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Abstract

Tumor heterogeneity is well documented for many characters, including the pro-

duction of growth factors, which improve tumor proliferation and promote resis-

tance against apoptosis and against immune reaction. What maintains

heterogeneity remains an open question that has implications for diagnosis and

treatment. While it has been suggested that therapies targeting growth factors are

robust against evolved resistance, current therapies against growth factors, like

antiangiogenic drugs, are not effective in the long term, as resistant mutants can

evolve and lead to relapse. We use evolutionary game theory to study the dynam-

ics of the production of growth factors by monolayers of cancer cells and to

understand the effect of therapies that target growth factors. The dynamics

depend on the production cost of the growth factor, on its diffusion range and

on the type of benefit it confers to the cells. Stable heterogeneity is a typical out-

come of the dynamics, while a pure equilibrium of nonproducer cells is possible

under certain conditions. Such pure equilibrium can be the goal of new

anticancer therapies. We show that current therapies, instead, can be effective

only if growth factors are almost completely eliminated and if the reduction is

almost immediate.

Introduction

Tumor heterogeneity

Heterogeneity of cells within a tumor is well documented

for many types of cancers and many distinguishable pheno-

types (Marusyk and Polyak 2010) and has important impli-

cations for disease progression (Maley et al. 2006),

diagnosis, and therapeutic responses (Dexter and Leith

1986). As diagnostic biopsies sample only a small region of

the tumor, treatments based upon such samples might not

be effective against all tumor cells. Understanding the ori-

gin, extent, and dynamics of tumor heterogeneity therefore

is essential for the development of successful anticancer

therapies.

A basic question about heterogeneity is still unsolved

(Merlo et al. 2006): how can more than one clone stably

coexist in a neoplasm? Given that the development of can-

cer is a process of clonal selection (Cairns 1975; Nowell

1976; Crespi and Summers 2005; Merlo et al. 2006; Greaves

and Maley 2012) in which cells compete for resources,

space, and nutrients, one would predict that a mutant clone

with a fitness advantage should drive other clones extinct

and go to fixation. Current explanations for the mainte-

nance of heterogeneity include the possibility that different

clones are evolutionarily neutral (Iwasa and Michor 2011),

specialize on different niches (Nagy 2004; Gatenby and Gil-

lies 2008) or are not in equilibrium (Gonzalez-Garcia et al.

2002), or that mutations have small effect (Durrett et al.

2011); which, if any, of these mechanisms are at work in

neoplasms remains an open question (Merlo et al. 2006).

Here, we show that stable heterogeneity for the produc-

tion of growth factors arises as a direct consequence of the

fact that growth factors are nonlinear public goods. We

develop a model of public goods production in the frame-

work of evolutionary game theory and extend it to take

into account specific features of the production of growth

factors by cancer cells growing on a monolayer. We show

how the evolutionary dynamics of the system can explain

the maintenance of stable heterogeneity, how this affects

the development of resistance to anticancer therapies that
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target growth factors, and its implications for the develop-

ment of stable therapies.

Game theory of cancer

Mathematical models of cancer were first developed to

explain the relationship between the time of exposure to

carcinogens and the number of tumors (Charles and Luce-

Clausen 1942) to understand the number of mutations nec-

essary to cause cancer (Nordling 1953) and the observed

age-incidence patterns (Armitage and Doll 1954; Fisher

1958). The statistical study of age-incidence of hereditary

versus sporadic cancers (Ashley 1969; Knudson 1971) was

instrumental for the introduction of the idea of tumor sup-

pressor genes. Following this line of research, most current

models of cancer dynamics developed by ecologists and

evolutionary biologists (Frank 2007; Byrne 2010) study the

effect of mutations, selection, population size, and tissue

architecture on the dynamics of cancer.

