.1-6.9(6.2) | 9.3-11.7 (12.6) | 9.3-19.0 (15.3) 16.5-30.2 (23.5) [ 9.1-17.6 (14.6) | 22.2-61.2 (47.6) | 29.5-66.8 (49.8)
EA 1.7-3.3 (2.5) 3.2-8.7 (5.9)
n/a n/a
mon h
DJF MAM JJA SON DJF MAM JJA SON
Bl
IP 1.5-3.2 (2.6) 6.8-10.9 (8.8)
n/a n/a
FR|[ 2030(27) 3.0-5.0 (5.2)
2.3-5.0 (3.9) 4.0-8.0 (7.1)
ME
SsC
AL
MD n/a 1.8-2.4 (2.3) 2.0-35 (2.8) n/a 3.6-9.9 (8.2) 4.8-9.9 (7.5)
n/a n/a n/a n/a n/a n/a
EA

Figure 5.2: Magnitude of change, expressed as ratios to 1951-2000 values, for the interquartile
ranges (IQRs) and ensemble means (in brackets) of hydrological drought parameters simulated
using 18 GCMs under RCP6 for the PRUDENCE regions. Categories with robust positive (red)
and contrasting (green) trends are shown; top (bottom) rows representing fixed (variable) thresh-
olds. “n/a” denotes no drought events in 1951-2000 thus the relative magnitude of change cannot

be mathematically expressed as a ratio. Categories without robust changes are left blank.



Hydrological droughts in Europe under climate change and the uncertainties in the

114

projections

Fixed threshold

Variable threshold

g o
S - - o
' '
-
- Lo
' ' !
' - !
s L ‘ ‘ s |
8 ‘ ‘ 8
- -~ -
. -
- 1 ; - -
: ‘
: - o
' '
88 S8 T T 3
& PN Lo — ‘
| | ' ' '
o w - ey - :
o ! ' o —
N ! ' ' N
— ' r— _—
o ' ' ! s}
XS (R X e
! '
P : —
' ! ' '
o I '
‘ ‘
L T : P
o,‘ : s L ' Co
« ' ' T —J « ' !
. ' ' ' ' ' '
i ' ' . : !
_ ; ‘ P ; L
* g * 7 3 * : P :
: ‘
' - * ¥ o+ ' -
o |~ . - L x * % ***
| | | | | | | | | | | | | | | |
BI P FR ME SC AL MD EA BI 1P FR ME SC AL MD EA

Figure 5.3: Frequency of 12-month DAI25 based on fixed and variable thresholds projected using
18 GCMs under RCP6 for 2051-2100. The whiskers represent the maximum and minimum data
points, the box indicate the interquartile ranges and median values. Asterisks (*) denote 1951—
2000 values.
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Figure 5.4: Same as Figure 5.3, but for frequency of 3-month DAI25.
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in 2051-2100 are illustrated in Figure 5.3) — typically by around 40-50% in 2001-2050
and 25-40% in 2051-2100 for DAI25; 50-70% and 30-50%, respectively, for DAI50 (not
shown). Similar patterns also occur in 1951-2000 across all PRUDENCE regions. This
implies that a fixed threshold generates larger deficiencies in absolute terms than variable
threshold, although the magnitude of change is smaller.

Changes in severity for IP and MD display seasonal differences (Figure 5.2) which
are difficult to explain: both thresholds reveal similar increases in winter and spring (by
roughly 2—3 times in 2001-2050 and 4-10 times in 2051-2100), and differences between
the two thresholds magnify in summer and autumn, to around 3-fold in 2051-2100. Dis-
crepancies in the magnitude of increase are even more considerable for DAI25 frequency.
For AL, while a fixed threshold produces summer/autumn increases in severity compara-
ble to those for IP and MD, a seasonally-variable threshold generates substantially larger
increases.

Contrary to relative changes but similar to 12-month events, variable threshold tends
to yield lower absolute deficits and less frequent widespread events than fixed threshold
during summer/autumn across most of the PRUDENCE regions (SC and AL that have
relatively high flows during these seasons have the opposite characteristics). This charac-
teristics also occur in high-flow seasons in cold regions, i.e. winter of SC and AL. Figure
5.4 illustrates seasonal DAI25 frequencies in 1951-2000 and 2051-2100.

In spring, a seasonally-variable threshold captures high-flow season deficiencies, hence
the larger absolute deficits and more frequent widespread events (Figure 5.4) than fixed
thresholds for almost all PRUDENCE regions. This gives rise to the two thresholds pro-
ducing opposing trends, particularly in SC and AL (Figure 5.1). As an example based
on ensemble means of spring severity and frequency of DAI25, AL has the largest dis-
crepancy in magnitude of change: a fixed threshold indicates severity to reduce by 42%
(2001-2050) and 25% (2050-2100) while a variable threshold suggests over 2-fold and
9-fold increases, respectively; DAI25 frequency demonstrates similar trends with larger

magnitudes.
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5.6 Including vs. Excluding Excess Periods

Intermittent “wet” condition with above-threshold runoff (i.e. excess periods) may
occur within a drought event. Research Question 3 in Section B/hich category(-ies)
might be more susceptible to a longer drought event being reclassified as a number of mu-
tually dependent minor droughts® addressed in this section. Uncertainties associated
with the termination rule, based on methodologies described in Sections 5.4.1 and 5.4.2,

are assessed.

5.6.1 Effects on 1951-2000 Drought Parameters

The meteorological and hydrological results for 1951-2000 that include and exclude
excess periods were compared (Table 5.2). Firstly, all the severity and DAI values are
positive and negative, respectively: excluding excess periods produces larger severities
and smaller DAI values than including excess periods.

Secondly, meteorological severity and frequencies of DAI25 have larger regional per-
centage differences than their hydrological counterparts. For instance, regional discrep-
ancies in 12-month meteorological and hydrological drought severity are 11-23% and
3-15%, respectively; AL has the smallest (largest) meteorological (hydrological) discrep-
ancy. ME and SC have almost no discrepancg%) in frequencies of 12-month hydro-
logical DAI25 whereas meteorological DAI25 differ by 17% and 24%, respectively. This
is because precipitation fluctuates more than runoff as precipitation in a particular month
tends to be more independent of the conditions in the preceding month.

Thirdly, according to both gridded (not shown) and regional (Table 5.2) results, dis-
crepancies are larger in 12-month than 3-month events for both drought classifications
— discrepancies are typicallg8% (meteorological) ane:5% (hydrological). Since 12-
month events account for a longer duration, the chances of having an excess period are
higher than with 3-month events. Percentage differences are higher for IP and AL, based
on 12-month meteorological and hydrological definitions, respectively.

Lastly, percentage differences are sometimes much larger for frequencies of widespread
events than severities. In a particular month, a cell is either “in drought” or “not in
drought” regardless the intensity of the event. Differences for frequency of widespread

events are therefore proportional to the total number months in the excess periods. For
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12-months 3-month Severity 3-month DAI25 3-month DAI50
Severity DAI25 DAI50 DJF MAM JJA° SON DJF MAM JJA SON DJF MAM JJA SON

PRUDENCE-averaged results

Meteorological:

Bl 18.9 -19.7  -62.5 43 03 43 41 1.7 0.0 -20.0 -16.7 0.0 -20.0 -16.7 0.0
IP 225 -29.6 -714 14 2.2 5.6 2.2 -6.7 -13.3 0.0 -7.7 -100.0 0.0 100.0 -20.0
FR 18.6 -11.6  -50.0 03 6.7 11 30 -143 0.0 -10.0 -7.7 -143 0.0 -16.7 0.0
ME 13.0 -16.7  -28.9 25 46 29 37 -6.3 -59 0.0 -200 00 0.0 0.0 0.0
SC 16.9 -24.2 -68.8 3.5 2.8 3.1 2.2 -7.1 -7.1 -13.3 -8.3 -333 0.0 0.0 0.0
AL 112 -21.1 -76.9 19 45 07 67 -200 -53 0.0 -214 -400 -333 0.0 0.0
MD 16.2 -21.6  -45.0 28 0.2 12 26 0.0 -7.7  -200 -9.1 -50.0 0.0 n/a n/a
EA 13.1 -12.7  -64.3 1.6 3.4 3.7 3.4 -8.3 -8.3 -9.1 -7.7 0.0 0.0 n/a n/a
Hydrological:

Bl 8.6 -13.8  -16.7 17 04 00 01 n/a n/a 0.0 -4.3 n/a n/a 0.0 0.0
P 53 -20.7  -40.0 19 07 03 03 n/a n/a -10.5 0.0 n/a n/a 0.0 0.0
FR 4.9 -19.7  -9.1 0.6 4.9 0.5 0.5 0.0 n/a 0.0 -2.9 0.0 n/a 0.0 0.0
ME 4.7 0.0 -31.6 04 81 11 06 0.0 0.0 0.0 0.0 0.0 n/a -33.3 0.0
SC 4.2 -2.3 -100.0 07 01 01 1.2 0.0 0.0 n/a n/a 0.0 0.0 n/a n/a

AL 15.0 -28.9 0.0 0.6 0.6 1.8 0.6 -5.6 0.0 0.0 0.0 0.0 n/a n/a 0.0
MD 4.9 -11.4  -19.0 1.9 2.8 0.2 0.2 0.0 0.0 0.0 0.0 n/a n/a 0.0 0.0
EA 3.9 -154 0.0 1.0 14 41 0.5 -3.4 0.0 nla 0.0 -7.7 n/a n/a nla

Koppen-averaged results

Meteorological:

Bwh 135 -11.0 -78.6 0.0 2.0 13 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BWk 12.8 -16.9  -44.4 53 7.1 17 78 0.0 0.0 -16.7 -33.3 0.0 -50.0 -20.0 -20.0
BSh 18.8 -14.0 -22.2 145 206 1.2 101 -57.1 -154 -100.0 -76.9 -100.0 n/a -100.0 n/a
BSk 14.5 -24.4  -73.3 04 24 20 638 91 -111 -333 00 -250 -66.7 -333 nla
Csa 17.6 -61.5 -100.0 2.4 2.7 5.4 3.1 -14.3 -143 -100.0 -50.0 n/a n/a n/a n/a
Csb 206 -250 -923 0.9 13 42 29 0.0 -7.1 0.0 9.1 0.0 -50.0 0.0 0.0
Cfa 15.8 -20.8  -100.0 18 35 19 33 00 -111 -111 0.0 n/a 0.0 0.0 n/a
Cfb 17.7 -29.3 917 1.8 3.1 4.0 3.3 -23.1 -10.0 -143 0.0 -50.0 n/a -100.0 n/a
Cfc 114 -77 -70.8 16 14 00 38 -133 -375 -66.7 -364 0.0 n/a na -33.3
Dsa 16.1 -19.3 -64.7 21 28 25 50 0.0 0.0 -7.1 -143 -25.0 0.0 0.0 0.0
Dsb 129 -20.4  -78.6 2.4 2.8 2.8 5.2 0.0 0.0 0.0 0.0 n/a 0.0 0.0 0.0
Dsc 2.0 -20.4  -64.7 3.3 109 51 36 0.0 0.0 0.0 0.0 0.0 n/a 0.0 0.0
Dfa 9.6 -16.7 -45.8 15 36 44 1.0 -71  -150 -154 -25.0 -100.0 -40.0 -50.0 0.0
Dfb  14.9 -275 917 26 43 41 20 -182 -10.0 0.0 -10.0 -100.0 0.0 n/a 0.0
Dfc 14.5 -26.2  -100.0 15 3.8 2.9 2.2 -7.7 -1.7 0.0 0.0 -50.0 0.0 n/a 0.0
ET 19.2 -245 917 05 49 102 6.0 -250 -60.0 -91 -188 nla n/a n/a -50

Hydrological:

BWh 5.3 -1.4 0.0 0.7 0.0 3.9 0.0 n/a n/a 0.0 0.0 n/a n/a 0.0 0.0
BWk 4.2 -13.6 -16.7 2232.3 165.7 131.3 136.7 -16.7 0.0 00 -25.0 nla n/a n/a n/a
BSh 25 -11.1 0.0 04 00 05 03 0.0 0.0 0.0 0.0 0.0 n/a 0.0 0.0
BSk 4.4 -15.2 0.0 577.6 118.1 1116.3178.0 0.0 n/a -30.0 -6.3 n/a n/a -100.0 -20.0
Csa 3.1 -66.7 nla 3.0 127.6 0.5 0.6 n/a n/a 0.0 -2.4 n/a n/a -100.0 0.0
Csb 3.7 -15.8 0.0 53 35 05 0.2 n/a n/a 0.0 0.0 n/a n/a 0.0 0.0
Cfa 6.3 -22.7 0.0 2.0 19 2.0 0.3 -33.3 0.0 0.0 0.0 0.0 n/a n/a 0.0
Cfb 6.5 271 nla 0.8 3.6 0.3 0.5 0.0 n/a 0.0 0.0 0.0 n/a 0.0 0.0

Cfc 9.0 -2.3 -57.1 09 05 00 02 0.0 0.0 0.0 0.0 n/a n/a 0.0 0.0
Dsa 8.2 -21.6  -27.3 00 00 00 00 0.0 n/a 0.0 -6.7 0.0 n/a n/a 0.0

Dsb 31 -125 0.0 0.2 0.0 0.9 0.2 0.0 -100.0 0.0 -5.6 0.0 n/a n/a n/a
Dsc 1.9 0.0 0.0 0.0 0.0 n/a n/a 0.0 -71.3 n/a n/a n/a -78.6 n/a n/a
Dfa 35 -5.6 0.0 5.4 9.9 290 115 -49 -10.0 na -16.7 -6.3 0.0 n/a n/a
Dfb 2.6 -9.3 0.0 23 167.3 421 134 -59 0.0 n/a n/a 0.0 0.0 n/a n/a
Dfc 8.6 -148 0.0 3.6 7.7 15.6 15.8 0.0 -2.1 n/a n/a -50.0 -6.3 n/a n/a
ET 14.4 -20.6 nla 0.6 3.1 25 114 0.0 -7.1 n/a n/a n/a 0.0 n/a n/a

Table 5.2: Percentage difference between regional drought parameters derived from event defi-
nitions that include and exclude excess periods for 1951-2000. “n/a” denotes no occurrence of
drought events.
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severity, small excess volume resulted from short duration and/or small intensities tended
to generate small difference between the severity values that include and exclude excess
periods; the opposite occurs with large excess volume due to long duration and/or large in-
tensities. Also, disagreement for DAIS0 events is also larger than DAI25 due to their less
frequent occurrence, so that a small change in number can appear to be a large percentage
change.

Similar patterns occur in Kdppen-averaged results (Table 5.2). The large percentage
differences for BWk and BSk are due to the low severity values that include excess periods
(<1 mm) and hence a small denominator in the calculation of the percentage. Table 5.2
also shows that for 3-month hydrological severities, cold climates without a dry season
are the most sensitive particularly in summer and autumn, which suggests the occurrence

of short excess periods in these seasons.

5.6.2 Effects on 21st Century Results

Effects of including and excluding excess periods within drought events were then ex-
amined for 21st century hydrological results. Figure 5.5 illustrates the direction of change
from 1951-2000, simulated by 18 GCMs, in PRUDENCE-averaged drought parameters
for the two event definitions; the legend is elaborated in Table 5.1. Class “Discrepancy”
(green) highlights the categories where results based on the two event definitions lack
agreement. Overall, the two event definitions nearly always yield the same direction of
change, with discrepancies primarily in frequency of DAI50 and winter/spring results.
This implies that periods with temporary excursions above the drought threshold are more
likely during the high-flow season of winter/spring, and therefore it is for these seasons
that the decision to either count such brief periods as part of an ongoing drought or as a
non-drought period breaking two separate droughts has the greatest effect on the resultant
drought statistics.

The uncertainties introduced by the two event definitions on the magnitude of change
from 1951-2000 were further explored with ECHAMS projections under RCP6 (Table
5.3). This comparison reveals findings similar to 1951-2000 results (Section 5.6.1): with
some notable exceptions, regional discrepancies for both 12- and 3-month severity tend to

be <6%; summer and autumn 3-month values are genetad6. Discrepancies, along
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mon h mon h mon h mon h
Severity DAI25  DAI50 DJF  MAM  JJA  SON DJF  MAM  JJA  SON DJF  MAM  JJA  SON

mon h mon h mon h mon h
Severity DAI25 DAI50 DJF  MAM JUA SON DJF  MAM JJA SON DJF  MAM JJA SON

SC

AL

MD

EA
Robust increase Robust decrease Mixed
General increase”™ General decrease” Discrepancy
General increase General decrease

Figure 5.5: PRUDENCE-averaged direction of change from 1951-2000 for hydrological events
under a fixed threshold projected by 18 GCMs under RCP6 based on event definitions that include
() and exclude (E) excess periods. See Table 5.1 for further explanation of the legend classes. The
classDiscrepancyindicates the two event definitions do not share any of the same class above.
“I” (“E") represents including (excluding) excess periods with an increasing (“i"), or decreasing
(“d™), trend in brackets while the other definition has inconclusive trend.

12-months 3-month Severity 3-month DAI25 3-month DAI50
Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

2001-2050:

BI 11.5 -7.1 -40.0 -394 108 05 16 n/a n/a 0.0 154 nla n/a 0.0 0.0
IP 1.1 7.6 225 5.7 6.3 0.8 0.9 n/a nfa -27 -23 nla na -59 00
FR -1.9 35.3 -5.4 3.2 203 11 05 0.0 na -56 0.0 0.0 n/a 0.0 -5.6
ME -0.6 -29.4 1161 -26.2 154 15 11 -333 0.0 00 -38 00 n/a 0.0 00
SC 2.9 2.4 n/a -1.2 -04 04 55 0.0 0.0 n/a n/a 0.0 0.0 n/a n/a
AL 0.8 21.8 -33.8 3.7 -44 18 0.8 0.0 0.0 00 -31 00 n/a na 0.0
MD 0.6 1.4 19.0 5.6 4.7 07 06 -143 0.0 0.0 0.0 n/a n/a 0.0 -3.1
EA 2.4 -7.2 -27.5 8.5 132 43 0.7 -100 0.0 na -33 0.0 n/a n/a nla
2051-2100:

BI -26.0 7.1 -100.0 -34.8 6.3 04 11 n/a n/a 6.4 282 nla nfa 105 25.0
P -2.2 19.8 53.7 2.0 5.7 1.0 0.6 n/a na 104 0.0 n/a na -16 -27
FR -2.5 33.9 5.8 3.9 2.9 04 -03 00 na -32 30 0.0 n/a 00 -1.6
ME -2.4 -11.2 46.2 339 -34 00 -04 -91 -187 -23 -17 -333 nla 588 0.0
SC 1.0 28.0 n/a -0.2 -0.3 02 -10 00 0.0 nfa nla 0.0 0.0 na nla
AL -5.2 29.1 -20.3 2.9 90 -10 -03 -226 -125 -43 -21 9.1 n/a na 0.0
MD -0.3 6.4 10.2 15 0.1 07 00 -88 -83 00 0.0 n/a na -13 -2.0
EA 0.3 13.7 -15.4 1.8 36 -09 00 08 -143 na -10 11 n/a nfa nla

Table 5.3: Percentage difference between PRUDENCE-averaged magnitude of change from
1951-2000 to either 2001-2050 or 2051-2100, derived from event definitions that include and
exclude excess periods as simulated by ECHAMS under RCP6.
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with their regional variations, for frequencies of DAI25/50 (1-35% for DAI25) are larger
than for severities. Larger disagreements (by 11-39%) are more common in Bl and ME,
particularly in winter and spring.

The chance of a larger drought event being divided into a nhumber of mutually de-
pendent minor droughts is reduced as analyses were based on runoff timeseries, i.e. the
smoothing has filtered out the short excess periods, as well as minor droughts of short du-
ration and small deficit volume. Alternative to the methodology adopted here, Tallaksen
et al. (1997) described three pooling procedures that combine mutually dependent events,
including the inter-event time and volume criterion method, moving-average procedure

and sequent peak algorithm.

5.7 Climate Change and European Hydrological Drought

This subsection examines how European hydrological drought characteristics could

vary as climate changes (Research Question 1 in Section 5.1).

5.7.1 Emission Scenario Uncertainties

Figures 5.6 and 5.7 demonstrate the spread of 2051-2100 severity and DAI25 fre-
guency, respectively, associated with the range of emission scenarios (left panels) and
GCMs under RCP6 (right). Results for 2001-2050 (nhot shown) exhibit similar character-
istics with smaller magnitudes and uncertainties. In broad terms, both sources of uncer-
tainty resemble similar patterns of change for both 12- and 3-month results. Spread arising
from choice of GCM for generating the scenarios is a larger source of uncertainty than that
arising from the emission scenarios considered here, particularly in summer and autumn.
Similarly, results in Kjellstromnet al. (2011) are less sensitive to emission scenarios until
later in the 21st century. Arnell (2003a) found emission scenarios (for a given model)
produce similar patterns and magnitudes of change in mean European annual runoff prior
to the 2050s, and larger difference in magnitudes of change in the 2080s. Regionally,

projections for SC are fairly robust regardless of the season and length of event.
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5.7.2 GCM Uncertainties

Findings in Section 5.6 suggest minor differences between results that include or ex-
clude excess periods. According to Section 5.5, it can be inferred that magnitudes of
drying could be larger than those found in this section with the use of seasonally-variable
threshold for identifying drought. Section 5.7.1 indicates that emission scenario uncer-
tainties are smaller than GCM spread, hence the following analysis focuses on simulations

using 18 GCM patterns scaled to represent the RCP6 scenario.

5.7.3 PRUDENCE-Averaged Results

Figures 5.8, 5.9 and 5.10 show simulations from the 18 GCMs of hydrological drought
severity, frequency of DAI25 and DAIS0, respectively, for the 21st century alongside their
1951-2000 values. The boxplots display the minimum and maximum data values, first
and third quartiles, and the median of the set of 18 results (one from each GCM used).
The level of GCM-consistency in the direction of change is illustrated in Figure 5.5, with
the legend class as elaborated in Table 5.1. Magnitudes of change for categories with
robust trends are presented in Figure 5.11.

Results indicate that climate change projections would generally increase drought
conditions across all PRUDENCE regions. Kundzevetal. (2006) also simulated more
severe “dry and hot” extremes for most of Europe, along with considerably longer du-
ration of the longest dry spell in 2070-2099. Uncertainties in projections are higher in
2051-2100 and roughly correspond to the amount of warming. The drying trend is more
extensive spatially in 2051-2100 than 2001-2050 for both 12-month and 3-month events.
Robust drying occurs in the southern latitudes (IP and MD), and also in summer/autumn,
which is in agreement with Feyen and Dankers (2009). The high latitudes (SC) and al-
titudes (AL) may experience decreasing drought conditions, particularly in winter and
spring; however, seasonal changes of permafrost and glacial melt are not represented in
Mac-PDM.09.

Regional changes in hydrological drought characteristics are discussed in subsequent

sections.
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mon h
Severity DAI25 DAI50 Severity DAI25 DAI50
BI
P 2.2-3.2(2.8) 2.4-3.1(2.8) 9.7-14.7 (12.4) 4.6-8.2(7.2) 4.3-6.2(5.3) 29.6-54.2 (44.4)
FR 4.1-13.8 (10.4)
ME
SC
AL
MD 1.9-3.0 (2.6) 2.4-4.8(3.8) 1.7-2.8 (2.3) 4.1-8.2 (6.5) 6.7-12.8 (10.1) 3.4-8.5 (6.9)
EA 2.6-9.3 (6.7) 2.7-8.8 (5.9)
mon h
DJF MAM JJA SON DJF MAM JJA SON
BI
P 1.8-2.4 (2.1) 2.0-3.4 (3.0) 2.3-3.5(2.9) 2.1-2.9 (2.4) 3.7-6.3 (5.0) 4.7-12.4 (9.9) 4.5-8.5 (6.6) 4.0-6.2 (4.9)
FR 1.5-2.7 (2.1) 2.3-6.7 (4.7) 2.6-6.6 (4.4)
ME 1.5-2.5 (2.0) 1.9-4.7 (3.9)
SC 0.5-0.7 (0.6) 0.4-0.5 (0.4)
AL 0.6-0.6 (0.6) 1.4-2.7 (2.1) 3.0-7.9 (5.8) 3.0-7.5 (5.7)
MD 1.7-2.3 (2.0) 2.4-39(3.3) 2.0-3.0 (2.5) 2.0-3.0 (2.5) 2.6-4.5(3.6) 4.9-10.5 (8.8) 3.7-6.9 (5.7) 3.6-6.7 (5.2)
EA 1.7-4.6 (3.1) 3.9-20.6 (12.0) 2.8-7.3 (5.4)
mon h
DJF MAM JJA SON DJF MAM JJA SON
BI
P n/a 21-2.7 (2.4) 1.7-21 (1.8) n/a n/a 3.4-4.4 (4.1) 2.3-2.9 (2.5)
FR 1.1-1.7 (1.6) 1.7-6.2 (4.6) 1.9-3.9 (3.0)
ME
SC 0.3-0.5 (0.4)
AL 0.4-0.5 (0.5) 3.2-8.8 (6.6)
MD 1.5-2.9 (2.2) 2.4-4.2 (3.4) 1.9-2.8 (2.4) 3.8-6.8 (5.2) 3.5-7.6 (6.5) 5.8-8.8 (7.5) 3.3-4.2 (3.7)
EA 1.7-3.3 (2.5) 3.2-8.7 (5.9)
mon h
DJF MAM JJA SON DJF MAM JJA SON
BI
P 1.5-3.2 (2.6) 6.8-10.9 (8.8) 2.1-5.9 (4.9)
FR 3.0-5.0 (5.2)
ME
SC 0.2-0.4 (0.3) 0.0-0.0 (0.0)
AL 1.3-1.7 (1.6) n/a
MD 1.8-2.4 (2.3) 2.0-3.5 (2.8) n/a 3.6-9.9 (8.2) 4.8-9.9 (7.5)
EA

Figure 5.11: PRUDENCE-averaged magnitude of change, expressed as ratio to 1951-2000 val-
ues, for the IQRs and ensemble means (in brackets) of hydrological drought parameters (excluding
excess periods) simulated using 18 GCMs under RCP6. Categories with robust positive (red) and
negative (blue) trends are shown. “n/a” denotes no drought events in 1951-2000 thus the relative
magnitude of change cannot be mathematically expressed as a ratio.

