
Chapter 11

A survey on multivariate copula-based models

for multivariate discrete response data

Aristidis K. Nikoloulopoulos

Abstract A review of copula-based models and methods for multivariate discrete

data modeling will be presented. Advantages and disadvantages of recent contribu-

tions will be summarized and a general modeling procedure will be suggested in

this context.

11.1 Introduction

One goal in the theory of dependence modeling and multivariate copulas is to de-

velop copula-based models and inferential procedures for multivariate discrete re-

sponses with covariates. Discrete response types include binary, ordinal categorical,

and count data. Examples of data include, among others, familial data (measure-

ments for each member of an extended multi-generation family) in medical genetics

applications, repeated measurements in health studies, item response data in psycho-

metrics applications, etc. These multivariate discrete data have different dependence

structures including features such as negative dependence. To this end, the desider-

ata properties of multivariate copula families for modeling multivariate discrete data

are given below (see also [19, 45, 48]):

P1: Wide range of dependence, allowing both positive and negative dependence.

P2: Flexible dependence, meaning that the number of bivariate marginals is (ap-

proximately) equal to the number of dependence parameters.
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P3: Computationally feasible cumulative distribution function (cdf) for likelihood

estimation.

P4: Closure property under marginalization, meaning that lower-order marginals

belong to the same parametric family.

P5: No joint constraints for the dependence parameters, meaning that the use of

covariate functions for the dependence parameters is straightforward.

In the existing literature, none of the existing parametric families of multivariate

copulas satisfy all these conditions; hence there are many challenges for copula-

based models for discrete response data.

Multivariate copulas for discrete response data have been around a long time,

e.g., in [19], and earlier for some simple copula models. There are also papers

with simple bivariate (multivariate) discrete distributions where actually the con-

struction is more or less a copula, but the authors do not refer to copulas, e.g.,

[27, 34, 6]. Simple parametric families of copulas satisfy P3; hence the joint likeli-

hood is straightforward to derive from the probability mass function (pmf) as a finite

difference of the cdf, but they provide limited dependence; see e.g. the contributions

in [32, 8, 62, 44, 45, 46, 29].

The multivariate normal (MVN) copula generated by the MVN distribution in-

herits the useful properties of the latter, thus allowing a wide range for dependence

(P1-P2), and overcomes the drawback of limited dependence inherent in simple

parametric families of copulas [41]. The MVN copula with discrete margins, has

been in use for a considerable length of time, e.g. [19], and much earlier in the

biostatistics [2], psychometrics [35], and econometrics [14] literature. It is usu-

ally known as a multivariate, or multinomial, probit model. The multivariate probit

model is a simple example of the MVN copula with univariate probit regressions

as the marginals. Implementation of the MVN copula for discrete data (discretized

MVN) is possible, but not easy, because the MVN distribution as a latent model for

discrete response requires rectangle probabilities based on high-dimensional inte-

grations or their approximations [45].

Similarly, this is the case for other elliptical copulas which have also been ap-

plied to discrete data [10] and lead to a model with more probabilities in the joint

upper and joint lower tails than expected with discretized MVN. Another interest-

ing contribution and flexible modeling approach are the pair-copula constructions as

developed in [48] which can also allow asymmetries, i.e., more probability in joint

upper or lower tails.

The remainder of the survey proceeds as follows. Section 11.2 sets the nota-

tion and provides background material on copulas for multivariate discrete response

data. In section 11.3 the parametric families of copulas used so far in the literature

for modeling dependent discrete data are presented. Their properties, which inherit

to the copula-based models advantages and disadvantages, are described. Section

11.4 discusses estimation methods and classifies them depending on the properties

of the parametric family of copulas. In section 11.5 the Kendall’s tau for discrete

response data is presented. We conclude this survey with some discussion.



11 Copulas for discrete response data 3

11.2 Multivariate discrete distributions via copulas

By definition, a d-variate copula C(u1, . . . ,ud) is a multivariate cdf with uniform

marginals on the unit interval; see e.g., [19, 37]. From Sklar [51], in order to ex-

press a multivariate discrete distribution for the discrete (binary, count, e.t.c.) vector

Y = (Y1, . . . ,Yd) given a vector of covariates x = (x1, . . . ,xd) with x j ∈ R
p j , j =

1, . . . ,d, one needs to combine discrete (Bernoulli, Poisson, e.t.c.) marginal dis-

tribution functions FY1
(y1;x1), . . . ,FYd

(yd ;xd) with a d-variate copula such for all

y = (y1, . . . ,yd),

HY(y;x) = Pr(Y1 ≤ y1, . . . ,Yd ≤ yd ;x) =C
(

FY1
(y1;x1), . . . ,FYd

(yd ;xd)
)

. (11.1)

Because the margins are discrete, as emphasized in [9], there are many possible

copulas, but all of these coincide on the closure of Ran(F1)×·· ·×Ran(Fd), where

Ran(Fj) denotes the range of Fj.

