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Abstract 

Diatoms are unicellular photosynthetic eukaryotes with a silicate cell wall. They 

often dominate polar marine ecosystems, driving the major biogeochemical cycles in 

these areas. The obligate psychrophilic diatom Fragilariopsis cylindrus is a keystone 

species in the Southern Ocean. It thrives both in open waters and sea ice and has 

become a model for studying eukaryotic microalgal adaptations to polar marine 

conditions. The aim of this thesis was to identify how the genome of F. cylindrus has 

evolved to cope with marine environmental conditions of the Southern Ocean. To 

identify key genes, comparative genomics, high-throughput transcriptome sequencing 

and reverse genetics were applied. Comparative genomics with the sequenced 

mesophilic diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana was 

combined with genome-wide RNA-Seq transcriptome analysis, leading to the discovery 

a new bacteria-like rhodopsin not present in other sequenced diatoms. The 

characterisation of a bacteria-like rhodopsin in F. cylindrus was conducted by applying 

reverse genetics tools.  

The genome was characterised by a low G+C content, which affected codon 

usage. High sequence polymorphism resulted in pronounced unequal expression of 

putative heterozygous allelic gene copies in response to six different conditions. RNA-

Seq detected transcriptional activity for 95% of the 27,137 predicted genes and > 4 fold 

expression changes between 55% of putative alleles. The most significant 

transcriptional changes were detected during prolonged darkness affecting 70% of genes 

and 30% of RNA-Seq reads mapped to unannotated regions of the genome. Two 

rhodopsin alleles showed unequal bi-allelic expression in response to iron starvation and 

heterologous expression in Xenopus laevis oocytes experimentally confirmed light-

driven proton pumping for the iron-induced rhodopsin allele, suggesting significance for 

the adaptation of F. cylindrus to environmental conditions of the Southern Ocean.  

These data show how the polar environment can shape the genome of a 

eukaryotic phytoplankton in unprecedented detail. High numbers of species-specific 

genes resulting in expansion of gene and protein families, low G+C likely enabling 

efficient translation at low temperatures and a high degree of heterozygosity combined 

with unequal bi-allelic expression, may provide an adaptive strategy to polar conditions 

by conferring metabolic flexibility and capacity to adapt to a rapidly changing 

environment.  
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This statement certifies that the work presented in this thesis was conceived, 

conducted, written and disseminated by Jan Strauss. I was responsible for the planning, 

execution and analysis of the experimental work presented and I have written the six 

chapters contained in this thesis. As my primary supervisor, Dr. Thomas Mock was 

involved in all aspects of this work including conceptualisation and critical reviews of 

earlier draft versions of this thesis. Additional contributions are explained below.  

In chapter 2, I have summarised the material and methods, which have been 

used to generate and analyse the data presented in this work. This includes not only 

materials and methods used by myself, but also materials and methods used by project 

collaborators. In the following, the individual contributions of collaborators are 

explained in more detail for each of the three result chapters.  

Chapter 3 is based on data, which was generated within the framework of the 

Fragilariopsis cylindrus CCMP 1102 genome sequencing project, an international 

collaborative effort initiated and led by Dr. Thomas Mock, who also extracted the DNA 

and RNA for sequencing. F. cylindrus genome and EST sequences were generated at the 

US Department of Energy Joint Genome Institute (JGI). The F. cylindrus sequence 

assembly was built by Jeremy Schmutz and an 8-fold draft assembly and annotation was 

made publicly available in October 2009. Igor V. Grigoriev and Robert P. Ottilar 

provided the nuclear genome sequence annotation for the draft assembly from the JGI 

Genome Annotation Pipeline and were responsible for implementing genomic data into 

the JGI Genome Portal. The F. cylindrus genome portal provided access to all JGI 

genomic databases and analytical tools and allowed to analyse these data in different 

contexts over the web. Custom analyses were performed by the whole F. cylindrus 
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cylindrus were annotated and analysed by James Raymond and Christiane Uhlig. A 

phylogenetic analysis of anti-freeze proteins contributed by C. Uhlig was also analysed 

in this work.  

In Chapter 4, I planned the experiments together with Thomas Mock. I was 

responsible for the execution and analysis of the experimental work. I performed growth 

experiments with F. cylindrus and extracted RNA for RNA-Sequencing. RNA-Seq 

libraries were constructed at The Gene Pool (Ashworth Laboratories, University of 

Edinburgh) under supervision of Dr. Karim Gharbi and RNA-Seq reads were mapped to 

the F. cylindrus genome by Gaganjot Kaur (The Gene Pool, University of Edinburgh). I 

interpreted the data with technical support from Andrew Toseland (PhD student at 

School of Computational Sciences, University of East Anglia, Norwich), who assisted 

in building and maintaining the bioinformatics pipeline for transcriptome analysis. 

Additionally, I developed and performed relative RT-qPCR assays from extracted RNA 

including allele-specific RT-qPCR assays to confirm RNA-Seq data.  

The idea for Chapter 5 was developed by me and Thomas Mock. I conducted 

growth experiments with F. cylindrus, extracted RNA and performed cDNA synthesis. 

Computational in silico analyses of the Fragilariopsis rhodopsin were performed by me 

and I cloned a full-length cDNA sequence from a Fragilariopsis rhodopsin allele. I also 

initiated collaboration with the laboratory of Prof. Dr. Georg Nagel (University of 

Würzburg, Germany), who contributed to the functional characterisation of the 

Fragilariopsis rhodopsin. The heterologous expression of polar microbial rhodopsins 

from F. cylindrus and the dinoflagellate Polarella glacialis in various expression 

systems was performed by me with contributions from Sabrina Förster and Shiqiang 

Gao (both PhD students in the Nagel Lab). Shiqiang Gao cloned a full-length cDNA 

sequence of a second Fragilariopsis rhodopsin allele and Sabrina Förster cloned a full-

length cDNA sequence of a Polarella rhodopsin. I subcloned both Fragilariopsis 

rhodopsin gene copies and made different sequence constructs for genetic 

transformation in Phaeodactylum tricornutum. While I performed transformation and 

heterologous expression of different Fragilariopsis rhodopsin sequence constructs in P. 

tricornutum, the heterologous expression of rhodopsins from F. cylindrus and P. 

glacialis in Xenopus laevis oocytes was carried out by Sabrina Förster and Shiqiang 

Gao under supervision of Georg Nagel. Shiqiang Gao also measured Fragilariopsis 

rhodopsin photocurrents. I performed the gene expression analysis of Fragilariopsis 
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rhodopsin gene copies and developed relative and absolute RT-qPCR assays of the 

Fragilariopsis rhodopsin including allele-specific RT-qPCR.  
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  Chapter 1

General introduction 

 The polar oceans and sea ice 1.1

The oceans cover approximately 70% of the Earth’s total surface area and the 

polar oceans contribute about 10% to the total ocean area. The polar oceans have 

significant influence on climate and global cycles through the formation of cold 

nutrient-rich deep water, sea ice and physical and biological carbon sequestration. 

However, the two polar oceans, Arctic Ocean and Southern Ocean, are very different 

with regard to their genesis and environmental conditions.  

Geographic and oceanographic overview. The Arctic Ocean is a pole-centred 

intercontinental mediterranean sea, which is enclosed by Eurasia, North America and 

Greenland (Figure 1). This marine system covers an area of about 14 × 10
6
 km

2
 in area 

and 20 × 10
6
 km

3
 in volume (Fahrbach et al., 2009) and is the smallest of the world 

oceans. The Fram Strait between Greenland and Spitsbergen provides the only deep 

water passage (sill depth about 2600m) through which the North Atlantic Drift (“Gulf 

Stream”) streams northbound into the Arctic Ocean. The opening of the Fram Strait 

~10-17.5 Myr ago (Jakobsson et al., 2007; Engen et al., 2008) allowed critical water 

mass exchange between Arctic Ocean and North Atlantic and marked the onset of the 

modern Arctic Ocean. In addition, the Bering Strait between North America and Eurasia 

provides only a shallow passage (sill depth about 50 m) to the Pacific Ocean with only 

surface water mass exchange. The North Atlantic Drift, Transpolar Drift Stream and 

Beaufort Gyre create a complex ocean stream pattern within the Arctic Ocean. Due to 

high freshwater input from Siberia and Canada as well as repeated annual melting and 

freezing, the Arctic Ocean possesses a stable 200 – 300 m thick surface layer of low 

salinity water (Polar surface water).  

In comparison, the Southern Ocean is a deep (3000 – 4000 m) circumpolar ring 

ocean (Figure 1), delimited at the poleward edge by the Antarctic continent (65° – 70° 

S) and by the oceanographic feature of the Antarctic Convergence (Antarctic Polar 

Front) at 50 – 60° S, which represent a boundary with steep physical (e.g. temperarture 

change of 2 °C) (Rintoul and Bullister, 1999) and chemical gradients (e.g. salinity, 

nutrients) (Zentara and Kamykowski, 1981; Deacon, 1982). This boundary effectively 
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isolates phytoplankton in the surface layer of the Southern Ocean from the warmer 

waters found further north, but allows free biotic exchanges with the world’s oceans 

(Atlantic Ocean, Pacific Ocean, Indian Ocean) in deep zones below 500 – 1000 m 

(Hempel, 1987).  

The Southern Ocean is approximately twice as big as the Arctic Ocean covering 

an area of 36 × 10
6
 km

2
 and water mass exchange with the world’s oceans through the 

Antarctic Convergence is much stronger than in the Arctic Ocean. The tectonic opening 

of the ocean gateways between Antarctica and Australia (Tasmanian Passage), and 

Antarctica and South America (Drake Passage) ~34 Myr ago resulted in the isolation of 

Antarctica by the Antarctic Circumpolar Current and caused the extreme polar 

conditions of the modern Southern Ocean (Kennett, 1977; Exon et al., 2002). These 

circumstances allowed for the evolution of numerous highly specialised endemic 

species in the Southern Ocean (Rogers, 2007). The Antarctic Circumpolar Current is 

driven by strong westerly winds, which dominate the movement of surface water around 

the Antarctic continent, with more complex circulation patterns close to the continent, 

including the Antarctic Coastal Current and the Weddell and Ross Sea Gyres. In contrast 

to the Arctic Ocean, the Southern Ocean is lacking a low salinity surface layer due to 

little freshwater input from tabular icebergs and the underside of the ice shelves of the 

Antarctic continent. Thus, the thermohaline stratification in the Southern Ocean is low 

and vertical water circulation is more pronounced (Hempel and Piepenburg, 2010).  

Annual water temperatures throughout the water column are relatively constant, 

ranging between −1.9 °C and −1.7 °C (Littlepage, 1965). Both polar oceans are 

characterised as oxygen-rich, because oxygen solubility is inversely related to 

temperature. In the Southern Ocean oxygen levels are approximately 1.6-fold higher 

than seawater with a temperature of 20 °C (Littlepage, 1965). High oxygen 

concentrations promote the formation of free oxygen radicals, which can damage 

biological macromolecules including DNA, lipids and proteins. Thus, Antarctic 

organisms protect themselves against oxidative damage using antioxidants (Schriek, 

2000; Yamamoto et al., 2001; Abele and Puntarulo, 2004; Ha et al., 2006; Regoli et al., 

2011; Um et al., 2012; O'Brien and Crockett, 2013). Additionally, compared to 

temperate species, Antarctic organisms comprise higher concentrations of proteins that 

mediate iron metabolism, because iron also promotes free radical production (Chen et 

al., 2008; Clark et al., 2011). Furthermore, trace elements play an important role in the 

Southern Ocean, because phytoplankton productivity is predominantly limited by iron 
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(Martin and Fitzwater, 1988), whereas the concentrations of the macronutrients nitrate, 

phosphate and silicic acid are high all year round, making regions within the Southern 

Ocean the largest High Nutrient Low Chlorophyll (HNLC) areas.  

 

 

Figure 1. Comparison of the Arctic Ocean and Southern Ocean (courtesy of Jens Strauss, Alfred Wegener 

Institute, Helmholtz Centre for Polar and Marine Research (AWI), Potsdam, Germany. Made with Natural 

Earth. Free vector and raster map data @ naturalearthdata.com). 

 

Sea ice. A distinct feature of polar oceans is their coverage with perennial 

(multi-year ice) or seasonal (annual ice) sea ice, which first appeared during the 

greenhouse-icehouse climate transition (Zachos et al., 2001) of the Eocene epoch (55 – 

34 Myr) (Shackleton and Kennett, 1975; Tripati et al., 2005; Moran et al., 2006; 

DeConto et al., 2007; DeConto et al., 2008; Stickley et al., 2009). Thus, polar sea ice 

habitats represent geologically new habitats and their geological age affects the 

evolutionary legacy of the Polar Regions (Crame, 1997).  

Sea ice is frozen seawater, which forms as a result of the prevailing cold air 

temperatures in Polar Regions when the ocean surface water cools down to its freezing 

temperature of −1.8 °C. Ice and its snow cover cause a high albedo, reflecting most of 

the radiation from the sun back to space. This results in an albedo of 70 – 80% in the sea 

ice zone, whereas the albedo of open waters is only 10-15% (Turner and Marshall, 

2011). Sea ice can cover up to 35 × 10
6
 km

2
 (13% of earth’s surface) at its maximum 

extent (Parkinson and Gloersen, 1993). The Arctic Sea Ice can almost completely cover 

the Arctic Ocean during winter, resulting in a sea ice extent of 14 × 10
6
 km

2
. In 
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comparison, the Antarctic sea ice covers about 19 × 10
6
 km

2
 during winter, and the 

northern parts of the Southern Ocean stay permanently ice free. The amount of multi-

year sea ice (approximately 3 m thickness) differs greatly between both polar oceans, 

which covers ~30% of the Arctic Ocean, but only 10% of the Southern Ocean (Hempel 

and Piepenburg, 2010).  

Although sea ice appears to be hostile to life, it serves as habitat for a 

community of highly adapted microorganisms including unicellular algae (e.g. diatoms), 

bacteria, viruses, protists, flatworms, and small crustaceans, which live in the network 

of sea ice brine channels and pores that develop during sea ice formation (Arrigo and 

Thomas, 2004; Mock and Thomas, 2005). The network of sea ice brine channels and 

pores is formed during the freezing process of sea water, when the dissolved compounds 

of seawater, especially salts, are not included into the crystal structure of ice but are 

concentrated in sea ice brine. During the process of ice formation, planktonic organisms 

are scavenged by ice crystals and get concentrated in sea ice (Eicken, 1992). With 

decreasing temperatures and ice growth in winter, the network of pores and channels 

becomes narrower and the volume of sea ice brine decreases further, increasing its 

salinity. Thus, organisms within the sea ice are not only subjected to changing 

temperatures, but also to varying salinity and available space. Generally, strong vertical 

gradients of physical and chemical conditions throughout the ice column characterise 

the narrow sea ice habitat (Figure 2) and the pushing and rafting of ice floes due to 

waves and swell causes additional mechanical stress.  

The conditions in sea ice are extreme with respect to radiation (extreme light 

conditions, high UV), temperatures (between −2 °C and −40 °C), salinity (between 30 

and 150 SA) and high pH (up to pH 10). Moreover, photosynthetic activity of unicellular 

algae leads to depletion of dissolved inorganic carbon, shifting the pH to high values 

and causing hyperoxic conditions. The latter can exceed oxygen saturation (Mock et al., 

2002; Trenerry et al., 2002) and facilitate the production of reactive oxygen radicals 

(Thomas and Dieckmann, 2002). As a result sea ice organisms have to cope with 

multiple stresses, whereas physiological stresses are more moderate in the open waters 

of polar oceans.  
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Figure 2. Typical gradients of temperature, light, salinity, nutrients (e.g. nitrogen) and oxygen across a sea ice 

column [extended and modified after McGrath Grossi, S. and C. W. Sullivan (1985), J. Phycol. 21: 401-409 in 

Schrieck (2002), Rep. Polar Res. 349, 1-130]. 

 

 Phytoplankton and primary production in polar oceans 1.2

The polar oceans contain a high diversity of pico- (< 2 µm) and 

nanophytoplankton (2 – 20 µm) (Kang et al., 2001; Smetacek et al., 2004; Knox, 2007; 

Lovejoy et al., 2011) and the most prominent phytoplankton groups are diatoms, 

autotrophic nanoflagellates and dinoflagellates. Strikingly, cyanobacteria are almost 

absent in polar oceans (Vincent, 2002). Significant taxonomic overlap exists between 

phytoplankton and sea ice algae assemblages due to their tight coupling (Smith and 

Sakshaug, 1990). Diatoms make up the most biomass in polar oceans and sea ice, and 

can form major phytoplankton blooms. In addition to diatom blooms, autotrophic 

nanoflagellates including the brown-yellow prymnesiophyte Phaeocystis antarctica 

(Southern Ocean) and Phaeocystis pouchetii (Arctic Ocean) can produce large blooms 

and high biomass in polar oceans. During blooms polar phytoplankton produces 

significant amounts of the sulphur compounds dimethylsulfide (DMS) and its metabolic 
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precursor dimethylsulfoniopropionate (DMSP), contributing to the global 

biogeochemical cycle of sulphur (Kettle et al., 1999). Generally, the growth and 

development of polar phytoplankton is determined by environmental factors 

temperature, light, nutrients, vertical mixing and grazing (Sakshaug and Holm-Hansen, 

1984) as in other world oceans. Moreover, viral lysis (Brussaard, 2004; Suttle, 2005) 

and genetically programmed cell death (Kirchman, 1999; Bidle and Falkowski, 2004; 

Franklin et al., 2006; von Dassow and Montresor, 2011) have recently been recognised 

as a significant phytoplankton loss process. In polar oceans some of these factors, 

including temperature, light, nutrients, vertical mixing and grazing, strongly depend 

directly or indirectly on sea ice coverage.  

Temperature. The water temperatures in polar oceans are relatively constant 

and vary much less than in temperate and tropical oceans. In the Arctic Ocean, annual 

water temperatures range between −1.8 °C to 0 °C, whereas in the Southern Ocean 

temperatures they vary between −1.8 °C to +4 °C (Knox, 2007; Locarnini et al., 2010). 

It is estimated that low sea surface temperatures in the Southern Ocean were established 

during the Eocene-Oligocene transition (34 Myr) (Zachos et al., 1994). Temperatures in 

sea ice, however, can vary between −10 °C and −1.8 °C across the sea ice column 

(Figure 2). They are lowest at the top of the ice and may vary between −4 to −20 °C, 

depending on the ambient air temperature.  

Although, early workers anticipated that oceanic phytoplankton is fully adapted 

to low temperatures of polar oceans including the Southern Ocean (Hart, 1934), recent 

research has shown that phytoplankton of polar oceans are psychrotolerant, rather than 

psychrophilic, with temperature optima for growth and photosynthesis in excess of that 

prevailing in polar oceans (Knox, 2007). Various studies showed that polar 

phytoplankton in general do not have specific ecophysiological adaptations that are 

different to temperate or tropical phytoplankton (Jacques, 1983; Tilzer et al., 1986; 

Smith and Harrison, 1991). Maximum growth rates at 0 °C are approximately half that 

at +10 °C (Q10 rule), which corresponds to the known temperature dependencies of 

general biological processes, including photosynthesis and respiration. It has been 

shown that the Q10 value for respiration is higher (Tilzer and Dubinsky, 1987) than for 

photosynthesis (Neori and Holm-Hansen, 1982; Tilzer and Dubinsky, 1987) in Antarctic 

phytoplankton. Thus, light-saturated photosynthesis is apparently more temperature-

sensitive than respiration, which has been ascribed to temperature dependency of 

maximum photosynthetic quantum yields (Tilzer et al., 1986; Tilzer and Dubinsky, 
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1987). As a result net growth of polar phytoplankton may occur even under low 

temperature and short day length during winter (Tilzer and Dubinsky, 1987). In Arctic 

phytoplankton temperature optima for photosynthesis were found to be up to 10 °C 

higher than in situ temperatures (Li, 1985), and activation energies for photosynthesis 

and the carboxylating enzyme ribulose-1,5-bisphosphate carboxylase (RubisCO) were 

in close agreement, suggesting that RubisCO is the rate-limiting step of photosynthesis 

in polar phytoplankton (Li et al., 1984; Li, 1985). Furthermore, Toseland et al. (under 

peer review (2013)) suggested that additional phytoplankton core metabolism, including 

protein translation, is strongly affected by temperature and that initiation of translation 

at the ribosomes might be the rate-limiting step for protein synthesis under low 

temperatures in polar oceans. Low temperatures resulted in higher cellular contents of 

ribosomal RNA and ribosomal proteins in comparison to temperate and tropical oceans 

(Toseland et al., under peer review (2013)). Nevertheless, it appears that optimum 

temperatures for growth of polar phytoplankton are higher than the mean annual 

temperatures in polar oceans (Jacques, 1983; Thomas et al., 2012). Thus, temperature 

sets an upper limit on phytoplankton growth rates and at a given temperature the growth 

of phytoplankton is determined by the supply of light and nutrients (Smith and 

Sakshaug, 1990).  

Light and vertical mixing. Light intensities are generally lower in marine 

environments compared to terrestrial environments (Depauw et al., 2012). On average 

polar regions receive five times less solar radiation than tropical regions (Bertler and 

Barrett, 2010). In marine environments, light varies due to incident solar radiation, time 

of day and year, concentration of suspended particles and organic matter, as well as 

absorption and scattering by water. Solar radiation or irradiance in the wavelength range 

of 400 – 700 nm of the electromagnetic spectrum is essential for marine phytoplankton. 

The amount of incident solar radiation is controlled by solar activity, time of day 

and season as well as atmospheric conditions, including cloudiness, ozone content, 

turbidity, and humidity. Cloudiness, fog and snowfall can greatly limit the light 

available in the polar oceans and cause light attenuation in the range of 40 – 90% 

(Smith and Sakshaug, 1990). Additionally, a significant proportion of incident light in 

polar regions is reflected at the sea surface depending on the solar angle and the 

roughness of the sea (Powell and Clarke, 1936). Although the roughness of the sea 

increases the average angle between light direction and point of entry reducing the 

reflectance (Kirk, 2011), heavy storms, as frequently occurring in the Southern Ocean, 
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can produce air bubbles, which increase surface reflection (Powell and Clarke, 1936). 

Whilst wind speed determines the roughness of the sea and formation of air bubbles, the 

time of day and year determines the solar angle and thus the amount of light entering 

the surface waters of polar oceans. Low solar angles cause a higher reflection at the sea 

surface and a greater attenuation of shorter wavelengths in the atmosphere. Thus, light 

attenuation is more pronounced with increasing latitudes. As the Arctic Ocean lies north 

of 70° N, whereas the Southern Ocean is limited by the Antarctic continent at 65 – 70° S 

(Figure 1), the annual light cycle is more extreme in the Arctic Ocean than in the 

Southern Ocean. However, polar phytoplankton are well adapted to survive periods of 

darkness and laboratory experiments demonstrated that polar phytoplankton can endure 

> 3 months of darkness (Peters and Thomas, 1996). Nevertheless, light in the Arctic 

Ocean is only sufficient for a single phytoplankton bloom during the year (Heimdal, 

1989) as opposed to other oceans where two blooms can occur (Longhurst, 1995).  

Light that enters the water is quickly scattered and absorbed in a wavelength 

dependent manner. The light absorption characteristics of sea water cause a dominance 

of blue-green wavelengths with increasing water depth (Austin and Petzold, 1986). 

Moreover, the penetration depth of light also depends on the concentration of suspended 

particles and organic matter (Kirk, 2011). While, in contrast to the Arctic Ocean, the 

Southern Ocean is largely free of terrigenous matter and coloured soluble material 

(Mitchell, 1992), the opacity of the Southern Ocean waters is largely dependent on 

phytoplankton concentrations and light penetration is generally high (Sakshaug and 

Holm-Hansen, 1984). However, high phytoplankton concentrations, occuring during 

blooms, can be found in polar oceans and may cause self-shading, because 

phytoplankton absorbs strongly in the blue, blue-green, and red parts of the spectrum of 

photosynthetic active radiation (Kirk, 2011).  

Additionally, light and vertical mixing in polar oceans can be greatly attenuated, 

when the ocean surface is covered by sea ice. The degree of light attenuation depends 

on its properties and includes sea ice thickness, snow cover, and presence of sea ice 

algae, brine pockets and air bubbles. Sea ice itself is more transparent (Maykut and 

Grenfell, 1975; Palmisano et al., 1987) than snow, which is highly opaque. While sea 

ice of 1 m thickness will reduce incident light to 20% of incident irradiance (Sullivan et 

al., 1984), a 50 cm thick layer of snow will reduce incident light to 0.01 – 3% of the 

surface irradiance (Palmisano et al., 1987). Nonetheless, massive under-ice 

phytoplankton blooms have been observed under Arctic first-year sea ice (Gradinger, 
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1996; Arrigo et al., 2012) and polar phytoplankton and sea ice algae are well adapted to 

low light levels (Cota, 1985; Kirst and Wiencke, 1995). Arctic diatoms can grow at 

irradiances as low as 10 µmol photons m
-2

 s
-1

 (Hegseth, 1989) and maximum growth 

rates were obtained at ~50 µmol photons m
-2

 s
-1

, after which the growth rates were 

independent of irradiance (Gilstad and Sakshaug, 1990). 

As sea ice coverage decreases the light availability, it also decreases water 

turbulences and vertical mixing, which controls the mean light availability to polar 

phytoplankton (Sakshaug et al., 1991). Strong wind-driven vertical mixing in the 

Southern Ocean causes average mixing depth ranging between 60 – 100 m (Boyd et al., 

2001), being deeper compared to other oceans, and may cause light limitation of 

phytoplankton growth (Mitchell et al., 1991). As a result, light availability is highly 

variable in the Southern Ocean, ranging between 0 – 800 µmol photons m
-2

 s
-1

 in 

summer (Hoogstraten et al., 2012), and causing light limitation to phytoplankton growth 

in the Southern Ocean in combination with low concentrations of the trace metal iron 

(Mitchell et al., 1991; de Baar et al., 2005; Alderkamp et al., 2010; Alderkamp et al., 

2011) (see below). 

Of growing relevance, regarding solar irradiance in polar oceans, is the 

anthropogenic thinning of the stratospheric ozone layer (ozone hole) in spring over the 

Antarctic continent. A pronounced ozone hole causes high doses of damaging ultraviolet 

radiation (100 – 400 nm) at the surface of the Southern Ocean and may result in 

limitation of phytoplankton production (Cullen et al., 1992; Smith et al., 1992; Neale et 

al., 1998). In comparison, the thinning of the ozone layer is less pronounced in the 

Arctic Ocean (Brune et al., 1991; von der Gathen et al., 1995; Turner and Marshall, 

2011) but significant ozone loss has been observed (Newman et al., 1997). 

Nutrients and trace metals. There are major differences in the nutrient (Levitus 

et al., 1993) and trace metal regimes in the Arctic and Southern Ocean, which affect 

polar phytoplankton productivity in addition to light availability.  

In general, nutrient concentrations in the Arctic Ocean are lower than in the 

Southern Ocean and are maintained by its physical oceanographic features, which 

produce strong stratification that limits the supply of new nutrients from upwelling deep 

water masses. In contrast, nutrient levels in the Southern Ocean are higher due to the 

large scale Antarctic divergence which supplies new nutrients to the surface waters. 
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While nutrients become depleted after a phytoplankton bloom in the Arctic, nutrients 

are rarely depleted in the Southern Ocean, because scarcity of the essential trace metal 

iron limits phytoplankton processes (Martin, 1990). Iron limitation severely affects 

photosynthetic activity due to the strong dependency of the photosynthetic apparatus on 

iron as cofactor (Merchant and Dreyfuss, 1998; Strzepek and Harrison, 2004). 

Generally, trace metals like iron, zinc and cobalt, which are almost insoluble in sea 

water (Thuróczy et al., 2010), are largely supplied by dust (Jickells et al., 2005), river 

input and sediments (Johnson et al., 1997). Thus, in contrast to the high terrigenous 

freshwater input from surrounding continents into the Arctic Ocean, the input of trace 

metals from the Antarctic continent is low, because it is sealed off by its extensive ice 

sheets. As a result, most of the trace metals are transported to the Southern Ocean via 

dust from adjacent continents and icebergs, which discharge their dust when melting but 

maintain only low concentrations. As iron follows this pattern (Martin, 1990), relatively 

high concentrations of zinc (Fitzwater et al., 2000; M. Franck et al., 2000; Croot et al., 

2011) and cobalt (Bown et al., 2011; Bown et al., 2012) in the Southern Ocean do not.  

Zinc and cobalt play important physiological roles in phytoplankton metabolism 

and growth (Morel et al., 2006; Thuróczy et al., 2010). While zinc has been suggested 

to be a key micronutrient in the Southern Ocean (Saito et al., 2010), cobalt is involved 

in the biosynthesis of the vitamin cobalamin (B12) (Kobayashi and Shimizu, 1999), and 

together with zinc it can serve as co-factor in metalloenzymes including carbonic 

anhydrases and hydrolytic enzymes (Morel et al., 2006). Although vitamin B12 is not an 

essential requirement for growth of some phytoplankton (Croft et al., 2005; Croft et al., 

2006; Helliwell et al., 2011), low concentrations of cobalt and vitamin B12 may effect 

phytoplankton growth in the world ocean overall (Sañudo-Wilhelmy et al., 2006; 

Panzeca et al., 2008; Sañudo-Wilhelmy et al., 2012). While vitamin B12 appears to be 

sufficient for sea ice microalgae growth in Antarctic sea ice communities (Taylor and 

Sullivan, 2008), low concentrations of cobalt in combination with low iron may limit 

phytoplankton growth in the Southern Ocean (Bertrand et al., 2007).  

In addition to trace metal limitations, silicifying phytoplankton like diatoms and 

some chrysophytes may become limited by low silicic acid concentrations in the Arctic 

Ocean and the Southern Ocean (Nelson et al., 2001) during the summer growth season 

(Figure 3). While annual silica concentrations in the Arctic Ocean are generally low and 

high silica concentrations are restricted to Arctic river deltas (Garcia et al., 2010), silicic 

acid limitation in the Southern Ocean appears to be complex and often occurs in 
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combination with iron limitation (Figure 3). Generally, it has been recognised in recent 

years that phytoplankton processes are controlled by an interplay of environmental 

factors (Cullen, 1991; Lehman, 1991; Saito et al., 2008), including not only 

simultaneous limitation by iron and silicic acid (Hutchins et al., 2001) but also iron and 

irradiance (Boyd et al., 2001) (Figure 3).  

 

 

Figure 3. Schematic diagram of putative seasonal progression of major environmental factors limiting or 

simultaneously limiting Southern Ocean diatoms. Note that the time period of limitation will vary with 

geographical location and from year-to-year and that other factors may exert environmental control [after 

Boyd, P. W. (2002), J. Phycol. 38, 844-61]. 

 

Grazing, viral lysis and programmed cell death. In addition to the bottom-up 

controlling factors temperature, light and nutrients, phytoplankton are controlled by 

grazing (Frost, 1991) and viral lysis (Brussaard, 2004). The main consumers of pico- 

and nanophytoplankton are microzooplankton including flagellates, ciliates, 

heterotrophic dinoflagellates and crustaceans (Tsuda and Kawaguchi, 1997; Calbet and 

Landry, 2004).  

Generally, the grazing pressure on phytoplankton is considered to be high in 

both polar oceans (Bathmann et al., 1990; Wheeler et al., 1996; Dubischar and 

Bathmann, 1997; Tsuda and Kawaguchi, 1997; Calbet and Landry, 2004). Although 

bacterial grazing mortality is similar in both polar oceans (Anderson and Rivkin, 2001), 

to my knowledge, the grazing mortality of phytoplankton in polar oceans has not been 

studied in a comparative manner yet. A general comparison, however, is difficult, 

because grazing pressure is a function of available food and can vary widely in the 

Arctic (Rysgaard et al., 1999) and Southern Ocean (Smetacek et al., 2004). Moreover, 

the food webs of the polar oceans differ, showing varying topologies with differences in 

the shape of the trophic linkages, including the ratio of basal and top species, and the 
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ratio of prey and predator species (de Santana et al., 2013). While in both polar oceans 

copepods are the most abundant zooplankton (Conover and Huntley, 1991), 

euphausiids, including the Antarctic krill, and salps play an important role in the 

Southern Ocean (Dubischar and Bathmann, 1997; Voronina, 1998). The role of copepod 

grazing in the Arctic Ocean may be more pronounced due to advection from the North 

Atlantic (Olli et al. (2007); Philip Assmy, Norwegian Polar Institute, Tromsø, personal 

communication 22/01/2013). Although swarms of Antarctic krill can excert high local 

grazing pressure on phytoplankton in the Southern Ocean, their distribution is patchy 

and thus their effect on phytoplankton grazing may also be patchy (Smetacek et al., 

2004). In comparison, high abundances of copepods in the Arctic Ocean can control 

phytoplankton (Bathmann et al., 1990; Rysgaard et al., 1999) and support planktivorous 

fish and their predators including polar cod (Frank et al., 2005). In contrast, 

planktivorous fish are largely absent in the Southern Ocean (Rodhouse and White, 

1995), still, phytoplankton stocks support largely copepods and krill, the forage of 

baleen whales and squid (Rodhouse and White, 1995; Smetacek et al., 2004).  

Grazing and viral lysis have also been recognised as controlling factor of 

phytoplankton (Brussaard, 2004; Suttle, 2005). The abundances of viruses in the oceans 

are estimated to 10
5
 – 10

8
 viruses mL

-1
 (Suttle, 2005) and it is suggested that viral 

abundances in polar oceans fall in the same range (Smith and Steward, 1992; Maranger 

et al., 1994; Payet and Suttle, 2008). Viruses may be enriched during sea ice formation 

with 10 – 100 fold higher abundances in sea ice than in the water column (Gowing et 

al., 2002; Collins and Deming, 2011), however, opposite patterns have also been 

observed with higher viral abundances in the water column compared to sea ice 

(Paterson and Laybourn-Parry, 2012).  

Viruses of a size likely to infect eukaryotes rather than bacteria (capsid diameter 

> 100 nm) have been found in polar oceans including sea ice and constitute 

approximately 10% – 20% of the total viral abundance (Maranger et al., 1994; Gowing, 

2003; Payet and Suttle, 2008). Interestingly, no viral infections were found in the major 

bloom forming phytoplankton in the Southern Ocean, diatoms and mucilaginous 

colonies of non-flagellated Phaeocystis (Gowing et al., 2002; Gowing, 2003). 

Furthermore, viral lysis has been found to play only a minor role in comparison to 

microzooplankton grazing in the Southern Ocean (Brussaard et al., 2008; Evans and 

Brussaard, 2012). Potential eukaryotic phytoplankton viruses were only detected at very 

low concentrations in the Southern Ocean and viral lysis was found to be only a minor 
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loss factor in comparison to microzooplankton grazing, contributing 6% compared to 

45% of the total loss of phytoplankton standing stock (Brussaard et al., 2008). Yet, in 

the Arctic Ocean, phycodnaviruses infecting eukaryotic phytoplankton, have been 

identified (Payet, 2012), but their contribution to phytoplankton loss remains uncertain. 

Overall, the loss of primary production in aquatic microbial communities through viral 

lysis has been estimated to 2 – 3% (Suttle, 1994).  

Compared to our knowledge of grazing and viral lysis, very little is known about 

the quantitative significance of phytoplankton losses due to genetically programmed 

cell death (Kirchman, 1999; Franklin et al., 2006). Programmed cell death in 

phytoplankton has been investigated as a response to abiotic or biotic stressors (Ferroni 

et al., 2007; Timmermans et al., 2007; Bidle and Bender, 2008; Franklin et al., 2012), 

but it may also be an intrinsic outcome of life cycle stages (von Dassow and Montresor, 

2011). In a laboratory study of the Antarctic marine chlorophyte Koliella antarctica, 

programmed cell death was found in 1 – 2% of the cells after prolonged darkness 

(Ferroni et al., 2007). Nevertheless, the role of programmed cell death in polar oceans 

remains elusive.  

In summary, the environmental factors temperature, grazing, viral lysis and 

programmed cell death are likely to be relatively constant in both polar oceans. 

However, while the extremely short summer growing season, combined with low 

nutrients and sea-ice cover, restrict phytoplankton in the Arctic Ocean, iron availability 

and deep vertical mixing restrict primary production of phytoplankton in the Southern 

Ocean (Noethig et al., 2009). Although primary production can be high, especially on 

continental shelves of the Arctic Ocean (Wheeler et al., 1996) and the Southern Ocean 

(Arrigo et al., 2008), the annual primary production of polar phytoplankton is generally 

low. The annual productivities of the Arctic and Southern Ocean are similar with pelagic 

primary production in the Arctic Ocean estimated at 44 g C m
-2

 yr
-1

 (Pabi et al., 2008), 

with 57 g C m
-2

 yr
-1

 for the Southern Ocean (Arrigo et al., 2008). In comparison, the 

annual oceanic primary production is estimated to 140 g C m
-2

 yr
-1

 (Field et al., 1998) 

with maximum oceanic primary production rates of 1000 – 1500 g C m
-2

 yr
-1

 in highly 

productive marine upwelling and estuarine systems (Walsh, 1981; Field et al., 1998). 

Additionally, the annual Antarctic marine primary production of sea ice is estimated to 

63 – 70 Tg C yr
-1

 (Lizotte, 2001; Arrigo et al., 2010a), contributing ~4% to the total 

Antarctic marine primary production of ~1,949 Tg C yr
-1

 (Arrigo et al., 2008), while the 

annual Arctic marine primary production of sea ice is estimated to contribute 15 – 20% 
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(Pabi et al., 2008; Arrigo et al., 2010a) to the total primary production in the Arctic 

Ocean of ~419 Tg C yr
-1

 (Pabi et al., 2008). Generally, diatoms tend to dominate 

phytoplankton communities in polar oceans, when sufficient light and nutrients are 

available (Figure 3) to sustain their growth (Armbrust, 2009). 

 Marine diatoms in the polar environment 1.3

Diatoms are photosynthetic unicellular, eukaryotic microalgae with a cell wall 

made of silica (Round et al., 1990), hence they require dissolved silicic acid. They are 

highly divers with an estimate of around 100,000 different species (Mann and Droop, 

1996; Norton et al., 1996) in about 250 genera (Round et al., 1990). Two groups are 

distinguished: bilateral symmetric, elongate “pennate” and radial symmetric, round 

“centric” diatoms. While the first fossil deposits for centric diatoms appeared in 

deposits from the Jurassic (~180 Myr), pennate diatoms are younger and fossil evidence 

dates back to the Late Cretaceous (~90 Myr) (Sims et al., 2006; Kooistra et al., 2007).  

Both, pennate and centric diatoms can occur as solitary cells or chain-forming 

colonies and they inhabit nearly all aquatic environments on earth. Pennate diatoms are 

abundant in benthic epiphytic communities (e.g. seafloor habitats of coastal seas) 

(Kooistra et al., 2007) or polar sea ice (Horner, 1990). However, several pennate 

lineages have adapted to a pelagic lifestyle (Kooistra et al., 2007). In comparison, 

centric diatoms are usually more successful in the open water column and contribute the 

most successful group of planktonic diatoms (Kooistra et al., 2007). Generally, diatoms 

often dominate phytoplankton communities of polar ecosystems including the ice edge 

zone (Smetacek et al., 2002), making them key players in Arctic and Southern Ocean 

(Armbrust, 2009). They take part in major marine biogeochemical cycles of silicate 

(Treguer et al., 1995) and carbon (Smetacek, 1999), and serve as the basis of the polar 

food chain (Smetacek et al., 2004). In the Southern Ocean, diatoms contribute as much 

as two-thirds of the total ocean silica export (Treguer et al., 1995; Falkowski et al., 

1998). Additionally, it is estimated that diatoms contribute ~40% of the annual marine 

primary production (Nelson et al., 1995; Bowler et al., 2010). However, due to their 

dominance in the polar environment, diatoms can be responsible for > 90% of primary 

production during blooms in the ice edge zone of the Ross Sea, Antarctica (Smith and 

Nelson, 1985; Wilson et al., 1986; Tsuda et al., 2003). Moreover, they outnumber other 

taxa in the extremely cold sea ice ecosystem in numbers and biomass (Wilhelm et al., 

2006; Arrigo et al., 2010a) and can tolerate extreme changes in radiation, temperature 
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and salinity. They constitute > 90% of the photosynthetic diversity in sea ice, which is 

likely to exceed 500 species (Arrigo et al., 2010a). Generally, sea ice diatoms are 

dominated by pennate diatoms (Horner, 1990; Poulin, 1990; Lizotte, 2001; Thomas and 

Dieckmann, 2002; Smetacek and Nicol, 2005; Arrigo et al., 2010a). Pennate diatoms 

can contribute 80 – 90% of sea ice assemblages in the Arctic Ocean (Poulin, 1990) and 

Southern Ocean (Ligowski et al., 1992), though centric diatoms can also be common in 

polar sea ice (Arrigo et al., 2010a). Blooms of pennate diatoms have been reported in all 

parts of the ice column (Arrigo et al., 2010a) and the diatom biomass in sea ice can 

reach concentrations of up to 1000 µg of chlorophyll per litre (Thomas and Dieckmann, 

2002; Arrigo et al., 2010a).  

The dominant diatom genera do not differ much between both polar seas and 

dominant genera include e.g. Thalassiosira, Chaetoceros, Eucampia, Fragilariopsis and 

Rhizosolenia. Nevertheless, the species composition in both polar oceans is different 

and only few diatom species have a bipolar distribution (i.e., species occurring 

exclusively in both polar oceans and nowhere else) (Hasle, 1976; Lundholm and Hasle, 

2008; Noethig et al., 2009). Due to its geological history and oceanographic conditions, 

most of the phytoplankton species in the Arctic can be found in other oceans and only 

10 species are endemic to the Arctic Ocean (Heimdal, 1989). In contrast, the Southern 

Ocean has the largest percentage of endemic diatom species of any ocean region 

(Priddle and Fryxell, 1985), including at least six endemic planktonic diatoms (Zielinski 

and Gersonde, 1997). Two prominent large Southern Ocean diatoms Corethron 

pennatum and Fragilariopsis kerguelensis do not occur in the Arctic, while Melosira 

arctica, a species forming large filaments on the underside of Arctic sea ice, does not 

occur in the Southern Ocean (Noethig et al., 2009). Polar diatom assemblages are often 

characterised by high abundances of very large species, which is particularly relevant 

though not exclusive to the Southern Ocean (Smetacek et al., 2004; Noethig et al., 

2009) and blooms of large chain-forming diatoms have been observed in the Arctic 

Ocean (Heimdal, 1989). In the iron-limited areas of the Southern Ocean the heavily 

silicifying large diatom species F. kerguelensis, Thalassiothrix antarctica and 

Thalassiosira lentiginosa are among the most prominent species. During iron-replete 

phytoplankton blooms in the Southern Ocean, the diatom species, Thalassiosira 

antarctica, T. gravida, Chaetoceros socialis, C. curvisetus, C. debilis, C. neglectus, 

Rhiszosolenia hebetata, Proboscia alata, Corethron pennatum, Fragilariopsis curta and 

F. cylindrus contribute most of the biomass (Smetacek et al., 2004). The latter F. 
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cylindrus can contribute 35% of total diatom abundances in water column assemblages 

and sea ice zones (Kang and Fryxell, 1992). 

 The species under investigation: Fragilariopsis cylindrus 1.4

The diatom Fragilariopsis cylindrus (Grunow) Krieger is a nanoplanktonic (2 – 

20 µm) pennate diatom of ~20 µm in its longest dimension (Figure 4) and is common in 

the pack ice and near the ice edge of the Arctic and Antarctic Ocean (Grunow, 1884; 

Hasle, 1965; Garrison and Buck, 1989; Ligowski et al., 1992; Lundholm and Hasle, 

2008). However, its bipolar distribution is uncertain (Lundholm and Hasle, 2008). F. 

cylindrus belongs to the group of raphid pennate diatoms, which contain a slit opening 

in the cell wall called raphe. The raphe permits raphid pennate diatoms to move actively 

by exudation of polysaccharide-rich mucilages and allowed this group to colonise 

unstable environments (e.g. sea ice), resulting in a rapid and massive radiation. They 

represent the largest group in terms of genera and species number within contemporary 

diatoms (Round et al., 1990; Sims et al., 2006; Kooistra et al., 2007). Although it has a 

raphe, the genus Fragilariopsis, including F. cylindrus, is nonmotile (Sims et al., 2006).  

While it is estimated that the first raphid pennate diatoms appeared at ~50 Myr 

(Strelnikova and Simola, 1990), the genus Fragilariopsis emerged during the Oligocene 

(~30 Myr) (Sims et al., 2006; Kooistra et al., 2007) and adaptation of the taxonomic 

group of Bacillariaceae (again including F. cylindrus) to a pelagic existence is suggested 

to have occurred by the Miocene (22 – 5 Myr) (Sims et al., 2006). However, as for the 

evolutionary transition from centric to pennate diatoms, there is no substantial fossil 

record of the evolutionary transition from araphid (without raphe) to raphid diatoms and 

accurate evolutionary dating remains difficult (Sims et al., 2006). According to 

phylogenetic analysis (Lundholm et al., 2002) the genera Fragilariopsis and 

Phaeodactylum, which includes the model diatom P. tricornutum, diverged early during 

the radiation of raphid pennate diatoms in the Eocene (55 – 35 Myr) (Round et al., 

1990; Strelnikova and Simola, 1990; Sims et al., 2006). In contemporary oceans, the 

genus Fragilariopsis consists of ~20 extant species (Cefarelli et al., 2010), and its 

representatives (including F. cylindrus) possess two chloroplasts (Hasle and Syvertsen, 

1997).  

F. cylindrus is ubiquitously found in phytoplankton counts of Antarctic water 

samples (Kopczynska, 2008) and is the most abundant diatom in phytoplankton 
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assemblages of Antarctic sea ice zones (Kang and Fryxell, 1992; Ligowski et al., 1992). 

