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Abstract 

Stem cell driven tissue renewal in the intestinal epithelium is a tightly regulated and 

controlled process.  The colonic epithelium is organised into millions of invaginations 

called crypts, each of which represents the self-renewing unit of the tissue.  In the mouse, 

renewal of the intestinal epithelium is regulated by signalling cross-talk between the Wnt, 

Notch, EGF and TGFβ/BMP pathways.  The molecular mechanisms that regulate the 

processes of tissue renewal in the human are of great interest because they are disrupted in 

colorectal cancer and inflammatory diseases.  Barrett’s oesophagus is an intestinal 

metaplasia arising in response to inflammation and ulceration provoked by 

gastroesophageal reflux. Detailed knowledge of the processes and signalling pathways 

involved in tissue renewal in Barrett’s oesophagus is still lacking and is required to 

understand more fully the risk and pathogenesis of this metaplasia and oesophageal 

adenocarcinoma. 

Intact human colonic crypts were isolated and placed into 3D tissue culture conditions 

optimised for steady-state tissue renewal.  The role of Wnt and TGFβ/BMP signalling 

pathways in tissue renewal was investigated.   

Native human colonic crypts exhibited distinct activation profiles for canonical Wnt, TGFβ 

and BMP pathways.  A population of intestinal Lgr5/OLFM4
+
 stem cells were found to be 

interspersed between goblet cells at the base of the crypt.  Exogenous Wnt signals 

maintained Lgr5/OLFM4
+
 stem cells, whilst BMP and TGFβ inhibited and caused 

complete loss of stem cells.  Wnt signals also rescued the inhibitory effects of Dkk1, IWP2 

and dnTCF4 on Wnt target gene expression, cell proliferation and crypt length.  BMP and 

TGFβ inhibited Wnt target gene expression, cell proliferation and crypt length.   

A near-native human Barrett’s oesophagus ex vivo culture model was developed similar to 

the colonic model which was amenable to real-time time-lapse microscopy and imaging 

techniques.   The Wnt and NFκB signalling pathways exhibited distinct activation profiles.  

A population of OLFM4
+ 

stem cells were found to reside in the lower third of the Barrett’s 

crypt. 

Steady-state tissue renewal in the human colonic epithelium is dependant on Wnt signals 

combined with suppressed TGFβ/BMP pathways.  The human colonic crypt model and the 

Barrett’s oesophagus crypt model will permit functional interrogation of the mechanisms 

underlying tissue renewal and risk of inflammatory diseases and adenocarcinoma. 
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Chapter 1 Introduction 

1.1 General Introduction 

The colonic epithelium is one of the most dynamic renewing tissues in the body which is 

tightly regulated and controlled.  Approximately 10 billion cells are shed from the gut 

epithelium each day and these are continuously replaced by intestinal stem cell progeny.  

The epithelium undergoes continuous replacement of cells through a cycle of cell 

proliferation, differentiation, migration and shedding at the crypt surface during a 3-8 day 

transit time.  Several key regulatory signals are involved in colonic epithelium stem cell 

renewal and differentiation, including Wnt, Bone Morphogenic Protein (BMP), 

Transforming Growth Factor β (TGFβ) and Notch pathways (1).   

Wnt signalling plays a major role in maintaining epithelial stem cell fate and progenitor 

cell proliferation.  Adenoviral and transgenic expression of Dkk1, an inhibitor of the 

canonical Wnt signalling pathway, led to complete loss of proliferation and presence of 

mouse intestinal crypts (2) (3).  The predominance of Wnt signals at the base of the crypt 

led to the discovery that the Wnt target gene Lgr5 was enriched in mouse intestinal stem 

cells (4).  Recently it was also found that ligation of R-Spondin-1 to the Wnt ligand-Fz-

LRP5/6 receptor complex synergistically activates Wnt signals (5) (6). 

BMP and TGFβ signals in contrast predominate at the top of the crypt and are involved in 

inhibition of intestinal stem cell activation and promote intestinal differentiation (7) (8).  

Loss of the TGFβ/BMP pathway activation augments the Wnt signalling pathway which 

disrupts tissue renewal and drives intestinal polyp and tumour formation (7) (9) (10).  

Notch signalling is involved in cell fate decisions in the colonic epithelium, specifically 

directing cells towards a secretory lineage (11) (12).  Precancerous lesions such as Crohn’s 

and ulcerarive colitis have been found to have up-regulated levels of transcription factors 

downstream of Notch signalling, which may be responsible for the altered goblet cell 

differentiation and mucin formation (13) (14). 
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The hierarchy of tissue renewal in the colonic epithelium is thought to minimise the 

accumulation of molecular damage by the position of the long-lived stem cells residing at 

the base of the crypt in a safe environment.  The mechanisms that regulate the processes of 

tissue renewal are of great interest since they are found to be disrupted in inflammatory 

bowel disease and colorectal cancer. 

Barrett’s oesophagus is an intestinal metaplasia arising in response to inflammation and 

ulceration provoked by gastroesophageal reflux. This metaplasia predisposes the 

oesophageal tissue to adenocarcinoma through a low-to-high grade dysplasia.  The Wnt, 

BMP and TGFβ signalling pathways have been implicated in this neoplastic progression 

by activating genes that induce a columnar phenotype of the cells.  Abnormal activation of 

β-catenin and increased expression of Wnt target genes cyclin D1, Sox9 and c-Myc are 

common during neoplastic progression of Barrett’s metaplasia (15) (16).  The BMP 

signalling pathway is also activated in Barrett’s oesophagus and could play a role in the 

transformation of normal squamous cells into a columnar phenotype (17) (18).  Loss of 

SMAD4 and TGFβRII has been found in Barrett’s oesophagus and adenocarcinoma tissue 

(19).  Detailed knowledge of the processes and signalling pathways involved in tissue 

renewal in Barrett’s oesophagus is still lacking and is required to understand more fully the 

risk and pathogenesis of this metaplasia and oesophageal adenocarcinoma. 

Tissue culture conditions that favour Wnt signalling pathway activation and suppression of 

TGFβ/BMP pathways have led to the development of human intestinal and Barrett’s 

organoids ex vivo.  Isolated single crypts from both colon and Barrett’s epithelium form 

multiple budding structures which are composed of immature stem/progenitor cells that 

can be induced to differentiate (20).  We have developed a culture model of near-native 

human colonic and Barrett’s crypts that preserves crypt length, morphology and polarity 

and demonstrate that the hierarchy of stem-cell driven tissue renewal is recapitulated in 

this model ex vivo (21).  
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1.2 Colon Physiology 

1.2.1 Structure of the colon 

The human colon is a dynamic organ whose functions include absorption of water and 

electrolytes, salvage of unabsorbed nutrients, and transport of luminal contents and 

formation of faeces.  The 1.5m long muscular tube is subdivided into the ascending colon, 

transverse colon, descending colon and the sigmoid colon which connects to the rectum.   

 

Figure 1.1 Anatomy of the colon.  Figure from (22). 

 

The wall of the colon is composed of four major tissue layers; the serosa, muscularis 

externa, submucosa and mucosa (Fig 1.2).  The outermost layer of the colon is the serosa 

which is comprised of a thin layer of connective tissue.  Sheets of connective tissue attach 

the serosa to the abdominal wall, supporting the colon in the abdominal cavity.  Below the 

serosa is the muscularis externa, two layers of smooth muscle tissue.  These muscle 

contractions force the gastrointestinal contents to move along the tract.  The inner layer of 

the muscularis externa is a thick circular muscle that allows contractions that shorten the 

colon.  Between the two muscle layers is a network of nerve cells known as the myenteric 

plexus.  Beneath the muscularis is a connective tissue known as the submucosa that 

contains a network of nerve cells termed the submucosal plexus, blood and lymphatic 

vessels.  The mucosa comprises of a thin layer of smooth muscle, a thin layer of 

connective tissue layer comprising of the lamina propria and the epithelium.   
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Figure 1.2 Structure of the colonic wall.  A) Colonic wall showing the four layers: serosa, 

musularis, submucosa and mucosa. b) The epithelium of the mucosa comprises of single 

unitary structures called crypts of Lieberkühn.  Stem cells at the base of the crypt provide 

the rest of the crypt with all the cell types required for its function as they migrate up along 

the crypt axis and are eventually shed at the top of the crypt into the lumen.  Figure 

adapted from (23). 

Unlike in the small intestine, the mucosa in the colon lacks the villus projections thereby 

creating a smooth surface that is continuously renewed.  The epithelial layer of the human 

colon is made up of a single sheet of columnar epithelial cells, which form finger-like 

invaginations into the underlying connective tissue of the lamina propria to form the basic 

functional unit of the intestine, the crypts of Lieberkühn or colonic crypts. Within the 

colon there are millions of crypts and a few stem cells at the base of the crypts are 

responsible for the renewal of the colon by producing all the functioning cell types of the 

epithelium.  Stem cells are supported by underlying myofibroblasts known as intestinal 

subepithelial myofibroblasts (ISEMFs) which are in close proximity to the smooth muscle 

cells of the muscularis mucosa layer.  These cells contribute to the stem cell niche and act 

as regulators of intestinal stem cell self-renewal and differentiation.  They are thought to 

secrete factors that can maintain the stem-like phenotype of stem cells in the niche (24).  
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Wnt signalling in particular has an important role in the crosstalk between epithelial and 

mesenchymal cells in maintaining the survival of stem cells.  Farin et al. (25) have recently 

demonstrated that deletion of Paneth cell derived Wnt3 in the intestinal epithelium showed 

no effect in vivo but was required for growth and sustainability in organoid in vitro culture.  

Co-culturing of mesenchymal derived Wnt2b ligand restored the growth of organoids, thus 

demonstrating a compensatory mechanism in the stem cell niche that safeguards against 

stem cell dysfunction.   

 

1.2.2 Cell types of the intestinal epithelium 

The intestinal epithelium is probably the most dynamic renewing tissue in the body which 

is tightly regulated and controlled.  It is renewed by a small number of intestinal stem cells 

that give rise to a pool of multipotent progenitor cells, also known as transit amplifying 

cells that are highly proliferative and differentiate into one of several cell lineages:  

absorptive enterocytes, the mucus-secreting goblet cells, peptide hormone-secreting 

enteroendocrine cells and Paneth cells (in the small intestine and proximal colon).  

Enterocytes, goblet and enteroendocrine cells migrate towards to the lumen of the gut 

whilst Paneth cells move towards the bottom of the crypt (26).  Less common cell lineages 

are also present such as Tuft (caveolated) cells and M-(membranous or microfold) cells 

(Fig 1.3).  Tuft cells are characterised by long and blunt microvilli with prominent rootlets 

and by a well developed tubulovesicular system in the supranuclear cytoplasm (27).  

Experiments by Bezencon et al. (28) have shown that Trpm5-expressing cells are Tuft cells 

that express the cyclooxygenase 1 and 2 (COX1 and COX2) enzymes and this was also 

confirmed by Gerbe et al. (29).  The expression of COX1 and COX2 enzymes is the rate 

limiting step for the biosynthesis of prostanoids.  Tuft cells also express Hpgds and 

represent a likely epithelial source of prostaglandin-D2 (29).  Gerbe et al. (30) also show 

that tuft cells are the only intestinal epithelial cells to produce β-endorphin and likely 
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contribute to the regulation of vasoconstriction, peristaltic movements and pain in the 

intestine.   

 

Figure 1.3 Cell types of the intestinal epithelium.  Absorptive cells have a brush border of 

microvilli on the apical surface.  Goblet cells secrete mucous with their apical cytoplasm 

containing mucous-filled secretory granules.  Enteroendocrine cells are smaller and 

secrete gut hormones such as peptides and catecholimes.  Paneth cells secrete 

antibacterial proteins such as lysozymes and defensins.  Tuft cells release opioids and 

produce prostanoids.  Figure from (29). 

The major function of enterocytes include: ion uptake through active transport of sodium, 

calcium, magnesium and iron, water uptake via an osmotic gradient established by Na
+
/K

+
 

ATPase on the basolateral surface, sugar uptake using the GLUT2 and GLUT5 receptors, 

peptide, amino acid, lipid and Vitamin B12 uptake, re-absorption of unconjugated bile 

acids and secretion of immunoglobulins.  
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Goblet cells synthesize secretory mucin glycoproteins (MUC2) and bioactive molecules 

such as epithelial membrane-bound mucins (MUC1, MUC3, MUC17), trefoil factor 

peptides (TFF), resistin-like molecule beta (RELMbeta), and Fc-gamma binding protein 

(Fcgbp). The MUC2 mucin protein forms trimers by disulfide bonding in cysteine-rich 

amino terminal von Willebrand factor (vWF) domains, coupled with crosslinking provided 

by TFF and Fcgbp proteins with MUC2 vWF domains, resulting in a highly viscous 

extracellular layer. This viscous extracellular layer provides the frontline host defense 

against endogenous and exogenous irritants and microbial attachment and invasion but 

allows the transport of nutrients into the cell (31).   

Enteroendocrine cells comprise less than 1% of the overall epithelial cell population and 

their primary function is to secrete hormones.  They are characterised by the presence of 

secretory vesicles that are either large dense-core vesicles (LDCVs) or the smaller 

synaptic-like microvesicles (SLMVs) that are similar to those found in neurons.  

Components of the vesicles such as Chromagranin A can be used as markers of 

enteroendocrine cells in immunohistochemistry since it is a matrix-soluble glycoprotein 

found in LDCVs and a synaptophysin, a membrane glycoprotein of SLMVs (32).  

Enteroendocrine cells also express Toll-like receptors (TLRs) that are involved in innate 

immunity response to pathogens.  Palazzo et al. (33) have shown that enteroendocrine 

hormone cholecystokinin (CKK) production in STC-1 cells was increased with stimulation 

of the TLR agonists LPS, flagellin and CpG oligodeoxynucleotides leading to the release 

of keratinocyte-derived chemokine and β-defensin 2 which neutralise intestinal bacteria.   

Paneth cells provide host defence against pathogens in the small intestine.  The defence 

molecules secreted by Paneth cells include alpha-defensins, also known as cryptdins, 

defensins, lysozyme and phospholipase A2.  Sato et al. (34) have recently shown that 

Paneth cells also provide stem cell niche factors that are essential for the maintenance of 

stem cells.  Gene expression profile on stem cells and Paneth cells found that Paneth cells 

were highly enriched in the Wnt3, Wnt11, Egf, Tgfa and the Notch ligand Dll4 genes, all 
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which provide essential support for stem cells.  Their co-culture of Lgr5
+
 cells with Paneth 

cells in vitro increased organoid formation compared to single stem cell organoids.  In their 

in vivo model they also showed that stem cells disappeared coincident with Paneth cells 

and the remaining stem cells crowded around the remaining Paneth cells.  Thus they 

concluded that Paneth cells were essential for the maintenance of crypts and stem cells.   

The colonic epithelium however, does not contain Paneth cells.  Rothenberg et al. (35) 

investigated the existence of colonic Paneth-like cells that could support Lgr5
+
 stem cells.  

Using fluorescence-activated cell sorting (FACS) to isolate different subregions of colon 

crypts and single-cell gene expression analysis they characterised distinct cell types.  They 

found that some goblet cells contained a distinct cKit/CD117
+
 crypt base subpopulation 

that expressed Dll1, Dll4 and epidermal growth factor (EGF), similar to Paneth cells which 

are also marked by cKit.  In the colon the cKit
+ 

goblet cells interdigitate with the Lgr5
+
 

stem cells.  In vivo they regulated and increased the number of cKit
+
 cells with the 

administration of γ-secretase inhibitor.  When they isolated these cells from the mouse 

colon and co-cultured with Lgr5
+
 stem cells, they found that the cKit

+
 cells promoted 

organoid formation and when organoids were depleted of cKit
+ 

cells the organoid 

formation decreased.   

 

1.2.3 Search for the stem cell 

Colonic stem cells have remained elusive for many years due to lack of specific markers 

that can distinguish them from other progenitor cells in the crypt.  About 40 years ago, the 

unitarian theory proposed that crypts are monoclonal populations that are derived from a 

single intestinal stem cell (36).  Evidence for the Unitarian hypothesis was shown by 

Novelli et al. (37) who studied the colon of a rare XO/XY mosaic patient with familial 

adenomatous polyposis (FAP) and found that individual colonic crypts were composed 

entirely of either XO or XY cells, and not a combination of the two.  Immunostaining for 
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the crypt enteroendocrine cells confirmed that they share the karyotype of the other cells in 

the crypt, suggesting that they were derived from a stem cell precursor.    

Taylor et al. (38) have also shown that accumulation of defects in cytochrome c oxidase 

(COX) activity in intestinal stem cell mitochondrial DNA (mtDNA) were passed on to 

daughter cells that then populated the crypt.  They found that a few crypts had ribbons of 

COX deficient cells reaching from the bottom to the top of the crypt, suggesting that one of 

the multiple stem cells within the niche had acquired sufficient mtDNA mutations to result 

in a functional deficit.  A study by Bjerknes and Cheng (39) found that the crypt contains 

both short-lived (lifespan ≤10 days) and long-lived (lifespan ≥100 days) progenitors of cell 

lineages as well as long-lived multipotent stem cells.  The specific progenitor assay was 

demonstrated by firstly crossing the Dlb 
-/-

 SWR mice with Dlb 
+/+

 C57BL/6 mice.  The 

resulting F1 chimeric Dlb 
-/+

 mice show heterozygous expression of a binding site on 

intestinal epithelial cells for the Dolichos biflorus agglutitin (DBA) lectin, which is 

abolished when the Dlb locus becomes mutated either spontaneously or by the chemical 

mutagen ethylnitrosourea (ENU).  Induction with ENU results in clones of cells that are 

Dlb 
-/-

 (unstained) and Dlb 
+/+

 (stained) along the crypt axis.  Over time they found that the 

stem cells give rise to both short-lived and long-lived progenitor cells.  These long-lived 

progenitor cells or transitory committed progenitor cells, columnar cell progenitors (C0) 

and mucous cell progenitors (M0) that reside in the lower crypt base, evolve from 

multipotent stem cells and then differentiate further into the epithelial cell types C1 and M1 

that migrate up the crypt axis.  The short-lived cells probably represent the offspring of an 

extinct mutant M1 cell.   

To determine the position of the intestinal stem cells, studies using DNA-label-retaining 

assays concluded that stem cells resided above the uppermost Paneth cell, at positions 

ranging from +2 to +7, on average at position +4 (40).  It was observed that the intestinal 

stem cells retained the template strand during segregation of the DNA strands possibly 

providing a protective mechanism against accumulation of replication errors and found 
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about four to eight label-retaining cells per crypt distributed around the fourth position 

from the bottom of the crypt.  However, using electron microscopy studies, Cheng and 

Leblond (41) revealed the presence of slender, immature cycling cells wedged in between 

Paneth cells, referred to as crypt columnar cells (CBC) (Fig 1.4).  Following exposure to 

3H-Thymidine, the surviving CBC cells actively phagocytosed other dying, radiolabelled 

CBC cells at the crypt base.  The resulting radioactive phagosomes, initially restricted to 

occasional CBC cells, were subsequently observed within more differentiated cells that 

belonged to the four lineages higher up the crypt.  This demonstrated that the CBC cells 

were the common origin of all four major epithelial cell lineages.   

 

Figure 1.4 The two proposed locations of intestinal stem cells.  Potten et al. demonstrated 

that intestinal stem cells are located at position +4 whilst Cheng et al. have shown that 

crypt columnar cells (CBC) are the true stem cells that give rise to all four cell lineages 

and are located between the Paneth cells at the crypt base. Figure from (42). 

Several strategies have been used to identify intestinal stem cell markers.  Musashi-1was 

first identified as a neuronal stem cells marker and later proposed as an intestinal stem cell 

marker using immunocytochemistry (43).  Bmi1, originally proposed to regulate self-

renewal of neural and haematopoietic progenitors was later found to mark rare +4 position 

cells using lineage tracing experiments (44).  Prominin 1 (CD133) was first identified as a 
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haematopoietic and neuronal stem cell marker and was later shown to mark intestinal stem 

cells using lineage tracing and experiments (45). Immunohistochemical staining showed 

that DCAMKL1 may also be an intestinal stem cell marker (46).   Lgr5 was identified 

using a screening of Wnt target genes that had restricted expression at the crypt base and 

later confirmed using lineage tracing to label intestinal stem cells (47) (4).  Found to be 

highly enriched in human colonic crypt bases, OLFM4 was shown to be an intestinal stem 

cell maker using in situ hybridisation (48).  Breult et al. (49) propose that since high 

telomerase levels may be a general feature of adult stem cells, mTert was shown to mark a 

radiation-resistant stem cell population that generated all differentiated intestinal cell types 

(50).  Hopx, involved in cardiac development (51) and neural stem cells (52) was also 

found to label intestinal stem cells that gave rise to all lineages (53).  The pan-ErbB 

inhibitor Lrig1, was shown using in situ hybridisation to be highly expressed in the stem 

cell niche and colocalised with other stem cell markers (54). 

The musashi-1 (Msi-1) gene encodes a RNA binding protein that is involved in early 

asymmetric divisions that generate differentiated cells from neural stem cells or progenitor 

cells.  It was first identified in Drosophila and plays an essential role in regulating the 

asymmetric cell division of ectodermal precursor cells known as sensory organ precursor 

cells through the translational regulation of target mRNA (55).  Collaboration between 

Okano and Potten (56) revealed that there was Msi-1 expression in the small intestine at 

the +4/ +6 positions of the crypt base and at the very bottom region of the crypt base in the 

colon.  Nishimura et al. (43) have also shown Musashi-1 positive cells located in the lower 

part of the crypt, less than 10 cell positions from the bottom.  Sureban et al. (57) have 

shown that Msi-1 expression is upregulated in human colorectal tumours and siRNA-

mediated knockdown of Msi-1 in the tumour xenografts resulted in the arrest of tumour 

growth.  Furthermore, inhibition of Msi-1 resulted in decreased cancer cell proliferation, 

increased caspase-3-mediated apoptosis and enhanced radiation-induced apoptosis, 
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suggesting a role of Msi-1 in intestinal tumourigenesis as a cell proliferation regulator and 

inhibitor of mitotic catastrophe. 

The Bmi1 gene is known to be involved in the self-renewal of neuronal (58), hematopoietic 

(59) and leukemic (60) cells and was first identified in a mouse proviral insertion screen 

for lymphomagenesis (61).  Sangiorgi and Capechhi (44) found that Bmi1 predominantly 

labelled a discrete cell population above the Paneth cells at the +4 position from the base 

of the crypt.  However, they found that there was a non uniform distribution of Bmi1 

expressing stem cells in the small intestine, with more crypts labelled in the duodenum and 

the first part of the jejunum and progressively fewer to none in the ileum.  They suggest 

that more than one adult stem cell population may be present in the intestine. 

CD133, also known as Prominin 1 in the mouse, was first recognised as a marker of human 

haematopoietic stem cells and later used to mark neuronal and brain tumour stem cells.  

Zhu et al. (45) found that Prominin 1 was expressed in a variety of developing adult tissues 

and in the small intestine the Prom1
+
 cells were located at the base of the crypts and co-

expressed with another intestinal stem cell marker, Lgr5.  Using lineage tracing of the 

Prom1
+
 stem cells, the Prom1

+
 cell progeny could be detected for over 60 days in the small 

intestine, brain, kidney, lung and pancreas.  However, in the colon the Prom1 expression 

disappeared within 60 days.  Zhu et al. (45) propose that because the brain, kidney, lung 

and pancreas have low rates of cell turnover, the Prom1
+
 cells in these tissues and the small 

intestine are the quiescent adult stem cells rather than the more rapid-cycling Lgr5
+
 CBC 

cells. 

Doublecordin and CaM kinase-like-1 (DCAMKL-1), a microtubule-associated kinase 

expressed in post mitotic neurons was proposed by May et al. (46) to be a putative 

intestinal stem cell marker.  Immunohistochemical staining revealed DCAMKL-1 

expression at the +4 position of the crypt base, as well as the occasional crypt columnar 

cell between the Paneth cells.  Co-labelling with Musashi-1 antibody revealed co-
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localisation of the DCAMKL-1
+
 and Musashi-1

+
 cells in the small intestine.  May et al. 

(62) later also co-labelled DCAMKL-1 with Lgr5 and found that they marked two distinct 

populations of cells.  Even though they sometimes observed a DCAMKL-1
+
 cell in 

between the Paneth cells where CBC cell normally reside, there was no co-localisation 

with Lgr5.  May et al. also isolated DCAMKL-1
+
 cells from the adult mouse small 

intestine using fluorescence activated cell sorting (FACS) and observed that these cells 

self-renewed and ultimately formed spheroids in suspension culture.  These spheroids 

formed glandular epithelial structures in the flanks of athymic mice and expressed multiple 

gut epithelial lineages.  Therefore, although the DCAMKL-1+ cells may not co-localise 

with Lgr5 and mark the crypt base columnar cells, they may represent the quiescent 

intestinal stem cells.  However, Gerbe et al. (30) identified the DCAMKL-1
+
 cells as 

terminally differentiated Tuft cells (caveolated cells) that are distributed throughout the 

crypt-villus epithelium.  This was confirmed by Bezencon et al. (63) who found Dcamkl-1 

expression in the tuft cells of the mouse. 

mTert (mouse telomerase reverse transcriptase) is another very recently identified stem cell 

marker for the +4 position, or slow-cycling intestinal stem cells.  Telomerase is a 

ribonucleoprotein complex that helps to maintain the telomeric ends of chromosomes that 

are shortened with each cell division.  The loss of telomeric DNA beyond a critical 

threshold induces senescence so induction of telomerase activity prevents cellular 

senescence, especially important in the self-renewal of stem cells (50).  Montgomery et al. 

(50) generated a mTert-GFP transgenic mouse model system in which GFP expression 

recapitulated endogenous mTert expression and telomerase activity.  They found that 

mTert expression marks a population of crypt cells distinct from Lgr5
+
 CBC cells and also 

a subpopulation of Bmi1
+
 cells.  Their results also show that mTert

+
 cells are slow cycling 

cells and are resistant to the effects of radiation, unlike rapid cycling cells that are 

radiosensitive.  So although mTert-expressing cells only minimally contribute to the 

normal intestinal homeostasis, over the life of the organism they progressively contribute 
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to the crypt/villus unit.  This most comes in effect as a regenerative response in which 

radiation sensitive stem cells might be restored following intestinal injury.  This was 

demonstrated by showing that Lgr5
+
 stem cells could arise from the mTert-expressing stem 

cells, suggesting a possible mechanism by which the active stem cell population may be 

renewed throughout the lifetime. 

So far the stem cell markers mentioned have been shown to label intestinal stem cells at 

the +4 position at the crypt base.  However, Barker et al. (4) identified Lgr5, a gene 

encoding a G-protein-coupled receptor whose expression was restricted to just crypt base 

columnar cells (CBC).  Lgr5 (leucine-rich G-protein-coupled receptor 5) was originally 

identified during a screening of Wnt target genes that had restricted expression at the crypt 

base.  Of approximately 80 Wnt target genes, most were expressed in either Paneth cells or 

transit-amplifying cells.  The Lgr5 gene however, seemed to mark the cycling CBC cells 

between the Paneth cells.  The stem cell potential of the Lgr5
+
 cells was assessed by in vivo 

lineage tracing using an Lgr5-EGFP-ires-CreERT2/Rosa26RlacZ mouse model.  

Following induction of Lgr5-CRE activity using tamoxifen, lacZ reporter gene activity was 

initially observed in isolated CBC cells (Fig 1.5).  At later time points the lacZ genetic 

mark was seen in cells of all lineages throughout the crypt-villus epithelium.  This tracing 

was maintained throughout the lifetime of the mouse, thus identifying the Lgr5
+
 CBC cells 

as the self-renewing intestinal stem cells that were multipotent (Fig 1.5).  Lgr5 has been 

shown to mark stem cells in other tissues including hair follicles in the skin (64) and 

pyloric glands of the stomach (65).  Barker et al. (66) have also shown that deletion of Apc 

in the Lgr5
+
 stem cells leads to their transformation into tumour initiating cells that 

develop into adenomas. 
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Figure 1.5 A) EGFP expression of Lgr5 in an Lgr5-EGFP-IRES-creERT2 knock-in 

mouse along the entire crypt-villus axis and B) enlargement of crypt regions.  C) LacZ 

lineage tracing in the small intestine 60 days after induction.  Figure from (4) 

To demonstrate that Lgr5 is a robust intestinal stem cell marker, Sato et al. (67) sorted 

single Lgr5-EGFP
+
 cells using flow cytometry and placed them into culture.  Over a period 

of two weeks these single cells developed into organoids (Fig 1.6) that contained all the 

cell lineages of an intestinal crypt: Paneth cells, enterocytes, goblet cells and 

enteroendocrine cells.  Remarkably, these Lgr5
+
 stem cells are capable of generating these 

complex three-dimensional structures in the absence of any mesenchymal components, 

although R-Spondin 1, Noggin and EGF are essential.  R-Spondins have recently been 

found to be the ligands for Lgr5 as well as its homologues Lgr4 and Lgr6 (5). 

 

Figure 1.6 Isolated single Lgr5
+
 stem cell growing into a complex three-dimensional 

organoid structure in a two week period.  Figure from (67). 

A B C
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Most recently Yui et al. (68) have demonstrated that Lgr5
+
 stem cells that grew into 

organoids in vitro could be transplanted into damaged mouse colon and lead to a 

successful engraftment.  They first induced mucosal damage by providing immune-

compromised Rag2
-/-

 mice with colitis-inducing dextran sulphate sodium (DSS) so that the 

mice developed acute colitis.  They dissociated the organoids cultured from Lgr5-EGFP-

ires-CreERT2 mice and instilled them by enema into recipient mice.  At four weeks after 

transplantation, tube-like EGFP
+
 crypts appeared in the distal colon and were 

morphologically indistinguishable from the surrounding EGFP
-
 epithelium.  The engrafted 

crypts were entirely EGFP
+
, indicating the presence of EGFP

+
 stem cells and these crypts 

contained all the differentiated cell types.  This work demonstrates the potential of stem 

cell therapy in repairing damaged epithelium. 

Van der Flier et al. (69) carried out a small intestine stem cell signature based on Lgr5 

expression.  GFP-positive epithelial cells from the Lgr5-EGFP-ires-CreERT2 mice were 

isolated using FACS sorting.  The FACS analysis distinguished two populations of cells, 

GFP
hi
 and GFP

lo
 cells corresponding to the Lgr5 stem cells and their transit-amplifying 

daughters.  Gene profile analysis was carried out on the two populations and the ASCL2 

and OLFM4 genes were found to be enriched in the Lgr5
hi
 population.  ASCL2 is one of 

the mammalian homologues of the Drosophila aschaete-scute complex genes that encodes 

related bHLH proteins that are powerful regulators of cell fate.  Genetic ablation of ASCL2 

expression in vivo results in silencing of the stem cell signature and rapid stem cell death, 

suggesting a crucial role for this transcription factor as a master regulator of stemness.   

Formeister et al. (70) have recently shown that distinct levels of Sox9 expression mark 

intestinal stem cells based on enriched levels of Lgr5 mRNA in discrete cell populations. 

Sox transcription factors have the capacity to modulate stem/progenitor cell proliferation 

and differentiation in a dose-dependent manner.  Using fluorescence FACS to sort cells of 

the small intestinal epithelium from a Sox9
EGFP

 reporter gene mouse model, they identified 

that low levels of Sox9
EGFP

 (Sox
EGFPlo

) mark cells that are enriched for Lgr5 and high levels 
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of Sox9
EGFP

 (Sox9
EGFPhi

) mark post-mitotic enteroendocrine cells.  These Sox9
EGFPlo

 cells 

were also enriched for OLFM4 and ASCL2 which co-localise with the Lgr5 population of 

cells and had increased expression of Wnt target genes c-Myc and Cyclin D1.  The isolated 

Sox
EGFPlo

 cells were placed into culture condition described by Sato et al. (67) and grew 

into organoid structures within a week.  These organoids contained all the differentiated 

cell lineages, demonstrating that single Sox
EGFPlo

 stem cells have the capacity to function as 

multipotent stem cell in culture (71). 

Gene expression and proteome profiling of Lgr5
+
 stem cells has revealed an Lgr5 stem cell 

signature (72) (73), whose genes contribute to stemness.  Genetic ablation or 

overexpression of Ascl2 or Smoc2 results in rapid stem cell death (69) (72).  The OLFM4 

gene was also found to be highly enriched in human colon crypt bases (74). OLFM4 is a 

secreted molecule originally cloned from human myeloblasts that is under the control of 

Notch signalling and was recently shown that an OLFM4 family member (Xenopus ONT1) 

acts as a BMP antagonist. In situ hybridization has revealed OLFM4 as a highly specific 

and robust marker for Lgr5 stem cells (48).  OLFM4 was also highly expressed in subsets 

of cells within colorectal carcinomas and its expression in these tumour cells was much 

higher than in normal crypt base columnar cells suggesting that they could be used to mark 

stem cells that harbour tumour initiating properties.  Gersemann et al. (75) have found that 

OLFM4 expression was extensively up-regulated in inflamed inflammatory bowel disease 

mucosa, expands up to the surface epithelium and is secreted into the mucus.  This 

induction may be mediated by bacteria via the Notch pathway through IL-22, therefore 

OLFM4 is suggested to have a functional protective role in IBD by binding defensins in 

the mucus.  Oue et al. (76) suggest that serum OLFM4 could also be a useful marker for 

early detection of gastric cancer. 

The most recent intestinal stem cell marker to be identified is Lrig1 (54) (77).  Lrig1 

(Leucine-rich repeats and immunoglobulin-like domains 1) is a transmembrane protein that 

acts as an inducible, negative feedback inhibitor of ErbB signalling.  Lrig1 has also been 
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suggested to mark a quiescent stem cell population in the mammalian epidermis (78).  

Using in situ hybridisation Wong et al. (54) show that Lrig1 is highly expressed in the 

stem cell niche of the small intestine and colon and using the Lgr5-EGFP-ires-CreERT2 

knock-in mouse to differentiate between the GFP
hi
 (LGR5

+
 stem cells) and GFP

lo
 daughter 

cells, the levels of Lrig1 were highest in the GFP
hi
 intestinal stem cells. 

Immunofluorescence staining and flow cytometric analysis confirmed the overlap of Lrig1 

and Lgr5 at the protein level and that Lrig1 is expressed in a gradient with highest levels in 

intestinal stem cells and is absent in Paneth cells (54).  Markers that define stem cells such 

as Lgr5, Ascl2 and Msi1 were found to be enriched in isolated Lrig1
+
 cells.  They also 

observed differential expression of multiple transcripts for Lrig1 interaction partners, in 

particular epidermal growth factor receptor (EGFR) and that Lrig
+
 cells are proliferative.  

Loss of Lrig1 caused a marked increase in crypt size along the entire length of the small 

intestine.  This is explained by the expansion of the stem cell compartment by affecting 

ErbB signalling within the stem cell niche (Fig 1.7).  Lrig1 interacts with the ErbB family, 

cRet and cMet and reduces signalling strength by negatively regulating both protein levels 

and the activity of the growth factor receptors.  Loss of Lrig1 causes an increase in the 

protein levels of the interaction partners which then leads to a rapid expansion of the stem 

cell compartment.  Treatment with the ErbB inhibitor Gefitinib in the Lrig1-knockout mice 

restored crypt proliferation, stem cell and Paneth cell numbers to normal levels.  Powell et 

al. (77) have also confirmed that Lrig1 is an intestinal stem cell marker, but show that they 

are relatively quiescent under normal homeostatic conditions and are only mobilised to 

repopulate the colonic crypt upon tissue damage.  Whole transcriptome analysis of Lrig1
+
 

and Lgr5
+
 cells revealed that there are differences in the molecular programming of the 

two cell population (77).  Immunofluorescent analysis showed that co-localisation of the 

two markers rarely occurred in the same cell.  Ki67 and BrdU analysis showed that the 

majority of Lrig1+ cells are infrequently cycling, and the cell cycle inhibitor Cdkn1a (p21) 

was highly expressed in these cells.  Lrig1
+
 cells also express genes involved in oxidative 

stress responses, suggesting their role in damage response.  Loss of Apc in Lrig1
+
 cells 
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results in multiple intestinal adenomas and Lrig1 null mice develop duodenal adenomas, 

suggesting that Lrig1 functions as a tumour suppressor. 

 

Figure 1.7 The intestinal stem cell marker Lrig1 is a transmembrane protein that acts as 

an inducible, negative feedback inhibitor of ErbB signalling. Powell et al. show that 

Lrig1
+
 cells are slow-cycling and are a distinct population from Lgr5

+
 stem cells.  Figure 

from (77). 

The location of the intestinal stem cells seems to be of debate, with several stem cell 

markers such as Musashi-1, Bmi1, Prominin 1, DCAMKL1, mTert  and Lrig1 labelling the 

slow-cycling and label-retaining cells at position +4 and Lgr5 and OLFM4 marking rapid-

cycling CBC cells.  The relationship between them is not well understood, although both 

give rise to all intestinal epithelial lineages.  Using organoid culture from Hopx
Lacz/+

; 

Lgr5
EGFP-ERCre/+

 mice, Takeda et al. (53) have identified that quiescent +4 intestinal stem 

cells express the atypical homeobox gene Hopx, and give rise to Lgr5 expressing CBC 

cells.  Conversely, rapid cycling CBC cells expressing Lgr5 give rise to +4 cells expressing 

Hopx.  This demonstrates that a bi-directional lineage relationship exists between active 

and quiescent stem cells in the stem cell niche.  A proposed model for this relationship is 

demonstrated in Fig 1.8 by Powell et al. (77).  They propose that Lrig1+ stem cells are 
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downstream of the more quiescent Bmi1
+
 , Hopx

+
 or mTert

+
 stem cells and serve two roles 

in homeostasis: to protect the niche from stress and to give rise to transit amplifying cells 

directly and/or the highly proliferative Lgr5
+
 stem cells when needed.   

 

Figure 1.8 Proposed model for the relationship between the slow cycling and rapid 

cycling intestinal stem cells.  The Lrig1
+
 stem cell may be downstream from the quiescent 

Bmi1
+
, mTert

+
 or Hopx

+
 stem cells and may have two roles in homeostasis: to protect the 

niche from stress and to give rise to transit-amplifying cells directly and/or to Lgr5
+
 stem 

cells when needed.  Figure from (77). 

