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ABSTRACT 

 

Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible 

for some of the most serious volcanic disasters and have killed tens of thousands of 

people in recent decades. Despite considerable lahar model development in the 

sciences, many research tools have proved wholly unsuitable for practical 

application on an active volcanic system where it is difficult to obtain field 

measurements. In addition, geographic information systems are tools that offer a 

great potential to explore, model and map hazards, but are currently under-utilised 

for lahar hazard assessment. 

This research pioneered a three-tiered approach to lahar hazard assessment on 

Montserrat, West Indies. Initially, requirements of potential users of lahar 

information (scientists and decision-makers) were established through interview and 

evaluated against attainable modelling outputs (given flow type and data 

availability). Subsequently, a digital elevation model, fit for modelling lahars, was 

used by a path of steepest descent algorithm and a semi-empirical debris-flow 

model in the prediction of lahar routes and inundation areas. Limitations of these 

established geographical information system (GIS) based models, for predicting the 

behaviour of (relatively under-studied) dilute lahars, were used to inform key 

parameters for a novel model, also tightly coupled to a GIS, that simulated flow 

routes based on change in velocity. Importantly, uncertainty in model predictions 

was assessed through a stochastic simulation of elevation error. Finally, the practical 

utility of modelling outputs (visualisations) was assessed through mutual feedback 

with local scientists.  

The new model adequately replicated past flow routes and gave preliminary 

predictions for velocities and travel times, thus providing a short-term lahar hazard 

assessment. Inundation areas were also mapped using the debris-flow model to 

assist long-term planning. Ultimately, a GIS can support ‘on the ground’ planning 

decisions, but efficacy is limited by an active volcanic system which can restrict 

feedback to and from end-users. 
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CHAPTER 1: INTRODUCTION 

 

 

 

This first chapter acts as a guide to orientate the reader through the thesis and to 

frame the research in its wider context. The overall aim of this research is to 

evaluate the usefulness of GIS-based modelling of lahars for making ‘on the ground’ 

planning decisions with regard to an active volcanic system. The thesis presented 

here is that in order to develop methodologies that have a practical utility for local 

hazard managers, it is necessary not only to balance user-requirements with 

modelling options and data restrictions, but also to consider the uncertainties 

introduced through imitating the behaviour of complex phenomena. Furthermore, 

GISs are uniquely positioned to contribute to lahar hazard management, far beyond 

churning out traditional hazard zonation maps.  
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1.1 RATIONALE AND MOTIVATION 

 

Lahars (flows of volcanic-derived sediment and water) have been responsible for 

some of the worst volcanic disasters of the 20
th

 Century (Witham, 2005). Their high 

density combined with their fluidity means that they are capable of travelling great 

distances, causing death and immense devastation. Relatively recently, lahars from 

an eruption of Nevado del Ruiz, Columbia, in 1985 killed over 22 000 people (Pierson 

et al., 1990; Voight, 1990) and in 1998 a lahar at Casita volcano, Nicaragua, took 

over 2 500 lives (Kerle et al., 2003; Scott et al., 2005). In both of these cases, 

management of the crises were heavily criticised (Chapter 2).  

Lahars are inherently spatial phenomena, highly reliant on topography; radial 

valleys emanating from a volcano act as conduits to these flows which can be syn- or 

post-eruptive. Traditionally, lahar hazard assessment heavily relied on mapping 

deposits and dating previous flows, with the assumption that the same general areas 

are likely to be inundated by the same kinds of events in the future (e.g. Crandell, 

1984; Tilling, 1989). This process was carried out by scientists, or specifically 

sedimentologists and volcanologists. Hazard managers and decision-makers then 

enforced appropriate zonation of land according to relative levels of observed 

hazard severity. Generally separate from this, lahar models seeking to emulate the 

movement and behaviour of past flows were developed, and left, in academia.  

The practice of hazard zonation continues, to an extent reliant on past flows, but 

increasingly using inundation forecasts from lahar models. Ideally, the insights and 

improvements in understanding gained from models should be used to inform 

hazard management decisions. An important question is how to ensure a hazard 

assessment is communicated effectively to improve the management of volcanic 

crises, and in particular, how to assure pertinent information and data generated in 

academia are not under-utilised. 

Potential runout, inundation areas and intensities (i.e. flow depth and velocity) 

are relevant for a lahar hazard assessment. However, lahar behaviour can be difficult 

to emulate through models (see Chapter 2). The term ‘lahar’ refers to a rapidly 

moving mixture of solids and water, of which the unconsolidated sediment is 
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volcanic in origin (Smith and Lowe, 1991; Vallance, 2000). Therefore, ‘lahar’ is an 

enveloping non-descriptive name, encompassing a range of different flow types that 

vary according to the proportion of volcanic debris and water, which can also alter 

during an individual event (see Chapter 2, Section 2.3.2). Nonetheless, a suite of 

models are found in the literature that generally either simplify behaviour by 

ignoring the sediment-fluid interactions, modelling the solid-phase or fluid-phase, or 

incorporate the complexities of the mixture by relying on heavy parameterisation 

(Chapter 2, Section 2.3.4.5). State-of-the-art lahar models are excellent research 

tools but can be impractical to apply because they are typically data intensive and 

intellectually complicated. For preliminary hazard assessment, simple semi-empirical 

lahar models have shown promise (e.g. Schilling, 1998) and, furthermore, it is likely 

that the most influential parameters (and essential data) for lahar modelling will be 

discovered and isolated through the testing of uncomplicated models.  

Additionally, lahars share characteristics with gravitational flows from different 

systems, from sediment-rich debris avalanches (e.g. Savage and Hutter, 1989), 

across a spectrum to water-rich hyperconcentrated flows (e.g. Vignaux and Weir, 

1990; Macedonio and Pareschi, 1992), differing only in the origin of their sediment 

supply. There are significant unanswered questions regarding improving knowledge 

of lahar behaviour through study of equivalent flow types not derived at volcanoes 

and what, if anything, can be learned from analogous flow types (e.g. stream-flow, 

which is too dilute to be classified as lahar).  

A major challenge for scientists working on active volcanic systems is the 

availability and/ or acquisition of data. This can limit modelling options; but, it 

should be recognised that data quality and data handling are just as important for 

gaining confident insights. Data uncertainties, and the propagation of error, are 

emerging issues in natural hazard assessment (mapping), burgeoning issues in GI 

Science (Chapter 2, Section 2.4.4.3; Chapter 3 and references therein), and relatively 

unconsidered notions in lahar modelling (exceptions include Toyos et al. (2007) and, 

informally, Stevens et al. (2002) and Hubbard et al. (2007)). With lives at stake, it is 

vital that information relating to a lahar hazard assessment appropriately reflects 

uncertainties.   
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Hazard managers and decision-makers rely on scientific assessment and advice to 

ensure that the appropriate mitigation and preparedness measures are in place 

before a crisis. However, preventable human disasters occur even when forecasts 

are good (e.g. Nevado del Ruiz, Columbia, 1985 (Voight, 1990)). Differing agenda, 

combined with the high-stress environment of an active volcanic system, foster 

communication difficulties (Chapter 2; Chapter 6). Recent guidelines have made 

themes of the conduct of scientists and the communication issues that arise during a 

volcanic crisis (IAVCEI Subcommittee for Crisis Protocols, 1999; McGuire et al., 2009) 

and it has become much more relevant than previously recognised to establish the 

role of the visiting scientist (or external researcher) (Chapter 6).  

In addition to new ways of interacting, scientists and decision-makers are also 

embracing ‘new’ tools. Recently, Geographical Information Systems (GISs) have been 

used by volcanologists to generate lahar hazard (and risk) zonation maps; lahars are 

included in some of these maps as part of a multi-volcanic hazard assessment (e.g. 

Pareschi et al., 2000a), and a number of maps focus on the lahar-specific hazard (e.g. 

Hubbard et al., 2007). Yet, despite the potential plethora of applications of GISs for 

disaster and emergency management (Coppock, 1995; Cova et al., 1999; Cutter, 

2003), employment of a GIS in aspects of lahar hazard management beyond map-

making is seldom described in the literature (Chapter 2). There are relatively few 

examples of GIS-based models for lahar hazard assessment; notable exceptions are 

the semi-empirical LAHARZ suite of programs developed by Schilling (1998) from the 

work of Iverson et al. (1998) and Titan2D, a more physically-based model (Pitman et 

al., 2003). There is clearly a need to evaluate the practical role(s) of geospatial 

methods and GISs in a ‘real-world’ lahar hazard management situation.  

 

Lahars can be generated by a variety of means (Chapter 2, Section 2.1.2) and on 

Soufrière Hills Volcano, Montserrat (West Indies) they are associated with intense 

rainfall (Barclay et al., 2007). Montserrat was chosen primarily because it currently 

lacks a review of the lahar-specific hazard (Chapter 6). Until 2001 (Matthews et al., 

2002), very little research had been undertaken on lahars on Montserrat; and, to 

date, no research has been published on modelling these lahars. However, it is 

known that these flows are characteristically dilute (Barclay et al., 2007), a relatively 
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under-studied flow type (Chapter 2). Thus, insights into controls on the behaviour of 

Montserrat lahars may be generally applicable to other water-rich lahar systems.  

Montserrat represents an active volcanic system that originally presented as a 

crisis (July 1995) and developed into a protracted eruption, with no opportunity to 

enter long-term recovery. Lahars are a threat to persons and property on 

Montserrat that is concurrent with other hazards. The longevity of the eruption, 

with continued volcanic events (e.g. pyroclastic flows and surges, sector collapse and 

tephra fall), provides a suite of volcanic hazard management challenges. These 

difficulties have been historically exacerbated on Montserrat by communication 

issues between (and amongst) scientists, decision-makers and the local population 

(Haynes et al., 2008a; Chapter 2, Section 2.5).  

 

The literature pertinent to the production of a lahar hazard assessment can be 

segregated into three intellectual themes:  

 

(1) monitoring lahars, acquisition and handling of data;  

(2) improving knowledge of lahars through modelling; and  

(3) transfer of academic research on lahars to agencies of hazard management.  

 

Reflection on the role of GIS and geospatial activities across and within these 

themes will help to achieve the aims and objectives of the research.  

 

 

1.2 AIMS AND OBJECTIVES  

 

The general aim of this research is to examine the efficacy of geospatial data and 

tools as aids for lahar hazard assessment on an active volcanic system.  

 

Specific objectives are: 

 

• To understand the influence of lahars on the local environment using GIS. 
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• To improve understanding of lahar movement using GIS-based modelling 

approaches. 

• To develop a digital elevation model (DEM) suitable for the objectives above. 

• To delineate potential inundation areas and quantify factors relating to lahar 

intensity; and, to translate this information into a formal hazard assessment.  

• To appreciate uncertainties in model predictions. 

• To assess effective application of research findings using consultations with 

local scientists and authorities. 

 

 

1.3 THESIS STRUCTURE 

 

First, this thesis investigates the types of lahar models and techniques available, 

and then proceeds to consider the suitability of these methods for the study area. 

Through fieldwork, potential user requirements are considered and relevant data 

are acquired. A surface representation for lahar modelling is then produced. From 

this base, existing GIS-based models are compared and a novel, improved model is 

developed. Maps and visualisations of hazard zones are produced and the practical 

utility of the results for hazard managers and local decision-makers is evaluated. 

 

Following this introduction, and the subsequent literature review, the main body 

of the thesis is comprised of four core chapters that have been written to stand 

independently as research papers. There is some inevitable overlap of material to 

allow the context to be set for individual research aims.  

In Chapter 2 pertinent background information is introduced to set the research 

perspective. The broad issue of lahar hazard management is discussed, with 

reference to historic examples and the potential role of a GIS for lahar hazard 

management is highlighted. Gravitational-flow models are also evaluated from a 

range of sub-disciplines (e.g. from landslides to sediment-laden floods). The regional 

setting is also established. Through reflection on gaps in the existing literature, a 

research niche is established.  
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An application-driven approach to terrain model construction is presented in 

Chapter 3. The importance of uncertainty in elevation is considered, and 

propagation of error to a single-direction flow routing algorithm allows the 

robustness of various alternative surfaces to be tested. The utility of the novel 

methodology as a standard for handling terrain data is discussed. This research has 

also been published following peer-review (Darnell et al., 2010). 

Standard GIS-based models for lahar simulation are examined in Chapter 4. The 

surface (tested in Chapter 3) is used to update regional elevation data and methods 

for fusing datasets are investigated.  System response to lahars is evaluated over the 

period of one rainy season. Two models are then used which simulate the behaviour 

of different end-member types of lahars: sediment-rich and water-rich. The utility of 

these methodologies for delineating inundation areas for long-term hazard mapping 

is discussed.  

In Chapter 5, a novel GIS-based tool for lahar hazard assessment is developed. 

Existing approaches for modelling water flows have shown their potential for 

approximating the behaviour of dilute lahars. These ideas are developed into a GIS-

based approach for routing flow according to maximum velocity.   

An evaluation of the knowledge gap between science and applied research is 

presented in Chapter 6. Findings from Chapters 4 and 5 are presented through a 

range of different visualisations and evaluated in consultation with local authorities 

and scientists on Montserrat. Moreover, mitigation options consistent with user 

requests are discussed. Tangible benefits of the research are thus assessed. 

Key themes woven between the chapters are made explicit in the final chapter 

(Chapter 7), leading to a conclusion on the utility of geospatial activities and GIS for 

lahar hazard assessment on Montserrat. Suggestions for advancements of the 

current research are also proposed and discussed.  
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CHAPTER 2: BACKGROUND AND REGIONAL SETTING 

 

 

 

In this chapter a context for the study is provided through a review of the relevant 

research fields. Volcanic hazards and lahars are framed within the wider context of 

natural hazard disasters. Evolving approaches to natural hazard management and, 

more specifically, volcanic hazard management are described. The utility of methods 

and application to lahar hazard management are further discussed. The review then 

focuses on techniques for lahar hazard assessment, specifically: identification, 

modelling and zonation.  

The potential for using geographic information systems (GISs) for hazard research 

is then examined. GIS are currently under-utilised for this application. Current 

endeavours in GI Science can also inform research using GIS; some key issues 

(including spatial data acquisition, uncertainty analysis and spatial cognition) are 

considered. Finally, the regional setting for this thesis, Montserrat (West Indies), is 

introduced. Montserrat is a small island developing state dealing with the prolonged 

eruption of Soufrière Hills Volcano and provides a valuable case study with wider 

implications for dilute lahar modelling and hazard management.  

Chapters 3—6 follow and have been written as self-contained papers.  
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2.1 FRAMING VOLCANIC HAZARDS AND LAHARS 

 

2.1.1 Placing volcanic disasters in context  

 

Over the past few decades (1980—2009) more than 9 000 natural disasters were 

recorded globally, accounting for over two million fatalities and a combined total 

estimated damage of US$2.6 × 10
12

 (CRED, 2010). Statistics also show that there was 

a dramatic increase in economic losses from disasters over this period (Smolka, 

2006) and a rising trend in the number of people affected (Basher, 2006). As a 

response to these rising losses, and a recognised potential to reduce them through 

proper application of existing knowledge and technology, the United Nations 

General Assembly designated the 1990s as the International Decade for Natural 

Disaster Reduction (IDNDR). This body of coordinated action programmes began by 

putting socio-economic aspects as components of effective disaster prevention into 

perspective, and continues to do this through its successor, the International 

Strategy for Disaster Reduction (ISDR) (http://www.unisdr.org/). Increased interest 

in mitigating the effects of extreme events was also exemplified by the Hyogo 

Declaration adopted by the World Conference on Disaster Reduction in 2005. These 

initiatives also operate in parallel to concerns regarding climatic variability and its 

potential to exacerbate the frequency and intensity of natural hazards. All these 

international enterprises filter down to national strategies in individual ratifying 

countries.  

From the outset, a couple of definitions are necessary. A ‘natural hazard’ is a 

physical phenomenon which causes undesired consequences for persons, 

settlements, infrastructure and goods. A ‘disaster’, precipitated by a natural hazard, 

is ‘a serious disruption of the functioning of a community or a society involving 

widespread human, material, economic or environmental losses and impacts, which 

exceeds the ability of the affected community or society to cope using its own 

resources’ (UN/ISDR, 2009, p9). Two key points can be taken from this definition: (a) 

not all natural hazards result in disasters, there must be conditions of vulnerability 

to that hazard and an insufficiency of capacity or coping mechanisms (Basher, 2006);  
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and (b) disasters are also the product of social, political and economic environments 

(Wisner et al., 2004). Insight into effective hazard management practices can be 

gained from a forensic analysis of past disasters; first order statistical analyses (e.g. 

fatalities and economic losses) can demonstrate relative severity. Records of 

historical disasters and associated statistics are now available as interactive Internet 

databases. For example, the Centre for Research on the Epidemiology of Disasters 

(CRED), with the World Health Organisation, has been compiling an Emergency 

Events Database (EM-DAT) for disasters requiring international assistance 

(http://www.emdat.be/; see also Peduzzi et al., 2005).  

The scale of historic volcanic disasters in terms of areas affected and people killed 

is considerably less than that of hydro-meteorological events such as floods, storms 

and droughts (Basher, 2006) and other geological events such as earthquakes 

(Tomblin, 1977). From 1980—2009 the ten costliest natural disasters, in economic 

terms, were not precipitated by any volcano-related hazards (Munich Re, 2010), nor 

were volcanoes responsible for any of the ten most fatal natural disasters (CRED, 

2010) (Table 2.1). The total number of people killed by volcanoes during this period 

was approximately 25 200, or 1.2% of all fatalities due to natural disasters (CRED, 

2010). However, the bulk of these volcano-related deaths are attributed to the 1985 

eruption of Nevado del Ruiz (Columbia) which killed over 23 000 people and resulted 

in material losses of US$1000 million (Tilling, 1989; Voight, 1990; CRED, 2010). Very 

few natural hazards in the last 30 years have resulted in fatalities of this magnitude; 

for example, only 34 natural disasters have killed more than 5 000 people in a single 

event (CRED, 2010).  

Databases specific to the socio-economic impacts of volcanic disasters have been 

compiled (Simkin and Siebert, 1994; Tanguy et al., 1998; Witham, 2005) and an 

extract for 20
th

 Century volcanic disasters is provided in Table 2.2. Currently, the 

Smithsonian's Global Volcanism Program seeks better understanding of all volcanoes 

by extensively documenting their eruptions in an active (regularly updated) Internet 

database for electronic query (Siebert and Simkin, 2010).  
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Rank Killed (CRED, 2004) Overall economic losses (Munich Re, 2010) 

 Event (principal country 

affected) 

People Event (principal country 

affected) 

US$ million 

1 Drought, 1983—1984  

(Ethiopia) 

300 000 Hurricane Katrina, 2005 

(USA) 

125 000 

2 Sumatra-Andaman 

earthquake/ ‘Indian Ocean’ 

tsunami, 2004 (Indonesia)* 

165 708 Kobe earthquake, 1995 

(Japan) 

100 000 

3 Drought, 1983—1985  

(Sudan) 

150 000 Wenchuan earthquake, 2008 

(China) 

85 000 

4 Cyclone Gorky, 1991 

(Bangladesh) 

138 866 ‘Northridge’ earthquake, 1994 

(USA) 

44 000  

5 Cyclone Nargis, 2008 

(Myanmar) 

138 366 Hurricane Ike, 2008 

(USA) 

38 000 

6 Drought, 1981—1985  

(Mozambique) 

100 000 Floods, May—September 1998 

(China) 

30 700 

7 Wenchuan earthquake, 2008 

(China) 

87 476 Niigata earthquake 

(Japan) 

28 000 

8 Kashmir earthquake, 2005 

(Pakistan) 

73 338 Hurricane Andrew, 1992 

(USA) 

26 500 

9 Manjil-Rudbar earthquake, 

1990 (Iran) 

40 000 Floods, June—August 1996 

(China) 

24 000 

10 Sumatra-Andaman 

earthquake/ ‘Indian Ocean’ 

tsunami, 2004 (Sri Lanka)* 

35 399 Hurricane Ivan, 2004 

(USA) 

23 000 

10* Flash flood, 1999 

(Venezuela)  

30 000   

 

Table 2.1 Ten highest ranking disasters precipitated by natural hazard(s) from 

1980—2009, impacts shown as fatalities and economic losses. * EM-DAT has 

separated the Indian Ocean tsunami (2004) into two separate disasters, dependent 

on principal country affected; thus the Venezuela flash flood (1999) has also been 

included in the ranking. (After CRED, 2010, and Munich Re, 2010)  

 

 

While the scale of volcanic disasters (Table 2.2) may not be as great as other 

natural hazards (Table 2.1), in contrast to causes of other natural disasters, 

volcanoes present a relatively unique set of management issues. First, volcanic 

hazards are capable of early identification. Most active (land) volcanoes have been 

identified and these number relatively few; around the order of twenty volcanoes 

are erupting at any given moment and only 1 300 have been active in the past 10 

000 years (Simkin, 1993). Furthermore, volcanoes impact specific locations (usually 

proximal to an identified vent) (Tomblin, 1977) and there is typically precursor 
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activity to an eruption, often enabling forecasts and early warnings to be issued 

(UNDRO, 1985). Secondly, volcanic hazards can be as diverse as they are severe. 

Damage from volcanoes is extremely intensive within the relatively small areas they 

affect (Tomblin, 1977; UNDRO, 1979). An eruption can present as multiple individual 

hazards, such as pyroclastic flows (rapidly moving mixtures of rock debris and hot 

gas), tephra fall (rock debris), lava flows (molten rock) and lahars (rapidly moving 

mixtures of rock debris and water). The types of hazard depend on the eruption 

(defined by the properties of the magma, mechanism for energy release etc.) and 

external factors (such as influx of water for lahars). Thus, all volcanic eruptions can 

behave differently; some of these differences are shown in Table 2.2.  

 

 

 

 

Rank Event Principal hazard(s) People Reference 

1 Pelée, 1902 

(Martinique) 

Pyroclastic flows and 

surges 

29 000 Roobol and Smith (1975); 

Fisher and Heiken (1982) 

2 Nevado del Ruiz, 1985 

(Columbia) 

Lahars 23 080 Voight (1990) 

3 Santa Maria, 1902 

(Guatemala) 

Tephra and epidemic 8 750 Rose (1972) 

Williams and Self (1983) 

4 Kelut, 1919 

(Indonesia) 

Lahars 5 110 See Thouret et al. (1998) 

and references therein 

5 Santa Maria, 1929 

(Guatemala) 

Pyroclastic flows and 

lahars 

5 000 See Rose (1973) and 

references therein 

6 Lamington, 1951 

(Papua New Guinea) 

Pyroclastic flows 2 942 Taylor (1954) 

7 El Chichon, 1982 

(Mexico) 

Seismicity and tephra 2 000 Varekamp et al. (1984); 

Tilling (2009) and 

references therein 

8 Lake Nyos, 1986 

(Cameroon) 

Gas 1 746 Kling et al. (1987); 

Sigurdsson (2007) 

9 Soufriere, 1902 

(St Vincent) 

Pyroclastic flows 1 565 Roobol and Smith (1975) 

10 Merapi, 1930 

(Indonesia) 

Pyroclastic flows 1 369 See Newhall et al. (2000) 

and references therein 

 

Table 2.2 Ten highest ranking volcanic disasters of the 20th Century, ordered by 

number of fatalities (after Witham, 2005).  
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2.1.2 Introducing the lahar hazard 

 

The destructive capability of volcanoes can also linger beyond an eruptive event. 

Loose volcanic material left proximal to a volcano by primary volcanic activity such 

as pyroclastic flows, tephra fall and (partial) edifice failure, can be remobilised by 

water into lahars during, and beyond an eruption. ‘Lahar’ is a general term for a 

rapidly flowing mixture of rock debris and water (strictly that is other than stream-

flow) from a volcano (Smith and Lowe, 1991). Sudden water release and/ or flank 

collapses are the triggering mechanisms for lahars. The melting of summit glacier or 

snow cap (e.g. by fall of hot tephra), outburst from crater lakes and rainfall runoff 

can all generate lahars through rapid water input. Magma ascent can also lead to 

upheaval of the water table (Roobol and Smith, 1975). Furthermore, although most 

flank collapses behave as debris avalanches, lahars can be generated if there is 

adequate pore and hydrothermal water (Vallance, 2000; Scott et al., 2001; Scott et 

al., 2005). Initiation requires a mass sufficiently saturated with water, subsequent 

failure of the mass and sufficient conversion of gravitational potential energy to 

internal kinetic energy which induces a widespread deformation that can be 

recognised as a flow (Iverson, 1997). Triggering mechanisms influence the volume, 

discharge rate and characteristics of the flow (Fagents and Baloga, 2006) and thus 

play a fundamental role in the down-valley destructive power of a lahar (Macedonio 

and Pareschi, 1992).  

Like water flows (stream-flow), lahars are fluid enough to travel long distances in 

channels with modest slopes and to inundate vast areas (Iverson, 1997; UNDRO, 

1985). Runout distances vary greatly from a few kilometres to more than a hundred 

kilometres in confined channels (Scott et al., 2001; Newhall and Hoblitt, 2002). A key 

component of this mobility is the ability of flows to grow in volume in distal areas 

(Scott et al., 2005). Therefore, lahar hazard can actually increase with distance from 

the vent, if water or sediment is still being added (Newhall and Hoblitt, 2002).  

Lahars that remain in their channel are (typically) of little immediate threat 

(Newhall and Hoblitt, 2002). However, ‘large’ flows can inundate floodplains and in 

contrast to floods, lahars can be much more destructive owing to their sediment 

load (Kerle and Oppenheimer, 2002). Lahar velocity, discharge and transport 
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capacity are typically much higher than ‘normal’ stream flows (Lavigne and Thouret, 

2002). Damage to properties or infrastructure can result from the impact of fast 

moving boulders, inundation by layers of muddy debris, or undermining by bank 

erosion (Jakob and Weatherly, 2008). Furthermore, after coming to rest, their 

deposits can be too deep, too soft or too hot to cross (UNDRO, 1985). 

 

 

2.1.2 Lahar disasters: lessons learned from history  

 

Databases of volcano-related deaths (Tanguy et al., 1998; Witham, 2005) reveal 

some interesting trends. For example, from AD 1783 to 1998 lahars have been 

responsible for 17% of all volcano-related fatalities (Tanguy et al., 1998). In the 20th 

Century, primary and secondary lahars (directly and indirectly associated with 

volcanic eruptions respectively) were partly responsible for three of the deadliest 

volcano-related disasters (Table 2.2), accounted for 11% of all injuries directly linked 

to volcanic activity, 18.5% of all people made homeless, and evacuations of over one 

million people (Witham 2005). Tanguy et al. (1998) argue at least some of these 

events could have been anticipated and losses reduced through adequate scientific 

and social response. 

Table 2.3 shows 20
th

 Century fatalities associated with lahars and debris flows in 

volcanic terrains. Most of the information is taken from Witham’s (2005) database 

and corroborated with the Tanguy et al. (1998) study. However, it is unclear why 

debris flows have been given a separate classification. The standard definition of 

lahars includes any water-sediment-flow from a volcano excluding the very dilute 

stream-flow, i.e. includes volcanic-induced debris flows (Smith and Lowe, 1991; 

Vallance, 2000). In Witham’s (2005) database, the debris-flow distinction appears to 

reflect a more sediment-rich (or drier) type of flow than their definition of lahar. 

Water-sediment flow types will be discussed in greater detail in Section 2.3.2.  

Most individual lahar/ debris-flow events, with associated fatalities, in the 20
th

 

Century have occurred in South-east Asia and, more generally, in areas of low 

development (Table 2.3). However, the table is dominated by individual events with 

extreme loss, or ‘disasters’. A few of these are examined in further detail below.  
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Date  Volcano  Country  Region Dev Event Killed 

22/05/1901 Kelut Indonesia South-east Asia L Primary lahar 100 

05/05/1902 Pelee Martinique Caribbean H Primary lahar 423 

29/08/1909 Semeru Indonesia South-east Asia L Primary lahar 221 

12/01/1914 Sakura-jima Japan East Asia H Debris-flow 58 

10/09/1914 White Island New Zealand Oceania H Debris-flow 11 

1914 Aoba Vanuatu Oceania M Primary lahar 12 

19/05/1919 Kelut Indonesia South-east Asia L Primary lahar 5 110 

24/05/1926 Tokachi Japan East Asia H Primary lahar 144 

02/11/1929 Santa Maria Guatemala Central America M Primary lahar 5 000* 

18/10/1948 Villarica Chile South America H Primary lahar 40 

12/1949 Villarica Chile South America H Primary lahar 36 

1952 Binuluan Philippines South-east Asia M Primary lahar 12 

24/12/1953 Ruapehu New Zealand Oceania H Secondary lahar/ flood 151 

17/03/1963 Agung Indonesia South-east Asia L Primary lahar 163 

21/05/1963 Villarica Chile South America H Primary lahar 15 

10/12/1963 Irazu Costa Rica Central America H Primary lahar 30 

03/03/1964 Villarica Chile South America H Primary lahar 25 

24/04/1966 Kelut Indonesia South-east Asia L Primary lahar 211 

29/12/1971 Villarica Chile South America H Primary lahar 15 

25/11/1976 Merapi Indonesia South-east Asia L Secondary lahar/ flood 29 

11/11/1976 Semeru Indonesia South-east Asia L Primary lahar 40 

19/09/1978 Semeru Indonesia South-east Asia L Secondary lahar/ flood 12 

30/04/1979 Merapi Indonesia South-east Asia L Secondary lahar/ flood 80 

14/05/1981 Semaru Indonesia South-east Asia L Secondary lahar/ flood 372 

30/06/1981 Mayon Philippines South-east Asia M Secondary lahar/ flood 47 

14/09/1984 Ontake Japan East Asia H Debris-flow 29 

13/11/1985 Nevado del Ruiz Columbia South America M Primary lahar 23 080 

10/02/1990 Kelut Indonesia South-east Asia L Primary lahar 35 

01/1991 Santa Maria Guatemala Central America M Debris-flow 25 

14/06/1991 Pinatubo Philippines South-east Asia M Primary lahar 100* 

1992 Pinatubo Philippines South-east Asia M Primary lahar 26 

04/10/1993 Pinatubo Philippines South-east Asia M Primary lahar 14 

06/06/1994 Huila Columbia South America M Debris-flow 650 

22/11/1994 Merapi Indonesia South-east Asia L Primary lahar 64 

06/09/1995 Parker Philippines South-east Asia M Secondary lahar/ flood 60 

30/10/1998** Casita Nicaragua Central America L Secondary lahar/ flood 2 500 

 

Table 2.3 20th Century deaths from lahars and debris flows (associated with volcanic 

activity), where number of deaths > 10. Syn-eruptive lahars are given a ‘primary’ 

classification and lahars, and very dilute flows, indirectly related to eruptions are 

classified as ‘secondary’. *Estimates where death-by-lahar is unknown. **Indirectly 

associated with volcanic activity. Dev refers to level of development. (After Tanguy 

et al., 1998, Witham, 2005, and Scott et al., 2005) 
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On November 13, 1985, a small plinian eruption of Nevado del Ruiz (Colombia) 

produced the deadliest set of lahars in recorded history (Pierson et al., 1990). 

Pyroclastic flows and surges melted snow and ice to form debris flows (sediment-

rich lahars) which killed 23 080 people (magnitude from Witham, 2005). It transpired 

that the town of Armero had been built on the pathway of historical flows (Voight, 

1990) and potential for the tragedy had been predicted by scientists (Pierson et al., 

1990). Yet there was a lapse of four hours between the eruption and the initiation of 

evacuations and few agreed to leave their homes; by hour-eight a lahar had 

enveloped Armero (Wisner et al., 2004).  

The eruption of Pinatubo (Philippines) in June 1991 demonstrates the longer-

term impacts of a volcanic disaster; there were not only immediate casualties 

(mainly from tephra and lahars) but also population displacement on a massive scale 

(Vallance, 2000). Witham (2005) put the figure of the total affected (including 

injuries, homelessness and evacuations) at over one million people. Scientists had 

foreseen the eruption and were able to reduce losses by evacuating people in 

successive zones months before the main event (Newhall et al., 1997). However, the 

extreme sediment yields from pyroclastic flows left an almost unlimited sediment 

supply for subsequent lahars (Hayes et al., 2002). Lahars generated by rain falling on 

the unconsolidated 1991 deposits were a very significant immediate and long-term 

hazard to areas surrounding the volcano as far out as 50—60 km (Pierson et al., 

1992). 

Lahars can also be indirectly associated with volcanic activity. On May 5, 1998, 

very intense rains caused upper slopes of the Sarno Mountains (Italy) to fail. 

Resulting sediment-rich lahars (debris flows) killed 150 people and there was 

substantial damage to property (Toyos et al., 2007). The collapsed material 

consisted largely of tephra from numerous eruptions of Vesuvius, 12-15 km upwind 

of Sarno (Scott et al., 2001). Long-term urbanisation and the progressive 

degradation of natural vegetation were factors contributing to the 1998 disaster 

(Pareschi et al., 2000b). Sarno lahars are not included in Witham’s (2005) database, 

due to their initiation away from a volcano; however, they are included here due to 

their volcanic-derived sediment content. For a full review of flank-collapse debris 

flows (including lahars) see Scott et al. (2001). 
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The Casita (Nicaragua) event in 1998, also absent from Witham’s database, has 

been included in Table 2.3 as although not directly related to an eruption, the 

debris-flow was initiated at the volcano (thus by definition a lahar). On October 30, 

1998, hurricane precipitation triggered a small flank collapse, which evolved into a 

watery debris-flood (<60% sediment by volume) and further bulked to become a 

debris-flow (Scott et al., 2005). Two-thousand five hundred lives were lost and the 

local responsible agencies were heavily criticised for their ‘lethargic response’ (Kerle 

et al., 2003). However, later rainfall generated lahars in 1999 and 2000 took no lives 

due to an active education programme and lessons learnt from the 1998 event 

(Devoli et al., 2000 as cited in Scott et al., 2005). Whilst the 1998 event could have 

been predicted - communities were developed on a prehistoric lahar pathway (Scott 

et al., 2005) - recent work by Kerle and Oppenheimer (2002) and Kerle et al. (2003) 

revealed that satellite imagery available at the time could not have significantly 

improved the disaster response.  

Notwithstanding the examples above, not all lahars result in disasters. Primary 

lahars (concurrent with eruptions) have forced many mass evacuations in recent 

history with no deaths, e.g.  Nevado del Ruiz (1986), 15 000 ‘affected’ (injured, 

homeless and/ or evacuated); Nevado del Ruiz (1989), 5 000 affected; Unzen (Japan, 

1991), 1 200 affected; Soufrière Hills (Montserrat, 1995), 7 500 affected (Witham, 

2005). In these instances hazard management was effectual for avoiding disasters.  
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2.2 NATURAL HAZARD MANAGEMENT  

 

2.2.1 General and evolving approach to natural hazard management 

 

There is a conceptual framework for how societies respond to disasters, which often 

is referred to as the emergency or disaster management cycle (Figure 2.1). The 

temporal dimension of management is reflected through four (often overlapping) 

phases: mitigation, preparedness, response and recovery, cycling back to mitigation. 

Hazard management activities can start anywhere in the cycle, i.e. with a sudden 

onset event, predicted threat, or identification of a ‘new’ hazard after many years. 

For example, after a potential hazard has been recognised, long- and short-term 

planning objectives are referred to as mitigation and preparedness respectively 

(Figure 2.1).  

Potential impacts can be assessed through improving understanding of behaviour 

and processes using field observations, modelling or some combination of the two 

(hazard assessment). Poor management, or extreme events, will lead to disasters. 

 

 

 

Figure 2.1 Disaster management cycle showing the temporal dimension (clockwise) 

(after Drabek and Hoetmer, 1991; Cova, 1999) 
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An appraisal of impacts will guide response and recovery. Planning for the next 

event may begin immediately or many years may pass before the next event is likely. 

Thus the position of society in the cycle determines which activities are available, 

and the timescales in which they are operable.  

Another interesting prescribed system governs the warning process, immediately 

before an event (Figure 2.2). Applicable to all natural hazards, this framework 

describes the downward filter of precise information, from the sciences, to 

organisational and social components. However, the linkages between these 

subsystems tend to be fragile (Alexander, 2007) and the traditional division of 

primary responsibility, shown in Figure 2.2, is becoming increasingly blurred. 

It has now been recognised, in natural hazard studies, that a top-down approach 

to data sharing in disaster management is not entirely effective (e.g. Radke et al., 

2000). There is a lack of (effective) transfer of research findings from science to 

agencies responsible for hazard management (e.g. Gomez-Fernandez, 2000). It has 

further been argued that the necessity is not for more information, but rather for 

wider application of existing technology (Tilling, 1989). 

 

 

 

 

Figure 2.2 The warning process and its subsystems (after Alexander, 2007).  
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Consequently, there has been a call for a reorientation of research from the 

traditional approach in which scientists set the agenda to one in which end-users do 

(Alexander, 2008 (referring to mass-movement studies)). Furthermore, other 

interested parties can aid hazard assessment processes, e.g. there is scientific basis 

for incorporating (subjective) judgements on sparse or missing data (e.g. Neri et al., 

2008). It has been argued that ultimately a partnership between the scientific/ 

academic community and the emergency management community is required for 

sustainable hazard management (Ferrier and Haque, 2003). Moreover, if disaster 

reduction is to be attainable, the social and natural physical sciences need to work 

together for risk communication (e.g. Barclay et al., 2008; Darnell and Barclay, 

2009).  

The term ‘natural hazard’ does not reflect the diversity of disciplines working in 

disaster studies, including sociology, psychology, policy studies and risk 

management (Zerger and Smith, 2003). Hazard management typically focuses on 

technological solutions including engineering solutions, the study of hazard 

intensity, event, frequency and hazard detection (Zerger and Smith, 2003; Figure 

2.2). This is consistent with the ‘technological-fix paradigm’ that deems the 

geophysical processes that produce hazardous events to be more important than, 

for example, socio-economic considerations (Rashed et al., 2007). Since the 1990s, 

the IDNDR natural hazard research has shifted focus to a more socially sensitive 

methodology (Chester et al., 2002), including considerations of risk, vulnerability and 

societal sustainability. 

The Office of the United Nations Disaster Relief Coordinator (UNDRO) established 

a set of terms for use in disaster studies to be widely understood and accepted; they 

defined risk as the expected number of lives lost, persons injured, damage to 

property and disruption of economic activity due to a particular natural 

phenomenon (UNDRO, 1979). There have been attempts to quantify risk based on 

such socio-economic factors. For example, hazard (H), vulnerability (V) and value of 

exposed elements (E) can define a standard expression of risk (R): 

 

R = E × V × H     [Equation 2.1, Tilling 1984] 

 



  Chapter 2 

  21  

Or, more simply,  

 

risk of a disaster, R = H × V    [Equation 2.2, Wisner et al., 2004] 

 

In natural hazard studies, risk has been assessed through hazard identification, 

estimation of risk and vulnerability and social consequence evaluation (Ferrier and 

Haque, 2003). Hazard maps (frequently used tools for communicating spatial 

variation of threat) have often simply been augmented with vulnerability factors to 

evaluate (quantitative) risk (e.g. Mejia-Navarro et al., 1994; Lirer and Vitelli, 1998; 

Gomez-Fernandez, 2000; Pareschi et al., 2000a; Thouret et al., 2000). Ferrier and 

Haque (2003) developed a general (multi-hazards) framework for quantifying risk in 

a community through numerical ranking of the frequency of the event, the severity 

or magnitude of an event and the social consequence (a combination of community 

perception of risk level and collective will to address the problem). These rankings 

were then multiplied to give a score to compare community exposure levels from 

different hazards. However, the notion that risk can be adequately quantified has 

been largely discredited by the social sciences (e.g. Jasonoff, 1999).  

 

 

2.2.2 Evolving techniques in natural hazard assessment 

 

There are also techniques for assessment that apply to all natural hazards, and like 

the frameworks for management above (Figures 2.1 and 2.2) these are evolving.  

 

2.2.2.1 The role and challenges of hazard zonation 

Zonation maps are a crucial output from the assessment of many natural hazards 

(Radke et al., 2000). Locations of natural hazards vary spatially, the media through 

which hazardous effects are propagated possess physical properties that vary 

spatially and the populations that might be exposed are also spatially distributed 

(Emmi and Horton, 1995); therefore maps are an obvious receptor for hazard 

assessment results (Monmonier, 1998). For long-term forecasts (months—years), 

maps can aid land-use planning (e.g. Lirer and Vitelli, 1998) and, in the shorter term 
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(days-weeks), can help mobilise planners and an affected population into action 

during an emergency phase. Maps are traditionally crucial in the risk communication 

process as the graphical display of information is easier for non-technical users to 

understand (Crozier et al., 2006). Therefore mapping of lahar hazards is an 

important mechanism for disaster prevention and disaster management (Huebl and 

Fiebiger, 2005). 

However, drawing lines of equal hazard on a map can be difficult for scientists 

due to natural variability and model uncertainty. For example, no flood inundation 

extents can be precisely defined by a single line (Smemoe et al., 2007). Furthermore, 

even the most rigorous estimation techniques can be undermined by climatic 

change and land development (Monmonier, 1998). In addition to the difficulties 

faced by the scientific community, the exact location of each line may be scrutinised 

carefully by decision-makers because of the possible legal implications and far-

reaching land-use decisions (Jakob, 2005). Therefore, a local hazard map is only ever 

a snapshot in time, scientists and local regulators have to decide if and when to re-

draw a hazard map (Jakob, 2005). It follows that for sustainable management a map-

making methodology should be capable of straightforward updating. Increasingly 

the digital map-making capabilities of GIS are being exploited for natural hazard 

assessment (this will be discussed further in Section 2.4). 

Guidelines have been introduced for some natural hazards; for example, 

Multinational Andean Project (2008) introduced standard terminology, techniques, 

classification systems and cartographic symbols for landslides. Furthermore, in the 

USA, the Federal Emergency Management Agency (FEMA) have introduced 

guidelines and specifications for flood hazard mapping partners 

(http://www.fema.gov/plan/prevent/fhm/gs_main.shtm, accessed May 2010). 

Generally, however, there is an absence of standardised methods and techniques for 

producing hazard zonation maps; especially when individual countries or agencies 

work independently in a study area.  

 

2.2.2.2 Recognition of uncertainties 

Generally, the value of scientific advice to a policy-maker or manager will depend on 

how well its validity and relative importance can be assessed (Brown et al., 2007). 
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However, uncertainty in hazard predictions is inevitable. Distinction is made 

between two kinds of uncertainty: aleatory and epistemic, the former is related to 

the randomness of natural phenomena and the latter is due to the insufficient 

knowledge about the validity of alternative mathematical models and the values of 

their input parameters (Barani et al., 2007). Uncertainties in model predictions 

originate from inadequate sampling of model inputs, poorly constrained parameter 

values, and simplified representations of complex environmental processes, among 

others (Brown et al., 2007).  

Uncertainty is also intrinsic to decision-making because of the choices that have 

to be made (Agumya and Hunter, 1999). Estimation of decision uncertainty requires 

knowledge of the uncertainty present in all the data employed and how it 

propagates and is amplified as the data are processed and transformed (Agumya 

and Hunter, 1999). Uncertainty increases when decision-making is data-starved, the 

process of extracting support information is flawed or communicating information 

accurately or effectively is impeded (Radke et al., 2000).  

However, more informed decision-making in emergency management can be 

enabled if data and model assumptions are made explicit to end-users through a 

consideration of uncertainty (Zerger, 2002). Monte Carlo procedures that rely on 

repeated random sampling of input variables to compute their results are a common 

approach to considering uncertainties in hazard assessment, particularly in model 

predictions (e.g. Emmi and Horton, 1995; Gomez-Fernandez, 2000; Calvo and Savi, 

2009). For continuous variables, the procedure begins with the selection of a range 

and a probability distribution function (pdf) for an, or each, input variable (e.g. 

Tarantola et al., 2002). Values are then sampled from the pdf(s) and model response 

to variation in the inputs is evaluated. The Monte Carlo procedure has also been 

applied to mass movements for triggering, propagation and stoppage (Calvo and 

Savi, 2009), combined with simple flow routing (e.g. Gomez-Fernanadez, 2000), 

probabilistic modelling of uncertainties in earthquake-induced landslide hazard 

assessment (Refice and Capolongo, 2002) and for demonstrating floodplain 

uncertainty (Smemoe et al., 2007). Emmi and Horton (1995) used a Monte Carlo 

simulation of error propagation to induce random disturbances in ground shaking 
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and intensity zone boundaries. They were then to able assess the effect of error on 

the model without actually refining the data. 

Additionally, or alternatively, event or logic tree analysis is an inductive logic 

technique that constructs a network of possible scenarios, starting from an initiating 

event through intermediate events to a set of ultimate possible adverse 

consequences (Agumya and Hunter, 1999). Using this structure, Monte Carlo 

procedures can also be applied to any of the branches.  

 

 

2.2.3 Volcanic hazard management  

 

2.2.3.1 Traditional framework for volcanic hazard management  

Volcanic eruptions are uncontrollable phenomena but effective management can 

mitigate the impacts of their products, and potentially stop the manifestation into 

disasters. Long-term planning has often been central to volcanic hazard 

management, as with many other natural hazards. Traditionally, volcanic hazard 

mitigation (or certainly the literature) has focused on hazard identification, 

assessment and zonation (Tilling, 1989), with the principal objective of producing 

maps showing zones of equal hazard (Crandell, 1984). These maps were typically 

drawn by volcanologists based on the records of each volcano's history, 

supplemented and extended back by stratigraphic studies (UNDRO, 1979; Crandell, 

1984; UNDRO, 1985; Tilling, 1989). The inference is that all historic hazards were 

considered separately and amalgamated. Decision-makers and local authorities then 

would use this spatial information as the first element of a volcano emergency plan 

(UNDRO, 1985). Volcanic hazard maps remain a crucial store for long-term forecasts 

and for long-term planning (e.g. Barclay et al., 2008), but they are now increasingly 

informed by assessment using (computer) modelling. For active volcanic 

environments, local morphology can change over even shorter time intervals e.g. 

between the preparation of a given map and the date of the next eruption (Thouret 

et al., 2000). Thus, it is necessary that maps for volcanic hazard management should 

be reliable, applicable but also flexible and rapid (Malin and Sheridan, 1982). 
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Short-term forecasts occur in the preparedness phase of the disaster 

management cycle (Figure 2.1) and are also carried out by monitoring scientists. 

Precursors for an eruption are common, and include elevated seismic activity, 

ground deformation, hydrothermal phenomena and chemical changes of gas 

discharges (UNDRO, 1985). These signs of instability or unrest are collectively 

termed a volcanic crisis and require continuous scientific monitoring (IAVCEI 

Subcommittee for Crisis Protocols, 2000). Ability to forecast is being advanced by 

new technology and becoming more quantitative, incorporating probabilistic terms 

that take into account uncertainties (Sparks, 2003). However, there is no perfectly 

reliable indicator for an eruption. Scientists make predictions and pass these on to 

decision-makers. Information is then transferred, as necessary, to the general public. 

One of the most difficult aspects of volcanic hazard management is whether to 

evacuate (Woo, 2008).  

The various activities, and players, in a traditional approach to volcanic hazard 

mitigation are shown in Figure 2.3. This schematic is adapted from the guidelines for 

effective mitigation provided by Tilling (1989). Note the similarities with transfer 

from scientists to decision-makers to the general public from Figure 2.2.  

 

 

Figure 2.3 Volcanic hazards mitigation and transfer of science viewed as an inverted 

pyramid (modified substantially from Tilling, 1989, and Alexander, 2007) 
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2.2.3.2 Volcanic hazard modelling 

The use of models as part of the hazard assessment process has increased 

dramatically with the copious use of computer-based technology. Modelling can 

glean information on a range of factors associated with volcanic phenomena. 

Modelling approaches have also evolved.  

Deterministic hazard assessment approaches are event- or scenario-based, i.e. 

they recreate an event through a model of a physical process or a ‘what-if’ scenario. 

Degrees of hazard are typically assessed by threshold classes of process intensity for 

different events with a given recurrence interval (e.g. Staffler et al., 2008). However, 

recently there has been a paradigm shift  in volcanic hazard management to include 

probabilistic concepts, such as ‘treatment of uncertainties’ and ‘short- and long-

term hazard forecasting’ (Neri et al., 2008), leading some authors to define hazard as 

the probability of a point being affected by a hazardous process during a considered 

time interval (e.g. Felpeto et al., 2007). A probabilistic approach is useful as 

uncertainties are inevitable when trying to simulate or predict natural phenomena 

(see above, Section 2.2.2.2). 

Newhall and Hoblitt (2002) proposed an event tree scheme to estimate the 

probability of all the relevant possible outcomes of a volcanic crisis. Event trees have 

become common for a practical holistic approach to volcanic crises and include both 

primary and causal (secondary) hazards (e.g. Newhall and Hoblitt, 2002; Neri et al., 

2008). Branches are used to summarise all the relative likelihoods relating to the 

genesis and style of eruption, development and nature of volcanic hazard, and the 

probability of occurrence of different volcanic risks. Likelihoods are obtained 

through statistical analysis of data or formal elicitation of expert judgements 

(Newhall and Hoblitt, 2002; Marti et al., 2008). Further, this approach allows easy 

updating as and when new information becomes available (Neri et al., 2008). An 

event tree is useful for both short-term (Newhall and Hoblitt, 2002) or long-term 

(Marti et al., 2008) probabilistic eruption forecasting. Marzocchi et al. (2004) further 

developed the event tree scheme (Newhall and Hoblitt, 2002) by proposing a 

Bayesian strategy for estimating the probability at each node (including formal 

probabilistic treatment of the available data and their aleatoric and epistemic 

uncertainties). Thus, the Bayesian Event Tree is a probabilistic model that merges all 
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kinds of volcanological information (representing a synthesis of present knowledge) 

to obtain a probability of a volcanic event (Marzocchi et al., 2008).  

 

 

2.2.4 Implications for lahar hazard management 

 

A lahar hazard assessment would traditionally follow the framework for volcanic 

hazards mitigation (Figure 2.3), but also, as a natural hazard, the disaster 

management cycle (Figure 2.1) and framework for transfer of hazard information 

(Figure 2.2) are applicable. Thus, lahar hazard appraisal starts with identification, 

followed by assessment (including severity, inundation areas analyses through past 

flows and modelling) and finally zonation. These will be discussed in the next 

section. 
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2.3 ASSESSING AND MODELLING THE LAHAR HAZARD 

 

2.3.1 Lahar hazard identification  

 

Conditions that favour lahars (e.g. volcanic eruptions, heavy rainfall) can be 

recognised and used as warnings that aid mitigation (Carranza and Castro, 2006). 