While game theory has often been mentioned (e.g., Gate-

nby and Maini 2003; Axelrod et al. 2006; Merlo et al. 2006;

Basanta and Deutsch 2008; Lambert et al. 2011) as a prom-

ising avenue for cancer research, only a few studies actually

develop game theoretical models of cancer. Tomlinson

(1997) and Tomlinson and Bodmer (1997) used the game

of chicken (Rapoport and Chammah 1966) [or hawk-dove

game (Maynard Smith and Price 1973) or snowdrift game

(Sugden 1986)] to describe interactions between cancer

cells. The model has been extended to up to four types of

cells, using different types of cancer as examples, including

multiple myeloma, prostate cancer, glioma, and glioblas-

toma (Basanta et al. 2008a,b, 2011, 2012; Dingli et al. 2009;

Gerstung et al. 2011). Interactions among cancer cells for

the production of diffusible growth factors, however, are

not pairwise, but multiplayer, collective interactions for the

production of a public good (Archetti 2013a). It is known

that results from the theory of two-player games cannot be

extended to games with collective interactions, and that

this can actually lead to fundamental misunderstandings

(Archetti and Scheuring 2012).

Growth factors as public goods

Consider a population of cells in which a fraction of the

cells (producers: +/+) secrete a growth factor. If the benefit

of this factor is not restricted to the producers, we can con-

sider it a public good that can be exploited by all other

individuals (or cells) within the diffusion range of the fac-

tor, including nonproducers (�/�). Public goods are stud-

ied in economics, where rational, self-interested behavior

may lead to the overexploitation of common pool

resources [the ‘tragedy of the commons’ (Hardin 1968)],

and in evolutionary biology in cases like the production of

diffusible molecules in microbes (Crespi 2001). Diffusible

public goods raise a collective action problem: an individ-

ual can free ride on the goods produced by his neighbors.

Why, then, do noncontributors not increase in frequency

and go to fixation? What factors influence the production

of these public goods?

Similar collective action problems arise during cancer

development, where growth factors support tumor growth

by protecting cells from apoptosis (for example, IGF-II), by

stimulating the growth of new blood vessels (for example,

VEGF), by impairing immune system reaction (for exam-

ple, TGFb), or by promoting the epithelial–mesenchimal

transition. While cooperation for the production of growth

factors has been shown directly only in one case (FGF)

(Jouanneau et al. 1994), it stands to reason that many dif-

fusible factors produced by cancer cells benefit producers

and nonproducers (Axelrod et al. 2006). Self-sufficiency of

growth factor production is one of the hallmarks of cancer

(Hanahan and Weinberg 2000) and, like for other charac-

ters, there is evidence of heterogeneity in the ability to pro-

duce diffusible factors (Achilles et al. 2001; Marusyk and

Polyak 2010). What maintains this heterogeneity? And

what are the implications for anticancer therapies?

It has been suggested that treatments that attack growth

factors may be less susceptible than traditional drugs to the

evolution of resistance (Pepper 2012; Aktipis and Nesse

2013). Current drugs that target growth factors, however,

like the anti-angiogenic drug Avastin, have a limited effect,

with only a few months of overall survival extension (Amit

et al. 2013). Limited theoretical analysis has been devoted

to investigating the problem of the evolution of resistance

to therapies (Aktipis et al. 2011). The rationale of this

study is that analyzing the production of growth factors in

cancer as a public goods game can explain both stable het-

erogeneity and the long-term failure of antigrowth factor

therapies and reveal conditions that can lead to evolution-

arily stable therapies.

Public goods games

Archetti and Scheuring (2012) review public goods games

(PGGs) in well-mixed populations and Perc et al. (2013)

review PGGs in structured populations. The current litera-

ture on PGGs often assumes that the benefit of the public

good is a linear function of the number of contributors

(the N-person prisoner’s dilemma: NPD). The simplest

cases of nonlinear benefits, synergistic, and discounting

benefits (Motro 1991; Foster 2004; Hauert et al. 2006), as

well as threshold PGGs (in which a benefit is produced if

a number of contributors is above a fixed threshold)

(Archetti 2009a,b; Pacheco et al. 2009; Boza and Szamado

2010; see also Palfrey and Rosenthal 1984 for a similar

model in economics) have been studied extensively (Arch-
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etti and Scheuring 2012). The benefit produced by growth

factors, however, is likely to be a sigmoid function of the

number of producer cells because the effect of enzyme

production is generally a saturating function of its concen-

tration (e.g., Hemker and Hemker 1969), specifically, a

sigmoid function (Ricard and Noat 1986); signaling path-

ways often follow a highly nonlinear on–off behavior,

which is a steep sigmoid function of signal concentration

(e.g., Mendes 1997; Eungdamrong and Iyengar 2004).

