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Abstract

Lassa virus (LASV) causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-
encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L–a large protein of
2218 amino acid residues–are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP)
motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis
virus (LCMV), which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably
cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal
structure of the N-terminal 173-aa region of the LASV L protein (LASV L173) in complex with magnesium ions at 1.72 Å. The
structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1), orthomyxo- (influenza virus PA),
and bunyaviruses (La Crosse virus NL1). Although the catalytic residues (D89, E102 and K122) are highly conserved among
the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from
in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm
structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease
domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.
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Introduction

Lassa fever virus (LASV) has natural hosts in rodents and can

cause severe and lethal hemorrhagic fever diseases in humans. The

virus is estimated to infect 300,000 to 500,000 people annually and

is responsible for 5,000 deaths per year in many endemic areas of

West Africa [1]. LASV is also a potential global heath threat as

cases of infection have been reported in America, Europe and Asia

[2,3,4,5,6]. Currently, no vaccine is available to prevent LASV

infections. The only drug available to treat LASV infection is

ribavirin, but to be effective, it has to be administered early when

the disease is insidious and therefore it is difficult to distinguish

LASV infection from other febrile diseases [1,2].

LASV belongs to the Arenaviridae family, which consists of

enveloped viruses with a bisegmented single-stranded RNA

genome. Using an ambisense coding strategy, LASV genome

encodes four proteins: glycoprotein complex (GPC), nucleoprotein

(NP), matrix protein (Z), and the L RNA-dependent RNA

polymerase. The GPC is proteolytically cleaved by the cellular

signal peptidase and subtilase SKI-1/S1P into a stable signal

peptide SSP and mature glycoproteins GP1 and GP2 [7]. The

SSP/GP1/GP2 tripartite complex forms surface envelope spikes

of the virus and is anchored on the viral membrane. The highly

abundant NP encapsulates viral RNAs into ribonucleoprotein

(RNP) complexes that also contain the L polymerase protein. The

NP-bound viral RNAs serve as templates for both RNA replication

and transcription [8,9], which are facilitated by the L polymerase

and NP proteins. In addition to its functions in viral RNP

structural formation and genome transcription and replication, NP

also strongly suppresses type I interferon (IFN) production via a

unique immune evasion mechanism. We and others have recently

shown that NP has 39–59 exoribonuclease activity with a

preference for cleaving dsRNA substrates and that this viral

exoribonuclease function is essential for mediating host immune

suppression [10,11,12]. A small matrix protein (Z) mediates viral

budding [13] and also regulates viral RNA replication and

transcription [14,15,16].

Like orthomyxoviruses and bunyaviruses, arenaviruses cannot

synthesize de novo the cap structure that is required to initiate viral

mRNA synthesis. Instead, these viruses steal the caps from host
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mRNAs in a process termed cap snatching. Analysis of the non-

templated RNA sequences in virally infected cells suggests that the

snatched cap structures in arenaviruses contain 1 to 4 ribonucle-

otide(s), which are much shorter than those of influenza and

bunyaviruses [17,18,19]. The cap snatching mechanism is most

extensively studied in the influenza virus system. Influenza viral

polymerase is a tripartite protein complex, which consists of the

subunits PA, PB1, and PB2, each with specific functions in viral

RNA replication and transcription. Structural analysis as well as

biochemical and cell-based viral RNA synthesis assays demon-

strate that PB2 binds the cap structure of host mRNAs [20] while

the N-terminal domain of the PA subunit endonucleolytically

cleaves the cap structure from these mRNAs [21,22]. In

arenaviruses, mutagenesis studies have revealed that the N-

terminal domain of the LASV L protein, which consists of 250

amino acid residues, is uniquely required for viral transcription but

not replication [23], implicating its potential role in cap snatching.

Indeed, the crystal structure of the N-terminal region of the

LCMV L protein (PDB: 3JSB) [24] reveals an endonuclease

domain that is structurally homologous to the endonuclease

domain of the influenza PA protein (PDB: 3EBJ) and that of the

La Crosse (LACV) L polymerase (PDB: 2XI5) [25]. The

endonuclease domain of PA was solved in complex with metal

and monoribonucleotide and revealed the five potential catalytic

residues H41, E80, D108, E119 and K137 [21,22,26], while

LACV endonuclease domain was crystallized with metal and

endonuclease inhibitor 2,4-dioxo-4-phenylbutanoic acid (DPBA)

