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Abstract

This thesis introduces a set of new, dynamic units of visual speech which are learnt

using computer vision and machine learning techniques. Rather than clustering

phoneme labels as is done traditionally, the visible articulators of a speaker are

tracked and automatically segmented into short, visually intuitive speech gestures

based on the dynamics of the articulators. The segmented gestures are clustered

into dynamic visemes, such that movements relating to the same visual function

appear within the same cluster. Speech animation can then be generated on any

facial model by mapping a phoneme sequence to a sequence of dynamic visemes,

and stitching together an example of each viseme in the sequence. Dynamic visemes

model coarticulation and maintain the dynamics of the original speech, so simple

blending at the concatenation boundaries ensures a smooth transition. The e�cacy

of dynamic visemes for computer animation is formally evaluated both objectively

and subjectively, and compared with traditional phoneme to static lip-pose interpo-

lation.
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Chapter 1

Introduction

Realistic facial animation requires care and painstaking manual e↵ort. This is es-

pecially true during speech as viewers are extremely sensitive to any discrepancy

between sounds and the accompanying facial movements [139]. As the visual qual-

ity of computer graphics facial models improve, one also might expect the quality

of animated facial behaviour to follow. However, this generally has not been the

case and practical applications of speech animation in games and movies is achieved

using hand-crafted animation or using expensive motion capture systems.

There are a number of factors that compound the di�culty of synthesising re-

alistic facial movements during speech. Firstly, the biomechanics of the face are

complex and it is not clear how these should best be modelled for speech or other

facial expressions. Secondly, it is not clear how the underlying visual speech signal

should be represented at a segmental level for synthesis. Typically this is done us-

ing visemes (visual phonemes [49]) which are traditionally defined as the clusters

of visually contrastive phonemes, but whilst deriving a visual unit based on speech

acoustics may be convenient as the two modalities are intrinsically linked, this sim-

ple approach has a number of problems. The number of phonemes and visemes in an

utterance transcription are generally considered to be the same and phoneme labels

are simply substituted for viseme labels. Coarticulation e↵ects, where neighbouring

sounds influence one another, can be modelled as part of a post process [104], but

1
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there is no well defined model of coarticulation in the phoneme-to-viseme mapping.

Also, the boundaries between the units in the acoustic and visual modalities are

assumed to align and in general this is not true. In a standard phoneme-to-viseme

mapping there is no accounting for the natural asynchrony of audiovisual speech.

More significantly, and more seriously, a phoneme is by definition a group of related

sounds that are perceived to have the same function. Phonemes serve to represent

meaningful contrasts between acoustic speech utterances. Di↵erent realisations of

the same phoneme can, and often do, appear very di↵erent visually.

This thesis introduces a new, dynamic viseme which represents contrastive move-

ments of the speech articulators that are derived by analysing real visual speech,

rather than by clustering phoneme labels. Dynamic visemes better represent the

visual speech signal in that each viseme serves a particular function, and so sub-

stituting one dynamic viseme for another changes the visual meaning of the utter-

ance. The dynamic nature of the unit means that coarticulation e↵ects are explicitly

modelled, and the boundaries between visemes are not tied to the boundaries of the

underlying phones. Indeed, as the units represent the movements of the visible

articulators, a single dynamic viseme typically extends over several acoustic phones,

so the relationship between phoneme sequences and dynamic visemes is complex

and many-to-many.

Dynamic visemes are learnt by clustering visual speech gestures in a large corpus

of video data. A gesture is defined as a short, intuitive movement of the articula-

tors, and is determined by automatically segmenting the visual speech based on the

dynamics of the articulators. The gestures are clustered such that those appear-

ing within a dynamic viseme class portray the same visual function, and represent

the visual equivalent of the allophones of a phoneme. An overview of the training

process is shown in green in Figure 1.1.

To animate new speech, the phonemes corresponding to clustered gestures are

searched to determine a set of candidate dynamic viseme sequences that might

produce the desired utterance, and a cost function selects the best sequence to use.
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Figure 1.1: An overview of the processes involved in defining dynamic visemes
(green), and applying them to speech animation (red).

Since each dynamic viseme cluster represents a particular movement on the lips,

speech animation can be generated by modelling one example from each cluster on

a facial model, and then retiming and stitching together the viseme clips to form

the required sequence. The animation pipeline is shown in red in Figure 1.1.

1.1 Contributions

• The design, capture and annotation of a large audio-visual speech dataset.

• A novel approach at segmentating visual speech based on the dynamics of the

visual articulators.

• The definition of a novel, dynamic visual speech unit derived from analysis of

real speech.

• A proposed mapping between acoustic and visual speech units.

• Formal objective and subjective evaluation of speech animation.
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1.2 The Importance of Visual Speech

The acoustic signal is the primary modality of speech and is usually su�cient for

everyday communication, as illustrated by the use of the telephone and radio. For

a long time, speech was thought to be a unimodal, auditory process and the vi-

sual counterparts were merely considered a bi-product of moving the articulators

to produce the acoustic targets. It is now known that the visual cues also provide

important information, which the brain uses to decode speech more reliably. Visual

speech considers the position and dynamics of the articulators that are visible dur-

ing speech. These are usually assumed to be the lips, jaw and often the tongue and

teeth, but might also include the throat and cheeks, as these also move as a direct

result of speech and convey information regarding the content of an utterance.

Visual speech information enhances the intelligibility of speech for hearing im-

paired people, and it has also been found to improve intelligibility for people with

normal hearing in acoustically noisy environments, such as a bar or factory [134, 139].

Where background noise makes speech di�cult to hear, a large amount of informa-

tion is exchanged via the visual modality. Sumby and Pollack [139] were among

the first to measure the impact of visual speech on people’s ability to understand

spoken words in noisy environments. Participants were asked to identify words from

a closed set under audio-only and audio-visual conditions with varying amounts of

added acoustic noise. They found that the presence of the visual signal was ap-

proximately equivalent to a 12dB gain in the signal-to-noise ratio (SNR) and that

the benefit from the visual modality increases as the information from the auditory

modality decreases. Ross et al. [134] performed a similar experiment, however, in

their study a closed set of responses was not o↵ered to the participants, increasing

the di�culty of the task. They found that although the gain from the visual modal-

ity was inversely correlated with the auditory SNR, there was a window around

-12dB SNR where bimodal speech processing was especially beneficial.

There is overwhelming evidence to suggest that speech perception is a bimodal

process for normal hearing people when presented with clearly audible speech. The
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most convincing argument to support this theory is the illusion known as the

McGurk E↵ect, first described by McGurk and MacDonald in 1976 [110]. They

discovered that by dubbing the audio of a person uttering a syllable onto the video

of a speaker uttering a di↵erent syllable, the clip was perceived as a third, di↵erent

syllable. The classic example is a video containing audio “ba” and video “ga”, which

was usually perceived as “da”. This demonstrates the significance of visual cues for

speech intelligibility as both the acoustic and visual information contribute to the

perceived sound. This idea is further upheld by Arnold and Hill [1] who discovered

that for clearly audible speech, intelligibility significantly increases with the addition

of the visual information.

Much of the benefit gained from the visual signal may be explained by the com-

plementary nature of audio-visual speech, as certain speech sounds are di�cult to

disambiguate acoustically but are distinct visually. For example, /n/, /m/ and /T/,

/f/ are acoustically very similar as they are produced in the same manner, but are

visually distinct as the place of articulation di↵ers. Conversely, /p/ and /b/ are

acoustically distinct, but are visually confusable.

It is not well understood how humans integrate audio and visual information for

decoding speech. However, recent research in the field of neuroscience has indicated

that silent speech-reading activates the auditory cortex [22] and it has been suggested

that the patterns in the auditory cortex reflect implied auditory information [67].

The extent of the cortex activations as yet remain uncertain, and further research

is necessary. However these findings suggest that there may be some integrative

process that combines visible and heard speech, further supporting the belief that

speech perception is a bimodal function.

Aside from speech intelligibility, the addition of visual information to audio speech

has been shown to have beneficial e↵ects in the performance of other linguistic tasks,

such as language identification [138], discriminating sounds in other languages [115]

and word segmentation [137]. It has also been shown to increase speech intelligibility

of clearly audible speech when the subject matter is complex [1].
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From a very young age people are exposed to face-to-face communication in

day-to-day life and are very quickly able to build a link between what they see and

hear. It has been shown that young babies are aware of a relationship between audio

and visual speech information [2], and children benefit from visual information when

speech is clear and audible, just as an adult would [1]. People are therefore extremely

sensitive to information conveyed via the face. Nuances such as a small pu↵ of the

cheeks, tilt of the head or protrusion of the lips all serve as clues that contribute

to the perception of speech. Human’s sensitivity to this visual information makes

realistic speech animation di�cult because if these cues are missing, or wrong, then

viewers will identify this immediately and potentially find the animation distracting.

The work described in this thesis goes some way towards solving the problem of

animating natural-looking speech by analysing the position and dynamics of the

articulators from real data to learn an inventory of motions that can be concatenated

to produce speech animation.

1.3 Real-World Applications

The work described in this thesis enables realistic visual speech animation for any

given text. In 1995, Toy Story became the first full-length computer animated

feature film. Since then, animation has become a dominant part of filmmaking with

fully animated characters appearing in films such as Gollum from Lord of the Rings

in 2001 and many characters from Avatar in 2009. For the highest realism, the state-

of-the-art techniques for speech animation use facial motion capture, where an actor

is filmed with markers positioned at various locations on their face. The markers are

tracked and the motion is mapped on to the computer-generated character. This

is an expensive and time-consuming process and requires the actor to be re-tracked

for any modifications to the script.

Computer-generated cartoons are becoming increasingly popular, particularly

aimed at children. These cartoons are typically made as a series of episodes, so
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a fast method for generating speech animation is necessary. It has been found

that children are able to improve their vocabulary by watching an animated char-

acter speaking [105]. Increasing the realism of the lip motion in cartoons could

have a positive a↵ect on a child’s lexicon and pronunciation. Indeed, the use of

animated characters for educational purposes is not limited to cartoons and has re-

cently been introduced to the classroom to aid specific learning tasks during speech

therapy [12, 28, 38]. In [28] it was stated that an animated character has vast

potential in this field as they are “informative, emotional and personable”.

In the video gaming industry, facial animation typically requires less realism and

more speed, as it is necessary that the face merely looks plausible as long as the

scene can render in real time. However, the growth of the computer gaming industry

and the capability of modern computers is prompting the development of visually

realistic gaming. As an example, the state-of-the-art 2011 game L.A. Noire contains

incredibly life-like character animation, which was generated by tracking an actor

performing all of the scenes and then playing back the performance on the character.

The main drawback of using this method is that the facial animation is inflexible

to user interaction as all of the animations are pre-recorded. With a more flexible

animation technique the character could respond dynamically to player input and

say phrases not previously spoken by the actor.

As technology and computers become more advanced, the cost and ease of using

animation as an advertising tool becomes more feasible even for small companies.

In recent years, animated characters have been used to advertise products such as

meat produce, washing powder and cars. This is an e↵ective form of advertising as

the viewer can relate to the anthropomorphic characters as they possess human-like

behaviour.

Computer avatars are the graphical representation of a user of a forum or chat

room and are traditionally static images. It would provide a richer, and more engag-

ing user experience if avatars were animated and able to speak the latest message.

Communication is much more personal if a person or character can be seen speak-



CHAPTER 1. INTRODUCTION 8

ing rather than only heard. As discussed in Section 1.2, people find audible speech

more intelligible when visual information is provided, even when the audio signal is

clear [1], so the addition of a talking character or avatar displayed during telephone

conversations may be beneficial to some people.

1.4 Outline of Thesis

The following 3 chapters contain a selection of background material in the fields of

speech production and animation. Specifically, Chapter 2 provides an overview of

facial anatomy and the physiology of the articulatory system to explain the under-

lying processes involved in visual speech production, Chapter 3 describes phonemes,

and the traditional definition of visemes as clusters of phonemes and Chapter 4

reviews common techniques for generating speech animation. The capture, anno-

tation and parameterisation of an audio-visual speech dataset is then described in

Chapter 5, and the segmentation and clustering of speech gestures to determine a

set of dynamic visemes is detailed in Chapter 6. Chapter 7 describes how to gener-

ate facial animation for new speech by mapping phonemes to dynamic visemes, and

investigates the speaker dependence of the dynamic viseme units. Finally, Chapter 8

concludes the thesis, and outlines further work that can be performed to refine the

units and, thus, improve speech animation.



Chapter 2

Visual Speech Production

What we see when a person speaks is determined by a large number of interacting

processes. Acoustic speech is produced by pushing air from the lungs through the

vocal apparatus which are coordinated appropriately to generate each speech sound.

Some of these articulators are visible, including the lips, teeth, tongue and jaw.

There are a number of overlapping muscles of di↵ering shape, size and structure

located around the face and down the vocal tract which are tensed to varying degrees

to configure the positions of the articulators appropriately for each speech sound.

The contractions of the facial muscles are restricted by the underlying rigid, bony

structure of the skull to which they are attached, and although they are not directly

observable, the muscles control the jaw activity and deform the layer of skin that

covers the face. These deformations are complex and are governed by the elasticity

of the skin and the degree of stress applied by the muscle.

This chapter goes some way towards explaining why we see what we do when

a person speaks. A modest overview of facial anatomy and the physiology of the

articulatory system is presented to provide an insight into the complexities of speech

production and how di↵erent categories of sound are formed. The phenomenon of

coarticulation is then introduced together with a review of the models of coarticu-

lation from the literature.

9
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2.1 Facial Anatomy

In this section, the anatomy of the face is described including the structure and

biodynamics of the skin, the position and function of the facial muscles and the

organisation of the skull bones. As the focus of this work is speech, only the lower

section of the face is considered.

2.1.1 Skin

Skin is the largest human organ, covering the entire body and serving many im-

portant functions. It acts as a waterproof, insulating barrier, protecting against

extreme temperatures, and guards the bones, ligaments, muscles and internal or-

gans from injury, drying out and foreign bodies that could cause infection. Human

skin is abundant with nerves, cells, and sweat and sebaceous glands and has a layered

structure consisting of the epidermis, the dermis and the hypodermis.

The outermost layer is the epidermis, which is a sti↵ layer consisting mostly of

cells made of keratin, a tough protein that is also found in hair and nails. In the

lower layers of the epidermis, cells reproduce rapidly and replace the cells from the

superficial layers [10]. As the epidermis contains no blood vessels, these cells die

o↵ and are completely replaced every 4-5 weeks. The epidermis ranges in thickness

from 0.05mm on the eyelids to 1.5mm on the palms and soles of the feet and also

contains melanocytes, which forms melanin and gives skin its colour.

Next is the dermal layer, which is around ten times the size of the epidermis and

is the tissue that defines the mechanical properties of the skin in terms of elasticity

and strength. The dermal tissue contains 72% collagen and 4% elastin fibres which

form a ground, incompressible, gelatinous substance which provides low resistance

at low stress and higher resistance at high stress. When the skin is stretched, the

collagen fibres uncoil in the direction of strain allowing the skin to deform, so when

a large force is exerted from the muscle, the fibres fully uncoil and provide a lesser

stretch. When the stress has released, the elastin fibres act like springs and return
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the collagen fibres to their original uncoiled state. The behaviour of the skin is

therefore complex and non-linear [141].

The dermis contains blood vessels, which regulate body temperature, and a net-

work of nerves that sense pressure, pain and temperature and relays them to the

brain. It also accommodates hair follicles, sweat glands and sebaceous glands that

produce oil, lubricating the skin and hair. As a person ages, the amount of collagen

and elastin in the dermis decreases causing skin to be less elastic. Together with an

overall decrease in subcutaneous tissue, this encourages skin to sag and wrinkle.

The hypodermis is typically not classified as skin but as a layer primarily consist-

ing of loose connective tissue and lobules of fat. The fibrous connective tissue serves

to fasten the skin to the underlying layer of muscles, and the fat provides thermal

insulation and acts as a shock absorber for the bones and as a cushion for the skin.

2.1.2 Muscles

The deformation of the skin is largely controlled by the contraction of an aggre-

gation of facial muscles. Muscles can be described as bundles of fibres working in

unison [142], where shorter fibres are more powerful and longer fibres have a larger

range of movement. Facial muscles generally arise from a bone at one end (the ori-

gin) and insert into the skin at the other (the insertion). Muscles pull the tissue to

which they are attached towards the bone from which they emerge and often cause

wrinkling of the skin at right angles to the contraction. There are two types of muscle

contraction: isometric and isotonic. Isometric contraction, literally meaning same

length, causes muscles to tense without changing size, whereas isotonic contraction

allows the muscle to shorten whilst tensing. When shortening, the other dimensions

of the muscle increase to maintain a constant volume. Figure 2.1 illustrates the

position of the major muscles of the lower facial area.

The circular muscle surrounding the mouth, the orbicularis oris, has the most

complex muscular interaction of all facial muscles as it has no attachment to the
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Figure 2.1: The major muscles of the human head.

bone. It consists partly of fibres belonging to the lips and partly of other facial

muscles such as the buccinator. This muscle has the primary control over the mouth

movements, and is very important for articulated speech as it shapes and controls

the size of the mouth opening and is essential for creating the lip configurations

necessary for speech. Contraction of the orbicularis oris causes narrowing, rounding

and puckering of the lips.

The buccinator controls movement of the anterior portion of the cheek and the

lateral wall of the oral cavity. It originates at both the upper and lower jaw and

from a fibrous structure extending from the hamulus, a thin, curved bone attached

to the sphenoid bone (see Figure 2.2). Contraction of the buccinator pulls back the

angle of the mouth and flattens the cheek area enabling the production of sounds

such as /i/. Without the buccinator, speech would be di�cult and sound slurred.

In close proximity to the buccinator is the depressor anguli oris. This is a trian-

gular muscle originating on the mandible that depresses the angle of the mouth.

A complex combination of muscles are involved with simple opening and closing
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of the mouth. The elevation of the upper lip is performed with a combination of

the activations of the levator labii superioris, levator labii superior alaeque nasi,

zygomatic major and zygomatic minor muscles. Each of these muscles contract at a

slightly di↵erent angle. The levator labii superior alaeque nasi muscle is also respon-

sible for the dilation of the lateral surface of the external nose and the zygomatic

major also pulls the lips laterally. Conversely, the depressor labii inferioris controls

the depression of the lower lip, enabling exposure of the lower teeth. The mentalis

raises the chin and in doing so, dislodges the lower lip such that it elevates and

protrudes.

One of the strongest facial muscles is the masseter. This is a broad, thick, rectan-

gular muscle that originates from the zygomatic bone and inserts into the mandible.

The function of the masseter is to elevate and draw the mandible forward, and, in

doing so, closes the jaw.

2.1.3 Bones

The skull is the upper-most part of the skeleton and serves as general framework for

the head. Excluding the ear bones, the skull is composed of 22 bones [48]; 8 in the

cranial area (neurocranium) and 14 in the facial area (viscerocranium). Figure 2.2

illustrates the major bones in the lower portion of the human head.

The cranial area is the section that directly surrounds the brain. It contains

many of the larger bones in the head, such as the temporal bones, which form the

sides of the facial skeleton and base of the skull, and the frontal bone, which forms

the forehead. The sphenoid connects the cranial skeleton to the facial skeleton.

The facial bones help to define features of the face and maintain the rigid struc-

ture. The nasal bones form the bridge of the nose and the zygomatic bones form

the cheekbones and the lower, lateral eye socket. The maxilla supports the upper

teeth and forms the upper jaw, part of the nasal cavity and the anterior section of

the hard palate. The posterior portion of the hard palate is formed from the palatal
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Figure 2.2: The major bones of the head.

bones.

The skull only has one jointed structure, the mandible, which can move vertically

and horizontally to some degree and supports the lower teeth. The movement of the

mandible enables a chewing motion and is essential for speech production.

2.2 Physiology of the Articulatory System

Speech production is a complex function that involves coordinating the articulators

such that the air from the lungs forms a pressure wave that humans perceive as

speech. The jaw, lips, tongue, velum, larynx and nasal and oral cavities all play

their part in this complicated procedure. For even a simple, one-syllable word, over

70 muscles and the movement of 8–10 body parts between the diaphragm and the

lips are required [60]. Figure 2.3 shows some of the articulatory organs used for

speech production.

During respiration, the vocal cords are relaxed, allowing air to freely pass down

through the trachea and into the lungs and vice versa. To produce voiced speech,

for example the sounds /v, z, d/, the vocal cords vibrate and interrupt the airflow
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Figure 2.3: A selection of the articulators used for speech production.

through the vocal tract, producing pulses of air. It is the frequency of this vibration

that gives pitch to the sound. The vocal cords also have the ability to spread,

allowing air to pass through the glottis at high speeds without vibrating the folds,

producing noise-like turbulence which is perceived as voiceless speech, for example

the sounds /f, s, t/.

As air is forced through the vocal cords, a series of constrictions are made by a

combination of the articulatory organs to produce di↵erent sounds. For example, a

bilabial consonant is produced by bringing the upper and lower lips together for the

beginning of the sound (for example, the /b/ in “bat”) and a labiodental consonant

is produced by bringing the lower lip to the upper, front teeth (for example, the /f/

in “fat”). The location of the constriction is referred to as the place of articulation.

A selection of these are outlined in Table 2.1 [87]. Note that the labio-velar sounds

are described as having lip rounding — a pose consisting of tense, protruded lips

forming a narrow circular opening.

For some places of articulation, the manner in which the sound is produced can
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Place of Articulation Description
Bilabial Upper and lower lips brought together

Labiodental Lower lip against upper front teeth

Dental Tongue tip/ blade against upper front teeth

Alveolar Tongue tip/ blade against alveolar ridge

Palato-/ Post-alveolar Tongue blade against back of alveolar ridge

Palatal Front tongue against hard palate

Velar Back tongue against soft palate

Glottal Constriction in glottis

Labio-velar Back tongue against soft palate and lips brought
together and rounded

Table 2.1: A description of the places of articulation for the speech sounds used in
this thesis. See Table 3.1 for the list of corresponding phonemes.

vary. For example, the plosive (or stop) alveolar sound /t/ (as in “tat”) is produced

by first completely obstructing the air stream by closing the articulators to build up

pressure and then releasing to produce a short burst of sound. Whereas the fricative

alveolar sound /s/ (as in “sat”) is produced by narrowing the articulators, creating

a turbulent airflow and a hiss-like sound. Manners of articulation are outlined in

Table 2.2.

Articulation of a consonant can always be described in terms of the voicing, place

and manner. The consonants used in this work together with an example of their

use and a description of how they are produced are shown in Table 3.1.

The articulation of vowels is somewhat di↵erent to that of consonants. During

the production of vowel sounds, the articulators remain apart, resulting in an un-

obstructed airflow. This means that vowel sounds are always voiced and none of

the articulators constrict the airflow, so we cannot distinguish vowels in terms of

voicing, place and manner of articulation. Instead, the cardinal vowel system [76]



CHAPTER 2. VISUAL SPEECH PRODUCTION 17

Manner of Articulation Description
Plosive/ Stop Articulators are completely closed and then

released to produce a burst of sound. An oral
stop is a closure where both the nasal and oral
tracts are blocked o↵, whereas for a nasal stop
only the oral tract is obstructed.

Nasal Airflow through the mouth is obstructed and
redirected through the nose.

Fricative Air is forced through narrowed articulators,
producing a turbulent airflow.

Approximant Articulators are narrowed, but to a lesser
degree than the narrowing necessary to produce
fricatives.

Lateral approximant As above, but in this case the airstream is
directed over the sides of the tongue rather
than the middle.

A↵ricate A↵ricates begin as plosives and release as
fricatives.

Table 2.2: A description of the manners of articulation for the speech sounds used
in this thesis. See Table 3.1 for the list of corresponding phonemes.
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A stressed sound is produced by pushing more air from the lungs and Facial de-

formations are larger for stressed than unstressed syllables (’dynamics of audiovisual

behaviour in speech’, vatikiotis-bateson (1996)). /or/ and /e/ always bear stress in

open and closed syllables, /i/ and /u/ in closed syllables and /i/ and /u/ can either

be stressed and unstressed in open syllables [? ].

Interestingly, when unable to realise an articulatory target due to obstructions

(such as a pipe, or a clamp on the jaw), speakers can and do successfully compensate

by using di↵erent articulators to approximate the sound [21].

2.2.1 Audio-visual asynchrony

It is postulated in the speech community that audio-visual synchronization plays

an important role in sound source location by humans, as sounds are perceived to

originate from the stimuli that is synchronized with the audio. This is particularly

apparent in the case of a ventriloquists dummy or a television screen [13] and is

known as the ventriloquist e↵ect. This e↵ect has been exploited for computer-based

sound source localisation, for determining which person in a camera shot is uttering

the speech in the audio with seemingly successful results [13].

Bregler and Konig [14] observed that, for an AVSR system, they found better

results when a large temporal window was used. Further inspection of the mutual in-

formation between acoustic and visual features with varying temporal o↵sets showed

that, on average, the acoustic features are most correlated with visual features 120

milliseconds in the past.

The articulatory period of speech last longer than the acoustic [15]. This is

intuitive as the articulators need to be in the correct position prior to the sound
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Figure 2.4: The IPA cardinal vowel chart, where the rows describe the vowel height
and the columns decribe the vowel backness. See Table 3.2 for examples of the vowels
embedded in words.

was introduced to describe vowels in terms of tongue height, backness and lip round-

edness. Figure 2.4 illustrates the cardinal vowel diagram where the rows describe

the vowel height and the columns describe vowel backness.

In this diagram, vowel height roughly relates to the vertical position of the tongue

and was determined by analysis of the relative frequency of the first formant (F1)

where the higher the F1 value, the more open the vowel. Close vowels such as /i/ and

/y/ are produced with a high tongue and close jaw positions, whereas open vowels

such as /a/ and /Œ/ are produced with a low tongue and an open jaw position.

Vowel backness roughly relates to the horizontal position of the tongue relative to

the front or back of the mouth. During the articulation of front vowels such as

/e/ and /ø/ the tongue is positioned at the front of the mouth, near to the teeth,

whereas for back vowels such as /W/ and /u/ the tongue is positioned at the rear of

the mouth. Where symbols are shown in pairs, the first represents the unrounded

vowel and the second represents the rounded vowel. The vowels used in the work

described in this thesis are listed in Table 3.2 with an example word that exhibits

the corresponding sound.

Interestingly, when unable to realise an articulatory target due to obstructions

(such as a pipe, or a clamp on the jaw), speakers can and do successfully compensate

by using di↵erent articulators to approximate the sound [95]. Indeed this means

that a sound can often be produced with a number of di↵erent configurations. An
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Figure 2.5: The synthetic vocal tract position on the left produces the same first
three formants as that on the right, illustrating how the same sounds are produced
with a variety of articulator configurations. This is a reproduction of an image taken
from page 1 of Ladefoged et al. [86].

amusing example taken from [86] is shown in Figure 2.5. In this example, the

synthetic vocal tract shape on the left produces the same first three formants as

that on the right.

2.3 Stress

Stress is a linguistic feature that is used to add emphasis to a syllable or word.

A stressed syllable is perceptually more salient than an unstressed syllable, as it

is typically of higher (or lower) pitch and increased duration, and is produced by

pushing more air from the lungs than the surrounding sounds. It was found that

/O/ and /e/ always bear stress in open and closed syllables, /i/ and /u/ in closed

syllables and /i/ and /u/ can either be stressed and unstressed in open syllables [113]

where open and closed syllables are single vowel syllables that respectively end in

either a vowel or consonant.

Stress is a suprasegmental feature of speech, as it applies to syllables rather than

individual phones. It is an important aspect of the English language (and other
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Germanic languages), as varying the stressed syllable in a word can, and often does

influence the perceived meaning of an utterance. For example, “to insult” versus

“an insult” [87]. Another example is contained within the sentence “I never said

she stole my money”. If this sentence is read aloud seven times, each time stressing

a syllable in a di↵erent word, it takes on seven di↵erent meanings. It is common

for more than one word in a sentence to contain a stressed syllable, and for longer

words to have a primary and a secondary stressed syllable.