However, although lahars occur at identified volcanic complexes, they can be syn-

eruptive (e.g. Nevado del Ruiz lahars, Columbia, 1985, Voight, 1990), post-eruptive 

(e.g. lahars following years after the 1991 eruption of Pinatubo, Philippines, Hayes et 

al., 2002), or can be unrelated to recent volcanic activity (e.g. Casita debris flow, 

Nicaragua, in 1998, Scott et al., 2005). Furthermore, the time between recognition 

of hazardous conditions and lahar occurrence can be insufficient to develop 

mitigation plans (Carranza and Castro, 2006).    

With the basic assumption that events of the same type are likely to strike the 

same area in the same way and with the same frequency as those in the past (e.g. 

Pareschi et al., 2000a), a deposit-based and geomorphological analysis of past flows 

can reveal likely future flow routes. In the field, possible signs of debris-flow activity 

(in the transport zone) include: (1) well-defined boulder trains and levees; (2) scour 

marks, stage (flow height) indicators and impact scars; (3) isolated boulders, much 

larger than could be moved by flood flow (Jakob, 2005). Yet, while some landforms 

show evidence of frequent and damaging events, less frequent events often require 

more detailed study to detect (e.g. Jakob and Weatherly, 2008). Precise delineation 

of the areas affected by past lahars is often difficult to reconstruct in detail from the 

stratigraphic record alone (Aguilera et al., 2004). Perhaps more unusually, 

dendochronology has also been used to calculate the magnitude of historical flows, 

e.g. Jakob and Weatherly (2008) used tree-ring dating and scarring in Washington 

State (USA) to verify and complement other forms of analysis identifying the extent 

of hyperconcentrated flows.  

In addition to ground surveys, aerial photographs can be used for recognising and 

analysing deposits (Jakob, 2005). For example, Joyce et al. (2009) achieved some 

success in detecting recent (2007) lahar paths at Mt Ruapehu (New Zealand) – the 
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best results were found from integrating LiDAR (Light Detection and Ranging) and 

satellite data. Kerle et al. (2003) used satellite optical and radar imagery to 

investigate the morphology and flow deposition area following the devastating lahar 

at Casita volcano (Nicaragua) in 1998. Other sources of information for hazard 

identification include: published materials, historical records, newspaper articles and 

consultations with long-term residents (Ferrier and Haque, 2003). Eyewitness 

accounts (anecdotal evidence) and newspaper reports can be an invaluable 

information sources, e.g. documenting occurrence of flow events (e.g. Jakob and 

Weatherly, 2008), arrival times and even descriptions of debris-flow composition 

(Scott et al., 2005). Aguilera et al. (2004) interviewed elderly inhabitants to 

reconstruct lahar paths and to determine local flow depth and/ or the arrival time of 

historic lahars from Cotopaxi (Mexico).  

 

 

2.3.2 Lahar definitions and nomenclature 

 

Before a discussion of lahar modelling, it is necessary to detail some of the nuances 

of lahar types and behaviour. The term ‘lahar’ is generic rather than descriptive, 

encompassing a wide spectrum of sediment : water ratios and flow rheologies 

(Manville et al., 2009). Rheology relates to the deformation and flow of matter 

under a mechanical forcing (Owens and Phillips, 2002). For a fluid flowing between 

two parallel plates, the force per unit area required to produce the motion is known 

as the ‘shear stress’, and the rate at which a shear is applied is the ‘shear rate’; for 

simple shear, the shear rate can be considered a gradient of velocity that is 

established in the fluid. Different types of fluids behave differently under stress. A 

Newtonian fluid, such as water, has a viscosity (colloquially referred to as ‘resistance 

to flow’) proportionately constant between the shear stress and the shear rate 

(Figure 2.4); it continues to flow regardless of the force acting on it. Normal stream 

flows are typically multiphase (sediment and water) and behave as Newtonian fluids, 

provided sediment concentrations are low enough so that the dispersed particles do 

not interact (Pierson, 1995). 
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Figure 2.4 Variation of shear stress with shear rate for different models of flow 

behaviour (after Oertel, 2004). 

 

 

Strictly lahars are non-Newtonian fluids; their flow (rheological behaviour) is 

dependent upon lahar composition, scale, time and shear-rate (Pierson, 1995). For a 

non-Newtonian fluid, viscosity (known as apparent viscosity) changes with applied 

shear rate, and rheological behaviour defines the relationship between 

deformations and stresses. Sediment is deposited on a grain-by-grain basis. Lahars 

encompass a continuum between hyperconcentrated-flow and debris-flow 

processes, although the definition permits inclusion of (volcaniclastic) debris 

avalanches (Smith and Lowe, 1991; Figure 2.5). 

For hyperconcentrated flows, water and solids behave as separate phases; the 

fluid starts to acquire yield strength and becomes non-Newtonian (Pierson, 1995). 

Flow is intermediate between dilute, fully turbulent, normal stream-flow and viscous 

generally non-turbulent debris-flow (Smith and Lowe, 1991). Fluid is the transporting 

medium, with clasts supported by turbulence, buoyancy and, to a lesser extent, 

particle-particle interactions (Pierson, 1995).  
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Figure 2.5 Volcaniclastic flow types, sediment-support and depositional mechanisms 

(After Smith and Lowe, 1991; Pierson, 1995; Lavigne and Thouret, 2000) 

 

 

Debris flows are denser than hyperconcentrated flows, and flow starts to behave 

as a coherent, plastic single-phase mass driven by inertial forces (Fagents and 

Baloga, 2006). Sediment cannot be selectively deposited (Pierson, 1995). Both solid 

and fluid phases vitally influence the motion and distinguish them physically from 

related phenomena such as avalanches and stream flows (Iverson, 1997). The 

hydraulics of debris flows are controlled partly by channel characteristics and partly 

by the rheologic properties of the sediment : water composition of the flows 

(Pierson, 1995). The physics of debris flows are comprehensively discussed by 

Iverson (1997).  

The transition between ‘normal’ stream-flow and hyperconcentrated-flow occurs 

at the boundary between Newtonian and non-Newtonian fluid (Hessel, 2006). Thus 
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the sediment : water ratio for different flow types depends on the ability to acquire 

yield strength. Stream flows have been calculated at a sediment concentration 

below 3—10% (Pierson, 2005) or 20% by volume (Lavigne and Thouret, 2002); 

hyperconcentrated flows between 20 and 50—60% by volume, and debris flows 

above 50—60% (Lavigne and Thouret, 2002).  

Any lahar flow type may progressively change character along its flow path (Smith 

and Lowe, 1991; Vallance 2000). Flow transformations are common in lahar events 

(Smith and Lowe, 1991). For example, debris flows triggered by rainfall at Merapi 

Volcano (Indonesia) are sometimes preceded, and always followed, by longer 

hyperconcentrated-flow phases (Lavigne and Thouret, 2002). Furthermore, 

landslides originating on volcanic flanks have been known to transform into debris 

avalanches and ultimately debris flows (Scott et al., 2001), e.g. 1998 Casita 

(Nicaragua) debris flows (Scott et al., 2005). Hyperconcentrated flows are typically 

more erosive than sediment-rich debris-flow phases (Vallance, 2000). 

Changes in flow composition, and volume, can occur as a result of bulking 

(increase of mass or solids concentration) and debulking (decrease of mass or solids 

concentration). Total flow volumes can increase by as much as four times in 

relatively steep channels as eroded sediment is incorporated (Pierson, 1995). Some 

have argued lahar magnitude is determined more by the volume of material 

entrained along the channel than by the volume of the initiating event (Bovis and 

Jakob, 1995). Lahars can also increase in volume by dilution in an active stream 

channel (Vallance 2000). 

 

 

2.3.3 Background considerations for lahar modelling  

 

Data acquisition from an active volcanic system can be challenging. At ungauged 

sites accurate volume estimates can be prevented by an incomplete sediment 

record, erosion of deposits and the scarcity of eye-witness accounts (Bovis and 

Jakob, 1999). Logistical issues such as time and accessibility can hinder direct 

measurements (Carrivick and Rushmer, 2006). However, computer-based models 

can simulate beyond observations, improving knowledge of phenomena and 
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reconstructing parameters. A plethora of models have been developed to map 

inundation areas (e.g. Schilling, 1998; Pitman et al., 2003), incorporate transitory 

flow behaviour through bulking and debulking (Fagents and Baloga, 2006), consider 

the solid-fluid interaction typical of the denser flow types (e.g. Denlinger and 

Iverson, 2001) etc.; all occupy a place along a spectrum from dilute to more 

(sediment) concentrated debris flows (Figure 2.5). However, in general, as models 

become more complicated, more data are required.  

Limitations on the extent to which any natural phenomena can be fully 

understood or adequately represented by a finite group of parameters need to be 

recognised. Many models are designed for a specific region and thus are non-

transferable or require extensive calibration. Furthermore, predictions that appear 

accurate over short timeframes associated with most research may become 

increasingly inaccurate at longer timescales (Wilcock et al., 2003). In hydrology, with 

an abundance of established models, there is increasing evidence of non-uniqueness 

in model structures and parameter sets whereby there are multiple possible 

combinations of variables that can reasonably fit the available data or observations: 

a problem known as ‘equifinality’ (Beven, 2000; Hall et al., 2005; Pappenberger et 

al., 2005). Furthermore, often the complexity of models largely exceeds the 

requirements for which they are used (Saltelli et al., 2000) and, principally, complex 

models will have similar uncertainties to simpler ones, but on a larger scale because 

more parameter values are required (Pappenberger et al., 2005). These points place 

limitations on the role highly sophisticated models can play as predictive tools. It is 

necessary to avoid over-reliance and inappropriate use.  

Ultimately, the best model will be the simplest one that provides the information 

required by the user whilst remaining a valid representation of reality (Bates and De 

Roo, 2000). The ‘art’ of this lies in the capability of the modeller to differentiate 

between the different processes operating within a system, isolating the relevant 

processes and ignoring others (Codilean et al., 2006). For decision-makers in 

particular there is a need for low resolution, robust models that provide just enough 

certainty to warrant management action under a range of conditions (Wilcock et al., 

2003). Developers of models that are aimed at decision-makers have a responsibility 
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to anticipate all potential uses of their models, avoiding vague descriptions or 

complex expectations (Renschler, 2005). 

 

 

2.3.4 History of lahar runout and intensity calculation methods 

 

2.3.4.1 Overview 

Modelling approaches for lahars cover a spectrum of gravity-driven flow types (see 

Figure 2.5). Thus, some methods are more suitable than others to replicate the 

behaviour of a given lahar, and come from a variety of sub-disciplines. The methods 

available for runout analysis can be divided into different classes (empirical, 

analytical, simple flow routing and numerical) and operate in different spatial 

dimensions (one-dimensional and two-dimensional) (e.g. Hurlimann et al., 2008). 

Rickenmann (2005) divides debris-flow runout predictive models into empirical-

statistical and dynamic models, where dynamic models are physically based and 

consider the momentum energy conservation of the flow. Dynamic models are also 

referred to as numerical models by authors within different disciplines, and 

depending on assumptions made about the solid-fluid mixture, can be further 

divided into single-phase and two-phase flows. Thus, summarising modelling 

approaches, and understanding the applicability of a technique, is complex and 

involves considerable overlap.  

A few of the main approaches from the literature will now be discussed.  

 

2.3.4.2 Empirical relationships 

Empirical relationships for gravity-driven flows present correlations that are 

established using large datasets from field observations and analogue experiments. 

The most familiar of these defines maximum runout distance, L, using the travel- or 

reach-angle of the ‘energy line’ (Figure 2.6). Originally developed for landslides, the 

concept of the energy-line is used to measure the rate of dissipation of potential 

energy due to gravity from a vertical drop, H, (Heim, 1882, as cited in Malin and 

Sheridan, 1982). The angle the energy-line makes with the horizontal is dependent 

on the volume, V, of the fallen mass. Modellers typically stop flow when it reaches a 
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specified average slope value. For practical reasons, H and L are commonly 

estimated from the distal limits of the observed source area and deposit (Iverson, 

1997). The concept was later adapted to explain the behaviour of pyroclastic flows 

and surges (e.g. Sheridan, 1979; Malin and Sheridan, 1982; Wadge and Isaacs, 1988; 

Macias et al., 2008) and debris flows (e.g. Iverson, 1997; Rickenmann, 1999; Toyos et 

al., 2007). Although commonly a one-dimensional approach for runout down a 

valley, Malin and Sheridan (1982) expanded the concept by sweeping the energy-

line through a 360° arc, known as the ‘energy cone’ (thus, simultaneously 

considering flow down all conduits).  

For a given volume, debris flows usually show greater mobility than landslides 

and rockfalls (Iverson, 1997; Rickenmann, 1999); and thus reach-angle will be 

shallower for debris flows. Rickenmann (1999) derived the following relationship 

from regression analysis of 160 debris-flow events: 

 

L = 1.9V
0.16

H
0.83       [Equation 2.3] 

 

However, other relationships have been established from different datasets (see 

Rickenmann, 2005). Standards for the ratio H/L for debris flows are 0.1—0.3 

dependent on the size of event (Iverson et al., 1998; Carranza and Castro, 2006). 

However, for lahars in general the energy-line concept may not be suitable; 

depending on sediment concentrations, lahars can be highly mobile and show more 

attenuation than the abrupt en-masse deposition of granular debris flows (Schneider 

et al., 2008).  Empirical models are strictly valid only for conditions which were the 

basis for their development (e.g. Hurlimann et al., 2008). If applying the energy-line 

concept to lahars, a shallower reach-angle or lower H/L must typically be used, e.g. 

as low as 0.04 for hyperconcentrated flows (Schneider et al., 2008).  

Alternatively, areas proximal to a volcano’s vent, subject to eruptive phenomena 

(e.g. pyroclastic flows etc.), can be can be thought of as source areas for lahars and 

thus some authors have started lahar modelling in the distal zone, i.e. after the 

energy-line/ energy-cone (Iverson et al., 1998; Carranza and Castro, 2006).   

Further empirical relationships for debris flows are discussed in Rickenmann 

(1999).  
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Figure 2.6 Maximum runout of a gravity-driven flow, L, down a valley from a vertical 

drop, H, is defined by the slope of the energy-line (travel- or reach-angle, θ) (after 

Wadge and Isaacs, 1988).  

 

 

2.3.4.3 Two-dimensional non-numerical methods 

Two-dimensional methods typically simulate runout and/ or inundation area over a 

digital elevation model (DEM). A DEM is a regular grid that describes the continuum 

of land surface using a matrix of elevation values (Maune, 2007). Therefore, two-

dimensional models are particularly suited to implementation in a Geographical 

Information System (GIS) (see further discussion in Section 2.4).  

 

Simple flow routing 

Flow directions based on DEMs are needed in hydrology to determine the paths of 

water, sediment, and contaminant movement (Tarboton, 1997). Simple flow routing 

algorithms typically do not incorporate any frictional laws and assume that 

topography plays the main role in path direction. In theory, these algorithms can be 

adopted for first-order runout routing for any gravity-driven flows.  
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Typical single-direction flow models route flow from a starting cell to one of its 

eight (adjacent or diagonal) neighbours based on slope gradient. The most common 

of these is the D8 algorithm which directs flow in the direction of the steepest slope, 

or greatest change in gravitational potential energy (O’Callaghan and Mark, 1984) 

(Figure 2.7). The resultant flow route is commonly known as ‘the path of steepest 

descent’. While the algorithm is extensively used in hydrology for determining 

overland flow, in steep terrain D8 can be used to predict the central flow line of a 

debris-flow (Huggel et al., 2003). 

Huggel et al. (2003) also modified the single-direction flow algorithm (D8) to 

allow flow to divert up to 45° on both sides of the steepest path. The central flow 

line of a debris-flow is assumed to follow the path of steepest descent but lateral 

spreading is permitted. The modelled debris-flow stops when the average slope of 

11° (H/L = 0.19) is reached (see energy-line discussion in the previous section, Figure 

2.6). This approach was later used by Schneider et al. (2008) for assessing lahars 

from ice-capped volcanoes and Noetzli et al. (2006) for rock-ice avalanches (using a 

greater reach-angle).  

For lava flow, Felpeto (2001; 2007) suggested assigning a flow direction to one of 

the downslope neighbouring cells, with the probability proportional to the height 

difference between a cell and its neighbour. The selection of the cell where the flow 

will propagate was made by mean of a Monte Carlo algorithm. This approach was 

also adopted by Gomez-Fernandez (2000) for lava movement.  

 

 

 

Figure 2.7 D8 algorithm for flow direction over a small section of an example DEM  
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In contrast to single-direction routing there are alternative simple flow routing 

algorithms that account for dispersion. Multiple-direction flow routing algorithms 

include flow diversion from the steepest flow direction (e.g. Wolock and McCabe, 

1995). These algorithms can partition flow fractionally from a cell to each lower 

neighbour by weighting flow in proportion to slope (e.g. Quinn et al., 1991).  

For water flows, Tarboton (1997) suggested using triangular facets to remove the 

limitation of only eight possible flow directions, naming the algorithm D-Infinity (or 

D∞). This reduces grid bias and the coarse ‘stepped’ nature of D8 results. 

Theoretical advantages and disadvantages of different flow-routing algorithms have 

been discussed in Tarboton (1997) and Seibert and McGlynn (2007). For lahar 

simulation, a major limitation is that volume can only be incorporated indirectly and 

intensity cannot be calculated explicitly (Hurlimann et al., 2008).  

 

LAHARZ 

LAHARZ (Schilling, 1998) is a flow-routing model that takes into account flow 

volume. The central flow line of a lahar follows the path of steepest descent (D8, as 

above) but dispersion is permitted through semi-empirical equations that govern 

inundated planimetric and cross-sectional areas. LAHARZ also makes use of the H/L 

energy cone concept for defining the limits of volcaniclastic deposit, and thus 

furthest point upstream for lahar initiation (Figure 2.8a). The area encompassed by 

the energy-cone is referred to as the proximal hazard zone (affected by primary 

volcanic hazards e.g. flank collapse and pyroclastic flows). Once processing has 

begun, flow moves downstream along the path of steepest descent (which is 

typically the line defining the lowest points along the valley, and is referred to as the 

valley thalweg). Lahar volume is spread laterally in three cross-sections (Figure 2.8b). 

The area of each of these is defined by A as follows, 

 

A = 0.05V
2/3

         [Equation 2.4] 

 

where V is the input volume. Flow is considered a continuum and volume is constant 

(no material is deposited or entrained). For each cross-section, A can be derived in a 

GIS using the DEM heights. Processing then moves to the next downstream cell on 
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the thalweg. For full details see Schilling (1998). When the number of cells 

inundated (multiplied by cell resolution) reaches the area given by the planimetric 

area, B, flow stops.  

 

B = 200V
2/3         [Equation 2.5] 

 

The semi-empirical equations that define inundation areas were first proposed by 

Iverson et al. (1998) and later automated in a GIS to create the LAHARZ suite of 

programs (Schilling, 1998). The equations were developed using known deposit 

areas from 27 lahar (debris-flow) paths from nine different volcanoes (see Iverson et 

al., 1998).  

 

 

Figure 2.8 a) The H/L energy cone is adopted by LAHARZ to define the proximal 

hazard zone. Processing begins where the H/L bounding cone intersects the valley 

thalweg; b) the centre of the lahar mass follows the valley thalweg downstream, but 

at each processing cell three cross-sections define the dispersion.  
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LAHARZ has been widely used for the construction of lahar hazard maps in South 

America (Canuti et al., 2002), Central America (Davila et al., 2007; Hubbard et al., 

2007; Capra et al., 2008; Macias et al., 2008) and New Zealand (Stevens et al., 2002). 

Applied flow types range from hyperconcentrated-flow, through to debris-flow and 

debris-avalanche. However, some authors have heavily criticised LAHARZ e.g. 

because of its inability to trace the evolution of other parameters downslope 

(Fagents and Baloga, 2006), and for potential lack of transferability because it was 

calibrated from nine volcanoes (Carranza and Castro, 2006). However, claims that 

LAHARZ incorporates no physics (e.g. Carranza and Castro, 2006; Sheridan, 2004) are 

misinformed as, although not detailed considerations of flow behaviour, some 

physical basis is included in the expression coefficients. Further, while applying 

LAHARZ to lahars from Popocatepetl (Mexico) Munoz-Salinas (2009) heavily 

criticised the model as the use of a high resolution and detailed DEM did not 

guarantee a realistic lahar simulation. Yet the jagged edges at distal limits, for 

example, have been remarked on by Iverson et al. (1998) in model development and 

LAHARZ should only be applied, as intended, for a preliminary hazard assessment.   

Some authors have used LAHARZ as a basic model but made minor modifications. 

DFLOWZ, a modified version of LAHARZ for debris flows, takes uncertainty into 

account and can model both confined and unconfined flow (Berti and Simoni, 2007). 

Coefficients were recalibrated with data from 27 historical debris flows (typically 

more sediment-rich) in the Italian Alps. Carranza and Castro (2006) developed a 

model similar to LAHARZ but a DEM was used to derive the spatial data used as 

inputs (proximity to lahar source zone, proximity to drainage lines, elevation and 

slope), modelling was carried out by weights-of-evidence, by logistic regression and 

evidential belief functions, and outputs were probabilities.  

 

2.3.4.4 Numerical/ physical models 

Numerical models describe flow dynamics and distinguish between one-phase and 

two-phase flows depending on the mixture composition and mechanical processes 

contributing to momentum conservation (Sosio et al., 2007). In most models, the 

water-sediment mixture of a debris-flow is assumed to be a single component fluid 

with particular rheologic characteristics (defined by constitutive equations or 
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rheologic ‘laws’). Three common flow resistance laws have been defined: Bingham 

laminar flow, Newtonian turbulent flow, or dilatant grain shearing in the inertial 

regime (Rickenmann, 1999; refer also to Figure 2.4). The Bingham model essentially 

simulates different kinds of liquid with thinning or thickening, akin to a viscoplastic 

fluid (Rickenmann, 2005); Newtonian behaviour is analogous to normal water flow 

(and uses turbulent friction coefficients such as Manning or Chezy); and dilatant 

shearing refers to dry granular flows (see also Figure 2.4). Some models also have a 

stop term (using frictional-turbulent Voellmy fluid flow rheology) for anticipating the 

total runout distance (Rickenmann, 2005).  

Thus, there are models for single-phase ‘dry’ (e.g. Savage and Hutter, 1989), 

single-phase ‘wet’ (e.g. Macedonio and Pareschi, 1992), and saturated binary 

mixtures (e.g. Iverson, 1997; Denlinger and Iverson, 2001). As a crude simplification, 

for ‘wet’ single-phase debris flows, flow is governed by the interstitial fluid (e.g. 

Pierson, 1995), and for two-phase, granular flow pore pressure and frictional effects 

from grain interactions are important (e.g. Iverson et al., 1997). Single-phase ‘dry’ 

models consider the avalanching flow of granular materials in a cohensionless 

granular continuum of particles (Savage and Hutter, 1989; Pitman et al., 2003; 

Pudasaini et al., 2005). 

Numerical models require topographic profile cross-section shape (or typically a 

DEM if modelling in two-dimensions), initial volume or input hydrograph and 

rheological or friction parameters (Hurlimann et al., 2008). Typically appropriate 

values for rheological parameters are estimated from field observations (Hurlimann 

et al., 2008). Numerical models can be used to derive runout distances and intensity 

(flow depth and velocity) (Sosio et al., 2007). Some examples are elaborated below.  

 

One-dimensional flow of a ‘wet’ single-phase fluid 

One-dimensional numerical models provide calculations along a previously selected 

topographic profile (Hurlimann et al., 2008). The most common examples borrow 

methods from hydrology and solve mass and momentum conservation equations 

(known as the shallow water or St Venant equations) for unsteady-state stream-flow 

flow (e.g. Chow, 1959) and adapted to lahars (Macedonio and Pareschi, 1992; and 

Caruso and Pareschi, 1993). There are also methods using Kinematic wave 
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approximation (see Vignaux and Weir, 1990). Aguilera et al. (2004) used a model 

based on the mass and momentum balance equations for a bulk mixture, where the 

equations of the model were analogous to those for clear-water flow, but differed in 

the energy-dissipation coefficient which accounted for lahar rheology.  

One-dimensional unsteady-state stream-flow models typically assume all energy 

dissipation can be parameterised by a single roughness coefficient (e.g. Laenen and 

Hansen, 1988), and this is not well known for lahars (Fagents and Baloga, 2006). 

However, such models have successfully been applied to channelled lahars, but 

topography plays a key role with regard to deposition pattern and thus to create 

inundation areas results must be extrapolated into two-dimensions (Rickenmann, 

2005).   

HEC-RAS is a one-dimensional ‘off-the-shelf’ flood inundation model that may be 

applicable to approximate the (unsteady) behaviour of dilute lahars (Hydrologic 

Engineering Center, 2008). Popular in the field of hydrology, the model has also 

been applied to glacial outburst floods with entrained sediment (e.g. Alho et al., 

2007; Alho and Aaltonen, 2008; Yochum et al., 2008). 

 

One-dimensional flow of a ‘dry’ single-phase fluid 

Notable single-phase dry models include snow avalanche modelling by Voellmy 

(1955). This model has a turbulent and a sliding friction component (Rickenmann, 

2005) and has been found robust in terms of the numerical stability of simulations 

(Rickenmann, 2005). However, the Voellmy fluid approach is more correctly referred 

to as a mass point analytical model as only the centroid of the moving mass is 

simulated (Hurlimann et al., 2008).  

The single-phase grain flow model of Savage and Hutter (1989) is one of the most 

frequently cited models for debris flows and avalanches. Originating from equations 

of mass and momentum balance (and similar to the shallow water equations), basal 

sliding properties are described by Coulomb-type friction behaviour. Variations of 

the mechanical behaviour within the flow are ignored as mixture density is taken as 

a constant. This model was generalised by Iverson (1997) and later adapted by 

Iverson and Denlinger (2001), Pitman et al. (2003) and Pudasaini et al. (2005) etc. 
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Two-dimensional flow of a ‘wet’ single-phase fluid 

For two-dimensional flow of a single-phase fluid, the hydraulic model FLO-2D 

(O’Brien et al., 1993) is a well-known tool (Hurlimann et al., 2008). FLO-2D is a 

volume conservation model, which assumes Bingham plastic rheological behaviour 

and adds a friction term accounting for channel roughness and turbulence (Sosio et 

al., 2007). It has been used, for example, for the propagation of rainfall-triggered 

debris flows in the Italian Alps (Calvo and Savi, 2009); to determine maximum flow 

depths and velocities which contributed to the development of a 

hyperconcentrated-flow intensity map for Washington State (USA) (Jakob and 

Weatherly, 2008); and compared with LAHARZ for predicting runout of (debris-flow) 

lahars from the Pichincha volcano complex (Ecuador) (Canuti et al., 2002). FLO-2D 

can be extensively adapted to diverse modelling conditions including urban areas 

(Canuti et al., 2002); however, it should only be used for the middle and long-term 

management of areas prone to inundation due to fieldwork and data requirements 

(e.g. sediment concentration), and the lengthy preliminary phase (Canuti et al., 

2002). Further, as commercial software, the model itself is expensive to obtain 

(approximately $3500 US, January 2010). 

 

Two-dimensional flow of a ‘dry’ single-phase fluid 

Titan2D (Pitman et al., 2003) is a program originally developed for the dry granular 

flow of debris avalanches and is based on the earlier work of Savage and Hutter 

(1989), Iverson (1997), Iverson and Denlinger (2001) and Denlinger and Iverson 

(2001) (Sheridan et al., 2005). Similar to the shallow water equations, the 

conservation equations for mass and momentum are solved, but with a Coulomb-

type (dry, sliding) friction term for the interactions between grains and between the 

granular material and the basal surface. Titan2D can simulate the change in flow 

thickness because it considers the initial volume of the collapsing mass driven 

downslope by gravity where the resistance forces are given by basal and internal 

friction angles of the collapsing material (Capra et al., 2008). From flow depth and 

momentum the flow limit, run-out path, flow velocity, deposit thickness, and travel 

time can be calculated. Titan2D has also been applied to pyroclastic flows (e.g. 
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Macias et al., 2008). Titan2D is advantageous because it is freely available software 

that uses a DEM and runs in a GIS.  

McDougall and Hungr (2004) presented a numerical method for the analysis of 

debris flows and avalanches using smoothed particle hydrodynamics. The model has 

a number of unique capabilities, including the ability to account for material 

entrainment, and rheology variation (by selecting different rheological laws).  

 

One-dimensional flow of a two-phase fluid 

A one-dimensional granular avalanche approach has been adapted for debris flows 

by including the effects of pore fluid (Iverson, 1997). Motion is governed by inertial 

forces, internal shear and normal forces in response to boundary forces (i.e. local 

topography) (description from Fagents and Baloga, 2006). Total runout distance is 

simulated and velocity and depth are functions of time (Rickenmann, 2005). 

However, the selection of the rheological law (e.g. Bingham viscoplastic, or Voellmy 

fluid), and suitable parameter values, are of crucial importance (Hurlimann et al., 

2008).  

 

Two-dimensional flow of a two-phase fluid 

Recently 2D non-homogenous debris-flow models have been growing in popularity 

(e.g. Iverson and Denlinger, 2001; Pudasaini et al., 2005). Motion of a sliding mass is 

described by a mixture of a solid and a fluid phase under conditions of saturation.   

A two-phase version of Titan2D has been developed that allows fluid flow with 

granular flow (Williams et al., 2008; Procter et al., 2009). Williams et al. (2008) 

coupled Titan2D (Pitman, 2003) and the Pitman-Le two-phase debris-flow model 

(Pitman and Le, 2005) to enable the simulation of more types of gravitational mass 

flows. The new model was applied to Tungurahua (Ecuador) lahars (Williams et al., 

2008) and Ruapehu (New Zealand) lahars (Procter et al., 2009).  

 

2.3.4.5 Summary of current modelling techniques 

Figure 2.9 summarises the potential applicability of some of the runout prediction 

models and laws discussed above to different gravitational flow types. Depending on 

lahar classification, and sediment content (a major driver for rheology), different 
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models are more suitable. Key references are Rickenmann (1999; 2005) and 

Hurlimann et al. (2008).  

 

 

 

 

 

 

Figure 2.9 Potential applicability of some of the models (and rheological laws) 

described in the text. Arrows show origination and direction of spread of application 

(e.g. the energy-line concept was designed for avalanches but has been applied to 

lahars). Please refer to citations in the main body text. 
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More recently researchers have applied established commercial hydraulic models 

to lahars, e.g. Delft FLS (Brown et al., 2007); Delft3D (Carrivick et al., 2009). Whilst 

these models are more realistic they are also make much greater demands on data, 

time and processing. Alternatively, models have been developed specifically for 

debris flows (as above), but because of the complex interactions of solid and liquid 

phases, these models either require a great amount of input data or simplify 

behaviour and use empirical data. For example, LAHARZ is a semi-empirical model 

whose coefficients capture the gross underlying physics with minimal demands on 

user input (Iverson et al., 1998; Schilling, 1998). In contrast, Titan2D is a physically 

based model for flows with high sediment content (Pitman et al., 2003), but the 

physical background is complex and this software is very computationally intensive. 

Ultimately, physical models are advantageous if knowledge of typical lahar 

behaviour and composition are available from detailed fieldwork. Statistical based 

models avoid the necessity of detailed flow mechanics but they typically provide no 

temporal or derivative information. 

 

 

2.3.5 Reflection on the key factors for lahar modelling 

 

Previous studies have formally, and informally, established the relative importance 

of various factors (e.g. inputs) for lahar modelling.  

 

2.3.5.1 Data inputs, e.g. DEM 

Quality of surface representation is one of the most influential elements for runout 

assessment (e.g. Huggel et al., 2008; Schneider et al., 2008). Lahars, flash floods, 

glacial lake outburst floods, and debris flows are all gravity-driven flows; to a first 

order flow movement is dependent on local elevation variations of the surface over 

which they pass, thus topography is a significant control on the movement of 

gravitational flows. For example, transit-time predictions decrease with increasing 

topographic resolution (Fagents and Baloga, 2005) and inundation areas from 

runout models are sensitive to the quality of the input DEM (e.g. Stevens et al., 

2002). DEMs are an increasingly popular way of incorporating topographic 
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information into lahar and debris-flow models. DEMs of volcanic terrain can be 

obtained by (1) digital photogrammetry based on stereoscopic pairs of aircraft or 

satellite images; (2) digitisation and interpolation of topographic maps; (3) radar 

interferometry; (4) laser scanning (LiDAR); or (5) field survey (see Kervyn et al., 2007; 

Maune, 2007). However, the approximations needed to represent a continuous 

variable such as terrain over a finite number of gridded cells result in errors in any 

DEM. These errors can propagate to model predictions (e.g. Darnell et al., 2008). 

Different DEM products have different accuracies (e.g. Stephens et al., 2002) and 

perform better for different operations.  

 

2.3.5.2 Model concept and inherent assumptions 

Models can only approximate lahar behaviour and require simplifying assumptions 

(see Section 2.3.3). Therefore, model selection will be a potentially great source of 

uncertainty (or lack of confidence in decisions). The main choices are between one- 

or two-phase and, for the former, wet or dry, and consideration should depend on 

bulk composition and flow type. Additional considerations include assumptions of 

constant volume and/ or rheology. However, selection of unsuitable concepts can 

impact hazard assessment. For example, total volume and bulk composition are the 

main factors which contribute to debris-flow hazard, establishing both flow mobility 

and impact energy (Sosio et al., 2007). For a given volume, debris flows usually show 

greater mobility than landslides and rockfalls and have greater runout (Iverson, 

1997; Rickenmann, 1999). Composition can also influence velocity. Debris flows can 

travel twice as fast as water floods of comparable depth and channel slope (Pierson, 

1995), but this does not apply to all flows. Rickenmann (1999) found that mean flow 

velocity does not depend on the composition of flow. Furthermore, the 

incorporation and loss of material (bulking and debulking) can significantly increase 

lahar transit time, mobility, rheology and inundation limits (Scott et al., 2001; 

Fagents and Baloga, 2006); however, few models have attempted to model this and 

Iverson (2003) further argued that the evolving behaviour of debris flows is too 

complex to be represented by any rheological law. Thus, it is unsurprising that 

behavioural approximations are made using simplifying assumptions.  
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2.3.5.3 Parameters and calibration 

Calibration is the process by which model parameters are fitted to improve the 

correspondence between model predictions and observation (Hall et al., 2005). 

Thus, the model becomes tailored to a particular set of circumstances. Calibration 

issues have become a focus in hydrological modelling due to the problem of 

equifinality (where multiple unique model calibrations can produce equally 

acceptable outputs) (see Beven, 2000).  

Hall et al. (2005) and Pappenberger et al. (2005) have examined sets of 

Manning’s roughness coefficients and the effect of parameter variance on flood 

inundation. Further, the use of a single parameter at all as adequate for accounting 

for friction has been criticised (see references and discussion in Pappenberger et al., 

2005). In lahar modelling, LAHARZ was calibrated for 27 flows from nine volcanoes 

and thus may not be (as) applicable for other flows from different volcanoes 

(Carranza and Castro, 2006). Some authors have recalibrated the model (see Section 

2.2.2.3).  

Good modelling practice requires the modeller to provide an evaluation of 

modelling predictions (Ratto et al., 2001). Uncertainty analysis has been touched on 

briefly in Sections 2.2.2.2 and 2.2.3.2; however, there is a further element that 

determines how uncertainty in model predictions is determined by uncertainty in 

model inputs and parameter values, termed sensitivity analysis (Lilburne and 

Tarantola, 2008). This is an extremely interesting area of study, perhaps even the 

future of modelling, but requires a more in-depth coverage and discussion than can 

be performed by this review. The interested reader is referred to Saltelli et al. 

(2000).  

 

2.3.5.4 A framework for lahar modelling? 

Given the literature presented above, Figure 2.10 is an initial reflection on the 

considerations for lahar modelling in this research. For volcanic hazards, including 

lahars, hazard zonation was historically based on an examination of deposits of 

inundated areas (Section 2.2.3.1); now this usually involves some form of numerical 

modelling or simulation. Once the lahar hazard has been identified (Section 2.3.1), 

appraisal of the spatial distribution of the hazard (runout and inundation areas) and 
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intensity (flow depth and velocity) can be achieved through modelling (Section 

2.3.4). Modelling requires an acceptance of certain concepts with their inherent 

assumptions (Section 2.3.5.2) and a need for a finite group of parameters to 

adequately describe the phenomenon (lahar) (Section 2.3.5.3). These are in turn 

governed by data restrictions and quality (Sections 2.3.3.1 and 2.3.5.1). Additionally, 

it has been recognised that a top-down approach to information dissemination from 

the sciences is not always effective (Section 2.2.1), thus the modeller should be 

aware that end-user (decision-maker) involvement in some aspect(s) of the hazard 

assessment process may make outputs more transferable, and ultimately have 

greater utility. Finally, an evaluation of confidence in the findings should be 

provided. 

 

 

 

 

 

 

Figure 2.10 Schematic showing the considerations for modelling for the scientist 
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2.3.6 Lahar hazard zonation 

 

Previous sub-sections have focussed on modelling techniques, but the step from 

model output (e.g. inundation area) to hazard zonation has not been presented. 

There are many techniques for this. One scheme uses intensity and probability to 

determine the hazard level for debris-flows and landslides, e.g. the qualitative 

Hazard Matrix by Hurlimann et al. (2008) (Figure 2.11). Zones of equal hazard can 

then be presented on a map. However, there is an absence of standardised 

techniques or guidelines. Tradition dictates that lahar hazard zones are delineated 

from inundation extents of historic or prehistoric flows and for forecasting, should 

be extended for all valleys draining from a volcano (Crandell, 1984). Boundaries 

distinguishing zones of relative hazard can be subjective or physical.  

Nevertheless, practical lahar hazard zone mapping is frequently left to the 

discretion of local responsible agencies and scientists. This is not an issue unique to 

lahars; hazard zonation has been discussed more generally in Section 2.2.2.1. 

 

 

Probability of occurrence  

High Medium Low 

h > 1.0 m 

or 

v > 1.5 ms
-1 

High High High Moderate 

h < 1.0 m 
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0.4 ms
-1

 < v < 1.5 ms
-1

 

Medium Moderate Moderate Low 

h < 0.4 m 

and 

v < 0.4 ms
-1

 

Low Low Low Very low 

In
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n
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ty
 

Unaffected areas Very low Very low Very low 

 

Figure 2.11 Qualitative hazard matrix for debris flows (level of hazard where h is the 

flow-depth and v is the velocity). After Hurlimann et al. (2008) and Rickenmann 

(2005b as cited in Hurlimann et al., 2008). 
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2.4 USE OF GEOSPATIAL DATA AND TOOLS FOR HAZARD MANAGEMENT, 

MODELLING AND COMMUNICATION 

 

2.4.1 An introduction to GIS potential for hazard management  

 

There has been a recent shift in hazard assessment from inventory-style maps to 

those that offer interpretation of multiple attributes (e.g. hazard zone, number of 

occupants, vulnerability) in a GIS environment (Rosenbaum and Culshaw, 2003). A 

GIS allows efficient management of large volumes of (spatially and temporally 

variable) data. In particular, for natural hazards, GIS data are easily updated and 

expanded and thus can be available immediately after an event (Kerle and 

Oppenheimer, 2002). A map from a GIS is a transient by-product of the database 

(Schuurman, 2002); the real benefits of a GIS stem from its ability to combine digital 

visualisation with data querying, interrogation and modelling.  

GIS can contribute to the whole sequence of disaster reduction – from identifying 

areas at risk, monitoring and forecasting hazards, through warnings of their onset 

and measures to minimise loss of life, injury and damage to property, to coping with 

disaster once it has occurred (Gatrell and Vincent, 1991; Coppock, 1995). Other early 

discussions of GIS technology for disasters and emergency management are 

provided by Carrara and Guzzetti (1996), Cova (1999), Goodchild (2003a; 2003b) and 

in an ESRI White Paper (Johnson, 2000). Figure 2.12 provides some example GIS 

activities at various stages of the disaster management cycle. Arguably, geographic 

information and the technologies that acquire, interpret and disseminate such 

information (GIS, remote sensing etc.) have now become essential in all aspects of 

this cycle (Goodchild, 2006). 

Relatively simplistic applications of GIS utilise only their cartographic strengths 

(Zerger and Smith 2003). However, it has been argued that predictive and 

operational models should be embedded in a GIS for successful hazard management 

(Radke et al., 2000); for example, a model setup in a GIS can be long-term, data can 

be updated regularly, and maps can be output as required. Tools are now being 

developed that automate phases of hazard assessment in a GIS (Felpeto et al., 
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2007). GIS and modelling can be tightly integrated (or coupled) where all modelling 

occurs within the GIS, or more loosely coupled, either for pre-processing (data 

preparation) or post-processing data, commonly through mapping (Fedra, 1993; 

Zerger and Wealands, 2004). Intermediately, GIS can be used as a modelling 

framework that combines modules or scripts replicating different aspects of a model 

(e.g. Pullar, 2003). The merit of GIS integration with modelling has been explicitly 

discussed with respect to hydrological models due to the well established practices 

and standards for hydrologists and hydraulic engineers (Sui and Maggio, 1999). For 

hydrological modelling the data models supporting most conventional GISs are not 

efficient for solving the complex equations inherent in space and time variant 

models (Sui and Maggio, 1999; Zerger and Wealands, 2004). However, some 

hydrological functions are now embedded in GIS software packages (e.g. a hydrology 

extension for ArcGIS Spatial Analyst), and hydrological models are embedding GIS-

like functionalities (e.g. HEC-RAS, Hydrologic Engineering Center, 2008) (Sui and 

Maggio, 1999). Thus, there is potential for coupling of models for hazard forecasting 

with GIS. Conventionally, a GIS does not include the capability for dynamic analysis 

(Burrough, 1998). Nonetheless, simple models (such as the energy cone for debris 

flows) can be effectively, albeit sometimes inefficiently, implemented in a GIS as 

they can exploit many of the spatial functions of the GIS (Felpeto et al., 2007). The 

powerful capabilities of GIS to process DEMs are also often used (Sui and Maggio, 

1999). Lahar and debris-flow runout models that make use of a DEM can be tightly 

coupled to a GIS (e.g. LAHARZ (Schilling, 1998), Titan2D (Pitman et al., 2003)).  

Therefore, the potential for GIS in hazard management outstretches its current 

uses. A brief synopsis of the application of geospatial data and tools in the disaster 

management cycle will be described. As an additional note, there has been 

significant evaluation of the potential of GIS in the response phase of the cycle, 

especially following the 9/11 terrorist attacks in New York (USA), 2001 (Cutter et al., 

2003; NRC, 2007). Although not a natural disaster, these acts of terrorism had a 

profound effect on getting geographers, scientists from other disciplines and 

decision-makers, talking about geospatial data and tools (Longley et al., 2005); thus, 

some pertinent references are made here.  
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Figure 2.12 Example geospatial activities contributing to phases of the disaster 

management cycle (After Johnson, 2000; NRC, 2007).  

 

 

 

2.4.2 Geospatial data and tools applied for preparedness, mitigation and decision 

utility 

 

Geospatial preparedness actions include ascertaining data requirements, 

assimilating and developing datasets and sharing data (Figure 2.12). These data can 

include framework data (e.g. elevation, political, cadastral information) and 

foundation data (e.g. soil types, land-use, water pipes etc.) that are used for a 

variety of planning activities, such as evacuation routes (NRC, 2007). For example, a 

well-structured database of demography and resources is needed for land-use 
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planning and evacuation programmes (Lirer and Vitelli, 1998). A GIS can also be used 

to identify neighbourhoods than may face transportation difficulties (vulnerability) 

during an evacuation (Cova and Church, 1997; Cova 1999).  

GIS can be used to visualise and compare multiple alternative mitigation plans 

relatively quickly (NRC, 2007). Cost-benefit analysis can be performed to provide a 

formal, quantitative evaluation of the ability to reduce losses through mitigation 

options (Bernknopf et al., 2006; Gamper et al., 2006). Spatial decision support is one 

of the central functions ascribed to GIS (Jankowski et al., 2001). A decision support 

system can be considered as an integration of computer hardware and software 

specifically designed to complement the human thought process in problem-solving, 

decision-making and information processing, allowing the user to undertake ‘what-

if’ questions (Gatrell and Vincent, 1991). A spatial decision support system (SDSS) 

can be a contingency planning tool to evaluate a range of management strategies 

prior to an event (Zerger and Smith, 2003). It is anticipated that the next generation 

of SDSS tools will integrate GIS, dynamic models and custom graphical user 

interfaces to provide comprehensive disaster management decision support tools 

(Zerger and Smith, 2003). 

For volcanic hazard management, GIS can also be used as a data repository to 

monitor an impending or ongoing eruption (e.g. Lirer and Vitelli, 1998; Pareschi et 

al., 2000a). More recently, the data management capabilities of GIS have been 

exploited for the long-term monitoring and forecast of potentially active volcanoes 

(Gogu et al., 2006). The GEOWARN project is a geo-spatial warning system which 

stores, analyses and visualises vast amounts of multi-disciplinary data, e.g. infrared 

thermal images, real-time surface movements heat and gas fluxes; integrated 

modelling techniques are able to detect eruption precursors and issue warnings 

(http://www.geowarn.ethz.ch/). Due to the broad requirements of different users, 

i.e. different volcano observatories, the main GIS package (ESRI’s ArcGIS embedded 

with MS Access) was complemented with other software for data exchange (Gogu et 

al., 2006). However, this demonstrates that the functionality of GIS is now being 

tested in volcanology, well beyond a technology to simply generate maps.  

 

 



  Chapter 2 

  55  

2.4.3 Geospatial data and tools applied for response and recovery 

 

Geospatial information can be invaluable immediately following an event for 

incident management and tactical decision making (NRC, 2007). One of the most 

important application areas of GIS after a crisis is in emergency services dispatch 

(Zerger and Smith, 2003). For example, the shortest path algorithm, standard to 

many GIS packages, can use the road network to find optimal routes between user-

defined start and end nodes (Gatrell and Vincent, 1991). This is useful for directing 

emergency services in addition to designing evacuation routes. Furthermore, GIS can 

provide one of the primary components for computer-aided dispatch systems 

(Johnson, 2000). However, there is a time window within which information must be 

delivered to have value (Radke et al., 2000). Critical for effective response is a pre-

existing database provided quality control is assured and data are updated 

(Goodchild, 2003b). Continuous updating of databases is required for near real-time 

management of volcanic crises (e.g. Gomez-Fernandez, 2000; Felpeto et al., 2007).  

However, Zerger and Smith (2003) found that there is a general inertia among 

users to utilise computer-based GIS for real-time decision-making where paper maps 

have been used for decades. Paper maps were also a preference on the ground 

during response to the 9/11 terrorist attacks in New York (USA), 2001, signifying the 

capabilities of GIS and spatial technologies beyond map-making were not fully 

exploited (Kevany, 2003).  

To complicate the response effort, access to geospatial data and tools can 

resemble a donut – abundant far away from an impacted area, but almost non-

existent at the geographic centre of a crisis where computers and infrastructure are 

damaged (NRC, 2007). For example, GIS had to be re-established in the hours 

following the 9/11 terrorist attacks as GIS facilities had to be evacuated (Kevany, 

2003; Goodchild, 2006). GIS and related spatial technologies were widely used to 

support response and recovery efforts, but there were also lessons learned; for 

example, the importance of metadata and a use of standards to aid the exchange 

and integration of information (ESRI, 2002; Kevany, 2003; NRC, 2007). Use of 

geographical datasets in emergencies has traditionally been hindered by licensing 

and access restrictions and a lack of interoperability of formats (Goodchild, 2003a; 
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Kevany, 2003). Data sharing and pooling of information (nationally and 

internationally) between administrative departments and government bodies can be 

difficult (NRC, 2007). However, advancements are being made in GIS interoperability 

through wider Internet use and the use of standards (see later discussion in Section 

2.4.4.2).  

With infrastructure affected and access frequently impeded, disaster 

management can benefit from the synoptic coverage provided by satellite imagery 

(Kerle and Oppenheimer, 2002). Remote sensing has traditionally been used by 

scientists for detection and mapping of hazard and effects, and rarely for more 

complex investigations (Showalter, 2001). However, remote sensing is now playing a 

key role in management and mitigation of natural disasters, e.g. pre-disaster 

geomorphic mapping and DEMs, rapid search and rescue in an event crisis, regional 

extent and relative severities and assist in disaster recovery by highlighting locations 

with resources (see Gillespie et al., 2007; Teeuw, 2007). Ultimately, the utility of 

remote-sensing data (for real-time management) strongly depend on the disaster 

type and its onset time (Kerle and Oppenheimer, 2002). 

Data availability in crises has recently been transformed by the Internet, Google 

Earth and geobrowser mashups (the combination of content from more than one 

data source into a single dynamic map service) (Butler, 2006a; 2006b; Nourbakhsh, 

2006; Goodchild, 2009). Google Earth uses Keyhole Markup Language (KML) format, 

which facilitates transfer of geospatial data in real-time (Nourbakhsh, 2006). Other 

satellite data can be acquired on an emergency basis (e.g. through International 

Charter Activation, Bessis et al., 2004). For example, following the 12
th

 January 2010 

earthquake in Haiti (West Indies), high resolution satellite images were available 

worldwide on the Internet within a day to show the extent of the damage and for 

interactive viewing on Google Earth (e.g. http://news.bbc.co.uk/1/hi/world/ 

americas/8458690.stm, accessed January 2010). MapAction (and other non-

government organisations, NGOs) deployed to Haiti to support ground relief 

coordination the day after the earthquake (attempting to plug the hole of the 

donut). MapAction are a NGO of specially trained professionals that work 'on-the-

ground' in disaster zones providing frequently updated situation maps showing 

where relief help is most urgently needed. Maps (produced using ArcGIS) were 
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crucial during search and rescue operations (http://www.mapaction.org/ 

deployments/depldetail/192.html, accessed January 2010). Also in Haiti, volunteer 

map-makers helped update local transportation networks using Global Positioning 

Systems (GPS) data uploaded and distributed (worldwide) freely via OpenStreetMap 

(http://news.bbc.co.uk/1/hi/ 8517057.stm , accessed May 2010). Furthermore, the 

benefits of opening up disaster operations can go beyond the immediate logistics of 

disaster response; individuals, moved by pictures, may make donations and 

encourage their governments to do the same (Nourbakhsh, 2006). 

For lahar path detection, it has been suggested that a combination of remote 

sensing data products are needed for the best results; however, manual 

interpretation of aerial photographs has been found to be the most accurate 

method (Joyce et al., 2009). Morphology and drainage structure of the flow 

deposition area following the 1998 lahar at Casita volcano (Nicaragua) was 

examined using various optical and radar sensors by Kerle et al. (2003) (see also 

Section 2.1.2). They concluded that the greatest synergistic potential came not from 

combining optical data with radar, or high with low spatial resolution, but in adding 

auxiliary information such as GIS elevation or map data. Furthermore, an earlier 

study by Kerle and Oppenheimer (2002) concluded that available imagery at the 

time of the disaster could not have significantly improved disaster response. 

Further technological advances may increase ability to respond to future events. 