that were coordinated by five potential catalytic residues: H34,

D52, D79, D92, and K94 [24]. The catalytic residues of the

endonuclease domain of the arenavirus LCMV L polymerase were

less clear. Although the L proteins of LCMV and other

arenaviruses share some sequence conservation in the N-terminal

endonuclease domain, sequence alignment fails to identify the

conserved His of the expected H…PD…D/E…K motif. Crystal

structure of the LCMV endonuclease domain suggests E51 (rather

than His), D89, E102, D119, K115 and K122 as active site

residues [25]. We believe that having additional structures of

arenaviral L endonucleases in complex with metal and mono-

ribonucleotide may help to clarify this ambiguity. Since endonu-

clease function is central in the viral cap snatching process, an

impairment of this event can potentially block viral genome

transcription and inhibit virus replication. Therefore, we believe

that solving the structure of the endonuclease domain of the highly

pathogenic LASV may help to pave the way for drug discovery to

combat this deadly disease. Toward this end, we report here for

the first time the crystal structure of the endonuclease domain of

the LASV L protein in complex with Mg2+ ions at 1.72 Å and

demonstrate its enzymatic activity required for viral RNA

transcription. Our new structure sheds important lights on the

molecular mechanism of cap snatching by arenaviruses and

provides structural basis for the development of antiviral drugs

targeting this essential step in the arenaviral life cycle.

Materials and Methods

Plasmids and DNA Cloning
DNA fragments encoding the N-terminal regions of different

lengths (residues 1–190, 1–200, 1–250, 1–300 and 1–500) from the

LASV L protein (L190, L200, L250, L300 and L500) were

amplified by PCR with respective pairs of primers and cloned into

the pMALC2X derivative plasmid pLou3 [10] and the pEHIS-

TEV plasmid, which includes a hexahistidine tag and a tobacco

etch virus protease cleavage site at the N-terminus of the cloned

genes. Based on the structure, a new plasmid construct was

designed to express the first 173 amino acids of the LASV L

protein (L173) from the pEHISTEV plasmid. Three alanine

substitution mutations (E51A, E102A and D119A) were generated

in the backbone of L173 by site directed mutagenesis according to

a protocol by Liu et al [27]. For protein expression in mammalian

cells, the full-length LASV L fused with a myc tag at the C-

terminus was cloned into the pCAGGS vector. Mutations were

generated by PCR and cloned into the pCAGGS-L-myc vector.

All constructs were confirmed by DNA sequencing. Primer

sequences can be provided upon request.

Protein Expression
The bacterial expression plasmids of LASV L N-terminal

regions, with or without mutations, were individually transformed

into Rosetta (DE3) cells. For L200, L250, L300, and L500, cells

were propagated in 500 ml of LB medium containing appropriate

antibiotics (25 mg/ml of kanamycin or 50 mg/ml of ampicillin and

34 mg/ml of chloramphenicol) in a 37uC shaker at 200 RPM

overnight. The start-up culture was transferred to 10 L of Luria

broth (LB) and grown at 37uC and 200 RPM until the optical

density of the culture measured at a wavelength of 600 nm

reached 0.5–0.7. At this stage, the expression of recombinant

proteins was induced by the addition of IPTG to a final

concentration of 0.2 mM and grown at 16uC for additional 16–

20 hours. Cells were harvested by centrifugation at 5000 RPM

and 4uC for 15 minutes. For L173 and L173 mutants, bacterial

cells were grown in 400 ml auto-induction medium in 2 L flasks at

20uC and 250 RPM for 48 hours in the presence of kanamycin

(25 mg/ml) and chloramphenicol (34 mg/ml).

Protein Extraction and Purification
Cell pellets were resuspended at 4uC in sample buffer (20 mM

Tris-HCl pH 7.4, 300 mM NaCl, 10% glycerol) supplemented

with DNase, EDTA-free protease inhibitor cocktail (Roche, UK)

and phenylmethylsulfonyl fluoride (PMSF, Sigma, UK), and lysed

by two passes through a cell disruptor (Constant Systems Ltd.,

UK) at 30 Kpsi. Lysed cells were centrifuged at 18,000 RPM and

4uC for 45 minutes to remove cellular debris. The supernatant was

applied twice to a pre-equilibrated nickel-nitrilotriacetic acid (Ni-

NTA) agarose resin to purify the hexahistidine (His6)-tagged target

proteins. After the resin was washed with 40 column volumes (CV)

of wash buffer (20 mM Tris-HCl pH 7.4, 600 mM NaCl, 10%

glycerol and 10 mM imidazole) to remove non-specific proteins,

target proteins were eluted with 2 CV of elution buffer (20 mM

Tris-HCl pH 7.4, 150 mM NaCl, 10% glycerol, 300 mM

imidazole). Following the elution, the target protein was desalted

(Hiprep 26/10 desalt column, GE-Healthcare, UK) into a low

imidazole buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 10%

glycerol, 10 mM imidazole) to prevent protein precipitation

during proteolytic cleavage of the fusion partner by TEV protease.

