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Abstract 

Purpose: Cataract (a clouding of the lens) and PCO, a lens wound-healing response 

that occurs following cataract surgery, are important medical problems affecting 

millions worldwide. Reducing the incidence of these conditions would have a marked 

effect on the personal well being of millions of people. The isothiocyanate, SFN is 

known to have dose-dependent cytoprotective and cytotoxic properties. The present 

study had three aims. Firstly, to determine if the isothiocyanate, SFN could yield 

protection to lens cells against oxidative stress. Secondly, to identify the mechanisms 

by which SFN can elicit cytoprotection to lens cells against oxidative stress. The final 

aim was to establish the ability of SFN to initiate death of lens cells and prevent PCO 

formation. 

Methods: The human lens epithelial cell line FHL 124 was used in combination with 

whole porcine lens culture (to assess opacity) and human capsular bags (as a PCO 

model) were employed as the experimental systems. Whole lens cultures were 

monitored using brightfield and darkfield imaging; quantification was performed with 

ImageJ analysis software. Capsular bags were monitored using phase-contrast 

microscopy. The ApoToxGlo Triplex assay was used to assess FHL 124 cell survival, 

cytotoxicity and apoptosis. The MTS assay was used to assess cell populations. To 

determine levels of DNA strand breaks, the alkaline comet assay was performed and 

quantified. Lactate dehydrogenase levels in the medium (of FHL 124 cells and 

porcine lenses) were evaluated to reflect cell damage/death. To assess level of gene 

expression an Illumina whole genome HT-12 v4 beadchip microarray was employed. 

Real-time PCR was used to assess ER stress gene expression. Protein expression was 

validated by Western blot and immunocytochemistry (FHL 124 cells and capsular 

bags).  

Results: 30 M H2O2 exposure to FHL 124 cells caused a significant reduction in cell 

viability and increased cytotoxicity/apoptosis; these effects were significantly 

inhibited (~80%) by 24 hours pre-treatment with 1 M SFN. In addition, 1 M SFN 

significantly reduced H2O2-induced DNA strand breaks. When applied to cultured 

porcine lenses, SFN protected against H2O2-induced opacification.  Illumina whole 

genome HT-12 v4 beadchip microarray data revealed 8 genes up-regulated following 

24 hours exposure to 1 M or 2 M SFN. These included NQO1 and TXNRD1, 

which also demonstrated upregulation at the protein level. Nrf2 was found to actively 

translocate to the cell nucleus in response to a four hour exposure to 0.5, 1 and 2 M 

SFN. SFN was found to induce apoptosis and ER stress in FHL 124 cells at SFN 

concentrations 10 M and higher. Application of these concentrations of SFN to 

capsular bag cultures demonstrated a retardation of cell growth at 10 M and 

complete ablation with 100 M SFN 

Conclusions: The dietary component SFN, at low concentrations (≤5 M) 

demonstrates an ability to protect human lens cells against oxidative stress and thus 

could potentially delay the onset of cataract. It is likely that this protection is mediated 

by SFN induced Nrf2 signalling. Higher concentrations (≥10 M) of SFN are capable 

of inducing ER stress and cell death in human lens epithelial cells and thus provide a 

novel agent to be used in the prevention of PCO. 
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CHAPTER 1  

GENERAL INTRODUCTION 

 

 

1.1 The Eye 

As a conscious sense organ, the eye allows vision. The human eye is enormously 

complicated - a perfect and interrelated system of about 40 individual subsystems, 

including the retina, pupil, iris, cornea, lens and optic nerve (Andrzejewska-Buczko 

and Buczko 1996) (Figure 1.1).  

The cornea, which is a clear lamellar structure that admits light to the interior of the 

eye, bends the light rays, which then pass through the pupil, which is formed by the 

iris, a thin contractile tissue. The iris also divides the front section of the eye into the 

anterior and posterior chambers (Forrester et al., 2002). Contraction as a result of the 

action of the sphincter pupillae and dilation via the dilator pupillae muscle of the iris 

regulates the amount of light that is conveyed to the lens. The lens is situated behind 

the aqueous humour and the iris. The aqueous humour is a clear and colourless fluid 

which is actively and continually secreted by the ciliary body (2-3μl/min) (Forrester et 

al., 2002). It is essential because it provides nutrition to several avascular ocular 

tissues including the lens and the corneal endothelium. The lens actually changes 

shape through a process known as accommodation, which requires relaxation or 

contraction of the ciliary muscle a sphincter). The lens is attached to the ciliary body 

by suspensory ligaments known as the zonules of Zinn. Contraction of the ciliary 

muscle rslackens the zonules and results in rounder lens. Relaxation of the ciliary 

muscle forms tension on the zonules and makes the lens flatter. These modifications 

http://en.wikipedia.org/wiki/Sensory_system
http://en.wikipedia.org/wiki/Visual_perception
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allow objects near and far to be focused on the retina at the back of the eye (Kahan et 

al. 1999). Behind the lens is the vitreous body. The vitreous humour is a transparent 

viscoelastic gel. Unlike the aqueous humour, it is not produced rapidly and its 

turnover is extremely slow. Its composition is 98% water but its viscosity is two to 

four times higher than of water (Forrester et al., 2002). Aqueous and vitreous humours 

are not mixed because the lens and its suspensory ligaments separate the two.  

 

The retina is responsible for converting the light signal received from the lens into 

neural impulses that are then transmitted to the brain. The retina is composed of two 

layers, the inner neurosensory retina and the retinal pigmented epithelium (RPE) 

(Forrester et al., 2002). The neurosensory retina has been specially adapted to be 

stimulated by light and transfers neural impulses to the brain via the retinal ganglion 

axons that form the optic nerve.  The light sensitive layer is composed of rods and 

cones that contain the photosensitive pigment rhodopsin that converts light into nerve 

impulses. The retina is supported by the blood vessels of the choroid as well as the 

retinal vessels and contains millions of light-sensing cells called rods and cones, 

which are named for their distinct shapes. The cone and rod cells are stimulated by 

light and convert the image to electrical impulses which are ultimately sent via the 

optical nerve to the brain where an image is produced (Kopel 1980). 

http://en.wikipedia.org/wiki/Retina
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Figure 1.1 Cross section of a human eye 

(http://www.mastereyeassociates.com/eye-anatomy-eye-problems/) 
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1.2 The Lens 

 

1.2.1 Lens development 

The human lens begins to form when the embryo is approximately 4 mm long, at 3-4 

weeks gestation. The pattern of cellular differentiation is tightly regulated by several 

transcription factors such as PAX6, SIX3, SIX5 and PITX3 (Francis and Moore 1999). 

PAX6 is often referred to as the eye “master gene” as it plays a pivotal role in eye 

development. However, it should be noted that PAX6 alone is insufficient for lens 

differentiation as PAX6 has been found in tissues other than the eye. 

 

During embryo development an outgrowth forms from the anterior neural plate of the 

forebrain called the optic vesicle (OV), and PAX6 has been shown to be expressed in 

the anterior neural plate in the cells that are the origin of the OV. PAX6 activates a 

second transcription factor, Sox2, in the surface ectoderm as well as maintaining its 

own expression. Additionally, a member of the transforming growth factor family of 

proteins, bone morphogenetic protein 4 (BMP4) is secreted by the OV in the mouse 

and upregulates Sox6 and a further transcription factor, Lmaf. At this stage, PAX6 and 

Sox 2 expression is maintained by BMP7 (Wawersik et al. 1999). Lens organogenesis 

begins with a thickening of the surface ectoderm and under the combined function of 

PAX6 and Sox2 crystallin expression is intitated (Kamachi et al. 2000, Kamachi et al. 

1995) . This layer of cells secretes fibroblast growth factor (FGF), which promotes 

neuronal retinal cell differentiation to form the eye (Pittack et al. 1997). 
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Furthermore, surrounding tissues release transforming growth factor β (TGF β) to 

initiate retinal pigmented epithelium (RPE) formation. The thickening surface 

ectoderm overlays the optic vesicle to form the lens placode (Figure 1.2 a and b). The 

lens placode invaginates, forming the lens pit (Figure 1.2 c), closing over to form a 

hollow lens vesicle that temporarily remains attached to the surface ectoderm (which 

later forms the cornea) by the lens stalk (Figure 1.3 d). Immediately following the 

formation of the lens vesicle, cells on the posterior surface elongate towards the 

anterior face and form lens fibre cells. The resultant fibre cells form the optically clear 

nucleus of the mature lens.  

 

As the lens continues to develop, mitosis in the cells of the posterior segment of the 

lens declines and stops. Conversely the cells forming the anterior segment of the lens 

continue to divide in a narrowly defined area which lies anterior to the equator, called 

the germinative, or proliferative region. This developmental segregation occurs where 

the optic cup anatomically separates the anterior and posterior segments of the lens 

(McAvoy et al. 1981). The fibre cells elongate towards both anterior and posterior 

poles, inserting themselves beneath the undifferentiated epithelial cells and below the 

posterior capsule thus forming highly organized concentric shells (Davson et al. 1990).  

It is at this stage in development that the new fibre cells begin to express β and γ 

crystallins. 

 

In concert with transcription factors, lens growth is tightly controlled by a variety of 

growth factors, defined by Nicola (1994) as “a group of polypeptides with the ability 

to modulate growth, survival, differentiation and effector functions in vivo and in 

vitro”. In 1963, Coulombre and Coulombre carried out a lens inversion experiment on 
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embryonic chick lens. At the time when the primary fibres were formed they inverted 

the lens (180°) such that the epithelial cells were facing the retina. In this new 

environment, after six days these cells, which do not normally differentiate, elongated 

and differentiated into fibre cells. Further, in 1989, McAvoy and Chamberlain 

removed fluid from the aqueous and vitreous humours of the rat. Using the ELISA 

technique they found that the vitreous humour had a higher level of FGF suggesting 

that a change in FGF concentration could be responsible for lens cell differentiation, 

giving rise to the “FGF gradient hypothesis”. To test this, they dissected off the 

primary fibre cells from a rat lens leaving a clean monolayer of lens epithelial cells. 

These cells were maintained in either serum free medium or serum free medium 

supplemented with FGF. It was shown that at low concentrations of FGF epithelial 

cell proliferation was observed whereas at higher concentrations migration was also 

observed. Also, based on the expression of α crystallin, the epithelial cells 

differentiated into fibre cells. However, in another study, using human lens cells, 

Ibaraki et al (1995) found that epidermal growth factor (EGF) stimulated proliferation 

in a dose dependent manner and also stimulated cell differentiation. Both results are 

interesting as both growth factors operate through the Ras/MAPKinase pathway. 

 

Other growth factors have been implicated in lens development, and include platelet 

derived growth factor (PDGF), transforming growth factor β (TGFβ), insulin and 

insulin-like growth factor 1 (IGF-1). With the exception of TGF β, all the growth 

factors are able to stimulate lens epithelial cell DNA synthesis in a number of species 

(Gao et al. 1997), although in the human eye EGF may be the more important factor 

in lens cell proliferation (Majima 1995, 1998). 
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It can be seen that growth and development of the lens is tightly regulated by a 

number of transcription and growth factors, and any changes in the activity of these 

factors may be cataractogenic.  
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Figure 1.2 a: The optic vesicle (OV) approaches the presumptive lens ectoderm 

(PLE), human age 1 week, 3 mm embryo length, Carnegie stage 4. b: Contact 

between OV and PLE results in lens placode (LP) formation, human age 2 week, 4 

mm embryo length, Carnegie stage 6. c: LP invagination produces a lens pit. d: Lens 

pit detaches from the surface ectoderm and the lens vesicle (LV) is formed, human 

age 4 weeks, 10 mm embryo length, Carnegie stage 12. e: Posterior lens vesicular 

cells elongate toward the anterior epithelial cells to form primary lens fibers (PLF). f: 

The embryonal nucleus is formed following the obliteration of the lens vesicle lumen, 

human age 6 weeks, 16 mm embryo length, Carnegie stage 16 (Reddy et al. 2004). 
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1.2.2 Mature lens 

The lens is comprised of three main structures, the lens capsule, lens epithelium and 

lens fibres (Figure 1.3). The lens capsule, forming the outermost layer, is a smooth, 

transparent basement membrane that completely surrounds the lens. It is important 

during the process of accommodation for modifying the shape of the lens. The capsule 

varies from 2- 28 micrometers in thickness, being thickest near the equator and 

thinnest near the posterior pole (John Forrester 1996). The anterior and posterior 

capsule surfaces are produced by the lens epithelium and the lens fibers respectively. 

The anterior lens capsule is in immediate contact with a single layer of lens epithelial 

cells that lie at the anterior and equatorial regions.  

 

These are two cells types in the lens. The lens epithelium, located in the anterior 

portion of the lens between the lens capsule and the lens fibers, is a simple cuboidal 

epithelium, which regulates most of the homeostatic functions of the lens (Candia 

2004). The cells of the lens epithelium also serve as the progenitors for new lens 

fibres. The lens fibres are prismatic and very long highly specialized cells.  Their 

length can be up to 12 mm. The fibres stretch lengthwise from the posterior to the 

anterior poles and the middle of each fibre cell lies on the equator. They produce the 

predominant water-soluble proteins of the lens called crystallins. Transparency of the 

lens is maintained by the crystallins, a group of soluble proteins produced by the lens 

fibre cells. The crystallins form approximately 90% of the dry weight of the lens and 

create the refractive index necessary to focus light onto the retina. Any disturbance in 

the ordered packing of the crystallins reduces the transmission of light.  

 

http://en.wikipedia.org/wiki/Basement_membrane
http://en.wikipedia.org/wiki/Simple_cuboidal_epithelium
http://en.wikipedia.org/wiki/Simple_cuboidal_epithelium
http://en.wikipedia.org/wiki/Homeostasis
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Lens growth persists throughout life by continual epithelial cell proliferation, 

migration and differentiation into fibre cells. In the post natal lens the anterior 

epithelia is quiescent and proliferation mainly occurs at the germinative zone, located 

just anterior to the lens equator. Cell division gives rise to either new anterior epithelia 

or cells which migrate posteriorly into the transitional zone where they undergo 

differentiation into fibre that elongate and become hexagonal in cross section. From 

the lens equators newly formed fibre cells extend their two apices toward the lens 

anterior and posterior poles and the lens sutures, which in the adult lens assume a 

four-pointed star arrangement. Part of the transmission properties of the lens can be 

attributed to the fibre cells, which are densely and regularly packed into an organized 

cellular arrangement. These cells are intimately connected by moderate interdigitions 

in superficial regions and distinct interlocking processes father into the nuclear region. 

Low resistance gap junctions are particularly important to permit rapid intercellular 

movement of small molecules and ions via the lens gap-junction like protein, known 

as the major intrinsic protein of lens fibre, which is a member of the water-

transporting aquaporins. 

 

The highly refractive index of the lens is due in part to the accumulation of lens fibre 

specific crystallin proteins, which are embedded in a complex cytoskeletal matrix and 

ultimately comprise 90% of the total cellular protein. The lens contains α, β and γ- 

crystallin as a result of gene duplication and divergent evolution from ancestors with 

different functions (Wistow and Piatigorsky 1988). The α-crystallin are members of 

the small heat-shock protein (α-Hsp) surperfamily and function as molecular 

chaperones as well as structural proteins. Each contains a characteristic α-crystallin 

domain that is highly conserved. 
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Considerable evidence in rat studies has determined that lens cell polarity and patterns 

of growth are regulated by growth factors found in the aqueous and vitreous humours 

(VH) in the anterior segment of the eye (Lovicu and McAvoy 2005). In particular, 

FGF family members present in a regulatory anterior-posterior gradient, determine 

qpithelial cell proliferation, migration and differentiation. Other factors, including 

inhibitory influences, may also contribute to the proposed FGF gradient, such as the 

Wnts. Locatisation of the Wnts Fizzled (Fz) receptors suggests that Wnt signaling is 

involved in the formation and maintenance of the epithelial phenotypes, as illustrated 

in figure 1.4. there is evidence for the involvement of growth factors in the various 

stages of development such as, transforming growth factor beta (TGFβ), which seems 

to regulate aspects of fibre differentiation and mitogens such as, IGF, EGF and PDGF 

are thought to induce epithelial cell proliferation (Lovicu and McAvoy 2005) 
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Figure 1.3   A diagram of the adult human lens in cross-section (Maidment et al. 2004)  



CHAPTER 1  

GENERAL INTRODUCTION  

13 

 

 

 

 

 

 

 

Figure 1.4 Diagram indicating how the ocular media and a gradient of FGF 

stimulation may determine antero-posterior patterns of lens cell behavior. In the 

postnatal lens, cell proliferation is restricted to the epithelium and predominantly 

occurs in a band of cells above the equator known as the germinative zone. Progeny 

of proliferative activity migrate (or become displaced) below the equator where they 

initiate fiber elongation. These zones coincide with compartments defined by the 

anatomy of the eye: the epithelial cells are exposed to aqueous (pink background) and 

the fiber cells are exposed to vitreous (blue background). The cellular behaviors 

indicated, proliferation (orange), migration (red), and fiber differentiation (blue), are 

observed both in vivo (in an antero-posterior direction) and in lens epithelial explants. 

The right-hand arrow indicates the gradient of FGF stimulation that is proposed to 

govern this antero-posterior pattern of cell behaviour in vivo. The left-hand arrow 

indicates that other factors, including inhibitory influences, may also contribute to the 

proposed FGF gradient.(Lovicu and McAvoy 2005) 
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1.3 Cataract 

 

1.3.1 Definition and onset 

Cataract can be defined as any loss of transparency of the lens (Quillen 1999). It is the 

major cause of blindness worldwide (Resnikoff et al. 2004a). In cataract, the lens 

becomes cloudy or opaque which is often age related (Goodenough et al. 1998). 

Estimates by the World Health Organisation suggest that cataract accounted for 48% 

of world blindness in 2002 (Resnikoff et al. 2004). Blindness due to cataract is 

increasing due to world population growth (6,000 million in the year 2000 forecasted 

to incease to 8,000 million in 2020) and increasing human longevity, which is true for 

the developing and industrialized world (2000). Cataract prevalence increase with age 

(Keeffe and Taylor 1996a, McCarty and Taylor 2001). In the United States, the 

prevalence of cataract is approximately 5% at age 65. This percentage increases to 

about 50% for the persons older than 75 years (Klein 1993, Klein et al. 1992, 

Leibowitz et al. 1980). The prevalence of cataract has been shown to double with each 

decade (Keeffe and Taylor 1996). The situation is different in developing countries 

where the average age of onset is fifty-five years. Considering the short current life 

expectancy in these countries (sixty-three years), delaying cataract of six months 

would decrease the number of blind people by approximately one million (Watkins 

2002). Cataract consititues a major health issue. Cataract occurs in different 

compartments of the lens. Typically progression of cataracts is slow, but if left 

untreated is potentially blinding. Cataracts generally present in both eyes, but one eye 

is generally affected earlier than the other (Quillen 1999).  
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1.3.2 Types, classification and risk factors of cataract 

The classification by aetiology distinguishes age-related cataract, congenital cataract, 

and secondary cataract. Age-related cataract is the most common type of cataract 

affecting both men and women (Thylefors et al. 2002). Congenital cataract is present 

at or develops shortly after birth and is possibly caused by galactosemia or maternal 

infection in early pregnancy. In secondary cataract, systemic metabolic disturbances 

result in the loss of transparency of the lens. Many diseases like diabetes and 

hypocalcaemia all could increase the risk of this type of cataract. Cataract is classified 

by morphology and divided in to four types corresponding to the location of opacity, 

including nuclear sclerosis cataract, cortical cataract, anterior sub-capsular cataract 

and posterior sub-capsular cataract. The first two forms are most closely associated 

with aging. Nuclear cataract occurs in the nucleus or central part of the lens. There is 

an associated deposition of (pale and deep) yellow or brown pigment within the lens 

(Bollinger and Langston 2008). Cortical cataract forms in the lens cortex, which is the 

outer shell of the lens.  It extends its white spokes from the outside of the lens to the 

center, and its symptoms often include problems with transmission of light and glare 

(Bollinger and Langston 2008). Posterior subcapsular cataract starts as a small opacity 

at the back of the lens, under the capsule often in the visual axis. Risk factors of 

cataract, such as ageing and diabetes have been mentioned previously. Some other 

factors also contribute to cataract, such as UV-B exposure, smoking, and ionizing 

radiation (Allen and Vasavada 2006). 
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Figure 1.5 The Lens Opacity Classification System II (LOCS II) photographic 

grading standards. N = Nuclear photographs. Stage 0 = normal; I–III = various stages 

of nuclear cataract. For nuclear opalescence, the average opalescence across the entire 

nuclear region is used. An opalescence that is less than or equal to Photographic 

Standard 0 = grade 0; if the opalescence is less than or equal to Standard I, the grade 

is 1, and so on. For Color Grading of the nucleus, only the N2 standard is used. (<N2 

for color=0, equal to N2 in color=1, and N2 for color = 2) C = Cortical photographs. 

0-Trace (Tr) = normal; I–IV = various steps of cortical cataract (roughly CII ¼, CIII 

½, CIV ¾. CV > ¾). P = Posterior subcapsular photographs. 0 = normal; I–III = 

various stages of posterior subcapsular cataracts (Chylack et al. 1989) 
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1.3.3 Cataract surgery 

At present, the only way to treat cataract is by surgery. Cataract surgery has become 

the most commonly performed surgical procedure in the world (Keeffe and Taylor 

1996b). More than 156 000 cataract operations were performed in 1995 by the 

National Health Service in England and Wales (Minassian et al. 2001). There are 

intra- and extra-capsular cataract extraction (ICCE or ECCE) methods. The more 

historical of the two; ICCE, involves the removal of the entire lens and capsule. This 

technique is no longer in use in the developed world unless there are extenuating 

circumstances. The visual outcomes of this method are pooor and complications are 

common, however ICCE remains in use in the developing world where the benefits 

are outweighed by cost and simplicity.  

 

Since 1982 the main surgical practice has been ECCE (Minassian et al. 2001), which 

requires significantly increased financial investment. Inthis technique the lens 

cataractous material is removed, whilst the majority of the capsule is left in place. In 

more detail a small incision of 2 to 3 mm is made at the edge of the cornea. Then a 

curvilinear continuous tear, known as a capsulorhexis (Figure 1.6), is created in the 

anterior lens capsule to allow access to the opacified region of the lens, which 

generally concerns lens fibre cells. As before, the lens capsular bag that remains intact 

provides a barrier between the anterior and posterior segments of the eye and is the 

site for IOLs implantation to restore visual acuity. This technique was initially 

developed using a manual lens nucleus extraction method that required a larger 

incision and more working space within the eye. Nowadays howeverultrasiound is 

used to emulsify cataractous lens material, using a technique called  
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phacoemulsification (phako or P/ECCE) and it is simultaneously removed by means 

of a dual system irrigation-aspiration. Therefore, cataract extraction can occur through 

a small incision of 2 to 3 mm. following phako more viscoelastic substance is injected 

into the capsule in order to maintain the capsular shape for the implantation of a 

foldable IOL that unfurls unaided within the capsular in a manner analogous to that of 

an opening umbrella; an illustration of an IOL seated within the capsular bag is shown 

in Figure 1.6. The use of smaller incisions is paramount because there is less 

alteration to the shape of the cornea, which is responsible for approximately two 

thirds of the focusing in the eye.  

