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Abstract 

 

  The application of amorphous solid dispersions is one of the most widely used formulation 

strategies for the enhancement of in-vitro and in-vivo performance of poorly water-soluble drugs. 

However, because of their meta-stable nature, the physical stability of amorphous solid dispersions 

has been considered to be the main obstacle for their formulation development and 

commercialisation by the pharmaceutical industry. The aim of this project was to understand, 

predict and enhance the physical stability of amorphous solid dispersions prepared by hot melt 

extrusion. Four model drugs felodipine, celecoxib, fenofibrate and carbamazepine and two 

polymeric matrices EUDRAGIT® EPO and Kollidon® VA 64 were formulated by hot melt 

extrusion and spin coating into solid dispersions. A series of physicochemical characterisation 

techniques including MTDSC, PXRD, SEM, ATR-FTIR and AFM-LTA were used to evaluate the 

systems. Physical characterisation of the model drugs and polymers, prediction of drug-polymer 

miscibility and solubility and real-time physical stability studies under different conditions were 

carried out. Across the project, several key achievements were obtained. It was revealed that the 

physical stability of the amorphous drugs alone and the predicted processing-related apparent drug-

polymer solubility were the two dominant factors controlling the physical stability of the 

amorphous systems. A practical method, milling, was developed to provide a more accurate 

prediction of processing-related apparent drug-polymer solubility. Two methods were developed to 

enhance the physical stability of amorphous solid dispersions: one based on formulation design, use 

of immiscible polymer blends and the other based on a particular type of processing, spin coating. 

The achievements from the project are expected to contribute to the formulation development of 

amorphous solid dispersions in terms of screening suitable drug candidates, selecting “safe” 

(physically stable) drug loadings and identification of methodologies to improve the physical 

stability of formulations. 
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Chapter 1 Introduction 
 

1.1 Background of the project 

  The enhancement of oral bioavailability of poorly water-soluble drugs remains one of the most 

challenging aspects in the pharmaceutical industry with the increasing production of new active 

pharmaceutical ingredients (APIs) (1). It is commonly recognised in the pharmaceutical industry 

that, on average, around 30%-40% of newly discovered drug candidates are poorly water soluble 

(2-4). In 1995, the Biopharmaceutics Classification System (BCS) was introduced in the 

pharmaceutical industry, whereby APIs were divided into four groups based on their aqueous 

solubility and permeability. BCS II and IV (poor permeability) APIs are classified with poor 

aqueous solubility and have been attracting interests from formulation scientists on improving their 

dissolution performance (5). Briefly, an orally administered API will only be functional in bodies if 

it can be absorbed in the gastro-intestinal (GI) tract, for which the in-vivo dissolution of the API is 

the pre-requisite (6). Formulation strategies in overcoming the issue of poor aqueous solubility 

(especially BCS II APIs) in the pharmaceutical industry involves: particle size reduction; formation 

of complexes; formation of pro-drug (i.e. modify the drug into salt form or preparation of co-

crystals); formulation of self-emulsifying drug delivery system and preparation of solid dispersions 

(7-12).  

  The application of solid dispersions has been proved to be highly effective in increasing 

dissolution rate of APIs with poorly aqueous solubility in a number of studies since the concept of 

solid dispersions was introduced decades ago (13-17). The first description of solid dispersions was 

introduced in a study using eutectic mixture of chloramphenicol and urea, and later in the same 

decade solid dispersions were defined as dispersing an API into polymeric matrices by various 

processes (13, 18). APIs can exist in solid dispersions in different states, such as crystalline or 

micro-crystalline and molecularly dispersed into the matrices, depending on the preparation 

techniques and conditions employed (6, 18, 19). Processes commonly applied to prepare solid 

dispersions include: solvent evaporation based method such as spray drying or film casting, melting 

based method such as hot melt extrusion, and milling (20-23). 

  Amorphous solid dispersions (solid solution) in which APIs are molecularly dispersed into 

polymeric matrices have been observed to show better dissolution performance in comparison to 

the corresponding solid dispersions containing crystalline APIs. Therefore, the application of 

amorphous solid dispersions is becoming popular amongst formulation scientists when attempting 

to improve drug release performance (24-26). The better dissolution performance has been well 
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explained by the reason that high-energy level amorphous materials had higher apparent solubility 

than their crystalline counterparts (27). However, this also brings the intrinsic drawback of 

amorphous solid dispersions having low physical stability. The high-energy level amorphous APIs 

in the solid dispersions tend to convert back to the more thermodynamically stable crystalline state 

(27). Physical instability of solid dispersions over aging can reduce the dissolution rate in 

comparison to the fresh sample due to the appearance crystalline drugs (28-30). Great effort has 

been devoted to the prediction and enhancement of the physical stability of amorphous solid 

dispersions (31-36). However, there have only been few products in the market despite the vast 

amount of existing articles (Table 1) (6). This is due to the incomplete understanding of the 

physical stability of amorphous solid dispersions, in particular concerning how to accurately 

predict and effectively enhance the physical stability of amorphous solid dispersions. 

Table 1.1: Summary of currently available pharmaceutical products prepared using solid dispersions. 

Product Company Year approved Technology 

GrisPEG Pedinal Pharm Inc. 1975 Melt process 

Cesamet Eli Lilly 1985 Unknown 

Sporanox J&J 1996 Spray drying 

Rezulin Pfizer 1997 Melt extrusion 

Kaletra Abbot 2005 Melt extrusion 

Torcetrapid Pfizer Phase III Spray drying 

Intelence Tibotec 2008 Spray drying 

 

  Hot Melt Extrusion (HME) as a processing method can be superior over solvent evaporation 

based methods for certain systems due to the fast preparation, ease of scale up and solvent free (37, 

38). In this project HME was selected as the main method for the preparation of amorphous solid 

dispersions. The key focus of this project is to predict and enhance the physical stability of 

amorphous solid dispersions. To achieve this goal, the project conducted studies on understanding 

factors controlling the physical stability, developing practical methods to predict drug-polymer 

solubility and developing methods to enhance the physical stability.  

1.2 Amorphous materials  

  Changing crystalline drugs into the amorphous state can significantly increase the dissolution rate 

of poor water-soluble drugs (27). Therefore, amorphous solid dispersions are commonly considered 

to have superior performance over crystalline solid dispersions (6, 19). In some case studies, 

apparent aqueous solubility of drugs can be increased by hundreds folds by converting the original 

crystalline drug to its amorphous form (27, 39). Before the introduction of amorphous solid 



Chapter 1 

 
27 

 

dispersions, it is worth understanding the concept of amorphous materials and the mechanism of 

how the dissolution performance of poorly water-soluble drugs is improved. 

1.2.1 Structure of amorphous materials 

  An amorphous material can be defined with the reference to its crystalline counterpart. A typical 

crystalline structure contains three long range order symmetry operators including translational, 

orientational and conformational (40). Structures of various crystalline materials are defined by 

these three operators whereas amorphous materials transformed from their crystalline counterparts 

are defined by the absence of all three operators (41). Position of molecules relative to one another 

in amorphous materials is random as in liquid state (27).  Although lacking of the long range order, 

short range order have been confirmed to exist in amorphous materials. Ideally, amorphous 

materials are defined as isotropic having no order (translational, orientational and conformational) 

on any significant length scale. However, molecular structures of APIs can introduce local 

anisotropy to an amorphous system, which causes the local order and the order is termed as short 

range order (40). Therefore, an amorphous system has inherent short range order due to the local 

anisotropy but is still isotropic on a macroscopic scale (40). For most organic materials, the short 

range order is not expected to extend over distances significantly larger than nearest neighbour or 

next nearest neighbour, which is typically less than 20-25Å (a few molecular dimensions)(42). The 

illustration of structures of crystalline, amorphous and gaseous materials is shown in Figure 1.1. 

 

Figure 1.1: Illustration the structures of crystalline, amorphous and gas materials. 

  To dissolve a crystalline drug in a solution, a certain amount of energy is required to break the 

lattice structure to bring the drug molecules to a completely random state within the solution, and 

hence dissolution occurred. The more stable thermodynamically the lattice structure is, the more 

energy is needed. Therefore a poorly water-soluble drug could be expected if the dissolution energy 

barrier is high. However, as amorphous materials lack the long range order (typical lattice 

structure), less amount of energy is involved when dissolving amorphous materials in comparison 

to crystalline counterparts. Consequently, a higher dissolution rate can be achieved by changing a 

crystalline drug to amorphous state. 

crystalline material amorphous material gas
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1.2.2 Thermodynamic properties of amorphous materials 

  To transform a crystalline material to its amorphous form, processes including precipitation from 

solution, milling and super-cooling from melt are commonly used (43-46). Amongst the three 

methods, super-cooling was the most effective and widely used method in preparing pure 

amorphous materials as the other two have limitations (i.e. the selection of solvent and anti-solvent 

in precipitation method can be limited) (43). The solid transformation from crystalline to 

amorphous state using super-cooling method has been well studied. The thermodynamic properties 

including enthalpy or specific volume (volume/mass) of a solid material as a function of its 

temperature are shown in Figure 1.2.  For a crystalline material at very low temperatures, only a 

small increase of enthalpy was observed with increasing temperature (45).  On heating to the 

temperature across the melting point of the crystalline drug, a discontinuity in both the enthalpy 

and specific volume of the crystalline drug at melting point (Tm) occurred, which represents the 

first order phase transition from solid to liquid (43). Upon rapid cooling from the melt, the values 

of enthalpy followed the equilibrium line into a “supercooled liquid” region. On further cooling, a 

change in slope can be seen at a characteristic temperature known as the glass transition 

temperature (Tg) of the material. From supercooled liquid (rubbery state) to glass state, the 

viscosity can significantly increase from 10-3 to 1012 Pa·s (43). It should be mentioned that fast 

cooling rate was required for the transformation into amorphous (glass) state as molecules did not 

have sufficient time to form crystalline structure.  

 

Figure 1.2: Schematic depiction of the formation of glass transition from a crystalline material. 

  Amorphous materials stay in a non-equilibrium state at the temperature below Tg and the 

thermodynamic properties (such as enthalpy and entropy in amorphous materials) are higher than 
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those in the corresponding crystalline materials at equilibrium state. If stored at the temperatures 

below Tg, structural relaxation in amorphous materials will occur (Figure 1.2) in the form of 

releasing the extra enthalpy or configurational entropy to approach the equilibrium (structural 

relaxation will be discussed later in this chapter). Amorphous materials prepared from their 

crystalline counterparts are intrinsically instable due to the high energy level, and they can only 

remain the amorphous state kinetically for a certain time period. However, it is also this high-

energy level which mainly contributes to the improved dissolution rate in comparison to the 

corresponding crystalline materials. Therefore, in order to both obtain the enhanced dissolution rate 

and increase the physical stability of amorphous drugs, amorphous solid dispersions prepared with 

polymeric matrices and drugs were introduced in the pharmaceutical industry.  

1.3 General introduction to solid dispersions 

1.3.1 Definition of solid dispersions 

  The first preparation of solid dispersions can be dated back to 1961 when Sekiguchi and Obi 

prepared a eutectic mixture, of chloramphenicol and urea, whereby the drug and the matrices had 

specific composition and solidified together when cooling from melts and found the formulation 

showed enhanced dissolution rate and bioavailability (13). This eutectic mixture was later 

classified as one category of solid dispersions in the literature where solid dispersions were first 

defined: “the dispersion of one or more active ingredients in an inert carrier or matrix at solid state 

by the melting (fusion), solvent or melting-solvent method” (18).   

  Following the original concept, solid dispersion is now a broad concept which is commonly 

accepted by pharmaceutical researches as dispersing drugs into polymeric carriers via various 

preparation processes to form a drug-polymer mixture (19). In this mixture, drugs can remain in 

different states such as crystalline/micro-crystalline or molecularly dispersed into matrices. By 

formulating into solid dispersions with different matrices, drugs release can be modified: increasing 

dissolution rate of poorly water-soluble drugs, decreasing drug release rate of highly water-soluble 

drugs (6, 19).  

  Commonly employed preparation processes for solid dispersions consist of melting based 

methods such as: hot melt extrusion and solvent evaporation based methods such as spray drying (6, 

37, 47). In comparison to other formulation strategies, such as pro-drug formulation and self-

emulsifying drug delivery system for enhanced dissolution and absorption, solid dispersion can be 

superior in some aspects including: ease of scale up; low production cost and wide application to 

various drugs with different physical properties (14). Therefore, the solid dispersion technology has 

become a promising formulation strategy increasingly attracts interest from the pharmaceutical 

industry. 
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1.3.2 Classification of solid dispersions 

  The first classification of solid dispersions was introduced by Chiou and Riegelman in 1971 (18). 

Further on, in review articles concerning solid dispersions there are various methods for the 

classification of solid dispersions (14, 19). In this study, solid dispersions were assigned to two 

broad classes based on the physical state of the drug in the systems: crystalline drugs in solid 

dispersions and amorphous solid dispersions (solid solution) whereby drugs completely disperse 

into the polymer chain at molecular level. The mechanism of forming the two solid dispersions and 

their advantages and disadvantages will be discussed in the following sections. 

1.3.2.1 Solid dispersions containing crystalline drug substances 

1.3.2.1.1 Eutectic solid dispersions 

  The advantage of using solid dispersions containing crystalline drugs is this system can be more 

physically stable in comparison to amorphous solid dispersions (26). The most commonly used 

crystalline solid dispersion is the simple eutectic mixture which is composed of a crystalline drug 

and a water-soluble crystalline polymer. It is an intimate physical mixture of those two in which the 

crystalline drug and the crystalline polymer are completely miscible in the molten state (above their 

melting points). A eutectic mixture of fenofibrate and PEG 8000 with the ratio of 35:65 (w/w) was 

reported in the literature, and more than 90% drug release from the formulation was observed after 

30min dissolution test under sink condition (48). To understand the mechanism of the formation of 

eutectic mixtures, a phase diagram was used to describe the composition of a eutectic mixture as 

seen in Figure 1.3. When a melted mixture composed of a crystalline drug (A) and a water soluble 

crystalline polymer (B) with the composition of E is cooled, the drug and the polymer crystallise 

out simultaneously together to form the eutectic mixture. However, when melted mixtures with 

other compositions are cooled, one of the components starts to crystallise before the other, leading 

to the formation of completely phase-separated materials instead of eutectic mixtures. 

  In dissolution, when a eutectic mixture is exposed to the media, the soluble carrier will dissolve 

rapidly and leave fine drug crystals (48). Due to the increased surface area brought by the small 

particle size, an increase of dissolution rate of the drug could be expected according to the Noyes-

Whitney equation (49): 

                                                            dW / dt = DA (Cs-C) / L                                                   Eq 1.1 

where dW / dt is the dissolution rate, A is the surface area, C is the concentration of the drug in the 

bulk media, Cs is the solubility of the drug in the media and L is the diffusion layer thickness. 
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  From the phase diagram of eutectic system, it can be seen that the feasibility of developing 

eutectic solid dispersions is dictated by the eutectic compositions (48, 50). Determination of 

eutectic compositions requires the generation of phase diagrams which can be time-consuming (48). 

In addition, due to the requirement of the specific composition in eutectic systems, its application 

can be limited since the clinical dose of different drug substances varies in a large range and it 

might be difficult to meet the specific eutectic drug-polymer composition. Therefore, despite the 

formation of a thermodynamically stable system, eutectic solid dispersions were not widely used in 

the pharmaceutical industry.  

 

Figure 1.3: Phase diagram of the formation of eutectic mixture of a drug (A) and a polymer (B) with 

the composition of E.    

1.3.2.1.2 Solid dispersions containing crystalline drugs 

   Besides the eutectic systems, crystalline solid dispersions prepared other methods such as spray 

drying have also been reported to be effective in improving dissolution performance of poorly 

water soluble drugs (22, 51, 52). A solid dispersion contained crystalline intraconazole was 

prepared using spraying (51). In the study, instead of using organic solution to dissolve drugs and 

polymers together, drugs was suspended in the water based solution with dissolved polymers 

before spray drying. The dissolution performance from the crystalline solid dispersions was similar 

to the commercial product (Sporanox®), and the in-vivo study in rats showed that the crystalline 

solid dispersion was bioequivalent to the commercial product (51). The enhanced dissolution and 

bioavailability was attributed to the structure of the crystalline solid dispersions in which drugs 

were covered by the hydrophilic polymer (PVP) and the surfactant (Poloxamer 188). 
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Figure 1.4: Proposed structure of crystalline solid dispersions prepared by wet media milling. 

1.3.2.2 Amorphous solid dispersions (solid solutions) 

  As discussed above, amorphous drugs are physically instable, due to the higher energy level in 

comparison to their crystalline counterparts, and this physical instability is inevitable according to 

Gibbs free energy law: 

                                                                  ∆G = ∆H – T∆S                                                         Eq 1.2 

  Amorphous materials will tend to convert back to the low energy level crystalline form. However, 

physical stability of amorphous drugs can be improved if they are formulated with polymeric 

carriers into the amorphous solid dispersions. Mechanisms of enhanced physical stability by solid 

dispersions involve reducing molecular mobility of drugs by the interaction between drugs and 

polymers and increasing the diffusion length for the assembling of drug molecules to form drug-

rich phase or recrystallization (53, 54).  

  Ideally, a miscible amorphous drug-polymer solid dispersion can be considered as a solid solution 

whereby, similar to aqueous solution, drug molecules act as solute dissolving into the solvate, 

polymer chains. Therefore, a solid solution is a single-phase drug-polymer solid dispersion. An 

intimate molecular mixing of the drug and polymer should be achieved if the amorphous solid 

dispersion is a solid solution (6). The structure of solid solutions is proposed in Figure 1.5. In solid 

solutions, drug molecules are molecularly dispersed into polymeric carriers, and therefore a higher 

dissolution rate can be expected in comparison to the crystalline counterparts. The structure of solid 

solutions can also potentially enhance the physical stability in comparison to pure amorphous drugs 

due to the increased diffusion length for the assembling of drug molecules. It should be mentioned 

that drug-polymer solid solutions are considered as liquid solutions (6, 19). Therefore, it can be 

expected that similar to liquid solutions, if the concentration of the drug in amorphous solid 

dispersions is below the drug-polymer solubility no recrystallization should be observed from the 

amorphous drug-polymer systems. Therefore, predicting/measuring the drug-polymer solubility is 

essential in the area of amorphous solid dispersions.  

polymer chain

crystalline drug particles 
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Figure 1.5: Theoretical scheme of miscible amorphous drug-polymer solid dispersions (solid solution). 

  The real physical state (drug-polymer distribution) of amorphous solid dispersions could be 

different from the proposed model (solid solution) (Figure 1.5) (39). Conventional characterisation 

techniques including MTDSC, FTIR, PXRD and ssNMR are useful for the detection of “global” 

phase separation in amorphous solid dispersions whereby the quantity of drug-rich phase or 

recrystallized drugs in systems are sufficiently high to be detected by these techniques. For instance, 

a typical amorphous phase separation in amorphous solid dispersions is reflected by the detection 

of two glass transitions in MTDSC (55). However, in some cases, phase separation could occur 

locally in amorphous solid dispersions at micro or sub-micrometre level, which cannot be detected 

using conventional tools, leading to the less correct judgement on the physical state of the system 

(56, 57).  

  Scanning probe microscopy based analytical techniques with high spatial resolution can be 

applied to detect local phase separation at low level (58, 59). For instance, Atomic Force 

Microscopy (AFM) combined with Local Thermal Analysis (LTA) is able to detect phase 

separation in solid dispersions at micron sub-micron level based on the thermal properties of the 

components in systems (58). Photothermal-FTIR allows operators to collect IR spectra at a highly 

specific point on the sample or even a single particle with micron dimension (60). These techniques 

will be discussed in detail in Chapter 2.  

  With the development of characterisation technology, the structure of amorphous solid dispersions 

will be understood in greater depth. However, to describe the composition and structure of 

amorphous solid dispersions accurately, it is recommended to characterise amorphous solid 

dispersion with global and local tools. 

polymer chain

single drug molecule
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1.4 Preparation of solid dispersions 

  Processes for the preparation of solid dispersions can be divided into two categories: solvent 

evaporation based methods and non-solvent based methods (melting based method and milling) (14, 

37, 47, 61). Typical solvent evaporation based methods in the pharmaceutical industry include 

spray drying, film casting, and co-precipitation. Recently, spin coating, a solvent evaporation base 

method, which is derived from semi-conductor industry, has been introduced to prepare solid 

dispersions (62-64). With regard to non-solvent preparation methods, hot melt extrusion and 

milling are the two main processes used. A brief introduction of each method is given in the 

following sections. 

1.4.1 Spray-drying 

  Spray drying is a unit operation for transforming liquid solutions or suspensions into solid 

products by rapidly atomising the solutions/suspensions and drying with a hot gas. It has been 

widely used for preparing thermally-insensitive powder-form samples in food, dairy, ceramic, 

paints, fertilizers and pharmaceutical industry (65). In the pharmaceutical industry, spray-drying as 

a processing method,  has been applied to prepare many systems, such as antibiotics, vitamins, 

vaccines, enzymes, plasma substitutes and excipients (47). It also has been widely used to prepare 

solid dispersions in the pharmaceutical industry to improve dissolution performance of poorly 

water-soluble drugs (66-70). The main procedure of spray-drying and the mass flow of the sample 

are depicted in Figure 1.6. 

 

Figure 1.6: Schematic depiction of spray drying and the mass flow of samples in spray drying (71). 

The general steps of using spray drying to prepare solid dispersions are described here (Figure 

1.6) (72): 1) prepare the solution (or suspension) containing the drug and polymer; 2) the dissolved 
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or suspended sample solutions is fed from A; 3) air or nitrogen are heated when passing through 

section 2; 4) solutions are sprayed out from the heated nozzle in section 3 (the temperature in the 

nozzle should be higher than the boiling point of the solvent); 5) the solvent in the solution is 

evaporated, and the dried powders will be driven through section 5 and 6 by extraction effect from 

section 7 ; 6) samples are collected in section 8.  

  Spray drying has been proved as an effective processing method in preparation of amorphous 

solid dispersions to improve dissolution rate of poorly water-soluble drugs in many studies (66-70). 

Due to the pre-dissolution of drugs and polymers in the solvent or co-solvent, an intimate mixing 

between drugs and polymers at molecular level can be expected, which may assist to prepare 

amorphous solid dispersions by spray drying. Thus, improved dissolution performance and 

bioavailability of poorly water-soluble drugs can be achieved (65). In addition, compared with 

another commonly used solvent evaporation method, film casting, spray drying may have higher 

efficacy for the preparation of amorphous solid dispersions as the slow evaporation (73). This was 

attributed to the reason that solvent evaporation in film casting was relatively slow in comparison 

to spray drying (due to the hot air), which provided sufficient time for drugs to recrystallize from 

film-casted systems (73). 

  Although spray drying has demonstrated the capability of preparing amorphous solid dispersions, 

there are still limitations restricting the broad application of spray drying in the pharmaceutical 

industry (47). First, heat-sensitive drugs which are easily degraded at high temperatures are not 

appropriated for spray-drying as during spray drying solvent evaporation occurs by the hot air. 

Second, the application of organic solvent for dissolving water-insoluble drugs in solution 

preparation is not environment-friendly, and if scaled up to industry levels the recovery of organic 

solvents can be expensive. Finally, as the process depicted in Figure 1.6, during preparation, it is 

possible that part of the samples may deposit on the surface of the chambers (part 4, 5 and 6), 

leading to the material wastage and low yielding. 

1.4.2 Co-precipitation 

  Co-precipitation is a typical solvent based method for preparing solid dispersions. It is a process 

in which drugs and polymeric carriers are dissolved together in a solvent to prepare a solution, and 

then the solution is added to an anti-solvent. Due to the significant difference of polarity between 

the solvent and anti-solvent, drugs and polymers will precipitate out simultaneously in the anti-

solvent to form a solid dispersion. The difference of polarity between the solvent and anti-solvent 

should be high, and usually, the solvent is polar whilst the anti-solvent is non-polar (74). After the 

precipitation is completed, the suspension containing products can be treated by either filtration or 

solvent evaporation depending on the properties of the products and the solvent (75).  
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  Due to the difficulties of selecting suitable solvent and anti-solvent, co-precipitation has not been 

widely used for the preparation for solid dispersions. Dong et al. compared the properties of solid 

dispersions prepared by hot-melt extrusion and co-precipitation. Both solid dispersions were 

confirmed as amorphous by PXRD and DSC (33). Solid dispersion prepared by co-precipitation 

showed faster drug release rate than that prepared by hot-melt extrusion. The reason was attributed 

to the larger surface area and porous structure achieved by using co-precipitation (33). Solid 

dispersions prepared by co-precipitation are normally particles with large surface to volume ratios 

and porous structures, which may significantly improve dissolution rate of poorly water-soluble 

drugs (76). However, as detailed previously, due to the limitations of solvent and anti-solvent 

selection co-precipitation has not been widely used for the preparation of solid dispersions. 

1.4.3 Spin coating 

  Spin coating is a process to prepare a thin film with controllable thickness on a substrate. It has 

been widely used in microfabrication in the semiconductor industry (77). Spin coating is similar to 

film casting (another solvent evaporation based method), but unlike film casting in which solvent is 

evaporated under ambient condition or low vacuum, solvent evaporation in spin coating occurs at a 

rapid speed due to the fast spinning.  The procedure of using spin coating to prepare a thin film (an 

amorphous drug-polymer solid dispersion) includes following steps: 1) prepare a solution which 

contains the desired concentration of drugs and polymers using a volatile solvent and co-solvent; 2) 

a substrate is placed on top of the chuck in the spin coater, and the substrate is attached to the 

chuck during the whole process by vacuum from underneath; 3) the substrate spins with the chuck 

at a pre-set rotation speed; 4) at the same time, sufficient amount of droplets of the prepared 

solution will be added onto the substrate; 5) the substrate is evenly covered by solutions due to the 

centrifugal force provided by high speed spinning; 6) solvent will evaporate during spinning and a 

thin solid film is formed on top of the substrate.  

 

Figure 1.7: Procedure of using spin coating to prepare a thin film on a substrate. 

  With the advantages of high reproducibility, fast preparation and precise control during 

preparation, spin coating has been reported to be used to prepare solid dispersions for the 

solution

chuck

substrate

thin film on top of the substrate



Chapter 1 

 
37 

 

understanding of their physical stability behaviours (63, 64, 78, 79). By using spin coating to 

prepare solid dispersions containing model drugs including celecoxib, felodipine, fenofibrate and 

carbamazepine and polymers with different hygroscopicity, Ng et al (63) reported that key factors 

which affect physical stability of solid dispersions under stressed humidity were the physical 

stability of drugs alone and the hygroscopicity of polymers. In another study from the same group, 

drug migration of felodipine from the bulk towards the surface in the spin coated felodipine-PVP 

K29/32 thin films was discovered when the spin coated solid dispersion films were aged upon 

exposure to stressed humidity (64).  The research mentioned above demonstrated that spin coating 

is an effective solid dispersion preparation process to stabilise amorphous drugs and to understand 

the physical stability behaviour of solid dispersions.   

1.4.4 Milling  

  Milling has been proved to be an effective processing method to improve dissolution behaviour of 

poor water-soluble drugs (61, 80-83). The main properties brought by milling are: particle size 

reduction to sub-micron; crystalline drug transformation to amorphous state; and forming co-

crystals (61, 84, 85). Milling can be processed with (wet milling) or without (dry milling) wet 

media depending on the purposes of the research (86, 87). Wet milling has been reported for the 

preparation of nano-suspensions whereby drugs and polymeric carriers are milled together (using 

ball milling) in wet media (surfactants solutions in water) for a certain time period to decrease the 

particle size of the drug to nanometre level (88). The reduced particle size can significantly 

enhance the dissolution rate of poorly water-soluble drugs and the polymeric carriers in the 

formulation can protect particles from agglomeration in the formulation by interacting with the 

drugs and increasing the viscosity of the nano-suspension (88).  

  Dry milling has been reported to show the ability to transform crystalline drugs to their 

amorphous state and hence improve the dissolution performance of the poorly water-soluble drugs 

(89). The solid state transformation by dry milling was reported to be affected by the milling 

temperature (90, 91). In a study, crystalline trehalose lactose and budesonide (an anti-inflammatory 

drug) were all transformed into amorphous state (confirmed using PXRD) after 20 hours milling at 

room temperature (below the Tg of all three amorphous materials) (90). In contrast, polymorphic 

transformation of mannitol and sorbitol were observed after 3 hours milling at room temperature 

(above the Tg of both amorphous materials) (90).  

Solid dispersions can be prepared by both wet milling and dry milling methods (22, 92). For the 

preparation of solid dispersions using wet milling method to evaporate the media, downstream 

processes are required, such as lyophilisation. An anti-allergic drug, tranilast, was reported to be 

prepared into crystalline solid dispersions with HPC-SL using wet milling in water and followed by 

lyophilisation, and 60 folds increase of Cmax was observed in rats in comparison to the physical 
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mixture with the same dose (22). Indomethacin with PVP were reported to form amorphous solid 

dispersions using dry milling, and the drug-polymer systems were confirmed as amorphous by 

PXRD with drug loadings up to 60% (w/w) (92). In the study, significantly increased dissolution 

rates were observed in all amorphous solid dispersions in comparison to pure drugs in the pH 6.8 

buffer solutions (92).   

  Some disadvantages of using milling to improve dissolution rate of poorly water-soluble drugs 

have also been pointed out (93). First, particle size cannot decrease infinitely with increasing 

milling time due to the re-aggregation occurring during grinding (93). Therefore only a certain 

range of particle size reduction can be achieved depending on the properties of drugs and polymers. 

Second, milling is time-consuming whereby hours or days are required to achieve the desired 

amorphous solid dispersion.  

1.4.5 Hot-melt extrusion (HME) 

HME is a widely used non-solvent based method for the preparation of solid dispersions (37, 38). 

A great number of studies have been reported covering aspects such as the improvement of the 

design of extruder (i.e. specially designed meshes for rotating screws), investigation into the 

feasibility of the preparation of solid dispersions, and down-stream methods for further processing 

extrudates (37, 38). HME process can be simply described as conveying raw materials with a 

rotating screw under elevated temperatures, and products with a special shape (determined by the 

die) can be collected at the end of the extruder. The HME equipment is usually composed of 

several important parts including a control panel, inlet feeding hopper, steel barrel with different 

heating zones, screws for extrusion, a die attached to the end to specially shape the products and a 

cooling system. A detailed typical single screw hot melt extruder is shown in Figure 1.8. 

 

Figure 1.8: A schematic chart of a single screw hot-melt extruder (Crowley et al., 2007). 

The speed of feeding depends on the rotating rate of the screw, and these two speeds must be 

compatible to avoid the formation of a melting bridge in the joint of the hopper and the barrel. The 
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barrel can be designed with different heating zones which can be set with different temperatures. 

Inside the barrel, the extrusion screws mix and convey the drug-polymer mixtures. Two main types 

of screw configuration are mainly used in HME in the pharmaceutical industry, single screw and 

twin screw extrusion. The single screw has a long history but may not provide sufficient mixing of 

different materials if the screw is not long enough (37). The twin-screw extruders utilize two 

screws usually arranged side by side, and they either rotate in the same or opposite directions (co-

rotation and counter-rotation, respectively). The barrel with the screws is the key part of the 

extruder, not only for imposing high temperature and pressure on the materials to ensure them mix 

uniformly, but also to convey the mixtures as a continuous transportation. The energy for melting is 

obtained both from the heater and the shearing effect provided by screw rotating. At the end of 

each hot-melt extruder, a die with a special shape is attached. Extrudates can also be processed by 

downstream methods after extrusion, such as cutting into pellets, or being milled into powder after 

cooling.  

For formulation design at lab scale, in order to avoid the wastage of expensive drugs, bench top 

hot-melt extruders were introduced. There have been two designs concerning the barrel. The first 

one is similar to industrial scale hot melt extruder which contains different heating zones as shown 

in Figure 1.9a. In addition, screws are specially designed with different shapes of meshes to assist 

complete mixing of drugs and polymers (Figure 1.9a). The other typical lab-scale hot melt extruder 

does not have different heating zones (Figure 1.9b). Instead, only one operation temperature can be 

applied during the whole process for this bench top extruder. To ensure the complete mixing of 

drugs and polymers in preparation, a particular valve is fixed at the end of the screw to block the 

outlet and lead the melted materials to a circulating route inside the constant-temperature heating 

zone (pointed in Figure 1.9b). Therefore, the melted materials can be circulated through the mixing 

zone several times before discharged from the extruder. In this project, the second bench top 

extruder was used for the preparation of amorphous solid dispersions. 

 

Figure 1.9: Inner structure of lab-scale extruder with (a: Thermo Scientific 16 Hot Melt Extruder) and 

without (b: Thermo Scientific HAAKE MiniLab II) dif ferent heating zones. 
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Generally, the components of HME formulations include drugs, polymers and plasticizers (in 

some cases). The polymers should be soften or molten during the HME process. Sometimes, 

plasticizers are necessary to ease the HME process if the systems are viscous. The main procedure 

for HME is described as follows: 

  1. Prior to HME, it is recommended that all components in the desired formulation should be 

dried to avoid absorbed moisture (store drug and polymer powders under 0%RH for a certain time 

period), since the moisture or water can function as plasticizer and have effect on the HME 

processing as well as the long term stability of the final solid dispersions.      

  2. Ingredients for the formulation are recommended to be pre-mixed before HME, i.e. using 

mortar and pestle. 

  3. Set the operating parameters of the HME including feed speed, different temperatures of 

different heating zones (if the extruder has) and rotation speed of the screws. 

4. Collect all the extrudates and, if necessary, special-shaped dies can be attached to the end of 

the barrel to form varies types of extrudates such as rod shape or thin films.              

5. All the extrudates are cooled down to room temperature and stored under different conditions 

according to the requirements.  

1.5 Pharmaceutical applications of hot melt extrusion 

Originally, the HME processing was mainly and widely employed in the plastic industry for the 

preparation of plastic products, and more than half of plastic products such as plastic bags, sheets 

and pipes are manufactured by this processing (94). The application of hot-melt extrusion in the 

pharmaceutical industry can be dated back as early as 1971 (95). Since then it has been widely used 

as a processing method for the preparation of solid dispersions and can be used to modify 

dissolution rate of drugs (37). In comparison to other solid dispersion preparation methods, such as 

solvent evaporation based method, HME can be superior in some aspects (38). Firstly, it is a 

solvent free method in which no organic solvent is required in preparation. The involvement of 

organic solvent can be problematic in terms of environmental pollution and high cost to recover. 

Secondly, it is a continuous single-step processing method which can be a highly efficient in 

preparing samples. Thirdly, scale up could be relatively easy. The disadvantage of hot melt 

extrusion is the potential thermal degradation of heat-sensitive drugs and polymers in preparation, 

which restricts the selection of drugs and polymers can be processed by HME. Nevertheless, hot 

melt extrusion is becoming increasingly popular in preparing solid dispersions in the 

pharmaceutical industry. The main applications of hot melt extrusion in the pharmaceutical 
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industry include fast release formulations, sustained release formulations and special formulation 

design and they will be discussed in the following sections. 

1.5.1 Fast release formulations 

Fast release formulations by hot melt extrusion are mainly based on the preparation of 

amorphous solid dispersions (23, 96-99). By using HME to process drug-polymer mixtures into 

amorphous solid dispersions, dissolution rate of poorly water-soluble drugs can be significantly 

enhanced. Itraconazole is a typical BSCⅡ drug with extremely low aqueous solubility (1.8µg/ml in 

pH 1.2 solution) (100). In one study, itraconazole and hydroxypropylmethyl-cellulose (HPMC) 

2910 solid dispersions were prepared by HME and amorphous solid dispersions were confirmed by 

MTDSC and PXRD with drug loadings of up to 40% (w/w) (101). In this study, drug release of 90% 

was achieved after 120min even from 40% (w/w) loading formulation under sink condition (101). 

In a very recent study of using hot melt extrusion to improve dissolution performance of ketoprofen, 

another typical poorly water-soluble drug, hydroxypropylcellulose (HPC) was used (102). 

Amorphous solid dispersions were confirmed by DSC and PXRD up to 60% (w/w) drug loading in 

this study (102). In addition to enhancing the dissolution rate of the drug, the increased drug release 

rate can also be modified by using HPC with different grades. This was explained in the paper by 

the different swelling and erosion rates of different grades HPCs (two types of HPCs with the 

molecular weight of 60000 and 80000, respectively) (102). These successful applications of 

improving dissolution rates of poorly water-soluble drugs demonstrate that hot melt extrusion is an 

effective processing method for the enhancement of drug release via the preparation of amorphous 

solid dispersions.   

The fast release mechanism of drugs from solid dispersions has been debatable (39). Two 

established models have been reported. In the first instance, a valuable contribution was provided 

by Corrigan in which not only the dissolution rate of the incorporated drug was measured but also 

the dissolution rate the polymer carrier (PEG) was assessed (103). The author found that the 

dissolution rate of the drug and the polymer was equivalent, which leads to the suggestion of 

carrier-controlled drug release whereby the dissolution rate of the drug is controlled by the inert 

carrier in the solid dispersion. This model was supported by other studies presenting similar results 

(104, 105). However, adisagreement issue was raised from Lloyd et al by arguing that if dissolution 

was dominated by the carrier rather than the drug, the physical form of the drug should be 

irrelevant (106). By examining the release of paracetamol from PEG 6000 solid dispersions, they 

found that formulations prepared with larger drug size fractions showed a higher drug release rate. 

With similar work from other groups, a drug-controlled dissolution was introduced whereby the 

dissolution rate of the drug is controlled by the drug dissolving and thus physical state of the drug 

(such as reduced particle size or changed into amorphous) can significantly affect the dissolution 

(107). Out of the two models, the dominant mechanism of drug release from solid dispersions is 
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dependent on whether the drug dissolves in the polymer diffusion layer rapidly in dissolution 

(carrier-controlled) or not (drug-controlled). The schematic illustration of the two mechanisms is 

shown in Figure 1.10.  

 

Figure 1.10: Schematic illustration of fast release mechanisms (a: carrier controlled dissolution 

whereby the drug dissolves into the concentrated carrier layer prior to release; b: drug-controlled 

dissolution whereby the drug is released effectively intact into the dissolution media) (39). 

1.5.2 Modified release formulations 

The preparation of solid dispersions, using hot melt extrusion with water insoluble polymeric 

carriers, may sustain drug release from formulations (108, 109). Miyagawa et al. used twin-screw 

hot-melt extruder to prepare controlled release diclofenacsodium formulations with different 

matrices (110). It was found that the dissolution rate can be controlled by adjusting the drug 

loadings. Recently, a series of studies using hot melt extrusion to prepare sustained release mini-

matrices were carried out from the same research group (109, 111). Ethylcellulose was used as the 

main sustained release matrix in these studies (109, 111). In the first study, it was proved that using 

xanthamgum with different concentrations and different particle sizes in ethyl-cellulose based 

formulations, drug release of ibuprofen can be tailored to the required specifications (109). The 

dissolution of the drug was controlled by diffusion rather than erosion of polymers. Further 

research from the same group concluded that mechanical parameters including screw design, 

powder feed rate and screw rotation speed of hot melt extrusion in preparation had no influence on 

the homogeneity of products and drug release (metoprolol tartrate as model drug) profiles(111). 

This may demonstrate that hot melt extrusion is consistent and robust process for the preparation of 

solid dispersions in controlling drug release (111).  

  Form these studies, it can be concluded that the controlled release mechanism of a water-soluble 

drug from hot melt extruded solid dispersion is mainly dependent on the physical properties of the 

drug and the applied polymer carriers (112). If the polymer is hydrophilic, drug release is 

controlled by the swelling and erosion of the polymer in dissolution. If the drug is incorporated in 
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water-insoluble polymers, such as ethyl-cellulose, drug release is controlled by the diffusion of 

dissolution media into the matrix and followed by the diffusion of drug molecules through the 

polymer matrix into the dissolution media (113).   

1.5.3 Other applications 

  In addition to the modification of drug release rate, two other typical applications of hot melt 

extrusion including the preparation of drug-loaded films and taste masking have been reported (37, 

38). Polymeric films containing drugs are usually designed for local drug delivery systems such as 

transdermal and transmuscoal drug administration. Compared with other time-consuming casting 

techniques which may involve solvents and have environmental concerns, HME is a viable method 

for film based formulations (38). The film can be obtained by attaching a special roller unit to the 

end of the HME and the thickness of the film can be controlled. Film preparation using hot melt 

extrusion has been reported in articles (114-117). For example, lidocaine was prepared into film 

formulation by HME using hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose 

(HPMC) as matrices (115). In this study, the formation of an amorphous solid dispersion was 

confirmed by DSC and XRPD (115). A burst drug release at the early stage (to reach the required 

drug concentration in plasma within short time period) and a sustained drug release at later stage 

(to maintain the drug concentration in plasma) were achieved in the permeation test using diffusion 

cell (115).  

  Taste masking can be obtained through the formation of interaction (such as hydrogen bonding) 

between bitter drugs and polymer carriers (118). It has also been reported that the unpleasant 

flavour of the drugs can be masked if drugs can be molecularly dispersed into polymer carries 

(119). Therefore, hot melt extrusion as an effective preparation process for solid dispersions was 

introduced for taste masking. A case study reported using HME for the taste masking of 

paracetamol by formulating the drug with EUDRAGIT® EPO and Kollidon® VA64(120). In-vivo 

results by patients showed that both polymers can provide a taste masking effect with the drug 

loading up to 50% (w/w), and Kollidon® VA64 was slightly better (up to 60% w/w). This was 

likely attributed to the fact that paracetamol was partially crystalline in the EUDRAGIT® EPO melt 

extrudates whereas although phase separated, paracetamol was still amorphous in Kollidon® VA64 

dispersions as confirmed by PXRD. However, in the paper it was not discussed why amorphous 

solid dispersions showed better taste masking effect than solid dispersions containing crystalline 

drugs. Nevertheless, the results still demonstrated that using HME as to prepare amorphous solid 

dispersions was an effective method for taste masking.   

1.6 Physical stability of amorphous solid dispersions  

  Although amorphous solid dispersions have shown high potential of improving dissolution rate of 

poorly water-soluble drugs, the commercial application of solid dispersions is very limited (Table 
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1.1). There are still many hurdles for commercialising amorphous solid dispersions, such as: 

dosage form development; scale-up; and the chemical and physical stabilities of the formulations. 

Amoungst these hurdles, the physical stability of amorphous solid dispersions has been considered 

as the very key factor and has been the subject of most published reports in articles (6, 19, 37, 38, 

65).  

  An amorphous drug-polymer solid dispersion is a thermodynamically instable delivery system 

since molecularly dispersed drugs (high energy level) in the system will tend to convert back to the 

more stable crystalline form (low energy level), leading to the physical stability issue. Freshly 

prepared amorphous solid dispersions may have the drug molecularly dispersed in the polymeric 

carriers. On aging the physical instability of amorphous solid dispersions could occur in the form of 

phase separation and recrystallization due to the relaxation of high energy-level drug molecules and 

molecular mobility of drugs (can be accelerated by storage condition i.e. stressed humidity or 

temperature). Phase separation refers to the procedure in amorphous solid solutions where 

molecularly dispersed drug molecules migrate together to form a drug-rich phase eventually 

containing a higher drug concentration than the average bulk drug concentration. Recrystallization 

could then occur within the drug-rich phase whereby high concentration amorphous drug 

recrystallize out to form the more stable crystalline state. A proposed procedure of the physical 

instability of amorphous solid dispersions on aging is shown in Figure 1.11. 

 

Figure 1.11: Proposed procedure of the physical instability of amorphous solid dispersions on aging. 

  Recrystallization could also take place if nuclei are provided. Nuclei can be the residual 

crystalline drug in the solid dispersion or foreign particles from the surrounding environment (121). 

With the occurrence of phase separation or recrystallization, the attempt to improve dissolution rate 

of poorly water-soluble drugs using amorphous solid dispersions will fail as the recrystallized 

drugs do not have as high dissolution rate as the amorphous form. Therefore, the understanding of 

the physical stability of amorphous solid dispersions is essential for the formulation development. 

Although phase separation might be inevitable in long time period on aging, with the development 

of methods for enhancing the physical stability, amorphous solid dispersions can still be extended 

Drug molecule
Polymer chain

Ideal (solid solution) Phase separated recrystallized
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to a desired time length (acceptable shelf life).  More importantly, the prediction of the physical 

stability of amorphous solid dispersions is highly demanded in the pharmaceutical industry at the 

early stage of the formulation design as this can save the time and decrease expense for the 

formulation development.  

  Factors which can potentially affect the physical stability of amorphous solid dispersions have 

been investigated widely, and glass transition temperatures, molecular mobility, physical stability 

of amorphous drugs alone, miscibility between drugs and polymers and solid solubility of drugs in 

polymers have been considered as key factors influencing the physical stability of solid dispersions 

(6, 31, 63, 122, 123). These factors will be discussed in the following sections in detail. 

1.6.1 Glass transition temperature  

    Glass transition temperature (Tg) is a kinetic parameter associated with the molecular motion 

(viscosity) in amorphous state. Below Tg the amorphous materials are “kinetically frozen” (with 

great viscosity) into the thermodynamically unstable glassy state, and any further reduction in 

temperature has only a small effect on the decrease molecular motions of amorphous solids. 

Whereas above Tg, amorphous solids will enter rubbery state with significantly increased molecular 

motion and decreased viscosity (31). Molecular motion has been be related to the occurrence of the 

phase separation and recrystallization in amorphous solid dispersions (31, 124). This is because 

that molecular motion of drugs (drug migration) in amorphous solid dispersions can cause the 

formation of phase separation in amorphous solid dispersions and further recrystallization.  

For amorphous solid dispersions, glass transition temperatures can be used as indicators to 

describe their physical state (125-127). If a binary drug-polymer system is miscible, only a single 

Tg can be observed using DSC. The presence of two glass transitions indicate that phase separation 

has occurred or the system is partially miscible (55). For miscible drug-polymer systems, if the Tg 

of the drug is lower than the Tg of the polymer, drugs can act as a plasticizer which can reduce the 

Tg of the system due to the ability of drugs as small molecules allowing the polymer chain 

segments to have greater freedom. But this also manifests the anti-plasticization effect provided by 

the polymer could increase the Tg to a higher value in comparison to that of pure amorphous drug. 

This may prolong the physical stability of amorphous solid dispersions compared with amorphous 

drugs alone (19). If the Tg of the drug is higher than the Tg of the polymer, anti-plasticizing of 

drugs effect could be expected, which may lead to less feasibilities for processes (i.e. in creased 

torque value in HME) (37).  

  The Gordon-Taylor (G-T) equation is a useful tool in predicting the glass transition temperatures 

of drug-polymer solid dispersions (126-128). For completely miscible binary drug-polymer solid 

dispersion, the glass transition temperature of the system can be calculated by:  
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                                     Tgmix = [(w1Tg1) + (Kw2Tg2)] / [w 1 + (Kw2)]                                 Eq 1.3 

where Tg1, Tg2 and Tgmix are the glass transition temperatures (in Kelvin temperature) of component 

1, 2 and the mixture, and w1 and w2 are the weight fractions of each component and K is a constant 

which can be calculated by: 

                                                         K ≈ (ρ1Tg1) / (ρ2Tg2)                                                       Eq.1.4 

where ρ1 and ρ2are the true densities of each component. The application of the equation in 

predicting the miscibility of solid dispersions lies in the comparison between the theoretical and 

experimental Tgmix values of the system. Gordon-Taylor equation is based on the assumption that 

the mixing processing is ideal in which the molecules from the two components are blended 

completely (126). Therefore, if the consistency of the comparison between the calculated and 

experimental Tgmix values is acquired, it may indicate that this system is miscible (129). However, 

exceptions have been reported in articles (126, 127, 130).  The discrepancies of Tgs between the 

calculations from Gordon-Taylor equation and experimental data may be caused by two reasons. 

Firstly, interactions between drugs and polymers in amorphous solid dispersions can result in the 

deviation (127). Positive deviation whereby the experimental value is higher than the G-T predicted 

one could occur if the interaction between drugs and polymers are stronger that that between two 

drug molecules (130), whereas negative deviation could be observed if the drug-polymer 

interaction is weaker than that between two drug molecules (131). Secondly, water sorption in 

amorphous solid dispersions can decrease the Tg value of the system as water is a well-known 

plasticiser (129, 132).  

1.6.2 Molecular mobility and structural relaxation of amorphous drugs 

  Molecular mobility of drugs is commonly considered to be a key factor associated with the 

stability of amorphous solid dispersions since high molecular mobility of drugs in the systems can 

lead to phase separation and recrystallization in amorphous solid dispersions on aging (31). As 

mentioned in former sections, amorphous materials which remains in the non-equilibrium state at 

the temperature below Tg have extra enthalpy and configurational entropy (results from the extra 

number of configurations of molecules in amorphous state in comparison to the corresponding 

crystalline state). Therefore, on aging the non-equilibrium amorphous materials will approach 

towards the equilibrium state by releasing those extra enthalpy and configurational entropy. This 

reducing extra energy process is termed as structural relaxation and the time length where the 

structural relaxation occurs is termed as relaxation time. Molecular mobility is in a reciprocal 

relationship to the relaxation time constant (τ). In the Adam-Gibbs model (133), it is calculated as: 

                                                            τ = τ0exp(C / (TSc))                                                      Eq 1.5 
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where τ is molecular relaxation time constant, τ0 is a constant, T is the absolute temperature, Sc is 

the configurational entropy, and C is a material dependent constant. The equation was further 

modified as Adam-Gibbs-Vogel equation: 

                                                     τ = τ0exp(D T0 / (T (1 －T0/Tf)))                                          Eq. 1.6 

where D is the strength parameter, T0is the temperature of zero molecular mobility, and Tf  is the 

fictive temperature (134). The fictive temperature is defined as the temperature of intersection 

between the equilibrium liquid line and the non-equilibrium glass line. In most cases, Tf values are 

very close to Tg values, and therefore in calculations the Tf value can be replaced by the Tg value 

(135, 136).  

  Two types of relaxations of amorphous materials have been defined at temperatures below and 

above the glass transition temperatures (43). For molecule with low Mw (such as drugs), at the 

temperature below Tg, the dominant relaxation procedure is β-structural relaxation (termed as local 

molecular mobility) which can take place by means of the spinning of atoms within the molecular 

structure. For amorphous polymers, at the temperature below Tg, β-structural relaxation refers to 

the vibrating of the side chains of the polymer (137).  At the temperature higher than Tg, the 

dominant relaxation is α-structural relaxation (termed as global molecular mobility) (β-structural 

relaxation still occur at this temperature) which could occur for both amorphous drug and polymer 

whereby an intact molecule will be mobilised (137). These two types of relaxation can be detected 

by techniques such as DSC, Dynamic Mechanical Analysis (DMA) and dielectric spectroscopy (31, 

138, 139). For instance, stored under ambient condition for a certain time period, relaxation 

enthalpy of amorphous indomethacin at the glass transition region can be detected on heating in 

DSC, and the detected relaxation enthalpy was a contribution of both α and β relaxations on aging 

(31). The detected relaxation enthalpy was attributed to the energy required to re-establish the 

liquid state on heating (31).   

  Both relaxations of drugs and polymers in amorphous solid dispersions are responsible for the 

physical instability on aging (31). As discussed above, molecular mobility of drugs were associated 

with temperature, and will decrease with decreasing aging temperature leading to the increased 

physical stability of amorphous solid dispersions. Therefore, this introduced the topic of the storage 

condition in terms of temperature for amorphous solid dispersions in the pharmaceutical industry. 

In a study, molecular mobility of typically applied pharmaceutical ingredients at different 

temperatures including amorphous indomethacin (representing drugs), PVP (representing polymer, 

naturally amorphous) and amorphous sucrose (representing sugars) were investigated (31). It was 

confirmed that at the temperatures 50K (and lower) below the glass transition temperature of 

individual material, no molecular motions can be detected by DSC for any tested material, and the 
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molecular mobility of amorphous materials could be neglected leading to materials remaining as 

amorphous for over a period of years (31). Consequently, it was suggested that amorphous solid 

dispersions should be stored at the temperature of Tg－50K to reduce the molecular mobility of 

drugs in amorphous solid dispersions and thus to increase the physical stability (31, 140).  

In addition to the high storage temperature, stressed humidity can also increase molecular 

mobility of amorphous drugs in solid dispersions (141). Two potential effects of moisture uptake 

on the molecular mobility have been suggested. Firstly, absorbed water into the solid dispersions 

can act as a plasticiser (providing polymer chains with greater freedom resulting in the reduction of 

glass transition temperature of the intact system), and thus with the decreased Tg, a faster molecular 

mobility could be expected (142). Secondly, the formation of hydrogen bonding between drugs and 

polymers in solid dispersions has been considered as an effective formulation tactic to enhance the 

physical stability since molecular motion can be restricted if drugs are hydrogen-bonded with 

polymers. However, absorbed water molecules into the systems can disrupt the hydrogen bonding 

as the water molecule is highly potential hydrogen bonding donor and accepter (141), and therefore 

drug molecules can be forced to phase separate from the amorphous solid dispersions and further to 

recrystallize out.  

1.6.3 Physical stability of amorphous drugs alone 

  Physical stability of amorphous drugs alone has been studied in various aspects including 

relaxation time of amorphous drugs under different storage conditions, bulk and surface 

recrystallisation rate and recrystallisation tendency of different amorphous drugs (143, 144). 

Amorphous nifedipine and indomethacin showed significant different recrystallisation rate between 

the bulk and the surface, and the surface recrystallisation rate of the two amorphous drugs was an 

order of magnitude faster than that of the bulk (145). Taylor et al used quench cooling and spin 

coating to prepare a variety of amorphous drugs, and classified them into three groups based on 

their recrystallisation tendency (78, 144). In Taylor et al studies, useful information concerning the 

“glass forming ability” and “glass stability” of amorphous drugs were provided and it was 

concluded that drugs with high glass forming ability were normally more physically stable (aged 

under ambient condition) than drugs with low glass forming ability. However, the crystallisation 

tendency of amorphous drugs prepared by melt-cool and spin coating in these studies was not 

completely the same whereby around 68% of cases showed the same trend (78). This may suggest 

that the physical stability of amorphous drugs can vary depending on the preparation methods. 

  Little studies correlated the physical stability of amorphous drugs alone with the physical stability 

of solid dispersions. Until recently, Ng et al (63) prepared amorphous solid dispersions using spin 

coating with felodipine, fenofibrate, celecoxib and carbamazepine and polymers with different 

hygroscopicity, and they found that the physical stability of these amorphous solid dispersions 
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showed the same order as the physical stability of the amorphous drugs alone. Therefore, it was 

suggested that the physical stability of amorphous drugs alone can be one of the significant factors 

affecting the physical stability of solid dispersions. Although the mechanism is still not completely 

understood, this observed correlation made a contribution to the formulation development of 

amorphous solid dispersions: the physical stability of amorphous drugs alone is a key factor 

influencing the physical stability of amorphous solid dispersions. In this project, the physical 

stability of amorphous model drugs were investigated aged under 0%RH/room temperature and 

75%RH/room temperature. Moreover, to completely understand the physical behaviour of 

amorphous drugs alone and to avoid the effect of processing methods, samples were prepared by 

melt–cool and spin coating.  

