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Abstract We construct, for any symplectic, unitary or special orthogonal group over
a locally compact nonarchimedean local field of odd residual characteristic, a type for
each Bernstein component of the category of smooth representations, using Bushnell–
Kutzko’s theory of covers. Moreover, for a component corresponding to a cuspidal
representation of a maximal Levi subgroup, we prove that the Hecke algebra is either
abelian, or a generic Hecke algebra on an infinite dihedral group, with parameters
which are, at least in principle, computable via results of Lusztig. In an appendix,
we make a correction to the proof of a result of the second author: that every irre-
ducible cuspidal representation of a classical group as considered here is irreducibly
compactly-induced from a type.

Mathematics Subject Classification (2000) 22E50

1 Introduction

The study of the irreducible smooth (complex) representations of p-adic groups G
has seen much progress over the last fifty years, inspired especially by the (local)
Langlands programme. A basic approach, due to Harish–Chandra, is: first classify
all the irreducible representations which do not arise as quotients of representations
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parabolically induced from representations of a proper Levi subgroup (these are called
cuspidal); then classify all quotients of representations parabolically induced from a
cuspidal representation of a Levi subgroup. Because parabolic induction does not
preserve irreducibility, and because its reducibility is related to the poles and zeros of
L-functions, in following this approach it is both necessary and interesting to study
the full (abelian) category of smooth representations R(G).

A fundamental general result, for G a connected reductive p-adic group, is the
Bernstein decomposition [1], which splits R(G) into blocks (indecomposable abelian
summands) Rs(G). These are indexed by (equivalence classes of) pairs s = [M, τ ]G,
with M a Levi subgroup of G and τ a cuspidal irreducible representation of M, while the
irreducible objects in Rs(G) are precisely the irreducible quotients of the parabolically
induced representations IndG

M,Pτχ , for P any parabolic subgroup with Levi factor M,
and χ any character (1-dimensional representation) of M trivial on every compact
subgroup (an unramified character).

Bushnell and Kutzko [11] give a strategy for understanding any block Rs(G):
one seeks to construct a pair (J, λ) (called an s-type), consisting of a compact open
subgroup J of G and an irreducible (smooth) representation λ of J, which characterizes
the block in the sense that the irreducible objects in Rs(G) are exactly the irreducible
representations π of G such that HomJ(π, λ) �= 0. (We say that π contains λ.) Then
the block Rs(G) is equivalent to the category of modules over the spherical Hecke
algebra H (G, λ) = EndG(c-IndG

J λ), so we are reduced to computing H (G, λ) and
its modules. Moreover, Bushnell–Kutzko’s theory of covers, which we recall below,
gives a technique for trying to construct types (and their Hecke algebras) for general M
from those in the cuspidal case (that is, when M = G).

This programme has been carried out in its entirety for the groups GLN [9,12] and
its inner forms [25,26], SLN [10,16,17], and, when the residual characteristic p is
odd, U(2, 1) [3] and Sp4 [2,4]. It has also been completed for an arbitrary connected
reductive group for level zero blocks, that is, for [M, τ ]G where τ contains the trivial
representation of the pro-p-radical of some parahoric subgroup [23,24]. For inner
forms of GLN , the Hecke algebras which arise are all tensor products of generic
Hecke algebras of type A; for SLN one gets a similar algebra tensored with the group
algebra of a finite group, but twisted by a cocycle.

In this paper, we largely complete the programme for an arbitrary classical group G
when the residual characteristic is odd. More precisely, let Fo be a locally compact
nonarchimedean local field with residue field of odd cardinality qo, and let G be the
group of rational points of a symplectic, special orthogonal or unitary group defined
over Fo. Our first main result is:

Theorem 1.1 Let M be a Levi subgroup of G, let τ be a cuspidal irreducible repre-
sentation of M, and put s = [M, τ ]G. There is an s-type (J, λ) which is, moreover, a
cover of the sM-type (J ∩ M, λ|J ∩ M).

At present, we are only able to determine the Hecke algebra in the case of a maximal
proper Levi subgroup (though see the comments below for some implications in other
cases); it turns out that the Hecke algebras which arise are as for the group Sp4(F) [4],
although there are more possibilities for the parameters. We also remark that this case
of a maximal Levi subgroup is the most interesting in terms of implications on poles
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and zeros of L-functions; in particular, it is possible to use the results here to compute
explicitly the cuspidal representations in an L-packet.

Theorem 1.2 In the situation of Theorem 1.1, suppose moreover that M is a maxi-
mal proper Levi subgroup of G and write NG(sM) for the set of g ∈ G such that g
normalizes M and gτ is equivalent to τχ , for some unramified character χ of M.

(i) If NG(sM) = M then the Hecke algebra H (G, λ) is abelian, isomorphic
to C

[
X±1

]
.

(ii) If NG(sM) �= M then the Hecke algebra H (G, λ) is a generic Hecke algebra on
an infinite dihedral group; that is, it is generated by T0, T1, each invertible and
supported on a single double coset, with relations

(Ti − qi )(Ti + 1) = 0,

for some integer qi ∈ qZ
o .

Moreover, in Sect. 6, we give a recipe which reduces the calculation of the parameters qi

in this Hecke algebra to the computation of a certain quadratic character (which is
sometimes known to be trivial) and of the parameters in two finite Hecke algebras,
which are computable through the work of Lusztig [20]. We explore certain cases of
this further in work in progress, though we emphasise that the computation of the
quadratic character appears, in general, to be a very subtle matter: see the work of
Blondel [6] for more on this.

We also remark that, for symplectic groups, the propagation results of Blondel [5]
together with our Theorem 1.2 now give the Hecke algebra when M � GLr (F)s ×
Sp2N (F) and τ = τ̃⊗s ⊗ τ0. Whether the results there and here could be pushed to
give a description of the Hecke algebra in the general case is not clear.

We now describe the proofs so we suppose we are in the situation of Theo-
rem 1.1. The class s = [M, τ ]G determines a (cuspidal) class sM = [M, τ ]M for M,
which gives us a block RsM(M) of the category of smooth representations of M.
An sM-type (JM, λM) was constructed by the second author in [29] (though we take
the opportunity here to correct some inaccuracies in the proof of [29, Theorem 7.14]—
see the Appendix). We say that a pair (J, λ) is decomposed over (JM, λM) if, for any
parabolic subgroup P = MU with Levi factor M,

(i) J has an Iwahori decomposition with respect to (M,P) and J ∩ M = JM; and
(ii) λ restricts to λM on JM, and to a multiple of the trivial representation on J ∩ U.

If a further technical condition on the Hecke algebra H (J, λ) is satisfied (it contains
an invertible element supported only on the double coset of a strongly positive element
of the centre of M) then (J, λ) is a cover of (JM, λM), in which case it is also an s-type.
Moreover, one gets an embedding of Hecke algebras H (M, λM) ↪→ H (G, λ) and, in
certain circumstances, one can also deduce the rank (and other structure) of H (G, λ)
as an H (M, λM)-module.

To construct a cover, we do not in fact start with the type (JM, λM) but rather
construct (J, λ) directly, then observing that it is a cover of its restriction to M, which
is indeed an sM-type. To this end, the starting point is a result of Dat [14], building on
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work of the second author in [28]. In the latter paper, so-called semisimple characters
of certain compact open subgroups of G were constructed, generalizing constructions
of Bushnell and Kutzko [9]. These come in families indexed by a semisimple elementβ
of the Lie algebra of G and a lattice sequence Λ, which can be interpreted as a point
in the building of the centralizer Gβ of β via [8].

Dat proved that, given s = [M, τ ]G as above, there is a self-dual semisimple char-
acter θ of a compact open subgroup H1 of G such that (H1, θ) is a decomposed pair
over (H1∩M, θ |H1∩M) and τ contains θ |H1∩M. There is considerable flexibility here; in
particular, the associated lattice sequenceΛmay be chosen so that the parahoric sub-
group it defines in Gβ (that is, the stabilizer of the point it defines in the building) also
has an Iwahori decomposition with respect to any parabolic subgroup with Levi fac-
tor M. (Indeed, this is generically the case.) The element β also has a Levi subgroup L
attached to it (the minimal Levi subgroup containing Gβ ) and we have M ⊆ L.

Our first task is to extend the constructions of [28,29] to the self-dual case, in
particular the notion of (standard) β-extension κ and its realization as an induced
representation IndJ

JP
κP, for P a parabolic subgroup with Levi component M. The main

property here is that the representation κM := κP|JP∩M of JM := JP ∩ M is a (stan-
dard)β-extension in M, in the sense of [29], with extra compatibility properties coming
from conjugation in L; indeed, it is ensuring these compatibilities which would make
it difficult to start with a type in M and build a cover from it.

Now our cuspidal representation τ of M contains a representation of JM of the
form λM = κM ⊗ ρM, for ρM the inflation of a cuspidal representation of the
(possibly disconnected) finite reductive quotient JM/J1

M, and (JM, λM) is an s-type.
Since JP/J1

P � JM/J1
M, we can also form the representation λP = κP ⊗ ρM and the

claim is then that (JP, λP) is a cover of (JM, λM). There is a small but important sub-
tlety here: it is in fact the inverse image Jo

M of the connected component of JM/J1
M that

we work with, along with a representation λo
M = κM ⊗ ρo

M contained in λM, and we
prove that (Jo

P, λ
o
P) is a cover of (Jo

M, λ
o
M). That (JP, λP) is also a cover follows from

a result of Morris: this phenomenon already arises for level zero representations.
The proof uses transitivity of covers, showing that (Jo

P, λ
o
P) is a cover of (Jo

P ∩ M′,
λo

P|Jo
P∩M′) for a chain of Levi subgroups M′ ending with M. The first step is with M′ =

L, which is straightforward by consideration of intertwining; indeed, the embedding
of Hecke algebras in this case is an isomorphism. This reduces us to the case L = G,
which is the case of a skew semisimple character considered in [29], and the rest of
the argument is essentially contained there. By intertwining arguments, we reduce to
the case in which there is no proper Levi subgroup of G containing the normalizer
of ρo

M|Jo
M

. Finally, we pull off the remaining blocks of M one at a time; that is, we go in

steps with M′ = GLr (F)× G0 a maximal proper Levi subgroup of G containing M =
GLr (F)×M0, with M0 a Levi subgroup of the classical group G0. (In the case of even
special orthogonal groups we must sometimes remove blocks in pairs.)

The final step is achieved by producing Hecke algebra embeddingsH (Gi , ρ
o
Mχi ) ↪→

H (G, λo
P), for i = 0, 1, where Gi is a finite reductive group having Jo

M/J
1
M as a maxi-

mal proper Levi subgroup, and χi is a quadratic character. Each of these finite Hecke
algebras is two-dimensional, generated by an element Ti which is supported on a
single double-coset and satisfies a quadratic relation. It is a power of the product of
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the images of Ti in H (G, λo
P)which gives the required invertible element of the Hecke

algebra.
In the case that M is maximal and NG(sM) �= M, the same argument allows

one to describe the Hecke algebra of the cover completely: the images of the two
embeddings together generate H (G, λo

P) and there are no further relations by support
considerations. Again, there are some additional complications arising from the fact
that the finite groups Gi (which are the reductive quotients of non-connected para-
horic subgroups in Gβ ) need not be connected; some care is needed in dealing with
these.

Finally we summarize the contents of the various sections. The basic objects
involved in the construction are recalled in Sect. 2, while Sect. 3 extends the vari-
ous constructions from the skew case in [29] to the case of a self-dual semisimple
character. In Sect. 4 we recall the construction of types in the cuspidal case, before
constructing the cover and proving Theorem 1.1 in Sect. 5. Finally, the computation
of the Hecke algebra is given in Sect. 6. In the appendix we make the necessary
corrections to the proof of [29, Theorem 7.14].

2 Notation and preliminaries

Let F be a nonarchimedean locally compact field of odd residual characteristic. Let
λ 
→ λ denote a (possibly trivial) galois involution on F with fixed field Fo. For K a
finite extension of Fo, we denote by OK its ring of integers, by pK the maximal ideal of
OK, by kK its residue field and by qK the cardinality of kK. We also denote by e(K/Fo)

and f (K/Fo) the ramification index and residue class degree of K/Fo respectively,
and put εF = (−1)e(F/Fo)+1.

