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Abstract

Many studies have estimated empirical relationships between dengue, weather, and El Niño

in several regions of the world. Some of these studies used their model estimations to pre-

dict the potential impacts of climate change on the future distribution of dengue. Often,

these studies have sidestepped elements that are key to the estimation of the effects of cli-

mate variables on dengue with statistical confidence. For example, they fail to incorporate

covariates that may confound the empirical associations between dengue, weather, El Niño,

and climate undermining their model estimations. Additionally, several studies used nation-

ally or supra-nationally aggregated data which remove the spatial variability in all variables

making it difficult to detect complex associations between dengue and climate variables.

Other studies were conducted in small geographical areas with the problem of having low

numbers of disease cases posing problems for their analysis with statistical confidence.

Here, we used the most comprehensive dengue-related datasets analysed to date and

several statistical methods to investigate the effects of weather, climate, and El Niño on

dengue incidence. We demonstrate that such effects are robust to the confounding effects

of socioeconomic development and other non-climatic factors such as seasonal trends and

inter-annual variability. Our results reveal that the effects weather and El Niño are signif-

icantly heterogeneous between provinces influenced by the underlying climate. With the

exception of access to piped water, we could not identify significant effects of socioeco-

nomic status on dengue occurrence. This result is likely related to human behaviour or the

lack of protective measures against mosquitoes. We used our model estimations to project

the potential impacts of climate change on dengue incidence by 2030, 2050 and 2080 with

greater statistical confidence than previous studies. Our projections indicate that climate

change is likely to increase dengue incidence mainly in already endemic areas.
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Chapter 1

Introduction

It has been suggested that climate change will affect global health mainly in an adverse way

(Costello et al., 2009). For example, extreme-temperature events may take the human body

beyond its weather-coping range increasing mortality among some segments of the popula-

tion (Githeko and Woodward, 2003; Cowie, 2007). Also, because of the ectothermic nature

of arthropods, vector-borne diseases, such as dengue and malaria, are highly sensitive to

variations in the climate system, particularly in temperature and precipitation (Gage et al.,

2008; Jansen and Beebe, 2010).

The study of the likely impacts of climate change on the transmission and distribution

dynamics of vector-borne diseases such as dengue and malaria has received a great deal

of attention because of this sensitivity to changes in the climate system (e.g. Reiter, 2001;

Confalonieri et al., 2007; Reiter, 2008; Gething et al., 2010; Sriprom et al., 2010; Béguin

et al., 2011). Changes in ambient temperature, humidity and rainfall for example, may

potentially influence the risk of dengue by modulating the population size and host-seeking

activity of the vector, as well as the development rate of both the dengue vector and the

dengue viruses (Watts et al., 1987; Focks et al., 2000; Bicout et al., 2002; Gage et al., 2008;

Halstead, 2008).

Many studies have estimated the effects of weather and El Niño on dengue, and used

their model outputs as a baseline for predicting the potential impact of climate change on

the future distribution of dengue (e.g. Hales et al., 2002; Sriprom et al., 2010). However, of-

ten these studies have failed to incorporate non-climatic confounders in their models, have

aggregated data to large geographical boundaries, or have been conducted over short peri-

ods of time greatly undermining their estimations (Robins and Morgenstern, 1987; Gething

et al., 2010; Jansen and Beebe, 2010; Santer et al., 2011).

In this thesis, we investigate the effects of weather, El Niño, and climate change on

dengue using several statistical methods and the most comprehensive dengue-related dataset

analysed to date to ensure the robustness of our estimations. We demonstrate that the effects

of weather and El Niño on dengue are not only statistically significant, but also robust to

the confounding effects of socioeconomic development and other non-climatic factors such

as seasonal trends and interannual variability. Additionally, we reveal that the effects of

weather on dengue vary significantly between provinces, and that such effects are largely
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determined by the local conditions. Finally, we use our model estimations to project the

potential effects of climate change on dengue incidence under three emission scenarios.

1.1 Dengue burden

Dengue is the most rapidly spreading mosquito-borne viral disease in the world (TDR,

2007). Before 1970, only nine countries experienced severe dengue epidemics, but it is

now endemic in over a hundred countries (Figure 1.1) in Africa, the Americas, the Eastern

Mediterranean, South-east Asia and the Western Pacific (WHO, 2012). Dengue has become

a major public health concern (WHO, 2012). Its incidence rate has dramatically increased

over the last six decades (from about 900 annual cases reported to the World Health Organi-

zation over 1955–1959 to about 926 thousand annual cases over 2000–2007) and continues

to rise (WHO, 2002, 2009).

Figure 1.1: Areas of ongoing dengue transmission risk (shaded) as defined by the Center for Disease
Control and Prevention (CDC). Based on data from Ministries of Health, international health orga-
nizations, journals, and knowledgeable experts (2010). Source: http://www.healthmap.org

Such increase in dengue incidence has been influenced by numerous mechanisms such

as population growth, unplanned urbanisation (commonly associated with insufficient waste

collection that provides potential breeding sites for the mosquito), increased transportation

of goods (that facilitates the movement of infected mosquitoes across regions), and lack of

political will (which has caused the re-direction of resources for dengue control to other

programmes) (Gubler and Wilson, 2005; Al-Muhandis and Hunter, 2011). Such increases

have also been associated with variations in the climate system, including climate change

(e.g. Jetten and Focks, 1997; Sriprom et al., 2010; Lowe et al., 2011). The World Health

Organization estimates that approximately 40% of the global population (i.e. 2.5 billion

people) are at risk from dengue transmission, with about 50 million new dengue infec-

tions (WHO, 2009), and approximately 12,000 deaths, mainly among children, occurring

worldwide every year (WHO, 1997, 2002).
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Dengue is characterized by a sudden onset of high-grade fever, severe headache, pain

behind the eyes, nausea, vomiting, rash and a low white blood cell count (TDR, 2012;

WHO, 2012). In a small proportion of cases, life-threatening complications such as circu-

latory compromise and shock occur (Alexander et al., 2011; WHO, 2012). The burden of

dengue at the global scale has been estimated in 750,000 disability-adjusted life years (the

number of lost years of healthy life) per annum lost due to absenteeism, immobilisation,

debilitation or medication (Murray and Lopez, 1996a,b; Clark et al., 2005). The economic

losses caused by dengue are similar to the losses attributed to malaria and tuberculosis in

some regions of the world such as the Americas (e.g. Torres and Castro, 2007). The annual

cost of dengue has been estimated to be 2.1 billion US dollars (USD) across Latin Amer-

ica and the Caribbean (Shepard et al., 2011), and 89 million USD in Cambodia, Malaysia

and Thailand (Suaya et al., 2009). As there are no specific antiviral medicines treating or

vaccines preventing dengue, the only way to control or prevent the disease is through the

management of mosquito populations (Eisen and Lozano-Fuentes, 2009; Al-Muhandis and

Hunter, 2011).

Public health systems are already overburdened in many countries, and increases in the

distribution and intensity of vector-borne diseases, especially within populations with little

or no immunity to dengue, could quickly lead to situations very difficult or impossible to

cope with. Understanding the epidemiology of the disease and the role of its drivers is

important for understanding past outbreaks, as well as for estimating future risks in order

to facilitate an early response and allow the effective allocation of resources.

1.2 Dengue overview

Dengue causes an acute febrile syndrome that affects all age groups (WHO, 1997). The

World Health Organization traditionally classified dengue as Dengue Fever (DF), Dengue

Hemorrhagic Fever (DHF), and Dengue Shock Syndrome (DSS) (WHO, 1997). This clas-

sification posed major difficulties for the application of the clinical guidelines to diagnose

severe cases in many countries (e.g. Santamaria et al., 2009; Alexander et al., 2011). Con-

sequently, this classification has been revised and recently modified to the new categories

‘Dengue’ (with or without warning signs) and ‘Severe Dengue’.

Dengue symptoms are charaterized by sudden onset and last two to seven days. Symp-

toms range from mild to incapacitating severe fever, intense headache, pain behind the

eyes (retro-orbital), muscle pain (myalgia), joint pain (arthralgia), nausea, gastrointesti-

nal problems, swollen glands, and rash (WHO, 2012; TDR, 2012). Severe Dengue is a

potentially lethal complication of Dengue, and is characterized by plasma leakage, fluid

accumulation, severe hemorrhage, respiratory distress, or organ impairment (WHO, 2012;

TDR, 2012). Warning signs of likely progression to Severe Dengue usually occur three to

seven days after the initial symptoms, in conjunction with temperature decrease (< 38◦C),

and include: severe abdominal pain (acute abdomen), persistent vomiting, rapid breathing

(tachypnea), mucosal bleeding, fatigue, restlessness, blood in vomit (hematemesis), and

decreasing platelet count (Alexander et al., 2011; WHO, 2012).
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Dengue is caused by four antigenically distinct but genetically related single-stranded

RNA viruses of the family Flaviviridae, genus flavivirus (Heinz et al., 2000), designated

DEN-1, DEN-2, DEN-3, and DEN-4 (WHO, 1997). Infection with one type of dengue

virus or ‘serotype’ produces life-long immunity against reinfection with that serotype (ho-

mologous immunity) (WHO, 1997). Experiments conducted on human volunteers suggest

that infections with one serotype may also produce temporary (two to nine months) and par-

tial protection against secondary infections with other serotypes (WHO, 1997; Wearing and

Rohani, 2006). After this period of temporary ‘cross-immunity’, a second infection with

a different serotype may result in a process known as antibody-dependent enhancement

(ADE) where the cross-reactive antibodies enhance viral replication (increasing infection

of cells) and may lead to Severe Dengue instead of preventing a later infection (Wearing

and Rohani, 2006).

1.2.1 Dengue transmission and control

Dengue viruses are transmitted to humans through the bite of infected female Aedes (Ste-

gomyia) aegypti mosquitoes. Other species (e.g. A. albopictus, A. polynesiensis, and some

members of the A. scutellaris complex) have been associated with dengue outbreaks, but

they are not as efficient as A. aegypti for dengue transmission (WHO, 1997; OPS, 2001).

The anthropophilic (preference for humans) habits of A. aegypti are a major contributing

factor to its public health impact.

Aedes mosquitoes become infected after biting human carriers (Figure 1.2), and remain

infected for life (typically ten days) (WHO, 1997). Mosquitoes usually become infective

(able to transmit dengue viruses) 8–12 days after an infectious bloodmeal (OPS, 2001). This

time between an infectious bloodmeal and the time when the vector can transmit a dengue

virus is known as the extrinsic incubation period (EIP). The transovarian transmission of

dengue viruses (from a female mosquito to its offspring by infection of the eggs in its

ovaries) is also possible (Salas-Luévano and Reyes-Villanueva, 1994; Orta-Pesina et al.,

2005); however, it is infrequent and apparently does not contribute significantly to human

transmission (WHO, 1997).

Infected humans are the main carriers of dengue viruses, and are the source of such

viruses for uninfected mosquitoes (WHO, 2012). The intrinsic incubation period (the pe-

riod required for the development of the virus in a human host before it can be transmitted

to a mosquito, and before such host develops symptoms) averages 4.5–7 days, with a max-

imum of ten days in a few cases (Halstead, 2008). Infected humans may transmit the virus

to susceptible mosquitoes for 4-5 days, with a maximum of 12 days (Halstead, 2008). The

length of viremia (presence of viruses in blood) may be a function of the viral titer (concen-

tration) delivered by the vector (Halstead, 2008). Long viremic periods may increase the

likelihood of transmission to susceptible infected mosquitoes.

As previously stated, the prevention and control of dengue transmission greatly de-

pends on the management of mosquito populations (Eisen and Lozano-Fuentes, 2009; Al-

Muhandis and Hunter, 2011). Such control is mainly achieved by eliminating water-holding
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Figure 1.2: Schematic representation of dengue virus transmission. Each box represents one day.
Red boxes indicate when both the host and the vector become infective. Orange boxes indicate when
both the host and the vector become infected.

containers that may become oviposition sites allowing the development of aquatic stages

of the mosquito cycle (WHO, 2009). Carrying out vector control measures, however, is

rather complex because A. aegypti effectively exploits a wide range of habitats, both natural

and man-made. The habitats are eliminated by preventing access of mosquitoes to water-

holding containers, by frequently emptying and cleaning them, by removing the developing

stages using biological agents such as copepods (Vu et al., 1998), by killing immature and

adult mosquitoes using insecticides, or by combinations of these methods (WHO, 2009).

Attempting to control immature stages in all the possible habitats in a community may not

be feasible or cost-effective as some of these habitats are considerably more productive than

others (WHO, 2009).

1.3 Climatic determinants of dengue

1.3.1 Temperature

Weather has obvious influences on the ecology of dengue and greatly determines the tim-

ing and magnitude of dengue outbreaks. The major climatic factors influencing dengue

transmission are temperature and rainfall. Temperature affects the dengue system through

numerous biological mechanisms. For example, because of its ectothermic (cold blooded)

nature, the behaviour and distribution of A. aegypti is greatly influenced by temperature

(Gage et al., 2008; Jansen and Beebe, 2010).

Dengue transmission declines with cold temperatures in regions with clear seasonal

changes in temperature (Kuno, 1995). Temperatures below 16◦C prevent Aedes mosquitoes

from transmitting dengue viruses (Blanc and Caminopetros, 1930). Moreover, low temper-

atures affect the development of immature stages of the vector (Focks and Barrera, 2006).

In tropical areas, mosquito abundance does not seem to vary with temperature but with

changes in the abundance and productivity of water-holding containers (Focks and Barrera,
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2006).

Temperature modulates the development time of A. aegypti immatures (Halstead, 2008).

For example, the duration of the development from egg hatching to adult is inversely related

to temperature, ranging from seven days at 35◦C to 40 days at 15◦C (Tun-Lin et al., 2000).

Additionally, the pupal development time period at 32◦C, is only half of that at 28◦C (Focks

et al., 2000).

Female mosquitoes bite humans to get blood for completing their gonotrophic cycle

(the time period between two consecutive egg-production acts, which involve two consec-

utive bloodmeals) and lay eggs. The length of the gonotrophic cycle is also temperature

dependent (Christophers, 1960). The speed of egg development is steered by tempera-

ture. Mosquitoes at 32◦C will attempt to take more than twice as many replete bloodmeals

than mosquitoes at 24◦C (Focks et al., 2000). As a consequence, the percentage of in-

fected mosquitoes may rise with high temperatures, as well as the likelihood of successful

transmission to a human host (Reiter, 2001; Wu et al., 2009). Dengue transmission is more

efficient at temperatures above 20◦C (Blanc and Caminopetros, 1930). The maximum trans-

mission efficiency of A. aegypti has been reported at 32–35◦C under laboratory conditions

(Watts et al., 1987).

The length of the EIP is also steered by temperature. In laboratory conditions, temper-

atures around 32–35◦C produced and EIP of about 6–7 days, whilst temperatures around

27–30◦C substantially increased the EIP to 12–13 days (McLean et al., 1974; Watts et al.,

1987). Additionally, mosquitoes incubating the virus at about 32◦C are approximately 2.6

times more likely to survive long enough to potentially infect human hosts than those at

22◦C (Focks et al., 2000).

Aedes mosquitoes are less susceptible to dengue infection and also die faster under

large diurnal temperature ranges (DTR) around the same mean temperature (Lambrechts

et al., 2011). The underlying mechanism for such negative impact of the DTR on vector

competence is still unclear but might be related to short periods of time spent at high or low

temperatures under large DTRs adversely impacting the possibilities of midgut infection by

limiting entry into midgut epithelial cells or initial replication in midgut cells as observed

in Culex tarsalis mosquitoes infected with western equine encephalitis virus (Lambrechts

et al., 2011). Climate change has decreased the amplitude of the global DTR over the period

1950 to 2004 in many parts of the world, at a rate of -0.07◦C per decade (Trenberth et al.,

2007), a situation that may favour dengue transmission.

Extremely high temperatures decrease mosquito survival and may hamper dengue trans-

mission (Gage et al., 2008). Adult Aedes mosquitoes gradually begin to die at temperatures

over 36◦C, whereas the survival of immature mosquitoes (larvae and pupae) begins to de-

crease only at temperatures above 39–40◦C (Focks et al., 2000).

The viral titer in Aedes mosquitoes is also temperature dependent (Gage et al., 2008).

High viral titers in infected mosquitoes may result in high viral loads in human hosts (Hal-

stead, 2008). High viral titers may augment the duration of viremia in such hosts (Halstead,

2008), affecting the likelihood of secondary transmission. Also, high viremia levels have

been associated with increased dengue severity (Vaughn et al., 2000).
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Human behaviour is also influenced by temperature and may affect the ecology of

dengue. Humans may spend more time indoors sheltering from the seasonal warm tem-

peratures and heatwaves. If people seek refuge in sealed buildings with window screening

and air conditioning during these periods, the risk of dengue transmission may decrease

because they are less exposed to mosquito bites (Reiter, 2001; Gage et al., 2008; Jansen and

Beebe, 2010). However, if such protective measures are nonexistent, as typically happens

in the tropics (Reiter, 2001), A. aegypti may gain access to the indoor environment and

dengue transmission may occur (Reiter, 2001; Jansen and Beebe, 2010).

1.3.2 Precipitation

Dengue incidence is strongly associated with the wet season in many countries across Latin

America, the Caribbean and South-east Asia (e.g. Moore et al., 1978; Aiken et al., 1980;

Koopman et al., 1991; Depradine and Lovell, 2004; Cazelles et al., 2005; Focks and Bar-

rera, 2006; Chadee et al., 2007; Garcı́a et al., 2008; Sia Su, 2008). Research indicates that

increases in mosquito populations tend to recur after the onset of the wet season (Moore

et al., 1978; Aiken et al., 1980).

The influence of precipitation on the dengue system is complex and highly nonlinear.

The creation (or wash-out) of breeding sites for the vector may be greatly influenced by

rainfall depending on the prevailing climatic, socioeconomic and cultural conditions of a

region. For example, rising precipitation may increase the number of breeding sites for

the vector only if there are enough water-holding containers available (Gage et al., 2008;

Jansen and Beebe, 2010). Low levels of precipitation may equally contribute to the creation

of breeding sites by slowing rivers and causing ponding and stagnation (Patz et al., 2003).

Heavy rainfall, on the other hand, may wash-out the breeding sites (Gage et al., 2008)

resulting in a decreasing number of circulating adults and reduced dengue transmission.

Natural water-holding containers such as tree holes, leaves, and fruit zests may become

potential breeding sites for the vector (Focks and Barrera, 2006). However, A. aegypti

prefers to breed in man-made containers such as swimming pools, water storage drums,

discarded tyres, cans and bottles, fountains, trash, domestic ant-traps, boreholes and wash-

ing machines (Ibáñez and Gómez, 1995; Tsuzuki et al., 2009). Toilet concrete basins, flower

vases, wells, jars, and plastic buckets seem to have a higher pupal productivity than other

types of water-holding containers (Tsuzuki et al., 2009).

The reduced or zero precipitation for long periods observed in dry regions may provoke

the dormancy of mosquito eggs (diapause) for several months reducing the presence of

adult stages of the vector (Bicout et al., 2002) which may decrease dengue transmission.

Yet, dengue outbreaks have been reported over dry periods in Singapore, Indonesia and

the Philippines (Aiken et al., 1980) possibly reflecting the abundance of breeding sites

due to water storage practices (Aiken et al., 1980; Gage et al., 2008; Jansen and Beebe,

2010; Padmanabha et al., 2010). Wet areas, on the other hand, may observe little variation

in dengue incidence throughout the year because there may always be enough water to

produce oviposition sites (Williams et al., 2010).
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1.3.3 El Niño Southern Oscillation

El Niño Southern Oscillation (ENSO) is an anomalous condition of ocean temperature that

originates in the eastern tropical Pacific Ocean (Magaña, 2004). ENSO is a dominant source

of interannual climate variability around the world (Trenberth, 1997). The warm phase of

ENSO is known as El Niño and occurs every few years when the sea surface temperature

(SST) anomalies (relative to the base period climatology of 1950–1979) in the Niño-3.4 re-

gion (5◦N–5◦S, 170◦-120◦W) exceed 0.4◦C for at least six consecutive months (Trenberth,

1997). Opposite reverse anomaly patterns occur during the La Niña phase of ENSO (Tren-

berth, 1997). El Niño modulates the regional and local ecology of the affected areas which

may experience extreme meteorological events such as heavy rain, floods or heat (Hurtado-

Dı́az et al., 2007). However, each El Niño event has a distinct character (Trenberth and

Stepaniak, 2001).

The effects of El Niño on weather are most commonly observed on precipitation, but

ambient temperature is also affected (Magaña et al., 2004). The effects of El Niño are not

the same every year, and may vary between summer and winter (Magaña et al., 2004). In

our study case area of Mexico, for example, the El Niño winters are colder than usual in

most of the country and precipitation increases in the north and northwest, and decreases in

the south (Magaña et al., 2004). El Niño summers, on the other hand, register above-normal

temperatures (with some exceptions mainly in the north-west) and decreased precipitation

in the majority of the country (with some exceptions mainly in the south-east) (Magaña

et al., 2004).

Research suggests that El Niño increases the risk of dengue infection in regions with

poor disease control measures where the local climate is associated with the ENSO cy-

cle (Hurtado-Dı́az et al., 2007). Statistically significant associations between dengue and

El Niño have been detected in many countries such as Mexico, Puerto Rico, Thailand,

French Guyana, Suriname, Indonesia, Colombia, Brazil, Australia and Tahiti (e.g. Hales

et al., 1996; Gagnon et al., 2001; Cazelles et al., 2005; Hurtado-Dı́az et al., 2007; Johans-

son et al., 2009a; Lowe et al., 2011). However, the links behind such associations have not

been clearly established (Hurtado-Dı́az et al., 2007) partly because of the challenge to dis-

entangle the relative influence of intrinsic mechanisms (such as host-virus interactions) and

external mechanisms (such as climate variability and El Niño). On the other hand, as will

be discussed in Section 1.5, many studies analysing the effects of El Niño on dengue have

used country level data in which the spatial variability of all variables is largely removed

making it difficult to detect the complex associations between these variables.

1.4 Non-climatic determinants of dengue

1.4.1 Human behaviour and access to protective measures

As previously mentioned, when temperatures increase, humans may seek refuge in sealed

air-conditioned buildings where they are less exposed to mosquito bites, resulting in de-

creased dengue transmission (Gage et al., 2008). In the United States for example, people
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spend much of their time in sealed, air-conditioned buildings where the low ambient tem-

perature and dry atmosphere lessen the survival rate of A. aegypti and extend the EIP of the

dengue viruses reducing the likelihood of successful transmission (Reiter, 2001).

Conversely, in tropical countries people often seek the coolness of shaded, well ven-

tilated areas where A. aegypti prefers to feed (Reiter, 2001). In these countries, windows

and doors are often kept open and many buildings do not have protective measures such as

window screens (Reiter, 2001). Furthermore, these buildings often have gaps between the

top of the wall and the underside of the roof that provide mosquitoes potential routes to en-

ter the indoor space where they can bite humans (Reiter, 2001). The adoption of protective

measures may be driven by economic instead of climatic factors (Jansen and Beebe, 2010;

Reiter, 2001). For example, poor housing design is more frequent in lower socioeconomic

strata.

1.4.2 Mosquito behaviour

The contemporary distribution of dengue does not reflect its maximum potential range ac-

cording to the historical records (Jansen and Beebe, 2010). For example, A. aegypti has

been found beyond the theoretical latitude range (Figure 1.3) of 35◦N–35◦S (Ibáñez and

Gómez, 1995; CENAVECE, 2003; Jansen and Beebe, 2010), and has been associated with

dengue outbreaks in temperate areas such as Philadelphia, New York and Boston (Gage

et al., 2008).

Figure 1.3: Theoretical geographical limits for the distribution of Aedes aegypti (shaded area).

A. aegypti is typically found at altitudes below 1,200 metres above sea level (Gómez-

Dantés, 1991) presumably due to the low temperatures characteristic of high altitudes.

However, it has also been found indoors at altitudes as high as 1,700 and 2,200 metres

above sea level in Mexico and Colombia respectively where it has been able to effectively

transmit dengue (Herrera-Basto et al., 1992; Montesano and Ruı́z, 1995; Yoganathan and
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Rom, 2001). Such large potential originates from the remarkable ability of A. aegypti to

accommodate adverse conditions by exploiting the local microclimates (Jansen and Beebe,

2010). Adult Aedes mosquitoes readily feed and rest indoors where they are less exposed

to the external meteorological conditions (Jansen and Beebe, 2010). Its geographical distri-

bution may not necessarily correlate with outdoor conditions (Kuno, 1995). Thus, climate

and weather do not determine the geographical distribution of dengue and A. aegypti alone

(Jansen and Beebe, 2010; Reiter, 2001).

1.4.3 Population density and unplanned urbanisation

Population density also modulates dengue dynamics, and so dengue is associated with un-

planned urbanisation. High population densities per household allow mosquitoes to find

available human hosts (sources of blood) without the need of flying long distances. This

increases the likelihood of multiple infections in a single household (Halstead, 2008). Such

clustering of blood sources contributes to the development of urban pockets of dengue in-

fections (Halstead, 2008).

Large population growth in major cities and the rising urbanisation of rural areas in the

tropics over the past decades has significantly contributed to the contemporary increase in

dengue incidence (Kuno, 1995). Rising urbanisation place high demands on infrastructure

and public services, particularly in developing countries (Jansen and Beebe, 2010). The

response of each settlement to these demands may significantly influence its suitability for

mosquito breeding (Jansen and Beebe, 2010). Unplanned urbanisation is usually accom-

panied by overburdened water systems (Al-Muhandis and Hunter, 2011) that may lead to

increased domestic or peri-domestic water storage providing potential breeding sites for

Aedes mosquitoes (Gage et al., 2008; Jansen and Beebe, 2010; Padmanabha et al., 2010).

Access to piped water may significantly modify the ecology of dengue transmission

(Schmidt et al., 2011). For example, if the water supply service is unreliable, people may

store water to cope with the intermittent service, providing mosquitoes potential breeding

sites, even in the absence of precipitation (Aiken et al., 1980; Gage et al., 2008; Jansen and

Beebe, 2010; Padmanabha et al., 2010). Also, stand pipes often leak or have puddles below

them that may be effectively exploited by A. aegypti for laying eggs. Cultural differences

in water use and storing practices may also influence dengue transmission (Kuno, 1995).

For example, in a study conducted in Vietnam, the absence of tap water in the household

increased the dengue hospital admission rate by a factor (rate ratio) of 1.2 (Schmidt et al.,

2011).