It contributes up to 30% of total diatom abundances in surface ocean sediments of the 

Southern Ocean (Zielinski and Gersonde, 1997; Gersonde and Zielinski, 2000) and is 

proposed as an indicator species to reconstruct palaeooceanographic conditions 

(Gersonde and Zielinski, 2000; Quillfeldt, 2004). Due to its environmental importance, 

F. cylindrus has become a model for algal adaptation to polar marine conditions and 

diverse physiological, biochemical and molecular studies have been conducted.  

 

 

Figure 4. Micrograph of F. cylindrus cells visualised by scanning electron microscopy (courtesy of Henrik 

Lange and Friedel Hinz, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany). 

 

F. cylindrus is an obligate psychrophilic (cold-loving) organism and has an 

optimum growth temperature of +4 to +5 °C and an upper temperature limit of ≤ +10 °C 

(Fiala and Oriol, 1990). It is capable to grow in salinities of 100 SA (Bartsch, 1989), and 

accumulates osmoprotectants with increasing salinities including proline, betaine, 

homarine, and dimethylsulfoniopropionate (DMSP) as well as free amino acids 

(Plettner, 2002). In the presence of light, F. cylindrus shows photophysiological 

plasticity and is able to respond rapidly to changes in temperature and salinity that can 

occur during the shift between sea ice and pelagic conditions (Petrou and Ralph, 2011). 

Furthermore, it grows at low light intensities with minimum saturating irradiances of 60 

µmol photons m
-2

 s
-1

 and optimal photosynthetic irradiances of 120 µmol photons m
-2

 s
-

1
 (Pankowski and McMinn, 2009; Petrou and Ralph, 2011), but also at constant high 

irradiances, typical for shallow mixed layer depths and shows high levels of 

photoprotection (Kropuenske et al., 2009; Arrigo et al., 2010b; Mills et al., 2010; 

Alderkamp et al., 2012). However, growth and photosynthesis in F. cylindrus is 

challenged by hyperoxia (McMinn et al., 2005), which may be caused by high dissolved 
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oxygen concentrations and oxygen oversaturation in sea ice (Figure 2) (Mock et al., 

2002; Trenerry et al., 2002). In the absence of light, as occurs in overwintering F. 

cylindrus, vegetative cells showed dark survival times of up to 60 days (Reeves et al., 

2011). In summary, these physiological studies showed that F. cylindrus is well-adapted 

to sea ice and open water conditions (Quillfeldt, 2004; Petrou and Ralph, 2011). Thus, 

its survival and prolific growth under the extreme conditions of sea ice and the more 

moderate conditions of open waters require a complex suite of biochemical and 

molecular adaptations.  

Molecular studies over the last 10 years have made F. cylindrus a popular model 

for polar eukaryotic genomics. F. cylindrus can acclimate photosynthesis over a wide 

range of polar water temperatures (Mock and Valentin, 2004; Mock and Hoch, 2005) 

and expression of genes encoding for Photosystem II as well carbon-fixing Rubisco 

subunits were similar at −1 °C and +7 °C after 4 month of acclimation (Mock and Hoch, 

2005). Additionally, cold adaptation of F. cylindrus was investigated using an expressed 

sequence tag (EST) approach (Mock et al., 2005). It was found that most EST 

sequences were similar to genes encoding for proteins involved in translation, ribosomal 

structure, biogenesis, amino acid metabolism and post-translational modifications 

(Mock et al., 2005). In particular, DNA/RNA helicases, peptidases, ABC transporter 

protein domains were highly abundant (Mock et al., 2005) and these protein domains 

were suggested to be involved in various functions relevant for cold adaptation, 

including minimization of secondary structures and duplexes of mRNA to initiate 

protein translation as well as repair of photodamaged protein under freezing 

temperatures by activity of peptidases (Mock et al., 2005). However, more than half of 

EST sequences showed no similarity to known proteins (Mock et al., 2005). Similarly, 

in a salt stress-induced cDNA library of F. cylindrus > 30% of EST sequences produced 

no significant hit against any sequence database (Krell et al., 2008). Nevertheless, from 

analysis of the salt stress-induced cDNA library it was shown that genes encoding for 

proteins involved in proline synthesis, light-harvesting complexes (LHCs), protection 

against oxidative damage and antifreeze proteins (AFP) were expressed in F. cylindrus 

during salt stress (Krell et al., 2008). Additionally, the upregulation of specific key 

genes encoding for proteins involved in proline synthesis and accumulation of this 

osmoprotectant in F. cylindrus was also shown during multiple stresses combining salt 

stress and cold stress (Krell et al., 2007). Moreover, genes and proteins involved in 

DMSP synthesis were upregulated during salt stress, leading to the accumulation of the 
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osmoprotectant DMSP in F. cylindrus (Lyon et al., 2011). Due to the upregulation of 

LHC family proteins in a salt-stress induced cDNA library (Krell et al., 2008) and LHC 

family proteins including fucoxanthin chlorophyll a/c-binding proteins showed altered 

expression during cold stress (Mock and Valentin, 2004), hence a role of LHC proteins 

in stress acclimation in F. cylindrus was suggested (Krell et al., 2008). Additionally, the 

expression of AFP during salt stress helped to identify a new class of AFP, formerly 

unknown in photosynthetic eukaryotes (Janech et al., 2006; Krell et al., 2008).  

Further gene-specific studies of genes encoding for AFP showed strong 

regulation under freezing temperatures and high salinities (Bayer-Giraldi et al., 2010) 

and AFP were shown to accumulate in the cells (Bayer-Giraldi et al., 2011). AFP in F. 

cylindrus belong to a multigene family of about 56 genes and isoforms (Krell et al., 

2008) and likely consist of non-secretory as well as secretory AFP isoforms (Bayer-

Giraldi et al., 2011; Uhlig et al., 2011). While non-secretory AFP might function as 

intracellular or cell-wall associated antifreeze (Uhlig et al., 2011), it has been suggested 

that secretory AFP may accumulate in a sheath of extracellular polymeric substances 

(EPS) and shape the microstructure of sea ice around the cell (Krembs et al., 2002; 

Bayer-Giraldi et al., 2011; Uhlig et al., 2011). Indeed, F. cylindrus increases yields of 

EPS under high salinities and ice formation was inhibited down to −12 °C by F. 

cylindrus cells, free EPS, and enhanced EPS content (Aslam et al., 2012).  

Additionally, under the iron-replete conditions of sea ice (Sedwick and DiTullio, 

1997; Edwards and Sedwick, 2001; Thomas, 2003; Lannuzel et al., 2007), F. cylindrus 

expresses the iron-sulfur protein ferredoxin (Pankowski and McMinn, 2009), which is 

involved in electron-transport systems in the cell including respiratory and 

photosynthetic electron transport. When iron availability decreases, F. cylindrus 

replaces the iron-binding ferredoxin with its functional analogue flavodoxin (Pankowski 

and McMinn, 2009), which instead relies on riboflavin 5’-phosphate as a cofactor 

(Roche et al., 1996). Furthermore, F. cylindrus uses the iron-storage protein ferritin to 

safely concentrate and store iron (Marchetti et al., 2009), thereby minimizing potential 

cell damage from reactive oxygen species and oxidative stress via iron-mediated Fenton 

chemistry (Imlay, 2008). As a result, F. cylindrus has a low half-saturation constant for 

iron with 0.51 × 10
-12

 M (= 0.51 pM) total inorganic Fe (Pankowski and McMinn, 2009) 

and is highly competitive in high nutrient low chlorophyll areas of the Southern Ocean 

(Arrigo et al., 2010b; Mills et al., 2010; Alderkamp et al., 2012). 
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In summary, these physiological and molecular studies give insight into the 

adaption and responses of F. cylindrus to extreme conditions of sea ice, such as low 

temperatures, high salinities and fluctuating light conditions as well as open water 

conditions including high irradiances in shallow mixed water layers and low iron 

concentrations. Key findings from these studies were that F. cylindrus uses antifreeze 

proteins to cope with cold and salt stress (Janech et al., 2006; Krell et al., 2008; Bayer-

Giraldi et al., 2010) and these serve different functions including antifreeze activity, 

inhibition of ice crystallisation, attachment to ice and retention of a liquid environment 

(Raymond, 2011). Moreover, under salt stress F. cylindrus accumulates the organic 

osmolytes proline (Plettner, 2002; Krell et al., 2007), betaine (Plettner, 2002) and 

dimethylsulfoniopropionate (Lyon et al., 2011) and recently high levels of the 

metabolite isethionic acid in F. cylindrus have also been suggested to contribute to the 

osmotic balance of the cells (Boroujerdi et al., 2012). Furthermore, during fluctuating 

light and temperature conditions F. cylindrus significantly regulates photosynthetic 

genes (Mock and Valentin, 2004; Mock and Hoch, 2005; Mock et al., 2005). 

Additionally, F. cylindrus encounters decreases in iron availability, as may occur during 

the melting of sea ice and transition to open water conditions, by using the iron-storage 

protein ferritin (Marchetti et al., 2009) and the replacement of the iron-demanding 

electron transport protein ferredoxin with flavodoxin (Pankowski and McMinn, 2009).  

These studies reveal the high metabolic flexibility of F. cylindrus in acclimating 

to a wide range of environmental conditions. However, molecular studies have also 

revealed many unknown genes (Mock et al., 2005; Krell et al., 2008) and the molecular 

basis of adaptation of F. cylindrus and other polar eukaryotes remains largely unknown. 

Moreover, a large fraction of diatom genes are still functionally uncharacterised (Krell 

et al., 2008; Bowler et al., 2010). As described in this thesis, we sequenced the genome 

and transcriptome of F. cylindrus to get further insights into evolution and adaptation of 

a diatom to conditions of polar oceans.  

 Diatom genomics and transcriptomics 1.5

Genomics or genome science is the study of all nucleotides within a genome (the 

complete set of genes encoded in a cell) including genome structure, content and 

evolution (Gibson and Muse, 2004). More broadly defined, genome science also 

encompasses the analysis of gene expression (Gibson and Muse, 2004) represented in 

the transcriptome (the complete set of transcripts in a cell for a specific physiological 
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condition). Technological advances have revolutionised the biological sciences 

(Schuster, 2008) and genomics-enabled technology has recently also been applied in 

diatom research, providing a better understanding of diatom evolution, biology and 

ecology (Armbrust et al., 2004; Montsant et al., 2007; Oudot-Le Secq et al., 2007; 

Bowler et al., 2008; Oudot-Le Secq and Green, 2011; Lommer et al., 2012).  

The evolution of diatoms is based on secondary endosymbiosis (dated to ~200 

Myr at the Permian-Triassic boundary, (Medlin et al., 2000)), in which a non-

photosynthetic heterotrophic eukaryotic host cell acquired a red algal plastid (Falkowski 

et al., 2004). Although the analysis of the two sequenced diatom genomes T. 

pseudonana and P. tricornutum provided support for a red algal secondary 

endosymbiont (Armbrust et al., 2004; Bowler et al., 2008), subsequent comparative 

genome analysis revealed many more genes from a green algal endosymbiont 

suggesting a cryptic plastid endosymbiosis in diatoms (Moustafa et al., 2009). Although 

the contribution of genes with green algal origin in diatom genomes has recently been 

challenged (Deschamps and Moreira, 2012), there is strong evidence that secondary 

endosymbiosis happened multiple times (Baurain et al., 2010) and that diatoms are 

derived from a serial secondary endosymbiosis (Sanchez-Puerta and Delwiche, 2008). 

Thus, diatoms may have had a plastid from a green alga, which was later replaced by a 

red algal plastid, leading to a complex evolution of diatom plastids (Petersen et al., 

2006; Frommolt et al., 2008; Moustafa et al., 2009). As a result, diatom plastids consist 

of four distinct membranes, the inner two being derived from the red algal symbiont and 

outer two from the host cell. Subsequently, not only gene loss, but also gene transfer 

from the red algal symbiont (nucleus, mitochondria and plastid) to the host nucleus took 

place, leading to a reduction of the plastid genome as well as loss of the nucleus of the 

former photosynthetic organism. In consequence many transferred genes from the 

chloroplast or nucleus of the endosymbiont can be found in diatom genomes (Oudot-Le 

Secq et al., 2007).  

In addition to endosymbiontic gene transfer from red and green algal plastids, 

horizontal gene transfer from bacteria appears to have also played a significant role in 

the evolution of diatom genomes, contributing up to 5% of the total gene content 

(Bowler et al., 2008; Lommer et al., 2012). Overall, genes from different partners of 

secondary endosymbiosis combined with bacterial genes acquired by horizontal gene 

transfer provided diatoms with novel metabolisms never found together before and 

included the coexistence of plant-like photosynthesis and animal-like mitochondrial 
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fatty acid oxidation as well as the urea cycle (Armbrust et al., 2004; Allen et al., 2006; 

Bowler et al., 2008). Additionally, identification of many genes important for prolific 

growth under particular conditions in the world oceans (e.g. genes involved in nutrient 

uptake and storage) provide insights into metabolic adaptations to marine environments. 

The discovery of entirely unexpected metabolic pathways (like the urea cycle) from 

whole genome sequences, despite intense research on the same metabolism in preceding 

years, underlines the importance of genome sequences as “hypothesis-generating 

machines” (Moran and Armbrust, 2007). However, only about 50% of genes in diatom 

genomes, especially diatom-specific genes, can be assigned with putative functions 

based on sequence homologies to model organisms and experimental data (Bowler et 

al., 2010).  

To address this discrepancy, genome-wide gene expression studies have been 

conducted for diatoms in response to different environmental conditions, including 

nutrient limitation with nitrogen, silicon, iron and cobalamin (vitamin B12) as well as 

limitations induced by carbon dioxide (high pH) and low temperatures (Allen et al., 

2008; Mock et al., 2008; Bertrand et al., 2012; Lommer et al., 2012). Novel insights into 

genes of unknown function can be gained by analysis of specific responses to different 

environmental conditions and associations with known genes (Allen et al., 2008; Mock 

et al., 2008; Bertrand et al., 2012; Lommer et al., 2012). A study of iron-limited P. 

tricornutum, using a combination of gene expression profiling and metabolomic 

analysis, showed strong down regulation of carbon metabolism and photosynthesis 

(Allen et al., 2008). Genes encoding for plastid beta-carbonic anhydrase and 

phosphoribulokinase, both providing substrate to RubisCO, were strongly down 

regulated, suggesting that they play key roles in the regulation of diatom carbon 

metabolism. In contrast, gene clusters involved in iron uptake, including ferric reductase 

and a putative ferrichrome-binding protein, were strongly upregulated (Allen et al., 

2008). In comparison, a genome-enabled microarray study of T. pseudonana revealed 

considerable overlap in the transcriptional responses to insufficient iron and silicic acid 

(Mock et al., 2008). Moreover, a recent genomic analysis of T. oceanica, assisted by 

massive parallel pyrosequencing of cDNA libraries from iron-deplete and iron-replete 

cultures, showed that T. oceanica down regulates genes involved in chlorophyll 

biosynthesis and photosynthetic carbon fixation, the Calvin cycle, photosynthetic 

subunit proteins and light harvesting proteins in response to iron starvation (Lommer et 

al., 2012). Conversely, cytochrome c oxidase, cytochrome b and subunits of the NADH 
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dehydrogenase, proteins associated with the mitochondrial respiratory chain were 

upregulated (Lommer et al., 2012). This transcriptome-derived knowledge supported the 

interpretation of the functional elements of the T. oceanica genome in response to 

chronic iron limitation typical of the open ocean (Lommer et al., 2012). Furthermore, 

RNA-Sequencing transcriptome analysis combined with metabolic profiling of T. 

pseudonana and P. tricornutum under limited cobalamin availability revealed three 

distinct strategies used by diatoms to cope with low cobalamin (B12) availability, 

including upregulation of a novel cobalamin acquisition protein (Bertrand et al., 2012).  

In summary, the analysis of the expression of genes encoding for proteins with 

known function provided novel mechanistic insights into metabolic responses to 

relevant environmental conditions in P. tricornutum, T. pseudonana and T. oceanica. 

Moreover, as shown by these genome-enabled studies, the association of genes with 

unknown function to environmental conditions in which they are expressed provides a 

useful mean to explore gene function and assist genome annotation (Maheswari et al., 

2009). Finally, the genome-wide analysis of gene expression in the mesophilic diatoms 

P. tricornutum, T. pseudonana and T. oceanica provided insights into the molecular 

adaptation and acclimatisation to important environmental conditions, however this 

level of analysis is lacking for psychrophilic polar diatoms. 

 Aims of thesis 1.6

In general, little is known about genomic adaptations in polar eukaryotes, 

making the obligate psychrophilic diatom Fragilariopsis cylindrus an ideal candidate 

for a genome sequencing project. It was hypothesised that F. cylindrus contains 

significantly different genomic adaptations to thrive under polar ocean conditions in 

comparison to sequenced non-polar diatoms and that its genome is differentially 

regulated under different conditions. Thus, the initial core aims of the F. cylindrus 

sequencing project were to  

1. generate and order genomic and expressed sequence tag (EST) sequences,  

2. identify and annotate the complete set of genes,  

3. characterise DNA sequence diversity,  

4. establish an integrated web-based genome browser and research interface, and  

5. to provide resource for comparative genomics.  
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Using comparative analysis with sequenced mesophilic diatoms, it was aimed to 

identify genes and structural changes of DNA that are necessary for eukaryotic 

photosynthetic organisms to live under polar conditions. Moreover, it was intended to 

assemble metabolic pathways and obtain new insights into how a polar diatom interacts 

with its environment. A core aim of this thesis research was to analyse metabolic 

pathways and physiological responses of F. cylindrus to important environmental 

changes using genome-wide expression profiling. High-throughput sequencing of 

cDNA (RNA-Seq) from F. cylindrus grown under six experimental conditions was used 

to compile comprehensive atlases of gene expression. Thereby, the aims were to analyse 

how the genomic information is used to acclimatise to important environmental 

conditions and to also obtain novel insights into genes of unknown function, identify 

novel genes involved in polar adaptation and improve genome annotation. Finally, the 

intention was to obtain functional data, including the biochemical properties of specific 

genes in F. cylindrus that emerged as adaptive key genes from genomic and 

transcriptomic analyses. The characterisation of a newly discovered proton-pumping 

bacteria-like rhodopsin, which showed strong gene expression under low iron, was 

chosen as an example of a molecular adaptation to the low iron conditions 

phytoplankton encounter in the high nutrient low chlorophyll regions of the Southern 

Ocean. 

The scientific questions to answer were:  

1. What genes and genomic features in the genome of a photosynthetic eukaryote are 

necessary to live under polar conditions?  

2. What are the molecular responses of an obligate psychrophilic eukaryote to 

important environmental conditions and how flexible are these responses to global 

changes?  

3. Can we use high-throughput transcriptome sequencing of Fragilariopsis cylindrus 

to quantify genome-wide expression, identify novel protein coding genes and refine 

gene boundaries?  

4. What are the physiological roles and functions of specific key genes in adaptation to 

polar conditions including low iron? 
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 Outline of thesis 1.7

The work presented in this thesis is divided into three major parts: (1) Sequence 

analysis and annotation of the draft genome sequence of F. cylindrus, (2) high-

throughput transcriptome sequencing of F. cylindrus transcriptomes under different 

environmental conditions and (3) characterisation of a new bacteria-like rhodopsin 

identified in the F. cylindrus genome.  

In chapter 2 I describe the laboratory and computational methods used in this 

work. The aim is to provide an overview of how the genomic data of F. cylindrus 

compiled in this work has been generated and analysed. Therefore, I first describe 

methods used for sequencing and annotation of the F. cylindrus genome, followed by a 

description of material and methods, which are based on the experimental work 

performed in the framework of this thesis.  

Chapter 3 reports the genome structure, gene content and deduced metabolic 

capacity of F. cylindrus. The main objectives were to identify and annotate the complete 

set of genes, assemble metabolic pathways and identify genes and structural changes of 

DNA that are necessary to live under polar conditions using comparative genomic 

analysis. For this purpose, I describe general characteristics of the F. cylindrus genome, 

as revealed from whole genome sequencing and a comparative analysis with other 

sequenced diatoms and phytoplankton. I describe putative adaptations to polar marine 

conditions and set the stage for the following chapters.  

In chapter 4 I present results from a genome-wide expression analysis of F. 

cylindrus using RNA-Seq. The objective was to determine and quantify the molecular 

responses of F. cylindrus to important environmental conditions, which is essential for 

interpreting the functional elements of the genome. For this purpose, the transcriptomes 

of F. cylindrus grown under optimal polar summer growth conditions (nutrient replete, 

+4 °C, 35 µmol photons m
-2

 s
-1

), freezing temperatures (−2 °C), elevated temperatures 

(+10 °C), elevated carbon dioxide (1000 ppm CO2), iron starvation (−Fe) and prolonged 

darkness (one week darkness) were analysed. I give an overview of the F. cylindrus 

transcriptome providing further understanding of molecular mechanisms of 

acclimatisation to environmental stresses and highlight selected metabolic pathways and 

genes involved in acclimation to prolonged darkness.  
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In chapter 5 the functional characterisation of a bacteria-like rhodopsin from F. 

cylindrus is documented. A bacteria-like rhodopsin in F. cylindrus was a novel 

discovery during the genome analysis and it was found to be strongly expressed under 

low iron conditions using RNA-Seq transcriptome sequencing. Although bacteria-like 

rhodopsins have recently been identified to be very abundant in eukaryotic marine 

phytoplankton, the function and role of putative light-driven proton-pumping 

rhodopsins in the presence of a proton gradient-generating chlorophyll-based 

photosynthetic apparatus remains speculative. Thus, the Fragilariopsis rhodopsin 

provided an ideal model to study molecular adaptations to low iron conditions of the 

Southern Ocean and was chosen over other putative “ice-specific proteins”. The gene 

expression of the Fragilariopsis rhodopsin was studied under silicate limitation as well 

as red and blue light conditions (in addition to the above described six transcriptome 

conditions) using RT-qPCR. Additionally, functional analysis using heterologous 

expression systems including the diatom P. tricornum and Xenopus laevis oocytes are 

described. Possible hypotheses for its physiological role are provided.  

Finally, in chapter 6 I conclude with a summary of the major findings of the 

research and a general discussion of the main results. I draw on all data generated in this 

work and attempt to give an integrative view on the ecological and evolutionary 

implications together with future research perspectives.  
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  Chapter 2

Materials and methods 

 Genome sequencing and computational analysis 2.1

Genome sequencing and computational analysis of the F. cylindrus genome was 

performed in an international collaborative effort by the Fragilariopsis genome 

consortium (see p. XI). Genomic DNA for sequencing was extracted by Thomas Mock 

using a cationic surfactant cetyltrimethylammonium bromide (CTAB)-based extraction 

protocol modified from Friedl (1995) (Supplementary protocol S1). The genome 

sequencing data presented in this work has been obtained by my own custom analyses 

as well as significant contribution by other consortium members, in particular Andrew 

E. Allen, Christoph L. Dupont, Stephan Frickenhaus, Beverley E. Green, Florian Leese, 

Florian Maumus, Christoph Mayer, Robert P. Otillar, James A. Raymond, Remo Sanges, 

Jeremy Schmutz, Andrew Toseland, Christiane Uhlig and Ruben E. Valas as indicated 

below.  

 Genome sequencing and assembly 2.1.1

The general process eukaryotic genome sequencing and annotation is outlined in 

Yandell & Ence (2012). The Fragilariopsis cylindrus Krieger (CCMP 1102) draft 

genome was sequenced with 8-fold average coverage at the U.S. Department of Energy 

Joint Genome Institute (JGI, http://www.jgi.doe.gov/, Walnut Creek, CA, USA) using a 

whole-genome shotgun approach. During the shotgun sequencing approach the genome 

was fragmented into small, sequenceable units, which were assembled into contigs 

derived from overlapping sequences using computer algorithms. The genome sequence 

assembly v1.0 was built by Jeremy Schmutz (JGI) using Arachne assembler from whole 

genome shotgun and paired end sequencing reads. The F. cylindrus genome was 

annotated using the JGI Genome Annotation Pipeline by Jeremy Schmutz, Robert P. 

Otillar and Igor V. Grigoriev. The Mauve Genome Alignment Software (available at 

http://gel.ahabs.wisc.edu/mauve/download.php) was used by Robert P. Otillar to 

estimate SNP/polymorphism rates between two aligned regions of putative homologous 

chromosomes. Additionally, polymorphism was determined by Jeremy Schmutz using 

read depth coverage analysis of the assembled genome sequence. Finally, custom 

http://www.jgi.doe.gov/
http://gel.ahabs.wisc.edu/mauve/download.php
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analyses were performed by the Fragilariopsis genome consortium (see p. XI), 

including my own analyses.  

 Sequence analysis 2.1.2

To perform my own customised sequence analysis, the current JGI 

(http://www.jgi.doe.gov/) diatom sequencing project for the polar diatom Fragilariopsis 

cylindrus v1.0 (http://genome.jgi-psf.org/Fracy1/Fracy1.home.html) was searched using 

the BLAST algorithm (Altschul et al., 1997). Comparison with the genome sequences 

of the diatoms Thalassiosira pseudonana 

(http://genome.jgi.doe.gov/Thaps3/Thaps3.home.html) (Armbrust et al., 2004) and 

Phaeodactylum tricornutum (http://genome.jgi-psf.org/Phatr2/Phatr2.home.html) 

(Bowler et al., 2008) as well as with other publicly available sequences helped to 

delimit gene models.  

In many cases an N-terminal targeting domain can direct proteins into the 

endoplasmic reticulum (ER), mitochondria, plastids, peroxisomes and the extracellular 

space or to other cell compartments. The subcellular location of proteins was predicted 

using the program TargetP (http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et 

al., 2000) using non-plant networks (Nielsen et al., 1997) and mitochondrial transit 

peptides were identified. Signal peptides of the endoplasmic reticulum (ER) proteins 

were identified using the web tool SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/) 

(Petersen et al., 2011). In addition it was checked manually if protein sequences contain 

a C-terminal retention signal (KDEL, HDEL, DDEL or DEEL) (Pagny et al., 1999). 

Plastid proteins of diatoms possess bipartite targeting signals consisting of a signal 

peptide and a transit peptide domain with a conserved sequence motif at the signal 

peptide cleavage site (Kilian and Kroth, 2005; Gruber et al., 2007). Sequences were 

screened for signal peptides using SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/) 

and cleavage site predictions were performed using a eukaryotic neuronal-network 

based method (Petersen et al., 2011). For prediction of chloroplast transit peptide-like 

domains the program ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) (Emanuelsson 

et al., 1999) was used. In some cases transit peptide-like domains of plastid proteins are 

also recognised as mitochondrial transit peptides by the program TargetP. Proteins were 

considered to be plastid targeted if they possess a signal peptide but no ER retention 

signal, possess a N-terminal extension longer than the signal peptide with transit peptide 

features and contain the amino acids F, W, Y or L at the signal peptide cleavage site, 

http://www.jgi.doe.gov/
http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
http://genome.jgi.doe.gov/Thaps3/Thaps3.home.html
http://genome.jgi-psf.org/Phatr2/Phatr2.home.html
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/ChloroP/
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because mutational analysis showed that only the amino acids phenylalanine (F), 

tryptophan (W), tyrosine (Y) and leucine (L) at the +1 position of the predicted signal 

peptidase cleavage site allow plastid import (Gruber et al., 2007). Peroxisomal proteins 

possess conserved peroxisome targeting signals (PTS) (Lanyon-Hogg et al., 2010). 

Sequences were screened for the consensus sequences PTS1 and PTS2 using the web 

based application PTS1Prowler (http://pprowler.itee.uq.edu.au) (Hawkins et al., 2007). 

Putative enzymes without recognisable targeting sequences were considered cytosolic 

although it cannot be excluded that they might be co-translocated by association with 

targeting sequence-containing proteins or be targeted to further cellular compartments. 

For a detailed description of tools for protein localisation prediction see also 

(Emanuelsson et al., 2007).  

Gene identification and functional analysis was facilitated by transcriptome 

sequencing of F. cylindrus cells grown under six different growth conditions using 

RNA-Sequencing at the British Natural Environment Research Council (NERC) 

Biomolecular Analysis Facility (NBAF GenePool, Edinburgh, UK) (see  Chapter 4). 

 Identification, annotation and classification of repeats  2.1.3

Florian Maumus and Hadi Quesneville identified and annotated repeats in the F. 

cylindrus genome. Additionally, Christoph Mayer and Florian Leese performed specific 

analyses of the tandem repeat content in F. cylindrus and comparative analyses of 

tandem repeats. 

The repeated sequences present in F. cylindrus were identified and annotated 

using the TEdenovo pipeline from the REPET package 

(http://urgi.versailles.inra.fr/Tools/REPET) that integrates a combination of de novo and 

similarity-based approaches (Quesneville et al., 2005). At first, high-scoring segment 

pairs (HSPs) were identified by comparing the whole F. cylindrus genome to itself using 

the program BLASTER. HSPs were clustered using the GROUPER, RECON, and 

PILER programs, and groups comprising at least three sequences (n = 1,421) were 

retained for further analysis. Clusters of sequences were then aligned using the MAP 

algorithm and multiple sequence alignments were used to derive a consensus sequence 

for each cluster. In a second step, the set of consensus sequences were aligned on the F. 

cylindrus genome using TEannot pipeline from the REPET package which combines the 

RepeatMasker, BLASTER, and CENSOR programs. MATCHER was used to handle 

http://pprowler.itee.uq.edu.au/
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overlapping HSPs and to make connections (also called defragmentation). In addition, 

low-copy and degenerate TEs were searched in the whole genome by comparison with 

the Repbase database using BLASTER with tBLASTx and BLASTx. Furthermore, the 

whole genome was screened for SSRs using Tandem Repeats Finder (TRF), Mreps, and 

RepeatMasker (using Repbase SSR library), and results from the three programs were 

merged (the same method was used to estimate microsatellite coverage in the P. 

tricornutum and T. pseudonana genomes). SSRs were removed when included into TE 

annotations and TE doublons were purged from annotation files. Finally, locally co-

linear annotations of the same consensus were recovered and joined using the 'long join' 

procedure if the fragments were of similar age and interrupted by younger TE 

insertions. A GFF3 annotation file comprising all the repeats detected during this 

analysis is available for insertion in the JGI genome browser. Each repeat consensus 

was analyzed using a tool called PASTEC designed to support the process of automatic 

repeat classification. PASTEC combines three complementary approaches to detect a 

variety of features in the consensus sequences: i) screen for structural features 

characteristic of transposable elements (TEs) such as long terminal repeats (LTRs), 

terminal inverted repeats (TIRs), and polyA tails, as well as for the presence of simple 

sequence repeats (SSRs) using TRF; ii) search for similarity with known nucleic and 

amino acid TE sequences deposited in Repbase (http://www.girinst.org/) using 

BLASTx, tBLASTx, and BLASTn; iii) probe for virtually all hidden Markov models 

(HMMs) from Pfam annotation database using HMMER. The bank of HMMs was 

modified to distinguish between two classes of Pfam annotations: TE-specific or not 

(host gene-specific). According to the features detected, PASTEC proposes an 

automated classification of the input sequences. In an effort to improve TE 

classification, it was attempted to manually construct a library of F. cylindrus-specific 

TEs. Thereby, LTR FINDER was used with whole genome as input in order to identify 

full length LTR-retrotransposons sequences in the genome. Consensus sequences from 

REPET output were screened for similarity with TEs referenced in the Repbase and 

home-made databases using BLASTx and tBLASTx. The results were manually curated 

and worked to compile a library of F. cylindrus reference TEs comprising Class1 and 

Class 2 elements including sequences classified as Ty1/copia, Ty3/gypsy, DIRS, and 

LINE (including Ambals), and PiggyBac, Harbinger, and MuDR, respectively. These 

nucleotide sequences were appended to the Repbase library to launch PASTEC. In 

addition, transfer and ribosomal RNA genes were searched in the F. cylindrus genome 

sequence using the tRNAscan-SE and RNAmmer programs, respectively, and compared 
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to the consensus sequences using BLASTn. The features collected from each consensus 

sequence were subsequently examined and used as a support for the manual curation of 

the results obtained from automated classification with PASTEC. 

Additionally, tandem repeats were detected using the software Phobos (v.3.3.12) 

and results were analysed with the sat-stat software (v.1.3.12). The Phobos search 

parameters allowed for moderate gegree of imperfection in the repeats and searches 

were carried out for a unit size of 1 – 50 bp, which spans microsatellites as well as a 

large part of the size range of minisatellites (7 bp – 100 bp). Phobos search parameters 

were as follows: match score 1, mismatch and indel score −5, N score 0. The first unit 

was not scored and a maximum of two successive Ns were allowed in a tandem repeat. 

Tandem repeats were required to have a minimum score of 12 or the unit length. 

 General annotation of protein families 2.1.4

The general annotation of protein families in F. cylindrus was performed by 

Andrew E. Allen and Ruben E. Valas. To annotate protein families, a BLASTP search of 

all 27,137 predicted gene models (Filtered Models1) was performed using an E value 

cut-off of 1×10
-9

 and results were compared to searches performed with filtered gene 

model sets from T. pseudonana and P. tricornutum to define genes of a diatom core 

genome. Subsequently, the OrthoMCL Database pipeline (http://www.orthomcl.org/cgi-

bin/OrthoMclWeb.cgi) was used to define orthologs and paralogs. A four section venn 

diagram was created after clustering BLASTP results of all three diatoms with results 

obtained for all currently available red and green algae genomes. Finally, a three section 

venn diagram was constructed by performing a BLAST search of the diatom cluster 

against the phylodb_1.04 database. 

 Annotation of metal-binding protein families  2.1.5

In addition to the general annotation of protein families, specific metal-binding 

protein families were annotated by Christoph L. Dupont in a separate analysis. 

Therefore the Structural Classification of Proteins (SCOP) data base was utilised. SCOP 

version 1.75 included 38,221 Protein Data Bank (PDB) three dimensional structures 

sorted into a hierarchy encompassing class, folds, fold superfamilies (FSF), fold 

families (FF), and domains. The Superfamily database provided hidden Markov models 

for each of the FSFs and FFs within the SCOP database that could be used to annotate 

protein sequences according to structural domain composition. The collection of 

http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi
http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi
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phytoplankton and Phytophthora genomes within PHYTAX were analysed using the 

Superfamily HMMs and HMMER3. Metal annotations of the SCOP database were built 

upon those of Dupont et al. (2006; 2010). 600 new FFs and FSFs had been added to 

SCOP since this annotation; these were manual curated according to metal binding. This 

manual curation involved an examination of the structure, and where possible, the 

literature associated with it. Particular attention was paid to the domain boundaries in 

proteins; many metal FFs recombine with non-metal FFs. An automated annotation of 

metal binding by SCOP FFs from the Procognate database was compared to the manual 

annotations. Generally the two annotations agreed (30 mismatches out of 2602 FFs). 

Occassionally, Procognate assigned Mg as a ligand when the actual element was Mn. In 

select cases, a non-native metal was used in the crystallization matrix; here, literature 

surveys resolved the disagreement. Assignments made by KEGG or GO contained 

upwards of 50% false positives/negatives. In total, 602 FFs were designated as metal 

binding. If all structures within a FF bound the same metal, it was described as X-metal 

binding, with X being Fe, Zn, Cu, Co, Ni, Mo, Ca, or Mn. In the circumstances where 

the structures within a FF bind different metals, that FF was categorized cambialistic.  

 Experimental work 2.2

 Phytoplankton strains, media and growth conditions 2.2.1

Fragilariopsis cylindrus (Grunow) Krieger CCMP 1102 and the polar 

dinoflagellate Polarella glacialis Montresor, Procaccini et Stoecker CCMP 2088 were 

obtained from the Provasoli-Guillard National Centre for Marine Algae and Microbiota 

(NCMA, https://ncma.bigelow.org/, West Boothbay Harbor, ME, USA, formerly 

CCMP). F. cylindrus was grown and maintained in filter-sterilised (0.2 µm pore size) 

Aquil artificial seawater medium (Morel et al., 1979; Price et al., 1988/89), which had 

been adjusted to pH 8.1 – 8.4 prior to use, while P. glacialis was grown and maintained 

in filter-sterilised (0.2 µm pore size) L1 artificial seawater medium (Guillard and 

Hargraves, 1993) as modified from f/2 medium (Guillard and Ryther, 1962; Guillard, 

1975), instead. Polar phytoplankton cultures were grown at 4 °C under continuous 

illumination at a photon flux density of approximately 35 µmol photons m
-2

 s
-1

 (QSL 

2101, Biospherical Instruments Inc., San Diego, CA, USA) from cool white fluorescent 

tubes. Cell cultures were handled under strict sterile conditions and potential bacterial 

contamination was eliminated as stock cultures were subjected to a multi-antibiotic 

treatment with ampicillin (50 µg mL
-1

), gentamycin (1 µg mL
-1

), streptomycin (25 µg 

https://ncma.bigelow.org/
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mL
-1

), chloramphenicol (1 µg mL
-1

) and ciprofloxacin (10 µg mL
-1

) (Jaeckisch et al., 

2011). Fluorescence microscopy combined with 4',6-diamidino-2-phenylindole (DAPI) 

fluorescent nucleic acid staining was used to confirm axenic cultures before the 

beginning of culture experiments. Therefore, 1 – 5 mL of cell cultures were fixed with 

0.2 µm-filtered solutions of 3 µL mL
-1

 Lugol’s iodine (aqueous KI 10% w/v and iodine 

5% w/v), 50 µL mL
-1

 neutralised formalin (20% aqueous formaldehyde with 100 g L
-1

 

hexamine), followed by destaining of fixed cell mixtures with 6 µL mL
-1

 3% w/v 

sodium thiosulfate. DAPI staining was performed by adding 10 µL mL
-1

 DAPI solutions 

(1 mg mL
-1

) and incubation in the dark for 15 min. For visulalisation of DAPI-stained 

cells, samples were vacuum-filtered onto 0.2 µm pore black polycarbonate filter 

(Millipore), backed with 0.45 µm cellulose nitrate filter. DAPI filters were examined for 

axenity under UV light using an epifluorescence microscope (Olympus BX40-F 

equipped with Olympus U-RFL-T-200 high pressure mercury burner, Olympus Corp., 

Tokyo, Japan).  

P. glacialis was grown in batch cultures to stationary phase under nutrient-

replete and continuous light conditions before sampling for RNA preparations. F. 

cylindrus experimental batch cultures were grown in three biological replicates in 

chemically defined Aquil artificial seawater media using a temperature and light 

controllable incubator (RUMED light thermostate type 1301, Rubarth Apparate GmbH, 

Laatzen, Germany). F. cylindrus cultures were subjected to nine different experimental 

treatments including (1) optimal growth (+4 °C, nutrient replete, 24 h light at 35 µmol 

photons m
-2

 s
-1

), (2) freezing temperatures (−3 °C, nutrient replete, 24 h light at 35 µmol 

photons m
-2

 s
-1

), (3) elevated temperatures (+11 °C, nutrient replete, 24 h light at 35 

µmol photons m
-2

 s
-1

), (4) elevated carbon dioxide (+4 °C, 1000 ppm CO2, 24h light at 

35 µmol photons m
-2

 s
-1

), (5) iron starvation (+4 °C, −Fe, 24 h light at 35 µmol photons 

m
-2

 s
-1

), (6) prolonged darkness (+4 °C, nutrient replete, 7 d darkness), (7) half-

saturation with silicate (+4 °C, 0.3 µM silicate, 24h light at 35 µmol photons m
-2

 s
-1

) as 

well as (8) red (+4 °C, nutrient replete, 24 h light at 35 µmol photons m
-2

 s
-1

, 550 – 700 

nm colour filter) and (9) blue light illumination (+4 °C, nutrient replete, 24h light at 35 

µmol photons m
-2

 s
-1

, 480 – 540 nm colour filter). F. cylindrus stock cultures from 

exponential growth phase were used to inculate three replicates of 2 L experimental 

batch cultures with an initial cell count of 50,000 cells mL
-1

. During experimental 

treatments (except elevated CO2 treatment), cultures were bubbled with filtered ambient 

air (Swinnex unit equipped with 25 mm Whatman GF/F filter) passed through milliQ-
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H2O and manually shaken before subsampling to ensure sufficient CO2 supply and 

mixing. Subsamples were taken on a daily basis throughout the experiments to 

determine physiological parameters including specific growth rate and maximum 

quantum yield of photosystem II (Fv/Fm) as a proxy for cell fitness (Parkhill et al., 

2001). Cell counts were determined using automated cell counting with a Multisizer 3 

particle counter (Beckman Coulter, Brea, CA, USA) equipped with a 100 µm aperture 

capillary. Specific growth rates per day (µ) were calculated from the linear regression of 

the natural log of cell counts versus time during the exponential growth phase or (when 

using only two sampling points) according to the following formula:  

  (   )  
  (  )    (  )

      
   

where C1 denotes the cell concentration at time t1, C0 the cell concentration at 

time t0, and t1 – t0 the time difference in days between sampling intervals. The 

maximum quantum yield of photosystem II (Fv/Fm) was measured using pulse-

amplitude-modulated (PAM) fluorometry, using a Phyto-PAM fluorometer equipped 

with a Phyto-ED measuring head (Walz GmbH, Effeltrich, Germany). The in vivo 

quantum yields were determined in each culture and calculated using PhytoWin 

software (v2.00a; Walz GmbH) from fluorescence readings of dark acclimated samples 

as follows: 

      (      )    , 

where Fm and Fo denote the maximum and minimum fluorescence level 

(Maxwell and Johnson, 2000). Additionally, pH was measured in each sample using a 

conventional pH meter (Jenway 3150, Bibby Scientific Ltd., Staffordshire, UK).  

Whilst experimental teatments of F. cylindrus with elevated carbon dioxide, red 

light illumination and blue light illumination were instantly applied to F. cylindrus 

cultures, cultures grown under prolonged darkness, freezing temperatures and elevated 

temperatures were first grown to early-exponential phase at optimal growth conditions 

before sudden shifts to the final experimental condition (i.e., darkness, +11 °C and −3 

°C). These experimental treatments were initiated during early exponential phase when 

cultures had cell density of approximately 300,000 cells per mL. Different blue and red 

light spectra were created by wrapping culture vessels in commercial colour filters (172 

Lagoon Blue/025 Sunset Red, LEE Filters Worldwide, Andover, UK). Light spectra 
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were confirmed using a spectroradiometer (SR9910, Macam Photometrics Ltd., 

Livingston, UK). For low iron treatments, F. cylindrus was grown from iron-replete 

conditions in iron-free Aquil media that had been passed through a Chelex cation 

exchange column (Chelex 100 Resin, biotechnology grade sodium form, 100–200 dry 

mesh size, 150–300 µm wet bead size, Bio-Rad Laboratories, Hercules, CA, USA). 

Therefore, cells from iron-replete stock cultures were transferred into iron-free Aquil 

media and allowed to grow for several days prior to experimentation to ensure iron 

limitation as performed previously (De La Rocha et al., 2000). Preparation of iron iron-

free Aquil media and handling of low iron cultures were carried out using standard trace 

metal clean techniques as described for trace metal studies (Fitzwater et al., 1982; Price 

et al., 1988/89; Sunda et al., 2005). Accordingly, 2 L aliquots of Aquil seawater were 

supplemented with macronutrients (NO3, PO4 and Si(OH)4 in accordance with Aquil 

medium concentrations), passed through a Chelex cation exchange column, filter-

sterilised (nitrocellulose membrane filter, 47 mm 0.22 μm GSWP, Millipore, MA, USA) 

and placed into 10% hydrochloric acid-cleaned, milli-Q H2O-rinsed 2.5 L polycarbonate 

bottles. Trace metal concentrations were buffered using 100 μmol L
-1

 of 

ethylenediaminetetraacetic acid (EDTA), which reacts with metal ions (including Fe
3+

) 

to metal chelates that are not directly available to phytoplankton, rendering potential 

iron contaminations insignificant (Supplementary note S1). Dispensed chelexed and 

filter-sterilised Aquil seawater was supplemented with filter-sterilised (25 mm 0.2 µm 

syringe filter) EDTA-trace metals (minus iron) and vitamins (B12, thiamine and biotin), 

and allowed to equilibrate chemically overnight at final growth conditions before 

inoculation of cells. For batch culture growth of F. cylindrus under half saturation with 

silicate, silicate was added back to a final concentration of 0.3 μmol L
-1

 to the cultures 

on a regular basis during the experiment. The half-saturation constant Km of F. cylindrus 

for silicate was determined in a preliminary experiment, growing cells over a 

concentration range of 0.01 – 100 μmol L
-1

 silicate (Supplementary Figure S1). 

Experimental F. cylindrus cultures were sampled for RNA preparations during 

mid-exponential phase (approximately 500,000 cells mL
-1

) after several days of 

acclimation to the experimental treatment by gentle filtration of cultures (~300 psi 

vacuum pressure) onto 1.2 µm membrane filters (Isopore membrane, Millipore, MA, 

USA), placement in 2 mL cryogenic centrifuge tubes and flash-freezing in liquid 

nitrogen. Finally, the limiting effect of experimental treatments on F. cylindrus was 

confirmed according to La Roche et al. (1993), which is based on addition of the 
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experimental factor to reconstitute optimal growth conditions leading to the recovery of 

physiological parameters that are depressed by the experimental treatment.  

 RNA preparation 2.2.2

Total RNA was extracted using guanidinium thiocyanate-phenol-chloroform 

extraction according to Chomczynski & Sacchi (1987) and TRI Reagent (Sigma-

Aldrich, St. Louis, MO, USA) (Supplementary protocol S2), followed by DNase I 

(Quiagen, Hilden, Germany) treatment (1 h, 37 °C) and purification using RNeasy 

MiniElute Cleanup Kits (Quiagen, Hilden, Germany) according to the manufacturer’s 

instructions. Purity of RNA was checked on a NanoDrop (Thermo Fisher Scientific, 

Waltham, MA, USA) and integrity using 2% denaturating formaldehyde gels or an 

Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA), respectively. RNA 

concentrations were determined in duplicate readings using a NanoDrop.  