1.6.4 Miscibility between drugs and polymers 

  The significance of drug-polymer miscibility on the physical stability of amorphous solid 

dispersions has been emphasized by articles (122, 140, 146, 147). Miscibility is a concept 

originally applied in the liquid solution theory to describe the mixing of two liquids whereby if two 

liquids are miscible a homogeneous solution by mixing of the two should be formed with any 

proportions. In other words, a single phase solution which is thermodynamically stable should be 

formed at any ratios of the two liquids. Miscibility was further applied in the polymer and 

pharmaceutical industry to describe if the mixing of two polymers or drugs and polymers are 

thermodynamically favourable (34, 122, 148, 149). Evidently, if a drug and a polymer are miscible, 

a physically stable solid dispersion could be expected since it is a thermodynamically favourable 

single-phase system. Miscibility between drugs and polymers has been studied using different 

theoretical and practical methods including using solubility parameters, melting point depression 

and observation under hot stage microscope (34, 122, 140, 150-152). 

1.6.4.1 Solubility parameters  

  Solubility parameter is a concept defined by the cohesive energy. The cohesive energy is the 

amount of energy required to separate the constituent atoms or molecules of the material to an 

infinite distance. It is a direct measurement of the attraction force that atoms or molecules have for 

one another. Cohesive energy is the whole effect of all the inter atomic/molecular interactions 

including: Van der Waals interactions; ionic bonds; hydrogen bonds and electrostatic interactions 

(150). Solubility parameter, δ, of a compound is defined as the square root of its cohesive energy 

density (153):  

                                                               δ = (∆Ev  / Vm)0.5                                                                               Eq 1.7 

where ∆Ev is the energy of vaporization, and Vm is the molar volume. The units of the solubility 

parameter are (J/m3)0.5, MPa0.5or (cal/cm3)0.5.  
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  Solubility parameters of materials can be measured or predicted by different approaches. For 

materials which are stable above their boiling points, their solubility parameters can be directly 

determined by measuring their evaporation energy according to the definition in Eq 1.7 (154). 

Another practical method of measuring solubility parameter is using inverse gas chromatographic 

experiments by the retention times of gases of known cohesive energies (155). However, these 

direct measurement methods were not widely applicable to materials with high molecular weight, 

such as polymers. In order to predict solubility parameters of high molecular weight materials, a 

theoretical approach based on group contribution was established. Basically, a chemical entity with 

complicated structure can be divided into different small groups, and the solubility parameters of 

those small groups can be measured by the vaporisation method (156). Therefore, the solubility 

parameter of the complicated materials with high molecular weight can be estimated. The group 

contribution methods were further developed and modified by different researchers such as the 

Hansen solubility parameters and the Fedor solubility parameters (157, 158). In case studies, the 

predicted solubility parameter value did not show significant differences between different methods 

(159). In this study, Fedor’s group contribution method was used to calculate the solubility 

parameters of model drugs and polymers, and details of the application of this method are 

discussed in Chapter 4 (section 4.3.1.1). 

The application of solubility parameter in predicting miscibility between drugs and polymers is 

based on the classic solution theory “likes dissolves likes” whereby if two solvents have similar 

solubility parameters they can be mixed to form a uniform solution with any ratios (i.e. mixing 

water and ethanol). Similarly, if drugs and polymers are predicted with close solubility parameters, 

a miscible drug-polymer solid dispersion could be prepared. It has been suggested empirically that 

compounds with a ∆δ < 7.0 MPa0.5 were likely to be miscible while compounds with a ∆δ > 7.0 

MPa0.5 were likely to be immiscible (159).  

  The comparison of solubility parameters can be a rapid way to predict miscibility between drugs 

and polymers. However, exceptions have also been reported (122, 160). In a study regarding 

nifedipine-PVP solid dispersion, the system was predicted as immiscible which conflicted against 

the experimental results (122). This difference was attributed to the inappropriate use of the 

solubility parameter for systems containing specific interactions. Indeed, the hydrogen bonding was 

confirmed by FT-IR between the drug and the polymer. In another study, it was found that the ∆δ 

between the components was not the decisive factor for prediction of miscibility of drug-polymer 

solid dispersions (160). In some cases in this study, a system (Vitamin E TPGS-EUDRAGIT® EPO) 

was immiscible even with a ∆δ of 0.8 MPa
0.5 where as another system (Tartaric acid- EUDRAGIT® 

EPO) with a ∆δ of 19.8 MPa
0.5 presented good miscibility and stability (160). The underpinning 

reason was the special acid-base interactions in Tartaric acid- EUDRAGIT® EPO systems (160). 

Although for systems with strong drug-polymer interaction, the solubility parameter is not 
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appropriate for miscibility prediction, it still can be a useful method for approximate estimation of 

drug-polymer miscibility in pre-formulation design (150).   

1.6.4.2 Melting point depression  

Melting point depression is a thermodynamic approach for studying miscible amorphous solid 

dispersion. The melting point of a pure drug occurs when the chemical potential of the crystalline 

drug equals to the chemical potential of the molten drug. If the drug is miscible with a polymer, 

then the chemical potential of the drug in the mixture with the polymer should be less than the 

chemical potential of the pure crystalline drug, and thus the reduced chemical potential will result 

in a depressed melting point of the drug with the existence of the miscible polymer (161). In 

contrast, if the drug and polymer are immiscible, no melting point depression is expected due to the 

unchanged chemical potential brought by the presence of polymers.  

Briefly, the melting point depression approach could be a simple method to test the miscibility 

between drugs and polymers by running a physical mixture of the drug and the polymer in DSC on 

heating. The presence of the depressed melting may indicate the drug and the polymer are miscible. 

The melting point depression approach has been proved to be effective in predicting miscibility 

between felodipine and nifedipine with PVP in articles (122). In addition, combined with Flory-

Huggins lattice based theory, the melting point depression method can be further applied to predict 

solid solubility of drugs in polymers (34). Melting point depression method was used in this project 

for the prediction of drug-polymer miscibility and solubility. Details of the application of this 

method are discussed in Chapter 4 (section 4.3.2.1). 

1.6.4.3 Observation of miscibility using hot stage microscope  

  A hot stage microscope equipped with polarised lens can be also used to observe the miscibility 

between drugs and polymers (151, 152). Briefly, physical mixtures composed of crystalline drugs 

and polymers with different proportions are heated on hot stage microscope. At a temperature 

below the melting point of the drug, through polarised lens, birefringence from the crystalline drug 

should be seen. On heating to the temperature above the melting points of the drugs and glass 

transition temperatures of the polymers, if drugs and polymers are miscible two observations 

should be obtained (151, 152). First, at the temperature above the melting point of the drug, the 

birefringence will disappear due to the melting of the drug. Second, the physical mixture consisting 

of melted drugs and liquefied polymers should appear as a single phase without any boundaries 

(unlike the distribution of oil in water). Through the test of the physical mixture with the whole 

drug-polymer ratios, the range within which drugs are miscible with polymers can be achieved.  

Although this method has been applied in studies regarding the miscibility between drugs and 

polymers, several factors may influence the observed results can be speculated. Local drug to 
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polymer ratio may differ from the desired ratio as incomplete mixing is very likely to occur when 

preparing physical mixtures with extreme drug-polymer ratios, which could lead to the incorrect 

miscible drug-polymer range. Moreover, bubbles left by the melting of drugs and softening of 

polymers under the microscope can confuse the judgement of the existence of the drug-polymer 

boundaries.  

1.6.5 Solid solubility of drugs in polymers 

  Similar to the miscibility, drug-polymer solid solubility is also a concept derived from aqueous 

solution theory. But unlike miscibility regarding the mixing of two liquids, solubility is defined as 

dissolving a solid state material into a solvent until the equilibrium maximum concentration at a 

certain temperature under a certain pressure. Under a condition of a certain temperature and 

pressure, a solute can dissolve in a solvate if the amount of the solute is below the solubility in the 

solvate. After dissolution, no recrystallisation or precipitation of the solute should be observed as 

the concentration of the solution is below the solubility. Therefore, assuming drug-polymer solid 

dispersions as liquid solution, if the drug loading in the solid dispersion is below the solid solubility 

of the drug in the polymer, no phase separation or recrystallization should occur. Based on this 

hypothesis, a few studies have correlated the physical stability of solid dispersions with solid 

solubility of drugs in polymers (19, 34, 122, 162). 

1.6.5.1 Prediction of solid solubility of drugs in polymers 

  Several theoretical methods have been reported for the prediction of solid solubility of drugs in 

polymers (56, 122, 162). Melting point depression combined with Flory-Huggins lattice based 

theory has been reported to predict solid solubility of felodipine and nifedipine in PVP (122). The 

interaction parameter χ from Flory-Huggins theory can be calculated using the detected depressed 

melting points from drug-polymer physical mixtures with different ratios, and by further using the 

obtained interaction parathion the solid solubility of drugs in polymers can be predicted. This 

method was applied in this project and details are discussed in Chapter 4 (section 4.3.2.1). 

  Another model based on the measurement of melting enthalpy of crystalline drugs in physical 

mixtures with polymers by DSC was recently developed by Qi et al(56). This model was a 

modification of a previous melting enthalpy based method (163). It assumed the dissolution of 

drugs in polymers on heating is endothermic and two extremes which involved drugs completely 

dissolved in polymers and vice versa were included in the model. The expected results did not 

agree with the model in that article, and it was attributed to the relatively high heating rate in DSC. 

This method was also utilised in the project and details of the model will be discussed in Chapter 4 

(section 4.3.3.1).  
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  In addition to the methods mentioned above, a rheology method was reported in articles to 

determine the solid solubility of drugs in polymers (164). This method involved the preparation of 

a series of drug-polymer physical mixtures. The viscosity of individual physical mixture was tested 

at the temperature above the glass transition temperature of the polymer but below the melting 

point of the drug. If the drug can dissolve in the polymer, the plasticising effect provided by the 

dissolved drug should decrease the viscosity of the physical mixture. With increasing drug loading, 

the viscosity should continue decreasing. However, if the drug loading was beyond the solid 

solubility, the non-dissolved drug as another phase in the physical mixture will increase the 

viscosity. Therefore, by plotting the viscosity against drug loading (drug-polymer ratios in physical 

mixtures) a negative slope should be seen until the turning point where the slope started to be 

positive, and the turning point was suggested as the solid solubility of the drug in the polymer.  

  Assume the dispersed particles (drugs) are single sized spheres, the reduced viscosity ŋ/ŋ0 

decreases with the increased volume fraction X of the drug in the mixtures (164): 

                                                               ŋ/ŋ0 = 1 + 2.5 X                                                          Eq 1.8 

where ŋ is the viscosity of the drug–polymer mixture, ŋ0 is the viscosity of the pure molten polymer 

and X is the volume fraction of the drug in the mixture.  Eq 1.8 suggests the viscosity of the 

mixture will increase when the drug-polymer ratio crosses the solubility of drug in polymer. This 

method was applied to pacacetamol-polyethylene systems in a study (164). The plot of measured 

viscosity against drug loading from the study is shown in Figure 1.12 (164). Measured solubility 

using different shearing rates are listed in the figure. The turning point as described in the method 

was clearly observed. 

 

Figure 1.12: Measured viscosity of the mixture against drug loading at 120 °C at three different shear 

rates: 1, 10 and 100 1/s. The critical drug loadings are 37.6%, 32.9% and 32.4% for the shear rates of 1, 

10 and 100 1/s, respectively (164). 
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  However, this method can be limited as polymers still can be very viscous even at the temperature 

above their Tgs, and thus the method is highly relied on the rheological and thermal properties of 

drugs and polymers and may not be applied widely. 

  Recently, a new protocol to determine the solubility of drugs into polymer matrix using co-milling 

method was reported (162). In the study, super-saturated indomethacin-PVP K12 solid dispersions 

were prepared by using milling up to 8 hours. The super-saturated systems were heat-treated in 

DSC at high temperature (120oC) for 2 hours to ensure the completion of de-mixing of drugs from 

the amorphous solid dispersions, and by re-scanning the same sample (after treated with heat at 

120oC) from room temperature an increased Tg value was detected in comparison to the Tg value in 

the fresh untreated sample. Using Gordon-Taylor equation, the drug concentration in the heat-

treated sample can be estimated using the Tg value from re-scanning, and this drug concentration 

was considered as the solubility of indomethacin in PVP K12. Although this method made the 

contribution to faster drug-polymer solubility prediction, there still could be some potential issues 

concerning the accuracy and application of the method. Firstly, although milling has the potential 

to prepare amorphous solid dispersions with formulations containing PVP and drugs, it is not a 

processing method which can be generally and widely used to transform drug-polymer mixtures 

into super-saturated amorphous solid dispersions (61). This can restrict the application of this 

milling method to a broad range of drugs and polymers. Secondly, there was no physical stability 

study of amorphous solid dispersions to support the estimated solubility as amorphous solid 

dispersions with the drug loading below the predicted solubility were expected to be physically 

stable on aging. More importantly, this method did not take into account the effect of processing 

method on the drug-polymer solubility and it has been reported that apparent drug-polymer 

solubility may vary depending on preparation methods (73).  

  In this project, a practical milling method was specifically developed for the apparent solubility of 

drugs in melt extrudates. Details of this method are discussed in Chapter 5.  

1.6.5.2 Limitations on the prediction of drug-polymer solid solubility   

  Although great efforts have been made to predict or measure the solid solubility of drugs in 

polymers, there still remain a few challenges. Firstly, solubility is a constant associated with 

temperature and pressure. Solid solubility predicted by approaches such as melting point 

depression method or rheology method is the value at the temperature significantly higher than 

room temperature, and therefore at room temperature where pharmaceutical products are normally 

stored the solid solubility could be lower as solubility can decrease with decreasing temperature. 

Secondly, predicted solid solubility by those approaches did not take into account the effect of 

preparation processes. For instance, practical solid solubility of drugs in solid dispersions prepared 

by hot melt extrusion can be higher than the predicted value by theoretical models as extra energy 
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in terms of high temperature and pressure during preparation is imposed on the system. It has been 

reported that the physical stability of solid dispersions with the same composition prepared by 

different processes varied significantly, which was attributed to the different apparent solid 

solubility in solid dispersions by different processes(73). Thirdly, those assumptions in the 

prediction models may underestimate the complication of the real drug-polymer system (such as 

the existing drug-polymer interactions), which can lead to the less accurate prediction.  

1.6.6 Interactions between drug and polymer in solid dispersions 

  Interactions between drugs and polymers in solid dispersions have been reported as another 

important factor responsible for the physical stability of amorphous solid dispersions (165, 166). 

Firstly, the formed interaction between the drug molecules and the polymer chains in amorphous 

solid dispersions (such as hydrogen bonding) can restrict the molecular motion of drugs and hence 

it can increase the physical stability. Secondly, the formation of the interactions between drugs and 

polymers has been considered to be related to the drug-polymer miscibility and solid solubility of 

drugs in polymers. Therefore, it might be intended to select polymers which can potential interact 

with drugs when designing amorphous solid dispersions.    

  One of the common interactions between drugs and polymers is hydrogen bonding which is 

formed by the presence of proton acceptors and donors. Hydrogen-bonding is likely to occur 

among the carbonyl groups (acceptors), amine groups (donors) and hydroxyl groups (donors and 

accepters). Drugs and polymers with these groups have high tendency to form hydrogen bonding in 

amorphous solid dispersions. The effective tools for confirming the interaction are FT-IR and solid 

state NMR (126). In FT-IR, the frequency of vibrations within a chemical structure is very 

sensitive to how the atoms and molecules interact with neighboring functional groups. Variation of 

peak positions and intensities in the IR spectrum can be the indicators of the presence of hydrogen 

bonding (167). In solid state NMR, comparing the chemical shift of amorphous drugs and drugs in 

solid dispersion could be useful in judging the formation of hydrogen bonding. Hydrogen bonding 

was found to have significant effect on the physical stability of amorphous drug-polymer systems 

(168). The mechanism as suggested by those studies was the restriction on the molecular mobility 

of drug molecules and the enhancement of drug-polymer miscibility.  

Besides hydrogen bonding, other interactions in solid dispersions such as acid-base were also 

discovered to be favourable for the enhancement of physical stability of solid dispersions(169). 

These interactions shared the same mechanism as hydrogen bonding which reduced the molecular 

mobility to prevent phase separation and recrystallization. However, this type of interaction could 

be very limited as it is dependent on the properties of drugs and polymers, and thus might not be 

widely utilised in solid dispersion formulation design.  
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  Although the importance of hydrogen bonding in stabilising solid dispersions has been 

emphasized substantially, there is a concern on amorphous solid dispersions aged under stressed 

humidity. Certain polymers which contain carbonyl groups can be hygroscopic, such as PVP and 

PVPVA, and aged upon exposure to stressed humidity, it is very likely for amorphous solid 

dispersions prepared with them to absorb moisture (35, 63, 170). The moisture uptake can disrupt 

the formed hydrogen bonding between drugs and polymers since water molecule is strong 

hydrogen bonding acceptor and donor (35). Accordingly, the occurrence of phase separation 

followed by recrystallization is highly possible in these systems. This has already been proved in 

Qi et al paper that phase separation occurred in felodipine-PVP system within 24 hours aged under 

stressed humidity (64). Therefore, the formulation strategy of selecting hydrogen bonding donor 

polymers for solid dispersions might not be entirely correct. In order to balance the formation of 

hydrogen bonding and the issue of hygroscopicity, the application of polymer blends containing a 

hydrophilic and a hydrophobic polymer could be effective. Using immiscible polymer blends as a 

formulation strategy in melt extrudates to enhance the physical stability of amorphous solid 

dispersions was developed in this project and are discussed in Chapter 7.   

1.7 Principal aims of the project 

  The application of amorphous solid dispersions has been proved to be effective in improving the 

dissolution performance of poorly water-soluble drugs in numerous studies in the pharmaceutical 

industry. Since the first application of solid dispersions was introduced in 1961, great effort has 

been input by pharmaceutical scientists to understand solid dispersions in various aspects such as 

preparation methods, physical properties of solid dispersions and development of polymeric 

carriers for solid dispersions. However, although the formulation conception of solid dispersions 

has been introduced for decades, there have only been few commercial products in market. The 

main issue lies in the intrinsic drawback of amorphous solid dispersions, the physical stability, as 

high energy level drug molecules in amorphous solid dispersions tend to revert back to the more 

stable crystalline form. The physical instability on aging in the form of phase separation and 

recrystallization can eventually affect the dissolution performance, resulting in the failure of the 

entire formulation strategy of using amorphous solid dispersions to improve dissolution rate. 

  This project was mainly designed to gain a greater depth of understanding of the physical stability 

of amorphous solid dispersions and a greater contribution to the prediction and enhancement of the 

physical stability of amorphous solid dispersions. In this project, hot melt extrusion was selected as 

the main method to prepare amorphous solid dispersions with model drugs (felodipine, fenofibrate, 

celecoxib and carbamazepine) polymers (EUDRAGIT® EPO and Kollidon® VA 64). The principal 

aims of this project are composed of three aspects: 
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1. By investigating physical properties of model drugs and polymers and combined with the real 

time physical stability study of amorphous solid dispersions prepared with them under different 

conditions, dominant factors which control the physical stability of amorphous solid dispersions 

can be revealed. Physical properties of model drugs are characterised in Chpater 3. Real-time 

physical stability studies of melt extruded systems prepared by hot melt extrusion are discussed in 

Chpater 6.  

2. To develop a practical method (milling method) for the accurate prediction of drug-polymer 

solubility in amorphous solid dispersions prepared by hot melt extrusion. Drug-polymer solubilities 

(thermodynamic solubility) predicted by theoretical approaches are discussed in Chapter 4. Milling 

method which is developed for the prediction of processing-related drug-polymer solubility is 

discussed in Chpater 5. Comparing with the real-time physical stability studies (Chapter 6), the 

validation of the milling method can be tested. Meanwhile, out of the practical point of view in the 

pharmaceutical industry, the feasibility of the theoretical approaches in predicting drug-polymer 

solubility can be investigated. 

3. To develop two novel formulation strategies for the enhancement of amorphous solid dispersions: 

using immiscible polymer blends  (Chapter 7) in melt extruded formulations and using spin coating 

(Chapter 8) as processing method for the preparation of amorphous solid dispersions.  
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Chapter 2 Materials and methods 

2.1 Introduction 

  With the increasing application of amorphous solid dispersions in the pharmaceutical industry, the 

enhancement and prediction of the physical stability is becoming more and more significant as the 

physical stability of amorphous solid dispersions is one of the key challenges associated with the 

formulation development of solid dispersion (1-3). In order to investigate the dominant factors 

which control the physical stability of solid dispersions and to further enhance the physical stability 

of amorphous solid dispersions, four model drugs including felodipine, celecoxib, fenofibrate and 

carbamazepine with different physicochemical properties, such as different glass transition 

temperatures different melting points and different crystallization tendency of individual 

amorphous drugs, were selected in this project (4-6). EUDRAGIT® EPO as the main model 

polymer was mainly used to formulate with the model drugs by hot melt extrusion.  EUDRAGIT® 

EPO is a hydrophobic polymer and thus it might protect amorphous drugs from recrystallization 

under stressed humidity (7). Kollidon® VA 64 was also used in this project and it was formulated 

with EUDRAGIT® EPO together (immiscible polymer blends) in hot melt extrusion to enhance the 

physical stability of amorphous solid dispersions (discussed in Chapter 7). 

  To understand the physicochemical properties of amorphous solid dispersions, different 

characterisation technologies were employed. For instance, Powder X-Ray Diffraction (PXRD) 

results presenting amorphous halo rather than peaks indicate the majority of components in the 

solid dispersion was mainly amorphous (8). A single glass transition detected by Differential 

Scanning Calorimetry (DSC) in binary drug-polymer dispersion may indicate a single-phase 

amorphous solid solution (9). Fourier Transform Infrared Spectroscopy (FTIR) alone with solid 

state NMR (ssNMR) can be used to judge if interactions (e.g. hydrogen bonding) have been formed 

between drugs and polymers in solid dispersions based on the analysis of peak positions (10, 11). 

Besides these conventional characterisation techniques, some analytical technologies with high 

spatial resolution, such as Atomic Force Microscopy combined with Localised Thermal Analysis 

(AFM-LTA) and Photothermal Microspectroscopy (PT-MS), were used to map the drug-polymer 

distribution of amorphous solid dispersions at a micron to sub-micron scale (12). 

  In this project, conventional technologies including DSC, PXRD, ATR-FTIR, ssNMR and 

localised technologies with high spatial resolution including Scanning Electron Microscope (SEM), 

AFM-LTA and PT-MS were applied to characterise solid dispersions. Thermal gravimetric analysis 

(TGA) was used to test the thermal stability of materials for hot melt extrusion. Dynamic Vapour 
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Sorption (DVS) was used to investigate the behaviour of water sorption of samples upon exposure 

to stressed humidity.  

2.2 Materials 

  Felodipine, fenofibrate, celecoxib, carbamazepine and EUDRAGIT® EPO were kindly donated by 

Evonik Industries AG, Darmstadt Germany. Kollidon® VA 64 (PVPVA) was received as a gift 

BASF, Ludwigshafen, Germany. 

2.2.1 Felodipine 

  Felodipine (ethyl methyl 4-(2, 3-dichlorophenyl)-1, 4-dihydro-2, 6-dimethyl-3, 5-

pyridinedicarboxylate), as shown in Figure 2.1, is a Ca2+ antagonist and a member of the 

dihydropyridine family with analogues including nifedipine, nitrendipine and nicardipine (13). It 

has been widely used to treat hypertension. Commercial products containing felodipine are 

available in market such as Plendil® (AstraZeneca Pharmaceuticals, dose includes 2.5, 5 and 

10mg/tablet). Felodipine is a typical BCS II drug with a low aqueous solubility of 0.5mg/L at room 

temperature (14). Three polymorph of crystalline felodipine has been reported with the onset value 

of melting points of 144.9oC for form I, 141.5oC for form II and 133.9oC for form III and amongst 

these polymorphs form III was most stable (15). Solid state transition of different polymorphs of 

crystalline felodipine has been reported whereby heating the melt-cooled amorphous felodipine at 

10oC/min melting points of different polymorphs were detected (4). However, it was not further 

discussed if using different heating rates recrystallization of polymorphs could controlled 

specifically (4). In another study, crystallising out from the felodipine solution in co-solvent (n-

hexane: methanol 10:1) at room temperature, form III (with the melting point of 133.9oC was 

successfully prepared) (16). The Glass transition temperature of amorphous felodipine has also 

been reported as 45oC (14). 

 

Figure 2.1: Chemical structure of felodipine.  
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2.2.2 Celecoxib 

  Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) and selective cyclo-oxygenase 

(COX-2) inhibitor used in the treatment of osteoarthritis, rheumatoid arthritis, acute pain (17). The 

commercial product of celecoxib was manufactured by Pfizer and was named as Celebrex® (dose 

100mg/tablet). The chemical structure of celecoxib is shown in Figure 2.2. Celecoxib is a BCS II 

drug that has low water solubility of 5mg/L at room temperature but good permeability (18). Three 

polymorphs of crystalline celecoxib have been reported in literature with the onset melting points 

of 162.8oC for form I, 161.5oC for from II and 160.8oC for form III and form III is the 

thermodynamically stable form under ambient condition (19, 20). There were few articles 

discussing the solid state transformation between different celecoxib polymorphs, and thus it was 

not clearly understood the recrystallization behaviour of amorphous celecoxib. In this project, 

celecoxib polymorphs with different melting point were detected on heating the melt-cooled 

amorphous celecoxib (discussed in Chapter 3). However, the mechanism was not understood. The 

glass transition temperature of amorphous celecoxib has been reported as 58oC (5). 

 

Figure 2.2: Chemical structure of celecoxib. 

2.2.3 Fenofibrate 

  Fenofibrate is clinically administrated to control cholesterol levels in patients at risk of 

cardiovascular disease by reducing low-density lipoprotein and very low density lipoprotein and 

increasing high density lipoprotein (21). Fenofibrate has a broad clinical dose ranging from 

48mg/capsule (i.e. Trictor® by Abbots) to 200mg/capsule (Lofibra® by Teva Pharmaceuticals). The 

chemical structure of fenofibrate is shown in Figure 2.3. It has been reported in literature that as 

classified into BSC II, the aqueous solubility of fenofibrate is extremely low (below 0.5mg/L) (22). 

Two polymorphs of crystalline fenofibrate have been reported in literature with the stable form I 

(melting point 80oC) and metastable form II (melting point 73oC) (23).Transformation between the 

two polymorphs has been reported (23). By maintaining melt-cooled amorphous fenofibrate at the 

temperature of 40oC and 70oC, respective, recrystallized form I and II were detected using DSC 

(23). Glass transition temperature of amorphous fenofibrate was reported as -19oC (5). 
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Figure 2.3: Chemical structure of fenofibrate. 

2.2.4 Carbamazepine 

  Carbamazepine (CBZ) is an anticonvulsant and mood-stabilizing drug used primarily in the 

treatment of epilepsy and bipolar disorder (24). There have been a few carbamazepine branded 

products in different countries and the dose varies from 100mg/tablet  to 400mg/tablet (i.e. Tegretol 

by Novartis Pharma with both doses). At least four anhydrous polymorphs of crystalline 

carbamazepine and a dihydrate have been confirmed (25-28).  Thermodynamically, form III has 

been reported as the most stable form and on heating in DSC a double melting could be detected 

with the first one being a combination of melting of form III at 161oC and transformation into form 

I and with the second one being the melting of form I at 191oC (29). The dihydrate form was 

reported to form by using form III of to directly contact with water and the water (30). The water 

content in dehydrates was circa 13% (w/w) (30).   The solubility and bioavailability of 

carbamazepine has been reported to vary depending on polymorphs. Form III, the most commonly 

available on the market, presents a very low aqueous solubility of 17.7mg/L (31, 32). The chemical 

structure of carbamazepine is shown in Figure 2.4. The glass transition temperature of amorphous 

carbamazepine was reported as 55oC (5). 

 

Figure 2.4: Chemical structure of carbamazepine.  

2.2.5 EUDRAGIT® EPO 

  EUDRAGIT® EPO is a cationic copolymer which is composed of dimethylaminoethyl 

methacrylate and neutral methacrylic ester units as shown in Figure 2.5. It is a pH-dependent 

soluble polymer that dissolves at the pH below 5.  EUDRAGIT® EPO is naturally amorphous with 

a glass transition temperature of approximately 50oC (33).  EUDRAGIT® EPO has been widely 

applied in pharmaceutical industry in taste masking via the preparation of solid dispersions or 

microspheres with bitter drugs (13, 34-36). Due to its non-hygroscopicity, EUDRAGIT® EPO was 
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also used to protect amorphous solid dispersions from moisture uptake to enhance the physical 

stability (7). 

 

Figure 2.5: Chemical structure of EUDRAGIT® EPO.  

  Recently, EUDRAGIT® EPO was used in amorphous solid dispersions to increase the dissolution 

rate of poorly water-soluble drugs (15, 37, 38).  An ibuprofen tablet prepared from compressing 

ibuprofen-EUDRAGIT® EPO melt extrudates was reported to show a similar dissolution profile to 

the commercial Nurofen® (39). Increasing the drug loadings in the tablet (up to 40% w/w) a faster 

dissolution rate was observed and it was attributed to the faster disintegration of the tablet due to 

the higher loading of talc (39). In another research, an efravirenz-EUDRAGIT® EPO melt extrudate 

was prepared and compared with the physical mixture with the same drug-polymer ratio, the 

dissolution rate from the solid dispersions increased two times higher (15). These studies 

demonstrated the feasibility of EUDRAGIT® EPO in the hot melt extrusion and its ability of 

dissolution enhancement of some poorly water-soluble drugs. 

  In addition, phase separation behaviour of EUDRAGIT® EPO based amorphous solid dispersions 

was also studied (13, 17, 36, 40, 41). Hot melt extrudates prepared with paracetamol and 

EUDRAGIT® EPO were studied by Qi et al, and it was reported that crystalline drug could be 

detected even in 10% (w/w) drug loading sample (17). Phase separation including molecular drug-

polymer dispersion and crystalline drug were very likely to present in the solid dispersions (17). 

Felodipine-EUDRAGIT® EPO solid dispersions prepared by hot melt extrusion was studied by the 

same group (41). After 2 month aging under 20%RH/40oC, only little amount of crystalline 

felodipine was detected in 70% (w/w) drug loading sample. These finds indicate that drug-polymer 

solid solubility is drug-dependent and different drugs formulated with the same polymer can 

present significantly different physical stability. In addition, a very recent study on the 

investigation of the physical stability of spin coated solid dispersions showed that EUDRAGIT® 

EPO can strongly protect solid dispersions from phase separation under stressed humidity in 

comparison to PVP K30 and Soluplus. This was attributed to the low hygroscopicity of 

EUDRAGIT® EPO and moisture uptake has been suggested as a key factor causing physical 

instability of the studied solid dispersions (7). Consequently, based on the good processibility of 

EUDRAGIT® EPO in hot melt extrusion and its low-hygroscopicity nature, it was selected as the 
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main model polymer to formulate solid dispersions with model drugs by hot melt extrusion in this 

project. 

2.2.6 Kollidon® VA64 

  Kollidon® VA64 (PVPVA64) is a hydrophylic polymer which is composed of 6 parts of N-

vinylpyrrolidone and 4 parts of vinyl acetate (Figure 2.6).  It is an amorphous polymer with a glass 

transition temperature of 106oC (42). Kollidon® VA64 was originally invented as a binder for wet 

granulation or dry binder for direct compression. Due to the suitable glass transition temperature 

and good thermoplasticity, Kollidon® VA64 was introduced as polymeric carriers in hot melt 

extrusion (43). Amorphous solid dispersions prepared by hot melt extrusion with Kollidon® VA64 

have been reported to show enhanced dissolution performance (44-46). In a study regarding the 

improvement of a model poorly water-soluble drug (a cannabinoid antagonist, newly synthesised), 

the formulation prepared with 10% w/w drug and 90% (w/w) Kollidon® VA64 showed 100% drug 

release whereas only 3% of the pure drug dissolved under non-sink condition within the same time 

period (21). The formulation was still confirmed as amorphous after 15 days aged under 

75%RH/40oC.  In another study, bifendate was prepared into melt extrudates with Kollidon® VA64 

(47). In comparison to the commercial product, a significant increase of dissolution rate was 

observed in the melt extrudates with 10% (w/w) drug loading. In addition, a relative bioavailability 

of 145.3±35.3% compared with commercial product was achieved.  

 

Figure 2.6: Chemical structure of Kollidon® VA64 

  As can be seen in the chemical structure (Figure 2.6), Kollidon® VA64 contains exposed carbonyl 

groups indicating its strong potential as an acceptor to form hydrogen bonding with drugs contain 

donor groups (i.e. NH or OH) in solid dispersions. This may lead to a high drug-polymer solubility 

in amorphous solid dispersions (48). Although in comparison to PVP K30, 40% of hydrophilic 

components, vinylpyrrolidone, has been replaced by hydrophobic group, vinyl acetate, moisture 

uptake by solid dispersions prepared with Kollidon® VA64 was reported (49, 50). In this project, 

Kollidon® VA64 was used with EUDRAGIT® EPO as an immiscible polymer blend matrix to 

stabilise melt extruded solid dispersions with felodipine. The hypothesis can be described as 

follows. Firstly, the ability of Kollidon® VA64 to form hydrogen bonding with model drugs may 

potential increase the overall drug-polymer solubility. Secondly, moisture uptake of solid 
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dispersions prepared with Kollidon® VA64 can be reduced with the addition of EUDRAGIT® EPO. 

Therefore, combined the two effects, the physical stability of amorphous solid dispersions can be 

enhanced if formulated with the immiscible polymer blends. The application of the immiscible 

polymer blends is discussed in Chapter 7.  

2.3 Methods 

  Solid dispersions were prepared by hot melt extrusion and spin coating in this study. In order to 

investigate drug-polymer miscibility and solubility as well as characterise model drugs and solid 

dispersions, several conventional characterisation technologies were used in this study including 

MTDSC, ATR-FTIR and PXRD. Modulated temperature differential scanning calorimetry 

(MTDSC) has been widely used in the pharmaceutical industry to provide the thermal properties of 

materials in heating. Attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-

FTIR) has been used to gain chemical information on drug-polymer solid dispersions. Powder X-

Ray diffraction (PXRD) can be used to distinguish a system from crystalline to amorphous state. 

Besides these technologies mentioned above which provide bulk properties of solid dispersions, 

microscopy based technology including scanning electronic microscopy (SEM) and atomic force 

microscopy (AFM) combined with local thermal analysis (LTA) and photothermal microscopy 

(PT-MS) were also used in this study to understand the form, distribution and physical stability 

occurred on a spatially resolved basis.  

2.3.1 Preparation of drug-polymer solid dispersions 

2.3.1.1 Hot melt extrusion 

  The principle and application of hot melt extrusion in the pharmaceutical industry has been 

described in detail in Chapter 1 (section 1.4.5). In this study, all melt extruded formulations were 

carried out on a Thermo Scientific HAAKE MiniLab II (Thermo Scientific, UK) with co-rotating 

twin screws. In this study, the rotation speed of the twin screws was set at 100r/min unless 

otherwise stated. The barrel temperature was generally set higher (~5oC) than the melting points of 

model drugs (it was specified in the case, if different operation temperature was used). The dwell 

time was maintained for 5 min for all formulations to ensure the complete mixing and melting of 

drug and polymer powder mixtures. 

2.3.1.2 Spin coating   

  The mechanism and principle of spin coating has been discussed in Chapter 1 (section 1.4.3). In 

this project, spin coating was used to prepare pure amorphous drugs to investigate 

theircrystallisation tendency and physical stability. Solid dispersions were also prepared by spin 

coating in order to compare the physical stability with solid dispersions prepared by hot melt 
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extrusion and evaluate whether the physical stability of the solid dispersions with the same drug-

polymer composition varies depending on different preparation processes. 

  A G3P-8 spin coater (Specialty Coating System, Surrey, UK) as shown in Figure 2.7 was used to 

prepare samples in this study. Generally a mixture of ethanol and dichloromethane with the ratio of 

50:50 was used as the solvent to prepare solutions for spin coating since model drugs and polymers 

all have high solubilities in this mixed solvent. In addition, the selection of the solvent ensures the 

fast evaporation during spin coating as the boiling point of dichloromethane is only 39.6oC. This 

can bring the boiling point of the solvent mixture (dichloromethane and ethanol) to the value in 

between 39.6oC and 78.4oC (boiling point of ethanol). Solid concentration of all solutions was 15% 

(w/v) which provides the viscosity to form the thin film with suitable thickness (approximately 

10µm). In spin coating, a piece of square-cut microscopy glass slide with the size of 25mm×25mm 

was placed on the chuck (Figure 2.7). Vacuum was provided underneath the chuck to ensure the 

substrate was attached tightly during spinning. For all sample preparations, the spinning speed was 

maintained at 2000 r/min with a duration time of 2min. With this set of parameters, no residue 

solvent was detected when testing the sample by ATR-FTIR (no typical solvent peak was 

observed).   

 

Figure 2.7: A G3P-8 spin coater (Specialty Coating System, Surrey, UK). 

2.3.1.3 Milling   

  In this project, milling was used for two purposes. First, it was used as a downstream method to 

process strand form melt extrudates into powder for the dissolution test (particle size was 

controlled using sieve to the size between 63 and 106µm). Second, milling was developed into a 

practical method for the accurate prediction of the apparent solubility of model drugs in melt 

extrudates (details are discussed in Chapter 5). A vibrating ball milling (Retsch MM 400 Ball 

Milling, Haan, Germany) was used in this project (Figure 2.8). The milling balls were made of 

stainless steel with a diameter of 7mm. Parameters including milling vibrating frequency and 

milling time is discussed in the related chapters. 
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Figure 2.8: Retsch MM 400 ball milling (a); milling chamber and the steel balls for milling (b). 

2.3.2 Physicochemical characterisation techniques 

2.3.2.1 Differential scanning calorimetry (DSC) 

2.3.2.1.1 Basic principles   

  Differential scanning calorimetry (DSC) is a thermal analysis technique which was first 

commercially introduced in 1963 (24). It provides qualitative and quantitative information as a 

function of time and temperature regarding thermal transitions in materials that involve 

endothermic or exothermic processes, or changes in heat capacity (51). Generally, there are two 

types DSC instruments: power compensation and heat flux. Power compensation DSC involves 

two separated furnaces for the reference and for the sample. The common principle of power 

compensation DSC is to heat both the reference and the sample simultaneously in such a way that 

the temperature of the two is kept identical, and the extra powder supply to maintain the 

temperature is measured (52). Unlike power compensation DSC using two furnaces, heat flux DSC 

uses two crucibles for the sample and for the reference within one furnace as seen in Figure 2.9. 

They are both heated from the same source and the temperature difference between the sample and 

the reference is measured (52).  The signal is then converted into the power difference as shown in 

the following equation: 

                                                                    dQ / dt = ∆T / R                                                       Eq 2.1 

where Q is the heat, t is the time ∆T is the temperature difference between the sample and the 

reference and R is the thermal resistance of the heat paths between the furnace and the crucible. 

Therefore, if heat paths are identical, the heat flow difference can reflect the temperature difference 

between the sample and the reference.  
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Figure 2.9: Opened furnace with two crucibles in Q-2000 MTDSC. 

  The total heat content of a material is in linear relationship to its heat capacity (Cp J/g·oC) which is 

the quantity of heat required to change the temperature of the material by 1K: 

                                                                      Cp =dQ / dT                                                         Eq 2.2 

  Rearranging this equation with time: 

                                                                  dQ / dt = Cp (dT / dt)                                               Eq 2.3 

where dQ / dt is the heat flow and dT / dt is the heating rate. With this equation, the differential 

heat flow can be a measure of the sample heat capacity. DSC data is normally expressed with the 

heat flow as a function of the temperature. A typical DSC thermograph is shown in Figure 2.10. 

 

Figure 2.10: DSC result of felodipine measured at the heating rate of 10oC/min. 

2.3.2.1.2 Modulated temperature differential scanning calorimetry (MTDSC) 

  Conventional DSC mentioned above is a powerful tool to measure thermal event such as melting 

accurately. However it cannot distinguish overlapping thermal events: glass transition and 

relaxation could occur within the same temperature range for some amorphous drugs and polymer 
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(53). MT DSC was designed to separate overlapping thermal events. Compared with conventional 

DSC, a sinusoidal modulation is overlaid on the linear ramp, namely, a perturbed heating or 

cooling process. As a result, there are three variables related to DSC results and they are average 

heating rate (underlying heat rate), amplitude of modulation and frequency of modulation. With 

effects of these variables, the equation describing heat flow can be reorganised as follows: 

                                                  dQ / dt = Cp (dT / dt + f’’ (t,T)) + f(t,T)                                      Eq 2.4 

where dQ / dt is the total heat flow comprises two contributions, dT / dt  is the heating rate, Cp is 

the heat capacity, f’’ (t,T) is the thermodynamic heat flow component, and f(t,T) is kinetically 

limited heat flow (12). This equation shows that total heat flow comprises two contributions: one is 

function of heating rate (heating rate dependent) and the other one is a function of time and 

temperature (temperature and time dependent). Heating rate dependent transitions tend to be larger 

when evaluated using faster heating rates and are reversing. For instance, the transition (i.e. heat 

capacity) can be cycled by altering heating and cooling (termed as reversing transition). 

Temperature and time dependent transitions cannot be reversed once initiated and these transitions 

are termed as non-reversing transitions, such as relaxation or decomposition. Consequently, by 

separating signals into reversing and non-reversing responses, overlapping thermal events can be 

distinguished.  

  In addition to separating reversing and non-reversing thermal events, MTDSC is also able to 

measure the heat capacity more accurately in comparison to the conventional DSC. In MTDSC, the 

heat capacity data (Cp) is calculated (54): 

                                                                   Cp = Kc AHF / AHR                                                                                    Eq 2.5 

where Kc is the heat capacity calibration constant, AHF is the amplitude of the modulated heat flow 

and AHR is the modulated heating rate. Therefore, the application of large amplitude in MTDSC can 

increase the heat capacity precision by reducing noise (54). For amorphous drugs, heat capacity 

value normally increased when crossing the glass transition region on heating in DSC, and thus 

with the high precision of the detection of heat capacity, MTDSC can be highly sensitive in 

detecting glass transitions of amorphous materials (54). 

2.3.2.1.3 Calibration and experimental parameters 

  A Q-2000 MTDSC (TA Instruments, Newcastle, USA) was used in this study. It is a heat flux 

MTDSC. As mentioned above, two crucibles were set within one furnace for this type of DSC. In 

any measurement, the thermal behaviour of the reference is compared with that of the sample. 

Therefore factors which will affect the accuracy such as heat adsorption by the two crucibles and 
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heat loss through convection need to be minimised. In order to provide accurate and consistent 

results by DSC, it is necessary to calibrate DSC before it is used.  

  For the Q-2000 MTDSC in this study, in standard mode (used as conventional DSC), three basic 

calibrations were required and carried out. They were baseline calibration, cell constant calibration 

and temperature calibration. The baseline calibration involved two stages and the first stage was 

running DSC with empty cell (furnace) at a wide temperature range from -80 to 400˚C at the ramp 

of 20˚C/min. The second stage was performed with running two sapphire disks placed on sample 

and reference crucibles, respectively. After baseline calibration, results will be saved in the 

machine which can ensure the temperature variation on scanning be minimised.  Cell constant 

calibration (enthalpy calibration) was performed with running indium through its melting transition. 

The measured heat flow was compared with the value stored in the machine and the ratio from 

those two was the cell constant. Temperature calibration is designed to correct the thermalcouple 

readings of temperature under experimental conditions. Three standards (n-octadecane with Tm of 

28.24˚C, indium with Tm of 156.60˚C and Tin with Tm of 231.93˚C) with high purity were used to 

calibrate temperatures.  

  For MTDSC, addition heat capacity calibration is required. In order to run MTDSC, three 

parameters are required to set up including amplitude, underlying heating rate and period. The 

relationship between these three parameters is recommended by the manufacturer (55): 

                                          amplitude = (heating rate × period) / (2π × 60)                              Eq 2.6 

where the unit of heating rate is oC/min, the unit of period is s, and the number of 60 is to adjust the 

second into miniute. By changing the parameters, MTDSC measurement can be improved, i.e. 

larger amplitude can increase sensitivity of detecting thermal events such as glass transition as 

described above (56). In this study, an aluminium oxide sapphire was used for heat capacity 

calibration for modulated mode. The modulation parameters used were ±0.318˚C/60 sec with a 

2˚C/min underlying heating rate. With this set of parameters, thermal events such as glass transition 

and recrystallization of model drugs and polymers can be clearly detected. In this study, all samples 

were tested in TA standard crimped pans. For each sample, measurements were repeated at least 

three times (n=3). 

2.3.2.2 Thermogravimetric analysis (TGA) 

  Thermogravimetry is one of the oldest thermal analytical procedures and has been used 

extensively in the study of polymeric systems (Bolland et al, 1946). The technique involves 

monitoring the weight loss of the sample in a chosen atmosphere (usually nitrogen or air) as a 

function of temperature. It is a combination of a suitable electronic microbalance with a furnace, a 
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temperature programmer and computer for control, which allows the sample to be simultaneously 

weighted and heated in a controlled manner, and the mass, time and temperature to be captured. In 

the pharmaceutical industry, TGA is applied to compositional analysis of drugs, the volatile 

components of substances, effects of water vapour on the stability of crystalline drugs and 

excipients, and the determination of the water content, both free and bound, of a wide variety of 

materials (57). 

  In this study, TGA was used to determine the thermal stability of the drugs and polymers upon 

heating to assist with selecting the operation temperature in hot melt extrusion to avoid thermal 

degradation occurred in process. It was also used to detect the quantity of water uptake by solid 

dispersions upon exposure to high humidity. It is significantly important to measure the water 

content in solid dispersions since water can act as a plasticizer that can increase molecular mobility 

of amorphous drugs and compete against drugs in forming hydrogen bonding with polymers to 

increase physical instability of solid dispersions.  

2.3.2.3 Dynamic vapour sorption (DVS) 

2.3.2.3.1 Basic principles 

  Dynamic vapour sorption is a gravimetric technology which measures the water uptake of 

samples upon exposure to humidity as a function of time. It is a powerful tool to study the kinetics 

of moisture uptake of samples. DVS is normally used in two modes to investigate the kinetics of 

water adsorption and absorption. The first one is termed as isohumidity whereby samples are 

exposed to certain humidity at a fixed temperature for a certain time length until the equilibrium is 

obtained. The second one is termed as isothermal which involves a step increase of the provided 

humidity at a certain temperature and monitor the mass change of the sample against time.   

  DVS has been widely used in the food and pharmaceutical industry to evaluate the behaviour of 

moisture sorption onto samples as water is a well-known plasticiser which can affect physical 

property of materials (25, 28, 31).  The application of DVS is to investigate the kinetics of moisture 

sorption of materials and use different fitting mathematical models to evaluate the process of 

waster uptake.  The water uptake by materials or drug delivery systems (i.e. solid dispersions) can 

be complex, and is typically divided into two steps adsorption (where moisture covers the surface 

of the samples) and absorption (where moisture penetrates into the bulk of the samples).  Different 

models have been developed to describe the two stages. The classic Brunauer-Emmett-Teller (BET) 

theory is applied to the adsorption of molecules onto the surface and was typically depicted as 

sigmoidal shape (33, 35). However, it only applies to the materials with water activity up to 0.4. 

For more complex systems with water activity range of 0-0.9, the semi-empirical Guggenheim-

Anderson-de Boer was introduced (34). In the field of solid dispersions, the Fickian Diffusion and 

Case II Diffusion are mainly the two widely used models as the process of moisture uptake of 



Chapter 2 

 
80 

 

amorphous materials is dominated by either of them (36, 58). Through fitting the DVS using 

different models, the process of moisture uptake can be better understood which could be beneficial 

for the selection of storage condition for samples (i.e. food or pharmaceutical dosage forms), 

especially for developing formulation using hygroscopic materials. 

2.3.2.3.2 Experimental parameters 

  In this study, A Q-5000 SA dynamic vapour sorption (TA Instruments, Newcastle, USA) was 

applied for the investigation of moisture uptake by samples. Isohumic test were performed on 

samples including EUDRAGIT® EPO, Kollidon® VA 64 raw powder and different melt extrudates 

with and without drugs. The samples were exposed to 75%RH at 25oC in DVS up to 10 hours to 

study their kinetics of moisture uptake.  

2.3.2.4 Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR)  

2.3.2.4.1 Basic principles 

  Fourier transform infrared spectroscopy (FTIR) is a spectroscopic technique that can be used to 

identify chemical bonds within a sample. An electromagnetic wave in the infrared region 

(wavelength between 750nm and 1mm) can stimulate molecular vibrations and rotations at specific 

frequencies which depend on the chemical nature of the functional groups. This allows generating a 

characteristic spectrum which is unique for individual chemical entity. 

  There are several modes in which FTIR measurements can be made. The commonly used 

transmission mode requires specific sample preparation for solid samples, that is grinding samples 

into a fine powder with potassium bromide (KBr) and being compressed into thin disk. This 

restricts the application of transmission FTIR as the material may change structure during grinding 

and compressing stages. The mode of attenuated total reflectance (ATR) when applied to FTIR can 

be used to probe a sample at or near a surface, which makes it possible to obtain FTIR spectra for a 

surface of a sample without any additional sample preparation (59). The principle of ATR-FTIR is 

shown in Figure 2.11. ATR method uses a high refractive index crystal such as diamond (59). The 

sample which could be liquid or solid is placed in contact with the diamond, and infrared light from 

an FTIR source is allowed entering the diamond at a specific angle and reflecting at the surface 

(59). The light can penetrate the sample. The depth of penetration dir, defined as the distance 

normal to the interface which the intensity falls to 1/e of the intensity at the surface, is expressed 

(60):  

                                                         dir = λ / (2πn1 (sin2 θ – n12
2)1/2)                                           Eq 2.7 

where λ is the wavelength of the light, the angle of incidence of the beam is θ and n12 is the 

refractive index ratio (n2 / n1) of two media (air and diamond). Specific frequencies of the incoming 
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radiation, corresponding to the fundamental vibrational frequencies and vibrational overtones of the 

sample material, are absorbed, and the rest of the light is reflected through the diamond and into a 

detector. The resulting spectrum is very similar to a FTIR transmission spectrum.  

 

Figure 2.11: Schematic illustration of using ATR-FTIR method to test a solid form sample.  

  FTIR is one of most commonly used technique in understanding solid dispersions. It can 

distinguish some chemical groups from drug molecule present differently in a FTIR spectrum when 

changed from crystalline form to amorphous form. It is also capable to detect the formation of 

hydrogen bonding between drug and polymer molecules in solid dispersions. Some articles have 

reported that the drug-polymer inter-molecule hydrogen bonding in solid dispersions is essential to 

stabilise solid dispersions on aging by inhibiting phase separation and crystallisation of amorphous 

drugs (61, 62). This is due to the decreased molecular mobility of amorphous drug molecules when 

hydrogen bonded with the polymer molecules (61).     

2.3.2.4.2 Experimental parameters   

  In this study, ATR-FTIR spectroscopic experiments were carried out on a IFS 66/S FTIR 

spectrometer (Bruker Optics Ltd, Coventy, UK) fitted with a Golden Gate® ATR accessory with 

heated top plate (Orpington, UK). The crystal is a single reflection diamond element. The 

resolution was 2 cm-1, and 32 scans were taken for each sample.   

2.3.2.5 Powder X-Ray diffraction (PXRD) 

2.3.2.5.1 Basic principles  

  Powder X-ray diffraction (PXRD) is widely used for the identification of structures of different 

crystalline materials. In the pharmaceutical industry, PXRD is commonly employed to in the 

identification of crystalline and amorphous compounds by their diffraction pattern (63, 64). The 

diffraction will occur if a crystalline material is interacted with a focused X-ray beam according to 

Bragg’s law, 

                                                                     nλ = 2dsinθ                                                           Eq 2.8 
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where the integer n is the order of the diffracted beam, λ is the wavelength of the incident X-ray 

beam, d is the distance between adjacent planes of atoms (the d-spacing), and θ is the angle of 

incidence of the X-ray beam. By altering θ during scanning, different d-spacing can be obtained. 

The characteristic set of d-spacing generated by a typical PXRD scan is unique for individual 

crystalline material. Therefore, the "fingerprint" of each crystalline material can be obtained, which 

is useful in identifying unknown materials.  

  PXRD is a fundamental tool for the investigation of pharmaceutical solid dispersions whereby the 

physical state of a solid dispersion can be rapidly tested being amorphous or crystalline (65-67). 

Simply, if no peaks are detected in a PXRD spectrum, the system can be considered as amorphous 

initially. In addition, PXRD is also useful for the detection of solid transformation (amorphous 

drugs crystallised into different polymorphs) in solid dispersions (68).   

  However, as a global characterisation technique, the issue of relatively low sensitivity of detecting 

crystalline drugs in amorphous solid dispersions have been reported  (69). A report by Lin et al (69) 

concluded that PXRD failed in detecting acetaminophen crystals if the crystalline impurities were 

below 5% (w/w). Furthermore, in general sample preparation (i.e. prepare original samples into 

powder form) are required in PXRD, which may result in inconvenience and uncertainty if samples 

were prepared by hot-melt extrusion, since the state of extrudates may alter by grinding after melt 

extrusion. This effect has been confirmed in this project and is discussed in Chapter 5. Nevertheless, 

PXRD still remains a useful tool in evaluating amorphous solid dispersions due to the simplicity 

and efficiency. 

2.3.2.5.2 Experimental parameters 

  In this study, PXRD tests were performed at room temperature with a Thermol-ARL Xtra 

diffractormeter (Thermo scientific, UK). Strand form extrudates were milled by mortar and pestle 

before testing. Samples were placed on a zero background samples holder and incorporated onto a 

spinner stage.  Cu Kα1 was used as the X-Ray source (voltage: 45 kV, current: 40 mA). It was 

mounted with the wavelength of 1.54 Å. The angular range (3-80˚ 2θ) was scanned with a step size 

of 0.01˚ and 0.5s per step. 