It is likely that emptying water-holding containers washes away the aquatic stages of the

mosquito (Subra, 1983). However, people may be unwilling to empty such containers as re-

sult of limited or intermittent water supplies (Ibáñez and Gómez, 1995; Chareonsook et al.,

1999; Cifuentes and Sánchez-Arias, 2007; Tran et al., 2010), or as an adaptive response

to increased drought conditions (Beebe et al., 2009). Such emptying will be effective in

reducing mosquito populations only if it occurs before immature stages complete their de-

velopment (Padmanabha et al., 2010).
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If the containers are not covered and are exposed to the environment, they readily be-

come potential breeding sites for the vector even during months of low precipitation (Ibáñez

and Gómez, 1995). The use of lids may avoid mosquito infestations of water-holding con-

tainers (Morrison et al., 2004); however, this action may be undermined by the effects of fre-

quent water usage and result in high mosquito infestation rates (Kittayapong and Strickman,

1993; Phuanukoonnon et al., 2005). In some regions, despite routine maintenance water-

holding containers become colonized breeding large numbers of mosquito larvae (Hemme

et al., 2009).

Unplanned urbanisation is also commonly associated with insufficient waste collection

services that generate numerous artificial water-holding containers that Aedes mosquitoes

prefer for laying eggs (WHO, 2009; Al-Muhandis and Hunter, 2011). The combination

of an increasing use of man-made containers, and poor sanitation services results in the

accumulation of potential breeding sites that facilitate the expansion of mosquito popula-

tions (Jansen and Beebe, 2010). As previously mentioned, A. aegypti prefers to breed in

water-storage drums, discarded tyres, cans and bottles (Ibáñez and Gómez, 1995; Tsuzuki

et al., 2009). Efforts to reduce solid waste should be directed against those water-holding

containers identified as important for mosquito production within each community (WHO,

2009).

The association between dengue and urbanisation is by no means unequivocal. Dengue

has been also reported in rural areas with low population densities in Thailand and Viet-

nam (e.g. Chareonsook et al., 1999; Nagao et al., 2008; Nguyen et al., 2011; Schmidt et al.,

2011). Furthermore, in Thailand dengue has shown greater incidence rates in rural areas

(compared to urban ones) presummably due to lack of a reliable water source in the imme-

diate vicinity of a household, and increased water storage over the wet season (Chareonsook

et al., 1999; Schmidt et al., 2011). In some rural settings, tree holes, fruit zests, and leaves,

as well as the rutting and pot-holing of trackways associated with agricultural settlements

may provide breeding sites for the vector when wetted (Focks and Barrera, 2006).

1.4.4 International travel and transportation of commodities

In previous times, both A. aegypti and the dengue viruses were spread via sailing ships

because the water storage containers in such ships served as mosquito breeding sites, al-

lowing the continuation of the transmission cycle even on long trips (Gubler, 2002). Both

the mosquito and the virus were introduced when ships called at port (Gubler, 2002). Mod-

ern transportation has facilitated and increased the international travel and transportation

of goods within and beween countries, resulting in the constant movement of infected in-

dividuals and vectors from endemic areas to susceptible ones (Gubler, 2002; WHO, 2009;

Al-Muhandis and Hunter, 2011).

For many years, public health authorities have tried to limit the spread of dengue-

infected mosquitoes and implemented vector control programmes at international airports

spraying adulticides into arriving aircrafts (Halstead, 2008). However, viremic humans are

the most likely source of dengue virus importation across the world, and not the mosquitoes
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within the aircrafts (Halstead, 2008). Susceptible individuals moving into dengue-endemic

regions (for holidays, for example) increase their risk to dengue infection and may introduce

the virus or a new serotype into dengue-receptive areas on their return.

1.4.5 Human conflicts and politics

The dynamics of dengue substantially changed in Southeast Asia during World War II due

to the disruption in the ecology caused by the war (Gubler, 2002). Such disruption expanded

the geographical distribution and increased the population densities of A. aegypti, making

many countries in the region highly susceptible to dengue epidemics (Gubler, 2002). The

movement of troops accelerated the spread of viruses between populations, causing major

epidemics (Gubler, 2002). By the end of the war, most countries in Southeast Asia were

hyperendemic and had multiple dengue serotypes co-circulating in their communities, a

few years later epidemic DHF emerged in the region (Gubler, 2002).

Lack of political will and limited resources for implementing effective control measures

have played a key role in the contemporary distribution of dengue in many regions (e.g.

Gubler, 2002; Al-Muhandis and Hunter, 2011). For example, in the 1950s the elimination

of the yellow fever and dengue vector, A. aegypti, became the goal of a regional eradica-

tion programme led by the Panamerican Health Organization (Gubler and Wilson, 2005).

This programme initially succeeded in many Latin American and Caribbean countries, and

dengue was successfully eliminated from all but a few countries in the region (Gubler and

Wilson, 2005). However, complacency, and lack of political will resulted in the redirection

of resources to other programmes causing changes in the vector control strategies, and ulti-

mately the reinfestation of the region by the early 1970s (Gubler, 2002; Gubler and Wilson,

2005), and the aspiration of a regional eradication was abandoned. To date, the eradication

of dengue remains elusive.

1.4.6 Resistance to insecticides

Insecticide-resistant A. aegypti populations have been detected in several countries such

as Cuba, Brazil, Venezuela and Vietnam (e.g. Rodrı́guez et al., 2001; Huong et al., 2004;

Lima et al., 2011). Such resistance poses serious threats to the effective management of

A. aegypti (WHO, 2009). Routine monitoring of insecticide susceptibility should be a key

component of any vector control programme.

1.4.7 Viral titer

The viral titer of an individual carrier, and the amount of blood taken by each biting

mosquito greatly determine the probability that the virus will disseminate to the mosquito’s

salivary glands and, in consequence, the likelihood and size of the virus inoculum to fur-

ther human hosts (Halstead, 2008). The levels of human viremia required to infect Aedes

mosquitoes have not been accurately determined (Halstead, 2008).
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1.5 State of research on the empirical modelling of dengue oc-
currence as a function of climatic factors

The potential role of weather, climate and climate change in the contemporary and future

geographical distribution of dengue is a highly topical issue (Gubler et al., 2001; Reiter,

2001; Gage et al., 2008; Jansen and Beebe, 2010). Understanding and ultimately being

able to predict the spatiotemporal dynamics of dengue at different spatial scales is critical

to effectively prevent and control the disease (Eisen and Lozano-Fuentes, 2009), and to

target the timing and location of public health interventions in a timely fashion (Kovats

et al., 2003).

Many studies have estimated empirical relationships between dengue, weather, and

climate using a wide range of methods (e.g. Gagnon et al., 2001; Cazelles et al., 2005;

Hurtado-Dı́az et al., 2007; Lowe et al., 2011; Machado-Machado, 2012). The methods used

range in complexity, from simple bivariate correlation and contingenty tables, to the appli-

cation of more sophisticated methods such as Generalized Linear Mixed Models with ran-

dom effects and species distribution modelling (e.g. Gagnon et al., 2001; Hales et al., 2002;

Hurtado-Dı́az et al., 2007; Johansson et al., 2009a; Machado-Machado, 2012). Weather

and climate variables generally included temperature, rainfall, humidity, and an El Niño in-

dex. These variables were used as predictors for the distribution or occurrence of dengue

across several geographical areas. Ocassionally, the outputs of empirical models were used

as a baseline to predict the potential impacts of climate change on the future distribution

and risk of dengue at different spatial and temporal scales (e.g. Hales et al., 2002; Sriprom

et al., 2010). Often, however, the influence of non-climatic confounders was neglected,

undermining the relationships estimated by these models (Robins and Morgenstern, 1987;

Gething et al., 2010).

We identified and analysed 16 studies that used empirical modelling methods to esti-

mate relationships between dengue and various climatic variables in order to identify gaps

in the literature. Table A.1 presents those studies in a chronological order, and summarizes

their main features. In this section, we (i) present an overview to the statistical methods used

in the identified studies, and (ii) detail the key findings of the identified studies analysing

their strengths and limitations for the estimation of empirical associations between dengue,

weather and climate. Studies using similar statistical methods (e.g. autoregressive models)

and model structures were grouped to facilitate their analysis. Whenever possible, stud-

ies are discussed together to avoid unnecessary repetition (e.g. Hurtado-Dı́az et al., 2007;

Brunkard et al., 2008; Luz et al., 2008).

1.5.1 Bivariate correlation

Bivariate correlation measures the strength of the relationship (ranging from zero to one,

where one represents a perfect relationship, and zero no relationship) between two variables

(Cohen et al., 2003). The purpose is to determine whether as one variable increases, the

other variable tends to increase or decrease. Spearman correlation is used when one or
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both of the variables are not normally distributed, or consist of ordinal data or ranks. If the

variables are not already ranks, these are converted into ranks and then correlated (Cohen

et al., 2003).

Hales et al. (1996) studied the relationship between dengue epidemics and ENSO in

South Pacific island countries over the period 1970–1995. ENSO was measured with the

Southern oscillation index (SOI). Using Spearman’s rank correlation, the number of dengue

epidemics (obtained from searches on peer-reviewed journals) starting in a given year was

compared with the mean SOI value for that same year. Dengue epidemics were positively

correlated with ENSO (rs = 0.58, P = 0.002).

This study represents one of the first attempts to correlate dengue data with El Niño,

which as previously mentioned, is one major source of interannual climate variability (Tren-

berth, 1997). The study, however, does not look at associations between dengue, weather

and climate. One strength of this study is that it uses a relatively long time-series includ-

ing more than one El Niño event. Evidence of statistical associations between dengue

and ENSO are more robust when the studies use long time-series including more than one

El Niño event (Kovats et al., 2003). Another strength is that the SOI index (together with

the Niño-3.4, and Niño-4 indices) chosen by Hales et al. (1996) is one of the most sensitive

indices for determining an El Niño event, compared to the Japan Meteorological Agency

(JMA), Niño-1+2, and Niño-3 indices (Hanley et al., 2003).

One drawback is that looking only at epidemic periods, the model ignores subtler

changes in dengue dynamics that may originate from El Niño. The aggregation of data

at the supra-national level may have caused aggregation bias issues (Theil, 1954; Grunfeld

and Griliches, 1960) because such aggregation removes the spatial variability in the local

climate, leading to flawed estimates and conclusions. Additionally, the authors fail to incor-

porate the effects of potential confounders (e.g. population data, urbanisation trends, access

to public services; see Section 1.4) which may explain variations in dengue occurrence.

Such confounders are required to produce reliable estimations of statistical relationships

between disease outcome variables and climatic factors (Robins and Morgenstern, 1987;

Gething et al., 2010).

1.5.2 Fisher’s exact tests

The Fisher’s exact test is used in the analysis of contingency tables (cross tabulation), to

estimate the significance of the association (contingency) between two categorical variables

similarly to the chi-squared test of independence (Weinberg and Abramowitz, 2008). The

Fisher’s exact test is more precise than chi-squared test when the expected numbers are

small (Weinberg and Abramowitz, 2008). As with the chi-squared test, the most common

use of Fisher’s exact test is for 2 by 2 contingency tables.

Gagnon et al. (2001) analysed associations between dengue epidemics and ENSO

events in Colombia, French Guiana, Suriname, and the Indonesian archipelago. Annual

dengue epidemics were defined as anomalous increases (i.e. increase in disease transmis-

sion greater than 0.5 standard deviations above the mean) in the rate of change (i.e. the
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number of dengue cases/1,000 people in one year minus the number of cases/1,000 people

in the previous year, Gagnon et al. 2001). ENSO events were measured with three dichoto-

mous variables for: (a) the development phase of El Niño (Niño 0), (b) the year immediately

after the peak of El Niño (Niño +1), and (c) La Niña years.

The authors used Fisher’s exact tests to determine wether dengue epidemics were more

likely to occur during: El Niño (0) versus other years, El Niño (+1) versus other years,

and La Niña years versus other years. Their results suggest that dengue epidemics are

significantly associated with El Niño events at the 0.05 level in French Guiana and Indone-

sia. In Colombia and Suriname, however, the association between dengue epidemics and

El Niño was significant only at the 0.1 level. Furthermore, the risk to dengue epidemics

was high in French Guiana and Suriname during El Niño (0) years, whilst in Colombia and

Indonesia it was high during El Niño (+1) years.

Although both the ENSO and dengue series are long enough to include more than one

El Niño events, and the study area is relatively large and diverse, one drawback is that

the extent of spatial heterogeneity may be substantially large in the studied regions (e.g.

Colombia is characterized by five natural regions including the Andes, the Amazon, and

the Caribbean and Pacific coast lowlands). As in Hales et al. (1996), this study focuses on

epidemics ignoring subtler changes in dengue incidence that may result from El Niño vari-

ability. Additionally, as previously mentioned, the aggregation of data at the national level

may have caused aggregation bias issues (Theil, 1954; Grunfeld and Griliches, 1960) lead-

ing to flawed estimates and conclusions.

The use of El Niño years as a time-related explanatory variable of dengue epidemics

is imprecise because the El Niño events do not run according to the calendar year (Ko-

vats et al., 2003; Hurtado-Dı́az et al., 2007). An El Niño event may start in one year and

end in another, but its effects on the local climate may be restricted to only one of those

years (Hurtado-Dı́az et al., 2007). In addition, the authors fail to incorporate the effects

of potential confounders (see Section 1.4) required to produce reliable estimations statis-

tical relationships between disease and climate variables (Robins and Morgenstern, 1987;

Gething et al., 2010).

1.5.3 Multiple linear regression

Multiple linear regression is used to model the linear relationship between a dependent

variable and a set of independent variables (Cohen et al., 2003). Multiple linear regres-

sion could be a powerful approach in situations when appropriately applied. However, it is

limited by the following assumptions. First, linear regression assumes a constant variance

(Cohen et al., 2003). Second, linear regression assumes that the errors are identically and

independently distributed (Guisan et al., 2002). Third, it assumes that the residuals follow a

Gaussian distribution (Guisan et al., 2002; Cohen et al., 2003) which makes them inappro-

priate for modelling count data with small counts and with periods of no case occurrence as

commonly observed in dengue data. Fourth, linear regression assumes that the regression

function in the predictors is linear (Guisan et al., 2002); although this limitation can be
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easily overcome incorporating different functional forms of the independent variables.

Chowell and Sánchez (2006) analysed associations between dengue incidence and a

range of climatic variables (see Table A.1) in Colima (Figure 1.4), Mexico during the 2002

outbreak. Cross-correlation analysis was initially used to study the lagged effects of the

climatic variables on dengue incidence. Univariate and multivariate regression models were

then fitted both with and without the lagged climatic variables.

Figure 1.4: Geographical location of the Mexican province of Colima (shaded area)

The multivariate model with the greatest explanatory variable (94% of the observed

variance, P < 0.001) indicated that dengue incidence shows a positive association with

minimum temperature, maximum temperature, precipitation and evaporation, and a nega-

tive association with mean temperature. Positive associations indicate that, for example,

as temperature increases, so too does dengue incidence. Reduced versions of this model

including only two explanatory variables at the time were also fitted. The estimated as-

sociations of the reduced models were consistent with those of the full model, and were

significant at the 0.01 level. Adjusting the maximum temperature and evaporation time

series for the lags at which they were most highly correlated to dengue incidence did not

improve the percentage of variance explained by the previous models.

Sia Su (2008) studied the influence of weather on dengue incidence in the Metro Manila

region, Philippines for the period 1996–2005. The selected method was step-wise multiple

linear regression. Monthly dengue incidence per 100,000 people was regressed on mean

monthly temperature and mean monthly precipitation. Precipitation showed a small, posi-

tive and significant relationship with dengue incidence (B = 0.004, r2 = 0.337, P < 0.05).

No significant relationship was detected for temperature.

Critique to Chowell and Sánchez (2006) and Sia Su (2008). Dengue transmission

involves one person’s infection leading to one or more secondary infections, situation that

may lead to serial autocorrelation in the residuals. Both Chowell and Sánchez (2006) and

Sia Su (2008) failed to incorporate autocorrelation components in their models to avoid

such autocorrelation, even though such autocorrelation effect would be apparent from the

results of the regression models. The estimated effects of temperature in Chowell and
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Sánchez (2006) suggest that the inclusion of several temperature covariates may have lead

to overfitting issues because whilst minimum and maximum temperature were positively

associated with dengue, mean temperature showed a negative association.

Both studies estimated correlations between dengue and climatic time series that exhibit

strong seasonal patterns while neglecting the seasonal trend components of such series,

making it difficult to disentangle true weather from other seasonal effects (e.g. holidays,

seasonal water storage). This situation greatly undermines their estimations because the

seasonality in both dengue and climatic series is high (e.g. Cazelles et al., 2005; Johansson

et al., 2009a). Consequently, if the seasonal components are not eliminated from the time

series, almost any variable with a similar temporal behaviour will inevitably produce highly

significant coefficients even if no real association exists between the two time series (Bowie

and Prothero, 1981).

The time span of both studies is short (≤ 10 years); and short time series are prob-

lematic for the identification of climatic signals with high statistical confidence due to their

small signal-to-noise ratios (Santer et al., 2011). Furthermore, the studies were conducted in

small geographical areas which are likely to be climatically and socioeconomically homo-

geneous (Elliott and Wartenberg, 2004; Eisen and Lozano-Fuentes, 2009), making it hard

to extrapolate their results to areas with greater climatic or socioecnomic variability. Also,

small populations commonly result in low numbers of disease cases leading to unstable

risk estimations (Olsen et al., 1996). As in previous cases, both studies fail to incorporate

the effects of likely sources of spurious relationships (see Section 1.4) greatly undermining

their estimations (Robins and Morgenstern, 1987; Gething et al., 2010).

1.5.4 Autoregressive models

Autoregressive models (AR) are frequently used in time series analysis. In these AR mod-

els, a time series is explained by past terms (lags) of itself, a constant, and an error process

(Cowpertwait and Metcalfe, 2008). The order of an AR model indicates the number of lag

observations of the analysed series, so that a first order model AR(1) would include the

outcome variable lagged one month as a time period explanatory variable. As in multiple

linear regression, the major shortcomings of autoregressive models are the assumption of

a constant variance (Xiao and Abdurrahman, 2007), and the assumption of normality on

the residuals (Fonseca-Nobre et al., 2001; Xiao and Abdurrahman, 2007). In practice, AR

models are commonly related to moving average (MA) models which conceptually are lin-

ear regressions of the values of one series against previous white noise (independent and

identically distributed terms, with zero mean) error terms (Pfaff, 2008). When a time series

exhibits non-stationarity (i.e. the mean and variance change over time), the time series must

be differenced until a stationary one is obtained (Pfaff, 2008). This model class is termed

autoregressive integrated moving average (ARIMA) model.

Hurtado-Dı́az et al. (2007) estimated the impact of both weather and El Niño on

dengue incidence in two municipalities of the State of Veracruz (Figure 1.5), Mexico, over

the period 1995–2003. The dengue series were autoregressed until there was no evidence
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of serial correlation in the residuals. The optimal time lag of the independent meteorolog-

ical variables was estimated cross-correlating the meteorological series against the auto-

regressed dengue series. Then, associations between dengue, weather and El Niño were

analysed including the climatic variables into the auto-regressive models. Models were ad-

justed by population growth. The predictive ability of the fitted models was evaluated using

data from 1995–2002, and validated using the 2003 data.

Figure 1.5: Geographical location of the Mexican municipalities of Veracruz (blue pushpin), San
Andrés Tuxtla (red pushpin), and Matamoros (green pushpin)

The models’ results suggest that increases in the weekly number of dengue cases in the

municipalities of San Andrés Tuxtla and Veracruz are positive and significantly associated

with SST (used as a proxy of El Niño) with a lag of 16 and 20 weeks respectively. Similar

associations were estimated for minimum temperature during the same week, and precip-

itation with a lag of two weeks in both municipalities. No significant differences in the

estimated coefficients of weather and climate was detected between the two municipalities.

Brunkard et al. (2008) analysed the role of climate and weather variables (see Table

A.1) on dengue incidence in the city of Matamoros, Tamaulipas, Mexico over the period

1995–2005. The dengue series were autoregressed until there was no evidence of serial

correlation in the residuals as in Hurtado-Dı́az et al. (2007). Additionally, the optimal

time lags for the meteorological variables were determined using cross-correlation func-

tions with each meteorological variable tested against the residuals of the auto-regressed

dengue series. The dengue autoregressive terms and the lagged weather and climate vari-

ables were entered into an ARMA model. Model validation was performed using the first

ten years of data and predicting the values for the remaining year.

The autoregressive components in the model exerted a strong influence in the model fit;

however, adding the climatic variables significantly improved it (Chi-squared(3) = 11.12,

P = 0.011) when using the full 11 years series. Dengue incidence was positive and signifi-

cantly associated with maximum temperature with a lag of one week, precipitation with a

lag of two weeks, and SST in the Niño 3.4 region with a lag of 18 weeks. No significant

association was estimated with minimum temperature, and consequently, it was dropped
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from the model.

Critique to Hurtado-Dı́az et al. (2007) and Brunkard et al. (2008). Like in previous

sections, these two studies neglect the effects of potential confounders of the associations

between dengue, weather and El Niño undermining their estimations (Robins and Morgen-

stern, 1987; Gething et al., 2010). Also, they were conducted across relatively short time

periods (see Table A.1) which, as previously explained, pose challenges for the identifi-

cation of climatic signals with high statistical confidence (Santer et al., 2011). Moreover,

these studies were conducted in small greographical areas which may lead to biased risk

estimations due to low number of cases (Olsen et al., 1996).

Luz et al. (2008) fitted ARIMA models to monitor dengue incidence in Rio de Janeiro

over the period 1997–2004. The results of the fitted model were used to predict dengue in-

cidence by 2005. The authors further evaluated whether incorporating climatic variables in

the models would increase their predictive power. The climatic variables were selected us-

ing Pearson’s correlation tests and univariate ARIMA models between such variables and a

‘pre-whitened’ dengue series over a range of lags. This pre-whitening consisted in remov-

ing the trend and seasonal components of the dengue series using ARIMA models. The

climatic variables that correlated with dengue incidence were tested as additional regres-

sors in further ARIMA models. Incorporating independently maximum temperature during

the same month, and number of rainy days with a lag of one month improved predictive

power of the fitted ARIMA models. However, the predictions computed with the results

of these climate-informed models were not significantly better than the estimated with the

ARIMA model without external regressors.

The model’s predictions of this study were significantly close to the observed dengue

incidence in the study region making it very useful as a decision-making tool. However,

for the understanding of associations between dengue and weather, the model is not as

reliable as it fails to incorporate potential confounders (see Section 1.4). Thus, the estimated

associations between dengue and weather are likely to be biased (Robins and Morgenstern,

1987; Gething et al., 2010). The study was conducted over a short period of time (8 years)

and across a small geographical area which, as previously explained, pose challenges for

the identification of climatic signals with high statistical confidence (Elliott and Wartenberg,

2004; Santer et al., 2011), and may lead to biased risk estimations due to low disease counts

(Olsen et al., 1996).

1.5.5 Wavelet analyses

Wavelet analysis allows the study of nonstationary time series by decomposing them into

time-frequency domains (Liu, 1994; Torrence and Compo, 1998). The method allows the

investigation and quantification of the temporal evolution of different periodic components

of a given time series (Cazelles et al., 2005, 2007). Signals can vary both in frequency

and amplitude over time. For example, sea surface temperature in the Niño-3.4 Region

shows both high-frequency spikes on a time scale of two to seven years, as well as longer

interdecadal fluctuations. Wavelet analysis allows the time-frequency decomposition, and
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the identification of these cycles on an ENSO series with a trade-off between time and

frequency resolution (e.g. Torrence and Compo, 1998). One major drawback of wavelet

analysis is that it assumes a linear functional form making it inappropriate for analysing

data describing nonlinear phenomena (Cummings et al., 2004). As with other methods, this

problem may be solved by transforming the variables to linearize their relationship (Cohen

et al., 2003).

Wavelet coherency analysis is an extension of this method. Unlike conventional sta-

tistical methods (i.e. spectral density analysis), wavelet coherence measures the cross-

correlation between two time series as a function of their frequencies (Torrence and Compo,

1998), providing information about those periods where two nonstationary signals are lin-

early correlated with each other (Cazelles et al., 2005). More specifically, wavelet coher-

ence analysis determines if the presence of a particular frequency in a disease series at a

specific time is related to the same frequency, and at the same time in a given covariate

(Chaves et al., 2008). However, research indicates that a significant level of wavelet co-

herence between two series does not necessarily correspond to a statistically significant

dependence between random signals (Bigot et al., 2011).

Cazelles et al. (2005) estimated associations between severe dengue (henceforth dengue)

incidence in Bangkok and the averaged incidence for the rest of Thailand, and the Niño-3

index, the Southern Oscillation Index, and average monthly temperature and precipitation

over the period 1983–1997. Wavelet analysis was selected because, as previously explained,

it allows the quantification of the temporal evolution of a time series with different cyclic

components (Cazelles et al., 2007). Statistical relationships between the dengue and cli-

matic time series were estimated using wavelet coherence analysis.

The dengue series showed strong seasonal oscillations, indicating a strong influence of

the annual cycle on dengue dynamics. The El Niño series on the other hand, was dominated

by cycles of about 4–6 years. Both dengue series have in-phase cycles of about 2–3 years

(with a mean delay of three months in the rest of Thailand with respect to Bangkok) only

over the period 1984–1992 where there is high coherence with El Niño cycles. Over the

periods 1983–1986 and 1991–1997 the annual oscillations are dominant, showing a mean

delay of one month in Bangkok with respect to the rest of Thailand.

Dengue and precipitation were significantly associated with each other at the annual

scale. Both series are in-phase in most of the country; however, dengue incidence in

Bangkok follows the seasonal peak of precipitation after a short lag time (length not spec-

ified by the authors). Over the period 1986–1991, dengue and precipitation were signifi-

cantly associated for cycles of about 2–3 years. Similar but weaker patterns of oscillation

were observed for temperature in both series.

Johansson et al. (2009a) analyzed statistical relationships between dengue incidence,

ENSO, and local weather across Puerto Rico, Mexico, and Thailand over different time

periods (see Table A.1). Wavelet coherence analysis was used to estimate the relationships

between dengue incidence, ENSO, and the local weather on annual and multiyear scales.

ENSO and dengue showed significantly associated cycles of approximately 3.6 years in

Puerto Rico, with a delay of about six months on the dengue cycles with respect to ENSO.
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No significant associations were detected between dengue and ENSO in Mexico and Thai-

land at interannual scales.

Dengue, temperature and precipitation showed significantly associated modes of oscil-

lation on the annual scale in the three countries. Temperature was not significantly asso-

ciated with dengue incidence in any of the studied countries at interannual scales. Asso-

ciations between dengue and precipitation varied between countries at interannual scales.

In Puerto Rico, precipitation and dengue cycles of about 1.8 years were significantly as-

sociated with each other with a lead of approximately four months in the dengue series

with respect to precipitation. Since it is impossible for dengue incidence to influence pre-

cipitation, Johansson et al. (2009a) hypothesize that such phase difference indicates that

decreased precipitation leads to increased dengue seven months later due to increased wa-

ter storage (see Section 1.4.3). Similar associations were observed in Thailand for cycles

of about 2.5 years, with delay of about two months in the dengue series with respect to pre-

cipitation. In Mexico, no significant associations were estimated between dengue incidence

and precipitation on multi-year scales.