For discrete random vectors, multivariate probabilities of the form hY(y;x) =
Pr(Y1 = y1, . . . ,Yd = yd;x) involve 2d finite differences of HY(y;x). Let s=(s1, . . . ,sd)
be vertices where each s j is equal to either y j or y j − 1, j = 1, . . . ,d. Then the joint

pmf hY(·) is given by,

hY(y;x) = ∑sgn(s)C
(

FY1
(s1;x1), . . . ,FYd

(sd ;xd)
)

, (11.2)

where the sum is taken over all vertices s, and sgn(s) is given by,

sgn(s) =

{

1, if s j = y j − 1 for an even number of j’s.

−1, if s j = y j − 1 for an odd number of j’s.

Therefore likelihood inference for discrete data is simpler for copulas with com-

putationally feasible form of the cdf (P3). Essentially, the specification of the mul-

tivariate discrete distribution in (11.1), exploiting the use of copula functions, pro-

vides complete inference, i.e., maximum likelihood estimation, calculation of joint

and conditional probabilities, and standard goodness of fit procedures.

11.3 Copula-based models for discrete response data

In this section, we review several existed copula-based models for discrete data [32,

8, 57, 62, 44, 56, 46, 29, 10, 48]. The authors assumed that the copula C comes from

a specific parametric family or class of copulas; hence its properties are inherited to

the model. Although C is not uniquely defined outside the Cartesian product of the

ranges of the marginal distribution functions, there is no harm in assuming that it

arises from a parametric class of copulas [10, 48].

If the same copula applies for all clusters, and haves covariates on board, in

particular continuous covariates, the number of potential values is so high and the
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copula becomes unique in the limit (infinite clusters). However, generally speaking

the copula is not unique (identifiable) in the discrete case except on the range of

the marginals [9]. The non-identifiability is a separate theoretical issue and does not

have any bearing on copula dependence modeling for discrete data [19, 55], which

is the main focus of this survey.

11.3.1 Archimedean

Meester and Mackay [32] proposed a parametric model for cluster correlated

categorical (binary and ordinal) data, based on the d-variate Frank copula. The

Frank copula belongs to the large class of Archimedean copulas. Multivariate

Archimedean copulas, see e.g. [19], have the form,

C(u1, . . . ,ud ; θ ) = φ

(

d

∑
j=1

φ−1(u j ; θ ) ; θ

)

, (11.3)

where the generator φ(u ; θ ) is the Laplace transform (LT) of a univariate family

of distributions of positive random variables indexed by the parameter θ , such that

φ(·) and its inverse have closed forms. One may refer to [31] for a general definition

of an Archimedean copula where the generator is more general than a LT, but still

needs to satisfy certain regularity conditions. Hence, one can relax the completely

monotone condition to d times alternating in sign, then Archimedean copulas based

on extensions of LTs are obtained, and some of these might have negative depen-

dence.

The Frank copula in the Archimedean family [19, page 141] has Laplace trans-

form φF(t) =−θ−1 log
[

1− (1− e−θ)e−t
]

,θ > 0. This d-variate copula is permut-

ation-symmetric in the d arguments, thus it is a distribution for exchangeable uni-

form random variables on the unit interval. The Frank copula interpolates from the

independence (θ → 0) to the Fréchet upper (perfect positive dependence) bound

(θ → ∞). For extension of φF (t) for θ < 0, the Frank family extends to counter-

comonotonicity (θ → −∞) for d = 2 and only a little into negative dependence

for dimensions d ≥ 3 [19, 31]. Joe [19, pages 158–159] shows how narrow is the

range of negative dependence for trivariate Frank and beyond. Hence, for bivariate

discrete data a model based on Frank copula is quite popular [32, 28, 3, 30]. For

another application of d-variate Frank copula for familial binary data see [57], and

for applications of various Archimedean copula-based models for multivariate count

data see [46].