2.3.2.6 Scanning electron microscopy (SEM) 

2.3.2.6.1 Basic principles 

  Scanning electron microscope (SEM) is a type of electron microscope that produces images of a 

sample with higher magnification than normal light microscopes. Basically, by scanning the sample 

with a high energy electron beam, the interactions between the beam and the atoms in the sample 

can be detected (26). The scanning electrons in SEM can be produced by a thermal emission source 

such as the tungsten filament (most commonly used) or a field emission cathode (provide the 
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brightest beam with highest resolution but expensive). There are many possible interactions 

generated by the scanning electron beam such as secondary electrons, back-scattered electrons, 

characteristic X-rays and Auger electron. These generated interactions can be collected by various 

detectors in the SEM chamber. The signal from each detector is then fed to the monitor which is 

rastered in synchronisation with the electron beam. In theory, in addition to the observation of the 

topography of samples, structural information can be achieved if switching between different 

detection technologies, (27).  

  SEM is commonly used as an auxiliary tool to study solid dispersions mainly focusing on the 

morphology of samples (70, 71). It has been reported that heterogeneity on the surface of melt 

extrudated strand can be a sign of phase separation since the freshly prepared melt extrudates 

present a smooth surface (41).  

2.3.2.6.2 Experimental parameters 

  In this study, the samples were sputter coated with Au/Pd prior to SEM experaments. The images 

of the samples were taken using a Phillips XL20 SEM (Phillips Electron Optics, Netherlands). 

2.3.2.7 Scanning probe microscopy based compositional analysis methods 

2.3.2.7.1 Basic Principles of Atomic Force Microscope (AFM) 

Atomic-Force Microscope (AFM) is a tool for visualizing sample surfaces with micron or sub-

micro special resolution which belongs to the family of microscopes known as scanning probe 

microscope (SPM). It was first invented in 1986 by Binning et al as an extension of another 

technique known as scanning tunnelling microscopy (STM) (42, 72). An AFM consists of a sharp 

tip at the end of a cantilever (probe) being brought into close proximity with the sample. As the 

probe scans the surface the deflection of the cantilever is monitored by an optical lever 

arrangement formed by reflecting a laser beam from the back of the cantilever onto a photodetector. 

Changes in the deflection of the cantilever provide the height of the sample at each x,y position 

(73). The schematic diagram of AFM is depicted in Figure 2.12. An AFM experiment can be 

operated with the tip either touching the sample (contact mode) or off the sample (non-contact). 
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Figure 2.12: Illustration of instrumental design of Atomic-Force Microscope (73). 

2.3.2.7.2 AFM contact mode 

  Contact mode is the simplest way to achieve topographic images of the sample. As the name 

suggests, the probe is in contact with the sample during scanning. The deflection of the probe (and 

so the force applied to the sample) is maintained constant (setpoint value) as the probe scanning 

over the sample surface.  As the tip is moved across the sample, the cantilever will be bent or 

deflected due to the imposed force (setpoint value) in response to the change of height. The signal 

which is generated by adjusting the position of the probe to the setpoint value is collected and used 

to create the topographical image. Contact mode is ideal for rigid samples such as solid materials 

but not for soft samples such as biological samples.  

2.3.2.7.3 AFM tapping mode 

  To avoid physical contact of the tip to the samples in contact mode, AFM can be also operated in 

tapping mode. In tapping mode, an oscillation is imposed on the probe. The probe to sample 

distance is set so that the probe tip only lightly contacts (taps) with the sample. During scanning, 

the interaction (i.e. probe dragged by the sample due to the stickness) between the sample and the 

probe will cause the change of the imposed oscillation. This change of oscillation amplitude or 

phase will be monitored and can be used to generate the phase image. In addition to normal 

topographic image, phase image can be achieved if samples were scanned in tapping mode. Due to 

the different mechanical properties of different materials within the scanning area (assume the 

sample is a mixture with different components), the contact time of the probe with different 

components will be different, which leads to the different phase constant change (74). Therefore, 

materials with different mechanical properties such as stiffness and viscosity can be distinguished 

within the sample appearing as different phases in the phase image. This can useful in probing the 

distribution of materials in a sample (74). 
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2.3.2.7.4 Basic principles of localised thermal analysis (LTA) 

Localised thermal analysis (LTA) is an extension of the conventional AFM by replacing 

conventional probes with thermal probes. The tips of these probes are composed of material with 

high resistance to electrical current. When an electrical current is applied, it causes the tip of the 

probe to heat up (75). The probes have unique advantage that not only can be used as normal 

probes to generate topographical images but can also be used as a localised heating source. The 

first LTA probe (named as Wollaston probe) was developed in 1994 and first used in 1996 by 

Hammiche et al (76). The probe consists of a 75µm diameter silver wire with a 5µm platinum 

filament core. The wire is manipulated to form a sharp point at which the silver is 

electrochemically removed to expose the filament (Figure 2.13). This V-shaped wire is then used as 

the sensor to perform the functions mentioned above. Due to its micron spatial resolution of the 

technique, it is termed as micro-thermal analysis (µTA). There are several modes in which heated 

probes can be used but one of the most common is to carry out the thermal analysis on specific 

locations on a sample surface (77). The probe is placed in contact with the desired point. The 

system monitors the position of the probe above the surface as the voltage is applied. Once the 

temperature at the end of the tip is sufficiently high to meet the softening temperature of the tested 

sample, such as glass transition or melting, penetration of the tip into the sample will occur, which 

is reflected as a decreased deflection of the probe voltage. Other applications of heated probe have 

also been reported (74, 75). The LTA probe can be used at a constant temperature as it is scanning 

across the sample. Differences of thermal properties of materials will cause the changes of heat 

flow between the probe and the sample. The current needs to be adjusted to maintain the constant 

temperature. Therefore a map of relative thermal conductivity can be generated by monitoring 

these changes (74).  

 

Figure 2.13: Schematic design of Wollaston wire thermal probe (Price et al, 1999). 

  Recently, thermal probes with the similar dimension to conventional tapping mode probes were 

invented, which allows the application of LTA studies at a increase spatial resolution (sub-micron) 
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in comparison to the Wollaston probe (77). The probe has a length of circa 200µm and the height 

of the tip is below 1 µm (75). This provides the probe with a topographic spatial resolution of 5nm 

(78). The probe is made of highly doped silica with boron or phosphorus which has a high 

electrical resistance (75). This allows the tip to be heated when an electrical current is applied. Due 

to sub-micron resolution, it is named as nano-thermal analysis (nanoTA). A typical nanoTA tip is 

shown in Figure 2.14.  

 

Figure 2.14: SEM images of a nanoTA probe (Image provided by Analysis Instrument). 

   Localised thermal analysis can be used to identify materials (or same material with different 

physical state, crystalline and amorphous) with different thermal transition temperature. Especially 

in the area of solid dispersions, LTA has been used to investigate phase separation at a micron to 

sub-micrometre level (77). Bulk analysis techniques such as DSC and PXRD may lack the ability 

to detect localised phase separation or recrystallization in solid dispersions (40, 79). For instance, a 

DSC or PXRD level amorphous solid solution may contain low quantity of drug crystals which 

cannot be detected by bulk analysis technology. However, with the high spatial resolution provided 

by LTA, phase separation and recrystallization can be clearly confirmed (this has been proved in 

this study and is discussed in Chapter 8).  Overall, LTA can be used as a powerful tool combined 

with conventional characterisation technologies to understand the physical behaviour of solid 

dispersions with greater depth.  

2.3.2.7.5 Basic principles of transition temperature mapping (TTM) 

  Based on the principles of LTA, a major development has been reported recently, transition 

temperature mapping (TTM), which is an extension of the localised thermal analysis (53). Instead 

of manually selecting the tested locations across the sample surface in normal LTA test, a defined 

region of the sample can be detected in pixels. A pixel is defined as a LTA tested point, and the test 

at a certain pixel will stop once a thermal transition is detected. Subsequent, the probe will be 

located to the adjacent pixel to carry on the LTA test until all pixels are completed within the 

region. The distance between the two consecutive pixels can be as close as 1µm (53). The detected 

transition temperatures within that area are assigned a colour based on a particular palette and 



Chapter 2 

 
87 

 

hence the coloured image is assembled based on different transition temperatures. A typical TTM 

result is shown in Figure 2.15. 

 

Figure 2.15: TTM result of the surface of hot melt extruded EUDRAGIT ® EPO-Kollidon® VA 64 

(50:50 w/w). 

  In comparison to LTA, TTM can not only distinguish different materials or phases in the same 

sample within a small area (i.e. 50µm×50µm), it can also “draw” the borderline between different 

phases in the same sample (as shown in Figure 2.14). Therefore, it can be useful to investigate the 

distribution of different materials within the sample at a sub-micrometre level (7).  

2.3.2.7.6 Basic principles of photothermal microspectroscopy (PT-MS) 

  Another main development of LTA is the photothermal microspectroscopy (PT-MS) in which 

LTA probe is used as a temperature sensor (80, 81). Small temperature changes will occur if the 

sample absorbs infrared radiation. In PT-MS these small temperature changes can be detected using 

the thermal probe (normally the Wollaston probe). PT-MS was first invented in 1999 by Hammiche 

et al (56). The technique is implemented by interfacing a conventional FTIR spectrometer with an 

AFM equipped with the thermal probe. The signal detected by the thermal probe can be Fourier 

transformed to generate a spectrum which is very similar to a conventional IR spectrum of the 

material. Figure 2.16 shows a PTMS and a conventional IR spectrum of EUDRAGIT® EPO. It can 

be seen that all peaks present in the absorbance IR spectrum are detected by PTMS, but the relative 

peak intensities are different. This is because the two techniques are measuring different entities: 

temperature changes for PT-MS and the amount of light transmitted for FTIR.  
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Figure 2.16: PTMS and conventional IR spectrum of EUDRAGIT ® EPO. 

  PTMS can be operated by either placing the probe in contact with the sample surface or the probe 

is attached with a single particle (80, 82). The benefit of using PTMS in comparison to 

conventional FTIR is PT-MS is a localised technique which can be used to collect local 

spectroscopic information of the sample. The conventional IR spectrometer is a tool to investigate 

the composition of a sample at a global level. PTMS can be used as a localised technique to 

achieve photothermal spectrum of a sample at micron to sub-micron level. The resolution of PTMS 

is dependent on two aspects: the size of the applied thermal probe and the thermal diffusion length 

of the sample (56). Using Wollaston probe as the PTMS detector, a micron level of spatial 

resolution can be expected. The thermal conductivity can also affect the resolution. Materials with 

high thermal conductivity can have a long thermal diffusion length. This may result in the detection 

of average temperature changes of an area (the area surround the contacting point of the probe) 

rather than the temperature changes at the contacting point (56). Despite the potential resolution 

issue, PTMS has already shown the capability to be used as a compositional imaging tool. For 

instance, it has been reported that PT-MS is a powerful tool to evaluate drug distribution in hot 

melt extruded solid dispersions (12).   

2.3.2.7.7 Calibration and experimental parameters of LTA and TTM 

  In this study, nano-TA and TTM were applied to test samples. Scanning topography images were 

acquired at room temperature on samples using a Caliber AFM (Veeco Instruments, Santa Barbara, 

USA) equipped with a nano-thermal probe (EXP-AN2-200, Asylum Research, Santa Barbara, 

USA). TTM was carried out on a VESTA System (Anasys Instruments, Santa Barbara, USA). In 

order to detect the transition temperature accurately by LTA, the temperature calibration is 

necessary. The nano-thermal probe was calibrated for temperatures by supplying a scanning 

voltage profile whilst in contact with polymeric materials with known melting points (poly(e-

caprolactone) with Tm at 60°C, polyethylene with Tm at 130°C and polyethylene terephthalate with 
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Tm at 238°C). All LTA measurements were carried out at a heating rate of 10°Cs-1. For each tested 

sample, at least three areas were selected to be measured using LTA. 

  TTM was operated with the same probe (EXP-AN2-200, Asylum Research, Santa Barbara, USA). 

The temperature calibration for TTM was the same as LTA by using the three standards. The tested 

area is mentioned in the section where TTM is applied.  

  For tapping mode, the phase image was obtained using a Caliber AFM (Veeco Instruments, Santa 

Barbara, USA) equipped with a silicon cantilever (AC-160TS, Asylum Research, Santa Barbara, 

USA). The spring constant of the probe was 42 N/m with the oscillation frequency of 300 kHz at 

an amplitude of 2.5 V. 

2.3.2.7.8 Experimental parameters of PTMS 
 

  In this study, PT-MS experiments were performed by interfacing (using a dedicated optical 

interface) a Thermo-microscopes Explorer AFM (Vecco, CA, USA) equipped with a Wollaston 

wire thermal probe (Vecco, CA, USA) and a FTIR spectrometer (IFS66/S model from Bruker 

Optics limited, Coventry, UK). A single particle from the milled extrudates powder was 

immobilised on the tip by placing the tip and particle in contact. For each measurement 200 scans 

were acquired at a resolution of 8cm-1. 

2.3.2.8 Solid state nuclear magnetic resonance (ssNMR) 

2.3.2.8.1 Basic rinciples 

  Nuclear magnetic resonance (NMR) occurs because some nuclei have a property termed as spin. 

This spin can result in the nuclei having magnetic moments which can re-orient themselves if a 

large magnetic field is imposed on the sample containing those spinning nuclei (83). Nuclei that 

can spin are the isotopes which contain an odd number of protons and/or of neutrons. When 

exposed to a magnetic field, NMR active nuclei can absorb electromagnetic radiation at a 

characteristic frequency of the isotope. The resonance frequency, energy of the absorption and the 

intensity of the signal are proportional to the imposed magnetic field. The most commonly studied 

nuclei are 1H and 13C (84). 

Based on the NMR phenomenon, NMR spectroscopy was developed and widely used in physics, 

chemistry, medicine and pharmacy to investigate chemical structure of a material combined with 

other spectroscopy techniques such as IR (85). Two main parameters can be achieved from the 

NMR spectroscopy: chemical shift and relaxation time. Chemical shift is measured based on the 

interaction between the imposed large magnetic field and the magnetic field generated by the 

spinning nuclei. It can provide information on the structure of molecules. Relaxation refers to the 
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process that the nuclei return to the thermal equilibrium state after excited by absorbing energy 

from imposed magnetic field. This process is also termed as “spin-lattice” (T1). It is used to 

describe the mean time of this relaxation process. Excitation can be not only caused by the external 

magnetic field, but also induced by the adjacent spins, and the process from the excited state 

induced by adjacent spins to the non-precessing field is termed as transverse relaxation (T2).  

Solid state NMR (ssNMR) is an extensional development of conventional solution NMR for 

studying solid samples. In solution NMR, the spectra consist of very sharp transitions due to 

averaging of anisotropic interactions by fast isotropic molecular tumbling, whereas in solid state 

this motion usually is absent. Consequently, the resonances become very broad as the full effects of 

anistropic interactions are observed. These anisotropic interactions can significantly lower the 

resolution. However, with the development of special techniques such as magic-angle spinning, 

cross polarisation and special pulse sequences, high resolution ssNMR has become possible  and 

widely used in solid state material characterisation (86).  

  In the field of solid dispersions, ssNMR has been used to investigate the phase behaviour of solid 

dispersions, the interaction between drugs and polymers and miscibility between drugs and 

polymers. The hydrogen bonding was confirmed between BMS-488043 and PVP in spray dried 

solid dispersions by ssNMR. The study concluded that the formed hydrogen bonding showed 

stabilising effect on the physical stability of the system against high temperature (87). In another 

study, by measuring the relaxation time of solid dispersions prepared by spray drying, miscibility 

between nifedipine and hydrophilic polymers was obtained (11). It was suggested in the study that 

if two components were miscible, the relaxation decay of the mixture should be described by a 

mono-exponential model, whereas an immiscible mixture should be described by a bi-exponential 

model. Their results showed good agreement with the DSC results that PVP had better miscibility 

with nifedipine than PHPA (11). In a study of hot melt extruded felodipine-EUDRAGIT® EPO 

systems, phase separation was confirmed in aged solid dispersions with high drug loadings (70% 

w/w) by the detected double relaxations using ssNMR (41). These studies showed that SSNMR can 

be a useful tool in characterising solid dispersions. 

2.3.2.8.2 Experimental parameters 

  In this study, solid state NMR was applied to investigate phase behaviour of melt extrudates. The 

high resolution 13C CPMAS (Cross Polarization Magic Angle Spinning) was carried out on a 

Varian Infinity Plus 300 spectrometer operating at 299.75 and 73.85MHz for 1H and 13C, 

respectively. Proton relaxation times of melt extrudates were measured on a Bruker Mq-20 

spectrometer (19.95 MHz) with a proton 90o pulse-length of 2.85µs. 
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Chapter 3: Physicochemical characterisation of model drugs 
and polymers 

3.1 Introduction 

  Amorphous solid dispersions have been widely used in the pharmaceutical industry to improve 

dissolution rate of poorly water-soluble drugs. As discussed in Chapter 1, the main issue in this 

research domain still lies in the physical stability since the phase separation and recrystallization of 

amorphous solid dispersions can eventually affect the dissolution performance (1). Factors which 

can potentially affect the physical stability of solid dispersions have been listed in Chapter 1: the 

physicochemical properties of drugs and polymers such as glass transition temperature, miscibility 

between drugs and polymers and solid solubility of drugs in polymers (2-4). The aim of this 

chapter is focusing on the characterisation of physicochemical properties of model drugs as this is 

pre-requisite for a comprehensive understanding of the factors which can affect the physical 

stability of amorphous solid dispersions.  

  Four model drugs including felodipine, celecoxib, fenofibrate and carbamazepine and two model 

polymers including EUDRAGIT® EPO and Kollidon® VA 64 were used in this study. The model 

drugs have very different thermal properties. For instance, the glass transition temperature of 

amorphous felodipine was reported as circa 45oC whereas the Tg of amorphous fenofibrate was -

19oC (5). Additionally, the four model drugs have been reported to have significantly different 

recrystallization tendency, which may indicate the different molecular mobility between the four 

model drugs and different physical stability of amorphous drugs alone (5, 6). These diverse 

physicochemical properties of the four model drugs can assist understanding of the contribution of 

amorphous drug intrinsic physical stability to the overall physical stability of amorphous solid 

dispersions.  

  The two polymers also have different thermal properties: the Tg of EUDRAGIT® EPO was 

reported as 50oC whereas the Tg of Kollidon® VA 64 was reported as 106oC (7, 8). EUDRAGIT® 

EPO has been reported to have the ability to protect amorphous solid dispersions from moisture 

sorption whereas Kollidon® VA 64 was reported to be hydrophilic (9, 10). Therefore amorphous 

solid dispersions prepared with the two polymers respectively may show significantly different 

physical stability behaviour if aged under stressed humidity. Structurally, EUDRAGIT® EPO and 

Kollidon® VA 64 both have carbonyl groups as shown in Figure 2.5 and 2.6 which indicates that 

they can potentially form hydrogen bonding with drugs containing donor groups. It also can be 

noted that the carbonyl group in Kollidon® VA 64 is more exposed than that in EUDRAGIT® EPO, 

which can possibly result in a stronger potential to form hydrogen bonding with drugs than 
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EUDRAGIT® EPO. This may lead to the difference of drug-polymer miscibility and the solid 

solubility of the model drugs in polymers, which may further cause difference in the physical 

stability of solid dispersions prepared by the two polymers. In summary, the characterisation of the 

physicochemical properties of the model drugs and polymers are essential for the understanding of 

physical stability behaviour of solid dispersions.  

Research objectives 

1. To characterise the physicochemical properties of model drugs and polymers. 

2. To assess the physical stability of amorphous drugs alone prepared by melt-cool and spin coating 

under 0%RH and 75%RH at room temperature. 

3. To compare the thermodynamic behaviours of the model drugs. 

3.2 Experimental methods 

3.2.1 Modulated temperature differential scanning calorimetry (MTDSC) 

  Instrumental information and the parameters used in MTDSC refer to Chapter 2 (section 

2.2.2.1.3).Melting points of crystalline model drugs were determined by DSC in standard mode at a 

heating ramp of 10oC/min. 

3.2.2 Determination of glass transition temperatures of model drugs 

  In order to determine glass transition temperatures (Tg) of model drugs, a heat-cool-reheat process 

in MTDSC mode was applied to transform drugs from crystalline form to amorphous form and 

then further tested Tg values. Crystalline drugs were accurately weighed into TA standard pans, and 

then the sample pan was crimped and tested in MTDSC mode at the underlying heating ramp of 

2˚C/min until 5 degree higher than the melting point of the crystalline drug. The above melting 

point temperature was maintained for 3min, and then the sample was cooled down at the same 

heating ramp to -10˚C. For fenofibrate, it was cooled down to -40˚C since it has been reported 

amorphous fenofibrate has a glass transition temperature below -20oC (11). After isothermal for 

3min, the sample was reheated to melting point at the same ramp. The glass transition temperature 

was determined in the reheating process to remove the potential factors, such as the amount of 

trapped moisture, preparation methods and thermal history, which could affect glass transition of 

materials (12). EUDRAGIT® EPO was tested by the same method. 

3.2.3 Determination of fragility of model drugs 

  Different heating ramps of 1, 2, 5, 10 and 20˚C/min were applied to scan the sample to calculate 

fragility. To summarise, crystalline drugs were heated and  cooled at the same scanning rate, and 
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the Tg value from cooling was used to calculate the fragility parameter (13). For each heating rate, 

triplicated samples were tested. For carbamazepine, amorphous drugs were prepared using melt-

cool method whereby crystalline carbamazepine was melted inside a DSC pan by hot plate at the 

temperature 5 degrees higher than the melting point (191oC) for 10 seconds, and then samples were 

removed from the hot plate to be cooled down under ambient condition. The melt cooled 

carbamazepine was heated to 70oC in DSC and then cooled down to -10oC at different rates 

including.   

3.2.4 Preparation of melt-cool amorphous drugs for physical stability test 

  Amorphous model drugs were prepared to test their physical stability under dry and high humidity 

conditions at room temperature. Crystalline model drugs were weighed into DSC standard pans and 

were melted on a hotplate (IKA LABORATECHNIK Basic RCT stirrer hotplate, Germany) at the 

temperatures 5 degree above their melting points for 10sec, and then samples were removed from 

the hotplate and cooled down under ambient conditions. Melt-cool amorphous drugs were then 

stored under 0%RH (provided by P2O5) and 75%RH (provided by over-saturated sodium chloride 

water solution), respectively, at room temperature, and were tested by MTDSC in 1, 3, 7 and 14 

days. 

3.2.5 Preparation of spin coated amorphous drugs for the physical stability test  

The spin coated amorphous drugs were prepared on the SCS G3P-8 spin-coater (Specialty 

Coating Systems, Surry, USA). The solvent for the spin coated solution consisted of a mixture of 

ethanol and dichloramethane with the ratio of 50:50. Crystalline drugs were dissolved in the 

solvent to prepare drug solutions with solid concentrations of 15% (w/v) for all samples. The 

spinning speed was set at 2000 r/min. The acceleration was 5 second and the duration time of 

spinning was 2min. The drops of the solution were deposited by a glass pipette manually on a cut 

microscope glass slide with size of 25mm×25mm. Spin coated samples were stored under 0% and 

75%RH, respectively, at room temperature and were tested by polarised microscopy and ATR-

FTIR spectroscopy.  

3.2.6 Observation of model drug crystals on spin coated amorphous drugs using polarised 
light microscopy 

  Polarised light microscopy studies were conducted using a Leica DM LS2 polarised light 

microscope (Wetzlar GmbH, Germany) connected to a video capture system. Fresh and aged spin 

coated amorphous drugs were tested under the polarised microscopy for the observation of 

recrystallised drugs. 
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3.2.7 Attenuated Total Reflection – Fourier Transform Infrared Spectrometer (ATR-FTIR) 

  ATR-FTIR spectroscopy was used to investigate the physical state of the spin coated amorphous 

drugs. Spectra were collected in absorbance mode using spectrometer IFS/66S from Bruker 

Instruments (Coventry, UK) equipped with a Golden Gate® ATR accessory (Specac Ltd, Coventry, 

UK). 64 scans were collected at a resolution of 2 cm-1 for each sample over the wavelength region 

from 550 to 4000 cm-1.  

3.3 Results and discussion 

3.3.1 Thermodynamic properties of model drugs 

   Preparation of amorphous model drugs including felodipine, celecoxib and fenofibrate has been 

discussed in section 3.2.2.2. Evident glass transitions can be observed in MTDSC results for 

felodipine, celecoxib and fenofibrate as shown in Figure 3.1. However, for carbamazepine, 

recrystallization occurred in cooling, which results in the failure of detecting glass transition 

temperature in reheating. This may be due to the  poor glass forming property of carbamazepine 

which makes it difficult to be transformed to amorphous form (5).  

 

Figure 3.1: Glass transition of amorphous felodipine, celecoxib and fenofibrate detected by MTDSC. 

  The failure of preparing amorphous carbamazepine by DSC can be attributed to the applied slow 

cooling rate. Cooling from melts is one the most commonly used method to transform materials 

from crystalline to amorphous state (14). Upon cooling a melt, the material can behave in two ways 

(15). At a slow cooling rate, the melted liquid can transform back to the crystalline structure. 

However, at a fast cooling rate, molecules do not have sufficient time to re-establish the crystalline 

structure, leading to the formation of the amorphous material. Thus the cooling rate is essential for 

the preparation of amorphous materials. Crystalline carbamazepine was weighed into standard DSC 

pan, instead of melting and cooling in MTDSC, the sample was heated to melt on top of a hot plate 
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at the temperature 5 degree above the melting point for 10s, and then it was cooled down under 

ambient conditions. The pan was then immediately crimped and tested in MTDSC mode at the 

underlying heating rate of 2˚C/min. With this method, glass transition of amorphous carbamazepine 

was clearly detected (Figure 3.2), and the glass transition temperature was determined as 50.02oC. 

 

Figure 3.2: Glass transition of amorphous carbamazepine detected by MTDSC. 

  Glass transition temperatures (midpoints of glass transition area in MTDSC results) of amorphous 

model drugs and melting points of crystalline model drugs are summarised in Table 3.1. As can be 

seen from the table that Tg values of selected model drugs vary in a relatively large range from -

19.7 to 58.2˚C, which will possibly enable the understanding of the effect of Tg values of 

amorphous drugs on the physical stability of solid dispersions prepared by hot melt extrusion with 

them. This will be discussed in Chapter 6.  

Table 3.1: Thermodynamic properties of model drugs (n=3). 

Materials felodipine celecoxib fenofibrate carbamazepine 

Mid point of Tg (
oC) 46.5±0.2 58.2±0.2 -19.7±0.4 50.1±0.3 

Onset of Tm (
oC) 143.1±0.1 160.8±0.3 80.4±0.1 189.5±0.2 

Peak of Tm (
oC) 146.6±0.1 163.1±0.3 81.6±0.1 190.5±0.2 

 

3.3.2 Thermodynamic properties of model polymers 

  Glass transition temperatures of the two model polymers were studied using heat-cool-reheat 

method at a scanning rate of 2oC. Clear glass transitions were detected for both polymers as shown 

in Figure 3.3. The Tg value of EUDRAGIT® EPO was determined as 51.1oC and the Tg value of 

Kollidon® VA64 was determined as 106.8oC. In comparison to EUDRAGIT® EPO, Kollidon® 
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VA64 has a significantly higher glass transition temperature, which may possibly improve the 

physical stability of solid dispersions (16). This is attributed to the reason that polymers with high 

Tg can increase the Tg of the amorphous drug-polymer solid dispersion in comparison to polymers 

to the Tg of the drug, and thus the molecular mobility in solid dispersions can be reduced, leading to 

enhanced physical stability (17). The comparison of the physical stability of solid dispersions 

prepared by different polymers is discussed in Chapter 7.  

 

Figure 3.3: glass transition of EUDRAGIT® EPO and Kollidon® VA64 detected by MTDSC. 

3.3.3 Fragility of amorphous model drugs 

 The concept of fragility is of interest in research field of formation of amorphous drugs since it is 

considered as one of the key factors that correlate with glass forming ability and physical stability 

of amorphous systems (18, 19). The fragility parameter m is related to an average degree of 

molecular mobility reflected in the structural relaxation near glass transition. If the fragility 

parameter m, also called steepness index, is smaller than 100 the glass is defined as a strong glass 

or a strong glass former. If the value of m is in between 100 and 200, the glass is defined as a weak 

glass or a weak glass former(20). Fragile glass formers have a molecular mobility that increases 

drastically at temperatures across Tg in comparison to that occurring in strong glass formers. It has 

been suggested that strong glass is more physically stable than a fragile glass (21). 

  Fragilities of amorphous model drugs in this study were calculated by using the theory of 

extrapolating configurational entropy to zero (20). As discussed in Chapter 1, Tg is a kinetic 

parameter of amorphous material whereby using different cooling rate form the melts, different Tg 

values can be obtained. The activation energy of the structural relaxation at the glass transition was 

estimated by using different scanning rates to achieve different Tg values as expressed in the 

following equation: 
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                                                                m = Ea
* / (2.303RTg)                                                   Eq. 3.1 

where m is the fragility parameter of the material, Ea
* is the activation energy and R is gas 

constant(13). Ea
*/R is the slope of plotting 1/Tf against ln(q) (q is heating or cooling rate) as shown 

in Eq.3.2: 

                                                              dln(q) / d(1/Tf) = -Ea
*/R                                                Eq. 3.2 

where q is heating rate, and Tf is the fictive temperature defined as the temperature of intersection 

between the equilibrium volume or entropy/temperature liquid curve and the linear extrapolation of 

glassy curve. However, as discussed in Chapter 1, it has been proved that Tf has a very similar 

value to Tg, therefore Tf was replaced by Tg in this study (20). 

  The plots of heating rates against detected Tg (1000/ Tg) of individual amorphous model drug is 

shown in Figure 3.4 (regression plot using Eq. 3.2). By using activation energy values calculated 

using Eq. 3.2, fragility parameters of felodipine, celecoxib, fenofibrate and carbamazepine were 

calculated as 52.6, 106.7, 56.8 and 116.7. This indicates that felodipine and fenofibrate are more 

capable of forming a glass than celecoxib and carbamazepine. 

 

Figure 3.4: Plots of ln (q) against inverse glass transition temperature (K) of amorphous felodipine (a), 

celecoxib (b), fenofibrate (c) and carbamazepine (d). 
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  The different glass forming ability between the four model drugs were also evident in the heat-

cool-reheat test using DSC. After being melted in first heating, no melting can be detected in 

cooling and reheating for felodipine and fenofibrate, whereas recrystallization followed by melting 

was observed for celecoxib (recrystallization in reheating) and carbamazepine (recrystallization in 

cooling) (Figure 3.5 a and b).  

 
Figure 3.5: MTDSC thermograph of celecoxib (a) and carbamazepine (b) tested by heating-cooling-
reheating. 

  In summary, by evaluating the fragility of amorphous model drugs, the order of the glass forming 

ability of model drugs used in this study is felodipine ≈ fenofibrate > celecoxib ≥ carbamazepine.  

The fragility (glass forming ability) may have no direct relationship with the physical stability of 

amorphous drugs alone or the physical stability of amorphous solid dispersions, but it is a useful 

parameter for the calculation of molecular mobility of amorphous material. This is discussed in the 

following section. 

3.3.4 Calculation of relaxation time of amorphous model drugs 

  Many crystalline drugs are poorly water soluble resulting in low bioavailability (22). 

Transformation of crystalline drugs into their amorphous form can improve the apparent aqueous 

solubility up to hundreds of folds for certain drugs (23). As mentioned in Chapter 1, amorphous 

drugs remained at non-equilibrium state and tended to convert back to more stable crystalline form. 

This procedure of approaching the equilibrium is termed as structural relaxation, and relaxation 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

H
ea

t F
lo

w
 (

W
/g

)

0 20 40 60 80 100 120 140 160 180

Temperature (°C)Exo Up Universal V4.5A TA Instruments

first heating

cooling

re-heating

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

H
ea

t F
lo

w
 (

W
/g

)

0 20 40 60 80 100 120 140 160 180 200

Temperature (°C)Exo Up Universal V4.5A TA Instruments

first heating

cooling

re-heating

a

b



Chapter 3 

 
104 

 

time is the time length where relaxation occurs (21, 24, 25). Relaxation is caused by molecular 

mobility of amorphous drugs which is reciprocal to relaxation time. It has been suggested that 

molecular mobility was associated with the physical stability of pure amorphous materials whereby 

high molecular mobility could lead to poor physical stability of amorphous materials, and this has 

been discussed in Chapter 1 (17). The calculation of relaxation time has been well described in 

articles such as using empirical Kohlrausch-Williams-Watts (KWW) equation with endothermic 

enthalpy measured at relaxation by DSC or the Adam-Gibbs-Vogel (AGV) equation (26-30). In 

this study, in order to compare physical stability of pure amorphous model drugs, the relaxation 

times of model drugs were calculated using the Adam-Gibbs-Vogel (AGV) equation. The model 

has been briefly introduced in Chapter 1, and is described more in more detail here as shown below: 

                                                          τ = τ0exp (DT0/(T(1-T0/Tf)))                                               Eq.3.3 

where τ is the relaxation time at temperature T, τ0 is a constant (about 10-14second) (31), D and T0 

are the Vogel-Tammann-Fulcher (VTF) equation parameters which can be calculated as follows(24, 

32, 33): 

                                                             D=2.303(mmin
2)/(m-mmin)                                             Eq.3.4 

                                                  mmin=log(τTg/τ0)= log(100/10-14)=16                                       Eq.3.5 

                                                                T0=Tg(1- mmin/m)                                                         Eq.3.6 

where τTg represent the relaxation time at Tg and were assumed to be 100s as suggested in 

articles(for most super-cooled liquids, mmin takes values between 16 and 17), and m is the fragility 

index  (31). As mentioned above, fictive temperature Tf has a very similar value to Tg, therefore Tg 

is used in relaxation calculation instead of Tf.  

  Results of calculated relaxation time values at different temperatures (25oC is considered as 

normal room temperature and 40oC is the temperature generally used for accelerate storage test) of 

the amorphous model drugs are summarised in Table 3.2. It can be seen that felodipine, celecoxib 

and carbamazepine have similar relaxation times, whereas fenofibrate showed a relatively fast 

relaxation time, indicating amorphous felodipine, celecoxiband carbamzepine may have lower 

molecular mobilities than fenofibrate and hence may be more physically stable. The order of the 

level of molecular mobility of amorphous model drugs is celecoxib ≤ carbamazepine ≈ felodipine < 

fenofibrate . 
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Table 3.2: Calculated relaxation times of amorphous model drugs 

Drugs felodipine celecoxib fenofibrate carbamazepine 

τ at 25oC (s) 2.47×103 1.31×104 3.51×10-1 1.78×103 

τ at 40oC (s) 1.91×102 9.11×102 7.92×10-2 2.63×102 

 

3.3.5 Physical stability of amorphous model drugs on aging 

  Little research has been carried out to investigate the relationship between physical stability of 

solid dispersions and physical stability of amorphous drugs alone. It was reported in a study that 

physical stability of amorphous solid dispersions prepared by spin coating (aged under high 

humidity) showed the same order as the physical stability of amorphous drugs (9). It may indicate 

that physical stability of amorphous drugs alone may be a key factor influencing the physical 

stability of amorphous solid dispersions. Therefore, in order to gain a comprehensive understanding 

of the factors which control the physical stability of amorphous solid dispersions, the physical 

stability study of pure amorphous drugs were carried out in this project. It has been reported that, 

physical stability of pure amorphous drugs varied depending on the processing methods (melt-cool 

and spin coating) (5, 6). Therefore, in this study in order to avoid the influence of the processing 

methods and to understand the physical stability behaviour of amorphous drugs more completely, 

amorphous model drugs were prepared by melt-cool (a melting based method) and spin coating (a 

solvent evaporation based method), respectively. Melt-cooled and spin coated amorphous drugs 

were stored under dry (0%RH) and high humidity conditions (75%RH) at room temperature, 

respectively, to evaluate and compare their physical stabilities. In addition, the calculation of 

relaxation time showed that amorphous felodipine, celecoxib and carbamazepine should have 

similar physical stability and they should be more stable than amorphous fenofibrate. By 

investigating the real-time physical stability of amorphous drugs alone, the accuracy of the 

relaxation calculation can be tested.  

3.3.5.1 Physical stability of melt-cooled amorphous model drugs 

3.3.5.1.1 Physical stability of melt-cooled model drugs aged under 0%RH/room temperature 

3.3.5.1.1.1 Felodipine 

  MTDSC results of melt-cooled amorphous felodipine on aging under 0%RH/room temperature is 

shown in Figure 3.6. It can be seen that after two weeks aging under 0%RH at room temperature, 

no recrystallization or melting can be detected for amorphous felodipine, indicating amorphous 

felodipine can be stable for at least two weeks under dry condition at room temperature. Relaxation 

enthalpy of amorphous felodipine increased with increasing aging time. Amorphous materials often 
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experience a gradual loss in energy in terms of enthalpy due to the effect of molecular motions 

occurring on aging (34). The amount of lost energy in amorphous materials on aging can be 

compensated on heating in DSC across Tg due to the requirement of re-establishing the liquid state 

above Tg (35). The detected relaxation was the contribution from molecular mobility of amorphous 

felodipine on aging. Therefore, the increased relaxation enthalpy of amorphous felodipine on aging 

reflects an increased molecular mobility.  

 

Figure 3.6: Results of MTDSC test of melt-cooled amorphous felodipine on aging under 0%RH/room 

temperature. 

  Relaxation enthalpy of amorphous feldopine against time is shown in Figure 3.7. KWW equation 

has been reported to calculate the relaxation time of amorphous drugs using the measured 

relaxation enthalpy on aging (17). The empirical equation can be expressed by (17): 

                                                                Φ (t) = exp (-(t/τ)β)                                                      Eq 3.7 

where Φ (t) is the extent of relaxation at time t (can be calculated using the measured enthalpy by 

DSC on aging at time t), τ is the mean molecular relaxation time and β is a constant. However, the 

data did not fit in the KWW equation. Nevertheless, the increased relaxation enthalpy on aging still 

indicates the increased molecular mobility of melt-cooled felodipine on aging under 0%RH/room 

temperature. 
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Figure 3.7: Relaxation enthalpy of amorphous feldopine and celecoxib against time on aging under 

0%RH at room temperature  

3.3.5.1.1.2 Celecoxib 

  Recrystallization and melting on heating were detected by DSC for melt-cooled amorphous 

celecoxib (Figure 3.6) suggesting the transformation of celecoxib from amorphous form to 

crystalline form occurred very fast during heating. In comparison to amorphous felodipine, this 

indicates that recrystallization of amorphous celecoxib is sensitive to heat treatment. It also can be 

seen that temperatures of the exothermic peaks (very likely to be recrystallisation) and the 

following melting points for crystalline celecoxib do not show any particular trend. For example, as 

shown in Figure 3.8, after one day aging, amorphous celecoxib recrystallized into a mixture of 

form I (majority) (with a onset melting point of 162.6oC) and III (with a onset melting point of 

160.2oC) , but after 3 days aging, recrystallized celecoxib in heating was a pure Form I. Even 

within the same testing time point, results were not reproducible amongst three repeats. The reason 

of this phenomenon was still not clearly understood. Relaxation enthalpy of amorphous celecoxib 

at glass transition on aging is also summarised in Figure 3.5. It can be seen that relaxation enthalpy 

did not increase with increasing storage time, indicating molecular mobility reached a high level 

only after 1 day aging under 0%RH/room temperature. The relaxation pattern did not fit in the 

KWW equation.  
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Figure 3.8: Results of MTDSC test of melt-cooled amorphous celecoxib on aging under 0%RH/room 

temperature. 

3.3.5.1.1.3 Carbamazepine 

  Consistent melting points were achieved for melt-cooled amorphous carbamazepine aged for 

different time periods under 0%RH/room temperature as shown in Figure 3.9. After 1 day aging 

under 0%RH/room temperature, recrystallization followed with melting was detected in melt-cool 

amorphous carbamazepine. This indicates that amorphous carbamazepine can be triggered to 

recrystallize on heating and it was less stable than amorphous felodipine. 

  In comparison of the melting point to the value from the literature (36), it was confirmed the 

recrystallized carbamazepine was form I. It has been reported that form III of carbamazepine was 

the most stable form at room temperature, although heating form III in DSC can lead to a solid 

transformation at 175oC and the melting of form I at 192oC (37). Form III with lower melting point 

but higher physical stability than form I was explained by the “density rule” (38, 39) whereby if a 

modification of a molecule crystal has a lower density than the other, it may assumed to be less 

stable at absolute zero (0K), and this is the case for carbamazepine that form I has lower density 

than form III (37). No solid transformation at 175oC was detected in the any aged melt-cooled 

carbamazepine (Figure 3.7), and combined with the exothermic peak detected at circa 90o 

(recrystallization) it indicates all amorphous carbamazepine was recrystallized into form I on 

heating. The DSC study showed that melt-cooled amorphous carbamazepine on aging under 

0%RH/room temperature had a strong tendency of recrystallization on heating, which was similar 

to the results of celecoxib.  
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Figure 3.9: Results of MTDSC test of melt-cooled amorphous carbamazepine on aging under 

0%RH/room temperature. 

3.3.5.1.1.4 Fenofibrate 

  Results of physical stability study of amorphous fenofibrate under 0%RH/room temperature were 

different from other model drugs. As described above, fenofibrate has a very low glass transition 

temperature (-19.7oC) leading to a high molecular mobility at room temperature, which can result 

in a fast recrystallsation. In this study, it was discovered that crystalline fenofibrate was very easy 

to be transformed into amorhopus form by melt-cool method, and can be physically stable for very 

long time if recrystallization was not triggered. Pure amorphous fenofibrate at room temperature is 

a liquid-like due to the low Tg value, and its recrystallization can be triggered by many external 

factors such as surface disruption (touched by tweezers) and high humidity. Freshly prepared melt-

cooled feofibrate showed no birefringence under polarised microscopy (Figure 3.10a). Once the 

recrystallization was triggered, the crystals grew at a fast rate. Figure 3.10 (b and c) shows the 

crystals growth recorded by polarised microscope within 5min. Evident birefringence can be seen 

under polarised microscope, proving recrystallization of fenofibrate. As can be seen in Figure 3.10, 

within 5min, a relatively large area of amorphous fenofibrate was chaged into crystalline form. 

Some preliminary work showed the results that after prepared by melt-cooled method some 

samples were still amorphous detected by DSC after 3days storage under 75%RH/at room 

temperature. But some samples recrystallised within one day aged under 0%RH/room temperature. 

These observations indicate that amorphous fenofibrate has low nucleation rate but high crystal 

growth rate. The accurate control of the recrystallization was difficult to achieve and no further 

experiment was carried out as this was not of the scope of the study. Therefore, the physical 

stability test of melt-cool fenofibrate cannot be carried out precisely. However, these studies of 

fenofibrate still proved its high recrystallization tendency. 
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Figure 3.10: Freshly prepared melt-cooled fefibrate (a) and a 5min period of the recrystallisation of 

amorphous fenofibrate recorded under polarised light microscopy (b and c).  

  Aging under 0%RH/room temperature up to 2 weeks, the order of the physical stability of melt-

cooled amorphous drugs is felodipine > celecoxib ≈ carbamazepine > fenofibrate. This is different 

from the molecular mobility predicted using the AGV model, which may indicate it is necessary to 

carry out the real-time physical stability study of amorphous drugs to compare their physical 

stabilities. 

3.3.5.1.2 Physical stability of melt-cooled model drugs aged under 75%RH/ room 
temperature 

3.3.5.1.2.1 Felodipine 

  MTDSC results of the melt-cooled amorphous felodipine aged under 75%RH/room temperature 

are shown in Figure 3.11. Melting can be detected for amorphous felodipine after 1 week aging. 

This indicates that the physical stability of amorphous felodipine can be affected by high humidity. 

This is very likely to be attributed to the water uptake of amorphous felodipine under high humidity. 

The moisture uptake can increase molecular mobility, leading to the recrystallisation of amorphous 

drugs as reported in articles that the plasticising effect of absorbed water in solid dispersions can 

significantly decrease physical stability (24, 40-42). Water uptake in amorphous felodipine was 

reflected by a decrease in Tg values on aging. Freshly prepared amorphous felodipine showed a Tg 

of 45.5oC, and after 2 weeks aging under 75%RH Tg decreased to 40.9oC. Using Gordon–Taylor 

equation as described in Chapter 1 (Eq 1.1 and 1.2) the quantity of water uptake in amorphous 

felodipine was calculated as 0.95% (w/w) after 2 weeks aging under 75%RH/room temperature. It 

also should be noted that after 2 weeks aging under 75%RH/room temperature, a relatively large 

recrystallization peak was detected (Figure 3.11), which suggests there were still certain amount of 

amorphous felodipine left. 
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Figure 3.11: Results of MTDSC test of melt-cooled amorphous felodipine on aging under 0%RH/room 

temperature.   

  The relaxation enthalpy of melt-cooled amorphous felodipine on aging under 75%RH/room 

temperature was measured as shown in Figure 3.12. It can be seen that relaxation of amorphous 

felodipine almost reached a plateau after 1 day aging. The decreased relaxation enthalpy after 1 

week aging was due to partial recrystallised felodipine within the sample.  

 

Figure 3.12: Relaxation enthalpy of amorphous feldopine and celecoxib against time on aging under 

75%RH/room temperature. 

3.3.5.1.2.2 Celecoxib 

  Amorphous celecoxib aged under 75%RH/room temperature showed similar results to that under 

dry condition (Figure 3.13). Recrystallisation on heating followed by melting was detected after 

one day aging. The irregular recrystallisation temperatures of amorphous celecoxib were detected. 

A decrease in Tg of amorphous celecoxib was observed from 58.2oC (fresh) to 51.2oC (after 2 
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weeks aging) due to the water sorption on aging. By using Gordon-Taylor equation, the water 

uptake was calculated as 1.51% (w/w) after 2 weeks aging.  

  The relaxation enthalpy of celecoxib continued increasing with increasing aging time as depicted 

in Figure 3.11, indicating increased molecular mobility on aging under high humidity. In 

comparison to the results of the relaxation enthalpy of the samples aged under 0%RH/room 

temperature, the physical instability of amorphous celecoxib was significantly increased under 

75%RH/room temperature.  

 

Figure 3.13: Results of MTDSC test of melt-cool amorphous celecoxib on aging under 0%RH/room 

temperature.    

3.3.5.1.2.3 Carbamazepine 

  Amorphous carbamazepine aged under 75%RH/room temperature showed similar results to that 

aged under 0%RH/room temperature as shown in Figure 3.14. Recrystallisation on heating 

followed by melting was detected after one day aging. Same to the results of amorphous 

carbamazepine aged under 0%RH/room temperature, all amorphous carbamazepine recrystallized 

into form I on heating as proved by the detected melting point (190.5oC). A decrease in Tg with 

increasing aging time was observed from 50.1oC (fresh) to 33.6oC (after 2 weeks aging). Using 

Gordon-Taylor equation, the water uptake was calculated as 5.18% (w/w). It has been reported that 

carbamazepine can form a dihydrate if the drug was in contact with water directly (43, 44). 

However, as all detected melting peaks on aging showed consistent value of the melting point of 

form I, it can conclude that amorphous carbamazepine still recrystallised into form I after 2 weeks 

aging under 75%RH/room temperature.  

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

H
ea

t F
lo
w
 (
W

/g
)

10 60 110 160

Temperature (°C)Exo Up Universal V4.3A TA Instruments

1 day

3 days

1 week

2 weeks



Chapter 3 

 
113 

 

 

Figure 3.14: Results of MTDSC test of melt-cool amorphous carbamazepine on aging under 

0%RH/room temperature.    

  In short summary, the order of physical stability of amorphous drugs aged under 75%RH/room 

temperature is still felodipine > celecoxib ≈ carbamazepine > fenofibrate. However, in comparison 

to the amorphous model drugs aged under 75%RH/room temperature, a decreased physical stability 

was observed for amorphous drugs aged under 75%RH/room temperature. This indicates the 

physical stability of amorphous drugs can be significantly affected by stressed humidity. 

3.3.5.2 Physical stability of amorphous drugs prepared by spin coating 

  Results of the physical stability of melt-cooled amorphous drugs showed that felodipine were the 

most stable amorphous drug under both dry and 75%RH conditions. Celecoxib and carbamazepine 

showed similar and less stable physical stability behaviour than felodpine. However, it was noted 

that on aging under 75%RH/room temperature, melt-cooled celecoxib was still translucent after 3 

days aging. Melt-cooled carbamazepine changed from translucent to cloudy after 1 day aging under 

75%RH/room temperature. These observations indicate that amorphous celecoxib may have better 

physical stability than carbamazepine at room temperature. It is very likely that recrystallization of 

amorphous celecoxib is sensitive to temperature, and thus recrystallization and melting were 

observed by DSC. In addition, as mentioned earlier, the physical stability of amorphous drugs was 

reported to be dependent on processing methods (5, 6). Therefore, in order to gain a comprehensive 

understanding of the physical stability of amorphous drugs, amorphous drugs were prepared using 

spin coating for the physical stability study. Spin coated amorphous drugs was stored under 

0%RH/room temperature and 75%RH/room temperature, respectively.  
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3.3.5.2.1 Physical stability of spin-coated amorphous drugs aged under 0%RH/room 
temperature 

3.3.5.2.1.1 Felodipine 

  Images of spin coated amorphous felodipine aged under 0%RH/room temperature taken by 

polarised microscopy are shown in Figure 3.15. It can be seen that no evident birefringence can be 

observed for freshly spin coated felodipine, indicating felodipine was amorphous after fresh spin 

coating. After two weeks aging, areas with birefringence were observed, suggesting the occurrence 

of recrystallization on storage. Freshly prepared and aged spin coated felodipine was also tested by 

ATR-FTIR. The ATR-FTIR results showed that after 2 weeks aging felodipine was still amorphous 

(Figure 3.16). For felodipine, the transformation from crystalline form to amorphous form after 

spin coating can be identified by NH peak shift from 3365 to 3331cm-1(45). After two weeks aging, 

despite felodipine crystals were observed by polarised microscope, the NH peak position remained 

the same. This suggests the low level of recrystallisation of spin coated felodipine was possibly 

below the detection limit of IR.  

 

Figure 3.15: Images of spin coated felodipine and celecoxib taken by polarised light microscopy on 

aging under 0%RH/room temperature. 
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Figure 3.16: ATR-FTIR results of NH (felodipine) and NH2 (celecoxib, carbamazepine) groups from 

spin coated amorphous model drugs aged under 0%RH/room temperature for different time periods. 

3.3.5.2.1.2 Celecoxib 

  Figure 3.15 shows the images of spin coated amorphous celecoxib aged under 0%RH/room 

temperature taken by polarised microscopy. Similar to the spin coated felodipine, no evident 

birefringence was observed for the freshly spin coated celecoxib, indicating celecoxib amorphous 

after fresh spin coating. After two weeks aging under 0%RH/room temperature, areas with 

birefringence were seen, indicating the occurrence of recrystallization of amorphous celecoxib on 

storage. However the recrystallized celecoxib was not detected using ATR-FTIR (Figure 3.16). The 

ATR-FTIR results of spin coated celecoxib showed that after 2 weeks aging celeocixb was still 

amorphous (Figure 3.16). A doublet peaks at 3222 and 3329cm-1 in IR spectra of crystalline 

celecoxib form III were attributed to the N-H stretching vibration of NH2 group (46). After spin 

coating, the two peaks shifted to 3264 and 3362cm-1, respectively, with broader peak bands. Similar 

to spin coated felodipine, spin coated celecoxib was still amorphous after 2 weeks aging according 

to the ATR-FTIR spectra, which indicates the majority of the sample remained amorphous.  

3.3.5.2.1.3 Carbamazepine 

  Compared with spin coated felodipine and celecoxib, spin coated carbamazepine present very 

poor physical stability under the same storage condition. As seen in Figure 3.17, a large area with 

birefringence was observed on spin coated carbamazepine after 1 day aging under 0%RH/room 

temperature, indicating a high level of recrystallisation occurred within a short time period. This 

was also confirmed by ATR-FTIR spectroscopy as shown in Figure 3.16. NH2 group represented 

by a band at 3463cm-1 from aged spin coated carbamazepine showed an identical position in IR 
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spectrum to original crystalline form III carbamazepine, whereas the peak from freshly prepared 

amorphous drug was at 3478cm-1. A shoulder peak at 3483cm-1 next to 3463cm-1 also can be seen, 

and this peak indicates the presence of form I compared with the peak position from the literature 

(37). Therefore, on aging under dry condition, spin coated carbamazepine recrystallized rapid into a 

mixture of Form I and III with the majority of Form III.  

 

Figure 3.17: Images of spin coated carbamazepine (a) and fenofibrate (b) taken by polarised light 

microscopy on aging for different time periods under 0%RH/room temperature. 

3.3.5.2.1.4 Fenofibrate 

  For fenofibrate, although freshly prepared sample was amorphous as confirmed by polarised 

microscopy, recrystallization continued and almost accomplished within 40min as shown in Figure 

3.17. ATR-FTIR measurements of spin coated fenofibrate confirmed its fast recrystallsation as 

depicted in Figure 3.18. Originally positioned at 1648cm-1, the carbonyl group from fenofibrate 

shifted to 1656cm-1 after changed from crystalline form to amorphous form. Spectra of spin coated 

fenofibrate were taken continuously with an interval of 2min. A peak shift from 1656cm-1 to 

1648cm-1 was completed in 40min indicating the solid transformation from amorphous state to 

crystalline state was accomplished in 40min.  Aging under 0%RH/room temperature up to 2 weeks, 

the order of the physical stability of spin coated amorphous drugs is felodipine ≥ celecoxib > 

carbamazepine > fenofibrate.  

 



Chapter 3 

 
117 

 

 

Figure 3.18: ATR-FTIR results of carbonyl group from spin coated fenofibrate tested at ambient 

environment for 40min.  

3.3.5.2.2 Physical stability of spin coated amorphous drugs aged under 75%RH/room 
temperature 

3.3.5.2.2.1 Felodipine   

  Areas with birefringence in spin coated felodipine were observed by polarised microscope after 3 

days aging under 75%RH/room temperature as shown in Figure 3.19a, indicating high humidity 

can accelerate recrystallization of amorphous felodipine in comparison to the samples aged under 

0%RH/room temperature. The results were similar to the melt-cooled amorphous felodipine 

whereby recrystallization was detected by DSC for samples only aged under 75%RH/room 

temperature. Recrystallisation of aged spin coated felodipine was also detected by ATR-FTIR 

(Figure 3.20). After 2 weeks aging under 75%RH/room temperature, the NH peak from freshly 

spin coated felodipine shifted from 3331cm-1 back to 3365 cm-1 (crystalline felodipine form I). This 

indicates that a higher level of recrystallization occurred in comparison to samples aged under 

0%RH/room temperature.  
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Figure 3.19: Polarised light microscopy images of spin coated felodipine (a) and celecoxib (b) aged for 

2 weeks and carbamazepine (c) aged for 1 day upon exposure to 75%RH at room temperature. 