English is considered to be a stress-timed language, where, during an utterance,

the stressed syllables are spaced uniformly in time. However, this is largely dis-

puted as the rhythmic timing of English is thought to depend on many interacting

features [132].

2.4 Audio-Visual Asynchrony

It is intuitive that the articulators need to be appropriately positioned prior to

the acoustic onset of a phone. Therefore, visual speech typically precedes acoustic

speech by tens to a few hundred milliseconds [148] and the articulatory period of

visual speech is longer than the acoustic [6]. Bregler and Konig [17] observed that,

upon inspection of the mutual information between acoustic and visual features with

varying temporal o↵sets, acoustic features were most correlated with visual features

120 milliseconds in the past.

Audio-visual asynchrony is incredibly complex as the timing of di↵erent articu-

lators varies [6]. It is not known whether this is attributable to motor planning or

the biomechanics of the articulators.

Audio-visual synchronisation plays an important role in sound source location by

humans, as sounds are perceived to originate from the stimuli that is synchronisation

with the audio. This is particularly apparent in the case of a ventriloquist’s dummy

or a television screen and is known as the ventriloquist e↵ect [65]. This e↵ect has

been exploited for computer-based sound source localisation, to determine which
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person in a camera shot is speaking [65].

2.5 Coarticulation

Coarticulation is the influence of neighbouring speech sounds on the configuration of

the articulators. A particular sound can often be produced with a range of di↵erent

visible configurations with minimal e↵ects on their auditory characteristics, as illus-

trated in Figure 2.6 which shows example video frames that were extracted midway

through the production of the phonemes /t/ (top) and /k/ (bottom) embedded in

sentences. This image shows significant variation in the pose of the articulators

as the lips are spread during the /t/ in “teeth” and rounded during the /t/ in

“story”. This variation occurs because only a subset of the articulators are required

to produce each sound. The redundant articulators often remain at the position of

a previous sound, or move early towards the next configuration that requires them.

Segments of speech are therefore highly influenced by the surrounding context and

segment boundaries are visually blurred. As an example, lip rounding is necessary

for producing the sound /w/ in the word “twig”. However, due to coarticulation,

the preceding /t/ also appears rounded. Coarticulation is thought to be caused

by a combination of motor planning, the constraints of the human muscle system,

linguistic contrast and e↵ort minimisation

To measure the e↵ect of coarticulation in the acoustic modality, it is common

practise to calculate the change in first and second formant frequencies (F1 and

F2) of the vowels in varying contexts [4, 102, 103, 113]. Vowels typically have over

four distinguishable formants, however, it is thought that the first two formants

are su�cient to determine the quality of the vowel sounds, as F1 describes the

open and close dimension and F2 describes the front and back dimension [87] (see

Figure 2.4 for the vowel chart). Using this method, studies have shown that the

influence of coarticulation is bidirectional. Carry-over (or backwards) coarticulation

is thought to reflect biomechanical and inertial limitations [64, 113] and describes
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pastime anatomical story

rooftree her teeth effects

(a) /t/

pastime anatomical story

concession cartoons crisp

Sequoia kill livestock

(b) /k/

Figure 2.6: A selection of movie frames during the articulation of the phones /t/
and /k/, illustrating the variability of articulator poses due to the coarticulation.
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the influence of the preceding speech segments on the articulators. For example,

the lips are spread during the /t/ that appears at the end of the word “neat”.

However, when uttering the word “naught”, the lips are rounded during the /t/

sound. Conversely, anticipatory (or forwards) coarticulation describes the influence

of the following speech segments on the articulators and is thought to be attributable

to pre-programming strategies [64, 113]. As an example, during the words “deem”

and “doom” the anticipatory spreading of the “ee” (/i/) and rounding of the “oo”

(/u/) significantly a↵ects the shape of the lips during the /d/ sound.

It is generally agreed that coarticulation influences are also asymmetrical in

terms of direction. For example, Beddor et al. [4] found that the English language

has a larger carryover influence than anticipatory. For American English, Modar-

resi et al. [113] analysed the bidirectionality of coarticulation within CV
1

.CV
2

and

/tV
1

C.V
2

t/ utterances by measuring the change in F2. Their findings suggest that

for closed syllables carry-over coarticulation is significantly greater than anticipa-

tory, and for open syllables anticipatory coarticulation is significantly greater than

carry-over, but not for the vowels /i/ and /e/. This indicates that it is much more

likely that the asymmetry of coarticulation is a function of phonetic context rather

than a fixed rule for a particular language.

Coarticulation e↵ects have also been found to be context dependent. Fowler

and Saltzman [53] asserted that this is clearly the case as, to produce a particular

gesture, the articulators that are a↵ected by coarticulation need to be those that do

not interfere with the achievement of the gestural goals, or only interfere within a

tolerable amount. They will therefore be di↵erent in varying contexts.

The number of phonemes in a language’s inventory varies from ⇡11 in Pirahã,

spoken by a tribe in Brazil, and Rotokas, spoken in a small island in Papa New

Guinea, to ⇡93–111 in Taa, spoken in parts of Africa. Unsurprisingly, given the

vast number of language-specific phonemes, coarticulation e↵ects have also been

found to be language-specific [4, 103]. For example, Beddor et al. [4] investigated

the di↵erence in vowel-to-vowel coarticulation across English and the African lan-
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guage Shona by analysing the first three formants of CV
1

CV
2

CV
3

words. They

found that in Shona, the anticipatory coarticulation was greater than carry-over,

whereas in English, carry-over e↵ects were at least as large as anticipatory. English

carry-over e↵ects were measured to be, on average, 2.4 times the length of those in

Shona. These findings suggest that coarticulation is not merely a mechanical arte-

fact resulting from acoustic speech production, but it is a learnt process that di↵ers

across languages. Manuel [103] theorises that this is due to each of the phonemes

having an associated tolerance that defines how far from the ideal target the artic-

ulators are allowed to stray. These tolerances are di↵erent for each language based

on the distinctiveness of the phonemes to one another. According to this theory, a

language that has a large number of phonemes is produced with less coarticulation

than that with fewer phonemes, as the phonemes are less distinct from one another.

Upon analysing the first and second formants of the acoustic speech for a selection of

African languages with varying phoneme inventories, this was found to be the case,

as vowels from languages with a small inventory were found to be more influenced

by anticipatory coarticulation. Results like these indicate that a theory of coartic-

ulation must account for psychological as well as physiological constraints [133].

To measure the e↵ect of coarticulation in the visual modality, which is the in-

fluence of coarticulation on the visible articulators, video is directly analysed using

computer vision or subjective approaches. Computer vision based approaches ex-

tract visual information and process this signal [7, 147], whereas subjective methods

involve recording participants’ responses to a lipreading task [8].

Coarticulation is not merely a function of the directly neighbouring speech units.

Instead, by analysing the signal taken from a photocell, Benguerel and Cowan [7]

discovered that anticipatory protrusion in French vowels may occur up to six speech

units before the vowel is realised. It is thought that each phoneme has an associated

visual dominance that controls both the degree of influence it has on the adjacent

and near adjacent units, and how far the coarticulation e↵ects spread. A phoneme’s

dominance and deformability depends on whether fully reaching the articulatory
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targets is necessary to produce the required sound. This means that not all visual

phones are equally a↵ected by coarticulation as the organs that are deemed necessary

for producing a sound may or may not be visually apparent. For example, the

consonants /f/ and /v/ are far less deformable than /k/ and /g/. The former are

labiodental consonants that are articulated using the upper teeth and lower lip —

granting minimal freedom to the shape of the lips — whereas the latter are velar

consonants that are articulated at the back of the soft palate, granting more freedom

to the contour of the lips.

To determine which of the vowels are most dominant, Owens and Blasek [119]

and Benguerel and Pichora-Fuller [8] performed consonant recognition tasks and

found lowest lip-reading accuracy when consonants were followed by /u/, suggesting

that this is a more visually dominant vowel as lip rounding and protrusion are both

essential to produce the sound. This result is accordant to the results of Turkmani et

al.’s experiment [147] in which a parameterisation of the visual speech was extracted

by tracking the lip boundary and applying PCA to the feature points. By applying

linear discriminant analysis to the first two principal components, they found that

for VCV words where V = {/i/, /2/, /u/} and C = /p/, the utterances with the

/u/ vowel context were most dissimilar to the others with respect to both shape

and timing. Benguerel and Pichora-Fuller [8] also found that in VCV contexts /u/

attained a near perfect recognition score whereas /æ/ scored the lowest. Perkell and

Matthies [126] measured coarticulation in /iCu/ utterances by recording vertical

displacement of a point on the upper lip. They found that many of the subjects

began lip-protrusion for /u/ directly after the acoustic o↵set of /i/.

There are other factors that contribute towards the degree of coarticulation in an

utterance. The articulators move extremely rapidly when an utterance is spoken at

a normal rate [87]. When speaking at a faster rate a person’s lips move less [123],

so coarticulation e↵ects increase [85]. This is unsurprising as instantaneous tran-

sitions between articulatory targets are impossible, so overlapping and merging of

the speech segments is inevitable. Lexical stress also influences the degree of coar-
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ticulation. Beddor et al. [4] found that stressed syllables are far less influenced by

coarticulation e↵ects and Fowler [52] discovered that a stressed vowel exerts more

coarticulation influence on the surrounding vowels. However, these findings conflict

with those by Magen [102] who measured a stronger e↵ect emerging from stressed

vowels in only one of four speakers. Magen also found significant di↵erences in the

degree and direction of coarticulation across speakers uttering words in the form

/bV
1

b@bV
2

b/.

2.5.1 Modelling Coarticulation

If coarticulation is not accounted for, speech animation will appear unnatural and

unrealistic. This is because linguistic units, such as phonemes and syllables, are

variant in terms of appearance as the position of the articulators during speech is

determined by factors such as phonetic context, rate of speech, language, physi-

cal constraints and prosody, which all contribute towards the non-symmetrical, bi-

directional phenomenon of coarticulation. This makes visual speech a di�cult pro-

cess to model. Models of coarticulation are typically mathematical or rule-based,

and account for the direction and duration of neighbourhood influence, and the

outcome of the gestural conflict to determine the appropriate composition of the

articulators after competing coarticulation influences are imposed.

The simplest coarticulation models assume that the degree of influence spans only

one unit either side of a speech segment. For example, Wickelgren [154] claimed that

speech was organised in terms of context sensitive allophones rather than phonemes,

in which the context encompassed only the directly adjacent phonemes. This e↵ec-

tively converts the phoneme sequence /D 2 f r E t f U l E l k/ (“The fretful elk”) into

the allophone sequence /
#

D2 D2f 2fr f

rE r

E
t Etf t

fU f

U
l UlE l

E
l Elk l

k
#

/ [154]. Although

simple, this method fails to account for long term coarticulation e↵ects.

Most coarticulation theories tend to be grouped into one of two categories, feature

spreading or co-production models as illustrated in Figure 2.7. This section explains

these models and Chapter 4 describes a selection of coarticulation models that have
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V C V C C V V C V C C C V

V C V C C V V C V C C C V
(a) Feature spreadingV C V C C V V C V C C C V

V C V C C V V C V C C C V

(b) Co-production

Figure 2.7: Two common coarticulation theories. The direction and length of the
arrows represent the influence of coarticulation and C and V represent consonants
and vowels respectively. (a) Feature spreading model illustrating the CnV segment
structure proposed by Kozhevnikov and Chistovich [84], where the consonants are
assumed to be non-bilabial. In this model, all non-bilabial consonants that directly
precede a vowel are influenced by the vowel, regardless of duration and number of
units. (b) Co-production model where the gestures corresponding to each phoneme
overlap one another. The overlap can be symmetrical or asymmetrical and varies in
length according to the dominance of the phoneme.

been implemented to generate speech animation.

2.5.1.1 Feature Spreading Model

Feature spreading (or look-ahead) models, such as Henke’s [64], regard speech pro-

duction to be organised in terms of sequences of discrete, planned, non-overlapping

bundles of features that represent the canonical spacial targets of each phoneme.

To avoid abrupt changes in the configuration of the articulators, the transitions be-

tween adjacent segments are smoothed [51]. If an articulator performs no action for

a particular phoneme, it anticipates the value of the next phone in which it necessi-

tates the production of the phone. This model assumes that coarticulatory spread is

timeless, as the articulators are assumed to be positioned regardless of the number

of phones in the future that are next required.

A similar model by Kozhevnikov and Chistovich [84] asserted that Russian speech

is organised in terms of articulatory syllables with a C
n

V structure. That is, se-

quences containing any number of consonants followed by a vowel. As illustrated
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in Figure 2.7(a), it is postulated that every non-labial consonant directly preceding

a vowel is influenced by the vowel, regardless of temporal duration and number of

units. They theorised that motor control is discontinuous at vowel boundaries and

so anticipatory coarticulation is bounded by the vowel. This theory was found to not

generalise to American English [80] as it fails to consider VV and VC coarticulation,

prevalent features of continuous speech. Kent and Moll [81] used images taken from

a fluoroscope to analyse the movements of the jaw and tongue for V
1

V
2

and V
1

CV
2

sequences both within a word and across word boundaries. They found evidence to

suggest that the V
1

is influenced by V
2

in all cases. However, as the sequences are

embedded in carrier sentences, it is unclear whether other neighbouring segments

had any impact on the observed variation.

2.5.1.2 Co-Production Model

Co-production models explain coarticulation as the overlap of co-produced speech

gestures in which the magnitude of each speech segment is modelled as a time varying

function, and at any one time the position of the articulators is an aggregation of the

overlapping functions. In contrast to the feature spreading approaches, Bell-Berti

and Harris [5, 6] asserted that the activation of each articulator occurs at a constant

time prior to the production of a phoneme if there is no articulatory conflict, where a

conflict is the active involvement of an articulator for production of a target sound.

Although this model allows for the onset of anticipatory coarticulation to occur

midway through a phone or syllable, it is also based on the assumption that the

period of anticipation is temporally independent of the speaking rate. Other studies

have reported conflicting results [95], stating that the onset of lip-rounding occurs

at a time before the rounded vowel proportional to the duration of the preceding

consonant.

Löfqvist’s theory of speech production [95] is arguably the most well-known.

He asserted that at any one time, the position of the articulators represents an

aggregation of gestures associated with the production of di↵erent speech sounds.
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The influence of each gesture over time is controlled by a dominance function where,

initially, the influence of the segment on the articulators is zero, then it gradually

becomes more dominant, and eventually decreases back to zero influence. These

dominance functions can be asynchronous for di↵erent parts of the vocal tract, and

some gestures may not a↵ect specific articulators at all. The author postulated

that during continuous speech, the speech gestures overlap to di↵erent degrees, a

phenomenon that is likely to be due to speaking rate.

Jackson and Singampalli [72] examined EMA measurements to quantitively de-

termine the role of the articulators during speech production. For each phone, the

articulators were classified as either critical, dependent or redundant. Critical artic-

ulators are those that play a crucial role in the production of a phone. A dependent

articulator is one that moves as a consequence of a critical articulator’s motion due

to physical constraints, and a redundant articulator is free to move without influ-

encing the production of a phone and is more prone to coarticulation e↵ects. At the

mid-point of each phone the x, y coordinates of seven oral articulators were mea-

sured and the distributions were modelled as a Gaussian probability density function

(PDF). For each phone, critical articulators were identified based on the Kullback-

Leibler distance between the phone’s PDF and the overall mean PDF. For example,

the y divergence of the upper lip was high for the production of the bilabial phone

/b/ indicating that the upper lip position is critical for this phone, and low for the

velar /g/. However, the opposite was measured for the tongue dorsum. Depen-

dent articulators were identified by analysing the inter-articulator correlation. For a

complete model of articulatory coarticulation, further research would be necessary

to determine the role of the articulators over entire phone segments.

Co-production models are typically more complex than feature spreading models

since the role of each articulator might be modelled separately for each phoneme.

However, as it is possible to train the models using analysis of real speech, a co-

production model might more accurately represent the complexities of coarticula-

tion.
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2.6 Discussion

Speech production is a complex process involving the combined e↵ort of a large

number of muscles from the face down to the chest. As the diaphragm forces air

from the lungs through the vocal folds, the vocal tract is configured to produce

vowels and constrictions are formed to produce consonants.

The skull forms the rigid foundation of the face, over which an array of over-

lapping muscles are positioned. The muscles are attached to the skull and insert

into the elastic layer of skin that encloses the face. When contracted, the muscles

non-linearly deform the skin to generate di↵erent facial poses.

After considering the physical design and control of the facial model, the most

important consideration for realistic speech animation is the e↵ect of coarticulation,

the influence of neighbouring speech segments on the position of the articulators.

This influence has been found have asymmetric, bi-directionality, and be speaker,

language and context dependent. To date, several coarticulation models have been

proposed, but there is yet to be a definitive model that is widely regarded as truth.



Chapter 3

Phonemes and Visemes

Phonemes represent the set of perceptually distinct speech sounds of a language.

They are well established and have been used successfully as the basis for acous-

tic speech recognition [158] and synthesis [69]. For visual speech recognition and

animation, a visual analogue to the acoustic phonemes is assumed, whereby each

phoneme is associated with a particular configuration of the visible articulators. As

a relatively small proportion of the articulatory information is visible during speech,

di↵erent phonemes can appear similar to one another and a one-to-one mapping

between phonemes and facial poses can result in redundancy. The phonemes are

therefore typically clustered into visually contrastive groups such that each cluster

contains sounds that are visually indistinguishable from one another. Each clus-

ter of phonemes is then represented with a configuration of the visible articulators.

These many-to-one mappings from phonemes to poses are referred to as visemes,

and are assumed to form the building block of visual speech.

As an example, the phonemes /v/ and /f/ have the same place and manner of

articulation (labiodental fricative), but the former is voiced and the latter is voiceless

(see Section 2.2 and Table 3.1). Voicing is produced by tensing of the vocal cords,

causing vibration through the air flow — a process that is not visible. For this reason

/v/ and /f/ tend to appear visually similar. The same is true for the phonemes /b/

and /p/. The standard approach is to assume a many-to-one relationship between

31
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the acoustic units and the visual units, and assign /v/ and /f/ to a viseme class and

/b/ and /p/ to another.

In this chapter, the concept of phonemes and the phonetic labelling system that

is used throughout the remainder of this thesis are introduced. The traditional

definition of a viseme is then described and the various methods that have been

adopted for obtaining the viseme clusters are reviewed. This chapter ends with

a discussion detailing the limitations of the conventional many-to-one relationship

between phonemes and visemes.

3.1 Phonemes and Phonetics

The basic unit of acoustic speech is the phoneme. A phoneme is an abstract, linguis-

tic unit that represents a collection of speech sounds that are perceived as equivalent.

The acoustic realisations of the speech sounds are referred to as phones and the set of

phones that form a phoneme class are called allophones. Allophones can be varied,

but they exhibit equivalent meaning. For example, the /l/ is often unvoiced during

the word “play”, whereas it is voiced in the word “lay”, but both are perceived as

/l/ [87]. A defining quality of phonemes is that replacing a particular phone with

another that has a di↵erent phoneme label changes the meaning of an utterance.

Phonemes provide an unambiguous representation of the speech sounds of a lan-

guage and are typically placed within a pair of forward slashes (//). There are

several phonetic notation systems, including the International Phonetic Alphabet

(IPA), SAMPA, and ARPAbet. As IPA is an internationally accepted representa-

tion of the speech sounds, this is the notation used where possible in this thesis1.

IPA was designed such that each distinctive speech sound is represented with a fixed

character regardless of language or context [71].

The number of phonemes of the English language ranges from 35 to 47 depending

on dialect. A set of 40 phonemes are used in this work, consisting of 24 consonants

1In certain cases ARPAbet is used where plain text notation is required.
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Place Manner Voicing ARP IPA Example
Bilabial Plosive u P p apple

v B b cable
Nasal v M m summit

Labiodental Fricative u F f fairy
v V v lava

Dental Fricative u TH T thought
v DH D other

Alveolar Plosive u T t utter
v D d udder

Nasal v N n canal
Approximant v R r hurry
Fricative u S s essay

v Z z zebra
Lateral approximant v L l lazy

Palato-/ Post-alveolar Fricative u SH S mash
v ZH Z seizure

A↵ricate u CH tS such
v JH dZ jet

Palatal Approximant v Y j yes
Velar Plosive u K k track

v G g bag
Nasal v NG N bang

Glottal Fricative u HH h hang
Labio-velar Approximant v W w worry

Table 3.1: Place, manner and voicing of the English consonants with corresponding
ARPAbet (ARP) and IPA symbols and example words that contain the sound. In
the voicing column, u and v denote voiced and unvoiced phonemes respectively.

and 16 vowels. The consonants are listed in Table 3.1 along with their corresponding

ARPAbet and IPA symbols.

There are two types of vowel, monophthongs and diphthongs. A monophthong is

a single vowel sound where the position of the tongue is somewhat static, whereas

a diphthong involves the tongue gliding from one vowel sound to another. A diph-

thong, such as “show” or “play”, is produced with one continuous motion and occurs

within a single syllable. The 11 monophthong vowels and the 5 diphthongs used in

this work are listed in Tables 3.2 and 3.3 respectively.

Phonemes provide a convenient way of transcribing speech. However, it is also
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Closeness Backness Roundness ARP IPA Example
Close Front Unrounded iy i feet

Back Rounded uw u boot
Near-close Near-front Unrounded ih I hit

Near-back Rounded uh U put
Open-mid Front Unrounded eh E better

Central Unrounded er 3 heard
Back Unrounded ah 2 cup

Rounded ao O poor
Near-open Front Unrounded ae æ bat

Back Unrounded aa A arm
Rounded oh 6 doll

Table 3.2: Closeness, backness and roundness of the monophthong vowels in the
English dialect with corresponding ARPAbet (ARP) and IPA symbols and example
words that contain the sound.

ARP IPA Example
ey eI day
ay aI bite
oy OI boy
ow oU boat
aw aU how

Table 3.3: Diphthongs of the English language with corresponding ARPAbet (ARP)
and IPA symbols and example words that contain the sound.
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possible that they play a more important role in motor planning and the temporal

organisation of speech. This theory stems from the phenomenon known as a spooner-

ism, where two phones, or clusters of phones are unintentionally exchanged within

a sequence of words. A famous example was spoken by Professor William Spooner,

after whom the phenomenon was named, who reportedly once said “You’ve hissed

all my mystery lectures” rather than “You’ve missed all my history lectures” [56].

These slips of the tongue are important for speech production theories, as the ma-

jority of the speech errors are associated with units that are the size a phoneme

segment [56], suggesting that the phoneme has a reality as an action unit [62].

An alternative theory is that the syllable is the organisational unit used in motor

planning as Fromkin observed that the exchanged segments of a spoonerism retain

their position within a syllable [56]. That is, segments that appear at the beginning,

middle and end of a syllable are exchanged with other segments that appear at the

beginning, middle and end of a syllable respectively. A syllable is a suprasegmental

unit, spanning one or more phonemes. Syllabic boundaries are ambiguous in many

cases as phoneticians disagree on the correct segmentation for certain word. For

example, the word “puppy” could be segmented into the two syllables “pu-ppy” or

“pupp-y”. For the English language it is generally agreed that a syllable contains a

vowel at its nucleus and optionally, one or more consonants at the boundaries.

3.2 Visemes as Phoneme Clusters

The term viseme was originally coined by Fisher in 1968 as an amalgamation of the

words “visual” and “phoneme” [49]. Visemes are typically defined as the clusters of

visually contrastive phonemes, such that the phonemes that appear within a viseme

group are considered visually indistinguishable from one another. This mapping is

either assembled by eye [47] or based on the place of articulation and the extent of

lip rounding [90, 116]. More commonly, the mapping is defined by clustering the

phonemes based on the confusions from a subjective phone recognition experiment
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/iy/ /f/ /v/ /b/ /m/ /p/ /dh/ /th/ /d/ /n/ /t/ /l/

/uw/ /uh/ /w/ /aa/ /ao/ /s/ /z/ /ae/

/ah/ /r/ /ih/ /y/ /ch/ /jh/ /sh/ /zh/ /eh/ /er/ /g/ /hh/ /k/ /ng/

Figure 3.1: The 18 visemes as determined by Parke and Waters [121].

with human viewers or an objective, data-driven visual speech classifier. Tables 3.4

and 3.5 show a subset of phoneme-to-viseme mappings proposed in the numerous

studies. Some of the groups formed correspond roughly to clustering on the place of

articulation, such as /p, b, m/ and /f, v/, but this is not always the case as evident

with larger groups such as /t, d, s, z, n, k, g, j/ [92] and /y, l, n, k, g, h/ [75]. The 18

viseme groups as determined by Parke and Waters [121] along with the associated

lip poses are shown in Figure 3.1.

3.2.1 Subjectively Defined Phoneme-to-Viseme Mappings

Early methods for finding the mapping from phonemes to visemes were typically

subjective, based on analysing confusions within ‘stimulus-response’ matrices [3, 11,

49, 91, 92, 94, 152]. Clusters were accepted as visemes when the within-cluster

response made up a high percentage of the responses. As an example, Lesner et

al. [92] implemented a hierarchical clustering algorithm that incrementally grouped

the consonants that were consistently confused with other consonants by participants

during a lipreading study with nonsense words in the form /ACA/. If a consonant

was never confused with another, or was not consistently confused with another, it

constituted a viseme class of its own. The algorithm converged when the within-

cluster response made up 75% of the responses, generating seven consonant viseme



CHAPTER 3. PHONEMES AND VISEMES 37

A
u
th

or
C

on
d
it

io
n

V
is

em
e

gr
ou

p
s

F
is

h
er

(1
96

8)
[4

9]
F
iv

e
w

or
d

p
h
ra

se
s

In
it

ia
l

/p
,
b
,
(m

,
d
)/

/f
,
v/

/k
,
g/

/û
,
w

,
(r

)/
/S

,
t,

(n
,
l,

s,
z,

d
Z,

j,
h
)/

F
in

al
/p

,
b
/

/(
f,

v)
/

/(
k,

g,
N,

m
)/

/S
,
Z,

d
Z,

(t
S)

/
/t

,
d
,
n
,
T,

D,
z,

s,
r,

l/
(I

te
m

s
in

p
ar

en
th

es
es

ar
e

d
ir

ec
ti

on
al

co
n
fu

si
on

s)
F
ra

n
ks

an
d

K
im

b
le

(1
97

2)
[5

5]
/C

⇤ 2
/

/d
w

,
gw

,
kw

,
sw

,
tw

,
sk

w
,
w

,
w

h
,
r,

d
r,

fr
,
gr

,
kr

,
Sr

,
tr

,
sk

r,
sp

r,
st

r/
/b

l,
b
r,

b
,
m

,
p
l,

p
r,

Sm
,
sm

,
sp

,
sp

l/
/g

l,
kl

,
sl

,
l,

d
,
sk

,
sn

,
st

,
s,

Tr
,
T,

t/
/S

n
,
S,

tS
,
d
Z/

/fl
,
fr

,
f/

B
in

n
ie

et
al

.
(1

97
6)

[1
1]

/C
A
/

/p
,
b
,m

/
/f

,
v/

/T
,
D/

/w
/

/r
/

/t
,
d
,
s,

z/
/l

,
n
/

/k
,
g/

W
al

d
en

et
al

.
(1

97
7)

[1
52

]
/C

A
/

P
re

-t
ra

in
in

g
/b

,
p
,
m

/
/f

,
v/

/T
,
D/

/s
,
z,

Z,
S/

P
os

t-
tr

ai
n
in

g
/b

,
p
,
m

/
/f

,
v/

/T
,
D/

/s
,
z/

/Z
,
S/

/t
,
d
,
n
,
k,

g,
j/

/w
/

/r
/

/l
/

L
es

n
er

an
d

K
ri

co
s

(1
98

1)
[9

1]
/h

V
g/

S
p
ea

ke
r

1
/a

I/
/O

I/
/i

,
I/

/e
,
E,

æ
/

S
p
ea

ke
r

2
/a

U
/

/o
/

/i
/

/e
,
E,

æ
/

/a
,
O/

S
p
ea

ke
r

3
/a

I/
/o

/
/i

,
I/

/a
U
/

/O
I/

S
p
ea

ke
r

4
/i

,
I,

2/
O

w
en

s
an

d
B

la
ze

k
(1

98
5)

[1
19

]
/æ

C
æ

/
/p

,
b
,
m

/
/f

,
v/

/T
,
D/

/w
,
r/

/t
S,

d
Z,

S,
Z/

/k
,
g,

n
,
l/

/2
C

2/
/p

,
b
,
m

/
/f

,
v/

/T
,
D/

/w
,
r/

/t
S,

d
Z,

S,
Z/

/t
,
d
,
s,

z/
/i

C
i/

/p
,
b
,
m

/
/f

,
v/

/w
,
r/

/t
S,

d
Z,

S,
Z/

/t
,
d
,
s,

z/
/u

C
u
/

/p
,
b
,
m

/
/f

,
v/

L
es

n
er

et
al

.
(1

98
7)

[9
2]

/A
C

A
/

/p
,
b
,
m

/
/f

,
v/

/S
,
Z,

d
Z,

tS
/

/w
,
r/

/l
/

/t
,
d
,
s,

z,
n
,
k,

g,
j/

G
ol

d
sc

h
en

(1
99

4)
[5

8]
S
en

te
n
ce

s
C

on
so

n
an

ts
/p

,
b
/

/b
c
l

,
m

,
p

c
l

/
/t

S/
/d

,
d

c
l

,
g,

g c
l

,
k,

k c
l

,
l,

n
,
t,

t c
l

/
/D

/
/f

,
v/

/h
/

/d
Z/

/N
/

/r
/

/s
,
S,

z/
/T

/
/w

/
/j

/
/Z

/
V

ow
el

s
/a

/
/æ

,
E/

/2
/

/O
/

/a
U
/

/@
,
I,

i/
/a

I/
/3

/
/e

/
/o

/
/O

I/
//

U
/

/u
/

(c
l

d
en

ot
es

cl
os

u
re

)
P
ar

ke
an

d
W

at
er

s
(1

99
6)

[1
21

]
U

n
sp

ec
ifi

ed
/p

,
b
,
m

/
/f

,
v/

/t
,
d
,
n
/

/l
/

/s
,
z/

/T
,
D/

/r
/

/t
S,

d
Z,

S,
Z/

/k
,
g,

h
,
N,

3/
/I

,
j/

/U
,
w

/
/i

/
/u

/
/a

/
/O

/
/æ

/
/2

/
/E

/

T
ab

le
3.