Whilst the intestinal stem cells have been identified and demonstrated by lineage tracing, 

culture and transplantation experiments in mouse models, the relevance of these stem cell 

markers to human intestinal stem cell biology and tissue renewal requires further 

investigation.  
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1.3 Tissue Renewal 

1.3.1 The stem cell niche 

Stem cells have the ability to undergo both self-renewal and give rise to progeny that can 

differentiate into all the cell lineages.  This ability is dependent on the microenvironment 

or niche in which the stem cell resides.  The first germline stem cell niches to be defined 

were in Drosophila and Caenorhabditis elegans and subsequently adult stem cells and 

their niches have been identified in the hematopoietic system, epithelial system, neural 

system and intestinal system (79).  There appear to be several types of stem cell niche, a 

cellular and non-cellular niche as well as a cancer stem cell niche (Fig 1.9).  The cellular 

and non-cellular components interact with each other in the niche environment and are 

responsible for the maintenance of intestinal stem cell ‘stemness’ properties as well as the 

regulation of symmetric and asymmetric cell division.  The cancer stem cell niche 

comprises of stem cells that have acquired mutations which allow these self-renewing, 

multi-potent, tumour initiating cells to escape the niche regulation. 

 

Figure 1.9 Stem cells and their niches.  A) The cellular niche is composed of 

differentiated cell types that provide cell-cell contact and secreted factors that support and 

maintain stem cells.  B) In the non-cellular niche stem cells reside in a basement 
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membrane and the signals that promote self-renewal come from the extracellular matrix.  

C) Cancer stem cells are the normal stem cells that acquire mutations which allows them 

the ability to escape the niche regulation. Figure from (79). 

The intestinal stem cell niche contains all the cellular and non-cellular components that 

regulate fate of the stem cells including adjacent epithelial cells, subepithelial 

myofibroblasts, enteric neurons, endothelial cells, intraepithelial lymphocytes and the 

basement membrane (26).  The subepithelial myofibroblasts are believed to be the most 

influential mesenchymal cells in the niche since they secrete factors such as Wnt ligands 

that are important in maintaining the survival of stem cells.  The subepithelial 

myofibroblasts exist as a syncytium, which extends throughout the lamina propria and 

merges with the pericytes of the blood vessels (80).  In the region of the crypts, the 

myofibroblasts are oval and scaphoid in appearance and appear to overlap like shingles on 

a roof and are attached one to the other with both gap junctions and adherens junctions.  In 

the upper regions of the colonic crypts and in the small intestinal villi, the myofibroblasts 

take on a stellate morphology (81).  They also secrete Hepatocyte growth factor (HGF), 

Transforming growth factor β (TGFβ) and Keratinocyte growth factor (KGF), with their 

receptor located on the epithelial cells and may play a role in colonic tumourigenesis and 

metastasis (81). 

Sato et al. (67) show that intestinal stem cells require additional signals in order to grow in 

vitro which may not originate from the epithelium itself.  They show that single Lgr5
+
 cells 

only grow into organoids in the presence of additional factors such as R-Spondin 1, EGF 

and Noggin.  Noggin has been shown to be derived from stromal tissue suggesting that the 

factors required for organoid growth originate from the mesenchymal niche (8).  Sato et al. 

(34) also demonstrate that co-culture of Lgr5
+
 stem cells with Paneth cells increased the 

survival and number of organoids.  Paneth cells express EGF, TGFα, Wnt3 and the Notch 

ligand Dll4 which are all essential signals for stem cell maintenance in culture.  The 

genetic removal of Paneth cells in vivo resulted in the loss of Lgr5
+
 stem cells.  Since 
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Paneth cells are only found in the intestine and proximal colon, it raises the question of 

what cells take on this role in the distal colon.  Rothenberg et al. (35) demonstrated that a 

population of goblet cells that are cKit
+
 and express Dll1, Dll4 and EGF similar to Paneth 

cells, support the Lgr5
+
 stem cells in the colon and promote organoid formation. 

The number of stem cells in the niche remains constant and the process regulated possibly 

through negative feedback.  If this homeostasis of stem cell division is altered through the 

accumulation of genetic mutations, then the stem cells produced through symmetrical 

division are prevented from exiting the niche or they lose the ability to respond to negative 

feedback and cause crypt expansion and neoplastic transformation.  Stem cells may divide 

asymmetrically with one stem cell remaining in the niche whilst the daughter cell 

differentiates into one of the lineages or the stem cells may divide symmetrically and 

forming two daughter stem cells or two daughter non-stem progenitor cells.  

 Quyn et al. (82) used high-resolution mutiphoton microscopy to determine spindle 

orientation of dividing cells in the small intestine and colon and compared divisions in the 

stem cells and transit-amplifying cells of wild-type and Apc heterozygous and homozygous 

mutant human and mouse tissue.  They found that in mouse and humans, the cells near the 

base of the crypts tended to orient their spindles perpendicular to the apical surface of the 

epithelium, whereas they orientated more parallel above position +7.  This orientation 

correlated with the asymmetric retention of label-retaining DNA.  They also found that the 

preference for perpendicular spindle alignment and asymmetric label retention was lost in 

precancerous tissue heterozygous for Apc, thus suggesting that the loss of asymmetric 

division in stem cells may contribute to the oncogenic effect of Apc mutations in gut 

epithelium.  This perpendicular orientation of stem cell division may cause the generation 

of unequal daughter cells due to finding themselves in slightly different environments after 

division, as seen in the Drosophila testis where the germ stem cell divides perpendicular to 

the niche structure called the hub.  This ensures that one cell continues as a stem cell 

attached to the hub, while the other differentiates into a gonial blast (83).  However, in the 
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human and mouse gut epithelium the stem cells span from the basal lamina to the apical 

lumen and uniformly touch the Paneth cells (84).  Therefore, even though the spindle is 

orientated perpendicular to the epithelial sheet, the daughter cells do not end up in 

divergent locations.  Snippert et al. (84) propose that spindle orientation in these stem cells 

results from special constraints in these flattened polarised cells.  By carrying out a fate 

map of individual stem cell using a generated multicolor Cre-reporter, they found that most 

Lgr5
hi
 cell divisions occur symmetrically and do not support the model that the two 

daughter cells adopt divergent fates.  Instead their model shows that the stem cells double 

their numbers each day and stochastically adopt stem or transit-amplifying fates.  It could 

be that following symmetrical division, Lgr5
hi
 cells undergo neutral competition for 

contact with Paneth cell surface. Once detached, cells lose access to short-range signals 

that maintain stem cell ‘stemness’ and progressively differentiate.   

Snippert et al. (84) have also identified using their model that there are 14 Lgr5
+
 stem cells 

in the mouse small intestine and Barker et al. (4) had previously estimated that their cell 

cycle time is approximately 1 day.  Schepers et al. (85) have found that Lgr5
+
 stem cells 

divide on average every 21.5 hours and contain significant telomerase activity which is 

gradually lost in their progeny.  However, despite the presence of telomere activity in these 

cells, telomere shortening still occurs, as seen by the average telomere length of Lgr5
lo
 

cells being substantially lower than in Lgr5
hi
 cells at all ages of the mouse.  They also 

found that the Lgr5
+
 stem cells randomly segregated newly synthesised DNA strands, 

which opposes the ‘immortal strand’ hypothesis in which the stem cells retain the ‘old’ 

template DNA strand and transfer the newly synthesised strand to their daughter cells. 

 

1.3.2 Stem cell renewal and progeny lineage specification  

Crypt homeostasis is maintained by stem cell proliferation and differentiation which is 

regulated by several signalling pathways which include Wnt, bone morphogenic protein 



25 
 

(BMP), transforming growth factor β (TGFβ), Notch and Hedgehog (Hh) pathways (Fig 

1.10).  Wnt signalling plays a major role in maintaining epithelial stem cell fate and 

progenitor cell proliferation (86).  Transgenic and adenoviral expression of Dkk1, an 

inhibitor of Wnt signalling, causes loss of proliferation and loss of crypts (2) (3).  BMP 

and TGFβ signalling in contrast are involved in inhibition of intestinal stem cell activation 

and promote intestinal differentiation (8).  Notch signalling is involved in cell fate 

decisions in the colonic epithelium, specifically directing cells towards a secretory lineage 

(87).   

 

Figure 1.10 Regulatory signals involved in colonic epithelium stem cell renewal and 

differentiation.  The Wnt protein family and BMP antagonists are expressed in a 

reciprocal gradient to the BMP and Hh protein families along the crypt axis.  The Notch 

ligand Jagged-1 is expressed in a reciprocal manner to the Notch receptors. Figure from 

(26). 

Wnt signalling is important in both stem cell self-renewal and effect cell fate 

determination.  It drives cell proliferation through up-regulation of β-catenin target genes 

such as c-Myc and CyclinD1.  Wnt signals also directly regulate the expression of the 

transcription factor CDX1 (Caudal-type homeobox protein 1) which plays an important 

role in enterocyte differentiation.  CDX1 induces the expression of alkaline phosphatase, a 
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marker of intestinal enterocyte differentiation, and regulates the expression of ApoB 

mRNA editing protein which is located in the villi (26).  CDX1 also regulates the 

expression of the differentiation marker cytokeratin 20 (CK20) by binding to its promoter 

region (88).  Lickert et al. (89) show that Cdx1 was induced in mouse embryonic stem 

cells by Wnt stimulation and that TCF4-deficient mouse embryos no longer expressed 

CDX1 protein in the small intestinal epithelium.  Beland et al. (90) have also found that 

CDX1 and LEF1, a nuclear effector of Wnt signalling, synergise to induce expression from 

the CDX1 promoter through LEF/T-cell factor response elements and the physical 

interaction between the homeodomain of CDX1 and the B box of LEF1 could be the basis 

of this synergy.  Ikeya et al. (91) show that among the Wnt family members, Wnt3a 

appears to regulate CDX1 expression, as the Wnt3a mutants seem to have reduced 

expression of CDX1.  Prinos et al. (92) also show that Wnt3a synergises with Retinoic 

Acid to initiate CDX1 expression during murine development. 

Wnt signalling has also been shown the play a role in Paneth cell development.  Van Es et 

al. (93) show that the expression of a Paneth gene programme is critically dependent on 

TCF4, as conditional deletion of the Wnt receptor Frizzled-5 abrogates expression of these 

genes in Paneth cells.  This result is explained by Wnt-dependent expression of EphB3, 

MMP7 and Cryptdin which are crucial in Paneth cell localisation and maturation.   

Sox9, a Wnt-dependent gene is also crucial in Paneth cell maturation as Mori-Akiyama et 

al. (94) found that in the Sox9 conditional knockout mice no differentiated Paneth cells 

were present at the bottom of the crypts.  The absence of characteristic Paneth cell vesicles 

in the cell of the crypt bottoms and the lack of expression of Paneth cell markers such as 

lysozyme, MMP-7, Cryptin-1 and Crypdin-6 verified this result.  Sox9 had no role in the 

differentiation of goblet or enteroendocrine cells.  Bastide et al. (95) have found that as 

well as Paneth cell absence, Sox9 mutant mice also had an increase in crypt cell 

proliferation as well as an increased number of cells expressing c-Myc and CyclinD1, 
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suggesting that Sox9 may also play a role in negative feedback of the Wnt signalling 

pathway. 

A study by Gregorieff et al. (96) found a Wnt responsive gene, termed Spdef, is a 

transcription factor of the Ets family that is involved in the maturation of goblet and Paneth 

cells.  They detected Spdef at around the +4 position just above the Paneth cell 

compartment, possibly immediate descendents of either Bmi1
+
 or  Lgr5

+
 stem cells and 

that deletion of the Spdef gene resulted in major defects in the maturation of both goblet 

and Paneth cells.  At the transcriptional level, they demonstrated that Spdef controls the 

expression of a subset of Paneth and goblet cell markers such as Creb314, Ccl6, Hgfac and 

Cryptdins.  Spdef may also be involved in repressing certain Paneth cell genes such as 

Mmp7 and Ang4 in the goblet cell lineage.   

The Notch signalling pathway regulates the secretory lineage through its inhibition.  

Deletion of the downstream component of the Notch pathway transcription factor Math1 

(mouse atonal homologue 1), causes depletion of the goblet, Paneth and enteroendocrine 

cell lineages in the small intestine.  This suggests that Math1 is essential for progenitor cell 

commitment to one of three epithelial adult cell types and that Math1 negative progenitors 

become enterocytes (97) (Fig 1.11).  High levels of Notch switch on the Hes1 (hairy and 

enhancer of split 1) transcription repressor, which blocks the expression of Math1, leads 

cells to remain as progenitors and ultimately become enterocytes.  Conversely, low Notch 

expression increases levels of its ligand Delta, which induces Math1 expression by 

blocking Hes1, leading cells to become goblet, Paneth or enteroendocrine cells (98).  

Jensen et al (99) show that Hes1 null mice have elevated Math1 expression with increased 

enteroendocrine and goblet cells and fewer enterocytes demonstrating that Math1 regulates 

the determination of cell fate though Notch/Delta signalling.  Inactivation of the Wnt 

signalling pathway is required for Hath1 (human homologue to Math1) stabilisation 

through proteosomal destruction by GSK3β. Aragaki et al. (100) found that both 
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constitutive expression of mutant Hath1 and stabilization of Hath1 protein by a GSK3 

inhibitor increased the expression of MUC2 , a marker of differentiated goblet cells. 

 

Figure 1.11 Lineage specification of an intestinal stem cell.  Stem cells may divide 

symmetrically or asymmetrically.  Wnt signals maintain the stem-like phenotype of the 

stem cells, whilst Notch maintains the proliferation of progenitor cells.  The intestinal stem 

cell gives rise to progenitor cells, which can either form enterocytes or the secretory 

lineage, via inhibition of the Notch pathway, down-regulation of Hes1 and up-regulation 

of Math1.  Candidate genes that determine specification of enteroendocrine and Paneth 

cells are neurogenin-1 and PDX1 (enteroendocrine) and SOX9 and Spdef (Paneth cells).  

Figure from (26). 

Both Neurogenin 3 and pancreatic and duodenal homeobox 1 (PDX1) have been 

implicated in the differentiation of enteroendocrine cells.  Lopez-Diaz et al. (101) used the 

mouse villin promoter to drive Neurogenin 3 expression throughout the developing 

epithelium to measure the affect on cell fate.  They found that the Neurogenin 3 expressing 

transgenics had decreased numbers of goblet cells with an increase in enteroendocrine 

cells.  Ootani et al. (102) also show that Neurogenin 3 over-expression leads to 

enteroendocrine cell differentiation in their murine intestinal spheroids long-term culture in 
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vitro.  PDX1 is a transcription factor involved in pancreatic development and islet cell 

function and appropriate gene expression in enteroendocrine cells.  Yamada et al. (103) 

show that over-expression of PDX1 causes immature rat intestinal epithelial cells to 

differentiate into enteroendocrine cells. 

Tuft cells have a unique signature marker that includes co-expression of SOX9, COX1, 

COX2, hematopoietic prostaglandin-D2 synthase (HPGDS) and doublecordin-like kinase 1 

protein (DCAMKL1).  Gerbe et al. (29) have found that in contrast to the enteroendocrine 

cell lineage which depends on Neurog3 function, tuft cells are still produced in the absence 

of Neurog3.  COX1
low

 tuft cells that are still in the process of terminal maturation express 

high levels of SOX9 and never express Neurog3, whereas SOX9 is barely detectable in 

Neurog3-expressing enderoendocrine precursor cells (104) thus distinguishing them as 

different cell types.  Spdef and Gfi1 are also not essential for tuft cell differentiation (like 

Paneth cells).  However, Atoh1 is essential, as tuft cells are absent in Atoh1-defficient 

mice, thus characterising them as a secretory type (29).   

The maintenance of stem cells and progenitor cell lineage specification seems to be mainly 

driven by Wnt and Notch signalling and Crosnier et al. (86) have suggested a model in 

which these two signalling pathways interact (Fig 1.12).  The Wnt signalling pathway 

drives the expression of Notch pathway components that mediate lateral inhibition within 

the Wnt-activated (Wnt+) population.  Some cells express Delta and escape Notch 

activation (Notch-) while others fail to express Delta and have Notch activation (Notch+) 

imposed on them.  The (Wnt+, Notch-) cells become committed to a secretory fate and 

eventually stop dividing whilst the (Wnt+, Notch+) cells continue to divide without 

differentiating.  This generates daughters like themselves that interact with Notch and 

diversify further.  Due to short and long range special signals, some cells have to move 

further up the crypt axis and lose Wnt activation which leads to their differentiation as 

enterocytes if Notch was still activated in them at the time of their exit, or as secretory 

cells if Notch was inactive. 



30 
 

 

 

Figure 1.12 Wnt and Notch signalling cooperate to maintain stem cells.  Figure from 

(86). 

Interactions between Wnt and Hedgehog (Hh) signalling pathways also appear to play an 

important role in regulating the intestinal stem cell niche.  Indian hedgehog (Ihh) is a 

member of the mammalian hedgehog ligand family and is expressed by differentiated 

enterocytes.  Hedgehog signalling limits the expression of Wnt targets to the base of the 

crypt and Van Den Brink et al. (105) demonstrated that inhibition of Hh signalling using 

cyclopamine leads to aberrations in epithelial cell differentiation.  They also found that 

transfection of Ihh into colon cancer cells leads to a down-regulation of both components 

of the nuclear TCF4-β-catenin complex and abrogates endogenous Wnt signalling in vitro.  

Von Dop et al. (106) found that constitutive activation of Hh signalling resulted in 

accumulation of myofibroblasts and colonic crypt hypoplasia.  A reduction in the number 

of epithelial precursor cells was observed with premature development into the enterocyte 

lineage and inhibition of Wnt signalling. Activation of Hh signalling also resulted in 

induction of the expression of bone morphogenic proteins and increased BMP signalling in 

the epithelium.  Kosinski et al. (107) demonstrated that deletion of Ihh disrupted the 

intestinal mesenchymal architecture through the loss of the muscularis mucosae, 
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deterioration of the extracellular matrix, and reduction of crypt myofibroblasts.   The 

epithelial compartment however, had increased Wnt signalling, disturbed crypt polarity 

and architecture, defective enterocyte differentiation, and increased and ectopic 

proliferation that was accompanied by increased numbers of intestinal stem cells. Their 

mechanistic studies revealed that Hh inhibition deregulates BMP signalling, increases 

matrix metalloproteinase levels, and disrupts extracellular matrix proteins, thereby 

providing a proliferative environment for intestinal stem cells and progenitor cells.   

In addition to Wnt and Notch signalling, BMP signalling has been shown to be important 

in stem cell self-renewal and maturation of goblet, enteroendocrine and Paneth cells.  

BMPs are active at the top of the crypts where differentiation occurs (Fig 1.10) and 

although there is some activity at the crypt base, BMP inhibitors such as noggin and 

gremlin regulate its levels.  He et al. (8) have suggested that BMP signalling inhibits 

intestinal stem cell self-renewal through activation of PTEN, leading to suppression of 

Wnt/β-Catenin signalling.  Overcoming this suppression with transient expression of 

noggin leads to Akt activation that enhances nuclear β-Catenin activity thus promotes stem 

cell self-renewal and proliferation.  Auclair et al. (108) have shown that there was 

increased cell proliferation and altered intestinal epithelial morphology in BMPRIA mutant 

mice as well as impaired terminal differentiation of cells from the secretory lineage but 

BMP signalling is not involved with cell fate determination. 

TGFβ signalling regulates many aspects of stem cell biology such as stem cell conversion 

to progenitor/transitional cells and migration of differentiated cells.  At the villus tips, 

TGFβ signalling may be required for apoptosis, thus maintaining the normal size, shape 

and function of the polarised gut epithelium (109).  The linear migration, differentiation 

and compartmentalisation along the crypt-villus axis is controlled by TGFβ and Wnt 

gradients, with TGFβ controlling cell polarisation proteins and Wnt controlling the 

expression of EphB sorting receptors.  The presence of TGFβ signalling and the absence of 

Wnt signalling at the villus compartment results in rapid cell cycle arrest and 
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differentiation with SMAD 4 and TCF4 being the dominant switch between the 

proliferative progenitor and the differentiated epithelial cell.    In colorectal cancer this 

switch is permanently reversed, because TGFβ signalling is inactivated whilst TCF4 is 

constitutively activated by mutations in the Wnt cascade (109).   

 

1.3.3 Migration 

Differentiation in the intestinal crypt is a very ordered process.  As new daughter cells are 

produced by the stem cells at the base of the crypt they migrate along the crypt axis to the 

top of the crypt and differentiate along the way.  Eph/Ephrin molecules are involved in 

maintaining cellular boundaries and establishing migratory paths by segregating cells 

along the crypt axis (110).  Both Ephrins and Eph receptors are membrane bound proteins, 

restricting their interactions to sites of direct cell-cell contact.  The Ephrin/Eph receptor 

interaction allows bidirectional communication with the signal being conveyed in both the 

receptor-expressing as well as in the ligand-expressing cell (111).  These Eph/Ephrin 

molecules have been identified as Wnt target genes and the EphB receptors and Ephrin-B 

ligands are regulated via the β-Catenin/TCF transcription complex (Fig 1.13).   
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Figure 1.13 Migration within the intestinal crypt is regulated by the interaction of EphB 

receptors and Ephrin-B ligands.  A gradient of EphrinB1/B2 ligands exists along the crypt 

axis with high levels being expressed at the top of the crypt and an opposing gradient of 

EphB2 expression at the bottom of the crypt.  Figure from (112). 

A gradient of EphB receptors and Ephrin-B ligands exists along the crypt axis which 

mirrors the Wnt gradient.  The level of Ephrin-B ligand and Wnt-induced EphB expression 

determines cell location.  EphB2 is not found on Paneth cells but is expressed on crypt 

base columnar cells and decreases in expression toward the top of the crypt.  EphB3 

however, is expressed on both the crypt base columnar cells and Paneth cells.  Ephrin-B1 

and Ephrin-B2 are expressed on differentiated cells at the top of the crypt and decrease 

toward the base of the crypt with Paneth cells having a complete absence of Ephrin-B 

ligand expression (110).  This differential expression specifies the position of the crypt 

cells because of the repellent effects of EphB/Ephrin-B interaction.  Downward migration 

is prevented due to decrease of EphB expression and increase of Ephrin-B ligand 

expression as cells move away further from the crypt base and the Wnt source.  Also, since 

Paneth cells do not express Ephrin-B ligands and only EphB3 receptor, their upward 

migration is prevented (110).   

Holmberg et al. (111) found by gain- and loss-of-function experiments that Ephrin-B 

ligands and Eph receptors, independently of their influence on cell positioning, also 

promote proliferation in the crypts of the small intestine and colon and account for about 

50% of the mitogenic activity.  EphB2 and EphB3 kinase-dependent signalling promoted 

cell cycle re-entry of intestinal progenitor cells, thus establishing that Ephrins and Eph 

receptors are key coordinators of migration and proliferation in the intestinal stem cell 

niche.  Batlle et al. (113) show that most human colorectal cancers lose expression of 

EphB at the adenoma-carcinoma transition and the loss of EphB expression strongly 

correlates with degree of malignancy. Furthermore, reduction of EphB activity accelerates 

tumorigenesis in the colon and rectum of Apc(Min/+) mice, and results in the formation of 
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aggressive adenocarcinomas, demonstrating that loss of EphB expression represents a 

critical step in colorectal cancer progression.  Cortina et al. (114) also show that EphB 

receptor compartmentalise the expansion of colorectal cancer cells through a mechanism 

dependent of E-cadherin-mediated adhesion.  They demonstrate that EphB-mediated 

compartmentalisation restricts the spreading of EphB-expressing cancer cells into Ephrin-

B1 positive areas possibly through the silencing of EphB expression by the cancer cells to 

avoid repulsive interactions.  Batlle et al. (113) observed that the EphB2, EphB3, and 

EphB4 genes were coordinately silenced in the majority of colorectal cancer samples. 

 

1.3.4 Shedding 

Homeostasis of cell renewal in the intestinal crypt is maintained by matching the number 

of dividing cells with the number of cells shed at the top of the crypt.  The epithelium of 

the crypt acts as a barrier which needs to be maintained even when cells are shed at the top.  

When apoptosis is triggered, dying cells are extruded from the epithelium in order to 

preserve this functional barrier.  Extrusion occurs by apoptotic cells signalling to the 

surrounding epithelial cells to contract and form an actomyosin ring that squeezes the 

dying cell out of the epithelium (115).   

 

Figure 1.14 Cell shedding at regions of high crowding during homeostasis and 

development in A) human colonic epithelium, B) confluent MDCK monolayers. Cells 

A B
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destined to die signal to surrounding cells to contract an actomyosin ring that squeezes the 

dying cell out.   Arrows indicate direction of force from mitosis and migration.  Figure 

from (115). 

The signal produced by dying cells to initiate this process is sphingosine-1-phosphate 

(S1P) which triggers Rho-mediated contraction to squeeze the dying cell out.  Decreasing 

S1P synthesis by inhibiting sphingosine kinase activity or by blocking extracellular S1P 

access to its receptor prevents apoptotic cell extrusion. Extracellular S1P activates 

extrusion by binding the S1P(2) receptor in the cells neighbouring a dying cell, as S1P(2) 

knockdown in these cells disrupted cell extrusion (116).  Gu et al. (116) suggest that the 

S1P pathway may also be important for driving delamination of stem cells during 

differentiation or invasion of cancer cells.  Eisenhoffer et al. (115) show that overcrowding 

due to proliferation and migration induces extrusion of live cells to control epithelial cell 

numbers.  They simulated overcrowding of cells by growing MDCK cells to confluence on 

a silicone membrane stretched to 28% of it original length and then released it from 

stretch.  By 6hrs after crowding the number of cells equilibrated to pre-release levels, 

showing that the MDCK epithelia eliminated cells to achieve homeostatic cell numbers.  

To investigate signals that might regulate live cell extrusion after overcrowding they tested 

carboxy-terminal JUN kinase (JNK) and stretch-activated channels which are both 

activated by stress.  They found that JNK inhibitor blocked apoptotic extrusion in response 

to ultraviolet-C but not live cell extrusion after overcrowding or homeostatic cell turnover.  

Inhibiting stretch-activated ion channels however, significantly reduced the percentage of 

both apoptotic and non-apoptotic extrusion events after overcrowding or during epithelial 

homeostasis.  Therefore they suggest that JNK controls apoptosis-induced extrusion, 

stretch-activated signalling controls live cell extrusion during homeostasis that is induced 

by overcrowding, possibly upstream of S1P signalling. 

Tight junctions, known as zonula occludens must be disturbed in order for a cell to be 

shed.  Madara et al. (117) propose that lamellipodia from neighbouring cells extend 
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beneath the shedding cell and form a tight junction which then rises behind the shedding 

cell.  Tight junction elements proliferate between extruding cells and their neighbours and 

appear to move down the lateral margin of the extruding cell as it extends into the lumen. 

These observations suggest that newly formed junctional elements "zipper" the epithelium 

closed as extrusion proceeds therefore preventing epithelial discontinuities from occurring.  

The tight junction is a complex and multifunctional structure consisting of integral 

membrane molecules, occludin, claudins and junction adhesion molecule.  Occludin and 

the claudins are tetraspanin proteins with two extracellular loops and are considered to 

form the variable permeability barrier between the luminal and interstitial spaces separated 

by the epithelium. Tight junction plaque proteins such as ZO1, ZO2, and ZO3 link the 

integral proteins to the actin cytoskeleton. They also interact with a diverse group of 

signalling molecules that connect tight junction function to paracellular permeability, cell 

division, cell polarity and tumorigenesis (118). 

The control of cell death is an important regulator of cell number and susceptibility to 

neoplastic transformation.  Apoptosis following the loss of cell anchorage (anoikis) is a 

form of programmed cell death that is central to homeostasis in the intestinal epithelium.  

Cellular inability to undergo apoptosis by damaged and mutated cells may prevent cells 

from entering the apoptotic pathway and instead survive, divide and expand, increasing the 

risk of colorectal cancer.  An apoptotic cell has distinct morphology during the death 

process, starting with the cell cytoplasm shrinking and the cell detaching from its 

neighbours.  The nucleolus then disappears and the chromatin becomes condensed around 

the nuclear membrane, with the cell membrane taking on “blebbed” appearance.  The cell 

and its nucleus fragment into smaller membrane-bound vesicles which become 

phagocytosed by neighbouring cells (119).  Apoptosis is initiated through activation of 

intrinsic pathways in response to intracellular signals or by an extrinsic pathway 

responsive to extracellular events.  Intrinsic apoptosis occurs following DNA damage or 

toxic stress, in which mitochondria release cytochrome C from their intramembrane space.  
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Cytochrome C binds to apoptotic protease-activating factor (Apaf-1), promoting the 

activation of cysteine-activated proteases (caspases), which target several proteins essential 

for cellular functions.  Mitochondrial membrane permeability is controlled by both pro-

apoptotic (bax, bad, Bclxs, bak, bid) and anti-apoptotic (Bcl-2, BclxL, mcl1, bag-1, bfl-1, 

brag-1, Bcl-w) members of the Bcl-2 family of proteins, all of which contain at least one 

conserved Bcl-2 domain (BH).  Bax and Bad oligomerise with additional pro-apoptotic 

BH-3-motif-containing proteins to stimulate cytochrome C release.  On the outer 

mitochondrial membrane Bcl-2 and BclxL can bind to these BH-3 motif-containing 

proteins and inhibit apoptosis.  The formation of stable Bcl-2 heterodimers prevents 

apoptosis by blocking proteins release from the mitochondria.  Apoptosis is also regulated 

by inhibitors of apoptosis proteins through selective inhibition of specific caspases, 

allowing the inhibition of both intrinsic and extrinsic pathways.  Extrinsic apoptotic 

signalling occurs after activation of death receptors such as tumour necrosis factor receptor 

-1 (TNFR-1) and Fas.  Stimulation of receptors signalling pathways triggers caspase 

activation and subsequent steps in regulating mitochondrial permeability (120).   

Potten et al. (119) have found that spontaneous cell apoptosis also occurs in the lower 

regions of the crypt.  When measured on a positional basis, these cells appeared to be 

restricted to the stem cell region with 10% of these being apoptotic cells.  They suggest 

that this spontaneous apoptosis may be an inherent part of the regulatory mechanism 

determining stem cell numbers in normal adult epithelium.  The tight control of stem cell 

number is fundamental in maintaining a stable crypt size.  Unlike in the small intestine, 

spontaneous apoptosis in the proliferative region of the colon is a rare event and rather than 

just being restricted to the stem cell region, these apoptotic cells are scattered throughout 

the crypt.  This difference in spontaneous apoptosis between the small intestine and colon 

may explain the difference in colon and small intestinal cancer incidence.  If the small 

intestine is able to remove excess stem cells, whereas the colon is not, the increased 
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number of (mutated) stem cells may result in hyperplastic crypts susceptible to 

transformation (119). 
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1.3 Wnt signalling 

1.3.1  Role in tissue renewal 

Wnt signals play an important role in the development and renewal of the colonic 

epithelium.  The Wnt pathway is involved in several different processes such as 

maintaining stem/progenitor cells via cell cycle control and inhibition of differentiation, 

controlling migration and localization of epithelial cells along the crypt axis and directing 

early secretory lineage development as well as terminal differentiation of Paneth cells 

(121).  The term ‘Wnt’ was introduced 20 years ago and fused the names of two 

orthologous genes: Wingless (Wg), a Drosophila segment polarity gene and Int-1, a mouse 

protooncogene (122).  Wnt ligands are defined by amino acid sequence rather than by their 

functional properties and as many as 19 mammalian Wnt homologues are expressed in 

temporal-spacial patterns (123).  All Wnts include a signal sequence for secretion, several 

highly charged amino acid residues and many glycosylation sites.  Wnt ligands are 

hydrophobic and are mostly found associated with cell membranes and the extracellular 

matrix (124).  Wnt ligands are lipid modified by the attachment of a palmitate on the first 

conserved cysteine residue and on a serine in the middle of the protein.  Palmitoylation of 

Wnts by Porcupine is necessary for their glycosylation which aids in Wnt transport 

between cells, as glycosylation increases Wnt interaction with heparin sulphate 

proteoglycans that are present on the surface of Wnt responding cells.  Wnt ligands are 

secreted by the subepithelial myofibroblasts that are located adjacent to the stem cells and 

genetic screens have identified the multipass transmembrane protein Wntless 

(Wls)/Eveness interrupted (Evi) to be required in the secretory pathway to promote the 

release of Wnts from these cells (125).  Sato et al. (34) have also shown that Paneth cells 

are a source of Wnt3 and restrict stem cells to the base of the crypt, and that deletion of the 

Paneth cells decreased the number of stem cells in the crypt. 
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Β-catenin is an essential cytoplasmic signal transducer of the canonical Wnt signalling 

pathway (Fig 1.15).  The levels of cytoplasmic β-catenin are normally controlled by a 

destruction complex that targets β-catenin for degradation in proteasomes.  This complex is 

assembled over the scaffold component axin or its homologue conductin, and contains the 

tumour suppressor adenomatous polyposis coli (APC), the glycogen synthase kinase 3β 

(GSK3β) and casein kinase 1α/ε (CK1α/ε) which are the binding domains for β-catenin 

(126).  Upon β-catenin binding to the destruction complex, CK1α/ε phosphorylation of Ser 

45 at the N-terminus of β-catenin and the subsequent Ser/Thr phosphorylations by GSK3β 

result in its ubiquitination and proteosomal degradation by β-TrcP, an F-box containing E3 

ubiquitin ligase.  Within the nucleus, lymphoid enhancer factor /T cell factor (LEF/TCF) 

transcription factors remain bound to co-repressors such as Groucho and suppress Wnt 

pathway target genes (112).  Wnts are glycoproteins whose secretion is controlled 

specifically by the transmembrane protein Wntless/evenness interrupted (125).  The 

production of active Wnt requires also a functioning retrometer, a multiprotein complex 

involved in intracellular protein trafficking.  Wnt ligands initiate Wnt signals through the 

engagement of the Wnt receptor complex composed of a Frizzled receptor (Fz1-10) and a 

low-density lipoprotein-related protein co-receptor (LRP5 or LRP6) which results in the 

inactivation of the β-catenin destruction complex.  Dishevelled, a protein that can bind the 

cytoplasmic tail of Fz receptors and axin facilitates the recruitment of axin to the LRP co-

receptor, thereby removing the scaffold and destabilising the β-catenin destruction 

complex.  The interaction of Wnts with Frizzled receptors can be modulated by a number 

of secreted factors that act as antagonists by binding to either Wnts or the co-receptor 

LRP5/6.  The stabilised β-catenin translocates to the nucleus where it binds LEF-TCF 

transcription factors and displaces the co-repressor Groucho.  The β-catenin-LEF/TCF 

complex then drives the transcription of Wnt target genes and is tightly regulated by 

factors such as Bcl9, Pygopus, mixed-lineage leukaemia histone methyltransferases, APC, 

Chibby, inhibitor of β-catenin (iCAT), C-terminal-binding protein (CtBP) and components 

of chromatin-remodelling complexes (126).  Targets of Wnt/TCF/LEF regulated 
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transcription include the proto-oncogene myc, cyclooxygenase 2 (COX2), 

matrilysin/MMP7, Cyclin D1 and TCF1.  Activation of the Wnt signalling pathway also 

affects the expression of BMP6, a member of the TGFβ superfamily (127). 

 

Figure 1.15 Canonical Wnt signalling pathway.  In the absence of Wnt ligands β-catenin 

is phosphorylated and targeted for degradation by the degradation complex containing 

Axin, APC, GSK3β and CK1.  Upon Wnt ligand binding to Frizzled and LRP 

transmembrane receptors, the cytoplasmic protein Dishevelled is activated and blocks the 

action of the degradation complex.  β-catenin is then able to accumulate and translocate to 

the nucleus, where it drives the transcription of Wnt target genes aided by TCF/LEF 

transcription factors.  Figure from (128). 

APC is a large protein (312kDa) known to interact with at least 10 protein partners 

including β-catenin, axin, EB-1 and DLG.  APC has multiple diverse functions in cell 

migration and adhesion, cell cycle regulation and chromosome stability (122).  Although 

APC is mutated in 85% of familial and sporadic colorectal cancers, it is not absolutely 

necessary for the proper functioning of the β-catenin degradation complex.  Nakamura et 

al. (129) show that over-expression of axin can compensate for the absence of functioning 



42 
 

APC.  In addition to its structural role in the β-catenin degradation complex, APC also 

captures and escorts nuclear β-catenin to the cytoplasmic destruction machinery (130).  

Inclusion of APC in the β-catenin degradation complex likely results in an improved 

presentation of β-catenin to GSK3β, leading to more efficient phosphorylation and 

subsequent destruction (122).   

The ubiquitious protein phophatase 1 (PP1) has been identified by Luo et al. (131) as a 

conserved positive component in the Wnt/β-catenin signalling pathway.  PP1 controls Wnt 

signalling through interaction and regulated dephosphorylation of axin. Inhibition of PP1 

leads to enhanced phosphorylation of specific sites on axin by CK1. Axin phosphorylation 

enhances the binding of GSK3β, leading to a more active β-catenin destruction complex. 

Wnt-regulated changes in axin phosphorylation, mediated by PP1, may therefore 

determine β-catenin transcriptional activity (131). 

The tumour suppressor Wilms Tumour gene on the X chromosome (WTX) has been 

identified by Major et al. (132) as another component of the β-catenin degradation 

complex.  WTX is in the complex with axin, APC, β-catenin and β-Trcp, with WTX 

binding directly to β-catenin and β-Trcp which then promotes β-catenin ubiquitination and 

degradation.  Grohmann et al. (133) have also identified WTX as an APC-interacting 

protein.  It recruits APC to the plasma membrane away from microtubules through the 

binding of WTX to phosphatidylinositol (4, 5)-biphosphate (PIP2).  Depletion of WTX via 

siRNA reduces APC protein level in the cell and promotes APC distribution to microtubule 

ends. 

β-catenin is the mammalian orthologue of the Drosophila Armadillo (Arm) protein and 

was originally identified as a component of the adherens junctions, where it links E-

cadherin to α-catenin and the actin microfilament network of the cytoskeleton (134).  A 

large part of the β-catenin protein is taken up by 12 tandemly arranged imperfect residue 

repeats called Arm repeats that mediate protein-protein interactions with cadherins, APC, 
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axin and TCF (135).  β-catenin’s Arm repeats facilitate its docking at the nuclear envelope 

and nuclear accumulation of the protein (134) (122).  In the nucleus, β-catenin does not 

bind DNA itself but is an essential cofactor of the TCF/LEF transcription factors.  The 

acetyltransferase CBP (CREB-binding protein) acetylates β-catenin which improves 

transctivation at the c-Myc locus and allows better access to promoter sequences (136).  