 Transcriptome sequencing and computational analysis 2.2.3

 

Figure 5. Overview of the RNA-Seq analysis steps of Fragilariopsis cylindrus. 
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 Library preparation and Illumina sequencing 2.2.3.1

Library preparation and Illumina sequencing was performed at the National 

Environmental Research Council (NERC) Sequencing Facility “The GenePool” 

(University of Edinburgh, UK) by technical staff. Triplicate samples of F. cylindrus 

grown under six different experimental conditions ( 4.2.1) were sequenced on an 

Illumina HiSeq 2000 platform. All samples were run in a single lane of a flowcell using 

multiplex DNA barcodes, generating paired-end reads of 101 bases length. Sequencing 

was conducted according to the Illumina TruSeq RNA Sequencing protocol. RNA-Seq 

libraries were prepared using the RNA-Seq Sample Prep Kit (Illumina). First strand 

cDNA synthesis was performed with random hexamers and reverse transcriptase. 

Following library construction, each molecule was sequenced in high-throughput 

manner to obtain short sequence reads. The number of reads over a genomic feature was 

a measure of its level of expression.  

 RNA-Seq read mapping 2.2.3.2

RNA-Seq read mapping was performed in collaboration with bioinformatics 

support from “The GenePool” sequencing facility (University of Edinburgh, UK), and 

particularly Gaganjot Kaur, who performed most of the bioinformatics analyses. In a 

first step, all sequenced reads were aligned to the F. cylindrus genome assembly 

(http://genome.jgi-

psf.org/Fracy1/download/portalData/Fracy1_assembly_scaffolds.fasta.gz) using the 

Genomic Short-read Nucleotide Alignment Program (GSNAP, version 2011-03-28) (Wu 

and Nacu, 2010), which supports alignment of spliced reads. To assist mapping of 

spliced reads, splice sites were extracted from the Filtered Models 1 annotation file 

(http://genome.jgi-

psf.org/Fracy1/download/portalData/Fracy1_GeneModels_FilteredModels1.gff.gz) and 

given to GSNAP. The Java-based command-line utilitiy tool Picard (v1.55) was used to 

mark duplicate fragments using its “MarkDuplicates” function. A digital gene 

expression analysis was carried out on the uniquely and concordantly mapped reads 

with fragments mapping uniquely and both reads mapping properly in pair. Reads that 

failed these criteria were excluded. The Python package HTSeq (v0.5.3p1, http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html) was used to count unique 

fragments mapping in each genomic feature using the intersection-nonempty mode. 

Briefly, intersection-nonempty mode determines how to deal with reads overlapping 

http://genome.jgi-psf.org/Fracy1/download/portalData/Fracy1_assembly_scaffolds.fasta.gz
http://genome.jgi-psf.org/Fracy1/download/portalData/Fracy1_assembly_scaffolds.fasta.gz
http://genome.jgi-psf.org/Fracy1/download/portalData/Fracy1_GeneModels_FilteredModels1.gff.gz
http://genome.jgi-psf.org/Fracy1/download/portalData/Fracy1_GeneModels_FilteredModels1.gff.gz
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
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more than one feature. In intersection-nonempty mode reads that map to the region of 

overlap between two or more features are not counted. Uniquely and concordantly 

mapping fragments were used to generate a count table. 

 Differential expression analysis of RNA-Seq data 2.2.3.3

Differential gene expression analysis was performed on original digital 

expression counts using the R Bioconductor package EdgeR (Robinson et al., 2010). 

Prior to analysis, weakly expressed genes were filtered from the data set and analysis 

was performed on transcriptionally active regions. A gene model was considered 

transriptionally active if its sum of counts (row) that mapped to the model in one or 

more libraries (columns) was greater than 0. The default “trimmed mean of M values” 

(TMM) normalisation method was used to calculate the effective library size and to 

avoid RNA composition biases, which are caused by highly abundant transcripts. 

Calling of differentially expressed genes was performed using EdgeR’s generalized 

linear models (glm) functionality and a pair-wise multiple comparison between 

treatment conditions was made.  

 Gene Ontology analysis of RNA-Seq data 2.2.3.4

A Gene Ontology (GO) analysis was performed on the differentially expressed 

genes using the R Bioconductor package goseq (Young et al., 2010). The gene length 

and GO term mappings were extracted from the F. cylindrus filtered model1 annotation 

file using customised Perl scripts (courtesy of A. Toseland) and given to goseq. The GO 

term analysis was performed individually on the following data sets: (1) all 

differentially expressed genes, (2) upregulated genes and (3) down regulated genes. 

Testing for overrepresented GO terms was performed using the default Wallenius 

approximation method and overrepresented GO terms were selected using a 0.05 false 

discovery rate (FDR) cut-off (Benjamini and Hochberg, 1995). The produced lists of 

overrepresented GO terms were summarized by removing redundant GO terms and 

visualised in semantic similarity-based scatterplots using the webserver tool Revigo 

(Supek et al., 2011) (available at http://revigo.irb.hr/). 

 Identification of putative novel protein coding genes 2.2.3.5

Identification of putative novel protein coding genes was performed in 

collaboration with bioinformatics support from “The Gene Pool” sequencing facility 

http://revigo.irb.hr/
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(University of Edinburgh, UK) and Andrew Toseland (University of East Anglia, 

Norwich, UK), who assisted with the bioinformatics analyses. In a first step, the 

genomic coordinates of regions which were covered by reads but did not contain 

genomic features in the GFF annotation file were extracted. Subsequently, these regions 

were filtered for proximity of adjacent gene models (cut-off ≤ 250 nt from existing gene 

model), which were considered to belong to 5’ and 3’ untranslated regions of 

inaccurately predicted gene models. Genomic regions meeting our cut-off criteria were 

searched for novel protein-coding genes using the ORF detection tool from the 

EMBOSS package (available at 

http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html). Parameters were set 

to report the translations of any ORFs ≥ 100 nt between stop codons, checking both 

forward and reverse strands. A BLASTP search against the Swiss-Prot database 

(available at http://www.uniprot.org, BLASTP E-value ≤ 1e
-3

, and allowing up to 10 hits 

per sequence) was performed for detected ORFs. 

 Interactive pathway analysis of RNA-Seq data 2.2.3.6

A cellular pathway analysis was performed using the interactive pathway 

explorer iPath2.0 (available at http://pathways.embl.de) (Yamada et al., 2011) to 

visualise cellular pathways represented by differentially expressed genes. The Enzyme 

European Commission (EC) number annotation and KEGG pathway mapping were 

extracted from the F. cylindrus functional annotation file 

(Fracy1_ecpathwayinfo_FilteredModels1.tab.gz) available at http://genome.jgi-

psf.org/Fracy1/Fracy1.download.ftp.html, using a customised Perl script (courtesy of A. 

Toseland) and assigned to differentially expressed genes in each individual treatment 

(likelihood ratio test P < 0.001, log2 fold change ≤ −2 or ≥ +2). The mean FPKM 

expression values for each treatment were calculated from a general FPKM count table 

using Microsoft Office Excel 2007 (Microsoft, Redmond, WA, USA) and a vertical 

lookup table (vlookup function) was applied to generate a table of differentially 

expressed genes with associated mean FPKM values from each treatment, which was 

given to iPath. The iPath map was scaled to mean FPKM expression values using 

different line thickness and colour shading. 

http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html
http://www.uniprot.org/
http://pathways.embl.de/
http://genome.jgi-psf.org/Fracy1/download/portalData/Fracy1_ecpathwayinfo_FilteredModels1.tab.gz
http://genome.jgi-psf.org/Fracy1/Fracy1.download.ftp.html
http://genome.jgi-psf.org/Fracy1/Fracy1.download.ftp.html
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 Real time quantitative polymerase chain reaction 2.2.4

Real time quantitative polymerase chain reaction (RT-qPCR) was performed for 

selected genes and to corroborate RNA-Seq data ( Chapter 4) using a two-tube RT-qPCR 

protocol according to Nolan et al. (2006).  

 Reverse transcriptase reaction 2.2.4.1

First strand cDNA synthesis was performed using Superscript II reverse 

transcriptase (Invitrogen, Carlsbad, CA, USA) utilising Anchored Oligo(dT)20 Primer 

(Invitrogen, Carlsbad, CA, USA) or Oligo(dT)20 Primer (Invitrogen, Carsbad, CA, 

USA), respectively. Reverse transcription of 500 ng of total RNA was carried out in 50 

µL reactions at 42 °C for 50 minutes, followed by inactivation at 70 °C for 15 minutes. 

As a control for DNA contamination, RNA was pooled from each biological replicate 

and first strand synthesis reaction mix was added omitting reverse transcriptase.  

 Primer design and quantitative polymerase chain reaction 2.2.4.2

Oligonucleotides (Table 1) were designed towards the 3’ end of the gene of 

interest using the web-based RealTimeDesign Software (available at 

http://www.biosearchtech.com/realtimedesign, Biosearch Technologies, Novato, CA, 

USA) aiming for an amplicon length of 80 – 150 bp (optimum 115 bp), a GC content of 

amplicon and primer of 30 – 80%, a primer length of 18 – 30 bp and a primer melting 

temperature ™ of 63 – 68 °C. BLAST searches of the primer sequences against the F. 

cylindrus genome sequence (http://genome.jgi-psf.org/Fracy1/Fracy1.home.html) were 

performed and if necessary primer sequences were modified manually to ensure 

maximum specificity. Oligonucleotides were assessed for TM, hairpins, and primer 

dimers using the web-based tool OligoAnalyzer 3.1 (available at 

http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer; Integrated DNA 

Technologies, Coralville, IA, USA) parametrised with concentrations for oligos of 0.4 

µM, Na
+
 of 50 mM, Mg

++
 of 5.5 mM and dNTPs of 0.5 mM. Primers were synthesised 

by Eurofins MWG Operon (Ebersberg, Germany).  

 

 

 

 

http://www.biosearchtech.com/realtimedesign
http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer
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Table 1. Genes investigated during this study and sequences of the primers used to amplify target genes by 

qPCR. 

Gene Target/protein ID Primer sequence (5' - 3') 
Amplicon  

size (bp) 

Actin-like protein  

(ACTIN_LIKE)/228346 

Fwd: TGACACGTACTCCGTTGGTC 

Rev: TTGGTGCCTGATACCGTTCTG 
111 

Beta Tubulin  

(TUBB_2)/274017 

Fwd: GCAATGATGTTCCGTGGAAG 

Rev: GATGCCTTCACGTTGTTGG 
116 

Hypoxanthine phosphoribosyl  

transferase (HPRT)/184309 

Fwd: TCAACCCAGCATCATTGGAAG 

Rev: TGTAGTCGAGACCATACCCTAC 
129 

Importin alpha subunit  

(IPO)/259093 

Fwd: TTGCAGCAACACTCGAACAATG 

Rev: CGCAAGTGCAGCCATCTC 
99 

Large ribosomal protein  

(L27)/269038 

Fwd: GTCCGTCATATCTTCCCAACAC 

Rev: TACTCGACGTTCCGCATCAAC 
93 

Large ribosomal protein  

(L22)/270383 

Fwd: TGCACATGGTCGAATTGGTA 

Rev: GTTTGGCGGCCATCTTTCTG 
131 

Large ribosomal protein  

(L14)/271911 

Fwd: TTGCCCTAACGGATTTAACTGTG 

Rev: AGACGTGTCTTCTTGGATTGC 
142 

Large ribosomal protein  

(L14b/L23e)/269874 

Fwd: GCCTGGAATTGTGGTTCG 

Rev: ACATTCCTTTGCAACAGGTC 
145 

Major allergen (MA) 

spike control* 

Fwd: TCGGTTGACAGATACCTTAAAGGAA 

Rev: TCAAAGGTGACGTTCGAGTTCAT 
100 

nitrile-specifier protein (NSP) 

spike control* 

Fwd: ACGATGCCTTCAGAGCTACCTT 

Rev: TACGCATCAAGCGTTTGGAA 
100 

Peptidylprolyl isomerase A  

(PPIA)/271442 

Fwd: ATGGCAAGCACGTTGTCTTC 

Rev: TGGTTGTTCCAGATTGTGATCC 
90 

RNA polymerase II 

(RNAP II)/183218 

Fwd: TCGGAGCTGCTTCCTTTTCTC 

Rev: TTGTGGACTGGATGGGTTGTAAC 
128 

Small ribosomal protein  

(S1)/274976 

Fwd: GATTCCCTCGATGGATTAGGTGA 

Rev: GAATCAAGAGAATCAGAAACATCCG 
89 

Small ribosomal protein  

(RPS11)/268264 

Fwd: TACTGCCTTACACATCAAAGTTC 

Rev: AGAGGGGATTGGTGTGACATC 
142 

TATA-box binding protein  

(TBP)/143154 

Fwd: GCATTTGCCTCCTATGAACCAGA 

Rev: CTTTGCACCTGTTATCACAACCTTC 
114 

Fragilariopsis rhodopsin  

(FR)/267528† 

Fwd: GTTACCGTTCCTCTACATTGTCC 

Rev: GTCCACCATTGAACACCCTTA 
111 

Fragilariopsis rhodopsin  

(FR)/267528† 

Fwd: GTGGTCGTTGGGTCTATTGGA 

Rev: GACTGAGTGGCATCGTTAAGTC 
91 

*spike-in controls of artificial RNA of genes from Pieris rapae (cabbage white butterfly). 

†RHO primers amplify different regions of the same gene. 

 

For qPCR reactions and second strand amplification, 5 µL of a 10-fold diluted 

reverse transcriptase reaction mix was supplemented with 20 µL 2× SensiMix SYBR 

Green NoROX Master Mix (Bioline, London, UK). Forward and reverse primers were 

added at a concentration of 200 nM. Amplifications were performed in white 96-well 

plates on a CFX96 Real Time System (Bio-Rad, Hercules, CA, USA) using the 
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following conditions: initial denaturation 95 °C, 10 minutes, followed by 40 

amplification and quantification cycles of 15 seconds at 95 °C, 15 seconds at 59 °C, 10 

seconds at 72 °C. Finally, a melting curve analysis (65 °C to 95 °C, increments of 0.5 

°C, dwelling time 5 seconds) was carried out to check for primer dimers and non-

specific amplification. For each primer pair the reliability of qPCR was demonstrated by 

five to six point standard curves made by amplification from 1:10 serial dilutions of 

reverse transcription reactions. Standards for absolute qRT-PCR gene expression 

analysis were generated as follows. Target sequences were amplified using conventional 

PCR from cDNA or plasmid templates, separated by agarose gel electrophoresis and 

purified (illustra GFX PCR DNA and Gel Band Purification Kit, GE Healthcare UK 

Ltd., Little Chalfont, UK). The concentration of agarose gel-purified target sequences 

was determined in duplicate readings using a NanoDrop and diluted 1:10,000. 

Subsequently, six point standard curves were determined for specific target sequences 

by qPCR amplification from 1:10 serial dilutions of the initial 10,000× dilution. Finally, 

the absolute amount of cDNA in the samples was calculated based on the equation 

obtained for logarithmic regression lines for standard curves. 

 Quantitative polymerase chain reaction data analysis 2.2.4.3

For qPCR data analysis, cycle thresholds (Ct) were automatically determined 

using the CFX Manager Software Version 1.1 (Bio-Rad, Hercules, CA, USA). The 

relative expressions software tool (Pfaffl et al., 2002) REST-MCS© (available at 

http://rest.gene-quantification.info/) was used to test the expression of target genes 

under different experimental conditions. Data was normalised to the exogenous 

reference gene MA and/or the endogenous reference genes TBP and RNAP II, which 

both were determined to be most stable expressed in F. cylindrus across experimental 

treatments (Supplementary Figure S6) using the BestKeeper software (Pfaffl et al., 

2004)(available at http://rest.gene-quantification.info/). Efficiancies of the qPCR 

reactions were calculated with REST from the slope of the standard curves, according to 

the established equation (Bustin, 2000; Rasmussen, 2001):  

              , 

where E is PCR efficiency ranging from 1 (minimum value) to 2 (theoretical 

maximum and optimum) and slope is determined from the linear regression of log(target 

concentration) versus Ct. If no PCR efficiencies were determined, optimal efficiency of 

http://rest.gene-quantification.info/
http://rest.gene-quantification.info/
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E = 2.0 were assumed. Finally, statistical significances were tested in REST by a pair-

wise fixed reallocation randomisation test using 2000 iterations. 

 Allele-specific quantitative polymerase chain reaction 2.2.4.4

Allele-specific qPCR to discriminate between expression of heterozygous allelic 

gene copies in F. cylindrus was performed according to Germer et al. (2000). Briefly, 

the specificity of the PCR amplification was conferred by placing the 3’-end of a 

forward or the reverse allele-specific primer directly over a SNP but matching one or 

the other variant of the heterozygous allele. Then allele-specific qPCR was performed in 

two separate reactions, using a common primer and either an allele1-specific primer or 

an allele2-specific primer. Although, in theory, only completely matching primers 

should be extended, and only the matching heterozygous allele should get amplified, 

there will be amplification of the mismatched allele but with lesser efficiency (Germer 

et al., 2000). The more frequent allele will reach the cycle threshold (Ct) at an earlier 

qPCR amplification cycle (i.e., having a smaller Ct) and the difference in Ct values 

between the two seperate qPCR reactions, the ΔCt, provides a measure of the allele 

frequency (Germer et al., 2000). The allele frequency was calculated according to the 

following equation (Germer et al., 2000):  

                       (      ),  

where ΔCt = (Ct of allele1-specific qPCR) – (Ct of allele2-specific qPCR) 

describes the difference in Ct values between the two qPCR reactions.  

Generally, allele-specific primers were designed as described above ( 2.2.4.2). 

However, in addition to their specific design to match only one of the allele sequences 

at its 3’-terminal nucleotide, additional nucleotide mismatches located three bases from 

the 3’-end of the allele-specific primer were incorporated to improve amplification 

specificity as performed previously (Newton et al., 1989; Okimoto and Dodgson, 1996; 

Gupta et al., 2005; Wilkening et al., 2005). The allele-specific primers used in this study 

are described in Table 2.  
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Table 2. Primers for allele-specific qPCR. 

Locus Primer Sequence (5' - 3') 
Amplicon 

size (bp) 

RHO 

 

RHO1_271123-C2fw: 

RHO1_271123-C2re: 

GGGTGGTCGTTGGGTCAAC 

GGTGGCGTCATTGAGTGCA 

 

88 

 
RHO2_267528-C2fw: 

RHO2_267528C2re1: 

AGGTGGTCGTTGGGTCAAT  

AGTGGCATCGTTAAGTTCC 

 

88 

L27 

 

 

L27e269038_C2-fw: 

L27e273430_C2-fw: 

L27e_common_rev2: 

TCGAGTAGATGTTAAGAAGAATTTGAAGACAC 

TCGAGTAGATGTTAAGAAGAATTTGAAGACAG 

TTACTTCCCTGTGCTTTCTTCTC 

95 

102 

 

Note. Locus describes the genetic loci for Fragilariopsis rhodopsin (RHO) and the large ribosomal protein 

L27 (L27e). Primer IDs consist of gene name, Protein ID, code for additional mismatch at 3’-end (e.g., 

C0: no mismatch, C2: mismatch three nucleotides from 3’-end), abbreviation fw: forward primer, and 

re/rev: reverse primer). Underlined nucleotides indicate the sites of polymorphisms to the other allelic 

variant. Bold nucleotides indicate additionally introduced nucleotide mismatches three bases from the 3’-

terminus to increase primer specificity. 

 

To show that the applied method of allele-specific qPCR was valid, a standard 

mix consisting of predetermined, different ratios of plasmid DNAs containing cloned 

full length sequences either of the two Fragilariopsis rhodopsin alleles was generated 

and measured for allele frequencies. Therefore, pPha-T1 plasmids (pPha-T1 FR::GFP 

and pPha-T1 FRext::GFP) were linearised (KpnI restriction digest, 37 °C, 3 h) to avoid 

strong biases by circular (supercoiled) plasmid standards (Hou et al., 2010). DNA 

concentrations of purified linearised plasmid (illustra GFX PCR DNA and Gel Band 

Purification Kit, GE Healthcare UK Ltd., Little Chalfont, UK) were determined in three 

technical replicates using a NanoDrop. Subsequently, 10 µL of purified linearised 

plasmids were concentrated until dry using a centrifugal evaporator (miVac DNA 

concentrator, Genevac Ltd., Ipswich, UK) and 10 nM standard solutions of each 

plasmid were set up with molecular grade water. Subsequently, 0.001 nM (1 pM) 

plasmid standards were made using 1:10 serial dilutions of 10 nM standards. Standard 

mixtures 100 µL were made up from both 1 pM plasmid standards to contain 

Fragilariopsis alleles with known copy frequencies of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9 and 0.95, which were used as templates for qPCR but with an annealing 

temperature of 60 °C as described above ( 2.2.4.2). Finally, allele frequencies were 

determined according to Germer et al. (2000) as described above. 
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 Heterologous expression of rhodopsins from F. cylindrus and the Antarctic 2.2.5

dinoflagellate Polarella glacialis 

After cloning of full-length rhodopsin sequences from F. cylindrus and the 

Antarctic dinoflagellate Polarella glacialis, both rhodopsins were heterologously 

expressed in Xenopus laevis oocytes to provide direct experimental evidence for their 

function as light-driven proton pump (Nagel et al., 1995). Expression of phytoplankton 

rhodopsins was performed in collaboration with the group of Georg Nagel at the 

University of Würzburg, Germany. Additionally, the Fragilariopsis rhodopsin (FR) was 

cloned and expressed in the diatom Phaeodactylum tricornutum to study subcellular 

targeting in diatoms (Kroth, 2007) and obtain insights into its physiological role based 

on specific subcellular localisation.  

 Cloning of full-length rhodopsin sequences 2.2.5.1

The full length FR1/287459 (FRext) allele (see  5.2) was amplified and subloned 

into Xenopus laevis expression vectors by Shiqiang Gao (Nagel Lab, University of 

Würzburg, Germany). A full length product of FR1 was amplified from cDNA, which 

was synthesised from RNA of iron-limited F. cylindrus cells using touchdown PCR 

amplification with the forward primer 5’-CCT TTT ACC GTA CAA TGC GAG AG-3’ 

and reverse primer 5’-CAA AAT CTG ACA CTA GGC CCT ACC-3’ and successive 

annealing temperatures of 72 °C (5 cycles), 70 °C (5 cycles) and 62 °C (30 cycles). 

Touchdown PCR reactions were performed with Phusion DNA polymerase (Finnzyme) 

according to the manufacturer’s recommendations but using a 1:1 mixture of HF and 

GC buffer as well as addition of 3% DMSO and 1 µg/µL BSA. After purification of 

agarose gel fragments, gene-specific primers containing BamHI and HindIII sites were 

used for directed cloning into the Xenopus laevis expression vector pGEMHE 

(Supplementary Figure S2). The full length FR2/274098 allele (see  5.2) was amplified 

from ~100 ng cDNA template with proofreading DNA Polymerase (Pfu, Fermentas), 

using the forward primer 5’-ATG ATC AGC GGA ACT CAA TTC AC-3’ and reversere 

primer 5’-AAG GAG AGG AGT TTC TTC GTT TC-3’. A 50 µL reaction contained 0.4 

pM of each primer, 0.2 pM of each dNTP, 1× Pfu buffer and 10 mM MgSO4. The 

amplification profile was as follows: 4 min initial denaturation at 95 °C, followed by 35 

cycles of 95 °C for 45 s, 55 °C for 45 s, 72 °C for 90 s extension, and final extension at 

72 °C for 5 min. Amplified products were purified (illustra GFX PCR DNA and Gel 

Band Purification Kit, GE Healthcare UK Ltd., Little Chalfont, UK) from 1.2% TAE 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=287459
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=274098
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agarose gels (40 mM Tris acetate, 1 mM EDTA, 0.5 µg mL
-1

 Ethidium bromide) and 

ligated into the Phaeodactylum tricornutum transformation vector StuI-GFP pPha-T1 

(Gruber et al., 2007) (Supplementary Figure S4) using blunt-ended non-directional 

ligation with StuI (Eco147I) restriction enzyme. Restriction digest with StuI and 

ligation was performed in a single tube. Therefore, a 20 µL reaction mix (1 µL vector, 5 

µL insert, 1 µL StuI restriction enzyme, 2 µL PEG 4000, 2 µL ATP/DTT (10 mM/100 

mM), 2 µL restriction enzyme buffer, 1 µl T4 ligase; adjusted to 20 µL with molecular 

grade water) was incubated overnight at room temperature until the reaction was 

inactivated by heating to 65 °C for 20 min. After cooling down to room temperature, 

empty vector molecules were digested by adding 1 µL StuI restriction enzyme to the 

inactivated reaction mix and incubation for 1.5 h at 37 °C. The digest of empty StuI-

GFP pPha-T1 vector molecules was inactivated by heating to 65 °C for 20 min. After 

cooling down to room temperature, 7 µL of ligation reaction mix was transformed in 

CaCl2-competent E. coli DH5α cells and selected on ampicillin (100 µg mL
-1

). Colony 

PCR using a combination of insert and vector primers were used to screen for plasmids 

with correct orientation of insert. Finally, the full-length Polarella rhodopsin was 

amplified and cloned by Sabrina Förster (Nagel Lab, University of Würzburg, 

Germany) from cDNA of nutrient-replete P. glacialis cultures. Different rhodopsin gene 

constructs were subcloned into heterologous expression vectors (Supplementary Figures 

S2-S4: Vectors used in this study) using customised gene-specific primers. Expression 

vectors were transformed and maintained in E. coli. Plasmids from E. coli were isolated 

by the method of Birnboim & Doly (1979) using commercial plasmid prep kits (e.g. 

Promega, Madison, WI, USA). The orientation and accuracy of cloned rhodopsin 

sequences was verified by small scale capillary sequencing (e.g. Genome Enterprise 

Ltd., Norwich, UK). 

 Heterologous expression of Fragilariopsis rhodopsin and Polarella 2.2.5.2

rhodopsin in Xenopus oocytes 

Heterologous expression of phytoplankton rhodopsins from F. cylindrus and P. 

glacialis in Xenopus laevis oocytes was performed in collaboration with the group of 

Georg Nagel at the University of Würzburg, Germany, and in particular Shiqiang Gao 

and Sabrina Förster, who performed all of the oocyte expression experiments and 

analyses according to published procedures (Nagel et al., 1995; Nagel et al., 1998; 

Nagel et al., 2002). Briefly, full-length rhodopsin sequences were subcloned into 

pGEMHE (Liman et al., 1992), a derivative of pGEM3z (Promega, Madison, WI, 
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USA). The pGEMHE plasmid (Supplementary Figure S2) is a high expression oocyte 

vector for in vitro transcription and expression in Xenopus oocytes and contains 3' and 5' 

untranslated regions (UTRs) of a Xenopus β-globin gene (Liman et al., 1992). Different 

rhodopsin gene constructs containing truncated N-terminal ends were tested to optimise 

plasma membrane expression and electrophysiological measurements in oocytes. 

Plasmid DNA linearised with NheI restriction enzyme was used for in vitro transcription 

of cRNA (Ambion, Life Technologies, Carlsbad, CA, USA). The oocytes were injected 

with 20 – 30 ng of cRNA, and incubated in a modified oocyte Ringer’s solution (110 

mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM HEPES, pH 7.6) 

supplemented with all-trans retinal (1 µM) two to five days at 16 – 18 °C (Nagel et al., 

1995). Alternatively, oocytes were incubated in ND96 (96 nM NaCl, 2 mM KCl, 1 mM 

MgCl2, 2 mM CaCl2, 5 mM HEPES, pH 7.6). The antibioticum gentamycin (100 µg 

mL
-1

) was added to solutions for storage of oocytes at 16 °C. Finally, oocytes were 

examined using two electrode voltage-clamp (TEVC) experiments as described 

previously (Nagel et al., 1995; Nagel et al., 1998). Therefore, two glass micropipettes 

(i.e., pulled capillary glass pipettes filled with 3 M KCl into which Ag/AgCl electrodes 

were inserted) were penetrated into a single oocyte cell, allowing the control of 

membrane voltage with a current electrode and measuring the transmembrane current 

with a potential electrode. The potential electrode was used to register the membrane 

voltage against a reference electrode (3 M KCl electrode), which provided the reference 

ground of the system. The photocurrents of phytoplankton rhodopsins were recorded by 

voltage clamping of oocytes at a predetermined holding potential and application of 

light-pulses close to the oocyte membrane using light fibres (1.5 mm
2
 diameter). 

 Heterologous expression of Fragilariopsis rhodopsin in Phaeodactylum 2.2.5.3

tricornutum 

The Fragilariopsis rhodopsin (FR) gene was cloned into the P. tricornutum 

expression vector pPha-T1 (Zaslavskaia et al., 2000) for analysis of subcellular 

targeting using green fluorescent protein (GFP) labelling (Kroth, 2007), protein 

purification using His-Tag (Joshi-Deo et al., 2010) and functional studies on P. 

tricornutum mutants complemented with FR. Nuclear transformation of Phaeodactylum 

tricornutum was performed using a Biolistic PDS-1000/He Particle Delivery System 

(Bio-Rad, Hercules, CA, USA) fitted with 1350 psi rupture disks as described 

previously (Kroth, 2007). For the selection and cultivation of P. tricornutum 

transformants 75 µg ml
-1

 Zeocin (InvivoGen, San Diego, CA, USA) was added to the 
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solid 1.2% agar medium. To detect green fluorescence signals from GFP-transformed P. 

tricornutum, flow cytometry (FACScalibur, BD, Franklin Lakes, NJ, USA) with the 

standard optical filter configuration was used. Therefore, green fluorescence was 

measured in the FL1 channel using a 515 – 545 nm emission filter. FL1 histograms 

were used to identify transformed (peak about 10
3
) and non-transformed (peak about 

10
1
) cells. Milli-Q water was used as a sheath fluid and all analyses were perfomed 

using a low flow rate (~20 µL min
-1

). Triggered on green fluorescence, 10,000 events 

were collected. An event rate between 100 and 400 cells s
-1

 was used to avoid 

coincidence, and when needed samples were diluted in 0.2 µm filtered artificial 

seawater prior to analysis. To confirm presence of GFP and analyse the morphology of 

the cells, upright widefield fluorescence microsocopy (Axioplan 2 IE imaging 

microscope equipped with CCD Axiocam camera, Carl Zeiss, Germany) was 

performed. Chloroplasts were identified by red autofluorescence of chlorophyll a/c 

during excitation at 562 ± 20 nm (Alexa568 filter set). The excitation and emission of 

filters used during microscopical analyses are liste in Table 3. 

Table 3. Optical filter sets used in fluorescence microscopy 

Filter Excitation (nm) Emission (nm) 

UV 365 ± 30 445 ± 30 

GFP 469 ± 17.5 525 ± 19.5 

Alexa568 562 ± 20 624 ± 20 

 

Additionally, to screen for FR in non-GFP labelled cell lines, a combination of 

colony PCR and RT-qPCR was applied. For colony PCR, a P. tricornutum colony was 

picked from selective plates and transferred into 20 µL lysis buffer (10% Triton X-100, 

20 mM Tris HCl pH 8, 2 mM EDTA). Cells were solubilised by > 30 s vortexing, 

followed by 15 min incubation on ice, 10 min incubation at 95 °C (thermal cycler) and 

final storage at room temperature. PCR amplification (4 min initial denaturation at 95 

°C, followed by 35 cycles of 95 °C for 45 s, 55 °C for 45 s, 72 °C for 50 s, and final 

extension at 72 °C for 5 min) of FR with gene-specific primers was performed using 5 

µL of a 1:5 diluted cell lysate as template. Moreover, to screen for FR transcript in non-

GFP labelled P. tricornutum transformants, RNA was extracted as described above 

( 2.2.2) and absolute RT-qPCR expression analysis ( 2.2.4) with custom primers (Table 1) 

was performed.  



65 

  Chapter 3

The draft genome of the psychrophilic diatom Fragilariopsis 

cylindrus 

 Introduction 3.1

Diatoms are the most successful group of eukaryotic phytoplankton and 

dominate the permanently cold environment sea ice. The obligate psychrophilic pennate 

diatom Fragilariopsis cylindrus is a keystone species in the Arctic and Antarctic Ocean 

(Lundholm and Hasle, 2008) and forms large populations in sea ice brine channels and 

wider sea ice zone (Kang and Fryxell, 1992).  

Although to date more than 30 psychrophilic prokaryotic genomes from sea ice 

and other permanently cold environments have been sequenced providing insights into 

molecular adaptations to psychrophily (Casanueva et al., 2010), only a single polar 

eukaryotic genome has been sequenced for the psychrotolerant terrestrial green alga 

Coccomyxa subellipsoidea (Blanc et al., 2012) and a genome sequence for a obligate 

psychrophilic marine eukaryote is lacking.  

F. cylindrus has become a model for algal adaptation to polar marine conditions 

and diverse physiological and biochemical studies have been conducted (Mock and 

Hoch, 2005; Janech et al., 2006; Bayer-Giraldi et al., 2010; Lyon et al., 2011). 

Furthermore, different expressed sequence tag (EST) libraries (Mock et al., 2005; Krell 

et al., 2008), a macroarray study (Mock and Valentin, 2004) and specific gene 

expression studies (Krell et al., 2007; Bayer-Giraldi et al., 2010) enabled first genomic 

insights into genetic adaptation of F. cylindrus to polar conditions. Thus, we choose to 

sequence F. cylindrus to reveal its metabolic potential on a genomic scale. Furthermore, 

F. cylindrus is an ideal candidate for comparative genomic analysis with sequenced 

mesophilic diatoms Thalassiosira pseudonana (Armbrust et al., 2004) and 

Phaeodactylum tricornutum (Bowler et al., 2008), not only to obtain genomic insights 

into the evolution and adaptation of diatoms to permanently cold environments, but also 

to allow further exploration of the ecological success of diatoms and particularly their 

success in extreme conditions of brine channels in polar sea ice. Last but not least, 

additional genome sequences are required to identify diatom specific evolutionary 
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innovations and to anchor environmental sequences to known genomes (Bowler et al., 

2010).  

Available diatom genome sequences have provided the blueprint for 

understanding their evolutionary origin and extraordinary ecological success (Armbrust 

et al., 2004; Bowler et al., 2008). The analysis of diatom genomes confirmed the 

secondary endosymbiotic origin of their plastids from red alga (Armbrust et al., 2004) 

and amino acid sequence comparisons showed the presence of genes originating from 

the ancestral heterotrophic host and the photosynthetic symbiont via endosymbiotic 

gene transfer (Armbrust et al., 2004) as well as from bacteria via horizontal gene 

transfer (Bowler et al., 2008). Genes from different partners of secondary 

endosymbiosis together with large numbers of bacterial genes acquired by horizontal 

gene transfer permitted novel metabolisms never previously found together and includes 

coexistence of plant-like photosynthesis together with animal-like mitochondrial fatty 

acid oxidation and urea cycle (Armbrust et al., 2004; Bowler et al., 2008). Additionally, 

identification of genes important for survival in particular conditions, such as genes 

involved in high-affinity iron-uptake and survival in low iron oceanic conditions, 

provide insights into metabolic adaptations to specific marine environments (Armbrust 

et al., 2004).  

Some adaptive strategies for survival in permanently cold environments have 

been revealed by psychrophilic prokaryotic genomes and include identification of cold 

shock proteins, antifreeze proteins and proteins involved in unsaturated fatty-acid 

synthesis to maintain membrane fluidity at low temperatures (D'Amico et al., 2006; 

Casanueva et al., 2010). Additionally, comparative analysis of prokaryotic genomes 

showed amino acid modifications in protein-coding genes to confer molecular 

flexibility to increase catalytic efficiency and prevent cold denaturation (Saunders et al., 

2003; Medigue et al., 2005; Methe et al., 2005; Ayala-del-Río et al., 2010; Zhao et al., 

2010). However, little is known for adaptation of polar eukaryotes and only since the 

first macroarray study of F. cylindrus in 2004 (Mock and Valentin, 2004) modern 

molecular tools been used to discover the molecular bases of the adaptation and gene 

composition of sea ice algae. In addition to the construction of EST libraries from F. 

cylindrus grown under freezing temperatures (cold stress) and high salt (salt stress) 

(Mock et al., 2005; Krell et al., 2008), an EST library has been constructed for the polar 

diatom Chaetoceros neogracile under polar summer growth conditions (+4 °C, 

continuous light) (Jung et al., 2007) and two cDNA microarray studies of C. neogracile 
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have been conducted under thermal stress (+10 °C) (Hwang et al., 2008) and high light 

stress (600 µmol photons m
-2

 s
-1

) (Park et al., 2010). The array studies with F. cylindrus 

(Mock and Valentin, 2004) and C. neogracile (Hwang et al., 2008; Park et al., 2010) 

showed that the acclimation to lower temperatures seems to put less stress on these 

algae compared to high-temperature (+10 °C) and that photosynthesis is negatively 

affected under high temperatures and high light. However, the molecular basis of these 

phenomena remains largely unknown and it is only recently that a polar eukaryotic 

genome has become available for the psychrotolerant green alga C. subellipsoidea 

(Blanc et al., 2012). Although C. subellipsoidea can survive extremely low temperatures 

in Antarctic soil (−50 °C), it is not fully specialised to grow in a permanently cold 

environment and its optimal growth temperature is ~20 °C (Blanc et al., 2012). 

Furthermore, there are significant metabolic differences between green algae and 

diatoms (Wilhelm et al., 2006). Thus, we sequenced the genome of F. cylindrus to 

provide the first obligate psychrophilic eukaryotic genome from a marine phytoplankton 

species and to gain first insights into evolution and adaptation of a diatom to conditions 

of polar oceans.  

Here, I report the genome structure, gene content and deduced metabolic 

capacity of F. cylindrus in comparison to other sequenced diatoms and explain putative 

adaptations to extreme environments. 

 Results 3.2

The F. cylindrus draft genome sequence has been made available at 

http://genome.jgi-psf.org/Fracy1/Fracy1.home.html and has been annotated by an 

international consortium led by Thomas Mock (see Preface). In the following, I report 

genome structure, gene content and metabolic capacity of F. cylindrus. To compile a 

coherent synopsis of the F. cylindrus genome, I also interpreted and analysed data 

provided by other members of the F. cylindrus genome consortium, whose individual 

contributions are specified above (see p. XI). Data contributed by other consortium 

members are indicated in the text and figure legends throughout this chapter. Personally, 

I manually annotated about 500 genes and performed custom comparative analyses on 

metabolic pathways including carbohydrate metabolism, lipid metabolism, chlorophyll 

metabolism and F. cylindrus-specific genes.  

http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
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 Genome structure, assembly and gene content 3.2.1

The nuclear genome assembly of F. cylindrus was determined to be ~80.5 Mb 

(Table 4) with a sequencing read coverage depth of 7.25× and was assigned to 271 

genomic scaffolds (118 scaffolds > 50 kb). Each genomic scaffold represents a portion 

of the genome sequence reconstructed from end-sequenced whole-genome shotgun 

clones (fragments) and is composed of contigs and gaps. In total, the F. cylindrus 

nuclear genome assembly contained 4602 contigs and 5.4% sequence gaps. The contigs 

are defined as contiguous genomic sequences in which the order of bases is known to a 

high confidence level and gaps occur where reads (i.e., known sequences) from the two 

sequenced ends of shotgun clones overlap with other reads on a different contig. Since 

the average fragment lengths were known, the number of bases between contigs and 

thus gap size could be estimated. There are small gaps of 1 – 5 kb in the current F. 

cylindrus genome assembly, which interrupt genes and affect gene annotations. The 

available F. cylindrus genome sequence reads allowed only incomplete assembly falling 

short in the aim of whole-genome shotgun assembly to represent each genomic 

sequence in one scaffold. Thus, one chromosome may be represented by many scaffolds 

and the relative locations of scaffolds in the genome remain unknown.  

Interestingly, the F. cylindrus genome was found to be heterozygous with the 

effect of punctuated high nucleotide polymorphism estimated to ~6% between selected 

syntenic scaffolds that represent putative homologous chromosomes with the same 

order of genes (Robert P. Otillar, JGI, personal communication 21/06/2012). A high 

degree of nucleotide polymorphism prevented heterozygous haplotypes, which 

contained different alleles at genetic loci, to be collapsed into a single haplotype (i.e., 

the genotype of linked genomic loci on a chromosome) and caused a diffuse haplotype 

structure. This diffuse haplotype structure contains both highly heterozygous genomic 

regions, which were too different for the assembly algorithm to be combined into a 

single contig (and thus scaffold), as well as consensus sequences of merged haplotypes, 

which represent DNA from two homologous chromosomes. As a result of the diffuse 

haplotype structure, syntenic scaffolds in F. cylindrus that represent putative 

homologous chromosomes overlap in regions with a high degree of heterozygous allelic 

differences between haplotypes and split into separate sets of scaffolds, each 

representing one heterozygous allele. Thus, a heterozygous allele, which is commonly 

defined as a polymorphic DNA sequence that exists in only one location of the genome 

(genomic locus), appears on more than one scaffold. The high degree of heterozygousity 
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in the F. cylindrus genome affected ~30% (7,966) of the 27,137 predicted gene models 

and if not specified differently, the following analyses refer to the set of 27,137 

predicted genes. Assuming synteny (i.e., similar blocks of genes in the same relative 

position of the genome) representing heterozygous regions of putative homologous 

chromosomes (heterozygous polymorphism), we predict 18,077 genes after filtering 

highly heterozygous gene copy pairs (Table 4). To explore the hypothesis that 

heterozygous gene copy pairs were gene duplications (paralogs) as oppose to highly 

diverged alleles, the sequencing depth coverage of the genome was investigated for 

heterozygous gene copy pairs. With the ideal assumption that alleles represent the same 

(divergent) genomic loci, we might expect to observe a twofold lower coverage in 

comparison to paralogous genes, which would contain reads from two assembled 

haplotypes. It was observed that the primary gene copy variant, defined as the copy 

variant on the larger of the two scaffolds, had a higher average coverage of ~6-fold in 

comparison to ~3-fold for secondary alleles (Supplementary Figure S7, courtesy of 

Robert P. Otillar, unpublished data). Furthermore, under the assumption that paralogs 

are more divergent (> 2% dissimilarity of nucleotide sequence) than alleles, the 

sequence polymorphism of gene copy variants was analysed and it was found that 

sequence polymorphism of the gene copy pairs ranged from single nucleotide 

polymorphisms (SNPs), insertions/deletions (InDels) to larger structural variants 

involving larger DNA fragments. Gene copy pairs showed a high nucleotide sequence 

similarity of > 98% for most pairs (Figure 8), which corresponded to amino acid 

sequence similarity > 99% (not shown, courtesy of Andrew Toseland, unpublished 

data), indicating the presence of putative heterozygous alleles. The final functional 

analysis of the gene copy variant pairs showed that biological process gene ontology 

(GO) terms “metabolic process” (GO:0008152), “lipid metabolism” (GO:0006629) and 

“intracellular protein transport” (GO:0006886) were significantly overrepresented 

compared to the set of genes not present as variant pairs (Fisher exact test, P < 0.05; 

courtesy of Remo Sanges, unpublished data).  

The annotation of F. cylindrus showed that repeats represent ~38% of the 

assembly including transposable elements (TEs), unclassified repeats and simple 

sequence repeats (SSRs) (Table 4). TEs represented 5.9 Mb (7.3%) and unclassified 

repeats contributed 7.3 Mb (9.1%) of sequences (Florian Maumus, unpublished data). 

SSRs constituted 17.4 Mb (21.6%) of the F. cylindrus genome including low-

complexity DNA and tandem repeats (Florian Maumus, unpublished data). Tandem 
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repeats were most abundant in introns (~7%), followed by intergenic regions (~3.5%) 

and specific analysis of showed that ACT and ATC repeat patterns were particularly 

common constituting ~800 bp/Mbp (0.1% coverage) and ~1600 bp/Mbp (0.2% 

coverage), respectively (Christoph Mayer & Florian Leese, unpublished data, not 

shown). Additionally, CAA tandem repeat patterns were enriched in gene promoter 

regions of F. cylindrus and the CAACAA motif was found most significant (motif 

finding analysis, P = 3.33E
-16

) (Remo Sanges, unpublished data, not shown). Last, not 

least the Leucine Rich Repeat (LRR) and Pentatricopeptide repeat (PPR) protein 

domains were enriched in F. cylindrus in comparison to the diatom core genome (Figure 

10, Andrew E. Allen & Ruben E. Valas, unpublished data). 

Table 4. General features of sequenced diatom genomes 

 F. cylindrus P. tricornutum T. pseudonana 

Genome size 80.5 Mb 27.4 Mb 32.4 Mb 

G+C content (coding %) 39.8% 50.6% 47.8% 

Predicted genes 18,077 10,402 11,776 

Species-specific genes 6,913 1,404 2,450 

Species-specific paralogs 2,859 366 891 

Average gene length 1566 bp 1621 bp 1745 bp 

Average no. introns per spliced gene 2 2 3 

Average intron length 246 bp 137 bp 125 bp 

Repeat content (overall %) 38% ~17% ~17% 

Transposable elements  

(overall %) 

5.9 Mb 

(7.3%) 

2 Mb 

(7.3%) 

~0.9 Mb 

(2.9%) 

Simple sequence repeats  

(overall %) 

17.4 Mb 

(21.6%) 

2 Mb 

(7.3%) 

4 Mb 

(12.3%) 

Unclassified repeats  

(overall %) 

7.3 Mb 

(9.1%) 

0.4 Mb 

(1.5%) 

0.55 Mb 

(1.7%) 
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As shown in Table 4, the coding G+C content of the F. cylindrus genome was 

found to be 39.8%. It was shown that the G+C content variation affected codon and 

tRNA anticodon usage causing a bias towards adenine (A) and thymidine (T) bases 

(Figure 6; Figure 7; Stephan Frickenhaus, unpublished data). Analysis of relative 

frequencies of codon usage for all sequenced diatoms showed that A/T rich third codon 

bases were found more abundant in F. cylindrus than in the other two sequenced 

diatoms (Figure 6). Complementary, the analysis of relative frequencies of A or T at 

anticodon position 1 (AT1) for 330 tRNA sequences showed an A/T preference for 

codons with a genetic code degeneracy greater than one. For 12 amino acids there was a 

chance of ≥ 50% that A or T was at position 1 of the tRNA anticodon (Figure 7).  



