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Abstract

Current biogeochemical box models for Phanerozoic climate are re-

viewed and reduced to a robust, modular system, allowing application

to the Precambrian. It is shown that stabilisation of climate follow-

ing a Neoproterozoic snowball Earth should take more than 107 years,

due to long-term geological limitation of global weathering rates. The

timescale matches the observed gaps between extreme glaciations at

this time, suggesting that the late Neoproterozoic system was oscillat-

ing around a steady state temperature below the snowball threshold.

In the model, the period of disequilibrium following snowball glacia-

tions is characterised by elevated ocean nutrient and organic burial

rates, providing fair correlation with available geochemical proxies.

Extending the analysis to consider carbon removed from the ocean

via seafloor carbonatization does not result in a significant reduction

in stabilisation time.

Model timeframe is extended over the last 2Ga. Predicted oxy-

gen concentration is shown to depend on the balance between terres-

trial and seafloor weathering, which alters the global nutrient delivery

rate and therefore global productivity. Under reasonable assumptions,

broad predictions for Proterozoic climate fall within, or close to the

bounds imposed by geological proxies. A mechanism for atmospheric

oxygenation over Earth history is proposed: the combination of declin-

ing mantle heat flux and increasing continental area, aided by colonis-

ing land biota, results in a steadily increasing ocean nutrient supply,

driving increasing rates of organic carbon burial.

Methods currently used for assessing Phanerozoic O2 assume only

terrestrial weathering fluxes, and are found to give unreasonable re-

sults when applied to the Precambrian. Phanerozoic predictions from

the model developed here show a significant reduction in the large oxy-

gen peak at 300Ma found in previous studies. This is due to consider-

ation of terrestrial and seafloor weathering balance, and to the longer

model timeframe - which allows prediction of crustal abundances in

the Cambrian, rather than assuming present day conditions.
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1 Introduction

1.1 Earth history

1.1.1 Formation, age and geological time

The Earth was formed around 4.5 billion years ago (Ga) in a circumstellar

disc around the young Sun. In models of planetary formation, gas and fine

dust surrounding the stellar body undergoes accretion to first form small

planetesimals, then larger planetary embryos, which eventually collide to

form planets (e.g. Chambers (2004)). The process takes between 10-100

million years (Myr). It is thought that the Moon was formed near the end of

Earth’s accumulation (Canup and Asphaug, 2001) from mass ejected during

a collision between the young Earth and a Mars-sized body (Benz et al.,

1986; Hartmann and Davis, 1975).

The oldest crustal material known is dated to 4.3-4Ga (Bowring and

Williams, 1999; ONeil et al., 2008) and there is some evidence for existence

of continental crust and oceans on the Earth at 4.4Ga (Wilde et al., 2001),

however, lack of preservation causes the abundance of rocks to decline expo-

nentially with age (Garrels and Mackenzie, 1969), making early-Earth mate-

rial scarce today. Figure 1.1.1 shows the currently agreed chronostratigraphic

timeline (ICS, 2012) alongside proxy data for atmospheric composition and

the timing of glacial periods.

1.1.2 Earth’s surface environment

Multiple geologic proxies are used to infer climatic conditions throughout

Earth history. The composition of the atmosphere is thought to have changed

significantly since the formation of the planet, but appears to have remained

suitable for life (Kasting, 1989). Pillow basalts dated to 3.8Ga provide the

first direct evidence of liquid water (Polat et al., 2002), which is a requirement

for all known organisms. This indicates that the ocean was not completely

frozen at this time, however, placing constraints on early Earth temperature

is very difficult. The limited geological evidence suggests a temperate-to-hot

Archean climate, but also indicates glacial periods (Kasting and Ono, 2006).

Temperature extremes at the local or global level may have been crucial to

the origin of life (Bada et al., 1994; Wachtershauser, 1998; Schwartzman,
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1999).

The Sun is known to have increased in luminosity over time, implying

that with contemporary greenhouse gas concentration and planetary albedo,

global temperature would be expected to be well below the freezing point of

water in the Archean (Sagan and Mullen, 1972). Thus it has been inferred

that concentrations of greenhouse gasses must have been higher on the early

Earth (Kasting, 1993). Evidence from paleosols (Rye et al., 1995), mineral-

ogy of banded iron formations (Rosing et al., 2010) and ancient river gravels

(Hessler et al., 2004) place Archean CO2 concentration between 1-100 times

PAL (present atmospheric level), which is lower than the concentration re-

quired to maintain clement surface temperature after consideration of other

plausible greenhouse gasses (Haqq-Misra et al., 2008). It has been suggested

that lower planetary albedo due to the lack of continents (Rosing et al., 2010)

and increased atmospheric pressure due to likely higher nitrogen concentra-

tion (Goldblatt et al., 2009a) may have compensated for the weaker solar flux

by raising surface temperature. However, recent models allowing for these ef-

fects still fail to resolve the paradox (Goldblatt and Zahnle, 2011; Goldblatt

et al., 2009a). Mineralogical constraints implying very low Archean CO2

concentration may suffer from lack of thermodynamic equilibrium between

the assemblage and the atmosphere and are at best uncertain (Dauphas and

Kasting, 2011; Reinhard and Planavsky, 2011).

Glacial evidence is found sporadically throughout Earth history (see fig

1.1.1), indicating periods of low global temperature. Absence of glacial strata

is assumed to represent warm global temperature. Several glacial periods

appear to have been long lasting with ice sheets extending to, or very close

to the equator. These events occur in the Paleoproterozoic (Papineau, 2010;

Evans et al., 1997; Bekker et al., 2001) and Neoproterozoic (Hoffman et al.,

1998; Arnaud et al., 2011). Other large but less extensive glaciations occur in

the Permo-Carboniferous (330-260Ma) and the Cenozoic (30-0Ma) (Crowley,

1998).

The concentration of atmospheric oxygen has changed by many orders of

magnitude over Earth history. Recent reviews of the geological constraints

roughly bracket oxygen concentration below 10−5PAL before 2.4 Ga, be-

tween 0.01-0.2 PAL during the period 2.4-0.58 Ga, and above 0.6− 0.8PAL

for 400Ma-present (Papineau et al., 2007; Pavlov and Kasting, 2002; Kump,
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2008; Canfield, 2005; Jones and Chaloner, 1991; Belcher and McElwain,

2008). This oxygen window is shown in figure 1.1.1. Note the apparent

correlation between increasing oxygen concentration and deep glaciation.
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Figure 1.1.1: Compilation of evidence for environmental and biological
changes over Earth history. Grey shaded areas show proxy constraints on
atmospheric O2 and CO2, plotted relative to their present day concentrations.
Constraints for oxygen (A,B,C) show the three distinct windows described in the
text, and follow the review of Kump (2008). Proxy data for CO2 show estimates
from paleosol data (D) (Rye et al., 1995), (E) (Sheldon, 2006), carbon isotope
modelling (H) (Kah and Bartley, 2004) and a compilation of Phanerozoic indicators
from paleosols, plankton and stomatal density (I) (Royer et al., 2004). Grey circles
with arrows show upper and lower bound estimates from composition of fossil
acritarchs (F) (Kaufman and Xiao, 2003) and cyanobacteria (G) (Kah and Riding,
2007). Blue shaded areas represent times of substantial glaciation (see text). Dark
green lines show the earliest agreed evidence for evolutionary advancements, with
the light green areas showing the uncertainty, as described in the text. Original in
colour.
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1.1.3 Life and Evolution

It is thought that the Earth could have been habitable by 10-20 Myrs after

the Moon-forming impact (Zahnle et al., 2007). Isotopically light carbon1

found in 3.8Ga sediment sequences (Mojzsis et al., 1996) is the earliest indi-

cator of the presence of life, as no abiotic processes are known to cause such

high degrees of carbon isotope fractionation. Sedimentary structures called

stromatolites, which today are produced by microorganisms, are found in

increasing numbers beginning at 3.5Ga (Schopf et al., 2007; Hofmann, 2000;

Schopf, 2006) although to prove beyond doubt that they are organic in na-

ture is currently not possible due to lack of an associated fossilised microbiota

(Grotzinger and Knoll, 1999).

Hard evidence for life comes in the form of microfossils, which are found

beginning 3.32Ga (Walsh and Lowe, 1985; Walsh, 1992; Knoll and Barghoorn,

1977). A combination of analytical techniques are used to verify the biological

morphology and carbonaceous chemistry of proposed fossils at the micron-

scale (House et al., 2000; Boyce et al., 2001; Kudryavtsev et al., 2001; Schopf,

2006), following a rigorous criteria for establishment of biogenicity (Schopf,

2004).

The increasing complexity of life over time can be established from the

fossil record, which displays numerous remarkable evolutionary transitions

(Szathmry and Maynard Smith, 1995). Chemical composition of carbona-

ceous matter dated to 3.416 Ga indicate the presence of photosynthetic anoxic

microbes (Tice and Lowe, 2004, 2006). Fossils resembling cyanobacteria are

found beginning 2.15Ga (Hofmann, 1976), indicating oxygenic photosynthe-

sis was present by this time. Fossilised lipids in rocks dated to 2.7Ga are

characteristic of cyanobacteria (Brocks et al., 1999; Summons et al., 1999),

however these biomarkers are now known to be non-primary (Rasmussen

et al., 2008). It is currently uncertain whether the evolution of oxygenic

photosynthesis occurred sometime before, or coincidentally with the 2.4Ga

1Organic matter is depleted in the heavy 13C isotope due to biological preference for
the lighter 12C isotope (Mook, 1986). The δ13C record shows the relative abundance of
the heavy isotope in marine carbonates compared to the standard Pee Dee Belemnite
(δ13CPDB=0), and has been traditionally taken as a rough measure of the fraction of total
carbon that is buried organically. Bacterial sulphate reduction similarly produces H2S in
which the sulphur is isotopically light. The standard here is the Canyon Diablo Troilite
(δ34SCDT=0).
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great oxygenation event. Eukaryotic cells, which unlike earlier prokaryotes

contain complex internal structures (organelles) likely evolved around 2 Ga

(Lenton and Watson, 2011), with the first indisputably eukaryotic fossils

found at 1.2Ga (Butterfield, 2000). Elemental ratios and isotopic composi-

tion of 2.6-2.7Ga organic matter suggest that terrestrial biomass may have

been present at this point (Watanabe et al., 2000), the first evidence for mi-

crobial structures on land is found around 1.2-1 Ga (Prave, 2002) and protein

sequence analysis suggests fungi had evolved by this time (Heckman et al.,

2001). Fossil land plant fragments appear at 460 Ma (Wellman et al., 2003)

and forest ecosystems with rooted trees were present by the Devonian period

(415-360Ma) (Retallack, 1997). Animals may have evolved as early as 760Ma

(Brain et al., 2012), and oxygen-breathing land animals are found by 428 Ma:

the millipede Pneumodesmus Newmani possesses breathing holes called spir-

acles that are utilised by modern insects (Wilson and Anderson, 2004). The

first recorded mammals are early Cretaceous (145-66 Ma) monotreme fossils

(Archer et al., 1985). Rising temperature due to stellar evolution is expected

to limit the future of the complex biosphere on Earth to ∼1 Gyr (Lenton

and Bloh, 2001).

1.2 Biogeochemical modelling

The oceans, atmosphere and lithosphere are in constant flux, however their

compositions appear to have remained relatively stable over millions of years.

This is attributed to the operation of negative feedback loops in global el-

emental cycles, which rely on a combination of biological, geophysical and

chemical processes. Stabilisation of environmental conditions in the ranges

suitable for life was first discussed as part of the Gaia hypothesis (Lovelock,

1972; Margulis and Lovelock, 1974; Lovelock, 1979), which proposed that

tight coupling between life and its environment constitutes a global cyber-

netic system, and should tend towards homoeostasis. A hypothetical model

demonstrating this idea, Daisyworld (Watson and Lovelock, 1983) showed

that on a planet that was gradually heating up due to increasing solar flux,

competition between two types of organism that had opposite effects on cli-

mate (in this case, black and white daisies that respectively warmed or cooled

the planet) could lead to regulation of planetary temperature at the level

5



most suitable for the survivability of the biosphere as a whole.

The level of control exerted by the biosphere, if any, is both contraversial

and uncertain, however, numerous stabilising mechanisms have been identi-

fied in the Earth system, and modelling studies incorporating these have led

to an improved understanding of biogeochemical cycles, as well as providing

causal relationships for observed paleoclimatic changes. An early attempt

to model an existing Earth system feedback loop was the ’WHAK’ model,

named after the authors Walker, Hays and Kasting (Walker et al., 1981).

This work highlighted that the rate of removal of carbon dioxide from the

atmosphere via continental weathering and deposition in sediments is depen-

dent on global temperature. Rising temperature should boost the kinetics

of weathering reactions and increase the rate of continental runoff, leading

to increased CO2 removal, which would reduce atmospheric greenhouse gas

concentration and therefore act to nullify the original temperature rise.

Further models added this feedback loop (Berner et al., 1983; Berner and

Barron, 1984), and others (Lenton, 2000; Lasaga and Ohmoto, 2002) to rep-

resentations of geochemical cycling in order to arrive at predictions for the

composition of ancient atmospheres. Currently, feedback-based geochemical

box models are used to predict the evolution of climate over the Phanerozoic

Eon (Berner, 2006a; Bergman et al., 2004; Arvidson et al., 2006), and allow

multiple predictions including concentration of oxygen, ocean sulphate and

nutrient levels in addition to carbon dioxide and temperature. For shorter

term analysis (e.g. millennial timescale), intermediate complexity Earth sys-

tem models (e.g. Lenton et al. (2006); Ridgwell and Hargreaves (2007))

allow for a 3D spatial approach and explicit representation of sedimentary

processes and ocean circulation. General Circulation Models (e.g. Marotzke

et al. (1999)) add further complexity and reduce the timscale of operation ac-

cordingly due to computational constraints. Intermediate complexity models

or GCMs are well suited to analysing future climate trends, and to compare

possible future events to those recorded in the geologic record (e.g. Ridgwell

and Schmidt (2010)). Many feedback mechanisms do however remain poorly

understood, for example the relation between ocean gas emissions and cloud

formation (Charlson et al., 1987).
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1.3 This work

The models considered and developed in this thesis are applied over long

timescales (106-109 years) and consist of simplified systems of differential

equations that represent global biological, chemical and geophysical pro-

cesses. The aim is to construct a robust model framework based on current

box models for the Phanerozoic, and to apply this model to the study of Pro-

terozoic climate. Simple carbon cycle models have previously been applied to

the Proterozoic period (e.g. Sleep and Zahnle (2001); Hayes and Waldbauer

(2006)) but climate predictions are limited to temperature and CO2.

In Chapter 2 the current Phanerozoic modelling techniques are reviewed.

Code is obtained for the GEOCARB and COPSE models and the controlling

processes in these models are assessed.

Chapter 3 focusses on the development of a model framework based on

GEOCARB and COPSE. The new ‘Minimal Model’ is validated against the

previous works and shows good agreement for the Phanerozoic. The time-

frame of the Minimal Model is extended to the Neoproterozoic, predicted

oxygen concentration and causes for the deep glaciations at this time are

then investigated.

In Chapter 4, the Minimal Model is modified to allow for snowball Earth

(Hoffman et al., 1998) type glaciations by introduction of a ice-albedo positive

feedback. The system is then used to test the effect of geological weathering

limitation on the time taken to recover from a post-snowball CO2 crisis. The

main body work from this chapter has been published (Mills et al., 2011)

and is reproduced here with some extension and further discussion.

In Chapter 5, new fluxes and boxes are added to the model framework

to represent long term cycling between the surface system and the mantle.

The extended model is used to investigate the effect of changing carbon

removal pathways (e.g. Caldeira (1995)) on ocean nutrient levels and oxygen

concentration over the last 2Ga. The work in this chapter, including some

work from chapter 3, is currently being prepared for submission.
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2 Phanerozoic carbon cycle modelling

2.1 Introduction

In this chapter I review the literature on the modelling of the long term

carbon cycle over the Phanerozoic eon (542-0Ma). Various models have at-

tempted to reconstruct the flow of carbon through the atmosphere, oceans

and sediments over this period, and in doing so have provided key estimates

for atmospheric CO2, temperature and O2 concentration. Here I focus on two

popular Phanerozoic models, GEOCARBSULF (Berner, 2006a) and COPSE

(Bergman et al., 2004), which are commonly used as benchmarks from which

to test theories on paleoatmospheric conditions (e.g. Belcher et al. (2010)).

Whilst there are many apparent similarities between the two models, for

some periods of Earth history they produce significantly different results. In

this chapter I attempt to trace the root of these differences and assess the

key processes controlling model predictions. Estimates for Phanerozoic CO2

and O2 are cross-examined and compared to proxy data. The goal of this

analysis is to define a reduced set of critical processes and parameters that

can be used to construct a new, simpler model. It is hoped that the new

model can reproduce the broader scale predictions of the established work,

but with significant improvements in flexibility, robustness and mathematical

simplicity that will allow application to Precambrian climate. The model

runs in this section are performed using original code for the 2004 COPSE

model (Bergman et al., 2004) and for the 2009 ‘GEOCARBSULFvolc’ model

(Berner, 2009), obtained directly from the respective authors.

2.2 The GEOCARB model

The first GEOCARB model (Berner, 1991) was a dramatic step forwards

in understanding the link between the carbon cycle and global climate over

geological time. Following only the cycle of carbon allowed for substantial

simplification of a previous model of the carbonate-silicate cycle, which had

included explicit representation of the calcium and magnesium cycles (Berner

et al., 1983). This step led to improved computational efficiency and allowed

the first reconstruction of climate for the whole Phanerozoic.
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Figure 2.2.1: Long term carbon and sulphur cycle schematic, as used
in GEOCARB and COPSE models. Clear boxes denote the combined atmo-
sphere/ocean reservoirs, grey boxes represent crustal reservoirs. Flux subscripts
‘b’, ‘w’ and ‘m’ refer to burial, weathering and metamorphic/degassing respec-
tively. a, Carbon cycle, G: Organic (reduced) carbon, C: Carbonate (oxidised)
carbon, A, Atmosphere and ocean carbon. b, Sulphur cycle, PYR: Pyrite (re-
duced) sulphur, GYP: Gypsum (oxidised) sulphur, S: Ocean sulphate.

The original GEOCARB model uses a 3-box system to simulate the trans-

fer of carbon between the hydrosphere and crust, which is shown in figure

2.2.1 a. Carbon is assumed to exist as CO2 in the combined atmosphere and

ocean (which is modelled as a single box), and as either oxidised carbonates

or reduced organic matter in the crust. Carbon is transferred between the

boxes via burial, weathering and degassing. Over long timescales (> 106 yrs)

other elements of the global carbon cycle can be considered to be at steady

state, allowing for an estimation of the carbon content of the atmosphere and
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ocean over the Phanerozoic based on knowledge of the fluxes between these

boxes. The GEOCARB model has been extended many times (Berner, 1994;

Berner and Kothavala, 2001; Berner, 2006a,b, 2009), and the more recent

models include a similar 3-box treatment for the cycling of sulphur species,

shown in figure 2.2.1 b. Sulphur is assumed to exist as oxidised sulphate

in the atmosphere/ocean and as gypsum (oxidised) sulphur and pyrite (re-

duced) sulphur in the crust. In the later versions of GEOCARB the crustal

boxes are each split into ‘young’ and ‘ancient’ partitions to explore isotope

fractionation effects, but this does not affect the total fluxes between hydro-

sphere and crust. Further additions include a routine for calculating oxygen

concentration, and more complex treatment of volcanism.

The series of GEOCARB models do not contain explicit biological pro-

cesses, and the biologically-influenced burial of organic carbon and pyrite

sulphur are estimated based on the isotopic ratios δ13C and δ34S (see intro-

duction), which are imposed as an external forcing.

2.3 The COPSE model

COPSE uses the same box and flux scheme as GEOCARB for the carbon and

sulphur cycles, without assuming a partition between young and ancient rock.

The scheme is combined with a previously designed box model for ocean pro-

ductivity and oxygen (Lenton and Watson, 2000a,b). This adds two boxes to

the GEOCARB system which represent the major limiting nutrients phos-

phate and nitrate, allowing calculation of burial rates for reduced carbon and

sulphur via the modelled nutrient concentrations. Calculating organic burial

in this manner means that COPSE does not require the isotope record to be

used as a model forcing, and allows the model to instead produce predictions

for stable isotope fractionation, however additional forcings are required for

the nutrient system to function. Figure 2.3.2 shows the fluxes controlling nu-

trient concentrations, which in turn drive productivity and burial of organic

species.

A popular and more complex model, MAGic (Arvidson et al., 2006), is

not discussed in length here. My aim in this thesis is to understand the

factors controlling atmospheric and ocean composition over long periods of

Earth history in the simplest terms, I therefore do not analyse the MAGic
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system in detail, as it can be effectively reduced to the simpler COPSE

system whilst maintaining the general results. In MAGic, the rate of organic

burial is estimated from ecosystem productivity, which is based on delivery

of nutrients via weathering. This treatment is similar to the COPSE model,

and the resulting predictions for Phanerozoic climate are very similar (see

Arvidson et al. (2006)).

Figure 2.3.2: Feedback-based nutrient system for COPSE model O: Oxy-
gen, N: Nitrate, P: Phosphate. Fluxes ending with ‘b’ denote burial, ‘w’ denotes
weathering. psea and pland represent the proportion of weathered phosphate de-
livered to the land biosphere and the ocean. newp is new production, nfix and
denit represent nitrogen fixation and denitrification fluxes and anox represents the
ocean anoxic fraction. Here arrows do not represent fluxes but show the ability of
one variable to alter another. Solid lines show a positive relationship, dashed lines
show an inverse relationship. See Bergman et al. (2004) for a full description.

2.4 Flux calculation and forcing sets

For both models, the fluxes between boxes are calculated using knowledge of

their present day magnitude and a variety of proposed scaling relationships
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to both internal model variables and external forcing functions. As noted

previously, one key difference between GEOCARB and COPSE is in the

calculation of the organic burial fluxes. Another important difference is in

the model forcing sets - the GEOCARB model uses many more external

forcings than COPSE. For both models, the magnitude of the external forcing

functions (i.e. F ) is defined relative to present day, with typical magnitude

0.5 < F < 1.5. The full forcing sets are shown in figure 2.4.3, and described

below. Both models are also subject to an increase in solar luminosity over

the Phanerozoic (not shown), which affects the global temperature (Caldeira

and Kasting, 1992).
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Figure 2.4.3: Model forcings a, Forcings common to both models. U: Uplift,
D: Volcanic degassing, B: Shallow/deep carbonate burial. b, Additional forcings
for COPSE model. CPland: Carbon-to-phosphorus burial ratio on land, E: Land
plant evolution, W: Land plant weathering enhancement. c, Additional forcings
for the GEOCARB model. fD: Relative runoff rate, fLA: Carbonate land area, fA:
Land area, fE: Land plant evolution. d, Isotopic forcings for GEOCARB model.
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2.4.1 Forcings common to both models (figure 2.4.3a)

U: uplift rate

The rate of continental uplift over the Phanerozoic has been estimated from

a strontium isotope mass balance model (Berner, 1994). This model recon-

structs changes in seawater 87Sr/86Sr in the absence of Sr input from terres-

trial weathering, which is then compared to data to estimate the weathering

contribution. The results agree well with data for terriginous sediment abun-

dance (Ronov, 1993). In both models, the uplift/erosion parameter affects

the rate of continental weathering via supply of material.

D: degassing rate

The GEOCARB and COPSE models use a sea level inversion method (Gaffin,

1987) to calculate the sea floor spreading rate, which is used to estimate

global degassing rates (Franck and Bounama, 1997; Lasaga et al., 1985). The

degassing forcing controls the rate of release of buried carbon and sulphur

into the atmosphere via recycling at subduction zones.

B: burial depth of marine carbonates

Both models include a forcing affecting carbonate degassing, attributed to

the evolution of calcareous plankton at ∼150Ma, which are deposited in deep

water. Their evolution is thought to have increased the amount of carbon-

ate entering subduction zones and hence undergoing thermal decomposition

(Volk, 1989).

2.4.2 Additional forcings for COPSE (figure 2.4.3b)

W: weathering rate enhancement due to biosphere changes

The colonisation of the land surface by vascular plants by ∼350Ma is thought

to have dramatically enhanced continental weathering rates (Stewart and

Rothwell, 1983). Roots exudate organic acids, amplifying rates of chemical

weathering, as well as physically breaking up rock. Enhancement of weath-

ering by vascular plants is seen in field studies but results vary greatly, there-

fore the global effect of vascular plant evolution remains uncertain (Cawley

et al., 1969; Berner, 1998). Further weathering enhancement is thought to

have occurred due to the evolution of angiosperm plants at ∼100Ma, due to

their higher rubisco specificity factor (the preference of the enzyme for CO2
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over O2 (Igamberdiev and Lea, 2006)), and less efficient recycling of nutri-

ents (Knoll and James, 1987). The W forcing in COPSE acts to enhance

terrestrial weathering rates as the biosphere evolves.

E: evolution of biological feedbacks on land

The effect of the terrestrial biosphere on geochemical cycling is dependent

on various local factors such as temperature, CO2 concentration and O2

concentration, which affect productivity both directly (Caldeira and Kasting,

1992; Volk, 1987) and via the rate of biosphere burning due to fires (Wildman

et al., 2004; Watson, 1978). The E forcing in COPSE acts to ‘switch on’ these

feedbacks once the land biosphere has evolved.

CPland: carbon-to-phosphorous burial rate on land

The burial ratio of carbon to phosphorus on land is doubled in the Permo-

Carboniferous in the COPSE model. This represents the expectation that

extensive burial of organics occurred in coal swamps during this time (Berner

and Canfield, 1989; Kump, 1993).

2.4.3 Additional forcings for GEOCARB (figure 2.4.3c,d)

The most recent GEOCARBSULF model uses a large forcing set, adding the

forcings shown in 2.4.3c and 2.4.3d to the forcings in 2.4.3a. The forcing set

has grown substantially since the first GEOCARB model, as more processes

have been identified as being important to the geological carbon cycle.

fE: weathering rate enhancement due to biosphere changes

GEOCARB was the first model to include the effects of plant evolution on

the carbon and sulphur cycles (Berner, 1991). The fE forcing in GEOCARB

expresses a 2-step increase over the Phanerozoic, from which the COPSE

forcing W is derived. There is no equivalent to the COPSE ‘E’ forcing in

GEOCARB, as the model does not have an explicit representation of bio-

spheric feedbacks.

fD: runoff rate

The assumed changes to continental runoff due to paleogeography are derived

by calculating runoff rates for 10 degree ‘latitude slices’ in a reconstruction of

Phanerozoic continental drift (Tardy et al., 1989; Berner, 1990). The runoff

forcing is assumed to influence the terrestrial weathering rates by increasing
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rate of flow of material through weathering zones.

fA: total land area

The total land area is also derived from paleogeographic reconstructions (Bar-

ron et al., 1980; Ronov, 1976), and influences bulk weathering rates by chang-

ing the area exposed to weathering.

fLA: carbonate land area

The relative land area that is underlain by carbonate rocks. Derived from

the relative land area forcing, fA, and the paleogeographic maps of Bluth

and Kump (1991). This forcing affects the weathering of carbonates.

δ13C and δ34S : productivity forcings Using data for the fractionation

of marine carbonates as a proxy for paleoatmospheric fractionation allows

estimation of the rates of organic carbon burial by the biosphere, assuming

that the total carbon burial and the fractionation of the crustal reservoirs

is known. This isotopic mass balance technique was explored by Garrels

and Lerman (1984) and Berner (1987) before being incorporated into the

first GEOCARB model (Berner, 1991). The same technique is used in later

models to estimate the rate of organic pyrite sulphur burial, based on the

isotopic ratio δ34S. Isotope mass balance techniques will be explored further

in section 2.7.3.