To sum up, d-variate (d > 2) Archimedean copulas satisfy properties P3, P4, and

P5, but not P1 and P2, because they allow only for exchangeable dependence, and

its range becomes narrower as the dimension increases.
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11.3.2 Partially symmetric

Zimmer and Trivedi [62] and Nikoloulopoulos and Karlis [46] modeled depen-

dent discrete response data using partially symmetric copulas. Joe [17] extended

multivariate Archimedean copulas to a more flexible class of copulas using nested

LTs, the so called partially-symmetric d-variate copulas with d − 1 dependence pa-

rameters. Note in passing that these copulas are also called Hierarchical or nested

Archimedean copulas; see e.g. [4, 15, 16]. The multivariate form has a complex no-

tation, so we present the trivariate extension of (11.3) to help the exposition. The

trivariate form is given by,

C(u1,u2,u3) = φ1

(

φ−1
1 ◦φ2

(

φ−1
2 (u1)+φ−1

2 (u2)
)

+φ−1
1 (u3)

)

, (11.4)

where φ1,φ2 are LTs and φ−1
1 ◦φ2 ∈ Ł⋆

∞ = {ω : [0,∞)−→ [0,∞)|ω(0) = 0,ω(∞) =
∞,(−1) j−1ω j ≥ 0, j = 1, . . . ,∞}. From the above formula is clear that (11.4) has

(1,2) bivariate margin of the form (11.3) with LT φ2(·;θ2), and (1,3), (2,3) bivariate

margins of the form (11.3) with LT φ1(·;θ1). As the dimension increases there are

many possible LT nestings. Bivariate margins associated with LTs that are more

nested, are larger in concordance than those that are less nested. For example, for

(11.4) the (1,2) bivariate margins is more dependent (concordant) than the remaining

bivariate margins.

Although partially-symmetric copulas have a closed form cdf, they do not pro-

vide flexible dependence due to moderate number of dependence parameters (d−1

distinct parameters), and do not allow for negative dependence by construction. To

sum up, partially-symmetric copulas satisfy properties P3, P4, and P5, but not P1

and P2.

11.3.3 Farlie–Gumbel–Morgenstern

Gauvreau and Pagano [8] considered a d-variate Farlie–Gumbel–Morgenstern (FGM)

copula. The multivariate FGM copula is,

C(u1, . . . ,ud ;Θ) =
(

1+
d

∑
1≤ j<k≤d

θ jk(1− u j)(1− uk)

+
d

∑
1≤ j<k<l≤d

θ jkl(1− u j)(1− uk)(1− ul)+ · · ·

+ θ12···d(1− u1)(1− u2) · · · (1− ud)
) d

∏
j=1

u j, (11.5)

where Θ = {θ jk,θ jkl , · · · ,θ12···d}. For more details, see [25, 26].



6 Aristidis K. Nikoloulopoulos

However, the conditions on the parameters Θ so that FGM is indeed a copula are

not investigated in [8]. The conditions on the parameters so that FGM is indeed a

copula can be obtained by considering the 2d cases for u j = 0 or 1, j = 1 . . . ,d, and

verifying that the copula density is positive, i.e. c(u1, . . . ,ud)≥ 0.
To simplify the notation a simpler version of a d-variate FGM copula that does

not include higher order terms is given below,

C(u1, . . . ,ud;θ jk : 1 ≤ j < k ≤ d) =
(

1+
d

∑
1≤ j<k≤d

θ jk(1− u j)(1− uk)
) d

∏
j=1

u j.

(11.6)

It has density function,

c(u1, . . . ,ud;θ jk : 1 ≤ j < k ≤ d) = 1+
d

∑
j<k

θ jk(1− 2u j)(1− 2uk).

The necessary and sufficient conditions on the parameters θ jk so that (11.6) is a

copula are straightforward. For d = 3, the conditions can be conveniently summa-

rized as follows: 1+θ12+θ13+θ23 ≥ 0,1+θ12 ≥ θ13+θ23,1+θ13 ≥ θ12+θ23,1+
θ23 ≥ θ12 +θ13, or more succinctly −1+ |θ12 +θ23| ≤ θ13 ≤ 1−|θ12 −θ23|,−1 ≤
θ12,θ13,θ23 ≤ 1. Similar conditions for higher dimension d > 3 can also be ob-

tained by considering the 2d cases for u j = 0 or 1, j = 1 . . . ,d, and verifying that

c(u1, . . . ,ud)≥ 0. For further details see [60].

In addition to the joint constraints limitation, the FGM copula has a limited range

of dependence and is inappropriate for general modeling unless the responses are

weakly dependent. Even for the bivariate case with no joint constraints between

the parameters, it is easy to see that the range of dependence is limited. Gauvreau

and Pagano [8] studied the range of the dependence parameter, say θ12, in terms of

Pearson’s correlation parameter for binary data, say ρ12, through the relation

ρ12 = θ12

√

π1π2(1−π1)(1−π2),

where π j = Pr(Yj = 1), j = 1,2. However, since −1 ≤ θ12 ≤ 1 the bounds of the

Pearson’s correlation are,

±
√

π1π2(1−π1)(1−π2).

