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Quasiminimal structures and excellence

Martin Bays, Bradd Hart, Tapani Hyttinen, Meeri Kesälä and Jonathan Kirby

Abstract

We show that the excellence axiom in the definition of Zilber’s quasiminimal excellent classes is
redundant, in that it follows from the other axioms. This substantially simplifies a number of
categoricity proofs.

1. Introduction

The notion of a quasiminimal excellent class was introduced by Zilber [12] in order to prove
categoricity of his non-elementary theories of covers of the multiplicative group of a field (group
covers) [13] and of pseudoexponential fields [11]. The excellence axiom is the most technical
part, and is adapted from Shelah’s work on excellent sentences of Lω1,ω (see [8]). Both Shelah’s
and Zilber’s work on excellence is described in Baldwin’s monograph [1]. Zilber’s original proof
of categoricity of group covers contained a gap, which was corrected in [3] by strengthening
a hypothesis in one of the statements relating to excellence and giving a new proof. However,
the proof of the categoricity of pseudoexponential fields relied on the original stronger and now
unproved statement from [13]. A patch for the categoricity proof for pseudoexponential fields
was recently circulated by the first and fifth authors [2].

In this paper, we show that the excellence axiom of quasiminimal excellence classes is actually
redundant, in that it follows from the other axioms. This substantially simplifies the proof of
categoricity of Zilber’s group covers and pseudoexponential fields, and avoids the troublesome
part of the proofs where the gaps were.

In the case of first-order theories, part of Shelah’s Main Gap theorem involves reducing a
condition on n-systems of models, akin to excellence, to the case n = 2, where it becomes
the condition (prime models over pairs) that primary models exist over independent pairs
of models [4, 9]. The main insight behind the current paper is that these arguments, suitably
modified, apply also to the (non-elementary) classes of structures considered here, and moreover
that the reduction can be pushed even further, to n = 1, where the condition becomes one of
ℵ0-stability over models. This reduction is performed in Proposition 6.2. In Propositions 4.2
and 5.2, we find that this ℵ0-stability condition does follow from the ℵ0-homogeneity over
models assumed of quasiminimal excellent classes. This argument is based on a classical
argument from stability theory, but the version in this paper is a modification of a corresponding
argument in the non-elementary framework of finitary abstract elementary classes [5].

An uncountable structure M is quasiminimal if every first-order M -definable subset of M
is countable or co-countable. In Section 7, we consider in the light of our main results the
question of when a quasiminimal structure belongs to a quasiminimal excellent class.

Our main results directly answer Question 1 in [6, Section 6]. They also render Question 2
there redundant: it asks for equivalence of the excellence axiom and the conclusion of [6,
Lemma 3.2], which we show both to be consequences of the other axioms, hence trivially
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equivalent modulo them. The remaining questions, 3–5, concern finite-dimensional models; our
techniques say little about these, and in fact it is key to the proof of our main result that we
deal only with infinite-dimensional models.

2. Statement of main result

Throughout this paper, the notion of type will be quantifier-free L-type, denoted by tp. It
will follow from our axioms that if finite tuples ā and b̄ from a model satisfy the same
quantifier-free L-type, then they satisfy the same complete type (and even the same L∞,ω-type),
justifying our notation. In applications, this is usually achieved by expanding the language.
However, it does not necessarily follow that the first-order theory of our models has quantifier-
elimination, since not all types of the first-order theory are necessarily realized in the models we
consider.

Definition 2.1. Let M be an L-structure for a countable language L, equipped with a
pregeometry cl (or clM if it is necessary to specify M). We say that M is a quasiminimal
pregeometry structure if the following hold.

(QM1) The pregeometry is determined by the language. That is, if tp(a, b̄) = tp(a′, b̄′), then
a ∈ cl(b̄) if and only if a′ ∈ cl(b̄′).