5.7.3.1 Iberian Peninsula (IP) and Mediterranean (MD)

All GCMs project increasing drying for 12-month events over the 21st century for IP
and MD (Figure 5.5). These regions have similar magnitudes of increase (Figure 5.11)
in 2001-2050, by two to four-fold for severity and DAI25 frequency. Increases in 2051—
2100 are considerably greater: by over 4-fold, and up to 8- and 13-fold for severity and
DAI25 frequency. In absolute terms, DAI25 occurs 16-25% of the time during 2001—
2050 for both regions, and up to 48% of the time during 2051-2100 for IP, and 67% for
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MD. The marked increases in DAI50 frequency are due to their rare occurrer®®é)(
in 1951-2000; in absolute terms, DAI50 are projected to occur in approximately 5-8% of
2001-2050 and 10-28% of 2051-2100.

These results are consistent with the anticipated runoff decline (Nehata 2006)

(which has much less uncertainty than that for precipitation; Gosgliraj., 2010) in the
southern Europe/Mediterranean, caused by warming, higher evapotranspiration and de-
creasing annual mean precipitation (see Section 4.4.3). In a global study, étdam
(2009) projected southern Europe to have one of the strongest areas of runoff declines by
2040. Noharaet al. (2006) projected decreasing annual mean precipitation and runoff for
the Danube and Euphrates, based on simulations from 19 GCMs. By the 2050s, 30-year
average annual runoff in the region south of arountheBould be 50% lower (Arnell,
1999c).

These changes in runoff could bring about low-flows (Alcaetcal, 2007b) and
droughts. By the 2050s, flow below the current 10-year return period minimum annual
runoff (“drought” runoff) could be three times more frequent in areas with simulated de-
creasing average annual runoff (Arnell, 2003a). By 2100, minimum flow in the Iberian
Peninsula and southern France could reduce by 20-40% (Feyen and Dankers, 2009). Us-
ing the WaterGAP model, Lehnet al. (2006) simulated more frequent 100-year hydro-
logical drought in southern (Portugal, Spain, western France, Italy) and most of south-
eastern Europe while Weiss$ al. (2007) estimated it to become ten times more frequent
in the 2070s over a large part of the northern Mediterranean. More frequent long-duration
droughts are expected for southern Europe, despite uncertainties in the magnitude (Blenk-
insop and Fowler, 2007b). For the Ebro/Gallego region (Spain), Blenkinsop and Fowler
(2007b) projected, with high model consistency, increasing severity and duration of long
droughts with maximum drought length to increased80 months. These could increase
the pressure on water resources, particularly groundwater, due to decreases in recharge
during the cooler, wetter part of the year (Blenkinsop and Fowler, 2007b). Similarly, wa-
ter availability for the region south of 4K could drop by up to 23% by the 2020s and
6—36% by the 2070s (Alcamet al,, 2007b). Garcia-Ruiet al. (2011) has provided a
comprehensive review on the projected changes in climate and streamflow regimes for the

Mediterranean basin, which generally implies increasing water stress.
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Robust increases are projected for both IP and MD across all seasons throughout the
21st century for severity and DAI25 frequency (except winter for 2001-2050; Figure 5.5).
Both regions have similar severity and DAI25 frequency increases in 2001-2050 (Figure
5.11), by around two to four-fold. Marked increases, being most (least) pronounced in
spring (winter), occur in 2051-2100: by up to seven-fold in winter, twelve-fold in spring,
and nine-fold in summer and autumn.

Winter results have the smallest magnitude of increase (Figure 5.11) for both IP and
MD. This could reflect the sub-regional precipitation variations (Kundzeefiet., 2006;
Buonomoet al, 2007; Garcia-Ruiet al,, 2011) (see Section 4.4.3), winter discharges to
become more irregular (Garcia-Rutzal, 2011) and/or the initial melting of long-term
storage of frozen precipitation in major streams originating in the Alps (e.g. Danube; van
Lanenet al, 2007; Huss, 2011) and other Mediterranean mountain regions such as Sierra
Nevada, southern Spain (Garcia-Retal., 2011) and central Spanish Pyrenees (Lopez-
Moreno and Garcia-Ruiz, 2004), despite the lower precipitation (Kjellsaah, 2011).

By 2051-2100, further warming and the altered snowmelt hydrology (see Section 2.5)
may cause DAI25 to become frequent. Since glacial contribution to runoff is limited to
certain basins, these changes are more notable in DAI25 frequency than in severity.

The large summer and autumn increases in drought conditions are related to sum-
mer drying (see Section 4.4.3), and intensified summer low flows in the Mediterranean
(Garcia-Ruizet al,, 2011); the larger magnitudes of increase in spring may be related to

earlier snowmelt.

5.7.3.2 Scandinavia (SC)

Although without robust trends, SC generally shows decreasing 12-month severities
and frequencies of widespread events (Figure 5.5). Other studies have also found increas-
ing precipitation (see Section 4.4.4), higher evaporation and runoff (N&tala 2006)
that imply decreasing drought conditions.

Higher precipitation offsets the increased temperatures and evapotranspiration (van
Lanenet al,, 2007) that would otherwise reduce runoff (Arnell, 2003a). Moreover, evap-
otranspiration variations have only minor influence in snowmelt-dominated regions (Bar-

nettet al, 2005). Therefore, annual discharge increases (van Lenaly 2007), e.g. in
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Norway (Roaldet al,, 2004; Hanssen-Bauet al., 2005) and Denmark (Thodsen, 2007),
perhaps by up to 25% by the 2050s (Arnell, 1999c) while total mean annual runoff in the
Baltic Sea may vary by between2% and+15% (Graham, 2004). This, produces lower
severity (Feyen and Dankers, 2009) and intensity (Arnell, 1999c¢) of streamflow drought
in northern and northeastern Europe. Also, changes are not uniform, with increases (de-
creases) in the northernmost (southernmost) catchments across the Baltic Basin (Graham,
2004; Grahanet al.,, 2007).

Seasonally, severity and DAI25 frequency decrease in winter and/or spring and in-
crease in summer and autumn (Figure 5.5). These changes may be related to the higher
precipitation in the cold seasons, warming-induced earlier snowmelt, and the associated
higher cold-season runoff and lower warm-season runoff, as found in other studies (see
Section 4.4.4). Also, higher evapotranspiration may offset precipitation increase (Feyen
and Dankers, 2009). For the Baltic Basin, Graham (2004) and Grahai(2007) pro-
jected winter (summer) flows to increase (reduce) by up to 54% (22%) on average, with
greatest uncertainties due to different RCMs in summer and autumn. Nevertheless, warm-
ing may not affect the timing of flow in very cold regions (Arnell, 1999c).

Figure 5.11 shows that both severity and DAI25 frequency reduce by up to 50%
in winter and 70% in spring. The more robust changes in 2001-2050 suggest that in
ClimGen, under a small warming scenario (e.g. in 2001-2050), the overall rate of precip-
itation reduction in cells with decreasing precipitation (an exponential function of global-
mean temperature change; see Section 3.2) may be smaller than the rate of precipitation
increase in cells with increasing precipitation (a linear function), thus a regional positive
change. As warming continues (e.g. in 2051-2100), particularly in winter (Hanssen-Bauer
et al, 2005), the overall rate of precipitation decline may exceed that for precipitation in-
crease, thus a regional negative change. Together with the effect of increased evaporation
(van Laneret al,, 2007), which may dominate over the precipitation change signal (Feyen
and Dankers, 2009), the sign of hydrological response changes from positive to negative
with higher levels of warming (e.g. the British Teme basin; Teddl, 2011), hence
weakening model consensus.

Hydrological indicators may respond differently to the same climatic inputs. This

may be due to the physical structure of the river basin (e.g. storage in soils, aquifers,
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lakes, bogs, snow pack, glaciers) and/or the relative importance of the seasonal distribu-
tion of precipitation and increased evapotranspiration (van Lahalh 2007) and reduced
snowmelt (Feyen and Dankers, 2009). For example, Vétrad) (2011) found that warm-

ing is primarily responsible for drought variations in Norway except the south where re-
duced summer precipitation dominates. In addition, despite the expected higher summer
precipitation (Kundzewiczt al, 2006; Kjellstromet al, 2011), its sub-regional varia-

tions — increases (decreases) in northern (southern) Scandinavia (HansseetBdyer
2005; Freiet al., 2006) — and mixed trends in minimum flow and flow deficit in non-frost
seasons (Feyen and Dankers, 2009), contribute to the lack of robustness in the summer
and autumn results (Figure 5.5). Nevertheless, the increasing summer and autumn sever-
ities obtained here are consistent with negative streamflow trends simulated for Norway
(Engen-Skaugeet al,, 2005; Roalckt al,, 2006; Beldringet al., 2008) and Denmark (Th-
odsen, 2007), and the lower minimum flows in the frost-free season in parts of Sweden as
reduced and earlier snowmelt (see Section 2.5.2) offsets the precipitation increase (Feyen
and Dankers, 2009). The inconsistent changes in DAI25 frequencies found in the present
study are also attributable to reduced likelihood of widespread droughts in geographically

large regions such as SC.

5.7.3.3 Alps (AL)

AL generally demonstrates increasing drought conditions across all categories, except
spring results which show negative changes (Figure 5.5); only spring, summer and autumn
have robust changes.

The 12-month drought results obtained here agree with the expected precipitation
changes (see Section 4.4.5) and findings from other studies. For example, based on
climate-change scenarios from 19 RCMs for 11 mountainous catchments in the Swiss
Alps, Hortonet al. (2006) simulated mean annual runoff to decrease by up to 30% in
2070-2099. For the Kitzbheler Ache catchment in the Austrian Alps, Laghaki(2012)
projected reducing annual snowmelt (by 31-81%) and runoff (by 6—33%), and increas-
ing average annual evapotranspiration (by 6—20%) by 2071-2100 based on 13 regional
climate change scenarios under SRES A2 and B2.

Snow cover (e.g. in the French Alps; Margnal., 1996) is highly sensitive to climate
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variations. Each degree) of warming could reduce snowpack duration in alpine catch-
ments by about three weeks (Grahatral, 2007), and alpine river flow is more affected

by warming than precipitation and land use changes (Zierl, 2005). Seasonal precipita-
tion variations are more influential in the hydrological regime of lower-altitude catch-
ments (Hortoret al., 2006). The alpine flow regime becomes rainfall-dominated instead
of rainfall and snowmelt-dominated (Laghat al, 2012) with warmer, wetter winters

and springs (Beniston, 2005; European Environment Agency, 2009; Sreizd&k2009;
Kotlarski et al, 2010). Snowpack volume in alpine catchments could be 60% lower in
2070-2100 (Graharat al., 2007), runoff deviations caused by glaciers loss (Zetg.,

2006) and earlier snowmelt described in Section 2.5.2 are reflected in the seasonal results
(Figures 5.5 and 5.11).

In spring, both severity and frequency of widespread events are roughly halved in
2001-2050, with high model consistency. These results, some of which also depend on
conditions in the preceding winter, are consistent with Janza (2011)’s projected higher
winter and lower spring discharges for the Upper Socva River basin, Solvenia (southeast-
ern Alps).

Consistent with the anticipated drying trend (see Section 4.4.5), increasing drought
conditions occur in all other seasons, with more robust changes in summer: by around
3-8 times in 2051-2100 for both severity and DAI25 frequency. Similar to the results
here, minimum flow for the region during the frost-free season could be 20-40% lower
(Feyen and Dankers, 2009). Runoff contribution to the Po basin from currently glacier-
ized areas could be 75% lower by 2080—2100 compared to the 20th century average in
August/September (Huss, 2011). By 2071-2100, drought frequency and severity during
the Alpine summer growing season (April to August) could increase by 15-50% and 20%,

respectively (Calanca, 2007) due to much lower summer flows (Jaspgr2004).

5.7.3.4 Mid-Europe (ME) and Eastern Europe (EA)

Both ME and EA show increasing 12-month drought conditions throughout the 21st
century (Figure 5.5). EA severity and DAI25 frequency demonstrate robust marked in-

creases (by 2-9-fold) in 2051-2100 (Figure 5.11).
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These results are consistent with the declining annual runoff projected for eastern Eu-
rope and western Russia over the 21st century (Strzepek and Yates, 1997; Arnell, 2003a;
2004a) despite the annual precipitation increase in Eastern Europe (Hirabayashi
2008), with the largest reduction in southeastern Europe by 2050 (Arnell, 1999c). Aver-
age annual water availability in these regions could decline B§% by 2050 relative to
1961-1990 (Alcamet al., 2007b). Annual runoff may decrease by 3—24% in Romania,
and deviate by-10% to+3% and—20% to+128% in Czech Republic and Ukraine, re-
spectively (Smith and Lazo, 2001). Precipitation reduction over the Mediterranean region
to the Caspian Sea region (Nohatal., 2006) lowers Danube discharge by 21.9%, along
with annual maximum, minimum, and mean streamflow (by 13.3%; Nodtaah, 2006)
of the Rhine (Hurkmanest al., 2010).

Reducing runoff implies increasing drought conditions in eastern Europe (Hirabayashi
et al, 2008): Lehnert al. (2006) projected strong increases in 100-year droughts for
southeastern Europe (e.g. Hungary, Bulgaria, Romania, Moldova, Ukraine, southern Rus-
sia) and Kundzewicet al. (2006) simulated longer duration of the longest dry period for
much of central Europe. The Rhine, Danube and Dniepr rivers could experience more
frequent drought during 2071-2100 (Hirabayashal., 2008); more long droughts are
likely in the Meuse/Dommel region (western ME; Blenkinsop and Fowler, 2007b). Even
with higher annual precipitation, drought increases in eastern Europe to central Eurasia
due to the much higher evapotranspiration (Hirabayeshl., 2008).

Nonetheless, sub-regional variations have been reported: the Black Forest and the
Vogues Mountains (southwestern ME) and the northern tributaries of the Rhine basin
(northwestern ME) may experience wetter conditions throughout the year (Hurkmans
et al, 2010); Gellens and Roulin (1998) found no clear trends for either streamflow or
the number of low flow days for eight Belgian catchments.

In addition to the summer precipitation decline (see Section 4.4.6), runoff variations
in the upstream region affect downstream river flows (Noleral, 2006), and glacial
meltwaters affect both local/regional basins and the hydrological regime of large catch-
ments with glacierisation of 1% (Huss, 2011). The contribution of high summer glacier
runoff in lowland areas with low precipitation and high evapotranspiration signifies a non-

linear relationship between the relative importance of glacier contribution to runoff (Huss,
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2011).

Snowmelt hydrology is important in the water cycle of EA, the margin between mar-
itime and continental climate regimes, and ME, e.g. the Rhine basin is influenced by
conditions in the alpine part of the catchment (Hurkmenal.,, 2010); 9% of September
runoff in 2003 in the lower Danube (0.06% glacierisation) was estimated to be glacier
meltwater (Huss, 2011). Warming diminishes the importance of snowfall, leading to a
large flow regime (Arnell, 1999c; 2003a). For instance, the “rain-fed/meltwater” Rhine
river could become a mainly “rain-fed” river (Pfistet al., 2004). Runoff contributions
to the Rhine and Danube basins from currently glacierised areas during 2080—-2100 could
be >75% lower compared to the 20th century average in August/September, although
with slower reduction in catchments with a large ice volume (Huss, 2011). Even with
small changes in total annual runoff (e.g. a mountainous region of southwestern Bulgaria;
Changet al,, 2002), warming significantly changes the spatial distribution and amount of
snow cover (Arnell, 1999c), e.g. the alpine glacierised areas may decline by 12% by 2100
(Huss, 2011). These could alter runoff volume and the timing of maximum runoff (Chang
et al, 2002; Hirabayashet al., 2008) and increase the frequency and magnitude of both
peak flows and streamflow droughts (Hurkmansal, 2010; Section 2.5.2). For short
events in the Meuse/Dommel region, Blenkinsop and Fowler (2007b) projected increases
in maximum severity, frequency (although the spatial pattern of change is variable and
GCM-dependent) and duration (most likely to be in the northern Dommel and the south-
ernmost part of the Meuse; despite higher uncertainties); for areas with a shorter winter
recharge period (precipitation increase), these short events may become longer.

These changes are generally reflected in the seasonal results obtained here for ME
and EA (Figure 5.5), although Mac-PDM.09 accounts for snowmelt but not glacial melt
(hence runoff further downstream would not contain a glacial component). For ME, the
decreasing drought conditions in winter/spring (also the case for 2001-2050 DAI25 fre-
guency in EA) agree with the simulated increase in winter flows for the Rhine basin, par-
ticularly in lowland catchments (by up to 14%; Grahatral., 2007), winter and spring
streamflow at the basin outlet (by30% by 2100; Hurkmanst al,, 2010), and peak flows
in the alpine and pre-alpine catchments of the Rhine (by 9-16%; Réisaér 2004). The

initial melting of long-term storage of glaciers and snow cover (van Lagieai, 2007,
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Huss, 2011) causes spring frequency of DAI25 to reduce in 2001-2050 but increase in
2051-2100 (Figure 5.5).

The summer and autumn results show positive trends. Both regions reveal robust
and marked increases in summer severity throughout the century, by factors of up to 2.5
(ME) and 4.6 (EA) in 20012050, and 4.7 (ME) and 20.6 (EA) in 2051-2100. EA also
demonstrates robust increases in autumn (Figure 5.11), though with a smaller magnitude
of around 3-8-fold in 2051-2100. These are consistent with the projected reduction in
summer and autumn river flows (by up to 42% for the Rhine basin; Graat 2007)
and average summer discharge at the southern basin outke80% by 2100; Hurkmans
et al, 2010) and the Meuse river, western ME (Pfisteral, 2004). Using a conceptual
eco-hydrologic model, a revised version of the Soil and Water Assessment Tool (SWAT),
Eckhardt and Ulbrich (2003) estimated summer mean monthly streamflow for the Dill
catchment (southeast of the Rhenish Massif in Germany) to reduce by up to 50% during
2070-2099. Droguet al. (2004) simulated more severe low flows for July—September in
the 2050s for a temperate Alzette river basin in the Grand Duchy of Luxembourg.

The stronger and/or more robust drying trends in EA compared to ME across all sea-
sons are associated with warming being most pronounced in winter over eastern Europe
(Giorgi et al, 2004; Somott al, 2008) and therefore much higher evapotranspiration
(Hirabayashet al., 2008).

For mesoscale basins, both changes in the variability of extreme precipitation and land
use affect future changes in peak flows. A changing climate may also influence vegetation
cover, which can then have a significant impact on hydroclimatological processes, such as
surface runoff, infiltration or evapotranspiration (Pfisteal,, 2004). Increased economic
activity across much of central and eastern Europe and the anticipated strong increases
in water use may cause or exacerbate hydrological or operational droughts (eebaher

2006; Alcamoet al.,, 2007b).

5.7.3.5 France (FR)

Increasing 12-month drought conditions is projected for FR throughout the 21st cen-
tury (Figure 5.5). The robust and marked increases (by 4—14-fold) in DAI50 frequency,
which occur in 7-23% of 2051-2100 (Figure 5.11), are attributable to its low frequency
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(2%) in 1951-2000.

These regional results may have masked sub-regional variations in runoff and the type
of changes suggested in other studies. Although the high altitude snowpabkE m)
is relatively unaffected, the maximum amplitude of the snowpack at low and medium ele-
vations could be 50% lower and its duration shortened by two months, resulting in lower
annual discharge (see Section 2.5.2), which also diminishes with evaporation increase
(by 20%; Etcheveret al,, 2002). Therefore, climate anomalies are more influential in
the Pyrenees than the Alps given the lower height and more moderate increase in winter
precipitation (Redaudt al,, 2002).

Snow processes in the Alps imply low annual evaporation and large runoff, whereas
areas with Mediterranean climates (large annual global radiation, low precipitation) have
negligible annual runoff (Habett al,, 1999). Topography and snow are important in the
hydrological regime of the Rhone and its tributaries (Redetual., 2002), which drains
from the Alps (Feyen and Dankers, 2009), leading to large spatial variability of evapora-
tion and total runoff (Habetst al, 1999). Changes in mean annual discharge correspond
to the precipitation anomaly and display a strong northward gradient (Etchetvats
2002): in the north, precipitation increase of 25% combined with the relatively small
(13%) evaporation increase raise discharge by 10-30% and 30-50% in the Jura moun-
tains and Saone valley, respectively. Western France could experience significantly more
frequent drought (Lehneat al,, 2006). However, as for ME/EA above, much of the runoff
further downstream from the Alps, for example, would not contain a glacial component
as it is not represented in Mac-PDM.09.

Similar to 12-month results, increasing drought conditions are also projected across all
seasons, with high model agreement in summer/autumn severities and winter DAI25/DAI50
frequencies particularly for the 2051-2100 results (Figure 5.5). Increases in severity are
up to three times in 2001-2050 summer and 7-fold in 2051-2100 summer and autumn
(Figure 5.11). In winter, DAI25 is 1.7 times more frequent in 2001-2050 (to 3%)-d&hd
times in 2051-2100 (to 13%); DAI50 occurs only in 3% during 2051-2100, even with the
3-5-fold increase.

Ducharneet al.(2007) simulated enhanced seasonal contrast of discharge at the outlet

of the Seine watershed for 2070-2099 compared to 1960-1989. However, the winter
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increases projected here contradict the expected higher winter rainfall (e.g. in northern
Rhone due to more liquid precipitation; Huss, 2011) that would raise soil water content
thus surface runoff and drainage, particularly in the second future period (Retald
2002). This could partly be explained by the reduced winter accumulations in (especially
medium) mountain areas associated with warming and less snowfall notwithstanding the
precipitation increase (Redaetlal,, 2002), and partly because some of the winter results
are influenced by drying in the preceding autumn.

The projected summer and autumn drying trend is consistent with the anticipated
warming (that is more considerable in summer than winter), summer rainfall decline,
a very low soil water index for May—October (hence a much earlier soil desaturation
and harsher low water periods in autumn), earlier snowmelt (by about one month) and a
flood peak in May (rather than June), followed by much lower July and August discharge
(Etcheverstal, 2002; Redauét al., 2002). Specifically, runoff contribution to the Rhone
basin from currently glacierised areas in 2080—2100 could decrease by 55% from the 20th
century average in August/September (Redztud, 2002; Huss, 2011). Decreases in Du-
rance discharge (southern Rhone) is most notable in the rainy autumn (also during spring
snowmelt season) (Etchevessal, 2002). For the Adour-Garonne basin (southwestern
France), decreasing snow depth and the snow cover duration (by approximately 50% by
2100; Caballereet al., 2007) produce earlier low flows (by one month) and a stronger
deficit in the July discharge (Redaetial, 2002). However, substantial winter recharge
preserves groundwater levels (the perched and alluvial groundwater sheet and the uncon-
fined aquifer) and alleviates deficit during the low-flow period (Redztual, 2002), thus
the slight decrease (averaged 14886 in 2050-2060 compared to 1985-1995) in low-
flow during July—October (Caballeret al, 2007). Though, large reduction in autumn
discharge occurs when precipitation deficit is larger than groundwater supply (Caballero
et al,, 2007). It is worth noting that groundwater in Mac-PDM.09 is not stored but routed

as “slowflow” that contributes to runoff.
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5.7.3.6 British Isles (BI)

An increase of annual river flow in Western Europe suggest fewer and less severe
droughts (van Lanest al, 2007). However, the 12-month drought results produce in-
conclusive trends in 2001-2050 and positive trends in 2051-2100 for Bl (Figure 5.5).
Changes in drought found in other studies are location-dependent. For instance, Arnell
(2004b) projected average annual runoff to decrease by up to 15% by the 2020s in eastern
England and little change in northern and western Britain under the UKCIP02 scenar-
ios; changes are more extreme by the 2080s. Low flows (Q95) could reduce by 20—
25%, 30-50% and 50-80% by the 2020s, 2050s and 2080s, respectively (Arnell, 2003b;
2004b). For longer droughts in the Eden region (north-west England), Blenkinsop and
Fowler (2007b) projected decreasing maximum drought severity, duration and frequency
(by around one event per decade) with increasing winter precipitation, along with fewer
long groundwater droughts and more short-term surface water droughts. Central and east-
ern England catchments may experience the most severe low flow reductions while flood-
ing increases in northern and western England (Sefton and Boorman, 1997). In Wales,
Pilling and Jones (2002) found significantly more frequent low flows in the year as a
whole in the Upper Wye catchment even though annual discharge shows small changes.
Across much of Ireland, particularly eastern and southeastern parts, Cledidtiof2006)
simulated a widespread reduction in annual runoff, with the extreme northwest showing
a slight increase. Elevation may also affect annual runoff, e.g. Fowler and Kilsby (2007)
found a slight increase<(16% lower) at high (lower) elevation catchments in northwest-
ern England.