Similar nonlinearities are known in microbes (Chuang

et al. 2010). Sigmoid PGGs are somewhat intermediate

between linear and threshold PGGs, while synergistic/dis-

counting PGGs can be thought of as special, degenerate

cases of sigmoid PGGs (Archetti and Scheuring 2011).

Linear, threshold, and synergistic/discounting benefits can

lead to dramatically different dynamics and equilibria in

multiplayer games (Archetti and Scheuring 2012); the

dynamics and equilibria of multiplayer sigmoid PGGs in

well-mixed populations have been described analytically

only recently (Archetti 2013a).

While this literature analyses PGGs in well-mixed popu-

lations, the study of PGGs in spatially structured popula-

tions generally assumes linear benefits (the NPD). The few

exceptions (see Perc et al. 2013) using nonlinear benefits in

spatially structured populations assume, as is standard in

the current approach, that each individual belongs to n dif-

ferent groups, each group centered on one of that individ-

ual’s one-step neighbors, and that an individual’s fitness is

the sum of all the payoffs accumulated in all the groups she

belongs to (Perc et al. 2013). While this assumption is rea-

sonable for interactions in human social networks, it is not

appropriate for modeling interactions in cell populations,

where the growth factors produced by one individual can

diffuse beyond one-step neighbors, and the benefit an indi-

vidual gets as a result of the diffusible factors is a function

of the number of producers within the diffusion range of

the factor, not of all individuals belonging to her neighbors’

group. The only exceptions to the use of the standard

framework are Ifti et al. (2004) and Ohtsuki et al. (2007):

they study the prisoner’s dilemma (that is, a two-person

game with a linear benefit function) on lattices in which

the interacting group is decoupled from the update neigh-

borhood. Here, we need to analyze the more general case of

sigmoid benefits (rather than linear) with collective interac-

tions (rather than pairwise). We will not assume a particu-

lar type of cancer but describe the dynamics of growth

factors like insulin-like growth factor II (IGF-II) that confer

a direct beneficial effect to the cells, for example by protect-

ing against apoptosis. Other growth factors confer a benefit

to the tumor indirectly by stimulating the development of

blood vessels or the release of other growth factors by stro-

mal cells. The dynamics of these growth factors would be

more complex.

Model

The game

A cell can be a producer (+/+) or a nonproducer (�/�) of

a growth factor. Producers pay a cost c that nonproducers

do not pay (0 < c < 1). All cells (+/+ and �/�) benefit

from the public good produced by all the cells in their

group (of size n; this depends on the diffusion range of the

factor – see below). The benefit for an individual is given

by the logistic function V(j)=1/[1 + e�s(j�k)/n] of the num-

ber j of producers among the other individuals (apart from

self) in the group, normalized as b(j)=[V(j)-V(0)]/[V(n)-V
(0)]. The parameter k controls the position of the inflection

point (k?n gives strictly increasing returns and k?0

strictly diminishing returns) and the parameter s controls

the steepness of the function at the inflection point (s?∞
models a threshold public goods game; s?0 models an

N-person prisoner’s dilemma) (Archetti and Scheuring

2011). It is useful to define h=k/n.