We fix F a uniformizer of F such that F = εFF, and put o = 
e(F/Fo)
F ,

a uniformizer of Fo. We also fix ψo, a character of the additive group of Fo with
conductor pFo ; then we put ψF = ψo ◦ trF/Fo , a character of the additive group of F
with conductor pF. We also denote by f 
→ f the involution induced on the polynomial
ring F[X ].

For u a real number, we denote by �u the smallest integer which is greater than or
equal to u, and by �u� the greatest integer which is smaller than or equal to u, that is,
its integer part.

All representations considered here are smooth and complex.
The material of this section is essentially a summary of necessary definitions and

basic results. More details can be found in [9,28].

2.1 Let ε = ±1 and let V be a finite-dimensional F-vector space equipped with a
nondegenerate ε-hermitian form h: thus

λh(v,w) = h(λv,w) = εh(w, λv), v,w ∈ V, λ ∈ F.

Put A = EndF(V), an F-split simple central F-algebra equipped with the adjoint
anti-involution a 
→ a defined by
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h(av,w) = h(v, aw), v,w ∈ V;

this anti-involution coincides with the galois involution on the naturally embedded
copy of F in A.

2.2 Set G̃ = AutF(V) and let σ be the involution given by g 
→ g−1, for g ∈ G̃.
We also have an action of σ on the Lie algebra A given by a 
→ −a, for a ∈ A. We
put Σ = {1, σ }, where 1 acts as the identity on both G̃ and A.

Put G+ = G̃Σ = {g ∈ G̃ : h(gv, gw) = h(v,w) for all v,w ∈ V }, the Fo-points
of a unitary, symplectic or orthogonal group G+ over Fo. Let G be the Fo-points of
the connected component G of G+, so that G = G+ except in the orthogonal case.
Put A− = AΣ , the Lie algebra of G. In general, for S a subset of A, we will write S−
or S− for S ∩ A−, and, for H̃ a subgroup of G̃, we will write H for H̃ ∩ G.

If F = Fo, ε = +1, dimF V = 2 and h is isotropic, then G � SO(1, 1)(F) � GL1(F)
so is well-understood. Consequently, we exclude this case. In particular, the centre
of G+ is the naturally embedded copy of F1 := {λ ∈ F : λλ = 1}, which is compact.

2.3 An OF-lattice sequence on V is a map

Λ : Z → {OF − lattices in V}

which is decreasing (that is,Λ(k) ⊇ Λ(k + 1) for all k ∈ Z) and such that there exists
a positive integer e = e(Λ|OF) satisfying Λ(k + e) = pFΛ(k), for all k ∈ Z. This
integer is called the OF-period ofΛ. IfΛ(k) � Λ(k + 1) for all k ∈ Z, then the lattice
sequence Λ is said to be strict. If dimkF Λ(k)/Λ(k + 1) is independent of k, we say
that the lattice sequence is regular.

Associated with an OF-lattice sequence Λ on V, we have an OF-lattice sequence
on A defined by

k 
→ Pk(Λ) = {a ∈ A : aΛ(i) ⊆ Λ(i + k), i ∈ Z}, k ∈ Z.

The lattice A(Λ) = P0(Λ) is a hereditary OF-order in A, and P(Λ) = P1(Λ) is
its Jacobson radical; these two lattices depend only on the set {Λ(k) : k ∈ Z}.

We denote by K(Λ) the G̃-normalizer of Λ: that is, the subgroup of G̃ made of all
elements g for which there is an integer n ∈ Z such that g(Λ(k)) = Λ(k + n) for all
k ∈ Z. Given g ∈ K(Λ), such an integer is unique: it is denoted υΛ(g) and called the
Λ-valuation of g. This defines a group homomorphism υΛ from K(Λ) to Z. Its kernel,
denoted P̃(Λ), is the group of invertible elements of A(Λ). We set P̃0(Λ) = P̃(Λ)
and, for k � 1, we set P̃k(Λ) = 1 + Pk(Λ).

2.4 Given Λ an OF-lattice sequence, the affine class of Λ is the set of all OF-lattice
sequences on V of the form:

aΛ+ b : k 
→ Λ(�(k − b)/a),
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with a, b ∈ Z and a � 1. The OF-period of aΛ+ b is a times the period e(Λ|OF) of
Λ. Note that

Pk(aΛ+ b) = P�k/a(Λ)

so that changing Λ in its affine class only changes Pk(Λ) in its affine class, indeed
only by a scale in the indices; similarly, P̃k(Λ) is only changed by a scale in the indices,
while K(aΛ+ b) = K(Λ).

2.5 We call an OF-lattice sequence Λ self-dual if there exists d ∈ Z, such that
{v ∈ V : h(v,Λ(k)) ⊆ pF} = Λ(d − k) for all k ∈ Z. By changing a self-dual
OF-lattice sequence in its affine class, we may and do normalize all self-dual lattice
sequences so that d = 1 and e(Λ|OF) is even.

For Λ a self-dual lattice sequence, the OF-lattices Pk(Λ) are stable under the
involution σ (on A). Similarly, the groups P̃k are fixed by σ (on G̃) and we put
P+ = P+(Λ) = P̃ ∩ G+, a compact open subgroup of G+, and P = P(Λ) = P+ ∩ G.
We have a filtration of P(Λ) by normal subgroups Pk = Pk(Λ) = P̃Σk = P̃k ∩ G, for
k > 0. We also have, for k > 0, a bijection P−

k (Λ) → Pk given by the Cayley map
x 
→ (1 + x

2 )(1 − x
2 )

−1, which is equivariant under conjugation by P.
The quotient group G = P/P1 is (the group of rational points of) a reductive

group over the finite field kFo . However, it is not, in general, connected. We denote by
Po = Po(Λ) the inverse image in P of (the group of rational points of) the connected
component G o of G ; then Po is a parahoric subgroup of G.

2.6 A stratum in A is a quadruple [Λ, n,m, β] made of an OF-lattice sequence Λ
on V, two integers m, n such that 0 � m � n, and an element β ∈ P−n(Λ). Two
strata [Λ, n,m, βi ], for i = 1, 2, in A are said to be equivalent if β2 −β1 ∈ P−m(Λ).
A stratum [Λ, n,m, β] is called null if it is equivalent to [Λ, n,m, 0], that is, if
β ∈ P−m(Λ).

A stratum [Λ, n,m, β] is called self-dual if � is self-dual and β ∈ A−. (Note that
this notion has been called skew in previous papers; here we reserve the term skew for
a more precise situation—see Sect. 3.)

For n ≥ m ≥ n
2 > 0, an equivalence class of strata corresponds to a character of

P̃m+1(Λ), by

[Λ, n,m, β] 
→ (ψ̃β : x 
→ ψF ◦ trA/F(β(x − 1)), for x ∈ P̃m+1(Λ)),

while an equivalence class of self-dual strata corresponds to a character of Pm+1(Λ),
by

[Λ, n,m, β] 
→ ψβ = ψ̃β |Pm+1(Λ).

A null stratum corresponds to the trivial character.
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2.7 For [Λ, n,m, β] a stratum in A, we set

y = y(β,Λ) = 
n/g
F βe/g,

where e = e(Λ|OF) and g = gcd(n, e). The characteristic polynomial of y + P1(Λ)

(considered as an element of A(Λ)/P1(Λ)) is called the characteristic polynomial
ϕβ(X) ∈ kF[X ] of the stratum [Λ, n,m, β]. The stratum [Λ, n,m, β] is said to be
split if ϕβ(X) has (at least) two distinct irreducible factors.

If [Λ, n,m, β] is self-dual then we have y = εβ y, where εβ = ε
n/g
F (−1)e/g , and

thus ϕβ(X) = ϕβ(εβX). We say that the stratum is G-split if ϕβ(X) has an irreducible
factor ψ(X) such that ψ(X), ψ(εβX) are coprime.

2.8 Let E be a finite extension of F contained in A. An OF-lattice sequence Λ on
V is said to be E-pure if it is normalized by E×, in which case it is also an OE-lattice
sequence. Denote by B = EndE(V) the centralizer of E in A and by ΛOE the lattice
sequence Λ considered as an OE-lattice sequence.

2.9 Given a stratum [Λ, n,m, β] in A, we denote by E the F-algebra generated by β.
This stratum is said to be pure if E is a field, ifΛ is E-pure and if υΛ(β) = −n. Given
a pure stratum [Λ, n,m, β], we denote by B the centralizer of E in A. For k ∈ Z, we
set:

nk(β,Λ) = {x ∈ A(Λ) | βx − xβ ∈ Pk(Λ)}.

The smallest integer k � υΛ(β) such that nk+1(β,Λ) is contained in A(Λ)∩B+P(Λ)
is called the critical exponent of the stratum [Λ, n,m, β], denoted k0(β,Λ).

The stratum [Λ, n,m, β] is said to be simple if it is pure and if we also have
m < −k0(β,Λ).

Given n � 0 and Λ an OF-lattice sequence, there is another stratum which plays a
very similar role to simple strata, namely the zero stratum [Λ, n, n, 0]. (Note that this
was called a null stratum in [28,29].)

2.10 Let [Λ, n,m, β] be a stratum in A and suppose we have a decomposition
V = ⊕

i∈I Vi into F-subspaces. LetΛi be the lattice sequence on Vi given byΛi (k) =
Λ(k)∩Vi and put βi = eiβei , where ei is the projection onto Vi with kernel

⊕
j �=i V j .

We use the block notation Ai j = HomF(V j ,Vi ).
We say that V = ⊕

i∈I Vi is a splitting for [Λ, n,m, β] ifΛ(k) = ⊕
i∈I Λ

i (k), for
all k ∈ Z, and β = ∑

i∈I βi .
Suppose V = ⊕

i∈I Vi and V = ⊕
j∈J W j are two decompositions of V. We say

that
⊕

i∈I Vi is a refinement of
⊕

j∈J W j (or
⊕

j∈J W j is a coarsening of
⊕

i∈I Vi )

if, for each i ∈ I, there exists j ∈ J such that Vi ⊆ W j .

2.11 A stratum [Λ, n,m, β] in A is called semisimple if either it is a zero stratum
or β �∈ P1−n(Λ) and there is a splitting V = ⊕

i∈I Vi for the stratum such that
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(i) for i ∈ I, [Λi , qi ,m, βi ] is a simple or zero stratum in Aii , where qi = m if
βi = 0, qi = −υΛi (βi ) otherwise; and

(ii) for i, j ∈ I, i �= j , the stratum [Λi ⊕ Λ j , q,m, βi + β j ] is not equivalent to a
simple or zero stratum, with q = max{qi , q j }.

In this case, the splitting is uniquely determined (up to ordering) by the stratum and
we put Lβ = ⊕

i∈I Ai i . We put E = F[β] = ⊕
i∈I Ei , where Ei = F[βi ]. We will

sometimes write “Λ is an OE-lattice sequence” to mean that Λ = ⊕
i∈I Λ

i and each
Λi is an OEi -lattice sequence on Vi .

Let B = Bβ denote the A-centralizer of β, so that B = ⊕
i∈I Bi , where Bi is

the centralizer of βi in Ai i . We write G̃E = B×, G̃i = AutF(Vi ) and, put G̃Ei =
B×

i = G̃i ∩ G̃E, so that L̃β = L ×
β = ∏

i∈I G̃i is a Levi subgroup of G̃ and G̃E =
∏

i∈I G̃Ei ⊆ L̃β . Each G̃Ei is (the group of Fo-points of) the restriction of scalars to
Fo of a general linear group over Ei , provided Ei/F is separable; in any case, G̃Ei is
isomorphic to some GLmi (Ei ). We also write Pk(ΛOE) = Pk(Λ) ∩ B, for k ∈ Z,
which gives the filtration induced on B by thinking of Λ as an OE-lattice sequence,
and P̃k(ΛOE) = P̃k(Λ) ∩ B, for k ≥ 0.

2.12 Let [Λ, n,m, β] be a semisimple stratum in A. The affine class of the stratum
[Λ, n,m, β] is the set of all (semisimple) strata of the form

[Λ′, n′,m′, β],

where Λ′ = aΛ + b is in the affine class of Λ, n′ = an and m′ is any integer such
that �m′/a� = m.

In the course of the paper, there will be several objects associated to a semisimple
stratum [Λ, n,m, β], in particular semisimple characters (see Sect. 3). By a straight-
forward induction (cf. [7, Lemma 2.2]), these objects depend only on the affine class
of the stratum.