To remove the fusion tag, the protein sample was filtered through

a 0.45 mm filter (Merck Millipore, UK) and re-applied to re-

equilibrated nickel resin. The flow-through containing the target

protein was concentrated to a volume of 7.5 ml and applied to an

equilibrated gel filtration column (Superdex 200, GE-Healthcare).

Protein fractions were collected and protein purity was determined

on pre-cast SDS-PAGE (NuPAGE, Invitrogen, UK). Fractions of

highest purity were combined and concentrated to 7 mg/ml.

Protein Crystallization
Protein crystallization was performed using the sitting-drop

vapour diffusion technique. The purified N-terminal 200 residues

of LASV L (L200) did not form crystals. However, crystallization

was initiated after proteolysis of LASV L190 with subtilisin A in a

Lassa Endonuclease Structure and Function
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700:1 ratio for 60–90 minutes on ice. Upon proteolytic treatment,

the protein crystallized rapidly in various conditions with best

crystals found in 100 mM Tris-HCl pH 8–9.5, 250 mM MgSO4

and PEG 10,000. Larger crystals grew after three days in 2 ml of

protein and 2 ml of precipitant drops with 100 ml reservoir

solution.

Data Collection
Protein crystals were cryoprotected with reservoir solution

containing 20% glycerol and frozen in liquid nitrogen. Data was

collected using synchrotron radiation with an oscillation angle of

0.5u and 360 recorded images at 1 second exposure for each at the

Diamond Light Source, UK.

Data Processing and Structural Determination
The X-ray diffraction data was indexed and integrated using

iMosflm [28], and scaled using Scala [29] in ccp4 suite. The

crystal structure of LASV L N-terminal region was determined by

molecular replacement using Phaser [30] and the N-terminal

domain of LCMV (PDB: 3JSB) as a search model. Model building

was completed in Coot [31] and structure refinements were

carried out using Phenix [32].

In Vitro Endonuclease Assays
A single-stranded 16-nucleotide RNA fragment with a fluores-

cence 6-carboxyfluorescein label (FAM-label) at its 59 end was

synthesized and HPLC purified by Eurogentec (Eurogentec,

Belgium), and further purified using a 20% polyacrylamide/8 M

urea gel. The endonucleolytic activity of the wild-type L173 was

determined using the FAM-RNA as substrate in a control

experiment in which the RNA substrate in solution containing

20 mM Tris, pH 7.5, 0.3 M NaCl, 10% glycerol and RNase

inhibitor (RNaseIN, Promega, UK) was incubated with purified

LASV L173 at 37uC for 20 minutes in varying combinations of

EDTA and divalent metal ions. Metal ion preference was tested by

incubation of FAM-RNA substrate and LASV L173 with 0.5 mM

of MgCl2, MnCl2, CaCl2 and ZnCl2 at 37uC for 20 minutes.

Endonucleolytic cleavage of the alanine substitution mutants

E51A, E102A and D119A was performed by incubation of FAM-

RNA in a 1:10 ratio with the individual mutated version of the

protein in the presence of 2.5 mM MgCl2 and RNase inhibitor at

37uC. Samples were taken after 0, 25, 40 and 90 minutes

incubation time and stopped by the addition of EDTA pH 8.0

(100 mM final concentration) and 100% formamide. Samples

were heated to 95uC for 5 minutes prior to separation on a 20%

PAGE/8 M urea gel. Vertical gel electrophoresis was carried out

at 45uC and under protection from light for 150 minutes.

Immediately after electrophoresis, the gel was scanned at an

absorbance of 500 nm using a Typhoon scanner and the intensity

of the bands was quantified by the ImageJ software [33].

