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Abstract 

 

Members of the Kelch-like family display various functions at the cellular level, such as 

being involved in signalling pathways, as mediators of cytoskeletal changes and most 

prominently by targeting specific substrates for proteasomal degradation.  

Previous studies suggested a role for Kelch-like 31 (Klhl31) during myogenesis, as its 

expression is dependent on signals responsible for the induction of myogenesis in the 

somites and is slightly delayed compared to the expression of early myogenic regulatory 

factors.  

With this study we wanted to analyse the function of Klhl31 during myogenesis in more 

detail. Using C2C12 mouse myotubes as our model cell line to study myogenic 

differentiation and myofibrillogenesis, we found that Klhl31 is closely associated with 

Actin fibres in differentiated, multi-nucleated myotubes and that observed co-

localisation can be linked to C2C12 differentiation. Furthermore, we used a Yeast-2-

Hybrid screen approach and GST-pull downs to find interaction partners for Klhl31. 

Putative interacting proteins for Klhl31 were analysed and found to be structural 

components of the sarcomere with many of them also being involved in 

myofibrillogenesis, such as Nebulin, Actin, CapZ and tropomyosin. 

We also analysed a possible role of Klhl31 in proteasomal degradation, as Klhl31 was 

shown to negatively regulate canonical Wnt-signalling. We gathered evidence that 

Klhl31 might interact with components of E3-Ubiquitin ligase complexes and might 

target specific substrates including itself for degradation by the 26S proteasome. 

Furthermore, we analysed the expression of Klhl31 during heart development in chick 

embryos, where it was restricted to the myocardium.  

We concluded that Klhl31 might be important during myofibrillogenesis in striated 

muscles. A role for Klhl31 in mature muscle might involve providing structural 

stabilisation in sarcomeres and during muscle contraction.  
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1. Introduction 

 

1.1 Somitogenesis 

 

All vertebrates share the same body plan defined by a segmented body axis. 

Segmentation takes place during early development and can first be observed as the 

formation of somites (see figure 1.1), which are paired epithelial segments on either side 

of the neural tube (Christ and Ordahl, 1995; Dequeant and Pourquie, 2008). The somites 

originate from the posterior paraxial mesoderm, whilst the anterior paraxial mesoderm, 

also called the head or cephalic mesoderm, gives rise to the bones and the muscles of 

the head (Noden, 1991; Pourquie, 2003). Tissues generated from the presomitic 

mesoderm (the posterior part of the paraxial mesoderm) include skeletal muscles, 

smooth muscles, cartilage, bones, including the vertebrae, connective tissues and parts 

of the skin (Dequeant and Pourquie, 2008; Yusuf and Brand-Saberi, 2012).  

Each bilateral pair of somites is segregated from the anterior tip of the PSM in regular 

temporal intervals until for each species a defined number of somites have formed (for a 

schematic overview of somitogenesis see figure 1.1; (Dequeant and Pourquie, 2008; 

Maroto and others, 2012; Richardson and others, 1998). Furthermore the timing of each 

interval of somite formation is also characteristic for each species (Dequeant and 

Pourquie, 2008; Maroto and others, 2012). A pair of somites in chick embryos is formed 

every 90 minutes, while a cycle in mice somitogenesis lasts 120 minutes and for human 

embryos it takes between 4 and 5 hours to form a somite pair (Dequeant and Pourquie, 

2008).  
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Figure 1.1: Somitogenesis 

Somites are formed from the paraxial mesoderm in an anterior -posterior pattern.  Once 

somite segregat ion has taken place,  cells in the somite different iate to  give r ise to the 

dermomyotome and the sclerotome.  

Figure taken from (Yusuf and Brand-Saberi,  2012)  

As soon as the new epithelial somite has separated from the pre-somitic mesoderm, it 

starts to differentiate and mature (Maroto and others, 2012; Yusuf and Brand-Saberi, 

2012). The differentiation processes are initiated by signalling molecules from the 

surrounding tissues, such as the notochord, the neural tube and the surface ectoderm 

(Aoyama and Asamoto, 1988; Christ and others, 1992; Munsterberg and Lassar, 1995). 

Specification of dermal and myogenic progenitor cells is induced in the dorsal part of 

the somites, whilst the cells in the ventral part of the somite will undergo epithelial–

mesenchymal transition (EMT) and eventually give rise to the sclerotome (Christ and 

others, 2007; Maroto and others, 2012; Yusuf and Brand-Saberi, 2012).  

Tissues generated from the sclerotome comprise the bones of the skeleton, the vertebrae 

and the syndetome, which contain the progenitor cells for axial tendons (Brent and 

others, 2003; Christ and others, 2004; Christ and others, 2000; Dubrulle and Pourquie, 

2003; Monsoro-Burq, 2005). Sclerotome differentiation in the ventral somite is 
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activated by Sonic Hedgehog (Shh) and Noggin / gremlin 1 signals from the notochord 

(Borycki and others, 1998; Brand-Saberi and others, 1993; Brunet and others, 1998; 

Christ and others, 2004; Christ and others, 2000; Marcelle and others, 1999; Stafford 

and others, 2011; Streit and Stern, 1999) resulting in the expression of paired box 1 

(Pax1) and Nkx3.1 (Monsoro-Burq, 2005). In fact Pax1 expression is activated by 

Noggin and Shh. It was shown that in Noggin mutants Pax1 expression is delayed 

(McMahon and others, 1998), whilst overexpression of Shh in cultured, unsegmented 

paraxial mesoderm enhanced Pax1 expression (Fan and others, 1995; Fan and Tessier-

Lavigne, 1994; Johnson and others, 1994; Munsterberg and others, 1995).  

Myogenesis is induced by dorsalizing signals secreted from the dorsal neural tube and 

the surface ectoderm (Buckingham, 2001).  

 

1.2 Myogenesis 

 

Induction of the dermomyotome is first observed by the expression of myogenic 

determination genes, such as Pax3, Myf 5 and MyoD (Tajbakhsh and others, 1998; 

Tajbakhsh and Buckingham, 2000). Myogenesis is activated by Wnt-ligands Wnt-1, -3a 

and -4 derived from the dorsal neural tube and surface ectoderm, as well as Shh 

signalling from the notochord and floor plate (Tajbakhsh and Buckingham, 2000).  

It was shown that ectopic expression of Wnt ligands can induce dorsal markers like 

Pax3 and MyoD in chick somites (Munsterberg and others, 1995; Wagner and others, 

2000) and further studies revealed that myogenic induction is mediated by β-catenin/ 

TCF signalling (Schmidt and others, 2000); for an overview of canonical Wnt-

signalling see figure 1.2).  
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Figure 1.2: Schematic overview of canonical Wnt-signalling 

(A)  In the absence of Wnt - ligands,  cytoplasmic β-catenin is bound to a destruct ion 

complex containing Axin, APC, GSK3β and CK1 leading to  the phosphorylat ion 

of β-catenin by CK1 and subsequent ly by GSK3β. Following phosphorylat ion ,  β-

catenin is recognised by β-Trcp, an E3-ubiquit in ligase ,  target ing β-catenin for 

proteasomal degradat ion.  

(B) In the presence of Wnt  ligands,  the Wnt receptor Frizzled (Fz) forms a complex 

with its co-receptors LRP5/6. Furthermore, Dishevelled (Dvl) is then recruited to 

Fz leading to  the phosphorylat ion of LRP5/6 and subsequent  binding o f Axin to 

the co-receptors.  Subsequent ly the destruct ion complex dissociates and 

phosphorylat ion and proteasomal degradation of β -catenin is inhibited leading to 

β-catenin accumulat ion in the nucleus,  where it  act ivates Wnt -responsive genes 

together with TCF.   

Figure taken from (MacDonald and others, 2009)  

Wnt signalling in the ventral part of the somites, the future sclerotome is inhibited by 

secreted forms of Wnt-receptors, such as Frzb and secreted Frizzled-related proteins 

(Sfrps) (Bovolenta and others, 2008; Leyns and others, 1997). Frzb is a homologue of 

Frizzled, which is lacking the transmembrane domain and therefore has been described 

to function as a soluble antagonist of Wnt-signalling by binding and sequestering of 

Wnt-ligands (Leyns and others, 1997). Sfrp2, as an example for Sfrps inhibits 

specifically Wnt-1 and Wnt-4 signalling in the myotome, where its expression is 

regulated by Shh derived from the floor plate and the notochord (Lee and others, 2000).  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2861485_nihms196288f1.jpg
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As mentioned previously, Shh signalling is needed for myogenic induction in the 

somites (Buckingham, 2001; Buckingham and others, 2003). It was reported that Shh 

signalling in the dorsal somite is regulated by Wnt-signalling (Borycki and others, 

2000). These authors reported that Wnt-1 and Wnt-4 by signalling via β-catenin 

together with signals from the surface ectoderm can restrict Gli2 and Gli3 expression, 

but not Gli1 expression, to the myotome in the developing somite. The Gli proteins are 

transcriptional effectors of the Shh transduction cascade (for a summary of Shh/ Gli 

signalling see (Hui and Angers, 2011). As ectopic expression of Shh in somites of chick 

embryos was shown to increase the sclerotome and to inhibit dermomyotome formation, 

it was thought that the function of Shh-signalling in the induction of either the myotome 

or the sclerotome depend on the dose of Shh (Dietrich and others, 1997; Johnson and 

others, 1994). Furthermore, a dose dependency was also highlighted for dorsalizing 

signals and it was shown that the myotome was only induced when the levels of 

Wnt/Shh were present in appropriate levels in a specific region of the somite (Dietrich 

and others, 1997). Interestingly though studies using a Shh null mouse still revealed the 

presence of the myotome, although compromised in the epaxial somite leading to the 

suggestion that Shh might not be directly involved in myogenic induction (Borycki and 

others, 1999; Kruger and others, 2001). 

Muscle progenitor cells reside in the dermomyotome, where they respond to dorsalizing 

signals that induce myogenic differentiation (Buckingham, 2001). Myogenic precursor 

cells have been shown to migrate out of the dermomyotome to form the myotome (see 

figure 1.3). However, how the cells migrate is not fully understood yet.  
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Figure 1.3: The formation of the myotome 

The scheme represents the migrat ion of muscle progenitor cells from the edges of the 

dermomyotome to form the myotome. 

Figure taken from (Buckingham, 2001) 

 

Electroporation of a GFP reporter into early somites of chick embryos followed by real-

time cell lineage analysis showed that myotome formation is established in two distinct 

phases and requires migration of myocytes from all four borders of the dermomyotome 

(Gros and others, 2004). The first phase was described to mediate myotome growth, as 

myocytes exclusively derived from the medial border of the dermomyotome migrate 

into the myotome. In the following second phase myocytes from all four borders (the 

medial, caudal, cranial or rostral and ventrolateral dermomyotome border) contribute to 

the myotome.  

Cells of the myotome differentiate to form myofibres. Differentiation of myoblasts 

involves de-novo myofibrillogenesis, the establishment of the sarcomeric structures and 

requires the withdrawal of the myocytes from the cell cycle, followed by expression of 

muscle-specific genes and fusion of myocytes to generate multi-nucleated myotubes 
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(Andres and Walsh, 1996; Kontrogianni-Konstantopoulos and others, 2006; Pownall 

and others, 2002).  

Skeletal muscle development is regulated by basic helix-loop-helix (bHLH) domain 

containing myogenic regulatory factors (MRFs); Myf 5 and MyoD as myogenic 

determination marker genes and MRF4 and myogenin as differentiation marker genes 

(Pownall and others, 2002). 

Myf 5 and MyoD have been shown to be expressed in proliferating myoblasts 

(Emerson, 1990). It was further reported that both genes auto regulate their expression 

to establish a constant Myf 5/ MyoD signal leading to the suggestion that both genes are 

involved in maintaining the myocyte population (Emerson, 1990; Thayer and others, 

1989). Expression of myogenin and MRF4 is induced during myoblast differentiation 

and might mediate the expression of sarcomeric proteins (i.e. proteins of the contractile 

apparatus) by function together with Myf 5 and MyoD (Edmondson and Olson, 1989; 

Lassar and others, 1991; Miner and Wold, 1990; Rhodes and Konieczny, 1989; Wright 

and others, 1989) 

 

1.3 Myofibrillogenesis  

 

Myofibrillogenesis describes the assembly of sarcomeric proteins and their maturation 

(Sanger and others, 2002). 

The first evidence for primitive myofibrils was already reported in 1913 when non-

striated fibres were observed close to the cell membrane during trout muscle 

development (Heidenhain, 1913) as cited by (Sanger and others, 2010). Similar non-

striated filamentous structures have also been seen in newly formed chick musculature 

(Fischman, 1967; Hibbs, 1956). Furthermore it was observed that the thick filament 

elongated daily during muscle development in drosophila melanogaster leading to the 

suggestion that muscle structures are assembled over a distinct period of time (Auber, 

1969) as cited by (Sanger and others, 2010). Advanced techniques in microscopy and 

the generation of muscle cell cultures made it possible to study myofibrillogenesis in 

more detail. Gene expression studies revealed that during myofibrillogenesis Desmin is 

the first of the sarcomeric proteins to be expressed, followed by titin, muscle-specific 
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Actin, myosin heavy chains and Nebulin (Furst and others, 1989). Furst et al (1989) 

reported that during mouse development around gestation day 11-12, before fusion of 

myoblast to form multinucleated myotubes at gestation day 13-14, first immature 

myofibrils were established displaying periodic striation for myosin and Nebulin, whilst 

titin was seen localised to the Z-disc. It was therefore suggested that the structures of 

the Z-disc and the thick filament, i.e. the myosin, form separately from each other and 

only align during later part of muscle development (Furst and others, 1989).  

As myofibrillogenesis was studied in more detail in cultured muscle cells and during 

embryonic muscle development, it became clear that myofibril assembly followed 

similar patterns. It was described that myosin was one of the earliest proteins seen to 

display a striated pattern during muscle differentiation (Dlugosz and others, 1984; 

Kulikowski and Manasek, 1979; Moncman and Wang, 1996). Furthermore it was found 

that a non-muscular isoform of myosin is present in early premyofibrils (the precursor 

for myofibrils as described by (Rhee and others, 1994), which is replaced by muscle 

specific myosin during muscle differentiation and maturation (see figure 1.3; (Dabiri 

and others, 1997; Dlugosz and others, 1984; Fallon and Nachmias, 1980; Mittal and 

others, 1987; Rhee and others, 1994; Sanger and others, 2002).  

A further structure seen to be formed during myofibrillogenesis and also already present 

in premyofibrils are primitive Z-discs (Rhee and others, 1994). α-Actinin associated to 

early thin filament was shown to display puncta, also described as beaded Z-bands in 

cultured myocytes, which eventually aligned laterally and fused into linear structures 

during muscle maturation (Dabiri and others, 1997; Rhee and others, 1994; Sanger and 

others, 1986; Sanger and others, 1984a; Sanger and others, 1984b). Furthermore it was 

shown in cell culture and early chick hearts that non-muscular myosin aligned with the 

Z-bodies in an alternating fashion (Du and others, 2008; Rhee and others, 1994). These 

structures were termed minisarcomeres. As the minisarcomeres mature, the Z-bands 

connect laterally and the Actin and non-muscle myosin start to co-localise and 

eventually display an organised overlapping pattern (Mittal and others, 1987). Cells, 

which revealed overlapping Actin/ non-muscular myosin structures were termed nascent 

myofibrils (see figure 1.4; (Sanger and others, 2010). Furthermore, nascent myofibrils 

already express muscle-specific myosin II, although at this point it does not align to the 

present striated filaments (Rhee and others, 1994; Wang and others, 2005a).  
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Mature myofibrils have established sarcomeric structures containing partially 

overlapping, defined thick and thin filaments (see figure 1.4 and chapter 1.4;(Sanger 

and others, 2010; Wang and others, 2005a)). Non-muscle myosin has now completely 

been removed and replaced by muscle-specific myosin II (Dabiri and others, 1997; 

Rhee and others, 1994).  

 

 

Figure 1.4: De-novo myofibrillogenesis 

Schematic out line of myofibr illogenesis: Premyofibr ils are formed when Z -bodies begin 

to form at  the edges of muscle cells,  comprising α -Act inin st ructures linked with Act in,  

Act in binding proteins and non-muscular myosin II.  During further maturat ion muscular     

myosin and t it in are added to the minisarcomeres and Z -bodies align in register to create 

nascent  myofibr ils.  Mature myofibr ils are defined by linear Z -discs.  In mature myofibr ils  

non-muscular myosin is absent  and myosin-binding proteins are incorporated into the 

thick filament .  

Figure taken from (Sanger and others, 2010) 

 

However, there are still processes during myofibrillogenesis, which are controversially 

discussed. Based on their observation, Dlugosz et al. (1984) described that non-

muscular myosin II fibres would act as scaffolds for myofibrils assembly, whilst Rhee 

et al. (1994) suggested that structures comprising α-Actinin, non-muscle myosin and 
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Actin would be the initiation point of myofibrillogenesis. A further hypothesis for 

myofibrillogenesis was proposed reporting that the Z-band proteins and the myosin 

thick filament (termed I-Z-I brush) would assemble separately from each other (Holtzer 

and others, 1997; Schultheiss and others, 1990). A similar observation was made for 

cardiac myofibrillogenesis (Ehler and others, 1999; Rudy and others, 2001). 

Furthermore it was reported that both structures, the thick and the thin filament, would 

eventually associate with each other mediated by interactions with the titin filament and 

Nebulin (Holtzer and others, 1997). However, Sanger et al. (2010) contradict the I-Z-I 

brush hypothesis based on the described evidence for premyofibrils, which contains Z-

disc proteins associated with myosin in minisarcomeres (Rhee and others, 1994; Sanger 

and others, 2010). However, it was shown that titin might play a key part during 

myofibrillogenesis as it was suggested that titin might mediate thick filament assembly 

and its alignment to the Z-disc, thereby stabilising the sarcomeric protein organisation 

(Turnacioglu and others, 1997a; Turnacioglu and others, 1997b). Also, the involvement 

of non-muscular myosin for thick filament alignment during myofibrillogenesis was 

confirmed by using phosphorylation inhibition studies (Du and others, 2003).  

On the other hand the presence of premyofibrils is also open for discussion, as 

premyofibrils could not be confirmed in heart muscles in some publications (Ehler and 

others, 1999; Rudy and others, 2001; Tullio and others, 1997). Recent studies however 

showed that cardiac myofibrillogenesis also requires premyofibrils (Du and others, 

2003; Du and others, 2008), leading to the suggestion that myofibrillogenesis both in 

heart and skeletal muscles follow similar temporal patterns (Sanger and others, 2010). 

Mature myofibrils display a defined complex of proteins, which will eventually mediate 

muscle contraction: the sarcomere.  

 

1.4 The sarcomere 

 

The basic unit of the contractile apparatus is called a sarcomere. Sarcomeres are linked 

in an end-to-end fashion forming long tubes called myofibrils. One muscle fibre is made 

up of a variable number of parallel aligned myofibrils, which also align parallel to each 

other to generate one striated muscle (see figure 1.5; (Craig and Padron, 2004). 
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Figure 1.5: The striated muscle 

The sarcomere (d) is the basic unit  of st riated muscles.  Hundreds of sarcomeres make up 

myofibr ils (c) and parallel aligned myofibr ils are the subunits of one muscle  fibre (b). 

The st riated muscle also consist s of a bundle of hundreds to  thousands of muscle fibres 

(a). 

Figure taken from SPORTS’N SCIENCE (http://sportsnscience.utah.edu/95 -miles-per-

hour-performance-physio logy-of-pitchers/).   

 



27 

 

Skeletal and cardiac muscles are both striated muscles. These muscles have been termed 

striated after the striped pattern observed in images of skeletal and heart muscle fibres 

originating from alternating striations of the Actin and myosin filaments in the 

sarcomere. The Actin filament is also known as the thin filament, whilst the myosin 

filament was termed the thick filament (see figure 1.6).   

 

 

Figure 1.6: An electron microscopy image of a sarcomere 

The striat ions of the Act in filament  (light  grey within the I -band) and the myosin 

filament  (dark within in the A-band) can be observed in thin sect ions of a muscle fibre.  

Figure modified from (Agarkova and Perriard,  2005) 

Based on optical and electron microscope images of muscle fibres (see figure 1.6), parts 

of the sarcomeres have been identified and analyzed. One sarcomere stretches from one 

Z-disc to another Z-disc, whilst the area of the dark myosin filament is termed the A-

band (anisotropic in polarised light). In the middle of the sarcomere a further dark area 

has been termed the M-band, derived from the German word Mittelscheibe, which 

means the disc in the middle, or central disc. At the M-band myosin is associated to 

other sarcomeric proteins, for example the elastic titin filament (Houmeida and others, 

1995). The area, which contains only the Actin thin filament, is called the I-band 

(isotrophic in polarised light). 
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When sarcomeres were analysed, it was reported that Actin and myosin were the most 

abundant proteins in the sarcomere, making up around 70% of the myofibril (Hanson 

and Huxley, 1957; Huxley and Hanson, 1957).  

The thin filament consists not only of Actin; it also interacts with Nebulin, tropomyosin 

and troponin, whilst the thick filament consists of myosin and other associated proteins, 

such as MyBP-C and MyBP-H (Craig and Padron, 2004; Offer and others, 1973; 

Squire, 1997; Starr and Offer, 1983). Titin has been reported to associate with both, the 

thin and the thick filament (Sanger and Sanger, 2001).  

A sarcomere in the myocardium displays similar structure as a sarcomere in skeletal 

muscle fibres (see figure 1.7). 
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Figure 1.7: Sarcomeric structure in cardiac and skeletal muscle  

Both, cardiac muscle and skeletal muscle sarcomeres, display a similar sarcomeric structure. The Actin 

thin filament is linked to the Z-disc via α-Actinin and overlaps partially with the thick filament. Also in 

both sarcomeres, Nebulin is associated with the whole length of the Actin filament. Cardiac muscle 

exclusively expresses Nebulette, which binds to Actin, but only close to the Z-disc. 

Figure taken from (Pappas and others, 2011) 

 

However, assembly of sarcomeres in the heart has been described to be much quicker 

compared to skeletal muscle myofibrillogenesis (Ehler and others, 1999). During heart 

development in chick embryos the first proteins described to associate were titin and α-

Actinin during the formation of early Z-discs, followed by myosin and later Actin 

(Tokuyasu and Maher, 1987a; Tokuyasu and Maher, 1987b). It was furthermore 

reported that the cardiomyocytes aligned with other neighbouring cells very early 

during cardiogenesis potentially to establish a scaffold for the assembly of myofibrils 

(Shiraishi and others, 1993; Shiraishi and others, 1995; Tokuyasu, 1989). Further data 

analysing the assembly of chick heart myofibrils was obtained from triple-immuno-
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stained developing hearts. It was reported that myofibrils in chick hearts assembled 

without the intermediate stage of premyofibrils (Ehler and others, 1999); as described 

previously).  However, the presence of premyofibrils during heart development has 

been recently confirmed as well, as non-muscular myosin was detected during 

myofibrillogenesis in precardiac mesoderm explants and during avian heart 

development in situ (Du and others, 2003; Du and others, 2008). 

Each sarcomeric protein has a specific localisation and function as described in the 

following sections. 

 

1.5 The thin filament 

 

1.5.1 Actin 

 

Together with myosin, the Actin filament is the most abundant protein in the sarcomere 

and it is the main component of the thin filament (Pollard, 1990; Pollard and Cooper, 

2009). The thin filament is assembled as globular (G) Actin monomers self-associate to 

form filamentous Actin, or F-Actin (Pollard, 1990). Furthermore, two Actin polymer-

strands twist around each other forming a double helix (O'Brien and Dickens, 1983). 

Within the structure of the Actin monomer lie binding sites for the thick filament. One 

Actin monomer was described to consist of two major domains each comprising 2 

subdomains. The smaller of the two major domains comprises subdomains 1 and 2 and 

is located at the periphery of the thin filament, whilst subunits 3 and 4 built the core of 

the filament. Between both major domains is the central cleft, which contains a tightly 

bound nucleotide, in vivo Mg 
2+

, and either an ATP or an ADP molecule (Cooke, 1997). 

The cation is potentially involved in stabilising the structural organisation of the two 

major domains, whilst hydrolysis of ATP is needed for polymerization of the Actin 

filament (Kabsch and others, 1990; Kabsch and Vandekerckhove, 1992; Pollard, 1990). 

Only subdomain 1 in the Actin monomer was shown to associate with the myosin head 

during muscle contraction (Miller and others, 1995; Sutoh and others, 1991). 

The Actin fibres within the thin filament associate to various other sarcomeric proteins, 

such as Nebulin, tropomyosin, troponin and capping proteins (Craig and Padron, 2004).  



31 

 

 

1.5.2 Proteins of the Z-disc 

 

α-Actinin is the main part and the backbone of the Z-disc. However, various other 

proteins, such as Z-protein, Znin, FATZ, amorphin, myotilin, ZASP and myopalladin, 

as well as overlapping ends of Nebulin, titin and CapZ can be identified in the Z-disc. 

The intermediate filaments can also be associated to the Z-disc (Craig and Padron, 

2004). 

The major protein of the Z-disc as mentioned previously is α-Actinin. Its function is the 

connection and stabilisation of the Actin and the titin filament in adjacent sarcomeres 

(Vigoreaux, 1994). It was suggested that α-Actinin can itself form bridge-like structure 

cross-linking the thin filament of neighbouring sarcomeres, whilst for the binding of the 

titin filament a complex of α-Actinin together with Actin is needed (Luther, 1991; 

Young and others, 1998). 

Further compounds of the Z-disc amongst others are myopalladin, myopodin and 

myozenin. Myopalladin has been reported to connect Nebulin to α-Actinin and thereby 

associating it to the Z-disc (Bang and others, 2001), whilst myopodin is an actin-

bundling protein potentially involved in stabilising the Z-disc (Weins and others, 2001). 

Myozenin or FATZ has been shown to bind to α-Actinin, γ-filamin and telethonin and 

might cross-link these proteins with each other (Takada and others, 2001). It was also 

suggested that myozenin might be involved in mediating dimerization of Z-disc 

proteins.  

Most other proteins of the Z-disc are less well described, but a brief overview of various 

other Z-disc related proteins can be found in Craig and Padron (2004). 

 

 

 

 



32 

 

1.5.3 Nebulin 

 

Nebulin has been described to be a potential ruler for the thin filament (Labeit and 

others, 1991). It was reported that Nebulin interacts with Actin monomers along the 

whole length of the Actin filament and that the size of Nebulin correlates with the 

length of the Actin fibre in different muscle types (Kruger and others, 1991; Labeit and 

others, 1991; Labeit and Kolmerer, 1995a). Furthermore it was shown that Nebulin 

interacts with the thin filament capping proteins consistent with a potential role for 

Nebulin as a length specifier (McElhinny and others, 2001; Pappas and others, 2008). 

Nebulin has also been shown to be involved in muscle contraction (Bang and others, 

2009; Chandra and others, 2009) 

 

1.5.4 Tropomyosin/Troponin 

 

The thin filament is interacting with the troponin/tropomyosin complex as mentioned 

previously. This complex contains tropomyosin associated to one molecule of troponin 

C, troponin I and troponin T (Craig and Padron, 2004; Farah and Reinach, 1995; Squire, 

1997). Only troponin C can bind free Calcium ions, whilst troponin T connects troponin 

C and troponin I with tropomyosin. Troponin I associate with tropomyosin along the 

Actin thin filament in non-active muscle, partially covering myosin binding sites and 

thereby preventing Actin-myosin interactions (Bailey, 1948; Farah and Reinach, 1995; 

Gomes and others, 2002). In active muscle troponin I stays associated to tropomyosin 

along the Actin filament, although its localisation is slightly shifted as compared to in 

non-active muscles (Farah and Reinach, 1995). 

The troponin/tropomyosin complex regulates muscle contraction by responding to 

changes of cellular Ca 
2+

 concentrations  (see chapter 1.9;(Farah and Reinach, 1995). 
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1.5.5 Thin filament capping proteins 

 

A constant, stable Actin filament is necessary for the sarcomere, as muscle contraction 

is dictated by the ratio of overlapping thin filament to thick filament (Huxley, 1957; 

Huxley and Simmons, 1971). Capping proteins are preventing depolymerization and 

also additional polymerization above specific length in the thin filament (Cooper and 

Schafer, 2000; Fowler, 1996; Littlefield and Fowler, 1998). Cap Z, also known as β-

Actinin, interacts with Actin at its barbed end (at the Z-disc) (Casella and others, 1986; 

Fowler, 1996; Maruyama and others, 1990). Therefore, Cap Z prevents disassociation 

and re-association of the Actin filament. Furthermore it was shown that CapZ also 

interacts with the Z-disc protein α-Actinin thereby anchoring the thin filament to the Z-

disc (Papa and others, 1999). This link is established during myofibrillogenesis and also 

involves the specification of the polarity of the Actin filament (Schafer and others, 

1995).  

At the pointed ends the thin filament is capped by tropomodulins (Fowler and others, 

1993; Gregorio and others, 1995; Weber and others, 1994). Capping of the thin filament 

by tropomodulins has been described as being tight in striated muscle to prevent further 

polymerization and elongation of the thin filament (Fowler and others, 1993; Gregorio 

and Fowler, 1995; Mudry and others, 2003). Tropomodulin in association with 

tropomyosin prevents shortening of Actin fibres (Kostyukova and others, 2006; 

Kostyukova and others, 2005; Mudry and others, 2003). It was furthermore suggested 

that Nebulin might place tropomodulin at the end of growing pointed ends of the thin 

filament (McElhinny and others, 2001).  Recently it was shown that both capping 

proteins display a highly dynamic nature in cultured myocytes (Gregorio and others, 

1995; Littlefield and others, 2001). Although the capping proteins still restrict the length 

of the thin filament, a constant de-and repolymerisation of Actin monomers at both ends 

has been observed. 
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1.6 The thick filament 

 

1.6.1 Myosin 

 

Myosins belong to the family of ATP-dependent motor proteins and are usually 

associated with Actin (Sellers, 2000). Myosins in smooth and skeletal muscle have been 

described extensively and have been shown to play a key role in muscle contraction and 

force transmission (Cooke, 1997; Sellers, 2000), but myosins have also been described 

in eukaryotes, mammals and plants (Sellers, 2000). Based on differences and/ or 

similarities mainly in the motor domain, myosins have been organised into 15 classes 

(for a phylogenic tree and description of each class, see (Sellers, 2000). 

All known myosins so far have been described to interact with Actin, hydrolyze ATP 

and produce different types of movement including previously mentioned muscle 

contraction, but also trafficking along fibres and cell migration (Cooke, 1997; Lecuona 

and others, 2009; Rayment and others, 1993; Vicente-Manzanares and others, 2009). 

Myosins typically contain three functional subdomains: the motor domain, which 

comprises Actin-binding properties and a catalytic centre for ATP hydrolysis, a neck 

domain, which is associated with either myosin light chains or Calmodulin and the 

distal tail domain, which is involved in anchoring and positioning the myosin head or 

motor domain in the right orientation for its interaction with Actin (Sellers, 2000). 

Whilst the motor domain across different types of myosin have been reported to be 

relatively conserved, the neck and the tail domain can vary across species and even 

across myosin classes themselves (Sellers, 2000). The neck domain can contain a 

diverse number of Calmodulin/ light chain binding sites, whilst the tail domain can 

contain distinct additional functional domains (Cheney and Mooseker, 1992; Sellers, 

2000). Furthermore, many myosins can dimerize and therefore form two-headed 

molecules (Sellers, 2000). Dimerization takes place along the myosin tail comprising 

specific coiled-coil forming sequences. 

In striated muscles, myosin is a hexamer comprising two identical myosin heavy chains 

and two pairs of myosin light chains (Lowey and others, 1979; Lowey and others, 1969; 

Lowey and others, 1991). The C-terminus of the myosin heavy chains form a dimer 

along the tail region (Lowey and others, 1969), whilst the N-terminus of each heavy 
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chain separately forms a globular head (Rayment and others, 1993). The globular head 

contains the distinct ATP- and Actin-binding sites and structural changes in the myosin 

head mediated by ATP hydrolysis are a requirement for muscle contraction (Cooke, 

1997; Rayment and others, 1993). The role for myosin during muscle contraction is 

described in chapter 1.9. 

 

1.6.2 The proteins of the M-band 

 

Creatine kinase, M-protein and Myomesin make up the M-band. However, parts of the 

myosin filament, as well as the C-terminus of titin and a splicing isoform of myomesin, 

Skelemin can also be found in the M-band (Agarkova and others, 2000; Furst and 

others, 1999; Wallimann and Eppenberger, 1985). 

As proteins of the M-band are not a main focus of this project, I will not describe the M-

band any further. However, further information about Creatine kinase, Myomesin, M-

protein and Skelemin be found in (Agarkova and others, 2000; Furst and others, 1999; 

Grove and others, 1984; Kushmerick, 1998; Morimoto and Harrington, 1972; 

Obermann and others, 1996; Obermann and others, 1995; Price and Gomer, 1993; 

Steiner and others, 1999; Turner and others, 1973; Van Der Ven and others, 1996; 

Wallimann and others, 1977; Woodhead and Lowey, 1983).   

Based on obtained data for the proteins found in the M-band, it was reported that the 

main functions of the M-band involve stabilizing the thick filament between 

neighbouring sarcomeres, as well as restoring and buffering the ATP-levels within the 

myofibril (Agarkova and Perriard, 2005; Elliott and others, 1963; Kushmerick, 1998; 

Obermann and others, 1996; Wallimann and Eppenberger, 1985). 
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1.7 The intermediate filament 

 

The intermediate filaments can be observed in the periphery of the sarcomere and its 

main function is the establishment and maintenance of the structure of muscle fibres by 

transverse cross-linking of neighbouring myofibrils (Craig and Padron, 2004; Goldman 

and others, 2012). Intermediate filaments also connect myofibrils to the sarcolemma and 

surrounding nuclei (Herrmann and Aebi, 2000; Stromer, 1990; Wang and Ramirez-

Mitchell, 1983).  

Intermediate filaments have been reported to surround the myofibril around the Z-disc 

and also along the M-band by forming filamentous rings (Stromer, 1990; Wang and 

Ramirez-Mitchell, 1983). These rings have been shown to connect adjacent Z-disc- and 

M-band- rings of neighbouring myofibrils with each other (Stromer, 1990).  

Desmin is the main protein of the intermediate filament in both developing and adult 

muscles (Edstrom and others, 1980; Herrmann and Aebi, 2000; Paulin and Li, 2004). It 

has been shown to be linked to the Z-disc as well as to associate with Nebulin along the 

Actin filament (Bang and others, 2002). Furthermore Desmin forms cross-links between 

a sarcomere and the sarcolemma, mitochondria and nuclei in skeletal muscle fibres 

(Lazarides, 1982). It was therefore suggested that Desmin might play a crucial role in 

sarcomere alignment, sarcomere stabilisation, muscle contraction and force transmission 

(Balogh and others, 2005; Boriek and others, 2001; Paulin and Li, 2004). The 

generation of Desmin KO mice have further highlighted the function of Desmin in 

myofibril stabilisation, maintenance of myofibril integrity and myofibril regeneration 

(Li and others, 1996; Milner and others, 1996).   

Further proteins of the intermediate filaments are Vimentin, Synemin, Nestin and 

Paranemin. These proteins are not described any further in this section, as they are not 

relevant for this project. However, their functions are described in following 

publications: (Bellin and others, 1999; Bilak and others, 1998; Granger and others, 

1982; Hemken and others, 1997; Herrmann and Aebi, 2000; Lendahl and others, 1990; 

Ngai and others, 1985; Sax and others, 1989; Schweitzer and others, 2001).  

 



37 

 

1.8 The titin filament 

 

Titin is a huge muscle-specific protein, which can be between 3-4 MDa large. It is 

associated to the Z-disc, where it interacts with α-Actinin and elongates into the M-

band, where it binds to the M-band protein myomesin (Gautel, 1996; Gautel and others, 

1996; Labeit and Kolmerer, 1995b; Maruyama, 1976; Maruyama and others, 1976; 

Obermann and others, 1996; Obermann and others, 1995; Vinkemeier and others, 1993; 

Wang and others, 1979). After myosin and Actin, titin is the third most abundant protein 

is striated muscle (Fukuda and others, 2008). Analysing the structure and properties of 

titin in more detail, it was shown that titin can act as a molecular spring thereby 

sustaining elasticity in the sarcomere (Labeit and Kolmerer, 1995b; Linke and Granzier, 

1998). However, only the region of titin localised to the I-band is elastic (Labeit and 

Kolmerer, 1995b). This region consists of two segments of tandemly arranged 

immunoglobulin-like (Ig) domains, one close to the Z-disc the second one further distal, 

which are spatially separated by a PEVK amino acid sequence, rich in proline (P), 

glutamate (E), valine (V) and lysine (K) residues and a N2B element  (Labeit and 

Kolmerer, 1995b), see figure 1.8). All of the mentioned domains display spring-like 

functions and allow the protein to extend (Helmes and others, 1999; Labeit and 

Kolmerer, 1995b).  
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 Figure 1.8: The titin spring in the sarcomere 

Tit in funct ions as a spring localised in the I -band of the sarcomere. In heart  muscle three 

splicing isoforms for t it in have been reported. However,  all t it in iso forms share 

conserved st ructural domains in the extensible region, such as Ig segments and the PEVK 

domain.  

Figure taken from (LeWinter and Granzier ,  2010) 

 

Functions of the titin filament have been studied extensively in cardiomyocytes and also 

in skeletal myocytes. For cardiac titin three isoforms have been described, whilst 

skeletal titin exists in at least two isoforms (Fry and others, 1997; Granzier and Labeit, 

2002; LeWinter and Granzier, 2010) During relaxation the muscle is stretched and a 

passive force independent of actomyosin interaction is generated leading to the 

extension of the sarcomere (Fukuda and others, 2008). The titin Ig domain has been 

shown to respond first to the passive force by changing their alignment. If the muscle is 

stretched further, the PEVK domain can extend and furthermore the Ig domain is also 

able to unfold allowing further extension of the titin spring (Fukuda and others, 2005; 

Helmes and others, 1999).  
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Furthermore, the titin filament is also responsible for generating a restoring force 

pushing the Actin fibres away from the Z-disc, increasing the myosin/Actin overlapping 

area and re-establishing the original structure and length of the sarcomere (Helmes and 

others, 1996) 

More recently, a role for titin in myofibrillogenesis was also reported (Gregorio and 

others, 1999; Holtzer and others, 1997; Turnacioglu and others, 1997a; Turnacioglu and 

others, 1997b). 

 

1.9 Muscle contraction 

 

Muscle contraction is needed to generate force to mediate various processes inside the 

organism’s body. For example, muscle contraction in skeletal muscles mediates 

movement, while contraction of cardiac muscle is needed to provide a constant 

circulation of blood.  

Muscle contraction was first described as the sliding of the Actin and myosin filaments 

due to cross-bridges formed between the myosin from the A-band with specific binding 

sites in the actin filaments (Huxley, 1957). Since then the two-filament model has been 

reviewed and refined (Herzog and others, 2012). With the revelation of the structure of 

the myosin head bound to its attachment site in the Actin filament, a more detailed 

model for the formation of cross-bridges was described (Rayment and others, 1993). 

Not only did this model describe how the sliding of the two filaments was regulated, it 

also explained how ATP hydrolysis was involved in generating the energy for muscle 

contraction. 

Actomyosin complex formation and muscle contraction has been described to involve 

as 3-step process, which starts with the formation a collision complex between Actin 

and myosin, followed by a direct interaction of both (attached state), which then in turn 

is coupled to ATP hydrolysis, as myosin bound to ATP is inhibited from binding to 

Actin (Geeves and Conibear, 1995; McKillop and Geeves, 1993).  Following the 

formation of the attached state, muscle contraction takes place and subsequently both 

the Actin and myosin filament dissociate (rotated state) (Geeves, 1991; Geeves and 

Conibear, 1995) 
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Geeves and Conibear (1995) further reported that potentially two myosin heads are 

associated to one Actin binding site. However only one of these myosin heads is 

directly attached to the Actin filament, whilst the other stays detached.  

Based and summarised on published data, muscle contraction can be described as 

follows (Alberts and others, 1994): 

Muscle contraction is initiated by an action potential, which triggers the release of 

Calcium-ions from the sarcoplasmic reticulum. Free Ca 
2+

 is subsequently bound to 

troponin C, which leads to a rearrangement of the tropomyosin/troponin complex along 

the Actin filaments and opens up binding sites for myosin in the Actin filament (Farah 

and Reinach, 1995; Gordon and others, 2000; Perry, 2001; Squire, 1997). The myosin 

head can now bind to Actin and formation of the actomyosin complex leads to the 

activation of the ATPase. ATP is subsequently hydrolyzed within the catalytic site of 

the myosin head and a weak association of the myosin head and the Actin filament is 

initiated. Release of the inorganic phosphate (Pi), which was also reported to interact 

with the Actin polymer, leads to strengthening of the interaction between myosin and 

Actin. Furthermore, the ADP is released changing the conformation of the myosin head 

triggering a pulling action along the Actin fibres, called the power-stroke. The myosin 

head will stay interlocked with the Actin filament until a new ATP molecule is bound. 

Upon binding of ATP, the myosin head undergoes structural changes releasing it from 

its Actin binding site and allowing it to travel along the Actin fibres towards a new 

Actin binding site. Once the myosin head is close to a further Actin binding site, the 

ATP cycle starts again and ATP hydrolysis will eventually trigger a further power 

stroke (see figure 1.9).  
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Figure 1.9: The Actomyosin complex during muscle contraction 

A myosin head binds to  the Act in filament .  Upon release of Pi,  st ructural changes in the 

myosin head occurs leading to the establishment  of a strong Act in/myosin interact ion and 

force generat ion. The obtained force is  used upon ADP release to  mediate a power st roke 

init iat ing muscle contract ion.   

Figure taken from (Alberts and others, 1994) and based on (Rayment  and others, 1993) 
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1.10 Kelch 

 

Kelch was first identified in Drosophila melanogaster and based on its specific kelch-

repeats domain further Kelch-like and Kelch-related proteins have been found (Adams 

and others, 2000; Xue and Cooley, 1993) 

 

1.10.1 Kelch 

 

As mentioned previously, Kelch was first identified in Drosophila melanogaster 

(Schupbach and Wieschaus, 1991; Xue and Cooley, 1993). It was reported that 

drosophila females bearing a mutation in the kelch gene are sterile due to insufficient 

cytoplasm transport throughout oogenesis (Schupbach and Wieschaus, 1991; Xue and 

Cooley, 1993). Cytoplasm transport from nurse cells to the oocyte in drosophila takes 

place along intercellular bridges, also known as ring canals, and transport of cytoplasm 

is important for the oocyte as with the cytoplasm the oocyte receives mRNAs, proteins 

and organelles needed for its development (Mahajan-Miklos and Cooley, 1994). It was 

shown that ring canals in egg chambers of Kelch-mutant drosophila contained all 

necessary cytoskeletal protein except Kelch, but the proteins of specifically the inner 

rim of the ring canal, such as Actin and HTS, were disorganized (Robinson and others, 

1994; Tilney and others, 1996). It was reported that the Actin cytoskeleton was affected 

the most, as Actin-filament bundles were shown to grow into the lumen of the ring 

canal thereby partially blocking the lumen and preventing the influx of cytoplasm into 

the oocyte (Robinson and others, 1994; Tilney and others, 1996).  Kelch was named 

based on the shape of sterile eggs affected by Kelch-mutation as sterile oocytes 

displayed a cup-like egg shell structure (Kelch is a German word for a goblet or cup) 

(Xue and Cooley, 1993). The structure of Kelch was analysed further revealing an N-

terminal BTB-domain and six C-terminal Kelch repeats (Robinson and Cooley, 1997). 

Furthermore it was suggested that Kelch based on its structure and its mutation 

phenotype could organize the Actin filament of the ring canals by cross-linking Actin 

bundles. It was additionally reported that both the BTB domain and the Kelch-repeats 

were involved in binding to the Actin filament and that Kelch might function as a dimer 

being linked via its BTB-domains (Robinson and Cooley, 1997). Recently Robinson 
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and Cooley’s hypotheses were tested and confirmed by (Kelso and others, 2002). 

However, Kelso et al. (2002) also found a temporal correlation between the Arp2/3 

complex function in potentially de novo actin polymerization and Actin cross-linking 

properties by Kelch. But it is not clear yet, how this correlation is mediated.  

More recently a role for Kelch as part of a Cullin3-RING ubiquitin ligase complex was 

reported suggesting that Kelch might target ring canal proteins other than Actin for 

ubiquitinylation and subsequent protein degradation (Hudson and Cooley, 2010). 

 

1.11 The structural domains of Kelch 

 

Drosophila Kelch protein was shown to contain an N-terminal BTB domain and C-

terminal Kelch repeats (Robinson and Cooley, 1997). Since the discovery of Kelch, 41 

Kelch-like proteins have been identified in human beings displaying the same structural 

properties (http://www.genenames.org/genefamilies/KLHL). 

 

1.11.1 Structure and function of the BTB domain 

 

The BTB/POZ domain has first been identified in Drosophila melanogaster and was 

later described to be a conserved motif, which has also been found in bric-à-brac, 

tramtrack and broad complex transcription (BTB) regulators and various pox virus and 

Zinc-finger (POZ) proteins (Bardwell and Treisman, 1994; Robinson and Cooley, 1997; 

Xue and Cooley, 1993; Zollman and others, 1994). 

The core part of the BTB domain was termed the BTB fold and was shown to contain a 

95 amino acid cluster of 5 α-helix structures, which is capped by a short three-stranded 

β-sheet. Both clusters are linked by an additional hairpin-like motif and an extended 

region (Stogios and others, 2005). 

Interestingly though, although the tertiary structure of the BTB fold is very similar 

between all members of the BTB family, the amino acid sequences display little 

http://www.genenames.org/genefamilies/KLHL
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similarity (Stogios and others, 2005). It was reported that the flexibility in the primary 

sequence of the fold allows the BTB domain to exhibit a huge array of functions.  

BTB-domain containing proteins have been shown to be involved in transcriptional 

repression, cytoskeleton regulation, ion channel gating and most prominently in protein 

ubiquitinylation and degradation by binding associated proteins or substrates via the 

BTB-domain (Ahmad and others, 2003; Furukawa and others, 2003; Geyer and others, 

2003; Kang and others, 2004; Kobayashi and others, 2004; Krek, 2003; Minor and 

others, 2000; Pintard and others, 2004; Xu and others, 2003).  

However it was also suggested and proven for some BTB-proteins that, via its BTB-

domain, Kelch and other related proteins can form homodimers (Chen and others, 2002; 

Robinson and Cooley, 1997; Stogios and others, 2005; Zhang and others, 2005).  

 

1.11.2 Structure and function of the Kelch-repeats 

 

Kelch contains six Kelch repeats and it was shown that other proteins containing kelch-

repeats can have between 4 and 7 of these motifs (Bork and Doolittle, 1994; Robinson 

and Cooley, 1997).  

The Kelch motif contains between 44-46 amino acids and the sequence identity between 

individual kelch-repeats is again rather low (Bork and Doolittle, 1994). However, the 

primary structure has some highly conserved features. It was shown that the centre of a 

kelch-repeat domain comprises eight conserved residues; four hydrophobic amino acids 

followed by two glycine residues and two aromatic amino acids. Structural analysis of 

crystals of kelch motifs revealed that seven of described kelch-repeats collectively form 

a β-propeller, wherein each single kelch motif folded as a four-stranded β-sheet makes 

up on blade of the propeller (Ito and others, 1994; Li and others, 2004). The propeller 

structure is assembled around a central axis and is closed by an interaction between the 

first and the last blade of the propeller (Adams and others, 2000) (see figure 1.10). 
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Figure 1.10: The β-propeller of the kelch-repeats 

Β-propellers consist  of 7 kelch-repeats (β1-β7).    

(a) View from the top inside a β -propeller based on the crystal st ructure for the 

galactose oxidase from hypomyces rosellus.  The β -propeller  contains 7 kelch-

repeat blades  

(b)  Side view of the galactose oxidase β-propeller as seen in (a)  

(c) The ring of the galactose oxidase β -propeller is closed by an N-terminal β4 strand 

(orange)                                                                                                                                                       

Figure modified from (Adams and others, 2000) 

 

Many Kelch motif containing proteins have been characterised and their function varies 

just as their sequence similarities vary, including being part of a virus, transcriptional 

repression, for example Leucine-zipper-like transcriptional regulator 1 or muscle 

specific function, e.g. like sarcosin, which is involved in myofibrillogenesis (Adams and 

others, 2000; Goebel and others, 1990; Kurahashi and others, 1995; Paxton and others, 

2011; Taylor and others, 1998). A number of Kelch motif containing proteins have been 

shown to associate with the Actin cytoskeleton (Chen and others, 2002; Kim and others, 

1999; Robinson and Cooley, 1997; Sasagawa and others, 2002; Schmid and others, 
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1994; Soltysik-Espanola and others, 1999; Way and others, 1995), whilst others 

influence the cytoskeleton indirectly without associating to Actin (Adams and others, 

1998; von Bulow and others, 1995). 

 

1.12 The Kelch-like protein family 

 

Kelch-like (Klhl) proteins contain both described structural domains, i.e. the BTB/POZ 

domain and the Kelch-repeats. As more Kelch-like proteins were analysed it was shown 

that Klhl proteins are conserved in nearly all eukaryotes (Adams and others, 2000; 

Robinson and Cooley, 1997).  

 

1.12.1 The structure of Kelch-like proteins 

 

 

Like BTB-containing proteins, Kelch-like proteins have been shown to be involved in 

targeting various substrates for ubiquitinylation and subsequent proteasomal 

degradation as part of an E3 ubiquitin ligase complex (Angers and others, 2006; 

Furukawa and Xiong, 2005; Maerki and others, 2009; Salinas and others, 2006; 

Sambuughin and others, 2012; Zhang and others, 2004). Furthermore, several Klhl 

proteins bind to Actin via their Kelch-repeats (Aromolaran and others, 2012; Chen and 

others, 2002; Hara and others, 2004; Kim and others, 1999; Soltysik-Espanola and 

others, 1999). 

 

Based on structural analysis of both, the Kelch-repeats and BTB domain a model for 

dimerization and formation of a Cullin based E3- ubiquitin ligase complex was 

described (Stogios and others, 2005). Dimerization was reported to occur at the BTB 

domain, whilst the Kelch-repeats are thought to be involved in binding of the ligands, 

such as Cullin-3 (Stogios and others, 2007; Stogios and others, 2005). Between the N-

terminal BTB domain and the Kelchlike repeats at the C-term, a linker domain, the 

BACK-domain, can be found. The model described above suggests a role of the BACK 

domain in positioning bound substrate in the vicinity of the Cul3-ligase complex, but 
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the function of the BACK domain has so far not been proven due to the lack of a crystal 

structure of this domain (Stogios and others, 2005). Recently, Klhl proteins as part of an 

E3 ubiquitin ligase complex have been described in more detail and data obtained from 

functional and structural studies helped describing a better picture of the role of Kelch-

like proteins as part of proteasomal degradation processes (Canning and others, 2013) 

 

 

1.12.2 Ubiquitinylation as a code for protein degradation 

 

Ubiquitinylation is a process used in cells to encode information about the fate of 

proteins. In general, ubiquitinylation is a process involving three types of enzymes; the 

ubiquitin-activating enzymes (E1), the ubiquitin-conjugating enzymes (E2) and the 

ubiquitin ligase enzymes (E3) (Komander and Rape, 2012).  Ubiquitin is first activated 

by the E1 enzyme in an ATP-dependent manner, which involves the transfer of 

ubiquitin to an active site cysteine of an E2 enzyme. The E3 enzyme subsequently 

catalyzes the transfer of the activated ubiquitin from the E2 to a substrate lysine residue 

(Hershko and Ciechanover, 1998; Schulman and Harper, 2009). 

Initially the target protein will be mono-ubiquitinylated. Later lysine-residues in the 

attached ubiquitin-molecule will subsequently by ubiquitinylated as well (Komander 

and Rape, 2012). The generated ubiquitin-chains can vary in length and can be linear or 

branched. Within these ubiquitin chains, it was suggested, lies a code that determines 

the future of the ubiquitinylated protein, for example Lys11- linked ubiquitin-chains 

mediate proteasomal degradation, while Lys63 ubiquitinylation is linked with kinase 

activation and Met1-linked chains are involved in regulating NF-κB signalling (Deng 

and others, 2000; Jin and others, 2008; Rahighi and others, 2009). 

As mentioned before ubiquitin will eventually be ubiquitinylated itself in distinct 

pattern, e.g. in a linear or branched pattern. This is possible as ubiquitin contains 7 

lysine residues along it N-terminus, which all point into a different directions 

(Komander and Rape, 2012). Which type of ubiquitinylation is used on specific 

substrates is coordinated by the co-operation of E2 and E3 enzymes.  

The ubiquitin-code for proteasomal degradation has been studied in yeast and was 

shown to start with the mono-ubiquitinylation of Lys48 (Chau and others, 1989). This 
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was later shown to be the case in other eukaryotes as well (Li and others, 2007; Petroski 

and Deshaies, 2005b). It was later reported that mono-ubiquitinylation at Lys11 residues 

could also trigger a proteasomal response (Jin and others, 2008; Matsumoto and others, 

2010). Some E3 Ubiquitin ligase enzymes not only mediate ubiquitinylation, they also 

bind to the proteasome to link ubiquitinylation and proteasomal degradation of targeted 

proteins (Seeger and others, 2003; Verma and others, 2000).  

Members of the Kelch-like family belong to a group of proteins that are subunits of 

Cullin-really interesting new gene (RING) E3 ubiquitin ligase (CRL) complexes 

(Angers and others, 2006; Canning and others, 2013; Kigoshi and others, 2011; Lee and 

others, 2010; Maerki and others, 2009; Moghe and others, 2011; Nam and others, 2009; 

Ohta and others, 2013; Sumara and others, 2007). CRLs, depending on present subunits 

and their spatial arrangements, can modify various distinct proteins (Canning and 

others, 2013). CRLs furthermore contain a Cullin-subunit (Cul 1-5 or Cul7). Cullins 

have been reported to form a scaffold, which is involved in placing the substrate binding 

site and other catalytic centres in the right orientation for ubiquitinylation of the target 

protein (Petroski and Deshaies, 2005a; Zimmerman and others, 2010). Also the Cullin 

subunit has been reported to be able to bind to both the target protein and the RING 

protein, which itself can then associate with an E2 enzyme (Canning and others, 2013; 

Zimmerman and others, 2010). Furthermore Neddylation (NEDD8 in CRLs) of the 

carboxy terminus of the Cullin subunit is a requirement for ubiquitinylation as it 

mediates structural changes in the CRL complex allowing the E2 enzyme and the 

substrate to locate in close vicinity to each other (Duda and others, 2008; Saha and 

Deshaies, 2008). 

Kelch-like proteins and in general proteins containing a BTB-domain bind to Cullin3 as 

their CRL subunit (Pintard and others, 2004). Cullin3 based E3 ubiquitin ligase 

complex containing BTB-proteins differ distinctively from other known E3 enzymes as 

they can form dimers, which allows them to bind to two Cullin subunits and as they also 

usually contain a second substrate binding domain. Therefore the Klhl/ BTB-domain 

containing protein in the CRL can act both as a substrate recognition element and a 

substrate adaptor for E3 ubiquitin ligase complexes (Canning and others, 2013; Pintard 

and others, 2004). 
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1.12.3 Functions of Kelch-like proteins 

 

As mentioned previously, various functions for Kelch-like proteins have been described 

in vertebrates. A muscle-specific protein of the Kelch related protein family is Kelch-

related protein 1 (Krp1) or Sarcosin. Although not named a member of the Klhl protein 

family, Sarcosin too has the defined protein domains that characterise Kelch-like 

proteins, an N-terminal BTB domain and five C-terminal Kelch-repeats (Spence and 

others, 2000; Taylor and others, 1998). Sarcosin was reported to be expressed in 

skeletal muscle and at much lower levels in the cardiac muscles (Taylor and others, 

1998) and it was suggested that it might play a role in myofibrils as it was shown to 

interact with Nebulin and Nebulin-related anchoring protein (N-RAP) (Lu and others, 

2003; Spence and others, 2006). Expression studies in mouse muscles, which were 

carried out in embryonic and adult muscles revealed that Sarcosin is highly expressed 

between laterally fusing nascent myofibrils (du Puy and others, 2012). Furthermore 

studies in C2C12 cell culture showed that Sarcosin was expressed in low levels in 

myoblasts and was upregulated during later stages of muscle differentiation (du Puy and 

others, 2012). At around day 3 of C2C12 differentiation Sarcosin was shown to align to 

α-Actinin along primitive Z-discs. However although Sarcosin expression seemed to be 

linked to myofibrillogenesis, a silencing approach of Sarcosin during C2C12 

differentiation did not disturb C2C12 fusion and myofibrillogenesis (du Puy and others, 

2012). It was therefore thought that Sarcosin might be involved in mediating the correct 

function of sarcomeres, rather than its assembly. 

Kelch-like ECH associating protein 1 (Keap1) has been shown to control the expression 

of antioxidant genes by targeting the transcriptional factor Nrf2 for ubiquitinylation and 

subsequent degradation (Furukawa and Xiong, 2005). Further E3-Ubiquitin-ligase 

associated Klhl proteins include among others Klhl20, Klhl21 and Klhl9 and Klhl13. It 

has been described that Klhl20 binds to Death-associated protein kinase (DAPk), 

locating it close to a Cul3-E3-Ligation complex, which subsequently leads to the 

proteasome-dependent degradation of the DAPk (Lee and others, 2010). Functions for 

Kelch-like proteins have also been described in the regulation of cell division. 

Klhl21/Klhl22 could be shown to be involved in the completion of cytokinesis by 

mediating ubiquitinylation of Aurora B (Maerki and others, 2009). A similar role was 

described for Klhl9 and Klhl13 in the ubiquitinylation of Aurora A (Sumara and others, 
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2007). It has been observed that the Cul3-Klhl9/Klhl13-E3 and the Cul3-Klhl21/Klhl22-

Ubiquitin ligase complex are involved in aligning the chromosomes to the midline 

during anaphase (Maerki and others, 2009; Sumara and others, 2007). Recently Klhl12 

has been shown to be involved in the regulation of Wnt-β-catenin signalling by 

targeting dishevelled for ubiquitinylation (Angers and others, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Members of the Kelch-like protein family 

Various Klhl proteins have different  funct ions and few have been described to  associate 

to  the Act in cytoskeleton. The following list  gives an overview o f funct ion and 

localisat ion of published Kelch- like proteins.  

 
Legend: ‘x’ confirms an existing interaction with Actin or a reported function as an E3- Ubiquitin Ligase, 

KR-Kelch-repeats
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Gene 
alternative 

name 
Actin-binding 

Actin binding 

domain 

E3-

Ubiquitin-

Ligase 

function 

Function Literature 

     

 
  

Kelch-like 1 MRP2 x KR not reported 

Klhl1 is an actin-binding protein in neuronal 

tissues. Klhl1 modulates calcium channel 

activity/calcium influx. Klhl1 may also be 

involved in mediating neurite outgrowth of 

oligodendrocytes in a GSK3β-dependent manner. 

(Aromolaran and others, 

2010; Aromolaran and 

others, 2012) 

Kelch-like 2 Mayven x KR x 

Klhl2 is an actin-binding protein involved in 

regulating outgrowth in oligodendrocytes. It also 

has been shown to target neuronal pentraxin for 

ubiquitinylation. 

(Tseng and Bixby, 2011; 

Williams and others, 

2005) 

Kelch-like 3 
 

not reported 
 

x 

Klhl3 in a Cul3-Klhl3 E3 ligase complex has been 

shown to regulate blood pressure by interacting 

with / and ubiquitinylating of WNK isoforms. 

(Louis-Dit-Picard and 

others, 2012; Ohta and 

others, 2013) 

Kelch-like 4 
 

not reported 
 

not reported 

Klhl4 mutation can cause X-linked cleft palate 

(CPX), a rare non-syndromic form of orofacial 

clefting. 

(Braybrook and others, 

2001; Cheroki and others, 

2008) 

Kelch-like 5 
 

x not reported not reported 

Klhl5 might participate in cytoskeletal 

reorganization as a part of platelet activation.  

Klhl5 expression is regulated by miR-495. 

(Nagalla and others, 2011) 

Kelch-like 6 
 

not reported 
 

not reported 

A mutation in Klhl6 causes defects in B-lineage 

cells and might therefore play a role in the 

immune system by mediating BCR signal 

transduction. 

(Kroll and others, 2005) 

Kelch-like 7 
 

not reported 
 

x 
Mutations Klhl7 cause autosomal-dominant 

retinitis pigmentosa. 

(Friedman and others, 

2009; Kigoshi and others, 

2011) 
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Kelch-like 8 
 

not reported 
 

x 
Klhl8 is involved in ubiquitinylation of rapsyn and 

GLR-1 receptors. 

(Nam and others, 2009; 

Schaefer and Rongo, 

2006) 

Kelch-like 9 
 

not reported 
 

x 

Klhl9 mutation leads to slow progressing distal 

myopathies.  Furthermore it was reported that 

Klhl9 is important for completion of cytokinesis 

by regulating Aurora B dynamics. 

(Cirak and others, 2010; 

Sumara and others, 2007) 

Kelch-like 10 
 

not reported 
 

not reported 
Mutations in Klhl10 are linked to male infertility 

(process not completely understood). 

(Kaplan and others, 2010; 

Qiu and others, 2009) 

Kelch-like 11 
 

not reported 
 

not reported 
Klhl11 is downregulated in human colorectal 

cancer. 

(Cekanova and others, 

2008) 

Kelch-like 12 
 

not reported 
 

x 

Klhl12 targets dishevelled for ubiquitinylation 

(thereby negatively regulating Wnt-signalling) and 

has also been shown to interact with/ target the 

dopamine D4 receptor and SEC31 for 

ubiquitinylation. 

(Angers and others, 2006; 

Jin and others, 2012; 

Rondou and others, 2011) 

Kelch-like 13 
 

not reported 
 

x 

Klhl9 and Klhl13 are both part of a Cul3-

Ubiquitin ligase complex which is required 

for the chromosome alignment during metaphase 

and completion of cytokinesis. The Cul3-

Ubiquitin ligase complex removes components of 

the chromosomal passenger complex, such as 

Aurora B from mitotic chromosomes thereby 

allowing their accumulation on the central spindle 

during anaphase. Furthermore Aurora B is bound 

directly by Klhl9/Klhk13. 

(Sumara and others, 2007) 

Kelch-like 14 Printor not reported 
 

not reported Klhl14 interacts with torsinA in the brain. 

(Giles and others, 2009) 
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Kelch-like 15 
 

not reported 
 

x 

Klhl15 targets B’β, a subunit of the Protein 

phosphatase 2A, for ubiquitinylation and 

proteasomal degradation. 

(Oberg and others, 2012) 

Kelch-like 16 Gigaxonin not reported 
 

x 

Mutations in Klhl16 lead to neurodegenerative 

disorders with alterations in the neurofilament 

network. It was furthermore shown that Klhl16 

targets Tubulin Folding Cofactor B for 

ubiquitinylation and degradation. 

(Bomont and others, 2000; 

Ganay and others, 2011 

; Wang and others, 2005b) 

Kelch-like 17 Actinfilin x KR x 

Klhl17 targets GluR6 kainate receptor subunits for 

ubiquitinylation and degradation. It was further 

suggested that Klhl16 regulates the stability of the 

actin cytoskeleton in neurons. 

(Chen and Li, 2005; 

Salinas and others, 2006) 

Kelch-like 18 
 

not reported 
 

x 

Klhl18 is required for the timely entry into mitosis 

by potentially ubiquitylating and activating 

Aurora-A. 

(Moghe and others, 2011) 

Kelch-like 19 

KEAP 1,  

Inhibitor of 

Nrf2 (INrf2) 

not reported 
 

x 

Klhl19 represses Nrf2 activation Nrf2 regulates 

expression of genes of the antioxidant-response 

element (ARE), such as phase II detoxifying and 

oxidative stress enzymes. 

(Tkachev and others, 

2011; Villeneuve and 

others, 2010) 

Kelch-like 20 KLEIP x KR x 
Klhl20 negatively regulates Death-associated 

protein kinase (DAPK). 

(Hara and others, 2004; 

Lee and others, 2010) 

Kelch-like 21 
 

not reported 
 

x 

The Cul3-Klhl21 E3-ubiquitin ligase targets 

aurora B for ubiquitinylation and is required for 

cytokinesis by regulating the localisation of the 

chromosomal passenger complex to the 

microtubular midzone during anaphase. 

(Maerki and others, 2009) 

Kelch-like 22 
 

not reported 
 

x 

The Cul3- Klhl22 E3-ubiquitin ligase targets 

aurora B for ubiquitinylation and is required for 

cytokinesis by regulating the localisation of the 

chromosomal passenger complex to the 

microtubular midzone during anaphase. 