3 Self-dual semisimple characters

In this section we recall the notion of self-dual semisimple strata and characters from
[14], generalizing the skew semisimple case from [28]. We also develop the theory of
β-extensions in the self-dual situation. The results here are the expected generalizations
of the results in the skew case from [28,29]. Moreover, most of the proofs follow by
taking fixed points under the involution σ so are essentially identical to those in the
skew case; we will only give details when new phenomena arise.

Self-dual semisimple strata

3.1 Let [Λ, n,m, β] be a semisimple stratum and denote by V = ⊕
i∈I Vi the asso-

ciated splitting and use all the notations introduced in Sect. 2. If �i (X) ∈ F[X ]
denotes the minimum polynomial of βi then, by [28, Remark 3.2(iii)], we have
Vi = ker�i (β).
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If [Λ, n,m, β] is also self-dual then, for each i ∈ I, there is a unique j = σ(i) ∈ I
such that βi = −β j . Moreover,� i (X) = �σ(i)(−X), whence (Vi )⊥ = ⊕

j �=σ(i) V j .
Then, using the usual block notation in A, the action of the involution on A is such
that Ai j = Aσ( j)σ (i).

We set I0 = {i ∈ I | σ(i) = i} and choose a set of representatives I+ for the orbits
of σ in I\I0. Then we will write I− = σ(I+) so that I = I− ∪ I0 ∪ I+ (disjoint union)
and

V =
⊕

i∈I+
(Vi ⊕ Vσ(i))⊕

⊕

i∈I0

Vi .

It will sometimes be useful to place on ordering on I+, in which case we will write
I+ = {1, . . . , l} and put σ(i) = −i ∈ I−, for i ∈ I+; in this case we will write
V0 = ⊕

i∈I0
Vi so that V = ⊕l

i=−l Vi , which we call the self-dual decomposition
associated to [Λ, n,m, β]. We will also put β0 = e0βe0, where e0 is the projection
onto V0 with kernel

⊕
j �=0 V j .

3.2 Let [Λ, n,m, β] be a self-dual semisimple stratum and V = ⊕l
i=−l Vi as

above, with V0 = ⊕
i∈I0

Vi . We put G̃i = AutF(Vi ), L+
β = (

∏l
i=−l G̃i ) ∩ G+ and

Lβ = L+
β ∩G, which is a Levi subgroup of G. We have Lβ = G0 ×∏l

i=1 G̃i , where G0

is the unitary, symplectic or special orthogonal group fixing the nondegenerate form
h|V0×V0 .

Put G̃E = B×, the centralizer of β, as in Sect. 2. We put G+
E = G̃E ∩ G+ and

GE = G̃E ∩ G, so that GE ⊆ Lβ . For i ∈ I0, the involution on F extends to each Ei

and we write Ei,o for the subfield of fixed points; it is a subfield of index 2 except in
the case Ei = F = Fo (so that βi = 0).

We have GE = GE0 × ∏l
i=1 G̃Ei and GE0 = ∏

i∈I0
GEi , where, for i ∈ I0, each

GEi is the group of points of a unitary, symplectic or special orthogonal group over
Ei,o. (For each i ∈ I0, there is a nondegenerate Ei/Ei,o ε-hermitian form fi on Vi

such that the notions of lattice duality for OEi -lattices in Vi given by h|Vi ×Vi and by
fi coincide; then GEi is the group determined by this form.)

For k ≥ 0, we write Pk(ΛOE) = Pk(Λ) ∩ GE = P̃k(ΛOE) ∩ G and denote by
Po(ΛOE) the inverse image in P(ΛOE) = P0(ΛOE) of the connected component of
the reductive quotient P(ΛOE)/P1(ΛOE).

3.3 The following two results are straightforward generalizations of results
from [28].

Lemma 3.1 (cf. [28, Proposition 3.4]) Let [Λ, n, 0, β] be a self-dual semisimple stra-
tum in A, with associated splitting V = ⊕

i∈I Vi . For 0 ≤ m ≤ n, there is a self-dual
semisimple stratum [Λ, n,m, γ ] equivalent to [Λ, n,m, β] such that γ ∈ L −

β ; in

particular, its associated splitting is a coarsening of
⊕

i∈I Vi .

Let [Λ, n,m, β] be a self-dual semisimple stratum in A and, for i ∈ I+ ∪ I0, let
si : Ai i → Bi be a tame corestriction relative to Ei/F (see [9, §1.3] for the definition);
for i ∈ I0 we may and do assume si commutes with the involution.
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Lemma 3.2 (cf. [28, Lemma 3.5]) Let [Λ, n,m, β] be a self-dual semisimple stratum
in A, with associated splitting V = ⊕

i∈I Vi . For i ∈ I+∪I0, let bi ∈ P−m(Λ)∩Ai i be
such that [Λi

OEi
,m,m − 1, si (bi )] is equivalent to a semisimple stratum, and assume

that bi ∈ A− for i ∈ I0. Put bi = −b−i , for i ∈ I−, and b = ∑
i∈I bi . Then

[Λ, n,m −1, β+b] is equivalent to a self-dual semisimple stratum, whose associated
splitting is a refinement of

⊕
i∈I Vi .

The point of these lemmas is that now all objects associated to a self-dual semi-
simple stratum may be defined inductively with all intermediate strata also self-dual
semisimple. In particular, all the objects will be stable under the involution σ .

3.4 A self-dual semisimple stratum [Λ, n,m, β] is called skew if its associated
splitting V = ⊕

i∈I Vi is orthogonal; equivalently, in the notation above, if I = I0.

Lemma 3.3 Let [Λ, n, 0, β ′] be a self-dual semisimple stratum in A and suppose
that [Λ, n,m, β ′] is equivalent to a self-dual semisimple stratum [Λ, n,m, β] with
β ∈ Lβ ′ . Write V = ⊕

i∈I Vi for the splitting associated to [Λ, n,m, β], which is a
coarsening of that for [Λ, n, 0, β ′].
(i) For each i ∈ I+ ∪ I0, the derived stratum [Λi

OEi
,m,m − 1, si (β

′
i − βi )] is either

null or equivalent to a semisimple stratum.
(ii) Suppose 0 < m ≤ n is minimal such that [Λ, n,m, β ′] is equivalent to a skew

semisimple stratum. Then [Λ, n,m, β] is skew and there is an i ∈ I = I0 such that
the derived stratum [Λi

OEi
,m,m − 1, si (β

′
i − βi )] is G-split.

Proof

(i) Write V = ⊕
j∈I′ V j for the splitting associated to [Λ, n, 0, β ′] and e j for

the associated idempotents; then, for each j ∈ I′, there is a unique index
i ∈ I such that V j ⊆ Vi . Now, applying [9, Theorem 2.4.1] to the sim-
ple stratum [Λ j , n,m, e jβe j ] and the pure stratum [Λ j , n,m, e jβ ′e j ], we see
that [Λ j

OEi
,m,m − 1, e j

(
si (β

′
i − βi )

)
e j ] is either null or equivalent to a sim-

ple stratum. The result follows since any direct sum of simple or null strata is
equivalent to a semisimple stratum.

(ii) If [Λi
OEi
,m,m − 1, si (β

′
i − βi )] is not G-split then it is skew; thus, if

no [Λi
OEi
,m,m − 1, si (β

′
i − βi )] is G-split then, by [28, Lemma 3.5], the stra-

tum [Λ, n,m − 1, β ′] is equivalent to a skew semisimple stratum, contradicting
the minimality of m. ��

Self-dual semisimple characters and Heisenberg extensions

3.5 Let [Λ, n, 0, β] be a semisimple stratum in A. Associated to this we have certain
orders H̃ = H̃(β,Λ) and J̃ = J̃(β,Λ) in A (see [28, §3.2]), along with compact groups
with filtration

H̃ = H̃(β,Λ) = H̃ ∩ P̃(Λ), H̃n = H̃n(β,Λ) = H̃ ∩ P̃n(Λ), for n ≥ 1,
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and similarly for J̃. For each m ≥ 0 there is also a set C(Λ,m, β) of semisimple
characters of the group H̃m+1 (see [28, Definition 3.13]) with nice properties, some
of which we recall in Lemma 3.4 below.

Recall that, given a representation ρ of a subgroup K̃ of G̃ and g ∈ G̃, the g-
intertwining space of ρ is

Ig(ρ) = Ig(ρ | K̃) = HomK̃∩gK̃(ρ,
gρ),

where gρ is the representation of gK̃ = gK̃g−1 given by gρ(gkg−1) = ρ(k), and
the G̃-intertwining of ρ is

IG̃(ρ) = IG̃(ρ | K̃) = {g ∈ G̃ : Ig(ρ) �= {0}}.
Lemma 3.4 ([28, Theorem 3.22, Corollary 3.25]) Let θ̃ ∈ C(Λ, 0, β). Then

(i) the intertwining of θ̃ is given by IG̃(θ̃) = J̃1G̃ẼJ1;
(ii) there is a unique irreducible representation η̃ of J̃1 which contains θ̃ ; more-

over, IG̃ (̃η) = J̃1G̃ẼJ1.

3.6 Now suppose [Λ, n, 0, β] is a self-dual semisimple stratum and retain the nota-
tion of the previous paragraph. The associated orders and groups are invariant under
the action of the involution σ and we put H = H̃∩G etc., as usual. The set C−(Λ,m, β)
of self-dual semisimple characters is the set of restrictions to Hm+1 of the semisimple
characters θ ∈ C(Λ,m, β)Σ ; this can also be described in terms of the Glauber-
man correspondence (cf. [28, §3.6]). The next lemma now follows exactly as in [28,
Proposition 3.27, Proposition 3.31].

Lemma 3.5 Let θ ∈ C−(Λ, 0, β). Then

(i) the intertwining of θ is given by IG(θ) = J1GEJ1;
(ii) there is a unique irreducible representation η of J1 which contains θ ; moreover,

if θ = θ̃ |H1 , for θ̃ ∈ C(Λ, 0, β)Σ and η̃ is the corresponding representation of J̃1,
then η is the Glauberman transfer of η̃.

Transfer

3.7 Let [Λ, n, 0, β] and [Λ′, n′, 0, β] be semisimple strata in A. Then (see [28,
Proposition 3.26]) there is a canonical bijection (called the transfer)

τΛ,Λ′,β : C(Λ, 0, β) → C(Λ′, 0, β)

such that, for θ̃ ∈ C(Λ, 0, β), the character θ̃ ′ := τΛ,Λ′,β(θ̃ ) is the unique semisimple
character in C(Λ′, 0, β) such that G̃E ∩ IG̃(θ̃ , θ̃

′) �= ∅. Indeed, G̃E ⊆ IG̃(θ̃ , θ̃
′).

If the semisimple strata are self-dual then the bijection τΛ,Λ′,β commutes with the
involution (cf. [28, Proposition 3.32]) so induces a bijection τΛ,Λ′,β : C−(Λ, 0, β) →
C−(Λ′, 0, β).

Since, by Lemma 3.5, for each θ ∈ C−(Λ, 0, β) there is a unique Heisenberg
extension η, we will also write τΛ,Λ′,β(η) for the Heisenberg extension η′ of the
semi-simple character θ ′ := τΛ,Λ′,β(θ).
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3.8 Now suppose [Λ, n, 0, β] and [Λ′, n′, 0, β] are self-dual semisimple strata
with the additional property that A(ΛOE) ⊆ A(Λ′

OE
). Let θ ∈ C−(Λ, 0, β), denote

by η the Heisenberg representation given by Lemma 3.5, and put θ ′ = τΛ,Λ′,β(θ)
and η′ = τΛ,Λ′,β(η). We form the group J1

Λ,Λ′ = P1(ΛOE)J
1(β,Λ′). As in [29,

Propositions 3.7, 3.12, Corollary 3.11] (see also [6, Proposition 1.2]), we have:

Proposition 3.6 There is a unique irreducible representation ηΛ,Λ′ of J1
Λ,Λ′ such that

(i) ηΛ,Λ′ |J1(β,Λ′) = η′, and
(ii) for any self-dual semisimple stratum [Λ′′, n′′, 0, β] such that A(ΛOE) = A(Λ′′

OE
)

and A(Λ′′) ⊆ A(Λ′), we have that ηΛ,Λ′ and τΛ,Λ′′,β(η) induce equivalent irre-
ducible representations of P1(Λ

′′).