Fevr et al. (137) generated a mouse model using a tamoxifen-inducible variant of the cre 

recombinase (creERT2) expressed under the control of the intestinal villin promoter and 

found that inactivation of β-catenin leads to a rapid loss of intestinal epithelial cells and 

crypt structures.  Ireland et al. (138) found that deletion of β-catenin in the small intestine 

caused crypt ablation, increased apoptosis, depleted numbers of goblet cells, and 

detachment of villus absorptive cells from the villus core as intact sheets.  Activation of 

mutations in β-catenin and inactivation of mutations in Apc leads to intestinal hyperplasia 

(139).  Wetering et al. (140) show that disruption of β-catenin/TCF4 activity in CRC cell 

lines using dnTCF4 induces a rapid G1 arrest and blocks a genetic program that is 

physiologically active in the proliferative compartment of colonic crypts and a 

differentiation program is induced instead.  The TCF4 target gene c-Myc plays a central 

role in this switch by direct repression of the p21
CIP1/WAF1

 promoter.  Following disruption 

of β-catenin/TCF4 activity, the decreased expression of c-Myc releases p21
CIP1/WAF1

 

transcription, which then mediates G1 arrest and differentiation.  Muncan et al. (141) have 

found that deletion of the transcription factor c-Myc resulted in rapid loss of crypts and 

decreased cell numbers in crypts that remained. 

Gregorieff et al. (142) examined the expression patterns of all Wnts, Frizzleds, LRPs, Wnt 

antagonists and TCFs in the mouse small intestine and colon and adenomas using in situ 

hybridisation.  Figure 1.16 shows a summary of their findings.  Of the 19 Wnt genes 

tested, 7 Wnts were readily detected in the intestine, although Wnt2b and Wnt3 were not 

found in the colon.  In the small intestine, Wnt3 was restricted to the very bottom of the 

crypts where Paneth cells reside as was Wnt9b (also termed Wnt14b).  Wnt9b was also 
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detected in the epithelial progenitor cells above the Paneth cell compartment but in the 

colon Wnt9b was localised throughout the colonic epithelium.  Wnt6 was expressed 

throughout the crypts of both the small intestine and colon and strongly expressed in 

adenomas.  Several Wnts were also found in specific compartments of the mesenchyme, 

with Wnt5a found abundant in the villus tips and weaker towards the crypt-villus junction 

of the small intestine and in the colon Wnt5a and Wnt5b were restricted to the mesenchyme 

beneath the surface epithelium.  Wnt4 was uniformly expressed along the villus 

mesenchyme and in the colon was also restricted to the mesenchyme beneath the surface 

epithelium.  Wnt2b was strongly expressed in the mesenchymal layer of the villi but in the 

colon Wnt2b seemed to mark endothelial or smooth muscle cells. 

The expression of Frizzled receptors 5 and 7 was found in the epithelial cells at the bottom 

of the crypts whilst Fz4 was restricted to the differentiated epithelial cells of the villi.  Fz6 

was uniformly expressed throughout the epithelium of the small intestine and colon.  The 

co-receptors LRP5 and LRP6 were found to be expressed in the proliferative epithelial 

cells of the crypts.   

The functional counterparts of the Frizzled receptors are a family of secreted factors called 

sFRPs.  Both Fzs and sFRPs share an equivalent Wnt-interacting cysteine-rich domain 

which allows sFRPs to compete with Fzs and antagonise Wnt signalling (142).  In the 

small intestine and colon Gregorieff et al. (142) found abundant levels of sFRP1 in the 

mesenchymal cells immediately adjacent to the crypts.  Expression of sFRP5 was found in 

cells located immediately above the Paneth cell compartment.   

Another secreted factor that can inhibit Wnt signalling by binding directly to Wnts is WIF 

(Wnt-interacting factor) which was only detected in adenomas by Gregorieff et al. (142) 

and Dkk2 which binds to the LRP co-receptors was also detected in adenomas.  Dkk3 was 

weakly expressed in the villus mesenchyme and up-regulated in adenomas, whilst Dkk1 

and Dkk4 were not detected at all in the intestine. 
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The expression of TCF family members was also examined by Gregorieff et al. (142) who 

found that TCF4 was abundant in differentiated cells of the surface epithelium and the 

expression diminished in the lower half of the crypts.  TCF1 expression was strongly up-

regulated in adenomas and transcripts were found in infiltrating gut lymphocytes, gut-

associated lymphoid tissue and Payer patches, suggesting a role of TCF1 in thymocyte 

development.  TCF3 on the other hand was expressed in the proliferative compartment of 

the colon only, whilst LEF (lymphoid enhancer factor) was detected in intestinal polyps 

but absent in normal epithelium. 

 

Figure 1.16 Expression pattern of Wnt signalling components in mouse A) small 

intestine and B) colon.  Figure from (142). 

Holcombe et al. (127) also assessed the expression of Wnt ligands and Frizzled receptors 

in the colonic mucosa, but in the humans not mouse.  They found abundant expression of 
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Wnt1, Wnt4, Wnt5b, Wnt6, Wnt7b and Wnt10b in both normal and malignant tissue.  As 

also seen in mouse, Wnt2 was absent in normal colonic crypts and villi but was expressed 

in malignant tissue.  Wnt5a, as in the mouse was also detected in the normal colon with 

slightly higher expression at the base of the crypts.  The expression of Fz1 and Fz2 was 

also assessed but none could be detected in normal colonic mucosa, in contrast to the 

cancer tissue, where their expression was readily detectable especially at the invasion 

front.  A few years later, Holcombe et al. (143) also looked at the expression of Wnt 

antagonists in human normal and malignant colonic tissue.  They found that Wif1 was 

expressed in most normal and malignant tissue samples with higher expression at the base 

of the crypts.  Dkk2 and Dkk3 exhibited similar expression patters as Wif1 and Dkk1 was 

not expressed in either the normal or malignant tissue mirroring the results by Gregorieff et 

al.  Both of these studies by Gregorieff et al. (142) and Holcombe et al. (127) demonstrate 

the localization of Wnts and their downstream effectors and inhibitors and suggest that 

Wnt signalling has a wide role in gut development and homeostasis.   

The extracellular antagonists of the Wnt signalling pathway can be divided into two broad 

classes which prevent ligand-receptor interaction.  The sFRPs and WIF primarily bind to 

Wnt proteins whilst members of the Dkk family bind to one unit of the Wnt receptor 

complex (144).  There are presently 8 known members of the sFRP family (sFRP 1-5, 

Sizzled, Sizzled2 and Crescent).  The cysteine-rich domains of the sFRPs which lie in the 

N-terminal half of the protein share 30-50% sequence similarity with those of Fz proteins 

may be the mechanism by which by SFRPs antagonise Wnt signalling.  Hypermethylation 

of the SFRP (1,2,4,5) promoters occurs at a high frequency in colorectal carcinomas 

possibly due to the tumour cells shutting down the expression of sFRPs because these 

proteins may promote apoptosis (145) (144).  Wif1 was first identified as an expressed 

sequence tag from the human retina (146).  Although Wif1 does not share any similarities 

with the cysteine-rich domains of Frizzled or sFRPs, Wif1 binds to Drosophila Wingless 

and Xenopus Wnt8 in the extracellular space and inhibit Wnt8-Fz2 interactions (146).  He 
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et al. (147) and Taniguchi et al. (148) have shown that Wif1 is silenced by promoter 

hypermethylation in gastrointestinal cancers. The Dkk family comprises of 4 members 

(Dkk 1-4) and a unique Dkk3-related protein called Soggy (Sgy).  Dkk prevents activation 

of the Wnt signalling pathway by binding to LRP5/6 rather than Wnt proteins.  In addition 

to LRP5/6, Dkk1 interacts with the single-pass transmemrane proteins Kremen 1 (Krm1) 

and Kremen 2 (Krm2).  Krm, Dkk1 and LRP6 form a ternary complex that disrupts 

Wnt/LRP6 signalling by promoting endocytosis and removal of the Wnt receptor from the 

plasma membrane (149).  Koch et al. (150) found that reduced expression of Dkk1 

increased proliferation of epithelial cells and lengthened crypts in the colon and was 

associated with increased transcriptional activity of β-catenin.  Crypt extension was 

particularly striking when Dkk1 was inhibited during acute colitis.  This suggests that 

depletion of Dkk1 induces a strong proliferative response that promotes wound repair after 

colitis.  Pinto et al. (3) find that transgenic expression of the Wnt inhibitor Dkk1 results in 

greatly reduced epithelial proliferation and absence of secretory cell lineages.  Disrupted 

intestinal homeostasis was reflected by an absence of nuclear β-catenin, inhibition of c-

Myc expression, and subsequent up-regulation of p21
CIP1/WAF1

. Adenoviral expression of 

Dkk1 markedly inhibited proliferation in small intestine and colon, accompanied by 

progressive architectural degeneration with the loss of crypts, villi, and glandular structure 

(2). 

As well as Wnt ligands, The Wnt signalling pathway can also be activated by the R-

Spondin family of secreted ligands.  Nam et al. (151) demonstrated that R-Spondins are 

novel ligands for the Frizzled 8 and LRP6 receptors. To gain insight into their biological 

functions, the RNA expression pattern of the mouse R-Spondin family genes was analyzed 

during mouse development and showed that R-Spondin gene transcripts were widely 

expressed with distinct patterns in mouse at different developmental stages.  Lau et al. (5) 

found that R-Spondins are also the ligands for the Lgr5 receptor as well as its homologues 

Lgr4 and Lgr6.  Each of the four R-Spondins can bind to Lgr4, Lgr5 and Lgr6.  The 



48 
 

removal of Lgr4 did not affect Wnt3a signalling, but abrogated the R-Spondin 1 mediated 

signal enhancement which can be rescued by the re-expression of Lgr4, Lgr5 or Lgr6.  No 

rescue was seen with Lgr1, Lgr7 and Lgr8.   It also reduced the proliferation in intestinal 

crypts and led to crypts being disconnected from the epithelium.  The combined loss of 

Lgr4 and Lgr5 aggravated this phenotype, severely disrupting crypts and halting villus 

repopulation, leading to the eventual death of the mouse (152).  Carmon et al. (6) have also 

demonstrated that Lgr4 and Lgr5 bind the R-Spondins with high affinity and mediate the 

potentiation of Wnt signalling by enhancing Wnt-induced LRP6 phosphorylation (Fig 

1.17). This could be through the R-Spondin-Lgr complex enhancing the internalisation of 

the frizzled-Wnt-LRP6 signalosome into multivesicular endosomes, leading to enhanced 

LRP6 phosphorylation. 

 

Figure 1.17  R-Spondin-LGR interaction at the cell surface.  LGR homologues interact 

with Frizzled/LRP5/6 receptors and bind with R-Spondins to enhance Wnt signalling.  

Figure from (152). 
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Non Canonical Wnt signalling 

Non canonical Wnt signalling is involved in cell movement and tissue polarity which 

overlaps with the planar cell polarity pathway described in Drosophila.  Non canonical 

Wnt signals are transduced through the Frizzled family receptors but do not involve -

catenin, LRP or TCF molecules (153) (Fig 1.18).  Instead it leads to the activation of the 

small GTPases RHOA (RAS homologue gene-family member A) and RAC1, which 

activate the stress kinase JNK (Jun N-terminal kinase) and ROCK (RHO-associated coiled-

coil-containing protein kinase 1) and leads to remodelling of the cytoskeleton and changes 

in cell adhesion and motility. Canonical β-catenin signalling can be also be inhibited by the 

planar cell polarity pathway.  Wnt-Ca
2+

 signalling is mediated through G proteins and 

phospholipases which leads to transient increases in cytoplasmic free calcium that 

subsequently activate the kinases PKC (protein kinase C) and CAMKII (calcium 

calmodulin mediated kinase II) and the phosphatase calcineurin. The activation of PLC 

(phospholipase C) by Dishevelled leads to the cleavage of PtdIns(4,5)P2 

(phosphatidylinositol-4,5-bisphosphate) into InsP3 (inositol trisphosphate) and DAG 

(diacylglycerol). DAG, together with calcium, activates PKC, whereas InsP3 binding to 

receptors on the membranes of intracellular calcium stores leads to a transient increase in 

cytoplasmic free calcium, often also triggering an increase from extracellular stores   (154). 

Wnt5a is one of the most investigated non-canonical Wnt ligands and its role in cancer 

development is emerging.  It is found to be down-regulated in colorectal cancer, 

neuroblastoma, breast cancer and leukaemia.  Since Wnt5a can inhibit the effects of 

canonical Wnt signalling, its down-regulation would be an advantage to cancers driven by 

canonical Wnt signalling.  However, Wnt5a over-expression has also been identified in 

other cancers such as gastric, pancreatic and prostate suggesting that its role depends on 

the stage of cancer progression and type of cancer (155). 
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Figure 1.18 Non-canonical Wnt signalling pathways.  A) Non canonical Wnt signals are 

transduced through the Frizzled family receptors which lead to the activation of RHOA 

and RAC1 which activate the stress kinase JNK and ROCK and leads to remodelling of the 

cytoskeleton and changes in cell adhesion and motility.  B) Ca
2+

 signalling is mediated 

through G proteins and phospholipases and leads to transient increases in cytoplasmic 

free calcium that subsequently activate the PKC and CAMKII and calcineurin.   Activation 

of PLC by DVL leads to the cleavage of PtdIns(4,5)P2 into InsP3 and DAG.  InsP3 binding 

to receptors on the membranes of intracellular calcium stores leads to a transient increase 

in cytoplasmic free calcium which often also triggers an increase from extracellular stores.  

Figure from (154). 

 

1.3.2  Wnt signalling and cancer 

About 90% of all colorectal cancers will have an activating mutation of the canonical Wnt 

signalling pathway, ultimately leading to the stabilisation and accumulation of β-catenin in 

the nucleus of the cell.  These mutations lead to early premalignant lesions in the intestine, 
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such as aberrant crypt foci and small polyps (122).  Mutations of APC were first identified 

in patients with familial adenomatous polyposis (FAP).  These patients develop hundreds 

of polyps in the colon after inactivation of the remaining wild-type allele.  Although FAP 

is quite rare, mutations of APC account for up to 85% of all sporadic colorectal cancers.  

Mutations in the gene encoding β-catenin (CTNNB1) mostly account for the remaining 

10% of colorectal cancers.  The majority of these mutations are due to insertions, deletions 

and nonsense mutations that lead to frameshifts and/or premature stop codons in the 

resulting transcript of the gene (122).  Hypermethylation of the wild-type APC allele is 

also found in some sporadic colorectal cancers which may be an alternative mechanism for 

APC gene inactivation (126).  The secreted Wnt signalling antagonist WIF1 has also been 

shown to be silenced by promoter hypermethylation and the down-regulation of WIF1 

expression is an early event in colorectal cancers (148).  Mutations in other Wnt signalling 

components are uncommon, although mutations in axin/ conductin have been found in 

DNA-mismatch-repair deficient colon tumours with intact APC.  The loss of axin/ 

conductin results in the nuclear accumulation of β-catenin and formation of β-catenin-TCF 

complexes (156).  The TCF4 gene contains an oligonucleotide repeat tract in the 3’ region 

of the gene that frequently undergoes slippage in microsatellite-unstable colorectal cancers.  

This change possibly creates a truncated, more active form of the transcription factor 

(157). 

Several mouse models have been generated to study the role of Wnt signalling in intestinal 

cancer development.  In most of these models, tumourigenesis occurs mostly in the small 

intestine, whereas in humans, cancers develop mostly in the colon.  The mouse model for 

FAP carrying a nonsense mutation at codon 850 and stably expressing truncated APC was 

produced by chemical mutagenesis.  Mice heterozygous for this mutation developed 

multiple intestinal neoplasis (Min) and rarely live longer than 3 months (158).  Mice 

homozygous for this mutation died in utero, 8 days postcoitus (159).  Oshima et al. (160) 

used homologous recombination to generate mice expressing APC truncated at residue 
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716.  Like the Min mice, the APC
Δ716

 heterozygotes developed numerous adenomas 

throughout the intestinal tract and genotyping the tumours revealed that all had lost their 

wild-type APC allele.  Shibata et al. (161) created a conditional APC model in which APC 

exon 14 is deleted upon Cre recombinase expression in the colon, resulting in APC 

truncated at codon 580.  These mice developed adenomas within 4 weeks, implying that 

inactivation of APC is sufficient to drive polyp formation (122).  Transgenic mouse models 

inducibly expressing constitutively active β-catenin suffer intestinal tumours similar to the 

Min mice (162).  β-catenin knock-out mice also suffer severe gastrulation defects and die 7 

days postcoitus (163).  Angus-Hill et al. (164) show that TCF4 haploinsufficiency results 

in colon tumour formation in a mouse tumour model that normally only develops small 

intestinal tumours.   Loss of TCF4 early in development and in adult colon also results in 

increased cell proliferation and leads to colon tumourigenesis. 
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1.4 BMP Signalling Pathway 

1.4.1  Role in tissue renewal 

Besides regulating bone and cartilage formation, bone morphogenic proteins (BMPs) are 

also involved in the development, morphogenesis, cell proliferation and apoptosis of a 

variety of tissues and cells.  Dysregulation of BMP signalling has been linked to prostate 

cancer, breast cancer and colorectal cancer.  BMPs are part of the transforming growth 

factor β (TGFβ) superfamily of morphogenic proteins.  Members of this family bind to a 

complex of transmembrane serine threonine kinase receptors type I and II, triggering the 

phosphorylation and activating of the type I receptor by the type II receptor kinase.  

Activation of this pathway by BMPs leads to the inhibition of intestinal stem cell 

activation and promotion of intestinal differentiation.  A study by Kosinki et al. (74) has 

characterised the gene expression profiles of the human colon by comparing the gene 

expression pattern between the top and basal crypt compartments (Fig 1.19).  They found 

differential expression of multiple BMP components along the colon crypt axis.  BMP1, 

BMP2, BMP5, BMP7, SMAD7 and BMPRII were highly expressed in colon tops, whereas 

the BMP antagonists CHRDL1 (chordin-like 1), GREM1 (gremlin 1) and GREM2 (gremlin 

2) were expressed in basal colon crypts.  This would suggest that BMP signalling is 

activated in the upper crypt and its inhibitors CHRDL1, GREM1 and GREM2 are located at 

the bottom to antagonise BMP signalling in the intestinal epithelial stem cell niche.  They 

also demonstrate that CHRDL1, GREM1 and GREM2 likely originate from 

myofibroblasts and smooth muscle cells, which are both located at the crypt base close to 

the stem cell niche.  Therefore by inhibiting BMP signalling at the crypt base, the 

antagonists maintain Wnt signalling and inhibit differentiation.   
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Figure 1.19 Gene expression profile along the crypt axis showing Wnt signalling 

components at the base of the crypt and BMP signalling components at the top of the 

crypt.  Figure from (74). 

He et al. (8) also investigated the role of BMP signalling in regulating intestinal 

development and determined the expression patterns of BMP4, its antagonist Noggin, 

BMPRIA and phosphorylated SMAD 1,5,8 (pSMAD 1,5,8).  They found that BMP4 was 

expressed in the intravillus and intercrypt mesenchymal cells, including those adjacent to 

intestinal stem cells.  BMPRIA had a gradient distribution in epithelial cells along the 

crypt-villus axis and was highly expressed in intestinal stem cells but not in the cells in the 

proliferation zone.  Noggin was expressed in the submucosal region adjacent to the crypt 

base and in only some cells in the intestinal stem cell position or the surrounding cells.  

pSMAD 1,5,8, the sign of active BMP signalling was found in both villi and intestinal 

stem cells.  However, the transient expression of Noggin is required to override the BMP 

signal and the release β-catenin inhibition by PTEN to activate stem cells.  This balancing 

role between BMP and Wnt signalling inhibits aberrant proliferation of stem cells, thereby 

preventing crypt fission and increase in crypt number.  Lombardo et al. (165) also found 



55 
 

that in colorectal cancer colonic crypts, BMP4 was expressed along the whole crypt axis 

apart from a few cells at the very base of the colonic crypt where stem cells are located.  

This was confirmed by the lack of BMP4 in CD133
+
 cell populations, whereas it was 

expressed in the CD133
-
 cell populations suggesting functional divergence between the 

cancer stem cells (CD133
+
) and the differentiated CD133

-
 cells.  They also found the 

receptors BMPRIA, BMPRIB and BMPRII in these stem cell fractions and that exogenous 

activation of BMP signalling with BMP4 led to a rapid and massive differentiation of the 

cancer stem cells.  BMP treatment also increased PTEN levels and consequently inhibited 

the PI3K/AKT pathway in the cancer stem cells which inhibits the release of β-catenin that 

would otherwise activate stem cell self-renewal.   

Farrall et al. (166) generated spheroids from APC
min

 mice which upon activation of β-

catenin by loss of APC or transgenic induction of mutant β-catenin initiated the conversion 

of untrasformed intestinal cells to tumour cells.  They found that the spheroid cells 

produced Wnt and Notch ligands as well as BMP4 which was also found in adenomas.  

High BMP4 expression and pSMAD1,5,8 activity overlapped with high β-catenin levels in 

the adenoma but there was relatively low expression of the stem cell marker CD133.    

Spheroids were cultured in noggin to inhibit differentiation, and when this is removed the 

levels of pSMAD1,5,8 were increased, suggesting autocrine BMP signalling.  Addition of 

recombinant BMP4 led to the spheroids displaying a “dimpling” on their surface and 

attenuated growth rates.  Cells from rBMP4 pre-treated spheroids had also lost their ability 

to self-renew in clonoginecity assays demonstrating that BMP signals modulate the CSC-

like/progenitor characteristics of spheroid cells and beyond a threshold, induce irreversible 

differentiation. 

BMP signals are mediated by type I and type II serine/threonine kinase receptors, see Fig 

1.20.  There are two subclasses of type I receptors, BMPRIA and BMPRIB.  Upon ligand 

binding, the type II receptor forms a heterodimer with the type I receptor that results in the 

phosphorylation of downstream SMAD proteins.  pSMAD1,5,8 associates with SMAD4 
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and the heterodimeric complex  translocates to the nucleus to activate or inhibit 

transcription (167).  BMPs can also bind to activin type II (ACVR2) and type IIB 

(ACVR2B) receptors.  BMP7 preferentially binds to ACVRII and ACVRI but also has 

affinity for BMPRII, BMPRIA, and BMPRIB, whereas BMP2 and BMP4 appear to bind to 

BMPRIA and BMPRII preferentially (168).  In the nucleus, the SMAD1,5,8/SMAD4 

complex can bind to DNA sequences directly or interact with transcription factors such as 

Runx-2, Menin, Yin Yang 1 (YY1) or Hoxc8 (169).  SMAD transcriptional activity can be 

also regulated by the association with transcriptional co-activators/repressors such as 

p300/CREB binding protein (CBP) and the histone acetyltransferase GCN5 or the homolog 

of the transforming protein of the avian Sloan-Kettering retrovirus (c-Ski) and the Ski-

related novel protein (SnoN) (169), (167).   

  

Figure 1.20 The BMP signalling pathway.  BMP ligands bind to the BMP receptors 

BMPRI and BMPRII leading to BMPRII phosphorylating and activating BMPRI.  

Phosphorylated BMPRI subsequently phosphorylates SMAD1,5,8 which associates with 

SMAD4, enters the nucleus and activates gene expression.  The BMP signal can be 

blocked by extracellular antagonists such as noggin, which bind BMP ligands and prevent 

their association with the BMP receptors.  Figure from (170). 
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BMP activity is controlled by intracellular and extracellular factors that modulate BMP 

action.  BMP effects can be regulated by inhibition of BMP-BMP receptor interaction by 

extracellular BMP binding proteins, presence of dominant negative non-signalling 

membrane pseudoreceptors, blocking of BMP signalling by inhibitory SMADs, blocking 

of BMP signalling by intracellular SMAD binding proteins and ubiquitination and 

proteosomal degradation of BMP signalling effectors (167).  The protein sequence of BMP 

antagonists is characterised by conserved cysteine-rich domains that form cysteine knot 

structures.  Knots are functional motifs that determine the folding of the peptide and 

exposure of specific hydrophobic residues, facilitating diverse protein-protein interactions 

(167). There are three main BMP antagonists, Noggin, Gremlin and Chordin that maintain 

Wnt signalling and inhibit differentiation at the crypt base. 

Noggin, encoded by the NOG gene, is secreted as a glycosylated protein, covalently linked 

homodimer of 64 kilodaltons (kDa).  The primary structure of noggin consists of an acidic 

aminoterminal region and a CR carboxyterminal region containing a cystine knot.  A 

central, highly basic heparin-binding segment retains noggin at the cell surface.  Noggin 

binds with various degrees of affinity to BMP2, 4, 5, 6, 7, GDF5, 6 and vegetally localised 

protein 1 (Vg 1), but not other members of the TGFβ family of peptides (167).  By 

diffusing through extracellular matrices more efficiently than members of the TGFβ 

superfamily, noggin has a principal role in creating morphogenic gradients by inhibiting 

the BMP signalling pathway (171). 

Gremlin, also known as Drm, is part of the Dan (Differential screening-selected gene 

aberrative in Neuroblastoma) family and is a cysteine knot-secreted protein.  The gremlin 

gene was first cloned from a Xenopus ovarian library for its axial patterning activities and 

encodes for a glycosylated homodimeric peptide of 20.7-kDa.  Gremlin binds BMP2, 4, 

and 7 with high affinity, but does not interact with other members of the TGFβ superfamily 

(172).   

http://en.wikipedia.org/wiki/Morphogenesis
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Chordin was initially identified in the Spemann Organizer for its ability to antagonise BMP 

signalling and is the Xenopus homologue for Short Gastrulation (Sog) in Drosophila.  It is 

secreted as a glycosylated homodimer of 120kDa and is characterised by four CR domains 

which are the sites of interaction with BMPs.  Chordin binds specifically to BMP 2, 4, and 

7 and does not bind other members of the TGFβ superfamily.  Chordin is regulated by 

interaction with other secreted proteins of the extracellular matrix.  The chordin-BMP 

complex is a substrate for the zinc metalloprotease BMP1/tolloid which cleaves chordin, 

inactivating its biological activity thus releasing BMPs into the extracellular space (167) 

(173). 

BMP signalling is also regulated by inhibitory SMAD 6 and 7 (i-SMADs) which bind to 

type I BMP receptors, thereby interfering with SMAD 1,5,8 phosphorylation and 

heterodimerisation with SMAD4.  SMAD6 can inhibit BMP effects by modifying the 

interaction of SMAD1,5,8 with co-repressors.  SMAD1 induces transcription by dislodging 

transcriptional repressors such as Hoxc8, and SMAD 6 prevents this dislodging from DNA 

binding sites by binding itself to Hoxc8 so that the repression persists (174).  The 

pseudorecetor BMP and activin bound protein (BAMBI) is a transmembrane glycoprotein 

with an extracellular domain similar to that of type I TGFβ and BMP receptors.  BAMBI 

associates to type IA and IB BMP receptors and inhibits the effects of the activated 

receptors without direct interaction with either TGFβ or BMP (167). 

BMP signalling can also be regulated by intracellular binding proteins through the low 

affinity binding to the GCCG, CAGA or GC rich DNA sequence motifs in the promoter 

regions of BMP responsive genes and through interaction with transcription factors or 

transcriptional co-activators/repressors such as p300/CBP, c-Ski, SnoN and Tob.  Ski, a 

nuclear oncoprotein homologous to the transforming protein v-Ski of the avian Sloan-

kettering retrovirus, interacts with the TGFβ specific SMAD2,3 and with SMAD4, thereby 

interfering with the formation of functional SMAD complexes (175).  The transducer of 

Erb B-2 (Tob) gene is a member of the PC3/BTG/Tob family of genes which are involved 
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in cell replication and differentiation.  Tob decreases BMP signalling by binding 

SMAD1,5,8 and by interacting with BMP type I receptors (167). 

Finally, BMP signalling is also regulated by the ubiquitin-mediated proteosomal system 

which is important in cell cycle progression, gene transcription and signal transduction.  

The formation of ubiquitin-protein complexes requires three enzymes that are involved in a 

cascade of ubiquitin transfer reactions: ubiquitin-activating enzyme (E1), ubiquiting-

conjugating enzyme (E2) and ubiquiting ligases (E3).  The specificity of protein 

ubiquitination is determined by E3 which defines the substrate specificity and subsequent 

protein degradation by the 26S proteosome.  SMAD-ubiquitination regulatory factor 

(Smurf) 1 and 2 are SMAD specific E3 ubiquitin ligases which interact with SMAD 1, 5, 

6, and 7.  Smurf1 binds to ubiquitin through a conserved cysteine located at the carboxy 

terminus of the molecule and binds to SMADs through a WW domain.  Smurf1 is located 

in the nucleus and is exported to the cell membrane and cytoplasm where it induces the 

proteosomal degradation of type I TGFβ, BMP receptors and SMAD 1 and 5.  Smurf1 also 

enhances the interaction of i-SMADs with type I receptors to amplify the repression of 

BMP signalling (167) (176). 

 

1.4.2  BMP signalling and cancer 

Patients with juvenile polyposis, a rare autosomal dominant hamartomatous polyposis 

syndrome have an increased risk for the development of colorectal cancer. The polyps are 

mostly found in the colorectum and sometimes in the proximal gastrointestinal tract.  It 

was found in patients with this syndrome that there were mutations in BMPRI and 

SMAD4, accounting for approximately half of all juvenile polyposis cases, which 

suggested a role for the BMP pathway in the initiation of colorectal neoplasia.   Kodach et 

al. (177) have shown that there was reduced expression of BMPRs and SMAD 4 in 

colorectal cancers but not adenomas and that the expression of pSMAD1,5,8 was 
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inactivated in 80% of colorectal cancers but was active in the adenomas. Selective loss of 

pSMAD1,5,8 in areas of high-grade dysplasia/carcinoma within adenomas indicates that 

loss of BMP signalling is associated with the progression of adenomas to carcinomas.   

Inhibition of BMP signalling in mice via transgenic expression of noggin in the intestinal 

epithelium leads to formation of ectopic crypts and a phenotype similar to human juvenile 

polyposis in both small intestine and the colon (7).  Conditional inactivation of BMPRIA 

in mice also disturbs the homeostasis of intestinal epithelial regeneration with an 

expansion of the stem and progenitor cell populations, eventually leading to intestinal 

polyposis similar to human juvenile polyposis (8).  Beppu et al. (178) have shown that 

inactivation of BMPRII in the stromal cells of the colonic mucosa leads to overgrowth of 

the epithelium and the development of hamartomatous polyps. Although epithelial 

hyperplasia was observed along the entire colorectum, polyp formation was limited to a 

small portion of the epithelial surface, which suggests that the stromal BMPRII mutation 

alone may not be sufficient to initiate polyposis.  It is possible that secretion of growth 

factors such as hepatocyte growth factor (HGF) and transforming growth factor β1 

(TGFβ1) may act on the epithelial cells to lead to epithelial hyperplasia or BMPRII 

deletion may act indirectly by increasing myofibroblast proliferation, which in turn 

promotes epithelial cell proliferation. 

The role of the BMP pathway in sporadic colorectal cancers has been difficult to identify 

due to the usual screening methods such as loss of heterozygosity, point mutations and 

promoter methylation not identifying any specific members of the BMP pathway that may 

be involved.  Although SMAD4 was frequently deleted in colorectal cancers, it has been 

attributed to the loss of TGFβ signalling rather than BMP signalling (170).  Recently, a 

number of studies have tried to investigate a possible role for the BMP pathway in sporadic 

colorectal cancer.  Hardwick et al. (179) found that BMP2 inhibits colonic epithelial cell 

growth in vitro, promoting apoptosis and differentiation and inhibiting proliferation and 

that BMP2 expression is lost in the microadenomas of familial adenomatous polyposis 
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patients suggesting that BMP2 acts as a tumour suppressor.  Loh et al. (180) have found 

BMP3 to be growth suppressive and its expression is frequently lost through promoter 

methylation, again suggesting a tumour suppressor role for BMPs in colorectal cancers. 

However, BMP4 expression has been shown to be up-regulated in the transition from 

primary colorectal adenomas to adenocarcinomas (181).  Deng et al. (181) demonstrated 

that overexpression of BMP4 can protect colon cancer cells from apoptotic death under 

stress environment and drive these cancer cells to a more migratory and invasive 

phenotype through induction of uPA activity.  This suggests that BMP4 promotes invasive 

behaviour of colon cancer cells.  BMP7 has also been found to increase with progression 

through the adeno-carcinoma sequence and to correlate with worse prognosis (182).  By 

examining pSMAD1,5,8 expression levels,  Kodach et al. (177) found that loss of BMP 

signalling occurs during the transition from late adenoma to early carcinoma suggesting 

that BMP signalling is involved in tumour progression rather than as an initiator of 

carcinogenesis. 
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1.5  TGFβ/Activin Signalling Pathway 

1.5.1 Role in tissue renewal 

TGFβ (Transforming growth factor β) signalling is involved in a variety of biological 

functions, including cell growth, cell differentiation and apoptosis.  TGFβ promotes 

growth and development during early embryogenesis and in some adult mesenchymal 

cells, whilst in mature tissues, cells respond with cytostasis and apoptosis (109).  There are 

5 isoforms of TGFβ (TGFβ1-5) which belong to a large superfamily that includes activins, 

inhibins, BMPs and myostatin.  Each of the TGFβ ligands is encoded by different genes 

which act through the same receptor signalling cascade.  The TGFβ ligands are stored in 

the extracellular matrix, attached to latent TGFβ binding proteins (LTPBs).  This prevents 

the binding of the molecule to its receptor (183).  TGFβ ligands bind to type II receptor 

TGFβRII which in turn attracts and activates type I receptor TGFβRI by phosphorylation.  

SMAD2 and SMAD3 are then phosphorylated at the carboxyl-terminal serines by the 

activated TGFβRI receptor and form heteromeric complexes with SMAD4.  The 

SMAD2/3/4 complex translocates to the nucleus and binds to specific regulatory sites on 

target genes (Fig 1.21).  SMAD4 can only translocate to the nucleus when it is in a 

complex with R-SMADs, whereas SMAD2 and SMAD3 can translocate in a SMAD4 

independent manner.  The activity of the SMADs is modulated by inhibitory SMAD6 and 

SMAD7 as well as adaptors such as SARA (SMAD-anchor for receptor activation) for 

SMAD2 and ELF for SMAD3 and SMAD4.  Once in the nucleus, the SMAD2/3/4 

complex induces target genes involved in tumour promotion and tumour suppression as 

well as a cyclin-dependent kinase (CDK) inhibitor p21 which leads to cell cycle arrest. 

(183).  P21 is the product of waf/cip1 gene which is an inhibitor of CDK as well as 

inhibitor of propagation of cell cycle at G1 and G2 activated upon DNA damage.  P21 

interacts with complexes of CDK2 and cyclin E and inhibiting CDK2 activity, thus 

preventing progression of the cell cycle (184).   
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TGFβ also activates non SMAD pathways that include three distinct MAP kinase 

pathways: Erk, c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways.  JNK and 

p38 MAP kinase phosphorylate c-Jun and ATF-2 respectively.  C-Jun is a component of 

the AP-1 transcription factor, whereas ATF-2 acts as a homodimer and heterodimer with c-

Jun.  SMAD3 interacts with phosphorylated c-Jun and ATF-2.  SMAD3 and SMAD4 then 

act together with c-Jun and ATF-2 in transcriptional activation of target genes (185) (186) 

(187). 

 

Figure 1.21 TGFβ and activin signalling pathways.  TGFβ ligand binds to type II 

receptor TGFβRII which associates with type I receptor TGFβRI and causes its 

phosphorylation and activation.  This in turn recruits SMAD2 and SMAD3 which complex 

with SMAD4 and translocate to the nucleus.  In a similar fashion, activin ligands bind to 

type II receptor ACTRII which associates with type I receptor ACTRI.  This binding causes 

its phosphorylation and recruitment of SMAD2 and SMAD3 which in turn complex with 

SMAD4 and translocate to the nucleus.  Figure from (188) 

As well as the TGFβ ligands, the 3 activin ligands activin A, activin B and activin AB are 

also part of the TGFβ superfamily.  Like TGFβ ligands, activins bind to a type II receptor 
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ACTRIIA or ACTRIIB which subsequently associates with the type I receptor ACTRIB 

(Fig 1.21).  This association causes the phosphorylation of the type I receptor which in turn 

recruits the regulatory SMAD2 and SMAD3.  SMAD4 then complexes with SMAD2/3 and 

translocates to the nucleus. 

TGFβ signalling is regulated by inhibitory SMADs (i-SMADs) which interact with type I 

receptors that have been activated by the type II receptors causing the dissociation of the 

R-SMADs 2 and 3.  I-SMAD expression is upregulated by TGFβ and activins and a potent 

inhibitor of both TGFβ and activin signalling is SMAD7.  The expression of SMAD7 is 

induced by direct effects of the SMAD3 and SMAD4 on the SMAD7 promoter (189). 

Several transcriptional co-repressors interact with SMADs to modulate TGFβ signalling.  

TGIF, a homeodomain of the TALE class was the first transcriptional co-repressor shown 

to interact with SMADs (190).  C-Ski and its related protein SnoN (Ski-related novel gene) 

are also SMAD-binding transcriptional co-repressors with c-Ski binding to SMAD2, 

SMAD3 and SMAD4 (175).  TGIF and c-Ski compete with P300/CBP for interaction with 

TGFβ-specific R-SMADs and they repress the transcription of target genes induced by 

TGFβ.  Both TGIF and c-Ski recruit histone deacetylates (HDACs) to SMAD complexes 

which lead to the transcriptional repression of target genes (185).  SnoN is a more effective 

repressor of transcription induced by SMAD2 than of that induced by SMAD3.  In the 

absence of ligand stimulation, SnoN represses the spontaneous activation of TGFβ-

responsive genes.  Upon TGFβ stimulation and nuclear accumulation of SMAD3, SnoN is 

rapidly degraded by cellular proteasomes.  After a while, TGFβ signalling induces SnoN 

expression, which terminates TGFβ signalling through negative feedback regulation (185) 

(191). 

The linear migration, differentiation and compartmentalisation along the crypt-villus axis 

is controlled by several gradients including Wnt and TGFβ.   TGFβRII receptors have been 

shown to be localised in both the differentiated cells of crypt villi as well as the 
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undifferentiated crypt cells at the base of the crypts (192) (193) and SMAD4 and ELF 

expression is observed at both the top and base of the crypts (194).  The presence of TGFβ 

signalling and the absence of Wnt signalling in the villus compartment results in rapid cell 

cycle arrest and differentiation.  Therefore, SMAD4 and TCF4 constitute a dominant 

switch between the proliferative progenitor and differentiated epithelial cell (109).  In 

colorectal cancers this switch is permanently reversed with TGFβ signalling being 

inactivated and TCF4 is constitutively activated by mutations in the Wnt cascade.  