 

Figure 3.20: ATR-FTIR results of NH (felodipine) and NH2 (celecoxib, carbamazepine) groups from 

spin coated amorphous model drugs aged under 75%RH at room temperature for different time 

periods. 

 3.3.5.2.2.2 Celecoxib   

  Areas with birefringence in spin coated celecoxib were observed after 3 days aging under 

75%RH/room temperature (Figure 3.19b), indicating the occurrence of recrystallization. In 

comparison to the same samples aged under 0%RH/room temperature, recrystallization of spin 

coated celecoxib aged under 75%RH/room temperature occurred at a greater level. Physical 

stability studies of melt-cooled celecoxib only showed an increased molecular mobility as 

demonstrated by the increased relaxation enthalpy measured by DSC on aging. However, by using 

spin coating, it clearly proved that stressed humidity (75%RH) can induce recrystallization for 

amorphous celecoxib.  Recrystallisation of spin coated celecoxib was also detected by ATR-FTIR 

after 2 weeks aging under 75%RH/room temperature as seen in Figure 3.20. The doublet NH peaks 

at 3264 and 3362 cm-1 from freshly spin coated celecoxib shifted to 3222 and 3329 cm-1 after 2 
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weeks aging, indicating a higher level of recrystallization compared with the same sample stored 

under 0%RH/room temperature. 

3.3.5.2.2.3 Carbamazepine 

  Carbamazepine showed large birefringent area only after 1 day aging as shown in Figure 3.19c. 

The sizes of the observed birefringent areas in samples aged under 75%RH/room temperature was 

similar to that in samples aged under 0%RH/room temperature. This indicates amorphous 

carbamazepine has high potential to recrystallize, which is less affected by the aging condition. 

Recrystallization of spin coated carbamazepine was also studied by ATR-FTIR (Figure 3.20). It 

can be seen that the recrystallization of spin coated carbamazepine under 75%RH/room 

temperature was different from the results under 0%RH/room temperature. Unlike the detection of 

both recrystallized form I and III in samples aged under 0%RH/room temperature, only form I was 

detected after 2 weeks aging under 75%RH/room temperature. This indicates that the aging 

condition can affect the solid state transformation of carbamazepine. Furthermore, recrystallisation 

behaviour between melt-cool and spin coated carbamazepine are different since only form I can be 

detected by MTDSC for melt-cool samples. This is possibly because although aged under different 

conditions (dry and humid), heating induced recrystallisation of amorphous carbamazepine in the 

MTDSC test tend to configure molecules into form I (43).  

3.3.6 Summary of the physicochemical characterisation of model drugs 

  Thermodynamic properties of the four model drugs varied in a broad range. For instance, the Tg of 

fenofibrate was -19.7oC but the Tg of celecoxib was 58.2oC measured by DSC. The four model 

drugs also showed different glass forming ability. Using the AGV equation, relaxation time of the 

four amorphous was calculated and results showed that the four amorphous model drugs had 

different molecular mobility. In addition to these commonly evaluated physical properties of drugs, 

the real-time physical stability of amorphous drugs were studied under 0%RH/room temperature 

and 75%RH/ room temperature. In order to avoid the effect of processing methods, amorphous 

drugs were prepared using melt-cool and spin coating, respectively. Results showed that 

irrespective of the preparation methods, the order of the physical stability of amorphous was 

felodipine > celecoxib > carbamazepine > fenofibrate. The results of the physical stability study 

also showed that stressed humidity can induce recrystallization of amorphous model drugs. 

  Factors including glass transition temperatures of amorphous drugs, molecular mobility of 

amorphous drugs and the physical stability of amorphous drug have been reported to be associated 

with the physical stability of amorphous solid dispersions (9, 17, 47). However, there have been 

few studies combining these factors to disclose which of them are most relevant to the physical 

stability of amorphous solid dispersions. In Chapter 6, the real-time physical stability studies of 

amorphous solid dispersions prepared with these model drugs are evaluated. Therefore, comparing 
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the physical stability of amorphous solid dispersions with the physical properties of model drugs, 

dominating factors affecting the physical stability of amorphous solid dispersions may be revealed, 

which can be potentially helpful for the enhancement of the physical stability of amorphous solid 

dispersions. 

3.4 Conclusions 

  In this chapter, physicochemical properties of model drugs and polymers were investigated, and 

these properties have been considered to be related to the physical stability of solid dispersions. 

These properties including glass transition temperature, fragility and molecular mobility, varied in 

a wide range as proved by the calculation. Physical stability of amorphous drugs prepared by 

different methods was tested under dry and high humidity condition. Although prepared and aged 

differently, the order of the physical stability of amorphous drugs was felodipine > celecoxib > 

carbamazepine > fenofibrate in all cases.  The achieved characterisation results could be further 

used in combination with miscibility/solid solubility prediction at the next stage for fulfilling the 

method development of predicting and enhancing physical stability of solid dispersions prepared by 

hot melt extrusion.  
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Chapter 4: Prediction of drug-polymer miscibility and solubility 
using different theoretical approaches  

4.1 Introduction 

  The application of amorphous solid dispersions has been proved to be effective in enhancing 

dissolution rate of poorly water-soluble drugs (1, 2). However, as mentioned in Chapter 1, the 

physical stability of amorphous solid dispersions is still the main challenge for the formulation 

development in the pharmaceutical industry (3-5). The occurrence of physical instability in 

amorphous solid dispersions, including phase separation or recrystallization can lead to the 

appearance of drug crystals in formulations, which may further affect dissolution rate and 

bioavailability as crystalline drugs do not have as high dissolution rate as amorphous forms (4, 6). 

  Several factors such as molecular mobility, glass transition temperature, miscibility between drugs 

and polymers and drug-polymer solid solubility have been evaluated to correlate their relationship 

with the physical stability of solid dispersions (7-11). It has been proposed by articles that drug-

polymer miscibility and solid solubility of drugs in polymers was one of the most significant 

factors in impacting the physical stability of amorphous solid dispersions (9, 12-14). Therefore, to 

fulfil the development of prediction methods for physical stability of solid dispersions, drug-

polymer miscibility and solubility is evaluated by theoretical approaches in this chapter. 

  Miscibility originally is a property to describe mixing of liquids to form a homogeneous solution, 

for instance mixing of phenol and water depicted a typical miscibility phase diagram of a A-B 

binary system with the “inversed U” shape as discussed in the literature (Figure 4.1) (15). Above 

the critical temperature, A and B are completely miscible with each other, whereas below the 

critical temperature the mixed system becomes partially miscible containing A-rich phase or B-rich 

phase. The compositions of A-rich phase, B-rich phase and the miscible phase can be determined 

from the phase diagram. In amorphous drug-polymer solid dispersions, miscibility is applied to the 

mixing property of drugs and polymers at a certain temperature (16).  If within a certain range of 

drugs to polymers ratios at a certain temperature, a single phase system can be achieved by mixing, 

it may indicate that the amorphous drug and the amorphous polymer are miscible within the range. 

An amorphous solid dispersion prepared with drug loadings falling into the miscible drug-polymer 

ratios is likely to be thermodynamically stable (16-18).   
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Figure 4.1: Liquid-liquid phase diagram of phenol and water (miscibility gap between phenol and 

water) (19).  

  Drug-polymer solid solubility is also a concept derived from aqueous solution theory. Unlike 

miscibility regarding the mixing of two liquids, solubility is defined as dissolving a solid state 

material into a solvent until the equilibrium maximum concentration at a certain temperature under 

a certain pressure. In amorphous drug-polymer solid dispersions, the maximum amount of drug 

molecules which can be molecularly dispersed into polymer chains to form a single phase system 

(at a certain temperature under a certain pressure) is considered as the solid solubility of the drug in 

the polymer (16). It can be expected that if the drug loading is below the solid solubility of the drug 

in the polymer, the amorphous solid dispersions can be physically stable as the drug concentration 

is not sufficiently high to recrystallize out. Therefore, the determination and prediction of solid 

solubility of drugs in polymers are essential for the formulation development of amorphous solid 

dispersions. 

    In this chapter, several most widely used theoretical approaches in predicting drug-polymer 

miscibility and solubility including solubility parameter, melting point depression and recently 

developed enthalpy methods were applied to predict the drug-polymer miscibility and solubility 

between model drugs and EUDRAGIT® EPO (20-22). The predicted miscibility and solubility may 

assist formulation design of melt extruded solid dispersions with enhanced physical stability.  

Research objectives 

1. To predict drug-polymer miscibility and solubility using the solubility parameter approach. 

2. To predict drug-polymer miscibility and solubility using the melting point depression approach. 

3. To predict drug-polymer solid solubility using the enthalpy method. 
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4.2 Experimental methods 

4.2.1 Preparation of physical mixtures of crystalline model drugs and EUDRAGIT® EPO 

  Physical mixtures of model drugs and EUDRAGIT® EPO with different drug-polymer ratios were 

prepared in standard DSC pans with a total mass approximately of 3mg. The drug-polymer 

physical mixtures with drug concentrations from 10% to 90% (w/w) were prepared by weighing the 

drugs and the polymer together within the DSC aluminium standard pans. After mixing by gently 

tapping, the lid was crimped and tested by DSC immediately. 

4.2.2 Standard differential scanning calorimetry (DSC) 

  Instrumental information of DSC refers to Chapter 2 (section 2.2.2.1.3). Different heat rates 

including 0.2,1 and 10oC/min were used to different samples. 

4.3 Results and discussion 

4.3.1 Solubility parameters approach 

4.3.1.1 Theoretical background  

  The detailed development of solubility parameter (δ) has been described in Chapter 1. In this 

chapter, details of using the group contribution method to calculate solubility parameters of model 

drugs and EUDRAGIT® EPO will be discussed. Originating from polymer science, so far the 

employment of solubility parameter in the pharmaceutical industry has been mainly focused on the 

comparison of solubility parameters of drugs and polymers to evaluate miscibility between them 

(20, 23). It has been suggested that compounds with a solubility parameter difference smaller than 

7.0 MPa1/2 were likely to be miscible, otherwise were likely to be immiscible (23). 

  Solubility parameters of low molecular weight material can be directed measured by their 

evaporation energy according to the definition of solubility parameter as mentioned in Chapter 1. 

However, this cannot be applied to the materials with high molecular weight, such as polymers.  In 

1928, Dunkel suggested that for low molecular weight materials, cohesive energy Ecoh, was an 

additive property, and therefore the cohesive energy of liquids at room temperature can be divided 

into different functional groups (group contribution) (24). Following the conception of the group 

contribution method, Hayes, Di Benidetto, and Fedors applied the group contribution method to 

predict solubility parameters of high molecular weight molecules (25-27). In this study, Fedors 

group contribution method was applied to calculate solubility parameters of model drugs and 

EUDRAGIT® EPO (20, 27). As mentioned in Chapter 1, solubility parameter is the square root of 

cohesive energy density (Ecoh). Fedors calculated contributions to Ecoh for a great number of 

structural groups and their molar volume (V) at 298.15K dividing the structure of a compound into 

these functional groups, the solubility parameter can be predicted (27). An example of the 

calculation of solubility parameter of a model drug, fenofibrate (Table 4.1), is given as follows. 
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Table 4.1: Group contributions to fenofibrate by Fedors method (27). 

Fenofibrate 

Groups Quantity  Ecoh (kJ/mol) V (cm3/mol) 

CH3 4 4.71 33.5 

C 1 1.47 -19.2 

CO2 1 18 18 

O 1 3.35 3.8 

Phenyl 2 31.94 71.4 

CO 1 17.37 10.8 

Cl 1 11.55 24 

CH 1 3.43 -1 

 

Therefore, solubility parameter of fenofibrate:  

                                                      δ = (Ʃ Ecoh / Ʃ V)1/2= 20.98MPa
1/2                                         Eq 4.1 

Ʃ Ecoh = (4.71×4 +1.47×1+18×1+3.35×1+31.94×2+17.37×1+11.55×1+3.43×1)=137.89×103J/mol 

Ʃ V = (33.5×4 -19.2×1+18×1+3.8×1+71.4×2+10.8×1+24×1-1×1) =313.2 cm3/mol 

4.3.1.2 Prediction of miscibility and solid solubility by the solubility parameter approach  

  The calculated solubility parameters of model drugs and EUDRAGIT® EPO are summarised in 

Table 4.2. It can be seen that the difference of solubility parameters between the model drugs and 

the monomer of EUDRAGIT® EPO is very little. The highest discrepancy of solubility parameter 

of model drugs to EUDRAGIT® EPO occurs in carbamazepine, which is 4.07 MPa
1/2. According to 

the discrepancy value mentioned above that if two materials have difference of solubility 

parameters smaller than 7 MPa
1/2, they are very likely to be miscible (23). Therefore, via comparing 

predicted solubility parameters between model drugs and EUDRAGIT® EPO, it suggests that the 

model drugs are likely to be miscible with EUDRAGIT® EPO. 

Table 4.2: Calculated solubility parameters of model drugs and EUDRAGIT® EPO by Fedors group 

contribution method. 

Materials Ʃ Ecoh (kJ/mol) Ʃ V (cm3/mol) δ (MPa
1/2) 

felodipine 143.8 287.4 22.37 

celecoxib 124.75 285 20.92 

enofibrate 137.98 313.2 20.98 

carbamazepine 106.2 190.8 23.59 

EUDRAGIT® EPO (monomer) 96.32 252.7 19.52 
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  The predicted solubility parameter may theoretically suggest a high likelihood of miscibility 

between model drugs and polymers. By further developing this method, the solid solubility of 

model drugs in EUDRAGIT® EPO can be calculated. Flory-Huggins lattice-based theory derived in 

1953 was established to depict thermodynamics of polymer solutions based on the Gibbs free 

energy law (28). It assumed that the polymer solution had a structure similar to crystalline lattice as 

schemed in Figure 4.2. Basically, the solution is considered to be composed by lattices and the 

monomer of the polymer and the solvent molecule will occupy a single lattice in the whole 

structure. A polymer chain with a polymerisation degree of x will occupy x lattices. 

 

Figure 4.2: Schematic model of Flory-Huggins lattice based theory of polymer solution. 

  The thermodynamics of mixing a polymer with a solvent based on the Flory-Huggins lattice 

theory can be described by (28): 

                                     ∆G = ∆H-T∆S = RT (n1ln Ф1 + n2ln Ф 2 + n1 Ф 2 χ12)                            Eq 4.3 

                                                             ∆H = RT n1 Ф 2 χ12                                                                                          Eq 4.4 

                                                    T∆S = -RT (n1ln Ф 1 + n2ln Ф 2)                                              Eq 4.5 

where ∆G is the free energy change of mixing the polymer with the solvent, ∆H is the enthalpy 

change of mixing the polymer with the solvent, ∆S is the entropy change of mixing the polymer 

with the solvent, n1 is the number of moles of the solvent molecule, n2 is the number of moles of the 

polymer, Ф 1 is volume fraction of the solvent, Ф 2 is volume fraction of the polymer, and χ12 is 

called Flory-Huggins interaction parameter between the solvent and the polymer (28). This lattice-

based theory was further developed to describe drug-polymer mixing by Taylor’s group assuming 

the drug molecule is the single lattice (21).  Considering the amorphous drug molecule as a solute 

molecule, the Flory-Huggins equation can be written by: 

                              ∆GM /(RT) = ndruglnΦdrug + npolymerlnΦpolymer + ndrugΦpolymerχ                         Eq 4.6 

solvent molecule

polymer
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where ∆GM is the free energy change in the mixing process, ndrug is the number of moles of drug, 

npolymer is the number of moles of polymer, Φdrug is the volume fraction of the drug, Φpolymer is the 

volume fraction of the polymer, R is the gas constant, χ is the Flory-Huggins interaction parameter 

between the drug and the polymer, and T is the temperature at which the mixing of drugs and 

polymers occurs. The relationship between the interaction parameter and the solubility parameters 

of drugs and polymers is described by: 

                                                             χ = Vsite / RT (δdrug – δpolymer)
 2                                         Eq 4.7 

where Vsite is the volume of the hypothetical lattice, and since the volume of the polymer chain is 

significantly larger than that of the drug, the molar volume of the drug is used as the site volume 

(21).  Results of calculated interaction parameters of model drugs with EUDRAGIT® EPO are 

summarised in Table 4.3. 

Table 4.3: Calculated interaction parameters of model drugs with EUDRAGIT ® EPO 

materials feldoipine celecoxib fenofibrate carbamazepine 

χ 0.9417 0.4712 0.2603 1.2705 

 

  Combining the calculated solubility parameter and the interaction parameter, the free energy of 

drug-polymer mixing can be calculated by using Eq 4.6. One should note that cohesive energy and 

molar volume from Fedors method were calculated at 25oC (298.15K) under standard pressure,  

and thus the resultant free energy of mixing by this method can only be applied at room 

temperature (298K) under standard pressure. The plot of drug ratios in drug-polymer mixtures 

against calculated free energy of mixing between model drugs and EUDRAGIT® EPO is shown in 

Figure 4.3. It can be seen that through the entire drug-polymer ratio range, from 5% to 95% (w/w), 

the mixing of model drugs and EUDRAGIT® EPO is thermodynamically favourable at room 

temperature (298.15K) since the calculated free energies of mixing are all negative. This indicates a 

good miscibility between model drugs and EUDRAGIT® EPO, which is in agreement with the 

prediction by the comparison of solubility parameters between model drugs and EUDRAGIT® EPO.  

It also can be noted that there exists a lowest value of the calculated free energy change of mixing 

for individual model drug in a certain drug weight percentage. With the drug-polymer ratio equals 

to that value the mixing process of amorphous model drugs and EUDRAGIT® EPO is most 

thermodynamically favourable. This may suggest that amorphous solid dispersions prepared with 

model drugs and EUDRAGIT® EPO are very likely to be physically stable if the drug loadings are 

close to these values. Consequently, it can be proposed that this particular value can be used for the 

mixing of individual drug in EUDRAGIT® EPO in the preparation of amorphous solid dispersions 

since the demixing of drugs and EUDRAGIT® EPO will not occur spontaneously. This value (solid 

solubility of the drug in EUDRAGIT® EPO) is circa 25% (w/w) for felodipine, 35% (w/w) for 
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celecoxib, 35% (w/w) for fenofibrate and 15% (w/w) for carbamazepine. It should be noted that the 

observed value where the mixing of drugs and the polymer are most thermodynamically favourable 

might not be the thermodaynamic drug-polymer solubility. However, in the view of fomulaton 

development for amorphous solid dispersions, the value may be considered as apparent drug-

polymer solubility. 

 

Figure 4.3: Plot of drug ratios in drug-polymer mixtures against calculated free energy change (∆G/RT) 

of mixing of model drugs and EUDRAGIT® EPO. 

  Although the predicted model drugs-EUDRAGIT® EPO miscibility and solubility can be applied 

to room temperature, some potential issues regarding the accuracy of the method should be 

clarified. Solubility parameter theory only accounts for the direct contact energies between 

components and does not take into account the effects of entropy or the free volume of amorphous 

solids (29). It also should be noted that this theory is based on regular solution theory and 

deviations from solution behaviours such as changes in volume on mixing must be accounted for 

(23). Therefore, the factors mentioned above might be responsible for the inaccurate prediction of 

drug-polymer miscibility and solubility in comparison to real drug-polymer cases. 

4.3.2 Melting point depression approach 

4.3.2.1 Theoretical background 

  The melting point depression method was first introduced to be applied to predict the solid-solid 

miscibility between two polymers in 1975 (30). From then on, it was widely used in polymer 

science to investigate whether the crystalline polymer and the amorphous one were miscible when 

being mixed together on heating (31-33).  
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  In the field of polymer science regarding the investigation of the miscibility between two 

polymers, the interaction parameter, χ, from the Flory-Huggins lattice-based theory was correlated 

with the melting point depression.  Basically, on melting of a physical mixture of a crystalline 

polymer and an amorphous polymer alone in equilibrium state, the solid–liquid chemical potential 

(calculated as partial differential of the free energy from Flory-Huggins model) change of the 

crystalline polymer should be equivalent to the chemical potential difference (change) of the 

crystalline polymer in liquid state and in the amorphous polymer phase. Therefore the relationship 

between melting point depression and Flory-Huggins model was established by Eq 4.8: (30, 33, 34)  

                            (1/Tmix
M－1/Tpure

M) =－R/∆Hfus [lnΦ1+ (1/m1－1/m2)Φ2+χΦ2
2]                   Eq 4.8 

where Tmix
M is the melting temperature of the crystalline polymer in the mixture with  another 

amorphous polymer, Tpure
M is the melting temperature of the crystalline material, ∆Hfus is the heat of 

fusion of the polymer crystal, and m1 and m2 are the degree of polymerization (the number of lattice 

of the individual polymer chain occupies) and R is the universal gas constant. A negative 

interaction parameter may indicate the two polymers are miscible as the negative interaction 

parameter can lead to a negative free energy change of mixing (Eq 4.3), whereas a positive 

interaction parameter may indicate the two polymers are immiscible or partially miscible. 

  The melting point depression method was further developed and applied in amorphous solid 

dispersions to predict the drug-polymer miscibility and solid solubility by Taylor’s group (12, 21). 

The melting of a pure drug occurs when the chemical potential of the crystalline drug equals to the 

chemical potential of the molten drug (35). If the drug is miscible with a polymer, the mixing of the 

drug and the polymer is thermodynamically favourable, which is reflected by a negative free 

energy change of the mixture. Thus the chemical potential (partial Gibbs free energy) of the drug in 

the mixture with the polymer on melting will be smaller than the chemical potential of the pure 

crystalline drug on melting without the existence of the miscible polymer, resulting in the melting 

point depression of the crystalline drug Chemical potential is a function composed of pressure, 

temperature and Gibbs free energy and thus a decreased chemical potential can lead to a decreased 

melting point (34). In contrast, if the drug and polymer are immiscible, no melting point depression 

is expected because of unchanged chemical potential of the melted drug.  

  In amorphous drug-polymer solid dispersions, since the volume of a drug molecule is significantly 

smaller than a polymer chain, Eq 4.8 was modified assuming the lattice size is the size of a single 

drug molecule (21):  

                        (1/Tmix
M－1/Tpure

M) =－R/∆Hfus [lnΦdrug+ (1－1/m)Φpolymer+χΦpolymer
2]             Eq 4.9 
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where Tmix
M is the melting temperature (depressed melting point) of the crystalline drug in the 

mixture with the amorphous polymer, Tpure
M is the standard melting point, ∆Hfus is the heat of 

fusion of the crystal, m is the ratio of the volume of the polymer to that of a single lattice site 

(defined here by the volume of the drug). Rearranging Eq 4.9, one can easily notice the linear 

relationship: 

                    (1/Tmix
M－1/Tpure

M) × (∆Hfus/－R)－ln(Φdrug)－(1－1/m)Φpolymer=χΦpolymer
2        Eq 4.10 

The interaction parameter, χ, can be calculated as the slope of the linear regression between the 

left (calculated by the detected depressed melting points and the physical properties of drugs and 

polymers) and the right (Φpolymer
2) of Eq 4.10. The achieved interaction parameter can be used to 

judge whether an amorphous drug and a polymer are miscible by calculating the free energy 

change of mixing the drug and the polymer using Eq 4.6.  

To further use the melting point depression method to calculate the drug-polymer solubility, it is 

essential to understand classic thermodynamic solubility in liquid theory. In liquid solutions, 

solubility occurs at equilibrium state where the chemical potential of the solute in solid state should 

be equivalent to that in the solution. Based on this theory, the relationship between the solubility 

and temperature can be written by:  

                                                            dlnS/dT = ∆Hfus / (RT2)                                              Eq 4.11 

where S is the solubility of the material at temperature T in the solution, ∆Hfus is the heat of fusion 

of the solid. One can easily rewrite Eq 4.11with certain temperatures into: 

                                                              lnS = -∆Hfus /R (1/T2 – 1/T1)                                      Eq 4.12 

Therefore, considering T2 and T1 as Tmix
M and Tpure

M from Eq 4.9, respectively, the solubility of 

the drug in the polymer can be calculated by combining Eq 4.9 and Eq 4.12 (21): 

                                                      lnSdrug = lnΦdrug+ (1－1/m)Φpolymer+χΦpolymer
2                   Eq 4.13 

where Sdrug is solubility of a drug in a polymer at the temperature at which solubility parameter is 

calculated, and in terms of melting point depression approach the temperature should be the 

depressed meting points under standard pressure.  
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4.3.2.2 Prediction of miscibility and solid solubility by the melting point depression approach 

4.3.2.2.1 Effect of heating rate on the melting point depression 

  The influence of heating rates on the melting points of felodipine in the 50% (w/w) physical 

mixture with EUDRAGIT® EPO is shown in Figure 4.4. It can be seen that the onset value of the 

melting points of felodipine decreased from 141.3oC to 138.1oC, as well as the melting enthalpy 

decreased from 35.16 to 25.88J/g, as the heating rate reduced from 10 to 0.2oC/min. It indicates 

that melting point depression can be significantly affected by the applied heating rate. This is 

because the low heating rate may provide the drug with sufficient time to interact with the polymer. 

Based on these results, the heat rate of 0.2oC/min was used for the melting point depression study 

of felodipine as the most significant depressed melting point was achieved at this rate. 

 

Figure 4.4: Influence of heating rate on melting points and melting enthalpy of felodipine in 50% (w/w) 

felodipine-EUDRAGIT ® EPO physical mixture. 

  Melting point depression of celecoxib and carbamazepine in EUDRAGIT® EPO detected by DSC 

at the ramp of 1oC/min is shown in Figure 4.5. It can be seen that evident depressed melting points 

can be achieved for both drugs. The onset value of melting decreased from 160.5oC to 155.7oC for 

celecoxib and from 186.4oC to 180.5oC for carbamazepine. This demonstrates that the heating rate 

of 1oC/min was sufficiently low for investigating the melting point depression of celecoxib and 

carbamazepine in this project. Compared with felodipine, the degree of depressed melting points of 

celecoxib and carbamazepine were more significant, even felodipine was tested at a heating rate of 

0.2oC/min. Physical mixtures of fenofibrate and EUDRAGIT® EPO were tested by DSC as well. 

However, no melting point depression was observed for 50% (w/w) fenofibrate-EUDRAGIT® EPO 

even with the lowest heating rate (0.2oC/min). The absence of melting point depression of 

fenofibrate indicates a low miscibility between fenofibrate and EUDRAGIT® EPO by this approach.  
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Figure 4.5: DSC results of 50% (w/w) physical mixture of (a) celecoxib and EUDRAGIT® EPO, and (b) 

carbamazepine and EUDRAGIT® EPO at the heating ramp of 10oC/min. 

  Different melting point behaviours of physical mixtures of model drugs with EUDRAGIT® EPO 

were observed. As mentioned earlier, melting point depression is caused by the miscibility between 

the two components. It has been reported that this miscibility was associated with interactions 

between the two components (21). As can be seen in the chemical structures of model drugs and 

EUDRAGIT® EPO (Chapter 2), felodipine, celecoxib and carbamazepine all have hydrogen 

bonding donor groups and EUDRAGIT® EPO contains carbonyl groups which can act hydrogen 

bonding acceptors. However, this is not the case for fenofibrate. Therefore it is possible that 

felodipine, celecoxib and carbamazepine at melted state with high mobility can interact with 

EUDRAGIT® EPO stronger than fenofibrate, leading to the greater depressed melting points. The 

reason why celecoxib and carbamazepine showed more depressed melting point values than 

felodipine at the same heating rate is not clear. However, according to the definition of the 

interaction parameter, it demonstrates that the interaction between carbamazepine, celecoxib and 

EUDRAGIT® EPO are stronger than that between felopdipine and EUDRAGIT® EPO (36).     
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4.3.2.2.2 Predicted drug-polymer miscibility and solid solubility by the melting point 
depression approach 

  Physical mixtures of model drugs and EUDRAGIT® EPO with drug-polymer ratios from 10% to 

90% (w/w) were tested by DSC at 1oC/min for celecoxib and carbamazepine, and at 0.2oC/min for 

felodipine. As no melting point depression was detected for the physical mixture of fenofibrate and 

EUDRAGIT® EPO at the heating rate of 0.2oC/min, the melting point depression method was not 

applicable to fenofibrate. The physical properties of model drugs and EUDRAGIT® EPO required 

for the melting point depression method are listed in Table 4.4. 

Table 4.4: Physical properties of model drugs and EUDRAGIT ® EPO required for the melting point 

depression method. 

Materials Mw (g/mol) Density (g/cm3)b ∆Hfus (kJ/mol)c 

Felodipine 

Celecoxib 

Carbamazepine 

EUDRAGIT® EPO 

384.26 

381.37 

236.27 

4840.00a 

1.28 

1.52 

1.30 

1.16d 

30.7±0.1 

37.2±0.2 

24.0±0.1 

- 

a: assume 20 repeat units in the polymer (12). 
b: obtained from Cambridge Structure Database 
c: measured by DSC (n=3) 
d: obtained from the instruction of commercial EUDRAGIT® EPO product 

  Felodipine- EUDRAGIT® EPO physical mixtures are discussed here as an example of using the 

melting point depression method. Using Eq 4.10 with the detected depressed melting points from 

physical mixtures of felodipine and EUDRAGIT® EPO, the plot of (1/Tmix
M－1/Tpure

M) × (∆Hfus/－R)

－ln(Φdrug)－(1－1/m)Φpolymer against Φpolymer
2 was carried out as seen in Figure 4.6. It should be 

noted that the linearity can only be achieved with high drug concentration physical mixtures. The 

absence of linearity across the entire concentration range (data not shown) may reflect the well-

known composition dependence of the interaction parameter as well as the increasingly 

unfavourable kinetics of the drug-polymer (12). With the acceptable linearity coefficient, according 

to the theory aforementioned, the interaction parameter can be achieved as the slope of the 

regression analysis, -1.0267 (felodipine). 
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Figure 4.6: Regression analysis of melting point depression approach with low polymer volume 

fraction square. 

    Applying the same method to celecoxib and carbamazepine, interaction parameters were 

calculated as -0.9247 for celecoxib and -0.8549 for carbamazepine. Predicted negative solubility 

parameters for felodipine, celecoxib and carbamazepine indicate that three model drugs present 

good miscibility with EUDRAGIT® EPO (12, 21).  

  The good miscibility between felodipine, celecoxib and carbamazepine with EUDRAGIT® EPO 

can also be proved by using Eq 4.6 to calculate free energy change of mixing drugs and 

EUDRAGIT® EPO (Figure 4.7). Through entire drug-polymer ratios, mixing is thermodynamically 

favourable as demonstrated by the negative free energy change values. Although interaction 

parameters predicted by solubility parameter and melting point depression approaches are different, 

they mutually suggest good miscibility between felodipine, celecoxib and carbamazepine with 

EUDRAGIT® EPO. Despite predicted high miscibility and solubility between fenofibrate and 

EUDRAGIT® EPO by solubility parameter approach, it is very likely that they are immiscible or 

partially miscible, since no melting point depression was observed. As mentioned earlier, this 

immiscibility between fenofibrate and EUDRAGIT® EPO on heating is very likely to be associated 

with the incapability of the formation of strong interaction (hydrogen bonding) between them. The 

study of the formation of hydrogen bonding in amorphous solid dispersions between model drugs 

and EUDRAGIT® EPO will be discussed in Chapter 6.  
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Figure 4.7: Free energy change (∆G/RT) of mixing calculated using interaction parameter predicted by 

melting point depression approach. 

  It can be noted that the calculated values of free energy change of mixing model drugs with 

EUDRAGIT® EPO was different between the solubility parameter method and the melting point 

depression method. This is because the Flory-Huggins interaction parameter applied in the two 

methods was calculated in different ways (Eq 4.7 for the solubility parameter method and Eq 4.10 

for melting point depression method). The free energy change of mixing model drugs and 

EUDRAGIT® EPO was dependent on the enthalpy change of mixing and the entropy change of 

mixing. The solubility parameter was associated with the enthalpy change of mixing (Eq 4.4). The 

entropy change of mixing always thermodynamically favoured the mixing as after mixing the 

system was more disordered than the individual drug and polymer. Therefore even with a positive 

interaction parameter (as calculated by the solubility parameter method), the mixing of drugs and 

polymer could still be thermodynamically favoured if the entropy change of mixing was superior 

over the enthalpy change of mixing. This result was also reported in the literature that nifedipine 

was miscible with PVP k29/30 even with a calculated interaction parameter of 0.5 (21).  

  Using Eq 4.12 combined with calculated interaction parameters from the melting point depression 

approach, solid solubility of model drugs in EUDRAGIT® EPO can be predicted. The predicted 

solubility of model drugs in EUDRAGIT® EPO is listed in Table 4.5. Since the interaction 

parameter was obtained from melting point depression approach, the calculated solubility listed in 

Table 4.5 should be considered under the DSC running condition, more specifically, at the 

temperature close to the melting point of the crystalline drug.  It also can be seen from Table 4.5 

that the predicted solubility increased with increasing temperature, which can be considered as a 
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reasonable phenomenon that the solubility is likely to increase if temperature is increased. 

Moreover, e.g. at the temperature close to melting point of crystalline felodipine (409.74 to 

413.50K), the variation of predicted solubility is very limited, ranging from 29.02% to 32.20% 

(w/w), which indicates that the equilibrium solid solubility of felodipine in EUDRAGIT® EPO is 

likely to be within this range, and averagely circa 31% (w/w). Using the same calculation method, 

solid solubility of celecoxib and carbamazepine in EUDRAGIT® EPO was calculated as 41% (w/w) 

for celecoxib and 46% (w/w) for carbamazepine. 

Table 4.5: Predicted solid solubility of felodipine in EUDRAGIT ® EPO by melting point depression 

approach. 

drug 

concentration 

in the 

mixture 

(w/w) 

felodipine celecoxib carbamazepine 

temperaturea 

(K) 

Solubility 

(w/w) 

temperaturea 

(K) 

Solubility 

(w/w) 

temperaturea 

(K) 

Solubility 

(w/w) 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

407.28 

409.38 

408.35 

410.40 

411.42 

411.58 

413.22 

413.50 

414.33 

14.01% 

22.36% 

27.38% 

30.31% 

31.78% 

32.20% 

31.74% 

30.65% 

29.97% 

415.42 

419.82 

423.25 

426.92 

427.14 

428.34 

432.01 

433.40 

434.32 

13.74% 

16.64% 

24.32% 

31.10% 

36.57% 

40.38% 

42.26% 

42.06% 

41.81% 

442.58 

446.72 

448.75 

451.90 

453.59 

454.22 

455.89 

457.27 

459.43 

13.58% 

23.14% 

27.96% 

35.38% 

41.18% 

45.11% 

47.04% 

46.98% 

45.08% 

a: the measured depressed melting temperature of the drug in the physical mixture by DSC  

   Using the melting point depression approach, carbamazepine was predicted to have the highest 

solid solubility (46% w/w) amongst model drugs, whereas using the solubility parameter method 

the solubility of which was the lowest (15% w/w). In addition, solid solubility of felodipine and 

celecoxib in EUDRAGIT® EPO predicted by the melting point depression method were both 

higher than that predicted by the solubility parameter method. In addition to the limitation of the 
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solubility parameter approach mentioned in 4.3.1.2, the restriction of the melting point depression 

approach should also be discussed. The results from the melting point depression approach can 

only be valid to describe the drug-polymer miscibility and solubility to a narrow temperature range 

which was close to the melting points of model drugs as the interaction parameter was calculated at 

that temperature range. At temperatures close to the melting points of model drugs, equilibrium of 

drug-polymer miscibility and solubility can be established rapidly as both the drugs and the 

polymer were in the liquid state with low viscosity. This can possibly lead to the accurate 

prediction of drug-polymer miscibility and solubility (16). At temperatures below Tg or at room 

temperature, the establishment of the equilibrium can take very long time period due to the high 

viscosity of drugs and polymers. Therefore using the melting point depression approach may 

overestimate the drug-polymer miscibility and solubility in comparison to using the solubility 

parameter approach.  

  It can be noted in Figure 4.4 and 4.5 that melting enthalpies of felodipine, celecoxib and 

carbamazepine detected by DSC from their 50% (w/w) physical mixture with EUDRAGIT® EPO 

are disproportional to those of pure crystalline drugs. This may indicate the occurrence of 

dissolution of model drugs into EUDRAGIT® EPO on heating whereby the exothermic enthalpy 

from the drug dissolving into the polymer offsets the endothermic melting enthalpy of the 

crystalline drug, leading to the disproportional melting enthalpy of the crystalline drug. Based on 

this phenomenon, a model was established by accurately describing the behaviour of drug-polymer 

physical mixture on heating to predict the drug-polymer solubility (22). This recently developed 

model was also applied in this project and will be discussed as in the following section. 

4.3.3 Melting enthalpy approach 

4.3.3.1 Theoretical background 

The estimation of the solubility of drugs in polymers using the melting enthalpy of crystalline 

drugs in drug-polymer mixtures measured by DSC can be dated back to 1974 (37). The principle of 

the method can be described simply as that the fraction of the drug dissolved in the polymer does 

not contribute to the melting endotherm associated with the dispersed drug fraction. Accordingly, 

through plotting the measured melting enthalpy values as a function of a series of drug 

concentrations in physical mixtures and extrapolating to zero enthalpy, the solubility of the drug in 

the polymer could be estimated as the x-intercept of the plotted line. However, the validation of this 

method required a rapid heating rate to avoid the dissolution of the drug into the polymer on 

heating, and hence the exothermic dissolution will not offset the melting endotherm. This was 

further confirmed by the study in which a hyper DSC was used with different heating rates to 

determine the solubility of metronidazole (a crystalline drug) in silicone elastomer (38). In that 

study, different heating rate from 20 to 400oC/min was applied to test the physical mixtures, and it 
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was found that the determined solubility was dependent on the heating rates: the higher the heating 

rate, the more accurate the determined solubility. The predicted solubility increased with increasing 

heating rates. This demonstrated that the dissolution of crystalline drugs into polymers in the 

physical mixture was difficult to be avoided on heating even at a relatively high heating rate 

(100oC/min). 

This melting enthalpy measurement based approach was applied in this study to calculate the 

solubility of felodipine in EUDRAGIT® EPO using the DSC data obtained by testing their physical 

mixtures with different ratios at the heating rate of 10˚C/min. The plot of the melting enthalpy 

verses drug-polymer ratios is illustrated in Figure 4.8.  It can be seen that the solubility is below 10% 

and after calculation the exact value is as low as 2.41% (w/w). However, tested at the heating rate 

of 0.2oC/min, no melting can be observed for 5% (w/w) physical mixture (data not shown), 

indicating solid solubility should at least be higher than 5% (w/w), which in turn proved the 

inaccuracy of this method.  

 

Figure 4.8: Melting enthalpy as a function of different drug loadings in the physical mixture of 

felodipine and EUDRAGIT® EPO at the heating rate of 10˚C/min.  

  Qi et al modified the melting enthalpy method and developed a new model predicting the 

solubility of the drug in the polymer (22). They assumed that the enthalpy value of the endothermic 

peak was composed of the energy involved the drug dissolution into the softened polymer and the 

melting of the crystalline drug.  In this theory, it was suggested that different drug-polymer 

dissolution behaviours may occur depending on the drug concentrations in the physical mixtures. 

Firstly, if the drug concentration is considerably lower than the solubility of the drug in the 

polymer, drugs will completely dissolve into the polymer on heating and the linear relationship of 

the measured endothermic enthalpy against drug concentration should cross the (0,0) point (Figure 

4.8). Secondly, for the extremely high drug concentration systems in which the polymer 
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concentration is lower than the solubility of the polymer in the melted drug, the polymer will 

completely dissolve into the drug and the linear relationship of the measured endothermic enthalpy 

against drug concentration still exists but with an intercept (Figure 4.8). Thirdly, with the drug 

concentration in the physical mixtures in between the two extremes, both the drug dissolution into 

the polymer and the polymer dissolution into the drug will take place simultaneously and this gives 

another linear relationship of measured endothermic enthalpy against drug concentration (Figure 

4.8). Given the three situations mentioned above, ideally, one should expect to see three areas of 

drug-polymer behaviours as demonstrated in Figure 4.9. The two values on the x-axis from the two 

breaking points on the curve are the solubility of the drug in the polymer and the solubility of the 

polymer in the drug (depicted as PA and PB).  

 

Figure 4.9: Three possible regions of drug-polymer mixing behaviour (22).  

  The detailed calculation of the drug-polymer behaviour is described as follows. The process 

occurring at low drug loading region can be expressed by: 

                                                           Ht / (MD + MP) = XD (Hf + HD)                                      Eq 4.14 

where Ht is the total amount of heat change of the exothermic peak, MD is the mass of the drug 

dissolved in the polymer, MP is the mass of the polymer, XD is the weight fraction of the drug in the 

whole mixture, Hf is the heat fusion of the drug and HD is the heat of dissolution of the drug in the 

polymer (assumed to be exothermic). 

  The intermediate region is represented by: 

                                                  Ht  / (MD + MP) = XD (Hf - KDHD + KPHP) + KDHD                           Eq 4.15 
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where KD is the solubility of the drug in the polymer, KP is the solubility of the polymer in the 

melted drug and HP is the enthalpy of dissolution of the polymer in the drug.  

  The high drug ratio region can be written by: 

                                                            Ht  / (MD + MP) = XD (Hf  - HP) + HP                             Eq 4.16 

4.3.3.2 Solid solubility predicted by the enthalpy approach 

  The same data sets used in the melting point depression approach was also used for this approach 

(physical mixtures of fenofibrate and EUDRAGIT® EPO were tested at the heating rate of 

1oC/min). The plot of melting enthalpies of model drugs in physical mixtures with EUDRAGIT® 

EPO against drug ratios is shown in Figure 4.10. Three drug-polymer behaviours were observed for 

all physical mixtures of model drugs and EUDRAGIT® EPO. According to the theory mentioned 

above, two breaking points in the regression line are defined as solid solubility of the drug in the 

polymer and solid solubility of the polymer in the drug. Therefore, solid solubility of model drugs 

in EUDRAGIT® EPO is circa 20% (w/w) for felodipine, 20% (w/w) for fenofibrate, 30% (w/w) for 

carbamazepine and 40% (w/w) for fenofibrate.  

 

Figure 4.10: Plot of melting enthalpies of model drugs in physical mixtures against drug ratios (a: 

felodipine; b: celecoxib; c: carbamazepine; d: fenofibrate). 
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  Solid solubility of model drugs in EUDRAGIT® EPO predicted by this approach was still 

restricted to a high narrow temperature range which is close to the melting points of the crystalline 

model drugs. This is because the drug-polymer behaviours mentioned in the theory occurred at 

high temperatures where the equilibrium of the dissolution of model drugs into the polymer can be 

established rapidly due to their low viscosity at high temperature. Therefore, there may still be 

deviation from the true drug-polymer solubility at room temperature.   

  Solid solubility of model drugs in EUDRAGIT® EPO predicted by different theoretical 

approaches are summarised in Table 4.6. It can be seen that the predicted solid solubility of 

individual drugs in EUDRAGIT® EPO varies significantly depending on the method applied. For 

instance, predicted solid solubility of carbamazepine in EUDRAGIT® EPO varies ranging from 15% 

to 46% (w/w) by different approaches. Several factors can contribute to the discrepancy of 

predicted solid solubility. Firstly, the applied approaches are all based on different assumptions and 

they all have limitations and restrictions, which may be far different from real drug-polymer cases. 

Secondly, solubility is a parameter associated with temperature and pressure, and it is reasonable 

that solid solubility predicted by the solubility parameter method is different form that by melting 

point depression method since the former is on the basis at room temperature and the latter is 

applied at the temperature close to melting points of model drugs. Thirdly, predicted solid 

solubility by theoretical approaches are thermodynamic solubility which is not related to the 

preparation process, for instance apparent solid solubility of drugs in polymers can vary 

significantly between prepared by film casting and by spray drying (39). Therefore, the application 

of theoretical approaches may not be accurate in predict the physical stability of amorphous solid 

dispersions prepared by different processing methods. 

Table 4.6: Predicted solid solubility of model drugs in EUDRAGIT ® EPO by different theoretical 

approaches. 

APIs Solubility by solubility 

parameter (w/w)a 

 

Solubility by melting 

point depression (w/w)b 

 

Solubility by thermal 

detection method (w/w)c 

felodipine 

celecoxib 

carbamazepine 

fenofibrate 

25% 

35% 

15% 

35% 

31% 

41% 

46% 

- 

20% 

20% 

30% 

40% 

a:condition of 298.15K, standard pressure; b: condition of temperature close to melting points of individual drug, 

standard pressure; c: condition of temperature close to melting points of individual drug, standard pressure. 
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4.4 Conclusions 

  In this chapter, three commonly used theoretical approaches, including solubility parameter, 

melting point depression and a enthalpy method, were applied to predict model drugs-

EUDRAGIT® EPO miscibility and solubility. Discrepancies of predicted results can be found due 

to the fact that the applied approaches are based on different assumptions and solid solubility was 

also predicted at different temperatures. It has been agreed that solid solubility is one of the key 

factors which plays important impact on physical stability of solid dispersions. However, predicted 

drug-polymer solubilities by different theoretical approaches vary in a relatively large range, which 

may indicate these methods are less accurate. More significantly, these theoretical approaches did 

not take into account the effect of processing method on the drug-polymer solubility. Therefore, in 

order to predict drug-polymer solubility more accurately, processing related prediction method is 

required to be established. Accordingly, in the next chapter, a practical method for the prediction of 

the solubility of drugs in melt extrudates is developed. 
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Chapter 5 Development of milling method for the prediction of 
apparent drug-polymer solubility in hot melt extruded solid 
dispersions 

5.1 Introduction 

  The prediction of solid solubility of drugs in polymers has attracted increasing amount of interests 

from pharmaceutical researchers since it has been considered as one of the most significant factors 

in affecting physical stability of amorphous solid dispersions (1-3). Several methods including 

Flory-Huggins lattice based theory, solubility parameter method, rheology test based method and 

melting enthalpy measurement based method, have been reported to be used to predict drug-

polymer solid solubility (4-7). The involved assumptions and limitations of those methods may 

lead to a less accurate prediction in comparison to the real value. For instance, using melting point 

depression method may lead to the over estimation of drug-polymer solubility in comparison to the 

true solubility at room temperature as the method was only applied to the prediction of the 

solubility at temperatures close to the melting points of crystalline drugs. More significantly, 

theoretical based predictions do not take into account the effect of preparation process, whereby the 

apparent solid solubility can be significantly higher than the theoretical value (thermodynamic 

solubility) since the extra energy imposed by preparation process can disperse drug molecules 

evenly into polymer chains forming solid solution (8). This has been demonstrated by studies that 

the physical stability of solid dispersions prepared by different processing methods can be 

significantly different and this could be associated with the different apparent drug-polymer 

solubility caused by the different processing methods (9, 10).  

  Mechanical milling has been widely used in the pharmaceutical manufacturing, mainly for 

particle size reduction (11, 12). Recently, the use of milling to create amorphous pharmaceuticals 

and solid dispersions has been increasingly explored (13-19). However, although the effects of 

milling on crystalline drugs in terms of solid transformation, physical stability has been 

substantially studied, the effect of milling on the physical stability of amorphous solid dispersions 

on aging is still poorly understood (13, 20-22). Milling is an essential downstream process for hot 

melt extruded products (5, 23-25). So far, there is no systematic study reporting how milling can 

affect the stability of hot melt extruded solid dispersions, and how the milling process should be 

controlled to minimize any negative effects if they exist. In this chapter, firstly the impact of 

mechanical milling on the physical stability of felodipine-EUDRAGIT® EPO was investigated. By 

studying this model system, an effective and practical method to predict drug-polymer solid 

solubility in melt extrudates was proposed and applied to other model drugs including celecoxib, 

fenofibrate and carbamazepine.  
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  Previously, solid solubility of model drugs in EUDRAGIT® EPO was predicted by theoretical 

approaches in Chapter 4. However, as mentioned above, theoretically predicted solid solubility can 

deviate significantly from the values in solid dispersions prepared by different processes. Therefore, 

in order to measure the solid solubility more accurately (taking into account of the physical 

stability), a practical method, mechanical milling, was developed and applied in predicting the 

apparent solid solubility of drugs in hot-melt extrudates.  In combination with theoretical values, it 

is anticipated that this approach will provide an accurate and reliable measurement of solid 

solubility that can be practically applied in hot melt extruded formulations in the pharmaceutical 

industry. 

Research objectives 

1. To investigate the effect of milling on the physical stability of felodipine-EUDRAGIT® EPO 

melt extrudates. 

2. To develop a milling based method for the prediction of apparent drug-polymer solubility in melt 

extrudates.  

3. To predict apparent apparent solid solubility of model drugs in melt extrudates using milling 

method. 

5.2 Experimental methods 

5.2.1 Hot melt extrusion 

  Hot melt extrusion was performed using a Thermo Scientific HAAKE MiniLab II (Thermo 

Scientific, UK) with co-rotating twin screws. Crystalline model drugs and EUDRAGIT® EPO 

powder with ratios from 10:90 to 70:30 (w/w) were pre-mixed in mortar and pestle before melt 

extrusion. The operation temperature was set at 1 to 5 degree higher than the melting points of 

crystalline model drugs with a dwell time in the extruder of 5 minutes. The rotating speed of the 

screws was 100rotation/min.  A round shape die with diameter of 2mm was attached to the extruder. 

5.2.2 Ball milling 

  Strand form extrudates were milled by Retsh MM400 Ball Milling (RETSH, Haan, Germany). For 

felodipine-EUDRAGIT® EPO systems, samples were milled for 5, 10, 30, and 60 minutes at the 

frequency of 30HZ by a single 7mm stainless steel ball to investigate the effect of milling periods. 

For other model drugs-EUDRAGIT® EPO systems, samples were milled for 10min. The particle 

size of the milled powders used for testing was controlled by sieve to between 63 and 106µm.  
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  The strand form and milled felodipine-EUDRAGIT® EPO extrudates were stored under 75%RH 

at room temperature for up to 6 months and were characterised by modulated temperature 

differential scanning calorimetry (MTDSC), powder X-Ray diffraction (PXRD), attenuated total 

reflectance-fourier transform infrared spectroscopy  (ATR-FTIR) and scanning electron 

microscopy (SEM) at regular intervals. For other systems including milled celecoxib-EUDRAGIT® 

EPO and carbamazepine-EUDRAGIT® EPO extrudates, samples were stored under 75%RH at 

room temperature for different time periods and were tested by MTDSC. 

5.2.3 Physicochemical characterisation 

  Parameters of characterisation technology including MTDSC, PXRD, ATR-FTIR and SEM refers 

to Chapter 2 (2.2.2.1.3 for MTDSC, 2.2.2.4.2 for ATR-FTIR, 2.2.2.5.2 for PXRD, 2.2.2.6.2 for 

SEM) 

5.3 Results and discussion 

  For an amorphous molecular dispersion based formulation, having a drug loading lower than the 

solid solubility of the drug in the polymer has been suggested as the safest option for minimizing 

the physical instability of amorphous solid dispersions on aging (4, 26). However, so far it is still 

difficult to accurately measure the solid solubility of drugs in amorphous solid dispersions. In 

addition, although the effects of milling on the behaviours of crystalline drugs, such as solid state 

transformation, have been substantially investigated (13, 20-22), very few studies have been carried 

out to evaluate the effect of milling on the behaviours of amorphous solid dispersions. Therefore, 

firstly in this chapter, the effect of mechanical milling on the recrystallization behaviour of milled 

hot melt extrudates was investigated. Secondly, via the evaluation of the impact of milling on the 

physical stability of melt extruded felodipine-EUDRAGIT® EPO systems, a practical approach to 

predict apparent solid solubility of drugs in melt extrudates, mechanical milling, was developed.  

5.3.1 Effects of milling on the physical stability of felodipine-EUDRAGIT ® EPO melt 
extrudates  

5.3.1.1 Effect of drug loading 

  Felodipine-EUDRAGIT® EPO melt extrudates with drug loadings from 10% to 70% (w/w) were 

milled for 5min. PXRD results of freshly prepared and milled samples are shown in Figure 5.1. It 

can be seen that samples with all drug loadings showed amorphous halos rather than crystalline 

peak features, indicating no significant amount of recrystallized felodipine was generated 

immediately after 5min milling.  
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Figure 5.1: PXRD results of freshly prepared and milled (5min) felodipine-EUDRAGIT® EPO melt 

extrudates. 

  Freshly milled felodipine-EUDRAGIT® EPO melt extrudates were also tested by MTDSC. No 

recrystallization or melting can be detected for fresh formulations with the drug loadings below 50% 

(w/w), and the MTDSC results of freshly milled 10%-50% (w/w) extrudates were identical to the 

corresponding freshly prepared strand from extrudates (Figure 5.2). This suggests milling has no 

instant effect on the physical state of felodipine-EUDRAGIT® EPO melt extrudates with drug 

loadings at and below 50% (w/w). 

 

Figure 5.2: MTDSC results of 10%-50% (w/w) freshly prepared and milled (for 5min) and fresh 

strand form extrudates.    

  However, MTDSC measurements of 70% (w/w) extrudates gave significantly different results as 

seen in Figure 5.3. In comparison to 70% (w/w) strand form extrudate, the freshly milled 70% 

(w/w) extrudate (milled for 5min) was detected with an evident recrystallization and a subsequent 
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melting. To calculate the amount of recrystallized felodipine in the extrudates measured by 

MTDSC, the following equation can be used: 

                                               Wcrys% = ( ∆Hextrudate / ∆Hdrug )× Wdrug loading                                                     Eq 5.1 

where Wcrys% is the percentage of the detected crystalline drug by DSC in the system, ∆Hextrudate is 

the melting enthalpy of crystalline drug in the extrudates measured by DSC, ∆Hdrug is the melting 

enthalpy of the pure drug (felodipine) measured by DSC, Wdrug loading is the drug loading in the 

extrudate and Wdrug% is the amount of crystalline drug in the extrudates. Using Eq 5.1 the total 

amount of crystalline felodipine measured increased from 0.1% (un-milled strand) to 21.5% (w/w) 

(5min milled powder).  

 

Figure 5.3: MTDSC results of 70% (w/w) strand form and milled for different time periods felodipine-

EUDRAGIT ® EPO samples.  

  It can be seen in Figure 5.3 that no recrystallization was detected in the 70% (w/w) freshly 

prepared strand form sample, and thus the detected low amount (0.6% w/w) of melted crystalline 

felodipine by DSC was highly likely to be the undissolved crystalline drug in the preparation of hot 

melt extrusion. In contrast, a large amount of recrystallization followed by melting was observed in 

the 5min milled 70% (w/w) extrudates. This indicates that milling can instantly affect the physical 

state of 70% (w/w) felopdipine-EUDRAGIT® EPO extrudates. The detected recrystallization of 

amorphous felodipine in the milled extrudates demonstrates that after milling, a certain portion of 

amorphous felodipine had already phase separated from the bulk amorphous solid dispersions. This 

separated amorphous felodipine phase can instantly recrystallize if treated by heating (such as the 

heating during a DSC scan). The amorphous felodipine (the amount of instable felodipine in 

amorphous solid dispersions) generated by milling may not recrystallize instantly at room 

temperature after milling, but it may have a high potential to convert back to crystalline form on 
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aging under stressed conditions (stressed humidity or temperature), and may consequently affect 

dissolution performance.  