LASV Minigenome Transcription Assay
The LASV minigenome (MG) assay was conducted as described

previously [10]. In brief, 293T cells were transfected with the

LASV L and NP expression vectors together with the in vitro-

transcribed LASV-based luciferase-encoding MG RNAs. A beta-

gal expression vector was included in each transfection to

normalize for cell transfection efficiency. Luciferase (LUC) activity

was determined at 24 hours post-transfection, normalized by beta-

gal activity, and shown as x-fold increase over a control sample

that lacks the L expression plasmid. Each reaction was conducted

in triplicates and in at least two independent experiments.

Results

Purification and Crystallization of the LASV L
Endonuclease Domain

DNAs encoding the first 200, 250, 300 and 500 amino acids of

the LASV L polymerase were first cloned into the pLou3 plasmids

and expressed in E. coli Rosetta (DE3) cells as described in

‘‘Materials & Methods’’. After multiple attempts using different

induction conditions and media, the L200 containing the first 200

amino acid residues of the polymerase was the only construct that

expressed well and was easy to purify. However, attempts to

crystallize this protein failed. Similarly, L190 containing the first

190 amino acid residues of L was expressed and purified at a high

level but again did not yield any crystals. A limited proteolysis

screen revealed that, after subtilisin A treatment to cleave off some

amino acids at the C-terminus of the L190 protein, crystals

appeared in 100 mM Tris-HCl pH 9.0, 250 mM MgSO4 and

20% PEG 10,000 after 1 day of incubation. The final protein

product for crystallization consists of residues 1–173 based on the

structure determined as described below.

Crystal Structure of the L endonuclease Domain
The crystals of the LASV L N-terminal region belong to a space

group of P43212 with cell dimensions a = 57.72, b = 57.72,

c = 134.51, and a=b= c= 90u. The crystal structure was deter-

mined by molecular replacement using the LCMV endonuclease

structure (3JSB) as the search model and refined to 1.72-Å

resolution with an Rfactor of 16.54% and the Rfree of 17.83%

(Table 1). The protein contains an N-terminal domain that

consists of a four a-helices bundle (a1, a2, a3 and a7) and a C-

terminal domain that composes of three antiparallel b-sheets (b1,

b2 and b3) and two helices (a4 and a5) (Figure 1A). Between the

two domains is a highly positively charged groove, which we

speculate to be a RNA binding site, and a highly negatively

charged cavity, which harbors two magnesium ions (Mg2+) and is a

potential active site of the endonuclease domain (Figure 1B).

The Potential Catalytic Residues of the Lassa L
Endonuclease Domain

Two Mg2+ ions, presumably picked up by the protein from the

crystallization solution, are located at the presumed active site of

the LASV endonuclease domain. Four water molecules (Wat1, 2,

3 and 4) and the side chain of D89 coordinate the first Mg2+, while

three water molecules (Wat4, 5 and 6), the side chain of D89 and

the main chain oxygen of C103 coordinate the second Mg2+

(Figures 1C, 1D). This metal binding feature is different from that

of the known structures of the influenza and LACV endonucleases,

in which both metal ions are coordinated by four or three potential

catalytic residues [21,25] or by residue E80 and three water

molecules [22]. Since endoribonuclease is a two-metal-dependent

enzyme, potential catalytic residues must be located in close

proximity to the two Mg2+ ions. In addition to D89, which

coordinates the two Mg2+ ions, some other potential catalytic

residues are E51 that coordinates Wat1 and Wat6, E102, which is

4.2 Å away from Wat4, D119, which is 5.2 Å from Wat5, K122,

which is 5.7 Å from Wat3 and 5.8 Å from the first Mg2+, and H62,

which interacts with E51 through side chains and is 6.2 Å away

from Wat1. As the structure of the LASV L endonuclease domain

does not contain an RNA substrate, we believe that, upon RNA

binding, these potential catalytic residues may undergo significant

conformational changes. Taken together, the structure of the

LASV L endonuclease domain suggests that residues E51, D89,

E102, D119, and K122 are potential catalytic residues, which is

similar to those predicted for the LCMV endonuclease [24].