2.4.4 Summary

The GEOCARB and COPSE models share a simple set of forcings: global

uplift and degassing rates, and the changes brought about by the evolution of

land plants and calcareous plankton. GEOCARB adds further abiotic forc-

ings, and importantly, adds a forcing for the productivity of the biosphere,

which is used to prescribe the rates of organic burial. The COPSE model as-

sumes that burial rate of organic carbon and pyrite is governed by the rate of

marine new production, which itself is assumed to depend on ocean nutrient

concentration. Additional assumptions are therefore required to predict the

rate of organic carbon burial via the nutrient model: a complex dependency

of the mass of the terrestrial biosphere on atmospheric conditions, and the

additional biotic forcings E and CPland, shown in figure 2.4.3b.
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2.5 Negative feedback on temperature and CO2

The atmospheric and oceanic reservoir of carbon is around 106 times larger

than the yearly fluxes into and out of it, while for oxygen this factor is

107. Therefore an imbalance in fluxes may deplete either reservoir on a

timescale far shorter than the duration of the Phanerozoic eon (∼ 5 × 108

years). Stability (or homeostasis) in the carbon cycle is achieved via naturally

occurring negative feedback mechanisms. A key process for model stability is

the temperature-dependence of the silicate weathering process (Walker et al.,

1981). Weathering of silicates, followed by transfer to the ocean and eventual

burial in sediments results in a net transfer of CO2 from the hydrosphere to

the crust. Temperature influences the rate of chemical reaction and therefore

an increase in temperature results in an increased removal of CO2 from the

surface system, lowering the radiative forcing from this gas and therefore

lowering temperature. This mechanism is thought to have been extremely

important throughout Earth history to stabilise CO2 at levels that permit the

removal flux by weathering to equal the input flux from degassing, and was

the central focus of carbon cycle models preceding GEOCARB (e.g. Berner

et al. (1983). The equation adopted by GEOCARB and COPSE is based on

the field work of Berner (1994), combining a term for the rate of chemical

dissolution with a term for the rate of runoff:

fB (T ) = e0.09(T−T0) · (1 + 0.038 (T − T0))0.65 (2.5.1)

Where fB is the effect of temperature on the global rate of silicate weath-

ering, T is global average surface temperature and T0 = 288K is the present

day average surface temperature. The full equation for the silicate weather-

ing flux also includes dependence on model forcings, as well as effects of CO2

fertilization of vascular plants (Berner, 1994).
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2.6 Phanerozoic CO2 predictions

2.6.1 Summary of predictions
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Figure 2.6.4: Phanerozoic CO2 predictions. RCO2 denotes atmospheric
carbon dioxide concentration relative to the present day (pre-industrial) concen-
tration. The COPSE model (Bergman et al., 2004) is shown in black, the GEO-
CARBSULFvolc model (Berner, 2009) is shown in grey.

Figure 2.6.4 shows baseline Phanerozoic CO2 predictions for the COPSE

model and the GEOCARBSULFvolc model (GEOCARB hereafter). The

overall pattern predicted by both models is of elevated (10-20 times present

day) CO2 from 550-350Ma, dropping to around 1-5 times present day con-

centration for the period 350-0Ma. From this plot we can highlight three

distinct features:

1) Agreement between modelled carbon dioxide concentrations is very

strong from the Mesozoic onwards (250-0Ma).

2) Model CO2 predictions from 550-250Ma follow a similar overall tra-

jectory, but GEOCARB predicts lower concentrations than COPSE for

this time period.

3) The COPSE CO2 path is smoother than the GEOCARB predic-

tion, with less scatter.
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To understand the critical processes in these models it is important to

provide a reason for each of these observations.

2.6.2 Calculation for carbon dioxide concentration

Both models estimate the change in the atmosphere and ocean carbon reser-

voir using the flux calculation shown in equation 2.6.1, which sums the

sources and sinks of the A resevoir, as shown in figure 2.2.1a.

dA

dt
= Fwg + Fmg + Fwc + Fmc − Fbg − Fbc (2.6.1)

Here, subscript prefixes ‘w’, ‘m’ and ‘b’ refer to weathering, metamor-

phic/degassing and burial. Subscript suffixes ‘g’ and ‘c’ refer to organic and

carbonate carbon (see figure 2.2.1). Burial of both reduced and oxidised car-

bon constitutes a sink for atmosphere and ocean CO2, with the sources being

the degassing and weathering of both of the crustal carbon reservoirs. All of

these fluxes are affected by changes in model forcings and internal variables

such as global average temperature.

2.6.3 Serial modification of model forcing sets

In order to explain the observed differences in output, the models are now

compared under different forcing groups. The results are shown in figure

2.6.5. The assumed enhancement of terrestrial weathering due to the evolu-

tion of vascular plants differs between models. COPSE uses a 7-fold increase,

as used in the first GEOCARB model (Berner, 1991), whilst GEOCARB-

SULFvolc uses a more conservative 4-fold increase (Berner and Kothavala,

2001). In figure 2.6.5a, the GEOCARB model is altered to increase the en-

hancement factor to match that used in COPSE. The modification does not

alter results for 0-350Ma, but brings the model predictions closer to COPSE

for 350-550Ma. Note that allowing a larger enhancement of the silicate weath-

ering sink at 350Ma does not alter CO2 predictions for 350-0Ma, as might

be expected, but results in a higher CO2 prediction for 550-350Ma. This is

because model fluxes are inferred from the present day Earth system, thus

the assumption of a ‘7-fold increase’ in weathering efficiency after 350Ma is

actually modelled as a 7-fold decrease in efficiency before 350Ma.
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Figure 2.6.5: Serial modification of COPSE and GEOCARB models.
COPSE model (Bergman et al., 2004) shown in black and GEOCARB model
(Berner, 2009) shown in grey. a, GEOCARB is adjusted so that both models use
the same value for vascular plant weathering enhancement (7 fold). b, GEOCARB
is further adjusted to include only the uplift and degassing forcings, as used in
COPSE. c, as b with exclusion of isotope forcings from GEOCARB. d, as c with
exclusion of uplift and degassing forcings from both models. Note the change to
the y-axis scale in panels c,c

In figure 2.6.5 b, GEOCARB is simplified by removing all abiotic forc-

ings except for uplift and degassing (i.e. everything shown in figure 2.4.3c),

thereby limiting the abiotic forcings to the same set used in COPSE. Interest-

ingly, this modification does not significantly impact the model predictions

for CO2. In figure 2.6.5 c, the productivity forcings derived from the iso-

tope record are also removed from GEOCARB, leaving uplift, degassing and

evolutionary forcings only. The forcings for GEOCARB now mimic those

in COPSE (with the exception that no biological forcings are now present).
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This results in almost identical predictions for CO2. Finally, in figure 2.6.5

d the uplift, degassing, and carbonate burial depth forcings are removed

from both models. The sole forcing is now the enhancement of weathering

due to evolution of the land biota. Note that the qualitative shape of CO2

predictions is preserved in both models. Differences remain due to the imple-

mentation of various shared parameters such as temperature functions and

the land plant evolution forcing.

2.6.4 Perturbation experiments

The CO2 predictions from the GEOCARB model show a more pronounced

response to forcings than those from COPSE, this can be seen most clearly

in figure 2.6.5c, where the identical forcing sets result in similar CO2 varia-

tion, only the magnitude of variation is generally smaller in COPSE. COPSE

appears to include stronger negative feedback on CO2 concentration, this is

likely to arise from the systematic treatment of the biosphere. For instance,

in both models, an increase in CO2 concentration increases temperature and

amplifies the silicate weathering rate, leading to increased burial of atmo-

spheric carbon until CO2 concentration is reduced. In the COPSE model

system, this increase in weathering rate also delivers more nutrient to the

land and ocean biospheres, increasing the organic carbon burial rate as well

as the silicate weathering rate. This should result in increased negative feed-

back on CO2, and is tested below.

In figure 2.6.6, all forcings except for the solar increase (which is hard-

coded in GEOCARB) are removed from both models, and a rise in either

degassing or uplift rate is imposed from 200Ma-100Ma. Increased negative

feedback is apparent in the COPSE model, which displays damping of im-

posed changes and slightly reduces their overall effect. Figure 2.6.6c shows

the relative variation from the standard run, which is reduced in COPSE.
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Figure 2.6.6: Effect of perturbations on GEOCARB and COPSE model.
All forcings are held at present day except for solar luminosity, and a doubling of
either uplift rate or degassing rate is applied for the period 200Ma-100Ma. a,
Effects on GEOCARB system for doubling uplift or degassing. b, Effects on
COPSE system for doubling uplift or degassing. c, Results for both models shown
as a fraction of the unforced result.

2.6.5 Factors controlling model CO2 predictions

It is apparent here that the COPSE and GEOCARB predictions for Phanero-

zoic CO2 are controlled almost entirely by the model forcing sets. The long

term pattern is a stepwise decrease in CO2 concentration around 350Ma due

to the enhancement of the silicate weathering carbon sink by the colonising
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vascular plants. The dominance of this forcing is easy to see when consid-

ering the magnitude of all forcings used: the evolutionary forcing invokes

a 4-7 fold enhancement, other forcings have a range of between a half and

two times the present day magnitude (see fig 2.4.3). Figure 2.6.7 shows the

degree of sensitivity to the assumed magnitude of weathering enhancement

inferred by vascular plants. Sensitivity is extreme in both models, suggesting

that CO2 concentration closer to the present day cannot be ruled out for the

early Phanerozoic based on model results alone.
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Figure 2.6.7: Effect of changing assumed vascular plant weathering en-
hancement factor. a, COPSE model. b, GEOCARB model. Variable denoting
relative pre-plant weathering enhancement denoted k15 and LIFE respectively.

Revisiting the points of interest described in the summary (2.6.1), the rea-

son GEOCARB predicts lower CO2 for the period 550-350Ma is due to the

use of a different value for the reduction in weathering efficiency before the

evolution of vascular plants. Addressing this discrepancy brings the model

predictions very close together, which explains the observed strong model

agreement for the post-vascular-plant world. The rapid oscillations in CO2
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predictions from the full GEOCARB model can be seen to be a result of

the isotope-productivity forcings, which are defined more densely than the

other forcing functions. This effect is no longer seen once these forcings

are removed (see figure 2.6.5c). As discussed above, the COPSE model has

increased negative feedback from the linked biological model, causing CO2

concentration to remain closer to present day, whilst GEOCARB has addi-

tional abiotic forcings which can combine to increase the degree of variation

in CO2. There are many more proposed negative feedback processes con-

trolling long term climate, and it is possible that current models may over

estimate the impact of forcings because they lack representations of sufficient

negative feedbacks.

An additional smaller-scale feature of the predicted CO2 records is a rise

in concentration from 300-150Ma followed by a gradual decline to the present

day. The rise is due to the evolution of calcareous plankton and associated

increase of carbonate degassing, which combines with a significant peak in

the degassing forcing (see fig 2.4.3) to increase atmospheric carbon diox-

ide concentration. Relaxation of the degassing rate and the evolution of

angiosperms causes CO2 to fall gradually from 100ma to the present day.

The final finding is that the additional abiotic forcings employed in the later

GEOCARB models do not significantly alter the model predictions, which

has been discussed in the GEOCARB papers (e.g. Berner and Kothavala

(2001)) as the model has evolved.

2.6.6 Comparison of Phanerozoic models to CO2 proxy data

Figure 2.6.8 shows available proxy data for Phanerozoic CO2 concentration

plotted against model predictions and the glacial record, adapted from Royer

et al. (2004); Crowley (1998). Proxy data shown are a combination of esti-

mates derived from δ13C of pedogenic minerals in paleosols (Cerling, 1991;

Yapp and Poths, 1992), the δ13C of phytoplankton (Freeman and Hayes,

1992; Pagani et al., 1999), stomatal distribution in the leaves of C3 plants

(Van der Burgh et al., 1993; McElwain and Chaloner, 1995) and the δ11B

signature of planktonic foraminifera (Pearson and Palmer, 2000). See Royer

et al. (2004) for individual proxy information. It is important to note that

the sampling frequency for this data drops dramatically for more ancient pe-
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riods (see 2.6.8c), at the time of writing no reliable proxies could be found

for the period 550-450Ma.

500 400 300 200 100 0
0

5

10

15

20

25

30

35

R
C

O
2

500 400 300 200 100 0
0

20

40

60

80

Time (Ma)

S
am

pl
in

g 
fr

eq
ue

nc
y

C
C

500 400 300 200 100 0

Proxies

GEOCARB
COPSE

MAGic

G
la

ci
at

io
n 

pa
le

ol
at

itu
de

a

b

c

20

40

60

80

o

o

o

o

Figure 2.6.8: Model CO2 predictions against proxy data. a, Paleolatitude
of continental glaciations. b, Combined proxy data from paleosols, phytoplankton,
stomata and boron are shown in grey. Plotted in black are model predictions from
COPSE (black), GEOCARB (blue) and MAGic (Arvidson et al., 2006) (red). c,
Sampling frequency for proxy data in b. Data from Royer et al. (2004). Original
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The models shown are GEOCARB, COPSE and MAGic (Arvidson et al.,

2006). The MAGic model is considerably more complex than COPSE and

GEOCARB, including explicit representation of the silicate rock reservoir

and interaction with the shallow mantle. However, results for CO2 are very

close to the previous models, implying that control is exerted by the same

dominant processes.

Models and proxies show good agreement for 400-0Ma, and the predicted

low CO2 in the Permo-Carboniferous and Cenozoic era fit well with the glacial

data in fig 2.6.8a. Predicted high Mezozoic CO2 also agrees with the lack

of glacial strata from this era, however the proxies disagree somewhat with

regard to the magnitude of the CO2 increase here. The stepwise decrease

in CO2 concentration from 400-300Ma predicted by all models and hinted

at by proxies does not fit as well with the glacial data. CO2 ≥ 15PAL

is predicted for the early Phanerozoic (and presumably time before this),

simple energy balance models (Caldeira and Kasting, 1992) imply an average

surface temperature of around 20◦C for this carbon dioxide concentration at

500Ma. We would not expect a world this hot to be glaciated, however

there is evidence for continental glaciation in the Ordovician as well as the

early Cambrian. Further back, the Neoproterozoic era (1000-541Ma) contains

several extremely large glacial events (Macdonald et al., 2010; Halverson

et al., 2005), which are very hard to reconcile with the assumed high CO2

due to the lack of vascular plants. A small amount of proxy data in figure

2.6.8b does show elevated CO2 at ∼400Ma, but it is not known whether this

is a transient rise or a step change, as currently suggested by models.

Figure 2.6.9 shows a reconstruction of paleo-temperature using the δ18O

values of shallow marine carbonates, reproduced from Royer et al. (2004)

(δ18O data from Veizer et al. (2000)). When adjusted for Ca2+ concentration

and CO2 concentration either from data or from the GEOCARB model, it

shows fair correlation with the glacial record. The authors of the study argue

that current CO2 predictions are therefore broadly correct, and that CO2 is

responsible for the major temperature changes over the Phanerozoic. How-

ever, there is still significant uncertainty in the early Phanerozoic, and a lower

model prediction for CO2 here would improve the correlation. Estimations

of CO2 concentration from carbon and strontium isotope data (Rothman,

2001) are shown in figure 2.6.10. This data suggests CO2 ≤ 5PAL for the
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whole Phanerozoic, which is permissible in the models if a lower vascular

plant enhancement is assumed, i.e. a doubling of weathering efficiency (see

figure 2.6.7).
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2.7 Phanerozoic O2 predictions

2.7.1 Summary of O2 predictions

The GEOCARB and COPSE models produce similar predictions for Phanero-

zoic CO2. However, there are significant differences in the predictions for

oxygen concentration, which are shown alongside the model CO2 reconstruc-

tions in figure 2.7.11.
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As with the CO2 predictions, there are several observations to note:

1) Both models show a significant peak in O2 at around 300Ma, coin-

cident with the evolution of vascular plants. Another peak is predicted

in both models around 100Ma coincident with angiosperm evolution.

2) COPSE results show a step change in oxygen concentration over the

period 400-300Ma, with early Phanerozoic O2 predicted to be around

0.2PAL. The GEOCARB system predicts no step change in O2 over

the Phanerozoic, and early Cambrian O2 concentration is predicted to

be close to present day.
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3) Between 200-100Ma the GEOCARB model predicts oxygen lower

than present day, dropping below 0.7PAL (∼ 15% of the atmosphere).

In contrast, the COPSE model predicts oxygen concentration in excess

of present day for this time.

4) The COPSE system produces oxygen predictions in antiphase with

CO2 for 550-300Ma, and in phase with CO2 for 300-0Ma. GEOCARB

shows no clear link between CO2 and O2.

2.7.2 Calculation of oxygen concentration

The GEOCARB and COPSE models estimate the change in oxygen concen-

tration using an identical flux calculation, shown in equation 2.7.1.

dO

dt
= Fbg − Fwg − Fmg + k (Fbps − Fwps − Fmps) (2.7.1)

Here Fbg and Fbps are the burial fluxes of organic carbon and pyrite sul-

phur respectively, Fwg, Fwps denote weathering of the organic carbon and

pyrite sulphur reservoirs, Fmg, Fmps denote metamorphic/degassing fluxes

(see figure 2.2.1). COPSE does not make the distinction between weathering

and degassing fluxes and represents both weathering and degassing with Fwg

and Fwps. Burial of these reduced species oxidises the surface system, whilst

weathering of reduced species in the crust takes up oxygen from the atmo-

sphere and ocean. The constant k represents the amount of oxygen taken up

or released during the weathering and burial of pyrite sulphur. GEOCARB

takes the value 15
8

based on the stoichiometry of the burial and weather-

ing reactions (Berner and Canfield, 1989) whilst COPSE simplifies this to 2

(changing between these values in the model runs has a negligible effect on

predicted oxygen concentration). The observed differences in oxygen con-

centration must lie in the calculation of the fluxes Fbg, Fbps, Fwg, Fwps, Fmg,

Fmps.

2.7.3 Method for calculating organic burial in GEOCARB

The GEOCARB method follows very closely previously described isotope

mass balance modelling techniques, in which the isotope records of carbon

and sulphur are used to aid calculation of the organic burial rates (Berner,
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1987, 2001). The method was originally proposed by Garrels and Lerman

(1984), who estimated changes in seawater sulphate concentration from the

δ34S record of evaporate gypsum. The overall mass of each carbon and sul-

phur isotope must be conserved, and assuming the long term balance of the

cycles of carbon and sulphur gives the following equations:

(δA − αA) · Fbg + δAFbc = δG · Fwg + δG · Fmg + δC · Fwc + δC · Fmc (2.7.2)

(δS − αS) ·Fbps +δSFbgs = δPY R ·Fwps +δPY R ·Fmps +δGY P ·Fwgs +δGY P ·Fmgs

(2.7.3)

where δA,δG and δC are the δ13C values for the reservoirs A, G and C

respectively, and δS,δPY R and δGY P are the δ34S values for the reservoirs S,

PYR and GYP respectively. αA and αS are the fractionation effects associ-

ated with organic carbon burial and pyrite sulphur burial respectively.

Knowledge of the input fluxes to the surface system and the isotopic frac-

tionation of the model reservoirs therefore allows calculation of the burial

fluxes Fbg and Fbps. To solve the equations requires the assumption that the

carbon and sulphur cycles are at steady state, hence Fbg = Fwg +Fmg and the

equivalent expressions for the other crustal boxes in figure 2.2.1. Equations

2.7.2 and 2.7.3 then reduce to:

Fbg =
1

αA
((δA − δG) · (Fwg + Fmg) + (δA − δC) · (Fwc + Fmc)) (2.7.4)

Fbps =
1

αS
((δS − δPY R) · (Fwps + Fmps) + (δS − δGY P ) · (Fwgs + Fmgs))

(2.7.5)

In GEOCARB, δA and δS are prescribed as model forcings, following the

geological record of δ13C and δ34S. The isotopic composition of the other

reservoirs is allowed to vary during the model run, thus allowing a semi-

dynamic calculation of organic burial rates. Unlike earlier isotope mass

balance models (Garrels and Lerman, 1984; Berner, 2001), the size of the
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material reservoirs is allowed to change over time in the GEOCARB anal-

ysis. However, this does not cause significantly different oxygen predictions

to the original works (see fig 17 in Berner (2006a) for a comparison), which

closely follow the shape of the carbon isotope record used for forcing. High

values in the δ13C record translate to increased organic carbon burial by in-

creasing the value of δA in equation 2.7.4. The same is true of the sulphur

system, and the production flux of oxygen is also influenced by pyrite burial,

however the present day burial rate of organic carbon is around an order of

magnitude greater than the burial rate of pyrite, meaning that there is less

contribution from the δ34S record.

Additional assumptions are required to allow for sensible oxygen pre-

dictions via the isotope mass balance method (Kump and Garrels, 1986).

The GEOCARB models explore both ‘rapid recycling’ between the atmo-

sphere/ocean and younger rock reservoirs, and a dependence of fractionation

effects on oxygen concentration. Figure 2.7.12 shows the rapid recycling

system from Berner (1987), which is also used in GEOCARB. Each crustal

reservoir is split into a ‘young’ and ‘ancient’ partition, young reservoirs un-

dergo more rapid weathering and are smaller than the ancient reservoirs,

thus are responsible for the majority of interaction with the surface system.

Whilst this does not change the overall fluxes of carbon and sulphur, it leads

to changes in isotopic fractionation, amplifying any isotopic signals.

In the event of an atmospheric positive isotopic excursion, for instance,

the young reservoirs will quickly become isotopically heavy and will ‘rapidly

recycle’ this signal back to the atmosphere via weathering and degassing,

leading to an amplification of the original excursion. Without rapid recycling,

the signal would be diluted by the large crustal reservoir size. When the

isotope mass balance model is applied to the rapid recycling scheme, the

resulting estimates for organic carbon and pyrite sulphur burial are lower

than for the original scheme (Berner, 1987). With a higher rate of recycling,

a lower burial rate is inferred from the same δ13C curve.
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Figure 2.7.12: Rapid recycling diagram from Berner (1987). S and C
denote atmosphere/ocean sulphate and carbon respectively. F describes a flux,
with the subscript numbers defining the flux direction. Here Y represents fluxes
of young rock, A represents fluxes of ancient rock.

Lack of negative feedback in isotope mass balance models leads to unreal-

istic oxygen predictions, even with the addition of rapid recycling (see fig 2

in Berner (2001)). An important feedback added to the GEOCARB isotope

mass balance model is the dependence of isotopic fractionation on oxygen

concentration. High oxygen levels are associated with increased plant pho-

torespiration (Jackson and Volk, 1970), which would allow CO2 to build up in

the plant cell and could lead to increased isotopic fractionation, as is observed

under high O2 in laboratory studies (Berner et al., 2000). In GEOCARB,

the parameters J and n are added to represent the dependence of isotopic

fractionation on pO2.
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αc = 30 + J

(
O2

O2(0)
− 1

)
(2.7.6)

αs = 35

(
O2

O2(0)

)n
(2.7.7)

Here αc denotes the isotopic difference between carbonate carbon and

organic carbon in per mille (h). Similarly αs denotes the difference between

pyrite and gypsum sulphur. A sensitivity analysis is preformed on these

parameters in Berner (2001), finding that in addition to the rapid recycling

scheme, values of J = 3, n = 1 are required to prevent negative results for

O2. The latest GEOCARB model uses J = 4, n = 1.5 (Berner, 2009).
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Figure 2.7.13: Strength of rapid recycling feedback in GEOCARB. Also
shown are the effects of altering isotope fractionation feedback parameters J and
n. a, Rapid recycling (standard model). b, Rapid recycling nullified.

To analyse the sensitivity of the GEOCARB system, it is modified to

effectively nullify the rapid recycling scheme: The weathering rates of the
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young and ancient reservoirs are altered so that they are weighted by reser-

voir mass. In figure 2.7.13 the model is run for different choices of J and n,

with the rapid recycling scheme switched on or off. The figure shows that re-

alistic oxygen concentration in the model is not possible without the negative

feedback provided by oxygen-dependent fractionation (controlled by param-

eters J and n). The rapid recycling scheme adds further negative feedback

but is not strictly required for sensible predictions, although the maximum

of ∼ 0.4atm produced in this case is higher than believed possible due to

the increased rate of biosphere burning at this concentration (Watson and

Lovelock, in press), which would be expected to drastically limit the oxygen

source from organic burial (Kump, 1988; Lenton, 2000).

Both the rapid recycling scheme and the isotope fractionation parameters

J and n apply negative feedback to the system, which brings the oxygen

predictions closer to the present day level. Another possibility is shown in

figure 2.7.14, here the δ13C record used for the calculation in the GEOCARB

model is smoothed, producing a similar effect to the negative feedbacks. This

figure also highlights the strong dependence of predicted oxygen concentra-

tion on the carbon isotope record. Running the model with constant isotope

fractionation results in constant oxygen concentration (at 21%), highlighting

a potential problem with extending this method further back in time than

the Phanerozoic - the δ13C record has remained remarkably stable through-

out the whole of Earth history (Shields and Veizer, 2002) and would imply

relatively stable oxygen concentration by this method, however it is widely

believed that oxygen concentration has varied by many orders of magnitude

(Scott et al., 2008; Papineau et al., 2007). The solution to this apparent

long-term inconsistency may require the consideration of additional fraction-

ation effects in the carbon cycle, such as those associated with hydrothermal

carbonatization of oceanic crust (Bjerrum and Canfield, 2004).

35



0100200300400500

0.6

0.8

1

1.2

1.4

1.6

Time (Ma)

R
O

2

Standard
σ =1
σ =3

−1

0

1

2

3

4

5

δ13
C

a

b

Figure 2.7.14: Effect of smoothing isotope records in GEOCARB. a,
Gaussian kernel smoothing with σ = 1 and σ = 3 applied to isotope record, which
is used as a forcing in GEOCARB. b, Model results for RO2 subject to forcing.

2.7.4 Method for calculating organic burial in COPSE

Burial of organic carbon and pyrite in COPSE is based on an assumed biolog-

ical productivity, which is calculated from the other model variables. New

production scales linearly with concentration of limiting nutrient, and the

sedimentation rate is assumed proportional to the square of the new produc-

tion rate (see Lenton and Watson (2000a,b) and references within). Ocean

nutrients nitrate and phosphate are modelled in the same way as the carbon

and sulphur species, with fluxes controlling their production and removal

from the surface system estimated from the present day rates and assumed

dependences on model forcings and variables. Input of ocean phosphate from
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weathering is calculated based on analogy to silicate, carbonate and oxidative

weathering fluxes, following VanCappellen and Ingall (1994, 1996). Removal

of phosphate from the ocean by burial is dependent on the rate of new pro-

duction and the carbon to phosphorous ratio of organic matter. Input of

nitrate is assumed to depend on the rate of nitrogen fixation, with outputs

via denitrification and organic nitrate burial. The nutrient feedbacks used in

COPSE are shown in figure 2.3.2. This scheme provides a simple mechanis-

tic understanding of the nutrient and oxygen cycles that responds to changes

in other model parameters, forming a closed system that requires minimal

biological forcings. However, this requires a number of assumptions both in

the weathering and burial fluxes, and the exact relationships between ocean

nutrient and burial of organic material are uncertain (Berner, 2006a).

Figure 2.7.15 shows the effects of perturbation experiments in COPSE.

The model is run in the standard manner, but all forcing functions are held

constant at present day values for the entire run. At 200Ma a single forcing

is doubled to observe the effects on both CO2 and O2. In figure 2.7.15a, the

uplift rate (U) is doubled at 200Ma, which acts to enhance global weathering

rates. Increased weathering of silicates draws down CO2 until the system is

stabilized at a lower CO2 concentration. The weathering spike during the

switch between stable states causes a brief increase in nutrient delivery, how-

ever oxygen concentration can be seen to fall in the figure. This is because

the uplift rate also increases the rate of oxidative weathering on land - which

draws down oxygen until the limitation on weathering due to low oxygen com-

pensates for the increased uplift, and the system is balanced. Figure 2.7.15b

shows the effects of a two fold increase in volcanic degassing (D) at 200Ma.

This increases the volcanic CO2 source, and atmospheric concentration rises.

The system becomes stable once atmospheric CO2 has reached such a level

that the temperature-dependent CO2 burial flux is equal to the degassing

rate. The higher global weathering rates in this situation cause an increase

in nutrient delivery, and in ocean nutrient concentration. This allows for a

greater rate of organic carbon and pyrite burial, which increases the oxygen

concentration. In 2.7.15c, the biotic weathering enhancement parameter W

is doubled at 200Ma. W is only assumed to impact the weathering of silicates

and carbonates, not oxidative weathering. The CO2 response is very similar

to figure 2.7.15a, due to the increased draw down via silicate weathering.
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However, without the associated increase in oxidative weathering, the addi-

tional nutrient delivery as the system readjusts causes only a small transient

spike in oxygen concentration.

