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Abstract

Droughts are one of the most damaging natural hazards, and anthropogenic climate

change has and will continue to alter their characteristics. Better understanding of changes

in drought characteristics under potential future climates is vital for managing drought

risks and impacts, yet projections are very uncertain. This thesis examines the effects of

climate change on European drought characteristics through a multi-scenario and multi-

model approach. It explores the uncertainty associated with emission scenarios, global

and spatial climate projections, and with the identification and characterisation of droughts.

Climate projections simulated by the simple climate model MAGICC6.0 and pattern-

scaling climate scenario generator ClimGen are assessed, emulating eighteen CMIP3 gen-

eral circulation models (GCMs) under ten emission scenarios. Drought severity (mag-

nitude times duration) and spatial extent are analysed for both 3-month and 12-month

events.

Drought projections vary substantially depending on the GCM, emission scenario,

region, season and definition of drought. Overall, climate change enhances drought con-

ditions across the study region, with marked increases simulated for the southern latitudes;

reductions are projected for the northern latitudes, especially in winter and spring. Pertur-

bations in the interannual variability of precipitation tend to enhance drought conditions

caused by mean precipitation changes, or to moderate or reverse their reductions. Hy-

drological drought parameters are highly sensitive to potential evapotranspiration (PET),

which shows the importance of the PET calculation method. Greater agreement in the

direction of change tends to occur in the high- and low-latitudes, and in summer and au-

tumn. Both meteorological and hydrological drought results generally indicate the same

direction of change, with the latter having larger magnitudes. Projection ranges tend to in-

crease with time and magnitude of warming; intra-GCM spread dominates other sources

of uncertainty. The implications of the large uncertainties include that decision-making

should be based on multi-scenario and multi-model results, and with consideration of

drought definition.
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Chapter 1

Introduction

1.1 Rationale

Extreme weather/climate events have significant environmental and societal impacts,

and anthropogenic climate change has and will continue to alter their characteristics.

Droughts (e.g. the 2003 European heatwave and drought; Finket al., 2004; Stottet al.,

2004) are one of the most damaging natural hazards in human, environmental and eco-

nomic terms (Sheffield and Wood, 2008b; Kironoet al., 2011). Regional changes in

drought patterns in the 20th century have been observed (see Section 2.3) and their future

changes have been simulated (see Section 2.4). Climate change is stimulating demand

from public and private sector decision-makers, as well as other stakeholders, for better

understanding of potential future drought characteristics. Such knowledge is the initial

step to assessing the impacts of drought (Bordiet al., 2009). It also has both strategic and

policy implications by informing effective adaptation and planning strategies (Graham

et al., 2007) for managing drought risks and impacts.

Until recently, studies on the projections of extreme weather events, such as drought,

have often been based upon a few general circulation models (GCMs), regional climate

models (RCMs), and/or emission scenarios, partly due to availability. Only a few studies

(e.g. Burke, 2011) have considered the changes in drought under a perturbed climate using

a large ensemble of simulations. In addition to the uncertainties due to climate modelling,

droughts can be represented by a wide range of indices depending on the purpose of ap-

plication, and events can be quantified in various ways (see Section 2.2). The different

concepts and methods of representing drought events applied in different studies make
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inter-comparing results from different analysis challenging (IPCC, 2012). Few studies

have investigated the uncertainties associated with the definitional issues of drought, such

as the use of a fixed or a seasonally-varying drought threshold, or how the results could

differ between meteorological and hydrological droughts (e.g. Wonget al., 2011). There-

fore, a systematic approach to analyse the uncertainties in drought projections under a

changing climate is desirable.

Changes in the variability of variables are also an important consideration in a chang-

ing climate as they may mask/moderate or exacerbate the direction and/or magnitude of

an anthropogenic signal. For example, perturbations in interannual climate variability

could have implications on the Iberian hydroelectric production (Trigoet al., 2004), agri-

culture (Skuras and Psaltopoulos, 2012), food production and forestry (Salinger, 2005);

exacerbated precipitation variability could raise drought risks (Bateset al., 2008). Future

interannual precipitation variability could enhance or alleviate changes in drought charac-

teristics caused by mean precipitation changes, but their spatial and temporal effects have

not been well studied.

Climate and hydrological models may be physically sound, but their use in climate

change and hydrological impacts studies are subject to various sources of uncertainties

that range from the choice of emission scenarios, models and model calibration method-

ologies (Schaake, 1990; Sankarasubramanianet al., 2001), to the difficulties in the inter-

pretation of multi-model results (see Section 2.6 for further discussion). Decision mak-

ers often have time and/or resource constraints, making climate change vulnerability and

adaptation assessments based on a physical model a less appropriate support tool in prac-

tical applications. Assessing the sensitivity of a system to a particular trigger thus offers

an alternative approach, which may provide some indication of the urgency of the issue

(Weiss and Alcamo, 2011) without the level of complexity associated with physical mod-

elling. Runoff sensitivity to climatic (e.g. precipitation) changes has been estimated (e.g.

by Wigley and Jones, 1985) using various approaches on both global (Chiewet al., 2006)

and regional scales (Sankarasubramanianet al., 2001; Chiew and McMahon, 2002; Fu

et al., 2007a; Zhenget al., 2009; Liu and Cui, 2011; Renner and Bernhofer, 2012), but

few studies have focused on Europe (except for Arnell, 1992; Weiss and Alcamo, 2011).

Hence, there is a need to study the spatial and temporal variations of runoff sensitivity
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for the European study region. Also, the applicability of such an approach for estimating

runoff under a perturbed climate has barely been explored.

This thesis advances from the author’s Master of Research dissertation, which ex-

amined the implications of future changes in drought frequency in Europe under both

unmitigated and mitigated climate change scenarios. The former set of scenarios were

represented by four Intergovernmental Panel on Climate Change (IPCC) Special Report

on Emissions Scenarios (SRES) emission scenarios (Nakicenovich and Swart, 2000) and

the latter, by three stabilisation scenarios at CO2-equivalent levels of approximately 450,

500 and 550 ppm. This previous work, now published in Warrenet al. (2012), was based

on the standardized precipitation index (SPI) and precipitation scenarios simulated using

four previous generation GCMs. Results indicated marked increases in drought frequency

over the 21st century, particularly in Southern Europe, under all climate change scenarios

examined. It also demonstrated that stringent mitigation measures would be required to

reduce these increases in drought conditions.

1.2 Research Aim

GCMs are widely applied in climate change studies. In spite of advanced GCMs

and improved knowledge, considerable levels of uncertainty remain in climate change

projections, particularly in relation to extreme events. Uncertainties arise not only from

the various emission scenarios and GCMs, but also from the different classifications of

drought (namely meteorological, agricultural, hydrological, socio-economic and ground-

water droughts), and a number of indices have been developed to quantify them. This PhD

aims to examine the impacts of climate change projections on drought characteristics for

the European study region, and to explore the various sources of uncertainties in drought

projections. Specifically, the robustness of these projections is illustrated by quantifying

the effects of using different emission scenarios, GCMs and definitions of drought.
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1.3 Study Approach

Building on current scientific knowledge, this thesis addresses some of the gaps in

existing research by not only examining the potential changes in European drought char-

acteristics due to climate change, but also the associated uncertainties in the projections

through the application of a range of emission scenarios and GCMs. The study approach

adopted in this thesis is outlined below. The general methods applied are described in

Chapter 3; more details related to specific analysis are elaborated in the relevant chapters.

GCM simulations are available for limited emission scenarios due to the compu-

tational cost of running large ensembles. Therefore, climate projections simulated by

the simple climate model MAGICC6.0 and pattern-scaling climate scenario generator

ClimGen are assessed as they can emulate simulations beyond the available GCM en-

semble. These include emulations of eighteen Coupled Model Intercomparison Project

(CMIP3) GCMs under six IPCC SRES emission scenarios (Nakicenovich and Swart,

2000) and four Representative Concentration Pathway scenarios (RCPs; Mosset al., 2010).

Drought severity (i.e. magnitude times duration) and spatial extent are analysed for

both short (3-month) and long (12-month) events, for the European study region (see Sec-

tion 3.9). Results for two future periods, 2001–2050 and 2051–21100, are compared to

the baseline period of 1951–2000. Changes in meteorological droughts are quantified by

the Standardised Precipitation Index (SPI) (see Chapter 4). A subset of these climate pro-

jections are also used as input to a global hydrological model, Mac-PDM.09, to generate

runoff data for characterising changes in hydrological droughts (see Chapter 5). As there

are various ways of defining drought, Chapter 5 also investigates the uncertainties arising

from definitional issues, including the classification of drought (i.e. meteorological and

hydrological droughts), the choice of threshold and the definition of when a drought ter-

minates. Drought analyses based on the monthly time step of precipitation and runoff are

considered appropriate given the relatively large spatial coverage and temporal extent (see

Sections 3.9 and 3.6, respectively).

To assess the spatial and temporal effects of climate-change-induced changes in inter-

annual precipitation variability in the projected meteorological and hydrological droughts,

results from two experiments are compared (see Chapter 6). In the first experiment, the
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future precipitation scenarios account for changes in both precipitation mean and vari-

ability (as represented by the coefficient of variation, CV, or equivalently by the shape

parameter of a gamma distribution; see Section 3.2). In the second experiment, the future

precipitation scenarios consider only the changes in mean precipitation while keeping the

CV constant (hence precipitation standard deviation changes in proportion to the mean;

see Section 3.2).

The spatial and temporal variations of runoff sensitivity for the European study region

are studied by the elasticity approach using a non-parametric (empirical) estimator. The

applicability of this elasticity approach for estimating runoff under a perturbed climate is

assessed by comparing the level of agreement between mean runoff values estimated by

the elasticity method and those simulated by hydrological modelling using Mac-PDM.09.

1.4 Thesis Structure

This thesis is presented in eight chapters, including this Introduction, and is organised

as follows. Chapter 2 provides an overview of the drought concept, the various clas-

sifications of drought and methods for their quantification. It presents the observed and

projected changes in drought, along with the drivers of their occurrence. This chapter also

discusses the various sources of uncertainties in climate modelling and the challenges in

projecting future drought characteristics. Chapter 3 describes the general methods ap-

plied in this study, including the modelling framework, the approach for identifying and

measuring drought, the study area and regions.

Chapter 4 examines the effects of climate change on European meteorological drought

characteristics for both 3-month (SPI3) and 12-month (SPI12) events. It assesses the un-

certainties that arise from ten emission scenarios and eighteen GCMs, as well as their

relative contribution. Using runoff data simulated by Mac-PDM.09, Chapter 5 assesses

the effects of climate change on European hydrological droughts, for both 3-month and

12-month events. In order to do so, the uncertainties associated with drought definitional

issues are considered, which includes the choice of threshold that identifies drought con-

dition from “normal” climate, the definition of when a drought terminates, and a com-

parison between the results derived using the meteorological and hydrological drought

classifications.
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Chapter 6 explores the spatial and temporal effects of climate-change-induced changes

in interannual precipitation variability on the projected meteorological and hydrological

droughts, based on the 12-month results obtained in Chapters 4 and 5. Chapter 7 stud-

ies the spatial and temporal variations of sensitivity of runoff for the study region using

the elasticity approach, and explores the applicability of elasticity values for estimating

runoff under a perturbed climate. Chapter 8 summarises the key findings revealed from

this thesis, and presents some concluding remarks about the policy implications and areas

for future research.



Chapter 2

Literature Review

2.1 Introduction

Climate variability and extreme weather/climate events are of great concern (Katz and

Brown, 1992) as they produce disproportionately large climate-related damages (Easter-

ling et al., 2000; Meehlet al., 2000). There is growing confidence (Smithet al., 2009a)

that human-induced climate change can alter/raise the risk of extreme events (Meehlet al.,

2000; Trenberth, 2006; Smithet al., 2009a), which have implications for regional and lo-

cal adaptation and risk reduction strategies (van Aalst, 2006; Berrang-Fordet al., 2011).

This chapter describes the importance of drought events, and provides an overview of

the drought concept, the various classifications of drought and methods for their quan-

tification. The observed and projected drought trends are then presented, along with the

drivers of drought and their variations. This chapter also discusses the various sources of

uncertainties in climate modelling and the challenges in projecting future drought charac-

teristics.

Drought is one of the most damaging natural hazards, in human, environmental and

economic terms (Sheffield and Wood, 2008b; Kironoet al., 2011). It affects agriculture

(Dai et al., 2004; Finket al., 2004; Motha and Baier, 2005), irrigation (Döll, 2002) and

food production (Liet al., 2009; Piaoet al., 2010). Droughts also have implications

for hydrological (e.g. groundwater and reservoir storage; Marshet al., 2007; Vidal and

Wade, 2009) and ecological (Ciaiset al., 2005; Gobronet al., 2005; Archer and Predick,

2008) systems, e.g. aquatic ecosystems (Kironoet al., 2011). Their impacts on socio-

economic systems (Alston and Kent, 2004; Finket al., 2004; Dinget al., 2011) include
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municipal and industrial water supply (Blenkinsop and Fowler, 2007a; Zhanget al., 2011),

hydro-power generation, recreation, industry (Panu and Sharma, 2002), and navigation

(Grahamet al., 2007). Increasing drought conditions can lead to human health concerns

(Quevauviller, 2011), e.g. famine in northern Nigeria (Tarhule and Woo, 1997), as they

could counteract the effects of the anticipated longer growing seasons. Droughts can also

impact on ecosystem goods and services (e.g. in the Alps; Jasperet al., 2004; Bigleret al.,

2006; Moseret al., 2011) include the loss of sequestered forest carbon and associated

atmospheric feedbacks (Ciaiset al., 2005; Allenet al., 2010). Global wildfire potential

may also increase (Liuet al., 2010), e.g. more fires in eastern Iberian Peninsula with dry

summers (Pausas, 2004).

Notable episodes of droughts include the 1930s and 1950s soil moisture and runoff

droughts over continental U.S. and the early 2000s in western U.S. (Andreadiset al.,

2005), the Sahel drying since the late 1960s (Dore, 2005), the Australian “Big Dry” since

1995 (Caiet al., 2009), the 1975–1976 UK drought (Gallagheret al., 1976; Perry, 1976;

Ratcliffe et al., 1978; Marshet al., 2007) and the 2003 European heatwave and drought

(Fink et al., 2004; Stottet al., 2004). Globally, there were 296 large-scale (>500,000 km2

and>3 months) soil moisture droughts during 1950–2000, based on simulations driven

by a hybrid observation-reanalysis meteorological dataset that combines gridded observa-

tions with data from the National Centers for Environmental Prediction National Center

for Atmospheric Research (NCEP–NCAR) reanalysis of global terrestrial hydrologic us-

ing the VIC model (Sheffieldet al., 2009).

Current management practices may be insufficient to cope with future changes in sus-

tainability, quantity and quality of water resources (Bateset al., 2008), and many devel-

opments are planned in drought-prone areas (e.g. the Thames Gateway; Walden, 2009).

Drought by itself does not necessarily imply a disaster. While drought risk generally

increases with warming and drying (Daiet al., 2004), local and global social and envi-

ronmental changes influence vulnerability (Iglesiaset al., 2006; Garcı́a-Ruizet al., 2011).

Human activities (e.g. overfarming, excessive irrigation, deforestation, over-exploiting

available water and erosion) can alter the land’s ability to capture and hold water (Mishra

and Singh, 2010). The slow-onset nature of drought can allow human actions to shape the

impacts, especially if reliable seasonal forecasts can be made (Liet al., 2009). Climate
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change can be incorporated into existing disaster risk reduction and development planning

strategies (van Aalst, 2006). For instance, (improved) water management, water pricing

and water recycling policies may reduce the population exposed to water stress (Arnell,

2004a; Garcı́a-Ruizet al., 2011).

Despite advances in science and improved technology, drought remains one of the

major challenges of climate variability worldwide (Piaoet al., 2010). Impact assessment

and adaptation decisions require specific information about the spatial and temporal char-

acteristics of drought risk (Loukas and Vasiliades, 2004; Mechleret al., 2010). A better

understanding of potential future drought evolution could facilitate the implementation of

effective adaptation, preparedness and disaster risk reduction measures (Wilhite, 1997).

2.2 Drought

2.2.1 Drought as a Concept

Palmer (1965), Yevjevich (1967), Dracupet al. (1980), Wilhite and Glantz (1985),

Le Houérou (1996), Panu and Sharma (2002), Wilhite (2005), Paulo and Pereira (2006),

WMO (2006), Mishra and Singh (2010) and Dai (2011) have comprehensively reviewed

the concept of drought, whcih can be defined and understood in many ways. Sections

2.2.1–2.2.7 are based on these and other studies.

Drought is a natural, temporary and recurrent feature of variability, characterised by

a cumulative precipitation deficit from the long-term mean (Bordiet al., 2009; Vidal and

Wade, 2009). The predominant driver is low precipitation, but high evaporation rates

(available energy; Burke, 2011) also play a role (van Lanenet al., 2007; Liet al., 2009).

Although drought (depending on the variability and how it is defined) is common in arid

and semi-arid regions, it can affect virtually all climate regimes (Vidal and Wade, 2009),

e.g. in cold regions, sub-zero temperatures can produce winter droughts (van Lanenet al.,

2007). This also universal phenomenon therefore needs to be considered a relative, rather

than an absolute, condition; its characteristics also vary significantly from one region to

another (Mpelasokaet al., 2008). The effects of rainfall deficiency may take weeks or

months to become apparent. A prolonged and more spatially extensive meteorological

drought may induce other types of drought (Mpelasokaet al., 2008) (see Section 2.2.2).
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Desertification generally refers to progressive land degradation in arid, semi-arid and dry

sub-humid areas caused by climate variability and/or human activities, whereas drought

impacts are typically temporary, affecting production rather than long-term productivity

(Le Houérou, 1996). However, drought may trigger desertification; since the 1970s, dry-

ing over west Africa, southern Europe, East and South Asia, and eastern Australia have

substantially increased global aridity (Dai, 2011).

2.2.2 Drought Classifications, Characterisation and Indices

A single drought event can span different climate zones and affect various human

activities (Fleiget al., 2006). A standard methodology for characterising droughts un-

der different hydroclimatological and hydrogeological conditions would help monitor-

ing and forecasting of regional episodes (Fleiget al., 2006). However, each event has

unique climatic characteristics, spatial extent and impacts (Wilhite, 2005). The wide range

of geographical and temporal distribution of droughts (thus the varying concepts), their

complexity and interdisciplinary nature, and differing perspectives held by various stake-

holders, make the onset and end of a drought difficult to determine. Hence, a precise,

systematic and universal drought definition is lacking (Heim Jr., 2002; Andreadiset al.,

2005; Quiring, 2009b). Definitions also vary according to the variable (e.g. precipitation,

streamflow or soil moisture) used to describe the drought (Mishra and Singh, 2010).

Conceptually, a drought refers to a water shortage (the demand) relative to the supply

(Dracupet al., 1980) that originates from the absence or reduction in precipitation due to

atmospheric conditions. Droughts are commonly classified into meteorological, agricul-

tural, hydrological and socio-economic droughts (AMS, 2004; see Sections 2.2.3–2.2.7).

Meteorological drought is a more common and natural event, whereas agricultural, hydro-

logical and socio-economic droughts emphasise more the human or social aspects (WMO,

2006). The sequence begins with meteorological drought; persistent dry conditions may

induce agricultural, hydrological and water resources droughts (Andreadiset al., 2005;

Vidal and Wade, 2009).

Mishra and Singh (2011) discussed the various components and methodologies in

drought modelling, including forecasting, probabilistic characterisation, spatio-temporal
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analysis, the use of general circulation models (GCMs) and land data assimilation sys-

tems. Drought indices are commonly used by public and private sector stakeholders

(Quiring, 2009b) for event detection, monitoring and evaluation as they enable spatial

and temporal comparisons (Roudier and Mahe, 2010). Besides its scientific merits and

ability to quantify events at different timescales, which requires a long timeseries (Mishra

and Singh, 2010), a “good” indicator should also be valuable and informative to decision-

makers (Steinemannet al., 2005; Steinemann and Cavalcanti, 2006).

Many statistical techniques exist for drought analysis (Panu and Sharma, 2002). The

choice of a suitable drought characteristic for a specific study is subjective and compli-

cated by hydroclimatology and the nature of the region, type of event considered, societal

vulnerability, study aim and data availability (Dracupet al., 1980; Fleiget al., 2006). As

different types of drought may not occur simultaneously nor exhibit the same severity,

they should be characterised separately (Fleiget al., 2006). Many studies (e.g. Hayes,

1998; Byun and Wilhite, 1999; Heim Jr., 2002; Keyantash and Dracup, 2002; Steine-

mann, 2003; Quiring, 2009b) have reviewed and/or evaluated the various indicators; some

of these are mentioned in Sections 2.2.3–2.2.7. Besides the classical drought definitions,

drought analysis methods may be based on frequency/probability, regression and moisture

adequacy index (MAI) (Panu and Sharma, 2002).

Figure 2.1: Drought characteristics using the run theory for a given threshold level. Source:
Figure 1 in Mishra and Singh (2010).

Drought is generally analysed using timeseries of different variables on timescales

that vary from months to years (Mishra and Singh, 2010; Panu and Sharma, 2002) based

on a threshold approach that originated from the theory of runs (Yevjevich, 1967; Dracup
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et al., 1980; Hisdalet al., 2004). This allows various statistical drought parameters, in-

cluding frequency, duration, intensity and severity, to be determined. Figure 2.1 (from

Mishra and Singh, 2010) presents a schematic diagram of a drought variable (Xt), which

is intersected at several places by the truncation level (X0) that produces three drought

events. A negative (positive) run occurs when all values of the timeseries of drought vari-

able (Xt) are below (above) the pre-determined threshold (X0). Drought initiation time

(ti) specifies the start of the deficit period, i.e. when the drought begins; drought termina-

tion time (te) denotes the time when the drought ends. Drought duration (Dd) is defined

as the number of consecutive time-steps with below-threshold values (Byun and Wilhite,

1999), i.e. the time period between the initiation and termination of a drought. While

drought severity (Sd) indicates the cumulative departure from a threshold, drought inten-

sity (Id) represents the averaged cumulative anomaly for that duration, i.e. the average

magnitude of an event (Andreadiset al., 2005). With a gridded dataset, the components

in Figure 2.1 enable the determination of the areal extent of droughts, which is important

as it (together with duration) can influence the range and scale of impacts (Marshet al.,

2007). It can be measured by the Drought Area Index (DAI). DAI estimates the propor-

tion of the area affected by drought by simply counting the number of cells with values of

the timeseries, in any given timescale (e.g. month or year), falling below a given threshold

divided by the total number of cells over a given domain (Cooket al., 1997; 2004).

Frequency provides no information on the event intensity or duration; it also varies

with the chosen timescale, e.g. shorter (longer) events tend to generate higher (lower)

frequency (Vicente-Serrano and López-Moreno, 2005). Nevertheless, frequency analysis

of critical events helps to determine design criteria in water resource projects (i.e. hy-

drological drought) and selecting a cropping system or pattern (i.e. agricultural drought)

(Panu and Sharma, 2002). Duration strongly correlates to severity (Bonacci, 1993; Woo

and Tarhule, 1994; Tarhule and Woo, 1997), which is important for studying hydrological

drought (Andreadiset al., 2005). Panu and Sharma (2002) defined severity as a func-

tion of duration and probability distribution of the drought variable and its autocorrelation

structure. Critical duration, even with lower severity, is important for agricultural drought

(Panu and Sharma, 2002). Areal drought characteristics, rather than point values, is useful

for water resources management of large regions (Hisdal and Tallaksen, 2003). Droughts
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can be spatially identified on a local, regional or national scale (Mishra and Singh, 2010);

their maximum size is limited by the size and shape of continental landmasses (Sheffield

et al., 2009).

The size, duration and location of a drought depends on a pre-defined threshold of a

sequence (e.g. SPI or runoff timeseries) below which an event occurs (Yevjevich, 1967;

Dracupet al., 1980). The threshold, either a constant or a function of time of the year,

is of significant importance as it distinguishes the variable timeseries into “deficit” and

“surplus” (Panu and Sharma, 2002). It may be in absolute (e.g. deficit volumes in mm) or

relative (e.g. the 80th percentile) terms. The former may be more meaningful for practi-

tioners engaged in drought monitoring, forecasting and management operations, whereas

the latter enables comparisons with other regions that have different hydro-climatic char-

acteristics. Different thresholds (e.g. mean, median and percentiles) characterise events

of different intensities (Mishra and Singh, 2010), depending on the needs or applications

and location (WMO, 2006).

2.2.3 Meteorological Drought

Meteorological drought typically refers to below-normal precipitation over a period

of time over a region (Bordiet al., 2009); it may also be described by temperature and

evapotranspiration. It can develop quickly and end abruptly. The high temporal and

spatial variability of precipitation and insufficient observation stations can pose analytical

challenges.

Meteorological indices include percentile ranking methods (e.g. quartiles and deciles;

Gibbs and Maher., 1967), percent of normal precipitation, consecutive dry days (CDD),

Rainfall Anomaly Index (RAI; van Rooy, 1965), Effective Drought Index (EDI; Byun

and Wilhite, 1999), and Standardized Precipitation Index (SPI; see Section 4.2.2) (Mckee

et al., 1993).

2.2.4 Agricultural Drought

Agricultural drought is often characterised by insufficient moisture in the surface soil

layers to support crop and forage growth (Das, 2003), even with saturated deeper soil

layers, through its control on transpiration and thus vegetative vigor (Sheffield and Wood,
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2008a), without referring to surface water resources. Factors that cause meteorologi-

cal (Section 2.2.3) and hydrological (Section 2.2.5) drought events, differences between

actual and potential evapotranspiration (PET), plant biology and physics, and soil prop-

erties (e.g. water-holding capacity), all influence soil moisture, which is determined by

the fluxes of precipitation, evapotranspiration and runoff (Sheffield and Wood, 2008a).

However, precipitation amounts do not directly relate to soil infiltration.

Agricultural drought indices often combine precipitation, temperature and soil mois-

ture to measure soil moisture and crop yield. Numerous indices exist (Hayeset al., 2011),

including a soil moisture index, normalised difference vegetation index (NDVI), water

balance, heat stress, Palmer Moisture Anomaly Index (Z-index, which also measures me-

teorological drought; Palmer, 1965), Crop Moisture Index (CMI; Palmer, 1968), Soil

Moisture Anomaly Index (Bergmanet al., 1988), and Palmer Drought Severity Index

(PDSI; Palmer, 1965).

The PDSI has been widely applied especially in the U.S. (Soulé, 1992; Kangas and

Brown, 2007; Gutzler and Robbins, 2011), but also in Europe (Briffaet al., 1994; Lloyd-

Hughes and Saunders, 2002; Dubrovskyet al., 2008; van der Schrieret al., 2010; Sousa

et al., 2011) and China (Zouet al., 2005; Li et al., 2007a; Fanget al., 2009; Lei and

Duan, 2011), and more recently, globally (Daiet al., 2004; Burkeet al., 2006; Sheffield

et al., 2012). Alley (1984), Karl (1986) and Heddinghaus and Sabol (1991) discussed

its limitations and assumptions. PDSI, although originally developed to monitor long-

term meteorological events, is a soil moisture algorithm calibrated for relatively homo-

geneous regions, and has been extensively used to describe agricultural droughts (Panu

and Sharma, 2002). Although the traditional PDSI excludes snow accumulation and sub-

sequent runoff, van der Schrieret al. (2013) produced a new global dataset of monthly

self-calibrating Palmer Drought Severity Index (scPDSI) that accounts for seasonal snow-

pack dynamics in the water balance model for 1901–2009.

2.2.5 Hydrological Drought

Surface waters (e.g. lakes and streams) are used for many purposes, including hy-

dropower, irrigation and drinking water supply (Hisdal and Tallaksen, 2003). Hydrolog-

ical drought is generally defined as a period of inadequate surface and subsurface water
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supplies for use of a given water resource management system (Bordiet al., 2009). Po-

tential triggers include precipitation and/or soil moisture deficits (Andreadiset al., 2005)

(possibly due to more intense but less frequent precipitation), storage conditions, high

evaporative losses (Hisdal and Tallaksen, 2003), poor water management and erosion. It

usually lags behind meteorological and agricultural events (Hisdal and Tallaksen, 2003),

develops slowly as it involves stored water that is depleted but not replenished (Dai, 2011),

and persists longer (Steinemannet al., 2005). Although surface and subsurface compo-

nents recover slowly due to the long recharge periods, runoff may recover in response to

precipitation more quickly than soil moisture (Andreadiset al., 2005).

Hydrological droughts may be reflected by total water deficit or cumulative stream-

flow anomaly based on streamflow, reservoir and lake levels. Other indicators include

the surface water supply index (SWSI), Palmer Hydrological Drought Severity Index

(PHDI), Reclamation Drought Index (RDI; Weghorst, 1996), aggregate dryness index

(ADI) that considers all meteorological, hydrological and agricultural aspects (Keyantash

and Dracup, 2004), normalized ADI (NADI), low-flows (Smakhtin, 2001), and stream-

flow drought index (SDI; Nalbantis and Tsakiris, 2008). A new “composite index” based

on streamflow, precipitation, reservoir levels, snowpack, and groundwater levels has been

recommended (Hayeset al., 2011). van Huijgevoortet al. (2012) presented a method

that combines characteristics of the classical variable threshold-level method, and CDDs,

which consistently identifies global-scale drought across climate regimes.

2.2.6 Groundwater Drought

Surface water drought may progress to groundwater drought, which is less exten-

sively studied than other drought categories, particularly its spatial distribution (Peters

et al., 2005; 2006; Mishra and Singh, 2010). It occurs when groundwater levels, storage

and discharge decline with some combination of low precipitation, high evapotranspira-

tion, low soil moisture content and thus reduce groundwater recharge. The propagation

of groundwater drought from recharge to discharge and the influence of aquifer charac-

teristics on the propagation has been studied by (Eltahir and Yeh, 1999; Peterset al.,

2003; Peters and van Lanen, 2003). Abstraction and overexploitation may create/enhance

a groundwater drought.
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Mendicinoet al.(2008) derived the Groundwater Resource Index (GRI) from a simple

distributed water balance model for monitoring and forecasting. van Lanen and Peters

(2002) identified natural groundwater droughts (recharge deficits) by applying transient

recharge models and reservoir theory (Sequent Peak Algorithm). Peterset al. (2005)

evaluated groundwater recharge and discharge for three reservoir coefficient values with

respect to droughts. They used reliability, resilience and vulnerability, and a combination

of these three indicators (Loucks’ sustainability index), along with three newly-defined

overall performance indicators that combine drought severity and frequency.

2.2.7 Socio-economic Drought

Socio-economic drought characterises the supply and demand of some precipitation-

dependent commodity or economic good (e.g. water, livestock forage or hydroelectric

power) that may affect society’s productive and consumptive activities (Dracupet al.,

1980). Supply depends on precipitation or water availability that fluctuates annually. De-

mand is a function of human use and often correlates positively with increasing popu-

lation and development. Temporal and spatial scales of supply and demand should be

considered when defining a socio-economic drought. Water stress indicators include an-

nual withdrawals-to-availability ratio, the consumption-to-Q90 ratio, and per capita water

availability (Alcamoet al., 2007b). It is worth noting that demand for freshwater re-

sources could change over time even with an unchanged climate. For instance, demand

could increase with an increase in development, or the construction of reservoirs could

enhance resilience to future climate change.

2.2.8 Discussion

The choice of drought index determines the spatial patterns of drought characteristics

(Soulé, 1992). The wide range of drought definitions discussed in this subsection implies

that one or more indices may be consulted as each has its own advantages and weak-

nesses (Bonacci, 1993; Hayeset al., 2007). Drought definitions thus need to be region-

and application- or impact-specific (WMO, 2006), with the appropriate timescales cho-

sen (Kangas and Brown, 2007). Nonetheless, few definitions adequately address drought

impacts (Wilhite and Glantz, 1985).
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PET is an input to the PDSI and is an important consideration in hydrologic modelling

or water resource management studies; the uncertainty of which was also highlighted

by Miller et al. (2011). PET is commonly estimated with Thornthwaite (Thornthwaite,

1948) and Penman-Monteith parameterisations (Allenet al., 1994a;b). van der Schrier

et al. (2011) found little difference in global scPDSI values computed using these two

approaches due to the calculations in the simple water balance model of the PDSI algo-

rithm. However, output from the global hydrological model, Mac-PDM.09, is sensitive to

the PET calculation method (Penman-Monteith or Priestley-Taylor; Gosling and Arnell,

2011).

2.3 Past Changes in Drought

This subsection presents an overview of the historic changes in drought globally.

While long-term global drought trends are complex and there are no emergent coher-

ent patterns of behaviour (IPCC, 2012), there have been regional-scale spatial and tempo-

ral variations (Easterlinget al., 2000). During the last 500–1000 years, North America,

West Africa (Shanahanet al., 2009), and East Asia have experienced multi-year to multi-

decade dry periods (Dai, 2011).

Globally, the maximum number of CDD has generally reduced, except for parts of

South Africa, Canada and eastern Asia (Frichet al., 2002). Areas affected by severe

drought increased slightly over 1900–1995 (Dore, 2005). PDSI trends revealed drying

along the Guinea Coast, southern Africa, parts of Canada, and southern and central Europe

during 1900–1949 (Daiet al., 2004).

Global very dry (PDSI<−3.0) areas decreased by 7% over 1950–1972, but have in-

creased by 12–30% since 1970s, particularly in early 1980s with an ENSO-induced pre-

cipitation decline and surface warming (Daiet al., 2004; Dai, 2011). Since the mid-20th

century, increased wetness occurred over the central U.S., Argentina and northern high-

latitude areas whereas most of Africa, southern Europe, southeast Asia, and eastern Aus-

tralia, (Daiet al., 2004; Dai, 2011; 2013; as shown in Figure 2.2) with more frequent and

intense drought (Dore, 2005). The U.S. and Europe had both increases in the percentage of

areas with severe drought or moisture surplus (Huntington, 2006). Less frequent/intense,

or shorter droughts have occurred in central North America and northwestern Australia
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Figure 2.2: Trend maps for precipitation and scPDSI [scPDSI with PET estimated using the
Penman–Monteith equation] and time series of percentage dry areas. Long-term trends from 1950
to 2010 in annual meana, observed precipitation andb, calculated scPDSI using observation-
based forcing. The stippling indicates the trend is statistically significant at the 5% level, with
the effective degree of freedom computed. Note a change of 0.5 in the scPDSI is significant in
the sense that a value of PDSI between –0.5 to –1.0, –1.0 to –2.0, –2.0 to –3.0 and –3.0 to –
4.0 indicates, respectively, a dry spell, mild drought, moderate drought and severe drought.c,
Smoothed time series of the drought area as a percentage of global land areas based on the scPDSI
computed with (red line) and without (green line) the observed surface warming. The drought
areas are defined locally as the cases when scPDSI is below the value of the twentieth percentile
of the 1950–1979 period (results are similar for drought defined as PDSI<−2.0 and for using a
longer base period from 1948 to 2010). Source: Figure 1 in Dai (2013).
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(IPCC, 2012). For global soil moisture, although increasing precipitation over 1950–2000

has reduced drought extent by 0.021–0.035% yr−1, high northern latitudes in particular,

have dried with warming since the 1970s; West Africa has dried substantially with lower

Sahel precipitation (Sheffield and Wood, 2008a).

However, after accounting for changes in available energy, humidity and wind speed,

Sheffieldet al. (2012) found little change in global drought since 1950, and that previ-

ously reported increases were overestimated due to the simple representation of PET in

PDSI that responds only to perturbed temperature. Based on a new global scPDSI dataset

calculated for 1901–2009, although van der Schrieret al. (2013) found more widespread

drought in some regions such as the Mediterranean due to increasing temperature and

PET, they did not find evidence for unusually strong or widespread drying. They also

found that the selection of a calibration period of the scPDSI (rather than the formulation

of PET) to be the cause for the differences in global drying trends in the literature. More-

over, robustness in the observed trends can be constrained by data inhomogeneities and

relative sparseness of station density (Moberget al., 2006). There are also considerable

regional variations in the reconstructed 20th-century runoff trends (Labatet al., 2004).

These studies have reported spatial and temporal variations in the drying and drought

trends. Such differences may be associated with the different datasets used for drought

analysis, e.g. Daiet al. (2004) used observed/historical precipitation and temperature

datasets, whereas Sheffield and Wood (2008a) used soil moisture simulation from the

Variable Infiltration Capacity (VIC) land surface hydrological model driven by a hy-

brid dataset of precipitation, near-surface meteorological and radiation data derived from

the National Centers for Environmental Prediction–National Center for Atmospheric Re-

search (NCEP–NCAR) reanalysis and a suite of global observation-based products. Also,

the different definitions and methodologies applied for drought quantification and compu-

tation (e.g. in the calculation of PDSI) can also contribute to some of the inconsistencies

in the trends. Despite the variations in the trends found in different studies, drying and/or

worsening drought conditions have consistently been found in southern Europe.
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2.3.1 Europe

This subsection focuses mainly on the historic trends in precipitation/drought found

for Europe, which has been used as the study region in this thesis (see Section 3.9).

Over the 20th century, while drought (SPI<−1) area coverage increased (Bordiet al.,

2009), the area affected by extreme and/or moderate droughts (according to both SPI

and PDSI; Lloyd-Hughes and Saunders, 2002) and summer moisture availability (van der

Schrieret al., 2010) revealed insignificant changes; widespread and unusual drying over

the last few decades is also not evident (van der Schrieret al., 2010).

Between 1976–2000 and 1951–1975, much of the European region experienced re-

duced summer precipitation while the opposite trend occurred over Western Russia and

Finland (Palet al., 2004). Trends of precipitation and scPDSI for the 20th century indi-

cate a drying trend across much of the western and central Mediterranean (Sousaet al.,

2011). For England and Wales, while 12-month drought (based on rainfall deficiencies)

frequency reveals no clear trend during 1800–2006, summer drought severity increased

with 20th-century warming (Marshet al., 2007). Central eastern Europe and western

Russia experienced significant drying (based on trends in SPI and PDSI values), with

trends being strongest in winter/spring and weakest in summer/autumn (Lloyd-Hughes

and Saunders, 2002). Extreme droughts (PDSI≤−4) became more frequent within the in-

terior of continental Europe, and less frequent along the northwest European and Mediter-

ranean coast, and the Alps (Lloyd-Hughes and Saunders, 2002). It is worth noting that the

chosen calibration period of the PDSI can influence the interpretation of the index values

based on Palmer’s classification (van der Schrieret al., 2013).

For Europe as a whole, long-term trends in streamflow drought are generally inconclu-

sive (Hisdalet al., 2001), and hydrological (represented by SPI24) drought area coverage

varies with the time section considered due to the high spatial variability (Bordiet al.,

2009). However, distinct regional differences have been found. Since the 1960s, low

flows reduced; annual streamflow generally decreased (increased) in southern and eastern

regions (across Europe) and in summer (winter) (Stahlet al., 2010). During 1962–1990,

drought deficit volumes increased in Spain and eastern part of Eastern Europe, but de-

creased in much of Central Europe and western part of Eastern Europe; results for the UK

are mixed, with more severe droughts in areas with limited storage capacity (e.g. Wales
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and southwest England), and less severe droughts in areas that have large aquifers (e.g.

southeast England). These trends are related to seasonal precipitation deviations or arti-

ficial influences in the catchments (Hisdalet al., 2001). More severe summer streamflow

droughts occurred in southern and eastern Norway due to altered snowmelt hydrology

(Wilson et al., 2010). Extended drought periods (that affected≥40% of grid cells) oc-

curred in autumn 1975 to late summer 1976, and spring/summer of 1990 (Tallaksenet al.,

2011).

Summer moisture availability increased from end of 17th century to beginning of

19th century; continuous drying has since occurred (Briffaet al., 2009). The mid-1940s

to early 1950s was a persistent and exceptionally dry period (van der Schrieret al., 2010).

Widespread summer drought in the last two decades with anomalous warming, particu-

larly in central Europe (Briffaet al., 2009).

2.4 Projected Changes in Drought

This subsection presents an overview of the projected changes in drought under future

climates globally.

Figure 2.3: The proportion of the land surface in drought each month. Drought is defined as
extreme, severe, or moderate, which represents 1%, 5%, and 20%, respectively, of the land surface
in drought under present-day conditions. In each case results from the three simulations made
using the A2 emissions scenario are shown. Source: Figure 9 in Burkeet al. (2006).

Compared to high precipitation extremes, projected trends for global dry events ap-

pear weaker and less consistent (Plantonet al., 2008). Due to the range of definitions that

correspond to different classifications of drought and inconsistencies in the model projec-

tions when based on different dryness indices (e.g. short- vs. long-term events), there is
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mediumconfidence in future drought projections IPCC (2012). Despite the considerable

regional variations, studies generally suggest a net overall global drying trend is projected

over the 21st century. Over the 21st century, dry day frequency increases under A2 and

A1B emission scenarios but varies little under B1 (Tebaldiet al., 2006). The area of land

surface in extreme drought increases from 1–30% (present-day) to 30–50% (by 2100) un-

der A2 scenario, with slightly less frequent but much longer events (Burkeet al., 2006;

Bateset al., 2008; as shown in Figure 2.3). Using a drought risk index (based on a revised

PDSI) that accounts for the effects of drought-disaster frequency, drought severity, pro-

duction (yield) and extent of irrigation, results from 20 GCMs indicate that global drought

disaster-affected area increases from 15% (present-day) to 44% (2100) (Liet al., 2009).

The frequency of dry days are projected to increase (decrease) in sub-tropical latitudes

of northern and southern hemispheres (high-latitude northern hemisphere), according to

nine GCMs (Tebaldiet al., 2006). Future droughts (on the annual timescale and based

on both soil moisture anomalies and CDD) intensify in southern and central Europe, cen-

tral North America, Central America and Mexico, northeast Brazil, and southern Africa

(during December-January-February; Lyon, 2009) (IPCC, 2012). Decadal-mean scPDSI

calculated using the ensemble-means from 22 GCMs suggest increasing aridity between

the 1950s and 2090s over most of Africa, southern Europe and the Middle East, most

of the Americas, Australia, and Southeast Asia; persistent droughts may also occur in

the U.S. in the first half of the 21st century Dai (2011). Continental summer drying and

droughts are likely with reduced precipitation, higher temperature and evaporation (Meehl

et al., 2000), especially in the sub-tropics (Shindell, 2007), low- and mid-latitudes (Bates

et al., 2008). In southern Europe and central North America, dry soil, frequency of low

precipitation and long dry spells (due to fewer daily rainfall events, rather than lower mean

precipitation) in summer could increase (Gregoryet al., 1997).

According to 21 GCMs under SRES A1B scenario, by 2100, soil moisture is pro-

jected to decline globally, causing droughts in tropics and subtropics, including southwest

North America, Central America, the Mediterranean, Australia, much of the Amazon

and South and West Africa in June-July-August and the Asian monsoon (in winter) re-

gion (Wang, 2005). The frequency of long-term soil moisture droughts is projected to

triple, and the spatial extent of severe soil moisture deficits and frequency of short-term
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(4–6-month) droughts double based on eight GCMs, with lower precipitation, higher tem-

peratures and evaporation; greater evaporation may offset precipitation increases in some

regions (Sheffield and Wood, 2008b).

Considerable streamflow variations are expected by 2100 (Toddet al., 2011). Annual

mean precipitation, evaporation, and runoff (by 10–30%; Millyet al., 2005) decrease in

mid-latitudes and sub-tropics (Arnell, 1999b), e.g. southern Europe, southern Africa and

mid-latitude western North America (Noharaet al., 2006). River discharge simulated

by a land surface sub-module (MATSIRO) of the MIROC GCM indicate that North and

South America, central and southern Africa, the Middle East, central to western Australia,

and Indochina to southern China to experience significantly more frequent drought days

by 2070–2100 (Hirabayashiet al., 2008). Frequency of flow below the current 10-year

return period minimum annual runoff, simulated by an enhanced version of the Macro-

PDM hydrological model, is projected to be three (two) times more frequent in Europe

and southern Africa (North America) by the 2050s (Arnell, 2003a).

Results from these studies have revealed the range of projected future changes in dry-

ness/drought. Some of the inconsistencies may be attributed to the use of different vari-

ables (e.g. precipitation, soil moisture, streamflow), drought definitions and parameters

(e.g. dry day frequency, proportion of land being drought-affected, the use of percentile),

the different timescales and periods studied (e.g. seasonal, annual), as well as the vari-

ous emission scenarios and climate/hydrological models applied. Despite the difficulties

in inter-comparing drought projections from different analysis, positive trends in dryness

and/or drought conditions are commonly projected for southern Europe. The projected

futureEuropeandrought characteristics from other studies are compared with the results

obtained in this thesis, which are presented in Chapters 4 and 5.

2.5 Causes of Drought and its Characteristics

Meteorological droughts are mainly driven by precipitation and available energy; per-

turbations in the mean and/or the variability of either, or both, of these drivers can alter

drought patterns (Burke, 2011). For instance, decreasing mean precipitation, increas-

ing standard deviation of precipitation, increasing mean available energy and decreasing

standard deviation of available energy tend to increase drought (Burke, 2011). On longer
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timescales, runoff is roughly equal to the difference between land precipitation and evap-

otranspiration; hydrological droughts occur with a decline in precipitation and/or an in-

crease in evapotranspiration, which depends on energy and water availability, near-surface

atmospheric conditions and the control of transpiration by plants (Gedneyet al., 2006).

The interactions between perturbations in precipitation, temperature and hydrologic pro-

cesses through their frequency, intensity and seasonality (especially in snow-dominated

regions) makes it difficult to assess the relative importance of temperature and precipita-

tion in changes in drought events (Sheffield and Wood, 2008b), e.g. the recent drought in

western North America, particularly the Southwest (Overpeck and Udall, 2010).

Global warming can alter future PET, an increase of which may induce soil mois-

ture deficits and vegetation desiccation (Rindet al., 1990). Drought intensification has

been understated in most GCM simulations, due to their lack of realistic land surface

components (Rindet al., 1990). However, a detailed parameterisation of land evapo-

transpiration in mesoscale or global climate models is challenging (Dickinson, 2013).

The various methods for PET estimation (e.g. Thornthwaite, Blaney-Criddle, Hargreaves,

Samani-Hargreaves, Jensen-Haise, Priestley-Taylor, Penman, and Penman-Monteith) im-

plies that the characterisation of the PET climate change signal is an important source

of uncertainty, particularly in regions where precipitation is closely in balance with PET

(Kingstonet al., 2009). The sensitivity of PET to climate changes depends on both data

requirements and calculation method; it can also vary by location and by time of year

(McKenney and Rosenberg, 1993). In addition to temperature, changes in humidity, solar

radiation, wind speed and vegetation can offset or intensify the effects of warming on PET

(McKenney and Rosenberg, 1993). Although Kingstonet al. (2009) found a consistent

global increase in PET with a 2◦C global warming according to six different calculation

methods, the magnitude of the PET climate change signal differ substantially; for certain

regions and GCMs, choice of PET method determines the direction of projections of fu-

ture water availability. Similarly, Luet al.(2005) found significantly different PET values

calculated from six different methods across 36 forested watersheds in the southeastern

U.S. Moreover, runoff simulated by hydrological models (such as Mac-PDM.09; Gosling

and Arnell, 2011) may be highly sensitive to the choice of PET calculation method.
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While PET generally increases with temperature, actual evaporation may be ampli-

fied/alleviated with higher/lower precipitation (Sheffield and Wood, 2008b). For example,

fluctuations in the Yellow River flow tend to be influenced by temperature (precipitation)

changes in the long- (short-) term (Lianget al., 2010). For some vegetation covers, the re-

lationship between actual and potential evapotranspiration may be sensitive to the chang-

ing atmospheric CO2 levels Lockwood (1999). Some of the processes/influences that can

lead to the perturbations in these climatic/hydrological variables, which can subsequently

modify the characteristics of droughts are discussed below.

2.5.1 Natural Causes of Drought

Global-scale atmospheric circulation changes can alter large-scale pattern of precip-

itation, temperature and cloudiness (Dai, 2011). Atmospheric circulation patterns that

affect precipitation (which has a notable seasonality) are easier to distinguish than those

responsible for spatial variations of drought, which tend to be more continuous (Vicente-

Serrano, 2006). Changes in annual/heavy precipitation, or differences between precipita-

tion and evapotranspiration cannot simply explain drought and flood changes, e.g. in some

regions, both drought and flood frequencies increase with less frequent precipitation days

but more frequent heavy precipitation days (Hirabayashiet al., 2008).

Teleconnection-drought relationships have been observed (Bateset al., 2008). These

include inter-decadal and multi-decadal climate variability (Dore, 2005) and anomalous

tropical sea surface temperatures (SSTs) (Hoerling and Kumar, 2003; Dai, 2011) that, for

example, could weaken the East Asian summer monsoon (EASM) (Liet al., 2010). Some

of the effects of El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO)

and other phenomenona are briefly described below.

ENSO is one of the major modes of climate variability. Since the late 1970s, a shift

in ENSO towards more warm events, which corresponded with record high global-mean

temperatures, has altered severely drought-affected areas (Dore, 2005). More (less) short-

term droughts have coincided with El Niño (La Niña) episodes (Sheffieldet al., 2009). El-

Niño-like conditions promote drought in Australia, Indonesia (Salinger, 2005), East China

and South Africa (Herweijeret al., 2007; Collieret al., 2008; Lyon, 2009; Dai, 2011).

La Niña-like conditions promote drought in North America (Schubertet al., 2009), e.g.
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Colorado River Basin during fall and winter (Elliset al., 2009); in the Yellow River Basin,

average annual precipitation (and also streamflow) in La Niña years is 18.8% higher than

in El Niño years (Fuet al., 2007c).

NAO (Greatbatch, 2000) has made a significant contribution to high inter-decadal

variability on precipitation and streamflow in Europe (Trigoet al., 2004). Since the 1950s,

the effects of positive (negative) NAO phases on droughts have strengthened (weakened)

due to perturbed wintertime sea-level pressure fields, producing more (less) drought con-

ditions in southern (northern) Europe (López-Moreno and Vicente-Serrano, 2008). The

winter NAO pattern has significant implications for European climate (Hurrell, 1995) and

water resources throughout the year (López-Moreno and Vicente-Serrano, 2008), e.g. the

interannual flow variability in Spain and Portugal may affect hydroelectric production

(Trigo et al., 2004). As the western and central Mediterranean have precipitation max-

ima during winter (and to a lesser extent, Fennoscandia and the Baltic states during late

summer), fluctuations in precipitation totals between positive and negative phases can

significantly influence drought conditions during the succeeding months (López-Moreno

and Vicente-Serrano, 2008). Along with the NAO, the Scandinavian Pattern (between

winter and summer) influence Western and central Mediterranean (not Turkey) (Sousa

et al., 2011). The NAO also regulates Middle Eastern interannual to decadal rainfall-

driven runoff (December–March) through local precipitation and temperature (Cullen

et al., 2002). Although the Alps exhibits the strongest European interannual variabil-

ity of winter precipitation, this is only weakly correlated with the Northern Annular Mode

(NAM) and the NAO (Bartoliniet al., 2009).

However, drought response to the positive and negative phases of NAO across Europe

is asymmetrical, e.g. it varies spatially, and with the month, decade and timescale of the

analysis (López-Moreno and Vicente-Serrano, 2008). The positive (negative) phase corre-

lates with negative (positive) SPI values in central and southern Europe (northern Europe

and the UK), producing winter/spring soil moisture droughts and summer/autumn hy-

drological droughts (López-Moreno and Vicente-Serrano, 2008). For instance, persistent

meteorological and hydrological drought conditions in the 1980s and 1990s in southern

Romania coincided with the positive phase (Stefanet al., 2004).

Regional climate patterns may not only vary with ENSO and NAO, as discussed
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above, but can also be affected by the interactions between different modes of climate

variability. For instance, according to European dendroclimatic precipitation reconstruc-

tion, interaction between ENSO and NAO may have produced a multi-centennial me-

dieval megadrought during the Medieval Climate Anomaly, and significant drying in

northern Europe (Helamaet al., 2009). Risk for severe and synchronised mid-latitude

drying increases if tropical mean SSTs or their interannual variability increase the equato-

rial ocean’s west-east contrast, e.g. the 1998–2002 droughts spanning the U.S., southern

Europe, and Southwest/Central Asia (Hoerling and Kumar, 2003). Drought conditions

increase in the U.S. and southern South America with a cold equatorial Pacific anomaly,

and in southern Central America, northern South America, and central Africa with a cold

Atlantic anomaly; these are reversed by warm Pacific and Atlantic anomalies (Findell and

Delworth, 2010). The Sahel droughts occurred as the warmest Atlantic SSTs migrated

southward and the Indian Ocean warmed (Dai, 2011). ENSO, Pacific Decadal Oscilla-

tion (PDO), and NAM drove the North American (e.g. the Great Plain; Hu and Huang,

2009) droughts (Gutowskiet al., 2008). Variations in the Southern Annular Mode (SAM)

and ENSO may perturb regional synoptic patterns and affect Victorian climate, Australia

(Kiem and Verdon-Kidd, 2010). The NAO (and ENSO) determine southern European

climate (Rodóet al., 1997).

2.5.2 Anthropogenic Influences

Although natural causes have contributed to some of the recent regional trends in

dryness or drought, anthropogenic influences may have exacerbated or dampened these

trends (Sheffield and Wood, 2008a). Climate change will redistribute precipitation glob-

ally (Dore, 2005). Human-induced rapid warming since the 1970s has increased at-

mospheric moisture demand and likely altered atmospheric circulation patterns (Schär

and Jendritzky, 2004; Dai, 2011). According to the Clausius-Clapeyron relation (Held

and Soden, 2000), warming implies higher atmospheric moisture-holding capacity, and

where available, more water vapour for the precipitating weather systems (Alexander
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et al., 2006). The decreasing ratio between precipitation and precipitable water (Dou-

ville et al., 2002) suggests an enhanced global hydrological cycle (Dore, 2005; Hunting-

ton, 2006). On a global scale, this could be a result of strengthened horizontal mois-

ture transports, assuming that atmospheric circulation remains constant (Held and Soden,

2006). This occurs as more moisture (with increased atmospheric water vapour concentra-

tions) is transported from areas where evaporation exceeds precipitation (P−E<0; e.g. in

the sub-tropical oceans) to areas where precipitation exceeds evaporation (P−E>0; e.g.

the higher latitudes) (Hegerlet al., 2013). Therefore, drying intensifies in areas where

P−E<0 and wetting amplifies in areas whereP−E>0. Although an increase in pre-

cipitable water may increase precipitation initially, greater convection would warm the

mid-upper troposphere due to the condensation of water vapour. If the net radiative cool-

ing of the troposphere does not increase, the rate of convection would slow as it stabilises.