Lassa Endonuclease Structure and Function
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Figure 1. Structure of the LASV L endonuclease domain. A, The cartoon representation of the LASV endonuclease domain is shown in
rainbow colors. The N-terminus is shown as a blue sphere and the C-terminus is shown as a red sphere. Magnesium ions are shown as magenta
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Comparative Structural Analysis of the LASV L
Endonuclease Domain with Other Known Viral
Endonuclease Domains

Three viral families, Arena-, Bunya-, and Orthomyxoviridae are

known to use a similar cap-snatching mechanism to steal host

mRNA cap structures for use in priming viral mRNA transcrip-

tion. The available atomic structures of the viral endonuclease

from each of these viral families, LCMV (Arenaviridae) [25], LACV

(Bunyaviridae) [24], and influenza virus (Orthomyxoviridae) [21,22]

present an opportunity to compare the similarities and differences

between these structures and that of the LASV L endonuclease

reported in the current study (Figure S1). Structural comparison

demonstrates that LASV L endonuclease closely resembles the L

endonuclease of LCMV with rmsd of 1.382 Å over 166 Ca atoms

[25]. Superimposition of the two structures shows identical

positions of all the a-helices and b-sheets as well as at the potential

catalytic residues E51, D89, E102, D119, and K122 (Figure 2A

and Figure S2).

LASV L endonuclease also shows remarkable structural

similarity to the LACV endonuclease structure with a rmsd of

3.018 Å over 128 Ca atoms (Figure 2B and Figure S2). In

particular, the potential catalytic residues (E51, D89, E102, and

K122), as well as residue P88 and a Mg2+ ion of LASV L

endonuclease are located at similar positions as the corresponding

active site residues (H34, D79, D92, and K108), as well as residue

P78 and a Mg2+ ion of LACV NL1 [24]. Differences between the

two structures are found at the N- and the C-terminal a-helices.

When LASV L endonuclease is compared to the PA endonu-

clease of influenza virus, their active sites show remarkable

structural similarities with a rmsd of 3.703 Å over 103 Ca atoms,

despite some obvious differences in both the N- and the C-

terminal domains [21,22] (Figure 2C and Figure S2). The

potential catalytic residues D89, E102, K122 of LASV L

endonuclease are located at the same positions as the catalytic

residues D108, E119, K137 of influenza PA endonuclease. The

E51 residue of LASV L is located at the same position as the H41

catalytic residue of influenza PA, suggesting that E51 may be a

catalytic residue of the LASV L endonuclease. However, we notice

that the active sites form a deep cavity in PA endonuclease but a

flat surface in LASV endonuclease domain, which may partly

explain our failure to obtain the LASV L in complex with single

ribonucleotides despite multiple attempts.

Taken together, the LASV L endonuclease shows overall

structural similarity to other viral endonucleases in the active sites,

with some variations in the exact positions of several catalytic

residues as well as in the N- and C-terminal regions. These

structural features reflect a general mechanism of endonucleolytic

cleavage, which is used by a diverse set of viruses. Nonetheless,

these endonucleases each have their unique characteristics that

may be involved in defining the substrate specificity and/or

preference [21,22,24,25].

The N-terminal Domain of LASV L Exhibits Divalent Ion-
dependent Endonuclease Activity In vitro

To verify its enzymatic activity, we first conducted an in vitro

endonuclease assay, in which a 16-nt single-stranded RNA

substrate is incubated for 20 minutes with purified LASV L173,

MgCl2 and EDTA in varying combinations (Figure 3A). As MnCl2
at a concentration of 5 mM was found to cause precipitation of

LASV L endonuclease, we used a final concentration of 0.5 mM

of all divalent ions in the in vitro endonuclease assays throughout

the study. LASV L endonuclease shows the highest levels of

activity in the presence of Mg2+, followed by Mn2+ and Ca2+, and

no activity in the presence of Zn2+ (Figures 3B, 3C). We then

generated three LASV L endonuclease mutants that contain

alanine substitution mutations at three of the potential catalytic

residues (E51A, E102A, and D119A). When tested in the in vitro

endonuclease assay, these mutant proteins exhibited different

levels of defects in RNA cleavage. E51A and E102A showed

significantly reduced endonuclease activities whereas D119A

showed moderately impaired activity (Figures 3D, 3E).

spheres. B, Electrostatic potential map of LASV L endonuclease domain. The highly positive charged residues are shown in blue (+10 KbT/ec) and
highly negatively charged residues shown in red (210KbT/ec). The catalytic cavity is located in vicinity to the magnesium ions. The putative RNA
binding cleft is formed diagonally between the N-terminal and the C-terminal domains of the endonuclease. C, Atomic view of the active site of the
LASV L N-terminal endonuclease domain. The two magnesium ions are coordinated by water molecules and the side chains of amino acid residue
D89 and the main chains of C103. D, The original FoFc electron density map of the two magnesium ions and the water molecules contoured at 3s.
doi:10.1371/journal.pone.0087577.g001

Table 1. Data collection and structure refinement statistics.