As with the GEOCARB system, it may be problematic relating the oxy-

gen predictions of COPSE to time before the Phanerozoic. Degassing rates

were likely several times higher than present day during the Proterozoic Eon

(Franck and Bounama, 1997), which would imply greatly elevated organic

carbon burial rates and oxygen concentration under the COPSE assump-

tions.
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Figure 2.7.15: Effect of perturbations on CO2 and O2 COPSE model.
All forcings are held at present day except for solar luminosity, forcings are applied
for the period 200Ma-100Ma. a, Uplift is doubled. b, Degassing is doubled. c,
Silicate/carbonate weathering is doubled. For all panels, solid line shows CO2,
dashed line shows O2.
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2.7.5 Factors controlling model O2 predictions

Figure 2.7.15 relates the oxygen predictions from COPSE (panel a-c) and

GEOCARB (panel d-f) to the model processes and forcings which most im-

pact the estimates. Burial of organic carbon is the major oxygen source, and

it can be seen in both models that the predicted oxygen concentration follows

very closely the calculated rate of organic carbon burial. The weaker oxygen

source from pyrite burial, and the variation in the weathering and degassing

sinks also impact the predictions, but do not exert significant control. The

bottom panels attempt to distinguish the forcing functions that control the

organic carbon burial rate in both models.

In COPSE, the rate of organic burial depends predominantly on three

model forcings (figure 2.7.16c). The carbon-to-phosphorus burial ratio on

land (∼ 1000 mol/mol) is greater than in the ocean (∼ 250 mol/mol), mean-

ing the same nutrient supply results in greater rates of burial after the evo-

lution of land plants (E). The beginning of land-based carbon burial causes

the step change in oxygen concentration at around 350ma in COPSE. An ad-

ditional model forcing (CPland) doubles the carbon-to-phosphorus burial for

the Permo-Carboniferous period, representing the abundance of coal swamps

at this time (Bergman et al., 2004). This causes a significant transient peak

in carbon burial, which then declines as the forcing is relaxed. The second

carbon burial and oxygen peak at ∼100Ma is due primarily to the peak in

the degassing forcing (D) at this time, and corresponds to the situation in

fig 2.7.15b where degassing is doubled.

In GEOCARB, the rate of organic burial can be seen to follow the qual-

itative shape of the δ13C curve, as with other isotope mass balance models

(Berner, 1987, 2001). Addition of strong negative feedbacks on burial rate

results in O2 predictions that stay close to present day concentration for the

whole Phanerozoic. Low oxygen from 250-150Ma is observed in GEOCARB

due to the drop in δ13C at this time, which leads to predictions of low organic

carbon burial in the isotope mass balance system. This combines with low

δ34S and hence a predicted low rate of pyrite burial. In contrast, the low

δ13C at the beginning of the Phanerozoic is countered by high fractionation

in δ34S at this time, which infers high rates of pyrite burial, keeping the

overall oxygen production rate closer to the present day value.
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Figure 2.7.16: Controlling factors for oxygen in COPSE (a-c) and GEO-
CARB (d-f). The oxygen predictions of the COPSE model (a) are heavily de-
pendent on the organic carbon burial rate (b) which is itself controlled by the
degassing, evolution and carbon-to-phosphorus burial ratio forcings (c). Oxygen
in GEOCARB (d) also depends heavily on organic carbon burial (e), which in this
model is closely related to the carbon isotope fractionation forcing (f).

2.7.6 Comparison to O2 proxy data

There is little direct evidence for oxygen concentration in the geological

record, and the evidence that exists usually can only determine order of

magnitude changes (e.g. Farquhar et al. (2000); Scott et al. (2008)). The

majority of Phanerozoic oxygen predictions therefore come from modelling
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investigations such as GEOCARB and COPSE. The key Phanerozoic O2

proxy is undoubtedly the geological charcoal record, as the presence of char-

coal signifies that sufficient oxygen was present for the biosphere to burn.

Because charcoal has only been found for the period 400-0Ma, it is thought

that during this time oxygen has remained above at least 0.13atm (Jones

and Chaloner, 1991), and perhaps above 0.17atm (Belcher and McElwain,

2008; Belcher et al., 2010). As well as defining this ‘fire window’, predictions

for oxygen concentration can be made based on the abundance of inertinite

(fossilised charcoal from wildfires (Scott and Glasspool, 2007)).

The O2 predictions of Glasspool and Scott (2010) are shown in figure

2.7.17, alongside the model predictions from GEOCARB and COPSE. The

inertinite predictions group in the range 0.2-0.3atm for the majority of the

400Myr sample, which is broadly similar to the biogeochemical model out-

puts. The inertinite-based predictions do not support the low O2 concentra-

tion predicted by GEOCARB for 200-100Ma, or the high O2 predicted by

COPSE for the Cenozoic. However this does not directly falsify either GEO-

CARB or COPSE, the authors assume that atmospheric O2 is a function of

the abundance of inertinite in rock (inert%), calibrated using the assumed

Phanerozoic fire window and a power law relationship (Glasspool and Scott,

2010). Whilst this gives an understandable relationship and a useful recon-

struction of oxygen, it is likely that inert% is actually a much more complex

function of both climatic conditions and biosphereic attributes which define

the fuel load and type.

The absence of sedimentary charcoal before 400Ma is attributed to the

absence of higher plants, rather than specifically a lack of oxygen, however

recent analysis of Mo isotopes and the Mo content of rocks does suggest

that a step change in oxygen concentration may have occured at around

400Ma (Dahl et al., 2010). This is a feature of both the inertinite model

and COPSE. A reconstruction of Phanerozoic oxygen from the abundances

of organic matter in rocks again shows a similar broad result to GEOCARB

and COPSE, with pronounced oxygen peaks at around 300Ma and 100Ma

(Berner and Canfield, 1989). This model does agree with the lower Mesozoic

oxygen concentration predicted by GEOCARB.
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Figure 2.7.17: Phanerozoic oxygen reconstructed from charcoal record.
The ‘best guess’ Phanerozoic O2 curve from Glasspool and Scott (2010) is shown
in grey, alongside COPSE (solid black line) and GEOCARB (dashed black line)
model predictions.

Belcher et al. (2010) measured fire propagation under different concentra-

tions of oxygen to calculate a relationship between oxygen concentration and

the ‘burn probability’ of the biosphere as a function of atmospheric O2. Fig-

ure 2.7.18 shows the estimated burn probability throughout the Phanerozoic

under the oxygen predictions of the COPSE model (panel A) and GEO-

CARBSULFvolc model (panel B), these are plotted against the number of

burn events recorded in the charcoal record. Very low O2 predicted by GEO-

CARB for 200-100Ma is again shown incompatible with observed burn events.

However, neither model shows a strong fit to these results.
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Figure 2.7.18: Burn probability throughout the Phanerozoic. a, Calcu-
lated from oxygen prediction of COPSE. b, Calculated from oxygen prediction of
GEOCARB. Black dashed lines show interquartile range, grey dashed line shows
lower 95% quartile. Also shown are the number of burn events per 10Ma (top)
and the inertinite record from Glasspool and Scott (2010).
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2.8 Chapter conclusions

2.8.1 Main findings

The COPSE and GEOCARB models represent extensions of the same basic

system, meaning that they have many similarities. Both models are based

on the 3-box carbon cycle described by Berner (Berner, 1991), and include

the same 3-box system for sulphur species. Concentrations of oxygen, carbon

dioxide and ocean sulphate are calculated by the same methods, which sum

the source and sink fluxes between the hydrosphere and the crust.

The key difference between the models is the method of calculating burial

of organic carbon and pyrite sulphur. COPSE assumes the burial fluxes are

related to ocean nutrient and incorporates the ocean nutrient model of Lenton

and Watson (2000a). GEOCARB does not resolve nutrient concentration and

instead infers burial fluxes from the isotopic record of carbon and sulphur,

incorporating a previously described isotope mass balance model to do this

(Berner, 2001). GEOCARB also uses a larger set of abiotic forcings than

COPSE, but this is shown not to significantly alter results over the simpler

set (see fig 2.6.5). The addition of biological feedbacks in COPSE gives

increased negative feedback on CO2 concentration, allowing less variation in

CO2 than GEOCARB.

Long term predictions for CO2 concentration in both models are domi-

nated by the weathering enhancement associated with the evolution of vas-

cular plants, leading to predictions of high (> 10PAL) CO2 before 350Ma,

falling to close to present day thereafter. This assumption leads to the pre-

diction of very high global temperatures for the early Phanerozoic, around

5◦C warmer than today. These predictions are somewhat inconsistent with

glaciations in the Cambrian and Ordovician, although sufficient model forc-

ing (for example, attributed to the evolution of pre-vascular plants (Lenton

et al., 2012)) may still drive temperatures sufficiently low for glaciation at

this time. Proxy data for CO2 is well replicated by both models for 350Ma to

present, data before this period is sparse and may show elevated CO2 levels,

however the agreement between different proxies is generally poor, and some

CO2 proxy methods imply that CO2 was relatively close to present day levels

throughout the Phanerozoic.

Critically, the oxygen predictions for both models represent damped ver-

44



sions of the assumed organic carbon and pyrite burial fluxes, and are pre-

dominantly controlled by the organic carbon burial flux. Control in these

models is placed on the production fluxes of O2, rather than the sinks -

which in general constitute simple negative feedback mechanisms and vary

in response to O2 concentration. Because the models use different methods

to calculate the organic burial rates, predictions for Phanerozoic O2 differ

significantly. The O2 predictions from GEOCARB are dominated by the

shape of the δ13C curve, and the COPSE predictions are controlled by the

assumed plant evolution and degassing rate forcings. However, there is no

detailed and easily applicable proxy with which to test these predictions, and

perhaps with the exception of the low Mesozoic O2 in the GEOCARB model,

both models adequately satisfy the available oxygen constraints imposed by

the abundance of fossilised charcoal.

2.8.2 Considerations for developing a Minimal Model

The next chapter will focus on building a Minimal Model of the important

processes in Phanerozoic biogeochemistry, which will be used to explore pos-

sibilities for Precambrian climate. Following the analysis in this chapter, the

following decisions about the model construction can be made:

1) The additional abiotic forcings included in the later GEOCARB

models are not required for a Minimal Model. Their impact on predic-

tions is smaller than the uncertainty in other major forcings.

2) The model must allow for calculation of organic burial via either

a nutrient system or via isotope mass balance. Both methods produce

encouraging results for Phanerozoic O2 and require testing on a longer

timescale.

3) It is highly likely that there are processes important in the Precam-

brian that are not expressed in these models, therefore the new model

framework must be versatile and modular to allow for easy adaption.
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3 Modelling the Precambrian carbon cycle

3.1 Introduction

Broadly speaking, both the COPSE and GEOCARB models produce sensible

results for the changes in major atmospheric constituents over the Phanero-

zoic, and are backed up by the majority of available data. The only major

disagreement is in the abundance of oxygen, but here the scale of the dif-

ferences is smaller than can easily be validated by proxies. The intention

in this thesis is to apply these analyses to the Precambrian by construct-

ing a Minimal Model of the important processes. In this chapter a model

is described and validated for the Phanerozoic against COPSE and GEO-

CARB. The model is then run from 900Ma to the present day and compared

to available proxies. To inform the model construction, a short review of

Neoproterozoic climate is necessary.

3.2 Neoproterozoic climate

The Neoproterozoic era (1000-541Ma) is characterised by massive worldwide

glaciation (Halverson et al., 2005; Kirschvink, 1992), periodic perturbations

to the carbon cycle (Johnston et al., 2012) and an oxygenation event in the

deep ocean (Canfield et al., 2008). The timing of the oxidation and glacial

events are reasonably well constrained (Macdonald et al., 2010; Scott et al.,

2008), but the specific dynamics of oxygen, greenhouse gas and temperature

variations are uncertain.

In figure 3.2.1 the glacial paleolatitude reconstruction of Royer et al. (2004)

is extended to include the estimated timing and paleolatitudes of glacia-

tions in the Neoproterozoic (from Hoffman and Li (2009); Condon et al.

(2005); Halverson et al. (2005); Zhang et al. (2009)). The Kaigas glaciation

at ∼ 750Ma is shown in a lighter grey, reflecting uncertainty about its global

significance (Macdonald et al., 2010). Other light grey sections denote the

uncertainties in the extent of the Sturtian (ending at ∼700Ma) and Mari-

noan (ending at ∼635Ma) glaciations. It has been suggested that these two

glaciations may be examples of ‘snowball Earth’ events (Kirschvink, 1992;

Hoffman et al., 1998), in which positive feedback between planetary ice cover

and albedo causes ice sheets to reach the equator, locking the planet into a
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high albedo state. This state would persist until sufficient volcanic CO2 had

accumulated in the atmosphere to trigger melting, which would be expected

to take ∼ 107 years (Le Hir et al., 2008). Glacial evidence has been found at

very low paleolatitudes for both glacial periods, and the inferred durations

from the isotope record of carbon are similar to those predicted in the snow-

ball scenario. However these observations may be equally well explained by

a series of large glaciations happening over each period (Allen and Etienne,

2008). The Gaskiers glaciation (580Ma) is well constrained and it is unlikely

that it extended to low latitudes, although there is some data that suggests

this may be a possibility (Hoffman and Li, 2009).
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Figure 3.2.1: Glacial paleolatitude for 900-0Ma Record of Royer et al. (2004)
extended using data from Hoffman and Li (2009); Condon et al. (2005); Halverson
et al. (2005); Macdonald et al. (2010); Zhang et al. (2009).

To trigger the severe glaciations in the Neoproterozoic era, global average

surface temperature must have been significantly lower than today, perhaps

around 10◦C (Hoffman and Schrag, 2002). CO2 concentration during the

Neoproterozoic must have therefore been sufficiently low to allow for these

temperatures, although the trigger for the events may not have been CO2

related (Pavlov et al., 2003). Estimates for Neoproterozoic CO2 concentration

have been made by using an isotope model to account for changes in the

marine carbon reservoir size (Kah and Bartley, 2004), the results show CO2
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declining from ∼ 10PAL to ∼ 1PAL over the era, which correlates broadly

with glaciation in the late Neoproterozoic.

The deep ocean was likely anoxic and ferruginous throughout the Neo-

proterozoic era, with some surface oxygenation in the late Neporoterozoic

and deep ocean ventilation occurring after the Gaskiers glaciation (580Ma)

(Canfield et al., 2007; Scott et al., 2008; Frei et al., 2009). During the earlier

Proterozoic, the ocean was anoxic and may have been euxinic (sulphidic and

anoxic) (Canfield, 1998). Figure 3.2.2 shows a summary of late Neoprotero-

zoic ocean conditions based on data for the speciation of iron in sedimentary

rocks (Canfield et al., 2008). In sediments deposited under oxic conditions, a

smaller fraction of the total iron exists in a chemically reactive form (Raiswell

and Canfield, 1998), allowing estimation of local redox conditions using the

ratio of highly reactive iron (FeHR) to total Fe. Calculating the proportion

of FeHR bound as sulphide also allows some distinction between ferruginous

and euxinic conditions. These data show possible surface ocean oxygena-

tion throughout the Neoproterozoic, with the oxygenation of the deep ocean

occurring around the time of the Gaskiers glaciation.

Figure 3.2.2: Ocean chemical conditions as described in Canfield et al.
(2008). Solid blocks represent distinct evidence for chemical conditions, dashed
lines represent uncertainty. Neoproterozoic glaciations shown as vertical grey bars.

Enrichments of the redox-sensitive metal, molybdenum (Mo) in euxinic

black shales also suggest deep ocean oxygenation occurring around 663-

551Ma. Figure 3.2.3 shows this enrichment in ppm throughout earth his-

tory, which is proposed to represent changes in the input flux from oxidative

weathering of the continents (Scott et al., 2008). Note the displayed Mo

enrichment earlier in the Precambrian agrees with many other lines of ev-
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idence that describe the ‘Great Oxidation Event’ at 2.4Ga (Holland, 2006;

Farquhar et al., 2000; Catling et al., 2001; Kasting, 2001). An isotope mass

balance model based on the δ98Mo values of euxinic sediments also supports

oxygenation at 580Ma (Dahl et al., 2010).
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Figure 3.2.3: Mo enrichment in black shales. Black circles are from euxinic
environments, grey diamonds are from non-euxinic, organic-rich shales. Figure
copied from Scott et al. (2008). Stages 1, 2 and 3 represent stepwise process of
planetary oxygenation proposed by the authors. Note the x-axis in this figure is
reversed when compared to the other figures in this work.

Whilst there are some quantitative estimates for Neoproterozoic CO2, the

above oxygen proxies do not allow a similar prediction, instead focussing on

the major changes in redox state. Radiation of sulphide-oxidising bacteria,

and the accompanying increase in sulphur isotope fractionation, is thought to

be the result of atmospheric oxygen concentration increasing above a thresh-

old of about ∼ 0.05 − 0.2PAL during the Neoproterozoic era (Canfield and

Teske, 1996). Earlier Proterozoic oxygen concentration has been constrained

using paleosol data to ≥ 0.03 atm (0.15PAL) (Rye and Holland, 1998). The

Ediacaran biota, which appear at ∼570Ma, have an estimated minimum oxy-

gen requirement of 0.01PAL (Runnegar, 1991), whilst the physiological oxy-

gen requirement for Cambrian animals is proposed to be > 0.1PAL (Rhoads

and Morse, 1971). A rough estimation of oxygen concentration based on

these combined proxies gives 0.01 − 0.2PAL for the early Neoproterozoic.

After 580Ma the deep ocean becomes oxygenated and atmospheric O2 con-

centration rises to between 0.05 − 1PAL. A model for the Neoproterozoic
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carbon and sulphur cycles should allow for oxygen concentration within the

expected range of 0.01−1PAL, as well as global average surface temperature

≤ 10◦C.

3.3 Model development

3.3.1 Box scheme and reservoir calculations

A box model is now developed (hereafter the ‘Minimal Model’) and follows

directly the GEOCARB and COPSE formulation (Berner, 1991), using the

reservoir and flux definitions from chapter 2, shown in figure 2.2.1. The

system equations are shown below:

Carbon cycle

Carbon can exist as CO2 in the atmosphere/ocean box (A), and either

oxidised carbonate (C) or reduced organic carbon (G) in the crust. Follow-

ing fig 2.2.1, changes in the reservoirs over time are calculated by summing

sources and sinks via weathering, degassing and burial.

dA

dt
= Fmg + Fwg + Fmc + Fwc − Fbg − Fbc (3.3.1)

dG

dt
= Fbg − Fmg − Fwg (3.3.2)

dC

dt
= Fbc − Fmc − Fwc (3.3.3)

Sulphur cycle

Sulphur exists in the model as marine sulphate in the atmosphere/ocean

box (S), and either oxidised gypsum (GYP) or reduced pyrite (PYR) in the

crust. Again following fig 2.2.1 we have:

dS

dt
= Fwps + Fwgs − Fbps − Fbgs + Fmps + Fmgs (3.3.4)

dPYR

dt
= Fbps − Fwps − Fmps (3.3.5)

dGYP

dt
= Fbgs − Fwgs − Fmgs (3.3.6)
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3.3.2 Phanerozoic forcings

A subset of the model forcings from the GEOCARB and COPSE models is

used, aiming to include the most relevant forcings without overcomplicating

the model. To begin with, forcings are only prescribed for the Phanero-

zoic, following exactly from GEOCARB and COPSE. The current models

use differing formulations to express weathering enhancement due to vas-

cular plants, which does not significantly impact results (see figure 2.6.5),

for the Minimal Model the COPSE formulation is chosen. GEOCARB and

COPSE also use a different expression for global temperature dependence on

solar luminosity and CO2 concentration, however these return very similar

values for the parameter ranges that are covered in model runs. For this

model I use the change in solar luminosity, and energy balance temperature

approximation described by Caldeira and Kasting (Caldeira and Kasting,

1992), as used in COPSE. Model forcings are outlined in the tables below,

following the functions and naming conventions from figure 2.4.3. The model

is run using a general forcing set in conjunction with either the COPSE or

GEOCARB biological forcing set.

Name Symbol Source

Uplift rate U GEOCARB,COPSE

Degassing rate D GEOCARB,COPSE

Burial depth of carbonates B GEOCARB,COPSE

Biotic weathering enhancement W COPSE (≈fE in GEOCARB)

Solar luminosity S COPSE

Table 1: General forcings for Minimal Model

Name Symbol Source

Evolution of vascular plants E COPSE

C-P burial ratio on land CPland COPSE

Table 2: Additional forcings for COPSE productivity system
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Name Symbol Source

Atmospheric carbon δ13C δA GEOCARB

Ocean sulphate δ34S δS GEOCARB

Table 3: Additional forcings for GEOCARB productivity system

3.3.3 Weathering dependencies and fluxes

Silicate weathering

The expression for the dependence of silicate weathering on temperature

and CO2 concentration is shared by COPSE and GEOCARB. To increase

robustness to temperature the derivation of Berner (1994) is followed without

making the assumption of temperature close to present day. The linear runoff

formulation used in the original models becomes invalid when temperature is

very low, and is amended by approximation with an exponential term. The

resulting equation is:

fsilw = e

(
kfs1

T−T0
TT0

) (
ekfs2(T−T0)

)0.65√
RCO2 (3.3.7)

here kfs1 = 7537.69 and kfs2 = 0.03. T is average surface temperature

in Kelvin, T0 is present day average surface temperature and RCO2 denotes

concentration of CO2 normalised to pre-industrial concentration. The depen-

dence on RCO2 for pre-vascular plants is added, but the alteration of this

term in the mid Phanerozoic is left out for simplicity.

Carbonate weathering

The expressions for weathering of carbonates and oxidised sulphur are

shared by the GEOCARB and COPSE models, again the original linear term

is approximated by an exponential to prevent collapse at low temperature:

fcarbw = ekfcT
√

RCO2 (3.3.8)

where kfc = 0.05.
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Oxidative weathering

Oxidative weathering of reduced organic carbon and pyrite sulphur is al-

lowed a dependence on O2 concentration as follows:

foxidw = (RO2)a (3.3.9)

here RO2 is the atmospheric oxygen concentration normalised to present.

Dependence on oxygen concentration (Lasaga and Ohmoto, 2002) is used in

COPSE, but not in GEOCARB. In the Minimal Model, a is allowed to take

the value of 0.5 (Lasaga and Ohmoto, 2002) when the COPSE productivity

system is used, or a null-dependence of a = 0 when the GEOCARB system

is used (Berner, 2006a).

Full weathering fluxes

The dependences above are multiplied by the appropriate forcing functions

and the size of the flux at present day to arrive at the full flux equation. As

in both previous models (Berner, 1994; Bergman et al., 2004), all weathering

fluxes are assumed to depend on the uplift rate, U . Silicate and carbonate

weathering are assumed to be influenced by an enhancement due to the

evolution of land plants, W , and the rates of weathering for the crustal

reservoirs are assumed to depend on reservoir size. The weathering flux

equations are thus:

silw = ksilw · (kpreplant + (1− kpreplant)W ) · U · fsilw (3.3.10)

carbw = kcarbw · (kpreplant + (1− kpreplant)W ) · U · fcarbw (3.3.11)

oxidw = koxidw · U ·
G

G0

· foxidw (3.3.12)

pyrw = kpyrw · U ·
PY R

PY R0

· foxidw (3.3.13)

gypw = kgypw · U ·
GY P

GY P0

· fcarbw (3.3.14)
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Here silw = silicate weathering, carbw = carbonate weathering, oxidw =

oxidative weathering, pyrw = pyrite weathering and gyp = gypsum weath-

ering. ksilw, kcarbw, koxidw, kpyrw and kgypw denote the present day flux sizes

in moles per year. G, C, PY R, GY P are the sizes of the crustal reser-

voirs. kpreplant denotes the reduced weathering efficiency before vascular

plants (equivalent to k15 in COPSE, or kLIFE in GEOCARB), and represents

1/kvp, where kvp is the vascular plant weathering enhancement factor.

3.3.4 Metamorphic/degassing fluxes

Degassing fluxes are assumed to depend only on the global rate of degassing,

D, and the relative crustal abundance of each species. Carbonate degassing

is assumed to increase in the Mesozoic following the carbonate-burial depth

forcing B, as in both the previous models.

ocdeg = kocdeg ·D ·
G

G0

(3.3.15)

ccdeg = kccdeg ·D ·B ·
C

C0

(3.3.16)

pyrdeg = kpyrdeg ·D ·
PY R

PY R0

(3.3.17)

gypdeg = kgypdeg ·D ·
GY P

GY P0

(3.3.18)

Where ocdeg = organic carbon degassing, ccdeg = carbonate carbon de-

gassing, pyrdeg = pyrite degassing, gypdeg = gypsum degassing. Constants

kocdeg and kccdeg, kpyrdeg and kgypdeg are the present day degassing fluxes for

organic carbon and carbonates, pyrite sulphur and gypsum.

3.3.5 Burial of oxidised species

Following both previous models, I assume that over long timescales, all the

carbon delivered to the ocean via silicate and carbonate weathering is de-

posited as marine carbonates. Thus:

mccb = silw + carbw (3.3.19)
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The expression for deposition of gypsum sulphur allows dependence on

the size of the marine sulphate reservoir (Rees, 1970):

mgsb = kmgsb ·
S

S0

(3.3.20)

Where kmgsb is the present day burial flux.

3.3.6 Optional burial of reduced species via isotope mass balance

The method described in section 2.7.3 is implemented into the model as a

set of optional extra equations. Burial of organic carbon and pyrite sulphur

follow equations 2.7.4 and 2.7.5. They are subject to the isotope forcings

δA and δS and the oxygen dependent fractionation effects αc and αs (shown

in equations 2.7.6 and 2.7.7). Calculation of Fbg and Fbps via this method

requires knowledge of the isotopic fractionation for the crustal reservoirs

at each time step. This is achieved using the same method as employed

by GEOCARBSULF (Berner, 2006a): for each reservoir, X, the quantity

X · δ13C (X), expressing the size of the reservoir multiplied by its isotopic

fractionation , is calculated. This is simpler than tracking the isotopic value

explicitly, and this quantity can be divided by reservoir size to obtain the

fractionation value. For simplicity, the rapid recycling scheme (Berner, 1987)

is not used in this model.

3.3.7 Optional burial of reduced species via ocean nutrient model

For an alternative model solution, a simplified version of the COPSE nutrient

system is employed. A single limiting nutrient is assumed and modelled as

phosphate using the COPSE equations (Bergman et al., 2004; VanCappellen

and Ingall, 1994, 1996). For nutrient weathering we have:

phosw = kphosw

(
2

12

silw

ksilw

+
5

12

carbw

kcarbw

+
5

12

oxidw

koxidw

)
(3.3.21)

where kphosw is the present day rate of weathering. An assumed quantity

of weathered nutrient (pland) is used by the land biota (if present), the

remaining nutrient (psea) is transferred to the ocean.

pland = klandfrac · V EG · phosw (3.3.22)
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psea = phosw − pland (3.3.23)

Following COPSE, klandfrac = 0.10345 is the present day fraction of weath-

ered phosphate that is used on land, and V EG represents the relative mass

of the terrestrial biosphere, a complex internal variable which depends on the

concentration of O2, CO2 and the surface temperature and is derived from

various previous works (Caldeira and Kasting, 1992; Volk, 1987; Fridovich,

1977; Lenton and Watson, 2000b). This includes a simple temperature rela-

tionship, V EGT, which assumes maximum productivity at 25◦C, a Michaelis-

Menten type dependency on carbon dioxide concentration, V EGCO2 , and a

linear representation of the effects of oxygen toxicity and increased rates of

photorespiration, V EGO2 . See the COPSE paper for full details (Bergman

et al., 2004). As in COPSE, an approximation (V EGfire) is added for damage

to vegetation by wildfires based on oxygen concentration, and a dependence

on the evolutionary forcing, E, to represent lack of vegetation feedback before

vascular plant proliferation.