(QM2) The structure M is infinite-dimensional with respect to cl.
(QM3) (Countable closure property). If A ⊆M is finite, then cl(A) is countable.
(QM4) (Uniqueness of the generic type). Suppose that H,H ′ ⊆M are countable closed subsets,
enumerated such that tp(H) = tp(H ′). If a ∈M �H and a′ ∈M �H ′, then tp(H, a) =
tp(H ′, a′) (with respect to the same enumerations for H and H ′).

(QM5) (ℵ0-homogeneity over closed sets and the empty set). Let H,H ′ ⊆M be countable
closed subsets or empty, enumerated such that tp(H) = tp(H ′), and let b̄, b̄′ be finite tuples
from M such that tp(H, b̄) = tp(H ′, b̄′), and let a ∈ cl(H, b̄). Then there is a′ ∈M such that
tp(H, b̄, a) = tp(H ′, b̄′, a′).

We say M is a weakly quasiminimal pregeometry structure if it satisfies all the axioms except
possibly (QM2).

Note that, while in (QM5) there is a restriction that a ∈ cl(Hb̄), in the presence of the
other axioms this restriction can be removed. In particular, we have the usual notion of ℵ0-
homogeneity of a structure.

Lemma 2.2. Let M be a weakly quasiminimal pregeometry structure, let b̄, b̄′ be finite
tuples from M such that tp(b̄) = tp(b̄′), and let ā be a finite tuple from M . Then there is ā′ in
M such that tp(āb̄) = tp(ā′b̄′).

Proof. We may assume that ā is a singleton, a. If a ∈ cl(b̄), then apply (QM5). If not, since
cl is a pregeometry and using (QM1) we have dimM � dim(ab̄) = dim(b̄) + 1 = dim(b̄′) + 1.
So there is c ∈M � cl(b̄′), and by (QM4) we can take a′ to be any such c.

Given M1 and M2 both weakly quasiminimal pregeometry L-structures, we say that an
L-embedding θ : M1 ↪→M2 is a closed embedding if for each A ⊆M1 we have θ(clM1(A)) =
clM2(θ(A)). In particular, θ(M1) is closed in M2 with respect to clM2 . We write M1 �cl M2 for
a closed embedding.
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Given a quasiminimal pregeometry structure M , let K−(M) be the smallest class of
L-structures that contains M and all its closed substructures and is closed under isomorphism,
and let K(M) be the smallest class containing K−(M) that is also closed under taking unions
of chains of closed embeddings. Then both K−(M) and K(M) satisfy axioms 0, I, and II of
quasiminimal excellent classes from [6], and K(M) also satisfies axiom IV and, together with
closed embeddings, forms an abstract elementary class. We call any class of the form K(M) a
quasiminimal class.

Our main result is the following theorem.

Theorem 2.3. If K is a quasiminimal class, then every structure A ∈ K is a weakly
quasiminimal pregeometry structure, and up to isomorphism there is exactly one structure
in K of each cardinal dimension. In particular, K is uncountably categorical. Furthermore, K
is the class of models of an Lω1,ω(Q) sentence.

When M satisfies an additional property called excellence, Theorem 2.3 is Zilber’s main
categoricity theorem, specifically in the form from [6, Theorem 4.2 and Corollary 5.7], along
with the Lω1,ω(Q)-definability result [6, Theorem 5.5]. We will prove Theorem 2.3 by showing
in Proposition 6.2 that the specific form of the excellence property used in the categoricity
proof always holds.

Assuming that proposition, we prove the main theorem.

Proof of Theorem 2.3. Let M be a quasiminimal pregeometry structure and K = K(M).
As in [6, Theorem 2.2], all closed subsets of M of dimension ℵ0 are isomorphic to each other,
and are also quasiminimal pregeometry structures. Let M be one. Then, by Proposition 6.2,
M satisfies the excellence property. Thus, by Kirby [6, Corollary 5.7 and Theorem 4.2], K(M)
is a quasiminimal excellent class and has exactly one model of each cardinal dimension, and
by Kirby [6, Theorem 5.5] it is the class of models of an Lω1,ω(Q) sentence. It remains to show
that K = K(M). Let B be a basis for M, and note that M =

⋃{cl(B′) |B′ ⊆ B, |B′| = ℵ0}.
Since K(M) is closed under unions of chains, it is also closed under unions of directed systems,
and hence M ∈ K(M). Thus, K(M) = K(M).