The intertwining of ηΛ,Λ′ is given by

dim Ig(ηΛ,Λ′) =
{

1 if g ∈ J1
Λ,Λ′G

+
E J1
Λ,Λ′,

0 otherwise.

Moreover, if A(ΛOE) is a minimal self-dual OE-order contained in A(Λ′
OE
) then ηΛ,Λ′

is the unique extension of η′ to J1
Λ,Λ′ which is intertwined by all of GE.

Standard β-extensions

3.9 We continue with the notation of the previous paragraph so θ ∈ C−(Λ, 0, β)
and η is the Heisenberg representation, while θ ′, η′ are their transfers to the self-dual
semisimple stratum [Λ′, n′, 0, β], with A(ΛOE) ⊆ A(Λ′

OE
). We form the groups J+ =

J̃(β,Λ) ∩ G+ and J+
Λ,Λ′ = P+(ΛOE)J

1(β,Λ′).

Lemma 3.7 ([29, Lemma 4.3]) In this situation, there is a canonical bijection BΛ,Λ′
from the set of extensions κ of η to J+ to the set of extensions κ ′ of η′ to J+

Λ,Λ′ .
If A(Λ) ⊆ A(Λ′) then κ ′ = BΛ,Λ′(κ) is the unique extension of η′ such that κ, κ ′

induce equivalent irreducible representations of P+(ΛOE)P1(Λ).

3.10 For [Λ, n, 0, β] a self-dual semisimple stratum, we define a related self-dual
OE-lattice sequence MΛ as follows. Recall that we have the decomposition V =⊕

i∈I Vi and I = I− ∪ I0 ∪ I+. For i ∈ I, r ∈ Z and s = 0, 1, we put

Mi
Λ(2r + s) =

⎧
⎪⎨

⎪⎩

pr
Ei
Λi (0) if i ∈ I+,

pr
Ei
Λi (s) if i ∈ I0,

pr
Ei
Λi (1) if i ∈ I−.

Then MΛ := ⊕
i∈I Mi

Λ is a self-dual OE-lattice sequence on V with the property
that A(MΛ) ∩ Bβ is a maximal self-dual OE-order in Bβ .

Now we can define the notion of a standard β-extension.
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Definition 3.8 ([29, Definition 4.5]) Let [Λ, n, 0, β] be a self-dual semisimple stra-
tum, let θ ∈ C−(Λ, 0, β) and let η be the Heisenberg representation containing θ .

(i) Suppose A(ΛOE) is a maximal self-dual OE-order in B. Then a representation κ
of J+ is called a (standard) β-extension of η if, for Λm any self-dual OE-lattice
sequence such that A(Λm

OE
) is a minimal self-dual OE-order contained in A(ΛOE),

it is an extension of the representation ηΛm,Λ of Proposition 3.6.
(ii) In general, a representation κ of J+ is called a standard β-extension of η if there

is a β-extension κM of ηM = τΛ,MΛ,β(η) such that BΛ,MΛ
(κ) = κM|J+

Λ,MΛ

. In

this case we say that κM is compatible with κ .

We will often say that κ is a standard β -extension of θ , since η is determined by θ .
We will also say that the restriction to J (respectively Jo) of a standard β-extension κ
is a standard β-extension of θ to J (respectively Jo).

We also remark that β-extensions of a semisimple character θ̃ ∈ C(Λ, 0, β) for G̃
may be defined in the same way. This generalizes the construction for simple characters
and strict lattice sequences in [9, §5.2].

Iwahori decompositions

3.11 Let [Λ, n, 0, β] be a semisimple stratum in A with associated splitting V =⊕
i∈I Vi and let V = ⊕m

j=1 W j be a decomposition into subspaces which is properly

subordinate to [Λ, n, 0, β] in the sense of [29, Definition 5.1]: that is, each W j ∩ Vi

is an Ei -subspace of Vi and W j = ⊕
i∈I(W j ∩ Vi ), we have

Λ(r) =
m⊕

j=1

(Λ(r) ∩ W j ), for all r ∈ Z,

and, for each r ∈ Z and i ∈ I, there is at most one j such that

(Λ(r) ∩ W j ∩ Vi ) � (Λ(r + 1) ∩ W j ∩ Vi ).

Denote by M̃ the Levi subgroup of G̃ which is the stabilizer of the decomposi-
tion V = ⊕m

j=1 W j and let P̃ be any parabolic subgroup with Levi component M̃ and

unipotent radical Ũ.
By [29, Proposition 5.2], the groups J̃, J̃1 and H̃1 have Iwahori decompositions with

respect to (M̃, P̃) and we put

H̃1
P̃

= H̃1(̃J1 ∩ Ũ), J̃1
P̃

= H̃1(̃J1 ∩ P̃), and J̃̃P = H̃1(̃J ∩ P̃).

For θ̃ ∈ C(Λ, 0, β) we define the character θ̃P̃ of H̃1
P̃

by

θ̃P̃(hj) = θ̃ (h), for h ∈ H̃1, j ∈ J̃1 ∩ Ũ.

This is well-defined.
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Lemma 3.9 ([29, Corollary 5.7, Lemma 5.8]) Let θ̃ ∈ C(Λ, 0, β) and let η̃ be the
corresponding representation of J̃1. Then

(i) the intertwining of θ̃P̃ is given by IG̃(θ̃ P̃) = J̃1
P̃
G̃ẼJ1

P̃
;

(ii) there is a unique irreducible representation η̃P̃ of J̃1
P̃

which contains θ̃P̃; more-

over, IG̃ (̃ηP̃) = J̃1
P̃
G̃ẼJ1

P̃
and η̃ � IndJ̃1

J̃1
P̃

η̃P̃.

3.12 Now suppose [Λ, n, 0, β] is a self-dual semisimple stratum and V =⊕m
j=−m W j is a properly subordinate self-dual decomposition, that is, the orthogonal

complement of W j is
⊕

k �=− j Wk , for each j . (We allow the possibility that W0 = {0}.)
We use the notation of the previous paragraph and put M = M̃ ∩ G, a Levi subgroup
of G, and, choosing P̃ to be a σ -stable parabolic subgroup of G̃, put P = P̃∩G = MU,
a parabolic subgroup of G. Then H1 has an Iwahori decomposition with respect
to (M,P), while H̃1

P̃
is stable under the involution, and we put H1

P = H̃1
P̃

∩ G =
H1

(
J1 ∩ U

)
. Similarly, we have J1

P, JP and J+
P , as well as Jo

P = H1(Jo ∩ P).
For θ ∈ C−(Λ, 0, β), define the character θP of H1

P by

θP(hj) = θ(h), for h ∈ H1, j ∈ J1 ∩ U;

thus, if θ = θ̃ |H1 for some θ̃ ∈ C(Λ, 0, β)Σ , then θP = θ̃P̃|H1
P
. Exactly as in [29,

Lemma 5.12], we get:

Lemma 3.10 Let θ ∈ C−(Λ, 0, β) and let η be the corresponding representation
of J1. Then

(i) the intertwining of θP is given by IG(θP) = J1
PGEJ1

P;
(ii) there is a unique irreducible representation ηP of J1

P which contains θP; moreover,
if θ = θ̃ |H1 , for θ̃ ∈ C(Λ, 0, β)Σ and η̃ is the corresponding representation of J̃1,
then ηP is the Glauberman transfer of η̃P̃;

(iii) with ηP as in (ii), we have η � IndJ1

J1
P
ηP and

dim Ig(ηP) =
{

1 if g ∈ J1
PG+

E J1
P,

0 otherwise.

3.13 We continue with the notation of the previous paragraph. Let κ be a standard
β-extension of η to J+. We form the natural representation κP of J+

P on the space

of J ∩ U-fixed vectors in κ; then κP is an extension of ηP and IndJ+
J+

P
κP � κ . Similar

results apply to the restriction of κP to JP and to Jo
P.

We can also make the same construction for a β-extension κ̃ of a semisimple
character θ̃ for G̃, thus obtaining a representation κ̃P̃ of J̃̃P.

3.14 Suppose [Λ, n, 0, β] is a self-dual semisimple stratum, with associated Levi
subgroup L = Lβ as in paragraph 3.2, which we identify with G0 ×∏l

i=1 G̃i . Note that
the associated decomposition V = ⊕l

i=−l Vi is properly subordinate to the stratum.
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Let Q be a parabolic subgroup of G with Levi component L. We write H1
L = H1

Q ∩L =
H1 ∩ L; then H1

L = H1(β0,Λ0)× ∏l
i=1 H̃(βi ,Λi ). Similarly we have J1

L, etc.
For θ ∈ C−(Λ, 0, β) a semisimple character we put θL = θ |H1

L
. Then θL is of the

form θ0 ⊗ ⊗l
i=1 θ̃i , with θ0 a skew semisimple character in C−(Λ0, 0, β0), and θ̃i a

simple character in C(Λi , 0, 2βi ).
By a standardβ-extension of θL, we mean a representation κL of J+

L (or JL, Jo
L) of the

form κL = κ0 ⊗⊗l
i=1 κ̃i , with κ0 a standard β0-extension of θ0 and κ̃i a 2βi -extension

of θ̃i .

3.15 We continue with notation of the previous paragraph.
Let V = ⊕m

j=−m W j be another self-dual decomposition properly subordinate
to [Λ, n, 0, β] and M the Levi subgroup of G stabilizing the decomposition. We
suppose also that M ⊆ L and let P = MU ⊆ Q be a parabolic subgroup of G with
Levi component M. Then P ∩ L = M(U ∩ L) is a parabolic subgroup of L with Levi
component M.

Let θ ∈ C−(Λ, 0, β) be a semisimple character and let κ be a standard β-extension
to J. We form the representation κP of JP as above, and also the representation κQ
of JQ. Note that, since M ⊆ L, we have JP ⊆ JQ, and κP can be viewed as the natural
representation on the J ∩ U-fixed vectors in κQ.

We also have JQ ∩ L = J ∩ L, since GE ⊆ L, and we can consider the natural
representation of JP ∩ L on the J ∩ L ∩ U-fixed vectors in κQ|J∩L. This is natu-
rally isomorphic to the restriction κP|JP∩L. We will need the following compatibility
result.

Proposition 3.11 In the situation above, the restriction κP|JP∩L takes the form κ ′
P∩L,

where κ ′ := κQ|J∩L is a standard β-extension of θL to JL = J ∩ L.

Proof We need to check that κ ′ := κQ|J∩L is a standard β-extension. If A(ΛOE) is
a maximal self-dual order in B (in which case L = M) then this follows from [29,
Proposition 6.3].

For the general case, denote by κM the unique β-extension of JM = J(β,MΛ)

compatible with κ; then κM,Q|JM∩L is a (standard) β-extension by the previous case,
and κQ|J∩L is compatible with κM,Q|JM∩L, by [6, Proposition 1.17]. Thus κ ′ is indeed
a standard β-extension.

4 Cuspidal types

In this section we recall the notions of cuspidal types from [9,29], correcting along
the way a mistake in the definition in [29] pointed out by Laure Blasco and Corinne
Blondel.

4.1 We recall from [9] the definition of a simple type and of a maximal simple type
for G̃; we call the latter a cuspidal type. The generalizations to the case of lattice
sequences come from [26].

123



Semisimple types for p-adic classical groups

Definition 4.1 A simple type for G̃ is a pair (̃J, λ̃), where J̃ = J̃(β,Λ) for some simple
stratum [Λ, n, 0, β] such that

• P̃(ΛOE)/̃P1(ΛOE) � GL f (kE)
e, for some positive integers f, e,

and λ̃ = κ̃ ⊗ τ̃ , for κ̃ a β-extension of some simple character θ̃ ∈ C(Λ, 0, β) and τ̃
the inflation of an irreducible cuspidal representation τ̃⊗e

0 of J̃/̃J1 � GL f (kE)
e.

A cuspidal type for G̃ is a simple type for which P̃(ΛOE) is a maximal parahoric
subgroup of G̃E; that is, e = 1 in the notation above.

Every irreducible cuspidal representation π̃ of G̃ contains a cuspidal type (̃J, λ̃).
Then π̃ is irreducibly compactly induced from a representation of E×̃J containing λ̃
and the cuspidal type (̃J, λ̃) is a [G̃, π̃ ]G̃-type.

The following proposition can be extracted from the results in [9, §§7–8] (see
also [25, Proposition 5.15, Corollaire 5.20]).