 

An IOL central optic is usually a 6 mm disc with dual supporting side struts called 

haptics that hold it in position within the lens capsule. Traditionally they were 

constructed of an inflexible material called polymethylmethacrylate (PMMA) which 

has since been superseded by numerous flexible polymers. They are usually 

monofocal allowing for distance vision only and visual correction is still required for 

near visual acuity. Increasingly however, multi-focal IOLs are also now available. The 

use of flexible polymers has allowed the invention of adaptive IOLs that are now 

beginning to allow limited visual accommodation. Several factors determine the 

success of cataract surgery.  These include surgical experience, the choice of surgical 

procedure, environmental and social conditions and the presence of ocular 

comorbidities (McCarty and Taylor 2001). 

  

Intraoperative complications include retrobulbar hemorrhage, perforation of the globe, 

allergic reactions to the anesthetic agent, or hypotension. Postoperative complications  
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include postoperative pain, elevated intraocular pressure, or endophthalmitis 

(inflammatory condition of the intraocular cavities) (Ou and Ta 2006). 

Endophthalmitis, one of the more serious postoperative complications of lens surgery, 

is currently very rare (0.05 %) when very strict antiseptic precautions are observed. 

Other rare complications include wound dehiscence with bulbar hypotension, 

epithelial growth into the wound cleft, allergic scleral reactions to the eye drops, or 

subluxation of the IOL. The most common complication is posterior capsule 

opacification (PCO), also called “after-cataract” and will be discussed in more detail 

later. The incidence of PCO is influenced by many factors including surgeon, surgical 

technique and age of the patient (Wormstone 2002). In the latter case PCO occurs in 

almost 100% of children undergoing cataract surgery and in adults those under the age 

of 40 have a significantly greater chance of developing PCO than patients over the 

age of 60 years. While the frequency of PCO has now been reduced by improvements 

in surgical technique and the use of modern, sharp-edged flexible lenses PCO is an 

unresolved problem (Wormstone et al. 2009). Preservation of a closed posterior 

capsule helps prevent postoperative complications such as retinal detachment and 

macular edema, which implies that a further reduction of the PCO rate would be 

achievable (Kohnen et al. 2009). 
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Figure 1.6 In a phacoemulsification procedure, an incision is first made in the cornea, 

the outer covering of the eye (A). A phacoemulsification instrument uses ultrasonic 

waves to break up the cataract (B). Pieces of the cataract are then suctioned out (C). 

To repair the patient's vision, a folded intraocular lens is pushed through the same 

incision (D) and opened in place (E) (http://www.surgeryencyclopedia.com/Pa-

St/Phacoemulsification-for-Cataracts.html#ixzz2QUVOA2Wt) 
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1.4 Oxidation and Cataract  

 

1.4.1 Reactive oxygen species (ROS) in the lens 

Any free radical involving oxygen can be referred to as a reactive oxygen species 

(ROS). Free radicals are atomic or molecular species with at least one unpaired 

electron in the outermost shell. These unpaired electrons cause free radicals to be 

highly reactive and likely to take part in chemical reactions (Huang et al. 2006). ROS 

molecules include the superoxide anion (O2
−
), hydroxyl radical (•OH) and hydrogen 

peroxide (H2O2) (Figure 1.4). Contrary to O2
− 

and •OH, which are extremely unstable 

and react at or near their site of formation, H2O2 is less reactive, freely diffusible and 

relatively long-lived (Linetsky and Ortwerth 1996).   

 
 

ROS can be generated either endogenously or exogenously (Andley et al. 2000). 

Endogenous sources include mitochondria, peroxisomes, lipooxygenases, NADPH 

oxidase and cytochrome P450. Exogenous sources include ultraviolet light, ionizing 

radiation, chemotherapeutics, inflammatory cytokines and environmental toxins 

(Andley et al. 2000). It is widely believed that a rise in the intracellular levels ROS 

will damage various cell components, interrupt physiological functions and lead to 

ageing and various oxidative-stress-associated cataracts (Finkel and Holbrook 2000, 

Spector 1995). The damage can consist of protein modification, lipid peroxidation and 

DNA fragmentation, all of which have been proposed to contribute to cataractogenesis.  

The lens is able to defend itself against oxidation using antioxidants from either 

enzymatic or non-enzymatic systems  (Kise et al. 1994). 
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1.4.2 Antioxidant system in the lens 

The lens has a well-designed system of defence against oxidation just like other 

organs (Augusteyn et al. 1987). Primary antioxidants include non-enzymatic (e.g., 

glutathione, vitamin C, vitamin E and carotenoids) and enzymatic (e.g., superoxide 

dismutase, glutathione peroxidase and catalase) systems. Lens cells contain enzymes 

that can degrade damaged proteins through proteolysis (Hodges and Scott 1992) or 

repair damaged nucleic acids. Two protein/enzyme repair systems have been 

identified in recent years (Figure 1.7). One is the glutathione-dependent (GSH-

dependent) thioltransferase system (Chrestensen et al. 1995, Holmgren 1989, 

Raghavachari and Lou 1996) which may be critical in maintaining the lens in a 

reduced state by cleaving protein–thiol mixed disulfide bonds formed on the oxidation 

of lens proteins. The other is the NADPH-dependent thioredoxin / thioredoxin 

reductase system (Hansson et al. 1989), which is very effective in reducing protein–

protein disulfide bonds. The ROS and the antioxidant systems are summarised in 

Figure 1.7.  
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Figure 1.7 The reactive oxygen species and the primary antioxidant system in the 

lens. H
2
O

2
, generated by the dismutation of superoxide anion or by the reaction 

between ascorbate and Fe
 +3 

can be degraded by several pathways. These include 

catalase, glutathione peroxidase (GPX), and the Fenton reaction. The decrease in the 

SH/S-S ratio by oxidation can be reversed by the glutathione reductase (GR)-pentose 

phosphate shunt cycle and by thioltransferase (TTase). These mechanisms protect the 

lens from oxidative damage. GR: glutathione reductase; GPx:glutathione peroxidase; 

SOD: superoxide dismutase; TTase: thioltransferase. Reprinted with permission from 

(Lou et al., 1998). 
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1.4.3 Association between oxidation with age-related cataract 

formation 

Maintaining transparency so that light can be transmitted and focused on the retina is 

the major function of the lens. The lens has an unusually high protein concentration, 

which can be as high as 50% in the nuclear region of the lens (Eldred et al. 2011, 

Gunhaga 2011). Crystallins, the structural proteins of lens, contain a high level of 

thiol groups that are necessary to be in the reduced state to maintain clarity of the lens 

(Beebe et al. 2011, Beswick and Harding 1984, Michael and Bron 2011).  In the 

normal young human lens, they did not observe any oxidation of cytosolic or 

membrance proteins. In addation, a healthy lens utilizes its various antioxidants and 

oxidation defence enzymes to protect crystallins against oxidation. However, in the 

ageing lens, some differnces can already be seen. Some oxidation of the membrane 

proteins is present and only half of the protein thiols remain buried. Protection and 

repair mechanisms against oxidative stress slowly deteriorate or become ineffective so 

that the lens is less able to counteract the effects of H2O2 or other oxidants; 

transparency is lost and cataract occurs (Lou and Dickerson 1992). Identification of 

molecules and systems that can modulate oxidative stress are therefore of great 

interest to cataract research in relation to identifying strategies to delay cataract onset 

(Wride 2011). 

 

1.5 Posterior Capsule Opacification (PCO) 

1.5.1 Pathogenesis and prevalence of PCO 

Posterior capsule opacification (PCO) is the most common long term complication of 

cataract surgery and it occurs once the continuity of the lens capsule has been 
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breached (Wormstone et al. 2002). In a meta-analysis of 49 studies published between 

1979 and 1996, more than 25% of patients developed visually significant PCO within 

5 years of standard extracapsular cataract extraction (ECCE) cataract surgery and the 

incidence increased with time (Schaumberg et al. 1998). The age at which the patient 

presents cataract for surgery is an additional and profound influencing factor. The 

PCO event in children is far more ferocious than in adulthood, with almost 100% 

developing visually significant PCO (Knight-Nanan et al. 1996). In a study of 

children, who received a small incision, foldable, posterior chamber acrylic lens 

implantation, 100% of children ≤ 4 year developed PCO in the mean follow up period 

of 2.75 year after surgery (Stager et al. 2002). Likewise PCO prevalence in adults 

shows the same trend with increasing age (Moisseiev et al. 1989). Therefore, a clear 

understanding of the pathological mechanisms involved therapies and/or improve 

surgical practices for PCO inhibition. 

 

PCO results from the resilient growth onto the posterior capsule of residual lens 

epithelial cells (LECs) (De Groot et al. 2005) (Figure 1.8 B). LECs of anterior origin 

can access and grow onto the posterior capsule if the anterior rhexis size is larger than 

the optic of the intraocular lens (IOL) (Apple et al. 1992b). When this occurs, the cells 

ultimately encroach on the visual axis and light scattering can occur. Clinically, these 

changes are shown by the formation of Elschnig pearls (hypertrophic epithelial cells 

at the margin of the rhexis, likely to include the visual axis), the Sommerring ring 

(fibrotic changes in the more peripheral regions of the capsular bag) and the wrinkling 

of the capsular bag itself (Marcantonio and Vrensen 1999). Inflammatory cells can 

also play a role in PCO, especially in patients who experience significant 

postoperative inflammation following cataract surgery. In these cases, PCO appears as 
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a whitish haze over the capsule and usually develops within the first month following 

surgery. This type of PCO usually decreases with time after the first 3 months but can 

cause significant  loss of vision (Duncan and Wormstone 1999).  

 

Treatment of PCO is usually is relatively straightforward and often effective using the 

neodymium:YAG (Nd:YAG) laser to cut an opening in the posterior lens capsule, thus 

clearing the visual axis and restoring vision (Vock et al. 2009). However, disruption of 

the posterior capsule after phacoemulsification or standard ECCE results in a relative 

increase in the occurrence of complications. In particular, Nd:YAG capsulotomy has 

been associated with damage to IOLs, postoperative increase in intraocular pressure, 

cystoid macular edema, disruption of the anterior vitreous face and increased 

incidence of retinal complications including retinal detachment (Dewey 2006, Murrill 

et al. 1995, Steinert et al. 1991). Several attempts have been made to find an 

appropriate therapeutic concept to significantly lower the rate of PCO. 

 

Various surgical methods can negatively influence the development of PCO, such as 

atraumatic surgery and thorough cortical cleaning (Apple et al. 1992). A recent 

advancement in surgical method and IOL design has shown great promise to reduce 

the progression of visually disruptive PCO and may be especially applicable to 

patients in which PCO is a particular problem such as in paediatrics  (De Groot et al. 

2005).  At surgery twin rhexis excisions are carried out, such that in addition to the 

usual anterior rhexis, a posterior rhexis is performed for “bag-in-a-lens” IOL 

implantation. A twin-capsulorhexis IOL accommodates the capsule in a groove at its 

circumference, capturing the lens cells within the remaining equatorial region of the 
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capsular bag. Initial studies have been positive however, the high degree of technical 

skill required for this procedure and the likelihood of further complications, may 

negate widespread adoption of this technology.  

 

Numerous studies have investigated the influence that the IOL material has on PCO 

development. A common material used was polymethylmethacrylate (PMMA) and 

this has subsequently been associated with the highest rates of PCO in comparison to 

modern materials. A general consensus shows that PMMA is inferior to silicone and 

acrylic (Auffarth 2004, Hayashi et al. 2001, Hollick et al. 1999). Current IOL design 

rationale is to form a physical barrier to the migration of LECs by using IOL designs 

that maximize contact between the IOL optic and the posterior capsule so that no cells 

can reach the visual axis. A sharp optic edge induces contact inhibition and prevents 

epithelial cell migration. It is clear that IOL design plays an important role in PCO 

inhibition (Nishi 1999) and a sharp edge is associated with a significant reduction role 

in PCO (Buehl et al. 2005, Buehl et al. 2002, Buehl et al. 2004, Kruger et al. 2000). 

Sharp edge IOL implantation is however also associated with the incidence of anterior 

capsule contraction and opacification. Recent studies report that the sharp edge design 

silicone IOL caused more capsulorhexis contraction than the round edge design (Sacu 

et al. 2004), however this phenomenon is still a matter of much controversy (Miyata 

et al. 2007).  

 

Theoretically, the most efficient approach to address this problem is to eliminate all 

the cells within the capsular bag at surgery and a range of cytotoxic agents have been 

tested in a number of human and animal model systems such as, mitomycin-C (Jordan 
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et al. 2001), 5-fluorouracil (Fernandez et al. 2004) and thapsigargin (Duncan et al. 

1997). None of these treatments have yet reached the clinic; therefore there is scope to 

develop further agents to prevent PCO. A major problem when administering drugs 

into the capsule bag is the leakage of the drug into the anterior segment, such that 

non-target ocular tissue damage may be caused (Behar-Cohen et al. 1995). One 

approach adopted to address this problem and prevent these side effects is to coat the 

implanted IOL with cytotoxic agents. In a range of models, including the human 

capsule bag model and an in vivo animal model, drugs such as thapsigargin and a 

plant anti-mitotic bFGF- conjugate (bFGF-saporin)  (Behar-Cohen et al. 1995), have 

shown the potential to target the capsule bag. However, it was been pointed out that 

the potential of toxic side effects has effects has prevented their use in human clinical 

trials (Duncan et al. 2007). 
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Figure 1.8 A schematic representation of (A) the post-surgical capsular bag and (B) 

the extensive growth and modification that gives rise to Posterior Capsule 

Opacification. (C) A dark-field micrograph of a capsular bag removed from a donor 

eye that had undergone cataract surgery prior to death that exhibits light scattering 

regions beneath an intraocular lens (Wormstone 2002). 
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Figure 1.9 Examination of a capsular bag removed from a donor eye that had 

undergone cataract surgery 32 days before the time of death. (A) A phase-contrast 

micrograph shows wrinkling of the posterior capsule and the associated cellular 

morphology. (B) Fluorescence micrograph illustrating several layers of nuclei, some 

of which exhibit a spindle shape (arrows) and are oriented along capsular wrinkles. 

(C) Fluorescence micrograph showing F-actin distribution in cells growing across the 

posterior capsule (PC) and also those growing on the outer surface of the anterior 

capsule (AC). (D) A higher-magnification fluorescent micrograph demonstrating the 

F-actin organization of cells residing on the posterior capsule in association with 

matrix contraction. (E) Fluorescence micrograph showing a-SMA distribution in cells 

growing across the posterior capsule and also those growing on the outer surface of 

the anterior capsule (AC). (F) A higher-magnification fluorescence micrograph 

demonstrating the a-SMA organization of cells residing on the posterior capsule in 

association with matrix contraction (Wormstone et al., 2002) 
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1.5.2 Experimental models for PCO 

PCO is a major clinical problem and several models have been developed to study this 

fibrotic disease. These include in vivo animal studies (Behar-Cohen et al. 1995, Cobo 

et al. 1984); capsular bag models (Davidson et al. 2000) (Liu et al. 1996, Wormstone 

2002); cell culture studies (Nishi et al. 1996, Wormstone et al. 2004) (Kurosaka et al. 

1995); in vivo observations (Hollick et al. 1999, Ursell et al. 1998) and analysis of 

post-mortem material (Saika et al. 2000, Wormstone et al. 2001). 

 

The most commonly used model for in vivo animal studies is the rabbit. Apart from 

ethical considerations, the main drawback with this approach is that cell growth in 

non-primates may be different to that in primates. In primates, PCO is solely caused 

by lens cell growth, whereas in animals, cells from surrounding tissues like iris can 

migrate on to the posterior capsule (Behar-Cohen et al. 1995, Cobo et al. 1984). 

Furthermore, different species generate different inflammatory responses compared to 

primates, following trauma to the eye (Bito 1984). It is also difficult in vivo to 

establish data relating to the progression of PCO in animal systems and much of the 

information obtained is from detailed end-point examinations. 

 

Capsular bag models have emerged in recent years and are based on sham cataract 

operations (Davidson et al. 1998, Liu et al. 1996, Nagamoto and Bissen-Miyajima 

1994, Saxby et al. 1998). A capsular bag is produced that is identical to that generated 

in vivo, this system has the correct spatial organization of cells, which is the same as 

in vivo and the cells grow on their natural matrix. At the onset of experiments, the 

central posterior capsule is free of cells, but with time, cells encroach on this space 
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and in some cases can modify the matrix in such a way that wrinkles are formed in the 

capsule (Liu et al. 1996, Wormstone 2002). The factors that control these functional 

events can be investigated and a match paired experimental approach is often 

employed (Liu et al. 1996, Maidment et al. 2004, Wormstone 2002) (Duncan et al. 

1997, Wormstone et al. 2001). The capsular bag model has also been developed and 

applied in bovine (Saxby et al. 1998) and canines (Davidson et al. 1998). A critical 

aspect of the capsular bag model is the maintenance of the capsular bag shape. In 

order to achieve this some groups have employed capsular rings (Nagamoto and 

Bissen-Miyajima 1994, Saxby et al. 1998), while others have used fine pins to 

maintain the circular shape (Figure 1.10) (Davidson et al. 1998, Liu. et al. 1996). 

Furthermore, some of these systems permit the insertion of an IOL and therefore the 

role it plays can also be investigated on a day to day basis (Figure 1.9). the capsular 

bag model also allows for different surgical procedures like phacoemulsification, to 

be compared in a controlled way (Quinlan et al. 1997). Although, the capsular bag 

model is an excellent system to study lens cell growth and behaviour, the model can 

not identify the pothtial side feects to other ocular tissues, nor address the physical 

roles that other tissues may play. In addition, this system of investigation is dependent 

on the availability of human donor material which is relatively scarce. 

 

Cell lines are a valuable experimental tool for investigating PCO when the availability 

of human donor material is limited. Cell lines have advantages as they provide a 

homogenous population of cells, which should respond in a similar manner, which 

enables a contimuous series of experiments to be carried out.  In recent years human 

lens cell lines have been generated and are now commonly used.  
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The FHL 124 cell line has many advantages, the cells express phenotypic lens 

epithelial markers αA crystallin, Pax6 and FOXE3 and have 99.5% similarity of gene 

expression with the native lens epithelium (Wormstone et al. 2004). The cell line can 

be grown on a foreign matrix and cells still maintain a similar gene expression profile 

of phenotypic lens makers compared to the native tissue (Wormstone et al. 2004). 

 

Improvements in technology have enabled in vivo observations regarding PCO 

progression to be made. Camera systems have been developed that can detail changes 

to the capsular bag within the visual axis (Hollick et al. 1999, Ursell et al. 1998). This 

allows for patient assessment at various time points and changes to the capsular bag 

can be observed over time. While this technique can not provide information at the 

single cell level it does provide an excellent insigt into the rates of PCO progression. 

 

The analysis of post-mortem material provides an important understanding of which 

matrix components, cellular markers or growth factors are present within the capsular 

bag as PCO progresses. Electron microscopy (Marcantonio et al. 2000), 

immunocytochemistry (Marcantonio et al. 2000) (Saika et al. 2000), RT-PCR 

(Wormstone et al. 2001) and ELISA (Wormstone et al. 2001), (Wormstone et al. 2000) 

have been used to analyse post-mortem material. Although this type of investigation 

provides “ scene of the crime” information it does not provide definitive proof that 

various molecular suspects are responsible for PCO devepment. 
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Figure 1.10  Low power dark-field views of capsular bag preparations pinned out and 

immersed in culture medium, in the absence of an IOL (a) the disc shape opening in 

the anterior capsule reveals the posterior beneath. When an IOL is present (b) the 

supporting loops (haptics) distend the capsular bag and creases can be seen on the 

posterior capsule (arrows). The micrograph represents a field of view of 1.8×1.25 cm 

(Liu et al. 1996) 
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1.6 Dietary antioxidants and cataract prevention 

Different types of diet have been associated with an increased or decreased risk of 

cataract. Epidemiological studes have shown that dietary intakes rich in fruit and 

vegetables are linked to a reduced risk of cataract. An Italian case-control study 

investigated the effects of dietary factors on the risk of cataract (Chiu and Taylor 2007). 

Significant inverse relationships were seen between spinach, cruciferous vegetables, 

tomatoes, peppers, citrus fruits, and melon.  

 

The effects of vitamins on cataract using multivitamin supplements have been 

investigated in several recent studies. An important decrease in risk for nuclear cataract 

was seen in the prospective Longitudinal Study for Cataract (33%) (Leske et al. 1997). 

A modest decrease in cataract progression was also found in the Rocha European 

American Cataract Trial (REACT) (Chylack et al. 2002). However, in the prospective 

Nurses’ Health study, there was no association between multivitamin supplement 

consumption and cataract (Hankinson et al. 1992). Another antioxidant formulation, 

containing only three vitamins (A, C and E), has been used in the Age- Related Eye 

Disease study (AREDS) (AREDS group, 2001) and the Women’s Health study 

(Christen et al. 2004). These two randomized placebo controlled studies did not show 

any significant effect of the supplementation of antioxidants on the development or 

progression of age-related lens opacities.  

 

The relationship between vitamin C intake and risk for cataract has been investigated in 

several human studies, in the Nurses’ Health study, a decreased prevalence of lens 

opacities has been found in women using vitamin C supplements (Hankinson et al. 
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1992). Like for vitamin C the results of studies investigating the effects of vitamin E on 

cataract are not consistent. Positive effects of vitamin E on cataract were observed in 

some studies (Leske et al. 1991, Rouhiainen et al. 1996, Vitale et al. 1993), but not in 

others (Lyle et al. 1999, Mohan and Muralidharan 1989). All these studies considered 

the vitamin E serum level except The Beaver Dam Eye study (Lyle et al. 1999) which 

measured the total dietary intake. Vitamin E serum levels were inversely associated 

with risk of nuclear cataract in the Lens Opacities case control study (Leske et al. 1991) 

and  the prospective Baltimore Longitudinal study on Aging (Vitale et al. 1993). 

 

A prospective study of the effect of vitamin A, or β-carotene, on the risk of cataract 

formation was conducted in the United States (Chasan-Taber et al. 1999). The results 

show a lower risk of developing cataract for women consuming high amounts of 

vitamin A, comparing to those consuming low amounts of vitamin A. three previous 

prospective studies did not obtain the same results. None of them found a significant 

association between vitamin A and cataract. Because lutein and zeaxanthin, two other 

carotenes, have been found in human cataractous lenses after extraction (Yeum et al. 

1999), they have been well studied for their possible effect on cataract. Studies 

investigating the effect of carotenes on risk of cataract found an inversely related risk of 

cataract with high lutein and zeaxanthin dietary intake (Chasan-Taber et al. 1999, Lyle 

et al. 1999). 

  

Another class of molecule investigated for their effects on cataract are flavonoids. 

Among these phenolic compounds, procyanidins, catechins and quercetin are chiefly 

studied.  Several studies have investigated the effects of procynidin extracts on cataract 
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formation in rats. Procyanidins, or proanthocyanidins, are part of the flavanol group, 

which is a subclass of flavnoids. Procyanidins and their antioxidative metabolites were 

found to supress cataract formation (Durukan et al. 2006), to prevent cataract formation 

or its progression (Osakabe et al. 2004, Yamakoshi et al. 2002) and to postpone it 

(Nguyen et al. 1999). It is proposed that daily consumption of procyanidins in food may 

offer a prophylactic solution against onset and progression of cataract. 

 

In addition to epidemiology studies, information has also been gleaned from 

experimental approaches in the laboratory. Numerous oxidants, including hydrogen 

peroxide, have been found to induce opacity in lenses from a number of species 

(Spector et al. 1995, Truscott 2005). A variety of antioxidants have been found to 

protect lens cells and prevent opacification (Sanderson et al. 1999). 