V EG = E · V EGO2 · V EGCO2 · V EGT · V EGfire (3.3.24)

V EGO2 = 2 (1.5− 0.5RO2) (3.3.25)

V EGCO2 =
CO2(ppm)− 10

183.6 + CO2(ppm)− 10
(3.3.26)

V EGT = 1−
(
T − 298

298

)2

(3.3.27)

V EGfire =
kfire

kfire − 1 + max (586.2 · RO2 − 122.102, 0)
(3.3.28)
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Burial of organic carbon on land is now assumed proportional to the nu-

trient delivery to land, pland, and the carbon-to-phosphorus burial ratio for

land plants, CPland.

locb = klocb ·
pland

pland0

· CPland (3.3.29)

here pland0 represents the present day flux of nutrient to the land biota and

the forcing CPland is also defined relative to present day (i.e. CPland = 1

for the present). Marine organic carbon burial is assumed to be proportional

to the concentration of ocean phosphate, with the addition of a nonlinearity

to account for increased burial in shelf regions, following Lenton and Watson

(2000a):

mocb = kmocb

(
P

P0

)2

(3.3.30)

Burial of pyrite is assumed to occur after bacterial sulphate reduction,

and therefore depends on the concentration of marine sulphate (Holland,

1978; Holser et al., 1988) and the rate of organic carbon burial (Raiswell

and Berner, 1986). A dependence on oxygen is also added to simulate the

inhibition of these anaerobic organisms by increasing oxygen concentration

(Berner and Canfield, 1989):

mpsb = kmpsb ·
S

S0

· 1

RO2

· mocb
mocb0

(3.3.31)

Burial of nutrient follows the COPSE system for phosphate burial, as-

suming three removal pathways to mimic the weathering process: Calcium-

associated burial (capb), iron-sorbed phosphate removal (fepb) and organic

phosphate burial (mopb) (VanCappellen and Ingall, 1994; Holland, 1994;

Broecker and Peng, 1982), with the following dependencies:

mopb = kmopb
mocb

mocb0

(3.3.32)

capb = kcapb
mocb

mocb0

(3.3.33)
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fepb =
kfepb

koxfrac
(1− anox (O,P )) (3.3.34)

where anox is a function representing the degree of ocean anoxia:

anox = 1− koxfrac

(
O

O0

P0

P

)
(3.3.35)

here koxfrac = 0.86 is the present day oxic fraction.

3.3.8 Full model equations

These fluxes are now substituted into the carbon and sulphur cycle schematics

shown in figure 2.2.1, allowing Fbg = mocb+locb (for the isotope mass balance

model, it is assumed that the calculated organic burial reflects the sum of

land and ocean burial), Fbc = silw + carbw, Fbps = mpsb, Fbgs = mgsb,

Fwg = oxidw, Fwc = carbw, Fwps = pyrw, Fwgs = gypw, Fmg = ocdeg,

Fmc = ccdeg, Fmps = pyrdeg, Fmgs = gypdeg We now have the following set

of ordinary differential equations:

dA

dt
= ocdeg + oxidw + ccdeg −mocb− locb− silw (3.3.36)

dG

dt
= mocb+ locb− ocdeg − oxidw (3.3.37)

dC

dt
= silw − ccdeg (3.3.38)

dS

dt
= pyrw + gypw −mpsb−mgsb (3.3.39)

dPYR

dt
= mpsb− pyrw − pyrdeg (3.3.40)

dGYP

dt
= mgsb− gypw − gypdeg (3.3.41)
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And for ocean nutrient, P:

dP

dt
= psea− capb− fepb−mopb (3.3.42)

Nutrient concentration is ignored if the isotope mass balance model is

used. The size of the oxygen reservoir is calculated in the same manner

as for the GEOCARB and COPSE models, taking the 15
8

multiplier from

GEOCARB:

dO

dt
= mocb+ locb− ocdeg − oxidw +

15

8
(mpsb− pyrw − pyrdeg) (3.3.43)

The constants required for this model are shown in table 4.
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3.4 Validation against COPSE and GEOCARB

models

The Minimal Model is now run through the Phanerozoic, with burial of

reduced species either following the ocean nutrient model of COPSE, or the

isotope mass balance model of GEOCARB. Results are plotted against the

COPSE and GEOCARB runs, and are shown in figure 3.4.4. Following

the original models, the assumed weathering enhancement due to vascular

plant colonisation (kvp) is set at 7 for comparisons to COPSE, and at 4 for

comparisons to GEOCARB. For the COPSE runs, oxidative weathering is

allowed a dependence on oxygen concentration (Lasaga and Ohmoto, 2002),

for the GEOCARB runs this is removed, following the original model set up.

When the simplified nutrient system is included, agreement with the

COPSE model predictions for Phanerozoic CO2 and O2 are very strong (panel

a,b). This is expected due to the degree of similarity between the Minimal

Model and the COPSE system - the only major omission from the full COPSE

model is the nitrate nutrient system, shown here to have minimal effect on

model results.

Allowing burial rates of reduced species to be calculated via an isotope

mass balance model gives results for oxygen that are very close to the predic-

tions of GEOCARBSULFvolc (Berner, 2009) (panel c,d). Differences arise

because the Minimal Model does not include rapid recycling, or many of the

abiotic forcings described in the full model. With the removal of some neg-

ative feedback on oxygen, we would expect O2 predictions to peak at higher

values around 300Ma, however the removal of abiotic forcings acts to dimin-

ish this peak (see fig 17 of Berner (2006a)), cancelling the effect. Carbon

dioxide predictions in the Minimal Model follow the shape of the full GEO-

CARB model, but variation around long term steady state is reduced due to

the smaller abiotic forcing set.
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Figure 3.4.4: Minimal Model run for the Phanerozoic (black lines), plot-
ted against previous model output (grey). a,b, Burial of organic carbon and
pyrite sulphur controlled by nutrient system, plotted against COPSE model. c,d,
Burial of organic carbon and pyrite sulphur controlled by isotope mass balance,
plotted against GEOCARBSULFvolc.

It can be concluded that the Minimal Model includes the key processes

that control current predictions of O2 and CO2 concentration over the Phanero-

zoic, whilst representing a simplification over the models it is based on. A

useful feature of the model is its high modularity - the timeframe, forcings

and flux calculations can be interchanged easily, and new reservoirs and fluxes

can be added. The Minimal Model is also significantly more robust than the

original systems, and utilises the MATLAB inbuilt variable timestep solvers
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for ‘stiff’ ODE systems (i.e. where the timescale for alteration varies signif-

icantly between variables) (Shampine and Reichelt, 1997; Shampine et al.,

2003). These numerical schemes alter the size of the model timestep depend-

ing on the rate of change of the model reservoirs, minimising computational

error and preventing model crashes when values are very far from steady

state. The GEOCARB/COPSE model framework can now be easily applied

to the Precambrian.

3.5 Minimal Model predictions for Proterozoic climate

3.5.1 Extension of forcings

The model forcing set is now extended back in time to 1000Ma using available

proxy data. In previous models, the global metamorphic/degassing rate is

assumed to be proportional the sea floor spreading rate, which has been

estimated over the Phanerozoic via sea level inversion (Gaffin, 1987). For

the Precambrian, lack of available data means the spreading rate must be

estimated based on models for the thermal history of the Earth. Following

Franck and Bounama (1997); Franck et al. (1999) the spreading rate, S, can

be written as:

S =
Q2πκAocean (t)

4k2 (Tm − Ts)2 (3.5.1)

where Q is the mantle heat flow, κ is the thermal diffusivity, Aocean (t) is

the area of ocean basins at time t, k is the thermal conductivity, Tm and

Ts are the average mantle and surface temperatures respectively. Allowing

Tm − Ts ≈ Tm and combining constants this becomes:

S = ksr
Q2Aocean (t)

T 2
m

(3.5.2)

where ksr = κπ
4k2

. Changes in mantle average temperature and ocean basin

area over Earth history act to cancel each other out, and are smaller than

the relative change in heat flow, allowing simplification to:

Srelative =

(
Q

Q0

)2

(3.5.3)

here Srelative is the relative spreading rate and Q
Q0

is the relative heat flow.
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Figure 3.5.5a shows the relative spreading rate calculated from equation

3.5.3 using the mantle high temperature heat flux estimations from Lowell

and Keller (2003). Also shown is the spreading rate calculated from equation

3.5.2 using the same heat flux. Here Aocean is calculated from the relative

continental area estimate of McLennan and Taylor (1983), which is used to

calculate the heat flux in Lowell and Keller (2003), and conveniently lies

towards the average of the many estimates for continental growth (Rino

et al., 2004; Fyfe, 1978; Hurley and Rand, 1969; Condie, 1998). Mantle

average temperature is taken from Franck and Bounama (1997), assuming

a 3000K average temperature at 4.5Ga. As the difference between the two

treatments is minimal, the simpler equation 3.5.3 is adopted for the model.

The rate of tectonic uplift in the parent models is estimated via strontium

isotope mass balance (Berner, 1994), and extended here using the normalised

seawater
87Sr
86Sr

curve of Shields (2007) as a rough estimate of the relative

material influx to the ocean from terrestrial weathering. The Phanerozoic

uplift and degassing forcings are shown against the extended forcings in figure

3.5.5. Note that the long term curves used to extend the forcings show good

general agreement with Phanerozoic proxies (shown in figure 3.5.5b,c).

The isotope mass balance method for inferring organic burial requires

knowledge of the isotopic fractionation of sedimentary carbonates and sul-

phates for the timeframe of interest. The isotope records used in GEOCARB

are extended using data from Halverson et al. (2005) for δ13C, and data from

Canfield (2005) for δ34S, these are shown in figure 3.5.5e,f. The isotope mass

balance system does not support large negative carbon isotope fractionation,

which causes the system to predict negative burial rates. The maximum

negative fractionation for carbon is therefore restricted to -3h for the model

forcing. The evolutionary forcings required for the nutrient system require no

extension as they have no effect before the point at which the given process

evolves.
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Figure 3.5.5: Forcing extensions for the Precambrian. a, Relative spread-
ing rate calculated from equation 3.5.2 (blue) and equation 3.5.3 (black). b, Grey
line shows uplift forcing from COPSE and GEOCARB models, black line shows
normalised seawater strontium curve from Shields (2007). c, Degassing forcing
used in COPSE and GEOCARB models shown as grey line, black line shows the
spreading rate from Franck et al. (1999). d, Resulting extended forcings. e, δ13C
record used in GEOCARB, extended into the Precambrian with data from Halver-
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in the literature, black line shows an artificial limitation of negative excursions
to -3h. b, δ34S forcing used in GEOCARB, extended with data from Canfield
(2005). Original in colour.
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3.5.2 Baseline predictions

Figure 3.5.6 shows model output when subject to the new forcing set and run

for the period 1000-0Ma, these are plotted from 900-0Ma to allow for model

spinup. The model is run with either the nutrient system from COPSE (panel

a-c) or the isotope system from GEOCARB (panel e-g) used to infer organic

burial rates. Note that the Phanerozoic predictions are not noticeably altered

by the increased model timeframe.

The high expected rate of degassing in the Precambrian allows more CO2

to build up in the atmosphere. This acts to increase global temperature and

therefore the silicate weathering flux, balancing the system in the long term.

Lower solar luminosity and a reduced global uplift rate in the Neoproterozoic

act to limit the silicate weathering process, increasing the CO2 requirement

for system stability. Both burial systems predict a gradual drop in CO2 con-

centration from ∼30PAL at 900Ma to ∼15PAL in the late Neoproterozoic.

This is consistently higher than the 1-10PAL inferred form carbon isotope

modelling (Kah and Bartley, 2004), and the associated temperatures pre-

dicted by the model do not correlate well with expected severe glaciation in

the late Neoproterozoic. When the isotope system is used to predict organic

burial, predictions for CO2 show variation around the results for the nutri-

ent system. This is due to productivity spikes that follow the carbon isotope

record. Carbon dioxide concentration is increased during the glacial negative

excursions of the Neoproterozoic due to assumed lower carbon burial, and

lowered during the positive excursions during the long ‘interglacial’ periods,

from which high burial is inferred.

Both models show oxygen concentration in the Neoproterozoic reaching

higher levels than in the Early Phanerozoic. For the nutrient system, this

is due to the assumed higher rate of degassing, which results in a higher

rate of continental weathering for system stability. Nutrient delivery from

weathering is increased, allowing for a greater rate of burial of organic car-

bon. As with isotope mass balance models for the Phanerozoic (Berner,

1987), predicted oxygen concentration closely follows the isotopic record of

carbon when the isotope system is used. This results in extremely high O2

predictions that correlate with the large positive C isotope excursions in the

Neoproterozoic. Both model predictions for oxygen can be effectively falsified
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by the available proxy data, O2 > 0.5PAL at 900Ma is very difficult to rec-

oncile with an anoxic deep ocean, which is suggested by many independent

proxies (Canfield et al., 2008; Frei et al., 2009).
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Figure 3.5.6: Minimal Model run for the period 900-0Ma, using COPSE
nutrient system (a-c) or GEOCARB isotope mass balance method (e-g)
to approximate organic burial. Results shown for relative atmospheric oxygen
and carbon dioxide, and average surface temperature. Glaciation paleolatitude
(d,h) shown in each column for comparison.

The conclusion from this preliminary analysis is that the methods used

to model oxygen concentration in the Phanerozoic do not produce sensible

predictions when extended further back in time. In both model systems,

oxygen concentration is tightly coupled to the organic carbon burial rate,

which may be reasonable for the Phanerozoic but may not have been the case

in earlier Earth history. Modelling the Neoproterozoic oxygen cycle likely
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requires additional processes to be considered, with more emphasis on the

sinks for oxygen, such as the input of reduced material from the mantle (e.g.

Holland (2009)). The results for CO2 and temperature presented here are

however somewhat encouraging. Omitting the isotope forcings, an average

temperature of ∼ 17◦C is predicted over the Neoproterozoic glacial series.

Holding oxygen concentration fixed in model runs may therefore allow some

evaluation of the Neoproterozoic carbon cycle. The next section explores

additional model forcings that may permit the low CO2 concentration and

global temperature suggested by the glacial record.

3.6 Weathering enhancement and temperature in the

Neoproterozoic

3.6.1 Continental position, dispersion and composition

Figure 3.6.7 shows a reconstruction of the position of the continents in the

late Neoproterozoic (Li et al., 2008). It can be seen that continents are

grouped at low latitudes for the period 750-630Ma, drifting to higher lati-

tudes by 600Ma. Higher surface temperature near the equator should allow

for more vigorous reaction kinetics, as well as an increase in humidity and

therefore runoff rate (Donnadieu et al., 2004). Both of these factors would be

expected to enhance the silicate weathering rate (Berner, 1994), allowing for

lower global temperature at steady state. The relationship between tempera-

ture and runoff is complex and depends on the precipitation and evaporation

rates and therefore the size and distribution of the continents, not simply

their position. There is only a weak relationship, if any between Phanerozoic

continental mean latitude and runoff rate (Otto-Bliesner, 1995). For runoff

rate to increase there must be adequate sources of moisture, therefore the

dispersal of the continents is a very important consideration. It has been

estimated using a coupled climate-geochemical model that the breakup of

the supercontinent Rodinia into smaller, dispersed continents between 800-

700Ma may have caused a two fold increase in mid latitude runoff, increasing

the weathering rate until the system is balanced by a decrease in CO2 con-

centration (Donnadieu et al., 2004).
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Figure 3.6.7: Continental positions throughout the late Neoproterozoic.
Figure modified from Li et al. (2008). Dark shaded area shows mantle superplume,
** shows option of Laurentia at low latitude, see ref (Li et al., 2008) for a more
detailed picture.

Another factor influencing the silicate weathering rate is the composition

of the continents. Weathering of basaltic areas leads to river water with molar

ratios of calcium and magnesium that are higher than for typical silicates.

Currently around 8.4% of the global silicate area is basaltic, but this area

accounts for> 30% of the silicate weathering flux (Dessert et al., 2003). Large

basaltic provinces appear in equatorial positions at around 800Ma, and have

been linked to the onset of the Sturtian glaciation via enhanced continental

weathering (Godderis et al., 2003). It is also possible that increased organic

burial due to the opening of new continental margins in the Neoproterozoic

caused a decline in CO2 and therefore radiative forcing (Hoffman et al., 1998),

a higher rate of organic burial is implied by the carbon isotope record, which

shows positive fractionation for much of the period (Halverson et al., 2005).

70



The combination of dispersed, low latitude continents and an increase in

basaltic surface area in the late Neoproterozoic could constitute a significant

enhancement of the global silicate weathering rate. As with the weathering

enhancement due to vascular plants, evaluation of the magnitude of the con-

tinental enhancement at a global scale is extremely difficult. Assuming a 2◦C

mean surface temperature anomaly between the high latitudes and equato-

rial regions (Hansen et al., 2006) and following the kinetic rate equation of

Berner (1994) yields a 25% increase in the weathering rate. Assuming the

majority of continents reside in the tropics could also add a maximum ∼2

fold enhancement to this due to increased runoff (Donnadieu et al., 2004).

A major uncertainty is the area and position of basaltic rock, as it is re-

sponsible for such a large amount of the total weathering flux. Following

Godderis et al. (2003), an 8-fold enhancement in the weathering of basalts

over granitic provinces is assumed. Allowing this increase for an area of

6 × 106km (Godderis et al., 2003), or 4% of the continental area, produces

a global weathering rate enhancement of ∼ 30%. Taking the factors of con-

tinental paleolatitude, dispersion and composition into consideration, and

assuming a simplistic multiplicitive relationship, it is perhaps possible that

the degree of abiotic weathering enhancement in the late Neoproterozoic may

have been up to 3-fold (1.25× 1.3× 2 = 3.25).

3.6.2 Weathering enhancement prior to vascular plant evolution

The assumed enhancement of global weathering by vascular plants at around

400Ma implies that reaction kinetics were less influenced by global temper-

ature before this time (i.e. throughout the Precambrian), requiring a much

higher surface temperature to balance the carbon cycle (see figure 3a in Sleep

and Zahnle (2001)). This leads to the high temperature predictions for the

early Phanerozoic in current carbon cycle models (Berner, 2006a; Bergman

et al., 2004; Arvidson et al., 2006). Taking this view, a significant enhance-

ment of global weathering is required in the Neoproterozoic to cause the

apparent low temperature. However it is likely that the current assumed

global weathering enhancement associated with the evolution of vascular

plants (around 4-fold (Berner, 2006a)) is excessive. Although this degree

of enhancement has been measured in well designed field studies (see Moul-
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ton and Berner (1996); Bormann et al. (1987); Berner (1998)), it is unlikely

that this enhancement would have been realised globally. Mountainous areas

with high relief and erosion rates do not permit formation of stable soils, and

are not suited to deep-rooted plants, however it is these areas that supply

a large fraction of the present day silicate weathering flux (Gaillardet et al.,

1999). Also in many continental cratons and areas where erosion is slow, the

silicate weathering rate is limited by transport of material, not by the reac-

tion kinetics (West et al., 2005; Millot et al., 2002), meaning that absence

of higher plants from these areas may not necessarily change the weathering

dynamics. Further to this, it is also possible that the long term weather-

ing enhancement from vascular plants is less significant than the short term

enhancements measured in field studies.

3.6.3 Model results for Neoproterozoic temperature

To demonstrate the effects of the above observations on Neoproterozoic cli-

mate, the Minimal Model is now run the period 900-400Ma with oxygen

concentration fixed at 0.01atm. The nutrient system is used to calculate

productivity so that the model has greater predictive power (i.e. carbon

burial is not imposed but calculated from the other parameters). An addi-

tional enhancement of silicate and carbonate weathering (kcf) is imposed for

the period 750-600Ma, reflecting the effect of continental position, increased

basaltic area and supercontinent dispersion occurring over this time (Li et al.,

2008; Donnadieu et al., 2004). Figure 3.6.8 shows both a 3-fold and 2-fold

enhancement (solid and dashed lines respectively) alongside the default run

with no enhancement (dotted lines). The black curves show the proposed

4-fold vascular plant enhancement, the grey lines show a more conservative

2-fold enhancement following the reasoning above.

The effect of imposing low oxygen in the model is a reduction in the

weathering rate of buried organic carbon, which is a major CO2 source. This

leads to lower CO2 and temperature predictions some 1 − 2◦C lower than

those of the full system for the late Neoproterozoic. Still, the maximum

conceivable weathering enhancement is required to push global temperature

to the theoretical snowball trigger (∼ 10◦C (Hoffman and Schrag, 2002))

when kvp = 4.
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Figure 3.6.8: Model CO2 and temperature for the period 900-0Ma. Here
the nutrient model is used to estimate burial of reduced species, but oxygen is not
calculated. Use of isotope mass balance model would yield similar results, but
with CO2 fluctuating in the Neoproterozoic, following the isotope record. a, Rel-
ative atmosphere/ocean CO2 concentration. b, Model temperature. c, Glacial
paleolatitude as in figure 3.2.1. Black lines show 4-fold vascular plant weather-
ing enhancement at 400Ma, grey lines show 2-fold enhancement. Dashed lines
show a 2-fold weathering enhancement from 750-600Ma, solid lines show a 3-fold
enhancement.

If a 2-fold enhancement of continental weathering rates is assumed at

400Ma, the enhancement required for deep glaciation is relatively small -

here a 2-fold increase in weatherability in the late Neoproterozoic results in

sustained average global surface temperature below the hypothesised snow-

ball trigger. In this case early Phanerozoic global temperature remains below

15◦C, permitting glaciations in the Cambrian and Ordovician. However, ris-

ing oxygen concentration around 580Ma and the expected increase in CO2
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release from weathering of buried organic carbon is not included here, and

would act to increase both CO2 and temperature estimates.

3.7 Chapter conclusions

Simplification and extension of current Phanerozoic Earth system modelling

techniques allows for reasonable predictions for CO2 and temperature over

the last 900Myr. As with the Phanerozoic results, these predictions rely heav-

ily on external forcings. As noted by other authors (Godderis et al., 2003;

Donnadieu et al., 2004), a combination of continental position at low lati-

tudes, tendency towards smaller and dispersed continents, and a large area

of basaltic rock in the late Neoproterozoic may provide sufficient enhance-

ment of the weathering process to allow for the low temperatures required

for global glaciation.

The extreme enhancement of silicate weathering associated with the evo-

lution of vascular plants causes problems when attempting to reconcile atmo-

spheric composition and climate during the Neoproterozoic. The predicted

high CO2 concentration before vascular plant evolution requires a massive

reduction in radiative forcing to produce conditions which could be expected

to trigger the low latitude ‘snowball’ glaciations at ∼ 730Ma and ∼ 650Ma.

Reducing global temperature sufficiently via CO2 drawdown requires a 3-fold

enhancement of the silicate weathering flux, which is towards the maximum

estimate from a combination of proposed climatic forcings. However, it is

likely that the assumed degree of enhancement of the weathering process

due to vascular plant evolution may be overestimated, which would relax

considerably the required continental forcing.

The methods employed by Phanerozoic biogeochenical models COPSE

and GEOCARB for estimating atmospheric oxygen concentration do not give

sensible results when extended into the Neoproterozoic. It is also very difficult

to test if the current Phanerozoic predictions are correct. It is therefore

likely that a significant long term process is missing from the aforementioned

models.

Unknown quantities of greenhouse gases other than CO2 are a major lim-

itation of the method explored here. It is likely that a higher concentration

of methane would have been present in the more reducing Proterozoic atmo-
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sphere (Pavlov et al., 2003), meaning that a greater reduction in CO2 would

be required to initiate global glaciation.

Previous assessments of Neoproterozoic conditions using a coupled climate-

geochemical model have shown that sufficiently low global temperature for

snowball glaciations is possible given the likely paleogeographical forcings

(Donnadieu et al., 2004; Godderis et al., 2003). The model used by these

authors allows for a global degassing rate of ±20% present day rate. The

results in this chapter suggest that glaciation is still possible when a higher

degassing rate is used (the spreading rate approximation yields around a 50%

increase in degassing during the Neoproterozoic). The work here also con-

siders the effects of paleouplift rate, and absence of climatically important

biota such as vascular plants and calcareous plankton (Volk, 1989).

These results constrain the long-term (> 106yr) steady state temperature,

and do not consider system changes occuring on smaller timescales. Steady

state temperature < 10◦C is not a solid prerequisite for low-latitude glacia-

tion, and it has been shown for example that severe and long-lasting glacia-

tion may instead be the result of amplification of an initial perturbation via

feedback on sea level change and related shifts in depositional environments

(Ridgwell et al., 2003). This mechanism does not require steady state tem-

perature and CO2 concentration in the Neoproterozoic to be exceptionally

low.
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4 Neoproterozoic snowball glaciations and

limitations on global weathering rates

4.1 Introduction

A Neoproterozoic ‘cold period’, as described in the previous chapter, does

not explain the apparently periodic sequence of extreme glaciations seen in

the geological record (Halverson et al., 2010). Following both multimillion

year glaciations is a ∼50Myr interglacial period, far longer than the assumed

timescale on which the carbon cycle is stable (∼ 1Myr). The late Neoprotero-

zoic also sees dramatic positive and negative excursions in carbonate δ13C

(Halverson et al., 2005; Macdonald et al., 2010). Both the cause and global

applicability of these excursions has been questioned, with authors suggest-

ing either diagenesis (Derry, 2010) or the oxidation of a large organic carbon

reservoir as a solution (Rothman et al., 2003), however recent data shows

co-variance between the fractionation in organic carbon and in carbonate

carbon, indicating that the signal may indeed be both primary and globally

significant (Johnston et al., 2012).

To analyse the finer scale dynamics of the Neoproterozoic carbon cycle,

a simple ice-albedo feedback was added to the Minimal Model, allowing a

‘flip’ to high albedo when global average temperature falls below 10◦C to

imitate the proposed snowball Earth scenario (Hoffman and Schrag, 2002).

Extremely rapid weathering in the aftermath of model snowball glaciations

prompted investigation into the limiting factors for this process. It was found

that given likely tectonic limitation of the maximum global weathering rate,

the time taken to bury the CO2 added to the atmosphere/ocean during glacia-

tion is similar to the duration of the interglacial periods, providing a possible

explanation for the oscillatory nature of these events. This would allow for

the observed pattern of extreme glaciations under a single, long-term cooling

forcing, which may be attributed to the paleogeographical changes in the

Neoproterozoic (Li et al., 2008). After discussion with my supervisors and

Richard Boyle (who has previously worked on mechanisms for understanding

the gaps between Neoproterozoic glaciations (Boyle, 2008)), a letter docu-

menting the work was submitted to the journal Nature Geoscience and is

published as B. Mills et al., ‘Timing of Neoproterozoic glaciations linked to
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transport-limited global weathering’ Nature Geoscience 4, 861 (2011).

The Minimal Model is further simplified for this work in order to convey

the idea as clearly as possible. The published letter is reproduced below,

followed by supplementary information detailing the model derivation and

some extension of the work. Unfortunately some restatement of the ideas

and terms used previously is unavoidable, but this is kept to a minimum. A

complimentary ‘feature’ article explaining the mechanism and some of the

wider implications was written for the same issue by Joshua West (West,

2011).

4.2 Timing of Neoproterozoic glaciations linked to

transport-limited global weathering

The Earth underwent several snowball glaciations between 1,000 and 541 Myr

ago. The termination of these glaciations is thought to have been triggered

by the accumulation of volcanic CO2 in the atmosphere over millions of years

(Hoffman et al., 1998; Pierrehumbert, 2005). Subsequent high temperatures

and loss of continental ice would increase silicate weathering and in turn draw

down atmospheric CO2 (Walker et al., 1981). Estimates of the post-snowball

weathering rate indicate that equilibrium between CO2 input and removal

would be restored within several million years (Le Hir et al., 2009), triggering

a new glaciation. However the transition between deglaciation and the onset

a new glaciation was on the order of 107 years.