Figure 5.5 reveals that droughts generally increase in summer and autumn, and de-
crease in winter and spring, although lacking robustness. Other studies suggest similar,
weak (Prudhomme and Davies, 2008) or enhanced seasonal patterns (e.g. Harper’s Brook;
Goslinget al,, 2011b). Arnell (2004b) simulated modest increase in mean winter flows,
particularly in the north and west while the direction of spring changes is GCM-dependent
(Prudhomme and Davies, 2008). Using scenarios from HadRM3H, Fowler and Kilsby
(2007) projected runoff in northwestern England to increase by up to 20% from 1961-90
levels in winter and reduce in summer by 40—-80% (particularly at lower elevations) under

SRES A2, along with a lower magnitude of summer Q95 (by 40—-80%) and more frequent
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low flows below the present Q95; reductions also occur during the recharge periods of
autumn and spring. Based on 21 GCMs, summer runoff deviations range-faf%o

to +20% with a 2C warming from the 1961-1990 mean as rainfall and PET changes
(Arnell, 2011). Under the UKCIPO2 scenarios, Arnell (2004b) simulated mean summer
flows and Q95 to decrease from the 1961-1990 mean by approximately 30% and 25%,
respectively, by the 2020s, with reductions larger in southern and eastern England. Wilby
et al. (2006) simulated lower summer and autumn flows for River Kennet, southern Eng-
land. Flow variability may increase (decrease) in winter and spring (autumn) though the
pattern is weak (Prudhomme and Davies, 2008).

The Bl results lack model consistency due to several influencing factors. Literature
suggests considerable sub-regional variations for this region — wetting (drying) in the
north (south) (Blenkinsop and Fowler, 2007b); the averaging of which would induce un-
certainties notably in the 12-month, winter and spring results. Furthermore, although
warming is likely to substantially increase the magnitude and frequency of temperature-
related weather extreme statistics (e.g. heat-waves; Semenov, 2007), the changing relative
dominance of precipitation and PET may produce non-linear hydrological response to a
linear climate change forcing (Arnell, 2011).

Prudhomme and Davies (2008) expressed that not all their 2080s trends in mean
monthly river flow for four British catchments were significant relative to variations from
natural variability; and that an even weaker signal exist with lower significance occurred
for shorter time horizons (e.g. the 25-years of water management plans in UK). Further-
more, the combined effects of natural climatic variability and human-induced climate
change substantially widens the projection range of future monthly and seasonal stream-
flow or may counteract the climate change signal, which have important implications for
the operational management of future water resources (Arnell, 2003b). Based on the
UKCIP98 climate change scenarios, Arnell (2003b) found that human-induced climate
change has a different seasonal effect on flows than natural multi-decadal variability (pos-
itive in winter and negative in summer) in six catchments in Britain. Increased year-to-
year climate variability causes slight increases in mean monthly flows (relative to changes
resulting from mean climate changes), and slightly greater decreases in low flows, particu-

larly in upland catchments (Arnell, 2003b); 30-year mean monthly runoff could vary from
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the 1961-1990 mean by up to 10%; Q95 could deviate-Bgo and and 10% in southern
and northern England, respectively (Arnell, 2004b). However, under the UKCIP02 sce-
narios, Arnell (2004b) found the climate-change signal larger than natural multi-decadal
variability in many British catchments, even by the 2020s (Arnell, 2003b). This is because
the climate change signal generally begins to exceed that of multi-decadal variability once
the increase in global-mean temperature exceg@sabove the 1961-1990 mean (Arnell,

2011).

5.7.4 Koppen-Averaged Results
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Figure 5.12: Kdppen-averaged drought severity based on fixed threshold and event definition that
excludes excess periods projected using 18 GCMs under RCP6. Asterisks (*) denote 1951-2000
values.

Koppen climate classifications are described in Section 3.9 (Figure 3.3). Figures
5.12 and 5.13 show simulations of 18 GCMs on 2051-2100 hydrological drought severity,
frequency of DAI25 and DAISO0, respectively. Results for 2001-2050 are not shown as

they show very similar characteristics, with lower magnitudes. Figure 5.14 presents the

level of agreement in the Koppen-averaged direction of change simulated by 18 GCMs
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Figure 5.13: Kdoppen-averaged DAI25 (left panels) and DAI50 (right panels) frequency based on
fixed threshold and event definition that excludes excess periods projected using 18 GCMs under
RCP6. Asterisks (*) denote 1951-2000 values.
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Figure 5.14: Kbppen-averaged direction of change from 1951-2000 for hydrological events under
fixed threshold projected using 18 GCMs under RCP6 based on event definitions that exclude
excess periods.
under RCP6, with the legend elaborated in Table 5.1. For classifications with robust
changes, their magnitudes (both IQRs and ensemble mean) are shown in Figure 5.15.
Similar to the PRUDENCE-averaged results (Section 5.7.3), drying is more notable in
2051-2100 than 2001-2050 for both short and long droughts across all climate regimes,
particularly in summer and autumn. Decreasing drought conditions are more common in
seasonal than annual results, and in 2001-2050 than 2051-2100, in winter and particularly
spring due to changes in snow processes (see Section 2.5.2), and/or in cold climates (e.g.
Dsc, Dfc). Koppen-averaged results demonstrate much higher consistency between GCM
than PRUDENCE-averaged trends even for DAI50 frequencies (Figure 5.5). This may
be due to the larger number of Kdppen regions with smaller areas (i.e. lower chance of
averaging results across cells with opposite signals), which better reflects actual areas of
homogeneous climate change signal. Also, Figure 5.14a suggests more robust negative
changes in spring severities for arid (B) and cold (D) climates (where snow and snowmelt
hydrology are important) than in Figure 5.5a — warming in 2001-2050 implies increased

runoff as, in Mac-PDM.09, precipitation falls as rain instead of snow and snowmelt occurs
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mon h
Severity DAI25 DAI50 Severity DAI25 DAI50
BWh 3.4-5.1 (4.4) 2.5-3.0 (2.7) 7.5-10.8 (9.7) BWh| 8.1-13.4 (12.0) 4.1-4.9 (4.6) 27.8-55.1 (42.5)
BWk BWk
BSh | 2.1-2.6(2.3) 2.1-2.7 (2.5) 1.7-2.6 (2.2) BSh | 4.3-6.7(57) 3.8-6.2 (5.3) 4.1-7.3 (6.1)
BSk 1.5-2.2 (2.0) BSk 2.7-4.7 (4.4)
Csa 2.1-3.1 (2.6) 27.3-38.4 (34.8) Csa 4.4-8.1 (6.6) 64.8-119.0 (100.0) n/a
Csb 2.3-34(2.8) 3.3-5.3 (4.2) 15.5-37.5 (24.9) Csb 5.4-9.7 (7.2) 7.9-13.4 (10.1) |62.8-162.8 (115.4)
Cfa 2.0-3.9 (3.1) 5.2-11.8 (8.9) 2.7-13.5 (9.9) Cfa | 4.2-10.8(7.8) | 12.0-27.1 (19.3) | 11.8-69.9 (44.1)
Cfb 1.2-2.4 (2.0) Cfb 2.0-5.8 (5.1) 2.9-8.2 (6.1)
Cfc Cfc
Dsa 2.1-2.9 (2.7) 3.5-4.4 (4.4) 2.2-4.6 (4.4) Dsa 4.6-8.1 (7.5) 7.2-10.2 (9.3) 7.8-17.5 (15.9)
Dsb 2.3-3.3 (2.9) 2.7-3.9 (3.5) 3.6-17.1 (12.7) Dsb | 5.2-9.7 (8.1) 56-9.3(7.8) | 34.1-84.8 (68.5)
Dsc Dsc 2.0-3.8 (2.9)
Dfa 1.3-2.1 (1.8) Dfa 1.6-4.4 (3.4)
Dfb Dfb
Dfc 0.0-0.2 (0.0) Dfc
ET 0.3-0.4 (0.4) ET
mon h
DJF MAM JJA SON DJF MAM JJA SON
BWh 0.1-0.1 (0.1) 2.33.0 (2.7) BWh 1.8-3.4 (2.7) 3.9-6.0 (5.5)
BWKk | 0.2-0.3(0.3) 0.0-0.0 (0.0) BWkK
BSh 0.1-0.2 (0.1) 0.0-0.0 (0.0) BSh
BSk 2.1-2.7 (2.5) 0.2-0.2 (0.2) 1.9-2.7 (2.5) 1.7-2.4 (2.1) BSk 1.8-3.0 (3.1) 3.3-5.7 (5.4) 2.5-4.6 (3.9)
Csa 0.1-0.2 (0.2) 1.9-2.3 (2.2) Csa 2.0-3.0 (2.7) 3.2-4.4 (4.0)
Csb 3.3-5.0 (4.2) 4267 (5.7) 2.2-3.0 (2.7) 2.0-2.7 (2.3) Csb 1.2-2.7 (2.0) 8.6-21.9 (17.4) 4.4-6.9 (6.1) 3.7-5.3 (4.6)
Cfa 1.8-3.6 (2.7) 1.6-2.8 (2.2) Cfa 2.1-5.3 (4.2) 3.5-9.0 (6.7) 3.1-6.5 (4.8)
Cfb 1.4-2.3 (1.9) 1.5-2.6 (2.1) Cfb 1.3-3.4 (4.3) 2.0-5.1(3.7) 2.6-6.1 (4.3)
Cfc 0.4-0.6 (0.5) 1.3-1.6 (1.5) 1.5-2.0 (1.8) Cfc 1.5-2.3 (2.0)
Dsa 1.6-2.1(1.9) 0.0-0.0 (0.0) 3.6-4.9 (4.6) 2329 (2.7) Dsa 1.4-25 (2.2) 11.2-17.9 (16.8) | 4.5-7.2(6.2)
Dsb 1.4-1.9(1.7) 0.2-0.4 (0.3) 1.8-2.8 (2.6) 1.2-1.7 (1.6) Dsb 6.9-13.3 (11.8) 2.7-4.6 (4.0)
Dsc 0.5-0.6 (0.6) 0.2-0.4 (0.3) 0.0-0.0 (0.0) Dsc 0.3-0.4 (0.3) 0.0-0.0 (0.0) 0.0-0.1 (0.1)
Dfa 1.5-3.9 (2.9) 1.3-2.7 (2.0) Dfa 2.8-12.2 (8.6) 2.3-7.2 (4.9)
Dfb 0.5-0.6 (0.5) Dfb 1.7-8.4 (5.4) 22-7.1 (4.7)
Dfc 0.5-0.6 (0.6) 0.5-0.6 (0.5) 0.3-0.5 (0.4) Dfc 0.1-0.2 (0.2)
ET 0.2-0.4 (0.3) 1.6-2.2 (2.0) ET 0.1-0.2 (0.2)
mon h
DJF MAM JJA SON DJF MAM JJA SON
BWh n/a n/a 1.2-1.6 (1.4) BWh n/a n/a 1.7-2.6 (2.3) 2.0-2.9 (2.4)
BWk 15.8-26.7 (20.7) 0.0-0.0 (0.0) 0.0-0.0 (0.0) BWk 0.0-0.0 (0.0) 0.0-0.0 (0.0)
BSh | 2.9-4.0(3.4) 2.6-3.9 (3.1) 0.1-0.4 (0.3) 0.2-0.5 (0.4) BSh
BSk 0.0-0.0 (0.0) 0.0-0.0 (0.0) BSk
Csa 2.9-4.2 (3.9) 1.4-1.6 (1.5) Csa 7.0-9.5 (8.7) 2.0-2.4 (2.2)
Csb 2.5-3.1 (2.9) 2.0-2.2 (2.1) Csb n/a 5.1-6.3 (6.0) 2.7-3.0 (2.8)
Cfa 4.0-6.8 (5.9) 1.2-3.2 (2.3) Cfa 3.7-12.2 (8.3) 25-4.5(3.4)
Cfb Cfb 3.2-11.1 (7.8)
Cfc Cfc 1.2-1.8 (1.6)
Dsa n/a 0.0-0.0 (0.0) 0.0-0.0 (0.0) Dsa n/a 0.0-0.0 (0.0) 0.0-0.0 (0.0)
Dsb n/a Dsb 4.0-9.8 (8.2)
Dsc | 0.5-0.6(0.6) 0.6-0.7 (0.7) Dsc 0.2-0.4 (0.3) 0.0-0.2 (0.1)
Dfa 0.1-0.3 (0.2) 0.0-0.2 (0.1) Dfa 0.0-0.1 (0.1)
Dib 0.5-0.7 (0.6) 0.3-0.5 (0.4) Dfb 0.3-0.5 (0.4) 0.0-0.2 (0.1)
Dfc 0.3-0.4 (0.3) Dfc 0.0-0.1 (0.1)
ET 0.1-0.3 (0.2) ET 0.0-0.0 (0.1) 0.0-0.1 (0.0)
mon h
DJF MAM JJA SON DJF MAM JJA SON
BWh 1.5-2.0 (1.9) BWh 2.1-6.5 (6.2)
BWk BWk
BSh 3.0-3.8 (3.7) 0.0-0.0 (0.0) BSh
BSk 0.0-0.0 (0.0) BSk 0.0-0.0 (0.0)
Csa n/a 1.8-3.3 (3.1) Csa n/a 7.8-12.9 (11.3)
Csb 2.0-4.8 (3.9) 3.8-6.2 (5.1) Csb 13.3-24.0 (21.9) | 8.9-11.5 (10.2)
Cfa 0.0-0.0 (0.2) Cfa
Cfb Cib 1.0-1.5 (1.6)
Cfc Cfc
Dsa 6.0-10.0 (8.3) n/a Dsa 0.0-0.0 (0.0)
Dsb n/a Dsb
Dsc n/a 3.4-5.0 (4.2) Dsc n/a
Dfa 0.0-0.0 (0.0) 0.0-0.0 (0.0) Dfa 0.0-0.0 (0.0) 0.0-0.0 (0.0)
Dfb 0.2-0.3 (0.3) 0.0-0.0 (0.0) Dfb 0.0-0.2 (0.1) 0.0-0.0 (0.0)
Dfc 0.0-0.0 (0.1) 0.2-0.3 (0.2) Dfc 0.0-0.0 (0.0) 0.0-0.0 (0.0)
ET 0.0-0.2 (0.2) ET 0.0-0.0 (0.0)

Figure 5.15: Koppen-averaged magnitude of change, expressed as ratio to 1951-20000 values,
for the IQRs and ensemble means (in brackets) of hydrological drought parameters (exclude ex-
cess periods) simulated using 18 GCMs under RCP6. Categories with robust trends are shown.
“n/a” denotes no drought events in 1951-2000 thus the relative magnitude of change cannot be
mathematically expressed as a ratio.
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when temperature rises above a threshold.

5.7.4.1 12-month Results

Except for cold regions (Cfc, Dfc and ET), all the Kbppen types generally suffer from
increasing long drought conditions in both future periods. Robust increases tend to occur
in climates with higher temperatures, thus evapotranspiration, and/or dry summers, in-
cluding hot arid (Bh) zones, temperate and cold climates with dry summer (Cs, Ds), and
temperate climate with hot/warm summer and without dry season. For severity, magni-
tudes of increase are typically around 2—3-fold in 2001-2050 but diverge in 2051-2100,
ranging from<5-fold (Dsc) up to 13-fold (BWh) (Figure 5.15). The larger increase&-(
fold) concentrate in the lower latitudes (358§, in agreement with the changes for IP
and MD (Section 5.7.3.1).

The majority of the Kdppen climates with robust increases in severity also have robust
increases in DAI25 frequencies, notably in temperate-based climate types (C) due to their
low occurrence €£6%; 0.5% for Csa) in 1951-2000. For Csa, Csb and Cfa, DAI25 is
projected to occur 14—34% of the time during 2001-2050 and 33—78% during 2051-2100.
Other climates have considerably smaller changes, owing to their frequencies of 5-12%
in 1951-2000, although the simulated (absolute) ranges have similar lower bounds and
smaller upper bounds<©6%). The more substantial increases in DAI50 frequency is
related to their rarity (typically<1%) in 1951-2000. DAI50 occurs irt9% of 2001—

2050 and 6—-36% of 2051-2100.

Between 1961-1990 and 2021-2050, Hemnenh@l. (2010) simulated decreasing
annual precipitation (5—25%) and annual runoff, together with increasing drought index
for the region south of the Black Sea; the direction and general magnitude of changes in
coastal western areas of Turkey have low uncertainties. Similarly, Arnell (2004a) pro-
jected lower average annual runoff by the 2050s in the Middle East, which also suf-
fers from increasing water resource stress throughout the 21st century (Arnell, 1999b).
The average annual Tigris-Euphrates river discharge decline is greatest in Turkey at 12%
Chenowetlet al.(2011). These results, along with the precipitation reduction (see Section
4.4.3), are consistent with the projected robust positive drought trends in hot desert zones

(Bh), temperate and cold climates with dry summer (Cs, Ds). However, Abbaspalir
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(2009) projected higher precipitation (up to 40%) and increase in blue water resources
(the sum of river discharge and deep groundwater recharge) for northern Iran.

Consistent with the increasing drying projected for BWk here, Agaltseah (2011)
simulated decreasing Amu Darya River runoff in the medium- and long-term. Although
Central Asia could become warmer and probably drier in future, with increasing aridity es-
pecially in western Turkmenistan, highly uncertain precipitation projections for arid zones
(e.g. Turkmenistan; Lioubimtsew al,, 2012) contribute to the lack of model agreement
in BWK results.

Higher precipitation is likely in European Russia/Central Siberia (Lioubimtseva and
Henebry, 2009). By 2050s, increased average annual runoff (Arnell, 1999c¢), water avail-
ability and low water stress is simulated f880% of Russia including the Volga and in
southern regions (Alcamet al., 2007a). However, Hirabayasht al. (2008) projected
more frequent drought for the Volga (Dfb) in 2071-2100, which agrees with the Dfb pro-

jections obtained here.

5.7.4.2 Temperate climates

Temperate climates (C) occur in much of western and southern Europe, i.e. the PRU-
DENCE regions except for SC and eastern EA. Projections for temperate climates, par-
ticularly for Cfa and Cfb, tend to be more uncertain than for other climates (Figures 5.12
and 5.13). Both these regions with a dry summer (Cs) and those without a dry season
(Cf), generally suggest increasing drought conditions in all seasons. Robust severity and
DAI25 frequency trends occur predominately in summer and autumn, but also in 2051-
2100 spring for severity. These climates have similar severity increases (by 2—3 times) in
2001-2050; in 20512100, autumn increases are roughly 3—6 times while 9-fold (Cfa) and
7-fold (Csb) increases are projected in summer. DAI25 is projected to be 2—4 and around
10 times (e.g. Csa, Cfa, Cfb) more frequent in 2001-2050 and 2051-2100, respectively.
Changes are larger in summer than autumn. Of the temperate climates, the magnitude of
increases for Csa, which prevails in much of the Mediterranean basin, is relatively small
(by “only” 3—4 times for severity) compared to Cfa, for instance; Csb also has relatively
small increases, particularly in summer.

Figure 5.14 indicates that more severe spring events are projected across much of



5.7 Climate Change and European Hydrological Drought 143

western, southern and continental Europe as a whole. Change is most considerable in
Csb, with up to 22-fold increase from the very low 1951-2000 values. Although lacking
model consistency, the contrasting (negative in 2001-2050, positive in 2051-2100) DAI25
frequency trends in Csb, Cfb, Cfc are due to the initial melting of stored frozen precipita-
tion similar to ME/EA (Section 5.7.3.4). The negative changes in winter droughts for Cfc
are consistent with the expected higher winter precipitation (Vidal and Wade, 2009; Burke
et al, 2010) and runoff (Arnell, 2004b) in northern parts of Bl and higher winter flows
in Norway (Roaldet al., 2004; Engen-Skaugest al., 2005; Roalcet al,, 2006; Beldring
et al, 2008).

Csa reveals negative trends in winter/spring drought, possibly related to increases in
localised precipitation (Buonomet al., 2007; Garcia-Ruizt al, 2011; e.g. westward
side of mountain chains of western and central Europe due to enhanced westerly winds),
extremes (e.g. southern France; Ga@l, 2006) and/or storm activities (Sumnetral,,
2003). These temporary intense events could lead to flooding and/or increased 100-year
discharge (e.g. in Spain and southern France, despite the substantial drying on average;

Gaoet al,, 2006).

5.7.4.3 Arid climates

Cold arid (BWk and BSk) climate types characterise Central Asia. The projected
drought parameters in these regions have relatively low inter-GCM spread, and widespread
droughts are relatively rare (Figures 5.12 and 5.13).

Although increasingly dry conditions (with slightly higher winter rainfall and reduc-
tions in spring and summer; see Section 4.4.3) are projected for the Central Asian plains,
surface water resources of Central Asia largely originate from mountain glaciers, the ac-
celerated melting of these, higher precipitation (Lioubimtseva and Henebry, 2009) and
earlier snowmelt (e.g. in Syr Darya basin; Siegfrietdal., 2012). These explain the
less severe (by-65%) drought in BWk obtained here, notably in 2001-2050 (Figure
5.14), although Mac-PDM.09 incorporates snowmelt but not glacial melt. Both CMIP3
and CMIP5 projections generate a strong decline in glacier extent in Central Asia, the
uncertain precipitation projections however imply difficulties in estimating future Central

Asian glacier extent, and timing and quantity of water availability downstream @t atiz
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2012). These 2051-2100 results therefore become less uncertain as frozen precipitation
stores are exhausted.

Robust increases in summer and autumn severity of BSk agree with the warming-
induced earlier snowmelt in the Syr Darya basin (eastern half the BWk and BSk zones
of Figure 3.3), thus water stress increases in unregulated catchments due to lower water
availability for irrigation in the summer (Siegfriest al, 2012). The decreasing DAI25
frequency during these seasons in BSk suggests that only part of the region is affected by
snowmelt shifts in snow-/glacier-melt driven rivers — for instance, glacial share in Syr
Darya runoff is much smaller than the heavily glaciated headwater catchments near the
Tien Shan mountains (Soeg al, 2012), and some parts may respond more directly to
precipitation variations. Furthermore, patterns are complicated by sub-regional precipi-
tation variations (see Section 4.4.3). On the other hand, more severe droughts and more
frequent DAI25 in winter/spring in BWk and BSk could be linked to the higher evapotran-
spiration and larger warming during winter (Lioubimtseva and Cole, 2006; Lioubimtseva

and Henebry, 2009).

5.7.4.4 Cold climates

Polar (ET) and cold climates without a dry season (Df) dominate the higher latitudes
and continental parts of the study region, whereas cold climates with dry summer (Ds)
are found in parts of eastern Turkey, northwestern Iran and Central Asia. Overall, future
widespread droughts are uncommon in these climates (Figure 5.13).

All the cold and polar climates tend to experience reducing drought conditions in win-
ter and spring. Model agreement is particularly strong in the frequencies of widespread
events, often with marked reductions ®560% in 2001-2050 and-80% in 2051-2100.

For Df and ET climates, frequencies of DAI25 and DAI50 in the 21st century typically re-
duce to<8% and<3%, respectively, from up to around 30% (DAI25) and 10% (DAI50)

of 1951-2000. These negative drought trends are associated with the increasing precip-
itation (see Section 4.4.4) and runoff; warming also has less influence on the timing of
snowmelt in western Russia (Arnell, 1999c¢;b).

By the 2050s, larger average annual runoff is generally expected in high latitudes

(Arnell, 2004a). In southwestern Russia where water stress in this key agricultural region



5.7 Climate Change and European Hydrological Drought 145

is already in the “severe” category due to domestic, industrial and agricultural water use,
lower precipitation and warming reduce annual runoff and water availability and produce
more frequent extremely low runoff events, similar to eastern Europe and western Russia
(Alcamoet al,, 2007a). This region corresponds to the Dfa and the southern parts of Dfb
zones, which show more severe summer and autumn droughts (by up to 7-8-fold in 2051—
2100, and 12-fold in summer for Dfa; Figure 5.15) with high model consistency (Figure
5.14). Regional variations in precipitation and runoff trends may explain the no change
in, or higher uncertainties in, the frequencies of widespread events in Df climates.
Climate change and population growth are likely to reduce per capita water resources
considerably across much of the Middle East (Chenowéti., 2011) though this is not
considered here. In the Middle East, precipitation decline (5-25%) is expected throughout
December to August (depending on the location), with relatively little change projected
across the whole region between September and November; runoff and drought index
changes generally show spatial distributions that are comparable to those for precipitation
(Hemminget al, 2010). These could exacerbate drought conditions as reflected in the
Dsa and Dsb results (Figure 5.14). While autumn severity increases are comparable to
other climates, those for summer are particularly substantial — by up to 5-fold in 2001
2050 and 18-fold in 2051-2100. Dsa and Dsb are geographically small regions, and hence
have higher chances (up to 10%) of experiencing “widespread” (as a fraction of the small
region) droughts. For Dsa, DAI25 occur in 1.3% (summer) and 18.7% (autumn) of 1951—
2000 but none are simulated in the 21st century. These robust reductions correspond with

the wetting simulated for northern Iran (Abbaspeutial., 2009).

5.7.5 GCM Outlier Effects

These hydrological drought results suggest an anomaly, notably in values for Bl in
Figures 5.8 and 5.10, and Cfc in Figure 5.12. The IAP/LASG coupled GCM FGOfLS
(Yu et al, 2010b; 2004) is mostly responsible for this behaviour, which may be at-
tributable to the structure of the GCM and/or the effects of pattern-scaling in ClimGen
(Section 3.2). Pattern-scaling is used to construct consistent scenarios representing pro-
gressive increases in global-mean temperature. This linear scaling of the magnitude of a

spatial pattern of climate change (i.e. the local temperature) by the annual global-mean
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temperature may not be appropriate at the largest warming considered here (e.g. SRES
AlFI and RCP8.5 scenarios). This is because patterns at the largest warming are extrap-
olated from values in SRES A2 and A1B, and that the linear relationship may or may not
hold.