 

Quercetin is a dietary bioflavonoid which has been shown to have protective effects 

against lens opacification in in vivo and in vitro models of cataract (Beyer-Mears and 

Farnsworth 1979, Cornish et al. 2002, Lija et al. 2006, Sanderson et al. 1999). Quercetin 

effectively inhibited H2O2-induced lens opacification in a lens organ culture with 

hydrogen peroxide (LOCH) model of cataract (Sanderson et al. 1999). A recent study 

looking at quercetin and its interaction with the hypoxia-inducible factor-1 (HIF-1) 

pathway raises important questions to be considered in relation to the lens. Triantafyllou 

used HeLa cells to investigate the effects of flavonoids on HIF-1a (Triantafyllou et al. 

2008). It was found that as well as an increase in HIF-1a levels, that quercetin (100 mM) 

also inhibited translocation of HIF-1a to the nucleus via the p44/42 MAPK pathway. 

This inhibition became more apparent when the HIF-1 pathway was stimulated either 
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by iron chelation or hypoxia (1% O2). In human lens epithelial cells, it was found that 

65% of the genes with 10 mM quercetin increased expression were regulated by the 

HIF-1 pathway (Radreau et al. 2009). The quercetin-induced increase and nuclear 

translocation of HIF-1α was reversed by addition of excess iron (100 mM) (Radreau et 

al. 2009). These results demonstrate that quercetin activates the HIF-1 signaling 

pathway in human lens epithelial cells. 

 

1.7 Isothiocyanates (ITCs)  

Numerous epidemiological studies have shown that consumption of large quantities of 

fruits and vegetables, especially cruciferous vegetables (e.g. Broccoli and Brussels 

sprouts), can protect against carcinogenesis, mutagenesis, drug toxicities, and other 

chronic diseases (Conaway et al. 2002, Lam et al. 2009). 

 

1.7.1 Chemical structure and classification of Isothiocyanates 

All ITCs are characterized by the presence of an N=C=S functional group which is 

found in a variety of cruciferous vegetables. ITC compounds include Ally 

isothiocyanate (AITC) from cabbage, mustard, and horseradish; benzyl isothiocyanate 

(BITC) from lepidium cress; phenethyl isothiocyanate (PEITC) from watercress and 

garden cress; and SFN (SFN) from broccoli, cauliflower, brassicas, and kale 

(Verhoeven et al. 1997). 

 

The chemopreventative effect of cruciferous vegetables is thought to be partially due 

to their relatively high content of glucosinolates (β-thioglucoside N-hydroxysulfates), 
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which distinguishes them from other vegetables (Zhang 2000, 2012). Glucosinolates 

all contain two parts: a common glycone moiety and a variable aglycone side chain 

derived from amino acids. Although over 120 different side chain structures have 

been described, relatively few occur in dietary crucifers (Table 1) (Figure 1.11). They 

are hydrolyzed to an aglycone R-C (-SH) =N-O-SO3
–
 by the enzyme myrosinase 

(thioglucoside glycohydrolase, EC 3.2.3.1).  
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Table 1 Source of Isothiocyanates from Dietary Vegetables 

(Cheung and Kong 2010b) 
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Figure 1.11 (A) The general chemical structure of glucosinolates and isothiocyanates, 

where R represents the variable side chain. (B) Examples of side chain structures (R) 

of glucosinolates and isothiocyanates (Juge, et al 2007). 
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S-(N-aralkylthiocarbamoyl)cysteine derivatives are formed from the reaction with 

cysteinyl thiols. Nucleophilic attack of isothiocyanates by amino groups forms 

thiourea derivatives with the structure RNH-C(=S)-NHR′. Nucleophilic attack of 

isothiocyanates by hydroxide ion forms monothiocarbamate derivatives of the form 

RNH-C(=S)-O–. These compounds eliminate carbonyl sulfide COS, which produces 

the corresponding amine derivative RNH2. These two sequential reactions constitute 

the irreversible hydrolysis of isothiocyanates that is associated with the loss of 

pharmacological activity. These are spontaneous reactions that occur under 

physiological conditions. They initially deliver a RNH-C(=S)-group to the 

nucleophile; hence, the reaction is called thiocarbamoylation (Figure 1.12). 
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Figure 1.12  Thiocarbamoylation of isothiocyanates (Wu et al. 2009). 
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Significant losses of isothiocyanates are expected during Figure 1.12. Hydrolysis of 

glucosinolates by myrosinase and formation of isothiocyanates food processing. The 

thioglycosidic bond is hydrolyzed, glucose is released and an unstable aglycone is 

formed (Figure 1.13). The aglycone fragments eliminate sulfate SO4 
2–

 and form 

isothiocyanate R-N=C=S. Glucosinolates are normally located in the cytoplasm of 

plant tissue (Rask et al. 2000). Myrosinase is expressed on the external surface of the 

plant cell wall, so it cannot access the glucosinolates (Rask et al. 2000). When the 

tissue is ruptured by chewing, preparation for cooking, heating, or insect attack, 

myrosinase interacts with the released glucosinolates and hydrolysis products are 

formed. 

 

Some glucosinolates give rise to other products such as epithionitrile and oxazolidine 

derivatives, which depends on the glucosinolate, temperature, pH and presence of 

reducing agents. Some isothiocyanates are volatile and will be lost to the atmosphere 

by vaporization at the boiling point and evaporation at temperatures below the boiling 

point; for example, loss of allyl isothiocyanate occurs at a boiling point of 88 °C. 

Isothiocyanates also are hydrolyzed at physiological temperatures, a process that 

becomes more rapid at higher cooking temperatures (Shapiro et al. 1998). This is 

probably due to isothiocyanate volatility and susceptibility to hydrolysis, and it 

explains why ingested cooked vegetable material often has a very low content of 

isothiocyanate and a much higher (>100 fold) content of glucosinolates (Shapiro et al. 

1998). The myrosinase acting on the glucosinolates may also originate from other 

sources within the gastrointestinal tract (Zhang 2012, Zhang and Callaway 2002).  
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Figure 1.13  Hydrolysis of glucosinolates by myrosinase and formation of 

isothiocyanates (Wu et al. 2009) 

 

 

 

1.7.2 Isothiocyanates metabolism and cellular uptake  

After absorption through daily diet, ITCs are usually metabolised via the mercapturic 

acid pathway (Figure 1.14) (Egner et al. 2008). In addition, the central carbon of the –
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N=C=S group reacts with the sulfhydryl group of glutathione S-transferases (GSTs). 

ITCs cross the gastrointestinal epithelium and the capillary endothelium by passive 

diffusion after being ingested in the lumen of the gastrointestinal tract. They then 

cross the plasma membrane into cells of tissues by binding to thiols of plasma protein 

and react with glutathione to form the glutathione conjugate, S-(N-

alkyl/arylthiocarbamoyl) glutathione, which is promoted by GSTs. The GS conjugate 

is expelled from cells by transporter proteins, known as multidrug resistant proteins 

(MRPs). In the extracellular medium, they undergo successive enzymatic 

modifications, first by γ-glutamyl transferase (γ-GT) and then dipeptidase, forming a 

cysteine conjugates which is transported to the liver. Here, the cysteine conjugate is 

acetylated to Nα-acetyl derivative or mercapturic acid and transported to the kidney 

and excreted in the urine (Zhang 2001, 2012) (Figure 1.13).  
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Figure 1.14 Metabolism of isothiocyanates by the mercapturic acid pathway. R is the 

aliphatic or aromatic substituent of the isothiocyanate (Zhang et al. 2012). 
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Mercapturic acid derivatives of dietary ITCs have been detected as major urinary 

metabolites in rats (approximately 72% of a single oral dose of SFN) (Kassahun et al. 

1997) and human subjects (nearly 60% of a single oral dose of broccoli Sprouts) (Ye 

et al. 2002b) after consumption of glucosinolates.In addition, in a rat model, 24 hours 

after a single oral dose of ITCs, 72% of SFN was recovered in urine; only 1% was 

detected in the second 24 hours urine sample (Kassahun et al. 1997). The results show 

that the bioavailability of ITCs is high. Moreover, even after repeated SFN dosing 

(oral broccoli sprout extracts containing 25 μM ITCs at 8 hour intervals for 7 days) 

(Shapiro et al. 2006), ITCs also can be disposed of in urine extremely fast, and this is 

closely related to its rapid absorption (Petri et al. 2003a). The one critical factor which 

influences the absorption and bioavailability of ITCs is myrosinase activity. 

Myrosinase activity influences the hydrolysis process of ITCs from glucoraphanin. 

Mammalian cells have no myrosinase activity. The myrosinase enzyme only exists in 

cruciferous plant cell walls and gut microbial flora (Kassahun et al. 1997). In 

cruciferous plants, physical disruption like chopping, cutting and chewing can release 

the enzyme. However, the myrosinase enzyme is heat-labile during the cooking 

process, and the enzyme activity can be significantly reduced by up to 3-fold 

(Conaway et al. 2000). Another source of myrosinase activity is the microbial flora in 

the gut system. The evidence from an experiment compared isolated human fecal 

bacteria (Shapiro et al. 1998b) and F344 rates (Bheemreddy and Jeffery 2007) dosed 

with glucoraphanin. The results indicate that colonic microbial flora can catalyse 

glucoraphanin to ITCs. 

 

Many studies showed that ITCs is taken up by cells predominantly, if not entirely, 

through GSH conjugation reactions in cells, and that cellular GST promotes uptake of 
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ITCs by enhancing the conjugation reaction. ITCs penetrate cells by diffusion, but 

once inside the cells, they are rapidly conjugated via their –N=C=S group with 

cysteine sulfhydryl groups of glutathione (GSH) and of proteins (Figure 1.15) (Zhang 

2000). ITCs is rapidly accumulated in human and animal cells, with the peak 

intracellular ITCs accumulation reached within 0.5–3 hours of exposure and up to 

100- to 200-fold over the extracellular ITCs concentration or up to millimolar levels 

(Zhang and Talalay 1998, Zhang and Callaway 2002). In addition, lipophilicity of 

ITCs does not seem to influence uptake of ITCs by cells (Zhang 2012). 
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Figure 1.15 Cellular uptake and elimination of ITCs and intracellular protein 

modification. ITCs (R-N=C=S) are believed to enter a cell by diffusion, but once in 

the cell are rapidly accumulated via conjugation with intracellular thiols, primarily 

GSH but also proteins. The GSH conjugates may be further metabolized via the 

mercapturic acid pathway (‘R-NH-C (=S)-SR1’ stands for these metabolites), which 

are expelled from the cell via membrane transporters. The conjugates may modify 

cellular proteins via exchange reactions with cysteine sulfhydryl groups. ITCs and 

their thiol conjugates may also bind to certain proteins via reaction with amino groups 

and may also cause protein thiol oxidation by stimulating cellular reactive oxygen 

species production (Zhang et al. 2012). 
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1.8 Sulforaphane 

Sulforaphane (SFN, R-1-isothiocyanato-4-methylsulfinylbutane), an ITC obtained in 

the diet through the consumption of broccoliis an isothiocyanate (Figure 1.15) (Hintze 

et al. 2003). Most cultivars of broccoli accumulate between 2 and 10 mmol/ g of 4 

methylsulfinyl glucosinolate in their florets. Higher levels on a dry weight basis may 

sometimes be found within broccoli seedlings (sprouts) a few days after germination, 

although these rapidly decline as the seedlings age. A high glucosinolate variety of 

broccoli has, however, been specially bred to accumulate about threefold higher levels 

of glucosinolates in its florets. The most abundant glucosinolate in broccoli is 

glucoraphanin, which upon hydrolysis by myrosinase or intestinal flora yields the 

isothiocyanat, SFN, as shown in Figure 1.16 . 

                       

                     

Figure 1.16  General chemical structure of SFN 

(http://www.hmdb.ca/metabolites/HMDB05792) 
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When raw florets or sprouts are macerated or eaten, between 60 and 80% of the 

glucosinolate is converted to the SFN-nitrile, as opposed to the ITC, due to the 

combined effects of myrosinase and a non-catalytic protein cofactor (ESP-like). 

However, mild cooking can preserve myrosinase activity while denaturing ESP, 

resulting in almost 100% conversion to SFN. Further cooking denatures myrosinase, 

and intact glucosinolates are ingested. However, these can be converted to SFN in the 

colon by microbial thioglucosidase activity. 

 

 

 

Figure 1.17  Hydrolysis of glucoraphanin to SFN by myrosinase (Cwik et al. 2010) 

 

 

1.8.1 SFN metabolism 

After absorption through daily diet, SFN is usually metabolised via the mercapturic 

acid pathway (Egner et al. 2008). SFN reacts with glutathione to give rise to a 

glutathione-SFN conjugate, which is catalyzed by Glutathione-S-Transferases (GSTs). 

After that, step-wise cleavage of glutamine and glycine first by the enzymes γ-

glutamyl transpeptidase (GTP) and then by cysteinylglycinase (CGase) yields a L-

cycteine conjugate. Then N-acetyltransferase (NAT) acetylates the L-cysteine 

conjugate to produce an N-acetyl-L-cysteine conjugate (mercapturic acid derivative). 

This final product is then removed from the body through urine (Figure 1.17). 
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Mercapturic acid derivative, present in urine, reflects the uptake of SFN and the 

intake of glucoraphanin from cruciferous vegetables (Fahey et al. 1997). Higher 

amounts of SFN conjugates in the blood and SFN-derived mercapturic acid 

metabolites in urine were found when broccoli was eaten raw (bioavailability 37%) 

versus cooked (bioavailability 3.4%) (Vermeulen et al. 2008). 

 

In addition, in a rat model, 24 hour after a single oral dose of SFN, 72% of SFN was 

recovered in urine; only 1% was detected in the second 24 hour urine sample 

(Kassahun et al. 1997). The results show that the bioavailability of SFN is high. 

Moreover, even after repeated SFN dosing (oral broccoli sprout extracts containing 25 

μmol ITC at 8 hour intervals for 7 days) (Shapiro et al. 2006). SFN also can be 

disposed of in urine extremely fast, and this is closely related to its rapid absorption 

(Petri et al. 2003). 
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Figure 1.18 Metabolism of 4-methylsulphinylbutyl glucosinolate and SFN. Upon 

entry into enterocytes SFN is rapidly conjugated to glutathione, exported into the 

systemic circulation and metabolized through the mercapturic acid pathway. Within 

the low glutathione environment of the plasma the SF-glutathione conjugate may be 

cleaved, possibly mediated by GSTM1, leading to circulation of free SFN in the 

plasma. This free SFN can modify plasma proteins including signalling molecules, 

such as TGFβ, EGF and insulin (Traka et al. 2008). 
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1.8.2 Functional roles of SFN  

SFN has been found to be a very potent chemopreventive agent in numerous animal 

carcinogenesis models, as well as cell culture models, exerting its chemopreventive 

effects through regulation of diverse molecular mechanisms (Cheung and Kong 2010). 

Several mechanisms have been proposed for the chemopreventive effect of SFN. 

These includes an early stage of research focused on “the blocking activity” of SFN 

through induction of phase II detoxification proteins (Juge et al. 2007). Further studies 

have recognized inhibition of phase I enzymes as also involved in activation of 

procarcinogens (Juge et al. 2007). Moreover, SFN may also influence or stop cancer 

development though several other mechanisms which are involved in controlling cell 

proliferation (Juge et al. 2007). These mechanisms include induction of apoptosis, 

induction of cell cycle arrest, and anti-inflammatory effects (Juge et al. 2007). Most 

likely, these factors interact together to reduce the risk of carcinogenesis. 

Understanding the different responses of cells and tissue to SFN is of great 

therapeutic interest.  

 

1.8.2.1  Cytoprotection and “blocking” mechanisms 

Much of our understanding of the ability of SFN to protect cells has come from 

chemoprevention studies. Drug metabolism generally plays a key role in the 

“blocking” effect of SFN. Drug metabolism takes place by two consecutive processes, 

phase I and phase II metabolism (Woolf and Jordan, 1987; Woolf, 1999). Phase I 

(Cytochrome P450 (CYP)) drug-metabolising enzymes (DMEs) are usually involved 

in oxidation, reduction, or hydrolysis of chemicals including carcinogens and these 

chemical reactions have been implicated in the bioactivation of carcinogens 
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(conversion of procarcinogens to carcinogens) (Wogan et al. 2004). These reactive 

metabolites can form adducts with endogenous biomolecules such as DNA, RNA, and 

proteins, and play a key step in initiating cellular damage and cancers. Therefore, 

modulation of CYP activity to decrease the activation of procarcinogens could be a 

plausible target for chemoprevention through preventing cancer initiation (Patel et al. 

2007) . It has been reported that isothiocyanates could impair CYP activity by acting 

as competitive inhibitors as well as mechanism-based inhibitors, but the mechanism 

has not been extensively studied Human CYP isoforms that are involved in drug 

metabolism include CYP1A1/2, CYP2B6, CYP2C8/9/19, CYP2D6, CYP2E1, 

CYP3A4/5 and CYP4A (Elbarbry et al. 2007, Shimada et al. 1994). These reactive 

metabolites can form adducts with endogenous biomolecules such as DNA, RNA, and 

proteins, and play a key step in initiating cellular damage and cancers. Therefore, 

modulation of the CYP activity to decrease the activation of procarcinogens could be 

a plausible target for chemoprevention through preventing cancer initiation (Patel et al. 

2007) . 

 

SFN was shown to inhibit the activity of CYP1A1 and CYP1A2 in the human 

hepatoma cell line HepG2 (Skupinska et al. 2009a, Skupinska et al. 2009b). Also in 

rat models, SFN has a dose-dependent inhibition effect on the bioactivities of 

CYP1A1 and CYP2B1/2 (Maheo et al. 1997). The key step in the carcinogenesis of 

polycyclic aromatic hydrocarbons (PAH) is their biotransformation to oxyderivatives 

by CYP1A1 and CYP1A2. Therefore, inhibition of these CYP enzymes by SFN may 

explain its chemopreventive effect in rats against the carcinogen, aflatoxin B1 (Maheo 

et al. 1997). In further research, using the p-nitro-phenol hydroxylase assay, SFN was 

shown to have an anti-mutagenic effect against N-nitrosodimethylamine (NDMA) in 
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acetone-induced rat liver microsomes (Puccini et al. 1989). The procarcinogen is 

known to be activated by CYP2E1 to cause DNA damage, and this was inhibited by 

SFN in a dose-dependent manner (Barcelo et al. 1996). This confirmed that SFN is a 

potent competitive inhibitor for CYP2E1. On the other hand, SFN had no effect on the 

direct-acting, sodium azide (Paolini et al. 1997). This suggests that SFN may provide 

protection against carcinogens which are substrates for CYP2E1. Although, the 

mechanism by which SFN inhibits CYP activity has not been extensively studied, it 

has been reported that isothiocyanates impair CYP activity by acting as competitive 

inhibitors as well as mechanism-based inhibitors (Goosen et al. 2001, Nakajima et al. 

2001) 

 

The next process in drug metabolism involves phase II enzymes. Phase I enzymes 

produce hydroxylated intermediates. These intermediates are highly reactive and so 

have to be further metabolised by the phase II enzyme system. Phase II enzymes are 

detoxifying and excretory enzymes. Phase II reactions involved the metabolites 

produced during phase I metabolism, conjugating them with molecules such as uridine 

5’diphosphate-glucouronic acid, glutathione or sulfate to produce less toxic and more 

readily eliminated metabolites. Also Phase II reactions have been extended to include 

proteins that catalyze reactions that lead to comprehensive cytoprotection against 

electrophiles and reactive oxygen species (Talalay 2000). Knockout of one or more of 

these phase II proteins, which include NADPH: quinine oxidoreductase (QR), 

glutathione S-Transferases (GST), UDP glucuronosyltransferases (UGT), glutathione 

reductase (GR), and heme oxygenase-1 (HO-1), in animals caused a significant 

increase in carcinogen induction and spontaneous tumorogenesis (Henderson et al. 

1998b, Long et al. 2001, Long et al. 2000b). Many researchers have documented that 
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SFN is the most potent naturally occurring phase II detoxification enzyme inducer in 

both animals and humans (Fahey et al. 2002, Talalay 2000). Several in vitro studies 

have shown the effectiveness of SFN in inducing the activity of phase II proteins. SFN 

was found to potently induce the activity of QR, GST-α and γ- glutamylcysteine 

synthetase, and increase intracellular glutathione synthesis in human prostate cancer 

lines (Brooks et al. 2001). SFN and its glutathione conjugate significantly induced both 

UGT1A1 and GSTA1 mRNA and protein levels in human hepatoma HepG2 cells and 

colorectal adenocarcinoma HT29 cells (Basten et al. 2002). Similarly, in in vivo studies, 

rats fed for 14 weeks with 200 mg/day of dried broccoli sprouts containing 

glucoraphanin, the precursor for SFN, had significantly decreased oxidized GSH and 

protein nitrosylation, as well as increased glutathione (GSH) content, GSH reductase 

and GSH peroxidase activities in cardiovascular and kidney tissues (Wu et al. 2004). 

 

There are three cellular components that regulate the gene expression of phase II 

proteins. These are Kelch-like ECH-associated protein 1 (Keap 1); Nuclear factor 

(erythroid-derived 2) - like 2 (Nrf2); and the antioxidant response element (ARE). 

Disruption of Nrf2-Keap1 interactions is one of the mechanisms to explain how SFN 

influences Phase II enzymes. In the absence of SFN and other inducers, Nrf2 is 

sequestered in the cytoplasm by Keap 1.  Upon exposure to SFN, SFN can react with 

the thiol group of Keap1 and release the binding Nrf2 causing dissociation from Keap1. 

Nrf2 undergoes nuclear translocation and binds to the ARE and activates the 

transcription of phase II genes (Keum et al. 2006, Yu et al. 1999).  Nrf2 knockout mice 

have been used to evaluate the importance of Nrf2. Feeding mice with broccoli seed as 

a source of SFN for 7 days, resulted in an increase in protein expression of NQO-1, 

GSTA1/2, GSTA3, GSTM1/2 in the stomach, small intestine and liver of wild-type 
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mice but not in Nrf2 knockout mice (McWalter et al. 2004). It shows that the ability of 

SFN to induce the expression of phase II proteins is mediated through Nrf2 as shown in 

Figure 1.19. 

 

Collectively, the cytoprotective effect of SFN could be attributed to its effect on the 

balance between procarcinogen activation (by inhibiting phase I enzymes) and 

carcinogen detoxification (by enhancing phase II enzymes) (Figure 1.19) (Elbarbry and 

Elrody 2011). 
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Figure 1.19 Cytoprotection by sulforaphane via modulation of drug metabolizing 

enzymes (DME). A: SFN interferes with cancer initiation through inhibition of CYP 

enzymes that are involved in bioactivation of procarcinogens and/or induction of 

phase II detoxification proteins. B: Proposed mechanism for the induction of phase II 

enzymes by SFN. SFN causes Nrf2 to dissociate of from its inhibitor Keap1 and 

translocate to the nucleus where it binds to the ARE and activates phase II genes 

(Elbarbry et al. 2011). 
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1.8.2.2 Cytostatic, anti-proliferative and cell death mechanisms 

Recent studies showed that SFN may be involved in other anti-proliferation 

mechanisms including inhibition of cell growth by activation of apoptosis, cell cycle 

arrest, opromotion of ER stress and disruption of normal tubulin polymerization (Juge 

et al. 2007).  