(Maerki and others, 2009) 
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Kelch-like 23 
 

not reported 
 

not reported 
Klhl23 might be involved in autosomal dominant 

cone-rod dystrophy. 
(Manes and others, 2011) 

Kelch-like 24 DRE1, KRIP6 not reported 
 

not reported 

Klhl24 regulates kainate receptors by directly 

binding to its subunit GluR6 and by inhibiting 

modulation of the kainate receptor by PICK1. 

(Laezza and others, 2007; 

Laezza and others, 2008) 

Kelch-like 25 

Ectoderm-

neural cortex 

protein 2 
     

Kelch-like 26 
 

not reported 
 

not reported Klhl26 might be regulated by P53. 
(Simeonova and others, 

2012) 

Kelch-like 27 

IPP, 

intracisternal 

A particle-

promoted 

polypeptide 

x KR not reported 
Klhl27 is activated by calphoglin, a mediator of 

Ca
2+ 

mammalian cell activation. 
(Kim and others, 1999) 

Kelch-like 28 btbd5 
     

Kelch-like 29 
      

Kelch-like 30 
      

Kelch-like 31 
    

Klhl31 might play vital roles during muscle and 

heart development. It might also be an inhibitor of 

canonical Wnt –signalling. 

(Abou-Elhamd; Abou-

Elhamd and others, 2009; 

Yu and others, 2008) 

Kelch-like 32 
      

Kelch-like 33 
      

Kelch-like 34 
      

Kelch-like 35 
 

not reported 
 

not reported 
Klhl35 is methylated in hepatocellular carcinoma 

and in renal cell carcinoma. 

(Morris and others, 2011; 

Shitani and others, 2012) 

Kelch-like 36       

Kelch-like 37 ENC1, Klhl35      
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Kelch-like 38 
      

Kelch-like 39 

influenza 

virus NS1A 

binding 

protein, 

IVNS1ABP, 

NS1-BP 

 
 

  
not reported 

Klhl39 interacts with alpha-enolase/MBP-1 and 

might be involved in c-Myc gene transcriptional 

control. Klhl39 also binds to the NS1 protein of 

the influenza A virus. 

(Perconti and others, 

2007; Wolff and others, 

1998) 

Kelch-like 40 
sarcosynapsin, 

kbtbd5      

Kelch-like 41 
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In summary, recent findings suggested that Kelch-like proteins can be involved in 

mediating cell signalling, as well as various cellular processes and cytoskeletal 

changes. In some of these functions, Kelch-like proteins have been shown to 

regulate associated protein levels, especially by targeting specific substrates for 

ubiquitin-dependent degradation.  

 

1.13 Klhl31 

 

Klhl 31 was first described in zebrafish showing high expression in cardiac and 

skeletal tissues (Wu and Gong, 2004). It was also observed that Klhl31 is also 

expressed in human skeletal muscles and the heart. Further studies on human 

Klhl31 revealed that Klhl31 encodes for a 70 kDa protein containing 634 amino 

acids (Yu and others, 2008). Klhl31 was shown to contain an N-terminal BTB-

domain and six kelch-like repeats at the carboxy-terminus (see figure 1.11). 

 

 

 

Figure 1.11: Schematic representation of the human Klhl31 protein 

Klhl31 contains two conserved structural domains, the BTB domain at the N-terminus and six 

kelch-like repeats at the C-terminus, linked by the BACK domain. 

 

Expression studies showed that Klhl31 was highly expressed in human cardiac 

and skeletal muscle tissues. Localisation studies in Cos-7 cells and mouse 

cardiomyocytes revealed a cytoplasmic and nuclear localisation for Klhl31 (Yu 
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and others, 2008). Furthermore it was reported that Klhl31 could act as 

transcriptional repressors for TRE and SRE-mediated transcriptional activation 

with the BTB-domain being the main domain involved. In addition, Klhl31 was 

also able to decrease MAPK/JNK-signalling (Yu and others, 2008).  

 

Data obtained in our lab further analysed a role for Klhl31 during muscle 

development (Abou-Elhamd and others, 2009). Expression studies in chick 

embryos showed that Klhl31 is first detected at Hamburger-Hamilton (HH) stage 

8 (Hamburger and Hamilton, 1992) in the mesoderm of the anterior intestinal 

portal (figure 6.3;  a). Cardiac progenitors express Klhl31 from HH stage 9 

onwards and the gene is expressed throughout heart development. Klhl31 was also 

shown to be expressed in the myotome and later in development in all skeletal 

muscles tissues, including muscles of limbs (see figure 1.12).  
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Figure 1.12: expression pattern of Klhl31in chick embryos  compared 

to the expression of MyoD 

Whole mount in-situ hybridisation of chick embryos for Klhl31 and MyoD and related 

cryosections revealing the expression pattern of Klhl31 during myogenesis.  

 (C, D; E-H) Klhl31 was observed first in the dorsomedial somite at around HH 11, temporally 

delayed compared to the expression of MyoD.  

http://www.sciencedirect.com/science/article/pii/S0925477309014257
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(I-K; M-P) At HH 13 Klhl31 was still seen to be expressed in the somites, still lacking behind 

MyoD expression. 

(Q-U; V-Z) During later stages of Klhl31 expression (HH 19+), Klhl31 expression overlapped 

with MyoD expression. 

Figure taken from (Abou-Elhamd and others, 2009) 

 

Tissue ablation and rescue experiments showed that in the myotome Klhl31 is 

activated by combined signalling of sonic hedgehog together with either Wnt-1 or 

Wnt-6 (Abou-Elhamd and others, 2009). Furthermore, ectopic expression of Myf 

5, but not of myogenin, was able to induce Klhl31 expression in the neural tube 

(Abou-Elhamd). Comparing the temporal expression of Klhl31 with known 

myogenic markers, such as MyoD, it was shown that Klhl31 expression was 

detected 6 hours after MyoD expression (see figure 1.12). This data, together with 

the suggestion that Klhl31 expression might be activated by early MRFs, lead to 

the hypothesis that Klhl31 expression might be important for myogenesis and 

myogenic differentiation in skeletal muscles of the somites.  

Further data obtained in our lab indicated a role of Klhl31 in the negative 

regulation of Wnt signalling. Klhl31 was able to rescue an ectopic axis induced by 

injection of Wnt3a or β-catenin RNA into the ventral side of  a Xenopus laevis 

embryo (Abou-Elhamd and Garcia-Morales). Furthermore, by using a luciferase 

assay, it was shown that Klhl31 can inhibit the expression of a reporter plasmid 

(TOPFLASH) responsive to Wnt3a and β-catenin (see figure 1.13; (Abou-

Elhamd) 
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Figure 1.13: Klhl31 can inhibit β-Catenin induced luciferase activity 

Klhl31 full length protein and Klhl31 lacking the C-terminal kelch-repeats were able to inhibit β-

catenin stimulated luciferase expression by around 20 %, whilst a BTB deletion mutant of Klhl31 

could only inhibit luciferase activity by around 10%.  

Figure kindly provided by Dr. Alaa Abou-Elhamd 

Both, the luciferase assay and the axis-duplication assay highlighted the functions 

of the distinct structural domains of Klhl31 (see figure 1.13; (Abou-Elhamd). 

Only the deletion of the BTB domain reduced the ability of Klhl31 to antagonize 

canonical Wnt-signalling, revealing that interaction between a target substrate and 

Klhl31 is potentially mediated by the BTB domain. However, it is still not clear if 

Klhl31 targets β-catenin directly or a potential substrate downstream of β-catenin 

in the Wnt-signalling pathway.  
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1.14 Aims of this project: Investigating the role of Klhl31 during 

myogenesis 

 

Klhl31 expression during development is highly restricted in heart and skeletal 

muscles. In developing somites it has been shown to be activated by signalling 

factors, including Wnt signals, which also activate early MRFs and regulate 

cardiac fate (Abou-Elhamd and others, 2009; Tzahor, 2007). However, a specific 

function for Klhl31 during muscle development has not been described so far. 

We were interested in analysing the function of Klhl31 during skeletal muscle 

development on a cellular level.  

Firstly, we wanted to analyse Klhl31 expression and localisation during 

differentiation of myogenic cells. We chose C2C12 cells, which have the potential 

to form multi-nucleated myotubes and which are a good tool to study 

myofibrillogenesis. 

A further aim was to investigate potential interaction partners for Klhl31 during 

myogenesis and also in adult musculature. To achieve this, we used a Yeast-2-

Hybrid screen and GST-pull down assays. 

Selected hits from the screens were analysed further with the aim to verify 

interactions with Klhl31. 

As myogenesis and myofibrillogenesis also take place in cardiac muscle, we 

analysed Klhl31 expression in more detail during chick cardiogenesis. 

Overall the work contributes novel insights into the possible role of Klhl31 during 

striated muscle development. 
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2. Material and Methods 

 

2.1 Materials 

 

2.1.1 Chemicals, Biochemicals and Services  

 

Chemicals used in the laboratory were purchased from Sigma-Aldrich (Sigma-

Aldrich Company Ltd, Dorset, UK), Fisher Scientific (Fisher Scientific UK Ltd, 

Loughborough, UK), Roche (Roche Diagnostics Ltd, Burgess Hill, UK), BDH 

(VWR International Ltd., Lutterworth, UK) and Melford (Melford Laboratories 

Ltd., Ipswich, UK).  

Kits for Mini- , Midi-, or Hi-speed purification of DNA were obtained from 

Qiagen (Qiagen Ltd, Crawley, UK).  

Restriction enzymes and buffers were purchased from either Roche (Roche 

Diagnostics Ltd, Burgess Hill, UK) or NEB (New England Biolabs (UK) Ltd, 

Wilbury Way Hitchin, UK). 

Fertilized eggs were ordered from Henry Stewart & Co. Ltd (Louth, Lincolnshire, 

UK). 

Designed primers were obtained from Operon (Eurofins MWG Operon, 

Ebersberg, Germany). 

Sepharose beads for GST-pull down were purchased from GE Healthcare Life 

Sciences Amersham (GE Healthcare Life Sciences Amersham, Place little 

Chalfont, Buckinghamshire, UK). 

Sequencing was carried out by DNA Sequencing & Services (Dundee, Scotland, 

UK) and the Yeast-2-Hybrid Screen was carried out by Hybrigenics (Hybrigenics 

Services, Paris, France). 
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2.1.2 Frequently used Solutions 

 

APS (Ammonium persulfate) 

 10% w/v APS 

BCIP (5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) 

 50 mg/ ml BCIP in DMF 

Coomassie Blue Staining Solution 

10% v/v glacial acetic acid, 50% v/v Methanol, 0.25% w/v Coomassie 

brilliant Blue R-250 

DAPI (4', 6-diamidino-2-phenylindole) 

 5 mg/ml in PBS 

Destain Solution for SDS-PAGE Gels (Coomassie-Blue staining) 

 7.5% v/v glacial acetic acid, 25 % v/v Methanol 

DIG (Digioxigenin) labelled NTP mixture 

10 mM ATP, 10 mM GTP, 10 mM CTP, 6.5 mM UTP, 3.5 mM DIG-11-

UTP 

DNA Loading Buffer 6x 

50% v/v Glycerol, 0.1% w/v Bromophenol-Blue, 0.1% w/v Xylene Cyanol 

dNTP mix 10 mM in sigma water 

 10 mM ATP, 10 mM TTP, 10 mM GTP, 10 mM CTP 

Fixing solution for SDS-PAGE Gels (prior to Coomassie-Blue staining) 

 10% v/v glacial acetic acid, 50 % v/v Methanol 

Gelatine 

 0.3% w/v Gelatine (autoclaved) 

 

http://en.wikipedia.org/wiki/Ammonium_persulfate
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Hybridisation Mix 

50% v/v Formamide, 1.3 x SSC, 5mM EDTA pH8, 50μg/ml Yeast RNA, 

0.2% v/v Tween-20, 0.5% w/v CHAPS, 100μg/ml Heparin 

IPTG (Isopropyl β-D-1-thiogalactopyranoside) 

 200 mg/ml  

LB (Luria-Bertani) -Agar 

 1.5% w/v bacto-agar in LB-Medium (autoclaved) 

LB (Luria-Bertani) Medium 

1% w/v bacto-tryptone, 1.5% w/v bacto-yeast extract, 1% w/v NaCl, pH 

7.5 (autoclaved) 

MABT 

100mM maleic acid, 150mM NaCl, 0.1% v/v Tween-20, pH 7.5 

(autoclaved) 

MABT-BBR 

 MABT, 2% w/v Boehringer Blocking Reagent (BBR) 

MgCl2 (Magnesium Chloride) 

 2 M MgCl2 

Mild Lysis Buffer (for GST Pull-down assays) 

50mM Tris pH 7.5, 150mM NaCl, 5mM EDTA pH7.5, 1% v/v NP-40, 

10% v/v Glycerol, 1mM Na3VO4, 1mM PMSF, add 1 Complete Mini, 

EDTA-free Protease inhibitor cocktail tablet (Roche Diagnostics Ltd, 

Burgess Hill, UK) per 10ml of buffer 

Mild stripping buffer pH 2.2    

0.2M Glycine, 0.1% w/v SDS, 1% v/v Tween-20  
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Mild washing buffer (for GST Pull-down assays) 

50mM Tris pH 7.5, 150mM NaCl, 5mM EDTA pH7.5, 0.1% v/v NP-40, 

10% v/v Glycerol, 1mM Na3VO4, 1mM PMSF 

NaF (Sodium Fluoride) 

 100 mM NaF 

NaCl (Sodium Chloride) 

 5M NaCl (autoclaved) 

NaOAc (Sodium Acetate)  

 3M CH3COONa pH 5.2 

Na3VO4 (Sodium Vanadate) 

 100 mM Na3VO4 

NBT (nitro-blue tetrazolium chloride) 

 75 mg/ ml in 70% v/v DMF 

NTMT 

 100mM NaCl, 100mM Tris pH 9.5, 50mM MgCl2, 1% v/v Tween-20 

PBS (Phosphate Buffered Saline)  

0.14M NaCl, 2.5mM KCl, 8mM Na2HPO4, 1.5mM KH2PO4  pH 7.3 

(autoclaved) 

PFA (Paraformaldehyde) 

 4% w/v PFA in PBS 

PMSF (Phenylmethylsulfonyl-fluoride) 

 200 mM in Ethanol 

Ponceau-Red 

 0.1% w/v Ponceau S, 5% v/v acetic acid 



66 

 

 

Proteinase K 

 10 μg/ ml in PTW 

Protein Loading Buffer 5x 

25% v/v Glycerol, 200mM Tris, 5% w/v SDS, 0.1% w/v Bromophenol-

Blue 

Protein Lysis (RIPA) Buffer 

50mM Tris pH 7.5, 150mM NaCl, 25mM EDTA, 1% v/v NP-40, 0.2% 

w/v SDS, 1mM DTT, add 1 Complete Mini EDTA-free Protease inhibitor 

cocktail tablet (Roche Diagnostics Ltd, Burgess Hill, UK) per 10ml of 

buffer 

Protein Lysis Buffer for Klhl31 

50 mM Tris pH 7.5, 150 mM NaCl, 5 mM EDTA pH 8, 1% v/v NP-40, 

0.2% w/v SDS, 1 mM Na3VO4 (sodium vanadate), 1 mM NaF (sodium 

fluoride), add 1 Complete Mini EDTA-free Protease inhibitor cocktail 

tablet (Roche Diagnostics Ltd, Burgess Hill, UK) per 10ml of buffer and 

store at – 20 °C for up to 12 weeks. On the time of usage, defrost buffer, 

remove an aliquot with the volume needed and add PMSF to 1mM final 

concentration. Use Buffer immediately. 

PTW  

PBS, 0.1 % v/v Tween-20 

SOC (Super Optimal Growth with Catabolic repression) Medium 

2% w/v bacto-tryptone, 0.5% w/v bacto-yeast extract, 10mM NaCl, 

2.5mM KCl, 10mM MgCl2, 20mM Glucose (autoclaved) 

SSC-Buffer 20x pH 5.0 

3M NaCl, 0.3M Na Citrate (Na3C6H5O7 x 2H2O), adjust pH to 5.0 with 

citric acid (autoclaved) 
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STE Buffer 

 0.1M NaCl, 10mM Tris pH 8.0, 1mM EDTA pH 8.0 

TAE Buffer 

20 mM Tris pH 8.0, 1mM EDTA, 1 % v/v acetic acid 

TBS (Tris buffered Saline) 10x  

 1.4 M NaCl, 0.2M Tris pH 7.5, 0.02M KCl (autoclaved) 

TBST 

 1x TBS, 0.1% v/v Tween-20 

TG (Tris –Glycine) 10x 

 0.25M Tris, 2M Glycine (autoclaved) 

Wash Buffer (for GST-pull down) 

50 mM Tris pH 7.5, 150 mM NaCl, 5 mM EDTA pH 8, 0.1% v/v NP-40, 

0.2% w/v SDS, 1 mM Na3VO4 (sodium vanadate), 1 mM NaF (sodium 

fluoride), add 1 Complete Mini EDTA-free Protease inhibitor cocktail 

tablet (Roche Diagnostics Ltd, Burgess Hill, UK) per 10ml of buffer and 

store at – 20 °C for up to 12 weeks. On the time of usage, defrost buffer, 

remove an aliquot with the volume needed and add PMSF to 1mM final 

concentration. Use Buffer immediately. 

Washing solution (for in situ hybridisation) 

 50% v/v Formamide, 1x SSC, 0.1% v/v Tween-20 

Western blot colour development solution 1 

0.1M Tris pH 8.8, 2.5mM Luminol, 0.4mM p-Coumaric acid 

Western blot colour development solution 2 

0.1M Tris pH 8.5, 0.02% v/v H2O2 

Western blot lower gel buffer  

 1.5M Tris pH8.8 
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Western blot Running Buffer 

 1x TG, 0.1% w/v SDS  

Western Blot Transfer Buffer 

 1xTG, 20% v/v Methanol 

Western blot upper gel buffer 

 0.6M Tris pH6.8 

X-Gal (5-bromo-4-chloro-indolyl-β-D-galactopyranoside) 

 20 mg/ml in DMF 
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2.2 Methods 

 

2.2.1 Transformation of competent DH5α- cells 

 

100 μl of chemically competent E.coli DH5α cells (Sambrook, 1989) were 

aliquoted into a 1.5 ml eppendorf tube and kept on ice. Up to 0.5μg of plasmid 

DNA were added to the cells and the mixture was incubated on ice for further 30 

minutes. The heat shock treatment was carried out for 5 minutes at 37 °C followed 

by five minutes of further incubation on ice. After addition of 200μl of SOC-

medium, the mixture was shaken at approx. 200 rpm at 37 °C for 40 minutes. 

100μl of the cell suspension were plated out on LB-Agar plates containing the 

selected antibiotic, to which the plasmid confers resistance. For blue-white 

selections, if the plasmid contained a β-galactosidase gene, the cell suspension 

was plated out on LB-agar plates coated with 40 μl Xgal and 4 μl IPTG. Plates 

were incubated overnight at 37 °C and later stored at 4 °C. 

 

2.2.2 Mini- Midi- and Hispeed DNA purification protocols 

 

DNA-preparations using either Mini- , Midi- or Hispeed purification kits were 

carried out as described in the manufacturer’s manual delivered with each kit by 

Qiagen (Qiagen Ltd, Crawley, UK). After purification of the DNA, the DNA was 

diluted in water (Sigma-Aldrich Company Ltd, Dorset, UK) and stored at -20 °C. 

The concentration of the DNA was measured based on the absorption of the 

solution at 260 nm using a Nanodrop spectrophotometer (Thermo Scientific, 

Wilmington, USA). Purity was determined by calculating the 260/280 and the 

260/230 ratios. 
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2.2.3 Restriction digests of DNA  

 

Restriction enzymes were selected based on the restriction sites of the DNA 

plasmid. The reaction was either carried out for 3 hours at 37 °C or overnight at 

room temperature, depending on the efficiency of the restriction enzyme.  

For digest reactions using two different restriction enzymes, the plasmid was cut 

with both restriction enzymes simultaneously when compatibility of both enzymes 

in the same restriction buffer was expected. If the enzymes were not guaranteed to 

work in the same buffer, the enzymes would be used separately in a two-step 

process. After the first enzymatic digest, the DNA was purified using the 

QIAquick PCR purification kit (Qiagen Ltd, Crawley, UK) or by Ethanol 

precipitation (see section 2.2.4). Following the purification the linearised DNA 

was then digested with the second restriction enzyme.  

Digested DNA was analysed on a 1% Agarose gel (as described in section 2.2.7). 

 

2.2.4 Ethanol precipitation 

 

DNA or RNA, which are kept in aqueous solutions, can be purified or 

concentrated by using the process of Ethanol precipitation. Up to 50μl DNA 

solution in an eppendorf tube was mixed with 50μl of sodium acetate solution, pH 

5.2.  RNA was mixed with 50 μl of 5M sodium chloride solution. 500μl of 100 % 

ethanol was added and the liquids were briefly mixed by inverting the eppendorf 

tube. Precipitation was allowed to occur for one hour or overnight at -20 °C. The 

obtained DNA or RNA pellet was recovered by spinning down at 13000 rpm for 

10 – 15 minutes at 4 °C and subsequently washed with 70 % ethanol. The pellet 

was again recovered by centrifugation as described before, the ethanol supernatant 

completely removed and the pellet dried at room temperature until it became 

clear. The DNA or RNA pellet were then re-dissolved in water (Sigma-Aldrich 

Company Ltd, Dorset, UK) and stored at -20 °C. 
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2.2.5 Preparation of an antisense RNA probe for in-situ hybridisation 

 

A probe is a RNA molecule, which is labelled with a fluorophore, a radioactive 

element or an organic group that can be detected with an antibody. An antisense 

probe contains a nucleotide sequence, which is complimentary to the mRNA of a 

specific gene. Therefore an antisense RNA probe can be used to visualize the 

transcripts of a gene in cells or embryonic tissue. For the preparation of a RNA 

probe the plasmid (for a full list of RNA probes, see table 2.1), which contains the 

DNA fragment on which the probe was based, was linearised first by restriction 

digest as described in section 2.2.3. The linearised DNA was subsequently 

purified by using a Phenol/Chloroform extraction (see section 2.2.6). The purified 

and linearised DNA was then used for the synthesis of the RNA probe. The 

antisense probe was made by using an NTP mixture containing digioxigenin 

(DIG) -labelled UTP.  

The reaction mixture for the synthesis of the probe was prepared as described 

below: 

5  μl  sigma water 

2  μl  (DIG-labelled UTP) NTP mix (100 mM) 

4  μl  Transcription buffer (5x) 

2  μl  DTT (100 mM) 

1  μl  RNAse inhibitors 

4  μl  DNA construct/ template 

2  μl  transcription enzyme 

20μl  total volume 

 

The reaction was incubated for two hours at 37 °C. Success of probe synthesis 

was analysed on a 1% Agarose gel (as explained in section 2.2.7). 
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After the synthesis, the RNA probe needed to be cleansed from residual NTPs and 

enzymes. Therefore 30μl of Diethylpyrocarbonate (DEPC) treated H2O was added 

to the RNA probe synthesis sample and the mixture was placed into a freshly 

prepared illustra ProbeQuant G-50 Micro Column (GE Healthcare, Little 

Chalfont, UK). The transcribed RNA probe was recovered and purified by 

centrifugation at 3000 rpm for two minutes at room temperature. The obtained 

50μl of solution were mixed with 50μl of formamide to prevent degradation of the 

RNA probe. The diluted probe was then stored at -20 °C or mixed with 

hybridisation mix (5μl of probe in 1 ml of hybridisation buffer), when used for an 

in-situ hybridisation. 

Table 2.1: List of RNA-probes 

The table gives details about the plasmid backbone, the restriction site and the transcription 

enzyme of various RNA antisense probes 

antisense 

RNA probe 
vector 

Restriction 

enzyme for 

linearization 

Transcriptional 

promoter 
source 

Klhl31 pGEM-T NcoI Sp6 

(Abou-Elhamd 

and others, 

2009) 

Nkx2.5 
Bluescript 

II SK- 
HindIII T3 

(Schultheiss 

and others, 

1995) 

Pitx2 

no 

information 

available 

BamHI T7 
(Campione and 

others, 1999) 

vMHC pGEM 4Z NdE7 T7 
(Bisaha and 

Bader, 1991) 

Islet1 

no 

information 

available 

XbaI T7 
gift from Frank 

Schubert 

cHex1 

no 

information 

available 

EcoRI Sp6 
gift from Frank 

Schubert 
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2.2.6 Phenol/Chloroform Extraction 

 

To purify an aqueous DNA or RNA solution the process of Phenol/Chloroform 

extraction can be used, as it achieves high purity for short nucleotide sequences. A 

specified volume of DNA solution is mixed with the same volume of phenol. Both 

solutions were mixed by vortexing and separated by centrifugation at 13000 rpm 

at 4 °C for 5 minutes. The DNA or RNA should now be in the top layer, the 

aqueous phase, which is removed from the phenol mixture and placed into a fresh 

eppendorf tube. After adding the same volume of Chloroform: Isoamylalcohol 

mixture (24:1) and mixing of both phases, the layers were again separated by 

centrifugation as described before. Again, the top aqueous phase was removed 

and DNA purified from the phase by using the ethanol precipitation as described 

in section 2.2.4. 

 

2.2.7 Agarose gel electrophoresis 

 

To prepare a 0.8 – 1% Agarose gel, 0.4 – 0.5 g of Agarose powder was dissolved 

in 50 ml of TAE-buffer. To achieve complete solubilisation, the mixture was 

heated until boiling using a microwave. The dissolved agarose solution was 

cooled down and Ethidium bromide (Sigma-Aldrich Company Ltd, Dorset, UK) 

was added before pouring the solution into the gel tank. Once the gel was settled, 

100 ml of TAE-buffer were poured on top of the gel into the gel tank. DNA 

samples were prepared by mixing a specified volume of DNA with 1/6 of the total 

volume of DNA loading buffer. 6 μl of the sample were applied to the gel and the 

gel was run at 65 V for approximately 45 minutes. Obtained DNA bands were 

analysed using a trans-illuminator of the ChemiDoc™ XRS+ System (Life 

Science, Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) 
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2.2.8 Culturing and harvesting of chick embryos 

 

Fertilized eggs were stored after arrival at 16 °C.  The eggs were then slowly 

warmed up to room temperature and subsequently incubated at 37 °C using a 

humidified incubator to grow to desired stages as described by Hamburger and 

Hamilton (Hamburger and Hamilton, 1992). Embryos were harvested by opening 

the egg shell with blunt forceps or scissors, cutting the embryo out of the vitelline 

membrane and washing in DEPC treated PBS. Subsequently the embryos were 

fixed in 4 % PFA for five to ten minutes. Following the fixation, the extra-

embryonic membranes were dissected using a fine needle and fine forceps. 

Harvesting and dissecting the embryos was carried out on a Zeiss SV 11 

dissecting microscope (Carl Zeiss Microscopy Ltd, Cambridge, UK). Embryos 

were subsequently dehydrated by passing through a methanol series (25%, 50%, 

75% and 100% methanol in PBS). Harvested embryos were stored at -20 °C in 

100% methanol. 

 

2.2.9 Whole mount In Situ Hybridisation (WISH) 

 

 Rehydration of chick embryos 

Chick embryos which were stored in 100% methanol were rehydrated by using a 

methanol series (100%, 75%, 50% and 25% and 0% methanol in PBS). Embryos 

were then placed into 6-well dishes and washed twice in PTW.  

 Treatment with Proteinase K 

Subsequently the embryos were treated with 10 μg/ ml proteinase K according to 

their HH stages (Hamburger and Hamilton, 1992) as described in table 2.2. 
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Table 2.2: Proteinase K treatment of chick embryos 

Proteinase K treatment is dependent of the age of the chick embryos. 

Chick embryos HH stages Time of treatment 

6-12 10 minutes 

12-20 15 minutes 

21-25 20 minutes 

 

 Post-fixing and pre-treatment for Hybridisation 

Following the proteinase K treatment, the embryos were carefully rinsed with 

PTW and post-fixed with PFA containing additional glutaraldehyde to 0.1% for 

20 minutes at room temperature. The PFA was removed and embryos washed 

twice in PTW, before incubated in 1:1 (v/v) PTW/hybridisation mix for about 10-

15 minutes or until embryos have settled down in the bottom of the well. The 

same process was repeated once more, but now the embryos were incubated in 

hybridisation buffer only. Once the embryos settled down in the bottom of the 

well, the hybridisation mix was replaced with a fresh aliquot of hybridisation 

solution which had previously been preheated to 65 °C. The chick embryos were 

then incubated in hybridisation mix at for a minimum of one hour at 65 °C.  

 Preparation of the RNA probe and Hybridisation 

In the meantime the antisense RNA probe diluted in hybridisation solution was 

also preheated to 65 °C. Once the chick embryos had been incubated in the warm 

hybridisation mixture, the hybridisation buffer was removed and the embryos 

were incubated in the pre-warmed hybridisation / RNA probe solution overnight 

at 65 °C. The following morning the RNA probe in hybridisation buffer was 

recovered from the embryos and stored at -20 °C. The embryos were rinsed twice 

in to 65 °C pre-heated hybridisation mixture and washed with a fresh aliquot of 

pre-warmed hybridisation buffer for 10 minutes, before being washed twice with 

pre-heated washing solution for 30 minutes at 65 °C. Following the described 

washing steps, the chick embryos are incubated for 10 minutes at 65 °C in pre-

heated washing solution/MABT (1:1 v/v).  
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 Blocking and antibody incubation 

All following steps were carried out at room temperature. Firstly, the chick 

embryos were rinsed three times in MABT, followed by two washes at each 30 

minutes in MABT. The embryos were subsequently blocked in MABT-BBR for a 

minimum of one hour, before being incubated with MABT-BBR containing 10% 

heat-treated goat serum for between one or two hours. After removing the 

blocking solution, the chick embryos are incubated overnight at 4 °C with an anti-

DIG antibody (Roche Diagnostics Ltd, Burgess Hill, UK) diluted 1:2000 in 

MABT-BBR-goat serum buffer. The anti-DIG antibody is conjugated to an 

alkaline phosphatase. The next morning the antibody was removed and the 

embryos rinsed three times with MABT at room temperature. After six washes in 

MABT at room temperature, each wash lasting approximately one hour, the 

embryos were incubated overnight in fresh MABT.  

 Colour reaction, post-fixing and storage 

The MABT was removed the following morning and the embryos washed twice 

for 10 minutes in NTMT at room temperature. For the colour reaction the chick 

embryos were incubated in the dark with NTMT containing additional 9 μl NBT 

and 7 μl BCIP per 1 ml of NTMT at room temperature. NBT and BCIP are 

substrates for the alkaline phosphatase and when reacted with are displaying a 

blue precipitate. Therefore, if a gene is transcribed into mRNA and the RNA 

probe can bind to the mRNA, expression can be seen as a dark blue staining in 

specific embryonic tissues. The time of colour development or also known as the 

time of incubation in the substrates is depending on the strength of a specific 

probe and can vary from 10 minutes to several days. If the colour was developed 

to desired strength the colour reaction was stopped by removing the substrates and 

washing in 5X TBST. Should the colour has not been developing to the desired 

extent, the embryos were washed overnight at 4 °C in TBST. The next day the 

colour reaction was then repeated as described before. Once the blue staining was 

strong enough and the colour reaction had been stopped, the embryos were post-

fixed overnight at room temperature in PFA containing 0.1% Glutaraldehyde, 

washed three times with PTW and stored in PTW at 4 °C until processed further. 
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2.2.10 Processing chick embryos for imaging 

 

Chick embryos harvested from eggs or obtained from in-situ hybridisation can 

reveal staining either from contamination with egg yolk or in older embryos from 

blood residues. Blood stains could be removed from the embryos by washing the 

chick embryos at room temperature in PTW containing 0.2 % v/v H2O2. Further 

staining and clearance of the embryos could be achieved by incubating the 

embryos in a gradient of glycerol (25%, 50%, 75% and 100% glycerol in PTW). 

Embryos can be stored in 100% glycerol at 4 °C. Images of whole embryos were 

taken on a Zeiss SV11 dissecting microscope with a micropublisher 3.5 camera 

using the associated acquisition software. Images were exported into Adobe 

Photoshop (Adobe Systems Europe Ltd, Maidenhead, UK) for labelling and 

formatting. 

 

2.2.11 Sectioning of chick embryos 

 

To prepare embryos for cryosectioning the embryos that were stored in glycerol 

after WISH were firstly passed through a gradient of Glycerol (75%, 50%, 25% 

and 0% Glycerol in PTW) until diluted in PTW. To remove all residual Glycerol 

embryos were then washed with fresh PTW three times for 5 minutes at room 

temperature. Subsequently the embryos were mounted in OCT (a frozen section 

embedding medium, Agar Scientific, Stansted, UK) and placed into plastic 

mounting capsules (VWR International Ltd, Lutterworth, UK). The embryos were 

incubated in OCT overnight at 4 °C. The following day, the OCT saturated 

embryos were adjusted in the capsules to lie with their anterior side towards the 

bottom of the capsules. The embryos were immediately frozen in a dry ice/ 

isopropanol mixture to prevent further movement. Frozen specimens were stored 

at -20 °C until further usage. Cryosectioning was carried out using a Leica CM 

1850 Cryostat (Leica Microsystems (UK) Ltd, Milton Keynes, UK). Embryos 

were sectioned at 20 μm and the obtained sections were collected on TESPA or 

Poly-L-Lysine coated slides (prepared in our laboratory). Slides were dried 

overnight at 37 °C and subsequently washed twice in pre-warmed PBS. Pre-
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warmed Hydromount (AGTC Bioproducts t/a National Diagnostics UK, Hessle, 

UK) was gently pipetted on top of the sections and a coverslip was placed unto 

the slide to cover the sections on the slide. Mounted sections can be stored at 

room temperatures. Images of the sections were taken at a widefield upright 

microscope (Carl Zeiss Microscopy Ltd, Cambridge, UK) equipped with a 

monochrome CCD camera using AxioVision software (Carl Zeiss Microscopy 

Ltd, Cambridge, UK). Images were exported into Adobe Photoshop (Adobe 

Systems Europe Ltd, Maidenhead, UK) for labelling and formatting purposes. 

 

2.2.12 Extracting RNA from cell tissue and chick embryos 

 

Mammalian cells were grown to about 80% confluency, washed with PBS and 

then trypsinised. Detached Cells were resuspended in 500 μl PBS and pipetted 

into a 1.5 ml Eppendorf-tube. The cell suspension was kept on ice. Cells were 

spun down at 4°C and 20000 rpm, the supernatant removed and the cell pellet 

further processed for RNA extraction. RNA was either extracted using the 

RNeasy® Mini Kit (Qiagen Ltd, Crawley, UK) or by following the TRIZOL® 

Reagent manufacturer’s instructions (Invitrogen, Life Technologies Ltd, Paisley, 

UK). 

For RNA extraction from chick embryos, the embryos were harvested as 

described in section 2.2.8. Embryos were placed into a 1.5 ml eppendorf tube and 

manually homogenized in RTL-buffer containing 143 mM β- Mercaptoethanol. 

RNA was obtained by using the RNeasy® Mini Kit as described in the 

manufacturer’s instructions (Qiagen Ltd, Crawley, UK). Obtained RNA was 

diluted in sigma water (Sigma-Aldrich Company Ltd, Dorset, UK) and stored at -

20 °C. 

The quality and concentration of the purified RNA was measured by using the 

RNA Nanodrop device (Thermo Scientific, Wilmington, USA).  
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2.2.13 Transcription of RNA into complementary DNA (cDNA) 

 

RNA was transcribed into cDNA using the Moloney Murine Leukaemia Virus 

(MoMuLV) reverse transcriptase and MMLV-RT Buffer (Thermo Fisher 

Scientific UK Ltd, Loughborough, UK). Firstly, extracted RNA was denatured at 

70°C for 15 minutes and the M-MLV-RT Buffer was warmed up to 37 °C to 

dissolve any occurring precipitation. 

For the transcription reaction between 1 – 2 μg of total RNA has been used. 

A standard mixture for one sample contained: 

9.9   μl Sigma H2O 

  6    μl M-MLV-RT Buffer (5x) 

  1    μl dNTP mixture (10 mM) 

1 μl MoMuLV reverse transcriptase 

1    μl DTT (100 mM) 

  1    μl random Hexamer mixture (200 ng/ μl) 

0.1 μl RNAsin 

10    μl RNA extract (1-2 μg) 

30    μl total volume 

 

Transcription into cDNA was carried out at 42 °C for 1 hour. Synthesised cDNA 

was stored at – 20 °C. 

The quality of obtained cDNA was analysed by PCR as described in the following 

section (2.2.14). 
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2.2.14 Polymerase chain reaction (PCR) for controlling the quality of cDNA  

 

To control the quality of cDNA, a PCR against housekeeping genes (see list in 

table 2.3) was performed using the Bioline Bio-Mix Red (Bioline, London, UK). 

The PCR was carried out by using a DNA Engine Dyad Peltier Thermal Cycler 

(Bio-Rad Laboratories Ltd, Hempstead, UK). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: List of primers designed for PCR 

Following list contains the sequence information of primers used in PCR processes, either for 

cloning, expression analysis or quality control. 
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Primer Sequence product size 
restriction 

site 
Source 

chick 

GAPDH 
Forward  5’ AGTCATCCCTGAGCTGAATG 3’ 330 bp / 

Munsterberg and Lassar, 

1995 

  Reverse 3’ ACCATCAAGTCCACAACACG 5’   /   

Mouse β-

Actin 
Forward  5’ GAAATCGTGCGTGACATTAAGGAG 3’ 500 bp / Given by Dr. Niels Haan 

  Reverse 3’ ATACTCCTGCTTGCTGATCCACAT 5’   / 
 obtained from MWG 

Biotech AG 

Chick β-

Actin 
Forward  5’ CCAGCTGGGAGGAGCCGGT 3’ 300 bp / 

 Dr. Katarzyna 

Goljanek-Whysall 

  Reverse 3’ CTGGGGAACACAGCCCGCTT 5’   /   

mouse 

Klhl31 FL 

for 

expression 

analysis 

Forward 5' AAGGCAACAGCCCAGAAAT 3' 1177 bp / Constanze Ochmann 

  Reverse 3' ACTTCTTCTCGCCCTCGTTC 5'   / 
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human 

Klhl31 for 

expression 

analysis 

Forward 5' AAAGCAGCAGCCCAGAAAT 3' 1177 bp / Constanze Ochmann  

  Reverse 3' ACTTCTTCTCGCCCTCGTTC 5'   / 
 

human 

Klhl31 FL 

for GST-pull 

down                                                      

(pGEX-5X-

1) 

Forward 5' GAATTCATGGCACCCAAAAAGAAGATT 3' 1900 bp EcoRI Constanze Ochmann  

  Reverse 3' CTCGAGTCAGATACTGACTGGCACAGAAG 5'   XhoI and Dr. Timothy Grocott 

internal for 

sequencing 
Reverse 3' AAATACTCACTGCATGAAGCCAT 5' / /   

chick Klhl31 

for pEGFP-

C1 

constructs                                     

FL / ΔBTB 

Forward 5' TCCGGAATGGCACCTAAGAAGAAGAAC 3' 
1900 bp /            

1400 bp 
BspEI Constanze Ochmann  

  
Reverse 3' 

GAATTCTCAAGCGTAATCTGGAACATCGTATGGGTAAATACTGACTGGTACAGAAG 5' 
  EcoRI 

 

ΔKR 
Reverse 3' 

GAATTCTCAAGCGTAATCTGGAACATCGTATGGGTATCTGAATCCTCCACGAATCC 5' 
900 bp EcoRI 
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chick Klhl31 

for pEGFP-

N1/ DsRed-

N1 

constructs 

FL / ΔBTB 

Forward 5' CTCGAGATGGCACCTAAGAAGAAGAAC 3' 
1900 bp /                          

1400 bp 
XhoI Constanze Ochmann  

  Reverse 3' GAATTCCAATACTGACTGGTACAGAAGA 5'   EcoRI 
 

ΔKR Reverse 3' GAATTCCTCTGAATCCTCCACGAATCCT 5' 900 bp EcoRI   

Nebulin 

Variation 2 

(HA tag) 

Forward 5' ATGCGGCCGCATGGACACAGTCAGTGATGTAAA 3' 500 bp Not1 Constanze Ochmann  

  
Reverse 3' 

ATGAATTCTCAAGCGTAATCTGGAACATCGTATGGGTATTTATAAAGGATATCG 5' 
  EcoRI 

 

Nebulin 

Variation 3 

(HA tag) 

Forward 5' ATGCGGCCGCATGGATGCCCTAGACATTGTCTA 3' 600 bp Not1 Constanze Ochmann  

  
Reverse 3' 

ATGAATTCTCAAGCGTAATCTGGAACATCGTATGGGTATTTATAAAGGATATCG 5' 
  EcoRI 
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The reaction mixture for the PCR was prepared as described below: 

10    μl Bio-Mix Red 2x (Bioline, London, UK) 

  0.5 μl forward primer 

  0.5 μl reverse primer 

  3    μl template DNA (diluted 1:1000) 

  6    μl sigma water 

20    μl total volume 

 

The PCR reaction was carried out using the PCR program “PCR housekeeping gene” with 

following settings: 

1.   5 minutes 94 °C 

2.   1 minute 94 °C  

3.   1 minute 50 °C 

4.   1 minute 72 °C 

5.   5 minutes 72 °C 

Following the Polymerase Chain reaction the samples were run on a 0.8 – 1% Agarose gel to 

analyse the obtained PCR products as described in section 2.2.7. 

 

2.2.15 Polymerase chain reaction (PCR) for analysing the expression of Klhl31  

 

The expression of Klhl31 was detected by PCR. The samples were prepared in Bioline Bio-

Mix Red (Bioline, London, UK) as described in section 2.2.14 and the PCR was carried out 

by using a DNA Engine Dyad Peltier Thermal Cycler (Bio-Rad Laboratories Ltd, Hempstead, 

UK). 

Repeated for 30 circles 
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The settings for the polymerase chain reaction were saved as the program “Kelch PCR” and 

contained following steps:  

1.   60 seconds 95 °C 

2.   30 seconds 95 °C  

3.   30 seconds 61 °C 

4.   40 seconds 72 °C 

5.   5 minutes 72 °C 

The samples were analysed as described before on a 1% Agarose Gel (section 2.2.7).  

 

2.2.16 Polymerase chain reaction (PCR) to amplify DNA for Cloning 

 

Polymerase chain reactions to amplify the sequences for Klhl31- full length, Klhl31-ΔBTB 

and Klhl31-ΔKR were carried out by using a DNA Engine Dyad Peltier Thermal Cycler 

(Bio-Rad Laboratories Ltd, Hempstead, UK). The Klhl31 Full length sequence as well as the 

Klhl31-ΔKR sequence have been amplified from chick complementary DNA (cDNA) HH 

stage 10 (Hamburger and Hamilton, 1992). The Klhl31-ΔBTB sequence was amplified from 

the pCaβ-IRES-GFP-Klhl31- ΔBTB plasmid (created by Oliver Cooper and Alaa Abou-

Elhamd).  

For the cloning of GST-Klhl31 construct, a human Klhl31 clone (IMAGE clone 9021264) 

was obtained from Source BioScience Life Sciences (Source BioScience UK Limited, 

Nottingham, UK). The fragments of Nebulin Variation 2 and Nebulin Variation 3 have been 

amplified from the plasmids sent from Hybrigenics (Hybrigenics Services, Paris, France). 

Sequence and plasmid information for Nebulin Isoform 1 and Isoform 2 can be found in the 

appendix.  

For a complete list of primers see table 2.3 in sub-chapter 2.2.14. 

The PCR was carried out by using the high fidelity polymerase Phusion (New England 

Biolabs, Herts, UK). 

 

 

Repeated for 30 circles 
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The reaction mixture for one sample was prepared as described below: 

 

        5  μl  5x Phusion buffer (New England Biolabs, Herts, UK) 

    0.5 μl   dNTPs (100 mM) 

        1  μl  forward primer (10 nM) 

        1  μl  reverse primer (10 nM) 

    1.3 μl  DNA template (diluted 1:1000) 

   0.75  μl  DMSO  

  14.5 μl  sigma water 

              0.25 μl  Phusion (New England Biolabs, Herts, UK) enzyme 

    0.5 μl  Taq-Polymerase 

     25 μl  total volume 

The polymerase chain reaction was carried out using the PCR program “Gradient Phusion” 

designed with the following settings: 

1. 60 seconds  95 °C 

2. 30 seconds  95 °C  

3. 30 seconds  gradient of 50 - 65 °C 

4. 40 seconds  72 °C 

5. 5 minutes  72 °C 

 

To elongate the PCR product with a Poly-Adenine-Tag, 1μl of taq-polymerase was added to 

each sample.  The mixture was then incubated for further 15 minutes at 72 °C. 

PCR products were analysed using a 1% Agarose gel as described in section 2.2.7. 

 

Repeated for 30 circles 
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2.2.17 Purification of DNA fragments out of an agarose gel 

 

DNA bands in the agarose gel were visualised under UV light using a trans-illuminator whilst 

wearing suitable face protection. DNA bands displayed the desired sequence length were 

excised from the gel using a clean razor blade and placed in a 1.5 ml Eppendorf tube. The 

DNA was extracted from the agarose gel as described in the manufacturer instructions for the 

use of the QIAEX
®
 II gel extraction kit (Qiagen Ltd, Crawley, UK) and stored diluted in 

water at -20 °C. 

 

2.2.18 Ligation of the PCR products in pGEM-T easy 

 

The pGEM-T easy Vector contains a single 3’ thymidine-residue at both strands to ligate 

PCR products with overhanging adenines into the pGEM-T vector. Ligation of DNA 

fragments into the pGEM-T vector was carried out using below described ligation mix. 

0.5 μl  pGEM-T vector (25 ng)  (Promega UK Ltd, Southampton, UK) 

5    μl 2 x ligation buffer  (Promega UK Ltd, Southampton, UK) 

1    μl  T4 Ligase   (Promega UK Ltd, Southampton, UK) 

DNA insert was added to the vector in a ratio vector : DNA of 1 : 3, using up to 3.5μl of 

DNA insert, making the total volume of each ligation to 10μl. Sigma water was added to the 

pGEM-T ligation mixture as a negative control for the ligation. 

The ligation sample was incubated at room temperature for 3 hours or at 16° C overnight. 

Immediately after the ligation process, the obtained pGEM-T constructs were transformed 

into DH5α cells as described in section 2.2.1 and plated out on carbenicillin containing LB-

agar plates. The following day several clones were picked from the plate, grown up in 5 ml 

LB medium with additional carbenicillin and the DNA extracted from the cells using a 

Qiagen Mini prep approach as described in section 2.2.2. The presence of the desired insert 

was firstly analysed by restriction digest (as described in section 2.2.3) using the enzyme 

EcoRI, as the multiple cloning site of the pGEM-T easy vector is flanked on both sides with 

the recognition sequence for EcoRI. The digested DNA was run on a 1% Agarose Gel as 
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described in section 2.2.7 and positive clones were sent for sequencing to verify the exact 

sequence of the inserted DNA fragment.  

 

2.2.19 Cloning of DNA inserts from pGEM-T into expression vectors 

 

To subclone DNA inserts into the desired overexpression vector, the DNA insert were cut out 

of the pGEM-T vectors using the restriction enzymes as stated in table 2.4 in this section. 

Digested DNA was analysed on a 1% agarose gel and obtained fragments were purified from 

the agarose gel as described in chapter 2.2.16. Purified DNA was stored at –20 °C until 

further usage. The chosen vectors were linearised as described in chapter 2.2.3 using the 

same restriction sides as used for the DNA insert which is to be cloned into the vector 

backbone. 

A list of all cloned overexpression constructs including information about the plasmid size, 

the protein size and the used restriction enzymes can be found below: 

 

 

 

 

 

 

Table 2.4: List of cloned overexpression constructs  

The following list gives detailed information about the cloned overexpression constructs. It contains data about 

the plasmids used including plasmid sizes inclusive of the DNA fragments, the protein sizes of the cloned 

Fusion proteins and the restriction sides, which were used to cut and paste the DNA from the pGEM-T vector 

into the chosen vector. All protein sizes marked with an asterisk (*) are predicted protein sizes.



89 

 

Overexpression construct use 
plasmid 

size 
protein size restriction site 

 

 pGEX-5X-1 Klhl31 FL prey for GST-pull down experiments 6700 bp 95 kDa EcoRI N-term 
 

        XhoI C-term 
 

 pEGFP-C1 Klhl31 FL  
overexpression constructs / GFP Fusion 

proteins 
6800 bp 96 kDa BspEI N-term      

 

 pEGFP-C1 Klhl31 dBTB GFP at N-terminus of Klhl31 6300 bp  ~ 77 kDa * EcoRI C-term 
 

pEGFP-C1 Klhl31 ΔKR   5800 bp ~ 59 kDa * 
for all 

constructs  

 pEGFP-N1/                                                     

DsRed-N1 Klhl31 FL  

overexpression constructs / GFP or DSRED 

Fusion proteins 
6800 bp 96 kDa  XhoI N-term 

 

 pEGFP-N1 /                                                             

DsRed-N1 Klhl31 ΔBTB 
GFP or DSRED at C-terminus of Klhl31 6300 bp  ~ 77 kDa * EcoRI C-term 

 

pEGFP-N1/ DsRed-N1 Klhl31ΔKR   5800 bp ~ 59 kDa * 
for all 

constructs  

pCaβ Nebulin Variation 2 IRES GFP  (HA tag) bait for GST pull down >4900 bp ~ 18 kDa * Not1 N-term 
 

        EcoRI C-term 
 

pCaβ Nebulin Variation 3 IRES GFP (HA tag) bait for GST pull down > 5000 bp ~ 23 kDa * Not1 N-term 
 

        EcoRI C-term 
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To control the linearization of the overexpression vector and the excision of the DNA 

fragment, both samples were analysed using a 1% agarose gel (section 2.2.7). If successful, 

both the DNA insert from the pGEM-T vector, as well as the linearised overexpression vector 

backbone were purified from the agarose gel as explained in 2.2.17.  

The ligation of the insert into the chosen overexpression vector was carried out using T4 

DNA ligase. Variations of vector to insert ratios (from 1:1, up to 10:1 insert : vector) were 

tested to find the most successful ligation settings. These ratios were calculated based on the 

concentration of the vector used. 

A calculation would be set up as follows: 

ng (insert) = ng (vector) x kb (size of insert) x ratio 

     kb (size of vector) 

For example; Using 200 ng vector with a size of 3.5 kb, the DNA fragment size being 0.6 kb. 

The ratio insert : vector would be 3:1. 

y ng = 200 ng x 0.6 kb x 3  

             3.5 kb 

        = 102.9 ng DNA insert 

The calculated ng for insert and vector DNA would then be converted into a volume that can 

be used in a T4 Ligation sample preparation. 

A mixture for one sample is usually made up as described below: 

1 μl of 10x Ligation Buffer (Roche Diagnostics Ltd, Burgess Hill, UK) 

1      μl of T4 DNA Ligase      (Roche Diagnostics Ltd, Burgess Hill, UK) 

x      μl of vector DNA      

y      μl of DNA insert 

z      μl of sigma water      

10    μl of total volume 
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The ligation reaction was incubated overnight at 16 °C and the next morning transformed into 

competent DH5α cells, as described for the ligation into pGEM-T in 2.2.18. 

The clones were checked for presence of the insert by using a colony PCR approach using the 

primers that were designed for the cloning process (for primer information see table 2.3, 

section 2.2.14).  

The colony PCR was set up using the Bioline Mix, picking one bacterial colony from the LB-

agar plate with a pipette tip. A fresh LB-agar plate was scratched with the pipette tip to 

inoculate it with the bacterium and the residues of the bacterial colony were then resuspended 

in the PCR mixture.  

A reaction mixture for one sample was prepared as described below: 

10    μl Bio-Mix Red 2x (Bioline, London, UK) 

  0.5 μl forward primer 

  0.5 μl reverse primer 

  9    μl sigma water 

20    μl total volume 

The program “Colony” was used to run the PCR reaction using the DNA Engine Dyad Peltier 

Thermal Cycler (Bio-Rad Laboratories Ltd, Hempstead, UK).  

The PCR program contained the following settings: 

1. 4 minutes  98 °C 

2. 30 seconds  98 °C  

3. 30 seconds  55 °C 

4. 60 seconds  72 °C 

5. 5 minutes  72 °C 

Once the presence of the right sized insert was verified by the colony PCR, a few clones, 

which contained the DNA insert, were cultured in 5 ml of LB medium. The DNA was then 

extracted as explained in section 2.2.2 and further analysed using a restriction enzyme 

approach (as described in section 2.2.3). Two or three clones, which revealed the expected 

sized insert of the cloned DNA fragment, were sent for sequencing. Only clones with the 

Repeated for 30 circles 
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correct nucleotide sequences were used for further experiments. The DNA was stored at -20 

°C. 

 

2.2.20 Culture of mammalian Cells 

 

Human Embryonic Kidney 293 cells (HEK 293) (Graham and others, 1977) and 3T3 mouse 

fibroblast cells (Todaro and Green, 1963) were cultured in Nunc EasYFlask 75cm
2 

flasks 

(Thermo Scientific, Fisher Scientific UK Ltd, Loughborough, UK) using DMEM (Dulbecco's 

Modified Eagle's Medium) containing low glucose, GlutaMAX™ and pyruvate (Invitrogen 

Life Technologies Ltd, Paisley, UK) in a humidified chamber in a 5% CO2 environment at 37 

°C. The medium contained additional heat inactivated foetal bovine serum (FBS) (10% v/v) 

and a penicillin/ streptomycin antibiotic mixture (1% v/v) (both obtained from Invitrogen 

Life Technologies Ltd, Paisley, UK). Cells were cultured until they reached a confluency of 

about 95%, before they were passaged either in a 1:10 or 1:20 ratio.  

 

2.2.21 Culture and Differentiation of C2C12 (mouse myoblasts) 

 

C2C12 (Yaffe and Saxel, 1977) mouse myoblasts were cultured in growth medium made up 

of DMEM (high glucose, NEAA, no glutamine), 10% heat inactivated FBS and 1% Pen/Strep 

(all obtained from Invitrogen Life Technologies Ltd, Paisley, UK) in Nunc EasYFlask 75cm
2 

flasks (Thermo Scientific, Fisher Scientific UK Ltd, Loughborough, UK). C2C12 were 

grown in a humidified incubator at 37 °C with 5% CO2. As C2C12 myoblasts commence 

differentiation due to cell-cell contact, when becoming very confluent (> 90%), the growing 

C2C12 cells were splitted at a confluency of 60 – 70 % to prevent self-induced myotube 

formation.  

C2C12 destined to differentiate were cultured up to a confluency of 90%, washed with PBS 

and the medium changed to differentiation medium (DMEM high glucose, NEAA, no 

glutamine) with added 2% of horse serum and 1% Pen/Strep (all purchased from Invitrogen 

Life Technologies Ltd, Paisley, UK). Myotube formation begins to occur within 2-3 days of 
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starvation and fully formed myotubes can be observed after 4-5 days in differentiation 

medium.  

However, the C2C12 cells cultured and used in the here described experiments differentiated 

slower compared to fresher and healthier C2C12 cells. We did occasionally observe fully 

differentiated myotubes at day 4, but most cells were still differentiating. Also due to 

technical difficulties and increasing cell detachment, we were not able to culture C2C12 for 

more than 4-5 days in starvation medium.  

During differentiation the medium was changed every day and in later stages twice a day, as 

metabolic products from the cell culture start to acidify the medium                             

(information and protocol according to Katherine Fisher-Aylor and Brian Williams: 

http://genome.ucsc.edu/ENCODE/protocols/cell/mouse/C2C12_Wold_protocol.pdf).  

Occasionally C2C12 cells differentiated poorly, which could be seen in a further temporal 

delay of differentiation or by a very low differentiation index (number of differentiated 

C2C12 divided by number of present cells). Usually we would expect to see elongated 

myotubes by around Day 2 of differentiation and the first multi-nucleated myotubes would be 

observed around day 3. We usually also expected to see a differentiation index above 30 %. 

When we did not observe normal differentiation, e.g. when differentiation was significantly 

delayed or the differentiation index fell below 30%, cultured cells were checked for 

mycoplasma infection.  

 

2.2.22 Screen and treatment of cells for mycoplasma 

 

Mycoplasma are small, self-replicating organisms, which depend on host cells to perform 

major metabolic processes, such as synthesizing nucleic acids and amino acids. In cell 

culture, mycoplasma cannot be seen, neither by the naked eye nor by using a microscope and 

although they do not necessary change properties of the medium (for example, the pH or 

metabolic products), they can have major implication on the behaviour of cultured cell lines 

(McGarrity and others, 1992). 

We used a PCR based approach to detect mycoplasma designed by Dr. Rosemary Bass. 
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Mycoplasma DNA can be detected in culture media. Therefore for this approach at least 1 ml 

of medium, in which cells have been cultured in for a minimum of two days, was removed 

from the cell culture and boiled at 100 °C for 5 minutes. The solution was then spun down for 

one minute at 13000 rpm at room temperature.  

Subsequently the PCR sample was prepared as described below using the high fidelity DNA 

polymerase Phusion: 

           5  μl  5x Phusion buffer (New England Biolabs, Herts, UK) 

    0.5 μl   dNTPs (100 mM) 

      2.5 μl  forward primer (10 nM) 

      2.5 μl  reverse primer (10 nM) 

       3 μl  boiled culture supernatant  

11.25 μl  sigma water 

              0.25 μl  Phusion (New England Biolabs, Herts, UK) enzyme 

     25 μl  total volume 

 

Following the sample preparation, the polymerase chain reaction was carried out in a DNA 

Engine Dyad Peltier Thermal Cycler (Bio-Rad Laboratories Ltd, Hempstead, UK). 

Primers used are described below: 

Myco1  GGGAGCAAACAGGATTAGATACCCT 

Myco2  TGCACCATCTGTCACTCTGTTAACCTC 
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The settings for the PCR were saved under the file name “MycoPCR” and comprised of 

following steps: 

1. 30 seconds  98 °C 

2. 10 seconds  98 °C  

3. 20 seconds  52 °C 

4. 30 seconds  72 °C 

5. 2 minutes  72 °C 

The samples were then analysed on a 1% Agarose Gel as described in 2.2.7. Presence of 

mycoplasma was detected as a band on the gel with a size of around 270 bp. Infected cells 

were treated subsequently with the antibiotic Ciprofloxacin (final concentration in cell culture 

10 μg/ ml) for a time course of up to one week or until the mycoplasma could not be detected 

anymore. The treated cells were incubated in fresh medium for a couple of days afterwards to 

recover from the antibiotic stress and were subsequently used for further experiments. 

 

2.2.23 Passaging of mammalian cells 

 

For the preparation of the cells for splitting, the culture medium was removed from the cells 

and the cells washed twice in PBS. Then the cells were incubated with 0.25% Trypsin-EDTA 

(Invitrogen Life Technologies Ltd, Paisley, UK) until the cells detached from the flask. 

Following trypsination, detached cells were resuspended in fresh medium and splitted in 

desired ratio. 

If a specified number of cells were needed, for example for a transfection experiment, the 

number of cells was counted using a haemocytometer. For this approach 100 μl of 

resuspended cells after detaching from the flask were aliquoted into an eppendorf tube. A 

couple of drops of described cell suspension were added between the coverslip and the 

gridded haemocytometer slide. As the depth and length of the grids are specified, the volume 

of each square is known. Therefore, by counting the number of cells in a minimum of 5 

squares, the number of cells in the original suspension can be calculated based on counted 

Repeated for 40 circles 
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amount and theoretical volume. The specified number of cells was subsequently passaged 

into a fresh flask or a multiple well dish. 

2.2.24 Transfection of mammalian cells 

 

Transfection was performed by using the transfectant Lipofectamine® 2000 (Invitrogen Life 

Technologies Ltd, Paisley, UK) following the manufacturer’s instructions. 

The number of cells required for transfection of different volumes in either wells or flasks 

can be found in the instructions, as well as information about the amount of DNA and 

Lipofectamine® 2000 reagent needed for transfection. 

For example, for one well of a 6-well dish 0.25–1 x 10
6
 cells were plated out in 2 ml of 

growth medium. After 48 hours of further incubation cells were prepared for transfection by 

replacing the growth medium with growth medium without additional FBS (serum-free 

medium). Cells were transfected with 6-15μl of Lipofectamine® 2000 reagent and up to 14 

μg of plasmid DNA. After 4 hours in the Transfection medium, cells were incubated in 

growth medium containing FBS for further 48 hours before being harvested or processed for 

further experiments. 

 

2.2.25 Luciferase Assay  

 

A luciferase assay is a tool to study the involvement of a protein with mediators of signalling 

pathways or transcriptional activators and repressors.  

 Preparation 

For the preparation of a luciferase assay, 30,000 3T3 cells were seeded into each well of a 

Nunc 96-well dish (Thermo Scientific, Fisher Scientific UK Ltd, Loughborough, UK) and 

cultured in DMEM containing low glucose, GlutaMAX™ and pyruvate (Invitrogen Life 

Technologies Ltd, Paisley, UK) for further 24 hours.  
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 Transfection 

Transfection was carried out as described in the manufacturer’s instruction for 

Lipofectamine® 2000 (Invitrogen Life Technologies Ltd, Paisley, UK) as explained in 

section 2.2.24. Each assay was carried out at least three times in triplicates.  

The luciferase reporter vector pGL3 (Promega UK, Southampton, UK) was used as a 

transfection control.  As the reporter vector for the luciferase assay, a Super 8X TOPFLASH 

vector containing 8 active LEF/TCF binding sites fused to a firefly luciferase was used. As a 

negative control, we used a Super 8X FOPFLASH firefly luciferase vector, in which the 

LEF/TCF binding sites were mutated and therefore non-active. Both vectors were gifts from 

Randy Moon. Activation of the reporter assay was achieved by co-transfecting the cells with 

pCaβ-β-Catenin-IRES-GFP. For normalisation purposes 3T3 cells were also transfected with 

the plasmid pRLTK (Promega UK, Southampton, UK) expressing a renilla luciferase. To 

analyse the influence of our cloned constructs on the reporter vector, 3T3 cells were also 

transfected with a plasmid expressing the fusion-protein or with a plasmid containing only 

the vector backbone as a negative control.  

The preparation of a set of experiments with one sample for each condition would look as 

follows: 

 

 

 

 

 

 

 

Table 2.5: Setting up a Luciferase assay 

The following list gives details about the volume of medium, the amount of DNA and the volume of 

Lipofectamine® 2000 used for one sample of each setting in a luciferase reporter assay. 
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  pGL3 
β-

catenin 

8x TOP-

FLASH 

8x FOP-

FLASH 
vector  

over-

expression 

construct 

Renilla 

Lipofect-

amine® 

2000  

volume 

(transfection 

mixture) 

volume in 

well 

trans-

fection 

control 

100ng / / / / / / 0.5μl 2 x 25μl 100μl 

vector 

only 

positive 

/ 100ng 10ng / 10ng / 10ng 0.5μl 2 x 25μl 100μl 

vector 

only 

negative 

/ 100ng / 10ng 10ng / 10ng 0.5μl 2 x 25μl 100μl 

construct 

positive 
/ 100ng 10ng / / 10ng 10ng 0.5μl 2 x 25μl 100μl 

construct 

negative 
/ 100ng / 10ng / 10ng 10ng 0.5μl 2 x 25μl 100μl 
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After the Transfection, the cells were incubated in fresh medium containing 10% FBS 

for further 48 hours. 

 Measurement of Luciferase activity 

The Luciferase activity was measured as described for the dual-luciferase® reporter 

assay (DLR®) (Promega UK, Southampton, UK) according to the manufacturer’s 

instruction. The DLR® system allows the detection of two different luciferase signals. 

Firefly luciferase and renilla luciferase are evolutionary distinct enzymes and require 

different substrates, which makes this dual reporter assay ideal for experimental 

purposes. In the first instance the signal obtained from the metabolic reaction for the 

firefly luciferase is measured indicating the success of activating or inhibiting the 

LEF/TCF transcription factors. The reaction is then stopped and the renilla firefly 

activity is measured by adding a different substrate. The renilla firefly activity is a 

reading for the transfection efficiency for each sample and can be used to normalise the 

samples against each other.  

To prepare the transfected cells for luciferase activity measurement, the medium was 

removed from the cells and the 3T3 cells were rinsed gently once with PBS. 

Subsequently 20μl of 1x passive lysis buffer (Promega UK, Southampton, UK) were 

added to each well and cells were lysed for 20 minutes at room temperature whilst 

rocking slowly. The lysate was then aliquoted into a black Nunc 96-well dish (Thermo 

Scientific, Fisher Scientific UK Ltd, Loughborough, UK). 

The Luciferase activity was measured on an EnVision Multilabel Plate Reader 

(PerkinElmer, Cambridge, UK). 