Evolution in spatially structured populations

We model a monolayer of cancer cells as a two-dimen-

sional regular lattice obtained using a modification of the

GridGraph implementation in Mathematica 8.0 (Wolfram

Research Inc.) connecting opposing edges to form a toroi-

dal network, to avoid edge effects. As in the standard

approach, individuals occupy the nodes of the network

(population size is fixed at 900) and social interactions pro-

ceed along the edges connecting the nodes. Differently

from the standard approach, however, [in which an indi-

vidual’s group is limited to her one-step neighbors and an

individual plays multiple games centered on each of her

neighbors (Perc et al. 2013)], the interaction neighborhood

and the update neighborhood are decoupled: a cell’s group

(of size n) is not limited to her one-step neighbors but is

defined by the diffusion range (d) of the growth factor, that

is, the number of edges between the focal cell and the most

distant cell whose contribution affects the fitness of the

focal cell. A cell’s payoff is a function of the amount of fac-

tor produced by the group she belongs to. The process

starts with a number of nonproducer cells placed on the

graph; at each round, a cell x with a payoff Px is selected (at

random) for update (death) and a cell y (with a payoff Py)

is then chosen among x’s neighbors. Two types of update

are used: in the deterministic case, if Px > Py, no update

occurs, while if Px < Py, x will adopt y’s strategy (uncondi-

tional imitation); in the stochastic case, replacement occurs

with a probability given by (Py-Px)/M, where M ensures the

proper normalization and is given by the maximum possi-

ble difference between the payoffs of x and y (Perc et al.

2013). Results are obtained averaging the final 200 of 1000

generations per cell, averaged over 10 different runs.
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Gradient of selection in well-mixed populations

In a finite population, the gradient of selection can be cal-

culated following Traulsen et al. (2006). Sampling of indi-

viduals follows a hypergeometric distribution and the

average fitness of +/+ and �/� can be written as, respec-

tively

Wþ=þ¼ Z�1
n�1

� ��1Xn�1

j¼0

i�1
j

� �
Z�i
n�j�1

� �
�bðjþ1Þ�c

W�=� ¼ Z � 1
n� 1

� ��1Xn�1

j¼0

i
j

� �
Z � j� 1
n� j� 1

� �
� bðjÞ

where i is the number of +/+ individuals in the population.

Assuming a stochastic birth–death process combined with

a pairwise comparison rule, two individuals from the pop-

ulation, A and B, are randomly selected for update. The

strategy of A will replace that of B with a probability given

by the Fermi function

p � 1

1þ e�bðWA�WBÞ

and the reverse will happen with probability 1-p. The quan-

tity b specifies the intensity of selection (for b << 1, selec-

tion is weak, and in the limit Z?∞ one recovers the

replicator equation) (Traulsen et al. 2007). In finite popu-

lations, the quantity corresponding to the ‘gradient of

selection’ in the replicator dynamics is given by

gðiÞ ¼ i

Z

Z � i

Z
tanh

bðWþ=þ �W�=�Þ
2

In an infinitely large population, the gradient of selection

can be written as (Archetti and Scheuring 2012)

Xn�1

j¼0

n� 1
j

� �
xjð1� xÞn�1�j � Dbj � c

where Dbj = b(j + 1)�b(j)

Results

Evolutionary dynamics of growth factor production

Decoupling the interaction and update networks

A comparison between the standard framework and the

one used here (decoupling interaction and replacement

networks) is possible if we assume that d = 2 (Fig. 1).

Group size with d = 2 on a lattice with connectivity 4 is the

same as the total number of individuals participating in the

five PGGs in the standard approach, counting each individ-

ual only once (n = 25). In the standard approach, however,

the focal individual contributes to all PGGs she is involved

in, her one-step neighbors contribute to two PGGs that

affect the focal individual, and her two-step neighbor con-

tribute only to one PGG that affects the focal individual. In

the case of diffusible factors instead, all individuals contrib-

ute equally to a single, larger PGG. Fig. 1 shows the differ-

ences between the two systems. Cooperation evolves for a

wider parameter set in the standard approach than in the

case of diffusible goods, and the fraction of producers is

larger. This is not surprising, given the smaller group size

implied by the standard approach. If d > 2 of course, the

standard approach cannot be defined, and the two systems

are not directly comparable. All the results are based on the

new approach in which the interaction and replacement

graphs are decoupled, and the diffusion range of the

growth factor can be larger than 1.