3. Models and types

Let K be a quasiminimal class. We call the structures in K models. Then, by Kirby
[6, Theorem 2.1], the models of dimension up to ℵ1 are determined up to isomorphism by their
dimension. Furthermore, back-and-forth arguments as in the proof of that theorem immediately
give us the following characterization of types.

Lemma 3.1. Let M be a model of dimension at most ℵ1, let M �cl M with M countable,
let H = ∅ or H �cl M , and let ā, b̄ be n-tuples from M . Then the following are equivalent:

(i) tp(ā/H) = tp(b̄/H);
(ii) there exists f ∈ Aut(M/H) with f(ā) = b̄;
(iii) there exists f ∈ Aut(M/H) with f(ā) = b̄;
(iv) there exists f ∈ Aut(M/H) with f(ā) = b̄ and f(M) = M .

Thus, Galois types coincide with syntactic types for types over the empty set and over models,
and furthermore Galois types do not depend on the model in which they are calculated (we
have shown this for models of dimension at most ℵ1, but it will follow from our main result
that it holds for arbitrary models).
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4. Splitting of types

Definition 4.1. Let M be a model, and let B ⊆ M and ā ∈ M. We say that tp(ā/B)
splits over a finite A ⊆ B if there are finite tuples c̄ and d̄ in B with

tp(c̄/A) = tp(d̄/A) but
tp(c̄/A ∪ ā) �= tp(d̄/A ∪ ā).

Proposition 4.2. Let M be a model and M �cl M be a countable closed submodel. For
each finite tuple ā ∈ M, there is a finite A ⊆M such that tp(ā/M) does not split over A.

Proof. Replacing M with cl(Mā), we may assume M to be countable. If M has finite
cardinality, then we may take A = M . So assume |M | = ℵ0.

We suppose that no such finite A exists and construct uncountably many types over M , all
realized in M. This contradicts the countability of M.

Enumerate M = {en : n < ω}. For each k < ω and η : k → 2, we denote by η�0 and η�1
the functions with domain k + 1 extending η and mapping k to 0 and 1, respectively. Given
any function f and a subset A of the domain of f, we write f |A for the restricted function.

We recursively construct finite sets Aη and automorphisms ση ∈ Aut(M) such that:

(i) ση(M) = M ;
(ii) η ⊂ τ implies στ |Aη = ση|Aη;
(iii) for any μ : ω → 2, we have that

M =
⋃

k<ω

Aμ|k,

and that

M =
⋃

k<ω

σμ|k(Aμ|k).

(iv) tp(ση�0(ā)/Bη) �= tp(ση�1(ā)/Bη) where

Bη = ση�0(Aη�0) ∩ ση�1(Aη�1) ⊂M.

First let A∅ = ∅ and σ∅ = IdM. Then assume that we have defined these for all η with domain
� k.

Since tp(ā/M) splits over Aη by assumption, there are finite c̄, d̄ ∈M with

tp(c̄/Aη) = tp(d̄/Aη) but
tp(c̄/Aη ∪ ā) �= tp(d̄/Aη ∪ ā).

Hence, there is f ∈ Aut(M/Aη) mapping c̄ to d̄ and by Lemma 3.1 we may assume that
f(M) = M .

Let ση�0 = ση and ση�1 = ση ◦ f . Furthermore, for i = 0, 1 let

Aη�i = Aη ∪ {ek+1, σ
−1
η�i(ek+1), d̄, c̄}.

We have that

ση�1|Aη = ση�0|Aη = ση|Aη,

and that

ση�1(c̄) = ση(d̄) = ση�0(d̄).

Hence, ση(Aη) and ση(d̄) are in the set Bη of item (iv).
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Now item (iv) must hold, since if there were g ∈ Aut(M/ση(Aη) ∪ ση(d̄)) mapping ση�0(ā)
to ση�1(ā), then the automorphism σ−1

η�1 ◦ g ◦ ση�0 would map d̄ to c̄ and fix ā and Aη,
contradicting splitting.