Assuming that relative humidity changes little in the long term (Allen and Ingram, 2002),

this process could limit global precipitation under increased warming (Hegerlet al., 2013).

Note that Simmonset al. (2010) found a reduction in relative humidity over low-latitude

and mid-latitude land areas around the first decade of the 21st century, which would fur-

ther limit an increase of global precipitation.

An enhanced global hydrological cycle, together with higher atmospheric demand for

evapotranspiration — which may be dampened (enhanced) by higher (lower) precipita-

tion or atmospheric humidity — especially during warmer seasons (Sheffield and Wood,

2008b; Weisset al., 2009), suggest enhanced drought conditions (Sheffield and Wood,

2008a; Vasiliadeset al., 2009) as the interannual variability of precipitation minus evap-

oration becomes stronger (Seageret al., 2012). For example, global warming may have

intensified the Australian Murray-Darling Basin drought severity and impacts through

enhanced evaporation and evapotranspiration (Nicholls, 2004); however, the 2000–2007

nation-wide episodes may not be human-induced as they have a return period of 200–300

years (Hunt, 2009).

Human-induced changes in global land precipitation could be a result of GHG and

black carbon/sulphate aerosols emissions (Frieleret al., 2011), which have led to the

global drying trend since 1952 (Burkeet al., 2006). For instance, the Asian monsoons are

affected by black carbon/sulphate aerosols (Xu, 2001; Chenget al., 2005; Lauet al., 2006;
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Lau and Kim, 2006; Liet al., 2007b; Ramanathan and Feng, 2009; Kuhlmann and Quaas,

2010). These, together with land use changes, have weakened the East Asian summer

and winter monsoon, producing droughts in North China (Dinget al., 2007; Liuet al.,

2009). Since 1960, the second aerosol indirect effect (i.e. more numerous and smaller

cloud droplets reduce precipitation efficiency), higher SSTs in the South China Sea and

Indian Ocean, and GHGs have altered low-level cloud cover (LCC) and reduced early

summer precipitation in the drought region of Southern China (Chenget al., 2005; Shen

et al., 2008).

Anthropogenic influences can also alter both runoff volume and distribution. Rela-

tively small temperature/precipitation changes can have large impacts on runoff (Freder-

ick and Major, 1997). Although the geographical distribution of precipitation and runoff

variations tend to correspond with that in the river discharge, upstream runoff changes

influence downstream flows (Noharaet al., 2006). Temperature strongly affects the sea-

sonal distribution of snow-related runoff and hydrologic variables (Adamet al., 2009),

even with unchanged precipitation amount, particularly in lower lying valley areas and

low-altitude mountain ranges where baseline climate is closer to freezing thresholds (Bu-

reau of Reclamation, 2011). Decreased fraction of annual precipitation falling as snow

have been found in recent decades in the Norwegian Arctic (Svalbard region), despite the

increased measured annual precipitation (Forland and Hanssen-Bauer, 2003). This sug-

gests that warming could lead to more rainfall due to the more efficient rainfall processes

compared to snow falling. If more precipitation falls as rain than snow, temporary storage

of precipitation as snow and ice will reduce (Feyen and Dankers, 2009; Toddet al., 2011),

minimum cool-season rainfall-runoff and probability of floods increase, e.g. in Norway

(Roaldet al., 2004; Engen-Skaugenet al., 2005; Roaldet al., 2006; Beldringet al., 2008)

and Denmark (Thodsen, 2007), together with an earlier and less intense spring peak in

flow. Retreating glacierised areas (e.g. European glaciers of<3 km2 could halve in area

by 2050; Huss, 2011) implies lower warm-season snowmelt-runoff and annual minimum

flows occur later in summer/autumn (Hisdal and Tallaksen, 2000; Changet al., 2002; Eck-

hardt and Ulbrich, 2003; Jasperet al., 2004; Barnettet al., 2005; van Lanenet al., 2007;

Laghariet al., 2012). However, interannual runoff variability can increase even with un-

changed interannual precipitation variability, for instance, in areas where flow volumes
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are determined by groundwater recharge (Arnell, 2003a).

Although climate change can alter the volume and timing of streamflows and ground-

water storage, its influence on exposure to water-related hazards, access to and future

water resource availability also depends on demographic and socio-economic factors (Ar-

nell, 2006). Population and economic growth, freshwater and groundwater withdrawals

(Frederick and Major, 1997) may induce, enhance or prolong drought, e.g. the 1930s

North American Dust Bowl drought (Dai, 2011). Without climate change, changes in

population alone suggests 36–40% of the world’s population (2.9–3.3 billion people) liv-

ing in water-stressed watersheds by 2025, and 3.4–5.6 billion people by 2055 (Arnell,

2004a). While natural multi-decadal climate variability primarily drives average annual

runoff in the 2020s, and population growth is primarily responsible for water stress under

a 2◦C warming; climate change becomes more dominant in a 4◦C world and/or by the

2080s (Arnell, 2003a; Funget al., 2011).

Warming can enhance water stress in river basins (Funget al., 2011). This could

affect a bigger population; perturbations in precipitation could also alter the number of

people living in water-stressed watersheds, e.g. in the Mediterranean, parts of Europe,

central and southern America, and southern Africa (Arnell, 2004a). Alcamoet al.(2007b)

projected water stress increases (decreases) over 62.0–75.8% (19.7–29.0%) of total river

basin area by 2050s primarily due to greater domestic water-use with higher income and

growing water withdrawals. In southern and eastern Asia, insufficient storage implies

that increased wet season runoff may not be available for the dry season (Arnell, 2004a).

Land use/land cover change (and snowmelt) may alter regional/local moisture recycling

(van der Entet al., 2010); it has altered Australian droughts (McAlpineet al., 2009) and

Middle Eastern streamflow variability during April–June (Cullenet al., 2002).

2.5.3 Summary

This subsection has discussed some of the natural and anthropogenic drivers that can

alter precipitation, temperature and runoff characteristics, thus modifying drought condi-

tions. Natural causes of drought include changes in atmospheric circulation and modes

of climate variability (e.g. ENSO and NAO) — the characteristics of which may also be

modified by human activities. Humans can also influence drought patterns through GHG
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and black carbon/sulphate aerosols emissions, as well as changes in land use and land

cover, population and socio-economic activities. However, it may be difficult to distin-

guish between the effects of climate change and human activities, for example, on runoff

variations (Piaoet al., 2010). In addition, basin-scale effects of climate, soil and vege-

tation (i.e. suppressed plant transpiration due to CO2-induced stomatal closure; Gedney

et al., 2006) may alter streamflow (Liu and Cui, 2011). Furthermore, droughts have been

produced by past large, widespread, abrupt climate changes, which may be triggered by

human influences (Alleyet al., 2003). Therefore, drought occurrence and changes in their

characteristics can be a result of any combination of climatic and hydrological elements,

land surface conditions, and anthropogenic activities.

2.6 Uncertainties in Climate Modelling

Despite advanced climate models and improved knowledge, considerable levels of

uncertainty remain in climate change projections, particularly in relation to extreme events

such as future drought characteristics (Vasiliadeset al., 2009). Uncertainties on large

spatial and longer temporal scales may be estimated (Knutti, 2008). Uncertainties arise

from future human activities and the associated response of the climate system. The

former are represented by future GHG and aerosol emissions (Section 2.6.1); the latter are

explored with different climate model parameters and structures (Sections 2.6.2–2.6.11)

and include natural climate variability (Section 2.6.12) (Seneviratneet al., 2012).

2.6.1 Forcing Uncertainty

Human activities have influenced 20th-century temperature (Stott, 2003) and precip-

itation trends (Zhanget al., 2007). Forcing uncertainty arises from non-climate factors

that affect the climate system (Stainforthet al., 2007a), e.g. population changes (Arnell,

2004a). It is often examined by applying various scenarios of prescribed atmospheric

GHG concentrations (Stainforthet al., 2007a) that may contain assumptions about future

world economic and social development, and political decisions. A range of emissions

scenarios — notably the IPCC SRES (Nakicenovich and Swart, 2000) and Representative
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Concentration Pathways (RCPs; Mosset al., 2010) (see Section 3.4) — have been devel-

oped. The relative likelihood of these is difficult to determine (Christensen and Chris-

tensen, 2007; Tebaldi and Knutti, 2007; Knuttiet al., 2010). Temperature-related impacts

tend to scale with the amount of anthropogenic emissions and the associated global-mean

temperature change (Arnell, 2003a; Tebaldiet al., 2006; Sheffield and Wood, 2008b; Chen

and Sun, 2009; Vidal and Wade, 2009; Xuet al., 2009).

2.6.2 Initial Condition Uncertainty (ICU)

ICU arises from the initialisation of models (the initial state, or ensemble of states)

from which they are integrated forward in time (Stainforthet al., 2007a). The incom-

plete knowledge of the current state of the system introduces macroscopic ICU, which

affects the predicted state variable distributions that have relatively “large” slowly mixing

scales; microscopic ICU is due to the imprecise knowledge of “small” rapidly mixing

scales (Stainforthet al., 2007a). While ICU may affect modelled climate distributions

(Stainforthet al., 2007a), it is the primary error source in weather forecasting (Collins

and Allen, 2002). The initial ocean state provides the “memory” of the system, which

may be useful on interannual timescales (e.g. the forecasting of ENSO; Collins and Allen,

2002), but it is less relevant for longer-term (decadal) climate projections and multi-model

simulations (Tebaldi and Knutti, 2007; Knuttiet al., 2010).

2.6.3 Boundary Condition Uncertainty (BCU)

Boundary conditions are prescribed externally to the model, experiments of which

are otherwise self-contained (Tebaldi and Knutti, 2007). External influences can cause

climate change beyond the “noise” of climate variability (Collins and Allen, 2002). These

can be natural (the solar cycle or volcano eruptions; see Section 2.6.12), which may not

be predictable in a deterministic sense (Collins and Allen, 2002), or anthropogenic (GHG

emissions; see Section 2.6.1).

2.6.4 Model Imperfections

Model imperfection results from our limited understanding of, and ability to simu-

late, the Earth’s climate (Stainforthet al., 2007a). Model imperfection takes two forms:
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inadequacy and uncertainty.

2.6.4.1 Model Inadequacy

Even the most sophisticated models are unrealistic representations of many relevant

aspects of the climate system (Stainforthet al., 2007a). Model inadequacy (structural

uncertainties) relate to grid resolution (therefore particularly relevant for regional sim-

ulations) and missing/approximated processes (Stainforthet al., 2007a) that cannot be

accurately described in the model (Knuttiet al., 2010). Different choices made by model-

ing groups (Meinshausenet al., 2008) may be due tolimited knowledgethat includes in-

complete understanding of deterministic processes, and limited resources to measure and

obtain empirical information (see van Asselt and Rotmans, 2002). For example, the sim-

ulation of convection and its effect on the water vapour and cloud distribution within the

atmosphere, feedbacks from vegetation change to climate change and land cover changes,

aerosol (e.g. black carbon) effects on clouds and precipitation (Bateset al., 2008; Knutti

et al., 2010) are often omitted or implicitly represented in climate models. In addition,

climate models exclude some natural processes (e.g. vegetation dynamics and wildfire)

and anthropogenic forcings (e.g. irrigation, water diversion and land use that directly af-

fect drought occurrence), which are difficult to quantify, even historically (Sheffield and

Wood, 2008b).

2.6.4.2 Model Uncertainty

Model (parameter) uncertainty represents the impact of known uncertainties (Stain-

forth et al., 2007a). It is introduced during model calibration/tuning when estimating

parameters based on either limited observations or physical understanding (Knutti, 2008;

Meinshausenet al., 2008; Knuttiet al., 2010).

Processes to be included in a model and their parameterisation (e.g. factors that affect

albedo and subgrid-scale mixing in oceanic GCMs; CCSP, 2008) may be subjectively

chosen based on expert knowledge and experience (Tebaldi and Knutti, 2007). Similar

sets of primitive dynamical equations may be solved by different numerical algorithms

(CCSP, 2008). Different parameterisations contribute to diverging model response due

to different realisations of a given forcing scenario (Goodesset al., 2003a; Déquéet al.,
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2007), e.g. the grand ensemble of climateprediction.net (Stainforthet al., 2004) reveals

climate sensitivities that range from below 2 K to over 11 K (Stainforthet al., 2005).

Perturbed physics ensembles (PPE) have been employed to address parameter uncer-

tainties (Tebaldi and Knutti, 2007); however, they cannot characterise inter-model vari-

ability to the extent that a multi-model ensemble can (Foley, 2010).

2.6.5 Multi-Model Ensembles (MMEs)

Simplifications, assumptions and parameterisation choices made during model con-

struction lead to model and projection errors (Tebaldi and Knutti, 2007). Thus, it is im-

possible to designate a “best model” when simulation skill for mean precipitation, for in-

stance, varies both temporally and spatially (Blenkinsop and Fowler, 2007a). Since each

simulation provides a projected distribution, a multi-model approach can present the range

of behaviour in the variables of interest across different models (Stainforthet al., 2005;

2007b), and enables sensitivity analysis of the models’ structural choices (Knuttiet al.,

2010). This may capture much of the uncertainty (CCSP, 2008), and multi-model mean

implicitly imply improved skill, reliability and consistency of model projections (Tebaldi

and Knutti, 2007; Knuttiet al., 2010). An ensemble of different models or model versions,

MMEs (e.g. Stainforthet al., 2005), refers to a set of model simulations from structurally

different models where each model has one or more initial condition ensembles (Tebaldi

and Knutti, 2007). A multi-model approach has been recommended (Haylocket al., 2006;

Blenkinsop and Fowler, 2007a; Feyen and Dankers, 2009; Lopezet al., 2009; Valleet al.,

2009; Toddet al., 2011; Wilby, 2010; Gudmundssonet al., 2011; Zhanget al., 2011),

possibly due to the cancelling the offsetting errors in the individual GCMs (Pierceet al.,

2009) although the exact reason remains unclear (Reichler and Kim, 2008). Examples

include a regional study that includes measures of variability (Pierceet al., 2009), in

reproducing observed European annual low flows (Gudmundssonet al., 2012a), and in

planning public water supply in the UK (Lopezet al., 2009). Stainforthet al. (2007b)

provided an analysis pathway for how climate model ensembles may inform decisions.

MMEs, and their frequency distributions, are valuable for model development (Stainforth

et al., 2007a) as they reveal the amplitude of the uncertainties, hence areas for improving

predictability (Déquéet al., 2007; Knuttiet al., 2010).
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MME mean (e.g. Gudmundssonet al., 2012a) is often used and uncertainty is often

represented by the standard deviation or some other measure of spread of individual model

results; ensemble median may outperform ensemble mean (Corso-Perezet al., 2011).

Models can also be weighted; weighted averages may perform better if there is sufficient

available information to derive the weights (Knuttiet al., 2010).

2.6.5.1 Probabilistic Assessments

Probabilistic climate change information is the estimation of a frequency/probability

distribution, and thus is potentially more informative than a scenario-based impact as-

sessment (Newet al., 2007) by providing quantitative “risk” profiles to inform decision

making (Toddet al., 2011). An example of this is the UK Climate Projections (UKCP09)

(Murphy et al., 2009). However, an end-to-end probabilistic assessment, such as the

UKCP09, may be resource-intensive (Newet al., 2007). Probabilistic projections based

on MMEs are derived from a variety of statistical methods (Tebaldi and Knutti, 2007) for

quantifying uncertainty and constructing probability density functions (PDFs) of future

climate change. The Bayesian approach is one example (e.g. Tebaldiet al., 2005; Buser

et al., 2009; Raje and Mujumdar, 2010; Smithet al., 2009b; Taoet al., 2009; Tebaldi and

Sansó, 2009; Harriset al., 2010; Potteret al., 2010). It assigns probability to propositions

that are uncertain and interprets probability as a measure of a “state of knowledge”, which

can be subjective (Foley, 2010). However, the creation of probabilistic projections from

MME information is not an easy proposition, relying on assumptions about how to weight

models and how to take account of structural uncertainties that lie beyond the available

MME. In the case of the UKCP09, future climate projections are weighted based on their

ability to reproduce the past climate. These issues are noted above and in the following

subsections.

2.6.6 Challenges in Interpreting Multi-Model Projections

It is tempting to infer more from ensemble results as outcomes that are not simulated

are similarly plausible (Parker, 2010a). Since uncertainty in multi-model or PPEs is ex-

pected to widen with model development, increased physical realism (Stainforthet al.,
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2007a;b) and incorporation of additional processes or methods (Zhanget al., 2011), cur-

rent ensembles provides a lower bound on the maximum range of uncertainty (Stainforth

et al., 2007a), which may be constrained by the methods used to assess a model’s ability

to inform us about real-world variables (Stainforthet al., 2007b).

Therefore, when constructing and interpreting MME climate results (in the form of

climate change probability distributions or averages and measures of variability across

models), a number of issues need to be considered (Stainforthet al., 2007a), as discussed

below.

2.6.7 Interpreting Multi-Model Ensemble (MME) Results

The shape, spread and central tendency of estimated climate projection density func-

tions (e.g. global moisture budget and dry zone extension; Liepert and Previdi, 2012) from

a MME is governed by the methodology applied (Brekkeet al., 2008). This includes the

number and characteristics of the forcing scenarios, ICU, base model and the parameter-

isation explored, as well as the concerned timescale. The probability estimated may not

relate to the probability of real-world behaviour, thus not providing the decision-relevant

distributions desired (Stainforthet al., 2007a; Tebaldi and Knutti, 2007; Vidal and Wade,

2009; Knuttiet al., 2010; Xuet al., 2011). While an ensemble mean may outperform

single model results, it does not appropriately generalise climate change impact, may

demonstrate characteristics (some may be physically implausible) that are not reflected in

any single model, and may cause a loss of signal that has barely been addressed (Knutti

et al., 2010). Uncertainty is often not adequately characterised (e.g. by standard deviation)

due to the same biases in groups of GCMs (Chiewet al., 2009; see Section 2.6.9), e.g. as

in projected changes in summer runoff and indicators of low flows (Arnell, 2011). The

assumed normal distribution of MME may not be true in projected hydrological changes,

which are not even necessarily uni-modal (Arnell, 2011). The commonly reported mean

annual river flows may mask the magnitude of uncertainty in flows of most importance to

water managers (Xuet al., 2011).

PDFs can be misleading as they imply much greater confidence than the underlying

assumptions justify with the unknown reliability of these probabilistic projections (Parker,

2010a). Meaningful PDFs for future climate cannot be constructed by simply combining
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MMEs/PPEs results due to the inability to weight models and to define the space of possi-

ble models (Stainforthet al., 2007a). PDFs therefore should be interpreted cautiously —

they indicate what outcomes may be more plausible than others, and are a way to commu-

nicate uncertainty, rather than as a strict mathematical representation of it (Knutti, 2008).

The choice between subjective and objective (Bergeret al., 2001; Berger, 2006) Bayesian

approaches for constructing PDFs introduces further statistical assumptions (Foley, 2010),

resulting in a different risk-based decision (Newet al., 2007). PDFs are also conditional

on the model, observational constraints (Knuttiet al., 2010) and the sources of uncertain-

ties considered (Knutti, 2008). Therefore, blind use of a single generation of probabilistic

impact information could lead to mal-adaptation (Newet al., 2007).

Nevertheless, ensembles are valuable for understanding present-day limitations (Stain-

forth et al., 2007a). Uncertainty in climate response can be presented as histograms of

change, as empirical distribution functions fitted to the distributions of change, or as in-

termediate ranges (Arnell, 2011). Histograms reveal all the information, but similarities

in the climate model representations and the model sample used, rather than clustering

in potential physical responses, may produce artificial clustering. Empirical distribution

functions can be seen as simply smoothed histograms, and clustering in scenarios will

manifest itself in “steps” in the empirical distribution function. An intermediate range

(e.g. the 10–90% or inter-quantile ranges) better represent the spread of possible out-

comes as using extremes (highest to lowest) may be misleading if “outliers” are present;

the use of several quantiles provides information on the distribution of responses within

the range.

2.6.8 The “Ensemble of Opportunity”

“Ensembles of opportunity” refers to multi-model datasets, such as the re-

gional climate change simulations from the CORDEX (Coordinated Regional Cli-

mate Downscaling Experiment) initiative of the World Climate Research Program

(http://www.meteo.unican.es/en/projects/CORDEX). MMEs are created by those willing

to contribute, and neither systematically nor randomly (Tebaldi and Knutti, 2007). The

models neither span the full range of likely behaviour nor uncertainty due to the small



38 Literature Review

number of models involved (Tebaldi and Knutti, 2007; Knutti, 2008). Subsequent ver-

sions of a model usually build on previous versions, suggesting a process of convergence

(Tebaldi and Knutti, 2007). Moreover, the likelihoods of impacts may change over time

with more data and resources or an alternative research design (Newet al., 2007).

2.6.9 Inter-Model Dependencies and Common Biases

The use of MMEs to obtain uncertainty estimates or PDFs (that rely on assumptions,

except, for example, some weighting schemes) may assume that all GCM projections are

equally credible and independent (Knutti, 2008; Arnell, 2011), and models can be aver-

aged (i.e. one model, one vote). The idea of uncertainty decreases with more models relies

on the fundamental assumption that random errors tend to cancel with independent models

(Tebaldi and Knutti, 2007; Knuttiet al., 2010). While random errors may cancel, system-

atic errors associated with limited knowledge and misrepresented/unresolved processes

will not improve with more models of similar quality (Tebaldi and Knutti, 2007). Models

have similar resolution and the same theoretical arguments for their parameterisations;

their inter-dependence (e.g. shared grids and numerical calculations) imply correlated er-

rors; Stainforthet al., 2007a; Tebaldi and Knutti, 2007). Provided that models are based

on the same knowledge, make similar assumptions, or share parts of the code of existing

models, our confidence should therefore not be infinitely improved by large number of

models (Knuttiet al., 2010) and that we should not be over-optimistic about consensus

estimates (Stainforthet al., 2007a; Tebaldi and Knutti, 2007).

2.6.10 Lack of Verification, Model Tuning and Evaluation

The equations, parameterisations and assumptions built into a model are assumed to

be extrapolated beyond the observed climate regime of where they are evaluated (Knutti,

2008). Hydrological models calibrated over the historical period are commonly assumed

to be valid for use under a perturbed climate (Vazeet al., 2010). Model accuracy (evalua-

tion) is commonly measured by the ability to replicate observed climate variability and the

terrestrial water cycle, for instance (Tebaldi and Knutti, 2007). Typical simulation biases

relate to errors in the large-scale circulation in the GCMs — up to 3.4◦C for temperature

and 100% for precipitation (Kjellströmet al., 2011). How models should be assessed
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remains questionable (Blenkinsop and Fowler, 2007a).

Objective methodologies for climate model tuning and model evaluation (often based

on expert judgement and/or not documented; Knuttiet al., 2010) are yet to be devel-

oped (Tebaldi and Knutti, 2007). Models may use the same set of observations for de-

riving parameterisations, tuning and evaluation (Tebaldi and Knutti, 2007), hence a risk

of double-counting information, overconfidence, or circular logic (Knuttiet al., 2010).

Ideally, independent datasets should be used for model evaluation (Tebaldi and Knutti,

2007). Also, observations and reanalysis datasets contain biases (Tebaldi and Knutti,

2007; Knuttiet al., 2010). Model calibration (Section 2.6.4.2) may change parameters

unrelated to the problem as not all processes are included in models (Tebaldi and Knutti,

2007). Bias correction in climate projections may merely represent an ad hoc curve-

fitting exercise of convenience, rather than a result of impeccable physically-based theory

(Kundzewicz and Stakhiv, 2010); uncertainty in bias-corrected GCM outputs may be of

the same order of magnitude as those related to GCM or GHM choice (Hagemannet al.,

2011).

Agreement across climate models and with observations suggest that models may be

an empirically adequate rather than accurate representation of the processes governing

the observed climate system behaviour (Knutti, 2008). While models lacking key mech-

anisms that are indispensable for meaningful climate projections can be omitted from an

ensemble (Kundzewicz and Stakhiv, 2010), discounting a model based on inconsistent

results may be unwise as models were designed based on an incomplete understanding of

the climate system (Foley, 2010).

There appears to be an argument for constraining poorly performing models based on

present-day skill (Foley, 2010), e.g. Noharaet al. (2006) used a weighted ensemble mean

(WEM) to reduce model bias and uncertainty. Weighting models based on observations

(Knutti et al., 2010) is difficult and results depend on the choice of metric/criteria for

defining model performance (Blenkinsop and Fowler, 2007a; Tebaldi and Knutti, 2007).

Arnell (2011) described the practical and conceptual challenges in “optimum weighting”

different model projections and to cull “poorly-performing” models from the analysis.

While optimum weighting can in principle reduce projection errors, it requires accurate

knowledge of the single model skill, the relative contributions of the joint model error and
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unpredictable noise (Kundzewicz and Stakhiv, 2010). Multiple diagnostics and metrics of

performance are needed as weights for future projections may differ from those optimal

for present-day climate (Tebaldi and Knutti, 2007). Studies have shown, however, that

weighting/culling has relatively little effect on the estimated range of climate change im-

pacts (Brekkeet al., 2008; Chiewet al., 2009; Weigelet al., 2010), due to an absence of

correlation between observed quantities and the models’ future projections (Knuttiet al.,

2010). Weighted combinations of results may not provide decision-relevant probabilities

(Stainforthet al., 2007a).

Furthermore, model convergence or present-day skill does not guarantee equal legiti-

macy in future climates (Charleset al., 1999; Stainforthet al., 2007a; Foley, 2010; Knutti

et al., 2010) since long-term climate projections cannot be validated directly through ob-

servations (Tebaldi and Knutti, 2007; Knutti, 2008).

2.6.11 Uncertainties in Downscaling

Downscaling refines, spatially and/or temporally, coarse GCM output to scales more

useful to decision makers, and improves physical realism at sub-grid scale (Wilby and

Wigley, 1997; Goodesset al., 2003a; Wilby, 2010). Downscaling may be dynamical or

statistical (Hewitson and Crane, 1996). Dynamical downscaling involves nesting a finer-

scale regional climate model (RCM) within the coarser GCM (STARDEX, 2005) that

defines the (time-varying) boundary conditions (Wilby and Wigley, 1997; Kundzewicz

and Stakhiv, 2010). Statistical downscaling is used either to directly downscale GCM in-

formation or to downscale further from RCM simulations (Paethet al., 2011). It assumes

stationarity (Charleset al., 1999) as it involves applying statistical relationships between

the large and smaller-scale, identified in the observations (i.e. empirical), to GCM output

(STARDEX, 2005) in a targeted area, using the predictor fields from GCMs for scenarios

construction (Schmidliet al., 2007).

As demonstrated in the PRUDENCE project (Christensenet al., 2007) and other stud-

ies, different methodologies have varying strengths and weaknesses (Hewitson and Crane,

1996; Woodet al., 2004; Fowler and Wilby, 2007). Regional simulations also inherent

the limitations from the parent GCM(s) (CCSP, 2008). Skill varies temporally and spa-

tially (Mearnset al., 1999; Schmidliet al., 2007; Paethet al., 2011; Stollet al., 2011;
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Teutschbeinet al., 2011), and with variables (Murphy, 1999; 2000; Haylocket al., 2006;

Iizumi et al., 2011). Considering additional finer scale-processes increases uncertainty

(Rowell, 2006), particularly regarding extreme events (Vicente-Serranoet al., 2004), and

may not improve confidence (Hewitson and Crane, 2006; Zhanget al., 2011), e.g. RCMs

cannot capture all the important physical processes responsible for precipitation despite

their finer resolution (Blenkinsop and Fowler, 2007a; Maraunet al., 2010). As no single

downscaling model is more superior (STARDEX, 2005; Haylocket al., 2006), a multi-

model approach is recommended (Chenet al., 2011; Zhanget al., 2011). It is worth noting

that, although skills vary amongst the various downscaling techniques, studies have shown

that GCMs tend to be the largest source of uncertainty.

2.6.12 Uncertainties in Natural Climate Variability

Even without anthropogenic forcings, natural climate variations (both in terms of

mean and extremes) are present and can alter climate on a range of timescales (Stuiver

et al., 1995; Overpecket al., 1997; Foley, 2010). This variability can be internally-

generated or externally-forced, as described below. Annual to multi-decadal natural vari-

ability may contribute significant uncertainty (Kendonet al., 2008) especially in the near-

future (Kjellströmet al., 2011), e.g. for mean European runoff (Hulmeet al., 1999).

2.6.12.1 Internal variability

Internal interactions between components of the climate system produce internal vari-

ability, both in terms of mean and extremes (Hegerlet al., 2007). It includes processes

intrinsic to the atmosphere (annular modes of circulation variability in mid- and high-

latitudes), the ocean (Bradley, 2000), and the coupled ocean-atmosphere system, e.g.

ENSO in the tropics, (Deseret al., 2012). It is more dominant in seasonal than annual

results and earlier in the 21st century, and less important when climate changes are av-

eraged over larger areas (Räisänen, 2001). Internal variability accounts for at least half

of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3

multi-model ensemble (Deseret al., 2012).
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2.6.12.2 External variability

External forcings refer to solar variability and stratospheric aerosol from volcanic

eruptions, the primary forcings of decadal-to-centennial climate variations during the pre-

industrial era (Shindellet al., 2003; Foley, 2010). Solar variability may have affected the

earth’s climate on decadal-centennial timescales (Kelly and Wigley, 1992; Crowley and

Kim, 1996; Haigh, 1999; Bondet al., 2001), possibly via global cloud coverage (Svens-

mark and Friis-Christensen, 1997; although Lockwood (2012) provided an alterative view

on this), such as during the Maunder Minimum (1645–1715; Leanet al., 1995; Shindell

et al., 2001).

Volcanic forcing is important for climate change on both interannual, regional, and

long-term global scales (Shindellet al., 2003). For instance, the eruptions of Toba (Suma-

tra) 73,500 years ago (Rampino and Self, 1992) and more recently, Mount Pinatubo in

1991 (Hansenet al., 1992; Kellyet al., 1996; Hansenet al., 1997), amongst others, gener-

ated aerosols that warm the stratosphere and cool the surface globally, causing a tendency

for regional surface cooling during the subsequent years (Robock, 2000).

The relative contribution of external natural variability are greatest early in the century

(Stott and Kettleborough, 2002), and may be intrinsic and irreducible (Knutti, 2008).

2.6.13 Discussion

Model simulations have a number of limitations. GCMs generally reproduce the over-

all and broad geographic (e.g. spatial mean annual) patterns of observed climate trends

(Arnell, 2004a; Milly et al., 2005). However, models may accurately simulate one met-

ric but not another (Brekkeet al., 2008; Foley, 2010). Projected precipitation changes,

which are important for hydrological modelling (Zhanget al., 2011), are less spatially co-

herent (Alexanderet al., 2006; Sheffield and Wood, 2008b), weaker and more uncertain

than temperature (Tebaldiet al., 2006; Plantonet al., 2008; Bureau of Reclamation, 2011;

Zhanget al., 2011; Lavaysseet al., 2012). Models have difficulties simulating precipita-

tion response to large-scale climate variability (e.g. ECHAM5; Hagemannet al., 2006),

and river flows (Toddet al., 2011; Xuet al., 2011; Gudmundssonet al., 2012a). Model

skill may also vary regionally (Burkeet al., 2006; Alexander and Arblaster, 2009; Foley,

2010), seasonally (Jacobet al., 2007; Chiewet al., 2009; Grimm, 2010) and temporally
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(Blenkinsop and Fowler, 2007b), and with horizontal (Blenkinsop and Fowler, 2007a) or

vertical (Hagemannet al., 2006) resolution. Simulated magnitude (and sometimes direc-

tion) of change often diverges.

Models that reproduce the mean climate may not necessarily perform well at replicat-

ing the observed climate extremes (McCrary and Randall, 2010; Williamset al., 2010),

e.g. dry days (Tebaldiet al., 2006), and their associated impacts such as drought. The spa-

tial distribution of model errors for drought indices differ from those for simulated mean

precipitation (Blenkinsop and Fowler, 2007a), possibly due to natural variability, model

errors in simulating large-scale flows and poorly represented regional processes and feed-

backs (Burkeet al., 2006). Projections for future extreme events (e.g. Q95 flow) are more

uncertain than for the mean (e.g. annual flow) (Xuet al., 2011), e.g. Sheffield and Wood

(2008b) found large model spread and overestimated drought duration and frequency.

A climate model that reasonably simulates present-day regional precipitation variabil-

ity may produce less uncertain future drought projections (Burke, 2011), however, this

also depends on the models’ ability to simulate tropical SSTs (Dai, 2011) (see Section

2.5). Haddelandet al. (2011) assessed the results simulated by six land surface models

and five global hydrological models (GHMs) that participated in the Water Model In-

tercomparison Project (WaterMIP). They found evaporation and runoff results diverged

mainly due to model differences, with the largest absolute (relative) runoff differences in

the tropics (arid regions).

2.7 Uncertainties in Hydrological Modelling

In addition to uncertainties related to climate modelling, those arising from hydro-

logical modelling are also important. In recent years, model intercomparison studies that

consider the global water balance have emerged. For instance, Haddelandet al. (2011)

assessed the results simulated by six land surface models (LSMs) and five global hydro-

logical models (GHMs) from the Water Model Intercomparison Project (WaterMIP). They

found evaporation and runoff results diverged mainly due to model differences, with the

largest absolute (relative) runoff differences in the tropics (arid regions). Gudmundsson

et al. (2012b) assessed the ability of nine large-scale hydrological models in capturing

the mean annual runoff cycle based on observed runoff from a large number of small,
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near-natural catchments in Europe. Although they found large differences in model per-

formance, the ensemble mean (mean of all model simulations) yielded rather robust pre-

dictions; also a relatively good regional average performance was found despite some

large local uncertainties. However, model performance was poor in cold regions, due to

shortcomings in simulating the timing of snow accumulation and melt. Prudhommeet al.

(2011) assessed the ability of three GHMs from the WaterMIP (Joint U.K. Land Environ-

ment Simulator (JULES), Water Global Assessment and Prognosis (WaterGAP), and Max

Planck Institute Hydrological Model (MPI-HM)) in reproducing large-scale hydrological

extremes. They found that all models can broadly reproduce the spatio-temporal evolu-

tion of historical droughts (based on the regional deficiency index; RDI) and high flows

(regional flood index; RFI) in Europe to varying degrees. Van Loonet al. (2012) found

that most drought propagation processes in contrasting catchments in Europe are reason-

ably well reproduced by the ensemble mean of ten large-scale LSMs and GHMs that

participated in the model intercomparison project of WATCH (WaterMIP). Nonetheless,

hydrological drought simulation at large scales remains highly uncertain, especially in

catchments with cold and semi-arid climates and catchments with large storage in aquifers

or lakes.

Relatively few studies have applied multiple impact models in climate change impact

studies. Hagemannet al. (2012), for instance, systematically assessed the hydrological

response to climate change and project the future global water availability using three

global climate and eight hydrological models. Their results demonstrated larger spread

of the impacts than that of the climate models in some regions, primarily cased by the

different representations of hydrological processes (e.g. evapotranspiration) in the GHMs.

These studies indicate that, similar to climate projections, climate change impact stud-

ies should not be based on the output of single impact models (Hagemannet al., 2012).

Specifically in relation to drought simulation using large-scale models, there is a need

for better representation of evapotranspiration, snow accumulation and melt, storage and

the parametrisation of storage processes (e.g. land and aquifer characteristics) (Van Loon

et al., 2012).
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2.8 Challenges in Projecting Future Drought Conditions

Droughts are one of the most damaging natural hazards in human, environmental

and economic terms. Anthropogenic climate change has and will continue to alter their

characteristics. A better understanding of potential future drought characteristics and the

uncertainties associated with the various methodologies to derive them are vital for iden-

tifying effective measures to manage drought risks and any direct/indirect impacts. How-

ever, confidence in drought projections is constrained by definitional issues (see Section

2.2), lack of observational data and the limitations of climate models (IPCC, 2012). Some

of the uncertainties associated with drought identification and quantification are presented

in Section 2.2, those related to climate modelling are discussed in Section 2.7. Hence, it

is important to characterise the uncertainties associated with future drought simulations

(Vasiliadeset al., 2009).

Projecting future climate remains very challenging. Present-day climate and its natu-

ral variability, climate change, and the sensitivity of drought metrics to these changes all

define future drought changes (Burke, 2011). The strength of the change (signal) against

the background of natural variability (noise) governs the detectability of any changes, and

hence their statistical significance (Sheffield and Wood, 2008b). Future shifts in modes of

climate variability (e.g. ENSO; Collins, 2004; Dore, 2005) remains uncertain. Moreover,

climate change effects may not be felt in the near future at regional scales (Sheffield and

Wood, 2008b).

Understanding and quantifying climate change impacts (natural and/or anthropogenic)

on the hydrological cycle and water resources requires robust modelling which considers

the underlying physical mechanisms that drive the regional hydroclimatology (Kiem and

Verdon-Kidd, 2010). Despite the limitations discussed in Section 2.7, GCMs are valuable

tools for studying climate change and the related impacts as each simulation presents a

“what-if” scenario (Stainforthet al., 2007a). However, GCMs were originally constructed

for assessing the global climate system response to varying emissions (Wilby, 2010) and

facilitating mitigation efforts, rather than informing adaptation-type analysis (Kundzewicz

and Stakhiv, 2010). They also differ in their design and outcomes. GCMs (especially their

representation of changes in the large-scale circulation) often dominate other sources of

uncertainties in climate change impacts on hydrological change and water resources, e.g.
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emission scenarios or hydrological model parameterisation (Arnell, 2004a; Grahamet al.,

2007; Vidal and Wade, 2009; Xuet al., 2011; Arnell, 2011; Goslinget al., 2011b). Since

each model has its own set of strengths and weaknesses (Knutti, 2008), no one model is

particularly good or bad (Alexander and Arblaster, 2009), and a multi-model approach is

desirable.

To evaluate the robustness of projections of European drought characteristics under

climate change, the effects of applying different emission scenarios and GCMs are ex-

plored in this thesis (particularly Chapters 4 and 5). In most cases, however, resource and

financial constraints have prevented the running of large ensembles of GCM experiments.

The simple climate model MAGICC6 thus offers a practical solution as it enables em-

ulation of a wide range of emission scenarios and GCMs. As GCM simulations do not

span all the emission scenarios, ClimGen is used to emulate GCM simulations beyond

the available GCM ensemble by using the pattern-scaling approach. Since the spatial res-

olution varies with the GCM, ClimGen is also used to interpolate the GCM pattern at

the original resolution onto a 0.5◦×0.5◦ grid. MAGICC6 and ClimGen are described in

Chapter 3. Uncertainties associated with the different types and definitions of drought are

examined in Chapter 5.



Chapter 3

General Methodology

This chapter presents the general methodology, including the modelling framework,

study area and drought identification, applicable to Chapters 4–7. More specific details

are elaborated in the individual sections.

3.1 MAGICC6

MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) is

a simple/reduced complexity coupled gas-cycle/climate model (Wigley and Raper, 1987;

1992). It has been used in the previous IPCC Assessment Reports to produce projections

of future global-mean temperature and sea level rise, e.g. the 4.2 version was used in the

IPCC Fourth Assessment Report (AR4), Working Group 1.

The climate model in MAGICC is an upwelling-diffusion, energy-balance model that

produces global- and hemispheric-mean temperature output and results for oceanic ther-

mal expansion. MAGICC is based on a simple global-mean energy balance approxima-

tion:

∆Q = λ∆T + F (3.1)

where∆Q is the global-mean radiative forcing at the top of the troposphere. It is

the balance between the climate system heat content change (F ) and outgoing long-wave

radiative heat loss to space (λ∆T ). This outgoing energy flux is a linear function of

surface temperature perturbation (∆T ) and the global-mean feedback factor (λ), which
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itself is inversely proportional to the climate sensitivity.

Figure 3.1: The schematic structure of MAGICC’s upwelling-diffusion energy balance module
with land and ocean boxes in each hemisphere. The processes for heat transport in the ocean
are deepwater formation, upwelling, diffusion, and heat exchange between the hemispheres. Not
shown is the entrainment and the vertically depth-dependent area of the ocean layers. Source:
Figure A1 in Meinshausenet al. (2011a).

MAGICC’s atmosphere consists of four boxes (one over land and one over ocean

for each hemisphere) with zero heat capacity (Figure 3.1). The hemispherically averaged

upwelling-diffusion ocean is coupled to an atmosphere layer. It determines the air temper-

ature over land and ocean separately, by considering a radiative energy-balance combined

with heat transfers between the land and ocean and between the two hemispheres (the

latter occurring only between the ocean boxes of the hemispheres) and ocean heat up-

take. Vertical diffusion and advection drive the heat exchange between the oceanic layers.

MAGICC also has a globally averaged carbon cycle model. MAGICC6 is an updated ver-

sion of MAGICC. MAGICC6 and its calibration to higher complexity models are detailed

in Meinshausenet al.(2011a) and Meinshausenet al.(2011b). Therefore it is only briefly

described here.

MAGICC encompasses a suite of coupled gas-cycle, climate and ice-melt models that

account for feedbacks between the carbon cycle and the climate. The radiative forcing,

climate sensitivity and ocean heat uptake efficiency determine the CO2 concentrations



3.2 ClimGen 49

and global-mean temperature change that result from a given timeseries of GHG emis-

sions. MAGICC6 has enhanced representation of time-varying climate sensitivities, car-

bon cycle feedbacks, aerosol forcings and ocean heat uptake characteristics. The internal

consistency of MAGICC, while in its coupled mode, implies that the climate model re-

sponse drives the climate feedbacks on the carbon cycle, thus CO2 concentrations. Model

component results can be uncoupled separately for consistent analysis of the joint re-

sponse and feedback of different combinations of high complexity carbon cycle models

and GCMs. MAGICC6 has therefore been calibrated to emulate the World Climate Re-

search Programme’s (WCRP’s) phase 3 of the Coupled Model Intercomparison Project

(CMIP3; Meehlet al., 2007) GCMs and the Coupled Carbon Cycle Climate Model In-

tercomparison Project (C4MIP; Huntingfordet al., 2009) carbon cycle model responses

with considerable accuracy.

MAGICC6 has been used in this thesis for four reasons (Meinshausenet al., 2011a).

Firstly, MAGICC6 can emulate GCM results, which avoids the computational cost of

running large ensembles with GCMs. Secondly, it can capture the structural uncertainties

associated with parametrisation across the range of CMIP3 and C4MIP models. Thirdly,

it can help isolate the effects of various components, e.g. different forcings or climate

responses. Lastly, MAGICC6 can be uncoupled to examine the effects of different com-

binations of forcings and more complex models.

MAGICC6 converts the CO2 concentrations from an emission scenario to CO2 emis-

sions that drive a carbon cycle model. The global-mean surface temperature changes

simulated by MAGICC6 for the 21st century were used as inputs in ClimGen (Section

3.2).

3.2 ClimGen

ClimGen version 1-02 (hereafter, ClimGen) has been applied, as a stand-alone appli-

cation, as a climate scenario generator. It is detailed in Osborn (2009) as an extension

to the approach described by Mitchellet al. (2004). It outputs monthly climate datasets

and scenarios for the observed (1901–2005) climate, for both CRU TS2.1 (Mitchell and

Jones, 2005) and CRU TS3.10 (Harriset al., 2013; as used in this thesis), as well as fu-

ture (2001–2100) climate scenarios (Mitchellet al., 2004), for the entire terrestrial land
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surface except Antarctica. ClimGen currently produces eight climate variables: mean,

maximum and minimum temperature (thus information for diurnal temperature range),

precipitation, vapour pressure, cloud cover and wet day frequency, at monthly, seasonal,

or annual time-scale, or averaged over a specified time slice. Monthly precipitation, and

temperature (for the hydrological drought analysis), are the primarily variables considered

in this thesis.

ClimGen is based on the pattern scaling method (Santeret al., 1990; Goodesset al.,

2003a; Mitchell, 2003), which separates the global-mean and spatial-pattern components

of future climate change, and in some cases, the latter can be further distinguished into

GHG and aerosol components. GCM simulations provide the geographical, seasonal and

multi-variable structure of change for most scenarios of future climate change. ClimGen

contains a database of standardised climate change patterns from 22 CMIP3 GCMs. For

two time-periods, e.g. 2071–2100 and 1961–1990, it calculates the difference between

the future 30-year average climate for 2071–2100, and the 1961–1990 mean climate, both

simulated by the GCM and then divide by the global-mean warming for the particular cli-

mate change experiment between 2071–2100 and 1961–1990. The resultant standardised

climate change pattern (that consists of GHG and aerosol components)P is expressed

per◦C global warming. The patternP for regional temperature change, per degree C, for

GCM g, scenarios, cell i, and monthm, is given by:

Pgsim =
Tgsim(2071− 2100)− Tgsim(1961− 1990)

Tglobegs(2071− 2100)− Tglobegs(1961− 1990)
(3.2)

Following the recommendations of Mitchell (2003), the CMIP3 GCM patterns in

ClimGen are derived using all running 30-year mean periods and linear regression be-

tween these and the global-mean temperatures (instead of the simpler difference equa-

tion (3.2)). To strengthen the signal to noise ratio (where signal is the response to the

externally-forced global warming and noise is the internal variability in an individual

model simulation), all ensemble members from simulations under the SRES A2 and A1B

were pooled together for each GCM. Global-mean temperature change from MAGICC6

(Section 3.1) for a given year, emissions scenario and set of climate model parameters is

then used to re-scale these patternsP to generate a space-time pattern of changing mean

climate that reflects a particular emission scenario.
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ClimGen employs distance-weighted averaging to interpolate each of the patterns of

standardised coefficients obtained from each GCM simulation at the original resolution

onto a 0.5◦×0.5◦ grid. Any changes relative to the baseline would be attributable to

climate change and not to internal climate variability as ClimGen uses the same sequence

of observed variability to generate each series of data, whether for 1951–2000, 2001–2050

or 2051–2100.

A climate change signal is combined with interannual variability and a climatolog-

ical mean from the observational archive to generate future climates. Future scenarios

can be generated by theadditive (or “absolute changes”) method, where GCM-derived

changes in mean climate are added to the observations, i.e. interannual variability re-

mains unchanged in the future. For precipitation, themultiplicativemethod (or “relative

changes”) is also an option (“Option 3” in ClimGen; as applied in Chapter 6). Perturbed

mean precipitation is obtained by multiplying the observations by the GCM-derived mean

precipitation changes. This requires the pattern-scaled GCM precipitation change to be

expressed as a fractional change from present-day precipitation (e.g. a fractional change

of 1.2 implies a 20% increase) rather than as an absolute change (e.g. an increase of 20

mm/month). The magnitude of mean precipitation change varies exponentially with the

global-mean temperature change. The exponential function, calibrated using a start and

end value provided by GCM data, avoids zero precipitation being generated as the rate of

change decelerates with warming in regions of decrease. Interannual variability is modi-

fied in such a way that the coefficient of variation (CV; standard deviation:mean ratio) is

roughly constant. Therefore, for themultiplicativemethod (where only the mean precipi-

tation changes as CV is kept constant), the patternP for regional temperature change, per

degree C, for GCMg, scenarios, cell i, monthm and yeary, is given by:

Pgsimy = ōimo′imye
Pgim∆Tgsy (3.3)

whereōim is the 1961–1990 observed mean precipitation for celli and monthm, o′imy

is the observed precipitation anomaly (relative to the mean precipitation) for celli, month

m and yeary, Pgim is the standardised climate change pattern for GCMg for cell i and

monthm, and∆Tgsy is the global-mean temperature change under scenarios for GCM g

in yeary.
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In regions where the temporal distribution of precipitation becomes more skewed (i.e.

with increased low or high extremes, or both) or less skewed (i.e. with decreased low

and/or high extremes), interannual variability may change independently of mean precip-

itation, and the “Osborn-Gamma” method (“Option 4” in ClimGen) is applied, as in this

thesis. It uses the Gamma shape method (described by Goodesset al., 2003b) where the

observed interannual variability is perturbed so that it becomes consistent with the GCM-

derived perturbed precipitation probability distributions. It is parameterised via the shape

parameter,α, of the gamma distribution, which measures the distribution skewness. Sim-

ilar to the multiplicative method, altered mean precipitation are derived the same way; the

changes in mean precipitation and precipitation distribution shape are linear (exponential)

functions of global-mean temperature in regions where they increase (decrease).α is de-

rived from the GCM simulations and then scaled by the global-mean temperature change

in the same way as the changes in mean climate are pattern-scaled. Hence, the projected

gamma shape parameterα, per degree C, for GCMg, scenarios, cell i, yeary and month

m, is given by Equations 3.4 (for areas with increasing precipitation) and 3.5 (for areas

with decreasing precipitation):

αgsimy = ᾱim(1 + Sgim∆Tgsy) (3.4)

αgsimy = ᾱimeSgim∆Tgsy (3.5)

whereᾱim is the shape parameter of the 1951–2000 observed precipitation calculation

period for celli and monthm, Sgim is the standardised pattern of change in gamma shape

parameter pre-calculated from GCMg for cell i and monthm (c.f. Equation 3.2). The

gamma shape parameter is fitted to monthly precipitation values after they have been

expressed as fractional deviations from the 30-year smoothed precipitation (i.e. they are

divided by the latter). Thus, the gradual changes in mean precipitation are removed.

Similar to Equation 3.3, the patternP for regional temperature change for theOsborn-

Gammamethod (where both precipitation mean and variability change), per degree C, for

GCM g, scenarios, cell i, monthm and yeary, is given by Equations 3.6 (for areas with

increasing precipitation) and 3.7 (for areas with decreasing precipitation):
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Pgsimy = ōimõimy(1 + Pgim∆Tgsy) (3.6)

Pgsimy = ōimõimye
Pgim∆Tgsy (3.7)

where õimy is the observed precipitation anomaly for celli, monthm and yeary

after transformation so that its gamma shape parameter is modified to match the projected

shape parameter.

ClimGen is constrained by pattern scaling, which assumes a linear (or exponential)

relationship between local climate change and global-mean temperature change, that the

spatial pattern of change would remain over time, and that all GHGs have the same climate

responses (Goodesset al., 2003a). Also, future changes in aerosols are not represented as

most emission scenarios have low aerosol emissions due to clean air assumptions.

3.3 Global Hydrological Model: Mac-PDM.09

The Macro-scale–Probability-Distributed Moisture model (Mac-PDM), a global hy-

drological model (GHM), is a grid-based conceptual water-balance accounting model.

Evolution of the various water balance components is calculated at a daily time step. The

first version was described in Arnell (1999a) and a revised version was used in Arnell

(2003a). Here, the latest version, Mac-PDM.09, which is detailed in Gosling and Arnell

(2011) and briefly outlined below, have been used.

Mac-PDM.09 can be forced with monthly or daily climate data. The inputs used for

this study were 50-year monthly climate data from ClimGen (see Section 3.2). These

include monthly timeseries of temperature and precipitation, along with long-term mean

(present or future) monthly averages of temperature, precipitation, number of wet days,

vapour pressure, cloud cover (converted internally to net radiation) and baseline (1961–

1990) windspeed (the latter assumed to remain unchanged in the future). For the snow

component, Mac-PDM.09 interpolates monthly temperature data to the daily time step and

adds a random component to the rather smooth temperature series; a normal distribution

with a standard deviation of 2◦C is assumed for the departures from the smoothed data.
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Mac-PDM.09 stochastically calculates daily precipitation for each cell using monthly pre-

cipitation data and wet-day frequency, and the hydrological output is calculated from the

mean of 20 repetitions of a model run. Daily precipitation intensity is assumed to follow

an exponential distribution based on the gridded observed coefficient of variation (CV) of

daily rainfall.

The water balance of each cell (either regular or catchment shaped) is calculated inde-

pendently, hence no routing of runoff between grid cells. This is considered appropriate

as the aim is to examine the spatial pattern of climate change impacts, rather than to

estimate runoff at specific locations (Arnell, 2003a). Precipitation, which is equally dis-

tributed across the cell, falls as snow if temperature falls below a defined threshold; if

temperature rises above another threshold, snow melts at a constant rate per degree per

day. Precipitation that exceeds interception capacity falls to the ground. Information on

soil and vegetation characteristics is obtained from spatial datasets. The type of land

cover (i.e. vegetation type) determines the amount of precipitation intercepted, potential

evaporation (calculated using the Penman-Monteith method), and soil moisture storage

capacity through soil texture and root depth. Actual evaporation is determined by po-

tential evaporation and soil moisture content (Arnell, 1999a). When water reaches the

ground, saturated soil generates “quickflow” (but not necessarily overland flow) whereas

unsaturated soil allows infiltration. Evaporation and drainage to groundwater (which is

not stored) and stream (“slowflow”) deplete soil moisture. As soil moisture storage ca-

pacity varies statistically across the cell/catchment, quickflow can be generated from the

saturated proportion of cell area. Quickflow and slowflow are then routed separately to

the outlet of the cell to create daily river runoff, which is “indicative” and monthly runoff

is a much more credible output. All runoff generated within the grid cell is assumed to

reach the cell outlet.

Key caveats of Mac-PDM.09 include the exclusion of transmission losses along the

river network or evaporation of infiltrated overland flow, which could overestimate runoff

and underestimate the percentage effect of climate change on the amount of water in

rivers in dry regions (Arnell, 2003a), and human interventions. In addition, Mac-PDM.09

does not incorporate the effects of seasonal freezing and thawing of permafrost, or glacial

melt, therefore underestimates future runoff in catchments below melting glaciers (Arnell,
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2003a).

3.4 Emission Scenarios

This thesis has examined the effects of a range of emission scenarios including the

IPCC SRES scenarios and RCPs, as outlined below.