Heterogeneity

When a nonproducer (�/�) is introduced in a population

of producers (+/+), in most cases �/� cells increase in fre-

quency and coexist with +/+ cells; this change in frequency

of the two types is accompanied by a change in the relative

position of the +/+ and �/� cells, as shown by the degree

centrality (the number of neighbors) and the closeness cen-

trality (the inverse of the sum of the distance to all other

vertices) of the +/+ subgraphs (Fig. 1). In most cases after

about 100 generations per cell, the frequencies remain rela-

tively stable, even though the position of producers and

nonproducers on the lattice continues to change (Fig. 2).

In certain cases, the �/� type goes to fixation. The fre-

quency of the two types, or the extinction of the +/+ type,

depends on the diffusion range (d), the cost of growth fac-

tor production (c), the position of the inflection point of

the benefit function (h), and the steepness of the benefit

function (s), the update rule and the initial frequency of

the two types, as described below.

Effect of the diffusion range

Both the frequency of producers and fitness at equilibrium

decline with increasing d (the diffusion range of the public

good), that is, increasing group size (n); �/� cells form

clusters whose size increases with d (Fig. 3). A short diffu-

sion range enables a mixed equilibrium (coexistence of +/+
and �/� cells) for a larger set of parameters (higher c and

more extreme h values). That is, a short diffusion range

favors cooperation.

Effect of the initial frequencies

The stable equilibrium described above does not depend

on the initial frequency of the two types (Fig. 4), unless the

initial frequency of +/+ cells is below a certain threshold; in

this case, the +/+ type goes extinct. In other words, the sys-

tem has an internal stable equilibrium, to which the popu-

lation evolves if and only if +/+ cells are above a critical

threshold. Inspection of the gradient of selection shows the

© 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 6 (2013) 1146–1159 1149
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(A)

(B)

(C)

(D)

Figure 1 Growth factors as public goods. (A) In the standard approach, a cell’s payoff is determined by the games played by the groups centered on

that cell and on its one-step neighbors; in the case of diffusible factors, the group (the interaction neighborhood) is defined by the diffusion range (d)

of the factor (here d = 3) and is larger than the update group (the one-step neighbors). (B) The structure of the population after 1000 generations

per cell (c = 0.25, h = 0.5, d = 2, s = 20, deterministic update) (C) The change in frequency of +/+ cells, degree centrality, and closeness centrality of

the +/+ and �/� subgraphs (c = 0.25, h = 0.5, d = 2, s = 20, deterministic update). (D) The equilibrium frequency of +/+ and average fitness as a

function of h (the position of the threshold) and c (the cost of production) when 10 �/� cells are introduced in the population (d = 2, s = 20, deter-

ministic update).
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reason for the existence of mixed equilibria and bistability

(Fig. 5): +/+ cells decrease in frequency when the gradient

of selection is positive, that is when there are too few or too

many +/+ cells; at intermediate frequencies of +/+ cells,

however, +/+ cells have a selective advantage and can

increase in frequency up to a stable mixture of +/+ and

�/�. Below the unstable internal equilibrium, +/+ cells go

extinct.

Effect of the benefit function

The internal stable equilibrium disappears for high values

of h; the internal stable equilibrium disappears for low val-

ues of h, especially for low values of s. In the extreme case

s?0, the game approaches the N-person prisoner’s

dilemma (the benefit function is a linear function of the

frequency of cooperators), and both internal equilibria dis-

appear. Both the frequency of producers and fitness are

higher at intermediate levels of h (the position of the

threshold) (Fig. 5). A shallow benefit function (low s) can

favor cooperation, especially in the deterministic update

rule. The reason can be understood more easily if we con-

sider a step function with threshold k as an approximation

Figure 2 Dynamic heterogeneity. Snapshots of the population at dif-

ferent times (t is the number of generations per cell). The frequency of

the two types remains relatively stable after about 100 generations per

cell, but the position of +/+ and �/� cells changes. c = 0.02, h = 0.5,

s = 20, d = 4; deterministic update.

Figure 3 Effect of the diffusion range. Left: Each square in each plot

shows the frequency of +/+ cells or the average fitness of the popula-

tion (its growth rate) as a function of h (the position of the threshold)

and c (the cost of production), for a given d (diffusion range) and for

s = 20 (deterministic update). The frequency of +/+ cells and the aver-

age fitness are higher at intermediate levels of h and at low values of c.