Finally, we define for each μ : ω → 2 a map fμ as the union of the restricted maps σμ|k on
Aμ|k for k < ω. By item (ii), the map is well defined and by item (iii) it is an automorphism
of M . By Lemma 3.1, each fμ extends to an automorphism πμ of M.

Now suppose that μ, ν : ω → 2 are distinct, let k be greatest such that μ|k = ν|k, and let
η = μ|k. Then without loss of generality, μ|k + 1 = η�0 and ν|k + 1 = η�1. Thus, πμ|Aη�0 =
ση�0|Aη�0, so

tp(πμ(ā)/ση�0(Aη�0)) = tp(πμ(ā)/πμ(Aη�0)) = tp(ση�0(ā)/ση�0(Aη�0)).

Since Bη ⊆ ση�0(Aη�0), we have tp(πμ(ā)/Bη) = tp(ση�0(ā)/Bη).
The same argument shows that tp(πν(ā)/Bη) = tp(ση�1(ā)/Bη).
Thus, by item (iv), tp(πμ(ā)/Bη) �= tp(πν(ā)/Bη) and hence tp(πμ(ā)/M) �= tp(πν(ā)/M).

Thus, we have 2ℵ0 different types over M , all realized in M, which is a contradiction.

5. Isolation of types

Definition 5.1. Let A be a subset of a model M and let ā ∈ cl(A). We say that the tp(ā/A)
is s-isolated if there is a finite subset A0 ⊆ A such that if b̄ ∈ cl(A) and tp(b̄/A0) = tp(ā/A0),
then tp(b̄/A) = tp(ā/A). In this case, we also say tp(ā/A) is s-isolated over A0.

In Shelah’s notation, this is F s
ℵ0

-isolation [9, p. 157]. In general, it does not imply isolation
of a type by a single formula, at least not without expanding the language.

We show that types of tuples inside the closure of a model union a finite set are s-isolated.

Proposition 5.2. Let M be a model, and let M �cl M be a countable closed submodel.
Let ā, b̄ ∈ M be finite tuples with b̄ ∈ cl(Mā). Then tp(b̄/M ∪ ā) is s-isolated.

To show that the hypotheses cannot be significantly weakened, consider a quasiminimal
pregeometry structure M where the language contains a single equivalence relation, and M
has ℵ0 equivalence classes, all of size ℵ0. For A ⊆ M, cl(A) is the union of the equivalence
classes that meet A. Then if M ⊆ M is infinite but not closed, then the conclusion fails.

Proof of Proposition 5.2. By Proposition 4.2, there exists a finite A ⊂M such that
tp(āb̄/M) does not split over A. We may suppose (extending A) that ā is cl-independent
from M over A, and that b̄ ∈ cl(Aā). We will show that tp(b̄/Mā) is s-isolated over Aā.

Let b̄′ ∈ M with tp(b̄′/Aā) = tp(b̄/Aā). Let d̄ ∈M .

Claim 1. There exists d̄′ ∈M such that tp(b̄′d̄/Aā) = tp(b̄d̄′/Aā).

Assume the claim. Then tp(d̄/A) = tp(d̄′/A), so by non-splitting tp(d̄/Aāb̄) = tp(d̄′/Aāb̄).
Hence, tp(b̄d̄/Aā) = tp(b̄d̄′/Aā) = tp(b̄′d̄/Aā), and so tp(b̄/Ad̄ā) = tp(b̄′/Ad̄ā). So
tp(b̄/Mā) = tp(b̄′/Mā).