For example, the potential of real-time intelligent 3D GIS has been explored 

subsequent to 9/11, highlighting the issue of emergency response in urban areas, 

integrating the ground transportation system with the internal conduits of multi-

level structures (Kwan and Lee, 2005). The technology to capture the internal three-

dimensional structure of buildings is valuable for building evacuation, and is an area 

where substantial progress will be made over the next few years (Goodchild, 2009). 

The value of knowing the real-time locations of disaster victims and rescue teams is 

palpable, and this is fast becoming feasible with the latest developments in 

positioning technologies (Goodchild, 2009). In the wake of a disaster, GIS is 

becoming integral in supporting damage assessment, rebuilding and public 

education (Cova, 1999).  
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2.4.4 GI Science and research using GIS  

 

2.4.4.1 An overview 

The potential, and constraints, on the utilisation of GIS for disaster management 

have been introduced above, and also discussed by Carrara and Guzzetti (1996), 

Cova (1999), Radke et al. (2000) and Cutter (2003). Cutter (2003) summarises the 

main constraints as: understandable user interfaces; data quantity, quality, and 

integration; real-time data and information. These are wider issues that can be 

informed by progress in Geographic Information Science (hereafter, GI Science).  

GI Science as a term came from the seminal work of Goodchild (1992). He 

recognised that geographical data are unique and associated problems could not be 

adequately subsumed under some larger field (Goodchild, 1992). First, the 

fundamental difference between geography and other scientific disciplines is that 

definitions of geographic objects of study are rarely unambiguous (Longley et al., 

2005). Furthermore, concepts of space are complicated by the continuous, spatial 

dependence and curved surface of the Earth (Goodchild, 1992). GI Science is 

concerned with ontology, representation, and computational issues, whereas 

geography attempts to explain and predict geographic phenomena (Mark, 2003).  

The practice of GI Science is diverse, covering issues of technology, society, 

human cognition and the understanding of the nature of the Earth’s surface 

(Goodchild, 2008). Crucially, GI Science is not simply a new name for GIS training and 

applications (Mark, 2003), nor is GIS limited to a mechanical pushing of buttons 

(Goodchild, 2009). Thus, Mark (2000) identified two important and distinct research 

streams: research in basic GI Science, and research using GIS (Mark, 2000). Research 

may use GIS to implement the storehouse of knowledge known as GI Science 

(Longley et al., 2005). Research using GIS may also reveal important research topics 

for GI Science to address, and contribute to the GI Science research agenda (Mark 

2003).  

GI Science is perhaps best described through its research priorities. Reviews of 

the GI Science research field are provided by Mark (2003) and Goodchild (2008). A 

useful summary is the overarching ‘Grand Challenges for GI Science’; the result of a 

National Science Foundation (NSF) Workshop in 1999 (see Mark, 2000). The four 
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themes were: (1) the representation challenge; (2) the uncertainty challenge; (3) the 

user interface or cognition challenge; and (4) the simulation or modelling challenge. 

The geographic information basic research committee, the University Consortium 

for Geographical Information Science (UCGIS) has identified the long-term research 

challenges (http://www.ucgis.org/priorities/research/2002researchagenda.htm, 

accessed May 2010): 

 

• Spatial ontologies 

• Geographic representation 

• Spatial data acquisition and integration 

• Scale 

• Spatial cognition 

• Space and space/ time analysis and modelling 

• Uncertainty in Geographic Information 

• Visualisation 

• GIS and society 

• Geographic information engineering 

 

This list has been revised and expanded; for further information the reader is 

referred to McMaster and Usery (2005) and http://www.ucgis.org/priorities/ 

research/2006ResearchNextSteps.htm (accessed May 2010).  

Some of the GI Science issues are pertinent to disaster management and have 

been introduced in Sections 2.4.2 and 2.4.3; these will be discussed more widely, 

with reference to the UCGIS research challenges. There are also cross-cutting issues. 

 

2.4.4.2 Spatial data acquisition and integration (including interoperability) 

For natural hazards ground survey is costly, time-consuming and often difficult to 

perform (Coppock, 1995). Data limitations can lead to ignorance of data quality and 

use of unfit data because no other alternative (Agumya and Hunter, 1999). Thus, 

data acquisition and integration may be the single largest contribution area needed 

for emergency preparedness and response (Radke et al., 2000).  
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UCGIS objectives for GI Science pertaining to spatial data acquisition and 

integration include (but are not limited to) improving the logic and technology for 

data capture and improving data capture standards (Jensen et al., 2005). A major 

obstacle in the context of disaster management is the interoperability of systems to 

exchange information based on shared understanding of meaning and mutually 

agreed formats (Goodchild, 2003a). However, the Internet has played a key role in 

connecting systems over a common network protocol (Abdalla et al., 2007). The 

Open GIS Consortium (OGC) has also emerged as a mechanism for achieving greater 

interoperability, leading the development of standards, or specifications, for 

geospatial and location based services (Abdalla et al., 2007; Goodchild, 2009). 

Remote sensing is a key source of data for disaster management. Although 

remote sensing is frequently recognised as a discipline in its own right, UCGIS 

objectives for research include evaluation of new sensors and sensor data systems, 

encouraging the increased use of remote sensing and utilisation with real-time GIS 

(Merry et al., 2000). Over the past few years there has been a noticeable change in 

spatial resolution of remote sensing products and in spectral sensitivity. 

Technological advances are making satellite data products generally cheaper and 

ubiquitous. However, traditionally, coverage can be costly to obtain, have low 

spatial or temporal resolution, and be incomplete or uncertain in terms of repetition 

(Coppock, 1995; Kerle and Oppenheimer, 2002). Furthermore, optical data has 

limited utility in cloudy conditions (e.g. Kerle and Oppenheimer, 2002); and although 

Synthetic-aperture radar (SAR) can operate in any weather conditions it is poor in 

densely vegetated areas and areas covered in snow (e.g. Joyce et al., 2009). Landsat 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

multispectral archive data are good for exploratory studies at a relatively low cost 

but high cost for near real-time acquisition limits the use of these data for rapid 

hazard assessment (Kervyn et al., 2007). ASTER thermal imagery has also been used 

in warning systems (e.g. Gogu et al., 2006).  

Knowledge of topography is required for an assessment of many natural hazards, 

including gravitational flows such as floods and lahars (Section 2.3.5.1). Airborne- 

and satellite-derived elevation data have been reviewed recently in Maune (2007); 

of additional note for hazard response, there are publicly available datasets. Shuttle 
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Radar Topography Mission (SRTM) elevation data is (freely) available on a near-

global scale at resolutions of 30 m (1 arc second) for USA and 90 m for the rest of 

the world. However, there have been problems associated with voids in the dataset 

(Luedeling et al., 2007; Reuter at al., 2007; Kuuskivi et al., 2005; Grohman et al., 

2006; Nikolakopoulos et al., 2006), but these have largely been rectified. SRTM data 

may be acceptable for initial modelling in the short-term, dependent on event 

magnitude (spatial distribution). However, due to the significance of DEM quality on 

modelling results (Section 2.3.5.1), a higher resolution dataset is usually needed to 

improve reliability of mid- to long-term predictions. From June 2009, a new 30 m 

resolution global DEM was made available (free of charge) by the United States’ 

National Aeronautics and Space Administration (NASA) and Japan’s Ministry of 

Economy, Trade and Industry (http://www.gdem.aster.ersdac.or.jp/). However, 

there have been some accuracy issues and problems with cloud in certain areas. 

Other products for DEM generation, for mapping volcanic terrain, have been 

discussed in detail by Kervyn et al. (2007).  

Furthermore, on-the-ground GPS data have revolutionised the capture of vector 

data and greatly improved positional accuracy (Longley et al., 2005), but there 

remain insurmountable obstacles e.g. tree canopy and urban canyons interfering 

with GPS (Goodchild, 2009). Additionally, there are even recent developments in 

low-cost sensors that can be distributed over an impacted area and used to detect 

the presence of chemicals or fire (Goodchild, 2006). 

 

2.4.4.3 Uncertainty in geographic information, spatial ontologies and geographic 

representation 

Uncertainties in geographic information are inherent due to generalisations of real-

world phenomena. Spatial data uncertainty exists in continuous variables (e.g. 

elevation and slope), categorical variables (e.g. land-cover classification) and in 

objects (e.g. position of roads) (see Zhang and Goodchild, 2002). All spatial 

information contains uncertainty; the correct conceptualisation of uncertainty is 

fundamental to the correct use of that information (Fisher, 1999). The way in which 

a geographic phenomenon is conceived prescribes the way it is measured, which in 

turn prescribes analysis (Longley et al., 2001, 2005; Figure 2.13).  



  Chapter 2 

  62  

 

 

 

 

 

Figure 2.13 A conceptual view of uncertainty (after Longley et al., 2001; 2005).  

 

 

Consistent with this framework for conceptualisation, there are three elements of 

uncertainty pertaining to the conception, measurement and analysis of geographic 

phenomena (Longley et al., 2005): 

 

a) Uncertainty in the conception of geographic phenomenon: spatial uncertainty, 

vagueness and ambiguity.  

Only rarely are there natural units of analysis, for example the field view of 

geographical phenomena is inherently continuous in space, so how can an 

environmental impact study delimit spillage from an oil tanker?, the investigator 

must make subjective decisions (Longley et al., 2005). Vague concepts are poorly 

defined and give rise to an inability to apply labels to geographical phenomena. The 

Sorites Paradox is summarised as ‘what is a heap?’ and it little by little presents a 

logical argument that if one grain of sand is not a heap, and two are not a heap, then 

a million grains of sand are not a heap; it is one way to describe to test for a vague 

concept (Fisher, 1999; 2000). Land cover classes are vague geographic phenomena, 

for example, what is the absolute or relative incidence of oak trees in a zone that 

qualifies it for the label oak woodland (Longley et al., 2005; Fisher, 2010)? Arbitrary 
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decisions are often taken to create a working definition (Longley et al., 2005). 

Vagueness can be address by fuzzy set theory, where, simply, membership to the 

label is defined within the range 0—1 indicating the relative strength of the degree 

of membership (Fisher, 1999; Fisher 2010). In contrast, ambiguity arises when there 

is doubt on how to apply a classification to geographical phenomena due to 

different perceptions of it (Fisher, 1999). This is particularly true across languages 

and cultural groups (Longley et al., 2005).  

 

b) Uncertainty in the representation and measurement of geographic phenomena 

The handling of data and views of reality through different data models require 

different measurements of geographical phenomena. For example, reality may be 

viewed as fields or discrete objects and represented through raster or vector data 

models, each characterised by different uncertainties. For a full discussion the 

reader is referred to Longley et al. (2005). It is highly unlikely that geographical 

complexity can be reduced to models with perfect accuracy (Zhang and Goodchild, 

2002). There will always be discrepancies between recorded measurements and the 

truth due to the assumptions we have to make, even if geographic phenomena are 

well defined or labelled (Longley et al., 2005). Errors refer to inaccuracy and 

precision and are used with the assumption that true values are obtainable (Zhang 

and Goodchild, 2002). Measurement error is generated by the procedures of digital 

data capture (Longley et al., 2005). Uncertainty can also come from integration of 

multiple data sources into a single geographic dataset; this can reveal errors when 

they are overlaid from one or more original datasets (see Longley et al., 2005).  

 

c) Uncertainty in the analysis of geographic phenomena 

Uncertainty is an inherent property of knowledge and knowledge production  

(Couclelis, 2003). Turning raw spatial data into spatial information requires scientific 

analysis, yet the conception and measurement of many geographic phenomena are 

uncertain; thus, the precise nature of spatial variation may never be known (Longley 

et al., 2001). Inappropriate inferences from aggregate data about the characteristics 

of individuals are also made (Longley et al., 2005). Scale also has great impacts for 
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analysis. Taken together, the effects of scale and aggregation are generally known as 

the modifiable areal unit problem (Openshaw, 1984; Longley et al., 2005).  

 

GI Science research priorities include (but are not limited to): developing 

strategies for identifying, quantifying, tracking, reducing, and reporting (including 

visually representing) uncertainty in geographic data and GIS-based analyses (UCGIS, 

1998; McMaster and Usery, 2005). Uncertainty considerations have great relevancy 

for natural hazard management (Section 2.2.2.2). Uncertainty can undermine trust 

which might have been put into the work or operator (Fisher, 1999; Haynes et al., 

2008b). Confidence in results is critical to their acceptance and to public recognition 

of risks (Zerger, 2002). 

 

2.4.4.4 Spatial cognition and visualisation 

Maps are important decision support tools (Longley et al., 2005), yet they are never 

totally objective (Stefanovic, 2003). It has been argued that the traditional plan-view 

map presents a ‘gods eye view’ (Goss, 1995), perhaps giving false legitimacy to 

scientific results. Map visualisation relies on creating an impression of data 

properties within the mind of the observer (Gahegan, 1999). All maps present 

alternative views, embodying their authors’ prejudices, biases and partialities 

(Wood, 1992) and present a specific argument or form of propaganda (Dorling and 

Fairbairn, 1997; Wood and Fels, 2008). Thus, maps can be used by disaster managers 

to persuade and control (Monmonier, 1998). 

Paper maps are only one form of visualisation. A GIS is a flexible medium for the 

production of maps, allowing variable scale, querying of attributes and 

reclassification of data (Longley et al., 2005). Furthermore, it is this flexibility that 

allows user interactivity to feedback from a visualisation and perform ‘what if’ 

scenario testing (Longley et al., 2005). Yet, however subjective mapping products 

may be, they are still useful for the communication of hazard information, and are 

often the preferred output for decision-makers (e.g. Zerger and Smith, 2003). Thus, 

outputs from a GIS can, and should, be tailored to different information needs of 

different interested parties (Radke et al., 2000). Intelligent visualisation techniques 

are needed to reduce the information load and to ensure quick and accurate 
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information transfer (Andrienko and Andrienko, 2007). General map design can be 

informed by the British Cartographic Society’s introductory text (BCS, 2008) and 

Brewer (2005) among others. Furthermore, Hallisey (2005) provides an assessment 

and epistemological review of map visualization from a more social perspective.  

Issues relating to the representation of geographic phenomena (introduced in 

Section 2.4.4.3) are also relevant to spatial cognition. UCGIS objectives for GI science 

pertaining to spatial cognition include questions such as: are current data models 

being limited by human cognitive models of space, place and environment? How can 

GIS be used to represent and communicate important information in different ways? 

(Montello et al., 1998; McMaster and Usery, 2005) Goodchild summarised the 

relationship between GIS and spatial cognition as follows, while recognising that 

there has been significant improvement recently in this area of GI Science, 

 

“GIS is in many ways the interface between the informal, loose world of human 

cognition and discourse and the rigorous, formal, and precise world of digital 

computers” (Goodchild, 2009, p. 6).  

 

2.4.4.5 GIS and Society (including public participation) 

Controversy surrounding the social implications of GIS applications arose in the 

1990s (Pickles, 1995; Wright et al., 1997; Pickles, 1997; see also Schuurman, 2000). 

Some of the key criticisms have been summarised (for a GIS audience in Longley et 

al., 2001, p25) and include: the way human society is reflected, favouring certain 

perspectives (see also Section 2.4.4.4); the idea that GIS as a tool can be inherently 

neutral and immune from ethical debates; GIS is technology led and not demand-

driven (see also Hassan, 2005); and GIS remains a tool in the hands of the (already) 

powerful. There has been a subsequent growth of a more socially aware type of GIS 

that is context- and issue-driven rather than technology-led, and seeks to emphasise 

community involvement in the production and/ or use of geographic information 

(Dunn, 2007).  

Public participatory approaches enhance public involvement in environmental 

planning and decision-making. There is a strong need for public participation, both in 

developing GIS for emergency preparedness and for gaining access to it during a 
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disaster (Radke et al., 2000). The public possess a repository of diverse experiences 

and local knowledge that can contribute to academic and scientific knowledge. In 

return the public will receive participation in the policy processes affecting their 

lives. Figure 2.14 shows the increasing levels of public participation in the decision-

making process (Carver, 2003). Public Participation GIS (PPGIS), through the 

interaction of community interests and GIS technology, develops a richer database. 

Critical issues pertaining to PPGIS are discussed comprehensively by Elwood (2006), 

Sieber (2007) and Dunn (2007) among others. Public interaction with digital spatial 

data is becoming more ubiquitous through products such as Google Earth and 

Google Maps (Butler, 2006b); this is liable to have implications for PPGIS, for 

example by allowing non-experts to upload data to and increasing the 

democratisation of GIS (Dunn, 2007; MapAction, 2008). The role of the public as an 

important and rapidly growing source of geographic data has been discussed in 

several recent publications (see, e.g. Elwood, 2008; Goodchild, 2009).  

 

 

 

 

 

Figure 2.14 The public participation ladder in GIS (After Arnstein 1969; Carver, 2003 

and references cited therein) 
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However, participatory approaches raise important questions about 

interpretation of accuracy (e.g. Goodchild, 2009); public participatory maps are not 

spatially accurate in a geometric sense (although relative locations are preserved) 

(Williams and Dunn, 2003). Furthermore, participatory approaches will inevitably 

involve multiple workers from different disciplines or researchers crossing 

disciplines; thus there may be problems with researchers who have little history of 

working together (e.g. development studies and GIS practitioners) (Williams and 

Dunn, 2003). 

Public participation is, of course, not limited to GIS. There has also been a general 

call for (natural) scientists to show more cultural respect, in relation to risk analysis; 

this involves integrating vulnerability analyses and also pubic knowledge. As a 

response to rising global interest in public participation, the International 

Association for Public Participation (IAP2, http://www.iap2.org/) was founded in 

1990. Public participation is also becoming increasingly prevalent in hazard 

management. For example, Participatory Rural Appraisal (PRA) methods for 

incorporating scientific with traditional knowledge have been tested for volcanic 

hazard management on Ambre Island, Vanuatu (Cronin et al., 2004a) and Savo, 

Solomon Islands (Cronin et al., 2004b). The former used a participatory mental 

mapping technique with the public and found that the derived volcanic hazard 

management guidelines (supported by an alert system and map) were more readily 

accepted than the earlier ‘top-down’ plans imposed by outside governmental and 

scientific agencies. The latter described how PRA can initiate dialogue within diverse 

stake-holder groups. Thus, PRA techniques can be used to involve many members of 

the community and outside interested parties. However, it is noted that there are 

problems getting the involvement of the less powerful community members (e.g. 

women, youth and non-landowners) (Cronin et al., 2004b).  

The public participation ladder in GIS (Figure 2.14) also has parallels with trends 

in approaches to risk communication by scientists: from original command and 

cajole to a move towards more public involvement (Fischoff, 1995). 
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2.4.5 Potential of geospatial data and tools for lahar hazard assessment  

 

This thesis focuses on lahar hazard assessment, one aspect of the disaster 

management cycle which is directly connected to mitigation and preparedness 

activities. Given the discussion above, geospatial data and tools can potentially 

contribute to such an appraisal by: 

 

• Providing a data repository (e.g. spatial distribution of field data) 

• Delineating inundation areas from past deposits 

• Acquiring data, e.g. GPS, satellite imagery 

• Developing a surface representation (i.e. DEM) for lahar modelling 

• Integrating GIS and simple lahar modelling; however, from experience with 

coupling GIS with hydrological models, it would be likely that only simple 

models could be developed and preliminary findings gained. 

• Exploring cost-benefit or ‘what-if’ scenarios for mitigation 

• Undertaking evacuation planning 

• Producing and/ or updating hazard zonation maps.  

 

This list is not exhaustive. Core themes from GI Science also have potentially 

relevancy for lahar hazard assessment. These have been identified in the section 

above as: data acquisition and handling; uncertainty analysis; spatial cognition and 

visualisation and; GIS within society. Following an introduction to the study area, the 

final part of this chapter will discuss the wider gaps in the literature.  
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2.5 REGIONAL SETTING: MONTSERRAT, WEST INDIES 

 

2.5.1 Overview  

 

Montserrat is a British Overseas Territory in the West Indies that has been ravaged 

for nearly 15 years by a prolonged volcanic eruption. There was no historical 

precedent for volcanic activity on Montserrat; in July 1995 an eruption of the 

Soufrière Hills volcano began, with steam venting explosions after 400 years 

quiescence (Young et al., 1998). The Montserrat crisis is unusual as a natural hazard 

due to its protracted nature. Long-term management is required, but of a type that 

responds to sudden impact events from individual and multiple hazards after 

periods of repose lasting months to years. From one perspective the initial crisis can 

be thought to have past, but the population is perpetually prevented from entering 

a recovery phase; hazard management is always mitigating and preparing for the 

next hazard.  

 

 

2.5.2 Geography, geology and climate 

 

Soufrière Hills Volcano lies in the south-central part of the island of Montserrat, 

West Indies (16.7° N, 62.2° W; Figure 2.15). Montserrat is part of the Lesser Antilles 

volcanic island arc, formed by the subduction of the Atlantic oceanic lithosphere 

(North Atlantic Plate) beneath the Caribbean Plate (Kokelaar, 2002). Montserrat 

consists of three volcanic massifs (Silver Hills, Centre Hills, Soufrière Hills-South 

Soufrière Hills) which range in age from late Pliocene (2.6 million years) to Recent 

(Wadge and Isaacs, 1988; Harford et al., 2002; Hincks et al., 2005). In addition, 

Garibaldi Hill and St George’s Hill are topographic highs (Figure 2.16). Soufrière Hills 

is the youngest and only active volcanic complex. It has a crater (English’s crater) 

approximately 1 km in diameter breached on the east-northeast side, attributed to a 

large sector collapse (Hooper and Mattioli, 2001). 
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Figure 2.15 a) Position of Montserrat in the Caribbean; part of the subduction zone 

is also shown (after Susnik, 2009); b) the current access restrictions on Montserrat 

(Hazard Level 3, MVO, http://www.mvo.ms/).  

 

 

The island had a pre-eruption land area of 98 km2, but with frequent pyroclastic 

flows, e.g. down Tar River Valley and towards Plymouth, the island is growing. The 

majority of Montserrat is mountainous with small amount of coastal lowland and 

consists almost exclusively of volcanic rock. The rugged land surface is punctuated 

with deep valleys, known locally as ‘ghauts’.  

Montserrat’s climate is maritime subtropical, with little daily or seasonal 

temperature fluctuations. Montserrat lies at the northern edge of the Inter-tropical 

Convergence Zone (ITCZ) and receives an annual mean rainfall 890 mm/yr (Barclay 

et al., 2006). Due to the ITCZ seasonal cycle a wet season occurs from April to 

November, with two peaks in May and September (Barclay et al., 2006). The tropical 

climate supports dense rainforest on the Centre Hills; lower montane and montane 

rain forest, palm break and elfin woodland represent the climax vegetation (Procter 

and Fleming, 1999).  
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In addition to the ongoing volcanic hazard, Montserrat is also vulnerable to 

hurricanes, tsunamis, earthquakes and the mountainous topography causes 

frequent landslides. For example, Hurricane Hugo in 1989 damaged 90% of buildings 

on the island (Kokelaar, 2002). 

 

 

 

Figure 2.16 Pre-eruption geological map of Montserrat; coordinates in Montserrat 

National Grid (contour interval = 100 m). Dating in thousands of years (ka) from 40Ar/ 

39Ar geochronology (after Harford et al., 2002). 
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2.5.3 Chronology of an andesitic dome-building eruption 

 

Radiocarbon dating suggests that the last period of major activity at Soufrière Hills 

took place around 400 years ago (Shepherd et al., 1971; Young et al., 1998). 

Following a few years of pre-eruptive seismic activity, the 1995 eruption 

commenced with phreatic explosions associated with heating of shallow water and 

the opening of a 1–2 m diameter steam vent (Young et al., 1998); lava dome growth 

was later confirmed in November 1995 (Sparks, 1998). Since then the volcano has 

continued on a cycle of viscous (andesitic) magma extrusion, lava dome growth and 

subsequent flank or sector collapse, followed by a period of residual activity (Druitt 

and Kokelaar, 2002). The chronology of the eruption is summarised in Figure 2.17.  

 

 

 

Figure 2.17 Summary of some of the key events of the eruption to February 2010 

(after http://www.mvo.ms/; Herd et al., 2005; Edmonds et al., 2006)  
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The primary hazards are dome and flank collapse events, explosions, pyroclastic 

flows and surges, block and ash falls, and debris avalanches (Hooper and Mattioli, 

2001; Herd et al., 2005; Edmonds et al., 2006). Secondary volcanic hazards refer to 

those phenomena indirectly associated with the eruption e.g. lahars (locally known 

as mudflows) and landslides. 

 

 

2.5.4 Impacts of the eruption (1995—present) 

 

2.5.4.1 Physical change 

Montserrat has effectively lost two-thirds of its land area to the volcano, with over 

60% of the island permanently designated as unsafe for human habitation or 

activity.  The most suitable areas for settlement have been lost, including over 70% 

of the buildings (Clay et al., 1999). Most of the higher potential agricultural and 

pasture land has been buried or made inaccessible (Dittmer, 2004).  

Volcanic flows (e.g. pyroclastic flows) have filled many of the major drainage 

channels (ghauts) with volcanic debris, and deposition at the mouths of river 

systems has extended the coastline (Hincks et al., 2005). Furthermore, the 

remobilisation via rainfall of loose material deposited has resulted in profound 

changes to the geomorphology of many of the river systems surrounding the 

volcano.  

Vegetation on the flanks of the Soufrière Hills, and adjacent South Soufrière Hills, 

has largely been destroyed by pyroclastic flows, ash fall and acidic gas (Hincks et al., 

2005). The period for vegetative regeneration is estimated at 10—20 years, once ash 

deposition and lahars have ended (Clay et al., 1999).  

 

2.5.4.2 Demographic change  

Prior to the start of the eruption, there was a high standard of health, education and 

living on Montserrat (Clay et al., 1999; Dittmer, 2004). Most of the population, 

infrastructure, public and private sectors were concentrated on the southwest coast 

in the capital city of Plymouth (Figure 2.16). This was destroyed two years after the 

eruption began.  
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Of the circa 11 000 people that were resident on Montserrat before the eruption 

began, 92% suffered at least one evacuation when nearly two-thirds of the island 

was designated unsafe for human habitation (Kokelaar, 2002). Evacuations 

proceeded in stages; the first evacuation of Plymouth was ordered in August 1995 

but after two weeks the population returned, reflecting lower activity levels. This led 

to a feeling of transience by local people and sustained in them hope that they could 

return to their homes in the longer-term (Dittmer, 2004). Plymouth was evacuated 

three times before being permanently abandoned in June 1997 (Bowen, 1997). 

Initially, those residents who were able to leave the island were asked to do so 

voluntarily to ease pressure on shelters. Financial incentives were offered by the 

British Government, reducing the island’s population to about 2 500. Residents that 

remained were predominantly single persons or small family units at the poorest 

end of the economic spectrum (Fox, 2002). However, the move to the north was not 

‘an even trade’ as the land was comparably barren and infertile (Dittmer, 2004) and 

temporary accommodation for evacuees was substandard (Pattullo, 2000; Fox, 

2002). Despite initial enthusiasm toward the UK’s Assisted Return Package scheme 

(Clay et al., 1999), by the end of 2007 government figures indicated that the 

population had only rebounded to circa 4 500. The influx has mainly been due to 

guest workers involved in construction projects (Stone, 2003; Dittmer, 2004).  

The immediate social consequences of the volcanic eruption were shrinkage of 

the island, relocation of evacuees, social fragmentation, a decline in the quality of 

services (Pattullo, 2000). Now the population is living with the continual hazards 

from the volcano, access restrictions and, for those that choose to stay further 

south, periodic evacuations (e.g. when dome growth is directed towards the west, 

parts of the west coast are evacuated). Fine airborne ash penetrates into homes and 

is an inconvenience and possible health hazard (Horwell et al., 2003; Hincks et al., 

2006). 

 

2.5.4.3 Economic change 

In the first four years of the eruption the total capital loss was estimated at £1 billion 

(Clay et al., 1999). The economy is now virtually non-existent except for the public 

sector and linked public construction (Clay et al., 1999; Dittmer, 2004). The GoM is 
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attempting to revive the tourism industry. Tourism was one of the main contributors 

to the economy before the volcanic crisis, contributing to 25% of GDP (DFID, 2005). 

The pre-eruptive form of tourism was fairly unique to Montserrat consisting mainly 

of low-density retirement homes for foreigners (Dittmer, 2004). However, the 

tourism industry virtually collapsed as Montserrat’s identity became synonymous 

with danger (Dittmer, 2004). Since the onset of the crisis Montserrat has been 

reliant on DFID assistance.  

DFID is the UK government department responsible for promoting sustainable 

development and reducing poverty. Its central focus in the Caribbean is to assist the 

region to achieve sustainable reductions in poverty in line with the Millennium 

Development Goals. For Overseas Territories, Country Policy Plans set out how the 

UK will contribute to achieving policy objectives and promote development. 

However, DFID is seeking to reduce Montserrat’s dependence on external support, 

with the aim of achieving self-sufficiency within ten years (DFID, 2005). A newly 

constructed Sustainable Development Plan should help achieve this goal. 

Montserrat needs rapid private sector development and re-positioning in the tourist 

market (DFID, 2005). The tourist sector should have improved since the opening of 

the new Gerald’s airport in 2005 and subsequent reconnection with transport 

networks.  

Contrary to the DFID plan, others argue that it is better to embrace the 

uniqueness of the island, for example by developing a postgraduate school of 

disaster studies (Economist, 2003). A return to agriculture is almost impossible as 

the fertile land of the south is largely inaccessible or destroyed (Dittmer, 2004). 

However, volcanic activity has also resulted in the deposition of a new resource of 

volcanic materials such as sand and gravel that may be used in construction (Norton, 

2005). A major challenge for rejuvenation of the economy will be to attract back or 

retain skilled people.   
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2.5.5 Management of the Volcanic crisis (short-term) 1995—1999 

 

Initial extrusion and the first phase of dome growth commenced November 1995 

and were punctuated by periods of explosive activity and dome collapse until March 

1998. There was then a period of repose until renewed extrusion and dome growth 

in November 1999. This marks the first cycle of the eruption and also reflects the 

period covered in a Geological Society of London publication (Druitt and Kokelaar, 

2002). MVO was setup in response to the escalating activity in 1995, before then the 

Seismic Research Unit of the University of the West Indies, had been actively 

monitoring Montserrat for several decades, with permanently installed 

seismographs and occasional field visits (Aspinall et al., 2002). 

Montserrat was unprepared for the volcanic eruption despite a relatively recent 

report outlining the potential of an eruption and the susceptibility of Plymouth to 

volcanic hazards (Wadge and Isaacs, 1987). The revised report was also published 

and internationally distributed as a journal article (Wadge and Isaacs 1988). 

Although copies were delivered to the Governor’s Office and to the Commissioner of 

Police on Montserrat, local authorities denied all knowledge of the report until 

volcanic activity began in 1995 (Bowen, 1997); later the loss of documents was 

attributed to Hurricane Hugo in 1989 (Pattullo, 2000). This lack of preparedness also 

resulted in the ill-advised rebuilding of key facilities in Plymouth after the hurricane, 

wiping out £16.8 million of redevelopment aid (provided by HMG) almost 

immediately after completion (Bowen, 1997). Crucially, both the GoM and the UK 

Government proved themselves to be unprepared for the communication and public 

information roles that managing the emergency required (Clay et al., 1999; McGuire 

et al., 2009).  

There was an initial shaky start to the management of the crisis (e.g. Aspinall et 

al., 2002; Kokelaar, 2002). No contingency plans had been made and ad hoc 

arrangements were made reactively as the eruption progressed (Clay et al., 1999). 

The Wadge and Isaacs (1987; 1988) report was initially adopted and then adjusted 

to meet new developments at the volcano (Aspinall and Cooke, 1998). Short-term 

management decisions were made. Eleven different hazard maps were produced in 

just over a year, reflecting both changing alert levels issued by MVO (Aspinall et al., 
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2002) and the desire by the local authorities to allow as much access as possible 

(Kokelaar, 2002); however, the number of maps and their multiple zones 

(microzonation) complicated communication to the general public (Pattullo, 2000; 

Kokelaar, 2002).  

The complexity of HMG management and the administrative system for 

Montserrat as self-governing, contributed to management failures in the early 

stages of the volcanic crisis (Clay et al., 1999). GoM adopted a ‘wait and see’ 

attitude, assuming less serious impacts, whereas HMG had to prepare for the worst 

case (Clay et al., 1999); it has been argued that this dual focus protected the wider 

interests of the citizens of the island (Davis et al., 1998). Differing agenda also 

existed between the administrative authorities and scientists at MVO. For example, 

the (single runway) airport was kept open until its evacuation during the advance of 

a pyroclastic flow (Kokelaar, 2002). Initially there were divergences in opinions 

between scientists at MVO and authorities became frustrated with the perceived 

indecision (Aspinall and Cooke, 1998); misunderstandings of the uncertainties in 

volcanic monitoring were initially mistaken for incompetence of the scientists by 

local authorities and in some cases the public (Haynes et al., 2008a; 2008b). 

However, generally the close link between scientists and emergency managers 

raised public confidence and improved the response of the population (McGuire et 

al., 2009). Trusted and influential locals (including radio presenters and church 

leaders) were also exploited by scientists and authorities as ‘translators’ (Haynes et 

al., 2008a). 

Aspects of the organisation and delivery of aid by DFID have been criticised (see 

details in Bowen, 1997). The growing perception from Montserrat was that DFID was 

acting ungenerously and adopting cost minimising solutions to the detriment of 

longer term development (Clay et al., 1999). Post-disaster accommodation was one 

of the most controversial aspects of the entire emergency response (Fox, 2002). For 

example, tents procured were second-hand from the American army and in poor 

condition (Bowen, 1997; Clay et al., 1999; Fox, 2002). Five different types of short-

medium term temporary shelters were provided before permanent structures were 

erected – two years after the onset of the eruption (Fox, 2002). Inadequate 

conditions in the early stages of the eruption may have contributed to people 
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entering the exclusion zone to tend to their property (Pattullo, 2000). However, 

HMG regards management of Montserrat as an overall success; ‘…everyone has had 

a roof over their head, no one has gone hungry’ Clay et al., 1999, p1). 

Nineteen people died in pyroclastic flows on 25 June 1997 after entering the 

exclusion zone. Eighty members of the public were in the ‘evacuated’ area that day, 

despite warnings from local authorities and scientists (Loughlin et al., 2002). There 

were a combination of factors contributing to the fatalities e.g. people had become 

de-sensitised to risks (Aspinall and Cooke, 1998; Loughlin et al., 2002) and conditions 

in the temporary shelters prompted people to return to their homes (Pattullo, 

2000). Furthermore, access was restricted but barriers were not firmly enforced 

(Voight, 1998). Later a news article published in Nature was highly critical of science 

communication preceding the June 1997 disaster; it claimed a survey of islanders 

had shown Montserratians had ‘lost faith’ in scientists warnings and this had directly 

contributed to the deaths (Masood, 1998). An earlier Nature editorial (Nature, 388, 

1; 1997) had also attributed the deaths to poor communication, using the disaster as 

a call for cooperation across disciplinary boundaries. Scientists responded in earnest, 

highlighting the many lives that had been saved and reiterating the uncertainties 

(and often unpredictability) of volcanic phenomena (Aspinall et al., 1998; Voight, 

1998). 

 

 

2.5.6 Management from emergency towards reconstruction and recovery (long-term 

and current strategies) 

 

2.5.6.1 Synopsis of current hazard management 

Soufrière Hills is continuously monitored by scientists at Montserrat Volcano 

Observatory (MVO). This includes visual observations and instrument monitoring of 

seismicity, ground deformation and gas. Principal sources of uncertainty pertain to 

eruptive scenarios, e.g. direction of dome growth and potential for collapse (through 

explosion or edifice failure).  

Primary hazards are monitored individually by MVO. Hazard and risk assessments 

are reviewed every six months by a panel comprised of MVO personnel and 
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scientific advisors. Known as the Scientific Advisory Committee (SAC), this panel 

release preliminary statements followed by a main report and a technical report; all 

are publicly available from the MVO website (http://www.mvo.ms/).  

For each hazardous process, the probability that they will occur and affect a given 

area (fixed zone) of Montserrat is estimated. Uncertainties from complex potential 

eruptive scenarios are considered through probability trees and Monte Carlo 

procedures; probability density functions for different hazards are determined by 

numerical models where available (Hincks et al., 2005). Expert judgement is used 

where results are unavailable (e.g. Newhall and Hoblitt, 2002).  

Given an estimate of the probable hazards affecting a particular zone, the risk to 

which a given number of people in that area will be exposed is calculated. Risk levels 

are mainly expressed as potential loss-of-life estimates and as annualised individual 

risk exposures (qualitative description based on UK Chief Medical Officer’s scale). 

Risk in all zones is then considered against the island-wide Hazard Level System (a 

relatively new system set-up in August 2008). Ultimately the responsibility for 

determining the Hazard Level and response falls to the National Disaster 

Preparedness and Response Advisory Committee (NDPRAC). The committee is 

comprised of a panel including the Governor, representatives of the Government of 

Montserrat, Disaster Management Coordination Agency (DMCA) and MVO. The 

DMCA implement decisions, act on scientific advice and have the primary 

responsibility for liaising and communicating with the public. 

Maps created on advice from MVO, and in consultation with the SAC, are used to 

communicate hazard zones to local government officials and general public. Each 

incarnation of the hazard zones map reflects the dangers from all primary volcanic 

hazards and restricts movement and access according to the Hazard Level System 

(new system set up in August 2008). Montserrat is currently at Hazard Level 3 

(Figure 2.15b) (May, 2010). The public are also informed of changes in volcanic 

activity through daily reports by MVO personnel on a local radio station and through 

the MVO website. Furthermore, MVO outreach has, as far as is practicable in a crisis, 

an open-door policy for interaction with the public (Aspinall et al., 2002).  
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In addition to community-level evacuation plans (that are reviewed and updated 

annually) there is a plan for the evacuation of the entire island – Operation Exodus 

(GoM, 2005).  

 

2.5.6.2 International commitments to disaster risk reduction 

Following the abandonment of Plymouth and relocation to the northern part of the 

island in 1997 a Sustainable Development Plan (SDP) was established with DFID 

funding; by 2001 £75 million of assistance had been received to develop the north of 

Montserrat (GoM, 2006). The volcano dome collapse of July 2003 resulted in ash 

that enveloped the entire island triggering national, regional and international 

response (GoM, 2005). The United Nations Development Programme (UNDP) 

country office in Barbados has further supported disaster mitigation, capacity 

building and institutional strengthening in support of Montserrat’s Post-Emergency 

Resettlement Programme through United Nations Volunteer placements in the 

areas of physical and social infrastructure. This assistance, co-funded by DFID and 

GoM, amounted to US$750,000 (UNDP, 2003).  

Prior to the World Conference on Disaster Reduction, WCDR, (Kobe, Hyogo, Japan 

18-22 January 2005) ISDR encouraged national authorities to provide information to 

identify needs and elaborate policy recommendations for the preparatory process of 

the WCDR. Two of the main outputs of the WCDR were the Hyogo Declaration and 

the Hyogo Framework for Action. The GoM prepared their national report and 

highlighted their commitment to achieving a sustainable form of disaster risk 

reduction (GoM, 2005). This national report placed disaster risk reduction central to 

national policy and strategy, and stressed disaster risk reduction and environmental 

impact assessments must be carried out before any development projects are 

approved (GoM, 2005).  

Montserrat is classified by the UN as a non-UN member ‘small island developing 

state’ (SID). Most SIDs are remote, small in land area and population (less than 1.5 

million), with a very narrow resource base and fragile land and marine ecosystems 

that are highly vulnerable to natural disasters and Montserrat fits comfortably in this 

definition (http://www.un.org/esa/dsd/dsd_aofw_sids/sids_members.shtml, 

accessed May 2010). While Montserrat has not submitted a National Adaptation 
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Plan for Action and has not ratified the Kyoto Protocol (May 2010), Montserrat’s 

national report states climate change and national adaptation plans are led by the 

Minister of Agriculture (GoM, 2005).  Furthermore, the new SDP (2003-2007) aimed 

to accelerate Montserrat’s dependency on foreign aid and ultimately lead to self 

sufficiency (GoM, 2006). It is unclear how much progress has been made.  

 

“The Montserrat experience can be used as a useful case of a small island 

developing state where collaboration of political establishment, civil service, 

scientific communities and disaster reduction sectors are making positive changes to 

reduce risk to disasters by committing to the integration of risk reduction into all 

planned development.” (GoM, 2005).  

 

 

2.5.7 Belham Valley lahars 

 

Lahars are not formally monitored on Montserrat. MVO are committed to 

monitoring primary volcanic hazards only and thus lahars are not a priority. 

However, this means that the Hazard Level System is not reflective of lahars, nor are 

the island-wide hazard maps (e.g. Figure 2.15b). 

Lahars are recorded in daily and weekly MVO reports on activity at the volcano. 

However, these reports rely on visual observations and thus probably represent an 

under-reporting of lahars (Barclay et al., 2004). Short-period seismic records can 

show lahars but the seismic network was designed to monitor primary activity and 

thus during periods of high volcanic activity it can be impossible to distinguish lahars 

(Barclay et al., 2004). There was a purpose-designed lahar monitoring network 

installed in the Belham Valley, but this data was never retrieved and the equipment 

has not been maintained (Barclay et al., 2004).  

Lahars occur frequently in all major drainages, but only one could channel lahars 

towards populated areas, the Belham River Valley (Figure 2.18). Most Belham Valley 

lahars are rainfall-induced and not limited by sediment availability. Thus, they can 

occur without concurrent volcanic activity. The likelihood of lahar occurrence 

reflects the seasonality of the Montserratian rainfall (Barclay et al., 2004). Lahars in 



  Chapter 2 

  82  

the Belham valley correlate with days when > 10 mm rain fall in 24 h, with more 

lahars triggered in the late rainy season (Barclay et al., 2007). However, there is less 

of a correlation of rain and lahar events in the dry season, thus rainfall alone is not 

responsible for triggering all lahars (Barclay et al., 2007). Other sources of water 

come from the stream-flow of tributaries that do not contain loose volcanic 

sediment (Barclay et al., 2004), i.e. those draining the Centre Hills.  

There is significant spatial variability of rainfall intensity across the island due to 

topographic enhancement (Barclay et al., 2004; Barclay et al., 2006). Preinstalled 

rain-gauges (when operating) have been recording rainfall at a one-minute 

resolution from 2001 onwards (Matthews et al., 2009). However, the rain-gauge 

network coverage (Figure 2.18) is not comprehensive and the gauges become 

clogged by ash (fine tephra).  Furthermore, due to rainfall variability with 

topography over the island, single gauges are not representative of rainfall intensity 

over a large area (Barclay et al., 2006).  

 

 

 

Figure 2.18 Belham Valley Montserrat and rain-gauge network; names for the 

currently active gauges are shown in bold text (150 m contours) (After Alexander et 

al., in press). 
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Sediment load is introduced by new eruptive material and also through erosion of 

and entrainment of pre-existing deposits. Vegetation damage makes more sediment 

available and also increases runoff (Barclay et al., 2004; Alexander et al., in press).  

Prior to the onset of the modern eruption (pre-1995), the ephemeral Belham 

River produced only low sediment-concentration flows (stream-flow). From the 

same rainfall patterns post-1995, changes in the catchment have produced 

discharge events with a much more variable sediment load (Barclay et al., 2007). In 

general Belham Valley lahars have very low sediment concentrations, producing 

deposits more akin to concentrated stream-flow than hyperconcentrated-flow or 

debris-flow (Barclay et al., 2007). Thus, most flows display Newtonian characteristics 

and are strictly not lahars; some authors prefer the term ‘sediment-charged flash 

floods’ (e.g. Alexander et al., in press). These dilute flows have been compared with 

flows in analogous systems such as flash floods in ephemeral streams, flash floods 

following forest fires and floods in steep mountain streams (Susnik, 2009). Although 

rare, non-Newtonian hyperconcentrated-flow and debris-flow have been observed 

and display competence to transport boulders up to 2 m diameter (Barclay et al., 

2007). These more extreme events have been caused by changed runoff resulting 

from synchronous tephra fall and widespread vegetation damage (Alexander et al., 

in press). While the considerable temporal and spatial variation in the nature of the 

flows is acknowledged, the collective term ‘lahar’ is used here.  

Lahars have caused great geomorphological change to the Belham Valley. Figure 

2.19a shows the floodplain as it used to be just after the modern eruption began, a 

golf course, and Figure 2.19b shows the same area after ten years of lahars. Damage 

from lahars can also be seen on houses that bordered the Belham River (Figure 

2.20). While Belham lahars are not formally monitored, there are warning signs in 

place at major crossing points (Figure 2.21).  

Lahars on Montserrat differ from examples documented at other volcanoes in 

that (a) the eruption has been continually supplying sediment, (b) rainfall is the only 

significant trigger, and (c) the system is small, with a relatively low catchment top 

and short travel distance to the sea (Barclay et al., 2007). As documented above, 

there has been some previous research on lahars in the study area; however, this 

does not preclude further original work. 
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Figure 2.19 Multiple flows down the Belham Valley have greatly changed the 

geomorphology: a) the mouth of the valley in 1996 (looking east), the shoreline is 

marked by a line of palm trees (courtesy R. Herd, UEA); b) the mouth of the valley in 

2006 (looking south-east) has greatly extended into the sea, the palm trees marking 

the 1996 shoreline have been highlighted. 

a) 

b) 
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Figure 2.20 Photographs illustrating the effects and damage caused by lahars in the 

Belham Valley a) large boulders up to 2—3 m diameter have been deposited in the 

mid-reach (flow right to left); b) boulders also in the upper-reach (looking 

upstream); c) damaged house in November 2006; d) house in 2007, an extra 1m of 

deposit; e) rear of house in 2007 shows accumulated debris; f) lahar debris litters 

the floor of the Belham Valley in 2007, Soufrière Hills can be seen in the background.  
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Figure 2.21 Warning signs are in place at the major crossing points for the Belham 

Valley. Lahars are often locally referred to as floods or mudflows. 

 

  

Moreover, these framing studies (e.g. Barclay et al., 2007; Susnik, 2009; 

Alexander et al., in press) have demonstrated the need for an improved 

understanding of Belham lahars and have established relationships with local 

scientists. Furthermore, the small size of the catchment provides a manageable case 

study, ideal for model testing and development. Any ideas developed can potentially 

be applied to other lahar and non-lahar systems worldwide, especially small 

catchments with water-rich gravitational flows.   
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2.6 EVALUATION OF GAPS IN RESEARCH TO DATE 

 

2.6.1 Drawing out intellectual themes  

 

Three intellectual themes can be mined from the different literary sources and these 

will run through the thesis:  

 

(1) monitoring lahars, acquisition and handling of data;  

(2) improving knowledge of lahars through modelling; and  

(3) transfer of academic research on lahars to agencies of hazard management.  

 

These themes have emerged in the discussions of the state-of-the-art of natural 

hazard management, lahar hazard assessment, application of GIS, and implications 

from (and for) GI Science. The evidence is synthesised below. 

 

Monitoring lahars, acquisition and handling of data 

The difficulties in data acquisition from an active volcanic system were first 

highlighted in Section 2.3.3. Models can predict lahar movement when field 

observations are few, but in turn models can have great data demands (Section 

2.3.4.5).  

Lahars are not formally monitored on Montserrat as they are secondary volcanic 

hazards (Section 2.5.7); thus, this research needed to acquire the raw data for 

modelling. One of the key requirements for most modelling approaches has been 

identified as a digital elevation model (DEM) (Section 2.3.5.1).  

The issue of data handling was discussed briefly in a reflection on the key factors 

for lahar modelling (Section 2.3.5); however, the procedures for turning data into 

information and for dealing with uncertainties in spatial data were discussed in 

further detail with reference to research using GIS and GI Science (Section 2.4.1). 

Uncertainties when dealing with natural phenomena are also being regarded with 

increasing importance in the field of natural hazard studies, and hazard assessment 
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techniques are starting to move beyond simple uncertainty recognition towards 

attempts to quantify (Section 2.2.2).  

 

Improving knowledge of lahars through modelling 

Modelling is now central to assessment of natural hazards (Section 2.2.2.1) and, in 

particular lahars (Section 2.3).   

To the author’s knowledge, no modelling studies have been performed for 

Belham Valley lahars, despite their obvious value (Section 2.5.7).  

 

Transfer of academic research  

A core mechanisms for transfer of hazard information has typically been the hazard 

zonation map, integral to natural hazard management (Section 2.2.2.1), now 

produced through runout and inundation studies (Section 2.3.4), and informed by 

the GI Science research agenda (Section 2.4.4.4).  

However, the short-comings of a top-down approach to information transfer 

were introduced in the context of disaster risk reduction for natural hazards in 

general (Section 2.2.1), and also have been raised as a critique of GIS-based research 

and GI Science (Section 2.4.4).  

Montserrat has a history of problems with transfer of hazard information (Section 

2.5.5).  

 

New research in these themes will thus have relevancy across several disciplines 

and sub-disciplines. Additionally there are some gaps in the literature. 

 

 

2.6.2 Synopsis of gaps in the literature 

 

The need for a comprehensive lahar hazard assessment on Montserrat is 

demonstrated by current gaps in knowledge about the lahar hazard. However, such 

research on Montserrat would also inform other gaps in the literature. For example:  

• Dilute lahars. The majority of lahar models are not universally applicable to 

all flow types and indeed there is a prevalence of debris-flow models. There 



  Chapter 2 

  89  

is an absence of general dilute lahar models. Some immediate questions 

emerge, e.g. are debris-flow models applicable to dilute flows (e.g. 

Montserratian lahars)? To what extent can stream-flow models be applied to 

dilute lahars? 

• DEM fit for lahar modelling. The importance of surface representation for 

lahar modelling was introduced in Section 2.3.5.1. However, the techniques 

for generating DEMs and incorporation of elevation uncertainties have not 

figured prominently in evaluations of model performance. New research in 

generating DEMs that are applicable (fit for) lahar modelling would 

potentially be of great interest to volcanologists. Furthermore, although 

there is a general trend towards probabilistic assessment of natural hazards, 

there is an absence of lahar models that incorporate such uncertainties. A 

DEM might be the ideal vessel to consider uncertainty and demonstrate its 

propagation to model results.  

• Effective information transfer. There is a recognised void between research 

generated in the sciences, and applied research that has on-the-ground 

practical utility. A mechanism for generating effective transfer of lahar 

hazard assessment results would have benefits beyond this case study.  

• A GIS focus to lahar hazard assessment. There are some examples of 

research using GIS for volcanic risk management (e.g. Pareschi et al., 2000a) 

and lahar modelling (e.g. Schilling, 1998; Pitman et al., 2003). However, in 

many cases GISs have not been used to their full potential and implications 

from, and for, GI Science have not been thoroughly contemplated.  