Both decline with increasing d, that is, increasing group size. Right:

Snapshots of the population after 1000 generations per cell; c = 0.01,

h = 0.5, s = 20, deterministic update.

© 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 6 (2013) 1146–1159 1151
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of a very steep benefit function: in this case, it is convenient

to be +/+ only when one is pivotal for the production of

the public good, that is, only when there are exactly k-1

other +/+ cells. If the benefit function is a smooth sigmoid

function, instead, it pays to be a +/+ even when not pivotal

for reaching the threshold. In spatially structured popula-

tions, it easily happens that a mutant �/� arising in a

group centered on one individual with few �/� also affect

the number of +/+ in an adjacent group that was previously

at equilibrium; in this other group, the frequency of +/+
will be now below the unstable equilibrium and therefore

in the basin of attraction of the pure �/� equilibrium. This

process is buffered in the stochastic update process but rel-

atively fast in the deterministic update rule, which is there-

fore less permissive for the stability of cooperation. The

deterministic update rule, therefore, is less conductive to

cooperation than stochastic update, especially for very

steep public good functions (Fig. 6).

Effect of the cost of production

As expected, increasing the cost of production (c) reduces

both the frequency of producers and fitness at equilibrium

(Fig. 5). A critical value of c exists above which no public

goods production can be sustained and producers go

extinct. This critical value is higher for intermediate values

of the position of the threshold (that is, for h around 0.5)

and for lower values of the diffusion range (d), and it also

depends on the type of benefit function and update rule

(Fig. 6)

Evolutionary dynamics of resistance to therapies that

target growth factors

Effect of therapies that increase the threshold

An anticancer therapy that acts by impairing circulating

growth factors will increase the amount of growth factors

that the cells must produce to achieve a certain benefit, that

is, it will increase the threshold h. Two results are possible.

In the first case, the population adapts to the new thresh-

old, that is, +/+ cells increase in frequency and fitness

increases - the opposite of the scope of the drug; only if the

threshold increase is substantial does the +/+ type go

extinct (Fig. 7).

Effect of the speed of change

The speed of the transition from the original to the new

threshold is also essential for the success of a therapy that

targets growth factors. While a fast transition to the new

threshold can lead to a successful, stable therapy, a slower

delivery can lead to relapse (Fig. 8). In summary, therapies

are only effective when the initial threshold is low and the

increase in threshold is substantial, and if the transition to

the new threshold is fast enough (Fig. 9).

Dynamics of the evolution of resistance

The logic of these two effects (magnitude and speed of the

shift in threshold) can be understood by looking at the gra-

dient of selection (Fig. 10 shows the logic for a large, well-

mixed population, but the logic is the same in finite popu-

lations). The therapy is successful (the +/+ cells go extinct)

if and only if the new (posttherapy) unstable equilibrium is

above the original (pretherapy) stable equilibrium; if this is

not the case, the system will move to the new stable equilib-

rium. This can happen for two reasons: either the increase

in h is not large enough; or the increase is slow enough that

the current, transient stable equilibrium remains within the

basin of attraction of the new, transient stable equilibrium

until the change is completed (Fig. 10A). Note that the

evolution of resistance is, therefore, more likely for low val-

ues of c (the production cost) and s (the steepness of the

benefit function).

Figure 4 Stable heterogeneity. The change over time of the fraction of producers and of the average fitness of the tumor. At the stable mixed equi-

librium, producers and nonproducers coexist, unless the initial fraction of producers is lower than an internal unstable equilibrium (here approximately

0.25). c = 0.02, h = 0.5, s = 20, d = 3.