It remains to prove the claim. Say d̄ = d̄1d̄2 with d̄1 an independent tuple over cl(Aā) and
d̄2 ∈ cl(Aād̄1). By the independence of ā from M over A, in fact d̄2 ∈ cl(Ad̄1). Since b̄ ∈ cl(Aā),
by (QM4) we have tp(b̄′/Aād̄1) = tp(b̄/Aād̄1). So, by Lemma 2.2, there exists d̄′2 ∈ M such
that tp(b̄′d̄2/Aād̄1) = tp(b̄d̄′2/Aād̄1). But then d̄′2 ∈ cl(Ad̄1) ⊆M , so we conclude by setting
d̄′ = d̄1d̄

′
2.
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We remark that the conclusion of Proposition 5.2, or that of Proposition 4.2, could replace
ℵ0-homogeneity over models in the definition of a quasiminimal pregeometry structure.

Corollary 5.3. Let M be an L-structure for a countable language L, equipped with a
pregeometry cl. Suppose that M satisfies (QM1)–(QM4) and is ℵ0-homogeneous over ∅, that
is, the conclusion of Lemma 2.2 holds.

Then the following are equivalent.

(a) The structure M satisfies (QM5).
(b) If M �cl M is countable and ā ∈ M, then there is a finite set over which tp(ā/M) does

not split.
(c) If M �cl M is countable and ā, b̄ ∈ M with b̄ ∈ cl(Mā), then tp(b̄/Mā) is s-isolated.

Proof. Proposition 4.2 gives (a) ⇒ (b), and the proof of Proposition 5.2 gives (b) ⇒ (c).
We show (c) ⇒ (a). LetH, b̄,H ′, b̄′, a be as in (QM5), withH andH ′ closed in M of dimension

at most ℵ0. Write σ : Hb̄→ H ′b̄′ for the given isomorphism. By (c) applied to H �cl M, there
exists c̄ ∈ H such that tp(a/Hb̄) is isolated by tp(a/c̄b̄); let c̄′ := σ(c̄). By ℵ0-homogeneity over
∅, there exists a′ such that tp(c̄b̄a) = tp(c̄′b̄′a′). Now suppose d̄ ∈ H, and let d̄′ := σ(d̄). By
ℵ0-homogeneity over ∅, there exists a′′ such that tp(d̄′c̄′b̄′a′) = tp(d̄c̄b̄a′′), and by the isolation
tp(d̄c̄b̄a′′) = tp(d̄c̄b̄a). So tp(Hb̄a) = tp(H ′b̄′a′) as required.

6. Excellence

Shelah’s notion of excellence says that types over certain configurations we call crowns are
determined over finite sets, that is, s-isolated. It will be convenient to use notation for crowns
that is borrowed from the notation used in simplicial complexes, in particular with the use of
a boundary operator ∂.

Let M be an infinite-dimensional model, let B ⊆M be an independent subset of cardinality
ℵ0, write MB = cl(B), and let b1, . . . , bn ∈ B be distinct. We define ∂iMB = cl(B � {bi}) and
the n-crown ∂MB =

⋃n
i=1 ∂iMB . Note that ∂MB depends on n and the choice of b1, . . . , bn,

but we suppress that from the notation.

Definition 6.1. The model M is excellent if for every n ∈ N with n � 2 and every n-crown
∂MB in M , and every finite tuple ā ∈MB , then the type tp(ā/∂MB) is s-isolated.

Note that the definition of crown here, and consequently the definition of excellence, is a
special case of the definition in [6]. However, it is exactly the special case that is used in the
proofs in that paper.

Proposition 6.2. For each n � 2, each n-crown ∂MB and ā ∈MB we have

(i) tp(ā/∂MB) is s-isolated and
(ii) if tp(c̄/∂MB) = tp(ā/∂MB), then there is π ∈ Aut(MB/∂MB) such that π(ā) = c̄.

In particular, M is excellent.

Proof. Any two n-crowns in M are isomorphic, so we may fix B and assume M = MB. We
proceed by induction on n. The proofs for the base case n = 2 and the inductive step are very
similar, so we do them together. Thus, we suppose that the result holds up to n− 1 for some
n � 2.
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Fix b1, . . . , bn ∈ B, and let ā ∈M be a finite tuple. Choose b0 ∈ B � {b1, . . . , bn} such that
ā ∈ cl(B � {b0}) and let M ′ = cl(B � {b0}). Choose π ∈ Aut(M/ cl(B � {b0, bn})) such that
π(bn) = b0 and π(b0) = bn.