4:
A

se
le

ct
io

n
of

ph
on

em
e

to
vi

se
m

e
m

ap
pi

ng
s

fr
om

lit
er

at
ur

e.



CHAPTER 3. PHONEMES AND VISEMES 38

A
u
th

or
C

on
d
it

io
n

V
is

em
e

gr
ou

p
s

A
u
er

an
d

B
er

n
st

ei
n

(1
99

7)
[3

]
/h

V
g/

/u
,
U
,
3/

/o
,
aU

/
/I

,
i,

e,
E,

æ
/

/O
I/

/O
,
aI

,
@,

a,
2,

j/
/C

A
/

/b
,
p
,
m

/
/f

,
v/

/l
,
n
,
k,

N,
g,

h
/

/d
,
t,

s,
z/

/w
,
r/

/D
,
T/

/S
,
tS

,
Z,

d
Z/

E
zz

at
an

d
P
og

gi
o

(2
00

0)
[4

7]
Is

ol
at

ed
w

or
d
s

C
on

so
n
an

ts
/p

,
b
,
m

/
/f

,
v/

/t
,
d
,
s,

z,
T,

D/
/w

,
r/

/t
S,

d
Z/

/k
,
g,

n
,
l,

N,
h
,
j/

V
ow

el
s

/I
,
i/

/E
,
æ

/
/A

,
6
/

/2
/

/3
/

/O
/

/U
,
u
/

/a
U
/

/o
U
/

N
et

i
et

al
.

(2
00

0)
[1

16
]

C
on

ti
nu

ou
s

sp
ee

ch
C

on
so

n
an

ts
/s

,
z/

/t
,
d
,
n
/

/S
,
Z,

tS
,
d
Z/

/p
,
b
,
m

/
/d

,
t/

/f
,
v/

/N
,
k,

g,
w

/
V

ow
el

s
/O

,
2,

a,
3,

OI
,
aU

,
h
/

/u
,
U
,
oU

/
/æ

,
E,

eI
,
aI

/
/I

,
i/

Ji
an

g
et

al
.

(2
00

2)
[7

5]
/C

æ
/

/p
,
b
,
m

/
/f

,
v,

r/
/T

,
D/

/w
/

/d
,
t,

s,
z,

tS
,
d
Z,

Z/
/j

,
l,

n
,
k,

g,
h
/

/C
i/

/p
,
b
,
m

/
/f

,
v/

/T
,
D/

/w
,
r/

/s
,
z,

tS
,
d
Z,

Z/
/j

,
l,

n
,
k,

g,
h
,
t,

d
/

/C
u
/

/p
,
b
,
m

/
/f

,
v,

r/
/T

,
D/

/w
/

/d
,
t,

s,
z,

tS
,
d
Z,

Z/
/j

,
l,

n
,
k,

g,
h
/

C
om

b
in

ed
/p

,
b
,
m

/
/f

,
v,

r/
/T

,
D/

/w
/

/d
,
t,

s,
z,

tS
,
d
Z,

Z/
/j

,
l,

n
,
k,

g,
h
/

L
ee

an
d

Y
oo

k
(2

00
2)

[9
0]

U
n
sp

ec
ifi

ed
/p

,
b
,
m

/
/f

,
v/

/t
,
d
,
s,

z,
T,

D/
/w

,
r/

,
/t

S,
d
Z,

S,
Z/

/E
,
eI

,
æ

,
aU

/
/k

,
g,

n
,
l,

h
,
j/

/i
,
I/

/a
/

/2
,
@,

aI
/

/3
,
O,

OI
,
o/

/U
,
u
/

H
az

en
et

al
.

(2
00

4)
[6

3]
S
en

te
n
ce

s
C

on
so

n
an

ts
/l

/
/b

,
p
/

/b
c
l

,
p

c
l

,
m

/
/s

,
z,

t c
l

d
c
l

,
n
/

/t
S,

d
Z,

S,
Z/

/t
,
d
,
t,

d
,
g,

k/
/f

,
v/

/g
c
l

,
k c

l

,
N/

V
ow

el
s

/I
,
i/

/2
,
a/

/æ
,
E,

aI
,
eI

,
h
/

/a
U
,
U
,
U

,
O

U
,
O,

w
,
OI

/
(c

l
d
en

ot
es

cl
os

u
re

)
L
id

es
ta

m
an

d
B

es
ko

w
(2

00
6)

[9
4]

/A
C

A
/

/p
,
b
,
m

/
/f

,
v/

/d
,
k,

n
,
N,

r,
j,

g,
ú,

l/

M
el

en
ch

ón
et

al
.

(2
00

7)
[1

11
]

S
p
an

is
h

se
nt

en
ce

s
S
p
ea

ke
r

1
/m

,
p
/

/T
/

/f
/

/t
/

/n
,
r/

/s
,
l,

k/
S
p
ea

ke
r

2
/m

,
p
/

/T
/

/f
/

/t
,
s/

/n
,
l,

k/
/r

/
S
p
ea

ke
r

3
/m

,
p
/

/T
/

/f
/

/k
/

/n
,
r,

k/
/t

,
s/

Z
h
ao

an
d

T
an

g
(2

00
8)

[1
60

]
C

h
in

es
e

se
nt

en
ce

s
C

on
so

n
an

ts
/p

,
b
,
m

,
f/

/d
,
t,

n
,
l,

g,
k,

h
/

/j
/

/s
,
z/

/t
S,

S,
Z,

r/
V

ow
el

s
/a

,
aI

,
aU

,
an

,
aN

/
/O

,
oU

,
eN

,
2N

/
/E

,
eI

,
En

/
/I

,
In

,
IN

/
/u

/

T
ab

le
3.

5:
Fu

rt
he

r
ph

on
em

e
to

vi
se

m
e

m
ap

pi
ng

s
fr

om
lit

er
at

ur
e.



CHAPTER 3. PHONEMES AND VISEMES 39

classes. In similar experiments, Lidestam and Beskow [94] determined five viseme

classes, and Binnie et al. [11] clustered the confused phonemes while the within-

cluster response made up 70% of the responses, generating nine viseme classes. The

results of these experiments are detailed in Tables 3.4 and 3.5.

Auer and Bernstein [3] applied a similar hierarchical clustering algorithm to the

confusions between consonants from /CA/ contexts and vowels from /hVg/ sylla-

bles by using lip-reading responses to estimate the visual similarity of the phonemes.

In this study, the algorithm converged when a large increase was measured in the

average between-cluster distance, as this was assumed to be where two relatively

dissimilar clusters were to be merged. Using this approach they identified twelve

viseme classes, seven consisting of consonants, and five of vowels. Auer and Bern-

stein’s study was one of a small number that clustered vowels including [58, 90, 91].

The majority of previously determined phoneme-to-viseme mappings assign each

vowel its own viseme class as they are considered di�cult to group.

Fisher [49] defined a phoneme-to-viseme mapping by asking participants to lip-

read the initial and final consonants of a sentence using a forced-error approach

where the correct answers were omitted from a closed-set of possible responses. The

results, which are shown in Table 3.4, suggest that the viseme groupings for initial

and final consonants di↵er — a factor that is likely to be attributable to coartic-

ulation. He also observed that initial consonants contained directional confusions.

For example, /m/ was significantly confused with /b/ but /b/ was not significantly

confused with /m/.

Franks and Kimble [55] also observed directional confusions in their consonant

cluster recognition task. This experiment involved analysing confused consonant

sequences from stimuli of the form /C⇤2/ where C⇤ represents a sequence of one or

more consonants. They found that /spr/ was often confused with /sw/, /sw/ was

confused with /sm/ and /tr/ was confused with /fr/, but the confusions were never

reciprocated. They also found that sequences of consonants were confused with

single consonants 46% of the time. This is an interesting finding which supports the
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theories of coarticulation in that it indicates that the articulators do not reach every

target during speech and that certain visual phonemes are deformable to the extent

that they are not perceived as distinct gestures. If this study were to be extended

such that it considered sequences of consonants in multiple contexts during natural

speech, it is likely that the confusions would become far more complex.

A disadvantage of using perceptual studies to determine phoneme-to-viseme map-

pings is that the responses are dependent on the viewer’s ability to lip-read and are

therefore likely to vary from person to person. Another drawback is that it is nec-

essary for stimuli to be simple. Most studies involved stimuli consisting of nonsense

words where phonemes were presented in a single context [3, 91, 92, 114] or a small

number of varying contexts [75, 119]. Montgomery and Jackson [114] stated that the

context /hVg/ was chosen as it produced minimal coarticulation e↵ects. However,

in natural speech, contexts are varied and gestures are coarticulated so the resulting

viseme groups may not su�ciently model real speech.

3.2.2 Objectively Defined Mappings

More recently, computer vision and machine learning algorithms have been used to

cluster phonemes into viseme classes to overcome viewer bias, and the limitations of

the subjective methods in terms of stimuli and phonetic context. These data-driven

approaches typically use some form of unsupervised clustering on visual features,

where phonemes that are clustered together frequently are said to form a viseme.

Goldschen [58] described a data-driven method for clustering phonemes into

viseme classes. A set of static and dynamic lip features were extracted from video

of a speaker uttering full sentences. The video was then manually segmented into

phonemes and the segmented features were clustered using a hierarchical cluster-

ing algorithm with a HMM similarity measure. The resulting visemes appeared to

be fairly consistent with results from perceptual experiments such as [49] (see Ta-

ble 3.4). However, Goldschen introduced the idea of grouping the lip closure and

opening of the consonants /b/, /p/ and /m/ separately, forming the groups /b
cl

, m,



CHAPTER 3. PHONEMES AND VISEMES 41

p
cl

/ and /b, p, r/ where cl indicates closure. Hazen et al. [63] performed a similar

HMM based clustering using features describing the appearance of the lips. They

extended Goldschen’s approach by clustering the closure and release independently

for all stop consonants.

For Spanish speech, Melenchón et al. [111] extracted features describing the ap-

pearance of the mouth during a set of phonetically balanced sentences which were

phonetically labelled and segmented. The visual features were clustered into six

viseme groups based on the Bhattacharyya distance.

Brooke and Templeton [20] clustered vowels based on the lip height, width and

area between the lips independently such that 75% of the examples of each vowel

appears within a cluster. They do not specify the configuration of the resulting

groups, but across speakers the number of visemes ranges from one to eight.

De Martino et al. [34] introduced context-dependent visemes for speech anima-

tion by analysing nonsense words of the structure CV
1

CV
2

. Context-independent

visemes groups were first initialised manually by clustering phonemes based on the

place of articulation. During the production of each phone, the frame correspond-

ing to the first stationary point was assumed to represent the articulatory target.

Each viseme was then segmented into context-dependent sub-visemes by clustering

the x, y, z coordinates of four markers positioned around the lips and jaw for each

of the stationary frames. Using this approach, all context-independent consonant

visemes were segmented into a minimum of two context-dependent visemes, and all

context-independent vowel visemes remained unsegmented other than /i/ which was

partitioned into two groups. These results indicate that a more suitable relation-

ship between phonemes and visemes is many-to-many as the phonemes that appear

within a viseme class are variable and dependent on the context. If this approach

were extended by clustering a richer set of features on continuous speech, a much

more complex sub-clustering can be anticipated.

In 2008, Zhao and Tang [160] proposed a method of speech animation using a

set of dynamic visemes that correspond to the Chinese syllables. First, a standard
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clustering approach is used to group the phonemes into viseme classes based on fea-

tures describing the geometry of the lips at the mid-point of the phone. During this

clustering, consonants and vowels are clustered separately, as shown in Table 3.52.

Chinese syllables are then transcribed into their corresponding viseme labels. For

example, if /b/ and /p/ belong to viseme V
1

and /æ/ and /O/ belong to V
2

, /bæ/,

/bO/, /pæ/ and /pO/ would all be transcribed at V
1

V
2

. In total, the authors found

40 unique dynamic units which they referred to as dynamic visemes. Worryingly,

using this method, /f/ appears in the /b, p, m/ viseme suggesting that the features

used for clustering do not contain su�cient information to discriminate between

bilabial and labiodental gestures. For speech animation this method captures the

dynamics of visible articulators within a syllable, but longer term coarticulation

e↵ects are not accounted for.

It has been shown that phoneme-to-viseme mappings obtained using objective

methods tend to be less reliable than those defined using more traditional subjective

methods both for computer facial animation of speech [108] and for visual speech

recognition [25]. This is likely because the features that correspond to a particular

phoneme will be dispersed across several clusters, and these clusters will not always

be composed of the same set of phonemes. Thus the mapping of phonemes-to-

visemes is noisy (see Figure 2.6) and a simple many-to-one mapping is not su�cient

to model the complex relationship between the visual gestures and the underlying

sounds.

3.2.3 Limitations of Visemes for Modelling Visual Speech

As is clear from Tables 3.4 and 3.5, there has yet to be definitive agreement regarding

both the number of viseme classes that are required to represent visual speech, and

how the set of phonemes map to visemes. It is also apparent that only a small

number of studies consider the full range of phonemes in the English inventory, and

vowels are often omitted. Thus, to date, the definition of a viseme is informal and

2Note that only those phonemes with a corresponding English sound is included in the table.
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as a unit of speech for computer facial animation it has been poorly defined.

There are several possibilities as to why the results di↵er so vastly across the

literature, including the nature of the stimuli, quality of the recording (frames per

second, pixel density, sharpness etc.), distance to the camera, illumination and visual

intelligibility of the speaker for instance. For subjectively determined mappings, the

lip-reading ability of the participants biases the mapping, and for objective studies,

the features and clustering methods are likely to cause variation.

The configuration of a person’s face in terms of size and shape varies considerably

across speakers. It is therefore natural that there will also be di↵erences in the way

that people speak. This variation contributes towards a person’s lip-read-ability

and, consequently, the number and composition of viseme classes [20, 91, 111]. This

was confirmed by Lesner and Kricos [91] who presented a vowel recognition exper-

iment in which subjects were asked to lip-read /hVg/ nonsense words spoken by

four di↵erent speakers. They discovered that speakers who were easier to lip-read

generally produced a larger number of viseme classes. A similar experiment was per-

formed by Jiang et al. [75] in which participants were asked to lip-read CV syllables

uttered by four speakers. They found that viseme classification was both speaker

dependent and context dependent with the number of viseme classes varying from

four to six. The same variability was measured using objective methods. Brooke and

Templeton [20] clustered vowels on a set of geometric parameters extracted from the

outline of the lips and teeth for three speakers. They clustered each of the speakers

independently and found significant variation in the number and composition of the

clusters across speakers. When the phonemes were forced to cluster into six groups,

Melenchón et al. [111] found that the frontal consonant visemes, such as /p, m/, /f/

and /T/, were consistent across speakers. However, they measured weak agreement

in the viseme clusters across speakers for non-frontal consonants.

The lip-reading ability of the people used in subjective studies is likely to cause

variation in viseme groupings across participants. Furthermore, Walden et al. [152]

found that, over a relatively short period of time, a person’s lip-reading ability can be
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improved with exposure to the speaker. This means that visemes are not consistent

even for one person, as they change as fewer visual confusions are made.

Above all else, the variable that is likely to be the most dominant cause of vari-

ation across the phoneme-to-viseme mappings is coarticulation. As is clear from

Figure 2.6, the same phoneme appears remarkably distinctive in di↵erent phonetic

contexts. The standard many-to-one relationship between phonemes and visemes is

therefore naive as it forces phonemes into clusters of which are assumed to be visu-

ally invariant. It is likely to be for this reason that Mattyeyses et al. [108] measured

a smaller synthesis error when phoneme units were used rather than visemes for

a sample-based visual speech synthesiser, despite having a fewer number of candi-

date examples available, and that Ramage [130] found no way of clustering confused

phonemes of an automatic visual speech recogniser such that 70% of the confusions

occur within the viseme classes.

In light of this, it becomes apparent that a many-to-many relationship between

phonemes and visemes is necessary to account for phonemic context [73]. A small

number of studies have addressed this many-to-many relationship, by clustering

context-dependent phonemes [34, 75, 109, 119] or clustering phonemes dependent

on their position within a word [49]. However, to date, no many-to-many phoneme-

to-viseme mapping exists that accounts for long term coarticulation. A possible

reason for this is because it is intractable to cluster phonemes in all contexts as it

is necessary to consider combinations of up to six units either side of a phoneme to

capture all coarticulation e↵ects.

Although the simplicity of static visemes is attractive for modelling speech, visual

speech units are inherently dynamic [6, 21]. The kinematics of the visible articula-

tors are important for speech perception as they help people to distinguish between

speech sounds. The consonsants /b/ and /m/ form a viseme cluster in the majority

of mappings in the literature as they share a bilabial place of articulation and there-

fore require lip closure for production. However, the dynamics of these phonemes

are very di↵erent as /b/ has a plosive manner of articulation and /m/ has a nasal
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manner. It has been shown in [136] that lip-readers are able to discriminate between

the phonemes /p/, /b/ and /m/ at a better than chance level even when they are

spoken in the same context, disproving the traditional definition of a viseme.

There is other information embedded in dynamic speech. For example, Engström

[43] found that the duration of unvoiced phonemes was much longer than that of

the voiced counterparts. She observed that on average /t/ took significantly longer

than /d/, /p/ took longer than /b/, and /f/ was measured to last almost twice as

long as /v/. The standard many-to-one relationship between phonemes and visemes

fails to account for these di↵erences in production.

3.3 Discussion

Phonemes are well defined as the unit of acoustic speech. They have the character-

istic that exchanging one phoneme in a sequence for a di↵erent phoneme changes

the meaning of the utterance. The same cannot be said for visemes, which have

long been assumed to be the unit of visual speech.

Traditionally, visemes are defined as clusters of visually confused phonemes,

where each cluster is associated with a static facial pose. Although there is some

overlap between mappings determined by di↵erent studies, no two unequivocally

agree regarding the number and composition of the viseme groups. This suggests

that the relationship between phonemes and visemes is more complex than a many-

to-one mapping. This is supported in Figure 2.6 where it is shown that the same

phoneme is expressed with a variety of poses in real speech.

Phoneme-to-viseme mappings vary across di↵erent speakers, languages and con-

texts. The majority of the mappings from literature provide only a sparse coverage

of the phonemes, as vowels are deemed di�cult to cluster and the nature of the

methods often restrict the stimuli to contain only a subset of the phonemes. Static

visemes are unable to model the important information embedded in the dynamics

of speech, and, to date, no mapping considers long term coarticulation e↵ects. As
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it stands, visemes are poorly defined and based on a flawed assumption regarding

the relationship between acoustic and visual speech.



Chapter 4

Speech Animation

The goal of speech animation is to present the correct articulatory dynamics to

synchronise with acoustic speech on a chosen face model. Realistic computer facial

animation is challenging as humans are sensitive to the smallest discrepancies from

normal behaviour. For speech animation to appear plausible, it needs to be smooth

and synchronous to the audio track, address coarticulation and respect the dynamics

of the face. It is important that this is done correctly, as poorly animated faces can

interfere with the comprehension of the audio speech [110].

One of the earliest forms of character animation involved displaying hand-drawn

images in quick succession to create what appears to be a moving image. Typically,

moving characters were artistically drawn onto a transparent cel, which was placed

over a stationary background image. This method was behind such classics as Popeye

the Sailor and Betty Boop in the early 1930s, and Walt Disney’s Steamboat Willie,

Snow White and the Seven Dwarves and many more. Nowadays, this technique is

barely used as it is slow and costly, and it requires highly skilled artists.

In the 1970s Parke [120] pioneered the field of computer generated facial anima-

tion with his 3D face model which was composed of a few hundred polygons. For

animation, poses were keyframed onto the face and the intermediate frames were

generated using cosine interpolation. Since then, a vast number of approaches have

been developed.

47
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Speech animation techniques can be broadly categorised into three main methods:

1) text-driven methods, which use phoneme labels to select the correct pose or series

of poses which are then concatenated or interpolated [15, 24, 27, 33, 38, 45, 46, 100,

101, 124], 2) audio-driven methods, which use the parameterised acoustic speech

to estimate the facial pose [13, 36, 42, 144], and 3) performance-driven methods,

which map the movement of a speaker onto a facial model [26, 118, 150, 153, 156].

The resulting animation can be rendered on image-based [15] or graphics-based

models [27], or a hybrid of the two [144]. Image-based methods typically o↵er a

higher level of realism than graphics-based methods, but are far less flexible in

terms of speaker identity and pose.

This chapter provides an overview of the techniques commonly used for speech

animation.

4.1 Keyframe Interpolation

Keyframe interpolation is the technique that is most widely used in industry due

to its simplicity. It concerns discretising speech into a string of phonemic targets,

which are then mapped to viseme targets using a simple lookup table. Given these

static targets, an interpolation function is used to generate animated sequences by

computing the in-between frames. The interpolation function is based either on

static targets [34, 46] or a more complex function that attempts to model coarticu-

lation [27, 38, 45, 124].

Ezzat et al. [46] used a morphing approach to generate the intermediate frames be-

tween static visemes using optical flow vectors. While morphing produces a smooth

transition, the resulting animation appears over-articulated as the e↵ects of coartic-

ulation are ignored.

Cohen and Massaro [27] extended Löfqvist’s gestural production model [95],

where the interpolation function is based on exponentially decaying dominance func-

tions and hand-crafted. Each phoneme is modelled with a set of control parameters,
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Fig. 7. Dominance of 2 speech segments over time (top panel) and the resulting control

parameter function (bottom panel) with c as a parameter.

Fig. 8. Dominance functions (top panel) and parameter control functions (bottom panel)

for lip protrusion for the word "stew".

Moving to an actual example of the system’s operation, the top panel of Figure 8 illustrates the dominance

functions for the word "stew". As can be seen, the /s/ and /t/ segments have very low dominance (!=.06)
with respect to lip protrusion compared to /u/ (!=1). Also the low "#sp value of /u/ (.07) causes its domina-

tion to extend far forward in time. The bottom panel gives the resulting lip protrusion trace. One can see

how the lip protrusion extends forward in time from the vowel. Note that the figure only illustrates the

dynamics for lip protrusion. For other control parameters, e.g. tongue angle, /t/ and /u/ have equal dominance

(!=1). This allows the tongue to reach its proper location against the back of the upper teeth for /t/.

As noted above, other dominance functions are possible in the algorithm. For example,

D ! e $ % &(1 " %&) (7)

Figure 4.1: An example of Cohen and Massaro’s dominance functions for the word
“stew” (top) and the resulting value of the lip protrusion control parameter (bottom)
taken from [27] with permission.

such as the upper lip position, lip width and degree of jaw rotation. A target

value and a pair of negative exponential functions describing the onset and o↵set

dominance is specified for each parameter. The shape of the dominance function

is controlled by the duration from the centre of the phoneme segment. Figure 4.1

(taken from [27]) illustrates an example of the dominance functions (top) and the

resulting value of the lip protrusion control parameter (bottom) for the word “stew”.

As the /s/ and /t/ segments have low dominance with respect to protrusion com-

pared with the /u/ segment which has high, wide spread dominance, the onset of

lip protrusion occurs early, during the production of /s/.

A similar approach was proposed by Dey et al. [38], in which the influence of

each viseme, rather than each phoneme, was modelled with a dominance function.

A limitation of these methods is that they fail to ensure that certain targets are

realised, such as the closure for a bilabial.

Lazalde and Maddock [89] modelled each viseme as a distribution around an ideal

lip pose. To generate speech, a trajectory that attempts to pass through the viseme

centroids is optimised with three constraints: 1) boundary constraints which ensure
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that the trajectory starts and ends at a particular state with zero acceleration and

velocity, 2) range constraints to restrict deviation from the viseme centre, and 3)

acceleration/ deceleration constraints so that the mouth moves at a realistic rate.

Pelachaud [124] presented an expressive talking head using Ekman and Friesen’s

Facial Action Coding System (FACS) [41] units to model expression. Each phoneme

was represented by a set of target poses, one for each expression, and the interpo-

lation function was controlled by the dominance of the visemes and the contraction

and relaxation times of the muscles.

A disadvantage of the methods described in [27, 38, 124] is that the interpolation

function is hand-tuned, which is an adhoc and extremely time consuming process.

In [45] and [89] the interpolation function is generated automatically by learning the

distribution of the visual features belonging to each phoneme. The extent of coar-

ticulation is implicitly modelled based on the magnitude of a phoneme’s variance.

The advantage of keyframe techniques is the relative ease and speed at which

animation can be produced. However, these methods typically produce unrealis-

tic results as the natural facial dynamics are ignored in place of an interpolation

function. If the interpolation function is defined incorrectly, the animation risks

appearing over-articulated, under-articulated or unnatural. Typically, it is also the

role of the interpolation function to model coarticulation1, which is an incredibly

complex function, and has yet to be emphatically defined.

4.2 Concatenative Synthesis

Concatenative approaches are widely used in acoustic speech synthesis. Rather than

interpolating between static targets for visual speech animation, sequences of speech

based on some animation unit are stitched together [15, 24, 33, 100, 101]. The units

are typically selected from a training corpus by minimising a cost function that

1This is not the case in [34] in which animation is based on static, context-dependent viseme
targets.
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of observers. There are no accepted metrics for evaluating lip-
synced footage. Instead, we were forced to rely on the qualitative
judgements listed in Section 5.2.