1152 © 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 6 (2013) 1146–1159
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Instability of successful treatments

If the treatment is effective and fast enough that the pop-

ulation does reach the stable pure �/� equilibrium, a

mutant +/+ will not be able to invade an infinitely large,

well-mixed population. In a finite, structured population,

however, it is possible that random fluctuations change

Figure 5 Evolutionary dynamics and equilibria. Left: The benefit functions and the gradients of selection for given values of s (the steepness of the

benefit function) and h (the position of the threshold). The sign of the gradient of selection determines the dynamics (arrows show the direction of

the change in frequency of +/+ individuals); equilibria occur where the gradient of selection is zero. c = 0.02; b = 1; d = 3

© 2013 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 6 (2013) 1146–1159 1153
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the fraction of +/+ cells within a cluster above the unsta-

ble equilibrium, which would lead that cluster to the

mixed equilibrium in which +/+ and �/� cells coexist

(Figs 10B and 11). The opposite effect is also possible,

that is, random fluctuations can move the frequency of

+/+ at a mixed equilibrium within a group below the

unstable internal equilibrium and therefore to the fixa-

tion of �/� cells. The relative importance of these two

effects depends on the shape of the benefit function, that

is on the value of s (the steepness of the benefit func-

tion), and on the cost of production (c): low s and c

favor the stability of the mixed equilibrium, whereas high

s and c make the mixed equilibrium less robust to ran-

dom fluctuations. An exception to this occurs in the case

of very low values of s (that is, for almost linear benefits,

similar to the NPD), because such system has only a sta-

ble equilibrium: pure +/+ if the cost is low enough, and

pure �/� if the cost is low (Fig. 10B); in the latter case,

the equilibrium would be immune to invasion by +/+
mutants and therefore arguably stable against the evolu-

tion of resistance: a +/+ mutant would only invade if the

cost of production decreased.

Discussion

Analyzing the production of growth factors as a nonlinear

public goods game reveals that tumor heterogeneity can be

maintained by the frequency-dependent selection that

arises as a natural consequence of the fact that growth fac-

tors are diffusible, and therefore public goods. Tumor het-

erogeneity has important implications for diagnosis and

treatment. The results help us understand anticancer thera-

pies that attack growth factors, either directly (using drugs

like Avastin that target the growth factors) or indirectly

(using RNA interference). While it has been suggested that

attacking growth factors may be less susceptible to the evo-

lution of resistance (Pepper 2012; Aktipis and Nesse 2013),

the results shown here suggest that the issue is not so

simple.

The rationale of the analysis is that when one reduces the

amount of a growth factor, the immediate result is a sud-

den reduction in tumor growth, because the threshold nec-

essary to achieve the original benefit is not reached; as a

consequence, the growth rate of the tumor immediately

declines. At the same time, however, the amount of growth

Figure 6 Effect of stochastic events. Each cell in each plot shows the frequency of +/+ cells or the average fitness of the population (its growth rate)

as a function of h and c (the cost of production), for a given s at equilibrium. The deterministic update rule makes the internal stable equilibrium sensi-

tive to stochastic fluctuations and therefore not robust when the benefit function is steep (high s); a more realistic stochastic update rule increases

the robustness of the equilibrium. d = 3.
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factors necessary for the population to grow increases

(because part of them are disrupted by the drug), which

changes the dynamics of the system; unfortunately, it

changes into the wrong direction: by increasing the thresh-

old, one increase the frequency of producers at equilib-

rium, which explains relapse simply as the new equilibrium

reached by the system under the new conditions. While it

is too early to evaluate the efficacy of RNAi treatments, it

seems reasonable that even silencing the gene for a growth

factor should incur a similar problem and be susceptible to

the evolution of resistance.

As pointed out by Andr�e and Godelle (2005)and Pepper

(2012), therapies that target diffusible factors are a more

evolutionarily robust approach than conventional drugs

that target cells directly. The logic is that (i) drugs that tar-

get growth factors can disrupt cooperation between cells

Figure 7 Effect of therapies that target growth factors. Reducing the amount of available growth factor increases the threshold from h1 = 0.3 to h2.

d = 3, h1 = 0.3, c = 0.01, s = 20. In all cases, the shift from h1 to h2 occurs gradually, after 1000 generations per cell, in 100 generations.
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Figure 8 Importance of the speed of change. Reducing the amount of available growth factor increases the threshold from h1 = 0.4 to h2 = 0.8;

d = 3, c = 0.01, s = 20. If the change occurs immediately (in the following generation), the +/+ type goes extinct; if the change takes 100 generation

per cell to be completed, the population moves to a new equilibrium with a higher fraction of +/+ cell and higher fitness (the contrary of the desired

effect); if the change takes 20 generations per cell, results are intermediate.