Over long timescales, the availability of fresh rock can become a limiting

factor for silicate weathering rates (West et al., 2005). Here we show that

when this limitation is incorporated into the COPSE biogeochemical model

(Bergman et al., 2004), the stabilization time is substantially higher, > 107

years. When we include a simple ice albedo feedback, the model produces

greenhouse-icehouse oscillations on this timescale that are compatible with

observations. Our simulations also indicate positive carbon isotope excur-

sions and an increased flux of oxygen to the atmosphere during interglacials,

both of which are consistent with the geological record (Halverson et al.,

2005; Canfield et al., 2008). We conclude that the long gaps between snow-

ball glaciations can be explained by limitations on silicate weathering rates.
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The Neoproterozoic era (1000-541Ma) is punctuated by at least three

glaciations (Hoffmann et al., 2004), the severe low-latitude Sturtian and

Marinoan episodes being proposed as examples of ‘Snowball Earth’ events

(Hoffman et al., 1998; Kirschvink, 1992). Figure 4.2.1 displays Neoprotero-

zoic carbonate carbon isotope data (Halverson et al., 2005), which shows a

quasi-periodic pattern. Negative excursions associated with glaciation ap-

pear at 50 Myr intervals between long periods of positive fractionation. The

long interval between glaciations poses a puzzle given the standard model of

a snowball Earth being terminated by very high CO2 and temperature. The

time taken to restore equilibrium after such a perturbation depends on the

rate of CO2 drawdown via silicate weathering, a process that would be greatly

enhanced in the aftermath of snowball Earth. Highly weatherable rock flour

produced by glacial grinding would likely cover a large surface area, and in-

creased temperature and runoff should allow for an elevated weathering flux.

Linked GCM and kinetic weathering models have determined the maximum

weathering rate in this climate to be on the order of 10 times the modern

day flux, implying a timescale of around 106 years to reduce atmospheric

CO2 to pre-glacial levels (Le Hir et al., 2009). Based on these results, we

would expect the system to establish equilibrium in a time far shorter than

the interglacial periods following the Sturtian and Marinoan glaciations.
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Figure 4.2.1: δ13C record for the late Neoproterozoic. Isotopic composition
of carbonates from Halverson et al. (2005). The vertical grey bars from left to right
denote the Sturtian, Marinoan and Gaskiers glaciations.
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Here we propose that the timescale for CO2 drawdown following a snow-

ball glaciation should be extended due to transport limitation of the silicate

weathering process. In a transport limited regime, silicate cations are com-

pletely leached from fresh regolith and therefore the rate of chemical weath-

ering depends only on the physical erosion rate (West et al., 2005). Modern

continental cratons are transport limited, as seen by plotting the rate of de-

nudation of silicate cations against total denudation rate (Millot et al., 2002).

In such a regime, increasing temperature or runoff does not increase the rate

of CO2 drawdown, because all the available silicate cations are already be-

ing processed. As global temperature and humidity rises, we would expect

more weathering zones to become transport-limited, implying a theoretical

maximum silicate weathering rate, where every available cation is leached.

Over the Phanerozoic, the mean continental erosion rate is estimated to be

∼ 16m Myr−1 (Wilkinson and McElroy, 2007). Using the average density and

area of the present day continents (area=1.5× 1014 m2, density = 2.5× 103

kg m−3) yields a total mass of 6 × 1012 kg yr−1. Assuming a cation weight

fraction of 0.08 (West et al., 2005), we estimate a global silicate weathering

rate maximum for the Phanerozoic of around 4.8× 1011 kg yr−1. This max-

imum transport limited rate is about 2.4 times greater than the present day

weathering rate (Gaillardet et al., 1999).

Determining the global erosion rate in the Neoproterozoic is difficult, be-

cause it depends on the continental area and rate of uplift. Current estimates

for Neoproterozoic uplift rates are close to present day values (Rino et al.,

2004), and the majority of studies agree that the total continental area was

probably less than it is now. Proxies for global denudation show very low

values (< 10m Myr−1) for the early Phanerozoic, but are likely to be affected

by sampling artefacts (Willenbring and Blanckenburg, 2010). The rate of

volcanic degassing in the Neoproterozoic is also important, as it is the bal-

ance between CO2 degassing and its consumption rate via weathering and

burial that dictates the system response time to large perturbations.
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In carbon cycle models, degassing is usually assumed to be proportional

to the seafloor spreading rate. Accounting for different continental growth

models, the Neoproterozoic outgassing rate was probably between 1 and 5

times the present day rate (Rino et al., 2004; Franck and Bounama, 1997).

But smaller crustal carbon content in the Neoproterozoic (Hayes and Wald-

bauer, 2006) may have decreased the CO2 content of volcanic gas by up to

20%.
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Figure 4.2.2: Phase portrait: stabilisation time versus maximum weath-
ering rate, Wmax. Here we assume an initial CO2 concentration of 0.3 atmo-
spheres, and fix the global weathering rate at Wmax. The three lines show different
choices of the relative CO2 degassing rate, D. Wmax is defined relative to present
day silicate weathering rate, with the grey vertical line showing our estimate of
Wmax= 2.4 for the Phanerozoic. Increasing the weathering rate enhances nutri-
ent delivery and therefore increases the organic burial fraction, allowing stability
when Wmax is somewhat smaller than D, providing Wmax > 1. See supplementary
information for full model description.
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In figure 4.2.2, we use a modified version of the COPSE biogeochemical

model (Bergman et al., 2004) (see supplementary information) to investigate

the effect of a weathering rate cap on the time taken to return to steady state

after the suggested snowball exit concentration of 0.3 atm CO2 (Hoffman

et al., 1998; Pierrehumbert, 2005) is imposed. The global silicate weathering

rate is fixed at a prescribed maximum value, Wmax, which is defined relative

to the present day rate. We find that choice of Wmax has a strong effect

on the system: Assuming the Phanerozoic average erosion rate (Wmax=2.4)

yields a stabilisation time of ∼ 107 years, even for conservative estimates of

the CO2 degassing rate D. A lower erosion rate, and/or a higher degassing

rate increases the stabilisation time greatly. For further model runs we let

global weathering follow a simple kinetic equation as described by Berner

(1994), but asymptote to Wmax as the kinetic weathering rate approaches

the transport-limited value, placing a cap on global weathering rates. The

choice of kinetic weathering function, and the nature of the transition to

Wmax has negligible effect on results as the rate remains at Wmax until CO2

is very close to the stable level.

An important consideration for this work is weathering of rock flour left on

the surface after a snowball glaciation, which would be expected to increase

weathering kinetics as in the quaternary glacial cycle (Vance et al., 2009).

Global weathering fluxes would not become limited by transport of fresh rock

until the flour produced during the glaciation had been completely leached.

Le Hir et al. (2009) assume a thin soil profile following a snowball event,

due to evidence of persistent weathering during glaciation (Donnadieu et al.,

2003). Following their estimate of a 25cm reactive upper layer, we derive a

weatherable equivalent of ∼ 1017 moles C (see supplementary information).

Figure 4.2.3 shows model sensitivity to the initial quantity of rock flour.

Here we allow a global weathering rate of 10 times present day when rock

flour is present (Le Hir et al., 2009), switching to the transport limited equa-

tion once a specified amount of carbon has been buried, analogous to the

abundance of glacial flour. We find that a weatherable equivalent on the

order of 1020 moles C is required to significantly affect stabilisation time; we

use a increased reactive layer depth of 2.5m (1018 mol C equiv.) for future

model runs, due to uncertainty in estimation.
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Figure 4.2.3: Stabilisation time after 0.3 atm CO2 perturbation for dif-
ferent initial abundances of rock flour. a, Rock flour consumed. b, Silicate
weathering rate. c, Atmospheric CO2 concentration. Here Rmax denotes the max-
imum amount of carbon (in moles) that can be drawn down via weathering of
glacial rock flour before it is depleted. This figure shows the situation where D =
1, Wmax = 2.4. The grey vertical line shows the stabilisation time when no flour
is present (as in fig 4.2.2). The second drop in weathering rate here occurs as CO2

returns to a stable concentration.

Our results indicate that the sequence of deep glaciations in the Neo-

proterozoic could be the result of a change of state in the long-term carbon-

climate system to a regime which exhibits self-sustaining oscillations. If there

was a long period in which global steady state temperature remained below

the value required to trigger a snowball glaciation, this would be manifest

as an oscillatory regime, with snowball glaciations alternating with warm
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phases. Such a temperature forcing may well be attributed to the continen-

tal configuration at this time. It has been shown that the position of the

continents at low latitudes at 750Ma, along with the prevalence of basaltic

lithologies, could provide the necessary cooling to trigger the first snowball

event (Donnadieu et al., 2004). It is thought that the continents would have

remained near low latitudes until 600Ma (Li et al., 2008), after which they

begin to drift to higher latitudes, relaxing the forcing. To investigate this pos-

sible mechanism we parameterise a runaway ice-albedo feedback in our model

by imposing a change in albedo when temperature falls below a given value

Tcrit. Assuming the classic snowball scenario (Hoffman and Schrag, 2002),

we choose Tcrit = 283K and allow deglaciation at 263K. Because deglacia-

tion begins in the tropics, it is assumed to occur at lower temperature than

is required for the ice sheets to initially advance. Throughout this work

we assume a solar constant for 650Ma (1298Wm−2 (Caldeira and Kasting,

1992)), broadly representing the timeframe of interest. This allows glacia-

tion at ∼150ppm CO2, close to other estimates (Donnadieu et al., 2004).

We impose the described cooling scenario in the model, adding a parameter

ρ to represent enhancement of kinetic weathering. This follows the treat-

ment of vascular plant colonisation in the Phanerozoic COPSE model runs

(Bergman et al., 2004), acting as a multiplier on the kinetic weathering rate

equation. To trigger oscillations we increase ρ by a factor of three for a pe-

riod of 150Myrs. The magnitude of this enhancement is roughly analogous

to the increase in basaltic surface area and mid-latitude runoff calculated

in Donnadieu et al. (2004). For present day CO2 degassing rate (D = 1),

we require Wmax = 1.4 to produce a rough analogue of the Neoproterozoic

record. This parameter choice is shown in figure 4.2.4.

Assuming a higher CO2 degassing rate shortens glacial duration and allows

for larger values of Wmax to produce the observed timing, in line with figure

4.2.2. We use output from the CO2SYS model (Lewis and Wallace, 1998) to

approximate the atmospheric fraction of total ocean and atmosphere CO2,

assuming that there is gas exchange between atmosphere and ocean during

glaciation Hoffman et al. (1998). The total solubility of CO2 is higher in cold

water than warm water, therefore deglaciation causes a large transfer of CO2

from ocean to atmosphere.
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Figure 4.2.4: Cyclic solution when steady state temperature is forced
below the ice-albedo runaway value for 150Myr. Here we let D = 1 and
Wmax = 1.4 to produce glacial timing on the order observed in the Neoproterozoic.
a, The imposed kinetic weathering enhancement (ρ) is shown in grey; in black is the
weathering rate relative to present. b, Total atmosphere/ocean carbon (grey), and
atmospheric CO2 (black). c, Temperature alongside snowball entry/exit thresh-
olds. d, Model δ13C, solid line shows temperature/CO2 dependent fractionation
(Bergman et al., 2004), dashed line shows solution when fractionation effects are
constant.

The solid line for δ13C shows the isotopic fractionation of marine car-

bonates, assuming the fractionation effect on burial takes into account the

equilibrium fractionation between oceanic and atmospheric carbon, and a de-
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pendence on temperature, as in the full COPSE model (Bergman et al., 2004).

The dashed line shows an alternative solution where fractionation effects are

constant. Both treatments yield a continued positive fractionation during

the interglacial period due to elevated burial of light organic carbon, due in

turn to sustained above-steady-state nutrient fluxes from weathering. Higher

assumption of Wmax increases nutrient delivery and therefore also increases

fractionation. Low productivity during glaciations causes a negative excur-

sion. We do not expect a simple model such as this to replicate exactly the

isotope record. Negative excursions preceding glaciation are not reproduced

by our model, and may be due to direct temperature effects on productivity,

which are not included. Our aim is to demonstrate that the extended period

of system disequilibrium following a snowball glaciation should contribute to

prolonged positive excursions in δ13C, and more complex analysis is required

to fully understand the Neoproterozoic carbon cycle.

With the imposition of a suitable long term maximum weathering rate,

oscillations in this simple carbon - climate model can provide a qualitative fit

to the sequence of glaciations and carbon isotope variations in the Neopro-

terozoic. The globally transport limited scenario presents a prolonged period

of elevated primary productivity, which would support suggested increases in

oxygen concentration and phosphorous deposition over this time (Halverson

et al., 2005; Canfield et al., 2008; Shields et al., 2007; Porter et al., 2004; Zhu

et al., 2007; Scott et al., 2008). There is evidence for phosphorous deposition

after the Marinoan glaciation but not after the Sturtian.

It is important to note that the mechanism we describe relies on a partic-

ular interpretation of the Neoproterozoic period, namely the Snowball Earth

hypothesis (Hoffman et al., 1998; Kirschvink, 1992). It is possible that the

Neoproterozoic actually contained more frequent smaller glaciations, which

would not terminate via a high CO2 ‘super greenhouse’. Due to our long time-

frame for CO2 drawdown, our prediction is highly testable, with for example

one recent study proposing a rapid decline in CO2 following the Marinoan

glaciation (Kasemann et al., 2005). Further work to establish the duration

of any post-glacial greenhouse may thus enable validation or falsification of

mechanisms to explain these fascinating events.
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4.3 Supplementary information 1: Estimating the amount

of CO2 consumed by rock flour weathering

Rapid weathering of post-glacial rock flour is an extremely important con-

sideration for this work. The transport limited weathering flux will not take

effect until after the depletion of this reactive surface layer. We therefore at-

tempt to calculate the maximum moles of carbon that can be buried due to

rock flour weathering. In model runs, the weathering rate is set to 10 times

present day when flour is present, in accordance with Le Hir et al. (2009).

This decreases via a step function to the transport limited value when no

flour remains. For an initial estimate, we assume a 25cm surface layer depth

(Le Hir et al., 2009) across the entire continental area (1.5 × 1014 m2), giv-

ing a volume of 3.75 × 1013 m3. We assume a loess density of 1.5 × 106 g

m−3 (Bettis et al., 2003), therefore a total mass of 5.6× 1019 g is calculated.

Assuming a silicate cation fraction of 0.08 (West et al., 2005) gives a cation

mass of 4.5 × 1018 g. Averaging the molar masses of Ca, Mg, Na and K

gives ∼ 32 g mol−1, therefore we calculate ∼ 1017 moles for a global depth of

25cm, meaning that this many moles of carbon can be taken up by silicate

weathering. The main uncertainty in this value is in the depth of rock flour

following a snowball earth. We therefore test our model with up to three

orders of magnitude more rock flour to be sure of results (see main text).

4.4 Supplementary information 2: Model derivation

The 0-D Phanerozoic earth system model, COPSE (Bergman et al., 2004),

uses 10 reservoirs to couple the cycles of carbon, oxygen, sulphur and ocean

nutrients nitrate and phosphate. We reduce the system to 4 reservoirs: At-

mosphere and ocean CO2 (A), buried organic carbon (G), buried carbonate

carbon (C) and a single limiting nutrient (P ), modelled as phosphate.

4.4.1 Model robustness

The following changes were made to COPSE to make it robust under condi-

tions encountered when weathering rates and temperatures are very low, as

in the Neoproterozoic glaciations. The silicate weathering formulation used

in the GEOCARB models is used with a small modification. We follow the
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derivation of Berner (1994) but do not make the simplifying assumption of

temperature close to present day. The linear runoff approximation causes a

singularity when temperature is low, and is amended by approximating the

linear term with an exponential function. This gives an expression for the

relative silicate weathering flux, assuming kinetic limitation:

WK = ρe

(
k1

T−T0
TT0

) (
ek2(T−T0)

)0.65√
NCO2 (S1)

Here k1 = 7537.69 and k2 = 0.03. T is average surface temperature in

Kelvin, T0 is present day average surface temperature and NCO2 denotes

concentration of CO2 normalised to pre-industrial concentration. To obtain

an expression for the global silicate weathering flux, equation S1 is mul-

tiplied by a factor ρ to represent possible enhancement of weathering due

to continental configuration and composition. It is important to note that

enhancing the kinetic weathering rate in this way does not affect the maxi-

mum transport-limited value. A higher value of ρ means that the maximum

transport-limited rate can be achieved with lower temperature and/or runoff.

COPSE defines the function anox which gives a numerical value between

0 and 1 inclusive for the degree of ocean anoxia. The formulation used in the

original model allows for negative values when ocean nutrient is extremely

low. We truncate these to zero. We also add a dependence on new produc-

tion to the iron-sorbed phosphorus burial flux (as is already applied to the

other nutrient burial fluxes) to prevent unrealistic burial rates when nutrient

concentration is low.

4.4.2 Temperature approximation

We derive a temperature approximation by first scaling for a lower solar

constant, then using a previously calculated climate sensitivity and radiative

forcings to adjust for different carbon dioxide concentrations. To scale for a

decreased solar constant, we use an energy budget model for a single layer

grey atmosphere in radiative equilibrium:

TEBM =

(
S(1− α)

4σ
(
1− ε

2

)) 1
4

(S2)
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Here S is the solar constant in Wm−2, α is planetary albedo, σ is Stefan’s

constant and ε represents the emissivity of the atmosphere. Assuming present

day temperature of 288K, solar constant of 1368 Wm−2 and albedo of 0.3, we

derive an emissivity ε = 0.773. The solar constant at 650Ma was 1298 Wm−2

(Caldeira and Kasting, 1992). With a constant emissivity (i.e. Modern

day greenhouse gas concentrations), equation S2 gives an average surface

temperature of Tbase = 284.3K for the late Neoproterozoic. To account for

increased carbon dioxide concentrations, we add a term for radiative forcing

from CO2 to Tbase

T = Tbase + µ · FCO2 (S3)

Where FCO2 is the radiative forcing from carbon dioxide and µ is the climate

sensitivity (the ratio of change in radiative forcing to change in temperature).

Our climate sensitivity is taken from previous runs of a radiative convective

climate model and radiative forcings from previous runs of the AER line-by-

line radiative transfer code (Clough et al., 2005; Goldblatt et al., 2009b), we

take µ = 0.1815 and FCO2 = aλ4 + bλ3 + cλ2 + dλ+ e where a = 0.2507, b =

3.9216, c = 23.8113, d = 83.4113, e = 131.6138 and λ = log (CO2(atm)).

We fit a curve for 10−5 < CO2(atm) < 10−1 and extrapolate this to 5×10−1

atm. Correct representation of radiative forcing above 10−1 atm is a rather

involved problem, necessitating representation of pressure broadening from

higher total pressure, CO2 self-continuum, many weaker lines and possible

line mixing, and is beyond the scope of this paper, hence our approach.

For the purpose of this work, it is only important that the temperature be

sufficient to ‘max out’ the global weathering rate, which occurs at a much

lower CO2 concentration.

The COPSE model combines ocean and atmosphere carbon dioxide into

a single reservoir, with a parameter φ to represent the fraction that exists

in the atmosphere (and therefore contributes to the greenhouse effect). As

more carbon dioxide accumulates in the atmosphere/ocean reservoir (A), a

greater fraction will reside in the atmosphere. We combine our temperature

function with the CO2SYS carbon speciation model (Lewis and Wallace,

1998) to derive a formula for φ in terms of A. The best fit to results is

described by:
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φ =
gA

A+ h
(S4)

where g = 0.78 and h = 1 × 1020 mol for α = 0.3, h = 5.3 × 1020 mol

for α = 0.6. This treatment contrasts to the ‘hard snowball’ model, where

atmosphere and ocean are unable to exchange species. However, it has been

shown that equilibrium between atmosphere and ocean during a snowball

event could occur with only 100km2 of open water (Le Hir et al., 2008), or

cracks in sea ice (Hoffman et al., 1998) and thus our approach has been used

in previous snowball earth simulations (Higgins and Schrag, 2003).

4.4.3 Weathering formulation

For this work we assume that silicate weathering is kinetically limited until

the global transport limit is reached. This can be written in the form:

W =

{
WK : WK < Wmax

Wmax : WK ≥ Wmax

(S5)

where W is the overall weathering rate, WK is the kinetically limited weath-

ering rate and Wmax is the transport limited rate, expressed relative to the

present day. We describe the transition from the kinetically limited curve to

the transport limited value using a sigmoid function.

W = (Wmax −WK)
(
1 + e−k3(WK−Wmax)

)−1
+WK (S6)

where k3 = 100. Equation S6 follows equation S1 for WK < Wmax, but

asymptotes to Wmax for WK > Wmax.

4.4.4 Glacial flour abundance and weathering enhancement

We represent the global reservoir of glacial rock flour, R, in terms of the

number of moles of carbon it can potentially draw down via weathering.

If a snowball glaciation is triggered, R is set to zero. On deglaciation we

set dR
dt

equal to the silicate weathering flux. Wmax is dependent on the size

of R, taking the maximum value of 10 for R < Rmax and reverting to the

prescribed transport limited value when R = Rmax. Here Rmax is the assumed

abundance of glacial flour defined by the amount of CO2 it can potentially

90



weather. The transition between weathering rates follows a step function. We

choose this formulation in order to allow the maximum CO2 drawdown for

a given quantity of rock flour, noting that the weathering flux may actually

decrease with time (Vance et al., 2009).

4.4.5 Ice-albedo instability

To parameterise an ice-albedo instability we define two distinct albedos in our

model and allow the value to change when a certain temperature threshold

is reached. For the temperature world we let:

α =

{
αbase : T > Tcrit

αice : T ≤ Tcrit

(S7)

For the glaciated world we follow Hoffman and Schrag (2002) and assume a

lower escape temperature, Tescape:

α =

{
αbase : T > Tescape

αice : T ≤ Tescape

(S8)

Here αbase = 0.3. We let αice = 0.6, Tcrit = 283K, Tescape = 263K. This allows

glaciation at ∼150ppm CO2 and deglaciation at ∼0.25 atm, broadly in line

with previous work on snowball Earth (Hoffman et al., 1998; Pierrehumbert,

2005; Donnadieu et al., 2004). For a simple model, α moves linearly between

αbase and αice if temperature falls below Tcrit, and returns to αbase if Tescape is

reached whilst in a snowball glaciation.

Reduction of weathering fluxes due to glaciation is modelled using a mul-

tiplier, Wglacial, for global silicate and carbonate weathering fluxes. Wglacial

depends on only the albedo, α and is modelled using a step function so that:

Wglacial =

{
1 : α = αbase

10kice : α = αice

(S9)

kice is chosen to allow temperature during the snowball glaciation to stabilise

above Tescape in order that deglaciation can occur. This requires kice = −2.
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4.4.6 Carbon isotopes

To produce results that may be compared to the geological record, we calcu-

late the isotopic composition of carbon throughout model runs. To do this

we run a duplicate carbon system that tracks the movement of the lighter

isotope carbon-12. The δ13C value of a sample is a measure of the ratio of

carbon-13 atoms to carbon-12 atoms, and is expressed relative to a standard:

δ13Csample =

(
R13

12sample

R13
12PDB

− 1

)
· 1000 (S10)

where R13
12 is the ratio of carbon-13 atoms to carbon-12 atoms and R13

12PDB =

0.0112372. If FC is a model flux of carbon, we define the corresponding flux

of carbon-12 (F12C) as:

F12C = FC · R12
12+13 (S11)

where R12
12+13 is the ratio of carbon-12 to total carbon in the parent reservoir.

If a flux undergoes a fractionation effect of ι parts per thousand, the

modified ratio of carbon-12 to total carbon in the flux is calculated:

R12
12+13 =

1

1 + R13
12

=
1

1 + R13
12PDB

(
δ13C+ι

1000
+ 1
) (S12)

where δ13C is the fractionation relative to PDB of the parent reservoir. We

assume a photosynthetic fractionation effect of -30h. For fractionation

due to carbonate burial we consider both a constant effect (+1h) and a

temperature-dependent function as used in COPSE:

δmccb = φ

(
9483

T
− 23.89

)
− 4232

T
+ 15.1 (S13)

Here δmccb represents the difference in composition between atmosphere/ocean

CO2 and buried carbonate in units of per mille (h) relative to PDB. T is

temperature in degrees Kelvin and φ is the fraction of total CO2 that is in

the atmosphere.
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4.4.7 Full model equations

Reservoirs and fluxes are taken directly from the COPSE model with the

following exceptions: Land organic carbon burial (locb) is removed to reflect

the absence of plants in the Neoproterozoic. Iron-sorbed phosphate burial

(fepb) is amended as described above. The weathering fluxes silw and oxidw

are redefined to include the glacial limitation, Wglacial, and transport limita-

tion in the case of silw. We hold oxygen concentration (denoted O) constant

at an assumed Neoproterozoic value of 1% of the atmosphere, and therefore

assume no dependence of oxidw on oxygen concentration. Carbonate weath-

ering is assumed to follow the silicate weathering equation for this analysis,

as it has no net effect on CO2. The crustal reservoirs of organic and carbon-

ate carbon (G and C) are held constant. Table 5 displays model fluxes, table

6 shows the reservoir calculations, table 7 defines the forcing parameters and

table 8 shows model constants.
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4.5 Application of transport limitation and revised

temperature calculation to Phanerozoic modelling

The work in this chapter has produced two ideas worthy of investigation

in respect to Phanerozoic climate. Firstly, attempting to model the condi-

tions following a snowball Earth event has required the development of a new

temperature approximation, based on a previous radiative-convective climate

model and the AER line-by-line radiative transfer code (Clough et al., 2005;

Goldblatt et al., 2009b). Secondly, geological limitation of the terrestrial

weathering process could also have operated over the Phanerozoic. As dis-

cussed in the published letter, if the global degassing rate for CO2 is greater

than the maximum possible burial rate via weathering, there would be no

mechanism to stop the build up of CO2 in the atmosphere. Current meth-

ods of estimating the global degassing rate from the seafloor spreading rate

return a maximum degassing rate of around 1.75 times present day for the

late Mesozoic (Gaffin, 1987; Berner, 1990). Following the rough estimate for

a Phanerozoic weathering rate limit of around 2.4 times present day (Mills

et al., 2011), the global erosion rate would only have to fall below 75% of

the present day value in order for CO2 degassing to overwhelm the rate of

burial, and the system to be unable to stabilise CO2 concentration in the

atmosphere. Estimates of uplift rates for the late Mesozoic happen to be

around this value (Berner, 1994).

4.5.1 Comparison of temperature functions for Phanerozoic car-

bon cycle modelling

Figure 4.5.5 plots the CO2-temperature functions used in the GEOCARB

and COPSE models with the function derived for the work on transport

limitation (Mills et al., 2011; Clough et al., 2005; Goldblatt et al., 2009b).

The temperature approximation of Caldeira and Kasting (1992) allows for

changes in planetary albedo and is plotted with both fixed and variable

albedo. For the other functions albedo is fixed at 0.3. As noted previ-

ously, the temperature approximation used in COPSE (Caldeira and Kasting

(1992) variable albedo) and in the more recent GEOCARB models (Berner

and Kothavala, 2001) show fair agreement over the expected Phanerozoic

CO2 range (∼ 1 − 20PAL). The RCM-LBL approximation used in Mills et
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al. (2011) was designed for application to extremely high CO2 environments,

and displays a far more conservative relationship between CO2 and tempera-

ture than the previous approximations. The spread of results here highlights

the uncertainty in estimating global temperature based on a small number of

parameters and over a massive range of CO2 concentrations. None of these

approximations should be considered ‘the correct one’, however the effect

of the uncertainty in global temperature estimation on Phanerozoic model

predictions should be assessed.
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Figure 4.5.5: Temperature approximations used in carbon cycle box
models. The black lines show the approximation of Caldeira and Kasting
(Caldeira and Kasting, 1992), which is used in the COPSE model. Solid line
shows fixed albedo, dashed line shows variable albedo solution. Green lines show
the approximations derived for the GEOCARB models (Berner, 1994; Berner and
Kothavala, 2001) and the red line shows the approximation developed for the work
in this chapter (Goldblatt et al., 2009b; Clough et al., 2005). Albedo is fixed in
these approximations. The grey shaded area indicates a temperature below 0◦C
and the grey vertical line shows pre-industrial CO2 concentration for reference.
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Figure 4.5.6 shows the results of Phanerozoic runs in the Minimal Model

from chapter 3. The black lines show runs with the temperature approxima-

tion from Mills et al. (2011), the grey lines show runs using the temperature

approximation from Caldeira and Kasting (1992) with variable albedo. These

examples are taken as the sensitivity end-members (see figure 4.5.5) and the

model uses the nutrient system from COPSE to estimate organic burial rates.