3.4.1 IPCC SRES Scenarios

The Intergovernmental Panel on Climate Change (IPCC)’s Special Report on Emis-

sion Scenarios (SRES; Nakicenovich and Swart, 2000) has detailed the SRES scenarios.

Forty non-mitigation possible future world states were developed and structured into six

subgroups based on plausible common storylines. The SRES scenarios are presented as

four equally plausible storylines labelled A1, A2, B1 and B2. They represent different

world futures in two dimensions: a focus on economic (the “A” scenarios) or environ-

mental (the “B” scenarios) concerns, and global or regional development patterns. The

characteristics of the four storylines and scenario families are summarised as follows:

• A1: A global and independent world with very rapid economic growth, global pop-

ulation peaks in mid-century and declines thereafter, rapid technological change,

convergence of regions, capacity building, increased social interaction, reduced re-

gion differences in per capita income. The three A1 groups have distinguished

technological change in the energy system: fossil intensive (A1FI), non-fossil fuels

(A1T) or a balance across all sources (A1B).

• A2: A heterogeneous, market-led world with self-reliance and local identities pre-

served, high population growth, regionally oriented economic growth, fragmented

economic and technological development.

• B1: A convergent world with low population growth as A1, transition to service

and information economy, resource productivity improvements, clean and efficient

technology towards global solutions.

• B2: A divergent world with emphasis on local solutions to economic, social, and

environmental sustainability, moderate population growth, intermediate economic

development, less rapid technological change.



56 General Methodology

3.4.2 Representative Concentration Pathways (RCPs)

The Representative Concentration Pathways (RCPs; Mosset al., 2010) represent the

full range of potential future radiative forcing pathways that are considered to be feasible,

which are compatible with the full range of stabilisation, mitigation and baseline emission

scenarios available in the scientific literature. Unlike the SRES scenarios that were de-

veloped sequentially (i.e. from detailed socio-economic storylines which determine GHG

emissions to radiative forcing), the RCPs were developed through the parallel approach,

where important characteristics for scenarios of radiative forcings, such as the level of

radiative forcing in the year 2100, was first identified.

Four individual modeling groups developed four independent pathways for the RCPs

(Table 3.1) using integrated assessment models that combine economics, technology, and

physical processes. The scenarios include a full suite of GHG concentrations, spatially ex-

plicit emissions for pollutant gases and aerosols, and spatially explicit land-use and land-

use change information. The differences between the RCPs may be partly attributable

to differences between models and scenario assumptions (scientific, economic, and tech-

nological), but cannot directly be interpreted as a result of climate policy or particular

socioeconomic developments.

Although the RCPs were not developed to mimic specific SRES scenarios, tempera-

ture projections for RCP8.5, RCP6 and RCP4.5 are similar to those for the SRES A1FI,

B2 and B1 scenarios, respectively. Temperature estimates for the RCPs span a larger range

than for the SRES scenarios, as the former span a large range of stabilisation, mitigation

and non-mitigation pathways while the latter cover only non-mitigation scenarios (Rogelj

et al., 2012).
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Scenario Modelling team / models Characteristics References

RCP8.5 International Institute for Ap-
plies Systems Analysis (IIASA) /
MESSAGE

High GHG concentration levels; increas-
ing GHG emissions over time

Riahiet al.(2007)

RCP6.0 National Institute for Environ-
mental Studies (NIES) / AIM

Stabilisation scenario; total radiative
forcing stabilises after 2100

Fujino et al.
(2006), Hijioka
et al. (2008)

RCP4.5 Pacific Northwest National
Laboratory (PNNL)’s Joint
Global Change Research Institute
(JGCRI) / MiniCAM

Stabilisation scenario; total radiative
forcing stabilises before 2100

Clarke et al.
(2007), Smith and
Wigley (2006),
Wiseet al. (2009)

RCP3-
PD (or
RCP2.6)

Netherlands Environmental As-
sessment Agency (PBL) / IMAGE

Very low GHG concentration levels; ra-
diative forcing level first reaches∼3.1
W/m2 mid-century before returning to
2.6 W/m2 by 2100; GHG emissions (and
indirectly emissions of air pollutants) are
reduced substantially over time

van Vuurenet al.
(2007)

Table 3.1: Representative Concentration Pathways (RCPs)

3.5 Characterising Uncertainty

Figure 3.2: Some of the sources of uncertainty in drought projections. The blue shading highlights
those examined in this thesis, along with their respective Sections (e.g. “5.8” denotes Section
5.8). The “threshold” category indicates whether the threshold used to identify drought conditions
in seasonally-varying or fixed throughout the year. The “event” category indicates whether a
temporary return to wetter conditions is included in a drought or not.

There is no single “best model” for reproducing mean precipitation and drought

statistics across Europe; model skills also vary temporally, even on the catchment scale

(Blenkinsop and Fowler, 2007b). Projections of future climate inevitably contain uncer-

tainty that is typically addressed by using a variety of scenarios to generate a range of
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Emission scenarios Carbon cycle models GCMs

SRES A1FI BERN-CC CCCMA-CGCM3.1(T47)
SRES A1B CLIMBER2-LPJ CNRM-CM3
SRES A1T CSM-1* CSIRO-Mk3.0
SRES A2 FRCGC GFDL-CM2.0
SRES B1 HADCM3LC GFDL-CM2. 1
SRES B2 IPSAL INM-CM3.0
RCP 8.5 LLNL IPSL-CM4
RCP 6 MPI LASG-FGOALS-g1.0
RCP 4.5 UMD MPI-OM-ECHAM5
RCP 3-PD UVic-2.7 MRI-CGCM2.3.2

NASA-GISS-ER
NASA-GISS-EH
NCAR-CCSM3
NCAR-PCM
NIES-MIROC3.2(hires)
NIES-MIROC3.2(medres)
UKMO-HadCM3
UKMO-HadGEM1

Table 3.2: Emission scenarios, carbon cycle models and GCMs used. All ten carbon cycle models
were used in an initial study but results presented in this thesis are only based on CSM-1.

possible outcomes. Using MAGICC6 and ClimGen, Chapters 4 and 5 examine some

of the uncertainties associated with drought projections, specifically those introduced by

climate modelling and the definition of drought, respectively (Figure 3.2).

Modelling uncertainties were assessed by using a range of emission scenarios and

models. A subset of the options shown in Table 3.2 were applied in Chapters 4–7.

It should be noted that although ClimGen can derive climate change patterns from 22

CMIP3 GCMs, MAGICC6 has only been tuned to emulate 18 of them, therefore this thesis

was limited to those listed in Table 3.2. For the same CO2 emissions, different carbon cy-

cle models produce different atmospheric CO2 concentrations and radiative forcings. This

carbon cycle uncertainty is estimated to be∼40% of that of the physical climate properties

(e.g. equilibrium climate sensitivity and global heat capacity; Huntingfordet al., 2009).

However, an initial study (not shown) involving ten carbon cycle models (Table 3.2) in-

dicated that this source represented<5% of total variance that also encompassed GCM

and emission scenario uncertainties, therefore is negligible for the concerned timescale.

Consequently, this thesis has been based on the MAGICC emulation of only one carbon

cycle model, CSM-1, which yields moderate global-mean temperature change.

Since there is no universal definition of drought (Section 2.2), two classifications were

studied: meterorological and hydrological events. Meteorological droughts have been

quantified by the precipitation-only Standardised Precipitation Index (SPI; see Section
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4.2.2). A subset of the climate projections (Table 3.2) were used as input to the global

hydrological model, Mac-PDM.09, to generate runoff data for characterising changes in

hydrological droughts (Chapter 5).

3.6 Timescales and Study Periods

Different timescales may be useful for monitoring different drought classifications

(Vicente-Serrano and López-Moreno, 2005). A 3–6 month drought describes a surface-

water drought, whereas a 6+ month drought represents a water resource drought that

could affect groundwater resources (Fowler and Kilsby, 2004; Blenkinsop and Fowler,

2007a). For meteorological events, SPI timescales of 1–3 (7–10) months better represent

river discharges, e.g. in a mountain hydrological system with intense runoff, high precipi-

tation and quick runoff generation (large reservoir storages) (Vicente-Serrano and López-

Moreno, 2005). Intense spring/summer rainfall deficiencies of 4–9 months can threaten

water supplies in areas dependent on surface water (e.g. parts of northern and southwest

England); notably dry winters may prevent adequate recharge of groundwater resources

(e.g. in eastern/southern England; Marshet al., 2007). SPI timescales of 12+ months

seem not effective in monitoring droughts of any classification in mountainous areas (e.g.

the Aragon River Basin, central Spanish Pyrenees; Vicente-Serrano and López-Moreno,

2005).

Both short (3-month) and long (12-month) droughts were studied here; meteorologi-

cal events were denoted by SPI3 and SPI12, respectively. Prior to SPI computation (for

meteorological drought; Section 4.2.2) or hydrological drought quantification (for hydro-

logical drought; Section 5.3), a 3/12-month lagged moving average of the raw monthly

precipitation/runoff timeseries was derived. This accounts for conditions in the preceding

months, as a drought is a cumulative precipitation/runoff deficit.

Droughts were characterised for the baseline period (1951–2000), and two future pe-

riods (2001–2050 and 2050–2100). The 50-year period was chosen in order to sample

a range of (e.g. multi-year) events and a range of natural variability; a shorter timescale

may result in zero drought events being identified in some cells of the study region (see

Section 3.9) during 1951–2000, thus the percentage change in future events would not be

able to be determined.
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3.7 Drought Identification

Both meteorological and hydrological droughts were characterised using a threshold

approach (see Section 2.2.2): a meteorological/hydrological event occurs when the value

of the lagged moving average SPI/runoff timeseries falls below the threshold. For me-

teorological events, the focus is on theseverelyor extremelydry conditions (see Table

4.1) — i.e. a drought was considered to begin when SPI≤−1.5. For SPIm (wherem

represents the timescale concerned), when the SPI values of overm consecutive months

remained SPI>−1.5, an event terminated in the first month when the SPI value rises above

SPI−1.5. Hence, two separate events occurred only when there were overm months of

SPI>−1.5; persisting dry conditions (e.g. several years) with occasional wet periods that

could only temporarily alleviate the drying were regarded as a single event, i.e. lower

frequency despite extensive drought conditions. The effects of including/excluding these

excess periods for both meteorological and hydrological events are explored in Section

5.6. Hydrological droughts were identified using a runoff threshold based on SPI−1.5

(see Section 3.7.1).

3.7.1 Drought Threshold Expressed as Runoff

Hydrological drought thresholds in absolute runoff values may provide more infor-

mation and/or a better indication for end-users on the level of runoff deficit. Therefore, a

fixed runoff threshold was derived for each cell of the study region (Figure 3.3) — simi-

lar to the drought threshold in absolute precipitation values (Figure 4.1, Section 4.3), the

runoff threshold for each cell is comparable to SPI−1.5 as both imply the same percentile

exceedence.

To obtain the runoff thresholds, a percentile was determined based on the number of

months of the SPI timeseries with values being≤−1.5 in the 1951–2000 period. This

percentile was then applied to the 1951–2000 lagged moving average runoff timeseries

to extract the threshold in absolute runoff. This means that for any particular cell, the

probability of the runoff timeseries falling below the identified runoff threshold is the

same as the SPI value being≤−1.5 in the 1951–2000 period.

Figure 3.3 shows that runoff threshold varies from just above zero to over 16 mm.

Both 3- and 12-month events demonstrate similar spatial patterns, with 12-month having
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Figure 3.3: Threshold in runoff (mm/month), used for defining hydrological drought, that has
the same percentile exceedence as SPI−1.5 during 1951–2000 for (a) 3-month and (b) 12-month
events.

higher runoff threshold values due to the longer duration. For 3-month events, a majority

of the study area has threshold values of under 8 mm. Higher values (>8 mm) tend to

concentrate along the southwestern coast of Norway, the British Isles except southeastern

England, and the Alps. For 12-month events, runoff threshold values of>12 mm are

widespread in the higher latitudes of Scandinavia and Russia, much of the British Isles

and western Europe, the Alps, as well as areas towards east of Mediterranean and the

Black Sea.

The patterns of absolute runoff threshold correspond to those for absolute precipitation

threshold (Figure 4.1). However, the patterns of absolute precipitation threshold are more

spatially-coherent than their runoff counterparts.

3.8 Drought Parameters

As discussed in Section 2.2.2, precipitation/runoff deficit has been characterised by

different parameters. This thesis has quantified meteorological and hydrological droughts
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by considering their severity and spatial extent. Drought severity for celli represents the

cumulative deficit from the threshold over a 50-year period, and is given by:

Severityi =
t=e∑

t=i

X0 −Xt (3.8)

whereX0 is the threshold,Xt is the drought variable at montht, andt = i andt = e

represent the start and the end of the drought event, respectively (c.f. Figure 2.1). Severity

provides no information on the timing of the events. For hydrological events, severity is

equivalent to deficit volume in units of mm. Therefore, drought intensity represents the

averaged magnitude and is denoted by:

Intensity =
Severity

te − ti + 1
(3.9)

The spatial extent of drought is expressed by the Drought Area Index (DAI), which

measures the proportion of a region being affected by precipitation/runoff drought at

monthi:

DAIi =
Ndi

Ni
· 100% (3.10)

whereDAIi represents the percentage of the region being drought-affected at month

i, Ndi is the number of cells of the region being drought affected at monthi, andNi is

the total number of cells of the region. DAI does not consider the intensity of the events,

and no area weighting has been applied. DAI25 (DAI50) denotes the percentage of the

50-year period during which≥25% (50%) of the region being drought-affected.

DAI25 and DAI50 are regional drought parameters. Drought severity values obtained

for each grid of the study region were averaged spatially for regional drought analysis.

The use of these parameters provides no information on the timing of the events as they

describe drought conditions over the 50-year period. For instance, in Section 5.8, it would

not be possible to determine whether a meteorological drought event coincides with/lags

a hydrological event. The study area and regions are detailed in Section 3.9.
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3.9 Study Area and Regions

The European study area is defined as 35◦–70◦N, 25◦W–70◦E. For each simulation,

meteorological (hydrological) severity results and the percentage of the region being

drought-affected were generated for each of the 9140 (8385) cells within this area, be-

fore being averaged geographically and/or climatically (Figure 3.4).
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Figure 3.4: Study area and regions. Geographic (PRUDENCE) regions (Table 3.3) are found
westwards of 30◦E. Climate (Köppen) zones, as specified in the legend, span the entire study area.

Geographically-averaged results are based on the sub-regions of the PRUDENCE

project (Christensenet al., 2007; Table 3.3); they are referred to as “PRUDENCE re-

sults” in this thesis. Since significant climatic variations may occur within a PRUDENCE

region (e.g. IP), climatically-averaged results may compliment the PRUDENCE results.

The Köppen climate classification is one of the most frequently used. Classification infor-

mation was obtained from the Supplementary Material of Peelet al. (2007); information

at the 0.5◦ was extracted from the 0.1◦×0.1◦ map. Based on vegetation, temperature and

precipitation, 17 classes were differentiated for the study area (Figure 3.4); “EF” climate

occurs in only five cells, hence was omitted from the analyses. Regional results in this

thesis therefore enable comparisons with previous and subsequent studies.
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Area West East South North

British Isles (BI) –10 2 50 59
Iberian Peninsula (IP) –10 3 36 44
France (FR) –5 5 44 50
Mid-Europe (ME) 2 16 48 55
Scandinavia (SC) 5 30 55 70
Alps (AL) 5 15 44 48
Mediterranean (MD) 3 25 36 44
Eastern Europe (EA) 16 30 44 55

Table 3.3: European sub-regions defined in the “PRUDENCE” project (Christensen and Chris-
tensen, 2007)

3.9.1 Köppen Climates

The Köppen climate classification, detailed in Henderson-Sellers and Robinson (1986)

and Peelet al.(2007) (particularly Table 1), is briefly described here. The study area con-

tains four main climate types: arid B, temperate C, cold D and polar E. The second letter

indicates the precipitation pattern:s represents a dry summer andw for dry winter. The

third letter indicates the degree of summer heat: for B climates,h andk signify low and

middle latitude climates, respectively; for C and D climates,a, b andc represent hot, warm

and cold summer, respectively. Polar E climates concentrate in the high latitudes/altitudes.

Much of the mid-latitude central-western Europe havemarine west coastclimate with

precipitation all year round (Cf). TheMediterraneanclimate is characterised by warm-

hot dry summers and cool, wet winters (Csa, Csb; Spain, Italy, Greece).Cold west coast

climate dominate the eastern half of the mid- and high-latitudes with low summer precipi-

tation (Df; Scandinavia, Russia, eastern Europe and the Caucasus). Much of Central Asia

is under the influence of coldinterior desertclimate (BWk and BSk). The mechanisms

contributing to these climates are provided in Robinson and Henderson-Sellers (1999).

3.10 Summary

This chapter has outlined the emission scenarios and models, including MAGICC6,

ClimGen and Mac-PDM.09, used in this thesis for generating precipitation and runoff

timeseries. It has also described the identification and quantification of short and long

droughts as applied in Chapters 4–6. The next chapter examines the effects of climate

change on European meteorological drought characteristics and the associated uncertain-

ties in the projections.



Chapter 4

Projections of European

meteorological droughts: robustness

and uncertainties

4.1 Introduction

Over the 20th century, higher European latitudes experienced increased wetting, par-

ticularly in winter (Lloyd-Hughes and Saunders, 2002; Briffaet al., 2009) while the

Mediterranean became drier, especially in summer (Gaoet al., 2006; Sousaet al., 2011).

However, Bladéet al.(2012) found enhanced summer precipitation in the Mediterranean,

particularly Italy and the Balkans, associated with high summer (July–August) North At-

lantic Oscillation (SNAO) (Follandet al., 2009; Linderholmet al., 2011). They attributed

this to a strong upper-level trough over the Balkans that develops in association with

the SNAO, which causes mid-level cooling and increased potential instability. Since the

1950s, the area covered by dry (wet) events has increased (decreased) (Bordiet al., 2009).

Climate change could shift and widen the precipitation distribution, increasing the risk

of both flood and drought events (Gaoet al., 2006), and may alter the characteristics of

future dry and wet spells in Europe (Heinrich and Gobiet, 2011). The common view is

that precipitation will decrease (increase) in southern (northern) Europe.

Warming may increase the drought-affected area globally, including more severe events
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(Burke and Brown, 2008). Although there are different classifications of drought (Sec-

tion 2.2) depending on the nature of the water deficit and the study objective (Wilhite

and Glantz, 1985; AMS, 2004), precipitation is the fundamental driver of drought and

analysing future precipitation characteristics is crucial in drought risk assessment (Bordi

et al., 2009), especially when considering meteorological droughts (Panu and Sharma,

2002). Many studies have focused on the hydrological aspects (such as river discharge and

low flow regimes) rather than assessing meteorological events (Vasiliadeset al., 2009).

Yet, the application of meteorological drought indices require less input data, which in

turn limits the additional uncertainties arising from the availability, quality, resolution and

parameterisations of data/models. Furthermore, Hisdalet al. (2001) found good agree-

ment between precipitation deviations and droughts trends. Therefore, this chapter fo-

cuses on meteorological drought assessment, but see Section 5.8 for a comparison with

hydrological drought assessment.

Our incomplete understanding of the behavior of the climate system has led to the

development of various emission scenarios and GCMs. Studies with equally weighted

multi-models generally outperform the single models (Weigelet al., 2010). However,

projections for both mean (Kjellströmet al., 2011) and extreme (Freiet al., 2006; Benis-

ton et al., 2007; Blenkinsop and Fowler, 2007a;b; Burke and Brown, 2008) precipitation

are often uncertain in both the direction and magnitude of change. Changes in the sea-

sonal distribution of precipitation and drought occurrence will significantly affect water

resource management (Blenkinsop and Fowler, 2007a). Although some European drought

studies (e.g. Dubrovskyet al., 2005; Blenkinsop and Fowler, 2007a;b; Dubrovskyet al.,

2008; Vidal and Wade, 2009; Heinrich and Gobiet, 2011) have attempted to address this

through a multi-model and multi-scenario analysis, the number of climate models and

emission scenarios applied are often limited, and few (e.g. Burke and Brown, 2008) have

explored uncertainty in drought projection using large simulation ensembles.

Using the SPI (Section 4.2.2), this chapter examines the effects of climate change on

European meteorological drought characteristics for both 3-month (SPI3) and 12-month

(SPI12) events, and assesses their robustness based on precipitation scenarios simulated

using ten emission scenarios and eighteen GCMs (Sections 4.4–4.5). GCMs and emis-

sion scenarios tend to dominate the uncertainty of climate change (Plantonet al., 2008),
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and therefore projections of drought should incorporate fully these effects. The relative

contribution of emission scenario and GCM variance is also quantified (Section 4.6).

4.2 Methodology

4.2.1 Modelling Framework

MAGICC6 and ClimGen simulations of 21st century monthly precipitation timeseries

based on 10 emission scenarios (hereafter, scenarios) and 18 GCMs were assessed (see

Section 3.5 for details). Consequently, an ensemble of 180 precipitation scenarios were

used for the SPI computation (Section 4.2.2.5) and subsequent drought analysis (Section

4.2.3).

4.2.2 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) is one of most widely used drought in-

dices in drought assessment. It has been applied to Africa (e.g. Rouault and Richard,

2005; Lyon, 2009; Roudier and Mahe, 2010), Australia (e.g. Khanet al., 2008), Eu-

rope (e.g. Bordiet al., 2001; Loukas and Vasiliades, 2004; Vicente-Serrano and López-

Moreno, 2005; López-Moreno and Vicente-Serrano, 2008; Bordiet al., 2009; Vasiliades

et al., 2009; Koutrouliset al., 2011), Central (e.g. Méndez and Magaña, 2010) and North

America (Motha and Baier, 2005; Kangas and Brown, 2007; Weisset al., 2009; Logan

et al., 2010; McCrary and Randall, 2010), the Middle East (e.g. Türke and Tatl, 2009;

Razieiet al., 2010) and other regions. SPI is commonly used operationally to monitor

the onset and duration of droughts (Hayeset al., 1999) worldwide by organisations or co-

operative efforts including the Global Drought Monitor (Benfield UCL Hazard Research

Centre), the APEC Climate Center (APCC) Global Drought Monitoring, the North Amer-

ica Drought Monitor (NADM), the U.S. National Drought Mitigation Center (NDMC),

the Drought Management Centre for Southeastern Europe (DMCSEE), and the Caribbean

Drought and Precipitation Monitoring Network (CDPMN).

The SPI was developed at Colorado State University in 1993 as an alternative to

Palmer’s index (see Section 2.2.3) that addresses many of the PDSI’s weaknesses (Mc-

keeet al., 1993; 1995). It measures meteorological events and is normalised to identify
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SPI values Intensity Probability % Cumulative probability

2.0 or more Extremely wet 2.3 0.9986
1.5 to 1.99 Very wet 4.4 0.9332
1.0 to 1.49 Moderately wet 9.2 0.8413
−0.99 to 0.99 Near normal 68.2 0.6915
−1.0 to−1.49 Moderately dry 9.2 0.1587
−1.5 to−1.99 Severely dry 4.4 0.0668
−2.0 or less Extremely dry 2.3 0.0228

Table 4.1: SPI intensity and corresponding event probabilities (Mckeeet al., 1993; Shenet al.,
2008)

both dry and wet periods (Bordiet al., 2009) for any location with a long-term precipi-

tation record (typically≥30 years). Dry (wet) spells, represented by negative (positive)

SPI values, are expressed in terms of precipitation deficit (surplus), percent of normal and

probability of non-exceedance (Heim Jr., 2002), with one/two/three standard deviations

occurring approximately 68%/95%/99% of the time (Hayeset al., 1999; Table 4.1).

A probability density function (PDF; e.g. Pearson Type III or Gamma) is fitted —

separately for each month of the lagged moving average precipitation timeseries — to

the frequency distribution of precipitation summed over the timescale concerned. Each

PDF is then transformed into a standardised Gaussian distribution (Edwards and McKee,

1997). Therefore, a percentile on the fitted distribution corresponds to the same percentile

(Z-score) on the standard Gaussian distribution and the SPI value (Wilhite, 2005); the SPI

represents a cumulative probability in relation to a reference period for which the prob-

ability distribution parameters are estimated. SPI normalises an anomaly both spatially

(by considering the precipitation frequency distribution and the accompanying variation

at the location) and temporally (as it can be computed at any timescale). The SPI for any

given location (and duration) is expected to have a mean of zero and a variance of one, at

least during the calibration period. Table 4.1 shows the categories of drought intensities;

a drought is generally defined when SPI≤−1.0 and to end when the SPI becomes positive

(Mckeeet al., 1993).

Vicente-Serranoet al. (2010) proposed the multi-scalar standardised precipitation

evapotranspiration index (SPEI), the computation of which is mathematically similar to

the SPI. The SPEI uses precipitation and temperature data, and can be compared to the

self-calibrated Palmer drought severity index (sc-PDSI) as it is based on a normalisation

of the simple water balance developed by Thornthwaite (1948). The SPI, rather than
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the SPEI, has been adopted in this thesis as a measure of meteorological drought (which

typically refers to rainfall deficit), and also for reasons described in Sections 4.2.2.1 and

4.2.2.2; the effect of temperature and potential evapotranspiration (PET), is explored in

Chapter 5.

4.2.2.1 Suitability

Keyantash and Dracup (2002) and Quiring (2009b) assessed the overall utility of me-

teorological indices using six criteria,viz. robustness, tractability, transparency, sophis-

tication, extendability and dimensionality. They found SPI (along with rainfall deciles /

percentiles) to be highly valuable for monitoring meteorological drought (see below). The

National Meteorological and Hydrological Services (NMHSs) globally have been recom-

mended to characterise meteorological droughts using the SPI (Hayeset al., 2011). The

intensity, magnitude and duration of a drought can be determined, along with the historical

data-based probability of emerging from a specific drought (Heim Jr., 2002).

For the mountainous Aragon River Basin, central Spanish Pyrenees, (Vicente-Serrano

and López-Moreno, 2005) found that short SPI timescales (1–3 months) generally cor-

responded to river flow droughts, and longer timescales (7–10 months) were useful for

analysing droughts in reservoir storage. However, seasonality was found in the suitability

of the SPI for monitoring droughts, e.g. river flows in autumn responded well to 1–7 month

SPI timescales as both the moisture conditions found at the beginning of the season and

the short-scale precipitation conditions govern the hydrological response. On timescales

of 9–12 months, SPI corresponds closely to the PDSI (Guttman, 1998; Heim Jr., 2002;

Dubrovskyet al., 2008), i.e. precipitation causes much of the variability in the PDSI

results (Lloyd-Hughes and Saunders, 2002). Hayeset al. (1999) discussed the advan-

tages of SPI over the complex Palmer index (Alley, 1984) (see Section 4.2.2.2); Guttman

(1998) and Lloyd-Hughes and Saunders (2002) indicated that SPI provides a better spa-

tial standardisation than the PDSI. SPI also correlates well with fluctuations in shallow

groundwater tables in irrigated areas of Australia where rainfall variability is a very influ-

ential variable, and can capture major dry periods; therefore the SPI could potentially be

adopted for environmental reporting and relating climatic impacts on groundwater levels

(Khanet al., 2008).
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4.2.2.2 Advantages of the SPI

Lloyd-Hughes and Saunders (2002) found the SPI to be a simple and effective tool for

studying European drought. Simplicity is its fundamental strength, with precipitation be-

ing the only required input data. Its independence of soil moisture conditions implies that

SPI is effective during both winter and summer, nor is it adversely affected by topography.

Its variable timescale makes it suitable for assessing various classifications of drought —

durations of weeks or months can be defined for meteorological and agricultural applica-

tions; durations of years for hydrological and water management purposes (Hayeset al.,

1999; Heim Jr., 2002). The standardisation enables comparison across the time period

of study, location and climate as both SPI and the lagged moving average precipitation

timeseries have the same probability of exceedence (i.e. number of months with values

below the threshold level; Steinemannet al., 2005); it is also very practical since events

can be associated to a return period (Roudier and Mahe, 2010).

In summary, the SPI is useful for monitoring drought (and wetness) on multiple

timescales and comparing climatic conditions of areas governed by different hydrolog-

ical regimes (Bordiet al., 2009).

4.2.2.3 Limitations of the SPI

Despite its simplicity, SPI excludes other drivers of drought, (e.g. modified evapora-

transpiration and available energy; Burke, 2011), shows much smaller global land sur-

face areas in drought than other indices that account for atmospheric demand for mois-

ture (Burke and Brown, 2008), and does not consider snowfall. Although hydrological

droughts may be represented by the SPI (Nalbantis and Tsakiris, 2008; Tabriziet al.,

2010), drought indicators that include additional processes may be more appropriate for

sectoral (e.g. agriculture) impacts assessments (Vidal and Wade, 2009; Burke and Brown,

2010).

Other drawbacks include (Hayeset al., 1999): (1) The identification of a “suitable”

theoretical probability distribution for modeling the raw precipitation data prior to stan-

dardisation; (2) The quantity and quality of the precipitation data used in the calculation

determines its accuracy (which also applies to other indices); (3) Aggregating or averaging

precipitation records over space (and time) to obtain mean values may smooth data and
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distort the true precipitation distribution (Quiring, 2009b); (4) Since any drought intensity

occurs with the same frequency (Table 4.1) for all locations when considered over a long

time period, SPI by itself is incapable of identifying the more “drought-prone” regions; (5)

Application at short timescales (1–3 months) to regions with low seasonal precipitation

may produce misleadingly large positive or negative SPI values; and, (6) The statistical

Z-score may not be intuitive to decision-makers. Also, equal categorical intervals have

differing probabilities of occurrence, e.g. the probability differential between SPI−1.0

and−1.5 is 9.1%, and between−1.5 and−2.0 is 4.4% (Steinemannet al., 2005).

4.2.2.4 Suitability of Gamma Distribution

Precipitation has a fixed lower boundary (i.e. zero), thus produces a positively skewed

distribution (Quiring, 2009a). Significantly skewed precipitation distribution is commonly

transformed to a more symmetrical, Gaussian-like distribution by fitting a statistical dis-

tribution. This provides a method for estimating the relative frequency (rarity) of a given

drought event based on the observations (Husaket al., 2007).

A variety of distributions have been recommended for fitting precipitation (drought)

data, including gamma, log-normal, Pearson type III, and Box-Cox (Guttman, 1999;

Lloyd-Hughes and Saunders, 2002; Husaket al., 2007); different distributions would yield

different SPI values (Quiring, 2009b). Guttman (1999) concluded that the Pearson Type

III distribution provides the “best” model for SPI computation. However, it is not suitable

for climate change analysis as the distribution is undefined if the future monthly precip-

itation total is lower than the fitted location parameter — the likelihood of which is high

since a strong drying trend has been projected, particularly for the Mediterranean region.

Lloyd-Hughes and Saunders (2002) found that the gamma distribution best modeled Eu-

ropean monthly precipitation compared to Gaussian and log-normal distributions. This is

especially the case for arid regions at short timescales, except for regions south of 45◦N

that have a more skewed precipitation distribution in arid areas (e.g. eastern Turkey and

northwest Spain).

The gamma distribution is popular as it can represent a variety of distribution shapes,

from exponential decay (α=1) to near-normal (α=20), using only the shape (α) and scale

(β) parameters (Husaket al., 2007). According to central limit theorem, the longer the
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length of the timeseries, the distribution of the timeseries mean tends towards a more

normal distribution (e.g. asα tends to infinity; Lloyd-Hughes and Saunders, 2002). It is

positively skewed and is bounded on the left by zero, which is important since negative

precipitation is impossible (Quiring, 2009a).

4.2.2.5 Computation

For a chosen timescale (e.g. 3-month),m, a lagged moving average was computed for

the monthly precipitation timeseries (hereafter, “precipitation timeseries”), therefore the

value at monthi also accounts for conditions in the preceedingi–1 months.

The gamma distribution was then applied, using thepgamma function in R (R Devel-

opment Core Team, 2012) that gives the distribution function, to model this precipitation

timeseries; its PDF is defined as:

g(x) =
1

βαΓ(α)
xα−1e−x/β for x > 0 (4.1)

whereα>0 is a shape parameter,β>0 is a scale parameter, andx>0 is the (projected

or present-day) precipitation amount in montht. Γ(α) is the gamma function and is

defined as:

Γ(α) = lim
n→∞

n−1∏

v=0

n!ny−1

y + v
≡

∫ ∞

0
yα−1e−ydy (4.2)

The parametersα andβ for the calendar monthi can be estimated with the following

approximations to the maximum likelihood method (Thom, 1958):

α̂i =
1

4Ai

(
1 +

√
1 +

4Ai

3

)
(4.3)

β̂i =
x̄

α̂i
(4.4)

where, forn observations

Ai = ln(x̄i)−
∑

ln(xi)
n

(4.5)

Integrating the PDF with respect tox and entering the estimates ofαi andβi produces
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an expression for the cumulative probabilityG(x) of the precipitation amount occurring

for a given month and timescale. This cumulative probability distribution is then trans-

formed into the standard normal distribution, using theqnorm function in R, to generate

the SPI.

The gamma distribution is undefined forx=0, andP (x=0)>0, whereP (x=0) is the

probability of zero precipitation. Abramowitz and Stegun (eds) (1965) and Husaket al.

(2007) offered approximate conversion for these undefined entries; instead, this study car-

ried out a linear interpolation between the preceding and subsequent SPI values. Where

these undefined entries occurred at the start (or end) of the timeseries, the subsequent (or

preceding) SPI value was adopted. Cells with>10% of the timeseries that cannot be mod-

elled by the gamma distribution (i.e.>10% of the values of the precipitation timeseries

were zero) were excluded as drought analysis for very dry regions would not be so mean-

ingful. Forα with values>100, they were adjusted to 100 to avoid very largeα and very

small β values as the product ofα andβ gives the mean; such adjustment would have

little impact on the gamma distribution asα≈100 is similar to a Gaussian distribution.

4.2.3 Drought Analysis

Drought identification and the parameters (i.e. drought severity and frequencies of

DAI25 and DAI50) used and the timescales considered, along with study area/regions are

detailed in Sections 3.6–3.9. Both short (SPI3) and long (SPI12) droughts, defined as

SPI≤−1.5 (asevere/extremedrought, Table 4.1), were studied. Climate change effects

were determined by comparing results in 2001–2050 and 2051–2100 to those in 1951–

2000. Drought severity was derived for each of the 9140 cells within the study area.

Regional severities, DAI25 and DAI50 frequencies (see Section 3.8), based on the PRU-

DENCE regions and Köppen climates types (see Section 3.9), are presented for analysis

in Sections 4.4–4.6.

4.3 Drought Threshold Expressed as Precipitation

Since SPI is standardised (Section 4.2.2.3), it provides no information on the con-

cerned threshold/intensity in absolute precipitation terms, which could be more useful

in practical applications. This is shown in Figure 4.1 — for each cell, the precipitation
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Figure 4.1: Threshold in precipitation (mm/month) that has the same percentile as less than
SPI−1.5 during 1951–2000 for (a) SPI3 and (b) SPI12 events.

threshold value is comparable to SPI−1.5 as both have the same percentile exceedence.

Similar to the runoff thresholds (Section 3.7.1), the absolute precipitation threshold for

each cell was derived by identifying the percentile based on the number of months of the

SPI timeseries with values being≤−1.5 in the 1951–2000 period. This percentile was

then applied to the 1951–2000 lagged moving average precipitation timeseries to extract

the threshold in absolute precipitation, i.e. the probability of the precipitation timeseries

falling below the identified precipitation threshold is the same as the SPI value being

≤−1.5 in the 1951–2000 period. Alternatively, absolute precipitation could also be ob-

tained by interpolating the shape and scale parameters of the gamma distribution.

According to Figure 4.1, the 3-month or 12-month lagged moving average precipita-

tion that corresponds with the SPI−1.5 drought definition varies widely across Europe,

ranging from under 10 mm to over 50 mm. In general, higher precipitation threshold

values occur in northwestern BI, western coast of Norway, AL, and parts of Russia and

the Caucasus. Sub-regional variations in Scotland and southeastern England, for exam-

ple, may require water resource and drought management strategies to be designed for
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very different precipitation levels. Therefore, “relative drought conditions” in different

regions may correspond with rather different absolute amounts of rainfall; it is also likely

to depend on socio-economic factors such as demand and population.

4.4 Future Changes in Drought

This section presents the projected changes in drought parameters under the 21st cen-

tury climates. Firstly, ECHam5 under RCP6 is used to demonstrate the spatial varia-

tions in the simulated changes in drought severity across the study region (Section 4.4.1).

ECHAM5 was chosen as according to Reichler and Kim (2008), it simulated the cur-

rent climate for 14 climate variables very well compared to most other GCMs. Gleckler

et al. (2008) found ECHAM5 to be superior in many respects in the extra-tropics and has

smaller errors than other “typical” models. Pierceet al. (2009) assessed the performance

of 21 GCMs using 42 metrics based on seasonal temperature and precipitation, the ENSO

and Pacific Decadal Oscillation for western U.S., and ECHAM5 was amongst the better

performing models. Hurkmanset al. (2010) provided a brief discussion on the choice of

ECHAM5–MPI-OM over other GCMs by drawing on results from other research (e.g.

Coveyet al., 2003; van Ulden and van Oldenborgh, 2006; Reichler and Kim, 2008) that

compared model performance based on a range of climate variables. RCP6 was selected to

represent moderate radiative forcing (see Section 3.4.2). Secondly, the regional changes in

drought parameters based on 180 simulations described in Section 4.2.1 are summarised

in Section 4.4.2.

4.4.1 Spatial Variations of Changes in Drought Severity

Figures 4.2–4.4 show the present-day SPI12 and seasonal drought severities, along

with their percentage changes in the 21st century projected by ECHAM5 under RCP6.

The small spatial and seasonal variations in the 1951–2000 values for both SPI12 and

SPI3 (Figures 4.2a and 4.3) are due to the standardised nature of the SPI (see Section

4.2.2).

For the 21st century drought severities, Figures 4.2b, 4.2c and 4.4 generally reveal in-

creases in the lower-latitudes and decreases in the high-latitudes. The largest magnitudes

of change (in both directions) in 2051–2100 are of course considerably more widespread
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Figure 4.2: SPI12 drought severity (in standard deviation months) in (a) 1951–2000, along with
the percentage changes in (b) 2001–2050 and (c) 2051–2100, from 1951–2000, projected by
ECHAM5 under RCP6.

(a) DJF

ME
FR

IP

BI

SC

AL

MD

EA

70° E60° E50° E40° E30° E20° E10° E0°-10° W

70° N

60° N

50° N

40° N

ME
FR

IP

BI

SC

AL

MD

EA

70° E60° E50° E40° E30° E20° E10° E0°-10° W

70° N

60° N

50° N

40° N

(c) JJA

ME
FR

IP

BI

SC

AL

MD

EA

70° E60° E50° E40° E30° E20° E10° E0°-10° W

70° N

60° N

50° N

40° N

ME
FR

IP

BI

SC

AL

MD

EA

70° E60° E50° E40° E30° E20° E10° E0°-10° W

70° N

60° N

50° N

40° N

(b) MAM

(d) SON

0 5 10 15 20 25 30

Figure 4.3: Seasonal drought severity (in standard deviation months) in 1951–2000.
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Figure 4.4: Percentage changes in seasonal drought severity in 2001–2050 (left panels) and 2051–
2100 (right panels), from 1951–2000, projected by ECHAM5 under RCP6.

than in 2001–2050. Seasonally, the largest decreases occur in the cold seasons whereas

the largest increases are found in the warm seasons. Marked increases, by>3.5 times for

SPI12 and>2.6 times for SPI3, in drought severity are simulated for areas around the

Mediterranean and Black Sea basins; such increases are projected to occur in 2051–2100

across large parts of this regions even in the cold seasons.

4.4.2 Projections by 18 GCMs under 10 Emission Scenarios

Figure 4.5 shows the level of agreement in the direction of change according to the

180 simulations for PRUDENCE- and Köppen-averaged results. A “robust change” is
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defined as occurring when all 180 simulations indicate the same direction of change.

A “general positive/negative change” is defined when>90 of the total 180 simulations

project an increase/decrease. “Mixed / no change/events” (green) may refer to (1) no

identified droughts (notably in frequencies of DAI50, but also in some DAI25 cases), (2)

no changes in drought parameters, or (3) when exactly 90 of the 180 simulations project

an increase/decrease. The number represents the percentage of total simulations showing

increase/decrease. Figure 4.5 does not provide information about the magnitude of change

nor about individual simulations. Magnitudes of change — in interquartile ranges (IQRs)

and ensemble means (in brackets) — for robust trends are presented in Figures 4.6 and

4.7; IQRs are considered a more representative and robust measure of uncertainty. The

discussion in this Section is based on Figures 4.5–4.7; absolute DAI25 frequencies (not

shown) quoted below also refer to IQRs.

Figure 4.5 shows that increasing severity and occurrence of large-scale drought are

projected for most regions, except for some PRUDENCE (SC) and Köppen (Cfc, Dfc,

ET) regions. Overall, robust increases (decreases) in drought conditions are concentrated

in southern (northern) Europe; they also tend to vary little with different seasons. Sim-

ilarly, other studies have shown that the 20th century drying (wetter) trend is likely to

continue in western/central Europe (western Russia) (Palet al., 2004); GCMs and RCMs

generally simulate strong increases (decreases) in mean annual precipitation in higher

(lower) European latitudes in future (Räisänenet al., 2004; Gaoet al., 2006; Beniston

et al., 2007; Heinrich and Gobiet, 2011), with uncertain sign of change in the∼500 km-

zone in between (Kjellströmet al., 2011). Intensifying wet events in northern Europe, and

longer, more frequent, severe and widespread droughts in southern Europe have been pro-

jected with high statistical significance and confidence (Heinrich and Gobiet, 2011); much

of France, southern England and the western/central Mediterranean could experience the

largest increases in maximum dry spell length (Loukaset al., 2008).

Increasing localised precipitation may occur in areas with declining mean precipita-

tion (Buonomoet al., 2007; Garcı́a-Ruizet al., 2011), e.g. westward side of mountain

chains of western and central Europe due to enhanced westerly winds (Gaoet al., 2006).

Subsequently, both increasing intense precipitation and more severe “dry and hot” ex-

tremes (Kundzewiczet al., 2006), along with increasing drought and flood magnitude,
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2001-2050:

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BI 61.1 61.1 61.7 BI 91.7 75.6 72.2 66.7 77.8 94.4 66.7 73.9 83.3 81.1 75.0 61.1

IP IP 97.2 91.7 95.6

FR 88.9 88.9 94.4 FR 55.6 72.2 61.1 60.6 59.4 76.7 99.4

ME 55.6 55.0 55.6 ME 85.0 83.3 72.7 77.8 66.7 82.8 80.0 78.3 58.9 77.8

SC SC 80.6 83.3 94.4 83.3 87.2 94.4 88.9 81.1

AL 88.9 88.9 66.7 AL 55.6 77.8 94.4 59.4 55.6 53.3 86.1

MD MD 80.6 81.1 94.4 94.4

EA 70.6 64.4 51.7 EA 72.2 72.2 78.3 88.9 57.8 72.8 82.2 77.8 61.1 87.8 53.3

2051-2100:

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BI 60.0 61.1 64.4 BI 89.4 75.6 73.3 76.1 94.4 53.9 64.4 87.2 88.9 67.2 77.8 67.8

IP IP 99.4 99.4 98.9

FR 90.6 88.9 90.0 FR 55.6 79.4 57.8 70.0 51.7 72.8 95.6

ME 55.6 51.1 51.1 ME 83.3 83.9 82.8 77.8 83.3 84.4 74.4 77.8 95.0 90.0 65.6 77.8

SC SC 99.4 98.9 74.4 82.8 97.2 90.6 82.2 96.7 98.3 93.3 98.9

AL 88.9 88.9 88.9 AL 66.1 78.9 94.4 53.3 52.2 62.2 60.6 93.9

MD MD 97.8 95.6 98.3 99.4

EA 80.6 77.2 55.0 EA 69.4 69.4 87.8 91.7 71.7 74.4 76.1 85.0 73.9 88.9 55.6 83.3

(a) PRUDENCE-averaged Results

SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50

SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50

2001-2050:

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BWh BWh 77.8 72.2 94.4

BWk 66.7 61.1 60.0 BWk 61.1 61.1 94.4 88.9 57.8 77.8 82.2 55.6 66.7 89.4 88.3

BSh BSh 93.9 95.0 99.4 81.7 63.3 54.4

BSk 95.0 80.0 58.3 BSk 58.9 69.4 94.4 94.4 58.3 50.6 88.9 94.4 96.7 61.1 58.9

Csa 88.9 Csa 92.8

Csb Csb 96.7 94.4 85.0

Cfa 89.4 Cfa 82.2 88.9 75.6 83.3 94.4 80.6 94.4 67.2

Cfb 86.1 66.7 66.7 Cfb 73.3 94.4 91.1 94.4 90.0 85.6 87.8 61.1

Cfc Cfc 88.9 83.3 77.8 92.2 97.8 70.6 83.3 81.1 88.9

Dsa Dsa 83.3 94.4 88.3 99.4 90.6 82.2 93.3 88.9

Dsb 79.4 Dsb 88.9 94.4 97.8 97.8 88.9 53.3 75.0 97.8 83.3

Dsc 72.2 67.2 66.7 Dsc 52.8 88.9 88.3 52.2 66.7 63.3 75.6 60.6 94.4 88.9

Dfa 55.6 61.1 Dfa 77.8 83.3 77.8 94.4 54.4 83.3 78.3 94.4 97.8 59.4 90.6

Dfb 55.6 72.2 66.7 Dfb 94.4 55.6 66.7 94.4 61.1 55.6 98.9

Dfc 50.6 Dfc 94.4 66.7

ET ET 94.4 88.9 94.4 83.3 85.6

2051-2100:

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BWh BWh 91.9 80.6 94.4

BWk 66.7 66.7 62.2 BWk 54.4 60.6 94.4 88.9 53.9 72.2 88.9 76.7 65.0 91.7 95.0 93.9

BSh BSh 94.4 99.4 93.9 69.4 90.0 57.2

BSk 82.2 53.3 BSk 67.2 86.1 94.4 53.9 55.6 93.9 90.6 81.7 81.1

Csa Csa 75.0 98.9 72.8 52.2

Csb Csb 95.0 98.3

Cfa 99.4 Cfa 86.7 88.9 76.7 83.3 81.7 88.3 94.4 80.6

Cfb 93.9 67.2 77.8 Cfb 69.4 56.1 96.1 98.9 90.0 85.6 88.3 88.9 97.8 77.8

Cfc Cfc 87.8 77.2 87.8 91.7 77.8 81.7 85.6 93.3 76.1

Dsa Dsa 87.8 95.0 85.6 93.3 78.3 96.7 88.9

Dsb 99.4 Dsb 90.0 94.4 94.4 94.4 73.3 76.7 98.9 54.4

Dsc 77.2 72.2 63.9 Dsc 68.9 86.7 86.1 51.1 82.8 84.4 84.4 89.4 65.0 68.9 56.1

Dfa 58.9 61.1 Dfa 74.4 72.8 86.1 94.4 56.7 88.3 86.1 94.4 72.8 77.2 93.9

Dfb 53.3 71.7 72.2 Dfb 94.4 60.6 76.7 94.4 54.4 57.8 84.4 52.2

Dfc 98.9 83.3 Dfc 94.4 95.0 78.3 98.3

ET 97.2 ET 89.4 86.1 94.4 84.4 98.3

Robust increase: all 180 simulations projecting increase.

General increase: >90 simulations projecting increase.

Robust decrease: all 180 simulations projecting decrease.

General decrease: >90 simulations projecting decrease.

Mixed / No change/events

61.1 Percentage of 180 simulations showing increase/decrease.

(b) Köppen-averaged Results

SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50

SPI12 SPI3 Severity SPI3 DAI25 SPI3 DAI50

Figure 4.5: Direction of change, from 1951–2000, projected by 18 GCMs under 10 emission
scenarios for (a) the PRUDENCE- and (b) Köppen-averaged drought parameters. The number
represents the percentage of the total 180 simulations showing positive/negative changes.
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(a) SPI12 Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BI BI

IP 1.9-2.9 (2.4) 2.3-3.2 (2.7) 2.1-4.7 (3.4) IP 3.4-6.4 (4.8) 3.8-6.1 (5.0) 6.3-15.7 (10.9)

FR FR

ME ME

SC 0.5-0.7 (0.7) 0.4-0.6 (0.5) 0.7-0.7 (0.7) SC 0.2-0.5 (0.3) 0.2-0.3 (0.2) 0.7-0.8 (0.7)

AL AL

MD 1.6-2.4 (2.0) 1.5-2.6 (2.0) 1.6-2.4 (2.2) MD 2.7-5.4 (3.7) 2.2-6.7 (4.6) 2.5-6.5 (3.5)

EA EA

(b) SPI3 Severity

DJF MAM JJA SON DJF MAM JJA SON

BI BI

IP 1.3-1.6 (1.4) 1.3-1.8 (1.5) 1.6-2.4 (2.0) 1.4-1.7 (1.5) IP 1.7-2.6 (2.1) 1.8-3.4 (2.4) 2.7-5.4 (3.8) 1.9-3.3 (2.5)

FR 1.4-2.3 (1.7) 1.2-2.1 (1.6) FR 1.8-5.0 (2.8) 1.6-4.1 (2.6)

ME ME

SC 0.7-0.8 (0.7) 0.7-0.8 (0.7) SC

AL 1.4-2.3 (1.6) AL 1.8-4.9 (2.8)

MD 1.2-1.6 (1.3) 1.3-1.6 (1.4) 1.5-2.2 (1.7) 1.3-1.9 (1.5) MD 1.5-2.7 (1.8) 1.7-2.8 (2.2) 2.3-4.7 (3.2) 1.9-3.7 (2.6)

EA EA

(c) SPI3 DAI25

DJF MAM JJA SON DJF MAM JJA SON

BI BI

IP 1.3-2.0 (1.5) 1.9-3.8 (3.2) IP 1.9-3.3 (2.4) 4.5-7.9 (6.3) 2.3-3.9 (3.2)

FR 1.6-3.4 (2.5) 1.3-2.3 (1.8) FR 2.6-6.5 (4.5) 1.9-4.3 (3.0)

ME ME

SC 0.5-0.6 (0.5) 0.6-0.8 (0.7) SC 0.2-0.4 (0.2)

AL 1.4-2.7 (1.8) 1.4-2.2 (1.8) AL 2.0-5.3 (3.4) 1.9-4.2 (3.1)

MD 1.7-2.1 (1.9) 2.0-3.2 (2.4) 1.4-2.4 (1.7) MD 2.2-3.3 (2.6) 3.3-7.5 (5.0) 2.4-5.3 (3.7)

EA EA

(d) SPI3 DAI50

DJF MAM JJA SON DJF MAM JJA SON

BI BI

IP 1.4-2.2 (2.0) 7.0-10.0 (8.0) 1.4-1.6 (1.4) IP 11.0-39.3 (18.0) 2.2-4.0 (3.0)

FR FR 2.2-5.4 (3.3)

ME ME

SC SC

AL 1.5-4.1 (2.5) AL 2.5-15.1 (5.5)

MD MD

EA EA

2001-2050 2051-2100

2001-2050

2001-2050

2001-2050

2051-2100

2051-2100

2051-2100

Figure 4.6: Magnitude of change, expressed as ratio to 1951–2000 values, for the interquartile
ranges (IQRs) and ensemble means (in brackets) of drought parameters simulated using 18 GCMs
under 10 emission scenarios for the PRUDENCE regions. Categories with robust increases (red)
and decreases (blue) are shown.

may occur in central Mediterranean and central-western Europe (Palet al., 2004). This

may partly explain the smaller percentage of simulations indicating increases in SPI12

DAI25 frequency than SPI12 severity for Cfb (Figure 4.5b), which covers much of central-

western Europe.