 

Over the next four chapters these themes and gaps in the literature will be 

examined. There will be cross-cutting issues. An evaluation of these findings in the 

context of wider research will be given in the final chapter (Chapter 7).  
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CHAPTER 3: AN APPLICATION-DRIVEN APPROACH TO TERRAIN MODEL 

CONSTRUCTION 

 

 

Terrain is a surface phenomenon that is measured, modelled, and mapped. 

However, it is continuously variable and must be simulated by points or 

mathematical equations that are inherently approximations. The error induced by 

digitally represented terrain can propagate to surface derivatives and geographical 

information science applications where topography is considered. This can lead to 

uncertainty in model predictions and the use of data that are unfit for the 

application to which they are intended. This article outlines the problem of 

uncertainty in terrain representation and demonstrates the consequences for 

volcanic mudflow modelling. The response of a simple least-cost single flow 

algorithm to input parameters was investigated in order to assess output variation 

from the different sources of input variation. Elevation error was modelled with a 

probability density function and propagated through stochastic simulation (Monte 

Carlo). Such combined uncertainty and sensitivity analyses enabled a qualitative 

judgement of the relative significance of elevation error on the flow model 

prediction. Different methods for terrain model construction were considered and 

show that supplementing global positioning system measurements with information 

from field notes and reconnaissance photographs greatly improved the model 

performance and reduced the uncertainty. It is concluded that in terms of validity of 

model results, there is no substitute for constructing an elevation model that is 

informed by the terrain.
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3.1 INTRODUCTION 

 

Geographical Information Science (GI Science) is concerned with the position, spatial 

relationships and attributes of geographic phenomena. This information is stored 

digitally for querying, processing and display. Spatial data analyses range from 

relatively simple enquiry tasks to more complex modelling, but the veracity of 

results is always dependent on the quality of the input data.  

Adequate terrain representation is fundamental for many GI Science applications 

such as hydrological flow routing (Raaflaub and Collins, 2006), soil erosion prediction 

models (Warren et al. 2004) and viewshed analyses (Fisher, 1998). The quality of 

digitally modelled topographic information can be greatly influenced by the method 

of construction. In GI Science there is a general tendency for data-driven modelling, 

where data availability guides the generation of the digital terrain representation 

(Schneider, 2001). This is largely due to a tradition of restrictions imparted by scarce 

data and high prices. However, such an approach does not prioritise surface 

reconstruction fit for intended applications, nor is it sympathetic to the 

characteristics of the terrain that may impede its adequate representation. 

Therefore, detrimental consequences when using first and second order derivatives 

from a data-driven surface construction are potentially greater than those from an 

application-driven approach. With a general increase in data supply and availability 

it is now imperative that more consideration is given to data quality and fitness. 

Furthermore, an acknowledgement of uncertainty is important for greater 

confidence in decisions that are informed by data, enabling scientists to defend their 

predictions (Beven, 2000). 

For modelling volcanic debris flows the adverse consequences of using unfit data 

can be particularly extreme. Debris flows are not only hazardous in themselves, but 

they also cause morphological change, potentially altering the route of the next 

flow. Understanding flow movement can help predict potential inundation and 

landscape change. Inadequate data will greatly distort these results, particularly on a 

local scale. In this chapter, the influence of digital terrain representation quality on 

the output of a flow model is investigated. A single flow direction algorithm was 
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used to identify the path of steepest descent for a type of volcanic mudflow. The 

effect of varying data quality on flow routing was investigated through uncertainty 

identification and propagation. Sensitivity analysis augmented the uncertainty 

analysis and together they were used to assess the merits of an application-driven 

methodology for digital terrain representation.  

 

 

3.2 BACKGROUND: DIGITAL TERRAIN REPRESENTATION 

 

For a successful geographical information system, it is essential to have an accurate 

view of the world (Goodchild, 1992).  Vector models represent discrete objects 

(points, lines and polygons) and can be stored using positional geometry. 

Continuous data, including surfaces, are poorly represented as such. Instead, fields 

preserve the continuity of surfaces through a finite number of variables defined at 

every location. For example, a terrain surface can be mathematically defined by its 

elevation, z, varying as a function of x and y: z = f(x, y). One of the most familiar ways 

to represent topographic reality in a geographical information system (GIS) is the 

regular gridded digital elevation model (DEM). For this, finite data are collected and 

values assigned to data points through interpolation. Elevations are stored as a 

simple matrix and estimator values for a specific location can be obtained by 

querying a cell in the grid. Algorithms can be used to calculate terrain derivatives 

such as slope and aspect.  

However, topographic reality can only be represented digitally to a certain level 

of accuracy. Errors at finite positions are inherent due to the approximations 

needed. Our lack of knowledge about the reliability of a DEM’s representation of the 

true value is referred to as uncertainty (Hunter and Goodchild, 1997). Error is 

contained within all DEMs and can be considered the disparity in the elevation value 

projected by a DEM and its true value. In a DEM the main sources of error pertain to 

(1) variation in the accuracy, density and distribution of measured source data, (2) 

processing and interpolation, and (3) characteristics of the terrain surface being 

modelled (Fisher, 1998; Fisher and Tate, 2006). Error can propagate through to 
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surface derivatives (e.g. Holmes et al. 2000; Aerts et al. 2003) and thus to GIS 

applications utilising DEMs and terrain analysis. This will ultimately affect confidence 

in the results of GIS operations. Therefore, the real relevance of DEM error becomes 

apparent when the link is made between DEM quality and application quality (Fisher 

and Tate, 2006).  

Thus, it is important to establish whether the chance of an incorrect output is 

significant for the application concerned (Fisher 1998; Li et al. 2000). Alternative 

data sets can be compared in terms of their suitability for an application (de Bruin et 

al. 2001; Hunter and de Bruin, 2006), and to examine the consequences that using 

them may have for subsequent decisions (Agumya and Hunter, 1999). However, 

determining the minimum data quality requirement for a specific application is often 

difficult. A threshold of acceptance or level of tolerable risk in decisions must be 

identified and met (Agumya and Hunter, 1999). In this chapter an approach to a 

fitness for use evaluation through uncertainty and sensitivity analyses is presented. 

Uncertainty analysis was performed to understand the propagation of error through 

the application. In addition, by sequentially changing inputs pertinent to the flow 

algorithm and also terrain model, local sensitivity analysis was able to (qualitatively) 

apportion output variation to different sources of input variation (Crosetto and 

Tarantola, 2001).  

 

 

3.3 STUDY AREA 

 

The study area is a section of the Belham River valley on the volcanic island of 

Montserrat (West Indies). Soufrière Hills Volcano is currently active (August 2009) 

and when volcanic debris is mobilised by rainfall the valley acts as a conduit for 

lahars (akin to dilute debris flows or mudflows). These lahars are gravitational flows 

and therefore primarily dependent on topography. However, due to the typically 

low sediment concentration of Belham lahars, simulation of flows falls somewhere 

between traditional debris-flow modelling (sediment-rich flows) and hydrological 
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routing (water-rich flows). As a first step towards a spatial hazard assessment, 

topographic data were used to direct a relatively simple flow routing model.  

The lower section of the valley (including the river mouth) was considered as it 

incorporated the greatest spatial variability in topography (Figure 3.1). Recorded 

elevations in this locality range from sea level (zero metres) to circa 25 m, over a 

distance of 1500 m. Terrain undulates on a local scale with micro-topographic 

changes including sediment banks (0.5 to 2 m for this section of the study area) and 

dense blocks of persistent vegetation on raised terraces (0.75 to 2.5 m). Channels 

carved out by the lahars, and the ephemeral river, are also features of this 

landscape.  

Due to the intimate relationship between terrain characteristics and error, certain 

types of terrain are more suited to the creation of accurate DEMs (Carlisle, 2005). 

The valley floor of the study area can be considered gently sloping, with dense 

pockets of vegetation, associated with rapid changes in elevation (raised terraces). 

 

 

 

 

Figure 3.1 (a) Photo of the mouth of the Belham Valley taken November 2006 

(looking east); (b) the location of the study area on Montserrat (DEM after Wadge 

2005). 
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There are also areas of high surface roughness where gravel carried by the lahars 

has been deposited en masse (see also Figures 2.19 and 2.20, Chapter 2). Previous 

studies have shown the positive correlation of error and terrain slope e.g. Hunter 

and Goodchild (1997), Veregin (1997) and Fisher (1998), or surface roughness 

(Kyriakidis et al. 1999). Thus, due to the heterogeneous nature of the terrain, it was 

anticipated that errors in the DEMs would be spatially variable.  

 

 

3.4 METHODOLOGY 

 

3.4.1 Application overview – lahar modelling  

 

Understanding the factors governing lahar inundation zones is crucial for hazard 

assessment on Montserrat. Due to the downslope propagation of these flows, and 

their topographic constraints, an adequate terrain model is essential for modelling 

flow paths. The simplest method for specifying flow directions is to assign flow from 

one cell in a DEM to one of its eight direct neighbours with the lowest elevation. This 

single flow direction algorithm, designated D8 (Deterministic-8), has been widely 

used (e.g. Jenson and Domingue, 1988; Veregin, 1997; Tarboton, 1997) and is 

provided within mainstream GIS software packages (such as ESRI ArcGIS). The 

Belham Valley acts as a conduit, naturally channelling lahars into convergent flow, 

thus a single flow algorithm should be viable for a first approximation of system 

preferential flow (i.e. a least-cost flow path). Least-cost routing has successfully 

been used for route planning in landslide prone areas (Saha et al. 2005) and 

optimization in spatial decision support systems (Aerts et al. 2003). This approach 

was adopted as it was easy to implement, used global functions to consider the 

entire DEM, and also included terrain derivatives that were important for flow 

modelling and for assessment in terms of the propagation of error. 
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3.4.2 Data acquisition 

 

Data capture in an active volcanic environment is challenging. In late 2006 available 

satellite data of the study area were of poor quality, showing abundant cloud cover. 

Elevation data were gathered in the field (when the authorities permitted work in 

the valley) through a roving Global Positioning System (GPS). The GPS equipment, 

from the Montserrat Volcano Observatory (MVO), was an Ashtech base kit and a 

Leica rover kit. Surveys were carried out over several days and fixed to the MVO’s 

continuous GPS network using RINEX files from their sites. Position and height 

measurements were taken every second. Leica GeoOffice was used to post-process 

the data and transform from WGS84 to the local Montserrat grid system (a 

Transverse Mercator projection made onto the Clarke 1880 ellipsoid). Only points 

resolved to an accuracy of 0.1 m (minimum) in the vertical and horizontal planes 

were retained for analysis. The overall accuracy of a roving survey such as this 

introduces error due to the motion of walking. However this was estimated to be in 

the order of only a few centimetres.  

GPS positions were gathered along the path of motion and this was constrained 

by obstacles; therefore resulting in an irregularly distributed dataset. However, this 

flexibility allowed areas of importance (as identified in the field) to be recorded i.e. 

potentially relevant micro topographic changes. Detailed field notes were 

supplemented by ground photography and oblique aerial photographs taken from a 

helicopter reconnaissance mission. 

 

 

3.4.3 Identifying uncertainty 

 

The accuracy of a lahar simulation depends on two factors: the veracity of the 

model, and the accuracy of the DEM (Stevens et al. 2002). Uncertainties are 

inevitable in hazard prediction, yet the adoption of simple techniques to assess data 

quality can provide responsible agencies with greater confidence in their decisions. 

The types of uncertainty associated with the creation of a DEM and its subsequent 

use for flow modelling are illustrated in Figure 3.2.  
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Figure 3.2 Potential sources, and transfer, of uncertainty from DEM creation to 

model output. Relative timing of uncertainty quantification in this case is indicated 

by the dotted box. 

 

In this particular case, the source data had positional uncertainty associated with the 

accuracy of GPS point data (in the x, y, and z domains) and interpolation and 

processing techniques induced (further) error as the DEM was constructed. This 

produced a regular grid with attribute value (elevation) uncertainty at each cell 

location (Heuvelink et al. 2007). The DEM was then used as an input to the flow 
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model and, along with variability associated with the application such as start and 

end points, error in the DEM propagated to uncertainty in the output. Formally 

recognising these sources of uncertainty suggests that by simulating the potential 

range of errors, a DEM user can examine the consequences for their results and 

adjust the DEM construction accordingly, to suit better their application needs.  

Elevation is a continuous numerical variable and uncertainty in its estimation can be 

acknowledged at the source data positions and/ or DEM attribute locations. In this 

case, error in elevation was considered following DEM construction, as the 

combined response to uncertainty in source data, interpolation, and processing 

(Figure 3.2). Uncertainty was most relevant here due to high confidence in the 

positional accuracy of the GPS source data (i.e. uncertainty was believed greater 

after DEM creation). Simulating uncertainty from all potential sources was 

impractical - a recognised challenge when working towards a goal of statistical 

realism (Heuvelink et al. 2007). 

 

 

3.4.4 DEM creation 

 

ArcGIS was used for processing the point data into an elevation model. For 

irregularly distributed data the Triangulated Irregular Network (TIN) is a common 

interpolation method (Hugentobler and Schneider, 2005). The digital surface model 

produced consists of a set of triangular linear surface patches or facets that are 

created by drawing edges between data points (nodes) that satisfy the Delaunay 

criterion (the circumscribing circle of any triangle does not contain any point of the 

dataset inside it). These triangular facets can represent topographical features (e.g. 

pits, peaks and passes, and surface changes in slope and aspect) by having the 

triangle edges fall along the approximations of ridges and river channels etc, and 

having corners at important turning points (Laurini and Thompson, 1992: p248). 

However, the raster grid structure of a DEM lends itself well to neighbourhood 

calculations that are frequently used to derive hydrologic parameters (Wechsler, 

2007). Thus a TIN was first created from the GPS data to preserve lines of interest 

(e.g. channels) and the TIN was then converted to a raster in ArcGIS. This created a 
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Primary DEM. Such derived results will be more accurate and reliable when more 

information is provided (Schneider, 2001). In order to obtain a topographically 

plausible surface representation, knowledge about the shape and the properties of 

terrain was also incorporated. This required the aerial photographs to be digitised 

and georeferenced (using field notes, ground photography and 20127 precise GPS 

points). They were then rectified using cubic convolution (Hughes et al. 2006). The 

supplementary information added in this manner included channels and vegetation 

terraces. The elevations for these were incorporated with the GPS data to form a 

new, Secondary DEM. Therefore, information about the terrain surface was not 

solely limited to the GPS data, but expert knowledge was incorporated to 

reconstruct the surface more reliably (Schneider, 2001).  

However, it is well known that slope direction and hence flow are tightly 

controlled by facet orientation from a TIN. Alternative methods of DEM 

interpolation (splines with tension and TOPOGRID) were tested against the 

rasterised TIN (Secondary) for a 250 × 250 m section of the study area. This 

subsection was selected for its homogeneity (at 5 m resolution) and incorporated 

minimal topographic changes. As far as possible, the source data were the same. 

TOPOGRID (ArcGIS’s implementation of ANUDEM v4.6.3 (Hutchinson, 1989)) 

imposed a drainage enforcement condition using digitised channels in addition to 

the point elevation data. For the tension spline (Mitasova and Mitas, 1993) channels 

were converted into point data and merged into the elevation dataset. A range of 

different sample points and spline weights were tested in ArcGIS. 

The ability to represent topographic complexity is controlled by the DEM’s grid 

cell spacing (resolution). Very coarse grid spacing may lead to under-sampling of 

micro terrain features (information will be lost for those features smaller than the 

sampling interval). Furthermore, slope varies with DEM resolution (Warren et al. 

2004). Thus, the choice of resolution will depend on the spatial characteristics of 

terrain, but this should also be justifiable in terms of the potential accuracy offered 

by the source data. DEM resolution is discussed in Wechsler (2007) and references 

therein. From the observations documented in Section 3.3, two resolutions were 

chosen to preserve features of the terrain: 5 and 10 m. A finer resolution was not 

supportable due to the irregularly distributed GPS data.  
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3.4.5 Modelling error in the DEM 

 

For a quantitative spatial attribute A(∙), such as elevation, at some location x its 

‘true’ value is A(x) as defined by the model (Heuvelink, 1998): A(x) = b(x) + V(x), 

where b(x) is the deterministic variable, i.e. the realisation of A(∙), and V(x) is the 

error. For a DEM, if the error is known and quantified, uncertainty is reduced; if 

accuracy is unknown but error can be simulated, uncertainty can be represented and 

the consequences for analyses assessed. The latter is considered here, i.e. in the 

absence of a reference surface (surrogate for the ‘true’ elevation) it is not possible 

to model the actual distribution of error in the DEM. This is a common problem for 

DEM users. DEMs are typically provided by vendors with a summary measure of 

vertical accuracy in the form of the root mean squared error statistic (RMSE), but 

rarely do data users have access to more detailed uncertainty information (Darnell 

et al. 2008). In recent studies modelling error, higher accuracy data is often used as 

a surrogate for the ‘true’ elevation surface from which error values can be calculated 

at discrete points (Kyriakidis et al. 1999; de Bruin et al. 2001; Aerts et al. 2003). 

Conditional stochastic simulation is then used to generate multiple equally probable 

error surfaces to which the DEM is added. Each resultant surface has the essential 

properties of both the original DEM and its error (Fisher, 1998). Studying the range 

of different outputs improves understanding of DEM uncertainty. Furthermore, the 

quantification of error and its spatial distribution is an improvement on the single 

global RMSE.  

In the absence of a higher accuracy reference surface, DEM error was simulated 

using unconditioned fields. This required knowledge of the distribution of error, 

represented by a probability density function (pdf) (Heuvelink et al. 2007). It was 

assumed that over a DEM the errors were normally distributed around a mean of 

zero metres (there was no known bias in the data). The standard deviation of error 

(stdv) was inferred from field knowledge, resulting in the selection of three possible 

values: 0.1, 0.5 and 1 m. The stochastic input variable (elevation error) was sampled 

within the bounds set by the pdf using Monte Carlo simulation.  

Furthermore, within a DEM the magnitude of error for an individual grid cell is 

related to errors from neighbouring cells (Hunter and Goodchild, 1997; Fisher 1998; 
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Kyriakidis et al. 1999).  This complex pattern of spatial variability of error and spatial 

dependency (termed ‘spatial autocorrelation’) was considered when undertaking 

the analyses. Two different methods for simulating the elevation errors were tested. 

The first assumed no spatial autocorrelation; the second considered a form of spatial 

dependence. Model outputs from each method were examined to assess the 

relative severity of error propagation. 

 

3.4.5.1 Method 1: Spatially independent errors.  

The error field was generated using Monte Carlo simulation from the pdf and added 

as ‘noise’ to the DEM (e.g. Hunter and Goodchild, 1995; Fisher, 1998). Using a 

different random number seed, 100 equally probable realisations of the error 

surface were generated. An input DEM was then perturbed using each of these error 

surfaces in turn. Each DEM was subsequently used as an impedance surface (with no 

additional thematic cost) for the flow algorithm. This was implemented in ArcGIS 

ModelBuilder. 

 

3.4.5.2 Method 2: Spatial dependence using the Grid-Cell Uncertainty Model 

(GCUM).  

Method 1 used random unfiltered error fields that assumed no spatial 

autocorrelation, i.e. the error values of neighbouring cells were independent. 

Neglecting spatial autocorrelation could result in cells having immediate neighbours 

with extreme peaks and troughs, which rarely occurs in nature (Zerger et al. 2002). 

The autoregressive analytical model developed by Hunter and Goodchild (e.g. 1995) 

was used to find an appropriate value for the spatial dependency of error (ρ). Like 

Method 1, it assumed no knowledge of the input data errors, required the input of 

an error estimate (usually an RMSE for DEMs) and was stochastic. GCUM was a more 

complex technique but has been widely used (e.g. Murillo and Hunter, 1996; Hunter 

et al. 1995; Hunter and Goodchild, 1997; and Zerger et al. 2002). The Grid-Cell 

Uncertainty Model Tutorial and software code was available from 

http://www.sli.unimelb.edu.au/people/gjh_notes/grid.htm (accessed March 2008). 

Full details of the methodology are found in the aforementioned studies. 
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In this study 10 trial realisations were made for each value of ρ. Differences in the 

average slope and standard deviation of slope were taken for (each) original DEM 

and for each realisation at different ρ values (consistent with Hunter and Goodchild, 

1995). When a suitable value for the spatial dependency was identified (see Hunter 

and Goodchild, 1997), 100 realisations were generated and used as input cost 

surfaces as before. As an illustrative example, Figure 3.3 compares the average slope 

for the original Primary 10 m DEM with the average slope from the DEM perturbed 

by a value of ρ. The plot results from a mean difference of 10 realisations of the 

perturbed DEM and error bars show the range of those 10. The same process was 

repeated for differences in the standard deviation of slope. There is a gradual 

increase in the mean differences for average slope and standard deviation of slope 

as ρ varies from 0 to 0.18, followed by a sudden decrease as ρ approaches 0.25. 

With a RMSE value of 0.5 m the average slope for the DEM increased by more than 

about 1 degree. For the Primary 10m DEM, below ρ = 0.18 there was negligible 

change between the mean slope given by the realisations and the mean slope given 

by the DEM. This value was taken as the transition point for ρ and accordingly used 

in further analyses.  

 

 

 

Figure 3.3 Differences in average slope and standard deviation of slope – between 

original DEM and the mean of 10 realisations at a given ρ. Error bars show minimum 

and maximum values (primary 10-m DEM, stdv = 0.5 m). 
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3.4.6 Uncertainty propagation and sensitivity analysis 

 

Sources of uncertainty were identified and error was modelled at the most 

appropriate juncture - after DEM creation, as identified in Section 3.4.3 (Figure 3.2). 

Assigning a probability distribution to DEM error allowed the effect of variance in 

that input on the application output to be considered. However, the DEM error 

incorporated uncertainty influences from multiple parameters associated with the 

flow model and DEM. The relative influence of different input variations on the 

output could be isolated by sequentially varying these parameters (P). In this way 

uncertainty analysis was complemented by simple sensitivity analysis.  

For each DEM, the ArcGIS module COST WEIGHTED DISTANCE was used to 

generate a cumulative cost surface (topographic consideration only) and associated 

cost direction grid. For flow routing the neighbourhood search was limited to a 3 × 3 

pixel matrix, resulting in eight possible single flow directions. The SHORTEST PATH 

module was used to identify the preferential flow path from a selected start point to 

an end point.  

An error field perturbed each terrain realisation and this process was repeated 

100 times, generating 100 equally probable surfaces.  The flow routing algorithm 

was applied to each and thus 100 least cost pathways were generated. A cumulative 

total of a cell’s classification as being in the least-cost flow path indicated a 

likelihood of selection, i.e. a probability surface. This process was repeated for each 

change in the different input parameters (whilst all others remained constant) 

(Figure 3.4). The parameters for analysis were: DEM construction method (Primary 

or Secondary TIN, TOPOGRID or spline), DEM resolution (5 or 10 m), stdv (0.1, 0.5 or 

1 m), spatial dependency of error (Method 1 or 2), and also flow model start and 

end point (various) (Figure 3.4). Understanding how responsive the model output 

was to DEM generation and accuracy enabled fitness for use to be assessed. This 

local, one-at-a-time, form of sensitivity analysis is commonly employed for a simple, 

preliminary exploration of model quality (Crosetto and Tarantola, 2001; Frey and 

Patil, 2002). It is recognised using such a local sensitivity analysis only allows a small 

portion of the possible input values to be addressed (Frey and Patil, 2002). In 

contrast simultaneously varying multiple inputs across a range of plausible values 



  Chapter 3 

  104 

can include interactions among inputs. This form of global sensitivity analysis has 

been applied to hydraulic models of river flooding for model validation and 

calibration (Crosetto and Tarantola, 2001; Hall et al. 2005). However, here local 

sensitivity analysis was sufficient to allow an indication of the level of parameter 

accuracy required to make a model sufficiently useful and valid, enabling 

prioritisation of data collection needs. After these priorities have been identified, 

probability distributions of multiple variables could be considered to further the 

research presented in this chapter. 

In addition, the methodology is consistent with Hunter et al.’s (1995) suggestions 

for combating uncertainty in spatial databases: (1) highlighting locations within the 

study area that are susceptible to changes in parameter values, (2) assessing the 

likelihood of a cell’s membership of a particular class, (3) displaying several 

realisations of a map to understand the degree of variation associated with the 

process, and (4) studying the effect on map products where competing datasets, 

error estimates, algorithms and process models are available. 

 

 

 

Figure 3.4 An overview of the uncertainty and sensitivity testing showing the input 

parameters (P) and the output (probability surface). 
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3.5 RESULTS 

 

3.5.1 DEM construction with spatially independent error 

 

Figure 3.5 shows the spatial distribution of GPS points for the lower-reach of the 

Belham Valley. A total of 20127 points were retained for analysis. A subsection of 

this study area was also taken (250 × 250 m) to trial interpolation techniques for 

DEM generation.  

 

 

 

 

Figure 3.5 Lower-reach study area showing the distribution of the 20127 GPS points 

and 250 × 250 m subsection of the study area that was used to test the interpolation 

techniques (bottom left corner: 375450, 1850400 Montserrat National Grid) 
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Different interpolation techniques were used to process source data into a 5 m 

resolution DEM (50 × 50 cells), with differing degrees of success. Tension spline 

interpolation persistently suffered from ‘overshoots’, overestimating local maxima 

and underestimating minima, producing artificial peaks and troughs in the simulated 

landscape. This occurred despite adjustment of the tension and sample points to suit 

best the terrain. However, flow direction simulation using the D8 algorithm with the 

spline-derived DEM and rasterised TIN did not produce markedly differing results 

(for 100 realisations of the ‘true’ surface) (compare Figure 3.6a and 3.6b).  

 

 

 

 

 

Figure 3.6 Wireframe (viewed on a 10-m grid) showing interpolation of source data 

through (a) rasterized secondary TIN, (b) spline from ten sample points with spline 

weight = 5, and (c) TOPOGRID. Elevations have a vertical exaggeration of factor 2. 
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In this case flow did not encounter any of the overshoots generated by the spline. 

In contrast, the global drainage condition imposed by TOPOGRID distorted the 

whole landscape (also shown by Callow et al., 2007) and produced the greatest flow 

path variability (Figure 3.6c). These preliminary tests suggested that a TIN was 

preferable for this fluvially-eroded landscape and thus further analyses were 

conducted with TIN surfaces only.  

From a TIN, construction of the Secondary DEM differed from the Primary 

product in that the former included supplementary information from field 

knowledge and aerial photographs. Incorporation of supplementary information 

changed the flow path for all error-perturbed DEM surfaces. Flow paths over the 

Secondary DEM cost surface took more direct routes than over the Primary DEM, 

avoiding the major blocks of vegetation (Figure 3.7, flows are from right to left). The 

probability fields from DEMs with supplementary information agreed better with the 

observed channels (Figure 3.7(c)). 

The Primary DEM was more susceptible to changes in resolution when stdv was 

greater or equal to 0.5 m (compare Figure 3.7(a) and 3.8(a)). Figures 3.8(a) and 

3.8(b) show variation in probability surfaces for the 5 m and 10 m DEMs (300 × 200 

cells, or 150 × 100 cells respectively); the flows branched into two dominant routes 

in the lower reaches of the valley at a stdv of 0.5 m. At 10 m resolution, paths were 

distributed over a wider area and took more diverse routes. The proportion of cells 

in the study area predicted to experience some flow (those cells classified as part of 

the least cost flow path in at least one simulation) increased from 27% to 45% as 

resolution changed from 5 to 10 m for the Primary DEM. In comparison, for a similar 

resolution change, flows with the Secondary DEM only increased from 12% coverage 

to 16%, indicating that the Secondary DEM was more robust to resolution change 

and produced less variable results. For the Secondary DEM, resolution had little 

effect on the general trends (Figures 3.8(c) and 3.8(d)). 
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Figure 3.7 Parameter change: (a) and (b) DEM construction method (stdv = 0.1 m); 

(c) observed channels (incised and outer/border) from aerial photographs. 

 

 

As stdv increased the probability fields became less constrained, incorporating 

more cells, and thus flow path routes were more uncertain (e.g. Figure 3.8). Figures 

3.7(a) and 3.8(a) show the flow algorithm response on the Primary 5 m DEM to 

respective 0.1 and 0.5 m stdvs. The proportion of cells inundated increased from 6% 

to 27%, corresponding to a 7.8 × 104 m2 increase in area. For the Secondary DEM, 

flow path coverage of the study area (as a measure of variability) increased from 9% 

to 21%, to 31%, as stdv rose from 0.1 to 0.5 to 1 m respectively. This corresponds to 

a difference in impacted area of 8.4 × 104 m2 between 0.1 m stdv and 1 m stdv; the 
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magnitude is similar to the change exhibited by the Primary DEM when stdv is 

increased from 0.1 to 0.5 m.  

Observation of the probability fields from the Secondary DEM reveals the flow 

channel split into three dominant routes as the standard deviation of error increased 

from 0.1 to 0.5 m. As the standard deviation of error increased further to 1 m the 

least cost paths became very erratic in the lower reaches. Key areas sensitive to 

error were the middle of the study area and in the lower reaches near the shoreline. 

Overall, the flow model was very sensitive to changes in the stdv parameter, 

especially for the Primary DEM. 

 

 

 

 

 

 

Figure 3.8 Parameter change: DEM resolution (stdv = 0.5 m). 
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Figure 3.9 Parameter change: standard deviation of error (secondary 5-m DEM). 

 

 

3.5.2 Spatially independent vs. dependent error   

 

The above results were derived from spatially independent stochastic error 

simulation (Method 1). This next section summarises the flow model sensitivity to an 

increased spatial dependency between the individual errors perturbing the DEMs.  

A visual comparison of all probability surfaces revealed some response of the flow 

algorithm to changing spatial dependency of error, particularly when stdv was low 

(0.1 m) and the resolution was fine for the valley (5 m). The probability surfaces 

arising from the Secondary DEMs showed negligible difference with changes in the 

spatial dependency of the applied error fields. 

The proportion of cells experiencing some flow was used as an indicator of 

variability (i.e. the greater proportion of the study area to experience flow to a cell 

at least once, the greater the variability and hence uncertainty in flow path 

classification). Figure 3.10 displays examples of these summary statistics for the 

different DEM construction methods and resolutions, and stdvs of 0.1 and 0.5 m (not 

all probability fields are represented).  
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Figure 3.10 Proportion of cells experiencing some flow. (DEM details are 

abbreviated, e.g. primary 5 m, stdv 0.1 m = p5m01). 

 

 

The Primary 10 m DEM at stdv 0.5 m (p10m05) was the most variable in flow 

classification for both methods of error perturbation. At low stdv (0.1 m) all DEMs 

performed to constrain flow to approximately 10% of the study area. The Secondary 

DEMs constrained flow to less than 30% of the study area. In terms of the different 

methods of error perturbation, Method 2 induced the lowest variability in the 

Primary 10 m DEM. Generally though, the results from Methods 1 and 2 were 

similar.  

Confusion matrices were derived to compare the spatial distributions of results 

from different flow model runs. Due to the skewed distributions of probabilities only 

binary comparisons were implemented. Firstly cells were classified into those 

experiencing some flow and those with no flow. Secondly cells were grouped into 

those with a probability of flow greater than 10% and those 0—10%. Both of these 

classification schemes would be useful to cautious hazard managers in the Belham 

valley. The confusion matrix for a Method 1: Method 2 comparison is shown as an 

example in Table 3.1. Cells along the diagonal represent agreement and off-diagonal 

ones disagreement or confusion. The overall error (or disagreement) in this case was 

16%. Table 3.2 summarises confusion matrices, reporting the overall error or raw 
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disagreement for pairs of maps. With the flow/no flow classification flow paths over 

the Primary DEM were most different (16% disagreement). When the cells were 

classified by probability greater than 10%, the levels of disagreement only ranged 

from 2% to 7%. Generally the Secondary DEMs produced the more similar results, 

suggesting flow maps from these DEMs are less responsive to changes in the spatial 

dependency of error. Furthermore, Kappa statistics (Cohen, 1960) were calculated to 

assess whether the proportions of agreement were greater than expected by 

chance. All of these statistics indicated that the levels of agreement were much 

higher than would be expected by chance (Table 3.2). According to the descriptive 

standards proposed by Landis and Koch (1977) agreements for the Primary DEM 

results ranged from ‘moderate’ to ‘substantial’, and were ‘almost perfect’ for those 

using the Secondary DEM.  

 

 
 No Flow Flow Total ErrorC 

No Flow  1942 468 2410 0.1942 

Flow 112 1209 1321 0.0848 

Total 2054 1677 3731  

ErrorO 0.0545 0.2791  0.1555 

 

Table 3.1 Basic confusion matrix Method 1 (columns : control) against Method 2 

(rows : test) for Primary 10m, stdv 0.5 m, End Point 26. ErrorO = Errors of Omission 

(expressed as proportions), ErrorC = Errors of Commission (expressed as 

proportions) 

 

 
Probability 

surface 

Flow/ no flow Greater than 10% 

 Confusion 

(raw) 

Kappa Standard 95% 

confidence 

Confusion 

(raw) 

Kappa Standard 95% 

confidence 

Primary 10 

m  

stdv = 0.5 m 

0.1555 0.6796 substantial ± 0.0204 0.0670 0.5551 moderate ± 0.0533 

Secondary 

10 m  

stdv = 0.5 m 

0.0362 0.8733 almost 

perfect 

± 0.0210 0.0247 0.8600 almost 

perfect 

± 0.0282 

 

Table 3.2 Raw disagreement from confusion matrices (as a proportion), Kappa 

statistic and confidence limits 
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3.5.3 Flow model parameters  

 

The start point location was constrained by the shape of the valley; in initial testing, 

changing its location within the hundred or so metres allowable had little or no 

effect on the flow downstream. In contrast, the end point location had great 

consequences for the flow path, e.g. compare Figures 3.8(c) and 3.9(b). The standard 

deviation of error was the same but in Figure 3.9(b) the paths show three dominant 

branches and thus greater variability in the flow paths.  

 

 

3.6 DISCUSSION 

 

3.6.1 Flow model response to the terrain model  

 

Changing the input DEM altered the path of steepest descent and ultimately the 

cells of likely flow inundation. The flow algorithm was sensitive to changes in DEM 

construction method, resolution, and the magnitude and spatial dependency of 

error in elevation. Furthermore, the locations of the flow model start and end points 

placed obvious constraints on the flow paths. Key observations were: 

 

• DEM construction. Of the three interpolation techniques tested, the TIN was the 

most suitable for the study area. From the rasterised TIN, the Secondary DEMs 

produced flow paths that correlated well with field observations; the Primary 

DEMs did not.  

• DEM resolution. The flow model was sensitive to resolution change but only for 

the Primary DEM at high standard deviations of error. The Secondary DEM was 

more robust to resolution change. 

• Error magnitude. Uncertainty in the DEM has been shown to propagate to the 

terrain application; the probability surfaces were very sensitive to the standard 

deviation of error (stdv). For larger errors (≥ 0.5 m) the flow paths were more 
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variable and separated into different dominant flow routes. This was more 

obvious downstream as the valley widened. 

• Spatial dependency of error. Spatial dependency in errors induced small change 

in model outputs. 

 

Assuming no significant interactions, the relative influence of the different DEM 

computation and quality factors on the flow model can be qualitatively addressed. 

For example, DEM resolution had an impact on the results, but only for the Primary 

DEM at high error values. Thus, stdv is considered relatively more important (i.e. it 

impacts at all resolutions). For this application, DEM construction method and 

magnitude of elevation error have the most significant impacts on model output. To 

augment the research presented in this chapter, statistical methods for a global 

sensitivity analysis should address these factors first. Further, the results suggest 

that the influence of spatially dependent error on the flow model does not warrant 

further investigation.  

 

 

3.6.2 Uncertainty implications for hazard management  

 

3.6.2.1 Comparing DEMs and fitness for use  

Output uncertainty from a flow algorithm can be used to inform a decision as to 

whether a DEM is fit for lahar modelling. Cell inundation differed from varying 

parameters of the DEM and of the flow model. For example, Figure 3.8 showed that 

45% (1.7 × 105 m2) of the study area was inundated by some flow from a Primary 10 

m DEM with a stdv of 0.5 m, yet only 16% (6.1 × 104 m2) from the Secondary 10 m 

DEM. For a hazard assessment this is a considerable disparity in area. Probability 

fields from the Secondary DEM corresponded better with field knowledge. It can be 

concluded that the Primary DEMs are not fit for flow routing in this study area; the 

extra information provided by aerial photographs and field knowledge is essential to 

produce sensible flow paths and also reduce model sensitivity to error. However, the 

terrain and application are such that DEM resolution can be either 5 or 10 m and 

produce plausible flow routing results. Thus a Secondary 5 or 10 m DEM would give 
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viable results and reduce model output uncertainty. A formal test of fitness for 

purpose was not possible in this instance due to the absence of independent 

information on flow paths to verify model outputs. Such a situation is common in 

this type of research where direct measurements are scarce due to the sudden 

onset of lahars and impassability of certain volcanic zones. Nevertheless, the 

Secondary DEMs produced robust results suitable for hazard assessment, as 

determined by expert knowledge.  

 

3.6.2.2 Sensitive areas of the study site.  

Analysing the different flow paths shows key areas that are subject to branching 

(splitting of dominant routes) and erratic behaviour; these areas are in the middle of 

the study area and further downstream, reaching a maximum at the shoreline. This 

is probably due to a widening of the valley in mid-reaches and flattening of the 

valley floor. Uncertainty in elevation data here will induce a greater response in the 

model output, especially when the DEM resolution is coarse. Thus data accuracy 

and/ or applying a suitable approximation for the error is particularly critical in these 

areas.  

 

3.6.2.3 Other influences on the flow path 

The D8 algorithm assumed that flow occurred only in the steepest down-slope 

direction from any given cell. However, this single flow direction approach has been 

criticised for resolving grid directions too coarsely and introducing bias to the 

orientation of the numerical grid (Tarboton, 1997). Furthermore, using D8 for flow 

accumulation, a small elevation difference between two neighbouring cells can have 

a large effect as one of the cells receives all the flow (Seibert and McGlynn, 2007). 

Multiple flow direction algorithms have been developed that are less sensitive to 

DEM induced erroneous flow directions (e.g. Wolock and McCabe, 1995; Tarboton, 

1997; Huggel et al. 2003; Seibert and McGlynn, 2007). However, flow is dispersed to 

all neighbours and thus these algorithms can introduce substantial dispersion 

(Tarboton, 1997), a problem that is most prevalent for concave hillslopes (Seibert 

and McGlynn, 2007). Despite the limitations for modelling debris flow behaviour the 

single flow direction algorithm can broadly represent the flow characteristics 



  Chapter 3 

  116 

(Huggel et al. 2003) and is a good first prediction for hazard assessment. Simple 

models are often applied to obtain a first order approximation of the flow’s distal 

limits (Toyos et al. 2007).  

Another extension to the research would be to incorporate additional aspects of 

impedance into the least cost analysis. For example, the heterogeneity of surface 

friction could be incorporated, e.g. in areas of debulking where boulder deposits 

were dense. For route planning in landslide-prone areas Saha et al. (2005) 

considered distance, gradient cost and thematic cost for movement from a pixel to 

its immediate neighbours.  

 

 

3.6.3 Implications for an application-driven approach to DEM construction 

 

3.6.3.1 Survey design and DEM construction 

Pooling all possible information sources from the study area can greatly reduce 

uncertainty in model outputs. There is no substitute for knowledge of the terrain 

and its implications for DEM construction. For this study, an irregular distribution of 

sample points was preferable to record micro-topographic changes and TINs were 

necessary to preserve lines of interest (e.g. breaklines). This was determined 

through field experience. Written notes, sketches and reconnaissance photographs 

were all important to improve the quality of the DEM. Furthermore, assessment of 

model and DEM performance was achieved using indicators from non-published 

documents (photographs and personal experience) (e.g. Stevens et al. 2002; Huggel 

et al. 2003) where no higher quality reference data were available.  

The choice of interpolation technique is highly area specific. Rasterised TINs have 

been found unsuitable for areas of low relief and stream junctions (Kenny and 

Matthews, 2005). In this research the terrain justified the use of TINs and generated 

similar flow paths to those found using more sophisticated interpolation techniques, 

such as splines with tension (Section 3.5.1). Whist the TIN honoured all data the 

tension spline suffered from overshoots and extrapolated beyond the range of data 

points. Furthermore, TOPOGRID produced an unrecognisable landscape.  
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3.6.3.2 Applying error fields 

Uncertainty in model outputs has been addressed by identifying parts of the study 

area most susceptible to elevation error, assessing a cell’s membership of a 

particular class and comparing DEMs and their fitness for use. Uncertainty in 

elevation data quality was also investigated by perturbing the DEMs with error field 

or adding ‘noise’. The magnitude of error (regulated by the stdv) affected the model 

outcome; larger errors produced more variable pathways, thus uncertainty in 

elevation error propagated to the terrain application. This supports similar findings 

of error propagation from other studies (e.g. Hunter and Goodchild, 1997; Veregin, 

1997) and was true for all methods of error generation.  

Incorporating the spatial autocorrelation of error is scientifically supported (e.g. 

Fisher, 1998; Kyriakidis et al. 1999), yet extra time and computer processing power is 

consumed by the complexity of such analysis.  Due to the consequences of making a 

poorly informed decision it is prudent to take a conservative, cautious approach 

when undertaking hazard analysis; however sacrificing an overestimate of a 

‘hazardous’ area is also undesirable (Zerger et al. 2002). An informed compromise 

must be made. Unfortunately, as there is no information on the actual magnitude 

and distribution of error there is no way to verify the plausibility of the results. 

GCUM (Method 2) was the more scientifically rigorous approach employed. It 

incorporated a spatial dependence factor that was chosen as suitable for the data, 

yet this did not alter the results significantly. The kappa test for agreement 

demonstrated the results were not significantly dissimilar. Furthermore, the 

differences between kappa values for the methods of error dependency were very 

small when compared with those induced by changing the DEM construction 

method (Table 3.2).  

Fisher (1998), Heo (2003) and Wechsler and Kroll (2006) have used alternative 

methods of generating spatially autocorrelated random error fields. Spatial 

dependency can be adapted for the DEM data but is usually a global value for the 

DEM. If error is closely related to the terrain, then topographic change should induce 

a change in the error. Therefore the degree of correlation would probably be terrain 

dependent and spatially variable. Kyriakidis et al. (1999) provides the only example 
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in the literature of a heteroscedastic spatially autocorrelated error surface (Carlisle, 

2005). Here error values vary in relation to another variable, e.g. terrain ruggedness.  

However, even spatially autocorrelated error adds noise; this creates undulations in 

the terrain that may not be sensible. Another alternative would be to apply a point-

spread function to individual elevation values before the DEM is created. Such an 

option invokes the question: would it be better to apply the error field, and then 

smooth? This is similar to the ‘to interpolate and thence to model, or vice versa?’ 

issue presented by Jarvis et al. (1999).  

 

 

3.7 CONCLUSIONS 

 

The digital rendering of terrain will always provide an imperfect representation of 

topographic reality and even small discrepancies can have significant influence on 

the outputs of terrain applications. The consequences of making a decision based on 

uncertain predictions can be severe, especially in hazard modelling. Uncertainty 

from the application of a terrain model can be considered by simulating elevation 

error and its propagation to output variation. Furthermore, by changing input 

parameters and evaluating the application response the implication of using 

derivatives from different DEMs can be assessed relative to each other. Figure 3.2 

can provide users with a useful framework for identifying DEM uncertainty and 

determining an appropriate stage in an application for uncertainty analysis. Creating 

a DEM that is informed by uncertainty and that is suitable for the terrain application 

can help limit adverse effects in the following ways: (a) highlighting areas (of the 

study region) that are most susceptible to changes, (b) assessing a cell’s membership 

of a particular class, and (c) comparing different DEMs. Pre-made DEMs are normally 

provided with some measurement of accuracy (usually the RMSE) or, alternatively 

the DEM user may have intimate field knowledge and be able to estimate 

reasonable bounds of accuracy from that experience. Following justifiable 

assumptions on the spatial distribution of vertical error, DEM uncertainty can be 

simulated.  
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There are numerous methods for applying error to elevation data and 

investigating the consequences. This research has applied two to different variants 

of DEM creation. Despite demonstrated propagation of elevation error, it can be 

inferred from the variation of input parameters that there is no greater influence on 

flow model outputs than the DEM construction method. Furthermore, the merit of 

including a measure of spatial dependency of error did not appear justified in this 

particular application. The flow path sensitivity to correlation between errors did not 

impact on the relative significance of other parameters and had little effect on flow 

model output; spatially independent errors were therefore fit for purpose. This 

study has shown that basic DEM construction can lead to misleading model 

outcomes, and simply adding noise to the DEM does not compensate for inadequate 

DEM creation. When DEM construction was supplemented with additional fieldwork 

information (such as reconnaissance aerial photographs and field notes) confidence 

in the model output was greatly improved. The overall wisdom of the application-

driven approach rather than data-driven approach may be considered positive in 

light of this practical experience. It is recognised that environmental or financial 

constraints can restrict data choices despite a general improvement in data 

availability. However, for validity of model results, there is no substitute for 

constructing a DEM that is informed by the terrain and evaluated as fit for the 

application to which it is put.  
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CHAPTER 4: AN EXAMINATION OF GIS APPROACHES FOR LONG-TERM 

LAHAR HAZARD MAPPING ON MONTSERRAT, WEST INDIES 

 

 

An approach to terrain model construction prioritising Digital Elevation Model (DEM) 

utility for an intended application was presented in Chapter 3. As a product of this, 

DEMs of a small area of Montserrat (West Indies) were tested for their suitability, or 

fitness-for-use, for lahar modelling. In this chapter the focus shifts to lahars as 

hazards, considering runout and inundation areas for a hazard assessment. The main 

aim of this chapter is to compare and contrast two simple GIS-based lahar runout 

models using available field data. While simple models can give preliminary 

information, confidence in their predictions is generally low; a secondary aim was to 

establish whether the models could be used for long-term predictions of runout and 

inundation areas on Montserrat. 

Field data were collected over two field seasons and provide (1) an overview of 

gross morphological change after one rainy season, (2) details of dominant channels 

at the time of measurement, and (3) order of magnitude estimates of individual flow 

volumes. Comparison of rainfall data and recorded lahars show that individual flows 

are not well observed but give further estimates of frequency of flows.  

Single-direction flow routing, commonly used for simulating normal stream-flow, 

was tested for runout inundation area prediction against LAHARZ, a semi-empirical 

model implemented in a GIS and calibrated for debris flows. In this manner, flow 

type end-member models (applicable to dilute and sediment-rich lahars) were 

analysed for suitability using flows that contain an intermediate sediment 

concentration. Both of these models have the advantage that they require minimal 

input data, i.e. terrain characteristics and a set of test scenarios (e.g. a range of 

reasonable lahar volumes for LAHARZ). Comparing the areas and ways in which 
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these models do not adequately capture the observed changes can also provide an 

indication of where the intermediate sediment concentration flows do not follow 

behaviour of the end-member systems.  

In the hydrological approach, single-direction flow routing guided lahar centroid 

mass using an elevation cost surface according to the path of steepest descent. 

Further, Monte Carlo sampling of elevation error enabled inundation probability-of-

flow maps to be produced. In the sediment-rich approach, LAHARZ predicted 

inundation using a sequential range of user-defined input volumes. Inundation areas 

were then converted into zones of equal hazard. Thus, both GIS-based models used 

concepts of probabilities and likelihoods to construct hazard maps.  

Results suggested both models had associated benefits. Dominant flow routes 

observed in the field were generally well-replicated using single-direction flow 

routing. However, LAHARZ was comparatively more successful at mapping lahar 

dispersion and was more suited to long-term hazard assessment. Ultimately showing 

the results side-by-side increased their usefulness for conveying the lahar hazard, for 

short- and long-term predictions respectively. This research suggests these two GIS 

approaches are complementary for preliminary hazard assessment on Montserrat. 

However, neither model was able to adequately replicate observed flow routes in 

the semi-confined lower-reach of the study area. To improve performance of the 

single-direction flow routing it is suggested the influence of other terrain variables 

(e.g. spatial variation of channel roughness) should be investigated.  
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4.1 INTRODUCTION  

 

Lahars, rapidly flowing mixtures of volcanic debris and water, are among the most 

far-reaching volcanic flows, with the potential to interact with populated areas 

distant from area(s) of initiation (e.g. Scott et al., 2001; Newhall and Hoblitt, 2002). 

Thus, consideration of lahar runout and degree of inundation is crucial for hazard 

assessment, with hazard maps the obvious repository for this information. In the 

long-term, maps can aid land-use planning and educate local populations about the 

spatial distribution of hazards (Crandell, 1984; Chapter 2, Section 2.2.2.1).  

Lahar hazard assessment has traditionally involved geological mapping of past 

events from lahar deposits (Crandell, 1984; Oramas Dorta et al., 2007). However, 

hazard assessment is becoming increasingly reliant on empirical models (e.g. Iverson 

et al., 1998) or numerical models of runout (e.g. Savage and Hutter, 1989; Iverson et 

al., 1997; O’Brien et al., 1993). These models do not (necessarily) require lengthy 

and detailed geological fieldwork and move beyond the assumption that future 

behaviour will exactly mirror that of past activity. Nonetheless, lahars are complex 

mixtures of sediment and water, exhibiting a range of characteristics and behaviours 

on their descent from a volcano (Chapter 2, Section 2.3.2). Modelling their 

movement is not an easy task; existing models can be difficult, if not impossible, to 

implement due to high demands on processing and time, and application can be 

hindered by the lack of available data to inform model starting conditions.  

Due to the spatial nature of the phenomenon, geographical information systems 

(GISs) have great potential as tools for lahar hazard assessment. A GIS can organise 

pertinent hazard-related data and can be tightly coupled with lahar modelling. For 

example, a GIS has been used by Schilling (1998), to automate the semi-empirical 

relationships detailed in Iverson et al. (1998), and by Pitman et al. (2003) in the 

implementation of Titan2D. Additionally, a GIS is particularly suitable for dealing 

with topography that may be dynamic. As well as a platform for modelling lahar 

behaviour, a GIS can provide visualisations to user-requirements on request and in a 

range of formats, from traditional-style maps to 3D interactive displays.  
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Two established GIS approaches for routing gravitational flows were applied to a 

study area on Montserrat, West Indies: single-direction flow routing, previously 

tested in a sub-section of the study area (Chapter 3; Darnell et al., 2010), and the 

widely used LAHARZ suite of programs developed by Iverson et al. (1998). The ease 

of implementation is an attraction of these methods. However, they do not simulate 

the internal interactions and processes of lahars, nor complex changes in behaviour 

downslope (see Chapter 2). The aim of this chapter is to gain a better understanding 

of the benefits and limitations of these simple GIS approaches for runout and 

inundation analysis; in particular this chapter seeks to explore how model 

predictions deviate from actual deposition and possible explanations for this. A 

further objective is to see if they provide insight for determining inundation areas 

for long-term hazard mapping. 