Proposition 4.2 Let [Λ, n, 0, β] be a simple stratum, θ̃ ∈ C(Λ, 0, β) a simple char-
acter, and κ̃ a β-extension. Let τ̃ be (the inflation to J̃ of) an irreducible represen-
tation of P̃(ΛOE)/̃P1(ΛOE). Suppose a cuspidal representation π̃ of G̃ contains θ̃
and κ̃ ⊗ τ̃ . Then P̃(ΛOE) is a maximal parahoric subgroup of G̃E, and τ̃ is cuspidal;
that is, (̃J, κ̃ ⊗ τ̃ ) is a cuspidal type.

4.2 Now we recall from [29] the (corrected) definition of a maximal simple type
for G, which we again call a cuspidal type. Recall that we have assumed that G is not
itself a split two-dimensional special orthogonal group; thus its centre is compact.

Definition 4.3 A cuspidal type for G is a pair (J, λ), where J = J(β,Λ) for some
skew semisimple stratum [Λ, n, 0, β] such that

• GE has compact centre and
• Po(ΛOE) a maximal parahoric subgroup of GE,

and λ = κ ⊗ τ , for κ a β-extension and τ the inflation of an irreducible cuspidal
representation of J/J1 � P(ΛOE)/P1(ΛOE).

By [29, Theorem 7.14], whose proof is corrected in the appendix, every irreducible
cuspidal representation of G contains a cuspidal type. Moreover, the proof in the
appendix shows that we have the following analogue of Proposition 4.2.

Proposition 4.4 Let [Λ, n, 0, β] be a skew semisimple stratum, θ ∈ C−(Λ, 0, β) a
semisimple character, and κ a standard β-extension. Let τ be (the inflation to J of) an
irreducible representation of P(ΛOE)/P1(ΛOE). Suppose a cuspidal representation π
of G contains θ and κ ⊗ τ . Then GE has compact centre, Po(ΛOE) is a maximal
parahoric subgroup of GE, and τ is cuspidal; that is, (J, κ ⊗ τ) is a cuspidal type.

5 Semisimple types

In this section we will prove Theorem 1.1 of the introduction, explaining how to
construct a type for each Bernstein component, via the theory of covers.
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5.1 We suppose given a Levi subgroup M of G, which is the stabilizer of the self-dual
decomposition

V = W−m ⊕ · · · ⊕ Wm; (∗)

thus, putting G̃ j = AutF(W j ) and G0 = AutF(W0)∩G, we have M = G0×∏m
j=1 G̃ j .

Let τ be a cuspidal irreducible representation of M, which we write τ = τ0⊗⊗m
j=1 τ̃ j .

Also let M denote the stabilizer of the decomposition (∗) in A; thus M− is the Lie
algebra of M. For −m ≤ j ≤ m, we denote by e j the idempotent given by projection
onto W j .

For each j > 0, let [Λ j , n j , 0, β j ] be a simple stratum in A j and let θ̃ j in
C(Λ j , 0, β j ) be such that τ̃ j contains θ̃ j ; let also [Λ0, n0, 0, β0] be a skew semisimple
stratum in A0 and let θ0 ∈ C−(Λ0, 0, β0) be such that τ0 contains θ0.

Proposition 5.1 ([14, Proposition 8.4]) There are a self-dual semisimple stratum
[Λ, n, 0, β] with β ∈ M , and a self-dual semisimple character θ of H1 = H1(β,Λ)

such that:

(i) The decomposition (∗) is properly subordinate to [Λ, n, 0, β];
(ii) H1(β,Λ) ∩ M = H1(β0,Λ0)× ∏m

j=1 H̃1(β j ,Λ j ); and

(iii) θ |H1(β,Λ)∩M = θ0 ⊗ ⊗m
j=1 θ̃ j .

Proof (ii) and (iii) are given by [14, Proposition 8.4], and (i) by the comments follow-
ing its statement.

For j �= 0, we note that (iii) implies that θ̃ j is a simple character for the sim-
ple stratum [Λ j , n j , 0, 2e jβe j ]; likewise, θ0 is a skew semisimple character for
[Λ0, n0, 0, e0βe0]. Thus we may, and do, assume that β j = 2e jβe j , for j > 0,
and β0 = e0βe0. Similarly, we may and do assume that the lattice sequence Λ j is
equal to Λ ∩ W j .

Remark 5.2 The property in Proposition 5.1 that [Λ, n, 0, β] is semisimple is strictly
stronger than the property that each stratum [Λ j , n j , 0, e jβe j ] is (semi)simple. In
general, the direct sum of (semi)simple strata need not be semisimple.

Let V = ⊕l
i=−l Vi be the self-dual decomposition associated to the stratum

[Λ, n, 0, β] and let L = Lβ be the G-stabilizer of this decomposition. Since β ∈ M ,
this is a coarsening of the decomposition (∗): that is, each Vi is a sum of certain W j ,
with W0 ⊆ V0, so that L ⊇ M.

We will abbreviate H1 = H1(β,Λ), and similarly J1, Jo, J. By Proposition 5.1(i),
all these groups have Iwahori decompositions with respect to (M,P), for any par-
abolic subgroup P = MU with Levi component M; thus we may form the groups
H1

P, J1
P, Jo

P, JP as in Sect. 3.
Write GE for the centralizer of β in G, so GE ⊆ L. We note that, by Proposi-

tions 4.2 and 4.4, the group Jo ∩ GE ∩ M is a maximal parahoric subgroup of GE ∩ M.
In particular, the decomposition (∗) is exactly subordinate to [Λ, n, 0, β], in the lan-
guage of [29, Definition 6.5]. (In fact, the definition of exactly subordinate in loc. cit.
should have required that Po(ΛOE)∩M be a maximal parahoric subgroup of GE ∩M.)
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Let η be the unique irreducible representation of J1 containing θ , and choose a
standard β-extension κ of θ . Denote by κP the natural representation of JP on the
(J ∩ U)-fixed vectors in κ , by ηP its restriction to J1

P, and by θP the character of H1
P

which extends θ and is trivial on J1 ∩ U.
Since the decomposition (∗) is exactly subordinate to [Λ, n, 0, β], by [29, Propo-

sition 6.3] the restriction κM = κP|J∩M is a standard β-extension of ηM = ηP|J1∩M,
which is itself the unique irreducible representation of J1∩M containing θM = θ |H1∩M;
this means that κM = κ0 ⊗⊗m

j=1 κ̃ j , where κ̃ j is a β j -extension containing θ̃ j and κ0
is a standard β0-extension containing θ0.

Since τ contains θM, it also contains ηM, and hence some representation of Jo ∩ M
of the form λo

M = κM ⊗ ρo
M, with ρo

M the inflation to Jo ∩ M of an irreducible
representation of the connected reductive group Po(ΛOE)/P1(ΛOE). Moreover, by
Propositions 4.2 and 4.4, the representation ρo

M is necessarily cuspidal. We write
ρo

M = ρo
0 ⊗⊗m

j=1 ρ̃ j , where ρ̃ j is a cuspidal representation of P̃(Λ j,OE j
)/̃P1(Λ j,OE j

),

for j ≥ 1, and ρo
0 is a cuspidal representation of Po(Λ0,OE0

)/P1(Λ0,OE0
).

Now we have an isomorphism Jo
P/J

1
P � (Jo ∩M)/(J1 ∩M) so we can also regard ρo

M
as a representation of Jo

P by inflation. Thus we can form the representationλo
P = κP⊗ρo

M
of Jo

P. The main result is then:

Theorem 5.3 The pair (Jo
P, λ

o
P) is a cover of (Jo

P ∩ M, λo
M).

Remark 5.4 Certainly, the pair (Jo
P, λ

o
P) is a decomposed pair above (Jo

P ∩ M, λo
M),

in the sense of [11, Definition 6.1]. Moreover, putting λo = IndJo

Jo
P
λo

P = κ ⊗ λo
M

(with λo
M regarded as a representation of Jo trivial on J1), we have a support-preserving

isomorphism

H (G, λo
P) � H (G, λo),

as in [29, Lemma 6.1]. In particular, the condition on the Hecke algebra which needs
to be checked to prove that (Jo

P, λ
o
P) is a cover is independent of the choice of parabolic

subgroup P with Levi component M. Thus we can, and will, change our choice of P
where necessary.

The proof of Theorem 5.3 will occupy the next few paragraphs. Let us see how this
implies Theorem 1.1 of the introduction.

Proof of Theorem 1.1 Since τ contains λo
M, it contains some irreducible representa-

tion λM of J ∩ M = JP ∩ M which contains λo
M; more precisely, we can write λM =

κM ⊗ ρM, with ρM the inflation of an irreducible representation of P(ΛOE)/P1(ΛOE)

which contains ρo
M. Thus (JP ∩ M, λM) is a cuspidal type in M, which is an [M, τ ]M-

type.
We put λP = κP ⊗ ρM, so that λP|JP∩M = λM. Then certainly (JP, λP) is a decom-

posed pair above (JP ∩ M, λM), while (Jo
P, λ

o
P) is a cover of (Jo

P ∩ M, λo
M), by Theo-

rem 5.3. Thus, by [23, Lemma 3.9], (JP, λP) is also a cover of (JP ∩ M, λM). Since
(JP ∩ M, λM) is an [M, τ ]M-type, we conclude from [11, Theorem 8.3] that (JP, λP)

is an [M, τ ]G-type. Since the pair (M, τ ) was arbitrary, we have a type for every
Bernstein component.
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5.2 The proof of Theorem 5.3 proceeds by transitivity of covers [11, Proposition 8.5].
Putting λo

L = λo
P|Jo

P∩L, the first step is to show:

Lemma 5.5 The pair (Jo
P, λ

o
P) is a cover of (Jo

P ∩L, λo
L). Moreover, there is a support-

preserving Hecke algebra isomorphism

H (G, λo
P) � H (L, λo

L).

Proof Since (Jo
P, λ

o
P) is a decomposed pair above (Jo

P ∩ M, λo
M) and M ⊆ L ⊆ G, it is

certainly also a decomposed pair above (Jo
P ∩ L, λo

L).
Now the support of the Hecke algebra H (G, λo

P) is the intertwining of λo
L, which is

contained in the intertwining of θP. By Lemma 3.10(i), this intertwining is JPGEJP ⊆
Jo

PLJo
P. The result now follows from [11, Theorem 7.2].

5.3 Lemma 5.5 reduces us to proving that (Jo
P ∩ L, λo

L) is a cover of (Jo
P ∩ M, λo

M).
By Proposition 3.11, we have λo

L = κ ′
P∩L ⊗ ρo

M, where κ ′ = κQ|Jo∩L is a standard
β-extension of θ |H1∩L, and we think of ρo

M as a representation of
(
Jo

P ∩ L
)
/
(
J1

P ∩ L
) �

(Jo ∩ M) /
(
J1 ∩ M

)
. The first step is to describe κ ′

P∩L, whence λo
L, more carefully.

Recall that V = ⊕l
i=−l Vi is the self-dual decomposition associated to the semi-

simple stratum [Λ, n, 0, β], and that, for each i , we have Vi = ⊕
j∈Ji

W j , for

some subset Ji of {−m, . . . ,m}. Writing ei for the projection onto Vi as usual,
and Λi = Λ ∩ Vi , the stratum [Λi , ni , 0, eiβei ] is

• skew semisimple, for i = 0,
• simple, for i �= 0,

where ni = −υΛ(eiβei ) = −υΛi (eiβei ).
We write L = G0 × ∏l

i=1 G̃i , where G̃i = AutF(Vi ). We have θ |H1∩L =
θ ′

0 ⊗ ⊗l
i=1 θ̃

′
i , where θ ′

0 is a skew semisimple character in C−(Λ0, 0, e0βe0), and θ̃ ′
i

is a simple character in C(Λi , 0, 2eiβei ). Then the standard β-extension κ ′ takes
the form κ ′ = κ ′

0 ⊗⊗l
i=1 κ̃

′
i , for κ ′

0 a standard e0βe0-extension of θ ′
0, and κ̃ ′

i a 2eiβei -
extension of θ̃ ′

i .