The first step was to measure the firefly luciferase activity. 100μl of Luciferase Assay 

Reagent II (LARII) (Promega UK, Southampton, UK) were added to each lysate and the 

reading was taken. The second step comprised the immediate stop of firefly luciferase 

activity and the measurement of the renilla luciferase activity. The firefly activity was 

quenched by adding 100μl of Stop&Glo solution (Promega UK, Southampton, UK) to 

each sample and as the Stop&Glo solution also contained the substrate for the renilla 

luciferase, the activity could be measured directly after addition of the second solution. 

Obtained firefly luciferase readings were normalised based on the measured renilla 

activity. The luciferase activity obtained for the sample transfected with the reporter 

genes and the empty vector was set to 100% and all other measured activities were 
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compared to this sample. Statistics were carried out using the non-parametric Mann-

Whitney-U-test using SPSS statistics software (IBM Corporation, New York, USA). 

 

2.2.26 Immuno-Staining of C2C12 cells 

 

 Preparation of C2C12 myoblasts 

Round coverslips with a diameter of 5 mm were sterilised by autoclaving and carefully 

placed into each well of a Nunc 6-well dish (Thermo Scientific, Fisher Scientific UK 

Ltd, Loughborough, UK). The coverslips were coated with gelatine by incubation for 

15-20 minutes in a 0.3% gelatine solution. C2C12 myoblasts were aliquoted onto each 

coated coverslip and cultured in growth medium for further 24 hours before being 

processed for immuno-histochemistry. For immuno-staining of differentiated mouse 

myotubes, C2C12 were seeded unto gelatine covered coverslips, grown to high 

confluency and the medium changed to differentiation medium (as described in section 

2.2.21) until cells reached the desired stage of differentiation. 

 Fixing and Permeabilisation of C2C12 cells 

The medium was removed from the C2C12 and cells were immediately fixed with 3% 

PFA. Undifferentiated C2C12 cells were incubated in PFA for 15 minutes, whilst 

differentiated C2C12 were fixed in PFA for 30 minutes. After fixation, the coverslips 

were moved into a clean Nunc 6-well dish (Thermo Scientific, Fisher Scientific UK Ltd, 

Loughborough, UK) and the cells were washed three times with PBS for 5 minutes each 

at room temperature shaking on a very slow rocker. Cells were then permeabilized by 

using a 0.25% Triton X solution (in PBS); either 20 minutes for C2C12 myoblasts or 30 

minutes for C2C12 myotubes. Again, the cells were washed subsequently three times 

with PBS as described before.  

 Blocking and antibody treatment 

Following the pre-treatment, the cells were blocked with 10% goat serum (in PBS) at 

room temperature for 40 minutes without shaking.  In the meantime the antibodies were 

diluted in 0.1% goat serum. For a list of antibodies used and dilution factors see table 

2.6. Two antibodies could be used at the same time when the species of the animal, in 

which they were raised, was different. 
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Table 2.6:  Primary Antibodies used for Immuno-histochemistry 

Following list contains information of all primary antibodies used for the Immuno-histochemistry of 

C2C12 cells. 

name species detection dilution manufacturer 

ab62181 rabbit Klhl31 "1:1000" abcam®, Cambridge,UK 

YL1/2 rat alpha tubulin "1:1000" 
MorphoSys UK Ltd t/a 

AbD Serotec, Oxford,UK 

NB2 mouse Nebulin "1:200" abcam®, Cambridge,UK 

 

Also, whilst the cells were blocked in 0.1% goat serum, a humidified chamber was 

prepared. The humidified chamber comprised of a large western blot blocking tray, 

which was covered with wet paper tissue. On top of the wet layer squares of parafilm 

(Alcan Packaging, Bristol, UK) were laid out.  

40 – 50 μl of each antibody solution were pipetted onto the parafilm layer and the 

coverslips were carefully placed on top of the drop with the cell-displaying surface 

facing towards the solution. The cells were incubated in the primary antibody solution 

for 2 hours at room temperature or overnight in the cold room at 4 °C. Following the 

incubation with the primary antibody, the coverslips were placed into a new Nunc 6-

well dish (Thermo Scientific, Fisher Scientific UK Ltd, Loughborough, UK) and 

washed 7 times, each step lasting for 5 minutes, with PBS.  

 Treatment with the secondary antibody 

The secondary antibodies were chosen based on the species the primary antibody was 

raised in. For example, when using the Klhl31 antibody, the secondary antibody had to 

be an anti-rabbit secondary antibody to be able to bind to the primary antibody. Dyes 

and secondary antibodies used are conjugated to a fluorophore and can be excited by 

specific wavelengths of light. The emitted light from the fluorophore can then be 

visualised using a detector. For a list of dyes and secondary antibodies see table 2.7 

below. 
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Table 2.7:  Secondary Antibodies and Dyes used for Immuno-histochemistry 

Following list contains information of all secondary antibodies and dyes used for the Immuno-

histochemistry of C2C12 cells. 

name antibody dye species 
emitted 

colour 

De-

tection 
dilution manufacturer 

Alexa 

Fluor® 488 
x   rabbit green / "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Alexa 

Fluor® 488 
x   rat green / "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Alexa 

Fluor® 488 
x   mouse green / "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Alexa 

Fluor® 568 
x   rabbit red / "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Alexa 

Fluor® 568 
x   mouse red / "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Texas-

Red® X 

Phalloidin 

  x / red F-Actin "1:400" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

Phalloidin-

488 
  x / green F-Actin "1:1000" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 

DAPI   x / blue DNA 
"1:10000

" 

Invitrogen 

Life 

Technologies 

Ltd, Paisley, 

UK 
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The secondary antibodies or dyes were diluted in 0.1% goat serum and a humidified 

chamber was prepared as previously described. Again, 40-50 μl of dye or secondary 

antibody solution was pipetted onto the parafilm surface and the coverslip placed on top 

of it with the cells facing the liquid. The cells were incubated with the secondary 

antibody or dye for 35 minutes at room temperature in the dark without shaking. The 

coverslips were subsequently carefully placed into a clean 6-well dish and washed 

gently 7 times in PBS for 5 minutes each without shaking. Following the washing steps 

the cells were incubated in a DAPI solution (1:10000 in PBS) for 5 minutes in the dark 

and then washed immediately 3 times in PBS for 5 minutes each time.  

 Mounting of the coverslip on microscopy slides 

Whilst the cells were incubated with the secondary antibody or dye, the hydromount 

solution (AGTC Bioproducts t/a National Diagnostics UK, Hessle, UK) was warmed up 

to 37 °C. The slides were labelled and a drop of hydromount was pipetted onto the slide. 

The washed coverslips were gently removed from the well, briefly dried on paper and 

placed on the slide with the cells facing the hydromount solution. The slides were left to 

dry overnight at room temperature in the dark. The following day, residual hydromount 

was carefully removed. The coverslips were stored for 2-3 weeks at -20 °C without any 

significant loss in signal strength of the fluorophore. 

Images of the cells were taken at a widefield upright microscope (Carl Zeiss 

Microscopy Ltd, Cambridge, UK) equipped with a monochrome CCD camera using 

AxioVision software (Carl Zeiss Microscopy Ltd, Cambridge, UK). Images were 

exported into Adobe Photoshop (Adobe Systems Europe Ltd, Maidenhead, UK) for 

labelling and formatting purposes. 

 Image processing techniques 

As we had experienced high, mainly red, background fluorescence in C2C12 cells, we 

needed to process images to exclude falsely-observed labelling. Negative samples for 

immuno-staining were prepared by processing fixed cells exactly as described 

previously. However, these cells were only incubated in incubation solution without 

primary antibody for the primary antibody step and later in incubation medium with the 

secondary antibody added. Negative samples for cells labelled with a dye were 

incubated in both incubation steps in incubation solution only.  
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For the image processing, pictures were taken for both the negative and the positive 

samples at the same settings (same wavelength, same (fixed) time of exposure, same 

saving mode .tif). Firstly the background signal was removed from the negative images 

by using the feature ‘levels’ in Adobe Photoshop (Adobe Systems Europe Ltd, 

Maidenhead, UK) and the setting for obtained exposure levels were saved for each 

channel. To remove potential background level from positive images, the determined 

exposure levels were imposed onto the original image. An example is given in the 

figure below: 

 

Figure 2.1: Reducing the background noise from immuno-labelled C2C12 

myotubes 

High autofluorescence in C2C12 myotubes overshadowed real fluorescent signalling. Removing the red 

background signal revealed a clearer labelling. However, the potential real signal was also weakened.  

 

2.2.27 Latrunculin B treatment of C2C12 cells 

 

Latrunculin B is a drug that can be used to reversibly depolymerise the actin 

cytoskeleton of a mammalian cell (Spector and others, 1983).  

For preparation of C2C12 cells, myoblasts were cultured in a Nunc 6-well dish (Thermo 

Scientific, Fisher Scientific UK Ltd, Loughborough, UK) and differentiated into 

myotubes as described in section 2.2.21.  
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Once the C2C12 myoblasts reached a medium confluency of around 75% or C2C12 

myotubes had differentiated to a specific degree, the cells were incubated in fresh 

growth or differentiation medium (see 2.2.21) containing 1 nM latrunculin B. The 

incubation with latrunculin B was carried for 15 minutes in the humidified incubator at 

37 °C. Loss of Actin was calculated based on a) presence of rounded C2C12 cells and 

b) on signal strength of Actin fibres. 

After the treatment with the toxin, the medium was removed quickly and immediately 

the afterwards the cells were fixed in 4% PFA containing additional Triton-X-100 to 

0.25%. For recovery of the actin fibers, latrunculin B treated cells were incubated in 

fresh growth or differentiation medium for a specified amount of time. After recovery, 

the cells were fixed in 4% PFA with added 0.25% Triton-X-100.  

Subsequently, fixed cells were processed for immuno-histochemistry as described in 

section 2.2.26. 

 

2.2.28 Protein extraction from mammalian cells 

 

Mammalian cells were cultured in Nunc EasYFlask 75cm
2 

flasks (Thermo Scientific, 

Fisher Scientific UK Ltd, Loughborough, UK) as described in section 2.2.20 and 2.2.21. 

Before lysis, the cells were washed twice in PBS and trypsinised as described in section 

2.2.23. Once the cells detached from the surface of the flask, the enzymatic activity of 

trypsin was stopped by adding 1ml of cell culture medium to each flask. The cells were 

resuspended in the added medium and subsequently aliquoted into a sterilised eppendorf 

tube. The flasks were then rinsed with further 500 μl of cell culture medium to catch 

residual cells. The harvested mammalian cells were subsequently pelleted by 

centrifugation at 3000 rpm for 5 minutes. Obtained cell pellets were kept on ice to slow 

down protein degradation. The supernatant was completely removed and cells were 

lysed in 200 μl of RIPA protein lysis buffer on ice for 30 minutes. Samples were mixed 

by vortexing every 5-10 minutes. For the extraction of Klhl31 protein from mammalian 

cells, a mild lysis buffer was used including additional inhibitors of proteases, such as 

PMSF and sodium vanadate. Cells that were lysed with the mild lysis buffer were 

incubated on ice for 30 minutes without mixing or shaking.  
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To separate the cell debris from the protein solution, the lysis mixture was spun down at 

4 °C for 10 minutes at 13000 rpm. The protein solution was pipetted into a clean 

eppendorf tube and stored at - 20°C. The concentration of the protein was measured by 

using the Bradford assay. 

 

2.2.29 Measurement of protein concentration  

 

The Bradford protein assay was developed by Marion Bradford and uses a colorimetric 

approach to calculate the concentration of proteins in a solution (Bradford, 1976). The 

Bradford solution, usually coloured red, will change to a blue colour upon binding of 

proteins. The strength of colour can be measured as the absorbance at 595 nm and is an 

indicator for the amount of protein present. 

The protein concentration of the obtained samples was calculated based on a bovine 

serum albumin (BSA) standard. For the preparation of the BSA standard, a stock 

solution of 10 mg/ ml BSA in water was prepared. The stock solution was then further 

diluted to give a range of protein solutions with varying concentrations from 1 – 8 mg/ 

ml of BSA. 1μl of each BSA solution was then pipetted into a 1.5 ml disposable cuvette 

containing 1 ml of 1x Bradford reagent (Bio-Rad Laboratories Ltd., Hemel Hempstead, 

UK). The solution were gently mixed and incubated at room temperature for up to 2 

minutes to allow development of the colour reaction. The absorbance of each sample 

was then measured at 595 nm using a bench-top spectrophotometer (Biochrom Ltd, 

St.Albans, UK). Based on measured absorbance values, a standard curve was drawn and 

the linear trendline and equation were calculated. 

The protein lysate samples were prepared for the Bradford assay as described for the 

BSA standard and the absorbance measured at 595 nm. The approximate concentration 

of the protein lysates were calculated based on the values obtained for the BSA protein 

standard. 
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2.2.30  Preparation of Acrylamide Gel for SDS-PAGE  

 

Depending on the sizes of proteins, which should be separated using a SDS-PAGE, 

different percentages of Acrylamide/bisacrylamide can be used when preparing the 

lower or protein separating polyacrylamide (PAA) gel. 

For a standard 8% PAA gel the mixture was prepared as follows: 

4.6 ml   dH20 

2.7 ml  Acrylamide/Bisacrylamide mixture (ProtoGel 30%, AGTC Bioproducts 

t/a National Diagnostics UK, Hessle, UK) 

2.5 ml 1.5 M Tris pH 8.8 

0.1 ml  10% SDS 

0.1 ml 10% APS 

10  μl TEMED 

To prepare the gel, the glass slides for a 0.75 mm thick PAA gel were assembled using 

fitted casting frames and casting stands as described by the manufacturer (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK).  

In a 50 ml beaker water, the Acrylamide mixture, Tris, SDS and APS were mixed 

together and TEMED was added to induce polymerisation. The solution was carefully 

filled into the glass plates up to a height of 2/3 of the glass plates without developing 

any air bubbles in the gel. The gel was then topped up with isopropanol and left to settle 

and polymerise.  

Once the gel was set, the isopropanol was completely removed and the upper gel 

solution was added on top of the lower, protein separation gel. The upper gel is used to 

collect the samples and to make sure that protein samples enter the lower gel at the same 

time. 
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The mixture for the upper gel was prepared as described below: 

3.4   ml  dH20 

0.83 ml  Acrylamide/Bisacrylamide mixture (ProtoGel 30%, AGTC Bioproducts 

t/a National Diagnostics UK, Hessle, UK) 

0.63 ml 1 M Tris pH 6.8 

0.05 ml  10% SDS 

0.05 ml 10% APS 

     5 μl TEMED 

A 10-well comb (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) was placed into 

the upper gel and the gel was left to polymerise. Poured gels could be stored at 4 °C 

wrapped in wet paper for up to two days. 

 

2.2.31 Protein sample preparation for SDS-PAGE 

 

Up to 50 μg of protein was freshly prepared for SDS-PAGE. The protein solution was 

added in a ratio of 4 : 1 to a 5x protein loading buffer. The sample was mixed 

thoroughly by vortexing and incubated for 10 minutes at 70 °C. The samples were 

subsequently spun down at 13000 rpm for 2 minutes and immediately loaded on a PAA 

gel. 

 

2.2.32 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

The SDS-PAGE is a well establish method to separate proteins based on their size and 

their charge. SDS is used in this method to introduce further negative charges to the 

proteins proportional to the size of protein. 

The prepared gels were placed into a Mini Protean 3 Gel tank (Bio-Rad Laboratories 

Ltd., Hemel Hempstead, UK) and the tank was filled with SDS-PAGE running buffer 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide
http://en.wikipedia.org/wiki/Gel_electrophoresis
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5 μl of Precision Plus Protein™ All Blue Standard (Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK) was loaded in one well of the PAA gel and usually 50 μg of total 

protein were loaded for each sample. The SDS-PAGE was usually carried out at 200 V 

for 45 minutes or until the blue loading dye was just about to move out of the bottom of 

the gel. The SDS-PAGE was stopped and the gel was either stained with Coomassie 

Blue or processed further for western blotting. 

 

2.2.33 Coomassie-Blue staining 

 

The gel used in the SDS-PAGE was carefully removed from the glass plates and rinsed 

once with PBS. The gel was then immediately fixed in fixing solution for 10 minutes at 

room temperature under constant moderate shaking. After the fixing the PAA Gel was 

stained with staining solution containing Coomassie brilliant blue R-250 for 15 minutes 

or up to several hours at room temperature. Coomassie staining of PAA gel is reversible 

and excess stain can eventually be removed by washing the stained gel several times in 

Destain solution. Once the gel was destained to the desired amount, the gel was placed 

on a transilluminator and a picture was taken with a standard digital camera. Images 

were labelled by using Adobe Photoshop (Adobe Systems Europe Ltd, Maidenhead, 

UK). 

 

2.2.34 Western Blotting 

 

The western blot is a method used to detect specific proteins in lysates or other protein 

mixtures. In the first part of the method, proteins are separated by an SDS-PAGE as 

described in 2.2.32, before they are transferred onto a membrane. 

 Preparation of the membrane and the electro-blotting chamber 

For the preparation of the blotting process, a piece of a Polyvinylidene fluoride (PVDF) 

(Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) membrane with approximately the 

size of the lower gel was activated by incubation in 100 % methanol for 5 minutes. 

Once it was activated, the membrane was then incubated in western blotting transfer 

buffer. The lower gel from the SDS-PAGE (after being carefully removed from the 
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glass plates), as well as pieces of Whatman filter paper and the foam pads were also 

incubated in transfer buffer. 

 Assembly of  a wet electro-blotting chamber and western blotting 

The western blot uses an electric current to move proteins out of the gel and unto the 

PVDF membrane. Therefore the proteins on the membrane will resemble the proteins as 

separated in the lower PAA gel. As proteins are negatively charged, they move towards 

the cathode or negative pole in a wet electro-blotting chamber.  

The wet electro-blotting chamber, the Mini Trans-blot® cell (Bio-Rad Laboratories 

Ltd., Hemel Hempstead, UK), was prepared as described below. 

Firstly, the gel holder cassettes were assembled in following fashion: 

Cathode (+) 

Foam pad 

3 x Whatman filter paper (Whatman plc, Maidstone,UK) 

Activated PVDF membrane (Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK 

Lower PAA gel 

3 x Whatman filter paper (Whatman plc, Maidstone, UK) 

Foam pad   

Anode (-) 

The cassettes were then placed in the right orientation into the electrode-frame, which in 

turn was then placed into the tank. The tank was subsequently filled with transfer buffer 

and a cooling unit was placed into the tank.  

The electroblotting was carried out at 100 V for 1 hour. The success of protein transfer 

was analysed by Ponceau-Red staining.  

 Ponceau Red Staining 

The Ponceau Red staining is a sensitive and reversible staining method for proteins on a 

PVDF or nitrocellulose membrane. For staining, the membrane was washed twice in 
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water and then incubated in the Ponceau-staining solution until bands became visible. 

The red staining could be completely removed by washing the membrane in water. The 

water was changed when saturated with the red stain.  

 Blocking of the PVDF membrane and incubation with primary antibodies 

After the red stain was completely removed the PVDF membrane was blocked with 

10% milk (Marvel dried milk powder) diluted in TBST or 3 % BSA diluted in PBS 

depending on the primary antibody used. Blocking was carried out for 2 h at room 

temperature on a slow rocker. Subsequently the membrane was incubated in the desired 

primary antibodies, as listed in table 2.8. 

Table 2.8:  Primary Antibodies used for western blotting 

Following list contains information about primary antibodies, their dilution factors and blocking solutions 

used for western blotting  

name species detection dilution 
blocking 

solution 

incubation 

solution 
manufacturer 

ab62181 rabbit Klhl31 "1:1000" 

10% 

milk 

(TBST) 

1.25-2.5% 

milk 

(TBST) 

abcam®, 

Cambridge,UK 

ab290 rabbit GFP 
1:2000 -   

1:5000" 

3% 

BSA 

(PBS) 

3% BSA 

(PBS) 
abcam®, 

Cambridge,UK 

ab3280 mouse Actin "1:5000" 

10% 

milk 

(TBST) 

1.25-5% 

milk 

(TBST) 

abcam®, 

Cambridge,UK 

NB2 mouse Nebulin "1:400" 

10% 

milk 

(TBST) 

1.25-2.5% 

milk 

(TBST) 

abcam®, 

Cambridge,UK 

 

The membrane was incubated in the primary antibody overnight at 4 °C whilst shaking. 

The next morning the membrane was washed 6 times, each for 10 minutes, either in 

TBST or PBS depending on the primary antibody used, before being incubated in the 

secondary antibody. 

 Treatment with the secondary antibody 

For secondary antibodies, we used a horseradish peroxidise (HRP) conjugated antibody, 

which was able to detect the primary antibody based on the species the primary 

antibody was raised in.  Antibodies used were either an anti-mouse 
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Immunoglobulins/HRP antibody or an anti-rabbit Immunoglobulins/HRP antibody 

(DakoCytomation Denmark A/S, Glostrup, Denmark). The secondary antibodies were 

diluted (1:1000 for the α-mouse HRP and 1:5000 for the α-rabbit HRP) in the same 

incubation solution as described for the treatment with the primary antibody. The 

incubation was carried out for one hour at room temperature. After treatment with the 

secondary antibody, the membrane was washed 6 times for 10 minutes each, either in 

TBST or PBS depending on the used primary antibody. After the washing steps, the 

membrane was prepared for the signal development.  

 Signal development by ECL detection 

Enhanced chemiluminescence (ECL) is a highly sensitive method to detect proteins 

from a western blot. The protein which has been detected with a primary antibody and 

which has been then further recognized by the secondary antibody can be visualised on 

the membrane by the oxidation of luminol by the horseradish peroxidise attached to the 

secondary antibody. Emitted light from the oxidation of the substrate by the HRP is then 

detected and visualizes a specific band on the membrane.  

For the ECL reaction, the substrate solutions (western blot colour development solution 

1 containing 0.1M Tris pH 8.8, 2.5mM Luminol, 0.4mM p-Coumaric acid and western 

blot colour development solution 2 made up with 0.1M Tris pH 8.5, 0.02% v/v H2O2) 

were prepared and stored in the dark. In the meantime the dark chamber of the LAS-

3000 Imaging System (Fujifilm Medical Systems, Stamford, USA) was cooled down to 

-30 °C. Once cooled down, the membrane was taken out of the washing solution, briefly 

dried on paper and immediately incubated for one minute in the freshly mixed western 

blot colour development solution 1 and western blot colour development solution 2. 

Following the incubation with the oxidation substrates, the membrane was briefly dried, 

carefully wrapped in clingfilm and the protein marker labelled with a lumocolor pen. 

The membrane was immediately placed on a tray in the dark chamber and focused. 

Once the ECL signal was detected, a picture was taken by the LAS-3000 Imaging 

system (Fujifilm Medical Systems, Stamford, USA) with an inbuilt CCD camera. 

Images were exported into Adobe Photoshop (Adobe Systems Europe Ltd, Maidenhead, 

UK) for labelling purposes. 
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2.2.35 Stripping a membrane for reprobing 

 

The method of stripping can be used to remove primary and secondary antibodies from 

the membrane, making it possible to use the same membrane to stain for a different 

protein. Therefore one protein was detected on a western blot as described in section 

2.2.34, followed by the gentle removal of all bound antibodies from the membrane 

without affecting the transferred proteins. For this method, the membrane was washed 3 

times in PBS after the ECL detection and subsequently incubated for 10 minutes in mild 

stripping buffer (0.2M Glycine, 0.1% w/v SDS, 1% v/v Tween-20, pH 2.2) at room 

temperature whilst gently rocking. The buffer was removed and replaced by a fresh 

volume of mild stripping buffer. After further incubation of 10 minutes, the membrane 

was twice washed for 10 minutes in PBS followed by two washes in TBST for 5 

minutes each. The membrane was then ready to be blocked and incubated in a primary 

antibody as described in section 2.2.34. 

 

2.2.36 Glutathione S-transferase (GST) pull downs 

 

Interaction of proteins can be verified by using a GST-pull down. GST-proteins are in 

E.coli expressed fusion proteins which contain a GST-tag. This GST can be used to 

purify the GST-protein by affinity chromatography on immobilised glutathione, as it 

forms strong dimers with the GST-tag. Contamination can then easily be removed by 

washing the glutathione. Incubating the purified GST-protein with cell or other protein 

lysates will eventually lead to the binding of interaction partners to the GST-protein, 

which can then be purified and gently be removed from the glutathione phase. Obtained 

samples can then be analysed by mass spectrometry or western blot to identify 

interaction partners.  

 Preparation of the GST-Klhl31 protein 

The first part of the preparation was the production of a stable GST-Klhl31 Fusion 

protein. We have cloned a pGEX-5X-1 Klhl31 construct having the GST fused to the N-

term of the Klhl31 protein (see section 2.2.18). In the pGEX- vectors the expression of 

the GST-Fusion protein is controlled by a tac promoter, which can be activated by 

IPTG.  
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Competent cells (DH5α) were transformed with either pGEX-5X-1 or with pGEX-5X-

1-Klhl31 as described in section 2.2.1. A 5 ml pre-culture was grown for each construct 

and stored at 4 °C. The evening before the IPTG induction a 50 ml culture for each 

construct was started by adding 50 μl of each pre-culture. The cells were shaken 

overnight at 200 rpm and 37 °C. The next morning the whole 50 ml culture was added 

to 500 ml of fresh medium and cells were grown for 3 hours at 37 °C to achieve an 

optical density of 0.3-0.6. The medium was cooled down to 21 °C and the expression of 

the GST or GST-Fusion protein was induced by the addition of IPTG to a final 

concentration of 1 mM. The two E.coli cultures were shaken at 21 °C for further 3 

hours. After the incubation, the cells were pelleted from the medium by centrifugation 

at 4500 rpm using 50 ml falcon tubes. Each falcon tube contained a cell pellet from at 

least 100 ml of cell culture. The cell pellets were stored at -20 °C until processed for 

purification of the fusion proteins.  

 Purification of the GST-Fusion protein 

The frozen cells containing the overexpressed proteins, either GST only or GST-Klhl31 

FL, were thawed on ice and lysed with 9 ml STE-Buffer (0.1M NaCl, 10mM Tris pH 

8.0, 1mM EDTA pH 8.0) containing 50 μg of lysozyme (50 μl of 100 mg/ml stock 

solution). From this point onwards, both samples, the GST and the GST-Klhl31 FL 

lysates were treated exactly the same. The bacterial cells were incubated in the lysis 

buffer for 15 minutes on ice without mixing or shaking. Following the lysis step 

Sarkosyl (10% in STE-Buffer) was added to the lysate to a final concentration of 2%, as 

well as DTT to a final concentration of 1 mM and PSMF was also added to 1 mM final 

concentration. The cells were then further disrupted by french pressing and the lysate 

was centrifuged at 15000 rpm for 5 minutes. The supernatant was subsequently placed 

into a clean 10 ml Falcon tube. 50 μl of supernatant were kept for analysis by SDS-

PAGE, whilst Triton X-100 was added to the supernatant in the falcon tube to a final 

concentration of 1%.  500 μl of GST-beads slurry (Glutathione Sepharose High 

Performance beads, GE Healthcare Life Sciences, little Chalfont, UK) were added to 

each sample and incubated for up to 2 hours in the cold room at 4 °C on a slow shaker. 

The proteins should have now bound to the glutathione Sepharose beads. A sample of 

50 μl was removed from the suspension and the beads were gently spun down at a 

maximum of 2000 rpm for 1 minute. The supernatant was removed and discarded. The 

beads were then washed 6 times for each 5 minutes in PBS. The GST and GST-Klhl31 

bound beads were be kept in the fridge at 4°C for up to 3 weeks. To approximate the 
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amount of proteins on the beads, specified volumes between 5 – 20 μl of bead 

suspension were analysed on a 1% PAA gel next to a gradient of known BSA 

concentration of 1-5 mg/ml (as described in section 2.2.32).  

 Lysis of C2C12 myoblast and C2C12 myotubes 

C2C12 cells were cultured and differentiated as described in section 2.2.21. For a GST-

Pull down C2C12 cells were lysed in 2 ml of mild lysis buffer (50mM Tris pH 7.5, 

150mM NaCl, 5mM EDTA pH7.5, 1% v/v NP-40, 10% v/v Glycerol, 1mM Na3VO4, 

1mM PMSF, 1 Complete Mini, EDTA-free Protease inhibitor cocktail tablet (Roche 

Diagnostics Ltd, Burgess Hill, UK) per 10ml of buffer) for 30 minutes on ice without 

shaking. The protein lysate was obtained as described in section 2.2.28 and immediately 

processed further for the GST-pull down.  

Fresh PMSF was added to the C2C12 protein lysate and 100μl of GST or GST-Klhl31 

beads were added to the lysate. The suspension was incubated for up to 1 hour on a 

rocker at 4 °C. The supernatant was then removed from the beads and kept as a control 

for further analysis, whilst the beads were washed 6 times in mild washing buffer at 4 

°C. The beads were pelleted down by centrifugation between each washing step, using 

3000 rpm at 4 °C. After the 6
th

 wash the buffer was removed until only 100μl of slurry 

was left. As the GST-beads suspension was higher concentrated compared to the GST-

Klhl31 bound beads, the GST beads were further diluted in PBS to give equal amounts 

of GST-Klhl31 to GST. 100μl of each suspension was prepared for SDS-PAGE by 

adding protein loading buffer to 1x and DTT to 1mM. The protein samples were heated 

up to 70 °C for 10 minutes and immediately run on a large (17 x 15 cm) 10% PAA Gel, 

which were subsequently processed for silver staining, or on normal sized 10% PAA 

gels for western blotting (as described in section 2.2.33). 

 Preparing a V15.17 10 % PAA gel 

To give proteins from the GST-pull down enough space to separate during SDS-PAGE, 

we chose to use a larger (17 x 15 cm) 10% PAA gel based on the BRL Vertical Gel 

electrophoresis apparatus model V15.17 (Biometra, THISTLE SCIENTIFIC LTD, 

Glasgow, UK). The apparatus was kindly lent to us by Dr. Tracey Swingler, BMRC. 

For the preparation of the gel, the glass plates were assembled and the sides of the glass 

plates were taped and clipped to keep them tight. The glass plates were then placed into 

a large, square dish and sealed in an approximately 1cm high layer of 1 % agarose. A 
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lower gel was prepared based on the mixture as described for the PAA gel as described 

in sub chapter 2.2.30. After letting the gel set, the upper gel was prepared as described 

previously (section 2.2.30) and poured on top of the lower gel. A 20 well comb was 

added and the gel left to polymerize. Gels could be stored in the fridge at 4 °C wrapped 

in wet tissue for one day. To run the SDS-PAGE the gel was placed into the gel 

chamber with the comb facing inwards resting on the orange sponges. The gel was 

pressed tightly against the sponges and spaces between glass plates and chamber closed 

with Vaseline. Running buffer was filled into the upper tray and if no leakage was 

observed the lower tray was filled up as well. Up to 100 μl of sample could be loaded 

per well. The SDS-PAGE was run as described in section 2.2.32. 

 Protein visualisation in a PAA gel by Silver Stain and mass spectrometry 

Silver staining is a method to detect proteins in a PAA gel. This method is up to 50 

times more sensitive when compared to Coomassie Blue staining (Kerenyi and Gallyas, 

1973; Switzer and others, 1979). To prevent contamination, the gel was only touched 

with tweezers or when wearing fresh gloves, as proteins from the skin will be detected 

by the silver stain. Using Pierce® Silver Stain for Mass Spectrometry (Thermo Fisher 

Scientific, Cramlington, UK), borrowed from Dr. Samuel Fountain, the gel was 

prepared and stained as described by the manufacturer’s instructions. After the staining, 

interesting protein bands were excised from the gel and stored in a clean eppendorf tube 

at -80 °C. Excised bands were analysed by mass spectrometry, carried out by the 

FingerPrints Proteomics Facility at the College of Life Sciences (University of Dundee, 

UK). 
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3. Results 

 

Klhl31 associates with the actin cytoskeleton in mouse myoblasts 

 

3.1 Introduction 

 

3.1.1 C2C12 cells are a well-characterized model for myogenesis 

 

C2C12 cells are subclones of C2 mouse myoblasts, which have the ability to 

differentiate into myotubes or osteoblasts based on culturing in different conditioned 

media. First obtained by Yaffe and Saxel in 1977 from satellite cells generated from the 

thigh muscle of C3H mice (Yaffe and Saxel, 1977) C2C12 have been shown to be a 

good tool for studying myogenesis and osteogenesis on a cellular level.  

Differentiation into osteoblasts is triggered by BMP-2 signalling, which has been shown 

to inhibit myotube formation whilst inducing the expression of osteoblast markers, such 

as various alkaline phosphatases and osteocalcin (Katagiri and others, 1994). Myotube 

formation is achieved by starvation of C2C12 myoblasts from various growth factors, 

for example TGF-β (Brennan and others, 1991; Furutani and others, 2011; Vaidya and 

others, 1989) and β-catenin dependent or canonical Wnt ligands, such as Wnt3a 

(Tanaka and others, 2011). Serum Starvation will lead to the expression of late 

myogenic markers in C2C12, switching myoblasts from a proliferative state towards 

differentiation (see figure 3.1). This process is characterised by the withdrawal from cell 

cycle followed by elongation of the myoblasts and fusion of these to form 

multinucleated myotubes (Andres and Walsh, 1996; Walsh and Perlman, 1997).  

As C2C12 cells have been shown to express endogenous Klhl31 (Abou-Elhamd), we 

chose this cell line as a model to study Klhl31 expression during muscle development. 
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Figure 3.1: Schematic outline and time course of differentiation of C2C12  

(a) Multiple steps are involved in the differentiation of C2C12 myoblasts 

 

Upon starvation from growth factors C2C12 start to express the late myogenic marker myogenin 

followed by expression of p21 leading to cell cycle withdrawal. C2C12 myoblasts will then 

undergo major cytoskeletal changes including elongation and subsequent fusion to form 

multinucleated myotubes.                 

Scheme taken from (Andres and Walsh, 1996) 

 

(b) Differentiation of C2C12 myoblasts 

C2C12 were grown on coverslips and stained with DAPI to visualize DNA in the nucleus. On 

Day 0 C2C12 myoblasts are single cells, either polygonal (b’), which proliferate and upon 

growth factor removal start to elongate, indicated by * (b’’). After approximately four to five 

days of differentiation multinucleated myotubes (indicated by *) are formed (b’’’).  

 a 

 b 

 

* 

* 
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As differentiation of C2C12 is well described, both on genetic and molecular level, we use this myogenic 

cell line to study the localisation and function of Klhl31 during the cellular processes of myogenesis. 

 

3.1.2 Cytoskeletal changes during differentiation of C2C12 

 

Cytoskeletal dynamics in C2C12 myoblasts have been intensively studied. The 

cytoskeleton is involved in generating, stabilising and changing the shape of cells. 

Microfilaments, microtubules as well as intermediate filaments and cell surface 

receptors all play key roles in cytoskeletal changes (Alberts, 2008; Mermelstein and 

others, 2003).  

A major part of the cytoskeleton is composed of Actin fibres (Alberts, 2008; Pellegrin 

and Mellor, 2007; Tojkander and others, 2012). These fibres are formed by two-

stranded helices. In fibroblasts, Actin bundles are attached to each other by alpha-

actinin (Lazarides and Burridge, 1975), an Actin crosslinking protein, that is also 

involved in the organisation of Actin to the Z-discs of sarcomeres (Crawford and 

Horowits, 2011; Lazarides, 1975). Changes in Actin fibres can be mediated by 

signalling from integrins and other cell surface receptors, which interact with Actin at 

focal adhesion sites in the cell (Arora and others, 1999; Hinz, 2006; Sandbo and Dulin, 

2011). As Actin fibres are polarised structures it has been shown that various myosin 

motor proteins use the Actin fibres to transport cargo throughout the cell (Kapitein and 

Hoogenraad, 2011). 

Microtubules have also been studied as a vital part of the cytoskeleton being also 

involved in cell shape formation and stabilisation (de Forges and others, 2012; Suzuki 

and others, 2012). Microtubules are dynamic structures constantly assembling and de-

assembling to adapt to cellular changes (Alberts, 2008). They are made of α-tubulin and 

β-tubulin dimers, which polymerize to form Microtubules (Alberts, 2008). Microtubules 

also play an important role in intracellular transport (Stehbens and others, 2009). Active 

transport is carried out by motor proteins, kinesin and dynein, which travel along 

microtubules in a polarity–driven fashion. For example kinesin moves along 

microtubules in an anterograde orientation, whilst dynein moves along microtubules 

towards their minus-end (Vale, 2003; Welte, 2004) 
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The cytoskeleton undergoes various changes during differentiation of C2C12 (Ohtake 

and others, 2006). Studies carried out by immuno-fluorescence, as well as electron 

microscopy, have given detailed insight into myoblast differentiation and cytoskeletal 

changes (Burattini and others, 2004; Kontrogianni-Konstantopoulos and others, 2006). 

Analysing the Actin cytoskeleton it was shown that in undifferentiated C2C12 cells, 

Actin seems to be diffusely distributed throughout the cytoplasm with thicker Actin 

bundles appearing at the periphery of the cell (Burattini and others, 2004). Using 

antibodies against α-sarcomeric and cardiac Actin it was shown that both Actin 

isoforms are expressed at high levels in C2C12 myoblasts (Burattini and others, 2004).  

Around day two or day three of differentiation (labelled as intermediate differentiation 

stage by Burattini et al. in 2004) C2C12 cells elongate and intercellular spaces seem to 

narrow down. Phalloidin labelling revealed that the Actin fibres become denser and 

align in fibrillar orientation until Actin fibres are seen along the whole myotube 

(Burattini and others, 2004). Analysing the cytoplasm of myocytes in more detail, initial 

myofibrils can be seen by electron microscopy. Thin filament organization can be 

observed as well as premature Z-bodies (see figure 3.2). Premyofibrils have been 

described previously in C2C12 (Sanger and others, 2002). These authors also described 

structures termed minisarcomeres in C2C12 cells and avian primary muscle cells. They 

found that in differentiating primary muscle cells premature Z-bodies (termed primitive 

Actin anchoring structures by Sanger et al., 2002) are formed of alpha-actinin attaching 

Actin to itself, as well as to mini-A-bands comprising non-muscular myosin II 

filaments. 
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Figure 3.2: The intermediate differentiation stage of C2C12 

Using reverted microscopy (A) as well as scanning electron microscop y (B),  C2C12 can 

be seen to  elongate. Analysing C2C12 myocytes by t ransmission electron microscopy 

revealed the presence of premature myofibrils and Z -bodies (indicated by arrows) 

Legend: A, bar = 50 μm; B, bar = 20 μm; C, bar = 0.5 μm  

Figure taken from (Buratt ini and others, 2004) 

 

Sanger et al. further investigated the formation of mature myofibrils. Myofibrils are 

established by the alignment of primitive myofibrils (Rhee and others, 1994; Sanger and 

others, 2002). Furthermore, it was described that early Z-bodies fuse and non-muscle 

myosin II is removed from the minisarcomeres as titin and muscle myosin II are added 

to the myofibrils. Analysing fully differentiated C2C12 by transmission electron 

microscopy, sarcomeres and myofibrils can be observed as described by (Rhee and 

others, 1994; Sanger and others, 2002). 

During C2C12 differentiation the foundation is laid for the formation of mature 

sarcomeres.  In differentiated C2C12 myotubes thin and thick filament containing 

structures are already present, showing a similar organization to mature myofibrils 

(Burattini and others, 2004; Sanger and others, 2002). The differentiation process of 

C2C12 can therefore be used to study the tightly regulated process of early 

myofibrillogenesis. 
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3.1.3 Expression analysis of Klhl31 by RT-PCR  

 

We used the ability of C2C12 to differentiate into myotubes to investigate the role of 

endogenous Klhl31 during differentiation of C2C12 and fusion of myocytes into 

myotubes. After transfer of C2C12 into differentiation medium (section 2.2.21), we 

collected RNA from each day between day 0 (non-differentiated) and day 4 inclusive 

(early myotubes). Transcribing 2   of collected RNA into cDNA (section 2.2.13) we 

assessed the quality and relative quantity of the obtained cDNA by analysing the 

presence of an abundant gene, mouse β-Actin (see figure 3.3). 

 

 

Figure 3.3: Quality control of cDNA of C2C12 Differentiation time course 

cDNA obtained from C2C12 cells  undergoing different iat ion were  tested for relat ive 

quant ity and qualit y.  Using mouse β -Act in primers a 480 bp PCR product  was amplified . 

As a posit ive control for the PCR we used a previously established sample of chick 

cDNA and pr imers against  chick β -Act in amplifying a 400 bp PCR product.  Water was 

used as a negat ive control.  cDNA obtained from 3T3 mouse embryonic fibroblasts were 

used as a posit ive control for the mouse β -Act in primers.  

Legend: M - marker, + - posit ive control (chick cDNA), -  -  negat ive control,  D0- Day 0,  

D1 – Day1, D2 –  Day2, D3 – Day3, D4 – Day4 
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Examination of generated cDNA for the presence of mouse β-Actin suggested that a 

similar amount of C2C12 cDNA had been obtained for each day of the differentiation 

time course (see figure 3.3; D0-D4). We then moved on to analyse the expression of 

Klhl31 during myotube formation. 

Klhl31 expression was only detected at Day 3 and Day 4 of differentiation of C2C12 

myoblasts showing an increase in the PCR product obtained for Klhl31 as 

differentiation progressed (see figure 3.4). 

 

 

Figure 3.4: Klhl31 expression during differentiation of C2C12  

We used primers designed against  mouse Klhl31 to  detect  gene expression for Klhl31  

during C2C12 different iat ion. The predicted size for the DNA fragment  was 1177 bp. 

3T3 were used as a negat ive control.   

Legend: M - marker, D0- Day 0, D1 – Day1, D2 – Day2, D3 – Day3, D4 – Day4  

 

Klhl31 expression was not detected during early differentiation of C2C12 myocytes 

(figure 3.4; D0-D2). However, Klhl31 expression seemed to increase significantly 

during later stages of differentiation of C2C12 (see figure 3.4; D3-D4). In 3T3 mouse 

fibroblasts the Klhl31 PCR product was not detected (figure 3.4; 3T3). 

As Klhl31 mRNA levels seemed to increase after day 2 of C2C12 differentiation, we 

wondered if protein levels of Klhl31 also increase during C2C12 elongation and fusion.  

 

      M      D0    D1    D2   D3   D4    3T3 

3   kb 

2   kb 

1.5kb 

1   kb 

0.5kb 
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3.1.4 Klhl31 protein levels increased during differentiation of C2C12 

 

To investigate protein levels of Klhl31 during myotube formation, we collected protein 

samples at different time points of C2C12 differentiation as described in section 2.2.28. 

50 μg of whole protein lysate was loaded onto a 10 % PAA Gel, transferred to a PVDF 

membrane and subsequently blotted for Klhl31. The membrane was then stripped and 

re-probed with an Actin antibody as a loading control (see 2.2.35). 

The western blot against Actin revealed that similar amounts of proteins were loaded 

onto the gel (see figure 3.5). Blotting the membrane against Klhl31 showed a low level 

of Klhl31 proteins in myoblasts. However, the protein amount for Klhl31 increased 

during myotube formation (see figure 3.5; a). Stripping and reprobing the western blot 

with an anti-Actin antibody revealed loading of similar protein amounts per sample 

(figure 3.5; b). 

 

 

 

 

 

 

 

 

Figure 3.5: Klhl31 protein levels during Differentiation of C2C12  

(a) Protein lysates obtained dur ing a 5-day t ime course of C2C12 different iat ion were 

analysed by western blot incubated with an ant ibody against  Klhl31.  

(b) Blott ing against  Act in was used as a protein loading control.   

Legend: M - marker, D0- Day 0, D1 – Day1, D2 – Day2, D3 – Day3, D4 – Day4  

 

Overall, data from both the RT-PCR as well as the Western Blot revealed an increase of 

Klhl31 expression during C2C12 differentiation.  

(b) 

(a) 
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3.2 The sub-cellular localisation of Klhl31 during differentiation of C2C12 

 

3.2.1 Klhl31 was localised in the cytosol in undifferentiated C2C12, but changed its 

localisation during myotube formation 

 

Data from a recent publication reported a localisation of Klhl31 in the cytosol and 

around the nucleus of COS-7 and HeLa cells based on GFP-labelled fusion-proteins (Yu 

and others, 2008). To determine the localization of Klhl31 protein in C2C12 cells we 

used an immuno-staining approach to detect endogenous Klhl31 during a five-day time 

course of differentiation (from undifferentiated myoblasts to differentiated myotubes) of 

C2C12. It could be shown, that Klhl31 was localised in the cytoplasm of myoblasts (see 

figure 3.7: a and a’) in a punctate pattern. A potential punctate, nuclear localisation of 

Klhl31 could also be observed in some C2C12 myoblasts (see figure 3.6: a’).  In 

elongating C2C12 these puncta remained visible. Furthermore, they seemed to increase 

in quantity and then align to generate a filamentous pattern (figure 3.6: b and b’). After 

myotube formation Klhl31 puncta followed straight, well-organized lines similar to 

fibrillar structures inside the C2C12 myotubes (figure 3.6: c and c’). 
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Figure 3.6: Localization of Klhl31 protein during C2C12 differentiation 

Endogenous Klhl31 was detected with a polyclonal rabbit  ant i- human Klhl31 ant ibody 

and visualised with a secondary Alexa Fluor 488 ant ibody (green).  Nucleic DNA was 

labelled with DAPI (blue).   

Klhl31 levels changed during the differentiation of C2C12.  An increase of Klhl31 was 

observed at mRNA and protein level by PCR and Western blot. Furthermore, Klhl31 

localization was dynamic during C2C12 differentiation. These changes seem to 

correlate with major changes in the shape and structure of C2C12 cells themselves.  

 

3.2.2 Klhl31 co-localises with Actin fibres, but not with Microtubules 

 

We have seen that Klhl31 forms puncta that are organized in a linear pattern in 

differentiated C2C12 cells (figure 3.6). This organised Klhl31 localisation seems to be 

established around the time point in C2C12 differentiation that is defined by the 

changes of Actin leading to the formation of premature myofibrils. Based on the 

described localisation pattern, similar to motor proteins and previous data stating that 

members of the Kelch-like family bind to Actin (Hara and others, 2004; Robinson and 
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Cooley, 1997; Stogios and Prive, 2004), we were wondering if Klhl31 could associate 

to the cytoskeleton in C2C12 myotubes. 

We analysed the possible co-localisation of Klhl31 with cytoskeletal components using 

immuno-histochemistry. Double immuno-staining was carried out detecting Klhl31 

either together with Actin or α-tubulin in myoblasts and during the differentiation 

process of C2C12. 

Using either Texas-Red labelled phalloidin (red) or an Alexa-Fluor 488 conjugated 

phalloidin (green) we were able to reproduce the cytosolic localisation described for 

Actin in myoblasts, as well as in differentiating C2C12 myocytes (Burattini and others, 

2004). In addition, we were able to visualize the changes of the Actin cytoskeleton 

during differentiation of C2C12 mouse myoblasts (figure 3.7).  
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Figure 3.7: Klhl31 co-localizes with Actin, but only in differentiating 

myocytes 

The figure shows the localisat ion of Klhl31 and Act in in C2C12 during different iat ion. 

Endogenous Klhl31 was detected with a polyclonal rabbit  ant i-human Klhl31 ant ibody 

and visualised with a secondary Alexa Fluor 488 ant ibody (green).  Act in was visualized 

using Texas-Red-Phallo idin (red). Nuclear DNA was labelled with DAPI (blue).  Single 

channel images for either Klhl31 (d ,e,  f)  and for Act in (d’ ,e’, f’) are shown in grayscale 

and have been merged in images d’’ ,e’’ and f’’.   

Scale bars: (a, b, c) – 50 µm, (d ,e, f, d’, e’, f’, d’’, e’’, f’’) – 10 µm 

 (a,  d,  d’,  d’’) Klhl31 and Act in localisat ion in C2C12 myoblasts ( Day0) using a 20x 

object ive (a) and a 63x object ive (d ,  d’, d’’)  

(b,  e,  e’,  e’’) Klhl31 and Act in localisat ion during the intermediate stage of C2C12 

different iat ion (Day2) using a 20x object ive (b) and  a 63x object ive (e, e’, e’’)  
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 (c, f,  f’,  f’’) Klhl31 and Act in localisat ion in more mature different iat ing C2C12 (Day4) 

using a 20x object ive (c) and a 63x object ive (f,  f’,  f’’)  

 

In C2C12 myoblasts Actin fibres can be seen in the cytoplasm spanning the polygonal 

cell in a non-organised fashion, but linear pattern (figure 3.7; a and d’). However around 

day 2 of C2C12 differentiation Actin fibres elongate in correlation with elongation of 

the cells and the Actin fibres now reveal a parallel pattern, as the cell itself has now 

changed its form to resemble a more tube-like phenotype (figure 3.7; b and e’). In 

further differentiated, tube-like C2C12 myocytes the Actin fibres span the whole 

cytoplasm in a parallel pattern (figure 3.7; c and f’). Furthermore, the Actin density 

seem to have increased during differentiation, as also described by (Burattini and others, 

2004).  

In undifferentiated C2C12 myoblasts Klhl31 did not co-localize with Actin (figure 3.7; 

a and d’’). Again, a nuclear staining for Klhl31 could be observed (figure 3.7; d). 

However in more mature, differentiating C2C12 myocytes and in fully differentiated 

myotubes, Klhl31 was found to align to Actin fibres (see figure 3.7; c, f’’, figure 3.8). 

The co-localisation seemed to be established during the intermediate stage of 

differentiation (see figure 3.7; b, e’’) when the foundation for primitive myofibrils is 

laid down and Actin is incorporated into early Z-bodies (Rhee and others, 1994; Sanger 

and others, 2002). Furthermore it was again observed that the protein levels of Klhl31 

increased during C2C12 differentiation (figure 3.7; a-c). 

 

 

 

 



130 

 

 

Figure 3.8: Klhl31 co-localizes to Actin fibres in myotubes 

Endogenous Klhl31 was detected with a  polyclonal rabbit  ant i-human Klhl31 ant ibody 

and visualised with a secondary Alexa Fluor 568 ant ibody (red).  Act in was visualized 

using an Alexa-Fluor 488-Phallo idin (green).                                                                                                                       

The image was taken with a 100x object ive  of a single,  fully different iated C2C12 

myotube. Images a and b,  respect ively show single channel frames of the same myotube 

for Klhl31 (a) and Act in (b). Both single channel images were merged in image c.  

Scale bar (a, b, c) – 10 µm 

Next, the possible association of Klhl31 with microtubules was investigated. 

As before double immuno-staining was used, this time for Klhl31 and α-tubulin (see 

figure 3.9). We observed similar localisation patterns of microtubules in C2C12 

myoblasts and myotubes as described previously by Tassin (1985). Microtubules in 

C2C12 myoblasts span the whole cell with an organised network of fibres around the 

nucleus, from where the tubulin organisation centre originates. In myotubes however 

the microtubules exhibit longitudinal structures parallel to the sarcolemma (Azakir and 

others, 2010; Tassin and others, 1985).  
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Figure 3.9: Klhl31 might co-localize with microtubules 

Endogenous Klhl31 was detected with a polyclonal rabbit  ant i-human Klhl31 ant ibody 

and visualised with a secondary Alexa Fluor 568 ant ibody (red).  Mic rotubules were 

detected with a rat  ant i-α-tubulin ant ibody and visualized with a secondary Alexa -Fluor 

488 ant ibody (green). Nuclear DNA was labelled with DAPI (blue).  

Scale bar (a, b) – 10 µm 

 

 

Klhl31 co-localization with microtubules was not as clear as seen for Klhl31 with Actin, 

either in C2C12 myoblasts or in differentiating myocytes (see figure 3.9; a, b). Most of 

the Klhl31 did not seem to co-localise with α-tubulin. However some yellow 

fluorescence signal was observed indicating a close localisation of Klhl31 and 

microtubules. Co-localisation is difficult to analyse using an upright microscope and 

confocal images would help investigating the interaction of Klhl31 with microtubules 

during C2C12 differentiation. As we did not observe a strong close alignment of Klhl31 

to α-tubulin in C2C12 cells as compared to seen co-localisation for Klhl31 and Actin, 

we therefore assumed that Klhl31 is mainly associated with the Actin cytoskeleton. 
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To further investigate the relationship between Klhl31 and Actin, we decided to analyse 

the effects of Latrunculin B on both the Actin cytoskeleton and Klhl31. 

 

3.2.3 Latrunculin B treatment of C2C12 myoblasts disrupts Klhl31 localisation 

 

Latrunculin A and latrunculin B are both toxins that are produced by red sea sponges of 

the latrunculia family (I. Neeman, 1975; Spector and others, 1983). One molecule of 

latrunculin can bind one Actin monomer and prevent it from polymerising (Coue and 

others, 1987; Spector and others, 1983). Not only is Actin -polymerisation disabled by 

latrunculin A and latrunculin B, both drugs also depolymerise the existing Actin-

cytoskeleton. The process is fast and reversible after latrunculin removal (Coue and 

others, 1987; Morton and others, 2000; Spector and others, 1983). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3.1: Optimization of Latrunculin B experiments 

As we have not  used Latrunculin B on C2C12 before,  we first  opt imized t reatment  

condit ions for each cell culture type, C2C12 myoblasts (table 3.1a) and C2C12 myotubes 

(table 3.1b) .  We tested various concentration, as well as different  incubat ion t imes with 

the drug and different  recovery t ime after treatment  to find the best  sett ings to carry out 

the final experiments.  The table shows how experiments were planned and the results we 

gathered from it .  The table also contains informat ion about  the microscopy sett ings used 

for image acquisit ion.  

 
Abbreviations: LaB – Latrunculin B
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table 3.1a experimental settings 
 

microscope setting results 

Number cells dish 

concen-

tration 

LaB 

(2mM 

stock) 

treatment  

time 

(min) 

recovery 

time    (min) 
negatives control Fix 

GFP 

exposure 

time 

568 

exposure 

time 

objective     

1 

titration 

C2C12 

growth 

12 

well/ 

1ml 

1:10000         

1:5000         

1:2000 

15/30 

15/30        

15 

60   

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

1.9 sec 14 sec 20x/100x 

C2C12 loose actin 

and recover, best 

choice 1:2000 for 15 

min 

2 
C2C12 

growth 

12 

well/ 

1ml 

"1:2000" 15 60 
phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

4 sec 

non-

treated/ 

12 sec 

treated 

10 sec 

fixed 
20x/100x 

C2C12 loose actin 

but Klhl31 needs 

more recovery time 

3 
C2C12 

growth 

12 

well/ 

1ml 

"1:2000" 15 
30/60/120/   

180/240/300 

phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

no GFP 
17 sec 

fixed 
20x/100x 

fixing did not work/ 

phalloidin not visible 

4 
C2C12 

Growth 

12 

well/ 

0.5ml 

 "1:2000" 15 60/180/300 
phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

8 sec 
18 sec 

fixed 
100x 

Actin recovers after 

1 h, Kelchlike 31 

after 3 h 

5 
C2C12 

growth 

12 

well/ 

0.5ml 

 "1:2000" 15 60/180/300 
phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

7 sec 
18 sec 

fixed 
20x/100x 

Double Immuno 

Klhl31/ Actin 

QUANTIFICATION 
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table 3.1b experimental settings 
 

microscope setting results 

Number cells dish 

concen-

tration LaB            

(2mM 

stock) 

treatment  

time 

(min) 

recovery 

time    

(min) 

negatives control Fix 

GFP 

exposure 

time 

568 

exposure 

time 

objective 
   

1 

titration 

C2C12 

Diff 

12 

well/ 

1ml 

1:5000         

1:2000         

1:1000 

30                   

15/30        

15/30 

60   

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

2 sec 11 sec 20x/100x 
C2C12 loose actin 

and do not recover 

2 
C2C12 

Diff 

12 

well/ 

1ml 

"1:1000" 

"1:2000" 
15/30 60 

phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

no GFP 
14 sec 

fixed 
20x/100x 

fixing did not work/ 

phalloidin not visible 

3 
C2C12 

Diff 

12 

well/ 

1ml 

"1:1000" 

"1:2000" 
15/30 60 

phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

3-5 sec 
8 sec 

fixed 
20x/100x 

different PFA, 

1:2000 LaB 15 min- 

cells recover 

4 
C2C12 

Diff  

12 

well/ 

0.5ml 

 "1:2000" 15 60/180/300 
phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

2.5 sec 
12 sec 

fixed 
100x 

Actin did not 

completely recover 

after 5h, Klhl31 

seems to have been 

affected by LaB 

treatment, 

accumulations 

5 
C2C12 

Diff  

12 

well/ 

0.5ml 

 "1:2000" 15 60/180 
tubulin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

4-5 sec 
14 sec 

fixed 
20x/100x 

Double Immuno 

Klhl31/ alpha 

Tubulin 



135 

 

6 
C2C12 

Diff  

12 

well/ 

0.5ml 

 "1:2000" 15 60/180/300 
phalloidin 

only 

non 

treated 

C2C12 

PFA + 

0.25% 

Triton 

X-100 

4-5 sec 
15 sec 

fixed 
20x/100x 

Double Immuno 

Klhl31/ Actin 

QUANTIFICATION 
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We tested the best conditions for Latrunculin B treatment in both C2C12 myoblasts and 

myotubes, but later only used Latrunculin B to disrupt the Actin components of the 

cytoskeleton in C2C12 myotubes, as we could only see co-localisation of Klhl31 to 

Actin in differentiated C2C12.  Firstly the best conditions for usage of Latrunculin B on 

fully differentiated C2C12 cells were tested (see table 3.1b). We found that completely 

disrupting the Actin cytoskeleton (table 3.1; number 1; 1/1000 dilution of 2 mM stock: 

2 μM for 30 minutes; Phalloidin-staining gave only background signal, but no Actin 

fibres were visualised) led to a non-recoverable collapse of cell structures followed by 

detachment of the C2C12 myotubes from the coverslips, potentially due to cell death 

(see figure 3.10: b, c). However, in cells that remained attached to the coverslips, the 

immuno-staining revealed a dense accumulation of Klhl31 protein in the condensed 

cytosol. In the periphery of the cells, Klhl31 protein could still be seen to have the 

previously observed punctate phenotype, although more condensed (figure 3.10: b’, c’) 

 

Figure 3.10: Latrunculin B treatment of C2C12 myotubes 

C2C12 myotubes after 5 days of different iat ion were t reated with 2μM of Latrunculin B 

for 30 minutes and then left  to  recover for further 60 minutes.  Cells were then processed 

for Immuno-histochemistry.  (a,  b,  c) Endogenous Klhl31 was detected with a polyclonal 
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rabbit  ant i-human Klhl31 ant ibody and visualised with a secondary Alexa Fluor 568 

ant ibody (red).  (a’,  b’,  c’) Actin was visualised using Alexa Fluor 488-conjugated 

Phallo idin (green) . Nuclear DNA was labelled with DAPI (blue).  Pictures a’’-c’’ are 

merged images for Klhl31 and Act in.  

Scale bar (a-c’’) – 10 µm 

 

C2C12 myotubes treated with high concentration of Latrunculin B did not recover from 

the loss of the Actin cytoskeleton. However, Klhl31 could still be detected with high 

levels in the cytosol of the cells (figure 3.10: c, c’’). The observed high levels of Klhl31 

were potentially due to concentration of the cytosol due to cell structure collapse. 

Differentiated myotubes seemed to break down without the Actin fibres, which led to a 

rounded cell phenotype (see figure 3.10: b, c). Similar observations were made by other 

groups, when using Actin-depolymerising drugs (Nowak and others, 2009). 

 

Previous data suggested that treatment of differentiating C2C12 with Latrunculin B led 

to elongation of C2C12, whilst fusion of the cells was inhibited due to loss of Actin and 

therefore lack of filopodia and lamellipodia formation (Nowak and others, 2009). 

Furthermore it was shown that cell migration was negatively affected. Nowak et al. also 

reported that after treating differentiated C2C12 with either Latrunculin B or 

cytochalasin D, they could observe large, rounded myoblast bodies. These authors 

claimed that this phenotype appeared because cell contact with the dish or coverslip was 

diminished, but these cells were not undergoing apoptosis (Nowak and others, 2009).  

 

Complete Actin repolymerisation was never observed, when using Latrunculin B at a 

concentration of 2 μM for 30 minutes. Once the Actin fibres were depolymerised 

C2C12 cells did not re-establish their cell shape and kept the rounded appearance. Also, 

treated C2C12 cells seemed to lose the attachment to the coverslip and were washed off 

during the immuno-staining preparation steps. 

Based on these findings, we therefore decided to use lower concentrations of 

Latrunculin B preventing complete depolymerisation of Actin fibres in differentiating 

myocytes and potentially allowing repolymerisation to occur. The best condition for 

incomplete depolymerisation of Actin fibres was determined as treatment of myocytes 

with 1 μM Latrunculin B (1/2000 dilution of a 2mM stock) for 15 minutes (see table 

3.1b, experiment number 3). However, the effects of Latrunculin B treatment were 
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variable. Some C2C12 myotubes were affected more by Latrunculin B and therefore 

lost more Actin fibres compared to others. In general, a high percentage of C2C12 

differentiated cells (>70%) were left with enough Actin fibres to be able to recover, and 

all treated and processed cells on coverslips were shown to rebuild their Actin 

cytoskeleton in a time course of up to five hours (figure 3.11, c-e).  
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Figure 3.11: Latrunculin B treatment of C2C12 myotubes leads to the disorganisation of Klhl31 localisation  

 

 
   

* 

* 

* 
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Figure 3.11: Latrunculin B treatment of C2C12 myotubes leads to the 

disorganisation of  Klhl31 localisation 

Differentiated C2C12 myotubes were treated with 1μM Latrunculin B for 15 minutes (b). Treated cells 

were fixed and processed for immuno-staining (b) or left to recover from 1-5 hours in fresh medium (c-e) 

and then fixed and stained. Untreated C2C12 were processed as controls (a). Endogenous Klhl31 was 

detected with a polyclonal rabbit anti- human Klhl31 antibody and visualised with a secondary Alexa 

Fluor 568 antibody (red). Actin was visualised using an Alexa Fluor 488-conjugated Phalloidin (green). 

Nucleic DNA was labelled with DAPI (blue), but the DAPI channel is not enabled in magnified images 

(a’-e’). Images were taken with a 63x objective.                                                                                                                                                                         

 

In untreated C2C12 myotubes Klhl31 was shown to associate to Actin fibres (figure 

3.11; a). Treatment with Latrunculin B lead to a slight reduction of the Actin 

cytoskeleton and the loss of Klhl31 localisation to Actin fibres (figure 3.11: b), as well 

as a general disorganized accumulation of Klhl31 in the cytosol (figure 3.11: b’, *). 

These Klhl31 accumulations (potentially indicating Klhl31 protein aggregates (figure 

3.11: b’, c’, e’) were observed at any stage during a recovery time course of up to 5 

hours. Although C2C12 myotubes recovered and their Actin fibres repolymerized (see 

figure 3.11: c-e), Klhl31 did not seem to re-localise to the newly build fibres, rather 

Klhl31 protein remained cytosolic still displaying a disorganized distribution and 

cytosolic protein aggregates (figure 3.11: c-e). 

Having characterised Klhl31 during C2C12 myotube formation, we then decided to 

investigate potential interaction partners for Klhl31. Finding interacting proteins would 

help us to further analyse a role for Klhl31 during C2C12 differentiation. 
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4. Generation of Klhl31- fusion proteins as tools to study 

function in C2C12 

 

4.1 Introduction 

 

4.1.1 Structure and function of proteins of the Kelch-like family 

 

Kelch-like proteins all show the same structural properties (see figure 4.1). They have 

three main functional domains: The amino-terminal broad complex/ tram-track/ bric-a-

brac (BTB) or poxvirus and zinc finger (POZ) domain, a central linking domain, called 

the BACK domain and the carboxy-terminal Kelch repeats (Stogios and others, 2005; 

Stogios and Prive, 2004). Various members of the Kelch -like protein family have been 

shown to bind to Actin via their Kelch β-propeller (Aromolaran and others, 2009; 

Aromolaran and others, 2012; Kelso and others, 2002), whilst the BTB-domain is 

involved in binding substrate proteins as part of E3 Ubiquitin Ligase complexes 

(Furukawa and others, 2003; Geyer and others, 2003; Stogios and others, 2005; Xu and 

others, 2003).  Also, via their BTB-domain, Kelch-like proteins have been shown to 

form homodimers (Geyer and others, 2003).  

 

 

Figure 4.1: Structure of Klhl31 

Human and chick Klhl31 have been reported to display an N-terminal BTB domain (light blue), a central 

BACK domain (beige) and 6 C-terminal Kelch repeats (light violet) (Abou-Elhamd and others, 2009; Yu 

and others, 2008). 

 
        Kelch-like 

repeats 
BTB BACK 
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Klhl31 was identified in zebrafish and a human and a chick homologue was reported 

recently (Abou-Elhamd and others, 2009; Wu and Gong, 2004; Yu and others, 2008). 