Data collection LASV L endonuclease with two Mg2+ ions

Wavelength (Å) 0.9793

Space group P43212

Unit-cell parameters (Å; u) 57.72, 57.72, 134.51; 90, 90, 90

Resolution (Å) 40.81–1.72 (1.85–1.72)a

Unique reflections 24168 (2208)

Completeness (%) 96.65 (90.71)

Multiplicity 9.3 (9.7)

Mean I/s (I) 43.65 (6.11)

Rmerge (%) 0.048 (0.579)

Refinement

Rfactor
b 16.51 (19.8)

Rfree
c 17.72 (25.43)

Number of atoms 1546

Protein 1386

Metal ions 2

Solvent 158

RMSD bond (Å)/angles (u) 0.010/1.12

Ramachandran favored (%) 99%

Mean B-factors (Å2) 22.9

Protein 21.9

Solvent 31.6

PDB accession code 4MIW

aValues in parentheses are for the highest resolution shell.
bRfactor =S||Fo|2|Fc||/S|Fo|, where Fo and Fc are observed and calculated as
structure factors, respectively.
cRfree is calculated using 5% of total reflections, which is randomly selected as a
free group and not used in refinement.
doi:10.1371/journal.pone.0087577.t001
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Mutational Analyses of the LASV L endonuclease Domain
in Viral RNA Transcription

We next characterized the function role of potential catalytic

residues within the LASV L endonuclease domain in mediating

viral RNA transcription using the established mini-replicon (MG)

assay as described previously [10]. Alanine substitution was

introduced at each of the predicted catalytic residues of the

endonuclease domain (E51A, D89A, E102A, D119A, and K122A)

as well as at other residues found in close proximity to the catalytic

residues (R21A, K44A, S47A, L48A, H62A, D66A, P88A, and

K115A). These substitution mutations were made in a context of

the myc-tagged full-length LASV L expression plasmid. 293T cells

were transfected with wild-type (WT) or mutant L plasmid,

nucleoprotein (NP) expression plasmid, and a Renilla luciferase

LUC-encoding viral RNA molecule. Compared to WT, all L

mutants appeared to be stably expressed, albeit at various reduced

levels (Figure 4). As expected, catalytic mutants E51A, D89A,

E102A, D119A and K122A as well as K115A found in close

proximity to the other catalytic residues resulted in significantly

reduced LUC expressions (by 2–3 logs). On the contrary, none of

the other mutants R21A, K44A, S47A, L48A, H62A and D66A

significantly reduced viral RNA transcription. Taken together, our

LASV MG assay largely confirms previous mutational analysis of

LASV and LCMV L proteins in viral RNA transcription [23,25].

Published studies have demonstrated that targeted mutations at

residues D89, E102, D119, K122, D129, E180, and R185 in the

N-terminal region of LASV L protein significantly reduce the

mRNA, but not complementary RNA levels, and that these

residues might specifically be involved in the endonuclease

process, which is required for viral RNA transcription but not

replication. Remarkably, most of these residues overlap with the

predicted catalytic residues of LASV L endonuclease domain as

revealed by our crystal structure. Structural and functional analysis

of LCMV L endonuclease also identified the conserved residue

E51 as a potential catalytic residue [25]. Taken together, our

structural and functional analyses of the LASV endonuclease

domain coupled with previous analyses of both the LASV and

LCMV L proteins have confirmed our structural prediction that

residues E51, D89, E102, D119, and K122 are the catalytic

residues of LASV L endonuclease.