Only the (global) spatial registration is evaluated quantita-
tively. Since our subject wore a hat that moved rigidly with her
upper head, we were able to measure quantitatively our global-reg-
istration error on this footage. We did so by first warping the full
frame (instead of just the mouth region) of the triphone image into
the coordinate frame of the background image. If this global trans-
formation is correct, it should overlay the two images of the hat
exactly on top of one another. We measured the error by finding the
offset of the correlation peak for the image regions corresponding
to the front of the hat. The offset of the peak is the registration
error (in pixels). 

 

5.2  Evaluation

 

Examples of our output footage can be seen at http://www.inter-
val.com/papers/1997-012/. The top row of Figure 6 shows example
frames, extracted from these videos. This section describes our
evaluation criteria and the results.

 

5.2.1  Lip and Utterance Synchronization

 

How well are the lip motions synchronized with the audio? We
evaluate this measure on the still-head videos. There occasionally
are visible timing errors in plosives and stops.

 

5.2.2  Triphone-Video Synchronization

 

Do the lips flutter open and closed inappropriately? This artifact
usually is due to synchronization error in overlapping triphone vid-
eos. We evaluated this measure on the still-head videos. We do not
see any artifacts of this type.

 

5.2.3  Natural Articulation

 

Assuming that neither of the artifacts from Sections 5.2.1 or 5.2.2
appear, do the lip and teeth articulations look natural? Unnatural-
looking articulation can result if the desired sequence of phonemes
is not available in the database, and thus another sequence is used
in its place. In our experiments, this replacement occurred on 31
percent of the triphone videos. We evaluated this measure on the

still-head videos. We do not see this type of error when we use the
full video model. Additional experiments in this area are described
in Section 5.3.1.

 

5.2.4  Fading-Mask Visibility and Extent

 

Does the fading mask show? Does the animation have believable
texture and motion around the lips and chin? Do the dimples move
in sync with the mouth? We evaluated this measure on all the out-
put videos. The still-head videos better show errors associated with
the extent of the fading mask, whereas the moving-head videos
better show errors due to interactions between the fading mask and
the global transformation. Without illumination correction, we see
artifacts in some of the moving-head videos, when the subject
looked down so that the lighting on her face changed significantly.
These artifacts disappear with adaptive illumination correction
[Burt83].

 

5.2.5  Background Warping

 

Do the outer edges of the jaw line and neck, and the upper portions
of the cheeks look realistic? Artifacts in these areas are due to
incorrect warping of the background image or to a mismatch
between the texture and the warped shape of the background
image. We evaluated this measure on all the output videos. In some
segments, we found minor artifacts near the outer edges of the jaw.

 

5.2.6  Spatial Registration

 

Does the mouth seem to float around on the face? Are the teeth rig-
idly attached to the skull? We evaluated this measure on the mov-
ing-head videos. No registration errors are visible.

We evaluated this error quantitatively as well, using the hat-
registration metric described in Section 5.1. The mean, median,
and maximum errors in the still-head videos were 0.6, 0.5, and 1.2
pixels (standard deviation 0.3); those in the moving-head videos
were 1.0, 1.0, and 2.0 pixels (standard deviation 0.4). For compari-
son, the face covers approximately  pixels.

 

5.2.7  Overall Quality

 

Is the lip-sync believable? We evaluated this measure on all the
output videos. We judged the overall quality as excellent.
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Figure 6: Examples of synthesized output frames. These frames show the quality of our output after triphone segments have been
stitched into different background video frames.

Figure 4.2: Image-based concatenative synthesis using Bregler et al.’s triphone units.
The images are taken from page 6 of [15] with permission.

trades o↵ a measure of similarity between candidate and desired phonetic contexts

and the smoothness at the concatenation boundaries.

The units selected from the corpus might be fixed length [15, 100], or variable

length [24, 33, 101]. Bregler et al. [15] presented a method based on fixed-length tri-

phones, which are sequences of three phonemes. A dynamic programming algorithm

was used to search the training data for the optimal sequence of triphones based

on a phoneme-context cost and the distance between overlapping lip shapes. If an

example from the training data for a particular phoneme in context was not found,

a di↵erent phoneme from the same viseme group was substituted at an additional

cost. The triphone sequences of the jaw region were retimed, overlapped, cross-

faded and stitched onto a background image to generate novel speech animation

(see Figure 4.2).

A similar method is described by Ma et al. [100], who introduced the diviseme

as a concatenative unit, defined as a transition from one static viseme to another.

For novel speech, a sequence of diviseme examples was selected using the Viterbi

algorithm to find the best path through a directed motion graph in which nodes rep-

resent diviseme instances and edges are weighted with the join cost. For animation,

the divisemes were resampled to the correct duration, overlapped and blended.

The disadvantage of using fixed-length segments such as divisemes and triphones

is that they fail to account for coarticulation which spans further than two or three

units respectively. This prompted Ma et al. [101] to extend the diviseme approach

to a variable length animation unit. In their work, all of the viseme strings in the
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training data were modelled by a graph, where the nodes represent viseme symbols

and the edges were weighted with the concatenation cost. The cost of joining two

nodes that appear consecutively in the training data is zero, as they transition

naturally with no discontinuity. The Viterbi algorithm was used to determine the

optimal path of nodes based on the concatenation cost, and the resulting trajectory

is smoothed.

A variable-length unit was also proposed by Cosatto et al. [33]. For animation,

the training data was searched for the best matching examples of the phonetic

context, producing a set of candidate poses at each frame. These candidates formed

a directed graph which were connected by edges which were weighted based on the

transition cost. As in [100, 101], the Viterbi algorithm was used to calculate the

smoothest path through the graph. If there was a large transition cost between two

consecutive poses, the images were blended to prevent jerky movements. Animation

with variable-length units appears smoother than with fixed-length units as the

longest possible sequences of real data are extracted from the corpus and so there

are fewer concatenation discontinuities.

A dynamic animation segment, referred to as an Anime, was presented in [24]. An

Anime was initially defined as the motion corresponding to a phoneme. However, to

reduce the number of motion fragments, the Animes were clustered on their visual

similarity, such that each Anime represents a motion that corresponds to a set of

phonemes. The Animes form a directed graph with edges modelling the transitions

between phonemes in the training data. For novel speech, the search algorithm

finds the longest matching sequence of phonemes in the Anime graph. If there were

two paths of equal length, the audio features were then compared to determine the

best sequence. The animated speech was mapped onto a 3D model. However, as

only the facial geometry was captured, the information from the appearance of the

speaker, such as teeth visibility and tongue position, is lost and the speech appears

under-articulated.

For animation, concatenative methods are somewhat inflexible, as the identity of
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the speaker and the range of facial poses are limited to those from the training data.

Some attempts at mapping speech to a di↵erent face model have been described, for

example using radial basis functions [101], however the results are unconvincing.

The advantage of concatenative approaches is that the dynamics of the original

speaker are preserved as segments of real video are simply reordered to generate new

speech. However, the quality of the speech animation is highly dependent on the

amount of data available and the coverage of the phonemes in varying contexts, as

finding a particular speech segment in the correct context is key to the process.

4.3 Motion Transfer

Motion transfer concerns mapping real motion data from a talker to a model. This

has the advantage of capturing the liveliness and subtleties of facial gestures pro-

duced by the performer. Facial motion can be captured using vision-based track-

ing algorithms, or other marker-based motion capture equipment. For example,

Williams [156] tracked a set of markers that were positioned on a speaker’s face and

then directly mapped them to a scanned 3D model.

This approach can be taken further by using bilinear or multilinear models to

separate identity, speech and expression such that the characteristics of the trans-

ferred speech can be manipulated so speech can be presented in di↵erent emotional

contexts or on di↵erent faces [26, 118, 150, 153].

A problem with the motion transfer approach is that the mapping from the

actor’s movements to the deformations on the animated character is often non-linear

and can be somewhat complex, especially for non-human characters with di↵erent

proportions to the speaker. It is also di�cult to constrain the lip shapes and motions

to a set that are valid for a particular character. To overcome this, Kouadio et al. [83]

introduced a motion transfer method where the animated expression was calculated

as a weighted sum of basis expressions. A least squares regression is used to learn

the weights from the actor’s expression.
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Figure 6: President Jefferson at rest and face-syncing to novel audio. Animation runs from neck to hairline. On contemporary hardware,
compute time is less than the duration of the utterance.

training video we can produce tolerable animation; with 3 minutes
we approach video-realism. The quality of puppeteering degrades
gracefully as we increase acoustic noise levels or change to
microphones or speakers unlike those in the training set. E.g.,
when trained on adult men, the puppet has some difficulty with
children’s and women’s voices. We would recommend separate
models for each group because of large differences in facial manner
and spectral profiles between gender and age groups. It is possible
to train one large model on all groups, but this requires more data
than needed for separate models.
We have used French-trained puppets to produce English

animations and English-trained puppets to produce Russian and
Japanese animations. This compares favorably with phoneme-
based systems, which typically use an English subset of phonemes.
We have also found it reasonably easy, via projection, to animate
heads with substantially varied geometries, e.g., toddlers and
animals (figure 7).
We currently train with NTSC 29.97Hz video—a sampling rate

too low to reliably capture fast facial transients such as plosives
and blinks. The puppet can infer most plosives from context, but
true film-quality puppetry will probably require higher-resolution
training data, tracking a hundred or so points on the face over tens
of minutes of 100Hz video. In addition, we currently make no effort
to track and model the shape of the tongue; we are currently looking
into using archival x-ray films to complement the training set.
Finally, for photo-realism we must handle wrinkling and changes in
skin translucency; we are exploring variants of voice puppetry that
predict changes in both the facial geometry and the texture map.
The voice puppet is fully automatic. Animators, on the other

hand, want full control of an animation. Aside from adjusting the
raw vertex motions predicted by the voice puppet, there are several
ways an animator could intercede to customize the animation. Here
we list a few, beginning with the easiest: (1) Choose from a
palette of puppets, each trained on a different style of speech and
facial mannerisms. (2) Increase the variance of the training data,
which produces a cartoon-like exaggerated range of motion in facial
expression. (3) Add whole-face expression vectors (e.g., a grin)
to those generated by the voice puppet. (4) Edit the facial state
sequence. Options 3&4 are analogous to the present-day practices
of superimposing multiple morph targets and editing a phoneme
sequence, respectively.

7 Summary
Voice puppetry combines the voice, face, and facial mannerisms of
three different people into a realistic speaking animation. Given
novel audio, the system accurately generates lip and whole-face
motions in the style of the training performance, even reproducing
subtle effects such as co-articulation. This purely data-driven
approach stands on two innovations: An entropy-minimization
algorithm learns extremely compact and accurate probabilistic

models of the facial behavior manifold from training video; a
closed-form solution for geodesics on this manifold yields facial
motion sequences that are optimally compatible with new audio and
with learned facial behavior.
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Figure 4.3: Model-based animation using Brand’s Voice Puppetry. The images are
taken from page 7 of [13] with permission.

Whilst performance-driven approaches are e↵ective for generating realistic ani-

mation, motion transfer lacks the flexibility of true synthesis in that the models do

not generate the animation data, rather an actor is always required.

4.4 Model-based Synthesis

A more flexible approach is to use generative models to synthesise animation param-

eter trajectories. Statistical models can be employed within a probabilistic frame-

work to model the joint distribution of acoustic and visual speech [13, 36, 42, 144],

exploiting the correlation between the visual and auditory components of speech.

Given novel acoustic speech, these distributions can be sampled to estimate the

maximum likelihood facial animation parameters, which can then be applied to the

visual model.

Brand’s Voice Puppetry [13] modelled the position and velocity of the facial fea-

tures and the relationship to the audio features. An acoustic HMM estimates the

state sequence given a novel audio track, and an HMM trained on the visual features

drives the animation using the estimated state sequence. A geodesic interpolation

technique is used on the facial motion parameters to ensure smoothness. A sequence

of animation generated using Voice Puppetry is shown in Figure 4.3 [13]. The ben-

efit of using an HMM is that it can account for context across an entire utterance,

regardless of its length. However, the resulting animations appear overly smoothed

and under-articulated.
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Theobald and Wilkinson [144] used canonical correlation analysis (CCA) to model

the linear relationship between audio and visual speech by finding a set of audio and

visual basis vectors which maximise the correlation between the two sets of features.

Linear regression was then used to find the transformation that maps the audio

parameters (projected on the basis) to the visual parameters. Coarticulation was

modelled by appending features to the right and left of each frame. However, the

authors note there were instances where mapping from auditory to visual parameters

in this way did not perform well. For example, sounds formed towards the back of the

mouth can appear very di↵erent visually, and it is di�cult to model the relationship

between these audio and visual features using a simple linear model.

Deena and Galata [35] used a Gaussian process latent variable model framework

to learn a shared latent space between the audio and visual speech. This model can

be viewed as a non-linear extension of CCA. A limitation of this approach is that

all of the phonemes share a single model, irrespective of the variability in dynamics.

To address this, the model was further extended by augmenting it with switching

states that represent the varying dynamics of speech [36]. Each switching state,

which represents a commonly occurring sequence of phonemes, is modelled with a

shared Gaussian process dynamical model. New speech animation is generated by

inferring the state for each audio frame and calculating the latent variables from the

shared model. The visual features are then calculated from the latent variables.

Model-based methods have the advantage that the facial poses are learned from

observed data and they do not require the amount of data that is necessary for

concatenative techniques. However, they are limited to the speech model which

they are trained.

4.5 Discussion

For believable speech animation, it is necessary that the simulated motion is smooth

and reflects the dynamics and coarticulation e↵ects of real speech. Humans are finely
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tuned to the subtleties of facial movement, making it a challenging task.

The simplest technique for generating animated speech is keyframe interpolation.

The advantage of this method is that, to animate any model, the animator simply

defines one pose for each phoneme or viseme. However, the natural dynamics of

the speaker are ignored as it is the role of an interpolation function to smoothly

transition across poses and to simulate coarticulation. Not enough is known about

coarticulation for this method to produce realistic results.

Concatenative methods involve stitching together segments of real speech to pro-

duce animation. They therefore maintain the original dynamics of the speaker.

Coarticulation can be modelled by minimising a cost function across an entire ut-

terance. However, this method requires a large amount of training data, and the

synthesised motion is not easily mapped to di↵erent facial models.

Motion transfer and model-based approaches are also limited to models that have

a similar geometry to the speaker. Motion transfer yields high quality animation, as

the motion is mapped directly from the speaker but is inflexible as an actor is always

required. Model-based methods are more flexible as they are able to generate novel

speech by sampling from a probabilistic distribution which models the relationship

between audio and visual speech information.

In the remainder of this thesis a novel, concatenative approach for speech anima-

tion is described, that goes some way towards overcoming the limitations of previous

approaches. This unit maintains the natural dynamics of the visual speech, and it

can be applied to any form of graphics model.



Chapter 5

Data Capture and Visual Speech

Modelling

This chapter first describes the capture and annotation of an audio-visual database,

and reviews methods for video tracking and parameterising facial features. The

choice of features used in this work is then discussed, and tracking and parameteri-

sation using active appearance models is described.

For visual speech analysis, a database containing synchronous audio and visual

speech is required. The content needs to be carefully considered, as the video qual-

ity and the nature of stimuli are critical to the outcome of the analysis. From a

recorded database, a visual parameterisation is derived by locating the oral region

in each of the movie frames and extracting information regarding the geometry and

appearance of the speech-related facial features. It is important that the area of

the face described by this parameterisation su�ciently captures the speech-related

movements, and that the features are discriminative enough to distinguish between

the subtleties of speech gestures.

57
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5.1 Audio-Visual Speech Database

The specification of the audio-visual speech database is important as it is has direct

impact on the outcome of the work described in this thesis. The image resolution

needs to be su�ciently high to ensure that the extracted features capture fine detail

that provide discriminative speech information. It is also necessary that the frame

rate is su�cient to capture the dynamics of the speech, including plosives which

are produced using rapid motion. To enable analysis of longer term coarticulation

e↵ects, the stimuli should be in the form of continuous speech and they should

contain a good coverage of phonemes in di↵erent contexts. It is also necessary that

the speaker’s face is appropriately positioned within the video frame so the speech

articulators are clearly visible, and that the face is illuminated such that there are

no intrusive shadows.

There are a number of publicly available audio-visual speech databases, such as

CUAVE [122], AV Letters [107], XM2VTSDB [112] and GRID [29]. However, all

are restricted to isolated words [107, 122] or limited vocabulary [29, 112], and are

therefore unsuitable for use in this work.

Preliminary analysis was initially performed using the LIPS2008 database [143],

which contains 278 phonetically balanced sentences spoken by a female speaker.

However, it soon became apparent that more speech was required to ensure a com-

plete coverage of speech gestures. Thus, a larger database was recorded, which

was entitled KB-2k. KB-2k contains an actor reciting the 2342 sentences from the

TIMIT sentence list [117], plus an extra repetition of 200 of these sentences. The

actor read the sentences from a teleprompter in an American English accent and

maintained a neutral speaking style throughout the recording .

The TIMIT sentence list is composed of 2 sentences that were designed to ex-

pose variation in dialect, 450 phonetically-compact sentences and 1890 phonetically-

diverse sentences taken from the Brown corpus [54] and the Playwright’s Dialog [68].

The phonetically-compact sentences were designed to provide good coverage of pairs
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of phones, with extra occurrences of phonetic contexts that were thought to be ei-

ther di�cult or of particular interest [117]. The phonetically-diverse sentences were

selected to maximise the variety of allophonic contexts in the text and were designed

to add diversity in terms of sentence type and phonetic context.

The video was recorded at 29.97 frames per second at a resolution of 1920 by

1080 progressive scan and it runs to approximately 8 hours. Both a frontal view and

side view of the actor were captured1. A lighting rig was positioned to illuminate

the face such that the tongue and teeth were visible, and that the view of the face

was not impeded by shadows. The recording process was supervised, and if the

actor mispronounced a sentence he was asked to say it again and the outtakes were

discarded. A selection of frames from the database is shown in Figure 5.1.

The audio speech was captured at a sampling rate of 48 kHz via two microphones;

one onboard the camera, and a tie-clip microphone attached to the actor’s shirt. The

sentences were phonetically segmented using the audio, and they were annotated

using the ARPAbet phonetic notation code. Annotation was performed manually

by five students from Carnegie Mellon University, all of whom had completed a

course on phonetics. The labels were then checked and adjusted so that they were

error free and consistent across the entire database.

5.2 Parameterising Visual Speech

There is an enormous quantity of data in video sequences, as each frame contains

millions of pixels that are vastly redundant and non-speech related. From this high

dimensional data, the challenge is to extract a set of low-dimensional feature vectors

that contain visual speech information with good discriminatory power. That is, for

each movie frame, an accurate representation of the configuration of the visible

speech articulators is required. The initial stage of this process involves determining

the location of the lips and jaw from which features can then be extracted from

1Only the frontal view was used for the work described in this thesis.
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Figure 5.1: A selection of frames extracted from the KB-2k database illustrating
the illumination conditions and a sample of the actor’s poses.
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the image. These features might describe the shape or appearance of the visible

articulators, or they might represent other information, such as the direction or

magnitude of the articulator motion.

Feature extraction for acoustic speech is well established. Audio is captured

using a microphone and can be encoded using Linear Predictive Coding (LPC),

Mel-Frequency Cepstral Coe�cients (MFCCs), Line Spectral Frequencies (LSF) or

Formants [57]. However, no such standards exist for the visual modality and the

choice of visual features remains somewhat arbitrary.

Robust feature extraction for faces is a di�cult problem due to the large appear-

ance variation between and within subjects. Between-subject variation accounts for

di↵erences in skin tone, facial hair and facial proportions, whereas within-subject

variation accounts for the changes in appearance caused by speech, expression and

head pose. E↵ective facial tracking is highly dependent on the environmental con-

ditions, as vision-based algorithms rely on predictable or constant global lighting.

This is because the colour, degree and direction of illumination alters the appearance

of the face. As shadows form, pixel intensities change. For visual speech analysis,

it is necessary that the facial parameterisation represents the speech information

independent of the variation in illumination. For this reason, speech is typically

captured under controlled conditions, whereby expression, head motion and illumi-

nation are fixed. Some methods depend upon lipstick to make the lips and skin-tone

more contrastive. Others use stick-on reflective markers or head-mounted cameras.

However, these methods potentially interfere with the naturalness of the speech as

they are intrusive and might a↵ect the way the talker speaks.

Methods for tracking and parameterising facial features can be broadly grouped

into shape-based and image-based approaches. This section describes methods of

facial feature extraction, and presents a discussion on the type of features that are

important for analysis.
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5.2.1 Shape-based Methods

The shape of the visible articulators can be parameterised with simple geometrical

measurements, such as lip height, width and roundedness. For example, Brooke and

Templeton [20] thresholded images of the oral region and performed a valley edge

detection algorithm, before manually extracting the mouth height, width and the

size of the inner mouth area for clustering into viseme classes. Goldschen et al. [58]

hand-segmented the region of interest (ROI) surrounding the lips, and then auto-

matically extracted features describing lip rounding, height, width and perimeter,

and the size of the inner lip area. However, manual tracking is incredibly slow, and

prone to human error. An automated approach was described by Petajan et al. [127]

who used a pattern matching algorithm to track the nostrils in thresholded images

of the face. The oral region was assumed to appear at a fixed distance from the

nostrils. Although it worked successfully for their data, this method is extremely

sensitive to speaker, scale and head pose.

A more liberal representation of the lip position can be extracted by modelling

the x and y coordinates of fiducial landmarks positioned on the contour. There are a

number of edge-detection algorithms for extracting the shape of the lip contour. For

example, Snakes (also known as Active Contour Models) [79] model the contour of an

object with a spline, represented as a piecewise polynomial curve. The polynomials

are constrained such that the curves meet at the join with continuous first and second

order derivatives. To fit to an image, the coe�cients are automatically adapted to

minimise an energy function that is a combination of internal energy, which controls

the flexibility of the curve, and image energy, which pulls the snake towards the

edges.

A problem with this approach is that the shape is unconstrained, so there is no

certainty that the fitted shape will be valid. Human lips are geometrically complex,

but the shape varies with a number of distinct degrees of freedom constrained by

the physiology of the face [18]. Point distribution models (PDMs) provide a method

of extracting these degrees of freedom by capturing the mean shape and principal
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modes of variation from labelled training data. PDMs provide a method of statisti-

cally modelling the shape, so that constraints can be enforced so only valid contours

are produced.

To learn a PDM, a set of training images are typically hand-labelled with land-

marks describing the lip contours and other salient facial locations. Once labelled,

the landmarks are aligned to normalise for scale, rotation and translation and then

transformed using principal components analysis (PCA). PCA is detailed in Ap-

pendix A. A particular configuration of the lips can then be represented as a point

in feature space, and the set of all possible (legal) configurations of the lips can be

represented as a smooth surface within the learnt manifold. The training images

are carefully selected to represent the extreme poses, so that the principal modes

of variation represent all valid facial deformations, and the dimensionality of the

feature space represents the number of degrees of freedom of the lips.

Bregler and Omohundro [18] used PCA to learn a PDM from the frames that

were successfully tracked using the conventional snake algorithm. The lips were then

re-tracked by maximising the grey-level gradients along the contour calculated at

normals to each of the landmark points. This time, the shape was constrained to

lie within the learned shape space.

An alternative approach for fitting a PDM to an image is using active shape

models (ASMs) [32]. To fit a PDM to an image using the ASM method described

in [32], the profile normals at each of the landmark points are examined, and the

shape boundary is shifted towards the strongest edge. The model parameters are

then updated to reflect the new shape, while constraining the shape to lie within

the learned manifold. The process is then iterated until the change in shape is

su�ciently small. The problem with this approach is that contour gradients are

often unreliable for defining the lip boundary as they are a↵ected by conflicting

information, such as shadows and facial hair, and vary depending on the position

of the lips. A good example of this can be seen in [99]. As the lips are set against

the similar flesh tones of the surrounding skin, the gradients can be a poor basis
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Figure 5.2: The gradient magnitude of the lip region for a selection of frames from
the KB-2k dataset. As the lips are set against the flesh tones of the skin, the contours
are often barely visible, or segmented. The gradients therefore function as a poor
basis for tracking.

for segmentation, especially along the lower outer lip (see Figure 5.2). Luettin [98]

modified this approach by modelling the pixel intensities along the profile normals

for each of the landmark points, and stacking them to construct a global profile

vector. The global profile mean and covariance was then calculated and the modes

of variation were learnt using PCA. For each frame, the model parameters were

iteratively updated, and the mean squared error between the model and the image

profile values was calculated until convergence. They adopted a simplex method for

shifting the shape towards a minima of the cost function.

The main limitation of ASMs is that only the image information that is local to

the shape boundary is used to fit the model to a new image, so the model is prone

to losing track of the contour. The next sections discuss methods that use the full

appearance of the oral region.

5.2.2 Image-based Methods

Image-based methods involve processing the pixel intensities of the image, usually

within a region of interest (ROI) surrounding the lips, and sometimes the cheek

and jaw [14]. Direct analysis of the raw pixel intensities has the disadvantage of

high dimensionality, and high data redundancy as neighbouring pixels are likely

to change at a similar rate. Therefore, dimensionality reduction algorithms are

typically employed to make the visual features more discriminant. These meth-
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ods include processing the pixel intensities with a discrete cosine transformation

(DCT) [88, 97], discrete Fourier transform (DFT) [16, 40], linear discriminant anal-

ysis (LDA) [40, 97] or principal components analysis (PCA) [17, 40], and retaining

only the features that account for the low frequency information, or a large amount

of variation of the original image. These techniques have an additional benefit in

that they produce generative features that are generally less sensitive to noise.

For audio-visual speech recognition, Lucey et al. [97] extracted a rectangular,

32 ⇥ 32 pixel ROI encompassing the lips by locating the eyes and nose, and then

using a classifier to locate the lip corners. A 2D DCT was then applied to the

mean-subtracted pixels within the ROI, and the high frequency information was

ignored. Finally, LDA was performed to further reduce the dimensionality of the

features. Similarly, Bregler and Konig [17] first tracked the contour of the lips using

a snake-like algorithm, and then extracted a rectangular, 24 ⇥ 16 pixel ROI which

was centred on the lips. The appearance of the lips was modelled by applying PCA

to the scaled ROI. Inspired by Turk and Pentland’s Eigenfaces [146], this approach

was referred to as Eigenlips.

The problem associated with ROI-based appearance modelling is that it captures

variation due to both shape and appearance, as the change in intensity over a pixel

is captured, rather than the change over a particular location on the lips. Instead,

it is preferable that each pixel represents the same feature on the face, thus allowing

separation of appearance and shape information. Active appearance models [30]

provide a means for accomplishing this, and are described in the following section.

5.2.3 Active Appearance Models

Active Appearance Models (AAMs) [30] are a compact, generative, statistical rep-

resentation of both the shape and the appearance variation in a set of images. The

shape of an AAM is defined by the two-dimensional vertex locations of a mesh that
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delineates the contours of the visible articulators:

s = {x
1

, y
1

, x
2

, y
2

, ..., x
N

, y
N

}T ,

where (x
i

, y
i

) are the coordinates of the ith landmark on the image.

Usually a model is built by first hand-labelling a set of training images with the

vertices that define a triangulated mesh. To capture only speech-related variation,

care is taken to place each of the landmarks accurately and consistently around

the contours of the facial features at regular intervals. The training meshes are

normalised for translation, scale and rotation by solving for the similarity parameters

to align the shapes. In particular, using:

s = M(!, ✓)[s� t], (5.1)

A generalised Procrustes analysis [59] can be used where t describes the translation

to zero centre the landmarks,

t = {t
x1 , ty1 , tx2 , ty2 , ..., txN , t

yN}T , (5.2)

and M(!, ✓) describes scaling of ! and rotation of ✓. To align all of the training

images, all of the shapes are first aligned and then the mean of the aligned shapes

is calculated, and all of the shapes are realigned to the mean. This is repeated until

convergence [32].