Both, human and chick Klhl31 encode a protein of 634 amino acids with a predicted 

size of 70 kDa (Abou-Elhamd and others, 2009; Yu and others, 2008). Furthermore, 

sequence analysis revealed that chick and human Klhl31are highly conserved displaying 

84.4% sequence homology (Abou-Elhamd).  

 

4.2 Results 

 

4.2.1 Cloning and analysis of an amino-terminal GFP-Klhl31 Fusion-protein 

 

Previous work in our laboratory described the expression of Klhl31 in developing chick 

embryos and also examined how the expression was regulated during myogenesis 

(Abou-Elhamd; Abou-Elhamd and others, 2009). By analysing the localisation of 

Klhl31 in C2C12, we found that Klhl31 seems to localise to the Actin cytoskeleton, but 

only in differentiated myotubes (figure 3.9). This co-localisation was established at a 

stage of differentiation (see figure 3.8), which was proposed to lead to changes in the 

Actin cytoskeleton in formation of primitive myofibrils (Burattini and others, 2004; 

Kontrogianni-Konstantopoulos and others, 2006; Sanger and others, 2002).   

We decided to generate GFP-Fusion proteins of Klhl31, which would enable us to use it 

as a tool to study interactions in the C2C12 cell line by analysing localisation patterns, 

as well as studying protein dynamics using live-imaging. Another approach could also 

be to find direct interaction partners of Klhl31 by using the GFP as an anchor that can 

be pulled down with an immobilized GFP-binding protein (GBP)  (Angers and others, 

2006). 

Kelch-like proteins have two distinct structural domains, which both have specific 

function in binding substrates: the BTB domain at the amino terminus and the Kelch 

repeats at the C-terminus (Stogios and others, 2005). Preliminary data for Klhl31 

suggests that both domains are necessary for the functionality of Klhl31, although the 
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BTB-domain seems to be the domain that is involved in binding substrates destined for 

ubiquitinylation and subsequently proteasomal degradation. 

We created a fusion protein, which would have an EGFP-tag attached at the Klhl31 

amino-terminus to the BTB-domain of the protein (see scheme in figure 4.2). As vector 

backbone, we used the pEGFP-C1 vector (Clontech Laboratories Inc., Mountain View, 

CA, USA). A full-length version of Klhl31 (EGFP-Klhl31 FL, 1.9 kb), as well as a 

mutant version lacking the Kelch-repeat domains (EGFP-Klhl31 ΔKR, 0.9kb) were 

cloned from chick cDNA. A second mutant with deletion of the BTB domain (EGFP-

Klhl31 ΔBTB, 1.4 kb) was previously generated and sub-cloned from pCaβ Klhl31 

ΔBTB IRES-GFP. For the cloning protocol and primers, see section 2.2.16. 

 

 

Figure 4.2: Schematic representation of EGFP-Klhl31 fusion proteins 

We created Klhl31 fusion protein tagged with an N-terminal EGFP-protein. EGFP-Klhl31 FL comprising 

of the full length protein sequence of Klhl31 fused to the EGFP-tag, whilst the EGFP-Klhl31 ΔBTB 

protein lacks the N-terminal BTB binding domain. The EGFP-Klhl31 ΔKR protein does not include the 

Kelch-repeats.  

 

Once the sequences were verified (see Appendix), we transfected C2C12 myoblasts 

with the different pEGFP-C1-Klhl31 constructs and examined GFP-expression in 

C2C12 myoblasts and myotubes. 

 
        Kelch-like 
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BTB BACK 
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Figure 4.3: Overexpression of pEGFP-C1 Klhl31 constructs in C2C12 

C2C12 were transfected with either pEGFP-C1 (a, e), pEGFP-C1 Klhl31 FL (b, f), pEGFP-C1 Klhl31 

ΔBTB (c, g) or pEGFP-C1 Klhl31 ΔKR (d, h), respectively. Transfected cells were either fixed after 24 h 

in growth medium (GM, a-d) or left to differentiate for 5 days in differentiation medium (DM, e-h). 

Figure showing grayscale images for Klhl31 only (a-h) and merged with DAPI to further visualize 

cellular localisation (a’-h’). 

Scale bar (a – h’) – 10 µm 

 
The N-terminal pEGFP-C1 Fusion-protein of Klhl31 did not recapitulate the observed 

localisation of endogenous Klhl31 to the Actin-cytoskeleton (figure 3.7). Instead, 

EGFP-Klhl31 FL and EGFP-Klhl31 ΔBTB protein (see figure 4.3: b, c, f and g) both 

showed a localisation that is similar to that described for inclusion bodies (Goldberg, 

2003) or lysosomes (Chimote and others, 2012), which contain misfolded proteins. The 

potential vesicular localisation can observed strongly for EGFP-Klhl31 FL in C2C12 

myotubes, where the accumulation of GFP-fluorescent protein was seen to localise 

around multiple nuclei, which themselves are close together (figure 4.3; f). Furthermore, 
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nuclei appeared to be enlarged in transfected C2C12, which might be due to increased 

stress on cultured cells or might indicate diminished health of used C2C12 myoblasts.  

Non-functional proteins stored in vesicles are usually subsequently degraded by the 

proteasome (Goldberg, 2003; Tyedmers and others, 2010). Observing both the full 

length Klhl31 protein as well as the BTB mutant of Klhl31 in structures resembling 

vesicles potentially containing misfolded proteins, suggested the possibility that our 

fusion-proteins are non-functional and therefore degraded by the cell.  The ΔKR mutant 

could be seen to be mainly cytosolic (figure 4.3: d, h). As the Kelch-repeats have been 

shown to be responsible for the binding of Kelch-like proteins to Actin (Adams and 

others, 2000; Aromolaran and others, 2009; Aromolaran and others, 2012; Kelso and 

others, 2002), it might be that the loss of the kelch-propeller is responsible for the 

diffuse cytosolic localisation. 

To test the functionality of the fusion proteins, we then used a Luciferase assay 

approach. 

It has been shown in our laboratory that Klhl31 can antagonize β-catenin dependant 

Wnt-signalling (Abou-Elhamd). In a Luciferase reporter assay, it was shown that Klhl31 

full length and Klhl31 ΔKR can both inhibit the Wnt-3a mediated induction of a 

LEF/TCF responsive promoter (TOPFLASH, kindly given to us by R. Moon), which 

drives luciferase expression. Klhl31 ΔBTB was not able to do so. Inducing LEF/TCF 

luciferase reporter vectors by β-catenin also induced the expression of luciferase, which 

was inhibited by around 20% by both Klhl31 FL, as well as Klhl31 ΔKR. Klhl31 ΔBTB 

was again not able to antagonize β-catenin induced luciferase activity (see figure 1.13).  
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Figure 4.4: Analysing the pEGFP-C1 Klhl31 constructs by Luciferase assay 

3T3 cells were transfected with either pEGFP-C1, pEGFP-C1 Klhl31 FL, pEGFP-C1 Klhl31 ΔBTB, 

pEGFP-C1 Klhl31 ΔKR, as well as either TOPFLASH or FOPFLASH vector, β-catenin and Renilla as 

internal control. Error bars were calculated based on the standard deviation. Signal strength is indicated in 

% compared to Luciferase signal of 3T3 cell transfected with vector only (set as 100%). As a positive 

control we used pCaβ-GFP (as vector only) and pCaβ-GFP Klhl31FL encoding for an untagged Klhl31 

FL protein. Luciferase reporter activity was inhibited by 18% by pCaβ-GFP Klhl31 FL, which was shown 

to be statistically significant (*).This experiments was carried out three times, which each sample being 

prepared and measured as triplicates (n=9) 

 

Compared to the results of Luciferase assays for Klhl31 carried out previously (Abou-

Elhamd), the pEGFP-C1 constructs did not reproduce inhibition of β-catenin induced 
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Luciferase activity. In fact, pEGFP-Klhl31 FL seemed to enhance the Luciferase signal 

and pEGFP-Klhl31 ΔKR and pEGFP-Klhl31 ΔBTB were both not able to inhibit β-

catenin induced Luciferase reading to a statistical significance (see figure 4.4).  

Unfortunately the Luciferase reading varied extensively between experiments, which 

could potentially be explained by contamination or other issues related to the used 

pEGFP-C1 vector. Therefore obtained data is preliminary and issues associated with the 

plasmids need further investigation. The BTB domain has previously been described to 

be the mediator of the biological function of Kelch-like proteins (Albagli and others, 

1995; Geyer and others, 2003; Perez-Torrado and others, 2006; Pintard and others, 

2003; Xu and others, 2003). It is possible that this might also be the case for Klhl31. 

This would be consistent with the finding that the loss of the BTB-domain after deletion 

renders the protein unable to inhibit canonical Wnt signalling (Abou-Elhamd). The sub-

cellular localisation of EGFP-Klhl31 fusion proteins did not recapitulate the localization 

of endogenous Klhl31 protein (compare figure 4.4 and 3.5), indicating that the GFP 

may interfere with the function of Klhl31, potentially by interfering with the BTB 

domain. 

 

In summary, both the overexpression experiment in C2C12 as well as the results 

obtained from the Luciferase Assay indicated that the pEGFP-C1 Klhl31 Fusion 

constructs did not produce a functional Klhl31 protein and could therefore not be used 

to investigate potential interaction partners. 

 

4.2.2 Cloning and Analysis of carboxy-terminal DsRed- or GFP-Klhl31 Fusion-protein 

 

 

Next, we decided to generate fusion-proteins with the tag placed at the carboxy terminus 

of Klhl31 adjacent to the kelch repeats (unless deleted). We used pEGFP-N1 or 

pDsRed-N1 vectors (Clontech Laboratories Inc., Mountain View, CA, USA) to 

construct plasmids encoding the following proteins : Klhl31 FL-GFP/DsRed, Klhl31 

ΔBTB-GFP/DsRed or Klhl31 ΔKR-GFP/DsRed (see figure 4.5). We amplified the 

constructs from cDNA (for Klhl31 FL, Klhl31 ΔKR) or from pCaβ Klhl31 ΔBTB 

IRES-GFP, as described in chapter 2.2.16. 
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Figure 4.5: Schematic representation of C-terminal EGFP or DsRed Klhl31 

fusion proteins 

Klhl31 Fusions proteins were generated comprising an EGFP or DsRed tag at the carboxy terminus of the 

Klhl31 protein. Klhl31FL-EGFP/DsRed contains all binding domains of Klhl31, whilst Klhl31ΔBTB-

EGFP/DsRed is lacking the N-terminal BTB domain. Deletion of the C-terminal Kelch-repeats leads to 

the generation of Klhl31ΔKR-EGFP/DsRed. 

 

The functionality of the C-terminal fusion proteins was examined by Luciferase assay. 
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Figure 4.6: Analysing the pDsRed-N1 Klhl31 constructs by Luciferase assay 

3T3 cells were transfected with either pDsRed-N1, pDsRed-N1Klhl31 FL, pDsRed-N1Klhl31 ΔKR, 

pDsRed-N1 Klhl31 ΔBTB, as well as either TOPFLASH or FOPFLASH vector, β-catenin and Renilla as 

internal control. As a positive control we used pCaβ-GFP (as vector only) and pCaβ-GFP Klhl31FL 

encoding for an untagged Klhl31 FL protein. Luciferase reporter activity was normalised against pCaβ-

GFP and was shown to be inhibited by 22% by pCaβ-GFP Klhl31 FL, which was statistically significant 

(*) 

The data shown is based on four experiments each carried out in triplicates (n=12). Error bars were 

calculated based on the standard deviation. Signal strength is indicated in % compared to Luciferase 

signal of 3T3 cell transfected with β-catenin and vector only (set as 100%). 
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Klhl31 FL-DsRed was able to inhibit β-catenin induced Luciferase signal by around 

20%. The observed inhibition was statistically significant (* p<0.05). Data shown is 

similar to previous data obtained with pCaβ Klhl31 FL IRES-GFP, which does not 

generate a fusion protein (see figure 1.13). A similar inhibition could be observed when 

transfecting 3T3 cells with β-catenin, TOPFLASH vector and pDsRed-N1 Klhl31 ΔKR, 

again consistent with results obtained with non-tagged Klhl31 ΔKR. Klhl31 ΔBTB-

DsRed was not able to reduce β-catenin induced Luciferase signal significantly, as 

previously described (Abou-Elhamd). This indicated that C-terminal fusion did not 

negatively affect Klhl31 functionality. 

We therefore transfected C2C12 myocytes with these constructs to analyse the 

localisation of fusion proteins in the cells (see figure 4.7).  
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Figure 4.7: Overexpression of pDsRed-N1 Klhl31 constructs in C2C12 

C2C12 were transfected with either pDsRed-N1 (a, e), pDsRed-N1 Klhl31 FL (b, f), pDsRed-N1 Klhl31 

ΔBTB (c, g) or pDsRed-N1 Klhl31 ΔKR (d, h), respectively. Transfected cells were either fixed after 24 

h in growth medium (GM) or left to differentiate for 5 days in differentiation medium (DM). Images a’-h’ 

show localisation of the fusion proteins in relation to the nuclei (DAPI, blue). 

Scale bar (a - h’) – 10 µm 

 

Although the dsRed-N1 Klhl31 constructs were shown to be active in Luciferase assay, 

they could only partially reproduce the localisation of Klhl31 in C2C12 when compared 

to localisation of endogenous Klhl31 in C2C12 myoblasts. Non-transfected C2C12 cells 

used as a negative control during the imaging process showed a moderately strong red 

background signal (as described in section 2.2.26 making it rather difficult to 

distinguish between real DsRed-signal and auto-fluorescence. Although the red 

fluorescence for Klhl31 FL-DsRed and Klhl31 ΔKR-DsRed was barely stronger then 

C2C12 auto-fluorescence, Klhl31 FL-DsRed in undifferentiated C2C12 could be 

observed to display a cytosolic localisation (figure 4.7; b and d, respectively) similar to 

the one observed of endogenous Klhl31 (see figure 3.6). Klhl31 ΔKR-DsRed was also 
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observed to be localised in the cytosol of the myoblast similar to Klhl31 FL-DsRed. 

Interestingly the localisation pattern of Klhl31 ΔBTB-DsRed resembled strongly the 

localisation observed for pEGFP-C1 Klhl31 FL (figure 4.3; b). Protein expressed by the 

DsRed-N1 Klhl31 ΔBTB construct seemed to be accumulated in vesicles surrounding 

the nucleus (figure 4.7; c).  

 

Overexpression of the pDsRed-N1 Klhl31 constructs in differentiating C2C12 myocytes 

was even harder to analyse, as the red auto-fluorescence of C2C12 was even stronger in 

myocytes than in myoblasts. Also, it had previously been shown that expression of 

plasmid DNA decreases significantly after three days of C2C12 differentiation (Dodds 

and others, 1998). No fluorescence signal above background level was observed for 

Klhl31 FL-DsRed and Klhl31 ΔKR-DsRed (figure 4.7; f, h), whilst Klhl31 ΔBTB-

DsRed was still observed to be accumulated in vesicles around nuclei (figure 4.7; g). 

Not only could the lack of signal be due to a very strong background signal, the DsRed-

N1 vector itself can lead to some extent to diminished fluorescence, as it has been 

shown that the folding itself of the DsRed-tag takes significantly longer compared to a 

GFP tag, which might have also been a cause for the absent Klhl31-DsRed signal.  

 

The characterisation of the cloned pDsRed-N1 Klhl31 constructs using Luciferase 

reporter assays indicated the production of functional Klhl31 proteins with a C-terminal 

DsRed tag, either as a full length protein or as a Klhl31 mutant lacking the Kelch-

repeats (figure 4.6). Also proteins encoded by the pDsRed-N1 Klhl31 FL and pDsRed-

N1 Klhl31 ΔKR plasmids displayed a cytosolic, punctate localisation in the cytosol of 

C2C12 myoblasts (figure 4.7; b, d) comparable to the localisation of endogenous Klhl31 

(figure 3.8). 

Transfection of pDsRed-N1 Klhl31 ΔBTB expressing a protein lacking the BTB-

domain was not able to inhibit β-catenin induced Luciferase activity (see figure 4.7) and 

seemed to accumulate into vesicles (figure 4.7; c, g) both in C2C12 myoblasts, as well 

as after induced differentiation for about 5 days. Klhl31 FL-DsRed or Klhl31 ΔKR-

DsRed was never detected in differentiating C2C12 myocytes.  

 

As we could not investigate the localisation of Klhl31-DsRed tagged proteins in C2C12, 

we decided to analyze generated Klhl31-GFP expressing constructs.  

The pEGFP-N1 Klhl31 constructs were first examined by the luciferase assay. 
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Figure 4.8: Analysing the pEGFP-N1 Klhl31 constructs by Luciferase assay 

3T3 cells were transfected with either pEGFP-N1, pEGFP-N1Klhl31 FL, pEGFP-N1 Klhl31 ΔKR, 

pEGFP-N1 Klhl31 ΔBTB, as well as either TOPFLASH or FOPFLASH vector, β-catenin and Renilla as 

internal control.  As a positive control we used pCaβ-GFP (as vector only) and pCaβ-GFP Klhl31FL 

encoding for an untagged Klhl31 FL protein. Luciferase reporter activity was normalised against pCaβ-

GFP and was shown to be inhibited by 18% by pCaβ-GFP Klhl31 FL, which was statistically significant 

(*). Data is based on three experiments each carried out in triplicates (n=9). Error bars were calculated 
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based on the standard deviation. Signal strength is indicated in % compared to Luciferase signal of 3T3 

cell transfected with pEGFP –N1 vector and β-catenin only (set as 100%).  

 

The obtained data from the Luciferase assay showed the expression of potential active 

proteins for all three cloned constructs (figure 4.8). Klhl31 FL-GFP, as well as Klhl31 

ΔKR-GFP inhibited β-catenin induced Luciferase activity by around 20%. Again this 

inhibition was statistically significant (*p <0.05). 

Similar percentage of inhibition have been described previously for Klhl31 FL-DsRed 

and  Klhl31-DsRed ΔKR (see figure 4.6), as well as for untagged Klhl31 full length 

protein and Klhl31 ΔKR protein (Abou-Elhamd). 

Surprisingly, pEGFP-N1 Klhl31 ΔBTB was also shown to inhibit β-catenin by around 

12%. This inhibition was shown to be statistically significant as well (p<0.05). 

However, this experiment is still consistent with the previous observations, which 

indicated that loss of the BTB-domain leads to the potential loss of function of Klhl31. 

 

As we could verify the activity of all our pEGFP-N1 Klhl31 constructs, we then 

transfected C2C12 with these constructs and analysed the localisation of the GFP-

Fusion proteins in myoblasts and myocytes. 
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Figure 4.9: Overexpression of pEGFP-N1 Klhl31 constructs in C2C12 

C2C12 myoblasts were transfected with either pEGFP-N1 (a, e), pEGFP-N1 Klhl31 FL (b, f), pEGFP-N1 

Klhl31 ΔBTB (c, g) or pEGFP-N1 Klhl31 ΔKR (d, h), respectively. Transfected cells were either fixed 

after 24 h culturing in growth medium (GM) or left to differentiate for 5 days in differentiation medium 

(DM).  Images a’-h’ show the localisation of the Fusionprotein in comparison to nuclear staining (DAPI, 

blue). 

Scale bar (a -h’) – 10 µm 

 

Overexpression studies of the pEGFP-N1 constructs revealed a similar localisation as 

described for the dsRed-N1 constructs. Klhl31 FL-GFP could be observed as having a 

punctate localisation pattern in C2C12 myoblasts (figure 4.9; b). However, the puncta 

appear larger compared to endogenous Klhl31 (figure 3.7). Klhl31 ΔKR-GFP (figure 

4.9; d) was observed to display a cytosolic localisation in C2C12 myoblasts comparable 

to localisation of GFP expressed from the parental vector (figure 4.9; a), whilst Klhl31 

ΔBTB was again observed in to localise into vesicular structures surrounding the 

nucleus (figure 4.9; c), as previously described for Klhl31 ΔBTB-DsRed (figure 4.7; c). 
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In differentiating myocytes a diffused punctate localisation was observed for Klhl31 

FL-GFP (figure 4.9; f), again unlike the localisation described for endogenous Klhl31 

(figure 3.7). However, most of the times differentiating C2C12 myocytes did not reveal 

any GFP signal indicating the absence of GFP-tagged Klhl31 protein, as seen for Klhl31 

ΔBTB-GFP and Klhl31 ΔKR-GFP (figure 4.9; g and h, respectively).  
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4.3 Biochemical analysis of the Klhl31-GFP/DSRED Fusion proteins 

 

4.3.1 Investigating the stability of Klhl31 Fusion proteins 

 

 

It was not clear why we could only see a weak signal of overexpressed fusion-proteins 

in proliferating C2C12 myoblasts. Next, we wanted to analyze if we could detect Klhl31 

protein on a western blot, which would help us to investigate a possible degradation of 

Klhl31 when over-expressed in C2C12 myoblasts. We transfected C2C12 with the 

pEGFP-N1 Klhl31 FL construct as the encoded protein was shown to be functionally 

active and seemed to resemble the localisation pattern as observed for endogenous 

Klhl31. Also, we would then be able to detect proteins on a western blot with either a 

GFP antibody or Klhl31 antibody. Unfortunately we were not able to detect Klhl31 

proteins on a western blot (data not shown), neither when using a polyclonal anti-GFP 

antibody or with a polyclonal anti-Klhl31 antibody. This was surprising as we could test 

the constructs for their functionality and were able to look at their localisation in C2C12 

myoblasts. To increase the transfection efficiency and hopefully be able to express a 

higher amount of proteins, we then decided to use a different cell line to transfect 

Klhl31 overexpression constructs into; 3T3 mouse fibroblasts cells. These cells do not 

express endogenous Klhl31 (figure 3.3). But again, we could not detect the fusion-

proteins on a western blot, although GFP only was detected (see figure 4.10). 
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Figure 4.10: Western blot of cell lysates obtained from 3T3 cells transfected 

with plasmids encoding GFP-Klhl31 FL and Klhl31 FL-GFP 

Protein lysates were obtained from cells transfected with pEGFP-C1, pEGFP-C1 Klhl31 FL, pEGFP-N1 

or pEGFP-N1 Klhl31 FL and run on a PAA-Gel, transferred to a PVDF membrane and blotted with a 

GFP polyclonal antibody.  

Legend: M- Marker, lane 1-4; Protein lysates: 1 – 3T3 cells transfected with pEGFP-C1, 2 – 3T3 cells 

transfected with pEGFP-C1 Klhl31, 3-3T3 cells transfected with pEGFP-N1, 4 – 3T3 cells transfected 

with pEGFP-N1 Klhl31 FL. The Actin band (loading control) can be observed at around 50 kDa. 

 

Analysing proteins lysates from 3T3 mouse fibroblasts overexpressing GFP only 

(pEGFP-C1 and pEGFP-N1), GFP-Klhl31 FL or Klhl31 FL-GFP revealed that GFP was 

detected in both cell lines transfected with the empty vectors, while GFP was never 

detected in cells transfected with any of the GFP-Klhl31 Fusion proteins (figure 4.10). 

It has been shown that Kelch-like proteins form homodimers (Geyer and others, 2003), 

but could Klhl31 dimerize with another Klhl31 protein? And could this homodimers be 

involved in targeting Klhl31 for degradation? 
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4.3.2 Klhl31 could initially be degraded via a proteasome-independent process 

 

 

To investigate a potential degradation of Klhl31 after overexpression, we transfected 

HEK293 cells with pEGFP-N1 Klhl31 FL and treated the transfected cells with a 

proteasome inhibitor, MG 132 (Lee and Goldberg, 1998). MG 132 has been described 

to reduce the degradation of ubiquitin-conjugated proteins (Arora and others, 2005). 
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Figure 4.11: Treatment of cells with proteasome inhibitors allows the 

detection of Klhl31 FL-GFP with a) an antibody against Klhl31 and b) an 

antibody against GFP 

* 
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Western blot showing the effect of treatment with MG 132 on the expression of pEGFP-Klhl31 fusion 

proteins. 50 μg of total protein was loaded per sample and proteins were either detected by blotting 

against Klhl31 (a) or GFP (b). An antibody raised against Actin was used as a protein loading control (c).   

As a negative control, non-transfected HEK293 cells were either incubated for 48 h in DMEM (lane 1), or 

cultured in DMEM with the addition of MG 132 for either 6h (lane 2) or 24h (lane3). As a GFP-control, 

HEK 293 cells were transfected with pEGFP-N1. Cells were left to recover for 24h and then incubated in 

fresh medium for further 24h (lane 4) or cells were incubated in fresh medium with added MG 132 for 

either 6 h or 24 h, (lane 5 and 6) respectively. To investigate possible degradation of Klhl31 FL-GFP, 

HEK 293 cells were transfected with pEGFP-N1-Klhl31 FL. Transfected cells were also left to recover 

for 24h followed by incubation in fresh medium for further 24h (lane 7). To inhibit the proteasome, 

transfected HEK293  cells were cultured in fresh medium with added MG 132 for either 6 h or 24 h, (lane 

8 and 9) respectively.  

The visualisation of Actin showed a consistent protein amount loaded for each sample.  

Legend: M- Marker 

 

HEK293 cells were transfected with either pEGFP-N1 or pEGFP-N1 Klhl31 FL and 

treated with MG 132 (see figure 4.11). 

The treatment with MG 132 had no obvious effect on GFP levels, as can be seen in 

figure 4.11, blot b, lanes 4-6. Interestingly we were able to detect a GFP Klhl 31 fusion 

protein with both, the Klhl31 antibody, as well as the GFP antibody in protein lysates 

obtained from untreated and treated HEK293 cells (see figure 4.11, blot a and blot b, 

lanes 7-9). However, the size of the fusion protein was smaller than expected. A full 

length Klhl31-GFP protein should have the size of 96 kDa; 70 kDa for Klhl31 plus 26 

kDa for the GFP tag. 

Furthermore, when using the GFP antibody we were able to identify additional protein 

bands smaller than 75 kDa (figure 4.11, blot b, lanes 7-9, *). Observed bands were not 

detected by using the anti-Klhl31 antibody.  

Interestingly, the strength of the smaller bands seemed to increase slightly with longer 

incubation time in medium containing an additional proteasome inhibiting drug.  

Based on our obtained data, it seemed that initial degradation of Klhl31 might not be 

mediated by the proteasome, as we could never observe a 96 kDa Klhl31 FL-GFP 

protein, not even when inhibiting the proteasome, but the additional, smaller protein 

bands seemed to appear stronger in the samples treated with MG 132, indicating that the 

treatment with the proteasome-inhibiting drug might prevent further degradation. We 
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therefore suggested that although the first cleavage might not be mediated by the 

proteasome, subsequent degradation might however be proteasome dependant. 
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5. Investigating interaction partners of Klhl31 during 

myogenesis 

 

5.1 Introduction 

 

5.1.1 Candidate interaction partners for Klhl31 

 

We know from previous data, that some members of the Kelch-like family have been 

shown to bind to Actin (Adams and others, 2000; Kelso and others, 2002; Robinson and 

Cooley, 1997; Xue and Cooley, 1993). This also could be the case for Klhl31, as 

immuno-histochemistry revealed a close correlation of Klhl31 with Actin-fibres in 

differentiated C2C12 (see chapter 3.3.2). Results obtained from our Luciferase assays 

(see chapter 4.1.1 and chapter 4.2.1) suggest that additional potential interacting 

partners for Klhl31 may be found in the canonical Wnt-signalling pathway. In addition 

to TOPFLASH luciferase assays, there is supporting evidence previously obtained in 

our laboratory. In the African clawed frog, Xenopus laevis, a secondary body axis can 

be induced by overexpressing components of the β-catenin dependent Wnt-pathway 

(Guger and Gumbiner, 1995; Sokol and others, 1991). When injecting Wnt-ligands or β-

catenin together with Klhl31 into Xenopus laevis embryos, formation of the secondary 

axis could be inhibited (Abou-Elhamd and Garcia-Morales). Based on these 

experiments and our Luciferase assays, we can conclude that an inhibition of canonical 

Wnt-signalling by Klhl31 potentially takes place at the level of β-catenin or downstream 

of it. Our next aim was to identify interaction partners for Klhl31. 
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5.1.2 Designing a Yeast-2-Hybrid screen to find interaction partners for Klhl31 

 

As our cloned pEGFP-N1 and pEGFP-C1 Klhl31 Fusion constructs have been shown to 

be either non-active (for pEGFP-C1 Klhl31, see chapter 4.1) or degraded (pEGFP-N1 

Klhl31, see chapter 4.2 and chapter 4.3), it was clear that we would not be able to use 

them to pull down interaction partners as originally planned via a GFP-binding protein 

(GBP), also called GBP-Nanotrap (Rothbauer and others, 2008).  

We therefore chose a different approach, the Yeast-2-Hybrid screen, which would 

enable us to screen specific libraries, without actually using mammalian cells (Fields 

and Song, 1989). 

The Yeast-2-Hybrid system was developed around the properties of the yeast 

transcriptional factor, GAL4. In general, eukaryotic transcriptional activators, including 

GAL4, contain two distinct domains, the DNA binding domain (DB) at the amino-

terminus and the C-terminal transcription activation domain (AD). When the DB binds 

to its recognized DNA sequence, the AD will subsequently enable transcription of a 

reporter gene downstream of the DB domain by assembling a RNA polymerase II 

transcription complex (Chien and others, 1991; Fields and Song, 1989). This system 

was modified by Fields and Song to generate two specific hybrid proteins, one of which 

was fused to the GAL4 DNA binding domain, whilst the other protein was tagged with 

the GAL4 activation domain. As protein-protein interaction occurred, both domains 

came into close proximity leading to the transcription of a reporter gene (Fields and 

Song, 1989) (for a schematic overview of the Yeast-2-Hybrid screen see figure 5.1).   
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Figure 5.1: The Yeast-2-Hybrid system: a schematic overview 
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The Yeast-2-Hybrid allows the detection of potential interaction partners for a protein of interest. When a 

bait-protein X labelled with a GAL4-binding domain does not interact with a bait-protein Y fused to an 

activation domain, the reporter gene will not be expressed (a). However, when two proteins interact with 

each other and their BD and AD come into close vicinity, the transcription of the reporter gene is 

activated (b). Positive clones obtained from mating yeast cells expressing the bait-DB protein with a 

library of proteins tagged with an AD can grow on substrate deficient media (c). Positive clones can then 

be analysed by PCR and subsequently sequenced.  

Figure taken from (Pandey and Mann, 2000) 

Since then, the method has advanced further and can nowadays be used to screen cDNA 

libraries to detect potential novel interaction partners for proteins of interest (Bruckner 

and others, 2009).  The detection of protein-interaction is carried out in living yeast 

cells. One set of yeast cell will be expressing the protein of interest, also called the bait 

protein, which is fused to the DNA binding domain, whilst the activation domain is 

fused to a library of other proteins, called prey proteins. As for the cDNA library 

approach, prey proteins can contain a pool of proteins, as well as fragments of proteins, 

all derived from cDNA from a specific tissue or a mixture of specific tissues (Auerbach 

and others, 2002). It was suggested that the inclusion of full length ORFs, as well as 

fragmented cDNA sequences would increase the possibility to cover the full 

transcriptome, therefore reducing the chance of false negatives. However, it was also 

shown that screening libraries would increase the chances of detecting false positives or 

wrongly identified proteins (Bruckner and others, 2009).  

The bait protein is usually introduced to the prey proteins by mating of yeast cells, 

although transformation of yeast cells have also been described (Bruckner and others, 

2009). Once interaction between a bait protein and a prey protein is established, i.e. 

when the protein of interest has bound to a potential interacting partner, the close 

proximity of the BD and the AD will allow transcription of a reporter gene. This 

reporter gene can either be used to mediate a colour reaction, allow growth on a 

substrate deficient media or induce a specific antibiotic resistance (Bruckner and others, 

2009), enabling the selection of potential positive clones. However, these clones need to 

be analysed by PCR and sequencing.  

The early Yeast-2-Hybrid screens were limited in their approach due to technical 

limitations (Fields and Song, 1989), but  In recent years, the Yeast-2-Hybrid screens 

have been modified and developed to cater for different types of proteins and screening 

properties (for a list of current Y-2-H approaches, see (Bruckner and others, 2009). 
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The Yeast-2-Hybrid system is now an established tool to analyse protein-protein 

interactions.  

For our Yeast-2-Hybrid screen, we decided to use Hybrigenics services, a company that 

claimed to be a leader in the field of protein interaction studies, as well as being the 

most reliable protein interaction service (http://www.hybrigenics-services.com/). We 

decided to screen a library for human muscle specific tissues derived from adult and 18-

19 week fetal tissue using a full-length human Klhl31 as our bait protein (Image clone 

9021264 obtained from Source BioScience LifeSciences, UK). Based on our previous 

experience with tagged Klhl31 proteins, we decided that the GAL4 binding domain 

should be fused to the carboxy-terminus of the Klhl31 protein, as this did not seem to 

affect the functionality of the protein or the BTB domain. Our previous data suggested 

that fusing a tag, in our case GFP, to the N-terminus of the Klhl31 protein would create 

a dysfunctional Klhl31 protein, which may be due to blockage of the BTB-domain (see 

chapter 4.1.2).  

In summary, we decided to use a C-terminal fusion of the GAL4-binding domain to the 

human full length-Klhl31 protein. Possible interaction partners should be pulled out 

from a library containing protein or protein fragments derived from the transcriptome/ 

cDNA of fetal and adult muscle tissues. 

 

5.1.3 Analysing the data obtained from the Yeast-2-Hybrid screen 

 

Unfortunately for us, our Yeast-2-Hybrid screen did not progress completely without 

problems. The first more stringent approach did apparently fail and the second screen at 

reduced stringency did not reveal many positive interactions either. 

 

http://www.hybrigenics-services.com/
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Figure 5.2: The Yeast-2-Hybrid system: how to read your results 

Hybrigenics services classified potential protein interactions based on protein structure predictions, 

toxicity and previous experiences. Classes A-C can usually be established as being true interaction, whilst 

interaction partners classified as group D have to be analysed with caution, as they might contain false-

positives. Interaction partners classified in group E and F can usually be described at non-relevant, most 

likely false positives, either due to high connectivity of the prey protein itself or due to technical artefacts. 

Picture modified from Hybrigenics Services. 

 

As mentioned previously, we did not find a lot “most likely” real interaction partners as 

classified by Hybrigenics Services under groups A-C (see figure 5.2).  Only one out of 

37 predicted interactions was classified as B claiming high confidence in the interaction 

(see Appendix, A.3). When we analysed the DNA sequence of the interacting protein, it 

was shown to be a non-protein coding RNA sequence transcribing for JPX, a Xist 

activator. Xist, a non-coding RNA is involved in X chromosome inactivation 

(Brockdorff, 2011). It has been shown to coat the X-chromosome and recruits polycomb 

protein to its interacting site with the X-chromosome. Jpx is encoded by the X-

inactivation centre and has been shown to be an activator for Xist (Tian and others, 

2010). 

Why we pulled out a non-coding RNA in protein-protein interaction screen is somehow 

puzzling and cannot really be described as a valid positive interaction between two 

proteins, one of which being Klhl31, the other one being a artificial creation based on a 

non coding RNA sequence. Also we were only given the short 5’ sequence of the 
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fragment without any further information about the length of the sequence or the 

complete sequence of the fragment, which might limit us in terms of finding an open 

reading frame within the sequence, which might be translated into a protein fragment in 

yeast. However, we still tried to analyse the amino acid sequence to find clues with 

respect to structural properties or specific binding sites of Klhl31 binding partners. 

When we translated the given sequence into amino acids, a further problem occurred. 

We had no information about the frame of translation of the nucleotide sequence. So we 

looked at the amino acid sequence for all three possibilities. No matter what translation 

frame was used (reading frame 1, 2 or 3), we never found a continuous amino acid 

sequence. Sequences were always fragmented by stop-codons. Blasting a human protein 

data base against the different amino acid sequences revealed hundreds of hits, some 

known protein, some unknown, most of them with rather small similarity (for an 

example, see Appendix: blast of frame 1 of nc RNA (Jpx) transcribed into amino acid 

sequence). The longest non-disrupted amino acid chain was obtained from transcription 

in frame one. Although many proteins that were found in the screen had only around 

50-70 % similarity with the blasted amino acid sequence (see Appendix), a potential 

binding domain was detected containing the highly conserved GVQW motif (Marchler-

Bauer and others, 2011). The GVQW motif has been found so far in around 300 known 

proteins (Gerhard and others, 2004; Kanehori and others, 2003), but its functionality 

still needs to be verified. Examples of proteins obtained from the blast that contain the 

GVQW motif are the ubiquitously transcribed tetratricopeptide repeat protein Y-linked 

(UTY) (Accession number ABC87286.1) (Laaser and others, 2005) and the ubiquitin-

conjugating enzyme E2D 4 (Accession number EAW94179.1) (David and others, 

2010).  

Proteins of the Kelch-like family have been described as being part of the E3 ubiquitin 

ligase complex (Furukawa and others, 2003; Geyer and others, 2003; Xu and others, 

2003). Before the ubiquitin is bound to the target protein, it has to be activated first by 

an E1 or ubiquitin-activating enzyme, followed by transfer to an E2 ubiquitin-

conjugating enzyme and subsequently attachment to the target protein via the E3 

ubiquitin ligase (Neutzner and Neutzner, 2012). Therefore an interaction with an E2 

ubiquitin-conjugating enzyme would make sense in terms of protein ubiquitinylation. 

UTY as mentioned before is not as well described. UTY has a homologue on the X-

Chromosome called UTX (Greenfield and others, 1998). Whilst UTX has been shown to 

demethylate trimethylated lysine-residue on position 27 on histone 3 (H3K27
me3

) 

http://www.ncbi.nlm.nih.gov/protein/295881352?report=genbank&log$=prottop&blast_rank=41&RID=CKGCEH31014
http://www.ncbi.nlm.nih.gov/protein/119614585?report=genbank&log$=prottop&blast_rank=39&RID=CKGCEH31014
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(Agger and others, 2007; Lan and others, 2007)  reversing repression of gene activity 

(Lee and others, 2007; Martin and Zhang, 2005), UTY is not a functional demethylase 

for H3K27
me3

 (Hong and others, 2007; Lan and others, 2007; Shpargel and others, 

2012).  Recent publications have indicated a role for UTX and UTY in transcriptional 

regulation independent of the function as a demethylase (Shpargel and others, 2012). 

Also recently heart defects were reported in UTX-deficient mice and embryonic stem 

cells (Lee and others, 2012). Whilst ESCs lacking UTX did not acquire rhythmic 

contraction when cultured in cardiac differentiation inducing medium, UTX null mice 

displayed severe heart defects and died before birth. It was also shown that 

demethylation of H3K27
me3

 is activated by binding of cardiac-specific enhancer genes 

to UTX (Lee and others, 2012). Further evidence for a role of UTX and UTY in heart 

development has been collected in co-immunoprecipitation studies. It was shown that 

both UTY and UTX can form complexes with BRG1, a chromatin remodelling factor, 

and various heart transcription factors, e.g. Tbx5 and Nkx2.5 (Lee and others, 2012; 

Shpargel and others, 2012).  

Although both of the genes containing the GVQW motif could be interesting in terms of 

binding to Klhl31, as they both have been described to be involved in heart 

development or the ubiquitinylation process of target proteins, the evidence based for 

this interaction from the Yeast-2-Hybrid screen is too faint to consider a real interaction. 

The chances that the short amino acid fragments, which we analysed in the blast against 

a human protein database, would actually be a true interaction partner for Klhl31 is very 

small. The amino acid fragment was very small in size and identity to potential similar 

protein was not very high either (63% overall identity for UTY and 67% identity to 

E2D4), making it unlikely that we have identified a potential interacting partner based 

on a nc RNA sequence, even if the interaction was classified as highly likely by the 

company, which conducted our Yeast-2-Hybrid screen. 

As we had to rule out our main best hit for a potential Klhl31 interaction partner, we 

then went on to analyse the hits from the screen classified as members of group D: to be 

analyzed with cautions, due to the possibility of false positives or toxicity issues (see 

figure 5.2).  
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5.2 Results 

 

5.2.1 Background research on potential novel interaction partners for Klhl31 

 

Although we obtained only one highly likely interaction partner for Klhl31 (class B 

interaction see Appendix), 35 interactions found were grouped into class D. 

Class D interactions could contain false-positives as well as artificial products due to 

toxic side effects created by the overexpression of the bait-protein. We analysed all 35 

interactions for the possibility to bind to Klhl31 on the basis of their verified DNA 

sequence. When searching a human genome database, 27 out of these 35 interaction 

partners were shown to be derived from introns of different genes. One further sequence 

was shown to span an intron-exon site within a gene, whilst two sequences were shown 

to be non-coding RNA and another nucleotide fragment was unidentifiable. These 

results were unexpected as the muscle library was based on cDNA derived from 

mRNA. It is possible that the screened library was contaminated with genomic DNA.  

As we could not pursue any of these findings any further, we decided to investigate the 

three hits that were representing actual proteins. 

 

5.2.2 NEDD9 has been identified as a potential interaction partner for Klhl31 

 

Neural precursor expressed, developmentally down-regulated 9 (NEDD9) encodes for a 

protein called enhancer of filamentation 1, also known as HEF-1 or CAS-L. It is a 

member of the Cas-protein family based on a conserved structure of its protein-protein 

binding domain (Astier and others, 1997; Singh and others, 2007). Proteins of the Cas 

family have been shown to be adhesion docking proteins involved in cell migration and 

other cellular processes (Zhong and others, 2012). Recently NEDD9 became a protein 

of interest based on evidences that its expression is increased in metastatic cancers 

(Donninger and others, 2004; Iwata and others, 2005; O'Neill and others, 2007). 

Furthermore, it has been suggested that NEDD9 itself is a marker for metastasis, as 

increased NEDD9 expression was reported in human and mouse melanoma cells lines 

(Kim and others, 2006), in lung and breast cancer (Minn and others, 2005) and in 
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glioblastomas (Natarajan and others, 2006).  In colorectal cancer NEDD9 has also been 

described in mediating cancer migration (Li and others, 2011).  

Recently it has been shown that metastasis in WM1361 melanoma cell is increased by 

elevated NEDD9 expression (Ahn and others, 2012). It was also reported, that NEDD9 

protein levels were depending on integrin β3 signalling and led to phosphorylation of 

the integrin β3, subsequently activating Scr and FAK, as well as reducing ROCK 

activity (Ahn and others, 2012).  

That NEDD9 mediates cell migration by promoting integrin β1 receptor activity has 

also been reported in mouse embryonic fibroblasts (Zhong and others, 2012). Integrin 

signalling has been shown to regulate cell movement by binding to ligands of the 

extracellular matrix, such as fibronectin and collagen and by coupling the extracellular 

signals to the intracellular microfilaments. However, integrin receptors do not contain 

Actin-binding properties and changes in Actin cytoskeleton are therefore mediated by 

interaction of integrins with various Actin-binding proteins and the focal adhesion 

kinase (FAK) (Carragher and Frame, 2004; Hynes, 2002; Lo, 2006; Schlaepfer and 

others, 1999; Sieg and others, 1999; Wehrle-Haller, 2012). 

Although we could detect a close proximity of Klhl31 to Actin fibres, this co-

localisation was seen along the whole Actin filaments across the whole myotube (see 

figure 3.7 in chapter 3.3.2). Furthermore, we were never able to detect Actin Klhl31 co-

localisation in myoblasts, which also are migrating cells. Klhl31 expression did not 

seem specific to focal adhesion sites. Also, NEDD9 has never been reported to have a 

direct link to Actin fibres, rather it seems to influence cytoskeletal changes by 

enhancing signals from the integrin receptors (Zhong and others, 2012).  

However we have not looked in more detail at localisation of components of the focal 

adhesions, such as FAK and integrin receptors in relation to Klhl31. As these 

components are associated to the cell membrane and we detected Klhl31 either in the 

cytosol or associated to Actin fibres along myotubes, we did not gather any obvious 

evidence for association of Klhl31 to focal adhesion sites.  

We concluded that with respect to this project, the function of Klhl31 during 

myogenesis, NEDD9 would not be investigated any further. Also, advice given by the 

specialist from Hybrigenics Services, suggested that NEDD9 is a protein, which is 
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pulled out quite often in Yeast-2-Hybrid screens and therefore might indicate the 

possibility of being a false-positive. 

Based on our data, we decided not to pursue further experiments to validate a potential 

interaction for NEDD9 with Klhl31 at this stage. 

 

5.2.3 FKPB15 has been identified as a potential interaction partner for Klhl31 

 

FKBP15, also known as FKBP133, was first identified in mouse as a homologue of the 

FK506-binding proteins (Nakajima and others, 2006). FK506-binding proteins belong 

to immunophilins (Kawashima and others, 1988; Warty and others, 1988), a highly 

conserved family of proteins, which can bind immunosuppressive drugs, such as FK506 

and rapamycin (for an overview of FKBP proteins see (Kang and others, 2008). 

Members of the FKBP protein family display two distinct domains, the FKBP domain 

and the tetratricopeptide repeats (TPR) (Kang and others, 2008). The FKBP domain 

contains peptidylprolyl isomerase (PPIase) activity (Maki and others, 1990), which 

catalyzes cis-trans isomerisation of peptidylprolyl bonds and is involved in assisting 

protein folding (Fischer and Aumuller, 2003; Fruman and others, 1994). The C-terminal 

TPR domain has been shown to mediate protein-protein interactions (Scheufler and 

others, 2000). Although, as mentioned before, members of the FKBP family all contain 

the FKBP and the TRP domain (Kang and others, 2008), the number of the domains 

varies from protein to protein. For example FKBP38 contains one FKBP domain, but 

three TRP domains (Lam and others, 1995), whilst FKBP52 contains two tandem FKBP 

domains and also three TRP domains (Davies and Sanchez, 2005). Other members of 

the family can also contain additional different protein binding domains (Kay, 1996) 

determining their function and localisation in the cell.  

FK506-binding proteins have been shown to be involved in various intracellular events. 

For example, the best described member of the FKBP family, FK506-binding protein 51 

(also known as FKBP5) is expressed in various cancers, where hyperexpression of 

FKBP51 has been shown to sustain malignancy, whilst also promoting resistance to 

medical treatments (Romano and others, 2011). FKBP38, however, has got a 

completely different function. It has been shown to be involved in apoptosis, as well as 

regulation of the formation of the neural tube (Edlich and Lucke, 2011). 
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FKBP15, also known as FKBP133 due to its size of 133 kDa, has been described to be 

expressed in the developing nervous system of mice. It contains a domain, which is 

similar to Wiskott-Aldrich syndrome protein (WASP) homology region 1 (WH1) at the 

N-terminus, as well as the FK506-binding protein domain (Nakajima and others, 2006) 

in the centre of the protein. This protein does not contain a TRP domain, but a further 

Band4.1-Ezrin-Radixin-Moesin (FERM) domain (Nakajima and others, 2006). Based 

on the presence of the FKBP domain and homology to FKBP12, FKBP15 was termed 

being a member of the FKBP protein family (Nakajima and others, 2006).  Enzymatic 

test revealed that FKBP15 does not display PPIase activity unlike many other FKBP 

family members and it also is not able to bind to FK506 (Nakajima and others, 2006). 

Interestingly though, it has been shown to localise to F-Actin in growth cones of 

neurons in the dorsal root ganglion. It has also been described that overexpression of 

FKBP133 led to increased size of the growth cones, as well as leading to elevating 

numbers of filopodia. These changes were potentially mediated by the WH1 domain, as 

overexpression of a deletion mutant for the WH1 domain led to a reduced growth cone 

size and less filopodia (Nakajima and others, 2006). Furthermore, Nakajima et al. 

reported that FKBP15 does not influence changes in the Actin fibres of the growth 

cones directly, instead it stabilises the F-Actin cytoskeleton by preventing Semaphorin 

3A induced Actin depolymerisation.  

Recently, a different protein also containing the WH1 domain and the FKBP domain 

has been identified from biopsies taken from colons of patients with inflammatory 

bowel diseases (Viklund and others, 2008). Just as FKBP15, the discovered protein has 

been described to be transcribed by the DNA of the gene KIAA0674 (see 

http://www.ncbi.nlm.nih.gov/gene/23307).  

Based on its similarity to both proteins of the WASP family and the FKBP family, the 

described newly discovered protein was named WAFL (WASP and FKBP-like).  

As previously mentioned, WAFL also shows high structural similarity with FKBP15  as 

both proteins contain the WH1 and the FKBP domain at their N-termini (Nakajima and 

others, 2006; Viklund and others, 2009; Viklund and others, 2008). Alignment of the 

amino acid sequences for WAFL and FKBP15 revealed that both proteins share 75% 

identity and within the WH1 and FKBP domain the identity is even higher (82%). Also 

both proteins contain the predicted Klhl31 binding site. Therefore we can assume that 

Klhl31 could interact with both, FKBP15 and WAFL.  

http://www.ncbi.nlm.nih.gov/gene/23307
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Figure 5.3: Structural organisation of WAFL 

The WASP and FKBP-like (WAFL) protein contains 4 distinct domains. Close together at the N-terminus 

it contains a WH1 and FKBP domain. In the centre of the protein it reveals a Coiled-coil domain, whilst 

C-terminal it contains a stretch of acidic amino-acids.                                                                                                                                                                                       

Figure redrawn after (Viklund and others, 2008) 

 

Further studies revealed a role of WAFL in endocytosis as a GFP-WAFL –fusion 

protein has been shown to interact with endosomes, as well as being localised along 

microtubules (Viklund and others, 2009). Movement of WAFL along microtubules was 

inhibited by treatment with nocodazole, which prevents polymerisation of microtubules. 

But when treated with Latrunculin A, movement was not decreased revealing that 

trafficking of WAFL-linked endosomes did mainly take place along microtubules 

(Viklund and others, 2009). Co-immunoprecipitation studies, however, revealed a direct 

interaction of WAFL with Actin and the WASP-interacting protein, suggesting a role 

for WAFL in the Actin polymerization during vesicle motility (Viklund and others, 

2009).  

The alignment of the Hybrigenics clone protein sequence of FKBP15, which was said to 

interact with Klhl31, to the amino-acid sequence of FKBP15/WAFL revealed that the 

Hybrigenics fragment overlaps with amino acids 336 to 559 of full length 

FKBP15/WAFL. The WH1 domain would contain amino-acid 71-159 (or 69-171), 

whilst amino-acids 178-289 (or 178-290) make up the FK506-binding domain as 

described by Nakajima et al., 2008 (or Viklund et al., 2008). Therefore the binding 

fragment for Klhl31 does not seem to be part of the published conserved binding 

domains.  

As WAFL has been described to interact directly with Actin (Viklund and others, 2009) 

and as we have observed punctate localisation of Klhl31 along Actin fibres in C2C12 

    WH1 FKBP Coiled-Coil Acidic 

End 

69-171 178-290 ~600 - ~950 1185-1219 
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myotubes (see figure 3.7; section 3.3.2), Klhl31 might interact with WAFL to promote 

Actin polymerization as described by Viklund et al., 2009. A real interaction between 

FKBP15/WAFL and Klhl31 needs to be verified first and more evidence needs to be 

gathered about functions of Klhl31 and FKBP15/WAFL before a potential role for 

Klhl31 together with WAFL can be hypothesised.  However, as Klhl31 expression 

seems to be restricted to striated muscles and FKBP15/WAFL expression has not been 

reported in muscular tissue so far, it seems unlikely that Klhl31 and FKBP15/WAFL 

could interact.    

Based on the differences in their expression patterns, we did not investigate a potential 

role of Klhl31 together with FKBP15/ WAFL any further. 
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5.3 Nebulin as a novel interaction partner for Klhl31 

5.3.1 The giant protein Nebulin and its role in striated muscle 

 

Nebulin seemed to be the most promising protein being discovered in the Yeast-2-

Hybrid screen. Not only did we identify two different isoforms of Nebulin, isoform 2 

and isoform 3 as potential interaction candidates for Klhl31; Nebulin has also been 

described to play important roles in embryonic and adult muscle tissues.  

Nebulin was firstly seen in rabbit skeletal myofibrils in 1980 and described as band 3 

protein, which remains near the Z-discs (Wang and Williamson, 1980). Later it was 

shown to be a giant protein between 600 – 900 kDa large, which was eventually termed 

Nebulin due to its nebulous size and the fact that it was difficult to purify (Wang, 1982). 

Further studies revealed that Nebulin would potentially make up between 3-4% of total 

myofibrillar proteins in striated muscles (Locker and Wild, 1986). Since its 

identification, Nebulin has been studied extensively.  Members of the Nebulin family 

can be found in invertebrates, such as chordates, and vertebrates, such as chimpanzee 

and humans and PCR data from various species led to the suggestion that the Nebulin 

gene family has expanded from a chordate ancestor gene during evolution (Bjorklund 

and others, 2010; Hanashima and others, 2009).  

The Nebulin gene has so far been best described for humans (Donner and others, 2004; 

Jin and Wang, 1991a) and mice (Kazmierski and others, 2003). 

Human Nebulin spans a genomic sequence of 249 kb and contains 183 exons (Donner 

and others, 2004), whilst the mouse Nebulin contains 165 exons spanning 202 kb of 

genomic DNA. In human Nebulin the translation initiation codon has been described to 

be in exon 3, whilst exon 183 contains the stop codon and the 3’UTR (Donner and 

others, 2004). Donner et al also identified alternatively spliced exons. Alternative 

splicing sites have been described for exons 63-66, exons 82-105 and exons 166-167, 

which alone can give rise to at least 20 different transcripts in the human adult tibialis 

anterior muscle (Donner and others, 2004). Exon 143 and exon 144 also contain an 

alternative splice site and only one of these exons seems to be present in each Nebulin 

isoform (Donner and others, 2006; Donner and others, 2004). Expression studies for 

exon 143/ 144 revealed that expression varies between muscle isoforms, but more 
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interestingly for us between developmental stages of muscles (Donner and others, 2004) 

with exon 144 being expressed more often in muscles of older mice. In mouse Nebulin, 

exons 127/ 128 have been described to be homologues to human Nebulin exons 143/ 

144 (Donner and others, 2006). It was further speculated that mouse Nebulin exons 

127/128 (or human 143/ 144) might function as developmental regulators mediating 

progression from growing muscle fibres (expressing exon 127 or 143) to mature 

muscles (expressing exon 128 or 144) (Buck and others, 2011; Donner and others, 

2006).  

Although there is a high homology between mouse and human Nebulin, mouse Nebulin 

displays a few differences when compared to human Nebulin. It has been reported that 

the mouse Nebulin contains 16 exons, which have no homologue in the human gene, as 

well as containing a protein binding domain similar to human protein ZO-1 in the 16
th

 

of the novel exons (Kazmierski and others, 2003).  

As mentioned in the previous section, alternative splicing sites have been reported for 

Nebulin across different species (Donner and others, 2004; Joo and others, 2004; 

Kazmierski and others, 2003). This alternative splicing leads to the translation of 

proteins with different sizes. It was thought for a long time that the size of Nebulin 

might serve as a ruler for thin filament length specification, as different types of 

muscles had different length of thin filaments, which in turn was proportional to the size 

of the Nebulin protein present in the muscle’s sarcomere (Kruger and others, 1991; 

Labeit and others, 1991; Wang, 1996). It was further reported that a single molecule of 

Nebulin spans the whole length of the thin filaments in sarcomeres with its C-terminus 

being localised to the Z-disc (Millevoi and others, 1998; Wang and Wright, 1988) (see 

figure 5.5). The N-terminus of Nebulin has been described to extend and potentially 

interact with the thin filament pointed ends via binding to tropomodulin (McElhinny 

and others, 2001).  Recently the interaction of the C-terminus of Nebulin with the (thin 

filament) barbed end capping protein CapZ has been reported (Pappas and others, 2008; 

Witt and others, 2006) giving even more evidence of a role for Nebulin in thin filament 

length regulation. But Nebulin has also been shown to interact with the Actin monomers 

as part of the thin filament directly (Labeit and others, 1991).  

Nebulin displays a highly repetitive protein structure, in which the central polypeptides 

are arranged in 153 modules (M9-M162) consisting of between 30 – 35 amino acids 

each (Jin and Wang, 1991b; Labeit and others, 1991; Labeit and Kolmerer, 1995a). 
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Each module contains a conserved SDXXYK Actin binding domain, so that each of the 

central modules can bind one Actin monomer (Jin and Wang, 1991b; Labeit and others, 

1991).  An overview to the structural organisation of Nebulin and its localisation in the 

sarcomere can be seen in figure 5.4. 
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Figure 5.4: Structural organisation of Nebulin and its localisation in sarcomeres  
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Figure 5.4: Structural organisation of Nebulin and its localisation in 

sarcomeres 

The giant protein Nebulin is associated to thin filaments in sarcomeres (top section). Nebulin binds to 

Actin via its central super repeats. With its C-terminus Nebulin has been shown to interact with titin and 

myopalladin, as well as CapZ and Desmin. The N-terminus of Nebulin contains binding sites for 

tropomodulin.   

Figure taken from (Ottenheijm and Granzier, 2010) 

Recent work by Pappas et al. (2010) described a more indirect role for Nebulin in length 

specification of the thin filament, as overexpression of a designed small protein of 

Nebulin, called Mini-Nebulin, was unable to restrict the length of the Actin  filament 

(Pappas and others, 2010). Treatment of Nebulin-deficient myocytes and control 

myocytes with the Actin depolymerising toxin Latrunculin A, revealed that the presence 

of Nebulin prevents the binding of Latrunculin A to Actin  monomers, which in turn 

prevents depolymerisation of the thin filament (Pappas and others, 2010). It was 

therefore suggested that Nebulin stabilises Actin-Actin monomer bonds in the thin 

filament rather than regulating its association and length (Pappas and others, 2010). It 

was also shown by Pappas et al. (2010) that the Actin monomers were more prone to 

substitution, when Nebulin was depleted using siRNA in the myocytes, again revealing 

a lack of Actin-polymer stabilisation. Also far earlier then Pappas et al. a stabilisation 

mechanism of Actin polymers has been indicated by work from Gonsior et al. It was 

reported that a recombinant human Nebulin fragment generated based on 5-6 modules 

from the N-terminal region was able to crosslink Actin monomers (Gonsior and others, 

1998). It was also suggested that binding of Actin monomers by Nebulin can be used as 

a scaffold along which further addition of Actin monomers can occur. Strong evidence 

against a role of Nebulin as thin filament length regulator was published in 2009 by 

Castillo et al. It was reported that  Nebulin does not extend to the pointed ends of the 

thin filament and would therefore not be able to interact with tropomodulin (Castillo 

and others, 2009). It was also reported that the length of the thin filament correlated 

with the size of the present titin isoform rather than Nebulin, thereby further 

highlighting that Nebulin does not regulate Actin filament length in striated muscles 

(Castillo and others, 2009)  
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As previously mentioned, Nebulin contains 153 Actin-binding modules. These modules 

themselves are further clustered into 22 super repeats (SR), each one consisting of a 

conserved binding domain comprising the motif WLKGIGW (Jin and Wang, 1991b; 

Labeit and others, 1991; Labeit and Kolmerer, 1995a). These binding domains have 

been implicated to associate with the troponin/tropomyosin complex (Labeit and 

Kolmerer, 1995a; Wang and others, 1996). As the troponin/tropomyosin complex is 

involved in regulating muscle contraction (Farah and Reinach, 1995) and Nebulin had 

been shown to inhibit actomyosin ATPase activity in an in vitro motility assay (Root 

and Wang, 1994), it was thought that Nebulin might also be involved in muscle 

contraction regulation. Further evidence for a role in Nebulin during muscle movement 

came from data obtained from Nebulin knock-out mice. It was shown that in Nebulin 

KO mice thin filament sizes are reduced (Bang and others, 2006; Witt and others, 

2006). As contraction is based on the length of the filaments (Gordon and others, 1966; 

Granzier and others, 1991), as well as the ratio of overlapping of the thin filament with 

the thick filament, also known as the cross-bridge theory (Huxley and Simmons, 1971), 

shorter thin filaments meant that the active tension was highly reduced in Nebulin KO 

mice (Gokhin and others, 2009; Witt and others, 2006). Furthermore it was reported that 

Nebulin might regulate muscle contraction by changing cross-bridge activity between 

Actin and myosin (Bang and others, 2009; Chandra and others, 2009). 

The C-terminus of Nebulin contains a serine-rich domain as well as a SRC homology 3 

(SH3) domain (Labeit and Kolmerer, 1995a). It has been shown that the C-terminus of 

Nebulin aligns to the Z-disc of the sarcomere (Millevoi and others, 1998; Wang and 

Wright, 1988). Recent data revealed the association of the SH3 domain with 

myopalladin linking Nebulin directly to the Z-disc (Bang and others, 2001; Ma and 

Wang, 2002). Interestingly, it was also shown that the SH3 domain does not only bind 

to the PEVK domain in myopalladin, it can also link Nebulin to another giant protein, 

Titin (otherwise known as Connectin ;(Ma and Wang, 2002). Based on their finding, 

Ma and Wang proposed that Titin together with myopalladin would be able to localise 

Nebulin to the Z-disc during myofibrillogenesis. Analysing the C-terminal Serine-rich 

domain of Nebulin, led to the speculation, that Nebulin could be involved in signalling 

pathways taking place close to the Z-disc due to the presence of potential 

phosphorylation sites in the serine-rich domain (Bang and others, 2006). The C-

terminus of Nebulin has also recently been implied to interact with the intermediate 

filament Desmin (Bang and others, 2002).  
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Figure 5.5: Localisation of Nebulin and interacting proteins  

Sections of myofibrils from quadriceps muscle fibres from wt-mice have been labelled for α-actinin 

(green) as a marker for Z-discs and various other proteins (red); (A) Nebulin, (B) myosin heavy chain, (C) 

myopalladin, (D) CapZ and (E) tropomodulin 1. Nebulin is detected at the Z-disc, where it potentially 

localises to α-actinin, myopalladin and CapZ. Also (A) lower picture, electron microscopy of muscle 

section labelled for Nebulin. 

Figure modified from (Witt and others, 2006) 
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5.3.2 A role for Nebulin during myofibrillogenesis 

 

Nebulin is not only expressed in adult muscles, it has also been reported that Nebulin 

plays an important role during muscle development. 

Data obtained for a function of Nebulin during myofibrillogenesis has been obtained by 

experiments using Nebulin knock-out mice and also by using cell culture.  

Evidence that Nebulin might play a role in myofibrillogenesis came from immuno-

fluorescence studies using primary cultures of skeletal muscle cells dissected out of 

pectoralis muscle from 10-12 days old chicken embryos. Firstly, Moncman and Wang 

(1996) analysed the temporal expression and assembly of sarcomeric proteins during 

myofibrillogenesis. Desmin was expressed first, followed by α-Actin, myosin, titin and 

Nebulin  (Moncman and Wang, 1996). However, looking at the assembly of expressed 

protein it was described that Myosin was shown to align first followed by titin, Nebulin, 

Actin and Desmin (Moncman and Wang, 1996).  

Nebulin was firstly detected in the cytoplasm of chick skeletal myocytes at the time 

point when cells started to differentiate and its localisation was described to be diffused, 

similar to that of muscular myosin and titin (Moncman and Wang, 1996). However, 

whilst muscle specific myosin and titin eventually became associated to nascent 

myofibrils and displayed striated patterns, Nebulin was still seen to be mainly 

cytoplasmic (Moncman and Wang, 1996). Nebulin was shown to be added to the 

myofibrils once myosin and titin had assembled in striations, but before the organisation 

of Actin into defined thin filaments with uniform lengths (Moncman and Wang, 1996). 

Moncman and Wang (1996) therefore concluded that the assembly of Nebulin requires 

the formation of the nascent I-Z-I complex containing the Z-disc as well as premature 

thin and thick filaments. They suggested that Nebulin is involved in organising Actin 

into the thin filaments as well as restricting the length of the Actin fibres (Moncman and 

Wang, 1996). Similar observations were also published by (Shimada and others, 1996). 

Furthermore, Shimada et al. also claimed that Nebulin is not needed in establishing a 

scaffold for other sarcomeric proteins to locate to during formation of myofibrils, but is 

potentially involved in the organisation of Actin to the premature sarcomeres (Shimada 

and others, 1996).  
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This is inconsistent with observations by Gonsior et al. (1998), who reported that 

Nebulin could potentially act as a scaffold for Actin polymerization. It was also reported 

that Nebulin did display a low affinity to bind to Actin monomers (Gonsior and others, 

1998). Based on their observation that Nebulin crosslinks Actin monomers, as well as 

Actin bundles and based on previously described expression patterns for Nebulin after 

the formation of primitive Z-discs, Gonsior et al. (1998) speculated that Nebulin would 

not be able to assemble on its own into thin filament associated striations. They 

suggested that either a peritranslational assembly mechanism is involved in Nebulin 

localisation to Actin fibres or that another protein, similar to a chaperone, would assist 

Nebulin during incorporation into sarcomeric thin filaments (Gonsior and others, 1998). 