First, suppose n = 2. Then ā, π(ā) ∈ cl(∂1M, b1) so, by Proposition 5.2, tp(ā, π(ā)/∂1M, b1)
is s-isolated.

Now suppose n > 2. Then Λ :=
⋃n−1

i=1 ∂iM is an (n− 1)-crown and cl(Λ) = M so, by part
(i) of the induction hypothesis, tp(ā, π(ā)/Λ) is s-isolated. Note that in this case b1 ∈ Λ, so
tp(ā, π(ā)/b1,Λ) is s-isolated. Thus (whatever n is) tp(ā/b1, π(ā),

⋃n−1
i=1 ∂iM) is s-isolated, say

over A0. Since π(ā) ⊆ ∂nM , we have A0 ⊆ ∂M .
We proceed to show that tp(ā/∂M) is s-isolated over A0. So suppose c̄ ∈M and

tp(c̄/A0) = tp(ā/A0). Then we have tp(c̄/b1, π(ā),
⋃n−1

i=1 ∂iM) = tp(ā/b1, π(ā),
⋃n−1

i=1 ∂iM), so
by Lemma 3.1 (if n = 2) or by part (ii) of the inductive hypothesis (if n > 2) there is
σ ∈ Aut(M/b1, π(ā),

⋃n−1
i=1 ∂iM) such that σ(ā) = c̄. Let η be the commutator η = σπ−1σ−1π.

Then since π(ā) is fixed by σ−1, we have η(ā) = σ(ā) = c̄. Now η fixes
⋃n

i=1 cl(B � {b0, bi}) =
∂M ′ pointwise; indeed, for i = 1, . . . , n− 1 we have cl(B � {b0, bi}) ⊆ cl(B � {bi}), and the
latter is fixed setwise by π and pointwise by σ, while cl(B � {b0, bn}) is fixed pointwise by π
and setwise by σ. So tp(c̄/∂M ′) = tp(ā/∂M ′).

Let B0 be a finite subset of B � {b0, b1, . . . , bn} such that ā ∈ cl(B0 ∪ {b1, . . . , bn}). Then
also c̄ ∈ cl(B0 ∪ {b1, . . . , bn}), since B0 ∪ {b1, . . . , bn} ⊆ ⋃n−1

i=1 ∂iM ∪ {b1}.
Since B is infinite, there is a bijection B � (B0 ∪ {b0, b1, . . . , bn}) → B � (B0 ∪ {b1, . . . , bn})

extending to an isomorphism φ : M ′ →M that fixes cl(B0 ∪ {b1, . . . , bn}) pointwise.
Now tp(c̄/∂M ′) = tp(ā/∂M ′), so tp(φ(c̄)/φ(∂M ′)) = tp(φ(ā)/φ(∂M ′)); but φ(ā) = ā and

φ(c̄) = c̄, and φ(∂M ′) = ∂M , so tp(c̄/∂M) = tp(ā/∂M). Thus, part (i) is proved.
For (ii), suppose that tp(c̄/∂M) = tp(ā/∂M), and so in particular tp(c̄/A0) = tp(ā/A0).

Let η ∈ Aut(M/∂M ′) and φ : M ′ →M be as above. Since η fixes B pointwise, η|M ′ ∈
Aut(M ′/∂M ′). Defining θ = φ ◦ (η|M ′) ◦ φ−1, we have θ ∈ Aut(M/∂M) with θ(ā) = c̄, which
proves (ii).

7. Quasiminimal structures

An uncountable structure M is quasiminimal if every first-order M -definable subset of M
is countable or co-countable. In this section, we treat the question of when a quasiminimal
structure is a quasiminimal pregeometry structure. Certainly some conditions are required,
for example, ω1 × Q equipped with the lexicographic order has quantifier elimination and is
quasiminimal, but the quasiminimal closure (clp defined below) does not satisfy exchange.