From the aligned shapes, the mean and covariance matrix is calculated and PCA

is applied to obtain the eigenvectors and eigenvalues of the covariance matrix. This

provides a compact representation of a shape in the form:

s = s
0

+
mX

i=1

s
i

p
i

, (5.3)

where s
0

is the mean shape and the vectors s
i

are the eigenvectors of the covariance

matrix corresponding to the m largest eigenvalues, which represent the most signif-
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icant modes of variation. The coe�cients p
i

are the shape parameters, which define

the contribution of each mode in the encoding of s. This model describes the legal

shape deformations learnt from the training examples, and any valid shape can be

approximated with the parameters p. Conversely, given a set of example points s,

the parameters p can be calculated using:

p =
mX

i=1

sT

i

(s� s
0

). (5.4)

The appearance of an AAM is defined over the pixels within the triangulated

mesh formed from the hand-labelled landmarks, x = (x, y)T 2 s
0

. To construct

the appearance, each of the training images are first warped to the mean shape, s
0

.

PCA is then applied to the shape-normalised images to give a compact model of

appearance variation of the form:

A(x) = A
0

(x) +
nX

i=1

�
i

A
i

(x) 8x 2 s
0

, (5.5)

where the coe�cients �
i

are the appearance parameters, A
0

(x) is the base (mean)

appearance, and the appearance images, A
i

(x), are the eigenvectors corresponding

to the n largest eigenvalues of the covariance matrix.

It is intuitive that the shape and appearance features are somewhat correlated, as

they are synchronous to the acoustic speech. To decorrelate the two sets of features,

the shape and appearance parameters are stacked, and a third PCA is applied,

giving:

b =

0

@ wp

�

1

A =
qX

i=1

j
i

c
i

, (5.6)

where p is a vector of shape parameters, � is a vector of appearance parameters, j
i

are the basis vectors spanning the combined shape and appearance space and c are

the parameters that describe the combined shape and appearance variation of the
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lips and jaw. The coe�cient w normalises for the energy:

w =

sP
n

i=1

�2

�iP
m

i=1

�2

pi

, (5.7)

where m and n are the dimension of the shape and appearance parameters respec-

tively, and �2

pi
and �2

�i
represent the variance captured by each dimension of the

respective model.

Fitting an AAM to a face can be performed using a wealth of algorithms which

typically involve minimising the di↵erence between the face image and a synthesised

image from the appearance model. A good overview of fitting algorithms for AAMs

can be found in [31].

5.2.4 Selecting Features for Visual Speech Analysis

It is intuitive that the appearance of the lips, teeth and tongue are all important

for decoding visual speech, and so analysis is typically performed on features that

describe the oral region [17, 97, 99]. However, other speech information, for ex-

ample lip protrusion and cheek pu�ng, is embedded in the shadows and creases

that appear over the entire lower face area. This was confirmed by Potamianos

and Neti [128] who measured a significant increase in accuracy of an audio-visual

speech recogniser when the jaw and cheek region were included in the ROI, over

using the lip-only area. This extra information is also beneficial for humans, as

Ijsseldijk [70] measured a lower lip-reading accuracy when subjects were presented

with only the lip region of the face, and Scheinberg [136] discovered that certain

points located on the cheeks and jaw provided the information required for visual

discrimination between the phonemes /p/ and /b/. Jiang et al. [75] also found that

jaw and cheek information is beneficial over lip-only information when comparing

physical and perceptual measurements between visual speech syllables by analysing

confusion matrices.

The dynamics of the visual features are often more discriminative than the static
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Figure 5.3: Illustrating the importance of appearance information to visual speech
analysis. The top row shows the feature boundaries for the corresponding movie
frames on the bottom row. It is apparent that appearance information is important
for discriminating between visual speech poses.

features. Typically, the dynamics are represented by the first and second deriva-

tives, where the first derivative, � = �y

�t

, describes the rate of change and the second

derivative, �� = �

2
y

�t

2 , describes the acceleration. For example, Bregler and Omo-

hundro [18] measured ⇡ 3% improvement on audio-visual word recognition when

acceleration features were included, and Lucey [96] discovered that extracting fea-

tures on di↵erence images, rather than the original images, decreased the word error

rate by 10%. Goldschen et al. [58] experimented with a set of static and dynamic

features for automatic lip-reading, and concluded that the majority of features that

are salient for visual speech recognition pertained to the dynamics. It is also thought

that dynamic features are likely to be more robust across speakers, as they encode

the rate of change rather than absolute values [99].

The advantage of using shape-based features for visual speech analysis is that

they can be transformed such that they are invariant to scale, rotation and trans-

lation, and, if the tracking is robust, to illumination. However, they fail to describe

important speech-related aspects of the face, such as the presence of teeth, position

of the tongue and shadowing caused by lip protrusion. These phenomena play an

important role in speech perception, as they help to distinguish between sounds.

For example, Figure 5.3 illustrates the feature contours (top) and the image frames

(bottom) for a variety of speech poses. It is clear that the shape of the lips is very
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Figure 5.4: A selection of training images used to build the AAM that have been
manually annotated with 34 landmarks demarcating the lips and jaw.

similar in each of the examples, but the teeth and tongue are positioned di↵erently,

altering the perceived visual meaning. It is therefore apparent that both shape and

appearance information is necessary to adequately represent visual speech. To fur-

ther validate this, the addition of appearance information to shape alone has been

found to significantly improve the accuracy for automatic lip-reading [18, 88, 107].

AAMs were chosen to parameterise the visual speech in the KB-2k dataset as

they provide a compact statistical representation of both the shape and appearance

variation in a set of images. They are also generative, which allows for an analysis

by synthesis approach to tracking. This is generally more robust and accurate than

other approaches, as it is based on the full appearance of the tracked object. AAM

features have also been shown to outperform other shape and appearance based

features for visual word recognition [88].

5.3 Feature Extraction for KB-2k

An AAM was learnt using 120 training images, each annotated with 34 landmarks,

comprising of 12 points demarcating the outer lip, 10 the inner lip, 3 the nostrils

and 9 the jaw contours. Figure 5.4 shows the region of the face captured by the

AAM.

Figure 5.5 shows the mean and the 11 modes of variation at ±3 standard devi-

ations about the mean of the shape model. These modes account for 95% of the
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µ Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6 Mode 7

Mode 8 Mode 9 Mode 10 Mode 11

Figure 5.5: Modes of variation for the AAM shape model at ±3 standard devia-
tions about the mean. Modes one to four describe similarity transformations and are
discarded for analysis.

overall shape variation in the KB-2k database. The first 4 modes describe scale, ro-

tation and x, y translation variation respectively2. Modes 5 and 8 describe nodding

and shaking of the head, modes 6 and 7 describe lip opening and rounding and the

remaining modes describe more subtle variations.

The mean and first 4 modes of appearance variation for the KB-2k dataset are

shown in Figure 5.6. Mode 1 describes the visibility of the teeth, mode 2 describes lip

protrusion and spreading, and the remaining modes describe more subtle variations.

In total, 95% of the appearance variation is accounted for in 88 modes.

From Figures 5.5 and 5.6 it is apparent that shape mode 7 and appearance mode 2

both appear to encode lip-rounding. To decorrelate the features, a combined model

is generated using Equation 5.7, producing an 80 dimensional space which describes

the variation in both shape and appearance. Figure 5.7 shows the mean and the

2These modes of variation are useful for tracking but are removed for analysis, as they are not
meaningful in the sense of speech as they describe the position and orientation of the head.
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Figure 5.6: The first four of modes of variation for the AAM appearance model at
�3 (top) and +3 (bottom) standard deviations about the mean (middle), shown on
the mean shape. In total 95% of the overall appearance variation is accounted for in
88 modes.
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Figure 5.7: First four modes of variation for the combined shape and appearance
model at �3 (top) and +3 (bottom) standard deviations about the mean (middle).
The combined model contains 80 modes of variation.
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first four modes of variation corresponding to the highest eigenvalues for the com-

bined AAM model.

In this work tracking was performed using the inverse compositional project-

out algorithm [106]. For each frame, the AAM is initialised on the tracked landmarks

of the previous frame. Given the trained AAM, all eight hours of 1080p video were

tracked and the speech-related frames were presented for analysis. The tracking was

visually inspected, and for any frames where the model lost track the frame was

re-fitted.

5.3.1 Multi-segment AAMs

Rather than building an AAM with a single appearance component (i.e. performing

a single PCA on all of the pixels within the base mesh), instead a multi-segment

AAM [145] is built, where di↵erent regions of the face are modelled as separate

appearance components. This allows greater PCA modelling accuracy of the inner

mouth, which is generally not linearly related to the surrounding appearance. A

large amount of information regarding the state of the teeth and tongue is conveyed

in the appearance of the inner lip area. Thus, a more discriminative set of features

is attained by modelling more of the variation in this area [88].

To construct a multi-segment AAM the images are segmented into two sub-

regions, one containing the inner-lip area and the other containing the remainder

of the lower face pixels. Independent appearance models are then constructed for

these sub-regions using Equation 5.5. Figure 5.8 shows the four modes of variation

corresponding to the highest eigenvalues for the two appearance models in the multi-

segment AAM. The segments are modelled with 46 and 10 modes respectively. The

shape parameters, and two sets of appearance parameters are concatenated and
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(a) Segment 1: The lips and jaw
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(b) Segment 2: The inner mouth

Figure 5.8: Modes of variation for the appearance models of a multi-segment AAM
at �3 (top) and +3 (bottom) standard deviations about the mean (middle), shown
on the mean shape. In total, the segments are modelled with 46 and 10 modes
respectively.
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normalised and a third PCA is applied, giving:
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0
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c
i

(5.8)

where p are the shape parameters, and �
1

and �
2

are the appearance parameters

for the two segments of the model. The weights, w
p

and w� are defined as:
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where n
1

and n
2

are the number of dimensions corresponding to the first and second

appearance components, m is the number of dimensions corresponding to the shape,

and �2

�1i
, �2

�2i
and �2

pi
represent the variance captured by the ith dimension of the

respective model.

This generates a compact, 20-dimensional feature vector, c, which describes the

shape and appearance of the lips and jaw at each movie frame. The first three modes

of variation of the combined model are shown in Figure 5.9.

5.4 Discussion

In this chapter an audio-visual dataset entitled KB-2k is described containing a

speaker uttering eight hours of speech. The stimuli was in the form of sentences

containing a good coverage of phonemes in di↵erent contexts. The dataset is pho-

netically segmented manually, and the visible articulators are tracked and parame-

terised using active appearance models.

AAMs provide a convenient way to model both shape and appearance variation of

the visible articulators, both of which are important features for speech analysis. The

AAM was constructed by performing independent PCA on the landmarks and pixel

intensities from some hand-labelled training images. A third PCA is then applied to
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Figure 5.9: Modes of variation for the combined shape and appearance multi-
segment model at �3 (top) and +3 (bottom) standard deviations about the mean
(middle).

the stacked shape and appearance features to remove correlated information. The

model was used to track the jaw and lips in all of the video frames. For analysis,

a multi-segment AAM was constructed such that the inner lip area is modelled

independently of the rest of the face, meaning that more information regarding the

teeth and tongue is described by the features.

The AAM features described in this chapter serve as a basis for the remainder of

the work described in this thesis.



Chapter 6

Dynamic Visemes for Speech

Animation

This chapter introduces a new dynamic unit of visual speech that overcomes some of

the issues associated with standard static visemes, which are determined by cluster-

ing phonemes. The proposed unit is derived from an analysis of real visual speech,

and it is not tied directly to the underlying phones. Rather, a series of canonical

speech gestures are determined that, after clustering, form sets of related gestures

that are referred to as dynamic visemes. These visemes each serve a particular visual

function as they represent a specific action on the lips.

This chapter first describes the process for identifying visual speech gestures

by segmenting the AAM parameters into short subsequences of movements. An

overview of clustering techniques, and the criteria for clustering the identified ges-

tures into groups of related movements is presented. The relationship between the

visual and audio units is then described, and finally, the e�cacy of dynamic visemes

for speech animation is evaluated.

77
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6.1 The Idea Behind Dynamic Visemes

The main drawback of traditional visemes is that the units are based on a visual rep-

resentation of audio units of speech. Because of this, they do not truly represent the

units of visual speech, which is why it is necessary to further post-process animated

speech with complicated coarticulation models. Dynamic visemes are di↵erent as

they are learnt from the visual information. They are determined by first segment-

ing visual speech into short subsequences of non-overlapping movements, referred to

as gestures, each of which describes a short, isolated lip motion. These gestures are

then clustered into groups of related gestures, which represent the dynamic visemes.

The idea is that the gestures that appear within a cluster have the same visual

function, and so replacing one of the gestures with another from within the viseme

cluster would not change the visual meaning of the utterance. However, replacing a

gesture with one from a di↵erent viseme cluster would a↵ect the perceived meaning

of the (visual) speech utterance.

The advantage of dynamic visemes is that they describe the finite set of speech

related movements of the visible articulators. This means that coarticulation is

embedded within the units, and the natural dynamics of the articulators is preserved.

Since all gestures that appear within a dynamic viseme class represent the same

speech movement, only one example of each cluster must be modelled on a character

to generate animation, as is done to produce traditional static viseme animation.

6.2 Identifying Visual Gestures

The most common approach for segmenting speech is via the acoustic modality,

based on the acoustic boundaries of the uttered phones [58, 111]. However, visual

gestures often overlap these boundaries as the articulators are required to be posi-

tioned prior to the onset of the sound and may remain at a position after the o↵set.

That is, acoustic and visual speech are asynchronous. Therefore, to identify visual

gestures, the speech is segmented on the visual information. This approach is sim-
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ilar to that taken by [9] in which they attempt to model non-speech related facial

movements in a video sequence by segmenting the motion into sub-trajectories cor-

responding to distinct actions. They did this by locating nodes that correspond to

the areas of high density in feature space, and segmenting on these. However, these

nodes marked the locations that were most frequently visited during facial motion,

and for speech, they would likely correspond to the points that are frequently hit

during the transition from one articulatory target to another. Instead, it is desirable

to locate the boundaries at points that are visually salient, such as the peak of a

mouth opening or a lip closure.

The AAM parameter trajectories are segmented into sequences of discrete, non-

overlapping visual gestures, where the ith gesture in a sequence, G
i

, is a sequence of

feature vectors that map a trajectory in AAM space representing a distinct move-

ment of the visible speech articulators. The boundaries between gestures are au-

tomatically defined as salient points along the trajectory, which are identified by

di↵erentiating the gradient magnitude in 20D AAM parameter space, |r
c

|, and

locating the zero-crossings from negative to positive:

d(|r
c

|)
dt

= 0, where
d2(|r

c

|)
dt2

> 0. (6.1)

The motivation for identifying gesture boundaries in this way is that during

speech the articulators do not move at a constant rate. Rather, they tend to accel-

erate away from articulatory targets and then decelerate as they approach the next

target. Segmenting in this way generates a visually intuitive and compelling segmen-

tation, marking boundaries where the articulators change direction, or where they

hit extreme poses, such as the lip closure during a bilabial. Figure 6.1 illustrates the

automatically derived visual boundaries alongside the asynchronous phone bound-

aries for the utterance “Would a blue feather in a man’s hat make him happy all

day?”.

The gestures defined in this way are not intrinsically tied to the underlying

phoneme string. Indeed the number of visual gestures in a sequence is highly unlikely
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Figure 6.1: The time-varying trajectory of an audio waveform, the first three AAM
parameters, and the derivative of the gradient magnitude for a sentence. The phonetic
segmentation is shown in green, and the automatically derived gesture boundaries
are shown in red. The video frames corresponding to the segment boundaries are
displayed below the graph.
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Figure 6.2: The distribution of the number of phones spanned by a visual speech
gesture.

to equal the number of phones, and each sentence in the KB-2k dataset contains, on

average, 35 phones and only 21 visual gestures. This is to be expected since not all

sounds require an action of the visible articulators. For example, if the position of

the lips has minimal influence on the articulation of a phone, then they are likely to

remain in the position of the previous phone or move in anticipation to an upcoming

phone — Figure 2.6 shows this. Therefore, there are generally fewer visual gestures

in a sentence than phonemes.

The distribution of the number of phones per gesture calculated from the entire

KB-2k dataset is presented in Figure 6.2. It shows that ⇡ 90% of the visual speech

gestures extend over two or more phones, and ⇡ 0.1% span six or more phones.

The frames from a six phoneme gesture can be seen in Figure 6.3 from which it

is clear that although six sounds are uttered, only one distinct movement of the

lips is apparent. It should be noted that using traditional animation methods,

such as keyframe interpolation, seven target poses would have appeared within this

sequence, which would clearly cause over-articulated animation.

The next task is to cluster the collection of variable-length, dynamic visual speech

gestures from the training video into visually similar groups of gestures. Rather than

referring to visemes as the visually contrastive phonemes as is traditionally done, a

viseme is instead defined as the dynamic gestures that have the same visual function.

The dynamic viseme groups represent meaningful contrasts between distinct visual
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- /j/ /u/ /k/ /U/ /n/ /A/

Figure 6.3: Video frames of a gesture that spans six phones and three frames of
silence.

speech movements, and the gestures within a group are the visual analogue to the

allophones of a phoneme.

6.3 Clustering Visual Gestures into Dynamic

Visemes

The entire speech corpus can be represented as a series of T gestures, where the ith

gesture, G
i

= {c
1

, c
2

, . . . , c
k

}, represents a time-varying sequence of AAM param-

eters of duration k frames, where k naturally varies from one gesture to the next

according to the segmentation described in the previous section. Dynamic viseme

units are then found by clustering the gestures into visually similar groups.

To do this, initially it is necessary to determine how the distance between each

pair of gestures is to be measured. It is not possible to simply calculate the frame-

wise distance as the gestures are of arbitrary length, so the methods considered in

this section include linearly resampling the gestures to the same length and then

computing the frame-wise distance, dynamic time warping from one gesture to an-

other, and mapping the gestures to hidden Markov model (HMM) super-feature

space and computing the distance between super-features. The gestures are then

clustered based on the distances identified by optimising some criteria, and the num-

ber of clusters is chosen by trading-o↵ the number of clusters with the quality of the

clusters.

Clustering is a domain dependent problem since the distribution of the data
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Figure 6.4: Methods for comparing variable length time series data.

and the intended purpose of the clustering a↵ects the perceived quality of the

groups [151]. There are a large number of clustering techniques available, so it

is important to select a distance function and clustering algorithm that is able to

generate perceptually relevant clusters in the context of visual speech.

6.3.1 Linear Resampling

The simplest method for comparing two variable length, multivariate gestures, G
i

=

{c
i,1

, c
i,2

, . . . , c
i,k

} and G
j

= {c
j,1

, c
j,2

, . . . , c
j,l

}, is to linearly resample the data to

a fixed length and then compute the sum of the point-wise distances. Figure 6.4(b)

illustrates this process for a univariate trajectory. The distance function can be, but

is not restricted to, the Euclidean distance and this will be discussed later in the

chapter.

The advantages of this approach are its simplicity and e�ciency. However, Fig-

ure 6.5 illustrates a limitation of this method, which is that the direction of move-

ment is not accounted for since the distance between two trajectories travelling in

opposite directions is equivalent to the distance between two trajectories which are

travelling in the same direction, where one is shifted along the y axis. However, in

terms of visual speech gestures, it is likely that the latter gestures are perceptually

more similar to one another.

A further downfall with linear resampling is that when two trajectories are similar
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Figure 6.5: A limitation of linearly resampling gestures to uniform length, and
calculating the point-wise distance. Figure (c) illustrates the cumulative distance
between the trajectories shown in Figure (a) and Figure (d) illustrates the cumulative
distance between the trajectories shown in Figure (b). They both produce the same
distance, however, perceptually the trajectories in Figure (a) are more similar than
those in (b).

in terms of shape, but are o↵set by a small amount in the temporal axis, the distance

between them is likely to be large, and not representative of the perceptual similarity.

This might arise because of variable speaking rate, so it is clear that a more flexible,

non-linear approach would be beneficial.

6.3.2 Dynamic Time Warping

Dynamic time warping (DTW) is a method for measuring the similarity between

two time series that may vary in length or speed. This is done by non-linearly

warping along the time axis to align one of the sequences to the other such that

the distance between them is minimised [82], as illustrated in Figure 6.4(c). The

distance is calculated between the aligned trajectories on a frame-wise basis.

To calculate the alignment between two gestures, G
i

= {c
i,1

, c
i,2

, . . . , c
i,k

} and

G
j

= {c
j,1

, c
j,2

, . . . , c
j,l

}, a k⇥l matrix is constructed, where element (u, v) contains
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the distance between the vectors c
i,u

and c
j,v

. A warping path, W = {w
1

,w
2

, . . . ,w
P

} 2

Z2, where max(k, l)  P  (k+ l�1), defines the mapping between the trajectories.

More specifically, the pth element of W defines the mapping from frame w
p,1

in G
i

to

frame w
p,2

in G
j

. The warping path is calculated by traversing the distance matrix

while satisfying the following conditions [82]:

• Boundary conditions: The warp path must begin at the first elements of both

time-series and end at the last elements, such that w
1

= (1, 1) and w
max(k,l)

=

(k, l).

• Continuity conditions: The warp path can only move to adjacent, or diagonally

adjacent cells in the matrix.

• Monotonicity conditions: The warp can only move forward or remain static in

time.

There are an exponential number of paths that satisfy the above criteria. How-

ever, the optimal warping path is the one that minimises the overall distance between

the aligned trajectories. To determine this path, a dynamic programming algorithm

is used to a evaluate a cumulative distance matrix �, where �
u,v

is the sum of

the distance between c
i,u

and c
j,v

, and the minimum of the previous cumulative

distances [82]:

�
u,v

= d(c
i,u

, c
j,v

) + min(�
u�1,v�1

, �
u�1,v

, �
u,v�1

). (6.2)

The overall DTW cost can be denoted:

DTW(G
i

,G
j

) =
�

k,l

P
, (6.3)

where P normalises for path length.

The warp between the trajectories in Figure 6.5(a) can be seen in Figure 6.6.

Note that the peaks and valleys of G
i

are in alignment with those of G
j

, enabling

a more intuitive comparison.
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Figure 6.6: The non-linear, dynamic time warp between two trajectories.

A problem with DTW is that the run-time and space complexity is O(kl). How-

ever, as the length of the visual speech gestures in the KB-2k database is on average

four frames, this remains a tractable solution.

6.3.3 HMM Super-features

An alternative way of measuring the distance between two gestures is using HMM

super-features (also called super-vectors) [23], as they provide a means for repre-

senting trajectories of arbitrary duration with a fixed length feature vector. HMM

super-features extend Gaussian mixture model (GMM) super-features, which are

currently state-of-the-art for audio [23, 131], and audio-visual [19, 155] speaker ver-

ification. However, GMM super-features are most useful in applications where only

the manner in which a person speaks or moves is important, and not the speech

content or meaning of the gesture. This is because GMMs ignore the order of the

data, and thus temporal information is lost. HMM super-features are better suited

to applications for which the order is also important as temporal ordering is pre-

served, and they have been used for applications such as text dependent speaker

verification [39].

To generate super-features, a universal background model (UBM) in the form of

a hidden Markov model (HMM) is first trained using the AAM parameterisation
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from all training gestures, G = {G
1

,G
2

, . . . ,G
T

}. A HMM can be defined by the

following parameters [129]:

• The number of states, N

• A state transition matrix, A = {a
ij

}N

ij=1

, where a
ij

= P (s
j

|s
i

)

• A vector of observation probabilities for each emitting state, B = {b
j

(G)}N

j=1

• A vector of initial state probabilities, ⇧ = {⇡
i

}N

i=1

The parameter set can therefore be compactly written:

� = (A,B,⇧). (6.4)

The output probability distributions, B, can be discrete or continuous depending

on the observations. As the AAM parameterisation is real-valued, the models used

in this work are continuous density HMMs (CD-HMMs), where each state, b
j

(G),

is represented as a multivariate Gaussian mixture model (GMM):

b
j

(G) =
MX

m=1

�
jm

N (G; µ
jm

, ⌃
jm

), (6.5)

where N (G; µ
jm

, ⌃
jm

) denotes a multivariate Gaussian with mean µ
jm

and covari-

ance ⌃
jm

, M is the number of mixture components and �
jm

is the weight of the mth

mixture component.

The UBM HMM is trained iteratively using the Expectation-Maximisation (EM)

algorithm [37] with the maximum-likelihood criterion, where the goal is to compute:

⇤⇤ = arg max
⇤

P (G|⇤), (6.6)

where

P (G|⇤) =
TY

t=1

P (G
t

|⇤). (6.7)
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Figure 6.7: A UBM trained using every speech gesture in the training data in
the form of a five state (three emitting state) left-to-right HMM where each state is
modelled with a multivariate GMM. The means of each mixture component are then
individually adapted for each speech gesture. The first GMM for each state of the
UBM is shown in blue and the adapted model is shown in red.

This generates a gesture-independent representation of the speech movements. For

each gesture, the UBM is then adapted using maximum a posteriori (MAP) estima-

tion [159], and the means of the mixture components are updated using:

µ̂
jm

=
N

jm

N
jm

+ ⌧
µ̄

jm

+
⌧

N
jm

+ ⌧
µ

jm

, (6.8)

where µ
jm

is the mean of the jth state and mth mixture component of the UBM,

µ̄
jm

is the mean of the adaptation data, ⌧ is the weight of a priori knowledge to

the adaptation data, N
jm

is the occupation likelihood of the adaptation data and

µ̂
jm

is the updated mean. An example of a 5 state HMM with 3 Gaussian mixture

components per state can be seen in Figure 6.7, where the blue curves illustrate the

means and variances of the mixture components for the first GMM of the UBM and

the red curve shows the means after adaptation.

The HMM super-features for gesture i, gs

i

, are the stacked vector di↵erence be-
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tween the UBM mean vectors and the MAP adapted mean vectors:

gs

i

=

0

BBBBBBBBB@

µ
1,1

µ
1,2

µ
1,3

...

µ
N,M

1

CCCCCCCCCA

�

0

BBBBBBBBB@

µ̂
1,1

µ̂
1,2

µ̂
1,3

...

µ̂
N,M

1

CCCCCCCCCA

(6.9)

The dimensionality of the super-features is N⇥M⇥D, where N is the number of

states, M is the number of Gaussian mixture components and D is the dimension of

the AAM parameterisation. The models described in this work are trained using the

AAM parameters appended with the velocity (�) and acceleration (��) coe�cients

making D = 20⇥ 3 = 60. The values N and M are defined in Section 6.3.5.

The UBM HMM is a left-to-right model with self-looping allowed, but no state

skipping as the parameters of visual speech change in a successive manner. The

HMMs are trained and adapted using the algorithms from the Hidden Markov Model

Toolkit (HTK) [159].

6.3.4 Selecting a Distance Function

There are many methods of calculating the proximity between sets of features, and

di↵erent measures can lead to very di↵erent solutions. For this work it is important

that the distance between visual speech gestures is indicative of the perceptual

similarities between the gestures. Those gestures that look very similar should have

a low distance and vice-versa. To determine the best distance function for the KB-2k

dataset, the e�cacy of a variety of measures was determined by comparing against

a set of subjective judgements.
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6.3.4.1 Subjective Distances

To gather perceptual judgements, four participants were asked to observe a series of

gestures and select the gestures that they perceived to be the same movement of the

speech articulators. Due to the large number of comparisons necessary for pair-wise

judgements across all of the gestures in the dataset, a subset of 260 were randomly

selected. Of the 260, 10 were selected as reference gestures, against which the

remaining 250 test gestures were compared. A graphical user interface displayed 5

of the 10 reference gestures along the top of the screen, and 1 of the 250 test gestures

below. The user was automatically prompted to select which of the 5 reference

gestures they deemed to match the test gesture in terms of visual meaning. An

option was o↵ered for no match and multiple matches were allowed. Once rated,

the participant could proceed to the next gesture, and the process was repeated until

all of the 250 gestures had been compared against each of the 10 reference gestures.