Further evidence for Nebulin as a scaffold for Actin polymerization was published by 

Nwe et al. in 1999. It was reported that in premyofibrils Nebulin located along linear 

Actin filaments in a punctate fashion, although some Nebulin puncta were also observed 

to be scattered between the filament (Nwe and others, 1999). In developing myofibrils 

however Actin was shown to localise to the Z-disc and the edges of I-Z-I regions, whilst 

Nebulin was strongly expressed overlapping with Actin at the Z-disc (Nwe and others, 

1999). Once the myofibril had fully developed, Actin was still seen to display strong 

fluorescence at the Z-disc, while Nebulin proteins were found on either side of the 

Actin-staining flanking the Z-disc (Nwe and others, 1999).  Based on observed 

localisation of Nebulin to Actin, it was suggested that the punctate, but also linear 

Nebulin structures might build a scaffold upon which actin monomers can assemble to 

form non-striated Actin bundles in the first instance (Nwe and others, 1999). 

Furthermore, Nwe et al. studied the kinetics of Actin-assembly by Nebulin.  During 

early myofibrillogenesis Actin filaments were not closely linked to Nebulin, as the 

exchange rate of Actin monomers was reported as being rapid in comparison to mature 

myofibrils, whilst in mature myofibrils Actin was tightly associated to Nebulin (Nwe 

and others, 1999). Nwe and co-workers therefore distinguished between different types 

of Nebulin during myofibrillogenesis. The first type of Nebulin, the immature Nebulin, 

has a role in attaching the Actin monomers to the Z-disc (Nwe and others, 1999). As the 

bond between Nebulin and Actin is not very strong in premyofibrillar cells, the fluent 

exchange rates allow the incorporation of Actin monomers into the Z-disc (Nwe and 

others, 1999). As myofibrillogenesis progresses, the link between Nebulin and Actin 

becomes tighter, which leads to the stabilisation of Actin fibres by Nebulin in the 

striations of mature sarcomeres (Nwe and others, 1999).  
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Recently, Nebulin-silencing experiments also revealed a role for Nebulin during 

myofibrillogenesis.  During differentiation, the foetal rat skeletal myocytes were treated 

with siRNA to reduce Nebulin levels in the cells (McElhinny and others, 2005). In 

comparison to non-treated myocytes, Nebulin depleted rat muscle cells differentiated 

slower and fusion was delayed (McElhinny and others, 2005). When comparing the 

assembly of myofibrils in control myocytes with siRNA treated myocytes during a 5-

day time course of differentiation, it was shown that the Z-disc did not form properly, 

nor in fact had the striated pattern of the thin and thick filaments been established 

(McElhinny and others, 2005).  

Myofibrillogenesis was also studied in Nebulin knock-out mice. Although mouse 

embryos and new born rodents showed fully assembled myofibrils, the sarcomeric 

structure was shown to dissociate under muscle contraction (Bang and others, 2006; 

Gokhin and others, 2009; Witt and others, 2006).  

Nebulin knock-out rodents displayed normal myofibrils, the thin filament capping 

proteins, CapZ and Tropomodulin (Tmod1), as well as myopalladin were affected by 

the absence of Nebulin (Witt and others, 2006). Labelling of myopalladin at the Z-disc 

revealed a reduced and diffused localisation compared to wt myopalladin labelling (Witt 

and others, 2006). Similar data was also obtained for CapZ and Tmod1 (Witt and others, 

2006). Furthermore Tmod1 was also shown to be located closer to the Z-disc when 

compared to wt-Tmod1 (Witt and others, 2006). It was also shown that the length of the 

thin filament was greatly reduced (Witt and others, 2006). Based on their data, Witt et 

al. (2006) confirmed the suggested role for Nebulin in thin filament length specification. 

Similar observation were also made by (Bang and others, 2006), who reported that 

Nebulin would not be needed for the assembly of sarcomeres (Bang and others, 2006). 

But as they found shorter thin filaments in Nebulin deficient mice, misaligned Z-discs 

and the degradation of sarcomeric structures in active muscles, they also described a 

role for Nebulin in the stabilisation and maintenance of myofibrils (Bang and others, 

2006) 

In summary, Nebulin plays an important part in the organisation and stabilisation of 

myofibrils, as well as in mediating muscle contraction. 

Recently, Nebulin has also been shown to be expressed in the heart, stomach and brain 

in adult chicken (Joo and others, 2004). Nebulin expression in cardiomyocytes was 

further reported in other species, but protein levels are significantly less for cardiac 
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Nebulin compared to skeletal muscle Nebulin (Donner and others, 2004; Fock and 

Hinssen, 1999; Kazmierski and others, 2003). It was thought that the role of Nebulin in 

striated muscle was carried out in heart musculature by Nebulette, a 107 kDa 

homologue of Nebulin (Moncman and Wang, 1995). Further data seemed to confirm an 

essential role for Nebulette in cardiomyocytes, as a knock-down of Nebulette in 

cardiomyocytes lead to a thin filament phenotype similar to that of thin filament in 

Nebulin depleted skeletal muscle (Moncman and Wang, 2002). It was shown that 

Nebulette also interacts with thin filament capping proteins indicating that Nebulette 

might stabilize the length of the Actin filament in a similar way to Nebulin (Bonzo and 

others, 2008). 

 

5.3.3 Analysis of Nebulin as a potential new binding partner for Klhl31  

 

As mentioned earlier, the Yeast-2-Hybrid screen identified two Nebulin isoforms as 

potential binding partners for Klhl31. When the amino-acid sequences of both Nebulin 

fragments (Isoform 2 and Isoform 3) were aligned, we discovered that both amino acid 

sequences contained a similar, potential conserved binding site for Klhl31 (see 

alignment below). The protein alignment was done by using the software Clustal2W 

(EMBL-EBI tools).   
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-----------------------------------------------DTVSDVKYKEDLT 13 

 

DALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRPEHFHHRAVTDTVSDVKYKEDLT 60 

                                                                         

************** 

       

 

WLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTKSDFKYVADSPINRHFKYATQLM 73 

 

WLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTKSDFKYVADSPINRHFKYATQLM 120 

                   

************************************************************ 

       

 

NERKYKSSAKMFLQHGCNEILRPDMLTALYNSHMWSQIKYRKNYEKSKDKFTSIVDTPEH 133 

 

NEKKYRADYEQRKDKYHLVVDEPRHLLAKTAGDQISQIKYRKNYEKSKDKFTSIVDTPEH 180 

 

**:**::. :   ::    : .*  * *   ..  ************************* 

 

LRTTKVNKQISDILYK 149 

 

LRTTKVNKQISDILYK 196 

 

**************** 

 

Legend: Fragment Nebulin Variation 2, Fragment Nebulin Variation 3. 

Potential Actin binding domains (SDXXYK) are underlined. 

 

Also, both Nebulin isoforms are substantially different from each other due to 

alternative splicing, with for example Nebulin isoform 3 being significantly smaller 

than isoform 2.  Some of these differences can also be seen in the sequences of the 

fragments. However, when aligning the fragments to the full length DNA or amino acid 

sequence and comparing the obtained data to the already known DNA organisation of 

the Nebulin genes, it became clear that both fragments, which were identified to be a 

potential Klhl31 binding partner, are located in a mRNA sequence, which contains exon 

144 (for alignment and additional information, see Appendix).  

Exon 144 has been described to be a marker for adult muscle tissues (Buck and others, 

2011; Donner and others, 2006). As we have screened a library which contained 

proteins from adult and foetal muscular tissues, it was possible to detect proteins that 

might link Klhl31 to mature rather than developing muscles. We knew from previous 
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studies that Klhl31 was expressed in nearly all striated muscles in chick embryos, as 

well as in embryonic heart and skeletal muscle tissues of humans (Abou-Elhamd and 

others, 2009; Yu and others, 2008), but we have not analysed Klhl31 protein levels in 

adult muscle tissues. Nebulin has been very well described in muscle fibres, where it 

has been detected in striations localising to actin fibres along the Z-disc (see figure 5.7; 

(Pappas and others, 2008)and figure 5.6; (Witt and others, 2006) 

 

5.3.4 Nebulin partially co-localises with Klhl31 in mouse muscles  

 

To find out, whether Klhl31 is actually expressed in adult muscles and if it would co-

localise to Nebulin, we decided to use an immuno-staining approach on mouse adult 

muscle sections. 

Localisation of both, Nebulin and Klhl31, were analysed by immuno-staining for both 

proteins in mouse tibialis anterior muscle. The preparation of mouse sections, as well as 

the immuno-staining was done in collaboration with Christina Stratford. 

Nebulin localisation in myofibrils has been very well described for different types of 

muscles and species (Millevoi and others, 1998; Pappas and others, 2008; Wang and 

Wright, 1988; Witt and others, 2006).  Klhl31 localisation however has not been 

analysed in adult muscle so far.  

 

Figure 5.6: Nebulin in chick skeletal myotubes 

Chick skeletal myotubes were stained with an antibody against Nebulin or were stained with Phalloidin to 

visualise Actin. Nebulin can be seen close to the Z-disc, where it co-localises to actin.                                                                          

Figure taken from (Pappas and others, 2008) 
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Immuno-staining for Klhl31 in adult mouse muscle revealed its presence in mature 

muscles.  

In transverse sections of mouse tibialis anterior, Klhl31 was shown to display a punctate 

localisation in muscle fibres (see figure 5.8, b and c). 

* 

Figure 5.7: Expression of Nebulin and Klhl31 in mouse tibialis anterior  

Immuno-staining for Klhl31 (a-c) and Nebulin (d-f) was carried out on transverse sections of wildtype 

mouse tibialis anterior. Images a and d were taken with a 20x objective, whilst images b-c and e-f were 

taken by using a 63x objective. Nuclei stained blue with Hoechst are visualized at the periphery of the 

muscle fibres.  

 

a 

b 

c 

d 

e 

f 
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Therefore we found that Klhl31 is not only expressed during development (Abou-

Elhamd and others, 2009), but also in adult muscle tissues. Comparing Immuno-staining 

for Klhl31 with Phalloidin-staining of frozen muscle biopsies from either rectus 

abdominus or quadriceps (see figure 5.8; (Ilkovski and others, 2004), it could be shown 

that both localisation pattern for Klhl31 and Actin are very similar. Although we have 

not analysed Actin and Klhl31 co-localisation in adult muscle ourselves, the similar 

localisation of Klhl31 to Actin (as seen in mouse tibialis anterior (figure 5.6) and human 

rectus abdominus or quadriceps (figure 5.8)) together with the evidence for partial co-

localisation of Klhl31 with actin fibres in C2C12 myotubes (chapter 3.3.2, figure 3.8) 

might indicate a possible interaction for both proteins in mature muscles.  Each punctate 

expression signal of Klhl31 is potentially labelling a single myofibril, as up to 1000 

myofibrils can make up a single muscle fibre (Martini, 2005). Sometimes Klhl31 

expression seemed to look a bit circular or wave-like (as seen in figure 5.7, b). This 

might be due to shifting of the muscle tissue during the embedding process. Therefore 

the muscle might not have been sectioned in a transverse fashion, but slightly changed 

towards longitudinal section. This would mean that we would detect Klhl-31 

localisation as a mixture of punctate staining (transverse section) and linear staining 

(longitudinal section). 

Immuno-labelling for Nebulin in tibialis anterior (figure 5.7, d-f) showed a similar 

localisation of Nebulin when compared to the localisation of Klhl31 in the muscle 

fibres. Nebulin also displayed a punctate localisation, potentially labelling single 

myofibrils in a single muscle fibre. Unfortunately, the immuno-staining for Nebulin in 

transverse sections of human muscles as reported by (Ilkovski and others, 2004) (see 

figure 5.8) appears diffuse and can therefore not be used for a comparison with the 

Nebulin localisation in tibialis anterior (figure 5.7).  

 

↓ 
* 
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Figure 5.8: Expression of Nebulin and Actin in human muscle  

Immuno-labelling for Actin (A and D) and Nebulin (B and E) of frozen biopsies from healthy human 

beings from either a quadriceps (A and B) or rectus abdominalis (D and E) revealed a punctate 

localisation for Actin in muscle fibres. The localisation for Nebulin appears diffuse, but was described as 

normal myofibril labelling.  

Figure modified from (Ilkovski and others, 2004) 



193 

 

We could show that Klhl31 is expressed in mature muscle tissues in mice. But would 

Klhl31 co-localise with Nebulin in the muscle, too?  

 

  

Figure 5.9: Nebulin and Klhl31 partially co-localise in mouse tibialis 

anterior 

Double immuno-staining for Klhl31 and Nebulin was carried out on sections of wildtype mouse tibialis 

anterior as described previously. Images were taken with a 20x objective (a) or a 63x objective (b). 

Klhl31 was visualised by using an α-rabbit Alexa fluor 568 conjugated secondary antibody (red), whilst 

Nebulin was labelled with a α-mouse Alexa fluor 488 secondary antibody (green). Negative samples were 

prepared as described in section 2.2.26. Strong fluorescence in the skeletal muscle basement membrane is 

possibly due to accumulation of the secondary antibodies, as it was also observed in the negative controls. 

 

Double immuno-histochemistry for Klhl31 and Nebulin on mouse tibialis anterior 

sections revealed that Klhl31 and Nebulin are closely localised at or along myofibrils in 

muscle fibres (see figure 5.9; b, yellowish coloured spots).  

The NB2 antibody we used to detect Nebulin was characterised in 1988 by Furst et al. 

The antibody recognises an epitope in the Nebulin protein, which localises to the N2 

lines in the sarcomere, a region which is not part of the alternative splicing sites of the 

Nebulin gene (Furst and others, 1988). Therefore we assumed we would be able to 

detect all present Nebulin isoforms in the muscle section. 
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However, we observed staining exclusively for either Nebulin or Klhl31 as single green 

or single red puncta. Muscles have been shown to express different isoforms of Nebulin 

(Donner and others, 2004; Joo and others, 2004; Kazmierski and others, 2003). For 

human tibialis anterior alone over 20 different transcripts have been predicted due to 

alternative splicing (Donner and others, 2004). We can therefore assume that mouse 

anterior tibialis also expresses different isoforms of Nebulin. As Klhl31 seems to be 

binding to an amino acid motif between super repeat 20 and super repeat 21 found in 

exon 128 (mouse) or exon 144 (human) in genomic DNA, we have to consider the 

presence of Nebulin isoforms lacking exon 128 in mouse tibialis anterior muscle. This 

could explain why we could see Nebulin staining on myofibrils, which do not localise 

with Klhl31.   

Based on observed co-localisation of Klhl31 to Nebulin in myofibrils, we suggested that 

Klhl31 might co-localise with Nebulin in adult musculature.  

 

5.3.5 Nebulin is expressed in differentiating C2C12 myoblasts  

 

Nebulin has various important functions in adult muscle tissues and during 

myofibrillogenesis (as described in the chapter 5.3.1 and 5.3.2).  

We have shown that Klhl31 localises close to Nebulin in adult muscles. Next we wanted 

to study potential interaction of Klhl31 and Nebulin in developing muscles. 

To analyze a potential association of Klhl31 with Nebulin during C2C12 differentiation 

in more detail, we firstly wanted to identify the presence of Nebulin during C2C12 

myotube formation. We collected total protein lysates during a 5 day time course of 

differentiation of mouse myoblasts as described in chapter 3.1.3. By using a 10% PAA 

gel, we could detect a band using a Nebulin antibody, but only on one day during the 5 

days of differentiation, between day one and day two (figure 5.10).   
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Figure 5.10: Nebulin is expressed on the onset of C2C12 differentiation  

The expression of Nebulin during C2C12 different iat ion was analysed by western 

blott ing using a mouse monoclonal ant ibody against  Nebulin.  A band was detected of 

approximately 130kDa was detected at  day 1 of C2C12 different iat ion.  An Act in 

ant ibody was used to detect the total Act in  levels as a loading control.  

Legend: M - marker, D0- Day 0, D1 – Day1, D2 – Day2, D3 – Day3, D4 – Day4  

The protein band, which was detected with the NB2 Nebulin antibody, was only 

observed at the beginning of elongation of myocytes around day one during the 

differentiation time course of C2C12 cells. Comparing the expression of a potential 

Nebulin-protein with Klhl31 expression it was observed that the detected 130kDa 

protein seemed to be expressed before the expression of Klhl31 is upregulated (around 

day 2, see chapter 3.1.3).  The published larger Nebulin protein bands (~700 kDa as 

described in the review by (McElhinny and others, 2003) could not be detected as the 

acrylamide percentage of the gel used for SDS-PAGE was not high enough to permit 

separation of large proteins.  

As we have seen that a protein detectable with a Nebulin antibody is expressed in 

C2C12 during differentiation we wanted to analyse its localisation during C2C12 

myotube formation. 
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5.3.6 Nebulin localises to Actin fibres in differentiating myocytes  

 

A potential Nebulin-protein was shown to be expressed at the onset of 

myofibrillogenesis in differentiating C2C12 myocytes, slightly before Klhl31 

expression was elevated (as described in the previous chapter). We wanted to know if 

Klhl31 could co-localise with the Nebulin-protein just as we had seen in adult muscle 

tissue (chapter 5.3.3). But before investigating Klhl31 and potential Nebulin localisation 

in C2C12 cells we wanted to compare Nebulin localisation to a well described part of 

myofibrils, the Actin cytoskeleton.  

In adult muscle Nebulin has been described to align to the whole thin filament by 

binding Actin-monomers via its central modules (Jin and Wang, 1991b; Labeit and 

others, 1991; Labeit and Kolmerer, 1995a) and cell culture experiments led to the 

suggestion that Nebulin assists Actin monomers during the organisation of the thin 

filaments during myofibrillogenesis (Moncman and Wang, 1996; Nwe and others, 1999; 

Shimada and others, 1996) 

Using a double immuno-staining approach we could show that Nebulin aligns to Actin 

fibres exclusively in differentiating C2C12 myocytes (see figure 5.11). 
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Figure 5.11: Nebulin localises to Actin fibres during the differentiation of C2C12 myocytes  
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Figure 5.11: Nebulin localises to Actin fibres during the differentiation of 

C2C12 myocytes 

C2C12 myocytes (Day 0),  early different iat ing myocytes (Day 2) and late different iat ing 

myocytes (Day 4) were labelled for Nebulin (green, Alexa -Fluor 488 secondary ant ibody) 

and Act in (red, Texas-red phallo idin).   

We observed that Nebulin again was only present in early differentiating C2C12 

myocytes, where it displayed a fibrillar localisation pattern, closely associated to Actin 

fibres (figure 5.11, day 2). Nebulin was not detected in undifferentiated or late 

differentiating C2C12.  

As described previously for chick skeletal myocytes (Moncman and Wang, 1996; Nwe 

and others, 1999; Shimada and others, 1996), Nebulin was also shown to localise to 

Actin fibres in differentiating mouse myocytes.  

Comparing our localisation data to previously described western blotting data for a 

protein detectable with a Nebulin antibody, Nebulin again was only detected between 

day 1 and day 2 of incubation of C2C12 cells in differentiation medium (DM).  

Based on this narrow time frame of expression, we therefore decided to look in more 

detail at Nebulin expression during differentiation of C2C12. 

As not all C2C12 cells did respond to DM at the same time and therefore differentiated 

differently we wanted to characterise the time frame of Nebulin expression in 

differentiating C2C12 more closely. Culturing and starving mouse myoblasts as 

described before (in chapter 5.3.5), we detected expression of a potential Nebulin-

protein during a 24 hour time frame between day 1.5 and day 2.5 of C2C12 

differentiation (see figure 5.12). 
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Figure 5.12: Nebulin is expressed between day 1.5 and day 2.5 of 

differentiation of C2C12 

The expression of a potent ial Nebulin-protein dur ing C2C12 different iat ion was analysed 

by western blott ing using a mouse monoclonal ant ibody against  Nebulin.  A protein band  

was detected between day 1.5 and day 2.5 of the different iat ion t ime course. The 

strongest  band displayed a proximal size of 130 kDa, whilst  other lower bands were also 

detected. Act in levels were to compare loaded protein samples.  

Legend: M - marker, D0- Day 0,  D0.5- Day 0.5, D1 – Day1, D1.5 –  Day1.5,  D2 – Day2, 

D2.5 – Day 2.5 and D3 – Day 3  

Analysing samples taken every 12 hours during C2C12 myotube formation revealed 

that a protein detectable with a Nebulin antibody was expressed between day 1.5 and 

day 2.5 during a time course of C2C12 differentiation (see figure 5.12). Observed 

protein expression was therefore consistent with previous described data from western 

blotting and immuno-histochemistry (as reported in chapters 5.3.5 and 5.3.6)  revealing 

a timeframe of potential Nebulin expression of 24 hours at during early C2C12 

differentiation. Furthermore, the protein detected was again to small in its size 

(compared with the published size of Nebulin of around 700 kDa; (McElhinny and 

others, 2003), raising the question whether the detected protein might be unspecific or 

whether it could be a degradation product of Nebulin.  Again, we were not able to detect 

full-length Nebulin as the PAA Gel used in the experiments did not have the needed 

acrylamide concentration to allow protein separation for Nebulin. 
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Next we wanted to compare localisation of Klhl31 to localisation of Nebulin during 

C2C12 differentiation, as Nebulin was identified as an interaction partner for Klhl31 in 

the Yeast-2-Hybrid screen (see chapter 5.1). Also we had already shown that Klhl31 co-

localised to Actin in adult musculature (see figure 5.9).  

Therefore, we decided again to use a double-immuno staining approach to compare the 

expression and localisation of Klhl31 with Nebulin during myotube formation. 

 

5.3.7 Nebulin and Klhl31 are both expressed in the differentiating myoblasts 

 

C2C12 mouse myoblasts were cultured on coverslips, differentiated as described 

previously and stained for Klhl31 and Nebulin, Nebulin and Actin or Actin and Klhl31. 

We decided to immuno-label C2C12 cells during a 5 day time course of differentiation, 

with samples taken every 12 hours between day one and day three based on our 

previous expression data obtained for a potential Nebulin protein.  
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Figure 5.13: Nebulin and Klhl31 are expressed in the same differentiating myoblasts  
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Figure 5.13: Nebulin and Klhl31 are expressed in the same differentiating 

myoblasts 

(a,b,c) Double immuno-staining for Klhl31 (green, Alexa-Fluor 488) and Act in 

(red, Texas-red Phallo idin) during a 5-day t ime course of C2C12 different iat ion  

(d-j)  Double immuno-staining for Nebulin (green, Alexa-Fluor 488) and Act in 

(red, Texas-red Phallo idin) during a 5-day t ime course of C2C12 different iat ion  

(k-q) Double immuno-staining for Nebulin (green, Alexa-Fluor 488) and Klhl31 

(red, Alexa-Fluor 568) during a 5-day t ime course of C2C12 different iat ion  

 Nuclear DNA was stained with DAPI 

Images were taken with a 63x object ive .  Legend: scale bar – 10 μm 

 

We could observe upregulation of Klhl31 expression during C2C12 differentiation, as 

well as co-localisation of Klhl31 to Actin fibres in early differentiating and late 

differentiating C2C12, which is consistent with the expression profile for Klhl31 as 

described in previously (figure 3.8 and figure 5.13; a-c).  

The double Immuno-staining approach further revealed a potential Nebulin expression 

firstly detected around day 1 (figure 5.13; e and l, similar to previous obtained data for 

Nebulin expression, see figure 5.12) displaying a diffused and punctate localisation in 

the cytosol. Nebulin exhibited the diffused localisation until approximately day 2 when 

it aligned to Actin fibres still displaying puncta (figure 5.13; g). A potential Nebulin 

expression was not detected after day 3 of C2C12 differentiation (figure 5.13; h,i,j and 

q). Furthermore, potential Nebulin expression was mostly observed in cells with 

elevated protein levels of Klhl31 (figure 5.13; l,m,n and p), although occasional Nebulin 

positive cells were observed during early differentiation (figure 5.13; l). Klhl31 protein 

levels stayed elevated whilst detected Nebulin protein levels decreased (figure 5.13; q) 

consistent with previously described data for potential Nebulin expression and Klhl31 

expression (figure 5.12 and 3.4, respectively). During later stages of differentiation 

Nebulin seemed to be localised at the edges of elongated pre-fusion myoblasts close to 

enriched Klhl31 levels (figure 5.13; p) 
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Figure 5.14: Nebulin aligns to actin fibres in elongated myoblasts  

Higher magnification image of C2C12 cells during early differentiation. 

Images are as shown in figure 5.13, but were further magnified using image processing software. 

Further magnifying images obtained from the double immuno-staining approach (figure 

5.13, g,b and n) were used to analyse a potential co-localisation of Klhl31 to Nebulin. 

Nebulin was observed to align to Actin fibres in pre-fusion mouse myoblasts (figure 

5.14; a’’) in a punctate fashion, where it also seemed to be accumulated at the edges of 

the cell. As previously described, Klhl31 aligned along the whole length of Actin fibres 

in differentiating C2C12 cells (figure 5.14; b’’). Higher magnified images also revealed 

a partial localisation of a possible Nebulin-protein with Klhl31 (figure 5.14; c’’) 

As reported previously by other groups (Moncman and Wang, 1996; Shimada and 

others, 1996), we also observed that Nebulin displayed a diffused localisation in the 

cytosol before eventually aligning into a fibrillar structure closely associated to the actin 

fibres (figure 5.13; e-g, figure 5.14; a’). However, co-localisation of Nebulin with 

Klhl31 was not as clear, which is partially due to a rapidly fading Alexa Fluor 568 

secondary antibody, which made it difficult to visualise Klhl31. When Nebulin 
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expression was observed first, it seemed to be expressed prior to enhanced Klhl31 

expression (figure 5.13; l) displaying a diffused localisation in the cytosol of C2C12 

myoblasts. After day 1.5 of the differentiation time course all Nebulin positive cells also 

showed elevated Klhl31 staining (figure 5.13; m, n, p and figure 5.14; c). Once 

myoblasts became elongated Nebulin partially co-localised or aligned close to fibrillar 

Klhl31 structures (figure 5.13; m, figure 5.14; c). We could see Nebulin puncta, which 

did not localise to Klhl31 fibrillar structures (figure 5.14; c’’). This might be due to 

either the fading signal of the Alexa-Fluor 568 antibody or due to the loss of weaker 

Alexa-fluor 568 signal during image processing (e.g. subtracting the background 

obtained with Alexa-Fluor 568 secondary antibody in absence of a primary antibody, as 

described in materials and methods, section 2.2.26). Very rarely we observed Nebulin 

staining after day 2.5 of C2C12 differentiation. However, later during  C2C12 

differentiation (day 2+), we observed that Nebulin expression was although diffused 

confined to the edges of the elongated cell close to strong levels of Klhl31 (figure 5.13; 

p). 

During later stages of C2C12 differentiation, when C2C12 cells started to fuse into 

myotubes, Nebulin was not detected anymore.  

Although there seemed to be a close proximity between Klhl31 and Nebulin, we have so 

far not verified a potential direct interaction between the two proteins. We therefore 

decided to use a GST-pull down approach to investigate if Klhl31 can bind to Nebulin. 

 

5.3.8 Klhl31 can bind to Actin and form homodimers 

 

When we decided which approach to use to investigate interaction partners for Klhl31 

we had the issue that it had been difficult to create fusion-proteins for Klhl31, as the 

added protein tags seemed to impair function of the fusion-protein (chapter 4.1.2). 

Furthermore we found that overexpressed Klhl31 fusion-proteins seemed to be 

degraded in mammalian cells (see chapter 4.3.2).  

The GST approach would enable us to overexpress a GST-Klhl31 protein in a bacterial 

environment using low expression temperatures, which would make it possible to 

generate stable Klhl31 fusion proteins by preventing degradation.  
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We created an N-terminal GST-Klhl31 protein by cloning human Klhl31 (image clone 

9021264) into a pGEX-5X-I vector. The gene expression was induced by IPTG. Using 

different induction temperatures revealed that we could produce stable GST-Klhl31 

proteins in sufficient amounts at low temperatures (see figure 5.15). We observed the 

best results when inducing GST-Klhl31 expression at 21 °C for 3 hours.  

 

Figure 5.15: Stable overexpression of GST-Klhl31fusion protein 

Samples of GST-Klhl31 expressing bacteria lysates were run on a 10% PAA Gel and 

stained with Coomassie br illiant  blue.  Approximate protein concentrat ion for GST -

Klhl31 was est imated by compar ison to  a BSA protein standard.  Stable GST -Klhl31 was 

successfully expressed in E.coli at  lower temperatures which prevented de gradat ion of 

the fusion protein.  

Legend: M – marker 

Once we had purified the GST-Klhl31 proteins (as described in chapter 2.2.36), we used 

them to carry out pull-down experiments using C2C12 lysates from different time 

points of differentiation (see chapter 2.2.36). GST only served as control for these 

experiments. 
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Figure 5.16: Finding interaction partner for Klhl31 using a GST-pull down 

approach 

(a) Silver staining of a 10 % PAA gel.  Pull downs with GST Beads (1,3,5,7)  and 

GST-Klhl31 (2,4,6,8) incubated with either PBS (1,2) or in C2C12 lysates (3 -8) 

are shown. A band potent ially containing endogenous Klhl31 (←, lane 4 and 6) 

was pulled out by GST-Klhl31 from C2C12 lysates of early different iat ion t ime 

points.  Act in however seemed enr iched in samples obtained dur ing late 

different iat ion (lane 6 and 8).  Bands surrounded by coloured rectangles were 

analysed by mass spectrometry.  

(b)  Western blot  against  Klhl31 (upper blot) or Act in ( lower blot) further ident ify 

some of the bands seen in the silver staining. Endogenous Klhl31 was pulled out 

of lysates from myoblasts or different iat ing  C2C12 cells (lanes 4 and 6),  whilst  

Act in was shown to be enr iched in samples obtained from different iated C2C12 

myotubes (lane 6 and 8) 

 

 



207 

 

Legend: M –  marker,  1 -  GST in PBS (negat ive control for GST only),  2 -  GST-Klhl31 in 

PBS (negat ive control for GST-Klhl31),  3 -  GST in C2C12 lysate (Day 0),  4 -  GST-

Klhl31 in C2C12 lysate (Day 0),  5 -  GST in C2C12 lysate (Day 2),  6 -  GST-Klhl31 in 

C2C12 lysate (Day 2), 7 -  GST in C2C12 lysate (Day 4),  8 - GST-Klhl31 in C2C12 lysate 

(Day 4). 

After running the samples acquired from the GST-pull downs on a PAA gel and 

subsequently staining with silver stain as a more sensitive staining compared to 

Coomassie, we could see that we were able to extract bands from C2C12 lysates when 

using the GST-Klhl31 fusion protein (see figure 5.16, a; lanes 4,6 and 8). More 

interestingly for us was that the pulled out protein bands showed variations between day 

0, day 2 and day 4 of myoblast differentiation, suggesting that Klhl31 interacts with 

different proteins at the onset of differentiation compared to later stages of C2C12 

differentiation (figure 5.16, a).  

Furthermore we saw an enrichment of a protein displaying the size of endogenous 

Klhl31 pulled down by GST-Klhl31 (figure 5.16, a;  ←), but only during the early 

stages of C2C12 differentiation (between day 0 and day 2). The binding of GST-Klhl31 

to endogenous Klhl31 was verified by western blot (figure 5.16, b; ←). In summary, we 

could show that endogenous Klhl31 seems to be an interaction partner for GST-Klhl31 

during early differentiation. It has been reported that proteins of the Kelch-like family 

can form homodimers (Geyer and others, 2003; Stogios and others, 2005). Our pull-

down assays suggest that Klhl31 is also able to form homodimers during early 

differentiation of C2C12, before Klhl31 aligns completely to Actin fibres (see chapter 

3.3.2).  

Using the GST-pull down we also observed that Actin was enriched with GST-Klhl31, 

indicating that it may interact with Actin directly (figure 5.16, a and b; lane 6 and 8). 

However, as Actin was also enriched in the GST only samples, although weaker when 

compared to GST-Klhl31, this result needs to be interpreted with caution. Interaction 

with the Actin cytoskeleton has previously been reported for various members of the 

Kelch-like protein family as well (Adams and others, 2000; Kelso and others, 2002; 

Robinson and Cooley, 1997; Xue and Cooley, 1993). GST-Klhl31 pull-down did not 

lead to enrichment of Actin in undifferentiated C2C12 (figure 5.16, and b; lane 4) in 

agreement with our localisation studies (chapter 3.3.2). Only once C2C12 had passed 

the intermediate state of differentiation as defined by (Burattini and others, 2004), 

Klhl31 localised to Actin filaments. As we only pulled-down Actin bands from C2C12 
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lysates of day 2 or day 4 (resembling later stages of C2C12 differentiation), we can 

assume that localisation of Klhl31 to Actin also involves a direct interaction between 

Klhl31 and Actin.  

 

5.3.9 Mass spectrometry analysis of excised bands 

 

Next, we tried to identify additional proteins of interest pulled down using GST-Klhl31. 

Some of the clearer protein bands were excised from silver stained gels obtained from 

GST-pull down assays and the samples indicated by green and red rectangles in figure 

5.16 were analysed by mass spectrometry at the FingerPrints Proteomics facility 

(University of Dundee). Hits were identified by using the Mascot database.  

Interestingly, the verified hits indicate that Klhl31 can bind to various other proteins of 

the contractile muscle apparatus. The excised bands contained proteins, which were not 

pulled down from undifferentiated C2C12 lysates (Day 0). The bands were only 

observed during C2C12 differentiation (Day 2) and in late differentiating C2C12 

myocytes (Day 4).  

Table 5.1: Proteins identified in the excised protein bands from the GST - 

pull down 

The table shows the top 5 hits identified by mass spectrometry from the <17 kDa excised protein band 

(red rectangular) and the ~35 kDa excised protein band (green rectangular) as seen in figure 5.16.  

 
Protein  

size 

(kDa) 
  

 
Protein  

size 

(kDa) 

~ band 

size 
  15-17   

~ band 

size 
  ~ 35 

  

myosin 

regulatory light 

chain, B-like 

~20     

Isoform 1 of 

Tropomyosin alpha-1 

chain 

32 

  Myl12b ~20     

Isoform 2 of 

Tropomyosin alpha-1 

chain 

32 

  Myl9 ~20     
F-actin-capping protein 

subunit alpha-2 (Capza2) 
~32 

  Calmodulin 17     Annexin 36 

  

Actin-related 

protein 2/3 

complex subunit 

3 (Arpc3) 

21     
F-actin-capping protein 

subunit alpha-1 (Capza1) 
~32 
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First, an excised protein band displaying a size of approximately 15-17 kDa was 

analysed (figure 5.16; a - red box). Calmodulin (17kDa) and myosin regulatory light 

chain isoforms (around 20 kDa large, e.g. myosin regulatory light chain (homo sapiens), 

myosin regulatory light chain B-like, Myl12b, Myl9 (all mus musculus). Myosin 

regulatory light chains are involved in mediating muscle contraction in adult muscle and 

in myofibrillogenesis in developing muscle fibres (Du and others, 2003; Gordon and 

others, 2000; Kamm and Stull, 2011). Also a subunit of the Actin-related protein 2/3 

complex was identified.  The Arp2/3 complex mediates the nucleation of Actin, the first 

step during de-novo Actin polymerisation by assisting the formation of Actin dimers or 

trimers (Soderling, 2009). The Arp2/3 complex consists of 7 subunits, two of which, 

Arp2 and Arp3 (identified in the GST-pull down), can mimic Actin dimers when 

aligning to already existing Actin fibres (Pollard, 2007). Addition of further Actin 

monomers by the Arp2/3 complex has been described to stimulate Actin polymerisation 

(Robinson and others, 2001; Volkmann and others, 2001).  Also interesting, the Arp2/3 

complex is activated by members of the Wiskott-Aldrich syndrome protein (WASP) 

family (Panchal and others, 2003). Furthermore, in striated muscle the Arp2/3 complex 

is also involved in Actin polymerization along the edges of the myoblast prior to fusion 

(Blanchoin and others, 2001; Richardson and others, 2007). 

Identified proteins from a ~35 kDa band (figure 5.16, a – green box) revealed the 

presence of tropomyosin α-chain (32 kDa). Tropomyosin α and tropomyosin β are 

mainly expressed in skeletal and cardiac muscle, where they form dimers and associate 

to the actin filament (Bailey, 1948; Kalyva and others, 2012; Perry, 2001). The formed 

tropomyosin dimer in association with troponin has been shown to mediate muscle 

contraction (for an overview of muscle contraction and function of tropomyosin see 

chapter 1.9 or (Farah and Reinach, 1995; Gordon and others, 2000). Furthermore it had 

been reported that tropomyosin can interact with tropomodulin in regulating actin 

filament lengths by capping the slow growing end of Actin fibres (Casella and others, 

1986; Gregorio and others, 1995; Kostyukova, 2008; Weber and others, 1994). Also by 

mass spectrometry analysis of the ~35 kDa protein band, CapZ had been identified to be 

pulled out of C2C12 lysates by Klhl31. CapZ is also a capping protein for the Actin 

filament, however it caps the fast-growing or barbed ends of Actin fibres (Caldwell and 

others, 1989).  
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Annexin was also identified by mass spectrometry. Annexins are involved in various 

cellular processes, such as membrane organisation, membrane traffic and the regulation 

of the activity of ion channels (Gerke and Moss, 2002). Furthermore, some Annexins 

have been described to be Actin-binding proteins and were thought to be involved in 

regulating changes to the membrane-associated cytoskeleton (Alvarez-Martinez and 

others, 1997; Gerke and Moss, 2002). Recently, a role for Annexin in skeletal muscle 

differentiation and membrane repair has been described (Bizzarro and others, 2010a; 

Bizzarro and others, 2010b). It was shown that Annexin 1 enhanced myoblast cell 

proliferation by promoting satellite cell migration (Bizzarro and others, 2010b). 

We also identified NEDD8-conjugating enzyme Ubc12 (21 kDa), an E2 ubiquitin-

conjugating enzyme as a potential interaction partner for Klhl31 in the GST-pull down.   

Further experiments are needed in order to determine whether Nebulin is a direct 

interaction partner for Klhl31 in the GST pull down assays. 
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6. Klhl31 expression during heart development 

 

6.1 Introduction to early cardiogenesis 

 

6.1.1 Formation of the primary heart tube 

 

The heart is the first organ to form during the development of vertebrates. It is 

important as its contractions transport nutrients and oxygen throughout the embryo. 

Cardiac progenitor cells are derived from the mesoderm (Garcia-Martinez and 

Schoenwolf, 1992; Kinder and others, 1999) and emerge from the anterior part of the 

primitive streak during gastrulation (Garcia-Martinez and Schoenwolf, 1993). These 

cells eventually give rise to all layers of the heart tube: the endocardium, myocardium 

and the parietal pericardium (Garcia-Martinez and Schoenwolf, 1993; Schoenwolf and 

others, 1992).  

Recent studies showed that the prospective heart cells ingress through the primitive 

streak to form a bilateral heart field on the left and the right side of the axial midline 

(Garcia-Martinez and Schoenwolf, 1993; Rawles, 1943; Rosenquist, 1970). This cell 

population was termed the lateral plate mesoderm, also known as the bilateral 

cardiogenic mesoderm (Garcia-Martinez and Schoenwolf, 1993; Munsterberg and Yue, 

2008; Yang and others, 2002). The lateral plate mesoderm will eventually split into two 

layers, the splanchnic and the somatic mesoderm (Linask, 1992; Linask and others, 

1997). Myocardial progenitor cells originate exclusively from the splanchnic mesoderm 

and form the cardiogenic mesoderm in the bilateral heart fields (Linask and others, 

1997).  

Cells residing in the bilateral heart field eventually move medially to the ventral midline 

of the embryo, where they fuse to form the primitive heart tube (Moorman and others, 

2003; Stalsberg and DeHaan, 1969). The group of cells that contribute to the primary 

heart tube are called the primary heart field (Abu-Issa and others, 2004; De La Cruz and 

others, 1989). 
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6.1.2 Cells from the secondary heart field contribute to the outflow tract 

 

After the primary heart tube in chick has formed at HH stage 9 and the heart continues 

to grow, it was reported that further heart progenitor cells from the splanchnic 

mesoderm are recruited to the anterior pole of the primary heart  (de la Cruz and others, 

1977). This population of cells was named the secondary source of myocardium or 

secondary heart field and was shown to add to the outflow tract myocardium, as well as 

the right ventricle and both, the right and left atrium (Abu-Issa and others, 2004; Kelly, 

2012; Waldo and others, 2001) (for a scheme of the location of cells of the secondary 

heart field in the heart see figure 6.1). 

It was further reported that cells contributing to the outflow tract have also been derived 

from the pharyngeal mesenchyme or prepharyngeal mesoderm (Kelly and others, 2001; 

Mjaatvedt and others, 2001; Waldo and others, 2001).  

Further data revealed that cardiac neural crest cells also contributed to the outflow tract 

(Kirby and others, 1983). These cells migrate through the pharyngeal mesoderm before 

addition to the outflow tract (for a review see (Keyte and Hutson, 2012).  

 

  

 

Figure 6.1: The secondary heart field during heart development  

The scheme shows the localisation of cells from the secondary heart field in the mature chick heart as 

described by (Kelly, 2012) . The secondary heart field is labelled in green and cells of the primary heart 

field are labelled in red. At the cardiac crescent stage cells from the primary and secondary heart field 

reside in close proximity. At E8.0 cells from the secondary heart field reside close to the pharyngeal 

Arches (Pha) next to the primitive heart tube. In the mature heart (E10.5) cells of the secondary heart field 
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can be found in the outflow tract (OFT), the right ventricle (RV), as well as the left and right atrium (LA, 

RA).  Figure modified from (Laugwitz and others, 2008). 

 

 

Recently it was shown that both the primary and the secondary heart field are part of a 

single heart cell population, which migrate towards the midline in two distinct waves 

(Camp and others, 2012; Meilhac and others, 2003).  

 

After the formation of the primary heart and addition of cells from the secondary heart 

field to the tube, the heart undergoes further growth and development to eventually form 

a contracting four-chambered heart (Anderson and others, 2003; Wagner and Siddiqui, 

2007).  

 

6.1.3 Signalling pathways involved in early cardiogenesis 

 

Heart development is an important and highly complex process during vertebrate 

development. Many well known signal pathways have significant roles during early 

cardiac development. Ablation of the anterior endoderm has been shown to lead to 

incomplete specification of the myocardium in Xenopus (Nascone and Mercola, 1995). 

A role in inducing cardiogenesis has also been described for the endoderm in chick 

embryogenesis (Alsan and Schultheiss, 2002), revealing that a member of the fibroblast 

growth factor (FGF) family FGF8 secreted from the endoderm is important for inducing 

and maintaining the cardiogenic fate. Also secreted from the anterior endoderm is the 

bone morphogenetic protein (BMP)-2, which was shown to be able to induce heart 

formation (Andree and others, 1998). A similar role has been described for BMP-4, 

BMP-5 and BMP-7 (Schultheiss and others, 1997; Solloway and Robertson, 1999). 

Noggin was identified as an inhibitor to BMPs in cardiogenesis, thereby preventing 

myocardial differentiation (Schlange and others, 2000). BMP-2 and FGF-10 as well as 

Sonic Hedgehog (Shh) have not only been described to be involved in the activation of 

cardiogenic mesoderm, but have also significant roles in the induction of the secondary 

heart field (Kelly and others, 2001; Waldo and others, 2001). A further important signal 

pathway in cardiac development is the pathway of the wingless-int (Wnt) family, which 

has been said to be the earliest signalling affecting the cardiac induction (Dyer and 

Kirby, 2009). 
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Studies in the primary heart field of chick embryos suggested a role for Wnt-signalling 

during differentiation of the myocardium. Inhibition of Wnt3a or Wnt8c signalling in the 

anterior lateral mesoderm led to the formation of a heart, whilst overexpression of Wnt 

in the posterior lateral mesoderm promoted blood formation (Marvin and others, 2001). 

Further data proved a function of Wnt in heart induction, showing that inhibition of Wnt 

signalling in explants of paraxial mesoderm led to the development of beating cardiac 

mesoderm (Tzahor and Lassar, 2001). Inhibitions of Wnt in the ventral marginal zone in 

X. laevis have also been shown to induce heart formation in non-cardiac specific tissues 

(Schneider and Mercola, 2001). Further analysis showed that Wnt3a and Wnt8 are 

responsible for the promotion of cardiogenesis in X. laevis, revealing similarities 

between frog and chick heart development. When focusing on the role of β-catenin 

during cardiogenesis, Schneider and Mercola showed that a deletion of β-catenin via 

expression of GSK3 β, a part of the degradation complex of β-catenin, also was able to 

promote heart formation in the ventral mesoderm. Ablation of β-catenin in the 

endoderm of mouse embryos led to a phenotype displaying ectopic heart formation 

(Lickert and others, 2002). It was described that the cells lacking β-catenin developed 

into cardiac mesodermal cells instead of being endodermal. It was therefore suggested 

that β-Catenin dependent Wnt signalling must be inhibited in order for cardiogenesis to 

occur. Inhibition of Wnt signalling has been found to be caused by binding of the 

secreted Wnt-antagonist Crescent to several Wnt-proteins (Marvin and others, 2001). 

Crescent is predominantly expressed in the anterior mesendoderm and therefore able to 

inhibit Wnt in the mesodermal cells. A role for Dikkopf-1 (Dkk-1), being expressed in 

the posterior lateral mesoderm, has also been described in antagonizing Wnt signalling 

during heart formation. However inhibition of Wnt alone is not sufficient enough to 

induce cardiogenesis. BMP2 expressed in the anterior endoderm together with the 

inhibition of Wnt signalling has been shown induce heart formation (Andree and others, 

1998; Schultheiss and others, 1997) 

As described before the inhibition of β-Catenin mediated Wnt pathway is needed for the 

induction of cardiogenesis in the primary heart field. Recent data showed that cells of 

the secondary heart field, especially their differentiation and proliferation, seem to be 

affected by β-catenin dependent Wnt signalling as well. Conditional knock-out of β-

catenin in the secondary heart field of the cardiac crescent in mouse embryos led to a 

disruption of looping of the primary heart and the formation of a shortened outflow tract 

(Klaus and others, 2007). Atria and left ventricle seemed to have been developed 
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correctly, while the right ventricle somehow was reduced in size. Expression of Islet-1 

(Isl1), a marker for the secondary heart field,  in the β-Catenin knock-out mice has been 

analysed further to examine the role of β-catenin during differentiation of the cells. Isl1 

was significantly lower expressed in knock-out embryos in comparison to wildtype 

embryos, especially in the outflow tract and the splanchnic mesoderm. Overexpression 

of β-catenin also revealed disruptions in the primary heart tube leading to the formation 

of two separate clusters of cardiomyocytes (Klaus and others, 2007). It was suggested 

that the observed phenotype is due to a wrong or incomplete migration of both the 

primary and the secondary heart field. Nevertheless, Isl1 expression was enhanced upon 

β-catenin overexpression. Taking all described data together, β-catenin/Wnt signalling 

seem to be involved in the correctly induction of Isl1-positive cells and therefore in the 

induction of the secondary heart field.  

 

6.1.4 Expression of marker genes during cardiogenesis 

 

To be able to define and compare separate phases of heart development, expression of 

marker genes involved in cardiogenesis have been described. 

The first marker for cells with a cardiac fate is mesoderm posterior 1 (Mesp1) labelling 

early heart cells already in the primitive streak (Saga and others, 2000; Saga and others, 

1999). Mesp1 expression is switched off once cardiogenic cells populate the lateral plate 

mesoderm and subsequently NK2 transcription factor related, locus 5 (Nkx2.5) 

expression is switched on (Lints and others, 1993; Pandur and others, 2013; Schultheiss 

and others, 1995). Nkx2.5 expressing cells have now committed irreversibly to become 

heart cells (Pandur and others, 2013). Also Nkx2.5 labels cardiac progenitor cells both 

from the primary and secondary heart field (Chen and Schwartz, 1996; Lints and others, 

1993; Schultheiss and others, 1995), as well as endodermal and mesodermal cells (Lints 

and others, 1993; Lopez-Sanchez and others, 2009). However, after the primary heart 

tube has formed Nkx2.5 expression is restricted to the myocardium (Lints and others, 

1993; Schultheiss and others, 1995). 

 

Several heart markers have been described to label either the primary heart field or the 

secondary heart field. Two of those markers are Tbx5 and Isl1. Tbx5 (T-box 

transcription factor 5) is a marker for cells of the primary heart field and is first 

expressed in the cardiac crescent stage (mouse E 7.5 and chick HH 7) (Bruneau and 
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others, 1999; Chapman and others, 1996). Later Tbx5 expression is observed in the 

posterior heart tube, the left ventricle and atria (see figure 6.2), which are all structures 

derived from the primary heart field (Bruneau and others, 1999; Chapman and others, 

1996; Liberatore and others, 2000). LIM-homeodomain transcription factor  Islet 1 

(Isl1) however is a marker for the secondary heart field, which also can be seen to be 

expressed in the cardiac crescent or crescent shaped bilateral heart fields depending on 

developing organism (Watanabe and Buckingham, 2010). In chick Isl1 is expressed 

around HH stage 4 onwards in the rostrolateral mesoderm but expression is lost in cells 

which fuse to form the primary heart tube (Yuan and Schoenwolf, 2000).  At later 

stages of heart development Isl1 expression is restricted both in mouse and chick to the 

right ventricle, parts of both atria and more prominent the outflow tract (Pandur and 

others, 2013; Watanabe and Buckingham, 2010), which all derive from the secondary 

heart field (figure 6.1). 

 

As the heart loops rightwards after the formation of the primary heart tube (Brand, 

2003; Manasek and others, 1972), several genes have been described in establishing the 

left-right asymmetry of the heart. Paired-like homeodomain transcription factor 2 

(Pitx2) has been shown to be expressed exclusively in the left side of the bilateral heart 

field around the cardiac crescent stage (Campione and others, 2001). After the 

formation of the primary heart tube pitx2 expression was observed only in the left part 

of the heart tube and after looping pitx2 was shown to be expressed in the left atrium, 

the ventral part of the ventricles and the left side of the outflow tract (Campione and 

others, 2001). Further expression studies revealed that pitx2 is also a marker for 

mesodermal cell populations (Lopez-Sanchez and others, 2009). 

 

So far all previously mentioned heart marker genes label cells derived from the 

mesoderm, but there are also genes, which are specifically expressed in the endoderm. 

One of these markers is Hex. Hex expressing cells can firstly be observed around HH 

stage 7+ in the cardiac crescent (Lopez-Sanchez and others, 2009) and mark 

endodermal cells adjacent to the mesoderm in the bilateral heart field (Lopez-Sanchez 

and others, 2009). After fusion of the primary heart tube, Hex is still expressed in the 

underlying endoderm (Lopez-Sanchez and others, 2009). 

 

Ventricular myosin heavy chain (vMHC) is a marker for later phases of heart 

development. vMHC was shown to be expressed in the entire myocardium of the 
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primary heart tube (Bisaha and Bader, 1991; Somi and others, 2006). From around HH 

16 onwards the expression of vMHC becomes restricted to the ventricles as the 

expression levels for vMHC in the atria decrease (Somi and others, 2006) 
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6.2 Expression pattern for Klhl31 during early cardiogenesis 

 

6.2.1 Klhl31 is expressed in heart progenitor cells during cardiogenesis 

 

When Klhl31 was first described it was shown to be strongly expressed in embryonic 

muscle and heart tissue (Yu and others, 2008). In-situ hybridisation studies on chick 

embryos carried out in our laboratory revealed that Klhl31 is expressed in cardiogenic 

progenitor cells from HH stage 8 onwards (Abou-Elhamd and others, 2009), see figure 

6.2). It was also shown that Klhl31 is expressed in the primary heart tube (around HH 

10) and in heart tissue throughout embryonic development (Abou-Elhamd and others, 

2009), as seen in figure 6.2). 

 

 

Figure 6.2: The expression of Klhl31 during chick development  
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In situ hybridisation for Klhl31 in chick embryos revealed that Klhl31 is expressed predominantly in 

skeletal and cardiac muscle tissues.  

Legend: aip - anterior intestinal portal, ht - heart; EC - endocardium; MC - myocardium; EP - epicardium; 

R -  right auricle; RA - right atrium; La -  left auricle; LA - left atrium; RV - right ventricle; IV - 

interventricular septum; LV - left ventricle 

Figure modified from (Abou-Elhamd and others, 2009) 

 

6.2.2 Klhl31 expression during early heart development 

 

Based on our evidence that Klhl31 is expressed in heart muscle tissues, we wanted to 

examine Klhl31 expression during cardiogenesis in more detail. We therefore carried 

out in situ hybridisations for Klhl31 during different stages of heart development in 

chick embryos and compared the expression pattern of Klhl31 to expression pattern of 

heart markers, such as Isl1, Nkx2.5, Hex, vMHC and pitx2. 
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Figure 6.3: Expression of Klhl31 to the expression of heart markers at HH stage 10 of chick development  
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Figure 6.3: Expression of Klhl31 compared to the expression of heart 

markers at HH stage 10 of chick development  

Whole mount in situ hybridisation for Klhl31 mRNA compared to mRNA expression of heart markers 

during early heart development. Nkx2.5 and vMHC expression was observed throughout the whole 

myocardium (B’ and C’, respectively). Hex was expressed in the adjacent endoderm (D’), while pitx2 

expression in whole mount pictures was observed in the left omphalomesenteric vein close to the anterior 

intestinal portal (E). Cryosections also revealed the expression of pitx2 in the vitelline vein (E’). 

Expression for Isl1 was observed in mesenchymal structures to the left and to the right of the primary 

heart tube (F). Sectioning further specified Isl1 expression in the splanchnopleuric mesenchyme (F’). 

Klhl31 expression was observed in the heart (A) and the splanchnic mesoderm of chick embryos prior to 

fusion of the primary heart tube (A’) 

Legend: aip - anterior intestinal portal, ht - heart; en – endoderm; sm - splanchnic mesoderm; cm- 

cephalic mesenchyme; me – mesenchyme 

 

We first analysed the expression of Klhl31 during early cardiogenesis around HH stage 

10, when the primary heart tube is formed (Stalsberg and DeHaan, 1969). We observed 

the known expression pattern for Nkx2.5 (figure 6.3, B and B’) and vMHC (figure 6.3, C 

and C’) in the myocardium of the primary heart tube in chick embryos (Schultheiss and 

others, 1995; Somi and others, 2006). Hex was expressed in the endoderm underlying 

the two heart primordia prior to fusion (figure 6.3, D’). Hex has previously been 

reported to be a marker for adjacent endoderm during heart development (Lopez-

Sanchez and others, 2009). Therefore our findings for Hex are in agreement with 

published data. Pitx2 has been reported to be expressed in the left side of the primary 

heart tube (Campione and others, 2001). However, we were not able to reproduce the 

published expression pattern. Using  in situ labelling for pitx2 we detected restricted 

pitx2 expression to the left part of the omphalomesenteric vein (figure 6.3, E), which is 

connected to the primary heart tube and originates from the same cell population as the 

primary heart tube (Moreno-Rodriguez and others, 2006; van den Berg and Moorman, 

2011). When sectioning the embryo along the anterior intestinal portal, we could also 

observe pitx2 expression in the left side of the vitelline vein (figure 6.3, E’). The reason 

for this discrepancy is currently unresolved. 

Isl1 expression was observed as previously reported (Pandur and others, 2013). In our in 

situ hybridisation study Isl1 expression was restricted to the splanchnic mesoderm 

adjacent to the primary heart tube (figure 6.3, F and F’). In comparison to observed 
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heart marker expression, Klhl31 was expressed in the primary heart tube and in the 

splanchnic mesoderm prior to the fusion of the primary heart tube (figure 6.3, A and A’ 

respectively), similar to the expression of Nkx2.5. 

 

6.2.3 Klhl31 expression during later heart development (HH 17-18) 

 

After the primary heart tube is formed cells from the secondary heart field are added to 

the primary heart tube and the heart undergoes morphological changes (Buckingham 

and others, 2005; Christoffels and others, 2000). We therefore analysed Klhl31 

expression during later cardiogenesis. 
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Figure 6.4: Expression of Klhl31 to the expression of heart markers at HH stage 17 -18 of chick development 

▼ 

▲ 

▼ 
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Figure 6.4: Expression of Klhl31 compared to the expression of heart 

markers at HH stage 17-18 of chick development 

Whole mount in situ hybridisation for Klhl31 mRNA compared to mRNA expression of heart markers 

during later heart development. Nkx2.5 was still expressed in the whole myocardium (B and B’) whilst 

vMHC expression was only observed in the ventricle of the heart (C’). Hex expression was observed in 

liver progenitor cells (D▲) as well as in cells that will contribute to the thyroid (D▼). In cryosections of 

chick embryos Hex expression was shown to be close to cells that belong to the dorsal mesocardium 

underlying the foregut (D’). Pitx2 expression was observed in tissue surrounding the foregut (E’), but not 

in the heart (E). Isl1 expression was also not observed in the heart (F, F’), but was expressed in tissues 

belonging to the aortic arches and the pharyngeal arches (F▼). Klhl31 expression was detected in the 

myotome of the somites (A) and in the myocardium (A and A’) 

 Legend: nt – neural tube, myo – myotome, fg – forgut, da – dorsal aorta, a – atrium, v – ventricle, dm – 

dorsal mesocardium, ht - heart 

 

At HH stage 17-18 chick embryos have turned to the left and have early limb buds, as 

well as showing a fully formed optic cup (Hamburger and Hamilton, 1992). The heart 

has looped rightwards and a distinct atrium and ventricle can be observed (Martinsen, 

2005). Klhl31 expression was still very similar to Nkx2.5 expression as described by 

Schultheiss et al. (1995). Transcripts for both genes were detected in the myocardium 

(see figure 6.4; A and A’ for Klhl31 and figure 6.4; B and B’ for Nkx2.5). Klhl31 

expression could also be observed in the myotome (figure 6.4; A’) as previously 

reported (Abou-Elhamd and others, 2009). Furthermore, Klhl31 expression seems to be 

confined to the developing atrioventricular canal. vMHC expression is now restricted to 

the ventricle (figure 6.4; C’) in conclusion with other published expression patterns for 

vMHC, which described a decrease of vMHC levels in the atrium and stable expression 

levels in the ventricle (Bisaha and Bader, 1991; Somi and others, 2006). As mentioned 

before, during early heart development Hex is a marker for underlying endoderm 

(Lopez-Sanchez and others, 2009). However in later stages of chick and mouse 

development (from mouse E9.5 onwards and in chick from HH stage 12 onwards) Hex 

is a marker for the hepatic progenitor cell population and the thyroid primordium 

(Crompton and others, 1992; Keng and others, 1998; Thomas and others, 1998; Yanai 

and others, 2005). Hex is expressed throughout the development of the liver and the 

thyroid and is also shown to be expressed in the foetal lung (Keng and others, 1998; 

Yanai and others, 2005). We could observe Hex expression in the thyroid primordium 

(figure 6.4; D▼) and the hepatic anlage (figure 6.4; D▲), but when we looked at 
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cryosections (figure 6.4; D’) we did see expression of Hex in cells underlying the 

foregut close to the dorsal mesocardium. Hex expression has been published by many 

groups and although all of them describe expression for Hex in the thyroid and the liver, 

some report additional expression patterns for Hex. Thomas et al. (1998) reported 

expression of Hex in the ventral foregut endoderm, the allantois and in the posterior 

lateral mesoderm in chick embryos at HH stage 9-10 (Thomas and others, 1998). At HH 

stage 15-16 Hex expression was observed in the thyroid and liver primordia, as well as 

in the roof of the dorsal aorta and the ventral gut endoderm (Thomas and others, 1998). 

Our probe against Hex might therefore as well have labelled endodermal cells of the 

foregut. However, the probe we used has to be characterised further to be able to 

analyse the expression of Hex in more detail. In situ staining for different stages of 

chick development between HH 12-HH18 would give us more data to analyse Hex 

expression over a distinct period of development and would help us identify the cells 

which are expressing Hex. Pitx2 was observed to be expressed predominately on the left 

side of the embryo (figure 6.4; E). However, pitx2 expression was not seen in the heart 

as reported previously (Campione and others, 2001). Furthermore we observed 

expression of pitx2 in the foregut (figure 6.4; E’), which is unlike to any previous 

described pitx2 expression pattern. The reason for this is unclear at present and it will 

need to be confirmed whether our probe detects pitx2 mRNA. Comparing Isl1 

expression as observed in our in-situ hybridisation study to Isl1 expression as published 

on GEISHA (Id ISL1.UApcr and Id Islet2.UApcr, GEISHA Gallus Expression In Situ 

Hybridisation Analytics, University of Arizona, USA), we could observe expression of 

Isl1 in the cranial ganglion and the pharyngeal arches (figure 6.4; F) as described by 

GEISHA. Islet1 expression was not observed in the chick heart at HH stage 17-18.  

 

6.2.4 Klhl31 expression during later heart development (HH 20-21) 

 

Chick embryos at Hamburger Hamilton stage 20 are defined by the segmentation of 

nearly the whole embryo (somites can be seen along the dorsal side of the embryo 

except for the tip of the tail), enlarged limb buds and the presence of the allantois. 

Pigmentation in the eye is starting (Hamburger and Hamilton, 1992). The lung buds are 

formed, both atrium and ventricle grow in size and the conus arteriosus and sinus 
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venosus are formed (Martinsen, 2005). However, at this time during development the 

heart chambers have so far not been separated. 
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Figure 6.5: Expression of Klhl31 compared to the expression of heart markers at HH stage 20 -21 of chick development 

▲ 

▼ 

▲ 
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Figure 6.5: Expression of Klhl31 compared to the expression of heart 

markers at HH stage 20-21 of chick development 

Whole mount in situ hybridisation for Klhl31 mRNA compared to mRNA expression of heart markers 

during later heart development. Nkx2.5 was shown to be expressed in the myocardium of the ventricle 

and the heart (B’ and B, respectively). vMHC expression could be observed in the ventricle of the heart 

(C’) and weak in the atrium (C) and conus arteriosus (C’). Hex expression was still observed in liver 

primordia (D▲, D’) and in the thyroid progenitor cells (D▼). Pitx2 expression was seen along the left 

side of the embryo (E). The cryosection of a pitx2 labelled chick embryo revealed pitx2 expression in the 

left side of the gut and the liver (E’), but not in the heart (E and E’). Isl1 expression was again not 

observed in the heart (F, F’), but was expressed in the pharyngeal arches (F). In the corresponding 

cryosection expression of Isl1 was observed in the spinal cord labelling motor neurons (F’▲). Klhl31 was 

expressed in the myotome of the somites (A) and in the heart (A), as well as in the myocardium of the 

ventricle and conus arteriosus (A’) 

Legend: nt – neural tube, nc – notochord, lub – lung buds, myo – myotome, da – dorsal aorta, v – 

ventricle, ca – conus arteriosus, sv – sinus venosus, g – gut, es – esophagus, t – trachea, a – atrium, l – 

liver, ta – truncus arteriosus, ht  - heart, lb – limb buds, t - telencephalon 

 

Expression of Nkx2.5 was observed in the heart (figure 6.5; B) and in the myocardium 

of the ventricle (figure 6.5; B’). As Nkx2.5 has been described to be a marker for the 

myocardium throughout heart development (Lints and others, 1993; Schultheiss and 

others, 1995), our observed expression pattern is comparable to published data. At HH 

stage 20-21 Klhl31 expression still resembles expression of Nkx2.5 and Klhl31 was also 

shown to be expressed in the myocardium of the ventricle (figure 6.5: A’). As 

previously described (Abou-Elhamd and others, 2009) Klhl31 is also expressed in the 

myotome of the somites (figure 6.5; A and A’). Strong vMHC expression was detected 

in the ventricle and weak vMHC expression was seen in the adjacent conus arteriosus 

(figure 6.5; C’) matching published expression patterns for vMHC (Bisaha and Bader, 

1991; Somi and others, 2006). The observed expression for Hex further highlighted the 

role for Hex as a marker for liver and thyroid development (Keng and others, 1998; 

Yanai and others, 2005). In situ hybridisation for Hex in HH stage 20 chick embryos 

revealed labelling for Hex mRNA in the liver and thyroid primordia (figure 6.5; D) A 

strong signal for Hex mRNA was also noted in the liver in cryosections of chick 

embryos analysed for Hex  expression (figure 6.5; D’). In situ hybridisation for pitx2 of 

HH stage 20 chick embryos was again not able to reproduce published gene expression 

pattern marking the left side of the heart (Campione and others, 2001). We were only 
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able to detect pitx2 mRNA in the left part of the gut and tissues surrounding the liver 

(figure 6.5; E’) leaving us questioning the reliability of the probe. Isl1 expression was 

again observed to be similar to published data (Id ISL1.UApcr and Id Islet2.UApcr, 

GEISHA, University of Arizona, USA). Islet 1 was shown to be expressed in the 

pharyngeal arches in whole mount chick embryos, as well as in the pancreas (figure 6.5; 

F▲), but not in the heart. Interestingly Isl1 has been described to be a marker for motor 

neurons in the spinal cord (Tsuchida and others, 1994; Wang and others, 2011). We 

were able to reproduce the described expression pattern for Isl1 in motor neurons 

(figure 6.5, F’▲). 