  In summary of the milling effect on extrudates with different drug loadings, milling only had 

impact on the physical state of felopdipine-EUDRAGIT® EPO melt extrudates with high drug 

loading (70% w/w). It can instantly generate a certain level of amorphous phase separation in the 

70% (w/w) extrudates. Compared with the predicted solubility by different theoretical approaches 

in Chapter, it can be concluded that those method underestimated the apparent solubility of 

felodipine in melt extrudates. Even for 50% (w/w) extrudates (higher than all predicted solubility), 

there was no instant effect of the physical behaviour of this sample.  

5.3.1.2 Effect of milling time 

  Milling was proved to have the potential to affect the physical stability of 70% felodipine-

EUDRAGIT® EPO extrudates. In order to understand the milling effect on the physical stability 

more thoroughly, the study of different milling duration time on freshly prepared 10%-70% (w/w) 

felodipine-EUDRAGIT® EPO extrudates was carried out as the prolonged milling time may 

influence the physical state more significantly. Freshly prepared 10%-70% (w/w) samples were 

milled for different time periods up to 60min. However, even with 1 hour milling time, no 

recrystallization or melting was detected by DSC in the freshly milled 10%-50% (w/w) extrudates, 

which indicates prolonged milling time (as long as 1 hour) has little instant effect on the physical 

state of these samples.  The DSC results of 10-50% (w/w) extrudates milled for 1 hour were 

identical to those milled for 5min. 

  Freshly prepared 70% (w/w) extrudates milled for different time periods showed significantly 

different results. As can be seen in Figure 5.3, samples milled with different duration time (from 

5min to 1h) all showed exothermic recrystallization peaks at 96-99oC suggesting milling can 

increase physical instability of 70% (w/w) extrudates instantly as mentioned above. The calculated 

crystallinity of felodipine in the system using Eq 5.1 showed that after 10min milling, no further 

increase of the amount of recrystallized felodipine was observed and the crystallinity reached 

plateau (Figure 5.4). This possibly indicates in 70% (w/w) extrudates only a certain amount of 

felodipine can be made instable by milling. The exothermic enthalpy of recrystallization of 70% 

(w/w) samples milled for different time length were also studied as seen in Figure 5.4. The 

enthalpy values of the recrystallization peak show reductions with increasing milling time periods 

from 5 to 30min, and seem to reach a plateau after 30min. The melting enthalpy of crystalline 

felodipine was mainly contributed by the recrystallization of amorphous felodipine induced by 

milling as discussed above. Therefore, given the very close values of crystallinity of felodipine in 

sample milled for different time periods (10min to 1h), the reduced recrystallization enthalpy may 
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suggest that the amount of felodipine crystals already present in the system after milling (before 

heating by MTDSC) increases slightly with the milling time.  

 

Figure 5.4: Calculated crystallinity in 70% (w/w) HME felodipine-EUDRAGIT ® EPO systems milled 

for different timeperiods based on the total melting enthalpy and their corresponding recrystallization 

enthalpy. 

  10%-70% (w/w) felodipine-EUDRAGIT® EPO melt extrudates milled for different time periods 

were further studied by ATR-FTIR. ATR-FTIR results of 10%-50% (w/w) samples milled for 1h 

showed identical spectra to the corresponding fresh strand samples (Figure 5.5), indicating long 

milling time did not destabilise felodipine-EUDRAGIT® EPO melt extrudates with these drug 

loadings. The ATR-FTIR results showed good agreement with the DSC results for 10-50% (w/w) 

milled extrudates. 

 

Figure 5.5: NH group from felodipine in 10-50% (w/w) felodipine-EUDRAGIT ® EPO freshly prepared 

strand form and 1 hour milled melt extrudates. 
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  ATR-FTIR results of 70% (w/w) freshly milled extrudates for different time periods also showed 

good agreement with MTDSC results. It has been reported that NH group from felodipine was an 

evident indicator of the drug being amorphous or crystalline (27). As seen in Figure 5.6, freshly 

prepared 70% (w/w) strand form extrudates before milling shows a single NH peak at 3343cm-1 

which is in between the NH peak from crystalline felodipine (3367cm-1) and the NH peak from 

amorphous felodipine (3333cm-1). This NH peak position in the solid dispersions is likely because 

that the carbonyl groups from the polymer can affect the hydrogen bonding formed between two 

felodipine molecules via competition with the carbonyl groups from felodipine molecules. It has 

been discussed that hydrogen bonding between two felodipine molecules was stronger in 

amorphous form than in crystalline form (27). Therefore, although lack of the evidence of forming 

hydrogen bonding between felodipine and EUDRAGIT® EPO, this competition effect is possible to 

weaken the hydrogen bonding between two drug molecules leading to the NH peak shift.  

  After 5min milling, the original single 3341cm-1 peak (from 70% w/w strand form extrudates) 

separated into two peaks, 3367cm-1 representing crystalline felodipine and 3335cm-1 representing 

amorphous felodipine. The occurrence of phase separation proved that milling could significantly 

affect the physical stability of 70% (w/w) extrudates even without the treatment of heat.  

 

Figure 5.6: NH group from felodipine in 70% (w/w) felodipine-EUDRAGIT ® EPO melt extrudates 

milled for different time periods (from top to bottom: crystalline felodipine, milled for 60 min, milled 

for 30 min, milled for 10 min, milled for 5 min and amorphous felodipine). 

  It also can be seen form Figure 5.6 that the intensity ratios of crystalline peak (3367cm-1) to 

amorphous peak (3335cm-1) in 70% (w/w) samples increased with increasing milling time periods 

from 5min to 30min, and plateaued after 30min. This was proved by the calculation of ratios of 

these two peaks from 70% (w/w) extrudates milled for different time periods as shown in Figure 
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5.7. The reaching plateau after 30min milling can be clearly seen.  This suggests that milling could 

not generate more felodipine crystals in the 70% (w/w) extrudates after 30min milling processing, 

which explains the plateau of recrystallization enthalpy after 30min milling detected in the DSC 

results (Figure 5.4).   

 

Figure 5.7: Peak intensity ratio of 3367 to 3335 from 70% (w/w) extrudates milled for different time 

periods.  

5.3.1.3 Effect of heat-treatment after milling  

  As mentioned previously, amorphous phase separation can be instantly generated by milling in 70% 

(w/w) felodipine-EUDRAGIT® EPO melt extrudates, and the recrystallization of the generated 

amorphous felodipine phase can be induced by heating in DSC. In order to gain better 

understanding of the behaviour of the phase separated amorphous felodipine generated by milling, 

VT-ATR-FTIR was used to test freshly prepared strand form and 5 min milled extrudates. 

5.3.1.3.1 Freshly prepared strand form extrudates  

  VT-ATR-FTIR was applied to 10%-70% (w/w) fresh strand form extrudates. Results showed that 

no recrystallization or melting was detected on heating in any sample. Therefore, only the VT-

ATR-FTIR results of freshly prepared strand form 70% (w/w) extrudates are discussed here as an 

example to show the effect of heat-treatment on the fresh strand extrudates (Figure 5.8). It can be 

seen in Figure 5.8c that the NH peak from felodipine in 70% (w/w) amorphous solid dispersion 

shifted from 3343cm-1 (in between the amorphous 3335cm-1 and crystalline 3367cm-1 NH peak) at 

30oC to 3358cm-1 at 160oC. After heating up to the melting point, no NH peak from crystalline 

felodipine (3367cm-1) was detected, indicating no recrystallization or melting of crystalline 

felodipine occurred during heating in the 70% (w/w) fresh strand extrudates. The NH peak shift is 

due to the increased molecular motion on heating which results in the weakened hydrogen bonding 

between two felodipine molecules. The absorbance of the two peaks (3343cm-1 and 3358cm-1) on 
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heating was recorded and the trend of the absorbance changing of the the two peaks was identical 

(Figure 5.8b). This trend can also be clearly seen in the result of 3D graph (Figure 5.8a). The VT-

ATR-FTIR results showed that no recrystallization or melting in fresh strand extrudates was 

induced by heat-treatment. The results correlate well with the previous MTDSC tests (Figure 5.3 

fresh strand form). 

 

Figure 5.8: NH group of freshly prepared strand form 70% (w/w) felodipine-EUDRAGIT® EPO melt 

extrudates tested by heated up from 30 to 160oC at the ramp of 2oC/min (a: 3D spectra of the NH peak 

on heating; b: the absorbance of 3343cm-1 and 3358cm-1 on heating; C: 2D spectra the NH peak 

position on heating). 

5.3.1.3.2 Freshly prepared and milled extrudates  

  Freshly prepared and milled (for 5min) felodipine-EUDRAGIT® EPO melt extrudates were tested 

by VT-ATR-FTIR. No crystalline felodipine was detected in 10% and 30% (w/w) sample the 

spectra on heating. This result is identical to the strand form samples, indicating heat-treatment 

could not induce phase separation in these samples.  

  Freshly milled 50% (w/w) extrudates showed interesting IR spectra on heating as shown in Figure 

5.9. The NH peak of felodipine shifted from 3353cm-1 at 30oC to 3372cm-1 at 160oC (Figure 5.9c). 

A separation of the single 3353cm-1 peak (into 3353cm-1 and 3372cm-1) was observed with 
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increasing temperature and it became evident at 140oC. This may suggest the occurrence of 

recrystallization in the milled 50% (w/w) induced by the heat-treatment as the 3372cm-1 peak was 

very close to crystalline felodipine NH peak (3367cm-1). However, the trend of the absorbance 

change on heating of the two peaks (3353cm-1 and 3372cm-1) was identical (Figure 5.9b), which 

indicates that there was very little recrystallization (if large recrystallization occurred on heating, an 

increased absorbance of crystalline felodipine NH peak should be observed on heating). Therefore, 

the VT-ATR-FTIR results may suggest that the physical state of the freshly milled 50% (w/w) 

extrudates could be affected by heating instantly but at a very low level.  

 

Figure 5.9: NH group of freshly prepared and milled 50% (w/w) HME felodipine-EUDRAGIT ® EPO 

extrudates tested by heated up from 30 to 160oC at the ramp of 2oC/min (a: 3D spectra of the NH peak 

on heating; b: the absorbance of 3353cm-1 and 3372cm-1 on heating; C: 2D spectra the NH peak 

position on heating). 

  Freshly prepared and milled 70% felodipine-EUDRAGIT® EPO extrudates showed significantly 

different results in comparison to the corresponding strand form samples as seen Figure 5.10. On 

heating to 120oC, the intensity of 3335cm-1 peak which represents amorphous felodipine continued 

increasing with increasing temperature, indicating more and more amorphous felodipine was 

separating from the bulk amorphous solid dispersions on heating. When the temperature reached 

140oC, the peak at 3367cm-1 representing crystalline felodipine became the dominant band. This 
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was proved by the trend of the absorbance of the two peaks (3335cm-1and 3367cm-1) on heating as 

well. A drastic drop of 3335cm-1 peak (amorphous felodipine) can be observed within the 

temperature range from 120 to 140oC. In contrast, the intensity of the 3367cm-1 peak kept 

increasing with increasing temperature within the same range (120 to 140oC). The peak shift and 

peak intensity change demonstrates phase separation of the amorphous felodipine and solid 

transformation from amorphous felodipine to crystalline felodipine on heating. This confirms that 

there is a reasonable amount of phase separated amorphous felodipine generated by milling and the 

amount of which can recrystallize if induced by heating.  

 

Figure 5.10: NH group of freshly prepared and milled 70% (w/w) HME felodipine-EUDRAGIT ® EPO 

extrudates tested by heated up from 30 to 160oC at the ramp of 2oC/min (a: 3D spectra of the NH peak 

on heating; b: the absorbance of 3353cm-1 and 3372cm-1 on heating; C: 2D spectra the NH peak 

position on heating). 

5.3.1.4 Effect of aging 

  The effect of milling on the physical stability of freshly prepared and milled 10%-70% (w/w) was 

studied and results showed that milling could instantly generate phase separation in fresh strand 

form 70% (w/w) extrudates. With the imposed energy on the extrudates by milling, the physical 

stability of amorphous solid dispersions might be affected on aging under stressed conditions (high 

humidity or temperature) as milled drug-polymer extrudates may exist at a higher energy level in 
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comparison to the strand form extrudates. Therefore, it is essential to evaluate the behaviour of the 

real-time physical stability of milled extrudates for a fuller understanding of the milling effect on 

the physical stability of felodipine- EUDRAGIT® EPO melt extrudates. Freshly prepared strand 

form and milled 10-70% (w/w) extrudates were stored under 75%RH/room temperature to compare 

the effect of aging on the milled samples.  

  SEM images of strand form and milled extrudates are shown in Figure 5.11. As seen in the SEM 

images, no particles were observed on the freshly milled extrudates. On the contrary, crystal-like 

small particles with the size below 10µm were observed on the surface of 50% and 70% (w/w) 

fresh strand form extrudates. This is possibly because after milling the small amount of particles on 

the surface of 50% (w/w) and 70% (w/w) fresh extrudates were diluted whereby the low quantity of 

the surface crystals were dispersed into the bulk by milling. After 6 months aging under 

75%RH/room temperature, a large amount of particles were observed both on 50% (w/w) and 70% 

(w/w) strand form and milled extrudates. In comparison to strand form samples, the number density 

of particles from milled samples was higher than the corresponding strand form extrudates. In 

addition, given the fact that milled extrudates have a significantly larger surface area to volume 

ratio (due to the small particle size) than the strand form extrudates, it could be expected that the 

particle number density in total is significantly higher in milled extrudates than the strand form 

extrudates. It has been suggested that the appearance of particles on the surface of felodipine-

EUDRAGIT® EPO melt extrudates could be a strong indicator of phase separation or 

recrystallization (28). Therefore, the SEM results may indicate that milled extrudates were less 

stable than the strand form extrudates on aging under 75%RH/room temperature. 
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Figure 5.11: SEM images of the surface of freshly prepared and milled and felodipine-EUDRAGIT® 

EPO melt extrudates and 6 months aged strand form and milled felodipine-EUDRAGIT ® EPO melt 

extrudates under 75%RH/room temperature (a: the surface of freshly prepared and milled extrudates; 

b: the surface freshly prepared strand form extrudates; c: the surface of milled extrudates after 6 

month aging; d: the surface of strand form extrudates after 6 months aging). 

  Strand form and milled extrudates on aging under 75%RH/room temperature were also studied by 

MTDSC. For 10%-50% (w/w) strand form samples, no melting of felodipine was detected after 6 

months aging. A small melting peak was detected in 70% (w/w) strand form extrudates after 6 

months aging (Figure 5.12).  The calculated crystallinity using Eq 5.1 was 1.31% (w/w) after 6 

months aging (Figure 5.13). 

  For 10%-30% (w/w) milled extrudates, no melting was detected by DSC after 6 months aging, 

which indicates milling had no significant impact on the physical stability of milled extrudates with 

drug loadings at and below 30% (w/w) on aging. However, evident melting was observed in the 50% 

(w/w) milled sample (depressed melting point of felodipine at 132oC) after 6 months aging under 

75%RH/room temperature (Figure 5.12). In addition to the detected melting in 50% (w/w) milled 

extrudates, an exothermic peak (recrystallisation) before the melting was also detected, which 

indicates that the amorphous drug phase separation generated by milling in the 50% (w/w) 

extrudates occurred on aging.  
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  The effect of milling on the physical stability on aging of felodipine-EUDRAGIT® EPO 

extrudates was more evident in 70% (w/w) samples (Figure 5.12). The detected melting peak was 

significantly larger in the 70% (w/w) milled extrudates than in the corresponding strand form 

extrudates, which proves the influence of milling on the physical stability. It should be noted that 

the recrystallization peak remained evident before melting in the 70% (w/w) milled extrudates, 

which may indicate that the system may still mainly be amorphous solid dispersion and the phase 

separation needed to be induced by heating. 

 

Figure 5.12: MTDSC results of strand form and milled felodipine-EUDRAGIT ® EPO extrudates with 

50% and 70% (w/w) drug loadings after 6 months aging under 75%RH at room temperature. 

  Detailed crystallinity calculation in milled and strand form extrudates on aging under 

75%RH/room temperature are shown in Figure 5.13. Crystallinity of felodipine in systems was 

calculated using Eq5.1. After 6 months aging, the amount of crystalline felodipine in 70% (w/w) 

milled extrudates increased from 21.57% to 24.57% (w/w). The quantity of crystalline felodipine in 

this system reached a plateau after 2 months aging and did not increase with increasing aging time. 

For 50% milled extrudates, no crystalline felodipine was detected by MTDSC after 1 month aging. 

Evident melting can be observed in this sample after 2 months storage, but the melting enthalpy did 

not increase with increasing aging time periods. The crystallinity of felodipine in 50% milled 

extrudates was calculated as 3.42% (w/w) after 6 months aging.  
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Figure 5.13: Crystallinity of felodipine in milled and strand form extrudates on aging under 75%RH at 

room temperature calculated by using melting enthalpy. 

  This phenomenon of reaching plateau of maximum amount of recrystallized drug in the milled 

extrudates on aging was also confirmed by ATR-FTIR study as seen in Figure 5.14. For 50% 

milled extrudates, after 2 months aging the peak at 3367cm-1 representing crystalline felodipine 

appeared but its intensity did not increase on aging. For 70% milled extrudates, after 2 months 

aging, the peak intensity ratio of crystalline felodipine peak (3365cm-1) to amorphous felodipine 

peak (3335cm-1) did not increase with increasing aging time indicating phase separation and 

recrystallization reached a steady state. No crystalline felodipine was detected by ATR-FTIR in 10% 

and 30% (w/w) milled samples after 6 months aging under 75%RH/room temperature. This 

suggests that after milling felodipine-EUDRAGIT® EPO solid dispersions can be maintained as 

amorphous solid dispersion up to 30% (w/w) drug loading after 6 months aging under 

75%RH/room temperature. 

 

Figure 5.14: NH group from 50% (a) and 70% (b) milled felodipine-EUDRAGIT® EPO extrudates on 

aging under 75%RH/room temperature.  
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  ATR-FTIR study was also applied to the 10-70% (w/w) strand form extrudates, however, after 6 

months aging, no crystalline felodipine can be detected in the cross section of the strand extrudates. 

The spectra were identical to the freshly prepared strand form extrudates, which indicates a high 

level of bulk physical stability of strand form extrudates. The results of the aging effect on the 

milled extrudates clearly demonstrate milling can only generate a certain amount of phase 

separated amorphous felodipine in melt extrudates on aging. 

5.3.1.5 Prediction of solid solubility using milling method-method development 

  The recrystallized amount of amorphous felodipine (recrystallized during heating in DSC) 

generated by milling in 50% and 70% (w/w) systems should be considered as an instable portion in 

systems at room temperature, which is very likely to phase separate and crystallise out on aging (as 

proved by the results of 50% w/w milled samples on aging). Therefore the stabilised amounts of 

felodipine remained as amorphous solid dispersions in milled extrudates after 6 months aging 

under 75%RH/room temperature were calculated as 45.43% (w/w) (using 70% minus 24.57% 

which was calculated from aging study) for 70% milled extrudates and 46.58% (w/w) for 50% 

samples. It is worthwhile to mention again that no crystalline felodipine can be detected by ATR-

FTIR or MTDSC in milled systems with drug loadings below 50% (w/w). Thus the amount of 

felodipine which remained molecularly dispersed in melt extrudates was circa 45% (w/w) after 6 

months aging under 75%RH/room temperature.  

  By evaluating the impact of milling on the physical stability of felodipine- EUDRAGIT® EPO 

extrudates on aging, it demonstrated that for systems with high drug loadings (50% and 70%), after 

a certain time periods, recrystallization and phase separation seemed to reach a plateau, and the 

amount of molecularly dispersed felodipine in both extrudates was similar. This may indicate the 

obtained equilibrium state of the molecular dispersion of felodipine into EUDRAGIT® EPO in the 

extrudates after long time period aging at room temperature.  

  In comparison to the milled extrudates, the strand form extrudates showed substantially high 

physical stability on aging after 6 months under 75%RH/room temperature even with 70% (w/w) 

drug loading, which suggests that it may require long time period for the strand form extrudates to 

reach equilibrium at room temperature. Consequently, it can be proposed that milling could be used 

as a practical and relatively fast approach to predict apparent solid solubility of drugs in solid 

dispersions prepared by hot melt extrusion. In the case of felodipine, the apparent solid solubility in 

EUDRAGIT® EPO processed by hot melt extrusion is circa 45% (w/w) (as calculated previously).   

  In Chapter 4, predicted solid solubility of felodipine in EUDRAGIT® EPO by theoretical 

approaches was all below 40% (w/w). This is because theoretical approaches were used to predict 

the thermodynamic solubility which did not take into account the influence of preparation 
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processes. Therefore, the processing-related drug-polymer solubility (apparent drug-polymer 

solubility) could be different from the theoretical values. It has been reported that solid solubility of 

drugs in solid dispersions can vary depending on preparation methods (9, 18, 29). In hot melt 

extrusion, the extra energy in the form of high temperature and high pressure is input into to drug-

polymer mixtures, whereby drug molecules can be melted and dispersed evenly into polymer 

chains and form homogeneous drug-polymer solid dispersions molecularly (30). Therefore, it is 

reasonable to believe that apparent solid solubility of drugs in melt extrudates should be higher 

than theoretical values. 

  The application of mechanical milling in predicting apparent solid solubility of drugs in melt 

extrudates can be briefly described as follows. 1) An appropriate drug loading at which 

oversaturation in the amorphous drug-polymer solid dispersions can be generated should be 

identified. In the case of felodipine, for example, 70% (w/w) drug loading was considered as super-

saturated drug loading since instant effect of milling on the physical state of 70% (w/w) extrudates 

was observed. 2) Melt extrudates should be prepared with this super-saturated drug loading. 3) 

Mechanical milling should be performed on the freshly prepared super-saturated melt extrudates. 

The applied time periods of milling may vary depending on the drug-polymer systems. For instance, 

as shown earlier in this chapter, after 10min milling no significant further increase of melting 

enthalpy can be determined in 70% felodipine-EUDRAGIT® EPO extrudates. Therefore it is 

suggested that the milling time should be determined depending on the individual drug-polymer 

system. Different time periods of milling should be used to the targeted system until the 

equilibrium (plateau) is achieved as shown by the study of felodipine-EUDRAGIT® EPO systems. 

4) Although the instant effect of mechanical milling can be observed on super-saturated extrudates, 

to ensure the accuracy of the prediction of apparent solid solubility, milled extrudates should be 

stored under accelerated stressed condition (high temperature or high humidity, and results of 

felodipine-EUDRAGIT® EPO melt extrudates regarding aged under stressed temperature will be 

discussed in Chapter 6) until a plateau of recrystallization is achieved.  

5.3.2 Prediction of solid solubility of model drugs in extrudates by milling approach-case 
studies 

  Solid solubility of model drugs in EUDRAGIT® EPO have been predicted by theoretical 

approaches in Chapter 4. However, as aforementioned, theoretical approaches did not take into 

account the effect of preparation processes which may generate a system comprising higher drug 

concentrations than the drug-polymer solubility. Moreover, due to assumptions, limitations and 

restrictions of those theoretical approaches, solid solubility predicted by which may not be 

sufficiently accurate and thus cannot be applied practically to improve formulation design. In this 

chapter so far, it has been demonstrated that mechanical milling can be used as a practical and 

relatively rapid method to predict the solid solubility of drugs in melt extrudates. Subsequently, 
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model drugs including celecoxib, fenofibrate and carbamazepine were formulated with 

EUDRAGIT® EPO by hot melt extrusion with high drug loadings to predict their apparent solid 

solubility in the polymer using this milling method. 

5.3.2.1 Apparent solid solubility of celecoxib in EUDRAGIT ® EPO 

  In Chapter 4, the apparent solid solubility of celecoxib in EUDRAGIT® EPO was predicted by 

theoretical approaches as 35% (solubility parameter approach), 41% (melting point depression 

approach) and 20%w/w (enthalpy method). As discussed in Chapter 4, these theoretical approaches 

did not take into account the effect of processing methods, which may lead to an underestimation 

of the apparent drug-polymer solubility in amorphous solid dispersions. Therefore, in order to 

predict the apparent drug-polymer solubility more accurately, in particular for hot melt extruded 

systems, milling approach was applied to calculate the solubility of celecoxib in melt extrudates. 

Following the procedure of using milling to predict solid solubility described above, celecoxib-

EUDRAGIT® EPO extrudates with 70% (w/w) drug loading were prepared by hot melt extrusion. 

Freshly prepared extrudates was then milled by ball milling for 10min. Milled extrudates were 

stored under 75%RH at room temperature. As seen in Figure 5.15, a significant increase of melting 

enthalpy can be detected after milling in comparison to the freshly prepared strand form sample, 

indicating physical instability of 70% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates was 

induced by mechanical milling. Using melting enthalpy to calculate crytallinity of celecoxib in 70% 

(w/w) celecoxib-EUDRAGIT® EPO melt extrudates (Eq 5.1), it increased from 13.12% for strand 

form sample to 27.50% (w/w) for freshly milled sample.  

 

Figure 5.15: MTDSC results of fresh strand form and milled 70% (w/w) celecoxib-EUDRAGIT® EPO 

melt extrudates on aging under 75%RH at room temperature. 

  Freshly prepared and milled samples were then stored under 75%RH/room temperature up to 2 

months. It can be seen in Figure 5.15 that melting enthalpy did not increase with increasing aging 
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time periods, indicating milling time of 10 min was sufficient to induce the physical instability of 

70% celecoxib-EUDRAGIT® EPO melt extrudates. Detailed results of crystallinity of celecoxib in 

70% system was carried out and shown in Figure 5.16. The amount of crystalline celecoxib 

detected by MTDSC in this system was circa 28% (w/w) and did not increase on aging up to 2 

months, indicating equilibrium may has been achieved. Therefore, the amount of celecoxib 

remaining as solid dispersions in the 70% (w/w) extrudates can be calculated as 42% (w/w) (using 

drug loading minus 28%), which could be considered as the apparent solid solubility of celecoxib 

in celecoxib-EUDRAGIT® EPO solid dispersions prepared by hot melt extrusion. In comparison to 

the predicted solubility of celecoxib in EUDRAGIT® EPO by theoretical approaches, the value by 

milling method was similar to the melting point depression method (41.42%) but higher than the 

values by solubility parameter method (35.00% w/w) and modified melting enthalpy method (20.00% 

w/w). This suggests that the apparent solubility of celecoxib in EUDRAGIT® EPO can be affected 

by the processing method compared with the theoretical values and milling could be a more 

practical and accurate method for the prediction of drug-polymer solubility in melt extrudates.  

 

Figure 5.16: The amount of crystalline celecoxib in 70% strand form and milled celecoxib-

EUDRAGIT ® EPO melt extrudates. 

5.3.2.2 Apparent solid solubility of fenofibrate in EUDRAGIT ® EPO 

  The milling approach was attempted to predict fenofibrate solid solubility in EUDRAGIT® EPO. 

Fenofibrate-EUDRAGIT® EPO extrudates with 70% drug loading were prepared by hot melt 

extrusion. However, due to the low glass transition temperature of amorphous fenofibrate (-19.7oC), 

the glass transition temperature of 70% (w/w) was reduced to a temperature below ambient 
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                                           1 / Tgmix = w1 / Tg1 + (1-w1) / Tg2                                                  Eq 5.2 
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where Tgmix  is the glass transition temperature of the drug-polymer system, Tg1 is the glass transition 

temperature of component 1 (fenofibrate, -19.5oC), Tg2 is the glass transition temperature of 

component 2 (EUDRAGIT® EPO, 50oC) and w1 is the weight fraction of component 1. The Tg of 

70% fenofibrate-EUDRAGIT® EPO system was calculated as -19.01oC, which is significantly 

below room temperature. As calculated, the freshly prepared 70% extrudates had liquid-like state at 

room temperature. Thus milling is not applicable to this system. However, a rapid recrystallization 

in the form of samples solidifying and appearance changing from transparent to off-white was 

observed, if surface disruption, such as touching with a spatula, was imposed to this system. With 

the impact of the surface disruption, immediate recrystallization was detected by MTDSC as seen 

in Figure 5.17. Evident recrystallization followed by a melting was detected in freshly prepared and 

touched 70% (w/w) sample. Using Eq 5.1, the amount of crystalline fenofibrate was calculated as 

57.39% (w/w) in 70% (w/w) extrudates. After 6 months aging under 75%RH at room temperature, 

the crystallinity of fenofibrate in this system was calculated as 57.52% (w/w) which is very close to 

the freshly prepared and surface-disrupted samples indicating the imposed surface disruption can 

induce the physical instability and rapidly lead to the equilibrium level. It should be noted that 

there was no recrystallization peak (exothermic peak) detected by MTDSC in the aged sample, 

which indicates that the portion of originally instable amorphous fenofibrate induced by surface 

disruption had completely converted to crystalline form on aging. The amount of fenofibrate 

remained in the amorphous solid dispersions, namely the solid solubility of fenofibrate, in 70% 

(w/w) melt extrudates was finally calculated as circa 13% (w/w). 

 

Figure 5.17: MTDSC results of freshly prepared and touched, and aged 70% fenofibrate-EUDRAGIT® 

EPO melt extrudates under 75%RH at room temperature. 
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a low degree (lower than room temperature for 70% w/w sample). Therefore, at room temperature, 

high molecular mobility of fenofibrate in 70% (w/w) melt extrudates can cause the fast 

recrystallization, leading to the low drug-polymer solubility (at room temperature). Amorphous 

materials at the temperatures above their Tg value will have a great molecular mobility leading to 

the fast recrystallization. 

5.3.2.3 Apparent solid solubility of carbamazepine in EUDRAGIT ® EPO 

5.3.2.3.1 Thermal stability of carbamazepine 

  Carbamazepine-EUDRAGIT® EPO systems with 70% (w/w) drug loading were prepared by hot 

melt extrusion for using milling method to predict the apparent drug-polymer solid solubility. In 

order to achieve a completely amorphous drug-polymer system, it is necessary to run the extruder 

at the melting point of the drug when preparing samples with extremely high drug loading since the 

small portion of polymer will not be capable to dissolve a large amount of the crystalline drug at 

lower temperature. However, it has been reported that carbamazepine was likely to degrade at the 

temperature close to its melting point (191oC) (32). Therefore, in order to ensure the thermal 

stability of carbamazepine in processing at high temperature (close to its melting point), a thermal 

gravimetric analysis (TGA) test was carried out. The result (Figure 5.18) showed that after 

isothermal at 190oC for 5min, the amount of degradation was 0.99% (w/w), indicating the 

processing temperature of 191oC in hot melt extrusion is acceptable.  

 

Figure 5.18: TGA result of crystalline carbamazepine tested by isothermal at melting point for 5min. 

  70% (w/w) carbamazepine-EUDRAGIT® EPO extrudates were prepared by hot melt extrusion at 

the temperature of 190oC with the retention time of 5min. However, MTDSC results of freshly 

prepared sample showed an endothermic peak occurring at 140oC as seen in Figure 5.19. The peak 
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reported by the literature (33).  A heating-cooling-reheating procedure was applied to investigate 

the thermal stability of crystalline carbamazepine. Crystalline carbamazepine was heated up to 

200oC at the ramp of 2oC/min and then cooled down to -10oC immediately and followed by a 

reheating to 200oC at the same ramp as shown in Figure 5.20. Two endothermic peaks can be 

detected on first heating corresponding to the melting of form III (solid transformation from form 

III to form I occurred at the same temperature range) and I, which is in good agreement with the 

reported data (33). After cooling, an exothermic peak occurred at a temperature of 145oC which is 

very close to the detected values from the 70% extrudates on second heating. No further 

endothermic peaks were detected up to 200oC. No articles have reported this phenomenon so far, 

and thus with the thermal test it is reasonable to deduce the occurrence of thermal degradation in 

the process of melt extrusion. Besides, the addition of ingredients in formulations could possibly 

assist the APIs to be more sensitive to thermal degredation.  

 

Figure 5.19: MTDSC result of freshly prepared 70% carbamazepine-EUDRAGIT® EPO melt 

extrudates. 

 

Figure 5.20: MTDSC result of crystalline carbamazepine tested by heating-cooling-reheating. 
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account for with the first one that local temperature within the extruder barrel can be higher than 

the set temperature since the shearing generated by the rotation of twin screws can increase the 

temperature to higher degree locally. Secondly, pressure imposed by twin screws combining high 

temperature is possible to cause the degradation. 

5.3.2.3.2 Approximate estimation of solid solubility of carbamazepine in EUDRAGIT® EPO 

  In order to avoid thermal degradation of carbamazepine in hot melt extrusion, a lower process 

temperature, 185oC was applied to prepared samples. 70% carbamazepine-EUDRAGIT® EPO melt 

extrudates were prepared at that temperature with a dwell time of 5min. A high torque value was 

observed during the process, which was caused by the high viscosity due to the fact that 

carbamazepine did not completely melt in preparation. This resulted in an extremely low yield, 

below 10% w/w.  Freshly prepared sample was tested by MTDSC as seen in Figure 5.21. It can be 

seen that no endothermic peak was detected at 140oC, indicating the absence of thermal 

degradation. The detected melting point (185oC) is in agreement with the depressed melting point 

detected in physical mixture with same drug-polymer ratio (tested at the same heating rate, 

2oC/min), and it can be confirmed as depressed melting point of form I according to the literature 

(33). The freshly prepared 70% (w/w) sample showed a large melting enthalpy (Figure 5.21) 

indicating the physical mixture of crystalline carbamazepine and EUDRAGIT® EPO was not 

completely transformed into amorphous solid dispersions by hot melt extrusion. Therefore, the 70% 

(w/w) carbamazepine-EUDRAGIT® EPO melt extrudates prepared at the temperature below the 

melting point cannot be guaranteed as supersaturated amorphous system. Milling was still 

attempted to be applied to this system to approximately estimate the solid solubility in of 

carbamazepine in the melt extrudates.  

 

Figure 5.21: DSC results of 70% w/w freshly prepared strand form carbamazepine-EUDRAGIT® EPO 

melt extrudates and physical mixture. 
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  Freshly prepared 70% (w/w) carbamazepine-EUDRAGIT® EPO extrudates were milled for 10min 

and then tested by MTDSC. Results are shown in Figure 5.22. By using Eq 5.1, the amount of 

crystalline carbamazepine in freshly prepared 70% (w/w) strand and milled samples was 51.92% 

and 52.08% (w/w), respectively. After 1 month aging at room temperature under 75%RH, melting 

enthalpy of milled 70% (w/w) extrudates did not increase as seen in Figure 5.22 and the calculated 

crystallinity was 52.10% (w/w). Therefore, the apparent solid solubility of carbamazepine in 

EUDRAGIT® EPO is estimated as circa 18% (w/w). Due to the thermal degradation of 

carbamazepine at high temperature, low operation temperature was applied in hot melt extrusion, 

which results in the preparation of partially crystalline melt extrudates. The predicated apparent 

solubility of carbamazepine by milling method may not be accurate as the method requires the 

preparation of super-saturated amorphous solid dispersions. In this study, therefore, only an 

approximate estimation of the solubility of carbamazepine in the extrudates can be achieved. This 

could be the disadvantage of the milling method: for drugs which are sensitive to high temperature 

and easy to degrade at high temperature, milling may not be applicable to predict the drug-polymer 

solubility as amorphous over-saturated melt extrudates cannot be prepared with these drugs. 

However, for those thermal sensitive drugs, hot melt extrusion may not be the appropriate 

processing method to prepare amorphous solid dispersions. 

 

Figure 5.22: MTDSC results of 70% (w/w) freshly prepared strand carbamazepine-EUDRAGIT® EPO 

extrudates, and 70% (w/w) freshly milled and aged extrudates for 1 months under 75%RH at room 

temperature.   
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extrudates was 45% (w/w), which is significantly higher than the values from all theoretical 

approaches. The developed mechanical milling method is more practical and more specifically 

applied to the solid solubility prediction of drugs in melt extrudates. Theoretical approaches could 

be applicable to many drug-polymer cases and may be served as a general method in predicting 

solid solubility. The required assumptions and limitations of those theoretical models, however, 

may result in a less practically accurate prediction, which might not be capable to improve the 

formulation development of amorphous solid dispersions.  Moreover, as emphasized earlier, the 

apparent drug-polymer solubility can vary significantly depending on the processing methods.  

Therefore, it is reasonable to propose that the mechanical milling method developed in this project 

can predict solid solubility of drugs in melt extrudates more accurately and more concisely in the 

context of solid dispersions prepared by hot melt extrusion.   

5.4 Conclusions 

  In this chapter, the impact of milling on the physical stability of felodipine- EUDRAGIT® EPO as 

a model system was evaluated. Four main factors (drug loading, milling period, aging, and external 

heating) were explored in terms of their effect on the milled hot melt extruded solid dispersions. It 

shows that mechanical milling can induce phase separation and recrystallization of melt extrudates 

with high drug loadings for as little as 5min milling. On studying the aging effect under high 

humidity, an equilibrium of physical state of 50% and 70% (w/w) felodipine-EUDRAGIT® EPO 

was observed with the crystallinity of felodipine in both systems circa 45% (w/w), which is 

considered as the apparent solid solubility of felodipine in melt extrudates. Therefore, mechanical 

milling is applied as a practical method to predict solid solubility of drugs in melt extrudates. 

Applying the milling method, the solid solubility of model drugs in melt extrudates with 

EUDRAGIT® EPO was calculated as 42% (w/w) for celecoxib, 13% (w/w) for fenofibrate and 18% 

(w/w) for carbamazepine.  

  The milling method can be used as a practical approach to predict the drug-polymer solubility in 

melt extruded amorphous solid dispersions accurately. It provides a tool for the selection of the 

“safe” range of drug loadings when developing melt extruded amorphous solid dispersions at the 

early stage as amorphous solid dispersions with the drug loading below the predicted solubility by 

milling should be physically stable. Therefore, the developed milling method may make a 

contribution to the prediction and enhancement of the physical stability of amorphous solid 

dispersions prepared by hot melt extrusion.  
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Chapter 6: Physical stability studies of hot melt extrudates on 
aging  

6.1 Introduction 

  Amorphous solid dispersions have been widely used and proved to be effective to enhance the 

dissolution rate of poorly water-soluble drugs in the pharmaceutical industry (1-3). The mechanism 

of the dissolution enhancement by amorphous solid dispersions has been well understood that 

drugs in amorphous solid dispersions have higher apparent solubility in aqueous solution in 

comparison to their crystalline forms due to the lack of lattice crystalline structure (4-6).  

  However, the physical stability of amorphous solid dispersions still remains the main challenge 

for the formulation development of solid dispersions. As mentioned previously, molecularly 

dispersed drugs in amorphous solid dispersions existing at high-energy level tend to spontaneously 

(according to the Gibb’s free energy law) revert back to the more physically stable crystalline form. 

Therefore, in order to enhance the physical stability of amorphous solid dispersions, it is essential 

to clearly understand the physical instability in great depth. In this chapter, model drugs were 

formulated with EUDRAGIT® EPO by hot melt extrusion. Real-time physical stability studies of 

the melt extrudates were carried out under different storage conditions. Therefore, comprehensive 

results of physical stability studies can be achieved, and the effect of the storage condition on the 

physical stability of amorphous solid dispersions can be understood. In addition, the validation of 

the milling method in predicting drug-polymer solubility developed in Chapter 5 can be tested 

combined with the real-time physical stability studies. 

  In Chapter 3, physical properties including glass transition temperatures, relaxation time of 

amorphous drugs, and physical stability of amorphous drugs alone have been studied. These factors 

have been suggested in articles to be correlated with the physical stability of amorphous solid 

dispersions (7-10). Therefore, by comparing the physical properties of the model drugs with the 

results of the real-time physical stability studies of melt extrudates, dominant factors which control 

the physical stability of amorphous solid dispersions can be revealed.  

  In Chapter 4, drug-polymer miscibility and solubility were predicted using different theoretical 

approaches. Predicted drug-polymer solubility of individual drug varied significantly between 

different approaches due to the limitations of different theoretical approaches as discussed earlier. 

In Chapter 5, a practical method, milling, was developed for more accurate prediction of the 

solubility of drugs in melt extrudates. The predicted value of individual drug by milling method 

was different from the values by theoretical approaches. It has been suggested that drug-polymer 
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solubility is one of the most significant factors which is related to the physical stability of 

amorphous solid dispersions. Therefore, by comparing the predicted drug-polymer solubility with 

the results of real-time physical stability studies, the validation of the theoretical approach and 

milling method in predicting drug-polymer solubility can be tested. This is based on the hypothesis 

that extrudates composed of model drugs (the same drug loading amongst different formulations) 

with higher solubility should be more physically stable on aging than those composed drugs with 

lower solubility.   

  The fundamental aims of this chapter can be divided into three aspects. Firstly, through the real-

time physical stability studies of melt extrudates aged under different conditions (0%RH/room 

temperature, 75%RH/room temperature, 0%RH/40oC and 75%RH/40oC), the effect of storage 

condition including stressed temperature and stressed humidity on the physical stability of 

amorphous solid dispersions can be investigated. Secondly, combining the real-time physical 

stability studies with the physical properties of amorphous drugs, the key factors controlling the 

physical stability of amorphous solid dispersions can be found out. Thirdly, the real-time physical 

stability studies can be used to validate the prediction of drug solubility in melt extrudates. The 

completion of the three aims will substantially contribute the development of methods for the 

prediction and enhancement of the physical stability of amorphous solid dispersions.  

Research objectives 

1. To investigate the effect of storage conditions on the physical stability of solid dispersions 

prepared by hot melt extrusion. 

2. To find out the key factors which control the physical stability of melt extruded solid dispersions. 

3. To validate theoretical approaches and milling method in predicting the drug-polymer solubility.     

6.2 Experimental methods 

6.2.1 Hot melt extrusion 

  Equipment for hot melt extrusion refers to Chapter 2 (section 2.2.1.1). Physical mixtures of 

crystalline model drugs and EUDRAGIT® EPO with ratios of 10:90 and 70:30 (w/w) were pre-

mixed in a mortar and pestle before melt extrusion. The processing temperature was set at 5 degree 

higher than the melting points of crystalline model drugs. For the case of carbamazepine, the 

operation temperature is 5 degree lower than its melting point to avoid thermal degradation. The 

rotating speed of twin screws was 100r/min.  A round shape die with diameter of 2mm was 

attached to the extruder. 



Chapter 6 

 
176 

 

6.2.2 Physicochemical characterisation  

  Instrumental information of the characterisation techniques used and the applied parameters 

including MTDSC, PXRD, ATR-FTIR and SEM refers to different sections in Chapter 2 (2.2.2.1.3 

for MTDSC, 2.2.2.4.2 for ATR-FTIR, 2.2.2.5.2 for PXRD, 2.2.2.6.2 for SEM) 

6.2.3 Storage tests under different conditions  

  Freshly prepared strand form melt extrudates were stored as intact strand form without milling 

under four different conditions: 0%RH (provided by P2O5)/room temperature, 75%RH (provided 

by saturated sodium chloride solution)/room temperature, 0%RH/40oC and 75%RH/40oC for up to 

6 months, and were tested by MTDSC (strand form extrudates), ATR-FTIR, SEM and PXRD 

(strand extrudates milled into powder before the test). 

6.2.4 Kinetic study of surface recrystallisation   

  In order to study the kinetics of the surface recrystallization of melt extrudates, image-analysis 

software, Image J (National Institutes of Health, USA) was used to analyse SEM images. An 

example is given in Figure 6.1. Figure 6.1 (a) is an image of the surface of a melt extruded sample, 

and Figure 6.1 (b) is the analysed result of the SEM image by Image J. It can be seen that the size 

and shape of individual particle was tracked and framed by the software, and the percentage of total 

areas (in µm2) occupied in the whole image (the real tested sample area be achieved from the SEM 

image information) can be calculated by the software. The real area of the sample tested under 

SEM can be achieved using the scale bar in SEM image. Therefore, the kinetics of the surface 

recrystallization growth of melt extrudates on aging can be studied.   

 

Figure 6.1: SEM image of the surface of melt extruded sample (a) and the analysed result by Image J 

(b). 
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6.3 Results and discussion 

  The accelerated storage conditions suggested by United Sates Pharmacopeia (USP) and British 

Pharmacopeia (BP) normally consist of stressed temperature (40oC) and stressed humidity 

(75%RH). These two conditions have also been regularly used in articles concerning physical 

stability studies of amorphous solid dispersions as stressed humidity and temperature can increase 

molecular mobility of drugs in solid dispersions leading to the physical instability (11-13). 

Therefore, in this chapter, in order to thoroughly understand the effect of storage conditions on the 

physical stability of melt extruded solid dispersions, four conditions mentioned in section 6.2.4 

were used. All melt extrudates were stored under four different conditions as intact strand form 

without milling after fresh preparation.  

  In Chapter 5, the predicted drug-polymer solubilities by the theoretical approaches and milling 

method were all within the range between 10% (w/w) to 50% (w/w). Two drug loadings including 

10% (below the predicted solubility) and 70% (w/w) (above the predicted solubility, and hence 

super-saturated system) were selected for individual drug-EUDRAGIT® EPO melt extrudates. The 

two drug loadings can be used to test the accuracy of different approaches (theoretical approaches 

and the milling method) in predicting drug-polymer solubility. The melt extrudates with drug 

loadings below the predicted solubility should be physically stable whereas phase separation should 

be observed in super-saturated melt extrudates with drug loading above the predicted solubility on 

aging.  

6.3.1 Physical stability study of melt extruded felodipine-EUDRAGIT ® EPO systems under 
different conditions 

6.3.1.1 Surface physical stability  

  For 10% (w/w) felodpine-EUDRAGIT® EPO melt extrudates aged under different conditions 

after 6 months, no felodipine crystals can be detected by ATR-FTIR on the surface of the samples, 

suggesting no surface phase separation occurred in low drug loading samples. SEM images of 6 

months aged 10% (w/w) extrudates is shown in Figure 6.2. No evident particles were observed on 

the surface of any 10% (w/w) samples after 6 months aging under the four conditions. This 

indicates that the felodpine-EUDRAGIT® EPO melt extrudates with 10% (w/w) drug loading were 

homogeneous with high surface stability within 6 months. The results of surface physical stability 

study of 10% (w/w) samples showed good agreement with the predicted solubility (45% w/w) by 

milling method. 
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Figure 6.2: SEM images of the surface of fresh and 6 months aged 10% (w/w) felodpine-EUDRAGIT® 

EPO melt extrudates under different conditions. 

    ATR-FTIR spectra of the surface of 70% (w/w) felodipine-EUDRAGIT® EPO melt extrudates 

on aging under different conditions are collected and shown in Figure 6.3. As mentioned in Chapter 

4, the NH group is an indicator of felodipine being crystalline or amorphous. A single peak at 

3341cm-1 (in between the amorphous and crystalline felodipine NH peak) in the 70% (w/w) melt 

extrudates can be seen in the freshly prepared sample, indicating a single-phase amorphous system. 

On aging under 0%RH/room temperature (mildest condition) for 2 months, a peak at 3365cm-1 

representing crystalline felodipine and a peak at 3335cm-1 representing phase separated amorphous 

felodipine can both be detected on the surface of the sample, indicating the occurrence surface 

phase separation and recystallisation in this sample.  

  For 70% (w/w) samples aged under 75%RH/room temperature, after 1 month aging, the 

crystalline felodipine peak (3365cm-1) was observed and the amorphous felodipine peak (3335cm-1) 

was barely evident (Figure 6.3). The absence of the amorphous felodipine peak indicates a high 

level of surface recrystallization occurred in samples stored under this condition.  
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Figure 6.3: ATR-FTIR results of NH group from the surface of 70% (w/w) felodpine-EUDRAGIT® 

EPO melt extrudates aged under different conditions. 

  For 70% (w/w) samples aged under 0%RH/40oC, phase separation took place after 1 month aging 

as crystalline and amorphous felodipine peaks appeared (Figure 6.3). However, in comparison to 

samples aged under 75%RH/room temperature, the phase separation and recrystallization occurred 

at a significantly lower level since the peak intensity of amorphous felodipine (3335cm-1) was still 

restively high after 4 months aging.  

  Aged under 75%RH/40oC, after 1 week, crystalline felodipine was detected on the surface of 70% 

(w/w) felodpine-EUDRAGIT® EPO melt extrudates (Figure 6.3). With increasing aging time, no 

amorphous crystalline felodipine was observed on the surface, indicating a significantly high level 

of surface recrystallization occurred in 70% (w/w) samples aged under 75%RH/40oC.  

  The ATR-FTIR study of 70% (w/w) felodipine-EUDRAGIT® EPO melt extrudates demonstrates 

that surface recrystallization occurred in samples aged under all conditions. Stressed humidity and 

stressed temperature can both accelerate the surface recrystallization, and stressed humidity has 

more significant impact on the surface recrystallization than the stressed temperature on aging.  

  Surface physical stability of felodipine-EUDRAGIT® EPO melt extrudates on aging under all 

conditions were also studied using SEM (images were taken regularly up to 6 months). It has been 
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reported that the appearance of particles on the surface of melt extrudates were a strong sign of 

phase separation and recrystallization (13, 14). SEM images of the surface of 3 months aged 

extrudates are shown in Figure 6.4 as an example. Rod shape particles with the size from below 

10µm (0%RH/room temperature) to above 100µm (75%RH/40oC) were observed on the surface of 

extrudates aged under all conditions. Samples aged under 0%RH/room temperature showed the 

lowest particle density on the surface. Samples aged under 75%RH/room temperature showed 

higher particle density on the surface than samples aged under 0%/40oC. The surface of the 

extrudates aged under 75%RH/40oC was almost covered by particles after 3 months aging. SEM 

images clearly showed that stressed storage conditions could increase surface recrystallization and 

stressed humidity had more significant impact than stressed temperature on surface 

recrystallization on aging. This is in good agreement with the ATR-FTIR results. 

 

Figure 6.4: SEM images of the surface of 70% felodipine-EUDRAGIT ® EPO melt extrudates after 3 

months aging under different conditions. 

  The SEM images of the surface of 70% (w/w) melt extrudates on aging were further analysed 

using Imaging J (method mentioned in section 6.2.5) for the kinetic study of the surface 

recrystallization (Figure 6.5). After 6 months aging under 0%RH/room temperature and 

0%RH/40oC, only less than 20% area (calculated using the measured total particle areas divided by 

the size of the whole image area) of the tested surface (whole area of the image taken by SEM) of 

both samples contained particles. But for samples aged under 75%RH/room temperature, more than 

50% of the surface contained particles after 6 months aging, demonstrating that the physical 

stability of 70% (w/w) felodpine-EUDRAGIT® EPO melt extrudates was affected more by 

humidity than by high temperature. For samples aged under 75%RH/40oC, within 2 months aging, 

a fast rate of particle growth was observed resulting in more than 80% of the area covered by 
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particles, indicating a nearly completion (phase I) of the surface recrystallization for the sample 

aged under this condition within 2 months.   

 

Figure 6.5: Results of total particle area (µm2) achieved by using Image J to analyse SEM images on 

the surface of 70% felodpine-EUDRAGIT® EPO melt extrudates on aging under different conditions.  

  The classic Avrami model was introduced in this study to fit the surface rcrystallisation data (15). 

Avrami model has been widely used to study the kinetics of crystallisation in different research 

areas (12, 16-18). The kinetics of crystallisation can be derived from the assumption including the 

phases of nucleation, crystal growth and termination of crystal growth when two crystals meet (19). 

Generally, these three phases of crystallisation is well described by Avrami model and it can be 

written by: 

                                                                   α = 1- exp-[(k(t-t0))] 
n                                                                         Eq 6.1  

where α is the fraction of crystalline drug at time t, k is the apparent crystallisation rate constant 

(time-1), t0 is the induction time and n is Avrami exponent depending on nucleation mechanism  and 

the dimensions in which growth is occurring (the value of n is limited to 1,2,3 and 4). 

  The surface recrystallization data of samples aged under all conditions did not fit in the Avrami 

model as the curve in Figure 6.5 did not show the sigmoidal profile. This can be attributed to the 

reason that felodipine crystals already existed on the surface of fresh 70% (w/w) extrudates (as 

shown in Figure 6.5 that particle domains in fresh sample was not 0). Therefore, surface 

recrystallization of the 70% (w/w) extrudates lacked the step of nucleation, and initially started 

with the crystal growth and the possible appearance of new nuclei on aging. For samples aged 

under 0%RH/room temperature, 75%RH/room temperature and 0%RH/40oC, a continuous surface 

recrystallization was observed up to 6 months. For samples aged under 75%RH/40oC, after 2 
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months aging, a decreased crystallisation rate was seen indicating the near completion of the 

surface recrystallization in the samples. Although the kinetics of the surface recrystallization of 70% 

(w/w) felodipine-EUDRAGIT® EPO melt extrudates did not fit in the Avrami model, a clear linear 

kinetics (with acceptable regression coefficients) was observed for samples aged under all 

conditions  (phase I for 705 w/w samples under under 75%RH/room temperature) (Figure 6.5). The 

slopes of individual linear plot (Figure 6.5) can be considered as the recrystallization rates of 

individual 70% (w/w) extrudates aged under different conditions. By comparing the 

recrystallization rates, it was observed that extrudates aged under 0%RH/room temperature 

(10.3µm2/day) and 0%RH/40oC (11.6µm2/day) showed similar recrystllisation rates, which were 

smaller than that from the samples aged under 75%RH/room temperature (33.3µm2/day). 

Extrudates aged under 75%RH/40oC showed the highest rate (172.9µm2/day) within the first 2 

months aging, and a plateau was observed afterwards due to the near completion of surface 

recrystallisation. 

  Results of the surface stability study of felodipine-EUDRAGIT® EPO melt extrudates showed that 

no surface recrystallization was detected in 10% (w/w) extrudates aged under the four conditions 

up to 6 months. For 70% (w/w) melt extrudates, surface recrystallization in samples different 

conditions exhibit different crystal growth rate. Stressed humidity showed more significant effect 

on the surface recrystallsation than stressed temperature.  

6.3.1.2 Bulk physical stability 

  The bulk stability of felodipine- EUDRAGIT® EPO melt extrudates was studied using MTDSC 

and PXRD. After 6 months aging, no recrystallization or melting was detected by MTDSC in any 

10% (w/w) extrudates aged under all conditions, indicating high bulk physical stability of 10% 

(w/w) sample. PXRD results showed the agreement with the MTDSC results. No crystalline 

felodipine was detected by PXRD in 10% (w/w) samples aged under all conditions after 6 months. 