Since M ⊆ L, we have P ∩ L = P0 × ∏l
i=1 P̃i , with Pi a parabolic subgroup

of Gi . We put ρ′
0 = ρo

0 ⊗ ⊗
j∈J0, j>0 ρ̃ j , and ρ̃′

i = ⊗
j∈Ji

ρ̃ j , for i > 0. Then we

put λo
0 = κ ′

0 ⊗ ρ′
0, and λ̃′

i = κ̃ ′
i ⊗ ρ̃′

i , for i > 0.

Now Jo
P ∩ L = Jo

P0 × ∏l
i=1 J̃̃Pi (with the obvious notation) and we have

κ ′
P∩L � κ ′

0,P0 ⊗ ⊗l
i=1 κ̃

′
i,̃Pi . In particular, we also get λo

L � λo
0,P0 ⊗ ⊗l

i=1 λ̃
′
i,̃Pi .

Finally, we write M0 = M ∩ G0 and M̃i = M ∩ G̃i , for i > 0, so that M =
M0 × ∏l

i=1 M̃i . Then, in order to prove that (Jo
P ∩ L, λo

L) is a cover of (Jo ∩ M, λo
M)

we need to show:

• (Jo
P0 , λ

o
0,P0) is a cover of (Jo

P0 ∩ M0, λo
0,P0 |JP0 ∩M0); and

• (̃J̃Pi , λ̃′
i,̃Pi ) is a cover of (̃J̃Pi ∩ M̃i , λ̃′

i,̃Pi |̃J̃Pi ∩M̃i ), for i > 0.

The latter is given by [26, Proposition 8.1]: since the underlying stratum is simple,
it is a homogeneous semisimple type, in the sense of [12,26]. On the other hand, the
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former is the case of a skew semisimple stratum; that is, we have reduced the proof
of Theorem 5.3 to the case L = G, and we are in the situation of [29, §7]. Indeed it
is possible to extract the proof that we get a cover here from the results in loc. cit.,
which we will do in the following paragraphs.

5.4 We are now in the situation of Theorem 5.3 in the special case L = G, so
that [Λ, n, 0, β] is a skew semisimple stratum. In [29, §6.3], an involution σ j is defined
on G̃ j , for j > 0, coming from the composition of the involution σ on G and a Weyl
group element which exchanges W j with W− j . By [29, Lemma 6.9, Corollary 6.10],
the group J̃(β j ,Λ j ) is stable under this involution, and κ̃ j � κ̃ j ◦ σ j .

Recall that we have ρo
M = ρo

0 ⊗ ⊗m
j=1 ρ̃ j . For j > 0 we put ρ̃− j = ρ̃ j ◦ σ j .

We suppose first that there is an index k > 0 such that ρ̃k �� ρ̃−k . We put

J1 = {−m ≤ j ≤ m | ρ̃ j � ρ̃k}, J0 = { j | ± j �∈ J1}, J−1 = {− j | j ∈ J1},

and set Yi = ⊕
j∈Ji

W j , for i = −1, 0, 1. We have V = Y−1 ⊕ Y0 ⊕ Y1, since
ρ̃k �� ρ̃−k . Let M′ be the Levi subgroup of G stabilizing this decomposition and
let P′ = M′U′ be a parabolic subgroup containing P. (Note that one may need to change
the choice of the parabolic subgroup P in order to achieve this.) We have M′ = G0×G̃1,
where G0 = AutFY0 ∩ G and G̃1 = AutFY1, and write M = M0 × M̃1 also.

By [29, Proposition 7.10] and its proof we have:

Lemma 5.6 The pair (Jo
P, λ

o
P) is a cover of (Jo

P ∩M′, λo
P|Jo

P∩M′) and there is a support-

preserving isomorphism of Hecke algebras H (G, λo
P) � H (M′, λo

P|Jo
P∩M′).

Now we have Jo
P ∩ M′ = (Jo

P ∩ G0)× (Jo
P ∩ G̃1) and, as in the previous paragraph,

we need to prove:

• (Jo
P ∩ G0, λo

P|Jo
P∩G0) is a cover of (Jo

P ∩ M0, λo
P|Jo

P∩M0); and

• (Jo
P ∩ G̃1, λo

P|Jo
P∩G̃1) is a cover of (Jo

P ∩ M̃1, λo
P|Jo

P∩M̃1).

Again as in the previous paragraph, the latter is a cover by [26, Proposition 6.7]; it is
a simple type. The former is again the case of a skew semisimple stratum, but with
fewer indices j such that ρ̃ j �� ρ̃− j . In particular, by repeating the process in this
paragraph, we can reduce to the case where ρ̃ j � ρ̃− j , for all j .

5.5 We suppose now that GE does not have compact centre. This implies that G is
a special orthogonal group, that βk = 0 for a unique k > 0, and that dimF Wk = 1.
In this case set Y1 = Wk , Y−1 = W−k , and Y0 = ⊕

j �=±k W j , let M′ be the Levi

subgroup stabilizing the decomposition V = Y−1 ⊕ Y0 ⊕ Y1, and let P′ = M′U′
be a parabolic subgroup containing P. (Again, this may require the choice of P to
be changed.) We have GE ⊆ M′ and, by [29, Corollary 6.16], IG(λ

o
P) ⊆ Jo

PM′Jo
P. In

particular we get:

Lemma 5.7 The pair (Jo
P, λ

o
P) is a cover of (Jo

P ∩M′, λo
P|Jo

P∩M′) and there is a support-

preserving isomorphism of Hecke algebras H (G, λo
P) � H (M′, λo

P|Jo
P∩M′).

As in previous paragraphs, this reduces us to the case where GE has compact centre.
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5.6 We have finally reduced to the case where ρ̃ j � ρ̃− j , for all j and GE has
compact centre; this is exactly the situation of [29, §7.2.2]. Moreover, by changing P
if necessary, we may assume the parabolic subgroup is the same one as in loc. cit.
In [29, §7.2.2], two auxiliary OE-lattice sequences Mt , t = 0, 1, are defined, along
with Weyl group elements st ∈ P(Mt,OE), which we describe below, along with some
auxiliary elements. We have GE = ∏

i∈I0
GEi and we will write I0 = {1, . . . , l}, to

match the notation of [29, §7.2.2]; then W(m) ⊂ V�, with 1 ≤ � ≤ l maximal such
that V� contains some W( j), and βi �= 0 for i > 1.

We put W(�,0) = V� ∩ W0 and denote by Λ(�,0) the OE� -lattice sequence

Λ ∩ W(�,0). Let pΛ ∈ P(Λ(�,0)OE�
) be an element of order at most 2 such that the quo-

tient P(Λ(�,0)OE�
)/Po(Λ

(�,0)
OE�

) (which has order 1 or 2) is generated by the image of pΛ.

Then also P(Λ�OE�
)/Po(Λ�OE�

) is generated by the image of pΛ. We split into cases.

(i) Suppose either that GE� is not an orthogonal group, or that dimE� Wm is even.
Then s0, s1 are the elements denoted sm, sm respectively in loc. cit.. Note that pΛ
commutes with both s0 and s1.
In this situation, it is straightforward to check, using the definitions of the elements
in [29, §6.2], that st ∈ Po(Mt,OE) unless E�/E�,o is ramified, m is odd (so m = 1)
and ε = (−1)t . Moreover, if st �∈ Po(Mt,OE) then either pΛst ∈ Po(Mt,OE)

or else Po(Mt,OE) = Po(ΛOE), in which case P(M�
t,OE

)/P1(M
�
t,OE

) has the
form O(1, 1)(kE� )× G , for G some product of connected finite reductive groups,
while P(Λ�OE

)/P1(Λ
�
OE
) has the form SO(1, 1)(kE� )× G .

(ii) If GE� is (special) orthogonal (so that E� = F and ε = +1) and dimF Wm is
odd, the choice of P and the property that ρ̃ j � ρ̃− j , for all j , mean that � = 1
and dimF Wk = 1, for all k > 0, and there are two cases.
(a) If G+

E1
∩AutF(W0) �= 1, then Po(ΛOE)/P1(ΛOE) � GL1(kF)×G o

0 ×G o
1 ×G o,

where each G o
t is a special orthogonal group over kF (one of which may

be trivial) and G o is some product of connected finite reductive groups.
If G o

t is non-trivial, then there is an element pt ∈ P+(Λ(1,0))\P(Λ(1,0))
such that p2

t = 1, which commutes with both sm, sm , and whose image
in P+(ΛOE)/P1(ΛOE) � GL1(kF) × G0 × G1 × G lies in the orthogonal
group Gt (whose connected component is G o

t ). If G o
t is trivial, we put pt =

p1−t ; in any case, p0, p1 commute. Moreover, we can assume that pΛ =
p0 p1.
If exactly one of p0, p1 normalizes the representation ρo

M, viewed as a rep-
resentation of Po(ΛOE) trivial on P1(ΛOE), then we set p to be this element;
if both or neither normalize, then we arbitrarily choose p to be one of them.
Then s0, s1 are the elements psm, psm respectively, which lie in GE.
Note that st ∈ Po(Mt,OE) precisely when G o

t is non-trivial and p = pt . If G o
t

is trivial, then Po(Mt,OE)/P1(Mt,OE) � SO(1, 1)(kF)× G o
1−t × G o.

(b) Otherwise, s0, s1 are the elements denoted smsm−1, sm sm−1 respectively
in [29, §7.2.2]. Note that in this case m ≥ 2, since GE1 has compact centre
so we cannot have GE1 � SO(1, 1)(F).
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In all cases but case (ii)(b), we set Y1 = Wm , Y−1 = W−m and Y0 = ∑
j �=±m W j ;

in the exceptional case we set Y1 = Wm ⊕ Wm−1, Y−1 = W−m ⊕ W1−m and Y0 =∑
j �=±m,m−1 W j . Denote by M′ the Levi subgroup stabilizing the decomposition V =

Y−1 ⊕ Y0 ⊕ Y1, and let P′ = M′U′ be a parabolic subgroup containing P. We deal
with an easy case first.

Lemma 5.8 Suppose we are in case (ii)(a) and neither p0 nor p1 normalizes ρo
M. Then

the pair (Jo
P, λ

o
P) is a cover of (Jo

P ∩ M′, λo
P|Jo

P∩M′) and there is a support-preserving

isomorphism of Hecke algebras H (G, λo
P) � H (M′, λo

P|Jo
P∩M′).

Proof By [29, Corollary 6.16], we have IG(λ
o
P) ⊆ Jo

PM′Jo
P, and the result follows as

usual, as in Lemma 5.5.

Now suppose we are not in the case of Lemma 5.8. For t = 0, 1, denote by κt a
β-extension of η compatible with some standard β-extension of Jo(β,Mt ). By [29,
Corollary 6.13], we have

κt � IndJo

Jo
P
κP ⊗ χt ,

for some self-dual character χt . We write ρo
t = ρo

M ⊗ χ−1
t , which is still a self-

dual cuspidal representation. Moreover, by [29, (7.3)], there is a support-preserving
injective algebra map

H (P(Mt,OE), ρ
o
t ) ↪→ H (G, λo

P), (†)

where ρo
t is being regarded as a cuspidal representation of P(ΛOE). By [22,

Theorem 7.12], there is an invertible element in H (P(Mt,OE), ρ
o
t ) with support

P(ΛOE)st P(ΛOE), and we denote by Tt its image in H (G, λo
P).

By [29, Lemmas 7.11,7.12], for a suitable integer e, the element (T0T1)
e is an

invertible element of H (G, λo
P) supported on the double coset of a strongly (P, Jo

P)-
positive element of the centre of M′. Indeed, we have:

Proposition 5.9 ([29, Proposition 7.13]) The pair (Jo
P, λ

o
P) is a cover of the pair

(Jo
P ∩ M′, λo

P|Jo
P∩M′).

As in previous paragraphs, we have M′ = G0 × G̃1, where G0 = AutFY0 ∩ G
and G̃1 = AutFY1, and we write M = M0 ×M̃1. Then Jo

P ∩M′ = (Jo
P ∩G0)×(Jo

P ∩G̃1)

and we need to prove:

• (Jo
P ∩ G0, λo

P|Jo
P∩G0) is a cover of (Jo

P ∩ M0, λo
P|Jo

P∩M0); and

• (Jo
P ∩ G̃1, λo

P|Jo
P∩G̃1) is a cover of (Jo

P ∩ M̃1, λo
P|Jo

P∩M̃1).

Again as previously, the latter is a cover by [26, Proposition 6.7]; it is a simple type.
(In fact, except in case (ii)(b) above, we have M̃1 = G̃1.)