Based on the analyses of Zilber [10] and Pillay–Tanović [7], we are able to give simple
‘natural’ criteria that, under the assumption of quasiminimality, substitute for all the conditions
of quasiminimal pregeometry structures other than (QM5). For (QM5), we have no alternative
formulation in this context beyond those given in Corollary 5.3.

So let M be an uncountable quasiminimal structure in a countable language. Suppose,
extending the language if necessary, quantifier elimination for types realized in M : if ā ∈M
and b̄ ∈M have the same quantifier-free type, then ā and b̄ have the same first-order type.

Let p ∈ S1(M) be the generic type, the type consisting precisely of the co-countable formulas.
For A ⊆M , define clp(A) := {x ∈M |x �|= pA}. A weak Morley sequence in p over A ⊆M is a
sequence (a1, . . .) such that ai ∈M and tp(ai/Aa<i) = pAa<i

, where a<i := {aj | j < i}.

Proposition 7.1. (A) The structure (M, clp) is a quasiminimal pregeometry structure if

(i) p does not split over ∅; that is, if tp(b̄/∅) = tp(b̄′/∅), then for all φ we have φ(x, b̄) ∈ p
if and only if φ(x, b̄′) ∈ p, that is, |φ(M, b̄)| = |φ(M, b̄′)|;
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(ii) there is no M -definable partial order on M, defined over finite A ⊆M say, for which
weak Morley sequences in p over A are increasing;

(iii) (M, clp) satisfies (QM5).

(B) Conversely, if (M, cl) is an uncountable quasiminimal pregeometry structure, then M
is a quasiminimal structure, cl = clp, and (i)–(iii) hold.

Proof. (A) By Pillay and Tanović [7, Theorem 4], (i) and (ii) imply that clp is indeed a
pregeometry. Axioms (QM1–3) are clear. Axiom (QM4) follows directly from (i).

(B) By (QM1) and (QM4), there exists a complete type q ∈ S1(M) such that for B ⊆M
finite and a ∈M , we have a |= qB if and only if a /∈ cl(B). By (QM3) and uncountability of
M , a formula φ(x, b̄) /∈ q if and only if φ(M, b̄) is countable. So M is quasiminimal, q = p, and
hence cl = clp.
To prove (i), suppose φ(M, b̄) ∈ p and tp(b̄/∅) = tp(b̄′/∅). Then say a ∈ φ(M, b̄) \ cl(b̄). By
(QM5), there exists a′ ∈M such that tp(a, b̄) = tp(a′, b̄′). By (QM1), a′ /∈ cl(b̄′). Hence,
φ(M, b̄′) ∈ p.
To prove (ii), note that permutations of weak Morley sequences are weak Morley sequences,
since clp = cl is a pregeometry.

Remark 7.2. Conditions (i) and (ii) in the preceding proposition could be replaced with
the following conditions of a more elementary flavour, which appear in [10]:

(i’) ℵ0-homogeneity over ∅;
(ii’) ‘Countability is weakly definable in M ’: if a ∈ clp(b̄), then there exists a formula φ(x, ȳ)

over ∅ such that M |= φ(a, b̄) and |φ(M, b̄′)| � ℵ0 for all b̄′ ∈M ;
(iii’) |M | > ℵ1 or there is no definable partial order on M with a chain in M of order type

ω1.

Indeed, (i’) and (ii’) imply (i), since if ψ(M, b̄) is countable, it is then covered by countably
many φi(M, b̄) as in (ii’); by (i’), if tp(b̄′) = tp(b̄), then ψ(M, b̄′) is countable since it is covered
by the countably many countable φi(M, b̄′). By Zilber [10, Lemma 3.0.3], (ii’) and (iii’) imply
that clp is a pregeometry and hence that weak Morley sequences in p are indiscernible, and
hence that (ii) holds by Pillay and Tanović [7, Theorem 4]; conversely, [7, Theorem 4] shows
under the assumption of (i) and (ii) that p is ∅-definable, which implies (ii’), and that clp
satisfies exchange, which implies (iii’).
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