Discussion

Arenaviruses (e.g., LASV and LCMV), bunyaviruses and

orthomyxoviruses steal the 59 cap structures from host mRNAs

to use as primers for viral RNA transcription. During this cap

snatching process, a viral cap-binding protein recognizes the 59

cap structure of host mRNA while a viral endonuclease cleaves the

mRNA at some nucleotides downstream from the 59 end. Recent

studies have provided important insights into arenavirus proteins

mediating the endonucleolytic cleavage. Previous mutational

analyses of LASV L protein revealed the importance of its N-

terminal region in viral RNA transcription [23] and sequence

alignment shows its distant homology to the influenza virus PA

endonuclease domain, implying that L contains an endonuclease

Figure 2. Similarities and differences between the structures of LASV L endonuclease domain and those of other negative-strand
RNA viruses. Like in figure 1, the LASV L endonuclease domain is rainbow-colored. A, Structure of the LASV L endonuclease overlapping LCMV L
endonuclease domain (orange). The residues are numbered based on the LASV L sequence. B, Superimposition of the structure of the LASV L
endonuclease domain with the LACV L endonuclease domain (magenta). The magnesium ion of LACV is shown in gray, which is close to the position
of the first magnesium ion in the LASV structure. C, Superimposition of LASV L endonuclease domain with influenza PA endonuclease domain (gray).
The magnesium ion (gray sphere) from the structure of the influenza PA endonuclease is located close to the second magnesium ion of the LASV L
endonuclease.
doi:10.1371/journal.pone.0087577.g002
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Figure 3. In vitro endonuclease activity of LASV L173. A, A 59 FAM-labeled 16-nt single-stranded RNA substrate was incubated in a buffer with
or without purified LASV endonuclease, with or without Mg2+ and with or without metal ion chelator EDTA, for 20 min at 37uC. The reaction products
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domain at its N-terminus. The crucial evidence of L endonuclease

activity was obtained from the biochemical and crystal structural

characterizations of LCMV L N-terminal domain, which displays

an in vitro endonuclease activity and exhibits overall homology to

influenza PA endonuclease at a tertiary structural level. In this

study, we report the first high-resolution crystal structure of LASV

L endonuclease domain in complex with Mg2+. Our work

confirms that arenavirus L polymerase proteins contain a

conserved endonuclease domain at the N-terminal region. The

structural information of LASV L endonuclease provides a

vulnerable target for potential drug development to combat lethal

Lassa fever and/or other pathogenic hemorrhagic fevers caused by

arenaviruses.

Comparison of LASV L N-terminal domain to other endonu-

cleases with known structures has shown various degrees of

similarity in the overall protein folding. Not surprisingly, LASV L

endonuclease shows the most structural homology to LCMV

within the same Arenaviridae family, with identical positions for a-

helices and b-sheets as well as the potential catalytic residues E51,

D89, E102, D119, and K122, and the conserved H62 and K115

found in close proximity to the catalytic residues (Figure 2A, and

Figure S2A). An interesting difference between LASV and LCMV

L endonucleases is that the enzymatic activity of LCMV L is Mn2+

dependent and that it is more thermodynamically stable in the

presence of Mn2+ ion [25], whereas LASV L precipitates in a

solution that contains Mn2+ ion and is less active in Mn2+ than in

Mg2+ (Figures 2A, 2B), the reason of which is unclear.

Based on structural and functional analyses of both LCMV and

LASV L endonucleases, we believe that the potential catalytic

residues of arenavirus endonuclease domain consist of E51, D89,

E102, D119, and K122. Three of these catalytic residues D89,

E102, and K122 have the same spatial location as those of LACV

(Bunyaviridae) NL1 and influenza virus (Orthomyxoviridae) PA

endonucleases (Figure S2, B and C). Apart from the three

conserved catalytic residues common to all known viral endonu-

cleases, LACV NL1 contains two other catalytic residues H34 and

D52, while influenza virus PA contains H41 and E80. Interest-

ingly, the conserved His catalytic residue, present in both LACV

and influenza virus endonucleases, is uniquely absent in LCMV

and LASV L endonucleases. Instead, both LCMV and LASV L

encode a conserved E51 residue at the proximal position. The

E51A mutation almost completely abolished viral mRNA tran-

scription in the LASV MG assay (Figure 4) and has been shown to

preferentially disrupt viral RNA transcription [24], suggesting that

E51 is a potential catalytic residue of the arenaviral L endonu-

cleases. Another residue located near the catalytic active site is

D119 (Figure 1B), when mutated to alanine completely abolished

viral RNA transcription (Figure 4) but not necessarily viral

replication [23], strongly supporting its essential role in endonu-

clease catalytic activity. Taken together, the potential catalytic

residues of arenaviral L endonucleases include E51, D89, E102,

D119, and K122, which largely overlap with known viral

endonucleases from other viral families but exhibit unique features

of their own, suggesting similar but not necessary identical

catalytic mechanisms.