With the more conservative Mills et al. function, around twice the con-

centration of ocean/atmosphere CO2 is required to stabilise the carbon cycle

before the evolution of vascular plants at 400Ma. However the temperature

prediction is lower due to the assumption that CO2 has a direct effect on

weathering (through plant CO2- fertilization (Berner, 1994)).

The model is run with the assumption of a large (7-fold) increase in weath-

ering efficiency due to the evolution of vascular plants, a smaller (and prob-

ably more reasonable (Drever, 1994)) change in weathering efficiency would

bring temperature predictions closer to present day for both models, as de-

scribed in the previous chapter.

The results here show that the climate sensitivity to carbon dioxide is

also an important uncertainty in estimating early Phanerozoic temperature,

with a lower sensitivity bringing all estimates closer to present day tempera-

ture. The prediction of high global temperature by GEOCARB and COPSE

for the supposedly glacial periods in the Cambrian and Ordovician may be

partly explained by the use in those models of temperature functions that are

towards the extreme of plausible relationships. It is important to note that

the use of a more conservative CO2-temperature relationship does not sig-

nificantly change the climatic forcing required to reach extremely low global

temperature in the Neoproterozoic. A factor 3 enhancement is required to

reach the ice-albedo run-away threshold, as in section 4.2.
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Figure 4.5.6: Phanerozoic COPSE model run for different tempera-
ture functions. a Relative atmospheric oxygen. b Relative atmospheric CO2.
c, Global average surface temperature. For all panels grey lines show tempera-
ture function from Caldeira and Kasting (1992) and black lines show temperature
function from Mills et al. (2011)

4.5.2 Atmospheric fraction of carbon dioxide

To complement the assessment of temperature functions, this section briefly

reviews the function used to express the fraction of total (ocean plus atmo-

sphere) CO2 which resides in the atmosphere, and thus contributes to the

greenhouse effect, denoted φ. It has been shown during the COPSE model

derivation (Bergman, 2003) that changing this calculation does not alter the
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predictions for atmospheric CO2 over the Phanerozoic, this is because the

atmospheric reservoir is regulated by the temperature dependence of conti-

nental weathering, with the oceanic reservoir changing accordingly as a ‘slave’

variable. Changes to the calculation do however alter the total amount of

ocean and atmosphere carbon dioxide for a given atmospheric concentra-

tion, which is very important in calculating the timescales for CO2 removal

(Mills et al., 2011) as well as the power of processes that are controlled by

oceanic CO2 concentration rather than atmospheric (e.g. weathering of deep

ocean crust (Sleep and Zahnle, 2001)). Here the approximation derived from

the CO2SYS program (see section 4.4) is tested against a physically based

treatment used in an extension of the COPSE model (Bergman, 2003).

Kump and Arthur derived a simple expression for the atmospheric fraction

of total CO2 by assuming that the ocean is saturated with respect to CaCO3

and equilibrated with atmospheric carbon dioxide (calcium concentration is

assumed constant). They calculate atmospheric CO2 as:

CO2 =

(
A

A0

)2

· CO2 (0) (4.5.1)

where CO2 (0) is the present day concentration and A is the size of the com-

bined ocean and atmosphere CO2 reservoir. A0 is the size of this reservoir

at present day. In COPSE, dependence on temperature and explicit treat-

ment of the oceanic carbon reservoir is added to this analysis, yielding the

expression:

RCO2 =
CO2

CO2 (0)
= ekc2(T0−T) ·

(
ΣCO2

ΣCO2 (0)

)2

(4.5.2)

here kc2 is a constant with value -0.0448 K−1 (Bergman, 2003), ΣCO2 is the

number of moles of CO2 in the ocean and ΣCO2 (0) is the present day value

of this. T is average surface temperature and T0 is the present day value,

288K. In order to compare this treatment to the approximation derived in

chapter 4, the above equation must be solved by iteration. Equation 4.5.2 is

rearranged so that it may be solved to give the atmospheric fraction φ as a

function of A alone.

φA

φ0A0

= ekc2(T0−T) ·
(

(1− φ) A

(1− φ0) A0

)2

(4.5.3)
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φ = ekc2(T0−T) ·
(

(1− φ) A

(1− φ0) A0

)2

· φ0A0

A
(4.5.4)

here φ0 = 0.01614 as in COPSE.

In order to iterate this equation, the value of A is fixed, allowing compu-

tation of the stable value of φ. Temperature must be calculated at each stage

from the atmospheric CO2 concentration, which itself is calculated from A

and the current value of φ. For this comparison we assume an albedo frac-

tion of 0.3 and use the temperature approximation from Mills et al. (2011).

Figure 4.5.7 plots the relationship between the size of A and the atmospheric

fraction of CO2 for the above formulation. It is compared to the approxima-

tion used in Mills et al., which is computed using the ‘CO2SYS’ program of

Lewis and Wallace (1998).
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Figure 4.5.7: Atmospheric fraction of carbon dioxide The atmospheric
fraction (φ) is plotted against total atmosphere and ocean CO2 (A). Black line
shows approximation derived from CO2SYS program (Lewis and Wallace, 1998),
grey line shows approximation from extended COPSE model (Bergman, 2003)

As the figure shows, both approximations give very similar results. Di-

vergence does occur when A is above 3 × 1020 moles, but this is above the

maximum value reached in any model runs, including the snowball scenar-
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ios. Interchanging these functions therefore has very little effect on model

behaviour, the approximation used in Mills et al. is adopted for further work

because it is more computationally efficient.

4.5.3 Transport limitation of weathering in the Phanerozoic

Earlier in the chapter it was shown that transport limitation of terrestrial

weathering would place an upper limit on the drawdown flux of CO2, thus

extending the timeframe for stabilisation of the system after a large CO2 per-

turbation. However there is another potential effect of this limitation: if the

global degassing rate rises above the maximum possible weathering rate the

system would be unable to stabilise and CO2 could accumulate over millions

of years, greatly increasing surface temperature. Geochemical proxies sug-

gest that CO2 concentration peaked at around 15 times present atmospheric

level (PAL) in the Mesozoic (Royer et al., 2004), however model predictions

with kinetically based weathering fluxes do not reach this level, typically

staying below 5 times PAL (Bergman et al., 2004; Berner, 1994; Arvidson

et al., 2006). The maximum transport-limited weathering rate is dependent

on material supply via erosion (West et al., 2005). Estimates for Mesozoic

continental uplift rates using both strontium isotope models (Berner, 1994)

and sediment abundance data (Ronov, 1993) give low values, perhaps as low

as 0.5 times present day, whilst estimates of the degassing rate are between 1

and 1.5 times present day. With a higher degassing rate and a lower erosion

rate, it may have been possible that CO2 outgassing exceeded the maximum

burial rate via silicate weathering in the Mesozoic, which could perhaps ex-

plain the unexpectedly high CO2 concentration recorded by proxies.

For a simple test of this idea, the Minimal Model is run through the

Phanerozoic with an imposed maximum weathering rate limit. Again the

COPSE nutrient system is used to infer organic burial rates to retain max-

imum predictive power, and the results are compared to a run in which no

transport limit is assumed, roughly equivalent to the original COPSE predic-

tions (Bergman et al., 2004). Figure 4.5.8 shows results when the maximum

weathering rate (Wmax) is fixed at 1.33 times present day. For this run there

is no dependence of Wmax on the erosion rate. It can be seen in panel d

that the global silicate weathering rate for the unmodified model rises above
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the imposed limit at two points in the Phanerozoic, which correspond to pe-

riods of high degassing. When the weathering limitation is imposed, these

periods see rapidly rising CO2 concentration, halted only when the degassing

rate falls sufficiently so that the maximum carbon sink from weathering can

overwhelm the volcanic CO2 source.
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Figure 4.5.8: COPSE model run through Phanerozoic with a fixed
weathering rate limit Black line shows model run with no transport limitation
of weathering, red line shows model predictions when the maximum terrestrial
weathering rate (Wmax) is fixed at 1.33 times present day. Grey lines in panel a
show CO2 proxy data from Royer et al. (2004). The dashed grey line in panel d
shows the assumed transport limited weathering rate.

This treatment is certainly an oversimplification and the predictions do

not line up well with the proxy data, but it serves well to demonstrate the

mechanism in question. Allowing Wmax ≥ 1.5 removes the possibility of

transport limitation occurring and it is likely that Wmax = 1.33 is an unre-

alistically low assumption - the simple calculation in Mills et al. (2011) gave

a value of Wmax ≈ 2.4 for the Phanerozoic.
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In figure 4.5.9 it is assumed that the transport limited maximum weath-

ering rate is influenced by the rate of erosion due to cation supply (West

et al., 2005), i.e. Wmax = ktransport · ε where ε is the relative erosion rate. It

is assumed that erosion rate scales with the uplift rate forcing in the model.

Because of the assumed lower erosion rate in the Mesozoic, a higher, and

more plausible value for the present day transport limited rate (ktransport) now

results in a CO2 spike similar to the previous model runs. The magnitude of

this is very sensitive to the value of ktransport, as carbon dioxide quickly builds

up once the weathering process becomes transport limited. Notice also that

the CO2 spike observed at around 500Ma in the previous model run has not

occurred, this is because although the degassing rate at this time was high,

the uplift rate is also assumed to be high which compensates for the increase.

The timing of the event in this model still does not fit well with the timing

suggested by proxies. The CO2 spike shown by proxy records at ∼ 200Ma

does appear to coincide with a low global uplift rate, but the possibility of a

transport limited global weathering regime can possibly be ruled out based on

evidence for comparatively low degassing rates at this time. The combination

of predicted low uplift rate and high degassing rate at 100Ma can produce

a runaway CO2 event in the model under reasonable assumptions for the

transport limited rate, however an event of this kind is not recorded in the

available proxies for this time (Royer et al., 2004). In addition, the peak

in degassing rate at 100Ma has been questioned by recent estimates of the

spreading rate which utilize the age distribution of the oceanic lithosphere

(Rowley, 2002), these estimates suggest a constant degassing rate for the last

180Ma.
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Figure 4.5.9: COPSE model run through Phanerozoic with a weathering
rate limit dependent on the uplift rate. ktransport is the present day maximum
achievable weathering rate, relative to the actual weathering rate. Grey lines in
panel a show CO2 proxy data from ref (Royer et al., 2004)

This work suggests that a global transport limitation event did not occur

in the Phanerozoic. Such an event would necessarily coincide with a high

degassing rate and low uplift rate. Taking Degassing
Uplift

for the Phanerozoic proxies

returns a substantial maximum at only ∼ 100Ma, which corresponds to the

CO2 spike in the model runs. The proxy data for low CO2 at this time (Royer

et al., 2004) implies that the CO2-weathering feedback was operating, in

which case it would be expected to be operating in the earlier Phanerozoic,

where the quantity Degassing
Uplift

is lower. Assuming a constant degassing rate

for the period 180-0Ma (Rowley, 2002) removes all significant peaks from

the Degassing
Uplift

curve, leaving no implication of a period of global transport

limitation.
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4.6 Chapter summary and discussion

4.6.1 Summary of main findings

1) Transport limitation of the terrestrial weathering process places a

cap on the global rate of carbon burial via silicate weathering. A rough

estimate for the Phanerozoic places this limit at ∼ 2.4 times the present

day rate.

2) The transport limit affects the time taken for climate to stabilize

following a large CO2 perturbation. Assuming that snowball Earth

glaciations terminate via a high-CO2 meltback, the timescale for sta-

bilization is on the order of 107 years, similar to the gap between the

Neoproterozoic low latitude glaciations.

3) It is proposed here that a ∼ 150Myr climatic cooling event operated

over the Neoproterozoic, triggered by the dispersion of the superconti-

nent Rodinia and associated paleogeographical weathering effects, and

was responsible for the sequence of deep glaciations via the transport

limitation mechanism.

4) In this situation the periods between glaciations would be char-

acterised by an unbalanced carbon cycle, excess nutrient delivery and

high rates of organic burial, but it is unclear exactly how this would

have contributed to ocean oxygenation over the Neoproterozoic.

5) It is theoretically possible for the global CO2 degassing rate to exceed

the maximum transport-limited burial rate, triggering run-away CO2

buildup. But it is unlikely to have happened during the Phanerozoic.

4.6.2 Discussion

The snowball Earth scenario represents a 107 year perturbation to global

biogeochemistry, and it seems natural to assume that system recovery would

be on the same timescale. The work in this chapter highlights for the first

time that the warm climate would be expected to persist for tens of millions
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of years following the glacial melt.

The climate and ice sheet dynamics of snowball glaciations have been

the subject of intense scrutiny over the last 20 years (Hoffman et al., 1998;

Leather et al., 2002; Pierrehumbert, 2005; Lewis et al., 2007; Font et al., 2010;

Heron et al., 2011), particularly with the view to establishing the likelihood of

the global biota surviving such an event (McKay, 2000; Vincent and Howard-

Williams, 2000; Knoll, 2003; Pollard and Kasting, 2005). It has also been

proposed that the occurrence of the Neoproterozoic snowball events may have

had a dramatic effect on the evolution of early animals (Knoll and Carroll,

1999). Large scale environmental perturbation would be expected to provide

an ecological opportunity for the survivors (Bartley et al., 1998), and the

environmental selection effects of surviving in refugia during glaciation may

have promoted multicellularity (Boyle et al., 2007).

More critical to the evolution of animals is the global abundance of oxygen

(Catling et al., 2005; Runnegar, 1991), and the oxygenation event over the

Neoproterozoic is proposed to have removed a low-O2 evolutionary barrier

(Canfield et al., 2007; Knoll, 2003). A biota-driven oxygenation has previ-

ously been inferred directly from the large positive excursions in δ13C (Derry

et al., 1992) and apparent high levels of ocean phosphate (Planavsky et al.,

2010; Cook and Shergold, 1984), both of which point to high rates of organic

carbon burial following deglaciation.

The work in this chapter provides a direct link between the termination

of snowball glaciations and long term high-productivity periods. It is sug-

gested that the persistence of rapid (i.e. above steady state) weathering rates

over a ∼ 107 year timescale in the snowball aftermath led to the high global

nutrient concentration and organic burial rates recorded by proxies. Global

abundance of nutrient may have assisted the diversification of biota surviv-

ing the snowball event, and oxygen concentration would be expected to rise

during these periods, however the model used does not include dynamic rep-

resentation of oxygen: the Phanerozoic-based equations break down at the

low O2 concentrations predicted during extreme glaciation. Assuming the

snowball Earth - transport limitation scenario, the expected oxygen concen-

tration throughout the Neoproterozoic would be oscillatory, rather than the

step change inferred from proxies (Scott et al., 2008). A further mechanism

is required to explain the apparent system shift from the low-O2 Proterozoic
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to the high-O2 Phanerozoic (e.g. Lenton and Watson (2004)).

Broadly speaking, the results from this chapter support the existence of

a link between deep glaciation and long-term oxidation. A period of ∼ 107

years of increased oxygen concentration is predicted to follow a snowball

Earth event. A sequence of glaciations with a similar timing to those in

the Neoproterozoic appears in the geological record between 2.4-2.1Ga, and

appears to contain at least one low-latitude event (Papineau, 2010; Evans

et al., 1997; Bekker et al., 2001). These glaciations are synchronous with

Paleoproterozoic oxygenation and have been linked to oxygen rise through

increased delivery of nutrients during regional postglacial thawing (Papineau

et al., 2007) or during a possible snowball aftermath (Harada et al., 2012).

A long 200Myr positive carbon isotope excursion is seen following the glacial

period (Karhu and Holland, 1996), and a shorter 50Myr excursion appears to

follow the final glaciation (Bekker et al., 2006). The findings in this chapter

would imply a long period of oxygenation following the proposed snowball

event, and would suggest a carbon isotope signal similar to the 50Myr peak

described by Bekker et al. (2006). However, timing of the Paleoproterozoic

low latitude glaciation is disputed (Kopp et al., 2005; Hilburn et al., 2005) and

more detail is required for full analysis of the implications of the transport

limitation mechanism. A further limitation is the likely differences between

the early and late Proterozoic carbon cycles (Hayes and Waldbauer, 2006),

making application of the current Phanerozoic-based model difficult.

Here it is shown that the existence of a global weathering rate limit may

explain how the Earth operates under extreme conditions. However, a de-

tailed understanding of the mechanics of the silicate weathering process is

still missing from the models considered in this thesis, the weathering process

can be limited by a combination of local kinetic and tectonic factors (Riebe

et al., 2004; West et al., 2005; Millot et al., 2002; West, 2008), which makes

extrapolation to the global scale difficult.
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5 A model for CO2 and O2 over the

Proterozoic

5.1 Introduction

The simple biogeochemical models explored in this thesis have proved useful

for examining Phanerozoic climate, and whilst they function tolerably well

to investigate mechanisms controlling carbon dioxide and temperature in

the Neoproterozoic, atmospheric oxygen predictions for this time are not

consistent with data. Oxygen concentration over the Proterozoic is presumed

to have been between 10−1 and 10−2 PAL (see section 3.2), but there are

is no consensus as to whether this was a generally stable concentration or

if there was a continuous rise or decline during this period (Kump, 2008;

Canfield, 2005). Changes in carbon and sulphur cycling on the timescale of

109 years may have exerted various controls on oxygen concentration during

this time that are not represented in current Phanerozoic models (Hayes and

Waldbauer, 2006).

The rise in oxygen during the Neoproterozoic is becoming well constrained

but is still poorly understood (Shields-Zhou and Och, 2011), there have been

many suggested causes (e.g. Lenton and Watson (2004); Kennedy et al.

(2006)) but no firm agreement on the dominating processes or specific char-

acteristics. In this chapter the Minimal Model is expanded to include long

term processes between the crust and mantle, with the intention of inves-

tigating both climate and atmospheric oxygen concentration over the last

2Ga.

5.2 Modelling interactions of the mantle with the sur-

face system

In addition to the cycling of carbon and sulphur through the crust, oceans

and atmosphere, longer term ‘deep’ cycles exists between the entire surface

system and the mantle (Walter et al., 2011; Schidlowski, 1989). Oceanic crust

is continually exported deep into the mantle at subduction zones (van der

Hilst et al., 1997), and carbon is transferred from the mantle to the surface at

mid ocean ridges and spreading centres (Saal et al., 2002; Resing et al., 2004),
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accompanied by significant fluxes of iron and sulphur species (Elderfield and

Schultz, 1996; Des Marais, 1997).

5.2.1 Ocean crust carbonatization and long term CO2 stability

The model of Sleep and Zahnle (2001) adds the mantle cycle for carbon to a

simple geochemical system similar to the GEOCARB and COPSE models.

The paper discusses what is potentially a very important stabilising mecha-

nism in the long term cycle - seafloor basalt carbonatization (Francois and

Walker, 1992; Caldeira, 1995). In the terrestrial carbon cycle, the silicate

weathering mechanism acts to stabilise atmospheric CO2 concentration by

transferring carbon from the hydrosphere to the crust (Walker et al., 1981)

and the assumed changes to the weathering process over time drive current

predictions for Phanerozoic CO2 concentration (see chapter 2). Hydrother-

mal carbonatization of basalts (hereafter ocean crust carbonatization (OCC))

occurs when warm seawater flows through the oceanic crust , allowing trans-

fer of carbon from the ocean into the crust, and may be responsible for

production of carbonate veins and disseminated carbonate found in drilling

exercises (Alt and Teagle, 1999).

Sleep and Zahnle argue for a dependence of this process on ocean CO2

concentration that could perhaps be as strong as linear (i.e. FOCC ∝ RCO2)

if reactions were fast and allowed a superabundance of cations (Francois and

Walker, 1992). However experimental evidence places a much weaker depen-

dence on this, the laboratory data of Brady and Gislason (1997) suggests

that FOCC ∝ (RCO2)0.23. Assuming some dependence on CO2 concentration

allows the OCC sink to have negative feedback on hydrospheric concentration

in a very similar way to the silicate weathering flux, providing an additional

stabilising mechanism for the carbon cycle. Note that the high temperature

reaction with fresh mid ocean ridge basalts (MORBs) results in CO2 input

to the ocean rather than a sink (Su and Langmuir, 2003; Saal et al., 2002;

Hayes and Waldbauer, 2006).

Figure 5.2.1 shows the CO2 predictions for Sleep and Zahnle’s model with

respect to parameters α and β, here α is the assumed dependence of OCC on

CO2 concentration and β is the dependence of terrestrial silicate weathering

on CO2 (again following a power-law dependence). Higher values of α result
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in lower predictions for atmospheric CO2 in the Precambrian, as would be

expected due to a stronger negative feedback.

The OCC rate is assumed to scale with the rate of creation of warm crust

(see equation 12 in Sleep and Zahnle (2001)), which has declined over time

(Franck et al., 1999), therefore the feedback on CO2 via this mechanism

would be expected to be stronger in the Precambrian than the Phanerozoic.

It can been seen in figure 5.2.1 that different choices for α produce model

predictions that correlate well for the Phanerozoic, but diverge further back

in time. The results here give a CO2 range of 20-40 PAL at 900Ma when

vascular plant enhancement is considered, very similar to the predictions of

the Minimal Model in this thesis (∼ 30PAL at 900Ma). It is found that

maintaining a warm climate further back in Earth history is possible in this

model, but requires low choices for both α and β.

Figure 5.2.1: Atmospheric CO2 histories from the model of Sleep and
Zahnle (2001). Here α shows the dependence of OCC on CO2 concentration and
β shows the dependence of silicate weathering on CO2. Solid lines show solution
when enhancement of terrestrial weathering by vascular plants is not considered,
dashed and dotted lines show solutions where enhancement by vascular plants is
permitted. Grey line for the Phanerozoic shows results of the GEOCARB model.
Copied directly from Sleep and Zahnle (2001) (fig 12a).

111



5.2.2 Carbon dioxide input at mid ocean ridges, the mantle CO2

cycle, and the growth of the crustal carbon reservoir

Clarification of the input flux of CO2 at mid ocean ridges (Saal et al., 2002;

Resing et al., 2004) has recently allowed for a detailed model of the surface-

mantle carbon cycle over the last 4Ga, which allows for a reconstruction

of crustal carbon accumulation (Hayes and Waldbauer, 2006). The authors

scale mantle CO2 input to the high temperature heat flow at spreading cen-

tres (Lowell and Keller, 2003; Sleep and Zahnle, 2001) and fluxes into the

mantle are calculated from the difference between subduction trench input

(Holser et al., 1988; Bach and Edwards, 2003) and volatile emissions (Hilton

et al., 2002). Figure 5.2.2a shows the estimated time-dependant flux of CO2

from mid-ocean ridges alongside the crustal carbon content.

a

b

Figure 5.2.2: Model results from Hayes and Waldbauer (2006). a.
Mantle-to-crust flux of carbon. b. Total crustal carbon. Both figures copied
from Hayes and Waldbauer (2006)
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Growth of the crustal reservoir occurs because the CO2 input flux exceeds

the export flux of crustal carbon to the mantle. Growth is fastest in early

Earth history and declines as mantle heat flow decreases. The overall redox

balance of the system requires that the build-up of reduced crustal carbon

is coupled with oxygenation of some other species, and the authors suggest

this may have been represented by ferric iron being subducted to the mantle

(based on a maximum increase in mantle oxygen fugacity of 0.3 log units

over the last 3.5Ga (Li and Lee, 2004)). By combining this model carbon

cycle with an organic burial fraction derived from the carbon isotope record

(Hayes et al., 1999; Melezhik et al., 1999) it is possible to estimate the history

of the crustal organic carbon reservoir (see figure 9 in Hayes and Waldbauer

(2006)), but the model does not feature a dynamic oxygen reservoir and so

does not provide predictions for atmospheric O2.

5.3 Model development

The Minimal Model is now expanded following the treatments described

above. Figure 5.3.3 shows a cartoon of the processes involved, figure 5.3.4

shows a more practical (though thoroughly less inspiring) flux diagram.

Figure 5.3.3: Cartoon of Mantle Model. Bubbles show model reservoirs,
arrows represent fluxes, dashed arrows show subduction fluxes.
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The nutrient system from COPSE is used to estimate productivity to

allow prediction of isotope fractionation and organic burial rates based on

the other model variables. The global temperature function follows the RCM

approximation described in the previous chapter (Mills et al., 2011).
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Figure 5.3.4: Schematic diagram of Mantle Model fluxes.Fw represents a
weathering flux, Fm represents a metamorphic/degassing flux, Fb shows a burial
flux, Fs shows a subduction flux, Fi is a mantle input flux and Focc is the ocean
crust carbonatization flux.
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In addition to the Minimal Model fluxes each crustal reservoir is assumed

to undergo subduction to mantle, the ocean crust carbonatization sink is

assumed to transfer CO2 from the ocean/atmosphere box to the crust and

the mantle is assumed to input both CO2 and reduced sulphur. Sulphur

input is modelled as pyrite in order to represent both the sulphur and iron

fluxes observed at ridges (Elderfield and Schultz, 1996) and to fit with the

previous model scheme. Throughout the remainder of this work I will refer to

this as the ‘Mantle Model’, in order to compare to the previously developed

‘Minimal Model’.

5.3.1 Model forcings

The intention is to run this model for the last 2Ga, therefore all the forcings

described in the simple model must be defined for this period, along with any

additional forcings required. The extended forcings for the Mantle Model

are shown in figure 5.3.5, panels a and b show forcings inherited from the

Minimal Model, panel c shows new forcings.

The uplift (U), degassing (D) and solar (S) forcings are extended to 2Ga

following their derivation in chapter 4. The uplift rate scales with the nor-

malised seawater strontium curve of Shields (2005) and degassing rate scales

with the spreading rate approximated by the square of the heat flow. Note

the heat flow used to calculate the spreading rate follows the method used to

approximate CO2 input (Lowell and Keller, 2003; Sleep and Zahnle, 2001).

Phanerozoic biological forcings for weathering enhancement (W), the C-P

burial ratio on land (CPland), burial depth of carbonates (B) and evolu-

tion of plant-environment feedbacks (E) require no extension beyond the

Phanerozoic and are copied directly from COPSE (Bergman et al., 2004).

The weathering enhancement related to the evolution of vascular plants is

taken here as four-fold, following recent GEOCARB models (Berner, 2006a).

Three new forcings are added: Q shows the mantle heat flow, and PW1, PW2

represent possible Precambrian weathering forcings that will be trialled in the

model. For simplicity, and because of the Precambrian focus of the model,

the Q forcing is not altered in the Phanerozoic using sea level inversion data

(Gaffin, 1987) as might be attempted (i.e. Q≈
√

D).

PW1 shows an assumed enhancement to terrestrial weathering kinetics
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during the late Neoproterozoic due to continental dispersal, prevalence of

masses land at low latitudes, and increased area of basaltic provinces (God-

deris et al., 2003; Donnadieu et al., 2004; Li et al., 2008), the magnitude of

this forcing follows Mills et al. (2011) and the work in chapter 3.
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Figure 5.3.5: Mantle Model forcings. a,b. Forcings from the simple model
extended to 2Ga, W = weathering enhancement due to plant evolution, U = uplift,
D = degassing, S = relative solar constant, CPland = C-P burial ratio on land, E
= evolution of land plant climate feedbacks, B = burial depth of carbonates. c.
Additional forcings for Mantle Model. PW1 = possible Neoproterozoic weathering
efficiency increase, PW2 = possible change in biological weathering enhancement
from early land colonisation, Q = relative mantle heat flux.

The PW2 forcing is based on the likely enhancement of weathering due to

the radiation of simple organisms on the land surface during the Neoprotero-

zoic (Heckman et al., 2001; Kennedy et al., 2006). Evidence for microbial
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structures in dry regions is found as early as 1200-1000Ma (Prave, 2002;

Horodyski and Knauth, 1994), fossilised plant spores appear at ∼ 470Ma

(Rubinstein et al., 2010; Wellman and Gray, 2000) and the earliest recorded

land plant fragments are seen in the 460-450Ma Caradoc period (Wellman

et al., 2003). These findings all predate the biotic weathering enhancements

used in the COPSE and GEOCARB models and clearly require some rep-

resentation in a long term model, especially given the power of biotic forc-

ings in current models (Berner, 1997). Land biota mechanically stabilizes

soil profiles and increases fluid residence time (Retallack, 2001) and recent

microcosm experiments using mosses have shown that non-vascular plants

can considerably enhance silicate weathering over background abiotic levels

(Lenton et al., 2012). These experiments produce enhancement factors for

Ca and Mg removal of ∼ 1.5 times on a granite substrate, and 3.6 (Ca) and

5.4 (Mg) times on andesite. For this model the PW2 biotic forcing is taken to

increase linearly over the period 1000-500Ma, representing a two-fold weath-

ering enhancement between the completely abiotic state and the pre-vascular

stage.