 

Apoptosis, or programmed cell death, is a highly regulated process that occurs under a 

range of physiological and pathological conditions as part of the cellular mechanism. 

Apoptosis is important in the development and maintenance of homeostasis and in the 

elimination of damaged cells. Inappropriate regulation of apoptosis leads to serious 

disorders such as neural degeneration, autoimmune diseases and even cancers 

(Elbarbry and Elrody 2011). The morphological features of apoptosis include cell 

shrinkage, chromatin condensation and fragmentation of the cell into compact 

membrane enclosed structures. Apoptosis can be induced by genotoxic compounds 

and various environmental stresses. 

 

Induction of apoptosis is hypothesized to be through intracellular activation of 

caspases, a family of cysteine proteases, which are responsible for initiation and 

execution of apoptosis (Figure 1.20). Also caspase-independent pathways mediate 

induction of apoptosis, such as release of the mitochondrial protein apoptosis inducing 

factor (AIF) into the cytosol, activation of a family of Ca
+2

-activated cytosolic 

proteases called calpains (Juge et al. 2007), or modulating the activation of 

transcription factors such as NF-kB and AP1 family members which are involved in 
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induction of cell survival genes (Mi et al. 2007). The first evidence for a cytostatic 

effect of SFN was reported in human colon cancer cells, where decreased viability in 

HT29 and Caco-2 cells was observed as a result of treatment with 15 and 50 mM, 

respectively (Gamet-Payrastre et al. 1998). In in vitro studies，colon cancer cell lines 

treated by SFN have been used to study features of apoptosis (Gamet-Payrastre et al. 

2000a). It also it has been demonstrated in ovary (Bryant et al. 2010), prostate 

(Shankar et al. 2008) (Chiao et al. 2002b), bladder (Shan et al. 2006) and brain cells 

(Jiang et al. 2010). Several mechanisms, including both caspase-dependent and 

independent, have been proposed to explain the induction of apoptosis by SFN and 

have been reviewed (Juge et al. 2007a). The first report on the involvement of 

caspases in SFN-mediated apoptosis was by Chiao and colleagues in prostate LNCaP 

cells (Chiao et al. 2002a). Subsequently, SFN was shown to activate the 

mitochondrial/ intrinsic apoptotic pathway. This involves release of cytochrome c 

from the mitochondria into the cytosol, which in turn binds to the apoptosis protease 

activation factor-1 (Apaf-1) and leads to activation of the “initiator” caspase-9 (Choi 

and Singh 2005, Karmakar et al. 2006). Moreover, SFN was also shown to activate 

the death receptor/extrinsic pathway of apoptosis in prostate cancer cells. This 

pathway is initiated by “death ligands” such as Fas-L, TRAIL or tumor necrosis 

factor-a (TNF-a) and involves induction of caspase-8 and subsequent activation of 

“effector” caspases (Choi and Singh 2005, Singh et al. 2004). Additionally, SFN has 

been shown to activate caspase-12 following damage of the endoplasmic reticulum 

(Karmakar et al. 2006). 

 

It was demonstrated that the initial signal for SFN-induced apoptosis is possibly from 

ROS (Myzak et al. 2007). ROS may play a key role in SFN- induced apoptosis. 
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Research using PC3 prostate cancer cells has shown that ROS are accompanied by a 

disruption of mitochondrial membrane potential, cytosolic release of cytochrome C, 

and apoptosis. The possible mechanism is that SFN treatment increases mitochondrial 

ROS production and induces apoptosis as indicated by the release of cytochrome C 

via both deathreceptor and mitochondrial caspase cascades. High doses of SFN are a 

necessary condition for inducing ROS production. When HT-29 colon cancer cells 

were treated with 50 μM SFN, the cell cycle arrest response was blocked by the 

addition of antioxidants N-acetyl-cysteine (NAC) or GSH, indicating that generation 

of ROS was indispensable for growth arrest under the assay conditions. However, in 

the DU145 cell line, only 10 μM SFN was enough to raise the ROS. In PC3 and 

LnCap human prostate cells less than 40 μM SFN treatment showed an induced effect 

of the formation of acidic vesicular organelles and autophagy; at the same time 

mitochondrial cytochrome C release and apoptosis were inhibited (Herman-

Antosiewicz et al. 2006). Obviously, ROS production after SFN exposure has the 

ability to influence cell death in prostate and colon cancer cells, although the 

mechanisms have not been fully investigated. 
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Figure 1.20 SFN induces apoptosis by affecting multiple targets of the 

mitochondrial/intrinsic and the receptor/extrinsic apoptotic pathways as well as 

caspase-independent pathways. All the apoptotic components shown in this figure 

have documented altered expression or (in) activation in response to SFN treatment 

(modified from  Juge, 2007). 
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The other anti-proliferation mechanisms of SFN involve cell cycle arrest (Juge et al. 

2007). The progression of cell cycle through the four stages, G1, S, G2 and M, is 

highly regulated by a number of mechanisms or checkpoint proteins (Figure 1.21). 

These cell cycle regulators are essential in cytoprotective responses to stress, 

including DNA damage and abnormal mitogenic signals (Juge et al. 2007). The 

phases of the cell cycle are regulated by cyclin-dependent kinase (CDK) molecules 

and cyclins, which drive the cell from one phase to the next and in turn are regulated 

by inhibitors. This process offers many potential targets for chemopreventive agents 

such as SFN. The key regulators of cell cycle progression are the cyclin-dependent 

kinases (CDKs), cyclins, and CDK inhibitors (CDKIs). Normal cell growth is 

maintained through a balance between the cyclin/CDK complexes that promote cell 

growth and CDKIs that promote cell cycle arrest.  

 

There are three possible mechanisms of SFN-mediated cell cycle arrest (Figure 1.21). 

First is through inhibition of cyclins which, together with CDK, drive the cell cycle 

from one phase to the next (Chiao et al. 2002b). In both prostate and colon cancer 

cells, SFN inhibited the expression of cyclin D1 and DNA synthesis along with a G1 

phase  cell cycle block (Chiao et al. 2002). Another mechanism by which SFN affects 

the cell cycle is through up-regulation of CDKIs, which bind and inhibit the activity 

of cyclin/CDK complexes and regulate cell cycle progression through the four phases 

(Shan et al. 2006). Treatment of epithelial ovarian cancer cells with SFN resulted in 

dose-dependent decrease in expression of G1 phase cyclins while increasing the 

expression of CDKIs (Bryant et al. 2010).  A third possible mechanism for the arrest 

in cell cycle progression by SFN was described by Jackson and colleagues and 

involved disruption of microtubules by inhibition of tubulin polymerization (Jackson 
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and Singletary 2004a). Tubulin plays a pivotal role in cell division, motility and 

intracellular trafficking in all eukaryotes (Nogales 2000). Drugs that inhibit its 

polymerization and interfere with mitosis have gained much attention in cancer drug 

discovery. The first evidence that SFN inhibits tubulin polymerization was observed 

in the mouse mammary carcinoma cell line F3II (Jackson and Singletary 2004a). In 

this case, low concentrations of SFN (15 mM) caused mitotic cells to display aberrant 

and mildly depolymerized spindles, whereas high doses of SFN (100 – 300 mM) 

inhibited tubulin polymerization. Similarly, the inhibition of tubulin polymerization 

was specifically attributed the SFN molecule which was also shown in bovine 

endothelial cells (Jackson and Singletary 2004a) and human breast adenocarcinoma 

cells (Jackson and Singletary 2004b). 
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Figure 1.21 SFN arrests the cell cycle by modulating different stages of cell cycle 

progression. Only members of the cell cycle machinery that have been documented to 

alter expression or activation status in response to SFN treatment are shown (Jugea, 

2007). 
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The endoplasmic reticulum (ER) is the site of protein synthesis, where folding and 

trafficking are initiated, and also the mediator of internal and external stresses (Figure 

1.22) (Boyce and Yuan 2006). ER stress can arise because unfolded or mis-folded 

proteins are produced within the ER. Normal levels of unfolded proteins can be 

counteracted by a number of ER chaperone proteins, but if the level continues to 

increase, for example through prolonged oxidative or osmotic stress, then it is 

detected by the molecule Bip which in turn activates one or more of 3 stress pathway 

initiators (PERK, IRE1 and ATF6).  

 

ER stress can also be seen as a depletion of ER calcium with a concomitant rise in 

cytosolic calcium. Once a prolonged stress is sensed then a range of external 

pathways are initiated. For example, when EIF2α is phosphorylated, then translation 

of certain proteins is inhibited. This apparently is a protective pathway, which 

presumably results from an inhibition of the synthesis of unfolded proteins. 

Interestingly, expression of Ca-ATPase, whose function is inhibited by thapsigargin 

(Tg) is in fact up-regulated after Tg exposure presumably via a feedback mechanism 

(Liu et al. 2002). 

 

 Many of the other pathways lead to cell death through apoptosis, for example calpain 

activation, which is calcium dependent, is particularly harmful to the lens and has 

been implicated in cataract formation (Sanderson et al. 2000). ER stress has been 

implicated in oxidative stress mediated lens opacity and lens cell death (Wang et al. 

2012). In cases where ER stress is activated by Tg or arsenic trioxide lens cell death 

has resulted. There is also a limited body of information that suggests SFN can 
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promote ER stress in non-ocular cells (Deng et al. 2012, Doudican et al. 2012b). If 

SFN can induce an ER stress in lens cells it is likely cell viability will be 

compromised. 
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Figure 1.22 Diagram showing the different stress-sensing receptors both within the 

ER (eg Bip and Calcium) and on the ER membrane (PERK, ATF6 etc) and 

downstream mechanisms leading to apoptosis. (Boyce and Yuan 2006, Wu and 

Kaufman 2006)  
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Aims 

Cataract and PCO are important medical problems affecting millions worldwide. 

Reducing the incidence of these conditions would have a marked effect on the 

personal well being of millions of people. SFN is reported to be both protective and 

destructive to cells in a dose-dependent manner in many cells, tissues and organs. The 

current study therefore tested the hypothesis that SFN could provide putative 

therapeutic benefit to patients against cataract and PCO formation. To test this 

hypothesis the following aims were tested: 

1) To determine if the isothiocyanate, SFN could yield protection to lens cells 

against oxidative stress.  

2) To identify the mechanisms by which SFN can elicit cytoprotection to lens 

cells against oxidative stress. 

3) To establish the ability of SFN to initiate death of lens cells and prevent PCO 

formation. 
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CHAPTER 2  

MATERIALS AND METHODS 

 

All reagents were purchased form Sigma (Poole, Dorset) unless otherwise stated. 

2.1 Cell culture 

FHL 124 is a non-virally transformed cell line generated from human capsule-

epithelial explants (Reddan et al. 1999), showing a 99.5% homology (in transcript 

profile) with the native lens epithelium (Wormstone et al. 2004). FHL 124 cells were 

routinely cultured in 25 cm
2
 tissue culture flasks and maintained in Eagle's Minimal 

Essential Medium (EMEM) (Gibco, Paisley, UK) supplemented with 5% Foetal Calf 

Serum (Gibco, Paisley, UK) with 50 μg/ml gentamicin antibiotic (Sigma-Aldrich, MO, 

USA). Then FHL 124 cells were confluent, medium was aspirated from the 25 cm
2
 

tissue culture flasks and the cell layer was washed with 3 ml of Dulbecco’s phosphate 

buffered saline (DPBS) (Sigma-Aldrich, MO, USA) for 1 minute. The wash solution 

was then aspirated from the flask and 3 ml of trypsin-EDTA (0.05% and 0.2% 

respectively) was added and maintained at room temperature for 1-2 minutes until the 

cells were detached from the base of the flask. At this point the trypsin was 

neutralized with 7 ml of EMEM supplemented with 5% FCS and a cell suspension 

formed through several pipetting cycles. The cell suspension was transferred to a 25 

ml sterile universal tube and cells were counted using a hemocytometer. The cell 

suspension was centrifuged for 7 minutes at 800 rpm, which resulted in the formation 

of a cell-pellet. The supernatant was carefully removed from the universal tube and 

discarded. The remaining cell-pellet was then re-suspended in an appropriate volume 

of 5% FCS-EMEM and either: transferred to a new flask (passaged); seeded on 
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coverslip (10,000 per coverslip for immunocytochemistry); seeded on 35 mm tissue 

culture dishes (30,000 per dish qRT-PCR; 30,000 per dish for Western blot; 30,000 

per dish for microarrays; 35,000 per dish for alkaline comet assay) or seeded on to 96 

well plates (5000 per well for ApoTox-Glo Assay; 10,000 per well for LDH Assay; 

5000 per well for MTS; Promega, Southampton, UK). All preparations were 

maintained at 35 °C in a humidified atmosphere of 95% air and 5% CO2 incubator. 

  

2.2 Cell viability and death assays  

 

2.2.1 ApoTox-Glo Triplex Assay 

FHL 124 cells were seeded on 96 well plates at a density of 5000 cells per well. 24 

hours prior to addition of experimental conditions, culture medium was replaced with 

serum-free EMEM. The medium was removed from wells and replaced with freshly 

prepared medium and placed in experimental conditions.  Plates were incubated at 

35°C, 5% CO2 for the experimental duration (up to 72 hours). The ApoTox-Glo 

Triplex Assay (Promega, Southampton, UK) was used to measure FHL 124 cell 

viability, cytotoxicity and apoptosis following manufacturer’s instructions.   Briefly, 

viability and cytotoxicity are measured by fluorescent signals produced when either 

live-cell or dead-cell proteases cleave added substrates GF-AFC (viability) and bis-

AAF-R110 (cytotoxicity). Fluorescence of the cleaved products is proportional to 

either viability or cytotoxicity. GF-AFC can enter cells and is therefore only cleavable 

by live-cell proteases, which incidentally becomes inactive when cell membrane 

integrity is lost; bis-AAF-R110 cannot enter the cell, and is cleaved only by dead-cell 

protease leaked from cells lacking membrane integrity. Both cleaved substrates have 
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different excitation and emission spectra. Apoptosis is measured by the addition of a 

luminogenic caspase-3/7 substrate (Caspase-Glo 3/7) which is cleaved in apoptotic 

cells to produce a luminescent signal. Fluorescence was measured at 380Ex/510Em 

(viability), 485Ex/520Em (cytotoxicity) and luminescence (apoptosis) with a FLUOstar 

Omega plate reader (BMG LabTech, Aylesbury, UK). 

 

2.2.2 MTS assay 

A cell proliferation assay (CellTiter 96 AQueous; Promega, Southampton, UK) was 

used in accordance with the manufacturer’s instructions to assess the viability of the 

cells. This assay is a colorimetric method for determining the number of viable cells 

undergoing proliferation. The assay is based on the cellular conversion of a 

tetrazolium salt (MTS) into a formazan product. The resultant absorbance is directly 

proportional to the number of living cells in culture. In brief, 5000 cells were seeded 

in 96-well plates for 24 hours then serum-starved for 24 hours before exposure to SFN 

or vehicle control for a further 24 hours before placing in experimental conditions for 

72 hours, as previously described. Then 25 µl of reagents (CellTiter 96 AQueous One 

Solution; Promega) was added directly to the culture wells and incubated for 1 hour, 

and absorbance was measured at 490 nm with a FLUOstar Omega plate reader (BMG 

LabTech, Aylesbury, UK). Cell viability was expressed as a percentage, with 100% 

representing the signal from untreated cells and 0% representing the background 

signal from empty wells.  

2.2.3 Lactose Dehydrogenase (LDH) Assay  

LDH is a soluble cytosolic enzyme that is released into the culture medium when the 

integrity of the cell membrane is lost (Bonfoco et al. 1995a, Bonfoco et al. 1995b). 
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Therefore, a high LDH assay reading would indicate cytotoxicity. The LDH assay 

reaction consists of two steps. Firstly, NAD
+
 is reduced to NADH/H

+
 by the LDH-

catalyzed conversion of lactate to pyruvate. Secondly, NADH/H
+
 reduces the 

tetrazolium salt Iodotetrazolium chloride (INT) to form a formazan product 

(Callewaert et al. 1983, Korzeniewski and Callewaert 1983). Following exposure to 

experimental conditions, the culture medium for the LDH assay was harvested. Total 

LDH was measured by permeabilising the remaining cells by addition of an equal 

volume of 2% Triton-X100 dissolved in cell culture medium. Samples were 

centrifuged for 5 minutes at 13000 rpm to obtain a cell-free supernatant and 100 µl 

was dispensed into wells of a 96-well plate. 100 µl LDH substrate (Diaphorase/NAD
+
 

mixture with stabilized INT and sodium lactate was then added, prepared according to 

the manufacturer’s instructions (Roche, Indianapolis, IN, USA). Plates were 

incubated for 10 minutes at room temperature in the dark before measuring 

absorbance at 490 nm with a FLUO star Omega plate reader (BMG LabTech). 

Appropriate background readings were made and subtracted from corresponding 

absorbance values. Results were expressed as relative fluorescent units (RFU) or as a 

percentage total releasable LDH using the following formula:  

 

 

 

2.3 Alkaline Comet Assay 
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The alkaline comet assay, also called single cell gel electrophoresis (SCGE), is a 

sensitive and rapid technique for quantifying and analysing DNA strand breaks in 

individual cells. The experimental protocol is summarised in Figure 2.1.  

 

FHL 124 cells were seeded onto 35mm plastic culture dishes at a density of 35,000 

cells per dish and grown until approximately 70% confluency.  At this time point the 

medium was removed from each dish and replaced with 1.5ml serum-free EMEM for 

24 hours before placing the cells in experimental conditions for a further 24 hours. 

Cells were pre-treated with 1µM SFN for 24 hours prior to exposure to 30 µM H2O2 

and incubated at 35°C, 5% CO2. The cells were washed with ice cold phosphate 

buffered saline (PBS), harvested, counted, re-suspended in PBS containing 10% 

DMSO and frozen at -80°C until the alkaline comet assay was performed. Samples 

were defrosted and approximately 25,000 cells per sample centrifuged at 3000 rpm 

for 5 minutes at 4°C. Pellets were re-suspended in 0.6% low melting point agarose, 

dispensed in duplicate onto glass microscope slides (pre-coated in 1% normal melting 

point agarose) and allowed to set on ice, under a glass coverslip.  Once set, the 

coverslips were removed and slides transferred into ice-cold lysis buffer (100mM 

disodium EDTA (Fisher Scientific, Loughborough, UK), 2.5 M NaCl (Fisher 

Scientific, Loughborough, UK), 10 mM Tris-HCl (Formedium, Fisher Scientific, 

Loughborough, UK), pH 10.0 with 1% triton-X-100 added immediately prior to use) 

for 1 hour. Slides were washed twice with ice-cold dH2O for 10 minutes, transferred 

to a flatbed electrophoresis tank (Perceptive Instruments, Bury St Edmunds, UK) and 

incubated in freshly prepared ice-cold electrophoresis buffer (300 mM NaOH, 1 mM 

disodium EDTA, pH 13) for 30 minutes, followed by electrophoresis in the same 

buffer at 21V (1V/cm) for 30 minutes. Procedures were performed protected from 
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direct light. Slides were drained of electrophoresis buffer and flooded with 

neutralisation buffer (0.4 M Tris-HCl, pH 7.5) for 30 minutes, washed twice in dH2O 

for 10 minutes and dried at 37°C. Slides were stained with SYBR Green I nucleic acid 

stain diluted from a 10,000 X stock in 1X TE buffer (10 mM Tris-HCl, 1 mM EDTA) 

for 5 minutes protected from light at room temperature, drained and dried at room 

temperature prior to visualisation. 100 comets were randomly analysed per sample (50 

per gel), with images captured by a Zeiss Axiovert fluorescence microscope (Zeiss, 

Cambridge, UK) and comets scored using Comet Assay IV Lite analysis software 

(Perceptive Instruments, Bury St Edmunds, UK). 

 

 

Figure 2.1 Manual comet assay system 

(http://www.loats.com/docs/HALOcomet/HALOcomet.htm) 

 

2.4 Analysis of gene expression by quantitative Real- Time 

Polymerase Chain Reaction (qRT-PCR) 
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2.4.1 Cell culture  

Cells were seeded onto 35mm culture dishes (150,000 cells in 1.5ml) and grown to 

90% confluency. Cells were treated with 0, 10, 30μM SFN for 24 hours. 

 

2.4.2 Total RNA Extraction 

RNA was extracted from FHL 124 cells using an RNeasy® mini kit (Qiagen Ltd, 

Crawley UK). The monolayer of cells was lysed by adding 350μl of buffer RLT 

containing 2- β-mercaptoethanol, to each culture dish. The cell lysate was collected 

using a cell scraper. The cell lysate was transferred into a sterile eppendorf tube and 

was passed through a 20-gauge needle (0.9nm diameter) fitted to an RNase-free 

syringe three times. This process homogenizes the cells allowing the RNA to be 

released from all FHL 124 cells. 350μl of 70% ethanol was added to the homogenized 

lysate, and was mixed via pipetting. The ethanol was added to the lysate to create 

conditions that promote selective binding of RNA to the RNeasy silica-gel membrane. 

700 μl of the solution was transferred to an RNeasy mini column placed in a 2 ml 

collection tube. The columns were centrifuged for 30 seconds at 8000 rpm and the 

flow-through was discarded. A series of washes using different buffers were carried 

out in order to produce the pure RNA. 700 µl of RW1 buffer was added to the RNeasy 

mini column, centrifuged for 30 seconds and removal of flow-through was carried out. 

The RNeasy mini column was fitted to 1 new collection tube and two washes with 

500 µl of RPE buffer. The initial centrifugation was for 15 seconds and the second 

centrifugation for 2 minutes, which gave rise to a dry RNase silica-gel membrane 

containing the RNA. Using 50µl of RNase free water the RNA was eluted from the 
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column into a sterile 1.5ml eppendorf and centrifuged for 1 minute. 

 

2.4.3 Total RNA quality assessment 

The NanoDrop ND-1000 spectrophotometer (NanoDrop Technolgies, Delaware, USA) 

was calibrated using a blank sample of 1μl of sterile double distilled water. The 

absorbance (nm) and RNA concentration (μg/μl) were recorded for each sample. 

RNase-free filter pipettes were used in all procedures involving the RNA to prevent 

contamination of the sample. 

 

2.4.4 First strand cDNA synthesis  

For generation of cDNA by reverse transcription, 750 ng (FHL 124 cells) of total 

RNA was applied to 0.5 ml RNase-free thin walled Eppendorf tubes and samples 

diluted with appropriate volumes of double distilled water to give a final 

concentration of 75 ng/μl. Equal volumes of random primers (Promega, Southampton, 

UK) and 10mM dNTP (Bioline, London, UK) were mixed together and 2μl of this 

mix was added to each of the diluted RNA samples, before brief vortex mixing and 

centrifuging for 30 seconds at 13,000 rpm. Samples were placed in a Peltier Thermal 

Cycler-DNA Engine (MJ Research Inc, Reno, NV) and incubated at 65°C for 5 

minutes, followed by 5 minutes incubation on ice and a brief 15 seconds centrifuge at 

13,000 rpm. A mixture containing: 40 μl of RNase out Recombinant Ribonuclease 

inhibitior; 100 mM DTT and 5X first strand buffer (Invitrogen, Paisley UK) were 

prepared in the ratio of 1: 2: 4 respectively. 7 μl of this mixture was then added to 

each sample. Samples were centrifuged for 30 seconds at 13,000 rpm before 

incubation at 25 °C for 10 minutes in the Peltier Thermal Cycler. This was followed 
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by a 42 °C incubation step for 2 minutes. Samples were removed from the Thermal 

Cycler and 1 µl of Superscript II
TM 

(Invitrogen Ltd, Paisley UK) was pipetted into 

each sample. Samples were placed back into the Thermal Cycler (without 

centrifugation) and reverse transcription was performed with incubation at 42 °C for 

50 minutes followed by a 70°C incubation for 14 minutes. The generated cDNA 

samples were diluted with sterile double distilled water to a final concentration of 7 

ng/ µl. 