Chowell et al. (2011) estimated associations between dengue incidence and climatic

factors across the jungle, coast, and mountain regions of Peru, over the period 1994–2008.

Two time periods were assessed to partially account for the introduction of new serotypes

(1994–1999 and 2000–2008). The time series were square root transformed to stabilize

their variance. Wavelet coherence revealed significant coherence between dengue and mean

temperature at the annual level. The coherence pattern for precipitation was less clear.

Critique to Cazelles et al. (2005); Johansson et al. (2009a) and Chowell et al. (2011).
One advantage of wavelet analyses is that they allow the analysis of nonstationary data,

as well as the estimation of transient relationships between two signals (Cazelles et al.,

2007). One major drawback, however, is that wavelet coherence analysis only allows the

estimation of statistical associations between two time series at the time. Consequently it

is not possible to account for the potential effects of confounding variables. Also, because

only two series can be analysed at a given time, the analysis of panels of cross-sectional

data is not feasible. Therefore, series from multiple administrative units should be either

analysed individually, which can be tedious; or aggregated at a greater scale which may lead

to aggregation bias (Theil, 1954; Grunfeld and Griliches, 1960). Johansson et al. (2009a)

acknowledge this situation and state that the estimated lack of association between dengue

and El Niño in Mexico may be due to the aggregation of data at the national level.

1.5.6 Generalized Linear Model and Generalized Linear Mixed Model

The Generalized Linear Model (GLM) is a broad class of regression models developed to

address multiple regression when the variance on the outcome variable is not constant, or

when the errors are not normally distributed such as count data (e.g. the number of dengue

cases in a given region at a given time), or binary response variables (e.g. dengue epidemics

or non-epidemic) (Cohen et al., 2003; Crawley, 2007). In count data, there are often lots

of zeros in the outcome variable, and the variance may increase linearly with the mean
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(Crawley, 2007). The Generalized Linear Mixed Model (GLMM) is an extension to the

GLM which includes random effects (where the study subjects are random samples of a

larger population, and therefore their variance may tell us something about the population)

in the linear predictor in addition to the usual fixed effects (where both the study subjects

and their variance are identical) (Crawley, 2007).

Unlike linear regression models which assume a normal distribution, the distribution of

the outcome variable in the GLM and GLMM may arise from any exponential family distri-

butions (e.g. Gamma, Poisson or binomial) (Guisan et al., 2002). Also, when the dispersion

(or scale parameter) of the data is expected to be higher than would be expected based on a

chosen distribution, their scale parameters can be estimated using quasilikelihood (Guisan

et al., 2002). Although both GLMM and GLM models can handle nonlinear relationships,

the identification of the appropriate polynomial terms and transformations of predictors to

improve the model’s fit can be tedious and imprecise (Guisan et al., 2002).

Logistic, Poisson, and negative-binomial regression models are included within the

GLM framework (Gelman and Hill, 2007). Logistic regression is a form of nonlinear re-

gression where the dependent variable is not continuous, and where regression coefficients

are expressed in odd ratios (ratio of the probability that an event happens to the probability

that it does not happen) (Cohen et al., 2003). The dependent variable may be dichotomous

as when one person is diagnosed with dengue fever or not; or may be a count like the

number of dengue epidemics in a given period of time.

The Poisson model is used for count data such as the number of disease cases character-

ized by following a Poisson distribution (Gelman and Hill, 2007). The Poisson distribution

expresses the probability of a number of relatively rare events taking place in a given time

if such events take place with a known average rate, and are independent of the time since

the last event (Levin, 1988). The negative binomial model is used to fit overdispersed (i.e.

the variance appears to be greater than the mean) count data that cannot be encompassed

by a Poisson model (Gelman and Hill, 2007).

Koopman et al. (1991) conducted a serosurvey in individuals under 25 years across

3,408 households in 70 Mexican localities from March to October 1986. Within each

household, various aspects were registered (e.g. construction, access to mosquito protective

measures, history of clinical dengue). Locality level variables were then created for each

of the variables registered at the household level (Table A.1). Additionally, population size,

socioeconomic level, and meteorologic variables were obtained for each locality.

The authors used stepwise logistic regression for selecting a final set of variables in a

multivariate analysis. Even though some of the variables fell out of this regression, they

were included in the final model because they were considered to be potential confounding

variables (Koopman et al., 1991).

The median temperature during the rainy season showed a stronger association with

dengue than the other variables with a four times greater odds ratio of infection (95% CI

2.5–6.6) in communities with a median temperature of 30◦C compared to communities

with a median temperature of 17◦C over the rainy season (Koopman et al., 1991). This

finding supports the notion that variations in temperature greatly influence many aspects
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of the biology of both A. aegypti and the dengue viruses (Watts et al., 1987; Gage et al.,

2008; Jansen and Beebe, 2010). The authors do not report a quantification of the estimated

dengue risk associated with mean annual precipitation pressumably because this variable

fell out of the initial screening.

Temperature and altitude are negative and significantly correlated. Therefore, not sur-

prisingly altitude showed the second strongest association with dengue with the odds ratio

of dengue infection at 10m above sea level being two times (95% CI 1.6–2.6) the odds ratio

of infection at 1,200m. Humid climates were associated with a 1.4 greater risk of infection

(95% CI 1.1–1.7) compared to dry climates.

The presence of uncovered water-holding containers and mosquito larvae were both

significantly associated with a 1.9 times greater risk of infection (95% CI 1.4–2.7, and 1.4–

2.5 respectively) when comparing communities with high and low levels (Koopman et al.,

1991). The presence of tyres in the household, on the other hand, was associated with a 1.1

times greater risk of dengue infection in communities with high levels of this factor.

With the exception of the use of sleeping nets, the use of protective measures (i.e.

insecticide use, complete screening, use of smoke for mosquitoes) decreased the odds ratio

of infection. The use of sleeping nets was found to be a risk factor with a 2 times (95%

CI 1.4–3.1) greater odds ratio of infection when used. This finding may be explained by

human and mosquito behaviours, because people may use sleeping nets when mosquito

populations are high, but A. aegypti prefers to feed in the early morning and late afternoon

(Koopman et al., 1991). The main strenghts of this study rely on the unique dataset of

epidemiological, environmental, and socioeconomic variables at a very refined scale, and

their inclusion as covariates in a single model for the whole study area.

To our knowledge, this study is unique in its design. The amount of covariates in-

cluded in the model and the high resolution of the data constitute two of its main strengths.

However, the time span of the Koopman et al. (1991) study is very short which is problem-

atic for the identification of climatic signals with high statistical confidence (Santer et al.,

2011). This could possibly explain the lack of significant associations between dengue

and mean annual precipitation. Also, logistic regression requires an a priori knowledge

of the functional form of the associations between dengue and each modelled variable

(Schimek, 2009). The incorrect specification of the functional form of the associations

between dengue and weather may lead to residual confounding (Benedetti and Abrahamow-

icz, 2004).

Hales et al. (2002) estimated empirical relationships linking the global spatial distri-

bution of dengue outbreaks (dengue occurrence in excess of what would normally be ex-

pected) and local humidity, and extrapolated their results to predict future changes in the

geographic distribution of the disease under the IS92a climate change scenario. The number

of dengue outbreaks was collected by country, unless subnational information were avail-

able, for the period 1975–1996. Climate information (see Table A.1) was retrieved from the

Intergovernmental Panel on Climate Change (IPCC) data distribution centre for the period

1961–1990.

Two logistic regression models were fitted by the method of maximum likelihood to
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predict the presence or absence of dengue outbreaks at the global scale (Hales et al., 2002).

The models results were then used to project the potential effects of climate change on the

geographical limits of dengue by 2055 and 2085 using the outputs of a range of global

circulation models (ECHAM4, HADCM2, CGCMA2, and CGCMA1). The outputs of the

regression models were used to estimate the population at risk of dengue under the baseline

and climate change scenarios.

The first model only included local humidity (defined as vapour pressure or specific

humidity) as explanatory variable. There is no indication about why temperature and pre-

cipitation variables were dropped from the model. It is likely that these variables had a

poor or nil association with dengue, but this is not explicit in the paper. This initial model

explained 89% of the variation on the outcome variable. Humidity was significantly as-

sociated with dengue outbreaks with a 1.3 greater risk (95% CI 1.29–1.31) of outbreaks

in areas with high levels of humidity. The final model included local humidity, maximum

humidity within a radius of ten grid squares (grid size 0.5◦) to reduce the spatial patterning

of the residuals, and an interaction term between these two variables. The model explained

of 92% of the variation on the outcome variable, a sensitivity (the proportion of dengue

outbreaks accurately predicted by the model) of 85% and a specificity (the proportion of

non-outbreaks accurately predicted by the model) of 93%. This model represents one of the

first and few attempts to model the geographical limits of dengue at the global scale using

empirical modelling methods.

As in other studies, Hales et al. (2002) fail to acknowledge the effects of potential

confounders (see Section 1.4) in their models, something that greatly undermines their

results (Robins and Morgenstern, 1987; Gething et al., 2010). The use of national level data

may result in aggregation bias issues (Theil, 1954; Grunfeld and Griliches, 1960) which

are particularly problematic when estimating nonlinear relationships (Fezzi and Bateman,

2012). This bias has severe implications for their prediction of climate change impacts

because such predictions could be significantly distorded and lead to flawed conclusions

(Fezzi and Bateman, 2012). Additionally, the univariate analysis performed is likely to

produce erroneous results if a region experiences increases in two climatic variables with

opposite effects of similar magnitude on the disease outcome (Rohr et al., 2011).

Johansson et al. (2009b) analyzed associations between dengue incidence, tempera-

ture and precipitation across 77 Puerto Rican municipalities over the period July 1986 to

December 2006. One municipality (Culebra) was excluded from the analyses because of

relatively sporadic transmission. A hierarchical GLM was fitted to estimate local associa-

tions over time as well as spatial heterogeneity.

The first modelling stage consisted in fitting municipality-specific GLM models with

Poisson specification, regressing dengue incidence on either monthly average temperature

or monthly average precipitation, to estimate their local short-term associations. These

models included a population offset and a natural cubic spline function of time to adjust

for seasonal confounding. Distributed lag models were used to assess effects of weather on

dengue, up to six months later, to account for the delayed effects of weather on mosquito

populations. The second stage consisted in estimating global associations by averaging the
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short-term associations across municipalities and identifying local climatic and socioeco-

nomic factors (see Table A.1) that may potentially modify the previously estimated local

short-term associations. This stage allowed the characterization of the spatial heterogeneity

on the relationships between dengue and weather. The model was fitted using a Bayesian

framework.

Temperature lagged zero, one, and two months were positive and significantly associ-

ated with dengue incidence in most municipalities. The global association (i.e. the average

of local short-term associations) was positive and statistically significant at all three lags.

Short-term associations were weaker for mean temperature compared to maximum and

minimum temperatures. Precipitation lagged one, and two months were significantly asso-

ciated with dengue in some municipalities. The global association with precipitation was

positive and significant only after having accounted for the effect modification of long-term

climate. Municipalities with a higher poverty index showed a stronger short-term associa-

tion between dengue and weather; however, such an effect was not consistent across lags.

The smooth function used in this study greatly reduces the observed interannual vari-

ability in dengue incidence, and effectively isolates the associations with weather on the

temporal scale (Johansson et al., 2009b). As previously mentioned, removing the seasonal

trends from the analysis is critical to differentiating the effects of potential confounders

with smooth seasonal trends (Bowie and Prothero, 1981; Johansson et al., 2009b). How-

ever, such spline contains more variation than can be really attributed to weather making

the associations evident, but at the same time, likely underestimating the magnitude of the

true effects of weather (Johansson et al., 2009b). The model fit would have benefitted from

the extension of flexible smooth functions to the climatic factors as it could have allowed

the estimation of highly nonlinear relationships with dengue incidence.

The findings of Johansson et al. (2009b) provide the first piece of quantitative evidence

for understanding why local associations between dengue and weather are spatially hetero-

geneous. Unfortunately, these findings arise from a rather small geographical area, with a

low range of climatic conditions posing difficulties for their generalization to other regions

with greater climatic variability. It is possible that the relatively low variation in climate

would have prevented the model from detecting complex nonlinearities in the relationships

between dengue, weather and climate.

Sriprom et al. (2010) developed a GLM to estimate associations between dengue inci-

dence, weather and socioeconomic conditions across the Sakon Nakhon province of Thai-

land over the period 2005-2007. The GLM model was adjusted for the effects of each year,

and included a multiplicative interaction term for minimum temperature and precipitation.

Then, the authors assessed the potential impact of climate change on dengue incidence

using their model’s output and multi-model averages based on the temperature and precip-

itation predictions for the A1B emissions scenario, for the period 2090–2099.

The results indicated that dengue was positive and significantly associated with mini-

mum temperature. The relationship with precipitation, however, was negative for tempera-

tures smaller than 23.2◦C, and positive for temperatures above that threshold. For monthly

minimum temperatures lower than 23.2◦C, the combined effect of minimum temperature
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and precipitation is heterogeneous across districts, whereas for monthly minimum temper-

atures above 23.2◦C, the impact of climatic factors is positive and homogeneous across

districts. The number of children of 0–4 years old, was positive and significantly associated

with dengue incidence, whilst both the proportion of villages with primary schools and per

capita number of public small water wells showed negative associations. The projections

under the A1B scenario assumptions suggest that climate change may increase the spatial

distribution of dengue in the region from the most populated districts to less populated ones.

It may also increase the dengue transmission period to include part of the winter, summer,

and the rainy seasons (February to November).

Sriprom et al. (2010) explicitly accounted for the effects of some socioeconomic con-

fouders, and controlled for the effects of year-specific omitted variable bias and un-modelled

confounders (e.g. the introduction of a new dengue serotype). As a consequence, their esti-

mations of future dengue risk under climate change are more reliable than those from previ-

ous studies (e.g. Hales et al., 2002). One drawback, however, is that the study is restricted to

a small temporal frame which, as has been mentioned, is problematic for the identification

of climatic signals with high statistical confidence due to their small signal-to-noise ratios

(Santer et al., 2011). Furthermore, although both GLM models can handle nonlinear data

relationships, the authors did not seem to have attempted identifying complex nonlinear

structures in their study.

Lowe et al. (2011) estimated empirical relationships between dengue, weather and

ENSO across 558 microregions of Brazil over the period 2001–2008. The main objec-

tive of their study was to analyse the potential for incorporating climate information into

a spatio-temporal early warning system for Brazil. In an early stage, the authors fitted a

series of GLM models with a negative binomial specification because dengue data showed

substantial extra-Poisson variation (overdispersion). Stepwise regression algorithms were

used to select the most appropriate and parsimonious model. Interactions between a cate-

gorical variable for an ad-hoc zone classification and month were included to account for

non-climatic confounders that may produce an observed spatially varying annual cycle in

dengue incidence.

The initial model failed to capture much of the spatio-temporal variability in dengue in-

cidence. Therefore, Lowe et al. (2011) further developed their model fitting a Generalized

Linear Mixed Model (GLMM) within a Bayesian framework. This model was generated

just for a subset of the dataset (the South East region), and included the same set of covari-

ates selected in the previous stage with the exception of the zone factor. Random effects

were included in the linear predictor to allow for unobserved structures in the model that

may vary both temporally and spatially (e.g. serotype introduction). Additionally, a first

order autoregressive component was included to avoid serial correlation in the residuals.

The GLMM model captured substantially more spatio-temporal variation in dengue than

did the GLM. The estimated relationships between dengue and the covariates in the model

were similar for both the GLM and the GLMM. Both temperature and precipitation at lags

of one and two months showed a positive and significant association with dengue. Associ-

ations with ENSO, on the other hand, were negative using the Niño-3.4 index at a lag of six
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months. No information is provided about the estimated relationships with the non-climatic

covariates.

The spatially refined dataset across a large geographical area used by Lowe et al. (2011),

as well as the use of random effects in the linear predictor, allowed them the estimation

of both local and global associations between dengue and weather based on great range

of climatic variations, while assuming that the differences between micro-regions are of

interest. Thus, the global associations estimated by Lowe et al. (2011) could potentially

be generalized to other regions with climatic, socioeconomic and epidemiological features

within the range of their dataset. Lowe et al. (2011) accounted for a considerable amount

of observed and unobserved confounders because of their model specification, increasing

the reliability of their estimations (Robins and Morgenstern, 1987; Gething et al., 2010).

Unfortunately, there is no indication as to whether these confounders showed significant

associations with dengue.

Although both GLMM and GLM models can handle nonlinear data relationships, Lowe

et al. (2011) did not attempt to identify the form of complex nonlinear structures in their

dataset. The short time span of the study poses problems for the identification of climate

signals due to low signal-to-noise ratios (Santer et al., 2011).

El Niño has a strong effect on the local weather of many countries and it is believed

that this effect ultimately influences dengue (Kovats et al., 2003). Therefore, including the

Niño-3.4 index in the same model as weather covariates (e.g. Lowe et al., 2011) prevents the

identification of the effects of both on dengue incidence due to partial redundancy (Cohen

et al., 2003). A thorough estimation of the effects of El Niño should include models with

and without the effects of weather.

1.5.7 Species distribution modelling: Maxent

Maxent is a species distribution modelling method that allows the modelling and mapping

of diseases by establishing relationships between the conditions where the disease has been

observed and a series of predictors (Machado-Machado, 2012). Theoretically, this method

is similar to GLM and generalized additive models (GAM) (Phillips et al., 2006). One ad-

vantage however, is that while both GLM or GAM require absence data when used to model

probability of disease occurrence, Maxent does not need case absences; instead the proba-

bility distribution is determined using background environmental data for the region under

study (Phillips et al., 2006). Like GAM models, Maxent is able to fit complex nonlinear

relationships between the outcome and predictor variables, including interactions between

the predictors (Phillips et al., 2006; Elith and Graham, 2009).

Some drawbacks of the method are that it can give very large predicted values for envi-

ronmental conditions outside the range observed in the study area. Therefore, extrapolating

to other areas or to future or past climatic conditions could be problematic (Phillips et al.,

2006). Furthermore, there are few guidelines for its use, and fewer methods for estimat-

ing the amount of error in its predictions, compared to those available for GLM or GAM

(Phillips et al., 2006). Also, Maxent is not available in standard statistical packages (Phillips
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et al., 2006).

Machado-Machado (2012) aimed to identify suitable areas for dengue occurrence based

on the relative influence of climatic and socioeconomic covariates as determinants of dengue

across Mexico. Mean annual dengue incidence (1999–2006) was calculated for each Mex-

ican municipality, and then averaged. Climate data was obtained from weather stations for

the period 1950–2000, and interpolated using smoothing splines and elevation data. The

modelling followed a three-stage approach using the Maxent method (Phillips et al., 2004).

In the first stage, two models were fitted. The first one included the full set of climatic

variables, and the second one both climatic and socioeconomic variables.

The second modelling stage consisted of producing independent predictor variables

using principal components analysis (PCA). Two models were generated, the first of which

used four principal components derived from climatic variables; whilst the second used the

five components derived from both, climatic and socioeconomic variables. The third set of

models was based on variables identified as limiting factors of dengue fever distribution by

previous research, as well as inferences drawn from cumulative frequency plots for each

predictor.

Low elevation coastal areas were identified as the most suitable for dengue occurrence.

In all the models, minimum temperature of the coldest month, mean temperature of the

coldest quarter, annual precipitation, and to a lesser extent, precipitation of the coldest

quarter, consistently contributed the most to defining suitabile dengue areas. The first prin-

cipal component was the variable that contributed the most to both of the models based

on PCA, and was highly correlated with annual precipitation, minimum temperature of the

coldest month, mean temperature of the coldest quarter, and temperature annual range. The

contribution of the socioeconomic variables was minor compared to that of the climatic

ones. Minimum temperature of the coldest month and mean temperature of the coldest

quarter were the variables that gave the highest gain to the model when used in isolation.

When omitted, these variables decreased the overall gain of the model. However, such de-

crease was not significantly large, indicating that part of their information is shared by other

covariates.

As with other statistical methods, the efficacy of the Maxent models depends on the

dataset under analysis. While Machado-Machado (2012) explicitly incorporates a wide

range of climatic and socioeconomic covariates, one major drawback of this model is that

the coarse aggregation of data at the temporal scale neglects both the intra- and interannual

variability in both the dengue and climatic series. Therefore, the model is not able to es-

timate (i) the suitability of dengue occurrence for different seasons, and (ii) the complex

nonlinear relationships characteristic of the dengue, temperature, and precipitation interac-

tions, and cannot be extrapolated to other climatic conditions with confidence. The model

was generated under the assumption that dengue occurred exclusively in urban areas. How-

ever, as previously mentioned, dengue has also been reported in peri-urban and rural areas

(Chareonsook et al., 1999; Nagao et al., 2008; WHO, 2009; Nguyen et al., 2011; Schmidt

et al., 2011)
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1.5.8 Summary

The previous analysis shows that most studies have failed to incorporate non-climatic con-

founders greatly undermining their estimations of dengue risk (Robins and Morgenstern,

1987; Gething et al., 2010; Jansen and Beebe, 2010). Also, it is not clear how the specifica-

tion of the functional form of the associations between dengue, weather, and El Niño was

conducted in many of these studies. Several studies were conducted across large geograph-

ical areas using data aggregated at national or supra-national scales (e.g. Hales et al., 1996;

Johansson et al., 2009a) which may have caused aggregation bias issues (Theil, 1954; Grun-

feld and Griliches, 1960). Some other studies were conducted across small geographical

areas (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al., 2008), which tend to be climatically

and socioeconomically homogeneous (Elliott and Wartenberg, 2004), and commonly re-

sult in low numbers of disease cases that lead to unstable risk estimations (Olsen et al.,

1996). Just a few studies attempted estimating associations between dengue, weather and

El Niño across large geographical areas using data aggregated at the sub-national scale (e.g.

Lowe et al., 2011).

About half of the studies spanned short time periods (≤ 10 years), and only a few

spanned over 20 years. Such short time series are problematic for the identification of cli-

matic signals with high statistical confidence because of their small signal-to-noise ratios

(Santer et al., 2011). Some studies have failed to incorporate the potential effects of both

climatic and non-climatic confounders when estimating associations between dengue and

El Niño (e.g. Gagnon et al., 2001). Other studies estimated associations between dengue

and El Niño including weather variables in the same model (e.g. Lowe et al., 2011). In-

cluding both El Niño and weather variables in a single model may prevent the identification

of the effects of El Niño on dengue incidence due to partial redundancy (Cohen et al.,

2003). To our knowledge, no previous efforts have been directed at estimating relation-

ships between dengue and El Niño above and below the effects of ENSO on the local

weather. Only one study (i.e. Johansson et al., 2009a) investigated potential climatic and

non-climatic causes of between-regions heterogeneity observed in dengue incidence across

a single country.

Research suggests that the transmission and distribution of vector-borne diseases is

likely to change in the next decades as a result of climate change (Confalonieri et al., 2007).

Initial studies suggested that hosts and parasites in temperate regions were expected to be

the most affected by climate change (in comparison to hosts and parasites in other parts of

the world) due to the disproportionate increases in temperature expected in such regions

(Rohr et al., 2011). However, recent studies suggest that tropical hosts and parasites might

be as affected by such temperature increases because they are adapted to narrower temper-

ature ranges (Rohr et al., 2011). Thus, there is still high uncertainty about the potential

effects of such climate change on vector-borne diseases such as dengue.

Understanding the relationships between dengue, weather and climate is problematic

because of the complex interactions between hosts, viruses, vectors, climatic and non-

climatic determinants of the disease. The state of research suggests that there is a need for



1.6 Contribution 30

(i) good quality data including epidemiological, socieoconomic, climatic, environmental,

and demographic information (ii) long-term datasets that do not compromise the applica-

bility of statistical methods, and (iii) reliable statistical models for revealing the relation-

ships between dengue dynamics, weather and climate, ideally in conjunction with that from

potential confounding factors.

1.6 Contribution

This thesis builds on previous research and arguable provides elements towards filling the

gaps identified in the literature review. We generated a long dataset containing 23 years

of laboratory confirmed dengue case observations, aggregated at the province level, with a

monthly resolution. The dataset includes information about weather, climate, environmen-

tal, socioeconomic, and demographic determinants of dengue ocurrence also aggregated

at the province level. To our knowledge, this is the most comprehensive dengue-related

dataset analysed to date.

Using Mexico as a study case, this study investigates the effects of weather and climate

on dengue across a greater geographical area (1.96 million km2), time frame (276 months),

and number of dengue cases (417,668) compared to the vast majority of previous studies.

Mexico was selected as a study case for various reasons. Mexico is both a tropical and

subtropical country with a large climatic diversity due to its geographical location (14◦32’–

32◦43’ N), wide range of altitudes, and complex orography (Mosiño and Garcı́a, 1974). The

Mexican weather is highly influenced by the ENSO cycles (Magaña et al., 2004). Moreover,

the Mexican climate shows a wide range of climatic features observed in numerous low

and middle latitude countries (Mosiño and Garcı́a, 1974) affected by dengue. Mexico has a

large socioeconomic heterogeneity (GINI index 0.48, The World Bank 2012), and shares a

range of socioeconomic features that are common to various countries affected by dengue

(OECD, 2009).

This variability in climate and socioeconomic conditions allows the estimation of rela-

tionships between dengue, climatic and non-climatic factors, which can be potentially ex-

trapolated to other regions with climatic and socioeconomic features within the range of our

dataset to plan the allocation of resources, and to target intervention needs as appropriate.

Dengue is a real public health problem in Mexico. It has been continuously present in the

country since the 1970s (SSA, 2008). The disease is present nationwide with the majority

of cases occurring in low elevation coastal areas and during the rainy season (Machado-

Machado, 2012). The four dengue serotypes have been co-circulating in the country since

1995 (Guzmán and Kouri, 2003). The mean annual incidence rate shows great interannual

variability (Figure B.1), with the period 1995–1999 (which coincides with the introduction

of the DEN-3 serotype into Mexico, and strongest El Niño in our period of study), and the

period 2006–2007 showing the largest increases across provinces.

We produced a wide range of empirical models generated taking into consideration the

confounding effects of both climatic and non-climatic factors, the lagged effects of the cli-

matic variables, the influence of long-term and seasonal trends, and autocorrelation in the
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dengue series. We investigated the nonlinear effects of weather on dengue using smooth

functions which estimate the optimal degree of nonlinearity of the model directly from the

data, resolving the subtle task of determining the model flexibility a priori (Wood, 2006).