  The bulk physical stability of 70% (w/w) felodpine-EUDRAGIT® EPO melt extrudates was also 

evaluated by MTDSC and PXRD. MTDSC results (Figure 6.6, values in the figure are the 

calculated crystallinity using Eq 5.1 in individual sample after 6 months aging) showed that after 6 

months aging under 0%RH/room temperature, 0%RH/40oC and 75%RH/room temperature, the 

amount of crystalline felodipine in 70% (w/w) melt extrudates was still below 1% (w/w), indicating 

extremely high bulk physical stability of these samples. Crystallinity of samples aged under 

75%RH/room temperature (0.82% w/w) was slightly higher than that in samples aged under 

0%RH/40oC (0.45% w/w), which may suggest that stressed humidity had more influence on the 

bulk physical stability than stressed temperature. 
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  For 70% (w/w) samples aged under 75%RH/40oC, evident melting can be detected after 6 month 

aging, and the quantity of felodipine crystals in the system was calculated as 24.12% (w/w). Due to 

the low glass transition temperature of 70% (w/w) felodpine-EUDRAGIT® EPO systems (38.7oC 

determined by MTDSC) combined with high humidity, the sample started to agglomerate after 2 

weeks aging, and thus for further storage test, these samples required to be broken into pieces (such 

as chipped by spatula and gentle milling). Therefore the assessment of the physical stability of 

samples aged under 75%RH/40oC may be less accurate (as proved in Chapter 5, milling could 

induce the physical stability of felodpine-EUDRAGIT® EPO).  

 

Figure 6.6: MTDSC results of freshly prepared 70% (w/w) felodpine-EUDRAGIT® EPO extrudates 

and aged under different conditions after 6 months (crystallinity of felodipine in differently aged 

systems was calculated and listed in the brackets). 

  More detailed MTDSC results of 70% (w/w) felodipine-EUDRAGIT® EPO melt extrudates aged 

under 75%RH/40oC are shown in Figure 6.7. It can be seen that the detected melting enthalpy 

increased with increasing aging time. Evident exothermic peak (recrystallization) was detected 

after 1 months aging (circled in Figure 6.7). This exothermic peak disappeared after 4 months 

aging. This demonstrates that a certain amount of amorphous felodipine was separated out from the 

bulk after 1 month aging and the recrystallization of the phase-separated amorphous felodipine can 

be induced by heating in DSC scanning. After 4 months aging, the absence of the recrystallization 

indicates that the phase separated amorphous felodipine had already completely recrystallized on 

aging. It should be noted that the amount of felodipine remained as solid dispersions in this system 

(46.88% w/w) was very close to the predicted solubility (45% w/w) by mechanical milling in 

Chapter 5. This proves the accuracy of milling method in predicting apparent solid solubility of 

felodipine in felodpine-EUDRAGIT® EPO melt extrudates.  
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Figure 6.7: MTDSC results of 70% (w/w) felodpine-EUDRAGIT ® EPO extrudates aged under 

75%RH/40oC. 

  The bulk physical stability of 70% (w/w) felodpine-EUDRAGIT® EPO melt extrudates was tested 

by PXRD after 6 months aging under different conditions as seen in Figure 6.8 (samples were 

stored as intact strand form and milled just before the PXRD test). Results showed that crystalline 

felodipine features can be only detected in samples aged under 75%RH/40oC, which is in good 

agreement with MTDSC results. By comparing with the PXRD feature of form I felodipine, it can 

be confirmed that amorphous felodipine in 70% (w/w) samples aged under 75%RH/40oC 

recrystallized into form I on aging.  

 

Figure 6.8: PXRD results of 70% (w/w) felodpine-EUDRAGIT ® EPO melt extrudates after 6 months 

aging under different conditions. 

  Results of the bulk physical stability studies showed that 10% (w/w) felodpine-EUDRAGIT® 

EPO melt extrudates were highly stable irrespective of storage conditions. The overall bulk 
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physical stability of 70% (w/w) samples aged under 0%RH/room temperature, 0%RH/40oC and 

75%RH/room temperature was still relatively high as proved by low crystallinity in individual 

samples after 6 months aging. 70% (w/w) melt extrudates aged under 75%RH/40oC showed high 

level of bulk phase separation and recrystallization. This can possibly be explained by the involved 

stress for breaking the samples. However, the ultimate amount of felodipine remaining as 

amorphous solid dispersion (46.88% w/w) in this sample was very close to the predicted solubility 

by milling method, which proves the accuracy of the milling method in predicting drug-polymer 

solubiliy.   

  In short summary, the physical stability of felodipine-EUDRAGIT® EPO melt extrudates showed 

good agreement with the predicted solubility by milling method. Samples with the drug loading (10% 

w/w) below the predicted solubility (45% w/w) showed extremely high surface and bulk physical 

stability irrespective of different aging conditions. Super-saturated 70% (w/w) extrudates showed 

poor surface physical stability on aging under all conditions. In addition, physical stability study of 

felodipine-EUDRAGIT® EPO melt extrudates also proved that stressed humidity had more 

significant impact on aging on the physical stability of 70% (w/w) extrudates than stressed 

temperature, especially on the surface stability.   

6.3.2 Physical stability study of melt extruded celecoxib-EUDRAGIT® EPO systems under 
different conditions 

6.3.2.1 Surface physical stability 

  No celecoxib crystals were detected by ATR-FTIR on the surface of 10% (w/w) celecoxib-

EUDRAGIT® EPO melt extrudates after 6 months aging under all conditions. SEM images showed 

similar results that no evident particles were observed on the surface of 10% (w/w) extrudates after 

6 months aging (Figure 6.9). These results demonstrate that 10% (w/w) celecoxib-EUDRAGIT® 

EPO melt extrudates had high surface physical stability against stressed conditions on aging. This 

good physical stability of 10% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates validates the 

predicted solubility by milling method (42% w/w).  
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Figure 6.9: SEM images of the surface of 10% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates 

after 6 months aging under different conditions. 

  ATR-FTIR spectra of the surface of 70% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates 

aged under different conditions are shown in Figure 6.10. It has been reported that the SO2 group is 

a good indicator to distinguish the physical state of celecoxib (20). Upon transformation from the 

crystalline to amorphous state, the SO2 peak shifted from 1345cm-1 to 1336cm-1 as shown in Figure 

6.10. Freshly prepared 70% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates showed a single 

broad peak at 1338 cm-1 indicating a single phase amorphous system of the surface of extrudates.  

  After 1 month aging under 0%RH/room temperature, two peaks can be observed on the surface of 

70% (w/w) melt extrudates with one at 1347cm-1 (very close to crystalline celecoxib peak, 1345cm-

1) representing crystalline celecoxib and the other one at 1338cm-1 representing amorphous solid 

dispersion, suggesting the occurrence of surface recrystallization in this sample (Figure 6.10).  

  For 70% (w/w) melt extrudates aged under 75%RH/room temperature, surface recrystallization 

took place after 3 days aging as proved by the presence of 1347cm-1 peak, and on aging the 

crystalline peak become more dominant in comparison to the amorphous solid dispersion peak 

(1338cm-1) (Figure 6.10).  

  For 70% (w/w) melt extrudates aged under 0%RH/40oC, crystalline celecoxib peak (1347cm-1) 

was detected after 1 week aging. This demonstrates that in comparison to the same sample aged 

under 75%RH/room temperature, surface recrystallization was slightly delayed, indicating stressed 

humidity had more significant impact on the surface recrystallization of 70% (w/w)  celecoxib-

EUDRAGIT® EPO melt extrudates than stressed temperature (Figure 6.10).  
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  Evident crystalline celecoxib was detected on the surface of 70% (w/w) melt extrudates after 3 

days aging under 75%RH/40oC. The peak representing amorphous solid dispersions (1338cm-1) 

disappeared after 1 month aging indicating a high level of surface recrystallization occurred in this 

sample on aging (Figure 6.10). In comparison to the corresponding samples aged under 

75%RH/room temperature and 0%RH/40oC, samples aged under 75%RH/40oC showed the highest 

level of surface recrystallization. 

 

Figure 6.10: ATR-FTIR results of SO2 group from the surface of 70% (w/w) celecoxib-EUDRAGIT ® 

EPO melt extrudates on aging under different conditions. 

  Surface recrystallization in 70% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates was also 

confirmed by SEM studies. SEM images of 3 months aged 70% (w/w) melt extrudates are shown 

in Figure 6.11. Rod-shaped particles can be observed on the surface of 70% (w/w) samples aged 

under 0%RH/room temperature and 0%RH/40oC. For samples aged under 75%RH/room 

temperature, particles showed a needle shape, and the size and density of particles were 

significantly larger and higher than the same samples aged under 0%RH/40oC, indicating stressed 

humidity had more impact on the surface recrystallization of 70% (w/w) extrudates than stressed 

temperature. The two observed crystals habits (needle and rod shape) may indicate polymorphism 

of crystalline celecoxib. However, the ATR-FTIR results did not show crystalline polymorphs. For 

70% (w/w) extrudates aged under 75%RH/40oC, particles grew together to from clusters with the 

diameter of circa 30µm and the fibre shpae particles on the surface grew to as long as 50µm which 

was significantly larger than the same samples aged under other conditions. 
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Figure 6.11: SEM images of the surface of 70% celecoxib-EUDRAGIT ® EPO melt extrudates after 3 

months aging under different conditions. 

  The kinetics of surface recrystallization of 70% (w/w) celecoxib-EUDRAGIT® EPO melt 

extrudates on aging was also studied using Image J to analyse SEM images (Figure 6.12). Again, 

the data did not fit in the Avrami model (Eq 6.1) as it lacked of the nucleation phase leading to 

recrystallization starting with existed nuclei initially. However, a linear relationship of kinetics with 

acceptable coefficient was observed in individual extrudates aged under all conditions (Figure 

6.12). The slope of individual linearity can be considered as the growth rate of surface 

recrystallisation on aging. Thus it can be seen that temperature has less impact on surface physical 

stability on aging in comparison to high humidity since samples stored under 0%RH/40oCshowed a 

slower rate (36.0µm2/day) than samples aged under 75%RH/room temperature (12.6µm2/day). 

Samples aged under 75%RH/40oC showed the highest rate amongst samples aged under all 

conditions.  

 

Figure 6.12: Results of total particle area (µm2) achieved by using Image J to analyse SEM images on 

the surface of 70% celecoxib-EUDRAGIT® EPO melt extrudates on aging under different conditions.  
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  Results of surface physical stability study showed that no surface recrystallization was detected in 

any 10% (w/w) melt extrudates aged under all conditions, indicating 10% (w/w) system was highly 

stable on aging. For 70% (w/w) melt extrudates, surface recrystallization was detected in samples 

aged under all conditions, indicating low level of surface physical stability of 70% (w/w) 

extrudates. Moreover, for 70% (w/w) celecoxib-EUDRAGIT® EPO extrudates, stressed humidity 

also showed significantly more influence on surface recrystallization than stressed temperature.  

6.3.2.2 Bulk physical stability 

  Bulk physical stability of celeocixb-EUDRAGIT® EPO melt extrudates was studied using 

MTDSC and PXRD. After 6 months aging under different conditions, no melting was detected by 

MTDSC in any 10% (w/w) melt extrudates. No crystalline celecoxib feature was observed using 

PXRD. These results indicate that 10% (w/w) melt extrudates were physically stable as bulk after 6 

months aging under different conditions.  

  Bulk physical stability of 70% (w/w) celecoxib-EUDRAGIT® EPO melt extrudates was also 

studied by MTDSC and PXRD. MTDSC results of fresh and 6 months aged 70% (w/w) melt 

extrudates are shown in Figure 6.13. Crystallinity of celecixib in different 70% (w/w) systems was 

calculated using Eq 5.1 and listed in the figure. Freshly prepared 70% (w/w) melt extrudates 

showed the amount of crystalline celecoxib of 13.12% (w/w). An exothermic peak (very likely to 

be recrystallization on heating in MTDSC) was detected in the freshly prepared samples. This 

indicates that there was already a certain amount of phased separated amorphous celecoxib in the 

fresh 70% (w/w) extrudates and their recrystallisation could be induced by heating in DSC. After 6 

months aging, no significant increase of crystallinity was observed in samples aged under different 

conditions. For instance, after 6 months aging under 75%RH/40oC, the amount of detected 

crystalline only increased to 14.58% (w/w), and the recrystallisation peak was still evident. This 

demonstrates that although phase separation can be detected in 70% (w/w) fresh extrudates, the 

overall bulk recrystallisation only increased with low level after 6 months aging under different 

conditions.  



Chapter 6 

 
190 

 

 

Figure 6.13: MTDSC results of freshly prepared 70% (w/w) celecoxib-EUDRAGIT® EPO extrudates 

and aged under different conditions after 6 months (crystallinity of celecoxib in differently aged 

systems was calculated and listed in the brackets). 

  However, broad endothermic peaks detected by MTDSC at the glass transition areas can be seen 

for different aged 70% (w/w) samples which did not appear in the freshly prepared 70% (w/w) 

samples (Figure 6.13). This endothermic peak at glass transition area can be attributed to the 

overlapped relaxation of amorphous celecoxib and EUDRAGIT® EPO on aging. Relaxation is a 

procedure occurs to amorphous materials on aging whereby amorphous materials will relax the 

extra thermodynamic properties, such as enthalpy, to approach to the equilibrium on aging. These 

relaxed thermodynamic properties can be compensated on heating in DSC as amorphous materials 

need to re-establish the volume and enthalpy of the liquid state. The increased relaxation enthalpy 

in aged 70% (w/w) extrudates indicated increased molecular motion in the systems (relationship 

between relaxation and molecular mobility has been described in Chapter 1), which may potentially 

affect the bulk physical stability. 

  A more detailed MTDSC result with non-reversing signals is shown in Figure 6.14 to study the 

relaxation. It can be seen that after 6 months aging under 75%RH/room temperature, 0%RH/40oC 

and 75%RH/40oC, two partially overlapped relaxation peaks were detected by MTDSC, and they 

can be attributed to the relaxation of amorphous celecoxib and the relaxation of EUDRAGIT® EPO. 

The two separated relaxations suggest that an amorphous phase separation in which drugs and 

polymers separated into individual amorphous phase occurred in samples aged under these three 

conditions. Although crystallinity in 6 months aged 70% (w/w) samples under all conditions did 

not increase significantly, the amorphous phase separation demonstrated that 70% (w/w) celecoxib-

EUDRAGIT® EPO melt extrudates as bulk were not physically stable on aging under 

75%RH/room temperature, 0%RH/40oC and 75%RH/40oC. The physical instability mainly 

manifested as amorphous phase separation. 
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Figure 6.14: MTDSC results in non-reversing signals of freshly prepared and 6 months 70% (w/w) 

celecoxib-EUDRAGIT® EPO extrudates (crystallinity of felodipine in differently aged systems was 

calculated and listed in the brackets). 

  PXRD results showed that no celecoxib was detected in any 70% (w/w) melt extrudates after 6 

months aging under all conditions (Figure 6.15). This correlates well with the MTDSC results that 

phase separation in 70% (w/w) melt extrudates after 6 months aging still remained at amorphous 

phase separation level. The detected crystalline drug were attributed to the recrystallization of 

amorphous drug induced on heating in DSC. 

 

Figure 6.15: PXRD results of 70% (w/w) celecoxib-EUDRAGIT ® EPO melt extrudates after 6 months 

aging under different conditions. 

  Results of bulk physical stability studies of celecoxib-EUDRAGIT® EPO melt extrudates showed 

that 10% (w/w) samples were highly stable after 6 months aging under different conditons they 
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phase separation was confirmed using MTDSC in the same aged samples. This indicates that 70% 

(w/w) celecoxib-EUDRAGIT® EPO melt extrudates were not physically stable on aging under the 

four conditions. 

  In summary, the physical stability studies of celecoxib-EUDRAGIT® EPO melt extrudates 

demonstrated that 10% (w/w) samples were extremely stable after 6 months aging under the four 

conditions. Both the surface and the bulk of 10% (w/w) extrudates were still amorphous solid 

dispersions. However, for 70% (w/w) melt extrudates, a high level of surface recrystallisation was 

observed on aging under all conditions. Stressed humidity showed more impact on surface 

recrystallization in 70% (w/w) samples than stressed temperature on aging.  The bulk physical 

stability study showed that amorphous phase separation occurred in 70% (w/w) samples aged under 

75%RH/room temperature, 0%RH/40oC and 75%RH/40oC. Physical stability studies of celecoxib-

EUDRAGIT® EPO melt extrudates agreed well with the predicted solubility using milling method. 

Samples with the drug loading (10% w/w) below the predicted solubility (42% w/w) remained 

amorphous solid dispersions after 6 months aging under different conditions, whereas surface and 

bulk phase separation was confirmed in super-saturated samples (70% w/w). The bulk physical 

instability was amorphous phase separation and the surface instability was surface recrystallization. 

This again proves the accuracy of milling method in predicting the solubility of celecoxib in 

celecoxib-EUDRAGIT® EPO melt extrudates. 

6.3.3 Storage test of melt extruded fenofibrate-EUDRAGIT ® EPO systems under different 
conditions 

6.3.3.1 Surface physical stability 

  Surface physical stability of 10% (w/w) fenofibare-EUDRAGIT® EPO melt extrudates under 

different conditions were studied using SEM and ATR-FTIR. No particles were observed on the 

surface of freshly prepared 10% (w/w) samples. After 6 months aging, particles were observed on 

the surface of 10% (w/w) melt extrudates aged under all conditions (Figure 6.16), which indicates 

the physical instability on the surface of the 10% (w/w) samples. Particle size and density of the 

crystalline like features on the surface of samples aged under different conditions were similar. 

This may suggest that surface recrystallisation of 10% (w/w) melt extrudates occurred at early 

stage of aging and no further increase of surface recrystallization was affected by aging conditions. 

This was also confirmed by the kinetic study of the surface recrystallization of the 10% (w/w) 

samples aging under different conditions (Figure 6.17). As seen in Figure 6.17, the surface crystal 

growth rates of samples aged under different did not show significant different. After 3 months 

aging, crystal growth reached a plateau for all 10% (w/w) samples, and nearly 12% (calculated 

using the measured total particle areas divided by the size of the whole image area) of the tested 

area was covered by particles (crystals). The kinetics of the surface recrystallization did not fit in 

the Avrami model or linear relationship.      
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Figure 6.16: SEM images of the surface of 10% (w/w) fenofibrate-EUDRAGIT ® EPO melt extrudates 

after 6 months aging under different conditions. 

 

Figure 6.17: Results of total particle area (µm2) achieved by using Image J to analyse SEM images on 

the surface of 10% fenofibrate-EUDRAGIT® EPO melt extrudates on aging under different conditions.  

  Surface recrystallisation of 10% (w/w) samples on aging different conditions was also confirmed 

using ATR-FTIR (Figure 6.18). A single carbonyl peak at 1657cm-1, which is very close to the 

carbonyl peak (1656cm-1) from amorphous fenofibrate was detected on the surface of freshly 

prepared 10% (w/w) sample, suggesting an amorphous drug-polymer system on the surface of the 

freshly prepared samples. On aging under different conditions, this peak shifted progressively 

towards the carbonyl peak (1648cm-1) from crystalline fenofibrate. After 6 months aging under all 

conditions, the carbonyl peak from 10% (w/w) samples all ended at 1651cm-1 which is close to the 

crystalline peak. This gradual carbonyl peak shift indicates phase separation and recrystallization 

on aging. The ATR-FTIR study on the surface of 10% (w/w) sample demonstrates the surface 

physical instability of fenofibrate-EUDRAGIT® EPO melt extrudates on aging even with low drug 

loading.  
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Figure 6.18: ATR-FTIR results of carbonyl group from the surface of 10% (w/w) fenofibrate-

EUDRAGIT ® EPO melt extrudates on aging under different conditions up to 6 months. 

  Due to the low glass transition temperature of 70% (w/w) fenofibare-EUDRAGIT® EPO melt 

extrudates (-19.7oC) as mentioned in Chapter 5, freshly prepared samples were liquid-like and the 

recrystallization of this sample can be triggered by surface disruption such as touched by tweezers. 

This fast surface recrystallisation of 70% (w/w) samples under ambient condition was recorded 

using ATR-FTIR (Figure 6.19 a and b). 70% (w/w) sample was placed in contact with the ATR-

FTIR diamond after fresh preparation, and multiple scanning was carried out for a certain time 

period. Freshly prepared 70% (w/w) fenofibare-EUDRAGIT® EPO melt extrudates showed a 

single carbonyl group at 1656cm-1 which  has the same position as amorphous fenofibrate 

indicating an amorphous drug-polymer system. With increasing time periods under ambient 

condition, a gradual peak shift can be observed from 1656cm-1 to 1648cm-1 which is at the same 

position as crystalline fenofibrate, indicating the occurrence of recrystallization on the surface in 

contact with the ATR diamond. The peak shift was clearly reflected by the change of intensity ratio 

of the two peaks (1648cm-1 to 1656cm-1) with increasing time (Figure 6.19b). For the first 150min, 

70% (w/w) system remained as amorphous solid dispersions, and then recrystallization was 

triggered (Figure 6.19b). The whole process of the surface recrystallization in 70% (w/w) 

fenofibare-EUDRAGIT® EPO melt extrudates detected by ATR-FTIR occurred circa in 200min 

(Figure 6.19b), suggesting that 70% (w/w) fenofibrate extrudates with high drug loading were 

highly instable.   
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Figure 6.19: ATR-FTIR results of carbonyl group shift in freshly prepared 70% (w/w) fenofibare-

EUDRAGIT ® EPO melt extrudates (a) and the change of the peak intensity ratio (1648cm-1 to 1656cm-1) 

with increasing time. 

6.3.3.2 Bulk physical stability 

  The bulk physical stability of 10% (w/w) fenofibare-EUDRAGIT® EPO melt extrudates was 

studied using MTDSC. After 6 months aging under different conditions, no recrystallisation or 

melting was detected in any 10% (w/w) samples, suggesting a high bulk physical stability of the 10% 

(w/w) extrudates. This also suggests that the surface recrystallization of 10% (w/w) was at a low 

level. 

  The bulk recrystallization of 70% (w/w) fenofibare-EUDRAGIT® EPO melt extrudates was also 

studied using MTDSC (Figure 6.20). As mentioned earlier, the recrystallisation of 70% (w/w) 

extrudates can be easily triggered by surface disruption. Therefore, a certain amount of fenofibrate 

could be induced to recrystallize already during MTDSC sample preparation due to the contact 

with the sample, and this was reflected by the detected melting peak in fresh 70% (w/w) samples. 

Using Eq 5.1, the amount of crystalline fenofibrate in freshly prepared 70% (w/w) was calculated 

as 57.39% (w/w). It was also noted that an exothermic peak (recrystallization) was detected before 

melting, which indicates there was still a certain quantity of amorphous fenofibrate in fresh 70% 

(w/w) samples before the heating in DSC. After 6 months aging under different conditions, 

fenofibrate crystallinity in 70% (w/w) samples did not increase significantly in comparison to that 

in fresh samples (values listed in Figure 6.20). No recrystallization peak (exothermic peak) was 

detected in any aged 70% (w/w) samples in DSC, indicating phase separated amorphous 

fenofibrate had recrystallized out completely on aging.  
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Figure 6.20: MTDSC results of freshly prepared and 6 months aged 70% (w/w) fenofibare-

EUDRAGIT ® EPO melt extrudates under different conditions (crystallinity of fenofibrate in 

differently aged systems was calculated and listed in the brackets). 

  The physical stability study of fenofibrate-EUDRAGIT® EPO melt extrudates showed that both 

10% and 70% (w/w) samples had poor surface physical stability, Once triggered, the surface 

recrystallisation of 70% (w/w) samples could complete within 200min under ambient condition. 10% 

(w/w) showed high bulk physical stability and after 6 months aging under different conditions, 10% 

(w/w) samples were still amorphous solid dispersions. For 70% (w/w) extrudates, low bulk 

physical stability was observed as recrystallisation and melting was detected in the freshly prepared 

samples by MTDSC. The physical stability study of fenofibrate-EUDRAGIT® EPO melt extrudates 

showed good agreement with the predicted solubility by surface disruption that 10% (w/w) samples 

showed significantly high bulk physical stability on aging under different conditions.  

6.3.4 Physical stability studies of melt extruded carbamazepine-EUDRAGIT® EPO systems 
under different conditions 

  As mentioned in Chapter 5, thermal degradation of carbamazepine was found when preparing 

carbamazepine-EUDRAGIT® EPO with 70% (w/w) drug loading at the temperature of its melting 

point using hot melt extrusion. By decreasing the operation temperature in hot melt extrusion, 

whilst thermal degradation was avoided, the yield was extremely low, leading to the failure of 

producing a sufficient amount of 70% (w/w) samples for storage tests. In addition, at low operation 

temperature, super-saturated samples cannot be prepared as proved in Chapter 5. Therefore the 

physical stability study was only carried out on 10% (w/w) carbamazepine-EUDRAGIT® EPO melt 

extrudates under different aging conditions.  
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6.3.4.1 Surface physical stability 

  Surface recrystallization of 10% (w/w) carbamazepine-EUDRAGIT® EPO melt extrudates was 

studied using SEM and ATR-FTIR. SEM images of fresh and 6 months aged 10% (w/w) extrudates 

are shown in Figure 6.21. Compared with freshly prepared samples, after 6 months aging under 

different conditions, particles of rod and needle shapse can be observed on the surface of all 

samples, suggesting the occurrence of surface recrystallisation on aging. It can be seen that particle 

size and density on the surface of 10% (w/w) samples aged under 75%RH/room temperature is 

significantly higher than that of the samples aged under 0%RH/40oC. This indicates stressed 

humidity had more significant impact on the surface recrystallisation of 10% (w/w) samples than 

stressed temperature.  

 

Figure 6.21: SEM images of the surface of fresh and 6 months aged 10% (w/w) carbamazepine-

EUDRAGIT ® EPO melt extrudates under different conditions. 

  The kinetics of surface recrystallization of 100% (w/w) carbamazepine-EUDRAGIT® EPO melt 

extrudates on aging was studied using Image J to analyse SEM images (Figure 6.22). The data did 

not fit in the Avrami model (Eq 6.1). A linear relationship of kinetics with acceptable coefficient 

was observed in individual extrudates aged under all conditions (Figure 6.22). The slope of 

individual linearity can be considered as the growth rate of surface recrystallisation on aging. It 

clearly shows that high temperature has less impact on surface physical stability on aging in 

comparison to high humidity since samples stored under 0%RH/40oC showed a slower rate 

(6.2µm2/day) than samples aged under 75%RH/room temperature (12.5µm2/day). Samples aged 

under 75%RH/40oC showed the highest rate amongst samples aged under all conditions.  
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Figure 6.22: Results of total particle area (µm2) achieved by using Image J to analyse SEM images on 

the surface of 10% carbamazepine-EUDRAGIT® EPO melt extrudates on aging under different 

conditions.  

  Surface recrystallization was also confirmed using ATR-FTIR as shown in Figure 6.23. Due to the 

low drug loading, the NH2 group from amorphous carbamazepine in the freshly prepared 10% 

(w/w) melt extrudates was difficult to be detected since the peak intensity in amorphous state can 

be lower than in the crystalline state (21). After aging under 75%RH/room temperature, a peak 

with a relatively high intensity at 3464cm-1 was detected, which has the identical NH2 peak position 

of that from form III crystalline carbamazepine, indicating the recrystallization into form III on 

aging under high humidity at room temperature (22). After 3 months aging under the same 

condition, another peak at 3486cm-1 appeared and it was confirmed as form I crystalline 

carbamazepine (22), and thus amorphous carbamazepine on the surface of 10% (w/w) samples 

recrystallisaed into a mixture of form I and III under 75%RH/room temperature. Similar 

recrystallization occurred on the surface of 10% (w/w) samples aged under 75%RH/40oC, in which 

amorphous carbamazepine recrystallisaed into a mixture of form I and III. For 10% (w/w) melt 

extrudates aged under 0%RH/40oC, only form III carbamazepine was detected after 2 months 

storage. For 10% (w/w) samples aged under 0%RH/room temperature, no carbamazepine crystals 

were detected after 6 months storage. It also can be noticed in this sample that the NH peak was 

hardly detected after 6 months aging under 0%RH/room temperature. This is because the intensity 

of the NH peak from amorphous solid dispersions was low as mentioned earlier. 

  To summarise these findings, it can be concluded that stressed aging condition, including high 

temperature and humidity, can induce recrystallization into a mixture of form I and III by high 

humidity rather than high temperature. If stored under dry condition at room temperature, the 10% 
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(w/w) carbamazepine-EUDRAGIT® EPO melt extrudates can be physically stable for up to 6 

months.  

 

Figure 6.23: NH2 groups on the surface of 10% (w/w) carbamazepine-EUDRAGIT ® EPO melt 

extrudates aged under different conditions for up to 6 months. 

6.3.4.2 Bulk physical stability 

   The bulk physical stability of 10% (w/w) carbamazepine-EUDRAGIT® EPO melt extrudates was 

evaluated using MTDSC. After 6 months aging, no crystalline carbamazepine was detected in 10% 

(w/w) melt extrudates aged under all conditions, which indicates high bulk physical stability of this 

system.  

  Physical stability studies of 10% (w/w) carbamazepine-EUDRAGIT® EPO melt extrudates 

showed that physical instability only occurred on the surface of the samples. The high bulk 

physical stability on aging was in good agreement with the predicted solubility (18% w/w) by the 

milling method.  

6.3.5 Comparison of physical stability studies between different melt extrudates 
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  The significance of the physical stability of solid dispersions has been substantially emphasised 

by pharmaceutical researchers due to its important role in affecting the dissolution rate of poorly 

water soluble drugs and hence bioavailability. As mentioned earlier, factors such as glass transition 

temperatures of solid dispersions, molecular mobility of amorphous drugs and drug-polymer 

miscibility and solid solubility have been evaluated and considered to be key factors that control 

the physical stability. Due to the large variety of the selection of drugs and polymers and different 

processing methods for the preparation of solid dispersions, it is difficult to establish a general rule 

for the improvement of formulation design of solid dispersions in the pharmaceutical industry. In 

this work, by investigating different properties associated with the physical stability of solid 

dispersions, three fundamental aims as mentioned in the introduction can be accomplished.  

  Results of the physical stability studies of melt extrudates prepared with model drugs and 

EUDRAGIT® EPO are summarised in Table 6.1. Stressed temperature and stressed humidity have 

been considered as the two main storage factors which can potentially affect the physical stability 

of amorphous solid dispersions on aging. Molecular mobility in amorphous solid dispersions can be 

substantially increased if the storage temperature is close to or above the Tg of the solid dispersions, 

which can lead to phase separation and recrystallisation. Stressed humidity can also affect the 

physical stability as water sorption in amorphous solid dispersions can act as plasticizers which can 

decrease the Tg of the system and increase the molecular mobility. In this chapter, results of 

physical stability studies of individual system clearly revealed that stressed humidity had more 

significant impact on the physical stability of amorphous solid dispersions than stressed 

temperature, especially on the surface physical stability. For instance in Table 6.1, surface 

recrystallisation rate of 70% (w/w) felodipine-EUDRAGIT® EPO aged under 75%RH/room 

temperature (33.3µm2/day) was almost three times higher than that of the samples aged under 

0%RH/40oC (11.6µm2/day). This was also the case for 70% (w/w) celecoxib- EUDRAGIT® EPO 

and 10% (w/w) carbamazepine-EUDRAGIT® EPO melt extrudates. This phenomenon was not 

evident for 10% (w/w) fenofibrate-EUDRAGIT® EPO systems, which might be attributed to the 

reason that surface recrystallisation occurred at early stage of aging to a saturated level irrespective 

of aging conditions as proved by the kinetics of crystal growth on aging (Figure 6.16). Nevertheless, 

physical stability studies still conclude that stressed humidity (refers to accelerated conditions in 

USP, 75%RH) has stronger effect on the surface recrystallization of melt extrudates than stressed 

temperature (refers to accelerated conditions in USP, 40oC).  

  This stronger effect by stressed humidity is not clearly understood. It might be accounted for by 

the fact that extrudates were aged as intact strand, and thus the adsorbed water on the surface can 

be relatively high (although difficult to measure). Therefore, the “local” water content on the 

surface can be very high, leading to the faster recrystallisation rate in comparison to samples aged 

under 0%RH/40oC.   
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Table 6.1: Summary of the physical stability studies of melt extrudates prepared with model drugs and Eudragit® EPO aged under different conditions. 

 

 

 

 

 

 

 

A*:amorphous solid dispersion; C*: crystalline drug; surface*: surface crystal growth rate; bulk*: crystallinity (w/w) in individual system after 6 months aging calculated using Eq 5.1. 

Drugs Melt extrudates 0%RH/room temp 75%RH/room temp 0%RH/40oC 75%RH/40oC 

felodipine 10% surface A*  A A A 

bulk A A A A 

70% surface (µm2/day)* 10.3 33.3 11.6 172.9 

bulk *  (w/w) 0.27% 0.82% 0.45% 24.12% 

celecoxib 10% surface A A A A 

bulk A A A A 

70% surface(µm2/day)* 11.5 36.0 12.6 53.0 

bulk 13.22% 14.17% 13.62% 14.58% 

fenofibrate 10% surface A, C* A, C A, C A, C 

bulk A A A A 

70% surface fast recrystallization (completed within 200min under ambient condition) 

bulk *  (w/w) 57.43% 57.52% 58.02% 58.05% 

carbamazepine 10% surface(µm2/day)* 4.4 12.5 6.2 24.4 

bulk A A A A 



Chapter 6 

 
202 

 

  A clear order of physical stabilities of different melt extruded formulations on aging can be made 

by comparing the results between different model drug-polymer systems. For 10% (w/w) 

extrudates, felodipine and celecoxib showed extremely high physical stability both on surface and 

as bulk under all conditions (Table 6.1). However, as seen in SEM images, particles were observed 

on the surface of both 10% carbamazepine and fenofibrate extrudates on aging under all conditions 

(Figure 6.15 and 6.20). For 70% (w/w) samples, felodipine and celecoxib showed high bulk 

physical stability but poor surface physical stability. Comparing the crystallinity between 

felodipine and celecoxib melt extrudates in Table 6.1, it can be seen that after 6 months aging 

crystallinity in 70% (w/w) felodipine melt extrudates was significantly lower than that in 70% (w/w) 

celecoxib melt extrudates (the exception of felodipine extrudates aged under 75%RH/room 

temperature has been discussed and was attributed to the involved breaking strength). 70% (w/w) 

fenofibrate showed the fastest recrystallisation rate under ambient condition (within 200min). 

Consequently, based on the findings from the physical stability studies, it is reasonable to conclude 

the order of the physical stability of melt extrudates under all conditions is felodipine melt > 

celecoxib > carbamazepine ≥ fenofibrate melt extrudates. 

  In previous chapters, several factors of model drugs associated with physical stability of solid 

dispersions have been studied. Several theoretical approaches were applied to predict drug-polymer 

miscibility and solubility. In addition, a practical mechanical milling approach was developed to 

predict the apparent solid solubility of drugs in melt extrudates. In order to reveal the key factors 

which control the physical stability of amorphous solid dispersions, the results which are 

considered to be related with the physical stability of amorphous solid dispersions from previous 

chapters are summarised in Table 6.2. Glass transition temperatures of different amorphous drugs, 

calculated molecular mobility of amorphous drugs, theoretically predicted drug-polymer solid 

solubility do not show the same order as the order of physical stabilities of different formulations. 

Amongst all investigated factors so far, the physical stability of amorphous drugs and predicted 

apparent solid solubility of drugs in melt extrudates by mechanical milling seem to be the two key 

factors associated with physical stability of melt extrudates and they both showed the same order as 

the order of the physical stability order of different formulations. Based on the achieved results, it 

may generally suggest that melt extruded amorphous solid dispersions formulated with a drug 

which is physically stable in amorphous state alone can be expected to have a good physical 

stability.  More significantly, a drug loading below the predicted drug-polymer solubility (by 

milling method) is essential for preparing a physically stable melt extruded amorphous solid 

dispersion. Glass transition temperatures and molecular mobility of amorphous drugs did not show 

direct relationship with the physical stability of amorphous solid dispersions. These two factors are 

commonly associated with the physical stability of amorphous drugs alone. After formulated with 

polymers, the physical stability can be enhanced significantly in comparison to that of the 

amorphous drugs alone. It also demonstrates that the milling method is a more accurate and valid 
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method for the prediction of drug-polymer solubility in melt extrudates than the theoretical 

approaches. Thus the developed milling method has the potential to be generalised as a common 

method to predict drug-polymer solubility in melt extrudates. As mentioned in Chapter 5, milling 

can be a relatively fast method for the prediction of drug-polymer solubility in melt extrudates. 

Therefore, the developed milling method can be beneficial and useful for the formulation design of 

melt extrudates in the pharmaceutical industry.  
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Table 6.2: Summary of drug-polymer solubilities (model drugs in EUDRAGIT® EPO) predicted by different approaches and physical properties of model drugs. 

Drugs Solubility by 

milling approach 

(w/w) 

Solubility by 

solubility 

parameter 

approach (w/w) 

Solubility by 

melting point 

depression 

approach (w/w) 

Solubility by 

enthalpy 

measurement  

approach (w/w) 

Tg (
oC) Relaxation time at 

25oC (s) 

Ranking of the physical 

stability of amorphous 

drugs under 

0%RH/room temp and 

75%RH/room temp 

felodipine 45 % 25% 31% 20% 46.5 2.47×103 1 

celecoxib 42% 35% 41% 20% 58.2 1.31×104 2 

carbamazepine 18% 15% 46% 30% 50.1 1.78×103 3 

fenofibrate 13% 40% - 40% -19.7 3.51×10-1 4 
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   One may consider another key factor in influencing the physical stability, the formation of 

hydrogen bonding between drugs and polymers in amorphous solid dispersions. Although three 

model drugs have hydrogen bonding donor groups (NH for felodipine, NH2 for celecoxib and NH2 

for carbamazepine) and EUDRAGIT® EPO has acceptor groups, there was no evidence showing 

the formation of hydrogen bonding between drugs and the polymer since the EUDRAGIT® EPO 

carbonyl peak position did not shift after formulation with the three drugs. Therefore one may 

argue that the physical stability could behave better if hydrogen bonding formed between drugs and 

polymers since it has been considered as the strength in restricting molecular motion and the key 

factor that affects solid solubility (23). On one hand, hydrogen bonding cannot be universally 

formed between any drug and polymer, therefore the development of methods for enhancing 

physical stability of solid dispersions lacking of hydrogen bonding is still necessary. On the other 

hand, hydrogen bonding is normally formed in formulations with polymers as acceptors, and thus 

the physical stability can be significantly influenced if formulations with hydrogen bonding were 

exposed to high humidity since water molecule is a very strong competitor against drug molecules 

to form hydrogen bonding with polymers in formulations (24, 25). The involvement of hydrogen 

bonding in melt extruded formulation will also be discussed in Chapter 7. 

6.4 Conclusions 

  In this chapter, physical stability studies under different aging conditions of melt extrudates 

prepared with model drugs and EUDRAGIT® EPO were investigated. By comparing the physical 

stability of individual drug-polymer formulation under different aging conditions, it was proved 

that humidity had more significant impact than high temperature on the physical stability of melt 

extrudates, especially on the surface physical stability. In addition, for individual drug-polymer 

system with the two drug loadings, the bulk physical stability was significantly higher than the 

surface physical stability. 

  By comparing the results of physical stability studies between different melt extrudates, the order 

of physical stability (bulk and surface) of melt extruded formulations containing model drugs can 

be concluded as felodipine > celecoxib > carbamazepine ≥ fenofibrate. Combined with the results 

from previous chapters, physical stability of amorphous drugs and predicted apparent solid 

solubility of drugs in melt extrudates using the milling method were the two key factors which 

were most relevant to the physical stability of melt extruded solid dispersions.  

  Results of physical stability studies also validated the milling method as a more accurate method 

for predicting drug-polymer solubility than the three theoretical approaches. Therefore, the 

developed milling method can be a useful and fast tool to predict safe drug loading and thus 

enhance the physical stability when developing melt extruded formulations in the pharmaceutical 

industry.  
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Chapter 7: Enhancement of the physical stability of hot melt 
extruded solid dispersions using immiscible polymer blends  

7.1 Introduction 

  Hot melt extrusion has been proved as an effective processing method for the preparation of 

amorphous solid dispersions to improve the dissolution rate of poorly water-soluble drugs (1-4). 

However, with the physical structure of being amorphous solid dispersions, amorphous 

formulations prepared by hot melt extrusion inevitably have the physical stability issue, which can 

potentially affect dissolution performance (5-7). To improve the physical stability of amorphous 

solid dispersions, formulation strategies such as using polymers with high drug-polymer miscibility 

and solubility, have been highly suggested (8-10).  

  In Chapter 6, a high degree of surface recrystallization was observed in felodipine-EUDRAGIT® 

EPO melt extrudates under stressed conditions (high humidity and temperature). In this chapter, in 

order to enhance the physical stability of felodipine amorphous solid dispersions, immiscible 

polymer blends were applied as a formulation strategy in hot melt extrusion. 

  The hypothesis of the polymer blend formulation strategy for the enhancement of the physical 

stability was originated from two aspects. Firstly, the incorporation of a polymer (Kollidon® VA 64) 

which may have higher solubility of felodipine than EUDRAGIT® EPO into the binary felodipine-

EUDRAGIT® EPO systems can increase the overall drug-polymer solubility in amorphous solid 

dispersions. It has been reported in articles that hydrogen bonding can play a significant role in 

drug-polymer solubility (8, 11-13). As discussed in Chapter 6, no evidence of the formation of 

hydrogen bonding between felodipine and EUDRAGIT® EPO was seen. However, Kollidon® VA 

64 has been reported to form hydrogen bonding with felodipine in solid dispersions (14). Therefore, 

the addition of Kollidon® VA 64 into felodipine-EUDRAGIT® EPO systems may potentially 

increase the overall solubility of felodipine in melt extrudates. 

  However, the drawback of using such polymers (PVP or PVPVA 64) is that they are highly 

hygroscopic, which can increase the risk of physical instability on aging especially under stressed 

humidity (14, 15). This was also proved in Chapter 6 that humidity could significantly affect the 

surface physical stability of melt extruded solid dispersions. This is attributed to the reason that the 

drug-polymer hydrogen bonding in solid dispersions can be disrupted upon exposure to high 

humidity by adsorbed and absorbed water molecules as they have a high potential to act as 

hydrogen bonding donors and accepters (16). Therefore, by blending the hydrophilic polymer 

(Kollidon® VA 64 with high hygroscopicity) and the hydrophobic polymer (EUDRAGIT® EPO), 
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the overall moisture sorption of amorphous solid dispersions can be reduced, leading to a higher 

physical stability.  

  The illustration of the formulation design is shown in Figure 7.1. Since the two polymers are 

immiscible, two separated phases including hydrophobic phase and hydrophilic phase will exist in 

the amorphous solid dispersion. With higher drug-polymer solubility, the hydrophilic polymer will 

dissolve more drug molecules than the hydrophobic polymer. Meanwhile, the separated hydrophilic 

domains can be protected from moisture uptake by the hydrophobic domains. Therefore, the 

immiscible polymer blends may enhance the physical stability of amorphous solid dispersions by 

the combined effect of increasing the saturated level of the amorphous solid dispersions and 

reducing moisture sorption.   

 

Figure 7.1: Proposed schematic illustration of the micro-strucutre of the immiscible polymer blend 

formulation loaded with model drug. 

Research objective 

1. To predict the apparent solid solubility of felodipine in Kollidon® VA by mechanical milling and 

melting point depression approaches. 

2. To enhance the physical stability of melt extruded felodipine amorphous solid dispersions 

against stressed conditions (high temperature and humidity) by the application of the polymer 

blends of EUDRAGIT® EPO and Kollidon® VA matrices in hot melt extrusion.  

3. To investigate the micro-structure of felodipine-polymer blend melt extrudates to confirm the 

hypothesis of the enhancement of the physical stability.  
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7.2 Experimental methods 

7.2.1 Hot melt extrusion 

  Instrumental information refers to Chapter 2 (2.2.1.1). Crystalline felodipine and EUDRAGIT® 

EPO powder with ratios of 10:90, 30:70, 50:50, and 70:30 (w/w), crystalline felodipine and 

Kollidon® VA 64 powder with ratios of 10:90, 30:70, 50:50, and 70:30 (w/w), and crystalline 

felodipine, EUDRAGIT® EPO and Kollidon® VA 64 with ratios of 10:45:45, 30:35:35, 50:25:25 

and 70:15:15 were pre-mixed in mortar. These physical mixtures were prepared into melt 

extrudates at 150oC with a dewell time of 5min. 

7.2.2 Milling of melt extrudates 

  To predict apparent solid solubility of felodipine in extrudates of felodipine-EUDRAGIT® EPO, 

felodipine-Kollidon® VA 64 and felodipine-polymer blend systems, samples of different extrudates 

with 70% (w/w) drug loading were milled by Retsh MM400 Ball Miller (RETSH, Haan, Germany). 

Samples were milled for 5, 10, 30, 60 minutes at a frequency of 30Hz by a single 7mm stainless 

steel ball. Milled samples were tested by MTDSC immediately after milling. 

7.2.3 Physicochemical characterisation  

  Instrumental information of characterisation techniques and the applied parameters for MTDSC, 

PXRD, ATR-FTIR, SEM, ATF, TTM, PT-MS, DVS, and ssNMR refers to different sections in 

Chapter 2 (2.2.2.1.3 for MTDSC, 2.2.2.3.2 for DVS, 2.2.2.4.2 for ATR-FTIR, 2.2.2.5.2 for PXRD, 

2.2.2.6.2 for SEM, 2.2.8.1.2 for AFM, 2.2.8.5 for TTM, 2.2.8.6 for PT-MS and 2.2.9.2 for ssNMR) 

7.2.4 Effect of polymers on the solubility of crystalline felodipine in acidic solution  

  The effect of polymers on the solubility of crystalline and amorphous felodipine in 0.1MHCl 

solution was studied. Different amounts of EUDRAGIT® EPO and Kollidon® VA 64 powders were 

dissolved in 0.1MHCl solution respectively, to prepare polymer-HCl solutions with concentrations 

from 0.004 to 0.038 g/ml (saturated for EUDRAGIT® EPO but not for PVPVA). Physical mixtures 

of polymer blend (with ratio of 50:50 w:w in each sample) were dissolved in 0.1MHCl to prepare 

solutions with the same concentrations as single polymer-HCl solutions.  

  To investigate the effect of polymers on the solubility of crystalline felodipine in 0.1MHCl 

solution, excess amounts of crystalline felodipine were added to these solutions and vigorously 

stirred for 72 hours. Samples were filtered using 0.22µm membrane and the concentrations of 

felodipine in different solutions were determined by a Lambda XLS UV Spectrometer 

(PerkinElmer LTD, UK) at the wavelength of 363nm (maximum absorption peak). 
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7.2.5 Effect of EUDRAGIT® EPO on inhibiting recrystallization of amorphous felodipine in 
acidic solution   

  The effect of polymers on inhibiting recrystallisation of amorphous felodipine in the dissolution 

media was also studied. Amorphous felodipine was prepared using melt-cool method. Excess 

amount of freshly prepared amorphous felodipine was added into the prepared EUDRAGIT® EPO-

HCl solutions (as mentioned in 7.2.4), and the concentration of felodipine in the solution were 

measured at different time points up to 72 hours using the same UV method. Samples were filtered 

by 0.22µm membrane before testing. 

7.2.6 In vitro dissolution testing 

  Dissolution testing was carried out on a Copley CIS 8000 dissolution bath (Copley Scientific, 

UK). The withdrawn solution was measured by Perkin Elmer Series 200 HPLC equipped with a 

UV/Vis detector and an auto sampler (PerkinElmer LTD, UK). Mobile phase was composed of 

methanol: acetonitrile: water (50:15: 35). The column was ODS C18 column (150mm×4.6mm, 

5µm) (SUPELCO INC, Bellefonte, USA). The flow rate of the mobile phase was 1.0 ml/min. The 

wavelength was 363 µm. Strand form extrudates of freshly prepared felodipine-EUDRAGIT® EPO, 

felodipine- Kollidon® VA 64 and felodipine-polymer blend systems were milled before dissolution 

test by mortar and pestle and particle size was controlled by sieve to between 63 and 106µm. 

Different samples with an equivalent dose of 10mg (commercial dose) of felodipine was added for 

the individual dissolution test. Drug release from formulations was tested under non-sink condition 

(0.1MHCl). Paddle method with the speed of 100r/min was employed, and 900mL media at the 

temperature of 37°C was used. Dissolution samples were filtered by 0.22µm membrane before 

testing. 

7.3 Results and discussion 

7.3.1 Prediction of solid solubility of felodipine in Kollidon ® VA 

  The application of polymer blends in melt extrusion is firstly hypothesised on the difference of the 

capability of the two polymers to dissolve felodipine. In Chapter 4, the solubility of felodipine in 

EUDRAGIT® EPO by melting point depression method was 31.72% (w/w). In Chapter 5, the 

solubility of felodipine in felodipine- EUDRAGIT® EPO melt extrudates was predicted as 45% 

(w/w) using the milling method.  In this chapter, the melting point depression approach and the 

milling method were applied as a theoretical and a practical method, respectively, to predict solid 

solubility of felodipine in Kollidon® VA64 in order to confirm whether the solubility of felodipine 

in Kollidon® 64 is higher than in EUDRAGIT® EPO. 
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7.3.1.1 Prediction of apparent solid solubility of felodipine in Kollidon® VA 64 by melting 
point depression approach 

  The melting point depression approach was applied to predict solid solubility of felodipine in 

Kollidon® VA64. Details of the method have been described in Chapter 4. Physical mixtures of 

felodipine and Kollidon® VA64 with the ratios from 10:90 to 90:10 (w/w) were prepared and tested 

by DSC at a heating rate of 1oC/min. The calculated interaction parameter from the approach by 

regression analysis is shown in Figure 7.2. Using the achieved interaction parameter, the solid 

solubility of felodipine in Kollidon® VA64 was calculated as 41.71% (w/w), which is higher than 

the predicted solid solubility of felodipine in EUDRAGIT® EPO (31.72% w/w) by the same 

approach.  

 

Figure 7.2: Calculation of interaction parameter form the melting point depression approach. 

7.3.1.2 Prediction of apparent solid solubility of felodipine in melt extrudates using milling 
method 

  As discussed in Chapter 5, the solid solubility predicted by theoretical approaches did not take 

into account the effect of the preparation process, which may lead to the deviation of the 

theoretically predicted value from the practical value related to the drug-polymer dispersions 

prepared by certain process. Therefore the mechanical milling approach, as a practical method, was 

applied to predict apparent solid solubility of felodipine in felodipine-Kollidon® VA64 melt 

extrudates. Melt extrudates of felodipine-EUDRAGIT® EPO, felodipine-Kollidon® VA 64 and 

felodipine-polymer blend systems with 70% (w/w) drug loading were milled from 5min to 60min 

by ball milling. The milled extrudates were tested by MTDSC immediately after milling. The 

MTDSC results of the 70% (w/w) melt extrudates milled for 60min are shown in Figure 7.3. 

Significant differences of melting enthalpies can be measured by MTDSC between the 70% (w/w) 

samples with different polymer matrices. A substantially low degree of melting enthalpy was 

detected in 70% (w/w) felodipine-Kollidon® VA64 (4.72J/g) samples in comparison to the 

corresponding EUDRAGIT® EPO sample (26.36J/g), indicating higher apparent solid solubility of 

felodipine in melt extrudates with Kollidon® VA64 than in that with EUDRAGIT® EPO. Although 
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a higher melting enthalpy (10.66J/g) was detected in the polymer blend system compared with the 

Kollidon® VA64 binary system, it is still significantly smaller than the felodipine-EUDRAGIT® 

EPO binary system, suggesting more felodipine molecularly dispersed in polymer blends than in 

EUDRAGIT® EPO in melt extrudates. It should be noted that exothermic peaks (recrystallisation) 

before melting were detected in 70% (w/w) felodipine-polymer blend (110oC) and felodipine-

EUDRAGIT® EPO (96oC) systems. This indicates that after 1 hour milling time, a certain amount 

of amorphous felodipine had already phase separated from the bulk systems. However, the 

exothermic peak from 70% (w/w) felodipine-polymer blend system was significantly smaller than 

that from 70% (w/w) felodipine-EUDRAGIT® EPO systems. This demonstrates polymer blends 

can decrease the level of amorphous phase separation of the 70% (w/w) formulations generated by 

milling. 

 

Figure 7.3: MTDSC results of freshly prepared 70% (w/w) melt extrudates milled for 60min. 

 70% (w/w) milled extrudates were also studied using PXRD as seen in Figure 7.4. After 1 hour 

milling, crystalline features can only be detected in the 70% (w/w) felodipine-EUDRAGIT® EPO 

melt extrudates by PXRD, whereas the other two corresponding melt extrudates only showed an 

amorphous halo detected by PXRD. By comparing with the PXRD patterns of crystalline 

felodipine form I, felodipine crystals generated by milling in 70% (w/w) felodipine-EUDRAGIT® 

EPO was confirmed as form I. 
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Figure 7.4: PXRD results of different 70% (w/w) felodipine melt extrudates after 1 hour milling. 

 The amount of crystalline felodipine (calculated using Eq.5.1) in different 70% (w/w) melt 

extrudates generated by different milling time periods is summarised in Figure 7.5. It can be seen 

that a plateau of crystallinity of felodipine has reached after 10min milling in all 70% (w/w) 

extrudates. The amount of crystalline felodipine in different 70% (w/w) systems after 60min 

milling was calculated as 23.12% (w/w) in EUDRAGIT® EPO, 9.58% (w/w) in polymer blend and 

4.11% (w/w) in Kollidon® VA64. Therefore the apparent solid solubility of felodipine in polymer 

blend and Kollidon® VA64 was 60.42% (w/w) (crystallinity subtracted by the drug loading of 70% 

w/w) and 65.89% (w/w), respectively, which are significantly higher than that in EUDRAGIT® 

EPO, 45% (w/w).  

 

Figure 7.5: Crystallnity of felodipine calculated by using measured melting enthalpy in different 70% 

(w/w) melt extrudates milled for different time periods.  
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  By using theoretical and practical mechanical milling approaches, they both showed that 

Kollidon® VA64 can increase the solubility of felodipine in melt extruded formulations than 

EUDRAGIT® EPO. Accordingly, it can be expected that in felodipine-polymer blend systems more 

felodipine may molecularly dispersed in Kollidon® VA64 and the physical stability of felodipine-

polymer blend melt extrudates can be better on aging in comparison to the binary felodipine-

EUDRAGIT® EPO melt extrudates.   