Figure 9 Combined effect of the amount and speed of change. Each cell in each plot shows the frequency of +/+ cells or the average fitness of the

population (its growth rate) after Ti generations per cell, as a function of h1 (the threshold before the treatment) and h2 (the threshold after the treat-

ment), for s = 20 and c = 0.01. T1=T3 = 1000; before T1 h2=h1. A therapy that increases the threshold is effective only when the initial threshold is

low, the new threshold is high enough and the shift to the new threshold is fast enough.
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(A)

(B)

Figure 10 Dynamics of the evolution of resistance to therapies that target growth factors. In a well-mixed population, the gradient of selection

determines the direction of the dynamics: where it is positive, the frequency of producers increases; where it is negative it decreases; equilibria (empty

circle: unstable; full circle: stable) are found where the gradient of selection is zero (A) Targeting growth factors directly increases the threshold (h) of

the public goods game. The therapy is successful (the +/+ cells go extinct) if the new unstable equilibrium is above the original stable equilibrium; if

this is not the case, the system will move to the new internal equilibrium. (c = 0.01, s = 10, n = 50) (B) If the population is at the pure �/� equilib-

rium, a mutant +/+ can only invade if the cost declines below the gradient of selection, if the benefit function is linear; if the benefit is nonlinear, ran-

dom fluctuations can allow small clusters of +/+ to invade and thus allow the population to reach the internal stable equilibrium. (h = 0.5, n = 50)

Figure 11 Instability of successful treatments due to random fluctuations. Snapshots (after t generations per cell) of a population initially fixed on

�/� in which a mutant +/+ cell line arises and manages to expand. d = 3, c = 0.01, h = 0.5, s = 10, stochastic update.
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and lead to a pure �/� equilibrium, which will make the

population collapse and that (ii) such equilibrium is stable

against the invasion of +/+ mutants because the cost paid

by the mutant is a private cost, while the benefit it provides

is a public benefit. As we have seen, however, (i) requires

the therapy to be extremely efficient and fast, and (ii) is not

necessarily the case, unless the benefit of the public good is

a linear function of the amount of diffusible factors.

As we have shown, the details of the benefit function,

diffusion range, cost of production, and update rule that

drive the dynamics of growth factor production are criti-

cal to determine the type of dynamics and equilibria.

More precise theoretical prediction therefore is necessary

to understand under what conditions resistance will

evolve, including the use of three-dimensional Voronoi

graphs to model interactions within the tumor and gra-

dients of diffusion to model the effect of growth factors.

Furthermore, the results reported here only apply to

growth factors that confer a direct advantage to the

tumor, such as factors that protect against apoptosis and

promote proliferation; other growth factors, however, act

indirectly by inducing the production of other growth

factors by stromal cells or by promoting the develop-

ment of blood vessels. Finally, we have assumed compe-

tition due to constant population size, which may

describe cancer cell populations that have reached a car-

rying capacity, but not early stages of tumor growth.

Analyzing the dynamics of these cases requires more

complex models.

Understanding the production of growth factors as a

public goods game suggests that an evolutionarily stable

treatment could be achieved through autologous cell ther-

apy (Archetti 2013b): harvesting cancer cells from the

patient, knocking out genes coding growth factors in these

cells, and reinserting these modified cells inside the tumor.

Such therapy, differently from current therapies that target

growth factors, would not directly reduce the amount of

growth factors produced by the tumor but would change

the dynamics of the population. As we have seen, by intro-

ducing a critical amount of �/� cells within the tumor, the

mixed equilibrium can be destabilised so that the +/+ cells

will go extinct; this may lead to the collapse of the tumor

due to lack of essential growth factors.
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