Li and Wong [29] used a similar parametric family of copulas with the FGM

copula in [8],

C(u1, . . . ,ud ;θ jk : 1≤ j < k ≤ d)=
d

∏
j=1

u j

d

∏
1≤ j<k≤d

(

1+θ jk(1−u j)(1−uk)
)

. (11.7)

However, the conditions on the parameters θ jk so that (11.7) is a copula are not

investigated by the authors. For d = 3, the necessary conditions can be conve-
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niently summarized as follows: −1≤ θ12,θ13,θ23 ≤ 1 and −(1+θ jℓ)≤ θ jk +θkℓ ≤
min(1,1+θ jℓ+θ jkθkℓ) for all different permutations of ( j,k, ℓ) in (1,2,3), see [39].

The sufficient conditions (non-negativity of the entire density function in [0.1]d)

are hard to prove for d > 2 because the density of (11.7) is a higher order polynomial

function (quadratic for d = 3, cubic for d = 4, etc) of each u j taken separately.

However, considering the 2d cases for u j = 0 or 1, j = 1, . . . ,d, and verifying that

the copula density of (11.7) is positive provides the necessary conditions on the

parameters for the copula in (11.7); these are also sufficient for d = 2 since the

bivariate density is a linear function of each u j taken separately, see [25, Section 4,

page 419]. In addition to the joint constraints limitation, the copula in (11.7) has the

same limited range as the FGM copula in (11.5) or (11.6) since it resembles FGM

for the bivariate case.

To sum up, the FGM copula satisfies properties P3 and P4, but not P1, P2, and

P5. Because of the dependence range limitation, the FGM copula is not very useful

for general modeling unless the responses are weakly dependent.

11.3.4 Finite normal mixture

Nikoloulopoulos and Karlis [45] modeled multivariate count data proposing a cop-

ula generated by a mixture of two independent MVN distributions. The finite normal

mixture copula cdf takes the form,

C(u1, . . . ,ud ;π ,µ1 = 1, . . . ,µd) = F1...d

[

F
−1
1 (u1;π ,1), . . . ,F−1

d (ud ;π ,µd);π ,µ
]

,

where,

F1...d(·;π ,µ) = πΦd(·; µ ,Id)+ (1−π)Φd(·;−µ ,Id), (11.8)

is the d-variate cdf of a mixture of two d-variate normal cdfs with mixing proba-

bility π , Φd(·; µ ,Id) denotes the cdf of the d-variate normal distribution function

with mean µ = (1,µ2, . . . ,µd) and covariance matrix the d-variate diagonal identity

matrix Id , and F j(·;π ,µ j) = πΦ(·; µ j,1)+ (1−π)Φ(·;−µ j,1), j = 1, . . . ,d is the

univariate cdf of a mixture of two univariate normal cdfs. Essentially, since the vari-

ables are uncorrelated upon conditioning by the component, the d-variate normal

cdfs in (11.8) can be easily calculated as the product of univariate normal cdfs.

In this construction the mixing operation introduces the dependence structure.

The covariance matrix of the 2-finite normal mixture distribution is of the form,

∆ = Id + µµ⊤ (11.9)

∆ =















2 µ2 . . . µd−1 µd

µ2 1+ µ2
2 . . . µ2µd−1 µ2µd

...
...

...
...

...

µm−1 µ2µd−1 . . . 1+ µ2
d−1 µd−1µd

µd µ2µd . . . µd−1µd 1+ µ2
d















.
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Clearly, the covariance matrix in (11.9) is identifiable and has d−1 dependence pa-

rameters. This dependence construction is similar to the partially symmetric copula

of [17]; in the present case, however, the ( j,k) marginal for j 6= k 6= 1 has two copula

parameters, and thus more flexible association.

Mathematically, this family has nice features, a moderate number of parameters

to model dependence (including negative dependence), and a rather simple compu-

tational form, but does not provide such flexible or wide range of dependence. For

example, it cannot model multivariate discrete data with extreme or with negative

dependence among many random variables or at least it cannot capture all the pos-

sible structures. To sum up, finite normal mixture copulas satisfy properties P3, P4,

and P5, but not P1 and P2.

11.3.5 Mixtures of max-id

Joe [19] and Nikoloulopoulos and Karlis [44, 46] applied mixtures of max-id cop-

ulas to model multivariate discrete data. Joe and Hu [22] extended multivariate

Archimedean copulas to a more flexible class of copulas using mixture of max-id

copulas C
(m)
jk of the form,

C(u1, . . . ,ud ;θ ,θ jk : 1 ≤ j < k ≤ d) = (11.10)

φ

(

− ∑
1≤ j<k≤d

logC
(m)
jk

(

e−p jφ
−1(u j ;θ),e−pkφ−1(uk;θ);θ jk

)

+
d

∑
j=1

ν j p jφ
−1(u j;θ ) ; θ

)