 

 

4.2 REGIONAL SETTING 

 

Soufrière Hills Volcano dominates the island of Montserrat, West Indies (Figure 

4.1a). Current ongoing activity began in July 1995 and has involved long periods of 

effusive dome growth accompanied by collapse, pyroclastic flows and occasional 

vulcanian explosive activity (Kokelaar, 2002; Sparks and Young, 2002; Herd et al., 

2005). The protracted eruption can be divided into periods of dome growth and 

eruptive phases punctuated by pauses in activity lasting a few days to several 

months (Chapter 2, Section 2.5.3). Heavy rainfall has indiscriminately initiated 

lahars, even during periods of inactivity at the lava dome. Due to the abundance of 

volcanic ejecta that has accumulated on the volcano, lahars on Montserrat are 

typically not sediment-supply limited; they are limited by the frequency of the 

triggering (rainfall) events (Barclay et al., 2007).  

Activity at the volcano has rendered more than half of the island uninhabitable 

and over two-thirds of the population have emigrated following forced 

displacements and evacuations (Kokelaar, 2002). The Government of Montserrat, 

Disaster Management Coordination Agency (DMCA) and Montserrat Volcano 
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Observatory (MVO) have adopted a Hazard Level System which has been in 

operation since August 1, 2008. This system divides the southern two-thirds of 

Montserrat into six zones, with two Maritime Exclusion Zones (Figure 4.1b). Access 

permission for each of these zones is dependent on the Hazard Level. This level, 

which ranges from 1 to 5, is set by NDPRAC (National Disaster Preparedness and 

Response Advisory Committee) on the advice of MVO. Residents are advised of 

hazard zones using maps distributed by the Disaster Management Coordination 

Agency (DMCA) and local police. Full details on the hazard management structure 

are available on MVO website (http://www.mvo.ms/) and also provided in Chapter 

2. However, the Hazard Level system is entirely attributed to the primary volcanic 

activity (i.e. pyroclastic flows and surges, ballistics and tephra fall). Lahars are 

classified as secondary volcanic events, although typically occurring synchronously 

with, or after, an eruption.  

 

 

 

Figure 4.1 Island of Montserrat a) Soufrière Hills Volcano and the Belham River, its 

drainage basin and tributaries (100 m contours derived from Wadge, 2006); b) 

Hazard Zones map at current Hazard Level 3 (March 2010, courtesy of MVO). 

Coordinates are in Montserrat National Grid.  
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Due to local topography and population relocation the only major drainage that 

can channel lahars from Soufrière Hills to inhabited distal areas is the Belham River 

Valley (Figure 4.1a). At Hazard Levels 1—3 this valley is in daytime use by industrial 

extraction workers and people in transit; at greater Hazard Levels (4 and 5) only 

‘controlled’ and ‘essential’ access is permitted. However, lahars are significant 

hazards in the Belham, throughout all tiers of the Hazard Level System; and due to 

the reserves of volcanic debris, are likely to remain hazards for many years to come 

(even if the current activity ceases). Thus, any lahar-specific hazard assessment 

should be informative on a long-term basis.  

Montserrat currently lacks a fine resolution hazard map for the Belham 

catchment. Two simple GIS-based techniques are examined for their potential utility 

in predicting lahar runout, both in terms of capturing likely behaviour of individual 

flows and long-term time-integrated inundation. This analysis was independent from 

the existing Hazard Level System, but could be used to inform MVO when making 

recommendations pertinent to lahar hazard management.  

 

 

4.3 MODEL SELECTION FOR FLOW SIMULATION 

 

4.3.1 Approach to modelling 

 

A lahar modelling approach should be chosen with respect to (a) observed 

behaviour; (b) data availability; and (c) time and resources (equipment) available.  

Belham Valley lahars have been observed by University of East Anglia (UEA) 

researchers, MVO staff and ‘non-expert’ eyewitnesses, but are not formally 

monitored. There are relatively few publications stemming from research on these 

specific lahars (e.g. Barclay et al., 2004; 2006; 2007; Susnik, 2009; Alexander et al., in 

press); and to date there are no field-data for individual events. However, UEA have 

preinstalled rain-gauges that (when operating) have been recording rainfall at a one-

minute resolution from 2001 onwards (Matthews et al., 2009), topographic change 

has been observed and measured in the Belham Valley since 2005 (Susnik, 2009), 
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and a good knowledge of flow rheology, direction and main channels has been 

developed (see also Chapter 3).   

Whilst competent enough to carry large boulders (up to 2 m diameter) lahars on 

Montserrat are characteristically dilute. Newtonian flow behaviour is dominant and 

lahars are principally hyperconcentrated-, concentrated- or ‘normal’ stream-flow 

(Barclay et al., 2004). Although rare, non-Newtonian flow behaviour has been 

observed and can be explained by greater sediment availability (Barclay et al., 2007).  

Flow simulation and inundation prediction on Montserrat should be able to 

emulate behaviour somewhere between hydrological routing (water-rich) and 

traditional debris-flow modelling (sediment-rich). Current lahar modelling 

approaches in general have been reviewed in Chapter 2. As a spatial phenomenon, 

lahars are suited to two-dimensional modelling and utilisation of a digital elevation 

model (DEM) in a GIS environment. Simplification to a single-phase homogeneous 

fluid is common and reasonable in this case. With a lack of relevant field-data, a 

model should not include volume changes or rheological (behavioural) changes on 

descent as these cannot be verified.  

The simplest method for specifying the direction of travel for any gravitational 

flow in a GIS is to assign flow from one cell in a DEM to one of its eight direct 

neighbours with the lowest elevation (O’Callaghan and Mark, 1984). This can be 

accomplished with a single flow direction algorithm, termed D8 (Deterministic-8), 

provided within mainstream GIS software packages (such as ESRI’s ArcGIS).  

Both models reviewed here are strongly topography-driven and make use of this 

algorithm in a GIS environment over a DEM. Simple models usually have lighter data 

and processing requirements, and produce results more rapidly than their more 

complex counterparts. Fundamentally, because they involve fewer parameters, the 

results can be more easily understood and full assumptions and limitations can be 

identified and discussed. Thus, it is also easier to measure cause and effect, and 

isolate the important parameters. 
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4.3.2 Single-direction flow routing  

 

Direct use of the D8 algorithm as a lahar simulation model defines flow from a cell in 

one direction based on the path of steepest descent. Lahar volume is reduced to one 

point, therefore flow simulations consider only the displacement of the centroid of 

the entire moving mass (Hurlimann et al., 2008). This simplification accomplishes a 

very important goal: creating a one-dimensional flow network (or path) over the 

landscape (Maidment et al., 1996). Consequently, this model would fail to simulate 

diffusive hillslope processes (Tarboton, 1997; Codilean et al., 2006); but the D8 

method can be superior in zones of convergent flow and along well-defined valleys 

(e.g. Quinn et al., 1991). Such a technique reflects the underlying influence of slope 

and can be used to quickly pick out the main flow routes arising from topographic 

control. This methodology has previously been applied with positive results for a 

small subsection of the Belham Valley (Chapter 3; Darnell et al., 2010). 

 

 

4.3.3 LAHARZ  

 

Iverson et al. (1998) developed semi-empirical equations for the United States 

Geological Survey (USGS) that were used to predict the valley cross-sectional area, A 

(Equation 4.1) and planimetric area, B (Equation 4.2), inundated by lahars with 

various volumes (V). The method was developed to provide a rapid, objective and 

reproducible hazard assessment to be applicable to many volcanic systems (Iverson 

et al., 1998). Calibrated with 27 historic and prehistoric debris-flow paths, the 

predictive equations provide the information necessary to calculate and plot 

inundation limits on topographic maps. The mapping process is automated in 

ArcInfo GIS using a suite of programs collectively called LAHARZ (Schilling, 1998). The 

intrinsic link to flow volume is where LAHARZ and single-direction flow algorithms 

principally differ (Huggel et al., 2008).  

 

3/205.0 VA =         [Equation 4.1] 
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3/2200VB =         [Equation 4.2] 

 

 

A study area is first divided into two theoretical zones: (1) proximal hazard zone 

and (2) distal inundation zone. The proximal hazard zone is defined by the geometric 

relationship between the horizontal runout (L) and vertical descent (H) (Figure 4.2) 

and this represents the runout area for pyroclastic flows and debris avalanches (see 

energy cone concept, Chapter 2). Thus, source areas for lahars are somewhere 

within this area. To clarify, LAHARZ begins its simulation in the distal area, as the 

lahar exits the proximal hazard zone. The model predicts the three-dimensional 

inundation areas in the distal zone, moving downslope and spreading away from the 

valley thalweg. A natural river channel will follow this line defining the lowest points 

along the length of a river bed or valley – it is determined by LAHARZ using surface 

hydrology grids generated using the D8 principle. 

LAHARZ holds advantages over more complex modelling solutions (e.g. Titan2D; 

Flo-2D; see references in Chapter 2, Section 2.3.4) because it requires a limited 

amount of data and relatively little fieldwork (Canuti et al., 2002); it was designed to 

be used where data, time, funding, or personnel are inadequate for application of 

traditional methods (Iverson et al., 1998). However, a fundamental theoretical 

restriction is that lahar volume is assumed constant from source, through the 

proximal hazard zone, to deposition in the distal region. Thus, entrainment and 

deposition (bulking and debulking) of material and its effect on lahar behaviour 

(rheology) are not considered. Volume change is a commonly observed 

phenomenon (Fagents and Baloga, 2006), but such a simplifying assumption is 

adopted by most lahar and debris-flow modellers (e.g. Hooper and Mattioli, 2001; 

Aguilera et al., 2004). A full list of LAHARZ’s assumptions is provided in Table 4.1.  
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Figure 4.2 Relationships between a) H and L, which describe the extent of the 

proximal hazard zone, and b) A and B, which describe the extent of the distal lahar 

inundation zone (After Iverson et al., 1998); Google Sketchup used for 3D 

visualisation 
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 Assumptions 

General: 

 

 

Lahars are sudden onset 

No background channel flow 

Lahar moves downstream as a waveform 

Cross-sectional area: 

 

Maximum lahar discharge produces the maximum inundation of 

valley cross sectional area 

Conservation of mass therefore conservation of volume (no 

erosion, deposition, infiltration or precipitation) 

Cross-section averaged velocity is directly proportional to √(gR), 

where g is the magnitude of gravitational acceleration and R is 

the hydraulic radius of the inundation cross-section 

Constant flow, constant discharge per model run 

Planimetric area: 

 

 

Deposition starts upon leaving the proximal hazard zone; the 

boundary of which is determined by the H/L energy line/cone.  

Volume leaving the proximal hazard area matches the volume 

deposited downstream 

Deposit mean thickness normal to the surface is constant. 

 

Table 4.1 LAHARZ assumptions (After Iverson et al., 1998) 

 

 

The semi-empirical equations behind LAHARZ were calibrated using recorded 

debris flows with their maximum volumes between 8 × 104 m3 and 4 × 107 m3. These 

calibrations may not apply accurately to other volcanoes (Carranza and Castro, 

2006); for example Oramas Dorta et al. (2007) recalibrated planimetric area for 

small debris flows in Sarno, Italy, upon finding LAHARZ overestimating inundation 

areas. Berti and Simoni (2007) also recalibrated the proportionality coefficients using 

historic data from 27 debris-flow events in the Italian Alps, renaming the model 

DFLOWZ. More recent efforts have recalibrated LAHARZ for debris flows and debris 

avalanches (i.e. more sediment-rich flows) (Griswold and Iverson, 2008; Magril et al., 

2010). However, there are insufficient data on individual flow events to recalibrate 

LAHARZ for Belham Valley lahars; the pertinent question is: can LAHARZ be useful 

for Montserrat considering the (extra) assumptions needed? 
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4.4 CHANNEL RESPONSE TO LAHAR PERTURBATION: FIELD-BASED 

OBSERVATIONS 

 

4.4.1 Updating elevation models 

 

The accuracy of any flow model will depend on the nature and veracity of the model, 

and the accuracy of the topographic dataset over which it is run (Stevens et al., 

2002). Lahar movement is primarily controlled by topography and therefore 

adequate terrain representation is fundamental for the identification, management 

and mitigation of lahar impact(s). Field-data were first gathered in 2006. 

Regional elevation data were acquired in the form of a 10 m resolution island-

wide DEM, originally derived from contour lines (1:25 000 tourist map dated 1983) 

(see Wadge et al., 2006). A study area was extracted that included the volcano 

summit and the Belham drainage basin (6.2 × 5.4 km). However, the dynamic nature 

of the volcanic system induces geomorphologic changes to the valley. These 

adjustments are discernible on an annual/ semi-annual scale, rapidly outdating 

digital representations of the valley bottom. Thus, elevation data were also gathered 

in the field through a roving Global Positioning System (GPS) survey in November 

2006. The need for a DEM update was reaffirmed by the recorded maximum 

elevation difference (GPS point vs. contour-derived DEM) exceeding the maximum 

(vertical) measurement error (5 m for contour-derived DEM and 0.1 m for GPS data) 

at several ground control points. This elevation difference was also greater than 

anticipated through resolution effects (generalising micro-topographic variation in 5 

× 5 m grid squares will induce deviations from the ‘true surface’).  

GPS equipment, supplied by MVO, was an Ashtech base kit and a Leica rover kit. 

Surveys were carried out over several days and fixed to MVO’s continuous GPS 

network using RINEX files from their sites. The base antenna was tripod mounted 

above a temporary benchmark established at MVO and on one occasion above a 

mark in the survey area on the Belham Beach.  The rover antenna was mounted on a 

1.5 m aluminium pole.  This was generally carried in a rucksack and a height, once 

mounted, was measured.  When positions were surveyed, the pole and antenna 
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were removed and the pole placed on the survey point; times when the antenna 

height was changed in this manner were recorded in the field notes.  

Recent and re-worked deposits covered the valley floor. The survey followed an 

irregular path to ensure that local terrain features that could influence lahar flows 

were captured. At a minimum, three types of sampling were performed: (1) channel 

long profile (thalweg); (2) cross profiles; and (3) raised terraces and banks (where 

access was possible). Position and height measurements were taken every second. 

Only points resolved to an accuracy of 0.1 m (minimum) in the vertical and 

horizontal planes were later retained for analysis (33357 points retained). This 

roving survey introduced error due to the motion of walking; however, this was 

estimated to be in the order of only a few centimetres.  

Figure 4.3 shows the extent of the 2006 GPS survey. A study area considering only 

the lower-reach of the Belham Valley was used in Chapter 3 to test the application 

of flow routing.  

 

 

 

 

 

Figure 4.3 Retained GPS survey points for entire study area (33357 points total) and 

lower-reach (20127 points; used in Chapter 3). Coordinates in Montserrat National 

Grid.  
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In-field GPS measurements were also taken a year later in November 2007. 

Survey design was similar to the preceding year, but University of East Anglia 

equipment real-time kinematic (RTK) GPS system was used (Topcon). Data were 

processed automatically in the field, permitting a (marginally) more even coverage 

as a trace could be seen on-screen. GPS points were sampled every 0.5 m (laterally) 

traversed resulting in fewer replicated (redundant) data points (15708 retained).  

Treating each GPS survey individually, GPS points were interpolated as mass 

points to create a Triangular Irregular Network (TIN), and the Belham thalweg (main 

channel) was imbedded in the TIN fabric as a hard breakline. The TIN was then 

converted to raster format for the ease of neighbourhood calculations common in 

the derivation of hydrologic parameters. The fitness of the resultant DEM for flow 

routing was assessed through local, one-at-a-time type sensitivity testing. This 

analysis led to the augmentation of the GPS data with raised terraces digitised from 

aerial photographs and field notes (consistent with the method shown in Chapter 3 

for the lower-reach).  

Two overlapping regular gridded matrices of elevation values were thus produced 

(contour-derived DEM and GPS-derived DEM) for both GPS survey years (Figure 4.4). 

Due to the temporal difference of the datasets (on a decadal scale between contour-

derived DEM and GPS-derived DEMs) it was not plausible to amalgamate all points, 

and an exploratory analysis of a simple ‘find and replace’ algorithm for overlapping 

cells created sinks at the valley sides. Two further techniques dealing with dataset 

integration (or fusion) were tested: 

 

1) Void, fill and feather. The ‘fill and feather’ technique, an interpolation method 

common for correcting voids in Shuttle Radar Topography Mission (SRTM) data (e.g. 

Reuter et al, 2007), was adapted to smooth the transition boundary of the two 

datasets. Grid cells in the DEMs were first compared, and where cells overlapped the 

elevation values of the contour-derived DEM were replaced (filled) with those from 

the GPS-derived DEM.  An artificial void was then created by extruding a buffer zone 

external to the GPS-derived DEM (Figure 4.4b). The buffer width was determined by 

distance between the break in slope (contour-derived DEM) and the closest GPS 

point. These were important features needed to maintain integrity. Finally, a low 
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pass 5 × 5 filter (moving average window) was applied to diffuse, or feather, any 

abrupt change.  

 

2) Lateral extension of recent elevation data. The second approach also 

prioritised conformity to the GPS-derived topography. For this method, the GPS-

derived DEM was extended laterally by a neighbourhood average elevation (Figure 

4.4c).  

 

 

 

 

Figure 4.4 a) Valley surface cross-section showing coverage by GPS survey; b) fusing 

the up-to-date GPS-derived DEM with the contour-derived DEM required the 

creation of artificial voids which were then filled by feathering with a neighbourhood 

averaging window; c) lateral extension of the GPS-derived DEM.  
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A moving window computed elevation values in the NoData pixels based on the 

local average of the neighbouring elevation values (5 × 5 pixel window). A series of 

iterations were performed until the dimensions of the valley floor were exceeded (as 

determined from a mask digitised using aerial photos).A differential surface was 

then created by subtracting the contour-derived DEM. Negative values were 

subsequently reclassified to zero and the result added to the contour-derived DEM, 

generating a DEM showing only positive elevation change (inferring deposition). To 

allow negative elevation change within the channel, only negative values from the 

differential surface were extracted using the valley floor mask. Finally, this erosive 

surface was added to the deposition-only DEM.  

 

Fused surfaces created from the two methods above are shown in Figure 4.5, the 

2007 survey is used for this example. The fill and feather process corrupted the 

contour-derived DEM, creating artificial slopes in the data that neither conformed to 

the original surface nor represented the true ground (a common problem with this 

technique (Grohman et al, 2006)). Furthermore, the topographic variance of the two 

surfaces was too high to match the surfaces over such a distance (Figure 4.5b). 

Various buffers and filter neighbourhoods were trialled, resulting in minimal or no 

improvement. The fused surface from the lateral extension method conformed to 

field knowledge (Figure 4.5c). Profile graphs show the same channel cross-section as 

viewed by the different methods (2007 surface). The difference in slope is clearly 

visible and this would influence flow direction. Considering the above, a final DEM 

was produced, for both survey years, to 10 m resolution by extending the GPS-

derived DEM laterally by a neighbourhood average elevation (method 2); for each 

year, the grid size covered an area of 6.2 × 5.4 km (620 by 540 cells). These regular 

grids of elevation could then be compared and further used as in input for 

modelling.  
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Figure 4.5 a) distribution of 2007 GPS points, and planimetric view of the merged 

section of the study area for b) void, fill and feather, and c) lateral extension 

method. Example profile graphs show the resultant cross-sections looking 

downstream. Coordinates in Montserrat National Grid. (After Darnell et al., 2009) 

 

 

4.4.2 Establishing geomorphological change 

 

For the period 2006—2007 positive morphological change is shown through a 

differential surface (Figure 4.6a) and main channel profile (Figure 4.6b).  

Over the year lahar deposits covered the valley floor and net erosion was 

negligible. Observed planimetric inundation area (Bo) was found by summing all cells 

that experienced morphological change and multiplying by cell dimension, giving 
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7.47 × 105 m2. Over this area, the mean deposit depth was 2.71 m. On a cell-by-cell 

basis, net deposition generally decreased downstream. In the upper valley there was 

great variability in net deposition, as indicated by high standard deviation around 

the mean (8.35 m). Variability in deposit depth decreased downstream, as did mean 

deposit depth per cell (mean 2.80 m in the mid-reach). In the lower reach the mean 

net deposit depth was 0.65 m. From deposit depths (cell-by-cell), and considering 

resolution, the minimum input volume of sediment must have been approximately 2 

× 106 m3. Assuming 20% sediment content by volume for hyperconcentrated lahars 

(Vallance, 2000), and no sediment removal from the system, total input lahar 

volume would be 1.0 × 107 m3 over the year. However, this figure does not consider 

sediment input from other sources; for example, a pyroclastic flow entered the 

Belham in January 2007 (De Angelis et al., 2007). 

 

 

 

Figure 4.6 a) spatial distribution of net deposition November 2006—November 

2007; b) channel profiles for 2006 and 2007 
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4.4.3 Volcanic activity and lahar events 

  

On 20 May 2006, i.e. before the November 2006 field visit, there was a large dome 

collapse event (with an approximate volume of 1.0 × 108 m3), marking the start of a 

period of slower dome growth which ultimately ceased in April 2007 (SAC9, 2007). 

Coinciding with the 2006 field season, dome growth switched to the west side (in 

the direction of the Belham). A partial dome collapse with concurrent pyroclastic 

flow activity occurred at Soufrière Hills Volcano on 8 January 2007 (De Angelis et al., 

2007). The pyroclastic flow descended into the Belham Valley, terminating just 

upstream of the Sappit confluence (see Figure 4.1) – around a 5km run out (De 

Angelis et al., 2007). The volume of the distal pyroclastic flow deposits in the Belham 

Valley and the more proximal surge deposits around Tyers Ghaut was about 3—4 × 

106 m3 (SAC8, 2007). By the field visit in November 2007 the January pyroclastic 

deposit had been partially reworked and carved by lahars. For a full chronology of 

the current eruption the reader is referred to Chapter 2 (Section 2.5.3). 

Recorded occurrence of lahars was synthesised from MVO daily and weekly 

reports (freely available at http://www.mvo.ms/). There were 13 reported lahars in 

the Belham during November 2006—November 2007 and these events have been 

plotted with daily and monthly-averaged rainfall data (Figure 4.7). However, as 

lahars are not formally monitored there were no associated intensity or volume 

data. Rainfall recorded at Garibaldi Hill rain-gauge (GAR) was the only available 

continuous data as the other tipping-bucket style gauges had been clogged with ash 

for all or part of the year. GAR is located on the west of the island, away from lahar 

source areas (proximal hazard zone); therefore regional averaged-monthly data are 

also presented in Figure 4.7. 

On Montserrat the rainfall season runs from April—November and has subsidiary 

peaks in May and a larger, more prolonged peak centred on September (Barclay et 

al., 2006). Barclay et al. (2007) found that lahars in the Belham Valley correlate with 

days when >10 mm rain fell in 24 h (based on a study of three rainy seasons). A 10 

mm threshold is illustrated in Figure 4.7. However, during November 2006—

November 2007, there were no direct correlations between recorded lahar 

frequency and daily rainfall, or averaged-monthly rainfall. For example, four lahars 
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were recorded in July with relatively dry preceding months. Further, the absence of 

reported lahars during November 2006—March 2007 is prominent; from field 

observations lahars typically occur year-round on Montserrat. Although that 

particular time period (highlighted on Figure 4.7) was in the ‘dry’ season on 

Montserrat, the GAR rain-gauge was recording high daily rainfall figures. It is highly 

probable that lahars were simply not recorded in the daily and weekly MVO reports 

due to focus on the increased activity at the lava dome.  

 

 

 

 

Figure 4.7 Daily rainfall recorded at Garibaldi Hill rain gauge (GAR) and regional 

monthly-averaged daily rainfall from the Climate Prediction Center Merged Analysis 

of Precipitation (CMAP) centred on Latitude 16.25, Longitude 298.75 

(http://www.cpc.noaa.gov/products/global_precip/html/wpage.cmap.shtml). 
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4.4.4 Working with available data: constraining volume estimates for modelling 

 

It was not possible to estimate the relative size of flow events from these rainfall 

data alone (Figure 4.7), nor from the cumulative deposit map (Figure 4.6). If the 

minimum observed system input volume (Vo), 1.0 × 107 m3, was to be satisfied by 13 

recorded flows (of equal magnitude), each having a volume (Vi) of 7.7 × 105 m3.  

Simple calculations in an attempt to reconstruct the 2007 topography highlighted 

the problems for estimating the magnitude of individual flows. The simplest 

approach for inferring deposit thickness was to average input volume over the 

planimetric area, B (Equation 4.2). This assumed (or approximated) deposition was 

uniform across all inundated cells, i.e. for a given volume, Vi, the lahar deposit height 

for every cell, dl, = Vi / B. Sediment deposit depth, ds = (s*Vi
1/3)/200, where s is the 

proportion of sediment by volume. Assuming 20% sediment by volume, each flow 

would theoretically have a uniform deposit depth of 0.092 m; hence, the maximum 

deposit depth after 13 flows would therefore be 1.196 m, far short of the overall 

observed mean of 2.71 m (but within the 0—23.09 m observed range).  

An estimate for the planimetric area of the Belham Valley floor was found from 

all cells that had experienced morphological change, Bo = 746 800 m2 (Section 4.4.2). 

This implied that if the planimetric area calculated by LAHARZ for a given volume 

was greater than the observed planimetric area (B > Bo), lahars would leave the 

system (run out to sea) and not all volume would be conserved. Another simple 

scenario considered n flows of equal volume, which in total satisfied the mean 

observed deposition of 2.71 m. A range of volumes, spaced by arithmetic and 

geometric progression, were tested mathematically before modelling (Table 4.2). 

Only flows that satisfied this condition and B ≥ Bo resulted in a cumulative volume 

equal to the observed volume, Vo. Using this approach, minimum requirements 

(without sediment loss) were 44 flows of 228 172 m
3
 (Table 4.2): planimetric area, B 

= Bo, where Vi = (sqrt(Bo/ 200))
3
 = 228 172 m

3
. Thus, where Vi > 228 172 m

3
 sediment 

was lost to sea. Forty-four flows were in far excess of those (13) observed. There 

were obvious limitations with this method (e.g. implying homogeneous deposition), 

but these simple calculations did provide order of magnitude estimates.  
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Table 4.2 n flows of equal volume, Vi, required to satisfy observed mean deposit 

depth of 2.71 m, assuming a uniform deposit depth of ds. 

 

 

General approximations for input volume were also made from field knowledge 

and published findings. Discharge for previous flows have been estimated at 15—

45m3s-1 (for braided channels) and 60—90m3s-1 (for a single channel) (Barclay et al., 

2007).  The largest lahars travel to the shoreline and have an observed duration 

(from eyewitness accounts) of two hours. Assuming an average discharge of 60—

90m3s-1 within a confined channel, a volume estimate for ‘large’ flows can be 

constrained to 4.32—6.48 × 105 m3 (water and sediment). These size flows occur 

Vi (m
3
) B (m

3
) ds (m) 

n 

(rounded) 

Cumulative 

potential sed. 

volume (m
3
) 

Bo  - B (m
2
) 

Loss to sea 

(m
3
) 

Sed. lost 

(%) 

1000 20000 0.010 271 54211 -726800 0 0 

2500 36840 0.014 200 99857 -709960 0 0 

5000 58480 0.017 159 158513 -688320 0 0 

7500 76631 0.020 138 207711 -670169 0 0 

10000 92832 0.022 126 251624 -653968 0 0 

25000 170998 0.029 93 463496 -575802 0 0 

50000 271442 0.037 74 735754 -475358 0 0 

75000 355689 0.042 64 964110 -391111 0 0 

100000 430887 0.046 58 1167936 -315913 0 0 

125000 500000 0.050 54 1355270 -246800 0 0 

150000 564622 0.053 51 1530429 -182178 0 0 

175000 625732 0.056 48 1696073 -121068 0 0 

200000 683990 0.059 46 1853983 -62810 0 0 

225000 739864 0.061 45 2005430 -6936 0 0 

228172 746800 0.061 44 2024231 0 0 0 

250000 793701 0.063 43 2151357 46901 127126 5.9 

500000 1259921 0.079 34 3415066 513121 1390835 40.7 

750000 1650964 0.091 30 4475002 904164 2450771 54.8 

1000000 2000000 0.100 27 5421079 1253200 3396848 62.7 

9064362 8694704 0.209 13 23567340 7947904 21543110 91.4 
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two or three times a year (subjective field observation). Smaller volume flows occur 

more frequently but do not travel as far. During the rainy season, the smallest lahars 

occur bi-weekly. Extreme events occur every two or three years and have a 

magnitude much greater than those regularly observed (e.g. 25/26th May 2006 

event(s) as discussed in Alexander et al., in press).  

A combination of the above calculations and subjective observations, which came 

from years of combined field experience, enabled the following assertions: (1) 

thirteen flows of equal volume would have to be unrealistically large to satisfy the 

observed volume of remaining sediment; therefore, there were more flows than 

were officially recorded; (2) it is unlikely that actual flows from Nov 2006—Nov 2007 

were equal in magnitude; (3) a differing variety of flow sizes would be required to 

match the cumulative volume observed; there is no simple method to determine 

what a suitable combination should be; (4) a typical (annual) frequency distribution 

of Belham Valley lahars would be approximately inversely proportional to volume. 

Numerous uncertainties were highlighted through these preliminary 

investigations. Thus, the most appropriate way forward was to investigate a range of 

volume scenarios that were informed by the simple calculations above, but also by 

(subjective) field knowledge. Thus, from the field-based data and trial calculations, 

small flows (1—5.0 × 10
3
 m

3
) occur frequently, intermediate volumes (1—5.0 × 10

4
 

m
3
) are less likely, and large flows (1—5.0 × 10

5
 m

3
) are relatively unlikely on any 

individual day. Extreme events (1—5.0 × 10
6
 m

3
) are very unlikely. A range of 

volumes were considered to encompass small to extreme flows representative of 

this range of Belham lahars. With uncertainty in the actual volumes of Belham 

lahars, six flows were modelled: one small (5.0 × 10
3
 m

3
), two intermediate (2.5 × 

10
4
 m

3
, 5.0 × 10

4
 m

3
), two large (1.0 × 10

5
 m

3
, 1.25 × 10

5
 m

3
) and one extreme (1.0 × 

10
6
 m

3
).  This represented different sizes of lahars over one year, but one in which 

an extreme lahar may occur. 
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4.5 IMPLEMENTING LAHAR MODELS  

 

4.5.1 Simple flow routing 

 

4.5.1.1 Determining the path of steepest descent from an elevation cost surface 

To assign flow based on the path of steepest descent, the (newly fused) 2006 DEM 

was used as an elevation cost surface. Within ArcGIS, the cost functions 

(CostWeightedDistance and ShortestPath) determined the shortest weighted 

distance (or accumulated travel cost) from a user-defined start cell to each cell 

(Figure 4.8). The cost assigned to each cell represented the cost per-unit distance for 

moving through the cell, i.e. the least change in elevation had the highest cost. Flow 

direction was based on impedance associated with the cost surface and from the 

direction of movement. The least-cost flow route was calculated by using a back-link 

raster from an end point at the mouth of the Belham (maximum travel distance). 

Two end points were used. The first (point A) corresponded to the pre-eruption 

coastline, and the second (point B) corresponded to the 2006 coastline. 

 

 

 

 

Figure 4.8 Schematic of steepest descent method used to define probable flow 

routes (implementation was in ArcGIS) 
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Lahar initiation, or start point was placed at the upstream extent of the GPS survey 

(where confidence in surface representation was high). In order to examine the 

fitness of the DEM, this methodology had been previously tested for a sub-section of 

the study area, documented in Chapter 3 (Darnell et al., 2010). 

 

4.5.1.2 Uncertainty in elevation and probability of flow  

Confidence in flow route prediction was then considered by examining elevation 

error propagation. The importance of DEM accuracy for lahar modelling has been 

discussed by Stevens et al. (2002). Errors in elevation models are inherent due to the 

approximations needed to represent a continuous surface over a regular grid. These 

disparities between reality and the values projected by the DEM are caused by (1) 

variation in the accuracy, density and distribution of measured source data; (2) 

processing and interpolation; and (3) characteristics of the terrain surface being 

modelled (see Fisher and Tate, 2006, for a full discussion of these issues). As 

confidence was high in the positional accuracy of the GPS source data, uncertainty 

was most relevant following DEM construction; elevation error was then considered 

as the combined response to uncertainty in source data, interpolation, and 

processing (Figure 4.9).  

 

 

 

Figure 4.9 Considerations for elevation error propagation (necessary user inputs are 

highlighted)  
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In the absence of a higher accuracy reference surface, DEM error was simulated 

using unconditioned fields. This required estimation of the distribution of error, 

represented by a probability density function (pdf) (Heuvelink et al., 2007). It was 

assumed that over a DEM the errors were normally distributed around a mean of 

zero metres (there was no known bias in the data) (Figure 4.10a). 

The standard deviation of error (stdv) was inferred from field knowledge, 

resulting in the selection of three possible values: 0.1 m, 0.5 m or 1 m. In reality, a 1 

m stdv of elevation error was too high – but this would provide extreme testing of 

the robustness of the flow model to error. The stochastic input variable (elevation 

error) was sampled within the bounds set by the pdf using Monte Carlo simulation; 

however, this did not guarantee that the entire range of values would be equally 

sampled (e.g. Smemoe, 2007; Figure 4.10b). Using a random number seed, 100 

equally probable realisations of the error surface were generated. The fused 2006 

DEM was then perturbed using each of these error surfaces in turn. Each DEM was 

subsequently used as an input for the slope function. This was implemented using 

the iteration capability of ArcGIS ModelBuilder. Although ModelBuilder is inefficient 

for multiple iterations using complex processes, the simple linking of functions 

coped well here and avoided the necessity of developing programming scripts. The 

model was also designed to be transferable and user inputs were minimised (Figure 

4.9). 

For each model run, 100 equally probable flow routes were generated and 

summed together to generate a map showing the probability of flow. It was 

anticipated that this would show the dominant flow routes, or movement of the 

centre of mass for large flows. Flow spread was also indirectly inferred using the 

error perturbations as slight deviations in the topographic surface. Only uncertainty 

in elevation was modelled, but the propagation of error to the confidence in main 

flow routes was indirectly considered. The phenomenon of error propagation has 

been well-documented (e.g. Veregin, 1995; Heuvelink, 1998; Fisher and Tate, 2006; 

Darnell et al., 2008). The intention was to reproduce the main observed flow routes 

and also investigate response to elevation error. For hazard assessment, only the 

main body of the lahar (or central mass) was modelled for its directional changes 

and incorporation of uncertainty considered probability of this hazard.  
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Figure 4.10 a) standard deviations (σ) on an elevation error pdf with normal 

distribution and no bias (e.g. mean error, μ, is zero), e.g. for stdv = 0.5 m; b) an 

elevation error sampling scenario for Monte Carlo simulation (after Smemoe, 2007)  

 

4.5.2 Implementing LAHARZ  

 

LAHARZ runs in ArcInfo and is essentially a set of scripts, written in Arc Macro 

Language (AML), connected through menus. Source code is available freely from 

USGS on request but an ArcInfo Workstation licence is required to run the program 

in its current form (licence purchasable through ESRI). Software input consisted of a 

DEM, specified lahar volumes and a specified H/L value (a ratio for the slope of the 

energy cone). A threshold of flow accumulation was also user-defined as 500 

draining cells - this value defined a connected processing ‘stream’, a thalweg, and 

the major tributaries (Figure 4.11). The H/L ratio can be thought of as (internally) 

defining the runout of primary volcanic hazards (such as pyroclastic flows and dome 

collapse avalanches) and source area for lahars (Chapter 2, Section 2.3.4.2). 
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Figure 4.11 Belham stream network (flow accumulation threshold 500) and H/L 

energy cone (0.24) as generated in the setup of LAHARZ. The volcano apex, or 

maximum elevation, is also shown. The proximal hazard zone is from the apex to the 

energy cone boundary. Coordinates are provided in Montserrat National Grid.  

 

 

This ratio can also be viewed as a boundary, marking the start of lahar deposition 

downstream. From previous research, a suitable range is 0.1—0.3 depending on the 

size and type of event (constraining mobility and runout) (Hayashi and Self, 1992). 

For the Belham catchment the H/L ratio was calculated using the apex (volcano) at 

the upstream limit of the Belham catchment and the furthest observed upstream 

lahar deposit (considered as the start of lahar deposition). The vertical and 

horizontal difference in positions specified the H/L ratio as 0.24. This process was 

repeated several times as manual selection was achieved through interpretation of a 

digital display of topography in combination with field experience; little deviation in 

the ratio to two decimal places was recorded in this pilot test.  
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A preliminary script established the position of the proximal hazard zone 

boundary by computing where the H/L energy cone intersected surface topography. 

Then, using the D8 algorithm, supplementary surface hydrology grids were derived - 

indicating slope directions and the presence of ‘streams’. LAHARZ next located a 

starting cell where the stream valley intersected the proximal hazard-zone 

boundary. Calculations progressed downstream cell by cell. At each stream cell 

LAHARZ constructed a minimum of three valley cross-sections at azimuth intervals of 

45° (Schilling, 1998). The channel or valley cross-section area, A, was filled to a level 

that satisfied the empirical relationship (Equation 4.1). By retaining a cumulative 

tally of those cells encountered and volume deposited, flow continued until the 

planimetric area (Equation 4.2) was also satisfied.  

In addition to the inbuilt assumptions (Table 4.1), it was assumed that, although 

LAHARZ was calibrated for debris flows, the proportionality coefficients applied to 

flows with lower sediment content observed on Montserrat.  

A set of inundation zones were produced for different lahar volumes (Section 

4.4.4); these then corresponded to hazard zones. However, there was a 

juxtaposition between the greatest threat from an individual lahar and the 

probability of that event, defining the hazard; the intensity from a greater volume 

flow is more dangerous at a given location than a smaller volume flow, however, the 

smaller volume flow is defined as more hazardous (e.g. Iverson et al., 1998). Thus, it 

is necessary to consider the cumulative potential hazard, for example, if an 

intermediate size flow inundates an area x, within that area smaller volume flows 

are more likely. The inundated area x will thus extend beyond areas covered by 

smaller flows; overlapping areas will thus represent the greatest cumulative hazard 

for a given time period (here, one rainy season). 

LAHARZ allowed calculation of four flows per processing session; however, 

inundation areas were output as individual rasters (binary inundated or non-

inundated cells) and so results from different processing runs were manipulated in a 

GIS to produce a hazard map (i.e. with raster math or AND/OR operations). The 

hazard map divided the Belham Valley region into areas, or zones, of equal hazard. 

Only six hazard zones were visualised to avoid over-categorising, and hence 

overcomplicating, the display. Town names and roads were used to orientate the 
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map-user. Hazard zonation cognition issues are discussed elsewhere (Chapter 2, 

Section 2.2.2.1 and later in Chapter 6).  

 

 

4.6 RESULTS  

 

4.6.1 Dominant paths from single-direction flow routing 

 

Figure 4.12 shows the observed main flow routes in the lower-reach; the dominant 

channel represents the in-field interpretation of the Belham thalweg and other 

discernable flow routes are designated ‘sub-channels’ (see also Chapter 3, Figure 

3.7).  

 

 

 

Figure 4.12 Observed channels, in November 2006, and geometry of past deposits 

(given by Figure 4.6)  
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Further upstream the valley was more confined and thus, for the most part, the 

valley floor was one main channel. Implementation of single-direction flow routing 

using an elevation cost surface aimed to reproduce these main flow routes. 

Incorporation of elevation error enabled the production of probability-of-flow maps 

for different magnitudes of error (defined by the stdv) and end points (Figure 4.13); 

thereby estimating ‘reasonable’ (expected) spatial deviation around prediction of 

the main routes.  

  

 

 

 

Figure 4.13 Inundation probability maps, the first column shows results using end 

point A, and the second from end point B; rows represent increasing stdv of error. 

Inundated cell count and total area are also shown for comparison. 



  Chapter 4 

  151 

Increasing stdv generally increased flow path variability and thus total area 

inundated. In the upper- and mid-reaches there was little lateral deviation from a 

main flow route for all the different end points and stdvs used (Figure 4.13). 

However, as the valley widened in the lower-reach, both end point and stdv 

influenced the dominant flow routes. Moreover, none of the simulations matched 

observations for the lower-reach, between the former Belham Bridge and extraction 

plant. Specifically the observed dominant channel hugged the northern side of the 

valley bottom, whereas all simulations hugged the southern side, closest to Garibaldi 

Hill; however, there was an observed sub-channel that took the southern route 

(Figure 4.12). Near the shoreline simulated flow routes were able to match observed 

channels.  

However, simulations with end point A were more robust to elevation error, e.g. 

there was little difference between 0.1 m stdv and 0.5 m stdv (130 cells or 9.6% 

decrease of inundated area when stdv was increased from 0.1 m to 0.5 m; the 

unexpected decrease is a result of the anomalous flow path in the 0.1 m simulation). 

In contrast, for end point B, there was a 69.7% increase of inundated area (0.092 

km2) when stdv was increased from 0.1 m to 0.5 m. A 1 m stdv was extreme but 

simulations with both end points coped well – generally there was little deviation 

from established routes, especially in the mid- and upper-reaches. Further, the 

variability in flow paths only served to highlight the sub-channels in the last 0.5 km 

(approximate) near the shoreline (see Figure 4.12). Hence, this approach is fairly 

robust to elevation error and its propagation, although there are some issues with 

the ability of the model to pick out the valley thalweg (main channel) in the lower-

reach between the former Belham Bridge and the extraction plant. 

In the lower-reach cross-sections generally become wider (Figure 4.12) and the 

valley floor flattens (Figure 4.6b); thus the topographic differences between cells 

become less here. Due to the great reliance on topographic control, these 

differences in valley morphology may influence output inundation areas and 

increase sensitivity to DEM error.  
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4.6.2 Delineating lahar hazard zones with LAHARZ 

 

LAHARZ calculated inundation areas for user-specified lahar volumes, spreading 

away from the valley thalweg. The thalweg was generated automatically from the 

DEM by LAHARZ (Figure 4.14a; also shown with tributaries in Figure 4.11) and was 

supported by field observations made in the lower-reach (Figure 4.12). As the lahar 

input volume increased, flows spread further laterally and were able to reach further 

downstream (until the processing stream cell encountered the sea) (Figure 4.14b). 

LAHARZ output was generally wider down the channel (had more lateral spread 

from the thalweg) in the upper- and mid-reaches than recorded through past 

deposition (Figure 4.14b). This may be caused by a (a) problem with the DEM 

representation of the terrain; (b) an inadequate technique for discerning the 

absolute extent of net deposition; or (c) a problem with the cross-sectional 

spreading mechanism in LAHARZ. Most likely all of these are contributory factors, 

but the exclusion of net erosion in the geometry of inundated area would probably 

cause an underestimation of past lahar extent and explain the greater spreading 

shown by LAHARZ. However, there was also an area near the shoreline that had 

observed deposition, yet was not inundated by any of the LAHARZ model runs, 

including the very large 1 × 10
6
 m

3
 volume event. This reflects the inability of 

LAHARZ to show multiple channels in an unconfined channel (as observed in the 

field, Figure 4.12).  Nonetheless, it is not reasonable physical behaviour for 

sediment-rich lahars (debris flows) to flow down more than one channel at once; 

thus, the observed deposition in the lower-reach can be explained by flows with 

lower sediment content, or a reworking of lahars after initial deposition.  

With likelihood of occurrence decreasing with volume, inundation areas were 

combined to produce a cumulative hazard map (Figure 4.15a) (see Section 4.5.2). 

This can be compared to the existing long-term hazard map (Figure 4.15b).  
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Figure 4.14 a) Belham thalweg automatically generated in LAHARZ; and b) 

inundation areas for varying lahar volumes from LAHARZ; additionally the geometry 

of past deposits has been overlain (from Figure 4.12). 
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Figure 4.15 a) example hazard map showing changes in hazard relative to the key 

towns and road network; b) existing hazard zones map (at Hazard Level 3) for the 

same section of the Belham Valley (digitised from MVO hazard map).  
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The lower-reach of the Belham is highlighted in Figure 4.16 to show the 

differences in hazard mapping from the flow routing and LAHARZ. With stdv = 0.5 m 

the simple flow routing was able to show the braided channel near the shoreline (as 

shown in Figure 4.12). In contrast, LAHARZ was able to show lahar spread but not 

multiple channels. Furthermore, while single-flow routing represented hazard as 

gradational probability, LAHARZ depicted hazard by a series of homogenous zones 

with discrete boundaries.  

 

 

 

 

Figure 4.16 Hazard maps for the lower-reach between the Belham crossing and the 

shoreline: a) hazard zones inferred from LAHARZ; b) inundation probability field 

from the elevation cost surface, stdv = 0.5 (close-up of Figure 4.13, mid-right). 

Coordinates are provided in Montserrat National Grid.  
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4.6.3 Comparison of model outputs with observed morphological change 

 

For each volume used as an input for LAHARZ, coordinates were taken from the last 

stream-cell processed. Volumes where resulting B > Bo were not considered further 

as they did not achieve their full potential runout (sediment was lost to sea). Figure 

4.17a illustrates a significant positive relationship between natural log transformed 

input volume and lahar travel distance (R2= 0.96), a result suggested in the graphical 

outputs of the model (Figure 4.14b).  

 

 

 

Figure 4.17 a) relationship between natural log transformed input volumes (for 

various LAHARZ model runs) and lahar travel distance downstream (last stream-cell); 

b) natural log transformed observed net deposition at corresponding sample 

locations downstream (extracted from data presented in Figure 4.6).  
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Preliminary analysis of these data suggested a positive exponential relationship and 

input volume was natural log transformed prior to linear regression. Such a 

relationship is likely to result from the changing (generally widening) cross-sectional 

area downstream. At corresponding locations, the observed net deposition was 

extracted using information derived from Figure 4.6 and related to distance 

downstream. Preliminary analysis of these data suggested a negative exponential 

relationship and net deposition was correspondingly natural log transformed prior 

to linear regression. Linear regression applied to the transformed data yielded a 

significant (R2=0.92) negative correlation with distance downstream (Figure 4.17b).  

Whilst travel distance from modelled individual events (Figure 4.17a) can not be 

directly related to observed net deposit depth (cumulative system response over a 

year) (Figure 4.17b), high cumulative hazard areas (small distances downstream) 

corresponded to areas with greatest net deposition and by inference, most lahar 

activity.  

 

 

4.7 DISCUSSION  

 

4.7.1 Comparison of inundation areas 

 

Inundation maps generated by the two models differed in the elements of lahar 

runout that they illustrated. LAHARZ produced a map of inundated areas (total 

planimetric) for given volumes, whilst the single-direction flow routing mapped the 

spatial distribution of dominant flow paths, independent of volume.  

Single-direction flow routing maps identified multiple channels near the 

shoreline, in broad agreement with field observations. Variation in predicted flow 

routes was markedly less in mid- and upper-reaches. However, this method did not 

allow general planimetric spreading of lahar volume. Whilst LAHARZ allowed for 

dispersion (in both total planimetric area and cross-sectional areas downstream), in 

an unconfined channel the mechanism for spread along three cross-sections 

resulted in jagged hazard zone predictions. Furthermore, as cross-sections in 
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LAHARZ were processed from the channel thalweg only, this method was unable to 

reflect any channel braiding.  

In the lower-reach (excluding the near-shoreline region), a tendency for 

simulations from single-direction flow routing to hang close to the southern side of 

the valley (Figure 4.13) represented only a relatively minor channel in the field 

(Figure 4.12). The D8 algorithm was also used by LAHARZ to determine the Belham 

River (thalweg) and tributaries (Figure 4.11); LAHARZ isolated a different main 

channel in the mid- and lower-reaches to that identified by single-direction flow 

routing. The thalweg generated by LAHARZ hung close to the northern side of the 

valley, agreeing more closely with field observations (Figure 4.14a). Differing outputs 

from the same algorithm were possibly a result of LAHARZ’s use of a flow 

accumulation grid. This grid, for model setup only, essentially considered movement 

of a gravitational flow from every cell in the DEM to their immediate neighbours. 

Flow was accumulated and a cell was assigned to the main flow route if the number 

of cells draining into it exceeded a threshold (in this case 500 cells). In contrast, the 

single-direction flow routing algorithm expelled flow (backwards) from one cell to 

the next from a single end point, finding the easiest (least-cost) route to the start 

point. In terms of flow behaviour, this approach models movement of mass from 

one source only and investigates the route taken to arrive at an observed end-point. 

The two GIS-based approaches thus implement the D8 algorithm in slightly different 

ways. For individual flows the single-direction flow routing approach (cost surface 

implementation of D8) seems physically better.  

Both models had their own limitations in their predictions of inundation in the 

lower valley; specifically, the mechanisms used to spread volume (along three cross-

sections) were insufficient for LAHARZ in this unconfined section of the channel and 

single-direction flow routing took a minor observed route between the mid-reach 

and the extraction plant in the lower-reach. Therefore, consideration of topographic 

variation alone may not be sufficient to fully explain observed lahar movements. 

This points to the significance of variables that are not currently included in these 

formulations, which have a strong influence on flow direction. While terrain slope is 

likely to have the greatest influence on the direction of lahar movement, other 

surface factors, such as surface roughness (including vegetation) or degree of 
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channel confinement, might be influential. Channel roughness and cross-section 

shape have been shown to influence properties of stream-flow and 

hyperconcentrated-flow (Macedonio and Pareschi, 1992). Physical lahar-specific 

variables (e.g. turbulence, rheological regime) were also notably absent from both 

simple models. An extension to this research could consider improving model 

performance of simple flow routing in a non-confined channel, perhaps through the 

addition of parameters considering channel roughness or rheological changes. For 

hyperconcentrated flows, water and solids behave as different phases with fluid 

acting as the transporting medium exhibiting some turbulent behaviour, similar to 

stream flows (Chapter 2; Section 2.3.2). However, these non-Newtonian flows also 

acquire yield strength, potentially reducing their mobility. Thus, lahar composition is 

important to flow behaviour. However, with current data limitations in the field 

context of Montserrat an approach could first trial further factors external to the 

solid-fluid mixture, and see how successful those results are at matching 

observations (this is considered in the subsequent chapter); thereby assessing the 

relative importance of rheology indirectly. Furthermore, a more formal approach to 

sensitivity testing could quantify the relative importance of input variables for their 

influence on model output (e.g. global sensitivity analysis as detailed in Saltelli et al., 

2000b). 

 

 

4.7.2 Model requirements and limitations 

 

4.7.2.1 Single-direction flow routing 

Simple flow routing required user-input in the form of a regular grid of elevation 

values – a DEM. The major assumption for single-direction flow routing was that a 

lahar would preferentially travel over this DEM from a given cell to one of its eight 

direct neighbours in the direction of steepest descent. Uncertainties in these 

predictions were considered through likely magnitudes of elevation error (stdv). An 

end point, or points, was also needed to run the model (Figure 4.9). Lahar intensity 

(depth and velocity; Chapter 2, Section 2.3.3.2), or volumes, was not considered, nor 

were any internal factors of the solid-fluid mixture.  