The former is again the case of a skew semisimple stratum, but with smaller m. In
particular, by repeating the process in this paragraph, we reduce to the case m = 0, in
which case M0 = G0 and there is nothing left to do.
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6 Hecke algebras

In this section we prove Theorem 1.2 of the introduction: that is, we describe the
Hecke algebra of a cover in the case that τ is a cuspidal irreducible representation
of a maximal proper Levi subgroup M of G (so M is the stabilizer of a self-dual
decomposition V = W−1 ⊕ W0 ⊕ W1), up to the computation of some parameters.
We will also explain how, in principle, these parameters can be computed.

As in the introduction, we write s = [M, τ ]G and sM = [M, τ ]M and put

NG(sM) = {g ∈ NG(M) : gτ is inertially equivalent to τ }.

We also put Ws = NG(sM)/M, a subgroup of the group NG(M)/M of order 2.
We denote by (JP, λP) the s-type constructed in the previous section, and we put

JM = JP ∩ M and λM = λP|JP∩M, so that (JP, λP) is a cover of the sM-type (JM, λM).

6.1 Before giving the proof, we give a brief explanation of the dichotomy |Ws| =
1 or 2 and of the implications of the results here.

The case |Ws| = 1 occurs precisely when the (normalized) parabolically induced
representations IndG

M,Pτχ are irreducible for all unramified characters χ of M; thus,
with arithmetic applications in mind, this case is rather uninteresting.

The case |Ws| = 2 is much more interesting. Here, if we write M = G0 × G̃1
and τ = τ0 ⊗ τ̃1 as in the previous section (so that G̃1 = AutF(W1) is a general linear
group), the condition is that τ̃1 is equivalent to an unramified twist of the Gal(F/Fo)-
conjugate of its contragredient. In this case, replacing τ by an unramified twist, we
can assume that τ̃1 is equivalent to its conjugate-contragredient. Now determining
those complex s for which IndG

M,Pτ0 ⊗ τ̃1| det(·)|s is reducible is of great arithmetic

interest; in particular, if we find that there is a real s > 1
2 for which the corresponding

representation is reducible, this should imply a transfer relation between τ0 and τ̃1 via
the Langlands correspondence (namely, the Langlands parameter for τ̃1 should appear
in that of τ0, viewed via the natural embedding of the L-group of G0 into the L-group
of some general linear group—see [21] for more on this).

On the other hand, the theory of types and covers gives us a commutative diagram

Rs(G) �� �� H (G, λP)-Mod

RsM(M)

IndG
M,P

��

�� �� H (M, λM)-Mod

(tP)∗

��

where -Mod denotes the category of left modules, map (tP)∗ is Hom-induction given
via an embedding tP : H (M, λM) ↪→ H (G, λP), and the horizontal arrows are
equivalences of categories. The algebra H (M, λM) is abelian, isomorphic to C[X±1].
Using this diagram, together with the embedding of Hecke algebras, one can in prin-
ciple compute those s for which IndG

M,Pτ0 ⊗ τ̃1| det(·)|s is reducible. For example,

if the two parameters for the Hecke algebra are q fi
F , for i = 0, 1, (so that fi may

be a half-integer if F/Fo is unramified) then imaginary part of s must be a multiple
of π i/ log qF. Blondel shows in [6, Proposition 3.12] that the real part of s is
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± ( f1 ± f2)

2t (̃τ1)
,

where the signs are independent and t (̃τ1) denotes the unramified twist number of τ̃1:
the number of unramified characters χ such that τ̃1χ � τ̃1.

The parameters q fi
F are almost computable from results of Lusztig [20]. The problem

is the presence of the quadratic character χ0 of paragraph 5.6, which (at least in some
cases) must first be computed. We discuss this further in paragraph 6.5 below.

6.2 We proceed with the proof of Theorem 1.2. Suppose first that NG(sM) = M, so
that Ws is trivial. In this case, by [13, Theorem 1.5], we have an isomorphism

H (M, λM) → H (G, λP).

Since H (M, λM) is isomorphic to C[X±1], the result follows.

6.3 Now suppose that NG(sM) �= M, so that Ws has order 2. We note first that,
in this situation, we cannot have a support-preserving isomorphism H (M, λM) →
H (G, λP) since the induced representation IndG

P τ ⊗ χ reduces for some unrami-
fied character χ of M. This implies that we also do not have a support-preserving
isomorphism H (M, λo

M) → H (G, λo
P).

We now proceed through the construction of Sect. 5 and we use all the notation from
there. Note that we must have L = G, or else we would have L = M and Lemma 5.5
would give us an isomorphism H (M, λo

M) → H (G, λo
P). Similarly, we cannot be in

the situation of paragraph 5.4 or paragraph 5.5, by Lemmas 5.6, 5.7.
Thus we are in the situation of paragraph 5.6, whose notation we adopt. Further, we

are not in the exceptional case (ii)(b), since M is a maximal Levi subgroup, nor in the
case of Lemma 5.8 since we do not have an isomorphism H (M, λo

M) → H (G, λo
P).

The lattice sequence M1 is just the standard lattice sequence MΛ used to define the
standard β-extension κ . In particular, the character χ1 is trivial. Moreover, as in [15,
§2.3], by changing κ0 if necessary, we may assume that χ0 is a quadratic character.

Recall the element pΛ ∈ P(Λ(l,0)OE�
) defined in paragraph 5.6: its image generates

the quotient P(Λl
OE�
)/Po(Λl

OE�
). We define J∗

P = P(Λl
OE�
)Jo

P, which contains Jo
P with

index at most 2. We fix t ∈ {0, 1} and split according to the cases of paragraph 5.6,
which we further subdivide.

(i) Suppose either that GE� is not an orthogonal group, or that dimE� W1 is even.
(a) Assume first that st ∈ Po(Mt,OE). We denote by Gt the connected finite reduc-

tive group Po(Mt,OE)/P1(Mt,OE), and regard the representation ρo
Mχt as the

inflation to the parabolic subgroup Pt = Po(ΛOE)/P1(Mt,OE) of a cuspidal
representation of the Levi subgroup Po(ΛOE)/P1(ΛOE). From (†), we get an
injection of Hecke algebras

H (Gt , ρ
o
Mχt ) ↪→ H (G, λo

P).
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The element denoted Tt in paragraph 5.6 is the image of an invertible element T̄t

in H (Gt , ρ
o
Mχt )which satisfies a quadratic relation. This quadratic relation is

given explicitly (in principle) by [20, Theorem 8.6]. By scaling Tt if necessary,
we may assume that the relation takes the form

(Tt − qt )(Tt + 1) = 0,

and then, by [20, Theorem 8.6], qt is a power of qo := qFo ; indeed, by [18,
Theorem 4.14], it can also be described as the quotient of the dimensions of
the two irreducible components of IndGt

Pt
ρo

Mχt .

Now we induce to J∗
P. Let λ∗

P be an irreducible component of Ind
J∗
P

Jo
P
λo

P con-

tained in λP. If λ∗
P|Jo

P
is reducible (equivalently, if pΛ does not normalize λo

M)

then λ∗
P � Ind

J∗
P

Jo
P
λo

P. Then, by [9, (4.1.3)], we have a support-preserving iso-

morphism

H (G, λo
P) � H (G, λ∗

P),

and we denote by T ∗
t the image of Tt under this isomorphism, which satisfies

the same quadratic relation.

Otherwise, λ∗
P|Jo

P
is irreducible, pΛ normalizes λo

M, and Ind
J∗
P

Jo
P
λo

P has two

inequivalent irreducible components λ∗
P and λ′

P. We can identify H (G, λ∗
P)

and H (G, λ′
P) as subalgebras of H (G, Ind

J∗
P

Jo
P
λo

P), canonically since Ind
J∗
P

Jo
P
λo

P

is multiplicity free. Note also that (J∗
P, λ

∗
P) is a cover of (J∗

P ∩ M, λ∗
P|J∗

P∩M),
by [23, Lemma 3.9], and the same applies to λ′

P. Finally, since st normalizes
both restrictions λ∗

P|J∗
P∩M and λ′

P|J∗
P∩M, the image of Tt under the support-

preserving isomorphism

H (G, λo
P) � H (G, Ind

J∗
P

Jo
P
λo

P)

decomposes as T ∗
t + T ′

t , with T ∗
t ∈ H (G, λ∗

P) and T ′
t ∈ H (G, λ′

t ) each
satisfying the same relation as Tt .
In either case, when st ∈ Po(Mt,OE), we end with an invertible element T ∗

t ∈
H (G, λ∗

P) supported on J∗
Pst J∗

P and satisfying a quadratic relation of the
required form, with computable parameter qt .

(b) Now suppose that st �∈ Po(Mt,OE). If pΛ normalizes λo
M and pΛst ∈

Po(Mt,OE), we can replace st by pΛst and argue exactly as in the previous
case to get an element T ∗

t ∈ H (G, λ∗
P) as required.

(c) Suppose now that pΛst ∈ Po(Mt,OE) but pΛ does not normalize λo
M.

We write P∗(ΛOE) for the group generated by pΛ and Po(ΛOE), so
that J∗

P = P∗(ΛOE)J
1
P. Then, the quotient group P∗(ΛOE)/P1(ΛOE) has the

form GL1(kE� ) × Gt × G o, for Gt some orthogonal group over kE� and G o

a product of connected finite reductive groups, while Po(ΛOE)/P1(ΛOE) �
GL1(kE� )× G o

t × G o, where G o
t is the connected component of Gt .
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We also set P∗(Mt,OE) = P∗(ΛOE)P
o(Mt,OE). Then P∗(Mt,OE)/P1(Mt,OE) �

G1,t × G o, where G1,t is an orthogonal group over kE� with Levi sub-
group GL1(kE� ) × Gt , and Po(Mt,OE)/P1(Mt,OE) � G o

1,t × G o, where G o
1,t ,

the connected component of G1,t , is a special orthogonal group over kE� with
Levi subgroup GL1(kE� )× G o

t .
We write the image of P∗(ΛOE) in P∗(Mt,OE)/P1(Mt,OE) as Pt × G o,
where Pt is a parabolic subgroup of G1,t with Levi component GL1(kE� )×Gt .
Similarly, we write the image of Po(ΛOE) as Po

t ×G o. We have the following
picture:

Po
t × G o Ind ��

Ind
��

G o
1,t × G o

Ind
��

Pt × G o
Ind

�� G1,t × G o

Since (the image of) pΛ does not normalize λo
M, but does normalize

the β-extension κt , it also does not normalize ρo
Mχt and hence ρ∗

M :=
IndPt ×G o

Po
t ×G oρ

o
Mχt is irreducible. Similarly, since st �∈ Po(Mt,OE), the induced

representation Ind
G o

1,t ×G o

Po
t ×G oρ

o
Mχt is also irreducible. On the other hand, since st

intertwines ρo
Mχt , the induced representation Ind

G1,t ×G o

Pt ×G o ρ
∗
M is reducible. By

restricting back to G o
1,t × G o, we see that it must reduce as a direct sum of two

inequivalent irreducible representations of the same dimension. Thus there is
an element T̄ ∗

t ∈ H (G1,t × G o, ρ∗
M) satisfying (T̄ ∗

t )
2 = 1. Finally, by [29,

(7.3)], there is again a support-preserving injective algebra map

H (P(Mt,OE), ρ
∗
M) ↪→ H (G, λ∗

P),

and we find an invertible element T ∗
t ∈ H (G, λ∗

P) satisfying a quadratic
relation

(T ∗
t − 1)(T ∗

t + 1) = 0,

and qt = q0
o = 1.

(d) Finally, suppose that st �∈ Po(Mt,OE) but pΛ = 1, so that J∗
P = Jo

P. The
argument here is very similar. In this case we have P(Mt,OE)/P1(Mt,OE) �
O(1, 1)(kE� )× G , for some product of (possibly non-connected) finite reduc-
tive groups, and the image of st lies in O(1, 1)(kE� ). We denote by Gt the
non-connected group O(1, 1)(kE� ) × G o, where G o is the connected compo-
nent of G . The image Pt of Po(ΛOE) in Gt is SO(1, 1)(kE� ) × G o, which is
normalized by the image of st . Since image of st normalizes ρo

Mχt , the induced

representation IndGt
Pt
ρo

Mχt decomposes into two pieces of equal dimension and

the argument is exactly as in previous cases, with T̄ 2
t = 1. Thus, letting T ∗

t = Tt
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be the image of T̄t , again we have an invertible element T ∗
t ∈ H (G, λ∗

P) sat-
isfying a quadratic relation

(T ∗
t − 1)(T ∗

t + 1) = 0,

and qt = q0
o = 1.