The Fragilariopsis cylindrus genome  72 

 

 

Figure 6. Codon usage analysis of diatom genes . The codon usage frequency of protein coding genes is shown 

for F. cylindrus (blue), P. tricornutum (red) and T. pseudonana (green) (Florian Maumus, unpublished data). 
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Figure 7. Relative adenine/thymidine nucleobase frequency at anti-codon position 1 in 330 tRNA sequences of 

F. cylindrus plotted against the genetic code degeneracy (modified from Stephan Frickenhaus, unpublished 

data). 

 

 

Figure 8. Histogram of allelic nucleotide identity in F. cylindrus as function of frequency 
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Finally, to identify the gene repertoire contributing to adaptation of F. cylindrus a 

comparative analysis of the gene family content of all three sequenced diatoms with 

other eukaryotes and prokaryotes was carried out. It showed that based on the diffuse 

haplotype (27,137 genes), 6659 genes were shared by all three diatoms (reciprocal best 

BLAST(P), E-value < 1e
-9

; Andrew E. Allen & Ruben E. Valas, unpublished data) and 

represented the diatom core genome. Moreover, 1260 genes (19%) from the diatom core 

were specific to diatoms, whereas 5399 genes (81%) had orthologs in other organisms 

with the largest number of 247 genes shared with Plantae including Rhodophyceae and 

Unikonts (Figure 9; Andrew E. Allen & Ruben E. Valas). As shown by comparison of 

all three diatom genomes with genomes from Prasinophycea and Rhodophyceae, F. 

cylindrus shared 1657 orthologs with P. tricornutm, 971 orthologs with T. pseudonana, 

357 orthologs with Prasinophycea and 131 orthologs with Rhodophyta (Figure 9). 

11,511 genes (6913 for the single haplotype) were identified as F. cylindrus-specific. 

  
Figure 9. Venn diagrams of diatom core genome and F. cylindrus-specific gene families.  Left panel: The 

diatom core genome composed of genes present in all three sequenced diatom genomes. Venn diagram 

representing genes of the core diatom genome shared with bacteria, unikonts and plantae (including red algae). 

Left number in brackets shows number of paralogous families and right number the family abundance. Right 

panel: Venn diagram showing shared and unique gene families in F. cylindrus (Fragilariopsis), P. tricornutum 

(Phaeodactylum), T. pseudonana (Thalassiosira), Prasinophycea and Rhodophyta (Andrew E. Allen & Ruben 

E. Valas, unpublished data). 

 

 Protein family and metabolic pathway expansions 3.2.2

Annotated proteins of F. cylindrus and the two sequenced diatoms T. 

pseudonana and P. tricornutum were organised into 7,972 protein families (Pfam) and 

1,200 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways based 

on shared sequence similarity and referred to as diatom core genome (Andrew E. Allen 
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& Ruben E. Valas, unpublished data). The assignment of Pfam domains and KEGG 

pathways to proteins identified several protein families and metabolic pathways which 

had a significantly higher (hypergeometric test, P < 0.05) number of proteins in F. 

cylindrus in comparison to the diatom core genome (Figure 10; Figure 11). The 

expansions of protein families and metabolic pathways in F. cylindrus was evaluated in 

the context of evolution and adaptation to environmental constrains of the Southern 

Ocean including low temperatures, trace metal availability and low light conditions. 

Based on the rationale that temperature strongly affects core metabolism including 

protein translation, temperature-related protein families and transcription factors were 

investigated. Additionally, since an increase in the synthesis of unsaturated fatty acids to 

maintain membrane fluidity at low temperatures is hypothesised to be a molecular 

adaptation to psychrophilic lifestyle, the expansion of lipid metabolism of F. cylindrus 

was investigated. Moreover, as trace metals, including iron, may cause major 

constraints on phytoplankton in the Southern Ocean, a comparative analysis of metal-

binding protein families was performed. Furthermore, based on the rationale that F. 

cylindrus is constrained by light availability, which requires quantitative regulation of 

photosynthetic pigments, the expanded genetic repertoire of F. cylindrus in respect to 

biosynthesis of photosynthetic pigments and light-harvesting proteins was investigated. 

Finally, invidual F. cylindrus-specific proteins that are involved in adaptations to life in 

the polar environments are presented.  
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Figure 10. Enrichment of protein domains in the F. cylindrus genome in comparison to the diatom core 

genome shown as total percentage of annotated Pfam domains (based on data from Andrew E. Allen & Ruben 

E. Valas). 

 

 

Figure 11. Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the F. cylindrus 

genome in comparison to the diatom core genome shown as total percentage of annotated KEGG pathway 

annotations (based on data from Andrew E. Allen & Ruben E. Valas). 
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 Temperature-related protein families and transription 3.2.2.1

Over-represented protein families in comparison to the diatom core genome 

included heat and cold shock factors involved in transcriptional response. The HSF-type 

DNA binding domain and DnaJ domain, which both exhibit chaperone activity, were 

among the top 10 most enriched Pfam domains in comparison to the diatom core 

(Figure 10). Additionally, a cold shock DNA binding domain was significantly enriched 

in F. cylindrus and constituted 0.08% of the total assigned Pfam domains and a bZIP 

transcription factor domain constituted 0.2% (Figure 10). Furthermore, a novel domain 

fusion protein combining an N-terminal Myb-like transcription factor domain with a C-

terminal silicon transporter domain could be identified in F. cylindrus (Protein ID 

233781). Overall, the Gene Ontology (GO) terms “nucleic acid binding” (GO:0003676) 

and the broad term “transcription factor activity” (includes GO:0000988, GO:0001070-

71 and GO:0003700) from the major ontology branch “Molecular Function” ranked 

among the top 30 over-represented terms in F. cylindrus compared to the diatom core 

(Figure 12).  

 

 

Figure 12. Enrichment of molecular function gene ontology (GO) annotations in the F. cylindrus genome in 

comparison to the diatom core genome shown as percentage of total ontology annotations (based on data from 

Andrew E. Allen & Ruben E. Valas). 

 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=233781
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 Metal-binding protein families 3.2.2.2

The comparative analysis of copper and iron-binding domains showed that 

phytoplankton genomes including F. cylindrus were enriched in Fe binding domains 

relative to the related non-photosynthetic Phytophtora species (Figure 13; Christoph L. 

Dupont, unpublished data). Both, green and red lineages of phytoplankton contained a 

similar number of Fe-binding protein domains.  

Copper binding domains in all investigated phytoplankton genomes scaled in 

abundance to genome size (Figure 13). A power law slope of 1.8 indicated that a 

doubling of phytoplankton genome size results in nearly a quadrupling in the number of 

copper binding domains (Figure 14; Christoph L. Dupont, unpublished data). Even in 

consideration of the shared scaling of Cu-binding domains, the genomes of 

Chlamydomonas reinhardtii, F. cylindrus and Aureococcus anophagefferens deviated 

from the global trend (Figure 13). In the case of F. cylindrus, its genome contained 

disproportionate abundant domains including the plastocyanin/azurin-like fold family 

(Christoph L. Dupont, unpublished data). Manual examination of putative plastocyanin 

proteins identified a clear plastocyanin with putative N-terminal targeting sequence 

(protein ID 272258), whereas the remaining 10 contained conserved histidine and 

cysteine residues, providing a known Cu binding site (Christoph L. Dupont, 

unpublished data). In the same context, the molecular function GO term “copper ion-

binding” (GO:0005507) was enriched in F. cylindrus compared to the diatom core 

genome (Figure 12), multicopper oxidase domains were found amplified in F. cylindrus 

(Andrew E. Allen & Ruben E. Valas, unpublished data, not shown) and Fe-binding 

Cytochrome P450 domains were enriched in comparison to the diatom core genome 

(Figure 10). Additionally, five Fe-binding hemoproteins containing globin-like domains 

were identified in F. cylindrus and included isoenzymes for neuroglobin (235866, 

246319, 241443) which were not detected in P. tricornutum and T. pseudonana, a 

flavohemoglobin (249631) detected also in P. tricornutum but not in T. pseudonana and 

a bacteria-like haemoglobin (241146) detected also in both sequenced diatoms. 

Additionally, two putative Fe-binding hemopexin domain-containing proteins (protein 

IDs 261622 and 196981) were identified in F. cylindrus but were absent in T. 

pseudonana and P. tricornutum. In the context of Fe acquisition, protein-coding genes 

involved in high affinity iron uptake systems including five isoenzymes for ferric-

chelate reductase (protein IDs 232972, 227601, 238487, 246292 and 259423), a Fe 

permease (243554) and a ferroportin (223989) could be identified in F. cylindrus. 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=272258
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=235866
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=246319
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=241443
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=249631
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=241146
file://ueahome1/env/vju08kru/.PC.USER.files/NTProfile/Documents/PhD/Writing%20Up/Chapter3%20-%20Fc%20genome/genome.jgi-psf.org/cgi-bin/dispGeneModel%3fdb=Fracy1&id=261622
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=196981
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=232972
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=227601
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=238487
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=246292
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=259423
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=243554
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=223989
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Moreover, comparative analysis of clusters of orthologous groups of proteins (COG) in 

F. cylindrus and the other two sequenced diatoms showed that the COG group “Ferric 

reductase, NADH/NADPH oxidase and related proteins” was enriched in F. cylindrus in 

comparison to the diatom core genome (not shown). Furthermore, putative proteins 

serving as Fe siderophore were present in F. cylindrus including ferritin (291658) and 

genes involved in enterobactin biosynthesis. An isochorismatase Pfam domain involved 

in biosynthesis of enterobactin was more than four-fold over-represented in F. cylindrus 

and constituted 0.23% of the assigned Pfam domains in comparison to 0.05% assigned 

Pfam domains in the diatom core genome (Andrew E. Allen & Ruben E. Valas, 

unpublished data, not shown). 

 

 

Figure 13. Relative abundance of iron (Fe) and copper (Cu) binding proteins in selected eukaryotic genomes. 

Genomes are arranged according to genome size (modified from Christopher L. Dupont, unpublished data). 

 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291658
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Figure 14. Scaling of copper (Cu)-binding domains according to genome size. Shown are annotated Cu-binding 

domains as function of all annotated domains for selected eukaryotic genomes (modified from Christopher L. 

Dupont, unpublished data). 

 

In addition to Fe and Cu-binding, zinc (Zn)-binding domains appeared to play an 

important role in F. cylindrus as indicated by significant enrichment of the GO 

Molecular Function term “zinc ion binding”, which constituted 2.3% of assigned terms 

in F. cylindrus compared to 0.7% in the diatom core genome (Figure 12). While the total 

number of zinc-binding protein domains in F. cylindrus was comparable to other 

phytoplankton genomes, the conserved Zn-binding myeloid-Nervy-DEAF-1 (MYND) 

domain (named after myeloid translocation protein 8, Nervy and DEAF-1) was greatly 

expanded (Figure 15; Christoph L. Dupont, unpublished data). MYND domains in F. 

cylindrus contained seven conserved cysteine and histidine residues, which formed two 

Zn binding sites and were always found in combinations with DNA-binding or protein-

protein binding domains, such as ankyrin repeats, HCP domains, F box domains, RING 

domains and tetracopeptide repeats (Christoph L. Dupont, unpublished data). Two 

MYND domains were found associated with the Fe-containing Hypoxia Induction 

Factor prolyl hydroxylase (HIF) domain involved in the cellular response to changing 

oxygen in Eukarya but > 75% (98/128) of MYND-associated domains were not 

annotated by Superfamily Hidden Markov Models (Christopher L. Dupont, unpublished 

data). A phylogenetic analysis of MYND domains in F. cylindrus showed a high 

nucleotide divergence resulting in a functional divergence of binding sites, which was 

likely to have occurred within the last 30 Myr (Mark McMullan & Cock van 

Oosterhout, unpublished data, not shown). Additionally, a BLAST based analysis found 

that most of the MYND-containing proteins in F. cylindrus appeared to be diatom-

lineage specific (Figure 9) (Andrew E. Allen & Ruben E. Valas, unpublished data).  
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Figure 15. Amplification of Zinc (Zn)-binding domains in F. cylindrus. Top panel shows number of total Zn-

binding domains as function of total annotated domains. Bottom panel shows specific MYND Zn-binding 

domains as function of total annotated domains (modified from Christopher L. Dupont, unpublished data). 

 

 Carbohydrate metabolism 3.2.2.3

Carbohydrate metabolism encompasses the photosynthesis-driven synthesis of 

carbohydrates from atmospheric carbon dioxide, followed by synthesis and degradation 

of storage products. As shown in Figure 11 carbohydrate metabolism was represented in 

F. cylindrus by several enriched KEGG pathway annotations in comparison to the 

diatom core genome, which included “Starch and sucrose metabolism”, “Inositol 

phosphate metabolism” and “Glyoxylate and dicarboxylate metabolism”.  

Additionally, complete pathways for glycolysis and gluconeogenesis could be 

annotated and variation of the common glycolytic Embden-Meyerhof-Parnas pathway 

and putative presence of mitochondrial Entner-Dourdoff glycolysis was indicated by 

identification of a 6-phosphogluconate dehydratase (EDD1, 274061) and 2-keto-3-

deoxyphosphogluconate aldolase (EDA1, 267632) in F. cylindrus. Noteworthy, in 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=274061
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=267632


The Fragilariopsis cylindrus genome  82 

 

contrast to EDA1, EDD1 did not contain a mitochondrial targeting sequence but 

contained an N-terminal chloroplast targeting motif suggesting localisation in the 

chloroplast and similar targeting prediction was obtained for EDD in T. pseudonana. 

Additionally, in the context of glycolytic pathways no ortholog for a phosphoketolase 

(XFP) identified in P. tricornutum could be found in the genome of F. cylindrus 

indicating a lack of the catabolic phosphoketolase pathway.  

The analysis of KEGG pathway annotations showed almost three-fold 

amplification of the “Starch and sucrose metabolism” pathway in F. cylindrus 

constituting 16.6% of all assigned KEGG pathway annotations in comparison to 5.6% 

in the diatom core genome (Figure 11). Additionally, in the same annotation category, 

the “pentose and glucuronate interconversion” pathway was amplified in F. cylindrus 

(Figure 11). Glucuronate is also a primary breakdown product in inositol metabolism, 

which was the third most over-represented KEGG pathway in F. cylindrus in 

comparison to the diatom core genome (Figure 11). Key enzymes involved in inositol 

metabolism could be identified including a methylmalonate-semialdehyde 

dehydrogenase (MMSDH1, 291598) as well as several isoenzymes for myo-inositol 

dehydrogenase (InDH1-3, 181045, 181882, 207854), triosophosphate isomerase (TIM1-

4, 275634, 269372, 191478, 170563), inositol phosphate synthase (INPS1-2, 185965, 

157585) and inositol monophosphatase (IMP1-3, 264100, 268347, 268346).  

Last, not least the KEGG pathway “Glyoxylate and dicarboxylate metabolism” 

was amplified in F. cylindrus compared to the diatom core genome and the “Purine 

metabolism” pathway, which provides glyoxylate was the top most over-represented 

KEGG pathway in F. cylindrus compared to the diatom core genome (Figure 11). 

 Lipid metabolism 3.2.2.4

Lipid metabolism was found enriched in F. cylindrus in comparison to the 

diatom core genome as indicated by significant enrichment of the biological process GO 

term “lipid metabolic process” (Figure 16) as well as the KEGG pathway annotations 

“Glycerolipid metabolism” and “Phospholipid degradation” (Figure 11). Furthermore, 

comparative analysis of annotations for European Commission number for enzymes 

(EC) identified the lipid metabolic enzymes exo-alpha-sialidase (EC 3.2.1.18), 

phospholipase D (EC 3.1.4.4) and diacylglycerol kinase (EC 2.7.1.107) as the top most 

amplified EC number annotations in F. cylindrus compared to the diatom core genome 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=291598
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=181045
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=181882
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=207854
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=275634
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=269372
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=191478
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=170563
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=185965
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=157585
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=264100
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=268347
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=268346
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showing between ~20-fold and ~25-fold amplification in the F. cylindrus genome 

(Andrew E. Allen & Ruben E. Valas, unpublished data, not shown), which was indicated 

by the enriched molecular function GO term “diacylglycerol kinase activity” (Figure 

12).  

Similar to other sequenced diatoms, a complete pathway for de novo fatty acid 

biosynthesis via a type II fatty acid biosynthesis pathway within chloroplasts could be 

identified in F. cylindrus and included acyl carrier protein (ACP1, 263929), malonyl-

CoA ACP transacylase (MCAT1, 259810), beta-ketoacyl ACP synthase III 

(KASIII/FabH, 291592), and beta-hydroxyacyl ACP dehydratases (FabA/Z, 232938) 

(Table 5). Additionally, similar to the other two sequenced diatoms, at least seven 

microsomal desaturases involved in polyunsaturated fatty acid biosynthesis could be 

identified in F. cylindrus and two complete mitochondrial and peroxisomal pathways for 

beta-oxidation of fatty acids were annotated in F. cylindrus. 

 

 

Figure 16. Enrichment of biological process gene ontology (GO) annotations in the F. cylindrus genome in 

comparison to the diatom core genome shown as percentage of total ontology functional annotations (based on 

data from Andrew E. Allen & Ruben E. Valas, unpublished). 

 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=263929
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=259810
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=291592
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=232938


The Fragilariopsis cylindrus genome  84 

 

Table 5. Manually annotated gene models in F. cylindrus involved in lipid metabolism. 

Enzyme Name 
Gene Name in  

F. cylindrus 

JGI protein  

identifier 

malonyl-CoA decarboxylase MCD1 291591 

Malonyl-CoA ACP transacylase MCAT1 259810 

3-oxoacyl-synthase III FabH 291592 

acyl carrier protein ACP1 263929 

acyl carrier protein ACP2 173760 

fatty acid desaturase FAD1 268672 

fatty acid desaturase FAD2 228533 

fatty acid desaturase FAD3 241272 

fatty acid desaturase FAD4 226788 

fatty acid desaturase FAD5 238138 

fatty acid desaturase FAD6 267824 

fatty acid desaturase FAD7 208053 

beta-hydroxyacyl ACP dehydratases FabA/Z 232938 

acyl-CoA dehydrogenase ACD1 209569 

acyl-CoA dehydrogenase ACD2 187779 

acyl-CoA dehydrogenase ACD3 291593 

acyl-CoA dehydrogenase ACD4 264525 

acyl-CoA dehydrogenase ACD5 233211 

long-chain acyl-CoA synthetase ACSL1 262994 

acyl-CoA oxidase ACOX1 210789 

acetyl-CoA acetyltransferase ACAT1 274265 

alcohol dehydrogenase ADH1 146601 

alcohol dehydrogenase ADH2 277191 

enoyl-CoA hydratase ECH1 180456 

enoyl-CoA hydratase ECH2 159942 

enoyl-CoA hydratase ECH3 273959 

enoyl-CoA hydratase ECH4 235018 

enoyl-CoA hydratase ECH5 202663 

enoyl-CoA hydratase ECH6 193150 

bifunctional enoyl-CoA hydratase/  

3-hydroxyacyl-CoA dehydrogenase  

ECH_HADH1 207194 

bifunctional enoyl-CoA hydratase/  

3-hydroxyacyl-CoA dehydrogenase  

ECH_HADH2 183437 

3-hydroxyacyl-CoA dehydrogenase HADH1 270026 

 

 Light harvesting, photoprotection 3.2.2.5

The “Porphyrin and chlorophyll synthesis” KEGG pathway annotation was 

found enriched in the F. cylindrus genome compared to the diatom core constituting 

~3.3% and ~2.3% of the total pathway annotations (Figure 11). Additionally, the GO 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291754
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=259810
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=291592
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=263929
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=173760
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=268672
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=228533
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=241272
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=226788
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=238138
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=267824
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=208053
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=232938
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=209569
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=187779
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291756
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=264525
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=233211
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=262994
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=210789
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=274265
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=146601
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=277191
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=180456
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=159942
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=273959
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file:///C:/Users/vju08kru/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/genome.jgi-psf.org/cgi-bin/dispGeneModel
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=207194
file:///C:/Users/vju08kru/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/genome.jgi-psf.org/cgi-bin/dispGeneModel
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term “photosynthesis, light reaction” of the biological process ontology was weakly 

enriched in F. cylindrus, constituting 0.05% of functional annotations compared to 

0.03% contribution in the diatom core genome (Figure 16).  

Most enzymes required for a plastid-localised methylerythritol 

phosphate/deoxyxylulose phosphate (MEP/DOXP) pathway and a cytosolic mevalonate 

(MVA) pathway contributing to carotenoid, chlorophyll and tocopherol synthesis could 

be identified in F. cylindrus by manual annotation (Table 6). Similar to other sequenced 

diatoms, no homologs for CHL27, a subunit of the Mg-protoporphyrin IX monomethyl 

ester (MPE) cyclase, and subunits of the light-independent protochlorophyllide 

oxidoreductase (DPOR) could be detected in the nuclear and plastid genome of F. 

cylindrus. However, the F. cylindrus plastid genome encoded for a protoporphyrin IX 

Mg-chelatase subunit (Table 6). Putative isoenzymes involved carotenoid biosynthesis 

were identified for isopentenyl diphosphate isomerase (IDI), phytoene synthase (PSY), 

phytoene dehydrogenase (PDH), lycopene cyclase (LCYB), zeaxanthin epoxidase 

(ZEP), violaxanthin de-epoxidase (VDE). Noteworthy, two proximate gene models 

encoded for cytosolic IDI (226527) and PSY (209449) and could be merged to a 

putative gene model encoding for a bi-functional fusion protein. Like in other sequences 

diatoms, no homolog with lycopene epsilon-cyclase (LCYE) could be identified in F. 

cylindrus. However, in contrast to T. pseudonana, no homolog for beta-carotene 

hydroxylase (CHYB) was found in F. cylindrus and neither in P. tricornutum. Last, not 

least a putative beta-carotene 15,15'-monooxygenase (BCMO, protein ID 291475), 

catalysing the central cleavage of beta-carotene to yield two molecules of retinal, was 

identified in F. cylindrus and other sequenced diatoms.  

The genome of F. cylindrus contained approximately 64 gene models encoding 

for light-harvesting complexes (LHC; Beverly E. Green, unpublished data) and 55 

models were supported by EST sequences. In comparison, the diatom genomes of T. 

pseudonana and P. tricornutum encoded for about 40 LHC genes (Beverly E. Green, 

unpublished data) and further comparison with other sequenced phytoplankton showed 

that content of total LHC domains in a genome scaled according to genome size (Figure 

17). In comparison to that a similar scaling was not observed for the LHC family of 

LHCX proteins (Figure 17), which is involved in photoprotection. The F. cylindrus 

genome contained 11 gene models encoding LHCX proteins including a LHCX1 

homolog (218498), which was demonstrated to be a regulator of photoprotection via 

non-photochemical quenching (NPQ) in P. tricornutum. In comparison four and six 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=226527
file://ueahome1/env/vju08kru/.PC.USER.files/NTProfile/Documents/PhD/Writing%20Up/Chapter3%20-%20Fc%20genome/genome.jgi-psf.org/cgi-bin/dispGeneModel%3fdb=Fracy1&tid=209449
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=291475
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=218498
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gene models were found encoding for LHCX proteins in the other sequenced diatoms 

and 9 LHCX protein coding genes were found in Ostreococcus spp (Figure 17). 

Additionally, a complete xanthophyll cycle could be identified in F. cylindrus and 

similar to other sequenced diatoms, no homolog encoding for the PS II protein PsbS, 

which is involved in sensing the thylakoid lumen pH and photoprotection by onset of 

NPQ in green algae, could be detected. 

 

 

Figure 17. Total number of light-harvesting complex (LHC) protein domains and number of identified LHC 

proteins from the LHCX family in selected eukaryotic algae genomes. Genomes are arranged according to 

genome size (based on data from Beverly E. Green, modified). 

 

Table 6. Manually annotated gene models in F. cylindrus involved in biosynthesis of photosynthetic pigments. 

Enzyme Name 
Gene Name in  

F. cylindrus 

JGI protein  

identifier 

glutamyl-tRNA synthase GTS1 291553 

glutamyl-tRNA synthase GTS2 228581 

glutamyl-tRNA synthase GTS3 182520 

glutamyl-tRNA synthase GTS4 249648 

glutamyl-tRNA reductase GTR1 226164 

glutamate-1-semialdehyde 

aminotransferase 

GSAT 218589 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291716
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=228581
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=182520
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=249648
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=226164
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=218589
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Enzyme Name 
Gene Name in  

F. cylindrus 

JGI protein  

identifier 

5-aminolevulinic acid dehydratase ALAD 218256 

porphobilinogen deaminase PBGD 205101 

uroporphyrinogen III synthase UROS 244684 

uroporphyrinogen III decarboxylase UROD1 209393 

uroporphyrinogen III decarboxylase UROD2 268500 

uroporphyrinogen III decarboxylase UROD3 224546 

uroporphyrinogen III decarboxylase UROD4 216482 

coproporphyrinogen III oxidase CPX1 240805 

coproporphyrinogen III oxidase CPX2 267395 

coproporphyrinogen III oxidase CPX3 242067 

protoporphyrinogen IX oxidase PPX  261082 

protoporphyrin IX Mg-chelatase 

subunit D 

CHLD1 170289 

protoporphyrin IX Mg-chelatase 

subunit D 

CHLD2 247844 

protoporphyrin IX Mg-chelatase 

subunit H 

CHLH1 169081 

protoporphyrin IX Mg-chelatase 

subunit H 

CHLH2 261055 

protoporphyrin IX Mg-chelatase 

subunit I 

CHLI Plastid genome 

Mg-protoporphyrin IX 

methyltransferase 

CHLM 268444 

3,8-divinyl protochlorophyllide a 8-

vinyl reductase 

DVR1 268496 

3,8-divinyl protochlorophyllide a 8-

vinyl reductase 

DVR2 259321 

NADPH:protochlorophyllide 

oxidoreductase 

POR1 267731 

NADPH:protochlorophyllide 

oxidoreductase 

POR2 188173 

chlorophyll synthase CHLG 223502 

geranylgeranyl reductase GGR 267781 

isopentenyl diphosphate synthase IDS 263072 

phytoene dehydrogenase PDH2 260963 

Isopentenyl diphosphate:dimethylallyl 

diphosphate isomerase 

IDI1 226527 

Isopentenyl diphosphate:dimethylallyl 

diphosphate isomerase 

IDI2 239201 

Phytoene synthase PSY2 264173 

Phytoene synthase PSY3 233859 

Phytoene synthase PSY4 209449 

15-cis-zeta-carotene isomerase Z-ISO 291550 

zeta-carotene desaturase ZDS 291551 

carotenoid isomerase  CRTISO1 274697 

carotenoid isomerase  CRTISO2 206370 

carotenoid isomerase  CRTISO_3 186494 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=218256
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Enzyme Name 
Gene Name in  

F. cylindrus 

JGI protein  

identifier 

carotenoid isomerase  CRTISO_4 232063 

carotenoid isomerase  CRTISO_5 226929 

carotenoid isomerase  CRTISO_6 225509 

similar to cholin dehydrogenase CHDH1 246826 

lycopene beta cyclase LCYB2 183412 

cytochrome P450, carotenoid 

hydroxylase 

LTL1 261383 

cytochrome P450, carotenoid 

hydroxylase 

LTL2 209190 

Violaxanthin de-epoxidase VDE_1 267113 

Violaxanthin de-epoxidase VDE_2 212709 

Violaxanthin de-epoxidase VDE_3 291552 

Zeaxanthin epoxidase ZEP_1 232148 

Zeaxanthin epoxidase ZEP_2 260743 

Zeaxanthin epoxidase ZEP_3 208380 

 

 F. cylindrus-specific proteins 3.2.2.6

A total of 11,511 specific proteins without significant matches to red and green 

algae genomes (BLAST P e-value cutoff 1e
-9

) were identified in the F. cylindrus 

genome including all gene copy variant pairs from heterozygous regions of the genome 

(Figure 9).  

Ice-binding proteins. The genome of F. cylindrus encoded for 12 ice-binding 

proteins (IBPs) and 11 proteins containing C-terminal ice-binding domains, which were 

not found in the mesophilic diatoms T. pseudonana and P. tricornutum. Protein 

sequence analysis predicted N-terminal signal peptides for eight of the 12 IBPs and 

transmembrane domains for five of the 11 domain fusion proteins with C-terminal IBP 

domain.  

A phylogenetic analysis showed that IBP sequences from F. cylindrus clustered 

with IBPs from other sea ice organisms including diatoms, bacteria, fungi (Raymond 

and Janech, 2009) as well as a crustacean and formed three major groups (Figure 18). 

The majority of F. cylindrus IBP sequences grouped with sequences from Fragilariopsis 

spp except for two sequences (Fcyl AFP-g1, protein ID 161548; Fcyl AFP-g14, protein 

ID 219400), which grouped with sequences from other eukaryotic sea ice organisms 

(Figure 18).  
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Figure 18. Phylogeny of ice-binding proteins estimated with PhyML. PyML algorithm v3.0 was applied with 

the following settings: mode for amino acid substitution WAG, initial tree: BioNJ, 1000 bootstraps. Nodal 

supports greater than 60 are shown. In cases of multiple isoforms of one species are collapsed into groups, 

brackets show number of sequences. Archaea sequences are shown in orange, Bacteria in black, diatoms in 

green, fungi in red and crustaceans in blue (Christiane Uhlig, unpublished data). 

 

Novel protein domain combinations. A total of 38 protein domain combinations 

could be identified in F. cylindrus which were not found in any other eukaryote. This 

included a putative aluminium activated malate transporter protein with homology to 

Arabidopsis thaliana (protein ID 242447), two proteins involved in cobalamin 
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biosynthesis (protein ID 241335 and 234422), four peptidase domain proteins (protein 

IDs 157190, 240859, 239622 and 239623) as well as the conserved chloroplast protein 

Ycf34 with unknown function (protein ID 291600). Additionally, manual annotation of 

the genome revealed a novel protein containing an N-terminal thioredoxin domain fused 

to a C-terminal hemerythrin metal binding domain (protein ID 240772). Furthermore, 

two carbonic anhydrases (CA), involved in carbon acquisition were identified in the 

genome of F. cylindrus, which contained novel protein domain combinations and were 

absent in P. tricornutum and T. pseudonana. One protein was found encoding for a 

putative alpha CA and contained an N-terminal frustulin domain (FcACA3, 264424) 

and a second protein encoding for a putative delta CA contained a fasciclin domain 

(FcDCA1, 264409).  

A neighbour-joining phylogenetic tree was built with CA sequences from all 

three sequenced diatoms and frustulin sequences from Cylindrotheca fusiformis 

(CfFRU) as well as fasciclin domain-containing protein sequences from F. cylindrus 

(FcFAS1) showing that the putative frustulin domain-containing alpha CA from F. 

cylindrus (FcACA3) clustered intermediate between frustulins from C. fusiformis and F. 

cylindrus and other alpha CAs from F. cylindrus (Figure 19). In comparison, the 

putative fasciclin domain-containing delta CA from F. cylindrus (FcDCA1) clustered 

with other delta CAs from F. cylindrus and T. pseudonana and other fasciclin domain-

containing protein sequences from F. cylindrus (FcFAS1) formed a separate cluster 

(Figure 19).  

 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=241335
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=234422
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=291600
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=240772
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=264424
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=264409
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Figure 19. Neighbour-joining phylogeny of carbonic anhydrases from all three sequenced diatoms (F. 

cylindrus, P. tricornutum, T. pseudonana), frustulins from Cylindrotheca fusiformis (CfFRU) and F. cylindrus 

(FcFRU) and fasciclin domain-containing proteins in F. cylindrus (FcFAS1). Labels are composed of species 

abbreviation, gene name and JGI protein identifier. 

 

A bestrophin domain (Pfam ID PF01062) involved in chloride membrane 

transport was found in 21 predicted proteins in F. cylindrus but could not be detected by 

computational analysis of protein family combinations in P. tricornutum and T. 

pseudonana. However, five bestrophin domain annotations could be detected by 

reciprocal best BLAST analysis and were assigned to the diatom core genome (Figure 

10). In the same analysis 28 F. cylindrus-specific bestrophin Pfam annotations were 

detected and represented 0.23% in comparison to 0.06% of the total PFAM annotations 

in the diatom core genome resulting in more than five-fold amplification of bestrophin 

domains in F. cylindrus (Figure 10).  

Two-component and one-component systems including photoreceptors. Two-

component and one-component signaling systems including photoreceptors could be 
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identified in F. cylindrus (Figure 20). Generally, two-component systems consist of a 

signal sensing histidine kinase (HisK) and its cognate response regulator (RR), which 

translates the input signal into a desired output subsequent to phosphorylation. In 

comparison, one-component systems combine input domain to an output domain in a 

single protein molecule (Ulrich et al., 2005). Due to the modular architecture of two-

component systems additional sensory components have evolved and added to these 

systems (Cheung and Hendrickson, 2010; Schaller et al., 2011). Such sensory 

components include GAF (named after domain-containing proteins cGMP-specific 

phosphodiesterases, Adenylyl cyclases and Formate hydrogen lyase transcriptional 

activator), light-oxygen voltage (LOV), PAS (Per_ARNT-Sim; named after domain 

containing proteins period clock protein, aryl hydrocarbon receptor and single-minded 

protein), periplasmic binding protein (PBP) and phytochrome (PHY) domains. Except 

for a phytochrome-specific PHY domain, these sensory components could also be 

identified in F. cylindrus (Figure 20). In contrast to that, phytochrome two-component 

signalling systems, which are red/far-red light receptors related to histidine kinases 

(Möglich et al., 2010), have been identified in T. pseudonana (TpDPh, protein ID 

22848) and P. tricornutum (PtDPh, protein ID 54330) (Depauw et al., 2012). They 

consist of two N-terminal PAS and GAF domains in addition to the photoreceptor-

specific PHY domain constituting the phytochrome photosensory PAS-GAF-PHY 

tridomain (Möglich et al., 2010). However, other two-component systems containing 

GAF and PAS domains could be identified in F. cylindrus (Figure 20). Additionally, 

multiple copies of other photoreceptors including light-oxygen voltage (LOV) sensors 

and cryptochromes including novel variants of sensory domains could be identified 

(Figure 20). LOV sensors are blue light sensing photoreceptors, which utilise flavin 

nucleotide cofactors. The aureochrome family of LOV sensors contains transcription 

factors that comprise an N-terminal basic region/leucing zipper (bZ) DNA-binding 

domain and a C-terminal LOV domain that constitutes a subclass of the PAS family 

(Möglich et al., 2010). Thus, they resemble the modular composition of bacterial one-

component systems (Ulrich et al., 2005). A total of seven aureochrome-like proteins 

could be identified in F. cylindrus in comparison to four aureochromes encoded in the 

genomes of P. tricornutum and T. pseudonana. Interestingly, in addition to aureochrome 

one-component systems, a protein with novel combinations of Helix-loop-Helix (HLH)-

PAS domain was detected in F. cylindrus (protein ID 291565) (Figure 20), which could 

also be detected in P. tricornutum and T. pseudonana. Like aureochrome LOV sensors, 

cryptochromes are blue light photoreceptors, which could be detected in F. cylindrus 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291728
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(Figure 20). They are flavoproteins whose photosensory domains are closely related to 

DNA photolyases and are composed of an N-terminal photolyase homology region 

(PHR) and a FAD-binding (FAD) domain (Möglich et al., 2010). A total of 8 genes 

encoding for proteins of the chryptochrome/photolyase family were identified in F. 

cylindrus, which is comparable to T. pseudonana and P. tricornutum (courtesy of 

Antonio E. Fortunato & Angela Falciatore, unpublished data). Finally, a rhodopsin with 

putative function as a light-driven proton pump was encoded in the genome of F. 

cylindrus (Figure 20), which is lacking in P. tricornutum and T. pseudonana, and in 

contrast to the previously described photoreceptors resembled an integral membrane 

protein. 

 

Figure 20. Domain structures of selected two-component and one-component signaling systems including 

photoreceptors identified in F. cylindrus according to the NCBI conserved domain database (Marchler-Bauer 

A. et al. (2011), CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids 

Res 39(D) 225-9). (a) Two-component and one-component signaling systems and sensory domain-containing 

proteins; (b) putative aureochrome photoreceptor belonging to light-oxygen-voltage (LOV) sensor family; (c) 

putative cryptochromes photoreceptor; (d) rhodopsin. Proteins are drawn approximately to scale and labelled 

with F. cylindrus protein identifiers. Domain abbreviations are PHR (photolyase homology region), FAD 

(flavin adenine dinucleotide-binding), bZ (basic region/leucine zipper), PAS (Per-ARNT-Sim domain), HisK 

(histidine kinase), HATPase (H+-ATPase domain), RR (Response Regulator domain), PBP (periplasmic 

binding protein domain) and HLH (helix-loop-helix domain). 



The Fragilariopsis cylindrus genome  94 

 

F. cylindrus lacks core meiotic genes. To explore the evidence whether F. 

cylindrus is a sexual organism, its gene inventory of core meiotic genes was analysed. 

Although some core meiotic genes homologous to those identified in other organisms 

could be identified in F. cylindrus (Table 7), at least three meiosis-specific core genes 

including homologs for homologous pairing proteins (e.g. HOP1, HOP2) and the 

meiotic recombination protein DMC1 could not be detected in F. cylindrus and neither 

in the other sequenced diatoms T. pseudonana and P. tricornutum. 

Table 7. Manually annotated core meiotic genes in F. cylindrus. 

Enzyme Name 
Gene Name in  

F. cylindrus 

JGI protein  

identifier 

meiosis-specific sporulation protein SPO11 239125 

meiotic nuclear division protein MND1 273989 

DNA mismatch repair protein mutS homolog4 MSH4 253011 

DNA mismatch repair protein mutS homolog5 MSH5 291615 

meiosis-specific DEAD-box helicase protein MER3 187564 

double-strand break repair protein RAD21 RAD21 263327 

DNA repair protein RAD51 RAD51 241710 

DNA repair and recombination protein RAD54 RAD54 259049 

 

 Discussion 3.3

The draft genome sequence of the psychrophilic diatom F. cylindrus provided 

the first genomic insights into the adaptation of diatoms to extreme polar conditions. Its 

nuclear genome was found to be 80.5 Mb and approximately 18,077 genes were 

predicted for its single-haplotype (Table 4). In comparison, nuclear genomes of the 

diatoms P. tricornutum (27.4 Mb; 10,402 predicted genes) (Bowler et al., 2008) and T. 

pseudonana (32.4 Mb; 11,776 predicted genes) (Armbrust et al., 2004) were 

significantly smaller and contained fewer genes (Table 4).  

Strikingly, the F. cylindrus genome showed a high level of nucleotide sequence 

polymorphism, which affected the assembly of heterozygous haplotypes into a single 

haplotype and caused a diffuse haplotype structure resulting in the prediction of 27,137 

genes including all gene copy variant pairs from heterozygous regions of the genome. 

The nucleotide sequence polymorphism was 6% between selected syntenic scaffolds. In 

comparison, nucleotide sequence polymorphism was found to be 0.75% in the genome 

of the centric diatom T. pseudonana (Armbrust et al., 2004), 4-5% in the sea urchin 

Strongylocentrotus purpuratus (Britten et al., 1978; Sodergren et al., 2006), 5% in the 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=239125
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=273989
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=253011
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=291778
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=187564
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=263327
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=241710
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=259049
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genome of the sea squirt Ciona intestinalis (Dehal et al. (2002); Jeremy Schmutz, JGI, 

personal communication 23/06/2012) and 11.2% in the highly heterozygous genome of 

grapevine Vitis vinifera Pinot Noir (Velasco et al., 2007). While high levels of 

heterozygosity in marine invertebrates have been ascribed to large effective population 

sizes (Britten et al., 1978; Dehal et al., 2002), high heterozygosity in plant genomes has 

been related to genome duplication (The Arabidopsis Genome Initiative, 2000; 

International Rice Genome Sequencing Project, 2005; Tuskan et al., 2006; Jaillon et al., 

2007; Velasco et al., 2007) and activity of transposable elements (Morgante et al., 2005; 

Velasco et al., 2007). For the F. cylindrus genome the widespread distribution of single 

nucleotide polymorphisms (SNPs) and insertion/deletions (in/dels) across the entire 

genome as well as the absence of large blocks in the alignments of scaffolds to each 

other in both orientation (data not shown) suggested no large scale genome duplication 

events consistent with the finding that large-scale genome duplication events are not a 

major driver in the generation of diatom diversity (Bowler et al., 2008).  

To explore the hypothesis whether partial genome duplications or allelic 

variation contributed to high sequence polymorphism and heterozygosity of gene copy 

pairs in F. cylindrus, their sequence similarity and sequencing coverage was analysed. 

Two lines of evidence supported the dominance of allelic variation in F. cylindrus using 

assumptions on their sequence similarity and sequence read coverage. First, assuming 

paralogs to be more divergent than alleles, it was shown that a majority of pairs had a 

high nucleotide sequence similarity of > 98% (Figure 8). In comparison, allelic 

nucleotide variation was 1.2% in C. intestinalis (Dehal et al., 2002). Secondly, assuming 

that paralogs show a twofold higher sequencing coverage compared to alleles because 

they contain sequence reads from two assembled haplotypes, it was found that 

heterozygous gene copy pairs showed an approximately twofold difference in 

sequencing coverage (Supplementary Figure S7). These assumptions are, however, 

limited to the facts that recent gene duplication events would also show high sequence 

similarity between paralogs and our assumptions on sequencing coverage do not take 

biases in the assembly method into account, such as the assembly of nearly-identical 

reads into larger transcripts on larger scaffolds which may cause higher differences in 

coverage to allelic variants on smaller scaffolds (Robert P. Otillar, JGI, personal 

communication 28/06/2012).  

The high degree of allelic polymorphism in F. cylindrus may be a result of the 

absence of sexual reproduction so that divergent alleles remain in a heterozygous state. 
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Indeed, sexual cycles have never been reported for F. cylindrus and neither for P. 

tricornutum and T. pseudonana. Consistently, it was shown in P. tricornutum that copia-

like transposable elements were inserted in only one of the haplotypes at least a century 

ago and remained in a heterozygous state (Maumus et al., 2009). Furthermore, although 

some meiosis-related genes could be identified in F. cylindrus (Table 7) at least three 

core meiosis-specific genes including the homologous pairing proteins HOP1 and 

HOP2 (Leu et al., 1998) and the meiosis-specific DNA strand exchange protein DMC1 

(Neale and Keeney, 2006) appeared to be absent and could neither be detected in the 

genomes of P. tricornutum nor in T. pseudonana. Yeast deletion mutants of meiosis-

specific HOP2 showed recombination failure (Leu et al., 1998; Tsubouchi and Roeder, 

2003). In addition, HOP2 gene knockout mouse spermatocytes showed meiotic defects 

consistent with a failure in recombination (Petukhova et al., 2003). Moreover, DMC1 

yeast mutants were shown deficient in meiotic recombination (Bishop et al., 1992) and 

DMC1 requirement in meiosis has recently been ascribed to the high resistance of 

DMC1 D-loops to dissociation by branch-migration proteins (e.g. RAD54, Table 7) 

during homologous recombination (Bugreev et al., 2011). Detection of some meiotic 

proteins in F. cylindrus (Table 7) may be explained by their function in mitosis and 

DNA repair (Schurko et al., 2009) and meiosis-specific genes may also be maintained in 

asexual species owing to neo-functionalization of their gene products (Meselson and 

Welch, 2007; Pouchkina-Stantcheva et al., 2007; Forche et al., 2008). However, 

evidence for asexual reproduction only from absence of meiosis-specific genes may be 

limited due to reports on absence of meiosis genes in species that undergo meiosis (e.g. 

absence of HOP2, MND1 and DMC1 in Caenorhabditis and Drosophila (Ramesh et al., 

2005; Schurko and Logsdon, 2008)). Moreover, the high proportion of transposable 

elements of 7.3% in F. cylindrus as well as P. tricornutum (Table 4)is ambiguous for the 

absence of sexual reproduction, because LINE-like and gypsy-like retrotransposons 

were found absent in asexual bdelloid rotifer genomes (Arkhipova and Meselson, 2000). 

Nevertheless, TEs may also be acquired via horizontal gene transfer which was found 

pervasive in diatoms (Bowler et al., 2008) and play a key role in long term adaptation of 

natural diatom populations exposed to environmental stress through generation of 

genetic diversity (Maumus et al., 2009).  

Thus, overall two lines of evidence, high allelic heterozygosity (“Meselson 

effect”) (Birky, 1996; Mark Welch and Meselson, 2000; Meselson and Welch, 2007) and 

putative lack of core meiosis-specific genes (Villeneuve and Hillers, 2001; Ramesh et 
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al., 2005; Malik et al., 2008; Schurko and Logsdon, 2008; Schurko et al., 2009) suggest 

the absence of sexual reproduction in F. cylindrus so that allelic heterozygosity can 

increase in every generation (Birky, 1996). The high level of allelic variation in F. 

cylindrus may benefit from multilocus heterozygosity-fitness correlations as a result 

from direct selection on scored genetic loci (Hansson and Westerberg, 2002) providing 

higher fitness through heterozygote advantage (Sellis et al., 2011; Hedrick, 2012).  

The high proportion of TEs found in the F. cylindrus genome (Table 4) may have 

contributed to genome architecture and its high degree of heterozygosity as suggested 

for plants (Morgante et al., 2005; Velasco et al., 2007). As discussed above the 

generation of genetic diversity by TEs may also play a role in long term adaptation of 

diatom exposed to environmental stress (Maumus et al., 2009) and their expansion in 

the pennate diatom lineage may have been driving pennate diatom diversity through 

transpositional duplications and subsequent genome fragmentation (Bowler et al., 

2008). Overall, the repeat content in the F. cylindrus genome was more than twofold 

higher than in the genomes of P. tricornutum and T. pseudonana with significant 

contributions from simple sequence repeats and unclassified repeats (Table 4) and was 

likely to have contributed to the increased genome size.  