  Chapter 4 

  160 

Alternatives to the D8 algorithm for flow routing have been discussed in Chapter 

3 (Section 3.6.2.3), but these may complicate the relationship between topography, 

cost and flow-direction.  

 

4.7.2.2 LAHARZ 

LAHARZ required acceptance of the assumptions in Table 4.1, input volumes, a DEM 

and specification of H/L. Hydrological flow equations form the theoretical basis for 

LAHARZ (Iverson et al., 1998) but these were originally calibrated for debris flows 

(more sediment-rich). Therefore, the magnitude of A and B may not be accurate for 

Belham (typically dilute) lahars. Notwithstanding the above, when a range of 

magnitudes are considered there should be reasonable confidence in hazard zoning; 

with the creation of a relative hazard map (and no absolute values), a specific input 

lahar volume does not claim to correlate directly with an inundation area. Thus, 

even though input volumes can be arbitrary without recorded volumes from actual 

events, relative hazard severity can be assessed by considering order of magnitude 

increments in volume, as given here.   

Uncertainty in the DEM was not considered for its influence on LAHARZ outputs. 

It was unfeasible to perform stochastic simulation of elevation error to generate 

multiple realisations of a DEM for use as inputs to LAHARZ; this would have been a 

very time-consuming process as user input would be required for each DEM to select 

the start and end cells etc. Error in the DEM would have had an influence on a) 

thalweg definition (this can be inferred by changing dominance of the main channel 

from single-direction flow routing) and b) inundated cells across a cross-section. 

Stephens et al. (2002) have discussed the notable response of LAHARZ to different 

DEM data sources with inferred differing accuracies. However, here Figure 4.13 gave 

supporting evidence for high confidence in the DEM.  

From those that have used LAHARZ (e.g. Stevens et al., 2002; Berti and Simoni, 

2007; Oramas Dorta et al., 2007) there has been little discussion about the relative 

significance of the H/L ratio on model outputs. The H/L energy cone (along with 

derived channel thalweg) determined the initiation cell, but in preliminary testing its 

value had little effect on the output inundation area (shifting the start of simulation 

upstream or downstream along the thalweg by one or two cells only). However, 
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recent pyroclastic flows have travelled down Tyers Ghaut (see Chapter 2, Section 

2.5.3) and into the Belham Valley with runout close to the Sappit confluence; this 

suggests a shallower H/L ratio could be used to better inform the limits of the 

energy cone (see Chapter 2, Section 2.3.4.2) for a discussion of pyroclastic flow 

runout).  

 

 

4.7.3 Implications for lahar hazard management on Montserrat 

 

Simple models inherently avoid over-complication; they can isolate the important 

parameters and, if accepted as preliminary tools or first approximations, are more 

likely to reasonably fit over a wide range of behaviours. They are also often the only 

choice due to limited data and/ or can serve to test the suitability of available data 

(e.g. DEM; Chapter 3). 

For LAHARZ, inundation areas were converted to hazard zones using the 

inference that smaller volume flows are likely to occur more frequently (as they 

require less ‘forcing’ to initiate) and larger volumes will overlap inundation areas 

made by smaller flows. The areas inundated by the smaller flows thus represent the 

greatest (cumulative) hazard. For single-direction flow routing, the likelihood of a 

cell being classified as part of the main flow route was given by a probability map 

produced by stochastic simulation of elevation error.  Thus, although different 

elements of lahar inundation were predicted, both models considered hazard in 

terms of probabilities or likelihoods. However, LAHARZ produced zones bounded by 

discrete lines, whereas the simple flow routing produced a gradational change in 

hazard or flow probability.  

Inundation probability maps here are useful for showing dominant flow routes, 

but the single-direction flow routing methodology requires some refinement to be 

consistent with field observations in the lower-reach. Probability maps have shown 

distinct advantages over unique line boundaries or binary ‘safe/ unsafe’ maps for 

hazard assessment with respect to flooding, (e.g. Zerger, 2002; Smemoe et al., 

2007); and although the methodology may appear complex, probability maps 

generally translate well to decision makers and therefore a full understanding of the 
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concepts isn’t a prerequisite (Zerger, 2002). However, given morphological change 

as a response to lahar perturbation, and the established influence of terrain on flow 

movement, dominant flow routes are liable to change. Thus, the single-direction 

flow routing approach has shown potential for short-term lahar route predictions.  

 LAHARZ (capable of mapping lahar dispersion) is more suitable for long-term 

hazard assessment synonymous with local land-use planning objectives. LAHARZ 

output also differs from the existing hazard mapping scheme as Figure 4.15a applies 

regardless of the activity at the volcano. This does not imply that the results 

presented here are an improvement on the existing Hazard Level System for public 

information; there are issues surrounding the over-complication of zones (hazard 

management issues will be discussed in Chapter 6). However, Figure 4.15 may be 

useful for micro-management and long-term planning.  

Both methods used here operated within a GIS and the procedures can be largely 

automated. This gives two options for potential outputs: models (in a GIS) that can 

be transferred to users (with GIS) or hazard maps that can be tailored to user 

requirements (e.g. paper or electronic maps). Transfer of a working GIS has the 

advantage that updated data can easily be integrated (e.g. temporal and/ or 

accuracy updates to the DEM). Both techniques require only surface characteristics 

and a set of scenarios to be tested (e.g. Figure 4.9); detailed knowledge of flow 

behaviour is not a prerequisite. Therefore, this researcher could be confident in the 

potential uses of the software if the model were transferred (Renschler, 2005).  

Practically, LAHARZ and single-direction flow routing are easy to implement and 

can be used by hazard management personnel to quickly provide preliminary 

estimates of likely inundation areas. The single-direction flow routing approach was 

entirely automated in ArcGIS ModelBuilder. LAHARZ, written in Arc Macro Language, 

is already available from the USGS (Schilling, 1998). On Montserrat, MVO and the 

DMCA (in coordination with the Physical Planning Unit) have set up ArcGIS which will 

enable them to operate the programs discussed if required (subject to software 

licence agreements). However, it should be noted that these techniques are most 

valuable for preliminary assessments and for use as portable ‘lahar hazard tools’. 

This is especially relevant for transfer to other volcanic systems where more detailed 

data may be available to inform more complex models.  
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4.8 CONCLUSIONS  

 

Single-direction flow routing results generally replicated observed dominant flow 

routes and channel braiding in the lower-reach. However, these inundation 

probability maps had limited value for hazard zonation as only the centroid of the 

lahar mass was simulated, thereby not permitting dispersion. In contrast, LAHARZ 

mapped total planimetric inundation area using a sequential range of input volumes 

to create hazard zones. In a confined channel (upper- and mid-reach) LAHARZ was 

able to map inundation of the entire valley floor, as observed in the field; yet in the 

lower reaches the valley widened, resulting in jagged hazard zone predictions.  

Consequently, while LAHARZ may not be successful for predicting the main routes of 

an individual flow event (over the current topographic surface), it can indicate the 

areas likely to be affected by cumulative flows over a long time. Results suggest that 

despite its original calibration for sediment-rich debris flows, LAHARZ can also be 

applied to dilute lahars on Montserrat.  

Ultimately, these inundation simulations provide improved knowledge of the 

likelihood of inundation, thereby also decreasing uncertainty in long-term hazard 

zonation. These two GIS approaches are complementary for hazard management of 

the Belham Valley, Montserrat. To get the ‘full picture’ for short- to long-term lahar 

inundation forecasting they should be viewed synchronously. Both methods are 

implemented in a GIS and therefore outputs can be manipulated to user-demands, 

models have potential to be refined and data can be updated.  

The following chapter considers whether modifications can be made to improve 

model performance for flow predictions in the lower-reach.  
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CHAPTER 5: DEVELOPING A SIMPLIFIED GIS APPROACH TO DILUTE LAHAR 

MODELLING 

 

 

 

Single-direction flow routing over an elevation-only cost surface predicted lahar 

paths largely consistent with field observations of recent lahars in the Belham River 

Valley, Montserrat (Chapter 4). The semi-empirical lahar model, LAHARZ, also 

predicted viable inundation areas from a variety of lahar volumes, useful to inform 

long-term local hazard management. Viewed together the results from each model 

were more meaningful for hazard assessment. However, both of these established 

GIS techniques were unable to adequately replicate observations in the unconfined 

lower-reach of the Belham Valley. An approach is proposed here that couples a form 

of single-direction flow routing with LAHARZ. The modified single-direction flow 

routing technique includes consideration of surface roughness and conservation of 

momentum using Manning’s formula for normal stream-flow. LAHARZ was used as a 

mass conserver to examine the spread of lahar volume.  

Application to Montserrat yielded support for this approach as an innovative 

dilute lahar hazard assessment tool. Observed dominant flow paths were 

reproduced and improved results were found in the lower valley. For the first time in 

this study area, velocities (magnitudes and spatial distribution) and average travel 

times were estimated for large volume lahars. Flow depth approximations were also 

made using (modified) LAHARZ and these helped refine inputs for the flow routing 

model. Flow depths were verified by order of magnitude to field observations and 

velocity predictions were supported by proxy measurements and published data. 

Forecasts from this coupled method operated on short to mid-term timescales; an 

update of the surface representation would be required for a new forecast. 
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5.1 INTRODUCTION  

 

Currently, no one model can explain all observed features for a particular lahar 

(Fagents and Baloga, 2006). Lahars are highly complex mixtures of volcanic debris 

and water, demonstrating a wide range of sediment concentrations. They can be 

classified as debris flows (greater than about 60% sediment by volume) and 

hyperconcentrated flows (greater than about 30% sediment by volume), with water-

rich hyperconcentrated flows having a volumetric sediment concentration as low as 

20% (Vallance, 2000). Sediment concentration can also increase progressively 

downstream due to the highly erosive nature of the flow, which can transform flood 

flows and hyperconcentrated flows to more sediment rich phases (Vallance, 2000).   

The dynamics of both stream-flow and hyperconcentrated-flow are controlled by 

the liquid phase and so can be successfully described using standard stream-flow 

approaches (Macedonio and Pareschi, 1992). Flow velocities, flow depths and 

discharges are controlled by channel characteristics such as cross-section shape, 

slope, sinuosity and roughness. In contrast, the dynamics of debris flows are 

controlled by the sediment phase, so their behaviour additionally depend on solid-

fluid variables such as density, viscosity and yield strength (Pierson, 1995). However, 

there are similarities between debris flows and normal stream-flow. Similar 

behaviours have been observed for turbulent water and turbulent debris flows as 

the ratio of flow depth to particle size increases (Caruso and Pareschi, 1993). 

Further, the mean velocity of debris flows and clear water flows has been 

adequately described to a first approximation using the same mathematical 

formulation for steady stream-flow (Rickenmann, 1999). 

Numerical modelling of lahars is advantageous as it allows the derivation of 

parameters such as flow velocity, flow width, depth and discharge (Aguilera et al., 

2004). Previous mathematical modelling of lahars has employed both steady and 

unsteady descriptions of the equations of motion, and empirical approximations of 

these. In addition, more recent work has incorporated digital spatial information. 

Early approaches focused on describing one-dimensional steady flow using 

equations for mass and momentum conservation, with an empirical law for resisting 
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forces such as the Chezy or Manning formulae (Macedonio and Pareschi, 1992; 

Caruso and Pareschi, 1993). Other approaches have attempted to solve the full 

Saint-Venant equations (for mass and momentum conservation) to model unsteady, 

non-uniform flows (see Hungr, 2000). However, models become more 

computationally intensive with each step closer to the reality of flow physics, e.g. 

Delft3D (Carrivick et al., 2009). Alternatively, statistical and empirically-based 

models have been used to capture the gross underlying physics using coefficients 

e.g. LAHARZ (Iverson et al., 1998; Schilling, 1998).   

Within this chapter the objective is to investigate an approach appropriate for 

rapid hazard assessment of dilute lahars (sediment-rich stream-flow and 

hyperconcentrated-flow; Chapter 2). Dilute lahars can be approximated as floods 

and, consistent with that, the use of Manning’s equation as a simplified momentum 

equation is justified. For inundation predictions, a simplified statement of mass 

conservation is also needed, and the use of LAHARZ to provide this description will 

be explored. This synergistic approach will be developed in a geographical 

information system (GIS).  

 

 

5.2 METHODS 

 

5.2.1 Model Formulation 

 

In this section, a simplified model for dilute lahar movement in a GIS environment is 

formulated. Generating and manipulating topographic data is straightforward in a 

GIS. The spatial distribution of elevation data is commonly represented by a regular 

grid or matrix, known as a digital elevation model (DEM). The use of a DEM for flow 

modelling permits two-dimensional calculations and can rapidly generate inundation 

maps. 

The model consists of an empirical standard channel flow equation (Manning’s 

equation) as an equation of motion, and the semi-empirical lahar inundation model 

LAHARZ (Schilling, 1998) is used as a highly simplified expression of conservation of 
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mass. The implementation of these formulations in a GIS framework is described, 

and a consideration of error propagation is provided.  

 

5.2.1.1 Equation of Motion - Manning’s Equation   

Manning’s empirical formula for the mean velocity of turbulent flows in rough open 

channels is widely used by hydrologists for normal stream-flow, but it has also been 

successfully applied to hyperconcentrated flows and potentially may be extended to 

approximate debris-flow behaviour. The Manning formula is typically written in the 

form, 

 

3/22/11
RS

n
u = ,       [Equation 5.1] 

 

where u is the cross-sectionally averaged velocity, n is the Manning coefficient, 

whose numerical value describes the channel roughness, S is the energy slope 

(inclination of the channel base, Figure 5.1a), and R is the hydraulic radius of the 

channel (the ratio of the channel cross-sectional area to wetted perimeter, Figure 

5.1b). The form of the Manning formula is dimensionally inconsistent. To balance 

the dimensions of Equation 5.1, the 1/n term must have units of m1/3s-1, but the 

convention is to leave n dimensionless and attach the remaining units to an implicit 

coefficient, with a value 1 m1/3s-1 (Smith et al., 2007). Although the formula was 

originally derived as an empirical description of flow observations, more recent work 

identifies a theoretical basis in terms of turbulent dissipation at a rough boundary 

(Gioia and Bombardelli, 2002). 
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Figure 5.1 a) definition sketch for two-dimensional free surface flow; b) an example 

channel cross-section showing wetted perimeter (both after Brutsaert, 2005). 

 

 

Acrement and Schneider (1990) have summarised Manning n values for an 

extensive variety of surfaces. These values correspond to natural low particle 

concentration streams and floods, performing best through a straight stream of 

fairly constant cross-section where mean velocity and bed roughness can be 

considered uniform (Gordon et al., 2004). Recently, and as an alternative to defining 

uniform sections (reaches) of the channel with only one roughness value, a cell-by-

cell specification of Manning’s n has been adopted for use in a GIS (e.g. Liu et al., 

2003; Candela et al., 2005; Wang et al., 2008; Wu et al., 2007). Every channel will 
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have different sensitivities to surface friction, therefore the important task becomes 

summarising the variation with available information. Effective values are functions 

of both model resolution and dimensionality (Horritt, 2005). For example, the 

correction for bends in the channel should not be necessary in many 2D models as 

they will be considered in the DEM. This approach allows sub-reach scale roughness 

variation to be considered. 

For lahars, there is a complex relationship between sediment content and 

velocity which may be oversimplified by this formula. For example, debris flows are 

able to smooth their own bed by a combination of erosion and deposition, 

decreasing n values and increasing velocity (Pierson, 1995; Laenen and Hansen, 

1988). Sediment loss will also decrease momentum. The net effect depends on 

whether the bed is rough or smooth and whether the flow is laminar or turbulent 

(Hessel, 2006). Notwithstanding the complexities introduced when considering 

lahars, the Manning formula has been shown to give acceptable results for 

modelling historic lahars with a range of flow properties (Caruso and Pareschi, 

1993). Laenen and Hansen (1988) also found debris flows can be predicted with 

reasonable accuracy, if roughness is adequately portrayed.  

 

Manning's roughness coefficient, n 

For a gravitational flow down a channel, viscous and pressure drag over the wetted 

perimeter may be conceptually divided into three components: soil grain roughness, 

form roughness and vegetative roughness (Wu et al., 1999). The value of n may be 

computed by a base value of n for a straight, uniform, smooth channel in natural 

materials, a correction factor for the effect of surface irregularities, a value for 

variations in shape and size of the channel cross section, a value for obstructions and 

a value for vegetation and flow conditions (Acrement and Schneider, 1990).  

The use of Manning’s formula has been criticised for requiring calibration of 

publicised values and the problem of equifinality with multiple roughnesses (e.g. 

Pappenberger et al., 2005). Although standards exist, (Acrement and Schneider, 

1990), some researchers have opted to adjust Manning’s n values for specific 

channels (e.g. Cenderelli and Wohl, 2001); others have found channel geometry 

errors would be dominant over n-value errors and therefore have chosen not to 
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calibrate (Yochum et al., 2008). The sensitivity of the Manning roughness coefficient 

has further been analysed by Hall et al. (2005) and Wu et al. (2007).  

Whilst for clear water flows n is primarily a function of the basal friction, the flow-

resistance parameters of debris flows might depend in addition on the mechanical 

properties of the mixture (Rickenmann, 1999). For a debris-flow the most important 

factors influencing flow resistance are the addition and removal of debris and 

presence of bends (Bulmer et al., 2002). Laenen and Hansen (1988) were able to 

vary Manning’s n to incorporate transitory behaviour of lahars from Mt St Helens, 

Washington (USA). The slowing effects of bridges and other natural barriers can be 

introduced by increasing the Manning coefficient (e.g. Macedonio and Pareschi, 

1992).  

Here, the spatial distribution of Manning's n was digitised in a GIS and converted 

to a regular grid with each cell assigned a roughness value. Therefore, roughness in a 

cell was the sum of sediment contribution and vegetation contribution (Brookes et 

al., 2000). Spatial variations in suspended sediment concentration were not 

considered (i.e. normal stream-flow was assumed). 

 

Slope, S 

Slope of the energy grade line (metres per metre) is in practice assumed to be 

parallel to the water surface slope and the bed slope (Figure 5.1). Thus for the 

Manning formula, S, can be given by the gradient of the bed. Slope, the first 

derivative of an elevation surface, is defined by a plane tangent to the surface as 

modelled by a DEM at any given point. Although the mathematical definition of 

slope is quite clear, its implementation based on grid-based DEM may vary, since 

some assumptions must be made on how the continuous surface is approximated by 

discrete sample points (Zhou and Liu, 2004).  

The derivative is calculated locally for each cell in the grid by computations made 

within a 3 × 3 neighbourhood. The SLOPE function of ArcGIS used here implements 

the third order finite difference method (Horn, 1981). This algorithm has performed 

well in mathematical tests (Skidmore, 1989; Jones, 1998). Furthermore, the 

influence of elevation error is much larger than the influence of algorithm error 

(Zhou and Liu, 2004). 
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Hydraulic radius, R 

Geometry of the channel cross-section is characterised by a single parameter, R. This 

hydraulic radius is defined as the area of the cross-section of the channel divided by 

the length of the wetted perimeter. In the case of a wide channel, where the width 

is much larger than flow depth, the hydraulic radius can be approximated by the 

average flow depth (Caruso and Pareschi, 1993; Gioia and Bombardelli, 2002). Savat 

(1977) specified that a channel can be assumed infinitely wide if the bottom width is 

at least five times greater than the depth of the flow. However, while it may be 

reasonable to assume the hydraulic radius equal to flow depth in the lower reaches 

of a valley, flow depth will be greater in the confined upstream channel (owing to 

conservation of volume).  

In order to determine the hydraulic radius, or the average flow depth, the 

distribution of the lahar volume over the channel topography has to be constrained. 

This was done in a GIS framework using the semi-empirical approach of Iverson et al. 

(1998) to provide a simplified mass conservation relation. Two fixed flow depths 

were also used for comparison purposes (1.5 m and 2 m; R = 1.5 or 2).  

 

5.2.1.2 Conservation of mass: LAHARZ 

LAHARZ (Schilling, 1998) uses proportionality rules that relate planimetric and cross-

sectional areas to lahar volume (Iverson et al., 1998). Semi-empirical equations 

predict the valley cross-sectional area, A (Equation 5.2) and planimetric area, B 

(Equation 5.3), inundated by lahars with various volumes (V). Further details are 

given in Chapter 4. A fundamental simplification of this program is the assumption 

that for a given event, lahar volume is assumed constant from source, through 

transport in the proximal hazard zone to deposition in the distal zone. Transitory 

behaviour is difficult to simulate and thus most predictive models assume lahars 

have the same character during transit (e.g. Canuti et al., 2002; Pitman et al., 2003; 

Aguilera et al., 2004). This mass conservation principle was exploited here to 

ascertain lahar volume distribution and flow depths.  

 

3/205.0 VA =         [Equation 5.2] 
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3/2200VB =         [Equation 5.3] 

 

 

5.2.2 Implementation in a GIS 

 

5.2.2.1 Generating a velocity-cost surface 

Steady flow velocity from cell-to-cell was calculated over a regular grid using 

Manning’s equation combined with regular grids of hydraulic radius, R, Manning’s 

roughness coefficient, n, and surface slope, S (Figure 5.1). Using the PathDistance 

function in ArcGIS, flow movement was assigned to the direction of maximum 

downslope velocity flow. Following similar methodology to the established 

technique for an elevation-only cost surface (Chapter 4), flow was connected from 

an end point to a start point upstream using a flow direction (cost back-link) raster. 

End points, A and B, were consistent with observations used in earlier research in 

the Belham Valley (Chapter 4). The PathDistance function was used in order to 

ensure that upslope flow was impeded and that flow was prohibited up slope with 

angles > 5.74° (1 m rise over 10 m run); a linear function was used to define this. 

Huggel et al. (2003) also used this function in their modified single-flow direction 

(MSF) model for assessment of hazards from glacial lake outbursts. However, they 

permitted flow to divert from steepest flow direction up to 45° on both sides; thus 

although they used an elevation-only cost surface, they also considered dispersion. 

A smaller angle of diversion was considered here to permit only the representation 

of the dominant flow route. Preliminary testing demonstrated that without such an 

allowance flows could become ‘stuck’ in local sinks in the cost surface.  

The flow path produced was time- and discharge-invariant (i.e. the velocity field 

was fixed per run of the model). Residence time (or time taken for flow to pass 

through a cell) was then calculated using a surface-distance grid (SurfaceLength 

function in ArcGIS) and velocity grid. For each simulated flow path, the residence 

time was calculated on a cell-by-cell basis and summed to give total travel time from 

start point to end point.  
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5.2.2.2 Quantification and propagation of error  

The quality of the input DEM is paramount for flow routing (Chapter 3). DEM 

resolution is also important. Flow inundation areas have been underestimated due 

to the resolution of input topographic data (Davila et al., 2007); finer DEM resolution 

is especially important for smaller flows (Hubbard et al., 2007; Oramas Dorta et al., 

2007). These vulnerabilities, and their potential influence on model predictions, 

have been acknowledged from the outset. 

Whilst the sensitivity of LAHARZ to elevation errors on shallow slopes and 

complex drainages has been acknowledged (e.g. Stevens et al., 2002), only minor 

differences in inundation areas have been observed from direct comparison of 

different input DEMs (Hubbard et al., 2007; Huggel et al., 2008). Elevation error 

propagation to lahar simulations was not considered for LAHRAZ for the above and 

following reasons: (a) the DEM was previously assessed for fitness for lahar 

simulation (Chapter 4); (b) thalweg position (and deviation due to error) has been 

previously considered (Chapter 4); (c) without knowledge of actual distribution of 

errors random perturbation could cause unrealistic inundation results (flow could 

stop due to relatively minor peaks in cross-section shape); and (d) the time taken to 

run the program, and current necessary manual user inputs, would render multiple 

iterations impractical without a significant rewrite of the LAHARZ source code.  

Error in elevation was considered for simple flow routing, consistent with the 

established methodology in Chapter 4 (Section 4.5.2). As before, Monte Carlo 

sampling of elevation error was conducted after DEM construction (see Figure 5.2). 

The range of perturbation values was defined by the standard deviation of error 

(stdv); stdv values were either 0.1 m or 0.5 m.  
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Figure 5.2 Methodological overview for deriving velocity cost surface(s) and likely 

flow paths  

 

 

5.2.2.3 Movement of mass 

In addition to the inundation area predictions from LAHARZ, the source code was 

modified to allow more information to be exported from the model and written to 

an output text file; this included coordinates for the stream cell being processed, 
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and an identification number, a cross-section identifier (as each stream cell 

simulated a minimum of three cross-sections) and fill levels at each processing step 

(Figure 5.3a). A maximum fill level was then calculated per cross-section, per stream 

and then converted to a peak flow depth. For a given input volume, the maximum 

flow depth on a cell-by-cell basis was then incorporated into a GIS. 

Due to micro-topographic changes (with their associated errors) and the 

‘stepped’ nature of a DEM viewed in cross-section (Figure 5.3a), flow depths were 

not used directly to calculate the hydraulic radius as these produced overestimates 

of the wetted perimeter. Rather, the minimum (rectangular) wetted perimeter was 

estimated at each of the three (or more) processing cross-sections. Assuming a 

rectangular channel, the minimum wetted perimeter was established per cross-

section; an approximate depth across the cross-section was given by dividing 

calculated cross-sectional area, A, by the number and resolution of cells inundated 

(Figure 5.3b). Therefore, the maximum hydraulic radius per cross-section was 

calculated. This was considered the ‘worst-case’ scenario as it would give the 

greatest velocities according to Equation 5.1.   

In reality the schematic representation in Figure 5.3a was an over-exaggeration of 

the topographic difference between adjacent cells, thus depth approximation by 

averaging (Figure 5.3b) was a feasible approach. Furthermore, because (a minimum 

of) three cross sections were taken per stream cell, there were a large number of 

cells for which maximum depth was calculated multiple times (due to overlapping 

cross-sections), effectively ‘evening out’ any anomalous heights. For each cell 

coordinates and approximate depth(s) were extracted. These data were added as 

points into ArcGIS and converted to a raster (regular grid) using a nearest-neighbour 

approximation (the neighbourhood was less than the cell resolution to retain 

depths). A local (3 × 3) low pass filter was finally applied to smooth the maximum 

depth results.  

Furthermore, to get these inundation depths it must be assumed that maximum 

flow height was not taken from the flow front; lahar depth is variable near the front 

(Vignaux and Weir, 1990).  Predicted flow depths had their magnitude verified with 

stage indicators in the field (e.g. high-water markers on buildings and static trees) 

(e.g. Figure 5.4). These markers were not taken immediately after a lahar; therefore, 
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they represent a minimum estimate of the peak flow height for an unknown event 

(erosion and deposition could have occurred after the indicator was established yet 

prior to field observations). 

 

 

 

 

 

Figure 5.3 a) A channel cross-section showing intermediate fill-levels that can be 

extracted from LAHARZ, the final fill level can also be calculated and used to 

ascertain flow depths at each of the inundated cell locations (after Schilling, 1998); 

b) the minimum (rectangular) wetted perimeter can be established by calculating an 

approximate depth from the number of inundated cells (given by LAHARZ) and their 

resolution. The cross-sectional area, A, is the same for both diagrams and can be 

given by the semi-empirical equation in LAHARZ (Equation 5.2).  
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5.2.3 Application to dilute lahars on Montserrat, West Indies 

 

5.2.3.1 Setting and model suitability  

Soufrière Hills Volcano, Montserrat has been active for over 14 years, intermittently 

ejecting ash and other volcanic debris; these deposits accumulate on the flanks for 

the volcano and are frequently remobilised by rain into lahars (Barclay et al., 2007). 

Among numerous drainages from the volcano (locally known as ‘ghauts’), the 

Belham River Valley, initiating from Tyers Ghaut, is the only major drainage that 

could channel lahars into inhabited areas (Chapter 2).  

Lahars on Montserrat are characteristically dilute. Newtonian flow behaviour is 

dominant and lahars are principally hyperconcentrated-, concentrated- or ‘normal’ 

stream-flow (Barclay et al., 2004). Despite typically low sediment content, flows can 

be competent enough to carry large boulders (up to 2 m diameter) and deposition 

en masse has also occurred (Susnik, 2009). Although rare, non-Newtonian flow 

behaviour has been observed and can be explained by greater sediment availability 

(Barclay et al., 2007).  

Initial testing of existing GIS-based models demonstrated the potential of single-

phase, two-dimensional models for modelling dilute Montserratian lahars (Chapter 

4). While a single-direction flow routing model over an elevation-only cost surface 

predicted flow results in broad agreement with observations, it was concluded that 

there were probably additional factors influencing flow directions (Chapter 4, 

Section 4.7.1). In the absence of internal lahar measurements (e.g. rheology), and 

assuming these dilute lahars are controlled by their water-phase, a suitable way 

forward was to investigate the controlling effect of other channel characteristics 

(e.g. channel roughness and shape).  
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Figure 5.4 Stage (flow height) indicators included damaged vegetation, stranded 

boulders and high-water marks. These photographs progress in sequence from the 

lower-reach (i and ii) to mid-reach (iii) to upper-reach (iv, v and vi); arrows represent 

flow directions. A measuring stick with 0.1 m divisions was used for scale.  
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5.2.3.2 Selection of roughness coefficients  

For the study period, the valley floor in the lower reaches was considered gently 

sloping, with pockets of dense vegetation, associated with rapid changes in elevation 

(raised terraces). Channels carved out by the lahars, and the ephemeral river, were 

features of this landscape and there were also areas of high surface roughness 

where coarse clasts carried by the lahars had been deposited en masse. Terrain 

undulated on a local scale with micro-topographic changes including sediment banks 

(0.5 to 2 m for this section of the study area) and dense blocks of persistent 

vegetation on raised terraces (0.75 to 2.5 m). In the upper-reach, a single thread 

channel, greater than 2 m deep, was incised into older lahar deposits and the sandy-

gravel valley floor was scattered with larger pebbles, cobbles and boulders (Susnik, 

2009). Coarse clasts (up to 2 m) occur in discrete locations, described here as 

‘boulder-beds’, were distributed throughout the valley, often splitting the dominant 

channel.  

Montserrat has approximately 800 native plant species, three of which are 

endemic (Jones, 2008). Cactus and dry scrub woodland, littoral vegetation, semi-

evergreen forest and small areas of mangrove are climax vegetation for low 

altitudes (Procter and Fleming, 1999). The principal vegetation in the Belham Valley 

consists of thorn woodland, moist broadleaf forest, bamboos and grassland in 

surrounding area (Gibbs, 1986). Aerial photography and field experience were used 

to estimate vegetation distribution and density. Vegetative resistance can be a 

complex parameter to incorporate as it varies with the flow depth or the degree of 

submergence (Wu et al., 1999), is rarely rigid, and is dependent on the hydraulic 

forces, which subsequently feed back into the hydraulics at a series of different 

scales (Hardy, 2006).  

Five classes were adequate to distinguish major changes in land-cover and 

surface roughness, with an additional category for areas permanently submerged by 

seawater. Examples are shown in Figure 5.5. Digitised boundaries for the land-cover 

types are shown in Figure 5.6 and associated n-values are given in Table 5.1. 

Acrement and Schneider (1990) and Chow (1959) provided the basic reference texts 

for selecting suitable roughness values. Other sources consulted include calibrations 

for glacial outburst floods (Alho et al., 2007; Alho and Aaltonen, 2008), dam failures 
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(Yochum, 2003; Yochum et al., 2008), river flooding (Bates and De Roo, 2000; Wang 

et al., 2008) and floods from ephemeral streams (Brookes et al., 2000).  

Thus, a Manning’s n raster was developed for the Belham Valley and the 

methodology outlined in Figure 5.2 was implemented.  

 

 

 

 

Figure 5.5 Photographic examples of roughness, arrows represent flow direction. 

Geographical locations of the photos (A—F) can be seen in Figure 5.6.  
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Figure 5.6 Digitised boundaries for six different land-cover classes (lain over aerial 

image taken 24 June 2006, DigitalGlobe Incorporated); letters A—F represent the 

approximate locations of the roughness indicators in Figure 5.5.  

 

 

Land-cover Roughness, n 

Sea 0.01 

Beach and (coarse) sandy channels  0.03 

Gravel surface with sand matrix (medium sediment) 0.04 

Boulders with gravel matrix (rough sediment) 0.06 

Shrub/ brush vegetation over high roughness (rough sediment with 

0.04 vegetation correction) 

0.10 

Very dense over-bank vegetation (rough sediment with 0.09 

vegetation correction) 

0.15 

 

Table 5.1 Manning’s coefficient values for different land-cover types 



  Chapter 5 

  182 

5.3 RESULTS  

 

5.3.1 Dominant routes and flow depths  

 

Visual inspection of predicted pathways revealed the dominant routes were very 

similar for different end points and stdv (Figure 5.7). Greater error perturbation 

induced greater flow path variability. For example, for end point A, 260% more cells 

were inundated at stdv 0.5 m. This corresponds to a 0.13 km
2
 difference in area; 

however, this area reflects a lateral spread from the dominant route rather than a 

drastic change in flow direction(s). Similar observations can be made from examining 

end point B results; the difference in model outcomes induced by a change in end 

point was negligible.  

 

 

 

 

Figure 5.7 Inundation probability maps for velocity cost surface with spatially 

distributed R (using LAHARZ for flow depths). Inundated cell count and total area 

also shown. 
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Predicted flows tended to split in the upper-reach, near initiation, ‘hug’ the 

northern side of valley floor in the mid-reach and proceed centrally through the 

lower-reach (see Figure 5.6 for a description of the reaches, or sections, of the 

Belham). These results are supported by field observations (see evidence from sandy 

channels digitised in Figure 5.6).  

Use of a fixed (1.5 or 2) or variable R did not have a discernable impact on 

inundated areas beyond that expected from any stochastic simulation. Therefore, 

coupling with LAHARZ for flow depths did not influence the delineation of major 

flow routes.  

For LAHARZ, greater input volumes travelled further downstream (Chapter 4); 

therefore, it was necessary to define the lahar volume required to meet each end 

point. Initial testing (Chapter 4) specified the volumes needed to reach end points A 

and B were 1.25 × 105 m3 and 1.5 × 105 m3 respectively. These corresponded to 

‘large’ individual events, occurring two or three times during the rainy season 

(Chapter 4, Section 4.4.4).  

Given Equation 5.2, the inundated cross-sectional area was 125 m2 for point A 

and 141 m2 for point B; using this information, LAHARZ (modified) was able to 

estimate the maximum flow depth at every inundated cell (Section 5.2.2.3). Once 

converted into a regular grid and filtered, sample points were taken corresponding 

to the approximate locations of stage indicators in the field (Figure 5.4). The 

variation of maximum estimated flow depth with distance downstream is presented 

in Figure 5.8 and Table 5.2. These sample points suggest for a given lahar, the 

maximum calculated flow depth decreases downstream, broadly agreeing with field 

observations (stage indicators i—vi Figure 5.4). However, from these few sample 

points, and large variation shown by the range and standard deviation in Table 5.2, it 

is not possible to infer a direct relationship.  

Flow depths at each of the sample locations were approximately the same for 

both input volumes; this was expected from their similar inundated cross-sectional 

areas. Furthermore, these results also serve to support the methodology for 

obtaining the depth estimates; if the averaging and filtering techniques had 

distorted the data the depths calculated from the separate model runs would 

probably show more of a disparity at sample locations.  
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Figure 5.8 Calculated maximum flow depths from LAHARZ at stage indicator 

locations i—vi for two input volumes.   

 

 

 

End point A 

125 000 m
3 

Range (m) Mean, μ (m) Standard deviation, σ (m) 

Lower-reach 0—14.10 0.83 0.54 

Mid-reach 0.01—3.00 1.42 0.53 

Upper-reach 0.02—5.31 1.63 0.70 

    

End point B 

150 000 m
3 

Range (m) Mean, μ (m) Standard deviation, σ (m) 

Lower-reach 0—12.50 0.83 0.58 

Mid-reach 0.01—2.83 1.31 0.49 

Upper-reach 0—5.96 1.48 0.66 

    

 

Table 5.2 Zonal statistics of the regular grid of maximum flow depths shows the 

variation of flow depths within each reach of the channel 



  Chapter 5 

  185 

5.3.2 Flow velocities and travel times 

 

Figure 5.7 shows the cells encountered after 100 flow path simulations. The spatial 

distribution of fast and slow flowing areas can also be examined across these 

inundated cells. For one complete model run (100 iterations), averaged velocity per 

cell was calculated from the number of times a cell experienced some flow 

(inundated on one or more of the model iterations) and the sum of all (100) 

velocities experienced by that cell. For end point A, averaged velocity ranged from 

near zero to over 26 ms-1, a similar range was recorded for end point B. Figure 5.9 

suggests lahars have the greatest velocity, and by inference greatest energy, on 

leaving the boulder beds in the upper-reach and downstream surrounding the Sappit 

confluence. The lowest velocities occur downstream. However, while a simple 

statistical analysis indicates a general decrease in velocity downstream, there is also 

great variability of velocity in each of the channel reaches (as shown by the standard 

deviation of values) (Figure 5.9).  Averaged velocity per cell was then examined 

across inundated cells to give the global summaries provided in Table 5.3. For the 

different scenarios, global mean velocities ranged from 6.5—9 ms-1 across the total 

inundated area, with high variability (Table 5.3). Global mean velocities were lower 

when the spatially variable R was used. 

Averaged velocities per individual flow path (Table 5.4) were greater and less 

variable than averages taken from global inundation maps. For the different 

scenarios, individual flow paths had a mean velocity along their length of 8—10 ms
-1

, 

with standard deviation ranging from 0.03 ms
-1

 to 0.25 ms
-1

. Again, the spatially 

variable R gave the most conservative values. Travel time was calculated from the 

start point to an end point for all simulated flow paths. Some summary statistics are 

provided in Table 5.4 and represent the averaged results from these individual flow 

path queries. Simulated travel times were generally greater when a spatially variable 

R was used, as may be anticipated from the global mean velocities (Table 5.3).  A 

variable R gave the maximum travel time of approximately 600 seconds, or ten 

minutes; the minimum travel time, 450 seconds was given by a fixed R of 2 (for a 

wide channel, with a constant flow depth of 2 m). Thus, a variable R reduced the 

estimated travel time by approximately two and a half minutes.  
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Figure 5.9 Example averaged velocity distribution over simulated probability field, 

for stdv = 0.5 m and spatially variable R (identifier: pb05h574vrf2); mean, μ, and 

standard deviation, σ, of velocity in each reach of the Belham are also shown.  

 

 

Input parameters Global probability map output statistics (velocity 

averaged for inundated count per cell) 

Model run 

identifier 

stdv (m) R (fixed or 

variable) 

Total inundated 

area  (km
2
) 

Mean velocity 

(ms
-1

) 

Standard 

deviation of 

velocity  (ms
-1

) 

Pb05h574vrf2 0.5 Variable  0.176 6.52 3.50 

Pb01h574vrf 0.1 Variable  0.049 8.23 4.66 

Pb05h574r15n 0.5 Fixed, 1.5 0.191 7.08 2.84 

Pb01h574r15 0.1 Fixed, 1.5 0.042 7.71 4.06 

Pb05h574r2 0.5 Fixed, 2 0.191 8.43 3.36 

Pb01h574r2 0.1 Fixed, 2 0.048 8.98 4.82 

 

Table 5.3 Probability map statistics for different input parameters, end point A  
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Input parameters Output individual flow path statistics (averaged for 100 

flow paths) 

Model run 

identifier 

stdv (m) R (fixed or 

variable) 

Mean velocity 

(ms
-1

) 

Standard 

deviation 

of velocity  

(ms
-1

) 

Mean 

travel 

time (s) 

Standard 

deviation 

of travel 

time (s) 

Pb05h574vrf2 0.5 Variable  8.24 0.33 601 22.5 

Pb01h574vrf 0.1 Variable  8.28 0.09 619 11.7 

Pb05h574r15n 0.5 Fixed, 1.5 8.25 0.20 501 21.7 

Pb01h574r15 0.1 Fixed, 1.5 8.01 0.03 584 24.0 

Pb05h574r2 0.5 Fixed, 2 10.01 0.25 450 12.5 

Pb01h574r2 0.1 Fixed, 2 9.72 0.04 491 7.3 

 

Table 5.4 Individual flow path statistics for different input parameters, end point A  

 

 

 

5.4 DISCUSSION  

 

5.4.1 Potential utility of the approach  

 

Previous work (Chapter 4) has achieved some success for mapping long-term lahar 

hazard. While an elevation-only cost surface was unable to adequately represent the 

lahar hazard in a section of the lower-reach (Chapter 4), the method presented here 

(velocity cost surface) has been able to replicate the dominant lahar route observed 

in the field. Therefore, additional terrain characteristics (e.g. channel shape and 

roughness) are likely to influence future lahars.  

Change in lahar velocity downslope was examined. The spatial distribution of fast 

and slow flowing cells gave extra information on the response of lahars to variable 

terrain properties. These changes in velocity may also be indicative of areas of 

erosive and depositional behaviour, for example faster moving flows have greater 

energy and thus greater propensity to incise and entrain material. However, a 
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general decrease in velocity with distance travelled downstream was not predicted 

with any confidence; there were many local fluctuations in calculated velocities. 

Travel time for flows to reach end point A in the lower Belham was approximately 

seven to 10 minutes and the minimum input volume required to reach this point 

downstream was 1.25 × 105 m3. Inundated cross-sections predicted by LAHARZ 

enabled calculations of (maximum) velocity for varying cross-section geometry 

downstream. However, using a fixed value of 2 for R (equivalent to a constant flow 

depth of 2 m for a wide channel) gave the quickest travel times; this approach may 

be more useful to hazard managers as it is more cautious and requires fewer 

assumptions (i.e. it didn’t use LAHARZ and associated assumptions to calculate a 

variable R). End point B showed similar results for a slightly greater volume (1.5 × 

105 m3).  

It has been stated that the simplicity of the principles behind LAHARZ renders the 

model unable to trace the evolution of other key parameters of interest in mitigating 

lahar hazards, e.g. flow thickness, discharge, velocity and transit time to points 

downstream (Fagents and Baloga, 2006). While for most parameters this was 

certainly true (to any accuracy), it was possible here to get estimates for the 

maximum flow depth by modifying the default LAHARZ output. Actual flow depths 

have not been documented for a lahar event on Montserrat, but stage indicators 

have been recorded in the field. This enabled flow depths from LAHARZ to be 

verified by order of magnitude for several discrete locations (due to erosion and 

deposition between successive flow events exact figures cannot be known).  

Debris-flow depth and velocity are typically used in conjunction with probability 

estimates to convey intensity for hazard assessment (Hurlimann et al., 2008). 

Although both flow depth and velocity here showed an apparent decrease 

downstream, velocity was very locally variable. Therefore, quantifying lahar hazard 

in relation to intensity and probability was not justified.  

Nevertheless, this is the first time this kind of analysis (velocity and travel times) 

has been applied to this study area; thus, for the first time, the gross behaviour of a 

lahar has been captured and estimates of likely travel times and velocities can be 

given to agencies making decisions on movements in and around the valley. The 

probability-of-flow maps can be useful in their current form to show the dominant 
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lahar routes. These can be used in combination with velocities, travel times and flow 

depths to inform short- to mid-term management decisions, thereby demonstrating 

the utility of relatively simple GIS-based models for preliminary hazard assessment.  

Moreover, although similar parameters have been estimated for lahars on other 

systems, it has typically been done in a more complex and data intensive manner. A 

cost-surface implementation of Manning’s formula coupled with LAHARZ, is a novel 

approach that can have potential benefits for application to dilute lahars on other 

volcanic systems, particularly where a rapid approach is needed and data are 

restricted.  

 

 

5.4.2 Verification and uncertainties 

 

Elevation error in the DEM has been shown to propagate to global average velocities 

(Table 5.3). However, through an informal and qualitative local sensitivity analysis 

(one-variable-at-a-time testing), hydraulic radius had the greatest impact on 

velocities and travel times. Nevertheless, the approach to discern the spatial 

distribution of probable flow routes (through a velocity cost surface) has been 

shown to be relatively robust to elevation error (Figure 5.7). Therefore, a high level 

of confidence can be placed in the methodology for determining the dominant flow 

routes and these have been verified by field observations.  

Absolute values for the hydraulic radius, and channel roughness could not be 

verified by (current) field data and thus had high associated uncertainties. In order 

to verify the velocity predictions only proxies can currently be used. Calculated 

velocities in the lower-reach were supported by proxy measurements of 1—2.5 ms
-1

 

taken from standing waves (Barclay et al., 2007). Mean flow path velocities were 

more generally verified with lahars generated by intense rainfall 2—8 ms
-1

 (Pierson, 

1995). Further, the full range of predicted velocities fit within the bounds given by 

Rickenmann (1999) from direct and indirect measurements from a range of small- 

and large-scale debris flows (0.8—28 ms
-1

).  

MVO were shown the predicted travel times (Table 5.4) and the ‘spatial 

distribution of velocity’ map (Figure 5.9) and both sets of results agreed with their 
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informal field observations (personal comm., November visit, 2009; see Chapter 6). 

With current activity at Soufrière Hills (Alert Level 3, April 2010) it is possible that 

scientific measurements will be made for an individual flow event in the near future. 

Current research could also be advanced by testing the approach with another field 

area possessing lahar of similar characteristics. Velocities for other volcanic systems 

may be obtained from published data; however, this work has shown an accurate 

DEM and good knowledge of surface roughness are also fundamental. Chapter 7 will 

discuss suitable test areas and extensions to this study.  

 

 

5.5 CONCLUSIONS  

 

A GIS-based single-direction flow routing approach has previously been adopted for 

debris flows (e.g. Huggel et al., 2003), but the use of cost-surfaces with application 

of Manning’s equation to dilute lahars is entirely novel. Likely mean velocities and 

travel times for large flows were calculated using least-cost flow paths over a 

velocity cost surface. Whilst average magnitudes were not greatly affected by 

elevation error, they were sensitive to changes in the hydraulic radius (a parameter 

summarising channel geometry). Due to channel confinement in the upper-reach of 

the Belham Valley and the semi-confined nature in the mid- and lower-reach, the 

hydraulic radius varied greatly with distance downstream. LAHARZ was used to 

calculate likely maximum flow depths and inundated cross-sectional areas, thereby 

providing feedback to improve the performance of the velocity cost surface method. 

This decreased the estimated minimum travel time for large flows by approximately 

two and a half minutes. Dominant flow routes were adequately predicted by the 

flow routing approach but LAHARZ was loosely coupled to refine velocity 

magnitudes. LAHARZ has not been used for this type of function before. 

Absolute values for the hydraulic radius, and channel roughness, used for the 

velocity cost surface could not be verified by field data and thus had high associated 

uncertainties. Despite this admission, all estimated velocities, travel times, flow 

depths and volumes were of an order of magnitude consistent with field 
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observations/ proxies. Ultimately, confidence can be placed in the spatial variation 

of velocity, and in relative velocities and travel times.  

It can be concluded, that with current data limitations, the best strategy for lahar 

hazard assessment on Montserrat is this synergistic Manning’s and LAHARZ GIS-

based approach. The simplicity of the methods gives this approach practical use as a 

rapid hazard tool and it has shown great potential to capture the gross behaviour of 

a lahar. However, due to the rapidly changing nature of the terrain, on which these 

models are reliant, results will only be applicable for short- to mid-term forecasts. 

Thus, it will be necessary to update the inputs regularly if such an approach is 

adopted by hazard managers.  

In Chapter 6 the overarching concerns for hazard management will be discussed. 

Furthermore, alternative future scenarios for the Belham Valley consider how 

predictions developed within Chapter 5 are liable to change with surface (roughness 

and form) alteration.  
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CHAPTER 6: PRACTISING EFFECTIVE RESEARCH OF SECONDARY VOLCANIC 

HAZARDS DURING A PROLONGED ERUPTION: LAHARS ON MONTSERRAT, 

WEST INDIES  

 

 

 

A novel methodology for predicting dominant lahar paths was developed using GIS-

based techniques in Chapter 5; as part of this process, spatially variable velocity 

along these routes was also calculated and used to estimate travel times for large 

flows. This methodology was most useful for short- to mid-term lahar forecasts and 

ultimately for use as a rapid, preliminary hazard assessment tool. Earlier results, 

with an established GIS-based model, also achieved some success in delineating 

(cumulative) hazard zones that had utility for longer term planning (Chapter 4). In 

this current chapter, effective transfer of such research findings for hazard 

management is discussed, in retrospect of the approach to the entire project.  

To maximise the potential for application of new knowledge, consultations were 

conducted with local scientists and decision-makers in the research design phase, 

and at project completion. This exceeds a traditional ‘end-of-pipe’ delivery of 

products of science, which has been highlighted as an ineffective communication 

method.  

In the study area (Montserrat, West Indies), lahars are regularly generated by 

rainfall on ejecta from the (active) Soufrière Hills Volcano. However, primary 

volcanic hazards (e.g. pyroclastic flows) take precedence for management and 

lahars, as secondary hazards, are not formally monitored. Potential end-users of 

new research on lahars had differing requirements and it was not easy to match 

these against modelling options constrained by data acquisition and the difficulties 

of working on an active volcanic system. The research conducted in Chapters 4 and 5 

was designed to provide a new dimension (lahars) to the existing hazard 
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management agenda, to inform short-, mid- and long-term forecasts for lahar 

routes, dispersion, velocities and travel times. The GIS-based models were not data 

intensive, but outputs were tailored to be consistent with end-user requirements. 

These new findings were evaluated by both the researcher and end-users. 

One of the key obstacles to the effective uptake of lahar research is identified as 

a lack of opportunity for decision-makers and local scientists to monitor secondary 

volcanic hazards, especially during periods of increased activity. However, there is 

potential for the research to be filtered into the official warning process and 

planning activities.  
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6.1 INTRODUCTION  

 

6.1.1 Volcanic hazard preparedness  

 

A volcanic eruption is an uncontrollable natural phenomenon that produces a 

plethora of direct and indirect hazards (Chapter 2, Section 2.1.1). The various 

hazards operate over a variety of timescales and distances from the volcano, 

although historically, the majority of fatalities associated with volcanic eruptions 

have resulted from post-eruption famine and disease (Tanguy et al., 1998). 

However, with current international relief and assistance such indirect 

consequences have been dramatically reduced (Tilling, 1989). In contrast, 

comparatively little improvement has been observed for the total number of deaths 

associated with primary volcanic hazards such as pyroclastic flows (Tilling, 1989). In 

the 20th Century, pyroclastic flows and surges accounted for the largest proportion 

of deaths, and lahars caused the majority of non-fatal injuries (Witham, 2005). 

Within the total 20th Century death toll of 91,724, two disasters dominate; at Mt 

Pelée (Martinique) pyroclastic flows (and, to a lesser extent, lahars) killed 29 000 in 

1902, and at Nevado del Ruiz (Columbia) lahars killed approximately 23 000 in 1985 

(Witham, 2005).  