7.3.2 Moisture uptake 

  The hypothesis of using polymer blends in hot melt extrusion to enhance physical stability of 

solid dispersions was also based on the assumption that blending the two polymers can reduce the 

overall moisture uptake of amorphous solid dispersions in comparison to felodipine-Kollidon® 

VA64 systems. Therefore, the moisture uptake behaviour of different melt extrudates with different 

matrices was studied by DVS in this section. 

  The moisture uptake capacities of the formulations were tested using isohumic tests (temperature 

maintained at 25oC) at 75%RH and it can be seen that Kollidon® VA64 can up take as much as 

16.8% (w/w) moisture, whereas EUDRAGIT® EPO only up take less than 1.3% (w/w) under 

75%RH/25oC (Figure 7.6). The 50:50 (w:w) physical mixture of the two polymers takes 

approximately 9% (w/w) which is close to half of the amount that Kollidon® VA64 takes. This 

value was further reduced to 4.1% (w/w) (within 600min) after formulating the two polymers 

without drug by hot melt extrusion. It was also noted that the water uptake plateau was not obtained 

even after 600min upon exposure to high humidity. 

 

Figure 7.6: DVS results of the polymer alone (as received powder form), the physical mixture of the 

two polymers and freshly prepared melt extrudates of the polymer blend with and without drug (10% 

w/w drug loading). 
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  After incorporation with 10% (w/w) drug, the moisture uptake of felodipine-Kollidon® VA64 

extrudates was circa 10.8% (w/w) when equilibrium was achieved. For 10% (w/w) felodipine-

EUDRAGIT® EPO extrudates, the moisture uptake further decreased from 1.3% (w/w) 

EUDRAGIT® EPO alone to 0.85% (w/w) after 600min isohumic test. The moisture sorption of 

10% (w/w) felodipine-polymer was only 3.3% (w/w) in total after 600min upon exposure to 

75%RH at 25oC, which was intermediate between the two binary systems. It was also noted that 

similar to polymer blend melt extrudates without drug, at 600min the moisture uptake of 

felodipine-EUDRAGIT® EPO and felodipine-polymer blend melt extrudates still gradually increase 

at extremely slow rates. 

  It has been reported that materials such as amorphous glasses or polymers moisture uptake was 

mainly dominated by diffusion (17-19). A Fickian diffusion model was introduced to fit with the 

experimental data to test if diffusion is the mechanism of water uptake of samples. Assuming 

particles are homogeneous spheres, the diffusion model can be expressed by (17): 

                                                
	��
��

= 1 − 	

�� 
��� exp	(

����
��
�� )

�

���
                                        Eq 7.1        

where Mt is the moisture uptake at time t, Me is the moisture uptake at equilibrium, D is the 

diffusion coefficient, a is the radius of the solid spheres and n is a numerical index. The moisture 

sorption profiles of the melt pre-processed Kollidon® VA64 powder, physical mixtures of 

Kollidon® VA64 and EUDRAGIT® EPO, polymer blend melt extrudates with and without drug all 

fit well with the diffusion model with different coefficients. A fitting test example of 10% (w/w) 

felodipine-polymer blend melt extrudates is shown in Figure 7.7. 

  The well-fitting with Fickian diffusion model in these systems indicates the moisture uptake was 

dominated by a diffusion mechanism in which concentration gradient of water gradually built up 

over time as the moisture adsorbs to the surface and further moved into the material across a 

diffusion gradient. Although all controlled by diffusion mechanism, diffusion rates in polymer 

blend systems (with and without drug) were significantly lower than that in felodipine-Kollidion® 

VA 64 systems. As suggested in Figure 7.1, phase separation already existed in freshly prepared 

polymer blend samples due to the immiscibility between the two polymers. Therefore, the overall 

diffusion rate in the polymer blend system was significantly slower than that in felodipine-

Kollidion® VA 64 systems since the phase separation can lead to distorted diffusion path length of 

the moisture while it is being taken up. Thus the time to reach equilibrium for felodpine-polymer 

blend systems takes much longer than for felodipine-Kollidion® VA 64 systems.  
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Figure 7.7: Fickian diffusion model fitting of 10% (w/w) felodipine-polymer blend upon exposure to 

75%RH at 25oC up to 600min. 

7.3.3 Physical stability studies of melt extruded polymer blend systems under stressed 
conditions 

  In order to individually evaluate the stabilisation effect of the polymer blend in comparison to the 

corresponding binary melt extrudates against stressed temperature and humidity, melt extruded 

formulations were aged under 75%RH/room temperature (stressed humidity) and 23%RH/40oC 

(stressed temperature), respectively.  

7.3.3.1 Stressed humidity 

  For all melt extrudates with 50% (w/w) drug loading and below including the polymer blends and 

the two binary systems, no crystalline felodipine can be detected on the surface after 1 months 

aging under stressed humidity by ATR-FTIR. 

  For formulations with 70% (w/w) drug loading, the polymer blend system showed a much lower 

level of surface recrystallization after 1 month aging under 75%RH/room temperature in 

comparison to the two corresponding binary systems. This was proved by SEM images (Figure 7.8) 

that after 1 month aging, significantly fewer particles were observed on the surface of 70% (w/w) 

felodipine-polymer blend extrudates than those on the surface of the two 70% (w/w) binary 

extrudates (w/w).  
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Figure 7.8: SEM images of the surfaces of 70% (w/w) different melt extrudates after 1 month aging 

under 75%RH/room temperature (a:felodipine-EUDRAGIT® EPO, b: felodipine-Kollidon® VA64 and 

c: felodipine-polymer blend). 

  The higher physical stability of 70% (w/w) felodipine-polymer blend extrudates in comparison to 

the two binary systems was also proved by ATR-FTIR study (Figure 7.9). After 1 month aging, the 

NH group from the two freshly prepared binary extrudates both shifted to 3365cm-1, which had the 

same position as crystalline felodipine indicating the occurrence of surface recrystallization. 

Although the predicted apparent solid solubility of felodipine in melt extrudates with Kollidon® 

VA64 was higher than that in the polymer blend extrudates, a high level of surface recrystallization 

was still observed in the binary 70% (w/w) felodipine-Kollidon® VA64 system, indicating the 

formulation was not physically stable against stressed humidity. The reason can be attributed to the 

hygroscopicity of Kollidon® VA64 (as proved by the DVS study earlier) leading to the adsorbed 

moisture on the surface of the 70% (w/w) binary felodipine-Kollidon® VA64 and eventually 

causing the surface recrystallization.  

 

Figure 7.9: ATR-FTIR results of the NH groups from felodipine in different 70% (w/w) melt 

extrudates aged under different conditions for 1month. 

  A more detailed surface physical stability study of 70% (w/w) polymer blend system against 
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months aging, phase separation was detected with the appearance of the crystalline and amorphous 

NH peaks.  Compared to the two binary melt extrudates, it demonstrates that the polymer blend 

was able to inhibit surface recrystallization in the samples with high drug loadings (70% w/w) for 

at least 4 months under stressed humidity. 

 

Figure 7.10: ATR-FTIR results of the NH group from the surface of 70% (w/w) felodipine-polymer 

blend on aging under 75%RH/room temperature (left arrow: crystalline felodipine, 3365cm-1; right 

arrow: amorphous felodipine, 3335cm-1). 

  Bulk physical stability of 70% (w/w) polymer blend and the two binary melt extrudates were 

studied using MTDSC. After 6 months aging under 75%RH/room temperature, the melting of 

crystalline felodipine can be only detected in 70% (w/w) felodipine-EUDRAGIT® EPO melt 

extrudates as seen in Figure 7.11. The absence of detecting melting by MTDSC in 70% (w/w) 

felodipine-Kollidon® VA64 melt extrudates can be attributed to the higher apparent solid solubility 

of felodipine in Kollidon® VA64 as predicted earlier, leading to the dissolution of felodipine 

crystals into the polymer on heating in MTDSC.  

 

Figure 7.11: MTDSC results of different 70% (w/w) melt extrudates after 6 months aging under 

75%RH/room temperature. 
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  The MTDSC study shows that the polymer blend presented a higher bulk physical stability on 

aging under stressed humidity than the binary felodipine-EUDRAGIT® EPO melt extrudates with 

70% (w/w) drug loading. By using Eq 5.1, crystallinity of felodipine in this system on aging was 

studied and results are shown in Figure 7.12. The crystallinity of felodipine in this system increased 

from 0.69% (fresh) to 1.31% (w/w) after 6 months aging indicating a high bulk physical stability 

on aging despite the severe surface recrystallization. The kinetics of the crystallisation of 70% 

(w/w) felodipine-EUDRAGIT® melt extrudates did not fit in the Avrami model (described in 

Chapter 6) due to the lack of nucleation phase as proved by the existence of crystals in fresh 

samples. 

 

Figure 7.12: The amount of crystalline felodipine in 70% (w/w) felodipine- EUDRAGIT® EPO melt 

extrudates on aging under 75%RH/room temperature calculated by using measured melting enthalpy. 

7.3.3.2 Stressed temperature 

  In order to study the physical stability against stressed temperature, the polymer blend and the two 

binary melt extrudates were aged under 23%RH/40oC. No crystalline felodipine can be detected on 

the surface of any melt extrudates with 50% (w/w) drug loading and below aged under this 

condition up to 6 months.  

  Similar to the stressed humidity results, no obvious evidence of recrystallisation of felodipine was 

detected on the surface of the 70% (w/w) polymer blend melt extrudates up to 6 months aging as 
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melt extrudates demonstrates that 70% (w/w) felodipine-polymer blend systems could maintain as 

amorphous solid dispersions for at least 6 month under 23%RH/40oC.  

 

Figure 7.13: ATR-FTIR results of NH groups of the surface of different 70% (w/w) melt extrudates 

aged under 23%RH/40oC for different time periods. 

  The bulk physical stability of the polymer blend and the two binary melt extrudates was evaluated 

using MTDSC. MTDSC results show that after 6 months aging, melting can be only detected in 70% 

(w/w) binary felodipine-EUDRAGIT® EPO samples (Figure 7.14).  

 

Figure 7.14: MTDSC results of fresh and 6 months aged (under 23%RH/40oC) 70% (w/w) felodipine- 

EUDRAGIT ® EPO melt extrudates.  

  The crystallinity of felodipine in this sample on aging is shown in Figure 7.15 and it increased 

from 0.11% (fresh) to 2.21% (w/w) after 6 months aging. The kinetics did not fit in the Avrami 

model as the recrystallization started with existed nuclei in freshly prepared sample, and therefore 

lack of the phase of nucleation. 
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Figure 7.15: The amount of crystalline felodipine in 70% (w/w) felodipine- EUDRAGIT® EPO melt 

extrudates on aging under 23%RH / room temperature (calculated by using measured melting 

enthalpy). 

  Physical stability studies of polymer blend and the two binary melt extrudates under stressed 

conditions demonstrate that the polymer blend can enhance the physical stability of felodipine melt 

extrdates in comparison to the both binary felodipine melt extrudates, especially with high drug 

loading. It is very likely to attribute this better physical stability behaviour to the combined effects 

of polymer blends including the higher apparent solid solubility of felodipine in Kollidon® VA64 

and the protection effect of EUDRAGIT® EPO against stressed humidity.  

7.3.3.3 Drug release performance 

  Dissolution studies of the freshly prepared polymer blend and the two binary melt extrudates with 

different drug loadings were carried out under non-sink condition (0.1MHCl). Freshly prepared 

strand form extrudates were milled into powder before dissolution tests.  The drug release profile of 

the freshly prepared polymer blend melt extrudates with 10% (w/w) drug loading shows the most 

significant enhancement in maximum drug release, in comparison to the corresponding two binary 

melt extrudates as seen in Figure 7.16. The maximum drug release can reach as high as 70% 

(equivalent to a felodipine concentration of 7.5µg/ml). The equilibrium solubility of crystalline 

felodipine in this media was measured as 0.69µg/ml, which indicates the apparent solubility was 

increased 10 times higher by polymer blends. However, after 12 hours, the drug release form 10% 

(w/w) felodipine-polymer blend systems decreased to circa 30% (w/w) (equivalent to a felodipine 

concentration of 3.33µg/ml) , which was close to the drug release from the two corresponding 

binary extrudates. With increasing the drug loadings to 30% (w/w) and above, the drug release 

pattern showed subtle differences between polymer blend and binary formulations. After 12 hours, 

all formulations with drug loadings of 30% (w/w) and above all ended with a drug release of circa 

15% to 20% (equivalent to felodipine concentrations from 1.67 to 2.22µg/ml).   
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Figure 7.16: Drug release from freshly prepared polymer blend and binary melt extrudates with drug 

loadings from 10% to 70% (w/w) under non-sink condition (a: felodipine-Kollidon® VA64 melt 

extrudates, b: felodipine-EUDRAGIT® EPO and c: felodipine-polymer blend melt extrudates). 

  Aged formulations showed very similar dissolution profiles to the freshly prepared formulations. 

This is because although a high level of surface recrystallization was observed in the binary 

formulations on aging, the bulk crystallinity was still extremely low as proved by the MTDSC 

study. In addition, the milling process before dissolution test could dilute recrystallized drugs to a 

very low bulk concentration. Therefore the little influence of aging on the dissolution performance 

of formulations could be expected.  

  The mechanism of the different dissolution behaviours including the substantially increased 

maximum drug release from fresh 10% (w/w) polymer blend extrudates, the drug release 
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discussed in the next section). Nevertheless it still demonstrates the application of polymer blends 

in hot melt extrusion can not only enhance the physical stability of felodipine formulations, but it 

also can improve dissolution performance. 

7.3.3.4 Effect of polymers on the solubility of felodipine in solutions 

7.3.3.4.1 Effect of polymers on the solubility of crystalline felodipine 

  In order to understand different dissolution behaviours between polymer blend and the two binary 

melt extrudates, the effect of polymers on the equilibrium solubility of crystalline felodipine in 

0.1MHCl was studied. A series of 0.1MHCl solutions containing different concentrations of 

EUDRAGIT® EPO, Kollidon® VA64 and the physical mixture of the two with the ratio of 50:50 

(w : w) were prepared. Excess amount of crystalline felodipine was added into these solutions. As 

seen in Figure 7.17, the apparent solubility of felodipine increases with increasing the 

EUDRAGIT® EPO concentration in the 0.1MHCl media up to a plateau drug concentration of 

200µg/ml.  EUDRAGIT® EPO concentrations at and above 20mg/ml all reach this maximum drug 

concentration. In contrast, Kollidon® VA64 shows very little solubilisation effect on crystalline 

felodipine in this media. Physical mixtures of the polymer blend dissolved in the media showed 

linear solubilisation enhancement of crystalline felodipine which can reach 155µg/ml with a 

polymer concentration of 38 mg/ml. This represents an over 200-fold increase in solubility in 

comparison to that of crystalline felodipine alone in this media. It should be noted that the 

increased apparent solubility of crystalline felodipine in 0.1MHCl solution by polymer blend was 

mainly contributed by EUDRAGIT® EPO.  Therefore, the concentration of EUDRAGIT® EPO in 

0.1MHCl can play a significant role in influencing the dissolution behaviour of the drug-loaded 

melt extrudtes 

 

Figure 7.17: Apparent solubilities of felodipine in Kollidon ® VA64, EUDRAGIT ® EPO and the blend 

of the two polymers (50:50) solutions with different polymer concentrations in 0.1MHCl media at room 

temperature. 
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  Assuming a linear relationship between EUDRAGIT® EPO concentrations in 0.1MHCl and the 

corresponding apparent solubility of felodipine, an equation with acceptable coefficient can be 

achieved as shown in Figure 7.17. For 10% (w/w) felodipine-EUDRAGIT® EPO extrudates in 

dissolution test, the concentration of EUDRAGIT® EPO was 0.1mg/ml, and using the linear 

relationship the equilibrium solubility of crystalline felodipine was calculated as 2.98µg/ml. The 

value was very close to the observed drug release from fresh 10% (w/w) felodipine-EUDRAGIT® 

EPO extrudates after 12 hours (3.33µg/ml). For 30%-70% (w/w) felodipine-EUDRAGIT® EPO 

extrudates, the calculated equilibrium solubility was 2.23 (for 30% w/w sample), 2.08 (for 50% 

w/w sample), and 1.97µg/ml (for 70% w/w sample). These values were also very close to the drug 

release from 30%-70% (w/w) extrudates after 12 hours (1.67 to 2.22µg/ml). These findings well 

explained dissolution profiles of felodipine-EUDRAGIT® EPO melt extrudates in 0.1MHCl.  

  Kollidon® VA64 did not show a high ability of increasing apparent solubility of crystalline 

felodipine in 0.1MHCl. It can be seen in Figure 7.17 that with increased concentration of Kollidon® 

VA64 in the solution, apparent solubility of crystalline felodipine only increased from 2.18 to 

7.12µg/ml. However, the value of 2.18µg/ml is very close to the drug release from 30%-70% (w/w) 

felodipine-Kollidon® VA64 melt extrudates after 12 hours (1.67 to 2.22µg/ml). This may explain 

the drug release profiles from felodipine-Kollidon® VA64 melt extrudates, although the 

concentration of Kollidon® VA64 generated by melt extrudates in dissolution test was below 

40mg/ml.  

  The increased maximum drug release from 10% (w/w) felodipine-polymer blend extrudates was 

still not clearly understood. The possible reason can be attributed to two aspects. Firstly, the 

incorporation of Kollidon® VA 64 into the polymer blend extrudates may increase the wettability 

of the formulation, which could lead to a faster contact with the dissolution media. This was 

observed during dissolution test that 10% (w/w) felodipine-polymer blend extrudates disappeared 

faster in dissolution media than 10% (w/w) felodipine-EUDRAGIT® EPO samples. Secondly, 

EUDRAGIT® EPO may also be able to inhibit recrystallization of amorphous felodipine in 

0.1MHCl in addition to solubilising crystalline felodipine. This will be discussed in the next section. 

7.3.3.4.2 Effect of EUDRAGIT® EPO on inhibiting recrystallization of amorphous felodipine 
in the dissolution media 

  In addition to solubilising crystalline felodipine in 0.1MHCl media, EUDRAGIT® EPO can also 

inhibit recrystallization of amorphous felodipine in the media. Excess amounts of amorphous 

felodipine (prepared by melt-cool method) were added into the same EUDRAGIT® EPO-0.1MHCl 

solution and the concentrations of felodipine were measured at different time points up to 72 hours. 

As seen in Figure 7.18, the felodipine concentration continued increasing within the first 2 hours in 

all solutions. Subsequently, the concentration started to decrease, but within 6 hours the felodipine 

concentration was still 1.5-2 times higher (felodipine concentration in saturated EUDRAGIT® EPO 
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solution was 7 times higher) than the apparent solubility of crystalline felodipine measured in the 

same solution (200µg/ml). This demonstrates that EUDRAGIT® EPO can inhibit recrystallization 

of amorphous felodipine in 0.1MHCl solution for a certain time period. 

 

Figure 7.18: Felodipine concentration in 0.1MHCl media containing different concentrations of 

EUDRAGIT ® EPO within 72 hours. 

  The ability of EUDRAGIT® EPO in solubilising crystalline felodipine and inhibiting 

recrystallization of amorphous felodipine in 0.1MHCl media was further proved by the dissolution 

study of extremely low drug loading felodipine-EUDRAGIT® EPO melt extrudates (Figure 7.19). 

Melt extrudates of felodipine-EUDRAGIT® EPO with 2.5% (w/w) drug loading were prepared for 

the dissolution study. The quantity of 400mg of this formulation (equals to 10mg of felodipine as 

commercial dose) was added for the dissolution study, this gave a polymer concentration of 

0.43mg/ml in 0.1MHCl media in dissolution. A maximum drug release with 70% was observed in 

dissolution test, and after 10hours, the drug release still maintained at 60% (6.67µg/ml). Using the 

linear relationship in Figure 7.17, the equilibrium concentration of felodipine in this EUDRAGIT® 

EPO solution was calculated as 6.32µg/ml. This dissolution profile of reaching maximum and 

reducing to equilibrium demonstrates that EUDRAGIT® EPO can inhibit recrystallization of 

amorphous felodipine only for short time period. However, the drug release can still be maintained 

at a high level if the amount of EUDRAGIT® EPO was sufficient in solution. In comparison to the 

corresponding formulation with 10% (w/w) drug loading, a significant increase of maximum drug 

release and a higher stable drug concentration was achieved. 
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Figure 7.19: Drug release from 2.5% (w/w) felodipine-EUDRAGIT® EPO melt extrudates under non-

sink condition (0.1MHCl). 

  A great depth of the understanding on the enhancement of maximum drug release from 10% (w/w) 

polymer blend melt extrudates has not been gained yet. However, the results demonstrate that 

EUDRAGIT® EPO not only can solubilise crystalline felodipine but it can inhibit recrystallization 

of amorphous felodipine in the 0.1MHCl media. Therefore, the two proposed explanations 

(inhibiting recrystallization of amorphous felodipine in 0.1MHCl by EUDRAGIT® EPO and 

increasing wettability of the formulation by Kollidon® VA 64) mentioned above for the increased 

maximum drug release from 10% (w/w) felodipine-polymer blend extrudates may seem reasonable. 

7.3.4 Investigation into the micro-structure of polymer blend extrudates  

  Polymer blends can be homogeneous or heterogeneous depending on the miscibility between the 

two polymers. A homogeneous polymer blends can be achieved if the two polymers are completely 

miscible. On the contrary, if the two polymers are partially miscible and immiscible, the polymer 

blends will be typically heterogeneous after processing (20-22). Phase separation with different 

domains could be expected if polymer blends were formed by two immiscible polymers. The size 

and morphology of these domains can be affected by the composition of the blend (23-25). For 

immiscible polymer blends, the morphology of the domains of one polymer can be manipulated 

from phase separated spherical domains to interconnected islands by changing the ratio between 

the two polymers close to 50:50 (24, 25). Furthermore, if the polymer blends are processed under 

biaxial stress, such as air-blowing, the separated domains can be shaped to flat layers instead of the 

spherical domains. If polymer blends are processed under one-directional stress, such as hot melt 

extrusion, the domains are likely to be rod-like shape and act as a fibrotic composite in the blend 

(26-28).  

  In this study, polymer blends have demonstrated the ability of enhancing the physical stability of 

melt extruded solid dispersions. The improved physical stability was attributed to the overall 
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increased drug-polymer solubility in melt extrudates and decreased moisture sorption. These two 

aspects have been clearly proved so far, and the two advantages provided by polymer blends were 

highly correlated with the micro-structure as proposed in Figure 7.1. Therefore, it is essential to 

gain a full understanding of the micro-structure of the polymer blends. 

7.3.4.1 Phase behaviour of polymer blends without drug 

  To understand the micro-structure of melt extrudates prepared with polymer blends, the 

miscibility between the two polymers was evaluated. The phase behaviour of the polymer blends of 

EUDRAGIT® EPO and Kollidon® VA64 was first investigated using MTDSC to determine the Tgs 

of the two polymers which can be used as a typical indicator of the degree of phase separation. In 

order to mix the two polymers, the physical mixtures of the two polymers with ratios of 

EUDRAGIT® EPO: Kollidon® VA64 from 10:90 to 90:10 (w/w) were heated to 140°C and cooled 

to 20°C. After thermal mixing in the DSC pans, each blend sample was tested using MTDSC on 

reheating. Two distinct at 50°C and 107°C were seen in all polymer blend physical mixtures 

(Figure 7.20a), and the two Tgs correspond well to the Tgs of the pure EUDRAGIT® EPO and 

Kollidon® VA64, respectively. This indicates the significant level of immiscibility between the two 

polymers. However, there is no external processing/mixing involved in these physical mixtures, 

which may lead to the physical state of physical mixtures being different from that of polymer 

blends prepared by hot melt extrution. The heat capacity changes at the Tg transitions of the blends 

were further analysed to confirm the immiscibility of the two polymers. If the polymers are highly 

immiscible, no additional phases with an intermediate Tg between the Tgs of the two polymer 

should be detected, and the heat capacity change at the two separated Tgs should be proportional to 

the intrinsic ∆Cp values at Tg of the each pure polymer and a linear correlation should be observed 

between the ∆Cp values at the Tg of each polymer in each blend. This is the case for both Kollidon® 

VA64 and EUDRAGIT® EPO as seen in Figure 7.20b. The ∆Cp value of each polymer in the 

blends is linearly proportional to the ∆Cp of the pure polymer (Figure 7.20b). Based on the 

miscibility study of the two polymers, it demonstrates that the applied polymer blends in this study 

is immiscible. 
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Figure7.20: a: DSC results of the polymer blend with EUDRAGIT ® E PO: Kollidon® VA64 ratios from 

90:10 (top) to 10:90 (bottom) without drug; b: plot of ∆Cp at the two Tgs of each blend vs. percentage of 

Kollidon ® VA64 in the blend. 

  To further investigate phase separation of polymer blends and take into account the effect of 

processing method, polymer blends with the ratio of 50:50 (w/w) (the same as the ratio in melt 

extrudates with felodipine) without drug were prepared by hot melt extrusion. Samples were 

studied using AFM phase imaging (tapping mode) and transition temperature microscopy. As 

shown in Figure 7.21b, phase separated domains with a long strip morphology was dispersed into a 

continuous phase. It also can be noted in Figure 7.21a that phase separation detected by tapping 

mode were not all presented in the topography image, which suggests that the roughness of the 

sample has little influence on the features of AFM phase image. Using Image J to analyse the phase 

image (method has been described in Chapter 5), the ratio of the continuous phase to separated 

phase was 52:48, which was close to polymer blend ratio in formulation (50:50). However, the 

observed two phases by AFM tapping mode cannot be assigned to the two polymers. Therefore, to 

identify the two separated phases, transition temperature microscopy (TTM) was used to 

characterise the polymer blend extrudates. It can be seen in Figure 7.21c that a higher transition 

temperature around 100-110oC was detected in the continuous phase (red), the temperature in 

which was very close to the glass transition temperature of Kollidon® VA64, indicating Kollidon® 

VA64 was the continuous phase. A transition temperature around 40-50oC was detected in the 

separated domains (blue), and the temperature was in agreement with the Tg of EUDRAGIT® EPO. 

This indicates that EUDRAGIT® EPO was the separated phase in the polymer blend extrudates. 

Some domains with transition temperatures between 65-85oC were also detected as shown with the 
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colour of yellow to green in Figure 7.21c. These domains were very likely to be the miscible 

polymer blends. Although high immiscibility between the two polymers was proved by the DSC 

study, given the high temperature and high pressure in hot melt extrusion, a small amount of 

miscible polymer blend could be generated during processing. But as shown in Figure 7.21c, the 

portion of these miscible domains was small, which demonstrates that the two polymers were still 

immiscible even after processing. Using Fox equation (29), the percentage of two polymers in these 

partially miscible phases can be estimated. With a Tg of 65°C, the ratio of EUDRAGIT® EPO to 

Kollidon® VA64 was approximately 63% to 37%. For regions with a Tg of 85°C, there should be 

nearly 30% EUDRAGIT® EPO and 70% Kollidon® VA64. It was also noted that most of the blue 

EUDRAGIT® EPO regions were surrounded by green miscible regions. This indicates that the 

polymer domains were partially inter-connected but largely immiscible. The micro-structure of 

polymer blend composed of EUDRAGIT® EPO and Kollidon® VA64 by hot melt extrusion is 

schematically illustrated in Figure 7.21d.  

 

Figure 7.21: a: AFM toppography and b: phase image of the polymer blend; c: Nano-thermal imaging 

mapping of the 50:50 EUDRAGIT® EPO-Kollidon® VA64 (PVP-VA) polymer blend extrudates and 

the corresponding nano-thermal transition profiles of the 12 slected data point at the bottom of the 
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TTM map; d: schemetic illustration of the micro-strucutre of the EUDRAGIT E PO- Kollidon® VA64 

blend. 

7.3.4.2 Phase behaviour of polymer blend with drug  

7.3.4.2.1 MTDSC results 

  Phase separation in freshly prepared melt extruded polymer blend with felodipine was studied 

using MTDSC as seen in Figure 7.22. Two separated glass transitions can be seen in the freshly 

prepared 10%-50% (w/w) felodipine-polymer blend melt extrudates. Only one glass transition was 

detected in the freshly prepared 70% (w/w) extrdates, and this was because the extremely high drug 

loading brings the Tg value of this system closely down to the Tg value of pure amorphous 

felodipine (45oC).  

 

Figure 7.22: MTDSC results in reversing heat capacity signal of freshly prepared felodipine-polymer 

blend melt extrudates.    

  The amount of felodipine molecularly dispersed in each polymer can be estimated using Fox 

equation with the detected Tg values. The calculated results are summarised in Table 7.1. It can be 

seen that more felodipine molecularly dispersed in Kollidon® VA64 than in EUDRAGIT® EPO in 

all samples (only one Tg value presented in 70% w/w sample leading to the failure of the 

calculation), which is in good agreement with the apparent solid solubility prediction by milling 

method. With increasing drug loading, higher amount of drug partitioned into the Kollidon® VA64 

phase rather than EUDRAGIT® EPO phase. The calculation concludes that in the felodipine-

polymer blend melt extrudates, felodipine dispersed in the two polymers unevenly with a higher 

concentration in Kollidon® VA64 and a lower concentration in EUDRAGIT® EPO.  
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Table 7.1: Calculated drug distribution of felodipine in different polymer domains using MTDSC 

results. 

Polymer Blend 

Systems (w/w) 

W felo in EPO
a
 (w/w) W felo in VA 64

b
 (w/w) Ratio of 

W felo
c
 in EPOTo Wfelo in VA 64 

10% 3.73% 6.27% 1:1.68 

30% 7.24% 22.76% 1:3.14 

50% 9.96% 40.04% 1:4.02 

7.3.4.2.2 Drug-polymer interactions in polymer blend melt extrudates 

  The higher felodipine concentration in Kollidon® VA64 and higher apparent solid solubility of 

felodipine in Kollidon® VA64 were very likely associated with the ability of forming hydrogen 

bonding with felodipine by Kollidon® VA64. As discussed in Chapter 6, no evidence of formed 

hydrogen bonding between felodipine and EUDRAGIT® EPO was shown by ATR-FTIR. In 

contrast, hydrogen bonding was confirmed in the polymer blend melt extrudates as seen in Figure 

7.23. A blue shift of NH peak in felodipine from 3335cm-1 (amorphous felodipine) to 3292cm-1 was 

observed after formulating with Kollidon® VA64 which indicates the formation of hydrogen 

bonding between the drug and the polymer. Instead of a blue shift, a red shift of NH peak was 

observed in the corresponding felodipine-EUDRAGIT® EPO formulation, and the reason has been 

discussed in Chapter 5 that the formed hydrogen bonding between two felodipine molecules was 

affected by the carbonyl groups from EUDRAGIT® EPO. Thus it may suggest that the order of the 

potential of forming hydrogen bonding is felodipine with Kollidon® VA64 > two felodipine 

molecules > felodipine with EUDRAGIT® EPO. In the corresponding polymer blend formulation, 

these two NH peaks were both observed, suggesting the existence of the two separated phases: 

amorphous felodipine-EUDRAGIT® EPO phase and amorphous felodipine- Kollidon® VA64 phase. 

Fourier self deconvolution was applied to analyse the polymer blend formulation with the attempt 

to distinguish the two peaks. However it was impossible to completely separate them, and thus 

quantitative analysis of the drug distribution cannot be achieved. Nevertheless, it still can be 

concluded that hydrogen bonding was formed between felodipine and Kollidon® VA64 and the two 

phases both contained drug molecules. 



Chapter 7 

233 
 

 

Figure 7.23: ATR-FTIR results of NH groups from amorphous felodipine and 50% (w/w) melt 

extruded formulations.  

7.3.4.2.3 Transition temperature mapping analysis 

  Phase separation of felodipine-polymer blend melt extrudates with all drug loadings was also 

studied using transition temperature mapping (TTM) as seen in Figure 7.24. Due to the roughness 

of the cross section of felodipine-polymer blend extrudates, only the surface of the samples was 

tested. Two separated phases were observed on the surface of the 10%-50% (w/w) felodipine-

polymer blend melt extrudates and only one phase was detected on the surface of 70% (w/w) 

sample, which is in good agreement with the MTDSC results. It can be seen that in 10% (w/w) 

sample domains (blue spots) with a transition temperature of around 55oC are separated phases and 

domains (green spots) with a transition temperatures of 95oC are continuous phases. The two 

detected transition temperatures were close to the two Tgs measured by DSC in the same sample. 

This demonstrates that, similar to the polymer blend melt extrudates without drug, in felodipine-

polymer blend melt extrudates, Kollidon® VA64-felodipine is the continuous phase and 

EUDRAGIT® EPO-felodipine is the separated phase. Two separated phase with different transition 

temperatures was also observed on the surface of 30% and 50% (w/w) systems.  The percentage of 

the two detected phases (as shown in blue and green areas) deviates from 50:50, which is possibly 

because the tested areas were too small (30µm×30 µm) to represent the intact phase separation of 

the samples. It is also possible that the surface has different phase behaviour from the bulk. 
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Figure 7.24: TTM results of the surface of freshly prepared felodipine-polymer blend melt extrudates. 

7.3.4.2.4 Photothermal-microspectroscopy analysis 

  Phase separation of felodipine-polymer blend melt extrudates was also studied by photothermal-

microspectroscopy (PT-MS). As transition temperature microscopy could not be applied to the bulk 

of felodipine-polymer blend extrudates, PT-MS was used to study the bulk phase behaviour. The 

analysis of fresh 10 % (w/w) felodipine-polymer blend extrudates is discussed here as an example. 

10% (w/w) felodipine-polymer blends melt extrudates were gently milled into particles by mortal 

and pestle. A single particle from the milled 10% (w/w) samples was attached to the probe for the 

analysis of the bulk phase behaviour. Due to the multi-components in felodipine-polymer blend 

melt extrudates, it is difficult to clearly conclude the phase behaviour of the system as a unique 

peak assigning to the individual component cannot be selected. However, it still shows the uneven 

drug distribution in 10% (w/w) polymer blend systems (Figure 7.25). Three peaks were selected to 

study the phase behaviour of 10% (w/w) systems including 3335cm-1 representing amorphous 

felodipine, 1715cm-1 which is the overlapped peak from EUDRAGIT® EPO and Kollidon® VA64 

and 1681cm-1 (carbonyl groups) which is the contribution from amorphous felodipine-Kollidon® 

VA64 phase in the sample. It can be seen that with normalisation to the 1715cm-1 peak, the relative 

peak intensity of 3335cm-1 (amorphous felodipine) varies among different tests of the 10% (w/w) 

sample, which suggests the uneven drug distribution in 10% (w/w) felodipine-polymer blend 

system. It may also suggest that amorphous felodipine dispersed more in the Kollidon® VA64 

rather than EUDRAGIT® EPO since the PT-MS results showed that with increasing relative 

intensity of amorphous felodipine, the intensity of 1681cm-1 (amorphous felodipine-Kollidon® 
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VA64 phase) increased as well. This demonstrates that phase separation also exists in the bulk of 

the sample, and more felodipine molecularly dispersed in Kollidon® VA64 than in EUDRAGIT® 

EPO in bulk, which is in good agreement with MTDSC results. 

 

Figure 7.25: PT-MS results of freshly prepared and milled particles of 10% (w/w) felodipine-polymer 

blend melt extrudates.  

7.3.4.2.5 Solid state NMR analysis 

  Solid state NMR (ss-NMR) relaxometry is a powerful technique for detecting phase separation 

with sub-micro dimensions (30, 31). In this study, proton solid state NMR relaxometry was used to 

study the bulk phase behaviour of the felodipine-polymer blend melt extrudates. Samples of the 

polymer blend and the two binary melt extrudates with 10% and 70% (w/w) drug loadings (lowest 

and highest in the study) aged under ambient condition for 4 months were tested by solid state 

NMR. The 1H spin-lattice relaxation times, T1 are summarised in Table 7.2. For the two binary 

systems with different drug loadings, a single relaxation of T1 was detected, indicating a molecular 

single-phase system. Although surface recrystallization was observed in the two binary melt 

extrudates with 70% (w/w) drug loading, the bulk crystallinity was still extremely low according to 

the calculated results by MTDSC study, leading to the undetectable phase separation by solid state 

NMR. It should be noted that the relaxation time T1 of all samples was measured by collabrators in 

China (Wuhan Insititute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 

China) and data analysis was carried out by the author.  
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Table 7.2: 1H T1 spin-lattice relaxation time of 10% and 70% (w/w) felodipine-polymer blend and the 

two binary extrudates. 

Samples T1 (1) (ms) T1 (2) (ms) 

felodipine-EPO 10% 

felodipine-EPO 70% 

felodipine-VA 64 10% 

felodipine-VA 64 70% 

felodipine-blend 10% 

felodipine-blend 70% 

81.7 

166.4 

950 

1024 

79 

160 

- 

- 

- 

- 

787 

502 

 

  However, two spin-lattice relaxation times, T1, were detected in the 10% and 70% (w/w) 

felodipine-polymer blend melt extrudates, suggesting the presents of two phases in the dispersions. 

By comparing the relaxation time of the polymer blend melt extrudates to the two binary melt 

extrudates with the same drug loadings, it is reasonable to confirm the separated phases in 

felodipine-polymer blend melt extrudates as felodipine-EUDRAGIT® EPO and felodipine-

Kollidon® VA64. For instance, in 10% (w/w) felodipine-polymer blend extrudates, the T1(1) value 

(79ms) was very close to the T1(1) value (81.7ms) in the binary 10% (w/w) felodipine-

EUDRAGIT® EPO sample, and the T1(2) value (787ms) was also close to the T1(1) value (950ms) 

in the binary 10% (w/w) felodipine-Kollidon® VA64. For a heterogeneous system, the relaxation 

time of different phases can be further used to estimate the dimension of the separated phases (32). 

The observation of two separated relaxation processes for T1 indicates the existence of at least two 

separated domains. Assuming the process of exchange is by spin diffusion, the following 

relationship is valid (33): 

                                                              2√2(A2 / (π2D)) |� |  > 1                                              Eq 7.1 

where A is the dimension over which diffusion takes place and is indicative of the smallest 

dimension of the separated domains, D is the spin diffusion coefficient mediating exchange 

between the two phases, and ∆γ is the difference in the relaxation rates of the separated phases. The 

spin-diffusion coefficient D has a typical value in polymeric systems as 10-16m2s-1 (33). The ∆γ can 

be calculated using Eq 7.2:  

                                                                  ∆γ = 1/ TA – 1/ TB                                                                      Eq 7.2 
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where TA and TB represent the relaxation time of phase A and B. By using Eq 7.1, the size of 

domains can be estimated. The average values of the long T1 (T1 (2)) and short T1 (T1 (1)) of the 

felodipine-polymer blend melt extrudates were used to estimate the domain sizes measured in the 

T1 experiments. The values obtained by Eq 7.1 for 10% (w/w) felodipine-polymer blend melt 

extrudates was greater than 5.5nm, and for 70% (w/w) sample was greater than 9.0nm. As proved 

by TTM study, felodipine-EUDRAGIT® EPO was the continuous phase in the polymer blend 

dispersions. Therefore, the calculated domain size was assigned to that phase. The results cannot be 

interpreted as the accurate size measurement, but an approximate estimation. Also it should be 

noted that the estimated domain size in felodipine-polymer blend melt extrudates by ss-NMR was 

not comparable to the dimension detected by TTM as TTM applied in this study only has a highest 

spatial resolution of 1µm (the smallest distance between the two tested points). 

7.3.5 Immiscible polymer blends as a formulation strategy in amorphous solid dispersions 

   In this chapter, immiscible polymer blends were proposed as a formulation strategy for the 

enhancement of the physical stability of amorphous solid dispersions prepared by hot melt 

extrusion. In comparison to the conventional binary drug-polymer solid dispersions, two 

advantages can be provided by polymer blends.  They are the overall increased apparent solubility 

of drugs in solid dispersions and the reduced moisture sorption. The key factor of the formulation 

design is based on the immiscibility between the two polymers, which ideally should form a 

configuration of phase separation as illustrated in Figure 7.1. With this structure, the polymer 

which has higher solubility will dissolve the majority of drug molecules and form the separated 

phase. The polymer with higher drug solubility is normally hygroscopic which can lead to physical 

instability by moisture sorption. By blending with a hydrophilic polymer, the separated phase can 

be protected from moisture uptake by the continuous phase formed by the hydrophilic polymer 

with low quantity of drugs. Consequently, the physical stability of amorphous solid dispersions can 

be enhanced.  

  The concept of immiscible polymer blend was applied to felodipine amorphous solid dispersions 

by blending felodipine with Kollidon® VA64 (hydrophilic but with higher drug solubility) and 

EUDRAGIT® EPO (hydrophobic) using hot melt extrusion. Although the micro-structure study 

showed an inversed structure (Figure 7.20d) to the proposed phase configuration (Figure 7.1), the 

physical stability was still significantly enhanced both against stressed temperature and stressed 

humidity in comparison to the two binary melt extrudates. The phase configuration of the 

immiscible polymer blends can vary depending on their physical properties. For instance, the 

surface tension of the two polymers at operation temperature in hot melt extrusion may affect the 

phase distribution. Nevertheless, the study proves that in practice even with inversed configuration 

the polymer blend matrix still offers better stabilisation effect.  
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  With a great depth of the understanding of polymer properties, a desired phase configuration can 

be achieved. In addition, using polymer blends can also save the effort for the development of new 

polymers as polymer blends can combine the desired physical properties of individual polymer. 

This immiscible polymer blend proposal may be generalised as a formulation strategy for the 

enhancement of the physical stability of amorphous solid dispersions. 

7.4 Conclusions 

  In this chapter, immiscible polymer blends as a formulation strategy for the enhancement of the 

physical stability of amorphous solid dispersions was introduced. The polymer blend of Kollidon® 

VA64 and EUDRAGIT® EPO was applied in hot melt extrusion with felodipine. The proposed 

formulation concept of this study was the combination of increasing apparent solid solubility of the 

drug by the incorporation of Kollidon® VA64 in the formulation and the moisture protection 

against high humidity by the addition of EUDRAGIT® EPO in the formulation.  

  Higher apparent solid solubility of felodipine in Kollidon® VA64 than in EUDRAGIT® EPO was 

predicted by melting point depression and milling approaches. On aging under stressed temperature 

and humidity, respectively, felodipine-polymer blend melt extrudates with 70% (w/w) drug loading 

showed significantly higher physical stability than the corresponding two binary melt extrudates, 

demonstrating the success of the polymer blend formulation design. It also consequently proves the 

validation of the mechanical milling as a reliable approach in predicting apparent solid solubility. 

The polymer blend formulation dramatically reduced moisture uptake to below 5% (in comparison 

to the 12% moisture uptake by the binary felodipine-Kollidon® VA64 formulation), which also 

contributes to the improved physical stability.  

  The phase separation configuration of felodipine-polymer blend extrudates was confirmed as 

felodipine-Kollidon® VA64 being the continuous phase and felodipine-EUDRAGIT® EPO being 

the separated phase. Felodipine was proved to disperse in both polymers in the polymer blend 

extrudates but a higher felodipine concentration in Kollidon® VA64 phase and a lower 

concentration in EUDRAGIT® EPO was observed, which was in good agreement with the predicted 

apparent solid solubility.   

  In addition to the enhanced physical stability, the application of the polymer blend in melt 

extrusion can also improve dissolution profile of felodipine. A significantly higher maximum drug 

release was achieved from the 10% (w/w) felodipine-polymer blend melt extrudates in comparison 

to the corresponding two binary extrudates. It might be explained by the enhanced wettability 

provided by Kollidon® VA64 and the combined effects of EUDRAGIT® EPO on felodipine in 

0.1MHCl media including the solubilisation effect on crystalline felodipine and the recystallisation 

inhabitation effect on amorphous felodipine. 
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  The polymer blend concept in formulation design in hot melt extrusion may broaden the 

application of the commercially available polymers rather than developing new polymers. The 

concept may also be generalised as a formulation strategy to enhance the physical stability of solid 

dispersions 
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Chapter 8: Enhancement of the physical stability of solid 
dispersions using different processing methods: spin coating vs. 
hot melt extrusion  

8.1 Introduction 

  Solid dispersions have been widely used in the pharmaceutical industry as a formulation strategy 

for increasing dissolution rate of poorly water soluble drugs and hence the bioavailability (1, 2). As 

mentioned in previous chapters, the main challenge of commercialising pharmaceutical 

formulations of solid dispersions is the physical stability issue, which is highly potential to affect 

dissolution performance of amorphous solid dispersions (3-5). To achieve a physically stable 

amorphous drug-polymer formulation, several factors were recommended by pharmaceutical 

researchers including a certain degree of miscibility between drugs and polymers, apparent solid 

solubility of drugs in polymers and some thermodynamic properties such as glass transition 

temperatures of amorphous drugs and polymers (6-8). In addition to these factors mentioned above, 

processing methods have also been reported to be related to the physical stability of amorphous 

solid dispersions (9-11) 

  The fundamental theory of preparing amorphous drug-polymer solid dispersions in general is to 

destroy the lattice structure (long range order) of the crystalline form drugs, and thus amorphous 

drugs with short range order will be formed and be stabilised by the added polymers (12). The 

lattice structure in crystalline drugs can be broken by either dissolving drugs in solutions or melting 

them to temperatures above their melting points (or below melting points depending on the drug-

polymer ratios in formulations) (13). Accordingly, two main methods of preparing solid dispersions 

were introduced in the pharmaceutical industry including solvent evaporation based methods, such 

as film casting or spray drying, and melting based methods, such as hot melt extrusion. 

  Similar to film casting, spin coating is a typical solvent evaporation based preparation process 

whereby crystalline drugs and polymers dissolve mutually in a solvent or co-solvent (14). Unlike 

film casting in which solvent evaporates naturally under either ambient or lower pressure 

environment, solvent evaporation in spin coating occurs due to the fast spinning within a short time 

of preparation (15). It is a technology originated from semi-conductor industry for preparing thin 

film coatings with various thicknesses depending on the applied solvent (16). Due to the precise 

control and high consistency of the processing in preparation, spin coating has been used in the 

pharmaceutical research in areas such as the investigation of crystallisation tendency of amorphous 

drugs and the understanding of recrystallisation behaviour of amorphous drugs (17-19). It also has 

been reported that spin coating was an effective processing method of preparing physically stable 

solid dispersions containing amorphous drugs with different crystallisation tendency (17).  
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  Studies from articles have showed that solid dispersions with the same drug-polymer 

compositions but prepared by different processes exhibited significantly different physical stability 

on aging, which may indicate that the apparent solid solubility of drugs in solid dispersions may 

vary depending on different preparation processing (9-11). In Chapter 6, a high level of surface 

recrystallisation was observed in hot melt extruded felodipine-EUDRAGIT® EPO dispersions aged 

upon exposure to high humidity. In Chapter 7, with the addition of the polymer Kollidon® VA64 

into the binary formulation to increase the overall apparent solid solubility of felodipine in the 

extrudates, the physical stability of amorphous solid dispersions was substantially improved. In this 

chapter, another formulation strategy of enhancing the physical stability of felodipine-

EUDRAGIT® EPO solid dispersions, using spin coating as an alternative rapid solvent evaporation 

preparation process was introduced. With a different mechanism of preparing solid dispersions to 

hot melt extrusion, solid dispersions prepared by spin coating may show different physical stability 

behaviour. Although the reason has not been deeply understood, drug-polymer miscibility and 

solubility may vary depending on different processing methods, leading to an enhanced physical 

stability (9).  In this chapter, the comparison of physical stability between spin coated and hot melt 

extruded felodipine-EUDRAGIT® EPO solid dispersions was reported. Results showed that the 

physical stability of amorphous solid dispersions could be significantly enhanced by spin coating in 

comparison to hot melt extrusion. 

Research objectives 

1. Using spin coating to prepare felodipine-EUDRAGIT® EPO solid dispersions.  

2. Comparing with melt extruded felodipine-EUDRAGIT® EPO formulations to investigate if 

physical stability of solid dispersions can be enhanced by using spin coating. 

3. Investigation into the phase separation of spin coated and melt extruded felodipine-

EUDRAGIT® EPO solid dispersions in order to understand the potential mechanism of the 

enhanced physical stability. 

8.2 Experimental methods 

8.2.1 Hot melt extrusion  

  Instrumental information and operation parameters refer to Chapter 2 (session 2.2.1.1). Drug-

polymer ratio (felodipine:EUDRAGIT® EPO) in melt extrudates included 10:90, 30:70, 50:50, 

70:30 and 90:10 (w/w). The prepared extrudates were stored under 75%RH at room temperature up 

to 10 months. 
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8.2.2 Spin coating 

  Instrumental information and sample preparation refer to Chapter 2 (session 2.2.1.2). Drug-

polymer ratio in spin coated samples included: 10:90, 30:70, 50:50, 70:30 and 90:10 (w/w). The 

prepared spin coated films were stored under 75% RH at room temperature up to 10 months. 

8.2.3 Physicochemical characterisation  

  Instrumental information of the characterisation techniques and the used parameters for MTDSC, 

PXRD, ATR-FTIR, SEM, LTA refer to different sessions in Chapter 2 (2.2.2.1.3 for MTDSC, 

2.2.2.4.2 for ATR-FTIR, 2.2.2.5.2 for PXRD, 2.2.2.6.2 for SEM, and 2.2.8.2 for LTA ) 

8.2.4 Kinetic study of surface recrystallization    

  Method for the kinetic study of surface recrystallization of smelt extruded and spin coated 

felodipine-EUDRAGIT® EPO solid dispersions refers to Chapter 6 (session 6.2.5). 

8.2.5 Neutron Reflectivity 

  Neutron reflectivity was used to investigate the phase separation behaviour of ultra-thin spin 

coated films. It was performed on the SURF neutron reflectometer at the ISIS facility of the 

Rutherford Appleton Laboratory (Oxfordshire, UK). A well-collimated incident neutron beam at a 

glancing angle of less than 2o was shined on the surface of spin coated films and reflected into the 

detector. The neutron beam was polychromatic containing a range of neutron wavelengths from 0.5 

to 6.5 Å. The magnitude of momentum transfer Q was calculated by: 

                                                              Q = 4πsinθ/λ                                                         Eq 8.1 

where λ is the wavelength of the incident neutron beam and θ is the incident beam angle. The 

reflected intensity as a function of time-to-arrival were normalised for the incident beam spectrm 

and converted to reflectivity versus Q using a standard data reduction routine (QUICK) provided 

by the ISIS laboratory. Data measurement and analysis were both carried out by ISIS laboratory. 

  To increase the signal contrast, deuterated felodipine (felodipine-d3(2,3-dichlorophenyl-d3), CDM 

Isotopes, Pointe-Claire, Canada) was used to prepare spin coated thin films with EUDRAGIT® 

EPO. To ensure the flatness of the thin films, spin coating was carried out on silicon wafers rather 

than microscope glass slide for neutron reflectivity study only. 

8.2.6 Dissolution test of melt extrudates 

  Dissolution instrumental information (session 7.2.5) and UV method (session 7.2.4) refer to 

Chapter 7. Freshly prepared and aged strand form extrudates (tested as intact strand) were tested in 

sink-condition media consisting of 0.3% sodium dodecyl sulphate (SDS) in 0.1MHCl. Dissolution 
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samples were filtered using 0.22µm membrane. Strand form extrudates with the same drug loading 

were maintained with the same dimensions between the fresh and aged samples.   

8.3 Results and discussion 

8.3.1 Physical stability studies of hot melt extruded vs. spin coated felodipine-EUDRAGIT® 
EPO solid dispersions 

8.3.1.1 Surface physical stability 

  In terms of the ability of preparing amorphous felodipine-EUDRAGIT® EPO solid dispersions, 

significant difference was observed between spin coating and hot melt extrusion. This was 

particularly evident for 90% (w/w) sample preparation as proved by PXRD results in Figure 8.1. It 

can be seen in Figure 8.1 that freshly prepared 90% (w/w) felodipine-EUDRAGIT® EPO melt 

extrudates showed typical crystalline features (felodipine form I) detected by PXRD, indicating the 

system contains significant amount of felodipine crystals. However, only an amorphous halo was 

observed in the corresponding spin coated sample. This proves spin coating can prepare amorphous 

felodipine-EUDRAGIT® EPO solid dispersions with extremely high drug loading. This may also 

possibly indicate that the apparent solid solubility of felodipine in spin coated solid dispersions was 

higher than that in melt extruded dispersions.  

 

Figure 8.1: PXRD results of freshly prepared 90% (w/w) melt extruded and spin coated felodipine-

EUDRAGIT ® EPO samples. 

  In order to compare the difference of the physical stability, 10%-70% (w/w) melt extruded and 

10%-90% (w/w) spin coated felodipine-EUDRAGIT® EPO solid dispersions were aged under 

75%RH/room temperature up to 10 months (90%w/w melt extrudates were not studied as the fresh 

sample showed a significant amount of crystalline drug). After 10 months aging under 75%RH at 

room temperature, no crystalline felodipine was detected on the surface of 10% (w/w) felodipine-

EUDRAGIT® EPO melt extrudates by ATR-FTIR, indicating significantly high physical stability 

of this sample against stressed humidity.  
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  However, surface recrystallization appeared in 30%-70% (w/w) melt extrudates after aged for 

different time periods by monitoring NH peak position using ATR-FTIR. For 30% (w/w) samples, 

it can be seen that freshly prepared extrudates show an identical NH peak position as the aged 

sample which was very close the NH peak position in crystalline felodipine (Figure 8.2). But this 

did not mean crystalline felodipine was detected on the surface of fresh 30% (w/w) sample. The 

reason has been discussed in Chapter 5 that carbonyl groups from EUDRAGIT® EPO can disturb 

the hydrogen bonding between two felodipine molecules leading to the NH peak shift in the melt 

extrudates. It has been reported that peaks of certain chemical groups (e.g. NH or OH) in drugs in 

crystalline state detected by FTIR can become broader with a lower intensity (in amorphous state) 

after they are changed to amorphous state, and this was the case here with the NH group from 

felodipine (20). It can be seen that after 6 months aging, the NH peak from 30% (w/w) felodipine-

EUDRAGIT® EPO melt extrudates became sharper in comparison to the freshly prepared samples, 

which may suggest the occurrence of surface recrystallization on aging under75%RH/room 

temperature.  

 

Figure 8.2: ATR-FTIR results of the NH group from the surface of 30% (w/w) felodipine- 

EUDRAGIT ® EPO melt extrudates on aging under 75%RH/room temperature. 

  Surface recrystallization in 50% (w/w) melt extrudates were detected after 4 months aging under 

75%RH/room temperature as shown in Figure 8.3. A single NH peak at 3358cm-1 was detected in 

the fresh 50% (w/w) samples, indicating amorphous solid dispersions of the surface. After 4 

months aging, the NH peak shifted to 3365cm-1 which was identical to the NH peak from 

crystalline felodipine, indicating the occurrence of surface recrystallization. 
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Figure 8.3: ATR-FTIR results of the NH group from the surface of 50% (w/w) felodipine- 

EUDRAGIT ® EPO melt extrudates on aging under 75%RH/room temperature. 