Seasonally, Figure 4.5 reveals that robust increases (decreases) for all the drought pa-

rameters are more common in summer/autumn (winter/spring). Change magnitudes are

often largest in summer, followed by autumn, and smallest in winter; regional variations

are more apparent in summer/autumn than in winter/spring (Figures 4.6 and 4.7). Like-

wise, Freiet al. (2006), Benistonet al. (2007), Blenkinsop and Fowler (2007b), Ekström
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(a) SPI12 Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BWh 2.0-2.4 (2.2) 1.6-1.9 (1.8) 2.5-3.5 (3.2) BWh 3.3-5.3 (4.1) 2.6-3.7 (3.1) 4.9-9.4 (6.7)

BWk BWk

BSh 1.8-2.1 (1.9) 1.9-2.1 (2.0) 1.3-1.6 (1.4) BSh 2.8-4.8 (3.7) 2.6-5.2 (3.7) 2.0-3.6 (2.7)

BSk BSk 1.3-2.5 (1.7)

Csa 1.8-2.6 (2.1) 3.1-5.2 (4.0) Csa 3.1-5.7 (4.1) 6.7-14.7 (9.6) 2.8-10.5 (5.0)

Csb 1.8-2.6 (2.2) 2.4-3.8 (3.0) 1.6-2.8 (2.0) Csb 3.3-6.1 (4.3) 4.9-8.9 (6.6) 4.0-12.4 (6.6)

Cfa 1.4-2.5 (1.8) 2.1-6.0 (3.5) Cfa 2.1-5.2 (3.0) 4.5-14.7 (7.8)

Cfb Cfb

Cfc 0.7-0.8 (0.7) 0.6-0.8 (0.7) 0.7-0.9 (0.8) Cfc 0.4-0.7 (0.6) 0.4-0.5 (0.5) 0.5-0.6 (0.5)

Dsa 1.6-2.2 (1.9) 1.6-2.0 (1.8) 1.8-3.1 (2.3) Dsa 2.4-4.7 (3.4) 2.4-4.6 (3.4) 2.9-7.8 (4.7)

Dsb 1.4-2.2 (1.9) 1.6-2.7 (2.3) Dsb 2.2-5.0 (3.5) 2.5-5.9 (4.0)

Dsc Dsc

Dfa Dfa

Dfb Dfb

Dfc 0.4-0.6 (0.5) 0.3-0.5 (0.4) Dfc 0.3-0.3 (0.3)

ET 0.5-0.6 (0.5) 0.4-0.5 (0.5) 0.9-0.9 (0.9) ET 0.2-0.2 (0.2) 0.9-0.9 (0.9)

(b) SPI3 Severity

DJF MAM JJA SON DJF MAM JJA SON

BWh 1.6-2.4 (2.0) 1.6-2.1 (1.9) 1.3-1.7 (1.5) BWh 2.4-5.2 (3.6) 2.6-4.5 (3.5) 1.9-3.1 (2.3)

BWk BWk

BSh 1.4-1.8 (1.6) 1.7-2.0 (1.8) 1.3-1.6 (1.5) BSh 2.0-3.6 (2.7) 2.6-4.2 (3.3) 1.7-2.9 (2.3)

BSk BSk 1.3-2.2 (1.5)

Csa 1.3-1.7 (1.5) 1.4-1.7 (1.5) 1.5-2.0 (1.8) 1.3-1.6 (1.4) Csa 1.7-2.9 (2.2) 2.0-3.3 (2.5) 2.2-4.3 (3.1) 1.7-3.0 (2.2)

Csb 1.2-1.5 (1.4) 1.3-1.6 (1.5) 1.7-2.3 (2.0) 1.4-1.9 (1.5) Csb 1.6-2.6 (2.0) 1.8-3.0 (2.2) 2.8-5.3 (3.9) 2.1-3.9 (2.6)

Cfa 1.4-2.3 (1.7) 1.4-2.3 (1.6) Cfa 2.1-5.0 (3.0) 2.1-4.9 (3.0)

Cfb Cfb

Cfc Cfc

Dsa 1.4-2.0 (1.6) 1.3-2.0 (1.8) Dsa 2.1-3.9 (2.8) 1.9-4.3 (2.9)

Dsb 1.3-2.0 (1.5) 1.5-2.4 (2.0) Dsb 1.9-3.8 (2.6) 2.3-5.2 (3.4)

Dsc Dsc

Dfa Dfa

Dfb 0.8-0.9 (0.8) Dfb 0.6-0.7 (0.6)

Dfc 0.6-0.7 (0.6) 0.6-0.7 (0.7) 0.7-0.9 (0.8) Dfc 0.2-0.4 (0.3) 0.3-0.5 (0.4)

ET 0.6-0.7 (0.7) 0.7-0.8 (0.7) ET 0.4-0.6 (0.5) 0.5-0.7 (0.6)

(c) SPI3 DAI25

DJF MAM JJA SON DJF MAM JJA SON

BWh 1.6-2.3 (1.9) 1.6-2.0 (1.8) 1.2-1.4 (1.3) BWh 2.4-3.8 (3.1) 2.3-3.6 (2.9) 1.6-2.3 (1.8)

BWk BWk

BSh 1.8-2.3 (2.0) BSh 3.0-5.1 (3.9) 4.3-8.5 (6.5)

BSk BSk 1.4-3.3 (1.8)

Csa 1.4-1.9 (1.7) 2.6-3.7 (3.0) 5.0-11.1 (8.5) 1.8-3.0 (2.3) Csa 2.0-5.6 (3.6) 4.3-7.0 (5.6) 11.0-39.0 (24.8) 3.0-11.8 (5.6)

Csb 1.4-2.1 (1.8) 1.6-2.2 (1.9) 2.4-4.4 (3.6) 1.5-2.4 (1.9) Csb 2.2-3.3 (2.8) 2.3-3.7 (2.8) 5.3-9.7 (7.2) 2.8-5.9 (4.0)

Cfa 1.4-3.4 (2.1) Cfa 2.9-8.8 (4.8) 2.9-9.3 (4.8)

Cfb Cfb

Cfc Cfc

Dsa 1.5-2.5 (1.9) Dsa 2.8-4.7 (3.5) 2.0-4.6 (3.1)

Dsb 1.7-3.4 (3.0) Dsb 2.1-4.7 (3.0) 3.3-6.7 (4.5)

Dsc Dsc

Dfa Dfa

Dfb 0.8-0.9 (0.8) Dfb 0.5-0.8 (0.5)

Dfc 0.3-0.5 (0.4) 0.4-0.5 (0.5) 0.6-0.8 (0.6) Dfc 0.0-0.2 (0.2) 0.0-0.2 (0.1)

ET 0.0-0.5 (0.3) 0.5-0.7 (0.6) ET 0.0-0.3 (0.0) 0.3-0.4 (0.3)

(d) SPI3 DAI50

DJF MAM JJA SON DJF MAM JJA SON

BWh 1.6-2.1 (1.9) 1.5-1.9 (1.7) 1.9-2.5 (2.1) BWh 2.3-5.0 (3.4) 2.3-3.8 (3.1) 2.5-4.9 (3.5)

BWk 1.0-1.4 (1.2) BWk

BSh Inf BSh Inf

BSk BSk

Csa Csa

Csb 1.5-3.0 (2..0) Csb 3.0-8.5 (4.5) 4.8-34.0 (12.5)

Cfa Cfa

Cfb Cfb

Cfc Cfc

Dsa 2.0-3.5 (2.0) Dsa 3.5-11.6 (6.0)

Dsb Dsb

Dsc Dsc

Dfa Dfa

Dfb Dfb

Dfc 0.0-0.0 (0.0) 0.0-0.0 (0.0) Dfc 0.0-0.0 (0.0) 0.0-0.0 (0.0) 0.0-0.0 (0.0)

ET ET

2001-2050 2051-2100

2001-2050

2001-2050

2001-2050

2051-2100

2051-2100

2051-2100

Figure 4.7: Same as Figure 4.6, but for Köppen-averaged drought parameters. “Inf” denotes no
drought events in 1951–2000 thus magnitude cannot be mathematically expressed as a ratio.
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et al. (2007), Schmidliet al. (2007) and Smiateket al. (2009) have projected summer

drying and winter wetting, especially in the lower and higher latitudes, respectively.

These seasonal changes are consistent with an area of reduced mean precipitation

that migrates northward from southern Mediterranean in winter to cover much of central-

western Europe in summer as anti-cyclonic circulation strengthens over the central-southern

Europe in winter and northeastern Atlantic in summer (Giorgiet al., 2004; Giorgi and

Coppola, 2009). Associated with this is enhanced mean winter precipitation (Schmidli

et al., 2007) — by 15–30% in 2071–2100 (from 1961–1990 values; Giorgiet al., 2004),

or an average of 2.14%/decade based on 18 GCMs over the 21st century (Giorgi and Bi,

2005) — and also extreme winter precipitation (Freiet al., 2006) over much of western,

central and northern Europe (Gibelin and Déqué, 2003), except the central and north-

ern Scandinavian mountains, northwest and eastern Baltic Sea (Ekströmet al., 2007).

In summer, precipitation slightly declines in northern Europe (Giorgi and Bi, 2005) while

southern, western and central Europe experience substantial and widespread reduction (up

to 30–45% in 2071–2100 under A2 and B2 emission scenarios, compared to 1961–1990

values) as a ridge forms over western Europe and a trough over eastern Europe that defect

Atlantic storms northward (Giorgiet al., 2004; Giorgi and Lionello, 2008). A larger land–

sea contrast in lower tropospheric summer warming and an earlier and more rapid decline

in soil moisture during spring are primarily responsible for continental and southeastern

Europe summer drying (Rowell and Jones, 2006). Warming-induced regional circulation

and pressure distribution changes could yield drier, warmer summers, and significantly

more intense and persistence summer European droughts, as well as floods, especially

in central Mediterranean and central-western Europe (Palet al., 2004). Spring and au-

tumn have relatively small precipitation changes (±15% in 2071–2100 under A2 and B2

emsision scenarios, compared to 1961–1990 values; Giorgiet al., 2004).

From 2001–2050 to 2051–2100, positive (negative) changes tend to become more

(less) robust with time (Figure 4.5), i.e. greater forcing promotes/exacerbates drought con-

ditions, or reverses changes from negative to positive in some simulations. Both SPI12

and SPI3 timescales reveal similar regional patterns in agreement. Similar to Heinrich

and Gobiet (2011), SPI12 results show higher magnitudes of change than SPI3. SPI12

drought severity values are larger than their SPI3 counterparts as drought severity (i.e.
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intensity×duration) strongly correlates to duration (Bonacci, 1993; Woo and Tarhule,

1994; Tarhule and Woo, 1997). This, together with the larger changes in SPI12 sever-

ity, suggest that longer duration droughts impose a greater drought risk than SPI3, thus

are of greater concern.

The DAI50 frequency results are the least robust and are less conclusive than other

drought parameters. This, along with their large magnitudes of change, especially in

summer (e.g.≥10-fold increase in IP), is related to their relatively rare (mostly<5%)

present-day occurrence; they tend to occur in<20% of the time during 2051–2100. Fig-

ure 4.5 indicates greater chances of no changes in DAI50 events or the absence of DAI50

events, hence analysis hereafter focuses on severities and DAI25 frequencies. DAI25 fre-

quencies often have larger increases than changes in severity, which may be complicated

by months with temporary above-threshold SPI values occurring within a drought event

that negatively contribute to the changes — the effects of including or excluding such

“excess periods” are explored in Section 5.6.

The following sections present the results obtained here on a region-by-region basis.

Theses are also compared to findings in other studies.

4.4.3 Lower Latitudes

South of 45◦N (PRUDENCE: IP and MD; Köppen: BWh, BSh, Csa, Csb, Dsa, Dsb),

projections of enhanced drought conditions are typically robust across the 180 simula-

tions (Figure 4.5). The increasing drought conditions obtained here is consistent with the

general precipitation reduction simulated for regions from the Mediterranean to Caspian

Sea region (Noharaet al., 2006). This also suggests that southern Europe — which

already suffers from droughts due to low precipitation and high temperature extremes

(Kundzewiczet al., 2006) — might be especially vulnerable to global warming (Giorgi

and Lionello, 2008).

4.4.3.1 Mediterranean

For SPI12 severity, magnitudes increase by up to∼3-fold in 2001–2050 and∼6-fold

in 2051–2100; DAI25 frequencies have larger increases (Figures 4.6 and 4.7). In absolute

terms, 25% of IP and MD being drought-affected occurs in roughly 9% of the time during
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1951–2000, but in 25–60% during 2051–2100; Köppen results have similar frequencies.

Similarly, other studies have indicated declining precipitation intensity (Benistonet al.,

2007) and annual mean precipitation (Buonomoet al., 2007; Lavaysseet al., 2012), by

10–20% or more (Chenowethet al., 2011; Garcı́a-Ruizet al., 2011), due to fewer wet

days in southern Europe (Kjellström, 2004), as well as drying of soil moisture (Gibelin

and Déqué, 2003; Wang, 2005) and longer hot-and-dry spells (Kundzewiczet al., 2006).

Significant and widespread precipitation reduction (e.g. by>25%, or>125 mm annually,

over southwestern Turkey; Evans, 2008) in the Middle East and Turkey occurs due to

future decreases in storm track activity in the eastern Mediterranean (Evans, 2010; Hem-

ming et al., 2010; Chenowethet al., 2011). The projected increases in drought (Sheffield

and Wood, 2008b; Sowerset al., 2011; Warrenet al., 2012), which fluctuates with pre-

cipitation deviations (Hemminget al., 2010), and earlier and longer events (Christensen

et al., 2002; Plantonet al., 2008), e.g. maximum drought length in Ebro/Gallego (Spain)

may be∼30 months longer with enhanced severity (Blenkinsop and Fowler, 2007b), are

often consistent across all the models used (Blenkinsop and Fowler, 2007b), drought in-

dices applied (Burke and Brown, 2008) and timescales considered (Loukaset al., 2008),

in agreement with the robust changes shown in Figure 4.5.

While precipitation in the southern Mediterranean and the Middle East generally de-

clines across all seasons (Gibelin and Déqué, 2003; Giorgi and Bi, 2005; Kundzewicz

et al., 2006; Benistonet al., 2007; Kjellströmet al., 2011), it may increase in winter

(Gibelin and Déqué, 2003), particularly in northeastern and northwestern Mediterranean

coasts (Kjellströmet al., 2011) (e.g. northern Balkans; Buonomoet al., 2007; Giorgi and

Lionello, 2008), due to extremes (e.g. southern France; Gaoet al., 2006) and/or storm

activities (Sumneret al., 2003). Such sub-regional variations could explain the less robust

(yet with relatively high agreement of>80%) winter positive drought trends (Figure 4.5).

Increases in SPI3 drought parameters are typically less than 3-fold in 2001–2050 and

5-fold in 2051–2100; magnitudes of change in summer are considerable in most cases.

Csa, Csb and Cfa in particular, have marked increases in summer, especially in 2051–

2100, e.g. summer DAI25 frequencies may increase by∼10-fold or more (Figure 4.7)

from≈5% of the time during 1951–2000 to 58% of 2051–2100. These results are consis-

tent with the projected increasing summer aridity (Ruosteenoja and Räisänen, 2013) and
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drying (Kundzewiczet al., 2006; Blenkinsop and Fowler, 2007b; Ekströmet al., 2007),

e.g. summer droughts duration may become>30 days longer (Hansonet al., 2007). How-

ever, Ruosteenoja and Räisänen (2013) noted that this summer drying may be underes-

timated as CMIP3 models exclude stomatal resistance with higher CO2 concentrations

(which reduces transpiration, thus further decreases air humidity and cloudiness and in-

creases solar radiation). The drying is associated with precipitation reduction — e.g. by

30% by 2070–2099 (Giorgi and Lionello, 2008; Somotet al., 2008), or−4.25%/decade

under SRES A2 (Giorgi and Bi, 2005) — and decreased heavy precipitation (Beniston

et al., 2007), along with the northward extension of aridity (Gao and Giorgi, 2008).

4.4.3.2 Western-Central Asia (BWk, BSk)

Similar to the Middle East, literature on Central Asia, particularly those on future

climate simulations, is less abundant than for the European Mediterranean due to less

research capacity and data availability in this region.

BWk and BSk generally show increases in drought (Figure 4.5), which is in agreement

with the projected drying trend and increasing aridity especially in western Turkmenistan

Lioubimtseva and Henebry (2009). The relatively low agreement between projections in

these results, especially in winter/summer, may be related to the highly uncertain simu-

lated precipitation changes (Lioubimtsevaet al., 2005; 2012) — e.g. Lioubimtseva and

Henebry (2009) simulated<1 mm/day, and with high temporal and spatial variability —

due to the difficulties in climate change modelling in arid zones (Lioubimtseva and Cole,

2006). Furthermore, precipitation trends in this region are complicated by the wetting

tendency in both northern (European Russia and Central Siberia) and southern (e.g. Iran)

parts of the region, but drying in between (Lioubimtseva and Henebry, 2009). Seasonally,

BWk results suggest negative changes in winter drought but positive changes in other

seasons (Figure 4.5). These seasonal changes agree with the precipitation projections:

increase or vary little in winter, reduce in spring, decline substantially in summer and

autumn (Lioubimtseva and Henebry, 2009; Lioubimtsevaet al., 2012).
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4.4.3.3 France (FR)

France has similar, though less robust, drought changes to the lower latitudes (Figure

4.5). This could be due to the averaging of sub-regional precipitation variations: decreases

have been projected in the south and increases northwards (by 25%), with small deviations

in the central part and over the Alps (Etcheverset al., 2002). Increases in SPI12 results

have relatively high (∼89%) agreement in the projected direction of change across the

simulations. This agrees with the longer droughts projected for France (Plantonet al.,

2008).

For SPI3, winter/spring (mostly winter for FR) results have lower agreement (often

<60%) than in summer/autumn (typically≥90%), particularly in DAI25 frequencies.

This lack of robustness in winter results could be related to the sub-regional variations

and uncertainties in the simulated winter precipitation increase (Gaoet al., 2006; Planton

et al., 2008; Huss, 2011). In summer/autumn, DAI25 frequency increases to∼20% dur-

ing 2001–2050 (by up to 3.4 times from 1951–2000 value) and 40% during 2051–2100

(6.5 times). These results are consistent with the projected substantial summer precipi-

tation reduction (Räisänenet al., 2004) and increase (by∼50%) in maximum number of

consecutive dry days over much of France (Plantonet al., 2008).

4.4.4 Higher Latitudes

Of the study region, areas north of 55◦N (PRUDENCE: SC; Köppen: Dfc, ET) are

the least drought-prone under future climates.

For SPI12, of those cases identified as drought (e.g. DAI25) during 1951–2000, most

(>50%) remain as drought under climate changes projected for 2001–2050, but≤20%

remain as drought (in absolute terms, DAI25 events occur in<4% of the time) under

the strongest changes projected for 2051–2100 (Figures 4.6 and 4.7). These results fol-

low the projected increasing mean precipitation simulated for Scandinavia and northeast-

ern Europe (Arnell, 1999c; Räisänenet al., 2004; Hanssen-Baueret al., 2005; Nohara

et al., 2006; van Lanenet al., 2007; Wilsonet al., 2010) due to more frequent wet days

(Buonomoet al., 2007) and increased precipitation intensity (Kjellström, 2004; Alcamo

et al., 2007b).

Unlike other regions, negative changes in drought parameters occur throughout the
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year, including summer/autumn (Figure 4.5). Agreement is higher in winter/spring (also

in autumn), with magnitudes, in both relative and absolute terms, similar to that for SPI12

results; but slightly smaller reductions occur in autumn. Although summer reductions

lack absolute robustness, projection agreement is high (>80%). Large parts of EA and

southern Russia (Dfb climate) also share similar winter/spring characteristics to the high

latitudes, despite lower consistency in simulated direction of change. These seasonal

results are consistent with the anticipated precipitation increases that are most pronounced

in winter (Räisänenet al., 2004; Hanssen-Baueret al., 2005; Blenkinsop and Fowler,

2007b) due to more frequent and intense events and extremes (Freiet al., 2006; Giorgi

and Coppola, 2009).

In summer, precipitation increases have generally been projected for the high-latitudes

of the study region (Kundzewiczet al., 2006; Benistonet al., 2007; Lioubimtseva and

Henebry, 2009; Kjellströmet al., 2011), e.g. by>25% in 2070s (Alcamoet al., 2007a).

Compared to winter/spring results, the less robust summer/autumn regional drought re-

duction in Figure 4.5 may be related to sub-regional variations and uncertainties in the

projected precipitation changes: e.g. increases in northern Scandinavia and decreases or

unclear sign of change in the south (Hanssen-Baueret al., 2005; Freiet al., 2006; Rowell

and Jones, 2006; Wonget al., 2011), causing shorter summer droughts to occur in parts

of Scandinavia (Hansonet al., 2007). Moreover, in western Russia, dry spell length was

found to vary little even with 10–35% increases in summer precipitation, which suggests

that the persistence of summer drought is more responsive precipitation reduction than

increases (Palet al., 2004).

4.4.5 The Alps (AL)

The Alpine ridge experiences and separates the competing climate regimes of Mediter-

ranean, Continental, Atlantic and Polar air masses (Beniston, 2005). Recent sub-regional

precipitation trends — slight wetting (drying) in northwest (southeast) (European Envi-

ronment Agency, 2009) — may alter in the future. However, the complex climatic in-

fluences, along with topography (Gaoet al., 2006), are likely to have contributed to the

uncertain trends with larger projection spread in most cases, except the projected changes

in summer and autumn which are in more agreement (Figure 4.5).
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SPI12 results indicate positive changes with relatively high (∼89%) simulation agree-

ment (Figure 4.5). This agrees with the projected mean precipitation decline found by

others (e.g. Beniston, 2005; Smiateket al., 2009; Kotlarskiet al., 2010) that is caused

by substantially lower wet-day frequency (Schmidliet al., 2007), such as in southwestern

Alps (European Environment Agency, 2009). The strongest drying (by 41%) occurs in the

Swiss Alps (Hortonet al., 2006), although magnitudes are model-dependent, e.g. for the

French Alps (Martinet al., 1996). This may induce earlier and longer droughts (Beniston

et al., 2007), e.g. longer droughts in the Brenta region (northern Italy) may have higher

maximum severity and frequency (by up to 2–3 events/decade) (Blenkinsop and Fowler,

2007b).

Seasonally, mean precipitation generally increases (decreases) in winter (summer);

spring and autumn have less clear trends (Beniston, 2005; Hortonet al., 2006), although

European Environment Agency (2009) suggested higher autumn precipitation. Figure 4.5

reveals lower agreement (53–79%) in winter/spring, which could be associated with un-

certain magnitudes of wetting (Jasperet al., 2004; Beniston, 2005; European Environment

Agency, 2009; Smiateket al., 2009; Kotlarskiet al., 2010).

Robust summer/autumn increases have magnitudes almost comparable to that for

IP/MD, by up to 2.7 times in 2001–2050 and 5.3 times in 2051–2100 (Figure 4.6); DAI25

events may occur in up to 23% and 46% in the respective periods. These correspond with

findings in other studies, that include declining mean summer and autumn precipitation

(Beniston, 2005; Smiateket al., 2009; Kotlarskiet al., 2010) due to less frequent wet-

days (Calanca, 2007; Schmidliet al., 2007), increasing summer dry periods (Beniston,

2005; Smiateket al., 2009), particularly in northern Alps where droughts are currently

rare (European Environment Agency, 2009), and more frequent (by 15–50%) and severe

(by 20%) droughts (Calanca, 2007).

4.4.6 Mid-Europe (ME) and Eastern Europe (EA)

The SPI analysis generally reveals intensifying drought conditions in ME and EA for

both long and short events, except for winter/spring (Figure 4.5). These results agree with

findings in other studies. For example, Noharaet al. (2006) projected lower annual mean

precipitation for the Danube basin. Much of central Europe is projected to experience an
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increase in the duration of the longest dry period (Kundzewiczet al., 2006). In eastern

Europe, more frequent very dry years (Maracchiet al., 2005), strong increases in 100-year

droughts in Hungary, Bulgaria, Romania, Ukraine and southern Russia have been simu-

lated (Lehneret al., 2006). The low agreement (<56%) in the projected SPI12 changes for

ME (Figure 4.5) follows an unclear sign and magnitude of precipitation change for much

of the year (Kjellströmet al., 2011), as more frequent/intense heavy precipitation coun-

teracts the declining precipitation in central Europe (McGregoret al., 2005; Kundzewicz

et al., 2006).

For SPI3 results, the negative changes in drought parameters in winter for both regions

(Figure 4.5) are consistent with the increasing winter (due to more frequent and intense

precipitation) and spring precipitation (Räisänenet al., 2004; Giorgi and Coppola, 2009;

Ruosteenoja and Räisänen, 2013).

Increasing summer/autumn drought conditions projected for both regions may be as-

sociated with modified land-atmosphere feedbacks, which also influences climate change.

As warming shifts European climatic regimes northwards, central-eastern Europe be-

comes a new transitional zone between dry/wet climates, similar to the present-day Mediter-

ranean (Kyselýet al., 2010). Strong land-atmosphere interactions in this zone have been

found to increase summer precipitation variability (Seneviratneet al., 2006). A larger

land–sea contrast in lower tropospheric summer warming causes an earlier, more rapid

decline in soil moisture during spring and a positive summer feedback mechanism (Row-

ell and Jones, 2006). Both positive (McGregoret al., 2005; Giorgi and Coppola, 2009)

and negative (Rowell and Jones, 2006; van Lanenet al., 2007; e.g. Räisänenet al. (2004)

simulated by up to 70% under SRES A2) precipitation changes have been projected for

continental and southeastern Europe. The abundant summer precipitation with more fre-

quent/intense precipitation events in central Europe was found to relate to some feedbacks

between convection, radiation and surface fluxes — mechanisms of which are not well

identified and may vary among models (Plantonet al., 2008), hence the lack of robust-

ness in results obtained here.
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4.4.7 British Isles (BI)

Reduction in SPI12 severity and DAI25 frequency are projected, but with low (<62%)

agreement (Figure 4.5). These are consistent with the uncertain direction of change for

mean precipitation in Scotland and northern England, as well as the inconsistent changes

in occurrence and severity of longer-duration drought simulated for the UK (Blenkin-

sop and Fowler, 2007a). Blenkinsop and Fowler (2007a) and Vidal and Wade (2009)

reported shorter and less severe long droughts (though with high uncertainty, particu-

larly for southern England; Blenkinsop and Fowler, 2007a). However, Burkeet al.(2010)

found events based on 12-month precipitation accumulations would become slightly more

severe; Fowler and Kilsby (2004) simulated increasing drought frequency, duration and

severity in most regions by 2070–2100. Longer events could become more frequent in

regions that rely on groundwater resources, representing potentially serious challenges

for the companies concerned (Blenkinsop and Fowler, 2007a). The low agreement found

here (Figure 4.5) could be associated with the averaging of sub-regional spatial variations

— increasing drought duration and severity are more likely in southern/southeast Eng-

land (with frequency to triple by 2070–2100; Fowler and Kilsby, 2004), than in Scotland

(Vidal and Wade, 2009; Burkeet al., 2010; Burke and Brown, 2010).

Seasonal changes (Figure 4.5) generally follow the simulated mean precipitation in-

crease in winter and decrease in summer (Blenkinsop and Fowler, 2007a). Although

studies indicate more frequent short droughts over the UK (Vidal and Wade, 2009; Burke

et al., 2010), e.g. by>35% under SRES A2 (Fowler and Kilsby, 2004), the direction

of change in Scotland and Northern Ireland and some eastern coastal areas is uncertain

with increasing winter precipitation (Blenkinsop and Fowler, 2007a). The uncertainty

in the projected summer drying is caused by two competing forces: land-sea contrast

in the lower tropospheric summer warming produces increased rainfall whereas large-

scale atmospheric changes, including remotely forced circulation changes, reduces rain-

fall (Rowell and Jones, 2006). The simple interpretation of future “wetter winters” and

“drier summers” implies the expectation of short summer droughts and no dry winters;

however, multi-season to multi-year droughts (as described by SPI12 and SPI24) could

occur even with winter wetting (Vidal and Wade, 2009).
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4.4.8 Köppen Climate Zones

The 16 Köppen climate zones (Figure 3.2) can be broadly categorised into “high”,

“moderate” and “low” based on their overall projected magnitudes of change in drought

parameters. The “high” category includes BWh, BSh, Csa, Csb, Cfa, Dsa and Dsb. These

climates tend to occur in the low-latitudes around the Mediterranean and Black Sea basins,

and have robust increases in drought. The “moderate” climates consists of BWk, BSk,

Cfb, Dsc, Dfa and Dfb. These mostly correspond to the mid-latitudes and Central Asia,

where drought decreases in winter/spring and increases in summer/autumn. The “low”

category is characterised by polar climates (Cfc, Dfc and ET) found in the high lati-

tudes and the Alps. These regions generally show reduced drought conditions. Patterns

of change for the Köppen climate zones generally correspond with those for the PRU-

DENCE regions due to the geographic clustering of these climate types in each of the

three categories.

4.5 Projection Range

Uncertainties in climate change projections create a significant challenge to how sci-

entific information can be used in practical applications (Blenkinsop and Fowler, 2007a).

While Figures 4.6 and 4.7 show the IQRs and mean magnitudes of change of drought pa-

rameters from the 180 simulations, Figures 4.8–4.10 and 4.11–4.13 demonstrate both the

1951–2000 values and the full projection range for PRUDENCE- and Köppen-averaged

results, respectively. As the Figures suggest, projected drought characteristics and changes

are highly influenced by the choice of emission scenario and GCM but they also enable

some generalisations to be made.

Greater uncertainty roughly corresponds with greater magnitude of change, i.e. a

larger projection range tends to accompany higher warming (e.g. in 2051–2100 and in

summer/autumn) for both SPI12 and SPI3. Therefore, regional variations and the as-

sociated uncertainties generally increase with time, and are more apparent in the warm

seasons, similar to studies for mean precipitation change (e.g. Wang, 2005; Freiet al.,

2006; Benistonet al., 2007; Schmidliet al., 2007; Smiateket al., 2009). Furthermore,

low-latitude regions tend to have the largest uncertainties in change magnitude, whereas
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the high latitudes show relatively small uncertainties and little seasonality, as warming is

greatest in former and smallest in the latter.

In summary, results for 2001–2050 are relatively insensitive to the choice of emission

scenario or GCM, whereas the magnitudes, or even direction, of change in 2051–2100

are strongly influenced by the emission scenario or GCM applied. Compared to the warm

seasons and warmer regions, results in the cold seasons and colder regions are also less

affected by the chosen scenario or GCM.
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Figure 4.11: Same as Figure 4.8, but for Köppen-averaged severity.
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Figure 4.12: Same as Figure 4.9, but for Köppen-averaged DAI25 frequency.
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Figure 4.13: Same as Figure 4.10, but for Köppen-averaged DAI50 frequency.
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4.6 Sources of Uncertainty

The range of emission scenarios and GCMs applied in the present study has enabled

the assessment of their relative contribution in the total variance of the drought projec-

tions. Emission scenario uncertainty produces varying degrees of future radiative forc-

ings. GCM uncertainty arises when different GCMs respond differently to the same ra-

diative forcings, producing a range of global temperature warming and a range of geo-

graphical and seasonal patterns of precipitation changes.

The overall variance in drought parameters (T 2) was quantified by fitting a linear

model to the projections and partitioning the sum of squared deviations (Equation 4.6) into

emission scenario uncertainty (SCEN2), GCM uncertainty (GCM2) and an interaction

term (I2) that arises if scenario and GCM variances are not independent, i.e. the interac-

tion between scenario and GCM. These methods are fairly simple but findings herein are

expected to be qualitatively and quantitatively robust. The relative contribution of each of

these sources to the projected changes in drought severity are presented in Figures 4.14

and 4.15 for each regional average. Results for DAI25 frequencies (not shown) have very

similar regional variations and magnitudes to those for drought severity; those for DAI50

frequencies are excluded due to their relatively rare occurrence under both present-day

and future climates.

T 2 = SCEN2 + GCM2 + I2 (4.6)

Figures 4.14 and 4.15 show that patterns of the relative contribution from these sources

of uncertainty vary considerably between 2001–2050 and 2051–2100, and also across the

regions. However, different seasons, and both SPI12 and SPI3 results, produce similar

patterns.

GCM uncertainty is the dominant source of variance regardless of the region, future

period, season and drought parameter. It typically accounts for>90% of total variance

in 2001–2050, and>70% in 2051–2100; it is particularly substantial in BI. Scenario un-

certainty is negligible in 2001–2050, but becomes more important in 2051–2100 (5–35%

of total variance). In 2051–2100, the scenario contribution roughly reflects the absolute
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Figure 4.14: Sources of uncertainty in PRUDENCE-averaged drought severities.



4.6 Sources of Uncertainty 99

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

2001−2050 2051−2100
(a) SPI12

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

(b) SPI3

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

DJF

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

DJF

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

MAM

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

MAM

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

JJA

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

JJA

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

SON

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

BWh BWk BSh BSk Csa Csb Cfa Cfb Cfc Dsa Dsb Dsc Dfa Dfb Dfc ET

SON

%
 o

f t
ot

al
 v

ar
ia

nc
e

0

20

40

60

80

100

Scenario GCM Error

Figure 4.15: Sources of uncertainty in Köppen-averaged severities.
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magnitudes of drought severity and DAI25 frequency that correspond to the level of forc-

ing — being largest (∼20–30%) around the Mediterranean basin (PRUDENCE: IP, MD;

Köppen: Csa, Csb) and Middle East (Köppen: BWh, BSh, Dsa, Dsb); the relative GCM

contribution in these regions is correspondingly lower. Although smaller than for the

lower-latitudes, scenario variance is also relatively large (∼10–20%) in the high-latitudes

(PRUDENCE: SC; Köppen: Dfc) in winter/spring. These could be related to the rela-

tively robust drying (wetting) trend in the lower (northern) latitudes throughout the year

(in winter/spring), thereby results are relatively more dependent on radiative forcing than

on the choice of GCM.

An initial study that involved ten carbon cycle models (as mentioned in Section 3.5),

in addition to the emission scenarios and GCMs considered in this chapter, also revealed

similar relative contributions to those described above: with GCM uncertainty being the

greatest source in all cases, scenario uncertainty becoming more important in 2051–2100

compared to 2001–2050, and carbon cycle model uncertainty representing<5% of the

total variance in both halves of the 21st century.

Burke and Brown (2010) reported that simulated warming-induced meteorological

drought changes for the UK are indistinguishable from natural variability or projection

uncertainty. Nevertheless, similar to the present findings, many studies (e.g. Dubrovsky

et al., 2005; Lioubimtseva and Cole, 2006; Benistonet al., 2007; Blenkinsop and Fowler,

2007a;b; Buonomoet al., 2007; Giorgi and Lionello, 2008; Vidal and Wade, 2009; Burke

et al., 2010; Kyselýet al., 2010) also found climate model (GCM/RCM) uncertainty (par-

ticularly GCM and their representation of changes in the large-scale circulation; Kjell-

strömet al., 2011) to dominate in all lead times, especially for precipitation. Variance

due to natural internally-generated variability (not explicitly explored here because the

ClimGen approach allows this to be controlled for, by constraining the internal variability

to follow the sequence of observed precipitation anomalies selected to create the scenario)

and emission scenarios in temperature and precipitation projections are more important

for the first and last few decades, respectively (Hawkins and Sutton, 2010; Kjellström

et al., 2011).

The interaction component typically represents<3% of total uncertainty in 2001–

2050 and∼9% in 2051–2100, suggesting the increasing significance of combined effects
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of say, a particular emission scenario and GCM with time. One possible explanation is re-

lated to the spatial- and/or temporal-averaging of results for each region and non-linearity

introduced by pattern-scaling in ClimGen. In the BI for instance, different combinations

of emission scenario and GCM pattern may generate different precipitation decline rates

with warming; an overall drying trend occurs if the reduction rate (an exponential function

of warming, e.g. for southeastern England), exceeds that of increase (a linear function, e.g.

for Scotland); the opposite would indicate an overall wetting. Greater warming could pro-

duce a larger discrepancy in the exponential/linear functions. Nevertheless, the fractional

contribution of this element remains small.

4.7 Conclusions

This chapter has characterised the spatial and temporal changes in European meteoro-

logical drought between 1951–2000 and two future periods, 2001–2050 and 2051–2100.

Drought was measured by the SPI, which involves relatively simple calculations and data

requirements; drought was defined as SPI≤−1.5. Precipitation scenarios, simulated by

MAGICC6 and ClimGen, based on eighteen GCMs under ten emission scenarios were

used. Geographically- and climatically-averaged drought severity (i.e. intensity×duration)

and spatial extent for both 3-month and 12-month events were analysed. Since ClimGen

incorporates climate change information diagnosed from GCM simulations that were un-

dertaken for CMIP3 (Osborn, 2009), it uses the same sequence of observed variability to

generate each series of data, whether for 1951–2000, 2001–2050 or 2051–2100. There-

fore, all deviations relative to the baseline can be attributable to anthropogenic climate

change and not to internal climate variability.

The projected drought changes generally reflect the precipitation changes simulated in

other studies, since SPI is transformed from precipitation accumulated over a given period

(Dubrovskyet al., 2008). Results vary substantially depending on the GCM, emission

scenario, region and season. Projected changes increase with larger forcing; the agree-

ment between results (robustness) and largest magnitude changes tend to occur in both

high- (Scandinavia and Russia) and low-latitudes (the Mediterranean and Black Sea re-

gion). The former is projected to become less drought-prone, whereas marked increases in

drought severity and DAI25 frequency (typically by 2–3 times in 2001–2050, and 10-fold
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or more in 2051–2100 for both SPI3 and SPI12 events) are simulated for the latter. Across

much of the study region, increasing forcing promotes/exacerbates drought conditions, or

reverses changes from negative to positive in some high-latitude cases. Robust increases

(decreases) in drought parameters tend to occur in summer/autumn (winter/spring); neg-

ative trends may occur in high latitudes even in summer/autumn. Results averaged across

Köppen climate zones demonstrate more robust trends, better reflecting climate change

signals, than geographically-averaged results. Sub-regional variations may be consider-

able, causing inconclusive regional trends (e.g. for the British Isles).

The confidence level of the results depends on the level of uncertainty of the method-

ologies (Plantonet al., 2008). Here, GCM and emission scenario uncertainties were stud-

ied. The application of 180 precipitation scenarios has demonstrated the projection range.

Despite agreement in the change direction for some regions, their magnitudes are highly

uncertain. Uncertainties tend to widen with forcing, therefore are higher in 2051–2100

and summer/autumn. Although emission scenario uncertainty becomes more important

post-2050, GCM variance dominates across all dimensions, as commonly found in litera-

ture. These results suggest that findings based on a single scenario/model could be highly

misleading.

Neither the emission scenarios nor the models were weighted, and each emission

scenario and model pattern was assumed to be independent and equally plausible; inter-

scenario and inter-model spread were assumed to be representative of the true model

uncertainty. This was largely on conceptual grounds (Arnell, 2011) (see in Sections 2.6.6–

2.6.10 for discussions on the challenges in weighting models), and equal weighting is the

“safer” and more transparent approach for many applications (Weigelet al., 2010). The

assumption that all the emission scenarios were equally likely is due to the difficulty in

estimating the levels of emissions in future, as well as the incomplete understanding of

how the climate system would respond to these emissions.

It is worth noting that increasing drought conditions in regions that already suffer

from the hazard maybe of less concern compared to regions that do not currently expe-

rience their effects. Since orographically-induced fine scale structures are often absent

in GCM-simulated precipitation scenarios (Giorgi and Lionello, 2008), detailed climate

change impact studies would require high resolution models with better representation
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of topography (Redaudet al., 2002; Räisänenet al., 2004; Gaoet al., 2006); inevitably,

downscaling could introduce additional uncertainty into the assessment (Plantonet al.,

2008) and/or represent uncertainty more fully. Local/regional drought impact assessments

would require the use of locally appropriate drought indices (Burke and Brown, 2008)

and consideration of processes and practices currently excluded from the climate models

(e.g. irrigation). The diverse meteorological drought response to climate change found

here implies the need for policy-relevant research on climate change impacts and robust

adaptation decisions that consider a wide range of expression of modeling uncertainty

(Burke and Brown, 2008; Hawkins and Sutton, 2010), or risk-based information (e.g. by

considering frequency distributions of climate change impacts) rather than deterministic

information (Goslinget al., 2011a).

4.7.1 Limitations

This study is subject to caveats. Results presented here are indicative of plausible

climate change impacts on meteorological drought characteristics, and should not be con-

sidered as definitive predictions since the primary concern here is to assess changes in a

relative sense. Also, the focus on events with SPI≤−1.5 implies that another threshold

would yield different findings. The 1951–2000 baseline was assumed to be representative

of future conditions in the absence of climate change (Arnell, 1999c). When fitting the

gamma distribution, a linear interpolation of the preceding and subsequent SPI values was

applied for undefined entries in months with zero rainfall; an improvement could be made

by treating these separately (e.g. Abramowitz and Stegun (eds), 1965; Husaket al., 2007).

Results are also subject to limitations associated with MAGICC6 and ClimGen. For

instance, precipitation scenarios are conditional upon MAGICC6-simulated emulations,

which may differ from the direct GCM outputs (Liet al., 2009). Also, the pattern-scaling

approach in ClimGen assumes a constant spatial pattern of precipitation change over time

(Goodesset al., 2003a) that responds linearly (exponentially) to global-mean temperature

increase (decrease) (Mitchell, 2003), which may not hold for large changes or where the

rate of temperature change slows or even reverses (Arnell, 2011).

Results presented here also under-represent the true uncertainty in drought projec-

tions. Amongst others, uncertainty related to climate model physics (Goslinget al.,
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2011a) and the fitting of a different statistical distribution to the precipitation data have

not been explored. Furthermore, results here are SPI-based (limitations of which are

discussed in Section 4.2.2.3); using another drought index (e.g. PDSI) could yield dif-

ferent results. Also, SPI may be less appropriate for regions where temperature is more

influential than precipitation. Plant response to higher CO2 levels, which can reduce evap-

otranspiration and increase soil moisture, and widen global feedbacks onto the climatic

drivers of drought, may also influence drought development and have not been accounted

for here (Burke, 2011). Lastly, the application of ClimGen has generated gridded outputs

at 0.5◦ resolution due to the pattern-scaling approach, hence downscaling uncertainty has

not been explored. Results presented here could be compared to those based on regional

climate change simulations (which may be more realistic), such as the CORDEX (Co-

ordinated Regional Climate Downscaling Experiment) initiative from the World Climate

Research Program (http://www.meteo.unican.es/en/projects/CORDEX).

This chapter has studied the effects of climate change on meteorological droughts that

were defined with precipitation data only. The effects of changes in temperature, and thus

potential evapotranspiration on drought are considered in the next chapter, which investi-

gates the future changes in hydrological droughts using hydrological model simulation of

runoff.



Chapter 5

Hydrological droughts in Europe

under climate change and the

uncertainties in the projections

5.1 Introduction

Much of Europe could experience more severe “dry and hot” extremes as climate

changes (Kundzewiczet al., 2006). Generally, increasing precipitation and less severe

streamflow droughts are projected for northern Europe while the opposite is expected in

southern Europe (e.g. Arnell, 1999c; 2003a; Kundzewiczet al., 2006; Lehneret al., 2006;

Noharaet al., 2006; Feyen and Dankers, 2009; Garcı́a-Ruizet al., 2011; Weisset al.,

2007; Bateset al., 2008; Dai, 2013). Low flows and droughts could negatively impact on

agriculture, river navigation, water and energy supplies, exacerbate water stress (Feyen

and Dankers, 2009), as well as deteriorate water quality (Blenkinsop and Fowler, 2007b).

Drought risk management requires knowledge and understanding of droughts, their

severity and spatial extent (Wonget al., 2011). Hydrological droughts are generally mea-

sured by river runoff or streamflows (Panu and Sharma, 2002). Long-term average runoff,

which indicates water availability from a resource perspective, is generally equivalent to

the difference between precipitation and evapotranspiration (Millyet al., 2005).

Simulation of climate change impacts on drought patterns is inherently uncertain. In

addition to uncertainties due to climate and hydrological modelling, uncertainty is also
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introduced by the methodology used to characterise drought. In order to study climate

change effects on European hydrological droughts (Research Question 1), uncertainties

associated with drought definition and quantification need to be considered. This chapter

examines the uncertainties introduced by the choice of threshold that identifies drought

condition from “normal” climate (Research Question 2) and the definition of when a

drought terminates (Research Question 3). In addition, uncertainties arising from drought

classification are assessed by comparing hydrological results to those based on a mete-

orological definition (Chapter 4; Research Question 4). This allows the importance of

temperature variations, which in turn modify potential evapotranspiration (PET), to be

investigated (Research Question 5). Analysis in this chapter has focused on projections

based on eighteen GCMs but only one emission scenario, RCP6, which represents mod-

erate radiative forcing (see Section 3.4.2). This is because findings in Section 4.6 indicate

that GCM uncertainty is the dominant source of variance regardless of the region, future

period, season and drought parameter, thus is of greater concern compared to emission

scenario uncertainty.

In this study, a “category” may refer to a season, region or a 12- or 3-month drought

parameter (severity, DAI25 or DAI50). Specific research questions for this chapter in-

clude:

1. How might climate change alter European hydrological drought characteristics?

2. Which drought category(-ies) might be more sensitive to droughts during high-flow

seasons?

3. As intermittent “wet” conditions may occur within a drought event, which category(-

ies) might be more susceptible to a longer drought event being reclassified as a

number of mutually dependent minor droughts?

4. Do meteorological and hydrological definitions of drought produce consistent pro-

jections of future changes?

5. How does changing temperature, via its influence on PET, impact on the direction

and/or magnitude of runoff change?

The chapter is organised as follows. The generation of future climate scenarios is

described in Chapter 3. Sections 5.2 and 3.7.1 present the methodology and the runoff
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thresholds in absolute values, respectively. Sections 5.5 and 5.6 present the analysis for

Research Questions (2) and (3), respectively. Subsequently, hydrological droughts in Eu-

rope under future climates are explored in Section 5.7. Section 5.8 discusses the level

of consistency in hydrologically- and meteorologically-defined drought results, and the

temperature influence is examined in Section 5.8.7. Finally, Section 5.9 presents the con-

cluding remarks and potential for future research.

5.2 Drought Identification

Low flowanddeficit are commonly used to quantify hydrological droughts (Hisdal

et al., 2004). Low flow (e.g. a timeseries of annual minimumn-day discharge, mean

annual minimumn-day discharge or a percentile from the flow duration curve (FDC)) de-

scribes the low flow part of the regime (Tallaksenet al., 1997) but does not consider their

evolution over time. It is therefore useful for studying the magnitude of a certain drought

duration (Clausen and Pearson, 1995). Deficit is commonly obtained by the threshold

level method and enables a series of drought events (e.g. duration or deficit volume; Perez

et al., 2011) to be derived. Severity of hydrological droughts may also be quantified using

the Streamflow Drought Index (SDI; Nalbantis and Tsakiris, 2008), an analogy to SPI, for

instance.

This chapter has adopted a methodology similar to that for meteorological drought

analysis (Chapter 4). Hydrological droughts were quantified using the threshold approach

as it has practical applications when a certain minimum flow is required, e.g. for reservoir

design or when permissions for river abstractions are considered (Clausen and Pearson,

1995). The threshold is chosen based on the characteristics of the streamflow regime

(Fleig et al., 2006), and a drought occurs when runoff is below a predefined threshold

(Perezet al., 2011).

Analysis for both short (3-month) and long (12-month) events were based on a lagged

moving average of the runoff timeseries (hereafter, “runoff timeseries”), therefore runoff

value for montht also accounts for conditions in the preceeding 2 (11) months for 3-

month (12-month) events. Deviations between the future periods (2001–2050 and 2051–

2100) from the baseline (1951–2000) represent the effects of climate change. Drought

parameters examined include severity, DAI25 and DAI50 (see Section 3.8). Even though



108
Hydrological droughts in Europe under climate change and the uncertainties in the

projections

absolute deficit volumes may not be comparable across regions as dry regions have lower

deficit volumes, their magnitudes of change can be assessed temporally, across seasons

(3-month events) and regions.

5.3 Hydrological Drought Thresholds

The methodology for deriving the hydrological drought thresholds in absolute runoff val-

ues is described in Section 3.7.1.

5.4 Methodology

The methodology for defining drought fundamentally affects the results and subse-

quent analysis. This chapter presents a sensitivity analysis on the effects of using different

truncation levels and/or drought definitions on the drought parameters. Unless otherwise

stated, analyses were carried out for scenarios derived from the 18 GCMs under RCP6

that represents moderate radiative forcing (see Section 3.4.2).

5.4.1 Classification Uncertainties

Research Question 4 in Section 5.1 involves investigating the uncertainties due to

two types of drought classification, hydrological and meteorological. To enable their

comparison, both SPI and runoff timeseries have the same probability of exceedance (see

Section 3.7.1).

Similar to meteorological droughts (Chapter 4), it was only when>3 (or 12) months

of runoff timeseries does not fall below the threshold that events were considered sepa-

rate. This accounts for prolonged dry periods with flow(s) exceeding the threshold level

temporarily, therefore a large drought is unlikely to be divided into a number of minor

droughts that are mutually dependent (Tallaksenet al., 1997).

Compared to Chapter 4, Mac-PDM.09 yields less grid cells for the same study region,

as ClimGen classifies coastal cells as a “land” cell even if the land component represents

a very small fraction of the cell. To facilitate comparison between meteorological and

hydrological drought characteristics under climate change, those SPI cells that do not

exist in the Mac-PDM.09 outputs were excluded, resulting in 8385 cells for 12-month



5.4 Methodology 109

events. For 3-month events, dry cells with a considerable number of months with zero

flow result in the absolute runoff threshold being zero. These cells were excluded because

the selection of a non-zero runoff threshold cannot guarantee that the threshold would

correspond to the same percentile of exceedence as SPI−1.5; also excluded were two cells

with runoff threshold of 0.1 mm — a value so low that makes drought severity difficult to

determine as it measures the cumulative departure from the threshold. Hence, short (long)

drought analysis involves 7516 (8385) cells of the study region. Alternatively, a higher

threshold (lower percentile) can be chosen (e.g. Fleiget al., 2006).

5.4.2 Event Uncertainties

Research Question 3 in Section 5.1 can be addressed by comparing drought results that

exclude the excess periods to those that include them (see Section 5.4.1 methodology).

Here, excess periods refer to months with temporary above-threshold runoff that occurs

within a drought event.

As in Section 5.4.1, fixed runoff thresholds (Section 3.7.1) were used. To generate

results that exclude the excess periods, a drought event was defined to start at the point in

time when runoff falls below the predefined threshold. However, unlike in Section 5.4.1,

the event ends when the threshold is returned to/exceeded even if temporarily (Perezet al.,

2011).

5.4.3 Threshold Uncertainties

A threshold may be fixed or varying over the year (Perezet al., 2011). A variable

threshold detects streamflow deviations or departures during both high and low flow sea-

sons (Hisdal and Tallaksen, 2000). This may more accurately describe the relative na-

ture of drought so, for example, the January threshold in the Northern Hemisphere extra-

tropics may be higher than that for July, thus identifying droughts that occur in wet pe-

riods. It may be used to reflect seasonally-different water demands (Fleiget al., 2006),

as both the annual recurring (summer/winter) low-flow period and any deviation from

the normal seasonal pattern are important for drought management (Van Loon and Van

Lanen, 2012). Streamflowdeficiencyor anomaly, rather than streamflow drought, may

more appropriately describe periods with discharge below a seasonally-varying threshold
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level streamflow (Hisdal and Tallaksen, 2000; Hisdalet al., 2004) as a continuous sea-

sonal low-flow event (e.g. those caused by a delayed onset of the snowmelt flood; Fleig

et al., 2006) does not necessarily constitute a drought (Smakhtin, 2001). Nonetheless, de-

ficiencies during high flow seasons could have implications for later drought development

(Hisdal and Tallaksen, 2000).

This section describes the methodology of using a monthly variable threshold. To

address Research Question 2 in Section 5.1, results produced from this methodology were

compared to those from Section 5.4.2. Hence, for both Sections, a drought begins (ends)

when runoff timeseries falls below (returns to or exceeds) the threshold value for that

particular month, i.e. short periods when runoff exceeds the threshold between two longer

periods of drought are not considered to be part of the drought in this comparison.

The range of 70 to 95-percentile are reasonable thresholds to identify low flows for

cells with a perennial runoff (e.g. Hisdalet al., 2004; Fleiget al., 2006). Here, the 95-

percentile (i.e. that is exceeded by runoff 95% of the time) of the runoff values for each

of the twelve months were derived from the 1951–2000 period as it roughly corresponds

to the annual SPI-derived fixed threshold in terms of frequency of occurrence. An inter-

mittent or ephemeral runoff implies that the 95-percentile could easily be zero in one or

more months, therefore identifying no drought events (Perezet al., 2011). This affects the

number of 3-month events; such cells were excluded because droughts in such dry regions

are less meaningful, hence this analysis involves 7111 cells of the study region.

5.4.4 Hydrological Droughts in the Future

The effects of both emission scenario and GCM uncertainties were studied for changes

in European hydrological droughts. The former involved constructing scenarios by pattern-

scaling with the ECHAM5 GCM pattern under six SRES emissions scenarios and four

RCPs; the latter used 18 GCMs patterns under RCP6 (see Table 3.1). ECHAM5 was

chosen on the basis described in Section 4.4.

5.5 Fixed vs. Seasonally-Varying Thresholds

This section investigates the effects of threshold uncertainties based on the methodol-

ogy described in Section 5.4.3. It addresses Research Question 2 in Section 5.1, “Which
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Class Criteria

Robust increase All 18 GCMs simulating increase in both definitions.
General increase* One definition with robust increase; the other definition with 10–

17 GCMs simulating increase.
General increase 10–17 GCMs simulating increase in both definitions.
Robust decrease All 18 GCMs simulating decrease in both definitions.
General decrease* One definition with robust decrease; the other definition with 10–

17 GCMs simulating decrease.
General decrease 10–17 GCMs simulating decrease in both definitions.
Robust opposite All 18 GCMs simulating increase (or decrease) in one definition

and vice versa in the other.
General opposite* One definition with robust increase (or decrease); the other defi-

nition with 10–17 GCMs simulating decrease (or increase).
Mixed No trend, and/or no change/event in either definition.

Table 5.1: Legend classes of Figures 5.1, 5.5 and 5.16 explained. A (positive or negative) trend
is defined as over half of the total 18 GCMs projecting the same direction of change. A robust
trend occurs when all 18 GCMs simulate the same direction of change. The letter indicates the
definition (I/E = including/excluding excess periods; M/H = meteorological/hydrological events;
and F/V = fixed/variable thresholds) with a robust change or a change.

drought category(-ies) might be more sensitive to droughts during high-flow seasons?”

Here, the term “runoff deficit” was adopted as reasoned in Section 5.4.3.

5.5.1 Effects on Direction of Change

Include/Exclude wet

(a) 2001-2050

12-month 3-month Severity 3-month DAI25 3-month DAI50

Severity DAI25 DAI50  DJF MAM JJA SON  DJF MAM JJA SON  DJF MAM JJA SON

BI BI V

IP F IP V F

FR FR F V V

ME ME V V

SC V SC F V V

AL V AL F

MD MD V

EA V V EA V V V V V

(b) 2051-2100

12-month 3-month Severity 3-month DAI25 3-month DAI50

Deficit DAI25 DAI50  DJF MAM JJA SON  DJF MAM JJA SON  DJF MAM JJA SON

BI BI V V

IP IP V V F

FR V V F FR V V

ME ME V V

SC V SC V V F

AL V V AL V V V V

MD MD 

EA EA V V V V

Robust increase V/F General decrease* V/F Robust opposite

V/F General increase* General decrease V/F General opposite*

General increase Mixed

Figure 5.1: Direction of change, from 1951–2000 to (a) 2001–2050 and (b) 2051–2100, in drought
metrics based on hydrological deficits that exclude seasonally-excess periods projected by 18
GCMs under RCP6 according to fixed (F) and seasonally-variable (V) thresholds (see Table 5.1).