In terms of the GCM, the Program for Climate Model Diagnosis and Intercomparison
(PCMDI) website does not recommend the use of this model’s data for mid-high latitude
climate studies Figure 3 in Gleckleet al.(2008) suggests that, outside the tropics’ &0
to 20°N), FGOALS-g1.0 demonstrates lower than average performance with respect to
the reference data. It also shows that performance for temperature at 850 hPa is worse
than precipitation, which is reflected in the more notable anomaly in the hydrological
(than meteorological) results.

While both the oceanic model and the coupling scheme were improved in version
gl.1, version g1.0, which was used in this study, suffers from cold biases at high lati-
tudes and in the tropical Pacific (Mt al., 2010b), along with the overestimated sea ice
extension in both hemispheres and weaker Atlantic meridional overturning circulation
(AMOC). Compared to most other CMIP3 GCMs, FGOARQS$.0 does not perform well
in simulating the current climate for 14 climate variables (Reichler and Kim, 2008), such
as water vapour (Santet al, 2009). Piercest al. (2009) assessed the performance of 21
climate models using 42 metrics based on seasonal temperature and precipitation, ENSO,
and the Pacific Decadal Oscillation for western U.S. They also found FGQALG to
be one of the worst performing models.

Nonetheless, it is worth noting that model skill in simulating climatological means
does not necessarily imply an ability to capture either the observed annual cycle or the
amplitude and pattern of monthly variability (Sane¢al., 2009). Moreover, model agree-
ment with observations does not imply reliability in the simulated future (Stainébdh,
2007a; Tebaldi and Knutti, 2007; Knuttit al, 2010). The “anomalous” results from
FGOALSg1.0 could be due to the different GCM structure compared to other GCMs,
e.g. by including/excluding certain processes or a different representation of these. It is
difficult to omit FGOALS.g1.0 from the analysis when GCMs were constructed based on

an incomplete understanding of the climate system (see Sections 2.6.9 and 2.6.10).

ICMIP3  Climate Model Documentation, References, and  Links: http://iwww-
pcmdi.linl.gov/ipcc/modedocumentation/moténfo_iap_fgoals.pdf
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5.8 Hydrological vs. Meteorological Classifications of Drought

Difficulties in obtaining real-time streamflow data, and computational requirements
for characterising hydrological drought (Nalbantis and Tsakiris, 2008), have prompted
attempts to characterise them based on precipitation (e.g. via the SPI). Nalbantis and
Tsakiris (2008) characterised hydrological drought severity of the Evinos river basin
(Greece) by a linear function of SPI with sufficient accuracy. Taletizl. (2010) found
that SP112 drought occurrence in Doroodzan Watershed and Reservoir in southwestern
Iran (specifically, Jamalbeik rain gauge station) reflects streamflow drought occurrence
at the Chamriz hydrometric station. However, streamflow data were necessary for water
resources planning and management in Denmark as Hisdal and Tallaksen (2003) found
streamflow droughts to be less homogeneous over the region, to display lag and be less fre-
guent and more persistent than precipitation droughts as a result of precipitation deficits,
storage conditions and high evaporation losses. Seasonally, $tefén(2004) found
a lag between precipitation and river discharge anomalies in southern Romania for the
period 1931-1999, by 2—3 months in winter and 0—1 months in summer.

This section considers whether meteorological and hydrological classifications pro-
duce consistent results, i.e. Research Question 4 in Section 5.1. The effects on the direc-
tion of change from 1951-2000 simulated by 18 GCMs under RCP6, based on both me-
teorological and hydrological classifications is shown in Figure 5.16 (legend is explained
in Table 5.1), which provides no information on the magnitude of change nor individ-
ual GCMs. For categories with robust trends, their magnitudes of change for the IQRs
and ensemble means, derived from meteorological (top row) and hydrological (bottom)
definitions are presented in Figure 5.17.

The analysis is based on results that include excess periods as they are included in the
meteorological results (Chapter 4), with a fixed threshélsl perSection 5.6, the choice
of drought definitions that include or exclude excess periods generally has minor effects
on both the direction and magnitude of change in hydrological results. However, meteo-
rological results should be interpreted with caution due to the larger difference between
values that include and exclude excess periods compared to those for hydrological results
(see Table 5.2). The drought parameters used here provide no information on the timing

of the events as they describe drought conditions over the 50-year period. For instance,
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it would not be possible to determine whether a meteorological drought event coincides

with/lags a hydrological event based on drought severity or frequencies of DAI25/DAI50.

mon h mon h mon h mon h
Severity DAI25 DAIS0 DJF  MAM JUA SON DJF MAM JJA SON DJF MAM ALY SON

BI
P H M
FR H M M H M
ME H H H H H
E Y M M M H
AL H M M H
MD H H H H
EA H
mon h mon h mon h mon h

Severity DAI25 DAIS0 DJF__MAM _JJA  SON DJF __MAM JJA SON DJF__MAM _JJA  SON
Bl [ H H
P M M
FR H H M H M M
ME H H H
sC M M M H
MD M
EA|_H H H H H H

Robust increase Robust decrease General opposite”
General increase* General decrease” [ IMixed

General increase General decrease

Figure 5.16: Direction of change, relative to 1951-2000, for drought parameters that include
excess periods projected by 18 GCMs under RCP6, and consistency between meteorological (M)
and hydrological (H) drought classifications.

Similar to the findings in Section 5.7, Figure 5.16 reveals drier conditions for all
drought parameters and more robust drying across the PRUDENCE regions in 2051
2100; uncertainty is higher in DAI25 than with severity results, and in DAI5S0 than DAI25
results. Differences between the magnitude of change for the two drought classifica-
tions is relatively small (typically<50%) in 2001-2050 but maybe100% in 2051—

2100 owing to the greater warming (Figure 5.17). Hydrological events demonstrate more
positive trends than the meteorological droughts for both 12-month and 3-month events,
along with larger increases which suggests a role of PET in amplifying the magnitude of
change. Similarly, Noharat al. (2006) found larger changes in the ratio of global-mean
runoff than precipitation from simulating river discharge for 24 rivers from 19 AOGCMs.
Chiew and McMahon (2002) used the conceptual daily rainfall-runoff model, MODHY-
DROLOG, to assess the effects on surface water fluxes in Australia. They found that
rainfall deviations are amplified in runoff, with percentage change in runoff being twice
(over four times) of that in rainfall in wet and temperate (ephemeral, with low runoff
coefficients) catchments. Worgd al. (2011) used the Hydrologiska Byrans Vattenbal-
ansavdelning (HBV) precipitation-runoff model to assess the differences in hydroclima-
tological summer (15 May-15 October) droughts in Norway. Compared to 1961-1990,

they found substantially longer hydrological drought and larger drought-affected areas,
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Figure 5.17: Magnitude of change, expressed as ratio to 1951-2000 values, for the IQRs and
ensemble means (in brackets) of drought parameters (including excess periods) simulated using
18 GCMs under RCP6 based on meteorological (top row of each category) and hydrological (bot-
tom) classifications. Categories with robust positive (red) and negative (blue) trends are shown.
“n/a” denotes no drought events in 1951-2000 thus the relative magnitude of change cannot be
mathematically expressed as a ratio.
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Figure 5.18: Frequencies of meteorological and hydrological DAI25 (include excess periods) for

both 12-month and 3-month events in 2051-2100 simulated using 18 GCMs under RCP6. Red
asterisks (*) denote 1951-2000 values. Red lines indicate the relative changes in the two drought
classifications identical to 1951-2000 values.
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especially in the southern and northernmost parts, despite small changes in future mete-
orological drought characteristics. Further, the changing relative importance of precipi-
tation and PET with warming may produce non-linear hydrological response to a linear
climate change forcing, as in the case of British catchments (Arnell, 2011).

Figure 5.18 shows the present-day and 2051-2100 frequencies of 12- and 3-month
DAI25 from 18 GCMs based on both classifications. Given the dominance of precipita-
tion effect in both meteorological and hydrological droughts, similar DAI25 frequencies
for both classifications are expected; however, they may not necessarily be identical as hy-
drological events may lag meteorological episodes and/or last longer (see Section 2.2.5),
along with the effects of PET in their characteristics. For present-day DAI25 frequen-
cies, the consistency of meteorological and hydrological events depends on the region
and season.

In broad terms, projected hydrological DAI25 are more frequent than meteorological
ones for both long and short events. The outlier, notably in Bl results, is due to the GCM
FGOALS g1.0 (see Section 5.7.5). For 12-month droughts, both drought classifications
produce very similar (absolute) frequencies for Bl, IP and FR. Seasonally, both defini-
tions suggest that DAI25 will become most frequent in summer and autumn, alongside the
largest uncertainties, due to the lower precipitation, higher temperatures and evapotran-
spiration. Greater frequency of hydrological than meteorological drought tends to occur
in summer/autumn (with some exceptions — see Sections 5.8.1-5.8.6), which suggests
the greatest importance of increased PET is during the warmer seasons. The opposite
appears in winter/spring in BI, IP and MD, which implies that the use of a fixed threshold
may not capture hydrological droughts during the cold-seasons that have relatively high
precipitation (see Section 5.5). In some cases, the relative changes in DAI25 frequency
for the two drought classifications are insensitive to the 1951-2000 values (e.g. FR in au-
tumn); in other cases, the relative changes differ considerably from the present-day values
(e.g. EA in autumn).

DAI25 and DAI50 frequencies in 2001-2050 yield very similar characteristics, but
with DAI50 frequencies having smaller magnitudes, and severities based on the two def-
initions are less comparable due to the different units (i.e. meteorological droughts are

characterised by SPI whereas hydrological deficits are measured in mm/month), hence
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these are not shown. Regional comparisons are presented in Sections 5.8.1-5.8.6).

5.8.1 Iberian Peninsula (IP) and Mediterranean (MD)

IP and MD demonstrate very robust increases in both long and short events throughout
the century, with higher uncertainty in winter and spring DAISO0 frequencies (Figure 5.16).
They also have some of the largest regional increases for both drought classifications
(Figure 5.17).

For 12-month severities and DAI25 frequencies, both definitions show up to 3-fold
increase in 2001-2050; in absolute terms, occurrence of DAI25 is 15-30%. In 2051
2100, increases are 3—6 and 4-8 times for meteorological and hydrological drought, re-
spectively; increases for MD are considerably more — up to 13-fold for hydrological
frequencies, i.e. 77% of 2051-2100. Both definitions suggest DAI50 to affe@% of
2001-2050 and up to 35% of 2051-2100. Their marked increases, particularly for IP in
2051-2100, are due to the low 1951-2000 frequencig®q). For IP in particular, de-
spite the similar absolute DAIS0 frequency, hydrological increases are 2—3 times higher
than meteorological changes.

Seasonally, 2001-2050 severities commonly increase by under 2- (meteorological)
and 3-fold (hydrological). Changes in 2051-2100 diverge with seasons and drought clas-
sification: increases in meteorological (hydrological) severities are more pronounced in
(summer) spring and summer. As discussed in Section 5.7.3.1, hydrological droughts,
particularly in spring, are also influenced by changes in snowmelt hydrology.

DAI25 frequencies reveal characteristics similar to changes in severities, although
with smaller classification uncertainties in magnitudes of increase. Both regions have
relatively similar winter and spring DAI25 frequencies, with meteorological events be-
ing more common: 10-20% (meteorological) and% (hydrological) of 2001-2050,
and 12-33% (meteorological) artl9% (hydrological) of 2051-2100. This could be
partially explained by the precipitation decrease and relatively small evapotranspiration
increase. In summer and autumn, however, hydrological DAI25 are more frequent: in
summer, 13-26% (meteorological) and 17-31% (hydrological) of 2001-2050, and 25—
49% (meteorological) and 39-59% (hydrological) of 2051-2100; in autumn, 10-17%
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(meteorological) and 37-55% (hydrological) of 2001-2050, and 18—-34% (meteorologi-
cal) and 58-81% (hydrological) of 2051-2100. For IP in summer, absolute hydrological
droughts are slightly more common than meteorological events; in relative terms, how-
ever, increases in hydrological frequencies are slightly smaller as its present-day value
is slightly higher than the meteorological counterpart. For MD, hydrological values are
higher in both absolute and relative terms.
DAI50 events are less common. In winter and spring, they tend to occud 0%

for both drought classifications throughout the 21st century; in summer and autumn, up
to 22% (meteorological) and 53% (hydrological) of 2051-2100. The marked relative

increases are attributable to the rare occurrer@¥4) in 1951—-2000.

5.8.2 Scandinavia (SC)

SC generally shows decreasing 12-month drought conditions except hydrological DAI25
for some GCMs (Figure 5.18). The more robust meteorological results are consistent with
the higher precipitation expected for northern Europe (see Sections 4.4.4 and 5.7.3.2).
Amongst the PRUDENCE regions, SC has some of the lowest DAI25 frequencies and
smallest uncertainties according to both drought classifications (Figure 5.18); uncertain-
ties are however higher in 12-month hydrological frequencies.

Seasonally, both meteorological and hydrological definitions reveal decreasing sever-
ity and frequency of widespread events in winter and spring. Trends in 2001-2050
have high model consistency; hydrological reductions are larger than their meteorolog-
ical counterparts, e.g. for severities by 34-63% and 21-32%, respectively. The lack
of robustness in 2051-2100 hydrological results may be related to the mechanisms de-
scribed in Section 5.7.3.2. Summer and autumn severities demonstrate contrasting trends.
While the anticipated precipitation increase reduces meteorological severities, increas-
ing hydrological severities are consistent with negative streamflow trends in some parts
of SC (Engen-Skaugeet al, 2005; Roaldet al., 2006; Thodsen, 2007; Beldrireg al.,,

2008). For both drought classifications, changes for the regionally-averaged frequencies
of widespread events are complicated by overall effects of changes in precipitation, evap-
otranspiration and snow, and their sub-regional variations, as well as the size of this region

(Section 5.7.3.2).
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5.8.3 Alps (AL)

AL generally demonstrates increasing 12-month meteorological and hydrological drought
conditions during 21st century (Figure 5.16). These are related to the expected lower an-
nual mean precipitation and runoff as described Sections 4.4.5 and 5.7.3.3.

Seasonally, spring reveals positive (negative) meteorological (hydrological) trends
whilst both definitions show drying trends in summer and autumn (Figure 5.16). The
changing snow characteristics alleviates hydrological droughts as detailed in Section 5.7.3.3.
While Beniston (2005) and Hortaat al. (2006) reported inconclusive trends in spring pre-
cipitation, the spring meteorological results obtained here indicate a reduction. Strongest
GCM agreement occurs in summer throughout the century, and severity and DAI25 fre-
guencies have similar magnitudes of change. In 2001-2050, both drought classifications
produce increases of up to 2.5 (meteorological) and 3 (hydrological) times. In 2051—
2100, hydrological increases (up to 9-fold) are almost doubled that of meteorological (up
to 5-fold). In winter, the projected increasing winter hydrological droughts implies that
enhanced PET counteracts higher precipitation; the increasing meteorological severities
simulated disagrees with the expected higher precipitation.

Although hydrological events have larger magnitude of change in all seasons, meteo-
rological DAI25 are more (less) abundant than hydrological events in spring and summer
(winter and autumn) (Figure 5.18). This may be associated with the delay in hydrolog-
ical response to meteorological changes. Note that the change in the ratio between the

meteorological and hydrological DAI25 frequencies is relative to the present-day ratio.

5.8.4 Mid-Europe (ME) and Eastern Europe (EA)

For 12-month events, both definitions show positive trends for all drought parameters
in EA and severities in ME. The mixed direction of change in widespread hydrological
droughts in ME (Figure 5.16) may be associated with the unclear sign and magnitude
of precipitation change in large parts of the year for much of central Europe (Kjellstrom
etal, 2011).

Positive winter (due to more frequent and intense precipitation) and spring precipi-
tation change over northern-central Europe (Raisateal., 2004; Giorgi and Coppola,

2009) reduces meteorological droughts in both regions (Figure 5.16). Meanwhile, greater
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warming in winter than spring/summer over eastern (Gietgal, 2004) and northern-
central Europe (Giorgi and Coppola, 2009) increases evapotranspiration (Hirabayashi
et al, 2008) and promotes winter/spring hydrological droughts, notably in EA. The spring
results demonstrate that both ME and EA are affected by the altered snowmelt patterns.
In summer and autumn, both drought classifications indicate increasing drought con-
ditions in both regions. Enhanced evapotranspiration, lower precipitation (up to 70%
in central Europe; Raisanaat al, 2004) and runoff, as well as a perturbed snowmelt
hydrology (Section 5.7.3.4) yield high model agreement in the projected positive hydro-
logical trends. The abundant summer precipitation together with the small and unclear
sign of change for autumn precipitation over northern-central Europe (Giorgi and Cop-
pola, 2009) may partially explain the lack of robustness in the projected positive meteo-
rological trends. Autumn DAI25 frequencies for both regions suggest non-linear changes

(Figure 5.18).

5.8.5 France (FR)

FR is projected to experience increasing meteorological and hydrological droughts,
both long and short, throughout the 21st century. GCM agreement is highest in summer
and autumn. In 2051-2100, summer and autumn severities are up to 4-5 (meteorological)
and >6 (meteorological) times higher than 1951-2000; the magnitude of increases in

summer DAI25 frequencies are reversed for the two drought classifications.

5.8.6 British Isles (BI)

For 12-month results, both drought classifications produce inconclusive trends in
2001-2050. In 2051-2100, hydrological (meteorological) severities and DAI25 frequen-
cies reveal positive (negative) trends, suggesting that higher evapotranspiration counter-
acts the precipitation increase. The regional results may be complicated by the sub-
regional variations in changes in both meteorological (Section 4.4.7) and hydrological
(Section 5.7.3.6) events.

Seasonally, droughts remain relatively uncommon in winter and spring (e.g. Figure
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5.18) with both drought classifications showing no clear trends, except for the nega-
tive severity results. In summer and autumn, both definitions generally show increas-
ing droughts (Figure 5.16) as a result of reduced precipitation during the warmer seasons;
higher evapotranspiration and lower runoff also contributed to the increase in hydrological

droughts.

5.8.7 Exploring the Effects of PET

A major difference in the two drought classifications explored in this study is that
hydrological droughts incorporate temperature effects while SPI is precipitation-only.
Changes in hydrological drought over a river basin should be assessed based on changes
in both precipitation and evapotranspiration, rather than changes in annual precipitation
only (Hirabayashet al,, 2008). PET influence on the direction and/or magnitude of runoff
change (Research Question 5 in Section 5.1) was explored by running Mac-PDM.09 with
climate projections for ECHAMS under RCP6 but holding the temperature at present-
day (1951-2000) levels. Differences between results from this “constant temperature”
(i.e. precipitation changes only) experiment and the “control” run with future temperature
scenarios (i.e. with changes in both precipitation and PET, as in Section 5.7) are there-
fore mostly be attributable to the effects of PET, which is calculated using the Penman-

Monteith method in MacPDM.09.

5.8.7.1 Effects on Absolute Drought

Table 5.4 shows the percentage difference between various drought parameters gen-
erated from the “constant temperature” and “control” runs for ECHAM5 under RCP6.
Overall, “constant temperature” produces considerably lower severity and less frequent
widespread events. Across the PRUDENCE regions, constant (i.e. “present-day”) temper-
ature yields 59—90% (2001-2050) and 77-99% (2051-2100) less severe 12-month events,
and 52-100% less frequent widespread droughts under both future periods. Similar dis-
crepancies are found for 3-month results, with discrepancies larger in 2051-2100 than
2001-2050 due to the larger projected warming. For 3-month results in SC and AL,

“constant temperature” tends to produce smaller discrepancies in winter relative to other
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12-months 3-month Severity 3-month DAI25 3-month DAI50
Region Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON
2001-2050:
Bl -73.8 -100 -100 -64.4 -48.7 -41.7 -53.1 nla n/a -51.1 -541 nla n/a -64.7 -23.1
P -64.6 -52.2  -68.8 -57.8 -68.8 -53.5 -46.7 -66.7 -75.0 -37.7 -27.5 nla n/a -55.0 -47.7
FR -90.3 -95.9  -100 -580 -95.2 -68.6 -58.1 -40.0 -100 -629 -53.1 -100.0 n/a -80.0 -514
ME -82.5 -90.0  -100 -441 -740 -705 -639 -52.6 -100 -789 -69.1 -40.0 n/a -85.7 -62.5
SC -69.4 -100 n/a -309 617 -66.8 -61.4 -44.4 16.7 n/a n/a -100.0 -50.0 n/a n/a
AL -77.6 -87.2  -100 -266 36.7 -642 -57.3 -31.8 714 -650 -50.9 -60.0 n/a -100  -92.3
MD -59.1 -69.2  -58.6 -343 -65.1 -50.9 -444 -50.0 -75.0 -53.7 -37.0 nla -50.0 -61.1 -59.0
EA -84.0 -88.7  -100 -385 -555 -79.1 -67.6 -50.0 -71.4 -100.0 -78.0 -50.0 n/a n/a  -100
2051-2100:
BI -81.3 -100 -100 -61.2 -71.9 -72.7 -834 nla n/a -782 -783 nla n/a -82.8  -90.5
P -81.0 -55.6  -80.9 -83.1 -88.0 -76.7 -684 -944 -955 -515 -342 -100 -100 -754 -56.0
FR -99.2 -100 -100 -86.1 -99.9 -90.5 -822 -100 -100 -859 -721 -100 -100 -94.0 -78.8
ME -94.1 -100 -100 -734 931 -90.8 -880 -72.0 -100 -96.2 -875 -929 -100 -95.0 -945
SC -86.2 -100 n/a -60.8 184.4 -89.4 -81.4 -100 0 n/a n/a n/a n/a n/a n/a
AL -91.1 -95.2  -100 -66.5 -48.4 -821 -76.0 -66.7 -640 -83.1 -66.7 -92.3 -100.0 -100.0 -92.8
MD -77.4 -70.0 -87.6 -61.3 -843 -735 -62.9 -543 -857 -57.6 -31.8 -100.0 -90.0 -859 -67.0
EA -95.7 -98.4  -100 -71.7 -90.3 -915 -854 -754 -889 -100 -90.8 -885 -100 -100 -1

Table 5.4: Percentage difference between “constant temperature” and “control” runs simulated
with ECHAMS climatology under RCP6.

PRUDENCE regions, and more spring drought (for AL, 2001—-2050 only). “Constant tem-
perature” implies no increase in snowmelt (since in Mac-PDM.09, snowmelts only occurs
when temperature rises above a threshold) which alleviates drought conditions particu-
larly in spring. Table 5.4 suggests that this effect is larger in SC than AL.

Although precipitation is the predominant driver of the land surface hydrologic system
(Adamet al,, 2009), these results demonstrate the importance of PET on future changes
in hydrological drought. Although the difference between the two runs are mostly at-
tributable to changes in temperature thus PET, the relative contribution from PET and
possibly other factors that interact with temperature in MacPDM.09 would be an area for
further study. Besides the effects of PET, Gosling and Arnell (2011) found MacPDM.09
simulated runoff to be highly sensitive to the choice of PET calculation method by test-
ing also with the Priestley-Taylor method, and discussed the implications of different
PET calculation methods. Both van der Schaeal. (2011) and Sheffiel@t al. (2012)
calculated global PDSI values with the Thornthwaite (Thornthwaite, 1948) and Penman-
Monteith (Allenet al, 1994a; Ekstronet al, 2007) methods. While the former found
similar results between the two approaches as precipitation is more important than PET
in the simple water balance model of the PDSI algorithm, the latter found diverging re-
sults. Results obtained here are therefore likely to differ considerably with a different PET

calculation method.
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Figure 5.19: Total severity in 1951-2000 and 2051-2100 for “control” and “constant temperature”
runs simulated with ECHAMDb climatology under RCP6.

5.8.7.2 Effects on Magnitude of Change

Figure 5.19 illustrates the effects of PET on the magnitude of change from 1951-2000
for total severity in 2051-2100 simulated with ECHAMS5 climatology under RCP6. Only
IP and MD show positive trends in both experiments in both long and short events, with
a considerably lower£50%) magnitude of increase under “constant temperature”. SC
shows decreasing 12-month and winter severity, with “constant temperature” producing
larger magnitudes. For almost all other categories, PET affects the sign of change except
in IP and MD. Taking the AL example, “constant temperature” indicates negative trends
in winter and spring and positive in summer and autumn, while “control” shows increases

in all seasons. Frequency of DAI25 reveals similar characteristics and is hence not shown.

5.9 Conclusions

This chapter has presented the effects of climate change on hydrological drought char-
acteristics in the 21st century for Europe using gridded°(0®5°) monthly runoff out-

put from the hydrological model, Mac-PDM.09. The general methodology adopted in
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this chapter follows that applied and detailed in Chapter 4. Future climate scenarios,
simulated by MAGICC6 and ClimGen, were used as inputs for Mac-PDM.09. Spatial
patterns were presented for PRUDENCE-averaged regions and Koppen-climate regimes,
and hydrological drought severity and occurrence of large-scale drought were analysed.