During this process, the gesture movies were presented to the participants with

no audio, and all movies on the screen were played simultaneously. Participants

were able to play the gestures as many times as necessary. Due to the large number

of comparisons, all four participants completed the task over multiple sessions, each

lasting on average 20–25 minutes.

The participants’ scores were collated and the number of times each test video was

marked as similar to each reference video was counted and normalised to the range

[0, 1]. Figure 6.8 shows a visualisation of the distribution of the similarity judgements

over all participants. For reference gesture G
i

, the normalised scores can be repre-

sented with the vector q
i

= {q
i,1

, q
i,2

, . . . , q
i,250

}, where q
i,j

2 {0, 0.25, 0.5, 0.75, 1}.

6.3.4.2 Comparing Objective and Perceptual Distances

The subjective judgements are used to measure the quality of the various objective

distance measures that can be used for clustering. For each of 12 distance metrics
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Figure 6.8: Visualising the similarity judgements across four participants on com-
paring ten reference gestures (rows) to 250 other randomly selected test gestures
(columns).

listed in Appendix B, the distance between the 10 reference gestures and 250 test

gestures is calculated. To account for the variability in gesture length, the three

methods described previously are used: (a) Linear resampling to the longest ges-

ture (LR), (b) Dynamic time warping (DTW), and (c) Mapping the gestures to

fixed-length HMM super-features (SF). In each case, the velocity and acceleration

coe�cients are appended to the AAM parameters.

A problem with directly comparing the objective and subjective results is that

they represent di↵erent types of data. The collated subjective scores are natu-

rally quantised, whereas the objective scores are real numbers corresponding to the

distance between pairs of gestures in feature space. To accommodate this, one ap-

proach is to map the distances to a smaller set of values with the same number of

quantisation levels as the subjective data. During this process it is also important

that the proportion of the gestures at each quantisation level for the subjective data

matches that for the quantised objective data. For example, if 10% of the scores

were equal to quantisation level one in the subjective data, the same proportion of

the objective data should be quantised to level one. Spearman’s rank correlation

could then be used to measure the correlation between the two vectors. However,

as the majority of the values are zero since each test gesture will typically look like
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only one reference gesture, this method returns a very high correlation coe�cient,

which is not reflective of the quality of the distance metric.

An alternative approach is based on information retrieval. First, for each refer-

ence gesture, G
i

, the subjective scores are converted to a binary vector, qb
i

, such

that

qb
i,j

=

8
><

>:

0 if q
i,j

< 0.75

1 if q
i,j

� 0.75
. (6.10)

This is based on a majority-vote scheme, whereby a test gesture is marked as equiv-

alent to a reference gesture if 3 or more of the 4 participants agree that the gestures

appear to portray the same visual meaning. Based on this assumption, each refer-

ence gesture has, on average, 9 test gestures that consist of the same action on the

lips. The index positions of the non-zero elements of qb
i

are stored in qbind

i

such

that

qbind

i

= {j : q
ij

= 1,8q
i,j

2 q
i

} (6.11)

For a reference gesture, Gr

i

, the distance to the test gestures, Gnr

1...250

, is rep-

resented with the vector, v
i

= d(Gr

i

,Gnr

1...250

) = {v
i,1

, v
i,2

, . . . , v
i,250

} which is then

sorted into ascending order, v0
i

= sort(v
i

). The index positions of the elements from

v
i

in the sorted list v0
i

are represented by vind

i

, such that

v0
i

= v
i

[vind

i

] (6.12)

A distance function that perfectly reflects the perceptual judgements would con-

tain the values of qbind

i

in the first elements of vind

i

. The similarity of the objective

and subjective scores can therefore be calculated by the precision, p, and recall (or

specificity), r:

p
i,t

=
|qbind

i

\ vind

i,1...t

|
t

(6.13)

and

r
i,t

=
|qbind

i

\ vind

i,1...t

|
|qbind

i

|
(6.14)
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where t is the rank in the sorted vector. Precision calculates the proportion of

gestures in rank t or above that are similar to gesture i . Recall is the proportion of

all gestures that are similar to gesture i that are in rank t or above. To express the

performance of the distance functions as a single number, the F-score (or F-measure)

statistic is used [66]. The F-score is the harmonic mean of the precision and recall

and can be calculated as follows:

f
i,t

= 2
p

i,t

r
i,t

p
i,t

+ r
i,t

(6.15)

The F-score is defined for all 250 points along the precision and recall vectors. A

standard approach is to report the maximum F-score, which is a value in the range

[0,1], where 1 corresponds to a ranked vector that unequivocally agrees with the per-

ceptual ranking. The maximum F-score is calculated for each distance function and

averaged over the reference gestures. The results are shown in Figure 6.9. The results

show that, although the benefit is not significant, measuring the Euclidean distance

in super-feature space provides a proximity function that most closely matches the

perceptual judgements.

6.3.5 Clustering Algorithms

Cluster analysis is used for discovering groups of observations in data, such that

the observations within a class are more similar than those across di↵erent classes.

For this work, the gestures with the same visual meaning are clustered to form a

reduced set of visual speech actions which are referred to as dynamic visemes. The

idea is that the gestures within a dynamic viseme group all appear to be producing

the speech movements with the same visual function.

There are a large number of established clustering algorithms, including parti-

tional, agglomerative and graph-based methods. The most well-known example of

a partitional clustering algorithm is k-means. k-means and other partitional algo-

rithms begin by modelling all observations as a single cluster. At each iteration



CHAPTER 6. DYNAMIC VISEMES FOR SPEECH ANIMATION 94

0.1 0.2 0.3 0.4 0.5 0.6

DTW−Cosine
LR−Chi Squared

LR−Canberra
DTW−Chi Squared

LR−Mahalanobis (N)
DTW−Mahalanobis (N)

DTW−Mahalanobis
DTW−W Manhattan

SF−Chi Squared
DTW−Mod SSE

SF−Canberra
DTW−W SSE

DTW−Canberra
LR−Mahalanobis

LR−W SSE
DTW−Manhattan

SF−Minkowski
SF−Mod SSE
LR−Mod SSE

DTW−Minkowski
SF−Manhattan

SF−Cosine
LR−W Manhattan

DTW−SSE
DTW−Euclidean

LR−SSE
LR−Euclidean

LR−Minkowski
LR−Cosine

LR−Manhattan
SF−SSE

SF−Euclidean

Maximum F−Score

Figure 6.9: The mean and standard error of the maximum F-score averaged over all
reference gestures for the di↵erent distance measures. The DTW prefix corresponds
to dynamic time warping, LR to linearly resampling and SF to super-features.
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the clusters are partitioned to maximise (or minimise) some clustering criterion.

Conversely, agglomerative methods begin by assigning each observation to its own

cluster, and then iteratively join clusters until convergence. For both of these meth-

ods, the cluster criteria often involve maximising the intra-class similarity and/ or

minimising the inter-class similarity, and the algorithm converges when either some

cluster quality threshold has been satisfied, or the number of clusters, k, specified

by the user, has been reached.

To perform graph-based clustering, each observation is represented as a node in

an undirected similarity graph. Edges connect each node to its n-nearest neigh-

bours. The graph is then partitioned to minimise some optimisation criteria, such

as minimising the intersected edges, or maximising the distances assigned to each

edge. This graph is recursively partitioned until the user-defined number of clusters

has been reached.

There is no generic clustering algorithm that performs best under all conditions.

That is, for various types of data and applications, di↵erent clustering algorithms

are more suited. Therefore, a variety of algorithms were used to cluster the previ-

ously identified visual speech gestures using the CLUstering TOolkit (CLUTO) [77].

CLUTO is stand-alone software which contains several implementations of parti-

tional, agglomerative and graph-based clustering algorithms.

The Euclidean distance between gestures in super-feature space is used as the

basis for the clustering. The UBM that is used for deriving the super-features is a

five state (three emitting state) HMM, with a single mixture component for each

state. This topology was chosen as it attained the maximum F-score in the previous

section. This is likely to be because there are only a small number of frames per

gesture. Those gestures that are shorter than three frames are omitted from analysis.

However, these account for less than 5% of the data.

After clustering using each algorithm, the movie frames corresponding to the clus-

tered gestures were visually inspected and it was established that the graph-based

clustering algorithm generates visually better clusters than the other methods. A



CHAPTER 6. DYNAMIC VISEMES FOR SPEECH ANIMATION 96

possible reason for this is that graph-based algorithms are naturally able to generate

non-spherical clusters, so can more accurately model data that does not conform to

a normal distribution.

The graph is formed by connecting each node (gesture) to its 40 nearest neigh-

bours and is partitioned using the multi-level, recursive bisections algorithm de-

scribed in [78]. First the graph is coarsened to a few hundred nodes, then the coarse

graph is bisected while maximising the edge weight, and finally, the bisection is

projected onto the original, finer graph, while refining the partition. This produces

a good quality clustering that is an order of a magnitude faster than traditional

recursive bisection algorithms. All of the sentences from the KB-2k dataset were

clustered with the exception of a random set of 50 sentences which were held out

for testing (see Section 7.3).

6.3.6 How Many Clusters?

The algorithm used for clustering requires that the number of clusters is given a

priori, and converges when that number of clusters is reached. There is an abundance

of methods to determine the number of clusters, k, that should be used to capture

the distribution of a set of data. Typically, they involve calculating a measure of

cluster quality for varying k, and plotting this value against k. This plot describes

the trade o↵ between the number of groups and the quality of the clusters, so where

a large change in the gradient of the curve occurs, the value of k is suggestive of the

number of clusters [44, 74]. Three common cluster quality measures are:

1. Dunn’s Index (DI) [61]

DI =
d

min

d
max

(6.16)

where, d
min

denotes the smallest distance between two gestures from di↵erent

clusters, and d
max

is the largest distance between two gestures from the same

cluster. A large value indicates good clusters, as the distance between gestures

from di↵erent clusters should be high, and the distance between gestures from
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within a cluster should be low.

2. Davies Bouldin Index (DBI) [61]

DBI =
1

k

kX

i=1

max
j=1...k,j 6=i

�
i

+ �
j

d(c
i

, c
j

)
(6.17)

where �
i

is the average distance of the gestures in cluster i to the cluster

centroid and d(c
i

, c
j

) is the distance between the cluster centroids for clusters

i and j. This measure calculates the maximum ratio between the cluster

compactness and separation, so a small DBI indicates good quality clusters.

3. Silhouette Width Criterion (SWC) [135]

SWC =
1

t

tX

i=1

b
i

� a
i

max(a
i

, b
i

)
(6.18)

where a
i

is the average distance between gesture i and all other gestures from

the same cluster, and b
i

is the lowest average distance between gestures i and

all gestures from a di↵erent cluster. The SWC is a value in the range [-1, 1],

where a value of 1 indicates good clusters, which occurs when a
i

is smaller

than b
i

.

To determine the number of clusters required, and hence the number of dynamic

viseme classes, the three cluster quality measures are computed for each of k =

{40, 45, 50, . . . , 600}. For each method, the score is plotted against the number of

clusters, and is shown in Figure 6.10. However, from these graphs it is unclear what

is the required number of clusters to model the data best. The maximum Dunn’s

Index value appears between k = 5 and k = 255, whereas the minimum Davies

Bouldin Index, and maximum Silhouette Width Criterion appears to be at k � 600.

In no case does a knee appear to suggest a good trade o↵ between the number of

clusters and the quality.

For a clearer measure of the cluster quality which is more suited to our applica-

tion, two goodness-of-fit measures are computed for each of k = {40, 45, 50, . . . , 600}.
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Figure 6.10: Three common cluster quality measures plotted for each of k =
{40, 45, 50, . . . , 600}.

These are as follows:

D
m

the mean distance of the super-features to their respective cluster median.

D
n

the mean distance of the super-features to the nearest sample that does not

belong to the same cluster.

Given that a cluster of gestures (a dynamic viseme class) should represent visually

similar units, D
m

is expected to be small if the data are clustered well as the gestures

should all be close to their respective cluster centroid in super-feature space. The

second measure, D
n

, is included to determine if there are either too many clusters,

as neighbouring clusters will contain very similar gestures resulting in a low error,

or too few clusters, as the resulting error will be high as the nearest samples not in

the same cluster are increasingly further away. These measures are each plotted in

Figure 6.11. To determine the number of clusters required, the knee of the curves

is located. In this case the knee is around 150, which is used to define the number

of units.

Example clusters are shown in Figures 6.12, 6.13 and 6.14. In each case, the

movie frames corresponding to a di↵erent gesture that appears within the cluster are

shown on each row. Figure 6.15 shows the trajectories of the first AAM parameter

corresponding to the median and the fifteen gestures that are closest to the median

for each of the dynamic visemes in Figures 6.12, 6.13 and 6.14.
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Figure 6.11: The mean squared di↵erence between the super-features and the respec-
tive cluster median for each gesture (Dm) and the nearest-neighbour from a di↵erent
cluster (Dn). The number of clusters is varied over k = {40, 45, 50, . . . , 600}. The
trade-o↵ value for k is around 150 clusters.

6.4 The Relationship Between Dynamic Visemes

and Phonemes

The dynamic visemes identified by clustering represent sets of visually similar ges-

tures. Therefore, if mapping phonemes to static visemes is valid, phonemes would

be assigned to the same visual clusters consistently. However, this is far from the

case. Instead, a particular phone or sequence of phones tends to appear in many

di↵erent dynamic viseme clusters because they can appear very di↵erent on the

lips. In Figures 6.12, 6.13 and 6.14 it is apparent that a cluster comprises of ges-

tures produced by various phone sequences. To further illustrate this, Figure 6.16

shows the thirty most frequent phone sequences that appear within eight of the clus-

ters. It is clear that, although some of the common groupings from the traditional

phoneme-to-viseme mappings (see Figures 3.4 and 3.5) do appear in the clusters,

the relationship is far more complex since, in these examples the phone sequence

/DU/ appears in both clusters 2 and 4, and the phone /s/ appears in isolation in

clusters 1, 2, 4, 22 and 24.

Indeed, all of the phones in the training data are distributed over a large number

of clusters. For example, Figure 6.17 shows that occurrences of the phonemes /S/,
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/tS/ /U/

/ D/ /3/

/3/ /z/

/s/ /2/ /m/

/z/ /m/

Figure 6.12: Video frames corresponding to five gestures from cluster one. Each
row represents a di↵erent gesture from the cluster.
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/b/ /oU/

/d/ /p/

/i, m/ /A/

/n/ /b/ /r/

/v, b/ /u/

Figure 6.13: Video frames corresponding to five gestures from cluster three. Each
row represents a di↵erent gesture from the cluster.
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/2/ /D/

/tS/ /D/

/D/ /E/

/f/ /U/

/s/ /d/ /I/

Figure 6.14: Video frames corresponding to five gestures from cluster four. Each
row represents a di↵erent gesture from the cluster.
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Figure 6.15: The trajectories of the first AAM parameter corresponding to the
median and the fifteen gestures that are closest to the median for each of the visemes
in Figures 6.12, 6.13 and 6.14.

and to a greater extent, /d/ are distributed widely over the 150 dynamic visemes

because their visual appearance varies in di↵erent phonetic contexts. It is likely that

/d/ is distributed over a wider range of clusters than /S/ because it is produced by

touching the tongue tip or blade against the alveolar ridge, granting freedom to the

position of the lips, whereas /S/ is typically produced with a degree of lip rounding.

/d/ is therefore more visually deformable, so is more influenced by coarticulation.

The amount of dispersion throughout the clusters for a particular phone can be

measured by calculating the Shannon entropy:

H(p) = �
kX

i=1

P (C
i

) log P (C
i

) (6.19)

where P (C
i

) is the probability that the phoneme label p appears in cluster i, and

P (C
i

) log P (C
i

) is defined as 0 if P (C
i

) = 0. P (C
i

) is calculated:

P (C
i

) =
N(p = C

i

)

N(p)
(6.20)

where N(p = C
i

) is the number of times the phoneme label appears in cluster i and

N(p) is the total number of appearances of the phoneme. The cluster entropy for

the phonemes in the KB-2k dataset is presented in Figure 6.18. Figure 6.18(a) shows

that the more rounded consonants, such as /Z/, /tS/ and /w/ are least distributed

throughout the clusters, closely followed by the unrounded, frontal consonants /b/,
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Figure 6.16: Histograms showing the twenty most frequent phoneme sequences
corresponding to the clustered gestures for four dynamic visemes. In these graphs, sil

refers to silence that occurs at the beginning or end of an utterance, and sp refers to
a short pause that happens mid-sentence.
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Figure 6.17: (a) The distribution of the phoneme /S/ throughout the viseme clusters.
(b) The cluster distribution for the phoneme /d/. These graphs show that a many-
to-one mapping from the phonemes to the visemes is not correct.

/p/, /m/ and /v/. The consonants that are most evenly distributed throughout the

clusters are the glottal phones such as /g/ and /k/, and the alveolars /l/, /t/, /d/

and /n/. Alveolars involve movement of the tongue tip or blade against the alveolar

ridge, which is a relatively frontal action. However, during this process, the position

of the lips has little e↵ect on the sound that is generated and so they are highly

influenced by visual coarticulation.

The cluster entropy of the vowels is presented in Figure 6.18(b), and shows sim-

ilarities with the consonants since rounded phones such as /aU/, /oU/ and /u/

generally have lower entropy than unrounded phones.

The findings in this section demonstrate the complex many-to-many mapping

between audio and visual speech. Thus, it is unsurprising that a particular phoneme

string can map to a variety of di↵erent sequences of dynamic visemes depending on

the context in which phonemes appear, which is not the case for static visemes. As

an example, instances of the word “another” from the KB-2k dataset are shown

in Table 6.1 with their dynamic viseme transcriptions which are determined by

segmenting and clustering as described in this chapter. The centre column shows
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Closeness Backness Roundness ARP IPA Example
Close Front Unrounded iy i feet

Back Rounded uw u boot
Near-close Near-front Unrounded ih I hit

Near-back Rounded uh U put
Open-mid Front Unrounded eh E better

Central Unrounded er 3 heard
Back Unrounded ah 2 cup

Rounded ao O poor
Near-open Front Unrounded ae æ bat

Back Unrounded aa A arm
Rounded oh 6 doll

Table 3.2: Closeness, backness and roundness of the monophthong vowels in the
English dialect with corresponding ARPAbet (ARP) and IPA symbols and example
words that contain the sound.

ARP IPA Example
ey eI day
ay aI bite
oy OI boy
ow oU boat
aw aU how

Table 3.3: Diphthongs of the English language with corresponding ARPAbet (ARP)
and IPA symbols and example words that contain the sound.

(b) Vowels and dipthongs

Figure 6.18: The entropy of the phoneme distribution throughout the dynamic
viseme clusters.

the viseme sequence and the left and right columns show the context in which the

word was spoken. Notice that the transcription of the word di↵ers both in the

number and in the composition of the dynamic visemes and that certain dynamic

visemes tend to appear more than others. For example, when the word is preceded

with silence, dynamic viseme 145 is often the first gesture that is produced, and in

several di↵erent contexts, viseme 80 appears mid-way through the word where it is

less likely to be a↵ected by the neighbouring speech.

6.5 Evaluation

To evaluate the structure of the AAM parameters when grouped by phoneme, static

viseme, and dynamic viseme classes, a set of ordered distance matrices were pro-

duced. Figure 6.19 presents a visualisation of the distance matrix produced by

finding the distance to each pair of phonemes, and Figure 6.20 shows the distances

between each pair of visemes as defined by Parke and Waters [121]. To produce this
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Visemes
Left context (/2-n-2-D-3/) Right context

After 70-80-124 long pause...
(Silence) 134-80-101 memo for...
... one or 83-80-149 of the...
(Silence) 134-117-35 field had...

... can have 28-80-104 tunafish sandwich
(Silence) 145-45-145-148 longer strip...
(Silence) 145-80-69 brand of...

... pick up 123-80-5 pack on ...
(Silence) 145-80-1-137 put sex...
(Silence) 145-45-67-132 snarled close...

... ideas surfeit 117-80-133 sector of...
... progress, 145-45-80-134 is delineating...
... not try 75-80-134 club
(Silence) 145-45-67-125 stock vaudeville...

Table 6.1: The centre column shows the viseme sequences for the word “another”
spoken in di↵erent contexts.

image, the AAM features were segmented via the acoustic phone boundaries. Labels

were then assigned to each segment based on the phoneme or the phoneme to viseme

mapping taken from [121]. In these images, the samples are ordered by phoneme

label, and viseme group and the class boundaries are outlined with a black box. For

instance, in Figure 6.21 all segments with phoneme labels /p/, /b/ and /m/ are

arranged sequentially in the distance matrix. The colours represent the Euclidean

distance between the mid-frame of the phonemes measured in AAM space, ranging

from blue to red representing, respectively, the smallest to largest values. A perfect

clustering would therefore produce a series of blue boxes down the leading diagonal

on a red background, as the distances within a cluster should be small, and across

other clusters should be large.

For comparison, Figure 6.21 shows the distance matrix produced by calculating

the Euclidean distance between the mid-frame of each pair of visual speech gestures

for the first 40 dynamic viseme clusters1, and ordering the samples by their cluster

1Only the first 40 clusters were displayed to make the visualisation clearer, and a comparison
between distance matrices easier. All 3 distance matrices were subsampled to contain ⇡1600 rows
and columns.
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Figure 6.19: Distance matrix showing the Euclidean distance between the combined
AAM parameters at the mid-frame of each phone, ordered by phoneme label. The
phoneme groups are highlighted with the black boxes along the leading diagonal.

ID. The cluster boundaries are highlighted with black boxes along the leading

diagonal. It is clear that the distance matrices that are based on the acoustically

segmented visual features appear to lack structure, since the distances between

grouped items appear to be no smaller than the distances between ungrouped items.

The distance matrix based on dynamic visemes shows far more structure, with

squares of blue forming on the leading diagonal. However, there often appears

to be overlap between clusters, which is likely to be because the distances were

calculated between the mid-frames of the gestures. These frames represent the

transition between two salient poses and are more likely to appear similar across

gestures than the entire motion would be.

To further evaluate the e�cacy of dynamic visemes for modelling visual speech,

a set of objective and subjective tests were performed.
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Figure 6.20: Distance matrix showing the Euclidean distance between the combined
AAM parameters at the mid-frame of each phone, grouped by the viseme labels as
determined by Parke and Waters [121]. The viseme groups are highlighted with the
black boxes along the leading diagonal.

6.5.1 Objective Evaluation

For a random set of 500 sentences taken from the clustered data, the AAM trajec-

tories were reanimated using dynamic viseme concatenation and, for comparison,

static viseme interpolation. To generate the dynamic viseme trajectories, each of

the gestures are simply replaced with the median of the cluster in which it belongs.

Where the gestures are of di↵erent durations, the median gestures are linearly re-

sampled. The median gesture rather than the mean is chosen as a representative

for each dynamic viseme cluster as it does not assume a Gaussian, or symmetric

distribution of the gestures within a cluster and is less sensitive to outliers. The

median gesture is also desirable as it represents a real trajectory from the training

data rather than an approximated one, as is represented by the mean.

The static viseme interpolation method is based on Parke and Waters’ eighteen

visemes [121] which are presented in Figure 3.1. This set was chosen as it contains

a relatively large number of viseme classes and a complete coverage of phonemes,
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Figure 6.21: Distance matrix showing the Euclidean distance between the combined
AAM parameters at the mid-frame of each visual gesture, ordered by the dynamic
viseme labels from clustering for the first forty dynamic visemes. The dynamic viseme
groups are highlighted with the black boxes along the leading diagonal.

Diphthong Approximation
/eI/ /æy/
/aI/ /2y/
/OI/ /Oy/
/oU/ /Uw/
/aU/ /æw/

Table 6.2: Approximating diphthongs with pairs of phonemes.

with the exception of diphthongs which are therefore approximated with pairs of

phonemes shown in Table 6.2. For each of the static viseme classes, a frame is

selected from the KB-2k video containing a pose which closely corresponds to that

described and illustrated in [121]. The selected frames are shown in Figure 6.22.

The synthesised trajectories are generated by placing a static pose at the mid-frame

of each phone segment and interpolating the intermediate frames with a cubic two-

dimensional Bezier curve in Autodesk Maya 2011. This simple interpolation method

was chosen as it allows direct comparison of static and dynamic viseme units, as the

synthesised trajectories contain minimal blending in both cases.
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/iy/ /f/ /v/ /b/ /m/ /p/ /dh/ /th/ /d/ /n/ /t/ /l/

/uw/ /uh/ /w/ /aa/ /ao/ /s/ /z/ /ae/

/ah/ /r/ /ih/ /y/ /ch/ /jh/ /sh/ /zh/ /eh/ /er/ /g/ /hh/ /k/ /ng/

Figure 6.22: The mouth region from the selected frames of the KB-2k dataset for
each of the 18 visemes as determined by Parke and Waters [121].

For the sentence “You may amaze yourself and acquire a real knack for it”, the

synthesised trajectories for the first five components of the AAM generated using

dynamic and static visemes are presented in Figure 6.23 with the corresponding

trajectories from the tracked video sequences. More examples are shown in Ap-

pendix C.1. It is clear that the trajectories generated using the dynamic viseme

concatenation method more closely follow the desired trajectories and that the static

pose interpolation method appears to be far more erratic as it is constrained to hit

each of the targets. To quantify the quality of the generated 20D AAM parameter

trajectories, they are compared to the corresponding trajectories measured from the

video sequence by calculating the root-mean-square error averaged over the frames

from 500 sentences. The mean and standard deviation for each case are shown in

Table 6.3. A t-test confirms that the trajectories formed using dynamic visemes are

significantly more similar to the tracked parameters than those generated using the

static pose interpolation method (p < 0.001). However, as the aim of using dynamic

visemes for speech animation is to improve the perceptual quality of the speech

by making the lip motion appear more natural, a more fitting way to measure the

performance of these approaches is by evaluating the visual quality of sequences of

speech.
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(b) Sentence 156, Parameter 2
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(c) Sentence 156, Parameter 3
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(d) Sentence 156, Parameter 4
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(e) Sentence 156, Parameter 5

Figure 6.23: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “You may amaze yourself and acquire a real
knack for it”. Shown are the ground-truth parameter values (blue), the concatenated
dynamic viseme cluster medians for the known viseme sequences (green) and the
interpolated static visemes (red).
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µ �
Dynamic visemes: 18.81 8.61

Static visemes: 22.60 8.50

Table 6.3: The mean (µ) and standard deviation (�) of the RMS error averaged over
the frames from 500 sentences for AAM parameters generated both by resynthesising
known dynamic viseme sequences and static pose interpolation based on Parke and
Waters’ eighteen visemes [121].

6.5.2 Subjective Evaluation

To further evaluate the e↵ectiveness of dynamic visemes for modelling visual speech,

50 random sentences from the clustered data are reanimated on a 3D deformer

model. Each of the 150 dynamic visemes are animated on the model, and the

speech animation is generated by concatenating the known viseme sequences with

blending at the join to ensure smooth transitions. For comparison the sentences are

also animated based on the phoneme-to-static key pose mapping taken from [121]

where keyframes are placed at the mid-point of each phone segment and a cubic two-

dimensional Bezier curve in Autodesk Maya 2011 is used to generate the intermediate

frames. Again, diphthongs are approximated by concatenating two corresponding

vowels as shown in Table 6.2. A description of the deformer model and boundary

smoothing, and some examples of both dynamic and static visemes animated on

the 3D model can be found in the following chapter. The movies are rendered at

a resolution of 1280⇥720 pixels. The odd animation frames for the sentence “Only

rarely is attention given to accurate progress reports and evaluation” generated using

dynamic visemes and static pose interpolation are shown in Figures 6.24 and 6.25

respectively. More examples are shown in Appendix C.2.