By demonstrating that there is a great deal of between-province heterogeneity in the effects

of weather and El Niño on dengue, we highlight the importance of using spatially disaggre-

gated data for modelling disease outcomes in regions with great climatic and socioeconomic

heterogeneity such as Mexico.

Our results also reveal that the effects of El Niño on dengue in some regions are largely

influenced by the 1997–1998 El Niño event. In addition, we argue that previous attributions

of increases in dengue incidence the 1997–1998 period solely to El Niño may be overesti-

mating the real relative influence of El Niño on dengue due to the concurrent introduction of

the DEN-3 serotype to the country. Additionally, we demonstrate that El Niño has different

effects on dengue incidence during summer and winter.

We demonstrate that, contrary to what intuition would indicate, rising access to piped

water is associated to significant increases in dengue incidence. We argue that such an effect

is related to the the scarcity or lack or reliable water supply services that force people to

store water in domestic and peri-domestic containers that may potentially become breeding

sites for A. aegypti (Jansen and Beebe, 2010; Nguyen et al., 2011). In addition, we show

that the effects of socioeconomic status of people do not seem to play a significant role

on dengue transmission. Finally, we used some of our model estimations to project the

potential impact of climate change on dengue incidence, accounting for the confounding

effects of socioeconomic development. To our knowledge, this is the first study estimating

the impacts of climate change in Mexico at the national scale.

1.7 Thesis structure

The core of this thesis is divided into three data chapters. Each chapter is structured as a

paper for publication in an academic journal.

Chapter 2 estimates associations between dengue incidence, minimum temperature,

maximum temperature, precipitation, and El Niño in the warm and humid region of Mex-

ico, over the period 1985–2007. The effects of El Niño were analysed with and without

controlling for the effects of weather to estimate associations with dengue above and be-

low such effects. Significant increases in dengue incidence coincided with the strongest

El Niño event in our records (1997–1998), as well as with the introduction of a new dengue

virus serotype (DEN-3); therefore, we re-computed all our estimated relationships exclud-

ing the months coinciding with this El Niño event from the series.

A similar version of this chapter has been published as: Colón-González, F. J., Lake,

I. R., and Bentham, G. (2011). Climate Variability and Dengue Fever in Warm and Humid

Mexico. Am J Trop Med Hyg, 85(4): 757–7631. Authors’ contributions: Conception and

design: FJCG, IRL, GB. Dataset creation: FJCG. Data analysis: FJCG. Preparation of the

paper: FJCG. Paper revision: IRL, GB.
1http://www.ajtmh.org/content/84/5/757.full (Accessed 24 Aug 2012)



1.7 Thesis structure 32

Chapter 3 analyses associations between dengue incidence, weather, and El Niño across

Mexico using a two-stage approach. In the first stage, we fitted a series of province-

specific GLMs with Poisson specification to estimate local associations between dengue

and weather. Then, we determine the significant level of between-province variation in the

strength of such associations using meta-analytic regression methods. Finally, we assess

the effect modification of the underlying climate and a range of socioeconomic moderators.

A version of this chapter was submitted for consideration to PLoS Neglegted Tropical

Diseases on 23 November 2011 and has been assigned the following manuscript number:

PNTD-D-11-01176. Submission details: Colón-González, F. J., Lake, I. R., Hunter, P.

R., and Bentham, G. Marked Heterogeneity in the Associations Between Dengue Fever,

Weather and ENSO across Mexico. PLoS Negl Trop Dis. Authors’ contributions: Con-

ception and design: FJCG, IRL, PRH, GB. Dataset creation: FJCG. Data analysis: FJCG.

Preparation of the paper: FJCG. Paper revision: IRL, PRH, GB.

Chapter 4 investigates the relationships between dengue and weather adopting a semi-

parametric modelling approach, estimating the relative influence of weather and socioeco-

nomic development on dengue with a Generalized Additive Model (GAM) (Wood, 2006).

Then, we extrapolated dengue risk into the future for the years 2030, 2050 and 2080, un-

der the A1B, A2 and B1 climate change scenarios. The GAM mdoel was coupled with

penalized likelihood function and an automated smoothing selection criterion, which esti-

mated the optimal degree of nonlinearity of the model directly from the data (Wood, 2006).

This specification resolves the subtle task of determining the model flexibility a priori by

incorporating this choice into the actual estimation process.

This chapter will be submitted for consideration to Nature Climate Change. Paper

details: Colón-González, F. J., Fezzi, C., Lake, I. R., and Hunter, P. R. The Potential Impact

of Climate Change on Dengue. Nat Clim Chang. Authors’ contributions: Conception and

design: FJCG, CF. Dataset creation: FJCG. Data analysis: FJCG, CF. Preparation of the

paper: FJCG. Paper revision: CF IRL, PRH.

Iain R. Lake is a Senior Lecturer in Environmental Science at the School of Environ-

mental Sciences, University of East Anglia, Norwich, UK, NR4 7TJ. Paul R. Hunter is a

Clinical Professor at the Norwich Medical School, University of East Anglia, Norwich, UK,

NR4 7TJ. Graham Bentham is an Emeritus Professor at the School of Environmental Sci-
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Associate in Applied Environmental Economics at The Centre for Social and Economic

Research on the Global Environment (CSERGE), School of Environmental Sciences, Uni-
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Chapter 2

The effects of weather and
El Niño on dengue incidence in warm
and humid Mexico

2.1 Abstract

Dengue is an acute viral disease caused by four distinct but genetically related viruses.

Dengue viruses are transmitted through the bite of infective Aedes aegypti mosquitoes.

Dengue dynamics is highly sensitive to changes in weather because of the ectothermic na-

ture of such mosquitoes and their physiological sensitivity to the presence of water. In this

chapter, we fitted multiple linear regression models to estimate associations between dengue

incidence, weather and El Niño in the warm and humid region of Mexico. Data were col-

lected for 12 Mexican provinces over a 23 years period (January 1985 to December 2007).

Our results show that the incidence rate of dengue is higher during El Niño events and over

the warm and wet season. We provide evidence to demonstrate that dengue incidence is

positively associated with the strength of El Niño as well as minimum temperature, partic-

ularly during the cool and dry season. Our study complements the understanding of dengue

dynamics in the region and may be useful for the effective allocation of resources.

2.2 Introduction

Dengue is an infectious disease caused by the dengue virus, with Aedes aegypti acting as the

main vector. Symptoms include headaches, rashes, joint and muscle pains, and in a small

proportion of cases, life-threatening complications such as dengue hemorrhagic fever and

dengue shock syndrome (Reiter, 2001). It is present in over 100 tropical and subtropical

A modified version of this chapter has been published as: Colón-González, F. J., Lake, I. R., and Bentham,
G. (2011). Climate Variability and Dengue Fever in Warm and Humid Mexico. Am J Trop Med Hyg, 85(4):
757–763. Available at: http://www.ajtmh.org/content/84/5/757.full.
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countries, (Hsieh and Chen, 2009) where approximately 50–100 million cases are reported

every year (Günther et al., 2009). The global burden of dengue has been estimated in

750,000 disability-adjusted life years (the number of lost years of healthy life, WHO 2012)

per annum lost due to absenteeism, immobilisation, debilitation or medication (Murray and

Lopez, 1996a,b; Clark et al., 2005). Moreover, its economic burden has been estimated in

2.15 billion US dollars per year just in the Americas (Shepard et al., 2011). In Mexico,

dengue is endemic all over the country. However, almost 60% of the cases occur in the

southern part of the country (Figure 2.1) characterized by a warm and humid climate.
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Figure 2.1: (A) Monthly dengue cases aggregated by dominant climate (1985–2007); (B) dominant
climates by province.

The absence of cold winters, the high concentration of population in urban areas (IN-

EGI, 2005), and the large inequality (GINI index 0.48, The World Bank 2012) observed

in the country allow the development of the disease throughout the year (Reiter, 2001).

Behavioural and cultural factors also play a key role in the prevalence of dengue (Reiter,

2001). For example, the close proximity and poor construction of houses and buildings in

the cities, the use of natural ventilation instead of air conditioning, and low access to health

services and health education interact to facilitate the transmission of the dengue viruses

(Reiter, 2001).
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Research indicates that dengue shows both strong inter-annual and intra-annual vari-

ability (Cazelles et al., 2005, 2007), that is the result of both extrinsic (e.g., climate vari-

ability) and intrinsic (e.g., host–virus interactions mediated by herd immunity and host

susceptibility) factors (Wearing and Rohani, 2006). Both these factors drive the serotype-

specific dynamics and may increase the incidence rate of the disease (Nisalak et al., 2003).

Significant efforts have been made to understand the effects of weather and El Niño on

dengue transmission (e.g. Hurtado-Dı́az et al., 2007; Lowe et al., 2011). Variations in tem-

perature and precipitation, as well as the occurrence of El Niño have been associated with

changes in dengue incidence in Mexico (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al.,

2008) and other countries (e.g. Focks et al., 2000; Cazelles et al., 2007; Chadee et al.,

2007).

Previous studies relating weather to dengue incidence in Mexico have analysed time

series of dengue cases up to one year (e.g. Koopman et al., 1991; Chowell and Sánchez,

2006; Garcı́a et al., 2008), and only a few have analysed series of up to ten years (e.g.

Hurtado-Dı́az et al., 2007; Brunkard et al., 2008). Such short series pose problems for

disentangling the overall associations between weather and dengue with high statistical

confidence due to their small signal-to-noise ratios (Santer et al., 2011). Our study analyzes

23 years of reported dengue cases to estimate associations with temperature, precipitation

and El Niño. We also analyze a larger geographical area than previous studies by including

data from 12 provinces in comparison to previous studies that focused on smaller areas such

as a few cities or municipalities (e.g. Chowell and Sánchez, 2006; Brunkard et al., 2008).

The aim of this paper was to examine if changes in dengue incidence are statistically

associated with weather and El Niño in the warm and humid region of Mexico. The null

hypothesis was that the cumulative incidence rate (CIR) of dengue is not statistically asso-

ciated with weather or El Niño.

2.3 Materials and methods

2.3.1 Data

Monthly dengue notifications were obtained from the web page of the National System of

Epidemiologic Surveillance (SINAVE)1 for the period January 1985 to December 2007

(Figure 2.1). Dengue notifications were defined as any legal notification of confirmed

dengue and severe dengue referred to SINAVE by the health authorities (CENAVECE,

2008). Because severe dengue is only a severe presentation of dengue, both dengue and

severe dengue cases were analysed together.

Data were obtained for all Mexican provinces with a dominant warm and humid or

subhumid climate. Such provinces comprised Campeche, Colima, Chiapas, Guerrero, Mi-

choacán, Morelos, Nayarit, Oaxaca, Quintana Roo, Tabasco, Veracruz and Yucatán. The
1http://www.dgepi.salud.gob.mx/anuario/html/anuarios.html (Accessed 12 Mar 2009)
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dominant climate of each province was retrieved from the web page of the National Insti-

tute of Statistics and Geography (INEGI)2. These provinces have a joint population of over

31 million people. Moreover, the warm and humid region of Mexico contains the majority

(59.8%) of the total dengue cases occurring in Mexico. A total of 249,618 dengue cases

were reported in this region over the period from 1985 to 2007.

To obtain an estimate of the strength of El Niño we retrieved monthly sea surface tem-

perature (SST) data from the website of the Climate Prediction Center of the National

Oceanic and Atmospheric Administration3. We chose the Niño-3.4 Index because it is

one of the most sensitive indices for determining an El Niño event (Trenberth and Stepa-

niak, 2001; Hanley et al., 2003). These data are presented in Figure 2.2. An El Niño or a

La Niña occur when the SST anomalies relative to the 1950–1979 climatology in the Niño-

3.4 region (5◦N–5◦S, 120◦–170◦W) exceed either 0.4◦C or -0.4◦C for a minimum of six

consecutive months (Trenberth, 1997). We identified seven El Niño and six La Niña events

in the series based on this definition (Figure 2.2). Periods in between El Niño and La Niña

events were classified as neutral. Further explanations on what constitutes an El Niño or La

Niña event can be found elsewhere (e.g. Trenberth, 1997, 2001).

Mean monthly minimum and maximum temperature, and mean monthly accumulated

precipitation were obtained from the Mexican National Meteorological Service for each

Mexican Province. These meteorological data corresponded to province-wide average val-

ues estimated from all meteorological stations within each province. The province-specific

data were averaged to provide overall mean monthly temperature (minimum and maximum)

and accumulated monthly precipitation time series for the region. The number of dengue

cases within each province was summed to provide overall epidemiological time series data

for the region.

Within this warm and humid region, our data show that the year-round climate has two

distinct seasons (Figure 2.3B): warm and wet from May to October, and cool and dry from

November to April (Mosiño and Garcı́a, 1974). During the warm and wet season, accumu-

lated precipitation averages 178mm, average maximum temperature (Tmax) is 31◦C and

average minimum temperature (Tmin) is 18◦C. In the cool and dry season, precipitation

averages 37mm, mean Tmax is 30◦C and mean Tmin 14◦C.

Dengue data were converted to a CIR (expressed in cases/100,000 people) based on the

region population as suggested by Bonita et al. (2006). Province-specific population data

were obtained from INEGI4 for 1990, 1995, 2000 and 2005. Population estimates for the

intervening years were calculated using linear interpolation. We stabilized the variance in

the series taking the natural logarithm of the CIR (henceforth LnCIR).

Temporal analyses of the aggregated dengue cases (including all serotypes) revealed

inter-annual fluctuations with a strong seasonal component. The seasonality of the trans-

mission shows a peak occurring in October (Figure 2.3). The aggregation of the in- and

out-of-phase inter-annual cycles of each serotype and their seasonal components may be
2http://www.inegi.org.mx/sistemas/sisept/default.aspx?t=mamb22&c=21443&s=est (Accessed 8 May

2012)
3http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices (Accessed 12 Mar 2009)
4http://www.inegi.org.mx/inegi/ (Accessed 23 Mar 2009)
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Figure 2.2: (A) SST anomalies in the Niño-3.4 region over the study period; and (B) El Niño (peaks)
and La Niña (troughs) events occurring over the study period. El Niño and La Niña events were de-
fined according to Trenberth (1997) as SST anomalies ±0.4◦C for six or more consecutive months.

responsible for the seasonal peaks (Wearing and Rohani, 2006) observed in the aggregated

serotype time series.

2.3.2 Optimal lagged meteorological variables

The first stage of the analysis was to establish the associations between the LnCIR with

the various lags of the explanatory variables to determine the optimal time lag for the final

models. Dengue shows a nonlinear dynamics, with strong seasonality and interannual oscil-

lations (Cazelles et al., 2005) that may result from the interaction of intrinsic and extrinsic

factors (Johansson et al., 2009a). In these regression models, we controlled for long-term

trends by including an index variable of time in the model, and we controlled for seasonal

effects by including a categorical variable for calendar month. This is because long-term

changes in dengue incidence may result from non-climatic factors such as changes in the

reporting practices, or resistance of the mosquitoes to insecticides. Similarly, seasonal

changes may be caused by non-climatic factors such as holidays, seasonal water storage, or

seasonal mosquito control campaigns. Similar approaches have been used elsewhere (e.g.

Lake et al., 2009). We estimated associations between the LnCIR of dengue and each of our

meteorological variables lagged 1 to 12 months fitting linear regression models as follows:

log(yt) = β0 + β1t
′ +

12∑
k=2

βkDkt + β2Xt−l + ut (2.1)

where log(yt) denotes the LnCIR of dengue for time t = 1,...,276; β0 is the intercept; β1, β2,

and βk are the regression coefficients (slopes) for each explanatory variable (regressor); t’

is an index variable for time (from month 1 to month 276); Dkt denote a categorical variable

for calendar month, where k = 2,...,12 with January set as a reference level; Xt denotes a
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Figure 2.3: Box-and-whisker plots of the annual cycle of (A) dengue incidence, (B) minimum
temperature, (C) maximum temperature, and (D) precipitation in the warm and humid region of
Mexico for the period 1985–2007. The boxes indicate the 25% and 75% quantiles, and the whiskers
give the minimum and maximum values. Outliers are shown as dots above or below the whiskers.

meteorological regressor at l-th lags, and ut corresponds to the discrepancy or disturbance

(the net influence of everything other than the regressors, Johnston and DiNardo 1997).

Analyses were conducted in SPSS version 16.0 and R version 2.13.1 (R Development Core

Team, 2010).

Many lagged meteorological variables were significantly correlated with the outcome

variable (Table 2.1). Including all the related lagged variables in a model would have led to

significant collinearity. Consequently, we created new explanatory variables using the mean

values of the two lags with the highest significant regression coefficients. The new variables

were Tmin lagged 1 and 2 months (Tmin1:2), Tmax and SST in the current and present

months (Tmax0:1 and SST0:1), and precipitation lagged 6 and 7 months (Precipitation6:7).

Before using these variables in the final models, non-stationarity was examined, be-

cause the statistical properties of epidemiological time series commonly vary with time

(Cazelles et al., 2007) and may lead to biased estimations (Hsieh and Chen, 2009). We con-

ducted Phillips-Perron tests to verify the stationarity of all variables. The outcome variable

and all four independent variables were stationary and consequently, were included in the

final regression models.

2.3.3 Final regression models

We fitted different multiple linear regression models using the LnCIR as the outcome vari-

able. The normal distribution of the series was corroborated with a Jarque-Bera test of

composite normality (Jarque and Bera, 1980). All models were adjusted for long-term
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Lag (in months) SST (95% C.I) Tmin (95% C.I) Tmax (95% C.I) Precipitation (95% C.I)

0 0.24 (0.11 – 0.37) 0.44 (0.34 – 0.53) 0.47 (0.26 – 0.67) -0.31 (-0.72 – 0.10)
-1 0.23 (0.10 – 0.36) 0.46 (0.36 – 0.56) 0.44 (0.23 – 0.65) -0.36 (-0.77 – 0.05)
-2 0.22 (0.08 – 0.35) 0.46 (0.36 – 0.56) 0.41 (0.19 – 0.62) -0.40 (-0.82 – 0.15)
-3 0.20 (0.06 – 0.33) 0.46 (0.36 – 0.56) 0.43 (0.22 – 0.64) -0.53 (-0.94 – -0.11)
-4 0.17 (0.03 – 0.30) 0.44 (0.33 – 0.54) 0.41 (0.20 – 0.62) -0.68 (-1.09 – -0.27)
-5 0.14 (0.00 – 0.28) 0.39 (0.28 – 0.50) 0.33 (0.12 – 0.54) -0.71 (-1.13 – -0.30)
-6 0.11 (-0.02 – 0.25) 0.34 (0.23 – 0.45) 0.28 (0.07 – 0.50) -0.73 (-1.15 – -0.31)
-7 0.10 (-0.04 – 0.24) 0.31 (0.19 – 0.42) 0.22 (-0.00 – 0.43) -0.81 (-1.13 – -0.39)
-8 0.10 (-0.04 – 0.24) 0.31 (0.20 – 0.43) 0.14 (-0.08 – 0.36) -0.54 (-0.97 – -0.11)
-9 0.10 (-0.04 – 0.24) 0.35 (0.23 – 0.47) 0.20 (-0.02 – 0.42) -0.40 (-0.83 – 0.04)

-10 0.10 (-0.04 – 0.23) 0.36 (0.24 – 0.49) 0.22 (-0.00 – 0.43) -0.37 (-0.81 – 0.06)
-11 0.09 (-0.05 – 0.23) 0.40 (0.28 – 0.53) 0.19 (-0.03 – 0.41) -0.38 (-0.81 – 0.06)
-12 0.10 (-0.04 – 0.24) 0.46 (0.33 – 0.59) 0.13 (-0.09 – 0.35) -0.28 (-0.71 – 0.15)

Table 2.1: Regression coefficients of four climatic variables versus the log-transformed cumulative
incidence rate (LnCIR) of dengue. Models were controlled for long-term trends and seasonality.
Values in bold font were statistically significant at the 0.05 level.

trend and seasonality as described earlier. These were included in the model even if not

significant.

The final models were produced in a series of stages. Initial models included SST0:1

as the explanatory variable. The next stage of models examined the impact of weather on

the LnCIR by fitting monthly Tmin1:2, Tmax0:1, and Precipitation6:7 as explanatory vari-

ables. In all models Durbin-Watson tests were conducted to detect autocorrelation in the

residuals. When the residuals were autocorrelated, an adjustment was included incorporat-

ing a first-order autocorrelation term (LnCIR lagged 1 month). Higher order terms were

not required. However, this could not be achieved for models including SST because this

variable is highly autocorrelated. Including such an adjustment for autocorrelation would

have removed all the variability coming from the El Niño signal. We estimated associations

between dengue and the optimal lagged meteorological variables as follows:

log(yt) = β0 + β1t
′ +

12∑
k=2

βkDkt +

3∑
n=1

βnXnt−l + yt−1 + ut (2.2)

where βn denotes the regression coefficients for each meteorological regressor in the model

(i.e. SST0:1, Tmin1:2, Tmax0:1, and Precipitation6:7); Xnt−l indicates a meteorological

variable at l-th lags; yt−1 is a first-order autocorrelation term; and the other variables are

specified as in Equation 2.1.

El Niño is a dominant source of inter-annual climate variability in the world (Trenberth,

1997), and a major source of temperature and precipitation variability in Mexico (Magaña

et al., 2004). We stratified the models for the presence of El Niño events and the rainy

season to assess if the association between the variables increased during these events.

Having produced models for first SST and subsequently, temperature and precipitation, the

final stage was to fit models with SST and any weather variable significant in the earlier

models. This would examine whether the effects of SST on dengue incidence are fully

explained by weather.
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In the dataset, we observed a significant increase in the number of dengue cases (from

about 6,700 cases per year from 1985 to 1996 to about 45,100 in 1997) coinciding with

the exceptionally strong 1997–1998 El Niño. This period also saw the introduction of the

DEN-3 serotype which may have led to elevated dengue incidence because of low herd

immunity. We tested the influence of this extreme event on the model results by excluding

the 13 months coinciding with this period from the series and fitting regression models as

before.

2.4 Results

The averaged CIR increases from 1.99 cases/100,000 people during the neutral period, to

5.52 (ratio = 2.8) during El Niño, and to 3.10 (ratio = 1.6) during La Niña (Table 2.2).

Excluding the months coinciding with the 1997–1998 El Niño decreases the CIR to 4.10

(26% reduction) during the El Niño events.

Parameters CIR difference CIR ratio

El Niño vs. Neutral period 5.52–1.99 2.77
El Niño vs. La Niña 5.52–3.10 1.78
La Niña vs. Neutral period 3.10–1.99 1.56

Without the 1997–1998 El Niño
El Niño vs. Neutral period 4.10–1.99 2.06
El Niño vs. La Niña 4.10–3.10 1.32
La Niña vs. Neutral period 3.10–1.99 1.56

Table 2.2: CIR (cases/100,000 people) differences and ratios per SST period.

The CIR increases from 1.6 cases/100,000 people in the cool and dry season, to 4.8

cases/100,000 people (ratio: 2.9) during the warm and wet season (Table. 2.3). The annual

cycle of dengue incidence is similar to that of Precipitation but with an onset about two

months later (Figure 2.3).

Parameters CIR difference CIR ratio

Rainy season vs. Dry season 4.8–1.6 2.9

Table 2.3: CIR (cases/100,000 people) differences and ratios per season.

The results from the first multiple regression are presented in Table 2.4 and indicate that

a 1◦C increase in SST0:1 results in monthly increases in the LnCIR (B = 0.238; P < 0.001).

When the model was stratified by El Niño months SST0:1 was significantly associated with

the LnCIR during the El Niño months (B = 0.463; P = 0.028) but not during the non-

El Niño months (B = -0.126; P = 0.301). However, after removing the data coinciding

with the 1997–1998 El Niño, SST0:1 was not significantly associated with dengue. This

observation was consistent for models non-stratified (B = 0.125; P = 0.095), and stratified

by El Niño (B = -0.216; P = 0.512), and non-El Niño months (B = -0.133; P = 0.275),

suggesting that the previously observed association is highly influenced by the 1997–1998

event. The introduction of the DEN-3 serotype to the country in 1995 and the lack of
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serotype identification of each case makes it almost impossible to disentangle whether the

El Niño or the introduction of a new dengue serotype is responsible for thin peak in inci-

dence observed in 1997.

Model N B (P < |t|) 95% C.I. Adj. R2

Whole year 276 0.24(0.00) 0.11 – 0.37 0.46
El Niño
Present 75 0.46(0.03) 0.05 – 0.88 0.56
Absent 201 -0.13(0.30) -0.36 – 0.11 0.38

Without 1997–1998 El Niño
Whole year 263 0.13(0.10) -0.02 – 0.27 0.44
El Niño
Present 62 -0.22(0.51) -0.87 – 0.44 0.54
Absent 201 -0.13(0.28) -0.37 – 0.11 0.38

Table 2.4: Regression coefficients of the LnCIR of dengue as a function of SST0:1. Models were
controlled for long-term trends and seasonality. Values in bold font were statistically significant.

Table 2.5 examines the impact of weather (Tmin1:2, Tmax0:1 and Precipitation6:7) on

dengue and indicates that monthly increases in the LnCIR (B = 0.079; P = 0.019) re-

sult after every 1◦C increase in Tmin1:2. Such increases can be expected during the non-

El Niño months (B = 0.108; P = 0.008) and the cool and dry season (B = 0.080; P = 0.049).

Similar results were obtained after removing data coinciding with the months during the

1997–1998 El Niño. No significant associations were found between the LnCIR and Tmax0:1
or Precipitation6:7 in the models (Table 2.5).

Previous studies used shorter time lags for estimating the effects of precipitation on

dengue incidence (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al., 2008). Our results

were robust to the use of shorter lags of precipitation for higher biological plausibility (i.e.

Precipitation2:3 and Precipitation4:5).