Nonetheless, volcanic hazards occur infrequently relative to the human life-span 

(Tilling, 1989). It is unfeasible to abandon or prevent all settlement in the areas 

where volcanic hazards exist; local populations must learn to live with them as safely 

as possible (UNDRO, 1985). Crucially, a volcanic eruption does not occur 

spontaneously; it is the final manifestation of a process within the earth’s crust and 

thus precursors typically can be observed (UNDRO, 1985). These signs of instability 

or unrest, including an eruptive phase should it develop, are collectively termed a 

volcanic crisis and require continuous scientific monitoring (IAVCEI Subcommittee 

for Crisis Protocols, 2000).  

The primary challenge to both the scientific community and the decision-makers 

is to prevent volcanic crises from turning into disasters (Tilling, 1989). Volcanic 

disasters can occur due to rapid changes in the nature of the event without warning 
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(e.g. lateral blast at Mount St Helens, 1980, see Fisher, 1990); due to inadequate 

management (e.g. communication failure at Nevado del Ruiz, 1985, see Voight, 

1990); and can even be socio-economic when a predicted event fails to materialise 

(e.g. Guadeloupe, 1976, see Fiske, 1984).  

For volcanic crises, protocol stipulates that warnings of serious events that are 

known to be possible are issued before such events are forecast as probable (IAVCEI 

Subcommittee for Crisis Protocols, 1999). Forecasts function on different timescales: 

long-term, mid-term and short-term (Newhall and Hoblitt, 2002); and consequently 

require different preparedness and mitigation strategies. Short-term forecasts 

typically operate on the timescale of minutes to hours, and can be termed 

predictions when based on interpretations and measurements of ongoing processes 

(Tilling, 1989). Long-term forecasts can inform planning decisions many years prior 

to an event.  

Academic research performs an important role in increasing knowledge of 

volcanic processes but, in terms of practical hazard management, any improvements 

in understanding are rarely well-translated to local interested parties. Generally 

detection of the hazard and assessment of the risk it presents are well considered, 

yet onward communication of hazard and risk information to those responsible for 

crisis management is typically inadequate (McGuire et al., 2009).  

 

 

6.1.2 Communication issues and an emerging knowledge transfer gap 

 

Independent of timescales, a warning process for geological hazards will operate on 

three levels, involving different interested parties: technical (scientists), 

organisational (administrators) and social (public); and the linkages between the 

three components tend to be fragile (Alexander, 2007).  Effective communication 

between and amongst these parties is essential to disaster management in a 

volcanic crisis.  
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6.1.2.1 Communication between scientists 

Often there will be a number of scientists working in a volcanic crisis: permanent 

staff monitor activity changes, temporary scientists provide additional assistance, 

and ‘independent’ scientists conduct academic research. These scientists may come 

from disparate disciplines with different nomenclature, perspectives and 

understandings; they may also be working independently on smaller aspects of the 

problem. For these scientists working on volcanic systems, the greatest obstacle is 

often data availability and uncertainty in data, models and results; the former is in 

turn controlled by logistical issues, such as access and funding. External scientists 

can be an asset as they can be independently financed and arguably have disposable 

time to test and develop ideas. However, if external scientists are too isolated from 

the local team this can lead to divergence of research including pre-emptive 

publication by visitors while the host scientists are preoccupied with the crisis 

(IAVCEI Subcommittee for Crisis Protocols, 1999). Furthermore, the volume of 

academic volcanic research, mainly generated by these external scientists, is 

escalating, building a repository of existing knowledge in the sciences. However, 

there is a concern that such findings are not being effectively applied to inform crisis 

situations (e.g. Gomez-Fernandez, 2000; Alexander, 2007), perhaps due to a lack of 

involvement with local scientists. 

 

6.1.2.2 Communication between administrators and scientists 

Scientists and decision-makers have different roles and responsibilities in a volcanic 

crisis and these should be respected. Whilst scientists can provide predictions, 

models and maps; response and mitigation options ought to be determined by local 

decision-makers. The latter are local authorities responsible for public safety and 

hazard management, government bodies and stakeholders all with their own goals 

and agenda (Barclay et al., 2008). For these responsible agencies there are two main 

options for reducing hazards: (i) modify the natural system and/or (ii) modify human 

behaviour. Decision-makers are in the unique position to weigh-up the socio-

economic advantages and disadvantages of mitigation options; for example, there 

may be pressures between continual improvement in mitigation, including refining 

preparedness and response plans, and moving on to other priorities (e.g. Keys, 
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2007). In the face of scientific uncertainty and socio-economic political pressure, 

decision-makers may not follow scientific advice (IAVCEI Subcommittee for Crisis 

Protocols, 1999). Debate and uncertainty is inherent in scientific research, and to 

some extent can be tolerated by decision-makers. However, in relatively new 

relationships, uncertainty in forecasts may be misinterpreted as scientific 

incompetence (e.g. Haynes et al., 2008b). Furthermore, new relationships are often 

formed under times of great stress with the onset of a volcanic crisis. Thus, a single 

scientific voice providing information is needed to avoid confusion (IAVCEI 

Subcommittee for Crisis Protocols, 1999). 

 

6.1.2.3 Communication methods 

With all these interested parties, communication and information transfer can 

breakdown as a consequence of the lack of a ‘common language’ (e.g. Wisner et al., 

2004) or the ‘informing-only remit’ of traditional science (Solana, 2001; Barclay et 

al., 2008). Ultimately, mutual interaction between interested parties can only be 

improved through better understanding and appreciation of respective agenda, 

expectations and limits (IAVCEI Subcommittee for Crisis Protocols, 1999; Solana, 

2001). For enduring crises, sustainable disaster preparedness necessitates continual 

input from the earth science community of a kind sensitive to the needs, objectives 

and cultures of the other participants in the process (Alexander, 2007).  

The traditional top-down strategy for disaster management can limit technology 

transfer by neglecting user requirements (Zerger and Smith, 2003; Chapter 2, 

Section 2.2.1). In the natural hazard sciences, more researchers are now explicitly 

calling for the involvement of stakeholders in user-oriented research (Merz et al., 

2006), framing research based on user-receptivity (McIntosh et al., 2007) and finding 

common objectives for management and models (Wilcock et al., 2003). To maximise 

uptake and effectiveness of research, any deliverables must be translated into pre-

existing knowledge and working practices (McIntosh et al., 2007) and ultimately 

integrated into regional management and development plans (Thierry et al., 2008).  

While the issues raised above are not novel revelations, for the visiting scientist in 

particular, conducting independent academic research with transitory funding, it can 

be harder to find a niche and transfer their research into applied science.  
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6.1.3 Mitigation of lahar hazards  

 

During an eruption, loose material (the products of primary hazards such as 

pyroclastic flows and ashfall) accumulate on the slopes of a volcano. This material 

can be remobilised through sudden injection of water (Chapter 2, Section 2.1.2) and 

generate rapidly moving lahars (secondary volcanic hazards). Their high density 

combined with their fluidity means that they are capable of travelling large 

distances, destroying everything in their path; furthermore, after coming to rest, 

their deposits can be too deep, too soft or too hot to cross (UNDRO, 1985).  

By definition, mitigation activities (natural system or human behaviour 

modifications) eliminate or reduce the probability of disaster occurrence, or reduce 

the effects of unavoidable hazards. Some volcanic hazards can be tempered by 

engineering measures or structures to lessen impact or extent (Tilling, 1989). For 

lahars, natural system modifications can include hillside treatments to reduce runoff 

and channel treatments to reduce the volume of available material (e.g. De Wolfe et 

al., 2008). Structural engineering measures include sediment-retention dams, 

diversion dams and dikes and, where appropriate, draining of dangerous crater 

lakes/ dammed lakes (Vallance, 2005), but these are expensive to install and 

maintain. The volume and force of lahars has traditionally been beyond human 

ability to control (UNDRO, 1985).  

Human behaviour modifications focus on potential damage and mitigate the 

hazard by reducing population exposure, e.g. land-use planning and, in times of 

crisis, evacuation (Huebl and Fiebiger, 2005). Ideally, to mitigate the effect of lahars, 

settlement should be avoided on previous deposits and, in the event of an eruption, 

all permanent homesteads in the valleys around the volcano should be evacuated; 

daytime access may be permitted but an effective warning system must be in place 

(UNDRO, 1985). Mitigation options are dependent on the timescale for forecasts and 

are often inextricably linked with preparedness efforts, especially with the issue of 

warnings. For example, in a reaction to long-term forecasts, human behaviour can 

be mitigated through a) education for self-warning and evacuation, and/ or b) 

instrument-based event-warning systems (e.g. an acoustic signal from a moving 

debris-flow) that enable short-term preparedness (Scott et al., 2001).  



  Chapter 6 

  199 

These are ideal recommendations, but mitigation in practice has high demands 

not least of which is an appreciation of the contrasting responsibilities and needs of 

different organisations involved. New research using geospatial information and 

technology may be able to assist lahar hazard management. Geographical 

information systems (GISs) can provide tools throughout the hazard management 

cycle (Johnson, 2000; NRC, 2007), but the potential role in preparedness and 

mitigation is particularly great (Chapter 2, Section 2.4). For example, before a crisis, 

maps can aid land-use planning, depicting those areas previously inundated by 

lahars; during a crisis, maps can establish boundaries defining access restrictions and 

evacuation zones (Chapter 2, Section 2.2.2.1). GIS can also be tightly coupled with 

modelling to predict future inundation areas (Chapters 4 and 5) and investigate the 

plausibility of management scenarios. This chapter tests how well GIS-based lahar 

hazard research can be applied on an active system, building on earlier work in the 

Belham Valley (Montserrat) study area.  

 

 

6.1.4 Aims  

 

The broad aim of the wider research project was an assessment of the usefulness of 

GIS-based technologies for making ‘on the ground’ planning decisions on an active 

volcanic system prone to lahars. Given an actual crisis situation, with real data 

limitations, there is a challenge to develop methodologies that have a practical 

utility for hazard managers and local decision-makers. In this chapter the aim is to 

assess how well the cutting-edge research (Chapters 4 and 5) serves the needs of 

end-users; this aim is distilled into three main research questions: 

 

• Having identified the key players in hazard management, what kinds of 

information (pertaining to lahars) are they interested in? And, are there 

similar or conflicting demands from these potential end-users? 

• Given current lahar knowledge, and data restrictions, how can these 

requirements be approached?  
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• How can new research findings be effectively transferred to local scientists 

and decision-makers on an active volcanic system? 

 

These research questions were informed by established guidelines for scientists 

in volcanic crises (IAVCEI Subcommittee for Crisis Protocols, 1999), and involved 

three methodological phases of the wider research project. Phase I consisted of an 

information gathering exercise, conducted through a reconnaissance mission to 

Montserrat and elicitation of the needs of end-users through a combination of 

meetings and semi-structured interviews with local scientists and decision-makers. 

Input data for modelling were also acquired and assessed in this initial phase. Phase 

II of the project predicted lahar routes and cumulative inundation areas (Chapters 4 

and 5); extension was made here by considering a range of alternative scenarios, 

e.g. to consider valley perturbation as a response to successive lahars, and 

mitigation options. A range of hazard zone visualisations were generated. Finally, 

Phase III revisited end-users to evaluate the potential of the research as whole for 

effective application on Montserrat. This chapter reflects on all phases.  

 

 

6.2 REGIONAL SETTING 

 

6.2.1 The people and the place: Belham Valley, Montserrat 

 

Soufrière Hills Volcano has been active on the island of Montserrat (West Indies) 

since 1995, requiring continuous hazard monitoring and management. Montserrat 

has effectively lost two-thirds of its land area to the volcano, with over 60% of the 

island permanently designated as unsafe for human habitation or activity. With a 

pre-eruption population of around 11 000, the country of Montserrat is now home 

to only 4 500 people (Chapter 2.5) who live in the north and along the north-west 

and west coast of the island (Figure 6.1).  

Disaster status has been internationally declared twice following mandatory 

evacuations of parts of Montserrat in 1997 and 2007 (Glide number: VO-1997-
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000050-MSR; VO-2007-000007-MSR – see http://www.glidenumber.net). 

Approximately 20 fatalities have been attributed to the prolonged eruption, 

resulting from pyroclastic flows on 25th June 1997 and 3rd August 1997 (Loughlin et 

al., 2002); the relatively small number is a reflection of generally good management 

practices (Voight, 1998; Wisner et al., 2004). However, these deaths have been 

attributed, in part, to failures of communication in the early stages of the eruption 

(Clay et al., 1999; Chapter 2.5). To date there have been no reported deaths from 

lahars.  

  

 

Figure 6.1 Permanent population on Montserrat by official enumeration district; all 

other areas are uninhabited. The Belham River drainage basin has been highlighted 

and towns and villages in close proximity to the catchment have been labelled; those 

retaining inhabitants have their demographic breakdown shown in tabular form. 

(Population information from the Physical Planning Unit; statistics correct as of 

November 2007).  
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Whilst local people are now located away from most primary hazards (e.g. 

ballistics, pyroclastic flows), and relatively sheltered from tephra fall, lahars are far-

reaching secondary hazards. Lahars, more commonly referred to locally as 

‘mudflows’, represent a persistent problem because they can occur without an 

associated escalation in volcanic activity. The Belham River Valley, draining from the 

Soufrière Hills towards the west coast of Montserrat is the only conduit for 

(predominantly rainfall-triggered) lahars into inhabited and public access areas 

(Figure 6.1). The Belham catchment covers an area of 12.5 km2, is home to 300 

permanent families (Haynes et al., 2007) and is used for limited daytime activities 

(volcanic activity permitting).  

The majority of low-lying properties flanking the ephemeral Belham River have 

already been destroyed by lahars. However, people continue to live in Iles Bay, the 

most southerly inhabitable village, and access the rest of the island by crossing the 

Belham Valley floor. In daylight hours the valley is occupied for small-scale industrial 

extraction of sand and gravel. Permanent evacuation of the towns and villages 

surrounding the Belham Valley is not currently considered an option. Temporary 

evacuation notices are issued for Iles Bay at heightened levels of volcanic activity, 

and sometimes as far north as Nantes River if the probability of pyroclastic flows 

towards the north-west is substantial e.g. in January 2007 (De Angelis et al., 2007).  

The size of the island of Montserrat has had costs and benefits for hazard 

managers throughout the (ongoing) eruption. The small size precluded the 

duplication of facilities (Clay et al., 1997) and constrained population development 

mainly to the gentler flanks of the volcano (Kokelaar, 2002; Haynes et al., 2007). The 

close proximity to volcanic hazards has meant that scientists can interact directly 

with the public and preparedness can spread by word of mouth (Davis et al., 1998). 

However, in times of lower volcanic activity public perceptions can be lowered by 

what is (or is not) observable at the volcano (Haynes et al., 2008b). It has been 

recognised that the communication issue (and relations between decision-makers 

and scientists) is particularly pertinent to volcanic crises on small islands (McGuire et 

al., 2009). Montserrat is a good test case for trying to make scientific findings, of 

otherwise secondary importance, relevant and effective in times of (volcanic) crisis. 

The methodology may be applicable to other volcanic systems prone to lahars.  
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6.2.2 Existing hazard management  

 

The initial volcanic crisis on Montserrat has officially passed, and the volcano has 

entered a prolonged eruption. However, the volcanic situation presents challenges 

for hazard managers, requiring a spectrum of management decisions, from short-

term forecasts of individual events, to long-term planning decisions for multiple 

hazards. There also remains the possibility of activity escalation or unexpected 

individual events (e.g. major dome collapse, as observed in 2003 (Herd et al., 2005)). 

Therefore, in terms of the hazard management cycle (Chapter 2, Figure 2.1), there 

are small-scale responses to individual hazard events, general recovery is largely 

unattainable (due to ongoing hazards), mitigation concentrates on refining hazard 

assessments, education and training, and forecasts operate for preparedness on all 

timescales. Currently lahars (as secondary hazards) are not formally managed. 

Scientific monitoring of the Soufrière Hills Volcano is carried out by Montserrat 

Volcano Observatory (MVO); volcanologists conduct dome growth surveys, ground 

deformation surveys and perform seismic, gas and environmental monitoring. 

Scientists at MVO also have a recorded interest in scientific publication and research 

with external collaborators. However, responsibility for determining the Hazard 

Level and response falls to the National Disaster Preparedness and Response 

Advisory Committee (NDPRAC). The committee is comprised of a panel including the 

Governor, representatives of the Government of Montserrat, Disaster Management 

Coordination Agency (DMCA) and MVO. The DMCA implement decisions, act on 

scientific advice and have the primary responsibility for liaising and communicating 

with the public. As a British Overseas Territory, other interested parties include the 

Governor’s Office, which is responsible for day-to-day safety and security, and Her 

Majesty’s Government in London. At the ground level, the local police sound the 

siren and help mobilise the public. Further details can be found on the MVO website 

(http://www.mvo.ms/) and in Chapter 2 (Section 2.5).   

The Hazard Level System (instigated in August 2008) divides the island into seven 

zones. These zones are defined on the basis of geographic markers; for example, 

Nantes River divides zone A from the ‘safe’ northern part of the island, the 

confluence of the Sappit tributary with the Belham River marks the boundary 
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between zones B and V, and zone T allows daytime workers for sand and gravel 

extraction (Figure 6.2a). All primary hazards within those zones are identified and, 

considering hazard probability, community and individual risk, access restrictions are 

made appropriate for that zone, for that time. A prescribed combination of access 

restrictions across these zones represents the Hazard Level. There are five tiers to 

the Hazard Level System, e.g. Level 1 requires more than one year with no measured 

activity and Level 5 is indicative of probable pyroclastic flows to the north/ north-

west or threat of a lateral blast. The current Hazard Level is communicated through 

an island-wide map given four colours representative of different access permissions 

(e.g. Figure 6.2b). However, people only live in zones A, B, and C (see Figure 6.1) and 

the Level at zone A changes only in the most extreme circumstances (i.e. Level 5). 

The northern sector of the island is thought to be sheltered by the Centre Hills and 

therefore access is permanently unrestricted.  

 

 

 

 

 

Figure 6.2 a) zones of the Hazard Level System with some defining features 

highlighted; b) current Hazard Level 3 (March 2010, courtesy of MVO).  
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When necessary, access is restricted to other hazard zones through a series of 

check-points (physical barriers, often policed) across roads. In addition, warning 

signs are permanently in place at the main Belham crossing point (former Belham 

Bridge) to alert people of the ‘hidden’ dangers of lahars (Chapter 2). Using these 

signs the general public are informed not to cross the valley floor during, or 

following, periods of heavy rainfall. Development of the Belham Valley area in the 

near-future has been restricted and there are no plans for government investment 

(DMCA, pers. comm.). Serious considerations for rebuilding the Belham Bridge or 

moving the Belham crossing are also currently unfeasible. Engineers have revealed 

load-bearing capacity varies considerably across the valley (Donnelly, 2007), a 

characteristic of lahar deposits (UNDRO, 1985). However, there are continuous 

pressures for use of the valley floor for private industrial extraction and also for 

limited daytime access and transit to Iles Bay (Figure 6.1). This frequent use of the 

valley (in periods of low volcanic activity) produces a dual management problem; in 

addition to dangers to the public and workers from lahars, modification to the 

physical character of the valley (topography, surface roughness and vegetation) may 

have a (currently unknown) influence on lahar flow routes and behaviour. 

 

 

6.3 PHASE I: EVALUATION OF MANAGEMENT OPTIONS 

 

6.3.1 Methodological overview of Phase I 

 

A total of three trips were made to speak to officials on Montserrat; the first two 

were a year apart and were for the purpose of information gathering (both Phase I), 

the third was two years later (Phase III, November 2009) to ascertain opinions on 

the project outputs (produced through Phase II modelling and informed by Phase I 

consultations). 

Phase I of the project was carried out on Montserrat in November 2006, against a 

management backdrop of a large lava dome and accelerating dome growth (Chapter 

2, Section 2.5.3). Initial meetings (informal interviews) were held with senior 



  Chapter 6 

  206 

scientists at MVO and also with representatives from agencies that have to make 

decisions involving movements in and around the Belham Valley (decision-makers). 

All respondents were treated as foreign elites because of the positions of power 

they held. Considerations for interviewing foreign elites are discussed 

comprehensively in Herod (1999). Meetings were organised in advance of arrival 

using the researcher’s university affiliation (University of East Anglia, UEA) to gain 

access. Due to the imbalance of status, the researcher was introduced by a mutual 

contact, a former director of MVO. These informal interviews established the role of 

the researcher as an external visiting scientist (consistent with established protocols 

(IAVCEI Subcommittee for Crisis Protocols, 1999)), and enabled official procedures to 

be ascertained (e.g. a research and data policy contract was signed with MVO). A key 

finding from these initial meetings was that the Belham Valley was an area of 

concern for management officials. 

Semi-structured interviews were conducted during a second visit to Montserrat in 

November 2007 using open-ended questions, augmented with closed questions to 

clarify. The merits of using open-ended questions with elites are discussed by 

Aberbach and Rockman (2002). On this second trip the primary researcher was 

accompanied by a senior colleague (UEA) with experience of both research and 

interviewing on Montserrat. A dialogue with respondents was precipitated by both 

researchers. Furthermore, as a partial incentive to grant interview, the primary 

researcher presented findings from some exploratory work. Volcanic activity at this 

time was minimal as lava dome growth had ceased and the eruption was in a 

reposed state (Chapter 2, Section 2.5.3). However, the dome was large and a 

collapse was forecast in the mid-term (weeks—months).  

Specific interview objectives were to complete a needs-assessment, discuss 

preferences for (optimal) communication of hazard information on Montserrat, and 

also consider the future management of the Belham Valley. As part of the dialogue, 

respondents were shown a variety of example visualisation products including (and 

combinations of) traditional plan-view maps, oblique-view maps of 3D renderings, 

3D demonstrations and aerial photographs. Potentially relevant spatial data were 

also taken from respondents as it was recognised that elites often have greater 

access to resources and documents (Herod, 1999).  
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The detailed responses were recorded, with permission, and analysed according 

to timescales for management. Short- and mid-term issues mainly related to 

mitigation and warnings, and longer term concerns pertained to planning issues.  

 

 

6.3.2 End-user requirements for short- and mid-term mitigation 

 

Short-term mitigation strategies operate over minutes to hours, requiring near-

immediate preparedness and response. At the time of interview the DMCA had a 

goal of implementing the ‘Belham Valley Flood Warning Project’; a primary aim of 

this project was to acquire an automatic lahar warning system for the Belham, to 

produce warning of the order of minutes to hours before a hazardous event. Ideally, 

they wanted a real-time traffic light system, providing continuous information to the 

public on the safety of entering the Belham Valley. It was perceived that a project 

such as this would allow continued occupation of areas immediately south of the 

valley and potentially permit economic activity in this area. DMCA recognised that 

cooperation with scientists and researchers would be necessary to achieve this goal. 

The Governor’s Office was also interested in the potential for designing a warning 

system to provide local alerts for lahars. A manual warning procedure was also 

discussed (by both sets of decision-makers) where warnings could be issued on the 

basis of a threshold rainfall; the correlation of lahars with rainfall is well-recognised 

by both local scientists and administrators.  

Mid-term mitigation and preparedness is defined by changes and warnings that 

occur over weeks and months, and includes localised evacuations. DMCA’s 

perceived need in this matter was to enhance communication and understanding of 

the hazards behind the evacuations and warnings. The use of aerial photographs 

augmented with model outputs showing lahar hazard-affected areas was seen as 

valuable to educate the public on the lahar hazard. Such a specific request followed 

positive feedback from a similar strategy adopted after the January 2007 disaster 

declaration; aerial photographs were used to position check-points for access 

restrictions and to educate the public on the heightened probability of pyroclastic 

flow hazard towards the north-west. DMCA stated that aerial photographs are 
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understood better by locals as they can identify houses and local landmarks, as 

found by Haynes et al. (2007). Furthermore, the Governor’s Office strongly wanted 

to ‘move away from the perception that the whole island is affected (by the Hazard 

Level)’. The northern part of the island to date has only ever been affected by tephra 

fall and elevated concentrations of volcanic gases (relatively non-severe), yet in the 

current system the Hazard Level applies to the whole island.  

MVO did not express any specific needs for short- to mid-term mitigation of 

lahars. Mid-term warnings (evacuations) are governed by primary, not secondary, 

hazards and the possibility of being able to provide short-term warnings was 

currently scientifically unfeasible. However, MVO were interested in the behaviour 

(e.g. flow routes, velocities etc.) of individual lahars for improving scientific 

understanding.  

 

 

6.3.3 End-user requirements for mid- and long-term planning 

 

During the initial interviews, DMCA raised some specific mid- to long-term (weeks—

years) management questions for the Belham Valley: can people continue to extract 

sand and gravel in the Belham? What effect does extraction have on flows? Can a 

new bridge be constructed (physically)? If so, is the original Belham crossing site the 

most suitable? To answer these questions required a forecast of how long lahars 

were going to be destructive for, how much cumulative deposit would be expected 

and what the main flow channels would be. These issues are also related to more 

oblique questions regarding volcanic activity and the supply of sediment. At the time 

of the interview, excavation was temporarily suspended (due to the potential for 

dome collapse in November 2007) but was due to resume when ‘scientifically safe to 

do so’. The pressures on hazard management officials resulting from the suspension 

of economic activities such as this were strongly expressed throughout the 

interview.  

For strategic planning purposes, DMCA specifically requested ‘scientific’ maps 

(clarified as lahar inundation areas drawn over plan-view topographic maps). After 

being shown examples of different visualisations, MVO were ‘happy with regular 
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maps’ (hazard information drawn over plan-view topographic maps) but stressed 

‘angled views’ (showing topography) were better for the public and local officials. 

The Governor’s Office felt aerial photographs were a useful presentation aid, but 

more traditional maps were better for looking at larger areas, for a longer-term 

view. However, whilst they were interested in seeing hazard maps, they would 

ultimately receive official feedback through the DMCA; thus, consultation with the 

Governor’s Office ended at Phase I.  

 

 

6.4 REFLECTION ON USER-REQUIREMENTS VS. ATTAINABLE OUTPUTS 

OWING TO DATA RESTRICTIONS AND MODELLING OPTIONS  

 

6.4.1 Evaluation of requirements 

 

All agencies interviewed were interested in the research and provided their 

requirements as end-users; they also offered additional assistance in various forms 

(e.g. MVO gave permissions and equipment for fieldwork, DMCA provided political 

GIS data through the Government of Montserrat’s Physical Planning Unit). End-users 

focused their requirements on different timescales for hazard management and 

these are summarised in Table 6.1; this is a subjective summary based on a 

reflection of the interviews.  

 

 

 Short-term 

mitigation 

(minutes/ hours) 

Mid-term 

planning 

(weeks/ months) 

Long-term 

planning 

(years/ decades) 

MVO  � � 

DMCA � �  

Governor’s Office  �  � 

 

Table 6.1 Potential users for lahar hazard information and their timescale(s) of 

interest 
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DMCA and the Governor’s Office were primarily interested in short-term warning 

systems. At Ruapehu, six lahar warning systems have been successfully installed, 

each with active response plans, and some infrastructure isolated from, or hardened 

against, lahars (Keys, 2007). However, Ruapehu is a much larger volcanic complex 

with a greater distance between initiation and settlements. Furthermore, an alarm 

system automatically connected with a traffic light was suggested for vulnerability 

reduction in the Italian Dolomites; however, this device was ruled ineffective for 

mitigation as warning time would be insufficient for evacuation (Pasuto and Soldati, 

2004). Lahar warning systems do not protect property and only work when there is 

sufficient distance and time between source areas and population centres (Vallance, 

2005). On Montserrat the travel distance is roughly 3 km from lahar source areas to 

the (frequently used) lower-reach of the Belham Valley. Evacuation time would 

depend on the velocity of individual flows; however, Montserratian lahars are 

currently poorly understood. The surest way to avoid risk is through lahar hazard 

maps and strict land-use regulation (Vallance, 2005), although this was not 

recognised by decision-makers at the time of interview.  Therefore, a functioning 

automatic lahar warning system was immediately identified by the researcher as 

unfeasible; this was also consistent with MVO’s expert knowledge.  

Across all end-users, the dominant request was for a form of hazard map specific 

to the Belham Valley. The existing strategy for island-wide hazard zonation did not 

consider lahars observed in the Belham Valley. Focusing a hazard map on a smaller 

area would be beneficial as it would (a) allow finer detail of hazard variation in 

affected areas and (b) enable the wider inhabited area to be considered unaffected 

by hazard. Likely lahar routes would be necessary for short-term management and 

general scientific understanding. Depositional patterns over years would be needed 

for mid- to long-term planning. Therefore, both individual lahar behaviour, and 

cumulative behaviour (say, over one rainy season) were required be end-users.  

Velocities, travel times and particulars of lahar behaviour would be necessary to 

inform the feasibility of any short-term manually-operated warning system. Such 

characteristics would also be of general benefit to users of the valley, and improve  

general understanding of lahar hazards, consistent with desires from MVO.   
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6.4.2 Defining research objectives and researcher role 

 

6.4.2.1 Fieldwork and data constraints  

Raw elevation data were gathered in the field in November 2006, and again in 

November 2007. MVO equipment was used on the first visit (details are provided in 

Chapter 4) and UEA equipment was taken for the second visit. These data enabled 

production of (two) up-to-date surface(s) for modelling lahars, and as the return 

period covered the duration of one rainy season, cumulative valley response to 

lahars over that period could be measured. Detailed field observations were also 

made on terrain characteristics (e.g. surface roughness). Other data acquired were 

one-minute resolution rainfall data from UEA pre-installed rainfall gauges, aerial 

imagery purchased from an external remote sensing provider (DigitalGlobe), and GIS 

data (political boundaries, road networks etc) and census data were obtained from 

the Government of Montserrat’s Physical Planning Unit (courtesy of the DMCA). 

Crucially, physical data on recent and historic individual lahars were absent, and no 

lahars coincided with the field seasons; this further reduced the possibility of 

implementing threshold- or measurement-based warning systems. However, 

triggering mechanisms have been explored (rainfall data) and qualitative 

descriptions of flow types and rheologies have been made (e.g. Barclay et al., 2007). 

Modelling options were dependent on observed flow types (i.e. non-Newtonian, 

hyperconcentrated flow) and restricted by available data; these factors were 

discussed in Chapter 4 (Section 4.3.1).  

 

6.4.2.2 Research objectives and model outputs 

A review of attainable end-user requirements is summarised in Table 6.2. Given the 

findings from initial interviews, it was decided the primary output would be a map 

synthesising the relative hazard specific to the Belham catchment to aid and 

orientate the authorities’ hazard management decisions (output iii, Table 6.2). It was 

believed that hazard could be communicated effectively both to local public and 

decision-makers using the same types of methods (i.e. overlays with aerial 

photographs). Thus, to meet the expectations of end-users, the hazard map was 

designed with a dual focus: (1) for mid- to long-term land-use planning and (2) for 
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setting access restrictions for mid-term mitigation. Furthermore, the hazard map 

was specific to lahars, and thus did not conform to the existing holistic multi-hazard 

assessment strategy; it would act as a potential complement to the Hazard Level 

System. 

 

 

 Short- to mid-term hazard outputs 

 

Mid- to long-term hazard outputs 

 (i) Velocities, 

travel times and 

flow depths to 

inform regular 

users of the 

Belham Valley and 

for scientific study 

 

(ii) Routing map 

for short-term 

planning and 

improving 

knowledge of 

lahars 

(iii) Dual focus 

hazard map  

(iv) Scenarios 

(possible futures 

and/ or to aid 

mitigation) 

Information 

required 

Individual lahar 

velocities 

(average), distance 

travelled and stage 

indicators 

Individual flow  

runout routes and 

inundation areas 

over forthcoming 

weeks 

 

Local landmarks 

for orientation 

 

Inundation areas 

from lahars over 

forthcoming weeks 

and months  

 

Morphological 

change over one or 

more rainy seasons 

Scenarios only 

Data 

restrictions 

 

-------------- No internal (physical) properties of individual lahars known -------------- 

Key relevant 

available data 

Limited point 

velocities only and 

proxies 

 

Channel 

characteristics 

(including 

topography and 

roughness) 

 

Stage indicators  

 

Observed flow 

routes and area of 

previous deposits 

 

Aerial imagery 

Elevation data a 

year apart (one 

rainy season) 

 

Incidence of 

recorded lahars 

 

Rainfall data 

As listed for other 

outputs 

Way forward Simulate flows 

through GIS-based 

models 

Reproduce 

observed routes 

using GIS-based 

models 

Simulate 

cumulative 

inundation over 

one rainy season 

and predicted 

future inundation 

areas 

Consider 

alternative ‘what-

if’ scenarios using 

GIS-based models 

 

Table 6.2 Attainable outputs relevant to end-user requirements 
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Outputs relevant to short-term lahar management included simulating individual 

flow routes (output ii), velocities and travel times (output i), for improving general 

knowledge on lahar behaviour and also informing users on the ground, for example 

with likely escape times etc. While mapping is often the priority for hazard 

management, other information is also invaluable in the short-term, i.e. velocity and 

flow depth are good indicators of event intensity (Hurlimann et al., 2008; Fell et al., 

2008). Determination of a rainfall threshold required to trigger lahars was beyond 

the scope of the project (see discussion in Chapter 4).   

Additionally, it was recognised that morphological change, due to continued 

excavation and channel response to lahars, should be considered as part of a 

comprehensive hazard assessment. DMCA raised concerns regarding the uncertainty 

of the effect of continued excavation in the Belham Valley. This was extended by 

considering a range of scenarios for potential future characteristics of the valley; 

some of these could be possible mitigation aids (output iv). With the GIS approach 

taken, this is something that was recognised as possible, without explicit requests 

from consultations with end-users.  

A GIS approach to lahar hazard assessment was taken because lahars are 

inherently spatial phenomena reliant on terrain (Chapter 3), their movement can be 

simplified and modelled in a GIS (Chapters 4 and 5), data can be easily updated and 

output manipulated to end-user demands (see Chapter 4, Section 4.7.3). Recently 

there has been increased recognition of the potential of GIS on small islands in the 

Caribbean. Montserrat is now starting to rely on ESRI’s ArcGIS for spatial data 

infrastructure (Richardson, 2009) and has a dedicated GIS team in its Physical 

Planning Unit to respond to the needs of several government departments 

(including DMCA). Both DMCA and MVO have ArcGIS capabilities.  

 

6.4.2.3 Researcher role 

Finally, as an end to Phase I, a scientist contributing to hazard management must 

decide where their responsibility ends, i.e. with the conclusion of each element of 

the research project or application of the knowledge it produces (Alexander, 2007). 

An informing role was taken whereby the scientific research was used to 

communicate a greater understanding of the lahar hazard, and did not provide a 
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recommended course of action. To achieve scientific consensus before consultation 

with decision-makers (DMCA), it was decided that the findings from Phase II should 

first be presented to MVO. However, in the interests of anticipating the wider uses 

of the research (Rencshler, 2005), eventual communication to the public was not 

excluded as a possibility.  

The research objectives deliberately did not include a full risk assessment. The 

definition of ‘hazard’ used here denotes the probability of an event. Risk is the 

probability of suffering harm or loss and is derived from both hazard and 

vulnerability (Tilling, 1989). Thus, the transition from hazard to risk extends beyond 

geophysical processes to incorporate the social implications of natural hazard events 

(Merz et al., 2006; Chapter 2, Section 2.2.1). Risk mapping typically involves listing 

and delineating exposed elements, analysing their respective values and assessing 

vulnerability (e.g. Throuret et al., 2000; Merz et al., 2006; Thierry et al., 2008; Leone 

and Lesales, 2009). A risk map was not requested by the local agencies, it would 

remain their responsibility to factor in any socio-economic concerns. 

 

 

6.5 PHASE II: LAHAR MODELLING AND HAZARD ASSESSMENT 

 

6.5.1 Phase II overview 

 

A methodology for modelling (Phase II) was adopted that was focused on end-user 

requirements (outputs i—iv, Table 6.2), but was also consistent with four steps 

proposed as standards for the approach to landslide hazard management 

(Hurlimann et al., 2006): (1) geomorphic and geologic analysis: a susceptibility map 

(initiation zones); (2) runout analysis; (3) hazard zone delineation and hazard map 

production, and (4) hazard mitigation and reduction. Technical aspects of the first 

three steps have been detailed in Chapters 4 and 5; runout analysis (output ii) was 

taken from Chapter 5 (short- to mid-term hazard) and delineated cumulative hazard 

zones were produced using methodology from Chapter 4 (long-term hazard) (Figure 

6.3).  
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Figure 6.3 Summary schematic of Phase II and contributions from the different 

chapters  

 

 

This chapter discusses the (final) hazard map (output iii). Hurlimann’s fourth step 

has been augmented with the consideration of alternative futures for the Belham 

Valley (output iv), and is also considered in this chapter. 

 

 

6.5.2 Achieving short- to mid-term management outputs (i and ii) 

 

The synergistic ‘Manning’s and LAHARZ (Schilling, 1998) approach’ established in 

Chapter 5 predicted dominant flow routes and pertinent flow parameters, i.e. flow 

depth, velocity and travel time, for individual lahars. The methodology was GIS-

based and used single-direction flow routing, where the least costly route was 

assigned according to the maximum increase in velocity; velocity was defined by 

channel shape, slope and surface roughness, n, (Manning’s formula). Maximum flow 
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depth was calculated for individual lahars using LAHARZ to predict the inundated 

cross-sectional area and thus used to refine the (wetted) channel shape. The model 

stopped at the pre-eruption shoreline, representing a large volume lahar. However, 

the model itself operated independently of lahar volume. Uncertainty was 

considered through multiple equally probable realisations of the input elevation 

surface (a Digital Elevation Model, DEM). This was achieved through Monte Carlo 

sampling of a probability density function, defined by a normal distribution (with no 

bias) and a standard deviation (stdv) representing spread of error values (see 

Chapter 4, Section 4.5.1.2).  

Outputs were probability-of-flow maps and averaged velocities. Travel times 

were calculated (per model run) for individual paths by splitting the path into 

sections of uniform velocity, calculating the time taken to pass through those 

sections and summing for the entire path.  These forecasts were only valid on short- 

to mid-term timescales as the valley changes shape as a response to successive 

lahars. An update of the DEM would be required for a new forecast. 

 

 

6.5.3 Achieving mid- to long-term management outputs (iii and iv) 

 

6.5.3.1 Modelling for long-term hazard assessment (output iii) 

Mid- to long-term cumulative inundation from lahars was considered using LAHARZ 

which predicted planimetric inundation areas (see Chapter 4 for details). Six lahar 

volumes were selected for numerical simulations: 1 000, 5 000, 10 000, 50 000, 100 

000 and 500 000 m
3
. Input volumes have been refined from Chapter 4 to exclude the 

most extreme (unlikely) event and allow two ‘small’ lahars, two ‘intermediate’ and 

two ‘large’ (Chapter 4). The first two volumes here represented relatively high 

probability events (daily—weekly), the middle two indicate medium probability of 

occurrence and the latter two indicated large events with annual return period. In 

the absence of recorded volumes, this semi-geometric progression of magnitudes 

was chosen.  

Model outputs from LAHZARZ were converted into hazard zones (see Chapter 4). 

Smoothing of jagged edges produced by cross-sections simulated at 45° angles is 
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sometimes necessary for communication purposes (Iverson et al., 1998; 

Widiwijayanti et al., 2009). However, this process is highly subjective, and jagged 

edges may represent important micro flow routes (Chapter 4). Here hazard zones 

were cropped to the extent of the 2006 coastline but additional smoothing was 

minimised.  

 

6.5.3.2 Visualisation for a dual focus hazard map (output iii) 

A catchment-scale, long-term planning and education map was therefore generated. 

There were different ways to display the hazard zones - for direct query in a GIS or 

as tangible (paper) interpretations. A range of visualisations were developed in both 

two and three dimensions using ArcMap and ArcScene (ESRI software).  

Hazard zones were viewed semi-transparent and overlain over a high-resolution 

aerial photograph. Hazard magnitude was communicated through a red-to-blue 

colour scheme. Red represented the greatest hazard, consistent with the existing 

Hazard Level System. Furthermore, Montserratians associate red with increased 

danger (Haynes et al., 2007). In comparison to the four discrete colours of the 

current Hazard Level System, more subtle colour changes (and more hazard classes) 

were used to infer a more gradually changing lahar-specific hazard.  

Key locations were given as text on the map for orientation. Three dimensions 

were conveyed using a HILLSHADE function in ArcMap. This enabled topography to 

be easily interpreted on a printed map, i.e. in two dimensions. General map design 

was informed by the British Cartography Society’s introductory text (BCS, 2008), 

Brewer (2005) and Muller et al. (2006). This map was viewed in ArcMap and also 

printed as paper copy.  

Consistent with findings from Haynes et al. (2007) and discussion with end-users 

(Section 6.3), the hazard map was superimposed over 3D oblique views of terrain in 

ArcScene. Such interactive visualisations have long been recognised as an effective 

visual tool for volcanic hazard zoning and evacuation planning (Pareschi and 

Bernstein, 1989). In addition to formats compatible with those requested, a number 

of different example visualisations were prepared; for example, a fly-by animation of 

a lahar in motion (ESRI ArcScene) and 3D renderings of buildings (Google Sketchup).  
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6.5.3.3 Management options and mitigation scenarios (iv) 

In a mitigation context, modifications to the human system include access 

restrictions and long-term land-use planning. These could be considered directly 

from the hazard map and related visualisations (output iii). Alternatively (or indeed 

additionally), physical modification to the natural system was a possible future for 

the Belham Valley. This may be a deliberate management act to adjust lahar 

behaviour, or a natural system response to lahars moving over the valley surface. 

Possible futures were considered through alteration of the inputs to the coupled 

GIS approach (Chapter 5), and thus can also be thought of as testing the robustness 

of output i. Example channel modification could include changes to the roughness of 

the surface and/ or widening of the channel. By slowing flows, increased roughness 

would likely increase travel time (see Manning’s formula, Chapter 5, Equation 5.1). 

Widening of the channel would increase cross-sectional area, thereby decreasing the 

hydraulic radius and ultimately velocity. The original roughness surface is described 

in Chapter 5 (Figure 5.6 and Table 5.1).  

Four scenarios were considered for the future of the Belham Valley: 

 

Scenario 1. The upper-reach was given a new roughness surface (elsewhere 

roughness was unaltered from Figure 5.6, Chapter 5). Manning’s n was made 

uniform across the valley floor and considered to consist entirely of boulders with a 

gravel matrix (n = 0.06). This scenario could arise as the cumulative effect of many 

small volume flows, not travelling far downstream and rapidly depositing their load. 

There was evidence of existing boulder beds upstream; this scenario merely 

extended them. However, the DEM remained unchanged, equating to no new 

material. The reason for this is two-fold: (1) there was no deposit depth information 

at a finer temporal resolution than one rainy season; and (2) only one variable was 

changed to allow a direct comparison of the effects on the results.  

 

Scenario 2. The mid-reach was uniform and the surface was considered to consist 

of boulders with gravel matrix (n = 0.06). Elsewhere the roughness surface was not 

altered. This was similar to Scenario 1, but now the majority of boulders remained in 

the mid-reach; enabling the effect of increased roughness in a different reach to be 
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compared. This would be representative of increasing roughness via a manual 

intervention. 

 

Scenario 3. The mid-reach was widened to increase the cross-sectional area of the 

channel by three cells or 30 m at each bank. New areas were given a roughness 

value of n = 0.04 (equivalent to the average valley bottom of gravel with a sand 

matrix). This required a new DEM in addition to the revised roughness surface. This 

scenario is an extreme interpretation of what could happen if intensive extraction 

were to continue, or if large scale natural system modification was a viable 

mitigation option. 

 

Scenario 4. All vegetation from the valley floor (and associated raised terraces) 

was removed. This required a new DEM and roughness surface. Newly exposed 

areas were given a roughness value of n = 0.04. This scenario was possible from 

multiple large lahars occur in rapid succession, destroying established vegetation 

and preventing the establishment of new pioneers.  

 

 

6.6 PHASE II: RESULTS AND ANALYSIS 

 

6.6.1 Results relevant to short- to mid-term planning objectives (i and ii) 

 

Individual flow routes were predicted from the coupled GIS approach developed in 

Chapter 5. Thus, for final presentation to end-users, end point A, a variable hydraulic 

radius and stdv of 0.5 m were used (see Figure 5.7, Chapter 5). These results were 

used for mapping the location of the main channel (or moving centre of lahar mass). 

There was little variation in dominant routes despite incorporation of elevation data 

uncertainty. Model outputs thus showed lahar paths with high precision; and these 

agreed with field observations (Chapter 5, Section 5.3.1), implying high accuracy. 

Dominant flow routes relative to past deposits are shown in Figure 6.4a. Spatial 

variation of velocity for inundated cells is shown in Figure 6.4b. Red and blue end-
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members to the colour scheme highlighted the areas of fast flowing lahar, and slow 

flowing lahar respectively. To show the topography contours and a HILLSHADE have 

been applied. 

 

 

 

Figure 6.4 Alternate ways of conveying the short- to mid-term hazard: a) probable 

dominant flow routes and b) corresponding spatial distribution of velocity (after 

Figure 5.7 and Figure 5.9, Chapter 5) 
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Average velocity along the length of a flow path was 8.2—8.3 ms-1, these with the 

dominant routes gave average transit times of 601—619 seconds, or approximately 

ten minutes from initiation to the end point (full results are in Chapter 5, Section 

5.3.2). 

Results agreed by order of magnitude to proxy point velocities in the field 

(Barclay et al., 2007), and to average velocities for similar flow types on other 

systems (e.g. Pierson, 1995; Rickenmann, 1999). However, further field 

measurements (i.e. instantaneous velocities) would be needed to increase 

confidence in absolute velocities and their spatial distribution. Consultation with 

MVO (Phase III) would be valuable to determine how reasonable it would be to 

communicate these (largely unverified) data to local decision-makers.  

 

 

6.6.2 Results relevant to mid- to long-term planning strategies (iii and iv) 

 

6.6.2.1 Inundation mapping (output iii) 

Lahar inundation areas for different volume flows were predicted using LAHARZ 

(Figure 6.5). Inundation likelihoods were greatest upstream, near lahar source areas, 

and along the valley thalweg. Inundation likelihood diminished with distance from 

the volcano and lateral distance from the thalweg. Despite a small alteration in input 

volumes, these findings were consistent with those from Chapter 4 (Section 4.6.2). 

Although there are some shortcomings for application of LAHARZ to Montserrat, 

particularly in the calibration of the semi-empirical equations for more sediment-

rich debris flows, the value of the results for a preliminary hazard assessment has 

been shown in Chapter 4.  

A hazard map was generated using inundation results from LAHARZ (Figure 6.5) 

and visualisation requests from end-users (Section 6.3.3) (Figure 6.6). This 

represented the mid- to long-term lahar inundation hazard and had dual utility for 

setting access restrictions and longer term land-use planning. The hazard map was 

also produced in 3D and was explored interactively in ArcScene (Figure 6.7).  

 

 



  Chapter 6 

  222 

 

Figure 6.5 Planimetric inundation area from LAHARZ compared to the geometry of 

past deposits (as of November 2006). 

 

 

Figure 6.6 Belham Valley hazard map produced in ESRI’s ArcMap (aerial photograph 

courtesy of the Physical Planning Unit Montserrat, permission by DMCA)  
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Figure 6.7 ‘Exploded’ 3D visualisation of the lahar hazard zones displayed in a GIS 

(ESRI’s ArcScene). 

 

Given results shown in Figure 6.6, it is unlikely that flows will be diverted into 

current populated areas, even considering uncertainty in elevation values in the 

DEM. The greatest cumulative hazard is from multiple small volume flows that have 

a high likelihood of occurrence, but do not travel further downstream than the 

Sappit River confluence. However, the greatest potential threat to an individual 

(referring to current daytime activities) is from large flows that can reach the 

crossing area (former Belham Bridge) and where active sand and gravel extraction is 

undertaken. 

 

6.6.2.2 Structural mitigation and possible futures (output iv) 

Potential modifications to the natural system were considered through alternative 

scenarios, results are shown in Table 6.3. Results from Chapter 5 (variable hydraulic 

radius, end point A) were used as control data (Section 5.3.2).  Scenarios of 

increased roughness (all-boulders) decreased mean velocity and increased travel 

time in the upper- and mid-reaches. For example, for low stdv, travel time was 

increased by 4.9% (29 seconds) in the upper-reach (Scenario 1) and by 9.7% (60 

seconds) in the mid-reach (Scenario 2) relative to the control data. Widening the 

channel in the mid-reach (Scenario 3) did not slow lahars significantly (0.6—3% 

decrease in average velocity) and actually a small decrease in average travel time 
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was calculated (6—14 seconds). Removal of all vegetation and associated terraces 

(Scenario 4) induced a reduction in travel time, despite having little effect on the 

overall mean velocity. 

Robustness of the method for defining main flow routes is reflected by 

comparison of the total area inundated. Greater elevation error (stdv) induced 

greater variability in the definition of flow routes, inundating a larger area for all 

scenarios. However, individual path length did not directly correlate with magnitude 

of stdv (although the standard deviation was always greater). Average travel times 

did not directly correlate with mean velocities, nor mean path lengths. The 

algorithm used actively seeks out the greatest changes in velocity between 

neighbouring cells, thus although a given path may be longer, the lahar may travel 

through sections faster than for a more direct, shorter route. Thus, a mean may be 

an inadequate description for path length and velocity.  

 

 

 

Inputs  Outputs       

Scenario stdv 

(m) 

Total area 

inundated 

(km
2
) 

μ path 

length 

(m) 

σ of path 

length 

(m) 

μ path 

velocity 

(ms
-1

) 

σ of 

velocity 

(ms
-1

) 

μ path 

travel 

time (s) 

σ of 

travel 

time (s) 

Control_1 0.5 0.1755 3608.4 22.3 8.24 0.33 601.4 22.5 

Control_1 0.1 0.0486 3442.9 16.4 8.28 0.09 618.6 11.7 

1 0.5 0.1584 3345.3 105.8 7.38 0.13 606.9 29.2 

1 0.1 0.0416 3267.7 40.3 7.27 0.03 645.7 17.3 

2 0.5 0.1720 3372.3 72.4 7.50 0.30 630.6 24.1 

2 0.1 0.0483 3379.4 15.4 7.64 0.07 678.9 10.9 

3 0.5 0.2091 3489.5 105.9 8.02 0.33 587.9 27.9 

3 0.1 0.0436 3506.4 68.9 8.23 0.08 612.3 16.2 

4 0.5 0.1411 3366.0 72.13 8.13 0.29 551.3 19.8 

4 0.1 0.0637 3327.2 32.0 8.16 0.12 583.1 9.85 

 

Table 6.3 Area inundated (for one model run) and output statistics for individual 

flow paths, averaged from 100 simulations (control_1 data were taken from Chapter 

5, Section 5.3.2); where μ = mean value and σ = standard deviation of values. 
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6.7 PHASE III: MAINTAINING COOPERATIVE RELATIONSHIPS AND MUTUAL 

FEEDBACK 

 

6.7.1 Methodological overview 

 

As specified by the researcher role in Section 6.6.3, Phase II results were first 

presented to the local or host scientific team (MVO). The Director of MVO changes 

periodically, and thus a mutual colleague established initial contact with the (new) 

Director of MVO in 2009. Email contact followed where the primary researcher sent 

a project briefing to the Director, and established a mutually convenient date 

(November 2009), consistent with the recommendations of the IAVCEI protocols 

(IAVCEI Subcommittee for Crisis Protocols, 1999). An invitation to endorse a paper, 

to be published from the research, was also extended to (and accepted by) the new 

Director. 