Letamendia et al. (195) show that there is interaction and crosstalk between the TGFβ and 

Wnt signalling pathways.  They show that SMADs physically interact with LEF1/TCF 

transcription factors and that TGFβ-dependant activation of LEF1/TCF target genes can 

occur independently of β-catenin.  Furuhashi et al. (196) have also shown that axin has a 

role in SMAD3 mediated signalling by associating with SMAD3 in the cytoplasm and 

facilitating phosphorylation by TGFβRI/II, then dissociating when p-SMAD3 associates 

with SMAD4.  Furukawa et al. (197) have found that SMAD3
-/-

 mice had an increased 

number of proliferating cells with activation of the Wnt pathway as well as loss of EphB 

receptor expression.  This suggests that SMAD3 in the normal colon negatively regulates 

proliferation and plays a role in determining their location along the crypt axis.  

Satterwhite et al. (198) found that TGFβ rapidly reduced APC protein levels and increased 

β-catenin mRNA and protein levels as well as its nuclear accumulation.  Retrovirus 

mediated overexpression of β-catenin enhanced the ability of TGFβ to induce cell cycle 

arrest.  This demonstrates that TGFβ mimics the effect of Wnt signalling on β-catenin and 

its accumulation along with the reduction of APC have cooperative effects on mechanisms 

that mediate TGFβ-induced cell cycle arrest.  Edlund et al. (199) also show that SMAD7 

interacts with β-catenin and LEF1/TCF in a TGFβ dependent manner.  When endogenous 

SMAD7 was suppressed with siRNA, TGFβ induced increase in activated p38, AKT 

phosphorylated on Ser473, GSK3β phosphorylation on Ser9 was prevented as well as the 

TGFβ-induced association between β-catenin and LEF1/TCF.  Edlund et al. (199) propose 

a mechanism by which TGFβ signalling, dependent on SMAD7, activates p38 MAP 



66 
 

kinase, which in turn activates AKT to inhibit GSK3β, allowing accumulation of β-catenin.  

Β-catenin then builds up in the cytoplasm and translocates to the nucleus where it partners 

with LEF1 and SMAD7 to promote apoptosis (109) (Fig 1.22). 

 

Figure 1.22 TGFβ/SMAD7 signalling pathway.   TGFβ-SMAD7 signalling pathway 

results in the  activation of p38 MAP kinase which in turn activates AKT to inhibit GSK3β, 

thus allowing accumulation of β-catenin.  β-catenin then builds up in the cytoplasm and 

translocates to the nucleus where it partners with LEF1 and SMADs to promote apoptosis.  

Figure from (199). 

The TGFβ signalling pathway has also been shown to play an important part in epithelial 

to mesenchymal transition (EMT).  In this process the cells lose their epithelial 

characteristics including polarity and cell-cell contacts and acquire a migratory behaviour, 

allowing them to move away from their epithelial cell community and integrate into 

surrounding tissue (200).  TGFβ was first shown to induce EMT in immortalized 

mammary epithelial NMuMG cells.
 
 This differentiation from epithelial to fibroblastic 
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phenotype was observed within 16 hours after addition of TGFβ1 and was accompanied by 

a decreased expression of the epithelial markers E-cadherin, ZO-1, and desmoplakin I and 

II, an increased expression of mesenchymal fibronectin markers and by a reorganization of 

actin stress fibers (201). The EMT effect can be fully reversible as removal of TGFβ1 

restored the epithelial phenotype within two days.  The reversibility of the TGFβ-

dependent EMT was also demonstrated in  dedifferentiated mouse colon carcinoma cells 

by the over-expression of a dominant-negative TGFβRII which induced mesenchymal to 

epithelial transition (MET) and inhibited in vitro invasiveness formation along with the 

abolishment of metastasis formation in these cells (202). 

 

1.5.2 TGFβ signalling and cancer 

The TGFβ signalling pathway is a double edged sword, with a role in both tumour 

suppression as well as tumour progression.  TGFβ1 switches from an inhibitor of tumour 

cell growth to a stimulator of growth and invasion during human colon carcinoma 

progression (183).  Schroy et al. (203) show that metastatic colon carcinoma cells respond 

to TGFβ by proliferation, whereas moderate to well-differentiated primary site colon 

carcinomas were growth inhibited by TGFβ.   

Inactivating TGFβRII mutations account for 30% of all colorectal cancers and occur in 

most human colon and gastric carcinomas with microsatellite instability (183).  The 

TGFβRII gene is a tumour suppressor as demonstrated by Wang et al. (204) who show that 

restoration of TGFβRII expression resulted in suppression of tumourigenicity.  MacKay et 

al. (205) show that transfection of colon cancer cells with TGFβRII causes growth 

inhibition and reduction of malignant properties, demonstrating again that the TGFβII gene 

is a tumour suppressor.  Trobridge et al. (206) have demonstrated that a combination of 

inactivation of the TGFβ signalling pathway and expression of oncogenic Kras leads to the 

formation of invasive intestinal neoplasms through a β-catenin independent pathway and 
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that these adenocarcinomas have the capacity to metastasize.   Munos et al. (207) also 

found that the loss of TGFβRII in intestinal epithelial cells promotes the invasion and 

malignant transformation of tumours initiated by APC mutation suggesting that Wnt 

signalling deregulation and TGFβ signalling inactivation cooperate to drive the initiation 

and progression, respectively, of intestinal cancers in vivo. 

Pasche et al. (208) have described aTGFβRI polymorphic allele, TGFβRI(6A) that has a 

deletion of three alanines from a nine-alanine stretch and observed a higher than expected 

number of TGFβRI(6A) homozygotes among tumour and non-tumour DNA from patients 

with a diagnosis of cancer.  They conclude that TGFβRI(6A) acts as a tumour 

susceptibility allele that may contribute to the development of cancer, especially colon 

cancer, by means of reduced TGFβ-mediated growth inhibition. 

SMAD4 and SMAD2 mutations are also involved in development of cancer by disrupting 

the TGFβ signalling pathway.  SMAD4 undergoes biallelic loss in a third of metastatic 

colorectal cancers and SMAD2 is also a target of inactivating mutations in a small 

proportion of colorectal cancers (209) (210).  SMAD4 mutations have also been associated 

with juvenile polyposis syndrome, an autosomal dominant disorder characterised by 

hamartomatous intestinal polyps and an increased risk of gastrointestinal cancers (10).  

Zhang et al. (211) show that in SMAD4 null cell lines, TGFβ induced invasion, migration, 

tumourigenicity and potentiality for metastasis, while incubation with a potent TGFβ-

receptor kinase inhibitor reversed these effects, suggesting that loss of SMAD4 may 

underlie the functional shift of TGFβ from a tumour suppressor to a tumour promoter.  

Yang et al. (212) show that although mice with homozygous loss of SMAD2 and SMAD4 

die in utero, their heterozygous counterparts are viable and Taketo et al. (213) also show 

that SMAD4 heterozygously null mice develop gastric polyps that can develop into 

tumours at a late age.  When mice mutated with one APC allele are crossed with 

heterozygous null SMAD4 mice, the mice develop larger polyps that progress into 

malignant adenocarcinomas with loss of the remaining copies of both APC and SMAD4 
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(214).  Freeman et al. (9) have found that decreased expression of SMAD4 in human colon 

cancer is associated with increased expression of β-catenin mRNA.  There was also 

increased expression of c-Myc and Axin2 mRNA in lesions where SMAD4 expression is 

lost.  In HEK293T cells, there was a significant decrease in β-catenin mRNA levels after 

treatment with BMP2 and an increase in β-catenin mRNA levels after Noggin treatment, 

thus suggesting that SMAD4 restoration/expression enables canonical BMP signalling to 

decrease β-catenin expression and inhibit Wnt signalling. 
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1.6 Notch Signalling Pathway 

1.6.1 Role in tissue renewal 

The Notch signalling pathway, in combination with Wnt signalling is important in 

regulating proliferation as well as lineage specification.  In the intestine, Notch activity 

determines lineage decisions between enterocytes and secretory cell differentiation.  

Inhibition of the Notch pathway results in an increase in goblet cells whereas its activation 

results in goblet cell depletion (11).   

The four different receptors are Notch1, Notch2, Notch3 and Notch 4 with the ligands 

being Jagged1, Jagged3, (Delta-like) Dll1, Dll3 and Dll4.  Schroder et al. (215) determined 

expression of Notch pathway components in mouse intestine and found transcripts of 

Notch receptors 1-3 in both epithelium and mesenchyme whilst Notch 4 was only in the 

mesenchyme.  Low amounts of Dll1 and Dll4 were found in some cells in the epithelium 

and Dll1 was also expressed in the mesenchyme underlying the gut epithelium.  Dll3 and 

Dll4 were restricted to a few cells in the mesenchyme.  Jag-1 and Jag-2 were also 

expressed at low levels in the mesenchyme.  Kosinki et al. (74) also carried gene 

expression patterns of human colon tops and basal crypts and found that the receptors 

Notch 1, Notch 2, Notch 3, RBPSUH and TLE2 were highly expressed at the basal crypt 

and the Notch ligand Jagged 1 was expressed at the top of the crypt. 

The Notch pathway is activated when Notch ligands bind to Notch receptors on an 

adjacent cell which activate two proteolytic events catalysed by a disintegrin and 

metalloprotease (ADAM) and γ-secretase proteases which cleave the transmembrane 

Notch receptor liberating the constitutively active Notch intracellular domain (NICD) (Fig 

1.23).  NICD then translocates to the nucleus, forms a complex with one of three 

transcriptional regulators CSL, MAML-1 or p300/CBP and induces the expression of 

downstream transcriptional factors such as Hes-1 (hairy-enhancer-of-split-1) and MAML-1 
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(Mastermind-like-1) (26).  Hes-1 and MAML-1 in turn activate target gene expression that 

regulate proliferation and differentiation. 

 

Figure 1.23 Notch signalling pathway.  Jagged and Delta ligands bind to Notch receptors 

on the surface of a neighbouring cell which then activates the γ-secretase protein complex 

and releases NICD.  NICD translocates to the nucleus and drives the transcription of 

Notch gene targets aided by mediators such as recombining binding protein suppressor of 

hairless (R) and mastermind-like protein 1 (M).  Figure from (11). 

To determine whether Notch signalling has a direct effect on intestinal development and 

adult intestinal cell turnover, Stanger et al. (87) used a gain-of-function approach to 

activate Notch.  They found that ectopic Notch signalling in adult intestinal progenitor 

cells leads to a bias against secretory fates, whilst ectopic activation of Notch in the 

embryonic foregut results in reversible defects in villus morphogenesis and loss of the 

proliferative progenitor compartment.  Therefore Notch regulates adult intestinal 

development by controlling the balance between secretory and absorptive cell types.  By 

affecting stem or progenitor cells Notch activation may perturb morphogenesis in the 

embryo.  Fre et al. (12) generated transgenic mice that allowed them to assess the 

expression and activity of Notch receptors in intestinal stem cells.  They found that both 

Notch 1 and Notch 2 receptors are specifically expressed in crypt stem cells and that Notch 

signalling is also active in these stem cells and well as in absorptive progenitors.  However 
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cells destined to adopt a secretory fate and in terminally differentiated cells, Notch activity 

was undetectable.  Kwon et al. (216) suggest that Notch and Wnt signalling often intersect 

in stem and progenitor cells and regulate each other transcriptionally.  They show that 

membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in 

stem and colon cancer cells and negatively regulates post-translational accumulation of 

active β-catenin protein.  Notch-dependent regulation of β-catenin protein did not require 

ligand-dependent membrane cleavage of Notch or GSK3β-dependent activity of the β-

catenin destruction complex.  However, it required the endocytic adaptor protein Numb 

and lysosomal activity.  This suggests a function of Notch in negatively titrating active β-

catenin protein levels in stem and progenitor cells.   

 

1.6.2 Notch signalling and cancer 

Aberrantly activated Notch signalling has been observed during the carcinogenesis of 

human cancers such as colon, pancreatic, breast, prostate, liver and lung and over-

expression of Notch signalling is associated with poor prognosis in breast tumours and 

prostate cancers (14).  Precancerous conditions such as Crohn’s and Ulcerative Colitis 

have been found to have up-regulated transcription factors that function downstream of 

Notch signalling, such as KLF4 and Hes-1, which may be responsible for the altered goblet 

cell differentiation and mucin formation in these patients (13) (14).  Rodilla et al. (217) 

identified a group of genes downstream of Wnt/β -catenin that are directly regulated by 

Notch which are repressed by γ-secretase inhibitors and up-regulated by active Notch 1 in 

the absence of beta-catenin signalling. They demonstrate that Notch is downstream of Wnt 

in colorectal cancer cells through β-catenin-mediated transcriptional activation of the 

Notch ligand Jagged 1 and expression of activated Notch 1 partially reverts the effects of 

blocking Wnt/β-catenin pathway in tumours implanted s.c. in nude mice.  Qiou et al. (14) 

found that the Notch ligand Jagged 1 is expressed at a significantly higher level in CRC 

tissues than in their matched normal colonic mucosa. They also observed that higher level 
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of Jagged1, Jagged2, DLL1, DLL3, DLL4, Notch receptors 1–4 and some downstream 

targets of Notch signalling (Hes-1, Deltex and NICD) are present in >75% of CRC tissues 

compared with normal colonic tissues.  Galeb et al. (218) found that the γ-secretase 

inhibitor dibenzazepine reduced the rate of proliferation in colon cancer cells and levels of 

KLF were increased.  Conversely, over-expression of Notch in these colon cancer cells 

reduced KLF4 levels, suppressed KLF4 promoter activity, and increased proliferation rate. 

Treatment of Apc(Min/+) mice with dibenzazepine also resulted in a 50% reduction in the 

number of intestinal adenomas compared with the vehicle-treated group.  This suggests 

that Notch signalling suppresses KLF4 expression in intestinal tumours and colorectal 

cancer cells and inhibition of Notch signalling increases KLF4 expression and goblet cell 

differentiation and reduces proliferation and tumour formation.  
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1.7 Colonic crypt culture models 

During the course of research for this thesis, the first long-term culture system that 

maintained basic intestinal crypt-villus physiology was established by Sato et al. (67).  

Growth requirements of the intestinal epithelium included R-Spondin 1, EGF (Epidermal 

Growth Factor) and Noggin which are associated with crypt proliferation.  Mouse small 

intestinal crypts were isolated and placed into a matrigel-based culture containing the 

growth factors, leading to sealing of the crypts. The lumen then filled with apoptotic cells 

and the crypt region underwent continuous budding events which grew into structures 

termed ‘organoids’.  These organoids cultured for more than 8 months with no loss of 

characteristics and expression analysis revealed they were very similar to freshly isolated 

crypts.  Culturing crypts from Lgr5-EGF-ires-CreERT2 mice revealed that the bases of the 

crypts contained Lgr5
+
 stem cells (Fig 1.24).  These Lgr5-GFP

+ 
cells were sorted, and with 

the addition of the Rho kinase inhibitor Y-27632 to inhibit anoikis, the Lgr5
+
 stem cells 

grew into organoids that were indistinguishable from whole crypt derived organoids.   

  

Figure 1.24 Small intestinal organoid culture.  Sorted Lgr5-GFP
+
 stem cells (green) were 

cultured in media containing R-Spondin 1, EGF, Noggin and Y-27632.  These single cells 

grew into organoids that could be passaged and replated to form new organoids.  Figure 

from (67). 

Using the same culture conditions, Gracz et al. (71) found that isolated cells from a 

Sox
EGFP 

mouse sorted for Sox
EGFPlo

 cells grew into organoids over a period of one week 
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without a mesenchymal niche.  These organoids contained all the differentiated small 

intestine cell types, expanded in culture and could be passaged numerous times. 

These organoid cultures were formed in vitro without the need of mesenchymal niche, but 

substitution of growth factors normally secreted by the niche was required.  Ootani et al. 

(219) developed a long term small and large intestinal epithelial culture system that still 

contained the mesenchymal niche.  Using neonatal mouse tissue that was minced into 

small pieces, Ootani et al. embedded the tissue in a 3D collagen gel and cultured with 

mouse R-Spondin 1.  The tissue cultures grew into spheres that lasted for more than 350 

days in vitro and consisted of a polarised epithelial monolayer that was in close proximity 

with myofibroblasts and collagen matrix (Fig 1.25).  Tissue fragments that did not have 

close proximity with myofibroblasts did not form spheres and eventually died, 

demonstrating their essential need in maintaining cells in the stem cell niche. 

 

Figure 1.25 Intestinal epithelial culture within a Wnt-dependent stem cell niche.  

Growth of myofibroblasts is essential for growth of spheres (white arrows).  Tissue 

fragments without myofibroblasts in close proximity do no form spheres and eventually die 

(black arrows).  Figure from (219). 

Most recently, Sato et al. (20) expanded on their small intestinal organoid culture and 

adapted the growth conditions for both mouse and human colonic organoid culture.  They 

found that with mouse colon, the EGF, Noggin and R-Spondin 1 growth factors were not 

enough to maintain organoids longer term.  Unlike small intestinal crypts, colonic crypts 

do not contain Paneth cells that have been shown to produce Wnt ligands which are 

essential for maintenance of stem cells (34).  In the colonic organoid culture, it was found 
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that addition of recombinant Wnt3a was required to overcome this lack of Wnt ligand 

insufficiency.  Removal at a later stage of Wnt3a caused differentiation of all epithelial 

lineages.  This new culture condition was applied to human isolated colonic crypts and 

although initially survived, most disintergrated within 7 days.  Sato et al. (20) found that 

addition of gastrin, nicotinamide, A83 (Alk4/5/7 inhibitor) and SB202190 (p38 inhibitor) 

significantly improved plating efficiency and longevity of organoids (Fig 1.26).  Addition 

of these factors maintained the organoid cells in an undifferentiated state which only with 

their removal could cells differentiate to goblet, enteroendocrine and enterocytes fates.  

Sato et al. (20) also cultured human colorectal cancer samples and found that since the 

Wnt pathway is constitutively active in colorectal cancers, no Wnt, R-Spondin 1 or Noggin 

was required in colon cancer organoids.   

 

Fig 1.26 Human colonic organoid culture.  Addition of Wnt3a, gastrin, nicotinamide, A83 

and SB202190 improved organoid plating efficiency and longevity.  Figure from (20). 

Jung et al. (220) also modified the original small intestinal organoid culture and adapted it 

for human colonic organoid culture.  Like Sato et al., Jung et al. confirmed the requirement 

of Wnt3a, R-Spondin 1, EGF, Noggin, gastrin, nicotinamide, SB202190 and also the need 

for Prostaglandin E2 (PGE2).  Under their conditions though, the isolated crypts did not 

form organoids but spheroids.  Jung et al. (220) also sorted isolated EPHB2
high

 vs 

EPHB2
medium 

and EPHB2
low

 cells to differentiate between stem cells and differentiated cells 

cells in their spheroid culture conditions.  The highest EPHB2 surface levels correspond to 
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colonic epithelial cells with the longest telomeres and elevated expression of intestinal 

stem cell marker genes thus could be used to as a substitute for Lgr5
+
 stem cells.  

EPHB2
high

 cells grew into spheroids after 9-14 days and could be passaged and cultured for 

more than 4 months (Fig 1.27).  Again, this culture condition allows the maintenance of an 

undifferentiated and multipotent intestinal stem cell like phenotype in vitro. 

 

Figure 1.27 Human colonic spheroid culture.  Isolated EPHB2
high

 stem cells grew into 

spheroids which could be passaged and cultured for more than 4 months.  Figure from 

(220). 

These tissue culture conditions that favour activation of the Wnt pathway and inhibition of 

TGFβ/BMP pathways have led to the expansion of mouse and human intestinal organoids 

ex vivo that are composed predominantly of immature stem cells that can be induced to 

differentiate by withdrawl of Wnt stimulation or therapeutic transplantation (68).  

However, the processes and signalling pathways involved in stem-cell driven tissue 

renewal in the human colonic epithelium are yet to be determined and are required to 

understand the risk and pathogenesis of colorectal cancer and inflammatory diseases.   
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1.8 Intestinal Metaplasia: Development of Barrett’s oesophagus culture 

model 

1.8.1 Signalling pathways in Barrett’s oesophagus 

Barrett’s oesophagus is a precursor of oesophageal adenocarcinoma that is identified by 

the presence of columnar epithelium in the lower oesophagus which has replaced the 

normal squamous cell epithelium as a result of metaplasia (Fig 1.28).  The histological 

hallmark of Barrett’s oesophagus is the presence of intestinal goblet cells in the 

oesophagus (20).  It has been suggested that Barrett’s oesophagus arises as an adaptation to 

the harsh intra-oesophageal environment of chronic gastroesophageal reflux disease and 

acquires functions that participate in mucosal defence  such as secretion of bicarbonate and 

mucous, expression of claudin 18 tight junctions, overexpression of defence and repair 

genes and resistance to prolonged and repeated acid exposure (221).   

 

Figure 1.28 Barrett’s oesophagus metaplasia sequence.  Normal squamous epithelium is 

replaced by columnar epithelium as a response to acid and bile acid injury.  This 

metaplasia predisposes the oesophageal tissue to adenocarcinoma though a sequence of 

low-to high grade dysplasia.  Figure from (222). 
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The events in the pathogenesis of Barrett’s metaplasia are not well understood but several 

signalling pathways such as Wnt, BMP and Hedgehog may be involved in the 

development of Barrett’s oesophagus.   Abnormal activation of β-catenin is found to be 

common during neoplastic progression of Barrett’s oesophagus and is associated strongly 

with development of neoplasia (15).  However, mutations in β-catenin, axin and APC are 

rarely detected in Barrett’s oesophagus (223)  (224).  Clement et al. (224) therefore 

investigated wether activation of Wnt and Frizzled proteins and/or silencing of APC and 

down-regulation of Wnt antagonists through promoter methylation is responsible for the 

activation of the Wnt pathway in the development of oesophageal adenocarcinoma in 

Barrett’s oesophagus.  They found that APC and SFRP1 silencing by promoter 

hypermethylation occurred frequently and the Wnt2 gene was up-regulated when low-

grade dysplastic Barrett’s oesophagus progressed to adenocarcinoma.  Moyes et al. (16) 

also wanted to determine whether increased Wnt signalling in the oesophagus contributes 

to the development of Barrett’s oesophagus and dysplasia.  They found that overall Ki67, a 

marker of proliferation, was increased with progression from metaplasia to high grade 

dysplasia and cancer.  β-catenin in normal squamous epithelium was predominantly 

membranous withno definite nuclear accumulation.  In Barrett’s metaplasia, membranous 

localisation of β-catenin was also observed and an increased cytoplasmic β-catenin was 

seen in low grade dysplasia with nuclear accumulation in both low grade and high grade 

dysplasia.  This suggests that Wnt signalling is markedly activated in high grade dysplasia 

compared to earlier stages of disease, metaplasia and low grade dysplasia.  Moyes et al. 

(16) also analysed the expression of the three Wnt target genes cyclin D1, Sox9 and c-

Myc.  There was an increase in all three target gene expressions from normal squamous 

epithelium to Barrett’s metaplasia and high grade dysplasia, suggesting that activated Wnt 

signalling could be a contributing factor to neoplastic progression of Barrett’s oesophagus.  

The expression of c-Myc in patients with Barrett’s oesophagus and adenocarcinoma was 

also analysed by Schmidt et al. (225) who found a linear correlation of c-Myc over-
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expression along the metaplasia-dysplasia-adenocarcinoma sequence and a significant 

increase in expression compared to the control group. 

Recent studies suggest a possible role for BMP signalling and especially increasing BMP4 

expression in the squamous to columnar metaplasia of Barrett’s oesophagus.  Zhou et al. 

(226) show that acid and bile salt increase the expression of BMP4. In addition, 

recombinant human BMP4 induced villin expression in human oesophagus epithelial cells, 

as did chronic acid exposure, which can be effectively inhibited by noggin. BMP4 also 

induced activation of SMAD1 and promoted protein expression of ID2 and CDX2. BMP4 

mRNA and CDX2 mRNA levels were shown by Castillo et al. (227) to be significantly 

greater in non-specialized columnar type of metaplasia (NSCM) than in squamous 

epithelium suggesting that BMP4 activation in NSCM and early expression of CDX2 are 

involved in the columnar epithelial differentiation of Barrett's oesophagus.  Milano et al. 

(17) found that in both human and rat tissue the BMP pathway was activated in 

oesophagitis and Barrett’s oesophagus. Upon incubation of squamous cell cultures with 

BMP4, the cytokeratin expression pattern showed a shift that was consistent with columnar 

epithelium. There was up-regulation of p-SMAD1,5,8 that was effectively blocked by 

noggin. Comparison of the gene expression profiles of squamous cells, BMP4-treated 

squamous cells, and Barrett’s oesophagus cells showed a significant shift in the profile of 

the BMP4-treated squamous cells toward that of the cultured Barrett’s oesophagus cells 

thus suggesting that the BMP pathway could play a role in the transformation of normal 

oesophageal squamous cells into columnar cells.  Wang et al. (18) have also recently 

shown that epithelial Hedgehog ligand expression may contribute to the initiation of 

Barrett’s oesophagus through induction of stromal BMP4 which triggers reprogramming of 

oesophageal epithelium in favour of a columnar phenotype.  They found that SHH (Sonic 

Hedgehog) and IHH (Indian Hedgehog) expression was up-regulated markedly in response 

to acid.  Sox9, which is downstream of the Hedgehog pathway during columnar epithelial 

phase of oesophageal development, was increased in Barrett’s oesophagus tissue compared 
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to squamous tissue.  Knowing that stromal Hedgehog target genes signal back to 

epithelium during gut development, Wang et al. (18) show that BMP4 can induce 

expression of Sox9 in oesophageal epithelial cells.  DMBT1 (Deleted in Malignant Brain 

Tumours 1), the human Hensin homologue expressed in intestinal crypt cells was increased 

in Barrett’s oesophagus and was found to be regulated by Sox9 and induces a columnar-

like phenotype (Fig 1.29). 

 

Figure 1.29 Molecular model of metaplasia proposed by Wang et al.  Acid and bile acids 

injure oesophageal squamous epithelium which secrete SHH and IHH causing 

mesenchymal secretion of BMP4.  BMP4 signals to epithelium activating Sox9 which in 

turn activates a columnar cell transcriptional program including DMBT1.  Figure from 

(18). 

TGFβ signalling also plays a part in Barrett’s oesophagus related adenocarcinoma.  TGFβ1 

overexpression is found to be associated with advanced stage of oesophageal 

adenocarcinoma and has a negative impact on survival (228).  SMAD4 mRNA had been 

found to be progressively reduced in the metaplasia-dysplasia-adenocarcinoma sequence 

along with SMAD4 promoter methylation in majority of Barrett’s adenocarcinomas (229).  

Mendelson et al. (19) also observed loss of SMAD4 and TGFβRII in Barrett’s oesophagus 

and adenocarcinoma tissues. They also demonstrated that Hes-1, a Notch signalling target 

and mediator, is up-regulated in Barrett’s oesophagus related adenocarcinoma.  Sato et al. 
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(20)  have shown that Notch inhibition with a γ-secretase inhibitor converts the 

proliferative Barrett’s epithelial cells into terminally differentiated goblet cells. 

Since Barrett’s oesophagus develops as a result ofchronic gastroesophageal reflux, 

irritation of the squamous epithelium leads to the accumulation of inflammatory cytokines 

in the epithelium.  Some of the cytokines implicated in inflammatory and malignant 

processes are Tumour Necrosis Factor-α (TNF-α) and Interleukin 1-β (IL1-β).  TNF-α has 

been found in malignant and/or stromal cells in colorectal, ovarian, breast, prostate and 

bladder cancers and its production seems to correlate with tumour progression or 

worsening prognosis in prostate and haematogenous malignancies (230).  Tselepis et al. 

(230) have shown elevated levels of TNF-α in Barrett’s metaplastic epithelium compared 

to normal squamous epithelium and that TNF-α expression persisted and intensified during 

the progression of Barrett’s oesophagus to adenocarcinoma.  This increased expression of 

TNF-α along the metaplasia-dysplasia-adenocarcinoma sequence suggests a relatively 

early role for it in the formation of the adenocarcinoma.   They also demonstrated that the 

TNFR1 cytokine receptor was also increased in abundance during the progression of the 

disease, suggesting that the TNF-α signal may be amplified.   TNF-α signalling occurs 

though several intracellular pathways including Nuclear Factor κB (NFκB) activation (Fig 

1.30) and initiation of the Mitogen activated protein kinase (MAPK) cascade that includes 

Extracellular signal regulated kinase (ERK) and p38 activation.  

NFκB is a protein complex that acts as a transcription factor and plays a key role in 

regulating the immune response to infection.  However, dysregulation of NFκB has been 

linked to cancer, inflammatory and autoimmune diseases.  The TNF-α induced NFκB 

activity involves five mammalian NFκB/Rel proteins: c-Rel, NF-κB1 (p50/p105), NFκB2 

(p52/p100), RelA(p50/p65), RelB.  In the absence of TNF-α stimulation, NFκB is 

associated with the inhibitor IκB in the cytoplasm.  TNF-induced activation of NFκB 

largely relies on phosphorylation dependant ubiquitinnylation and degradation of inhibitor 

of κB (IκB) proteins (231).  This occurs primarily via activation of a kinase called the IκB 

http://en.wikipedia.org/wiki/I%CE%BAB_kinase
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kinase (IKK).   IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta 

subunits and a master regulatory protein called NEMO (NFκB essential modulator) or IKK 

gamma. When activated, the IκB kinase phosphorylates two serine residues located in an 

IκB regulatory domain, thus ubiquitinylating the protein leading to its degradation by the 

proteosome (231).  With the degradation of the IκB inhibitor, the free NFκB translocates to 

the nucleus and induces expression of certain genes.  The activation of these genes leads to 

an inflammatory or immune response, cell survival response or cellular proliferation.  

NFκB also turns on the expression of its own repressor IκB.  This newly re-synthesised 

IκB then re-inhibits the NFκB, causing an auto-feedback loop. 

 

 

Figure 1.30 NFκB activation by TNF-α.  NFκB subunits RelA(p50/p65) are sequestered 

in the cytoplasm to the inhibitor molecule IκB.  Upon stimulation with TNF-α, the IκB 

kinase complex of IKK α+β+γ (NEMO) is activated; IκB is phosphoylated, which causes 

its ubiquitinylation and degradation by the proteosome.  This releases NFκB which then 

translocates to the nucleus to initiate transcription of target genes. Figure from (232). 

http://en.wikipedia.org/wiki/IKBKG
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Leedham et al. (233) propose that the cellular origin of Barrett’s metaplasia is that stem 

cells within the submucosal gland ducts regenerate the damaged oesophageal mucosa.  

Leedham et al. (233) investigated whether the oesophageal gland duct was the source of 

both Barrett’s metaplasia and neo-squamous islands by determining tumour suppressor 

gene loss of heterozygosity patterns and p16 and p53 point mutations on a crypt-to-crypt 

basis.  They identified a p16 point mutation arising in the squamous epithelium of the 

oesophageal gland duct which was also present in the adjoining metaplastic crypt.  The 

presence of an identical mutation in the two different epithelium types suggests that the 

origin of the Barrett’s metaplastic tissue is a progenitor located in the oesophageal gland 

duct.  Nicholson et al. (234) used mtDNA mutations as markers of clonal expansion to 

investigate the stem cell architecture of the normal oesophagus and the glands (crypts) in 

Barrett’s metaplasia.  They found CCO-deficient areas in glandular tissue as well as the 

squamous epithelium suggesting that the glandular tissue and squamous epithelium were 

derived from the same precursor cell.  They also show that individual Barrett’s crypts 

contained clonal populations of CCO-deficient cells which contained all the differentiated 

cell lineages indicating that the crypt contained a multipotent stem cell.  They also 

identified partially CCO-deficient crypts indicating the presence of multiple stem cells in 

each crypt.  Nicholson et al. (234) propose that these partially mutated crypts are in the 

process of clonal conversion where the CCO-deficient clone is in the process of non-

mutated cells, as found in colonic crypts (235).  They also show that Barrett’s crypts can 

form large clonal patches of several crypts, suggesting that Barrett’s metaplastic crypts can 

divide by fission, as seen in the colonic epithelium (236). 

No robust markers of stem cells in Barrett’s oesophagus have been identified.  However, 

since Barrett’s oesophagus is a type of intestinal metaplasia, the intestinal stem cell marker 

Lgr5 could be used to identify stem cells in Barrett’s oesophagus.  Becker et al. (237) 

examined the pattern of immunostaining of Lgr5 in Barrett’s oesophagus and found Lgr5
+
 

cells at the base of crypts although not all cells at the very base were positive.  They later 
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found that there was variable staining of Lgr5, ranging from predominantly low intensity 

in non dysplastic Barrett’s oesophagus to high intensity in dysplasia.  No Lgr5 expression 

was seen in normal squamous tissue and high Lgr5 expression in adenocarcinoma was 

associated with worse survival.  They suggest that the high Lgr5
+
 stem cells seen with 

dysplasia may represent stem cells prone to becoming cancer stem cells (238).  Increased 

expression of Lgr5 in Barrett’s oesophagus compared to squamous tissue was also seen by 

von Rahden et al. (239) and high expression of Lgr5 in oesophageal adenocarcinoma also 

had an association with poorer survival.  Vega et al. (240) found that there was a fivefold 

increase in Lgr5 mRNA human Barrett’s oesophagus compared to paired normal tissue.  

Immunohistochemical analysis also revealed an increase in expression of Lgr5 in Barrett’s 

oesophagus tissue compared to normal.  They also found that two other stem cell markers 

DCAMKL-1 and Msi-1 were also up-regulated in Barrett’s oesophagus compared to 

normal squamous tissue. 

 

1.8.2 Culture models of Barrett’s oesophagus 

Surgical manipulation of the upper GI tract in animal models is frequently used in the 

development of therapeutics.  Buttar et al. (241) have shown using a rat model of gastro-

oesophageal reflux, where a surgical oesophago-jejunostomy predisposes animals to 

Barrett’s and oesophageal adenocarcinoma, that treatment with COX-2 inhibitors reduced 

the risk of oesophageal adenocarcinoma, suggesting a link between COX-2 activity and 

progression from Barrett’s to cancer (242).  In vitro models have been used to understand 

the molecular basis of carcinogenesis from which data such as viability, apoptosis, tracking 

signalling molecules and identifying transcripts and proteins can be identified (242).  

However, this model’s drawback is the lack of conditions and interactions that the cells 

would be subjected to in their natural environment. Also, due to the lack of an identifiable 

gatekeeper mutation such as APC and KRAS and oesophageal-specific promoters, no 

suitable transgenic mouse models have been engineered so far.  Another model used in 
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research is the ex vivo culture approach that allows oesophageal cells to be studied in their 

original environment.  These ex vivo cultured cells can be exposed to agents such as acids 

and bile acids.  So far the main obstacle to this approach is the fact that the ex vivo cultures 

can only be kept alive for up to a few hours, thus allowing only certain questions to be 

addressed.  However, since Barrett’s oesophagus is the replacement of the normal stratified 

squamous epithelium of the oesophagus with a metaplastic glandular epithelium, this 

glandular epithelium forms invaginations that resemble those of crypts found in the small 

intestine and colon.  Recently, Sato et al. (20) have used their human colon organoid 

culture model to try and establish a Barrett’s oesophagus culture model.  Due to the 

similarity of these crypt structures, isolated Barrett’s crypts started to form cystic organoid 

structures that were very similar to the colon organoids.   However, addition of FGF10 to 

the culture medium was required to enable the Barrett’s oesophagus organoids to form 

budding structures and prolong the culture duration for more than 3 months (Fig 1.31). 

 

Figure 1.31 Barrett’s oesophagus organoid culture.  Isolated Barrett’s crypts form 

budding structures that expand, passage and culture for more than 3 months.  Figure from 

(20). 

As with the colonic organoids, these Barrett’s organoid structures are composed of 

stem/progenitor cells that can be induced to differentiate with treatment of Notch inhibitor 

DBZ.  The processes and signalling pathways involved in the development and stem-cell 



87 
 

driven tissue renewal of Barrett’s oesophagus are yet to be determined and are required to 

understand the risk and pathogenesis of Barrett’s metaplasia and oesophageal 

adenocarcinoma.  Therefore a culture model of near-native human Barrett’s epithelium is 

required that demonstrates stem-cell driven tissue renewal ex vivo.  
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1.9 Hypothesis 

Renewal of the human colonic epithelium and Barrett’s oesophagus epithelium is 

maintained by crosstalk between Wnt and BMP/TGFβ signalling pathways. 

 

Figure 1.31 Hypothesis.  Cross-talk between Wnt and BMP/TGFβ signalling pathways 

maintains crypt renewal. 

1.10 Aims 

 Determine Wnt, BMP and TGFβ signalling status in native human colonic 

epithelium. 

 Investigate consequences of Wnt activation and inhibition on colonic crypt 

morphology, proliferation, Wnt target gene expression and stem cell number. 

 Investigate consequences of Notch signalling inhibition on stem cell number. 

 Investigate consequences of BMP signalling activation and inhibition on colonic 

crypt morphology, proliferation, pSMAD1,5,8, expression, Wnt target gene 

expression and stem cell number. 

 Investigate consequences of TGFβ signalling activation and inhibition on colonic 

crypts morphology, proliferation, pSMAD2,3 expression, Wnt target gene 

expression and stem cell number. 