Furthermore, the high number of 11,511 species-specific genes in F. cylindrus 

associated with its diffuse haplotype structure as well as the high number of 6913 

species-specific genes and 2859 species-specific paralogs estimated for its single-

haplotype (Table 4) may have contributed to the increase in genome size consistent with 

the correlation of genome size with genomic landscape (number of genes, introns, 

mobile elements) (Lynch and Conery, 2003; van Nimwegen, 2003). Moreover, the high 

number of species-specific paralogs indicates a role of gene duplication in gene 

diversification and genome expansion in comparison to P. tricornutum and T. 

pseudonana.  

As genome size is a biological trait at the intersection of genotype and 

phenotype it may have evolutionary significance (Oliver et al., 2007) and across all 

kingdoms of life genome size has been shown to statistically correlate with various 

phenotypic traits (Bennett, 1987; Gregory, 2001; Kozłowski et al., 2003; Knight et al., 

2005; Vinogradov and Anatskaya, 2006; Francis et al., 2008; Veselý et al., 2012). Thus 

it may be concluded that high proportion of TEs, acquisition of species-specific 

sequences and gene duplications in F. cylindrus and their effect on increasing genome 
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size may relate to adaptation to environmental stress. Consistently, gene copy number 

variation has been suggested to provide a mechanism of phenotypic differentiation and 

evolutionary adaptation to the environment (Hastings et al., 2009; Sudmant et al., 2010; 

Dassanayake et al., 2011a) and indeed, adaptation to environmental stress by acquisition 

of lineage-specific sequences and gene duplication has been observed in extremophile 

plants (Dassanayake et al., 2011b; Oh et al., 2012).  

In addition to genome size, G+C content is a basic parameter of genomes and 

can vary widely for prokaryotes (Hallin and Ussery, 2004) and eukaryotes (e.g. (Yu et 

al., 2002)). The coding G+C content of 39.8% of the F. cylindrus genome was found to 

be significantly lower compared to G+C contents of 50.6% in P. tricorntum and 47.8% 

in T. pseudonana (Table 4) and is, to our knowledge, the lowest G+C in coding 

sequences observed for autotrophic eukaryotes (The Arabidopsis Genome Initiative, 

2000; Yu et al., 2002; Matsuzaki et al., 2004; Derelle et al., 2006; Merchant et al., 2007; 

Worden et al., 2009; Cock et al., 2010; Prochnik et al., 2010; Dassanayake et al., 2011b; 

D'Hont et al., 2012). It has been suggested that there is a universal mutational bias 

towards AT in both prokaryotes (Lind and Andersson, 2008; Hershberg and Petrov, 

2010; Hildebrand et al., 2010) and eukaryotes (Petrov and Hartl, 1999; Lynch et al., 

2008; Denver et al., 2009; Keightley et al., 2009; Lynch, 2010; Ossowski et al., 2010). 

AT mutational bias for A. thaliana, Drosophila and mammalian genomes has been at 

least partly attributed to spontaneous deamination of methylated cytosines (Petrov and 

Hartl, 1999; Ossowski et al., 2010), which leads to thymine substitutions (Lindahl and 

Nyberg, 1974; Coulondre et al., 1978; Duncan and Miller, 1980) (for review see 

(Lindahl, 1993)). However, as a high proportion of G:C sites in A. thaliana not reported 

to be methylated also showed higher rates of mutational bias than A:T sites (Ossowski 

et al., 2010), the authors suggest an additional mutational effect of ultraviolet (UV) 

light, which causes a mutational bias towards A:T at dipyrimidine sites (C adjacent to 

another C or to a T) in pro- and eukaryotes (Friedberg et al., 2006). Additionally, DNA 

replication and DNA repair mechanisms in fast growing cells including unicellular 

eukaryotes have been suggested to effect mutations caused by different specificities and 

fidelity of specific DNA polymerases (Friedberg et al., 2002). Consistently, it has been 

suggested that GC content variation in bacteria is governed by genome replication and 

DNA repair mechanisms (Lind and Andersson, 2008) and influenced by variations in 

the structure of the catalytic subunits of DNA polymerase (Zhao et al., 2007; Wu et al., 

2012). In this context it is noteworthy, that DNA-directed DNA polymerase (EC 2.7.7.7) 
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was the most highly represented European Commission (EC) enzyme number 

annotation in F. cylindrus resulting in three-fold amplification in comparison to the 

diatom core genome (data not shown) and that the mismatch repair (MMR) DNA repair 

pathway was expanded in F. cylindrus in comparison to P. tricornutum and T. 

pseudonana (Antonio E. Fortunato and Angela Falciatore, Génomique Fonctionnelle 

des Diatomées, Paris, France, personal communication 08/07/2011). Last, not least G+C 

content of microbial communities seems to be globally and actively affected by their 

environment (Foerstner et al., 2005). Interestingly, it was found that diatom sequences 

selected from natural phytoplankton metatranscriptomes sampled from polar, temperate 

and tropical microbial communities showed variable G+C contents with G+C content of 

~38% in polar communities (T. Mock et al, manuscript in prep.). In conclusion, 

however, the existence of a mutational bias towards AT and its potential causes and 

effects in diatoms, such as F. cylindrus, remains unknown.  

The low G+C content in F. cylindrus had a significant impact on codon usage 

pattern causing a bias towards adenine and thymidine bases (Figure 6; Figure 7), 

consistent with previous studies (Kanaya et al., 2001; Knight et al., 2001; Chen et al., 

2004; Hershberg and Petrov, 2009). We showed a tendency of F. cylindrus to favour AT 

rich codons (Figure 6) as shown for bacteria, archea and fungi (Hershberg and Petrov, 

2009). Moreover, we found that the low G+C in F. cylindrus also affected the anticodon 

usage of the 330 identified tRNA genes showing a prevalence of A/T at anticodon 

position 1 (Figure 7), which is in disagreement with the low variation in tRNA 

anticodon composition in bacteria (Rocha, 2004). However, it is in good agreement with 

the thermal adaptation hypothesis proposed by Bernardi (Bernardi and Bernardi, 1986; 

Bernardi, 2000) based on higher thermal stability of G:C pairs in comparison to A:T 

pairs due to presence of three hydrogen bonds between G:C pairs and two between A:T 

pairs (Wada and Suyama, 1986). In higher eukaryotes regional nucleotide compositional 

changes to high GC accompanied a transition from cold to warm-blooded vertebrates 

and codon third positions showed a linear dependence of the regional GC level 

(Bernardi and Bernardi, 1986; Bernardi, 2000). Although, the existence of correlations 

between genomic G+C content and optimal growth temperature remains controversial 

for the prokaryotic domain (Marashi and Ghalanbor, 2004; Musto et al., 2004; Basak et 

al., 2005), enrichment in G+C has been observed for tRNA and rRNA sequences in 

thermophilic bacteria (Galtier and Lobry, 1997) and A:U base pairing was prevalent in 

16S rRNA in psychrophilic prokaryotes suggesting a strong thermo-adaptive 
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mechanism (Khachane et al., 2005). Moreover, although recently challenged (Lobry and 

Necşulea, 2006), synonymous codon usage in prokaryotes has been associated with 

stability of codon-anticodon interaction in thermophilic bacteria (Lynn et al., 2002; 

Lobry and Chessel, 2003; Singer and Hickey, 2003; Basak and Ghosh, 2005) and for 

eukaryotes sticky codon-anticodon interactions were avoided whenever possible to 

maintain uniform interaction energy and smooth progression of translation in yeast 

(Bennetzen and Hall, 1982). In analogy to that, our finding of codon biases towards 

adenine and thymidine bases in F. cylindrus (Figure 6; Figure 7) may suggest a co-

adaptation of relative frequencies of codons and their respective anticodons to optimise 

protein translation at low temperature, which is the most energetically expensive 

process in exponentially growing cells (Rocha, 2004; Wilson and Nierhaus, 2007).  

In summary, although the cause of the low G+C in F. cylindrus remains 

unknown, it has a significant impact on protein translation through codon-anticodon 

usage bias towards AT, which may relate to a selective process. It may further have a 

direct impact on the amino-acid composition of proteins (Sueoka, 1961; Bharanidharan 

et al., 2004; Foerstner et al., 2005) and act complementary to a drift in amino acid usage 

over evolutionary timescales (Jordan et al., 2005). In addition to G+C content, purine 

content (A+G) has been suggested to contribute to nucleotide composition of protein-

coding sequences (Zhang and Yu, 2010). Notably, purine metabolism was the most 

highly represented KEGG pathway annotation in F. cylindrus and significantly enriched 

in comparison to the diatom core genome (Figure 11). As it has been reported that 

purines play a role in the determination of amino acid physicochemical properties and 

purines at the second codon position may control the charge and hydrophobicity of 

amino acids (Taylor and Coates, 1989; Chiusano et al., 2000; Biro et al., 2003; Copley 

et al., 2005; Yu, 2007), a possible link to cold adaptability of protein in relation to 

structural rigidity may exist. Indeed, widespread amino acid modifications have been 

observed in psychrophilic bacteria through metagenomic (Grzymski et al., 2006) and 

genomic analysis (Saunders et al., 2003; Methe et al., 2005; Ayala-del-Río et al., 2010; 

Zhao et al., 2010), most notably resulting in a generally reduced hydrophobic amino 

acid content (see Casanueva et al. (2010) for review). However, a global analysis of the 

F. cylindrus proteome was beyond the scope of this work.  

The genomic data has also been evaluated in the context of gene repertoire to the 

evolution and adaptation of F. cylindrus to environmental constraints of the Southern 

Ocean including trace metal availability, low temperatures and low light conditions. 
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Trace metals, including iron, play a key role in photosynthetic electron transport 

(Merchant and Dreyfuss, 1998). Many studies have highlighted the impact of iron 

limitation on the physiology and evolutionary adaptation of diatoms in the high nutrient 

low chlorophyll (HNLC) oceanic regions (Martin and Fitzwater, 1988; Sunda et al., 

1991; Hutchins and Bruland, 1998; Takeda, 1998; Hutchins et al., 1999; Timmermans et 

al., 2001; Quigg et al., 2003; Strzepek and Harrison, 2004; Boyd et al., 2007) and an 

adaptive strategy appears to be the substitution of iron with copper, which has similar 

electrochemical properties and is more abundant in these regions (Bruland, 1980) and 

iron sparing. The F. cylindrus genome encodes for the Cu-based photosynthetic electron 

carrier plastocyanin, which was shown to replace the Fe-containing cytochrome c6 in 

the photosynthetic electron transport chain of the oceanic diatom Thalassiosira 

oceanica in comparison to its coastal counterpart T. weissflogii (Peers and Price, 2006) 

and is also lacking in the genomes of the sequenced coastal diatoms P. tricornutum and 

T. pseudonana (Armbrust et al., 2004; Bowler et al., 2008). Furthermore, in contrast to 

T. pseudonana, no homolog for beta-carotene hydroxylase (CHYB) involved in 

carotenoid biosynthesis was detected in F. cylindrus and neither in P. tricornutum 

suggesting that pennate diatoms may have replaced the nonheme di-iron hydroxylase 

CHYB by a cytochrome P450 monooxygenase with only one iron atom in the catalytic 

centre, which might be advantageous in Fe-limited marine environments (Bertrand, 

2010). However, the F. cylindrus genome contained ~3% iron-binding proteins, which is 

comparable to many other sequenced marine algae from iron-replete oceanic regions 

(Figure 13) suggesting an essential iron requirement even under chronic iron limitation 

and Fe-binding domains including a cytochrome P450 domain was enriched in 

comparison to the diatom core genome (Figure 10). Nevertheless, noteworthy in the 

context of iron usage and acquisition was the presence of putative Fe-binding 

hemopexin domain-containing proteins in F. cylindrus, which were absent in T. 

pseudonana and P. tricornutum and may play a role in the recycling of heme-bound iron 

to maintain iron homeostasis (Tolosano et al., 2010). Moreover, the presence of protein-

coding genes involved in high affinity iron uptake systems including several 

isoenzymes for ferric-chelate reductase as well as an iron permease, a ferroportin and 

ferritin (Marchetti et al., 2009) may play a role in a low iron environment. Indeed, 

analysis of functional gene annotations in F. cylindrus confirmed the potential 

importance of iron acquisition pathways by finding significant enrichments for the COG 

group annotation “Ferric reductase, NADH/NADPH oxidase and related proteins” and 

Pfam annotation “Ferric reductase-like transmembrane component” in comparison to 
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the diatom core genome (not shown). Together with the presence of putative proteins 

serving as iron siderophores, including ferritin (Marchetti et al., 2009) and putative 

genes involved in enterobactin biosynthesis, may be indicators of adaptation to a low 

iron environment.  

In contrast to iron-binding proteins, F. cylindrus has significantly expanded its 

copper-binding proteins (0.6%; Figure 13; Figure 14) in comparison to other sequenced 

diatoms. However, it has been shown that the total number of metal-binding domains 

including copper binding domains scale to the nuclear genome size as a power law, with 

different slopes for different metals and kingdoms of life (Dupont et al., 2006). The 

analysis of copper-binding domains in phytoplankton genomes including F. cylindrus 

showed a power law slope of 1.8 and indicated a nearly quadrupling of copper-binding 

domains with doubling in genome size of phytoplankton (Figure 14). While this scaling 

is empirical and gives no information about the mode of domain accumulation (e.g. 

duplications, gene transfer), it shows a selective retention of copper-binding domains. 

Both copper-binding proteome of 0.6% (Figure 13) in F. cylindrus and power law of 

scaling of phytoplankton (Figure 14) far exceeds that observed for prokaryotes showing 

~0.3% copper-binding domains on average (Dupont et al., 2010). This preferential 

recruitment and retention of copper-binding domains of phytoplankton is consistent 

with their evolution after hypothesized O2-driven changes in global trace metal 

geochemistry (Anbar and Knoll, 2002; Anbar, 2008). Even in consideration of the 

shared scaling of Cu-binding domains in phytoplankton, the genomes of F. cylindrus, 

Chlamydomonas reinhardtii, and Aureococcus anophagefferens deviated from the 

global trend (Figure 13).  

In addition to Fe and Cu, Zinc (Zn) is involved in many metabolic processes 

(Vallee and Auld, 1990) and an important metal cofactor in phytoplankton. Zn 

metalloenzymes include transcription factors (Montsant et al., 2007), alkaline 

phosphatase (Shaked et al., 2006) and carbonic anhydrase (Morel et al., 1994; Hu et al., 

2003), enzymes which are also encoded in F. cylindrus (see discussion below). While 

the total number of zinc-binding protein domains in F. cylindrus was comparable to 

other phytoplankton genomes, the conserved Zn-binding myeloid-Nervy-DEAF-1 

(MYND) domain (named after myeloid translocation protein 8, Nervy and DEAF-1) 

was greatly expanded (Figure 15). Two MYND domains were found associated with the 

Fe-containing Hypoxia Induction Factor prolyl hydroxylase (HIF) domain (not shown) 

involved in the cellular response to changing oxygen in Eukarya (Benizri et al., 2008) 
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and may be involved in the response to extreme changes in oxygen content in sea ice 

cause by the photosynthetic activity of sea ice diatoms (Thomas and Dieckmann, 2002), 

which may ultimately lead to oxidative stress in sea ice algae like F. cylindrus (McMinn 

et al., 2005). Interestingly, in the context of oxidative stress was the presence of five Fe-

binding hemoproteins containing globin-like domains in F. cylindrus including 

isoenzymes for neuroglobin, which were not detected in P. tricornutum and T. 

pseudonana and may be involved in oxidative stress defence through their capacity to 

bind oxygen and to detoxify reactive oxygen species (Herold et al., 2004; Verde et al., 

2009; Giordano et al., 2012). In addition to MYND domains associated with HIF, 

MYND domains also exist in a large number of proteins including those involved in 

mediation of protein-protein interactions and transcriptional regulation (Gross and 

McGinnis, 1996; Liu et al., 2007), and MYND domains in F. cylindrus were always in 

combinations with DNA-binding or protein-protein binding domains suggesting they 

play a role in signal perception and transductions systems and regulate transcriptional 

responses to environmental stresses in concert with expanded protein kinase families in 

F. cylindrus (not shown). Interestingly, transcription factors were next to Zn-binding 

domains the most striking expansion of proteins in F. cylindrus (Figure 10; Figure 12; 

Figure 16) and the enrichment of heat and cold shock factors in F. cylindrus in 

comparison to the diatom core genome may indicate the central importance of 

transcriptional regulation in response to environmental stress in diatoms (Montsant et 

al., 2007). Last, but not least, phylogenetic analysis of Zn-binding MYND domains in F. 

cylindrus showed a high nucleotide divergence (data not shown), which is likely to have 

occurred within the last 30 million years (Myr), suggesting that it may be an 

evolutionary event coupled with the geological history of the Southern Ocean and its 

rise through tectonic opening of ocean gateways between Antarctica and Australia 

(Tasmanian Passage), and Antarctica and South America (Drake Passage) ~34 Myr ago 

(DeConto and Pollard, 2003). The resulting isolation of Antarctica through the 

organisation of the Antarctic Circumpolar Current causing extreme polar conditions 

(Kennett, 1977; Exon et al., 2002) together with relatively high zinc concentrations of 

the Southern Ocean (Croot et al., 2011) may have been maintained this great expansion 

of Zn-binding MYND domains and contributed to the evolution and adaptation of F. 

cylindrus.  

The capacity to cope with cold stress and survival below the freezing point of 

seawater within sea ice is a requirement for many phytoplankton species in polar 
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oceans. F. cylindrus is able to thrive in sea ice with temperatures down to −20 °C. 

Sequencing of expressed sequence tag (EST) libraries from F. cylindrus pioneered the 

discovery of a new class of ice-binding proteins (Janech et al., 2006). The genome of F. 

cylindrus encodes for 12 ice-binding proteins (IBPs) and 11 proteins with C-terminal 

IBP domains, which resemble adaptations to life in sea ice and are not found in the 

mesophilic diatoms T. pseudonana and P. tricornutum. Similar proteins were found in 

bacteria and fungi (Raymond and Janech, 2009), as well as a sea ice crustacean (Kiko, 

2010) suggesting that they were acquired via horizontal gene transfer (Raymond and 

Kim, 2012) (Figure 19). IBPs have been proposed to serve different functions including 

antifreeze activity, inhibition of ice crystallisation, attachment to ice and retention of a 

liquid environment (Raymond, 2011) and gene expression analysis showed that they 

were expressed under cold and salt stress in F. cylindrus (Krell et al., 2008; Bayer-

Giraldi et al., 2010). Interestingly, in the context of salt stress, was the significant 

enrichment of the bestrophin protein family in the genome of F. cylindrus in comparison 

to the diatom core genome (Figure 10), as bestrophins are known to act as chloride 

channels (Tsunenari et al., 2003) and thus may be involved in the transport of chloride 

anions to maintain cellular osmolyte homeostasis in salt brine of sea ice (Krell, 2006; 

Boetius and Joye, 2009).  

Moreover, it was striking that the F. cylindrus genome showed a significant 

expansion of helicase associated protein domains in comparison to the diatom core 

genome (Figure 10). DNA/RNA helicases, catalysing the unwinding of duplexes and 

secondary structures of nucleic acids, were found up-regulated under cold stress in F. 

cylindrus and a function in the control of secondary structures of DNA/RNA under low 

temperature stress to keep transcription and translation active was suggested (Mock and 

Valentin, 2004; Mock et al., 2005).  

Furthermore, the significant enrichment of N-glycan metabolic processes (N-

Glycan biosynthesis and degradation) in F. cylindrus compared to the diatom core 

genome (Figure 11) was notable and may contribute to the formation of a glycoprotein-

rich extracellular matrix (Krembs et al., 2011), functioning in concert with IBPs to 

shape the microstructure of sea ice (Bayer-Giraldi et al., 2011). Additionally, the 

enrichment of lipid metabolism in F. cylindrus in comparison to the diatom core genome 

(Figure 11; Figure 12; Figure 16) may represent an adaptation to life in sea ice as an 

increase in the synthesis of unsaturated fatty acids to maintain membrane fluidity at low 

temperatures is suggested to be an molecular adaptation to psychrophilic lifestyle 
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(Suutari and Laakso, 1994; Chattopadhyay, 2006; Morgan-Kiss et al., 2006; Casanueva 

et al., 2010). Protein families involved in lipid metabolism were also found enriched in 

the polar terrestrial green alga Coccomyxa subellipsoidea (Blanc et al., 2012).  

Furthermore, F. cylindrus showed a significant enrichment of porphyrin and 

chorophyll metabolism (Figure 11) and light-harvesting LHCX proteins compared to 

other sequenced diatoms (Figure 17), which may reflect adaptation to extreme 

fluctuations in light intensities in sea ice. As expected, the genome of F. cylindrus 

encodes for homologs of most enzymes known to be directly involved in biosynthesis of 

chlorophyll and carotenoids (Table 6). However, like in other diatoms no homolog for 

CHL27, a subunit of the Mg-protoporphyrin IX monomethyl ester (MPE) cyclase 

(Tottey et al., 2003), which is nucleus-encoded in vascular plants and green algae but 

encoded on the plastid genome in red algae (Lohr et al., 2005), could be found in neither 

the nuclear nor chloroplast genome of F. cylindrus. This supports the suggestion that 

diatoms might use an unrelated enzyme to form the isocyclic ring of chlorophylls, 

because no CHL27 homologs could be found in the nuclear and plastid genomes of P. 

tricornutum and T. pseudonana (Wilhelm et al., 2006) as well as the plastid genome of 

the centric diatom Odontella sinensis (Kowallik et al., 1995) either. Moreover, like in 

other diatoms no homolog for subunits of the light-independent protochlorophyllide 

oxidoreductase (DPOR), which are plastid-encoded in green algae, mosses and 

gymnosperms, could be detected in the nuclear and plastid genome of F. cylindrus. 

Although some red algal plastids contain genes encoding for DPOR subunits (Reith and 

Munholland, 1993; Gloeckner et al., 2000), others have lost those genes (Ohta et al., 

2003; Hagopian et al., 2004) and no homologs for DPOR subunits could be identified 

on the plastid genome of O. sinensis as well as on the nuclear or the plastid genome of 

T. pseudonana (Wilhelm et al., 2006) and P. tricornutum. Additionally, like in other 

diatoms no homolog with lycopene epsilon-cyclase (LCYE), which catalyses the 

conversion of lycopene to alpha-carotene in higher plants, could be identified in F. 

cylindrus and was also not detected in found in T. pseudonana and P. tricornutum 

(Coesel et al., 2008) explaining why diatoms only contain carotenoids derived from 

beta-carotene. Nevertheless, the identification of at least six putative isoenzymes 

involved in carotenoid biosynthesis (Table 6) may have contributed to the enrichment of 

chlorophyll metabolism in the F. cylindrus genome in comparison to the diatom core 

genome (Figure 11). Interestingly, carotenoids have also been reported to play a role in 

the regulation of membrane fluidity (Subczynski et al., 1992) and by this means 
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postulated to play in cold adaptation of psychrophilic bacteria (Chattopadhyay and 

Jagannadham, 2001; Chattopadhyay, 2006).  

The identification of 64 light harvesting complex (LHC) gene models in F. 

cylindrus (Figure 17), out of which 55 models were supported by ESTs indicated their 

expression and physiological importance. Although number of LHC genes seemed to 

scale with genome size it appeared that the LHC family of LHCX proteins, which is 

involved in photoprotection (Peers et al., 2009; Zhu and Green, 2010) did not (Figure 

17). Strikingly, the F. cylindrus genome contained 11 gene models encoding LHCX 

proteins (Figure 17) including a LHCX1 homolog, which was demonstrated to be a 

regulator of photoprotection via non-photochemical quenching (NPQ) in P. tricornutum 

(Bailleul et al., 2010). A comparable high number of LHCX proteins could be detected 

in the eukaryotic algae genomes of Ostreococcus spp (Palenik et al., 2007), Emiliania 

huxleyi (Betsy A. Read et al., unpublished) and Ectocarpus siliculosus (Cock et al., 

2010) suggesting a relation to the natural light environment of predominantly high light 

stress in these algae.  

Finally, the acclimation to changes in light conditions in F. cylindrus requires 

quantitative regulation of photosynthetic pigments and changes in pigment composition. 

Particularly physiological adaptations to low light conditions are a prerequisite for life 

in Antarctic sea ice, because sea ice is an effective barrier to light transmission, 

especially when covered with snow (Thomas and Dieckmann, 2002; Thomas and 

Dieckmann, 2010). As shown by the F. cylindrus genome this seems to be achieved by 

expansion of genes involved in chlorophyll and carotenoid biosynthesis as well as LHC 

proteins supporting the hypothesis that these diatom-specific photoprotective 

mechanisms play an important role in the ecological adaptation and success of diatoms 

to fluctuating marine environments (Strzepek and Harrison, 2004).  

F. cylindrus has to endure up to six months of darkness during polar winter. 

However, its mode of overwintering in polar sea ice has never been reported and 

remains unclear. Interestingly, the F. cylindrus genome showed a significant enrichment 

of genes associated with carbohydrate metabolism including “starch and sucrose 

metabolism” and “glyoxylate and dicarboxylate metabolism” in comparison to the 

diatom core genome (Figure 11). The enrichment of carbohydrate metabolic processes 

together with the identification of two complete mitochondrial and peroxisomal 

pathways for the beta-oxidation of fatty acids in F. cylindrus (not shown), which 
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generate ATP and feed into gluconeogenesis for carbohydrate production, may provide 

an adaptive mechanism to endure long periods of darkness. In general, sea ice diatoms 

may survive prolonged darkness by switching from autotrophy to heterotrophic uptake 

of organic matter (Palmisano and Garrison, 1993), reduction of their metabolism to a 

lower level of activity (Jochem, 1999), formation of winter growth stages/resting spores 

(Fryxell and Prasad, 1990), utilisation of intracellular reserves of energy-rich substances 

(e.g. lipids and carbohydrates) (Weger et al., 1989; Fogg, 1991; Stehfest et al., 2005) 

and it is likely that a succession of those mechanisms occurs in the environment. In a 

laboratory study with a mesophilic diatom it could be shown that the degradation of 

storage products during darkness followed a well-defined sequence starting with an 

initial decline of lipids, followed by carbohydrates and proteins (Stehfest et al., 2005).  

Last, not least physiological adaptations of carbohydrate metabolic processes 

and organic carbon uptake in F. cylindrus may also be related to peculiarities in sea ice 

carbon chemistry, which arise as a consequence of photosynthetic activity of sea ice 

algae and lead to depletion of inorganic carbon and increases of pH up to pH 11 in sea 

ice brine (normal seawater has a pH of ~8) (Gleitz et al., 1995). This causes knock-on 

effects on carbon acquisition of sea ice algae due to a low substrate affinity and slow 

turnover rate of the carbon-fixing enzyme Ribulose bisphosphate 

carboxylase/oxygenase (RubisCO) (Giordano et al., 2005). Thus, diatoms including F. 

cylindrus have evolved mechanisms to concentrate dissolved inorganic carbon via 

carbon concentrating mechanisms (CCM) (Giordano et al., 2005) using the Zn enzyme 

carbonic anhydrase (CA), which reversibly catalyses the interconversion of bicarbonate 

(HCO3
-
) and CO2 (Reinfelder et al., 2000). Suprisingly, F. cylindrus encodes for two 

novel CA proteins containing a frustulin domain and a fasciclin domain. As frustulins 

are calcium-binding proteins involved in diatom cell wall biogenesis (Kroeger and 

Poulsen, 2008) and fasciclins are extracellular cell adhesion proteins (Huber and 

Sumper, 1994), both proteins might function as extracellular CAs to facilitate the rate of 

CO2 formation in the laminar layer surrounding the cells. Their functioning may profit 

from a postulated proton buffering role of the diatom silicate cell wall (Milligan and 

Morel, 2002) providing protons involved in the interconversion between HCO3
-
 and 

CO2 more efficiently than water (Tripp and Ferry, 2000).  

Last not least, the identification of a light-driven bacteria-like rhodopsin proton 

pump in F. cylindrus was surprising against the background of a chlorophyll-based 

proton gradient-generating photosynthetic apparatus. In several heterotrophic and 
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mixotrophic dinoflagellates rhodopsin has been proposed to fuel light-driven ATP 

synthesis (Lin et al., 2010; Slamovits et al., 2011) and it has been suggested to provide 

an trace metal-independent mechanism to enhance ATP production in photosynthetic 

diatoms when photosynthesis is iron-limited (Raven, 2009; Marchetti et al., 2012).  

 Summary and conclusion 3.4

The draft genome of the psychrophilic diatom F. cylindrus provides 

unprecedented insights into how polar environmental conditions can shape the genome 

of a eukaryotic extremophile organism. Genomic changes relative to mesophilic 

organisms include a high degree of heterozygosity between homologous chromosomes 

combined with the presence of highly diverged alleles, an increased genome size with 

higher number of species-specific genes, a low G+C content and the expansion of genes 

and protein families related to life in the cold. Against the background that adaptation to 

an extreme environment is likely to be conferred not only by a specific set of genes but 

rather a collection of synergistic changes in genome content, structure and amino acid 

composition of enzymes (Methe et al., 2005), this new genomic data provides new 

insights into novel physiology and is a starting point to specifically probe adaptive 

strategies to the polar environment.  
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  Chapter 4

Transcriptome analysis of the psychropilic diatom 

Fragilariopsis cylindrus using RNA-Sequencing 

 Introduction 4.1

The obligate psychrophilic polar diatom F. cylindrus is a key species found in 

seawater and sea ice of the Arctic and Southern Ocean (Lundholm and Hasle, 2008) and 

provides a model to study polar adaptation of phytoplankton (Mock and Valentin, 2004; 

Mock and Hoch, 2005; Mock et al., 2005; Krell et al., 2007; Bayer-Giraldi et al., 2010; 

Lyon et al., 2011). The draft genome sequence of the obligate psychrophilic polar 

diatom Fragilariopsis cylindrus (Mock et al.) reveals its genetic blueprint and gives 

insights into evolution and adaptation of phytoplankton to polar oceans.  

However, we cannot predict from a genome sequence when and in which 

quantities genes are expressed, but these gene expression patterns are crucial to 

understanding how an organism coordinates its cellular functions in response to 

environmental changes (Van de Peer, 2011). Furthermore, gene expression patterns 

provide insights into functions of genes with unknown annotation in diatoms (Allen et 

al., 2008; Mock et al., 2008) and assist in the prediction of functional elements of 

genomes in model organisms (Ross-Macdonald et al., 1999; Boone et al., 2007; 

modENCODE et al., 2011). Applying a transcriptomics approach, we can catalogue 

different species of transcripts including mRNAs and non-coding RNAs, quantify 

changing expression levels of each transcript under different conditions and determine 

the transcriptional structure of genes.  

The high-throughput sequencing of complementary DNAs (cDNA) called RNA 

sequencing (RNA-Seq) provides a powerful tool for transcriptomics (Nagalakshmi et 

al., 2008; Wang et al., 2009). RNA-Seq relies on the principle that a population of RNA 

is converted to a library of cDNA, which then is ligated to sequencing adaptors and 

subjected to high-throughput sequencing. The final mapping of cDNA sequencing reads 

to a reference genome (Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 

2008; Wilhelm et al., 2008) or their de novo assembly (Birol et al., 2009; Li et al., 2009; 

Birzele et al., 2010; Robertson et al., 2010; Grabherr et al., 2011) provides a digital 

measure for the abundance of transcripts. In model organisms RNA-Seq has been used 



The Fragilariopsis cylindrus transcriptome  110 

 

to improve existing genome (Mortazavi et al., 2008; Nagalakshmi et al., 2008; Wilhelm 

et al., 2008) annotations as well as to provide condition-specific information on novel, 

coding and non-coding transcripts, untranslated regions and gene structures (Wilhelm et 

al., 2008). Accordingly, exploring the condition-specific transcriptome of F. cylindrus 

using RNA-Seq, we aimed to obtain novel insights into the functional elements of the F. 

cylindrus genome including the improvement of the existing genome annotation, the 

provision of information on genes with unknown annotation, the identification of novel 

transcripts as well as the identification of genes and pathways involved in acclimation to 

polar conditions.  

In polar waters F. cylindrus is exposed to extreme environmental conditions 

including low temperatures, changing salinities (when sea ice forms and melts) and 

strong seasonality in solar irradiance (Thomas and Dieckmann, 2002). During polar 

winter F. cylindrus has to endure up to six months of darkness when light is insufficient 

for photosynthesis. Previous gene expression studies with F. cylindrus have been 

performed using macroarrays (Mock and Valentin, 2004), sequencing of expressed 

sequence tag (EST) libraries (Mock et al., 2005; Krell et al., 2008) and RT-qPCR assays 

(Krell et al., 2007; Bayer-Giraldi et al., 2010; Lyon et al., 2011). However, these 

approaches are limited by their throughput. Furthermore, while the hybridisation-based 

macroarray approaches is limited by its dynamic range owing to saturation of signals, 

sequencing-based EST approaches have qualitative and quantitative limitations imposed 

by bacterial cloning constraints that affect the representation and completeness of 

cloned sequences. Contrary to EST sequencing, the RNA-Seq approach avoids the need 

for bacterial cloning of the cDNA input providing a simple and comprehensive way to 

provide digital gene expression levels (Wang et al., 2009).  

In this chapter, I report the first genome-wide expression study using RNA-Seq 

to investigate the transcriptome of F. cylindrus under polar summer growth conditions 

(nutrient replete, +4 °C, 35 µmol photons m
-2

 s
-1

), freezing temperatures (−2 °C), 

elevated temperatures (+10 °C), elevated carbon dioxide (1000 ppm CO2), iron 

starvation (−Fe) and prolonged darkness (one week darkness). I present an overview of 

the F. cylindrus transcriptome providing further understanding of molecular 

mechanisms of acclimatisation to environmental stresses and highlight selected 

metabolic pathways and genes involved in acclimation to prolonged darkness.  
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 Results 4.2

 F. cylindrus growing under environmental stress conditions 4.2.1

F. cylindrus was grown under polar summer growth conditions (nutrient replete, 

+4 °C, 35 µmol photons m
-2

 s
-1

 continuous light; also referred to as 

optimal/control/reference growth condition in the following), freezing temperatures (−2 

°C), elevated temperatures (+11 °C), elevated carbon dioxide (1000 ppm CO2), iron 

starvation and prolonged darkness (7 d darkness) to provide total RNA for RNA-Seq 

library construction and sequencing (Figure 21). Analysis of general growth statistics of 

F. cylindrus grown under the six different growth conditions are shown in Table 8. F. 

cylindrus showed positive growth under all experimental treatments, except for 

experimental treatments with elevated temperatures (Heat shock, +11 °C) and prolonged 

darkness (0 µmol photons m
-2

 s
-1

 for 7 days). While cell cultures of F. cylindrus treated 

with polar summer conditions showed optimal growth rates of µ = 0.56 ± 0.01, cells 

treated with prolonged darkness showed minimal growth rates of µ = 0.01 ± 4.82e
-3

 and 

cell treated with elevated temperatures showed no growth but formation of cell 

aggregates leading to a reduction in cell numbers (Figure 21). Additionally, high 

optimal growth rates of 0.54 ± 3.62e
-3

 were observed in cultures bubbled with elevated 

CO2 (1000 ppm CO2/Air mixture; Table 8) and significant increase from pH 7.8 to 8.2 

could be observed when bubbling was stopped and switched to ambient air 

(Supplementary Figure S5). Finally, the nutrient, light and temperature limited growth 

of F. cylindrus was verified by increasing cell numbers and photosynthetic quantum 

yield for PS II (Fv/Fm) after add-back of the limiting growth factor to restore optimal 

growth conditions as found under polar summer conditions (Figure 21).  
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Table 8. General growth statistics of F. cylindrus under environmental stress conditions. Growth rate µ [cell 

divisions d-1] and photosynthetic quantum yield for PS II Fv/Fm are given at time point of sampling for total 

RNA extraction. 

Experimental  

treatment 
Growth conditions Growth 

Growth rate  

µ [d
-1

] 

at time of  

harvest 

Fv/Fm  

at time of  

harvest 

Polar summer/  

control/reference 

(Ctrl) 

nutrient replete, +4 °C,  

35 µmol photons m
-2

 s
-1

 

continuous light 

+ 0.56 ± 0.01 0.58 ± 0.01 

Cold shock (Cold) 

nutrient replete, −2 °C,  

35 µmol photons m
-2

 s
-1

 

continuous light 

+ 0.23 ± 3.10e
-3

 0.42 ± 0.02 

Heat shock (Heat) 

nutrient replete, +10 °C,  

35 µmol photons m
-2

 s
-1

 

continuous light 

- 

n.a.  

(“negative” µ  

-0.46 ± 0.06) 

0.41 ± 0.01 

Iron (Fe) starvation 

−Fe, +4 °C,  

35 µmol photons m
-2

 s
-1

 

continuous light 

+ 0.21 ± 0.07 0.29 ± 0.04 

High CO2 (CO2) 

1000 ppm CO2/Air, 

nutrient replete, +4 °C,  

35 µmol photons m
-2

 s
-1

 

continuous light 

+ 0.54 ± 3.62e
-3

 0.55 ± 0.01 

Prolonged darkness  

(Dark) 

nutrient replete, +4 °C, 

0 µmol photons m
-2

 s
-1

 

for 7 days 

- 0.01 ± 4.82e
-3

 0.53 ± 0.01 
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Figure 21. Cell density and maximum PSII photochemical efficiency (Fv/Fm) of F. cylindrus grown under (A) 

optimal conditions (+4 °C, nutrient replete, 35 µmol photons m-2 s-1), (B) freezing temperatures (−2 °C, 

nutrient replete, 35 µmol photons m-2 s-1), (C) iron limitation (−Fe, +4 °C, 35 µmol photons m-2 s-1), (D) 

elevated temperatures (+11 °C, nutrient replete, 35 µmol photons m-2 s-1), (E) elevated carbon dioxide (1000 

ppm CO2/Air, +4 °C, nutrient replete, 35 µmol photons m-2 s-1), and (F) prolonged darkness (1 week darkness, 

+4 °C, nutrient replete). Shown are median values (n = 3) with maximum and minium values for each time 

point. Dashed line indicates timpe point of harvest and subsequent add-back of limiting growth factor. 
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 Mapping of sequence reads 4.2.2

The sequencing by synthesis approach using the Illumina HiSeq 2000 platform 

produced 2.4 to 4.9 million paired-end sequence reads of 101 bases length per sample 

totalling to 68.8 million reads (Table 9). More than 94% of total reads could be aligned 

to the F. cylindrus draft genome, of which approximately 70% could be uniquely 

mapped and used for digital gene expression analysis (Table 9; Figure 22). Genome-

wide RNA-Seq coverage of the F. cylindrus genome was visualised using the 

Integrative Genomics Viewer (IGV) and an image of a 2.5-kb genomic region is shown 

in Figure 23. The number of unique fragments mapping to genomic features (i.e. exonic, 

intronic and intergenic regions of the genome) were counted, giving 1.5 – 3.0 million 

digital read counts per sample, of which approximately 15 – 30% (21.1% overall mean) 

did not map to predicted protein coding gene models, indicating novel transcriptionally 

active genomic regions (TARs) (Table 9; Figure 24). Notably, the percentage of reads 

that mapped to non-coding features of the genome (i.e., intergenic and intronic regions) 

was lowest (15%) under optimal growth conditions but twice as high under prolonged 

darkness (30%) and indicated a high percentage of novel transcriptional activity (e.g., 

unpredicted genes, alternative splice variants, non-coding RNAs; Table 9; Figure 24).  

 

Figure 22. Overview of the alignment statistics of the fragments mapping onto the F. cylindrus reference 

genome. The reads were mapped to the F. cylindrus draft genome assembly (Fracy1). Shading shows the type 

of mapping; uniquely, reads mapping to only one location in the reference; multiple, reads mapping to more 

than one location in the reference; concordant, uniquely mapping fragments with both reads mapping in pair; 

half, uniquely mapping fragments with only one read from the fragment mapping uniquely while other 

remains unmapped. Only fragments with unique mapping and mapping of both reads properly in pair 

(concordant) were used for digital transcriptome analysis. 
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Figure 23. RNA-Seq coverage for a 2.5-kb region of the F. cylindrus genome as displayed by the Integrative 

Genomics Viewer (IGV v2.1.24). Individual RNA-Seq coverage tracks are shown for experimental treatments 

on top of the gene models track predicted by the Joint Genome Institute (JGI). 

 

Table 9. General statistics for F. cylindrus RNA-Seq data. Each experimental treatment was carried out in 

triplicates (Ctrl = +4 °C; Cold = −2 °C; Iron = Fe; Heat = +10 °C; CO2 = 1000 ppm CO2; Dark = 1 week 

darkness). 

Experimental 

treatment 

Total 

number of 

reads 

% reads 

mapping 

% reads 

unique 

mapping 

Total 

digital 

counts 

% counts not 

mapping to 

gene model 

Ctrl_1 2,481,346 97.21 71.47 1,535,032 15.53 

Ctrl_2 3,413,265 97.51 72.03 2,117,660 16.10 

Ctrl_3 2,969,725 97.74 72.79 1,856,690 16.42 

Cold_1 4,639,725 96.07 71.41 2,804,833 18.12 

Cold_2 3,674,305 97.06 72.29 2,255,951 17.74 

Cold_3 3,932,382 96.92 71.99 2,375,114 19.18 

Iron_1 3,224,916 97.95 74.68 2,011,622 19.73 

Iron_2 3,070,321 97.94 75.15 1,920,484 20.14 

Iron_3 2,961,818 97.63 74.48 1,864,752 18.29 

Heat_1 4,429,184 97.09 73.66 2,644,424 23.37 

Heat_2 4,126,604 95.90 71.49 2,393,030 23.27 

Heat_3 4,497,930 94.94 69.35 2,519,974 23.78 

CO2_1 4,604,350 97.50 71.80 2,823,435 17.09 

CO2_2 3,266,562 96.57 69.97 1,937,864 17.94 

CO2_3 4,820,992 97.52 72.04 2,942,313 18.03 

Dark_1 3,471,467 95.89 73.45 1,961,324 30.01 

Dark_2 4,472,910 97.05 74.27 2,532,937 31.15 

Dark_3 4,774,704 96.61 73.81 2,717,632 29.67 

Total 68,832,506 96.89 72.51 41,215,071 21.09 
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Figure 24. Pie chart showing the distribution of fragment counts onto the F. cylindrus reference genome  

(Fracy1) in percentage of fragments that map to genomic features including predicted gene models (Exon), 

intronic regions (Intron) and unannotated regions (Intergenic). The stacked bar shows the percentage of 

counts from each experimental condition that map to non-coding genomic features (i.e., intergenic and 

intronic regions). 

 

The F. cylindrus draft genome contained 27,137 predicted gene models including 

gene copy pairs from highly heterozygous regions of the genome (FilteredModels1 gene 

model set; see  Chapter 3). A total of 25,700 (95%) from the predicted gene models was 

found transcriptionally active by the definition of having a sum of greater than 0 digital 

read counts in one or more samples across all experimental treatments (not shown). 

Additionally, enabled by the unique mapping of fragments to heterozygous regions of 

the F. cylindrus genome, highly heterozygous gene copy pairs, which could not be 

collapsed into a single haplotype, could be analysed individually. The transcriptome 

analysis of highly heterozygous gene copy pairs, representing 7966 putative 

heterozygous alleles ( 3.2.1), showed that 7832 (> 98%) were transcriptionally active 

showing unequal expression between putative alleles ( 4.2.6). In comparison, the digital 

gene expression analysis based on 18,073 F. cylindrus gene models (FilteredModels2 

gene model set), which were predicted for its single-haplotype after filtering highly 

heterozygous gene copy pairs ( 3.2.1) showed that 17,054 (94%) of the single-haplotype 

filtered models were transcriptionally active by the above definition (data not shown).  

Furthermore, RNA-seq analysis identified a high number of 22,871 genomic 

regions that were transcriptionally active but located outside of predicted gene models 

and aligned to unannotated genomic regions and contributed to 19.6% of digital read 
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counts mapping to intergenic regions (Figure 24). A histogram of the length of 

transcriptionally active regions (TARs) mapping to unannotated regions using raw 

unfiltered data showed a length range from 200 bp up to 10 kb but highest frequencies 

of TAR lengths were found in the 0.6 – 1 kb size range (Figure 25).  

 

Figure 25. Histogram showing the length frequencies of novel transcriptional active regions (TARs) with reads 

mapping to unannotated genomic regions in F. cylindrus. 

 

TARs in proximity of < 250 nucleotides were filtered as they were likely to be 5’ 

or 3’ regions of incompletely predicted existing gene models based on experience 

gained from manual genome annotations. The 57 identified novel TARs were distributed 

over 36 genomic scaffolds (Figure 26). The length distribution showed highest 

frequencies of TARs with up to 500 bp length and most TARs were distributed over 

longer genomic scaffolds (with lower scaffold numbers; Figure 26). 
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Figure 26. Histogram showing the length frequencies of filtered novel transcriptional active regions (TARs) 

with reads mapping to unannotated genomic regions in F. cylindrus. TARs were filtered by proximity to 

annotated gene models (< 250 nt cut off). Insert shows the distribution of novel TARs over all 271 genomic 

scaffolds. 