 

2.4.5 TaqMan qRT-PCR 

QRT-PCR reactions were performed using an ABI prism 7700 Sequence Detection 

System (Applied Biosystems, Warrington, UK) under the following conditions: 50 °C 

for 2 minutes, 95 °C for 10 minutes, and then 40 cycles, each consisting of 15 seconds 

at 95°C and 1 minute at 60°C. Each reaction was performed in 25 µl and contained 

reverse transcribed RNA, primers and probes (sequences for primers and probes are 

given in Table 2) and TaqMan PCR Master Mix (Applied Biosystems). Primers and 

probes (Figure 2.2) were bought as predesigned TaqMan probe and primer sets 

provided by Applied Biosystems. The threshold cycle (Ct) values, defined as the point 

at which the fluorescent signal is recorded as statistically above background, were 

obtained with the 7500 Fast system software 2.0.5 (Applied Biosystems). 
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Figure 2.2  TaqMan probe chemistry mechanism 

http://www.asuragen.com/Services/services/gene_expression/ab_taqman.aspx 
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Table 2. Pre-designed Taqman probe/primer sets for genes of interest 



CHAPTER 2  

MATERIALS AND METHODS  

83 

 

2.5 Analysis of gene expression by Illumina gene 

microarray 

RNA was extracted from FHL 124 cells as described in the previous section using an 

RNeasy® mini kit (Qiagen Ltd, Crawley UK). The monolayer of cells was lysed by 

adding 350 μl of buffer RLT containing 2- β-mercaptoethanol, to each culture dish. 

The cell lysate was collected using a cell scraper. The cell lysate was transferred into a 

sterile Eppendorf tube and was passed through a 20-gauge needle (0.9 nm diameter) 

fitted to an RNase-free syringe three times. This process homogenizes the cells 

allowing the RNA to be released from all FHL 124 cells. To the solution 350 μl of 

70% ethanol was added to the homogenized lysate, and was mixed via pipetting. The 

ethanol was added to the lysate to create conditions that promote selective binding of 

RNA to the RNeasy silica-gel membrane. 700 μl of the solution was transferred to an 

RNeasy mini column placed in a 2ml collection tube. The columns were centrifuged 

for 30 seconds at 8000 rpm and the flow-through was discarded. A series of washes 

using different buffers were carried out in order to produce the pure RNA. 700 µl of 

RW1 buffer was added to the RNeasy mini column, centrifuged for 30 seconds and 

removal of flow-through was carried out. The RNeasy mini column was fitted to 1 

new collection tube and two washes with 500 µl of RPE buffer with an initial 

centrifugation was for 15 seconds, the second centrifugation for 2 minutes gave rise to 

a dry RNeasy silica-gel membrane containing the RNA. Using 50 µl of RNeasy free 

water the RNA was eluted form the column into a sterile 1.5 ml Eppendorf and 

centrifuged for 1 minute. RNA samples were shipped on dry ice to a commercial 

microarray facility. RNA quantity and quality was assessed using the NanoDrop ND-

1000 spectrophotometer (NanoDrop Technolgies, Delaware, USA) and an Agilent 

RNA pico labchip (Wokingham, UK); only samples with an RNA integrity number 
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(RIN) ≥ 9 were used in the study. Samples were normalised to 100 ng and were 

processed according to the Illumina Whole-Genome Gene Expression Direct 

Hybridisation Assay Guide, using the Ambion Kit: Illumina® TotalPrep™-96 RNA 

Amplification Kit. Qualitative and quantitative quality control was performed on the 

labelled cRNA and 1.5 g of labelled cRNA was hybridised to a HumanHT-12.v4 

Beadchip and scanned by the Illumina BeadArray reader.  

 

Illumina microarray (BeadArray) unnormalised probe profile data were analysed 

using the Bioconductor package (http://www.bioconductor.org) in R (http://www.r-

project.org). Firstly, the data from different chips were loaded into R to be 

background corrected, quantile normalised and variance stabilised (Lim et al. 2008). 

The normalised data from all the arrays have been deposited in the Array Express 

database with an accession number (to be confirmed). Lists of differentially expressed 

genes were computed by using the eBAYES statistic (Smyth 2004) to compute a p-

value. In contrast to a basic t-test, the eBAYES t-test we perform is relative to a FC 

threshold and this allows us to formally test the hypothesis that a gene is more 

differentially expressed than a given FC that is the ratio of average expression level 

between two groups. Differentially expressed genes were determined by using a 

combination of a log fold change (lfc) and a p-value threshold criteria since that has 

been found to find genes more likely to play a physiological role (McCarthy and 

Smyth 2009). We identified differentially expressed genes that had a fold change 

threshold of more than 1.3, that is, 0.3786 log fold change and a p value of <0.05. In 

addition, we used the Benjamini and Hochberg method to compute adjusted P-values 

(q values) and control the FDR rate. We considered any gene with an FDR q-value of 

0.25 to be significant. 

http://www.bioconductor.org/
http://www.r-project.org/
http://www.r-project.org/
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2.6 Western blot analysis 

2.6.1 Protein extraction 

FHL 124 cells were seeded onto 35 mm culture dishes at 150,000 cells in 1.5 ml 5% 

FCS-EMEM and were maintained until 90% confluency. The medium was replaced 

with non-supplemented EMEM and cells were cultured for a further 24 hours before 

exposure to experimental conditions. FHL 124 cells were washed with ice cold PBS, 

then lysed using Daub’s lysis buffer, 150 mM NaCl, 1% Triton X-100, 1MM EDTA, 

10% (w/v) glycerol (BDH Laboratory, Poole, UK), 10 mM sodium pyrophosphate, 2 

mM sodium orthovanadate, 10 mM sodium fluoride, 250 ml distilled water (dH2O) 

supplemented with protease inhibitors phenylmethylsulfonylfluoride (PMSF) (1 mm) 

and aprotinin (10 μg/ml). Cultured cells were scraped using a cell scraper, transferred 

to Eppendorf tubes and left on ice for 20 minutes. Whole cell lysates were centrifuged 

at 13000 rpm at 4°C for 10 minutes. The supernatant was then collected and the pellet 

of cell debris discarded. 

 

2.6.2 Protein quantification 

The protein concentration of each lysate was determined using the bicinchoninic acid 

(BCA) protein assay (Pierce, Rockford, IL). A range of protein standards (0-1000 

µg/ml) was obtained by dilution of bovine serum albumin (BSA) in Daub’s lysis 

buffer. A constant volume (10 µl) of protein standard and “undetermined” lysate 

samples was introduced into separate wells of a 96 well plate. All standards were 

tested in triplicate, and all samples in duplicate. Each well received 40 µl of dH2O 

followed by 200 µl of the two supplied BCA reagents in a 50:1 ratio. The plate was 

covered and placed on a shaker for 1 minute prior to 1 hour incubation at 37 °C. The 
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absorbance at 550 nm was then measured using BMG LabTech plate reader. A protein 

standard concentration curve was generated allowing the determination of the 

concentration of the samples.  

 

2.6.3 Sample preparation 

Samples were made to a constant protein concentration by dilution with dH2O. Each 

sample received 20% (v/v) loading buffer (160 mM Tris, 4% (w/v) Sodium dodecyl 

suphate (SDS) (both Melford Laboratories, Ipswich, UK), 30% (v/v) glycerol, 0.01% 

(w/v) bromophenol blue, 12% (v/v) β-mercaptoethanol, and pH 6.8). Protein samples 

with loading buffer were heated at 85°C for 5 minutes to ensure complete protein 

denaturation and cooled down on ice for 5 minutes. Finally, samples were spun at 

13000 rpm for 30 seconds. 

 

2.6.4 SDS-PAGE gel electrophoresis 

Protein samples together with ECL DualVue Western blotting maker (GE Healthcare, 

Little Chalfont, UK) were loaded onto SDS-PAGE gels for electrophoresis. The 

running gel layer was prepared at 8% acrylamide by mixing dH2O, 40% acrylamide 

(Bio-Rad Laboratories, Hempstead, UK), 4x lower gel buffer (1.5 MTris and 0.4% 

(w/v) SDS, pH 8.8), ammonium persulphate (600 μg/ml) and TEMED (1.2 μl/ml). 

The stacking gel, which allows the proteins to stack together when they enter the gel, 

was made at 5% acrylamide. It consisted of dH2O, 40% acrylamide, 4x upper gel 

buffer (0.5 M Tris and 0.4% (w/v) SDS, pH 6.8), and ammonium persulphate and 

TEMED as previously described. The gel was run at 4ºC at a constant current of 



CHAPTER 2  

MATERIALS AND METHODS  

87 

 

0.03A until the dye front reached the bottom of the gel. 

 

2.6.5 Protein transfer 

The SDS-PAGE gel together with thick blotting paper and a polyvinylidene fluoride 

(PVDF) membrane (Perkin Elmer Life Sciences, Boston, MA, USA), previously 

activated by a 10 second immersion in 100% (v/v) methanol (Fisher Scientific, 

Loughborough, UK), were incubated in transfer buffer solution (48 mM Tris, 39 mM 

glycine (Fisher Scientific, Loughborough, UK), 4% (v/v) methanol and 0.0375% (w/v) 

SDS, pH 8.3) at room temperature for 20 minutes. The gel and membrane were held 

between the two pieces of thick blotting paper. This “sandwich” was placed on a 

semi-dry transfer blotter (Trans-Blot, Bio-Rad laboratories, Hercules, CA, USA). 

Proteins were transferred from the gel to the membrane, at 0.3 mA per gel and 15 V 

for 35 minutes. Following transfer, molecular weight marker could be seen on the 

membranes, indicating protein transfer was successful. 

 

2.6.6 Immunoblotting and development 

Transferred proteins were blocked in 0.1% (v/v) Tween-20 in PBS (PBST) with 5% 

(w/v) fat-reduced milk powder (Marvel) for 1 hour at room temperature with gentle 

agitation. The PBST blocking solution was then removed and the blots were placed 

overnight at 4°C with 5% (w/v) Marvel PBST containing the primary antibody (Anti-

NQO1, 1:500; Anti-TXNRD1, 1:2000; Anti-β actin, 1:1000). Membranes were 

washed 4 times in 1% (w/v) Marvel PBST at 10 minute intervals with gentle agitation 

prior to 1 hour incubation at room temperature with secondary antibody (Anti-mouse 

IgG 1:1000) (Anti-rabbit IgG 1:1000)  diluted in 1% (w/v) Marvel PBST. Membranes 
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were washed 5 times in PBST at 10 minute intervals, followed by a 10 minute wash in 

PBS. Proteins were detected using the chemiluminescent ECL plus Western Blotting 

Detection System (GE Healthcare, Little Chalfont, UK). The volume of ECL Plus 

reagent to be used was determined by the surface area of the membranes (100 μl per 

cm
2
 of membrane). The ELC Plus reagent was left on the membranes for 5 minutes in 

the dark at room temperature. This reagent was then drained away and the membranes 

were placed between two layers of cling film inside a Hypercassette (GE Healthcare, 

Little Chalfont, UK). In a dark room, the membranes were exposed to high 

performance chemiluminescence film (GE Healthcare, Little Chalfont, UK), which is 

then placed into developing (Kodak GBX developer), stop (Photosol SB80, Basildon, 

UK) and fixative (Ilford Imaging, Mobberley, UK) solutions to reveal protein bands. 

The photographic films were scanned using an HP Scanjet 5470c (Hewlett Packard 

Development Company, USA). Band intensity was determined with Kodak 1D 3.5 

software (Kodak Scientific Imaging Systems, Rochester, NY, USA). β-actin was used 

as a loading control and for band intensity normalisation. 
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Table 3. Antibodies used for Western blot experiment 

 

 

 

 

 



CHAPTER 2  

MATERIALS AND METHODS  

90 

 

 

2.7 Immunofluorescence 

Preparations were rinsed three times with PBS followed by a 10-30 minutes fixation 

in 4% formaldehyde in PBS, and then rinsed in 0.02% BSA, 0.05% IGEPAL in PBS 

three times. Preparations were permeabilised with PBS containing 0.5% Triton X-100 

for 30 minutes. Three washes were made (0.02% w/v and 0.05% v/v respectively). 

Non-specific sites were blocked with either normal goat or donkey serum (1:50 in 1% 

w/v BSA in PBS) for 60 minutes. Primary antibody (anti NQO1 and anti TXNRD1 

mouse monoclonal antibodies (Abcam, Cambridge, UK); anti-Nrf2 rabbit polyclonal 

(Abcam, Cambridge, UK) and anti-vimentin mouse monolclonal (Sigma. Poole, 

Dorset) was diluted 1:100 in 1% BSA in PBS and applied overnight at 4°C followed 

by washing 3 times for 5 minutes with shaking with 0.02% BSA, 0.05% IGEPAL in 

PBS.  ALEXA 488-conjugated goat anti-mouse or donkey anti-rabbit secondary 

antibody (used at 1:200; Molecular Probes, Leiden, NL) was applied for 60 minutes at 

37°C in a moist atmosphere. The stained preparations were again washed extensively, 

floated onto microscope slides, and mounted with Hydromount mounting medium 

(National Diagnostics, Hull, UK). Images were viewed using fluorescence 

microscopy (Zeiss) and captured using a digital camera and Zeiss Axiovision software. 

Where applicable images were quantified using ImageJ. 
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2.8 Whole pig lens culture 

Fresh porcine eyes were obtained from a local slaughterhouse. The tissue collection 

conformed to the ARVO statement of the Use of Animals in Ophthalmic and Vision 

Research. Eyes were placed in sterile containers and covered with Eagle’s minimum 

essential medium (EMEM) containing 200 U/ml penicillin and 200 µg/ml 

streptomycin. They were stored at 4°C before dissection. Within 24 hours post-

mortem, lenses were dissected by anterior approach following cornea removal and 

incubated in bicarbonate-CO2-buffered EMEM (pH 7.4), containing 100 U/ml 

penicillin, 100 µg/ml streptomycin, 0.25 µg/ml amphotericin, and 50 µg/ml 

gentamicin at 35°C. After a pre-culture period of 24 to 72 hours to ensure no damage 

had arisen from the isolation procedure, lenses were exposed to 2µM SFN for 24 

hours prior to adding 2 mM H2O2. During the experimental period, lens images were 

taken at the starting point (T= 0), at 24 hours and at 4 days using a charge coupled 

device (CCD) camera (UVP, Cambridge, UK) with Synoptics software (Synoptics, 

Cambridge, UK). At the end of 24 hours culture in the presence of experimental 

conditions, the medium was collected for LDH assay. Dark field images of lenses 

were taken using a CCD camera. Grey scale values of the central for each lens was 

measured using Image J 1.45s analysis software and expressed as arbitrary units. 
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2.9 Dissection and Culture of human capsular bags  

A sham cataract operation was performed on the donor eyes under a dissecting 

microscope (Figure 2.3). Using an insulin needle, the anterior capsule was breached 

about 3 mm from the equator, and an incision was made from that point to the centre 

of the capsule. By tugging the flap, created by this incision, with surgical forceps a 

continuous curvilinear capsule rhexis was created, such that a disc of anterior capsule 

was removed, leaving an opening approximately 5 mm in diameter. The resultant 

window enabled the lens fibres mass to be removed by hydroexpression. Residual 

fibres were removed by joint irrigation with Hartmann’s solution and aspiration. At 

this point, an IOL can be implanted through the anterior opening if required. The 

resultant capsular bag was then dissected free of the zonules and secured on a sterile 

35 mm Polymenthymethacrylate (PMMA) Petri-dish. Eight entomological pins 

(Watkins and Doncaster, Cranbrook, UK) were inserted through the edge of the 

capsule to retain its circular shape. Capsular bags were maintained in EMEM and 

incubated at 35°C in a 5% CO2 atmosphere. The medium was replaced every 2 days 

and on-going observations of cell growth were performed with a Nikon phase-contrast 

microscope (Nikon, Tokyo, Japan). Images were acquired with a digital camera 

(Coolpix 950; Nikon, Tokyo, Japan). 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2  

MATERIALS AND METHODS  

93 

 

 

 

 
 

Figure 2.3 The major stages of a sham cataract operation (A) A small incision is made 

in the anterior capsule (B) the lens fibre mass is removed (C) and an aspirating 

syringe is used to remove any remaining cortical matter (modified from Sandford et 

al. 1994).  
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2.10  Statistical analysis 

Student’s t-test analysis was performed using Excel software to determine any 

statistical difference between two groups (Excel; Microsoft, Redmond, WA). When 

the effect that one factor have on one dependent variable is studied, one-way analysis 

of variance (ANOVA) is used to compare the means of several different groups. It is a 

generalization of Student's t-test which compares means of two groups. The null-

hypotheses that is tested with an ANOVA is that there is no difference between the 

group means, and a low p-value indicates that the nullhypothesis should be rejected. 

The ANOVA will only tell you whether there is a significant difference of means 

between the groups, but not which of the groups that differ from each other. If the 

ANOVA results in a p-value below the threshold value (e.g. <0.05), you can do a post 

hoc test to see if there is a significant difference between pairs of groups. There are 

three different post hoc tests: Tukey-Kramer's, Bonferroni's, and Dunnett's test. One 

ANOVA with Dunnett’s or Tukey’s post-hoc analysis using SPSS18.0 for Windows 

(SPSS Inc, Illinois) were performed to determine any statistical difference between 

multiple groups, significance was determined using a p value of ≤0.05. One way 

ANOVA with Tukey’s post hoc analysis was employed to assess multiple groups 

when all or many pairwise comparisons are of interest. One way ANOVA with 

Dunnett's post hoc analysis was employed to assess all groups compared against one 

control group. A 95% confidence interval was used to assess significance. 
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CHAPTER 3  

SULFORAPHANE CAN PROTECT HUMAN LENS 

CELLS AGAINST OXIDATIVE STRESS 

 

3.1 Introduction 

Cataract renders millions in the world blind and is notably a disease that largely afflicts 

the elderly (Javitt et al. 1996). Its management places a significant strain on healthcare 

budgets (Taylor 1993). At present, the only means to treat cataract is by surgical 

intervention (Wormstone et al. 2009) and it is predicted that 32 million operations will 

be performed annually by the year 2020. Delaying the onset of cataract is therefore a 

major healthcare priority across the globe. Oxidation plays a key role in the formation 

of cataract (Spector 1995). Oxidative stress – a cellular imbalance between production 

and elimination of ROS, such as superoxide, hydrogen peroxide and peroxynitrite – is 

considered to be of major pathophysiological relevance for a variety of pathological 

processes. Thus, it is valuable to identify agents, which might enhance the cellular 

antioxidant defence systems within the lens, such as compounds that antagonize the 

deleterious action of ROS on biomolecules. The mode of action of these compounds 

could be either to scavenge ROS directly or to trigger protective mechanisms inside the 

cell, thereby resulting in improved defense against ROS. Dietary intake is one possible 

means of enhancing protective systems and is an area worthy of study.  

 

ITCs, which are derived from glucosinolates found in cruciferous vegetables are 

characterized by sulfur containing N=C=S functional groups. ITCs can inhibit many 

types of tumour formation in animal models and their consumption is inversely 
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correlated with the risk of cancer in human (Lee and Cho 2008, Trachootham et al. 

2008). Protective mechanisms of ITCs have been proposed including the induction of 

phase II detoxification enzymes and inhibition of phase I carcinogen-activating 

enzymes. The isothiocyante SFN is an interesting candidate that to date has not been 

studied extensively in the lens. 

 

SFN, which is found in broccoli and other brassicas, is a product of hydrolytic 

conversion of 4-methysulphinylbutyl glucosinolate (glucoraphanin) by an endogenous 

myrosinase (Hintze et al. 2003a) and has been identified as a very potent 

chemopreventive agent in numerous animal carcinogenesis models as well as cell 

culture models, exerting its chemopreventive effects through regulation of diverse 

molecular mechanisms (Tanito et al. 2005).  

 

The most studied role of SFN in chemoprevention is its ability to induce phase II 

detoxification enzymes, cell cycle arrest and apoptosis. Induction of phase II enzymes 

is one means by which SFN enhances the cellular antioxidant capacity. Enzymes 

induced by SFN include Nrf2-regulated enzymes such as GSTs and NQO1 which can 

function as protectors against oxidative stress (Prawan et al. 2005, Yanaka et al. 2005). 

SFN is also a very potent inducer of HO-1 that catalyzes the conversion of heme to 

biliverdin which in turn is reduced enzymatically to bilirubin (Jeong et al. 2005, Keum 

et al. 2006, Prestera and Talalay 1995). Among the various genes encoding proteins that 

possess antioxidant characteristics, HO-1 has attracted particular interest as it is finely 

upregulated by stress conditions and generates products that might have important 

biological activities. HO-1 displays antioxidant, antiapoptotic, and anti-inflammatory 
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effects and appears to have a complex role in angiogenesis (Prawan et al. 2005, Ryter et 

al. 2006). Experimental evidence suggests that SFN activates NF-E2 p45-related factor-

2 transcription factor in binding antioxidant response elements in the promoter regions 

of target genes, thereby increasing cellular defences against oxidative stress (Tanito et 

al. 2005, Wagner et al. 2010). Intake of 200µmol broccoli isothiocyantates (mainly SFN) 

in human has been reported to result in SFN plasma levels in the low micromolar range 

(Ye et al. 2002a).  