 Develop 3D ex vivo culture model for Barrett’s oesophagus crypts.  
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Chapter 2 Materials and Methods 

2.1  Cell culture 

2.1.1 Crypt isolation from colonic and Barrett’s epithelium 

For isolation of colonic crypts, biopsy size tissue samples were obtained from the sigmoid 

colon of patients undergoing a colonoscopy (3 biopsies per patient) or from 

macroscopically normal regions of the sigmoid colon of patients undergoing surgery for 

cancer (75 patients, 20-85yrs old).  Barrett’s epithelium biopsy samples were also obtained 

either from patients undergoing a gastroscopy or an oesophagectomy for oesophageal 

cancer (15 patients, 50-80 years old).  This is with the approval of the Norwich District 

Ethics Committee, Norfolk and Norwich University Hospital and informed consent in each 

case.  Human colonic and Barrett’s crypts were isolated in a similar method to that 

previously described (243).  Samples were washed in HEPES (N-2-Hydroxyethyl 

piperazine –N-2-ethanesulphonic acid)-buffered saline (HBS) pH=7.4 (mM): NaCl 140, 

KCl 5, HEPES 10, D-Glucose 5.5, Na2HPO4 1, MgCl2 0.5, CaCl2 1, placed in HBS devoid 

of both Ca
2+

 and Mg
2+

 and supplemented with EDTA (Diaminoethanetetra-acetic acid 

disodium salt) 1mM and DTT (Dithiothreitol) 1mM for 1 hr at room temperature.  (All 

reagents were from Fisher Scientific). Crypts were liberated by vigorous shaking, 

embedded in matrigel (growth factor reduced, phenol free: BD Bioscience) and seeded 

onto non-fluorescent glass coverslips (Sigma) in a 12-well plate (Sigma).  The matrigel 

was polymerized for 10 mins at 37°C in a humidified 95% air, 5% CO2 incubator.  200μl 

of culture medium (Advanced DMEM/F12: Invitrogen) supplemented with 

penicillin/streptomycin (100 U/ml) (Invitrogen), L-Glutamine (2mM) (Invitrogen), N2 

(Invitrogen), B27 (Invitrogen) and 1mM N-acetylcysteine (Sigma) was placed on the 

crypts containing growth factor combinations required for the experimental groups. 
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2.1.2 Crypt long term culture 

Crypts for experimentation were kept in culture for 3 days then fixed for 

immunocytochemistry, or for 1-2 weeks for longer term experiments.  The crypt culture 

media was replaced every 2 days and contained the following growth factors and 

agonists/antagonists that were used in different combinations depending on the 

experimental group.  For short term experiments IGF, Noggin and R-Spondin 1 were used 

as the control media with Wnt3a, Dkk1 and IWP2 used to stimulate/inhibit the Wnt 

signalling pathway and BMP4, TGFβ and Activin used to stimulate the BMP/TGFβ 

signalling pathways.  Longer term experiments contained IGF, Noggin, R-Spondin1 and 

Wnt3a in the media. 

Growth factor    Concentration used  Supplier 

Recombinant human Activin  50ng/ml   Peprotech 

Recombinant human BMP4  100ng/ml   Peprotech 

Recombinant human Dkk1  800ng/ml   R&D Systems 

Recombinant human EGF  50ng/ml   R&D Systems 

Recombinant human IGF1  50ng/ml   Sigma 

Recombinant human Noggin  100ng/ml   Peprotech 

Recombinant human R-Spondin 1 500ng/ml   Sino Biological 

Recombinant human TGFβ1  20ng/ml   R&D Systems 

Recombinant human Wnt3a  100ng/ml   R&D Systems 
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Agonist/Antagonist   Concentration used  Supplier 

A83-01     0.5μM             Tocris Bioscience 

DBZ     10mM             Calbiochem 

IWP2     5μM             Stemgent 

anti-TGFβ1,2,3 antibody  10μg/ml            R&D Systems 

COX2 antibody    10μg/ml            Cayman Chemicals 

Table 2.1 Agonists and antagonists used during experiments. 

 

 

2.2 Crypt renewal experiments 

2.2.1 Crypt morphology 

The morphology of colonic crypts maintained in culture under different experimental 

conditions was visualised with a Nikon Ti-E SuperResearch Inverted Motorised Time-

Lapse System microscope fitted with a humidified chamber at x10 objective.  DIC images 

of crypts were taken every 24 hrs for a period of 1-2 weeks or until the crypts died.  Length 

measurements for each day were taken using the Nikon NIS Viewer software and 

normalised to day 1 measurements.  Statistical differences between groups were 

determined using one-way ANOVA and Tukey’s post-hoc analysis. 

2.2.2 Cell proliferation 

2.2.2.1 BrdU incorporation 

Cultured human colonic crypts were incubated with 10μM BrdU (Bromodeoxyuridine) at 

day 2 in media with growth factors required for each experimental group at 5% CO2, 37°C 
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for 24 hrs.  Crypts were then fixed and processed for immunocytochemistry (as described 

in section 2.4). 

2.2.2.2 Real-time digital time-lapse microscopy 

Crypt mitotic events (Fig 2.1) were visualised with a Nikon -E SuperResearch Inverted 

Motorised Time-Lapse System microscope fitted with a humidified chamber at x20 

objective.  DIC images of selected crypts were taken at an interval of 5mins over a period 

of 24 hrs and the number of mitoses was manually counted over the 24 hr period using the 

Nikon NIS Viewer software.  The number of mitoses per hour was then subsequently 

calculated and one-way ANOVA with Tukey’s post-hoc analysis was performed to 

determine any differences between groups. 

 

Figure 2.1 Time-lapse image of mitosis.  Number of mitoses over a period of 24 hrs were 

counted and analysed. 
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2.2.3 Cell migration 

Cell migration within a crypt was determined using time-lapse microscopy on the Nikon -E 

SuperResearch Inverted Motorised Time-Lapse System microscope. Over a period of 

24hrs, at an interval of every 5mins, images were taken of crypts within different 

experimental groups.  The rate of migration per hour was then determined by following a 

selected cell in the upper region of the crypt and tracking its migration over the 24hr 

period.  3 cells per crypt were tracked and the distance migrated was measured using the 

Nikon NIS Viewer software. 

 

Figure 2.2 Time-lapse image of cell migration.  A distinctive cell was tracked over a 

period of 24hrs and the distance migrated was measured. 

 

2.2.4 Cell viability 

Cell viability was determined by loading crypts with Calcein-AM (5μM) and PI 

(Propidium Iodide) (1μg/ml) and visualising using a Zeiss 510 Meta confocal fluorescence 

microscope at x20 objective. 

 

T=0 hrs T=24 hrs
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2.3 Crypt transduction 

2.3.1 Lentivirus TOP-GFP transduction 

Freshly isolated human colonic crypts were transduced with TOP-GFP lentivirus (an 

inducible TCF/LEF-responsive firefly luciferase reporter) (Qiagen) placed into matrigel, 

and seeded onto 12-well plates and left to polymerise for 10mins at 37°C in a humidified 

95% air, 5% CO2 incubator.  200μl of culture medium (Advanced DMEM/F12: Invitrogen) 

supplemented with penicillin/streptomycin (100 U/ml), L-Glutamine (2mM), N2, B27 and 

1mM N-acetylcysteine was placed on the crypts containing recombinant human IGF, 

recombinant human Noggin, recombinant human R-Spondin 1 and recombinant human 

Wnt3a (concentrations in section 2.1.2).  Crypts were then left in culture for 3 days, fixed 

and processed for immunocytochemistry (as described in section 2.4).  Lenti-CMV-GFP 

was used as the positive control transduction that was carried out in parallel (Fig 2.3).   The 

multiplicity of infection (MOI) for both the Lenti-TOP-GFP and it positive control Lenti-

CMV-GFP was calculated: 

[0.8x10
7
 TU/ml / 200μl] / [200 crypts x 1000 cells] 

MOI= 0.2 TU / crypt cell 
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Figure 2.3 The Cignal Reporter Assays (GFP) kit includes pre-formulated, transfection-

ready reporter, negative control, and positive control. The transcription factor reporter 

and negative control are transfected and subjected to experimental treatments, in parallel. 

GFP expression is quantified using a fluorescent microscope.  Change in the activity of the 

Wnt signaling pathway is determined by comparing the GFP fluorescence in treated versus 

untreated transfectants. The positive control serves as a control for transfection efficiency, 

by monitoring GFP expression from the constitutively expressing CMV-GFP reporter. 

Figure from (244). 

2.3.2 Adenovirus dnTCF4 transduction 

Transduction of Ad-TCF4 (dn) (Ready-use human Adenovirus Type5 (dE1/E3)) (Vector 

Biolabs) was carried out in the same manner as that described for TOP-GFP lentivirus.  

Adeno-CMV-GFP (Ready-use human Adenovirus Type5 (dE1/E3)) was used as a positive 

control.   The multiplicity of infection (MOI) for both the Ad-TCF4 (dn) and it positive 

control AD-CMV-GFP was calculated: 

[1x10
10

 TU/ml / 200μl] / [200 crypts x 1000 cells] 

MOI= 250 TU / crypt cell 
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2.4 Immunocytochemistry 

2.4.1 Native human colonic crypts and Barrett’s epithelium 

Biopsy size human tissue samples were immediately fixed in 4% paraformaldehyde (PFA) 

(Sigma) following removal from the patient either undergoing a colonoscopy/gastroscopy 

or surgery and microdissected into single crypts.  Following embedding in matrigel, 

microdissected-native crypts were fixed with 4% PFA for 1 hr and permeabilized with 

either 1% SDS or Triton-X (0.5% w/v PBS) for 30 mins. Non-specific binding sites were 

blocked with blocking serum composed of 10% goat (Abcam) or donkey serum (Sigma) 

and 1% bovine serum albumin (Sigma) for 2hrs.  The protein of interest was labelled by 

incubating the crypts overnight with one or more of the antibodies listed in Table 2.    

Secondary antibodies, listed in Table 3 (all from Molecular Probes), were added for 2 hrs, 

followed by a PBS wash before mounting on glass slides (BDH) in vectashield mounting 

media (Vectorlabs) with DAPI or PI (Propidium Iodide) stain. 

 

2.4.2 Near-native cultured human colonic crypts and Barrett’s epithelium 

Following live experimentation, cultured human colonic crypts or Barrett’s crypts were 

fixed in 4% paraformaldehyde for 1hr and permeabilized with either SDS (1%) or Triton-X 

(0.5% w/v). For BrdU epitope retrieval, crypts were denatured in 1M HCl for 10mins.  

Non-specific binding sites were blocked with blocking serum composed of 10% goat or 

donkey serum and 1% bovine serum albumin for 2hrs.  Crypts with primary antibody were 

incubated overnight and secondary antibodies added for 2hrs, before mounting on glass 

slides in vectashield mounting media with DAPI or PI stain.  Primary and secondary 

antibodies (Molecular Probes) used to detect protein of interest are listed in Table 2.2 and 

2.3 respectively.  Non-specific labelling of secondary antibodies was determined by 

omitting the primary antibody.   
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2.4.3 Antibodies  

Primary antibody target Species origin  Concentration        Supplier 

Axin II    Rabbit polyclonal       1:200    Abcam 

Active β-Catenin  Mouse monoclonal       1:200            Millipore 

Active Caspase-3  Rabbit polyclonal       1:200    Cell Signalling 

BrdU    Rat polyclonal        1:200            Abcam 

C-Myc    Mouse monoclonal       1:200            Abcam 

Chromogranin A  Rabbit polyclonal       1:400           Abcam 

E-Cadherin   Goat polyclonal        1:200           R&D Systems 

GFP    Goat polyclonal        1:200           Abcam 

Ki67    Mouse monoclonal            1:200           Dako 

LGR5    Mouse monoclonal       1:200          Origine 

Mucin2    Rabbit polyclonal       1:200          Santa Cruz 

NFκB p65   Rabbit monoclonal       1:200          Cell Signalling 

OLFM4   Mouse monoclonal       1:200           Yasui Lab, Japan 

OLFM4   Rabbit polyclonal       1:200          Abcam 

pSMAD 1,5,8   Rabbit polyclonal       1:100          Cell Signalling 

pSMAD 2,3   Rabbit polyclonal       1:100          Cell Signalling 

TGFβ 1,2,3   Mouse monoclonal       1:200           R&D Systems 
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Table 2.2 Antibodies used during experiments. 

Secondary antibodies 

AlexaFluor 568nm goat anti rabbit IgG (H+L) 2mg/ml 

AlexaFluor 488nm goat anti mouse IgG (H+L) 2mg/ml 

AlexaFluor 488nm goat anti rat IgG (H+L) 2mg/ml 

AlexaFluor 568nm donkey anti mouse IgG (H+L) 2mg/ml 

AlexaFluor 647nm donkey anti rabbit IgG (H+L) 2mg/ml 

Table 2.3 Secondary antibodies used during experiments. 

 

2.4.4 Visualisation and semi-quantitative analysis 

Colonic or Barrett’s crypts mounted on slides were visualised with a Zeiss 510 Meta 

confocal fluorescence microscope and optical slices of 1μm were taken through the crypt 

at x63 objective. Analysis was performed using ImageJ software and fluorescence intensity 

levels of protein were taken by placing ROIs on the cell nuclei or cell basal membrane (Fig 

2.4).  For each crypt, 10 representative cells from each region of the crypt (Fig 2.4) were 

analysed and the mean readings for each region for each crypt was calculated and 

normalised against the mean intensity level of the base of the control group.  For 

proliferation experiments, the number of BrdU positive cells were manually counted for 

each region of the crypt: base, mid and top (Fig 2.4) and their percentage of the total 

number of cells was calculated.   Statistical differences between groups were determined 

using one-way ANOVA and Tukey’s post-hoc analysis. N= number of crypts analysed 

with at least 3 crypts in each group from each patient. 
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Figure 2.4 Crypt analysis.  A) Region of interest (ROI) placed around the nucleus to 

measure fluorescence intensity levels. B) ROI placed around basal cell membrane to 

measure fluorescence intensity levels.  C) BrdU positive cells (green) in the 3 regions of 

the crypt used for analysis.  
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Chapter 3 Results 

3.1 Wnt signalling regulated tissue renewal 

3.1.1 Introduction 

The colonic epithelium undergoes constant homeostatic renewal with 10 billion cells being 

shed and replaced by intestinal stem cell progeny every day.  The self-renewing unit of the 

tissue is exquisitely organised into invaginations known as crypts.  This perpetual tissue 

renewal is thought to minimise the accumulation of (epi)genetic changes that would 

otherwise occur in a more stable population of intestinal epithelial cells.  Tissue renewal of 

the crypt involves the asymmetric or symmetric division of stem cells at the base of the 

crypt, with the transit amplifying progeny migrating up the crypt-axis and differentiating 

into one of four cell lineages: absorptive enterocyte cells, mucous secreting goblet cells, 

hormone secreting enteroendocrine cells, prostanoid secreting tuft cells, and in the small 

intestine Paneth cells which are involved in innate immune response and stem cell niche 

maintenance.  On reaching the top of the crypt, these cells are shed into the gut lumen and 

undergo apoptosis.   

One of the major regulators involved in the establishment of crypt renewal and 

homeostasis is the canonical Wnt signalling pathway.  The canonical Wnt pathway is 

involved in processes such as the maintenance of stem/progenitor cells via cell cycle 

control and inhibition of differentiation, regulation of migration and localization of 

epithelial cells along the crypt-axis and directing early secretory lineage development.  The 

importance of the Wnt signalling pathway in maintaining crypt homeostasis was shown by 

Kuhnert et al. (2) who demonstrated that adenoviral expression of Dkk1, a Wnt antagonist 

resulted in inhibition of proliferation and loss of crypts in the colon and small intestine.  

Loss of TCF4 early in development and in adult colon also results in increased cell 

proliferation and leads to colon tumourigenesis (164). 



101 
 

3.1.2 Wnt signalling status in native colonic crypts 

To investigate Wnt signalling status in native human colonic crypts, biopsy size tissue 

samples were obtained from the sigmoid colon of patients undergoing a colonoscopy or 

from the macroscopically normal regions of the sigmoid colon of patients undergoing 

surgery for cancer.  Fixed biopsies were then microdissected into individual crypts and 

immunolabelling for β-catenin was performed on the tissue to determine the in vivo status 

of Wnt signalling pathway (Fig 3.1).  Nuclear immunofluorescence intensity was measured 

using Image J software and the measurements were normalised to the immunofluorscence 

intensity at the base of the crypt.  Nuclear β-catenin predominated at the crypt base and 

exhibited an immunofluorescence intensity gradient that diminished along the crypt-axis. 
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Figure 3.1Wnt signalling status in native colonic crypts.  A) Nuclear β-catenin is the 

hallmark of activated Wnt signalling.  Scale bar on figure represents 50μm.  B) Analysis of 

nuclear β-catenin along the crypt axis.  Nuclear fluorescence intensity measurements from 

each region of the crypt were normalised to the crypt base.  The fluorescence intensity of 

nuclear β-catenin predominates at the crypt base and diminishes progressively towards the 

top of the crypt.   (*p=0.0, **p=0.012, N=123 crypts from 14 patients). 
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The in vivo status of Wnt target genes axin II and c-Myc was also detected in colonic 

crypts using immunocytochemistry.  Axin II is a negative regulator of the Wnt signalling 

pathway and down regulates β-catenin by facilitating its phosphorylation by GSK3β (245).  

Increased levels of axin II mRNA were found in human colon tumour samples and cell 

lines, indicating that axin II could be used as a marker of activation of Wnt signalling 

pathway (246).  The oncogene c-Myc has also been identified by He et al. (247) as a Wnt 

signalling target gene.  Rochlitz et al. (248) have shown that c-Myc is amplified in 

metastatic progression of colorectal cancer.  Fig 3.2 shows that axin II expression is 

nuclear with higher expression at the crypt base and diminishes towards the top of the 

crypt and Fig 3.3 shows that c-Myc expression is also nuclear with higher expression at the 

crypt base. 

  



104 
 

 

 

Figure 3.2 Expression of Wnt target gene axin II in native crypts.  A) Nuclear axin II is a 

marker of activated Wnt signalling.  Scale bar represents 50μm.  B) Analysis of axin II 

expression along the crypt axis.  Nuclear fluorescence intensity measurements from each 

region of the crypt were normalised to the base of the crypt.   (*p=0.016, **p=0.001, 

N=31 crypts from 9 patients). 
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Figure 3.3 Expression of Wnt target gene c-Myc in native crypts. A)  c-Myc is a Wnt 

target gene demonstrating activated Wnt signalling.   Scale bar represents 50μm.  B) 

Analysis of c-Myc expression along the crypt axis.  Nuclear fluorescence intensity 

measurements from each region of the crypt were normalised to the base of the crypt.  

Higher expression of c-Myc can be seen at the base of the crypt.  (*p=0.016, **p=0.0, 

N=41 crypts from 13 patients). 
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3.1.3 Functional role of Wnt signalling in human colonic crypt renewal  

In order to investigate the functional influence of the Wnt signalling pathway on renewal 

of the human colonic epithelium we refined a native human colonic culture model.  Using 

the signalling pathway profiles described in this chapter (Wnt) and the following chapter 

(BMP/TGFβ), and the conditions developed for intestinal organoid propagation (20) (220), 

the optimisation for the culture conditions was based on generating Wnt signals and 

suppressing BMP/TGFβ signals ex vivo. To determine the factors required to maintain 

near-native crypt length, topology, morphology and polarity, a range of growth factors in 

various combinations were tested (Fig 3.4). 
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Figure 3.4 A combination of Wnt pathway activators and BMP/TGFβ pathway 

inhibitors is required for maintenance of native human colonic crypts ex vivo.  

 A) Overview of human colonic crypts cultured within a matrigel droplet under optimised 

conditions.  B) Enlargement view of cultured crypts representing a typical field of view (x4 

objective lens).  Example of crypt base and shedding domains are denoted by open and 

closed arrowheads respectively, * denotes dead crypt fragments.  Scale bar represents 

0.5mm.   C) Quantification of crypt length at day 4 or 7 following culture in the presence 

of the indicated combination of recombinant human growth factors, recombinant human 

BMP binding protein and/or small molecule ALK 4/5/7 inhibitor: IGF-1 (50ng/ml), 

Gremlin-1(200ng/ml), Noggin (100ng/ml), Wnt3a (100ng/ml), R-Spondin-1 (500ng/ml), 

A83-01 (0.5μM).  (N=130 crypts from 3 patients). 
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Canonical Wnt pathway activation by Wnt3a and/or R-Spondin 1 was insufficient to 

maintain human colonic crypt length or viability beyond 4 days.  However, in combination 

with the BMP antagonist Gremlin-1 or Noggin, the intestinotrophic factor IGF-1 and an 

ALK 4/5/7 inhibitor A83-01, crypts maintained their length and morphology for at least 7 

days in culture, when the matrigel became unstable.  Replacing IGF-1 with EGF promoted 

re-modelling of human colonic crypt morphology followed by multiple budding events 

characteristic of intestinal organoid growth (20) (Fig 3.5). 

 

Figure 3.5 Effects of EGF on human colonic crypt morphology.  Replacement of IGF-1 

with EGF in the colonic crypt culture media induced re-modelling of human colonic crypt 

morphology into typical budding organoid structures. Day 6 magnified image of new crypt 

buds.  Scale bar represents 50μm. 
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To determine activation of the Wnt signalling pathway and its role in maintaining crypt 

homeostasis, single crypts were liberated from biopsies removed from patients undergoing 

colonoscopy or surgery, placed into culture and treated with Wnt3a in the presence or 

absence of the Wnt antagonist, Dkk1.   Dkk1 forms a ternary complex with LRP5/6 and 

Kremen which causes endocytosis of this complex and removal of LRP5/6 from the cell 

surface.  The cultured crypts were then fixed and processed by immunocytochemistry for 

active β-catenin (de-phospho) (Fig 3.6).  Nuclear β-catenin is the hallmark of activated 

Wnt signalling and there is a low level of β-catenin seen in the control group, which 

demonstrates endogenous levels of β-catenin ex vivo after 3 days in culture, stimulation 

with exogenous recombinant Wnt3a increased the levels of β-catenin.  The antagonist 

Dkk1 prevented Wnt stimulated nuclear translocation of β-catenin.  Analysis was carried 

out by measuring the nuclear fluorescence intensity of β-catenin and the measurements 

were normalised to the crypt base of the control group (Fig 3.6B). 
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Figure 3.6 Dkk1 inhibits Wnt signalling.  A) Crypts were cultured in the presence of 

Wnt3a ligand and/or the Wnt antagonist Dkk1 for 3 days.  Wnt3a stimulates de-phospho 

nuclear β-catenin levels which are inhibited by Wnt inhibitor Dkk1.   B) Analysis of β-

catenin in the different experimental groups.  Nuclear fluorescence intensity measurements 

from each region of the crypt were normalised to the crypt base of the control group.  

(*p≤0.02 in all regions of crypt, **p=0.001, ***p=0.005, ****p≤0.007 in all regions of 

crypt, N=46 Crypts from 3 patients).  Scale bar represents 50μm.  Control media: IGF-1 
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(50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml); Wnt3a (100ng/ml) and Dkk1 

(800ng/ml) where indicated. 

Another method of assessing Wnt signalling status in crypt cells is by using a Lenti 

TCF/LEF reporter which is a preparation of ready-to-transduce lentiviral particles which 

monitor the activity of Wnt signalling in cells. The Lenti TCF/LEF reporter is a 

preparation of replication incompetent, VSV-g pseudotyped lentivirus particles expressing 

the GFP gene under the control of a minimal (m)CMV promoter and tandem repeats of the 

TCF/LEF transcriptional response element (TRE) which are activated by the binding of β-

catenin (244). To determine the status of Wnt signalling in cultured crypt, isolated crypts 

were transduced with Lenti TCF/LEF (TOP-GFP) reporter, cultured for 3 days in the 

different experimental conditions.  Wnt signalling was stimulated by recombinant Wnt3a 

ligand and inhibited with IWP2.  IWP2 prevents palmytoylation of Wnt proteins by 

Porcupine, a membrane bound O-acyltransferase, and so blocks Wnt secretion and activity.  

In parallel, some crypts were also transduced with Lenti-CMV-GFP which was used as a 

positive control for the TOP-GFP reporter.  The cultured crypts were fixed after 3 days and 

processed by immunocytochemistry for GFP so that the signal could be amplified and 

visualised easier.  Analysis was carried out by measuring fluorescence intensity and 

normalised to the base of the control group.  There is a slight gradient along the crypt axis 

which reflects the status of β-catenin, with higher levels at the crypt base and diminishing 

towards the top.  IWP2 inhibited endogenous Wnt signalling, which could be rescued by 

addition of Wnt3a ligand (Fig 3.7).   
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Figure 3.7 IWP2 inhibits endogenous Wnt signalling.  A) Cultured crypts were 

transduced with Lenti-TOP-GFP and cultured in the presence of Wnt3a ligand and/or the 

Wnt antagonist IWP2 for 3 days.  IWP2 inhibits endogenous levels of Wnt signalling which 

can be rescued by adding exogenous Wnt3a ligand. Scale bar represents 50μm. B) 
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Analysis of TOP-GFP signal in the different experimental conditions.  Fluorescence 

intensity measurements from each region of the crypt were normalised to the mean value 

at the base of the control group. (*p<0.05 between control and wnt3a in all regions of 

crypt, **p<0.05 between control and IWP2 in all regions of crypt, ***p<0.05 between 

wnt3a and IWP2 in all regions of crypt, ****p<0.05 between wnt3a and IWP2+Wnt3a in 

base and mid regions of crypt, N=21 crypts from 2 patients)  Control media: IGF-1 

(50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml); Wnt3a (100ng/ml), IWP2 (5μM) 

where indicated. C) In parallel, crypts were transduced with Lenti-CMV-GFP as a positive 

control.  All cells within the crypt took up the lentivirus, demonstrating that the Lenti-TOP-

GFP only labels cells that are active in Wnt Signalling. 

The effect of Wnt signalling inhibition with IWP2 was also determined on the Wnt target 

gene axin II.  Isolated crypts were cultured for 3 days in media containing Wnt3a and/or 

IWP2.  Crypts were then fixed and processed by immunocytochemistry for axin II (Fig 

3.8).  Analysis was carried out by measuring nuclear fluorescence intensity of axin II and 

measurements were normalised to the mean of the base of the crypt in the control group.  

IWP2 inhibited axin II expression which could be rescued by addition of exogenous 

Wnt3a. 
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Figure 3.8 IWP2 inhibits Wnt target gene axin II expression.  A) Crypts were cultured in 

the presence of Wnt3a and/or the Wnt antagonist IWP2 for 3 days.  Scale bar represents 

50μm. B) Analysis of axin II expression in the different experimental conditions.  Nuclear 

fluorescence intensity measurements from each region of the crypt were normalised to the 

mean value of the base of the crypt of the control group.  (*p=0.037, **p=0.042, 

***p≤0.026, ****p=0.038, N=21 crypts from 2 patients).  Control media: IGF-1 

(50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml); Wnt3a (100ng/ml), IWP2 (5μM) 

where indicated. 
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Another approach to blocking Wnt signalling is by transducing with a dominant negative 

TCF4 construct.  Cultured crypts were transduced with human dn-TCF4 adenovirus and 

placed into culture for 3 days.  In parallel, crypts were also transduced with adeno-CMV-

GFP as the positive control for the experiment.  The adenovirus intake into the cells of the 

crypt was on average 65%.  The effects of dn-TCF4 adenoviral inhibition on the Wnt 

target gene axin II expression was determined using immunocytochemitry.  Axin II 

expression was significantly reduced upon transduction with dn-TCF4 (Fig 3.9). 
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Figure 3.9 dnTCF4 inhibits Wnt target gene axin II expression.  A) Crypts were 

transduced with adenoviral dnTCF4 or CMV-GFP (as a positive control for adenoviral 

transduction) and placed into culture for 3 days.   dnTCF4 significantly inhibited axin II 

expression. Scale bar represents 50μm. B) Analysis of axin II expression.  Nuclear axin II 

immunofluorescence intensity measurements from each region of the crypt were 

normalised to the crypt baseof the control group.  (*p=0.006, **p=0.011, N=10 crypts 

from 2 patients). Control media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml). 
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Crypt renewal is maintained by the proliferation of cells at the base of the crypts, be they 

stem or progenitor cells which then migrate up the crypt axis, differentiate and shed at the 

top of the crypt.  The influence of Wnt signalling on crypt cell proliferation was studied by 

by the incorporation of BrdU, a thymidine analogue.  Isolated crypts which had been 

cultured for two days in the different experimental groups had their media changed with 

that which contained BrdU for the next 24 hrs.  Crypts were then fixed and processed by 

immunocytochemistry for BrdU (Fig 3.10).  The number of BrdU positive cells was then 

manually counted on the equatorial plane of each crypt and the percentage of BrdU 

positive cells of the total number of cells was then calculated. Analysis shows that 

proliferation is increased by Wnt3a and Dkk1 prevents the rescue by exogenous Wnt3a 

ligand (Fig 3.10).  R-Spondin 1 and Wnt3a however rescue the inhibitory effects of IWP2 

(Fig 3.11). 
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Figure 3.10 Wnt3a stimulates proliferation.  A) Crypts were cultured in Wnt3a ligand 

and/or the Wnt antagonist Dkk1 for 3 days. On day 2 of the experiment, BrdU, a marker of 

proliferation, was added to the media. Wnt3a stimulates crypt proliferation which is 

inhibited by Dkk1.  There is a proliferation gradient along the crypt axis which is 

maintained by Wnt signalling.  Scale bar represents 50μm.  B) Percentage of BrdU-

positive cells in the crypts of the different experimental conditions. (*p≤0.022 in all 

regions of crypt **p≤0.021 in all regions of crypt, ***p≤0.019 in all regions of crypt, 
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N=23crypts from 2 patients).  Control media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-

Spondin 1 (500ng/ml); Wnt3a (100ng/ml) and Dkk1 (800ng/ml) where indicated. 

 

 

Figure 3.11 IWP2 inhibits proliferation.  A) Crypts were cultured in R-Spondin1, Wnt3a 

and/or IWP2 for 3 days. On day 2 of the experiment, BrdU was added to the media.  

Exogenous Wnt3a and R-Spondin 1 rescue the inhibitory effects of IWP2.  Scale bar 
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represents 50μm.  B) Percentage of BrdU positive cells in the crypts of the different 

experimental conditions.  (*p≤0.018, **p=0.038, ***p≤0.01, N=36 crypts from 2 

patients). Control media: IGF-1 (50ng/ml), Noggin (100ng/ml); R-Spondin 1 (500ng/ml), 

Wnt3a (100ng/ml) and IWP2 (5μM) where indicated. 

As mentioned previously, another method of inhibiting Wnt signalling is by transducing 

cells within the crypt with dnTCF4 adenovirus.  Cultured crypts were transduced with 

dnTCF4 adenovirus, whilst in parallel the control group was transduced with CMV-GFP 

adenovirus.  This parallel transduction was the positive control to demonstrate whether the 

adenovirus particles infected the cells.  After culturing for 3 days, crypts were fixed and 

processed by immunocytochemitry for Ki67, a proliferation marker, and GFP, to amplify 

the signal (Fig 3.12).  Percentage of proliferative cells was determined by counting the 

number of Ki67 positive cells against the total number of cells within the crypt.  dnTCF4 

significantly reduced proliferation at the base of the crypts. 
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Figure 3.12 dnTCF4 inhibits proliferation.  A) Cultured crypts were transduced with 

adenoviral dnTCF4 and placed into culture for 3 days.  In parallel, the control crypts were 

infected with CMV-GFP adenovirus. dnTCF4 inhibits proliferation, as determined by 

counting the percentage of Ki67- positive cells.  Scale bar represents 50μm.  B) 

Percentage of Ki67-positive cells in control and dnTCF4 crypts.  dnTCF4 significantly 

inhibited proliferation at the base of the crypts.( *p=0.009,  N=15 crypts from 2 patients). 

Control media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml), Wnt3a 

(100ng/ml). 
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3.1.4 Wnt signalling maintains stem/progenitor cells in human colonic crypts  

Renewal of intestinal epithelium is driven by stem cells that reside at the base of the 

colonic crypts.  The progeny of these stem cells differentiate into one of four lineages, 

enteroendocrine, goblet, enterocyte and tuft cells.  This renewal is maintained by several 

signalling pathways, including Wnt, BMP, TGFβ and Notch.  Wnt signalling plays a major 

role in proliferation of stem cells and in determining the fate of progeny of these stem 

cells.  Lgr5, a Wnt target gene, has been identified by Barker et al. (4) as an intestinal stem 

cell marker.  Van der Flier et al. (48) later identified that these Lgr5
+
 stem cells were also 

enriched for Olfactomedin-4 (OLFM4) and could be used to identify the Lgr5-type crypt 

base columnar cells.  Therefore, it would be informative to determine the status of these 

Lgr5
+
 and OLFM4

+
 stem cells within the human native microdissected crypts and whether 

Wnt signalling is involved in maintaining the stem cell population ex vivo.  To demonstrate 

that both Lgr5 and OLFM4 labelled the same population of cells, colonic tissue biopsies 

were fixed , microdissected into single crypts and processed by immunocytochemistry for 

Lgr5 and OLFM4 (Fig 3.13).  As can be seen, the Lgr5
+ 

and OLFM4
+
 cells label the same 

population of cells at the base of the crypt.  These cells are slender and almost triangular 

shaped, as indicated by the arrows.  E-cadherin was used to label the cell membranes to 

make visualisation of these slender single cells easier.  Lgr5 is a G-protein coupled 

receptor, and is expressed on the basal membrane of the cells.   OLFM4 is a secreted 

molecule under the control of Notch signalling and is located in the apical cytoplasm and 

crypt lumen.  There is a gradient of stem cells along the crypt-axis with about 30% of cells 

being Lgr5
+
/OLFM4

+
 at the base of the crypt, about 20% in the mid region and none at the 

top of the crypt (Fig 3.13B).  Other differentiated cell types are found mostly in the mid 

and top regions of the crypt, with morphologically-identified goblet cells distributed fairly 

evenly across the three regions of the crypt.  A 3D reconstructed movie of the base of the 

crypt can be seen in appendix: movie 1. 
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Figure 3.13 Status of Lgr5/OLFM4
+
 stem cells in native colonic crypts.  A) Biopsies 

removed from patients undergoing colonoscopy or surgery were fixed and microdisscted 

into individual crypts.  The status of Lgr5 and OLFM4 stem cells was determined by 
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immunocytochemistry.  E-cadherin was used to label cell membranes to clearly indicate 

single cells within the crypt.  Lgr5
+
 and OLFM4

+
 cells labelled the same population of 

stem cells and resided mostly at the base of the crypt.  In the mid region of the crypts there 

seemed to be a cut-off point where stem cells were no longer found.  Arrows indicate cells 

that are positive for both Lgr5 and OLFM4 and label slender triangular shaped crypt base 

columnar cells (circled), * denotes goblet cells. B) Analysis of percentage of cell types in 

the colonic crypt. (*p=0.0, **p=0.002, ***p=0.005, ****p=0.011, N=4 crypts from 2 

patients). 

To validate the Lgr5 antibody, in situ hybridisation (ISH) for Lgr5 mRNA was carried out 

by a fellow laboratory member (Alyson Parris).  Native microdissected colonic crypts were 

processed by ISH for Lgr5 mRNA and on the same crypts immunocytochemistry was 

performed for OLFM4 protein.  Fig 3.14 shows that Lgr5 mRNA is observed in a few cells 

that are restricted to the base of the crypt and these cells also co-label with OLFM4.  This 

demonstrates that both Lgr5 antibody and probing for Lgr5 mRNA reveals a similar 

population of crypt base columnar cells that are restricted to the base of the crypt and co-

localise with OLFM4.  Therefore OLFM4 is used for most of the experiments within this 

project since it identifies the same population of intestinal stem cells as Lgr5. 
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Figure 3.14 Status of OLFM4/Lgr5 mRNA stem cells in native colonic crypts.  A) 

Biopsies removed from patients undergoing colonoscopy or surgery were fixed and 

microdisscted into individual crypts.  In situ hybridisation was performed to probe for 

Lgr5 mRNA and immunocytochemistry was used to label for OLFM4
+
 cells.  E-cadherin 

was used to label cell membranes to clearly indicate single cells within the crypt.  Lgr5
+
 

and OLFM4
+
 cells labelled the same population of stem cells and resided mostly at the 

base of the crypt.   Arrows indicate cells that are positive for both Lgr5 mRNA and 

OLFM4 and label slender triangular shaped crypt base columnar cells (circled), * denotes 

goblet cells. 
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To demonstrate that these OLFM4
+
 stem cells did not label other differentiated cells, 

native microdissected crypts were processed by immunocytochemistry for markers of 

differentiated cells in combination with OLFM4.  Muc2 was used to stain for goblet cells, 

CroA for enteroendocrine cells, COX1 for Tuft cells and FABP to label enterocyte cells 

(Fig 3.15).  The protein encoded by the Muc2 gene is secreted onto mucosal surfaces and 

is prominent in the gut where it is secreted from goblet cells and provides an insoluble 

mucous layer that protects the epithelium.  Co-labelling of Muc2 and OLFM4 reveals that 

OLFM4 is not a maker of goblet cells.  Two distinct populations of cells are labelled with 

the OLFM4
+
 cells interspaced with goblet cells and mostly residing at the base of the crypt.  

Chromogranin A is a member of the granin family of neuroendocrine secretory proteins 

and is located in secretory vesicles of enteroendocrine cells.  Double labelling of OLFM4 

with Chromogranin A (CroA) shows that only a few cells within the crypts are CroA 

positive and these do not label the same cells as OLFM4.  Tuft cells secrete opiods and 

produce enzymes that synthesise prostaglandins, therefore COX1 was used to label these 

cells.  Immunocytochemistry revealed a distinct population of tuft cells dispersed along the 

crypt axis that do not co-label with OLFM4.  The fatty acid-binding protein (FABP) is 

involved in lipid trafficking and metabolism and is highly expressed in enterocyte cells.  

Labelling of FABP with OLFM shows that these cell types do not label the same 

population of cells.  FABP
+
 cells are seen along the whole crypt axis whilst OLFM4

+ 
cells 

are restricted to the base of the crypt.  Green arrows in Fig 3.15 indicate an example of a 

single OLFM4
+
 cell, which red arrows indicate an example of the differentiated cells: 

goblet, enteroendocrine, tuft and enterocyte. 
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Figure 3.15 OLFM4 does not label differentiated cells.  A) Immunostaining for goblet cell 

marker Muc2 (red arrow) and OLFM4 (green arrow).  B) Immunostaining for 
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enteroendocrine cell marker CroA (red arrow) and OLFM4 (green arrow).  C) 

Immunostaining for tuft cell marker COX1 (red arrow) and OLFM4 (green arrow).  D) 

Immunostaining for enterocyte cell maker FABP (red arrow) and OLFM4 (green arrow).   

Immunostaining for OLFM4 revealed that stem cells are restricted to the lower third of the 

crypt.  To determine whether these cells are proliferating, native microdissected crypts 

were processed by immunocytochemistry for OLFM4 and the proliferation marker Ki67 

(Fig 3.16).  Analysis showed that OLFM4
+
 cells are restricted to the base of the crypt, 

about 30%, and only half of these cells are proliferating.  Only 1% of OLFM4
+
 cells are 

proliferative in the mid region, and none at the top of the crypt. 