Table 2.5 shows that the effects of Tmin1:2 on dengue incidence are statistically sig-

nificant. In the final model, we examined whether there was a significant association be-

tween dengue and El Niño after controlling for weather. This model is presented in Table

2.6 and includes SST0:1 and Tmin1:2 as explanatory variables. The results indicate that

even after controlling for weather, there is still a significant association between SST and

dengue. The results show that monthly increases in the LnCIR occur after every increase

by 1◦C in SST (B = 0.311; P < 0.001) indicating an influence of SST above and below

its effects on temperature. The association is stronger (B = 0.714; P < 0.001) during

El Niño. There were no associations between SST0:1 and dengue during non-El Niño pe-

riods (B = 0.058; P = 0.558). The overall association between SST and dengue incidence

persisted after the removal of the 1997–1998 El Niño. However, after the series was strati-

fied by El Niño months, the association during El Niño disappeared.
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Tmin1:2 Tmax0:1 Precipitation6:7

Model N B (P < |t|) 95% C.I. B(P < |t|) 95% C.I. B (P < |t|) 95% C.I. Adj. R2

Whole year 274 0.08(0.02) 0.03–0.15 0.12(0.07)-0.01–0.24 -0.26(0.06)-0.53–0.01 0.88
El Niño

Present 75 0.00(0.97)-0.14–0.14 0.16(0.19)-0.08–0.40 -0.32(0.31)-0.94–0.31 0.87
Absent 199 0.11(0.01) 0.03–0.19 0.10(0.22)-0.06–0.26 -0.27(0.10)-0.60–0.06 0.87
Rainy season

Present 115 0.05(0.43)-0.07–0.16 0.06(0.10)-0.13–0.26 -0.58(0.06)-1.18–0.02 0.86
Absent 159 0.08(0.05) 0.00–0.16 0.13(0.13)-0.04–0.30 -0.14(0.37)-0.46–0.17 0.86

Without 1997–1998 El Niño
Whole year 261 0.11(0.00) 0.04–0.18 0.13(0.06)-0.00–0.26 -0.25(0.07)-0.53–0.02 0.87
El Niño

Present 62 0.11(0.35)-0.12–0.34 0.22(0.13)-0.07–0.51 -0.32(0.36)-1.07–0.37 0.84
Absent 200 0.11(0.01) 0.03–0.19 0.10(0.23)-0.06–0.25 -0.27(0.10)-0.60–0.05 0.87
Rainy season

Present 110 0.15(0.04) 0.01–0.29 0.10(0.35)-0.11–0.30 -0.42(0.17)-1.02–0.18 0.85
Absent 152 0.08(0.07) 0.01–0.17 0.13(0.16)-0.05–0.31 -0.14(0.40)-0.47–0.19 0.85

Table 2.5: Regression coefficients of the LnCIR of dengue as a function of Tmin1:2, Tmax0:1,
and Precipitation6:7. Models were controlled for long-term trends, seasonality and autocorrelation.
Values in bold font were statistically significant.

Model N B (p < |t|) 95% C.I. Adj. R2

Whole year 275 0.31(0.00) 0.20–0.42 0.62
El Niño
Present 75 0.71(0.00) 0.31–1.12 0.70
Absent 200 0.06(0.56) -0.13–0.27 0.63

Without 1997–1998 El Niño
Whole year 262 0.15(0.01) 0.04–0.27 0.68
El Niño
Present 62 -0.09(0.72) -0.60–0.42 0.73
Absent 200 0.05(0.60) -0.14–0.25 0.61

Table 2.6: Regression coefficients of the LnCIR of dengue as a function of SST0:1. Models were
controlled for long-term trends and seasonality, and adjusted for the confounding effects of Tmin1:2.
Values in bold font were statistically significant.

2.5 Discussion

2.5.1 Effects of El Niño

The results show that in the presence of El Niño, the risk of dengue infection is 2.8 times

higher in the warm and humid region of Mexico compared with the neutral phase. This is

corroborated in the multiple regression analysis indicating a significant and positive effect

of the strength of El Niño on dengue. However, there is some uncertainty as to the validity

of this result, because when the exceptionally strong 1997–1998 El Niño is removed from

the analyses, associations between dengue and El Niño become marginally insignificant.

This suggests that the impacts of El Niño are only apparent above a threshold exceeded by

the strongest events.
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When some of the variability in the series is controlled for by including temperature as

a covariate, the association between dengue and El Niño becomes significant in the mod-

els with an without the 1997–1998 El Niño. We, therefore, conclude that El Niño has an

association with dengue in the warm and humid region of Mexico, and this corroborates

previous studies (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al., 2008). This also indi-

cates that El Niño modulates the dynamics of the disease through mechanisms that are not

fully explained by its influence on the local weather. These mechanisms may be related

to changes in environmental factors (e.g. vegetation cover), human behaviour, or cultural

artifacts (e.g. water-storage practices).

The concurrent introduction of the DEN-3 serotype and the exceptionally strong 1997–

1998 El Niño makes it difficult to separate these two effects and questions the linking of the

unusual increases in the levels of dengue incidence observed in 1997, which have been pre-

viously attributed to weather conditions related to the 1997–1998 El Niño (Kovats, 2000).

The importance of the introduction of the DEN-3 serotype is strengthened by the observa-

tion that, throughout Mexico, 88% of the dengue cases in 1997 were related to the DEN-3

serotype (CENAVECE, 2003). It could, therefore, be argued that the introduction of DEN-3

was entirely responsible for the peak in dengue incidence seen in 1997. However, we have

shown that El Niño was positive and significantly associated with dengue during other time

periods, and therefore, it is likely that both the introduction of DEN-3 and El Niño were

responsible for the unusually large increase in dengue incidence observed in 1997. Disen-

tangling extrinsic from intrinsic factors in a quantitative fashion requires serotype-specific

data. However, these data were not available from SINAVE.

2.5.2 Effects of temperature

The results also showed that increases in Tmin1:2 are positive and significantly associated

with dengue incidence. When we removed the 1997–1998 El Niño, Tmin1:2 remained

significant. This corroborates previous studies conducted in other regions of Mexico and

the world (e.g. Brunkard et al., 2008; Sriprom et al., 2010).

When the model was subdivided by rainy season, Tmin1:2 was significant during the

cool and dry season, which is when temperatures in the region are at their lowest. This

could indicate that low temperatures in the cool and dry season hamper the biology of the

mosquito or the virus, diminishing the likelihood of effective transmission.

Low temperatures have been previously associated with increased mosquito develop-

ment rates and mosquito larvae mortality which result in decreased transmission (Hemme

et al., 2009). At temperatures below 16◦C, the length of the larval stages of the vector in-

creases (CENAVECE, 2003). Besides, Aedes mosquitoes stop feeding in ambient tempera-

tures lower than 17◦C (Wu et al., 2009) resulting in lower transmission rates. Additionally,

the virus cannot amplify within the vector in temperatures below 18◦C (Watts et al., 1987),

and low temperatures increase the time of the extrinsic incubation period (EIP) of the virus

increasing its likelihood of exceeding the time span of the vector (Reiter, 2001).

Conversely, rising temperatures shorten the EIP and the development rate of the vector,
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and increase the biting and contact rates (Keating, 2001). This increases the percentage of

infected mosquitoes and the likelihood of successful transmission (Reiter, 2001; Wu et al.,

2009). High temperatures generate reductions in the larval sizes resulting in smaller adults

(Focks et al., 2000) that feed more often than the larger ones (Martens, 1998; Focks et al.,

2000). Additionally, mosquitoes digest blood faster at higher temperatures increasing their

need and persistence of feeding (Hemme et al., 2009).

Temperature-influenced human behaviour may also play a key role on dengue dynam-

ics. During the warm and wet season, individuals spend more time indoors sheltering from

the rain, the high humidity and the warm temperatures. This increase in the time spent in-

doors interacts with the lack of sealed doors and windows, and air conditioning, increasing

the vector-host contact rate and the risk of transmission (Reiter, 2001). During the cool and

dry season, temperatures are cooler and the relative humidity lower and people spend more

time outdoors. This may lead to lower levels of dengue and is corroborated by the fact

that warmer minimum temperatures in the cool and dry season are associated with elevated

dengue incidence.

Tmax is not associated with dengue incidence in the region. However, in the time series,

Tmax0:1 is less variable (σ = 1.6) than Tmin (σ = 2.7) making it statistically less likely for

an effect to be apparent throughout the analyses.

2.5.3 Effects of precipitation

The risk of infection is higher during the warm and wet season corroborating previous stud-

ies conducted in Mexico (e.g. Koopman et al., 1991; Hurtado-Dı́az et al., 2007; Brunkard

et al., 2008; Garcı́a et al., 2008) and some other countries (e.g. Lowe et al., 2011; Johans-

son et al., 2009b). After the long-term trend and seasonality are controlled for in the model,

precipitation is not statistically associated with dengue incidence. This could indicate that,

although water is required for mosquito breeding, there is enough rainfall in the region all

year to create breeding sites, and therefore, variations in monthly precipitation do not affect

dengue incidence.

This result could also indicate that rainfall does not influence the survival of adult vec-

tors directly (Patz et al., 1998) because of their indoor activity, or that water-holding con-

tainers used as breeding sites in the region may be mainly man-filled containers (Focks and

Barrera, 2006; Tsuzuki et al., 2009). Another plausible explanation is that effects of precip-

itation are obscured by summarizing weather and dengue data to large political boundaries

because such aggregation removes much of the variability in the data. Alternatively, it could

be argued that the use of a categorical variable for seasonal trends (variable that is critical

to differentiate the true effects of weather) may have removed much of the precipitation-

related information preventing the model from estimating a significant effect.

Population increases in urban areas, uncontrolled urbanisation, and lack of adequate

public services are common in Mexico (INEGI, 2005). High levels of urbanization seem to

increase the risk of dengue incidence (e.g. Narro and Gómez, 1995; Gómez-Dantés, 2007).

Inadequate or inefficient water supply and sewage, and poor solid waste disposal services
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increase the likelihood of water stagnation and offer potential breeding sites for the vector

(Escobar and Gómez, 2003; Cifuentes and Sánchez-Arias, 2007; Gómez-Dantés, 2007).

Inefficient or intermittent water supply leads to people having to store water for domestic

usage (Hemme et al., 2009). In other cases, people store water “just in case” (Padmanabha

et al., 2010). These situations create of potential breeding sites for mosquitoes independent

of precipitation.

The lack of association of precipitation with dengue incidence may, therefore, be in-

trinsically linked to the presence of confounding factors (e.g. social, political and cultural

features) in the region. At least part of the effects of these confounding factors is captured

by our long-term trend (e.g. rising urbanisation trends) and season variables (e.g. seasonal

water storage). Understanding the role of each of these factors in the dynamics of the dis-

ease requires detailed entomological, epidemiological and socioeconomic data and more

advanced statistical methods, and is beyond the scope of this study.

This study explores a larger time series and geographical area than previous studies

conducted in the region (e.g. Hurtado-Dı́az et al., 2007). Our large time series allowed

the estimation of associations between dengue and a large number of El Niño events with

greater statistical confidence than previous studies that analysed dengue series of up to

10 years. The large geographical area of study allowed us to reduce problems of small

numbers in dengue incidence observed at the provincial level. The stratification of models

into El Niño, non-El Niño, warm and wet and cool and dry seasons also allowed us to

explore differential associations between dengue and weather at different periods.

2.6 Limitations

In this study we have presented an analysis of the relationships between dengue incidence

and three key climatic variables (temperature, precipitation and SST) in the warm and hu-

mid region of Mexico. Although in this study we have reached the established aims, there

were some limitations.

There is large undereporting and misclassification of dengue cases because of lack of

specificity of the symptoms, low awareness of health practitioners, limited access to diag-

nostic tests, and poor systematic surveillance (Suaya et al., 2007; WHO, 2012). Previous

research suggests that for every official dengue report included in the official surveillance

systems, there are 10–27 cases unreported (Meltzer et al., 1998; Clark et al., 2005). Con-

sequently, our estimations were very likely conducted on a fraction of the total cases. This

situation is likely to have increased the uncertainty of our estimations (Lake et al., 2008).

However, this undereporting and misclassification is unlikely to have biased our results they

are unlikely to be a correlated with our variables of interest (e.g. precipitation).

We removed the seasonal trend components on both the predictors and the oucome vari-

able to identify their relationships as suggested by previous research (Bowie and Prothero,

1981). To do so, we used categorical variables for each month for the period which is a

strict approach to control for seasonality. Previous research conducted on the epidemiology
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of enteric diseases suggests that stringent control methods for seasonality may bias the ef-

fects of weather towards the null effect (Charron et al., 2005). The use of sinusoidal terms

with sine and cosine functions (Cowpertwait and Metcalfe, 2008) are a less stringent way

to account for seasonal trends in regression models.

As previously stated dengue series usually exhibit strong inter-annual variability (Cazelles

et al., 2005), as a result of both extrinsic and intrinsic factors (Wearing and Rohani, 2006).

Although our models were adjusted by the effects of log-linear long-term trends, this is not

enough to control for the effects of inter-annual variability. This lack of control may have

increased the residual confounding in our study. Additionally, we did not account for the

confounding effects of socioeconomic development in the models, situation that may also

increase residual confounding. As a consequence, our models could have overestimated the

true effects of weather on dengue incidence.

Data were aggregated to large political boundaries. Such coarse aggregation may have

caused aggregation bias issues (Theil, 1954; Grunfeld and Griliches, 1960) because it aver-

ages out variations in all predictors, making them less likely to show associations with the

outcome variable (Johansson et al., 2009a).

In this study we have assumed that the relationships between the log-transformed CIR

of dengue and the meteorological predictors are linear. In reality however, the effects of

weather on the dengue system are complex and highly nonlinear. One example of such

nonlinearities is a threshold response (Rohr et al., 2011). The ability of mosquitoes to sur-

vive and transmit dengue, decreases in either direction as one moves away from the optimal

temperature and precipitation levels. For example, adult Aedes mosquitoes gradually die

at temperatures beyond 36◦C Focks et al. (2000). The use of smooth functions for the

predictors could be helpful for testing the assumptions of linearity.

2.7 Conclusions

In this study, we used multiple linear regression to estimate associations between dengue

incidence, weather and El Niño in the warm and humid region of Mexico. We found that

dengue incidence was positively associated with El Niño. This association however, is

largely influenced by the exceptionally strong 1997–1998 El Niño, suggesting that the im-

pacts of an El Niño are only apparent above a specific threshold exceeded by the strongest

events.

We also found a concurrence between the same 1997–1998 El Niño and the introduction

of the DEN-3 serotype, which would have increased dengue incidence because of low herd

immunity. Such concurrence questions previous attributions of the 1997–1998 outbreak

to climatic conditions and could indicate that previous studies on the associations between

dengue incidence and El Niño may have overestimated its relative influence on dengue. It

is likely that both the introduction of DEN-3 and El Niño were responsible for the unusual

increase in dengue incidence observed in 1997.

The mechanisms by which El Niño influences dengue dynamics are still unclear, be-

cause El Niño shows a statistical association above and below its influence on the local
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weather. We provide robust evidence that SST excerts an influence on dengue incidence in

accordance with previous studies (Hurtado-Dı́az et al., 2007; Brunkard et al., 2008).

Increases in minimum temperature, especially during the cool and dry season, were

associated with elevated dengue incidence levels. There are a number of biologically plau-

sible reasons for this association: (i) increased development time and larval mortality of

the vector at low temperatures, (ii) alterations in the feeding behaviour of the vector, (iii)

amplification problems and increased EIP of the virus, and (iv) reduction in the time spent

indoors during the dry season.

Precipitation does not show a statistical association, suggesting that there are suitable

places for mosquito breeding all year. Socio-cultural, biological or epidemiological condi-

tions may be of great importance in ensuring that there are enough breeding sites all year.

The effects of weather and El Niño on dengue of dengue remain controversial. How-

ever, our study complements the understanding of dengue dynamics in the region and may

help in the effective allocation of resources in targeted areas.

There is no consistent evidence of likely changes in the amplitude or frequency of

El Niño because of climate change in the 21st century (Meehl et al., 2007). However,

climate change is likely to increase temperatures in the region (Christensen et al., 2007),

increasing the spatial and geographical distribution of the disease as well as the length of the

transmission period (Confalonieri et al., 2007). Our results suggest that this might worsen

dengue incidence in the region, especially during the cool and dry season when incidence

is currently low. Long-term surveillance and research will play a key role in the study of

changes in dengue behaviour and distribution. Our results can be used to determine future

incidence trends in the region, giving the opportunity to improve the control measures for

the disease and strengthen the adaptive capacity of the population.
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Chapter 3

Marked heterogeneity in the effects
of weather and ENSO on dengue
across Mexico

3.1 Abstract

Variations in dengue incidence have been associated with weather in many countries, but

there is little evidence on how such associations vary across different geographical or cli-

matic regions. Here, we present one of the first studies analyzing how and why the effects

of weather and El Niño on dengue vary across a single country. We estimated the effects of

weather and El Niño on dengue across Mexico; assessed the level of between-province het-

erogeneity; and examined climatic and socioeconomic sources of such heterogeneity. As-

sociations between dengue, weather, and El Niño were estimated fitting province-specific

Poisson models regressing dengue incidence on a range of meteorological variables. The

results of the Poisson models were used to fit random-effects meta-analytic models to assess

the presence of heterogeneity in the strength of such associations. Where significant hetero-

geneity was identified, we fitted mixed-effects meta-analytic models to estimate the effect

modification of climate and socioeconomic status on this heterogeneity. Dengue incidence

was significantly associated with El Niño, mean monthly temperature, and precipitation at

various time lags. These associations were significantly heterogeneous between provinces.

The underlying climate significantly modulated the strength of the associations between

dengue incidence and all meteorological variables. This association was corroborated us-

ing, average annual mean temperature, average annual mean precipitation, and latitude.

The socioeconomic status did not show a significant modulating effect. We conclude that

there is significant heterogeneity in the associations between dengue incidence and weather

across provinces in Mexico. This result highlights the disadvantages of using country-level

averaged values to investigate the relative effects of climate on health in a country with

large geographic and climatic variability.
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3.2 Introduction

Dengue is the most rapidly spreading mosquito-borne viral disease in the world (TDR,

2007). It is an acute febrile disease that affects all age groups (WHO, 1997). The World

Health Organization classifies the disease as Dengue (with and without Warning Signs)

and Severe Dengue (previously known as Dengue Haemorrhagic Fever or DHF) (WHO,

2009). Both Dengue and Severe Dengue are caused by the same four antigenically dis-

tinct but genetically related viruses of the genus flavivirus (Heinz et al., 2000), designated

DEN-1, DEN-2, DEN-3, and DEN-4 (WHO, 1997). Dengue viruses are transmitted to

humans through the bite of infected female mosquitoes, being Aedes aegypti the primary

vector. Every year, dengue causes approximately 50–100 million cases (Günther et al.,

2009) and at least 12,000 deaths, mainly among children (WHO, 2002), worldwide. The

economic burden of dengue has been recently estimated in 2.1 billion US dollars per an-

num just in the Americas (Shepard et al., 2011). One country greatly affected by dengue is

Mexico. The disease has been reported throughout the country where the four serotypes co-

circulate since 1995 (Guzmán and Kouri, 2003). The mean annual incidence rate of dengue

in Mexico shows great inter-annual variability (Figure B.1), with the periods 1995–1999

and 2006–2007 showing the largest increases in incidence across provinces.

Dengue incidence has dramatically increased globally over the last six decades (WHO,

2009) influenced by population growth, unplanned urbanisation, increased travel and trans-

portation of goods, lack of political will and limited resources for implementing effec-

tive control measures (Al-Muhandis and Hunter, 2011). Variations in dengue incidence

have also been associated with changes in weather and the occurrence of El Niño events

(Hurtado-Dı́az et al., 2007; Brunkard et al., 2008; Colón-González et al., 2011; Lowe et al.,

2011; Sriprom et al., 2010).

El Niño phenomenon is a dominant source of inter-annual climate variability around the

world (Trenberth, 1997). An El Niño event occurs every few years when the sea-surface

temperature (SST) anomalies (relative to the climatology of the base period 1950–1979) in

the Niño-3.4 region (5◦N–5◦S, 170◦W–120◦W) exceed 0.4◦C for at least six consecutive

months (Trenberth, 1997). The effects of El Niño on the Mexican weather are mainly

observed on precipitation, but ambient temperature is also affected (Magaña et al., 2004).

The effects of El Niño are not the same every year, and also vary between summer and

winter (Magaña et al., 2004).

The El Niño winters (El Niñow) are colder than usual in most of the country and pre-

cipitation increases in the north and northwest, and decreases in the south (Magaña et al.,

2004). The El Niño summers (El Niños) register above-normal temperatures (with some

exceptions mainly in the north-west) and decreased precipitation in the majority of the

country (with some exceptions mainly in the south-east) (Magaña et al., 2004). Figure 3.1

shows the mean temperature and precipitation anomalies for El Niños and El Niñow across

Mexico based on the 1958–1999 climatology. The definition of an El Niño event (Niño-3.4

SST anomalies exceeding 0.4◦C for a minimum of six consecutive months, Trenberth 1997)

is the same for both summer and winter.
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Figure 3.1: Mean precipitation anomalies (mm/day) during (A) El Niño summers (El Niños) and
(B) El Niño winters (El Niñow); and mean temperature anomalies (◦C) during (C) El Niños and
(D) El Niñow for the 1965–1966, 1972–1973, 1982–1983, 1986–1987, 1991–1992, and 1997–1998
events based on the 1958–1999 climatology. Reproduced with the consent of Magaña et al. (2004).

Research conducted in Mexico, Brazil and Thailand showed that rising ambient temper-

ature and SST (used as a proxy of El Niño) are associated with increasing dengue incidence

at different time lags (Hurtado-Dı́az et al., 2007; Brunkard et al., 2008; Sriprom et al.,

2010; Colón-González et al., 2011; Lowe et al., 2011). The effects of rising precipitation

on the other hand, have been largely inconsistent between studies. For example, meanwhile

Hurtado-Dı́az et al. (2007) and Brunkard et al. (2008) found a positive and statistically sig-

nificant association between dengue and precipitation lagged 2–3 weeks in some eastern

and northern Mexican municipalities, Colón-González et al. (2011) found a negative and

not statistically significant association at various time lags in the warm and humid region

of Mexico (situated in the southern half of the country). Lowe et al. (2011) found that

precipitation lagged 1 and 2 months was positive and significantly associated with dengue

incidence throughout Brazil, whereas in north-east Thailand, Sriprom et al. (2010) esti-

mated a negative and statistically significant association between dengue and precipitation

using the same time lags.

Johansson et al. (2009b) found that the strength of the local associations between dengue

and weather varies significantly across municipalities in Puerto Rico, and that such variation

is associated with differences in the local climate. The effect modification of socioeconomic

factors (population density, median household income, and share of families living below
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the poverty line), on the other hand, was not consistent across a range of lagged meteoro-

logical variables (Johansson et al., 2009b). These findings provide the first piece of quan-

titative evidence for understanding why local associations between dengue and weather are

spatially heterogeneous. Yet, this study is limited to a small geographical area, and to a low

range of climatic conditions.

Variations in the strength of the associations between dengue and weather may arise

from the complex interplay between the ecological determinants of dengue (Gage et al.,

2008). For example, the high temperatures characteristic of tropical and subtropical re-

gions may reduce the development time of Aedes mosquitoes and the extrinsic incubation

period (EIP) of the virus (the period between the infection of an Aedes mosquito with a

dengue virus and its ability to transmit it to a human host) (Watts et al., 1987; Jansen

and Beebe, 2010) enhancing dengue transmission. However, if humans seek refuge in air-

conditioned buildings the low temperatures and dry atmosphere lessen the survival rate of

Aedes mosquitoes and increase the EIP of the virus reducing the likelihood of successful

transmission (Reiter, 2001).

Low temperatures characteristic of temperate regions increase the development time,

the EIP, and the length of the gonotrophic cycle (Focks et al., 2000; Jansen and Beebe,

2010) resulting in decreased or zero transmission. Above-normal temperatures in such

regions (resulting from El Niño or heatwaves) on the other hand, may produce favourable

local climate conditions for dengue transmission (Gage et al., 2008).

In dry areas, adult stages of the vector may disappear if the eggs of the mosquito have

their development interrupted (diapause) due to desiccation (Bicout et al., 2002). Nev-

ertheless, increased domestic or peri-domestic water storage in these areas may provide

numerous oviposition sites that are effectively exploited by the vector (Gage et al., 2008;

Al-Muhandis and Hunter, 2011). Wet areas may observe little variation in dengue incidence

throughout the year because there may always be enough water to produce oviposition sites

(Williams et al., 2010). Access to window screening, sealed buildings, and air-conditioning

may limit dengue transmission in the region because people are less exposed to mosquito

bites (Reiter, 2001; Gage et al., 2008; Jansen and Beebe, 2010).

The socioeconomic status (SES) of the affected populations is also important for deter-

mining dengue occurrence. Dengue is more common to impoverished urban and peri-urban

areas where the poor building construction offers the vector access to the indoor environ-

ment, and the high population density facilitates the vector-human contact (Reiter, 2001;

Eisen and Lozano-Fuentes, 2009). However, there is no evidence as to whether SES mod-

ulates the strength of the associations between dengue and weather.

We further developed the work of Johansson et al. (2009b) analysing a larger geograph-

ical area (1.96 million km2), greater climatic diversity (Mexico has 9 major differentiable

climatic regions, see Figure 2.1), and slightly larger time frame (276 months of dengue

reports). We also quantitatively assessed whether the observed between-province variation

is statistically significant or due to random, and evaluated the effect modification of the

underlying climate accounting for the potential confounding effects of SES. The aims of

this paper were three-fold: First, to estimate the effects of weather and El Niño on dengue
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across Mexico. Second, to assess whether there is statistically significant between-province

variation in the strength of such effects. Finally, to examine the effect modification of the

underlying climate and SES as moderators of such between-province variation.

3.3 Materials and methods

3.3.1 Data

We obtained two sets of data for our analyses. The first set of data (Table 3.1) was collected

to understand the effects of weather and El Niño on dengue in each Mexican province.

These data comprised monthly dengue reports, population size, and monthly observations

of our meteorological variables.

The monthly number of confirmed dengue cases was obtained for the period January

1985 to December 2007 from the website of the the National System of Epidemiologic

Surveillance1 for all Mexican provinces (Table A.2). Notifications comprised dengue and

severe dengue reports. Cases were aggregated because severe dengue is just a severe pre-

sentation of dengue. A total of 417,668 dengue cases were reported in Mexico (Figure 3.2)

over the study period (1985–2007).

Annual province-specific population data were obtained from the website of the Na-

tional Institute of Statistics and Geography (INEGI)2 for 1990, 1995, 2000, 2005 and 2010.

Monthly population estimates for the intervening years were computed using linear inter-

polation.

Information was then obtained on meteorological variables for each province. The first

meteorological variable was monthly SST anomalies in the Niño-3.4 region as an estimate

of the strength of El Niño. SST data were obtained from the website of the US Climate

Prediction Center3. Monthly SST anomalies were then transformed into two categorical

variables each of them indicating the presence of an El Niños or an El Niñow episode.

These variables were created to assess whether the presence (and not the strength) of an

El Niño in a given season has a different effect on dengue incidence than the other season.

We selected the Niño-3.4 region because it is one of the most sensitive indices for deter-

mining an El Niño event (Hanley et al., 2003). SST data were the same for each of the

provinces.

Province-specific observations of average monthly minimum temperature, average mon-

thly maximum temperature and accumulated monthly precipitation were obtained from the

Mexican National Meteorological System. These data comprised province-wide averaged

values from observations of all meteorological stations within each province.