,

where p j = (ν j + d− 1)−1, j = 1, . . . ,d. Since the mixing operation introduces de-

pendence, this new copula has a dependence structure that comes from the form

of C
(m)
jk (· ; θ jk) and the form of the Laplace transform φ(· ; θ ). Another interesting

interpretation is that the Laplace transform φ introduces the smallest dependence

between random variables (exchangeable dependence), while the copulas C
(m)
jk add

some pairwise dependence. The parameters ν j are included in order that the para-

metric family of multivariate copulas (11.10) is closed under margins. Regarding ν j

zero or fixed, the copula of the form (11.10) is a family with 1+d(d− 1)/2 param-

eters that allows only positive but flexible dependence structure. One may simplify

the form of the copula by assuming C
(m)
jk (u j, uk) = u j uk (known as independence or

product copula) together with ν j = νk = −1, for some pairs. This implies that for

those pairs of variables, the minimum level of dependence is introduced by φ .

This construction on the one hand does not impose any constraints between the

dependence parameters θ jk, but on the other hand does not allow for negative de-

pendence [22]. The latter is the only drawback of this class of parametric families

of copulas.

To sum up, d-variate mixtures of max-infinitely divisible copulas satisfy all prop-

erties except P1, since they don’t allow for negative associations. Note in passing
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that using mixtures of max-id copulas the use of covariate functions for the copula

dependence parameters is straightforward since they fulfill P5.

11.3.6 Elliptical

Two well known members of elliptical copulas [7, 1], the MVN and Student t copu-

las have been used in the literature for prediction and modeling of dependent discrete

data.

Joe [19] and Song [55] modeled dependent discrete data using the MVN copula,

C(u1, . . . ,ud;R) = Φd

(

Φ−1(u1), . . . ,Φ
−1(ud);R

)

, (11.11)

where Φd(·;R) denotes the standard MVN distribution function with correlation

matrix R = (ρ jk : 1 ≤ j < k ≤ d) and Φ is the cdf of the univariate standard nor-

mal. The MVN copula inherits the dependence structure of MVN distribution, and

thus admits a wide range of flexible dependence allowing both positive and negative

dependence (P1-P2). The drawback of the MVN copula is with relation to the com-

putation of the rectangle probabilities. This computation involves repeated multidi-

mensional integration since MVN lacks a closed form cdf. Consequently, likelihood

inference might be difficult; see [45]. Note that for the special case of positive ex-

changeable correlation structures, the d-dimensional integrals conveniently reduce

to 1-dimensional integrals [24, p. 48].

The pmf can be obtained by computing the following rectangle probability [48,

40],

hY(y;x) = Pr(Y1 = y1, . . . ,Yd = yd ;x) (11.12)

= Pr(y1 − 1 ≤ Y1 ≤ y1, . . . ,yd − 1 ≤ Yd ≤ yd ;x)

=

∫ Φ−1[FY1
(y1;x1)]

Φ−1[FY1
(y1−1;x1)]

· · ·

∫ Φ−1[FYd
(yd ;xd)]

Φ−1[FYd
(yd−1;xd)]

φd(z1, . . . ,zd ;R)dz1 . . .dzd ,

where φd denotes the standard MVN density with latent correlation matrix R.

There are several papers in the literature that focus on the computation of the

MVN rectangle probabilities for general correlation structures, and, conveniently,

the implementation of the proposed algorithms is available in contributed R pack-

ages 1. Schervish [50] proposed a locally adaptive numerical integration method but

this method, while more accurate, is time consuming and restricted to a low dimen-

sion. Therefore, Genz and Bretz [11] proposed a randomized quasi Monte Carlo

method with the use of antithetic variates and Joe [18] proposed two approxima-

1 Both approximations to MVN rectangle in [18], the 1-dimensional integral in the exchange-

able case, and the method in [50], can be computed with the functions mvnapp, exchmvn, and

pmnorm, respectively, in the R package mprobit [21]. The methods in [11] can be computed

with the function pmvnorm in the R package mvtnorm [12].
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tions to MVN probabilities. These advances in computation of MVN probabilities

can be used to implement MVN copula models with discrete response data.

Genest et al. [10] modeled dependent binary data using the Student t copula,

C(u1, . . . ,ud ;R,ν) = Td

(

T−1(u1;ν), . . . ,T−1(ud;ν);R,ν
)

, (11.13)

where T (·;ν) is the univariate Student t cdf with (non-integer) ν degrees of free-

dom, and Td(·;R,ν) is the cdf of a multivariate Student t distribution with ν de-

grees of freedom and correlation matrix R. Student t copula share with the MVN

copula the ability to accommodate any feasible pattern of association in a set of

random variables. However, Student t copula can also account for tail dependence

in multivariate continuous data [42], whereas MVN copula cannot. In the context of

multivariate discrete data that means that more probabilities can be assigned in the

joint upper and joint lower tails than with the MNV copula. Student t copula cannot

also be expressed in closed form; however the rectangle probabilities can also be

computed using the methods in [11].