To investigate the robustness of the projected changes in European hydrological droughts,
a systematic analysis of the various sources of uncertainty associated with drought mod-
elling was carried out. These include difference due to the choice of drought classification
(meteorological vs. hydrological), a fixed or seasonally-varying threshold for determin-
ing when drought occurs and termination rule for drought events, along with the spread
of results introduced by ten emission scenarios and eighteen GCMs. Specially, this chap-
ter aimed to answer the questions outlined in Section 5.1. Construction of probabilistic
scenarios that would be useful in a planning context would require consideration of more
than the uncertainties addressed here. Consistency was determined by the level of GCM
agreement, with a trend (a robust trend) occurring whé&f (all 18) GCMs projected the
same direction of change. IQRs were used as a more robust measure of model spread.
This emphasis on inter-model consistency and the behaviors of the majority of models
assumes that GCM agreement in direction of change are more reliable, which may or may
not be correct (see discussion in Section 2.7.10).

Drought projections and their future changes generally vary substantially, depending
on the GCM, emission scenario, region, season, threshold and the methodology used to
define them. Nevertheless, results presented here enable the following generalisations to

be made:

e Temporal: Drying intensifies with climate change over the 21st century, with more

(less) robust increases (decreases) in 2051-2100 than 2001-2050.

e Regional patterns: Projected changes in both high- (Scandinavia and Russia) and
low-latitudes (the Mediterranean and Middle East region) tend to be less sensitive to
the various sources of uncertainty investigated. The former is projected to become
less drought-prone, especially in winter/spring, while marked increases (typically
by 2-3 times in 2001-2050, and up to 10-fold in 2051-2100) are simulated through-
out the year for the latter. Winter/spring trends in British Isles and summer/autumn

trends in Scandinavia are less conclusive.
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e Seasonal patterns: Robust and marked increases, but accompanied by higher un-
certainties in magnitudes, are common in summer/autumn, whereas negative trends
may occur in winter/spring. Although the largest increases tend to occur in sum-
mer/autumn, altered snowmelt processes may cause spring to have the largest mag-

nitude changes in some cases.

e Drought definition: Contrasting trends occur due to choice of different definitions
are more common in winter/spring particularly in regions affected by snow and
snowmelt. For instance, in spring, the Alps could experience positive meteorolog-
ical changes but negative trends in hydrological drought. Drought classification

uncertainty also leads to opposing changes in summer/autmn in Scandinavia.

e Results averaged climatically according to the Koppen climate classification, rather
than geographically, demonstrate higher GCM consistency, thus better reflecting

the climate change signal.

e Uncertainties tend to increase over time and with magnitude of warming. They af-
fect frequencies of widespread droughts more than total severity, and DAI50 more
than DAI25 results, especially in 2001-2050. The lower agreement in 2001-2050
results for spatially extensive droughts especially DAI50 events, is related to the
less substantial near-future warming and/or their rarity especially in larger geo-
graphic regions. The effects of emission scenario uncertainty is more important in
2051-2100; however, GCM variance dominates over other sources of uncertainty

throughout.

Comparing results derived from fixed and seasonally-variable thresholds identifies
categories that are more sensitive to deficiencies during high-flow seasons (Question 2 in
Section 5.1), which are less likely to be captured by the fixed threshold. These results
suggest that a variable threshold captures these anomalies in regions with higher runoff
such as the Alps and Scandinavia especially in the high-flow seasons of winter/spring. A
variable threshold also yields considerably larger magnitudes of increase in drying than a
fixed threshold that may yield contrasting trends in the wetter seasons.

To identify categories that may be more susceptible to a larger drought event being di-

vided into a number of mutually dependent minor droughts, two drought event termination



5.9 Conclusions 161

rules that either include or exclude “excess” periods (where flows temporarily exceed the
threshold level during an event) were applied (Research Question 3 in Section 5.1). For
both present-day and 21st century results, discrepancies introduced by the two event defi-
nitions (1) affect longer droughts than shorter events; (2) affect frequencies of widespread
events more than total severity; and, (3) have negligible effects on hydrological results (al-
though 12-month alpine results have relatively higher discrepancy); however, they have
more influence on their meteorological counterparts as precipitation in a particular month
has less dependence on conditions of the preceding month.

The level of agreement in results derived from the meteorological and hydrological
definitions was assessed. Both classifications generally produced the same direction of
change, but hydrological results tended to produce more increases in drought conditions
with larger magnitudes than meteorological ones. Disagreement was more common for
summer/autumn in Scandinavia, and for winter/spring in Mid-Europe and Eastern Europe
as higher PET counteracts precipitation increase; inconsistency also occurred in the alpine
spring as earlier snowmelt alleviated hydrological droughts while meteorological events
were enhanced by reduced precipitation.

Drought parameters derived from MacPDM.09 were found to be highly sensitive to
PET; different results are therefore likely with a different PET calculation method. Higher
PET generally implies more droughts in absolute terms, with larger increases. Chiew and
McMahon (2002) found that changes in runoff and soil wetness are larger than evapotran-
spiration changes, hence the relative contribution from PET and possibly other factors that
interact with temperature in MacPDM.09 is subject to further study. Winter and 12-month
droughts in Scandinavia and British Isles (in 2001-2050) were projected to decrease re-
gardless of PET changes, but higher PET implies smaller reduction. Higher PET also
reduced winter droughts in Scandinavia and the Alps due to increased melting of frozen
precipitation.

Outcomes in this chapter are conditional upon the limitations of MAGICCS6, ClimGen
(those associated with pattern-scaling and the underlying GCMs) and Mac-PDM.09 (e.g.
hydrological model parameters derived from the recent past are assumed to continue to
apply in future climates) as discussed in Section 3. Since Mac-PDM.09 calculates runoff

independently for each cell, runoff in cells further downstream from the Alps, for instance,
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does not contain the glacial component as it would in reality. Results and uncertainty
analysis were primarily based on the use of climate change patterns from 18 GCMs under
RCP6 and one hydrological model. These climate scenarios do not account for potential
changes in the intensity of rainfall at sub-monthly timescales, for example. As such,
results here are likely to underestimate the true uncertainty in future hydrological patterns
(Arnell, 2011), thus should be considered illustrative rather than definitive. Nevertheless,
this comprehensive sampling of uncertainty highlights the range of outcomes that can
occur future drought conditions.

Global and catchment-scale hydrological model output for a given GCM can produce
substantially different projections of flow changes (e.g. Goséih@l., 2011b; Hadde-
landet al,, 2011). This variance is relatively small compared to GCM uncertainty (inter-
GCM differences; Arnell, 2011; Todet al,, 2011), which is often found to be the largest
(Grahamet al,, 2007; Prudhomme and Davies, 2008; Goslata@l., 2011b; Kjellstrom
et al, 2011), particularly during summer months (Wilbyal,, 2006). One major source
of GCM uncertainty is related to large-scale atmospheric circulation changes (especially
changes in precipitation and windiness) and their representation in GCMs (Ragtahen
2004; Kjellstromet al,, 2011). Models also have difficulties in reproducing higher-order
statistics of precipitation (Blenkinsop and Fowler, 2007b).

Discharge is not only affected by hydroclimatological processes (van der Wateren-
de Hoog, 1995; Hemmingt al,, 2010), but also catchment characteristics (Hisdall,,

2001; Chiew and McMahon, 2002; Gudmundssbral., 2011), elevation (Chanet al,,

2002), water quality and anthropogenic influences (e.g. cover change, adaptation mea-
sures and abstractions for irrigation, industrial and/or domestic use) in future. Consid-
erations of these are beyond the scope of this chapter but are important for assessing
vulnerability to climate change.

It is worth noting that increasing drought conditions in regions that already suffer
from the hazard may be of less concern compared to regions that do not currently ex-
perience their effects. Adaptation decisions (e.g. on investment in infrastructure such as
reservoirs) will need to be made in the context of high uncertainty. As no one technique
is superior than the others (e.g. Blenkinsop and Fowler, 2007b; Prudhomme and Davies,

2008), decision-making should be based on multi-scenario and multi-drought definition
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approaches, together with multiple climate and impact models (Feyen and Dankers, 2009)
to capture uncertainties due to both hydrological and climate modelling (Prudhomme and
Davies, 2008). The choice of drought quantification methodology should be governed by
purpose of application. Local practices such as irrigation are excluded in the simulation
process used here also need to be considered. Existing literature indicates considerable
sub-regional variations (e.g. the northern wetting and southern drying trend in the British
Isles) and localised storms (e.g. in the Mediterranean) that are likely to be smoothed by
the regional averaging process. For instance, topography can induce fine-scale features in
the precipitation change signal (Gabal., 2006); the hydroclimatological processes that
govern hydrological droughts may vary between regions and events @lalg 2011).
Therefore, higher resolution models may be more appropriate for impact assessment stud-
ies, especially for mountainous regions (e.g. the Alps), although they also have limitations
(see Section 2.6.11).

Since future interannual precipitation variability could enhance or alleviate changes in
drought caused by mean precipitation changes, the next chapter explores the spatial and
temporal effects of climate-change-induced changes in interannual precipitation variabil-

ity in projected meteorological and hydrological droughts for the European study region.






Chapter 6

Effects of climate change on the
iInterannual variability of
precipitation and impacts on

droughts

6.1 Introduction

Global warming will directly influence precipitation patterns (Trenberth, 2006). The
non-linear hydrological response (Lalmtal., 2004) suggests global energy and hydro-
logic cycles will intensify as climate changes (Gioddial., 2004). Overall, interannual
hydroclimate variability (both drying and wetting) could enhance (Christensen and Chris-
tensen, 2004; Meekt al, 2000; Seagest al., 2012) due to larger atmospheric water hold-
ing capacity and evaporation over oceans (Giorgi and Bi, 2005; Msetil, 2007). The
likelihood of extreme events (e.g. low summer precipitation, increased dry spell lengths)
is very sensitive to deviations in mean and variability of the probability distribution as-
sociated with the variable under consideration, hence they (e.g. precipitation extremes;
Kharin and Zwiers, 2005) may fluctuate much more than the mean (Gregaly1997).
Therefore, temporal and spatial anomalies of climate variability and its seasonal distri-
bution — rather than changes in the long-term mean values — may be more important

in terms of societal consequences (Katz and Brown, 1992; Lioubimtseva and Henebry,
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2009).

Regional climate fluctuates on timescales of seasons to decades but, until the last
decade, conventional impacts studies have concentrated on mean climate changes. Raisanen
(2002), Giorgiet al.(2004) and Rowell (2005) explored the impacts of@&f@ubling/climate
change on interannual variability of temperature and precipitation. Arnell (2003a) investi-
gated the implications of perturbed relative climate interannual variability on British river
flows, Doll (2002) studied how climate change and variability could affect irrigation wa-
ter requirements, while Vidal and Wade (2009) studied both shifts in drought index and
changes in their characteristics due to GCM-derived perturbed inter-monthly climate vari-
ability, and Hulmeet al. (1999) focused on the multi-decadal (30-year) timescale impacts
on runoff. Hydrological impact studies (e.g. Lehmral., 2006) that exclude changes in
interannual or daily variability may be under- or over-estimating future floods, droughts
and irrigation water requirements (Battsal,, 2008).

Precipitation variability may be measured in absolute (standard deviation, SD) or rela-
tive (coefficient of variation, CV) terms, with the latter being more appropriate for impact
studies (e.g. water resource management; Vidakd., 2007) given that it is dimension-
less and thus enables comparison between regions with different amounts of precipita-
tion. Global warming generally increases precipitation SD and CV: larger SD may occur
in areas with higher or lower mean annual precipitation; CV increases especially with
declining mean precipitation since it is expected to decrease (increase) with more (less)
precipitation days (Raisanen, 2002). Consequently, a general decline in mean precipita-
tion across the PRUDENCE regions implies a substantial increase in CV (\étlale
2007).

Changes in variability are an important consideration in a changing climate as they
may mask/moderate or exacerbate the direction and/or magnitude of an anthropogenic sig-
nal, e.g. the strengthened winter NAO combined with background anthropogenic warming
rapidly changed the northern Europe winter climate between 1965 and late 1990s (Hur-
rell, 1995; Hurrell and van Loon, 1997; Parketral, 2007). Such changes could have
implications for the alpine region, which exhibits the strongest European winter interan-
nual precipitation variability (Bartolinét al, 2009), and Iberian hydroelectric production,

which currently varies by a factor of three between wet and dry years (&tigly 2004),
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for example. Exacerbated precipitation intensity and variability could raise flooding and
drought risks (Bategt al, 2008), e.g. more heatwaves and droughts in Europe (Schar
and Jendritzky, 2004). Water availability from surface water sources or shallow ground-
water wells depend on both the seasonality and the interannual variability of streamflow
while seasonal low flows affect the security of water supply (Bates., 2008). Even
with a constant total precipitation, warming and enhanced precipitation variability gen-
erally increase irrigation water demand during the growing season (Batds 2008),
and therefore water stress (Lioubimtseva and Henebry, 2009). A change in interannual
climate variability could affect agriculture (e.g. crop yields, crop quality and even crop
choice; Skuras and Psaltopoulos, 2012), food production and forestry (Salinger, 2005).
Changes in European precipitation (and temperature) interannual variability have been
attributed to the effects of: (1) perturbations in mean seasonal temperature and pre-
cipitation, which typically enhances future variance when measured over 30 years; (2)
variations in SST anomalies that affect seasonal means; (3) deviations in internal at-
mospheric variance (Rowell, 2005; Vidade al, 2007) and, (4) land-atmosphere feed-
backs especially in transitional climate zones and mid-latitude areas via soil moisture-
temperature/precipitation or vegetation-climate interactions (Seneviratne and Stockli, 2007).
GCMs can allow interannual variability to change independently of mean precipita-
tion in regions where the temporal distribution becomes more skewed with increases in
low or high extremes, or both. Future interannual precipitation variability could enhance
or alleviate changes in drought caused by mean precipitation changes, but few studies
have explored this area. This chapter therefore takes advantage of ClimGen’s scenario
generation capacity (see Section 3.2) to assess the spatial and temporal effects of climate-
change-induced changes in interannual precipitation variability (hereafter, variability) in

the projected meteorological and hydrological droughts for the European study region.

6.2 Methodology

To explore the influence of climate-change-driven perturbed precipitation variability
in future meteorological and hydrological drought, results from a “control” and a “fixed
variability” experiment (ClimGen Option 4 and 3, respectively; see Section 3.2) are com-

pared. The former accounts for changes in both precipitation mean and variability, as
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represented by the coefficient of variation (CV) or equivalently by the shape parameter
of a gamma distribution (see Equations 3.6 and 3.7); the latter considers only changes in
mean precipitation as the CV is kept roughly constant. In both experiments, ECHAM5
pattern-scaled precipitation deviations for both mean and variability were expressed as a
fractional change from present-day precipitation (e.g. a fractional change of 1.2 would be
+20%) rather than as an absolute change (€2 mm/month). ECHAM5 was chosen

on the basis described in Section 4.4. The effects on 12-month results for drought severity
and DAI25 frequency for 2001-2050 and 2051-2100 under RCP3-PD and RCP8.5 were
studied. A drought (both meteorological and hydrological) is defined by a fixed threshold
(see Section 5.5).

In the “fixed variability” experiment, ClimGen was run with a scenario generation
method that multiplies the observations by ECHAM5-derived mean climate perturbations.
Variability, which is inherent in the observed time series, is modified so that CV is roughly
constant in both periods, hence precipitation standard deviation changes in proportion to
the mean. To avoid precipitation in regions of decreasing mean precipitation reaching
zero, the magnitude of mean precipitation varies exponentially (rather than linearly) to
global-mean temperature change, thus the rate of change accelerates (decelerates) in re-
gions with higher (lower) mean precipitation (see Equation 3.3). These “fixed variability
precipitation” scenarios were then applied in MacPDM.09 to generate “fixed variability
runoff”.

The “control” results are simply those from Chapters 4 and 5 for meteorological and

hydrological droughts, respectively.

6.3 Meteorological and Hydrological Drought Severity

Figures 6.1 and 6.2 present the difference between control and fixed variability mete-
orological and hydrological drought severity, respectively. Patterns of difference in 2051
2100 under RCP3-PD and in 2001-2050 under RCP8.5 are not shown due to their sim-
ilarities to Figures 6.1a and 6.2a; these figures therefore demonstrate the smallest (top)
and largest (bottom) forcing scenarios examined. Missing data points in Figures 6.1b and
6.2b represent cells with no change in severity, or without drought in 1951-2000 and/or

2051-2100.
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6.3 Meteorological and Hydrological Drought Severity
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Figures 6.1 and 6.2 reveal very similar spatial patterns: across much of the study re-
gion, fixed variability severities tend to be lower than control values, i.e. overall, the inclu-
sion of future changes in interannual precipitation variability tend to increase the severity
metric of both meteorological and hydrological droughts, relative to the cases where only
the mean precipitation changes and the CV of precipitation is hold constant. The opposite
trend occurs primarily in parts of Russia/SC (particularly some areas of Sweden), west-
ern/southwestern BI, Brittany (FR) and southern Italy where perturbed variability lowers
severity. The influence of changed variability on hydrological drought is less geograph-
ically structured than for meteorological drought — a characteristic Hehag. (1999)
found in runoff anomalies associated with 30-year climate variability.

Figures 6.1a and 6.2a show similar patterns between the two experiments, with the
hydrological results having slightly larger magnitudes, in both positive and negative di-
rections. Figure 6.1b shows relatively small differences (up 20%) between the two
experiments around the Mediterranean basin, which become larger with increasing lati-
tudes (and also in Central Asia); similar characteristics are also present in Figure 6.2b.
Figures 6.1b and 6.2b demonstrate differences in severity between meteorological and
hydrological droughts. Hydrological results have smaller differences between the two
experiments, suggesting that altered variability affects meteorological, more than hydro-
logical, severities, as the SPI-based results more directly reflect precipitation influence;
similarly, Lloyd-Hughes and Saunders (2002) found precipitation directly caused much
of the variability in their PDSI results. In large parts of the Balkans, IP, central and eastern
Europe, variability fluctuations enhance (reduce) meteorological (hydrological) severities,
corresponding to lower (higher) 50-year mean precipitation (runoff) (not shown).

In the higher latitudes (except Bl) and Central Asia, drought severities, in particular
meteorological ones, are considerably lower (up to 100% lower in some areas) when pre-
cipitation variability (CV) is held constant compared to the control results. This not only
suggests that changes in variability intensifies severity but areas that are “drought-free”
(based solely on increased mean precipitation) may become “drought-affected” when
changes in variability are also incorporated. Results for the wetting regions, including
northern latitudes but also northwestern Bl and AL, may also be affected by the method-

ology used for the generating the magnitude of mean precipitation deviation, see Section
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6.5.

As forcing increases (with time and/or under a higher emission scenario), differences
in both meteorological and hydrological severity between the two experiments decline in
the Mediterranean, Black Sea and Caucasus regions through less intensity (e.g. parts of
IP and the Balkans) or reduction in severity (e.g. southern Italy). Since severity is defined
as the cumulative deficit over the time period, this weakening effect appears to contradict
the expected warming-induced intensification of the hydrological cycle, is attributable
to the levelling off of severity in drying regions as precipitation/runoff approaches zero.
This also explains the smaller discrepancies in the lower latitudes compared with northern
latitudes.

In parts of the Balkans, IP, central and eastern Europe, hydrological severity differ-
ences reverse from negative to positive with increasing forcing. Modified variability al-
leviates, rather than amplifies severity, partly because of more intense precipitation in
southern Europe (Kjellstrom, 2004; Giorgi and Lionello, 2008) associated with the more
severe storms (Sumnet al, 2003). Nevertheless, consistent with Figure 6.2, (Arnell,
2003a) found intensified interannual variability reduces Q95 further despite the small im-

pact on mean flows.

6.4 PRUDENCE-Averaged Results

Regional effects of deviations in the interannual variability of precipitation are also
examined. Table 6.1 presents the regional changes, from 1951-2000 values, in projected
meteorological and hydrological drought parameters from control and fixed variability
experiments. For both meteorological and hydrological drought severity and DAI25 fre-
quency, including future changes in interannual variability tends to (1) enhance positive
trends (IP, FR, AL, MD, EA), (2) moderate reductions (SC), or (3) reverse reductions
in drought so that they become increases (e.g. meteorological drought results for Bl and
ME). Similar to findings in Section 6.3, changes in meteorological drought are larger than
the hydrological drought changes; also their effects generally weaken, except for some
scenarios in Bl and ME, with increasing forcing. The attenuating effect (reducing dif-
ferences) with increasing forcing may not reflect the decreasing relative importance of

perturbed precipitation variability on severity (as discussed above); nonetheless it is more
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RCP3-PD RCP8.5
2001-2050 2051-2100 2001-2050 2051-2100
Control Fixed Control Fixed Control Fixed Control Fixed

Meteorological Severity:

Bl 1.2 -7.0 0.9 —8.8 6.2 —4.5 42.9 19.7
IP 2324 154.1  333.5 236.1 311.3 227.0 1171.5 1037.5
FR 84.5 59.5 1279 92.1 104.0 789 393.0 310.0
ME 39.6 8.3 56.8 174 49.1 13.0  166.0 71.4
SC -329 —464 —444 —-558 —33.6 —49.2 —494 —62.6
AL  170.6 130.0 2436 193.3 2285 177.6 876.3 740.2
MD  219.2 1554 312.1 2324 298.1 224.6 1192.5 1060.8
EA 68.2 17.2 97.5 29.8 87.0 26.1 328.0 146.1

Meteorological DAI25 Frequency:

Bl -79 =303 -—-14.5 -329 -79 =329 -26.3 —48.7
IP 274.1 168.5 3574 246.3 3352 2352 8704 803.7
FR 85.5 449  126.1 75.4  100.0 60.9 320.3 223.2
ME 26.9 -—17.9 29.5 -9.0 28.2 —12.8 110.3 14.1
SC —-485 —-864 —65.2 —-879 —-50.0 -—-87.9 —83.3 —100.0
AL 307.9 205.3 415.8 292.1 4079 265.8 12105 992.1
MD  270.6 154.9 4255 270.6 364.7 245.1 1027.5 996.1
EA 90.9 0.0 120.0 16.4 1164 12.7 3964 125.5

Hydrological Severity:

BI —6.9 -5.9 7.7 —5.8 —-4.3 —-3.5 51.4 47.7
IP 266.8 177.3 406.8 295.0 392.7 286.7 2047.0 1937.6
FR  146.7 130.1 2481 207.7 196.5 180.7 1125.0 1046.0
ME 75.5 357 1223 70.7  101.0 58.4  546.4  479.9
SC -183 -334 -21.0 -35.0 -—183 —34.5 42.5 8.8
AL 341.5  313.0 551.7 517.0 5174 477.0 3267.5 3261.7
MD 3349 255.0 499.1 407.8 490.5 389.5 2417.8 2411.7
EA 2323 165.6 372.3 281.0 319.9 236.3 1924.6 1787.1

Hydrological DAI25 Frequency:

Bl —-3.6 16.1 7.1 28.6 0.0 16.1  128.6 133.9
IP 284.8 1978 3674 2804 358.7 291.3 9304 963.0
FR 150.9 108.8 184.2 1579 1719 136.8 421.1 464.9
ME 57.8 37.5 85.9 73.4 85.9 75.0 2875 315.6
SC 143 —476 —-11.9 —-524 —19.0 —47.6 357 —429
AL 581.5 5259 896.3 8704 796.3 729.6 2000.0 2055.6
MD  596.8 500.0 958.1 877.4 754.8 703.2 1764.5 1793.5
EA 2409 1909 3455 288.6 363.6 252.3 1095.5 1127.3

Table 6.1: Percentage changes, from 1951-2000, in meteorological and hydrological drought
parameters from two experiments: (1) the “Control”, where both the mean and CV of precipitation
change (according to the pattern-scaled GCM projections); and, (2) the fixed variability (“Fixed”)
experiment, where the mean changes but CV is held constant (i.e. the SD changes in proportion to
the mean).
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indicative in the DAI25 frequencies results.

However, for hydrological DAI25 frequencies in 2051-2100 under RCP8.5, perturbed
variability yields slightly smaller increases across all PRUDENCE regions except SC,
where the negative trend reverses. As forcing intensifies, wetter-than-average periods
associated with variability may also become more frequent and/or widespread, resulting
in a smaller proportion of drought-affected areas. Such a pattern also occurs in the Bl
under all scenarios (see later discussion).

SC tends to have negative drought changes; increased mean precipitation variations
alone typically decrease meteorological and hydrological severities and DAI25 frequen-
cies, but perturbed variability lessens the reductions through more frequent and/or longer
dry periods. Yet, continued forcing increase reverses the influence of changed variabil-
ity on hydrological trends for both mean and variability in 2051-2100 under RCP8.5,
with altered variability amplifying severity increase and producing more (rather than less)
frequent DAI25 events as PET increases.

Based on percent difference in drought parameters between the two experiments in
Table 6.1, overall, interannual variability changes are least influential in AL. Although
perturbed variability has relatively similar effects in IP, FR, AL and MD, its role in ME
and EA is particularly evident in the meteorological results. For meteorological severity
in both regions, changes in both mean and variability of precipitation produce increases
2.2-4.8 times larger than with the mean climate alone, compared to 12-51% higher in
IP, FR, AL and MD. For EA in 2001-2050 under scenario RCP3-PD, mean precipitation
variations produce almost no change in meteorological DAI25 frequency, but the addi-
tion of changes in variability almost doubles the frequency. For ME, both experiments
project consistent increases but only in 2051-2100 under RCP8.5. Under weaker forcing
scenarios, mean changes reduce meteorological DAI25 frequency, but the inclusion of
modified variability generates positive changes; perturbed interannual variability does not
have such a large impact in the hydrological results. It could be related to the new west-
ern/eastern transitional zone in terms of changing precipitation characteristics as climate
shifts (Kyselyet al,, 2010), and increased summer temperature and precipitation variabil-
ity due to strong land-atmosphere interactions in central and eastern Europe as climatic

regimes shift northwards with increasing GHGs concentrations (Senevatdihg2006).
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Except for 2051-2100 under RCP8.5, BI has relatively small changes of regionally-
averaged severity due to the averaging of spatial contrast (Figures 6.1 and 6.2) — modified
variability enhances (alleviates) severity in western Scotland (Ireland/southwestern Eng-
land). Both experiments indicate increasing meteorological and hydrological severities
only in 2051-2100 under RCP8.5. Under all other scenarios examined, perturbed inter-
annual variability intensifies the severity of meteorological droughts, in contrast to the
reductions caused by increased mean precipitation; but changes in interannual variability
also amplify hydrological severity reductions.