 

To identify undetected protein-coding genes with known sequence homologies, 

we extracted DNA nucleotide sequences for all 57 novel TARs from the genome and 

searched for open reading frames (ORFs ≥ 100 nt) on forward and reverse strands. A 

total of 96 hits were obtained from a sequence similarity search of all 1263 identified 

ORFs (average protein length of 61) against the Swiss-Prot database (BLASTP, E-value 

≤ 1e
-3

). By using the best BLAST hit 10 ORFs (0.8%) were identified with homologies 

to deposited reference proteins including two putative transposable elements scoring 

with low e-values (Table 10).  
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Table 10. Novel transcriptionally active genomic regions (TARs) in F. cylindrus with hits to Swiss-Prot 

database (Bairoch et al., 2005). Table is sorted according to e-values. Asterisks (*) mark open reading frames 

(ORFs), which produced hits to different reference proteins. 
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 Global analysis of gene expression profiles 4.2.3

A global analysis of transcriptional profiles of all RNA-seq libraries was 

performed on raw digital read counts. A multi-dimensional scaling (MDS) plot was used 

to visually explore relationships between transcriptional profiles of samples (Figure 27). 

Distances on the plot can be interpreted as leading log2-fold-changes between samples 

for a common set of genes which was likely to distinguish RNA-Seq libraries. Based on 

the identification of 4952 genes with substantial high log2-fold changes of ≥ 5 in at least 

one growth condition, a common set of 5000 genes was used to distinguish samples. 

The MDS plot shows that replicated samples were highly similar and that replicated 

condition-specific samples clearly separated from each other in both dimensions 

reflecting the experimental design (Figure 27). Notably, dimension 1 clearly separated 

samples from the prolonged darkness treatment from all others and indicated the 

presence of a high number of differentially expressed genes during this experimental 

treatment in comparison to others (Figure 27). The greatest distances were observed 

between the experimental treatment with prolonged darkness and polar summer growth 

conditions with continuous light (Figure 27). The results from the MDS analysis could 

be confirmed by an independent global hierarchical clustering analysis of transcriptional 

profiles (not shown).  

During explorative data analysis, it was noticed that the sample relationships 

obtained for RNA-Seq libraries filtered for genes predicted for the F. cylindrus single 

haplotype were inconsistent with the above described relationships obtained for all 

predicted genes in F. cylindrus including putative allelic gene copy pairs from 

heterozygous regions of the genome. To explore whether specific expression of putative 

heterozygous allelic copies played a role in the F. cylindrus transcriptome, the digital 

read count data was filtered for the 18,073 gene models as predicted for its single-

haplotype and compared to the unfiltered gene set based on 27,137 gene models 

including gene copy pairs from heterozygous regions of the genome (Figure 27). 

Assuming that the transcriptome of F. cylindrus is affected by differential allele-specific 

expression, we hypothesized that the MDS relationship between samples would change 

after filtering digital read count data for single-haplotype transcripts. In comparison, 

assuming that both heterozygous copies are uniformly expressed under each 

experimental treatment, we expected no change in the relationship between samples.  
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Results showed that, although the distinct clustering of samples from the 

experimental treatment with prolonged darkness remained, a filtering for single-

haplotype transcripts strongly affected the relationships of all other samples (Figure 28), 

concealing the clear separation of replicated samples as observed for non-filtered read 

count data (Figure 27). Especially the experimental treatments with elevated CO2 and 

polar summer growth conditions were affected by the filtering process (Figure 28) and 

indicated a role of allele-specific expression in F. cylindrus.  

 

Figure 27. Multidimensional scaling (MDS) plot of digital gene expression profiles for the F. cylindrus RNA-

Seq libraries showing the relations between the samples in two dimensions. Distances on the plot represent the 

biological coefficient of variation of expression between samples using a top set of 5000 genes with highest 

biological variation and can be interpreted as leading log2-fold changes between the samples. Data was 

normalised according to TMM scaling normalisation method (Robinson & Oshlack 2010).  
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Figure 28. Multidimensional scaling (MDS) plot of digital gene expression profiles for F. cylindrus RNA-Seq 

libraries filtered for single-haplotype model transcript. 

 

 Condition-specific analysis of the F. cylindrus transcriptome 4.2.4

A condition-specific analysis of the F. cylindrus transcriptome was performed 

making pair-wise multiple comparisons between experimental conditions testing for 

differentially expressed genes.  

A total of 12,812 genes were differentially expressed in F. cylindrus (likelihood 

ratio test, Benjamini-Hochberg adjusted P < 0.001, relative log2 fold change ≤ −2 and ≥ 

+2) under at least one experimental condition relative to the reference of polar summer 

growth conditions (nutrient-replete, +4 °C, continuous light). A hierarchical clustering 

of all 12,812 differentially expressed genes identified condition-specific gene clusters 

and similarities in genome-wide relative expression between the five experimental stress 

conditions (Figure 29). Noteworthy was the identification of two main gene clusters, 

which showed opposite gene expression patterns relative to continuous light (Ctrl) in 

comparison to other conditions (Figure 29). 
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Figure 29. Hierarchical clustering of 12,812 differentially expressed genes in F. cylindrus (likelihood ratio test 

P < 0.001, log2 fold change ≤ −2 or ≥ +2) under iron (Fe)-starvation, freezing temperature (cold, −2 °C), 

elevated temperature (heat, +10 °C), elevated carbon dioxide (CO2, 1000 ppm CO2/Air) and prolonged 

darkness (Dark, 1 week darkness) relative to optimal polar summer growth conditions (+4 °C, 35 µmol 

photons m-2 s-1 continuous light, nutrient-replete). Each experimental treatment corresponds to one separate 

column and each single-haplotype gene to a single row. The colour scale ranges from saturated red for up-

regulated genes to saturated blue for down regulated genes; black indicates no significant regulation. A one 

minus Pearson correlation distance metric was applied to cluster rows and columns using complete linking 

method (created using R software (R Development Core Team, 2012), heatmap.2 function of gplots package, 

http://www.r-project.org/).  

 

As indicated by the global expression analysis (Figure 27), the experimental 

treatment of F. cylindrus with prolonged darkness showed a high number of 7852 up- 

and 11,004 down regulated genes (likelihood ratio test, Benjamini-Hochberg adjusted P 

< 0.05) relative to treatment with polar summer condition (Ctrl; Table 11). A majority of 

the down regulated genes in prolonged darkness was upregulated or not differentially 

expressed in other experimental treatments relative to polar summer growth conditions 

(Figure 29). The significantly up- and down regulated genes under prolonged darkness 

relative to polar summer growth with continuous light were functionally analysed using 

gene ontologies ( 4.2.5). Moreover, to explore not only the relative differences in the 

http://www.r-project.org/
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transcriptional responses of F. cylindrus during different treatments compared to polar 

summer reference growth condition (Ctrl) but also the differences in relative 

transcriptional responses between all experimental treatments, a pair-wise treatment-by-

treatment comparison was performed comparing gene expression profiles every 

experimental treatment with every other treatment (Table 11). Table 11 shows the 

number of significantly regulated genes between any two experimental treatments 

(likelihood ratio test, Benjamini-Hochberg adjusted P < 0.05). The numbers represent 

genes with significant increase in gene expression between an experimental condition 

on the horizontal axis (row) and an experimental condition on the vertical axis 

(column). As indicated by MDS (Figure 27) and hierarchical clustering (Figure 29), the 

treatment-by-treatment comparisons showed that the highest numbers of differentially 

expressed genes were observed for F. cylindrus treated with prolonged darkness (Table 

11). Numbers in a small range of ca. 7000 - 8000 genes were upregulated in F. cylindrus 

under prolonged darkness relative to all other treatments, whereas approximately 11,000 

genes were down regulated relative to all other conditions (Table 11). Additionally, it is 

shown that the experimental treatments of F. cylindrus with the highest number of 

differentially regulated genes were detected for the treatment with prolonged darkness 

(Dark) relative to iron starvation (Fe) showing 7478 upregulated genes and 11,884 down 

regulated genes, making a total of 19,362 differentially regulated genes between both 

conditions (Table 11). However, all experimental treatments showed high total numbers 

(~18,000 – 19,000) of differentially expressed genes (Table 11) and indicated a strong 

metabolic change in F. cylindrus in prolonged darkness.  

In comparison the lowest number of differentially expressed genes was observed 

for the experimental treatment of F. cylindrus with elevated CO2 (CO2) relative to 

treatment with freezing temperatures (Cold) showing 3174 upregulated genes and 4240 

down regulated genes making a total of 7414 differentially expressed genes, followed 

by the treatment comparisons of freezing temperature (CO2) and freezing temperatures 

(Cold) to polar summer growth conditions (Ctrl) with a total of 8882 differentially 

expressed genes and 9593, respectively (Table 11).  

 

 

 



The Fragilariopsis cylindrus transcriptome  125 

 

Table 11. Treatment-by-treatment comparison of differentially expressed genes in F. cylindrus. Table shows 

the total number of differentially expressed genes (likelihood ratio test, Benjamini-Hochberg adjusted P < 0.05) 

between the row treatment (left) and column treatment (bottom). For genes reported in each cell, there is 

significant upregulation in the row treatment (left) compared to the column treatment (bottom) and vice versa 

there is significant down regulation in the column treatment (bottom) compared to the row treatment (left). 

Ctrl 0 4111 4573 6912 4480 11004 

Fe 4489 0 5447 6440 6116 11884 

Cold 5020 5455 0 6833 4240 11458 

Heat 6871 5876 7116 0 8037 11942 

CO2 4402 5326 3174 6970 0 10434 

Dark 7852 7478 7627 7115 7932 0 

 
Ctrl Fe Cold Heat CO2 Dark 

Greyscale key for number of differentially expressed genes 

0 – 

2000 

2001 – 

4000 

4001 – 
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8001 – 

10000 

10001 – 

12000 

 

 Functional analysis using gene ontologies and metabolic pathway maps 4.2.5

A functional analysis using gene ontologies was carried out on differentially 

expressed gene sets described in Table 11 to get insights into the metabolic pathways 

and processes involved in the transcriptional response of F. cylindrus to different 

environmental conditions with main focus on the transcriptional response of F. cylindrus 

to prolonged darkness. Furthermore, metabolic pathways involved in the acclimatory 

response of F. cylindrus to prolonged darkness were identified using a metabolic map 

based on known metabolic reaction in various organisms (Letunic et al., 2008; Yamada 

et al., 2011).  

The sets of differentially up- and down regulated genes in F. cylindrus during 

prolonged darkness were separately analysed for significantly enriched gene ontology 

(GO) term annotations (Wallenius approximation, Benjamini-Hochberg adjusted P < 

0.05) and long lists of GO terms were summarised and visualised using semantic 

similarity scatter plots (ReViGO scatter plot (Supek et al., 2011)), in which a 

multidimensional scaling procedure was applied to assign coordinates to each term so 

that more semantically similar GO terms were closer in the plot (Figure 30; Figure 31).  
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Figure 30 shows a ReViGO scatter plot showing enriched molecular function 

GO terms associated with upregulated genes in F. cylindrus exposed to prolonged 

darkness. GO terms are represented as bubbles with colours indicating significance 

levels of the GO term enrichment test (Wallenius approximation, P < 0.05) and sizes 

indicating the frequency of the GO term in the underlying Gene Ontology Annotation 

database (UniProt-GOA), which implies that smaller bubbles represent more specific 

GO terms as they are less frequent than general GO terms. It is shown that many genes 

involved in regulation of gene expression and DNA replication (GO:0003700 sequence-

specific DNA binding transcription factor activity, GO:0043565 sequence-specific DNA 

binding, GO:0004402 histone acetyltransferase activity, GO:0034061 DNA polymerase 

activity) were enriched among upregulated genes in F. cylindrus during prolonged 

darkness (Figure 30). Moreover, genes involved in signal transduction as represented by 

various kinases (GO:0016301 kinase activity, GO:0004713 protein tyrosine 

kinase,GO:0000285 1-phosphatidylinositol-3-phosphate (PIP) 5-kinase activity) as well 

as transporter genes (GO:0005215 transporter activity) were enriched among 

upregulated genes during darkness (Figure 30). Genes with transport activity 

contributed to carbohydrate transport (GO:0008643) and protein transport 

(GO:0015031) as shown by analysis of enriched biological process GO terms and which 

also included proteolysis (GO:0006508; Table 12). 
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Figure 30. ReViGO scatterplot (Supek et al., 2011) showing enriched molecular function GO terms of 

upregulated genes in F. cylindrus during prolonged darkness relative to continuous light during polar summer 

growth condition. Overrepresented GO terms (Wallenius approximation, Benjamini-Hochberg adjusted P < 

0.05) among upregulated genes (GLM likelihood ratio test, P < 0.05) were determined using the goseq 

Bioconductor R package (Young et al., 2010). A non-redundant GO term set was plotted in a two dimensional 

space by applying a multidimensional scaling procedure so that more semantically similar GO terms are closer 

in the plot using the ReViGO Web server (http://revigo.irb.hr/). The bubble colour indicates significance levels 

and size indicates the frequency of the GO term in the underlying Gene Ontology Annotation (UniProt-GOA) 

Database. 

 

 

 

 

http://revigo.irb.hr/
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Table 12. Enriched biological process gene ontologies of upregulated genes in F. cylindrus during prolonged 

darkness relative to continuous light under polar summer growth conditions. Given are gene ontology term 

identifier (GO term ID), term description, frequency of the GO term in the underlying GO Annotation 

database and P-values. 

GO term ID Description Frequency 
log10  

p-value 

GO:0006281 DNA repair 1.92% -1.9309 

GO:0008152 metabolic process 77.99% -1.9055 

GO:0015031 protein transport 1.78% -1.4753 

GO:0006511 ubiquitin-dependent protein catabolic process 0.20% -1.5962 

GO:0043687 post-translational protein modification 0.01% -1.4859 

GO:0051246 regulation of protein metabolic process 0.42% -1.4859 

GO:0008643 carbohydrate transport 1.15% -1.4714 

GO:0006396 RNA processing 2.59% -1.362 

GO:0006508 proteolysis 4.53% -1.3624 

GO:0007264 small GTPase mediated signal transduction 0.50% -1.7327 

GO:0007165 signal transduction 5.49% -1.5671 

 

In comparison, corresponding to the high number of down regulated genes 

(Table 11), a higher number of enriched GO terms were enriched among down regulated 

genes in F. cylindrus during prolonged darkness relative to continuous light during polar 

summer growth condition (Figure 31). A high proportion of genes involved in 

translation (GO: 0006412; Table 13) was found down regulated as indicated by four 

enriched molecular function GO terms (GO:0003723 RNA binding, GO:0003735 

structural constituent of ribosome, GO:0003743 translation initiation factor activity and 

GO:0004812 aminoacyl-tRNA ligase activity) (Figure 31). Additionally, enriched GO 

terms included three proton-pumping ATPase (GO:0003936 F1-ATPase, 

GO:0046961/GO:0046933 ATP-Synthase activity), cyclophilin (GO:0004600) and 

sugar transporter (GO:0005351 sugar:hydrogen symporter activity) terms. Last, not 

least biological process GO terms related to carotenoid biosynthesis and photosynthesis 

were enriched in the set of down regulated genes in F. cylindrus treated with prolonged 

darkness and included “isoprenoid biosynthetic process” (GO:0008299) and 

“photosynthesis, light harvesting” (GO:0009765) (Table 13).  
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Figure 31. ReViGO scatterplot (Supek et al., 2011) showing enriched molecular function GO terms of down 

regulated genes in F. cylindrus during prolonged darkness relative to continuous light during polar summer 

growth condition. Overrepresented GO terms (Wallenius approximation, Benjamini-Hochberg adjusted P < 

0.05) among upregulated genes (GLM likelihood ratio test, P < 0.05) were determined using the goseq 

Bioconductor R package (Young et al., 2010). A non-redundant GO term set was plotted in a two dimensional 

space by applying a multidimensional scaling procedure so that more semantically similar GO terms are closer 

in the plot using the ReViGO Web server (http://revigo.irb.hr/). The bubble colour indicates significance levels 

and size indicates the frequency of the GO term in the underlying Gene Ontology Annotation (UniProt-GOA) 

Database. Abbreviation as follows: peptidyl-prolyl cis-trans isomerase (PPIase). 

 

 

 

 

 

http://revigo.irb.hr/
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Table 13. Enriched biological process gene ontologies of down regulated genes in F. cylindrus during 

prolonged darkness relative to continuous light under polar summer growth conditions. Given are gene 

ontology term identifier (GO term ID), term description, frequency of the GO term in the underlying GO 

Annotation database and P-values. 

GO term ID Description Frequency 
log10  

p-value 

GO:0006412 translation 4.97% -11.0126 

GO:0006885 regulation of pH 0.03% -1.3142 

GO:0008152 metabolic process 77.99% -3.773 

GO:0015992 proton transport 1.03% -1.6677 

GO:0009765 photosynthesis, light harvesting 0.01% -5.5546 

GO:0006334 nucleosome assembly 0.19% -2.3075 

GO:0008299 isoprenoid biosynthetic process 0.39% -1.6734 

GO:0006096 glycolysis 0.54% -1.429 

GO:0006810 transport 18.62% -1.3996 

GO:0006511 ubiquitin-dependent protein catabolic process 0.20% -1.3985 

GO:0006470 protein dephosphorylation 0.24% -1.332 

GO:0006260 DNA replication 2.88% -1.9099 

GO:0006418 tRNA aminoacylation for protein translation 0.97% -3.5445 

GO:0008033 tRNA processing 1.17% -1.4877 

GO:0006364 rRNA processing 0.62% -1.6126 

GO:0006457 protein folding 0.97% -4.139 

GO:0006508 proteolysis 4.53% -2.6896 

GO:0006413 translational initiation 0.34% -2.1525 

GO:0006414 translational elongation 0.67% -1.5375 

 

In addition to GO term analysis, a pathway analysis was performed on 

differentially regulated genes using metabolic maps to further pinpoint expression levels 

of different metabolic pathways (Figure 32). Figure 32 shows a metabolic map based on 

currently known metabolic reactions compiled from various organisms (Letunic et al., 

2008; Yamada et al., 2011) and highlights differentially expressed metabolic pathways 

in F. cylindrus under prolonged darkness relative to continuous light during polar 

summer growth conditions. Nodes on the map correspond to chemical compounds and 

lines represent series of enzymatic reactions. The width of lines and red colour shading 

are scaled according to mean absolute expression values (fragments per kilobase of 

exon per million fragments mapped, FPKM).  

It is shown that selected genes encoding for enzymes involved in lipid 

metabolism (left centre of map, highlighted with dark grey box), nucleotide metabolism 

(top right of map, highlighted with dark grey box), carbohydrate metabolism (lower 



The Fragilariopsis cylindrus transcriptome  131 

 

centre of map) including starch and sucrose metabolism (top centre of map, highlighted 

with dark grey box) showed high expression values for selected pathways (Figure 32). 

The high expression values of genes involved in starch and sucrose and lipid 

metabolism in F. cylindrus under prolonged darkness indicated utilisation of 

chrysolaminarin and fatty acid storage products.  

In comparison to polar summer growth conditions with continuous light (Ctrl), 

gene expression analysis of the chrysolaminarin synthesis pathway showed significant 

down regulation of all identified genes involved in chrysolaminarin synthesis including 

UDP-sugar pyrophosphorylases (USP1-3, protein IDs: 183667, 211962, 213392) and 

beta-glucan synthases (BGS1-4, protein IDs: 269043, 186340, 146754, 149475) during 

prolonged darkness (Dark; Figure 33) with negative relative log2 fold changes (logFC < 

−1, P < 0.001) for all genes, except BGS3 (logFC = −0.01, P < 0.001) and USP2 (logFC 

= 0.7, P < 0.001). Conversely, selected genes involved in the breakdown of 

chrysolaminarin to free glucose were significantly upregulated under prolonged 

darkness relative to continuous light under polar summer growth conditions, which 

included genes for exo-1,3-beta glucanases (EXG2/207213, EXG5/258194; logFC > 1.5 

, P < 0.001), endo-1,3-beta glucanases (ENG1/206115, ENG3/260039, ENG8/188235, 

ENG9/241200; logFC > 1.6, P < 0.001) and beta-glucosidases (BGL3/182486, 

BGL5/181839; logFC > 3.4, P < 0.001) (Figure 33). Free glucose is a substrate for a 

significantly upregulated glucokinase (GLK2/216851, logFC = 6.3, P < 0.001) and 

catalyse the first step of glycolysis (Figure 33). Although the upper phase of glycolysis 

did not appear to be strongly regulated in F. cylindrus under prolonged darkness on a 

global metabolic map (Figure 32), the analysis of the lower ATP and reducing 

equivalent-producing phase of glycolysis (glyreraldehyde-3-phosphate dehydrogenase 

to pyruvate kinase) showed significant upregulation of selected genes (Figure 34). A 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH6/269867) catalysing the reaction 

glyceraldehyde 3-phosphate (GAP) to 1,3-bisphosphoglycerate (1,3BPG) showed a 

relative log2 fold change of 4.1 (P < 0.001). Additionally, a phosphoglycerate kinase 

(PGK3/208673; logFC = 5.5, P < 0.001), two phosphoglycerate mutases 

(PGAM4/185681, PGAM9/161031; logFC > 1.1, P < 0.001), an enolase 

(ENO3/184892, logFC = 1.1, P < 0.001) and a pyruvate kinase (PK1/206568; logFC = 

1.1, P < 0.001) showed upregulation in F. cylindrus during prolonged darkness (Dark) 

relative to control (Figure 34).  

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=269867
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The pyruvate decarboxylation to acetyl-CoA is catalysed by pyruvate 

dehydrogenase enzymes. Although an identified pyruvate dehydrogenase alpha subunit 

(PDHE1-A/187383) was significantly down regulated during prolonged darkness 

relative to continuous light (Ctrl) under polar summer growth conditions (logFC = −2.5, 

P < 0.001), a similar E1 component dehydrogenase (DH_E1)-domain containing alpha 

subunit (BCKDE1-A/186364) with homologies to a 2-oxoisovalerate dehydrogenase 

(EC 1.2.4.4) showed significant upregulation with a relative log2 fold change of 9.3 (P < 

0.001). The final metabolite acetyl-CoA can feed into the tricarboxylic acid (TCA) cycle 

(Figure 34).  

The expression analysis of genes involved in mitochondrial and peroxisomal 

beta-oxidation of fatty acids in F. cylindrus showed upregulation of most genes during 

prolonged darkness (Dark) relative to continuous light during polar summer growth 

conditions (Ctrl) (Figure 35). A long chain acyl-CoA synthetase (ACSL1/262994) 

involved in the initial activation of fatty acid beta-oxidation was significantly 

upregulated by a relative log2 fold chance of 0.9 (P < 0.001). The subsequent 

peroxisomal oxidation of acyl-CoA is catalysed by an acyl-CoA oxidase (ACOX) and 

directly uses molecular oxygen generating hydrogen peroxide. A putative peroxisomal 

ACOX1 (210789) in F. cylindrus was significantly upregulated during prolonged 

darkness by a relative log2 fold change of 1.5 (P < 0.001). In comparison, the FAD-

dependent oxidation of acyl-CoA catalysed by acyl-CoA dehydrogenases 

(ACD1/209571, ACD2/226606, ACD3/268657, ACD4/271673) showed stronger 

relative log2 fold changes ranging from 1.9 (for ACD1) to 10.1 (for ACD2). The 

following hydration reaction is catalysed by enoyl-CoA hydratase (ECH) and selected 

ECH isoenzymes in F. cylindrus showed significant upregulation during prolonged 

darkness relative to continuous light during polar summer growth conditions. ECH1 

(180456) was significantly upregulation by a relative log2 fold change of 1.1 (P < 

0.001), whereas ECH3 (273959) and ECH5 (202663) showed higher log2 fold changes 

of 4.5 (P < 0.001) and 2.7 (P < 0.001). All identified isoenzymes for 3-hydroxyacyl-

CoA dehydrogenase (HADH) in F. cylindrus catalysing the NAD
+
-dependent oxidation 

of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA (Figure 35) showed significant upregulation 

during prolonged darkness relative to continuous light during polar summer growth 

conditions with log2 fold changes of 2.0 (for both HADH1/207194 and 

HADH2/183437) and 4.7 (for HADH3/270026). Notably, the single identified acetyl-

CoA acetyltransferase in F. cylindrus (ACAT1/274265), which catalyses the ultimate 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=187383
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=186364
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thiolysis step during beta oxidation of fatty acids was significantly upregulated relative 

to continuous light during polar summer growth conditions by a log2 fold change of 5.9 

(P < 0.001), whereas it showed low FPKM expression values in all other growth 

conditions (Figure 35). Last, not least oxidative phosphorylation showed high 

expression values during prolonged darkness (Figure 32; lower centre of map).  
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Figure 32. Metabolic map of differentially expressed genes in F. cylindrus grown under prolonged darkness. 

Nodes on the map correspond to chemical compounds and lines represent series of enzymatic reactions. The 

width of lines and red colour shading are scaled according to mean absolute expression values (FPKM).  
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Figure 33. Expression of genes involved in chrysolaminarin biosynthesis and degradation in F. cylindrus under 

six experimental growth conditions. Colour scale represents absolute FPKM expression values on a relative 

scale per row (gene). Chemical compound abbreviations: glucose-1-phosphate (G-1-P), Uridine-5'-

triphosphate (UTP), pyrophosphate (PPi). Identified isoenzymes are shown in boxes and F. cylindrus protein 

identifiers are reported with annotation labels: UDP-sugar pyrophosphorylase (USP), beta-glucan synthase 

(BGS), exo-1,3-beta-glucanase (EXG), endo-1,3-beta-glucanase (ENG), beta-glucosidase (BGL), glucokinase 

(GLK).  
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Figure 34. Expression of genes involved in lower phase of glycolysis in F. cylindrus under six experimental 

growth conditions. Colour scale represents absolute FPKM expression values on a relative scale per row (gene). 

Chemical compound abbreviations: glyceraldehyde 3-phosphate (G-3-P), 1,3-bisphosphoglycerate (1,3-BPG), 

3-phosphoglycerate (3-PG), 2-phosphoglycerate (2-PG), phosphoenolpyruvate (PEP), tricarboxylic acid (TCA), 

adenosine-5'-triphosphate (ATP), adenosine diphosphate (ADP), coenzyme A (CoA), nicotinamide adenine 

dinucleotide (NAD+), reduced NAD+ (NADH+H+), tricarboxylic acid cycle (TCA cycle). Identified isoenzymes 

are shown in boxes and F. cylindrus protein identifiers are reported: Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGAM), enolase (ENO), 

pyruvate kinase (PK), E1 component dehydrogenase (DH_E1).  
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Figure 35. Expression of genes involved in mitochondrial and peroxisomal fatty acid beta-oxidation in F. 

cylindrus under six experimental growth conditions. Colour scale represents absolute FPKM expression values 

on a relative scale per row (gene). Chemical compound abbreviations: Adenosine-5'-triphosphate (ATP), 

Adenosine monophosphate (AMP), pyrophosphate (PPi), coenzyme A (CoA), flavin adenine dinucleotide 

(FAD), reduced FAD (FADH2), nicotinamide adenine dinucleotide (NAD+), reduced NAD+ (NADH+H+), 

tricarboxylic acid (TCA). Identified isoenzymes are shown in boxes and F. cylindrus protein identifiers are 

reported with annotation labels: long-chain acyl-CoA synthetase (ACSL), acyl-CoA oxidase (ACOX), acyl-

CoA dehydrogenase (ACD), enoyl-CoA hydratase (ECH), 3-hydroxyacyl-CoA dehydrogenase (HADH), acetyl-

CoA acetyltransferase (ACAT). The direct oxidation of acyl-CoA using oxygen takes place in peroxisomes and 

is catalysed by ACOX producing hydrogen peroxide. The FAD-dependent oxidation of acyl-CoA takes place in 

mitochondria.  

 

As indicated by the functional analysis of significantly down regulated genes in 

F. cylindrus during prolonged darkness relative to continuous light conditions (polar 

summer) using biological process gene ontologies, the GO terms “isoprenoid 

biosynthetic process” (related to carotenoid biosynthesis) and “photosynthesis, light 

harvesting” showed significant enrichment (Table 13).  
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Further expression analysis of genes involved in carotenoid biosynthesis and the 

xanthophyll cycle showed low FPKM expression values relative to continuous light 

(Ctrl) during polar summer growth conditions (Figure 36) with mostly negative log2 

fold changes (logFC). The single identified putative deoxyxylulose 5-poshpate 

synthetase in F. cylindrus (DXS1/206899), which catalyses the synthesis of 

deoxyxylulose 5-phosphate (DX-5-P) showed relative log2 fold change of −5.2 (P < 

0.001). Genes encoding for putative enzymes involved in the subsequent chain of 

reactions leading to the generation of isopentenyl and dimethylallyl pyrophosphate 

(IPP/DMAPP) showed negative relative log2 fold changes within a similar range from 

−1.7 for isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI2/239201) to 

−8.0 for 2-C-methylerythritol 2,4-cyclodiphosphate synthase (MCS/205676). Although, 

a single identified geranylgeranyl pyrophosphate synthase (GGPPS/287526) generating 

geranylgeranyl pyrophosphate (GGPP) was upregulated in F. cylindrus during 

prolonged darkness by a log2 fold change of 1.3 (P < 0.001), a geranylgeranyl reductase 

(GGR/179770), ultimately leading to the biosynthesis of phytol and utilised in 

chlorophyll synthesis (Figure 36) via chlorophyll synthase (see below), was 

significantly down regulated by a log2 fold change of −2.5. Similarly to GGR, genes 

encoding for isoenzymes of phytoene synthase (PSY1-4) were significantly down 

regulated during prolonged darkness to the same degree (−4.2 ≥ logFC ≤ −2.6, P < 

0.001). Additionally, genes encoding enzymes involved in the enzymatic conversion of 

phytoene to beta-carotene generally showed low FPKM values during prolonged 

darkness in comparison to continuous light (Figure 36), except for zeta-carotene 

desaturase (ZDS/291551) and carotenoid isoenzyme 2 (CIS2/206370), which were 

significantly upregulated during prolonged darkness by a relative log2 fold change of 

0.7 (P < 0.001) and 2.1 (P < 0.001), respectively. All other genes encoding for enzymes 

involved in the conversion of phytoene to beta-carotene showed either no significant 

regulation or negative relative log2 fold changes. Last, but not least genes encoding for 

isoenzymes of the zeaxanthin epoxidase (ZEP) and violaxanthin de-epoxidase (VDE) 

involved in a photoprotective xanthophyll cycle were strongly down regulated in F. 

cylindrus during prolonged darkness relative to continuous light showing negative log2 

fold changes ranging from −3.8 (for VDE2/212709) to −9.1 (for VDE3/207471), with 

the exception of ZEP1 with no significant regulation. Finally, the single identified beta-

carotene monooxygenase (BCMO/228160) in F. cylindrus, catalysing the cleavage of 

beta-carotene into two molecules of retinal (Figure 36) showed significant upregulation 

during prolonged darkness relative to continuous light by a log2 fold change of 2.1 (P < 
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0.001). Notably, in the context of retinal synthesis during darkness, a bacteria-like 

rhodopsin in F. cylindrus (FR2/267528), which binds retinal was significantly 

upregulated during prolonged darkness by a log2 fold change of 5.4 (P < 0.001).  

In comparison to gene expression analysis of the carotenoid pathway (Figure 

36), the expression analysis of genes involved in chlorophyll synthesis in F. cylindrus 

during prolonged darkness relative to continuous light could not identify a single 

significantly upregulated gene (Figure 37) and showed negative relative log2 fold 

changes ranging from −8.6 for porphobilinogen deaminase (PBGD/267185) to −3.0 for 

NADPH:protochlorophyllide oxidoreductase (POR2/188173).  
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Figure 36. Expression of genes involved in carotenoid biosynthesis and xanthophyll cycle in F. cylindrus under 

six experimental growth conditions. Colour scale represents absolute FPKM expression values on a relative 

scale per row (gene). Chemical compound abbreviations: glycerinealdehyde 3-phosphate (G-3-P), 

deoxyxylulose 5-phosphate (DX-5-P), Isopentenyl pyrophosphate/dimethylallyl pyrophosphate (IPP/DMAPP), 

geranylgeranyl pyrophosphate (GGPP), zeaxanthin (Zx), antheraxanthin (Ax), violaxanthin (Vx), diatoxanthin 

(Dtx), diadinoxanthin (Ddx), fucoxanthin (Fx), chlorophyll (Chl). Identified isoenzymes are shown in boxes or 

annotation labels with F. cylindrus protein identifiers: deoxyxylulose 5-phosphate synthase (DXS), 

deoxyxylulose 5-phosphate reductoisomerase (DXR), diphosphocytidyl-2-C-methylerythritol synthase (CMS), 

2-C-methylerythritol kinase (CMK), 2-C-methylerythritol 2,4-cyclodiphosphate synthase (MCS), hydroxy-3-

methylbutenyl diphosphate synthase (HDS), hydroxy-3-methylbutenyl diphosphate reductase (HDR), 

isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI), geranylgeranyl pyrophosphate synthase 

(GGPPS), phytoene synthase (PSY), phytoene dehydrogenase (PDH), zeta-carotene desaturase (ZDS), 

carotenoid isomerase (CIS), lycopene beta cyclase (LCYB), zeaxanthin epoxidase (ZEP), violaxanthin de-

epoxidase (VDE), geranylgeranyl reductase (GGR), beta-carotene monooxygenase (BCMO). 
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Figure 37. Expression of genes involved in chlorophyll biosynthesis in F. cylindrus under six experimental 

growth conditions. Colour scale represents absolute FPKM expression values on a relative scale per row (gene). 

Chemical compound abbreviations: Magnesium-protoporphyrin IX (Mg-Proto IX), divinyl 

protochlorophyllide a (DV Protochlide a), protochlorophyllide a (Protochlide a), chlorophyllide (Chlide a), 

chlorophyll (Chl). Identified isoenzymes are shown in boxes or annotation labels with F. cylindrus protein 

identifiers: 5-aminolevulinic acid dehydratase (ALAD), porphobilinogen deaminase (PBGD), 

uroporphyrinogen III synthase (UROS), uroporphyrinogen III decarboxylase (UROD), coproporphyrinogen 

III oxidase (CPX), protoporphyrinogen IX oxidase (PPX), protoporphyrin IX Mg-chelatase subunit D (CHLD), 

protoporphyrin IX Mg-chelatase subunit H (CHLH), Mg-protoporphyrin IX methyltransferase (CHLM), 

divinyl protochlorophyllide a 8-vinyl reductase (DVR), NADPH:protochlorophyllide oxidoreductase (POR), 

chlorophyll synthase (CHLG). 
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 Allele-specific analysis of the F. cylindrus transcriptome 4.2.6

The draft genome of F. cylindrus showed a high degree of sequence 

polymorphism and prevented haplotypes from heterozygous regions of the genome to 

be collapsed into a single haplotype causing a diffuse haplotype structure ( Chapter 3). 

These heterozygous regions affected 7966 (30%) of the total 27,137 predicted genes 

( 3.2.1). The analysis of nucleotide similarities of the resulting heterozygous gene copy 

pairs showed high nucleotide sequence similarities of > 98% for most pairs suggesting 

the presence of putative heterozygous allelic gene copies (Figure 8).  

To explore if putative allelic gene copies from heterozygous parts of the F. 

cylindrus genome showed allele-specific gene expression, a condition-specific analysis 

of the F. cylindrus transcriptome was carried out on the putative 7966 allelic gene 

copies. It was shown that more than 98% (7832) of the allelic variant genes were 

transcriptionally active (digital read count > 0 in at least 1 sample) and 5790 allelic 

genes showed differential expression relative to polar summer growth condition 

(likelihood ratio test P < 0.001, log2 fold change ≤ −2 or ≥ +2) (Figure 38). Notably is a 

variable bi-allelic expression (unequal expression of alleles) between both allelic copies 

under different experimental conditions, each represented by two adjacent columns 

(Figure 38) indicating a high degree of differential bi-allelic expression in F. cylindrus. 

Indeed, if comparing allelic copy 2 against its sister allelic copy 1, 4434 allelic copy 

pairs (55% of all copy pairs) could be identified showing strong differential bi-allelic 

expression (likelihood ratio test P < 0.001, log2 fold change ≤ −2 or ≥ +2) (Figure 39).  

As a result, the individual functional gene ontology analysis of both significantly 

upregulated allelic gene copy sets in F. cylindrus during prolonged darkness relative to 

continuous light (Ctrl) shows deviant sets of overrepresented molecular function gene 

ontologies for both allelic copies (Wallenius approximation, Benjamini-Hochberg 

adjusted P < 0.05; Figure 40, Figure 41). Figure 40 shows that upregulated allelic genes 

from allele set 1 were involved in signal transduction (e.g. GO:0004698 calcium-

dependent protein kinase C activity, GO:0004702 receptor signalling protein 

serine/threonine kinase activity, GO:0019199 transmembrane receptor protein kinase 

activity), regulation of transcription and translation (e.g. GO:0043565 sequence-specific 

DNA binding, GO:0004694 eukaryotic translation initiation factor 2 alpha kinase 

activity, GO:0004711 ribosomal protein S6 kinase activity) and replication of DNA (e.g. 

GO:0003887 DNA-directed DNA polymerase activity, GO:0034061 DNA polymerase 
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activity) (Figure 40). In comparison, upregulated allelic genes from allele set 2 were 

involved in transport (GO: GO:0005215 transporter activity) and protein-protein 

interaction (GO: GO:0005515 protein binding).  

Additionally, allele-specific gene expression also appeared to affect global 

functional gene ontology analyses ( 4.2.5; data not shown), because results for 

significantly overrepresented GO terms were influenced by the gene set used for the 

analysis. Based on a functional analysis using the complete set of 27,137 predicted 

genes for F. cylindrus including gene copies from heterozygous regions of the genome, 

14 enriched GO terms were identified showing that genes involved in signal 

transduction, transport and regulation of gene expression and DNA replication were 

enriched in upregulated genes in F. cylindrus during prolonged darkness relative to 

continuous light (Figure 30). In comparison, a functional analysis based on 18,073 

genes predicted for the single-haplotype of F. cylindrus identified 7 enriched GO terms 

from the upregulated in F. cylindrus during prolonged darkness relative to continuous 

light and showed a lower overall resolution of enriched GO terms involved in signal 

transduction (GO:0004672 protein kinase activity), transport (GO:0005215 transporter 

activity) and regulation of gene expression (GO:0043565 sequence-specific DNA 

binding, GO:0003700 sequence-specific DNA binding transcription factor activity) and 

protein metabolism (GO:0005515 protein binding, GO:0004842 ubiquitin-protein ligase 

activity) (data not shown). Additionally, the functional analysis based on 18,073 single-

haplotype genes in F. cylindrus identified the molecular function GO term “ion channel 

activity” (GO:0005216) as enriched in upregulated genes during prolonged darkness 

relative to continuous light, but which could not be identified based on the functional 

analysis of 27,137 predicted genes including all genes from heterozygous regions of the 

F. cylindrus genome (Figure 30).  
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Figure 38. Hierarchical clustering of 5790 differentially expressed allelic gene pairs in F. cylindrus (likelihood 

ratio test P < 0.001, log2 fold change ≤ −2 or ≥ +2) under iron (Fe)-starvation, freezing temperature (cold, 

−2 °C), elevated temperature (heat, +10 °C), elevated carbon dioxide (CO2, 1000 ppm CO2/Air) and prolonged 

darkness (Dark, 1 week darkness) relative to optimal polar summer growth conditions (+4 °C, 35 µmol 

photons m-2 s-1 continuous light, nutrient-replete). Each experimental treatment corresponds to two separate 

columns for both allelic variants and each single-haplotype gene to a single row. The colour scale ranges from 

saturated red for up-regulated genes to saturated blue for down regulated genes; black indicates no significant 

regulation. A one minus Pearson correlation distance metric was applied to cluster rows using complete 

linking method (created using R software (R Development Core Team 2012), heatmap.2 function of gplots 

package, http://www.r-project.org/). 

 

http://www.r-project.org/
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Figure 39. Differential bi-allelic expression in F. cylindrus. Hierarchical clustering of 4434 differentially 

expressed allelic genes relative to their sister allele (likelihood ratio test P < 0.001, log2 fold change ≤ −2 or ≥ 

+2) under iron (Fe)-limitation, Cold (−2 °C), Heat (+10 °C), increased carbon dioxide (1000 ppm CO2), 

prolonged darkness (Dark, 1 week darkness), optimal growth conditions (Ctrl, +4 °C, 35 µmol photons m-2 s-1 

continuous light, nutrient-replete). Each experimental treatment corresponds to one separate column and each 

allelic gene pair to a single row. The colour scale ranges from saturated red for up-regulated genes to 

saturated blue for down regulated genes; black indicates no significant regulation. A one minus Pearson 

correlation distance metric was applied to cluster rows and columns using complete linking method (created 

using R software (R Development Core Team 2012), heatmap.2 function of gplots package, http://www.r-

project.org/). 

 

http://www.r-project.org/
http://www.r-project.org/
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Figure 40. Allele set 1: ReViGO scatterplot (Supek et al., 2011) showing enriched molecular function GO terms 

of upregulated allelic genes in F. cylindrus during prolonged darkness relative to continuous light during polar 

summer growth condition. Overrepresented GO terms (Wallenius approximation, Benjamini-Hochberg 

adjusted P < 0.05) among upregulated genes (GLM likelihood ratio test, P < 0.05) were determined using the 

goseq Bioconductor R package (Young et al., 2010). A non-redundant GO term set was plotted in a two 

dimensional space by applying a multidimensional scaling procedure so that more semantically similar GO 

terms are closer in the plot using the ReViGO Web server (http://revigo.irb.hr/). The bubble colour indicates 

significance levels and size indicates the frequency of the GO term in the underlying Gene Ontology 

Annotation (UniProt-GOA) Database. Abbreviation as follows: 3-phosphoinositide-dependent protein kinase 

(PDK) activity. 

 

http://revigo.irb.hr/
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Figure 41. Allele set 2: ReViGO scatterplot (Supek et al., 2011) showing enriched molecular function GO terms 

of upregulated allelic genes in F. cylindrus during prolonged darkness relative to continuous light during polar 

summer growth condition. Overrepresented GO terms (Wallenius approximation, Benjamini-Hochberg 

adjusted P < 0.05) among upregulated genes (GLM likelihood ratio test, P < 0.05) were determined using the 

goseq Bioconductor R package (Young et al., 2010). A non-redundant GO term set was plotted in a two 

dimensional space by applying a multidimensional scaling procedure so that more semantically similar GO 

terms are closer in the plot using the ReViGO Web server (http://revigo.irb.hr/). The bubble colour indicates 

significance levels and size indicates the frequency of the GO term in the underlying Gene Ontology 

Annotation (UniProt-GOA) Database. 

 

To corroborate RNA-Seq results for allele-specific gene expression, an allele-

specific RT-qPCR analysis was performed on the large ribosomal protein subunit L27 in 

F. cylindrus. Allelic gene copies for L27 were encoded by L27/269038 (denoted allele 

1) and L27/273430 (denoted allele 2). Both allelic gene copies were strongly expressed 

showing high absolute FPKM expression values determined by RNA-Seq during all 

experimental conditions, except for prolonged darkness which showed expression 

values of 1.5 and 0.6, respectively (Table 14). It is shown that L27/269038 (allele 1) 

was generally more highly expressed than L27/273430 (allele 2) under all tested 

experimental conditions (Table 14). This result could be confirmed by the determination 

http://revigo.irb.hr/
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=269038
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&id=273430
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of allele-specific expression of L27 in F. cylindrus using RT-qPCR (Figure 42). 

Although the relative percentages determined for allelic expression of L27 by RT-qPCR 

deviated from percentages calculated based on RNA-Seq FPKM values, they were in 

good agreement for all other conditions (Table 14; Figure 42). The variation of 

percentages in allelic expression of L27 determined by RT-qPCR was caused by its low 

expression preventing its detection during qPCR analysis.  

Finally, a correlation analysis of log2 fold changes determined by RT-qPCR and 

RNA-Seq with a coefficient of determination R
2
 = 0.92 showed the good agreement of 

both methods over a wide range of transcript abundance (Figure 43). 

 

Table 14. Absolute RNA-Seq FPKM expression values for the L27 gene copy pair in F. cylindrus and 

percentages of the total FPKM for each allelic gene copy. 

 
Ctrl Cold Fe Dark Heat CO2 

FPKM (L27/269038) 341.94 414.36 188.11 1.51 99.99 348.29 

FPKM (L27/273430) 166.62 140.53 88.725 0.61 50.94 113.56 

FPKM total 508.57 554.9 276.84 2.12 150.9 461.85 

% Allele 1 (L27/269038) 67.2 74.7 68.0 71.1 66.2 75.4 

% Allele 2 (L27/273430) 32.8 25.3 32.0 28.9 33.8 24.6 
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Figure 42. Relative allelic expression of large ribosomal subunit L27 in F. cylindrus under different 

experimental conditions as determined by RT-qPCR. The allele frequency was calculated according to 

frequency of allele1 = 1/(2ΔCt + 1) [Germer et al. (2000), Genome Research 10: 258-66]. 

 

 

Figure 43. Comparison of log2 fold expression values determined by RNA-Seq and RT-qPCR in F. cylindrus.  

Fold changes are given for every experimental condition relative to optimal growth at continuous light (Ctrl) 

for individual transcripts which were quantified by RT-qPCR.  
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 Discussion 4.3

The transcriptome of the polar diatom F. cylindrus was studied under six 

experimental conditions including polar summer growth conditions, freezing 

temperatures, elevated temperatures, elevated carbon dioxide, iron starvation and 

prolonged darkness using RNA-Seq. A total of 68.8 million reads was generated, out of 

which 70% were uniquely mapped to the draft genome of F. cylindrus and used for 

digital expression analysis.  