To sum up, elliptical copulas satisfy properties P1, P2, and P4, but not P3, and

P5, since they lack a closed form cdf and a positive-definite matrix is required re-

spectively.

11.3.7 Vine

In the literature, vine copulas are suitable for modeling multivariate continuous data

with various features such as tail dependence [23]. Since the densities of multivari-

ate vine copulas can be factorized in terms of bivariate linking copulas and lower-

dimensional margins, they are computationally tractable for high-dimensional con-

tinuous variables. The cdf of d-dimensional vine copula lacks a closed form and

requires (d − 1)-dimensional integration [19]. Hence, in order to derive the pmf as

finite difference of the cdf poses non-negligible numerical challenges.

Recently, Panagiotelis et al. [48] decomposed the pmf as follows,

Pr(Y1 = y1, . . . ,Yd = yd) = Pr(Y1 = y1|Y2 = y2, . . . ,Yd = yd)× (11.14)

Pr(Y2 = y2|Y3 = y3, . . . ,Yd = yd)×·· ·×Pr(Yd = yd).

Letting Vh be any scalar element of V and V\h its complement, with Yj not an ele-

ment of V, each term on the right-hand side of (11.14) has the form Pr(Yj = y j|V =
v) where y j is a scalar element of y and v is a subset of y,
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Pr(Yj = y j|V = v) =
Pr(Yj = y j,Vh = vh|V\h = v\h)

Pr(Vh = vh,V\h = v\h)

=
∑i j=0,1 ∑ih=0,1(−1)i j+ih Pr(Yj ≤ y j − i j,Vh ≤ vh − ih|V\h = v\h)

Pr(Vh = vh,V\h = v\h)

=
∑i j=0,1 ∑ih=0,1(−1)i j+ihCYj ,Vh|V\h

(

FYj |V\h
(y j − i j|v\h),FVh|V\h

(vh − ih|v\h)
)

Pr(Vh = vh,V\h = v\h)
.

The above can be applied recursively to (11.14) to decompose a multivariate pmf

into bivariate copula families. More details and a 3-variate illustration can be found

in [48].

The computation of the pmf for a discrete vine only requires 2d(d− 1) bivariate

copula function evaluations, compared to 2d multivariate copula evaluations for the

finite difference approach (11.2), and Panagiotelis et al. [48] have developed a fast

algorithm for computing the pmf of a vine copula with discrete margins.

A wide variety of dependence structures can be modeled by selecting different

copula families as building blocks. Selecting different bivariate copula families in a

discrete vine has a substantial impact on the joint probabilities of the multivariate

distribution and can provide better fits when we have some discrete multivariate data

where asymmetries can easily be seen.

To sum up, discrete vine copulas or pair-copula constructions satisfy all proper-

ties except P4. Note that although their cdf is not of closed form the pmf is succes-

sively decomposed and likelihood estimation is feasible even for high dimensions.

11.4 Methods of estimation

For a sample of size n with data y1, . . . ,yn the joint log-likelihood of the copula-

based model is,

ℓ=
n

∑
i=1

loghY(yi1, . . . ,yid ;xi1, . . . ,xid). (11.15)

Estimation of the model parameters can be approached by the standard maximum

likelihood method, by maximizing the joint log-likelihood in (11.15) over the uni-

variate and copula parameters [19] or by a two-step approach called Inference Func-

tion of Margins (IFM) method in [19, 20]. In the first step, the univariate parameters

are estimated assuming independence, and in the second step the joint log-likelihood

in (11.15) is maximized over the copula parameters with the univariate parameters

fixed at the estimated values from the first step. When the dependence is not too

strong which is a realistic scenario for discrete response data, the IFM method can

efficiently (in sense of computing time and asymptotic variance) estimate the model

parameters. For parametric families of copulas with a closed form cdf and vine cop-

ulas, maximum likelihood or IFM estimation is straightforward.
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For the elliptical copulas likelihood inference involves the computation of mul-

tidimensional rectangle probabilities of the form (11.12). The advances in compu-

tation of rectangle probabilities can be used to implement elliptical copula-based

models with discrete response data. Using the the first-order (makes use of all of

the univariate and bivariate marginal probabilities) or the second-order approxima-

tion (also makes use of trivariate and four-variate marginal probabilities) in [18] to

compute the rectangle MVN probabilities in (11.15), the likelihood is successively

approximated for weak to moderate correlation parameters. Computing the rectan-

gle MVN/Student t probabilities in (11.15) via simulation based on the methods in