Compared to fixed thresholds, a seasonally-variable threshold may yield smaller

deficits during low-flow seasons as the threshold is relative to the seasonal flow. Mean-

while, a fixed threshold is less likely to capture deficiencies during high-flow seasons; this
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effect is considered to outweigh those associated with low-flow seasons (as some of the

low-flow season events may be captured by both thresholds). This is reflected in Figure

5.1, which shows the direction of change in the three drought metrics used previously but

now determined by hydrological deficits based on fixed and seasonally-variable thresh-

olds for the PRUDENCE regions projected by 18 GCMs under RCP6. Figure 5.1 does

not provide information on the magnitude of change nor individual GCM results. The

criteria for each legend class in Figure 5.1 are elaborated in Table 5.1.

Figure 5.1 suggests an increasing drying tendency for most drought parameters and

more robust (i.e. all 18 GCMs showing the same direction of change) drying in the second

half of the century; uncertainty is higher in DAI25 than severity results, and in DAI50 than

DAI25 results. A variable threshold yields more robust positive trends in both 12-month

and 3-month events. For 3-month results, increases tend to be more robust in summer

and autumn for both thresholds but particularly for variable threshold. Contrasting trends

— variable threshold indicating positive changes while fixed threshold showing negative

changes — tend to occur in spring, namely in AL (both severity and DAI25), and BI and

SC (severity), but also in winter in ME (severity). This suggests that spring deficiencies

are more common in these regions.

5.5.2 Effects on Magnitude of Change

The effects of fixed/variable thresholds on the magnitude of change were examined

for categories where both thresholds demonstrate robust trends. Magnitudes of change of

interquartile ranges (IQRs) and ensemble means (in brackets) derived from fixed (top row

of each category) and variable (bottom) thresholds are presented in Figure 5.2. Hence,

subsequent discussions on the spread of results refer to the IQRs as a more representative

and robust measure of uncertainty that is considered appropriate given the number of

GCMs used in this thesis.

In addition to more robust increases, a seasonally-variable threshold generates larger

increases from 1951–2000 than a fixed threshold for both 12-month and 3-month events.

For 12-month events, a variable threshold generates increases roughly twice (or more) of

that for fixed threshold. However, in absolute terms, variable thresholds tend to produce

lower absolute deficits and less frequent widespread events (12-month DAI25 frequencies
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(a) 12-month Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BI 

IP 2.2-3.2 (2.8) 2.4-3.1 (2.8) 9.7-14.7 (12.4) 4.6-8.2 (7.2) 4.3-6.2 (5.3) 29.6-54.2 (44.4)

3.9-6.6 (5.5) 16.2-26.1 (21.4) n/a 10.5-20.8 (18.0) 38.8-60.7 (50.1) n/a

FR 

ME 

SC 

AL 

MD 1.9-3.0 (2.6) 2.4-4.8 (3.8) 1.7-2.8 (2.3) 4.1-8.2 (6.5) 6.7-12.8 (10.1) 3.4-8.5 (6.9)

2.9-5.4 (4.3) 3.5-6.0 (5.1) 8.6-13.5 (11.6) 7.5-17.3 (13.3) 8.7-23.6 (18.0) 17.0-33.5 (30.4)

EA 1.4-3.3 (2.4) 1.6-3.4 (2.6) 2.6-9.3 (6.7) 2.7-8.8 (5.9)

2.0-6.7 (4.5) 2.9-11.1 (7.6) 5.0-22.9 (15.7) 8.1-35.4 (23.0)

(b) 3-month Severity

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.8-2.4 (2.1) 2.0-3.4 (3.0) 2.3-3.5 (2.9) 2.1-2.9 (2.4) 3.7-6.3 (5.0) 4.7-12.4 (9.9) 4.5-8.5 (6.6) 4.0-6.2 (4.9)

2.2-3.0 (2.6) 2.2-3.5 (3.1) 3.7-6.5 (5.5) 3.0-4.9 (3.7) 4.4-8.0 (7.0) 4.4-9.5 (8.5) 10.3-24.6 (18.6) 7.9-16.3 (11.8)

FR 1.5-2.7 (2.1) 1.5-2.9 (2.1) 2.3-6.7 (4.7) 2.6-6.6 (4.4)

1.5-3.2 (2.4) 2.0-6.4 (4.0) 2.7-9.8 (7.3) 4.9-23.2 (14.0)

ME 1.5-2.5 (2.0) 1.9-4.7 (3.9)

1.4-3.1 (2.7) 2.4-7.6 (7.2)

SC 

AL 0.6-0.6 (0.6) 1.4-2.7 (2.1) 1.6-2.8 (2.3) 3.0-7.9 (5.8) 3.0-7.5 (5.7)

2.1-3.2 (2.8) 4.5-9.8 (6.7) 3.2-8.7 (6.4) 21.3-50.8 (34.3) 10.1-40.0 (27.4)

MD 1.7-2.3 (2.0) 2.4-3.9 (3.3) 2.0-3.0 (2.5) 2.0-3.0 (2.5) 2.6-4.5 (3.6) 4.9-10.5 (8.8) 3.7-6.9 (5.7) 3.6-6.7 (5.2)

2.1-3.3 (2.7) 2.6-4.0 (3.6) 3.5-6.5 (5.1) 3.3-6.2 (4.8) 4.3-7.9 (6.1) 5.6-10.5 (9.1) 8.9-21.2 (16.0) 8.8-21.5 (15.3)

EA 1.7-4.6 (3.1) 1.5-2.6 (2.1) 3.9-20.6 (12.0) 2.8-7.3 (5.4)

2.4-7.5 (4.9) 2.8-7.6 (5.7) 6.2-27.8 (17.4) 7.5-31.6 (21.6)

(b) 3-month DAI25

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP n/a n/a 2.1-2.7 (2.4) 1.7-2.1 (1.8) n/a n/a 3.4-4.4 (4.1) 2.3-2.9 (2.5)

3.3-4.6 (4.0) 5.1-8.9 (7.3) n/a n/a 6.9-12.4 (9.6) 9.5-19.0 (15.1) n/a n/a

FR 1.1-1.7 (1.6) 1.3-2.2 (1.7) 1.7-6.2 (4.6) 1.9-3.9 (3.0)

2.0-3.6 (2.7) 1.3-4.7 (3.3) 3.2-6.9 (5.9) 3.5-15.0 (10.2)

ME 

SC 

AL 0.4-0.5 (0.5) 1.9-3.2 (2.6) 3.2-8.8 (6.6)

5.0-9.5 (7.2) 6.1-10.7 (8.4) 15.5-43.6 (28.6)

MD 1.5-3.5 (2.4) 1.5-2.9 (2.2) 2.4-4.2 (3.4) 1.9-2.8 (2.4) 3.8-6.8 (5.2) 3.5-7.6 (6.5) 5.8-8.8 (7.5) 3.3-4.2 (3.7)

9.3-14.7 (11.8) 5.1-6.9 (6.2) 9.3-11.7 (12.6) 9.3-19.0 (15.3) 16.5-30.2 (23.5) 9.1-17.6 (14.6) 22.2-61.2 (47.6) 29.5-66.8 (49.8)

EA 1.7-3.3 (2.5) 3.2-8.7 (5.9)

n/a n/a

(c) 3-month DAI50

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.5-3.2 (2.6) 6.8-10.9 (8.8)

n/a n/a

FR 2.0-3.0 (2.7) 3.0-5.0 (5.2)

2.3-5.0 (3.9) 4.0-8.0 (7.1)

ME 

SC 

AL 

MD n/a 1.8-2.4 (2.3) 2.0-3.5 (2.8) n/a 3.6-9.9 (8.2) 4.8-9.9 (7.5)

n/a n/a n/a n/a n/a n/a

EA

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

Figure 5.2: Magnitude of change, expressed as ratios to 1951–2000 values, for the interquartile
ranges (IQRs) and ensemble means (in brackets) of hydrological drought parameters simulated
using 18 GCMs under RCP6 for the PRUDENCE regions. Categories with robust positive (red)
and contrasting (green) trends are shown; top (bottom) rows representing fixed (variable) thresh-
olds. “n/a” denotes no drought events in 1951–2000 thus the relative magnitude of change cannot
be mathematically expressed as a ratio. Categories without robust changes are left blank.
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Figure 5.3: Frequency of 12-month DAI25 based on fixed and variable thresholds projected using
18 GCMs under RCP6 for 2051–2100. The whiskers represent the maximum and minimum data
points, the box indicate the interquartile ranges and median values. Asterisks (*) denote 1951–
2000 values.
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Figure 5.4: Same as Figure 5.3, but for frequency of 3-month DAI25.
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in 2051–2100 are illustrated in Figure 5.3) — typically by around 40–50% in 2001–2050

and 25–40% in 2051–2100 for DAI25; 50–70% and 30–50%, respectively, for DAI50 (not

shown). Similar patterns also occur in 1951–2000 across all PRUDENCE regions. This

implies that a fixed threshold generates larger deficiencies in absolute terms than variable

threshold, although the magnitude of change is smaller.

Changes in severity for IP and MD display seasonal differences (Figure 5.2) which

are difficult to explain: both thresholds reveal similar increases in winter and spring (by

roughly 2–3 times in 2001–2050 and 4–10 times in 2051–2100), and differences between

the two thresholds magnify in summer and autumn, to around 3-fold in 2051–2100. Dis-

crepancies in the magnitude of increase are even more considerable for DAI25 frequency.

For AL, while a fixed threshold produces summer/autumn increases in severity compara-

ble to those for IP and MD, a seasonally-variable threshold generates substantially larger

increases.

Contrary to relative changes but similar to 12-month events, variable threshold tends

to yield lower absolute deficits and less frequent widespread events than fixed threshold

during summer/autumn across most of the PRUDENCE regions (SC and AL that have

relatively high flows during these seasons have the opposite characteristics). This charac-

teristics also occur in high-flow seasons in cold regions, i.e. winter of SC and AL. Figure

5.4 illustrates seasonal DAI25 frequencies in 1951–2000 and 2051–2100.

In spring, a seasonally-variable threshold captures high-flow season deficiencies, hence

the larger absolute deficits and more frequent widespread events (Figure 5.4) than fixed

thresholds for almost all PRUDENCE regions. This gives rise to the two thresholds pro-

ducing opposing trends, particularly in SC and AL (Figure 5.1). As an example based

on ensemble means of spring severity and frequency of DAI25, AL has the largest dis-

crepancy in magnitude of change: a fixed threshold indicates severity to reduce by 42%

(2001–2050) and 25% (2050–2100) while a variable threshold suggests over 2-fold and

9-fold increases, respectively; DAI25 frequency demonstrates similar trends with larger

magnitudes.
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5.6 Including vs. Excluding Excess Periods

Intermittent “wet” condition with above-threshold runoff (i.e. excess periods) may

occur within a drought event. Research Question 3 in Section 5.1, “Which category(-ies)

might be more susceptible to a longer drought event being reclassified as a number of mu-

tually dependent minor droughts?” is addressed in this section. Uncertainties associated

with the termination rule, based on methodologies described in Sections 5.4.1 and 5.4.2,

are assessed.

5.6.1 Effects on 1951–2000 Drought Parameters

The meteorological and hydrological results for 1951–2000 that include and exclude

excess periods were compared (Table 5.2). Firstly, all the severity and DAI values are

positive and negative, respectively: excluding excess periods produces larger severities

and smaller DAI values than including excess periods.

Secondly, meteorological severity and frequencies of DAI25 have larger regional per-

centage differences than their hydrological counterparts. For instance, regional discrep-

ancies in 12-month meteorological and hydrological drought severity are 11–23% and

3–15%, respectively; AL has the smallest (largest) meteorological (hydrological) discrep-

ancy. ME and SC have almost no discrepancy (<3%) in frequencies of 12-month hydro-

logical DAI25 whereas meteorological DAI25 differ by 17% and 24%, respectively. This

is because precipitation fluctuates more than runoff as precipitation in a particular month

tends to be more independent of the conditions in the preceding month.

Thirdly, according to both gridded (not shown) and regional (Table 5.2) results, dis-

crepancies are larger in 12-month than 3-month events for both drought classifications

— discrepancies are typically<8% (meteorological) and<5% (hydrological). Since 12-

month events account for a longer duration, the chances of having an excess period are

higher than with 3-month events. Percentage differences are higher for IP and AL, based

on 12-month meteorological and hydrological definitions, respectively.

Lastly, percentage differences are sometimes much larger for frequencies of widespread

events than severities. In a particular month, a cell is either “in drought” or “not in

drought” regardless the intensity of the event. Differences for frequency of widespread

events are therefore proportional to the total number months in the excess periods. For
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12-months 3-month Severity 3-month DAI25 3-month DAI50
Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

PRUDENCE-averaged results
Meteorological:
BI 18.9 -19.7 -62.5 4.3 0.3 4.3 4.1 -7.7 0.0 -20.0 -16.7 0.0 -20.0 -16.7 0.0
IP 22.5 -29.6 -71.4 1.4 2.2 5.6 2.2 -6.7 -13.3 0.0 -7.7 -100.0 0.0 100.0 -20.0
FR 18.6 -11.6 -50.0 0.3 6.7 1.1 3.0 -14.3 0.0 -10.0 -7.7 -14.3 0.0 -16.7 0.0
ME 13.0 -16.7 -28.9 2.5 4.6 2.9 3.7 -6.3 -5.9 0.0 -20.0 0.0 0.0 0.0 0.0
SC 16.9 -24.2 -68.8 3.5 2.8 3.1 2.2 -7.1 -7.1 -13.3 -8.3 -33.3 0.0 0.0 0.0
AL 11.2 -21.1 -76.9 1.9 4.5 0.7 6.7 -20.0 -5.3 0.0 -21.4 -40.0 -33.3 0.0 0.0
MD 16.2 -21.6 -45.0 2.8 0.2 1.2 2.6 0.0 -7.7 -20.0 -9.1 -50.0 0.0 n/a n/a
EA 13.1 -12.7 -64.3 1.6 3.4 3.7 3.4 -8.3 -8.3 -9.1 -7.7 0.0 0.0 n/a n/a
Hydrological:
BI 8.6 -13.8 -16.7 1.7 0.4 0.0 0.1 n/a n/a 0.0 -4.3 n/a n/a 0.0 0.0
IP 5.3 -20.7 -40.0 1.9 0.7 0.3 0.3 n/a n/a -10.5 0.0 n/a n/a 0.0 0.0
FR 4.9 -19.7 -9.1 0.6 4.9 0.5 0.5 0.0 n/a 0.0 -2.9 0.0 n/a 0.0 0.0
ME 4.7 0.0 -31.6 0.4 8.1 1.1 0.6 0.0 0.0 0.0 0.0 0.0 n/a -33.3 0.0
SC 4.2 -2.3 -100.0 0.7 0.1 0.1 1.2 0.0 0.0 n/a n/a 0.0 0.0 n/a n/a
AL 15.0 -28.9 0.0 0.6 0.6 1.8 0.6 -5.6 0.0 0.0 0.0 0.0 n/a n/a 0.0
MD 4.9 -11.4 -19.0 1.9 2.8 0.2 0.2 0.0 0.0 0.0 0.0 n/a n/a 0.0 0.0
EA 3.9 -15.4 0.0 1.0 1.4 4.1 0.5 -3.4 0.0 n/a 0.0 -7.7 n/a n/a n/a

Köppen-averaged results
Meteorological:
BWh 13.5 -11.0 -78.6 0.0 2.0 1.3 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BWk 12.8 -16.9 -44.4 5.3 7.1 1.7 7.8 0.0 0.0 -16.7 -33.3 0.0 -50.0 -20.0 -20.0
BSh 18.8 -14.0 -22.2 14.5 20.6 1.2 10.1 -57.1 -15.4 -100.0 -76.9 -100.0 n/a -100.0 n/a
BSk 14.5 -24.4 -73.3 0.4 2.4 2.0 6.8 -9.1 -11.1 -33.3 0.0 -25.0 -66.7 -33.3 n/a
Csa 17.6 -61.5 -100.0 2.4 2.7 5.4 3.1 -14.3 -14.3 -100.0 -50.0 n/a n/a n/a n/a
Csb 20.6 -25.0 -92.3 0.9 1.3 4.2 2.9 0.0 -7.1 0.0 -9.1 0.0 -50.0 0.0 0.0
Cfa 15.8 -20.8 -100.0 1.8 3.5 1.9 3.3 0.0 -11.1 -11.1 0.0 n/a 0.0 0.0 n/a
Cfb 17.7 -29.3 -91.7 1.8 3.1 4.0 3.3 -23.1 -10.0 -14.3 0.0 -50.0 n/a -100.0 n/a
Cfc 11.4 -7.7 -70.8 1.6 1.4 0.0 3.8 -13.3 -37.5 -66.7 -36.4 0.0 n/a n/a -33.3
Dsa 16.1 -19.3 -64.7 2.1 2.8 2.5 5.0 0.0 0.0 -7.1 -14.3 -25.0 0.0 0.0 0.0
Dsb 12.9 -20.4 -78.6 2.4 2.8 2.8 5.2 0.0 0.0 0.0 0.0 n/a 0.0 0.0 0.0
Dsc 2.0 -20.4 -64.7 3.3 10.9 5.1 3.6 0.0 0.0 0.0 0.0 0.0 n/a 0.0 0.0
Dfa 9.6 -16.7 -45.8 1.5 3.6 4.4 1.0 -7.1 -15.0 -15.4 -25.0 -100.0 -40.0 -50.0 0.0
Dfb 14.9 -27.5 -91.7 2.6 4.3 4.1 2.0 -18.2 -10.0 0.0 -10.0 -100.0 0.0 n/a 0.0
Dfc 14.5 -26.2 -100.0 1.5 3.8 2.9 2.2 -7.7 -7.7 0.0 0.0 -50.0 0.0 n/a 0.0
ET 19.2 -24.5 -91.7 0.5 4.9 10.2 6.0 -25.0 -60.0 -9.1 -18.8 n/a n/a n/a -50
Hydrological:
BWh 5.3 -1.4 0.0 0.7 0.0 3.9 0.0 n/a n/a 0.0 0.0 n/a n/a 0.0 0.0
BWk 4.2 -13.6 -16.7 2232.3 165.7 131.3 136.7 -16.7 0.0 0.0 -25.0 n/a n/a n/a n/a
BSh 2.5 -11.1 0.0 0.4 0.0 0.5 0.3 0.0 0.0 0.0 0.0 0.0 n/a 0.0 0.0
BSk 4.4 -15.2 0.0 577.6 118.1 1116.3 178.0 0.0 n/a -30.0 -6.3 n/a n/a -100.0 -20.0
Csa 3.1 -66.7 n/a 3.0 127.6 0.5 0.6 n/a n/a 0.0 -2.4 n/a n/a -100.0 0.0
Csb 3.7 -15.8 0.0 5.3 3.5 0.5 0.2 n/a n/a 0.0 0.0 n/a n/a 0.0 0.0
Cfa 6.3 -22.7 0.0 2.0 1.9 2.0 0.3 -33.3 0.0 0.0 0.0 0.0 n/a n/a 0.0
Cfb 6.5 -27.1 n/a 0.8 3.6 0.3 0.5 0.0 n/a 0.0 0.0 0.0 n/a 0.0 0.0
Cfc 9.0 -2.3 -57.1 0.9 0.5 0.0 0.2 0.0 0.0 0.0 0.0 n/a n/a 0.0 0.0
Dsa 8.2 -21.6 -27.3 0.0 0.0 0.0 0.0 0.0 n/a 0.0 -6.7 0.0 n/a n/a 0.0
Dsb 3.1 -12.5 0.0 0.2 0.0 0.9 0.2 0.0 -100.0 0.0 -5.6 0.0 n/a n/a n/a
Dsc 1.9 0.0 0.0 0.0 0.0 n/a n/a 0.0 -71.3 n/a n/a n/a -78.6 n/a n/a
Dfa 3.5 -5.6 0.0 5.4 9.9 29.0 11.5 -4.9 -10.0 n/a -16.7 -6.3 0.0 n/a n/a
Dfb 2.6 -9.3 0.0 2.3 167.3 42.1 13.4 -5.9 0.0 n/a n/a 0.0 0.0 n/a n/a
Dfc 8.6 -14.8 0.0 3.6 7.7 15.6 15.8 0.0 -2.1 n/a n/a -50.0 -6.3 n/a n/a
ET 14.4 -20.6 n/a 0.6 3.1 2.5 11.4 0.0 -7.1 n/a n/a n/a 0.0 n/a n/a

Table 5.2: Percentage difference between regional drought parameters derived from event defi-
nitions that include and exclude excess periods for 1951–2000. “n/a” denotes no occurrence of
drought events.
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severity, small excess volume resulted from short duration and/or small intensities tended

to generate small difference between the severity values that include and exclude excess

periods; the opposite occurs with large excess volume due to long duration and/or large in-

tensities. Also, disagreement for DAI50 events is also larger than DAI25 due to their less

frequent occurrence, so that a small change in number can appear to be a large percentage

change.

Similar patterns occur in Köppen-averaged results (Table 5.2). The large percentage

differences for BWk and BSk are due to the low severity values that include excess periods

(<1 mm) and hence a small denominator in the calculation of the percentage. Table 5.2

also shows that for 3-month hydrological severities, cold climates without a dry season

are the most sensitive particularly in summer and autumn, which suggests the occurrence

of short excess periods in these seasons.

5.6.2 Effects on 21st Century Results

Effects of including and excluding excess periods within drought events were then ex-

amined for 21st century hydrological results. Figure 5.5 illustrates the direction of change

from 1951–2000, simulated by 18 GCMs, in PRUDENCE-averaged drought parameters

for the two event definitions; the legend is elaborated in Table 5.1. Class “Discrepancy”

(green) highlights the categories where results based on the two event definitions lack

agreement. Overall, the two event definitions nearly always yield the same direction of

change, with discrepancies primarily in frequency of DAI50 and winter/spring results.

This implies that periods with temporary excursions above the drought threshold are more

likely during the high-flow season of winter/spring, and therefore it is for these seasons

that the decision to either count such brief periods as part of an ongoing drought or as a

non-drought period breaking two separate droughts has the greatest effect on the resultant

drought statistics.

The uncertainties introduced by the two event definitions on the magnitude of change

from 1951–2000 were further explored with ECHAM5 projections under RCP6 (Table

5.3). This comparison reveals findings similar to 1951–2000 results (Section 5.6.1): with

some notable exceptions, regional discrepancies for both 12- and 3-month severity tend to

be<6%; summer and autumn 3-month values are generally<2%. Discrepancies, along
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(a) 2001-2050

Severity DAI25 DAI50  DJF MAM JJA SON  DJF MAM JJA SON  DJF MAM JJA SON

BI BI 

IP IP 

FR FR 

ME ME I (i)

SC I (d) SC 

AL AL I (i) I (i) E (d)

MD MD I (i)

EA EA E (i) I (d)

(b) 2051-2100

Severity DAI25 DAI50  DJF MAM JJA SON  DJF MAM JJA SON  DJF MAM JJA SON

BI BI 

IP IP 

FR FR I (i)

ME ME I (i)

SC I (d) SC I

AL AL 

MD MD I (i)

EA I EA 

Robust increase Robust decrease Mixed

I General increase* I General decrease* Discrepancy

General increase General decrease

12-month

3-month DAI503-month DAI253-month Severity12-month

3-month DAI503-month DAI253-month Severity

Figure 5.5: PRUDENCE-averaged direction of change from 1951–2000 for hydrological events
under a fixed threshold projected by 18 GCMs under RCP6 based on event definitions that include
(I) and exclude (E) excess periods. See Table 5.1 for further explanation of the legend classes. The
classDiscrepancyindicates the two event definitions do not share any of the same class above.
“I” (“E”) represents including (excluding) excess periods with an increasing (“i”), or decreasing
(“d”), trend in brackets while the other definition has inconclusive trend.

12-months 3-month Severity 3-month DAI25 3-month DAI50
Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

2001–2050:
BI 11.5 -7.1 -40.0 -39.4 10.8 0.5 1.6 n/a n/a 0.0 15.4 n/a n/a 0.0 0.0
IP 1.1 7.6 22.5 5.7 6.3 0.8 0.9 n/a n/a -2.7 -2.3 n/a n/a -5.9 0.0
FR -1.9 35.3 -5.4 3.2 20.3 1.1 0.5 0.0 n/a -5.6 0.0 0.0 n/a 0.0 -5.6
ME -0.6 -29.4 116.1 -26.2 15.4 1.5 1.1 -33.3 0.0 0.0 -3.8 0.0 n/a 0.0 0.0
SC 2.9 2.4 n/a -1.2 -0.4 0.4 5.5 0.0 0.0 n/a n/a 0.0 0.0 n/a n/a
AL 0.8 21.8 -33.8 3.7 -4.4 1.8 0.8 0.0 0.0 0.0 -3.1 0.0 n/a n/a 0.0
MD 0.6 1.4 19.0 5.6 4.7 0.7 0.6 -14.3 0.0 0.0 0.0 n/a n/a 0.0 -3.1
EA 2.4 -7.2 -27.5 8.5 13.2 4.3 0.7 -10.0 0.0 n/a -3.3 0.0 n/a n/a n/a
2051–2100:
BI -26.0 7.1 -100.0 -34.8 6.3 0.4 1.1 n/a n/a 6.4 28.2 n/a n/a 10.5 25.0
IP -2.2 19.8 53.7 2.0 5.7 1.0 0.6 n/a n/a 10.4 0.0 n/a n/a -1.6 -2.7
FR -2.5 33.9 5.8 3.9 2.9 0.4 -0.3 0.0 n/a -3.2 3.0 0.0 n/a 0.0 -1.6
ME -2.4 -11.2 46.2 33.9 -3.4 0.0 -0.4 -9.1 -18.7 -2.3 -1.7 -33.3 n/a 58.8 0.0
SC 1.0 28.0 n/a -0.2 -0.3 0.2 -1.0 0.0 0.0 n/a n/a 0.0 0.0 n/a n/a
AL -5.2 29.1 -20.3 2.9 9.0 -1.0 -0.3 -22.6 -12.5 -4.3 -2.1 -9.1 n/a n/a 0.0
MD -0.3 6.4 10.2 1.5 0.1 0.7 0.0 -8.8 -8.3 0.0 0.0 n/a n/a -1.3 -2.0
EA 0.3 13.7 -15.4 1.8 3.6 -0.9 0.0 0.8 -14.3 n/a -1.0 1.1 n/a n/a n/a

Table 5.3: Percentage difference between PRUDENCE-averaged magnitude of change from
1951–2000 to either 2001–2050 or 2051–2100, derived from event definitions that include and
exclude excess periods as simulated by ECHAM5 under RCP6.
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with their regional variations, for frequencies of DAI25/50 (1–35% for DAI25) are larger

than for severities. Larger disagreements (by 11–39%) are more common in BI and ME,

particularly in winter and spring.

The chance of a larger drought event being divided into a number of mutually de-

pendent minor droughts is reduced as analyses were based on runoff timeseries, i.e. the

smoothing has filtered out the short excess periods, as well as minor droughts of short du-

ration and small deficit volume. Alternative to the methodology adopted here, Tallaksen

et al.(1997) described three pooling procedures that combine mutually dependent events,

including the inter-event time and volume criterion method, moving-average procedure

and sequent peak algorithm.

5.7 Climate Change and European Hydrological Drought

This subsection examines how European hydrological drought characteristics could

vary as climate changes (Research Question 1 in Section 5.1).

5.7.1 Emission Scenario Uncertainties

Figures 5.6 and 5.7 demonstrate the spread of 2051–2100 severity and DAI25 fre-

quency, respectively, associated with the range of emission scenarios (left panels) and

GCMs under RCP6 (right). Results for 2001–2050 (not shown) exhibit similar character-

istics with smaller magnitudes and uncertainties. In broad terms, both sources of uncer-

tainty resemble similar patterns of change for both 12- and 3-month results. Spread arising

from choice of GCM for generating the scenarios is a larger source of uncertainty than that

arising from the emission scenarios considered here, particularly in summer and autumn.

Similarly, results in Kjellströmet al. (2011) are less sensitive to emission scenarios until

later in the 21st century. Arnell (2003a) found emission scenarios (for a given model)

produce similar patterns and magnitudes of change in mean European annual runoff prior

to the 2050s, and larger difference in magnitudes of change in the 2080s. Regionally,

projections for SC are fairly robust regardless of the season and length of event.
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5.7.2 GCM Uncertainties

Findings in Section 5.6 suggest minor differences between results that include or ex-

clude excess periods. According to Section 5.5, it can be inferred that magnitudes of

drying could be larger than those found in this section with the use of seasonally-variable

threshold for identifying drought. Section 5.7.1 indicates that emission scenario uncer-

tainties are smaller than GCM spread, hence the following analysis focuses on simulations

using 18 GCM patterns scaled to represent the RCP6 scenario.

5.7.3 PRUDENCE-Averaged Results

Figures 5.8, 5.9 and 5.10 show simulations from the 18 GCMs of hydrological drought

severity, frequency of DAI25 and DAI50, respectively, for the 21st century alongside their

1951–2000 values. The boxplots display the minimum and maximum data values, first

and third quartiles, and the median of the set of 18 results (one from each GCM used).

The level of GCM-consistency in the direction of change is illustrated in Figure 5.5, with

the legend class as elaborated in Table 5.1. Magnitudes of change for categories with

robust trends are presented in Figure 5.11.

Results indicate that climate change projections would generally increase drought

conditions across all PRUDENCE regions. Kundzewiczet al.(2006) also simulated more

severe “dry and hot” extremes for most of Europe, along with considerably longer du-

ration of the longest dry spell in 2070–2099. Uncertainties in projections are higher in

2051–2100 and roughly correspond to the amount of warming. The drying trend is more

extensive spatially in 2051–2100 than 2001–2050 for both 12-month and 3-month events.

Robust drying occurs in the southern latitudes (IP and MD), and also in summer/autumn,

which is in agreement with Feyen and Dankers (2009). The high latitudes (SC) and al-

titudes (AL) may experience decreasing drought conditions, particularly in winter and

spring; however, seasonal changes of permafrost and glacial melt are not represented in

Mac-PDM.09.

Regional changes in hydrological drought characteristics are discussed in subsequent

sections.
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(a) 12-month Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BI 

IP 2.2-3.2 (2.8) 2.4-3.1 (2.8) 9.7-14.7 (12.4) 4.6-8.2 (7.2) 4.3-6.2 (5.3) 29.6-54.2 (44.4)

FR 4.1-13.8 (10.4)

ME 

SC 

AL 

MD 1.9-3.0 (2.6) 2.4-4.8 (3.8) 1.7-2.8 (2.3) 4.1-8.2 (6.5) 6.7-12.8 (10.1) 3.4-8.5 (6.9)

EA 2.6-9.3 (6.7) 2.7-8.8 (5.9)

(b) 3-month Severity

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.8-2.4 (2.1) 2.0-3.4 (3.0) 2.3-3.5 (2.9) 2.1-2.9 (2.4) 3.7-6.3 (5.0) 4.7-12.4 (9.9) 4.5-8.5 (6.6) 4.0-6.2 (4.9)

FR 1.5-2.7 (2.1) 2.3-6.7 (4.7) 2.6-6.6 (4.4)

ME 1.5-2.5 (2.0) 1.9-4.7 (3.9)

SC 0.5-0.7 (0.6) 0.4-0.5 (0.4)

AL 0.6-0.6 (0.6) 1.4-2.7 (2.1) 3.0-7.9 (5.8) 3.0-7.5 (5.7)

MD 1.7-2.3 (2.0) 2.4-3.9 (3.3) 2.0-3.0 (2.5) 2.0-3.0 (2.5) 2.6-4.5 (3.6) 4.9-10.5 (8.8) 3.7-6.9 (5.7) 3.6-6.7 (5.2)

EA 1.7-4.6 (3.1) 3.9-20.6 (12.0) 2.8-7.3 (5.4)

(b) 3-month DAI25

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP n/a 2.1-2.7 (2.4) 1.7-2.1 (1.8) n/a n/a 3.4-4.4 (4.1) 2.3-2.9 (2.5)

FR 1.1-1.7 (1.6) 1.7-6.2 (4.6) 1.9-3.9 (3.0)

ME 

SC 0.3-0.5 (0.4)

AL 0.4-0.5 (0.5) 3.2-8.8 (6.6)

MD 1.5-2.9 (2.2) 2.4-4.2 (3.4) 1.9-2.8 (2.4) 3.8-6.8 (5.2) 3.5-7.6 (6.5) 5.8-8.8 (7.5) 3.3-4.2 (3.7)

EA 1.7-3.3 (2.5) 3.2-8.7 (5.9)

(c) 3-month DAI50

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.5-3.2 (2.6) 6.8-10.9 (8.8) 2.1-5.9 (4.9)

FR 3.0-5.0 (5.2)

ME 

SC 0.2-0.4 (0.3) 0.0-0.0 (0.0)

AL 1.3-1.7 (1.6) n/a

MD 1.8-2.4 (2.3) 2.0-3.5 (2.8) n/a 3.6-9.9 (8.2) 4.8-9.9 (7.5)

EA

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

Figure 5.11: PRUDENCE-averaged magnitude of change, expressed as ratio to 1951–2000 val-
ues, for the IQRs and ensemble means (in brackets) of hydrological drought parameters (excluding
excess periods) simulated using 18 GCMs under RCP6. Categories with robust positive (red) and
negative (blue) trends are shown. “n/a” denotes no drought events in 1951–2000 thus the relative
magnitude of change cannot be mathematically expressed as a ratio.

5.7.3.1 Iberian Peninsula (IP) and Mediterranean (MD)

All GCMs project increasing drying for 12-month events over the 21st century for IP

and MD (Figure 5.5). These regions have similar magnitudes of increase (Figure 5.11)

in 2001–2050, by two to four-fold for severity and DAI25 frequency. Increases in 2051–

2100 are considerably greater: by over 4-fold, and up to 8- and 13-fold for severity and

DAI25 frequency. In absolute terms, DAI25 occurs 16–25% of the time during 2001–

2050 for both regions, and up to 48% of the time during 2051–2100 for IP, and 67% for
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MD. The marked increases in DAI50 frequency are due to their rare occurrence (<5%)

in 1951–2000; in absolute terms, DAI50 are projected to occur in approximately 5–8% of

2001–2050 and 10–28% of 2051–2100.

These results are consistent with the anticipated runoff decline (Noharaet al., 2006)

(which has much less uncertainty than that for precipitation; Goslinget al., 2010) in the

southern Europe/Mediterranean, caused by warming, higher evapotranspiration and de-

creasing annual mean precipitation (see Section 4.4.3). In a global study, Adamet al.

(2009) projected southern Europe to have one of the strongest areas of runoff declines by

2040. Noharaet al. (2006) projected decreasing annual mean precipitation and runoff for

the Danube and Euphrates, based on simulations from 19 GCMs. By the 2050s, 30-year

average annual runoff in the region south of around 50◦N could be 50% lower (Arnell,

1999c).

These changes in runoff could bring about low-flows (Alcamoet al., 2007b) and

droughts. By the 2050s, flow below the current 10-year return period minimum annual

runoff (“drought” runoff) could be three times more frequent in areas with simulated de-

creasing average annual runoff (Arnell, 2003a). By 2100, minimum flow in the Iberian

Peninsula and southern France could reduce by 20–40% (Feyen and Dankers, 2009). Us-

ing the WaterGAP model, Lehneret al. (2006) simulated more frequent 100-year hydro-

logical drought in southern (Portugal, Spain, western France, Italy) and most of south-

eastern Europe while Weisset al. (2007) estimated it to become ten times more frequent

in the 2070s over a large part of the northern Mediterranean. More frequent long-duration

droughts are expected for southern Europe, despite uncertainties in the magnitude (Blenk-

insop and Fowler, 2007b). For the Ebro/Gallego region (Spain), Blenkinsop and Fowler

(2007b) projected, with high model consistency, increasing severity and duration of long

droughts with maximum drought length to increase by≈30 months. These could increase

the pressure on water resources, particularly groundwater, due to decreases in recharge

during the cooler, wetter part of the year (Blenkinsop and Fowler, 2007b). Similarly, wa-

ter availability for the region south of 47◦N could drop by up to 23% by the 2020s and

6–36% by the 2070s (Alcamoet al., 2007b). Garcı́a-Ruizet al. (2011) has provided a

comprehensive review on the projected changes in climate and streamflow regimes for the

Mediterranean basin, which generally implies increasing water stress.
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Robust increases are projected for both IP and MD across all seasons throughout the

21st century for severity and DAI25 frequency (except winter for 2001–2050; Figure 5.5).

Both regions have similar severity and DAI25 frequency increases in 2001–2050 (Figure

5.11), by around two to four-fold. Marked increases, being most (least) pronounced in

spring (winter), occur in 2051–2100: by up to seven-fold in winter, twelve-fold in spring,

and nine-fold in summer and autumn.

Winter results have the smallest magnitude of increase (Figure 5.11) for both IP and

MD. This could reflect the sub-regional precipitation variations (Kundzewiczet al., 2006;

Buonomoet al., 2007; Garcı́a-Ruizet al., 2011) (see Section 4.4.3), winter discharges to

become more irregular (Garcı́a-Ruizet al., 2011) and/or the initial melting of long-term

storage of frozen precipitation in major streams originating in the Alps (e.g. Danube; van

Lanenet al., 2007; Huss, 2011) and other Mediterranean mountain regions such as Sierra

Nevada, southern Spain (Garcı́a-Ruizet al., 2011) and central Spanish Pyrenees (López-

Moreno and Garcı́a-Ruiz, 2004), despite the lower precipitation (Kjellströmet al., 2011).

By 2051–2100, further warming and the altered snowmelt hydrology (see Section 2.5)

may cause DAI25 to become frequent. Since glacial contribution to runoff is limited to

certain basins, these changes are more notable in DAI25 frequency than in severity.

The large summer and autumn increases in drought conditions are related to sum-

mer drying (see Section 4.4.3), and intensified summer low flows in the Mediterranean

(Garcı́a-Ruizet al., 2011); the larger magnitudes of increase in spring may be related to

earlier snowmelt.

5.7.3.2 Scandinavia (SC)

Although without robust trends, SC generally shows decreasing 12-month severities

and frequencies of widespread events (Figure 5.5). Other studies have also found increas-

ing precipitation (see Section 4.4.4), higher evaporation and runoff (Noharaet al., 2006)

that imply decreasing drought conditions.

Higher precipitation offsets the increased temperatures and evapotranspiration (van

Lanenet al., 2007) that would otherwise reduce runoff (Arnell, 2003a). Moreover, evap-

otranspiration variations have only minor influence in snowmelt-dominated regions (Bar-

nettet al., 2005). Therefore, annual discharge increases (van Lanenet al., 2007), e.g. in
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Norway (Roaldet al., 2004; Hanssen-Baueret al., 2005) and Denmark (Thodsen, 2007),

perhaps by up to 25% by the 2050s (Arnell, 1999c) while total mean annual runoff in the

Baltic Sea may vary by between−2% and+15% (Graham, 2004). This, produces lower

severity (Feyen and Dankers, 2009) and intensity (Arnell, 1999c) of streamflow drought

in northern and northeastern Europe. Also, changes are not uniform, with increases (de-

creases) in the northernmost (southernmost) catchments across the Baltic Basin (Graham,

2004; Grahamet al., 2007).

Seasonally, severity and DAI25 frequency decrease in winter and/or spring and in-

crease in summer and autumn (Figure 5.5). These changes may be related to the higher

precipitation in the cold seasons, warming-induced earlier snowmelt, and the associated

higher cold-season runoff and lower warm-season runoff, as found in other studies (see

Section 4.4.4). Also, higher evapotranspiration may offset precipitation increase (Feyen

and Dankers, 2009). For the Baltic Basin, Graham (2004) and Grahamet al. (2007) pro-

jected winter (summer) flows to increase (reduce) by up to 54% (22%) on average, with

greatest uncertainties due to different RCMs in summer and autumn. Nevertheless, warm-

ing may not affect the timing of flow in very cold regions (Arnell, 1999c).

Figure 5.11 shows that both severity and DAI25 frequency reduce by up to 50%

in winter and 70% in spring. The more robust changes in 2001–2050 suggest that in

ClimGen, under a small warming scenario (e.g. in 2001–2050), the overall rate of precip-

itation reduction in cells with decreasing precipitation (an exponential function of global-

mean temperature change; see Section 3.2) may be smaller than the rate of precipitation

increase in cells with increasing precipitation (a linear function), thus a regional positive

change. As warming continues (e.g. in 2051–2100), particularly in winter (Hanssen-Bauer

et al., 2005), the overall rate of precipitation decline may exceed that for precipitation in-

crease, thus a regional negative change. Together with the effect of increased evaporation

(van Lanenet al., 2007), which may dominate over the precipitation change signal (Feyen

and Dankers, 2009), the sign of hydrological response changes from positive to negative

with higher levels of warming (e.g. the British Teme basin; Toddet al., 2011), hence

weakening model consensus.

Hydrological indicators may respond differently to the same climatic inputs. This

may be due to the physical structure of the river basin (e.g. storage in soils, aquifers,
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lakes, bogs, snow pack, glaciers) and/or the relative importance of the seasonal distribu-

tion of precipitation and increased evapotranspiration (van Lanenet al., 2007) and reduced

snowmelt (Feyen and Dankers, 2009). For example, Wonget al.(2011) found that warm-

ing is primarily responsible for drought variations in Norway except the south where re-

duced summer precipitation dominates. In addition, despite the expected higher summer

precipitation (Kundzewiczet al., 2006; Kjellströmet al., 2011), its sub-regional varia-

tions — increases (decreases) in northern (southern) Scandinavia (Hanssen-Baueret al.,

2005; Freiet al., 2006) — and mixed trends in minimum flow and flow deficit in non-frost

seasons (Feyen and Dankers, 2009), contribute to the lack of robustness in the summer

and autumn results (Figure 5.5). Nevertheless, the increasing summer and autumn sever-

ities obtained here are consistent with negative streamflow trends simulated for Norway

(Engen-Skaugenet al., 2005; Roaldet al., 2006; Beldringet al., 2008) and Denmark (Th-

odsen, 2007), and the lower minimum flows in the frost-free season in parts of Sweden as

reduced and earlier snowmelt (see Section 2.5.2) offsets the precipitation increase (Feyen

and Dankers, 2009). The inconsistent changes in DAI25 frequencies found in the present

study are also attributable to reduced likelihood of widespread droughts in geographically

large regions such as SC.

5.7.3.3 Alps (AL)

AL generally demonstrates increasing drought conditions across all categories, except

spring results which show negative changes (Figure 5.5); only spring, summer and autumn

have robust changes.

The 12-month drought results obtained here agree with the expected precipitation

changes (see Section 4.4.5) and findings from other studies. For example, based on

climate-change scenarios from 19 RCMs for 11 mountainous catchments in the Swiss

Alps, Hortonet al. (2006) simulated mean annual runoff to decrease by up to 30% in

2070–2099. For the Kitzbheler Ache catchment in the Austrian Alps, Laghariet al.(2012)

projected reducing annual snowmelt (by 31–81%) and runoff (by 6–33%), and increas-

ing average annual evapotranspiration (by 6–20%) by 2071–2100 based on 13 regional

climate change scenarios under SRES A2 and B2.

Snow cover (e.g. in the French Alps; Martinet al., 1996) is highly sensitive to climate
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variations. Each degree (◦C) of warming could reduce snowpack duration in alpine catch-

ments by about three weeks (Grahamet al., 2007), and alpine river flow is more affected

by warming than precipitation and land use changes (Zierl, 2005). Seasonal precipita-

tion variations are more influential in the hydrological regime of lower-altitude catch-

ments (Hortonet al., 2006). The alpine flow regime becomes rainfall-dominated instead

of rainfall and snowmelt-dominated (Laghariet al., 2012) with warmer, wetter winters

and springs (Beniston, 2005; European Environment Agency, 2009; Smiateket al., 2009;

Kotlarski et al., 2010). Snowpack volume in alpine catchments could be 60% lower in

2070–2100 (Grahamet al., 2007), runoff deviations caused by glaciers loss (Zempet al.,

2006) and earlier snowmelt described in Section 2.5.2 are reflected in the seasonal results

(Figures 5.5 and 5.11).

In spring, both severity and frequency of widespread events are roughly halved in

2001–2050, with high model consistency. These results, some of which also depend on

conditions in the preceding winter, are consistent with Janža (2011)’s projected higher

winter and lower spring discharges for the Upper Socv̌a River basin, Solvenia (southeast-

ern Alps).

Consistent with the anticipated drying trend (see Section 4.4.5), increasing drought

conditions occur in all other seasons, with more robust changes in summer: by around

3–8 times in 2051–2100 for both severity and DAI25 frequency. Similar to the results

here, minimum flow for the region during the frost-free season could be 20–40% lower

(Feyen and Dankers, 2009). Runoff contribution to the Po basin from currently glacier-

ized areas could be>75% lower by 2080–2100 compared to the 20th century average in

August/September (Huss, 2011). By 2071–2100, drought frequency and severity during

the Alpine summer growing season (April to August) could increase by 15–50% and 20%,

respectively (Calanca, 2007) due to much lower summer flows (Jasperet al., 2004).

5.7.3.4 Mid-Europe (ME) and Eastern Europe (EA)

Both ME and EA show increasing 12-month drought conditions throughout the 21st

century (Figure 5.5). EA severity and DAI25 frequency demonstrate robust marked in-

creases (by 2–9-fold) in 2051–2100 (Figure 5.11).
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These results are consistent with the declining annual runoff projected for eastern Eu-

rope and western Russia over the 21st century (Strzepek and Yates, 1997; Arnell, 2003a;

2004a) despite the annual precipitation increase in Eastern Europe (Hirabayashiet al.,

2008), with the largest reduction in southeastern Europe by 2050 (Arnell, 1999c). Aver-

age annual water availability in these regions could decline by>25% by 2050 relative to

1961–1990 (Alcamoet al., 2007b). Annual runoff may decrease by 3–24% in Romania,

and deviate by−10% to+3% and−20% to+128% in Czech Republic and Ukraine, re-

spectively (Smith and Lazo, 2001). Precipitation reduction over the Mediterranean region

to the Caspian Sea region (Noharaet al., 2006) lowers Danube discharge by 21.9%, along

with annual maximum, minimum, and mean streamflow (by 13.3%; Noharaet al., 2006)

of the Rhine (Hurkmanset al., 2010).

Reducing runoff implies increasing drought conditions in eastern Europe (Hirabayashi

et al., 2008): Lehneret al. (2006) projected strong increases in 100-year droughts for

southeastern Europe (e.g. Hungary, Bulgaria, Romania, Moldova, Ukraine, southern Rus-

sia) and Kundzewiczet al. (2006) simulated longer duration of the longest dry period for

much of central Europe. The Rhine, Danube and Dniepr rivers could experience more

frequent drought during 2071–2100 (Hirabayashiet al., 2008); more long droughts are

likely in the Meuse/Dommel region (western ME; Blenkinsop and Fowler, 2007b). Even

with higher annual precipitation, drought increases in eastern Europe to central Eurasia

due to the much higher evapotranspiration (Hirabayashiet al., 2008).

Nonetheless, sub-regional variations have been reported: the Black Forest and the

Vogues Mountains (southwestern ME) and the northern tributaries of the Rhine basin

(northwestern ME) may experience wetter conditions throughout the year (Hurkmans

et al., 2010); Gellens and Roulin (1998) found no clear trends for either streamflow or

the number of low flow days for eight Belgian catchments.

In addition to the summer precipitation decline (see Section 4.4.6), runoff variations

in the upstream region affect downstream river flows (Noharaet al., 2006), and glacial

meltwaters affect both local/regional basins and the hydrological regime of large catch-

ments with glacierisation of<1% (Huss, 2011). The contribution of high summer glacier

runoff in lowland areas with low precipitation and high evapotranspiration signifies a non-

linear relationship between the relative importance of glacier contribution to runoff (Huss,
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2011).

Snowmelt hydrology is important in the water cycle of EA, the margin between mar-

itime and continental climate regimes, and ME, e.g. the Rhine basin is influenced by

conditions in the alpine part of the catchment (Hurkmanset al., 2010); 9% of September

runoff in 2003 in the lower Danube (0.06% glacierisation) was estimated to be glacier

meltwater (Huss, 2011). Warming diminishes the importance of snowfall, leading to a

large flow regime (Arnell, 1999c; 2003a). For instance, the “rain-fed/meltwater” Rhine

river could become a mainly “rain-fed” river (Pfisteret al., 2004). Runoff contributions

to the Rhine and Danube basins from currently glacierised areas during 2080–2100 could

be >75% lower compared to the 20th century average in August/September, although

with slower reduction in catchments with a large ice volume (Huss, 2011). Even with

small changes in total annual runoff (e.g. a mountainous region of southwestern Bulgaria;

Changet al., 2002), warming significantly changes the spatial distribution and amount of

snow cover (Arnell, 1999c), e.g. the alpine glacierised areas may decline by 12% by 2100

(Huss, 2011). These could alter runoff volume and the timing of maximum runoff (Chang

et al., 2002; Hirabayashiet al., 2008) and increase the frequency and magnitude of both

peak flows and streamflow droughts (Hurkmanset al., 2010; Section 2.5.2). For short

events in the Meuse/Dommel region, Blenkinsop and Fowler (2007b) projected increases

in maximum severity, frequency (although the spatial pattern of change is variable and

GCM-dependent) and duration (most likely to be in the northern Dommel and the south-

ernmost part of the Meuse; despite higher uncertainties); for areas with a shorter winter

recharge period (precipitation increase), these short events may become longer.

These changes are generally reflected in the seasonal results obtained here for ME

and EA (Figure 5.5), although Mac-PDM.09 accounts for snowmelt but not glacial melt

(hence runoff further downstream would not contain a glacial component). For ME, the

decreasing drought conditions in winter/spring (also the case for 2001–2050 DAI25 fre-

quency in EA) agree with the simulated increase in winter flows for the Rhine basin, par-

ticularly in lowland catchments (by up to 14%; Grahamet al., 2007), winter and spring

streamflow at the basin outlet (by≈30% by 2100; Hurkmanset al., 2010), and peak flows

in the alpine and pre-alpine catchments of the Rhine (by 9–16%; Pfisteret al., 2004). The

initial melting of long-term storage of glaciers and snow cover (van Lanenet al., 2007;
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Huss, 2011) causes spring frequency of DAI25 to reduce in 2001–2050 but increase in

2051–2100 (Figure 5.5).

The summer and autumn results show positive trends. Both regions reveal robust

and marked increases in summer severity throughout the century, by factors of up to 2.5

(ME) and 4.6 (EA) in 2001–2050, and 4.7 (ME) and 20.6 (EA) in 2051–2100. EA also

demonstrates robust increases in autumn (Figure 5.11), though with a smaller magnitude

of around 3–8-fold in 2051–2100. These are consistent with the projected reduction in

summer and autumn river flows (by up to 42% for the Rhine basin; Grahamet al., 2007)

and average summer discharge at the southern basin outlet (by≈30% by 2100; Hurkmans

et al., 2010) and the Meuse river, western ME (Pfisteret al., 2004). Using a conceptual

eco-hydrologic model, a revised version of the Soil and Water Assessment Tool (SWAT),

Eckhardt and Ulbrich (2003) estimated summer mean monthly streamflow for the Dill

catchment (southeast of the Rhenish Massif in Germany) to reduce by up to 50% during

2070–2099. Drogueet al. (2004) simulated more severe low flows for July–September in

the 2050s for a temperate Alzette river basin in the Grand Duchy of Luxembourg.

The stronger and/or more robust drying trends in EA compared to ME across all sea-

sons are associated with warming being most pronounced in winter over eastern Europe

(Giorgi et al., 2004; Somotet al., 2008) and therefore much higher evapotranspiration

(Hirabayashiet al., 2008).

For mesoscale basins, both changes in the variability of extreme precipitation and land

use affect future changes in peak flows. A changing climate may also influence vegetation

cover, which can then have a significant impact on hydroclimatological processes, such as

surface runoff, infiltration or evapotranspiration (Pfisteret al., 2004). Increased economic

activity across much of central and eastern Europe and the anticipated strong increases

in water use may cause or exacerbate hydrological or operational droughts (Lehneret al.,

2006; Alcamoet al., 2007b).

5.7.3.5 France (FR)

Increasing 12-month drought conditions is projected for FR throughout the 21st cen-

tury (Figure 5.5). The robust and marked increases (by 4–14-fold) in DAI50 frequency,

which occur in 7–23% of 2051–2100 (Figure 5.11), are attributable to its low frequency
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(2%) in 1951–2000.

These regional results may have masked sub-regional variations in runoff and the type

of changes suggested in other studies. Although the high altitude snowpack (>2000 m)

is relatively unaffected, the maximum amplitude of the snowpack at low and medium ele-

vations could be 50% lower and its duration shortened by two months, resulting in lower

annual discharge (see Section 2.5.2), which also diminishes with evaporation increase

(by 20%; Etcheverset al., 2002). Therefore, climate anomalies are more influential in

the Pyrenees than the Alps given the lower height and more moderate increase in winter

precipitation (Redaudet al., 2002).

Snow processes in the Alps imply low annual evaporation and large runoff, whereas

areas with Mediterranean climates (large annual global radiation, low precipitation) have

negligible annual runoff (Habetset al., 1999). Topography and snow are important in the

hydrological regime of the Rhone and its tributaries (Redaudet al., 2002), which drains

from the Alps (Feyen and Dankers, 2009), leading to large spatial variability of evapora-

tion and total runoff (Habetset al., 1999). Changes in mean annual discharge correspond

to the precipitation anomaly and display a strong northward gradient (Etcheverset al.,

2002): in the north, precipitation increase of 25% combined with the relatively small

(13%) evaporation increase raise discharge by 10–30% and 30–50% in the Jura moun-

tains and Saone valley, respectively. Western France could experience significantly more

frequent drought (Lehneret al., 2006). However, as for ME/EA above, much of the runoff

further downstream from the Alps, for example, would not contain a glacial component

as it is not represented in Mac-PDM.09.

Similar to 12-month results, increasing drought conditions are also projected across all

seasons, with high model agreement in summer/autumn severities and winter DAI25/DAI50

frequencies particularly for the 2051–2100 results (Figure 5.5). Increases in severity are

up to three times in 2001–2050 summer and 7-fold in 2051–2100 summer and autumn

(Figure 5.11). In winter, DAI25 is 1.7 times more frequent in 2001–2050 (to 3%) and>6

times in 2051–2100 (to 13%); DAI50 occurs only in 3% during 2051–2100, even with the

3–5-fold increase.