The results here are broadly consistent with other studies. Dankers and Hiederer
(2008) found increasing fluctuations in interannual precipitation variability (CV of the
annual precipitation sums) in both northern and southern Europe, and decreases in the
areas between. Precipitation intensity and variability falling in drying regions is gen-
erally increasing (Dankers and Hiederer, 2008). In southern Europe, precipitation vari-
ability increases in both wet/cold season and the dry/warm seasons (Goubanova and Li,
2007) as dry years become drier (Dankers and Hiederer, 2008), and a pronounced increase
in negative anomalies (Giorgi and Coppola, 2009) regardless of the magnitude of mean
changes (Giorgi and Lionello, 2008). This is in agreement with the enhanced positive
changes in drought found here for the Mediterranean regions. Over northern-central Eu-
rope, the precipitation probability density functions (PDFs) broaden and flatten, with pre-
dominantly increased positive anomalies in winter (as wet years become wetter; Dankers
and Hiederer, 2008), and negative in summer (Giorgi and Coppola, 2009). The effects of
changes in summer, if greater than those in winter, may partially be responsible for revers-
ing the negative drought changes (from mean precipitation changes alone) in ME obtained
here. Similar to mean precipitation, the magnitude of changes in interannual variability
generally increases with forcing intensity and is unimportant until the late decades of
21st century — contradicting DAI25 frequency results in the present study; the change
signal is also greater in the dry season than the wet season (Giorgi and Lionello, 2008).
Greater atmospheric water holding capacity causes higher wet-period precipitation inten-
sities; wet periods are separated by longer dry periods with more frequent extremely hot
and dry summers due to feedback interaction with generally drier land areas (Giorgi and

Lionello, 2008).
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6.5 Control vs. Fixed Variability Experiments

Results from the control and fixed variability experiments differ due to three distinc-
tions in ClimGen Options 4 and 3 methodologies, respectively. These are the (1) modi-
fication of observational monthly anomalies that are used to represent future variability,
(2) superimposing these modified present-day deviations of precipitation variability onto
21st-century scenarios, and (3) the function used to generate the magnitude of mean pre-

cipitation change.

Figure 6.3: ECHAMb5-derived shape parameter change pattern (12-month average).

Firstly is the modification of variability, in addition to mean precipitation, in the con-
trol but not the fixed variability experiment. The temporal distribution of precipitation
may become more (or, in some cases, less) skewed as climate changes. The gamma
probability distribution, which best describes variation in precipitation amount over a wet
period of a given number of days (Isehal, 1971; Lloyd-Hughes and Saunders, 2002),
contains a shape parameterand a scale parametgr « tends to vary with wet-day
frequency, therefore measures distribution skewness. Similar to mean precipitation, the
projected change in, as a ratio of the present-day mean, is expressed as a linear or ex-
ponential function of the global-mean temperature change. The shape parameter for a
particular future scenario can, therefore, be estimated from the global-mean temperature
change and a coefficient for each calendar month and each grid cell. The pattern of co-
efficients has been diagnosed from the CMIP3 GCM simulations and the average of the
twelve monthly patterns for the ECHAM5 GCM is shown in Figure 6.3.

For a gamma distribution, given that= o3 ando? = %, wherey is the mean
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ando? is the varianceC'V = 1/./a. Therefore, the CV of precipitation increasesnas
decreases, and vice versa. Figure 6.3 shows that a majority of the study region has negative
changes with the largest magnitudes in the lower latitudes. This implies that CV increases
with global warming, particularly around the Mediterranean and Black Sea regions; CV
also increases across much of the high latitudes where declining mean precipitation is
expected, consistent with Raisanen (2002) and Vidal. (2007). As a lower value

implies a more skewed distribution (Goodedsal., 2003a), this explains the worsening
drought conditions found in Sections 6.3 and 6.4.

Secondly, there are differences in the way that the observed precipitation variability
is superimposed onto the 21st-century scenarios between the two ClimGen methods that
might make a very small contribution to the difference between the two experiments.
Specifically, the fractional deviations in the fixed variability experiment (ClimGen Option
3; o;my in Equation 3.3) always have a mean of one, whereas the transformed fractional
deviations in the control experiment (ClimGen Optioro4,,, in Equations 3.6 and 3.7)
may have a mean that differs slightly from one. Nonetheless, this influence is negligible
due to the long baseline period (1951-2000) chosen, which is considered representative
of the fluctuations in the timeseries.

Lastly, in regions with declining mean precipitation, the magnitude of mean precip-
itation in both experiments, and the precipitation distribution shape in the control run,
varies exponentially with global-mean temperature change in both experiments. In re-
gions where mean precipitation increases, however, the relationship is linear (exponen-
tial) in the control (fixed variability) experiment. Although, results in wetting regions
may also be affected by this effect (which becomes apparent with global-mean temper-
ature of+3°C or above, e.g. in 2051-2100 under RCP8.5), it is relatively unimportant
since drought, i.e. regions with precipitation decline, is the primary concern here.

This subsection has discussed the three differences in ClimGen options that explain
the differences in the results from the two experiments, i.e. to differentiate the effect of
changes in interannual variability and mean. The latter two also lead to non-identical
changes in mean precipitation for reasons discussed above. For instance, the 50-year-
mean precipitation from the two experiments deviate-3£6 to +8% in 96% of the

study region under lower forcing scenarios, and 90% of the region in 2051-2100 under
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RCP8.5. Nonetheless, these inconsistencies are small compared to 50-year mean control

precipitation changes from 1951-2000 mea®0% to+40% in~91% of all cells).

6.6 Conclusions

This chapter has examined the effects of climate-change-altered interannual variabil-
ity on indices of European meteorological and hydrological droughts. This was achieved
by comparing results from a “control” and a “fixed variability” experiment generated with
ClimGen Options 4 and 3, respectively, for both 2001-2050 and 2051-2100 under RCP3-
PD and RCP8.5. The former experiment accounts for both changes in the mean and vari-
ability of precipitation (i.e. results from Chapters 4 and 5 for meteorological and hydrolog-
ical droughts, respectively) while the latter considers only changes in mean precipitation.
Differences in the results between the two experiments are predominantly attributable to
the perturbed precipitation variability.

Overall for both meteorological and hydrological drought severity and DAI25 fre-
quency, perturbed variability tends to (1) enhance drought conditions, particularly in Mid-
Europe and Eastern Europe, (2) moderate reductions in drought conditions (Scandinavia),
or (3) reverse reductions in drought conditions (e.g. meteorological results for British
Isles and Mid-Europe). Therefore, studies that omit precipitation variability fluctuations
may under- or over-estimate drought (but more often underestimate for the study region)
and their trends, or may derive conflicting trends to those that take into account both
perturbed mean and variability, e.g. meteorological DAI25 frequency in Mid-Europe. A
drought-free zone (e.g. in the northern latitudes) according to mean changes only may
become drought-affected when modified variability is considered. The British Isles has
relatively small changes due to the averaging of sub-regional spatial variations (e.g. devi-
ations in variability enhance drought severity in western Scotland but reduce it in west-
ern/southwestern parts of the region), and does not demonstrate clear positive change until
very large forcing scenarios.

These results suggest that small changes in mean precipitation could produce large
effects on drought results, especially those meteorologically defined. The impact of
perturbed interannual variability is more reflected in meteorological than hydrological

drought results due to the use of the precipitation-only SPI index. Although severity
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results do not reflect the relative importance of modified variability particularly in dry-
ing regions, their effects generally weaken, except for some cases in British Isles and
Mid-Europe, with increasing forcing as DAI25 frequency results suggest. Under very
high forcing, wetter-than-average periods associated with positive precipitation anomalies
may also become more frequent and/or widespread, producing slightly smaller increases
in hydrological DAI25 frequency; meteorological DAI25 frequencies do not share this

characteristic though.

6.6.1 Limitations

Although a range of forcing has been represented by a high (RCP8.5) and a low
(RCP3-PD) emission scenario, results here are based on ECHAMS5 only. The effects of
perturbations in the interannual variability of precipitation simulated using other GCMs
may lead to different results, thus is an area for further research. In addition, analy-
sis here was carried out for 12-month drought results; the seasonal effects of changes
in interannual precipitation variability therefore warrants further investigation as studies
have shown seasonality in the changes in interannual variability of precipitation, with the
largest increase in summer, and smaller changes in spring and autumn g6adr2004;
Rowell, 2005; Vidaleet al., 2007; Giorgi and Coppola, 2009).

Using ClimGen, this study has used the statistical properties of precipitation derived
from the observations combined with information from GCM simulations to generate fu-
ture scenarios, i.e. the effects of the changes in interannual variability of precipitation on
drought parameters have been studied by examining the simulated changes in the shape
parameter of the gamma distribution. The detailed study of individual drivers of interan-
nual precipitation variability and their changes, such as the NAO (van Loon and Rogers,
1978; Hurrell, 1995; Rodet al, 1997; Haylock and Goodess, 2004; Lopez-Moreno and
Vicente-Serrano, 2008), is beyond the scope of the current study. Also, this study has con-
sidered the changes in precipitation variability on the interannual timescale only; changes
on other timescales (e.g. inter-decadal; Arnell, 1999c; Hudtnal., 1999) may modify
the results further. The effects of perturbations in interannual variability has been as-

sessed for precipitation only; changes in temperature variability may also have an impact
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on the projected drought results. In summer, for instance, the increasing interannual vari-
ance of precipitation has been found to couple with those for temperature over much of
Europe, regardless of the direction of precipitation change (Giorgi and Bi, 2005; Giorgi
and Coppola, 2009). These have not been explored here.

The next chapter examines the runoff sensitivity to climatic changes for the Euro-
pean study region using the elasticity approach, and assesses the applicability of such an

approach for estimating runoff under a perturbed climate.






Chapter 7

Runoff sensitivity under present-day
and future climates: the application

of runoff elasticity

7.1 Introduction

Our incomplete understanding of the behaviour of the climate system has led to the
development of a wide range of emission scenarios, climate and impact models to support
climate change decision making. Despite advances in our scientific understanding and
model development, conventional cause-effect analysis (Bruakrad, 1999) is highly
sensitive to the choice of input data and models. Climate and hydrological models may
be physically sound, but their use in climate change and hydrological impacts studies are
subject to a wide range of sources of uncertainties that range from the choice of emission
scenarios, models and model calibration methodologies (which itself is time and resource
intensive; Schaake, 1990; Sankarasubramagtiah, 2001), to the difficulties in the inter-
pretation of multi-model results, as described in Section 2.6. This cascade of uncertainty
produces a range of possible outcomes (Schneider, 1983). The effects of application of
a range of emission scenarios and GCMs have been explored in Chapters 4 and 5 for
the case of European drought characteristics under future climates. In addition, decision

makers tasked with climate change adaptation planning and policy formulation often have
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time and/or resource constraints, making assessments based on a physical model a less ap-
propriate support tool in practical applications. Assessing the sensitivity of a system to

a particular trigger offers an alternative (empirical) approach in climate change vulner-
ability and adaptation assessments, and can provide some indication of the urgency of
the issue, i.e. how close the system moves toward critical thresholds (Weiss and Alcamo,
2011), without the level of complexity associated with physical modelling.

Runoff sensitivity to climatic (e.g. precipitation) changes has been estimated using
various approaches on both global (Chietval., 2006) and regional scales, including
U.S. (Sankarasubramaniahal, 2001; Sankarasubramanian and Vogel, 2003etal.,
2007a;b; Renner and Bernhofer, 2012), Australia (Chiew and McMahon, 2002; Chiew,
2006; Department of Water, 2010; Y al., 2010a) and China (Fet al., 2007c; Zheng
et al, 2009; Liu and Cui, 2011; Suet al., 2013); only a few studies have focused on the
European region (e.g. Arnell, 1992; Weiss and Alcamo, 2011).

This chapter seeks to evaluate the spatial and temporal variations of runoff sensitivity
for the European study region. Elasticity can be used to measure the sensitivity/response
of a system to a certain trigger. Section 7.2 provides an overview of the climate elasticity
of runoff and the datasets used in this study. Section 7.3 presents the elasticity estimates
for the European study region and their changes in a changing climate. Section 7.4 ex-
plores the applicability of elasticity values for estimating runoff under a perturbed climate.
Section 7.5 presents the concluding remarks. The specific research questions addressed

in the chapter are:

1. How does runoff sensitivity to changes in climatic factors vary across the study

region under present-day climate?
2. To what extent does climate change alter runoff sensitivity?

3. Can a simple non-parametric estimator be applied as an initial screening tool, prior
to the adoption of a physical model-based approach, for estimating runoff change?
Specifically, does future runoff estimated with the non-parametric estimator, deter-

mined only using 20th century data, agree with those simulated by Mac-PDM.09?
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7.2 Climate Elasticity of Runoff

Schaake and Chunzhen (1989) and Schaake (1990) adapted the concept of elasticity
(e), widely used in economics, to estimate the sensitivity of streamflow to climate devia-
tions. e expresses the ratio of the percent change in one variable to the percent change in
another variable (Liu and Cui, 2011) — e.qg. precipitation elasticity of streamfloi®, Q)
represents the proportional change in streamébie the change in precipitatioR; alter-
natively, potential evapotranspiration (PET), instead of precipitation, data may be used for
eppr(PET, Q). Itindicates the hydro-climatic status of the respective basins and the ex-
pected proportional sensitivity of climatic changes (Renner and Bernhofer, 2012). Dooge
(1992) and Dooget al. (1999) termed it the sensitivity factos,,>1 indicates that a 1%
precipitation change can cause-4% streamflow change (Sankarasubramaeiaal.,

2001).

7.2.1 Elasticity Estimation Approaches

Runoff deviations under a perturbed climate may be estimated by a physical model-
based approach, i.e. using a hydrological model (e.g. Nash and Gleick, 1991; Chiew and
McMahon, 2002; Legesst al., 2010). However, this process can be complex, and time-
and resource-intensive.

Alternatively, an empirical approach may offer the advantage of simplicity as it deter-
mines streamflow response to climate variations using long-term meteorological and hy-
drological observations (Risbey and Entekhabi, 1996), which may be more readily avail-
able than a physical model. According to Schaake (1990, ), a random variable

dependent o and@), is defined as:

_dQ/Q dQP

ep(P,Q) = PP~ dPQ (7.1)

Sankarasubramania al. (2001) compared the performance of various model struc-
tures in estimating elasticity at the mean values of precipitafigf) and streamflow()
(Equation 7.2), and recommended the estimator, Equation 7.3, for general usage.

dQ

P
ep (s 1Q) = 7% |P=pr ;LQ (7.2)
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i QP) (7.3)

ep(P, Q) = median <Pt 50

Equation 7.3 represents the median of annual estimates of climate elasticity over the
study period at the specific siteis time (year),P andQ, are the long-term sample means
of precipitation and streamflow, respectivelyz.and(@); are the annual-mean precipitation
and runoff in yeart. The use of annual data implies that Equation 7.3 only estimates
long-term runoff sensitivity to long-term precipitation changes (Chétwl, 2006). To
capture the full range of observed variability, longer records are generally recommended
for estimating elasticity. With potential changes in climate and variability, however, the
most recent 30-50 years, or dry or wet periods that are similar to future projections, may
be more suitable (Fat al,, 2011).

Sankarasubramanian and Vogel (2003), Chiew (2006) and Liu and Cui (2011) and
others have investigated the effects of climate change on annual streamflow based on
Equation 7.3. This estimator was tested via Monte Carlo experiments for three basins in
the U.S.; it was found to have low bias and was equally or more robust than watershed
model-based approaches for evaluating the streamflow sensitivity (Sankarasubramanian
et al, 2001). It enables spatial and temporal comparisons of streamflow response to cli-
mate change/variability in different scales of the same basinsetlail (2012) quantified
the impacts of climatic variation and human activities on streamflow changes by first esti-
mating the contribution of streamflow deviations associated with changes in precipitation
and potential evapotranspiration (PET) using the climate elasticity method, and then at-
tributed the remaining streamflow variation to human or other influence.

Given the time and resource constraints in water resource management and planning,
the relatively simple data requirements and calculations of Equation 7.3 imply that it
could potentially be a useful scoping tool to identify areas that warrant in-depth modelling
studies. Hence, the application of Equation 7.3 has been explored in this chapter.

Runoff sensitivity may also be obtained from the response surface method (e.g. New,
2002; Weiss and Alcamo, 2011), the Budyko framework (e.g. Renner and Bernhofer,
2012; Suret al,, 2013; Liang and Liu, 2013), or the ArcGIS Geostatistical Analyst (e.g.
Fuetal, 2007a;c; Ywet al,, 2010a), amongst others (e.g. Dooge, 1992; Vegal., 1999;
Harmanet al,, 2011).
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7.2.2 Limitations of the Non-Parametric Estimator

Despite the simplicity of Equation 7.3, a numerical drawback is thaP, Q) ap-
proaches infinity wherP, approaches® (Sankarasubramaniaet al, 2001). Fuet al.
(2007b) excluded precipitation changes<0f0% to overcome this numeric instability,
however such an approach has not been adopted here due to the selection of median elas-
ticity values (Equation 7.3).

Since Equation 7.3 is only a function of precipitation, it does not account for the
effects of other factors such as temperature éFal, 2007b), hence PET, which also
can also alter runoff characteristics (Gedrewl., 2006). For instance, the 20th-century
global runoff was found to increase by 4% with aClwarming (Labatet al, 2004);
the potential changes in future precipitation and temperature distributions could mod-
ify future flow regimes, as simulated for Central European basins (Weiss and Alcamo,
2011). Fuet al. (2007b) thus extended Equation 7.3 into a two-parameter index, by
using the ArcGIS Geostatistical Analyst package and historical records to construct the
streamflow-precipitation-temperature relationship. This incorporates the effects of the
temperature from the temperature-precipitation plane into the calculation of climate elas-
ticity of streamflow. Furthermore, Equation 7.3 excludes potential changes in rainfall
distribution and frequency, land surface processes and surface-atmosphere feedbacks in

an enhanced greenhouse environment (Cleieal., 2006).

7.2.3 Datasets

The calculation of climate elasticity of runoff (Equation 7.3) is based on annual stream-
flow (Q;) and annual climate variables such as precipitatigh énd PET PET;). This
involves using the observed (1951-2000) monthly CRU TS 3.0 precipitation timeseries
extracted using ClimGen (see Section 3.2), Mac-PDM.09-simulated monthly runoff time-
series and monthly PET timeseries extracted from Mac-PDM.09 for the period 1951-2000
(see Section 3.3). The Mac-PDM.09 simulation was forced by the same CRU TS3.0 ob-
served climate variations.

To analyse the changes in runoff sensitivity under a changed climate, future elastic-
ity values were computed with 21st-century monthly precipitation (from ClimGen) and

runoff (from Mac-PDM.09) data projected by ECHAMS5 under a low (RCP3-PD) and
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high (RCP8.5) emission scenario. ECHAMS was chosen on the basis described in Sec-
tion 4.4. This approach enables an assessment of how well elasticity values estimated
using 1951-2000 runoff (from Mac-PDM.09) reproduces the Mac-PDM.09-generated fu-
ture runoff simulated using GCMs and emission scenarios. However, it will likely give
an upper bound for the performance of Equation 7.3 because the runoff used to fit the
elasticity equation is from the same model that is used to test its performance. Lower
performance would be expected if real-world datasets were used for elasticity estimation,

because real-world observations will not be perfect.

7.3 Elasticity Estimates

7.3.1 Calendar vs. Hydrological Year

According to Fuet al. (2011), an inappropriate accumulation of annual values of
streamflow and precipitation may over- or underestimate elasticity. Consequently, time-
series with the strongest precipitation-streamflow relationship should be used, and that the
hydrological year (October—September) would be preferable. Elasticities for snowmelt-
dominated mountain and high-latitude catchments (e.g. Spokane River bashaku
2011) with topographically driven thresholds related to snow loss that are relatively weak
in 20th-century records, may become more sensitive to the time periods of annual accu-
mulations and the precipitation-streamflow relationshipgfal., 2007b). The initial step
in elasticity estimation therefore is to determine whether to use calendar- or hydrological-
year results for subsequent analysis.

The strength of the precipitation-runoff relationship was assessed using Pearson'’s cor-
relation coefficients for 1951-2000 annual timeseries computed with both calendar and
hydrological years. The spatial distribution of the correlation coefficients (not shown),
however, revealed little difference between the January—December and October—September
results.

Subsequently, precipitation and PET elasticity of runoff (hereafigf, andepgr,
respectively) for both calendar and hydrological years were estimated with Equation 7.3,
as shown in Figures 7.1 and 7.2. Monthly precipitation, PET and runoff data for 1951—

2000 were used (see Section 7.2.3). The griddgdandepgr values (as in Figures
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Eppt EPET
Calendar Hydrological Calendar Hydrological

PRUDENCE regions:

BI 1.48 1.39 -0.20 -0.05
P 1.86 221 -2.23 -1.09
FR 1.73 1.95 -0.42 0.07
ME 1.67 1.92 -0.82 0.17
SC 1.14 133 0.08 0.18
AL 1.50 1.63 -2.44 -0.96
MD 1.62 191 -2.82 -3.11
EA 1.48 1.68 -2.59 -0.86

Koppen climates:

BSh 1.65 1.80 -4.92 -2.84
BSk 1.60 1.67 -6.25 -6.14
BWh 151 174 -3.02 -4.85
BWk 154 1.58 -6.56 -6.06
Csa 174 2.01 -3.11 -3.67
Csb 1.71 2.10 -1.07 -0.74
Cfa 1.56 181 -3.73 -2.66
Cfb 1.62 1.77 -1.45 -0.35
Cfc 1.16 1.28 0.68 0.75
Dsa 1.05 1.25 -3.48 -3.00
Dsb 1.27 151 -3.09 -2.70
Dsc 1.05 1.18 -0.30 -0.41
Dfa 1.35 1.73 -6.18 -6.88
Dfb 1.40 1.64 -4.24 -5.08
Dfc 1.28 151 -1.19 -0.91
ET 0.88 1.04 0.19 0.30

Table 7.1: ¢, ande ppr estimated with annual climatic and runoff values based on the calendar
and hydrological years.

7.1 and 7.2) were then averaged based on the PRUDENCE regions and Koppen climates
types (see Section 3.9). These are presented in Table 7.1.

Hydrological-yeare,,; (Figure 7.1b) tend to be more spatially-coherent, and both
gridded and regional (Table 7.1) hydrological-yegy; tend to have larger magnitudes,
suggesting a more sensitive relationship. For regional averages, the hydrological year
yields highers,,; values in all PRUDENCE regions except the British Isles, and in every
one of the Koppen regions. For example, regional calendar- and hydrologicatzyear
for IP, FR, ME, MD are 1.48-1.86 and 1.91-2.2, respectively. These results seem to
support (Fet al, 2011)’'s argument for using hydrological year. Moreover, the splitting of
high European winter precipitation between two calendar years may produce misleading
results (Trigaet al, 2004). Therefore, the remaining chapter focuses on hydrological-year
results.

epgT results are less conclusive and are discussed later in this subsection and Section

7.3.3.
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7.3.2 Relationship with Runoff Ratio

0 02 04 06 08

Figure 7.3: Mean runoff ratio for 1951-2000 based on October-September annual precipitation
and runoff.

Figure 7.3 shows the mean runoff ratio (runoff/precipitation) derived from 1951—
2000 annual (October-September) precipitation and runoff. It implies that runoff ratio
negatively correlates te,,; (Figure 7.1b) as areas with highey,; tend to have lower
runoff ratios, and vice versa. This relationship is explored further below.

The runoff ratio, is defined as:
a=Q/P (7.4)
whereQ and P are the long-term means of runoff and precipitation, respectively.
Re-arranging Equation 7.4 gives:
Q=aP (7.5)

On longer timescales, continental river runoff is approximately equal to the difference
between land precipitation and evapotranspiration (Geéney, 2006). Therefore, as-
suming that soil moisture and groundwater storagein the present-day does not vary

significantly over the long-term, i.é\S=0, the long-term mean runoff), is:

O— P—AET (7.6)

whereAET is the long-term mean actual evapotranspiration (AET).

For any patrticular yeat,
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Qi = P, — AET, — AS, (7.7)

Equation 7.3 states that:

e = median(g;) (7.8)
whereg; is:
_Q—-QP
Et = Pt — P Q (79)

If for year, ¢, whereAET; andS; vary,

AAET, = AET, — AET (7.10)

substituting Equation 7.6, and then 7.5, into Equation 7.10 gives:

AAET, = AET, — P+ oP (7.11)

substituting Equations 7.7 f@p;, 7.5 forQ, and 7.11 for P into Equation 7.9 gives:

P,— P — (AAET, + AS))

1
—_ . _ 7.12
Ty p—P (7.12)
SinceP, — P = AP, Equation 7.12 becomes:
1 AP —(AAET, + AS))
Sppt = AP (7.13)

If AAET, + AS; = 0, i.e. only precipitation changes from one year to another,

Equation 7.13 simplifies to:

eppt = 1/ (7.14)

Sankarasubramanian and Vogel (2003) also found the upper bougng),ofo be
roughly the inverse of runoff ratio.
Figure 7.4 presents the difference betwegp and the inverse of runoff ratio @j. It

shows that for the entire study regiam,,; is smaller than X/, which occurs ifAAET; +
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= -
T 3

Figure 7.4: Difference between,,,, and the inverse of 1951-2000 mean runoff ratio.