5.3.2 Additional flux calculations

The following additional fluxes are defined for the Mantle Model. The naming

of fluxes corresponds to the schematic diagram in figure 5.3.4.

Ocean crust carbonatization (OCC)

Following Sleep and Zahnle (2001), the flux of ocean crust carbonatiza-

tion (Focc) is allowed a dependence on CO2 concentration with a power law

relationship denoted by α, and a dependence on the spreading rate, which is

taken as the square of the heat flux Q (see equation 3.5.3).

Focc = kocc ·Q2 ·
(

RCO2

RCO2(0)

)α
(5.3.1)

where kocc = 1.65 × 1012 mol/yr is the present day rate (Sleep and Zahnle,

2001; Elderfield and Schultz, 1996).

Mantle inputs

The expression for the mantle input of CO2 follows Hayes and Waldbauer

(2006), assuming a present day input rate of kic = 2.2 × 1012 mol/yr and
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scaling with the mantle heat flux.

Fic = kic ·Q (5.3.2)

Input of iron and reduced sulphur at mid ocean ridges is modelled as

pyrite and added to the crustal pyrite reservoir. This treatment is intended

to represent sulphide delivered to the surface as magmatic-hydrothermal ores

(Seo et al., 2009; Gustafson and Hunt, 1975), and the input rate is assumed

to scale with the rate of generation of new crust, Q2.

Fips = kips ·Q2 (5.3.3)

here kips is the present day rate. Estimated values for Fe input are 0.23 −
1.9× 1011 mol/yr and reduced S input of 0.95− 9.6× 1011 mol/yr (Elderfield

and Schultz, 1996). The value of kips is calculated for system stability and

based on these limits.

Subduction fluxes

Rates of subduction to the mantle are assumed to be proportional to the

size of the crustal reservoir and to the global spreading rate:

Fsg = ksg ·Q2 ·
(

G

G0

)
,Fsc = ksc ·Q2 ·

(
C

C0

)
, (5.3.4)

Fsps = ksps ·Q2 ·
(

PYR

PYR0

)
,Fsgs = ksgs ·Q2 ·

(
GYP

GYP0

)
(5.3.5)

assuming a present day rate of loss of C to the mantle of 1.2 × 1012 mol/yr

(Hayes and Waldbauer, 2006), dividing according to the mass of the crustal

reservoirs gives ksc = 1.02×1012 mol/yr, ksg = 1.8×1011 mol/yr. Annual loss

of pyrite sulphur to the mantle is ksps = 3.6× 1011 mol/yr (Canfield, 2004),

assuming the same fraction of total oxidised sulphur is lost gives ksgs =

4× 1011.

5.3.3 Peresnt day steady state calculation

In the COPSE and GEOCARB models, unknown fluxes are calculated such

that the ocean/atmosphere and crustal reservoirs preserve steady state at

present day. A less powerful constraint is applied in this work. It is assumed
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that the atmosphere/ocean reservoirs of oxygen, carbon dioxide and sulphate

are at steady state at present day, but the crustal reservoirs are not forced to

be steady. The size of the mantle reservoirs is not calculated in this model,

as none of the mantle fluxes depend on these values.

Using the constants from the previous model and the newly defined fluxes,

assuming steady state at present day with respect to oxygen yields:

kwg = kbg − kmg + (15/8) ∗ (kbps − kwps − kmps) = 7× 1012mol/yr (5.3.6)

Assuming steady state for present day ocean/atmosphere CO2 results in:

kbc = kwg + kmg + kwc + kmc + kic − kbg − kocc = 1.98× 1013mol/yr (5.3.7)

For the sulphur cycle, the present day burial rates of oxidised and reduced

sulphur are defined and the rates of weathering are calculated for stability.

For simplicity, it is assumed that total rate of sulphur loss to the mantle is

equal to the sulphur input rate, i.e:

kips = ksps + ksgs = 7.6× 1011mol/yr (5.3.8)

This value for S input is close to the maximum value of 9.6× 1011 mol/yr

proposed in Elderfield and Schultz (1996), whilst the assumed Fe input of

3.8 × 1011mol/yr is double the value suggested in the same paper. How-

ever, similar global iron input has been estimated by other authors (e.g.

3 × 1011 mol/yr (Holland, 2006)). Estimates for the present day rate of

pyrite burial range from 0.53− 1.87× 1012 mol/yr (Kump and Garrels, 1986;

Bottrell and Newton, 2006; Arvidson et al., 2006), an average estimate of

kbps = 1× 1012mol/yr is taken. Following COPSE and GEOCARB gypsum

burial is assumed to be double this, i.e. kbgs = 2× 1012mol/yr. This gives a

total S burial rate of 3× 1012mol/yr which is roughly equivalent to the total

continental S weathering flux calculated in Bottrell and Newton (2006). De-

gassing fluxes are taken from GEOCARB, giving kmps = 0.25 × 1012mol/yr

and kmgs = 0.5 × 1012mol/yr. The equation for stability of ocean sulphate

then gives:
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kwgs = ksgs − kmgs + kbgs = 1.1× 1011mol/yr (5.3.9)

kwps = kbps − kmgs + ksgs = 1.15× 1012mol/yr (5.3.10)

These derived wetahering rates fall between previous estimates (kwps:

0.53− 1.79× 1012 mol/yr (Arvidson et al., 2006; Kump and Garrels, 1986),

kwgs: 1 − 2 × 1012 mol/yr (Berner, 1994)) and follow previous models by

assuming steady state of the present day sulphur cycle.

5.3.4 Carbon and sulphur isotope fractionation

As in the simplified Neoproterozoic model, the isotopic fractionation of the

carbon and sulphur reservoirs is calculated at each timestep. Here a different

method is used to improve computational efficiency, instead of explicitly

calculating the number of moles of each isotope, the model calculates the

size of the reservoir multiplied by its δ13C (for carbon) or δ34S (for sulphur)

value (i.e. for the ocean and atmosphere carbon reservoir, A, we require

A × δ13C (A)). This new quantity is then divided by the reservoir size to

obtain results for isotope fractionation. The treatment here follows from the

GEOCARB models (Berner, 2006a, 2009) with the difference that δ13C and

δ34S are predicted rather than used as input.

Hypothesised fractionation effects will be tested in this model using an

ensemble of runs: a constant fractionation effect upon organic burial of car-

bon and sulphur, a variable fractionation during marine carbonate burial

(Bergman et al., 2004; Mills et al., 2011), a constant fractionation effect dur-

ing ocean crust carbonatization (Bjerrum and Canfield, 2004) and a oxygen-

dependent fractionation effect associated with pyrite burial (Berner, 2001).

5.3.5 Starting values for 2Ga

This system has many negative feedback mechanisms that regulate the size

of the ocean and atmosphere reservoirs on a timescale of the order 106 years.

If the starting concentrations for the atmosphere/ocean species are altered,

the model stabilizes within a (typically < 100Myr) spin-up period. To ensure

the system is started from a stable state the model is run twice. The ‘spun
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up’ reservoir sizes for the current parameter configuration are obtained on

the first run, which begins at present day reservoir concentrations, the final

run is then initiated with these as the starting values. The first 100Ma of

model runs are not shown in the figures (model is initiated at 2.1Ga to return

predictions for 0-2Ga). The size of the crustal carbon reservoirs is expected

to rise over time, it is found that recovery of present day values requires G

= 0.65G0 and C = 0.65C0 at 2.1Ga. In the model of Hayes and Waldbauer

the total crustal carbon at 2.1Ga is ∼ 0.6 times present day.

5.3.6 Full model equations

The Mantle Model system is laid out mathematically in the following tables:
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5.4 Model results and comparison to previous study

The Mantle Model is now run from 2.1Ga to present. The model baseline

is subject to the forcings U (Uplift rate), D (degassing rate), S (solar con-

stant), W (weathering enhancement due to vascular plants), B (carbonate

burial depth), CPsea (C-P burial ratio) and Q (mantle heat flow). The de-

pendence on OCC rate on CO2 for the baseline model is α = 0.23 (Brady and

Gislason, 1997), and additional weathering forcings PW1 and PW2 are not

included. Figure 5.4.6 shows the Mantle Model predictions plotted against

the predictions from the previous Minimal Model run for the same time-

frame. Here the Minimal Model is subject to the same forcing set as the

Mantle Model, aside from the heat flow forcing, which does not apply to any

of the calculations in the Minimal Model.

Oxygen concentration is plotted against a range of proxy constraints from

Goldblatt et al. (2006) (supplementary figure 1). This includes paleosol data

(Rye and Holland, 1998), the assumed oxygen demands for fossil fauna (Run-

negar, 1991; Canfield and Teske, 1996) and a lower limit for oxygen concentra-

tion when fossilised charcoal is found (Rowe and Jones, 2000). Phanerozoic

proxy constraints for CO2 are taken from Royer et al. (2004), with Pre-

cambrian constraints from the compilation of Kah and Riding (2007). The

Precambrian proxies are derived from various methods which are denoted by

upper case letters in the figures in which they appear.

The predictions from the Minimal Model (green) show a decreasing trend

in oxygen and carbon dioxide concentration over the last 2Ga, following the

trend shown when this model was run for 900-0Ma in chapter 3. Further back

in time, the solar constant is reduced, which lowers surface temperature and

therefore weathering efficiency. This requires higher CO2 to stabilize the sys-

tem via the silicate weathering feedback (Walker et al., 1981). The degassing

rate continuously rises further back in time, requiring more CO2 to be buried

via weathering to stabilize the system, which requires a higher global weath-

ering rate and therefore more CO2 residing in the ocean/atmosphere box.

Due to higher weathering rates, ocean nutrient concentration is predicted to

exceed the present day concentration in the Paleoproterozoic, resulting in

atmospheric oxygen concentration around present day levels at 2Ga.
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Results for the Mantle Model (black) show a notable response to the ad-

ditional processes included, differing considerably from the Minimal Model.

The ocean crust carbonatization flux provides an additional sink for CO2,

and because the rate of carbon removal is linked to the spreading rate, the

sink becomes more powerful further back in time. A larger carbon sink in

the ocean acts to counter the higher CO2 degassing rate, requiring less re-

moval of carbon by terrestrial silicate weathering. Predictions for CO2 from

the Mantle Model fit well with proxies for the Paleoproterozoic but do not

replicate the expected low CO2 and temperature in the Neoproterozoic.

In the Minimal Model, high global weathering rates in the Precambrian

result in ocean nutrient concentration markedly higher than present day and

result in prediction of high oxygen concentration (0.25-1 PAL) over the Pro-

terozoic. In the Mantle Model, CO2 removal via OCC results in lower rates

of terrestrial weathering and less nutrient is delivered to the surface ocean.

The Mantle Model predicts a fairly stable nutrient concentration through the

Proterozoic, at levels close to the present day. The resulting oxygen predic-

tion is 0.1-0.2PAL for the period 2000-400Ma. Stability of Proterozoic O2

and CO2 is a result of the dependence of both the degassing rate and OCC

rate on the global spreading rate. A higher degassing rate requires that more

carbon be buried to stabilise the system, resulting in the high-O2 solution in

the Minimal Model. In the Mantle Model, an equally enhanced OCC rate

provides a sink for the additional carbon which does not require elevated

productivity.

The oxygen prediction from the Minimal Model does not violate the ma-

jority of the proxy data shown in figure 5.4.6a, but there is no evidence for

oxic deep oceans until the Neoproterozoic (Canfield et al., 2008), and this

would be expected under present day oxygen concentration. Furthermore,

carrying on the trend of increasing heat flow further back in time would in-

dicate higher than present day oxygen concentrations for the Archean. It is

agreed from multiple lines of evidence that before the great oxidation event at

around 2.4Ga the concentration of atmospheric oxygen must have been sev-

eral orders of magnitude lower than at present day (Holland, 2006; Farquhar

et al., 2000). Oxygen predictions from the Mantle Model baseline fall within

the 0.01-0.2 PAL window that is considered compatible with the majority of

proxies (Canfield, 2005; Kump, 2008).
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Resolving temperature predictions from the current model is difficult. In

the early Proterozoic the CO2 predictions line up well with proxy data (Kah

and Riding, 2007), however the predicted global temperature would imply

global glaciation, for which there is no evidence after 2.1Ga (Kirschvink et al.,

2000). Previous modelling has also shown these low CO2 estimates to be

difficult to reconcile with temperate climate (Kasting, 1987). It has been

suggested that an increased atmospheric methane inventory may account

for the additional required warming in the Proterozoic, a mechanism that

is plausible considering the assumed low oxygen concentration and likely

enhanced anaerobic productivity (Kah and Riding, 2007; Pavlov et al., 2003).

In the model runs shown there is no consideration of the Neoproterozoic

continental breakup episode and resulting temperature and CO2 predictions

for the Neoproterozoic are higher than suggested by both CO2 and glacial

proxies

5.5 Effect of the strength of the OCC-CO2 feedback

The additional ocean crust carbonatization (OCC) sink for CO2 has a dra-

matic effect on how we might interpret the Proterozoic Earth system relative

to the Phanerozoic. In the Mantle Model, the strength of the OCC flux is

related to CO2 concentration using the α parameter: FOCC ∝ (RCO2)α (in

the baseline results above, α = 0.23 (Brady and Gislason, 1997), but this

value is extremely difficult to measure, and in reality the process is much

more complex than a simple power law relationship (Sleep and Zahnle, 2001)

and requires further study). It is likely that the OCC flux may constitute

perhaps a much weaker, or stronger feedback on CO2 than current estimates.

Figure 5.5.7 shows the results of allowing different values of α in the Mantle

Model.

Allowing α = 0.4 (blue lines) strengthens the relationship between CO2

concentration and OCC rate. Because Proterozoic CO2 concentrations are

predicted to be significantly higher than present day, a larger value for α

results in a generally more powerful OCC flux, as in the model of Sleep and

Zahnle (2001). With OCC removing a larger fraction of ocean/atmosphere

carbon, colder temperatures are predicted than the baseline model, and less

of the total carbon burial occurs via terrestrial weathering. In the Mantle
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Model this results in predictions for lower nutrient and oxygen concentrations

throughout the Proterozoic. The ocean phosphate reservoir is predicted by

the model to be around 80% of the present day size at 2Ga, somewhat higher

than the 10-25% suggested by an analysis of the phosphorus and iron content

of banded iron formations from this time (Bjerrum and Canfield, 2002). Oxy-

gen concentration for this run is predicted to rise from 0.03PAL to 0.2PAL

over the proterozoic as terrestrial weathering begins to take over from OCC

as the dominant carbon removal pathway, coupled with a decrease in the

input rate of reduced sulphur and iron, which scales with Q2. Choosing

α > 0.4 would imply lower rates of terrestrial weathering, nutrient delievery

and oxygen production, especially in the Paleoproterozoic where the OCC

flux is stronger. However, oxygen concentration below 10−3 causes the model

to break down under these circumstances.

When α is set to zero (red line), the OCC flux is no longer dependent on

carbon dioxide concentration and is therefore a much weaker sink for CO2

throughout the model run. The results become closer to the predictions of the

Minimal Model (fig 5.4.6), as the silicate weathering flux is responsible for the

majority of carbon burial. However, oxygen is relatively stable throughout

the Proterozoic and < 0.4PAL, offering a better fit to proxy data than the

Minimal Model. Higher CO2 and temperature in the α = 0 case show a more

plausible link to the lack of glaciation between 2-1Ga, however predicted

global temperature is still lower than would be expected for a ice-free world.

As in the model of Sleep and Zahnle (2001) the sensitivity analysis with

respect to α gives CO2 predictions that noticeably diverge around 500Ma, and

are dramatically different by 2Ga. Paleoproterozoic CO2 predictions from the

Mantle Model are somewhat lower than in the model of Sleep and Zahnle

for the same value of α, one reason for this is that the authors of the study

assume a more conservative weathering enhancement due to vascular plants,

which leads to stronger terrestrial weathering fluxes before their evolution

than in the Mantle Model. Additionally, the Mantle Model includes a more

complex treatment of runoff and uplift rates, which both act to increase the

predicted weathering rates, meaning that less CO2 is required for steady

state.
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Figure 5.5.7: Mantle Model baseline for different values of α Coloured
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oxygen concentration. Paleosol data (Rye and Holland, 1998) are shown as grey
circles with arrows to distinguish between a minimum or maximum estimate. Grey
horizontal lines show assumed faunal requirements (Runnegar, 1991; Canfield and
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oxygen required by the existence of fossil charcoal. Proxy figure from Goldblatt
et al. (2006). b, relative ocean/atmosphere CO2 concentration. Grey shaded
areas represent estimates for CO2 concentration from paleosol data (A) (Sheldon,
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compilation of proxies (Royer et al., 2004). Grey circles with arrows show upper
and lower bound estimates from composition of fossil acritarchs (B) (Kaufman
and Xiao, 2003) and cyanobacteria (C) (Kah and Riding, 2007). c, average global
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colour.
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5.6 Inclusion of additional weathering forcings

The Mantle Model baseline is still very simple, but provides reasonable pre-

dictions for long term climate over the Proterozoic given the uncertainty in

the key parameter, α. However there are disagreements between model tem-

perature and proxies for both the early and late Proterozoic, these may be

addressed with Precambrian weathering forcings PW1 and PW2.

The forcing PW1 represents enhancement of terrestrial weathering be-

tween 750-600Ma due to continental configuration and dispersion (Li et al.,

2008; Donnadieu et al., 2004), as has been added to previous models in this

thesis (Mills et al., 2011). PW2 represents an assumed two-fold rise in conti-

nental weathering efficiency over the Neoproterozoic as the land is colonised

by a photosynthetic biosphere. The assumed weathering rate enhancement

here is based somewhat on the laboratory results of Lenton et al. (Lenton

et al., 2012) and chosen as a benchmark for model testing. Details of the ex-

act timing and nature of land colonisation as well as the effect on weathering

rates and the carbon cycle are hotly debated (Kennedy et al., 2006; Knauth

and Kennedy, 2009; Lenton and Watson, 2004; Lenton et al., 2012; Prave,

2002). Both weathering forcings are shown in figure 5.3.5. Model predictions

when both new forcings are present are shown in figure 5.6.8. The blue line

now shows α = 0.3 rather than α = 0.4 to avoid model break-down under

low O2.

The effect of the continental position weathering enhancement PW1 on the

Mantle Model, as in the previous models where it is applied, is to reduce CO2

and temperature over the time it is applied. Enhanced weathering between

750 and 600Ma increases CO2 drawdown via silicate weathering until a lower

temperature is reached under which the carbon cycle is balanced. Unlike

the previous models, a weathering enhancement of this magnitude does not

cause sufficiently low temperature (Hoffman and Schrag, 2002) to directly

imply low-latitude glaciation (Donnadieu et al., 2004). This is due to the

addition of the PW2 forcing, which invokes the assumption that terrestrial

weathering at 750-650Ma was weaker than the early Phanerozoic.
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mate. Grey horizontal lines show assumed fanual requirements (Runnegar, 1991;
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surface temperature plotted against the glacial record from this work (where the
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flux. e, ocean phosphate reservoir. f rate of burial of organic carbon. Original in
colour.
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The formulation of the model allows for an increase in nutrient concentra-

tion over the PW1 period. This is because the assumed climate dependence

for carbonate and silicate weathering is different (Berner, 1994), meaning

that the ratio of the two types of continental weathering is different under

different temperatures, altering nutrient delivery (Bergman et al., 2004; Van-

Cappellen and Ingall, 1996). If instead it is assumed that nutrient delivery

scales with the bulk terrestrial weathering flux, nutrient concentration (and

therefore oxygen) would rise when the forcing was applied, but fall back to

the initial state once the climate had stabilized. When the forcing is removed

at 600Ma the system recovers to match the unforced system shown in the

previous figure.

The land colonisation forcing PW2 describes a gradual enhancement of

terrestrial weathering from 1000-500Ma as the land surface becomes domi-

nated by photosynthetic organisms. The effect in the model is to increase

predicted CO2 concentration and temperature for all time before the colonisa-

tion event is complete, as is seen in the Phanerozoic models for the evolution

of vascular plants (Berner, 1991). Assuming a forcing such as this increases

predicted Paleoproterozoic temperature to better fit the glacial record. How-

ever, Mesoproterozoic CO2 is now considerably higher than proxy data would

suggest. Assuming an earlier establishment of land-based ecosystems (e.g.

1.1Ga (Sheldon and Hren, 2012)) would shift the associated temperature

drop further back in time. For α > 0 the model now predicts a gradual rise

in nutrient and oxygen concentration over the land colonisation period (1000-

500Ma) in addition to the peak between 750-600Ma. This is because further

reduction in the efficiency of continental weathering (before PW2 is applied)

pushes the weathering balance more in favour of ocean crust carbonatization,

resulting in less nutrient delivery. For all choices of α, the Proterozoic oxygen

window is predicted as O2 < 0.3PAL.

Climate forcings due to continental position, dispersion and the super-

continent cycle (Hawkesworth et al., 2010) have existed throughout Earth

history, but are difficult to quantify. The current representation simply ex-

presses an expected peak in this forcing in the Neoproterozoic, but it is likely

that climate, specifically atmospheric CO2 and temperature, has been tightly

coupled to tectonic events over the last 3Gyr. Atmospheric methane concen-

tration has also likely contributed to global temperature (Pavlov et al., 2003)
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and affected oxygen concentration (via methane oxidation and hydrogen es-

cape to space (Watson et al., 1978; Catling et al., 2001; Claire et al., 2006))

over Earth history.

5.7 Summary of the effects of weathering pathways on

CO2 and O2 predictions

Despite uncertainties in the tectonic and biological forcings, and the omis-

sion of methane from this model, some conclusions can be drawn regarding

Proterozoic climate:

Addition of the ocean crust carbonatization (OCC) flux to the model re-

sults in a new pathway for CO2 removal that is unlike the silicate weathering-

carbonate deposition process - OCC does not deliver phosphorus to the

oceans (Wheat et al., 2003; Paytan and McLaughlin, 2007). The effect of

the addition of the OCC flux is to decouple the CO2 removal rate from the

nutrient delivery rate, so that assuming a strong OCC flux leads to signifi-

cantly lower predictions for ocean nutrient and oxygen concentration. The

previous Minimal Model predicted roughly present day levels of oxygen in

the Paleoproterozoic because the only CO2 sink was terrestrial weathering.

The higher degassing rate requires that more carbon be buried globally, and

to do this by increasing only terrestrial weathering rates resulted in nutri-

ent delivery rates higher than the present day. The dependence of OCC on

the global spreading rate acts to counteract the higher degassing rate in the

Mantle Model.

The assumed dependence of ocean crust carbonatization on CO2 concen-

tration (α) is a very important model parameter, effectively controlling the

relative strength in the model of the OCC flux. The stronger the OCC flux,

the more carbon is buried this way, shifting the balance of carbon removal

to include less terrestrial weathering. Therefore a stronger OCC flux results

in lower ocean nutrient, productivity and oxygen. CO2 concentration is also

reduced because the enhanced OCC flux requires less CO2 in the oceans to

balance the carbon cycle (Sleep and Zahnle, 2001).

Additional reductions in the efficiency of continental weathering due to

the absence of even simple land biota before the Mesoproterozoic leads to

very low oxygen predictions for this time, as the removal of CO2 is domi-
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nated by the OCC flux. Assuming a dependence of the OCC flux on CO2

concentration (Brady and Gislason, 1997), a gradual increase in the oxy-

gen content of the atmosphere is predicted over the Proterozoic. Looking

further back to the Archean, the increase in mantle heat flux and further

decrease in continental area would lead to even lower oxygen predictions in

this model, suggesting that the 2.4Ga great oxidation event (Sessions et al.,

2009) may have been caused by increasing ocean primary productivity due

to the emerging terrestrial weathering sink (Hawkesworth et al., 2010) for

carbon and the associated increase in nutrient supply. A gradual increase in

primary productivity (Goldblatt et al., 2006) has been shown as sufficient to

cause the observed step change in oxygen concentration, which is expected

to occur due to positive feedback between O2 and CH4 concentration during

the formation of an ozone layer (Claire et al., 2006).

5.8 Long term carbon and sulphur cycling between the

crust and mantle

The weathering forcings PW1 and PW2 are included in the model for the

remaining figures in this chapter. As seen in Hayes and Waldbauer (2006), on

which this model is based, carbon steadily accumilates in the crust over time

due to the imbalance between carbon input from the mantle and carbon

subduction. The total size of the crustal carbon reservoir in the Mantle

Model is shown in figure 5.8.9b, closely following the results of Hayes and

Waldbauer (which are shown in figure 5.2.2).

The simple sulphur cycle used in the model closely links ocean sulphate

levels to oxygen concentration by assuming that sulphate input to the ocean

through oxidative weathering of rocks containing reduced S is controlled by

atmospheric O2 (Bergman et al., 2004). Removal of ocean sulphate via anaer-

obic microbial reduction and eventual burial as pyrite is also assumed to

depend on oxygen concentration, in this case via an inverse relation to the

sulphate sink rather than a direct relationship to the sulphate source, thus

strengthening the link. The result in the model is a prediction for relative

ocean sulphate that very closely follows the predictions for relative O2. The

relative abundance of crustal oxidised sulphur (modelled as gypsum) also

follows closely the predictions for relative oxygen concentration, as burial of
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gypsum is a strong function of sulphate concentration.

Predicted sulphate concentration is shown alongside previous results from

sulphur isotope modelling (Kah et al., 2004) (A) and Phanerozoic proxy data

(Horita et al., 2002; Hardie, 1996) (B,C). The best match to the Precambrian

sulphur isotope model (A) is achieved for high values of α, i.e. a strong ocean

crust carbonatization flux.
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Figure 5.8.9: Sulphur reservoirs and crustal carbon accumulation in
the Mantle Model. For all panels, coloured lines represent different choices of
α. a, ocean sulphate concentration. Grey lines show predictions for Precambrian
sulphate concentration from a model for sulpuhr isotope change (denoted A) (Kah
et al., 2004), Phanerozoic sulphate estimated via analysis of fluid inclusions in
marine halite (B) (Horita et al., 2002) and by the assumed mixing between river
water and hydrothermal brines (C) (Hardie, 1996; Spencer and Hardie, 1990). b,
total crustal carbon. c, relative crustal pyrite content. d, relative crustal gypsum
content.
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Further sulphur isotope modelling by Canfield and Farquhar (2008) gives

a ‘best guess’ ocean sulphate concentration of ∼ 1mM for the Proterozoic

(Canfield and Farquhar, 2008), similar to the model results for 2Ga but

considerably lower thereafter. Agreement with Phanerozoic proxies is rea-

sonable, although there is a large discrepancy between the model and proxies

in the Mesozoic, as with the previous COPSE model (Bergman et al., 2004).

The model predicts that crustal abundance of reduced sulphur (modelled

as pyrite) would be stable at around double the present day value for the Pro-

terozoic, due to enhanced burial and reduced oxidative weathering. There is

little available data to suggest how crustal sulphur abundances have changed

during the last 2Ga, however the predicted trend of an increasing oxidised

sulphur reservoir, and decreasing reduced sulphur reservoir seems reasonable

given the proposed oxygenation scenario. The model of Canfield (2004) for

the mantle sulphur cycle predicts a surface sulphur reservoir between 0.5-2

times the present day size at 2Ga, similar to the model here which predicts

a surface sulphur reservoir 1-2 times the present day size at 2Ga.