Thirty two participants took part in a pairwise preference test where, for each

sentence, they were shown two movies side-by-side — one for each condition: a)

dynamic viseme and b) static pose interpolation. They were played the left movie,

followed by the right movie and finally both movies synchronously. After each

sentence, viewers selected whether they preferred the left or the right movie. The

order of the sequences and the left-right position on screen for each treatment were
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/oU/ /n/ /l,i/ /r/ /E/ /3/

/l/ /i/ /I/ /z/ /U/ /t/ /E/

/n/ /S/ /U/ /n/ /g/ /I/ /v,U/ /n/ /t/

/E/ /æ/ /k/ /j/ /3,U/ /d/

/p/ /r,A/ /g/ /r,U/ /s/ /r,U/ /p/

/O/ /t,s/ /E/ /n/ /U,v/ /æ/

/l/ /j/ /u/ /eI/ /S/ /n/

Figure 6.24: The odd frames from an animated sequence generated using dynamic
visemes for the sentence “Only rarely is attention given to accurate progress reports
and evaluation”.
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/oU/ /n/ /l,i/ /r/ /E/ /3/

/l/ /i/ /I/ /z/ /U/ /t/ /E/

/n/ /S/ /U/ /n/ /g/ /I/ /v,U/ /n/ /t/

/E/ /æ/ /k/ /j/ /3,U/ /d/

/p/ /r,A/ /g/ /r,U/ /s/ /r,U/ /p/

/O/ /t,s/ /E/ /n/ /U,v/ /æ/

/l/ /j/ /u/ /eI/ /S/ /n/

Figure 6.25: The odd frames from an animated sequence generated using static pose
interpolation for the sentence “Only rarely is attention given to accurate progress
reports and evaluation”.



CHAPTER 6. DYNAMIC VISEMES FOR SPEECH ANIMATION 116

randomised for each participant.

The results of this experiment reveal that viewers prefer animation generated

using concatenated dynamic visemes to animation using a phoneme-to-static viseme

lookup, on average, 80% of the time. A two sided binomial test reveals that this is a

significant di↵erence (p < 0.01). This result shows that these units are an e↵ective

visual analogue of phonemes since a dynamic viseme is always the same example of

the unit from the training video, and these are simply concatenated.

6.6 Discussion

A visual speech utterance is described compactly by a trajectory in AAM space.

This trajectory is segmented based on the dynamics of the motion of the articulators

into a sequence of intuitive, non-overlapping, variable length, dynamic visual speech

gestures. All of the gestures from the large KB-2k dataset are then clustered to form

a smaller set of groups, which each represent a distinct visual speech action. It is

these short actions that should form the building blocks of visual speech, so rather

than referring to visemes as the visually contrastive phonemes, instead visemes are

redefined as the related gestures that are perceived to have the same function

visually. In this way visemes serve to represent meaningful contrasts between visual

speech utterances.

In this chapter the Euclidean distance, measured in super-feature space was found

to most reflect perceptual distances between gestures, and was therefore used as the

basis for clustering. A graph-based clustering algorithm grouped the gestures into

150 viseme clusters. Analysis of the clusters shows that there is a complex, many-to-

many relationship between phoneme sequences and dynamic visemes, as a phoneme

is likely to be distributed over many clusters, and a particular cluster contains many

phoneme sequences.

Both objective and subjective evaluation suggest that animation generated using

dynamic visemes when the true viseme sequence is known produces significantly
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more natural lip motion than using static viseme interpolation. Since dynamic

viseme animation was generated by simply concatenating the median gestures from

the respective clusters, it suggests that gestures within a viseme cluster portray

equivalent visual speech functions, and that the units are e↵ective for modelling

visual speech.



Chapter 7

Animating Speech with Dynamic

Visemes

In this chapter dynamic visemes are applied to the problem of animating new, unseen

visual speech sequences. The task is to transform a series of phoneme labels with

corresponding durations to a sequence of dynamic visemes that match the speech

sounds. Traditionally animation is done by first substituting the phonemes for their

respective visual phonemes, then attempting to generate sequences of mouth move-

ments using, say, concatenation [15, 100] or trajectory formation [13, 33, 45]. The

di�culty with using a dynamic viseme approach is that phonemes do not map di-

rectly to visual labels as they do in a traditional sense, and there are no visemic tran-

scriptions of the spoken words. Consequently a mapping is defined from phonemes

to dynamic visemes rather than a simple lookup.

This chapter first outlines the various forms of face model that can be animated

using dynamic visemes, including an image-based model, a traditional blend shape

model and a deformer model. The phoneme-to-dynamic viseme mapping, and the

way in which gestures are concatenated for animation is then described. The an-

imated sequences are evaluated using subjective and objective methods, and com-

pared with trajectories formed using traditional phoneme-to-(static) viseme anima-

tion. Finally, the speech of a second speaker is segmented and clustered into dy-

118
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namic visemes, which are mapped to the dynamic visemes from the KB-2k dataset.

Speaker two is then animated using the viseme sequences from the KB-2k dataset.

7.1 Facial Models for Animation

The AAM allows direct visualisation of animated sequences by reconstructing the

image from the parameterisation. Thus, AAM trajectories can be synthesised, and

image-based animation can be generated by blending the AAM modelled jaw region

onto a background image, for example, using Poisson blending [125] for composition.

The addition of non-speech animation, such as expression, is dependent on the

implementation of the model.

The AAM parameterisation also allows for animation of any face model that is

rigged with blendshapes designed to match the shape eigenvectors, p, of the AAM.

The shape parameters can then directly control the lip motion on the model, and

although appearance information is lost, this method allows for full 3D rendering

and lighting e↵ects. The main disadvantage of this approach is that, as it is a direct

mapping of the tracked actor, the visual speech movements and the proportions of

the face model are constrained to be somewhat similar to that of the actor’s.

The main advantage of dynamic visemes is that they can be used to animate

speech on any generic deformer-based model. Since the gestures that form a partic-

ular viseme cluster represent the same action on the lips, only one of those gestures

must be defined on a character for each cluster. As with traditional, static visemes,

dynamic visemes can be artistically modelled, so that di↵erent characters can pro-

duce the same action, but with a di↵erent style, and these only need to be defined

once for a given character for any speech utterance to be animated. This means that

they are convenient for use in industry, as they can directly replace static visemes

which are currently the standard approach to speech animation.

In this chapter speech animation is implemented by animating dynamic visemes

on a 3D model that has been artistically rigged using surface deformers in Autodesk
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Maya 2011. This represents an industry standard modelling and rigging approach.

All gestures belonging to a dynamic viseme serve the same visual function, so each

viseme is represented with the median visual gesture of those assigned during clus-

tering, which is then animated on the character. Figure 7.1 shows examples of four

dynamic visemes on the speaker, and the corresponding animations on the deformer

model. The face model and the dynamic viseme animations were generated by an

animator at Disney Research in Pittsburgh, USA.

7.2 Mapping Phonemes to Visemes

Given an input sequence of N phoneme labels, P = p
1

, p
2

, ..., p
N

, with corresponding

durations, an output sequence of M dynamic viseme labels, V = v
1

, v
2

, ..., v
M

, that

best corresponds to the desired speech movements is required. To find this mapping

the phoneme strings that are associated with the viseme clusters during training are

exploited. Specifically, each viseme, v
i

, has a number of variable length phoneme

strings associated with it, corresponding to the constituent gestures assigned during

clustering. Using these phoneme strings, an exhaustive search is performed to locate

all possible sequences of visemes that could have given rise to the input phoneme

sequence P .

As an example, if the target phrase is “word”, the instances of the phoneme

string, P = { /w/, /3/, /d/}, are first searched for in the dynamic viseme clusters.

Any clusters that contain this sequence are identified as candidate viseme sequences.

Next, the phoneme substrings {/w/, /3/} and {/d/} are searched for, and all com-

binations of dynamic visemes containing these sequences are added to the candidate

viseme sequences. Finally, the sequences {/w/} and {/3/, /d/} are searched for.

The boundaries between phonemes and dynamic visemes tend not to align, so to ac-

count for this, phonemes corresponding to the end of one gesture are also allowed to

appear at the beginning of the next gesture during the search. Figure 7.2 illustrates

all of the search paths for “word”, in which the black nodes represent dynamic viseme
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4

(a) Viseme 5

66

(b) Viseme 66

80

(c) Viseme 80

90

(d) Viseme 90

Figure 7.1: Four example dynamic visemes animated by an artist on a surface-
deformer model in Maya.
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/w/ /er/ /d/

/w-
er/

/d/
/d/

/er-d/

/w-er-d/
/d/

Start End

/er/

Monday, 28 May 2012

Figure 7.2: Possible paths for mapping the phoneme string /w-3-d/ to visemes
(black nodes).

classes, and Figure 7.3 shows a visualisation of a possible path through viseme space

for the sentence “Have a listen to this”. In this example, a possible dynamic viseme

encoding of the phoneme sequence is 33-103-117-98-133-100-40-77-98.

To select the best matching dynamic viseme sequence from a list of candidates,

each candidate is assigned a cost as follows:

c
i

= ↵(�Pr(V
i

|P )) + �(t(V
i

, P )) + �(d(V
i

)), (7.1)

where V
i

represents the ith candidate viseme sequence. The first term in Equation 7.1

represents the probability of viseme sequence, V
i

, given the phoneme string. This

is calculated by summing the bigram log probabilities for the viseme pairs and the

log probabilities of the respective phoneme substrings with respect to the viseme

cluster:

Pr(V |P ) =
|V |X

m=2

(log(Pr(v
m

|v
m�1

))) +
|V |X

m=1

(log(Pr(P
m

|v
m

))). (7.2)

The second term in Equation 7.1 represents the cost of temporally aligning the

dynamic visemes in V
i

to the target sequence P in terms of duration. This term is

calculated as the squared di↵erence between the number of frames in the segment of

the target sequence and the dynamic viseme, and biases the viseme selection towards

those that most closely match the speaking rate of the target sentence.

The final term in Equation 7.1 is a measure of discontinuity at the boundaries of

the concatenated dynamic visemes measured in AAM space. This is represented by
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“Have a listen to this”

/hh-ae-v-ae-l-ih-s-n-t-uh-dh-ih-s/

Viseme 33

Viseme 100

Viseme 40

Viseme 103 Viseme 117

Viseme 77

Viseme 133

Viseme 98

/hh-ae-v/

/ae/ /ae-l/

/ih-s/

/t-uh/

/n/

/uh-dh/ /ih/
/aa-v/

/eh-g-f/

/ae-g-th/

/eh-th/ /iy/
/hh/

/ih-t-s/

/ah-d-s/

/t-k-ae/

/t-n-eh/

/z-ae/

/hh/ /ah-d/

/d-ah-l/

/ah-n-g/

/d-uh-n/

Phonemes

33-103-117-98-133-100-40-77-98Visemes

Figure 7.3: Mapping variable length phoneme substrings for the sentence “Have a
listen to this” to dynamic visemes.

the Euclidean distance between gesture boundary frames, and biases the selection

towards sequences of visemes that generate the smoothest trajectory.

The weights ↵, � and � are determined subjectively by visually inspecting the

animation generated with di↵erent values, and are set to 0.699, 0.3 and 0.001 re-

spectively. The weights vary because the cost terms are measured in di↵erent units

that have di↵ering ranges. The cost function is far more sensitive to a change in �

than the others as the third cost term is measured in AAM space so typically has

larger values. These parameters can be adjusted to vary properties of the output

animation, but for all results in this work, these are the values used. On comple-

tion of the search algorithm the lowest cost viseme sequence is used to generate the

output speech animation by concatenating the corresponding dynamic visemes.

7.2.1 Dynamic Viseme Concatenation

To animate the deformer model, the dynamic visemes in the sequence with the low-

est cost are simply concatenated with blending at the boundary frames to create

a smooth join. To blend two gestures, the segment start and end frames are re-

placed with a half-frame, mid-value point. The values for the segment start and

end frames are computed using Maya’s cubic two-dimensional Bezier curve fitting

function to interpolate through the half frame without disrupting other values along
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Figure 7.4: To stitch together dynamic visemes, the segment start and end values
(black curve, red points) are replaced with a half-frame, mid-value point (green).
Default Maya curve interpolation computes new values (blue curve, red points) for
the segment start and end values without disrupting other elements along the curve.

the curve. Figure 7.4 shows the e↵ect of the boundary smoothing. Note that only

the boundaries are a↵ected by the join, so the viseme dynamics remain the same.

7.2.2 Viseme Alignment

Dynamic visemes are independent of phonemes, so the boundaries tend not to align.

However, the viseme boundaries can be approximated from the known phone bound-

aries using:

ve

i

=

8
><

>:

pe

j

, if ve

i

does not intersect p
j

pe

j�1

+ pe

j

2
, otherwise

(7.3)

where ve

i

represents the end frame of viseme i, and pe

j

represents the end frame of

phoneme p
j

. A viseme is assumed to intersect a phoneme if the phoneme label is

split over two consecutive visemes, otherwise the boundaries are assumed to align.

This exploits the phenomenon that humans do not perceive an o↵set of 80ms (⇡ 3

video frames) when the audio leads and 140 ms (⇡ 5 video frames) when the audio

lags in speech [140]. As the average gesture length is 110ms, the majority of cases

fall within these tolerances.
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7.3 Evaluation

In the previous chapter, the e�cacy of dynamic visemes for animation was evaluated

when the ground-truth viseme sequence was known, as the sentences used were

included in the clustering process. In this section, the full animation pipeline is

evaluated both objectively and subjectively on a set of 50 sentences that were held

out of clustering, so the viseme sequences are unknown and must be generated for

the phonemes using the methods described in Section 7.2. This test is designed to

measure the quality of the phoneme-to-dynamic viseme lookup and the cost function

as well as testing the units.

7.3.1 Objective Evaluation

To quantitively evaluate the quality of the animated sequences, the AAM trajectories

are synthesised for the 50 previously held-out test sentences using the phoneme-to-

dynamic viseme lookup and viseme alignment described previously. For comparison,

the sentences were also generated using the static viseme interpolation approach

described in Section 6.5.1. A more advanced coarticulation function was not imple-

mented as, typically, they are defined manually or are data dependent, so it would be

unclear how to apply them to a computer-generated model. More importantly, the

simple interpolation function allows for a direct comparison of the units, as minimal

blending is applied in either case.

Figure 7.5 shows the first five AAM parameters of the tracked features, the syn-

thesised trajectories formed by stitching together dynamic viseme sequences and

trajectories generated using static pose interpolation. From these graphs it is ap-

parent that the parameters generated using dynamic visemes more closely follow

the desired trajectory than the static pose interpolated parameters, as the latter

appear amplified and often asynchronous to the desired trajectory. More examples

are shown in Appendix D.1.

The quality of the synthesised trajectories is measured by calculating the RMS
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µ �
Dynamic visemes: 16.22 ±7.29

Static visemes: 21.87 ±7.11

Table 7.1: The mean (µ) and standard deviation (�) of the RMS error averaged
over the frames from 50 sentences and over all 20 AAM parameters generated both
by phoneme-to-dynamic viseme mapping and static pose interpolation based on Parke
and Waters’ eighteen visemes [121].

error averaged over all of the frames in the 50 sentences that contain speech. The

results are listed in Table 7.1 and show that synthesised trajectories generated using

dynamic visemes more closely follow the desired trajectories than those formed using

static pose interpolation. A t-test reveals that the benefit is significant (p < 0.001).

7.3.2 Subjective Evaluation

The 50 sentences were animated on the 3D deformer model using the methods de-

scribed in this chapter. Again, for comparison, Parke and Waters’ static visemes [121]

were also modelled on the character, and the animated sentences were generated by

placing the corresponding visemes at the mid-frame of each phone segment and in-

terpolating between them using a cubic two-dimensional Bezier curve in Autodesk

Maya 2011. The eighteen static visemes on the deformer model are shown in Fig-

ure 7.6. The animation frames for the sentence “At least the wheels dug in” gener-

ated using dynamic visemes and static pose interpolation are shown in Figures 7.7

and 7.8 respectively. More examples are shown in Appendix D.2.

Thirty two participants took part in an experiment which compared animated

sequences formed using dynamic and static visemes in the form of a pairwise pref-

erence test which followed the same procedure as that described in Section 6.5.2.

Viewers again prefer (p < 0.07) animation generated using concatenated dynamic

visemes to animation using a phoneme-to-static viseme lookup, this time on average,

62% of the time.

When compared to the viewer preference for the dynamic viseme animations

when the viseme sequence is known (80%), it is clear that the dynamic viseme
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(b) Sentence 1725, Parameter 2
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(c) Sentence 1725, Parameter 3
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(d) Sentence 1725, Parameter 4
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(e) Sentence 1725, Parameter 5

Figure 7.5: The temporal trajectories for the first five combined modes of varia-
tion of a multi-segment AAM for the sentence “It’s fun to roast marshmallows on
a gas burner”. Shown are the ground-truth parameter values (blue), the concate-
nated dynamic viseme cluster medians for the synthesised sequences (green) and the
interpolated static visemes (red).
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/iy/ /f/ /v/ /b/ /m/ /p/ /dh/ /th/ /d/ /n/ /t/ /l/

/uw/ /uh/ /w/ /aa/ /ao/ /s/ /z/ /ae/

/ah/ /r/ /ih/ /y/ /ch/ /jh/ /sh/ /zh/ /eh/ /er/ /g/ /hh/ /k/ /ng/

Figure 7.6: The mouth region of the deformer model for each of the 18 visemes as
determined by Parke and Waters [121].

lookup process introduces substantial error in the unit selection, and could benefit

from further development. Feedback suggests that even a single error in the selection

of the animation units can severely impact the perceived quality, so it is important

that this is done correctly. However, the results suggest vast potential for use in

animation, and further support the suitability of dynamic visemes as the units of

visual speech.

7.4 Generalizing Visemes Across Speakers

So far, dynamic visemes have only been considered for a single speaker. However,

people speak very di↵erently to one another, so it is possible that di↵erent speakers

have a di↵erent set of dynamic visemes, and that some of the visemes identified

using the KB-2k dataset are speaker dependent.

To investigate how well the units generalise across speakers, the speech of a

second, female speaker is segmented and clustered into dynamic visemes. This

speaker is from the FSpace dataset, recorded at Disney Research, Pittsburgh. The

video is recorded at the same frame rate and resolution as the KB-2k dataset, but

contains just 200 utterances in contrast to ⇡2500. The speech was phonetically

annotated, and tracked using AAMs as described in Section 5.2.3. A selection of the
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/æ/ /d/ /l/

/i/ /s/

/t/ /D/

/2/ /w/ /i/ /2/

/l/ /z/ /d/ /2/

/g/ /I/

/n/

Figure 7.7: Frames from an animated sequence generated using dynamic visemes
for the sentence “At least the wheels dug in”.
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/æ/ /d/ /l/

/i/ /s/

/t/ /D/

/2/ /w/ /i/ /2/

/l/ /z/ /d/ /2/

/g/ /I/

/n/

Figure 7.8: Frames from an animated sequence generated using static pose interpo-
lation for the sentence “At least the wheels dug in”.
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Figure 7.9: A selection of training images used to build the AAM for a second
speaker that have been manually annotated with 34 landmarks demarcating the lips
and jaw.

!"#$%& !"#$%' !"#$%(!"#$%)

�'�

!$*+

,'�

Figure 7.10: Modes of variation for the combined shape and appearance multi-
segment model for speaker two at �3 (top) and +3 (bottom) standard deviations
about the mean (middle).

65 training images that were manually landmarked to train the AAM are presented

in Figure 7.9.

The tracked speech is then parameterised using a multi-segment AAM as with

KB-2k, where independent appearance models are built for the inner mouth region

and the remaining jaw area. For this speaker, 8 shape, 27 jaw appearance and 7

inner mouth appearance parameters describe 95% of the variation. The shape and

appearance features for each of the segments are stacked, normalised and PCA is

applied to generate a set of 24 features describing the variation in both shape and

appearance (see Section 5.3.1). The first four modes of variation of the combined

multi-segment model are shown in Figure 7.10.
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Figure 7.11: The mean squared di↵erence between the super-features and the
respective cluster median for each gesture (Dm) and the nearest-neighbour from
a di↵erent cluster (Dn) for speaker 2. The number of clusters is varied over
k = {40, 45, 50, . . . , 600}. The trade-o↵ value for k is around 150 clusters.

The AAM parameters of the second speaker are automatically segmented into

gestures using the methods described in Chapter 6. The gestures are then mapped

to speaker dependent super-features, which are clustered. The number of clusters, k,

is determined in the same way as speaker one, by calculating the following measures

for k = {40, 45, 50, . . . , 600}:

D
m

the mean distance of the super-features to their respective cluster median.

D
n

the mean distance of the super-features to the nearest sample that does not

belong to the same cluster.

Figure 7.11 shows the measures as a function of k. Again, to determine the number

of clusters required, the knee of the curve is located. There is no clear knee in the

curve shown in Figure 7.11(a). However, in Figure 7.11(b) it falls at around 150,

which is the same number of dynamic viseme classes determined for Speaker 1.

Comparing the two speaker’s viseme clusters is di�cult because the AAM param-

eterisation is speaker specific as the components encode di↵erent modes of variation.

Therefore the viseme clusters for both speakers are manually corresponded by vi-

sual inspection of the cluster median gestures, which defines a mapping between the

viseme spaces for the two speakers. A good correspondence is found between the
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speech spaces for these talkers. For example, see Figure 7.12 which shows example

median gestures from corresponded dynamic visemes for both speakers.

Given the correspondence between talkers, the speech motion from speaker one

can be used to drive the speech motion of speaker two. This is done by first using the

phoneme to viseme lookup method to estimate the desired viseme sequence from a

sequence of input phonemes for speaker one. These visemes are then mapped via the

correspondence to speaker two, and the cluster medians are extracted, concatenated

and used to drive the face model for the new speaker. Figure 7.13 shows frames

taken from the sentence “Draw each graph on a new axis”. The real video of speaker

one (top) is shown alongside the AAM rendered version of speaker two (bottom).

The jaw AAM has been blended onto a neutral, static background using Poisson

blending [125].

When viewed with the audio for speaker one, the synthesised sequence appears

to be accurately articulating the speech. This means that, given the comprehensive

training data for speaker one, a viseme sequence can be generated for an unseen

sentence and the speech motions can be transferred directly to a new speaker without

the need for recording a full training corpus. All that is required are su�cient

examples to estimate the visemes such that the correspondence can be defined.

The results shown here are from a preliminary study whereby the correspon-

dence is defined manually. Further work is necessary to automatically learn the

correspondence between viseme clusters for two (or more) speakers.

7.5 Discussion

In this chapter, dynamic visemes were applied to the problem of animating new

speech given some phonetically annotated and segmented audio. As the relation-

ship between phone sequences and dynamic visemes is many-to-many and com-

plex, generating viseme sequences for new speech involves a search procedure, as

is typical for most other concatenative synthesis approaches. An exhaustive search
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Figure 7.12: Frames from the median gesture of corresponding viseme clusters for
two speakers.
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through viseme space is performed to determine candidate viseme sequences, and

the sequence with the lowest cost is selected. The cost is calculated based on the

smoothness of the resulting trajectory, the likelihood of the viseme sequences, and

the di↵erence between the speaking rate of the viseme sequence and target sentence.

To generate animation, the median gestures of the dynamic viseme clusters are mod-

elled on a 3D character, and are simply stitched together in the order specified by

the best viseme path with simple blending at the boundary frames.

A subjective and objective evaluation shows that speech animation using dynamic

visemes appears significantly more natural and plausible than using static viseme

interpolation, although some error in the unit selection is introduced during the

viseme lookup process. These results suggest that speech animation generated using

dynamic visemes would require less artistic adaptation from the animator. However,

the viseme lookup process could benefit from further development.

Finally, visemes from one speaker were manually corresponded with those from a

di↵erent speaker with an order of magnitude less training data. A good correspon-

dence was determined, and preliminary results suggest that it is possible to animate

a new speaker by calculating the viseme sequence using the original speaker’s clus-

ters and concatenating the mapped sequence on the new speaker. However, further

research is necessary to automate the viseme correspondence, and formally evaluate

the viability of the approach.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis a new, dynamic unit for visual speech has been presented. Tradi-

tionally, static visemes are defined as the groups of visually confusable phonemes,

whereas dynamic visemes describe a set of visually contrastive speech movements.

Dynamic visemes are derived from an analysis of visual speech rather than by clus-

tering based on phoneme labels, so they represent a true visual analogue to the

phonemes of acoustic speech.

Dynamic visemes are identified by segmenting a large corpus of video speech

data into sequences of short, non-overlapping movements, which are referred to as

visual speech gestures. An audio-visual speech dataset is compactly modelled using

an active appearance model and the gesture segment boundaries are defined as the

points in parameter space where the acceleration changes from negative to positive.

These gestures are clustered to generate a set of 150 reliable and visually intuitive

dynamic visemes, where the speech gestures that appear within a viseme cluster all

have the same visual function. These units explicitly model coarticulation, maintain

the dynamics of the training data, and can be concatenated with simple blending

at the joins to animate speech.

137
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Dynamic visemes can and often do span more than one phoneme, and they have

a complex many-to-many relationship with phoneme sequences. To generate an-

imation for new speech, any phoneme sequence can be mapped to a sequence of

dynamic visemes by exhaustively searching the graph of viseme transitions to find

candidate sequences that match the phoneme string. The best viseme sequence is

then selected by minimising a cost which is calculated based on the smoothness of

the resulting trajectory, the likelihood of the viseme sequences, and the di↵erence

between the speaking rate of the viseme sequence and target sentence.

An advantage of using dynamic visemes for speech animation is that they are

applicable to any form of facial model or rigging, unlike other concatenative meth-

ods which are sample-based and specific to the model on which they are trained.

For example, the parameterisation allows direct viewing of the model used for anal-

ysis using an image-based renderer or a 3D blendshape model which is rigged with

equivalent parameterisation. Alternatively, dynamic visemes are able to drive a

completely artistically defined 3D surface deformer model. To do this, an artist

must define short animation clips that represent an example gesture of each of the

dynamic visemes. These are short clips of mouth movements, typically four or five

frames, that only need be defined once for each character.

Using a deformer model, a synthesiser that stitches together dynamic visemes

using simple spline curve interpolation at the unit boundaries was demonstrated.

This method was compared to a traditional static pose interpolation approach by

calculating the RMS error between the synthesised and tracked trajectories in AAM

space. The error for dynamic visemes was lower than the error for the more tra-

ditional approach. Additionally, in a subjective experiment, participants preferred

animation generated using dynamic visemes over static pose interpolation. This

indicates that dynamic visemes create more natural and plausible animation, and

therefore function as a better foundation for animators than more traditional meth-

ods.

Preliminary work on corresponding one speaker’s dynamic visemes to another
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speaker was presented. Based on a mapping defined by manually corresponding dy-

namic viseme classes across two speakers, speech animation was successfully trans-

ferred from one speaker to another simply by replaying the mapped visemes. A

good correspondence was found between the two speakers’ dynamic visemes, indi-

cating that the units are at least partially speaker independent. However, further

investigation is necessary to automate the correspondence so that the viseme classes

across a larger number of speakers can be compared.

8.2 Future Work

This is the first time that dynamic visemes have been presented, and there are a

number of further developments that could potentially improve and augment their

use for speech animation. For example, although preliminary work on speaker in-

dependent dynamic visemes was presented in Section 7.4, it remains unclear which

of the dynamic visemes are generic across speakers and whether there are any that

are specific to the speaker in the KB-2k dataset. It would be necessary to capture

speech from a large number of speakers to determine either a speaker independent

parameterisation, or a function to automatically map from one speaker’s AAM space

to another’s so that the similarity between di↵erent speakers’ gestures can be cal-

culated numerically. A speaker independent clustering can then be performed, and

dynamic viseme classes that are speaker specific can be ignored, or used sparingly

for animation.

This section outlines further considerations that could refine dynamic visemes for

speech animation.

8.2.1 3D Dynamic Visemes

Ijsseldijk [70] measured the speech-reading accuracy of a person speaking when the

face was presented at di↵erent angles. He discovered that speech-reading accuracy

was higher when participants were presented with speech at a frontal view followed
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by a repetition at a 60 degree angle, rather than two repetitions at a frontal view.