[11], a simulated likelihood is implemented; see [40]. Since the estimation of the pa-

rameters of the copula-based models is obtained using a quasi-Newton routine [36]

applied to the joint log-likelihood in (11.15), the use of quasi Monte Carlo simula-

tion to four decimal place accuracy for evaluations of the rectangles works poorly,

because numerical derivatives of the joint log-likelihood with respect to the parame-

ters are not smooth. In order to achieve smoothness, the same set of uniform random

variables should be used for every rectangle probability that comes up in the opti-

mization of the simulated likelihood [40]. Asymptotic and small-sample efficiency

calculations in [40] show that the simulated likelihood method, which is based on

evaluating the multidimensional integrals of the joint likelihood with randomized

quasi Monte Carlo methods developed in [11], is as good as maximum likelihood

as shown for dimension 10 or lower. These findings are expected to hold in higher

dimensions. Although there is an issue of computational burden as the dimension

and the sample size increase, this will become marginal, as computing technology

is advancing rapidly.

Zhao and Joe [61] proposed composite likelihood estimation methods to over-

come the computational issues at the maximization routines for the MVN copula in

a high-dimensional context. Composite likelihood is a surrogate likelihood which

leads to unbiased estimating equations obtained by the derivatives of the composite

log-likelihoods. Estimation of the model parameters can be approached by solving

the estimating equations in [61] or equivalently by maximizing the sum of compos-

ite likelihoods. First consider the sum of univariate log-likelihoods,

ℓ1 =
n

∑
i=1

d

∑
j=1

log fYj
(yi j;xi j),

where fYj
(y1;x1), . . . , fYd

(yd ;xd) are the univariate marginal pmfs, and then the sum

of bivariate log-likelihoods,

ℓ2 =
n

∑
i=1

∑
j<k

loghY2
(yi j ,yik;xi j,xik),

where Y2 = (Yj,Yk). Composite likelihood estimates can be obtained using a two

stage method (CL1):

1. At the first step the ℓ1 is maximized over the univariate marginal parameters.
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2. At the second step the ℓ2 is maximized over the copula parameters with univariate

marginal parameters fixed as estimated at the first step of the method.

Alternatively, one can use the one stage composite likelihood estimation procedure

(CL2), that is maximizing the ℓ2 over the univariate and copula parameters at one

step. The efficiency of composite likelihood estimates has been studied and shown

in a series of a papers; see e.g. [61, 58, 59]. If the interest is both to the univariate

and dependence parameters, CL2 method should be performed since CL1 ignores

the dependence at the estimation of the univariate marginal parameters.

Bayesian methods have also been used on the estimation of an elliptical-copula

based model. Pit et al. [49] proposed a general Bayesian approach for estimating a

MVN copula-based model. Smith, Gan and Kohn [53] extend the work in [49] to

other elliptical copula-based models. Very recently, Smith and Khaled [54] suggest

efficient Bayesian data augmentation methodology for the estimation of copula-

based models for multivariate discrete data. For a detailed exposition of Bayesian

approaches on estimation of copula-based models for discrete response data we refer

the interested reader to the excellent survey by Smith [52].

11.5 Dependence as measured by Kendall’s tau

The copula parameters for different parametric families have different range; hence

they are not comparable. To compare strengths of dependence among different

copula-based models and ease interpretation, it is useful to convert the estimated

parameters to concordance measures such as Kendall’s τ’s.

For continuous random variables dependence as measured by Kendall’s tau

τ = Pc −Pd , the difference between the probabilities of concordance (Pc) and dis-

cordance (Pd), is associated only with the copula parameters. However for discrete

data the marginal distributions also play a role on dependence, and τ does not at-

tain the boundary values of ±1, because the probability of ties Pt = 1− (Pc+Pd) is

positive; see [5, 33, 38].

The Kendall’s tau for each pair Y2 is given as below [47],

τ(Yj ,Yk) =
∞

∑
y j=0

∞

∑
yk=0

hY2
(y j,yk;x j,xk)

{

4C(FYj
(y j − 1;x j),FYk

(yk − 1;xk))

− hY2
(y j,yk;x j,xk)

}

+
∞

∑
y j=0

f 2
Yj
(y j;x j)+

∞

∑
yk=0

f 2
Yk
(yk;xk)− 1. (11.16)

This formula helps to see clearly that in the discrete case the marginals do affect

Kendall’s tau.