5.9 Predicted stable isotope fractionation

5.9.1 Carbon isotopes

The top row of figure 5.9.10 shows model predictions for the ratio of organic

carbon burial to total carbon burial (termed the ‘f’ ratio) for different choices

of α. As expected, higher values of α cause the f-ratio to become lower further

back in time: reduced ocean nutrient and therefore productivity results in

a smaller fraction of total carbon burial occurring organically. The lower

panels show the corresponding δ13C of new carbonate, plotted against data

from Veizer et al. (1999) and Shields and Veizer (2002). In figure 5.9.10, four

model runs are shown for each choice of α, allowing for a range of assumed

fractionation effects to be considered, these are listed in the following table.
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Run Fluxes with fractionation effects δ13C (C) at model start

1 ocb -2 h

2 ocb, ccb -2 h

3 ocb, ccb, occ -2 h

4 ocb, ccb, occ 0 h

Table 15: Assumed fractionating processes for carbon in the Mantle Model. ocb
= organic carbon burial, ccb = marine carbonate carbon burial, occ = ocean crust
carbonatization.

In run 1 the fractionation of carbon is assumed to occur only via organic

carbon burial, which is assumed to impart a fractionation of -27h relative to

the atmosphere/ocean reservoir. Added to this in run 2 is the temperature

and CO2 dependent fractionation on carbonate burial assessed in COPSE

(Bergman et al., 2004) and in Mills et al. (2011). In run 3, a fractionation

effect is also added to the ocean crust carbonatization flux, following Bjerrum

and Canfield (2004) and taking a maximum estimate, we allow carbon buried

via OCC to be 7h lighter than the ocean/atmosphere. The crustal carbonate

carbon reservoir, C, holds around 80% of global carbon and therefore the

assumed isotopic composition of C at model start will buffer atmospheric

δ13C considerably.

In runs 1-3, the model is initiated with δ13C (C) = −2, which is the steady

state value for run 1 and α = 0. However, data show a large positive δ13C

excursion in the period 2.3-2Ga (Bekker et al., 2006), directly preceeding

model startup. It is therefore likely that the crustal carbonate reservoir may

have been buffered by this burial of isotopically heavy carbon. To test this

we allow δ13C (C) = 0 at model startup in run 4, which also includes the

isotopic modifiers from run 3. The runs produce a range of possible δ13C

predictions from the same biogeochemical system, illustrating the difficulties

(Bjerrum and Canfield, 2004) in determining system characteristics, such as

organic carbon burial (Berner, 2001), from isotopic proxies alone.
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Figure 5.9.10: Mantle Model predictions for carbon isotope fraction-
ation. As before red lines indicate the α = 0 model run (a,b), black for the
α = 0.23 run (c,d) and blue for α = 0.3 (e,f). Organic fraction of carbon burial
(termed the ‘f’ ratio) is shown in the upper panels. The lower panels show the
resulting range of δ13C predictions, dependent on various fractionation parame-
ters: solid line shows results with a constant fractionation effect for organic carbon
burial and no other fractionation, the dashed line adds to this a fractionation effect
for marine carbonate burial (Bergman et al., 2004), dash-dot line adds a further
fractionation effect to the OCC flux (Bjerrum and Canfield, 2004) and dotted line
adds also a fractionation effect due to previous isotope reservoir dilution. See text
for full description of fractionation effects. Grey dots show the data of Veizer et al.
(1999) and of Shields and Veizer (2002).

For run 1, δ13C predictions are negative for the period 2-0.5Ga for all

values of α, largely inconsistent with the data. This highlights the apparent

paradox that significantly lower biological productivity on the Early earth
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is not permitted by the apparent stability of the δ13C record (Schidlowski,

1988; Catling et al., 2001; Kump et al., 2001). When the additional frac-

tionation processes are considered, each has the effect to increase model δ13C

predictions. In run 2 the increase is caused by increased fractionation of

buried carbonates under high CO2, as in Mills et al. (2011).

If ocean crust carbonatization is assumed to impart a fractionation effect

(Beukes et al., 1990; Kaufman et al., 1990) (run 3 and 4), choosing a high

value of alpha leads to δ13C ≥ 0 throughout the Proterozoic. The δ13C

‘envelope’ produced for each choice of α is broadly consistent with the proxy

records, showing that the impact of various fractionating processes is a key

uncertainty, and indeed may allow for very low organic carbon burial rates

in the Proterozoic, as discussed by Bjerrum and Canfield (2004). Whilst

the uncertainty in these mechanisms means that accurately modelling δ13C

variation is difficult, the figure shows that the current model is not necessarily

falsified by the predictions for isotopic fractionation.

This model does not reproduce high positive carbon isotope fractionation

in the Neoproterozoic era, as there is no inclusion of snowball Earth events,

which would likely cause long-term positive isotopic excursions in their af-

termath (Mills et al., 2011). The inclusion of oxygen in this model means

that a snowball Earth environment cannot be maintained, O2 concentration

quickly falls below the model lower limit on the glaciated Earth. Maintaining

a model biosphere during a ‘hard’ snowball glaciation is a future challenge

both for biogeochemical models and for the snowball Earth hypothesis.

5.9.2 Sulphur isotopes

Figure 5.9.11 shows model predictions for seawater sulphate δ34S, alongside

the fraction of sulphur that is buried as pyrite, denoted the ‘fs - ratio’. Burial

of pyrite is assumed to decrease with decreasing nutrient availability, but is

also assumed to increase in low oxygen conditions, therefore choice of α

has only a small impact on the sulphur burial ratio for most of the model

timeframe.
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Figure 5.9.11: Mantle Model predictions for sulphur isotope fractiona-
tion. Red lines indicate the α = 0 model run (a,b), black lines show the α = 0.23
run (c,d) and blue lines show α = 0.3 (e,f). Fraction of sulphur that is buried as
pyrite (here called the ‘fs’ ratio) is shown in the upper panels. Lower panels show
the resulting range of δ34S predictions under either a constant fractionation effect
for sulphide burial, or under an oxygen-dependent fractionation with parameter
n (see text). Grey lines show proxy constraints reproduced from Canfield (1998);
Canfield and Teske (1996), with the two lines representing a 5h uncertainty.

Canfield (2004) calculates the expected fractional pyrite burial from the

isotopic records of both seawater sulphate and sedimentary pyrite, concluding

that the fraction of sulphur buried as pyrite must have been between 0.5

and 1 during the Proterozoic. This rough estimate is reproduced by the

model. The lower panels in figure 5.9.11 show the corresponding predictions
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for δ34S with respect to the assumed fractionation parameter, n, against

results when the fraction effect is held constant (here δS = 40h). Here,

as in the GEOCARB models, n represents the effect of changing oxygen

concentration on the observed fractionation between seawater sulphate and

buried pyrites: δS = 35 (RO2)n (Berner, 2001, 2006a). This is based on

observed high fractionation with increased oxygen, which has been related

to further fractionation of reduced material during the oxidative sulphur cycle

(Canfield and Teske, 1996; Jorgensen, 1990; Canfield and Thamdrup, 1994).

Sulphur isotope fractionation is very sensitive to the n parameter, leading

to extremely low δ34S predictions for high values of n. A vague fit to the proxy

data can be achieved by assuming n=0.1, but this is very far from the n=1.5

used in the work of Berner (2001), which produces incompatible results in

this model due to the predicted low oxygen concentration for the Proterozoic.

Admittedly the sulphur system used in this model clearly requires improve-

ment to correctly represent Proterozoic climate, but the massive uncertainty

is sulphur fractionation effects over time makes falsification via predicted

δ34S difficult.

5.10 Chapter summary and conclusions

5.10.1 Summary of important findings

1. Extrapolating the simple carbon, sulphur and nutrient ‘Minimal

Model’ used in the previous chapters further back through the Pro-

terozoic gives predictions for high O2 throughout the eon, increasing

more the further we go back, violating multiple proxy evidence for low

O2. This is because the assumed higher degassing rates require that

burial must rise to stabilise the system, resulting in increased organic

burial and oxygen production.

2. Addition of the Ocean crust carbonatization (OCC) carbon removal

pathway in the Mantle Model provides a sink for CO2 that does not

transfer nutrients to the surface ocean, therefore allowing total carbon

burial to be high enough to stabilise the system with a much lower

organic carbon burial rate and therefore lower O2 production flux. The

result is a predicted Proterozoic oxygen concentration window of 10−3-
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3× 10−1PAL, consistent with the majority of proxies.

3. Specific predictions for O2 and CO2 depend greatly on the assumed

relationship between OCC and oceanic CO2 concentration (α), which

is poorly constrained. The predicted O2 trend for all values is between

stability and a gradually increasing concentration over the Proterozoic.

Allowing some dependence of OCC rate on CO2 concentration, as well

as additional terrestrial weathering forcings, results in a clear O2 rise

over the Eon. CO2 predictions for the Mesozoic are consistently higher

than some proxies suggest, however the low concentration inferred from

these proxies would imply glaciation (Kasting, 1987), for which there

is no evidence.

4. The model predictions for ocean sulphate, crustal sulphur species

and the fractionation of carbon and sulphur stable isotopes are rea-

sonable when compared to the limited proxy information available and

therefore do not falsify the model. However, explicit representation of

anoxygenic photosynthesis and microbial sulphate reduction is required

for a more complete view of the Proterozoic sulphur cycle.

5.10.2 Conclusions

The key finding of this chapter is that the change in dominant carbon removal

pathways over Earth history, which has been well described and modelled

(Sleep and Zahnle, 2001; Hayes and Waldbauer, 2006), would be expected

to restrict nutrient delivery by terrestrial weathering over the Proterozoic.

Despite higher carbon degassing rates, model predictions for total organic

carbon burial are 25 − 75% of the present day rate. The fraction of car-

bon buried organically (the f-ratio) is 0.1-0.15, resulting in predictions for

atmospheric O2 concentration that agree well with current proxy estimates.

Low carbon burial rates in earlier Earth history have previously been in-

ferred directly from the isotope record. Bjerrum and Canfield (2004) assumed

that a fraction, λ, of carbon removal from the surface system occurs in the

deep ocean. Taking into account the isotope fractionation effect likely to be

imparted by this burial pathway (Beukes et al., 1990), the f-ratio is calculated
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from the geological record of carbon δ13C and is found to have increased sig-

nificantly over time. The work here compliments this approach by showing

that a simple process-based biogeochemical model predicts a low and very

similar average f-ratio over the Proterozoic. The isotope fractionation effect

associated with ocean crust carbonatization here allows for the model to out-

put to agree well with the geological δ13C record, however agreement is still

fair in its absence providing other fractionation effects are considered.
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6 Thesis conclusions

In this chapter I first list the key findings of the thesis, then briefly inves-

tigate some ideas linking the two main themes of weathering pathways and

material limits. Limitations of the current modelling approach are then dis-

cussed, followed by details of model improvements and extensions, and some

discussion of the wider context of the work.

6.1 Main findings

• The current generation of Phanerozoic biogeochemical box mod-

els: GEOCARB (Berner, 2006a), COPSE (Bergman et al., 2004) and

MAGic (Arvidson et al., 2006) are reduced to a single robust, modular

system that allows application to Neoproterozoic climate (the ‘Minimal

Model’). The methods for calculating atmospheric oxygen concentra-

tion in the Phanerozoic are found to give unreasonable results when

applied to the Precambrian.

• The time taken for global temperature to stabilize after a snowball

glaciation should be on the order of 107 years, roughly matching the

interval between deep glaciations in the Neoproterozoic. Therefore it is

proposed that the geological record for the late Neoproterozoic shows

a system that is oscillating around a global steady state temperature

which is below the threshold for low-latitude glaciation.

• Snowball Earth events, as traditionally described (Hoffman et al.,

1998), should be followed by prolonged (> 107 yr) periods of carbon

cycle disequilibrium, in which enhanced nutrient delivery and carbon

burial would be expected to maintain elevated oxygen concentrations.

This may have important applications to the apparent oxygen rises

at 2.4Ga and 0.58Ga, both of which are loosely associated with low-

latitude glaciation, however the mechanisms here suggests a lengthy

perturbation rather than a stepwise system change.
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• Carbon removal via the seafloor weathering pathway, and its link

to the mantle heat flux, provides a mechanism for increasing oxygen

concentration over Earth history: The fraction of global carbon burial

that occurs on the seafloor is expected to have decreased over time

(Bjerrum and Canfield, 2004; Sleep and Zahnle, 2001), and it is shown

that this would be expected to cause a compensatory rise in terrestrial

weathering, hence nutrient delivery and productivity. Coupled model

predictions for Proterozoic O2, CO2, temperature and sulphate levels

fall within or close to the limits imposed by various geological proxies.

6.2 Linking weathering pathways and transport

limitation

Long term global weathering fluxes have been the key focus of this thesis.

It has been shown that both changes in dominant weathering pathways, and

consideration of material-transport limitations on terrestrial weathering may

be able to explain important features of the geological record. In this section,

some synthesis of these two key findings is attempted.

6.2.1 Effect of OCC pathway on post-snowball CO2 removal

The model used to demonstrate the effect of transport limitation of terrestrial

weathering on snowball Earth recovery times (Chapter 4) did not include the

ocean crust carbonatization (OCC) flux, and it has been suggested (West,

2011) that this additional sink for CO2 may make significant differences to

the stabilization times shown in figure 4.2.2. The important question here is

that of the maximum possible global OCC rate, hereafter Wmax(OCC), which

alongside the calculated maximum terrestrial rate Wmax(terrestrial), may

constrain the total abundance of material for weathering. This is extremely

difficult to quantify, as it is currently uncertain whether present day OCC

rates are limited by material transport or reaction kinetics (Sleep and Zahnle,

2001). A representation of the OCC flux is added to the model used in

Chapter 4, and follows the form used for this flux in the Mantle Model:
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Focc = kocc ·Q2 ·
(

RCO2

RCO2(0)

)α
(6.2.1)

where kocc = 1.65×1012 mol/yr is the present day rate (Sleep and Zahnle,

2001; Elderfield and Schultz, 1996). As with the model solar flux, the heat

flux, Q, is held at the value for 650Ma. The rate of present day silicate

weathering in the model is reduced to maintain present day carbon cycle

balance under the assumed OCC flux.

Figure 6.2.1 shows the time taken for the model system to stabilize fol-

lowing a 0.3atm CO2 perturbation against the terrestrial weathering rate

limit Wmax(terrestrial). The two panels show different choices of α, red lines

show solution under different maximum OCC rates, the black line in each

panel shows the original model results from Chapter 4, where OCC was not

considered. For the α = 0.23 case (panel a), little variation is shown under

the addition of the OCC flux, despite consideration of a large upper limit.

In this panel, the results for Wmax(OCC)=5 and Wmax(OCC)=10 plot over

each other, indicating that the OCC rate in the model does not reach 5 times

the present day rate, even under 0.3atm CO2. Panel b allows a more pow-

erful dependence of the OCC rate on atmosphere/ocean CO2 concentration,

α = 0.5. Here it can be seen that the OCC flux reaches a maximum rate

of 5-10 times the present day, and assuming this rate can be maintained

for millions of years (i.e. Wmax(OCC)>5), acts to reduce the stabilization

times as suggested. However, even at this rate, stability times for D = 1 are

≥ 7× 106 years, and are increased under a higher estimate of the degassing

flux, as would be expected in the Neoproterozoic.

Because the OCC flux buries several times less carbon than terrestrial

weathering, a powerful dependency on CO2 concentration is required for this

pathway to significantly alter the timeframe for CO2 drawdown following

a snowball Earth glaciation. In addition to this, it must be assumed that

material limitation of this process allows for a ≥ 5 fold increase in this flux

to be maintained over a > 106 year timescale. Both of these requirements

are currently very uncertain, and available laboratory data constraining the

CO2-OCC relationship (Brady and Gislason, 1997)(panel a) suggests that it

is insufficiently strong to significantly change the results of the original study,

even when no upper limit is assumed. The conclusions from the original work
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therefore remain unaltered, as timescales for system recovery above 107 years

are still observed under a wide range of assumptions for the degassing rate

and Wmax(terrestrial), even with the addition of an extremely strong OCC

flux.
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Figure 6.2.1: Post-snowball stabilization time versus maximum terres-
trial weathering rate, Wmax(terrestrial). An initial CO2 concentration of
0.3 atmospheres is assumed, and the global terrestrial weathering rate is fixed at
Wmax(terrestrial). The three red lines show different choices of the OCC rate limit
Wmax(OCC). Wmax(terrestrial) and Wmax(OCC) are defined relative to present
day rates, with the grey vertical line showing the estimate of Wmax(terrestrial) =
2.4 for the Phanerozoic. For all runs, the degassing rate is assumed to be equal to
the present day. Black line shows results of Mills et al. (2011) for D=1.
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6.2.2 Transport limitation of weathering over Earth history

In the Mantle Model presented in Chapter 5, there is no consideration of a

global weathering rate limitation. However, due to higher degassing rates

earlier in Earth history, it is perhaps possible that the terrestrial weathering

sink for CO2 may have been insufficient to balance the system. The model is

amended here to allow transport-limitation of terrestrial weathering by using

the silicate and carbonate weathering fluxes derived for the work in chapter

4. Following the method used here for the Phanerozoic, the maximum rate-

limited flux is assumed to depend on the global erosion rate forcing. It is

assumed that the OCC rate does not reach a material limitation here. Figure

6.2.2 shows an example model run where α = 0 and the maximum terrestrial

weathering rate is set to Wmax(terrestrial) = 1.5 under present day erosion

rates.

Under these conditions, the model predicts a CO2 spike similar to that

which may have been possible during the Phanerozoic (see section 4.5.3).

This occurs during the period 1300-800Ma, where global erosion rates are

expected to be low (panel c). Interestingly, earlier periods for which degassing
erosion

is higher, are not characterised by transport limitation of global weathering.

The higher heat flux at this time increases the CO2 sink via ocean crust

weathering, requiring lower rates of terrestrial weathering to balance the

system, and therefore allowing carbon cycle balance despite severe limitation

of the terrestrial flux. Assuming α > 0 allows for the OCC rate to increase

in response to elevated CO2 concentration and therefore system stability is

retained even for very low values of Wmax(terrestrial), such as the scenario

in figure 6.2.2.

The apparent paradox of a stable carbon cycle on the early Earth under

very high CO2 degassing rates can therefore be addressed: The high mantle

heat flux on the early Earth, which is the cause of the rapid degassing, also

increases the magnitude of the ocean crust carbonatization CO2 sink, and

therefore a high terrestrial weathering rate is not required for stability.
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Figure 6.2.2: Terrestrial weathering limitation in the Mantle Model.
Red lines show results for Wmax(terrestrial)=1.5 and assumes no maximum rate
for OCC, black lines show system without consideration of a terrestrial weather-
ing limit for comparison. For both runs α = 0. a, relative CO2 concentration
against proxy data from previous chapter (paleosols (A) (Sheldon, 2006), carbon
isotope modelling (D) (Kah and Bartley, 2004), estimates from composition of
fossil acritarchs (B) (Kaufman and Xiao, 2003) and cyanobacteria (C) (Kah and
Riding, 2007)). b, average global surface temperature, c, model forcings for uplift
and degassing rates, d, global rate of silicate weathering.

6.3 Model limitations

The models explored and constructed in this thesis are semi-quantitative.

They are best utilised for the demonstration of specific Earth system mech-

anisms, and for attaining broad, but falsifiable predictions based on oper-

ation of these mechanisms. A persistent problem with these models is the

simple formulation of the flux functions - global biogeochemical processes

are often limited by a multitude of factors but are traditionally modelled

using very few, and often under a single linear or power-law relationship.

This can lead to overly-strong negative feedback, and to very powerful but

poorly-constrained parameters (e.g. α in this work). As shown in Chapter 4,

consideration of multiple limiting factors for the terrestrial weathering flux

can lead to dramatically different model predictions in some scenarios.
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The predictions for Proterozoic climate presented in Chapter 5 (the Man-

tle Model) should be taken as a broad envelope, as is displayed on the figures

therein, but even so, this envelope only represents the uncertainty in a single

key parameter. The simplified ocean nutrient model used has been criticised

for its combined global approximation of shelf and open-water burial rates,

and the lack of burial limitation by erosion (Berner, 2006a), but criticisms of

this nature may just as easily be levelled at any of the fluxes in any of these

models. I believe that the Mantle Model is very useful, as it demonstrates an

intriguing mechanism for planetary oxidation and makes numerous falsifiable

predictions. To my knowledge there are currently no published works that

attempt to reconstruct Proterozoic oxygen concentration using an a priori

model. Falsification of the proposed oxygenation mechanism is hampered by

the wide range of model uncertainty, but also by availability of geochemi-

cal evidence. Fuller understanding of the Earth system and of paleoclimate

requires advances in modelling techniques, but also requires additional ge-

ological fieldwork and laboratory studies to constrain both the strength of

biogeochemical feedbacks and the knowledge of paleoclimatic conditions.

6.4 Future modelling work

The long-term goal of the work in this thesis is to arrive at a process-based

biogeochemical model for the whole of Earth history. A model such as this

would be a useful tool for testing a huge list of hypotheses linking the global

biota, tectonic regime and hydrospheric composition. Examples include the

effects of Paleoproterozoic glaciation, possible triggers for the Great Oxida-

tion event, and application to oxidation of hypothetical exoplanets. Con-

structing an Earth history model requires many improvements over the cur-

rent model system, some interesting avenues for model expansion are listed

below.

6.4.1 Low-oxygen solutions

Currently the Mantle Model timeframe is limited to 2Ga-present because

of the low oxygen concentrations that are predicted before this time. The

Phanerozoic-based functions for burial of pyrite sulphur and for ocean nu-

trient balance are strongly dependent on oxygen concentration, and a sim-
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plistic representation of ocean anoxia. The system becomes unstable under

low nutrient and low (< 10−3PAL) oxygen concentrations, in this situation a

reduction in O2 causes an ocean sulphate crisis which limits sulphide burial

and further decreases O2, this positive feedback loop results in zero oxygen

and model breakdown.

Addressing this problem requires reconstruction of the model to include

a functioning anaerobic biosphere, of which currently there is only a rough

parameterisation. Some preliminary work was undertaken to incorporate the

simple biota and methane system from the early Earth model of Goldblatt

et al. (2006) into the model framework in this thesis. Powerful negative

feedbacks on respiration rates in this system allow oxygen concentration to

be stable at < 10−5PAL and for the bistability in atmospheric oxygen high-

lighted in the original work to be reproduced. However, the combination

of model approaches did not represent a sufficiently consistent view of the

biosphere to obtain useful predictions. It does however demonstrate that con-

sideration of negative feedbacks operating around low oxygen concentrations

may be a vital addition for future modelling.

6.4.2 Representation of limiting factors for key processes

As has been suggested in this work and others (West et al., 2005; Millot

et al., 2002), extrapolation of simple kinetic rate equations to global scale

weathering fluxes does not represent the process sufficiently well. In a broad

sense, all of the fluxes in the model suffer from a similar over-simplification

and are generally limited by a number of factors that do not, as models

often assume, act as simple multipliers to the overall rate. For example,

oxidative weathering is reasoned to have some dependence on atmospheric

O2 (Lasaga and Ohmoto, 2002) but this is not apparent in some field studies,

which instead link weathering rates to erosion (Wildman et al., 2004; Bolton

et al., 2006). Most likely a combination of these factors controls the overall

rate. Recently, attempts have been made to construct a flux equation based

on mechanistic understanding of the terrestrial weathering process (West

et al., 2012; Dixon et al., 2012). Future models will aim to incorporate these

approaches, and an attempt will be made to apply a similar analysis to the

degassing, burial and nutrient fluxes.
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6.4.3 Full representation of mantle cycling

The current Mantle Model does not track changes in the size or isotopic

composition of the mantle reservoirs, composition is assumed to be constant

and the size of the mantle inventories of carbon and sulphur are assumed not

to have any effect on the model fluxes. A simple extension would allow the

mantle inventories and composition to change over time, perhaps allowing an

additional route to falsification of predictions. Another intriguing question is

that of the consistent oxygen fugacity of the mantle (Li and Lee, 2004), which

may perhaps be adequately approximated via knowledge of the oxidized and

reduced fluxes into and out of the mantle.

6.4.4 On Phanerozoic modelling

Current Phanerozoic models assume for simplicity that the large crustal reser-

voirs of carbon and sulphur are at present day size at the beginning of the

Phanerozoic. Extending the model timeframe to the Proterozoic allows in-

stead for prediction of these values based on likely Precambrian climate. In

the Mantle Model, predicted low Precambrian O2 causes an increase in the

crustal abundance of reduced sulphur due to enhanced pyrite burial. The

Permo-carboniferous oxygen peak is therefore reduced from ∼ 1.4PAL in

COPSE to ∼ 1 PAL in the Mantle Model because of the more powerful

oxygen sink from pyrite weathering.

The work in the Chapter 2 highlights the importance of negative feedback

in prediction of Phanerozoic oxygen concentration. One of the most power-

ful, and most difficult to model, is the feedback provided by wildfires. As

with the weathering fluxes, the occurrence and spread of fire may be best

understood using a physically based model of the competing limiting factors.

Fairly complex fire modules are currently applied in dynamic global vege-

tation models (DGVMs) (Bachelet et al., 2001; Sitch et al., 2003; Thonicke

et al., 2010) and have been applied to paleoclimate (Scheiter et al., 2012).

The DGVMs allow characterisation of the global fuel load based on distri-

bution of various biomes, but do not currently include effects of changing

oxygen concentration. Simplification of the DGVM systems and addition

of sensitivity to oxygen (e.g. Belcher et al. (2010),Watson and Lovelock (in

press)) should allow for assessment of the negative feedback strength and
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how this may have changed with the evolution of new types of land biota.

This extension should also allow for new Phanerozoic oxygen predictions,

testing of hypothesised links between atmospheric O2 and observed paleofire

regimes (Scott and Glasspool, 2006) and a new falsification method based on

model predictions for the abundance of fossilized charcoal.

6.5 Concluding remarks

The overriding question that has driven the work in this thesis, which was

also the initial project title is:

Why does the Earth’s atmosphere contain so much oxygen?

and could there be planets elsewhere with breathable atmospheres?

The title of this project was later changed to better reflect the work under-

taken and the specific important results, but some thoughts on this question

are considered below.

6.5.1 On Earth’s oxygention

The view presented here, demonstrated by the results of the Mantle Model, is

one in which the long term change between dominant weathering pathways

has resulted in a gradual oxidation of the surface environment. Currently

the model system cannot be extended into the Archean, but the Proterozoic

results hint at an overall mechanism: On the Early Earth the heat flux from

the mantle was significantly higher, and the area of the continents much less

than the present day. This suggests an Earth system in which a large pro-

portion of carbon burial occurred on the sea floor during the carbonatization

of fresh mid ocean ridge basalts, rather than via the weathering of silicate

rocks on land, which would likely experience extreme limitation by trans-

port of cations due to greatly diminished continental area. Because nutrient

is only transferred to the surface ocean during terrestrial weathering, this

world would have much less abundant ocean nutrients, lower rates of organic

carbon burial and therefore lower atmospheric O2 concentration. Over time,

the combination of a decreasing mantle heat flux and the increase in conti-

nental area (as well as improved continental weathering efficiency due to the
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colonising biota) should have led to the terrestrial weathering sink becoming

gradually more important, slowly increasing nutrient levels and increasing

production of O2 via carbon burial. It is argued here (and by Bjerrum and

Canfield (2004)) that this interpretation can be consistent with the stability

noted in carbon isotope records due to changing isotope fractionation effects

over Earth history (see section 5.9).

6.5.2 On exoplanets

The research here allows for some thoughts on exoplanet evolution, but neces-

sarily assumes Earth-like elemental composition and biogeochemical cycling

regimes. On a hypothetical ‘twin-Earth’, oxygenation to contemporary levels

should depend on the emergence and colonisation of terrestrial land masses,

the resulting weathering pathway balance, and the associated supply of nu-

trients to the oceans. The size of the planet likely plays a very important

role, as this would be expected to affect both the mantle heat flux and the

mechanism of plate tectonics and resulting continental growth.
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7 Electronic appendix

7.1 Simplified biogeochemical models for MATLAB

The CD-ROM on the inside cover of the hardbound thesis contains MATLAB

scripts which solve the three models developed in this project. A readme file

is included, which describes how to run and alter the model systems.

The code bundle can also be obtained from the UEA E-Theses Repository

or by writing to either b.mills@uea.ac.uk or benjaminmills@live.com.
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