This suggests that the profile view of a person speaking contains complimentary

information to the frontal view. Therefore, dynamic visemes might be enhanced

by learning from 3D speech data. Additionally, 3D visemes could provide a better

reference for modelling dynamic visemes on a 3D computer generated character, as

depth information would be available to the animator.

8.2.2 Prosody

Intonation and lexical stress are overlooked in this work. However, stressed phones

are typically louder, have a higher pitch and last longer than unstressed phones

and are produced with larger facial deformations [149]. Additionally, it has been

shown that stressed phones account for more of the coarticulation e↵ects in speech

than unstressed phones [4], so it is important to consider the e↵ect of stress to

generate realistic speech animation. Dynamic visemes might benefit from training

on a dataset containing labels specifying the stressed syllables, as the relationship

between stress and the visual gestures could be modelled. To animate new speech,

the phoneme sequence must also be annotated with stress labels, but the animation

pipeline would remain the same.

8.2.3 Expression

Expression is an important component of visual speech as it helps to convey the

emotion of a speaker. Currently, when using dynamic visemes for speech anima-

tion, expression must be added as a post process by an animator. It is unlikely

that emotional speech is simply a linear combination of neutral speech and facial

expression. Rather, the expression changes the dynamics of the visible articulators

in a complex way. It is therefore desirable to model expression within the viseme

units. One way of accomplishing this is by re-learning dynamic visemes on a dataset

of emotional speech. A potential problem is that if many more dynamic visemes
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classes are determined this way, dynamic visemes may be less attractive for pro-

ducing short animations, as the time necessary for modelling the visemes on each

character would have increased. However, for feature length animated movies, or

video games where a large amount of speech is required, emotional dynamic visemes

would remain a viable solution for realistic facial animation.

An alternative approach is to learn whether the underlying sequence of existing

dynamic visemes can be altered to generate emotional speech. This way, the number

of dynamic viseme classes remains the same, as only the order in which they are

concatenated for animation di↵ers as a function of expression.

8.2.4 Speaking Rate

In a preliminary study, the e↵ect of speaking rate on speech production was mea-

sured on a dataset containing an actor speaking 10 sentences from the TIMIT

sentence list [117] at 3 speeds (slow, normal and fast), each repeated 10 times

(10 ⇥ 3 ⇥ 10 = 300 utterances). The prompts were presented in a randomised

order in which the sentences and speaking rates were varied. The speaking rates of

the uttered sentences are generally in accordance with the speeds that the actor was

asked to speak (see Figure 8.1).

The speech was phonetically labelled, and the e↵ect of speaking rate on acoustic

speech is measured by calculating the Levenshtein distance [93] between the phone

sequences that were uttered during repetitions of the same sentences, spoken at

di↵erent speeds. The phonetic transcription for each sentence was aligned with

all other repetitions of that sentence using forced alignment in HTK [159]. The

similarity between the aligned sentences is calculated using the accuracy measure

used widely in speech recognition:

similarity =
N �D � S � I

N
⇥ 100, (8.1)

where N is the total number of labels in the reference sentences, D is the number
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Figure 8.1: The mean phone duration in seconds for each repetition of the 10
sentences in the KB-extra dataset. The colours represent the speed that the actor
was asked to speak, where red represents fast, green represents normal and blue
represents fast speech.
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S
p
ok

en

Slow Normal Fast
Slow 89.2 87.5 84.8

Normal 86.8 90.7 88.9
Fast 83.3 88.5 88.6

Table 8.1: The phonemic similarity of speech sequences spoken at di↵erent rates
(slow, medium and fast).

of deleted phones, S is the number of substituted phones, and I is the number of

inserted phones. The similarity is averaged over the 10 repetitions for each of the

3 speaking rates, and the results are shown in Table 8.1. The results indicate that

even when speaking the same sentence at the same speaking rate, the phones uttered

are not entirely identical. The lowest similarity is measured between sentences that

are spoken at a fast rate and those that are spoken slowly. A selection of aligned

phoneme sequences for the sentence “Almonds and pistachio nuts are not so high in

oil, but are rich in protein” is shown in Table 8.2.

To measure the e↵ect of speaking rate on visual speech, the movement of the

jaw and lips was parameterised using an AAM, as described in Sections 5.2.3. The

speech was automatically segmented into gestures based on the zero crossings in

acceleration (see Section 6.2), and the gestures were clustered into 150 dynamic

viseme classes, providing a dynamic viseme transcription of the sentences. As with

the phoneme labels, for each sentence the viseme labels were aligned with all other

repetitions of the sentence using forced alignment, and the similarity was measured

using Equation 8.1. The results are shown in Table 8.3. Note the negative value

comparing slow and fast speech, which suggests that a large number of speech units

present in slow speech are missing from fast speech, and that speech that is spoken

at a faster rate is not simply equivalent to slow speech that has been sped up. This

is confirmed in Table 8.2 (bottom), which shows a selection of viseme sequences

for a sentence, which have been aligned for visualisation. In all cases, the viseme

sequences for sentences uttered at a particular speaking rate are more similar to

others spoken at the same speed than those that are spoken at di↵erent speeds, and

the faster the sentence is produced, the fewer visemes are used. Furthermore, the
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S
p
ok

en

Slow Normal Fast
Slow 53.9 45.5 27.4

Normal 32.3 57.5 39.8
Fast -11.9 23.7 57.6

Table 8.3: The visemic similarity of speech sequences spoken at di↵erent rates (slow,
medium and fast). Note the negative value comparing slow and fast speech, which
suggests that a large number of speech units present in slow speech are missing from
fast speech.

results indicate that visual speech is far more influenced by the e↵ect of variable

speaking rate than acoustic speech as the di↵erence in similarity is larger and the

number of units in a sequence is more variable.

Although speaking rate is accounted for in the cost function (Equation 7.1), the

KB-2k dataset only contains speech uttered at a normal speaking rate, so animation

generated for fast or slow speech may be suboptimal. It is therefore likely that re-

learning the dynamic visemes on a dataset that includes variable speed speech will

enhance the phoneme-to-dynamic viseme lookup and produce more natural speech

animation.

8.2.5 Model Independence

In this work, dynamic visemes are shown to be e↵ective for animating speech on a 3D

surface deformer model. However, by their nature, dynamic visemes are applicable

to a variety of facial models. For example, a second 3D model is shown in the

middle row of Figure 8.2 which is also implemented in Autodesk Maya 2011 but uses

linear blendshape rigging where the blendshapes were designed to match the shape

eigenvectors, p, of the AAM. However, since p were calculated from 2D images,

di�culties arose when mapping to 3D blendshapes, and artefacts are apparent during

lip rounding. Furthermore, since only the shape information is used to drive the

articulators, information regarding the visibility of the teeth and tongue is lost.

The bottom row of Figure 8.2 shows an image-based renderer where the jaw image

is reconstructed from the AAM parameterisation and blended onto a static back-
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ground image using Poisson blending [125] for composition. Artefacts are common

using this renderer as the boundary between the neck and lower jaw often blurs.

The static background is also distracting since it appears unnatural.

In both cases, the dynamics of the articulators appears natural and realistic.

However, further work is necessary to improve the quality of the renderers, and to

formally evaluate their performance.

8.2.6 Implementation Issues

Currently, no e↵ort has been made to optimise the e�ciency of the phoneme-to-

dynamic viseme lookup, and the search has an exponential time complexity, taking

approximately 4 minutes per sentence. This is still significantly less time than it

would take to manually animate the equivalent sequences. However, this duration

could be significantly reduced by organising the phonemes in such a way to generate

a tree structure, which is far quicker to search. Alternatively, an algorithm such as

Viterbi [50] could be used, rather than performing an exhaustive search.

The quality of animation is highly dependent on the phonetic segmentation of

both the training data and the sentence to be animated, as the phoneme to viseme

lookup exploits the phoneme labels and durations in the cost function. Currently,

phonetic annotation is performed manually, so is prone to misalignment and natural

variation. The system may be improved by automating this process using an acoustic

speech recogniser.



Appendix A

Principal Components Analysis

Principal components analysis (PCA) is a mathematical procedure which can be

used for dimensionality reduction, and for learning the structure of data in terms

of variation. It transforms a set of n possibly correlated variables to a typically

smaller set of orthogonal, un-correlated variables, such that the largest variation of

the data is captured in the first axis, the second highest is captured in the second

axis, and so on. These new axes are known as the principal components of the

data. Data reduction is performed by projecting the original coordinates onto the

basis formed from PCA, and ignoring higher modes that account for only a small

amount variability in the data. The principal components for a set of trivariate data

is illustrated is Figure A.1.

There are various methods for calculating the principal components of a set of

data. In the work described in this thesis, the eigenvalue decomposition approach

is used [157]. The data is represented as a matrix, X, of dimension m⇥n, where m

is the number of observations and n is the number of variables. The mean of each

column is subtracted such that the observations are zero centred, and the covariance

matrix is calculated:

C =
1

n� 1
XTX (A.1)

An eigenvector, ui and eigenvalue, �
i

, of the matrix, C satisfies the following
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Figure A.1: Principal components analysis of trivariate data with a normal distribu-
tion, centred at zero. The eigenvector that explains the most variation, the principal
component, is shown in blue, the second principal component is shown in red and the
third in green. For data compression, the original coordinates are projected onto the
orthogonal basis defined by the eigenvectors, and higher modes are ignored.

linear equation:

Cu
i

= �
i

u
i

(A.2)

An eigenvector of the matrix C has the quality that only the length, and not

the direction changes when multiplying by C. The extent of the change in length is

represented by the eigenvalue. The eigenvectors can be represented as a matrix U,

such that each column of U represents an eigenvector of C:

U = (u
1

,u
2

, . . . ,u
n

), (A.3)

and the eigenvectors are stored in the diagonal elements of the matrix, ⇤:

⇤ =

0

BBBBBB@

�
1

0 0 . . .

0 �
2

0 . . .
. . .

0 0 0 �
n

1

CCCCCCA
(A.4)
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Equation A.2 can be now rewritten in matrix form:

CU = ⇤U (A.5)

which, when rearranged, becomes1:

C = U⇤U�1 = U⇤UT (A.6)

The eigenvectors and eigenvalues are then rearranged in order of decreasing eigen-

value. Since the eigenvalues explain the variance in each of the eigenvectors, this

step orders U such that the first column represents the principal mode of variation

of the data, the second column represents the second principal mode of variation,

and so on. Dimensionality reduction is performed by projecting X on to the reduced

set of basis vectors, P, formed from the first k eigenvectors, where 1 < k < n.

b
i

= (x
i

� x̄)P (A.7)

The number of modes in the projection matrix, k, is chosen so that the required

percentage of variance in the original data is preserved. The higher principal compo-

nents typically model small variations in the data that can be interpreted as noise,

and are not important for analysis.

1In this case U⇤U�1 and U⇤UT are equivalent as covariance matrices are always symmetric
and positive definite.
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Distance Functions

There is a large number of ways to measure the distance between two vectors,

x = {x
1

, x
2

, . . . , x
n

} and y = {y
1

, y
2

, . . . , y
n

}. The following were implemented for

comparison:

1. Euclidean distance

d(x,y) =

vuut
nX

i=1

(x
i

� y
i

)2 (B.1)

2. Sum of squared error (SSE)

d(x,y) =
nX

i=1

(x
i

� y
i

)2 (B.2)

3. Minkowski distance

d(x,y) = (
nX

i=1

|x
i

� y
i

|p)
1
p (B.3)

where p > 0

4. Manhattan distance

d(x,y) =
nX

i=1

|x
i

� y
i

| (B.4)
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5. Cosine distance

d(x,y) = �
P

n

i=1

x
i

y
ipP

n

i=1

x2

i

pP
n

i=1

y2

i

(B.5)

6. Chi squared distance

d(x,y) =
nX

i=1

(x
i

� y
i

)2

x
i

+ y
i

(B.6)

7. Canberra distance

d(x,y) =
nX

i=1

|x
i

� y
i

|
|x

i

|+ |y
i

| (B.7)

8. Mahalanobis distance

d(x,y) = �
nX

i=1

z
i

x
i

y
i

(B.8)

where z
i

=
p

1/�
i

and �
i

is the eigenvalue for the ith principle component.

This is also true for equations (B.9), (B.10) and (B.11)

9. Normalised mahalanobis distance

d(x,y) = � 1pP
n

i=1

x2

i

pP
n

i=1

y2

i

nX

i=1

z
i

x
i

y
i

(B.9)

10. Weighted manhattan distance

d(x,y) =
nX

i=1

z
i

|x
i

� y
i

| (B.10)

11. Weighted SSE

d(x,y) =
nX

i=1

z
i

(x
i

� y
i

)2 (B.11)

12. Modified SSE

d(x,y) =

P
n

i=1

(x
i

� y
i

)2

P
n

i=1

x2

i

P
n

i=1

y2

i

(B.12)



Appendix C

Animation Output for Training

Sentences

C.1 Trajectories

This section contains a selection of synthesised AAM trajectories generated by con-

catenating known dynamic viseme sequences with blending at the boundary frames

as described in Section 6.5.1. For comparison, the true AAM parameters and the

trajectories formed from a traditional phoneme-to-static viseme mapping are pre-

sented.
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 5, Parameter 1
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(c) Sentence 5, Parameter 3
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(d) Sentence 5, Parameter 4
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(e) Sentence 5, Parameter 5

Figure C.1: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “Almonds and pistachio nuts are not so high
in oil, but are rich in protein”. Shown are the ground-truth parameter values (blue),
the concatenated dynamic viseme cluster medians for the known viseme sequences
(green) and the interpolated static visemes (red).
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Tracked parameters Dynamic visemes Static visemes
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(d) Sentence 59, Parameter 4
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(e) Sentence 59, Parameter 5

Figure C.2: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “Urethane foam as an insulator is also
coming in for a good deal of attention”.
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 133, Parameter 1
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(c) Sentence 133, Parameter 3
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(d) Sentence 133, Parameter 4
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(e) Sentence 133, Parameter 5

Figure C.3: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “It is one of the rare public ventures here
on which nearly everyone is agreed”.
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 142, Parameter 1

p uhd aa nuh z ow l b r aw n k ao d er oy k ow t ae n ih wuh z aa l r eh d iy s ow k
−200

−100

0

100

200

A
A

M
 P

ar
am

et
er

 2
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(c) Sentence 142, Parameter 3

p uhd aa nuh z ow l b r aw n k ao d er oy k ow t ae n ih wuh z aa l r eh d iy s ow k
−50

0

50

100

150

A
A

M
 P

ar
am

et
er

 4

(d) Sentence 142, Parameter 4
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(e) Sentence 142, Parameter 5

Figure C.4: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “Put on his old brown corduroy coat and
it was already soaked”.
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C.2 Animation Frames

This section contains frames from animated sentences which have been generated

using either known dynamic viseme concatenation or static pose interpolation as

described in Section 6.5.1. All of the sentences in this section are from the training

data.
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/D/ /U/ /s/ /t/ /æ/ /f/ /d/

/U,s/ /3/ /v/ /z/ /U/ /l/ /A/ /d/

/2/ /v/ /k/ /r/ /E,d/ /I/ /t/ /w/

/3/ /k/ /N/ /d/ /aU/ /n/

/h/ /i/ /3/ /2/ /n,d/ /3/

/r/ /i/ /U/ /l/ /A/ /b/ /s/ /t/

/U/ /k/ /U/ /l/ /z/

Figure C.5: The odd frames from an animated sequence generated using dynamic
visemes for the sentence “The sta↵ deserves a lot of credit working down here under
real obstacles”.
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/D/ /U/ /s/ /t/ /æ/ /f/ /d/

/U,s/ /3/ /v/ /z/ /U/ /l/ /A/ /d/

/2/ /v/ /k/ /r/ /E,d/ /I/ /t/ /w/

/3/ /k/ /N/ /d/ /aU/ /n/

/h/ /i/ /3/ /2/ /n,d/ /3/

/r/ /i/ /U/ /l/ /A/ /b/ /s/ /t/

/U/ /k/ /U/ /l/ /z/

Figure C.6: The odd frames from an animated sequence generated using static pose
interpolation for the sentence “The sta↵ deserves a lot of credit working down here
under real obstacles”.
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/d/ /oU/ /n/

/p/ /l/ /æ/ /n/ /m/

/i/ /U/ /l/ /z/

/D/ /U/ /d/ /3/ /t/

/u/ /k/ /A/

/m/ /p/ /l/ /I/ /k/

/eI/ /t/ /I/ /d/

Figure C.7: The frames from an animated sequence generated using dynamic
visemes for the sentence “Don’t plan meals that are too complicated”.
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/d/ /oU/ /n/

/p/ /l/ /æ/ /n/ /m/

/i/ /U/ /l/ /z/

/D/ /U/ /d/ /3/ /t/

/u/ /k/ /A/

/m/ /p/ /l/ /I/ /k/

/eI/ /t/ /I/ /d/

Figure C.8: The frames from an animated sequence generated using static pose
interpolation for the sentence “Don’t plan meals that are too complicated”.
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/2/ /k/ /A/ /d/ /b/ /O/

/d/ /p/ /æ/ /d/ /3/ /n/ /k/

/2/ /t/ /2/ /f/ /I,t/ /I/ /n/ /s/

/aI/ /d/ /h/ /oU/ /l,d/ /3/

/w,U/ /l/ /h/ /2/ /l/ /p/ /t,u/ /p/

/3/ /v/ /E/ /n/ /t/ /w/ /O/ /p/

/I/ /ng/

Figure C.9: The odd frames from an animated sequence generated using dynamic
visemes for the sentence “A cardboard pattern cut to fit inside holder will help to
prevent warping”.
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/2/ /k/ /A/ /d/ /b/ /O/

/d/ /p/ /æ/ /d/ /3/ /n/ /k/

/2/ /t/ /2/ /f/ /I,t/ /I/ /n/ /s/

/aI/ /d/ /h/ /oU/ /l,d/ /3/

/w,U/ /l/ /h/ /2/ /l/ /p/ /t,u/ /p/

/3/ /v/ /E/ /n/ /t/ /w/ /O/ /p/

/I/ /ng/

Figure C.10: The odd frames from an animated sequence generated using static
pose interpolation for the sentence “A cardboard pattern cut to fit inside holder will
help to prevent warping”.
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/D,U/ /f/ /i/ /3/

/2/ /v/ /p/

/2/ /n/ /I/ /S/

/m/ /E/ /n/ /t/

/dZ/ /2/ /s/

/d/ /I/ /d/ /n/

/b/ /A/ /D/ /3/

/I/ /m/

Figure C.11: The frames from an animated sequence generated using dynamic
visemes for the sentence “The fear of punishment just didn’t bother him”.
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/D,U/ /f/ /i/ /3/

/2/ /v/ /p/

/2/ /n/ /I/ /S/

/m/ /E/ /n/ /t/

/dZ/ /2/ /s/

/d/ /I/ /d/ /n/

/b/ /A/ /D/ /3/

/I/ /m/

Figure C.12: The frames from an animated sequence generated using static pose
interpolation for the sentence “The fear of punishment just didn’t bother him”.



Appendix D

Animation Output for Test

Sentences

D.1 Trajectories

This section contains a selection of synthesised AAM trajectories for previously

unseen sentences using the phoneme-to-dynamic viseme lookup described in Sec-

tion 7.2. The generated viseme sequences are concatenated with blending at the

boundary frames. For comparison, the true AAM parameters and the trajectories

formed from a traditional phoneme-to-static viseme mapping are presented.
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Tracked parameters Dynamic visemes Static visemes
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(b) Sentence 594, Parameter 2
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(c) Sentence 594, Parameter 3
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(d) Sentence 594, Parameter 4

w eh r w er y uw w ay l w iy w er ah w
−50

0

50

100

A
A

M
 P

ar
am

et
er

 5

(e) Sentence 594, Parameter 5

Figure D.1: The temporal trajectories for the first five combined modes of vari-
ation of a multi-segment AAM for the sentence “Where were you while we were
away?”. Shown are the ground-truth parameter values (blue), the concatenated dy-
namic viseme cluster medians for the synthesised sequences (green) and the interpo-
lated static visemes (red).
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 881, Parameter 1
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(b) Sentence 881, Parameter 2
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(c) Sentence 881, Parameter 3
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(d) Sentence 881, Parameter 4
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(e) Sentence 881, Parameter 5

Figure D.2: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “Geocentricism per se?”.
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 945, Parameter 1
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(c) Sentence 945, Parameter 3
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(d) Sentence 945, Parameter 4
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(e) Sentence 945, Parameter 5

Figure D.3: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “But why pay her bills?”.
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Tracked parameters Dynamic visemes Static visemes
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(a) Sentence 974, Parameter 1
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(b) Sentence 974, Parameter 2
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(c) Sentence 974, Parameter 3
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(d) Sentence 974, Parameter 4
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(e) Sentence 974, Parameter 5

Figure D.4: The temporal trajectories for the first five combined modes of variation
of a multi-segment AAM for the sentence “Something pulled my leg”.
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D.2 Animation Frames

This section contains animation frames for a selection of test sentences which were

held out of clustering. This animations have been generated by either concentating

the sequence of dynamic visemes which was determined by the phoneme to dynamic

viseme mapping described in Section 7.2 or by interpolating between static poses.



APPENDIX D. ANIMATION OUTPUT FOR TEST SENTENCES 173

/w/ /2/ /d/ /2/ /b/ /s/ /E/

/S/ /I/ /n/ /z/ /h/ /æ/ /S/ /i/

/p/ /I/ /t/ /2/ /p/ /d/ /3/

/I/ /N/ /D/ /i/ /z/ /l/

/aU/ /N/ /n/ /aI/ /t/ /s/

/2/ /t/ /A/ /l/

/k/

Figure D.5: The odd frames from an animated sequence generated using dynamic
visemes for the sentence “What obsessions had she picked up during these long nights
of talk?”.
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/w/ /2/ /d/ /2/ /b/ /s/ /E/

/S/ /I/ /n/ /z/ /h/ /æ/ /S/ /i/

/p/ /I/ /t/ /2/ /p/ /d/ /3/

/I/ /N/ /D/ /i/ /z/ /l/

/aU/ /N/ /n/ /aI/ /t/ /s/

/2/ /t/ /A/ /l/

/k/

Figure D.6: The odd frames from an animated sequence generated using static pose
interpolation for the sentence “What obsessions had she picked up during these long
nights of talk?”.
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/I, d/ /æ/ /2/ /t/ /eI/

/n/ /i/ /2/ /n/ /v/ /2/ /l/

/oU/ /p/ /t/ /aI/ /t/ /u/

/w,I/ /t/ /s/ /r/ /I/ /s/

/t/

Figure D.7: The odd frames from an animated sequence generated using dynamic
visemes for the sentence “It had a tiny envelope tied to its wrist”.
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/I, d/ /æ/ /2/ /t/ /eI/

/n/ /i/ /2/ /n/ /v/ /2/ /l/

/oU/ /p/ /t/ /aI/ /t/ /u/

/w,I/ /t/ /s/ /r/ /I/ /s/

/t/

Figure D.8: The odd frames from an animated sequence generated using static pose
interpolation for the sentence “It had a tiny envelope tied to its wrist”.
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/n/ /oU/ /2/

/D/ /3/ /v/ /I/ /z/

/I/ /d/ /3/ /I/

/n/ /k/ /w/ /aI/

/3/ /d/ /f/ /3/

/h/ /3/ /D/

/æ/ /t/ /i/ /v/

/n/ /I/ /N/

Figure D.9: The frames from an animated sequence generated using dynamic
visemes for the sentence “No other visitor enquired for her that evening”.
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/n/ /aU/ /2/

/D/ /3/ /v/ /I/ /z/

/I/ /d/ /3/ /I/

/n/ /k/ /w/ /aI/

/3/ /d/ /f/ /3/

/h/ /3/ /D/

/æ/ /t/ /i/ /v/

/n/ /I/ /N/

Figure D.10: The frames from an animated sequence generated using static pose
interpolation for the sentence “No other visitor enquired for her that evening”.
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/r/ /I/ /z/ /I/

/s/ /t/ /2/ /n/

/s/

/T/ /3/ /m/ /A/

/m/ /2/ /d/ /3/

/s/

Figure D.11: The frames from an animated sequence generated using dynamic
visemes for the sentence “Resistance thermometers”.



APPENDIX D. ANIMATION OUTPUT FOR TEST SENTENCES 180

/r/ /I/ /z/ /I/

/s/ /t/ /2/ /n/

/s/

/th/ /3/ /m/ /A/

/m/ /2/ /d/ /3/

/s/

Figure D.12: The frames from an animated sequence generated using static pose
interpolation for the sentence “Resistance thermometers”.



Appendix E

List of Abbreviations

Abbreviation Meaning
AAM Active Appearance Model
ASM Active Shape Model
C Consonant
CCA Canonical Correlation Analysis
CLUTO Clustering Toolkit [77]
DCT Discrete Cosine Transformation
DTW Dynamic Time Warp
EMA Electro-Magnetic Articulograph
GMM Gaussian Mixture Model
HD High Definition
HMM Hidden Markov Model
HTK Hidden Markov Model Toolkit [159]
IPA International Phonetic Alphabet
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
PDF Probability Density Function
PDM Point Distribution Model
RMS Root Mean Squared
ROI Region of Interest
SNR Signal to Noise Ratio
UBM Universal Background Model
V Vowel

181
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[95] A. Löfqvist. Speech as audible gestures. Speech production and speech mod-
elling, pages 289–322, 1990.

[96] P. Lucey. Lipreading across Multiple Views. PhD thesis, Queensland Univer-
sity of Technology, Brisbane, Queensland, 2007.

[97] P. J. Lucey, S. Sridharan, and D. B. Dean. Continuous pose-invariant lipread-
ing. In Proceedings of Interspeech, pages 2679–2682, 2008.

[98] J. Luettin. Visual Speech and Speaker Recognition. PhD thesis, University of
She�eld, She�eld, United Kingdom, 1997.

[99] J. Luettin and N. A. Thacker. Speechreading using probabilistic models. Com-
puter Vision and Image Understanding, 65(2):163–178, 1997.

[100] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise. Accurate automatic visible
speech synthesis of arbitrary 3D models based on concatenation of diviseme
motion capture data. Journal of Computer Animation and Virtual Worlds,
15(5):485–500, December 2004.

[101] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise. Accurate visible speech
synthesis based on concatenating variable length motion capture data. IEEE
Transactions on Visualization and Computer Graphics, 12(2):266–276, March
2006.

[102] H. Magen. The extent of vowel-to-vowel coarticulation in english. Journal of
Phonetics, 25(2):187–205, 1997.

[103] S. Y. Manuel. The role of contrast in limiting vowel-to-vowel coarticulation
in di↵erent languages. Journal of the Acoustical Society of America (JASA),
pages 1–20, 1990.

[104] D. Massaro. Perceiving talking faces: From speech perception to a behavioral
principle. The MIT Press, 1998.



BIBLIOGRAPHY 190

[105] D. Massaro and J. Light. Improving the vocabulary of children with hearing
loss. The Volta Review, 104(3):141–174, 2004.

[106] I. Matthews and S. Baker. Active appearance models revisited. International
Journal of Computer Vision (IJCV), 60(2):135–164, 2004.

[107] I. Matthews, T. Cootes, A. Bangham, S. Cox, and R. Harvey. Extraction of
visual features for lipreading. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 24(2):198–213, february 2002.

[108] W. Mattheyses, L. Latacz, and W. Verhelst. Automatic viseme clustering for
audiovisual speech synthesis. In Proceedings of Interspeech, pages 2173–2176,
2011.

[109] S. L. Mattys, L. E. Bernstein, and E. T. Auer. Stimulus-based lexical dis-
tinctiveness as a general word-recognition mechanism. Perception and Psy-
chophysics, 64(4):667–679, 2002.

[110] H. McGurk and J. MacDonald. Hearing lips and seeing voices. Nature,
264:746–748, Dec. 1976.
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