AS; > 0 whenAP,>0 (Equation 7.13). Therefore, in years wheké>0 (i.e. a year

with positive annual mean precipitation anomaly), the increas¢ /61" and/orAS im-

plies a smaller runoff increase than would occur if only precipitation changes; drier years
(AP<0) imply a smaller runoff decrease a1 and/or AS reduces. Although the
annual PET does not vary with changes in precipitation alone, changes in water made
available by precipitation directly influence AET (Jetatral,, 1996). SinceA ET cannot
exceedPET"

AET = BPET (7.15)

where (<5<1, a wetter year implies that more moisture is available for evaporation
(8—1) or soil moisture storage increases. Figure 7.4 shows that larger differences tend
to occur in the lower latitudes (particularly eastern IP and Central Asia), and vice versa.
This suggests thal T increases in the lower latitudes are higher than in the northern
latitudes.

Although not found here, according to Equation 7 4,3,> 1/o occurs only ifAAET; 4
AS; < 0whenAP,>0 (and vice versa). This suggests tHdtT" and/orAS decreases in
a year whered P>0. This may occur with loweP ET, which also implies loweAET,
but would be unusual as soil moisture storage @amnabuld be expected to be higher in a

wetter year.
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7.3.3 Spatial Variations in Elasticity

This subsection addresses Research Question 1 in Sectiot@dw,does runoff sen-
sitivity to changes in climatic factors vary across the study region under present-day cli-

mate?.

7.3.3.1 Precipitation Elasticity of Runoff )

According to Figure 7.1, a majority of the study region hgs 1.0-2.5, i.e. a 1% pre-
cipitation increase yields a 1.0-2.5% rise in runoff. These results are consistent with
Equation 7.3-based estimates of 1.0-3.0 for 500 catchments across the globe (Chiew
et al, 2006). This estimator, along with other approaches mentioned in Section 7.2.1,
show regional variations ia,,;: 1.0-2.5 for the U.S. (Sankarasubramargamal., 2001,
Sankarasubramanian and Vogel, 2003gFal., 2007a), 2.0—4.0 for Australia (Chiew and
McMahon, 2002; Chiew, 2006; Yet al,, 2010a), 1.3-3.0 for the UK (Arnell, 1992), 1.0—

2.1 for the Chinese Yellow River (Zherg al., 2009; Liu and Cui, 2011) and Poyang
Lake Basins (Sumt al,, 2013), and 3.0—-4.0 for the Meki River Basin in Ethiopia (Leg-
esseet al, 2010). Although not found in the present study, increased precipitation may
produce negative climate elasticity as a small precipitation increase (decrease) combined
with a large temperature increase (decrease) may generate lower annual streamflow (Fu
et al, 2007b).

eppt>1.5 occurs across much of western continental Europe and Central Asia/Middle
East; large parts of IP has,;>2.5 (Figure 7.1). The lowest values tend to occur in
regions north of 68N and parts of Russia; in some of these aregs, is <1, so that
the relative runoff changes by less than precipitation. According to Jdtah (1996),
the amplified runoff response arises due to the relatively smaller changes in AET com-
pared to the mean precipitation perturbations, given that hydrological models such as
Mac-PDM.09 represent annual runoff as roughly the difference between precipitation and
AET. This is shown by Equation 7.13, as,;>1 implies that relative AET deviation is
smaller than the relative mean precipitation change. This occurs when much of the addi-
tional precipitation during a wetter year falls (1) during the cold-season months and AET
is limited by energy more than moisture, or (2) during intense precipitation events when a

greater proportion runs off rather than increasing soil moisture storage and thus the later
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supply of water for AETe,,,;<1 suggests that relative AET changes exceed precipitation
changes, which occurs when much of the water is stored as snow until late spring when
more energy is available (i.e. PET increases). This explains the concentration of areas
with e,,,; <1 in parts of Russia and Scandinavia, as shown in Figure 7.1.

In agreement with the negative correlation betwggpand runoff ratio found in Sec-
tion 7.3.2, many studies (e.g. Arnell, 1992; New, 2002; Zheingl., 2009; Liu and Cui,

2011) generally reveal higher (lower) sensitivities in more (less) arid regions or dry (wet)
years, although Jetaet al. (1996) found larger annual streamflow changes to mean pre-
cipitation variations under wetter climates in the north-central Sierra Nevada, California
and Nevada. Globally;,,;>2.0 occurs in arid and semi-arid regions with lower runoff
coefficients, including southeastern Australia, southern and western Africa, mid-western
and Southwestern U.S;,,:<2.0 occurs in catchments with high mean annual runoff ra-

tio and very high humidity index (precipitation/PET, both long-term mean), as well as in
cold climates that has large snow storage, such as southwestern South America, the mid-
and high-latitudes of the Northern Hemisphere such as northwestern U.S. (Sankarasubra-
manianet al,, 2001; Chiewet al., 2006).

Elasticity may also vary with the direction of precipitation change, even with constant
temperature (Fet al, 2007b). For four catchments in southwestern Cape, South Africa,
New (2002) found greater (smaller) streamflow response for progressively larger precipi-
tation increases (decreases). Moreover, as found in the Murray-Darling Basit éFu
2011), precipitation variations alone may not cause directional or large-magnitude runoff
changes (Jetoat al., 1996), which depend also on basin-scale effects of climate, soil and

vegetation (Wigley and Jones, 1985; Gedeéewl., 2006; Liu and Cui, 2011).

7.3.3.2 PET Elasticity of Runoff €ppr)

Figure 7.2 shows that a 1% PET increase produces runoff change bet@égmand
+2% across much of the study region, which is consistent with other studies. For instance,
New (2002) found lowe p 7 of 0.2—0.4 in four mountainous catchments in southwestern
Cape, South Africa, which increased under wet conditions (i.e. decreased PET). In China,
eppr ranges from-2.1 to—10.2 in Poyang Lake Basin (St al, 2013) and between
—1.0 and—4.5 in the Yellow River Basin (Zhenet al., 2009; Liu and Cui, 2011).
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Overall,e per is larger tham,,, (typically <2.5), which appears to suggest that runoff
in the study region is more responsive to PET than precipitation changes. Whilg;all
values are positive; pp are both positive and negative. PET is expected to negatively
correlate with runoff as lower PET tends to offset the effects of any precipitation decline
or enhance the effects of precipitation increases, hence higher runoff (Wigley and Jones,
1985). Positive ppr values, i.e. PET increases with runoff increase as reflected in Figure
7.2, imply greater effect of precipitation increase than PET increase.

Large positives pp Values (-2%) particularly concentrate in parts of western Iberian
Peninsula, Scotland, western Eastern Europe (e.g. Poland), western Turkey, parts of Scan-
dinavia, eastern Ukraine and southern Russia. This suggests that annual precipitation and
PET values are positively correlated in these regions during 1951-2000, and runoff in-
creases even in years with positive PET anomalies as the effect of precipitation increase is
larger than PET. Such a relationship may also occur in future climates as runoff is deter-
mined by AET (see Section 7.3.3.1). The largest negativg- (—8%) occurs in Central
Asia/Middle East, but is also found in Romania, and parts of Italy that have the lowest

runoff ratios 0.2).

7.3.3.3 Regionak,,; andeppr

Table 7.1 shows that in all PRUDENCE regions except MD, precipitation changes
affect runoff more than PET changes. Runoff in IP and SC is the nagst4.2) and least
(eppt 1.3) sensitive to precipitation changes, respectively. Along with one of the largest
eppt (1.9) alongside FR and ME, MD also has the highgstr (3.1), suggesting high
sensitivity changes to PET changes.

Taking averages according to Koppen climatgsgr values (negative 3.1-6.6) are
larger thare,,,; (1.3-2.1) in the lower latitudes (all arid (B) climates, temperate climates
with hot summers (Csa, Cfa), cold climates with/without dry season and with hot/warm
summer (Dfa, Dfb, Dsa, Dsb)), suggesting that runoff around the Mediterranean, Black
Sea and Caspian Sea is more sensitive to PET than precipitation. In climates with lower
temperatures (Csb, Cfb, Cfc, Dfc, Dsc, ET), PET influence is negligipe£ 0-1).
Fore,,:, Csa and Csb have the highest values (2.0 and 2.1, respectively) while ET and

Dsc have the lowest (1.0 and 1.2, respectively). Cfb, which covers much of mid-latitude
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Europe, along with Cfa and Dfa that surround the Black Sea, also have relatively,high
of 1.7-1.8.

While temperature strongly influences the seasonal runoff distribution and snow ac-
cumulation and ablation processes (Jatbal.,, 1996), precipitation predominantly drives
the land surface hydrologic system, thus directly and indirectly affect annual mean stream-
flow (Arnell, 1992; Risbey and Entekhabi, 1996; Adatal, 2009; Liang and Liu, 2013).
Therefore, precipitation variations are regarded as more important than PET changes in
determining runoff changes. Hencs,, is considered a more important indicator than

epeT, and the remaining chapter focusessgp .

7.3.4 ¢,, under Climate Change
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Figure 7.5: Changes irz,,,: based on ECHAMS.

Most studies investigate climate elasticity of streamflow using 20th century data,
e.g. for the U.S. (e.g. Sankarasubramarggal.,, 2001; Fuet al, 2007b) and China (e.g.
Fu et al, 2007c; Zhenget al,, 2009; Liu and Cui, 2011; Suet al,, 2013), but few have
explored how elasticity could shift as climate changes. This study thus explores the Eu-
ropean hydrological response to both present-day and future climates.

To examine the potential changesjj; under climate change (i.e. Research Question
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2 in Section 7.1), Equation 7.3 was applied to 2001-2050 and 2051-2100 monthly precip-
itation and runoff timeseries based on ECHAM5 under RCP3 and RCP8.5 (see Section
7.2.3). Percentage changes:jp, relative to the 1951-2000 values (Figure 7.1b) were
derived (Figure 7.5). Patterns of change in 2051-2100 under RCP3 and in 2001-2050
under RCP8.5 (not shown) are similar to Figure 7.5a.

Figure 7.5 shows similar spatial patterns=gf; changes from 1951-2000 in the two
future periods under both emission scenarios. While change2@¥ in the 21st century
scatter across the study region, stronger positive trer@8%) predominantly occur in
the band northern EA—eastern SC—northern Russia. These trends are more widespread
in 2051-2100 under RCP8.5, for which they also extend into the Alps and along the east
coast of the Adriatic Sea. Under present-day conditions, frozen precipitation in these
regions implies a smaller runoff response to precipitation fluctuatigns<(1.5, Figure
7.1b). As more precipitation falls as rain instead of snow with warming, runoff responds
more quickly to precipitation variations, yielding a higher runoff sensitivity to precipita-
tion. Futures,,; decreases by20% in IP where 1951-200€),,; is >2.0. This reduction
could be related to the increasing importance of future PET, causing less of the precipi-
tation changes to be reflected in runoff deviations. Another explanation is related to soil
moisture storage changes: initial drier soil conditions (due to increased PET with warm-
ing) imply that in a year with positive precipitation anomaly, a greater proportion of the
added moisture infiltrates into the soil until it becomes saturated, thus a smaller proportion
contributes to runoff.

Generally, Figure 7.5 suggests that areas with some of the lowest (highest) present-day
sensitivities of runoff to precipitation changs,,;<1.5 (>2.0), have some of the largest
(smallest) increases in the 21st century. This suggests reducing geographical variations in

eppt Values.

7.4 Runoff Estimated by Elasticity

As mentioned above, streamflow sensitivities have been dervived in a number of stud-
ies but few have used elasticity values to estimate runoff. Chiew (2006) compared stream-
flow estimated by Equation 7.3 with a simple lumped conceptual daily rainfall-runoff

model SIMHYD. In a report by the Government of Western Australia (Department of



7.4 Runoff Estimated by Elasticity 197

Water, 2010), runoff changes in southwest Western Australia under a perturbed climate
were determined using elasticities derived with 20th-century data. Since few studies have
validated the use of elasticity values in estimating runoff changes, this section examines
whether the application of an elasticity function could reproduce Mac-PDM.09-simulated
runoff for the European study region (Research Question 3 in Section 7.1).

Usinge,,: values derived in Section 7.3.3.1, runoff was estimated with Equation 7.16:

Pfut,_ P

5 (7.16)

qut = Q + 5ppt© .

where Q,; represents the elasticity-estimated 50-year mean runoff under climate
change,@ is the 1951-2000 runoff mean based on Mac-PDM.09 outgyt, denotes
the precipitation elasticity of runoftf;,; is the 50-year mean precipitation in the 21st
century, andP is the 1951-2000 mean. The 21st-century precipitation data were based
on ECHAMS5 under RCP3 and RCP8.5 (see Section 7.2.3).

These elasticity-estimated runoff values, presented in Section 7.4.1, were then com-

pared to Mac-PDM.09 simulations for the 21st century (Section 7.4.2).

7.4.1 ¢,,-estimated Runoff

Figure 7.6 shows the percentage changes in 21st century gjgirgstimated runoff
based on the 1951-2000 mean. Similar to Figure 7.5, changes in 2051-2100 under RCP3
and in 2001-2050 under RCP8.5 are not shown due to their similarities to Figure 7.6a.

Northern and southern latitudes have the largest positive and negative trengs of
estimated runoff change, respectively. In absolute terms, the former have the highest
future 50-year mean runoff (e.g. Norway and western Bl ha®® mm/month) while
the latter have the lowest values (e.g. much of IP, Central Asia/Middle Easttit¥e
mm/month). AL also has>-50 mm/month of long-term mean runoff, but a moderate
decrease of 10-30%.

eppt-€stimated values are generatiyl0% higher (lower) than 1951-2000 mean in
areas north of 6IN (south of 45N and west of the Caspian Sea). The most extreme
warming scenario (Figure 7.6b) reveals rune80% higher in the northern latitudes, and
>50% lower in the lower latitudes, particularly in IP and around the Mediterranean basin

where the predicted reduction exceeds 70%.
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Figure 7.6: Changes irx,,,:-estimated runoff, from 1951-2000 mean, based on ECHAMS.

For Figure 7.6bg,,; produces negative runoff estimates in 1.3% of the study region,
primarily in south-central IP and parts of southwestern Turkey (not shown). These roughly
correspond to the regions with the highest present-day elastie®?y5] combined with
large precipitation declines (by 34-59%) from 1951-2000 (other scenarios<t2¥8%
reduction). When estimating runoff wit},;, large precipitation decrease and/or high
eppt Values may reduce runoff by100%. Although these cases could be set to zero,
caution is needed anyway when estimating runoff change with elasticity values under
large warming scenarios, as these changes may lie outside the range of the present-day

annual variations used for elasticity estimation.

7.4.2 Comparison with Mac-PDM.09-simulated Runoff

This section examines the level of agreement between elasticity and hydrological
modelling output by comparing the 21st century runoff estimatee,py(Section 7.4.1)
and Mac-PDM.09 under a “control” and “constant-temperature” experiment. Climate
scenarios under RCP3 and RCP8.5 based on ECHAMS were used.

The “control” experiment involves using 21st-century ClimGen climate projections

as input into Mac-PDM.09, i.e. the approach adopted in Chapter 5. Runoff/runoff change
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estimated by elasticity and Mac-PDM.09 are hereafter termed “estimated” and “control”
runoff/runoff change, respectively.

As Equation 7.3 only considers one climate variaklg,-estimated runoff might
be more comparable to Mac-PDM.09 simulations generated with 21st century precip-
itation and 1951-2000 temperature — the “constant-temperature” experiment. Simi-
larly, runoff/runoff change from this experiment is referred as “constant-temperature”
runoff/runoff change, hereafter.

“Control” and “constant-temperature” runoff changes from 1951-2000 mean values
are presented in Figures 7.7 and 7.9, respectively. As for Figures 7.5 and 7.6, only results

for the most extreme (small and large) climate change scenarios are shown.

7.4.2.1 Control Runoff Comparison
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Figure 7.7: Changes in Mac-PDM.09-simulated runoff, from 1951-2000 mean, based on
ECHAMS.

Under the smaller warming scenario, both the elasticity and modelling approaches

(Figures 7.6a and 7.7a, respectively) produce similar spatial patterns of runoff change as
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Figure 7.8: Percentage difference ef,;-estimated runoff from Mac-PDM.09-simulated runoff,
based on ECHAMS.

discussed in Section 7.4.1. The control experiment yields larger reductions across 45—
55°N as the anticipated higher PET is accounted for in Mac-PDM.09 but not in the elas-
ticity results. Reductions of 30-50% in southeastern Europe are slightly more common
in simulated than estimated changes, suggesting the importance of PET; other potential
explanations include elasticity estimates based on present-day values, or the elasticity
concept itself, may be inappropriate for deriving long-term changes. For southwestern IP,
however, reductions of this magnitude are more widespread in estimated than simulated
results. Larger magnitudes of change occur in 2051-2100 under RCP8.5, with both ap-
proaches indicating 2051-2100 runoff to b&0% higher than 1951-2000 mean in areas
north of 60N, and>30% lower south of 489\. Reductions of-70% are common around

the Mediterranean basin, particularly in the elasticity-based estimates.

Overall, simulated trends tend to be more negative than elasticity-estimated changes.
eppt Values only consider precipitation and not temperature/PET effects, therefore they
may overestimate runoff by excluding losses from increased PET, which reduces (en-
hances) the magnitude of simulated runoff increase (reduction) notably in the high- (mid-)

latitudes. This is reflected in Figure 7.8, which shows the discrepancies between estimated
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and simulated 21st century runoff based on ECHAMS5; discrepancy is considerable under
the largest warming scenario. Exceptions include the relatively unaffected northwest-
ern study region due to lower PET, and around the Mediterranean basin where estimated
runoff is lower than simulated.

In the lower latitudes, PET is expected to increase with climate change, thus the
runoff simulated by Mac-PDM.09 during the control experiment, for which changes in
PET are allowed, is expected to be lower (greater reduction) than values estimated only
from precipitation change; it is worth noting that it is AET, rather than PET, that deter-
mines the runoff. However, consistent with the Department of Water (2010) report and
Chiew (2006), contrasting trends are found around the Mediterranean basin, which co-
incides with some of the highest elasticity values. On an annual basis, Department of
Water (2010) found estimated reductions up to 28% larger than the modelled changes.
According to Chiew (2006), which found a reasonable agreement betwgegstimated
by Equation 7.3 and a rainfall-runoff model, their model-simulated values tended to be
larger in catchments with low runoff coefficients. Chiew (2006) related this to the highly
non-linear rainfall-runoff relationship in ephemeral catchments with low runoff coeffi-
cients, and that the use of the median value in Equation 7.3 excluded the occasional high
runoff values. Such attribution may partially explain the lower estimated runoff (larger
reductions) around the Mediterranean basin found here.

Another possible explanation is associated with the use of elasticity as a factor for
runoff change — given the very low 1951-2000 runoff values, upon which elasticity esti-
mation and subsequent runoff computation are based, even a large multiplier (i.e. elastic-

ity) might not produce large runoff values.

7.4.2.2 “Constant-Temperature” Runoff Comparison

Figure 7.9 illustrates the changes in runoff under the constant-temperature experiment.
Compared to the control experiment trends (Figure 7.7), changes are considerably more
positive (smaller reductions or greater increases), particularly under RCP8.5, due to higher
precipitation as PET does not increase with the use of present-day temperature, hence
there is no increase in PET-induced runoff loss.

Even under the smaller warming scenario (Figure 7.8880% runoff increase is
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Figure 7.9: Changes in Mac-PDM.09-simulated runoff with present-day temperature, from 1951—
2000 mean, based on ECHAMS.

widespread in areas north of 80 and in parts of central/eastern Europe — these trends
are comparable to thg,,;-estimated 2051-2100 trends under the larger warming RCP8.5
scenario (Figure 7.6b). Absolute constant-temperature runoff (not shown) is typically
20% higher than estimated runoff, and 20—-40% higher in the band stretching from western
IP, FR, ME, northwestern EA to eastern SC and northern Russia. Discrepancies between
eppe-€stimated runoff and constant-temperature runoff are therefore larger than with the

control results.

7.4.2.3 Elasticity vs. Simulated Runoff

The discrepancy between Mac-PDM.09-simulatedsapdestimated runoff was stud-
ied further by examining two cells of the study region based on the difference between
the 50-year averages of the annual mean runoff in 2051-2100 under RCP8.5 derived from
two experiments: one simulated using Mac-PDM.09 (blue solid symbols in Figure 7.10)
and the other, estimated using elasticity approach (orange solid symbols in Figure 7.10).
For the “well-performing” cell (centred at 38.74,—1.25°E, eastern Spain), both

experiments indicate, with a future reduction in precipitation, a decrease in future annual
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mean runoff, with a relatively small difference (by 10.9%) between the two values. For
the “poorly-performing” cell (centred at 57.718,67.25E, eastern Russia), with a future
increase in precipitation, ths,,;-estimated runoff changes by33.4% while the Mac-
PDM.09-simulated runoff shows-a12.8% change, suggesting the influence of PET on

the direction of change.
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Figure 7.10: Annual (Oct-Sep) mean precipitation plotted against runoff for 1951-2000 (indicated

as “1951"; red) and 2051-2100 (indicated as “2051”; projected by ECHAMS5 under the RCP8.5)
for a well-performing (left) and a poorly-performed (right) cell. Future runoff values are from

the control (blue) and constant-temperature (green) experiments, as well as those estimated using
eppt (Orange). Linear regressions based on the present-day values and these experiments, along
with their respective 50-year averages (solid symbols), are also shown. Only the 50-year mean is
estimated using,,; (orange). Top (bottom) panels present the absolute values (relative changes).

Figure 7.10 shows the hydrological-year annual mean precipitation plotted against
runoff for both 1951-2000 (indicated as “1951” in the key; see Section 7.2.3 for the
datasets used) and 2051-2100 (indicated as “2051"). The 21st-century runoff values pro-
jected by ECHAMS under the RCP8.5 scenario were from the three experiments: (1) con-

trol (indicated as “control”; see the beginning of this Section); (2) constant-temperature
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(indicated as “constant-temperature”); and,&3) (indicated as “estimated”; see Section
7.4.1). The left (right) panels present values for the well-performing (poorly-performed)
cell. The top panels show the absolute precipitation and runoff values; the bottom panels
show their percentage changes relative to the 1951-2000 values. Also shown are lin-
ear regressions based on their respective annual means for both the 1951-2000 and the
three future experiments, along with their 50-year averages (indicated as “1951 mean”
and “2051 mean”, respectively). It is worth noting that neither precipitation nor runoff
can be negative; the top left panel of Figure 7.10 suggests that for that particular cell,
precipitation of around 10 mm/month or lower implies zero runoff using the elasticity
relationship.

Figure 7.10 reveals that both cells show almost identical linear regressions based on
1951-2000 (red) angl,,;-estimated (orange) runoff. This demonstrates that both simple
linear regression derived from present-day precipitation and runoff values and Equation
7.3 would give similar estimates of the sensitivity of runoff to precipitation changes, given
thate,,; are based on the median ratios of present-day precipitation and runoff deviations.
The more apparent distinction between the values from the control (blue) and constant-
temperature (green) experiments implies the larger role of PET in the poorly-performing
cell, which has a larger mean PET increasetdf8.7% (compared te-30.7% for the
well-performing cell).

Outliers (e.g. high runoff values) are more likely to affect simulated thgrestimated
results. Despite the more diverging mean estimated, simulated and constant-temperature
runoff in the poorly-performed cell, both cells have very simifgp; — 1.70 (well-
performed) and 1.69 (poorly-performed). If precipitation declines by 50% in both cells,
the “poorly-performed” cell in Figure 7.10 may actually have a smaller discrepancy be-
tween the estimated (orange) and simulated (blue) runoff — results may differ since the
regression lines for this cell were fitted to a wetter, rather than a drier, scenario.

In summary, effects of outliers in the simulated output, the direction and magnitude
of precipitation change all determine the capabilitysgf; in reproducing mean Mac-

PDM.09-simulated runoff.



7.5 Conclusions 205

7.5 Conclusions

This chapter has examined the sensitivity of runoff to precipitation and PET changes
for the European study region by assessing the elasticity of runoff to climatic factors.
Elasticity was computed with a non-parametric estimator, Equation 7.3 (Sankarasubra-
manianet al, 2001), using 1951-2000 monthly timeseries of CRU TS 3.0 precipitation,
and MacPDM.09-simulated PET and runoff.

Across much of the study region, small climate perturbations produce much larger
runoff changes: a 1% precipitation increase yietds0% to+2.5% runoff change, whereas
a 1% PET increase yields8% to-+2% runoff change. In agreement with Eual.(2011),
elasticities based on means over the hydrological, rather than calendar, year were consid-
ered more appropriate. Positigg zr (€.9. in western Iberian Peninsula and Poland),
also reported by New (2002) for South African catchments, suggests increasing runoff in
years with positive PET anomalies due to a larger relative increase in precipitation than
PET, hence the effect of the positive precipitation anomaly counteracts that of the PET. Al-
thoughe pp values are larger that,,;, €, is considered more important as precipitation
change is primarily responsible for runoff variations, except perhaps in snow-dominated
regions where temperature deviations can affect the seasonal distribution of runoff (which
is not considered here). Nevertheless, regional elasticities provide some indication of the
importance of PET in the Mediterranean, Black Sea and Caspian Sea regions. The sen-
sitivity criteria adopted by Weiss and Alcamo (2011) also highlight the importance of
evapotranspiration in the water balance of southern European basins that may dampen the
effects of increasing precipitation.