Ducharneet al.(2007) simulated enhanced seasonal contrast of discharge at the outlet

of the Seine watershed for 2070–2099 compared to 1960–1989. However, the winter
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increases projected here contradict the expected higher winter rainfall (e.g. in northern

Rhone due to more liquid precipitation; Huss, 2011) that would raise soil water content

thus surface runoff and drainage, particularly in the second future period (Redaudet al.,

2002). This could partly be explained by the reduced winter accumulations in (especially

medium) mountain areas associated with warming and less snowfall notwithstanding the

precipitation increase (Redaudet al., 2002), and partly because some of the winter results

are influenced by drying in the preceding autumn.

The projected summer and autumn drying trend is consistent with the anticipated

warming (that is more considerable in summer than winter), summer rainfall decline,

a very low soil water index for May–October (hence a much earlier soil desaturation

and harsher low water periods in autumn), earlier snowmelt (by about one month) and a

flood peak in May (rather than June), followed by much lower July and August discharge

(Etcheverset al., 2002; Redaudet al., 2002). Specifically, runoff contribution to the Rhone

basin from currently glacierised areas in 2080–2100 could decrease by 55% from the 20th

century average in August/September (Redaudet al., 2002; Huss, 2011). Decreases in Du-

rance discharge (southern Rhone) is most notable in the rainy autumn (also during spring

snowmelt season) (Etcheverset al., 2002). For the Adour-Garonne basin (southwestern

France), decreasing snow depth and the snow cover duration (by approximately 50% by

2100; Caballeroet al., 2007) produce earlier low flows (by one month) and a stronger

deficit in the July discharge (Redaudet al., 2002). However, substantial winter recharge

preserves groundwater levels (the perched and alluvial groundwater sheet and the uncon-

fined aquifer) and alleviates deficit during the low-flow period (Redaudet al., 2002), thus

the slight decrease (averaged 11%±8% in 2050–2060 compared to 1985–1995) in low-

flow during July–October (Caballeroet al., 2007). Though, large reduction in autumn

discharge occurs when precipitation deficit is larger than groundwater supply (Caballero

et al., 2007). It is worth noting that groundwater in Mac-PDM.09 is not stored but routed

as “slowflow” that contributes to runoff.
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5.7.3.6 British Isles (BI)

An increase of annual river flow in Western Europe suggest fewer and less severe

droughts (van Lanenet al., 2007). However, the 12-month drought results produce in-

conclusive trends in 2001–2050 and positive trends in 2051–2100 for BI (Figure 5.5).

Changes in drought found in other studies are location-dependent. For instance, Arnell

(2004b) projected average annual runoff to decrease by up to 15% by the 2020s in eastern

England and little change in northern and western Britain under the UKCIP02 scenar-

ios; changes are more extreme by the 2080s. Low flows (Q95) could reduce by 20–

25%, 30–50% and 50–80% by the 2020s, 2050s and 2080s, respectively (Arnell, 2003b;

2004b). For longer droughts in the Eden region (north-west England), Blenkinsop and

Fowler (2007b) projected decreasing maximum drought severity, duration and frequency

(by around one event per decade) with increasing winter precipitation, along with fewer

long groundwater droughts and more short-term surface water droughts. Central and east-

ern England catchments may experience the most severe low flow reductions while flood-

ing increases in northern and western England (Sefton and Boorman, 1997). In Wales,

Pilling and Jones (2002) found significantly more frequent low flows in the year as a

whole in the Upper Wye catchment even though annual discharge shows small changes.

Across much of Ireland, particularly eastern and southeastern parts, Charltonet al.(2006)

simulated a widespread reduction in annual runoff, with the extreme northwest showing

a slight increase. Elevation may also affect annual runoff, e.g. Fowler and Kilsby (2007)

found a slight increase (≈16% lower) at high (lower) elevation catchments in northwest-

ern England.

Figure 5.5 reveals that droughts generally increase in summer and autumn, and de-

crease in winter and spring, although lacking robustness. Other studies suggest similar,

weak (Prudhomme and Davies, 2008) or enhanced seasonal patterns (e.g. Harper’s Brook;

Goslinget al., 2011b). Arnell (2004b) simulated modest increase in mean winter flows,

particularly in the north and west while the direction of spring changes is GCM-dependent

(Prudhomme and Davies, 2008). Using scenarios from HadRM3H, Fowler and Kilsby

(2007) projected runoff in northwestern England to increase by up to 20% from 1961–90

levels in winter and reduce in summer by 40–80% (particularly at lower elevations) under

SRES A2, along with a lower magnitude of summer Q95 (by 40–80%) and more frequent
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low flows below the present Q95; reductions also occur during the recharge periods of

autumn and spring. Based on 21 GCMs, summer runoff deviations range from−40%

to +20% with a 2◦C warming from the 1961–1990 mean as rainfall and PET changes

(Arnell, 2011). Under the UKCIP02 scenarios, Arnell (2004b) simulated mean summer

flows and Q95 to decrease from the 1961–1990 mean by approximately 30% and 25%,

respectively, by the 2020s, with reductions larger in southern and eastern England. Wilby

et al. (2006) simulated lower summer and autumn flows for River Kennet, southern Eng-

land. Flow variability may increase (decrease) in winter and spring (autumn) though the

pattern is weak (Prudhomme and Davies, 2008).

The BI results lack model consistency due to several influencing factors. Literature

suggests considerable sub-regional variations for this region — wetting (drying) in the

north (south) (Blenkinsop and Fowler, 2007b); the averaging of which would induce un-

certainties notably in the 12-month, winter and spring results. Furthermore, although

warming is likely to substantially increase the magnitude and frequency of temperature-

related weather extreme statistics (e.g. heat-waves; Semenov, 2007), the changing relative

dominance of precipitation and PET may produce non-linear hydrological response to a

linear climate change forcing (Arnell, 2011).

Prudhomme and Davies (2008) expressed that not all their 2080s trends in mean

monthly river flow for four British catchments were significant relative to variations from

natural variability; and that an even weaker signal exist with lower significance occurred

for shorter time horizons (e.g. the 25-years of water management plans in UK). Further-

more, the combined effects of natural climatic variability and human-induced climate

change substantially widens the projection range of future monthly and seasonal stream-

flow or may counteract the climate change signal, which have important implications for

the operational management of future water resources (Arnell, 2003b). Based on the

UKCIP98 climate change scenarios, Arnell (2003b) found that human-induced climate

change has a different seasonal effect on flows than natural multi-decadal variability (pos-

itive in winter and negative in summer) in six catchments in Britain. Increased year-to-

year climate variability causes slight increases in mean monthly flows (relative to changes

resulting from mean climate changes), and slightly greater decreases in low flows, particu-

larly in upland catchments (Arnell, 2003b); 30-year mean monthly runoff could vary from
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the 1961–1990 mean by up to l0%; Q95 could deviate by±5% and and 10% in southern

and northern England, respectively (Arnell, 2004b). However, under the UKCIP02 sce-

narios, Arnell (2004b) found the climate-change signal larger than natural multi-decadal

variability in many British catchments, even by the 2020s (Arnell, 2003b). This is because

the climate change signal generally begins to exceed that of multi-decadal variability once

the increase in global-mean temperature exceeds 1◦C above the 1961–1990 mean (Arnell,

2011).

5.7.4 Köppen-Averaged Results
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Figure 5.12: Köppen-averaged drought severity based on fixed threshold and event definition that
excludes excess periods projected using 18 GCMs under RCP6. Asterisks (*) denote 1951–2000
values.

Köppen climate classifications are described in Section 3.9 (Figure 3.3). Figures

5.12 and 5.13 show simulations of 18 GCMs on 2051–2100 hydrological drought severity,

frequency of DAI25 and DAI50, respectively. Results for 2001–2050 are not shown as

they show very similar characteristics, with lower magnitudes. Figure 5.14 presents the

level of agreement in the Köppen-averaged direction of change simulated by 18 GCMs
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Figure 5.13: Köppen-averaged DAI25 (left panels) and DAI50 (right panels) frequency based on
fixed threshold and event definition that excludes excess periods projected using 18 GCMs under
RCP6. Asterisks (*) denote 1951–2000 values.
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(a) 2001-2050
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Figure 5.14: Köppen-averaged direction of change from 1951–2000 for hydrological events under
fixed threshold projected using 18 GCMs under RCP6 based on event definitions that exclude
excess periods.

under RCP6, with the legend elaborated in Table 5.1. For classifications with robust

changes, their magnitudes (both IQRs and ensemble mean) are shown in Figure 5.15.

Similar to the PRUDENCE-averaged results (Section 5.7.3), drying is more notable in

2051–2100 than 2001–2050 for both short and long droughts across all climate regimes,

particularly in summer and autumn. Decreasing drought conditions are more common in

seasonal than annual results, and in 2001–2050 than 2051–2100, in winter and particularly

spring due to changes in snow processes (see Section 2.5.2), and/or in cold climates (e.g.

Dsc, Dfc). Köppen-averaged results demonstrate much higher consistency between GCM

than PRUDENCE-averaged trends even for DAI50 frequencies (Figure 5.5). This may

be due to the larger number of Köppen regions with smaller areas (i.e. lower chance of

averaging results across cells with opposite signals), which better reflects actual areas of

homogeneous climate change signal. Also, Figure 5.14a suggests more robust negative

changes in spring severities for arid (B) and cold (D) climates (where snow and snowmelt

hydrology are important) than in Figure 5.5a — warming in 2001–2050 implies increased

runoff as, in Mac-PDM.09, precipitation falls as rain instead of snow and snowmelt occurs
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(a) 12-month Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BWh 3.4-5.1 (4.4) 2.5-3.0 (2.7) 7.5-10.8 (9.7) BWh 8.1-13.4 (12.0) 4.1-4.9 (4.6) 27.8-55.1 (42.5)

BWk BWk 

BSh 2.1-2.6 (2.3) 2.1-2.7 (2.5) 1.7-2.6 (2.2) BSh 4.3-6.7 (5.7) 3.8-6.2 (5.3) 4.1-7.3 (6.1)

BSk 1.5-2.2 (2.0) BSk 2.7-4.7 (4.4)

Csa 2.1-3.1 (2.6) 27.3-38.4 (34.8) Csa 4.4-8.1 (6.6) 64.8-119.0 (100.0) n/a

Csb 2.3-3.4 (2.8) 3.3-5.3 (4.2) 15.5-37.5 (24.9) Csb 5.4-9.7 (7.2) 7.9-13.4 (10.1) 62.8-162.8 (115.4)

Cfa 2.0-3.9 (3.1) 5.2-11.8 (8.9) 2.7-13.5 (9.9) Cfa 4.2-10.8 (7.8) 12.0-27.1 (19.3) 11.8-69.9 (44.1)

Cfb 1.2-2.4 (2.0) Cfb 2.0-5.8 (5.1) 2.9-8.2 (6.1)

Cfc Cfc 

Dsa 2.1-2.9 (2.7) 3.5-4.4 (4.4) 2.2-4.6 (4.4) Dsa 4.6-8.1 (7.5) 7.2-10.2 (9.3) 7.8-17.5 (15.9)

Dsb 2.3-3.3 (2.9) 2.7-3.9 (3.5) 3.6-17.1 (12.7) Dsb 5.2-9.7 (8.1) 5.6-9.3 (7.8) 34.1-84.8 (68.5)

Dsc Dsc 2.0-3.8 (2.9)

Dfa 1.3-2.1 (1.8) Dfa 1.6-4.4 (3.4)

Dfb Dfb 

Dfc 0.0-0.2 (0.0) Dfc 

ET 0.3-0.4 (0.4) ET 

(b) 3-month Severity

DJF MAM JJA SON  DJF MAM JJA SON

BWh 0.1-0.1 (0.1) 2.3-3.0 (2.7) BWh 1.8-3.4 (2.7) 3.9-6.0 (5.5)

BWk 0.2-0.3 (0.3) 0.0-0.0 (0.0) BWk 

BSh 0.1-0.2 (0.1) 0.0-0.0 (0.0) BSh 

BSk 2.1-2.7 (2.5) 0.2-0.2 (0.2) 1.9-2.7 (2.5) 1.7-2.4 (2.1) BSk 1.8-3.0 (3.1) 3.3-5.7 (5.4) 2.5-4.6 (3.9)

Csa 0.1-0.2 (0.2) 1.9-2.3 (2.2) Csa 2.0-3.0 (2.7) 3.2-4.4 (4.0)

Csb 3.3-5.0 (4.2) 4.2-6.7 (5.7) 2.2-3.0 (2.7) 2.0-2.7 (2.3) Csb 1.2-2.7 (2.0) 8.6-21.9 (17.4) 4.4-6.9 (6.1) 3.7-5.3 (4.6)

Cfa 1.8-3.6 (2.7) 1.6-2.8 (2.2) Cfa 2.1-5.3 (4.2) 3.5-9.0 (6.7) 3.1-6.5 (4.8)

Cfb 1.4-2.3 (1.9) 1.5-2.6 (2.1) Cfb 1.3-3.4 (4.3) 2.0-5.1 (3.7) 2.6-6.1 (4.3)

Cfc 0.4-0.6 (0.5) 1.3-1.6 (1.5) 1.5-2.0 (1.8) Cfc 1.5-2.3 (2.0)

Dsa 1.6-2.1 (1.9) 0.0-0.0 (0.0) 3.6-4.9 (4.6) 2.3-2.9 (2.7) Dsa 1.4-2.5 (2.2) 11.2-17.9 (16.8) 4.5-7.2 (6.2)

Dsb 1.4-1.9 (1.7) 0.2-0.4 (0.3) 1.8-2.8 (2.6) 1.2-1.7 (1.6) Dsb 6.9-13.3 (11.8) 2.7-4.6 (4.0)

Dsc 0.5-0.6 (0.6) 0.2-0.4 (0.3) 0.0-0.0 (0.0) Dsc 0.3-0.4 (0.3) 0.0-0.0 (0.0) 0.0-0.1 (0.1)

Dfa 1.5-3.9 (2.9) 1.3-2.7 (2.0) Dfa 2.8-12.2 (8.6) 2.3-7.2 (4.9)

Dfb 0.5-0.6 (0.5) Dfb 1.7-8.4 (5.4) 2.2-7.1 (4.7)

Dfc 0.5-0.6 (0.6) 0.5-0.6 (0.5) 0.3-0.5 (0.4) Dfc 0.1-0.2 (0.2)

ET 0.2-0.4 (0.3) 1.6-2.2 (2.0) ET 0.1-0.2 (0.2)

(c) 3-month DAI25

DJF MAM JJA SON  DJF MAM JJA SON

BWh n/a n/a 1.2-1.6 (1.4) BWh n/a n/a 1.7-2.6 (2.3) 2.0-2.9 (2.4)

BWk 15.8-26.7 (20.7) 0.0-0.0 (0.0) 0.0-0.0 (0.0) BWk 0.0-0.0 (0.0) 0.0-0.0 (0.0)

BSh 2.9-4.0 (3.4) 2.6-3.9 (3.1) 0.1-0.4 (0.3) 0.2-0.5 (0.4) BSh 

BSk 0.0-0.0 (0.0) 0.0-0.0 (0.0) BSk 

Csa 2.9-4.2 (3.9) 1.4-1.6 (1.5) Csa 7.0-9.5 (8.7) 2.0-2.4 (2.2)

Csb 2.5-3.1 (2.9) 2.0-2.2 (2.1) Csb n/a 5.1-6.3 (6.0) 2.7-3.0 (2.8)

Cfa 4.0-6.8 (5.9) 1.2-3.2 (2.3) Cfa 3.7-12.2 (8.3) 2.5-4.5 (3.4)

Cfb Cfb 3.2-11.1 (7.8)

Cfc Cfc 1.2-1.8 (1.6)

Dsa n/a 0.0-0.0 (0.0) 0.0-0.0 (0.0) Dsa n/a 0.0-0.0 (0.0) 0.0-0.0 (0.0)

Dsb n/a Dsb 4.0-9.8 (8.2)

Dsc 0.5-0.6 (0.6) 0.6-0.7 (0.7) Dsc 0.2-0.4 (0.3) 0.0-0.2 (0.1)

Dfa 0.1-0.3 (0.2) 0.0-0.2 (0.1) Dfa 0.0-0.1 (0.1)

Dfb 0.5-0.7 (0.6) 0.3-0.5 (0.4) Dfb 0.3-0.5 (0.4) 0.0-0.2 (0.1)

Dfc 0.3-0.4 (0.3) Dfc 0.0-0.1 (0.1)

ET 0.1-0.3 (0.2) ET 0.0-0.0 (0.1) 0.0-0.1 (0.0)

(d) 3-month DAI50

DJF MAM JJA SON  DJF MAM JJA SON

BWh 1.5-2.0 (1.9) BWh 2.1-6.5 (6.2)

BWk BWk 

BSh 3.0-3.8 (3.7) 0.0-0.0 (0.0) BSh 

BSk 0.0-0.0 (0.0) BSk 0.0-0.0 (0.0)

Csa n/a 1.8-3.3 (3.1) Csa n/a 7.8-12.9 (11.3)

Csb 2.0-4.8 (3.9) 3.8-6.2 (5.1) Csb 13.3-24.0 (21.9) 8.9-11.5 (10.2)

Cfa 0.0-0.0 (0.2) Cfa 

Cfb Cfb 1.0-1.5 (1.6)

Cfc Cfc 

Dsa 6.0-10.0 (8.3) n/a Dsa 0.0-0.0 (0.0)

Dsb n/a Dsb 

Dsc n/a 3.4-5.0 (4.2) Dsc n/a

Dfa 0.0-0.0 (0.0) 0.0-0.0 (0.0) Dfa 0.0-0.0 (0.0) 0.0-0.0 (0.0)

Dfb 0.2-0.3 (0.3) 0.0-0.0 (0.0) Dfb 0.0-0.2 (0.1) 0.0-0.0 (0.0)

Dfc 0.0-0.0 (0.1) 0.2-0.3 (0.2) Dfc 0.0-0.0 (0.0) 0.0-0.0 (0.0)

ET 0.0-0.2 (0.2) ET 0.0-0.0 (0.0)

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

2001-2050 2051-2100

Figure 5.15: Köppen-averaged magnitude of change, expressed as ratio to 1951–20000 values,
for the IQRs and ensemble means (in brackets) of hydrological drought parameters (exclude ex-
cess periods) simulated using 18 GCMs under RCP6. Categories with robust trends are shown.
“n/a” denotes no drought events in 1951–2000 thus the relative magnitude of change cannot be
mathematically expressed as a ratio.
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when temperature rises above a threshold.

5.7.4.1 12-month Results

Except for cold regions (Cfc, Dfc and ET), all the Köppen types generally suffer from

increasing long drought conditions in both future periods. Robust increases tend to occur

in climates with higher temperatures, thus evapotranspiration, and/or dry summers, in-

cluding hot arid (Bh) zones, temperate and cold climates with dry summer (Cs, Ds), and

temperate climate with hot/warm summer and without dry season. For severity, magni-

tudes of increase are typically around 2–3-fold in 2001–2050 but diverge in 2051–2100,

ranging from<5-fold (Dsc) up to 13-fold (BWh) (Figure 5.15). The larger increases (>8-

fold) concentrate in the lower latitudes (35–45◦N), in agreement with the changes for IP

and MD (Section 5.7.3.1).

The majority of the Köppen climates with robust increases in severity also have robust

increases in DAI25 frequencies, notably in temperate-based climate types (C) due to their

low occurrence (<6%; 0.5% for Csa) in 1951–2000. For Csa, Csb and Cfa, DAI25 is

projected to occur 14–34% of the time during 2001–2050 and 33–78% during 2051–2100.

Other climates have considerably smaller changes, owing to their frequencies of 5–12%

in 1951–2000, although the simulated (absolute) ranges have similar lower bounds and

smaller upper bounds (<66%). The more substantial increases in DAI50 frequency is

related to their rarity (typically<1%) in 1951–2000. DAI50 occurs in<9% of 2001–

2050 and 6–36% of 2051–2100.

Between 1961–1990 and 2021–2050, Hemminget al. (2010) simulated decreasing

annual precipitation (5–25%) and annual runoff, together with increasing drought index

for the region south of the Black Sea; the direction and general magnitude of changes in

coastal western areas of Turkey have low uncertainties. Similarly, Arnell (2004a) pro-

jected lower average annual runoff by the 2050s in the Middle East, which also suf-

fers from increasing water resource stress throughout the 21st century (Arnell, 1999b).

The average annual Tigris-Euphrates river discharge decline is greatest in Turkey at 12%

Chenowethet al.(2011). These results, along with the precipitation reduction (see Section

4.4.3), are consistent with the projected robust positive drought trends in hot desert zones

(Bh), temperate and cold climates with dry summer (Cs, Ds). However, Abbaspouret al.
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(2009) projected higher precipitation (up to 40%) and increase in blue water resources

(the sum of river discharge and deep groundwater recharge) for northern Iran.

Consistent with the increasing drying projected for BWk here, Agaltsevaet al.(2011)

simulated decreasing Amu Darya River runoff in the medium- and long-term. Although

Central Asia could become warmer and probably drier in future, with increasing aridity es-

pecially in western Turkmenistan, highly uncertain precipitation projections for arid zones

(e.g. Turkmenistan; Lioubimtsevaet al., 2012) contribute to the lack of model agreement

in BWk results.

Higher precipitation is likely in European Russia/Central Siberia (Lioubimtseva and

Henebry, 2009). By 2050s, increased average annual runoff (Arnell, 1999c), water avail-

ability and low water stress is simulated for>90% of Russia including the Volga and in

southern regions (Alcamoet al., 2007a). However, Hirabayashiet al. (2008) projected

more frequent drought for the Volga (Dfb) in 2071–2100, which agrees with the Dfb pro-

jections obtained here.

5.7.4.2 Temperate climates

Temperate climates (C) occur in much of western and southern Europe, i.e. the PRU-

DENCE regions except for SC and eastern EA. Projections for temperate climates, par-

ticularly for Cfa and Cfb, tend to be more uncertain than for other climates (Figures 5.12

and 5.13). Both these regions with a dry summer (Cs) and those without a dry season

(Cf), generally suggest increasing drought conditions in all seasons. Robust severity and

DAI25 frequency trends occur predominately in summer and autumn, but also in 2051–

2100 spring for severity. These climates have similar severity increases (by 2–3 times) in

2001–2050; in 2051–2100, autumn increases are roughly 3–6 times while 9-fold (Cfa) and

7-fold (Csb) increases are projected in summer. DAI25 is projected to be 2–4 and around

10 times (e.g. Csa, Cfa, Cfb) more frequent in 2001–2050 and 2051–2100, respectively.

Changes are larger in summer than autumn. Of the temperate climates, the magnitude of

increases for Csa, which prevails in much of the Mediterranean basin, is relatively small

(by “only” 3–4 times for severity) compared to Cfa, for instance; Csb also has relatively

small increases, particularly in summer.

Figure 5.14 indicates that more severe spring events are projected across much of
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western, southern and continental Europe as a whole. Change is most considerable in

Csb, with up to 22-fold increase from the very low 1951–2000 values. Although lacking

model consistency, the contrasting (negative in 2001–2050, positive in 2051–2100) DAI25

frequency trends in Csb, Cfb, Cfc are due to the initial melting of stored frozen precipita-

tion similar to ME/EA (Section 5.7.3.4). The negative changes in winter droughts for Cfc

are consistent with the expected higher winter precipitation (Vidal and Wade, 2009; Burke

et al., 2010) and runoff (Arnell, 2004b) in northern parts of BI and higher winter flows

in Norway (Roaldet al., 2004; Engen-Skaugenet al., 2005; Roaldet al., 2006; Beldring

et al., 2008).

Csa reveals negative trends in winter/spring drought, possibly related to increases in

localised precipitation (Buonomoet al., 2007; Garcı́a-Ruizet al., 2011; e.g. westward

side of mountain chains of western and central Europe due to enhanced westerly winds),

extremes (e.g. southern France; Gaoet al., 2006) and/or storm activities (Sumneret al.,

2003). These temporary intense events could lead to flooding and/or increased 100-year

discharge (e.g. in Spain and southern France, despite the substantial drying on average;

Gaoet al., 2006).

5.7.4.3 Arid climates

Cold arid (BWk and BSk) climate types characterise Central Asia. The projected

drought parameters in these regions have relatively low inter-GCM spread, and widespread

droughts are relatively rare (Figures 5.12 and 5.13).

Although increasingly dry conditions (with slightly higher winter rainfall and reduc-

tions in spring and summer; see Section 4.4.3) are projected for the Central Asian plains,

surface water resources of Central Asia largely originate from mountain glaciers, the ac-

celerated melting of these, higher precipitation (Lioubimtseva and Henebry, 2009) and

earlier snowmelt (e.g. in Syr Darya basin; Siegfriedet al., 2012). These explain the

less severe (by>65%) drought in BWk obtained here, notably in 2001–2050 (Figure

5.14), although Mac-PDM.09 incorporates snowmelt but not glacial melt. Both CMIP3

and CMIP5 projections generate a strong decline in glacier extent in Central Asia, the

uncertain precipitation projections however imply difficulties in estimating future Central

Asian glacier extent, and timing and quantity of water availability downstream (Lutzet al.,
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2012). These 2051–2100 results therefore become less uncertain as frozen precipitation

stores are exhausted.

Robust increases in summer and autumn severity of BSk agree with the warming-

induced earlier snowmelt in the Syr Darya basin (eastern half the BWk and BSk zones

of Figure 3.3), thus water stress increases in unregulated catchments due to lower water

availability for irrigation in the summer (Siegfriedet al., 2012). The decreasing DAI25

frequency during these seasons in BSk suggests that only part of the region is affected by

snowmelt shifts in snow-/glacier-melt driven rivers — for instance, glacial share in Syr

Darya runoff is much smaller than the heavily glaciated headwater catchments near the

Tien Shan mountains (Sorget al., 2012), and some parts may respond more directly to

precipitation variations. Furthermore, patterns are complicated by sub-regional precipi-

tation variations (see Section 4.4.3). On the other hand, more severe droughts and more

frequent DAI25 in winter/spring in BWk and BSk could be linked to the higher evapotran-

spiration and larger warming during winter (Lioubimtseva and Cole, 2006; Lioubimtseva

and Henebry, 2009).

5.7.4.4 Cold climates

Polar (ET) and cold climates without a dry season (Df) dominate the higher latitudes

and continental parts of the study region, whereas cold climates with dry summer (Ds)

are found in parts of eastern Turkey, northwestern Iran and Central Asia. Overall, future

widespread droughts are uncommon in these climates (Figure 5.13).

All the cold and polar climates tend to experience reducing drought conditions in win-

ter and spring. Model agreement is particularly strong in the frequencies of widespread

events, often with marked reductions of>50% in 2001–2050 and>80% in 2051–2100.

For Df and ET climates, frequencies of DAI25 and DAI50 in the 21st century typically re-

duce to<8% and<3%, respectively, from up to around 30% (DAI25) and 10% (DAI50)

of 1951–2000. These negative drought trends are associated with the increasing precip-

itation (see Section 4.4.4) and runoff; warming also has less influence on the timing of

snowmelt in western Russia (Arnell, 1999c;b).

By the 2050s, larger average annual runoff is generally expected in high latitudes

(Arnell, 2004a). In southwestern Russia where water stress in this key agricultural region
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is already in the “severe” category due to domestic, industrial and agricultural water use,

lower precipitation and warming reduce annual runoff and water availability and produce

more frequent extremely low runoff events, similar to eastern Europe and western Russia

(Alcamoet al., 2007a). This region corresponds to the Dfa and the southern parts of Dfb

zones, which show more severe summer and autumn droughts (by up to 7–8-fold in 2051–

2100, and 12-fold in summer for Dfa; Figure 5.15) with high model consistency (Figure

5.14). Regional variations in precipitation and runoff trends may explain the no change

in, or higher uncertainties in, the frequencies of widespread events in Df climates.

Climate change and population growth are likely to reduce per capita water resources

considerably across much of the Middle East (Chenowethet al., 2011) though this is not

considered here. In the Middle East, precipitation decline (5–25%) is expected throughout

December to August (depending on the location), with relatively little change projected

across the whole region between September and November; runoff and drought index

changes generally show spatial distributions that are comparable to those for precipitation

(Hemminget al., 2010). These could exacerbate drought conditions as reflected in the

Dsa and Dsb results (Figure 5.14). While autumn severity increases are comparable to

other climates, those for summer are particularly substantial — by up to 5-fold in 2001–

2050 and 18-fold in 2051–2100. Dsa and Dsb are geographically small regions, and hence

have higher chances (up to 10%) of experiencing “widespread” (as a fraction of the small

region) droughts. For Dsa, DAI25 occur in 1.3% (summer) and 18.7% (autumn) of 1951–

2000 but none are simulated in the 21st century. These robust reductions correspond with

the wetting simulated for northern Iran (Abbaspouret al., 2009).

5.7.5 GCM Outlier Effects

These hydrological drought results suggest an anomaly, notably in values for BI in

Figures 5.8 and 5.10, and Cfc in Figure 5.12. The IAP/LASG coupled GCM FGOALSg1.0

(Yu et al., 2010b; 2004) is mostly responsible for this behaviour, which may be at-

tributable to the structure of the GCM and/or the effects of pattern-scaling in ClimGen

(Section 3.2). Pattern-scaling is used to construct consistent scenarios representing pro-

gressive increases in global-mean temperature. This linear scaling of the magnitude of a

spatial pattern of climate change (i.e. the local temperature) by the annual global-mean
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temperature may not be appropriate at the largest warming considered here (e.g. SRES

A1FI and RCP8.5 scenarios). This is because patterns at the largest warming are extrap-

olated from values in SRES A2 and A1B, and that the linear relationship may or may not

hold.

In terms of the GCM, the Program for Climate Model Diagnosis and Intercomparison

(PCMDI) website does not recommend the use of this model’s data for mid-high latitude

climate studies1. Figure 3 in Gleckleret al.(2008) suggests that, outside the tropics (20◦S

to 20◦N), FGOALS-g1.0 demonstrates lower than average performance with respect to

the reference data. It also shows that performance for temperature at 850 hPa is worse

than precipitation, which is reflected in the more notable anomaly in the hydrological

(than meteorological) results.

While both the oceanic model and the coupling scheme were improved in version

g1.1, version g1.0, which was used in this study, suffers from cold biases at high lati-

tudes and in the tropical Pacific (Yuet al., 2010b), along with the overestimated sea ice

extension in both hemispheres and weaker Atlantic meridional overturning circulation

(AMOC). Compared to most other CMIP3 GCMs, FGOALSg1.0 does not perform well

in simulating the current climate for 14 climate variables (Reichler and Kim, 2008), such

as water vapour (Santeret al., 2009). Pierceet al. (2009) assessed the performance of 21

climate models using 42 metrics based on seasonal temperature and precipitation, ENSO,

and the Pacific Decadal Oscillation for western U.S. They also found FGOALSg1.0 to

be one of the worst performing models.

Nonetheless, it is worth noting that model skill in simulating climatological means

does not necessarily imply an ability to capture either the observed annual cycle or the

amplitude and pattern of monthly variability (Santeret al., 2009). Moreover, model agree-

ment with observations does not imply reliability in the simulated future (Stainforthet al.,

2007a; Tebaldi and Knutti, 2007; Knuttiet al., 2010). The “anomalous” results from

FGOALS g1.0 could be due to the different GCM structure compared to other GCMs,

e.g. by including/excluding certain processes or a different representation of these. It is

difficult to omit FGOALSg1.0 from the analysis when GCMs were constructed based on

an incomplete understanding of the climate system (see Sections 2.6.9 and 2.6.10).

1CMIP3 Climate Model Documentation, References, and Links: http://www-
pcmdi.llnl.gov/ipcc/modeldocumentation/moreinfo iap fgoals.pdf



5.8 Hydrological vs. Meteorological Classifications of Drought 147

5.8 Hydrological vs. Meteorological Classifications of Drought

Difficulties in obtaining real-time streamflow data, and computational requirements

for characterising hydrological drought (Nalbantis and Tsakiris, 2008), have prompted

attempts to characterise them based on precipitation (e.g. via the SPI). Nalbantis and

Tsakiris (2008) characterised hydrological drought severity of the Evinos river basin

(Greece) by a linear function of SPI with sufficient accuracy. Tabriziet al. (2010) found

that SPI12 drought occurrence in Doroodzan Watershed and Reservoir in southwestern

Iran (specifically, Jamalbeik rain gauge station) reflects streamflow drought occurrence

at the Chamriz hydrometric station. However, streamflow data were necessary for water

resources planning and management in Denmark as Hisdal and Tallaksen (2003) found

streamflow droughts to be less homogeneous over the region, to display lag and be less fre-

quent and more persistent than precipitation droughts as a result of precipitation deficits,

storage conditions and high evaporation losses. Seasonally, Stefanet al. (2004) found

a lag between precipitation and river discharge anomalies in southern Romania for the

period 1931–1999, by 2–3 months in winter and 0–1 months in summer.

This section considers whether meteorological and hydrological classifications pro-

duce consistent results, i.e. Research Question 4 in Section 5.1. The effects on the direc-

tion of change from 1951–2000 simulated by 18 GCMs under RCP6, based on both me-

teorological and hydrological classifications is shown in Figure 5.16 (legend is explained

in Table 5.1), which provides no information on the magnitude of change nor individ-

ual GCMs. For categories with robust trends, their magnitudes of change for the IQRs

and ensemble means, derived from meteorological (top row) and hydrological (bottom)

definitions are presented in Figure 5.17.

The analysis is based on results that include excess periods as they are included in the

meteorological results (Chapter 4), with a fixed threshold.As perSection 5.6, the choice

of drought definitions that include or exclude excess periods generally has minor effects

on both the direction and magnitude of change in hydrological results. However, meteo-

rological results should be interpreted with caution due to the larger difference between

values that include and exclude excess periods compared to those for hydrological results

(see Table 5.2). The drought parameters used here provide no information on the timing

of the events as they describe drought conditions over the 50-year period. For instance,
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it would not be possible to determine whether a meteorological drought event coincides

with/lags a hydrological event based on drought severity or frequencies of DAI25/DAI50.

(a) 2001-2050

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BI BI 

IP IP H M

FR FR M H M M H M

ME H H ME H H H H H

SC M M M SC H H M H

AL AL M H M M H

MD MD H H H H

EA EA H H H

(b) 2051-2100

Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

BI H H BI 

IP IP M M

FR H FR H M H M M

ME ME H H H H H

SC M M SC M M H H M H

AL AL M H M M

MD MD M

EA H H H EA H H H H H H H

Robust increase Robust decrease M/H General opposite*

M/H General increase* M/H General decrease* Mixed

General increase General decrease

12-month 3-month Severity 3-month DAI25 3-month DAI50

3-month DAI25 3-month DAI503-month Severity12-month

Figure 5.16: Direction of change, relative to 1951–2000, for drought parameters that include
excess periods projected by 18 GCMs under RCP6, and consistency between meteorological (M)
and hydrological (H) drought classifications.

Similar to the findings in Section 5.7, Figure 5.16 reveals drier conditions for all

drought parameters and more robust drying across the PRUDENCE regions in 2051–

2100; uncertainty is higher in DAI25 than with severity results, and in DAI50 than DAI25

results. Differences between the magnitude of change for the two drought classifica-

tions is relatively small (typically≤50%) in 2001–2050 but maybe≥100% in 2051–

2100 owing to the greater warming (Figure 5.17). Hydrological events demonstrate more

positive trends than the meteorological droughts for both 12-month and 3-month events,

along with larger increases which suggests a role of PET in amplifying the magnitude of

change. Similarly, Noharaet al. (2006) found larger changes in the ratio of global-mean

runoff than precipitation from simulating river discharge for 24 rivers from 19 AOGCMs.

Chiew and McMahon (2002) used the conceptual daily rainfall-runoff model, MODHY-

DROLOG, to assess the effects on surface water fluxes in Australia. They found that

rainfall deviations are amplified in runoff, with percentage change in runoff being twice

(over four times) of that in rainfall in wet and temperate (ephemeral, with low runoff

coefficients) catchments. Wonget al. (2011) used the Hydrologiska Byråns Vattenbal-

ansavdelning (HBV) precipitation-runoff model to assess the differences in hydroclima-

tological summer (15 May–15 October) droughts in Norway. Compared to 1961–1990,

they found substantially longer hydrological drought and larger drought-affected areas,
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(a) 12-month Results

Severity DAI25 DAI50 Severity DAI25 DAI50

BI 

IP 1.9-2.7 (2.4) 2.2-3.0 (2.7) 2.0-4.4 (3.4) 3.7-5.9 (5.0) 4.1-5.7 (5.0) 7.0-14.7 (11.0)

2.2-3.2 (2.7) 2.2-3.1 (2.6) 6.5-10.3 (9.0) 4.7-8.3 (7.2) 3.9-5.3 (4.6) 24.2-38.9 (31.6)

FR 

ME 

SC 

AL 

MD 1.6-2.2 (2.1) 1.4-2.3 (2.1) 1.5-2.3 (2.0) 2.6-4.6 (4.1) 3.0-5.8 (4.9) 2.5-4.9 (4.8)

2.0-3.1 (2.6) 2.6-4.9 (3.9) 1.6-2.4 (2.1) 4.0-8.2 (6.5) 6.9-13.0 (10.0) 3.1-8.7 (6.8)

EA

(b) 3-month Severity

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.4-1.6 (1.4) 1.3-1.8 (1.5) 1.6-2.3 (2.0) 1.3-1.7 (1.5) 2.0-2.5 (2.1) 1.8-3.4 (2.6) 2.8-5.0 (4.0) 2.0-3.1 (2.6)

1.8-2.4 (2.0) 2.0-3.3 (2.9) 2.3-3.5 (2.9) 2.1-2.9 (2.4) 3.6-6.2 (4.9) 4.5-11.8 (9.6) 4.5-8.4 (6.6) 4.0-6.1 (4.9)

FR 1.4-2.2 (1.8) 2.0-4.7 (3.5) 1.7-4.1 (2.9)

1.5-2.7 (2.0) 2.3-6.7 (4.7) 2.6-6.6 (4.4)

ME 

SC 0.7-0.8 (0.7) 0.7-0.8 (0.8)

0.5-0.7 (0.6) 0.4-0.5 (0.4)

AL 1.4-2.2 (1.8) 2.1-4.6 (3.6)

1.4-2.7 (2.1) 3.0-8.0 (5.8)

MD 1.2-1.6 (1.4) 1.3-1.6 (1.5) 1.1-2.2 (1.9) 1.3-1.8 (1.6) 1.5-2.7 (2.0) 1.8-2.7 (2.4) 1.4-4.7 (3.6) 1.9-3.3 (2.9)

1.8-2.3 (2.0) 2.3-3.8 (3.3) 2.0-3.0 (2.5) 2.0-2.9 (2.5) 2.5-4.5 (3.6) 4.9-10.4 (8.8) 3.7-6.9 (5.7) 3.6-6.7 (5.2)

EA

(c) 3-month DAI25

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.4-2.0 (1.6) 2.0-3.9 (2.9) 1.7-2.4 (2.1) 1.9-3.3 (2.6) 4.7-7.4 (6.2) 2.4-3.8 (3.1)

n/a 1.9-2.5 (2.2) n/a n/a 3.0-4.0 (3.7) 2.4-2.9 (2.6)

FR 3.1-6.5 (4.6)

2.0-4.1 (3.1)

ME 

SC 0.6 0.8 (0.7)

0.3-0.5 (0.4)

AL 1.4-2.5 (2.1) 2.5-5.1 (3.9)

1.9-3.2 (2.7) 3.5-9.4 (6.9)

MD 1.7-2.0 (1.9) 2.0-3.1 (2.6) 1.4-2.3 (1.9) 1.2-2.5 (1.8) 2.2-3.0 (2.9) 3.8-7.4 (5.5) 2.5-4.7 (3.8)

2.0-3.0 (2.6) 2.5-4.2 (3.5) 1.9-2.9 (2.4) 4.1-7.1 (5.7) 4.0-8.6 (7.1) 5.9-8.8 (7.6) 3.4-4.2 (3.8)

EA

(d) 3-month DAI50

DJF MAM JJA SON  DJF MAM JJA SON

BI 

IP 1.4-1.6 (1.5) 12.0-32.7 (24.1) 2.3-3.8 (3.0)
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Figure 5.17: Magnitude of change, expressed as ratio to 1951–2000 values, for the IQRs and
ensemble means (in brackets) of drought parameters (including excess periods) simulated using
18 GCMs under RCP6 based on meteorological (top row of each category) and hydrological (bot-
tom) classifications. Categories with robust positive (red) and negative (blue) trends are shown.
“n/a” denotes no drought events in 1951–2000 thus the relative magnitude of change cannot be
mathematically expressed as a ratio.
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Figure 5.18: Frequencies of meteorological and hydrological DAI25 (include excess periods) for
both 12-month and 3-month events in 2051–2100 simulated using 18 GCMs under RCP6. Red
asterisks (*) denote 1951–2000 values. Red lines indicate the relative changes in the two drought
classifications identical to 1951–2000 values.
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especially in the southern and northernmost parts, despite small changes in future mete-

orological drought characteristics. Further, the changing relative importance of precipi-

tation and PET with warming may produce non-linear hydrological response to a linear

climate change forcing, as in the case of British catchments (Arnell, 2011).

Figure 5.18 shows the present-day and 2051–2100 frequencies of 12- and 3-month

DAI25 from 18 GCMs based on both classifications. Given the dominance of precipita-

tion effect in both meteorological and hydrological droughts, similar DAI25 frequencies

for both classifications are expected; however, they may not necessarily be identical as hy-

drological events may lag meteorological episodes and/or last longer (see Section 2.2.5),

along with the effects of PET in their characteristics. For present-day DAI25 frequen-

cies, the consistency of meteorological and hydrological events depends on the region

and season.

In broad terms, projected hydrological DAI25 are more frequent than meteorological

ones for both long and short events. The outlier, notably in BI results, is due to the GCM

FGOALS g1.0 (see Section 5.7.5). For 12-month droughts, both drought classifications

produce very similar (absolute) frequencies for BI, IP and FR. Seasonally, both defini-

tions suggest that DAI25 will become most frequent in summer and autumn, alongside the

largest uncertainties, due to the lower precipitation, higher temperatures and evapotran-

spiration. Greater frequency of hydrological than meteorological drought tends to occur

in summer/autumn (with some exceptions — see Sections 5.8.1–5.8.6), which suggests

the greatest importance of increased PET is during the warmer seasons. The opposite

appears in winter/spring in BI, IP and MD, which implies that the use of a fixed threshold

may not capture hydrological droughts during the cold-seasons that have relatively high

precipitation (see Section 5.5). In some cases, the relative changes in DAI25 frequency

for the two drought classifications are insensitive to the 1951–2000 values (e.g. FR in au-

tumn); in other cases, the relative changes differ considerably from the present-day values

(e.g. EA in autumn).

DAI25 and DAI50 frequencies in 2001–2050 yield very similar characteristics, but

with DAI50 frequencies having smaller magnitudes, and severities based on the two def-

initions are less comparable due to the different units (i.e. meteorological droughts are

characterised by SPI whereas hydrological deficits are measured in mm/month), hence



152
Hydrological droughts in Europe under climate change and the uncertainties in the

projections

these are not shown. Regional comparisons are presented in Sections 5.8.1–5.8.6).

5.8.1 Iberian Peninsula (IP) and Mediterranean (MD)

IP and MD demonstrate very robust increases in both long and short events throughout

the century, with higher uncertainty in winter and spring DAI50 frequencies (Figure 5.16).

They also have some of the largest regional increases for both drought classifications

(Figure 5.17).

For 12-month severities and DAI25 frequencies, both definitions show up to 3-fold

increase in 2001–2050; in absolute terms, occurrence of DAI25 is 15–30%. In 2051–

2100, increases are 3–6 and 4–8 times for meteorological and hydrological drought, re-

spectively; increases for MD are considerably more — up to 13-fold for hydrological

frequencies, i.e. 77% of 2051–2100. Both definitions suggest DAI50 to affect≤10% of

2001–2050 and up to 35% of 2051–2100. Their marked increases, particularly for IP in

2051–2100, are due to the low 1951–2000 frequencies (<4%). For IP in particular, de-

spite the similar absolute DAI50 frequency, hydrological increases are 2–3 times higher

than meteorological changes.

Seasonally, 2001–2050 severities commonly increase by under 2- (meteorological)

and 3-fold (hydrological). Changes in 2051–2100 diverge with seasons and drought clas-

sification: increases in meteorological (hydrological) severities are more pronounced in

(summer) spring and summer. As discussed in Section 5.7.3.1, hydrological droughts,

particularly in spring, are also influenced by changes in snowmelt hydrology.

DAI25 frequencies reveal characteristics similar to changes in severities, although

with smaller classification uncertainties in magnitudes of increase. Both regions have

relatively similar winter and spring DAI25 frequencies, with meteorological events be-

ing more common: 10–20% (meteorological) and<4% (hydrological) of 2001–2050,

and 12–33% (meteorological) and<19% (hydrological) of 2051–2100. This could be

partially explained by the precipitation decrease and relatively small evapotranspiration

increase. In summer and autumn, however, hydrological DAI25 are more frequent: in

summer, 13–26% (meteorological) and 17–31% (hydrological) of 2001–2050, and 25–

49% (meteorological) and 39–59% (hydrological) of 2051–2100; in autumn, 10–17%
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(meteorological) and 37–55% (hydrological) of 2001–2050, and 18–34% (meteorologi-

cal) and 58–81% (hydrological) of 2051–2100. For IP in summer, absolute hydrological

droughts are slightly more common than meteorological events; in relative terms, how-

ever, increases in hydrological frequencies are slightly smaller as its present-day value

is slightly higher than the meteorological counterpart. For MD, hydrological values are

higher in both absolute and relative terms.

DAI50 events are less common. In winter and spring, they tend to occur in<10%

for both drought classifications throughout the 21st century; in summer and autumn, up

to 22% (meteorological) and 53% (hydrological) of 2051–2100. The marked relative

increases are attributable to the rare occurrence (<8%) in 1951–2000.

5.8.2 Scandinavia (SC)

SC generally shows decreasing 12-month drought conditions except hydrological DAI25

for some GCMs (Figure 5.18). The more robust meteorological results are consistent with

the higher precipitation expected for northern Europe (see Sections 4.4.4 and 5.7.3.2).

Amongst the PRUDENCE regions, SC has some of the lowest DAI25 frequencies and

smallest uncertainties according to both drought classifications (Figure 5.18); uncertain-

ties are however higher in 12-month hydrological frequencies.

Seasonally, both meteorological and hydrological definitions reveal decreasing sever-

ity and frequency of widespread events in winter and spring. Trends in 2001–2050

have high model consistency; hydrological reductions are larger than their meteorolog-

ical counterparts, e.g. for severities by 34–63% and 21–32%, respectively. The lack

of robustness in 2051–2100 hydrological results may be related to the mechanisms de-

scribed in Section 5.7.3.2. Summer and autumn severities demonstrate contrasting trends.

While the anticipated precipitation increase reduces meteorological severities, increas-

ing hydrological severities are consistent with negative streamflow trends in some parts

of SC (Engen-Skaugenet al., 2005; Roaldet al., 2006; Thodsen, 2007; Beldringet al.,

2008). For both drought classifications, changes for the regionally-averaged frequencies

of widespread events are complicated by overall effects of changes in precipitation, evap-

otranspiration and snow, and their sub-regional variations, as well as the size of this region

(Section 5.7.3.2).
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5.8.3 Alps (AL)

AL generally demonstrates increasing 12-month meteorological and hydrological drought

conditions during 21st century (Figure 5.16). These are related to the expected lower an-

nual mean precipitation and runoff as described Sections 4.4.5 and 5.7.3.3.

Seasonally, spring reveals positive (negative) meteorological (hydrological) trends

whilst both definitions show drying trends in summer and autumn (Figure 5.16). The

changing snow characteristics alleviates hydrological droughts as detailed in Section 5.7.3.3.

While Beniston (2005) and Hortonet al.(2006) reported inconclusive trends in spring pre-

cipitation, the spring meteorological results obtained here indicate a reduction. Strongest

GCM agreement occurs in summer throughout the century, and severity and DAI25 fre-

quencies have similar magnitudes of change. In 2001–2050, both drought classifications

produce increases of up to 2.5 (meteorological) and 3 (hydrological) times. In 2051–

2100, hydrological increases (up to 9-fold) are almost doubled that of meteorological (up

to 5-fold). In winter, the projected increasing winter hydrological droughts implies that

enhanced PET counteracts higher precipitation; the increasing meteorological severities

simulated disagrees with the expected higher precipitation.

Although hydrological events have larger magnitude of change in all seasons, meteo-

rological DAI25 are more (less) abundant than hydrological events in spring and summer

(winter and autumn) (Figure 5.18). This may be associated with the delay in hydrolog-

ical response to meteorological changes. Note that the change in the ratio between the

meteorological and hydrological DAI25 frequencies is relative to the present-day ratio.

5.8.4 Mid-Europe (ME) and Eastern Europe (EA)

For 12-month events, both definitions show positive trends for all drought parameters

in EA and severities in ME. The mixed direction of change in widespread hydrological

droughts in ME (Figure 5.16) may be associated with the unclear sign and magnitude

of precipitation change in large parts of the year for much of central Europe (Kjellström

et al., 2011).

Positive winter (due to more frequent and intense precipitation) and spring precipi-

tation change over northern-central Europe (Räisänenet al., 2004; Giorgi and Coppola,

2009) reduces meteorological droughts in both regions (Figure 5.16). Meanwhile, greater
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warming in winter than spring/summer over eastern (Giorgiet al., 2004) and northern-

central Europe (Giorgi and Coppola, 2009) increases evapotranspiration (Hirabayashi

et al., 2008) and promotes winter/spring hydrological droughts, notably in EA. The spring

results demonstrate that both ME and EA are affected by the altered snowmelt patterns.

In summer and autumn, both drought classifications indicate increasing drought con-

ditions in both regions. Enhanced evapotranspiration, lower precipitation (up to 70%

in central Europe; Räisänenet al., 2004) and runoff, as well as a perturbed snowmelt

hydrology (Section 5.7.3.4) yield high model agreement in the projected positive hydro-

logical trends. The abundant summer precipitation together with the small and unclear

sign of change for autumn precipitation over northern-central Europe (Giorgi and Cop-

pola, 2009) may partially explain the lack of robustness in the projected positive meteo-

rological trends. Autumn DAI25 frequencies for both regions suggest non-linear changes

(Figure 5.18).

5.8.5 France (FR)

FR is projected to experience increasing meteorological and hydrological droughts,

both long and short, throughout the 21st century. GCM agreement is highest in summer

and autumn. In 2051–2100, summer and autumn severities are up to 4–5 (meteorological)

and >6 (meteorological) times higher than 1951–2000; the magnitude of increases in

summer DAI25 frequencies are reversed for the two drought classifications.

5.8.6 British Isles (BI)

For 12-month results, both drought classifications produce inconclusive trends in

2001–2050. In 2051–2100, hydrological (meteorological) severities and DAI25 frequen-

cies reveal positive (negative) trends, suggesting that higher evapotranspiration counter-

acts the precipitation increase. The regional results may be complicated by the sub-

regional variations in changes in both meteorological (Section 4.4.7) and hydrological

(Section 5.7.3.6) events.

Seasonally, droughts remain relatively uncommon in winter and spring (e.g. Figure
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5.18) with both drought classifications showing no clear trends, except for the nega-

tive severity results. In summer and autumn, both definitions generally show increas-

ing droughts (Figure 5.16) as a result of reduced precipitation during the warmer seasons;

higher evapotranspiration and lower runoff also contributed to the increase in hydrological

droughts.

5.8.7 Exploring the Effects of PET

A major difference in the two drought classifications explored in this study is that

hydrological droughts incorporate temperature effects while SPI is precipitation-only.

Changes in hydrological drought over a river basin should be assessed based on changes

in both precipitation and evapotranspiration, rather than changes in annual precipitation

only (Hirabayashiet al., 2008). PET influence on the direction and/or magnitude of runoff

change (Research Question 5 in Section 5.1) was explored by running Mac-PDM.09 with

climate projections for ECHAM5 under RCP6 but holding the temperature at present-

day (1951–2000) levels. Differences between results from this “constant temperature”

(i.e. precipitation changes only) experiment and the “control” run with future temperature

scenarios (i.e. with changes in both precipitation and PET, as in Section 5.7) are there-

fore mostly be attributable to the effects of PET, which is calculated using the Penman-

Monteith method in MacPDM.09.

5.8.7.1 Effects on Absolute Drought

Table 5.4 shows the percentage difference between various drought parameters gen-

erated from the “constant temperature” and “control” runs for ECHAM5 under RCP6.