 

 

Figure 3.16 Proliferative status of OLFM4
+
 stem cells.  A) Native microdissected crypts 

were processed by immnocytochemistry for OLFM4 and Ki67.  OLFM4
+
 cells were 
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restricted to the base of the crypt. B) Analysis shows that 30% of cells at the base of the 

crypt are OLFM4
+
, with half of these undergoing proliferation at any given time.  

(*p=0.001,** p=0.0, N=18 crypts from 3 patients). 

Having determined the location of Lgr5/OLFM4
+
 stem cells in native colonic crypts and 

their proliferative status, whether these stem cells are maintained in culture ex vivo was 

demonstrated by labelling for Lgr5 and OLFM4 in crypts cultured for 3 days.  Fig 3.17 

shows that Lgr5/OLFM4 labels cells restricted to the base of the crypt and are maintained 

in culture.   

 

Figure 3.17 Lgr5/OLFM4
+
 stem cells are maintained in culture.  A) Cultured crypts were 

processed by immnocytochemistry for OLFM4 and Lgr5.  Lgr5/OLFM4
+
 cells were 

restricted to the base of the crypt and labelled the same population of crypt base columnar 

cells.  

 

The functional effect of Wnt signalling on the stem cells was determined by culturing 

crypts in the presence of Wnt3a or the inhibitor IWP2 for 3 days.  The crypts were then 

fixed and processed by immunocytochemistry for Lgr5 to determine the consequences of 

Wnt stimulation and inhibition on stem cell status (Fig 3.18).  A gradient of Lgr5
+
 stem 
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cells was maintained in culture conditions reflecting the status of native microdissected 

crypts.  IWP2 suppressed Lgr5
+
 stem cells, whilst exogenous Wnt3a rescued the effects.     

 

 

Figure 3.18 Wnt signals maintain Lgr5
+
 stem cells.  A) Crypt bases showing Lgr5 

labelling.  IWP2 suppressed Lgr5 but was rescued by exogenous Wnt3a.  Scale bar 

represents 50μm.   B) Percentage of Lgr5
+
 cells was calculated for the different culture 

conditions.   * p=0.011, **p=0.0, *** p=0.001, **** p=0.002, (N=30 crypts from 3 

patients). Control media: IGF-1 (50ng/ml), Noggin (100ng/ml); R-Spondin 1 (500ng/ml), 

Wnt3a (100ng/ml), IWP2 (5μM) where indicated. 
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To determine whether OLFM4
+
 stem cells are still proliferating in culture after 3 days, 

crypts were cultured in Wnt3a or the Wnt inhibitor Dkk1.  The crypts were then fixed and 

processed by immunocytochemistry for OLFM4 and proliferation marker BrdU.  The 

percentage of OLFM4
+ 

stem cells was calculated from the total number of cells for the 

three regions of the crypt, and the percentage of those stem cells that were also 

proliferating was also calculated.  As can be seen in Fig 3.19, Wnt3a increases 

proliferation of stem cells whilst Dkk1 abolishes stem cells as well as Wnt3a stimulated 

stem cell proliferation. 

 

 

Figure 3.19 Dkk1 abolishes Wnt3a stimulated intestinal stem cell proliferation.  A) 

Crypts were cultured in Wnt3a or inhibited by Dkk1 and processed by immnocytochemistry 

for OLFM4.  The proliferative status of OLFM4
+
 cells was stimulated by Wnt3a and 
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inhibited by Dkk1.  Addition of Wnt3a to a Dkk1group does not rescue the proliferative 

status of OLFM4
+
 stem cells.  Scale bar represents 50μm.   B) Percentage of OLFM4

+
 

cells and their proliferative status was calculated for all culture condition groups.   

(*p=0.012, **p=0.001, N=18 crypts from 2 patients). Control media: IGF-1 (50ng/ml), 

Noggin (100ng/ml), R-Spondin 1 (500ng/ml); Wnt3a (100ng/ml) and Dkk1 (800ng/ml) 

where indicated. 

The maintenance of OLFM4
+
 stem cells can also be regulated by Notch signalling.  Notch 

signalling is involved in lineage sprecification, with its activation resulting in goblet cell 

depletion and Notch inhibition resulting in increase of goblet cells (Fig 1.11).  OLFM4 has 

also been shown to be under the control of Notch signalling.  The effects of Notch 

inhibition on the number of both OLFM4
+
 stem cells and goblet cells was determined by 

culturing crypts either in Wnt3a or DBZ, an inhibitor of Notch signalling.  After 3 days, 

crypts were fixed, processed by immunocytochemistry and labelled for OLFM4 and Muc2, 

a marker of goblet cells.  The percentages of both OLFM4+ cells and goblet cells was then 

calculated from the total number of cells and plotted in Fig 3.20 B and C.  Inhibition of 

Notch signalling with DBZ caused a significant increase in the number of goblet cells 

within the colonic crypts after 3 days in culture.  Concurrently, DBZ caused a dramatic 

loss of OLFM4
+
 stem cells, possibly due to the conversion of those stem cells to goblet 

cells. 
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Figure 3.20 Notch inhibition promotes conversion to goblet cells and loss of OLFM4
+
 

stem cells.  A) Crypts were cultured in Wnt3a or DBZ and processed by 

immnocytochemistry for OLFM4 and Muc2.  The percentage of goblet cells significantly 

increased with inhibition of Notch signalling whilst percentage of OLFM4
+
 cells was 

siginificantly lost.   Scale bar represents 50μm.   B) (*p=0.011, ** p=0.009, N=11 crypts 

from 3 patients).  C) (*p=0.0, **p=0.005 between N=7 crypts from 2 patients). Control 

media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml; 

DBZ (10mM) where indicated. 
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3.1.5 Wnt signalling maintains colonic crypt renewal  

Crypt renewal is maintained by a fine balance between stem cell proliferation, cell 

migration and differentiation, and cell shedding at the top of the colonic crypt.  Wnt 

signalling, along with BMP/TGFβ signalling are tight regulators of these processes.  The 

influence of Wnt signals on crypt length and morphology was investigated by culturing 

crypts in Wnt3a or the Wnt inhibitor Dkk1 for 3 days (Fig 3.21).  The contribution of R-

Spondin 1 and Wnt3a to the maintanance of crypt length is suppressed by Dkk1. 

 

 

Figure 3.21 Inhibition of Wnt signals compromises human colonic crypt morphology.   

A) Crypts were cultured either in the presence of Wnt3a and R-Spondin 1 or the Wnt 

inhibitor Dkk1.  B) Dkk1 suppressed the contribution of Wnt3a and R-Spondin1 to the 

maintenance of crypt length.  (*p=0.049, **p=0.009, ***p=0.043, N=50 crypts from 2 
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patients). Control media: IGF-1 (50ng/ml), Noggin (100ng/ml); R-Spondin 1 (500ng/ml), 

Wnt3a (100ng/ml), Dkk1 (800ng/ml) where indicated. 

To explore the link between crypt cell proliferation and migration and the contribution of 

Wnt signals, crypts were cultured under conditions that imposed different levels of 

proliferation and were observed under time-lapse microscope.  Crypt length and crypt cell 

proliferation were increased by Wnt3a, but crypt cell migration rate stayed constant even 

under culture conditions with less proliferative potential (Fig 3.22).   

 

Fig 3.22 Wnt signalling maintains crypt cell renewal.  A) Wnt3a increases crypt length in 

culture compared to control, *p=0.0.  B) Wnt3a stimulates cell mitosis, *p=0.0.  C) No 

significant difference in cell migration between the control and Wnt3a groups. Control 

media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml) 

where indicated. 
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Crypt cell shedding was observed by labelling of ‘live’ cultured crypts with live/dead 

fluorophores Calcein-AM and Propidium Iodide and immunolabelling fixed crypts for 

activated caspase-3 (Fig 3.23).  Cell shedding was observed in the upper region of the 

crypt.  Crypt cell proliferation in the lower half of the crypt is required to maintain a 

steady-state cell population by replenishing cells shed from the upper surface. 

 

Fig 3.23 Crypt cell shedding localised to the upper crypt region.  A) Hierarchy of 

Calcein-AM labelled ‘live’ cells (green) and PI-positive dead cells (red).  B) Cells at the 

crypt opening are positive for activated caspase-3.   

  

A B
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3.1.6 Discussion  

The processes by which the intestinal epithelium renews itself has been well described in 

the mouse, but the molecular and cellular mechanisms that govern tissue renewal in the 

human colonic epithelium are less well understood.  To gain a more detailed understanding 

of the processes of tissue renewal in health and disease, an ex vivo human tissue culture 

model is required that is amenable to bio-imaging and functional genomic approaches.  

Recently there has been the development of intestinal organoid culture systems that are 

predominantly composed of immature stem/progenitor cells that can be induced to 

differentiate by withdrawl of Wnt stimulation (20) (220). Complementary to these 

organoid culture systems, we have developed a culture model of near-native human 

colonic crypts that maintains its cellular hierarchy and morphogenic gradients ex vivo.  We 

found that addition of EGF to the culture media led to remodelling of human colonic crypt 

morphology with the development of multiple budding events that are characteristic of 

intestinal organoid growth (Fig 3.5).  Testing various combinations of growth factors in 

our culture media, with the aim of maintaining crypt length and morphology, we found that 

Wnt pathway activation with Wnt3a and R-Spondin 1, as well as BMP antagonist Noggin, 

the intestinotrophic factor IGF-1 and an ALK 4/5/7 inhibitor A83-01 was required to 

maintain crypt length and morphology for at least 7 days in culture (Fig 3.4). 

The role of Wnt signalling in regulating the renewal of human colonic epithelium was also 

explored.  The status of Wnt signalling components was investigated in native 

microdissected crypts and it was found that β-catenin labelled the basal and lateral 

membranes (Fig 3.1), similar to that found by Anderson et al. (249), as well as in the 

nucleus, the hallmark of activated Wnt signalling.  Nuclear β-catenin predominated at the 

base of the crypts and its expression was reduced along the crypt axis with significantly 

lower levels at the top of the crypt.  The two target genes axin II and c-Myc were also 

found to label in the nucleus and have higher expression at the base of the crypt and lower 

further up the crypt axis (Fig 3.2 and Fig 3.3). This means that activation of Wnt signalling 
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leads to accumulation of nuclear β-catenin which then activates oncogenes such as c-Myc 

which are involved in cell proliferation.  Stem cells have been found to reside at the base 

of the crypt, therefore activation of Wnt signalling means that these stem cells are activated 

to self-renew and maintain progeny further up the crypt axis.  Gregorrief et al. (142) and 

Holcombe et al. (127) who found that Wnt ligands such as Wnt3, Wnt9b and Wnt5a 

predominated at the base of the crypt along with the LRP5/6 coreceptors.  Previous work 

in our laboratory has shown that human colonic crypts have Wnt1, Wnt2, Wnt2b, Wnt3, 

Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7b and Wnt11 mRNA (21).  Farin et al. (25) have 

recently demonstrated that deletion of Paneth cell derived Wnt3 in the mouse intestinal 

epithelium showed no effect in vivo but was required for growth and sustainability in 

organoid in vitro culture.  Co-culturing of mesenchymal derived Wnt2b ligand restored the 

growth of organoids, thus demonstrating a compensatory mechanism in the stem cell niche 

that safeguards against stem cell dysfunction.   

The important role of the Wnt signalling pathway in maintaining crypt homeostasis was 

shown by Kuhnert et al. (2) who demonstrated that adenoviral expression of Dkk1, a Wnt 

antagonist, resulted in inhibition of proliferation and loss of crypts in the mouse colon and 

small intestine.  Dkk1 inhibition of Wnt signalling and proliferation was also observed in 

this study.  Dkk1 was found to inhibit expression of β-catenin even in the presence of 

Wnt3a ligand which otherwise stimulated β-catenin (Fig 3.6).  Dkk1 also prevents rescue 

of proliferation with exogenous Wnt3a ligand (Fig 3.10).  Pinto et al. (3) have also found 

that transgenic expression of Dkk1 results in greatly reduced epithelial proliferation and an 

absence of nuclear β-catenin as well as inhibition of c-Myc expression.  To corroborate 

these findings Koch et al. (150) also found that reduced expression of Dkk1 increased 

proliferation of epithelial cells and increased transcriptional activity of β-catenin. 

Chen et al. (250) have found that IWP2, a small molecule that inhibits the activity of 

Porcupine, a membrane-bound acyltransferase that is essential in the production of Wnt 

proteins, blocked the phosphorylation of the LRP6 receptor and Dvl2 as well as β-catenin 
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accumulation.  In this study, IWP2 was found to inhibit activity of Wnt signalling and 

proliferation of cells.  The Lenti-TCF/LEF GFP reporter is a preparation of ready-to-

transduce lentiviral particles which monitor the activity of Wnt signalling in cells through 

the binding of β-catenin to a (m)CMV promoter and tandem repeats of the TCF/LEF 

transcriptional response element.  It was found that IWP2 inhibited endogenous levels of 

Wnt signalling but this could be rescued by addition of Wnt3a ligand (Fig 3.7).  The effect 

of IWP2 on the Wnt target gene axin II was also investigated.  It was found that IWP2 

significantly inhibited expression of axin II, even in the presence of Wnt3a ligand (Fig 

3.8).  Covey et al. (251) have found that knockdown of Porcupine with IWP2 also inhibits 

proliferation and growth of a number of epithelial cancer cell lines.  In our human colonic 

crypts, IWP2 was found to significantly inhibit proliferation of cells through the inhibition 

of Wnt protein production.  Exogenous addition of Wnt3a ligand overcame this inhibition 

and significantly maintained the level of proliferation in cultured crypts. 

Disruption of the Wnt signalling pathway via β-catenin/TCF4 activity has been shown to 

induce a rapid G1 arrest and blockage of a genetic programme that is physiologically 

active in the proliferative compartment of colonic crypts and induce an intestinal 

differentiation programme instead (140).  Korinek et al. (252) have also shown that mice 

deficient for the TCF4 transcription factor completely lack proliferative cells in the fetal 

small intestinal epithelium suggesting that β-catenin/TCF4 signalling is essential for 

maintaining the proliferative/undifferentiated state of intestinal epithelial cells.  In isolated 

crypts it is possible to interfere with β-catenin signalling by transfection of a dominant 

negative version of TCF4.  In this study, we disrupted β-catenin/TCF4 activity by use of a 

dnTCF4 adenovirus on isolated colonic crypts.  Proliferation of cells was significantly 

inhibited with dnTCF4 (Fig 3.12) as well as the Wnt target gene axin II (Fig3.9).  In their 

study of the expression pattern of Wnt signalling components, Gregorrief et al. (142) found 

unexpectedly that TCF4 was abundant in differentiated cells on the surface epithelium and 

that expression dimished in the lower half of the crypts.  Barker et al. (47) also found high 
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expression of TCF4 at the top of the crypt.   Angus-Hill et al. (164) suggest that TCF4 acts 

as a tumour suppressor by modulation proliferation.  They show that loss of TCF4 early in 

development and in adult colon results in increased cell proliferation and leads to colon 

tumourigenesis.  Their model suggests that low levels of TCF4 favor normal intestinal cell 

proliferation whilst high levels of TCF4 protein epithelial cell differentiation. 

It has recently been demonstrated that the Wnt signalling pathway can also be activated by 

the R-Spondin family of secreted ligands.  The CR domain of the R-Spondin proteins is 

primarily responsible for activation of Wnt signalling.  Deletion of one or two furin-like 

motifs of the CR domain of R-Spondin abolishes its activity to activate canonical Wnt 

signalling (253) (254).  Nam et al. (151), Binnerts et al. (255) and Wei et al. (256) have all 

demonstrated the requirement of LRP5/6 receptors to transmit R-Spondin activation of the 

canonical Wnt signalling pathway.  R-Spondin 1 renders the cells more sensitive to low 

levels of Wnt ligand by modulating the LRP6 receptor by interacting with Kremen 1 and 

antagonising Dkk1.  This interaction interferes with LRP6 internalisation which results in 

increased LRP6 levels at the cell surface.  In this study IWP2 was used to inhibit Wnt 

signalling and lead to significantly reduced cell proliferation (Fig 3.11), and addition of R-

Spondin 1 to the culture media led to an increase in proliferation, possibly by rendering the 

cells more sensitive to any Wnt ligands that were not inhibited by IWP2.  This result is 

similar to that obtained by Kim et el. (257) who found that R-Spondin 1 induced a 

dramatic increase in proliferation of intestinal crypt epithelial cells.  R-Spondin 1 has also 

been shown to have strong mitogenic activity on Lgr5
+ 

cells of the intestinal crypts (67) 

and hair follicles (258) by supporting survival and proliferation in vitro through activation 

of Wnt signalling.  Our investigations revealed that R-Spondin 1, especially in 

combination with Wnt3a, significantly maintained Lgr5
+
 stem cells in culture and rescued 

the inhibitory effects of IWP2 (Fig 3.18).   Several studies have also shown that R-Spondin 

proteins are also the ligands for Lgr4, 5 and 6 receptors.  Carmon et al. (6) demonstrate 

that Lgr4 and Lgr5 bind to R-Spondins with high affinity and mediate the potentiation of 
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Wnt signalling by enhancing Wnt-induced LRP6 phosphorylation.  More recently they 

report that following costimulation with the ligands R-spondin1 and Wnt3a, Lgr5 interacts 

and forms a supercomplex with the Wnt coreceptors LRP6 and Fzd5 which is rapidly 

internalized and then degraded through a dynamin- and clathrin-dependent pathway. 

Deletion of the C-terminal tail of Lgr5 maintained its ability to interact with LRP6, yet this 

Lgr5 mutant exhibits increased signaling activity and a decreased rate of endocytosis in 

response to R-spondin1 compared to the wild-type receptor. Their study therefore provides 

direct evidence that Lgr5 becomes part of the Wnt signaling complex at the membrane 

level to enhance Wnt signalling (259).  Ruffner et al. (260) also identified Lgr4 as a 

cognate receptor of R-Spondin. They found that depletion of Lgr4 completely abolished R-

Spondin-induced β-catenin signalling and that loss of Lgr4 could be compensated by 

overexpression of Lgr5, suggesting that Lgr4 and Lgr5 are functional homologs. They 

further demonstrated that R-Spondin binds to the extracellular domain of Lgr4 and Lgr5, 

and that overexpression of Lgr4 strongly sensitizes cells to R-Spondin-activated β-catenin 

signalling.  

Lineage tracing (4), propagation of self-renewing intestinal organoids (67) and 

transplantation assays (68) have defined Lgr5 as a marker of proliferative intestinal stem 

cells.  Barker et al. (65) also identified Lgr5
+
 stem cells at the base of pyloric glands of the 

stomach which lineage tracing experiments revealed gave rise to all differentiated stomach 

epithelial cells.  Wnt signalling is also involved in hair follicle stem cell biology, and since 

Lgr5 is a Wnt target gene, it is no surprise that Jaks et al. (258) found Lgr5 expression in 

the hair follicle at sites where hair growth is initiated.  Again, lineage tracing showed that 

Lgr5
+ 

stem cells generated all hair follicle lineages.  All the tissues where Lgr5 has been 

identified as a stem cell marker share the characteristics of rapidly proliferating epithelia 

and the stem cell niche allows unidirectional displacement if daughter cells (152).  These 

studies were carried out on mice, which although informative, do not reveal the status of 

Lgr5 in human tissue.  In our study, the expression of Lgr5 was investigated on native 

http://www.ncbi.nlm.nih.gov/pubmed/22815884
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human microdissected crypts and on isolated crypts that were kept in culture ex vivo.  

Immunocytochemistry on native microdissected crypts revealed Lgr5 expression on 

slender crypt base columnar cells at the base of the crypt (Fig 3.13).  Analysis of the 

percentage of Lgr5
+ 

cells versus other differentiated cell types revealed that around 30% of 

Lgr5
+
 stem cells reside at the base of the crypt and decreasing along the crypt axis, with 

none found at the top of the crypt.  Conversly, the other cell lineages although also found 

to be about 30% at the base of the crypt, increase along the crypt axis.  In situ 

hybridisation for Lgr5 mRNA also revealed these Lgr5
+
 stem cells to reside at the base of 

the crypt with none found at the top (Fig 3.14).  In the mouse small intestine, Lgr5
+
 stem 

cells are found interspersed between Paneth cells which have been shown to provide stem 

cell niche factors such as Wnt3a (34). The colon lacks Paneth cells, so we found the Lgr5
+
 

cells to be interspersed between goblet cells.  Some of these goblet cells could secrete 

niche factors that still support the Lgr5
+
 stem cells.  Rothenberg et al. (35) have recently 

found goblet cells that contained a distinct cKit/CD117
+
 crypt base subpopulation that 

expressed Dll1, Dll4 and EGF which are also found in Paneth cells that are also marked by 

cKit.  They found that these cKit
+
 goblet cells were interdigitated with Lgr5

+
 stem cells.  

Along with the detection of Lgr5
+
 stem cells in native microdissected crypts, we found that 

isolated cultured colonic crypts also maintained Lgr5
+
 stem cell expression when cultured 

in Wnt3a and R-Spondin 1.   

Differential gene expression profile for Lgr5 stem cells and their daughter cells revealed 

that OLFM4 was also enriched in the Lgr5
+
 cells (48).  Using in situ hybridisation, Van 

Der Flier et al. (48) found OLFM4 expression in the small intestine and colon in crypt base 

columnar cells that were also positive for Lgr5.  OLFM4 has also been found to be highly 

expressed in a subset of cells in colorectal carcinomas with its expression much higher in 

these tumour cells than in wild-type crypt base columnar cells.  In our study we 

investigated whether OLFM4 does indeed label the same population of cells as Lgr5.  

Immunocytochemistry performed on native microdissected crypts showed that indeed 



143 
 

OLFM4 and Lgr5 mark the same population of crypt base columnar cells (Fig 3.13 and 

3.14).  Co-labelling with E-cadherin to visualise single cells easier revealed that these 

OLFM4/Lgr5
+
 cells are slender, almost triangular shaped and reside at the crypt base.  

OLFM4 is a secreted molecule so as well as intracellular OLFM4 being observed, there 

was some OLFM4 protein at the apical pole of the cells and some in the lumen that was 

flushed out of the crypt as the cell makes more protein.  OLFM4 has been shown to be 

upregulated in inflammatory bowel disease mucosa and secreted into the mucous as a 

protective role by binding defensins in the mucous (75).  We also show that OLFM4, just 

like Lgr5 is maintained in isolated cultured crypts (Fig 3.17) and the double-labelling of 

OLFM4 and Lgr5 in the same population of cells confirms the results seen in native human 

crypts.  To demonstrate that these OLFM4
+
 stem cells are not in fact a lineage of 

differentiated cell of the colonic crypt, native microdissected crypts were processed by 

immunocytochemistry and double labelled with a known marker of the four differentiated 

cell types (Fig 3.15).  Double labelling of OLFM4 with Muc2, CroA, Cox1 and FABP 

revealed that the OLFM4
+
 cells are a distict population of cells that only label Lgr5

+
 crypt 

base columnar cells.  OLFM4 has also been shown to be under the control of Notch 

signalling (261).  Notch signalling is involved in lineage specification, with its activation 

resulting in goblet cell depletion and inhibition resulting in increase of goblet cells.  We 

found that inhibiting Notch signalling with DBZ resulted in a significant increase in the 

number of goblet cells and a dramatic loss of OLFM4
+ 

stem cells (Fig 3.20).  This result 

was also found by VanDussen et al. (261) who showed that Notch inhibition led to 

differentiation of epithelial progenitors into secretory cell types and induced a rapid crypt 

base columnar cell loss (OLFM4
+
) with reduced proliferation, apoptotic cell death and 

reduced efficiency of organoid initiation. 

Crypt base columnar stem cells have been shown to be rapid-cycling with Lgr5
+
 cells 

having an average cycling time of one day (4).  Since OLFM4 labels the same population 

of cells as Lgr5, we found that colabelling of OLFM4 with the proliferation marker Ki67 
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showed that approximately half of total OLFM4
+
 cells were undergoing proliferation (Fig 

3.16).  In cultured crypts this proliferative status of OLFM4
+
 stem cells was increased by 

Wnt signalling but inhibited with Dkk1 (Fig 3.19).  Takashima et al. (262) show that 

activation of Wnt signalling with R-Spondin 1 increased the number of OLFM4
+
 stem cells 

in crypts as well as an increased number of Ki67
+
 cycling cells.  R-Spondin 1 also 

enhanced repopulation of OLFM4
+
 stem cells after mucosal injury with bone marrow 

transplantation.  

The role of Wnt signalling on cell renewal was investigated by culturing crypts in Wnt 

pathway activators (Wnt3a and R-Spondin 1) and measuring crypt length after several days 

in culture (Fig 3.21) or monitoring the cultured crypts for 24 hrs by real-time time-lapse 

microscopy (Fig 3.22).  Crypt length was maintained by Wnt signals and this was due to 

maintainance of cell proliferation, as measured by counting number of cell mitoses per 

hour.  Although Wnt3a may have maintained proliferation compared to control, no 

difference was made to the rate of migration of cells within the crypt.    Crypt cell shedding 

was observed by labelling of ‘live’ cultured crypts Calcein-AM and Propidium Iodide and 

immunolabelling fixed crypts for activated caspase-3 (Fig 3.23).  We observed that cell 

shedding occurred in the upper region of the crypt.  This suggests that crypt cell 

proliferation in the lower half of the crypt is required to maintain a steady-state cell 

population by replenishing cells shed from the upper surface, but does not appear to drive 

crypt cell migration. 

In this chapter, the role of Wnt signalling in regulating intestinal stem cell status and tissue 

renewal was demonstrated.  Exogenous Wnt ligand was required for human colonic crypt 

culture and the maintanance of Wnt signalling gradient sustained the hierarchy of tissue 

renewal for at least 7 days.  Cultured crypts exhibited basal levels of Wnt signal activation, 

stem cell marker expression and cell proliferation, all of which were abolished by IWP2, 

an inhibitor of Wnt ligand secretion.  A number of Lgr5
+
/OLFM4

+
 stem cells were 
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identified at the crypt base that were interspersed between goblet-like cells and were 

maintained in culture by Wnt signals (Fig 3.24). 

 

Fig 3.24 Wnt signals maintain intestinal stem-cell driven tissue renewal.  Wnt signalling 

predominates at the crypt base.  Wnt signals maintain stem cells and cell proliferation.  

Wnt signalling inhibitors IWP2 and Dkk1 supress expression of Wnt target genes, stem cell 

status and cell proliferation. 
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3.2 BMP/TGFβ signalling regulated tissue renewal 

3.2.1 Introduction 

Along with the Wnt signalling pathway, BMP and TGFβ signalling pathways have been 

implicated in regulating the hierarchy of intestinal tissue renewal.  An analaysis of gene 

expression patterns of normal human colonic crypt bases and tops has revealed expression 

of signalling pathway activators and inhibitors that are predicted to establish morphogenic 

gradients along the human colonic colonic crypt-axis (74).  In mice, it has been shown that 

BMP/TGFβ signals predominate at the top of the crypt where they are thought to influence 

crypt cell positioning, differentiation and apoptosis.  The reciprocal inhibition of Wnt and 

BMP/TGFβ pathways appear to maintain the hierarchy of tissue renewal along the crypt-

axis.  Migration, differentiation and compartmentalisation along the crypt-axis has been 

shown to be controlled by TGFβ and Wnt gradients, with TGFβ controlling cell 

polarisation proteins and Wnt controlling the expression of EphB sorting receptors (109).   

Patients with mutations in the BMP signalling pathway develop juvenile polyposis which 

increases the risk of developing cancer and loss of SMAD4 and pSMAD1,5,8 is also 

associated with progression to adenocarcinomas.  Loss of TGFβ receptors in intestinal cells 

has been shown to promote the invasion and malignant transformation of tumours that 

were initiated by APC mutation (207).  Thus Wnt signalling deregulation and BMP/TGFβ 

signalling inactivation cooperate to drive the initiation and progression of intestinal 

cancers.  

A detailed knowledge of the role of BMP/TGFβ signalling pathways in stem cell-driven 

tissue renewal in the human colonic epithelium is still lacking.  Therefore, using our near-

native human colonic culture model, the role of BMP/TGFβ pathways on Wnt gene 

expression, stem cell maintaince and cell proliferation will be investigated in this chapter. 
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3.2.2 Functional role of BMP signalling in human colonic crypts 

To investigate the BMP signalling status in human colonic crypts, colonic biopsies were 

fixed and microdissected into individual crypts.  Immunocytochemistry was performed on 

the microdissected crypts to label for p-SMAD1,5,8, a marker for the in vivo signalling 

status of BMP signalling.  Nuclear immunofluorescence intensity was measured and 

normalised to the base of the crypt (Fig 3.25).  Analysis revealed that there is low p-

SMAD1,5,8 activation at the base of the crypt, but increases along the crypt-axis with 

higher levels in the upper region of the crypt.   

 

 

Figure 3.25 BMP signalling status in vivo.  A) Nuclear p-SMAD1,5,8 is the hallmark of 

activated BMP signalling.  Biopsies were fixed, microdissected into single crypts, 
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processed by immunocytochemistry and labelled for p-SMAD1,5,8.  Scale bar represents 

50μm.  B) Analysis of nuclear p-SMAD1,5,8 along the crypt axis.  Nuclear fluorescence 

intensity measurements from each region of the crypt were normalised to the base of the 

crypt.  (*p=0.027, N=3 crypts from 2 patients). 

In the mouse, it has been suggested by He et al. (8) that BMP signalling inhibits intestinal 

stem cell self-renewal though activation of PTEN which leads to the suppression of Wnt 

signalling.  It is only by overcoming this suppression with transient expression of noggin, a 

BMP antagonist, which leads to Akt activation that enhances nuclear β-catenin activity and 

promoting stem cell self-renewal and proliferation.  Therefore the effect of noggin on BMP 

signalling was determined by culturing crypts with noggin and/or BMP4 for 3 days.  These 

crypts were then fixed and processed by immnocytochemistry for pSMAD1,5,8 and 

nuclear fluorescence intensity of pSMAD1,5,8 measured and normalised to the crypt base 

of the control group (Fig 3.26).  BMP4 significantly increased levels of nuclear 

pSMAD1,5,8, which was suppressed by noggin.  Noggin also suppressed endogenous 

levels of pSMAD1,5,8 suggesting there is a low level of BMP signalling in cultured crypts.   
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Figure 3.26 Noggin suppresses BMP signalling.  A) Crypts were cultured in BMP4 

and/or the BMP antagonist noggin for 3 days.  Crypts were processed by 

immunocytochemistry and labelled for pSMAD1,5,8.  Scale bar represents 50μm.  B) 

Analysis of nuclear pSMAD1,5,8 along the crypt axis.  Nuclear fluorescence intensity 

measurements from each region of the crypt were normalised to the crypt base of the 

control group.  BMP4 increased levels of pSMAD1,5,8 which was suppressed by addition 

of noggin.  (*p<0.05 in all regions of crypt, **p<0.05 in all regions of crypt, N=25 crypts 
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from 2 patients).  Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a 

(100ng/ml); Noggin (100ng/ml) and BMP4 (100ng/ml) where indicated. 

Since BMP signalling is involved in cell differentiation and suppression of stem cell 

proliferation, it has the reciprocal function of Wnt signalling.  Therefore, to determine the 

effect of BMP signalling and its inhibition on Wnt target genes, crypts were cultured in 

BMP4 or the BMP antagonist noggin for 3 days, processed by immunocytochemistry and 

labelled for β-catenin (Fig 3.27) or axin II (Fig 3.28).  Noggin significantly increased 

levels of β-catenin probably by inhibiting levels of endogenous BMP signals.  BMP4 also 

inhibited the Wnt target gene axin II which was rescued by addition of noggin.  Noggin 

increased levels of axin II probably by inhibiting the endogenous levels of BMP signals. 
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Figure 3.27 Noggin inhibits BMP signalling.  A) Crypts were cultured in BMP4 and/or 

the BMP antagonist noggin for 3 days.  Crypts were processed by immunocytochemistry 

and labelled for β-catenin.  Scale bar represents 50μm.  B) Analysis of nuclear β-catenin 

along the crypt axis.  Nuclear fluorescence intensity measurements from each region of the 

crypt were normalised to the crypt base of the control group.  Noggin increased levels of 

β-catenin probably by suppressing levels of endogenous BMP signals.  (*p=0.049, N=8 

crypts from 2patients). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a 

(100ng/ml); Noggin (100ng/ml) and BMP4 (100ng/ml) where indicated. 
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Figure 3.28 BMP4 inhibits Wnt signalling.  A) Crypts were cultured in BMP4 and/or the 

BMP antagonist noggin for 3 days.  Crypts were processed by immunocytochemistry and 

labelled for axin II.  Scale bar represents 50μm.  B) Analysis of nuclear axin II along the 

crypt axis.  Nuclear fluorescence intensity measurements from each region of the crypt 

were normalised to the crypt base of the control group.  BMP4 inhibited axin II whilst 

noggin increased levels of axin II probably by suppressing levels of endogenous BMP 

signals.  The inhibitory effects of exogenous BMP4 were rescued by addition of noggin.  

(*p=0.002, **p=0.017, ***p=0.042, N=18 crypts from 2 patients). Control media: IGF-1 

(50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml); Noggin (100ng/ml) and BMP4 

(100ng/ml) where indicated. 
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3.2.3 Role of BMP signalling in crypt renewal 

The levels of pSMAD1,5,8 were found to be low at the base of the crypt and high in the 

top region in a reciprocal manner to that of Wnt target genes β-catenin and axin II.  This 

suggests that BMP pathway activation may favour cell cycle withdrawl. BMP signals are 

kept low at the base of the crypt by BMP antagonists such as noggin.  To investigate the 

effects of BMP signalling on stem cells, crypts were cultured either in BMP4 and/or 

noggin for 3 days.  Crypts were then processed by immunocytochemistry and labelled for 

the stem cell marker OLFM4 (Fig 3.29).  Noggin increased the number of OLFM4
+
 stem 

cells that were otherwise inhibited by endogenous levels of BMP signals (control).  

Addition of exogenous BMP4 completely abolished the stem cells in the crypts, but this 

effect was rescued by the addition of noggin. 
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Figure 3.29 BMP4 inhibits OLFM4
+
 stem cells.  A) Crypts were cultured in BMP4 and/or 

the BMP antagonist noggin for 3 days.  Crypts were processed by immunocytochemistry 

and labelled for OLFM4.  Scale bar represents 50μm.  B) Noggin increases number of 

OLFM4
+
 stem cells which otherwise diminish after 3 days in culture possibly due to 

endogenous BMP signals.  BMP4 completely abolishes OLFM4
+
 stem cells but this 

inhibitory effect is rescued by noggin. (*p=0.039, **p=0.0, *** p=0.041, ****p=0.001, 

N=17 crypts from 2 patients). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), 

Wnt3a (100ng/ml); Noggin (100ng/ml) and BMP4 (100ng/ml) where indicated. 
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To determine the effects of BMP signalling on crypt cell proliferation, isolated crypts were 

cultured either in BMP4 or noggin for 3 days.  On day 2-3 the proliferation marker BrdU 

was added to the media for 24 hrs.  Crypts were then fixed, processed by 

immunocytochemistry and labelled for BrdU (Fig 3.30).  Noggin significantly increased 

crypt proliferation compared to control, whilst BMP4 completely abolished proliferation 

after 3 days in culture.  The low proliferation rate in the control crypt could be due to the 

endogenous levels of BMP signals that accumulate after several days in culture, which 

inhibit Wnt signalling and therefore proliferation.  The inhibitory effects of BMP4 

however were rescued by the addition of noggin. 
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Figure 3.30 BMP4 inhibits proliferation.  A) Crypts were cultured in BMP4 and/or the 

BMP antagonist noggin for 3 days.  Crypts were processed by immunocytochemistry and 

labelled for BrdU.  Scale bar represents 50μm.  B) Noggin increases proliferation of cells 

which otherwise diminish after 3 days in culture possibly due to endogenous BMP signals.  

BMP4 completely abolishes proliferaion but this inhibitory effect is rescued by noggin.  

(*p=0.000, **p=0.003, N=17 crypts from 2 patients). Control media: IGF-1 (50ng/ml), R-

Spondin 1 (500ng/ml), Wnt3a (100ng/ml); Noggin (100ng/ml) and BMP4 (100ng/ml) 

where indicated. 
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This increase of proliferation as well as number of stem cells with noggin suggests that 

renewal of the colonic crypt is maintained in culture over several days.  The effect of 

inhibited proliferation due to BMP4 or the increase of proliferation and number of stem 

cells can be determined by looking at the morphology and length of crypts after those 3 

days in culture.  Fig 3.31 shows the morphology of crypts in the different culture 

conditions after 3 days.  BMP4 inhibits proliferation and therefore the overall length on the 

crypt is shortened compared to control crypts.  Addition of noggin means that BMP signals 

are inhibited and Wnt signalling can be transactivated and lead to activation of stem cell 

self-renewal and promotion of proliferation.  Crypt length and morphology is therefore 

maintained.  The crypts are longer compared to control crypts due to endogenous levels of 

BMP signals that accumulate when noggin is not present leading to crypt shortening over 

time due to reduced proliferation and self-renewal and stem cells.  Noggin is a potent 

inhibitor of BMP signalling, so as can be seen it rescues the effects caused by BMP4 when 

both are added to the culture media.   
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Figure 3.31 Noggin maintains crypt morphology and length.  A) Crypts were cultured in 

BMP4 and/or the BMP antagonist noggin for 3 days.  Crypt length was measured on day 3 

of the experiment and normalised against the control crypts.  Scale bar represents 50μm.  

B) Noggin increases crypt length and morphology, whilst BMP4 leads to crypt shortening.  