The second set of data collected (Table 3.1) was used to examine the influence of un-

derlying climate (Figure 3.2) and SES on the effects of weather and El Niño on dengue

across provinces. The dominant underlying climate of each province (very-dry temperate,

dry semi-warm, dry temperate, dry warm, semi-dry temperate, humid semi-warm, humid
1http://www.dgepi.salud.gob.mx/anuario/html/anuarios.html (Accessed 12 Mar 2009)
2http://www.inegi.org.mx/inegi/ (Accessed 23 Mar 2009)
3http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices (Accessed 12 Mar 2009)



3.3 Materials and methods 53

Variable Mean SD Median Minimum Maximum

Dengue cases 47.29 233.77 1.00 0.00 6322.00
Tmin 13.29 5.58 13.41 -2.87 24.88
Tmax 28.50 4.39 28.71 13.32 39.95
Precipitation 72.73 88.49 35.72 0.00 802.45
Tmeanq 20.94 3.32 21.43 14.25 26.97
Precipitationq 72.95 38.90 64.47 14.87 189.24
Latitude 21.68 3.62 20.71 16.21 30.21
GDP 4,798.11 3,300.75 3,881.92 755.74 25,410.97
Urbanisation 71.72 15.59 73.23 35.72 100.00
Population 2,809,833.95 2,449,218.98 2,154,671.50 244,470.00 14,474,842.00

Table 3.1: Descriptive statistics of scale parameters (n = 8,832).

temperate, humid warm, and semi-humid temperate) were obtained from INEGI4. Average

annual mean temperature (Tmeanq), and average annual precipitation (Precipitationq) were

estimated from the monthly data for the period of study.

The latitude of the approximate centroids of each province were extracted from a web-

site of the Mexican National Institute of Ecology5 because latitude is important for deter-

mining the climate of the Mexican provinces (Mosiño and Garcı́a, 1974).

As already mentioned, SES may modulate dengue transmission (Reiter, 2001). Thus,

for each province, indicators for wealth and demography were obtained to assess whether

these influence the effects of the meteorological variables on dengue. The wealth data used

was the gross domestic product per capita (GDP) which was obtained from INEGI6 for the

year 2005. The proportion of the population living in urban areas (urbanisation) was used

as the measure of demography, and was obtained from the Chamber of Deputies7 for the

year 2004. The spatial distribution of these socioeconomic variables is illustrated in Figure

3.2.

3.3.2 Estimation of the optimal lagged meteorological variables

To estimate the effects of each meteorological variable (as defined in Section 3.3.1) at differ-

ent time lags it was necessary to account for the confounding effects of both seasonal trends

and inter-annual variability components of the series involved as suggested by Bowie and

Prothero (1981). We estimated the optimal (biologically plausible) lagged meteorological

variables fitting province-specific models as follows:

yt ∼ Poisson(µt) (3.1)

log(µt) = β0 +

2007∑
j=1986

βjDjt + β1sin(t′) + β2Xt−l + log(Wt) (3.2)

4http://www.inegi.org.mx/sistemas/sisept/default.aspx?t=mamb22c=21443s=est (Accessed 7 Nov 2010)
5http://zimbra.ine.gob.mx/escenarios/ (Accessed 10 Nov 2011)
6http://www.inegi.org.mx/sistemas/productos/ (Accessed 18 Apr 2010)
7http://www.cefp.gob.mx/intr/bancosdeinformacion/estatales/ (Accessed 18 Apr 2009)
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Figure 3.2: (A) Total number of dengue cases by province (1985–2007); (B) Gross Domestic Prod-
uct per capita (2005) in thousand Mexican Pesos; and (C) percentage of the population living in
urban areas.

sin(t′) = sin(2πt/12) (3.3)

where log(µt) denotes the logarithm of the expected number of dengue cases for time t

= 1,...,n; β0 is the intercept; βj , β1, and β2 are the regression coefficients (slopes) for

each explanatory variable (regressor); Djt denotes a categorical variable for calendar year,

where j = 1986,...,2007 and 1985 is set as a reference level; Xt denotes each meteorological

covariate at the l-th lags, and log(Wt) corresponds to the logarithm of the population size

included as an offset variable.

For temperature and precipitation variables we only considered time lags from zero to

three months based on previous research (Hurtado-Dı́az et al., 2007; Brunkard et al., 2008;

Colón-González et al., 2011) and biological plausibility. For SST we considered time lags

from zero to six months (Hurtado-Dı́az et al., 2007; Brunkard et al., 2008; Colón-González

et al., 2011; Lowe et al., 2011). The year-specific categorical variables controls for indepen-

dent inter-annual variability that may arise from real changes in dengue incidence or from

changes in reporting rates over time, improved diagnostic techniques or micro-evolutionary

changes in mosquito populations. Such variable also control for the potential inter-annual

effects of omitted variables such as social behaviour or socioeconomic development that

may confound the associations between dengue and the meteorological variables. The

sinusoidal term (Equation 3.3) controls for the potential confounding effects of seasonal

trends that may be related to non-climatic factors such as holidays and seasonal water stor-

age practices. This led to a Poisson model with log link function. To account for possible
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over-dispersion, we allowed the scale parameter to be different from its mean (Cameron

and Trivedi, 1990). Estimations were conducted in R version 2.13.1 (R Development Core

Team, 2010). Our preferred models were those that produced the minimal residual deviance

in each province.

3.3.3 Associations between dengue and the optimal lagged meteorological
variables

To estimate the effects of the optimal lagged meteorological variables on dengue, we spec-

ified the expected number of dengue cases during month t in each province as:

log(µt) = β0 +
2007∑

j=1986

βjDjt + β1sin(t′) +
2∑

i=1

βiXit + log(Wt) (3.4)

where Xit denotes the optimal lagged i-th meteorological covariates, and the rest of vari-

ables and the model specification (i.e. a Poisson model with log link function) are as defined

on Equation 3.2.

3.3.4 Meta-analytic models

After the associations between dengue and the optimal lagged meteorological variables

were established for each province, we assessed whether there was statistically significant

between-province variation (heterogeneity) in the strength of such associations. Providing

that the associations between dengue, weather and El Niño in each province are indepen-

dent, we analysed their summary measures (regression coefficients and their corresponding

standard errors in this case) using standard methods as suggested by Kirkwood and Sterne

(2003).

We calculated the mean true “overall” association (with variance τ2) between dengue

and each meteorological variable fitting random-effects meta-analyses using the metafor

package for R (Viechtbauer, 2010). We assessed the between-province heterogeneity of

effect estimates using Cochran’s Q-tests as defined by DerSimonian and Laird (1986) and

the H2 and I2 statistics as described by Higgins and Thompson (2002).

Whenever we observed significant between-province heterogeneity (i.e. Q-test P <

0.001, H2 > 1.5, and I2 > 50%, Higgins and Thompson 2002) in the associations between

dengue and the meteorological variables, we included moderators (province-level variables)

into the meta-analytic models to examine possible sources of such heterogeneity. It was

expected that such moderators would account for at least part of the between-province

heterogeneity (Viechtbauer, 2010). This led to a series of mixed-effects models given by:

θ = β0 +

4∑
j=1

βjXj (3.5)

where θ corresponds to the expected true effect on each model, β0 is the intercept, βj is the

effect size of each j-th moderator variable, and Xj denotes the value of the j-th moderator
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in the model.

To examine moderators of the associations between dengue, weather and El Niño, we

fitted mixed-effects models in three stages. First, we estimated the influence of the pre-

vailing climatic regime including categorical variables for underlying climate in the model,

using procedures described in Viechtbauer (2010). We performed omnibus tests for these

models to estimate the between-region homogeneity (Qm) using the humid warm climatic

region (β0) as a reference. A significant Qm indicates that effect sizes are significantly

different between climatic regions.

Second, we replaced the climate-related categorical variables with continuous variables

to account for subtle differences between provinces with similar climate that would not

otherwise be captured by including a categorical variable. The first two variables were

Tmeanq, and Precipitationq. Then, we explored the influence of latitude. Third, we esti-

mated the effect modification of SES (GDP per capita, and urbanisation).

The proportion of the total amount of heterogeneity (ω) that can be accounted by in-

cluding Xj moderators in the model (Equation 3.5) was specified as:

ω = (τ̂2r − τ̂2m) / τ̂2r (3.6)

where τ̂2r denotes the estimated amount of residual heterogeneity of a given random-effects

model, and τ̂2m corresponds to the estimated amount of residual heterogeneity of its corre-

sponding mixed-effects model.

3.4 Results

3.4.1 Optimal lagged meteorological variables

We estimated significant correlation between minimum temperature and maximum temper-

ature in 63% of the provinces (Table 3.2); consequently, we computed average monthly

mean temperature (Tmean) for our analyses. The optimal lagged meteorological variables

were SST lagged 5 months (SST5), and averaged Tmean and accumulated precipitation

lagged 1 and 2 months. Because temperature and precipitation variables were significantly

associated with dengue incidence at more than one time lag, such lagged variables were

averaged before their inclusion in the final models (i.e. Tmean1:2, and Precipitation1:2) to

avoid collinearity issues. We created categorical variables for the presence of El Niños and

El Niñow episodes respecting the 5 months time lag determined for SST.

3.4.2 Province-specific associations between dengue incidence, weather, and
El Niño

Table A.3 reports the parameter estimates of the province-specific models for associations

between dengue, weather, and El Niño. The estimated relationship between dengue inci-

dence and El Niño (both El Niños and El Niñow) was positive in 15 out of 32 provinces.

Positive associations indicate that as the value of the meteorological variable increases so
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Province Tmin-Tmax Tmin-Precipitation Tmax-Precipitation

Aguascalientes 0.701 0.736 0.192
Baja California 0.964 -0.618 -0.683
Baja California Sur 0.951 0.395 0.252
Campeche 0.713 0.649 0.186
Chiapas 0.535 0.688 -0.030
Chihuahua 0.926 0.617 0.379
Coahuila 0.949 0.617 0.492
Colima 0.287 0.742 -0.107
Distrito Federal 0.509 0.788 0.206
Durango 0.860 0.662 0.291
Guanajuato 0.703 0.756 0.219
Guerrero 0.351 0.707 -0.260
Hidalgo 0.594 0.759 0.168
Jalisco 0.456 0.793 -0.027
México 0.356 0.865 0.018
Michoacán 0.432 0.746 -0.130
Morelos 0.346 0.743 -0.173
Nayarit 0.569 0.741 0.062
Nuevo León 0.943 0.535 0.414
Oaxaca 0.645 0.582 0.006
Puebla 0.624 0.707 0.206
Querétaro 0.715 0.734 0.292
Quintana Roo 0.770 0.520 0.226
San Luis Potosı́ 0.836 0.731 0.399
Sinaloa 0.826 0.639 0.211
Sonora 0.919 0.523 0.254
Tabasco 0.837 0.292 -0.085
Tamaulipas 0.936 0.617 0.447
Tlaxcala 0.371 0.886 0.143
Veracruz 0.891 0.644 0.341
Yucatán 0.753 0.692 0.374
Zacatecas 0.729 0.749 0.215

Table 3.2: Province-specific Spearman rank correlations between meteorological predictors.

too does dengue. Significant and negative associations between dengue and El Niños were

only observed in two provinces where precipitation and temperature greatly decrease during

an El Niños and may hamper the vector’s biology. The statistically significant associations

between dengue and Tmean1:2 were mainly negative, meanwhile statistically significant

associations with Precipitation1:2 were mainly positive. Figure 3.3 shows the spatial distri-

bution of statistically significant associations between dengue, weather and El Niño.

3.4.3 Categorical moderator analyses

The meta-analytic random-effects models provided evidence of statistically significant het-

erogeneity between provinces in the strength of the associations between dengue and our

four meteorological variables (Table 3.3). Given the statistically significant variation, it is

inappropriate to report the average associations with any of these variables (Fine, 1995).

We therefore proceeded to explore sources of between-province variation. Results of

the categorical moderator analysis are shown in Table 3.4. The omnibus test (Qm) indicated

that the underlying climate significantly influences the average strength of the associations
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Figure 3.3: Statistically significant associations between log-transformed dengue cases, and (A)
El Niños, (B) El Niñow, (C) Tmean1:2, and (D) Precipitation1:2. Colors represent the relative
strength and direction (i.e. positive or negative) of the estimated associations. Blank polygons
indicate a non-significant association in the corresponding province.

Q H2 I2

Estimate d.f. P Estimate 95% CI Estimate 95% CI

Niños 164.981 31 < 0.001 5.322 3.734 – 11.716 81.210 73.216 – 91.464
Niñow 92.273 31 < 0.001 2.977 2.130 – 7.994 66.404 53.056 – 87.491
Tmean1:2 201.444 31 < 0.001 6.498 5.801 – 21.830 84.611 82.762 – 95.419
Precipitation1:2 164.555 31 < 0.001 5.308 8.674 – 41.301 81.161 88.471 – 97.579

Table 3.3: Parameter estimates of the between-province heterogeneity in the associations between
dengue and weather. Values in bold font were statistically significant at the 0.05 level

between dengue and all four meteorological variables. Very dry temperate, semi-dry tem-

perate and humid temperate climates were found to yield significantly larger associations

between dengue and El Niños than other climatic regions, whereas dry warm climates yield

significantly lower associations. The estimations obtained for the very dry temperate cli-

mates in this and other models should be considered cautiously as the very low numbers of

disease cases observed in those provinces led to very unstable estimations (see Table A.3).

Very-dry temperate, semi-dry temperate and dry semi-warm climates appear to sig-

nificantly yield larger associations between dengue and El Niñow than in other climates.

Only sub-humid temperate and humid warm climates appear to yield larger associations

between dengue and Tmean1:2, whilst semi-dry temperate, humid-semi warm and very-

dry temperate climates appear to yield significantly lower associations between dengue

and Tmean1:2. Associations between dengue and Precipitation1:2 seem to be significantly

greater than the rest of the country in dry warm, dry semi-warm and humid-warm regions.
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Niños Niñow Tmean1:2 Precipitation1:2

Underlying climate B (95% CI) B (95% CI) B (95% CI) B (95% CI)

Humid warm 0.608 (0.286 – 0.929) 0.536 (0.328 – 0.744) 0.009 (-0.109 – 0.127) 0.009 (0.001 – 0.018)
Humid semi-warm -0.127 (-1.120 – 0.866) 0.623 (-0.085 – 1.330) -0.469 (-0.778 – -0.159) 0.006 (-0.020 – 0.032)
Humid temperate 1.468 (0.379 – 2.556) -0.414 (-1.426 – 0.598) -0.113 (-0.479 – 0.254) -0.024 (-0.059 – 0.011)
Subhumid temperate -0.0134(-1.015 – 0.988) -0.194 (-0.585 – 0.972) 0.033 (-0.280 – 0.346) 0.022 (-0.016 – 0.059)
Dry semi-warm -0.315 (-1.272 – 0.643) 1.629 (0.916 – 2.341) -0.135 (-0.449 – 0.180) 0.054 (0.018 – 0.091)
Dry temperate 0.223 (-1.508 – 1.062) 0.996 (-0.084 – 2.075) -0.224 (-0.539 – 0.091) 0.014 (-0.015 – 0.044)
Dry warm -0.858 (-1.888 – -0.171) 0.720 (-0.033 – 1.473) -0.044 (-0.374 – 0.287) 0.075 (0.048 – 0.103)
Semi-dry temperate 2.965 (1.652 – 4.277) 2.130 (1.233 – 3.027) -0.520 (-0.890 – -0.151) -0.021 (-0.070 – 0.029)
Very dry temperate -15.163 (-4604.822 – 4574.496) -1.910 (-4.677 – 0.857) -0.389 (-0.841 – 0.063) -0.005 (-0.057 – 0.067)

Model statistics

τ̂2
r 0.455 0.191 0.047 0.003
τ̂2
m 0.271 0.088 0.038 0.002
ω 0.405 0.535 0.196 0.379
Qm 43.623 79.703 22.408 46.323

Table 3.4: Effect modification of underlying climate on the average log relative associations be-
tween dengue and weather. Values in bold font were statistically significant at the 0.05 level.

The El Niñow, Tmean1:2, and Precipitation1:2 models accounted for 54%, 20% and 38% of

the total amount of between-provinces heterogeneity, respectively.

3.4.4 Continuous moderator analyses

To corroborate the influence of underlying climate on the effects of weather and El Niño,

we fitted new mixed-effects meta-analytic models replacing the categorical variables for

underlying climate with continuous variables for Tmeanq and, Precipitationq (see Section

3.3). None of these two moderators showed a significant influence on the strength of the

associations between dengue and El Niños in disagreement with the results obtained with

the previous model specification (Table 3.5). Furthermore, this model specification did not

seem to account for any of the total amount of residual heterogeneity.

The strength of the associations between dengue and El Niñow, and between dengue

and Precipitation1:2, on the other hand, appear to be negative and significantly influenced

by Precipitationq, but not significantly influenced by Tmeanq. This finding suggests that

greater levels of Precipitationq lead to increasingly smaller associations with both El Niños
and Precipitation1:2. Neither Tmeanq nor Precipitationq seemed to significantly influence

the strength of the associations between dengue and Tmean1:2.

We then fitted new mixed-effects models replacing Tmeanq and, Precipitationq with

latitude. Latitude was highly correlated with Precipitationq (Spearman’s rank Rho = -0.8),

but not with Tmeanq (Spearman’s rank Rho = -0.2). Latitude showed a significant negative

influence on the associations between dengue and El Niños and Tmean1:2 suggesting in-

creasingly smaller associations with dengue at higher latitudes. On the other hand, latitude

appears to have significant negative effects on the associations between dengue, El Niñow
and Precipitation1:2.
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Niños Niñow Tmean1:2 Precipitation1:2

Moderator B (95% CI) τ̂2m B (95% CI) τ̂2m B (95% CI) τ̂2m B (95% CI) τ̂2m

Tmeanq -0.015 (-0.119 – 0.089) 0.486 0.058 (-0.007 – 0.123) 0.114 0.026 (-0.001 – 0.053) 0.037 0.003 (-0.001 – 0.007) 0.000
Precipitationq 0.056 (-0.034 – 0.146) 0.486 -0.097 (-0.152 – -0.042) 0.114 0.015 (-0.010 – 0.040) 0.037 -0.003 (-0.005 – -0.001) 0.000
Latitude -0.128 (-0.236 – -0.020) 0.466 0.089 (0.018 – 0.160) 0.134 -0.037 (-0.062 – -0.012) 0.032 0.004 (0.002 – 0.006) 0.000
GDP 1.002 (-0.325 – 2.329) 0.423 0.272 (-0.732 – 1.276) 0.195 0.132 (-0.287 – 0.551) 0.049 0.034 (-0.005 – 0.073) 0.000
Urbanisation -0.138 (-0.412 – 0.136) 0.423 0.069 (-0.269 – 0.131) 0.195 -0.075 (-0.163 – 0.013) 0.049 -0.000 (-0.008 – 0.008) 0.000

Table 3.5: Effect modification of Tmeanq , Precipitationq , latitude, and SES on the mean log-associations between dengue and weather. Values in bold font were statistically
significant at the 0.05 level.
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We finally examined the influence of SES as source of heterogeneity. The results in-

dicated that neither GDP or urbanisation seem to significantly influence the associations

between dengue and our meteorological variables (Table 3.5).

3.5 Discussion

The results of this study demonstrate that weather and El Niño have statistically significant

effects on dengue in Mexico corroborating previous research in the country (Hurtado-Dı́az

et al., 2007; Brunkard et al., 2008; Colón-González et al., 2011) and other regions (e.g.

Johansson et al., 2009b; Lowe et al., 2011). The identified optimal lagged meteorological

variables also were in accordance with previous studies conducted in Mexico (Hurtado-

Dı́az et al., 2007; Brunkard et al., 2008). Such range of time lags account for the time

required by El Niño to modulate the Mexican weather (Hurtado-Dı́az et al., 2007), the time

taken for ambient temperature and precipitation to influence the ecology of the vector, and

the corresponding diagnosis and reporting time lags of the disease.

To our knowledge, this is one of the first studies to demonstrate that the underlying

climate exerts a statistically significant influence on the strength of the associations between

dengue, weather and El Niño across different provinces in a single country; and the first one

establishing differentiable associations between dengue and El Niño in different seasons.

We estimated the influence of the underlying climate including categorical variables

in the model. Our models accounted for about 20-50% of the total amount of between-

provinces heterogeneity. Thus, the underlying climate seems to have a modest but sta-

tistically significant effect modification in the associations between dengue, weather and

El Niño. These results are in accordance with those from Johansson et al. (2009b) that

indicated that the heterogeneity in the strength of the associations between dengue and

weather is significantly influenced by the local climate but not by SES. The modest ef-

fect modification of underlying climate on the relationships between dengue, weather and

El Niño suggests that other factors not considered in the model may explain the observed

variation in such relationships.

When we replaced the categorical variables with continuous variables for long-term

Tmean and precipitation, only Precipitationq showed a significant effect modification. Fur-

thermore, the effect modification of Precipitationq was statistically significant only for the

El Niños and Precipitation1:2 models. The effect modification of Precipitationq was nega-

tive suggesting a greater effect in areas with low long-term precipitation levels. Much of

this effect may be due to the physiological sensitivity of Aedes mosquitoes to water abun-

dance (Gage et al., 2008; Jansen and Beebe, 2010). As previously stated, humid provinces

may always be wet enough to provide potential breeding sites for the vector (Williams et al.,

2010) and consequently, precipitation may play a less important role than in dry provinces

where increases in precipitation may trigger the development of dormant eggs (Bicout et al.,

2002). Dry provinces are mainly located at high latitudes where El Niñow generally cause

increases in precipitation (Magaña et al., 2004).

Johansson et al. (2009b) suggest that the effects of long-term mean temperature (Tmeanq
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in our study) significantly influences the associations between dengue and weather. How-

ever, our dataset was unable to show it. One possible explanation for the lack of an effect

modification of Tmeanq is that the aggregation of data to large political boundaries signifi-

cantly reduces the spatiotemporal heterogeneity preventing the models to detect the effects

of Tmeanq. Another explanation could be that Tmeanq (coefficient of variation = 0.2) is

considerably less variable than Precipitationq (coefficient of variation = 0.5) making it sta-

tistically less likely for an effect to be apparent throughout the analyses.

The effect modification of latitude was also considerably small, yet it was statistically

significant in all models. The associations between dengue, El Niñow and Precipitation1:2
were increasingly greater at high latitudes despite the low temperatures experienced during

the El Niñow events in some regions. As previously explained, this situation may be the re-

sult of the effects of monthly precipitation being minimized in regions where mean annual

precipitation is high as observed in Puerto Rico (Johansson et al., 2009b), demonstrating

the relative greater importance of precipitation in dry provinces (possibly due to its impor-

tance for the creation of breeding sites, Gage et al. 2008; Jansen and Beebe 2010). These

results were highly consistent across models. Associations between dengue and Tmean1:2
were increasingly smaller at high latitudes. A possible explanation is that, as previously

explained, at high latitudes, precipitation seems to play a greater role than temperature pre-

sumably because of its importance for the creation of rain-filled breeding sites (Gage et al.,

2008; Jansen and Beebe, 2010).

Associations between dengue and El Niños were also increasingly smaller at high lati-

tudes. This could be the results of extreme temperatures (either very high or very low) and

low precipitation observed during an El Niños hamper the vector’s biology (Watts et al.,

1987; Focks et al., 2000; Bicout et al., 2002; Jansen and Beebe, 2010), and may result in

negative associations with dengue. Much of this effect may be due to the ectothermic na-

ture and the physiological sensitivity to water abundance of the Aedes mosquitoes (Gage

et al., 2008; Jansen and Beebe, 2010). At low latitudes, several humid provinces experience

warmer and wetter conditions during an El Niños, enhancing the vectorial development and

activity, and resulting in increasingly stronger associations with dengue.

Previous studies indicate that SES plays a key role in dengue transmission (Reiter, 2001;

Gage et al., 2008). Regions with high population densities and poor construction of build-

ings in the cities, using natural ventilation instead of air conditioning, and with low access

to health services and education show higher incidence rates than well developed ones irre-

spective of their climate and vector prevalence (Reiter, 2001; WHO, 2009). Although less

privileged regions may have higher incidence rates than well developed ones, something

not examined in our study, SES differences do not seem to affect the strength of the as-

sociations between dengue and climate. Our results suggests that although socioeconomic

factors may be important for the transmission dynamics of the disease (Reiter, 2001), asso-

ciations between dengue, weather, and El Niño seem to be independent from variations in

the SES.
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3.6 Limitations

In this study we have assumed that the relationships between the logarithm of the number

of dengue cases, weather and El Niño are linear. As previously explained, in reality these

associations are likely to be nonlinear. The significant heterogeneity observed in this study

may arise from the presence of such nonlinear relationships between dengue, weather, and

El Niño; something not accounted for in our models. The use of flexible smooth functions

for the predictors (see Chapter 4) could help in testing these assumptions.

Although the dataset used for this study has a greater spatial resolution than the one used

in Chapter 2, data were still aggregated to rather large political boundaries. As previously

explained, this aggregation may is likely to remove a great deal of variability in both the

predictors and the outcome variable making it difficult to estimate statistically significant

relationships between them (Johansson et al., 2009a).

Dengue transmission involves one person’s infection leading to one or more secondary

infections (see Figure 1.2). This situation results in a violation of independence as the

number of dengue cases at a given time depends on the number of cases ocurring in pre-

vious periods. While the temporal autocorrelation does not bias our estimated regression

coefficientes, it tends to underestimate the standard errors of the predictors (Cohen et al.,

2003). Consequently, our models may have overestimated the statistical significance of the

relationships between dengue, weather and El Niño. Figure 3.4 shows the partial autocorre-

lations for each of our province-specific models. These plots indicate that there has been a

violation of independence in some provinces. Incorporating a temporal dependence struc-

ture between the observations in the province-specific models may help to prevent such

violation (Zuur et al., 2009).

We used a sinusoidal term (Equation 3.3) characterized by a sine function to control

for the effects of seasonal trends that may be related to non-climatic factors in our models.

However, the seasonal patterns observed in our dataset may not have the shape or the phase

of the sine function specified in our models. The use of pairs of sine and cosine functions

may be helpful for relaxing this assumption.

Here, we did not account for the confounding effects of socioeconomic development

in the regression models. As a consequence, our models are subject to have large resid-

ual confounding. Moreover, we could have overestimated the true effects of weather and

El Niño on dengue incidence. Some of the effect of socioeconomic development (e.g. vari-

ations in GDP) may have been accounted for by the categorical variable for year in the

model.

Our meta-analytic approach is one of the simplest and valid ways to compare summary

measures between clusters (Kirkwood and Sterne, 2003). However, a more powerful and

succinct analysis could have been obtained by fitting a single model to the data from all

provinces together. We take this approach in the following Chapter.
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Figure 3.4: Partial autocorrelations of the province-specific models’ deviance residuals.

3.7 Conclusions

Many infectious diseases share the common feature of being spatially heterogeneous in

their transmission (Johansson et al., 2009b). The approach used in this study offers an

alternative for overcoming the difficulties posed by spatial heterogeneity in the development

of statistical models for the spatiotemporal analysis of the effects of weather on a range of
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vector-borne diseases.