To visualize the effect of the marginal distributions/parameters, we computed

the optimum Kendall’s tau values using various discrete marginal distributions, i.e.,

Bernoulli, binomial and Poisson and the Fréchet bound copulas. In Figures 11.1

and 11.2 optimum Kendall’s tau values have been plotted for Bernoulli, i.e., Yj ∼
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Bin(1,πYj
) and Yk ∼ Bin(1,πYk

) and binomial margins i.e., Yj ∼ Bin(5,πYj
) and Yk ∼

Bin(5,πYk
) for a grid of (πYj

,πYk
) values in PYj

×PYk
where PYj

= [0,1] and PYk
=

{0,0.1, . . . ,0.5}, respectively. In Figure 11.3 optimum Kendall’s tau values have

been plotted for Poisson marginal distributions with the same parameter λ up to 50.
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Fig. 11.1 Kendall’s tau bounds when Yj ∼ Bin(1,πYj
) and Yk ∼ Bin(1,πYk

) with (πYj
,πYk

) ∈
[0,1]×{0,0.1, . . .,0.5}.

From the figures, one can see that Kendall’s tau does not reach the bounds ±1 for

countermonotonic and comonotonic marginals. There is also a clear association be-

tween the optimum value of Kendall’s tau and the marginal probabilities for binary

and binomial data, while this association is negligible for count data with marginal

parameters greater than 10. For normalized versions of Kendall’s tau one can refer

to [13, 38].
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) with (πYj
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)∈ [0,1]×
{0,0.1, . . . ,0.5}.

11.6 Discussion

This survey summarized copula-based models for discrete response data. We list

several desirable properties such a model should have, and introduce the models

that have been used in copula dependence modeling for discrete data so far. For

copula modeling with multivariate discrete data, we suggest models that admit a

wide range of dependence, such as the MVN copula. Given the wide range of de-

pendence, MVN copula provides often the best fit or nearly the best fit for discrete

data [41]. However MVN copula is inadequate to model multivariate data with re-

fection asymmetry or tail dependence [43]. Although tail dependence degenerate in

the discrete case, reflection asymmetry is a realistic scenario. Vine copula construc-

tions are suitable for modeling this kind of data since by using as bivariate blocks
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Fig. 11.3 Kendall’s tau bounds when both random variables are Poisson with parameter λ .

asymmetric bivariate copulas tail asymmetry can be accommodated, i.e., more prob-

ability in one or both joint tails can be obtained. Essentially, discrete vine copulas

are highly flexible since any multivariate discrete distribution can be decomposed

as a vine copula, under a set of conditions outlined in [48].

If the discrete responses are positively associated, then parametric families of

copulas with a closed form cdf could be also used. Archimedean copulas could

be used to model clustered data with exchangeable dependence, while mixtures of

max-infinitely divisible copulas could be used for data with a more general positive

dependence. Note in passing that, from copulas with positive dependence by con-

struction, one could always get some negative dependence by applying decreasing

transformations on some subset of the random variables, but this is restrictive in

general, because this construction cannot model negative dependence among many

random variables [46].

If the interest is to study the effect of explanatory variables on the dependence

structure, Archimedean, partially-symmetric, mixtures of max-id, and vine copulas

are suitable since allow the use of covariate functions for the copula dependence

parameters (see e.g. [44, 47]); this is not the case for the FGM and elliptical copulas

in (11.5), (11.6), (11.7), (11.11) and (11.13), because of the joint constraints for the

dependence parameters.
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W. Härdle, P. Jaworski, T. Rychlik (eds.) Copula Theory and Its Applications, Proceedings

of the Workshop held in Warsaw 25-26 September, pp. 147–160. Springer (2009)
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57. Trégouët, D.A., Ducimetière, P., Bocquet, V., Visvikis, S., Soubrier, F., Tiret, L.: A parametric

copula model for analysis of familial binary data. American Journal of Human Genetics 64(3),

886–93 (1999)

58. Varin, C.: On composite marginal likelihoods. Advances in Statistical Analysis 92, 1–28

(2008)

59. Varin, C., Reid, N., Firth, D.: An overview of composite likelihood methods. Statistica Sinica

21, 5–42 (2011)

60. Xu, J.: Statistical modelling and inference for multivariate and longitudinal discrete response.

The University of British Columbia, Ph.D. (1996)

61. Zhao, Y., Joe, H.: Composite likelihood estimation in multivariate data analysis. The Canadian

Journal of Statistics 33(3), 335–356 (2005)

62. Zimmer, D., Trivedi, P.: Using trivariate copulas to model sample selection and treatment

effects: Application to family health care demand. Journal of Business & Economic Statistics

24(1), 63–76 (2006)


	A survey on multivariate copula-based models for multivariate discrete response data
	 Aristidis K. Nikoloulopoulos
	Introduction
	Multivariate discrete distributions via copulas
	Copula-based models for discrete response data
	Archimedean
	Partially symmetric
	Farlie–Gumbel–Morgenstern 
	Finite normal mixture 
	Mixtures of max-id 
	Elliptical 
	Vine

	Methods of estimation
	Dependence as measured by Kendall's tau
	Discussion
	References