This ends the first case, so we move on to the second.

(ii) Suppose that GE� is an orthogonal group and dimE� W1 = 1.

As in case (i) above, there are four possible situations. The details are almost
identical to those in case (i) so we omit them.

(a) Suppose first that G o
t is non-trivial and that p = pt normalizes ρo

M. In this case
st ∈ Po(Mt,OE) and the argument proceeds exactly as in case (i)(a) to give T ∗

t ∈
H (G, λ∗

P) as required.
(b) Similarly, if G o

t is non-trivial and pt �= p normalizes ρo
M, we can replace st

by pΛst to get the same conclusion.
(c) Now suppose G o

t is non-trivial and pt does not normalize ρo
M (in which case

we have pt �= p, since p normalizes λo
M). In this case, pΛ = ppt does not

normalize ρo
Mχt , and we can copy the argument in case (i)(c) to obtain T ∗

t ∈
H (G, λ∗

P) such that (T ∗
t )

2 = 1.
(d) Finally suppose G o

t is trivial, in which case

Po(Mt,OE)/P1(Mt,OE) � SO(1, 1)(kF)× G o
1−t × G o � Po(ΛOE)/P1(ΛOE).

The argument is now exactly as in case (i)(d).

6.4 We continue in the situation of the previous paragraph. In all cases, we have
two elements T ∗

t ∈ H (G, λ∗
P), supported on J∗

Pst J∗
P, which satisfy quadratic rela-

tions of the required form. The same proof as that of [4, Théorème 1.11] now shows
that H (G, λ∗

P) is a convolution algebra on (W, {s0, s1}), where W is the infinite dihe-
dral group generated by s0, s1.

Finally, we must see that the Hecke algebra H (G, λP) has the same form. For this,
we revisit the argument of [23, Lemma 3.9], which was used in deducing that (JP, λP)

is a cover. (In fact, we will be repeating the argument in some of the cases above.) We
note that we are in a particularly simple situation here, as JP/J∗

P is a product of cyclic
groups of order 2.

Put J∗
M = J∗

P ∩M and λ∗
M = λ∗

P|J∗
M

. Then, since the difference between J∗
M and JM is

only in the blocks Vi with i < l, the element st normalizes each irreducible constituent
of IndJM

J∗
M
λ∗

M.
We choose a chain of normal subgroups

J∗
P = K0 ⊂ K1 ⊂ · · · ⊂ Kr = JP,

such that each quotient Ki/Ki−1 is cyclic of order 2. We will prove, inductively on i ,
that, for each irreducible constituent λi of IndKi

J∗
P
λ∗

P, there is a support-preserving Hecke
algebra isomorphism
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H (G, λ∗
P) � H (G, λi ).

The case i = 0 is vacuous so suppose i ≥ 1.
If λi |Ki−1 is reducible then λi � IndKi

Ki−1
λi−1, for some irreducible constituent λi−1

of IndKi−1
J∗
P
λ∗

P. Then, by [9, (4.1.3)], we have a support-preserving isomorphism

H (G, λi−1) � H (G, λi ),

and the claim follows by the inductive hypothesis.
Otherwise, λi−1 := λi |Ki−1 is irreducible and IndKi

Ki−1
λi−1 has two irreducible

components λi = λ
(1)
i and λ(2)i , which are not equivalent. Note that (Ki , λ

( j)
i ) is a

cover of (Ki ∩ M, λ( j)
i |Ki ∩M), for j = 1, 2, by [23, Lemma 3.9]. We denote by T i

t the
image of T ∗

t under the support-preserving isomorphism

H (G, λ∗
P) � H (G, λi−1) � H (G, IndKi

Ki−1
λi−1)

given by the inductive hypothesis and [9, (4.1.3)]. We can also identify eachH (G, λ( j)
i )

as a subalgebra of H (G, IndKi
Ki−1

λi−1), canonically since IndKi
Ki−1

λi−1 is multiplic-

ity free. Then, since st normalizes the restrictions λ( j)
i |Ki ∩M, it follows that T i

t =
T (1)t + T (2)t , with T ( j)

t ∈ H (G, λ( j)
i ) satisfying the same relation as T ∗

t . Thus we get

a support-preserving isomorphism H (G, λ∗
P) � H (G, λ(1)i ) = H (G, λi ).

In particular, taking λr = λP, we deduce that H (G, λP), isomorphic to H (G, λ∗
P),

as required.

6.5 This completes the proof of Theorem 1.2. Note also that the computation
of the parameters qi then comes down to computing the quadratic character χ0 of
paragraph 6.3 and the parameters in the two finite Hecke algebras H (G0, ρ

o
Mχ0)

and H (G1, ρ
o
M). As mentioned above, these parameters can be computed using work

of Lusztig [20]. Examples can be found in the work of Kutzko and Morris [19] on level
zero types for the Siegel Levi; note that, for level zero representations, theβ-extensions
are just trivial representations so the character χ0 is trivial.

For positive level representations the situation is much more subtle. There are many
cases where the character χ0 makes no difference to the values of the parameters; that
is, we find the same reducibility points whether χ0 is trivial or not. However, in the
interesting cases it is crucial.

That χ0 can sometimes be non-trivial can already be seen when inducing from the
Siegel Levi subgroup [15]. If M = GLN (F) is viewed as the Siegel Levi subgroup of G,
which is either Sp2N (F) or SO2N+1(F), and τ̃ is a self-dual cuspidal representation

of M then IndSO2N+1(F)
M,P τ̃ is irreducible if and only if Ind

Sp2N (F)
M,P τ̃ is reducible, by [27,

Theorem 6.3]. However, if a skew stratum [Λ, n, 0, β] used to construct a self-dual
simple character in τ̃ is such that E = F[β] is of degree N over F and E/Eo is ramified,
then one can check that one gets reducibility of IndG

M,Pτ̃ | det(·)|s either when the real

part of s is 0, or when it is ± 1
2 , depending on whether χ0 is trivial or not. Thus χ0

must be non-trivial for exactly one of Sp2N (F) and SO2N+1(F).
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The nature of the character χ0 has also been examined more closely in the work of
Blondel [6], which looks at the case when L = G and Vi = W−1⊕W1, for some i ∈ I0
(that is, the simple character in τ̃1 is “completely different” from the semisimple
character in τ0). The group G̃1 can also be viewed as the Siegel Levi subgroup in the
(smaller) classical group Gi ⊂ AutF(Vi ) and one finds another quadratic character χ i

0
here, by making the same construction. It turns out that the characters χ0 and χ i

0 differ
by the signature characters of certain (explicit) permutation representations (see [6,
Théorème 2.35]).

6.6 We finish with some remarks on the Hecke algebra of a cover in the general
case of a non-maximal Levi subgroup. Firstly, one interesting case is now resolved:
if M � GLr (F)s × Sp2N (F) is a Levi subgroup of Sp2(N+rs)(F) and λM takes the
form λ̃⊗s ⊗ λ0, with λ̃ self-dual cuspidal, then Blondel [5] has given a description of
the Hecke algebra, contingent on a suitable description of the Hecke algebra in the
case s = 1 (which was already known when N = 0). Given Theorem 1.2, Blondel’s
result can now be used in full generality.

It seems likely that the methods of [5] could equally well be applied to other classical
groups. However, it is not clear to the authors whether the methods used here and in [5]
could together be pushed to allow a description of the Hecke algebra in a completely
general case.
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Appendix A: Correction to the proof of [29, Theorem 7.14]

In this appendix, we give the correction to the proof of the main result of [29] (The-
orem 7.14), with the newly corrected definition of cuspidal type from Definition 4.3,
which we repeat here, recalling that G has compact centre:

A cuspidal type for G is a pair (J, λ), where J = J(β,Λ) for some skew semisimple
stratum [Λ, n, 0, β] such that

• GE has compact centre and
• Po(ΛOE) a maximal parahoric subgroup of GE,

and λ = κ ⊗ τ , for κ a β-extension and τ the inflation of an irreducible cuspidal
representation of J/J1 � P(ΛOE)/P1(ΛOE).

Remark A.1 We thank Laure Blasco, Corinne Blondel and Van-Dinh Ngo for pointing
out the problem with the definition in [29, Definition 6.17]. There, the two conditions
on the stratum [Λ, n, 0, β] in Definition 4.3 are replaced by the (insufficient) condition
that A(ΛOE) be a maximal self-dual OE-order in B.

Firstly, this is not enough to guarantee that Po(ΛOE) be a maximal parahoric
subgroup of GE: for example, if GE is a quasi-split ramified unitary group in 2 vari-
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ables then, for one of the two (up to conjugacy) maximal self-dual OE-orders, the
corresponding parahoric subgroup is an Iwahori subgroup, so not maximal.

Secondly, even if Po(ΛOE) is a maximal parahoric subgroup, it can still happen
that its normalizer in GE is not compact: this happens precisely when GE has a factor
isomorphic to the split torus SO(1, 1)(F), which can only happen when G is an even-
dimensional orthogonal group and βi = 0, dimF Vi = 2, for some i ∈ I0. The
condition that GE have compact centre rules out exactly this possibility.

In particular, with the definition of cuspidal type (J, λ) given here, the proof of [29,
Proposition 6.18] is valid, and c-IndG

J λ is an irreducible cuspidal representation of G.

A.1 In this paragraph we indicate the minor changes that must be made to [29,
§7.2] in order to correct the proof of the main result there [29, Theorem 7.14]: every
irreducible cuspidal representation of G contains a cuspidal type. This paragraph
should be read alongside that paper and we will make free use of notations from
there.

Suppose π is an irreducible representation of G and suppose that there is a
pair ([Λ, n, 0, β], θ), consisting of a skew semisimple stratum [Λ, n, 0, β] and a semi-
simple character θ ∈ C−(Λ, 0, β), such that π contains θ . Suppose moreover that, for
fixed β, we have chosen a pair for which the parahoric subgroup Po(ΛOE) is minimal
amongst such pairs. If κ is a standard β-extension then π also contains a representa-
tionϑ = κ⊗ρ of Jo, forρ an irreducible representation of Jo/J1 � Po(ΛOE)/P1(ΛOE).
By [29, Lemma 7.4], the minimality of Po(ΛOE) implies that the representation ρ is
cuspidal.

We suppose that either the parahoric subgroup Po(ΛOE) is not maximal in GE
or GE does not have compact centre and will find a non-zero Jacquet module. (This
assumption takes the place of hypothesis (H) in [29, §7.2].) Most of [29, §7.2] now
goes through essentially unchanged, with two small changes in the cases called (i)
and (ii) in §7.2.2 (page 350).

In case (i), the change happens when the element p cannot be chosen to nor-
malize the representation ρ, interpreted as a representation of Po(ΛOE) trivial
on P1(ΛOE). (Note that p ∈ P+(ΛOE) so it does normalize the group Po(ΛOE).)
In this case, NΛ(ρ) ⊆ M′, where M′ is the Levi subgroup of loc. cit. (Note, however,
that this would not be the case if we were working in the non-connected group G+,
rather than G.) Thus, by [29, Corollary 6.16], we have IG(ϑP) ⊆ Jo

PM′Jo
P and, as in the

proof of [29, Proposition 7.10], (Jo
P, ϑP) is a cover of (Jo

P ∩ M′, ϑP|Jo
P∩M′). (See also

Lemma 5.8.)
In case (ii), the change happens when m = 1. In this case Po(ΛOE) is a maximal

parahoric subgroup but GE does not have compact centre; indeed GE1 � SO(1, 1)(F)
and we have GE ⊆ M′. As in case (i) above, we get that IG(ϑP) ⊆ Jo

PM′Jo
P and (Jo

P, ϑP)

is a cover of (Jo
P ∩ M′, ϑP|Jo

P∩M′).
In particular, in all cases, the representation π containing ϑ cannot be cuspidal and

we have proved the first two assertions of Proposition 4.4; the third assertion follows
from [29, Lemma 7.4].

In particular, since by [28, Theorem 5.1] every irreducible cuspidal representation
of G does contain a semisimple character, and hence a representation of J of the
form κ ⊗ τ , this also proves [29, Theorem 7.14].
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