Overall, “constant temperature” produces considerably lower severity and less frequent

widespread events. Across the PRUDENCE regions, constant (i.e. “present-day”) temper-

ature yields 59–90% (2001–2050) and 77–99% (2051–2100) less severe 12-month events,

and 52–100% less frequent widespread droughts under both future periods. Similar dis-

crepancies are found for 3-month results, with discrepancies larger in 2051–2100 than

2001–2050 due to the larger projected warming. For 3-month results in SC and AL,

“constant temperature” tends to produce smaller discrepancies in winter relative to other
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12-months 3-month Severity 3-month DAI25 3-month DAI50
Region Severity DAI25 DAI50 DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

2001–2050:
BI -73.8 -100 -100 -64.4 -48.7 -41.7 -53.1 n/a n/a -51.1 -54.1 n/a n/a -64.7 -23.1
IP -64.6 -52.2 -68.8 -57.8 -68.8 -53.5 -46.7 -66.7 -75.0 -37.7 -27.5 n/a n/a -55.0 -47.7
FR -90.3 -95.9 -100 -58.0 -95.2 -68.6 -58.1 -40.0 -100 -62.9 -53.1 -100.0 n/a -80.0 -51.4
ME -82.5 -90.0 -100 -44.1 -74.0 -70.5 -63.9 -52.6 -100 -78.9 -69.1 -40.0 n/a -85.7 -62.5
SC -69.4 -100 n/a -30.9 61.7 -66.8 -61.4 -44.4 16.7 n/a n/a -100.0 -50.0 n/a n/a
AL -77.6 -87.2 -100 -26.6 36.7 -64.2 -57.3 -31.8 71.4 -65.0 -50.9 -60.0 n/a -100 -92.3
MD -59.1 -69.2 -58.6 -34.3 -65.1 -50.9 -44.4 -50.0 -75.0 -53.7 -37.0 n/a -50.0 -61.1 -59.0
EA -84.0 -88.7 -100 -38.5 -55.5 -79.1 -67.6 -50.0 -71.4 -100.0 -78.0 -50.0 n/a n/a -100
2051-2100:
BI -81.3 -100 -100 -61.2 -71.9 -72.7 -83.4 n/a n/a -78.2 -78.3 n/a n/a -82.8 -90.5
IP -81.0 -55.6 -80.9 -83.1 -88.0 -76.7 -68.4 -94.4 -95.5 -51.5 -34.2 -100 -100 -75.4 -56.0
FR -99.2 -100 -100 -86.1 -99.9 -90.5 -82.2 -100 -100 -85.9 -72.1 -100 -100 -94.0 -78.8
ME -94.1 -100 -100 -73.4 -93.1 -90.8 -88.0 -72.0 -100 -96.2 -87.5 -92.9 -100 -95.0 -94.5
SC -86.2 -100 n/a -60.8 184.4 -89.4 -81.4 -100 0 n/a n/a n/a n/a n/a n/a
AL -91.1 -95.2 -100 -66.5 -48.4 -82.1 -76.0 -66.7 -64.0 -83.1 -66.7 -92.3 -100.0 -100.0 -92.8
MD -77.4 -70.0 -87.6 -61.3 -84.3 -73.5 -62.9 -54.3 -85.7 -57.6 -31.8 -100.0 -90.0 -85.9 -67.0
EA -95.7 -98.4 -100 -71.7 -90.3 -91.5 -85.4 -75.4 -88.9 -100 -90.8 -88.5 -100 -100 -1

Table 5.4: Percentage difference between “constant temperature” and “control” runs simulated
with ECHAM5 climatology under RCP6.

PRUDENCE regions, and more spring drought (for AL, 2001–2050 only). “Constant tem-

perature” implies no increase in snowmelt (since in Mac-PDM.09, snowmelts only occurs

when temperature rises above a threshold) which alleviates drought conditions particu-

larly in spring. Table 5.4 suggests that this effect is larger in SC than AL.

Although precipitation is the predominant driver of the land surface hydrologic system

(Adamet al., 2009), these results demonstrate the importance of PET on future changes

in hydrological drought. Although the difference between the two runs are mostly at-

tributable to changes in temperature thus PET, the relative contribution from PET and

possibly other factors that interact with temperature in MacPDM.09 would be an area for

further study. Besides the effects of PET, Gosling and Arnell (2011) found MacPDM.09

simulated runoff to be highly sensitive to the choice of PET calculation method by test-

ing also with the Priestley-Taylor method, and discussed the implications of different

PET calculation methods. Both van der Schrieret al. (2011) and Sheffieldet al. (2012)

calculated global PDSI values with the Thornthwaite (Thornthwaite, 1948) and Penman-

Monteith (Allen et al., 1994a; Ekströmet al., 2007) methods. While the former found

similar results between the two approaches as precipitation is more important than PET

in the simple water balance model of the PDSI algorithm, the latter found diverging re-

sults. Results obtained here are therefore likely to differ considerably with a different PET

calculation method.
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Figure 5.19:Total severity in 1951–2000 and 2051–2100 for “control” and “constant temperature”
runs simulated with ECHAM5 climatology under RCP6.

5.8.7.2 Effects on Magnitude of Change

Figure 5.19 illustrates the effects of PET on the magnitude of change from 1951–2000

for total severity in 2051–2100 simulated with ECHAM5 climatology under RCP6. Only

IP and MD show positive trends in both experiments in both long and short events, with

a considerably lower (>50%) magnitude of increase under “constant temperature”. SC

shows decreasing 12-month and winter severity, with “constant temperature” producing

larger magnitudes. For almost all other categories, PET affects the sign of change except

in IP and MD. Taking the AL example, “constant temperature” indicates negative trends

in winter and spring and positive in summer and autumn, while “control” shows increases

in all seasons. Frequency of DAI25 reveals similar characteristics and is hence not shown.

5.9 Conclusions

This chapter has presented the effects of climate change on hydrological drought char-

acteristics in the 21st century for Europe using gridded (0.5◦×0.5◦) monthly runoff out-

put from the hydrological model, Mac-PDM.09. The general methodology adopted in
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this chapter follows that applied and detailed in Chapter 4. Future climate scenarios,

simulated by MAGICC6 and ClimGen, were used as inputs for Mac-PDM.09. Spatial

patterns were presented for PRUDENCE-averaged regions and Köppen-climate regimes,

and hydrological drought severity and occurrence of large-scale drought were analysed.

To investigate the robustness of the projected changes in European hydrological droughts,

a systematic analysis of the various sources of uncertainty associated with drought mod-

elling was carried out. These include difference due to the choice of drought classification

(meteorological vs. hydrological), a fixed or seasonally-varying threshold for determin-

ing when drought occurs and termination rule for drought events, along with the spread

of results introduced by ten emission scenarios and eighteen GCMs. Specially, this chap-

ter aimed to answer the questions outlined in Section 5.1. Construction of probabilistic

scenarios that would be useful in a planning context would require consideration of more

than the uncertainties addressed here. Consistency was determined by the level of GCM

agreement, with a trend (a robust trend) occurring when≥10 (all 18) GCMs projected the

same direction of change. IQRs were used as a more robust measure of model spread.

This emphasis on inter-model consistency and the behaviors of the majority of models

assumes that GCM agreement in direction of change are more reliable, which may or may

not be correct (see discussion in Section 2.7.10).

Drought projections and their future changes generally vary substantially, depending

on the GCM, emission scenario, region, season, threshold and the methodology used to

define them. Nevertheless, results presented here enable the following generalisations to

be made:

• Temporal: Drying intensifies with climate change over the 21st century, with more

(less) robust increases (decreases) in 2051–2100 than 2001–2050.

• Regional patterns: Projected changes in both high- (Scandinavia and Russia) and

low-latitudes (the Mediterranean and Middle East region) tend to be less sensitive to

the various sources of uncertainty investigated. The former is projected to become

less drought-prone, especially in winter/spring, while marked increases (typically

by 2-3 times in 2001–2050, and up to 10-fold in 2051–2100) are simulated through-

out the year for the latter. Winter/spring trends in British Isles and summer/autumn

trends in Scandinavia are less conclusive.
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• Seasonal patterns: Robust and marked increases, but accompanied by higher un-

certainties in magnitudes, are common in summer/autumn, whereas negative trends

may occur in winter/spring. Although the largest increases tend to occur in sum-

mer/autumn, altered snowmelt processes may cause spring to have the largest mag-

nitude changes in some cases.

• Drought definition: Contrasting trends occur due to choice of different definitions

are more common in winter/spring particularly in regions affected by snow and

snowmelt. For instance, in spring, the Alps could experience positive meteorolog-

ical changes but negative trends in hydrological drought. Drought classification

uncertainty also leads to opposing changes in summer/autmn in Scandinavia.

• Results averaged climatically according to the Köppen climate classification, rather

than geographically, demonstrate higher GCM consistency, thus better reflecting

the climate change signal.

• Uncertainties tend to increase over time and with magnitude of warming. They af-

fect frequencies of widespread droughts more than total severity, and DAI50 more

than DAI25 results, especially in 2001–2050. The lower agreement in 2001–2050

results for spatially extensive droughts especially DAI50 events, is related to the

less substantial near-future warming and/or their rarity especially in larger geo-

graphic regions. The effects of emission scenario uncertainty is more important in

2051–2100; however, GCM variance dominates over other sources of uncertainty

throughout.

Comparing results derived from fixed and seasonally-variable thresholds identifies

categories that are more sensitive to deficiencies during high-flow seasons (Question 2 in

Section 5.1), which are less likely to be captured by the fixed threshold. These results

suggest that a variable threshold captures these anomalies in regions with higher runoff

such as the Alps and Scandinavia especially in the high-flow seasons of winter/spring. A

variable threshold also yields considerably larger magnitudes of increase in drying than a

fixed threshold that may yield contrasting trends in the wetter seasons.

To identify categories that may be more susceptible to a larger drought event being di-

vided into a number of mutually dependent minor droughts, two drought event termination



5.9 Conclusions 161

rules that either include or exclude “excess” periods (where flows temporarily exceed the

threshold level during an event) were applied (Research Question 3 in Section 5.1). For

both present-day and 21st century results, discrepancies introduced by the two event defi-

nitions (1) affect longer droughts than shorter events; (2) affect frequencies of widespread

events more than total severity; and, (3) have negligible effects on hydrological results (al-

though 12-month alpine results have relatively higher discrepancy); however, they have

more influence on their meteorological counterparts as precipitation in a particular month

has less dependence on conditions of the preceding month.

The level of agreement in results derived from the meteorological and hydrological

definitions was assessed. Both classifications generally produced the same direction of

change, but hydrological results tended to produce more increases in drought conditions

with larger magnitudes than meteorological ones. Disagreement was more common for

summer/autumn in Scandinavia, and for winter/spring in Mid-Europe and Eastern Europe

as higher PET counteracts precipitation increase; inconsistency also occurred in the alpine

spring as earlier snowmelt alleviated hydrological droughts while meteorological events

were enhanced by reduced precipitation.

Drought parameters derived from MacPDM.09 were found to be highly sensitive to

PET; different results are therefore likely with a different PET calculation method. Higher

PET generally implies more droughts in absolute terms, with larger increases. Chiew and

McMahon (2002) found that changes in runoff and soil wetness are larger than evapotran-

spiration changes, hence the relative contribution from PET and possibly other factors that

interact with temperature in MacPDM.09 is subject to further study. Winter and 12-month

droughts in Scandinavia and British Isles (in 2001–2050) were projected to decrease re-

gardless of PET changes, but higher PET implies smaller reduction. Higher PET also

reduced winter droughts in Scandinavia and the Alps due to increased melting of frozen

precipitation.

Outcomes in this chapter are conditional upon the limitations of MAGICC6, ClimGen

(those associated with pattern-scaling and the underlying GCMs) and Mac-PDM.09 (e.g.

hydrological model parameters derived from the recent past are assumed to continue to

apply in future climates) as discussed in Section 3. Since Mac-PDM.09 calculates runoff

independently for each cell, runoff in cells further downstream from the Alps, for instance,
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does not contain the glacial component as it would in reality. Results and uncertainty

analysis were primarily based on the use of climate change patterns from 18 GCMs under

RCP6 and one hydrological model. These climate scenarios do not account for potential

changes in the intensity of rainfall at sub-monthly timescales, for example. As such,

results here are likely to underestimate the true uncertainty in future hydrological patterns

(Arnell, 2011), thus should be considered illustrative rather than definitive. Nevertheless,

this comprehensive sampling of uncertainty highlights the range of outcomes that can

occur future drought conditions.

Global and catchment-scale hydrological model output for a given GCM can produce

substantially different projections of flow changes (e.g. Goslinget al., 2011b; Hadde-

landet al., 2011). This variance is relatively small compared to GCM uncertainty (inter-

GCM differences; Arnell, 2011; Toddet al., 2011), which is often found to be the largest

(Grahamet al., 2007; Prudhomme and Davies, 2008; Goslinget al., 2011b; Kjellström

et al., 2011), particularly during summer months (Wilbyet al., 2006). One major source

of GCM uncertainty is related to large-scale atmospheric circulation changes (especially

changes in precipitation and windiness) and their representation in GCMs (Räisänenet al.,

2004; Kjellströmet al., 2011). Models also have difficulties in reproducing higher-order

statistics of precipitation (Blenkinsop and Fowler, 2007b).

Discharge is not only affected by hydroclimatological processes (van der Wateren-

de Hoog, 1995; Hemminget al., 2010), but also catchment characteristics (Hisdalet al.,

2001; Chiew and McMahon, 2002; Gudmundssonet al., 2011), elevation (Changet al.,

2002), water quality and anthropogenic influences (e.g. cover change, adaptation mea-

sures and abstractions for irrigation, industrial and/or domestic use) in future. Consid-

erations of these are beyond the scope of this chapter but are important for assessing

vulnerability to climate change.

It is worth noting that increasing drought conditions in regions that already suffer

from the hazard may be of less concern compared to regions that do not currently ex-

perience their effects. Adaptation decisions (e.g. on investment in infrastructure such as

reservoirs) will need to be made in the context of high uncertainty. As no one technique

is superior than the others (e.g. Blenkinsop and Fowler, 2007b; Prudhomme and Davies,

2008), decision-making should be based on multi-scenario and multi-drought definition
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approaches, together with multiple climate and impact models (Feyen and Dankers, 2009)

to capture uncertainties due to both hydrological and climate modelling (Prudhomme and

Davies, 2008). The choice of drought quantification methodology should be governed by

purpose of application. Local practices such as irrigation are excluded in the simulation

process used here also need to be considered. Existing literature indicates considerable

sub-regional variations (e.g. the northern wetting and southern drying trend in the British

Isles) and localised storms (e.g. in the Mediterranean) that are likely to be smoothed by

the regional averaging process. For instance, topography can induce fine-scale features in

the precipitation change signal (Gaoet al., 2006); the hydroclimatological processes that

govern hydrological droughts may vary between regions and events (Fleiget al., 2011).

Therefore, higher resolution models may be more appropriate for impact assessment stud-

ies, especially for mountainous regions (e.g. the Alps), although they also have limitations

(see Section 2.6.11).

Since future interannual precipitation variability could enhance or alleviate changes in

drought caused by mean precipitation changes, the next chapter explores the spatial and

temporal effects of climate-change-induced changes in interannual precipitation variabil-

ity in projected meteorological and hydrological droughts for the European study region.





Chapter 6

Effects of climate change on the

interannual variability of

precipitation and impacts on

droughts

6.1 Introduction

Global warming will directly influence precipitation patterns (Trenberth, 2006). The

non-linear hydrological response (Labatet al., 2004) suggests global energy and hydro-

logic cycles will intensify as climate changes (Giorgiet al., 2004). Overall, interannual

hydroclimate variability (both drying and wetting) could enhance (Christensen and Chris-

tensen, 2004; Meehlet al., 2000; Seageret al., 2012) due to larger atmospheric water hold-

ing capacity and evaporation over oceans (Giorgi and Bi, 2005; Meehlet al., 2007). The

likelihood of extreme events (e.g. low summer precipitation, increased dry spell lengths)

is very sensitive to deviations in mean and variability of the probability distribution as-

sociated with the variable under consideration, hence they (e.g. precipitation extremes;

Kharin and Zwiers, 2005) may fluctuate much more than the mean (Gregoryet al., 1997).

Therefore, temporal and spatial anomalies of climate variability and its seasonal distri-

bution — rather than changes in the long-term mean values — may be more important

in terms of societal consequences (Katz and Brown, 1992; Lioubimtseva and Henebry,
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2009).

Regional climate fluctuates on timescales of seasons to decades but, until the last

decade, conventional impacts studies have concentrated on mean climate changes. Räisänen

(2002), Giorgiet al.(2004) and Rowell (2005) explored the impacts of CO2-doubling/climate

change on interannual variability of temperature and precipitation. Arnell (2003a) investi-

gated the implications of perturbed relative climate interannual variability on British river

flows, Döll (2002) studied how climate change and variability could affect irrigation wa-

ter requirements, while Vidal and Wade (2009) studied both shifts in drought index and

changes in their characteristics due to GCM-derived perturbed inter-monthly climate vari-

ability, and Hulmeet al.(1999) focused on the multi-decadal (30-year) timescale impacts

on runoff. Hydrological impact studies (e.g. Lehneret al., 2006) that exclude changes in

interannual or daily variability may be under- or over-estimating future floods, droughts

and irrigation water requirements (Bateset al., 2008).

Precipitation variability may be measured in absolute (standard deviation, SD) or rela-

tive (coefficient of variation, CV) terms, with the latter being more appropriate for impact

studies (e.g. water resource management; Vidaleet al., 2007) given that it is dimension-

less and thus enables comparison between regions with different amounts of precipita-

tion. Global warming generally increases precipitation SD and CV: larger SD may occur

in areas with higher or lower mean annual precipitation; CV increases especially with

declining mean precipitation since it is expected to decrease (increase) with more (less)

precipitation days (Räisänen, 2002). Consequently, a general decline in mean precipita-

tion across the PRUDENCE regions implies a substantial increase in CV (Vidaleet al.,

2007).

Changes in variability are an important consideration in a changing climate as they

may mask/moderate or exacerbate the direction and/or magnitude of an anthropogenic sig-

nal, e.g. the strengthened winter NAO combined with background anthropogenic warming

rapidly changed the northern Europe winter climate between 1965 and late 1990s (Hur-

rell, 1995; Hurrell and van Loon, 1997; Parkeret al., 2007). Such changes could have

implications for the alpine region, which exhibits the strongest European winter interan-

nual precipitation variability (Bartoliniet al., 2009), and Iberian hydroelectric production,

which currently varies by a factor of three between wet and dry years (Trigoet al., 2004),
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for example. Exacerbated precipitation intensity and variability could raise flooding and

drought risks (Bateset al., 2008), e.g. more heatwaves and droughts in Europe (Schär

and Jendritzky, 2004). Water availability from surface water sources or shallow ground-

water wells depend on both the seasonality and the interannual variability of streamflow

while seasonal low flows affect the security of water supply (Bateset al., 2008). Even

with a constant total precipitation, warming and enhanced precipitation variability gen-

erally increase irrigation water demand during the growing season (Bateset al., 2008),

and therefore water stress (Lioubimtseva and Henebry, 2009). A change in interannual

climate variability could affect agriculture (e.g. crop yields, crop quality and even crop

choice; Skuras and Psaltopoulos, 2012), food production and forestry (Salinger, 2005).

Changes in European precipitation (and temperature) interannual variability have been

attributed to the effects of: (1) perturbations in mean seasonal temperature and pre-

cipitation, which typically enhances future variance when measured over 30 years; (2)

variations in SST anomalies that affect seasonal means; (3) deviations in internal at-

mospheric variance (Rowell, 2005; Vidaleet al., 2007) and, (4) land-atmosphere feed-

backs especially in transitional climate zones and mid-latitude areas via soil moisture-

temperature/precipitation or vegetation-climate interactions (Seneviratne and Stöckli, 2007).

GCMs can allow interannual variability to change independently of mean precipita-

tion in regions where the temporal distribution becomes more skewed with increases in

low or high extremes, or both. Future interannual precipitation variability could enhance

or alleviate changes in drought caused by mean precipitation changes, but few studies

have explored this area. This chapter therefore takes advantage of ClimGen’s scenario

generation capacity (see Section 3.2) to assess the spatial and temporal effects of climate-

change-induced changes in interannual precipitation variability (hereafter, variability) in

the projected meteorological and hydrological droughts for the European study region.

6.2 Methodology

To explore the influence of climate-change-driven perturbed precipitation variability

in future meteorological and hydrological drought, results from a “control” and a “fixed

variability” experiment (ClimGen Option 4 and 3, respectively; see Section 3.2) are com-

pared. The former accounts for changes in both precipitation mean and variability, as
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represented by the coefficient of variation (CV) or equivalently by the shape parameter

of a gamma distribution (see Equations 3.6 and 3.7); the latter considers only changes in

mean precipitation as the CV is kept roughly constant. In both experiments, ECHAM5

pattern-scaled precipitation deviations for both mean and variability were expressed as a

fractional change from present-day precipitation (e.g. a fractional change of 1.2 would be

+20%) rather than as an absolute change (e.g.+20 mm/month). ECHAM5 was chosen

on the basis described in Section 4.4. The effects on 12-month results for drought severity

and DAI25 frequency for 2001–2050 and 2051–2100 under RCP3-PD and RCP8.5 were

studied. A drought (both meteorological and hydrological) is defined by a fixed threshold

(see Section 5.5).

In the “fixed variability” experiment, ClimGen was run with a scenario generation

method that multiplies the observations by ECHAM5-derived mean climate perturbations.

Variability, which is inherent in the observed time series, is modified so that CV is roughly

constant in both periods, hence precipitation standard deviation changes in proportion to

the mean. To avoid precipitation in regions of decreasing mean precipitation reaching

zero, the magnitude of mean precipitation varies exponentially (rather than linearly) to

global-mean temperature change, thus the rate of change accelerates (decelerates) in re-

gions with higher (lower) mean precipitation (see Equation 3.3). These “fixed variability

precipitation” scenarios were then applied in MacPDM.09 to generate “fixed variability

runoff”.

The “control” results are simply those from Chapters 4 and 5 for meteorological and

hydrological droughts, respectively.

6.3 Meteorological and Hydrological Drought Severity

Figures 6.1 and 6.2 present the difference between control and fixed variability mete-

orological and hydrological drought severity, respectively. Patterns of difference in 2051–

2100 under RCP3-PD and in 2001–2050 under RCP8.5 are not shown due to their sim-

ilarities to Figures 6.1a and 6.2a; these figures therefore demonstrate the smallest (top)

and largest (bottom) forcing scenarios examined. Missing data points in Figures 6.1b and

6.2b represent cells with no change in severity, or without drought in 1951–2000 and/or

2051–2100.
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Figures 6.1 and 6.2 reveal very similar spatial patterns: across much of the study re-

gion, fixed variability severities tend to be lower than control values, i.e. overall, the inclu-

sion of future changes in interannual precipitation variability tend to increase the severity

metric of both meteorological and hydrological droughts, relative to the cases where only

the mean precipitation changes and the CV of precipitation is hold constant. The opposite

trend occurs primarily in parts of Russia/SC (particularly some areas of Sweden), west-

ern/southwestern BI, Brittany (FR) and southern Italy where perturbed variability lowers

severity. The influence of changed variability on hydrological drought is less geograph-

ically structured than for meteorological drought — a characteristic Hulmeet al. (1999)

found in runoff anomalies associated with 30-year climate variability.

Figures 6.1a and 6.2a show similar patterns between the two experiments, with the

hydrological results having slightly larger magnitudes, in both positive and negative di-

rections. Figure 6.1b shows relatively small differences (up to−20%) between the two

experiments around the Mediterranean basin, which become larger with increasing lati-

tudes (and also in Central Asia); similar characteristics are also present in Figure 6.2b.

Figures 6.1b and 6.2b demonstrate differences in severity between meteorological and

hydrological droughts. Hydrological results have smaller differences between the two

experiments, suggesting that altered variability affects meteorological, more than hydro-

logical, severities, as the SPI-based results more directly reflect precipitation influence;

similarly, Lloyd-Hughes and Saunders (2002) found precipitation directly caused much

of the variability in their PDSI results. In large parts of the Balkans, IP, central and eastern

Europe, variability fluctuations enhance (reduce) meteorological (hydrological) severities,

corresponding to lower (higher) 50-year mean precipitation (runoff) (not shown).

In the higher latitudes (except BI) and Central Asia, drought severities, in particular

meteorological ones, are considerably lower (up to 100% lower in some areas) when pre-

cipitation variability (CV) is held constant compared to the control results. This not only

suggests that changes in variability intensifies severity but areas that are “drought-free”

(based solely on increased mean precipitation) may become “drought-affected” when

changes in variability are also incorporated. Results for the wetting regions, including

northern latitudes but also northwestern BI and AL, may also be affected by the method-

ology used for the generating the magnitude of mean precipitation deviation, see Section
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6.5.

As forcing increases (with time and/or under a higher emission scenario), differences

in both meteorological and hydrological severity between the two experiments decline in

the Mediterranean, Black Sea and Caucasus regions through less intensity (e.g. parts of

IP and the Balkans) or reduction in severity (e.g. southern Italy). Since severity is defined

as the cumulative deficit over the time period, this weakening effect appears to contradict

the expected warming-induced intensification of the hydrological cycle, is attributable

to the levelling off of severity in drying regions as precipitation/runoff approaches zero.

This also explains the smaller discrepancies in the lower latitudes compared with northern

latitudes.

In parts of the Balkans, IP, central and eastern Europe, hydrological severity differ-

ences reverse from negative to positive with increasing forcing. Modified variability al-

leviates, rather than amplifies severity, partly because of more intense precipitation in

southern Europe (Kjellström, 2004; Giorgi and Lionello, 2008) associated with the more

severe storms (Sumneret al., 2003). Nevertheless, consistent with Figure 6.2, (Arnell,

2003a) found intensified interannual variability reduces Q95 further despite the small im-

pact on mean flows.

6.4 PRUDENCE-Averaged Results

Regional effects of deviations in the interannual variability of precipitation are also

examined. Table 6.1 presents the regional changes, from 1951–2000 values, in projected

meteorological and hydrological drought parameters from control and fixed variability

experiments. For both meteorological and hydrological drought severity and DAI25 fre-

quency, including future changes in interannual variability tends to (1) enhance positive

trends (IP, FR, AL, MD, EA), (2) moderate reductions (SC), or (3) reverse reductions

in drought so that they become increases (e.g. meteorological drought results for BI and

ME). Similar to findings in Section 6.3, changes in meteorological drought are larger than

the hydrological drought changes; also their effects generally weaken, except for some

scenarios in BI and ME, with increasing forcing. The attenuating effect (reducing dif-

ferences) with increasing forcing may not reflect the decreasing relative importance of

perturbed precipitation variability on severity (as discussed above); nonetheless it is more
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RCP3-PD RCP8.5
2001–2050 2051–2100 2001–2050 2051–2100

Control Fixed Control Fixed Control Fixed Control Fixed

Meteorological Severity:
BI 1.2 −7.0 0.9 −8.8 6.2 −4.5 42.9 19.7
IP 232.4 154.1 333.5 236.1 311.3 227.0 1171.5 1037.5
FR 84.5 59.5 127.9 92.1 104.0 78.9 393.0 310.0
ME 39.6 8.3 56.8 17.4 49.1 13.0 166.0 71.4
SC −32.9 −46.4 −44.4 −55.8 −33.6 −49.2 −49.4 −62.6
AL 170.6 130.0 243.6 193.3 228.5 177.6 876.3 740.2
MD 219.2 155.4 312.1 232.4 298.1 224.6 1192.5 1060.8
EA 68.2 17.2 97.5 29.8 87.0 26.1 328.0 146.1

Meteorological DAI25 Frequency:
BI −7.9 −30.3 −14.5 −32.9 −7.9 −32.9 −26.3 −48.7
IP 274.1 168.5 357.4 246.3 335.2 235.2 870.4 803.7
FR 85.5 44.9 126.1 75.4 100.0 60.9 320.3 223.2
ME 26.9 −17.9 29.5 −9.0 28.2 −12.8 110.3 14.1
SC −48.5 −86.4 −65.2 −87.9 −50.0 −87.9 −83.3 −100.0
AL 307.9 205.3 415.8 292.1 407.9 265.8 1210.5 992.1
MD 270.6 154.9 425.5 270.6 364.7 245.1 1027.5 996.1
EA 90.9 0.0 120.0 16.4 116.4 12.7 396.4 125.5

Hydrological Severity:
BI −6.9 −5.9 −7.7 −5.8 −4.3 −3.5 51.4 47.7
IP 266.8 177.3 406.8 295.0 392.7 286.7 2047.0 1937.6
FR 146.7 130.1 248.1 207.7 196.5 180.7 1125.0 1046.0
ME 75.5 35.7 122.3 70.7 101.0 58.4 546.4 479.9
SC −18.3 −33.4 −21.0 −35.0 −18.3 −34.5 42.5 8.8
AL 341.5 313.0 551.7 517.0 517.4 477.0 3267.5 3261.7
MD 334.9 255.0 499.1 407.8 490.5 389.5 2417.8 2411.7
EA 232.3 165.6 372.3 281.0 319.9 236.3 1924.6 1787.1

Hydrological DAI25 Frequency:
BI −3.6 16.1 7.1 28.6 0.0 16.1 128.6 133.9
IP 284.8 197.8 367.4 280.4 358.7 291.3 930.4 963.0
FR 150.9 108.8 184.2 157.9 171.9 136.8 421.1 464.9
ME 57.8 37.5 85.9 73.4 85.9 75.0 287.5 315.6
SC −14.3 −47.6 −11.9 −52.4 −19.0 −47.6 35.7 −42.9
AL 581.5 525.9 896.3 870.4 796.3 729.6 2000.0 2055.6
MD 596.8 500.0 958.1 877.4 754.8 703.2 1764.5 1793.5
EA 240.9 190.9 345.5 288.6 363.6 252.3 1095.5 1127.3

Table 6.1: Percentage changes, from 1951–2000, in meteorological and hydrological drought
parameters from two experiments: (1) the “Control”, where both the mean and CV of precipitation
change (according to the pattern-scaled GCM projections); and, (2) the fixed variability (“Fixed”)
experiment, where the mean changes but CV is held constant (i.e. the SD changes in proportion to
the mean).
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indicative in the DAI25 frequencies results.

However, for hydrological DAI25 frequencies in 2051–2100 under RCP8.5, perturbed

variability yields slightly smaller increases across all PRUDENCE regions except SC,

where the negative trend reverses. As forcing intensifies, wetter-than-average periods

associated with variability may also become more frequent and/or widespread, resulting

in a smaller proportion of drought-affected areas. Such a pattern also occurs in the BI

under all scenarios (see later discussion).

SC tends to have negative drought changes; increased mean precipitation variations

alone typically decrease meteorological and hydrological severities and DAI25 frequen-

cies, but perturbed variability lessens the reductions through more frequent and/or longer

dry periods. Yet, continued forcing increase reverses the influence of changed variabil-

ity on hydrological trends for both mean and variability in 2051–2100 under RCP8.5,

with altered variability amplifying severity increase and producing more (rather than less)

frequent DAI25 events as PET increases.

Based on percent difference in drought parameters between the two experiments in

Table 6.1, overall, interannual variability changes are least influential in AL. Although

perturbed variability has relatively similar effects in IP, FR, AL and MD, its role in ME

and EA is particularly evident in the meteorological results. For meteorological severity

in both regions, changes in both mean and variability of precipitation produce increases

2.2–4.8 times larger than with the mean climate alone, compared to 12–51% higher in

IP, FR, AL and MD. For EA in 2001–2050 under scenario RCP3-PD, mean precipitation

variations produce almost no change in meteorological DAI25 frequency, but the addi-

tion of changes in variability almost doubles the frequency. For ME, both experiments

project consistent increases but only in 2051–2100 under RCP8.5. Under weaker forcing

scenarios, mean changes reduce meteorological DAI25 frequency, but the inclusion of

modified variability generates positive changes; perturbed interannual variability does not

have such a large impact in the hydrological results. It could be related to the new west-

ern/eastern transitional zone in terms of changing precipitation characteristics as climate

shifts (Kyselýet al., 2010), and increased summer temperature and precipitation variabil-

ity due to strong land-atmosphere interactions in central and eastern Europe as climatic

regimes shift northwards with increasing GHGs concentrations (Seneviratneet al., 2006).
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Except for 2051–2100 under RCP8.5, BI has relatively small changes of regionally-

averaged severity due to the averaging of spatial contrast (Figures 6.1 and 6.2) — modified

variability enhances (alleviates) severity in western Scotland (Ireland/southwestern Eng-

land). Both experiments indicate increasing meteorological and hydrological severities

only in 2051–2100 under RCP8.5. Under all other scenarios examined, perturbed inter-

annual variability intensifies the severity of meteorological droughts, in contrast to the

reductions caused by increased mean precipitation; but changes in interannual variability

also amplify hydrological severity reductions.

The results here are broadly consistent with other studies. Dankers and Hiederer

(2008) found increasing fluctuations in interannual precipitation variability (CV of the

annual precipitation sums) in both northern and southern Europe, and decreases in the

areas between. Precipitation intensity and variability falling in drying regions is gen-

erally increasing (Dankers and Hiederer, 2008). In southern Europe, precipitation vari-

ability increases in both wet/cold season and the dry/warm seasons (Goubanova and Li,

2007) as dry years become drier (Dankers and Hiederer, 2008), and a pronounced increase

in negative anomalies (Giorgi and Coppola, 2009) regardless of the magnitude of mean

changes (Giorgi and Lionello, 2008). This is in agreement with the enhanced positive

changes in drought found here for the Mediterranean regions. Over northern-central Eu-

rope, the precipitation probability density functions (PDFs) broaden and flatten, with pre-

dominantly increased positive anomalies in winter (as wet years become wetter; Dankers

and Hiederer, 2008), and negative in summer (Giorgi and Coppola, 2009). The effects of

changes in summer, if greater than those in winter, may partially be responsible for revers-

ing the negative drought changes (from mean precipitation changes alone) in ME obtained

here. Similar to mean precipitation, the magnitude of changes in interannual variability

generally increases with forcing intensity and is unimportant until the late decades of

21st century — contradicting DAI25 frequency results in the present study; the change

signal is also greater in the dry season than the wet season (Giorgi and Lionello, 2008).

Greater atmospheric water holding capacity causes higher wet-period precipitation inten-

sities; wet periods are separated by longer dry periods with more frequent extremely hot

and dry summers due to feedback interaction with generally drier land areas (Giorgi and

Lionello, 2008).
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6.5 Control vs. Fixed Variability Experiments

Results from the control and fixed variability experiments differ due to three distinc-

tions in ClimGen Options 4 and 3 methodologies, respectively. These are the (1) modi-

fication of observational monthly anomalies that are used to represent future variability,

(2) superimposing these modified present-day deviations of precipitation variability onto

21st-century scenarios, and (3) the function used to generate the magnitude of mean pre-

cipitation change.
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Figure 6.3: ECHAM5-derived shape parameter change pattern (12-month average).

Firstly is the modification of variability, in addition to mean precipitation, in the con-

trol but not the fixed variability experiment. The temporal distribution of precipitation

may become more (or, in some cases, less) skewed as climate changes. The gamma

probability distribution, which best describes variation in precipitation amount over a wet

period of a given number of days (Isonet al., 1971; Lloyd-Hughes and Saunders, 2002),

contains a shape parameterα and a scale parameterβ. α tends to vary with wet-day

frequency, therefore measures distribution skewness. Similar to mean precipitation, the

projected change inα, as a ratio of the present-day mean, is expressed as a linear or ex-

ponential function of the global-mean temperature change. The shape parameter for a

particular future scenario can, therefore, be estimated from the global-mean temperature

change and a coefficient for each calendar month and each grid cell. The pattern of co-

efficients has been diagnosed from the CMIP3 GCM simulations and the average of the

twelve monthly patterns for the ECHAM5 GCM is shown in Figure 6.3.

For a gamma distribution, given thatµ = αβ andσ2 = αβ2, whereµ is the mean
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andσ2 is the variance,CV = 1/
√

α. Therefore, the CV of precipitation increases asα

decreases, and vice versa. Figure 6.3 shows that a majority of the study region has negative

changes with the largest magnitudes in the lower latitudes. This implies that CV increases

with global warming, particularly around the Mediterranean and Black Sea regions; CV

also increases across much of the high latitudes where declining mean precipitation is

expected, consistent with Räisänen (2002) and Vidaleet al. (2007). As a lowerα value

implies a more skewed distribution (Goodesset al., 2003a), this explains the worsening

drought conditions found in Sections 6.3 and 6.4.

Secondly, there are differences in the way that the observed precipitation variability

is superimposed onto the 21st-century scenarios between the two ClimGen methods that

might make a very small contribution to the difference between the two experiments.

Specifically, the fractional deviations in the fixed variability experiment (ClimGen Option

3; o′imy in Equation 3.3) always have a mean of one, whereas the transformed fractional

deviations in the control experiment (ClimGen Option 4;õimy in Equations 3.6 and 3.7)

may have a mean that differs slightly from one. Nonetheless, this influence is negligible

due to the long baseline period (1951–2000) chosen, which is considered representative

of the fluctuations in the timeseries.

Lastly, in regions with declining mean precipitation, the magnitude of mean precip-

itation in both experiments, and the precipitation distribution shape in the control run,

varies exponentially with global-mean temperature change in both experiments. In re-

gions where mean precipitation increases, however, the relationship is linear (exponen-

tial) in the control (fixed variability) experiment. Although, results in wetting regions

may also be affected by this effect (which becomes apparent with global-mean temper-

ature of+3◦C or above, e.g. in 2051–2100 under RCP8.5), it is relatively unimportant

since drought, i.e. regions with precipitation decline, is the primary concern here.

This subsection has discussed the three differences in ClimGen options that explain

the differences in the results from the two experiments, i.e. to differentiate the effect of

changes in interannual variability and mean. The latter two also lead to non-identical

changes in mean precipitation for reasons discussed above. For instance, the 50-year-

mean precipitation from the two experiments deviate by−4% to +8% in 96% of the

study region under lower forcing scenarios, and 90% of the region in 2051–2100 under
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RCP8.5. Nonetheless, these inconsistencies are small compared to 50-year mean control

precipitation changes from 1951–2000 mean (−80% to+40% in≈91% of all cells).

6.6 Conclusions

This chapter has examined the effects of climate-change-altered interannual variabil-

ity on indices of European meteorological and hydrological droughts. This was achieved

by comparing results from a “control” and a “fixed variability” experiment generated with

ClimGen Options 4 and 3, respectively, for both 2001–2050 and 2051–2100 under RCP3-

PD and RCP8.5. The former experiment accounts for both changes in the mean and vari-

ability of precipitation (i.e. results from Chapters 4 and 5 for meteorological and hydrolog-

ical droughts, respectively) while the latter considers only changes in mean precipitation.

Differences in the results between the two experiments are predominantly attributable to

the perturbed precipitation variability.

Overall for both meteorological and hydrological drought severity and DAI25 fre-

quency, perturbed variability tends to (1) enhance drought conditions, particularly in Mid-

Europe and Eastern Europe, (2) moderate reductions in drought conditions (Scandinavia),

or (3) reverse reductions in drought conditions (e.g. meteorological results for British

Isles and Mid-Europe). Therefore, studies that omit precipitation variability fluctuations

may under- or over-estimate drought (but more often underestimate for the study region)

and their trends, or may derive conflicting trends to those that take into account both

perturbed mean and variability, e.g. meteorological DAI25 frequency in Mid-Europe. A

drought-free zone (e.g. in the northern latitudes) according to mean changes only may

become drought-affected when modified variability is considered. The British Isles has

relatively small changes due to the averaging of sub-regional spatial variations (e.g. devi-

ations in variability enhance drought severity in western Scotland but reduce it in west-

ern/southwestern parts of the region), and does not demonstrate clear positive change until

very large forcing scenarios.

These results suggest that small changes in mean precipitation could produce large

effects on drought results, especially those meteorologically defined. The impact of

perturbed interannual variability is more reflected in meteorological than hydrological

drought results due to the use of the precipitation-only SPI index. Although severity
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results do not reflect the relative importance of modified variability particularly in dry-

ing regions, their effects generally weaken, except for some cases in British Isles and

Mid-Europe, with increasing forcing as DAI25 frequency results suggest. Under very

high forcing, wetter-than-average periods associated with positive precipitation anomalies

may also become more frequent and/or widespread, producing slightly smaller increases

in hydrological DAI25 frequency; meteorological DAI25 frequencies do not share this

characteristic though.

6.6.1 Limitations

Although a range of forcing has been represented by a high (RCP8.5) and a low

(RCP3-PD) emission scenario, results here are based on ECHAM5 only. The effects of

perturbations in the interannual variability of precipitation simulated using other GCMs

may lead to different results, thus is an area for further research. In addition, analy-

sis here was carried out for 12-month drought results; the seasonal effects of changes

in interannual precipitation variability therefore warrants further investigation as studies

have shown seasonality in the changes in interannual variability of precipitation, with the

largest increase in summer, and smaller changes in spring and autumn (Giorgiet al., 2004;

Rowell, 2005; Vidaleet al., 2007; Giorgi and Coppola, 2009).

Using ClimGen, this study has used the statistical properties of precipitation derived

from the observations combined with information from GCM simulations to generate fu-

ture scenarios, i.e. the effects of the changes in interannual variability of precipitation on

drought parameters have been studied by examining the simulated changes in the shape

parameter of the gamma distribution. The detailed study of individual drivers of interan-

nual precipitation variability and their changes, such as the NAO (van Loon and Rogers,

1978; Hurrell, 1995; Rodóet al., 1997; Haylock and Goodess, 2004; López-Moreno and

Vicente-Serrano, 2008), is beyond the scope of the current study. Also, this study has con-

sidered the changes in precipitation variability on the interannual timescale only; changes

on other timescales (e.g. inter-decadal; Arnell, 1999c; Hulmeet al., 1999) may modify

the results further. The effects of perturbations in interannual variability has been as-

sessed for precipitation only; changes in temperature variability may also have an impact
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on the projected drought results. In summer, for instance, the increasing interannual vari-

ance of precipitation has been found to couple with those for temperature over much of

Europe, regardless of the direction of precipitation change (Giorgi and Bi, 2005; Giorgi

and Coppola, 2009). These have not been explored here.

The next chapter examines the runoff sensitivity to climatic changes for the Euro-

pean study region using the elasticity approach, and assesses the applicability of such an

approach for estimating runoff under a perturbed climate.





Chapter 7

Runoff sensitivity under present-day

and future climates: the application

of runoff elasticity

7.1 Introduction

Our incomplete understanding of the behaviour of the climate system has led to the

development of a wide range of emission scenarios, climate and impact models to support

climate change decision making. Despite advances in our scientific understanding and

model development, conventional cause-effect analysis (Bruckneret al., 1999) is highly

sensitive to the choice of input data and models. Climate and hydrological models may

be physically sound, but their use in climate change and hydrological impacts studies are

subject to a wide range of sources of uncertainties that range from the choice of emission

scenarios, models and model calibration methodologies (which itself is time and resource

intensive; Schaake, 1990; Sankarasubramanianet al., 2001), to the difficulties in the inter-

pretation of multi-model results, as described in Section 2.6. This cascade of uncertainty

produces a range of possible outcomes (Schneider, 1983). The effects of application of

a range of emission scenarios and GCMs have been explored in Chapters 4 and 5 for

the case of European drought characteristics under future climates. In addition, decision

makers tasked with climate change adaptation planning and policy formulation often have



182
Runoff sensitivity under present-day and future climates: the application of runoff

elasticity

time and/or resource constraints, making assessments based on a physical model a less ap-

propriate support tool in practical applications. Assessing the sensitivity of a system to

a particular trigger offers an alternative (empirical) approach in climate change vulner-

ability and adaptation assessments, and can provide some indication of the urgency of

the issue, i.e. how close the system moves toward critical thresholds (Weiss and Alcamo,

2011), without the level of complexity associated with physical modelling.

Runoff sensitivity to climatic (e.g. precipitation) changes has been estimated using

various approaches on both global (Chiewet al., 2006) and regional scales, including

U.S. (Sankarasubramanianet al., 2001; Sankarasubramanian and Vogel, 2003; Fuet al.,

2007a;b; Renner and Bernhofer, 2012), Australia (Chiew and McMahon, 2002; Chiew,

2006; Department of Water, 2010; Yuet al., 2010a) and China (Fuet al., 2007c; Zheng

et al., 2009; Liu and Cui, 2011; Sunet al., 2013); only a few studies have focused on the

European region (e.g. Arnell, 1992; Weiss and Alcamo, 2011).

This chapter seeks to evaluate the spatial and temporal variations of runoff sensitivity

for the European study region. Elasticity can be used to measure the sensitivity/response

of a system to a certain trigger. Section 7.2 provides an overview of the climate elasticity

of runoff and the datasets used in this study. Section 7.3 presents the elasticity estimates

for the European study region and their changes in a changing climate. Section 7.4 ex-

plores the applicability of elasticity values for estimating runoff under a perturbed climate.

Section 7.5 presents the concluding remarks. The specific research questions addressed

in the chapter are:

1. How does runoff sensitivity to changes in climatic factors vary across the study

region under present-day climate?

2. To what extent does climate change alter runoff sensitivity?

3. Can a simple non-parametric estimator be applied as an initial screening tool, prior

to the adoption of a physical model-based approach, for estimating runoff change?

Specifically, does future runoff estimated with the non-parametric estimator, deter-

mined only using 20th century data, agree with those simulated by Mac-PDM.09?
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7.2 Climate Elasticity of Runoff

Schaake and Chunzhen (1989) and Schaake (1990) adapted the concept of elasticity

(ε), widely used in economics, to estimate the sensitivity of streamflow to climate devia-

tions. ε expresses the ratio of the percent change in one variable to the percent change in

another variable (Liu and Cui, 2011) — e.g. precipitation elasticity of streamflowεp(P, Q)

represents the proportional change in streamflowQ to the change in precipitationP ; alter-

natively, potential evapotranspiration (PET), instead of precipitation, data may be used for

εPET (PET, Q). It indicates the hydro-climatic status of the respective basins and the ex-

pected proportional sensitivity of climatic changes (Renner and Bernhofer, 2012). Dooge

(1992) and Doogeet al. (1999) termed it the sensitivity factor.εp>1 indicates that a 1%

precipitation change can cause a>1% streamflow change (Sankarasubramanianet al.,

2001).

7.2.1 Elasticity Estimation Approaches

Runoff deviations under a perturbed climate may be estimated by a physical model-

based approach, i.e. using a hydrological model (e.g. Nash and Gleick, 1991; Chiew and

McMahon, 2002; Legesseet al., 2010). However, this process can be complex, and time-

and resource-intensive.

Alternatively, an empirical approach may offer the advantage of simplicity as it deter-

mines streamflow response to climate variations using long-term meteorological and hy-

drological observations (Risbey and Entekhabi, 1996), which may be more readily avail-

able than a physical model. According to Schaake (1990),εp(P, Q), a random variable

dependent onP andQ, is defined as:

εp(P, Q) =
dQ/Q

dP/P
=

dQ

dP

P

Q
(7.1)

Sankarasubramanianet al. (2001) compared the performance of various model struc-

tures in estimating elasticity at the mean values of precipitation (µP ) and streamflow (µQ)

(Equation 7.2), and recommended the estimator, Equation 7.3, for general usage.

εP (µP , µQ) =
dQ

dP
|P=µP

µP

µQ
(7.2)
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εp(P, Q) = median

(
Qt − Q̄

Pt − P̄

P̄

Q̄

)
(7.3)

Equation 7.3 represents the median of annual estimates of climate elasticity over the

study period at the specific site;t is time (year),P̄ andQ̄, are the long-term sample means

of precipitation and streamflow, respectively.Pt andQt are the annual-mean precipitation

and runoff in yeart. The use of annual data implies that Equation 7.3 only estimates

long-term runoff sensitivity to long-term precipitation changes (Chiewet al., 2006). To

capture the full range of observed variability, longer records are generally recommended

for estimating elasticity. With potential changes in climate and variability, however, the

most recent 30–50 years, or dry or wet periods that are similar to future projections, may

be more suitable (Fuet al., 2011).

Sankarasubramanian and Vogel (2003), Chiew (2006) and Liu and Cui (2011) and

others have investigated the effects of climate change on annual streamflow based on

Equation 7.3. This estimator was tested via Monte Carlo experiments for three basins in

the U.S.; it was found to have low bias and was equally or more robust than watershed

model-based approaches for evaluating the streamflow sensitivity (Sankarasubramanian

et al., 2001). It enables spatial and temporal comparisons of streamflow response to cli-

mate change/variability in different scales of the same basins. Liuet al. (2012) quantified

the impacts of climatic variation and human activities on streamflow changes by first esti-

mating the contribution of streamflow deviations associated with changes in precipitation

and potential evapotranspiration (PET) using the climate elasticity method, and then at-

tributed the remaining streamflow variation to human or other influence.

Given the time and resource constraints in water resource management and planning,

the relatively simple data requirements and calculations of Equation 7.3 imply that it

could potentially be a useful scoping tool to identify areas that warrant in-depth modelling

studies. Hence, the application of Equation 7.3 has been explored in this chapter.

Runoff sensitivity may also be obtained from the response surface method (e.g. New,

2002; Weiss and Alcamo, 2011), the Budyko framework (e.g. Renner and Bernhofer,

2012; Sunet al., 2013; Liang and Liu, 2013), or the ArcGIS Geostatistical Analyst (e.g.

Fuet al., 2007a;c; Yuet al., 2010a), amongst others (e.g. Dooge, 1992; Vogelet al., 1999;

Harmanet al., 2011).
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7.2.2 Limitations of the Non-Parametric Estimator

Despite the simplicity of Equation 7.3, a numerical drawback is thatεp(P, Q) ap-

proaches infinity whenPt approaches̄P (Sankarasubramanianet al., 2001). Fuet al.

(2007b) excluded precipitation changes of<10% to overcome this numeric instability,

however such an approach has not been adopted here due to the selection of median elas-

ticity values (Equation 7.3).

Since Equation 7.3 is only a function of precipitation, it does not account for the

effects of other factors such as temperature (Fuet al., 2007b), hence PET, which also

can also alter runoff characteristics (Gedneyet al., 2006). For instance, the 20th-century

global runoff was found to increase by 4% with a 1◦C warming (Labatet al., 2004);

the potential changes in future precipitation and temperature distributions could mod-

ify future flow regimes, as simulated for Central European basins (Weiss and Alcamo,

2011). Fuet al. (2007b) thus extended Equation 7.3 into a two-parameter index, by

using the ArcGIS Geostatistical Analyst package and historical records to construct the

streamflow-precipitation-temperature relationship. This incorporates the effects of the

temperature from the temperature-precipitation plane into the calculation of climate elas-

ticity of streamflow. Furthermore, Equation 7.3 excludes potential changes in rainfall

distribution and frequency, land surface processes and surface-atmosphere feedbacks in

an enhanced greenhouse environment (Chiewet al., 2006).

7.2.3 Datasets

The calculation of climate elasticity of runoff (Equation 7.3) is based on annual stream-

flow (Qt) and annual climate variables such as precipitation (Pt) and PET (PETt). This

involves using the observed (1951–2000) monthly CRU TS 3.0 precipitation timeseries

extracted using ClimGen (see Section 3.2), Mac-PDM.09-simulated monthly runoff time-

series and monthly PET timeseries extracted from Mac-PDM.09 for the period 1951–2000

(see Section 3.3). The Mac-PDM.09 simulation was forced by the same CRU TS3.0 ob-

served climate variations.

To analyse the changes in runoff sensitivity under a changed climate, future elastic-

ity values were computed with 21st-century monthly precipitation (from ClimGen) and

runoff (from Mac-PDM.09) data projected by ECHAM5 under a low (RCP3-PD) and
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high (RCP8.5) emission scenario. ECHAM5 was chosen on the basis described in Sec-

tion 4.4. This approach enables an assessment of how well elasticity values estimated

using 1951–2000 runoff (from Mac-PDM.09) reproduces the Mac-PDM.09-generated fu-

ture runoff simulated using GCMs and emission scenarios. However, it will likely give

an upper bound for the performance of Equation 7.3 because the runoff used to fit the

elasticity equation is from the same model that is used to test its performance. Lower

performance would be expected if real-world datasets were used for elasticity estimation,

because real-world observations will not be perfect.

7.3 Elasticity Estimates

7.3.1 Calendar vs. Hydrological Year

According to Fuet al. (2011), an inappropriate accumulation of annual values of

streamflow and precipitation may over- or underestimate elasticity. Consequently, time-

series with the strongest precipitation-streamflow relationship should be used, and that the

hydrological year (October–September) would be preferable. Elasticities for snowmelt-

dominated mountain and high-latitude catchments (e.g. Spokane River basin; Fuet al.,

2011) with topographically driven thresholds related to snow loss that are relatively weak

in 20th-century records, may become more sensitive to the time periods of annual accu-

mulations and the precipitation-streamflow relationship (Fuet al., 2007b). The initial step

in elasticity estimation therefore is to determine whether to use calendar- or hydrological-

year results for subsequent analysis.

The strength of the precipitation-runoff relationship was assessed using Pearson’s cor-

relation coefficients for 1951–2000 annual timeseries computed with both calendar and

hydrological years. The spatial distribution of the correlation coefficients (not shown),

however, revealed little difference between the January–December and October–September

results.

Subsequently, precipitation and PET elasticity of runoff (hereafter,εppt andεPET ,

respectively) for both calendar and hydrological years were estimated with Equation 7.3,

as shown in Figures 7.1 and 7.2. Monthly precipitation, PET and runoff data for 1951–

2000 were used (see Section 7.2.3). The griddedεppt andεPET values (as in Figures
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εppt εPET

Calendar Hydrological Calendar Hydrological

PRUDENCE regions:
BI 1.48 1.39 -0.20 -0.05
IP 1.86 2.21 -2.23 -1.09
FR 1.73 1.95 -0.42 0.07
ME 1.67 1.92 -0.82 0.17
SC 1.14 1.33 0.08 0.18
AL 1.50 1.63 -2.44 -0.96
MD 1.62 1.91 -2.82 -3.11
EA 1.48 1.68 -2.59 -0.86

Köppen climates:
BSh 1.65 1.80 -4.92 -2.84
BSk 1.60 1.67 -6.25 -6.14
BWh 1.51 1.74 -3.02 -4.85
BWk 1.54 1.58 -6.56 -6.06
Csa 1.74 2.01 -3.11 -3.67
Csb 1.71 2.10 -1.07 -0.74
Cfa 1.56 1.81 -3.73 -2.66
Cfb 1.62 1.77 -1.45 -0.35
Cfc 1.16 1.28 0.68 0.75
Dsa 1.05 1.25 -3.48 -3.00
Dsb 1.27 1.51 -3.09 -2.70
Dsc 1.05 1.18 -0.30 -0.41
Dfa 1.35 1.73 -6.18 -6.88
Dfb 1.40 1.64 -4.24 -5.08
Dfc 1.28 1.51 -1.19 -0.91
ET 0.88 1.04 0.19 0.30

Table 7.1: εppt andεPET estimated with annual climatic and runoff values based on the calendar
and hydrological years.

7.1 and 7.2) were then averaged based on the PRUDENCE regions and Köppen climates

types (see Section 3.9). These are presented in Table 7.1.