Noggin also rescues the detrimental effects of BMP4.  (*p=0.041, **p=0.001, ***p=0.0, 

****p=0.016, *****p=0.004, N=14 crypts from 2 patients). Control media: IGF-1 

(50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml); Noggin (100ng/ml) and BMP4 

(100ng/ml) where indicated. 
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3.2.4 Functional role of TGFβ/Activin signalling in human colonic crypts 

TGFβ signalling is involved in cell differentiation and apoptosis by maintaining a 

reciprocal gradient with Wnt signalling to ensure cells within the crypt are kept in the 

correct compartment for proliferation, migration and then shedding at the top.  In the 

mouse small intestine, the presence of TGFβ signals and the absence of Wnt signalling in 

the villus compartment results in rapid cell cycle arrest and differentiation, with SMAD4 

and TCF4 being the dominant switch between the proliferative progenitor and the 

differentiated epithelial cells (109).  To determine the status of TGFβ signalling in human 

colonic crypts, biopsies were removed from patients undergoing colonoscopies and 

immediately fixed.  Biopsies were then microdissected into single crypts, processed by 

immnocytochemistry and labelled for pSMAD2,3 (Fig 3.32).  Although no gradient can be 

seen along the crypt axis, there is a slightly higher level of pSMAD2,3 at the top of the 

crypt compared to the base.   
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Figure 3.32 TGFβ signalling status in vivo.  A) Nuclear pSMAD2,3 is the hallmark of 

activated TGFβ signalling.  Biopsies were fixed immediately following removal from the 

patient, microdissected into single crypts, processed by immunocytochemistry and labelled 

for pSMAD2,3.  Scale bar represents 50μm.  B) Analysis of nuclear pSMAD2,3 along the 

crypt axis.  Nuclear fluorescence intensity measurements from each region of the crypt 

were normalised to the crypt base.  No gradient is observed along the crypt axis.  (N=4 

crypts from 2 patients). 
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To investigate the consequences of TGFβ signalling activation and inhibition on colonic 

crypts, isolated crypts were cultured either in TGFβ or the Alk receptor 4/5/7 inhibitor 

A83-01 for 3 days.  A83-01 has been found to inhibit SMAD signalling and epithelial-to-

mesenchymal transition by TGFβ (263).  Fig 3.33 shows that TGFβ activates the TGFβ 

signalling pathway by increasing levels of pSMAD2,3 within the cells.   The control crypts 

seem to have a basal level of pSMAD2,3 which could account for the reason that over time 

the crypts shorten in length and have decreased proliferation and stem cell number (data 

shown later in chapter).  Addition of A8-01 reduces the level of pSMAD2,3 activation and 

this is maintained even when TGFβ is present. 
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Figure 3.33 A83 inhibits TGFβ/SMAD signalling.  A) Crypts were cultured in TGFβ 

and/or A83-01 for 3 days.  Crypts were then processed by immunocytochemistry and 

labelled for pSMAD2,3.  Scale bar represents 50μm.  B) Analysis of nuclear pSMAD2,3 

along the crypt axis.  Nuclear fluorescence intensity measurements from each region of the 

crypt were normalised to the crypt base of the control group.  TGFβ significantly 

increased levels of pSMAD2,3.  (*p=0.0, **p=0.0, N=22 crypts from 2 patients). Control 

media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml), Noggin (100ng/ml); 

TGFβ (20ng/ml) and A83-01 (0.5μM) where indicated. 
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As with BMP signalling, TGFβ signalling has the reciprocal effect on proliferation and 

stem cell activation to that of Wnt signalling.  The transactivating effect of TGFβ on Wnt 

signalling can be determined by looking at expression of the Wnt target gene axin II.  

Isolated crypts were cultured either in the presence of TGFβ or the Alk 4/5/7 inhibitor 

A83-01, processed by immunocytochemistry and labelled for axin II (Fig 3.34).  Analysis 

revealed that TGFβ significantly decreased axin II expression whilst A83-01 increased 

axin II expression presumably by inhibiting any endogenous TGFβ ligands.  A83-01 also 

rescued the inhibitory effects of TGFβ by restoring axin II expression to that of the control 

group. 
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Figure 3.34 TGFβ inhibits Wnt target gene axin II.  A) Crypts were cultured in TGFβ 

and/or A83-01 for 3 days.  Crypts were then processed by immunocytochemistry and 

labelled for axin II.  Scale bar represents 50μm.  B) Analysis of nuclear axin II along the 

crypt axis.  Nuclear fluorescence intensity measurements from each region of the crypt 

were normalised to the crypt base of the control group.  TGFβ significantly reduced axin II 

expression.  (*p=0.039, **p≤0.031 in all regions of crypts N=8 crypts from 1 patient). 

Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml), Noggin 

(100ng/ml); TGFβ (20ng/ml) and A83-01 (0.5μM) where indicated. 
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Another ligand and member of the TGFβ signalling family is activin, which also has a role 

in cell differentiation and apoptosis.  It binds to a type II activin receptor which activates 

and phosphorylates the type I activin receptor.  SMAD 2 and 3 are then phosphorylated 

and activated and bind with SMAD 4 which translocates to the nucleus.  To reaffirm the 

effect of TGFβ signalling on the inhibition of Wnt signalling, the effects of activin on Wnt 

target gene axin II expression was investigated.  Isolated crypts were cultured either in the 

presence of activin or A83-01 for 3 days, processed by immunocytochemistry and labelled 

for axin II (Fig 3.35).  Like the TGFβ ligand, activin significantly suppressed axin II 

expression and A83-01 rescued the inhibitory effects of activin. 
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Figure 3.35 Activin inhibits Wnt target gene axin II.  A) Crypts were cultured in activin 

and/or the Alk 4/5/7 inhibitor A83-01 for 3 days.  Crypts were then processed by 

immunocytochemistry and labelled for axin II.  Scale bar represents 50μm.  B) Analysis of 

nuclear axin II along the crypt axis.  Nuclear fluorescence intensity measurements from 

each region of the crypt were normalised to the crypt base of the control group.  Activin 

significantly reduced axin II expression whilst A83 rescued the inhibitory effects of activin. 

(*p<0.05 in all regions of crypt, **p<0.05 in all regions of crypt, ***p<0.05, N=9 crypts 

from 1 patient). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a 

(100ng/ml), Noggin (100ng/ml); TGFβ (20ng/ml) and A83-01 (0.5μM) where indicated. 
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3.2.5 Role of TGFβ/Activin signalling in crypt renewal 

As mentioned before, TGFβ signalling has an opposing role to Wnt signalling by inhibiting 

stem cell self-renewal and proliferation of cells and promoting cell differentiation and 

apoptosis as well as epithelial-to-mesenchymal transition.  To investigate the consequences 

of TGFβ signalling on maintenance of stem cells in culture, isolated crypts were cultured 

in TGFβ ligand or A83-01 for 3 days, processed by immunocytochemistry and labelled for 

OLFM4 (Fig 3.36).  A83-01 increased the number of OLFM4
+ 

stem cells, whilst TGFβ 

completely abolished all the stem cells in culture.  TGFβ (and BMP4) also suppressed Lgr5 

immunolabelling (Fig 3.37). 
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Figure 3.36 TGFβ abolishes OLFM4
+
 stem cells.  A) Crypts were cultured in TGFβ 

and/or A83-01 for 3 days.  Crypts were then processed by immunocytochemistry and 

labelled for OLFM4.  Scale bar represents 50μm.  B) Percentage of OLFM4
+
 stem cells.  

A83-01 maintains number of OLFM4
+
 stem cells whilst TGFβ completely abolished 

OLFM4
+
 stem cells in culture.  A83-01 also rescued the inhibitory effects of TGFβ on the 

maintenance of stem cells.  (*p=0.023, **p=0.013, ***p=0.003, N=1 crypts from 2 

patients). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml), 

Noggin (100ng/ml); TGFβ (20ng/ml) and A83-01 (0.5μM) where indicated. 
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Figure 3.37 TGFβ pathway activation or BMP pathway activation suppresses Lgr5 

immunolabelling.  Crypts were cultured either in TGFβ or BMP4 for 3 days.  Crypts were 

then processed by immunocytochemistry and labelled for Lgr5.  Scale bar represents 

50μm.  (N=4 crypts from 2 patients). Control media: IGF-1 (50ng/ml), R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml); BMP4 (100ng/ml), TGFβ (20ng/ml) where indicated. 

To investigate the consequences of TGFβ signalling on proliferation of cells in culture, 

isolated crypts were culture in TGFβ ligand or A83-01 for 3 days, processed by 

immunocytochemistry and labelled for BrdU (Fig 3.38).  A83-01 significantly increased 

proliferation of cells in culture whilst TGFβ completely abolished proliferation.  The crypts 

in TGFβ also started to lose their polarity and overall morphology, possibly due to the 

TGFβ activating epithelial-to-mesenchymal transition.  A83-01 significantly rescued the 

effects of TGFβ on both proliferation and morphology.  The control crypts have 

significantly lower proliferation of cells compared to the A83 group possibly due to the 

endogenous levels of TGFβ ligands that accumulate in culture which would inevitably 

inhibit Wnt ligands that promote proliferation. 
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Figure 3.38 TGFβ abolishes proliferation.  A) Crypts were cultured in TGFβ and/or A83-

01 for 3 days.  Crypts were then processed by immunocytochemistry and labelled for 

BrdU.  Scale bar represents 50μm.  B) Percentage of BrdU
+
 proliferating cells.  A83-01 

increased proliferation of cells whilst TGFβ completely abolished it.  A83-01 also 

significantly rescued the inhibitory effects of TGFβ. (*p=0.0, N=21 crypts from 2 

patients). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml), 

Noggin (100ng/ml); TGFβ (20ng/ml) and A83-01 (0.5μM) where indicated. 
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To demonstrate that TGFβ ligand is responsible for the inhibition effects on proliferation 

of cells and that A83-01 targets the TGFβ signalling pathway, the effects of TGFβ were 

inhibited by addition of an antibody against TGFβ.  This was done by culturing the crypts 

with TGFβ antibody to inhibit any endogenous TGFβ ligands.  A83-01 was used as a 

positive control to show that a similar level of inhibition of TGFβ can be achieved by 

another inhibitor of TGFβ signalling.  COX2 antibody was used as another control to 

demonstrate that only the specific antibody against TGFβ will block the effects of TGFβ 

and not the experimental protocol.  Fig 3.39 shows the percentage of proliferating cells is 

almost the same in both the anti-TGFβ and A83 groups which are both significantly higher 

than control, thus confirming that it is endogenous TGFβ ligand that has the inhibitory 

effect on proliferation.  The control and COX2 also have similar percentage of 

proliferation showing that the experimental protocol of antibody blocking has no effect on 

proliferation itself.   
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Figure 3.39 anti-TGFβ maintains proliferation.  A) Crypts were cultured either in TGFβ 

blocking antibody or the Alk inhibitor 4/5/7 A83-01 for 3 days.  Crypts were then 

processed by immunocytochemistry and labelled for BrdU.  Scale bar represents 50μm.  B) 

Percentage of BrdU
+
 proliferating cells.  Anti-TGFβ and A83 significantly maintained 

proliferation of cells compared to control and COX2 (antibody control).   (*p=0.045, 

**p=0.032, N=17 crypts from 1 patient). Control media: IGF-1 (50ng/ml), R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml), Noggin (100ng/ml); A83-01 (0.5μM), anti-TGFβ 

monoclonal antibody (10μg/ml), anti-COX2 antibody (10μg/ml) where indicated. 
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As mentioned before, another agonist of TGFβ signalling is activin, therefore its effects on 

proliferation were investigated.  Crypts were cultured either in activin or A83-01 for 3 

days, processed by immunocytochemistry and labelled for BrdU.  Fig 3.40 shows that 

activin inhibited proliferation of cells, whilst A83-01 significantly increased proliferation.  

A83-01 also rescued the inhibitory effects of activin.   

 

 

Figure 3.40 Activin inhibits proliferation.  A)Ccrypts were cultured in activin and/or A83-

01 for 3 days.  Crypts were then processed by immunocytochemistry and labelled for 

BrdU.  Scale bar represents 50μm.  B) Percentage of BrdU
+
 proliferating cells.  Activin 
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abolished proliferation whilst A83 increased proliferation of cells. (*p=0.027, **p=0.023, 

N=9 crypts from 1 patient). Control media: IGF-1 (50ng/ml), R-Spondin 1 (500ng/ml), 

Wnt3a (100ng/ml), Noggin (100ng/ml); A83-01 (0.5μM), Activin (50ng/ml), where 

indicated. 

Having established that ligands of TGFβ signalling, both TGFβ and activin abolish 

proliferation of cells within the crypts, it was also noted that TGFβ induced loss of 

morphology possibly though initiating epithelial-to-mesenchymal transition.  Loss of 

proliferation along with loss of stem cells means that no self-renewal of stem cells occurs 

and further proliferation is also inhibited which leads to the homeostasis of crypt renewal 

being imbalanced.  This means that if cells are still being shed at the top, yet not being 

replaced, the crypts will shorten in length and eventually die.  The effects of TGFβ 

signalling on morphology and crypt length was investigated by culturing isolated crypts 

either in TGFβ, A83-01 or both for 3 days and images of the crypts being taken on day 3.  

Crypt length was then measured for all crypts and the lengths normalised to the control 

group. Fig 3.41 shows that TGFβ caused the crypts to shorten and the cells to lose their 

morphology.  A83-01 by comparison increased crypt length and also rescued the effects of 

TGFβ.  
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Figure 3.41 A83 maintains crypt morphology and length.  A) Crypts were cultured in 

TGFβ and/or the TGFβ antagonist A83-01 for 3 days.  Crypt length was measured on day 

3 of the experiment and normalised against the control crypts.  Scale bar represents 50μm.  

B) A83-01 increasess crypt length and morphology, whilst TGFβ leads to crypt shortening 

and loss of morphology.  A83-01 rescues the detrimental effects of TGFβ.  (*p=0.041, 

**p=0.027, ***p=0.008, N=18 crypts from 2 patients). Control media: IGF-1 (50ng/ml), 

R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml), Noggin (100ng/ml); A83-01 (0.5μM), TGFβ 

(20ng/ml), where indicated. 

Real-time time-lapse microscopy was carried out to determine the effects of TGFβ 

pathway inhibition on crypt length, proliferation and migration (see appendix: movie 2).  

Inhibition of TGFβ pathway with A83-01 significantly increased crypt length and 

proliferation (number of mitoses per hour), whilst crypt cell migration stayed constant (Fig 

3.42).  Under these conditions, crypt cell proliferation in the lower half of the crypt is 
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required to maintain a steady state crypt cell population, as measured by crypt length, by 

replenishing cells shed from the upper surface, but does not appear to drive crypt cell 

migration.   

 

Fig 3.42 Inhibition of TGFβ signalling maintains crypt cell renewal.  A) Wnt signals 

along with Alk 4/5/7 inhibitor A83-01 increased crypt length (*p=0.009, **p=0.0).  B) 

A83-01 increased proliferation of cells (*p=0.002, **p=0.007).  C) Crypt cell migration 

rate stayed constant. Control media: IGF-1 (50ng/ml), Noggin (100ng/ml); R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml) and A83-01 (0.5μM) where indicated. 
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3.2.6 Discussion 

Along with Wnt signalling, BMP and TGFβ signalling are involved in maintaining crypt 

renewal and hierarchy along the crypt axis.  In the previous chapter Wnt signalling was 

found to predominate at the base of the crypts and have a role in maintaining stem cell 

renewal.  However, BMP and TGFβ signalling have a proposed role in cell differentiation 

and apoptosis and have been found to predominate at the top of the crypt.  Kosinski et al. 

(74) have found BMP ligands such as BMP1, BMP2, BMP5 and BMP7 to be highly 

expressed in colon tops whilst the BMP antagonists such as gremlin and Chordin-like 1 to 

be expressed at the base of crypts.  He et al. (8) found BMP4 in the intravillus and 

intercrypt mesenchymal cells whilst the BMP antagonist noggin was expressed in the 

submucosal region adjacent to the crypt base.  They also found pSMAD1,5,8, the hallmark 

of activated BMP signalling, in both villi and intestinal stem cells.  Auclair et al. (108) also 

found pSMAD1,5,8 immunostaining in villus epithelial cells as well as crypt-villus 

junction and to a lesser extent at the bottom of the crypt near the stem and Paneth cell 

region.  In our study we found that pSMAD1,5,8 activation was predominantly at the top 

of the crypt but there was low level of activation in the stem cell region of the crypt too 

(Fig 3.25).  He et al. (8) suggest that transient expression of noggin in the stem cells 

overrides the BMP signal to release β-catenin inhibition by PTEN which then activates the 

stem cells for proliferation.  This balance between BMP and Wnt signals inhibits aberrent 

proliferation of stem cells to prevent crypt fission and increase in crypt number.  The 

effects of noggin on pSMAD1,5,8 levels were investigated in the present study which 

demonstrated that noggin suppressed endogenous pSMAD1,5,8 levels as well as rescuing 

the inhibitory effects of exogenous BMP4 ligand (Fig 3.26).  Haramis et al. (7) also found 

that pSMAD1,5,8 was almost entirely absent when BMP signalling was inhibited by 

transgenic expression of noggin.  Farral et al. (166) have found that as well as high levels 

of Wnt and Notch ligands, high BMP4 expression was also observed in their tumour 

spheroids and in adenomas.  In the mouse adenomas, pSMAD1,5,8 activation was 

consistently strongest in regions of high BMP4 expression and overlapped with enhanced 
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β-catenin levels which were detected throughout the adenoma.  These regions also had low 

expression levels of Wnt target gene CD133.  These spheroids are normally cultured in the 

presence of noggin to inhibit BMP signalling and avoid cell differentiation.  However, 

culturing them in the absence of noggin, induced an increase in pSMAD1,5,8 levels as well 

as enterocyte cell maker FABP2 and a reduction in stem cell markers and Wnt target genes 

CD44, CD133 and Lgr5.  Addition of recombinant BMP4 led to the spheroids displaying a 

‘dimpling’ effect in their surface and attenuated cell growth rates.  Farral et al. (166) 

suggest that high Wnt, Notch and BMP ligands in the cultured tumour spheroids replicate 

the growth factors in a tumour microenvironment and that autocrine secretion of BMP 

signals induce the tumour cells to differentiate. 

BMP signalling has been shown to counterbalance intestinal stem cell self-renewal through 

the suppression of β-catenin signalling and induce differentiation in the villus (8).  This 

suppression of β-catenin was also observed in our study (Fig 3.27).  We found that BMP4 

ligand slightly suppressed endogenous levels of β-catenin, whilst the BMP antagonist 

noggin significantly increased levels of nuclear β-catenin.  This suggests that within the 

culture system the epithelial cells secrete low levels of BMP ligands which are not 

suppressed by antagonists such as noggin and gremlin, which are secreted by the 

mesenchymal cells (74).  Our isolated cultured crypts lack the mesenchymal cells that 

normally surround the crypt, therefore only exogenous BMP antagonists such as 

recombinant noggin will suppress levels of pSMAD1,5,8 (Fig 3.26) and stimulate β-

catenin levels by inhibiting BMPs.  BMP4 also significantly inhibited the Wnt target gene 

axin II, which was rescued by addition of noggin (Fig 3.28).   Auclair et al. (108) however 

found that loss of epithelial BMP signalling does not effect β-catenin nuclear expression or 

modulates the Wnt target gene c-Myc. 

As mentioned before, Farral et al. (166) found that BMP4 suppressed expression of stem 

cell markers such as Lgr5 and CD133 in their tumour spheroids and a similar result was 

seen in our study.  BMP4 completely abolished the number of OLFM4
+ 

stem cells in crypts 
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after 3 days in culture (Fig 3.29).  However, this inhibition was significantly rescued by 

addition of noggin, even when BMP4 ligand was present.  BMP4 also suppressed 

expression of Lgr5 (Fig 3.37).  Lombardo et al. (264) found that BMP4 induced terminal 

differentiation and apoptosis in colorectal cancer stem cells.   Since BMP signalling is 

involved in differentiation and inhibits stem cell self-renewal though inhibition of Wnt 

signalling, it is expected that cell proliferation within the crypt is also affected.  We found 

again that BMP4 completly abolished proliferation of cells and only addition of noggin, 

even in the presence of BMP4, maintained proliferation (Fig 3.30).  The number of 

proliferating cells was surprisingly low in the control group and this is possibly due to 

endogenous BMP ligands that accumulate in culture over 3 days.  A similar result was 

observed by Auclair et al. (108) who found that BMP signalling suppresses epithelial cell 

proliferation and loss of epithelial BMP signalling leads to elongated villi and increased 

crypt fission, demonstrating the role of BMP signalling in epithelial architecture in the 

crypt-villus axis.  The effect of BMP signalling on crypt morphology was also observed in 

this study; with BMP4 causing the crypts to shorten in length and lose their polarity over a 

period of 3 days in culture (Fig 3.31).  Noggin was seen to maintain crypt length compared 

to control and still maintained length and morphology of crypts in the presence of 

exogenous BMP4.  This replicates the results seen with cell proliferation, since loss of 

proliferation and stem cells will lead to an imbalance in cell renewal which leads to crypt 

shortening. 

Migration, differentiation and compartmentalisation along the crypt-axis is also controlled 

by TGFβ/Wnt gradients.  Barnard et al. (192) and Murphy et al. (265) have found 

TGFβRII receptors localised to the differentiated cells of the crypt villi, whilst Koyama et 

al. (193) have also found the receptors at the crypt base.  Tang et al. (194) have found 

expression of SMAD4 mostly at the top of the crypts as well as at the crypt base though at 

lower levels.  This result is consistent with the type of pSMAD2,3 labelling we observed 

along the crypt-axis (Fig 3.32).  Although pSMAD2,3 activation was seen all along the 
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crypt-axis, there was a slighly higher level of activation in the upper region of the crypt.  

Mishra et al. (109) suggest that the presence of TGFβ signalling and absence of Wnt 

signalling at the top of the crypt is the switch that initiates rapid cell cycle arrest and 

differentiation.  TGFβ signalling has also been shown to be involved in epithelial-to-

mesenchymal transition (EMT) (201) (202).  Tojo et al. (263) found that the alk inhibitor 

4/5/7 A83-01 inhibits SMAD signalling and TGFβ induced EMT.  We also found in our 

study that A83-01 inhibited pSMAD2,3 (Fig 3.33) in cultured crypts even in the presence 

of TGFβ ligand.   

TGFβ signalling components are localised in differentiated epithelial cells and have growth 

suppressive effects.  Ishitani et al. (266) and Meneghini et al. (267) propose that TGFβ 

signals antagonise Wnt signalling through a route involving the alternative TGFβ effector 

and MAPKKK and TAK1.  They found that in Caenorhabditis elegans and mammalian 

cells, activation of TAK1 stimulates the activity of MAPK NLK, which in turn 

downregulates TCF.  Alternatively, Sasaki et al. (268) have shown that TGFβ stimulation 

inhibits TCF4/β-catenin transactivation of c-Myc via the ability of SMAD3 to physically 

interact with β-catenin and thereby decouple TCF4/β-catenin complexes (269).  The 

downstream effects of inhibiting TCF/β-catenin complexes are that Wnt target genes such 

as axin II are downregulated.  We found that TGFβ signalling significantly inhibited 

expression of axin II and this effect was only rescued by addition of the Alk 4/5/7 inhibitor 

A83-01 (Fig 3.34).  The expression of axin II was also inhibited by activin, another 

activator of the TGFβ signalling pathway (Fig 3.35).  Again, A83-01 siginificantly rescued 

the inhibitory effects of activin stimulation.  Activin has a role on cell growth and 

differentiation mainly through the SMAD-dependent pathways.  Kanamaru et al. (270) 

showed that activin A induces growth inhibition on liver cells by downregulating Bcl-xL 

(anti-apoptotic) expression via SMAD2 or SMAD3.  Ho et al. (271) also show that activin 

induces hepatocyte cell growth arrest.  We found that both activin and TGFβ ligand 

inhibited cell proliferation in cultured crypts (Fig 3.40 and 3.38) and A83-01 significantly 
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rescued this effect by maintaining proliferation.  Using an antibody against TGFβ ligand in 

the cultured crypts, we found that proliferation is maintained, and at the same level as that 

achieved by A83-01 (Fig 3.39).  Potten et al. (272) have also showed that TGFβ1 inhibited 

proliferation in mouse small intestinal crypts.   TGFβ can induce antiproliferative gene 

responses at any point during the cell cycle and inhibits cyclin-dependant kinases as well 

as downregulating c-Myc.  This modulation of cell cycle progression by TGFβ involves 

SMAD proteins and loss of SMAD 4 has been shown to lead to colorectal cancer (194).  

As mentioned, TGFβ normally utilises intracellular SMADs to mediate growth 

suppression, however, Chow et al. (273) have found that TGFβ can also activate PI3K to 

downregulate PTEN for enhancement of cell proliferation that is independent of SMAD 

proteins and converts TGFβ from a tumour suppressor to tumour promoter. 

Constant proliferation of stem cells is important in intestinal tissue to maintain renewal 

within the crypt to minimise accumulation of mutations.  Wnt, BMP and TGFβ pathways 

are all involved in regulating this renewal and maintaining proliferation and differentiation 

along the crypt-axis.  Since TGFβ is involved in cell differentiation and apoptosis, it is 

expected that it will have a deletirious effect on stem cells by inhibiting their proliferative 

capacity and inducing differentiation responsive genes.  We found that TGFβ completely 

abolished OLFM4
+ 

stem cells in culture, whilst inhibiting the TGFβ signalling pathway 

with A83-01 siginificantly increased the number of stem cells compared to control (Fig 

3.36).  TGFβ also suppressed expression of Lgr5 (Fig 3.37).  Potten et al. (272) have also 

shown in mouse that TGFβ1 inhibits proliferation, with the effects particularly pronounced 

in the lower crypt in the stem cell region.  However in embryonic stem cells, TGFβ is 

involved in their maintanace and characteristics as stem cells.  Inhibition of 

TGFβ/activin/Nodal signaling by SB-431542, a chemical inhibitor of the kinases of type I 

receptors for TGFβ/activin/Nodal resulted in decreased expression of the markers of 

undifferentiated states (274).  James et al. (275) found that phosphorylation and nuclear 

localization of SMAD2 induced by TGFβ, activin or Nodal signalling was observed in 
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undifferentiated human embryonic stem cells and decreased upon early differentiation.   

Watabe et al. (276) also found that SB-431542 dramatically decreased the proliferation of 

mouse embryonic stem cells without decreasing their pluripotency suggesting that activin, 

Nodal, and/or TGFβ signaling is indispensable for proliferation of embryonic stem cells. 

The abolishment of stem cells and inhibited proliferation with TGFβ/activin means that the 

balance of cell renewal within the colonic crypt is affected.  This was seen in our cultured 

crypts even after 3 days where crypts cultured in TGFβ were dramatically shorter than the 

control crypts and had lost their morphology and polarity (Fig 3.41).  However, the crypts 

that were cultured in A83-01 increased their lengthcompared to control and inhibited the 

detrimental effects of TGFβ.  As has been demonstrated in this study, inhibition of TGFβ 

signalling with A83-01 leads to increase of cell proliferation and stem cells which results 

in crypt renewal and morphology being maintained in culture.  This was also demonstrated 

using real-time time-lapse digital microscopy where crypts cultured in A83-01 increased 

their length compared to control (Fig 3.42).  This increase in length was reflected by the 

number of mitoses that were observed over the 24 hrs with crypts in A83-01 having a 

significantly higher mitotic rate compared to the control.  The migration rate of cells was 

also measured, and we observed that migration remained constant in all groups, irrelevant 

of the growth conditions the crypts were cultured in.  This therefore suggests that since 

migration is constant and proliferation is maintained with TGFβ inhibition, a steady-state 

crypt renewal is achieved.  Abberent proliferation of cells in vivo would lead to increased 

crypt size and crypt fission, therefore a balance between Wnt, BMP and TGFβ signalling is 

required to regulate the homeostasis and renewal within the colonic crypt. 

In this chapter, the role of BMP/TGFβ signalling in human colonic epithelium tissue 

renewal was demonstrated.  BMP/TGFβ signals were found to predominate in the upper 

region of the crypt and activation of these pathways was deleterious to the maintenance of 

stem cells and cell proliferation.  Inhibition of the BMP/TGFβ pathway was required for 

human colonic crypt culture for at least 7 days (Fig 3.43).   
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Fig 3.43 Inhibtion of BMP/TGFβ signals maintains intestinal stem-cell driven tissue 

renewal.  BMP/TGFβ signalling predominates in the upper region of the crypt.  Inhibition 

of BMP/TGFβ signalling maintains stem cells and cell proliferation and expression of Wnt 

target genes.   
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3.3 Intestinal Metaplasia: Development of Barrett’s oesophagus crypt 

culture model 

3.3.1 Introduction 

Barrett’s oesophagus is defined by the presence of columnar epithelium in the lower 

oesophagus that has replaced the normal squamous cell epithelium as a result of metaplasia 

and can lead to the development of oesophageal adenocarcinoma.  It arises as a repair 

mechanism to adapt to the harsh intra-oesophageal environment of chronic 

gastroesophageal reflux disease.  The events in the pathogenesis of Barrett’s metaplasia are 

not well understood but signalling pathways such as Wnt, BMP, TGFβ, Hedgehog and 

NFκB have all been implicated.  Abnormal activation of β-catenin is found to be common 

during metaplastic progression of Barrett’s oesophagus and is strongly associated with 

development of metaplasia (15).  Moyes et al. (16) have also found that Wnt target genes 

cyclin D1, Sox9 and c-Myc were upregulated in Barrett’s metaplasia and high grade 

dysplasia compared to normal squamous epithelium.  Milano et al. (17) have found that the 

BMP pathway was activated in oesophagitis and Barrett’s oesophagus, whilst Zhou et al. 

(226) have shown that acid and bile acid increase the expression of BMP4.  TGFβ1 

overexpression has been found to be associated with advanced stage of oesophageal 

adenocarcinoma (239) and induces epithelial-to-mesenchymal transition in the 

pathogenesis of oesophageal adenocarcinoma (277).  Hormi-Carver et al. (278) show that 

Barrett’s epithelial cells activate the NFκB pathway after DNA damage allowing them to 

resist apoptosis which may account for the persistence and malignant predisposition of 

Barrett’s metaplasia. 

Research on the cellular and molecular mechanisms involved in the development of 

Barrett’s oesophagus has been difficult due to a lack of human ex vivo culture models.  

Recently however, a Barrett’s oesophagus organoid culture model has been developed by 

Sato et al. (20) in which isolated isolated Barrett’s crypts formed cystic organoid structures 
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that resembled colonic organoids.  In parallel, the near-native crypt culture model 

developed during this study in our laboratory, has also paved a way to developing a 

Barrett’s oesophagus crypt culture model in which the single isolated crypts do not form 

organoids but instead remain in a state of renewal where the morphogenic gradients are 

maintained.  This model will permit the functional interrogation of the status and 

mechanisms underlying tissue renewal in Barrett’s oesophagus, which will aid in the 

development of strategies to prevent the development of this metaplasia. 

 

3.3.2 Culturing Barrett’s epithelium 

Isolation of Barrett’s oesophagus crypts was carried out in the same manner as that for 

human colonic crypts.  Native tissue was fixed immediately upon removal from the patient 

undergoing endoscopy or surgery and later microdissected into single crypts.  Comparison 

of Barrett’s oesophagus crypts with those of colonic crypts showed great similarity in 

morphology and the types of cell present (Fig 3.44).  Both Barrett’s and colonic crypts 

have a lumen where mucous secreted by the distinctive goblet cells is flushed out.  

However, Barrett’s crypts were found to be about twice the size of colonic crypts. 
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Figure 3.44 Native vs cultured Barrett’s oesophagus crypt.   Barrett’s oesophagus 

morphology is very similar to the colonic epithelium, with crypt-like invaginations that 

contain a lumen and distinctive cells i.e. goblet cells.  Barrett’s crypts are almost twice the 

size of colonic crypts and can be isolated from the surrounding squamous tissue in the 

same manner applied to colonic crypt isolation. 

Once the Barrett’s crypts were isolated and placed into culture medium containing growth 

factors IGF-1, Noggin, R-Spondin1 and Wnt3a, the viability of these crypts was assessed 

by loading them with Calcein-AM and PI (Propidium Iodide) and then imaging the live 

crypts on a confocal fluorescent microscope.  Calcein-AM is used to demonstrate 

metabolic esterase activity and therefore viable cells, whilst PI only labels cells that have 

apoptosed and their membranes have ruptured.  As can be seen, cells within the crypt were 

lit up green with no PI positive cells, whilst at the shedding area at the top of the crypt 

there are a few PI positive cells (Fig 3.45). 

Native

Barrett’s crypt

Cultured

Barrett’s crypt

Cultured

colonic crypt

Lumen

*
* *

* Goblet cell

1
5
0
0
μ

m

8
0
0
μ

m



187 
 

 

Figure 3.45 Viability of Barrett’s oesophagus crypts.  Barrett’s crypts were cultured for 

24 hrs then loaded with Calcein-AM and PI in the media then imaged live with a confocal 

fluorescent microscope.  Cells that took up Calcein-AM have lit up green demonstrating 

viability by metabolic esterase activity.  PI is excluded from the cells in the body of the 

crypt, whilst at the top of the crypt, cells that have been shed are positive for PI. 

Observation of mitotic events using real-time time-lapse microscopy provides another 

method of determining the viability of cells within the isolated Barrett’s crypts (see 

appendix: movie 3).  By observing the crypts over a period of 24 hrs from day 1-2, 

proliferation of cells along the crypt axis can be seen and their rate of mitosis calculated.  

Fig 3.46 shows snapshots of a mitotic event which takes about an hour to complete, with a 

rate of about 0.8 mitoses per hour at the base of the crypt.  There is a decrease in mitotic 

events at the top of the crypt although this is not statistically significant possibly due to 

low numbers of crypts.    

Calcein-AM PI Calcein-AM PI
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Figure 3.46 Mitotic events in Barrett’s oesophagus crypts.  A) Barrett’s crypts were 

cultured for 24 hrs then placed on a time-lapse microscope for 24 hrs with images of the 

crypt cells being taken every 5 mins.  B) Mitotic events can be observed at a rate of 0.8 

mitoses per hour with more proliferation occurring at the base of the crypt and very 

minimal at the top.  Culture media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml). (N=4 crypts from 1 patient). 

 

3.3.3 Signalling in Barrett’s epithelium 

Having observed mitotic events in the isolated cultured Barrett’s crypts, the proliferative 

status of cells in cultured crypts was compared to the native microdissected crypts.  Both 
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proliferation maker Ki67.  Fig 3.47 shows that both the cultured and native crypts have 

higher proliferation at the crypt base although no statistical gradient along the crypt axis is 

observed.   

 

 

Figure 3.47 Proliferation in native and cultured Barrett’s oesophagus crypts.  A) Both 

native and cultured Barrett’s crypts were processed by immunocytochemistry and labelled 

for Ki67. Scale bar represents 50μm.  Culture media: IGF-1 (50ng/ml), Noggin 

(100ng/ml), R-Spondin 1 (500ng/ml), Wnt3a (100ng/ml). B) Analysis for percentage of 

Ki67
+
 cells in native and cultured Barrett’s crypts.  (N=6 crypts from 2 patients). 

The Wnt signalling pathway is highly important in maintaining proliferation in colonic 

crypts and has been implicated in neoplastic progression of Barrett’s oesophagus.  To 
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determine the status of Wnt signalling within our human native and cultured Barrett’s 

crypts, immunocytochemistry was carried out on these crypts and then labelled for β-

catenin.  Fig 3.48 shows that Wnt signalling is indeed active in Barrett’s crypts and there 

are distinct nuclear β-catenin cells at the base of the crypt (arrows).  A gradient can be seen 

along the crypts axis with higher expression of nuclear β catenin at the base of the crypt 

and significantly lower in the top region of the crypt.  Again it can be seen that the cultured 

crypts maintain their gradients that are observed in native crypts.  This demonstrates that 

this is a good Barrett’s crypt culture model that is reflective of the in vivo status of human 

Barrett’s oesophagus and is ameanable to functional experiments that cannot be carried out 

on tissue sections or organoid models. 
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Figure 3.48 Wnt signalling status in Barrett’s oesophagus crypts.  A) Native and cultured 

Barrett’s crypts were processed by immunocytochemistry and labelled for β-catenin.  

Arrows indicate an example of nucler β-catenin in cells.  Scale bar represents 50μm. 

Culture media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 (500ng/ml), Wnt3a 

(100ng/ml). B) Analysis for nuclear β-catenin in native and cultured crypts.  Higher 

expression of β-catenin can be seen at the base of the crypt in both native and cutured 

crypts.  (*p=0.0, **p=0.003, N=4 crypts from 2 patients). 

Moyes et al. (16) have found that the Wnt target genes cyclin D1, Sox9 and c-Myc were 

upregulated in Barrett’s metaplasia and high grade dysplasia compared to normal 
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squamous epithelium.  The status of Wnt target c-Myc was determined in native 

microdissected crypts using immunocytochemistry.  Fig 3.49 shows that c-Myc is present 

in Barrett’s crypts but no significant gradient along the crypt axis could be observed.  

However, this could be due to only one patient being analysed which would not reflect the 

overall status of c-Myc in Barrett’s crypts. 

 

 

Figure 3.49 c-Myc status in Barrett’s oesophagus crypts.  A) Native Barrett’s oesophagus 

crypts were fixed immediately upon removal from the patient and microdissected into 

single crypts.  Crypts were then processed by immunocytochemistry and labelled for c-

Myc.  Scale bar represents 50μm.  B) Analysis for nuclear c-Myc in native crypts.  No 

gradient can be seen along the crypt axis.  (N=3 crypts from 1 patient). 

The transcription factor NFκB (Nuclear Factor κB) is a key player in inflammatory 

response and regulates processes such as cell proliferation and cell survival.  Incorrect 

regulation of NFκB has been linked to cancer and inflammatory diseases. The signalling 
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status of NFκB in native crypts was determined using immunocytochemitry.  Fig 3.50 

shows that there is nuclear   NFκB present in native Barrett’s crypts (arrows) and some in 

the surrounding squamous tissue.  This suggests that the NFκB pathway is activated in the 

inflammed tissue due to the acid and bile acid reflux.  Since Barrett’s oesophagus develops 

as a result of chronic gastroesophageal reflux, irritation of the squamous epithelium leads 

to the accumulation of inflammatory cytokines in the epithelium. One of the cytokines 

implicated in inflammatory and malignant processes is Tumour Necrosis Factor-α (TNF-

α).  TNF-α signalling occurs through several intracellular pathways including NFκB.  

Tselepis et al. (230) have shown elevated levels of TNF-α in Barrett’s metaplastic 

epithelium compared to normal squamous epithelium and that TNF-α expression persisted 

and intensified during the progression of Barrett’s oesophagus to adenocarcinoma.  This 

increased expression of TNF-α along the metaplasia-dysplasia-adenocarcinoma sequence 

suggests a relatively early role for it in the formation of the adenocarcinoma.    