In summary, by comparing the expression of Klhl31 to the expression of other well 

described marker genes, we could show that Klhl31 is a potential marker for the 

myocardium during cardiogenesis.  
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7. Discussion 

 

7.1 A novel role for Klhl31 during myogenesis 

 

7.1.1 Klhl31 as a potential mediator of myogenesis 

 

We previously have reported a potential role for Klhl31 during myogenesis (Abou-

Elhamd and others, 2009).  

Here we provide some evidence supporting the hypothesis that Klhl31 has a role during 

de novo myofibrillogenesis. Further experiments are needed to substantiate this idea and 

I will discuss some of these below.  

 

7.1.2 Klhl31 expression is linked to Actin filament changes during C2C12 

differentiation 

 

Differentiation of C2C12 cells involves similar processes as occurring during the 

differentiation of the myotome in the somite. 

C2C12 differentiation is dependent on canonical Wnt-signalling, which has also been 

shown to activate myogenesis in somites (Tajbakhsh and others, 1998; Tanaka and 

others, 2011). Furthermore, both C2C12 differentiation and myotome differentiation is 

marked by MRFs expression. Undifferentiated C2C12 myoblasts already express Myf 5 

and MyoD (Braun and others, 1989; Yoshida and others, 1998) and myogenin 

expression is activated in C2C12 myocytes around 20 hours of differentiation (Andres 

and Walsh, 1996) followed by MRF4 expression (Janot and others, 2009). Once the 

cells have entered the differentiation process, cultured mouse myoblasts and muscle 

cells in the myotome start to express p21 and withdraw from the cell cycle (Andres and 

Walsh, 1996; Braun and Gautel, 2011; Manceau and others, 2008). Furthermore, the 
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cells then elongate, fuse and eventually form multinucleated myotubes. Also, both in the 

myotome and in C2C12 myocytes expression of sarcomeric proteins is activated and de-

novo myofibrillogenesis occurs (Andres and Walsh, 1996; Buckingham, 2001; 

Kontrogianni-Konstantopoulos and others, 2006; Pownall and others, 2002; Sanger and 

others, 2002; Sanger and others, 2010).  

Analysis of C2C12 differentiation on cellular levels revealed the temporal and spatial 

organisation of myofibrillogenesis from premyofibrils to mature myofibrils in more 

detail (Burattini and others, 2004; Kontrogianni-Konstantopoulos and others, 2006). 

Premature Z-discs and M-bands already assembled after only 24h in differentiation 

medium, whilst after 48h of differentiation an early organisation of mature myofibrils 

was observed (Burattini and others, 2004; Kontrogianni-Konstantopoulos and others, 

2006). After 72 h, C2C12 myocytes have begun to accumulate muscular myosin into 

their myofibrils and after 96 hours the myotubes contained mature myofibrils (Burattini 

and others, 2004; Kontrogianni-Konstantopoulos and others, 2006) (see figure 3.7).  

Using immuno-staining experiments in differentiating C2C12 myocytes, we were able 

to reproduce the actin filament staining during early differentiation as described by 

Burattini et al (2004). We therefore assumed that changes in Actin and other Actin-

associated proteins we observed were directly affected by de-novo myofibrillogenesis in 

C2C12 myocytes. However, our used C2C12 cell line was substantially older and less 

reliable then the cell line used in described publication by Burratini et al. (2004), which 

resulted in low differentiation potential. Unfortunately, we therefore were only able to 

culture our C2C12 myoblasts for a short amount of time, which restricted the 

experiments we aimed to do in terms of lengths of time course and expression studies. 

Also our C2C12 experiments cannot be completely be compared to Burratinis work, as 

their cell line already displayed mature myotubes after 96 hours in differentiation 

medium, whilst we never saw mature myotubes in our cultures in the same timeframe. 

We therefore need to assume that myofibrillogenesis occurred slower in our cell lines 

compared to published data for C2C12.  

We studied Klhl31 expression and localisation during differentiation of C2C12 mouse 

myoblasts. The first interesting observation was that Klhl31 mRNA levels as well as 

protein levels were low in myoblasts, but increased around day 2 – day 3 during C2C12 

differentiation (figure 3.4 and figure 3.5, respectively). Furthermore Klhl31 localisation 
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also changed during differentiation of mouse myoblasts from a punctate and cytosolic 

localisation to a fibrillar, but still punctate pattern (figure 3.6).  

Further experiments revealed that the observed puncta of Klhl31 in C2C12 myotubes 

was closely localised with Actin fibres (figure 3.8, c and f, figure 3.9), but not with 

microtubules (figure 3.10). 

Co-localisation of Klhl31 with Actin fibres was established around day 2 of C2C12 

differentiation (figure 3.8; b, e and e’) correlating with the observed increase in 

transcript and protein levels for Klhl31 and potentially linking enhanced Klhl31 

expression with early myofibrillogenesis (Kontrogianni-Konstantopoulos and others, 

2006; Sanger and others, 2002; Sanger and others, 2010).  

Various members of the Kelch-like family have already been described to directly 

interact with Actin; Kelch, Klhl20 (KLEIP) and Klhl17 (Actinfilin) amongst others 

(Hara and others, 2004; Robinson and Cooley, 1997; Salinas and others, 2006; Stogios 

and Prive, 2004; Xue and Cooley, 1993). We therefore analysed if Klhl31 was also able 

to bind directly to Actin. 

We used Latrunculin B to further test a potential direct interaction between Klhl31 and 

the Actin filament (as explained in section 3.3.3).  Klhl31 localisation was affected by 

Latrunculin B treatment, as we observed diffused Klhl31 accumulations in the cytosol 

of treated C2C12 cells (see figure 3.12; b and b’). Furthermore, Klhl31 localisation to 

Actin fibres could also not been recovered (see figure 3.12; c’-e’). We therefore 

suggested that Klhl31 might associate directly to Actin fibres.  

A potential direct interaction between Klhl31 and Actin fibres was found by using a 

GST-pull down approach. Actin was isolated from C2C12 lysates by using a GST-

Klhl31 fusion protein and visualised both on a silver stained PAA Gel (figure 5.17, a) 

and on a western blot (figure 5.17, b). The actin bands in the GST-Klhl31 lanes are 

stronger than in the GST control lanes indicating that the observed interaction might be 

true. This would be consistent with the localisation studies for Klhl31 and Actin, thus 

strengthening the idea that the interaction between Klhl31 and the Actin filament was 

established during early myofibrillogenesis in C2C12 myocytes.  However, it might also 

be that Actin is bound to a protein, which forms a complex with Klhl31 and therefore 

the observed interaction is an indirect one. A crucial experiment, which needs to be 
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done in order to prove that Klhl31 is involved in myofibrillogenesis is the verification 

of published expression patterns and expression timeframes relating to 

myofibrillogenesis. This should include the analysis and comparison of the sarcomeric 

Z-line protein α-actinin and other key sarcomeric proteins with the expression pattern 

for Klhl31. To further analyse a potential function for Klhl31 during myofibrillogenesis, 

we decided to use fluorescence-labelled Klhl31 fusion proteins.  

7.1.3 The BTB domain and the Kelch-repeats of Klhl31 have specific cellular functions 

 

Proteins of the Kelch-like family contain two highly conserved binding sites, the BTB 

domain and the Kelch-repeats (as described in chapter 1.12; (Stogios and others, 2005; 

Stogios and Prive, 2004).  We carried out molecular and biochemical experiments to 

further analyse the function of both domains for Klhl31. We found that both Klhl31 FL, 

as well as Klhl31 ΔKR can significantly inhibit β-catenin induced luciferase reporter 

activity, while Klhl31 lacking the BTB domain did not show inhibition in the luciferase 

assays (see figure 4.6). The data is consistent with data previously obtained in our lab 

(Abou-Elhamd), see figure 1.13).  It was suggested that substrates bound to the BTB-

domain in Klhl31 might be targeted for degradation, possibly as part of an E3 ubiquitin 

ligase complex, as has been described for many other substrates targeted by members of 

the Kelch-like family (Geyer and others, 2003; Xu and others, 2003). Furthermore it 

was also described that β-catenin itself is targeted for proteasomal degradation by an E3 

ubiquitin ligase, β-Transducin repeats-containing protein (β-Trcp) (Hart and others, 

1999; Marikawa and Elinson, 1998). We have gathered information that Klhl31 could 

be associated with E3 ubiquitin ligase complexes, as we extracted an E2 ubiquitin 

conjugating enzyme, NEDD8-conjugating enzyme Ubc12, in our GST-pull down 

experiment. However, we have to be cautious as we do not know how likely this 

interaction is, as NEDD8-conjugating enzyme Ubc12 was not under the top 10 hits of 

the mass spectrometry data of proteins identified from the excised band. It is unlikely 

though that Klhl31 could interact with β-Trcp as well, as  β-Trcp belongs to the Skp1-

Cullin-1-F-box-type E3 ubiquitin ligase, whilst Kelch-like proteins have been shown to 

mainly associate to Cullin3-RING ubiquitin ligases (Canning and others, 2013; Fuchs 

and others, 2004). However finding that Klhl31 could interact with an E2 ubiquitin 

conjugating enzyme might indicate a role for Klhl31 in protein turnover regulations not 

only during Wnt-signalling but also during myofibrillogenesis. 
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Further experiments need to be carried out to analyse a potential role for Klhl31 as part 

of an E3 ubiquitin ligase complex.  Determining whether Klhl31 can interact directly 

with associated ubiquitin-ligase complex proteins, such as Cullin3, could shed more 

light on potential functions of Klhl31. Nonetheless comparison of published literature 

together with the identification of an E2 ubiquitin-conjugating enzyme as potential 

interaction partner could suggest that Klhl31 could also play a part in ubiquitin-

mediated proteasomal degradation and could therefore target components of the 

canonical Wnt-pathway, as well as sarcomeric proteins for ubiquitinylation and 

subsequent degradation.  

To analyse potential Klhl31 functions, we created GFP and DsRed fusion proteins of 

Klhl31. We were able to reproduce previously described functionality for Klhl31 in 

inhibiting β-Catenin mediated Wnt-signalling (Abou-Elhamd), but only for fusion 

proteins for Klhl31 tagged at the carboxy terminus (see chapter 4.2.1).  We therefore 

assumed that we had generated functional Klhl31-fusion proteins. Furthermore it was 

again shown that the loss of the BTB domain led to limited functionality of the protein.  

N-terminal tagged Klhl31 fusion proteins did not inhibit β-Catenin induced luciferase 

signalling (see luciferase assay for pEGFP-C1 Klhl31, figure 4.3). We observed similar 

decrease in functionality when using an N-terminal tagged fusion protein for Klhl31 as 

compared to luciferase readings for Klhl31 ΔBTB-GFP/DsRed. We therefore wondered 

if a GFP-tag at the N-term of Klhl31 would disturb or block the structure of the Klhl31 

protein, especially the BTB-domain. Circular dichroism analysis for an N-terminal 

tagged Klhl31 fusion protein could reveal if and to what extent GFP-tag could interact 

with the BTB-domain and would also shed light on whether this interaction could 

inhibit functionality of the fusion protein, as our data suggests.  

Furthermore, we observed that the N-terminal tagged Klhl31 fusion proteins displayed a 

vesicular localisation in C2C12 cells (as described and discussed in sections 4.2.1 and 

4.2.2), indicating that these Fusion-proteins might be degraded by the cell. However, we 

need to carry out lysosome-labelling experiments together with overexpression of the 

Klhl31-fusion proteins to be able to verify co-localisation. Also staining for 

ubiquitinylation could be used to validate a potential Klhl31 degradation.  
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Based on our data from the luciferase assays we could conclude that structural 

disturbances of the BTB domain potentially lead to a non functional Klhl31 protein. 

As mentioned previously, Klhl31 fusion proteins tagged at the carboxy-terminus were 

active in our luciferase assays. However, we were not able to successfully overexpress 

most of the Klhl31 constructs in C2C12 myoblasts. Transfection efficiency for the used 

pEGFP-N1 or pDsRed-N1 constructs was never observed to be higher than 20% 

(consistent with a described optimal transfection efficiency of a maximum of around 

25% by(Dodds and others, 1998) and signals for the C-terminal GFP tagged Kelch-like 

proteins only displayed very weak fluorescence (figure 4.9) making it difficult to 

observe real fluorescence of the fusion proteins. Only Klhl31-FL-GFP displayed a 

cellular localisation in C2C12 myoblasts, although different to the localisation observed 

for endogenous Klhl31 (figure 4.9, b). Klhl31-FL-GFP was not seen in C2C12 

myotubes (figure 4.9, f). Klhl31 ΔKR-GFP was also only detected in C2C12 myoblasts 

revealing a diffused cytosolic localisation (figure 4.9, d) similar to the observed 

localisation for EGFP-Klhl31 ΔKR (figure 4.4; d). Similar cytosolic localisation of 

EGFP-Klhl31 ΔKR was also observed in myotubes (figure 4.4; h), but not for Klhl31 

ΔKR-GFP (figure 4.9; h). It was reported that members of the Kelch-like family bind 

cellular Actin fibres via its Kelch-repeats (Hara and others, 2004; Robinson and Cooley, 

1997; Salinas and others, 2006; Stogios and Prive, 2004). As Klhl31 seems to bind to 

Actin in C2C12 myotubes, a cytosolic localisation of EGFP-Klhl31 ΔKR can be 

explained by the loss of association to Actin fibres due to a lack of the C-terminal 

Kelch-propellers. However, endogenous Klhl31 in C2C12 myoblasts displayed a 

punctate localisation in the cytosol (figure 3.8), which could not be reproduced by 

overexpression of pEGFP-C1 Klhl31 ΔKR (figure 4.4; d) and pEGFP-N1 Klhl31 ΔKR 

(figure 4.9; d). It might be that localisation of Klhl31 is also mediated by the Kelch-

repeats in undifferentiated C2C12 cells, but might not involve the Actin fibres. Proteins 

containing Kelch-repeats have been shown to localise to membranes, the cytosol and 

sperm acrosomal vesicles without being directly associated to Actin (for a review see 

(Adams and others, 2000). It could be possible that Klhl31 is associated to other cellular 

components in C2C12 myoblasts compared to myotubes. Another possibility might be 

that the plasmid DNA used for transfection was contaminated, which either led to less 

expression and therefore non-observable fluorescence or overexpression of only the 

fluorophore. This could explain why overexpressed Klhl31ΔKR-GFP localisation and 
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signal strength seemed to be highly similar to localisation and fluorescence signal of 

GFP expressed from the parental vector (figure 4.9, a). 

As we were able to detect a similar localisation for Klhl31 FL GFP in myoblasts 

compared to endogenous Klhl31, we expected to also be able to visualise C-terminal 

DsRed-tagged Klhl31 (see figure 4.7). But unfortunately, we could not observe 

fluorescence signal for any of the constructs except for Klhl31 ΔBTB-DsRed, which 

again displayed a vesicular pattern, both in myoblasts and myotubes (figure 4.7, c and 

g). This could partially be explained by known problems of DsRed-constructs in terms 

of correct folding of generated fusion-proteins.  

A further possibility why we did not observe our overexpression constructs, either 

Klhl31-GFP or Klhl31-DsRed could be that the fusion proteins were degraded over the 

differentiation time-course of C2C12 starvation. During differentiation of C2C12 

myocytes apoptosis is occurring (Cerone and others, 2000; Wang and Walsh, 1996), 

keeping up the right balance between proliferating and differentiating cells (Burattini 

and others, 2004). Apoptosis is only affecting myoblasts, differentiated C2C12 do not 

undergo programmed cell death (Wang and Walsh, 1996). As we only transfected a low 

percentage of cells (~20%) followed by the induction of apoptosis in some myoblasts by 

promoting C2C12 differentiation, we potentially loose more protein expression over the 

5 days of differentiation time course. We therefore have to assume that by the end of 

our time-course of C2C12 differentiation fusion-protein levels are too low to be 

detectable in myotubes, which did negatively affect both, DsRed and GFP-tagged 

Klhl31 fusion proteins. 

7.1.4 Klhl31 is downregulated in mammalian cell cultures possibly by targeting itself 

for degradation 

 

We could show that overexpression of Klhl31 fusion proteins in C2C12 was possible, 

but the levels of transcribed fusion proteins seemed to be very low.  

Although we were not able to detect GFP-Fusion proteins on a western blot, we were 

able to see GFP on its own (figure 4.10) revealing that the transfection of C2C12 should 

have been successful. A further interesting clue regarding Klhl31 overexpression in 
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C2C12 was observed by Dr. Katarzyna Goljanek-Whysall in our laboratory. It was 

previously reported that expression of canonical Wnt-ligands in C2C12 keep C2C12 

cells in a proliferative state and that inhibition of β-catenin mediated Wnt-signalling is a 

prerequisite for the induction of C2C12 differentiation (Nakashima and others, 2005; 

Tanaka and others, 2011; Zhang and others, 2012). Previous work from our group had 

already indicated that Klhl31 can inhibit canonical Wnt-signalling (Abou-Elhamd and 

Garcia-Morales).  

When Dr. Katarzyna Goljanek-Whysall silenced Klhl31 expression in C2C12 myoblasts 

she observed that proliferation was increased and differentiation delayed. This 

observation was supporting the suggestion that Klhl31 is an inhibitor for β-catenin 

dependent Wnt-signalling. However, C2C12 cells were also observed to proliferate 

more when transfected with Klhl31. C2C12 myoblast expressing ectopic Klhl31 did not 

differentiate as efficiently compared to controls.  

Based on our findings, that Klhl31 levels in C2C12 myoblasts were very low, only 

increasing during the intermediate phase of differentiation and that overexpression of 

Klhl31 did surprisingly not induce myotube formation, we were wondering if Klhl31 

levels need to be low and therefore might be regulated by the cellular environment. 

Another possibility could be that Klhl31 mediates its own downregulation in C2C12 

myoblasts, as a negative feed-back, to prevent increased Klhl31 protein levels.  

If Klhl31 is in fact downregulated by targeted degradation, we might be able to prevent 

degradation by inhibiting the proteasome. First we decided to increase our transfection 

efficiency by choosing HEK293 cells, which do not endogenously express Klhl31. We 

overexpressed Klhl31 FL-GFP in HEK293 cells and treated transfected cells with MG 

132. We observed a 75 kDa protein band in HEK293 cells, both treated and untreated 

with MG132. However, this protein band was smaller than expected for a full-length 

Klhl31 FL-GFP protein.  As we could detect the C-terminal tagged GFP-fusion protein 

with a GFP-antibody, we assumed that a full length protein was produced in the cell. 

The smaller size may therefore indicate that the fusion protein was cleaved near the 

amino-terminus. Using MG132 did not seem to prevent this reduction in size and 

presumed cleavage. However, after MG132 treatment, we observed a weak stabilisation 

of some smaller fragments of the cleaved Klhl31 fusion protein, which ran below the 

main band (figure 4.11 and figure 4.12, lanes 7-9).  
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It has recently been shown that other members of the Kelch-like family have also been 

initially degraded by a so far unknown process which does not involve the proteasome 

(Zhang and others, 2005). KEAP-1 (Klhl19) degradation is due to the formation of 

homodimers, which triggers the ubiquitinylation of KEAP-1 and subsequently leads to 

the degradation of this Kelch-like protein (Zhang and others, 2005). Zhang et al. (2005) 

also claimed that the switch from substrate to substrate adaptor ubiquitinylation is 

important for the regulation and control of steady-state protein levels of both, substrates 

and adaptor proteins, in the cellular environment.  

Could Klhl31 also not only control protein levels of its substrates, but also its own 

protein levels based on potentially self-targeted or self-induced degradation? It has been 

suggested that in theory all members of the Kelch-like family should be able to form 

homodimers (Geyer and others, 2003).  

We used a GST-pull down approach to find interaction partners for Klhl31 specifically 

in C2C12 cells and we found that GST-Klhl31 was detected together with a protein 

band displaying the size of endogenous Klhl31 on a PAA gel (figure 5.17, a; ←). 

Furthermore, the potential interaction of Klhl31 with itself was further verified by 

detection of both endogenous Klhl31 and GST-Klhl31 with a Klhl31-antibody on a 

western blot (figure 5.17, b; ←). 

Being able to show that Klhl31 can eventually interact with itself, possibly as 

homodimers, further highlights a function for a self-regulation of protein levels of 

Klhl31.  

7.1.5 Identifying interaction partners for Klhl31 

 

To identify potential interactions for Klhl31 in skeletal muscle tissues, we 

commissioned a Yeast-2-Hybrid screen (see chapter 5.1.2). The Yeast-2-Hybrid screen 

in general has not been very successful and included sequences derived from non 

protein-coding RNA or intronic DNA sequences (chapter 5.1.3) suggesting 

contaminations with genomic DNA in the screened libraries.  
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All four proteins identified as potential interaction partners were classified as category 

D, which contains potentially false positives (figure 5.2). We had designed our bait 

construct for Klhl31 in consultation with Hybrigenics. Based on our GFP/DSRed fusion 

proteins, it seemed likely that a tag at the BTB domain would impair function (as 

discussed in chapter 7.1.3). We therefore decided to use a C-terminal LexA/GAL4-

Klhl31 fusion protein for Klhl31. C-terminal tagged fusion proteins were shown to be 

functional and seemed to localise similar to endogenous Klhl31 in C2C12 myoblasts. 

Thus we were confident that a C-terminal tagged bait protein could successfully be used 

in a Yeast-2-Hybrid screen. However, we have also seen that overexpressed Klhl31 in 

cell culture was potentially degraded, potentially initiated by the cellular environment 

and maybe even targeted by itself (chapter 7.1.4). To what extent this might have been 

an issue in Yeast cells we do not know.  

The screen identified three potential new interaction partners for Klhl31. NEDD9 

(described in chapter 5.2.2), FKBP15 (described in chapter 5.2.3) and two isoforms of 

Nebulin (chapter 5.3). NEDD9 and FKBP15 have been discussed previously (section 

5.2.2 and 5.2.3, respectively) and will not be analysed any further. The possible 

interaction with Nebulin will be discussed in the following chapter (7.2). 

We wondered why the Yeast-2-Hybrid screen did not identify a possible interaction of 

Klhl31 with Actin. We had previously shown that Klhl31 localises closely to Actin 

fibres and we were able to verify a direct interaction by a GST-pull down approach. We 

questioned if the GAL4/LexA domain fused to the carboxy terminus in Klhl31 for the 

Yeast-2-Hybrid Screen might have diminished the binding capacity of the Kelch-

repeats. Also we wondered if a potential structural blockage or rearrangement of the C-

terminus might also have had an impact on the N-terminus of the Klhl31 fusion protein 

again speculating that the Yeast-2-Hybrid screen might have missed some interactions 

for Klhl31. 
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7.2 Nebulin and Klhl31 might both be involved in mediating 

myofibrillogenesis  

 

7.2.1 Nebulin and Klhl31 co-localise in adult muscle tissues 

 

As the Y-2-H had identified two isoforms of the giant sarcomeric protein Nebulin and 

as it was reported that Nebulin has function both in embryonic and adult muscle tissues, 

we decided to further investigate Nebulin as a potential new interacting partner for 

Klhl31. First we compared both fragments of the Nebulin isoforms with each other. We 

found that both isoforms contained the same amino acid sequence, which potentially 

could be a conserved binding site for Klhl31 (see alignment of both fragments in 

chapter 5.3.1). 

Using an immuno-histochemistry approach we showed that both Klhl31 and Nebulin 

are expressed in adult mouse striated muscles (see figure 5.7). Both Klhl31 and Nebulin 

could be observed to label punctate structures in myofibres, potentially single 

myofibrils. Using double immuno-staining for Klhl31 and Nebulin on tibialis anterior 

sections revealed a close association of Nebulin and Klhl31, as both proteins were 

detected in the majority of myofibrils (yellow staining, see figure 5.8; b).  Observing 

this close localisation suggested that Klhl31 and Nebulin might be able to interact 

directly with each other, as predicted by the Yeast-2-Hybrid screen. However, we have 

also observed myofibrils that were either Nebulin positive (green), but not Klhl31 

positive, as well as myofibrils, which were only labelled for Klhl31 (red), but not for 

Nebulin. Various isoforms for Nebulin have been reported to be expressed in different 

muscle tissues and during different developmental stages (Donner and others, 2004; Joo 

and others, 2004; Kazmierski and others, 2003). It was predicted that over 20 different 

Nebulin transcripts could be generated by alternative splicing in the human tibialis 

anterior muscle alone (Donner and others, 2004) and therefore we have to assume that 

the tibialis anterior muscle in mice also expresses various Nebulin isoforms. Having 

observed Nebulin-positive myofibrils, which were negative for Klhl31, we could 

assume that Klhl31 does not interact with all of the potential present Nebulin isoforms. 
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This observation would be in line with the data analysis for a potential binding domain 

for Klhl31 within the super-repeat domain of Nebulin, which is different for each 

isoform due to alternative splicing sites within the Nebulin gene. We know that the 

antibody, which we used to detect Nebulin was raised against an epitope found in the 

conserved C-terminal region of Nebulin, which is localised close to the Z-disc in the 

sarcomere and which is not affected by alternative splicing (Furst and others, 1988). 

The Nebulin antibody should therefore label all present Nebulin isoforms within the 

mouse muscle. Having observed Klhl31 expressing myofibrils, which were not labelled 

for Nebulin leads to the question whether Klhl31 is closely associated to Nebulin and 

whether Klhl31 could also associate to other sarcomeric proteins, which are not located 

in the Nebulin-containing area of the sarcomere. We therefore have to consider that 

Nebulin and Klhl31 might not associate with each other along the whole myofibrillar 

structure. We know that Nebulin is associated to thin filaments, but not the thick 

filaments (Millevoi and others, 1998; Wang and Wright, 1988). It could be that Klhl31 

also aligns to specific parts of the myofibrils. We propose that Klhl31 is associated to 

Actin (see figure 5.16) and an interaction with Nebulin was predicted in the Yeast-2-

Hybrid screen (chapter 5.3.1), leading to the suggestion that Klhl31 is localised to the 

thin filaments, maybe also associated to Nebulin. However, we need to undertake more 

experiments to identify localisation and function for Klhl31 in mature muscles, 

potentially by using longitudinal sections. Immuno-staining for Nebulin, Actin and 

Klhl31 could further clarify if Klhl31 is only found along the thin filament, whilst 

comparing the localisation of further sarcomeric proteins (such as α-actinin or proteins 

of the M-band) with the localisation of Klhl31 could also shed more light on a potential 

function for Klhl31 in adult muscle. 

Unfortunately we were not able to verify Nebulin-Klhl31 interaction by using a GST-

Klhl31 fusion protein in pull-down assays in C2C12 lysates during C2C12 

differentiation. 

This could be explained in that observed Nebulin levels were very low in the C2C12 

lysates. Also we still have to remember that we could not detect full length Nebulin by 

Western blotting, as we have chosen to use a too low concentrated PAA gel. We 

therefore cannot confirm nor deny a potential interaction of Klhl31 with Nebulin. 

Another possibility is that Klhl31 could target Nebulin for degradation as part of a 

potential E3-Ubiquitin-ligase complex. When we analysed Nebulin protein expression 

by western blotting, the antibody against Nebulin detected a protein band of 130 kDa 
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(see section 5.3.7). This is far too small to be a full length Nebulin protein, as Nebulin 

has been described to be between 600-900 kDa large (Labeit and Kolmerer, 1995a; 

McElhinny and others, 2003).  At this moment we cannot confirm, whether Klhl31 

could potentially assist in the ubiquitinylation of Nebulin. We firstly need to identify 

full-length Nebulin protein on an appropriate SDS-PAGE, followed by characterisation 

of the observed 130 kDa protein band, before we can investigate this suggestion any 

further. Ubiquitination assays could further help highlighting if Nebulin is degraded 

during myofibrillogenesis. At this moment, we probably have to assume that the 

detected protein band might only be an unspecific protein, which cross-reacted with our 

used Nebulin antibody. We could use other anti-Nebulin antibodies to further clarify the 

identity of the detected protein band. 

 

7.2.2 Nebulin and Klhl31 might function in myofibrillogenesis in C2C12 mouse 

myoblasts 

 

Nebulin has also been described to play an important role during myofibrillogenesis (as 

explained in chapter 5.3.2).  

As described previously, Nebulin during C2C12 differentiation was only expressed for 

approximately 24 h between day 1.5 and day 2.5 (see figure 5.10 and figure 5.12).  

Comparing the expression of Nebulin to the expression of Klhl31 during C2C12 

differentiation, it was seen that Nebulin expression seemed to be expressed before or at 

the same time that Klhl31 protein levels increased (as described in chapter 3.1.3) at the 

time point during differentiation that was marked by the formation of primitive Z-discs 

and was described as the onset of C2C12 myofibrillogenesis (Burattini and others, 

2004; Kontrogianni-Konstantopoulos and others, 2006). 

However, previous data reported a constant expression of Nebulin during 

myofibrillogenesis and in adult muscle tissues (McElhinny and others, 2005; Moncman 

and Wang, 1996; Nwe and others, 1999). Therefore we were wondering, why we were 

not able to detect Nebulin throughout differentiation of mouse myocytes. It could be 

that the antibody we used to label Nebulin with does not detect all Nebulin isoforms. 

Therefore we maybe had only detected one specific isoform of Nebulin, which only 
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functions during early myogenesis. But as mentioned before, the Nebulin antibody used 

is very well characterised and should not selectively detect specific Nebulin-isoforms.  

Also it seemed like that the C2C12 cell culture used was unhealthy and maybe even a 

bit too old. Therefore we cannot exclude that the differentiation potential of the used 

C2C12 cells was diminished, especially towards later stages of differentiation, so that a 

lack of constant Nebulin expression is not due to a real absence of Nebulin, it might be 

rather be due to undefined cellular processes within the C2C12 myocytes originating 

from high stress levels or diminished health.  

This problem could also have affected the observations made in our Latrunculin B 

experiments (as described in chapter 3.3.3) to some extend. In published literature, it 

has been reported that Actin filaments associated to Nebulin cannot be depolymerised 

under Latrunculin B treatment (Pappas and others, 2010). However differentiated 

C2C12, which were treated with Latrunculin B in our experiments, lost all their Actin 

filaments and eventually the cell structure collapsed (see figure 3.11) raising the 

possibility that the Actin filament was not stabilised by Nebulin or that again due to 

poor health our C2C12 cells were not able to recover from additional stress caused by 

treatment with the drug. 

Also, we could not test C2C12 myotubes, which have differentiated for more than 5 

days, for expression of Nebulin. This was due to technical problems with the C2C12 

cell culture. Mature myotubes in culture tend to detach and reform constantly leading to 

a huge number of cells being lost from the plates or coverslips (already after 5-6 days in 

differentiation medium), which might also have been increased in our cell culture due to 

mentioned age and health-related issues. Published data for Nebulin expression during 

C2C12 differentiation stated a constant expression of Nebulin from early 

myofibrillogenesis on and even in fully mature myotubes (Burattini and others, 2004; 

Sanger and others, 2010). In fully mature C2C12 myotubes (around day 10 of 

differentiation) Nebulin was even shown to display striations in myofibrils just as 

described for adult muscles (Cooper and others, 2004). We have tested whether our 

C2C12 myoblasts could differentiate into striated myofibrils. However, as this was not 

the case, we have to assume that our C2C12 cells were potentially not healthy enough to 

undergo a normal differentiation process compared to healthy myoblasts.   
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Further expression data, for both Nebulin mRNA and protein, needs to be obtained in 

healthy C2C12 myoblasts in order to be able to clearly indentify the time frame of 

Nebulin expression, as well as Klhl31 expression during C2C12 differentiation.  

Following the analysis of Nebulin expression in C2C12, we studied the localisation of 

Nebulin in elongating C2C12 cells. In conclusion with published literature, we also 

found that Nebulin aligns to Actin fibres during differentiation of muscle cells (figure 

5.11 and figure 5.13) (Moncman and Wang, 1996; Shimada and others, 1996). Although 

Nebulin seemed to form fibrillar structures, it could be seen that some of this fibrillar 

structures displayed a punctate pattern. Also punctate staining was observed in the 

cytosol and not attached to Actin fibres (figure 5.11, day 2). A similar pattern was 

observed by Nwe et al. (1999).  

As differentiation of C2C12 cells progressed, we could observe Nebulin staining in a 

punctate and accumulated pattern restricted to the edges of the elongating cells (see 

figure 5.13; g and p) with few puncta still observed along Actin fibres (see also figure 

5.14, a). Nwe et al. (1999) published that Actin during later myocyte differentiation 

localised to Z-discs, where it overlapped with high levels of Nebulin. As we were able 

to observe accumulation of Actin and Nebulin at the edges of the cell we were 

wondering if this localisation could be close to primitive Z-discs in C2C12. Co-staining 

for Nebulin with sarcomeric α-actinin would clarify if we have Nebulin localisation 

along the Z-discs in differentiating C2C12 cells. Based on our obtained data for Nebulin 

during C2C12 differentiation and published literature for Nebulin, we could assume that 

Nebulin is involved in C2C12 mouse myoblasts, potentially by assisting the association 

of Actin filaments to the primitive Z-discs.  

Unfortunately, once Nebulin staining has been refined to the edges of the cells 

expression decreases and was not detected anymore during the subsequent days of 

C2C12 differentiation. This observation has not been made in any other cell line or 

model organism (as described previously) leaving us again wondering whether the 

health or age of our C2C12 cell line was inhibiting our ability to investigate the late 

differentiation of mouse myoblasts. 

Having analysed Nebulin and Actin, as well as Klhl31 and Actin localisation during 

C2C12 differentiation, we then compared Klhl31and Nebulin localisation. 
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Klhl31 and Nebulin both aligned to Actin fibres in similar stages of C2C12 myotube 

formation (see figure 5.13; k-q), from day 1 until around day 2. We were also able to 

show a weak, partial co-localisation of Nebulin puncta to Klhl31 fibres (see figure 5.14; 

c) but only in elongated myocytes after day 1.5 of C2C12 differentiation.  However, we 

also detected a higher number of Nebulin puncta that did not align to Klhl31 structures 

(figure 5. 14; c), which is likely to be observed due to the instability of the red signal 

from the secondary antibody (as described in material and methods, section 2.2.26). 

Compared to previous Klhl31 staining (see figure 3.8), we only observed a few Klhl31 

fibres in differentiating mouse myoblasts indicating that we had potentially detected less 

Klhl31 than were actually present in the cell. Based on previous immuno-staining in 

C2C12 for Actin and Klhl31, as well as for Actin and Nebulin, we have to assume that 

Klhl31 and Nebulin would be in close proximity in elongating myoblasts. However 

again, we need to repeat the experiment in young, healthy mouse myoblasts and we also 

need to co-stain for other well defined sarcomeric proteins, like α-actinin to further 

clarify the regions within the premyofibril the proteins, especially Klhl31 and Nebulin, 

localise to. 

We also need to repeat some of the expression profiling experiments, so we can further 

clarify the temporal expression pattern, both on mRNA and protein level) of Klhl31 

compared to other well-described sarcomeric genes during C2C12 differentiation in 

order to be able to describe a potential function for Klhl31 during myofibrillogenesis.  

Our data obtained from the cell culture experiments can also not be used to explain why 

Klhl31 is still localised to Actin fibres during late myofibrillogenesis and in adult 

muscles, as well as that we also have no idea what the function of Klhl31 is both in 

developing and mature muscles. We have evidence from in-situ hybridisation in chick 

embryo (Abou-Elhamd and others, 2009), as well as from our data obtained in 

myoblasts that Klhl31 could play a key part during myofibrillogenesis in the myotome, 

which requires association with the Actin filament. But so far we have not gathered 

enough evidence to specify this role.   

We have identified CapZ and tropomyosin as potential interacting partners for Klhl31 in 

differentiating C2C12 myoblasts. Various publications had suggested a role for Nebulin 

in stabilisation of the thin filament in striated muscles (Kruger and others, 1991; Labeit 

and others, 1991; McElhinny and others, 2005; Moncman and Wang, 1996; Pappas and 

others, 2010). As we could observed an association between Nebulin and Klhl31 and as 
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we have identified CapZ, as well as tropomyosin (both, tropomyosin, by binding to 

tropomodulin, and CapZ are involved in capping of the Actin filament in striated 

muscles (Bailey, 1948; Caldwell and others, 1989; Kostyukova, 2008; Perry, 2001; 

Weber and others, 1994)) as being able to bind to Klhl31, as well as being able to bind 

to Nebulin (McElhinny and others, 2001; Pappas and others, 2008), we could 

hypothesise that Klhl31 might be involved in thin filament assembly and stabilisation 

(probably in association with Nebulin), maybe even in length specification. This might 

be a potential function for Klhl31, as we also have identified the Arp2/3 complex as a 

potential interaction partner for Klhl31 during C2C12 differentiation and potential 

myofibrillogenesis. Nebulin was recently shown to form a complex with N-WASP, 

which was able to induce Actin nucleation without the assistance of the Arp2/3 complex 

(Takano and others, 2010). We have identified FKBP15/WAFL, a member of the 

Wiskott–Aldrich Syndrome protein (WASP) family as a potential interaction partner for 

Klhl31 in the Yeast-2-Hybrid screen. Although a direct interaction between Klhl31 and 

FKBP15/WAFL needs to be verified, it could be interesting to test, whether a member 

of the WASP family is involved in Actin polymerization together with potentially 

Nebulin and Klhl31.  

Furthermore, we pulled down the myosin regulatory light chains Myl9 and Myl12b. 

Myl9 and Myl12 b are be part of Myosin II in non-muscle cell tissues, where they play 

a crucial role in cell adhesion, cell division and migration (Park and others, 2011). 

Furthermore, Myl9 has also been reported to be expressed in smooth muscle (Kumar 

and others, 1989). Myl9 and Myl12b have not been reported to be expressed in adult 

skeletal muscle. 

However, immuno-histochemistry studies and protein extraction studies revealed the 

presence of both Myl9  and Myl12b in C2C12 cells (http://www.scbt.com/datasheet-

19848-p-MYL9-thr-18-antibody.html, (Sharma and others, 2012), which could mean 

that both RLCs have actual functions in the sarcomeric structures of C2C12 cells. 

During myofibrillogenesis it was reported that non-muscular myosin II is initially 

assembled into premyofibrils and is later replaced by muscle-specific myosins (Sanger 

and others, 2002; Sanger and others, 2010). This also includes the associated non-

muscle myosin regulatory light chains (Du and others, 2003). It was reported that 

myosin II and its associated myosin regulatory light chain Myl12b are expressed during 

early myofibrillogenesis. Furthermore phosphorylation of non-muscle myosin 

regulatory light chains is essential for premyofibril assembly, as the inhibition of non-

http://www.scbt.com/datasheet-19848-p-MYL9-thr-18-antibody.html
http://www.scbt.com/datasheet-19848-p-MYL9-thr-18-antibody.html
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muscle myosin regulatory light chain led to the complete loss of premyofibrils in 

precardiac mesoderm explants (Du and others, 2003). Having observed that Klhl31 

might bind to components of non-muscle myosin II during early myofibrillogenesis 

might reveal a role for Klhl31 during myofibril assembly, not only for the thin filament, 

but also for the thick filament. However, we can only speculate here, as we do not have 

enough evidence to support our idea. Our immuno-staining for Klhl31 during C2C12 

differentiation contradicts the idea of a potential role for Klhl31 during thin and thick 

filament assembly, as we have only observed an interrupted staining for Klhl31, whilst 

we probably would expect a continuous staining inside the myocytes if Klhl31 would 

associate to both the actin and the myosin filament. Again, we need to carry out further 

experiments directed towards the question whether Klhl31 might be involved in 

myofibrillogenesis, assisting both the thin and the thick filament to assemble.  

The data from the mass spectrometry might also give clues towards a role for Klhl31 in 

mature sarcomeres. Based on having identified CapZ and tropomyosin as interaction 

partners for Klhl31 by GST-pull down and co-localisation of both proteins, Klhl31 and 

Nebulin in adult muscle, we could suggested that Klhl31 together with Nebulin might 

be involved in stabilising the Actin thin filament in mature muscles.  

Furthermore, tropomyosin as an interacting partner for Klhl31 could also link Klhl31 to 

muscle contraction, as troponin/tropomyosin complexes have been reported to mediate 

muscle contraction by translating elevated Ca 
2+

 signals into actomyosin interactions 

and subsequent movement (Catterall, 1995; Farah and Reinach, 1995; Gordon and 

others, 2000; Zhi and others, 2005). This idea could furthermore be emphasized by the 

identification of Calmodulin from the GST-pull down. However, we have no clear 

evidence or in fact any supporting material for this hypothesis and I therefore emphasize 

here again, that this is only a speculation of what Klhl31 might be involved in at this 

point in time.   

So far we have only analysed the low sized proteins from the silver stained PAA-Gel by 

mass spectrometry. Further bands have been excised and are still kept at – 80 °C. We 

could possibly find other interesting candidates in the other excised protein bands.   
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7.2.3 Nebulin, Actin and tropomyosin mutations in nemaline myopathy 

 

Nemaline myopathies are congenital, inheritable neuromuscular disorders characterized 

by the presence of rod-like structures in skeletal muscle fibres.  

Patients with nemaline myopathies show signs of hypotonia and biopsies of affected 

muscles reveal unusual rod-shaped structures or myogranules, also known as nemaline 

bodies (Conen and others, 1963; Sanoudou and Beggs, 2001; Shy and others, 1963).  

Most nemaline myopathies originate during development caused by mutations of 

various sarcomeric proteins (Wallgren-Pettersson and others, 2011).  

Mutation in ACTA1, encoding skeletal muscle α-Actin, Nebulin, TPM2, expressing β-

tropomyosin, TPM3, which encodes α-tropomyosin, TNNT1, expressing slow skeletal 

muscle troponin T as well as CFL2, encoding muscle specific cofilin have been shown 

to be responsible for nemaline myopathies (Agrawal and others, 2007; Donner and 

others, 2002; Johnston and others, 2000; Laing and others, 1995; Nowak and others, 

1999; Pelin and others, 1999). More recently a gene of the Kelch/BTB family has been 

described to also be mutated in patients displaying nemaline myopathy, KBTBD13 

(Sambuughin and others, 2010). 

In comparison to the other genes affected in nemaline myopathies, Actin and Nebulin 

mutations seem to be the most common mutations (Wallgren-Pettersson and others, 

2011). How mutations in sarcomeric proteins lead to a myopathy, remains unclear. 

Based on present knowledge, two hypotheses have been formulated. The first one being 

that mutations in sarcomeric proteins interfere directly with muscle contractile apparatus 

or that, claimed in hypothesis two, the presence of nemaline bodies would decrease the 

number of functional sarcomeres (Ravenscroft and others, 2011a; Ravenscroft and 

others, 2011b) 

Components and structure of nemaline bodies have been analyzed in biopsies and by 

using transgenic mice. It was shown that nemaline bodies are extensions of Z-discs and 

mainly consist of α-actinin, myotilin and sarcomeric α-Actin (Jockusch and others, 

1980; Schroder and others, 2003; Wallgren-Pettersson and others, 1995; Witt and 

others, 2006; Yamaguchi and others, 1982). Accumulations of filamentous proteins and 

desmin have also been described (Ravenscroft and others, 2011b).  
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In the context of this project, we were wondering if mutations in Klhl31 could also 

cause nemaline myopathy or otherwise if mutations in Actin, Nebulin and other 

sarcomeric proteins could alter Klhl31 expression during nemaline myopathy. Our 

obtained data indicated a potential role for Klhl31 during myofibril assembly as it has 

been predicted to bind to Nebulin and has been shown to interact with Actin and 

tropomyosin. However, a mutation in Klhl31 in nemaline myopathy has not been 

reported so far. Interestingly though, a mutation in a different member of the Kelch-

BTB protein family, KBTBD13, causing nemaline myopathy has been published 

recently (Sambuughin and others, 2010). KBTBD13 similar to Klhl31 is mainly 

expressed in skeletal and cardiac muscle. Furthermore it was shown that mutations in 

KBTBD13 that promote nemaline myopathy were found in the kelch-propeller domain 

potentially changing the structure of the carboxy-terminus of KBTBD13. We were 

wondering if KBTBD13 might have similar function like Klhl31. However, a function 

for KBTBD13 has not been described so far. Recently it was reported that KBTBD13 

might function as a E3 ubiquitin ligase (Sambuughin and others, 2012). Based on 

known data, we were wondering if Klhl31 and KBTBD13 could be structurally related. 

However, when aligned KBTBD13 and Klhl31 do not share a high homology on DNA 

and protein level (see Appendix A.6).  

We therefore cannot compare Klhl31 with KBTBD13. However, based on predicted and 

observed interactions of Klhl31 with Actin, tropomyosin and Nebulin, it would be 

interesting to see if mutations of Klhl31 could also play a role in nemaline myopathies. 

Analysing Klhl31 expression and localisation in fibres affected by nemaline myopathy 

could potentially also give further insight into the role of Klhl31 in sarcomeres and 

maybe further clarify a role of Klhl31 during myofibrillogenesis. 

 

7.3 Klhl31 expression and potential function during cardiogenesis  

 

7.3.1 Klhl31 is expressed in the myocardium during chick development 

 

We compared expression of Klhl31 to the expression patterns for published heart 

marker genes during early heart development of chick embryos.  
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We observed that Klhl31 was expressed in the same tissues as the myocardium-marker 

Nkx2.5 throughout all analysed stages of chick development. However, in contrast to 

Nkx2.5, Klhl31 was not expressed in cardiac progenitor cells prior to fusion of the 

primary heart tube. Fusion of the primary heart tube in chick correlates with the 

differentiation of myocytes (Colas and others, 2000; Yuan and Schoenwolf, 2000). It is 

therefore possible that Klhl31 might have similar function as proposed for C2C12 

skeletal myocytes.  

Sarcomeres in cardiac muscle display similar organisation to skeletal muscle myofibrils 

(thick and thin filaments, Z-discs, M-bands) and are comprised of some of the same 

structural proteins (e.g. Actin, myosin, tropomyosin, and troponin). Furthermore 

processes regulating cardiac myofibril assembly and stability seem to be similar (Rudy 

and others, 2001; Sanger and others, 2010), also explained in chapter 1.3).  

However, cardiomyocytes express Nebulette, a relatively small homologue of the 

Nebulin gene family (Moncman and Wang, 1995). Just as Nebulin, Nebulette also 

contains the central repeat domain through which Nebulette can associate with Actin 

monomers (Jin and Wang, 1991a; Jin and Wang, 1991b; Millevoi and others, 1998; 

Moncman and Wang, 1995; Moncman and Wang, 1999). Also similar to Nebulin, 

Nebulette contains a C-terminal SH3 domain and has been shown to interact via the C-

terminus with α-actinin, titin, myopalladin and desmin (Bang and others, 2001; Esham 

and others, 2007; Grunewald and Butt, 2008; Wang and others, 2002). Recently the 

interaction of the central repeat domain of Nebulette with the tropomyosin/troponin 

complex has also been revealed (Bonzo and others, 2008; Ogut and others, 2003). 

Based on the similarity of Nebulin and Nebulette, it was suggested that Nebulette 

carries out the role that Nebulin mediates in skeletal muscle (Bonzo and others, 2008; 

Moncman and Wang, 1995).  

Evidence that Nebulette might be involved in myofibrillogenesis in heart muscle was 

reported by Moncman and Wang (1995, 1999). It was shown that Nebulette binds to 

sarcomeric α-actinin already in premature myofibrils and stays associated to the Z-disc 

in mature myofibrils, leading to the suggestion that Nebulette might be involved in 

myofibrillogenesis by connecting the Actin filament to the Z-disc (Moncman and 

Wang, 1995; Moncman and Wang, 1999).  

It was furthermore described that Nebulette might also stabilise the thin filament in a 

similar way as described for Nebulin (Moncman and Wang, 2002; Pappas and others, 
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2010). Although Nebulette in comparison to Nebulin seems to be too small to be able to 

span the whole Actin filament and Nebulette only associates to Actin-fibres in the Z-

disc, silencing studies in cardiomyocytes have been reported to generate a reduced size 

of the thin filament revealing that Nebulette can stabilise thin filaments longer then 

Nebulette itself (Moncman and Wang, 2002). Further data seemed to confirm an 

essential role for Nebulette in thin filament length specification, as a knock-down of 

Nebulette in cardiomyocytes lead to a thin filament phenotype similar to that of reduced 

thin filament seen in Nebulin depleted skeletal muscle (Bang and others, 2006; Bonzo 

and others, 2008; Witt and others, 2006).  

Nebulette does also interact with the thin filament capping protein tropomyosin (Bonzo 

and others, 2008), which might further indicate a role for Nebulette in thin filament 

length specification. 

Furthermore, Nebulette also seems to be involved in muscle contraction, as Nebulette 

deficient cardiomyocytes display weaker heart beats compared to wt cardiomyocytes 

(Moncman and Wang, 2002).  

Based on published data, we can assume that Nebulette functions as Nebulin 

counterpart in cardiomyocytes. However, Nebulin is also expressed in the heart, but its 

expression levels are lower compared to levels in skeletal muscle (Bang and others, 

2006; Kazmierski and others, 2003).  

It was therefore suggested that Nebulin and Nebulette have overlapping functions in 

cardiomyocytes (Pappas and others, 2011). 

Based on our observation of Klhl31 expression in the myocardium exclusively during 

myogenic differentiation and based on data that Klhl31 might interact with Nebulin and 

that Klhl31 does interact with Actin, Actin-capping proteins and components of myosin 

II, we assume that Klhl31 might also be involved in myofibril assembly and thin 

filament stabilisation during heart development. But we do not know yet, if Klhl31 can 

also interact with Nebulette. Based on sequence analysis of Nebulette, we did not find 

the potential binding site for Klhl31, but we were not able to further investigate the 

structural organisation of this domain. It was reported that both Nebulin and Nebulette 

display structural similarities in their super-repeat domains (Bjorklund and others, 

2010). It might be that the Klhl31 binding site contains a specific structural motif, 

which would allow Klhl31 to associate with it, both in Nebulin and Nebulette. As the 
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Klhl31 binding site lies within the boundary of two super-repeat domains, which has 

been reported to contain conserved binding sites for Actin and tropomyosin/troponin 

complexes (Labeit and Kolmerer, 1995a; Pfuhl and others, 1996), we wondered if the 

Klhl31 binding domain or structure could also be found in other domains, both in 

Nebulin and Nebulette proteins other than predicted super-repeat 20 and 21. Although 

we have no direct evidence at present, it might be interesting to see if Klhl31 could 

interact with Nebulette during heart development.  
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8. Conclusion 

 

Klhl31 has previously been described as a novel protein involved in myogenesis (Abou-

Elhamd and others, 2009).  

In this report we suggest a potential role for Klhl31 during myocyte differentiation and 

myofibrillogenesis.  

We studied Klhl31 expression in C2C12 mouse myoblast and found increasing 

expression levels for Klhl31 during the intermediate stage of differentiation, potentially 

correlating with myofibrillogenesis in mouse myoblasts. We also observed that Klhl31 

closely aligned to Actin fibres during C2C12 differentiation. This interaction was later 

verified by GST-pull down approaches. Nebulin, a giant sarcomeric protein, which 

binds and stabilises Actin polymers in striated muscles (Pappas and others, 2011), was 

identified as a potential binding partner for Klhl31 in a Yeast-2-Hybrid screen. 

Furthermore a close localisation for both Nebulin and Klhl31 was observed in 

differentiating C2C12 mouse myoblasts and mouse tibialis anterior muscles. Possible 

interactions of Klhl31 with Nebulin and Actin indicated a potential novel role for 

Klhl31 within the thin filament of striated muscles. More information about the 

potential novel function was obtained by the identification of further interaction partners 

for Klhl31. Thin filament capping protein CapZ and tropomyosin (Fowler, 1996) were 

pulled down by GST-Klhl31. Taking together our observed localisation pattern for 

Klhl31 during C2C12 differentiation, the identified possible binding partners for 

Klhl31, as well as published data for Nebulin, we hypothesised that Klhl31 might be 

involved in myofibrillogenesis, potentially by either regulating the thin filament length 

in collaboration with Nebulin or by assisting the assembly of the thin filament to the Z-

discs. Klhl31 might even be involved in the assembly of premyofibrils as it also seems 

to interact with non-muscle myosin II. 

Further interacting proteins identified in the GST-pull downs could shed a light of a role 

for Klhl31 in mature striated muscles. Calmodulin and tropomyosin were found to 

associate with Klhl31. Together with the observed interaction of Klhl31 with Actin, this 

data indicates that Klhl31 might be associated to the contractile apparatus in fully 

developed sarcomeres. 
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As Klhl31 was shown to be expressed both in the somite after the commitment towards 

a myogenic fate and in cardiac progenitor cells at the onset of differentiation, we could 

assume, that Klhl31 might have similar roles in cardiac and skeletal muscle.  
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Appendix 

 

A.1 Klhl31 Sequences (gallus gallus) 

 

This chapter contains information of DNA and protein sequences for Klhl31 with a 

legend highlighting the functional domains. Primer information is also available for 

cloned Klhl31 constructs. 

A1.1 Klhl31 (DNA) 

 

atggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatggcccc

ctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgacccatcatat

agcccaaatctcttggaaggtctaagcagaatgagactagaaaattttctttgtgacttgactatcagtaccaaaaccaaatctttc

agtgttcataaggtggtgatggcttcaatcagtgactactttcacaacatcttaaagaaagatccatccactcaaagagtagacct

caatgatgtatccccattgggtctagctactgttatcacctatgcttacactggaaagctcactctctcactttatacaataggtagt

attatttccaccgcgatttatcttcagattcacacccttgtaaagatgtgctgtgattttctaacccaagaaatcagtgttgagaattg

tatgtatattgccaatattgcagaaacgtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaacttcatt

gaattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgccttctga

aattgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaacattcgt

tttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaactcctg

gtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattcagagt

gttagttactgttggcggacgccctgctttaacagaaaagtctcttagcagagacatcttgtacagagatcctgaaaatggatgg

aagaagcttagtgaaatgcccgctaaaagttttaaccagtgcgtgacggtgatggatgggtttctctacgtggccggtggggaa

gaccagaatgatgccaggaaccaagccaagcatgcagtcagcaacttctgcagatacgatcctcgtttcaacacctggattca

cctggcaaatatgaatcagaagcgcacccacttcagcctgaatgtattcaatggcctcctttttgcagtgggtggtcgcaacttg

gagggttgtctctcctcgatggagtgctacgtgcctgcaactaatcagtggcagatgaaggcacccctggaggtgcccaggtg

ctgccatgccagtgctgtggtggatggtaggatcctggtcacgggaggttacattaataatgcttactctcgttcagtgtgcatgt

atgaccccagcaatgatagctggcaagataagtccagtcttagcaccccacgagggtggcactgtgccgtgtccctgctgga

gagggtctatgtcatgggtgggtctcaactgggggggagaggggaaagggtcgacgttctccctgtggagtgttacagccctt

acacagggcagtggagttatgtggcaccccttcaaactggagttagcacagccggtgcttcgatgctggatgggaaaatttact

tagtggggggctggaatgagatagagaaaaaatataagaagtgcattcagtgctataacccagatctcaatgagtggacgga

ggaagacgagctgcctgaagccactgtgggagtatcctgttgtactatatccatgcccaacaccaagacaagggagtccaga

gcaagctcagtctcttctgtaccagtcagtatttaa  

 

Legend: 

Start/Stop-Codon 

BTB-Domain 

Kelch-repeats 
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A1.2 Klhl31 (protein) 

 

MAPKKKNVKKNKAADISEMTIIVEDGPLSKLNGLNGLLDGGNGFSCVSSEVSD

PSYSPNLLEGLSRMRLENFLCDLTISTKTKSFSVHKVVMASISDYFHNILKKD

PSTQRVDLNDVSPLGLATVITYAYTGKLTLSLYTIGSIISTAIYLQIHTLVKM

CCDFLTQEISVENCMYIANIAETYGLKTTKEAAHKFIRDNFIEFSETDQFLKLT

FDQINELLADDDLQLPSEIVAFQIAIKWLEFDQKRVKFAADLLGNIRFGTISAQD

LVNYVQTVPRMMQDADCHKLLVDAMNYHLLPYHQNTLQSRRTRIRGGFRVL

VTVGGRPALTEKSLSRDILYRDPENGWKKLSEMPAKSFNQCVTVMDGFLY

VAGGEDQNDARNQAKHAVSNFCRYDPRFNTWIHLANMNQKRTHFSLNVF

NGLLFAVGGRNLEGCLSSMECYVPATNQWQMKAPLEVPRCCHASAVVDG

RILVTGGYINNAYSRSVCMYDPSNDSWQDKSSLSTPRGWHCAVSLLERVYV

MGGSQLGGRGERVDVLPVECYSPYTGQWSYVAPLQTGVSTAGASMLDGK

IYLVGGWNEIEKKYKKCIQCYNPDLNEWTEEDELPEATVGVSCCTISMPNT

KTRESRASSVSSVPVSI 

Legend: 

Start Methionine 

BTB-Domain 

Kelch-repeats 

 

A1.3 pEGFP-N1 / dsRED-N1 Klhl31 constructs 

 
 

pEGFP-N1 Klhl31 FL 

dsRED-N1 Klhl31 FL 

 

pEGFP-N1 as well as dsRED-N1 share the same multiple cloning site. 

 

All used pEGFP-N1/C1 and dsRED-N1 constructs are not manufactured anymore by 

Clontech. 