Crystal structural analysis of the LASV L N-terminal region also

reveals a highly positively charged cleft consisting of residues K44,

R106, K115, R144 and R161 located in between the N- and C-

terminal domains (Figure 5A, dotted outline). These residues are

conserved amongst known arenaviral L polymerases. Alanine

substitutions of the respective residues abolished (or significantly

reduced) both viral RNA transcription and replication, suggesting

their essential roles in viral RNA synthesis. The functional

mechanism of this positively charged cleft is unknown but it may

potentially serve as the interface to bind RNA substrates for

endonuclease and/or polymerase activities. Similar positively

charged clefts can be identified in LACV L and influenza virus

PA endonucleases, although their spatial locations do not overlap

by superimposition [21,22,24]. Compared to arenavirus, LACV L

endonuclease has a wider (or deeper) cleft [24] (Figure 5B), while

influenza virus PA contains a blocked cleft, which likely requires

conformational changes for substrate binding (Figure 5C) [21,22].

Presumably this positively charged cleft of the endonucleases of the

LASV, LACV and influenza virus PA plays an essential role in

viral RNA synthesis. However, its exact functional role and

mechanism in viral RNA transcription and replication need to be

investigated further.

Conclusions

We have provided the first high-resolution crystal structure of

the LASV L N-terminal endonuclease domain in complex with

magnesium ions and demonstrated that viral endonucleases from

were separated by urea-PAGE and detected by fluorescence scanning. B, The in vitro endonuclease assay was conducted in buffers with different
divalent cations for either 5 or 20 min. C, Percentage of RNA substrate degradation after 20 min incubation in a buffer with different divalent cations
was quantified by fluorescence scanning. D, WT or mutant LASV L173 was analyzed by an in vitro endonuclease assay for 0, 25, 40 and 90 min. E,
Percentage of RNA substrate degradation after 25 min was quantified by fluorescence scanning and normalized to WT control (set at 100%).
doi:10.1371/journal.pone.0087577.g003

Figure 4. Mutational analysis of LASV L endonuclease domain
in the LASV minigenomic RNA transcription assay. FLAG-tagged
L expression vector with either WT or alanine substitution at the
respective residue within the N-terminal endonuclease domain was
used to transfect 293T cells, together with the myc-tagged NP
expression vector and LUC-encoded LASV MG RNA. LUC activity was
measured and plotted in log scale. Results shown are the average of at
least three independent experiments with error bars representing
standard deviations. The expression of L (WT or mutant), NP, and
GAPDH in the transfected cells was detected by Western blot analysis
using anti-FLAG, anti-myc, and anti-GAPDH antibody, respectively.
doi:10.1371/journal.pone.0087577.g004
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three separate viral families: Arena-, Bunya-, and Orthomyxoviridae,

share some common features with some unique structural

variations, suggesting that, although different viral families utilize

a general mechanism to conduct the endonucleolytic cleavage of

host mRNAs at their 59 ends, each does it with some distinct

characteristics. Further characterization of the common and

unique features of these viral endonucleases may help develop

specific antiviral therapeutics against these important human

pathogens.

Supporting Information

Figure S1 Sequence alignment of the L N-terminal
endonuclease domain of segmented negative-stranded
RNA viruses of three families. LASV, LCMV, LACV and

H5N1 represent Lassa fever virus (josiah strain), Lymphocytic

choriomeningitis virus (Armstrong strain), La Cross virus (mos-

quito/1978), and influenza virus (H5N1 strain).

(DOC)

Figure S2 Superimposition of the active site of the LASV
endonuclease structure with those of other viruses. The

balls in magentas are to signify Mg2+, while balls in grey are Mn2+.

The residues are numbered according to the LAVS endonuclease.

The LASV, LCMV, LACV and influenza endonucleases are

shown in rainbow, orange, magentas and grey, respectively. A,

Superimposition of the active site of the LASV endonuclease with

that of the LCMV endonuclease, showing the complete conser-

vation of the putative catalytic residues between the proteins. B,

Superimposition of the active site of the LASV endonuclease with

that of the LACV. C, Superimposition of the active site of the

LASV endonuclease with that of the influenza virus.

(DOC)
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Figure 5. Electrostatic potential maps of the putative RNA binding cleft of known viral endonucleases. The black dotted lines outline
the potential RNA binding clefts. A, The electrostatic potential maps of LCMV endonuclease. The putative RNA binding cleft were revealed by
rotation by 90u along the y axis. B, The electrostatic potential map of LACV endonuclease. Rotation by 90u along the y axis shows the putative RNA
binding cleft. C, The electrostatic potential maps of influenza PA endonuclease. The RNA binding cleft of the influenza endonuclease is closed/
hidden. Rotation by 90u along the y-axis could not see the putative RNA binding cleft.
doi:10.1371/journal.pone.0087577.g005
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