  Surface recrystallization in 70% (w/w) extrudates was confirmed after 1 month aging under 

75%RH/room temperature as seen in Figure 8.4. NH peak at 3345cm-1 in freshly prepared 70% 

(w/w) sample shifted to 3365cm-1 after 1 month aging which was identical to the NH peak in 

crystalline felodipine indicating the surface recrystallization on in 70% (w/w) extrudates. The 

ATR-FTIR results showed that 30%-70% (w/w) melt extrudates were not physically stable against 

stressed humidity, and surface recrystallization occurred in these samples after different aging time 

periods.  

  

Figure 8.4: ATR-FTIR results of the NH group from the surface of 70% (w/w) felodipine-

EUDRAGIT ® EPO melt extrudates on aging under 75%RH/room temperature. 

  However, spin coated felodipine-EUDRAGIT® EPO thin films presented substantially different 

surface physical stability by ATR-FTIR tests as seen in Figure 8.5. After 10 months aging, the NH 

peak did not shift in any spin coated samples even including the 90% (w/w) sample, indicating no 

crystalline felodipine appeared on the surface of any spin coated systems and all spin coated 

samples still remained as amorphous solid dispersions. This proves that spin coated felodipine-

EUDRAGIT® EPO were physically stable with the level of the sensitivity of detecting felodipine 
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crystals by conventional ATR-FTIR technology. The ATR-FTIR results demonstrate that the 

physical stability of felodipine-EUDRAGIT® EPO solid dispersions prepared by spin coating was 

significantly higher than prepared by hot melt extrusion, especially the surface physical stability.  

 

Figure 8.5: ATR-FTIR results of the NH group from 50%-90% (w/w) spin coated felodipine-

EUDRAGIT ® systems on aging under 75%RH/room temperature. 

  Surface recrystallization of felodipine-EUDRAGIT® EPO melt extrudates was also studied by 

SEM as seen in Figure 8.6. No particles was observed on the surface of fresh 10% and 30% (w/w) 

extrudates, and few particles were seen on the surface of freshly prepared 50% and 70% (w/w) melt 

extrudates. However, after 10 month aging under 75%RH/room temperature, particles with the size 

of approximately 10µm were seen on the surface of 30% (w/w) extrudates. For 50% (w/w) samples, 

after 10 months aging particles with the size of 30-40 µm were observed. The surface of 10months 

aged 70% (w/w) was nearly covered by particles. Only the surface of 10% (w/w) extrudates was 

still as smooth as the fresh 10% (w/w) sample. SEM results showed that 30%-70% (w/w) 

extrudates had poor surface physical stability on aging under 75%RH/room temperature, which is 

in good agreement with the ATR-FTIR results. 

 

Figure 8.6: SEM images of the surface of fresh and 10 months aged felodipine-EUDRAGIT® EPO melt 

extrudates. 
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  Spin coated thin films showed completely different surface morphology. No particles were seen 

on any freshly prepared thin films. After 10 months aging, only very few particles with the size 

below 30µm were observed on the surface of 50%-90% (w/w) thin films (Figure 8.7). Compared 

with the surface of the corresponding melt extrudates, the particle size and density was 

significantly smaller and lower. This indicates a significantly higher level of physical stability of 

spin coated thin films than that of corresponding melt extrudates. The observed particles in the spin 

coated samples suggest that surface phase separation in spin coated film only occurred at a very 

low level, and it could not be detected by conventional ATR-FTIR.  

 

Figure 8.7: SEM images of the surface of spin coated 10%-90% (w/w) felodipine-EUDRAGIT® EPO 

films after 10 months aging under 75%RH/room temperature. 

  Kinetics of surface recrystallisation in hot melt extruded felodipine-EUDRAGIT® EPO solid 

dispersions on aging were studied using the analysis of SEM images on aging by Image J (Figure 

8.8). After 10 months aging, approximately 10% (calculated using the measured total particle areas 

divided by the size of the whole image area) of the surface area tested by SEM was covered by 

particles (drug crystals) in 30% (w/w) melt extrudates, and for 50% (w/w) extrudates the particles-

covered area was circa 30%. For 70% (w/w) extrudates, nearly 90% of the surface area tested by 

SEM was covered by particles, indicating a high level of surface recrystallization in this sample. 

Kinetics of surface recrystallization of 30%-70% (w/w) melt extrudates did not fit in the Avrami 

model (described in Chapter 6) as it lacked of the nucleation phase and the phase of the completion 

of the nucleation. Instead, linear relationships with acceptable regression coefficients were found 

for the kinetics of surface recrystallization of 30%-70% (w/w) extrudates (Figure 8.8). The slope of 

individual linearity can be considered as the surface crystal growth rate of each sample on aging. It 

clearly showed that the recrystallization rate increased with increasing drug loading on aging 

(5.48µm2/day for 30%w/w extrudates, 13.67µm2/day for 50%w/w extrudates, and 34.24µm2/day 

for 70%w/w extrudates). 
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Figure 8.8: Results of total particle domain area (%) achieved by using Image J to analyse SEM 

images on the surface of felodipine-EUDRAGIT® EPO melt extrudates with different drug loadings. 

  Kinetics of surface recrystallization of spin coated thin films was also studied. For 50%-90% 

(w/w) spin coated solid dispersions, no particles were observed on the surface after 2 months aging 

under 75%RH/room temperature. After 10 months aging, the percentage of the surface area 

covered by particles (drug crystals) was below 10% (calculated using the measured total particle 

areas divided by the size of the total image area) for all samples even including the 90% (w/w) spin 

coated film. For spin coated thin films, the nucleation phase was observed as proved by the absence 

of particles on the surface within the first 2 months aging time period. However, kinetics of the 

surface recrystallization of spin coated thin films still did not fit in the Avrami model. This is 

because the crystals growth on the surface occurred at a slow rate on aging and after 10 months 

aging the overall surface recrystallization was still significantly below completion, leading to the 

unfitting in the sigmoidal of the Avrami model. The kinetics surface recrystallization in spin coated 

films on aging showed a linear relationship as seen in Figure 8.9 (form 2 months to 10 months 

aging time). The slope of the linearity can be considered as the surface crystal growth rate in 

individual spin coated thin film, and it can be seen that the rate increased with increasing drug 

loading. This can also provide a clear comparison of recrystallization rates between melt extrudates 

and spin coated films. Surface recrystallization rate of 70% (w/w) melt extrudates (34.24µm2/day) 

was nearly 10 times faster than the rate of 90% (w/w) spin coated films (3.88µm2/day). This again 

demonstrates that the physical stability of felodipine-EUDRAGIT® EPO solid dispersions prepared 

by spin coating was significantly higher than prepared by hot melt extrusion, especially the surface 

physical stability.     
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Figure 8.9: Results of total particle domain area (%) achieved by using Image J to analyse SEM 

images on the surface of spin coated felodipine-EUDRAGIT ® EPO thin films with different drug 

loadings. 

8.3.1.2 Bulk physical stability   

  Due to the extremely low sample mass and the difficulties of removing the thin films from the 

coating substrate, bulk physical stability of spin coated felodipine-EUDRAGIT® EPO cannot be 

studied using MTDSC. The bulk physical stability was studied using PXRD. After 10months aging 

under 75%RH/room temperature, no crystalline felodipine was detected by PXRD in any spin 

coated samples, indicating all spin coated samples remained as amorphous solid dispersions as bulk. 

This demonstrates high bulk physical stability of spin coated felodipine-EUDRAGIT® EPO thin 

films. 

    Bulk physical stability of melt extrudates was studied using MTDSC. No melting of crystalline 

felodipine was detected by MTDSC in the extrudates with the drug loading of 50% (w/w) and 

below after 10 months aging under 75%RH/room temperature. This can be attributed to the reason 

that the amount of recrystallised felodipine in those formulations was below the detection 

sensitivity of MTDSC. Felodipine crystals were very likely to re-dissolve into the polymer on 

heating as proved in the melting point depression study of felodipine in EUDRAGIT® EPO in 

Chapter 4. This also proves the surface recrystallization level of these samples was low. 

  Melting of crystalline felodipine was detected by MTDSC in 70% (w/w) melt extrudates on aging, 

and using Eq 5.1 the crystallinity in this sample can be analysed quantitatively as seen in Figure 

8.10. The amount of crystalline felodipine increased from 0.7% (w/w) in freshly prepared sample 

to 1.8% (w/w) after 10 months aging under 75%RH at room temperature, indicating extremely high 

bulk physical stability despite the high degree of surface recrystallization. The recrystallization 
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profile does not fit in the classic Avrami model due to the existing heterogeneous nuclei in freshly 

prepared samples.    

 

Figure 8.10: The amount of crystalline felodipine in 70% (w/w) felodipine-EUDRAGIT® EPO melt 

extrudates on aging under 75%RH at room temperature calculated using the measured melting 

enthalpy. 

  The physical stability study of felodipine-EUDRAGIT® EPO solid dispersions clearly 

demonstrated that spin coating can significantly enhance the physical stability against stressed 

humidity in comparison to hot melt extrusion, especially the surface physical stability. The 

mechanism of the physical stability enhancement will be discussed later in this chapter.  

8.3.2 Investigation into the underpinning mechanisms of the observed physical stability 
difference of melt extruded and spin coated solid dispersions  

  Results of physical stability studied showed that felodipine-EUDRAGIT® EPO solid dispersions 

prepared by spin coating were significantly more stable than by hot melt extrusion. No surface 

recrystallization was detected in any spin coated thin films after 10 months aging under 

75%RH/room temperature by conventional characterisation technology (ATR-FTIR and PXRD). 

However, particles were observed on the surface of 50%-90% (w/w) spin coated thin films on 

aging using SEM, which indicates that surface recrystallization already occurred in spin coated thin 

films but it remained at a low level. Therefore, in order to understand the surface physical stability 

of spin coated and melt extruded felodipine-EUDRAGIT® EPO solid dispersions in greater depth, 

LTA was used to analyse the both aged systems. 
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8.3.2.1 Methodology validation of LTA 

  To confirm the transition temperatures of amorphous and crystalline felodipine detected by LTA, 

a validation study was carried out before the sample tests. To summarise, a spin coated pure 

felodipine thin film (confirmed as amorphous as discussed in Chapter 2) and compressed 

crystalline felodipine tablet were tested by LTA to measure their thermal transition temperatures. 

Results are shown in Figure 8.11. It can be seen that a thermal transition at circa 45oC was detected 

for amorphous felodipine (spin coated thin film of pure felodipine) which is in good agreement 

with the DSC results. However, a consistent transition temperature at circa 120oC was detected for 

crystalline felodipine (compressed tablet of pure crystalline felodipine) which is 25oC lower than 

the melting point (145oC) detected by DSC. This is possibly because the surface defects of 

crystalline felodipine caused by compression, leading to the depressed melting points (21, 22). It is 

also possible that the thermal transition of a material detected by LTA on heating is the transition 

occurs at the temperature where the thermo-mechanical properties of the material change (23). 

Therefore transition temperatures, such as glass transition temperatures (Tg) and melting points (Tm) 

detected by LTA can be lower or higher than those measured by DSC if thermo-mechanical 

properties change on heating occurred at different temperatures from Tg or Tm (24, 25). These two 

reasons are why the reference test of amorphous and crystalline felodipine was carried out before 

testing samples. With the results of reference tests, it was then possible to identify potential phase 

separation and recrystallization on the surface of the thin films and melt extrudates.  

 

Figure 8.11: LTA results of freshly prepared spin coated pure amorphous felodipine (a) and 

compressed crystalline felodipine tablet (b). 

8.3.2.2 LTA studies of spin coated thin films 

8.3.2.2.1 Surface phase separation in aged spin coated thin films detected by LTA 

  The AFM and LTA results of 10 months aged 10% and 30% (w/w) spin coated felodipine-

EUDRAGIT® EPO thin films are shown in Figure 8.12. Only one transition temperature (circa 

80oC for both samples) was detected for both thin films, indicating an amorphous single-phase 
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dispersion for both samples after 10 month aging under 75%RH/room temperature, which is in 

good agreement with the observation by SEM. In addition, it can be seen from the AFM 

topography images that these two samples had very smooth surfaces with a roughness within 

150nm, indicating a significantly low level of heterogeneity. Transition temperatures detected for 

10% (w/w) and 30% (w/w) samples (glass transition temperatures) were close at circa 80oC, which 

were different from the values of the corresponding melt extruded solid dispersions measured by 

DSC (46oC for 10% w/w and 39oC for 30%w/w). This temperature difference may be speculated 

with two reasons. Firstly, this can be explained by the reason that the thermo-mechanical properties 

of the spin coated thin films were different from the corresponding melt extruded solid dispersions. 

Secondly, it is possible that glass transition temperatures of solid dispersions with the same 

composition prepared by different processing methods can be different, although the mechanism 

has not been clearly understood. However, these two speculations can not be proved. Nevertheless, 

with the detected single transition temperatures of 10% and 30% (w/w) spin coated thin films in 

between the reference amorphous and crystalline felodipine transition temperatures, it proves that 

these two systems showed extremely high physical stability against stressed humidity at room 

temperature. 

 

Figure 8.12: LTA results (a) and AFM topography images (b) of 10months aged 10% and 30% (w/w) 

spin coated felodipine-EUDRAGIT® EPO thin films (numbers in LTA results refer to the testing points 

in AFM topography image). 

  Phase separation at different levels were detected in 10 months aged 50%-90% (w/w) spin coated 

thin films as seen in Figures 8.13 and 14. Surface features were observed in 50%-90% (w/w) aged 
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thin films. The sizes of the particles observed in AFM topography images (below 5µm for 50% 

w/w, circa 10µm for 70% w/w, and circa 20 µm for 90% w/w thin films) were in agreement with 

those observed in SEM images. Two phases with the transition temperature of circa 50oC and 65oC 

were detected in 50% (w/w) sample (Figure 8.13), and by comparing the transition temperatures in 

the sample with the reference tests they can be confirmed as amorphous felodipine phase (50oC) 

and miscible felodipine-EUDRAGIT® EPO phase (65oC). Although few particles were scanned by 

AFM in the 50% (w/w) sample, no crystalline felodipine was detected, and they could be the early-

stage phase separated amorphous felodipine from underneath the surface layer of the film as 

reported in the literature (19). 

 

Figure 8.13: LTA results (a) and AFM topography image (b) of 10 months aged 50 (w/w) spin coated 

thin films (numbers in LTA results refer to the testing points in AFM topography image).    

  Crystalline felodipine was detected in 70% and 90% (w/w) thin films as seen in the Figure 14. 

The detected higher transition temperatures (110oC) in both samples were close to the transition 

temperature of crystalline felodipine (120oC) in the reference tests. Therefore it is reasonable to 

conclude the occurrence of recrystallization of felodipine in both samples after 10 months aging 

under 75%RH/room temperature. The detected lower transition temperatures in both samples (70oC 

for 70% w/w sample and 60oC for 90% w/w sample) showed consistent and the two values in 

between the transition temperatures of amorphous (45oC) and crystalline felodipine (120oC) in the 

reference tests. Thus they were very likely to be the miscible drug-polymer phase. In addition, 

those detected transitions of crystalline felodipine only occurred on the scanned particles, 

confirming these particles being felodipine crystals.  
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Figure 8.14: LTA results (a) and AFM topography images (b) of 10 months aged 70% and 90% (w/w) 

spin coated thin films (numbers in LTA results refer to the testing points in AFM topography image).   

  In summary, the LTA results of the aged spin coated thin films showed that phase separation and 

recrystallization were only detected in 50%-90% (w/w) samples after 10 months aging under 

75%RH/room temperature, and they all occurred at a low level (as proved by the AFM topography 

images). Amorphous felodipine was detected in 50% (w/w) samples, and crystalline felodipine was 

detected in 70% and 90% (w/w) thin films. These findings possibly indicate that three steps were 

involved with regards to phase separation in spin coated felodipine-EUDRAGIT® EPO thin films 

on aging and they are 1) freshly prepared miscible drug-polymer, 2) followed by the appearance of 

phase separated amorphous drug in the possible drug-rich phase on aging and 3) completed in the 

form of recrystallized drugs. The absence of detecting amorphous drug phase in 70% and 90% 

(w/w) films could be attributed to the reason that separation in terms of the presence of amorphous 

felodipine in both systems had already accomplished at an earlier stage on aging.  

8.3.2.2.2 Attempt of using neutron reflectivity to study phase behaviour of ultra-thin spin 
coated films 

  Spin coated thin films showed extremely high physical stability against stressed humidity, and 

only a low level of phase separation was detected in 50%-90% (w/w) samples. This may suggest 

that solid dispersions prepared by spin coating may result in a molecular dispersion, whereby drugs 

dissolve into to polymers in solid dispersions forming a solid solution. However, due to the 
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thickness of the spin coated films (500nm-10µm), very limited technologies can be applied to 

investigate drug-polymer distribution in the spin coated films. Neutron reflectivity has been 

reported as a successful tool to study thin films (26). It is based on the classic specular reflection 

approach which analyses the beam energy change as a function of incident angle. The information 

regarding the structure and composition of thin films particularly in molecular dimensions can be 

provided (27, 28). Although it is normally applied to study films composed of single layer of 

molecules, an initial attempt of using neutron reflectivity to investigate drug polymer distribution in 

spin coated thin films was carried out in this study.  For neutron reflectivity study, ultra-thin films 

were prepared.  

  90% (w/w) spin coated samples showed very good data fitting as shown in Figure 8.15. After data 

fitting, a felodipine layer with the thickness of approximately 300nm was confirmed to cover the 

surface of 90% (w/w) spin coated thin film. The reason for this separated drug layer on top was still 

not clearly understood. The 10% (w/w) sample showed an almost identical pattern to pure 

EUDRAGIT® EPO, and this might be due to the low drug concentration in this system. The 30%-

70% (w/w) spin coated d-felodipine-EUDRAGIT® EPO showed very poor data fitting, indicating 

drug molecules distributed into small patches in the systems instead of complete phase separation 

by layers as in 90% (w/w) sample.  

 

Figure 8.15: Neutron reflectivity patterns of fresh 10% and 90% (w/w) d-felodipine-EUDRAGIT® 

EPO and pure EUDRAGIT® EPO spin coated samples. 

  According to the neutron reflectivity results, the proposed drug-polymer distribution in fresh spin 

coated films is shown in Figure 8.16. The covered drug layer was not detected in 90% (w/w) spin 

coated films by LTA. This is because the thickness of the film can significantly influence the phase 

behaviour in thin films (29-31). Spin coated films on microscope slide gave a thickness of circa 

10µm whereas using silicon wafer the thickness of the spin coated films was decreased to sub-
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micron level. Therefore, spin coated felodipine-EUDRAGIT® EPO films with different thickness 

showed different phase behaviour. 

 

Figure 8.16: Proposed drug-polymer distribution in fresh spin coated felodipine- EUDRAGIT® EPO 

thin films. 

8.3.2.3 LTA studies of hot melt extrudates 

8.3.2.3.1 Bulk physical stability 

  LTA was first applied to investigate the bulk physical stability of aged hot melt extruded 

felodipine-EUDRAGIT® EPO dispersions. As discussed earlier, MTDSC results showed that the 

bulk physical stability of melt extrudates was still extremely high after 10 months aging under 

75%RH at room temperature. Crystallintiy in 70% (w/w) extrudates only increased form 0.7% w/w 

(fresh) to 1.8% w/w after 10 months aging. This was further confirmed using LTA to test the cross 

section of the 10 months aged melt extrudates. It should be mentioned that AFM imaging cannot be 

performed on the cross section of the extrudates due to the roughness (caused by using a scalpel to 

cut the strand form extrudates), and therefore the topographyare not provided. It can be seen in 

Figure 8.17 that only one transition temperature (60oC for 10% w/w, 55oC for 30%w/w, 50oC for 

50%w/w and 45oC for 70%w/w extrudates) was detected on the cross section of all melt extrudates 

after 10 months aging under 75%RH/room temperature, indicating 10%-70% (w/w) melt extrudates 

as bulk were still physically stable. The detected transition by LTA in all samples can to be 

confirmed as the miscible drug-polymer phases as these transition temperatures were in between 

the amorphous and crystalline felodipine transition temperatures in the reference study. Melting of 

crystalline felodipine in fresh and aged 70% (w/w) extrudates was detected by DSC. However, as 

proved by the surface morphology study of 70% (w/w) extrudates, felodipine crystals were likely 

to stay on the surface rather than the cross section. Therefore, no crystalline felodipine was 

detected on the cross section of aged 70% (w/w) extrudates. 
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Figure 8.17: LTA results of the cross section of 10months aged 10%-70% (w/w) felodipine- 

EUDRAGIT ® EPO. 

8.3.2.3.2 Surface recrystallization 

  Surface recrystallization of 10 months aged (under 75%RH/room temperature) melt extrudates 

was studied by LTA. Due to the roughness of the surface of the aged melt extrudates, AFM 

imaging area was only restricted to 10µm ×10µm. It can be seen that even with the small scanning 

area (Figure 8.18 and 8.19), the roughness of the surfaces was still high (with a range between 0.6-

2.1µm between 10%-70% w/w extrudates), which suggests a great level of surface phase separation 

after 10 months aging. Although no crystalline felodipine was detected on the surface of 10% (w/w) 

extrudates by ATR-FTIR, thermal transition of crystalline felodipine was confirmed by LTA as 

seen in Figure 8.18. Two separated phases were detected within the scanned area and they can be 

assigned to the miscible drug-polymer phase (60oC) and crystalline felodipine (110oC). This 

demonstrates that phase separation still occurred locally on the surface of the 10% (w/w) sample 

but with a low level as proved by the size of the particles (felodipine crystals) in the topography 

image (below 5µm).  
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Figure 8.18: LTA results (a) and AFM topography image (b) of the surface of 10 months aged 10% 

(w/w) felodipine-EUDRAGIT ® EPO melt extrudates (numbers in LTA results refer to the testing 

points in AFM scanning image).  

  Surface recrystallization in 10 months 30%-70% (w/w) extrudates was also confirmed using LTA 

(Figure 8.19). Miscible drug-polymer (with the transition temperatures of 55oC for 30%w/w, 50oC 

for 50%w/w and 45oC for 70%w/w extrudates) and crystalline drug (with the transition temperature 

of circa 120oC) were both detected on the surface of 30%-70% (w/w) melt extrudates. In addition, 

taking into account the significantly smaller imaging areas (10µm ×10µm for extrudates and 

100µm ×100µm for thin films), particle (felodipine crystals) density on the surface of melt 

extrudates should be significantly higher than that on the surface of spin coated thin films.  
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Figure 8.19: LTA results (a) and AFM scanning images (b) of the surface of 10 months aged 30%-70% 

(w/w) felodipine-EUDRAGIT ® EPO melt extrudates (numbers in LTA results refer to the testing 

points in AFM scanning image) (the red circles refer to the detected first reansition in samples with 

double transitions).  

  Double thermal transitions in one test were detected on the surface of 30% and 50% (w/w) melt 

extrudates (as highlighted by red circle in Figure 8.19). For instance, in the LTA result of 30% 

(w/w) melt extrudates, a double transition was detected in Test 2. The first transition occurred with 

a decrease of the deflection signal at the temperature identical to the temperature where the thermal 

transition of miscible drug-polymer occurred (Test 3). Subsequently, following the first transition 

another transition was detected in the same test, which showed a transition temperature close to the 

LTA-detected melting of crystalline felodipine and it was also very close to Test 1. This suggests 

that, in Test 2 the thermal probe was first in contact with the miscible drug-polymer layer and after 

penetration the first layer on heating, it touched the second layer, crystalline drug. Similar results 

were achieved in 50% (w/w) samples as shown in Figure 8.19. Consequently, this may suggest that 
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surface recrysllisation may occur from the layer underneath the surface and the crystals grew 

upwards rather than inside of the extrudates on aging.  

8.3.2.4 Possible mechanisms of surface recrystallization of hot melt extrudates 

  Surface crystallisation of pure amorphous drugs has been investigated in articles (32-34). By 

evaluating the surface recrystallization of indomethacin, nifedipine, it was concluded that surface 

recrystallization rate could be 1 to 2 orders of magnitude faster than the bulk recrystallization rate 

at the temperature below their glass transition temperatures (33). The reason was attributed to the 

greater molecular mobility of amorphous drugs on the surface than in the bulk, leading to the 

higher surface recrystallization rate, and using gold nano-coating to cover the surface the 

recrystallization rate was significantly reduced (32). These researches made a great contribution to 

the confirmation of higher surface recrystallization rate of amorphous drugs in comparison to the 

bulk. However, it did not discuss surface recrystallization behaviour of drug-polymer solid 

dispersions. Recently, Qi et al reported a study concerning early stage phase separation of 

felodipine-PVP solid dispersions prepared by spin coating (19). In this literature, it was confirmed 

that surface recrystallization of felodipine-PVP solid dispersions initiated in the layer underneath 

the surface rather than on the surface, and a drug concentration gradient towards the surface was 

observed on aging due to the drug migration (19). In this study, similar surface recrystallization 

progress to Qi et al report was observed in felodipine-EUDRAGIT® EPO melt extrudates. 

 Surface recrystallization behaviour of melt extrudates was studied by analysing ATR-FTIR data of 

the surface of melt extrudates on aging (Figure 8.20 and 8.21). Results of 70% (w/w) melt 

extrudates was discussed here as an example (Figure 8.20a). As can be seen in the figure the 

spectra were normalised to the intensity of the carbonyl group from the drug (1696cm-1), and 

subsequently a trend of decreased intensity of carbonyl group from the polymer (1727cm-1) in the 

same extrudates with increasing aging time periods was observed. This was also observed in 30% 

and 50% (w/w) extrudates on aging (Figure 8.21).   
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Figure 8.20: a:ATR-FTIR results of carbonyl groups in 70% (w/w) felodipine-EUDRAGIT ® EPO melt 

extrudates on aging under 75%RH/room temperature; b: peak intensity ratio of normalised 1696cm-1 

to 1727cm-1 in 30%-70% (w/w) melt extrudates on aging.  

  Peak intensity ratio of the normalised 1696cm-1 (carbonyl group form crystalline felodipine) to 

1727cm-1 (carbonyl group from EUDRAGIT® EPO) against aging time is shown in Figure 8.20b. 

With increasing aging time, gradually increased drug concentration was detected on the surface of 

30%-70% (w/w) extrudates. This may indicate the procedure of the surface recrystallization of melt 

extrudates. Firstly, the reduced relative peak intensity form the polymer indicates the increased 

drug concentration towards the surface on aging. Secondly, the gradually increased drug 

concentration on the surface demonstrates that migration of drug molecules in the extrudates 

occurred from the inner core part towards the surface layer on aging. 

 

Figure 8.21: ATR-FTIR results of carbonyl groups in 30% and 50% (w/w) felodipine-EUDRAGIT® 

EPO melt extrudates on aging under 75%RH at room temperature.  
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  However, drug migration towards the surface was not detected in spin coated samples on aging 

(Figure 8.22). It can be seen that after 10 months aging under 75%RH/room temperature the peak 

intensity ratio of 1696cm-1 to 1727cm-1 did not change in 70% and 90% (w/w) spin coated thin 

films in comparison to the corresponding samples. This demonstrates that within 10 months aging 

under 75%RH/room temperature, there was no drug migration towards the surface in any spin 

coated films, indicating the molecular mobility in spin coated thin films was extremely slow in 

comparison to the corresponding melt extrudates.  

 

Figure 8.22: ATR-FTIR results of carbonyl groups in fresh and 10 months aged 70% and 90% (w/w) 

spin coated felodipine-EUDRAGIT® EPO thin films. 

  Combined with the LTA results, the possible progress of surface recrystallization in felodipine-

EUDRAGIT® EPO melt extrudates on aging under stressed humidity at room temperature could be 

described by the scheme in Figure 8.23. As demonstrated by the LTA measurements on the cross 

section of the melt extrudates, a single phase amorphous solid dispersion was confirmed even after 

10 months aging, it is therefore reasonable to assume that a molecular solid dispersion of 

felopdipine-EUDRAGIT® EPO was formed as bulk after fresh preparation. On aging under 

75%RH at room temperature, drug molecules in the solid dispersions tended to migrate towards the 

surface to form amorphous drug-rich phase (amorphous phase separation in the layer underneath 

the surface), and subsequently within the amorphous drug-rich phase recrystallization of 

amorphous felodipine occurred. Finally, recrystallized felodipine stayed on the surface and at the 

layer underneath the surface. For ATR-FTIR spectroscopy, the IR beam within the mid-infrared 

region can penetrate approximately 1-3µm, which indicates the recrystallization progress occurred 

in the layer 1-3µm underneath the surface (35).  
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Figure 8.23: Schematic illustration of surface recrystallization in felodipine-EUDRAGIT ® EPO melt 

extrudates on aging. 

  In Chapter 5, the apparent solid solubility of felodipine in felodipine-EUDRAGIT® EPO was 

predicted by the milling method as approximate 45% (w/w). The milling method was only 

applicable to measure the bulk drug-polymer solubility. The occurrence of surface recrystallization 

in the melt extrudates with the drug loading (30% w/w) below the predicted solubility could be 

attributed to the proposed recrystallization progress (Figure 8.22). The amorphous drug migration 

towards the surface on aging is very likely to contribute to the surface recrystallization. Due to the 

accumulation of amorphous drugs on the layers underneath the surface on aging, an amorphous 

drug-rich phase was formed (amorphous phase separation in the layer underneath the surface), in 

which the local drug concentration can be higher than the predicted apparent solid solubility. This 

localised higher drug concentration could be the driving force for the surface recrystallization. The 

impetus of the molecular motion at the layer underneath the surface was still not clearly understood, 

and it could be associated with the lower molecular diffusion barrier at the interface between the 

surface of extrudates and the ambient, resulting in higher local molecular motion (32). However, 

this drug migration was not observed in any spin coated solid dispersions on aging (Figure 8.22). 

This is possibly because surface phase separation in all spin coated thin films was still at early 

stage, and therefore drug migration may only occur at a substantially low level.  

  The investigation into surface recrystallisaon of spin coated and melt extruded solid dispersions 

demonstrates the physical stability of felodipine-EUDRAGIT® EPO solid dispersions was 

significantly enhanced by spin coating, especially the surface physical stability. For felodipine-

EUDRAGIT® EPO solid dispersions with the same drug loading, in this study the transition 

temperature of amorphous drug-polymer phase (Tg of amorphous solid dispersion) detected by LTA 

in spin coated thin film was always higher than that detected in melt extrudates (e.g. 10% w/w spin 

coated thin film showed a transition temperature of 80oC whereas the corresponding melt 

extrudates showed a transition temperature of 60oC). Although the amorphous drug-polymer 

transition temperatures of melt extrudates by LTA were different from the value of Tgs measured 

by DSC, given the fact that two systems were both tested using the same technique (LTA), it is 

reasonable to believe that glass transition temperatures of spin coated thin films were higher than 
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the corresponding melt extrudates. As both systems were stored at room temperature which was 

lower than the Tg of any sample, this increased glass transition temperatures by spin coating 

contributed significantly to reduce the molecular mobility of drugs in amorphous solid dispersions 

(36). This reduced molecular mobility of drugs in spin coated thin films in comparison to the 

molecular mobility of drugs in melt extrudates was proved by the ATR-FTIR analysis (Figure 8.20). 

Evident drug migration towards the surface was observed in 30%-70% (w/w) extrudates whereas 

no drug migration was detected in spin coated thin films on aging. Eventually, this reduced 

molecular mobility by spin coating significantly enhanced the surface physical stability of 

felodipine-EUDRAGIT® EPO solid dispersions.   

8.3.3 Effect of surface recrystallization on dissolution performance of melt extrudates 

  Bulk recrystallisation in amorphous drug-polymer solid dispersions on aging has been reported to 

have impact on dissolution performance from formulations (37). However, very few articles 

focused on the effect of surface recrystallization on drug release from solid dispersion formulations. 

If melt extrudates were tested as intact strand, it could be expected that surface recrystallisation 

may reduce overall drug release rate. This is because the dissolution of the inner core part 

(amorphous solid dispersion) can be delayed due to the slower dissolution rate (in comparison to 

amorphous drug) of the drug crystals on the surface.  In order to investigate the effect of surface 

recrystallization on drug release from the extrudates, freshly prepared and 10 months aged 10%-70% 

(w/w) strand form (intact strands without milling) extrudates were tested and compared. It should 

be mentioned that due to the low mass of spin coated thin films, dissolution test cannot be carried 

out using conventional dissolution bath with 900ml media.  

  Preliminary study showed that under non-sink condition (0.1MHCl), drug release was 

undetectable for any freshly prepared strand form formulation after 3 hours. This is possibly 

because the significantly smaller surface area (in comparison to the milled extrudates in dissolution 

test) delayed the dissolution of the drug and the polymer. As proved in Chapter 7, drug release 

from felodipine-EUDRAGIT® EPO melt extrudates in 0.1MHCl was dominated by the 

concentration of dissolved EUDRAGIT® EPO in the media, and therefore the insufficient 

dissolution of polymer (after 3 hours, the tested strand samples were still intact strand) could lead 

to the extremely low drug concentration in dissolution test. Therefore, sink-condition composed of 

0.3% (w/v) SDS in 0.1MHCl (solubility of felodipine in this solution was measured as 

273.83µg/ml at 37oC) were used for the dissolution test.  

  No significant difference of accumulated drug release was seen between 10%-50% (w/w) freshly 

prepared and 10months aged felodipine-EUDRAGIT® EPO melt extrudates in strand form as seen 

in Figure 8.24. Maximum drug release was achieved after 20min dissolution of 10%-50% (w/w) 

fresh and aged melt extrudates, indicating surface recrystallization on aging did not have any 

impact on the drug release from formulations with drug loadings of 50% (w/w) and below.  
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Figure 8.24: Results of dissolution test of 10%-50% (w/w) freshly prepared (a) and 10 months aged (b) 

felodipine-EUDRAGIT ® EPO strand form extrudates under sink condition. 

  However, evident differences of dissolution performance between 70% (w/w) fresh and 10 

months aged extrudates were observed as seen in Figure 8.25. Freshly prepared extrudates showed 

a higher dissolution rate than the corresponding 10 months aged sample. In addition, after 24 hours 

dissolution test, maximum drug release from the freshly prepared sample can reach as high as 65%, 

whereas the 10 months aged extrudates only had a maximum release of 38%. This clearly 

demonstrates that surface recrystallization can decrease drug release from intact strand extrudates 

with higher level of recrystallization. 
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Figure 8.25: Results of dissolution test of 70% (w/w) freshly prepared (a) and 10 months aged (b) 

felodipine-EUDRAGIT ® EPO strand form extrudates under sink condition. 

  Drug release from formulations can be described by Noyes-Whitney dissolution equation (38): 

                                                            dW / dt = DA (Cs-C) / L                                          Eq 8.1 

where dW / dt is the dissolution rate, A is the surface area, C is the concentration of the drug in the 

bulk media, Cs is the concentration of the drug in the surrounding diffusion layer and L is the 

diffusion layer thickness. Given the fact that the dimensions of the freshly prepared and 10 months 

aged strand extrudates were controlled by the die of the extruder, the surface area A can be 

considered identical in dissolution between the two samples. Therefore, the main factor that affects 

dissolution rate is the difference of drug concentration in the diffusion layer and the bulk media. 

Since a significantly high degree of surface recrystallization occurred in the 70% (w/w) aged 

sample, the dissolution driving force in aged sample was the dissolution rate of crystalline 

felodipine, whereas in freshly prepared strand sample, dissolution rate of felodipine in amorphous 

solid dispersions became the driving force. The higher dissolution rate of the drug from amorphous 

solid dispersions in comparison to the crystalline counterpart resulted in the higher drug release rate 

in freshly prepared strand extrudates.  Accordingly, given the same dissolution time period, the 

higher dissolution rate from fresh 70% (w/w) formulations could lead to a higher maximum drug 

release at the end of dissolution test. It can be noted that drug release plateau was not achieved 

even after 24 hours dissolution for fresh and 10 months aged 70% (w/w) strand extrudates. This is 

possibly because the total surface area of the sample in contact with dissolution media was not 

sufficiently large leading to a relatively slow dissolution rate in comparison to 10%-50% (w/w) 

strand extrudates.  
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  It was also noted that fresh and 10 months aged 70% (w/w) strand extrudates showed linear drug 

release profile, which was significantly different from 10%-50% (w/w) extrudates (fresh and 10 

months aged). This linear drug release profile indicates drug release from fresh and aged 70% (w/w) 

strand extrudates followed a nearly zero-order kinetics whereby the drug release rate was constant 

throughout the entire dissolution test (39). This zero-order drug release might be attributed to the 

reason that both fresh and 10 months aged 70% (w/w) extrudates served as a reservoir in 

dissolution in which drug concentration was super-saturated and drug was constantly released by 

diffusion into the media though the pathway generated by the dissolved drugs and polymers (40). 

Since EUDRAGIT® EPO was soluble in 0.1 MHCl, the mechanism of dissolution of 70% (w/w) 

extrudates may follow a combination of diffusion and erosion. This could be supported by the 

observation that after 24 hours dissolution test, fresh and 10 months aged 70% (w/w) extrudates 

remained as stand extrudates but with smaller dimension. 

  The dissolution study proved that a high level of surface recrystallization on aging can have a 

significant influence on drug release from intact strand extrudates with high drug loading (70% 

w/w). Aged strand form samples with 70% (w/w) drug loading showed a reduced drug release rate 

leading to a lower maximum drug release under sink condition.  

8.3.4 Potential explanations for the improved physical stability by spin coating 

  In articles, it has been reported in case studies that the rate of surface recrystallization of 

amorphous nifedipine, indomethacin and grisefulvin can be 1-2 orders of magnitude faster than that 

of bulk recrystallization since the molecular mobility at the interface between the bulk and the 

ambient was significantly faster than that in the bulk (32-34).  However, given the fact that the melt 

extrudates and spin coated felodipine-EUDRAGIT® EPO solid dispersions were both aged under 

75%RH/room temperature and the volume to mass ratio of spin coated thin films were substantially 

larger than that of the corresponding melt extrudates, it eventually demonstrates that felodipine-

EUDRAGIT® EPO solid dispersions prepared by spin coating were significantly more stable than 

those prepared by hot melt extrusion.  

  Spin coating as a processing method for the preparation of solid dispersions was limited in the 

pharmaceutical industry and the application was mainly focused on the understanding of the 

fundamental mechanism of physical instability of solid dispersions prepared by spin coating alone 

(19, 41). In this study, by comparing with hot melt extrusion, spin coating was developed into a 

processing method which can be used to enhance the physical stability of amorphous solid 

dispersions. The mechanism of the differences in the physical stability of solid dispersions prepared 

between spin coating and hot melt extrusion was still not clearly understood. However, although 

lack of literature support, based on the nature of spin coating process and the achieved results from 

this study, there still could be several speculations explaining the differences.  
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  Firstly, a more intimate mixing in preparation processing between felodipine and EUDRAGIT® 

EPO by spin coating than by hot melt extrusion could be expected. The drug and the polymer were 

dissolved in a co-solvent before spin coating, which results in a molecular level of mixing between 

the drug and the polymer. Whereas in hot melt extrusion, mixing between drugs and polymers was 

performed by the co-rotating twin screws which may not blend drugs and polymers as intimately as 

the spin coating method. This was possibly because despite drugs and polymers were melted in hot 

melt extrusion, the relatively higher viscosity of melted drug-polymer mixtures in comparison to 

that of pre-spin coating solution may limit the mixing. Secondly, a local “quench” cooling effect in 

spin coating, which is caused by the fast evaporation of the organic solvent during processing, may 

contribute to the preparation of a physically stable solid dispersion. In contrast, the melt extruded 

products were cooled down naturally by the ambient, and thus molecular motion was not as “frozen” 

in melt extrudates as that in spin coating. These two speculations may possibly lead to higher 

apparent drug-polymer solubility in solid dispersions prepared by spin coating than by hot melt 

extrusion. This higher apparent drug-polymer solubility by spin coating could be proved by the 

successful preparation of amorphous felodipine-EUDRAGIT® EPO solid dispersions with 

extremely high drug (90% w/w) whereas hot melt extrusion failed to prepare amorphous solid 

dispersions with the same drug loading.  Thirdly, as demonstrated earlier, molecular mobility of 

drugs in amorphous solid dispersions prepared by spin coating was significantly lower than by hot 

melt extrusion, which leads to the enhanced surface physical stability of spin coated thin films. 

  Although a complete understanding of the higher ability of spin coating in stabilising amorphous 

felodipine in comparison to hot melt extrusion has not been achieved, possibilities discussed above 

are very likely to explain the observed results. Nevertheless, the study still proved that spin coating 

was an effective processing method for enhancing the physical stability of felodipine-EUDRAGIT® 

EPO solid dispersions in comparison to hot melt extrusion.  

8.4 Conclusions 

  In this chapter, a fast solvent evaporation (with no heating involvement which is different from 

spray drying) based method, spin coating, was applied to enhance the physical stability of 

felodipine-EUDRAGIT® EPO solid dispersions. Upon exposure to stressed humidity (75%RH) at 

room temperature on aging, physical stability of formulations prepared by spin coating were 

significantly higher than those prepared by hot melt extrusion, especially the surface physical 

stability. A high degree of surface recrystallization was observed in 30%-70% (w/w) melt 

extrudaes on aging after different time periods using conventional characterisation techniques. In 

contrast, surface recrystallization in 50%-90% (w/w) spin coated samples was only confirmed at a 

low level using LTA after 10 months aging.  

  Upon exposure to stressed humidity (75%RH) at room temperature, drug migration towards the 

surface of melt extrudates to form a drug-rich phase was observed, which was considered as the 
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contribution to the surface recrystallization in extrudates with drug loading (30% w/w) below the 

predicted apparent solid solubility (45%w/w). Drug migration was not seen in spin coated samples 

indicating lower drug molecular motion in spin coated samples than in melt extrudates. This 

reduced drug migration in spin coated thin films was believed to be one of the main reasons for the 

higher surface physical stability provided by spin coating. 

  Surface recrystallization in 70% (w/w) extrudates showed significant impact on dissolution 

performance. The maximum drug release decreased from 65% in fresh samples to 38% in 

10months aged sample. For extrudates with 10%-50% (w/w) drug loadings, no significant 

difference of drug release was observed between fresh and 10 months aged samples. 
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Chapter 9 Concluding remarks 

  The physical stability of amorphous solid dispersions has been the most emphasized topic in 

articles regarding solid dispersions since the concept of the solid dispersion was introduced (1-4). 

The physical instability has been considered as the main obstacle for the formulation development 

and commercialization of amorphous solid dispersions in the pharmaceutical industry (3, 4). It is 

generally accepted that the physical stability can have significant influence on in-vitro and in-vivo 

performance from amorphous solid dispersions containing poorly water-soluble drugs. Therefore, 

from the view of the formulation development of amorphous solid dispersions, it is essential to gain 

a comprehensive understanding of the physical stability in order to better predict and control the 

physical stability. This project was fundamentally designed for the understanding, prediction and 

enhancement of the physical stability of amorphous solid dispersions. By using four model drugs 

(felodipine, celecoxib, carbamazepine and fenofibrate) and three polymeric matrices (EUDRAGIT® 

EPO and Kollidon® VA 64 and the blend of the two polymers) to be formulated by hot melt 

extrusion (main method) and spin coating, three main achievements were obtained from the 

project:1) a clear understanding of factors which dominate the physical stability of amorphous solid 

dispersions; 2) development of a practical method (milling) for more accurate prediction of 

processing-related apparent drug-polymer solubility; 3) development of two methods for the 

enhancement of the physical stability of amorphous solid dispersions. 

9.1 Understanding of the dominant factors controlling the physical stability of amorphous 
solid dispersions    

  In order to find out the key factors associated with the physical stability of amorphous solid 

dispersions, a series of physical properties including glass transition temperatures of amorphous 

drugs, relaxation time (molecular mobility) of amorphous drugs, physical stability of amorphous 

drugs alone and drug-polymer miscibility and solubility were studied. These factors have been 

suggested in articles to be related with the physical stability of amorphous solid dispersions (4-8). 

However, there have been few studies evaluating all these factors together and revealing which of 

these factors are dominating the physical stability of amorphous solid dispersions.  

  In Chapter 3, physical characterization of model drugs and polymers was carried out. Results 

showed that the glass transition temperatures of the model drugs used in this study varied in a 

broad range from (-19oC for fenofibrate) to (58oC for celecoxib). Calculated relaxation time also 

showed a wide range amongst amorphous model drugs. In order to evaluate the physical stability of 

amorphous model drugs thoroughly, amorphous drugs were prepared using melt-cool and spin 

coating, respectively. On aging under 0%RH/room temperature and 75%RH/room temperature up 

to 2 weeks, irrespective of preparation methods, the order of the physical stability of amorphous 

model drugs alone was felodipine > celecoxib > carbamazepine > fenofibrate. However, the Tgs 
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and calculated relaxation time of the model drugs did not show this order, demonstrating these two 

factors may not always correlate with the physical stability of amorphous materials. 

  In Chapter 4, different theoretical approaches including solubility parameter method, melting 

point depression method and an enthalpy based method were used to predict the drug-polymer 

miscibility and solubility (Table 4.5). Predicted solubilities of the model drugs in EUDRAGIT® 

EPO varied with the different theoretical methods used. In Chapter 5, a processing-related method, 

milling, for more accurately predicting apparent drug-polymer solubility was developed. Using the 

milling method, the apparent solubility of the model drugs in melt extrudates was predicted and 

they were felodipine (45%w/w), celecoxib (42%w/w), carbamazepine (18%w/w) and fenofibrate 

(13%w/w). Compared with the solubilities predicted by the theoretical approaches, solubilities 

predicted by the milling method were proved to be more accurate by the real-time physical stability 

studies. This is attributed to the reason that the milling method took into account the effect of 

processing method.  

  In Chapter 6, the real-time physical stability of melt extrudates prepared with model drugs and 

EUDRAGIT® EPO were studied under 4 conditions: 0%RH/room temperature, 75%RH/room 

temperature, 0%RH/40oC and 75%RH/40oC. All melt extrudates were prepared with drug loadings 

below (10% w/w) and above (70%w/w super-saturated) the individual predicted solubility (by 

theoretical and milling methods). Results showed that for individual drug-polymer systems with the 

two drug loadings, stressed humidity had more significant impact on the physical stability than 

stressed temperature. It has been well-known that storage conditions of stressed temperature and 

stressed humidity both have effect on the physical stability of amorphous solid dispersions (3, 9, 

10). However, few studies have disclosed which one had more significant influence on the physical 

stability. Results from the real-time physical stability study clearly revealed that even for systems 

with low water sorption stressed humidity had more significant impact on the physical stability of 

amorphous solid dispersions than stressed temperature. Comparing different drug-polymer systems 

with the same drug loading aged under the condition of 0%RH/room temperature, 75%RH/room 

temperature, 0%RH/40oC, the order of the physical stability of melt extrudates was felodipine > 

celecoxib > carbamazepine ≥ fenofibrate. Only aged under 75%RH/40oC, 70% (w/w) celecoxib-

EUDRAGIT® EPO showed higher physical stability than 70% (w/w) felodipine-EUDRAGIT® 

EPO. The reason can be attributed to the lower glass transition temperature of the 70% (w/w) 

felodipine-EUDRAGIT® EPO systems (38oC) in comparison to the corresponding celecoxib 

systems (58oC), resulting in a high molecular mobility in 70% (w/w) felodipine-EUDRAGIT® EPO 

systems under the aging condition (75%RH/40oC). 

  Combining the physical stability study and the physical characterization study, a comprehensive 

understanding of the physical stability behavior of amorphous solid dispersions prepared by hot 

melt extrusion can be achieved. Amongst all the evaluated factors, only the physical stability of 
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amorphous drugs alone and the predicted drug-polymer solubility by milling method showed the 

same order as the order of the physical stability of different systems. Therefore, it can be concluded 

that these two factors are the dominant factors which control the physical stability of amorphous 

solid dispersions. 

The results from the project significantly enriched the understanding of the behavior of the 

physical stability of amorphous solid dispersions. The practical implications of these finds can be 

useful for the formulation development of amorphous solid dispersions. In terms of selecting 

storage conditions for amorphous solid dispersions, it should avoid high humidity. When screening 

drug candidates for the formulation develop, highly stable amorphous drugs may lead to highly 

stable amorphous solid dispersions.   

9.2 Prediction of apparent drug-polymer solubility in melt extrudates 

  Drug-polymer solid solubility has been suggested as one of the most significant factors associated 

with the physical stability of amorphous solid dispersions (6, 9). However, due to the extremely 

high viscosity of amorphous solid dispersions at room temperature (temperature below the Tg of the 

solid dispersion), it can take years for super-saturated systems to reach the equilibrium state, 

resulting in the difficulty of measuring the equilibrium drug-polymer solid solubility (11).  

  Therefore, instead of measuring the equilibrium drug-polymer solubility, a few attempts by using 

theoretical models have been made to predict the apparent drug-polymer solubility. Solubility 

parameter method, melting point depression method and an enthalpy based method have been 

reported in articles to predict the drug-polymer solubility and they are currently widely used for in 

the area of solid dispersions (6, 12, 13). However, the predicted values by all theoretical 

approaches did not show the same order as the order of the physical stability of different melt 

extrudates on aging. This indicates that these theoretical approaches may not be capable to predict 

drug-polymer solubility accurately due to their limitations (limitations have been discussed in 

Chapter 4 and 5). More importantly, these methods did not take into account the effect of 

processing method on the apparent solubility of drugs in amorphous solid dispersions (14).  

  In this project, a novel milling-based method was developed to more accurately predict the 

processing-related apparent solubility of drugs in melt extrudates. In Chapter 5, by studying the 

effect of milling on the physical state of felodipine-EUDRAGIT® EPO melt extrudates, it 

demonstrated that using milling can significantly accelerate the procedure of super-saturated melt 

extrudates to reach the equilibrium state, which enables the fast prediction of apparent drug-

polymer solubility. The accuracy of the milling method in predicting apparent drug-polymer 

solubility was assessed by comparing the real-time physical stability studies of different systems 

under different conditions. Results showed that systems with higher predicted drug-polymer 
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solubility were more physically stable than systems with lower predicted solubility under most 

conditions.  

  The developed milling method demonstrated its high potential to be practically used in melt 

extruded amorphous solid dispersions for the prediction of drug-polymer solubility and physical 

stabilization. It can be used to rapidly screen a “safe” range of drug loadings to enhance the 

physical stability on aging at the pre-formulation stage. With drug loadings in formulations below 

the predicted solubility by the milling method, melt extruded amorphous solid dispersions are 

expected to have good physical stability on aging.        

9.3 Enhancement of the physical stability of amorphous solid dispersions 

  The enhancement of the physical stability can enhance the shelf life of an amorphous solid 

dispersion. The application of polymers which can potentially form hydrogen bonding with drugs 

are expected to improve the physical stability as the hydrogen bonding may improve the drug-

polymer miscibility and solubility and hence the physical stability. However, as discussed in 

Chapter 7, those polymers can be hygroscopic and amorphous formulations prepared with them 

have high propensity to take up moisture on aging leading to drug phase separation and 

recrystallization. In this project, two methods based on the formulation design and processing 

effect were developed for the enhancement of the physical stability of amorphous solid dispersions, 

and they were the application of immiscible polymer blends in melt extrusion and the development 

of spin coating into a processing method. 

9.3.1 Enhancement of the physical stability of amorphous solid dispersions using immiscible 
polymer blends 

  Polymer blends of EUDRAGIT® EPO and Kollidon® VA64 combined the advantages of the two 

polymers whereby Kollidon® VA64 has higher apparent drug- polymer solubility (proved by the 

milling method) and EUDRAGIT® EPO is hydrophobic which does not take up moisture upon 

exposure to high humidity. Therefore, in felodipine-polymer blend extrudates the overall drug-

polymer solubility was increased in comparison to the binary felodipine-EUDRAGIT® EPO 

systems and the overall moisture uptake was decreased in comparison to the binary felodipine-

Kollidon® VA64 systems. These combined advantages significantly enhanced the physical stability 

of the amorphous solid dispersions on aging under stressed humidity and stressed temperature 

compared with the two binary systems.   

  The developed immiscible polymer blends concept may be generalized as a common formulation 

strategy which can be applied widely in amorphous solid dispersions for the enhancement of the 

physical stability, and may not just be restricted in hot melt extrusion. The fundamental conception 

of polymer blends is to take advantage of the merits of individual polymer and “silence” their 

disadvantage. Ideally, in drug-polymer blend amorphous solid dispersions, more drugs will 
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dissolve into the polymer phase having higher solubility. Due to the immiscibility between the two 

polymers, phase separation will exist in the polymer blend systems. The phase separation can 

effectively protect the high drug concentration phase by increasing the diffusion length of the water 

sorption into the system, and thus decrease the overall moisture uptake of the blend system. 

Therefore, the application of immiscible polymer blends may generally be effective in enhancing 

the physical stability of amorphous solid dispersions prepared by different methods.  

9.3.2 Enhancement of the physical stability using spin coating as a processing method  

  In this project, spin coating was successfully developed into a processing method for the 

enhancement of amorphous solid dispersions. In comparison to the corresponding melt extrudates, 

felodipine-EUDRAGIT® EPO systems prepared by spin coating showed extremely low level of 

surface recrystallisation on aging under 75%RH/room temperature up to 10 months.  

  The enhanced physical stability by spin coating was still not clearly understood, and it may be 

attributed to the decreased molecular mobility as discussed in Chapter 8. Nevertheless, results from 

this part of the project still proved using spin coating can be an effective process to prepare 

amorphous solid dispersions with improved physical stability. The enhanced physical stability by 

spin coating provides several implications to the formulation development of amorphous solid 

dispersions. It clearly demonstrated that physical stability of amorphous solid dispersions can vary 

depending on different processing methods. More importantly, with the growing interest in 

formulating drugs into thin films, such as buccal/sublingual oral films (15-17), spin coating can be 

used as a practical film preparation method to produce amorphous drug-polymer films with high 

physical stability. 

9.4 Recommended future work  

  Results collected from this project provided a comprehensive understanding of the physical 

stability of amorphous solid dispersions, a practical tool for the prediction of apparent drug-

polymer solubility, and two methods for the enhancement of the physical stability of amorphous 

solid dispersions. However, as there were still several results from the project without clear 

explanation, the continuation related to this project might be needed. The recommended future 

work is listed as follows: 

1. Investigation into the underpinning mechanism of the solubilizing effect of EUDRAGIT® EPO 

in 0.1MHCl solution on poorly water-soluble drugs. 

2. Correlating the enhanced in-vitro performance from the polymer blend formulations to the in-

vivo performance by animal test. 

3. Investigation into the mechanisms of the enhanced physical stability by spin coating. 
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