Having found that NFκB signalling is active in native Barrett’s crypts, TNF-α was used to 

stimulate cultured crypts and determine its effects on NFκB.  Fig 3.50 shows that TNF-α 

stimulated NFκB p65 to translocate from the cytoplasm of the cells into the nucleus where 

antiapoptotic genes can be induced, making the cells more persitant and malignant 

contributing to metaplasia. 
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Figure 3.50 NFκB signalling in Barrett’s oesophagus crypts.  A) Native Barrett’s 

oesophagus crypts were fixed immediately upon removal from the patient and 

microdissected into single crypts.  Isolated Barrett’s crypts were stimulated with TNF-α 

and fixed on day 2. Control media: IGF-1 (50ng/ml), Noggin (100ng/ml), R-Spondin 1 

(500ng/ml), Wnt3a (100ng/ml).  Both native and cultured crypts were then processed by 

immunocytochemistry and labelled for (NFκB) p65.  Arrows indicate example of nuclear 

p65 in cells. Control crypts show p65 in the cytoplasm of the cell which then translocates 

to the nucleus upon stimulation with TNF-α.   Scale bar represents 50μm.  B) Analysis for 
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nuclear NFκB (p65) in control and stimulated crypts. (*p=0.037 N=3 crypts from 1 

patient). 

No robust markers of stem cells for Barrett’s oesophagus have yet been identified.  

However, since Barrett’s oesophagus is a type of intestinal metaplasia it is possible that 

intestinal stem cell markers such as Lgr5 and OLFM4 could be used to identify stem cells 

within a Barrett’s crypt.  Becker et al. (237) have shown some staining of Lgr5
+
 cells at the 

base of Barrett’s crypts and intensity of staining increased with high dysplasia compared to 

non-dysplastic Barrett’s tissue.  To determine if our cultured Barrett’s crypts labelled for 

any intestinal stem cell markers, immunocytochemistry was performed on cultured crypts 

and labelled for OLFM4.  Fig 3.51 shows that the intestinal stem cell marker OLFM4 is 

highly present in Barrett’s crypts and seems to be maintained in (day 2) cultured crypts.  

As seen in colonic crypts, there is a higher percentage of OLFM4
+
 stem cells at the base of 

the crypt.  There also seems to be a high number of OLFM4
+
 stem cells in the Barrett’s 

crypt and this could be due to the inflammatory nature of the tissue.  
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Figure 3.51 Stem cell status in Barrett’s oesophagus crypts.  A) Cultured Barrett’s 

oesophagus crypts were fixed on day2, processed by immunocytochemistry and labelled 

for OLFM4.   Scale bar represents 50μm.  B) Analysis of percentage of OLFM4
+
 cells in 

Barrett’s crypts.  Higher percentage of OLFM4
+
 cells can be seen at the base of the crypt 

compared to the top.  (*p=0.043, N=3 crypts from 1 patient). 

 

3.3.4 Discussion 

In this chapter, the potential of a new Barrett’s oesophagus culture model was 

demonstrated.  Currently most studies are carried out on cell lines and tissue sections either 

from surgically manipulated mouse models or human sections from oesophageal 

adenocarcinomas, Barrett’s oesophagus with varying degrees of dysplasia and normal 
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squamous epithelium.  Cell lines can be used to understand the molecular basis of 

carcinogenesis and data such as viability, apoptosis and tracking of certain signalling 

molecules and proteins can be determined.  This models drawback however, is the lack of 

conditions and interactions the cells would be subjected to in their natural environment.  

Surgically manipulated animal models are also used mainly in the development of 

therapeutics, for example where treatment with COX-2 inhibitors showed a reduced risk of 

oesophageal adenocarcinoma (242).  Recently, a new model to study Barrett’s oesophagus 

was developed by Sato et al. (20) using a technique they developed for culturing intestinal 

organoids.  Due to the similarity of the crypt-like invaginations in Barrett’s, culturing of 

these crypts led to cystic organoid structures that formed buds resembling small crypts.  

These organoids could also be cultured for more than 3 months, which was unachievable 

up until then.   

In parallel, the near-native crypt culture model developed in our laboratory has paved the 

way for developing a human Barrett’s crypt culture model that could survive in culture and 

be amenable to functional experiments.  This model is different to that developed by Sato 

et al. (20) since the single crypts remain intact without forming organoids and still 

maintain the morphological and signalling gradients that maintain hierarchy of cells along 

the crypt axis.  We used native microdissected crypts as our control for determining the 

native status of signalling pathways and their gradients and compared to the cultured 

Barrett’s crypts to determine if these gradients were maintained. 

Isolation of Barrett’s crypts revealed that they were about twice the size of colonic crypts 

(Fig 3.44) and distinctive cells such as goblet cells were easily seen, clearly demonstrating 

the conversion of the squamous epithelium to a glandular columnar epithelium that is 

distinctive of Barrett’s.  To demonstrate that the cells with the cultured Barrett’s crypt were 

still viable after a few days in culture, loading crypts with Calcein-AM and PI revealed that 

cells within the body of the crypt were viable and only cells that have been shed at the top 

of the crypt were PI positive (Fig 3.45).  Time-lapse microscopy was also used to show 
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that the cells within the cultured crypts were still proliferating and maintained gradient 

along the crypt axis, with higher number of mitoses occurring at the base of the crypt (Fig 

3.46).  The proliferative status of cultured crypts was also demonstrated by labelling for 

Ki67 and comparing the percentage of proliferating cells in cultured crypts to the native 

microdissected crypts (Fig 3.47).  As with the mitotic counts, a gradient of higher 

proliferation was observed at the base of the crypt.  This shows that not only are the 

Barrett’s crypts viable in culture, but they also maintain their proliferative gradients.   

Another gradient that was seen to be maintained in cultured Barett’s crypts was β-catenin 

labelling, the hallmark of Wnt signalling.  Abnormal activation of β-catenin has been 

found to be common during neoplatic progression of Barrett’s oesophagus (15).  Moyes et 

al. (16) have found that there is increased nuclear β-catenin in Barrett’s compared to 

suqamous tissue.  Gonzalez et al. (223) however, have shown that mutations in β-catenin, 

axin and APC are rarely detected in Barrett’s oesophagus and as demonstrated by Clement 

et al. (224), it is APC and SFRP1 silencing by promoter hypermethylation as well as Wnt2 

upregulation that is involved in neoplastic progression. Since Wnt signalling seems to be 

involved in Barrett’s metaplasia and is highly important in maintaining proliferation in 

colonic crypts, it is no surprise that Wnt3a and R-Spondin 1 were required to be present in 

the culture media for both our cultured and crypts and the Barrett’s organoids developed 

by Sato et al. (20).  The Wnt target gene involved in proliferation, c-Myc, was expressed in 

the native Barrett’s crypts (Fig 3.49), but unfortunately, no cultured comparison was 

carried out.  Moyes et al. (16) have shown that expression of c-Myc was increased in 

Barrett’s metaplasia compared to normal squamous tissue, whilst Schmidt et al. (225) have 

also found a linear correlation of c-Myc over-expression along the metaplasia-dysplasia-

adenocarcinoma sequence. 

Barrett’s oesophagus develops as a result of chronic gastroesophageal reflux which leads 

to irritation of the squamous epithelium and causes inflammatory cytokines to accumulate 

in the epithelium.  One of the cytokines implicated in inflammatory and malignant 
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processes is TNF-α.  Tselepis et al. (230) have shown elevated levels of TNF-α in Barrett’s 

metaplastic epithelium compared to normal squamous epithelium and that TNF-α 

expression persisted and intensified during the progression of Barrett’s oesophagus to 

adenocarcinoma.  This increased expression of TNF-α along the metaplasia-dysplasia-

adenocarcinoma sequence suggests a relatively early role for it in the formation of the 

adenocarcinoma.   TNF-α induces signalling though pathways such as NFκB.  NFκB is a 

protein complex that acts as a transcription factor and plays a key role in regulating the 

immune response to infection.  However, dysregulation of NFκB has also been linked to 

cancer, inflammatory and autoimmune diseases.  We determined the signalling status of 

NFκB using immunocytochemistry and found that there is nuclear NFκB p65 present in the 

native Barrett’s crypt and some in the surrounding squamous tissue (Fig 3.50).  This 

suggests that the NFκB pathway may be activated in the inflamed tissue due to chronic 

acid and bile acid reflux.  TNF-α was then used on our cultured crypts to determine if the 

NFκB pathway could be stimulated.  We found that in the control crypts NFκB p65 was 

expressed mostly in the cell cytoplasm, but upon activation with TNF-α, NFκB p65 was 

translocated to the nucleus (Fig 3.50).  This translocation of NFκB would be expected to 

activate anti-apoptotic genes such as Bcl-2 and Bcl-xL (278) making the cells more 

persistant and malignant. 

No robust markers for stem cells in Barrett’s oesopgagus have yet been identified. Due to 

the similarity of Barrett’s crypts to intestinal crypts, Becker et al. (237) examined the 

pattern of Lgr5 expression in Barrett’s crypts and found a few Lgr5
+
 cells at the base of the 

crypt.  They later found variable staining of Lgr5, ranging from predominatly low intensity 

in non dysplastic Barrett’s oesophagus to high intensity in dysplasia. No Lgr5 expression 

was seen in normal squamous tissue but high Lgr5 expression in adenocarcinoma was 

associated with worse survival (238).  Increased expression of Lgr5 in Barrett’s 

oesophagus was also seen by Von Rahden et al. (239)  and Vega et al. (240).  Two other 

stem cell markers DCAMKL-1 and Msi-1 were also upregulated in Barrett’s oesophagus 
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compared to normal squamous tissue (240).  We determined whether the stem cell marker 

OLFM4 was present in our cultured Barrett’s crypts and found that indeed there was 

OLFM4 staining along the crypt axis similar to that observed in colonic crypts.  There 

were a higher number of OLFM4
+
 stem cells at the base of the Barrett’s crypt which 

decreased dramatically in the top region of the crypt (Fig 3.51).  Surprisingly there seemed 

to be a high percentage of OLFM4
+ 

stem cells within the crypt, but this could be due to the 

inflammatory nature of the tissue.  Data by another colleague in the laboratory has shown 

that colonic crypts from inflammatory bowel disease patients have a much higher 

percentage of OLFM4
+
 stem cells compared to normal patients.  This high percentage of 

stem cells, some of which could aquire mutations, leave the patient with a much higher risk 

of developing adenocarcinoma, as colonic crypts from cancer patients were also seen to 

have a very high percentage of OLFM4
+
 stem cells. 

In this chapter we have demonstrated the development of an ex vivo Barrett’s oesophagus 

crypt culture model that is amenable to functional bioimaging approaches.  The potential 

role of Wnt signalling in the maintanance of Barrett’s crypt tissue renewal was also shown. 

Identification of Barrett’s oesophagus stem cells and the use of the ex vivo culture model 

will help the development and translation of novel strategies for prevention of Barrett’s 

oesophagus and oesophageal adenoscarcinoma. 
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Chapter 4 General Discussion 

4.1 Signalling tissue renewal in the human colonic epithelium 

Intestinal tissue renewal is fundamental to life-long health.  The processes by which the 

intestinal epithelium renews itself has been well described in the mouse, but the molecular 

and cellular mechanisms that govern tissue renewal in the human colonic epithelium are 

less well understood partly because of a lack of human ex vivo culture models.  The 

intestinal epithelium is one of the most dynamic tissues in the body with 10 billion cells 

shed from the gut epithelium which are replaced by intestinal stem cell progeny.  The 

hierarchy of tissue renewal is thought to minimise the accumulation of molecular damage 

by positioning the long-lived stem cells at the crypt base away from bacterial toxins, 

metabolites, dietary antigens and mutagens.  Therefore the molecular mechanisms that 

regulate the processes of tissue renewal are of great interest since they are disrupted in 

conditions such as inflammatory bowel disease and colorectal cancer. 

The intestinal epithelium is an ideal tissue to study adult stem cell processes such as self-

renewal and multipotent differentiation.  The regulation of these processes is intricate and 

interconnected and understanding the interplay of the different components and signalling 

pathways is very important.  Clinical tissue samples and studies of model systems ranging 

from cancer cell lines to genetically modified mice have made a dramatic contribution to 

the understanding of the biology of intestinal tissue renewal in health and disease.  

However, to gain a better understanding of the molecular mechanisms involved in human 

colonic epithelium tissue renewal, ex vivo tissue models that are amenable to bioimaging 

and functional genomic approaches are required.  Recently, intestinal organoid culture 

models have been developed that are composed predominantly of immature 

stem/progenitor cells that can be induced to differentiate by withdrawal of Wnt stimulation 

(20) (220).  Complementary to these organoid culture models, our laboratory has 

developed a near-native human colonic crypt culture model that can be used to investigate 

the regulatory mechanisms involved in tissue renewal.  The culture conditions used by 
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Sato et al. (20) promoted re-modelling of colonic crypt morphology that was followed by 

multiple budding events characteristic of the intestinal organoids.  Replacing EGF with 

IGF-1 however, supported renewal of the crypt cell population by maintaining hierarchy of 

crypt cell proliferation, migration, differentiation and shedding, whilst the crypt length 

remained relatively constant.  The optimisation of the human colonic crypt culture 

conditions suggested that activation of Wnt pathway and suppression of BMP and TGFβ 

pathways was required for the homeostasis of tissue renewal.  The status and functional 

role of these signalling pathways in the regulation of human colonic crypt renewal and 

intestinal stem cell biology was subsequently interrogated. 

Intestinal stem cells play a central role in tissue renewal and a strategy to label these cells 

in the human colonic epithelium is imperative.  In the mouse, several theories as to their 

location have been proposed, but identifying them in the human colonic epithelium has 

proven to be more challenging.  The stem cell zone model originally proposed by Cheng 

and Leblond (36) demonstrated the existence of slender cells wedged between Paneth cells 

in the mouse small intestine that divided once every day.  These slender cells were referred 

to as crypt base columnar (CBC) cells and lineage tracing using 3H-thymidine exposure 

revealed the stemness nature of the CBC cells.  Potten et al. (279) proposed the +4 model 

when they found that radiation-sensitive label-retaining cells (LRCs) resided directly 

above the differentiated Paneth cell compartment ranging from position +2 to +7, but on 

average at position +4.  However, these LRCs were shown to be actively proliferating 

every 24 hrs and this label-retention was due to asymmetric segregation of old and new 

DNA strands during subsequent cell divisions (40).   

The intestinal stem cell marker Lgr5, was found to be a receptor for the Wnt agonist R-

Spondin by forming a Wnt receptor complex and activated by Wnt signals (259). Isolation 

and culture of Lgr5
+
 stem cells has been shown to generate complex three dimensional 

organoid structures in small intestine and colon (67) (68).  Recently Yui et al. (68) 

demonstrated long term engraftment after transplantation of organoids derived from a 
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single Lgr5
+
 colon stem cell after extensive in vitro expansion.  Gene expression and 

proteome profiling of Lgr5
+
 cells revealed an Lgr5 ‘stem cell signature’ with these genes 

contributing to stemness (69).  Van der Flier et al. (69) showed that genetic ablation of one 

of these genes, Ascl2, resulted in rapid in stem cell death, whilst overexpression resulted in 

expansion of the stem cell compartment.  Van der flier et al. also showed that the Lgr5
+
 

cells were also highly enriched in OLFM4, and proposes it as a robust marker of Lgr5
+
 

stem cells.  In this study we used confocal imaging of whole mount intact human colonic 

crypts to visualise double labelling of OLFM4 protein and either Lgr5 protein or Lgr5-

mRNA. A number of Lgr5
+
/OLFM4

+
 slender cells at the crypt base were identified, that 

were reminiscent of the Lgr5-GFP positive cells in the mouse colon (34).  In the small 

small intestine, Lgr5
+
 stem cells are found between Paneth cells whilst in the human colon 

we found that these slender cells were interspersed between goblet-like cells and comprise 

about 30% of the cell population at the base of the crypt (Fig.4.1).  Movie 1 (Appendix) 

demonstrates clearly how the slender Lgr5/OLFM4
+
 stem cells are tightly wedged between 

goblet cells and the 3D reconstruction shows the mosaic nature of the stem cells with other 

differentiated cell lineages.   

 

 

Figure 4.1 Schematic diagram of slender CBC stem cells wedged between goblet cells. 
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The importance of the Wnt signalling pathway in maintaining homeostasis of the intestinal 

epithelium was demonstrated by Kuhnert et al. (2) who showed that adenoviral expression 

of the Wnt antagonist Dkk1 in adult mice resulted in inhibited proliferation in the small 

intestine and colon with progressive loss of crypts, villi and glandular structure.  Korinek 

et al. (252) also demonstrated that disruption of TCF4 led to loss of stem cell proliferative 

compartments in the crypts, whilst Muncan et al. (141) showed that deletion of the Wnt 

target gene c-Myc led to loss of intestinal crypts.  These studies demonstrate that Wnt and 

its downstream targets are important in maintaining proliferation of stem cells.  We found 

that Wnt signalling predominates at the crypt base, as demonstrated by β-catenin, axin II 

and c-Myc labelling, and that inhibition of the pathway causes loss of proliferation, stem 

cells and expression of Wnt target genes.   

Pericryptal myofibroblasts, which reside immediately beneath the basal crypt epithelial 

cells, maintain the stem cell niche by secreting Wnt ligands.  In the mouse small intestine, 

Paneth cells have also been found to secrete Wnt3 (34).    Gregorieff et al. (142) showed 

that in mice, Wnt ligands such as Wnt3, Wnt9b and Wnt5a predominated at the base of the 

crypt along with the LRP5/6 coreceptors whilst work by another colleague in our 

laboratory has shown that mRNA for Wnt ligands Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, 

Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7b and Wnt11 can be found in isolated human colonic 

crypts.  Farin et al. (25) have also shown that although deletion of Paneth cell derived 

Wnt3 in the mouse intestinal epithelium showed no effect in vivo, it was required for 

growth and sustainability in organoid in vitro culture.  Co-culturing of mesenchymal 

derived Wnt2b ligand restored the growth of organoids, suggesting that there is a 

compensatory mechanism in the mouse small intestinal stem cell niche that safeguards 

against stem cell dysfunction.  However, the mouse colon does not express Wnt ligands 

(142) which presumably reflects a difference between the dependence of the mouse and 

human colonic crypts on non-epithelial derived Wnt ligands.   
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In an opposing effect to Wnt signalling, the BMP signalling pathway is thought to be 

involved in inhibition of stem cell self-renewal and promotion of cell differentiation.  He et 

al. (8) demonstrated that BMP signalling suppresses Wnt signalling, which allows for a 

balanced control of stem cell self-renewal.  However, inhibition of BMP signalling by 

noggin results in the formation of ectopic crypts with an expansion of stem cell and 

progenitor cellular populations (7).  Therefore, crosstalk between the two signalling 

pathways is important in maintaining the stem cell niche and balanced renewal within the 

crypt (Fig 4.2).  Several BMP components are found to be highly expressed in the top 

region of the the colonic crypts (74) with Hardwick et al. (179)  and Haramis et al. (7) 

showing that BMP2 and BMP4 to be strongly expressed in the intervillus mesenchyme 

near the villus tips, with a decreasing expression gradient towards the crypt base.  The 

BMP receptor BMPR1 and phosphorylated SMADs are also found along the villus (8).  In 

this study we show that generation of pSMAD1,5,8, a downstream mediator of BMP 

signalling, predominates in the upper region of the crypt.  BMP antagonists such as noggin 

and gremlin have been found to be expressed in the pericryptal myofibroblasts (8) (74) and 

maintain the correct BMP/Wnt gradients along the crypt axis by inhibiting BMP signalling 

at the crypt base.  We show that BMP inhibition with noggin led to increased β-catenin and 

axin II expression with downstream effects of maintaining stem cells and cell proliferation.  

It is thought that stem cell self-renewal is activated by transient expression of noggin 

which overrides the BMP signal and releases β-catenin inhibition by PTEN (8).   

Along with BMP signals, it is thought that TGFβ signals predominate in the upper region 

of the crypt where they are thought to influence crypt cell positioning, differentiation and 

apoptosis, thus maintaining the normal size, shape and function of the polarised gut 

epithelium.  The linear migration, differentiation and compartmentalisation along the 

mouse intestinal crypt-axis has been shown to be controlled by TGFβ and Wnt gradients, 

with TGFβ controlling cell polarisation proteins and Wnt controlling the expression of 

EphB sorting receptors (109).  Mishra et al. (109) show that the presence of TGFβ signals 
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and the absence of Wnt signals at the villus compartment results in rapid cell cycle arrest 

and differentiation with SMAD4 and TCF4 being the dominant switch between the 

proliferative progenitor and the differentiated epithelial cell.  In colorectal cancer this 

switch may be permanently reversed with TGFβ signalling being inactivated and TCF4 

being constitutively active by mutations in the Wnt cascade. We found that activation of 

the TGFβ pathway inhibited cell proliferation and stem cell self-renewal by interacting and 

inhibiting Wnt signalling components such as axin II.   Interaction between SMAD7 (an 

inhibitory SMAD of TGFβ signalling) and β-catenin was demonstrated by Edlund et al. 

(199) who found that TGFβ cells stably transfected with inducible SMAD7 resulted in 

increased β-catenin, LEF1 and c-Myc expression.  They propose that a complex with 

SMAD7, β-catenin and LEF1 forms in response to TGFβ signalling with the complex then 

driving c-Myc and LEF1 production.   
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Figure 4.2 Reciprocal Wnt and BMP/TGFβ signalling gradients maintain colonic crypt 

tissue renewal. *Gene microarray analysis of BMP ligands and antagonists, Kosinski et 

al. (74). ^ Expression of BMP pathway components and antagonists in mouse small 

intestine, He et al. (8).  “TGFβ ligand mRNA expression in rat intestinal epithelium, (192).  

% Expression of BMP/TGFβ activation in native human colonic crypts, Williams (data 

unpublished). # mRNA Wnt ligand and receptor expression in mouse intestinal crypts, 

Gregorieff et al. (142). + mRNA Wnt ligand expression in human intestinal crypts, 

Holcombe et al. (127). & mRNA Wnt ligand expression in human isolated intestinal crypts, 

Williams (data unpublished).  ~ R-Spondin proteins are ligands for Lgr4/5/6 receptors, de 

Lau (5). 

The gradients arising from the interaction between Wnt, BMP and TGFβ signalling 

pathways ensures that stem-cell driven tissue renewal is maintained in a balanced manner.  

An imbalance in the gradients could lead to either crypt hyperproliferation and increased 

crypt fission or stem cell death and loss of proliferation resulting in crypt degeneration.  
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Investigation of the modulators that establish these morphogenic gradients along the crypt-

axis and their influence on the efficiency of stem cell-driven tissue renewal in health and 

disease will provide insights into disease risk and prevention.   

4.2 Colorectal cancer risk and ageing 

Colorectal cancer is the third most common cancer in the UK, and the Wnt, BMP and 

TGFβ signalling pathways have all been implicated in colon carcinogenesis (122) (177) 

(183).  Inactivating mutations in BMP and TGFβ signalling pathways and constitutively 

activating mutations in the Wnt pathway paves the way to the development of 

adenocarcinomas.   

About 90% of all colorectal cancers will have an activating mutation of the canonical Wnt 

signalling pathway, ultimately leading to the stabilisation and accumulation of β-catenin in 

the nucleus of the cell.  These mutations lead to early premalignant lesions in the intestine, 

such as aberrant crypt foci and small polyps (122).  Mutations of APC were first identified 

in patients with familial adenomatous polyposis (FAP).  These patients develop hundreds 

of polyps in the colon after inactivation of the remaining wild-type allele.  Although FAP 

is quite rare, mutations of APC account for up to 85% of all sporadic colorectal cancers.  

Hypermethylation of the wild-type APC allele is also found in some sporadic colorectal 

cancers which may be an alternative mechanism for APC gene inactivation (126).   

Patients with juvenile polyposis, a rare autosomal dominant hamartomatous polyposis 

syndrome have an increased risk for the development of colorectal cancer.   Patients with 

this syndrome have mutations in BMPRI and SMAD4, which suggests a role for the BMP 

pathway in the initiation of colorectal neoplasia.   Hardwick et al. (179) found that BMP2 

inhibits colonic epithelial cell growth in vitro, promoting apoptosis and differentiation and 

inhibiting proliferation and that BMP2 expression is lost in the microadenomas of familial 

adenomatous polyposis patients suggesting that BMP2 acts as a tumour suppressor.  Loh et 

al. (180) have also found BMP3 to be growth suppressive and its expression is frequently 
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lost through promoter methylation, again suggesting a tumour suppressor role for BMPs in 

colorectal cancers. However, BMP4 expression has been shown to be up-regulated in the 

transition from primary colorectal adenomas to adenocarcinomas (181).  Deng et al. (181) 

demonstrated that overexpression of BMP4 can protect colon cancer cells from apoptotic 

death under stress environment and drive these cancer cells to a more migratory and 

invasive phenotype through induction of uPA activity.  This suggests that BMP4 promotes 

invasive behaviour of colon cancer cells.  By examining pSMAD1,5,8 activation,  Kodach 

et al. (177) found that loss of BMP signalling occurs during the transition from late 

adenoma to early carcinoma suggesting that BMP signalling is involved in tumour 

progression rather than as an initiator of carcinogenesis. 

The TGFβ signalling pathway has a role in both tumour suppression as well as tumour 

progression.  TGFβ1 switches from an inhibitor of tumour cell growth to a stimulator of 

growth and invasion during human colon carcinoma progression (183).  Trobridge et al. 

(206) have demonstrated that a combination of inactivation of the TGFβ signalling 

pathway and expression of oncogenic Kras leads to the formation of invasive intestinal 

neoplasms through a β-catenin independent pathway and that these adenocarcinomas have 

the capacity to metastasize.   Munos et al. (207) also found that the loss of TGFβRII in 

intestinal epithelial cells promotes the invasion and malignant transformation of tumours 

initiated by APC mutation suggesting that Wnt signalling deregulation and TGFβ 

signalling inactivation cooperate to drive the initiation and progression, respectively, of 

intestinal cancers in vivo. 

The highest risk factor to the development of adenocarcinoma is the ageing epithelium 

(280).  Preliminary data from our laboratory suggests that there is a perturbed Wnt 

signalling gradient along the crypt-axis as well as an expansion of the stem cell niche with 

increased age.  Since the hierarchy of tissue renewal is compromised in the ageing colonic 

epithelium, it may exacerbate the risk of colorectal cancer.  It would therefore be 

interesting to investigate more fully the status of human colonic tissue renewal and the 
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influence of compromised Wnt and BMP/TGFβ gradients with respect to age and disease 

risk (Fig 4.3).   

 

Figure 4.3 Compromised tissue renewal in the ageing human colonic epithelium.  

Williams et al. (unpublished). 

 

4.3 Development of Barrett’s oesophagus culture model 

The molecular mechanisms that drive Barrett’s oesophagus metaplasia and maintain the 

renewal of the glandular structures termed crypts had proven to be difficult to investigate.  

Research on mouse models and cell lines has suggested that Barrett’s oesophagus arises as 

a result of gastroeosophageal reflux, where the squamous tissue is replaced by glandular 

columnar epithelium that is more resistant to acid and bile acids.  Investigation in human 

Barrett’s oesophagus crypts has been hampered by a lack of an ex vivo culture model.  The 

last aim of this thesis therefore was to develop an ex vivo Barrett’s oesophagus culture 

model in which the functional role of signalling pathways involved in Barrett’s crypt 

renewal could be investigated.   
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A model to study Barrett’s oesophagus was very recently developed by Sato et al. (20) 

using a technique they developed for culturing intestinal organoids.  Due to the similarity 

of the crypt-like invaginations in Barrett’s oesophagus, culturing of these crypts led to 

cystic organoid structures that formed buds resembling small crypts and could also be 

cultured for more than 3 months. In parallel, and during the course of this study, we also 

developed an ex vivo Barrett’s oesophagus crypt culture model that was ameanable to 

functional bioimaging techniques. Using the techniques developed for the near-native 

colonic crypt culture model developed in our laboratory, single Barrett’s oesophagus 

crypts were isolated from the surrounding squamous tissue and placed into culture 

conditions developed for the colonic crypts.  The isolated Barrett’s crypts maintained their 

morphology in culture, were viable and maintained their proliferation gradient in the same 

manner as seen in the native microdissected Barrett’s crypts. 

This study demonstrated the importance of Wnt signalling in stem cell-driven tissue 

renewal in the human colonic crypts, and since Barrett’s oesophagus crypts are similar in 

structure and morphology, Wnt signalling may also be important in the maintanance of 

Barrett’s crypts.  We show that Wnt signals are active in Barrett’s oesophagus crypts in a 

similar fashion to colonic crypts, with β-catenin predominating at the crypt base.   Bian et 

al. (15) show that there is abnormal activation of β-catenin during neoplastic progression 

of Barrett’s oesophagus.  Clement et al. (224) found that APC and SFRP1 silencing by 

promoter hypermethylation may be responsible for activation of the Wnt pathway in the 

development of oesophageal adenocarcinoma in Barrett’s oesophagus.  Moyes et al. (16) 

also found that Wnt target genes cyclin D1, Sox9 and c-Myc all had increased expressed in 

Barrett’s oesophagus compared to normal squamous epithelium.    

In human colonic crypts we demonstrate that as well as Wnt signals being required for 

tissue renewal by promoting proliferation, the BMP and TGFβ signalling pathways may 

also play a reciprocal role by inducing cell differentiation and apoptosis.  During this 

study, we did not have time to investigate the role of BMP and TGFβ signalling on 
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Barrett’s crypt survival and renewal, but the literature suggests that BMP signalling is 

involved in the metaplasia of Barrett’s oesophagus from normal squamous epithelium.  

Zhou et al. (226) show that acid and bile acid increase the expression of BMP4 and 

promoted expression of ID2 and CDX2.  Milano et al. (17) found in both human and rat 

tissue that the BMP pathway was activated in oesophagitis and Barrett’s oesophagus.  

Incubation of squamous cells with BMP4 showed a shift in cytokerartin expression was 

consistent with columnar epithelium.  Wang et al. (18) have recently shown that epithelial 

Hedgehog ligand expression may contribute to the initiation of Barrett’s oesophagus 

through induction of stromal BMP4 which triggers reprogramming of squamous 

epithelium in favour of a columnar phenotype.  TGFβ signalling may also play a part in 

Barrett’s oesophagus related adenocarcinoma.  Von Rahden et al. (228) found that TGFβ1 

overexpression is associated with advanced stage of oesophageal edonocarcinoma and has 

a negative impact on survival.  SMAD4 mRNA has been found to be progressively 

reduced in the mataplasia-dysplasia-adenocarcinoma sequence along with SMAD4 

promoter methylation in majority of Barrett’s adenocarcinomas (229).  Mendelson et al. 

(19) also observed loss of SMAD4 and TGFβRII in Barrett’s oesophagus and 

adenocarcinoma tissues.  Sato et al. (20) also show that as well as Wnt signals being 

required for Barrett’s organoid survival, the BMP antagonist noggin and Alk 4/5/7 

inhibitor A83-01 and the p38 MAP kinase inhibitor SB202190 are also essential.   

Stem cell markers of Barrett’s oesophagus have yet to be identified, but due to the 

similarity of Barrett’s oesophagus crypts to intestinal crypts, and studies showing that Lgr5 

is upregulated in Barrett’s tissue compared to squamous (238) (240), we demonstrated that 

the intestinal stem cell marker OLFM4 could be used to identify stem cells within Barrett’s 

tissue.  We found that OLFM4 labelling was consistent with that found in colonic crypts, 

and although the percentage of OLFM4
+
 cells was much higher than that found in normal 

colonic epithelium, it is quite consistent with the percentage of OLFM4
+
 cells found in 

IBD patients: work by another colleague in the laboratory has shown that in active IBD 
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there are about 40% of OLFM4
+
 stem cells at the base of the crypt, which is similar to that 

found in the Barrett’s crypts.  We have also found that colorectal cancer patients have a 

much higher percentage of OLFM4
+
 stem cells (about 70%), (William’s lab, data 

unpublished) so it is no surprise that Barrett’s oesophagus which is an inflammatory 

disease predisposes patients to developing adenocarcinoma.  Identification of Barrett’s 

oesophagus stem cells and the use of the ex vivo culture model will help the development 

and translation of novel strategies for prevention of Barrett’s oesophagus and oesophageal 

adenocarcinoma. 

 

4.4 Future Work 

4.4.1 Renewal of the ageing human colonic epithelium in health and disease 

The highest risk factor to the development of adenocarcinoma is the ageing epithelium 

(280).  Xiao et al. (281) have shown that ageing enhances proliferation, but attenuates 

apoptosis in the mouse intestinal epithelium whilst Martin et al. (282) show that stem cells 

in the ageing mouse have a reduced ability to regenerate following injury. An increase in 

clonogens (stem/progenitor cells) and a greater degree of apoptosis at the crypt-base 

following irradiation of the ageing mouse intestinal epithelium has also been reported 

(283). In drosophila, the ageing intestinal epithelium is also characterised by an increase in 

stem cell proliferation that is associated with mis-differentiation (284).  

It has been suggested that the Wnt signalling pathway is augmented in the ageing mouse 

intestine.  In the Klotho mouse model of accelerated ageing, Liu et al. (285) show that 

young Klotho mice had a decrease in stem cell number and an increase in progenitor cell 

senescence, and that continuous Wnt exposure triggered accelerated cellular senescence.  

In human biopsy tissue samples, a Wnt-dependent and age-related phenotype in the human 

colonic epithelium was raised by the recent demonstration of age-related CpG island 

methylation of Wnt pathway inhibitors (286). 



214 
 

Given that age is a major risk factor for colorectal cancer (287), there is a surprising lack 

of data regarding the status of, and cellular signals for, tissue renewal in the normal ageing 

human colonic epithelium. It would therefore be interesting to characterise the functional 

status of the Wnt signalling pathway and stem cell-driven tissue renewal in the ageing and 

diseased human colonic epithelium. 

Any differences in the morphology and crypt length between young (<40 years of age) and 

old patients (>70 years of age) could be investigated by measuring crypt length in native 

microdissected crypts.  Crypt cell proliferation can be assessed using Ki67 

immunolabelling, whilst Lgr5/OLFM4
+
 stem cells status can be determined by double 

immunolabelling of OLFM4 protein with Lgr5 protein or Lgr5 mRNA.  This will 

demonstrate if there is an expansion of the stem cell niche with age.  To determine any 

differences in the status of the Wnt pathway, native microdissected crypts from young and 

old patients can be immunolabelled for β-catenin and Wnt target genes, axin II and c-Myc.  

The human colonic crypt culture system can then be used to investigate the differential 

sensitivity of crypts derived from young and old patients to either exogenous and/or 

endogenous Wnt stimulation and the sensitivity to inhibition of Wnt signals with the Wnt 

secretion inhibitor IWP2. These experiments could demonstrate an ageing phenotype in the 

human colonic epithelium that is driven by increased Wnt signals and increase our 

understanding of human ageing and age-related conditions such as colorectal cancer. 

Intestinal stem cells have been suggested to be the cells of origin of colorectal cancer 

(220). A possible scheme relating the age-related expansion of intestinal stem cells along 

the human colonic crypt-axis to an increased risk of colorectal cancer is illustrated in Fig. 

4.4. Although the details are not yet clear, it is conceivable that inefficient tissue renewal 

and migration of intestinal stem cells away from their safe harbour at the base of colonic 

crypts renders them more vulnerable to neoplastic transformation.  
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Figure 4.4 Age-related expansion of intestinal stem cells along the human colonic crypt-

axis and inefficient tissue renewal and migration of intestinal stem cells away from their 

safe harbour at the base of colonic crypts renders them more vulnerable to neoplastic 

transformation. 
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4.4.2 Inflammatory mediators for the survival and expansion of Barrett’s oesophagus 

Barrett’s oesophagus is thought to be provoked and sustained by inflammation associated 

with gastro-oesophageal reflux disease. The major protagonists include bile acids, the 

acidic pH of the refluxate and prostaglandin E2 (PGE2), which is produced in response to 

damage to the oesophageal epithelium.  Short- term exposure of Barrett’s tissue to acid has 

been shown to increased cell proliferation and survival and activated MAPK (ERK and 

p38) signalling and COX2 expression (288) (289), and Souza et al. (290) suggest that the 

consequences to acid exposure may be mediated at least in part by PGE2.  Bile salts have 

also been shown to stimulate cell proliferation via MAPK dependent pathways (291) and 

upregulate COX2 (292) in models of Barrett’s oesophagus.  As bile salts can also stimulate 

the signalling effects of antiapoptotic pathways such as NFκB it is likely that continuous 

bile damage enhances dysregulated cell proliferation (293).  Alterations in the Wnt 

signalling pathway during neoplastic progression of Barrett’s oesophagus have also been 

demonstrated (224).   In the colon, Buchanan et al. (294) have suggested that PGE2 

stimulation transactivates the Wnt pathway and this may be true for Barrett’s oesophagus.   

These studies suggest that inflammatory mediators such as bile acids, acidic pH and PGE2 

may modulate cellular signalling pathways (Wnt, MAPK, NFκB) to sustain a columnar 

epithelial cell type and promote expansion of Barrett’s oesophagus by cell proliferation 

and cell survival.  Therefore the functional effects of these inflammatory mediators on  

Wnt, MAPK and  NFκB signalling pathways on the regulation of human Barrett’s crypt 

renewal , survival and intestinal stem cell biology can be interrogated using the developed 

ex vivo culture model for Barrett’s oesophagus.   

The expression and localisation of prostaglandin receptors (EP1-EP4) could be determined 

by immunolabelling of native and cultured Barrett’s crypts.  EP receptor subtype-specific 

agonists and antagonists can be used to identify which second messenger signalling 

pathways and specific target genes are activated by those receptors. PGE2 transactivation 

of Wnt, phosphoIKKβ/NFκB and EGFR/MAPK pathways could be tested in a similar 
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manner.  The functional consequences of PGE2 signalling can be investigated by assessing 

stem cell number, cell proliferation using Ki67 labelling and BrDU incorporation, cell 

migration by real time digital time lapse microscopy and cell survival/apoptosis by 

calcein/propidium iodide labelling of live/dead cells in conjunction with immunolabelling 

of activated caspase 3.  The functional consequences of acid and bile acid exposure on 

Barrett’s crypt survival and tissue renewal can be assessed in the same manner.    

 

 

Figure 4.5 Inflammatory mediators (bile acids, acidic pH, PGE2) modulate cellular 

signalling pathways (Wnt, MAPK, NFκB) to sustain a columnar epithelial cell type and 

promote expansion of Barrett’s oesophagus by cell proliferation and cell survival.  
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Appendix 

1) Movie 1: 3D reconstruction of confocal image stack of Lgr5/OLFM4/E-cadherin 

immunolabelling. 

2) Movie 2: Timelapse movie of colonic crypt proliferation and migration (x20 

objective). 

3) Movie 3: Timelapse movie of Barrett’s oesophagus crypt (x20 objective). 
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