In this study, meta-analytic regression analysis revealed that the effects of weather

and El Niño on dengue across provinces in Mexico are significantly heterogeneous across

provinces. These findings corroborate that dengue dynamics is determined at the local level

and significantly influenced by the underlying local climate. Furthermore, they highlight

the disadvantages of using country-level aggregated values for estimating the empirical rela-

tionships between climate variables and health indicators in a country with large geography

and climatic variability.
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Chapter 4

The potential impact of climate
change on dengue incidence

4.1 Abstract

There is still uncertainty about the potential impact of climate change on vector-borne dis-

eases. Such uncertainty reflects the difficulties to model the complex interactions between

climatic and socioeconomic determinants of the disease. Here, we use a large panel of

monthly province-specific data covering 23 years of dengue observations to estimate the

relative importance of weather on contemporary dengue trends after accounting for the

confounding effects of several non-climatic factors. We estimate statistically significant

effects of weather and access to piped water on dengue. The effects of weather are highly

nonlinear. These findings highlight the importance of using flexible model specifications

when analysing weather-health interactions. We use our model estimations to project the

potential impact of climate change on dengue incidence under three emission scenarios by

2030, 2050 and 2080. Our projections indicate that climate change could increase the na-

tional average annual dengue incidence by up to 42% by 2080. Rising access to piped water

could aggravate the problem if it leads to increased domestic water storage. Climate change

may therefore influence the success or failure of future efforts against dengue.

4.2 Introduction

Dengue is the most widely distributed and rapidly spreading mosquito-borne viral disease in

the world (TDR, 2007). This acute febrile disease affects all age groups (WHO, 1997), and

is caused by four antigenically distinct but genetically related viruses (serotypes) (Wear-

ing and Rohani, 2006). Dengue has become endemic in over 100 countries (Figure 1.1)

in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pa-

cific (WHO, 2009). Approximately 2.5 billion people are at risk from dengue transmis-

sion. About 50 million new dengue infections (WHO, 2009) and at least 12,000 deaths,

mainly among children, occur worldwide every year (WHO, 2002). The economic burden

of dengue has been estimated to be about 2.1 billion US dollars per annum in Latin America
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and the Caribbean alone (Shepard et al., 2011). The economic losses caused by dengue are

similar to those attributed to malaria and tuberculosis in some regions such as the Americas

(Torres and Castro, 2007). As there are no specific antiviral medicines treating or vaccines

preventing dengue, the only way to control or prevent the disease is through the control of

vector populations (Al-Muhandis and Hunter, 2011).

The global incidence rate of dengue has substantially increased over the last six decades

(from about 900 annual cases reported to WHO over 1955–1959 to about 926 thousand

annual cases over 2000–2007, WHO 2009, 2002) influenced by numerous mechanisms in-

cluding population growth, unplanned urbanisation, increased travel and transportation of

goods, lack of political will and limited resources for implementing effective control mea-

sures (Al-Muhandis and Hunter, 2011). The spatial distribution of the main dengue vector,

Aedes aegypti, has also increased over the last 25 years (Jansen and Beebe, 2010). Increases

in the distribution of both dengue incidence and A. aegypti have also been associated to

variations in the climate system, including climate change (e.g. Sriprom et al., 2010).

In this chapter, we estimate the relative effects of weather (minimum and maximum

temperature, and precipitation) on dengue accounting for the confounding effects of several

of non-climatic factors (e.g. access to piped water, urbanisation, gross domestic product,

inter-annual variability, and seasonal trends). Our model estimations are then used to esti-

mate the potential effects of climate change on dengue incidence for the years 2030, 2050

and 2080 under three of the emission scenarios described by Nakicenovic and Swart (IPCC,

2000).

Several empirical models have been developed for estimating associations between

dengue and weather (e.g. Sriprom et al., 2010; Johansson et al., 2009b), and some of these

have been used as a baseline to predict the potential impacts of climate change on the fu-

ture distribution and risk of dengue infection (e.g. Confalonieri et al., 2007; Sriprom et al.,

2010). However, although non-climatic factors greatly confound the associations between

dengue and weather, the majority of these studies have failed to incorporate such con-

founders greatly undermining their estimations (Robins and Morgenstern, 1987; Gething

et al., 2010). Furthermore, most previous research has been conducted in small geographi-

cal areas or covered relatively short periods of time (e.g. Johansson et al., 2009b; Sriprom

et al., 2010; Schmidt et al., 2011) leading to several limitations. For example, short series

(10 years or less) pose challenges for the identification of climatic signals with high statisti-

cal confidence because of their small signal-to-noise ratios (Santer et al., 2011); small popu-

lations commonly result in low disease numbers leading to unstable risk estimations (Olsen

et al., 1996); small areas are also more likely to be climatically and socioeconomically

homogeneous (Elliott and Wartenberg, 2004; Eisen and Lozano-Fuentes, 2009), making it

harder to extrapolate the results to areas with greater climatic or socioeconomic variability.

Our study case has various unique features that minimize the identified problems. First,

we used a large panel of province-specific data with a refined temporal resolution (monthly)

covering the entirety of Mexico to investigate a greater geographical area (1.96 million

km2), time frame (276 months), and number of cases (417,668) than previous studies. Sec-

ond, the great climatic diversity (Mexico is a tropical and subtropical country, Mosiño
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and Garcı́a 1974) and socioeconomic heterogeneity (GINI index 0.48, The World Bank

2012) of Mexico allowed us to estimate robust and generalized relations between dengue,

weather and socioeconomic development, which can be extrapolated to a variety of re-

gions with similar climatic and socioeconomic features. Third, we allowed for nonlinear

relationships between dengue and weather by adopting a semi-parametric modelling ap-

proach.Specifically, we implemented a Generalized Additive Model (GAM) coupled with

penalized likelihood function and an automated smoothing selection criterion, which esti-

mated the optimal degree of nonlinearity of the model directly from the data (Wood, 2006).

Such specification resolves the subtle task of determining the model flexibility a priori by

incorporating this choice into the actual estimation process. This method has been de-

scribed in detail elsewhere (Wood, 2006). Finally, we incorporate province-specific fixed-

effects into our model to account for the confounding effects of time invariant unobserved

variables.

4.3 Materials and methods

4.3.1 Data

Province-specific monthly reports of laboratory confirmed dengue cases were collected

from the Mexican National System of Epidemiologic Surveillance website1 for the pe-

riod 1985–2007 (Table 4.1). Dengue and dengue hemorrhagic fever cases were aggregated

because they correspond to different presentations of the disease. Higher incidence rates

were observed during the wet season (May to October), and in provinces with low elevation

coastal zones.

Variable Units Mean sd Min Max

Dengue Cases 47.3 233.8 0.0 6322.0
Tmin1:2

◦C 13.3 5.5 -1.9 24.8
Tmax1:2

◦C 28.5 4.3 15.0 39.3
Precipitation1:2 mm 146.2 161.4 0.0 1167.0
Access to piped water % 81.8 12.2 44.5 98.1
GDP Thousand USD 26.8 58.1 2.8 744.0
Urbanisation % 71.7 15.6 35.7 100.0
Population million 2.8 2.4 0.2 14.5

Table 4.1: Descriptive statistics.

Monthly average minimum and maximum temperature, and monthly accumulated pre-

cipitation data were obtained from the Mexican National Meteorological Service for each

province for the period 1971–2007 (Table 4.1). Data comprised province-specific averages

from observations from all meteorological stations within each province.

Provincial population data were retrieved from the website of the National Institute of

Statistics and Geography (INEGI)2 for 1990, 1995, 2000 and 2005. The proportion of the

population with access to piped water was also obtained from INEGI for 1990, 2000, 2005
1http://www.dgepi.salud.gob.mx/anuario/html/anuarios.html (Accessed 12 Mar 2009)
2http://www.inegi.org.mx/default.aspx (Accessed 23 Mar 2009)
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and 2010. The share of the population living in urban areas (urbanisation) was obtained

from the Chamber of Deputies3 for 1980, 1990, 1995, 2000 and 2004 (Table 4.1). Interven-

ing years for these variables were estimated using linear interpolation.

GDP per capita was estimated using annual deflated GDP data from the World Bank4

and population data from INEGI (Table 4.1). Because GDP was aggregated at the national

level, we distributed national GDP to each province proportionally to the provincial distri-

bution for which GDP information were available (1993–2005) from INEGI.

4.3.2 GAM model

We specified the expected number of dengue cases during month t in provice i as:

yit ∼ Poisson(µit) (4.1)

log(µit) = β0 +
3∑

j=1

sj(Xjit) +
3∑

k=1

βk(Zkit) + s1(t) + di + log(Popit) (4.2)

where µit denotes the expected number of dengue cases at time t = 1985,...,2007.917; β0
is the intercept; Xjit denotes the j-th meteorological variables; sj(.) and s1(.) are smooth

functions for the meteorological variables and the time trend defined via penalized cubic

regressions splines; Zkit is a vector of k-th socio-economic variables (GDP per capita, pro-

portion of people living in urban areas, proportion of people with access to piped water)

which enter the model linearly; di are province-specific fixed effects as described by John-

ston and DiNardo (1997) to allow for the potential effects of unobserved confounders in

the model. Log(Popit) indicates the logarithm of the total population included as an off-

set variable. This led to a Poisson model with log link function. To account for possible

over-dispersion, we allowed the scale parameter to be different from the mean (Cameron

and Trivedi, 1990).

The province-specific fixed effects control for province-specific omitted variable bias

and un-modelled confounders such as the differences in reporting or control measures be-

tween provinces. The smooth function of time controls for inter-annual variability and

seasonal trends that could arise from non-climatic factors such as resistance of the vector

to insecticides, changes in the diagnostic techniques, holidays and seasonal water storage

practices. To ensure the robustness of our results, we tested other specifications to account

for inter-annual variability and seasonal trends including: categorical variables for calendar

year, and for calendar month for the period; categorical variables for each year with a si-

nusoidal term; and a linear trend with a sinusoidal term (Table 4.4). The results presented

here were robust to all these specifications.

Because the modulating effects of the climate system on vector populations do not

immediately result in changes on dengue transmission, we specified our meteorological
3http://www.cefp.gob.mx/intr/bancosdeinformacion/estatales/ (Accessed 18 Apr 2009)
4http://data.worldbank.org/indicator/NY.GDP.MKTP.CD (Accessed 21 May 2011)
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variables within time lags that were both biologically and physically plausible based on

literature reports in Mexico (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al., 2008; Colón-

González et al., 2011). We also considered the delays in laboratory confirmation of sus-

pected cases and their reporting. We only report results for the GAM with the greater

explanatory power, which is also the most consistent with the ecology of the disease. Op-

timal lagged climatic variables comprised monthly average minimum temperature, aver-

age monthly maximum temperature and accumulated monthly precipitation lagged one and

two months. To avoid colinearity between both lagged variables, we created new variables

(Tmin1:2, Tmax1:2 and Precipitation1:2) taking the mean of the values of the two lagged

variables. Estimations were conducted using the mgcv package (Wood, 2006) for R version

2.13.1 (R Development Core Team, 2010).

The smooth functions are represented by regression splines, which can be written as linear-

combinations of known basis functions of the regressors.

sj(Xjit) =

q∑
l=1

δlbl(Xjit) = δ′b (4.3)

where bl(.) denotes the basis functions and δl the parameters to be estimated. The

number of basis functions q determines the maximum possible flexibility of the relation

between Xjit and log(µit); the greater the value of q, the more flexible is the estimated

effect. Here, we used Cubic Regression Splines (CRS) in which the basis functions bl(.)

are constructed by dividing the range of values of the independent variable into segments

separated by knots. A local cubic regression is fitted to each segment. The continuity

and smoothness at the knots is ensured imposing conditions on the first and second-order

derivatives (Keele, 2008).

4.3.3 Climate change scenarios

We generated extrapolations of projected dengue risk based on our fitted GAM model pa-

rameters for the years 2030, 2050 and 2080, under the A1B, A2 and B1 climate change

scenarios. The storylines behind these scenarios are described in detail elsewhere (IPCC,

2000). Briefly, the A1B scenario relates to a future with very rapid economic growth, global

population peaking in mid-century, and the introduction of more efficient technologies with

a balance in energy-sources-related technological change (IPCC, 2000). The A2 scenario

describes a future with a continuously increasing global population, economic develop-

ment regionally oriented, and a slower and fragmented per capita economic growth and

technological change than other scenarios (IPCC, 2000). Lastly, the B1 scenario considers

a similar global population growth as the A1B, but with an economic structure towards a

service and information economy, reductions in material intensity, and the introduction of

clean and resource-efficient technologies (IPCC, 2000).

To project the potential impact of climate change on dengue (with Monte Carlo 95%

confidence intervals), we retrieved province-specific historical values (relative to the 1970–

1999 climatology) and projected changes for the years 2030, 2050 and 2080 under three
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climate change scenarios (A1B, A2 and B1) for monthly mean temperature and precipita-

tion from the National Institute of Ecology web page5. Data were retrieved using the coor-

dinates of the approximate centroids of each province. Data correspond to a multi-model

ensemble of downscaled spatial climate change scenarios for Mexico. The methodology

and outputs of these ensembles have been described by Magaña and Caetano (2007).

Average monthly minimum temperature, maximum temperature and precipitation were

estimated as the monthly averages of the baseline period based on the observational data

obtained from the Mexican National Meteorological Service. To generate new temperature

values for each scenario, we added the corresponding projected changes to the historical

values. Precipitation was rescaled multiplying the historical value by the corresponding

projected percentage of variation. The average of minimum temperature, maximum tem-

perature and precipitation values (historical and projected) lagged one and two months were

then used for the climate change projections.

Briefly, the used scenarios (A1B, A2, B1) describe rising temperature at an increasing

rate all over the country. The north-west region is the most greatly affected by temperature

by the end of the century (Magaña and Caetano, 2007). In these scenarios, changes in

precipitation are be very irregular; although they agree that decreases are expected mainly

in the north and north-west, followed by the Yucatan Peninsula and central Mexico (Magaña

and Caetano, 2007). Changes in both temperature and precipitation are expected to be

greater under the A2 scenario (high emissions) followed by the A1B and B1 (Magaña and

Caetano, 2007).

To conduct our estimations, we used future projections of climate holding all the other

driving forces constant (fixed to the baseline year 2000) to isolate the climatic effects on

dengue. Although the isolation of the effects of climate is a simplification of the complex

interaction of dengue dynamics, our approach is justified because unlike malaria, which

shows a contemporary decreasing trend even in the presence of climate change (Gething

et al., 2010), dengue transmission has substantially increased over the past six decades

(WHO, 2002, 2009); furthermore, our model is robust to the confounding effects of ob-

served and un-observed non-climatic factors giving validity to our estimations. These pro-

jections, are not predictions of the future but show the potential impact of climate change

on dengue incidence whilst keeping the other driving forces constant.

4.4 Results

4.4.1 GAM model

Table 4.2 presents the estimates of our GAM model for the logarithm of dengue incidence

per province. This specification explained 62% of the deviance of the log-transformed

dengue incidence. The high values of the effective degrees of freedom (edf ) of the smooth

functions indicate that associations between dengue and weather are highly nonlinear. The

effects of all meteorological variables and access to piped water on dengue were found to
5http://zimbra.ine.gob.mx/escenarios/ (Accessed 10 Nov 2011)
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be significant. The estimate of the scale parameter was very high (> 80) indicating extra-

Poisson variability.

Smooth terms edf (F )

s(Time) 44.540 (58.950)
s(Tmin1:2) 3.776 (19.850)
s(Tmax1:2) 2.972 (58.480)
s(Precipitation1:2) 3.697 (57.860)

Linear terms Estimate (SE)

Constant -23.325 (2.918)
Access to piped water 0.054 (0.007)
Urbanisation 0.011 (0.010)
GDP per capita -0.799 (0.801)
Fixed-effects Included

Log-Likelihood -383696.5
Explained deviance 62.4%
GCV 88.144
Scale parameter 85.459

Table 4.2: Model estimates of the effects of weather and socioeconomic development on dengue
across Mexico. Values in bold font were significant at the 0.001 level. edf = effective degrees
of freedom of the smooth function terms (edf >1 indicate nonlinear relationships); F-value is an
approximate F-test as in (Wood, 2006), maximum number of spline basis for the meteorological
terms = 5. SE = asymptotic standard error; GCV = Generalized Cross Validation. Estimation
via Poisson Iteratively Reweighted Least Squares (P-IRLS) and GCV score minimization by outer
iteration.

Figure 4.1 depicts the relationships estimated by our model. The figure reveals that

with our GAM specification, Tmin1:2 appears to have the greatest relative importance in

the model (notice the differences in the ’y’ axes. Figure 4.1A shows a modest response

of dengue to Tmin1:2 below 10◦C, which progressively becomes greater at higher temper-

atures. At temperatures above 18◦C the response of dengue to Tmin1:2 increases sharply

providing a partial explanation for the strong seasonality observed in tropical provinces

where seasonal variations in temperature are not greater than a few degrees (Focks et al.,

2000) but are close to this mean value. These effects are consistent with the biology of

both the mosquito and the virus because rising temperatures shorten the extrinsic incuba-

tion period (EIP), the development time and the gonotrophic cycle resulting in an increased

likelihood of dengue transmission (Jansen and Beebe, 2010; Focks et al., 2000; Watts et al.,

1987).

Dengue incidence also increases gradually with rising Tmax1:2 (Figure 4.1B), show-

ing a peak at approximately 32◦C. The decay in the association with dengue at high lev-

els of Tmax1:2 may be explained by the maximum transmission efficiency of A. aegypti

achieved above 32◦C (Watts et al., 1987), and by adult mosquitoes gradually dying at tem-

peratures above 36◦C (Focks et al., 2000). Figure 4.1C shows a quadratic relationship

between dengue incidence and Precipitation1:2 with a peak at approximately 590 mm. The

progressive increase in dengue incidence at low Precipitation1:2 levels suggests the creation

of rain-filled (outdoors) breeding sites, whereas the decay observed at high levels, may be

due to the wash-out of such breeding sites (Gage et al., 2008).
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Figure 4.1: Estimated response of the average monthly dengue incidence to (A) Tmin1:2, (B)
Tmax1:2, (C) Precipitation1:2, and (D) access to piped water. Solid lines indicate the average ex-
pected number of dengue cases (cases/100,000 people per month); dotted lines indicate the estimated
95% Bayesian prediction intervals.

Figure 4.1D depicts a positive relationship between dengue incidence and the propor-

tion of the population with access to piped water, indicating that as access to piped water

rises so too does dengue. Such relationship could result from unplanned urbanisation over-

burdening water systems (Al-Muhandis and Hunter, 2011), and forcing people to store

water due to fear to limited or intermittent water supply. Rising water storage increases the

number of potential breeding sites that could be effectively exploited by the vector (Jansen

and Beebe, 2010; Padmanabha et al., 2010). Urbanisation and GDP did not show a sig-

nificant association with dengue. This may indicate that these variables do not play a key

role in determining dengue transmission in Mexico or that our data, after the removal of

time invariant characteristics by the province-specific fixed-effects, do not contain enough

variability for estimating meaningful relationships for these variables.

Tmin1:2 and Tmax1:2 were highly correlated with each other (Table 4.3). To ensure the

robustness of our estimations, we re-fitted the model and obtained estimations for Tmin1:2
and Tmax1:2 when they were not mutually adjusted, keeping the other variables as described

in the original model (Equation 4.2).

Tmin1:2–Tmax1:2 Tmin1:2–Precipitation1:2 Tmax1:2–Precipitation1:2

0.876 0.538 0.196

Table 4.3: Spearman rank correlations between meteorological predictors.

Figure 4.2 depicts the relationships estimated by these models and shows that although
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the shapes of the relationships between dengue and weather were consistent in all three

models, there are changes in the oder of magnitude and the thresholds of the response of

dengue to both Tmin1:2 and Tmax1:2. More specifically, Tmin1:2 showed a smaller effect

and Tmax1:2 a greater effect on dengue incidence when they were not adjusted for the

effects of each other. The threshold at which the response of dengue to Tmin1:2 increased

sharply was estimated at approximately 15◦C in the un-adjusted model and not at about

18◦C as in the adjusted model. Additionally, the response of dengue to Tmax1:2 showed a

peak at about 34◦C compared to 32◦C in the adjusted model.
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Figure 4.2: Estimated response of average monthly dengue incidence to (A) Tmin1:2 and (B)
Tmax1:2 when mutually adjusted, and estimated response of average monthly dengue incidence
to (C) Tmin1:2 and (D) Tmax1:2 when entered independently into the Poisson GAM. Solid lines in-
dicate the average expected number of dengue cases (cases/100,000 people per month); dotted lines
indicate the estimated 95% Bayesian prediction intervals.

We tested different specifications to control the model for inter-annual variability and

seasonal trends. Table 4.4 reports the results of the different model specifications tested.

Generally, the results of all models were consistent with our Poisson GAM estimations.

GDP and urbanisation became significant in some of the models presumably due to the

more stringent control for interannual variability and seasonal trends than in the original

model.

We compared the model predictions with the observed data for the whole year, and the

wet (May to October) and dry seasons (November to April). The model captured much

of the spatiotemporal variability observed in dengue incidence (Figure B.2) providing evi-

dence that our estimates are robust. We tested the influence of the province with the greatest

incidence rate on the model fit excluding it from the model. The results presented in this

chapter were robust to these changes.
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Specification Original model Model 2 Model 3 Model 4 Model 5

Smoothers (edf)
Tmin1:2 3.776 3.625 3.561 3.367 3.802
Tmax1:2 2.972 2.917 2.958 3.021 2.972
Precipitation1:2 3.697 3.618 3.709 3.793 3.448

Linear (Coef.)
Acc. water 0.544 0.063 0.063 0.021 0.063
Urbanisation 0.011 0.004 0.005 0.039 0.017
GDP -0.799 -2.802 -2.857 0.026 -3.365

AIC 767573.1 747277.6 835574.2 756850.4 957771.4
GCV 88.144 85.285 95.212 86.056 108.488
Adj. R2 0.385 0.402 0.332 0.393 0.243
Deviance explained 62.416 63.436 58.993 62.954 52.844

Table 4.4: Model estimates using different representations of inter-annual variability and seasonal
trends. Values in bold font were significant at the 0.001 level. The original model is as in Equation
4.2. Model 2 replaces the smooth variable of time (Equation 4.2) with categorical variables for
calendar year and month. Model 3 uses categorical variables for calendar year and season. Model
4 includes a categorical variable for calendar year and a sinusoidal term for season. The sinusoidal
term can be expressed as sin(2 × π × time/12) + cos(2 × π × time/12), where time is an index
variable 1,...,n. Model 5 includes a linear trend and a sinusoidal function.

4.4.2 Climate change projections

Our projections suggest that mean annual dengue incidence may increase about 12–18% by

2030, 22–31% by 2050, and 33–42% by 2080 across Mexico indicating an increasing effect

of climate change on dengue (Table 4.5). Such increasing effect was also evident when

we compared the projected impact of climate change on dengue incidence in Nuevo León

(semi-warm and semi-dry climate) and Veracruz (warm and humid climate) characterized

by intense transmission but with periods of no transmission during the dry season, and

Querétaro (temperate and semi-dry) characterized by very intermittent transmission (Table

4.5). Although the proportional increase under future climate change was estimated to be

substantially greater in Querétaro by 2080 (A1B: 95%, A2: 102%, B1: 71%) compared

to Nuevo León (A1B: 51%, A2: 58%, B1:42%) and Veracruz (A1B: 70%, A2: 63%, B1:

60%), the absolute incidence rate in Querétaro is much lower than that of the other two

provinces (0.042 vs. 1.682 and 2.630 cases/100,000 people respectively). This situation

implies that the projected net dengue incidence by the end of the century is expected to be

considerably greater in already endemic provinces characterized by intense transmission.

Figure B.3 shows that the majority of provinces across Mexico are expected to undergo

an increase in dengue transmission under future climate change. The difference in mean

annual dengue incidence between the projections and the baseline scenario are likely to

be greater in already endemic provinces (with year-round transmission or with periods of

no transmission during the dry season), and particularly stronger in southern and eastern

provinces characterized by warm and humid climates. Some north-western provinces and

the north of the Yucatan Peninsula are likely to observe decreases in dengue incidence by

2080 presumably due to the impact of reduced precipitation on the creation of breeding

sites and the development of immature stages of the vector (Bicout et al., 2002; Gage et al.,
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Scenario Region Baseline 95% CI 2030 95% CI 2050 95% CI 2080 95% CI

A1B National 1.001 0.708–1.466 1.177 0.832–1.723 1.315 0.926–1.961 1.411 1.001–2.078
A2 National 1.001 0.708–1.466 1.118 0.798–1.640 1.258 0.894–1.863 1.412 1.016–2.093
B1 National 1.001 0.708–1.466 1.149 0.814–1.702 1.222 0.870–1.813 1.333 0.942–2.003
A1B Nuevo León 1.683 1.141–2.589 2.092 1.427–3.208 2.296 1.555–3.510 2.539 1.757–3.874

Querétaro 0.042 0.014–0.138 0.056 0.018–0.179 0.067 0.022–0.227 0.082 0.026–0.278
Veracruz 2.630 1.801–3.961 3.358 2.292–5.067 3.388 2.653–5.901 4.470 3.104–6.836

A2 Nuevo León 1.683 1.141–2.589 2.001 1.360–3.082 2.240 1.520–3.430 2.654 1.801–4.043
Querétaro 0.042 0.014–0.138 0.053 0.017–0.181 0.067 0.020–0.223 0.085 0.026–0.274
Veracruz 2.630 1.801–3.961 3.005 2.067–4.568 3.377 2.556–5.731 4.289 2.934–6.578

B1 Nuevo León 1.683 1.141–2.589 1.950 1.330–2.997 2.248 1.539–3.399 2.392 1.617–3.601
Querétaro 0.042 0.014–0.138 0.056 0.018–0.200 0.062 0.194–0.202 0.072 0.023–0.251
Veracruz 2.630 1.801–3.961 3.250 2.235–4.892 3.522 2.399–5.363 4.216 2.823–6.345

Table 4.5: GAM-estimated average annual dengue incidence (cases/100,000 people) under climate
change.

2008; Jansen and Beebe, 2010).

4.5 Discussion

In this study, we estimated the influence of weather and a socioeconomic development

across a larger and more heterogeneous geographical area, and longer time frame than pre-

vious studies. Our GAM approach revealed that associations between dengue, weather

and access to piped water are statistically significant in accordance with previous research

(Sriprom et al., 2010; Colón-González et al., 2011; Lowe et al., 2011). Furthermore, associ-

ations with weather are highly nonlinear as previously observed in other regions (e.g. Beebe

et al., 2009). These results highlight the importance of using flexible model specifications

for analysing weather-health interactions.