The RNA-Seq approach was sensitive enough to detect widespread transcription 

of the F. cylindrus genome and detected traces of RNA, which could not be detected by 

RT-qPCR (compare Figure 42 and Table 14). Transcriptional activity was detected for 

95% of all predicted genes and interestingly, > 98% of the putative allelic gene copy 

pairs were identified as transcriptionally active indicating their importance in the F. 

cylindrus genome. The high percentage of transcriptional active genes shows that the 

reported genome-wide expression profiling of F. cylindrus grown under six different 

growth conditions covered most of its genetic repertoire supporting > 90% of currently 

predicted gene models. Nevertheless, up to 30% of uniquely mapped reads were 

mapped to genomic regions in F. cylindrus without a predicted genomic feature 

including intron and intergenic regions and suggesting a high degree of unknown 

transcriptional activity. Interestingly, the highest percentages (~30%) of reads mapping 

to no genomic features were detected for F. cylindrus cultured under prolonged 

darkness. As a result, a total of 22,871 transcriptionally active regions (TARs) without 

annotated genomic feature were identified, which may include novel protein-coding 

genes, untranslated regions of existing gene models and long non-coding regulatory 

RNAs. The highest abundances of TARs was found to be in the 0.6 – 1kb size range, 

which is about half of the average gene length of ~1.6 kb predicted for diatom genes 

(Armbrust et al., 2004; Bowler et al., 2008) and may suggest that most are non-coding 

and may have regulatory functions in response to experimental stresses. However, TARs 

could also be identified in the size range from 1.5 kb up to a maximum of 10kb, which 

are likely to contain novel protein-coding genes. A similar pattern for length distribution 

of TARs was reported for the fungus Ascocoryne sarcoides using RNA-Seq analysis 

(Gianoulis et al., 2012). Furthermore, in the same study, a number of long and highly 

expressed TARs devoid of open reading frames is reported and the authors suggest a 

regulatory role (Gianoulis et al., 2012). In comparison, the 57 novel TARs identified for 

F. cylindrus (obtained after filtering for TARs with distance to nearest predicted gene of 
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> 250 nt) contained a high number of 1263 open reading frames on both strands and 10 

ORFs produced hits to protein reference databases suggesting they may be unpredicted 

genes rather than regulatory non-coding RNAs. Interestingly, two of the identified novel 

TARs showed high homologies to transposable elements (TEs). TEs have been reported 

to respond to various stresses in plants (Wessler, 1996) and in the pennate diatom P. 

tricornutum a transposable element was found hypomethylated in response to nitrate 

starvation providing a direct link between environmental stress and chromatin 

modelling in diatoms (Maumus et al., 2009). Thus, our finding of two putative 

unidentified TEs, which were expressed to experimental stresses strengthens their 

potential importance in genome evolution of pennate diatoms, as suggested by 

(Maumus et al., 2009).  

In summary, identification of high transcriptional activity of the F. cylindrus 

genome including intergenic regions and novel TARs is in agreement with recent 

transcriptome data from eukaryotic organisms indicating that the transcribed portions of 

genomes are large and complex, and that many functional properties of transcripts are 

based not on coding sequences but on regulatory sequences in untranslated regions or 

non-coding RNAs (Yamada et al., 2003; David et al., 2006; Amaral et al., 2008). 

A global analysis of transcriptional profiles from all RNA-Seq libraries showed a 

separate clustering of replicated sample groups to each other, reflecting the 

experimental design (Figure 27). Notably was the distinct separate clustering of samples 

from F. cylindrus grown under prolonged darkness to all other conditions in dimension 

1 of a MDS analysis, which was likely caused by differential expression. In comparison, 

the separation of samples from F. cylindrus grown under prolonged darkness was less 

clear in dimension 2 to cells grown under freezing temperatures and optimal growth 

conditions with continuous light (Figure 27), which may relate to unknown technical 

noise. Noteworthy, distances in dimension 1 on a MDS plot, separating samples by 

differential expression, were greatest between samples from F. cylindrus grown under 

prolonged darkness compared to cells grown under continuous light with optimal 

growth conditions and suggested high numbers of differentially expressed genes 

between both treatments. Indeed, a condition-specific analysis of the F. cylindrus 

transcriptome showed a high number of 18,475 (68% of predicted gene models) 

differentially expressed genes (p < 0.05) between both experimental conditions.  
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Strikingly, the sample relationships in a MDS analysis changed if the data set 

was filtered for genes predicted for the single haplotype of F. cylindrus (Figure 28) and 

suggested specific expression of putative allelic gene copies under different 

experimental conditions, assuming that MDS relationships would not change 

significantly if allelic copies were expressed uniformly under each condition. Further 

allele-specific analysis of the F. cylindrus transcriptome indeed showed that 98% of the 

putative allelic copy pairs from heterozygous regions of the genome were 

transcriptionally active and 70% of all putative allelic copy were differentially 

expressed (relative log2 fold change ≤ −2 or ≥ +2 in comparison to optimal growth; 

Figure 38). Additionally, a strong differential bi-allelic expression (non-uniform 

expression, relative log2 fold change ≤ −2 or ≥ +2 between allelic copy pairs) could be 

shown for 55% of all allelic copy pairs suggesting an important role of bi-allelic 

expression in F. cylindrus under different experimental conditions (Figure 39). 

Furthermore, the functional significance of differential bi-allelic expression on 

metabolism in F. cylindrus was shown by a separate analysis of upregulated allelic 

genes in cells grown under prolonged darkness relative to continuous light using 

molecular function GO terms (Figure 40; Figure 41). An overrepresentation of 

molecular function GO terms referring to signal transduction, regulation of transcription 

and DNA replication was found for the allelic gene copy set 1 (Figure 40) in 

comparison to overrepresentation of GO terms related to transport and protein-protein 

interactions as found for the corresponding allelic gene copy set 2 (Figure 41), 

suggesting a separation of metabolism between allelic gene copies. Furthermore, the 

comparison of both analyses suggests that prolonged darkness activated signalling 

cascades which lead to the induction of DNA-binding proteins that initiated 

transcription and DNA replication, which was exclusively determined by allelic gene 

copies from allele set 1 (Figure 40), whereas under the same growth conditions allelic 

gene copies from allele set 2 dominate transport and protein-protein interaction 

metabolism (Figure 41). Consequently, it is likely that, under the same growth condition 

of prolonged darkness, individual representatives from each allelic gene copy contribute 

differently to a genome-wide functional GO analysis of gene expression in F. cylindrus 

and that GO terms associated with signal transduction and DNA-binding are mostly 

determined by allelic copies from allele set 1, whereas transport metabolism is 

determined mainly by allelic copies from allele set 2 under prolonged darkness. Indeed, 

the functional analysis based on all 27,137 predicted gene models including all allelic 

gene copies from heterozygous regions of the genome (Figure 30) showed a deviant set 
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of overrepresented GO terms in comparison to the same analysis based on 18,073 genes 

predicted for the single haplotype of F. cylindrus (not shown). This functional difference 

of gene expression in the single haplotype gene set is not only likely to be caused by 

strong differential bi-allelic expression, but also a bias towards functional categories not 

represented by allelic gene copy pairs, which was the major reason to base our main 

analysis on all 27,137 predicted genes in F. cylindrus including all gene copies from 

heterozygous regions of the genome.  

Although, to my knowledge, this is the first report on allele-specific expression 

in eukaryotic phytoplankton, the phenomenon of allele-specific gene expression has 

been widely reported in mammals (Cowles et al., 2002; Enard et al., 2002; Yan et al., 

2002; Cheung et al., 2003; Lo et al., 2003), fish (Oleksiak et al., 2002), plants (Guo et 

al., 2004; Schaart et al., 2005) and yeast (Brem et al., 2002). It has been reviewed that 

the variations in allelic expression are likely to be context-specific with regard to cell 

type and stimulus (e.g. environmental condition) and may have physiological 

implications (Knight, 2004). Moreover a recent study identified allele-specific gene 

expression in maize in response to environmental stresses and functional diversity of 

allelic copies was suggested (Guo et al., 2004). Accordingly, the high percentage of 

transcriptionally active heterozygous allelic gene copies in F. cylindrus suggests their 

importance in adaptation of a polar eukaryote. Moreover, a strong differential 

expression of allelic gene copies in F. cylindrus suggests that individual copies are 

under different regulatory controls enabling cells to coordinate gene expression in 

different ways, ultimately leading to a high metabolic flexibility and capacity to adapt to 

a rapidly changing environment.  

A condition-specific differential expression analysis of the F. cylindrus 

transcriptomes from all six tested experimental conditions showed that 12,812 genes 

were differentially expressed by > 4 fold (likelihood ratio test, P < 0.001) in at least one 

experimental condition relative to optimal growth conditions with continuous light 

(Figure 29). Strikingly, a hierarchical clustering of all 12,812 differentially expressed 

genes showed strong differential expression in F. cylindrus during prolonged darkness 

revealing two main gene clusters with an opposite expression pattern (Figure 29). The 

first cluster showed upregulation under prolonged darkness but mostly down regulation 

in other conditions relative to optimal growth with continuous light conditions, whereas 

a second larger cluster showed down regulation under prolonged darkness but little or 

no expression in other conditions relative to optimal growth under continuous light 
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conditions (Figure 29; Table 11). In addition to relative comparisons of experimental 

treatments to optimal growth conditions with continuous light, we also analysed the 

relative transcriptional differences between all experimental conditions applying pair-

wise treatment-by-treatment comparisons (Table 11). As indicated by a hierarchical 

clustering and multidimensional scaling analysis, the highest numbers of differentially 

expressed genes in F. cylindrus were identified for all experimental conditions 

compared to prolonged darkness (Table 11) and the numbers of differentially expressed 

genes are consistent with distances of samples on a MDS plot in dimension 1 

confirming the separation of samples in dimension 1 by differential expression found by 

global analysis of transcriptional profiles using MDS (see discussion above; Figure 27). 

Although the biological interpretation of numbers for differentially expressed genes in 

F. cylindrus between two different experimental conditions (Table 11) remains purely 

speculative, because different genes may contribute to the numbers of differentially 

expressed genes, one main application of this table is to use the underlying gene sets for 

functional analysis to address specific biological questions. Against the background of 

temperature adaptation it might, for example, be of interest to compare enriched 

functional gene categories in the 6833 upregulated genes in F. cylindrus grown under 

freezing temperature (Cold) relative to elevated temperatures (Heat) (Table 11). 

Interestingly, this comparison revealed a significant enrichment of metabolism relation 

to translation (data not shown), which could also be found identified by a comparative 

analysis between polar and tropical metatranscriptome data sets (Toseland et al., 

unpublished result). However, the focus of the current chapter is on a functional analysis 

of differentially expressed genes in prolonged darkness relative to continuous light, 

because prolonged darkness appeared to have the most significant effect on the 

transcriptome of F. cylindrus (Figure 27; Figure 29; Table 11).  

The individual functional analysis of up- and down regulated genes in F. 

cylindrus grown under prolonged darkness relative to continuous light using gene 

ontologies showed that genes involved in regulation of gene expression and cellular 

transport were significantly enriched (P < 0.05) in the upregulated set of genes (Figure 

30). Notably, genes with transport activity appeared to contribute to the significant 

enrichment of carbohydrate transport metabolism, as identified by biological process 

gene ontologies (Table 12). In comparison, down regulated genes in F. cylindrus grown 

under prolonged darkness relative to continuous light were mainly involved in 

translation, protein degradation as well as ATP synthesis (Figure 31). Thus, it seems that 
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F. cylindrus reduces its energetic demand by reducing the energetically expensive 

process of translation (Wilson and Nierhaus, 2007) to compensate for a loss of ATP 

production. Additionally, the overrepresentation of genes with cyclophilin activity 

during prolonged darkness was interesting (Figure 31), because cyclophilins are 

suggested to protect against oxidative stress (Doyle et al., 1999). Thus, the down 

regulation of cyclophilins under prolonged darkness relative to continuous light may 

relate to reduced photosynthetic production of reactive oxygen species and oxidative 

stress. As expected, down regulated genes in F. cylindrus under prolonged darkness 

relative to continuous light were related to photosynthesis and photosynthetic pigment 

synthesis (Table 13).  

This result could be confirmed by the individual analysis of metabolic pathways 

differentially expressed in F. cylindrus (Figure 32). Most of the identified genes 

involved in the biosynthesis of carotenoids and the photoprotective xanthophyll cycle 

were significantly down regulated during prolonged darkness (Figure 36). Surprisingly, 

an opposite expression pattern and strong upregulation by a relative log2 fold change of 

2.1 (P < 0.001) was found for a beta-carotene monooxygenase, which catalyses the 

cleavage of beta-carotene into retinal (Figure 36) and may provide the retinal 

chromophore for a light-dependent bacteria-like rhodopsin proton pump identified in 

the genome of F. cylindrus ( 3.2.2.6). Similarly to upregulation of a beta-carotene 

monooxygenase, both putative retinal-binding Fragilaripsis rhodopsin (FR) alleles were 

significantly upregulated during prolonged darkness by a log2 fold change of 2.0 for 

FR1/271123 and 5.4 for FR2/267528 (P < 0.001). The upregulation of both FR copies in 

F. cylindrus during prolonged darkness may be explained by a strong feedback 

activation caused by the lack of final protein product but it remains speculative at this 

stage as protein concentrations were not determined in this work.  

In addition to the down regulation of most genes involved in carotenoid 

biosynthesis, all identified genes involved in chlorophyll biosynthesis were strongly 

down regulated by relative log2 fold changes < −3 (Figure 37). Although photosynthetic 

genes were down regulated, it appeared that cells maintained their photosynthetic 

apparatus without degradation of photosystems, because the photosynthetic quantum 

yield for photosystem II (Fv/Fm) remained on a constant high level of 0.54 during 

darkness (Table 8) and upon return to light, cells continued rapid growth (data not 

shown). In comparison to that Reeves et al. (2011) reported a drop in Fv/Fm in F. 

cylindrus cultures during seven days of darkness. However, the authors also reported a 
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much lower Fv/Fm value of 0.20 at the beginning of their darkness treatment, which 

might relate to a bad photosynthetic health of cells and explain a different response of 

Fv/Fm values. Additionally, Reeves et al. (2011) could show constant levels of 

chlorophyll a for F. cylindrus over a darkness period of up to one month supporting the 

conclusion that the photosynthetic apparatus was maintained in F. cylindrus during 1 

week of darkness. In addition to that several other studies on polar microalgae and a 

macroalgae showed an increase in pigment content during initial exposure to darkness 

(Peters and Thomas, 1996; Lüder et al., 2002), which might relate to an acclimatory 

response similar to low light. An early acclimatory response to low light can cause a 

rearrangement of photosynthesis antenna pigments (Eberhard et al., 2008), which is 

likely for F. cylindrus, too, and explain results showing opposite differential gene 

expression patterns for genes involved in carotenoid biosynthesis inconsistent with the 

general down regulation of that pathway (Figure 36).  

In contrast, to the down regulation of genes related to photosynthesis and 

biosynthesis of pigments, starch and sucrose-related pathways as well as fatty acid 

metabolism showed high expression values during prolonged darkness (Figure 32), 

suggesting that F. cylindrus uses the oxidation of glucan and lipids to provide ATP and 

reduction equivalents for basal cell maintenance. This finding was supported by the 

expression pattern of genes involved in the diatom carbon storage product beta-1,3-

glucan chrysolaminarin. It was found that most genes predicted to be involved in 

chrysolaminarin biosynthesis were significantly down regulated in F. cylindrus grown 

under prolonged darkness, whereas the majority of genes involved in the breakdown of 

chrysolaminarin were significantly upregulated (Figure 33). Ultimately, the complete 

degradation of chrysolaminarin may lead to free glucose, which can be phosphorylated 

by glucokinase (Figure 33), the initial step in glycolysis. Interestingly, one of the GLK 

isoenzymes (GLK2) showed strong upregulation by a log2 fold change of 6.3 (P < 

0.001). The subsequent upper phase of glycolysis appeared to have no differential 

expression based on a metabolic pathway map (Figure 32). However, upregulation was 

shown for selected genes involved in the lower (payoff) phase of glycolysis (Figure 32), 

which was confirmed by individual expression analysis of this phase of glycolysis 

(Figure 34). Interestingly, although a putative pyruvate dehydrogenase was down 

regulated in F. cylindrus grown under prolonged darkness, a mitochondrial E1-

component dehydrogenase, which may also catalyse the pyruvate decarboxylation to 

acetyl-CoA, showed high absolute expression values solely during prolonged darkness 
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(Figure 34) and thus seems to be a specific acclimatory response of F. cylindrus to 

prolonged darkness. In comparison to upregulation of selected genes involved in 

glycolysis, genes involved in the mitochondrial and peroxisomal beta-oxidation of fatty 

acids were more strongly upregulated throughout (Figure 35). Interestingly, the single 

identified acetyl-CoA acetyltransferase in F. cylindrus, catalysing the ultimate step 

during beta-oxidation of fatty acids showed high absolute expression values relative to 

all other experimental conditions and seemed to be strongly expressed during prolonged 

darkness only (Figure 35). Taken together our findings suggest that acetyl-CoA 

generated by glycolysis and beta-oxidation of fatty acids may feed into the tricarbonic 

acid cycle contributing to the production of NADH and FADH2 used in oxidative 

phosphorylation to produce ATP for basal cell maintenance of F. cylindrus during 

prolonged darkness. Notably, parts of the TCA cycle as well as oxidative 

phorphorylation showed high expression values (Figure 32).  

To my knowledge, this is the first report describing a detailed metabolic 

response of a polar autotrophic organism to prolonged darkness at the gene expression 

level. However, the reported findings are in general agreement with previous studies 

showing that sudden darkness did not induce resting spore formation in polar diatoms 

and cells survive in their vegetative stage maintaining their photosynthetic capacity 

(Peters and Thomas, 1996). Additionally, it appears a feature of polar phytoplankton 

species to be able to begin rapid growth upon return to light (Peters and Thomas, 1996; 

Tang et al., 2009), which was also found for F. cylindrus in this study (Figure 21). The 

high expression values for genes related to fatty acid metabolic pathways in F. cylindrus 

during prolonged darkness may indicate the utilisation of stored lipids for metabolic 

intermediates and generation of adenosine 5’-triphosphate (ATP), and, as suggested by 

Armbrust et al. (Armbrust et al., 2004), may explain how diatoms survive long periods 

of darkness. Furthermore, it has been shown for the mesophilic diatom Cyclotella 

meneghiniana that the degradation of storage products during darkness caused a 

decrease of all cellular macromolecules over time and degradation followed a well-

defined sequence from degradation of the lipid fraction, followed by carbohydrates to 

proteins (Stehfest et al., 2005). Consequently, the finding that beta-oxidation of fatty 

acids was more strongly upregulated throughout than chysolaminarin metabolism and 

glycolysis in F. cylindrus under prolonged darkness (Figure 33; Figure 35) may reflect 

the well-defined sequence of degradation reported for C. meneghiniana (Stehfest et al., 

2005), suggesting that mesophilic and psychrophilic diatoms share a similar adaptation 
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strategy to darkness. Additionally, the oxidation of lipids and carbohydrates in the dark 

was also suggested by studies on mitochondrial respiration in the diatom Thalassiosira 

weissflogii, showing an immediate stop of oxygen production when photosynthesising 

cells were transferred to darkness (Weger et al., 1989). Ultimately, a decline in protein 

in cells kept in darkness for a long period, like in overwintering F. cylindrus, could be 

expected due to the degradation of proteins like RubisCO (Geider et al., 1993). The 

degradation of light-harvesting antennae and the reaction centre proteins PSII and PSI 

began after 4 month of darkness in the Antarctic macroalgae Palmaria decipiens (Lüder 

et al., 2002).  

 Summary and conclusions 4.4

A genome-wide RNA-Seq analysis of transcriptomes of the psychrophilic 

diatom F. cylindrus grown under six experimental conditions including polar summer 

growth conditions, freezing temperatures, elevated temperatures, elevated carbon 

dioxide, iron starvation and prolonged darkness provides unprecedented insights into 

the transcriptional complexity of a polar eukaryote. Transcriptional activity was 

detected for 95% of all predicted genes in F. cylindrus including putative allelic copies 

from heterozygous regions of the genome. Furthermore, 98% of heterozygous allelic 

copies were transcriptionally active and 55% showed ≥4 fold non-uniform bi-allelic 

expression suggesting that individual copies are under different regulatory controls and 

enable F. cylindrus to coordinate gene expression in different ways, ultimately leading 

to a high metabolic flexibility and capacity to adapt to a rapidly changing environment. 

Moreover, up to 30% of RNA sequencing reads mapped to the F. cylindrus genome 

were not associated with a predicted genomic feature and may include novel protein-

coding genes and non-coding regulatory RNAs. Additionally, it was found that 

prolonged darkness caused significant transcriptional changes in F. cylindrus providing 

unprecedented details of the molecular responses of a polar autotrophic organism to 

initial darkness at the beginning of the polar winter.  
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  Chapter 5

A bacteria-like rhodopsin proton pump from the psychrophilic 

diatom Fragilariopsis cylindrus 

 Introduction 5.1

A bacteria-like rhodopsin was discovered in the draft genome of the 

psychrophilic diatom F. cylindrus, but gene products resembling rhodopsins are absent 

in the sequences of the mesophilic diatoms Thalassiosira pseudonana and 

Phaeodactylum tricornutum ( Chapter 3). Rhodopsins are photoreceptors consisting of 

seven transmembrane domain proteins, called opsins, and the light-absorbing 

chromophore retinal. Rhodopsin genes are classified based on their different primary 

sequences into microbial (type I) and animal (type II) rhodopsins (Spudich et al., 2000). 

Microbial (type I) rhodopsins are found in prokaryotes, fungi and eukaryotic algae and 

type II rhodopsins are present in higher eukaryotes, including humans (e.g. visual 

photoreceptors). In contrast to type II rhodopsins, which use G protein-coupled signal 

transduction pathways, most microbial type I rhodopsins directly regulate membrane 

ion conductance. Furthermore, rhodopsins can be classified according to electrical 

properties into (1) electrically neutral photoreceptors in animal eyes or sensors for 

phototaxis in prokaryotes (Spudich, 2006), (2) channel rhodopsins causing light-induced 

passive conductance of H
+
 and other cations in phototactic algae (Nagel et al., 2002; 

Sineshchekov et al., 2002) and (3) light-driven ion pumps for H
+
 and Cl

-
 providing a 

mechanism of phototrophy in prokaryotes (Danon and Stoeckenius, 1974).  

Light-driven ion pumps have been extensively studied in prokaryotes (Oesterhelt 

and Stoeckenius, 1971; Matsuno-Yagi and Mukohata, 1977; Grigorieff et al., 1996; Beja 

et al., 2000; Balashov et al., 2005) and phototrophy has been shown in marine 

gammaprotobacteria conferred by H
+
-puming rhodopsins, called proteorhodopsins (Beja 

et al., 2001). Proteorhodopsins exhibit high genetic mobility (Frigaard et al., 2006; 

Sharma et al., 2006) and are widespread in the marine environment (Man et al., 2003b; 

Sabehi et al., 2003; Sabehi et al., 2004; Venter et al., 2004; Atamna-Ismaeel et al., 2008) 

including the Arctic Ocean (Jung et al., 2008), Southern Ocean (de la Torre et al., 2003) 

and sea ice (Koh et al., 2010; Qin et al., 2012). Moreover, proteorhodopsin transcripts 

were abundant in the North Atlantic (Campbell et al., 2008) and in environmental 
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metatranscriptomes of the Pacific (Frias-Lopez et al., 2008) and Southern Ocean 

(Andrew Toseland, unpublished data). The ecological role of proteorhodopsins, 

however, remains unclear. On the one hand light promoted growth and survival of some 

proteorhodopsins-containing bacterial cultures (Gomez-Consarnau et al., 2007; Gomez-

Consarnau et al., 2010) but on the other hand it did not affect growth of others 

(Giovannoni et al., 2005; Stingl et al., 2007; Giovannoni et al., 2008), suggesting 

additional functions (Spudich, 2006; Fuhrman et al., 2008). Moreover, bacteria-like H
+
-

pumping rhodopsins have also been discovered in several eukaryotes including fungi 

(Bieszke et al., 1999b; Idnurm and Howlett, 2001; Waschuk et al., 2005), dinoflagellates 

(Okamoto and Hastings, 2003; Ruiz-González and Marín, 2004; Lin et al., 2010; 

Slamovits et al., 2011), the cryptomonad alga Guillardia theta (Ruiz-González and 

Marín, 2004), the unicellular green alga Acetabularia (Tsunoda et al., 2006), the 

haptophyte Phaeocystis globosa as well as the pennate diatoms Pseudo-nitzschia granii 

and F. cylindrus (Marchetti et al., 2012). While some of these eukaryotic rhodopsins, 

such as the rhodopsin from the fungus Neurospora crassa (Bieszke et al., 1999a) and 

the marine cryptomonad G. theta, appear to be sensory rhodopsins as found in green 

alga (Nagel et al., 2002), the biochemical properties of most recently discovered 

eukaryotic rhodopsins have not been investigated. Nevertheless, fast photocycle 

turnover (< 50 milliseconds) associated with light-driven H
+
-pumping activity has been 

shown for the fungal pathogen Leptosphaeria maculans (Waschuk et al., 2005) and the 

giant marine unicellular green alga Acetabularia acetabulum (Tsunoda et al., 2006). The 

Acetabularia rhodopsin (Tsunoda et al., 2006) provides the first evidence for an ion-

pumping rhodopsin in a photosynthetic eukaryote but no information on its in vivo 

function is available and the physiological role of a light-driven proton pump in 

photosynthetic algae in the presence of a proton gradient-generating chlorophyll-based 

photosynthetic apparatus remains puzzling.  

Here, light-dependent proton-pumping is also shown for eukaryotic rhodopsins 

from the Antarctic dinoflagellate Polarella glacialis and the polar marine diatom F. 

cylindrus. Additionally, I report on the functional characterisation of the Fragilariopsis 

rhodopsin using reverse genetics, biochemical and biophysical approaches to elucidate 

its physiologyical role in marine photosynthetic organisms and adaptation to conditions 

of the Southern Ocean including low iron.  
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 Results 5.2

 In silico analysis of Fragilariopsis Rhodopsin 5.2.1

A bacterial rhodopsin was predicted in the F. cylindrus genome (FR2, 274098) 

by FGENESH (Salamov and Solovyev, 2000) and Genewise (Birney et al., 2004) 

algorithms. Its coding sequence length was 777 bp consisting of four exons interspersed 

with three introns and was strongly supported by EST sequences. Subsequently, a gene 

copy variant with 100% amino acid sequence identity but a 30 amino acid N-terminal 

extension was identified (FR1/FRext, 287459) caused by N-terminal non-synonymous 

base pair exchanges.  

No signal peptides were predicted for both FR1 and FR2 gene copies by SignalP 

v4.0. Contrary, signal peptides were predicted by TargetP v1.1 including prediction of a 

mitochondrial targeting peptide for FR1 (mTP, score = 0.379) and signal peptide 

prediction for FR2 (Table 15). By manual inspection of putative N-terminal signal 

peptide splice sites around phenylalanine (F) residues in both FR protein sequences, 

similarities to the conserved chloroplast “ASAFAP” motif (Kilian and Kroth, 2005; 

Gruber et al., 2007) were identified and signal peptide splice sites were found at F-14 

(FR1) and F-18 (FR2, F-48 in FR1). Additionally, a lysine rich motif 

(KNKKKKKAVK) was observed within the extended N-terminus of FR1 which was 

also predicted as a partial membrane loop segment (Figure 44).  

Table 15. Computational prediction of subcellular targeting of Fragilariopsis rhodopsin. Targeting predictions 

abbreviated as follows: mTP: mitochondrial targeting peptide score, SP: signal peptide score, other: 

probability for other localisation, Loc: prediction of localisation based on the scores of TargetP, RC: reliability 

class, 1 = strong, 5 = poor prediction. Targeting predictions were performed by TargetP 1.1 

(http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al., 2000). 

TargetP non-plant networks prediction 

 
cTP mTP SP other Loc RC 

FR1 n/a 0.379 0.246 0.318 M 5 

FR2 n/a 0.104 0.929 0.042 S 1 

       
TargetP plant networks prediction 

 
cTP mTP SP other Loc RC 

FR1 0.041 0.351 0.033 0.872 
 

3 

FR2 0.014 0.013 0.964 0.291 S 2 

 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=274098
http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=287459
http://www.cbs.dtu.dk/services/TargetP/
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Figure 44. Secondary protein structure of F. cylindrus rhodopsin FR1/FRext. Structure was predicted by I-

TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) and displayed using TOPO2 

(http://www.sacs.ucsf.edu/TOPO2/). Single-letter amino acid codes are shown and numbers correspond to the 

residue positions in F. cylindrus and bacteriorhodopsin (1QM8), respectively. Key residues are highlighted as 

follows: Black: proton acceptor (D-121) and proton donor (E-132); green: spectral tuning (L-129); red: retinal 

Schiff base linkage (K-261); light grey: retinal binding pocket.  

 

The FR1 protein sequence showed high sequence similarity (> 45% pairwise 

identity) to homologs from the haptophyte Phaeocystis globosa (AEP68178, 57.0%), an 

Arctic Oxalobacteraceae bacterium IMCC9480 (ZP_08273891, 52.3%), the alpine 

glacier bacterium Janthinobacterium sp. Strain PAMC 25724 (ZP_10444755, 49.0%) 

and the Antarctic alphaproteobacterium Octadecabacter antarcticus (ZP_05063020, 

47.2%). In addition to that, equally high sequence similarities were found with the 

dinoflagellates Pyrocystis lunula (AAO14677, 50.2%), Oxyrrhis marina (ADY17806, 

49.2%) and Polarella glacialis (AEF32712, 46.3%). Next most similar were carotenoid-

binding xanthorhodopsins from the cyanobacterium Gloeobacter violaceus 

(NP_923144, 40.6%) and the extreme halophilic Salinibacter ruber (YP_445623, 

39.0%) followed by the blue-light absorbing rhodopsin from the Antarctic sea-ice 

bacterium Glaciecola punicea ACAM 611T (ZP_09921023, 33.9%). Noteworthy with 

regard to spectral light tuning, sequence similarity (< 35%) was found with green light-

absorbing proteorhodopsin from proteobacterium clone BAC_31A08 (Q9F7P4, 31.4%) 

and the blue light-absorbing PRs from proteobacterium clones HOT_75m4 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.sacs.ucsf.edu/TOPO2/
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(AAK30179, 27.7%) and palE6 (AAK30200, 26.7%). As shown in Figure 44, the FR 

contained a non-polar leucine residue at postion 129 (L-129), which serves as spectral 

tuning switch in green and blue light-absorbing PR (Man et al., 2003a) and in 

bacteriorhodospin (BR; L-93 in BR) (Subramaniam et al., 1991).  
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A whole protein alignment with bacterial and eukaryotic rhodopsins showed 

conserved key residues responsible for ion transport as established for BR (Figure 45). 

Ion transport in BR is mediated by alternating proton exchange of the retinal Schiff base 

(with a lysine residue at position 216, K-216) between a cytoplasmic proton donor 

(aspartic acid as position 96, D-96) and an extracellular proton acceptor (aspartic acid at 

position 85, D-85) during its photocycle (Braiman et al., 1988; Butt et al., 1989; 

Gerwert et al., 1990). The conserved key residues in the Fragilariopsis rhodopsin 

included acidic residues at positions of the proton donor and acceptor comprising an 

aspartic acid at position 121 (D-121; D-85 in BR), glutamic acid at position 132 (E-132; 

replaces D-96 in BR) and the retinal Schiff base at position 261 (K-261; K-216 in BR). 

The in silico modelling of the Fragilariopsis rhodopsin protein structure based on 

known protein structures (Zhang, 2008; Roy et al., 2010; Roy et al., 2012) predicted 

seven transmembrane helices (Figure 44). In Figure 44, key residues are highlighted 

including proton acceptor D-121 and donor E-132 (both black) and the K-261 (red) 

forming a Schiff base link with retinal.  

In addition to the retinal Schiff base-forming K-261, a retinal binding pocket 

could be identified by mapping 18 conserved position from BR (Adamian et al., 2006) 

on the FR protein sequence. The identified FR retinal binding pocket consisted of Y-

119, W-122, V-126, L-129, A-160, I-161, G-165, W-181, A-184, M-185, F-188, W-226, 

Y-229, P-230, Y-233, Y-253 and S-260 (highlighted in light grey in Figure 44). A 

multiple sequence alignment with structurally known pocket sequences showed that 10 

residues were conserved in F. cylindrus in comparison to BR (Protein Data Bank ID 

1C3W; Figure 46). In a phylogenetic tree, which included all different types of known 

rhodopsin, the Fragilariopsis rhodopsin clustered within the proton-pumping 

proteorhodopsins (Figure 47).  
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Figure 46. Retinal-binding pocket residues of Fragilariopsis rhodopsin. Multiple sequence alignment of 

putative FR retinal-binding pocket with sequences of known structures (Adamian et al., 2006) shown on top. A 

weblogo plot (http://weblogo.berkeley.edu/) highlighting conserved residues is shown at the bottom. The 

alignment was performed using MUSCLE (3.8) (http://www.ebi.ac.uk/Tools/msa/muscle/). Sequence names are 

composed of Protein Data Bank ID and protein abbreviations as follows: SRII, Sensory Rhodopsin II; ASR, 

Anabaena Sensory rhodopsin; HR, Halorhodopsin; AR-1, Archaerhodopsin-1; AR-2, Archaerhodopsin-2; BR, 

Bacteriorhodopsin.  

 

http://weblogo.berkeley.edu/
http://www.ebi.ac.uk/Tools/msa/muscle/
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Figure 47. Maximum likelihood phylogenetic tree of microbial type I rhodopsins with branches showing 

bootstrap support. Arrow marks the Fragilariopsis rhodopsisn.  
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 Gene expression analysis of Fragilariopsis rhodopsins gene copies 5.2.2

A RT-qPCR gene expression analysis was performed for both Fragilariopsis 

rhodopsin (FR) gene copies to provide insights into their physiological role by analysis 

of their specific responses to different experimental conditions. Therefore, F. cylindrus 

was grown at polar summer growth conditions (nutrient replete, +4 °C, 35 µmol 

photons m
-2

 s
-1

), freezing temperatures (−2 °C), elevated temperatures (+10 °C), 

elevated carbon dioxide (1000 ppm CO2), iron starvation (−Fe), prolonged darkness (1 

week darkness) ( 4.2.1; p. 111, Figure 21), half-saturation with silicate (0.32 µM Si) as 

well as red (550 – 700nm) and blue light conditions (480 – 540nm) (Figure 48) to 

extract RNA for cDNA synthesis.  

A preliminary RT-qPCR experiment showed that genes encoding RNA 

Polymerase II (RNAP) and a TATA-box binding protein (TBP) were most stably 

expressed under all experimental conditions from a set of commonly used reference 

genes and used for normalisation of qPCR data. The integrated relative gene expression 

analysis of both FR gene copies showed that the FR gene was significantly upregulated 

(fixed reallocation randomisation test, P < 0.05) under most experimental conditions, 

except for elevated carbon dioxide (high CO2) and red light conditions (red light; Figure 

49). Conversely to all other treatments FR was significantly down regulated (fixed 

reallocation randomisation test, P < 0.05) and showed no significant relative expression 

under elevated CO2 (Figure 49). In addition to relative gene expression analysis, 

absolute cDNA amounts were determined and a gene copy-specific RT-qPCR analysis 

was performed to analyse the individual contribution of both FR gene copies to the total 

absolute gene expression (Figure 50). Gene copy percentages were calculated according 

to percentage of gene copy1 = 1/(2
ΔCt

 + 1) (Germer et al., 2000). The accuracy of the 

approach was shown with the help of calibration mixtures with linearized plasmid DNA 

containing containing either cloned FR1 or FR2 (Figure 51).  
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Figure 48. Cell density and maximum PSII photochemical efficiency (Fv/Fm) of F. cylindrus grown under (A) 

half-saturation with silicate (0.3 µM Si, +4 °C, 35 µmol photons m-2 s-1), (B) blue light illumination (480 – 540 

nm, +4 °C, nutrient replete), and (C) red light illumination (550 – 700 nm, +4 °C, nutrient replete). 
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Figure 49. RT-qPCR analysis of rhodopsin gene determined in the polar diatom Fragilariopsis cylindrus in 

different experimental treatments. Changes in expression are shown as log2 of fold changes relative to F. 

cylindrus grown at reference conditions (+4 °C and white light at 35 µmol photons m-2 s-1, nutrient-replete). 

Data was normalised to the geometric mean of 2 reference genes (TBP, RNAP II) using the Relative 

Expression Software Tool (REST) and represents mean values and standard error from biological replicates 

(n = 3) and technical replicates (n = 2). Significances (P < 0.05) were tested using pair wise fixed reallocation 

randomisation test using 2000 iterations and are marked with asterisks.  
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Figure 50. Expression of of Fragilariopsis rhodopsin (FR) gene under different experimental conditions as 

determined by RT-qPCR. Top panel shows the integrated absolute expression of both FR gene copies and the 

bottom panel shows relative gene copy-specific expression. Mean values and standard error were calculated 

from biological replicates (n = 3) and technical replicates (n = 2).  

 



The Fragilariopsis cylindrus rhodopsin  172 

 

 

Figure 51. The accuracy of gene copy frequency measurements by RT-qPCR. Shown is a scatterplot of gene 

copy frequency measurements comparing known frequencies (determined by calibration mixture with 

linearised plasmid DNA) with measured frequencies (ΔCt was offset by −2 to account for inaccuracy in 

plasmid DNA concentration determination). The regression equation is shown and the diagonal line is the 1:1 

line as expected for complete concordance between known and measured values. 

 

 Heterologous expression of rhodopsins from F. cylindrus and the Antarctic 5.2.3

dinoflagellate Polarella glacialis 

Common key residues were identified in polar rhodopsins from F. cylindrus and 

the Antarctic dinoflagellate P. glacialis, suggesting that both genes encode for light-

driven H
+
-pumping proteins ( 5.2.1). However, the presence of key residues at positions 

for primary proton donor and acceptor in rhodopsins is not a general criterion for 

recognising their functioning as transport rhodopsins as shown in several cases of 

microbial rhodopsins (see discussion below;  5.3). Therefore, heterologous expression of 

rhodopsins from F. cylindrus and P. glacialis was performed in different host systems to 

provide direct experimental evidence for findings from in silico sequence analyses 

( 5.2.1). Moreover, both polar rhodopsins were used for heterologous expression 

analysis, not only to provide insights into the functioning of rhodopsins in marine 

photosynthetic organisms, but also to provide insights into their role in adaptation to 

conditions of the Southern Ocean including low iron. Generally, obtaining milligram 

quantities of these proteins would allow for biochemical, biophysical and structural 

analyses. In a first step the full length rhodopsin genes were amplified from from cDNA 

and cloned. RNA for cDNA synthesis was isolated from exponentially growing cells 

from F. cylindrus and P. glacialis cultures. DNA sequencing confirmed the sequence of 

the cloned products. Interestingly, the FRext (FR1, 287459) gene copy could only be 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=287459
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amplified from cDNA synthesised from RNA from iron-depleted F. cylindrus cultures, 

which was in agreement with results from gene expression analysis (Figure 50). In 

contrast, it was possible to amplify full-length cDNA sequences of FR2 (274098) and 

the Polarella rhodopsin from nutrient-replete cell cultures. In a second step, the full 

length rhodopsin sequences were subcloned into the vector pGEMHE for expression in 

Xenopus laevis oocytes to perform electrophysiological measurements and to 

characterise their proton pumping activity ( 5.2.3.1). Additionally, both FR gene copy 

variants were subcloned into the diatom expression vector pPha-T1 for overexpression 

in P. tricornutum ( 5.2.3.2) to analyse subcellular targeting in diatoms using GFP tagging 

and obtain insights into their physiological role based on their specific subcellular 

localisation. Furthermore, P. tricornutum, which lacks a rhodopsin, was complemented 

with Fragilariospsis rhodopsin to perform phenotype experiments to provide insights 

into the physiological role of rhodopsins in marine eukaryotic phytoplankton. The 

heterologous expression of Fragilariospsis rhodopsin in the pennate diatom P. 

tricornutum was choosen, because (1) a genetic transformation method for F. cylindrus 

is not available, (2) genetic transformation technologies are most advanced in P. 

tricornutum and (3) P. tricornutum is more closely related to F. cylindrus than the 

centric model diatom T. pseudonana. 

 Overexpression of rhodopsins from F. cylindrus and P. glacialis in Xenopus  5.2.3.1

laevis oocytes 

The work of heterologous expression of rhodopsins from F. cylindrus and P. 

glacialis was performed in collaboration with the group of Georg Nagel at the 

University of Würzburg, Germany, and in particular Shiqiang Gao and Sabrina Förster, 

who performed all of the expression experiments in oocytes of Xenopus laevis and 

analyses according to published procedures (Nagel et al., 1995; Nagel et al., 1998; 

Nagel et al., 2002). In addition, S. Gao made a significant contribution and effort to the 

cloning of FR1. Generally, heterologous expression in Xenopus oocytes was performed 

to carry out electrophysiological measurements in vitro using two-electron voltage 

clamp and to provide first direct experimental evidence for light-dependent proton 

pumping of rhodopsins from eukaryotic marine phytoplankton. Therefore, the full-

length rhodopsin sequences from F. cylindrus and P. glacialis were amplified from 

cDNA to be subcloned into the vector pGEMHE (Supplementary Figure S2) for 

expression in Xenopus laevis oocytes. The pGEMHE is a high expression oocyte vector 

for in vitro transcription and expression in Xenopus oocytes and contains 3' and 5' 

http://genome.jgi-psf.org/cgi-bin/dispGeneModel?db=Fracy1&tid=274098
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untranslated regions (UTRs) of a Xenopus β-globin gene (Liman et al., 1992). In a first 

step, the Fragilariopsis rhodopsin FR2 was expressed in Xenopus oocytes and plasma 

membrane localisation was indicated by a yellow fluorescence protein (YFP)-tag 

(Sabrina Förster & Georg Nagel, unpublished data; Figure 52). However, no light-

driven currents could be detected (Sabrina Förster, personal communication 

29/03/2011). Subsequently, FR1 (FRext) was cloned and expressed in oocytes. 

Although, YFP-tagging indicated poor plasma membrane targeting within oocytes 

(Figure 52), large currents (~200 nA) could be measured when FR1 protein was targeted 

to the plasma membrane of oocytes likely under processed cell death (Shiqiang Gao & 

Georg Nagel, unpuplished data; Figure 53). To provide additional evidence for light-

dependent proton pumping for rhodopsins from Antarctic phytoplankton species, a 

rhodopsin from P. glacialis was used and similar results were obtained (Georg Nagel, 

personal communication 05/03/2012). As shown in Figure 53, green light seemed to 

induce higher photocurrents than blue light in Fragilariopsis rhodopsin. 

 

 

Figure 52. Expression of Fragilariopsis rhodopsin in Xenopus oocytes. Left two panels show expression of 

FR2::YFP and right two panels show FR1::YFP expression. Micrographs show different level of focus 

(courtesy of S. Förster, S. Gao & G. Nagel). 
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Figure 53. Fragilariopsis rhodopsin FR1 (FRext) photocurrents. Example photocurrent records during 

exposure to a green light pulse (50% intensity), followed by two blue light pulses (100% intensity) and a final 

green light pulse (25% intensity). Measurements were performed 6 days post RNA injection at pH 7.6 

(courtesy of S. Gao & G. Nagel). 

 

 Overexpression of Fragilariopsis rhodopsin in the diatom Phaeodactylum 5.2.3.2

tricornutum 

The heterologous expression of Fragilariospsis rhodopsin in P. tricornutum was 

performed to analyse subcellular targeting in diatoms using GFP tagging and obtain 

insights into its physiological role based on specific subcellular localisation. 

Additionally, Fragilariopsis rhodopsin with C-terminal hexa-histidine tag was 

expressed in P. tricornutum to perform Nickel nitrilo triacetate (Ni-NTA) immobilised 

metal affinity chromatography (IMAC) protein purification according to Joshi-Deo et 

al. (2010) and spectroscopic analysis of purified recombinant Fragilariopsis rhodopsin. 

Furthermore, rhodopsin-lacking P. tricornutum was complemented with non-tagged 

Fragilariospsis rhodopsin to perform phenotype experiments. The identification of 

phenotypes of P. tricornutum complemented with Fragilariopsis rhodopsin would allow 

direct testing of the hypothesis that phytoplankton employing rhodopsin-enabled 

phototrophy do have a competitive advantage in iron-limited oceans (Raven, 2009; 

Marchetti et al., 2012) through enhanced growth rates and reduced stress-levels under 

iron-limitation. Notably, as deduced from from manual gene annotations of the retinal 

biosynthesis pathway of F. cylindrus ( 4.2.5) and other sequenced diatoms including P. 

tricornutum and T. pseudonana (data not shown), diatoms appeared to contain the 

genetic repertoire to synthesise the chromophore retinal. Thus, the functional expression 
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of Fragilariospsis rhodopsin in P. tricornutum was likely without external addition of 

retinal. In a first step, full length sequences of both FR gene copy variants were cloned 

from cDNA and different expression vector constructs were generated (Figure 54) by 

subcloning into the P. tricornutum transformation vector pPha-T1 (Zaslavskaia et al., 

2000) and its derivative StuI-GFP-pPhaT1 (Supplementary information), which already 

contains an eGFP gene for GFP-tagging (Gruber et al., 2007). 

Protein targeting of both gene copy variants was studied using green fluorescent 

protein (GFP) tagging. The FR1:GFP fusion protein (PtFR1) was associated with 

chloroplasts in P. tricornutum (Figure 55) and similar results were obtained using a 

fusion construct consisting of the 49 amino acid-long N-terminal FR1 sequence fused to 

GFP (Figure 54). Similarly, both FR2 constructs, the PtFR2 fusion protein as well as the 

59 amino acid-long N-terminal PtFR2pre, were associated with P. tricornutum 

chloroplasts (Figure 55).  

Moreover, FR-overexpressing P. tricornutum mutant cell lines with high 

expression of C-terminal Histidin (H)-tagged FR1 and FR2 (Figure 54) for His-affinity 

protein purification and non-tagged FR1 and FR2 were generated for phenotype 

analysis of P. tricornutm. 