Modelling results were presented at MVO to permanent staff (both scientists and 

non-scientists) and volunteer scientists in November 2009; in total there were less 

than 10 voluntary attendees or participants. Also, a real-time GIS demonstration 

explored 3D data layers in ArcScene. Both aspects were intended to facilitate 

discussion around different visualisation styles and the general issue of lahars on 

Montserrat. This was an informal focus group discussion; participants were 

encouraged to ask questions through the (10—15 minute) presentation and (5—10 

minute) demonstration. Direct questions were also put to the group before 

presentation and demonstration, and repeated afterwards. Example questions 

included: do you understand the presentation of the hazard information? Do you 

have a preferred format?  

Following the focus group session, an individual open-ended semi-structured 

interview (approximately 1 hr duration) was conducted with the Director of MVO. 

This interview focused on assessing the relative priority of the lahar hazard at MVO, 

identifying potential uses of this (external) research and the desired format. A 

secondary aim of the interview was to use the Director of MVO as an intermediary 

for acquiring further interviews with representatives from relevant agencies, i.e. a 
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‘snowball’ sampling strategy. The interview with the Director of MVO was not 

transcribed or coded as value patterns and perceptions were not being assessed.  

 

 

6.7.2 Results from mutual feedback 

 

6.7.2.1 Post-modelling consultations with scientists and non-scientists at MVO 

The focus group highlighted frustrations felt by the host scientific team (MVO) when 

accommodating visiting external scientists. One staff member expressed the view 

that external researchers were frequently making data demands on MVO, but 

without providing feedback. This is sort of situation which the IAVCEI Protocols were 

designed to alleviate (IAVCEI Subcommittee for Crisis Protocols, 1999). However, the 

focus group did feel that this researcher’s university (UEA) had acted honourably 

with a tradition of two-way information flow. The focus group meeting was seen as a 

positive action. Arguably, the desire to express this frustration at this opportunity 

overshadowed the primary practical objectives for this phase of the research, i.e. 

receiving feedback on the research. 

As a group representative of MVO, focus group participants were generally 

interested in the research and acknowledged the existence of the lahar hazard. They 

also wanted to know the researcher’s recommendations for a monitoring approach. 

A first step would be a formal procedure for recording the occurrence of individual 

lahars. However, in the absence of autonomous sensors in the field, it was unclear 

how a continuous dataset would be practically achieved. The researcher highlighted 

the need for point velocity measurements and stage indicators for individual flow 

events, to help validate model results (Chapter 5). Some amateur video footage of 

recent lahars had been obtained by MVO scientists, but there were no markers in 

the field for measurements to be taken. Nonetheless, upon examining the spatial 

distribution of velocities and magnitude range in the model results during the focus 

group section (Figure 6.4b), scientists confirmed that the fast and slow flowing areas 

were consistent with their observations.  

Despite good local knowledge and an assumed spatial awareness that (arguably) 

comes with being in a scientific profession, naming of local villages was preferred by 
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members of MVO to aid orientation with mapping products. For example, when 

shown Figure 6.4a, spatial understanding was improved with place names. 

During the one-on-one interview, the Director of MVO was interested in the 

modelling results (all outputs) as a potential tool to illustrate their opinion on the 

relative hazard when advising decision-makers. Furthermore, in the spirit of 

openness of scientific information, the Director of MVO (and hence the Observatory) 

would be willing to take output 2D visualisations and place them on the website for 

public access. The fly-by animation and Sketchup products were not viewed as 

useful educational tools in their current form, without high resolution landscape 

markers (i.e. more 3D houses). Interestingly, with the increasing popularity of 

computer technology and Internet on Montserrat, the Director would like to explore 

the possibility of using freely available 3D rendering software, Google Earth, as a 

repository for new output hazard maps.  

Despite generally positive feedback, uptake of information on secondary hazards 

was not a priority at MVO. At the time of the interview pyroclastic flows entering the 

Belham were a more immediate concern and the Hazard Level was at 4. This unease 

manifested into reality on Friday 8th January 2010 when a pyroclastic flow travelled 

into the Belham Valley and reached as far as 300 m upstream of the Belham 

crossing; this was the longest flow down the Belham in the history of the 

eruption (http://www.montserratvolcanoobservatory.info/ MVO activity report 

Friday 08 January 2010 17:02). Thankfully the Hazard Level during this time had 

limited permissions to essential workers only (i.e. monitoring scientists at MVO). The 

Hazard Level returned to tier 3 in March 2010.  

Ultimately, it was concluded (by the researcher and Director of MVO) that the 

usefulness of such external research depends on the stage in the cycle of eruption. 

For example, if the volcano was at a lower activity level it would be far more likely 

that resources could be allocated to monitoring lahars. 

 

6.7.2.2 Post-modelling consultations with decision makers 

Preceding the final visit to Montserrat the researcher was informed by the Director 

of MVO that interviews with other agencies would be unlikely. Heightened activity, 

associated with new dome growth, in the months prior to the interview meant local 
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authorities would be occupied with planning meetings (a request for attendance at 

these meetings was politely denied). Furthermore, DMCA were in the process of 

changing their management hierarchy with the current director due to leave. 

Nevertheless, the Director of MVO endeavoured to schedule a meeting with DMCA, 

but this was not possible within the time period the researcher was on-island. 

Therefore, the ‘snowball sampling method stalled at MVO. The Director of MVO was 

willing to transfer findings to DMCA when a suitable time could be arranged. 

However, pyroclastic flows occurred down the Belham Valley in January 2010 (see 

above, Section 6.9.2.1), and, to the author’s knowledge, this transfer has not yet 

happened.  

 

 

6.8 DISCUSSION 

 

6.8.1 Reflecting on model outputs and end-user demands 

 

Establishing end-user demands at project conception was seen as a way to maximise 

the potential transfer of new research. MVO, the Governor’s Office and DMCA were 

established as key players in hazard monitoring and management on Montserrat. All 

were initially keen to be involved with the research. Balancing modelling options 

with end-user demands was discussed in Section 6.4.2.2. Reflection is now made on 

how well these end-user requirements were met.  

 

6.8.1.1 Short- to mid-term outputs (i and ii) 

DMCA were eager to maintain a mutual flow of information between themselves 

and UEA, making information stores such as the Physical Planning Unit available to 

the researcher. The Governor’s Office was happy to receive feedback through official 

channels (i.e. via DMCA). Both of these governmental bodies expressed a request for 

a local automatic or manual threshold-based warning system for the lahar hazard.  

Lahars are strongly correlated with periods of intense rainfall but there are 

outliers (Barclay et al., 2007) and thus a rainfall threshold alone cannot provide an 
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infallible warning indicator. Furthermore, it is better to provide no short-term 

forecasts, rather than inaccurate ones. Further research is needed if a warning 

system can ever be implemented.  

As a compromise, and consistent with the wishes of local scientists (MVO) for 

promoting understanding of lahars, the researcher produced predictions for 

individual flow routes, depths, velocities and travel times (Chapter 5). However, 

there remain some limitations to the models (discussed in Chapters 4 and 5) and a 

comprehensive lahar hazard assessment has only almost been achieved. 

Furthermore, it is unclear how desires have changed and whether the DMCA (and 

ultimately Governor’s Office) would review the research as entirely successful (i.e. 

considering not all of their needs have been met). 

 

6.8.1.2 Mid- to long-term outputs (iii and iv)  

The Belham Valley lahar hazard map (Figure 6.6) can be used to inform mid- to long-

term land-use planning decisions. Furthermore, due to visualisation using aerial 

photographs and 3D demonstrations, the map has the potential to inform mid-term 

access restrictions and education, i.e. fulfilling a dual purpose.  

The existing Hazard Level System is a holistic approach, applying access 

restrictions and ensuring public safety, but has an insufficient consideration for 

lahars during periods of low activity, where there is unrestricted access to the lower 

Belham (Hazard Levels 1—3). A proviso to the Hazard Level System does state that 

(for all Hazard Levels): “(a)shfall and lahars can be significant hazards in all areas, 

and require appropriate precautions” (http://www.mvo.ms/). However, this ‘catch-

all’ situation does not convey spatial variation of the hazard for land-use and 

activities. Furthermore, lahars are not necessarily linked with volcanic activity levels 

and therefore cannot be reflected by changing between Hazard Levels. The new 

hazard map would be a semi-permanent (long-term) reflection of the lahar hazard in 

the Belham Valley; a Belham-specific map was explicitly requested by the Governor’s 

Office.  

Interpretations from Section 6.6.2 and results from Table 6.3 demonstrate that 

altering the roughness of the valley floor and changing the morphology of the banks 

would not have a great impact on flow path variability, velocities or travel times. For 
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example, the range of mean travel times at a low stdv is only one minute 36 seconds 

(across all Scenarios). Thus, these results do not justify investment in channel 

modifications for lahar hazard mitigation, nor is continued industrial extraction likely 

to have a significant impact on lahars. Removal of all vegetation (and terraces) in the 

lower-reach would have the greatest impact (decrease) on flow travel times. 

Therefore, maintenance of these areas of vegetation may be an important 

management strategy. These findings are potentially very useful to DMCA.  

 

 

6.8.2 Reflections on the interface between research and usage 

 

MVO were keen to obtain findings from this research for more detailed 

consideration. However, time to do this was dependent on the other monitoring 

priorities and volcanic activity. MVO were content to receive final outputs (maps in 

electronic format) for distribution via their website without the associated raw data 

and analyses. This may mean liability for the map(s) rests with the primary (external) 

researcher, or, more probably, detailed discussion of information dissemination 

would take place when the volcano reached lower activity levels. Although transfer 

of science from the host scientific team (MVO) to the decision-makers (DMCA) was 

considered the best conduit for the research findings, in this case study the 

mechanism was unsuccessful. Volcanic activity levels at Soufrière Hills, and other 

administrative issues, at the time of the final visit inhibited feedback of final results 

to DMCA. Furthermore, perhaps such agencies are not familiar with receiving 

external science, and thus an absence of formal procedures for feedback.  

Transfer of science to the grass-roots level (general public) remains the duty of 

the responsible agencies. Currently the public are informed by daily activity updates 

on local radio, ground personnel (police) and access gates that can be locked when 

the Hazard Level changes. However, increasingly technology is playing a more 

significant role with many Montserratian’s using Internet resources such as MVO’s 

website and social networking sites. Google Earth was suggested by the Director of 

MVO as a means for displaying (lahar) hazard information. Google Earth has been 
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highlighted for its power, accessibility and potential for use in humanitarian 

emergencies (NRC, 2007; MapAction, 2008).  

 

 

6.8.3 Wider implications and further work 

 

Velocities at various points along the valley would help validate model results (see 

Chapter 5). Gathering other parameters, such as sediment concentration and 

rheology information, could enable application of more sophisticated modelling 

approaches. However, visiting scientists are typically only on-island for a short time 

(one to three weeks) and may be unable to make observations of a lahar; 

furthermore, MVO have maximised their efficiency to meet their existing 

responsibilities and thus may not have the capacity or time for additional 

monitoring. MVO do have a regular influx of graduate and postgraduate level 

volunteer scientists who could potentially focus on secondary hazards. Furthermore, 

the public are also a possible untapped repository of information on lahars. 

Photographs, amateur videos and eye witness accounts could be useful when more 

formal monitoring is not possible (e.g. Aguilera et al., 2004). Frequencies of events 

and inundation limits downstream have been proven valuable data for modelling. It 

is possible that this research has provided new momentum to put some of these 

monitoring instruments in place. 

Translations of hazard into risk, and evaluation of public perceptions of the 

dangers, have not been considered within the scope of this project. These issues 

should also feed into successful management strategies. Haynes et al. (2007; 2008a; 

2008b) have done initial work on risk communication, trust and public perception on 

Montserrat. However, a social-science focused assessment of the lahar hazard and 

associated risk has not been carried out to date. This would be interesting due to the 

unique socio-political setting and small, relatively static population.  

The general formula for the approach (i.e. establish end-user demands, balance 

these with modelling options and acquire feedback), can be used to inform other 

study areas, particularly in similar active volcanic systems with multiple local 
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interested parties and visiting scientists. Furthermore, the GIS approach has 

contributed to lahar hazard mitigation and preparedness on Montserrat through: 

• (Providing all) simulation and modelling of lahar routes and inundation areas 

• Scenario testing for different volume events and for the impact of channel 

modifications 

• Forecasting lahar routes and magnitudes  

• Identifying data requirements (or absence of data)  

• Visualisation of hazard distribution  

 

These contributions are consistent with the roles outlined by Johnson (2000) and 

NRC (2007), and envelop a large proportion of the hazard management cycle 

(Chapter 2, Figure 2.1). Furthermore, there are opportunities for findings from this 

research to be used for education and to inform land-use planning. The use of GIS to 

aid hazard assessment can also be applied to other study areas.  

 

 

6.9 CONCLUSION 

 

Following guidelines for correct working practices in volcanic crises (IAVCEI 

Subcommittee for Crisis Protocols, 1999), a methodology was developed that was 

sensitive to the requirements of the user, while operating within reasonable data 

restrictions. The techniques used made optimum use of the available (and easily 

acquirable) data. Despite the absence of information on individual lahars, gathered 

terrain data were of high quality. Given what was wanted and what was provided, 

some findings of practical value (for Montserratians) can be taken from the work. 

Consideration of ‘what if’ scenarios showed that channel modifications would not 

have a great impact on lahars; therefore, the most appropriate lahar hazard 

mitigation options would focus on human behaviour modifications. Crucially to 

inform the agenda of decision-makers, scenario testing suggested that continued 

extraction work in the lower- or mid-reach would not have a great impact on lahar 

behaviour (29—60 seconds). Early warning systems for lahars are currently 
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unfeasible due to a) the small travel distance, b) the lack detailed individual lahar 

observations and c) the lack of money (and financial incentive). Thus, it is 

recommended that, lahar hazard management should focus on land-use planning 

and hazard assessment should refine long-term inundation maps (i.e. Figure 6.6 is a 

good starting point). Short-term velocities and travel times can have value to people 

on the ground.  

One of the overwhelming messages coming from this experience is the 

enthusiasm of local authorities and the host scientific team to support and assist 

external research. UEA affiliation with MVO will continue beyond this project and it 

is crucial to maintain such links, for both (new) external researchers and the host 

scientific team. However, despite planning and best intentions, sometimes feedback 

must yield to higher priorities, e.g. immediate management issues related to 

ongoing or elevated volcanic activity. Secondary hazards in a prolonged eruption will 

inevitably take a supplementary place and effective knowledge transfer becomes 

more challenging to obtain. Therefore, the usefulness of external research will 

depend on the stage of crisis. For example, it is likely that these findings will be more 

useful when the volcano quietens (enters another period of repose) and attention 

can be focused on long-term options.  

Extensions to the research will be discussed in Chapter 7.  
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

Reflections on the key findings from within Chapters 3, 4, 5 and 6 are provided in 

this final chapter. In Chapter 3 the importance of an informed approach to data 

uncertainty and data handling were highlighted, with respect to constructing a valid 

representation of the terrain surface. Within Chapters 4 and 5 models for lahar 

simulation were tested, developed and discussed. In Chapter 6 the practical utility 

and transfer of results were considered. The main themes of the thesis (data 

acquisition and handling, modelling and transfer) have been woven through these 

distinct chapters and this concluding chapter brings the findings together, ultimately 

leading to an evaluation and conclusion on the efficacy of GIS for lahar hazard 

assessment on an active volcanic system.  

Furthermore, thesis contributions to new knowledge are explicitly identified 

under the disparate disciplines of volcanology (specifically lahar hazard assessment) 

and GI Science, and furthermore, specific benefits for hazard management on 

Montserrat are highlighted. Finally, given findings from this research, 

recommendations are provided for extending the work.  
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7.1 EVALUATION OF AIMS AND OBJECTIVES 

 

It has been the aim of this research to examine the efficacy of Geographical 

Information Systems (GISs) for lahar hazard assessment on an active volcanic 

system. This was investigated with reference to a case study: lahars generated from 

Soufrière Hills Volcano, Montserrat. Project objectives were given in Chapter 1; an 

overview of the attainment of these objectives is provided in Table 7.1.  

 

 

Objectives Evidence 

To understand the influence of lahars on 

the local environment using GIS. 

 

The main observed channels were interpreted from 

aerial photographs and in-field observations (Chapter 

3). Valley perturbation by lahars over one rainy season 

was quantified in Chapter 4.  

To improve understanding of lahar 

movement using GIS-based modelling 

approaches. 

 

A GIS-based model was evaluated in Chapter 4 for its 

ability to reflect accurately the main flow routes. 

Informed by Chapter 4 results, a novel technique was 

developed in Chapter 5. 

To develop a digital elevation model 

(DEM) suitable for the objectives above. 

A DEM was constructed in Chapter 3 and improved 

(merged with another dataset to cover a greater area) 

in Chapter 4. 

To appreciate uncertainties in model 

predictions. 

Uncertainties were introduced with respect to elevation 

error in Chapter 3 and considered throughout.  

To delineate potential future inundation 

areas and quantify factors relating to lahar 

intensity; and, to translate this 

information into a formal hazard 

assessment. 

An established GIS-based model delineated hazard 

zones for the study area in Chapter 4; and Chapter 5 

results provided lahar routes, velocities and travel times. 

Together these results informed a hazard assessment in 

Chapter 6.  

To assess effective application of research 

findings using consultations with local 

scientists and authorities. 

Local scientists and decision-makers provided vital input 

for the research from inception to completion (Chapter 

6). Results have great potential for application.  

 

Table 7.1 Overview of evidence for attainment of project objectives 
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Furthermore, three intellectual themes emerged from the literature:  

 

(4) monitoring lahars, acquisition and handling of data;  

(5) improving knowledge of lahars through modelling; and  

(6) transfer of academic research on lahars to agencies of hazard management.  

 

Reflection on the role of GIS tools across and within these themes will further 

evaluate fulfilment of the aims and objectives of the research.  

 

 

7.2 EVALUATION OF EFFICACY OF GIS FOR LAHAR HAZARD ASSESSMENT  

 

7.2.1 Monitoring lahars, data acquisition and handling 

 

7.2.1.1 Review of lahar monitoring and data availability for lahar modelling 

Despite a lack of preparedness for the onset of the 1995 volcanic crisis, and a shaky 

start to hazard management (Chapter 2, Section 2.5.5), primary hazards from 

Soufrière Hills Volcano are now continuously monitored (http://www.mvo.ms). 

Furthermore, the major population centres and facilities have been relocated away 

from the volcano and are offered some protection by the topographic high of the 

Centre Hills. However, lahars are a secondary hazard, frequent in occurrence, yet 

currently not formally monitored (Chapter 6). Eye-witness accounts and 

supplementary comments in MVO reports are the primary sources of information on 

lahars; few field measurements have been made of an event in progress.  

The lack of formal lahar monitoring limited available data for this research. 

Fieldwork and data gathering experiences have also shown data acquisition from an 

active volcanic system can be extremely challenging for both the local scientific team 

and the visiting scientist (Chapter 6). Global Positioning System (GPS) equipment and 

field observations were used to map terrain changes when volcanic activity levels 

were low enough (Chapters 3 and 4). Other satellite data available for this time 

period were too expensive or suffered from cloud cover. Post-lahar field 
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investigations also examined the deposits and compared reported lahars to rainfall 

data (Chapter 4, Section 4.4.3). While estimations of lahar rheologies (flow 

behaviour) have been made (Chapter 2, Section 2.5), the magnitude of individual 

events cannot be determined from these data alone (Chapter 4). Basic 

administrative GIS data were also gathered from the GoM’s Physical Planning Unit 

(PPU) and MVO provided georeferenced base maps. Nonetheless, the main source 

of primary data pertained to characteristics of terrain. All data were managed in a 

GIS database.  

This research was conducted on a ‘real-world’, poorly-understood system, with 

real data restrictions. However, data limitations do not necessarily inhibit all 

predictive capabilities. For hazard assessment, runout and inundation areas from 

lahars are crucially important, and preliminary forecasts of these can be provided 

through relatively simple, undemanding GIS-based models and methods (e.g. 

Chapter 4). Some of the more complex predictive tools and models can be excellent 

research tools, i.e. improving knowledge of the intricacies of physical behaviour, but 

their practical utility can be low as they often require a vast amount of data and 

calibration. Furthermore, simple models can amply provide first-order solutions and 

identify important parameters and essential data requirements (i.e. the need for 

channel roughness to be considered was shown in Chapter 4).  

These findings are also encouraging for other areas prone to lahar hazards where 

field data may be difficult to obtain.  

 

7.2.1.2 Data handling: DEM construction 

The influence of terrain on lahars is well-noted (Chapter 2, Section 2.3.5.1). It is 

evident that topography is of primary importance for determining lahar routing 

directions (Chapter 3) and lahar inundation areas are also obviously spatial (Chapter 

4). Lahars will also perturb the surface inducing geomorphological change (Chapter 

4). A GIS is ideally suited to generating (and updating) representations of terrain that 

are so crucial for lahar hazard management.  

Here, as a result of perturbation by lahars, existing topographic maps and digital 

elevation models (DEMs) were outdated. GPS data were gathered to gain an up-to-

date representation of the ground surface. However, such data needed to be 
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handled sympathetically to be useful. DEM accuracy and resolution issues have been 

known to affect results from lahar models (Chapter 2).  

An application-driven approach to constructing DEMs was proposed in Chapter 3. 

This entailed incorporating auxiliary information from field notes with topographic 

changes digitised from (oblique) aerial photographs and with elevation data 

acquired with a GPS. Fusing of the different datasets was performed in a GIS. 

Synergistic use of these data sources greatly improved flow routing predictions, 

when compared to a DEM constructed with GPS data alone. These findings can be 

used to inform a standard approach to DEM construction and tailored to other 

systems/ applications.  

Furthermore, to consider lateral spread of inundation areas the DEM needed to 

encapsulate a greater area than was accessible on-foot (i.e. beyond roving GPS 

coverage). Therefore, an older, regional DEM was used as a base and augmented 

with the new GPS-derived DEM (Chapter 4). However, again this had to be carried 

out sympathetic to the intended application, avoiding the creation of any artificial 

pits or peaks that could re-route flow, whilst prioritising conformity to the updated 

GPS-derived surface. A GIS was used to consider alternative approaches to fusing 

different datasets. Again, these techniques are applicable elsewhere.  

As DEM data were acquired on two separate occasions, a year apart, 

morphological change as the effect of cumulative lahars could be evaluated by 

calculating a differential surface in a GIS. It was found that the valley was aggrading 

over the period of one rainy season, i.e. experiencing net deposition of sediment 

(Chapter 4). 

 

7.2.1.3 Data handling: uncertainties and elevation error 

Likely magnitudes of inaccuracy, or error, across a DEM could be estimated from 

knowledge of equipment accuracy, GPS sampling method, interpolation and 

construction technique (data handling) (Chapter 3).  

Through a GIS, random error surfaces could be generated and used to disturb the 

DEM, creating multiple equally probable realisations of the ‘true’ surface (Chapter 

3). Propagation of error to predicted flow routes was thereby considered by varying 

the different terrain surfaces as inputs to the GIS-based flow routing model and 
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observing the differences in output. Flow routing results were fairly robust to 

elevation error when the DEM construction method was application-driven, but not 

unresponsive (Chapter 3; 4). More complex methods of artificially perturbing the 

surfaces (e.g. estimation of spatial autocorrelation) were unnecessary as spatially 

independent error produced the ‘worse case’ scenario (Chapter 3). If higher 

accuracy surface data were available, disparity between this representation of the 

‘true surface’ and the constructed DEM could be calculated for a more accurate 

understanding of error, but this would negate the need to use lower resolution/ 

accuracy data. 

DEM uncertainty can also impact the quantification of geomorphological change. 

For example, the quantified net deposition (Chapter 4) could, in theory, reflect error 

in the DEM rather than actual temporal elevation differences. However, with a mean 

elevation error of zero (no bias) the overall impact on the differential surface would 

be relatively low.   

 

 

7.2.2 Improving knowledge of lahars through modelling  

 

7.2.2.1 Utility and limitations of existing GIS models 

GIS tightly coupled with modelling is an area where the potential of GIS is under-

utilised (Chapter 2). The dependency of gravitational flows, such as lahars, on 

terrain, and the natural ability of GIS to represent the spatial variation of 

topography, strongly advocates lahar modelling through a GIS. Two established GIS-

based modelling approaches were tested with lahars on Montserrat (Chapter 4).  

Both the limitations and benefits of the models tested lies in their simplicity. 

Single-direction flow routing identified the main lahar routes, whilst incorporating 

uncertainty in their prediction. However, this model was unable to show inundation 

areas (i.e. spread). LAHARZ was able to map inundation areas, but performed poorly 

in an unconfined channel. Neither model required any input of the physical 

properties of the lahars and performed admirably when compared to deposits. Thus, 

GIS-based models have demonstrated their ability to provide preliminary predictions 

for hazard management; these can be useful when time is unavailable, yet also for 
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long-term trends as they are more likely to be adequate across a greater range of 

flow types.  

 

7.2.2.2 Model improvements  

The new model uses the principles of single-direction flow routing (Chapter 2; 

Chapter 4), combined with a simple equation for estimating the velocity of a 

Newtonian fluid over a rough surface which may be inclined (Manning’s formula; 

Chapter 5). LAHARZ was used to refine calculations of the wetted channel shape. 

Flow was directed according to maximum velocity using a cost surface approach. 

This was also implemented in a GIS and considered uncertainties in predictions. 

Furthermore, this new approach enabled velocities and travel times to be predicted 

and observed flow routes were replicated with greater accuracy.  

Therefore, the velocity cost surface approach could be used for short- to mid-

term (days-months) prediction of lahar routes, average velocities and travel times. 

However, absolute velocities would benefit from more rigorous testing.  

 

7.2.2.3 Treatment of unknowns and data uncertainties  

Lahar magnitude was unknown, but a range of ‘reasonable’ volumes were inputs for 

LAHARZ to simulate the inundation areas of different likelihood events (Chapter 4). 

Undeniable uncertainties exist with the application of LAHARZ to the dilute flows on 

Montserrat. Uncertainty in the DEM was not considered for modelling with LAHARZ 

as (with the current source code) the different error surfaces would have had to be 

entered manually, greatly increasing model run time.  

Observed dominant flow routes have been simulated, most successfully with the 

velocity cost-surface approach (Chapter 5). Uncertainties in these predictions with 

respect to terrain have been considered through elevation error propagation. The 

mechanism used was a Monte Carlo sampling strategy from a probability density 

function (i.e. normal distribution with no bias). Other sources of uncertainty could 

have been considered in a similar way. For example, Manning’s roughness for a 

given cell could have been given a mean value from consultation with literature 

sources, but then allowed to deviate within a range specified by a standard 

deviation. Considering uncertainties in all parameters would develop a branching 
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structure similar to some previous work on Event Trees (Chapter 2). Sensitivity 

analysis could also show the relative importance of these factors/ parameters.  

An exploration of different scenarios considering possible futures (natural and 

anthropogenic-induced) for the surface of the valley has enabled the robustness of 

simple flow routing to be examined. These scenarios, and their impact on lahar 

travel times, could inform local planning decisions and access provisions. The ability 

to demonstrate easily the consequences of ‘what if’ scenarios is a recognised benefit 

of GIS (Chapter 2).  

 

 

7.2.3 Transfer of academic research on lahars 

 

Communication and dissemination of scientific findings are relevant issues for 

hazard management that are gaining increasing attention (Chapter 2). One aspect of 

this is making sure that academic research is effectively applied.  

Research was carried out with support and permissions from local authorities and 

local scientists. It was found that tensions are often sparked in a volcanic crisis when 

visiting scientists do not provide adequate feedback to the host scientific team 

(Chapter 6). In light of the current research and IAVCEI guidelines, some ‘best 

practices’ can be established for visiting scientists in crisis scenarios (Chapter 6). 

These are applicable to research conducted on any active volcano. 

• Obtain permissions prior to commencing research; 

• Assess end-user requirements to maximise potential uptake of findings; 

• Establish the role of the visiting scientist as one which provides additional 

information on hazards, delivered to the local scientists; 

• Offer feedback and receive feedback; 

• Offer joint scientific publications. 

GIS is a useful tool for pooling information, querying spatial data and producing 

outputs tailored to the requirements of end-users. Furthermore, GIS can be tightly 

coupled with the modelling process, enabling transfer of a simulation tool in 

addition to visualisations.   
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7.2.4 Summary of the utility of GIS for lahar hazard assessment on Montserrat 

 

Geospatial methods for lahar hazard assessment that have been demonstrated 

through this research are presented in Figure 7.1. 

Satellite technology has shown its use for gathering elevation data (GPS) and 

aerial photography can be used as auxiliary information for generating DEMs, and 

also for visualisation of results. DEMs can be generated in a GIS, uncertainty in 

elevations can be modelled through stochastic simulation in a GIS, and GIS-based 

models can be used to predict lahar routes and hazard zones. Mitigation scenarios 

can also be explored through a GIS and there is great potential to update model 

input data to develop further hazard predictions over time. Maps and model results 

can be tailored to end-user requirements (short-, mid- and long-term) through a GIS.  

 

 

 

Figure 7.1 Geospatial methods that have contributed/ shown potential for 

contribution to lahar hazard management on Montserrat (amended from Chapter 2, 

Figure 2.12).  
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Currently, very short-term automated or manual warning systems are not feasible 

(Chapter 6), although a GIS could potentially be used to manage such a program.  

Notable is the absence of potential GIS contributions to response and recovery on 

Montserrat (Figure 7.1). The Belham Valley area is in a perpetual state of response 

and unable to enter recovery due to the prolonged nature of the eruption of the 

Soufrière Hills Volcano. In terms of response to lahar events, these occur too 

frequently to require individual response and recovery.  

 

 

7.3 SUMMARY OF CONTRIBUTIONS TO NEW KNOWLEDGE 

 

Innovation and originality in scientific research are essential for advancing 

understanding of natural phenomena. Multidisciplinary research has been 

conducted that makes contributions to new knowledge across the fields of geology 

and GI Science; the work also has implications for the direct benefit of a specific 

regional setting, Montserrat, West Indies. Examples of these contributions are 

highlighted under different headings but there will be overlap between categories.  

 

Furthering research on lahars and their hazard management 

• LAHARZ, a standard preliminary tool for lahar hazard assessment, was used 

to map inundation areas of more water-rich flows. Although LAHARZ was 

originally calibrated for more sediment-rich debris-flow type lahars, and has 

been exclusively used for mapping these types of flows, the model was 

successfully applied to the more dilute flows of the Belham Valley, 

Montserrat.  

• Hydrological modelling (single-direction flow routing) was used to simulate 

the dominant flow paths of more sediment-rich flows beyond its intended 

design. Principles of simple flow routing for water flows have been adopted 

to explain the underlying physics behind lahar movement. To the author’s 

knowledge, implementation of a lahar model using a cost-surface in a GIS has 

not been done before.  
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• A novel GIS-based method for flow routing of more dilute lahars was 

developed to improve the performance of simple flow routing algorithms. 

Use of Manning’s formula for water flow velocity had previously shown 

promising results for application to lahars, but in this research the formula 

was used to route flow according to greatest velocity.  

• For the first time, LAHARZ was modified to output an estimated maximum 

flow depth. This parameter is a recognised indicator of lahar intensity. 

Further, this new output was used, with inundated planimetric area, to 

confine estimates for channel geometry necessary for the Manning’s 

formula. In this way, two disparate GIS-based methods were coupled in a 

novel manner and used synergistically for lahar hazard assessment.  

• The capability of GIS for considering ‘what-if’ scenarios was exploited and, in 

a novel approach for lahar hazard assessment, alternative futures were 

considered to assess the longevity of model results.  

• Advancing previous research showing the importance of DEM accuracy, an 

application-driven approach to terrain construction for lahar simulation was 

used to improve hazard predictions. 

• An original evaluation of producing effective science in an active volcanic 

environment was presented.  

 

Advancements to GI Science  

• An approach to terrain model construction was provided that prioritises 

fitness for its intended application, i.e. flow routing. This also provided an 

example of how to maximise accuracy using auxiliary information when 

elevation data were not optimal. This contributes to the GI Science research 

agenda for uncertainty in geographic information and geographic 

representation (see Chapter 2, Section 2.4.4.3). 

• A new procedure for merging elevation datasets was developed. DEMs 

frequently require updating and often exist only in localised areas. The 

mechanisms for DEM merging can produce very different results but there 

are few established guidelines for achieving the best results. This also 
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contributes to GI Science research agenda for uncertainty in geographic 

information and geographic representation (see Chapter 2, Section 2.4.4.3). 

• Possibilities for using ArcGIS’s ModelBuilder for the creation of simple flow 

routing models with an integrated capacity for examining error propagation 

were highlighted. This simple tool allows the creation of models without the 

need for programming.  

 

Tangible benefits for Montserrat  

• Observed preferential lahar routes were simulated for the first time in this 

region. This is a step towards formal lahar hazard assessment for the Belham 

Valley.  

• Lahar travel-times were also calculated in order to estimate the minimum 

evacuation time for daytime-access workers and visitors to the Belham 

Valley.  

• Influences of continued anthropogenic activity in the valley and/ or 

intentional mitigation measures were considered for long-term hazard 

management.  

• The first local scale hazard maps for Belham Valley lahar hazard management 

were created and distributed to local scientists.  

 

 

7.4 AVENUES FOR FURTHER INVESTIGATION  

 

7.4.1 Overview 

 

Recommendations can be made for extensions to the current research. Detailed 

propositions follow justification for further research under three topics.  

 

1. Given that: 

• the new velocity-cost approach using Manning’s formula produced plausible 

results for lahar routing, velocities and travel times (Chapter 5); 
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• there are currently no test data for individual events on Montserrat;  

• recent elevated activity has decreased the likelihood of formal investment in 

lahar monitoring on Montserrat, and thus, reduced opportunity for formal 

monitoring initiatives; 

• the model can be transferred to other areas providing there is a good 

knowledge of the local terrain (elevation, roughness etc.).  

 

It is recommended that: 

the newly developed velocity-cost surface approach be applied to another study 

area with similar flow types. Model testing in similar volcanic environments with 

greater data availability can help make inferences about the validity of the 

Montserrat results; if the method works well in other areas for predicting velocities, 

their spatial distribution, and flow routes, then the results for Montserrat are given 

support through analogy. 

 

 

2. Given that: 

• the relative importance of input parameters on results is a ‘hot topic’ in 

modelling; 

• in the current research the relative importance of flow model parameters 

has only been qualitatively assessed for single-direction flow routing 

(Chapter 3); 

• sensitivity testing has not been applied to the new velocity cost-surface 

model; 

• the full range of uncertainties have not been considered for all model 

parameters; 

• sensitivity analysis is an interesting area with potential to inform research in 

GI Science; 

 

It is recommended that: 
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formal sensitivity testing be applied globally to consider uncertainties in all inputs 

and parameters for the velocity-cost surface model and how they interact with each 

other. This would concentrate efforts for model refinement by quantifiably 

identifying the most influential factors. 

 

 

3. Given that: 

• lahars can exhibit a wide range of flow behaviours; 

• hydrological (water flow) modelling has been established as suitable for the 

more dilute flows on Montserrat (Chapter 5); 

• GIS-based methods are good for manipulating elevation datasets, can run 

simple models, are ideal for hazard mapping and visualisations; 

• lahars are a continual threat on Montserrat, likely to outlive the duration of 

the current eruption; 

• there are other literature sources that could be explored in further detail 

(e.g. flash floods, dam-breaks). 

 

It is recommended that: 

other established GIS-based hydrological models are tested for the suitability for 

modelling dilute Belham Valley lahars. Such models need to be minimal in their data 

requirements. Forward modelling should predict long-term changes to the Belham 

Valley.  

 

 

7.4.2 Useful analogues for lahar model testing  

 

7.4.2.1 Merapi Volcano, Central Java, Indonesia 

Merapi volcano, Central Java, is an andesitic stratovolcano, characterised by viscous 

magma generating dome-collapse pyroclastic flows (Thouret et al., 2000); thus the 

volcano is very similar to Montserrat (Chapter 2, Section 2.5). Merapi has been 

historically active (2007), but is not currently erupting (Siebert and Simkin, 2010). 
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About 440 000 people live in areas with some risk of pyroclastic flows and surges, 

lahars and floods (Thouret et al., 2000); 120 000 people live along the 13 rivers 

prone to lahars (Lavigne et al., 2000). Lahars from Merapi travel as far as 30 km 

(Thouret et al., 2000; Lavigne et al., 2000) and can reach volumes of 106 m3 (Lavigne 

et al., 2000). Thus, the scale of the system (volcanic and hydrological catchment) is 

greater than Montserrat.  

At Merapi, lahars are commonly triggered by rainfall and most occur in the rainy 

season after a threshold of 40 mm in 2 h (Lavigne et al., 2000). Debris-flow 

behaviour is typically restricted to the lahar front and lahars tend to transform 

downstream to longer hyperconcentrated-flow phases as sediment load fluctuates 

during the flow (Lavigne and Thouret, 2002). However, hyperconcentrated flows 

often also precede the flow front, and sometimes debris-flow phases are absent 

(Lavigne and Thouret, 2002). Average velocities are typically from 5-7 ms-1 (Lavigne 

et al., 2000) and peak flow of 15 ms-1 has been observed in one of the river valleys 

(Lavigne et al., 2000). Therefore, the lahar-triggering mechanism, flow types and 

velocities are analogous to Montserrat.  

Crucially, there is also an abundance of data on Merapi lahars. There has been 

deployment of acoustic flow monitors, real-time seismic amplitude measurement, 

and seismic spectral amplitude monitoring for lahar detection (Thouret et al.,2000). 

Thouret et al. (2000) also used a 10 m resolution DEM for modelling block-and-ash 

falls, so topographic data are available. However, to this author’s knowledge, there 

has been little modelling of lahars undertaken.  

 

7.4.2.2 Mt Ruapehu, New Zealand  

Mt Ruapehu, New Zealand, is also an andesitic stratovolcano that has been 

historically active (2007, Siebert and Simkin, 2010). There are four types of lahar 

triggering mechanisms at Ruapehu: (1) partial collapse of the crater-lake rim; (2) 

eruptive episodes displacing crater-lake waters; (3) eruptions onto snow and ice 

covered slopes; and (4) heavy rains on slopes (Lecointre et al., 2004). Failure of a 

lake dam has been found to be the most efficient mechanism for generating a fast 

lahar with a high peak discharge (Cronin et al., 1997). In addition to small lahars 
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(<105 m3), lahar volumes in excess of 107 m3 have been observed (Lecointre et al., 

2004).  

 Cronin et al. (1997; 1999) describe lahars in 1995 generated from water ejected 

explosively from the crater-lake (lake-outburst). There were four distinct phases for 

these lahars, from initial streamflow ‘pushed’ ahead of the lahar, to debris-flow, 

hyperconcentrated-flow then normal streamflow (Cronin et al., 1999). Average 

velocities were 4—4.5 ms-1, and flows travelled over 90 km, thus velocities at the 

source were probably higher. Peak discharge was at the head of the lahar (Cronin et 

al., 1999). Average velocities were obtained through eruptions and travel times, 

instantaneous velocities were recorded by timing floating objects over a set 

distance, or using a ‘superelevation’ method where the height difference across a 

lahar channel is measured as it flows round a bend (Cronin et al., 1999).  

A general model for Ruapehu lahars using Manning-type laws of friction, for 

lahars generated by a single explosive mechanism, has successfully been compared 

to 1968 lahars (Vignaux and Weir, 1990). A more complex fluid dynamics approach 

using the Delft3D program has been applied to the well-monitored March 2007 

lahar (Carrivick et al., 2009). An interesting study may be comparing performance of 

these earlier models with the novel methodology developed here.  

Therefore, although Ruapehu is a larger system, there is justification for the 

application of the velocity-cost model (Chapter 5).  

 

7.4.2.3 Others 

The two comparable study areas above have been suggested due to the relative 

abundance of data. Other volcanoes with similar lahars include Volcan de Colima, 

Mexico and possibly Mt Pinatubo, Philippines, but these suggestions are not 

exhaustive.  

Colima lahars are also rainfall-triggered and they are initiated as sediment laden 

stream flows which transform with entrainment to hyperconcentrated- and debris 

flows (Capra et al., 2009). These lahars reach distances up to 15 km, flow depths 

1.5—2 m for recent events and instantaneous velocities of 6 ms
-1

 (Capra et al., 

2009). Colima is also currently active (Siebert and Simkin, 2010). LAHARZ has been 

used to model Colima lahars (Davila et al., 2007).  
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Pinatubo is a stratovolcano that had its first historic eruption in 1991 and last 

known eruption in 1993 (Siebert and Simkin, 2010). Widespread rain-triggered 

lahars following the 1991 eruption have been extensively discussed by Newhall and 

Punongbayan (1996).  

 

 

7.4.3 Formal sensitivity testing 

 

Sensitivity analysis is the study of how uncertainty in model predictions is 

determined by uncertainty in model inputs and parameter values (Lilburne and 

Tarantola, 2008). This enables identification of aspects of the model that contribute 

to uncertainty and those that make no significant contribution (Hall et al., 2005). 

Therefore, specific inputs can be targeted for further refinement. For example, 

sensitivity analyses can be used to construct logic trees focusing attention on the 

parameters that have greater impact on the hazard (Barani et al., 2007). Modellers 

can also specify the quality of data inputs needed for outputs to have fitness-for-use 

(or utility in solving the problems to which they are applied) (e.g. Li et al., 2000). 

Further, sensitivity analysis can provide objective criteria of judgement for different 

phases of the model-building process: model identification and discrimination, 

model calibration and model corroboration, treating the choice of the model as one 

of the sources of uncertainty (Saltelli et al., 2000a).  

Review articles of sensitivity analysis methods are provided by Frey and Patil 

(2002) and Lilburne and Tarantola (2008), and moreover the comprehensive 

discussion by Saltelli et al. (2000b). One-at-a-time (OAT) sensitivity analysis is 

currently the most commonly used type of sensitivity analysis (Saltelli et al., 2000a; 

Lilburne and Tarantola, 2008). This involves independent variation of model inputs 

(or parameters etc.) to see the effect on model output. Local sensitivity analysis is a 

particular case of the OAT approach in which the input variables are only allowed to 

vary within a small interval around a nominal value (Saltelli, 2000). However, OAT 

approaches have as a major limitation the neglect of parameter interaction which 

can induce bias in the results (Campolongo et al., 2000).  
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Global sensitivity analysis considers the potential effects from the simultaneous 

variation of model inputs across their finite range of uncertainty (Lilburne and 

Tarantola, 2008). Global sensitivity analysis, coupled with uncertainty analysis, is the 

best tool to assess the robustness of decisions and to understand whether the 

current state of knowledge is sufficient to enable a decision to be made (Tarantola 

et al., 2002). For implementation see Saltelli et al. (2000b).  

Sensitivity analysis has been used for a range of environmental applications 

including the modelling of hydrological processes (Cloke et al., 2008), flood wave 

propagation (Elhanafy et al., 2008), flood inundation model calibration (Hall et al., 

2005), sustainable planning of a hazardous waste disposal site (Gomez-Delgado and 

Tarantola, 2006), and seismic hazard (Barani et al., 2007) etc.  

Inputs for the current model (Chapter 5) could be tested, including DEM and 

slope, hydraulic radius and Manning’s n. This would be a challenging endeavour, but 

would provide rewarding insight for lahar modelling and volcanology in general, 

disciplines where there is little evidence of formal sensitivity testing.   

 

 

7.4.4 Alternative modelling approaches 

 

Accepting that a hydrological approach has produced some positive results for the 

Belham Valley lahars (simple flow routing in Chapter 4; a velocity cost surface 

approach using Manning’s formula in Chapter 5), it is reasonable to look beyond the 

lahar literature for modelling techniques. FLO-2D is perhaps the obvious choice, and 

has been applied to rainfall-triggered debris flows (e.g. Calvo and Savi, 2009). 

However, the software is demanding in terms of its input data requirements and is 

relatively expensive to purchase individually for small-scale research. Alternatively, 

HEC-RAS (Hydrologic Engineering Center-River Analysis System), developed by the 

US Army Corps of Engineers (Hydrologic Engineering Center, 2008), is a popular one-

dimensional hydraulic model designed for simulating the flow of water through 

natural rivers and other channels.  

HEC-RAS allows description of the river channel and floodplain as a series of 

discrete cross-sections perpendicular to the flow direction. Calculations proceed 
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along a previously selected topographic profile and water surface elevation is output 

at each cross-section; this can be directly overlain on a DEM to simulate flood 

inundation extent (e.g. Tayefi et al., 2007).  Two modelling approaches are possible 

with HEC-RAS: (1) steady flow simulations and (2) unsteady flow simulations. The 

steady flow version of the model solves one-dimensional step-backwater equations 

where a user specified discharge is routed through a channel with known geometry 

and roughness. Resultant water-surface profiles (from a calculation of energy 

balance between cross-sections) are then matched to surveyed water surface 

profiles in an iterative procedure until the discharge producing the best match is 

identified (Chow, 1959; Hydrologic Engineering Center, 2008). Although commonly 

applied commercially for floodplain management, this approach has been used for 

simulation of floods in ephemeral rivers (e.g. Merrit and Wohl, 2003) and glacial-lake 

outburst-floods (Cenderilli and Wohl, 2001; Alho et al., 2005; Alho et al., 2007). 

When applying the steady flow model to natural channels a number of assumptions 

must be made: (1) flow is comparatively steady along the whole reach; (2) flow 

varies gradually between cross-sections; (3) flow is one-dimensional; (4) the bed 

slope of the channel is less than 10%; and (5) the energy slope is constant over the 

cross-section (Hydrologic Engineering Center, 2008). Discharge is distributed 

according to the conveyance, which is given by channel geometry and roughness, 

represented by Manning’s n (see explanation in Alho and Aaltonen, 2008).   

Newer releases of the HEC-RAS model can also solve the full 1D St Venant 

equations (mass and momentum conservation) for unsteady open channel flow. This 

incarnation of the model has shown good performance, against more sophisticated 

2D counterparts, for predicting river flood inundation (Horritt and Bates, 2002), 

complex upland floodplains (Tayefi et al., 2007); and has been used for simulating 

dam-break floods (Yochum et al., 2008) and jökulhlaups (Icelandic glacial-lake 

outburst-floods) (e.g. Alho et al., 2007; Alho and Aaltonen, 2008). Sources of 

uncertainties and sensitivity analyses of input parameters have been extensively 

discussed (e.g. Hall et al., 2005; Pappenberger et al., 2005; Pappenberger et al., 

2008). 

HEC-RAS has potential for dilute lahar simulation if the flow is assumed to be 

single-phase, where Newtonian flow behaviour is dominant (using similar reasoning 
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as presented in Chapter 5; Section 5.1.1). To implement for Belham Valley lahars, in 

addition to the roughness values estimated in Chapter 5, a set of cross-sections 

separated by ‘uniform’ sections of channel would be needed (easily obtained from 

the DEM) and evidence of stage and discharge changes downstream. High water 

levels can be measured from recent events (e.g. Yochum et al., 2008) or from 

palaeostage indicators (e.g. Cenderelli and Wohl, 2001). Hypothetical hydrographs 

(discharge over time) can be estimated where such data are unknown as an 

upstream boundary condition (Alho et al., 2007; Tayefi et al., 2007; Alho and 

Aaltonen, 2008; Yochum et al., 2008). Therefore, HEC-RAS is still relatively 

undemanding in terms of data input. It is also available for public use at no cost 

(http://www.hec.usace.army.mil/software/hec-ras/, accessed March 2010).  

HEC-RAS hydraulic modelling can be linked with ArcGIS for import and export of 

files using a program called HEC-GeoRAS (see Ackerman et al., 2000; Hydrologic 

Engineering Center, 2008; Yochum et al., 2008). Moreover, the capabilities of HEC-

RAS are not only limited to inundation modelling, the program has also been used by 

geomorphologists for its potential to relate variations in velocity, shear stress or unit 

stream power to specific erosive or depositional features (e.g. see Alho et al., 2005). 

If such areas could be located for the Belham Valley, Montserrat, long-term system 

response could be predicted.  

 

 

7.5 CLOSING REMARKS 

 

“The need for geospatial data and tools may be everywhere, but in a sense it is 

also nowhere in minds that are overwhelmed by the circumstances of disaster.” 

(NRC, 2007, p. 146).  

 

Application of geographical information and technology for disaster management 

is reaching a critical phase; in particular, there is a rising trend in the use of GISs 

beyond geography in other scientific disciplines including volcanology. More 

generally, there is a new era of information dissemination and rapid emergence of 
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user-generated content facilitated by the Internet and ubiquitous use of computers; 

GIS tools are becoming familiar to non-scientists, i.e. decision-makers and general 

public. While this is not necessarily true worldwide (i.e. in poorer countries), GIS 

tools are not being used to their full potential, even where the facilities exist (e.g. 

Montserrat).  

The benefits of using a GIS for lahar hazard assessment have been demonstrated 

by this thesis; the challenge is to ensure such research is effectively taken from 

academia to benefit on-the-ground planning and decision-making. This is especially 

difficult on an active volcanic system, where data acquisition is difficult, scientists 

are already working to full capacity and relationships with decision-makers and 

visiting researchers may be strained.  

 

“[missing from volcano hazard simulation,] is a way to structure model 

development, selection, and application in a way that maintains the ability to 

account for fundamental environmental processes at the scale of interest, while 

accommodating realistic data availability and explicit accounting for uncertainty 

introduced at each step.” (Renschler, 2005, p. 74).  

 

While the author believes that data-driven lahar modelling should be avoided, if a 

model is to be selected for application to a real-world problem, model development 

should be mindful of the limitation of readily available data. It is also fundamental 

that end-users of models are appreciative of the importance of data quality and how 

error and uncertainty can propagate from model inputs to outputs, and subsequent 

decisions.  

Ultimately, a lahar hazard assessment, generated in academia, can only be 

effectively applied to an active volcanic system through consultation and 

collaboration with end-users.
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APPENDIX 1: FIELD DATA 

 

Raw and interpreted field data on accompanying CD 

 

 

APPENDIX 2: ANIMATION 

 

Animation of lahar (Chapter 6) on accompanying CD 