Hydrological-yearεppt (Figure 7.1b) tend to be more spatially-coherent, and both

gridded and regional (Table 7.1) hydrological-yearεppt tend to have larger magnitudes,

suggesting a more sensitive relationship. For regional averages, the hydrological year

yields higherεppt values in all PRUDENCE regions except the British Isles, and in every

one of the Köppen regions. For example, regional calendar- and hydrological-yearεppt

for IP, FR, ME, MD are 1.48–1.86 and 1.91–2.2, respectively. These results seem to

support (Fuet al., 2011)’s argument for using hydrological year. Moreover, the splitting of

high European winter precipitation between two calendar years may produce misleading

results (Trigoet al., 2004). Therefore, the remaining chapter focuses on hydrological-year

results.

εPET results are less conclusive and are discussed later in this subsection and Section

7.3.3.
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7.3.2 Relationship with Runoff Ratio
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Figure 7.3: Mean runoff ratio for 1951–2000 based on October-September annual precipitation
and runoff.

Figure 7.3 shows the mean runoff ratio (runoff/precipitation) derived from 1951–

2000 annual (October-September) precipitation and runoff. It implies that runoff ratio

negatively correlates toεppt (Figure 7.1b) as areas with higherεppt tend to have lower

runoff ratios, and vice versa. This relationship is explored further below.

The runoff ratio,α, is defined as:

α = Q̄/P̄ (7.4)

whereQ̄ and P̄ are the long-term means of runoff and precipitation, respectively.

Re-arranging Equation 7.4 gives:

Q̄ = αP̄ (7.5)

On longer timescales, continental river runoff is approximately equal to the difference

between land precipitation and evapotranspiration (Gedneyet al., 2006). Therefore, as-

suming that soil moisture and groundwater storage∆S in the present-day does not vary

significantly over the long-term, i.e.∆S=0, the long-term mean runoff,̄Q, is:

Q̄ = P̄ −AET (7.6)

whereAET is the long-term mean actual evapotranspiration (AET).

For any particular year,t,
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Qt = Pt −AETt −∆St (7.7)

Equation 7.3 states that:

ε = median(εt) (7.8)

whereεt is:

εt =
Qt − Q̄

Pt − P̄

P̄

Q̄
(7.9)

If for year,t, whereAETt andSt vary,

∆AETt = AETt −AET (7.10)

substituting Equation 7.6, and then 7.5, into Equation 7.10 gives:

∆AETt = AETt − P̄ + αP̄ (7.11)

substituting Equations 7.7 forQt, 7.5 forQ̄, and 7.11 forαP̄ into Equation 7.9 gives:

εt =
1
α
· Pt − P̄ − (∆AETt + ∆St)

Pt − P̄
(7.12)

SincePt − P̄ = ∆Pt, Equation 7.12 becomes:

εppt =
1
α
· ∆P − (∆AETt + ∆St)

∆P
(7.13)

If ∆AETt + ∆St = 0, i.e. only precipitation changes from one year to another,

Equation 7.13 simplifies to:

εppt = 1/α (7.14)

Sankarasubramanian and Vogel (2003) also found the upper bound ofεppt to be

roughly the inverse of runoff ratio.

Figure 7.4 presents the difference betweenεppt and the inverse of runoff ratio (1/α). It

shows that for the entire study region,εppt is smaller than 1/α, which occurs if∆AETt +
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Figure 7.4: Difference betweenεppt and the inverse of 1951–2000 mean runoff ratio.

∆St > 0 when∆Pt>0 (Equation 7.13). Therefore, in years where∆P>0 (i.e. a year

with positive annual mean precipitation anomaly), the increase ofAET and/or∆S im-

plies a smaller runoff increase than would occur if only precipitation changes; drier years

(∆P<0) imply a smaller runoff decrease asAET and/or∆S reduces. Although the

annual PET does not vary with changes in precipitation alone, changes in water made

available by precipitation directly influence AET (Jetonet al., 1996). SinceAET cannot

exceedPET :

AET = βPET (7.15)

where 0≤β≤1, a wetter year implies that more moisture is available for evaporation

(β→1) or soil moisture storage increases. Figure 7.4 shows that larger differences tend

to occur in the lower latitudes (particularly eastern IP and Central Asia), and vice versa.

This suggests thatAET increases in the lower latitudes are higher than in the northern

latitudes.

Although not found here, according to Equation 7.13,εppt> 1/α occurs only if∆AETt+

∆St < 0 when∆Pt>0 (and vice versa). This suggests thatAET and/or∆S decreases in

a year where∆P>0. This may occur with lowerPET , which also implies lowerAET ,

but would be unusual as soil moisture storage andβ would be expected to be higher in a

wetter year.
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7.3.3 Spatial Variations in Elasticity

This subsection addresses Research Question 1 in Section 7.1, “How does runoff sen-

sitivity to changes in climatic factors vary across the study region under present-day cli-

mate?”.

7.3.3.1 Precipitation Elasticity of Runoff (εppt)

According to Figure 7.1, a majority of the study region hasεppt 1.0–2.5, i.e. a 1% pre-

cipitation increase yields a 1.0–2.5% rise in runoff. These results are consistent with

Equation 7.3-based estimates of 1.0–3.0 for 500 catchments across the globe (Chiew

et al., 2006). This estimator, along with other approaches mentioned in Section 7.2.1,

show regional variations inεppt: 1.0–2.5 for the U.S. (Sankarasubramanianet al., 2001;

Sankarasubramanian and Vogel, 2003; Fuet al., 2007a), 2.0–4.0 for Australia (Chiew and

McMahon, 2002; Chiew, 2006; Yuet al., 2010a), 1.3–3.0 for the UK (Arnell, 1992), 1.0–

2.1 for the Chinese Yellow River (Zhenget al., 2009; Liu and Cui, 2011) and Poyang

Lake Basins (Sunet al., 2013), and 3.0–4.0 for the Meki River Basin in Ethiopia (Leg-

esseet al., 2010). Although not found in the present study, increased precipitation may

produce negative climate elasticity as a small precipitation increase (decrease) combined

with a large temperature increase (decrease) may generate lower annual streamflow (Fu

et al., 2007b).

εppt>1.5 occurs across much of western continental Europe and Central Asia/Middle

East; large parts of IP hasεppt>2.5 (Figure 7.1). The lowest values tend to occur in

regions north of 60◦N and parts of Russia; in some of these areas,εppt is <1, so that

the relative runoff changes by less than precipitation. According to Jetonet al. (1996),

the amplified runoff response arises due to the relatively smaller changes in AET com-

pared to the mean precipitation perturbations, given that hydrological models such as

Mac-PDM.09 represent annual runoff as roughly the difference between precipitation and

AET. This is shown by Equation 7.13, asεppt>1 implies that relative AET deviation is

smaller than the relative mean precipitation change. This occurs when much of the addi-

tional precipitation during a wetter year falls (1) during the cold-season months and AET

is limited by energy more than moisture, or (2) during intense precipitation events when a

greater proportion runs off rather than increasing soil moisture storage and thus the later
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supply of water for AET.εppt<1 suggests that relative AET changes exceed precipitation

changes, which occurs when much of the water is stored as snow until late spring when

more energy is available (i.e. PET increases). This explains the concentration of areas

with εppt<1 in parts of Russia and Scandinavia, as shown in Figure 7.1.

In agreement with the negative correlation betweenεppt and runoff ratio found in Sec-

tion 7.3.2, many studies (e.g. Arnell, 1992; New, 2002; Zhenget al., 2009; Liu and Cui,

2011) generally reveal higher (lower) sensitivities in more (less) arid regions or dry (wet)

years, although Jetonet al. (1996) found larger annual streamflow changes to mean pre-

cipitation variations under wetter climates in the north-central Sierra Nevada, California

and Nevada. Globally,εppt>2.0 occurs in arid and semi-arid regions with lower runoff

coefficients, including southeastern Australia, southern and western Africa, mid-western

and Southwestern U.S.;εppt<2.0 occurs in catchments with high mean annual runoff ra-

tio and very high humidity index (precipitation/PET, both long-term mean), as well as in

cold climates that has large snow storage, such as southwestern South America, the mid-

and high-latitudes of the Northern Hemisphere such as northwestern U.S. (Sankarasubra-

manianet al., 2001; Chiewet al., 2006).

Elasticity may also vary with the direction of precipitation change, even with constant

temperature (Fuet al., 2007b). For four catchments in southwestern Cape, South Africa,

New (2002) found greater (smaller) streamflow response for progressively larger precipi-

tation increases (decreases). Moreover, as found in the Murray-Darling Basin (Fuet al.,

2011), precipitation variations alone may not cause directional or large-magnitude runoff

changes (Jetonet al., 1996), which depend also on basin-scale effects of climate, soil and

vegetation (Wigley and Jones, 1985; Gedneyet al., 2006; Liu and Cui, 2011).

7.3.3.2 PET Elasticity of Runoff (εPET )

Figure 7.2 shows that a 1% PET increase produces runoff change between−8% and

+2% across much of the study region, which is consistent with other studies. For instance,

New (2002) found lowεPET of 0.2–0.4 in four mountainous catchments in southwestern

Cape, South Africa, which increased under wet conditions (i.e. decreased PET). In China,

εPET ranges from−2.1 to−10.2 in Poyang Lake Basin (Sunet al., 2013) and between

−1.0 and−4.5 in the Yellow River Basin (Zhenget al., 2009; Liu and Cui, 2011).
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Overall,εPET is larger thanεppt (typically≤2.5), which appears to suggest that runoff

in the study region is more responsive to PET than precipitation changes. While allεppt

values are positive,εPET are both positive and negative. PET is expected to negatively

correlate with runoff as lower PET tends to offset the effects of any precipitation decline

or enhance the effects of precipitation increases, hence higher runoff (Wigley and Jones,

1985). PositiveεPET values, i.e. PET increases with runoff increase as reflected in Figure

7.2, imply greater effect of precipitation increase than PET increase.

Large positiveεPET values (+2%) particularly concentrate in parts of western Iberian

Peninsula, Scotland, western Eastern Europe (e.g. Poland), western Turkey, parts of Scan-

dinavia, eastern Ukraine and southern Russia. This suggests that annual precipitation and

PET values are positively correlated in these regions during 1951–2000, and runoff in-

creases even in years with positive PET anomalies as the effect of precipitation increase is

larger than PET. Such a relationship may also occur in future climates as runoff is deter-

mined by AET (see Section 7.3.3.1). The largest negativeεPET (−8%) occurs in Central

Asia/Middle East, but is also found in Romania, and parts of Italy that have the lowest

runoff ratios (<0.2).

7.3.3.3 Regionalεppt and εPET

Table 7.1 shows that in all PRUDENCE regions except MD, precipitation changes

affect runoff more than PET changes. Runoff in IP and SC is the most (εppt 2.2) and least

(εppt 1.3) sensitive to precipitation changes, respectively. Along with one of the largest

εppt (1.9) alongside FR and ME, MD also has the highestεPET (3.1), suggesting high

sensitivity changes to PET changes.

Taking averages according to Köppen climates,εPET values (negative 3.1–6.6) are

larger thanεppt (1.3–2.1) in the lower latitudes (all arid (B) climates, temperate climates

with hot summers (Csa, Cfa), cold climates with/without dry season and with hot/warm

summer (Dfa, Dfb, Dsa, Dsb)), suggesting that runoff around the Mediterranean, Black

Sea and Caspian Sea is more sensitive to PET than precipitation. In climates with lower

temperatures (Csb, Cfb, Cfc, Dfc, Dsc, ET), PET influence is negligible (εPET 0–1).

For εppt, Csa and Csb have the highest values (2.0 and 2.1, respectively) while ET and

Dsc have the lowest (1.0 and 1.2, respectively). Cfb, which covers much of mid-latitude
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Europe, along with Cfa and Dfa that surround the Black Sea, also have relatively highεppt

of 1.7–1.8.

While temperature strongly influences the seasonal runoff distribution and snow ac-

cumulation and ablation processes (Jetonet al., 1996), precipitation predominantly drives

the land surface hydrologic system, thus directly and indirectly affect annual mean stream-

flow (Arnell, 1992; Risbey and Entekhabi, 1996; Adamet al., 2009; Liang and Liu, 2013).

Therefore, precipitation variations are regarded as more important than PET changes in

determining runoff changes. Hence,εppt is considered a more important indicator than

εPET , and the remaining chapter focuses onεppt.

7.3.4 εppt under Climate Change
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Figure 7.5: Changes inεppt based on ECHAM5.

Most studies investigate climate elasticity of streamflow using 20th century data,

e.g. for the U.S. (e.g. Sankarasubramanianet al., 2001; Fuet al., 2007b) and China (e.g.

Fu et al., 2007c; Zhenget al., 2009; Liu and Cui, 2011; Sunet al., 2013), but few have

explored how elasticity could shift as climate changes. This study thus explores the Eu-

ropean hydrological response to both present-day and future climates.

To examine the potential changes inεppt under climate change (i.e. Research Question
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2 in Section 7.1), Equation 7.3 was applied to 2001–2050 and 2051–2100 monthly precip-

itation and runoff timeseries based on ECHAM5 under RCP3 and RCP8.5 (see Section

7.2.3). Percentage changes inεppt relative to the 1951–2000 values (Figure 7.1b) were

derived (Figure 7.5). Patterns of change in 2051–2100 under RCP3 and in 2001–2050

under RCP8.5 (not shown) are similar to Figure 7.5a.

Figure 7.5 shows similar spatial patterns ofεppt changes from 1951–2000 in the two

future periods under both emission scenarios. While changes of±20% in the 21st century

scatter across the study region, stronger positive trends (>20%) predominantly occur in

the band northern EA—eastern SC—northern Russia. These trends are more widespread

in 2051–2100 under RCP8.5, for which they also extend into the Alps and along the east

coast of the Adriatic Sea. Under present-day conditions, frozen precipitation in these

regions implies a smaller runoff response to precipitation fluctuations (εppt<1.5, Figure

7.1b). As more precipitation falls as rain instead of snow with warming, runoff responds

more quickly to precipitation variations, yielding a higher runoff sensitivity to precipita-

tion. Futureεppt decreases by>20% in IP where 1951–2000εppt is >2.0. This reduction

could be related to the increasing importance of future PET, causing less of the precipi-

tation changes to be reflected in runoff deviations. Another explanation is related to soil

moisture storage changes: initial drier soil conditions (due to increased PET with warm-

ing) imply that in a year with positive precipitation anomaly, a greater proportion of the

added moisture infiltrates into the soil until it becomes saturated, thus a smaller proportion

contributes to runoff.

Generally, Figure 7.5 suggests that areas with some of the lowest (highest) present-day

sensitivities of runoff to precipitation change,εppt<1.5 (>2.0), have some of the largest

(smallest) increases in the 21st century. This suggests reducing geographical variations in

εppt values.

7.4 Runoff Estimated by Elasticity

As mentioned above, streamflow sensitivities have been dervived in a number of stud-

ies but few have used elasticity values to estimate runoff. Chiew (2006) compared stream-

flow estimated by Equation 7.3 with a simple lumped conceptual daily rainfall-runoff

model SIMHYD. In a report by the Government of Western Australia (Department of
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Water, 2010), runoff changes in southwest Western Australia under a perturbed climate

were determined using elasticities derived with 20th-century data. Since few studies have

validated the use of elasticity values in estimating runoff changes, this section examines

whether the application of an elasticity function could reproduce Mac-PDM.09-simulated

runoff for the European study region (Research Question 3 in Section 7.1).

Usingεppt values derived in Section 7.3.3.1, runoff was estimated with Equation 7.16:

Qfut = Q̄ + εpptQ̄ · Pfut − P̄

P̄
(7.16)

whereQfut represents the elasticity-estimated 50-year mean runoff under climate

change,Q̄ is the 1951–2000 runoff mean based on Mac-PDM.09 output,εppt denotes

the precipitation elasticity of runoff,Pfut is the 50-year mean precipitation in the 21st

century, andP̄ is the 1951–2000 mean. The 21st-century precipitation data were based

on ECHAM5 under RCP3 and RCP8.5 (see Section 7.2.3).

These elasticity-estimated runoff values, presented in Section 7.4.1, were then com-

pared to Mac-PDM.09 simulations for the 21st century (Section 7.4.2).

7.4.1 εppt-estimated Runoff

Figure 7.6 shows the percentage changes in 21st century usingεppt-estimated runoff

based on the 1951–2000 mean. Similar to Figure 7.5, changes in 2051–2100 under RCP3

and in 2001–2050 under RCP8.5 are not shown due to their similarities to Figure 7.6a.

Northern and southern latitudes have the largest positive and negative trends ofεppt-

estimated runoff change, respectively. In absolute terms, the former have the highest

future 50-year mean runoff (e.g. Norway and western BI have>50 mm/month) while

the latter have the lowest values (e.g. much of IP, Central Asia/Middle East have<10

mm/month). AL also has>50 mm/month of long-term mean runoff, but a moderate

decrease of 10–30%.

εppt-estimated values are generally>10% higher (lower) than 1951–2000 mean in

areas north of 60◦N (south of 45◦N and west of the Caspian Sea). The most extreme

warming scenario (Figure 7.6b) reveals runoff>30% higher in the northern latitudes, and

>50% lower in the lower latitudes, particularly in IP and around the Mediterranean basin

where the predicted reduction exceeds 70%.
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Figure 7.6: Changes inεppt-estimated runoff, from 1951–2000 mean, based on ECHAM5.

For Figure 7.6b,εppt produces negative runoff estimates in 1.3% of the study region,

primarily in south-central IP and parts of southwestern Turkey (not shown). These roughly

correspond to the regions with the highest present-day elasticity (≥2.5) combined with

large precipitation declines (by 34–59%) from 1951–2000 (other scenarios have<27%

reduction). When estimating runoff withεppt, large precipitation decrease and/or high

εppt values may reduce runoff by>100%. Although these cases could be set to zero,

caution is needed anyway when estimating runoff change with elasticity values under

large warming scenarios, as these changes may lie outside the range of the present-day

annual variations used for elasticity estimation.

7.4.2 Comparison with Mac-PDM.09-simulated Runoff

This section examines the level of agreement between elasticity and hydrological

modelling output by comparing the 21st century runoff estimated byεppt (Section 7.4.1)

and Mac-PDM.09 under a “control” and “constant-temperature” experiment. Climate

scenarios under RCP3 and RCP8.5 based on ECHAM5 were used.

The “control” experiment involves using 21st-century ClimGen climate projections

as input into Mac-PDM.09, i.e. the approach adopted in Chapter 5. Runoff/runoff change
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estimated by elasticity and Mac-PDM.09 are hereafter termed “estimated” and “control”

runoff/runoff change, respectively.

As Equation 7.3 only considers one climate variable,εppt-estimated runoff might

be more comparable to Mac-PDM.09 simulations generated with 21st century precip-

itation and 1951–2000 temperature — the “constant-temperature” experiment. Simi-

larly, runoff/runoff change from this experiment is referred as “constant-temperature”

runoff/runoff change, hereafter.

“Control” and “constant-temperature” runoff changes from 1951–2000 mean values

are presented in Figures 7.7 and 7.9, respectively. As for Figures 7.5 and 7.6, only results

for the most extreme (small and large) climate change scenarios are shown.

7.4.2.1 Control Runoff Comparison
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Figure 7.7: Changes in Mac-PDM.09-simulated runoff, from 1951–2000 mean, based on
ECHAM5.

Under the smaller warming scenario, both the elasticity and modelling approaches

(Figures 7.6a and 7.7a, respectively) produce similar spatial patterns of runoff change as
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Figure 7.8: Percentage difference ofεppt-estimated runoff from Mac-PDM.09-simulated runoff,
based on ECHAM5.

discussed in Section 7.4.1. The control experiment yields larger reductions across 45–

55◦N as the anticipated higher PET is accounted for in Mac-PDM.09 but not in the elas-

ticity results. Reductions of 30–50% in southeastern Europe are slightly more common

in simulated than estimated changes, suggesting the importance of PET; other potential

explanations include elasticity estimates based on present-day values, or the elasticity

concept itself, may be inappropriate for deriving long-term changes. For southwestern IP,

however, reductions of this magnitude are more widespread in estimated than simulated

results. Larger magnitudes of change occur in 2051–2100 under RCP8.5, with both ap-

proaches indicating 2051–2100 runoff to be>10% higher than 1951–2000 mean in areas

north of 60◦N, and>30% lower south of 45◦N. Reductions of>70% are common around

the Mediterranean basin, particularly in the elasticity-based estimates.

Overall, simulated trends tend to be more negative than elasticity-estimated changes.

εppt values only consider precipitation and not temperature/PET effects, therefore they

may overestimate runoff by excluding losses from increased PET, which reduces (en-

hances) the magnitude of simulated runoff increase (reduction) notably in the high- (mid-)

latitudes. This is reflected in Figure 7.8, which shows the discrepancies between estimated
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and simulated 21st century runoff based on ECHAM5; discrepancy is considerable under

the largest warming scenario. Exceptions include the relatively unaffected northwest-

ern study region due to lower PET, and around the Mediterranean basin where estimated

runoff is lower than simulated.

In the lower latitudes, PET is expected to increase with climate change, thus the

runoff simulated by Mac-PDM.09 during the control experiment, for which changes in

PET are allowed, is expected to be lower (greater reduction) than values estimated only

from precipitation change; it is worth noting that it is AET, rather than PET, that deter-

mines the runoff. However, consistent with the Department of Water (2010) report and

Chiew (2006), contrasting trends are found around the Mediterranean basin, which co-

incides with some of the highest elasticity values. On an annual basis, Department of

Water (2010) found estimated reductions up to 28% larger than the modelled changes.

According to Chiew (2006), which found a reasonable agreement betweenεppt estimated

by Equation 7.3 and a rainfall-runoff model, their model-simulated values tended to be

larger in catchments with low runoff coefficients. Chiew (2006) related this to the highly

non-linear rainfall-runoff relationship in ephemeral catchments with low runoff coeffi-

cients, and that the use of the median value in Equation 7.3 excluded the occasional high

runoff values. Such attribution may partially explain the lower estimated runoff (larger

reductions) around the Mediterranean basin found here.

Another possible explanation is associated with the use of elasticity as a factor for

runoff change — given the very low 1951–2000 runoff values, upon which elasticity esti-

mation and subsequent runoff computation are based, even a large multiplier (i.e. elastic-

ity) might not produce large runoff values.

7.4.2.2 “Constant-Temperature” Runoff Comparison

Figure 7.9 illustrates the changes in runoff under the constant-temperature experiment.

Compared to the control experiment trends (Figure 7.7), changes are considerably more

positive (smaller reductions or greater increases), particularly under RCP8.5, due to higher

precipitation as PET does not increase with the use of present-day temperature, hence

there is no increase in PET-induced runoff loss.

Even under the smaller warming scenario (Figure 7.9a),>30% runoff increase is
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Figure 7.9: Changes in Mac-PDM.09-simulated runoff with present-day temperature, from 1951–
2000 mean, based on ECHAM5.

widespread in areas north of 60◦N and in parts of central/eastern Europe — these trends

are comparable to theεppt-estimated 2051–2100 trends under the larger warming RCP8.5

scenario (Figure 7.6b). Absolute constant-temperature runoff (not shown) is typically

20% higher than estimated runoff, and 20–40% higher in the band stretching from western

IP, FR, ME, northwestern EA to eastern SC and northern Russia. Discrepancies between

εppt-estimated runoff and constant-temperature runoff are therefore larger than with the

control results.

7.4.2.3 Elasticity vs. Simulated Runoff

The discrepancy between Mac-PDM.09-simulated andεppt-estimated runoff was stud-

ied further by examining two cells of the study region based on the difference between

the 50-year averages of the annual mean runoff in 2051–2100 under RCP8.5 derived from

two experiments: one simulated using Mac-PDM.09 (blue solid symbols in Figure 7.10)

and the other, estimated using elasticity approach (orange solid symbols in Figure 7.10).

For the “well-performing” cell (centred at 38.75◦N,−1.25◦E, eastern Spain), both

experiments indicate, with a future reduction in precipitation, a decrease in future annual
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mean runoff, with a relatively small difference (by 10.9%) between the two values. For

the “poorly-performing” cell (centred at 57.75◦N,67.25◦E, eastern Russia), with a future

increase in precipitation, theεppt-estimated runoff changes by+33.4% while the Mac-

PDM.09-simulated runoff shows a−12.8% change, suggesting the influence of PET on

the direction of change.
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Figure 7.10: Annual (Oct-Sep) mean precipitation plotted against runoff for 1951–2000 (indicated
as “1951”; red) and 2051–2100 (indicated as “2051”; projected by ECHAM5 under the RCP8.5)
for a well-performing (left) and a poorly-performed (right) cell. Future runoff values are from
the control (blue) and constant-temperature (green) experiments, as well as those estimated using
εppt (orange). Linear regressions based on the present-day values and these experiments, along
with their respective 50-year averages (solid symbols), are also shown. Only the 50-year mean is
estimated usingεppt (orange). Top (bottom) panels present the absolute values (relative changes).

Figure 7.10 shows the hydrological-year annual mean precipitation plotted against

runoff for both 1951–2000 (indicated as “1951” in the key; see Section 7.2.3 for the

datasets used) and 2051–2100 (indicated as “2051”). The 21st-century runoff values pro-

jected by ECHAM5 under the RCP8.5 scenario were from the three experiments: (1) con-

trol (indicated as “control”; see the beginning of this Section); (2) constant-temperature
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(indicated as “constant-temperature”); and, (3)εppt (indicated as “estimated”; see Section

7.4.1). The left (right) panels present values for the well-performing (poorly-performed)

cell. The top panels show the absolute precipitation and runoff values; the bottom panels

show their percentage changes relative to the 1951–2000 values. Also shown are lin-

ear regressions based on their respective annual means for both the 1951–2000 and the

three future experiments, along with their 50-year averages (indicated as “1951 mean”

and “2051 mean”, respectively). It is worth noting that neither precipitation nor runoff

can be negative; the top left panel of Figure 7.10 suggests that for that particular cell,

precipitation of around 10 mm/month or lower implies zero runoff using the elasticity

relationship.

Figure 7.10 reveals that both cells show almost identical linear regressions based on

1951–2000 (red) andεppt-estimated (orange) runoff. This demonstrates that both simple

linear regression derived from present-day precipitation and runoff values and Equation

7.3 would give similar estimates of the sensitivity of runoff to precipitation changes, given

thatεppt are based on the median ratios of present-day precipitation and runoff deviations.

The more apparent distinction between the values from the control (blue) and constant-

temperature (green) experiments implies the larger role of PET in the poorly-performing

cell, which has a larger mean PET increase of+48.7% (compared to+30.7% for the

well-performing cell).

Outliers (e.g. high runoff values) are more likely to affect simulated thanεppt-estimated

results. Despite the more diverging mean estimated, simulated and constant-temperature

runoff in the poorly-performed cell, both cells have very similarεppt — 1.70 (well-

performed) and 1.69 (poorly-performed). If precipitation declines by 50% in both cells,

the “poorly-performed” cell in Figure 7.10 may actually have a smaller discrepancy be-

tween the estimated (orange) and simulated (blue) runoff — results may differ since the

regression lines for this cell were fitted to a wetter, rather than a drier, scenario.

In summary, effects of outliers in the simulated output, the direction and magnitude

of precipitation change all determine the capability ofεppt in reproducing mean Mac-

PDM.09-simulated runoff.
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7.5 Conclusions

This chapter has examined the sensitivity of runoff to precipitation and PET changes

for the European study region by assessing the elasticity of runoff to climatic factors.

Elasticity was computed with a non-parametric estimator, Equation 7.3 (Sankarasubra-

manianet al., 2001), using 1951–2000 monthly timeseries of CRU TS 3.0 precipitation,

and MacPDM.09-simulated PET and runoff.

Across much of the study region, small climate perturbations produce much larger

runoff changes: a 1% precipitation increase yields+1.0% to+2.5% runoff change, whereas

a 1% PET increase yields−8% to+2% runoff change. In agreement with Fuet al.(2011),

elasticities based on means over the hydrological, rather than calendar, year were consid-

ered more appropriate. PositiveεPET (e.g. in western Iberian Peninsula and Poland),

also reported by New (2002) for South African catchments, suggests increasing runoff in

years with positive PET anomalies due to a larger relative increase in precipitation than

PET, hence the effect of the positive precipitation anomaly counteracts that of the PET. Al-

thoughεPET values are larger thanεppt, εppt is considered more important as precipitation

change is primarily responsible for runoff variations, except perhaps in snow-dominated

regions where temperature deviations can affect the seasonal distribution of runoff (which

is not considered here). Nevertheless, regional elasticities provide some indication of the

importance of PET in the Mediterranean, Black Sea and Caspian Sea regions. The sen-

sitivity criteria adopted by Weiss and Alcamo (2011) also highlight the importance of

evapotranspiration in the water balance of southern European basins that may dampen the

effects of increasing precipitation.

As demonstrated in Section 7.3.2 and in agreement with other studies,εppt is roughly

equivalent to the inverse of the runoff ratio; lower- (higher-) latitude runoff are more (less)

sensitive to precipitation perturbations.

Using WaterGAP, Weiss and Alcamo (2011) assessed the sensitivity of water avail-

ability and vulnerability of eighteen European river basins to climate change based on six

RCMs under SRES A1B. They found sensitivity to climate change increases with latitude

as warming-induced earlier snowmelt de-stabilises Nordic flow regime (see Section 2.5).

This contradiction with results presented here arises from the different methodologies: in
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Weiss and Alcamo (2011), the number of days below freezing, the degree of water limita-

tion of evapotranspiration, and the degree of change in the timing and magnitude of future

temperature and precipitation, and their combined effects, determine the overall sensitiv-

ity of a basin; the present study has used Mac-PDM.09 outputs to assess runoff sensitivity

specifically in relation to annual precipitation or PET variations, which excludes sensitiv-

ity in runoff timing that is important in snow-dominated regions (Jetonet al., 1996).

Areas with lower runoff responses,εppt<1.5, under present-day climates may experi-

ence some of the largest increases (by≈20%) in sensitivity under 21st-century climates,

while areas with high elasticity (εppt<2.0) may see the reverse, thus reducing the range of

elasticity as climate changes. This occurs as warming increases the proportion of rainfall

compared to snowfall (positive trends) in the northern latitudes and increases the influence

of PET in Iberian Peninsula (negative trends).

Since the non-parametric estimator, Equation 7.3, could be useful for estimating runoff

under future climates, this study has attempted to validateεppt-estimated runoff against

Mac-PDM.09-simulated values.

For the climate change scenarios examined, the ability ofεppt in reproducing Mac-

PDM.09 simulations decreases with time/increasing climate change, thus the index’s per-

formance deteriorates under larger temperature changes (Fuet al., 2007b). Under the

smaller climate change scenario, runoff generated withεppt and Mac-PDM.09 generally

differs slightly (±10%) across the study region; both indicate increases (reductions by 10–

30%) in high latitudes (south of 50◦N). εppt, which excludes temperature/PET changes,

overestimates runoff in central/eastern and southeastern Europe. This suggests the role

of PET in these regions, or the application ofεppt may be inappropriate for longer-term

changes. In western Iberian Peninsula and parts of the Mediterranean, larger runoff de-

cline (30–50%) is more common in estimated than simulated cases despite increasing

PET. This is due to the combination of the use of median value of Equation 7.3 (Chiew,

2006), and the low 1951–2000 runoff values. The negativeεppt-estimated runoff also con-

tributes to the larger estimated reductions. Although these negative values, which occur

if climate variations and/or sensitivity exceeds some threshold levels, could simply be re-

placed by zeros, Equation 7.3 should be applied cautiously especially in areas with large

precipitation decrease and/or highεppt values.
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Under the highest warming scenario examined, small discrepancies (±10%) are re-

stricted to the British Isles and northwestern parts of the high-latitudes, suggesting that

for these regions, runoff estimation is less sensitive to the choice ofεppt or Mac-PDM.09

approach, or the magnitude of climate change. Estimated runoff is>30% larger than

model output in the region extending eastwards from Germany to Russia and parts of

Central Asia, and 10–60% lower around the Mediterranean basin, thus results in these

regions are more sensitive to the estimation approach used.

The elasticity of runoff such asεppt is shown to produce mean annual runoff esti-

mates comparable to complex hydrological model Mac-PDM.09 for large parts of the

European study region, except for the Mediterranean regions, eastern and southeastern

Europe. However, this is expected to a certain degree, as the function is derived from the

Mac-PDM.09-simulated runoff for 1951–2000. In agreement with Chiewet al. (2006)

and Department of Water (2010), this study concludes thatεppt is particularly useful for

estimate runoff changes in large-scale or scoping studies given the relatively simple data

requirement (i.e. historic precipitation and runoff data), and the complication of selecting

and calibrating of hydrological model(s) such that many of the associated uncertainties are

avoided. However, the capability ofεppt in reproducing mean Mac-PDM.09-simulated

runoff diminishes with seasonal results as found in Department of Water (2010), increas-

ing climate change, and is influenced by effects of outliers in simulated output, direction

and magnitude of precipitation change. Therefore, it may be more appropriate to use

physical models to assess future runoff changes, especially for regions and/or timescales

where larger climate change is anticipated (e.g. southern Europe).

7.5.1 Limitations

This study has a number of caveats. Limitations of Equation 7.3-related are outlined

in Section 7.2.2. Results here are based on a 50-year period; using another timeframe may

produce different results (Fuet al., 2011), although the magnitude of discrepancy is sub-

ject to further investigation. Also, the future runoff sensitivity was based on ECHAM5,

thus simulations using another GCM may generate different results. The approach of de-

riving the elasticity values using present-day Mac-PDM.09 output and subsequently as-

sessing the performance against Mac-PDM.09 simulations for the 21st-century will likely
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give an upper bound on the performance; using observed runoff to compute the elastic-

ity values and then testing the performance against Mac-PDM.09 (or other hydrological

models) may indicate lower performance. Moreover,εppt-estimated runoff has only been

validated against Mac-PDM.09 output; performance of the estimator may or may not vary

with a different hydrological model.

Runoff sensitivity has been estimated with a one-parameter estimator (i.e. the factor

is being considered in isolation), and only long-term precipitation/runoff changes have

been considered here. However, runoff fluctuations are not merely a function of precip-

itation and runoff, which may interact with other natural or human factors. Temperature

changes, for instance, could amplify or suppress runoff variations (Fuet al., 2007b), such

as in snowmelt-dominated regions (Wilsonet al., 2010; Wonget al., 2011). Nonetheless,

results here are considered less affected by this due to the use of annual averages.

There are also interactions between the climate, vegetation, soil and hydrological pro-

cesses (Liu and Cui, 2011). El Niño/La Niña climatic variability (Fuet al., 2007c) and

catchment characteristics (Renner and Bernhofer, 2012; Liang and Liu, 2013), particularly

at monthly scales (Arnell, 1992), further complicate magnitudes and patterns of stream-

flow response to climatic changes. In the Upper Loire basin, France, although an annual

precipitation increase (decrease) of∼10% increases discharge by∼10–20% (20–40%)

annually, the discharge amount per unit area, dry and wet periods (with the former effect

being larger) also affects the magnitude of change (van der Wateren-de Hoog, 1995). At

basin scale, altitude (consequently, average temperature) might be important (Jetonet al.,

1996). Nevertheless, direct and indirect human activities may be the predominant factor,

as in the Chinese Miyun Reservoir Basin (Liuet al., 2012) and the Ethiopian Meki Basin

(Legesseet al., 2010); land-use change and abstractions in headwaters of Yellow River

Basin accounted for>70% of the streamflow reduction in the 1990s (Zhenget al., 2009).

While precipitation is important in determining runoff sensitivity, its interaction with

other influences (natural or human) should also be considered, depending on the study

aims. For instance, Liuet al. (2012) assessed streamflow sensitivity to aridity index,

which accounts for both precipitation and PET, for two Chinese basins. In addition,

trends of sensitivity of water availability and vulnerability (which considers the system’s

response) may be different (Weiss and Alcamo, 2011). In practice, besides the chosen
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criteria, advancing technologies or economies may alter vulnerability thresholds, thereby

changing the sensitivity of a basin. Therefore, it is important to have clearly defined study

objectives when assessing the sensitivity of runoff or a basin water availability to account

for the major (including local) contributing factors.

The next chapter highlights the main results, their policy implications and knowledge

gaps.





Chapter 8

Summary and Outlook

This thesis aimed to examine the effects of climate change on European drought char-

acteristics, as well as the associated uncertainties in the methodologies for drought quan-

tification and climate change projection, through a multi-scenario and multi-model ap-

proach. In this study, droughts are characterised by drought severity, and their spatial

extent are quantified using the Drought Area Index (DAI) — the frequencies of DAI25

and DAI50 denote the percentage of the 50-year period during which≥25% and≥50%

of the region is drought-affected, respectively. This chapter highlights the main results,

their policy implications and knowledge gaps.

This thesis builds on existing literature by systematically analysing some of the uncer-

tainties in drought projections under a changing climate. As discussed in Section 1.1, few

studies have examined the climate-change-induced changes in drought using a large en-

semble of simulations; the meteorological drought analysis in Chapter 4 is based on sim-

ulations projected by ten emission scenarios and 18 general circulation models (GCMs).

Also, the uncertainties associated with the definitional issues of drought have not been

well studied; these are presented in Chapter 5. There is limited literature covering the ef-

fects of changes in interannual precipitation variability on future drought variations; this

is explored in Chapter 6. Furthermore, few studies have examined the runoff sensitivity

to climatic changes especially for Europe, and the applicability of such an approach for

estimating runoff under a perturbed climate has barely been explored. These are assessed

in Chapter 7.
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8.1 Key Findings

Across much of the European study region, climate change is projected to increase

drought severity and frequencies of DAI25 and DAI50, with reductions in these drought

parameters in the high-latitudes (Scandinavia and Russia), especially in winter and spring

but in some cases, also in summer/autumn (see Chapters 4 and 5). These results are con-

sistent with the general simulated trends of wetting in the northern Europe, as well as

the drying and increasing drought conditions projected for the lower latitudes, despite of

the different definitions of dryness/drought applied. For both meteorological and hydro-

logical droughts, the northern and southern latitudes of the study region tend to have the

largest magnitudes of change. Marked increases in both 3-month and 12-month drought

severity and frequency of DAI25 events (by 2–3 times in 2001–2050, and up to 10-fold in

2051–2100) are simulated for the Mediterranean and Middle East/Central Asia regions.

Contrasting sub-regional variations can lead to small or unclear overall signs of regional-

mean change (e.g. for the British Isles, with drought conditions decreasing in the north

and worsening in the south).

Results obtained in both Chapters 4 and 5 indicate that the projected changes in all

the meteorological and hydrological drought parameters vary substantially depending on

the GCM, emission scenario, region and season. Agreement on the direction of change

is generally higher: (1) in both high and lower latitudes; (2) in 2051–2100 than in 2001–

2050; (3) with robust increases (decreases) in drought tending to occur in summer and

autumn (winter and spring). Despite consensus in the sign of change for some regions (e.g.

the Mediterranean regions often have robust and marked increases in drought conditions

in summer and autumn), their magnitudes are highly uncertain — such uncertainties tend

to increase with time and with magnitude of warming. Results averaged across Köppen

climate zones demonstrate more robust trends, better reflecting climate change signals,

than geographically-averaged results.

Uncertainties have differential impacts on different drought parameters, affecting the

frequency of widespread drought, more than total severity (see Chapters 4 and 5). Al-

though the influence of different emission scenarios becomes more important post-2050,

GCM variance dominates regardless of the region, season, future period, timescale, drought
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parameter studied (see Section 4.6), as commonly found in the literature. Different def-

initions of drought — including the choice of threshold that identifies drought condition

from “normal” climate, the definition of when a drought terminates and drought classifi-

cation — can result in contrasting trends, and this behaviour is common in winter/spring,

particularly in regions affected by snow and snowmelt (see Chapter 5). For instance, in

spring, the Alps could experience increasing meteorological drought conditions (due to

reduced precipitation) but reductions in hydrological droughts (with earlier snowmelt).

Different drought classifications and their effects also lead to opposing changes in sum-

mer/autmn in Scandinavia. Nevertheless, results according to both meteorological and

hydrological drought definitions generally indicate the same direction of change, but hy-

drological results tend to produce more positive changes in drought conditions and also

with larger magnitudes than meteorological ones (see Section 5.8).

Drought parameters derived from MacPDM.09 were found to be highly sensitive to

potential evapotranspiration (PET); different results are therefore likely with a different

PET calculation method (see Section 5.8.7). Higher PET generally implies more drought

conditions in absolute terms, with larger increases. Winter and 12-month droughts in

Scandinavia and British Isles (in 2001–2050) were projected to decrease regardless of

PET changes, but higher PET implies smaller reduction. Higher PET also reduced winter

droughts in Scandinavia and the Alps due to increased melting of frozen precipitation.

In the Norwegian Arctic (Svalbard region), although measured annual precipitation has

increased in recent decades, the fraction of annual precipitation falling as snow has de-

creased (Forland and Hanssen-Bauer, 2003), due to the more efficient rainfall processes

compared to snow falling. This suggests that as the climate warms, more rainfall may

occur with more frequent and intense events and extremes (Kjellström, 2004; Freiet al.,

2006; Buonomoet al., 2007; Alcamoet al., 2007b; Giorgi and Coppola, 2009).

Perturbations to the interannual variability of precipitation due to climate change tends

to (1) enhance drought conditions, particularly in Mid-Europe and Eastern Europe, (2)

moderate reductions in drought conditions (Scandinavia), or (3) reverse reductions in

drought conditions (e.g. meteorological results for British Isles and Mid-Europe); these

effects are more apparent in meteorological than hydrological drought results (see Chapter
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6). Therefore, studies that do not consider changes in precipitation variability may under-

estimate (or in a few cases, over-estimate) drought conditions, or may yield opposite

trends to those that take into account both perturbed mean and variability. A drought-free

area (e.g. parts of the northern latitudes) according to changes in mean precipitation only

may become drought-affected when modified variability is considered.

Although variations in interannual variability of precipitation plays a role in altering

drought characteristics, the predominant driver is mean precipitation changes. Therefore,

the long-term mean sensitivity of runoff to precipitation and PET changes across the Eu-

ropean study region was studied by assessing the elasticity of runoff to climatic factors

using a non-parametric estimatorε (see Chapter 7). A 1% precipitation increase is found

to yield a+1.0% to+2.5% runoff change. Although the PET elasticity of runoffεPET

was also studied, the precipitation elasticity of runoffεppt was considered more important

in causing runoff variations, except perhaps in snow-dominated regions where tempera-

ture deviations can affect the seasonal distribution of runoff.εppt is roughly equivalent

to the inverse of the runoff ratio; lower- (higher-) latitude runoff are more (less) sensi-

tive to precipitation perturbations. Areas with lower runoff responses,εppt<1.5, under

present-day climates may experience some of the largest increases (by≈20%) in sensi-

tivity under 21st-century climates, while areas with high elasticity (εppt<2.0) may see the

reverse, thus reducing the range of elasticity values as climate changes. This occurs as

warming increases the proportion of rainfall compared to snowfall (positive trends) in the

northern latitudes and increases the influence of temperature in Iberian Peninsula (neg-

ative trends). The performance ofεppt in reproducing Mac-PDM.09 runoff simulations

deteriorates with time/increasing climate change. Therefore, it may be more appropri-

ate to use physical models to assess future runoff changes, especially for regions and/or

timescales where larger climate change is anticipated (e.g. southern Europe).

8.2 Policy Implications

This study seeks to develop an improved understanding of potential changes in drought

under future climates, which could facilitate the development and implementation of more

effective drought management and climate change adaptation measures.
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The diverse meteorological and hydrological drought response to climate change sim-

ulated in this study implies that findings based on a single scenario/model could be highly

misleading. Substantial research and considerable improvements in climate models are

needed before climate projections can be applied directly and effectively in adaptation

planning and design, e.g. water management (Kundzewicz and Stakhiv, 2010), as sug-

gested by the range of projected changes in drought characteristics found in this thesis.

Uncertainties in climate change projections or the risk information supplied to decision-

makers are unlikely to decrease in the near future (Knutti, 2008; Toddet al., 2011). Even

with a perfect climate model, future changes in non-climatic pressures such as demo-

graphic and economic development, natural forcings (solar and volcanic activity), and

natural internal variability mean that climate change and hydrological projections would

remain highly uncertain, especially at the regional scale (Wilby, 2010). Therefore, policy-

relevant research on climate change impacts and robust adaptation decisions should be

based on a multi-scenario and multi-model approach; they also need to consider a wide

range of expressions of modeling uncertainty (Burke and Brown, 2008; Hawkins and

Sutton, 2010), or risk-based information (e.g. by considering frequency distributions of

climate change impacts) rather than deterministic information (Goslinget al., 2011a).

Although the degree of uncertainty in future projections of river flow, for example,

may create challenges in the development of appropriate adaptation measures (Toddet al.,

2011), many organisations have experience in working in the face of various kinds of un-

certainty (Stainforthet al., 2007a). Over-interpretation and over-confidence in the results

could undermine the credibility of climate science to inform policy (Stainforthet al.,

2007a; Knutti, 2008); information can be misleading if the climate projections, their

uncertainties and caveats are not adequately quantified and communicated (Valleet al.,

2009) — e.g. probability density functions (PDFs) may provide a false sense of security

(Parker, 2010b); the end-user may assume that the newest models provide the best infor-

mation, and that the model spread provides some estimate of uncertainty (Knutti, 2008).

Despite the limitations, climate models simulate numerous processes and feedbacks;

large ensembles, as applied in this study, enhance our understanding of the range of possi-

ble model behaviour in response to different emission scenarios (Stainforthet al., 2007b).
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They can also help to identify the areas where results depend strongly on model assump-

tions, thus provide guidance for future model development (Knutti, 2008). Much resource

has been allocated to climate research and model development, such as the variables and

spatial/temporal scales of interest, but these should be shaped by the needs of the end-

users and policy-makers if the goal is to benefit society (Knutti, 2008). More emphasis is

needed on extracting the data and information that is decision- and policy-relevant, and to

explore how to make the best use of the model results so that they add value to decision

making (Knutti, 2008), e.g. by working with stakeholders and to provide guidance on how

to use/interprete the data and information. Each simulation presents a “what-if” scenario;

appropriate interpretation and accurate communication of such information and uncer-

tainties, even in qualitative terms, is therefore crucial and can have substantial value in the

design of robust adaptation strategies that reduce vulnerability to both climate variability

and change (Pappenberger and Beven, 2006; Stainforthet al., 2007a;b).

8.3 Limitations and Further Work

Specific limitations and areas for further research are presented in the relevant chap-

ters. This subsection outlines some of the limitations of the study approach adopted in

this thesis and provides some general directions for future work.

Analysis in this thesis has focused on relative drought. Given that drought is a phe-

nomenon relative to the local conditions that can occur in virtually all climate regimes,

including in cold regions (van Lanenet al., 2007; Vidal and Wade, 2009), it needs to be

considered in a relative, rather than an absolute, sense (Mpelasokaet al., 2008). Never-

theless, the application of a fixed absolute drought threshold (say, 20 mm of precipitation)

for the entire study region would allow the identification of the more “drought-prone” ar-

eas (e.g. the Mediterranean regions are more likely to suffer from drought than the higher

latitudes). Therefore, an absolute drought analysis could provide useful information for

large-scale management practices and could aid resource allocation. Also, the projected

changes in drought characteristics presented here, as well as the SPI computation, are

based on the reference period of 1951–2000; the choice of another baseline (e.g. 1961–

1990) could lead to different results.

A caveat of this study is the separate characterisation of drought severity and spatial
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extent. This could be improved in future work by assessing the spatio-temporal char-

acteristics of droughts simultaneously through a severity–area–duration analysis, which

relates the area of each drought to its severity (Andreadiset al., 2005; Sheffieldet al.,

2009). Alternatively, Perezet al. (2011) presented two methodologies (non-contiguous

and contiguous drought area analyses) for analysing the spatio-temporal development and

characteristics of large-scale hydrological droughts using gridded timeseries of hydrome-

teorological data.

In this thesis, future changes in drought characteristics have been assessed on a con-

tinental scale and from the natural science perspective, i.e. the societal aspects have not

been examined. This study could therefore be extended to investigate the effects of climate

change in relation to specific impact sectors such as agriculture, using locally appropriate

drought indices (Burke and Brown, 2008) such as those covered in Section 2.2. Such anal-

ysis may need to be carried out on a local or regional scale (e.g. for specific basin(s)), with

the aid of higher resolution models that have better representation of topography (Redaud

et al., 2002; Räisänenet al., 2004; Gaoet al., 2006); processes and practices that are

often excluded from the climate models (e.g. irrigation) may also need to be considered.

The application of multiple hydrological/impact models may also provide an indication

of another dimension of uncertainty (Haddelandet al., 2011).

Some of the analyses presented in this thesis have only been carried out using geographically-

averaged results based on the sub-regions of the PRUDENCE project. Yet, findings pre-

sented here suggest that results averaged climatically according to the Köppen climate

classification may better reflect the climate change signal. Therefore, regional analyses

based on climatic conditions could be an interesting area of study.

Although this thesis has explored the effects of several sources of uncertainty on

drought projections under future climates, results obtained here under-represent the true

uncertainty as other sources of uncertainty have not been examined. For example, me-

teorological droughts have only been represented by the precipitation-only Standardised

Precipitation Index (SPI); the application of another meteorological drought index may

produce different results.

An initial study indicated that carbon cycle models represented less than 5% of total

variance that also encompassed GCM and emission scenario uncertainties. However, this
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source of uncertainty has been estimated to be∼40% of that of the physical climate prop-

erties (e.g. equilibrium climate sensitivity and global heat capacity; Huntingfordet al.,

2009), thus could be explored further in the meteorological and hydrological drought

analyses.

The application of ClimGen has generated gridded outputs at 0.5◦ resolution, hence

downscaling uncertainty has not been investigated in this thesis. Hence, results presented

in this thesis could be compared to those based on regional climate change simulations

such as the CORDEX (Coordinated Regional Climate Downscaling Experiment) initiative

from the World Climate Research Program (http://www.meteo.unican.es/en/projects/CORDEX).

Several sources of uncertainty associated with hydrological modelling have not been

studied in this thesis. These include suppressed plant transpiration due to CO2-induced

stomatal closure (which could increase runoff) (Gedneyet al., 2006), which implies an

underestimation of future increases in runoff and an overestimation of decreases — Betts

et al. (2007) found that a CO2 doubling on plant transpiration increases simulated global

mean runoff by 6% relative to pre-industrial levels. In addition, modified land-atmosphere

feedbacks may influence climate change (e.g. precipitation variability in central-eastern

Europe; Räisänenet al., 2004; Rowell and Jones, 2006; Seneviratneet al., 2006; van La-

nen et al., 2007; Kyselýet al., 2010). Mechanisms of feedbacks between convection,

radiation and surface fluxes, for instance, are not well identified and may vary among

models (Plantonet al., 2008). Also, these may not be represented in hydrological mod-

els, thus contributes to another source of uncertainty. Furthermore, the representation of

evapotranspiration, snow accumulation and melt, storage and the parametrisation of stor-

age processes (e.g. land and aquifer characteristics) are important aspects in hydrological

modelling (Van Loonet al., 2012) that have not been explored in this thesis.

Drought analyses carried out here have been based on the monthly precipitation and

runoff timeseries. However, the daily resolution is important in operational monitoring of

drought development and decision-making in agriculture and water resource management

(Lu, 2011), especially on a local or regional scale, as a drought-affected region may return

to normal condition with only one day of intense rainfall. The consideration of hydrolog-

ical variables at the daily time step would also be more suitable for detailed monitoring of

drought development and propagation in the subsurface components of the hydrological
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cycle. Droughts can be quantified on a daily time scale using the Effective Drought Index

(EDI; Byun and Wilhite, 1999), for instance. The EDI is a standardised index that calcu-

lates daily water accumulation with a weighting function of time passage using daily rain

and snowfall data from timeseries of 30 years or more. Alternatively, a daily SPI has been

developed to overcome the difficulties with the standard SPI using only monthly values

(Wanderset al., 2010). SPI values are calculated for each day separately based on a mov-

ing monthly time frame (i.e. 30-day backwards moving average), using the parametersα

andβ that are estimated for each day are based on the previous 30 days. Downscaling

or generating rainfall or runoff at the daily time step may introduce another source of

uncertainty though.

While the ability of land surface models (LSMs) and/or global hydrological models

(GHMs) in reproducing large-scale historic runoff, hydrological extremes and other vari-

ables have been assessed in several studies (e.g. Haddelandet al., 2011; Prudhomme

et al., 2011; Gudmundssonet al., 2012b; Van Loonet al., 2012), few climate change im-

pact studies based on multiple impact models exist. Since only Mac-PDM.09 has been

applied in this thesis, similar to Hagemannet al.(2012), the effects of different GHMs on

projected changes in drought characteristics could be further investigated.

Another area of further research could be to compare the hydrological drought results

to those derived from the Palmer Drought Severity Index (PDSI), as well as the standard-

ised precipitation evapotranspiration index (SPEI), for instance, as both of these methods

account for temperature effects. Moreover, both meteorological and hydrological drought

events have been defined based on the threshold of SPI−1.5; this study could be extended

by studying the changes in drought for a more extreme SPI category (e.g. SPI−2.0) and

compare with the results obtained here.

In addition to the scientific/technical element of drought analysis, it is equally, if not

more, important to develop efficient linkages with practitioners engaged in drought mon-

itoring, forecasting and management operations, as well as the policy domain (Panu and

Sharma, 2002; Kampragouaet al., 2011), as discussed in Section 8.2. Given that the un-

certainties associated with future drought projections are unlikely to be constrained in the

near term, it is worth exploring how the findings in this study could contribute to the de-

velopment and implementation of drought risk assessment and management practices, as
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well as societal vulnerability assessments, to reduce the adverse impacts of droughts un-

der a changing climate. Working closely with stakeholders, such as policymakers, water

resource managers and others, would help to determine how this study could be further

developed to address the drought/water resource issues within an integrated framework,

based on their needs.
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Vicente-Serrano, S., J. González-Hidalgo, M. de Luis, and J. Raventós (2004), Drought
patterns in the Mediterranean area: the Valencia region (eastern Spain),Climate Re-
search, 26(1), 5–15.
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