 

3.2 Aims 

Protecting the lens against oxidative stress is of great importance in delaying the onset 

of cataract. An important aim was therefore, to determine if the SFN could yield 

protection to lens cells against oxidative stress. This was achieved through the use of 

cell viability/ cell death assays using a human lens cell line (FHL 124) and whole 

porcine lens culture. 
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3.3 Results 

 

3.3.1 Effects of SFN on cell viability, cytotoxicity and apoptotic cell 

death 

Cell viability relative to untreated control group was not significantly affected by SFN 

exposure of 5 µM and below for 24 hours and 72 hours (Figure 3.1A and D). However, 

at SFN concentrations of 10 µM and above a significant reduction in cell viability was 

observed; this effect became more pronounced with increasing concentrations of SFN 

(Figure 3.1A and D). A significant increase in cytotoxicity was also seen with SFN 

exposure between 10-100 µM (Figure 3.1B and E). Apoptosis was detected with the 

ApoToxGlo triplex assay using CaspaseGlo to detect Caspase3/7 activity and, 

consistent with the other measurements, a significant increase was identified 

following 10-100 µM SFN exposure (Figure 3.1C and F).This suggests that, at these 

doses, SFN (≤ 5 µM) is not toxic to FHL 124 cells, and can therefore be studied for 

cytoprotective effects against H2O2. 
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Figure 3.1 Concentration-dependent effects of sulforaphane on FHL 124 cell 

viability (A & D), cytotoxicity (B & E) and apoptosis (C & F) detected by the 

ApoToxGlo triplex assay following a 24 (A-C) and 72 hour (D-F) culture period 

with SFN. The data are presented as mean ± SEM (n=4). * indicates a significant 

difference between the treated group and untreated controls (p ≤ 0.05; ANOVA 

with Dunnett’s post hoc test). 
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3.3.2 Effects of SFN on protection of lens cells against oxidative 

stress  

 

3.3.2.1  Effects of hydrogen peroxide on FHL 124 cell viability 

detected by the MTS assay 

An MTS assay was used to quantify cellular viability of FHL 124 cells in response to 

increasing concentrations of hydrogen peroxide (H2O2). Figure 3.2 show that the 

application of 1-10 µM H2O2 did not significantly affect cell viability following a 24 

hours culture period. However, exposure to 30 – 300 µM H2O2 over this experimental 

period did result in a significant change. The consequence of 30 µM H2O2 treatment 

was a significant reduction of cellular viability to 59 ± 5% of the control levels. The 

addition of 100 µM H2O2 caused a significant 90 ± 6% decrease in the survival of 

FHL 124 cells compared to control levels.  
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Figure 3.2 Effects of H
2
O

2
on FHL 124 cell viability. The cell viability of FHL 124 

cells after exposure to H2O2 (0-300 µM) conditions over a 24 hour period was 

assessed using the MTS assay. The data are expressed as % cell survival in 

comparison to the  untreated control. Each column represents the mean ± SEM of 4 

independent experiments. * Represents a significant difference between untreated 

control and treatment group (by one way ANOVA with Dunnett’s post hoc test; 

p<0.05). 
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3.3.2.2 Effects of SFN co-treatment against hydrogen peroxide-

induced FHL 124 cell death detected by the MTS assay 

To investigate whether SFN had direct antioxidant properties,  FHL 124 cells were co-

treated with 1 µM SFN and 30 µM H2O2 for 24 hours (Figure 3.3). Cells viability was 

tested by MTS assay. 30 µM H2O2 reduced FHL 124 cell viability to 55% of the 

control population. 1 µM SFN alone had no effect on cell viability (Figure 3.3). Cells 

co-treated with 1 µM SFN and 30 µM H2O2 exhibited a reduction in the viable cell 

population, which was significantly different to the control group, but did not 

significantly differ from the cells treated with 30 µM H2O2 alone (Figure 3.3), 

indicating no significant protection of the cells by SFN against H2O2 toxicity using 

this approach. 
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Figure 3.3 The viability of FHL 124 cells following exposure to 30 µM H
2
O

2
 together 

with 1µM SFN over a 24 hour period assessed using the MTS assay. The data is 

expressed as % cell survival in comparison to control, represented as 100%. Each 

column represents the mean ± SEM of 4 independent experiments. * Represents a 

significant difference between untreated control and treatment group (by one way 

ANOVA with Tukey’s post hoc test; p<0.05).  
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3.3.2.3 Effects of SFN pre-treatment against hydrogen peroxide-

induced FHL 124 cell death detected by the MTS assay 

To investigate whether SFN has indirect antioxidant properties, FHL 124 cells were 

incubated with 1 µM SFN for 24 hours prior to exposure to 30 µM H2O2. SFN was 

then removed (Figure 3.4 A) or retained (Figure 3.4 B) before adding H2O2. Figure 

3.4 B shows that addition of 30 µM H2O2 significantly reduced the viable cell 

population, (again detected using the MTS assay), within 24 hours such that levels 

were 56 ± 4% compared to the untreated control. FHL 124 cells pre-treated with 1 µM 

SFN, prior to addition of 30 µM H2O2, and retained for the experimental duration 

demonstrated a significant increase (~80% protection) in the viable population that 

was comparable to control populations. When FHL 124 cells were incubated with 

SFN for 24 hours, then removed prior to H2O2 addition marked cytoprotection (~80%) 

was still observed (Figure 3.4 A). 
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Figure 3.4 The viability of FHL 124 cells exposure to 1µM SFN for 24 hours, 

followed by 30µM H
2
O

2
 in the absence of SFN (A) and in the presence of 

SFN (B) for a further 24 hours using MTS assay. The data is expressed as % 

cell survival in comparison to control, represented as 100%. Each column 

represents the mean ± SEM of 4 independent experiments. * Represents a 

significant difference between untreated control and treatment group (by one 

way ANOVA with Tukey’s post hoc test; p<0.05). 



CHAPTER 3  

SULFORAPHANE CAN PROTECT HUMAN LENS CELLS AGAINST OXIDATIVE STRESS  

106 

 

 

3.3.2.4 SFN protection of lens cells against oxidative stress detected 

by the ApoToxGlo Triplex Assay 

Due to the results of the MTS assay performed previously, the ApoTox-Glo Triplex 

Assay was used in order to have an independent means of verifying the results. 

Exposure of FHL 124 cells to 30 µM H2O2 for a 24 hours period resulted in a 

significant decrease in cell viability and a significant increase in cytotoxicity and 

apoptosis (Figure 3.5 B and C). In agreement with the previous experiments, addition 

of 1 µM SFN to the cells had no discernible effect on cell viability, cytotoxicity or 

apoptosis relative to serum-free maintained control cells (Figure 3.5). However, pre-

treatment of cells with 1 µM SFN significantly inhibited H2O2 induced effects, such 

that cell viability, cytotoxicity and apoptosis did not significantly differ from serum-

free or SFN (alone) maintained cells (Figure 3.5). 
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Figure 3.5 SFN protection against oxidative stress induced loss of cell 

viability (A), cytotoxicity (B) and apoptosis (C), following a 24 hour 

experimental period, determined using the ApoTox-Glo assay. Cells were pre-

treated with 1 µM SFN for 24 hours prior to exposure to 30 µM H
2
O

2
. Data 

are presented as mean ± SEM (n=4). * indicates a significant difference 

between treated the indicated groups (by one way ANOVA with Tukey’s post 

hoc test; p<0.05). 

A 

B 

C 
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3.3.2.5 SFN protection of lens cells against oxidative stress 

determined by the LDH Assay 

To support the ApoToxGlo Triplex Assay data, the LDH assay was employed to assess 

cell damage/death. Treatment with 30 µM H2O2 invoked a significant increase in LDH 

release into the medium (Figure 3.6). This effect was inhibited by pre-treatment of the 

cells with 1 µM SFN. No difference in LDH levels was observed between the SFN/ 

H2O2  treated cells and  the SFN alone group or serum-free controls (Figure 3.6). 
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Figure 3.6 SFN protection against oxidative stress induced cell damage/death, 

following a 24 hours experimental period, determined using the LDH assay. Cells 

were pre-treated with 1 µM SFN for 24 hours prior to exposure to 30 µM H
2
O

2
. Data 

is expressed as mean ± SEM (n=4). * Represents a significant difference between the 

indicated groups (by one way ANOVA with Tukey’s post hoc test; p<0.05). 
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3.3.2.6 Effects of SFN pre-treatment against hydrogen peroxide-

induced FHL 124 cell DNA damage determined by the 

Alkaline Comet Assay 

A number of studies have identified that oxidative stress induces DNA strand breaks 

in human cells (Jantzen et al. 2012, Liu J. et al. 2012). To investigate such effects in 

this experimental system, the alkaline comet assay was used to investigate DNA 

damage (and its repair) induced by oxidative stress in FHL 124 cells over time. 

Exposure to 30 µM H2O2 resulted in greatest levels of DNA strand breaks in cells 

harvested  at the 30 minutes time point, which demonstrated a mean value for DNA in 

the tail of 52.7% (Figure 3.7 B). This declined with time, but remained significantly 

elevated during the following 2 hours. There were significantly lower levels of DNA 

breaks when cells were pre-treated with 1 µM SFN (Figure 3.7 B), indicating an 

enhanced antioxidant defense. Treatment with 1 µM SFN alone for this time period 

did not significantly change levels of DNA strand breaks when compared to untreated 

cells. 
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Figure 3.7 SFN suppression of DNA damage of FHL 124 cells induced by oxidative 

stress detected using the Comet assay following a 30, 60, 120 or 240 minute 

experimental period. Cells were pre-treated with 1 µM SFN for 24 hours prior to 

exposure to 30 µM H
2
O

2
. DNA strand breaks were measured by the alkaline comet 

assay; tails were measured for at least 100 comets/sample. (A) Representative 

fluorescent micrographs for each experimental group. (B) Pooled quantitative data 

from 4 individual experiments. Data are presented as mean ± SEM. * Represents a 

significant difference between the indicated group and all other treatments (by one 

way ANOVA with Tukey’s post hoc test; p<0.05). 
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3.3.2.7 SFN protection of lens cells against oxidative stress assessed in 

a whole lens culture system 

To further test the protective nature of SFN against oxidative stress we employed a 

porcine whole lens culture system (Tamiya et al. 2000). Following dissection, whole 

porcine lenses did not demonstrate any notable opacity. Lenses maintained in serum-

free medium remained transparent over the four day culture period. This can be 

clearly seen in Figure 3.8 A as the grid placed beneath the lens is clearly visible. 

Similarly, with the dark-field image presented in Figure 3.8 B, minimal white light 

scattering regions were observed. Addition of 2 µM SFN to the cultures did not affect 

transparency, such that lenses appeared similar to the serum-free (SF) control group. 

Exposure to 2 mM H2O2 induced a marked change in transparency that appeared as a 

cloudiness in the peripheral cortex that progressed over time, such that the majority of 

the cortical region was affected (Figure 3.8 A and B). At day 1, the peripheral lens had 

begun to opacify, such that the grid could not be seen clearly through these regions 

and was associated with light scatter (Figure 3.8 B). When 2 mM H2O2 was added to 

lenses pre-incubated in SFN then maintained in 2 µM SFN, opacity was still observed 

but this was less marked than the H2O2 only treated group. Quantification of these 

images also demonstrated a significant decrease in opacification levels, such that with 

2 M SFN, a 40% decreased opacification relative to H2O2 alone treated lenses was 

observed at day 4 (Figure 3.8 D).  At end point (day 4), the culture medium was 

analyzed for LDH. Serum-free and SFN only treated lenses had no discernible levels 

of LDH in the culture medium (Figure 3.8 C). Addition of hydrogen peroxide induced 

a dramatic increase in LDH levels, which was suppressed in the presence of SFN. 
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Figure 3.8 Pre-incubation (24 hrs) with SFN reduces hydrogen peroxide induced lens 

opacity. (A) Representative bright-field and (B) dark-field images of whole pig lens 

organ cultures over time. (C) Pooled data showing LDH levels within the culture 

medium at end-point; data are presented as mean ± SEM (n=4). (D) Quantification of 

lens opacity over time (n= 4); data are presented as mean ± SEM (n=4). SFN was 

applied at 2 µM and H
2
O

2
 at 2 mM. * Represents a significant difference between the 

indicated groups (p ≤ 0.05; ANOVA with Tukey’s post-hoc test). 
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3.4 Discussion 

Cataract is the major cause of blindness worldwide and cataract surgery is the most 

common surgical procedure performed on the elderly (Wormstone et al. 2009).  The 

large cost of this operation and possible complications associated with it favour long-

term goals of avoiding cataract formation, or significantly retarding onset of the 

disease. In relation to cataract, it has long been recognised that oxidative stress has a 

significant role to play in the pathophysiology of the disease (Spector et al. 1995, 

Truscott 2005)  and recent experiments clearly show increased protein oxidation in 

human lenses with cataract compared to age-matched controls (Hains and Truscott, 

2008). Furthermore, diets rich in antioxidants have been linked with a reduced risk for 

cataract in several epidemiological studies (Jacques and Chylack 1991, Tavani et al. 

1996). Whilst much research relating to protection against cataract by antioxidants has 

focussed on the antioxidant vitamins, although the mechanisms of protection are not 

known (Cumming et al. 2000). 

 

Oxidative stress can be involved in the development of cataract (Spector et al. 1995, 

Truscott 2005). It was shown that the concentration of H2O2 in the aqueous humour 

increases dramatically in cataractous eyes compared to normal (Spector A. and Garner 

1981). The presence of H2O2 or other oxidants may lead to damage to the lens such as 

formation of high molecular weight protein aggregates and oxidation of preoteins and 

membrane lipids (Bhuyan et al. 1986, Garner and Spector 1980, Spector 1984). These 

may contribute to the loss of transparency and therefore to the formation of cataract. 

In this chapter, the effects of H2O2 on human lens epithelial FHL 124 cells were 

investigated. 
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In the FHL 124 cell line, a dose-dependent reduction in cell viability was observed 

following 24 hour H2O2 treatment. For these cells, the IC50 was approximately 30 

Μm H2O2. This is comparable with results in lens epithelial cells of human (HLE B3) 

(Seomun et al. 2005, Xing and Lou 2002, Yao et al. 2008) and rabbit (TOTL-86) 

origin (Ohguro et al. 1999). In addition, loss of transparency has been observed in ex 

vivo lenes of several origins treated with H2O2  (Petersen et al. 2007, Sanderson et al. 

1999, Wang et al. 1997).  

 

SFN has been identified in numerous cell and animal carcinogenesis models to be an 

effective chemopreventive agent which utilises a diverse range of molecular 

mechanisms to achieve this (Juge et al. 2007a). In this chapter, the effects of SFN 

against H2O2-induced FHL 124 cell death was investigated. SFN showed 

cytoprotective properties against H2O2.  The reduction in cell viability observed with 

30 μΜ H2O2 was prevented in the presence of SFN (1 and 2 μΜ). SFN has potent 

antioxidant properties and these could therefore be responsible for the protective 

effect cells have against oxidative against oxidative stress.  

 

The current work demonstrates that pre-treatment of a lens cell line or whole lens 

cultures with SFN yielded protection for lens epithelial cells against hydrogen 

peroxide induced DNA damage, cell death and transparency loss. It is therefore of 

interest to consider the mechanisms by which SFN provides this protection (Cheung 

and Kong 2010b). Putative mechanisms include a direct interaction with the oxidative 

stressor (H2O2), inhibition of apoptotic signals or via modification of DNA repair 
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systems enhancing activity of anti-oxidant defence enzymes (Astley et al. 2004, 

Azevedo et al. 2011). 

 

From the experimental data it is unlikely that SFN causes its effect by direct anti-

oxidant actions because when co-treated no significant protection was observed; to 

achieve protection pre-treatment was required. ITCs could be rapidly accumulated in 

human and animal cells, with the peak intracellular ITCs accumulation reached within 

0.5–3 hours of exposure and up to 100- to 200-fold over the extracellular ITC 

concentration or up to millimolar levels (Zhang 2001, 2012). This suggests 

modifications to the cell are made to enhance protection or that transport of SFN to 

key areas within the cells takes time.   DNA damage detected using the alkaline comet 

assay was reduced by SFN pre-treatment. This may be a result of upstream effects of 

SFN giving rise to less damage or because of the increased efficiency of mechanisms 

that repair DNA strand breaks, such as non-homologous end joining (NHEJ) (Sekine-

Suzuki et al. 2008, Yu et al. 2009). This can be tested in the future by the use of 

siRNA knockdowns of the repair systems. If upstream factors reduce DNA damage 

then no difference will be observed by reduction of DNA repair capacity.  

 

Enhancing the antioxidant defence systems within the lens is a worthwhile aim and 

dietary supplements provide a logical means to achieve this (Chiu and Taylor 2007). 

Several intervention studies have been carried out, which have not demonstrated 

clinical benefit. A number of factors have contributed to these outcomes, including the 

period of observation and the point of intervention. However, it has been suggested 

that the use of diet enrichment before the age of 50 is likely to yield long-term benefit 
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(Chiu and Taylor 2007). There is also evidence available that demonstrates high 

consumption of brassicas can reduce the risk of cataracts in both animals and humans 

(Moise et al. 2012, Vibin et al. 2010).  It may therefore be feasible that SFN can be 

used in conjunction with other antioxidants to further enhance the defence systems of 

the lens against persistent oxidative stress and potentially delay cataract formation. 

 

The work presented in the current study clearly shows, for the first time, that SFN can 

protect human lens cells and the lens itself from significant oxidative stress. Thus 

enrichment of the diet with SFN has the potential to provide benefit to individuals in 

their defence against cataract formation. From the findings presented it is highly 

likely that SFN is acting as an indirect antioxidant and thus identification of these 

indirect pathways in SFN protection will be of value and relevance to cataract 

research. The data also suggest that exposure to elevated levels of SFN can have an 

adverse effect on lens cell survival and indeed promote cell death by apoptosis. This 

later trait could also be exploited in the treatment of posterior capsule opacification. 
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CHAPTER 4  

IDENTIFICATION OF PROTECTIVE 

MECHANISMS OF SULFORAPHANE IN LENS 

CELLS  

 

4.1 Introduction 

The data presented in the previous chapter convincingly shows that SFN can provide 

protection to lens cells against oxidative stress. It was therefore logical to try to 

elucidate the cellular mechanisms of this action. A general screening was employed to 

determine if multiple pathways were involved. The majority of the literature, 

investigating multiple cell types, has suggested two major protective mechanisms of 

ITCs. These are the induction of phase II detoxification enzymes and the inhibition of 

phase I carcinogen-activating enzymes (Zhang 2012) (Figure 1.18).  

 

Phase I drug-metabolizing enzymes (DMEs) are principally mediated by cytochrome 

P450 (CYP) enzymes that are mainly expressed in the liver (Shimada et al. 1994). They 

are usually involved in oxidation, reduction, or hydrolysis of chemicals including 

carcinogens and these chemical reactions have been implicated in the bioactivation of 

carcinogens (conversion of procarcinogens to carcinogens) (Wogan et al. 2004). Human 

CYP isoforms that are involved in drug metabolism include CYP1A1/2, CYP2B6, 

CYP2C8/9/19, CYP2D6, CYP2E1, CYP3A4/5 and CYP4A (Elbarbry et al. 2007, 

Shimada et al. 1994). Reactive metabolites can form adducts with endogenous 

biomolecules such as DNA, RNA, and proteins, and play a key step in initiating 

cellular damage and cancers. Therefore, modulation of the CYP activity to decrease the 
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activation of procarcinogens could be a plausible target for chemoprevention through 

preventing cancer initiation (Patel et al. 2007) . 

 

SFN was shown to inhibit the activity of CYP1A1 and CYP1A2 in the human 

hepatoma cell line HepG2 (Skupinska et al. 2009a, Skupinska et al. 2009b). Also in rat 

models, SFN has a dose-dependent inhibition effect on the bioactivities of cyp1A1 and 

cyp2B1/2 (Maheo et al. 1997). The key step in the carcinogenesis of polycyclic 

aromatic hydrocarbons (PAH) is their biotransformation to oxyderivatives by CYP1A1 

and CYP1A2. Therefore, inhibition of these CYP enzymes by SFN may explain its 

chemopreventive effect in rats against the carcinogen, aflatoxin B1 (Maheo et al. 1997). 

In further research, using the p-nitro-phenol hydroxylase assay, SFN was shown to 

have an anti-mutagenic effect against N-nitrosodimethylamine (NDMA) in acetone-

induced rat liver microsomes (Puccini et al. 1989). The procarcinogen is known to be 

activated by CYP2E1 to cause DNA damage, and this was inhibited by SFN in a dose-

dependent manner (Barcelo et al. 1996). This confirmed that SFN is a potent 

competitive inhibitor for CYP2E1. On the other hand, SFN had no effect on the direct-

acting, sodium azide (Paolini et al. 1997). This suggests that SFN may provide 

protection against carcinogens, which are substrates for CYP2E1. Although, the 

mechanism by which SFN inhibits CYP activity has not been extensively studied, it has 

been reported that isothiocyanates impair CYP activity by acting as competitive 

inhibitors (Goosen et al. 2001, Nakajima et al. 2001). 

 

Phase II reactions mediate the metabolites produced during phase I metabolism with 

molecules such as uridine 5’diphosphate-glucouronic acid, glutathione or sulfate to 
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produce less toxic and readily eliminated metabolites. Also, Phase II reactions have 

been extended to include proteins that catalyze reactions which lead to comprehensive 

cytoprotection against electrophiles and reactive oxygen species (Talalay 2000).  

 

Phase II enzymes include glutathione S-transferases (GSTs), which catalyze the 

nucleophilic addition of glutathione (GSH) to electrophilic groups of a broad spectrum 

of xenobiotics (Pool-Zobel et al. 2005); NAD(P)H:quinone oxidoreductase (QR-1), 

which catalyzes the two-electron reduction of quinones to hydroquinones (Cullen et al. 

2003), preventing the one-electron reduction of quinones by other quinone reductases 

that would result in the production of radical species (Vasiliou et al. 2006); and UDP-

glucuronosyltransferases (UGTs), which transfer glucuronic acid to hydrophobic 

chemicals (Saracino and Lampe 2007). Knockout of one or more of phase II proteins in 

animals led to a significant increase in carcinogen-induced and spontaneous 

tumorogenesis (Henderson et al. 1998, Long et al. 2000). Therefore, modulation of this 

cellular metabolism by inducing phase II enzymes could block or reduce the process of 

cancer initiation. 

 

Many researchers have documented that SFN is the most potent naturally occurring 

phase II detoxification enzyme inducer in both animals and humans (Fahey et al. 2002, 

Talalay 2000). Several in vitro studies have shown the effectiveness of SFN in inducing 

the activity of phase II proteins. SFN was found to potently induce the activity of QR, 

GST-α and γ- glutamylcysteine synthetase, and increase intracellular glutathione 

synthesis in human prostate cancer lines (Brooks et al. 2001). SFN and its glutathione 

conjugate significantly induced both UGT1A1 and GSTA1 mRNA and protein levels in 
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human hepatoma HepG2 cells and colorectal adenocarcinoma HT29 cells (Basten et al. 

2002). Similarly, in in vivo studies, rats fed for 14 weeks with 200 mg/day of dried 

broccoli sprouts containing glucoraphanin, the precursor for SFN, had significantly 

decreased oxidized GSH and protein nitrosylation, as well as increased glutathione 

(GSH) content, GSH reductase and GSH peroxidase activities in cardiovascular and 

kidney tissues (Wu et al. 2004). 

 

There are three cellular components that regulate the gene expression of phase II 

proteins. These are Keap 1, Nrf2, and the ARE. In the absence of SFN and other 

inducers, Nrf2 is sequestered in cytoplasm by Keap 1.  Upon exposure to SFN, SFN 

can react with the thiol group of Keap1 and release the binding Nrf2 causing 

dissociation from Keap1. Nrf2 undergoes nuclear translocation and binds to ARE and 

activates the transcription of phase II genes (Keum et al. 2006b, Yu et al. 1999). Nrf2 

knockout mice have been used to evaluate the importance of Nrf2. Feeding mice with 

broccoli seed as a source of SFN for 7 days, resulted in an increase in protein 

expression of NQO-1, GSTA1/2, GSTA3, GSTM1/2 in the stomach, small intestine and 

liver of wild-type mice but not in Nrf2 knockout mice (McWalter et al. 2004). It shows 

that the ability of SFN to induce the expression of phase II proteins is mediated through 

Nrf2 as shown in Figure 4.1. Collectively, the chemopreventive effect of SFN could be 

attributed to its effect on the balance between procarinogen activation (by CYP 

enzymes) and carcinogen detoxification (by phase II enzymes). The aforementioned in 

vitro and in vivo studies may indicate that protection against carcinogenesis by SFN is 

attributed to its ability to inhibit the activity of CYP enzymes involved in 

procarcinogen bioactivation and/or its ability to enhance the capacity for detoxification 

of electrophiles and oxidants (Elbarbry and Elrody 2011).  
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4.2 Aims 

Having determined that SFN could elicit protection to lens cells against oxidative 

stress it was then important to identify the mechanisms by which SFN can elicit 

cytoprotection to lens cells against oxidative stress. To achieve this goal an illumina 

gene microarray was carried out to assess SFN regulation of gene expression. At the 

protein level SFN induced changes were assessed using western blot and 

immunocytochemistry. Moreover, distribution of Nrf2 in response to SFN was 

assessed  using immunofluorescence. 