As demonstrated in Section 7.3.2 and in agreement with other stagliegs roughly
equivalent to the inverse of the runoff ratio; lower- (higher-) latitude runoff are more (less)
sensitive to precipitation perturbations.

Using WaterGAP, Weiss and Alcamo (2011) assessed the sensitivity of water avail-
ability and vulnerability of eighteen European river basins to climate change based on six
RCMs under SRES A1B. They found sensitivity to climate change increases with latitude
as warming-induced earlier snowmelt de-stabilises Nordic flow regime (see Section 2.5).

This contradiction with results presented here arises from the different methodologies: in
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Weiss and Alcamo (2011), the number of days below freezing, the degree of water limita-
tion of evapotranspiration, and the degree of change in the timing and magnitude of future
temperature and precipitation, and their combined effects, determine the overall sensitiv-
ity of a basin; the present study has used Mac-PDM.09 outputs to assess runoff sensitivity
specifically in relation to annual precipitation or PET variations, which excludes sensitiv-
ity in runoff timing that is important in snow-dominated regions (Jetbal., 1996).

Areas with lower runoff responses,,;<1.5, under present-day climates may experi-
ence some of the largest increases 480%) in sensitivity under 21st-century climates,
while areas with high elasticityf,: <2.0) may see the reverse, thus reducing the range of
elasticity as climate changes. This occurs as warming increases the proportion of rainfall
compared to snowfall (positive trends) in the northern latitudes and increases the influence
of PET in Iberian Peninsula (negative trends).

Since the non-parametric estimator, Equation 7.3, could be useful for estimating runoff
under future climates, this study has attempted to validgfeestimated runoff against
Mac-PDM.09-simulated values.

For the climate change scenarios examined, the ability,ofin reproducing Mac-
PDM.09 simulations decreases with time/increasing climate change, thus the index’s per-
formance deteriorates under larger temperature changest(&y 2007b). Under the
smaller climate change scenario, runoff generated wjthand Mac-PDM.09 generally
differs slightly #=10%) across the study region; both indicate increases (reductions by 10—
30%) in high latitudes (south of 8Bl). €,,:, which excludes temperature/PET changes,
overestimates runoff in central/eastern and southeastern Europe. This suggests the role
of PET in these regions, or the applicationsgf; may be inappropriate for longer-term
changes. In western Iberian Peninsula and parts of the Mediterranean, larger runoff de-
cline (30-50%) is more common in estimated than simulated cases despite increasing
PET. This is due to the combination of the use of median value of Equation 7.3 (Chiew,
2006), and the low 1951-2000 runoff values. The negatjyeestimated runoff also con-
tributes to the larger estimated reductions. Although these negative values, which occur
if climate variations and/or sensitivity exceeds some threshold levels, could simply be re-
placed by zeros, Equation 7.3 should be applied cautiously especially in areas with large

precipitation decrease and/or hig}),; values.
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Under the highest warming scenario examined, small discrepanti$4) are re-
stricted to the British Isles and northwestern parts of the high-latitudes, suggesting that
for these regions, runoff estimation is less sensitive to the choieg,0br Mac-PDM.09
approach, or the magnitude of climate change. Estimated runofB% larger than
model output in the region extending eastwards from Germany to Russia and parts of
Central Asia, and 10-60% lower around the Mediterranean basin, thus results in these
regions are more sensitive to the estimation approach used.

The elasticity of runoff such as,,; is shown to produce mean annual runoff esti-
mates comparable to complex hydrological model Mac-PDM.09 for large parts of the
European study region, except for the Mediterranean regions, eastern and southeastern
Europe. However, this is expected to a certain degree, as the function is derived from the
Mac-PDM.09-simulated runoff for 1951-2000. In agreement with Cheé¢wl. (2006)
and Department of Water (2010), this study concludesdfyatis particularly useful for
estimate runoff changes in large-scale or scoping studies given the relatively simple data
requirement (i.e. historic precipitation and runoff data), and the complication of selecting
and calibrating of hydrological model(s) such that many of the associated uncertainties are
avoided. However, the capability ef,; in reproducing mean Mac-PDM.09-simulated
runoff diminishes with seasonal results as found in Department of Water (2010), increas-
ing climate change, and is influenced by effects of outliers in simulated output, direction
and magnitude of precipitation change. Therefore, it may be more appropriate to use
physical models to assess future runoff changes, especially for regions and/or timescales

where larger climate change is anticipated (e.g. southern Europe).

7.5.1 Limitations

This study has a number of caveats. Limitations of Equation 7.3-related are outlined
in Section 7.2.2. Results here are based on a 50-year period; using another timeframe may
produce different results (Fet al,, 2011), although the magnitude of discrepancy is sub-
ject to further investigation. Also, the future runoff sensitivity was based on ECHAMS5,
thus simulations using another GCM may generate different results. The approach of de-
riving the elasticity values using present-day Mac-PDM.09 output and subsequently as-

sessing the performance against Mac-PDM.09 simulations for the 21st-century will likely
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give an upper bound on the performance; using observed runoff to compute the elastic-
ity values and then testing the performance against Mac-PDM.09 (or other hydrological
models) may indicate lower performance. Moreoygy;-estimated runoff has only been
validated against Mac-PDM.09 output; performance of the estimator may or may not vary
with a different hydrological model.

Runoff sensitivity has been estimated with a one-parameter estimator (i.e. the factor
is being considered in isolation), and only long-term precipitation/runoff changes have
been considered here. However, runoff fluctuations are not merely a function of precip-
itation and runoff, which may interact with other natural or human factors. Temperature
changes, for instance, could amplify or suppress runoff variationst(&ly 2007b), such
as in snowmelt-dominated regions (Wilsetnal., 2010; Wonget al, 2011). Nonetheless,
results here are considered less affected by this due to the use of annual averages.

There are also interactions between the climate, vegetation, soil and hydrological pro-
cesses (Liu and Cui, 2011). El Nifio/La Nifa climatic variability @ual., 2007¢) and
catchment characteristics (Renner and Bernhofer, 2012; Liang and Liu, 2013), particularly
at monthly scales (Arnell, 1992), further complicate magnitudes and patterns of stream-
flow response to climatic changes. In the Upper Loire basin, France, although an annual
precipitation increase (decrease)~010% increases discharge byl0—-20% (20—-40%)
annually, the discharge amount per unit area, dry and wet periods (with the former effect
being larger) also affects the magnitude of change (van der Wateren-de Hoog, 1995). At
basin scale, altitude (consequently, average temperature) might be importane{gion
1996). Nevertheless, direct and indirect human activities may be the predominant factor,
as in the Chinese Miyun Reservoir Basin (latal.,, 2012) and the Ethiopian Meki Basin
(Legesseet al, 2010); land-use change and abstractions in headwaters of Yellow River
Basin accounted for70% of the streamflow reduction in the 1990s (Zhenhgl., 2009).

While precipitation is important in determining runoff sensitivity, its interaction with
other influences (natural or human) should also be considered, depending on the study
aims. For instance, Liet al. (2012) assessed streamflow sensitivity to aridity index,
which accounts for both precipitation and PET, for two Chinese basins. In addition,
trends of sensitivity of water availability and vulnerability (which considers the system’s

response) may be different (Weiss and Alcamo, 2011). In practice, besides the chosen
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criteria, advancing technologies or economies may alter vulnerability thresholds, thereby
changing the sensitivity of a basin. Therefore, it is important to have clearly defined study
objectives when assessing the sensitivity of runoff or a basin water availability to account
for the major (including local) contributing factors.

The next chapter highlights the main results, their policy implications and knowledge

gaps.






Chapter 8

Summary and Outlook

This thesis aimed to examine the effects of climate change on European drought char-
acteristics, as well as the associated uncertainties in the methodologies for drought quan-
tification and climate change projection, through a multi-scenario and multi-model ap-
proach. In this study, droughts are characterised by drought severity, and their spatial
extent are quantified using the Drought Area Index (DAI) — the frequencies of DAI25
and DAI50 denote the percentage of the 50-year period during whi% and>50%
of the region is drought-affected, respectively. This chapter highlights the main results,
their policy implications and knowledge gaps.

This thesis builds on existing literature by systematically analysing some of the uncer-
tainties in drought projections under a changing climate. As discussed in Section 1.1, few
studies have examined the climate-change-induced changes in drought using a large en-
semble of simulations; the meteorological drought analysis in Chapter 4 is based on sim-
ulations projected by ten emission scenarios and 18 general circulation models (GCMs).
Also, the uncertainties associated with the definitional issues of drought have not been
well studied; these are presented in Chapter 5. There is limited literature covering the ef-
fects of changes in interannual precipitation variability on future drought variations; this
is explored in Chapter 6. Furthermore, few studies have examined the runoff sensitivity
to climatic changes especially for Europe, and the applicability of such an approach for
estimating runoff under a perturbed climate has barely been explored. These are assessed

in Chapter 7.
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8.1 Key Findings

Across much of the European study region, climate change is projected to increase
drought severity and frequencies of DAI25 and DAI50, with reductions in these drought
parameters in the high-latitudes (Scandinavia and Russia), especially in winter and spring
but in some cases, also in summer/autumn (see Chapters 4 and 5). These results are con-
sistent with the general simulated trends of wetting in the northern Europe, as well as
the drying and increasing drought conditions projected for the lower latitudes, despite of
the different definitions of dryness/drought applied. For both meteorological and hydro-
logical droughts, the northern and southern latitudes of the study region tend to have the
largest magnitudes of change. Marked increases in both 3-month and 12-month drought
severity and frequency of DAI25 events (by 2—-3 times in 2001-2050, and up to 10-fold in
2051-2100) are simulated for the Mediterranean and Middle East/Central Asia regions.
Contrasting sub-regional variations can lead to small or unclear overall signs of regional-
mean change (e.g. for the British Isles, with drought conditions decreasing in the north
and worsening in the south).

Results obtained in both Chapters 4 and 5 indicate that the projected changes in all
the meteorological and hydrological drought parameters vary substantially depending on
the GCM, emission scenario, region and season. Agreement on the direction of change
is generally higher: (1) in both high and lower latitudes; (2) in 2051-2100 than in 2001—-
2050; (3) with robust increases (decreases) in drought tending to occur in summer and
autumn (winter and spring). Despite consensus in the sign of change for some regions (e.g.
the Mediterranean regions often have robust and marked increases in drought conditions
in summer and autumn), their magnitudes are highly uncertain — such uncertainties tend
to increase with time and with magnitude of warming. Results averaged across Koppen
climate zones demonstrate more robust trends, better reflecting climate change signals,
than geographically-averaged results.

Uncertainties have differential impacts on different drought parameters, affecting the
frequency of widespread drought, more than total severity (see Chapters 4 and 5). Al-
though the influence of different emission scenarios becomes more important post-2050,

GCM variance dominates regardless of the region, season, future period, timescale, drought
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parameter studied (see Section 4.6), as commonly found in the literature. Different def-
initions of drought — including the choice of threshold that identifies drought condition
from “normal” climate, the definition of when a drought terminates and drought classifi-
cation — can result in contrasting trends, and this behaviour is common in winter/spring,
particularly in regions affected by snow and snowmelt (see Chapter 5). For instance, in
spring, the Alps could experience increasing meteorological drought conditions (due to
reduced precipitation) but reductions in hydrological droughts (with earlier snowmelt).
Different drought classifications and their effects also lead to opposing changes in sum-
mer/autmn in Scandinavia. Nevertheless, results according to both meteorological and
hydrological drought definitions generally indicate the same direction of change, but hy-
drological results tend to produce more positive changes in drought conditions and also
with larger magnitudes than meteorological ones (see Section 5.8).

Drought parameters derived from MacPDM.09 were found to be highly sensitive to
potential evapotranspiration (PET); different results are therefore likely with a different
PET calculation method (see Section 5.8.7). Higher PET generally implies more drought
conditions in absolute terms, with larger increases. Winter and 12-month droughts in
Scandinavia and British Isles (in 2001-2050) were projected to decrease regardless of
PET changes, but higher PET implies smaller reduction. Higher PET also reduced winter
droughts in Scandinavia and the Alps due to increased melting of frozen precipitation.
In the Norwegian Arctic (Svalbard region), although measured annual precipitation has
increased in recent decades, the fraction of annual precipitation falling as snow has de-
creased (Forland and Hanssen-Bauer, 2003), due to the more efficient rainfall processes
compared to snow falling. This suggests that as the climate warms, more rainfall may
occur with more frequent and intense events and extremes (Kjellstrom, 2004t Bigi
2006; Buonomeet al., 2007; Alcamceet al, 2007b; Giorgi and Coppola, 2009).

Perturbations to the interannual variability of precipitation due to climate change tends
to (1) enhance drought conditions, particularly in Mid-Europe and Eastern Europe, (2)
moderate reductions in drought conditions (Scandinavia), or (3) reverse reductions in
drought conditions (e.g. meteorological results for British Isles and Mid-Europe); these

effects are more apparent in meteorological than hydrological drought results (see Chapter
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6). Therefore, studies that do not consider changes in precipitation variability may under-

estimate (or in a few cases, over-estimate) drought conditions, or may yield opposite

trends to those that take into account both perturbed mean and variability. A drought-free
area (e.g. parts of the northern latitudes) according to changes in mean precipitation only
may become drought-affected when modified variability is considered.

Although variations in interannual variability of precipitation plays a role in altering
drought characteristics, the predominant driver is mean precipitation changes. Therefore,
the long-term mean sensitivity of runoff to precipitation and PET changes across the Eu-
ropean study region was studied by assessing the elasticity of runoff to climatic factors
using a non-parametric estimato(see Chapter 7). A 1% precipitation increase is found
to yield a+1.0% to+2.5% runoff change. Although the PET elasticity of runoffzr
was also studied, the precipitation elasticity of rungff, was considered more important
in causing runoff variations, except perhaps in snow-dominated regions where tempera-
ture deviations can affect the seasonal distribution of rungff; is roughly equivalent
to the inverse of the runoff ratio; lower- (higher-) latitude runoff are more (less) sensi-
tive to precipitation perturbations. Areas with lower runoff responsgs<1.5, under
present-day climates may experience some of the largest increase2@B) in sensi-
tivity under 21st-century climates, while areas with high elastieity;2.0) may see the
reverse, thus reducing the range of elasticity values as climate changes. This occurs as
warming increases the proportion of rainfall compared to snowfall (positive trends) in the
northern latitudes and increases the influence of temperature in Iberian Peninsula (neg-
ative trends). The performance gf,; in reproducing Mac-PDM.09 runoff simulations
deteriorates with time/increasing climate change. Therefore, it may be more appropri-
ate to use physical models to assess future runoff changes, especially for regions and/or

timescales where larger climate change is anticipated (e.g. southern Europe).

8.2 Policy Implications

This study seeks to develop an improved understanding of potential changes in drought
under future climates, which could facilitate the development and implementation of more

effective drought management and climate change adaptation measures.
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The diverse meteorological and hydrological drought response to climate change sim-
ulated in this study implies that findings based on a single scenario/model could be highly
misleading. Substantial research and considerable improvements in climate models are
needed before climate projections can be applied directly and effectively in adaptation
planning and design, e.g. water management (Kundzewicz and Stakhiv, 2010), as sug-
gested by the range of projected changes in drought characteristics found in this thesis.
Uncertainties in climate change projections or the risk information supplied to decision-
makers are unlikely to decrease in the near future (Knutti, 2008; €bdt, 2011). Even
with a perfect climate model, future changes in non-climatic pressures such as demo-
graphic and economic development, natural forcings (solar and volcanic activity), and
natural internal variability mean that climate change and hydrological projections would
remain highly uncertain, especially at the regional scale (Wilby, 2010). Therefore, policy-
relevant research on climate change impacts and robust adaptation decisions should be
based on a multi-scenario and multi-model approach; they also need to consider a wide
range of expressions of modeling uncertainty (Burke and Brown, 2008; Hawkins and
Sutton, 2010), or risk-based information (e.g. by considering frequency distributions of
climate change impacts) rather than deterministic information (Gostiad, 2011a).

Although the degree of uncertainty in future projections of river flow, for example,
may create challenges in the development of appropriate adaptation measurest @odd
2011), many organisations have experience in working in the face of various kinds of un-
certainty (Stainforttet al,, 2007a). Over-interpretation and over-confidence in the results
could undermine the credibility of climate science to inform policy (Stainfexttal.,
2007a; Knutti, 2008); information can be misleading if the climate projections, their
uncertainties and caveats are not adequately quantified and communicatec{\zhlle
2009) — e.g. probability density functions (PDFs) may provide a false sense of security
(Parker, 2010b); the end-user may assume that the newest models provide the best infor-
mation, and that the model spread provides some estimate of uncertainty (Knutti, 2008).

Despite the limitations, climate models simulate numerous processes and feedbacks;
large ensembles, as applied in this study, enhance our understanding of the range of possi-

ble model behaviour in response to different emission scenarios (Staiaf@th2007b).
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They can also help to identify the areas where results depend strongly on model assump-
tions, thus provide guidance for future model development (Knutti, 2008). Much resource
has been allocated to climate research and model development, such as the variables and
spatial/temporal scales of interest, but these should be shaped by the needs of the end-
users and policy-makers if the goal is to benefit society (Knutti, 2008). More emphasis is
needed on extracting the data and information that is decision- and policy-relevant, and to
explore how to make the best use of the model results so that they add value to decision
making (Knutti, 2008), e.g. by working with stakeholders and to provide guidance on how

to use/interprete the data and information. Each simulation presents a “what-if” scenario;
appropriate interpretation and accurate communication of such information and uncer-
tainties, even in qualitative terms, is therefore crucial and can have substantial value in the
design of robust adaptation strategies that reduce vulnerability to both climate variability

and change (Pappenberger and Beven, 2006; Stairdbet 2007a;b).

8.3 Limitations and Further Work

Specific limitations and areas for further research are presented in the relevant chap-
ters. This subsection outlines some of the limitations of the study approach adopted in
this thesis and provides some general directions for future work.

Analysis in this thesis has focused on relative drought. Given that drought is a phe-
nomenon relative to the local conditions that can occur in virtually all climate regimes,
including in cold regions (van Lanest al, 2007; Vidal and Wade, 2009), it needs to be
considered in a relative, rather than an absolute, sense (Mpelasaka2008). Never-
theless, the application of a fixed absolute drought threshold (say, 20 mm of precipitation)
for the entire study region would allow the identification of the more “drought-prone” ar-
eas (e.g. the Mediterranean regions are more likely to suffer from drought than the higher
latitudes). Therefore, an absolute drought analysis could provide useful information for
large-scale management practices and could aid resource allocation. Also, the projected
changes in drought characteristics presented here, as well as the SPI computation, are
based on the reference period of 1951-2000; the choice of another baseline (e.g. 1961—
1990) could lead to different results.

A caveat of this study is the separate characterisation of drought severity and spatial
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extent. This could be improved in future work by assessing the spatio-temporal char-
acteristics of droughts simultaneously through a severity—area—duration analysis, which
relates the area of each drought to its severity (Andreeidad., 2005; Sheffieldet al.,

2009). Alternatively, Pereet al. (2011) presented two methodologies (non-contiguous
and contiguous drought area analyses) for analysing the spatio-temporal development and
characteristics of large-scale hydrological droughts using gridded timeseries of hydrome-
teorological data.

In this thesis, future changes in drought characteristics have been assessed on a con-
tinental scale and from the natural science perspective, i.e. the societal aspects have not
been examined. This study could therefore be extended to investigate the effects of climate
change in relation to specific impact sectors such as agriculture, using locally appropriate
droughtindices (Burke and Brown, 2008) such as those covered in Section 2.2. Such anal-
ysis may need to be carried out on a local or regional scale (e.g. for specific basin(s)), with
the aid of higher resolution models that have better representation of topography (Redaud
et al, 2002; Raisanemet al, 2004; Gaocet al,, 2006); processes and practices that are
often excluded from the climate models (e.qg. irrigation) may also need to be considered.
The application of multiple hydrological/impact models may also provide an indication
of another dimension of uncertainty (Haddelatdl, 2011).

Some of the analyses presented in this thesis have only been carried out using geographically-
averaged results based on the sub-regions of the PRUDENCE project. Yet, findings pre-
sented here suggest that results averaged climatically according to the Kdppen climate
classification may better reflect the climate change signal. Therefore, regional analyses
based on climatic conditions could be an interesting area of study.

Although this thesis has explored the effects of several sources of uncertainty on
drought projections under future climates, results obtained here under-represent the true
uncertainty as other sources of uncertainty have not been examined. For example, me-
teorological droughts have only been represented by the precipitation-only Standardised
Precipitation Index (SPI); the application of another meteorological drought index may
produce different results.

An initial study indicated that carbon cycle models represented less than 5% of total

variance that also encompassed GCM and emission scenario uncertainties. However, this
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source of uncertainty has been estimated te-88% of that of the physical climate prop-
erties (e.g. equilibrium climate sensitivity and global heat capacity; Huntingfoal,,
2009), thus could be explored further in the meteorological and hydrological drought
analyses.

The application of ClimGen has generated gridded outputs atr@selution, hence
downscaling uncertainty has not been investigated in this thesis. Hence, results presented
in this thesis could be compared to those based on regional climate change simulations
such as the CORDEX (Coordinated Regional Climate Downscaling Experiment) initiative
from the World Climate Research Program (http://www.meteo.unican.es/en/projects/CORDEX).

Several sources of uncertainty associated with hydrological modelling have not been
studied in this thesis. These include suppressed plant transpiration due imdi©ed
stomatal closure (which could increase runoff) (Gedeewl, 2006), which implies an
underestimation of future increases in runoff and an overestimation of decreases — Betts
et al. (2007) found that a C®©doubling on plant transpiration increases simulated global
mean runoff by 6% relative to pre-industrial levels. In addition, modified land-atmosphere
feedbacks may influence climate change (e.g. precipitation variability in central-eastern
Europe; Raisaneet al., 2004; Rowell and Jones, 2006; Senevirahal.,, 2006; van La-
nenet al, 2007; Kyselyet al, 2010). Mechanisms of feedbacks between convection,
radiation and surface fluxes, for instance, are not well identified and may vary among
models (Plantoret al, 2008). Also, these may not be represented in hydrological mod-
els, thus contributes to another source of uncertainty. Furthermore, the representation of
evapotranspiration, snow accumulation and melt, storage and the parametrisation of stor-
age processes (e.g. land and aquifer characteristics) are important aspects in hydrological
modelling (Van Looret al,, 2012) that have not been explored in this thesis.

Drought analyses carried out here have been based on the monthly precipitation and
runoff timeseries. However, the daily resolution is important in operational monitoring of
drought development and decision-making in agriculture and water resource management
(Lu, 2011), especially on a local or regional scale, as a drought-affected region may return
to normal condition with only one day of intense rainfall. The consideration of hydrolog-
ical variables at the daily time step would also be more suitable for detailed monitoring of

drought development and propagation in the subsurface components of the hydrological
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cycle. Droughts can be quantified on a daily time scale using the Effective Drought Index
(EDI; Byun and Wilhite, 1999), for instance. The EDI is a standardised index that calcu-
lates daily water accumulation with a weighting function of time passage using daily rain
and snowfall data from timeseries of 30 years or more. Alternatively, a daily SPI has been
developed to overcome the difficulties with the standard SPI using only monthly values
(Wanderset al, 2010). SPI values are calculated for each day separately based on a mov-
ing monthly time frame (i.e. 30-day backwards moving average), using the parameters
and g that are estimated for each day are based on the previous 30 days. Downscaling
or generating rainfall or runoff at the daily time step may introduce another source of
uncertainty though.

While the ability of land surface models (LSMs) and/or global hydrological models
(GHMSs) in reproducing large-scale historic runoff, hydrological extremes and other vari-
ables have been assessed in several studies (e.g. Hadéelahd2011; Prudhomme
et al, 2011; Gudmundssaet al., 2012b; Van Looret al, 2012), few climate change im-
pact studies based on multiple impact models exist. Since only Mac-PDM.09 has been
applied in this thesis, similar to Hagemagiral. (2012), the effects of different GHMs on
projected changes in drought characteristics could be further investigated.

Another area of further research could be to compare the hydrological drought results
to those derived from the Palmer Drought Severity Index (PDSI), as well as the standard-
ised precipitation evapotranspiration index (SPEI), for instance, as both of these methods
account for temperature effects. Moreover, both meteorological and hydrological drought
events have been defined based on the threshold efISP|this study could be extended
by studying the changes in drought for a more extreme SPI category (e-g28Phnd
compare with the results obtained here.

In addition to the scientific/technical element of drought analysis, it is equally, if not
more, important to develop efficient linkages with practitioners engaged in drought mon-
itoring, forecasting and management operations, as well as the policy domain (Panu and
Sharma, 2002; Kampragoeaal., 2011), as discussed in Section 8.2. Given that the un-
certainties associated with future drought projections are unlikely to be constrained in the
near term, it is worth exploring how the findings in this study could contribute to the de-

velopment and implementation of drought risk assessment and management practices, as
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well as societal vulnerability assessments, to reduce the adverse impacts of droughts un-
der a changing climate. Working closely with stakeholders, such as policymakers, water

resource managers and others, would help to determine how this study could be further
developed to address the drought/water resource issues within an integrated framework,

based on their needs.
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