 

Vector information and map for pEGFP-N1  

GenBank Accession #55762 

Clontech Catalog number #6085-1 
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Vector map and multiple cloning site for pEGFP-N1 

 

 
 

 

Vector information for pDsRed-Express-N1  

GenBank Accession n/a 

Clontech Catalog number 632429 

Same multiple cloning site as for pEGFP-N1 

 

 

Primer information 

 

forward primer – ctcgagatggcacctaagaagaagaac 

restriction enzyme  – XhoI 

 

reverse primer -  gaattccaatactgactggtacagaaga 

restriction enzyme -  EcoRI 

 

 

ctcgagatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggaaggtctaagcagaatgagactagaaaattttctttgtgacttgactatcagtaccaaaaccaaa

tctttcagtgttcataaggtggtgatggcttcaatcagtgactactttcacaacatcttaaagaaagatccatccactcaaagagta

gacctcaatgatgtatccccattgggtctagctactgttatcacctatgcttacactggaaagctcactctctcactttatacaatag
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gtagtattatttccaccgcgatttatcttcagattcacacccttgtaaagatgtgctgtgattttctaacccaagaaatcagtgttgag

aattgtatgtatattgccaatattgcagaaacgtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaact

tcattgaattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgcctt

ctgaaattgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaaca

ttcgttttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaac

tcctggtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattca

gagtgttagttactgttggcggacgccctgctttaacagaaaagtctcttagcagagacatcttgtacagagatcctgaaaatgg

atggaagaagcttagtgaaatgcccgctaaaagttttaaccagtgcgtgacggtgatggatgggtttctctacgtggccggtgg

ggaagaccagaatgatgccaggaaccaagccaagcatgcagtcagcaacttctgcagatacgatcctcgtttcaacacctgg

attcacctggcaaatatgaatcagaagcgcacccacttcagcctgaatgtattcaatggcctcctttttgcagtgggtggtcgcaa

cttggagggttgtctctcctcgatggagtgctacgtgcctgcaactaatcagtggcagatgaaggcacccctggaggtgccca

ggtgctgccatgccagtgctgtggtggatggtaggatcctggtcacgggaggttacattaataatgcttactctcgttcagtgtgc

atgtatgaccccagcaatgatagctggcaagataagtccagtcttagcaccccacgagggtggcactgtgccgtgtccctgct

ggagagggtctatgtcatgggtgggtctcaactgggggggagaggggaaagggtcgacgttctccctgtggagtgttacagc

ccttacacagggcagtggagttatgtggcaccccttcaaactggagttagcacagccggtgcttcgatgctggatgggaaaatt

tacttagtggggggctggaatgagatagagaaaaaatataagaagtgcattcagtgctataacccagatctcaatgagtggac

ggaggaagacgagctgcctgaagccactgtgggagtatcctgttgtactatatccatgcccaacaccaagacaagggagtcc

agagcaagctcagtctcttctgtaccagtcagtattggaattc  

 

 

 

pEGFP-N1 Klhl31 ΔBTB 

dsRED-N1 Klhl31 ΔBTB 

 

Primer information 

 

forward primer – ctcgagatggcacctaagaagaagaac 

restriction enzyme  – XhoI 

 

reverse primer -  gaattccaatactgactggtacagaaga 

restriction enzyme -  EcoRI 

 

ctcgagatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggaaggttacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaacttcattg

aattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgccttctgaa

attgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaacattcgtt

ttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaactcctg

gtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattcagagt

gttagttactgttggcggacgccctgctttaacagaaaagtctcttagcagagacatcttgtacagagatcctgaaaatggatgg

aagaagcttagtgaaatgcccgctaaaagttttaaccagtgcgtgacggtgatggatgggtttctctacgtggccggtggggaa

gaccagaatgatgccaggaaccaagccaagcatgcagtcagcaacttctgcagatacgatcctcgtttcaacacctggattca

cctggcaaatatgaatcagaagcgcacccacttcagcctgaatgtattcaatggcctcctttttgcagtgggtggtcgcaacttg

gagggttgtctctcctcgatggagtgctacgtgcctgcaactaatcagtggcagatgaaggcacccctggaggtgcccaggtg

ctgccatgccagtgctgtggtggatggtaggatcctggtcacgggaggttacattaataatgcttactctcgttcagtgtgcatgt

atgaccccagcaatgatagctggcaagataagtccagtcttagcaccccacgagggtggcactgtgccgtgtccctgctgga

gagggtctatgtcatgggtgggtctcaactgggggggagaggggaaagggtcgacgttctccctgtggagtgttacagccctt

acacagggcagtggagttatgtggcaccccttcaaactggagttagcacagccggtgcttcgatgctggatgggaaaatttact

tagtggggggctggaatgagatagagaaaaaatataagaagtgcattcagtgctataacccagatctcaatgagtggacgga

ggaagacgagctgcctgaagccactgtgggagtatcctgttgtactatatccatgcccaacaccaagacaagggagtccaga

gcaagctcagtctcttctgtaccagtcagtattggaattc  
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pEGFP-N1 Klhl31 ΔKR 

dsRED-N1 Klhl31 ΔKR 

 

Primer information 

 

forward primer – ctcgagatggcacctaagaagaagaac 

restriction enzyme  – XhoI 

 

reverse primer -  gaattcctctgaatcctccacgaatcct 

restriction enzyme -  EcoRI 
 

 

ctcgagatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggaaggtctaagcagaatgagactagaaaattttctttgtgacttgactatcagtaccaaaaccaaa

tctttcagtgttcataaggtggtgatggcttcaatcagtgactactttcacaacatcttaaagaaagatccatccactcaaagagta

gacctcaatgatgtatccccattgggtctagctactgttatcacctatgcttacactggaaagctcactctctcactttatacaatag

gtagtattatttccaccgcgatttatcttcagattcacacccttgtaaagatgtgctgtgattttctaacccaagaaatcagtgttgag

aattgtatgtatattgccaatattgcagaaacgtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaact

tcattgaattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgcctt

ctgaaattgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaaca

ttcgttttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaac

tcctggtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattca

gaggaattc 
 

 

 

A1.4 pEGFP-C1 Klhl31 constructs  

 

Vector information and map for pEGFP-C1  

GenBank Accession #55763 

Clontech Catalog number #6084-1 
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Vector map and multiple cloning site for pEGFP-C1 

 

 
 

 
pEGFP-C1 Klhl31 FL 

 

Primer information 

 

 

forward primer – tccggaatggcacctaagaagaac 

restriction enzyme  – BspEI 

 

reverse primer -  gaattctcaagcgtaatctggaacatcgtatgggtaaatactgactggtacagaag 

restriction enzyme -  EcoRI 

 

 

tccggaatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggaaggtctaagcagaatgagactagaaaattttctttgtgacttgactatcagtaccaaaaccaaa

tctttcagtgttcataaggtggtgatggcttcaatcagtgactactttcacaacatcttaaagaaagatccatccactcaaagagta

gacctcaatgatgtatccccattgggtctagctactgttatcacctatgcttacactggaaagctcactctctcactttatacaatag

gtagtattatttccaccgcgatttatcttcagattcacacccttgtaaagatgtgctgtgattttctaacccaagaaatcagtgttgag
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aattgtatgtatattgccaatattgcagaaacgtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaact

tcattgaattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgcctt

ctgaaattgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaaca

ttcgttttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaac

tcctggtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattca

gagtgttagttactgttggcggacgccctgctttaacagaaaagtctcttagcagagacatcttgtacagagatcctgaaaatgg

atggaagaagcttagtgaaatgcccgctaaaagttttaaccagtgcgtgacggtgatggatgggtttctctacgtggccggtgg

ggaagaccagaatgatgccaggaaccaagccaagcatgcagtcagcaacttctgcagatacgatcctcgtttcaacacctgg

attcacctggcaaatatgaatcagaagcgcacccacttcagcctgaatgtattcaatggcctcctttttgcagtgggtggtcgcaa

cttggagggttgtctctcctcgatggagtgctacgtgcctgcaactaatcagtggcagatgaaggcacccctggaggtgccca

ggtgctgccatgccagtgctgtggtggatggtaggatcctggtcacgggaggttacattaataatgcttactctcgttcagtgtgc

atgtatgaccccagcaatgatagctggcaagataagtccagtcttagcaccccacgagggtggcactgtgccgtgtccctgct

ggagagggtctatgtcatgggtgggtctcaactgggggggagaggggaaagggtcgacgttctccctgtggagtgttacagc

ccttacacagggcagtggagttatgtggcaccccttcaaactggagttagcacagccggtgcttcgatgctggatgggaaaatt

tacttagtggggggctggaatgagatagagaaaaaatataagaagtgcattcagtgctataacccagatctcaatgagtggac

ggaggaagacgagctgcctgaagccactgtgggagtatcctgttgtactatatccatgcccaacaccaagacaagggagtcc

agagcaagctcagtctcttctgtaccagtcagtatttacccatacgatgttccagattacgcttgagaattc 

 

 

 

pEGFP-C1 Klhl31 ΔBTB 

 

Primer information 

 

 

forward primer – tccggaatggcacctaagaagaac 

restriction enzyme  – BspEI 

 

reverse primer -  gaattctcaagcgtaatctggaacatcgtatgggtaaatactgactggtacagaag 

restriction enzyme -  EcoRI 

 

 

tccggaatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggagtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaacttcattgaatt

ttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgccttctgaaattg

ttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaacattcgttttgg

tactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaactcctggtag

atgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattcagagtgtta

gttactgttggcggacgccctgctttaacagaaaagtctcttagcagagacatcttgtacagagatcctgaaaatggatggaag

aagcttagtgaaatgcccgctaaaagttttaaccagtgcgtgacggtgatggatgggtttctctacgtggccggtggggaagac

cagaatgatgccaggaaccaagccaagcatgcagtcagcaacttctgcagatacgatcctcgtttcaacacctggattcacctg

gcaaatatgaatcagaagcgcacccacttcagcctgaatgtattcaatggcctcctttttgcagtgggtggtcgcaacttggagg

gttgtctctcctcgatggagtgctacgtgcctgcaactaatcagtggcagatgaaggcacccctggaggtgcccaggtgctgc

catgccagtgctgtggtggatggtaggatcctggtcacgggaggttacattaataatgcttactctcgttcagtgtgcatgtatga

ccccagcaatgatagctggcaagataagtccagtcttagcaccccacgagggtggcactgtgccgtgtccctgctggagagg

gtctatgtcatgggtgggtctcaactgggggggagaggggaaagggtcgacgttctccctgtggagtgttacagcccttacac

agggcagtggagttatgtggcaccccttcaaactggagttagcacagccggtgcttcgatgctggatgggaaaatttacttagt

ggggggctggaatgagatagagaaaaaatataagaagtgcattcagtgctataacccagatctcaatgagtggacggaggaa

gacgagctgcctgaagccactgtgggagtatcctgttgtactatatccatgcccaacaccaagacaagggagtccagagcaa

gctcagtctcttctgtaccagtcagtatttacccatacgatgttccagattacgcttgagaattc 
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pEGFP-C1 Klhl31 ΔKR 

 

Primer information 

 

 

forward primer – tccggaatggcacctaagaagaac 

restriction enzyme  – BspEI 

 

reverse primer -  gaattctcaagcgtaatctggaacatcgtatgggtatctgaatcctccacgaatcc 

restriction enzyme -  EcoRI 

 

 

tccggaatggcacctaagaagaagaacgtgaagaagaacaaagcagcagatatcagtgaaatgactatcattgtggaagatg

gccccctcagtaaactaaatggcttgaatggactcttagatggaggcaatggtttcagctgcgtctcatctgaagtttctgaccca

tcatatagcccaaatctcttggaaggtctaagcagaatgagactagaaaattttctttgtgacttgactatcagtaccaaaaccaaa

tctttcagtgttcataaggtggtgatggcttcaatcagtgactactttcacaacatcttaaagaaagatccatccactcaaagagta

gacctcaatgatgtatccccattgggtctagctactgttatcacctatgcttacactggaaagctcactctctcactttatacaatag

gtagtattatttccaccgcgatttatcttcagattcacacccttgtaaagatgtgctgtgattttctaacccaagaaatcagtgttgag

aattgtatgtatattgccaatattgcagaaacgtacggactaaaaacaaccaaggaagctgcacacaaatttattagagacaact

tcattgaattttcagaaacagatcagttcttaaaactcacttttgatcagattaatgaacttcttgcagatgatgacttgcagttgcctt

ctgaaattgttgcattccagattgcaataaaatggctggaatttgaccaaaaaagagtaaagtttgctgctgatctcttaggtaaca

ttcgttttggtactatctcagctcaagacctcgtcaattatgtccaaactgttccgagaatgatgcaagatgcagattgccataaac

tcctggtagatgccatgaactatcatttgcttccctatcatcagaatacacttcagtctagaagaacaaggattcgtggaggattca

gatacccatacgatgttccagattacgcttgagaattc 
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A.2 Klhl31 Sequence (homo sapiens) 

 

Klhl31 IMAGE Clone 9021264 

 

Clone obtained from Source BioScience Life Sciences 

Plasmid Information for IMAGE Clone 9021264 

Cross 

Reference 

Gene Symbol KLHL31 

Species Homo sapiens 

Technical 

Clone Data 

  

Library NIH_MGC_362 

Alternative Name 9021264 (IMAGE ID) 

Source Homo sapiens, tissue:'pool of cerebellum, 

kidney, placenta, testis, lung, colon, liver, 

heart, thyroid, bladder, uterus', organ:'mixed' 

Host DH10B TonA (Escherichia coli) 

Vector pCR4-TOPO 

Cloning Sites 5s: TA cloning, 3s: TA cloning 

Growth Conditions medium: LB ; antibiotics: Amp (50 µg/ml) ; 

alternative antibiotic: Kan (30 µg/ml) 

Sequence  accession: BC137267 

 

 

Vector information and map for pCR4-TOPO 

Invitrogen Catalog number K4575-02 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=search&doptcmdl=GenBank&term=BC137267
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Vector map and multiple cloning site for pCR®4-TOPO 

 

 
 

Sequence (DNA) 

atggcacccaaaaagaagattgtcaaaaagaacaaaggagatatcaatgagatgactataatcgtagaagatagccccctaaa

caaactgaatgctttgaatgggctcctagagggaggcaatggccttagctgcatttcttctgaactaacagatgcttcttatggcc

ccaacctcttggaaggtttaagtaaaatgcggcaggagaacttcttatgtgacttagtcattggtaccaaaaccaaatcctttgat

gttcataagtcagtcatggcttcatgcagtgagtatttttacaacatcctaaaaaaagacccgtcaattcagagggtggatctcaat

gatatctcaccactaggcctggccactgtcattgcatatgcctacactggaaagctcactctctccttgtatacaataggaagcat

tatttctgctgctgtttatcttcagatccatactcttataaagatgtgcagtgattttctgatacgggagatgagtgttgagaattgcat

gtatgttgttaatattgctgaaacatactccctaaaaaatgcaaaagcagcagcccagaaatttattcgggataacttccttgaattt

gcagaatcggatcagtttatgaaacttacatttgaacaaattaatgaacttcttatagatgatgacttacagttgccttctgagatagt

agcattccagattgcaatgaaatggttagaatttgaccaaaagagagtaaaatacgctgcagatcttttgagcaatattcgctttg

gtaccatctctgcacaagacctggtcaattatgttcaatccgtaccaagaatgatgcaagatgctgattgtcacagacttctcgta
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gatgctatgaactaccacttgcttccatatcatcaaaacacattgcaatctaggcgaacaagaatccgaggtggctgccgagtc

ctcgtcactgttgggggacgcccaggccttactgagaagtcccttagcagagacatcctgtatagagaccctgaaaatggatg

gagcaagcttacggaaatgccagccaaaagttttaatcagtgtgtggctgtgatggatggatttctttatgtagccggtggtgaa

gaccagaatgatgcaagaaatcaagccaagcatgcagtcagcaatttctgcagatacgatccccgcttcaacacctggataca

cctggccagcatgaaccagaagcgcacgcacttcagcctgagcgtgttcaacgggctcgtgtacgccgcgggcggccgca

acgcagaaggaagcctggcctcgctggagtgctacgtgccctccaccaatcagtggcagccgaagacgcccctggaggtg

gcgcgctgctgccacgctagcgcggtcgccgacggccgcgtgctggtgaccggaggctacatcgccaacgcctactcgcg

ctctgtgtgcgcctacgacccggccagcgaccgtggcaggagctgccgaacctcagcacaccccggggctggcactgcgc

ggtcacgctgagcgacagagtgtacgtgatgggcggcagccagctggggccgcgcggggagcgcgtggacgtgctcacc

gtggagtgctacagccccgcgaccggccagtggagctacgcggcgccgctgcaggtgggagtgagcactgcgggcgtct

cggcgctgcatggccgcgcctacctggtggggggctggaacgagggcgagaagaagtacaagaagtgcatccagtgcttc

agccccgagctcaacgagtggacggaggacgacgagctacccgaggccactgtcggcgtgtcctgctgcaccctctcgatg

cccaacaacgtgactcgggaatcccgggccagttcggtatcttctgtgccagtcagtatctgagcccaggtagatgcagggac

gcaggaa 

 

 

Sequence (Protein) 

 

MAPKKKIVKKNKGDINEMTIIVEDSPLNKLNALNGLLEGGNGLS 

CISSELTDASYGPNLLEGLSKMRQENFLCDLVIGTKTKSFDVHKSVMASCSEYF

YNILKKDPSIQRVDLNDISPLGLATVIAYAYTGKLTLSLYTIGSIISAAVYLQIHTL

IKMCSDFLIREMSVENCMYVVNIAETYSLKNAKAAAQKFIRDNFLEFAESDQFM

KLTFEQINELLIDDDLQLPSEIVAFQIAMKWLEFDQKRVKYAADLLSNIRFGTIS

AQDLVNYVQSVPRMMQDADCHRLLVDAMNYHLLPYHQNTLQSRRTRIRGGC

RVLVTVGGRPGLTEKSLSRDILYRDPENGWSKLTEMPAKSFNQCVAVMDGFLY

VAGGEDQNDARNQAKHAVSNFCRYDPRFNTWIHLASMNQKRTHFSLSVFNGL

VYAAGGRNAEGSLASLECYVPSTNQWQPKTPLEVARCCHASAVADGRVLVTG

GYIANAYSRSVCAYDPASDSWQELPNLSTPRGWHCAVTLSDRVYVMGGSQLG

PRGERVDVLTVECYSPATGQWSYAAPLQVGVSTAGVSALHGRAYLVGGWNE

GEKKYKKCIQCFSPELNEWTEDDELPEATVGVSCCTLSMPNNVTRESRASSVSS

VPVSI 
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A.3 Yeast-2-Hybrid Screen, Hybrigenics Services 

 

This chapter of the Appendix contains data from the Yeast-2-Hybrid Screen, as well as 

an example for alignment of retrieved hits from the screen to a human protein library. 

 

A.3.1 Yeast-2-Hybrid Result summary 
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Summary of the results obtained from the Yeast -2-Hybrid Screen 
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A3.2 Blast of a ncRNA Sequence transcribed into protein (based on translation frame 1)  

 

The amino acid sequence based on the RNA Sequence for Jpx was used to search a 

human protein data base for matching results.  

Given nucleotide sequence for Jpx-fragment (as obtained from Hybrigenics Services) 

CCCGGGTTCAAGCAATTCTCCTGCTTCAGCCTCCCGAGTAGCTGGGATTACTGGTGCCCATC

ACTGCACCCAGCTCATTTTTTTGTACTTTTAGTGGAGACAGGGTTTTACCATGTTGGCCAGGC

TGGTCTTGAACTCCTGACCTCATGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACA

GACGTGAGCCACTGCGCCCAGCCAATAACGCATCTTAAACATGAAATATCTCCCCATTTATT

TTGGTCTTTTAAAATTTTCTTCAACAACATTGTGTAGCTTTCTTTATACAAATCTTGCAGGTGT

TTTGTTGAATTATTCCTAAAGATTTAGTCTTTTTGGTGCTATTTTGTATGGAATTGATTTCTTA

ATTTCATTTTTGGATCATTCATTGCTAG 

Translation into amino acid sequence by using ExPASy (SIB Bioinformatics Resource 

Portal) identified stop-codons and therefore fragmented proteins.                                      

Translation based on frame one (starting with nucleotide one), for example, contained 6 

distinct protein fragments and one single amino acid.  

Translated amino acid sequence based on Jpx-fragment (frame 1)  

PGFKQFSCFSLPSSWDYWCPSLHPAHFFVLLVETGFYHVGQAGLELLTS. 

STRLGLPKCWDYRREPLRPANNAS. 

T. 

NISPFILVF. 

NFLQQHCVAFFIQILQVFC. 

IIPKDLVFLVLFCMELIS. 

FHFWIIHC. 
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When searching a human protein data base with the described amino acid sequences, various 

proteins have been found. They all share limited percentage of identity with the blasted 

amino acid fragment and seem to have no common origin. However, for the first amino 

acid fragment of the translated nc RNA, a conserved potential binding domain was 

found. The GVQW domain can usually be found incorporated into longer functional 

domains. However, no function has been described for this domain yet, but its highly 

conserved GVQW motif indicates the potential of being a binding domain. Information 

about the GVQW domain was collected from the NCBI Conserved Domain Database 

(CDD) (Marchler-Bauer and others, 2011). 

Protein Sequence (128 letters)  

Results for: 
lcl|26936 None(128aa)

[?]  

Your BLAST job specified more than one input sequence. This box lets you choose 

which input sequence to show BLAST results for.  

Query ID  

lcl|26936  

lcl|26936  

Description  

None  

Molecule type  

amino acid  

Query Length  

128  

Database Name  

nr  

Description  

All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF 

excluding environmental samples from WGS projects See details  

Program  

BLASTP 2.2.27+ Citation  

 

Reference  

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng 

Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a 

new generation of protein database search programs", Nucleic Acids Res. 25:3389-

3402. 

Reference - compositional score matrix adjustment  

Stephen F. Altschul, John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr 

Morgulis, Alejandro A. Schäffer, and Yi-Kuo Yu (2005) "Protein database searches 

using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109. 

Graphic Summary  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=protein&term=26936&dopt=GenBank
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=Citation
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=16218944&dopt=Citation
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Show Conserved Domains  

 

 

Descriptions  

Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

BAC03563.1  

unnamed protein product [Homo 

sapiens] 
77.0 77.0 75% 2e-17 48% 

AAA36776.1  

transformation-related protein, 

partial [Homo sapiens] 
79.3 79.3 50% 3e-17 64% 

EAW56733.1  

similar to zinc finger protein 569, 

isoform CRA_a [Homo sapiens] 
72.8 72.8 39% 5e-16 72% 

AAB49034.1  

c-MYB [Homo sapiens] 

>gb|EAW47974.1| v-myb 

myeloblastosis viral oncogene 

homolog (avian), isoform 

CRA_h [Homo sapiens] 

76.3 110 52% 8e-16 73% 

CAF04484.1  

unnamed protein product [Homo 

sapiens] 
76.3 110 52% 9e-16 73% 

CAE55174.1  

v-myb myeloblastosis viral 

oncogene homologue (avian) 

[Homo sapiens] 

76.3 110 52% 1e-15 73% 

EAW47968.1  

v-myb myeloblastosis viral 

oncogene homolog (avian), 

isoform CRA_b [Homo sapiens] 

75.1 108 52% 1e-15 73% 

EAW82740.1  

hypothetical protein FLJ38101, 

isoform CRA_c [Homo sapiens] 
69.3 96.7 50% 5e-15 71% 

NP_001158011.1  

disrupted in schizophrenia 1 

protein isoform c [Homo sapiens] 

>gb|ACR40062.1| disrupted in 

schizophrenia 1 isoform 26 

[Homo sapiens] 

71.2 71.2 39% 5e-14 70% 

EAW74756.1  hCG1820410 [Homo sapiens] 66.2 96.3 50% 6e-14 76% 

EAW93409.1  hCG2039073 [Homo sapiens] 67.0 67.0 51% 8e-14 56% 

BAC85397.1  

unnamed protein product [Homo 

sapiens] 
66.6 66.6 38% 1e-13 69% 

AAG35515.1  PRO2550 [Homo sapiens] 65.9 94.3 54% 2e-13 70% 

Q0VDF0.1  

RecName: Full=Putative 

uncharacterized protein 

LOC65996 >gb|EAW72619.1| 

hypothetical protein MGC2752 

[Homo sapiens] 

66.6 99.7 54% 2e-13 67% 

BAC11494.1  

unnamed protein product [Homo 
sapiens] 

68.2 68.2 38% 3e-13 67% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/21749258?report=genbank&log$=prottop&blast_rank=1&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#21749258
http://www.ncbi.nlm.nih.gov/protein/403460?report=genbank&log$=prottop&blast_rank=2&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#403460
http://www.ncbi.nlm.nih.gov/protein/119577137?report=genbank&log$=prottop&blast_rank=3&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119577137
http://www.ncbi.nlm.nih.gov/protein/1872200?report=genbank&log$=prottop&blast_rank=4&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#1872200
http://www.ncbi.nlm.nih.gov/protein/45504414?report=genbank&log$=prottop&blast_rank=5&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#45504414
http://www.ncbi.nlm.nih.gov/protein/45502015?report=genbank&log$=prottop&blast_rank=6&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#45502015
http://www.ncbi.nlm.nih.gov/protein/119568353?report=genbank&log$=prottop&blast_rank=7&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119568353
http://www.ncbi.nlm.nih.gov/protein/119603146?report=genbank&log$=prottop&blast_rank=8&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119603146
http://www.ncbi.nlm.nih.gov/protein/257153463?report=genbank&log$=prottop&blast_rank=9&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#257153463
http://www.ncbi.nlm.nih.gov/protein/119595162?report=genbank&log$=prottop&blast_rank=10&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119595162
http://www.ncbi.nlm.nih.gov/protein/119613815?report=genbank&log$=prottop&blast_rank=11&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119613815
http://www.ncbi.nlm.nih.gov/protein/34527471?report=genbank&log$=prottop&blast_rank=12&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34527471
http://www.ncbi.nlm.nih.gov/protein/11493483?report=genbank&log$=prottop&blast_rank=13&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#11493483
http://www.ncbi.nlm.nih.gov/protein/121940484?report=genbank&log$=prottop&blast_rank=14&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#121940484
http://www.ncbi.nlm.nih.gov/protein/22761204?report=genbank&log$=prottop&blast_rank=15&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#22761204
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?RID=CGVKVXKD014&mode=all
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

EAW91517.1  hCG1820395 [Homo sapiens] 63.5 63.5 39% 8e-13 68% 

BAC85329.1  

unnamed protein product [Homo 

sapiens] 
63.9 63.9 39% 9e-13 68% 

CAI40721.1  

emopamil binding protein-like 

[Homo sapiens] 
64.3 93.2 52% 9e-13 67% 

NP_689672.4  

UPF0764 protein C16orf89 

isoform 1 precursor [Homo 

sapiens] 

>sp|Q6UX73.2|CP089_HUMAN 

RecName: Full=UPF0764 

protein C16orf89; Flags: 

Precursor 

66.2 66.2 38% 1e-12 65% 

AAQ88847.1  

SARG904 [Homo sapiens] 

>gb|EAW85244.1| hypothetical 

protein MGC45438, isoform 

CRA_c [Homo sapiens] 

66.2 66.2 38% 2e-12 65% 

EAW85243.1  

hypothetical protein MGC45438, 

isoform CRA_b [Homo sapiens] 
66.2 66.2 38% 2e-12 65% 

AAF69605.1  PRO1722 [Homo sapiens] 62.8 62.8 40% 2e-12 67% 

BAH12031.1  

unnamed protein product [Homo 

sapiens] 
65.5 65.5 38% 2e-12 63% 

BAC86633.1  

unnamed protein product [Homo 

sapiens] 
63.2 63.2 39% 3e-12 68% 

BAC86261.1  

unnamed protein product [Homo 

sapiens] 
62.8 92.4 53% 4e-12 68% 

BAA91131.1  

unnamed protein product [Homo 

sapiens] 
62.4 62.4 67% 4e-12 48% 

EAW65573.1  hCG2039011 [Homo sapiens] 61.2 61.2 29% 5e-12 77% 

EAW55887.1  hCG1742852 [Homo sapiens] 62.8 62.8 39% 6e-12 68% 

ABC87286.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 16 

[Homo sapiens] 

65.1 65.1 38% 9e-12 63% 

AAH07609.1  E2F2 protein [Homo sapiens] 59.7 59.7 39% 2e-11 68% 

EAX08445.1  hCG2019873 [Homo sapiens] 60.1 60.1 39% 2e-11 62% 

AAR84645.1  

alpha 1A adrenoceptor isoform 

2c [Homo sapiens] 

>gb|ACA05904.1| adrenergic, 

alpha-1A-, receptor variant 6 

[Homo sapiens] 

61.6 61.6 38% 4e-11 64% 

EAW62752.1  hCG2039002 [Homo sapiens] 58.9 58.9 38% 6e-11 61% 

Q6ZSR6.3  

RecName: Full=Putative 

uncharacterized protein 

FLJ45256 >dbj|BAC86880.1| 

59.7 59.7 31% 6e-11 70% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/119611923?report=genbank&log$=prottop&blast_rank=16&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119611923
http://www.ncbi.nlm.nih.gov/protein/34527111?report=genbank&log$=prottop&blast_rank=17&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34527111
http://www.ncbi.nlm.nih.gov/protein/57208740?report=genbank&log$=prottop&blast_rank=18&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#57208740
http://www.ncbi.nlm.nih.gov/protein/307611942?report=genbank&log$=prottop&blast_rank=19&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#307611942
http://www.ncbi.nlm.nih.gov/protein/37182089?report=genbank&log$=prottop&blast_rank=20&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#37182089
http://www.ncbi.nlm.nih.gov/protein/119605649?report=genbank&log$=prottop&blast_rank=21&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119605649
http://www.ncbi.nlm.nih.gov/protein/7770139?report=genbank&log$=prottop&blast_rank=22&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#7770139
http://www.ncbi.nlm.nih.gov/protein/221040708?report=genbank&log$=prottop&blast_rank=23&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#221040708
http://www.ncbi.nlm.nih.gov/protein/34533225?report=genbank&log$=prottop&blast_rank=24&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34533225
http://www.ncbi.nlm.nih.gov/protein/34531922?report=genbank&log$=prottop&blast_rank=25&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34531922
http://www.ncbi.nlm.nih.gov/protein/7020440?report=genbank&log$=prottop&blast_rank=26&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#7020440
http://www.ncbi.nlm.nih.gov/protein/119585977?report=genbank&log$=prottop&blast_rank=27&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119585977
http://www.ncbi.nlm.nih.gov/protein/119576291?report=genbank&log$=prottop&blast_rank=28&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119576291
http://www.ncbi.nlm.nih.gov/protein/295881352?report=genbank&log$=prottop&blast_rank=29&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#295881352
http://www.ncbi.nlm.nih.gov/protein/14043238?report=genbank&log$=prottop&blast_rank=30&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#14043238
http://www.ncbi.nlm.nih.gov/protein/119628850?report=genbank&log$=prottop&blast_rank=31&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119628850
http://www.ncbi.nlm.nih.gov/protein/40362753?report=genbank&log$=prottop&blast_rank=32&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#40362753
http://www.ncbi.nlm.nih.gov/protein/119583156?report=genbank&log$=prottop&blast_rank=33&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119583156
http://www.ncbi.nlm.nih.gov/protein/205371865?report=genbank&log$=prottop&blast_rank=34&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#205371865
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

unnamed protein product [Homo 

sapiens] 

AAH33883.1  

RBP7 protein, partial [Homo 

sapiens] 
59.7 59.7 39% 6e-11 66% 

CAI14684.1  

retinol binding protein 7, cellular 

[Homo sapiens] 
59.3 59.3 44% 6e-11 61% 

AAY68207.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 6 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

EAW85402.1  hCG1778978 [Homo sapiens] 57.8 57.8 39% 1e-10 66% 

ABR09258.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 8 

[Homo sapiens] 

61.6 61.6 38% 1e-10 58% 

EAW93800.1  

hypothetical protein MGC72075, 

isoform CRA_c [Homo sapiens] 
57.8 57.8 39% 1e-10 64% 

ABR09247.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 9 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

ABV49427.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 28 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

ABC75708.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 27 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

BAF85547.1  

unnamed protein product [Homo 

sapiens] 
61.2 61.2 38% 1e-10 58% 

ABC87284.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 29 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

ABC75709.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 24 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

ABR09240.1  

ubiquitously transcribed 
tetratricopeptide repeat protein 

Y-linked transcript variant 18 

[Homo sapiens] 

61.2 61.2 38% 1e-10 58% 

ABR09243.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 
61.2 61.2 38% 2e-10 58% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/21708167?report=genbank&log$=prottop&blast_rank=35&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#21708167
http://www.ncbi.nlm.nih.gov/protein/55960867?report=genbank&log$=prottop&blast_rank=36&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#55960867
http://www.ncbi.nlm.nih.gov/protein/67515399?report=genbank&log$=prottop&blast_rank=37&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#67515399
http://www.ncbi.nlm.nih.gov/protein/119605808?report=genbank&log$=prottop&blast_rank=38&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119605808
http://www.ncbi.nlm.nih.gov/protein/148733200?report=genbank&log$=prottop&blast_rank=39&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733200
http://www.ncbi.nlm.nih.gov/protein/119614206?report=genbank&log$=prottop&blast_rank=40&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119614206
http://www.ncbi.nlm.nih.gov/protein/148733178?report=genbank&log$=prottop&blast_rank=41&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733178
http://www.ncbi.nlm.nih.gov/protein/157384152?report=genbank&log$=prottop&blast_rank=42&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#157384152
http://www.ncbi.nlm.nih.gov/protein/85720343?report=genbank&log$=prottop&blast_rank=43&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#85720343
http://www.ncbi.nlm.nih.gov/protein/158259177?report=genbank&log$=prottop&blast_rank=44&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#158259177
http://www.ncbi.nlm.nih.gov/protein/86211235?report=genbank&log$=prottop&blast_rank=45&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#86211235
http://www.ncbi.nlm.nih.gov/protein/85720345?report=genbank&log$=prottop&blast_rank=46&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#85720345
http://www.ncbi.nlm.nih.gov/protein/148733164?report=genbank&log$=prottop&blast_rank=47&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733164
http://www.ncbi.nlm.nih.gov/protein/148733170?report=genbank&log$=prottop&blast_rank=48&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733170
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

Y-linked transcript variant 22 

[Homo sapiens] 

AAU87837.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 11 

[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

NP_872601.1  

histone demethylase UTY 

isoform 1 [Homo sapiens] 

>gb|AAC51843.1| ubiquitous 

TPR motif, Y isoform [Homo 

sapiens] 

61.2 61.2 38% 2e-10 58% 

Q8WTZ3.1  

RecName: Full=Zinc finger 

protein ENSP00000375192 

>gb|AAH21822.1| ZNF99 

protein [Homo sapiens] 

>gb|EAW84927.1| hCG1796108 

[Homo sapiens] 

58.9 58.9 52% 2e-10 49% 

ABR09242.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 4 

[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

ABR09253.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 30 

[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

BAC05300.1  

unnamed protein product [Homo 

sapiens] >emb|CAH71256.1| 

tigger transposable element 

derived 1-like 2 [Homo sapiens] 

58.2 58.2 39% 2e-10 69% 

ABV49466.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 23 

[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

ABR09257.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 21 

[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

ABR09255.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 25 
[Homo sapiens] 

61.2 61.2 38% 2e-10 58% 

ABR09237.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 12 

[Homo sapiens] 

60.8 60.8 38% 2e-10 58% 

ABR09254.1  ubiquitously transcribed 60.8 60.8 38% 2e-10 58% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/52839882?report=genbank&log$=prottop&blast_rank=49&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#52839882
http://www.ncbi.nlm.nih.gov/protein/33188429?report=genbank&log$=prottop&blast_rank=50&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#33188429
http://www.ncbi.nlm.nih.gov/protein/74762627?report=genbank&log$=prottop&blast_rank=51&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#74762627
http://www.ncbi.nlm.nih.gov/protein/148733168?report=genbank&log$=prottop&blast_rank=52&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733168
http://www.ncbi.nlm.nih.gov/protein/148733190?report=genbank&log$=prottop&blast_rank=53&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733190
http://www.ncbi.nlm.nih.gov/protein/21758420?report=genbank&log$=prottop&blast_rank=54&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#21758420
http://www.ncbi.nlm.nih.gov/protein/157384230?report=genbank&log$=prottop&blast_rank=55&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#157384230
http://www.ncbi.nlm.nih.gov/protein/148733198?report=genbank&log$=prottop&blast_rank=56&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733198
http://www.ncbi.nlm.nih.gov/protein/148733194?report=genbank&log$=prottop&blast_rank=57&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733194
http://www.ncbi.nlm.nih.gov/protein/148733158?report=genbank&log$=prottop&blast_rank=58&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733158
http://www.ncbi.nlm.nih.gov/protein/148733192?report=genbank&log$=prottop&blast_rank=59&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733192
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

tetratricopeptide repeat protein 

Y-linked transcript variant 19 

[Homo sapiens] 

EAW89455.1  hCG2039055 [Homo sapiens] 57.4 87.0 54% 3e-10 67% 

BAB14371.1  

unnamed protein product [Homo 

sapiens] >gb|EAW83838.1| 

ATP/GTP binding protein-like 3, 

isoform CRA_b [Homo sapiens] 

57.0 57.0 38% 4e-10 65% 

XP_003960524.1  

PREDICTED: putative 

uncharacterized protein 

LOC65996-like [Homo sapiens] 

55.8 55.8 37% 5e-10 63% 

ABV82621.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 10 

[Homo sapiens] 

59.3 59.3 38% 7e-10 57% 

EAW94179.1  

ubiquitin-conjugating enzyme 

E2D 4 (putative), isoform 

CRA_b [Homo sapiens] 

55.8 55.8 39% 7e-10 66% 

EAW55348.1  

chromosome 6 open reading 

frame 79, isoform CRA_c [Homo 

sapiens] 

57.0 57.0 39% 9e-10 62% 

EAW62475.1  hCG2038077 [Homo sapiens] 55.5 55.5 39% 9e-10 62% 

BAB14934.1  

unnamed protein product [Homo 

sapiens] 
57.0 57.0 39% 1e-09 62% 

ACP43292.1  

ubiquitously transcribed 

tetratricopeptide repeat Y-linked 

isoform 3 [Homo sapiens] 

>gb|ACP43293.1| ubiquitously 

transcribed tetratricopeptide 

repeat Y-linked isoform 3 [Homo 

sapiens] >gb|ACP43294.1| 

ubiquitously transcribed 

tetratricopeptide repeat Y-linked 

isoform 3 [Homo sapiens] 

54.3 54.3 41% 2e-09 56% 

NP_001243358.1  

PDZ and LIM domain protein 5 

isoform i [Homo sapiens] 

>gb|AAR09142.1| PDZ and LIM 

domain 5 [Homo sapiens] 

54.7 54.7 39% 2e-09 64% 

BAG64432.1  

unnamed protein product [Homo 

sapiens] 
54.7 54.7 50% 2e-09 45% 

XP_003846407.1  

PREDICTED: putative 

uncharacterized protein 

LOC65996-like [Homo sapiens] 

>gb|AAF69654.1|AF119917_62 

PRO2822 [Homo sapiens] 

53.9 53.9 37% 2e-09 60% 

EAW98491.1  hCG2042307 [Homo sapiens] 53.9 53.9 50% 2e-09 48% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/119609861?report=genbank&log$=prottop&blast_rank=60&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119609861
http://www.ncbi.nlm.nih.gov/protein/10434777?report=genbank&log$=prottop&blast_rank=61&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#10434777
http://www.ncbi.nlm.nih.gov/protein/410172568?report=genbank&log$=prottop&blast_rank=62&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#410172568
http://www.ncbi.nlm.nih.gov/protein/157829343?report=genbank&log$=prottop&blast_rank=63&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#157829343
http://www.ncbi.nlm.nih.gov/protein/119614585?report=genbank&log$=prottop&blast_rank=64&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119614585
http://www.ncbi.nlm.nih.gov/protein/119575752?report=genbank&log$=prottop&blast_rank=65&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119575752
http://www.ncbi.nlm.nih.gov/protein/119582879?report=genbank&log$=prottop&blast_rank=66&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119582879
http://www.ncbi.nlm.nih.gov/protein/10436927?report=genbank&log$=prottop&blast_rank=67&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#10436927
http://www.ncbi.nlm.nih.gov/protein/227937292?report=genbank&log$=prottop&blast_rank=68&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#227937292
http://www.ncbi.nlm.nih.gov/protein/374093214?report=genbank&log$=prottop&blast_rank=69&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#374093214
http://www.ncbi.nlm.nih.gov/protein/194382524?report=genbank&log$=prottop&blast_rank=70&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#194382524
http://www.ncbi.nlm.nih.gov/protein/397139375?report=genbank&log$=prottop&blast_rank=71&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#397139375
http://www.ncbi.nlm.nih.gov/protein/119618897?report=genbank&log$=prottop&blast_rank=72&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119618897
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

EAW53691.1  hCG1747827 [Homo sapiens] 53.9 53.9 37% 2e-09 60% 

AAF77052.1  

ubiquitous TPR-motif protein Y 

isoform [Homo sapiens] 
55.5 55.5 39% 3e-09 57% 

EAW51245.1  hCG2044997 [Homo sapiens] 53.5 53.5 39% 3e-09 63% 

AAH28935.1  C3orf64 protein [Homo sapiens] 53.5 53.5 38% 4e-09 58% 

BAC86723.1  

unnamed protein product [Homo 

sapiens] 
53.9 53.9 53% 4e-09 43% 

BAC87102.1  

unnamed protein product [Homo 

sapiens] 
53.5 53.5 53% 5e-09 43% 

EAW67976.1  

cytoskeleton associated protein 5 

[Homo sapiens] 
56.2 56.2 30% 6e-09 69% 

EAW49158.1  

hCG1648656, isoform CRA_c 

[Homo sapiens] 

>gb|ACF23537.1| unknown 

[Homo sapiens] 

52.4 52.4 39% 9e-09 62% 

CAI12641.1  

caspase 7, apoptosis-related 

cysteine peptidase [Homo 

sapiens] >emb|CAI16007.1| 

caspase 7, apoptosis-related 

cysteine peptidase [Homo 

sapiens] 

53.1 53.1 39% 1e-08 58% 

EAX11403.1  

bromodomain adjacent to zinc 

finger domain, 2B, isoform 

CRA_a [Homo sapiens] 

51.6 51.6 40% 2e-08 56% 

ABR09248.1  

ubiquitously transcribed 

tetratricopeptide repeat protein 

Y-linked transcript variant 7 

[Homo sapiens] 

54.3 54.3 39% 2e-08 57% 

EAX07947.1  hCG1817231 [Homo sapiens] 52.0 52.0 39% 2e-08 59% 

EAX09874.1  hCG1820769 [Homo sapiens] 51.6 51.6 38% 2e-08 58% 

XP_003846420.1  

PREDICTED: putative calcium-

sensing receptor-like 1-like 

[Homo sapiens] 

51.2 80.5 52% 2e-08 69% 

XP_003403540.1  

PREDICTED: uncharacterized 

protein LOC100652894 [Homo 

sapiens] >ref|XP_003960858.1| 

PREDICTED: uncharacterized 

protein LOC100652894 [Homo 

sapiens] >dbj|BAC87615.1| 

unnamed protein product [Homo 
sapiens] 

52.8 52.8 56% 3e-08 46% 

XP_003846587.1  

PREDICTED: putative calcium-

sensing receptor-like 1-like 

[Homo sapiens] 

>ref|XP_003960517.1| 

51.2 80.5 52% 3e-08 69% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/119574076?report=genbank&log$=prottop&blast_rank=73&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119574076
http://www.ncbi.nlm.nih.gov/protein/8572229?report=genbank&log$=prottop&blast_rank=74&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#8572229
http://www.ncbi.nlm.nih.gov/protein/119571630?report=genbank&log$=prottop&blast_rank=75&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119571630
http://www.ncbi.nlm.nih.gov/protein/20809854?report=genbank&log$=prottop&blast_rank=76&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#20809854
http://www.ncbi.nlm.nih.gov/protein/34533510?report=genbank&log$=prottop&blast_rank=77&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34533510
http://www.ncbi.nlm.nih.gov/protein/34534757?report=genbank&log$=prottop&blast_rank=78&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#34534757
http://www.ncbi.nlm.nih.gov/protein/119588382?report=genbank&log$=prottop&blast_rank=79&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119588382
http://www.ncbi.nlm.nih.gov/protein/119569543?report=genbank&log$=prottop&blast_rank=80&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119569543
http://www.ncbi.nlm.nih.gov/protein/55960763?report=genbank&log$=prottop&blast_rank=81&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#55960763
http://www.ncbi.nlm.nih.gov/protein/119631808?report=genbank&log$=prottop&blast_rank=82&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119631808
http://www.ncbi.nlm.nih.gov/protein/148733180?report=genbank&log$=prottop&blast_rank=83&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#148733180
http://www.ncbi.nlm.nih.gov/protein/119628352?report=genbank&log$=prottop&blast_rank=84&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119628352
http://www.ncbi.nlm.nih.gov/protein/119630279?report=genbank&log$=prottop&blast_rank=85&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119630279
http://www.ncbi.nlm.nih.gov/protein/397139367?report=genbank&log$=prottop&blast_rank=86&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#397139367
http://www.ncbi.nlm.nih.gov/protein/341915908?report=genbank&log$=prottop&blast_rank=87&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#341915908
http://www.ncbi.nlm.nih.gov/protein/397137255?report=genbank&log$=prottop&blast_rank=88&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#397137255
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Accession Description 
Max 

score  

Total 

score  

Query 

cover

age  

E 

value  

Max 

iden

t  

PREDICTED: putative calcium-

sensing receptor-like 1-like 

[Homo sapiens] 

>dbj|BAC86985.1| unnamed 

protein product [Homo sapiens] 

XP_003846686.1  

PREDICTED: LOW QUALITY 

PROTEIN: uncharacterized 

protein LOC100652894 [Homo 

sapiens] 

52.8 52.8 56% 3e-08 46% 

AAH31359.1  

Unknown (protein for 

IMAGE:4778855), partial [Homo 

sapiens] 

48.5 48.5 31% 9e-08 63% 

EAX03685.1  hCG2000628 [Homo sapiens] 48.1 48.1 32% 1e-07 60% 

EAX06532.1  hCG2031845 [Homo sapiens] 48.9 48.9 28% 1e-07 64% 

EAW83901.1  hCG2014257 [Homo sapiens] 50.1 50.1 35% 2e-07 58% 

BAE97422.1  

decay-accelerating factor splicing 

variant 1 [Homo sapiens] 
51.2 51.2 28% 2e-07 70% 

BAB71666.1  

unnamed protein product [Homo 

sapiens] 
48.1 48.1 39% 3e-07 60% 

EAW97718.1  

5'-nucleotidase domain 

containing 3, isoform CRA_d 

[Homo sapiens] 

48.1 48.1 51% 3e-07 46% 

EAW98472.1  hCG2015876 [Homo sapiens] 48.5 48.5 39% 3e-07 58% 

EAW70437.1  

hCG1641896, isoform CRA_b 

[Homo sapiens] 
48.9 48.9 39% 4e-07 52% 

AAC51145.1  

FAP protein, partial [Homo 

sapiens] 
48.5 48.5 28% 9e-07 62% 

EAX04784.1  

chloride channel 3, isoform 

CRA_c [Homo sapiens] 
46.6 46.6 39% 1e-06 56% 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=1&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=2&HSP_SORT=1#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=4&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&ENTREZ_QUERY=txid9606%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CGVKWEXF014&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/397138077?report=genbank&log$=prottop&blast_rank=89&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#397138077
http://www.ncbi.nlm.nih.gov/protein/21618630?report=genbank&log$=prottop&blast_rank=90&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#21618630
http://www.ncbi.nlm.nih.gov/protein/119624090?report=genbank&log$=prottop&blast_rank=91&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119624090
http://www.ncbi.nlm.nih.gov/protein/119626937?report=genbank&log$=prottop&blast_rank=92&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119626937
http://www.ncbi.nlm.nih.gov/protein/119604307?report=genbank&log$=prottop&blast_rank=93&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119604307
http://www.ncbi.nlm.nih.gov/protein/110171861?report=genbank&log$=prottop&blast_rank=94&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#110171861
http://www.ncbi.nlm.nih.gov/protein/16554135?report=genbank&log$=prottop&blast_rank=95&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#16554135
http://www.ncbi.nlm.nih.gov/protein/119618124?report=genbank&log$=prottop&blast_rank=96&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119618124
http://www.ncbi.nlm.nih.gov/protein/119618878?report=genbank&log$=prottop&blast_rank=97&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119618878
http://www.ncbi.nlm.nih.gov/protein/119590843?report=genbank&log$=prottop&blast_rank=98&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119590843
http://www.ncbi.nlm.nih.gov/protein/1890647?report=genbank&log$=prottop&blast_rank=99&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#1890647
http://www.ncbi.nlm.nih.gov/protein/119625189?report=genbank&log$=prottop&blast_rank=100&RID=CGVKWEXF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#119625189
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A.4 Analysis of the Nebulin Isoforms 

A.4.1 Amino Acid Alignment for Nebulin Isoform 2 and Nebulin Isoform 3  

The amino acid sequences for Nebulin Isoform 2 and Isoform 3 were aligned using 

Clustal2W software. The sequences of DNA fragments for clones from the Hybrigenics 

Y-2-H screen are indicated in grey (for Nebulin Isoform2) and in yellow (for Nebulin 

Isoform 3). 

  



309 

 

 
NebV2           

MADDEDYEEVVEYYTEEVVYEEVPGETITKIYETTTTRTSDYEQSETSKPALAQPALAQP 60 

NebV3           

MADDEDYEEVVEYYTEEVVYEEVPGETITKIYETTTTRTSDYEQSETSKPALAQPALAQP 60 

                

************************************************************ 

 

NebV2           

ASAKPVERRKVIRKKVDPSKFMTPYIAHSQKMQDLFSPNKYKEKFEKTKGQPYASTTDTP 120 

NebV3           

ASAKPVERRKVIRKKVDPSKFMTPYIAHSQKMQDLFSPNKYKEKFEKTKGQPYASTTDTP 120 

                

************************************************************ 

 

NebV2           

ELRRIKKVQDQLSEVKYRMDGDVAKTICHVDEKAKDIEHAKKVSQQVSKVLYKQNWEDTK 180 

NebV3           

ELRRIKKVQDQLSEVKYRMDGDVAKTICHVDEKAKDIEHAKKVSQQVSKVLYKQNWEDTK 180 

                

************************************************************ 

 

NebV2           

DKYLLPPDAPELVQAVKNTAMFSKKLYTEDWEADKSLFYPYNDSPELRRVAQAQKALSDV 240 

NebV3           

DKYLLPPDAPELVQAVKNTAMFSKKLYTEDWEADKSLFYPYNDSPELRRVAQAQKALSDV 240 

                

************************************************************ 

 

NebV2           

AYKKGLAEQQAQFTPLADPPDIEFAKKVTNQVSKQKYKEDYENKIKGKWSETPCFEVANA 300 

NebV3           

AYKKGLAEQQAQFTPLADPPDIEFAKKVTNQVSKQKYKEDYENKIKGKWSETPCFEVANA 300 

                

************************************************************ 

 

NebV2           

RMNADNISTRKYQEDFENMKDQIYFMQTETPEYKMNKKAGVAASKVKYKEDYEKNKGKAD 360 

NebV3           

RMNADNISTRKYQEDFENMKDQIYFMQTETPEYKMNKKAGVAASKVKYKEDYEKNKGKAD 360 

                

************************************************************ 

 

NebV2           

YNVLPASENPQLRQLKAAGDALSDKLYKENYEKTKAKSINYCETPKFKLDTVLQNFSSDK 420 

NebV3           

YNVLPASENPQLRQLKAAGDALSDKLYKENYEKTKAKSINYCETPKFKLDTVLQNFSSDK 420 

                

************************************************************ 
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NebV2           

KYKDSYLKDILGHYVGSFEDPYHSHCMKVTAQNSDKNYKAEYEEDRGKGFFPQTITQEYE 480 

NebV3           

KYKDSYLKDILGHYVGSFEDPYHSHCMKVTAQNSDKNYKAEYEEDRGKGFFPQTITQEYE 480 

                

************************************************************ 

 

NebV2           

AIKKLDQCKDHTYKVHPDKTKFTQVTDSPVLLQAQVNSKQLSDLNYKAKHESEKFKCHIP 540 

NebV3           

AIKKLDQCKDHTYKVHPDKTKFTQVTDSPVLLQAQVNSKQLSDLNYKAKHESEKFKCHIP 540 

                

************************************************************ 

 

NebV2           

PDTPAFIQHKVNAYNLSDNLYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKD 600 

NebV3           

PDTPAFIQHKVNAYNLSDNLYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKD 600 

                

************************************************************ 

 

NebV2           

YEKNKGKMIGVLSINDDPKMLHSLKVAKNQSDRLYKENYEKTKAKSMNYCETPKYQLDTQ 660 

NebV3           

YEKNKGKMIGVLSINDDPKMLHSLKVAKNQSDRLYKENYEKTKAKSMNYCETPKYQLDTQ 660 

                

************************************************************ 

 

NebV2           

LKNFSEARYKDLYVKDVLGHYVGSMEDPYHTHCMKVAAQNSDKSYKAEYEEDKGKCYFPQ 720 

NebV3           

LKNFSEARYKDLYVKDVLGHYVGSMEDPYHTHCMKVAAQNSDKSYKAEYEEDKGKCYFPQ 720 

                

************************************************************ 

 

NebV2           

TITQEYEAIKKLDQCKDHTYKVHPDKTKFTAVTDSPVLLQAQLNTKQLSDLNYKAKHEGE 780 

NebV3           

TITQEYEAIKKLDQCKDHTYKVHPDKTKFTAVTDSPVLLQAQLNTKQLSDLNYKAKHEGE 780 

                

************************************************************ 

 

NebV2           

KFKCHIPADAPQFIQHRVNAYNLSDNVYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTS 840 

NebV3           

KFKCHIPADAPQFIQHRVNAYNLSDNVYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTS 840 

                

************************************************************ 

 

NebV2           

DVMYKKDYEKSKGKMIGALSINDDPKMLHSLKTAKNQSDREYRKDYEKSKTIYTAPLDML 900 

NebV3           

DVMYKKDYEKSKGKMIGALSINDDPKMLHSLKTAKNQSDREYRKDYEKSKTIYTAPLDML 900 

                

************************************************************ 
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NebV2           

QVTQAKKSQAIASDVDYKHILHSYSYPPDSINVDLAKKAYALQSDVEYKADYNSWMKGCG 960 

NebV3           

QVTQAKKSQAIASDVDYKHILHSYSYPPDSINVDLAKKAYALQSDVEYKADYNSWMKGCG 960 

                

************************************************************ 

 

NebV2           

WVPFGSLEMEKAKRASDILNEKKYRQHPDTLKFTSIEDAPITVQSKINQAQRSDIAYKAK 1020 

NebV3           

WVPFGSLEMEKAKRASDILNEKKYRQHPDTLKFTSIEDAPITVQSKINQAQRSDIAYKAK 1020 

                

************************************************************ 

 

NebV2           

GEEIIHKYNLPPDLPQFIQAKVNAYNISENMYKADLKDLSKKGYDLRTDAIPIRAAKAAR 1080 

NebV3           

GEEIIHKYNLPPDLPQFIQAKVNAYNISENMYKADLKDLSKKGYDLRTDAIPIRAAKAAR 1080 

                

************************************************************ 

 

NebV2           

QAASDVQYKKDYEKAKGKMVGFQSLQDDPKLVHYMNVAKIQSDREYKKDYEKTKSKYNTP 1140 

NebV3           

QAASDVQYKKDYEKAKGKMVGFQSLQDDPKLVHYMNVAKIQSDREYKKDYEKTKSKYNTP 1140 

                

************************************************************ 

 

NebV2           

HDMFNVVAAKKAQDVVSNVNYKHSLHHYTYLPDAMDLELSKNMMQIQSDNVYKEDYNNWM 1200 

NebV3           

HDMFNVVAAKKAQDVVSNVNYKHSLHHYTYLPDAMDLELSKNMMQIQSDNVYKEDYNNWM 1200 

                

************************************************************ 

 

NebV2           

KGIGWIPIGSLDVEKVKKAGDALNEKKYRQHPDTLKFTSIVDSPVMVQAKQNTKQVSDIL 1260 

NebV3           

KGIGWIPIGSLDVEKVKKAGDALNEKKYRQHPDTLKFTSIVDSPVMVQAKQNTKQVSDIL 1260 

                

************************************************************ 

 

NebV2           

YKAKGEDVKHKYTMSPDLPQFLQAKCNAYNISDVCYKRDWYDLIAKGNNVLGDAIPITAA 1320 

NebV3           

YKAKGEDVKHKYTMSPDLPQFLQAKCNAYNISDVCYKRDWYDLIAKGNNVLGDAIPITAA 1320 

                

************************************************************ 

 

NebV2           

KASRNIASDYKYKEAYEKSKGKHVGFRSLQDDPKLVHYMNVAKLQSDREYKKNYENTKTS 1380 

NebV3           

KASRNIASDYKYKEAYEKSKGKHVGFRSLQDDPKLVHYMNVAKLQSDREYKKNYENTKTS 1380 

                

************************************************************ 
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NebV2           

YHTPGDMVSITAAKMAQDVATNVNYKQPLHHYTYLPDAMSLEHTRNVNQIQSDNVYKDEY 1440 

NebV3           

YHTPGDMVSITAAKMAQDVATNVNYKQPLHHYTYLPDAMSLEHTRNVNQIQSDNVYKDEY 1440 

                

************************************************************ 

 

NebV2           

NSFLKGIGWIPIGSLEVEKVKKAGDALNERKYRQHPDTVKFTSVPDSMGMVLAQHNTKQL 1500 

NebV3           

NSFLKGIGWIPIGSLEVEKVKKAGDALNERKYRQHPDTVKFTSVPDSMGMVLAQHNTKQL 1500 

                

************************************************************ 

 

NebV2           

SDLNYKVEGEKLKHKYTIDPELPQFIQAKVNALNMSDAHYKADWKKTIAKGYDLRPDAIP 1560 

NebV3           

SDLNYKVEGEKLKHKYTIDPELPQFIQAKVNALNMSDAHYKADWKKTIAKGYDLRPDAIP 1560 

                

************************************************************ 

 

NebV2           

IVAAKSSRNIASDCKYKEAYEKAKGKQVGFLSLQDDPKLVHYMNVAKIQSDREYKKGYEA 1620 

NebV3           

IVAAKSSRNIASDCKYKEAYEKAKGKQVGFLSLQDDPKLVHYMNVAKIQSDREYKKGYEA 1620 

                

************************************************************ 

 

NebV2           

SKTKYHTPLDMVSVTAAKKSQEVATNANYRQSYHHYTLLPDALNVEHSRNAMQIQSDNLY 1680 

NebV3           

SKTKYHTPLDMVSVTAAKKSQEVATNANYRQSYHHYTLLPDALNVEHSRNAMQIQSDNLY 1680 

                

************************************************************ 

 

NebV2           

KSDFTNWMKGIGWVPIESLEVEKAKKAGEILSEKKYRQHPEKLKFTYAMDTMEQALNKSN 1740 

NebV3           

KSDFTNWMKGIGWVPIESLEVEKAKKAGEILSEKKYRQHPEKLKFTYAMDTMEQALNKSN 1740 

                

************************************************************ 

 

NebV2           

KLNMDKRLYTEKWNKDKTTIHVMPDTPDILLSRVNQITMSDKLYKAGWEEEKKKGYDLRP 1800 

NebV3           

KLNMDKRLYTEKWNKDKTTIHVMPDTPDILLSRVNQITMSDKLYKAGWEEEKKKGYDLRP 1800 

                

************************************************************ 

 

NebV2           

DAIAIKAARASRDIASDYKYKKAYEQAKGKHIGFRSLEDDPKLVHFMQVAKMQSDREYKK 1860 

NebV3           

DAIAIKAARASRDIASDYKYKKAYEQAKGKHIGFRSLEDDPKLVHFMQVAKMQSDREYKK 1860 

                

************************************************************ 
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NebV2           

GYEKSKTSFHTPVDMLSVVAAKKSQEVATNANYRNVIHTYNMLPDAMSFELAKNMMQIQS 1920 

NebV3           

GYEKSKTSFHTPVDMLSVVAAKKSQEVATNANYRNVIHTYNMLPDAMSFELAKNMMQIQS 1920 

                

************************************************************ 

 

NebV2           

DNQYKADYADFMKGIGWLPLGSLEAEKNKKAMEIISEKKYRQHPDTLKYSTLMDSMNMVL 1980 

NebV3           

DNQYKADYADFMKGIGWLPLGSLEAEKNKKAMEIISEKKYRQHPDTLKYSTLMDSMNMVL 1980 

                

************************************************************ 

 

NebV2           

AQNNAKIMNEHLYKQAWEADKTKVHIMPDIPQIILAKANAINMSDKLYKLSLEESKKKGY 2040 

NebV3           

AQNNAKIMNEHLYKQAWEADKTKVHIMPDIPQIILAKANAINMSDKLYKLSLEESKKKGY 2040 

                

************************************************************ 

 

NebV2           

DLRPDAIPIKAAKASRDIASDYKYKYNYEKGKGKMVGFRSLEDDPKLVHSMQVAKMQSDR 2100 

NebV3           

DLRPDAIPIKAAKASRDIASDYKYKYNYEKGKGKMVGFRSLEDDPKLVHSMQVAKMQSDR 2100 

                

************************************************************ 

 

NebV2           

EYKKNYENTKTSYHTPADMLSVTAAKDAQANITNTNYKHLIHKYILLPDAMNIELTRNMN 2160 

NebV3           

EYKKNYENTKTSYHTPADMLSVTAAKDAQANITNTNYKHLIHKYILLPDAMNIELTRNMN 2160 

                

************************************************************ 

 

NebV2           

RIQSDNEYKQDYNEWYKGLGWSPAGSLEVEKAKKATEYASDQKYRQHPSNFQFKKLTDSM 2220 

NebV3           

RIQSDNEYKQDYNEWYKGLGWSPAGSLEVEKAKKATEYASDQKYRQHPSNFQFKKLTDSM 2220 

                

************************************************************ 

 

NebV2           

DMVLAKQNAHTMNKHLYTIDWNKDKTKIHVMPDTPDILQAKQNQTLYSQKLYKLGWEEAL 2280 

NebV3           

DMVLAKQNAHTMNKHLYTIDWNKDKTKIHVMPDTPDILQAKQNQTLYSQKLYKLGWEEAL 2280 

                

************************************************************ 

 

NebV2           

KKGYDLPVDAISVQLAKASRDIASDYKYKQGYRKQLGHHVGFRSLQDDPKLVLSMNVAKM 2340 

NebV3           

KKGYDLPVDAISVQLAKASRDIASDYKYKQGYRKQLGHHVGFRSLQDDPKLVLSMNVAKM 2340 

                

************************************************************ 
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NebV2           

QSEREYKKDFEKWKTKFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQA 2400 

NebV3           

QSEREYKKDFEKWKTKFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQA 2400 

                

************************************************************ 

 

NebV2           

KKVYELQSENLYKSDLEWLRGIGWSPLGSLEAEKNKRASEIISEKKYRQPPDRNKFTSIP 2460 

NebV3           

KKVYELQSENLYKSDLEWLRGIGWSPLGSLEAEKNKRASEIISEKKYRQPPDRNKFTSIP 2460 

                

************************************************************ 

 

NebV2           

DAMDIVLAKTNAKNRSDRLYREAWDKDKTQIHIMPDTPDIVLAKANLINTSDKLYRMGYE 2520 

NebV3           

DAMDIVLAKTNAKNRSDRLYREAWDKDKTQIHIMPDTPDIVLAKANLINTSDKLYRMGYE 2520 

                

************************************************************ 

 

NebV2           

ELKRKGYDLPVDAIPIKAAKASREIASEYKYKEGFRKQLGHHIGARNIEDDPKMMWSMHV 2580 

NebV3           

ELKRKGYDLPVDAIPIKAAKASREIASEYKYKEGFRKQLGHHIGARNIEDDPKMMWSMHV 2580 

                

************************************************************ 

 

NebV2           

AKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDV 2640 

NebV3           

AKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDV 2640 

                

************************************************************ 

 

NebV2           

IHARQAYDLQSDNLYKSDLQWLKGIGWMTSGSLEDEKNKRATQILSDHVYRQHPDQFKFS 2700 

NebV3           

IHARQAYDLQSDNLYKSDLQWLKGIGWMTSGSLEDEKNKRATQILSDHVYRQHPDQFKFS 2700 

                

************************************************************ 

 

NebV2           

SLMDSIPMVLAKNNAITMNHRLYTEAWDKDKTTVHIMPDTPEVLLAKQNKVNYSEKLYKL 2760 

NebV3           

SLMDSIPMVLAKNNAITMNHRLYTEAWDKDKTTVHIMPDTPEVLLAKQNKVNYSEKLYKL 2760 

                

************************************************************ 

 

NebV2           

GLEEAKRKGYDMRVDAIPIKAAKASRDIASEFKYKEGYRKQLGHHIGARAIRDDPKMMWS 2820 

NebV3           

GLEEAKRKGYDMRVDAIPIKAAKASRDIASEFKYKEGYRKQLGHHIGARAIRDDPKMMWS 2820 

                

************************************************************ 
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NebV2           

MHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQ 2880 

NebV3           

MHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQ 2880 

                

************************************************************ 

 

NebV2           

SDVIHARQAYDLQSDNMYKSDLQWMRGIGWVSIGSLDVEKCKRATEILSDKIYRQPPDRF 2940 

NebV3           

SDVIHARQAYDLQSDNMYKSDLQWMRGIGWVSIGSLDVEKCKRATEILSDKIYRQPPDRF 2940 

                

************************************************************ 

 

NebV2           

KFTSVTDSLEQVLAKNNAITMNKRLYTEAWDKDKTQIHIMPDTPEIMLARMNKINYSESL 3000 

NebV3            

KFTSVTDSLEQVLAKN-------------------------------------------- 2956 

****************                                             

 

NebV2           

YKLANEEAKKKGYDLRSDAIPIVAAKASRDIISDYKYKDGYCKQLGHHIGARNIEDDPKM 3060 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

MWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEWTCL 3120 

NebV3           

------------------------------------------------------------ 

                                                                             

 

NebV2           

PDQSDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRATEILSDNIYRQPP 3180 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

DKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQIHIMPDTPEIMLARQNKINYS 3240 

NebV3            

-------------------NALNMNKRLYTEAWDKDKTQIHIMPDTPEIMLARQNKINYS 2997 

                                             

****************************************** 

 

NebV2           

ETLYKLANEEAKKKGYDLRSDAIPIVAAKASRDVISDYKYKDGYRKQLGHHIGARNIEDD 3300 

NebV3           

ETLYKLANEEAKKKGYDLRSDAIPIVAAKASRDVISDYKYKDGYRKQLGHHIGARNIEDD 3057 

                

************************************************************ 

 

NebV2           

PKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEW 3360 

NebV3           

PKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEW 3117 

                

************************************************************ 
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NebV2           

TCLPDQNDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRAAEILSDNIYR 3420 

NebV3           

TCLPDQNDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRAAEILSDNIYR 3177 

                

************************************************************ 

 

NebV2           

QPPDKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQVHIMPDTPEIMLARQNKI 3480 

NebV3           

QPPDKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQVHIMPDTPEIMLARQNKI 3237 

                

************************************************************ 

 

NebV2           

NYSESLYRQAMEEAKKEGYDLRSDAIPIVAAKASRDIASDYKYKEAYRKQLGHHIGARAV 3540 

NebV3           

NYSESLYRQAMEEAKKEGYDLRSDAIPIVAAKASRDIASDYKYKEAYRKQLGHHIGARAV 3297 

                

************************************************************ 

 

NebV2           

HDDPKIMWSLHIAKVQSDREYKKDFEKYKTRYSSPVDMLGIVLAKKCQTLVSDVDYKHPL 3600 

NebV3           

HDDPKIMWSLHIAKVQSDREYKKDFEKYKTRYSSPVDMLGIVLAKKCQTLVSDVDYKHPL 3357 

                

************************************************************ 

 

NebV2           

HEWICLPDQNDIIHARKAYDLQSDNLYKSDLEWMKGIGWVPIDSLEVVRAKRAGELLSDT 3660 

NebV3           

HEWICLPDQNDIIHARKAYDLQSDNLYKSDLEWMKGIGWVPIDSLEVVRAKRAGELLSDT 3417 

                

************************************************************ 

 

NebV2           

IYRQRPETLKFTSITDTPEQVLAKNNALNMNKRLYTEAWDNDKKTIHVMPDTPEIMLAKL 3720 

NebV3           

IYRQRPETLKFTSITDTPEQVLAKNNALNMNKRLYTEAWDNDKKTIHVMPDTPEIMLAKL 3477 

                

************************************************************ 

 

NebV2           

NRINYSDKLYKLALEESKKEGYDLRLDAIPIQAAKASRDIASDYKYKEGYRKQLGHHIGA 3780 

NebV3           

NRINYSDKLYKLALEESKKEGYDLRLDAIPIQAAKASRDIASDYKYKEGYRKQLGHHIGA 3537 

                

************************************************************ 

 

NebV2           

RNIKDDPKMMWSIHVAKIQSDREYKKEFEKWKTKFSSPVDMLGVVLAKKCQILVSDIDYK 3840 

NebV3           

RNIKDDPKMMWSIHVAKIQSDREYKKEFEKWKTKFSSPVDMLGVVLAKKCQILVSDIDYK 3597 

                

************************************************************ 
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NebV2           

HPLHEWTCLPDQNDVIQARKAYDLQSDAIYKSDLEWLRGIGWVPIGSVEVEKVKRAGEIL 3900 

NebV3           

HPLHEWTCLPDQNDVIQARKAYDLQSDAIYKSDLEWLRGIGWVPIGSVEVEKVKRAGEIL 3657 

                

************************************************************ 

 

NebV2           

SDRKYRQPADQLKFTCITDTPEIVLAKNNALTMSKHLYTEAWDADKTSIHVMPDTPDILL 3960 

NebV3           

SDRKYRQPADQLKFTCITDTPEIVLAKNNALTMSKHLYTEAWDADKTSIHVMPDTPDILL 3717 

                

************************************************************ 

 

NebV2           

AKSNSANISQKLYTKGWDESKMKDYDLRADAISIKSAKASRDIASDYKYKEAYEKQKGHH 4020 

NebV3           

AKSNSANISQKLYTKGWDESKMKDYDLRADAISIKSAKASRDIASDYKYKEAYEKQKGHH 3777 

                

************************************************************ 

 

NebV2           

IGAQSIEDDPKIMCAIHAGKIQSEREYKKEFQKWKTKFSSPVDMLSILLAKKCQTLVTDI 4080 

NebV3           

IGAQSIEDDPKIMCAIHAGKIQSEREYKKEFQKWKTKFSSPVDMLSILLAKKCQTLVTDI 3837 

                

************************************************************ 

 

NebV2           

DYRNYLHEWTCMPDQNDIIQAKKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMNRVKVAQ 4140 

NebV3            

DYRNYLHEWTCMPDQNDIIQAKKAYDLQS------------------------------- 3866 

*****************************                                

 

NebV2           

DLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITIPSDTPE 4200 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

MLQAHINALQISNKLYQKDWNDAKQKGYDIRADAIEIKHAKASREIASEYKYKEGYRKQL 4260 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

GHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAKKCQVLV 4320 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

SDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSVEVMRVK 4380 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

NAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAWEKEKANVNVPAD 4440 
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NebV3            

------------------------------------------------------------ 

                                                                       

NebV2           

TPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYLYKTAYE 4500 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

KQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSISAAKEGQ 4560 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

ALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMN 4620 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

RVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITI 4680 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

PSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIASEYKYKE 4740 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

GYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAK 4800 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

KCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSV 4860 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

EVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRNAWEKEKAN 4920 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

VNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYL 4980 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

YKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSIS 5040 

NebV3            

------------------------------------------------------------ 
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NebV2           

AAKEGQALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPE 5100 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

GSVEMNRVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKD 5160 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

KSNITIPSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIAS 5220 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

EYKYKEGYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMM 5280 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

SIVQAKKCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGW 5340 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

LPEGSVEVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAW 5400 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

EKEKANVNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRD 5460 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

IASDYLYKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPV 5520 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

DMVSISAAKEGQALASDVDYRHYLHRWSCFPDQNDVIQARKAYDLQSDALYKADLEWLRG 5580 

NebV3            

-----------------------------------------------DALYKADLEWLRG 3879 

                                                               

************** 
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NebV2           

IGWMPQGSPEVLRVKNAQNIFCDSVYRTPVVNLKYTSIVDTPEVVLAKSNAENISIPKYR 5640 

NebV3           

IGWMPQGSPEVLRVKNAQNIFCDSVYRTPVVNLKYTSIVDTPEVVLAKSNAENISIPKYR 3939 

                

************************************************************ 

 

NebV2           

EVWDKDKTSIHIMPDTPEINLARANALNVSNKLYREGWDEMKAGCDVRLDAIPIQAAKAS 5700 

NebV3           

EVWDKDKTSIHIMPDTPEINLARANALNVSNKLYREGWDEMKAGCDVRLDAIPIQAAKAS 3999 

                

************************************************************ 

 

NebV2           

REIASDYKYKLDHEKQKGHYVGTLTARDDNKIRWALIADKLQNEREYRLDWAKWKAKIQS 5760 

NebV3           

REIASDYKYKLDHEKQKGHYVGTLTARDDNKIRWALIADKLQNEREYRLDWAKWKAKIQS 4059 

                

************************************************************ 

 

NebV2           

PVDMLSILHSKNSQALVSDMDYRNYLHQWTCMPDQNDVIQAKKAYELQSDNVYKADLEWL 5820 

NebV3           

PVDMLSILHSKNSQALVSDMDYRNYLHQWTCMPDQNDVIQAKKAYELQSDNVYKADLEWL 4119 

                

************************************************************ 

 

NebV2           

RGIGWMPNDSVSVNHAKHAADIFSEKKYRTKIETLNFTPVDDRVDYVTAKQSGEILDDIK 5880 

NebV3           

RGIGWMPNDSVSVNHAKHAADIFSEKKYRTKIETLNFTPVDDRVDYVTAKQSGEILDDIK 4179 

                

************************************************************ 

 

NebV2           

YRKDWNATKSKYTLTETPLLHTAQEAARILDQYLYKEGWERQKATGYILPPDAVPFVHAH 5940 

NebV3           

YRKDWNATKSKYTLTETPLLHTAQEAARILDQYLYKEGWERQKATGYILPPDAVPFVHAH 4239 

                

************************************************************ 

 

NebV2           

HCNDVQSELKYKAEHVKQKGHYVGVPTMRDDPKLVWFEHAGQIQNERLYKEDYHKTKAKI 6000 

NebV3           

HCNDVQSELKYKAEHVKQKGHYVGVPTMRDDPKLVWFEHAGQIQNERLYKEDYHKTKAKI 4299 

                

************************************************************ 

 

NebV2           

NIPADMVSVLAAKQGQTLVSDIDYRNYLHQWMCHPDQNDVIQARKAYDLQSDNVYRADLE 6060 

NebV3           

NIPADMVSVLAAKQGQTLVSDIDYRNYLHQWMCHPDQNDVIQARKAYDLQSDNVYRADLE 4359 

                

************************************************************ 
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NebV2           

WLRGIGWIPLDSVDHVRVTKNQEMMSQIKYKKNALENYPNFRSVVDPPEIVLAKINSVNQ 6120 

NebV3           

WLRGIGWIPLDSVDHVRVTKNQEMMSQIKYKKNALENYPNFRSVVDPPEIVLAKINSVNQ 4419 

                

************************************************************ 

 

NebV2           

SDVKYKETFNKAKGKYTFSPDTPHISHSKDMGKLYSTILYKGAWEGTKAYGYTLDERYIP 6180 

NebV3           

SDVKYKETFNKAKGKYTFSPDTPHISHSKDMGKLYSTILYKGAWEGTKAYGYTLDERYIP 4479 

                

************************************************************ 

 

NebV2           

IVGAKHADLVNSELKYKETYEKQKGHYLAGKVIGEFPGVVHCLDFQKMRSALNYRKHYED 6240 

NebV3           

IVGAKHADLVNSELKYKETYEKQKGHYLAGKVIGEFPGVVHCLDFQKMRSALNYRKHYED 4539 

                

************************************************************ 

 

NebV2           

TKANVHIPNDMMNHVLAKRCQYILSDLEYRHYFHQWTSLLEEPNVIRVRNAQEILSDNVY 6300 

NebV3           

TKANVHIPNDMMNHVLAKRCQYILSDLEYRHYFHQWTSLLEEPNVIRVRNAQEILSDNVY 4599 

                

************************************************************ 

 

NebV2           

KDDLNWLKGIGCYVWDTPQILHAKKSYDLQSQLQYTAAGKENLQNYNLVTDTPLYVTAVQ 6360 

NebV3           

KDDLNWLKGIGCYVWDTPQILHAKKSYDLQSQLQYTAAGKENLQNYNLVTDTPLYVTAVQ 4659 

                

************************************************************ 

 

NebV2           

SGINASEVKYKENYHQIKDKYTTVLETVDYDRTRNLKNLYSSNLYKEAWDRVKATSYILP 6420 

NebV3           

SGINASEVKYKENYHQIKDKYTTVLETVDYDRTRNLKNLYSSNLYKEAWDRVKATSYILP 4719 

                

************************************************************ 

 

NebV2           

SSTLSLTHAKNQKHLASHIKYREEYEKFKALYTLPRSVDDDPNTARCLRVGKLNIDRLYR 6480 

NebV3           

SSTLSLTHAKNQKHLASHIKYREEYEKFKALYTLPRSVDDDPNTARCLRVGKLNIDRLYR 4779 

                

************************************************************ 

 

NebV2           

SVYEKNKMKIHIVPDMVEMVTAKDSQKKVSEIDYRLRLHEWICHPDLQVNDHVRKVTDQI 6540 

NebV3           

SVYEKNKMKIHIVPDMVEMVTAKDSQKKVSEIDYRLRLHEWICHPDLQVNDHVRKVTDQI 4839 

                

************************************************************ 
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NebV2           

SDIVYKDDLNWLKGIGCYVWDTPEILHAKHAYDLRDDIKYKAHMLKTRNDYKLVTDTPVY 6600 

NebV3           

SDIVYKDDLNWLKGIGCYVWDTPEILHAKHAYDLRDDIKYKAHMLKTRNDYKLVTDTPVY 4899 

                

************************************************************ 

 

NebV2           

VQAVKSGKQLSDAVYHYDYVHSVRGKVAPTTKTVDLDRALHAYKLQSSNLYKTSLRTLPT 6660 

NebV3           

VQAVKSGKQLSDAVYHYDYVHSVRGKVAPTTKTVDLDRALHAYKLQSSNLYKTSLRTLPT 4959 

                

************************************************************ 

 

NebV2           

GYRLPGDTPHFKHIKDTRYMSSYFKYKEAYEHTKAYGYTLGPKDVPFVHVRRVNNVTSER 6720 

NebV3           

GYRLPGDTPHFKHIKDTRYMSSYFKYKEAYEHTKAYGYTLGPKDVPFVHVRRVNNVTSER 5019 

                

************************************************************ 

 

NebV2           

LYRELYHKLKDKIHTTPDTPEIRQVKKTQEAVSELIYKSDFFKMQGHMISLPYTPQVIHC 6780 

NebV3           

LYRELYHKLKDKIHTTPDTPEIRQVKKTQEAVSELIYKSDFFKMQGHMISLPYTPQVIHC 5079 

                

************************************************************ 

 

NebV2           

RYVGDITSDIKYKEDLQVLKGFGCFLYDTPDMVRSRHLRKLWSNYLYTDKARKMRDKYKV 6840 

NebV3           

RYVGDITSDIKYKEDLQVLKGFGCFLYDTPDMVRSRHLRKLWSNYLYTDKARKMRDKYKV 5139 

                

************************************************************ 

 

NebV2           

VLDTPEYRKVQELKTHLSELVYRAAGKKQKSIFTSVPDTPDLLRAKRGQKLQSQYLYVEL 6900 

NebV3           

VLDTPEYRKVQELKTHLSELVYRAAGKKQKSIFTSVPDTPDLLRAKRGQKLQSQYLYVEL 5199 

                

************************************************************ 

 

NebV2           

ATKERPHHHAGNQTTALKHAKDVKDMVSEKKYKIQYEKMKDKYTPVPDTPILIRAKRAYW 6960 

NebV3           

ATKERPHHHAGNQTTALKHAKDVKDMVSEKKYKIQYEKMKDKYTPVPDTPILIRAKRAYW 5259 

                

************************************************************ 

 

NebV2           

NASDLRYKETFQKTKGKYHTVKDALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRP 7020 

NebV3           

NASDLRYKETFQKTKGKYHTVKDALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRP 5319 

                

************************************************************ 
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NebV2           

EHFHHRAVTDTVSDVKYKEDLTWLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTK 7080 

NebV3           

EHFHHRAVTDTVSDVKYKEDLTWLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTK 5379 

                

************************************************************ 

 

NebV2           

SDFKYVADSPINRHFKYATQLMNERKYKSSAKMFLQHGCNEILRPDMLTALYNSHMWSQI 7140 

NebV3           

SDFKYVADSPINRHFKYATQLMNEKKYRADYEQRKDKYHLVVDEPRHLLAKTAGDQISQI 5439 

                 

************************:**::. :   ::    : .*  * *   ..  *** 

 

NebV2           

KYRKNYEKSKDKFTSIVDTPEHLRTTKVNKQISDILYKLEYNKAKPRGYTTIHDTPMLLH 7200 

NebV3           

KYRKNYEKSKDKFTSIVDTPEHLRTTKVNKQISDILYKLEYNKAKPRGYTTIHDTPMLLH 5499 

                

************************************************************ 

 

NebV2           

VRKVKDEVSDLKYKEVYQRNKSNCTIEPDAVHIKAAKDAYKVNTNLDYKKQYEANKAHWK 7260 

NebV3           

VRKVKDEVSDLKYKEVYQRNKSNCTIEPDAVHIKAAKDAYKVNTNLDYKKQYEANKAHWK 5559 

                

************************************************************ 

 

NebV2           

WTPDRPDFLQAAKSSLQQSDFEYKLDREFLKGCKLSVTDDKNTVLALRNTLIESDLKYKE 7320 

NebV3           

WTPDRPDFLQAAKSSLQQSDFEYKLDREFLKGCKLSVTDDKNTVLALRNTLIESDLKYKE 5619 

                

************************************************************ 

 

NebV2           

KHVKERGTCHAVPDTPQILLAKTVSNLVSENKYKDHVKKHLAQGSYTTLPETRDTVHVKE 7380 

NebV3           

KHVKERGTCHAVPDTPQILLAKTVSNLVSENKYKDHVKKHLAQGSYTTLPETRDTVHVKE 5679 

                

************************************************************ 

 

NebV2           

VTKHVSDTNYKKKFVKEKGKSNYSIMLEPPEVKHAMEVAKKQSDVAYRKDAKENLHYTTV 7440 

NebV3           

VTKHVSDTNYKKKFVKEKGKSNYSIMLEPPEVKHAMEVAKKQSDVAYRKDAKENLHYTTV 5739 

                

************************************************************ 

 

NebV2           

ADRPDIKKATQAAKQASEVEYRAKHRKEGSHGLSMLGRPDIEMAKKAAKLSSQVKYRENF 7500 

NebV3           

ADRPDIKKATQAAKQASEVEYRAKHRKEGSHGLSMLGRPDIEMAKKAAKLSSQVKYRENF 5799 

                

************************************************************ 
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NebV2           

DKEKGKTPKYNPKDSQLYKVMKDANNLASEVKYKADLKKLHKPVTDMKESLIMNHVLNTS 7560 

NebV3           

DKEKGKTPKYNPKDSQLYKVMKDANNLASEVKYKADLKKLHKPVTDMKESLIMNHVLNTS 5859 

                

************************************************************ 

 

NebV2           

QLASSYQYKKKYEKSKGHYHTIPDNLEQLHLKEATELQSIVKYKEKYEKERGKPMLDFET 7620 

NebV3           

QLASSYQYKKKYEKSKGHYHTIPDNLEQLHLKEATELQSIVKYKEKYEKERGKPMLDFET 5919 

                

************************************************************ 

 

NebV2           

PTYITAKESQQMQSGKEYRKDYEESIKGRNLTGLEVTPALLHVKYATKIASEKEYRKDLE 7680 

NebV3           

PTYITAKESQQMQSGKEYRKDYEESIKGRNLTGLEVTPALLHVKYATKIASEKEYRKDLE 5979 

                

************************************************************ 

 

NebV2           

ESIRGKGLTEMEDTPDMLRAKNATQILNEKEYKRDLELEVKGRGLNAMANETPDFMRARN 7740 

NebV3           

ESIRGKGLTEMEDTPDMLRAKNATQILNEKEYKRDLELEVKGRGLNAMANETPDFMRARN 6039 

                

************************************************************ 

 

NebV2           

ATDIASQIKYKQSAEMEKANFTSVVDTPEIIHAQQVKNLSSQKKYKEDAEKSMSYYETVL 7800 

NebV3           

ATDIASQIKYKQSAEMEKANFTSVVDTPEIIHAQQVKNLSSQKKYKEDAEKSMSYYETVL 6099 

                

************************************************************ 

 

NebV2           

DTPEIQRVRENQKNFSLLQYQCDLKNSKGKITVVQDTPEILRVKENQKNFSSVLYKEDVS 7860 

NebV3           

DTPEIQRVRENQKNFSLLQYQCDLKNSKGKITVVQDTPEILRVKENQKNFSSVLYKEDVS 6159 

                

************************************************************ 

 

NebV2           

PGTAIGKTPEMMRVKQTQDHISSVKYKEAIGQGTPIPDLPEVKRVKETQKHISSVMYKEN 7920 

NebV3           

PGTAIGKTPEMMRVKQTQDHISSVKYKEAIGQGTPIPDLPEVKRVKETQKHISSVMYKEN 6219 

                

************************************************************ 

 

NebV2           

LGTGIPTTVTPEIERVKRNQENFSSVLYKENLGKGIPTPITPEMERVKRNQENFSSILYK 7980 

NebV3            

LGTGIPTTVTPEIERVKRNQENFSSVLYKENLGKGIPTPITPEMERVKRNQENFS----- 6274 

                 

*******************************************************      
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NebV2           

ENLSKGTPLPVTPEMERVKLNQENFSSVLYKENVGKGIPIPITPEMERVKHNQENFSSVL 8040 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

YKENLGTGIPIPITPEMQRVKHNQENLSSVLYKENMGKGTPLPVTPEMERVKHNQENISS 8100 

NebV3            

------------------------------------------------------------ 

                                                                             

 

NebV2           

VLYKENMGKGTPLPVTPEMERVKHNQENISSVLYKENMGKGTPLAVTPEMERVKHNQENI 8160 

NebV3            

------------------------------SVLYKENMGKGTPLAVTPEMERVKHNQENI 6304 

                                              

****************************** 

 

NebV2           

SSVLYKENVGKATATPVTPEMQRVKRNQENISSVLYKENLGKATPTPFTPEMERVKRNQE 8220 

NebV3           

SSVLYKENVGKATATPVTPEMQRVKRNQENISSVLYKENLGKATPTPFTPEMERVKRNQE 6364 

                

************************************************************ 

 

NebV2           

NFSSVLYKENMRKATPTPVTPEMERAKRNQENISSVLYSDSFRKQIQGKAAYVLDTPEMR 8280 

NebV3           

NFSSVLYKENMRKATPTPVTPEMERAKRNQENISSVLYSDSFRKQIQGKAAYVLDTPEMR 6424 

                

************************************************************ 

 

NebV2           

RVRETQRHISTVKYHEDFEKHKGCFTPVVTDPITERVKKNMQDFSDINYRGIQRKVVEME 8340 

NebV3           

RVRETQRHISTVKYHEDFEKHKGCFTPVVTDPITERVKKNMQDFSDINYRGIQRKVVEME 6484 

                

************************************************************ 

 

NebV2           

QKRNDQDQETITGLRVWRTNPGSVFDYDPAEDNIQSRSLHMINVQAQRRSREQSRSASAL 8400 

NebV3           

QKRNDQDQETITGLRVWRTNPGSVFDYDPAEDNIQSRSLHMINVQAQRRSREQSRSASAL 6544 

                

************************************************************ 

 

NebV2           

SISGGEEKSEHSEAPDHHLSTYSDGGVFAVSTAYKHAKTTELPQQRSSSVATQQTTVSSI 8460 

NebV3           

SISGGEEKSEHSEAPDHHLSTYSDGGVFAVSTAYKHAKTTELPQQRSSSVATQQTTVSSI 6604 

                

************************************************************ 

 

NebV2           

PSHPSTAGKIFRAMYDYMAADADEVSFKDGDAIINVQAIDEGWMYGTVQRTGRTGMLPAN 8520 

NebV3           

PSHPSTAGKIFRAMYDYMAADADEVSFKDGDAIINVQAIDEGWMYGTVQRTGRTGMLPAN 6664 

                

************************************************************ 
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NebV2           YVEAI 8525 

NebV3           YVEAI 6669 

                ***** 

 

 

Nebulin Fragment Variation 2 

D T V S D V K Y K E D L T W L K G I G C Y A Y D T P D F T L A E K N K T L Y 

S K Y K Y K E V F E R T K S D F K Y V A D S P I N R H F K Y A T Q L M N E R 

K Y K S S A K M F L Q H G C N E I L R P 

Nebulin Fragment Variation 3 

D A L D I V Y H R K V T D D I S K I K Y K E N Y M S Q L G I W R S I P D R P E 

H F H H R A V T D T V S D V K Y K E D L T W L K G I G C Y A Y D T P D F T L 

A E K N K T L Y S K Y K Y K E V F E R T K S D F K Y V A D S P I N R H F K Y A 

T Q L M N E K K Y R A D Y E Q R K D K Y H L V V D E P R H L L A K T A G D 

Q I S Q I K Y R K N Y E K S K D K F T S I V D T P E H L R T T K V N K Q I S D I 

L Y K 

 

Nebulin exon 144 based on gene bank entry Z28496.1 (Donner and others, 2004) 

 

K X V A D S P I N R H F K Y A T Q L M N E X K Y K S S A K M F L Q H G C N E 

I L R P D M L T A L Y N S H M W S Q X K Y K K X K K  

 

Nebulin exon 144 based on gene bank entry AA099760 (Donner and others, 2004) 

 

G G P F L I V Q S I S T T E Q S L T Q S V X V K Y K E D L T W L K G I 

G C Y A Y D T P D F T L A E K N K T L Y S K Y K Y K E V F E R T K S 

D F K Y V A D S P I N R H F K Y A T Q L M N E R K Y K S S A K M F L 

Q H G C N E I L R P D M L T A L L Q F R I C G A R S N T X T X K T M 

X N Q R T X L  
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A.5 Analysis of the Nebulin Isoforms II 

A.5.1 Amino Acid Alignment for Nebulin Isoform 1 and Nebulin Isoform 2  

The amino acid sequences for Nebulin Isoform 2 and Isoform 3 were aligned using 

Clustal2W software. The sequences of DNA fragments for clones from the Hybrigenics 

Y-2-H screen are indicated in grey (for Nebulin Isoform2)  

 

CLUSTAL 2.1 multiple sequence alignment 

 

 

NebV1           MADDEDYEEVVEYYTEEVVYEEVPGETITKIYETTTTRTSDYEQSETSKPALAQPALAQP 

NebV2           MADDEDYEEVVEYYTEEVVYEEVPGETITKIYETTTTRTSDYEQSETSKPALAQPALAQP 

                ************************************************************ 

 

NebV1           ASAKPVERRKVIRKKVDPSKFMTPYIAHSQKMQDLFSPNKYKEKFEKTKGQPYASTTDTP 

NebV2           ASAKPVERRKVIRKKVDPSKFMTPYIAHSQKMQDLFSPNKYKEKFEKTKGQPYASTTDTP 

                ************************************************************ 

 

NebV1           ELRRIKKVQDQLSEVKYRMDGDVAKTICHVDEKAKDIEHAKKVSQQVSKVLYKQNWEDTK 

NebV2           ELRRIKKVQDQLSEVKYRMDGDVAKTICHVDEKAKDIEHAKKVSQQVSKVLYKQNWEDTK 

                ************************************************************ 

 

NebV1           DKYLLPPDAPELVQAVKNTAMFSKKLYTEDWEADKSLFYPYNDSPELRRVAQAQKALSDV 

NebV2           DKYLLPPDAPELVQAVKNTAMFSKKLYTEDWEADKSLFYPYNDSPELRRVAQAQKALSDV 

                ************************************************************ 

 

NebV1           AYKKGLAEQQAQFTPLADPPDIEFAKKVTNQVSKQKYKEDYENKIKGKWSETPCFEVANA 

NebV2           AYKKGLAEQQAQFTPLADPPDIEFAKKVTNQVSKQKYKEDYENKIKGKWSETPCFEVANA 

                ************************************************************ 

 

NebV1           RMNADNISTRKYQEDFENMKDQIYFMQTETPEYKMNKKAGVAASKVKYKEDYEKNKGKAD 

NebV2           RMNADNISTRKYQEDFENMKDQIYFMQTETPEYKMNKKAGVAASKVKYKEDYEKNKGKAD 

                ************************************************************ 

 

NebV1           YNVLPASENPQLRQLKAAGDALSDKLYKENYEKTKAKSINYCETPKFKLDTVLQNFSSDK 

NebV2           YNVLPASENPQLRQLKAAGDALSDKLYKENYEKTKAKSINYCETPKFKLDTVLQNFSSDK 

                ************************************************************ 

 

NebV1           KYKDSYLKDILGHYVGSFEDPYHSHCMKVTAQNSDKNYKAEYEEDRGKGFFPQTITQEYE 

NebV2           KYKDSYLKDILGHYVGSFEDPYHSHCMKVTAQNSDKNYKAEYEEDRGKGFFPQTITQEYE 

                ************************************************************ 

 

NebV1           AIKKLDQCKDHTYKVHPDKTKFTQVTDSPVLLQAQVNSKQLSDLNYKAKHESEKFKCHIP 

NebV2           AIKKLDQCKDHTYKVHPDKTKFTQVTDSPVLLQAQVNSKQLSDLNYKAKHESEKFKCHIP 

                ************************************************************ 

 

NebV1           PDTPAFIQHKVNAYNLSDNLYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKD 

NebV2           PDTPAFIQHKVNAYNLSDNLYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKD 

                ************************************************************ 

 

NebV1           YEKNKGKMIGVLSINDDPKMLHSLKVAKNQSDRLYKENYEKTKAKSMNYCETPKYQLDTQ 

NebV2           YEKNKGKMIGVLSINDDPKMLHSLKVAKNQSDRLYKENYEKTKAKSMNYCETPKYQLDTQ 

                ************************************************************ 

 

NebV1           LKNFSEARYKDLYVKDVLGHYVGSMEDPYHTHCMKVAAQNSDKSYKAEYEEDKGKCYFPQ 

NebV2           LKNFSEARYKDLYVKDVLGHYVGSMEDPYHTHCMKVAAQNSDKSYKAEYEEDKGKCYFPQ 

                ************************************************************ 
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NebV1           TITQEYEAIKKLDQCKDHTYKVHPDKTKFTAVTDSPVLLQAQLNTKQLSDLNYKAKHEGE 

NebV2           TITQEYEAIKKLDQCKDHTYKVHPDKTKFTAVTDSPVLLQAQLNTKQLSDLNYKAKHEGE 

                ************************************************************ 

 

NebV1           KFKCHIPADAPQFIQHRVNAYNLSDNVYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTS 

NebV2           KFKCHIPADAPQFIQHRVNAYNLSDNVYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTS 

                ************************************************************ 

 

NebV1           DVMYKKDYEKSKGKMIGALSINDDPKMLHSLKTAKNQSDREYRKDYEKSKTIYTAPLDML 

NebV2           DVMYKKDYEKSKGKMIGALSINDDPKMLHSLKTAKNQSDREYRKDYEKSKTIYTAPLDML 

                ************************************************************ 

 

NebV1           QVTQAKKSQAIASDVDYKHILHSYSYPPDSINVDLAKKAYALQSDVEYKADYNSWMKGCG 

NebV2           QVTQAKKSQAIASDVDYKHILHSYSYPPDSINVDLAKKAYALQSDVEYKADYNSWMKGCG 

                ************************************************************ 

 

NebV1           WVPFGSLEMEKAKRASDILNEKKYRQHPDTLKFTSIEDAPITVQSKINQAQRSDIAYKAK 

NebV2           WVPFGSLEMEKAKRASDILNEKKYRQHPDTLKFTSIEDAPITVQSKINQAQRSDIAYKAK 

                ************************************************************ 

 

NebV1           GEEIIHKYNLPPDLPQFIQAKVNAYNISENMYKADLKDLSKKGYDLRTDAIPIRAAKAAR 

NebV2           GEEIIHKYNLPPDLPQFIQAKVNAYNISENMYKADLKDLSKKGYDLRTDAIPIRAAKAAR 

                ************************************************************ 

 

NebV1           QAASDVQYKKDYEKAKGKMVGFQSLQDDPKLVHYMNVAKIQSDREYKKDYEKTKSKYNTP 

NebV2           QAASDVQYKKDYEKAKGKMVGFQSLQDDPKLVHYMNVAKIQSDREYKKDYEKTKSKYNTP 

                ************************************************************ 

 

NebV1           HDMFNVVAAKKAQDVVSNVNYKHSLHHYTYLPDAMDLELSKNMMQIQSDNVYKEDYNNWM 

NebV2           HDMFNVVAAKKAQDVVSNVNYKHSLHHYTYLPDAMDLELSKNMMQIQSDNVYKEDYNNWM 

                ************************************************************ 

 

NebV1           KGIGWIPIGSLDVEKVKKAGDALNEKKYRQHPDTLKFTSIVDSPVMVQAKQNTKQVSDIL 

NebV2           KGIGWIPIGSLDVEKVKKAGDALNEKKYRQHPDTLKFTSIVDSPVMVQAKQNTKQVSDIL 

                ************************************************************ 

 

NebV1           YKAKGEDVKHKYTMSPDLPQFLQAKCNAYNISDVCYKRDWYDLIAKGNNVLGDAIPITAA 

NebV2           YKAKGEDVKHKYTMSPDLPQFLQAKCNAYNISDVCYKRDWYDLIAKGNNVLGDAIPITAA 

                ************************************************************ 

 

NebV1           KASRNIASDYKYKEAYEKSKGKHVGFRSLQDDPKLVHYMNVAKLQSDREYKKNYENTKTS 

NebV2           KASRNIASDYKYKEAYEKSKGKHVGFRSLQDDPKLVHYMNVAKLQSDREYKKNYENTKTS 

                ************************************************************ 

 

NebV1           YHTPGDMVSITAAKMAQDVATNVNYKQPLHHYTYLPDAMSLEHTRNVNQIQSDNVYKDEY 

NebV2           YHTPGDMVSITAAKMAQDVATNVNYKQPLHHYTYLPDAMSLEHTRNVNQIQSDNVYKDEY 

                ************************************************************ 

 

NebV1           NSFLKGIGWIPIGSLEVEKVKKAGDALNERKYRQHPDTVKFTSVPDSMGMVLAQHNTKQL 

NebV2           NSFLKGIGWIPIGSLEVEKVKKAGDALNERKYRQHPDTVKFTSVPDSMGMVLAQHNTKQL 

                ************************************************************ 

 

NebV1           SDLNYKVEGEKLKHKYTIDPELPQFIQAKVNALNMSDAHYKADWKKTIAKGYDLRPDAIP 

NebV2           SDLNYKVEGEKLKHKYTIDPELPQFIQAKVNALNMSDAHYKADWKKTIAKGYDLRPDAIP 

                ************************************************************ 

 

NebV1           IVAAKSSRNIASDCKYKEAYEKAKGKQVGFLSLQDDPKLVHYMNVAKIQSDREYKKGYEA 

NebV2           IVAAKSSRNIASDCKYKEAYEKAKGKQVGFLSLQDDPKLVHYMNVAKIQSDREYKKGYEA 

                ************************************************************ 

 

NebV1           SKTKYHTPLDMVSVTAAKKSQEVATNANYRQSYHHYTLLPDALNVEHSRNAMQIQSDNLY 

NebV2           SKTKYHTPLDMVSVTAAKKSQEVATNANYRQSYHHYTLLPDALNVEHSRNAMQIQSDNLY 

                ************************************************************ 

 

NebV1           KSDFTNWMKGIGWVPIESLEVEKAKKAGEILSEKKYRQHPEKLKFTYAMDTMEQALNKSN 

NebV2           KSDFTNWMKGIGWVPIESLEVEKAKKAGEILSEKKYRQHPEKLKFTYAMDTMEQALNKSN 

                ************************************************************ 
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NebV1           KLNMDKRLYTEKWNKDKTTIHVMPDTPDILLSRVNQITMSDKLYKAGWEEEKKKGYDLRP 

NebV2           KLNMDKRLYTEKWNKDKTTIHVMPDTPDILLSRVNQITMSDKLYKAGWEEEKKKGYDLRP 

                ************************************************************ 

 

NebV1           DAIAIKAARASRDIASDYKYKKAYEQAKGKHIGFRSLEDDPKLVHFMQVAKMQSDREYKK 

NebV2           DAIAIKAARASRDIASDYKYKKAYEQAKGKHIGFRSLEDDPKLVHFMQVAKMQSDREYKK 

                ************************************************************ 

 

NebV1           GYEKSKTSFHTPVDMLSVVAAKKSQEVATNANYRNVIHTYNMLPDAMSFELAKNMMQIQS 

NebV2           GYEKSKTSFHTPVDMLSVVAAKKSQEVATNANYRNVIHTYNMLPDAMSFELAKNMMQIQS 

                ************************************************************ 

 

NebV1           DNQYKADYADFMKGIGWLPLGSLEAEKNKKAMEIISEKKYRQHPDTLKYSTLMDSMNMVL 

NebV2           DNQYKADYADFMKGIGWLPLGSLEAEKNKKAMEIISEKKYRQHPDTLKYSTLMDSMNMVL 

                ************************************************************ 

 

NebV1           AQNNAKIMNEHLYKQAWEADKTKVHIMPDIPQIILAKANAINMSDKLYKLSLEESKKKGY 

NebV2           AQNNAKIMNEHLYKQAWEADKTKVHIMPDIPQIILAKANAINMSDKLYKLSLEESKKKGY 

                ************************************************************ 

 

NebV1           DLRPDAIPIKAAKASRDIASDYKYKYNYEKGKGKMVGFRSLEDDPKLVHSMQVAKMQSDR 

NebV2           DLRPDAIPIKAAKASRDIASDYKYKYNYEKGKGKMVGFRSLEDDPKLVHSMQVAKMQSDR 

                ************************************************************ 

 

NebV1           EYKKNYENTKTSYHTPADMLSVTAAKDAQANITNTNYKHLIHKYILLPDAMNIELTRNMN 

NebV2           EYKKNYENTKTSYHTPADMLSVTAAKDAQANITNTNYKHLIHKYILLPDAMNIELTRNMN 

                ************************************************************ 

 

NebV1           RIQSDNEYKQDYNEWYKGLGWSPAGSLEVEKAKKATEYASDQKYRQHPSNFQFKKLTDSM 

NebV2           RIQSDNEYKQDYNEWYKGLGWSPAGSLEVEKAKKATEYASDQKYRQHPSNFQFKKLTDSM 

                ************************************************************ 

 

NebV1           DMVLAKQNAHTMNKHLYTIDWNKDKTKIHVMPDTPDILQAKQNQTLYSQKLYKLGWEEAL 

NebV2           DMVLAKQNAHTMNKHLYTIDWNKDKTKIHVMPDTPDILQAKQNQTLYSQKLYKLGWEEAL 

                ************************************************************ 

 

NebV1           KKGYDLPVDAISVQLAKASRDIASDYKYKQGYRKQLGHHVGFRSLQDDPKLVLSMNVAKM 

NebV2           KKGYDLPVDAISVQLAKASRDIASDYKYKQGYRKQLGHHVGFRSLQDDPKLVLSMNVAKM 

                ************************************************************ 

 

NebV1           QSEREYKKDFEKWKTKFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQA 

NebV2           QSEREYKKDFEKWKTKFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQA 

                ************************************************************ 

 

NebV1           KKVYELQSENLYKSDLEWLRGIGWSPLGSLEAEKNKRASEIISEKKYRQPPDRNKFTSIP 

NebV2           KKVYELQSENLYKSDLEWLRGIGWSPLGSLEAEKNKRASEIISEKKYRQPPDRNKFTSIP 

                ************************************************************ 

 

NebV1           DAMDIVLAKTNAKNRSDRLYREAWDKDKTQIHIMPDTPDIVLAKANLINTSDKLYRMGYE 

NebV2           DAMDIVLAKTNAKNRSDRLYREAWDKDKTQIHIMPDTPDIVLAKANLINTSDKLYRMGYE 

                ************************************************************ 

 

NebV1           ELKRKGYDLPVDAIPIKAAKASREIASEYKYKEGFRKQLGHHIGARNIEDDPKMMWSMHV 

NebV2           ELKRKGYDLPVDAIPIKAAKASREIASEYKYKEGFRKQLGHHIGARNIEDDPKMMWSMHV 

                ************************************************************ 

 

NebV1           AKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDV 

NebV2           AKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDV 

                ************************************************************ 

 

NebV1           IHARQAYDLQSDNLYKSDLQWLKGIGWMTSGSLEDEKNKRATQILSDHVYRQHPDQFKFS 

NebV2           IHARQAYDLQSDNLYKSDLQWLKGIGWMTSGSLEDEKNKRATQILSDHVYRQHPDQFKFS 

                ************************************************************ 

 

NebV1           SLMDSIPMVLAKNNAITMNHRLYTEAWDKDKTTVHIMPDTPEVLLAKQNKVNYSEKLYKL 

NebV2           SLMDSIPMVLAKNNAITMNHRLYTEAWDKDKTTVHIMPDTPEVLLAKQNKVNYSEKLYKL 

                ************************************************************ 
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NebV1           GLEEAKRKGYDMRVDAIPIKAAKASRDIASEFKYKEGYRKQLGHHIGARAIRDDPKMMWS 

NebV2           GLEEAKRKGYDMRVDAIPIKAAKASRDIASEFKYKEGYRKQLGHHIGARAIRDDPKMMWS 

                ************************************************************ 

 

NebV1           MHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQ 

NebV2           MHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQ 

                ************************************************************ 

 

NebV1           SDVIHARQAYDLQSDNMYKSDLQWMRGIGWVSIGSLDVEKCKRATEILSDKIYRQPPDRF 

NebV2           SDVIHARQAYDLQSDNMYKSDLQWMRGIGWVSIGSLDVEKCKRATEILSDKIYRQPPDRF 

                ************************************************************ 

 

NebV1           KFTSVTDSLEQVLAKNNAITMNKRLYTEAWDKDKTQIHIMPDTPEIMLARMNKINYSESL 

NebV2           KFTSVTDSLEQVLAKNNAITMNKRLYTEAWDKDKTQIHIMPDTPEIMLARMNKINYSESL 

                ************************************************************ 

 

NebV1           YKLANEEAKKKGYDLRSDAIPIVAAKASRDIISDYKYKDGYCKQLGHHIGARNIEDDPKM 

NebV2           YKLANEEAKKKGYDLRSDAIPIVAAKASRDIISDYKYKDGYCKQLGHHIGARNIEDDPKM 

                ************************************************************ 

 

NebV1           MWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEWTCL 

NebV2           MWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEWTCL 

                ************************************************************ 

 

NebV1           PDQSDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRATEILSDNIYRQPP 

NebV2           PDQSDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRATEILSDNIYRQPP 

                ************************************************************ 

 

NebV1           DKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQIHIMPDTPEIMLARQNKINYS 

NebV2           DKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQIHIMPDTPEIMLARQNKINYS 

                ************************************************************ 

 

NebV1           ETLYKLANEEAKKKGYDLRSDAIPIVAAKASRDVISDYKYKDGYRKQLGHHIGARNIEDD 

NebV2           ETLYKLANEEAKKKGYDLRSDAIPIVAAKASRDVISDYKYKDGYRKQLGHHIGARNIEDD 

                ************************************************************ 

 

NebV1           PKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEW 

NebV2           PKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEW 

                ************************************************************ 

 

NebV1           TCLPDQNDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRAAEILSDNIYR 

NebV2           TCLPDQNDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRAAEILSDNIYR 

                ************************************************************ 

 

NebV1           QPPDKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQVHIMPDTPEIMLARQNKI 

NebV2           QPPDKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQVHIMPDTPEIMLARQNKI 

                ************************************************************ 

 

NebV1           NYSESLYRQAMEEAKKEGYDLRSDAIPIVAAKASRDIASDYKYKEAYRKQLGHHIGARAV 

NebV2           NYSESLYRQAMEEAKKEGYDLRSDAIPIVAAKASRDIASDYKYKEAYRKQLGHHIGARAV 

                ************************************************************ 

 

NebV1           HDDPKIMWSLHIAKVQSDREYKKDFEKYKTRYSSPVDMLGIVLAKKCQTLVSDVDYKHPL 

NebV2           HDDPKIMWSLHIAKVQSDREYKKDFEKYKTRYSSPVDMLGIVLAKKCQTLVSDVDYKHPL 

                ************************************************************ 

 

NebV1           HEWICLPDQNDIIHARKAYDLQSDNLYKSDLEWMKGIGWVPIDSLEVVRAKRAGELLSDT 

NebV2           HEWICLPDQNDIIHARKAYDLQSDNLYKSDLEWMKGIGWVPIDSLEVVRAKRAGELLSDT 

                ************************************************************ 

 

NebV1           IYRQRPETLKFTSITDTPEQVLAKNNALNMNKRLYTEAWDNDKKTIHVMPDTPEIMLAKL 

NebV2           IYRQRPETLKFTSITDTPEQVLAKNNALNMNKRLYTEAWDNDKKTIHVMPDTPEIMLAKL 

                ************************************************************ 

 

NebV1           NRINYSDKLYKLALEESKKEGYDLRLDAIPIQAAKASRDIASDYKYKEGYRKQLGHHIGA 

NebV2           NRINYSDKLYKLALEESKKEGYDLRLDAIPIQAAKASRDIASDYKYKEGYRKQLGHHIGA 

                ************************************************************ 
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NebV1           RNIKDDPKMMWSIHVAKIQSDREYKKEFEKWKTKFSSPVDMLGVVLAKKCQILVSDIDYK 

NebV2           RNIKDDPKMMWSIHVAKIQSDREYKKEFEKWKTKFSSPVDMLGVVLAKKCQILVSDIDYK 

                ************************************************************ 

 

NebV1           HPLHEWTCLPDQNDVIQARKAYDLQSDAIYKSDLEWLRGIGWVPIGSVEVEKVKRAGEIL 

NebV2           HPLHEWTCLPDQNDVIQARKAYDLQSDAIYKSDLEWLRGIGWVPIGSVEVEKVKRAGEIL 

                ************************************************************ 

 

NebV1           SDRKYRQPADQLKFTCITDTPEIVLAKNNALTMSKHLYTEAWDADKTSIHVMPDTPDILL 

NebV2           SDRKYRQPADQLKFTCITDTPEIVLAKNNALTMSKHLYTEAWDADKTSIHVMPDTPDILL 

                ************************************************************ 

 

NebV1           AKSNSANISQKLYTKGWDESKMKDYDLRADAISIKSAKASRDIASDYKYKEAYEKQKGHH 

NebV2           AKSNSANISQKLYTKGWDESKMKDYDLRADAISIKSAKASRDIASDYKYKEAYEKQKGHH 

                ************************************************************ 

 

NebV1           IGAQSIEDDPKIMCAIHAGKIQSEREYKKEFQKWKTKFSSPVDMLSILLAKKCQTLVTDI 

NebV2           IGAQSIEDDPKIMCAIHAGKIQSEREYKKEFQKWKTKFSSPVDMLSILLAKKCQTLVTDI 

                ************************************************************ 

 

NebV1           DYRNYLHEWTCMPDQNDIIQAKKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMNRVKVAQ 

NebV2           DYRNYLHEWTCMPDQNDIIQAKKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMNRVKVAQ 

                ************************************************************ 

 

NebV1           DLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITIPSDTPE 

NebV2           DLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITIPSDTPE 

                ************************************************************ 

 

NebV1           MLQAHINALQISNKLYQKDWNDAKQKGYDIRADAIEIKHAKASREIASEYKYKEGYRKQL 

NebV2           MLQAHINALQISNKLYQKDWNDAKQKGYDIRADAIEIKHAKASREIASEYKYKEGYRKQL 

                ************************************************************ 

 

NebV1           GHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAKKCQVLV 

NebV2           GHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAKKCQVLV 

                ************************************************************ 

 

NebV1           SDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSVEVMRVK 

NebV2           SDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSVEVMRVK 

                ************************************************************ 

 

NebV1           NAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAWEKEKANVNVPAD 

NebV2           NAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAWEKEKANVNVPAD 

                ************************************************************ 

 

NebV1           TPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYLYKTAYE 

NebV2           TPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYLYKTAYE 

                ************************************************************ 

 

NebV1           KQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSISAAKEGQ 

NebV2           KQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSISAAKEGQ 

                ************************************************************ 

 

NebV1           ALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMN 

NebV2           ALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPEGSVEMN 

                ************************************************************ 

 

NebV1           RVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITI 

NebV2           RVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKDKSNITI 

                ************************************************************ 

 

NebV1           PSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIASEYKYKE 

NebV2           PSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIASEYKYKE 

                ************************************************************ 

 

NebV1           GYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAK 

NebV2           GYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMMSIVQAK 

                ************************************************************ 
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NebV1           KCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSV 

NebV2           KCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGWLPEGSV 

                ************************************************************ 

 

NebV1           EVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRNAWEKEKAN 

NebV2           EVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRNAWEKEKAN 

                ************************************************************ 

 

NebV1           VNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYL 

NebV2           VNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRDIASDYL 

                ************************************************************ 

 

NebV1           YKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSIS 

NebV2           YKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPVDMVSIS 

                ************************************************************ 

 

NebV1           AAKEGQALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPE 

NebV2           AAKEGQALASDVDYRHYLHHWSCFPDQNDVIQARKAYDLQSDSVYKADLEWLRGIGWMPE 

                ************************************************************ 

 

NebV1           GSVEMNRVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKD 

NebV2           GSVEMNRVKVAQDLVNERLYRTRPEALSFTSIVDTPEVVLAKANSLQISEKLYQEAWNKD 

                ************************************************************ 

 

NebV1           KSNITIPSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIAS 

NebV2           KSNITIPSDTPEMLQAHINALQISNKLYQKDWNDTKQKGYDIRADAIEIKHAKASREIAS 

                ************************************************************ 

 

NebV1           EYKYKEGYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMM 

NebV2           EYKYKEGYRKQLGHHMGFRTLQDDPKSVWAIHAAKIQSDREYKKAYEKSKGIHNTPLDMM 

                ************************************************************ 

 

NebV1           SIVQAKKCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGW 

NebV2           SIVQAKKCQVLVSDIDYRNYLHQWTCLPDQNDVIQAKKAYDLQSDNLYKSDLEWLKGIGW 

                ************************************************************ 

 

NebV1           LPEGSVEVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAW 

NebV2           LPEGSVEVMRVKNAQNLLNERLYRIKPEALKFTSIVDTPEVIQAKINAVQISEPLYRDAW 

                ************************************************************ 

 

NebV1           EKEKANVNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRD 

NebV2           EKEKANVNVPADTPLMLQSKINALQISNKRYQQAWEDVKMTGYDLRADAIGIQHAKASRD 

                ************************************************************ 

 

NebV1           IASDYLYKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPV 

NebV2           IASDYLYKTAYEKQKGHYIGCRSAKEDPKLVWAANVLKMQNDRLYKKAYNDHKAKISIPV 

                ************************************************************ 

 

NebV1           DMVSISAAKEGQALASDVDYRHYLHRWSCFPDQNDVIQARKAYDLQSDALYKADLEWLRG 

NebV2           DMVSISAAKEGQALASDVDYRHYLHRWSCFPDQNDVIQARKAYDLQSDALYKADLEWLRG 

                ************************************************************ 

 

NebV1           IGWMPQGSPEVLRVKNAQNIFCDSVYRTPVVNLKYTSIVDTPEVVLAKSNAENISIPKYR 

NebV2           IGWMPQGSPEVLRVKNAQNIFCDSVYRTPVVNLKYTSIVDTPEVVLAKSNAENISIPKYR 

                ************************************************************ 

 

NebV1           EVWDKDKTSIHIMPDTPEINLARANALNVSNKLYREGWDEMKAGCDVRLDAIPIQAAKAS 

NebV2           EVWDKDKTSIHIMPDTPEINLARANALNVSNKLYREGWDEMKAGCDVRLDAIPIQAAKAS 

                ************************************************************ 

 

NebV1           REIASDYKYKLDHEKQKGHYVGTLTARDDNKIRWALIADKLQNEREYRLDWAKWKAKIQS 

NebV2           REIASDYKYKLDHEKQKGHYVGTLTARDDNKIRWALIADKLQNEREYRLDWAKWKAKIQS 

                ************************************************************ 

 

NebV1           PVDMLSILHSKNSQALVSDMDYRNYLHQWTCMPDQNDVIQAKKAYELQSDNVYKADLEWL 

NebV2           PVDMLSILHSKNSQALVSDMDYRNYLHQWTCMPDQNDVIQAKKAYELQSDNVYKADLEWL 

                ************************************************************ 
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NebV1           RGIGWMPNDSVSVNHAKHAADIFSEKKYRTKIETLNFTPVDDRVDYVTAKQSGEILDDIK 

NebV2           RGIGWMPNDSVSVNHAKHAADIFSEKKYRTKIETLNFTPVDDRVDYVTAKQSGEILDDIK 

                ************************************************************ 

 

NebV1           YRKDWNATKSKYTLTETPLLHTAQEAARILDQYLYKEGWERQKATGYILPPDAVPFVHAH 

NebV2           YRKDWNATKSKYTLTETPLLHTAQEAARILDQYLYKEGWERQKATGYILPPDAVPFVHAH 

                ************************************************************ 

 

NebV1           HCNDVQSELKYKAEHVKQKGHYVGVPTMRDDPKLVWFEHAGQIQNERLYKEDYHKTKAKI 

NebV2           HCNDVQSELKYKAEHVKQKGHYVGVPTMRDDPKLVWFEHAGQIQNERLYKEDYHKTKAKI 

                ************************************************************ 

 

NebV1           NIPADMVSVLAAKQGQTLVSDIDYRNYLHQWMCHPDQNDVIQARKAYDLQSDNVYRADLE 

NebV2           NIPADMVSVLAAKQGQTLVSDIDYRNYLHQWMCHPDQNDVIQARKAYDLQSDNVYRADLE 

                ************************************************************ 

 

NebV1           WLRGIGWIPLDSVDHVRVTKNQEMMSQIKYKKNALENYPNFRSVVDPPEIVLAKINSVNQ 

NebV2           WLRGIGWIPLDSVDHVRVTKNQEMMSQIKYKKNALENYPNFRSVVDPPEIVLAKINSVNQ 

                ************************************************************ 

 

NebV1           SDVKYKETFNKAKGKYTFSPDTPHISHSKDMGKLYSTILYKGAWEGTKAYGYTLDERYIP 

NebV2           SDVKYKETFNKAKGKYTFSPDTPHISHSKDMGKLYSTILYKGAWEGTKAYGYTLDERYIP 

                ************************************************************ 

 

NebV1           IVGAKHADLVNSELKYKETYEKQKGHYLAGKVIGEFPGVVHCLDFQKMRSALNYRKHYED 

NebV2           IVGAKHADLVNSELKYKETYEKQKGHYLAGKVIGEFPGVVHCLDFQKMRSALNYRKHYED 

                ************************************************************ 

 

NebV1           TKANVHIPNDMMNHVLAKRCQYILSDLEYRHYFHQWTSLLEEPNVIRVRNAQEILSDNVY 

NebV2           TKANVHIPNDMMNHVLAKRCQYILSDLEYRHYFHQWTSLLEEPNVIRVRNAQEILSDNVY 

                ************************************************************ 

 

NebV1           KDDLNWLKGIGCYVWDTPQILHAKKSYDLQSQLQYTAAGKENLQNYNLVTDTPLYVTAVQ 

NebV2           KDDLNWLKGIGCYVWDTPQILHAKKSYDLQSQLQYTAAGKENLQNYNLVTDTPLYVTAVQ 

                ************************************************************ 

 

NebV1           SGINASEVKYKENYHQIKDKYTTVLETVDYDRTRNLKNLYSSNLYKEAWDRVKATSYILP 

NebV2           SGINASEVKYKENYHQIKDKYTTVLETVDYDRTRNLKNLYSSNLYKEAWDRVKATSYILP 

                ************************************************************ 

 

NebV1           SSTLSLTHAKNQKHLASHIKYREEYEKFKALYTLPRSVDDDPNTARCLRVGKLNIDRLYR 

NebV2           SSTLSLTHAKNQKHLASHIKYREEYEKFKALYTLPRSVDDDPNTARCLRVGKLNIDRLYR 

                ************************************************************ 

 

NebV1           SVYEKNKMKIHIVPDMVEMVTAKDSQKKVSEIDYRLRLHEWICHPDLQVNDHVRKVTDQI 

NebV2           SVYEKNKMKIHIVPDMVEMVTAKDSQKKVSEIDYRLRLHEWICHPDLQVNDHVRKVTDQI 

                ************************************************************ 

 

NebV1           SDIVYKDDLNWLKGIGCYVWDTPEILHAKHAYDLRDDIKYKAHMLKTRNDYKLVTDTPVY 

NebV2           SDIVYKDDLNWLKGIGCYVWDTPEILHAKHAYDLRDDIKYKAHMLKTRNDYKLVTDTPVY 

                ************************************************************ 

 

NebV1           VQAVKSGKQLSDAVYHYDYVHSVRGKVAPTTKTVDLDRALHAYKLQSSNLYKTSLRTLPT 

NebV2           VQAVKSGKQLSDAVYHYDYVHSVRGKVAPTTKTVDLDRALHAYKLQSSNLYKTSLRTLPT 

                ************************************************************ 

 

NebV1           GYRLPGDTPHFKHIKDTRYMSSYFKYKEAYEHTKAYGYTLGPKDVPFVHVRRVNNVTSER 

NebV2           GYRLPGDTPHFKHIKDTRYMSSYFKYKEAYEHTKAYGYTLGPKDVPFVHVRRVNNVTSER 

                ************************************************************ 

 

NebV1           LYRELYHKLKDKIHTTPDTPEIRQVKKTQEAVSELIYKSDFFKMQGHMISLPYTPQVIHC 

NebV2           LYRELYHKLKDKIHTTPDTPEIRQVKKTQEAVSELIYKSDFFKMQGHMISLPYTPQVIHC 

                ************************************************************ 

 

NebV1           RYVGDITSDIKYKEDLQVLKGFGCFLYDTPDMVRSRHLRKLWSNYLYTDKARKMRDKYKV 

NebV2           RYVGDITSDIKYKEDLQVLKGFGCFLYDTPDMVRSRHLRKLWSNYLYTDKARKMRDKYKV 

                ************************************************************ 
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NebV1           VLDTPEYRKVQELKTHLSELVYRAAGKKQKSIFTSVPDTPDLLRAKRGQKLQSQYLYVEL 

NebV2           VLDTPEYRKVQELKTHLSELVYRAAGKKQKSIFTSVPDTPDLLRAKRGQKLQSQYLYVEL 

                ************************************************************ 

 

NebV1           ATKERPHHHAGNQTTALKHAKDVKDMVSEKKYKIQYEKMKDKYTPVPDTPILIRAKRAYW 

NebV2           ATKERPHHHAGNQTTALKHAKDVKDMVSEKKYKIQYEKMKDKYTPVPDTPILIRAKRAYW 

                ************************************************************ 

 

NebV1           NASDLRYKETFQKTKGKYHTVKDALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRP 

NebV2           NASDLRYKETFQKTKGKYHTVKDALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRP 

                ************************************************************ 

 

NebV1           EHFHHRAVTDTVSDVKYKEDLTWLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTK 

NebV2           EHFHHRAVTDTVSDVKYKEDLTWLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTK 

                ************************************************************ 

 

NebV1           SDFKYVADSPINRHFKYATQLMNEKKYRADYEQRKDKYHLVVDEPRHLLAKTAGDQISQI 

NebV2           SDFKYVADSPINRHFKYATQLMNERKYKSSAKMFLQHGCNEILRPDMLTALYNSHMWSQI 

                ************************:**::. :   ::    : .*  * *   ..  *** 

 

NebV1           KYRKNYEKSKDKFTSIVDTPEHLRTTKVNKQISDILYKLEYNKAKPRGYTTIHDTPMLLH 

NebV2           KYRKNYEKSKDKFTSIVDTPEHLRTTKVNKQISDILYKLEYNKAKPRGYTTIHDTPMLLH 

                ************************************************************ 

 

NebV1           VRKVKDEVSDLKYKEVYQRNKSNCTIEPDAVHIKAAKDAYKVNTNLDYKKQYEANKAHWK 

NebV2           VRKVKDEVSDLKYKEVYQRNKSNCTIEPDAVHIKAAKDAYKVNTNLDYKKQYEANKAHWK 

                ************************************************************ 

 

NebV1           WTPDRPDFLQAAKSSLQQSDFEYKLDREFLKGCKLSVTDDKNTVLALRNTLIESDLKYKE 

NebV2           WTPDRPDFLQAAKSSLQQSDFEYKLDREFLKGCKLSVTDDKNTVLALRNTLIESDLKYKE 

                ************************************************************ 

 

NebV1           KHVKERGTCHAVPDTPQILLAKTVSNLVSENKYKDHVKKHLAQGSYTTLPETRDTVHVKE 

NebV2           KHVKERGTCHAVPDTPQILLAKTVSNLVSENKYKDHVKKHLAQGSYTTLPETRDTVHVKE 

                ************************************************************ 

 

NebV1           VTKHVSDTNYKKKFVKEKGKSNYSIMLEPPEVKHAMEVAKKQSDVAYRKDAKENLHYTTV 

NebV2           VTKHVSDTNYKKKFVKEKGKSNYSIMLEPPEVKHAMEVAKKQSDVAYRKDAKENLHYTTV 

                ************************************************************ 

 

NebV1           ADRPDIKKATQAAKQASEVEYRAKHRKEGSHGLSMLGRPDIEMAKKAAKLSSQVKYRENF 

NebV2           ADRPDIKKATQAAKQASEVEYRAKHRKEGSHGLSMLGRPDIEMAKKAAKLSSQVKYRENF 

                ************************************************************ 

 

NebV1           DKEKGKTPKYNPKDSQLYKVMKDANNLASEVKYKADLKKLHKPVTDMKESLIMNHVLNTS 

NebV2           DKEKGKTPKYNPKDSQLYKVMKDANNLASEVKYKADLKKLHKPVTDMKESLIMNHVLNTS 

                ************************************************************ 

 

NebV1           QLASSYQYKKKYEKSKGHYHTIPDNLEQLHLKEATELQSIVKYKEKYEKERGKPMLDFET 

NebV2           QLASSYQYKKKYEKSKGHYHTIPDNLEQLHLKEATELQSIVKYKEKYEKERGKPMLDFET 

                ************************************************************ 

 

NebV1           PTYITAKESQQMQSGKEYRKDYEESIKGRNLTGLEVTPALLHVKYATKIASEKEYRKDLE 

NebV2           PTYITAKESQQMQSGKEYRKDYEESIKGRNLTGLEVTPALLHVKYATKIASEKEYRKDLE 

                ************************************************************ 

 

NebV1           ESIRGKGLTEMEDTPDMLRAKNATQILNEKEYKRDLELEVKGRGLNAMANETPDFMRARN 

NebV2           ESIRGKGLTEMEDTPDMLRAKNATQILNEKEYKRDLELEVKGRGLNAMANETPDFMRARN 

                ************************************************************ 

 

NebV1           ATDIASQIKYKQSAEMEKANFTSVVDTPEIIHAQQVKNLSSQKKYKEDAEKSMSYYETVL 

NebV2           ATDIASQIKYKQSAEMEKANFTSVVDTPEIIHAQQVKNLSSQKKYKEDAEKSMSYYETVL 

                ************************************************************ 

 

NebV1           DTPEIQRVRENQKNFSLLQYQCDLKNSKGKITVVQDTPEILRVKENQKNFSSVLYKEDVS 

NebV2           DTPEIQRVRENQKNFSLLQYQCDLKNSKGKITVVQDTPEILRVKENQKNFSSVLYKEDVS 

                ************************************************************ 
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NebV1           PGTAIGKTPEMMRVKQTQDHISSVKYKEAIGQGTPIPDLPEVKRVKETQKHISSVMYKEN 

NebV2           PGTAIGKTPEMMRVKQTQDHISSVKYKEAIGQGTPIPDLPEVKRVKETQKHISSVMYKEN 

                ************************************************************ 

 

NebV1           LGTGIPTTVTPEIERVKRNQENFSSVLYKENLGKGIPTPITPEMERVKRNQENFSSILYK 

NebV2           LGTGIPTTVTPEIERVKRNQENFSSVLYKENLGKGIPTPITPEMERVKRNQENFSSILYK 

                ************************************************************ 

 

NebV1           ENLSKGTPLPVTPEMERVKLNQENFSSVLYKENVGKGIPIPITPEMERVKHNQENFSSVL 

NebV2           ENLSKGTPLPVTPEMERVKLNQENFSSVLYKENVGKGIPIPITPEMERVKHNQENFSSVL 

                ************************************************************ 

 

NebV1           YKENLGTGIPIPITPEMQRVKHNQENLSSVLYKENMGKGTPLPVTPEMERVKHNQENISS 

NebV2           YKENLGTGIPIPITPEMQRVKHNQENLSSVLYKENMGKGTPLPVTPEMERVKHNQENISS 

                ************************************************************ 

 

NebV1           VLYKENMGKGTPLPVTPEMERVKHNQENISSVLYKENMGKGTPLAVTPEMERVKHNQENI 

NebV2           VLYKENMGKGTPLPVTPEMERVKHNQENISSVLYKENMGKGTPLAVTPEMERVKHNQENI 

                ************************************************************ 

 

NebV1           SSVLYKENVGKATATPVTPEMQRVKRNQENISSVLYKENLGKATPTPFTPEMERVKRNQE 

NebV2           SSVLYKENVGKATATPVTPEMQRVKRNQENISSVLYKENLGKATPTPFTPEMERVKRNQE 

                ************************************************************ 

 

NebV1           NFSSVLYKENMRKATPTPVTPEMERAKRNQENISSVLYSDSFRKQIQGKAAYVLDTPEMR 

NebV2           NFSSVLYKENMRKATPTPVTPEMERAKRNQENISSVLYSDSFRKQIQGKAAYVLDTPEMR 

                ************************************************************ 

 

NebV1           RVRETQRHISTVKYHEDFEKHKGCFTPVVTDPITERVKKNMQDFSDINYRGIQRKVVEME 

NebV2           RVRETQRHISTVKYHEDFEKHKGCFTPVVTDPITERVKKNMQDFSDINYRGIQRKVVEME 

                ************************************************************ 

 

NebV1           QKRNDQDQETITGLRVWRTNPGSVFDYDPAEDNIQSRSLHMINVQAQRRSREQSRSASAL 

NebV2           QKRNDQDQETITGLRVWRTNPGSVFDYDPAEDNIQSRSLHMINVQAQRRSREQSRSASAL 

                ************************************************************ 

 

NebV1           SISGGEEKSEHSEAPDHHLSTYSDGGVFAVSTAYKHAKTTELPQQRSSSVATQQTTVSSI 

NebV2           SISGGEEKSEHSEAPDHHLSTYSDGGVFAVSTAYKHAKTTELPQQRSSSVATQQTTVSSI 

                ************************************************************ 

 

NebV1           PSHPSTAGKIFRAMYDYMAADADEVSFKDGDAIINVQAIDEGWMYGTVQRTGRTGMLPAN 

NebV2           PSHPSTAGKIFRAMYDYMAADADEVSFKDGDAIINVQAIDEGWMYGTVQRTGRTGMLPAN 

                ************************************************************ 

 

NebV1           YVEAI 

NebV2           YVEAI 

                ***** 

 

Nebulin Fragment Variation 2 (from the Y-2-H) 

D T V S D V K Y K E D L T W L K G I G C Y A Y D T P D F T L A E K N K T L Y 

S K Y K Y K E V F E R T K S D F K Y V A D S P I N R H F K Y A T Q L M N E R 

K Y K S S A K M F L Q H G C N E I L R P 
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   A.6 Analysis of KBTBD13 

A.6.1 Amino Acid Alignment for KBTBD13 and Klhl31  

The amino acid sequences for KBTBD13 (Gene ID: 390594) and Klhl31 (Gene ID: 

401265) were aligned using Clustal2W software.  

 

 

 

CLUSTAL 2.1 multiple sequence alignment 

 

 

kbtbd13         ----------------------------------------------------MARGP--- 

Klhl31          MAPKKKIVKKNKGDINEMTIIVEDSPLNKLNALNGLLEGGNGLSCISSELTDASYGPNLL 

                                                                     : **    

 

kbtbd13         -----------QTLVQVWVGGQLFQADRALLVEHCGFFRGLFRSGMRETRAAEVRLGVLS 

Klhl31          EGLSKMRQENFLCDLVIGTKTKSFDVHKSVMASCSEYFYNILKKDPSIQRVDLNDISPLG 

                              : : .  : *:..::::.. . :* .:::..    *.    :. *. 

 

kbtbd13         AGGFRATLQVLRGDRPALAAEDELLQAVECAAFLQAPALARFLEHNLTSDNCALLCDAAA 

Klhl31          LATVIAYAYTGKLTLSLYTIGSIISAAVYLQIHTLVKMCSDFLIREMSVENCMYVVNIAE 

                 . . *   . :   .  :  . :  **    .  .   : ** :::: :**  : : *  

 

kbtbd13         AFGLRDVFHSAALFICD-------------------GERELAAELALP------------ 

Klhl31          TYSLKNAKAAAQKFIRDNFLEFAESDQFMKLTFEQINELLIDDDLQLPSEIVAFQIAMKW 

                ::.*::.  :*  ** *                   .*  :  :* **             

 

kbtbd13         ----EARAYVAALRPS------------------------------------SYAAVSTH 

Klhl31          LEFDQKRVKYAADLLSNIRFGTISAQDLVNYVQSVPRMMQDADCHRLLVDAMNYHLLPYH 

                    : *.  **   *                                    .*  :. * 

 

kbtbd13         T---------------------PAPGFLEDASRTLCYLDEEEDAWRTLAALPLEASTLLA 

Klhl31          QNTLQSRRTRIRGGCRVLVTVGGRPGLTEKSLSRDILYRDPENGWSKLTEMPAKS--FNQ 

                                        **: *.:        : *:.* .*: :* ::  :   

 

kbtbd13         GVATLGNKLYIVGG-----VRGASKEVVELGFCYDPDGGTWHEFPSPHQPRYDTALAGFD 

Klhl31          CVAVMDGFLYVAGGEDQNDARNQAKHAVSNFCRYDPRFNTWIHLASMNQKRTHFSLSVFN 

                 **.:.. **:.**     .*. :*..*.    ***  .** .:.* :* * . :*: *: 

 

kbtbd13         GRLYAIGGEFQRTPISSVERYDPAAGCWSFVADLPQPAAGVPCAQACGRLFVCLWRPADT 

Klhl31          GLVYAAGGRNAEGSLASLECYVPSTNQWQPKTPLEVARCCHASAVADGRVLVTGGYIANA 

                * :** **.  . .::*:* * *::. *.  : *  . .  ..* * **::*     *:: 

 

kbtbd13         T--AVVEYAVRTDAWLPVAELRRPQSYGHCMVAHRDSLYVVRN---GP-SDDFLHCAIDC 

Klhl31          YSRSVCAYDPASDSWQELPNLSTPR-GWHCAVTLSDRVYVMGGSQLGPRGERVDVLTVEC 

                   :*  *   :*:*  :.:*  *:   ** *:  * :**: .   ** .: .   :::* 

 

kbtbd13         LNLATGQWT-ALPGQFVNSKGALFTAVVRGDTVYTVN------RMFTLLYAIEGGTWRLL 

Klhl31          YSPATGQWSYAAPLQVGVSTAGVSALHGRAYLVGGWNEGEKKYKKCIQCFSPELNEWTED 

                 . *****: * * *.  *...: :   *.  *   *      :     :: * . *    

 

kbtbd13         REKAGFPRPGSLQTFLLR---LPPGAPGPVTSTTAEL 

Klhl31          DELPEATVGVSCCTLSMPNNVTRESRASSVSSVPVSI 

                 * .  .   *  *: :       . ...*:*....: 

 

 