 

4.3 Results 

 

4.3.1 Effects of SFN on gene expression FHL 124 cells detected by 

Illumina gene microarray 

As an initial screen to identify gene changes induced by SFN, an Illumina gene 

microarray was performed. The data revealed that 9 genes were significantly up-

regulated following a 24 hour exposure to 1 M SFN (Table 4) and 9 genes were also 

up-regulated by 2 M SFN (Table 5). There were 8 genes up-regulated in both 1 and 2 

M SFN exposures (Figure 4.1). SFN treatment resulted in an increased expression of 

several Nrf2 regulated genes. However, the elevated expression of the target genes 

was only demonstrated at the mRNA level. It was therefore of interest to look at 

proteins levels and see whether their expression was modulated by SFN or not. 
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Table 4 Increased gene expression in FHL 124 cells in response to 24 hour exposure 

to 1 M SFN, determined using Illumina gene microarrays. All genes presented were 

increased ≥ 1.3 fold in the SFN treated group relative to non-treated control and were 

statistically different (p ≤ 0.05; Student’s t-test and q ≤ 0.25; Benjamin Hochberg 

analysis) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Official 

Symbol

Official Full Name Location Summary Fold change p value q value

NQO1 NAD(P)H dehydrogenase, 

quinone 1

16q22.1 This protein's enzymatic 

activity prevents the one 

electron reduction of 

quinones that results in the 

production of radical species.

2.04735 0.0000151 0.087413526

OKL38 Oxidative stress induced 

growth inhibitor

16q23.3 Encodes an oxidative stress 

response protein that 

regulates cell death

1.96899 0.000000304 0.010537

LOC392437 unknown unknown unknown 1.63879 0.000023 0.113791741

TXNRD1 thioredoxin reductase

1provided

12q23-q24.1 This gene encodes a member 

of the family of pyridine 

nucleotide oxidoreductases

and plays a role in selenium 

metabolism and protection 

against oxidative stress.

1.60769 0.0000141 0.087413526

PIR pirin (iron-binding nuclear 

protein)

XP22.2 The encoded protein is an 

Fe(II)-containing nuclear 

protein expressed 

Act as a transcriptional 

cofactor 

Involved in the regulation of 

DNA transcription and 

replication.

1.41567 0.00000459 0.053056757

G6PD glucose-6-phosphate 

dehydrogenaseprovided

xq28 This gene encodes glucose-6-

phosphate dehydrogenase

whose main function is to 

produce NADPH

1.39306 0.0000028 0.048589621

EPHX1 epoxide hydrolase 1, 

microsomal (xenobiotic)

1q42.1 Epoxide hydrolase is a critical 

biotransformation enzyme., 

which functions in both the 

activation and detoxification 

of epoxides.

1.37074 0.0000117 0.087413526

FTL ferritin, light polypeptide 19q13.33 FTL encodes the light subunit 

of the ferritin protein.

affect the rates of iron 

uptake and release in 

different tissues

1.35383 0.0000539 0.169818382

PANX2 pannexin 2provided 22Q13.33 This protein and pannexin 1 

are abundantly expressed in 

central nervous system (CNS) 

and are coexpressed in 

various neuronal populations

1.32656 0.0000269 0.116426773

Official 

Symbol

Official Full Name Location Summary Fold change p value q value

NQO1 NAD(P)H dehydrogenase, 

quinone 1

16q22.1 This protein's enzymatic 

activity prevents the one 

electron reduction of 

quinones that results in the 

production of radical species.

2.04735 0.0000151 0.087413526

OKL38 Oxidative stress induced 

growth inhibitor

16q23.3 Encodes an oxidative stress 

response protein that 

regulates cell death

1.96899 0.000000304 0.010537

LOC392437 unknown unknown unknown 1.63879 0.000023 0.113791741

TXNRD1 thioredoxin reductase

1provided

12q23-q24.1 This gene encodes a member 

of the family of pyridine 

nucleotide oxidoreductases

and plays a role in selenium 

metabolism and protection 

against oxidative stress.

1.60769 0.0000141 0.087413526

PIR pirin (iron-binding nuclear 

protein)

XP22.2 The encoded protein is an 

Fe(II)-containing nuclear 

protein expressed 

Act as a transcriptional 

cofactor 

Involved in the regulation of 

DNA transcription and 

replication.

1.41567 0.00000459 0.053056757

G6PD glucose-6-phosphate 

dehydrogenaseprovided

xq28 This gene encodes glucose-6-

phosphate dehydrogenase

whose main function is to 

produce NADPH

1.39306 0.0000028 0.048589621

EPHX1 epoxide hydrolase 1, 

microsomal (xenobiotic)

1q42.1 Epoxide hydrolase is a critical 

biotransformation enzyme., 

which functions in both the 

activation and detoxification 

of epoxides.

1.37074 0.0000117 0.087413526

FTL ferritin, light polypeptide 19q13.33 FTL encodes the light subunit 

of the ferritin protein.

affect the rates of iron 

uptake and release in 

different tissues

1.35383 0.0000539 0.169818382

PANX2 pannexin 2provided 22Q13.33 This protein and pannexin 1 

are abundantly expressed in 

central nervous system (CNS) 

and are coexpressed in 

various neuronal populations

1.32656 0.0000269 0.116426773
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Table 5 Increased gene expression in FHL 124 cells in response to 24 hour exposure 

to 2 M SFN, determined using Illumina gene microarrays. All genes presented were 

increased ≥ 1.3 fold in the SFN treated group relative to non-treated control and were 

statistically different (p ≤ 0.05; Student’s t-test and q ≤ 0.25; Benjamin Hochberg 

analysis) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Official 

Symbol

Official Full Name Location Summary Fold change p value q value

OKL38 Oxidative stress induced growth 

inhibitor

16q23.3 Encodes an oxidative stress 

response protein that regulates 

cell death

2.18195 0.0000000551 0.001911616

NQO1 NAD(P)H dehydrogenase, 

quinone 1

16q22.1 This protein's enzymatic activity 

prevents the one electron 

reduction of quinones that 

results in the production of 

radical species.

2.09728 0.0000106 0.046724545

LOC392437 unknown unknown unknown 1.74835 0.00000619 0.046724545

TXNRD1 thioredoxin reductase 

1provided

12q23-q24.1 This gene encodes a member of 

the family of pyridine 

nucleotide oxidoreductases and 

plays a role in selenium 

metabolism and protection 

against oxidative stress.

1.72358 0.00000318 0.036786402

PIR pirin (iron-binding nuclear 

protein)

XP22.2 The encoded protein is an 

Fe(II)-containing nuclear protein 

expressed 

Act as a transcriptional cofactor 

Involved in the regulation of 

DNA transcription and 

replication.

1.56149 0.000000263 0.004559489

GCLM glutamate-cysteine ligase, 

modifier subunit

1p22.1 Glutamate-cysteine ligase is the 

first rate limiting enzyme of 

glutathione synthesis.

1.53588 0.0000597 0.159341311

FTL ferritin, light polypeptide 19q13.33 FTL encodes the light subunit of 

the ferritin protein.

affect the rates of iron uptake 

and release in different tissues. 

1.42567 0.0000106 0.046724545

EPHX1 epoxide hydrolase 1, 

microsomal (xenobiotic)

1q42.1 Epoxide hydrolase is a critical 

biotransformation enzyme., 

which functions in both the 

activation and detoxification of 

epoxides.

1.37391 0.0000108 0.046724545

G6PD glucose-6-phosphate 

dehydrogenaseprovided

xq28 This gene encodes glucose-6-

phosphate dehydrogenase 

whose main function is to 

produce NADPH

1.34738 0.000009 0.046724545

Official 

Symbol

Official Full Name Location Summary Fold change p value q value

OKL38 Oxidative stress induced growth 

inhibitor

16q23.3 Encodes an oxidative stress 

response protein that regulates 

cell death

2.18195 0.0000000551 0.001911616

NQO1 NAD(P)H dehydrogenase, 

quinone 1

16q22.1 This protein's enzymatic activity 

prevents the one electron 

reduction of quinones that 

results in the production of 

radical species.

2.09728 0.0000106 0.046724545

LOC392437 unknown unknown unknown 1.74835 0.00000619 0.046724545

TXNRD1 thioredoxin reductase 

1provided

12q23-q24.1 This gene encodes a member of 

the family of pyridine 

nucleotide oxidoreductases and 

plays a role in selenium 

metabolism and protection 

against oxidative stress.

1.72358 0.00000318 0.036786402

PIR pirin (iron-binding nuclear 

protein)

XP22.2 The encoded protein is an 

Fe(II)-containing nuclear protein 

expressed 

Act as a transcriptional cofactor 

Involved in the regulation of 

DNA transcription and 

replication.

1.56149 0.000000263 0.004559489

GCLM glutamate-cysteine ligase, 

modifier subunit

1p22.1 Glutamate-cysteine ligase is the 

first rate limiting enzyme of 

glutathione synthesis.

1.53588 0.0000597 0.159341311

FTL ferritin, light polypeptide 19q13.33 FTL encodes the light subunit of 

the ferritin protein.

affect the rates of iron uptake 

and release in different tissues. 

1.42567 0.0000106 0.046724545

EPHX1 epoxide hydrolase 1, 

microsomal (xenobiotic)

1q42.1 Epoxide hydrolase is a critical 

biotransformation enzyme., 

which functions in both the 

activation and detoxification of 

epoxides.

1.37391 0.0000108 0.046724545

G6PD glucose-6-phosphate 

dehydrogenaseprovided

xq28 This gene encodes glucose-6-

phosphate dehydrogenase 

whose main function is to 

produce NADPH

1.34738 0.000009 0.046724545
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Figure 4.1 A Venn diagram showing the effect of 24 hour exposure of 1 and 2 M 

SFN on increased gene expression of FHL 124 cells identified by Illumina gene 

microarray.   
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4.3.2 Effects of SFN on protein levels of Nrf2 regulated genes in FHL 

124 cells detected by Western blot methods 

NQO1 and TXNRD1 had been identified as being significantly increased in 

expression by SFN from the microarray study. They are classic phase II enzymes and 

have been reported to show increased expression in a number of cells and tissues 

treated with SFN (Matusheski and Jeffery 2001). To further investigate the effects of 

SFN on protein levels of these two genes, we measured protein expression of NQO1 

and TXNRD1 in FHL 124 cells following SFN treatment using western blotting. A 

concentration dependent increase in NQO1 and TXNRD1 protein level was observed 

using Western blot methods (Figure 4.2). Significant elevation was observed at SFN 

concentrations ≥ 0.5 µM, with a peak observed with 2 µM SFN. This was a 2.5-fold 

elevation relative to untreated control cells for TXNRD1 (Figure 4.2 B). Similarly, 

NQO1 protein levels were increased by 2.3-fold compared to untreated control cells 

after 24 hour incubation with 2 µM SFN (Figure 4.2B). Protein expression was further 

evaluated using immunocytochemistry (Figure 4.3). Using this approach the 

distribution of both NQO1 and TXNRD1 was seen to be largely cytoplasmic (Figure 

4.3 A). Quantification of these images also demonstrated a significant increase in 

protein levels, such that with 2 M SFN, an 8-fold and 13-fold increase relative to 

untreated control cells was observed for NQO1 and TXNRD1 respectively (Figure 4.3 

B). 
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Figure 4.2 SFN induced NQO1 and TXNRD1 protein increase in FHL 124 cells, 

detected using western blot.  (A) Representative blots showing NQO1, TXNRD1 

and –actin levels within FHL 124 cells. (B) Quantitative data derived from 

band intensities; the protein band intensities for NQO1 and TXNRD1 were 

normalized to β-actin. Data are presented as mean ± SEM (n=4). *Indicates a 

significant difference between treated and the non-treated control group (p ≤ 

0.05; ANOVA with Dunnett’s post-hoc test). 
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Figure 4.3 Immunofluorescence analyses of NQO1 and TXNRD1 distribution and 

expression within FHL 124 cells following exposure to SFN for a 24 hour period. (A) 

Representative images showing the organisation of NQO1 and TXNRD1 within FHL 

124 cells. (B) Quantitative data derived from fluorescence micrographs showing 

changes in protein level in response to SFN. Data are presented as mean ± SEM 

(n=4). *Indicates a significant difference between treated and control groups (p ≤ 

0.05; ANOVA with Dunnett’s post-hoc test). 

A

B
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4.3.3 Effects of SFN on activation of transcription Factor Nrf2 in 

FHL 124 cells detected by Immunocytochemistry 

Interestingly, it was observed that all 9 of the genes (LOC392437 unknown) (Figure 

4.1) detected using the gene microarray that showed increased expression were 

reported in the literature to be regulated by the Nrf2 pathway. As Nrf2 is therefore a 

likely candidate in the regulation of SFN protection, further investigation was carried 

out to determine whether SFN could induce Nrf2 nuclear translocation in human lens 

epithelial cells. The accumulation and translocation of Nrf2 to the nucleus would 

indicate activation of Nrf2 and the induction of the Keap1-Nrf2- ARE pathway 

(Shelton and Jaiswal 2013). Immunocytochemistry experiments were carried out to 

look at the location of Nrf2 proteins within FHL 124 cells following SFN treatment 

for 4 hours. As shown in Figure 4.4 A, only cytoplasmic labelling of Nrf2 with no 

distinct nuclear staining was observed in the non-stimulated cells, whereas an intense 

nuclear labelling was observed in the SFN-stimulated cells. In addition, the SFN 

treatment of the cells led to a dose-dependent increase in the Nrf2 levels (Figure 4.4 

B).These data clearly show that Nrf2 is translocated to the nucleus indicating Keap1-

Nrf2-ARE pathway activation in response to SFN exposure. 
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Figure 4.4 Immunocytochemistry of FHL 124 showing induction of nuclear 

translocation of Nrf2 in response to SFN treatment. (A) Representative fluorescent 

micrographs showing Nrf2 distribution following 4 hour exposure to 0, 0.5, 1, 2 µM 

SFN treatments. Nuclei and actin filaments are labelled using DAPI (blue) and Texas 

red X-Phalloidin (red) respectively. (B) Quantitative data derived from fluorescence 

micrographs showing changes in Nrf2 protein level in response to SFN. Data are 

presented as mean ± SEM (n=4). *Indicates a significant difference between treated 

and control groups (p ≤ 0.05; ANOVA with Dunnett’s post-hoc test). 
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4.4 Discussion 

The widespread belief that oxidative damage plays a major role in age related cataract 

and in a number of chronic diseases has focused scientific and public attention on the 

possibility that antioxidants could prevent or at least retard these processes (Lou 2003, 

Williams 2006). Antioxidants are of two types: direct and indirect. Direct antioxidants 

for example glutathione (GSH), tocopherols, ascorbic acid and carotenoids are 

substances that can inactivate free radicals or that prevent free-radical initiated 

chemical reactions (Lou 2003). In contrast, indirect antioxidants are not able to 

participate in radical or redox reactions as such, but they enhance the antioxidant 

capacity of cells by a variety of mechanisms (Lou, 2003).  

 

This chapter has demonstrated that SFN can elicit protective benefit to lens cells. SFN 

is unlikely to be a direct-acting antioxidant in our system, since it is very unlikely that 

the isothiocyanate group can participate in oxidation or reduction reactions under 

physiological conditions (Barton and Ollis, 1979). Data from chapter 3 showed that 

protection against oxidative stress occurred in lenses that had been pre-treated with 

SFN for 24 hours, but protection was absent when SFN was added at the same time as 

the oxidative insult. This suggests that SFN is able to induce protective mechanisms 

within the cells rather than having direct antioxidant effects. 

 

In considering SFN as an agent that could reduce the risk of cataract formation, it is 

plausible that SFN could act via multiple pathways. Oxidative stress is a recognised 

factor in the formation of cataract(Spector 1995, Taylor et al. 1995, Truscott 2005) 
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and SFN, as a potent antioxidant, could indirectly inhibit oxidative damage. One 

possibility is that SFN could raise tissue GSH levels and thus enhance a non- enzyme 

antioxidant defence capacity (Zhang and Talalay 1994). The GCLM gene encodes 

glutamate-cysteine ligase, which is the first rate limiting enzyme in glutathione 

synthesis. A significant upregulation of this gene was observed using microarray 

analysis with 2 µM SFN treatment and may suggest that this defence mechanism is 

positively regulated by SFN or by stimulating the ARE as other inducers of Phase II 

enzymes.  

 

Modification of enzymatic antioxidant defence systems is also likely to play a key a 

role in resistance of oxidative stress and the data presented support this notion. 

Dietary isothiocyanates are breakdown products of glucosinolates from cruciferous 

vegetables, for example broccoli (Wu et al. 2009). There are many studies that 

demonstrate ITCs are potent inducers of chemopreventive enzymes including 

antioxidant enzymes (Keum et al. 2005, Thornalley 2002). The current study has 

addressed this issue by an Illumina gene array to determine the effects of SFN on 

gene expression. The data revealed that 8 genes were significantly up-regulated 

following 24 hours exposure to both 1 and 2 µM SFN, of which a number are 

associated with anti-oxidant defence. Of the genes that were up-regulated, all are 

reported in the literature to be controlled by the transcription factor Nrf2. TXNRD1 

and NQO1 are classic phase II enzymes and have been reported to show increased 

expression in a number of cells and tissues (Matusheski and Jeffery 2001). G6PD 

encodes glucose-6-phosphate dehydrogenase which is a cytosolic enzyme whose 

primary function is to produce NADPH; this gene is also reported to be regulated by 

Nrf2 signalling (Shelton and Jaiswal 2013). Moreover, NADPH is utilised by NQO1 
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as a hybride donor in the conversion of quinones to hydroquinones. Therefore 

upregulation of G6PD is likely to facilitate the antioxidant activity of NQO1. Nrf2 

signalling has also been implicated in the expression of pirin in small airway 

epithelium (Hubner et al. 2009). In smokers, Nrf2 signalling was more active and this 

was associated with increased expression of pirin relative to non-smokers (Hubner et 

al. 2009). Moreover, it was identified that the promoter region of the pirin gene 

contains functional antioxidant response elements (Hubner et al. 2009). In addition, 

EPHX1 and FTL, which encode epoxide hydrolase 1 and ferritin light chain 

respectively are also shown using a mouse model to be induced by 1-[2-cyano-3-,12-

dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is a highly potent 

chemopreventive agent. In Nrf2 knockout animals, the induction of EPHX1 was 

suppressed indicating an important role of Nrf2 signalling in its regulation (Malhotra 

et al. 2010). In the case of FTL, the CCDO-Im induced expression was ablated in the 

absence of Nrf2 (Liby et al. 2005). OKL38, which encodes oxidative stress induced 

growth inhibitor 1, is reported to show induction following oxidative stress (Li et al. 

2007). In cancer cells it is believed that following DNA strand breaks, OKL38 

interacts with p53 and relocates to the mitochondrion to initiate cytochrome c release 

and apoptosis; OKL38 is therefore defined as a tumour suppressor (Hu et al. 2012). In 

the current system, OKL38 is up-regulated in response to SFN, but under these 

conditions cells continue to survive and grow. In addition, cytotoxicity/apoptosis does 

not differ from controls.  Oxidative stress induced DNA damage is suppressed by SFN 

and perhaps without this cue, OKL38 does not interact with p53 and induce apoptosis. 

The expression of OKL38 remains curious and further inhibition studies will be 

required to elucidate its putative role in SFN protection in the lens.  
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The common factor linking all the genes shown to be up-regulated is Nrf2/keap1 

signaling (Li et al. 2007b). It was therefore of importance to establish whether Nrf2 

signaling can take place in lens cells in response to SFN. The data confirm that Nrf2 

translocation to the nucleus does occur and thus it is reasonable to hypothesise that the 

protection observed with SFN against oxidative stress is largely mediated by Nrf2 

regulation. SFN is known to influence this pathway through interaction with the thiol 

group on keap1, which liberates Nrf2 from the complex. Nrf2 then translocates to the 

nucleus and initiates transcription (Juge et al. 2007a). As a result of the experiments 

presented here, it will therefore be of great interest in the future to determine more of 

the role of Nrf2 in expression of the genes identified from the microarray data as this 

could also contribute to any potential anti-cataract activity. Such work will involve 

establishing the kinetics of Nrf2 nuclear translocation in response to SFN using 

immunocytochemistry and GFP tags, Nrf2/ARE reporter assays and siRNA 

approaches to assess functional involvement of the individual genes and Nrf2 

signaling.  

 

It will also be of key importance to investigate the effects of SFN on Nrf2 pathway 

under conditions of reduced oxygen in order to specifically relate to the conditions 

experienced by the lens in vivo. In addition, the bioavailability of SFN to the lens 

requires consideration. Peak plasma concentrations of total SFN (largely as SFN 

metabolites) are reported in the low micromolar range in bioavailability studies 

following intake of a SFN-rich food. Whether SFN reaches the lens and in what form 

is an important question for future research. 
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In summary, pre-treatment of lens cells with SFN can modify anti-oxidant defence 

mechanisms by induction of Keap1-Nrf2-ARE pathway activation, thus rendering 

lens cells more capable of suppressing the daily insult of oxidative stress. Improved 

intake through an SFN-rich diet or use of supplements could provide a novel approach 

to retard the onset of cataract formation in the human lens.  
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CHAPTER 5  

THE PUTATIVE THERAPEUTIC BENEFITS OF 

SULFORAPHANE APPLICATION IN 

PREVENTING POSTERIOR CAPSULE 

OPACIFICATION 

 

5.1 Introduction 

PCO is the most common complication of cataract surgery and likely the most 

common cause of non-refractive decreased postoperative vision (Schaumberg et al. 

1998, Apple et al. 1992).  At present the only means of treating cataract is by surgical 

intervention. PCO reflects the wound-healing process of the LECs that remain in the 

capsular bag after cataract surgery. Residual LECs within the capsular bag (formed at 

cataract surgery to hold the IOL) rapidly grow and proliferate across the posterior lens 

capsule and migrate over the anterior surface of the IOL thus causing a secondary 

reduction in vision quality (Wormstone 2002). The most common changes with regard 

to the all important visual axis result from fibrosis; this is generally associated with 

wrinkling/contraction of the posterior capsule and increased cell aggregation. In 

addition, formation of swollen globular cells known as Elschnig’s pearl often occur 

(Kappelhof et al. 1987). In the peripheral capsular bag, lens fibre differentiation 

occurs, frequently leading to the appearance of Soemmerring’s ring (Kappelhof et al. 

1987). Additional features can also contribute to visual deterioration, including 

anterior fibrosis and anterior capsular phimosis (Sciscio and Liu 1999, Waheed et al. 

2001). 
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In the present study we investigated the potential benefits of SFN in the prevention of 

PCO.  At low concentrations SFN can provide benefit to lens cells, but at higher 

concentrations it is reported to act in a manner that can disrupt the function of cells in 

a detrimental way, such as a reduction in proliferation by cell cycle arrest (Jackson 

and Singletary 2004a, b) and induction of cell death by apoptosis.  

 

There are three possible mechanisms of SFN-mediated cell cycle arrest. First is 

through inhibition of cyclins which, together with CDK, drive the cell cycle from one 

phase to the next (Chiao et al. 2002). A second mechanism affects the cell cycle is 

through up-regulation of CDKIs, which bind and inhibit the activity of cyclin/CDK 

complexes and regulate cell cycle progression through the four phases (Shan et al. 