 

Figure 54. Fragilariopsis rhodopsin (FR) protein sequence constructs fused to enhanced green fluorescent 

protein (GFP) and hexa-histidin tag (HHHHHH) for expression in Phaeodactylum tricornutum (Pt). FR1 

denotes protein sequence ID 287459 with 289 amino acid (aa) sequence length and FR2 denotes protein 

sequence ID 274098 with 259 aa sequence length. N- terminal protein presequence constructs (pre) were 

generated for 49 aa (ProtID 287459) and 59 aa (ProtID 274098). 

 

               1        10        20        30        40        50        60 
               |        |         |         |         |         |         |  

   PtFR1:GFP   MLWSKTRTTFGHSFISQITFKNKKKKKAVKMISGTQFTIVYDVLSFSFA…240aa…:GFP 

   PtFR1:His   MLWSKTRTTFGHSFISQITFKNKKKKKAVKMISGTQFTIVYDVLSFSFA…240aa…:HHHHHH 

PtFR1pre:GFP   MLWSKTRTTFGHSFISQITFKNKKKKKAVKMISGTQFTIVYDVLSFSFA:GFP 

   PtFR2:GFP   MISGTQFTIVYDVLSFSFATMMATTIFLWMRVPSVHEKYKSALIISGLVTFIASYHYLR…200aa…:GFP 

   PtFR2:His   MISGTQFTIVYDVLSFSFATMMATTIFLWMRVPSVHEKYKSALIISGLVTFIASYHYLR…200aa…:HHHHHH 

PtFR2pre:GFP   MISGTQFTIVYDVLSFSFATMMATTIFLWMRVPSVHEKYKSALIISGLVTFIASYHYLR:GFP 
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Figure 55. Localisation of Fragilariopsis rhododpsin:GFP fusion proteins after expression in Phaeodactylum 

tricornutum. The top row shows expression of FR1 (FRext), the middle row shows expression of FR2 and the 

bottom row shows expression of N-terminal FR2. Red chlorophyll autofluorescence (Alexa 568), green GFP 

fluorescence and a merge of Chlorophyll and GFP fluorescence with (top row) and without (middle and 

bottom row) Normarski differential interference contrast (DIC) images are shown from left to right, scale bars 

represent 5 µm. 

 

 Discussion 5.3

Two lines of evidence, deduced from sequence analysis, have suggested a role 

for the F. cylindrus rhodopsin as light-driven H
+
-transporting protein not a sensory 

rhodopsin. First, the Fragilariopsis rhodopsin protein sequence contained key residues 

of transport rhodopsins. Second, neither homologous sequences of known putative 

transducer genes (e.g. soluble Anabaena sensory rhodopsin transducer, Accession# 

Q8YSC3; membrane-bound haloarchaeal transducers, Haloarchaeal transducer for SRI, 

Accession# AAG19913, Haloarchaeal transducer for SRII, Accession# AAG19989) of 
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sensory rhodopsins could be found in the genome of F. cylindrus, nor was an C-terminal 

extension of more than 15 residues present after the predicted end of helix G of the 

seven transmembrane domains in FR, which is in contrast to bulky C-terminal domains 

of ~400 amino acids in Chlamydomonas sensory rhodopsins (Spudich, 2006). In a 

rhodopsin from the polar dinoflagellate Polarella glacialis (Lin et al., 2010), similar key 

residues were found in common with the Fragilariopsis rhodopsin. Thus it was likely 

that both cloned rhodopsin cDNAs from F. cylindrus and P. glacialis encoded for light-

driven H
+
 proteins. However, the presence of acidic residues at positions for primary 

proton donor and acceptor, which are absent in most anion transporters, 

channelrhodopsins and sensors is not a general criteria for recognizing functioning as 

transport rhodopsins, because acidic residues at positions for proton donor and acceptor 

could also be found in sensory rhodopsins of the cryptophyte flagellate Guillardia theta 

(Sineshchekov et al., 2005), the filamentous fungus Neurospora crassa (Bieszke et al., 

1999a) and the freshwater cyanobacterium Anabaena (Nostoc) sp. PCC7120 (Jung et 

al., 2003) and signal transduction remained unclear in sensory rhodopsins of 

cryptophytes (Sineshchekov et al., 2005).  

Besides the hypothetical retinal binding amino acid residue lysine, K-261 in 

FR1, most amino acid protein residues forming the H
+
 transporting hydrogen bonded 

network were conserved, namely, Y-87, R-118, Y-119, D-121, E-132, (E-204 of BR not 

conserved) and D-257, corresponding to Y-57, R-82, Y-83, D-85, D-96, E-204 and D-

212 in BR (Luecke et al., 1999). Noteworthy, was the presence of M-238 and I-249 in 

FR1 because respective residues E-194 and E-204 are involved in extracellular H
+
 

release in BR. However, a respective E-194 residue was not conserved in the H
+
 

pumping eukaryotic rhodopsins from the green algae Acetabularia (Tsunoda et al., 

2006) and the fungus Leptoshaeria (Waschuk et al., 2005), nor in the prokaryotic green 

and blue-light absorbing proteorhodopsins (Brown and Jung, 2006) either. Similar to 

FR, both prokaryotic green and blue-light absorbing proteorhodopsins also do not 

contain a conserved E-204, as found in BR (Brown and Jung, 2006). Furthermore, the 

proton-collecting antenna of BR (Checover et al., 1997; Checover et al., 2001) was also 

not conserved but exposed free acidic carboxylates are present at turns in the interior 

side of FR and together with acidic residues in the interior C-terminus could contribute 

to H
+
 recruitment (Turner et al., 2009). Overall, these results support the finding that the 

proton pumping machinery is sturdy and simple in its nature (Brown and Jung, 2006) 

and evolutionary pressure to maintain proton pumping functionality has conserved key 
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residues corresponding to retinal binding in prokaryotic proton pumps (Ihara et al., 

1999; Bielawski et al., 2004) but low conservation of the site of H
+
 collection and 

release suggests some degree of plasticity.  

The sequence of the retinal-binding pocket (constituting residues that interact 

directly or indirectly with the chromophore) may give clues about the spectral tuning of 

the Fragilariopsis rhodopsin. The Fragilariopsis rhodopsin contained 10 conserved 

residues on the 18 positions forming the retinal binding pocket (Adamian et al., 2006), 

some of which also contribute to the H
+
 transporting network. Interestingly, the retinal-

binding pocket contained a non-polar leucine residue, L-129 in FR1, because the 

respective residues L-105 in green light-absorbing proteorhodopsins (GPR) and polar 

glutamine Q-105 in blue light-absorbing PR (BPR) serve as spectral tuning switch (Man 

et al., 2003a). Similarly, a mutation at the equivalent position in BR (L-93) was also 

shown to alter its absorption spectrum (Subramaniam et al., 1991). However, additional 

residues that directly interact with the chromophore (i.e. in the retinal binding pocket) 

and those that cause indirect effects by localised changes in the conformation of the 

retinal binding pocket contribute to spectral fine-tuning in proteorhodopsin (Bielawski 

et al., 2004; Man-Aharonovich et al., 2004) and the microenvironment of the protonated 

Schiff base has been found to be a site of wavelength regulation in human rhodopsin 

(Kochendoerfer et al., 1999). Noteworthy, with regard to spectral fine tuning, was a 

conserved S-76 residue in FR1 since its corresponding S-65 in PR was shown to 

produce a small red shift (Man-Aharonovich et al., 2004). However, the non-conserved 

F-81 residue, corresponding to the red shift causing G-70 in GPR (Man-Aharonovich et 

al., 2004), may reflect adaptation and spectral fine tuning of the Fragilariopsis 

rhodopsin to different light conditions found in the polar environment. Notably, a 

tryptophan residue at position 181 (W-181) in the retinal-binding pocket of the 

Fragilariopsis rhodopsin probably impairs the binding of a carotenoid antenna as found 

in xanthorhodopsins from Salinibacter ruber (Balashov et al., 2005) and Gloeobacter 

violaceus (Imasheva et al., 2009), which allows for light-harvesting in a wider spectral 

range than with retinal alone. Therefore it is expected that the Fragilariopsis rhodopsin 

is likely to have a comparatively narrow spectral range.  

Overall, pairwise sequence similarity of FR1 with GPR (Accession# Q9F7P4, 

31.4%) was higher than for BPRs (Accessions AAK30179 and AAK30200, ~27%) and 

together with the L-129 switch suggest an absorption maximum in the green light 

spectrum as well as a fast photocycle for FR since the photocycle of GPR was found to 
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be an order of magnitude faster than that of BPR (Wang et al., 2003). However, the 

correlation between absorption spectrum and speed of the photocycle has been 

questioned by studies on green light-absorbing proteorhodopsins from the Arctic Ocean 

(Jung et al., 2008). The same authors suggest that slow photokinetics of Arctic 

proteorhodopsins may relate to other functions than proton pumping, such regulatory or 

sensory function (Wang et al., 2003; Jung, 2007) or correspond to low energy 

requirements due to low metabolic rates and in cold environments. Interestingly, all 

studied proteorhodopsins from the Arctic Ocean absorbed in the green-light spectrum 

(Jung et al., 2008), which is in contrast to the blue light-absorbing Antarctic 

proteorhodopsin clone palE6 (Beja et al., 2001) sharing the same environment with F. 

cylindrus.  

Direct experimental evidence for light-driven H
+
-pumping was provided by 

heterologous expression in Xenopus oocytes for polar phytoplankton rhodopsins from F. 

cylindrus and Polarella glacialis, which, to our knowledge, provides the first direct 

evidence for transport rhodopsins in marine eukaryotic phytoplankton. For FR1, strong 

positive (outward) photocurrents up to 200 nA could be measured at negative membrane 

potentials and were indicative of a transport rhodopsin although the targeting of FR1 to 

the plasma membrane of the oocytes was poor and photocurrents were only measured 

occasionally. In contrast, sensory channelrhodopsins from Chlamydomonas reinhardtii 

show inward currents at similar membrane potentials indicating a passive light-induced 

H
+
 conductance (Nagel et al., 2002; Nagel et al., 2003). Notably, photocurrents were 

greater using light in the green light spectrum than in light of the blue light spectrum 

suggesting an absorption maximum of FR1 in the green light spectrum and light 

saturation probably occurs in unnatural high light intensities (Georg Nagel, personal 

communication 06/03/2012). The putative absorption maximum in green light is 

counterintuitive with what could be expected from natural low light conditions in the 

polar marine environment and the dominance of blue wavelengths in increasing water 

depth and under sea ice. Interestingly, pumping currents could not only be measured at 

room temperature, but also at reduced temperatures (+11 °C), suggesting that both polar 

rhodopsins function over a wide temperature range at low temperatures of their native 

environment. Moreover, as expected, H
+
 pumping in the Xenopus oocyte system of both 

Fragilariopsis and Polarella polar microbial rhodopsins in the presence of all-trans 

retinal suggests it is binding to both opsins. However, the binding of other retinal 

analogues maybe possible as found in Chlamydomonas (Foster et al., 1984) and recently 



The Fragilariopsis cylindrus rhodopsin  181 

 

the first microbial type 1 rhodopsin was discovered binding 11-cis-retinal similar to 

type 2 rhodopsins in animals (Sudo et al., 2011) and it may be possible that the 

Fragilariopsis rhodopsin (as well as the Polarella rhodopsin) can bind different retinal 

analogs in vivo.  

Surprisingly, no H
+
 pumping activity could be detected for FR2, although it was 

properly targeted to the plasma membrane of oocytes and may relate to its 30 amino 

acid amino-terminal truncation negatively affecting protein stability as found for the C-

terminal end of bacteriorhodopsin (Turner et al., 2009). Interestingly, the different N-

terminus seemed to have little effect on subcellular targeting to the chloroplast in 

Phaeodactylum tricornutum and N-terminal sequences from both FR gene copies 

showed similar chloroplast targeting suggesting that the N-terminus alone is sufficient 

for FR targeting. Although inconclusive results were obtained by in silico prediction of 

signal peptides for both FR gene copies, putative signal peptides with homology to the 

conserved “ASAFAP”-motif (Kilian and Kroth, 2005; Gruber et al., 2007) could be 

identified by manual inspection of the N-terminal protein sequence suggesting a 13 

amino acid-long signal peptide for FR1 and a 17 amino acid-long signal peptide for 

FR2. Latter contains a lysine rich motif (KNKKKKKAVK) possibly related to lipid 

binding and which was also predicted to be a partial looping segment by protein 

structure modelling and may affecting proper membrane targeting in oocytes (Shiqiang 

Gao, personal communication 17/07/2012). Notably, for FR1 a putative N-terminal 

signal peptide reaches into the first transmembrane helix A as suggested by protein 

structure prediction and cleavage of signal- and transit-peptide may prevent H
+
 pumping 

as in FR1.  

Interestingly, FR2 was found predominantly expressed in most tested 

experimental conditions, whereas FR1 only appeared to be expressed under iron 

starvation (Figure 50). Thus, it may be speculated that the FR2 gene copy serves as a 

trace metal-independent mechanism to enhance ATP production by generating a proton 

gradient, when photosynthesis is iron-limited (Raven, 2009; Marchetti et al., 2012). In 

contrast, the functioning of the FR1 gene copy is less clear. If proven to function similar 

to FR2 as a light-driven proton pump, a role in adaptation to low temperature may be 

hypothesised, because it showed high relative and absolute expression during freezing 

temperatures (Figure 49, Figure 50). As it has been reported for mitochondrial 

membranes in plants that high content of polyunsaturated fatty acid (PUFA) can 

increase proton leaks (Hourton-Cabassa et al., 2009), a link to cold adaptation through 
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increasing PUFA content to ensure membrane fluidity (Suutari and Laakso, 1994; 

Chattopadhyay, 2006; Morgan-Kiss et al., 2006; Casanueva et al., 2010) may exist. In 

this case, FR2 in F. cylindrus may counteract increased proton leaks across biological 

membranes due to high PUFA content. In summary, both hypotheses for the 

physiological roles of a light-dependent rhodopsin proton pump in F. cylindrus under 

iron-limitation and low temperatures can explain an adaptive strategy to the cold and 

iron-limited Southern Ocean.  
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  Chapter 6

General discussion 

 Summary of main results 6.1

The F. cylindrus genome. The genome size of the draft genome of the 

psychrophilic diatom F. cylindrus was found to be 80.5 Mb. General features of the 

genome included a high sequence polymorphism, a low G+C content of 39.8% and a 

high number 6913 of species-specific genes. The high sequence polymorphism 

prevented heterozygous haplotypes to be collapsed into a single haplotype resulting in 

the prediction of 27,137 genes (compared to ~10,000 in other diatoms) including allelic 

copy pairs from heterozygous regions of the genome and species-specific genes. The 

low G+C content significantly affected gene codon usage. Additionally, comparative 

analysis of the F. cylindrus genome with other sequenced diatoms revealed the 

expansion of gene and protein families.  

The F. cylindrus transcriptome. Analysis of transcriptomes of F. cylindrus 

from six different conditions detected transcriptional activity for 95% of predicted 

genes. 98% of heterozygous allelic copies showed transcriptional activity and 55% of 

allelic copies showed > 4 fold unequal expression between copies, suggesting allele-

based adaptation to different environmental conditions. Additionally, up to 30% of 

RNA-Seq reads mapped to unannotated regions of the genome. The most significant 

transcriptional changes were detected in F. cylindrus during prolonged darkness 

significantly affecting ~70% (18,856) genes.  

A bacteria-like rhodopsin in F. cylindrus. A bacteria-like rhodopsin could be 

identified in the genome of F. cylindrus. Two allelic gene copies were identified 

showing different length of N-termini. Both allelic copies showed non-uniform bi-

allelic expression under different conditions in F. cylindrus. As determined by RT-

qPCR, one allelic copy was only expressed during iron starvation. Both allelic 

rhodopsin copies were cloned and the subcellular localisation using green fluorescence 

protein tagging in the diatom Phaodactylum tricornutum suggested tight associations of 

both allelic copies with the diatom plastid. Heterologous expression in Xenopus oocytes 

confirmed the functioning of the iron-induced allelic rhodopsin copy as fast-cycling 
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rhodopsin capable of light-driven proton transport. However, the physiological role of a 

light-dependent rhodopsin proton pump in F. cylindrus remains unclear.  

 Discussion 6.2

Diatoms are the most successful group of eukaryotic phytoplankton and 

dominate the permanently cold environment sea ice (Thomas and Dieckmann, 2002). 

The obligate psychrophilic pennate diatom Fragilariopsis cylindrus is a key stone 

species in the Arctic and Antarctic Ocean (Lundholm and Hasle, 2008) and can form 

large populations in sea ice brine and the open water column (Kang and Fryxell, 1992) 

serving at the basis of the polar food chain. However, little is known for adaptation of F. 

cylindrus and other polar eukaryotes to polar conditions and molecular studies to 

discover the molecular bases of adaptation and gene composition of sea ice algae are 

sparse. Furthermore, a genome sequence is lacking for an obligate psychrophilic polar 

eukaryote. Thus, we sequenced the genome of F. cylindrus to gain insights into the 

molecular basis for eukaryotic life below the freezing point of water. Moreover, we 

intended to identify genes and structural changes of DNA that are necessary to live 

under polar conditions by comparative analysis of the F. cylindrus genome with 

sequenced genomes from mesophilic diatoms (Armbrust et al., 2004; Bowler et al., 

2008). Additionally, we used high-throughput sequencing technology to sequence the 

transcriptomes of F. cylindrus under six experimental conditions, to analyse how 

genomic information is used to acclimate to important environmental conditions, 

identify novel genes involved in polar adaptation and improve genome annotation. 

From our analysis we identified a bacteria-like rhodopsin proton pump highly expressed 

in the genome under specific environmental conditions and used it for functional 

analysis to get insights into its physiological role F. cylindrus.  

The draft genome sequence of F. cylindrus provided novel insights into how 

polar environmental conditions can shape the genome of a eukaryotic extremophile 

organism. Strikingly, the F. cylindrus genome showed a high sequence polymorphism 

preventing heterozygous haplotypes to be collapsed into a single haplotype resulting in 

a diffuse haplotype structure and the prediction of 27,137 genes (compared to ~10,000 

in other diatoms) including gene copy pairs from heterozygous regions of the genome. 

High nucleotide sequence similarities between the majorities of gene copies suggested 

that allelic variation contributed to the high degree of heterozygosity in F. cylindrus. 

The high degree of allelic variation may be a result of the absence of sexual 
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reproduction and the homologous recombination of chromosomes so that divergent 

alleles can remain in a heterozygous state. This hypothesis is further strengthened by the 

absence of meiotic core genes in the genome of F. cylindrus. As a result of asexual 

reproduction, transposable element-mediated genomic rearrangements, rare mitotic 

recombination and gene conversion may be the principle mechanisms that allow for the 

shuffling of genes and genetic variation in F. cylindrus. In the absence of sex, such 

recombinational processes are important to avoid or slowdown the accumulation of 

deleterious mutations (Muller, 1932; Felsenstein, 1974). Interestingly, transposable 

elements constituted a high proportion (7.3%) of the F. cylindrus genome, similar to 

transposable elements in the pennate diatom P. tricornutum (Bowler et al., 2008; 

Maumus et al., 2009) for which sexual reproduction has never been reported, either 

(Maumus et al., 2009). Furthermore, two putative transposable elements could be 

identified in F. cylindrus by analysis of novel transcribed regions using transcriptome 

sequencing. Transposable elements were shown to generate intraspecies diversity in 

plants (Morgante et al., 2005) and could have an adaptive evolutionary role. On the 

other hand, the high proportion of transposable elements may also be a consequence of 

lack of sexual reproduction in F. cylindrus, because in the absence of meiotic 

recombination, purifying selection is less able to purge the load of transposable 

elements (van Oosterhout, 2009). In summary, both high allelic heterozygosity and lack 

of core meiosis genes suggests the absence of sexual reproduction and chromosomal 

recombination in F. cylindrus.  

Interestingly, we found that 55% of heterozygous alleles in F. cylindrus were 

differentially expressed by > 4 fold under the tested experimental conditions suggesting 

an important role of unequal bi-allelic expression. Noteworthy, the nucleotide sequence 

similarity between allelic gene copies did not correlate significantly with the degree of 

unequal bi-allelic expression as suggested for expression of gene duplications (paralogs) 

in the water flea Daphnia pulex (Colbourne et al., 2011). Additionally, the functional 

significance of unequal bi-allelic expression on metabolism could be shown by a 

separate analysis of individual allelic copy sets, which suggested a separation of 

metabolism between allelic gene copies. Overall, the finding of heterozygous alleles in 

the genome and their differential expression to different environmental stresses suggests 

that individual alleles are under different regulatory controls. In general, allelic 

expression variations are attributed to differences in noncoding DNA sequences and 

epigenetic regulation (Knight, 2004). In this context, it is noteworthy that nucleotide 
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sequence analysis of gene promoter regions of selected allelic gene copies identified a 

lower average sequence identity of 93.5% in comparison to an average of 97.3% 

sequence identity in regions downstream of the transcription start site, which was, 

however, not significant (two-tailed t-test, P = 0.053; data not shown). Nevertheless, 

small differences in regulatory regions may be sufficient to influence gene expression 

via changes in binding affinity for transcription factors, or to altered methylation 

patterns with influences on epigenetic regulation. Although the phenomenon of allele-

specific gene expression has been widely reported in higher (Cowles et al., 2002; Enard 

et al., 2002; Oleksiak et al., 2002; Yan et al., 2002; Cheung et al., 2003; Lo et al., 2003; 

Guo et al., 2004; Schaart et al., 2005) and lower (Brem et al., 2002) eukaryotes, 

virtually nothing is known for eukaryotic phytoplankton. A high degree of 

heterozygosity paired with allele-specific differences in expression could be particularly 

useful for environmental adaptation if they are heritable, as reported for humans (Yan et 

al., 2002). Overall, the finding that heterozygous allelic pairs show condition specific 

expression in F. cylindrus is in agreement with an expression study in plants showing 

unequal bi-allelic expression in response to different abiotic stresses and suggesting 

functional diversity of allelic copies (Guo et al., 2004). In the context of functional 

diversification, it is interesting to note, that two allelic gene copies of a bacteria-like 

rhodopsin proton pump were identified in the genome of F. cylindrus, which showed 

unequal bi-allelic expression under specific environmental conditions and one allelic 

copy (FR1/287459) was only expressed under iron limitation. Moreover, as light-

dependent proton pumping could only be detected for the iron-induced Fragilariopsis 

rhodopsin (FR) and differences in protein N-termini caused by a point mutation 

appeared to cause variation in subcellular targeting of the FR allelic copies, the FR 

allelic gene copies may serve as example of sub- or neofunctionalised allozymes. Sub- 

or neofunctionalised allelic copies have been reported for other asexual species 

(Meselson and Welch, 2007; Pouchkina-Stantcheva et al., 2007; Forche et al., 2008). 

Taken together, the evidence for asexual reproduction of F. cylindrus and the resulting 

increase in heterozygosity of alleles in every generation (Birky, 1996) as well as the 

pronounced unequal bi-allelic expression may provide an adaptive strategy to polar 

environments by conferring a high metabolic flexibility and capacity to adapt to a 

rapidly changing environment. Consequently, F. cylindrus may serve as a suitable model 

to study heterozygosity advantage (Hedrick, 2012) in the polar environment. Even more 

fundamental, F. cylindrus is a species for which the loss of sexual reproduction can have 

a true adaptive evolutionary advantage. When reproduction is strictly clonal, this avoids 
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the costs associated with the segregation load (Crow and Kimura, 1970), and this may 

have facilitated adaptations to extreme conditions in the polar environment.  

In addition to a high degree of heterozygosity, the low G+C content of 39.8% in 

the genome of F. cylindrus may represent a structural change of DNA that is necessary 

to live under polar conditions. The low G+C content in F. cylindrus had a significant 

impact on codon usage causing a bias towards adenine and thymidine bases. We showed 

that F. cylindrus favours AT rich synonymous codons in comparison to genomes of the 

mesophilic diatoms T. pseudonana and P. tricornutum. Moreover, we found that the 

G+C content also affected the anticodon usage of tRNA genes. Both findings are in 

good agreement with the thermal adaptation hypothesis for vertebrates (Bernardi and 

Bernardi, 1986; Bernardi, 2000) based on higher thermal stability of G:C pairs in 

comparison to A:T pairs. In vertebrates, a transition from cold to warm-blooded species 

was accompanied by regional nucleotide changes to high G+C (Bernardi and Bernardi, 

1986; Bernardi, 2000). Moreover, enrichment of G+C has been shown for tRNA and 

rRNA in thermophilic bacteria and A:U base pairing was prevalent in 16S rRNA in 

psychrophilic bacteria suggesting a thermo-adaptive mechanism (Khachane et al., 

2005). Taking together, our findings may suggest a co-adaptation of relative codon-

frequencies and their respective anticodons in F. cylindrus to optimise protein 

translation at low temperature, which is the energetically most expensive process in 

exponentially growing cells (Rocha, 2004; Wilson and Nierhaus, 2007). Consistent with 

the high cost of protein translation, genes involved in translation were down regulated 

in F. cylindrus during prolonged darkness relative to continuous light, likely to 

compensate for a loss of ATP production indicated by down regulation of ATP 

synthases. Strikingly, the transcriptome of F. cylindrus during prolonged darkness was 

significantly different from other environmental conditions and transcriptional changes 

affecting ~70% (18,856) genes. As expected, genes involved in photosynthesis, light 

harvesting and photoprotection were down regulated relative to continuous light. 

Nonetheless, observations that polar diatoms, such as F. cylindrus, withstand long 

periods of darkness (Peters and Thomas, 1996; Reeves et al., 2011) and begin rapid 

growth upon a return to light might suggests that they are able to synthesise chlorophyll 

a not only in light but also during darkness. This would imply that F. cylindrus (and 

other diatoms) might contain an alternative light-independent protochlorophyllide 

oxidoreductase in addition to the identified light-dependent isoenzymes (POR1/267731; 

POR2/188173) as hypothesised for angiosperms (Adamson et al., 1997). However, no 
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candidate genes were suggested by the analysis of the genome and the transcriptome of 

F. cylindrus during darkness. Interestingly, in contrast to the general down regulation of 

the carotenoid and harvesting pigment synthesis pathway during prolonged darkness, 

the synthesis of the chromophore retinal appeared to be upregulated in F. cylindrus in 

the dark, as is indicated by the > 4 fold expression change of a beta-carotene 

monooxygenase catalysing the cleavage of beta-carotene into retinal. Correspondingly, 

we detected upregulation of an allelic copy of a bacteria-like rhodopsin (FR2/274098; 

see discussion above). However, the physiological relevance of upregulation of a 

putative light-dependent rhodopsin proton pump during prolonged darkness as well as 

its functional role in in the presence of the proton gradient-generating chlorophyll-based 

photosynthetic apparatus remains speculative.  

In contrast to down regulation of genes involved in light harvesting and 

photosynthesis, fatty acid metabolism was found highly expressed in F. cylindrus during 

prolonged darkness suggesting the oxidation of lipids to provide ATP and reduction 

equivalents for basal cell maintenance. The utilisation of stored lipids for metabolic 

intermediates and generation of ATP may explain how diatoms survive long periods of 

darkness (Armbrust et al., 2004) and the enrichment of genes involved in lipid 

metabolism in F. cylindrus may not only represent an adaption to maintain membrane 

fluidity by increased synthesis of unsaturated fatty acids at freezing temperatures but 

also to the long and dark winters in polar oceans, which can last up to 150 days (Lüder 

et al., 2002; Tang et al., 2009).  

In addition to survival of polar winters, the capacity to cope with cold stress is a 

requirement for phytoplankton species in polar oceans. F. cylindrus is able to survive in 

sea ice brine with temperatures down to −20 °C and it has been established that it uses 

ice-binding proteins for this purpose (Janech et al., 2006; Krell et al., 2008; Bayer-

Giraldi et al., 2010; Bayer-Giraldi et al., 2011; Raymond, 2011; Uhlig et al., 2011). 

However, novel was the finding that zinc-binding binding MYND protein domains are 

greatly expanded in the F. cylindrus genome and might be involved in acclimation to 

freezing temperatures, as suggested by the significant enrichment of genes with zinc-

binding activity (P < 0.05) in upregulated genes at freezing temperatures (−2 °C) 

relative to optimal growth at +4 °C. Against the background of relatively high zinc 

concentrations of the Southern Ocean (Croot et al., 2011), the expansion of a Zinc 

protein domain may have contributed to the evolution and adaptation of F. cylindrus to 

conditions of the Southern Ocean. 
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 Conclusion and future perspectives 6.3

The draft genome of the obligate psychrophilic diatom F. cylindrus showed at 

unprecedented detail how the polar environment can shape the genome of eukaryotic 

phytoplankton. High sequence polymorphism in the F. cylindrus genome affected 30% 

of the 27,137 predicted genes and 55% of putative heterozygous allelic copies showed 

pronounced unequal bi-allelic expression in response to different environmental stimuli 

with functional implications for cellular metabolism. This is suggested to be an adaptive 

strategy to the polar environment by conferring a high metabolic flexibility and capacity 

to adapt to a rapidly changing environment. Additionally, a low G+C content in the F. 

cylindrus genome significantly affected codon and anticodon usage and is suggested to 

enable efficient progression of translation at low temperatures. Moreover, high-

throughput sequencing of F. cylindrus transcriptomes from six environmentally relevant 

growth conditions revealed the complexity and dynamics of polar eukaryotic 

transcriptomes as indicated by detection of transcriptional activity for 95% of predicted 

genes in F. cylindrus and the identification of novel transcriptionally active regions. 

Experimental treatment with prolonged darkness caused the most significant 

transcriptional changes in F. cylindrus and expression patterns suggest the utilisation of 

lipid storage products to endure darkness periods. Furthermore, the identification of 

expanded protein families like specific zinc-binding domains as well as specific proteins 

like a bacteria-like rhodopsin in the F. cylindrus genome, combined with their 

expression patterns in response to important environmental conditions (e.g., low 

temperatures and iron starvation), provide novel insights into polar adaptation. In 

summary, these results provide some answers to the initially asked questions: e.g., what 

genes and genomic features in the genome of a photosynthetic eukaryote are necessary 

to live under polar conditions? What are the molecular responses of an obligate 

psychrophilic eukaryote to important environmental conditions and how flexible are 

these responses to environmental changes? What are the physiological roles of specific 

key genes like a bacteria-like rhodopsin under polar conditions?  

However, the information presented within the preceding chapters is still 

fragmentary and incomplete. It remains uncertain whether the observed genomic 

features of F. cylindrus represent common eukaryotic adaptations to polar conditions or 

are species-specific. Moreover, although the comparison of the F. cylindrus genome 

with other available diatom genomes from P. tricornutum and T. pseudonana provided a 

glimpse of the range of diatom genome sizes, it remains unclear what the corresponding 
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range of chromosome numbers is, because the number of chromosomes in F. cylindrus 

remains unknown due to the current draft character of its genome sequence and the 

presence of 5.4% sequence gaps. Does the larger genome size in F. cylindrus relate to a 

higher number of chromosomes or larger chromosomes? Moreover, although it could be 

shown in this work that there are significant differences in G+C content and codon 

usage in F. cylindrus compared to other diatom genomes, it remains an open question if 

there are significant differences in genome methylation, too. Additionally, it remains an 

open question what the role of allele-specific expression in eukaryotic phytoplankton is 

and how the observed unequal bi-allelic expression in F. cylindrus is regulated. Do 

different methylation patterns of histones control allele-specific expression as known for 

other eukaryotic model systems (Fournier et al., 2002)? Furthermore, although gene 

expression patterns in F. cylindrus suggest the utilisation of lipid storage products to 

endure prolonged darkness periods, the exact mode of dark survival during the polar 

winter remains uncertain. It also remains unclear how fast F. cylindrus can respond to 

long-term environmental changes in the light of possible climate change scenarios. The 

hypotheses on the physiological and ecological role of a light-driven rhodopsin proton 

pump in F. cylindrus remains to be tested, too. Nonetheless, taken together, the novel 

genomic information provided in this thesis suggests a number of starting points for 

experimental investigations to specifically probe adaptive strategies in F. cylindrus. 

Furthermore, it clearly shows that the use of genomic approaches provides a powerful 

tool to exploring basic diatom biology. Thus, more genomic studies should be 

performed to better understand novel aspects of diatom biology.  

Future research efforts should include the sequencing of additional diatom 

genomes to further probe the range of genome sizes between species and investigate 

corresponding chromosome numbers and genome structure in diatoms. Further genome 

analysis of the F. cylindrus genome including genome mapping (i.e., the assignment of a 

gene to a particular region of a chromosome and determining the location of and relative 

distances between genes on the chromosome) to assemble a physical map (i.e., 

chromosomal or cytogenetic maps representing the chromosomes and providing 

physical distances between landmarks on individual chromosomes) will facilitate the 

integration of phenotypic and genetic data and provide definite evidence that 

heterozygous allelic pairs represent the same divergent genomic loci. The complete 

genome sequence of F. cylindrus would provide the ultimate physical map and should 

be realised through sequence gap closure or BAC end sequencing of its genome, 
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allowing for the long-range contiguity of its current draft genome sequence and the 

identification of chromosomes. The assembly of a physical map should be assisted by 

optical mapping and/or cytogenetic techniques, which will also provide a rich resource 

for the analysis of chromosome structures, comparative genomics and functional 

genomics in diatoms.  

Furthermore, to allow researchers to fully exploit the novel genomic information 

revealed by sequencing of F. cylindrus, a genetic transformation system should be 

developed, which will open the door to advanced functional genomic investigations 

including the inactivation of specific genes using, e. g., antisense and sense suppression 

and RNA interference. Moreover, the sequencing of additional transcriptomes of F. 

cylindrus from environmentally relevant growth conditions, including hyperoxic 

conditions, which may occur in sea ice brine channels, as well as several months of 

darkness, which annually occurs during the polar winter, will provide a comprehensive 

resource to study metabolic processes in polar diatoms. This approach will allow 

determination of the exact mode of darkness survival during the polar winter and 

provide a more complete picture of photosynthetic life in sea ice. A better understanding 

of life in sea ice, including high pH and low CO2 conditions, and carbon-concentrating 

mechanisms would also be facilitated by the study of novel protein domain 

combinations in F. cylindrus consisting of carbonic anhydrases and frustulin and 

fasciclin membrane domains. Additionally, a global genomic analysis of the F. cylindrus 

proteome would allow analysis for widespread amino acid modifications linked to cold 

adaptability of proteins and structural rigidity (e.g., reduced hydrophobic amino acid 

content), which has been observed in psychrophilic microorganisms (Casanueva et al., 

2010). In addition to that, the combinatorial application of transcriptomics, proteomics 

(i.e., large-scale quantitative analysis of proteins in a cell), metabolomics (i.e., the study 

and quantitative analysis of all small molecules in a cell) and targeted biochemical 

assays will enable researchers to discover novel gene functions and provide a better 

understanding of the function of individual genes and metabolic processes in diatoms in 

response to environmental conditions.  

Finally, the elucidation of the physiological role of a bacteria-like rhodopsin in F. 

cylindrus promises novel insights into the life of phytoplankton in contemporary 

oceans. To confirm the putative role of the Fragilariopsis rhodopsin in coping with iron 

stress, the development of a custom Fragilariopsis rhodopsin-specific antibody will 

allow for analysis of protein expression using western blotting and establish whether 
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increased expression levels under iron limitation are linked with higher protein levels. 

Moreover, the heterologous expression of Fragilariospsis rhodopsin in other non-

rhodopsin containing diatoms using reverse genetics allows for phenotyping 

experiments and will allow identifying whether proton-pumping rhodopsins in 

eukaryotic phytoplankton lead to increased generation of ATP supporting enhanced 

growth under iron stress. Additionally, the further study of individual allelic gene copies 

of Fragilariopsis rhodopsin promises insights into the evolution of sub-or 

neofunctionalised allozymes. Furthermore, PCR-based screening of environmental 

metagenome samples for additional Fragilariopsis rhodopsin alleles (and other F. 

cylindrus alleles), combined with deep amplicon sequencing of PCR products, will 

allow estimation of the effective population size of F. cylindrus providing a rare 

opportunity to test whether the two allelic clusters of the same genetic locus have the 

same number of allelic copies, which could be hypothesised under neutral selection but 

would be refused if selection acts differently on both allelic subgroups because they are 

expressed under different conditions and have different functions. In addition to that, the 

identification and purification of yet unknown eukaryotic rhodopsins from 

environmental samples as well as isolated phytoplankton cultures will allow for 

preparation of a gene library for eukaryotic phytoplankton rhodopsins to probe light-

driven proton pumping, characterise the influence of genetic variation on wavelength 

specificity, establish their significance for coping with iron stress and analyse their 

evolutionary history. Finally, the determination of absorption spectra of rhodopsin 

protein purifications from phytoplankton including F. cylindrus will allow probing for 

spectral tuning to environmentally predominant light conditions. Additionally, the direct 

measurement of the rhodopsin chromophore retinal in phytoplankton will allow further 

assessment of the functionality of eukaryotic phytoplankton rhodopsins.  

In a nutshell, the genomic study of F. cylindrus presented in this work provides 

several of new avenues for exploring novel aspects of diatom biology, including high 

allelic heterozygosity, which may confer high metabolic flexibility and capacity of 

diatoms to adapt to rapidly changing environments, and promises the discovery of many 

more molecular secrets of diatoms. 

 

 “We are just scratching the iceberg.” 

Thomas Mock 
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Supplementary information 

Supplementary protocol S1 

Extraction of genomic DNA from Fragilariopsis cylindrus using CTAB 

1. Preparation of 3% CTAB solution and heating to 65 °C. 

2. Cells were spun down in a centrifuge tube. Supernatant was discarded.  

3. Application of 10× volume of pre-heated CTAB solution onto cell pellet. 

4. Addition of Proteinase K (e.g., 20 µL Proteinase K to 6 mL). 

5. Addition of 5 µL RNase A (100 µg/mL) per mL of reaction mix. 

6. Incubation for 3 h at 60 °C (± 5 °C) with shaking. 

7. Addition of 1× volume Phenol/Chloroform/Isoamylalcohol (25:24:1) (pH 8). 

8. Centrifugation for ≥ 60 min, ≥ 10,000 rpm (full speed) at RT. 

9. Careful transfer of upper aqeous phase into fresh clean centrifuge tube to avoid 

carry over of the interphase. 

10.  Addition of ⅔ volume Isopropanol and incubation at RT ≥15 min to precipitate 

DNA.  

11. Centrifugation for 30 min, ≥ 10,000 rpm (full speed) at 4 °C. Supernatant was 

discarded. 

12.  Addition of ice-cold 80% ethanol to fully cover DNA pellet. Centrifugation for 30 

min, full speed, 4 °C. Supernatant was discarded. The washing step was performed 

twice. 

13. Resuspension of DNA pellet in 50 – 100 µL molecular grade water. 

 

Supplementary protocol S2 

Extraction of total RNA from Fragilariopsis cylindrus using Trizol 

1. Trizol was heated to 60 °C and 1 mL of pre-heated Trizol was directly applied onto 

frozen sample filters. 
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2. Addition of glass beads (425-600 μm, Sigma-Aldrich, MO, USA) to samples, 

followed by cell disruption using a Mini-Beadbeater (BioSpec Products, 

Bartlesville, OK, USA) and two disruption cycles of 60 s and 30 s. 

3. Transfer of samples into 50 mL centrifuge tubes.  

4. Addition of 1× volume chloroform to glass bead-trizol-cell mix and mixing by 

vortexing for 15 s. 

5. Incubation for ≥ 5 min at RT. 

6. Centrifugation for 30 min at 12,000 g, 4 °C. 

7. Careful transfer of transparent upper aqueous phase into fresh 1.5 mL centrifuge 

tube to avoid carry-over of contaminanting debris. 

8. To precipitate RNA 1× volume ice-cold Isopropanol was added and samples were 

mixed by vortexing for 15 s, followed by incubation for ≥ 20 min at −20 °C. 

9. Samples were centrifuged for 30 min at 12,000 g, 4 °C to pellet RNA. Supernatant 

was discarded.  

10. RNA pellet was washed twice by adding 1 mL ice-cold 75% ethanol (molecular 

grade), vortexing for 15 s and centrifugation for 2 min at 12,000 g, 4 °C. 

Supernatant was discarded.  

11. Samples were incubated under sterile laminar flow hood until RNA pellets were dry 

and turned transparent. 

12. Depending on the size of RNA pellets, 20 – 100 µL RNase/DNase-free water was 

added to resuspend RNA. 

13. Samples were flash-frozen in liquid nitrogen and stored at −80 °C until downstream 

processing. 

Supplementary note S1 

The lowest iron concentrations which are achievable with artificial seawater are 

variable, and depend on a number of factors and include cleaning of bottles, quality of 

seawater salts and purity of trace metal and vitamin stocks (e.g., both trace metal and 

vitamin stock solutions cannot be chelexed and need to be of purist form). Iron 

contaminations in the range of 0.05 – 2 nmol L
-1

 total iron [FeT] may be observed (A. 

Marchetti, personal communication 05/05/2009). Accordingly, computational 

predictions of dissolved inorganic iron concentration [Fe'] and free ferric iron 

concentration [Fe
3+

], resulting from FeT contaminations, may range between 0.06 – 2.3 
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pmol L
-1

 for [Fe'] and 2.24 × 10
-12

 – 89.6 × 10
-12

 pmol L
-1

 for [Fe
3+

] based on chemical 

mass balance equations (Sunda et al., 2005). Parameters for computations of [Fe'] and 

[Fe
3+

], including conditional stability constants K’Fe’EDTA and K*Fe3+EDTA, as well as the 

side reaction coefficient for inorganic complexation αFe, were obtained from Sunda et al. 

(Sunda et al., 2005). They were determined for a 100 μmol L
-1

 EDTA metal ion buffer 

system in seawater at 20 °C at pH 8.2, salinity of 36, and light intensities of 175 μmol 

photons m
-2

 
-1

 (K’Fe’EDTA = 10
6.94

, K*Fe3+EDTA = 10
17.35

 and αFe = 2.6 × 10
10

). However, 

for the culture experiments performed in this study, actual conditional stability constants 

may differ due to variations in light and growth temperatures. Although different 

temperatures have a limited effect on conditional stability constants, the combinatorial 

effect of cold temperatures and different light intensities may increase the importance of 

photo-dissociation of Fe-EDTA chelates (Sunda and Huntsman, 2003). Finally, if ~99% 

of the maximum potential iron contamination (i.e., FeT = 2 nmol L
-1

) is bound to strong 

organic complexes (Rue and Bruland, 1995), the resulting [Fe'] is ~23 pmol L
-1

 and 

~8.96 × 10
-10

 pmol L
-1

 for [Fe
3+

], rendering iron contaminations insignificant. 

Supplementary figures 

Supplementary Figure S1: F. cylindrus half-saturation constant for silicate 

Supplementary Figure S1. Fragilariopsis cylindrus mean growth rates (d-1) in relation to different silicate [Si] 

concentrations (log scale). Error bars indicate standard deviation (n ≥ 3). Line represents fitting to nonlinear 

Monod growth function. 
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Supplementary Figures S2-S4: Vectors used in this study 

 

Supplementary Figure S2. Xenopus laevis expression vector pGEMHE containing 5’ and 3’UTRs from a 

Xenopus β-globin gene (Kreig, P. A., and Melton, D.A. (1984), Nucl. Acids Res. 72, 7057-70), which flank a 

polylinker with restriction enzyme sites (Liman, E. R. et al. (1992), Neuron 9(5): 861-71). 

 

 

Supplementary Figure S3. Phaeodactylum tricornutum transformation vector pPha-T1 (GenBank AF219942; 

Zaslavskaia et al. (2000), J. Phycol. 36: 379) containing fucoxanthin chlorophyll-binding protein (fcp) 

regulatory sequences (p: promoter; t: terminator) to drive constitutive expression of bleomycin resistance 

protein (Ble) conferring zeocin resistance and gene of interest, which is to be cloned into multiple cloning site 

(MCS).  
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Supplementary Figure S4. Phaeodactylum tricornutum transformation vector StuI-GFP-pPha-T1 (Gruber et al. 

(2007), Plant Mol. Biol. 64: 519) for generation of eGFP fusion proteins. To generate GFP fusion constructs, 

the sequence of interest is to be cloned into the StuI restriction site at 5’ end of eGFP. Vector represents a 

derivated of the pPha-T1 vector (Zaslavskaia et al. (2000), J. Phycol. 36: 379).  
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Supplementary Figure S5: Changes in pH during growth of F. cylindrus under 

elevated (1000 ppm) CO2 

 

Supplementary Figure S5. Growth of Fragilariospsis cylindrus under elevated carbon dioxide (1000 ppm 

CO2/Air, +4 °C, nutrient replete, 35 µmol photons m-2 s-1). Dashed line indicates time point of harvest for RNA 

extraction and shift to bubbling with ambient air. Top panel shows cell counts and photosynthetic 

performance (Fv/Fm) and bottom panel shows changes in pH.  

 



Supplementary information  226 

 

 

Supplementary Figure S6. RT-qPCR analysis of selected Fragilariopsis cylindrus genes under six experimental 

treatments. Genes for TATA-box binding protein and RNA polymerase II were the most stable reference 

genes under all six experimental treatments as determined by Repeated Pair-wise Correlation Analysis using 

the Excel-based tool BestKeeper. A geometric mean was calculated using both genes (reference gene index). 

REST-MCS © – version 2 (Relative Expression Software Tool - Multiple Condition Solver) was used to test the 

expression of target genes under six experimental conditions, normalised by a by a reference gene index 

containing TBP and RNAP as reference genes. The expression ratio results of the investigated transcripts were 

tested for significance by a Pair Wise Fixed Reallocation Randomisation Test and plotted using standard error 

estimation via a complex Taylor algorithm using REST. Asterisks (*) indicate significant gene regulation 

compared to the control condition. 
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Supplementary Figure S7. Sequencing depth coverage of the F. cylindrus genome investigated for 

heterozygous gene copy pairs (courtesy of Robert P. Otillar, JGI, unpublished data). 
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