2006). A third possible mechanism for the arrest in cell cycle progression involves 

disruption of microtubules by inhibition of tubulin polymerization (Jackson and 

Singletary 2004a, b).  

 

Induction of apoptosis is hypothesized to be through intracellular activation of 

caspases, a family of cysteine proteases, which are responsible for initiation and 

execution of apoptosis. Also caspase-independent pathways mediate induction of 

apoptosis, such as release of the mitochondrial protein apoptosis inducing factor (AIF) 

into the cytosol, activation of a family of Ca
+2

-activated cytosolic proteases called 

calpains (Juge et al. 2007), or modulating the activation of transcription factors such 

as NF-kB and AP1 family members which are involved in induction of cell survival 

genes (Mi et al. 2007). Apoptosis in response to SFN is known to occur through these 

mechanisms in various cells and tissues (Gamet-Payrastre et al. 2000). It also it has 

been demonstrated in ovary (Bryant et al. 2010, Chiao et al. 2002, Jiang et al. 2010, 
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Shan et al. 2006, Shankar et al. 2008).  It has also been proposed that oxidative stress 

can mediate cell death by apoptosis through induction of ER stress (Wang et al 2012). 

 

 As SFN is also reported to promote ER stress in other systems establishing a possible 

whether ER stress plays an important role in SFN mediated cell death is of interest To 

date no information is available on SFN regulated cell cycle arrest, apoptosis or ER 

stress in the lens. 

 

5.2 Aims 

Prevention of PCO is an important are of lens biology. The aim of this chapter was 

therefore to establish the ability of SFN to initiate death of lens cells and prevent PCO 

formation.To achieve this, the efficacy of SFN was assessed using a human lens cell 

line and capsular bag system. Using these models, cell viability, cell death and ER 

stress were evaluated . 
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5.3 Results 

 

5.3.1 Effects of SFN on FHL 124 cell viability by MTS assay 

FHL 124 cell survival was decreased by SFN in a dose dependent manner (Figure 5.1). 

Cells were exposed to a range of SFN concentrations (0-300 µM) for 2 minutes, 30 

minutes, 1 hour and 24 hours prior to end point at 24 hours. When continually 

exposed to SFN for the 24 hours experimental period, evidence of impaired 

growth/survival was first observed at 10 µM. A similar pattern was observed when 

cells were exposed to SFN for 1 hour. With 30 minutes exposure to SFN, a significant 

reduction in cell number was observed with a treatment of 30 M SFN and above. 

With a 2 minute exposure period, 100M SFN was required to observe a significant 

reduction in cell number/viability.  
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Figure 5.1 Dose-dependent effects of SFN on FHL 124 cell survival. Cell survival 

was evaluated following a 24 hour experimental culture period. Cells were exposed to 

SFN for the first 2 minutes, 30 minutes, 1 hour or continuously exposed for 24 hours. 

The Data are expressed as mean± SEM (n=4). * indicates a significant difference 

between the treated group and untreated controls (p ≤ 0.05; ANOVA with Dunnett’s 

post hoc test). 
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5.3.2 Effect of SFN on human capsular bags 

A sham cataract operation was performed on human donor lenses which were then 

cultured in serum free medium in the presence of SFN for 30 days. Capsular bags 

maintained in standard culture conditions demonstrated progressive cell growth across 

denuded regions of the anterior capsule; the outer anterior capsule and importantly the 

previously cell-free posterior capsule. At day 8 cells could be clearly seen on the 

central posterior capsule. The level of growth in capsular bag preparations treated 

with 1mM SFN was similar to control untreated preparations (Figure 5.2). Cells were 

also observed on the central posterior capsule with 10 µM SFN, but growth appeared 

retarded. No cells were observed on the central posterior capsule with 100 µM SFN 

and indeed the cells on the anterior capsule appeared distressed (Figure 5.2). 

Following 30 days of culture (end-point), control capsular bags exhibited complete 

coverage of the posterior capsule (Figure 5.3 A). Exposure to either 0 or 1 μM SFN 

for the first 24 hours of culture had negligible effect on cell coverage by day 30. The 

capsular bag that was exposed to 10 µM SFN demonstrated a marked reduction in 

cells growing (Figure 5.3) and a 24 hour treatment with 100 μM SFN lead to 

widespread cell death and completely inhibited growth onto the posterior capsule 

(Figure 5.4). To further validate this observation, capsular bags treated with SFN were 

examined by immunocytochemistry. This clearly confirmed that an abundant 

population of lens cells resided on the posterior capsule when treated with 10 μM 

SFN, but there were no cell present in the 100 μM treated group (Figure 5.5). 
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Figure 5.2 Dark-field images of four capsular bag quarters showing the posterior 

capsule (PC), capsulorhexis (arrowed) and outer anterior capsule (AC) captured 

after 8 days. Capsular bags were treated with medium alone (A); 1 µM SFN (B); 

10 µM SFN (C) or 100 µM SFN (D).  
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Figure 5.3 (A) Modified dark-field images of four capsular bag quarters 

showing the posterior capsule (PC), capsulorhexis (arrowed) and outer 

anterior capsule (AC) captured after 30 days. Capsular bags were treated with 

medium alone; 1 µM SFN; 10 µM SFN or 100 µM SFN. (B) Quantitative 

data derived from modified dark-field images showing changes in cell 

coverage on the posterior capsule in response to SFN. Data are presented as 

mean ± SEM (n=4). *Indicates a significant difference between treated and 

control groups (p ≤ 0.05; ANOVA with Dunnett’s post-hoc test). 
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Figure 5.4 Low and high power phase-contrast images of cells growing in 

different regions of human lens capsular bag preparations following 30 days in 

the presence or absence of SFN. The field of view of all micrographs in the left 

hand column represent 2000 ×1427m and in the right column represent 800 × 

571 m. 
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Figure 5.5 Fluorescent micrographs of lens cells growing on the central posterior 

capsule of capsular bags treated with 0, 1, 10 or 100uM SFN. Preparations had been 

cultured for 30 days. A population of cells on the posterior capsule of capsular bags 

treated for 24 hours with 1or 10 μM SFN can clearly be seen, whereas treatment with 

100 μM totally ablated the cell population. The field of view of all micrographs is 448 

× 342 m. 
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5.3.3 Effect of SFN on ER stress in FHL 124 cells 

In order to investigate the putative involvement of endoplasmic reticulum (ER) stress 

in SFN mediated events, Real-time PCR and Western blot analysis were employed. 

FHL 124 cells were treated with 10, 30 and 100 µM SFN for 24 hours. Real-time PCR 

revealed increases in all four ER stress gene products tested in FHL 124 cells after 

exposure to SFN for 24 hours (Figure 5.6). The levels of BiP, IRE1 and EIF2α in lens 

cells were significantly increased within 24 hours of exposure to 10 μM SFN (Figure 

5.6). All genes were significantly elevated at the 30 and 100 μM SFN concentrations. 

At the protein level, BiP, ATF6, EIF2α and IRE1 were significantly up-regulated in 

response to a 24 hours 100 µM SFN treatment. When cells were exposed to 30µM 

SFN, there were significant increases in BIP, IRE1 and EIF2α expression (Figure 5.7).  
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Figure 5.6 Real-time PCR analysis of SFN effects on ER stress gene expression. 

Cells were exposed to 0, 10, 30, 100μM SFN and changes in (A) EIF2AK3, (B) 

ATF6, (C) HSPA5 and (D) ERN1 gene expression were detected. Values were 

normalized to 18S gene expression. The data represent mean ± SEM (n= 4). 

*Represents a significant difference between untreated control and treated groups (p ≤ 

0.05; ANOVA with Dunnett’s post-hoc test). 
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Figure 5.7 SFN induced BIP, ATF6, IRE1, and EIF2α protein increase in FHL 124 

cells, detected using western blot. (A) Representative blots showing BIP, ATF6, IRE1, 

and EIF2α and β–actin levels within FHL 124 cells. (B) Quantitative data derived 

from band intensities; the protein band intensities for BIP, ATF6, IRE1, and EIF2α 

were normalized to β-actin. Data are presented as mean ± SEM (n=4). *Indicates a 

significant difference between treated and the non-treated control group (p ≤ 0.05; 

ANOVA with Dunnett’s post-hoc test). 
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5.4 Discussion 

PCO is the most common complication of cataract surgery (Apple et al. 1992a). At 

present the only means of treating cataract is by surgical intervention, and this initially 

restores high visual quality (Allen and Vasavada 2006). Unfortunately, PCO develops 

in a significant proportion of patients to such an extent that a secondary loss of vision 

occurs (Wormstone et al. 2009). It has been reported that there are various ideas and 

methods to prevent (or at least decrease the incidence of) proliferation of the lens 

epithelium. However, the existing possibilities to prevent PCO formation are still not 

satisfactory. Two means of PCO prevention need to be discussed. Firstly, there is the 

mechanically induced, local restriction of proliferating cells (contact inhibition). 

Secondly, the inhibition of PCO formation by cytotoxic drugs or gene therapy which 

is perhaps even more important (Duncan et al. 1997a, Fernandez et al. 2004, Jordan et 

al. 2001) 

 

Although SFN has been studied extensively in recent years, this work has largely 

focused on cancer (Jackson and Singletary 2004b, Keum et al. 2005). However, the 

functional role of SFN in the prevention of PCO, which affects a large proportion of 

cataract patients, has not been investigated. In the present study, the hypothesis was 

tested that SFN can inhibit the development of PCO. In the present study, application 

of SFN leads to widespread cell death using both a human lens cell line and human 

capsular bag model. High doses of SFN are a necessary condition for inducing ROS 

production. The concentration required to successfully kill cells in the capsular bag 

was significantly greater than that needed to in the cell line. This difference can be 
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explained by the presence of residual lens fibres in the capsular bag. These fibre cells 

can protect the underlying epithelial cells (particularly those located in the equatorial 

region) by acting as a physical barrier and providing many additional SH sites for 

SFN to act upon. Therefore greater concentrations are required to reach the cells in the 

equatorial region.  

 

With regard to the relevance of cytotoxic drugs and thereby the possible induction of 

apoptosis in FHL 124 cells, one first needs to focus on the characterization of the 

pathways leading to cell death. A clear and detailed understanding of extracellular and 

intracellular mechanisms of the underlying molecular steps leading to the death of the 

cell is crucial for the understanding and the distinct pharmacological triggering of 

cell-specific, proapoptotic cascades. One possible problem for PCO prevention using 

a toxic compound will be the healthy, anatomically narrow and physiologically fragile 

surroundings of the capsular bag. Already a Perfect Capsule device recently 

developed by Maloof and colleagues (Maloof et al. 2003) applied to the intraocular 

lenses did show that the strictly local and defined application of any pharmaceutical 

seems to be absolutely necessary to prevent intraocular side effects. . This method has 

shown that there was no leakage to surrounding tissues, and the population of 

epithelial cells remaining in the bags after surgery was reduced (Maloof et al. 2003). 

 

The present study demonstrates that SFN can induce ER stress, which was 

demonstrated by ER stress gene and protein induction. Previous work has shown that 

thapsigargin, a calcium ATPase inhibitor and arsenic trioxide can also induce ER 

stress in lens cells. An important question to answer is whether the short-term 
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exposure to SFN will cause progressive death long-term as is observed with 

thapsigargin (Duncan et al. 1997b, Wang et al. 2005). It will therefore be of interest to 

extend the culture period in the cell line MTS experiments to see if death at high 

concentrations does become greater over time. This data could then be fed into the 

capsular bag work and a 2 minute exposure using the perfect capsule system could be 

applied and assessed. 

 

Combinatorial treatment with SFN and Arsenic trioxide (As2O3) might provide a 

promising therapeutic approach for a variety of diseases such as multiple myeloma 

(MM) (Doudican et al. 2012) and acute promyelocytic leukemia (APL) (Doudican et 

al. 2010). SFN enhances the cytotoxic effects of As2O3 through a ROS-dependent 

mechanism. Cellular exposure to SFN in combination with As2O3 resulted in a 

dramatic increase in levels of ROS compared to treatment with either agent alone. 

SFN, alone or with As2O3, decreased intracellular glutathione (GSH) content. 

Furthermore, addition of the free radical scavenger N-acetyl-l-cysteine (NAC) rescued 

cells from As2O3/isothiocyanate-mediated cytotoxicity. As As2O3 has been associated 

with ER stress in the lens and investigated for its potential benefits in the prevention 

of PCO (Zhang et al. 2007), this suggests that SFN deserves further investigation in 

combination with As2O3 in the treatment of PCO. 

 

In conclusion, SFN is capable of killing lens epithellial cells by apoptosis. SFN is also 

capable of promoting ER stress, which may mediate SFN induced apoptosis. 

Application of SFN using a controlled druge delivery device at the time of surgery  is 

a novel therapeutic approach for the prevention of posterior capsule opacification. 
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GENERAL DISCUSSION 

 

Several epidemiological studies have shown that consumption of large quantities of 

cruciferous vegetables such as broccoli and brussels sprouts, can protect against 

carcinogenesis, mutagenesis, drug toxicities, and some chronic diseases (Conaway et 

al. 2002). Much of this chemopreventive effect has been attributed to the 

physiological effect of the isothiocyanates, especially SFN. SFN was first identified 

as a potential chemopreventive agent in 1992 and since much research has focused on 

it. (Zhang et al. 1992), much research has focused on it. The ultimate 

chemopreventive effects of ITCs probably involve multiple mechanisms. However, a 

considerable portion of their effects is attributed to the enhanced detoxification of 

carcinogens (Phase II enzyme activation) as well as blocking carcinogen activation 

(Phase I enzyme inhibition) (Zhang 2012). On the other hand, SFN could also play a 

cytostatic role (Zhang 2012). Recent studies showed that mechanisms include the 

activation of apoptosis and inhibition of cell growth by cell cycle arrest. SFN induced 

apoptotic cell death can occur via the caspase pathway (Kim et al. 2003, Yu et al. 

1998) or the p53-dependent pathway (Huang et al., 1998). Furthermore, SFN can also 

inhibit the IKK-IκBα-NF-κB signaling pathway (Xu et al. 2005a, Xu et al. 2005b), 

and induce cell cycle arrest (Gamet-Payrastre et al. 2000b) and/or potentially induce 

cell death genes leading to apoptosis. Other possible mechanisms such as disruption 

of normal tubulin polymerization, inhibition of cytochrome P450 enzymes and anti-

inflammatory effect may also lead to cytotoxicity (Zhang 2012). These protective and 

cytotoxic actions of SFN are concentration dependent and cell/tissue dependent. If 

managed appropriately SFN application can be used to prevent stress induced damage, 
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for example in the case of cataract, or if required initiate cell loss to eliminate 

unwanted cells as is the case in PCO. 

 

Several studies have suggested that excessive exposure of the lens to high levels of 

oxygen was a risk factor for nuclear cataract and oxidative damage is strongly 

implicated in cataract formation (Giblin et al. 1995, Palmquist et al. 1984). The 

mechanism involves disruption of the redox system, membrane damage, proteolysis 

and protein aggregation. The current work supports this concept as application of 

hydrogen peroxide, acting as an oxidative stress inducer caused cell death of human 

lens epithelial cells. SFN (1µM) was shown to confer full cytoprotection against 

H2O2-induced FHL 124 cell death. Protection was observed when cells were pre-

treated with SFN for 24 hours, but no protective effects were shown without pre-

treatment. It is therefore important to consider the mechanisms by which SFN 

provides this protection, and such mechanisms could arise from a number of different 

angles. Possibilities include a direct interaction with the oxidative stressor (H2O2), 

enhancing activity of anti-oxidant defence enzymes, inhibition of apoptotic signals or 

via modification of DNA repair systems. From the experimental data it is unlikely that 

SFN causes its effect by direct anti-oxidant action because when co-treated no 

protection was observed; to achieve this pre-treatment was required, and also SFN is 

unlikely to be a direct-acting antioxidant in our system, as the isothio-cyanate group 

can participate in oxidation or reduction reactions under physiological conditions 

(Barton and Ollis, 1979). The cytoprotective properties of SFN pre-treatment in FHL 

124 cells suggested that SFN could induce changes in gene expression, leading to 

cytoprotective against H2O2. Changes at mRNA levels were investigated by an 

Illumina gene microarray in SFN-treated FHL 124 cells and all the 8 up-regulated 
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genes were known to be controlled by the transcription factor Nrf2 in the literature.  

 

Nrf2 is a critical transcription factor mediating amplification of the mammalian 

defense system against environmental stresses. It has been reported that Nrf2 

translocates into the nucleus and binds to the ARE in conjunction with small Maf 

proteins after activation by chemopreventive agents as well as other redox/oxidative 

stresses, leading to transcriptional activation of downstream genes encoding GSTs 

(Chanas et al., 2002; Hayes et al., 2000; Ishii et al., 2000; Nguyen et al., 2000), γ-

GCS (Wild et al., 1999), HO-1 (Ishii et al., 2000; Alam et al., 1999), NQO1 (Lee et al., 

2001a,b) and thioredoxin reductase (Kimet al., 2001). The function of Nrf 2 and its 

downstream proteins has been shown to be important for protection against oxidative 

stressors and chemical-induced cellular damage in liver (Enomoto et al., 2001; Chan 

et al., 2001) and lung (Chan and Kan, 1999), for prevention of cancer formation in the 

gastrointestinal tract (Ramos-Gomez et al., 2001; Fahey et al., 2002), as well as 

promotion of the wound-healing process (Braun et al., 2002). 

 

NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) and Thioredoxin reductase 

1(TXNRD1)  classic phase II enzymes, are highly-inducible enzymes that are 

regulated by the Keap1/Nrf2/ARE pathway. They are important in detoxifying 

quinones and maintaining the cellular redox balance. Evidence for the importance of 

the antioxidant functions of TXNRD1 and NQO1in combating oxidative stress is 

provided by demonstrations that induction of TXNRD1 and NQO1 levels or their 

depletion (knockout, or knockdown) are associated with decreased and increased 

susceptibilities to oxidative stress, respectively (Matusheski and Jeffery 2001). One 
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common feature of these proteins is that they use NADPH as an electron donor. So, 

for efficient detoxification and maintenance of cellular redox status, it would be 

beneficial to up-regulate these proteins together with the appropriate reducing 

potential (NADPH) to support enzymatic reactions. Glucose-6-phosphate 

dehydrogenase (G6PD) enzyme can directly generate NADPH so G6PD is likely to 

facilitate the antioxidant activity of NQO1 by producing NADPH. Pirin (PIR, iron-

binding nuclear protein) could active Nrf2 signalling has been implicated in small 

airway epithelium by comparing smokers and non-smokers (Hubner Mol Med 2006). 

Ferritin (FTL), an antioxidant, is known to possess an ARE, requires Nrf2 for basal 

expression (Kato and Niitsu 2002). In addition, proper management of free iron is 

also important for minimizing oxidative stress, and this can be best achieved by 

ferritin. Ferritin converts Fe
2+

 to Fe
3+

 (ferroxidase activity) and sequesters it, thereby 

preventing Fe
2+

 from participating in the Fenton reaction. Thus, up-regulation of HO-

1 together with ferritin is a way to increase antioxidant potential while minimizing 

hydroxyl radical formation. In Nrf2 knockout animals, the induction of EPHX1 was 

suppressed indicating an important role of Nrf2 signalling in its regulation. OKL38, 

which encodes oxidative stress induced growth inhibitor 1, is reported to show 

induction following oxidative stress (Li et al. 2007). In cancer cells it is believed that, 

following DNA strand breaks, interacts with p53 and relocates to the mitochondrion 

to initiate cytochrome c release and apoptosis; OKL38 is therefore defined as a 

tumour suppressor (Hu et al. 2012). In our system, OKL38 is upregulated in response 

to SFN, but under these conditions cells continue to survive and grow. In addition, 

cytotoxicity/apoptosis does not differ from controls.  Oxidative stress induced DNA 

damage is suppressed by SFN and perhaps without this cue, OKL38 does not interact 

with p53 and induce cell damage. The expression of OKL38 remains curious and 
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further inhibition studies will be required to elucidate its putative role in SFN 

protection in the lens. 

 

As there is a strong implication that Nrf2 signalling is playing a role in SFN 

protection of lens cells. Future studies should explore the role of Nrf2. Such 

investigations should build on the current body of data to determine the kinetics of 

Nrf2 translocation. To achieve this, immunocytochemistry could again be employed, 

but other techniques such as GFP tagged Nrf2 or ARE reporter assays could be used 

to establish time and concentration dependent effects on Nrf2 distribution and activity. 

In addition, it will be important to test the hypotheis that Nrf2 is critical in SFN 

protection of the lens. SiRNA targeted against Nrf2 could be employed to disable 

Nrf2 signalling. In the absence or at reduced levels of Nrf2 the ability of SFN to 

protect lens cells can be assessed using the ApoToxGlo Triplex assay. The LDH assay 

could be used to measure this effect in whole pig lens cultures. If Nrf2 is critical for 

protection SFN will not demonstrate any benefit in the absence of Nrf2.  Similarly, 

gene expression can be assessed in Nrf2 siRNA treated cells to determine if the genes 

upregulated on the gene array are indeed under Nrf2 regulation as predicted. 

 

Lens epithelial cell function and survival are critical to prevent cataract formation. 

However, in the case of PCO an uncontrolled growth of cells over the posterior 

capsule of the lens occurs. The remaining lens epithelial cells after surgical 

intervention rapidly grow and proliferate across the posterior lens capsule. The LECs 

can also migrate over the anterior surface of the intraocular lens. Cells ultimately 

encroach on the visual axis and induce light scattering changes due to matrix 
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contraction and matrix deposition. One approach to address this problem is to kill the 

cell population that remains following surgery. As higher concentrations of SFN can 

induce cell death it seemed to be a reasonable candidate. SFN was found to induce 

cell death by apoptosis and to induce ER stress. Previous work has shown that ER 

stressors such as thapsigargin can reduce protein synthesis and proliferation (Thomas 

et al. 1999, Wang et al. 2005). Interestingly, thapsigargin does not lead to immediate 

cell death; it appears that the downregulation in protein synthesis prevents vital 

proteins being synthesized to replace those that are naturally broken down over time 

for example growth factor receptors (Wang et al. 2005). As a consequence survival 

signals are lost and cell death by apoptosis results. As SFN has been identified as an 

ER stressor it will be interesting to see if a similar mode of action is employed in lens 

cells. To test this FHL 124 cells exposed to SFN for 2 minutes could remain in culture 

for extended periods for example 24, 48 and 72 hours. If SFN acts in the same way as 

thapsigrgin the level of cell death at active concentrations will progressively increase. 

This has important implications to PCO as application of any drug is likely to occur at 

the time of surgery and thus if a 2 minutes exposure can have long-term consequences 

it would be a valuable tool in PCO prevention (Duncan et al. 2007).  

 

In summary, at low concentrations SFN can yield protection to lens cells against 

oxidative stress and appears to achieve this, at least in part, through upregulation of 

the Nrf2 signalling pathway leading to increase expression of antioxidants within the 

cell. At high concentrations cell cycle arrest and apoptosis can be induced. Moreover, 

SFN also induces ER stress in lens cells that is also likely to initiate cell death by 

apoptosis. In conclusion, the present body of work has developed our understanding 

of SFN in the lens and its putative uses in the prevention of cataract and PCO 



CHAPTER 6  

GENERAL DISCUSSION  

158 

 

formation. 
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