Tmin1:2 had the biggest impact on dengue with almost no risk below 5◦C, a modest

increased risk above this temperature, and a rapid increasing risk when average minimum

temperatures rose above 18◦C. Maximum temperature also showed an effect independently

from Tmin. The risk of dengue increased as Tmax1:2 rose above about 20◦C to a peak

around 32◦C after which the risk declines. There is some uncertainty as to the validity of

these thresholds because when we fitted models in which Tmin1:2 and Tmax1:2 were not

mutually adjusted, we obtained slightly different thresholds. We also observed an increas-

ing risk as Precipitation1:2 rose to about 550mm beyond which risk declines. Our findings

are consistent with the results of other studies (e.g. Sriprom et al., 2010; Lowe et al., 2011).

However, previous studies using OLS, GLM, or ARIMA methods are unlikely to have fully

captured the nonlinearities that we have demonstrated here.

The estimated relationships suggest that climate change may result in greater dengue

transmission by the end of the century under the three used scenarios (A1B: 41%, A1: 42%,

and B1: 33%) with a more conspicuous effect in already endemic provinces. The increas-

ing trends in access to piped water (INEGI, 2010) may aggravate the projected impact of

climate change if it leads to domestic or peri-domestic water storage as it could provide

with potential breeding sites even in the absence of precipitation (Gage et al., 2008; Jansen
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and Beebe, 2010).

The use of regional climate model outputs represent a significant source of such uncer-

tainty as they are based on the probability that one event may or not take place. To address

model uncertainty, we used multimodel ensembles because they have shown greater fore-

cast quality compared to single model ensembles (e.g. Stephenson et al., 2005).

4.6 Limitations

Our projections of dengue incidence under climate change are subject to some limitations.

For example, there is large underreporting and misclassification of dengue cases because of

lack of specificity of the symptoms, low awareness of health practitioners, limited access to

diagnostic tests, and poor systematic surveillance (Suaya et al., 2007; WHO, 2012). Thus,

our estimations were conducted on a fraction of the total cases, and may be biased towards

larger standard errors (Lake et al., 2008). Also, the proportion of unreported cases may

vary between provinces biasing our estimates (Lake et al., 2008). However, variation in

reporting would be accounted by the province-specific fixed effects in our model.

The use of smooth functions for seasonal trends and inter-annual variability is required

to differentiate the effects of weather from other covariates that may also exhibit a seasonal

trend (Bowie and Prothero, 1981; Johansson et al., 2009b). However, because such smooth

functions likely contain more variability that can attributable to weather, they may cause

an underestimation of the magnitude of the true effects of weather on dengue (Johansson

et al., 2009b).

We have assumed that dengue incidence has the same temporal trend all over the coun-

try. However, Mexico has a large number of climatic regions with different temperature and

precipitation patterns (Mosiño and Garcı́a, 1974). Consequently, this assumption needs to

be tested to reinforce our results.

Our assumption of an invariant dengue-weather relationship is at odds with the results

of Chapter 3 that estimated significant heterogeneity in the associations between dengue

and weather. However, such heterogeneity may be arise from the nonlinear structures we

have demonstrated here. This is because, on the one hand, we have not looked for nonlinear

structures on previous chapters; and on the other hand, as will be later illustrated, analysing

a short range of meteorological data poses problems for the detection of nonlinearities.

As explained in previous chapters, dengue transmission involves at least, two mosquito

bites. As a consequence, dengue time series violate the assumption of independence re-

quired for regression analyses. Although this serial dependency does not lead to biased

regression coefficients, our model may have underestimated the standard erros of the pre-

dictors. Figure 4.3 shows the partial autocorrelations of our Poisson GAM residuals. This

plot indicates a serial dependency which could be prevented by incorporating a temporal

dependence structure between the observations in the model (Zuur et al., 2009).
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Figure 4.3: Partial autocorrelations of the Poisson GAM’s deviance residuals.

4.7 Conclusion

In conclusion, we have reported on the association between dengue incidence in Mexico

and climate variables using one of the longest and more spatially diverse dengue and cli-

mate datasets yet assembled. We argue that our results provide, a much improved empirical

model of the relationship between the dengue and climate than has been presented to date,

because of the much longer data set and the use of GAM regression to better model the

nonlinear nature of the relationships. Such an improved model is critical to help make bet-

ter predictions of the impact of climate change on dengue into the future. Consequently,

we further argue that this dataset can be used to draw conclusions about the relationship

between dengue and climate elsewhere in the world. We have estimated the impact that fu-

ture climate change will increase dengue incidence by about 40%, but that the proportional

increase in severe dengue forms may be greater.
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Chapter 5

Conclusions

This final chapter summarizes the main contributions of this thesis. The sources of uncer-

tainty and their implications are briefly discussed in relation with the empirical chapters.

The chapter concludes with some general suggestions for future work.

5.1 Summary of research gaps

Research suggests that variations in dengue incidence are significantly influenced by cli-

matic variables such as temperature, precipitation, humidity and El Niño (e.g. Sriprom

et al., 2010; Lowe et al., 2011). As a consequence, many studies have estimated empirical

relationships between dengue, weather, El Niño, and climate change in several regions of

the world such as the Americas, south-east Asia, and the South Pacific (e.g. Hales et al.,

1996; Sriprom et al., 2010; Lowe et al., 2011). In some of these studies, authors used their

model outputs as a baseline to predict the potential impact of climate change on the future

distribution of dengue (e.g. Hales et al., 2002; Sriprom et al., 2010). However, these studies

have been largely criticized (e.g. Reiter, 2001; Gage et al., 2008; Jansen and Beebe, 2010)

because the majority of them sidestep elements that are key to the estimation of the effects

of climate variables on disease outcomes with statistical confidence.

One common problem to most of these studies is that they fail to incorporate the effects

of likely sources of spurious relationships (e.g. seasonal trends and socioeconomic devel-

opment) greatly undermining their estimations (Robins and Morgenstern, 1987; Gething

et al., 2010). Some studies were conducted across large geographical areas but using data

aggregated at national or supra-national scales (e.g. Hales et al., 1996; Johansson et al.,

2009a). The use of national or supranational data removes the spatial variability in all

variables making it difficult to detect the complex associations between dengue and the lo-

cal weather. Other studies were conducted in small geographical areas (e.g. Hurtado-Dı́az

et al., 2007; Brunkard et al., 2008) which commonly have low numbers of disease cases

posing problems in producing sufficient numbers for their analysis with great statistical

confidence, situation that may lead to unstable risk estimations (Olsen et al., 1996).

Many studies were conducted over periods spanning less than 10 years, and just a

few spanned over 20 years. One major issue of such short time series is that they have
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small signal-to-noise rations that are problematic for the identification of climatic signals

on dengue data with high statistical confidence (Santer et al., 2011). Furthermore, little

research have been conducted to understand the potential causes of the between-regions

variation observed in dengue incidence.

5.2 Main contributions

With this thesis we arguable filled some of these knowledge gaps enabling us to gain a

better understanding of the effects of weather, El Niño, and climate change on dengue. We

developed one of the most comprehensive dengue-related datasets analysed to date includ-

ing epidemiological, geographical and socioeconomic data for a larger geographical area

and period of time than previous studies (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al.,

2008; Sriprom et al., 2010). Such a comprehensive dataset provides robustness to our esti-

mations because it allows empirical models capture much more epidemiological, climatic,

and socioeconomic variability than studies using data aggregated over different geograph-

ical areas, conducted across very small geographical areas, or carried out over short time

periods. This dataset may be useful to other studies for modelling dengue incidence through

a variety of statistical methods. In addition, data may be also be used for the validation of

process-based (dynamical) models for dengue in Mexico.

One novel aspect of this thesis is that we investigated and revealed the nonlinear func-

tional form of the effects of weather on dengue using smooth functions across a larger

geographical area and time frame than previous studies. The estimated nonlinear relation-

ships between dengue and weather were robust to the confounding effects of socioeconomic

development, seasonal trends, and time-invariant unobserved covariates such as variations

in reporting between provinces. The robustness of our estimations allowed us to project the

potential effects of climate change on dengue incidence with greater statistical confidence

than previous research (e.g. Hales et al., 2002; Sriprom et al., 2010).

The presence of such nonlinearities highlights the need for the correct specification of

the functional form of the relationships between dengue and weather to avoid residual con-

founding issues (Benedetti and Abrahamowicz, 2004). These nonlinearities also stress the

need for using comprehensive datasets because when nonlinearities are present, analysing

a small range of meteorological data may pose problems for extrapolating the estimated

relationships outside the range of the analysed values. Figure 5.1 illustrates this situation,

and indicates that in three hypothetical regions, a short range of values (in red) of a given

meteorological variable (Tmax1:2 in this example) prevents the detection of nonlinear rela-

tionships.

Throughout this thesis, we highlighted the importance of using spatially disaggregated

data for modelling disease outcomes in regions with great climatic and socioeconomic het-

erogeneity such as Mexico. Such disaggregation is important because, as we demonstrated

in Chapter 4, the effects of weather on dengue are largely determined by the local condi-

tions. Data aggregated at the regional, national and supra-national levels may mask the real

effects of the predictors on dengue incidence, increasing the likelihood of aggregation bias
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Figure 5.1: Representation of the estimated nonlinear effect of maximum temperature lagged 1 and
2 months (Tmax1:2) on dengue incidence in Mexico (black continuous line). Lines A, B, and C (in
red) represent the estimated effects of Tmax1:2 under a short range of values in three hypothetical
regions. Dotted lines indicate the estimated 95% Bayesian prediction intervals of the estimated
effect of Tmax1:2.

issues (Theil, 1954; Grunfeld and Griliches, 1960). Using Figure 5.1 as an example, it can

be observed that the aggregation of data from these three hypothetical regions may cancel

out the effect of Tmax1:2 on dengue biasing the estimations. We hypothesize that the lack

of association between dengue and precipitation observed in the warm and humid region of

Mexico (Chapter 2) may have been caused by the aggregation of data at the regional level,

because such aggregation could have averaged out the large between-province variation in

rainfall, making it less likely to show significant associations with dengue.

This thesis also revealed that the effects of El Niño on dengue in the warm and humid

region of Mexico, are not only statistically significant, but also largely influenced by the

1997–1998 El Niño. However, these results should be cautiously interpreted because in-

creases in dengue incidence over the 1997–1998 period concurred with the introduction of

a new viral serotype (DEN-3). The lack of serotype-specific information from the Mexican

health authority makes it impossible to disentangle the effects of these two events. Previous

research (e.g. Hurtado-Dı́az et al., 2007; Brunkard et al., 2008) conducted in Mexico seems

to obviate the concurrence of these events and has attributed increases in dengue incidence

over this period solely to El Niño. Such studies may be overestimating the real influence of

El Niño on dengue.

We also showed that El Niño has different effects on dengue incidence during summer

and winter (Chapter 3). This between-season variation, provides evidence to support the

notion that the different effects of El Niño on the local weather during summer and winter

(Magaña et al., 2004) may ultimately lead to different responses from dengue incidence, a

situation that previous research has failed to acknowledge. This result emphasizes the need

for more in-depth research in the topic as new data and methods become available.

Contrary to what intuition would indicate, we demonstrated that rising access to piped

water is associated to significant increases in dengue incidence. Dengue is essentially an
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urban problem (WHO, 2009), and although it may be believed that urban residents enjoy

better access to basic public services such as water, and sanitation than rural people, water

distribution systems in many cities in developing countries are inadequate, typically serving

the city’s wealthiest sectors (Cohen, 2006). We hypothesize that the scarcity and/or lack of

reliable water supply services force people to store water in domestic and peri-domestic

containers (a situation that is facilitated by the access to a tap) that may potentially become

breeding sites for A. aegypti (Jansen and Beebe, 2010; Nguyen et al., 2011). This result has

serious implications for dengue conrol because access to piped water is likely to increase

over the next decades (INEGI, 2010), and may significantly aggravate dengue incidence if

water supply is not more reliable than it is now.

Finally, we demonstrated that the effects of socioeconomic status of people are not

significant for dengue occurrence in Mexico. We therefore conclude that dengue equally

affects both the rich and the poor. Although this situation seems counterintuitive, it is likely

because as explained in Section 1.4, in tropical countries such as Mexico, people often

seek the coolness of shaded, well ventilated areas where A. aegypti prefers to feed (Reiter,

2001), windows and doors are often kept open, and many buildings do not have protective

measures such as window screens (Reiter, 2001). An alternative hypothesis is that, after re-

moving time invariant characteristics (e.g. differences in the reporting between provinces)

by fixed effects, our data do not contain enough variability for estimating meaningful rela-

tionships for these socioeconomic variables. Further research including data from regions

with similar climatic conditions but with different human behaviour and access to protective

measures is used to test this hypothesis.

5.3 Sources of uncertainty

Our results are subject various sources of uncertainty. The aggregation of data to large

political boundaries areas removes a great deal of spatial variability in both the outcome

variable and the predictors making it difficult to detect the complex associations between

dengue, weather and socioeconomic development. This aggregation constitutes a main

source of bias in provinces such as Chiapas which, albeit being a medium sized province

(74,210 km2), shows large socioeconomic variability (GINI index = 0.54 in 2005).1 It is

also comprised of a variety of geographic such as tropical rainforest, highlands, valleys, and

low elevation coastal zones.2 There is also a large climatic variability accross the regions

(e.g. warm and humid with rains all year, semiwarm and humid with rains in summer, and

and temperate subhumid with rains in summer).3 We were unable to address this variability

because data were only released at the province level.

As has been previously mentioned, epidemiological surveillance systems do not capture

all dengue cases taking place in a region (Shepard et al., 2011) because of the unspecific

dengue symptoms, low awareness about the disease, or lack of equipment (Suaya et al.,
1http://www.coneval.gob.mx/cmsconeval/rw/pages/medicion/index.es.do (Accessed 16 Sep 2012)
2http://www.zonainfantil.chiapas.gob.mx/geografia/orografia.php (Accessed 16 Sep 2012)
3http://www.zonainfantil.chiapas.gob.mx/geografia/clima.php (Accessed 16 Sep 2012)
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2007; WHO, 2012). Consequently, reported cases represent only a fraction of the total

number of cases in a given province as illustrated in Figure 5.2 (Lake et al., 2008). This

situation implies that our studies were conducted on a fraction of the total cases, situation

that bias our estimations due to larger standard errors (Lake et al., 2008). The proportion

of unreported cases may also vary between provinces and may also be correlated with our

predictors biasing our estimates (Lake et al., 2008). However, such differences in reporting

would be accounted by incorporating province-specific fixed effects in our model (Johnston

and DiNardo, 1997). Although there may be some geographic biases on our estimations,

it is unlikely that there will be time ones, as there is no reason to believe that reporting

practices will vary over time. We therefore, we assume that our time series are correct,

even if they vastly underestimate the disease burden.

 
 

National  
surveillance 

Reported to 
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Sensitivity of lab tests 

Tested in lab 
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Symptomatic dengue 

Undiagnosed asymptomatic dengue 

Figure 5.2: Schematic representation of the dengue surveillance pyramid. Modified from Lake et al.
(2008) with consent of the authors.

Dengue data in Mexico are only made available by the health authority aggregated at

political boundaries. Consequently, there is no attribute information associated to each

dengue case making it impossible to differentiate between indigenous and foreign cases

(Lake et al., 2008). This situation implies that our province-specific dengue records are

likely to include foreign cases (e.g. people from temperate provinces going on holidays to

low elevation coastal areas where dengue is more common).

The instruments and methods used to measure each the variables used in our study are

diverse and subject to different sources of bias that introduce uncertainty to our estima-

tions. For example, meteorological stations are not only subject to environmental hazards

(lightings, fires, earthquakes) that may affect their precision, but also to vandalism.

Although El Niño-3.4 index is one of the most sensitive indices for determining an

El Niño event (Trenberth and Stepaniak, 2001; Hanley et al., 2003), its robustness needs
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to be verified as more data become available. We suggest that future models should report

findings with and without adjustments for weather and socioeconomic predictors, make use

of different El Niño indices, and consider the use of smooth flexible functions to allow for

nonlinearities in the associations between dengue and El Niño.

The possible spatial autocorrelation in the dengue data was not considered. Such con-

sideration is important because spatially autocorrelated data cannot be considered as a se-

ries of independent observations (Kleinschmidt et al., 2000). If spatial correlation exists, the

estimates obtained from the empirical modelling of dengue data may be inaccurate (Klein-

schmidt et al., 2000). We expect spatial autocorrelation to be an issue only for the GAM

model estimations in Chapter 4 because we analysed our panel of province data as a whole.

However, in Chapter 2 we aggregated data at the regional level, and in Chapter 3 we fitted

province-specific models and, therefore, spatial autocorrelation is not an issue of concern

for those studies.

Finally, to project the impacts of climate change on dengue incidence we made the

assumption that the values of the non-climatic predictors in the model remained constant.

This situation may be unrealistic and requires a re-evaluation incorporating projections for

future socioeconomic development. We also assumed that the relationships between dengue

and weather remained the same. However, factors such as adaptation, micro-evolution and

mosquito control measures are likely to modify such relationships resulting in outcomes

different to those predicted by our model. Therefore, our estimated effects of weather and

climate change on dengue give us an indication of what their effects may be if everything

else remains the same. However, the models should be revised as new data become avail-

able.

5.4 Reflections on the Thesis chapters

In this thesis we used several modelling approaches to estimate empirical relations between

dengue, weather and El Niño. In each chapter we have made different assumptions related

to the modelling approach selected for the analysis of data. In Chapters 2 and 3, for ex-

ample, we assumed that the relationships between the logarithm of dengue incidence and

our climatic predictors are linear. However, as demonstrated in Chapter 4, the relation-

ships between dengue and such climatic predictors are highly nonlinear. The presence of

nonlinearities in the dengue-weather associations suggests that the relationships estimated

in Chapters 2 and 3 may be biased. However, because our models focussed on small geo-

graphical areas with restricted temperature and precipitation variation (e.g. the warm humid

region of Mexico) such bias may not have been a large source of concern.

In Chapter 3, we estimated significant between-province heterogeneity in the relation-

ships between dengue, weather and El Niño. In this chapter we fitted province-specific

models in which meteorological data had a small range of variation. We hypothesize that

such heterogeneity may arise from the presence of nonlinear structures not detected by our

models. As can be observed on Figure 5.1, analysing a small range of meteorological data

poses problems for the identification of non-linear structures. In Chapter 4, not only we
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have relaxed the assumption of linearity by including smooth functions for the meteorolog-

ical predictors, but also we fitted a single model to the data from all provinces put together.

This approach allowed us to analyse a larger range of weather variations and to estimate

global associations between dengue and weather.

Conversely to what we did in Chapter 2, we did not include an autocorrelation term

in Chapters 3 and 4 to account for the effects of dengue incidence in the previous month.

Whilst temporal autocorrelation does not bias our estimated regression coefficients, it biases

the estimated standard erros of our predictors. As a consequence, our models may have

overestimated the statistical significance of the predictors.

In Chapter 2 we hypothesized that the concurrent introduction of the DEN-3 serotype

and the exceptionally strong 1997–1998 El Niño may be both responsible for the large

incidence rates observed in 1997. As previously mentioned, the lack of serotype-specific

information from the Mexican health authorities makes it impossible to disentangle the

effects of these two events or to further explore this hypothesis in further chapters. Including

1,0 categorical variables into the province-specific or Poisson GAM models to account for

the introduction of the new serotype into the Mexican provinces was not feasible because

this information was only available at the national level.

Data were aggregated to very large political boundaries in Chapter 2. This coarse

aggregation of data may have caused aggregation bias issues (Theil, 1954; Grunfeld and

Griliches, 1960) because it averages out variations in all predictors, making them less likely

to show associations with the outcome variable (Johansson et al., 2009a). An improvement

in further chapters was the use of province-specific data.

Compared to previous chapters, Chapter 4 is likely to have smaller residual confound-

ing issues because of the inclusion of socioeconomic predictors in the Poisson GAM. The

lack of adjustment for the effects of socioeconomic development in previous chapters may

have caused an overestimation of the true effects of weather on dengue incidence. How-

ever, some of the effect of socioeconomic development (e.g. variations in GDP) may have

been accounted for by the variables used to control for long-term trends and inter-annual

variability in the models (Chapters 2 and 3).

5.5 Suggestions for future research

This thesis has demonstrated that weather, El Niño, and climate change have significant

effects on dengue incidence in Mexico. Despite the described uncertainties and limitations

in our data and modelling approaches, we believe that the results of the empirical chapters

provide elements that are useful for public health decision-making. The modelling approach

developed here could be applied to other geographical regions to increase the understanding

of the effects of weather, El Niño, and climate change on dengue and other vector-borne

diseases that affect the health and economy of people. For instance, the model framework

developed in Chapter 4 is being used to estimate the effects of climate and socioeconomic

development on malaria incidence in Uganda and Rwanda as part of the Healthy Futures

Project of the European Union. This project is funded through the seventh framework
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programme (FP7) project.

Interactions between variables were not explored in this thesis. It would be interesting

to incorporate such interactions in the GAM model developed in Chapter 4 to have a better

representation of the reality. Boosted Regression Tree (BRT) models are being explored

as an alternative for analysing these data because these models select relevant variables, fit

flexible differentiable functions, and automatically identify and model interactions (Elith

et al., 2008). In addition, unlike GAM models, BRT models are not sensitive to over-fitting,

missing data or outliers (Elith et al., 2008). The results of these models, coupled with the

use of climate forecasts would be a great input for the creation of climate-informed early

warning systems.

We investigated the potential impacts of climate change on future dengue incidence.

However, there is still a need for understanding whether the contemporary dengue trends

can be attributed to such climate change. This situation is being evaluated by an inter-

disciplinary research group at the Tyndall Centre for Climate Change Research, School of

Environmental Sciences, University of East Anglia.

Some research efforts have been made to estimate the cost of ambulatory and hospital-

ized cases of dengue in several regions such as the Americas (Suaya et al., 2009). However,

we could not identify studies comparing the costs of dengue preventive measures versus the

cost of treating the disease. Preliminary analyses for such a study have begun at the School

of Environmental Sciences of the University of East Anglia.
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Table A.1

Reference Country Time frame Spatial aggrega-
tion

Method Variables selected Climate change impacts
estimation

Koopman et al. (1991) Mexico March-October 1986 Community Logistic regression Median temperature (rainy season) Not considered
(8m) Mean annual precipitation

Rainy months per year
Climate type
Altitude
Insecticide use
Complete screens
Closed doors and windows
Smoke for mosquitoes
Sleeping net
Over 5 junk pieces
Uncovered containers (50–200 l)
Tyres
Larvae

Hales et al. (1996) South Pacific is-
lands

1970-1995 (26y) Supra-national
region

Spearman’s rank correlation Southern Oscillation Index (SOI) Not considered

Gagnon et al. (2001) Colombia 1981–1998 (18y) Country Contingency tables with El Niño years Not considered
French Guiana 1965–1993 (29y) Fisher’s exact test La Niña years
Indonesia 1969–1998 (30y)
Suriname 1978–1992 (15y)

Hales et al. (2002) Global 1975–1996 (22y) Country Logistic regression Minimum temperature Estimated under the
Maximum temperature IS92a scenario for the
Mean temperature years 2055 and 2085
Precipitation
Vapour pressure

Cazelles et al. (2005) Thailand 1983–1997 (15y) Country (except Wavelet coherence analysis Niño 3 Index Not considered
for Bangkok) Southern Oscillation Index

Temperature (unspecific)
Precipitation (unspecific)

Continued on next page . . .
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Table A.1 – Continued

Reference Country Time frame Spatial aggrega-
tion

Method Variables selected Climate change impacts
estimation

Chowell and Sánchez (2006) Mexico 2002 (1y) Province Multiple linear regression Minimum temperature Not considered
Maximum temperature
Mean temperature
Precipitation
Evaporation

Hurtado-Dı́az et al. (2007) Mexico 1995–2003 (9y) Municipality Adjusted auto-regressive Minimum temperature Not considered
models Maximum temperature

Accumulated precipitation
Sea surface temperature

Brunkard et al. (2008) Mexico 1995–2005 (11y) City Autoregressive-moving Minimum temperature Not considered
average model Maximum temperature

Accumulated precipitation
Sea surface temperature

Luz et al. (2008) Brazil 1997–2004 (8y) City Autoregressive integrated Minimum temperature Not considered
moving average model Maximum temperature

Accumulated precipitation
Number of rainy days

Sia Su (2008) Philippines 1996–2005 (10y) Region Multiple linear regression Mean temperature Not considered
Mean precipitation

Johansson et al. (2009a) Mexico 1985–2006 (22y) Country Morlet wavelet analysis Minimum temperature Not considered
Thailand 1983–1996 (14y) Maximum temperature
Puerto Rico Jul 1986–Dec 2006 Mean temperature

(20.5y) Accumulated precipitation
Oceanic Niño Index

Johansson et al. (2009b) Puerto Rico Jul 1986–Dec 2006 Municipality Hierarchical model Minimum temperature Not considered
(20.5y) Maximum temperature

Mean temperature
Accumulated precipitation
Time (smooth function)

Continued on next page . . .
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Table A.1 – Continued

Reference Country Time frame Spatial aggrega-
tion

Method Variables selected Climate change impacts
estimation

Population density
Median house income
Share of families below poverty line

Sriprom et al. (2010) Thailand 2005–2007 (3y) District Generalized linear model Minimum temperature Estimated under the
with Markov Chain Monte Accumulated precipitaiton A1B scenario for the
Carlo Population (0–4 yrs) period 2090-2099

Water wells per capita
Share of villages with primary school
Year

Chowell et al. (2011) Peru 1994–2008 (15y) Region Morlet wavelet analysis Mean temperature Not considered
& cross-correlation Precipitation (unspecific)

Lowe et al. (2011) Brazil 2001–2008 (8y) Micro-region Generalized linear model Mean air surface temperature Not considered
& Generalized linear mixed Mean precipitation
model with Markov Chain Sea surface temperature
Monte Carlo Altitude

Urban population share
Water supply share
Waste collection
Presence of one bathroom
Time

Machado-Machado (2012) Mexico 1999-2006 (8y) Municipality Species distribution Annual mean temperature Not considered
modelling (Maxent) Mean diurnal range

Isothermality
Temperature seasonality
Max temperature of warmest month
Min temperature of coldest month
Temperature annual range
Mean temperature of wettest quarter
Mean temperature of driest quarter

Continued on next page . . .
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Table A.1 – Continued

Reference Country Time frame Spatial aggrega-
tion

Method Variables selected Climate change impacts
estimation

Mean temperature of warmest quarter
Mean temperature of coldest quarter
Annual Precipitation
Precipitation of wettest month
Precipitation of driest month
Precipitation seasonality
Precipitation of wettest quarter
Precipitation of driest quarter
Pecipitation of warmest quarter
Pecipitation of coldest quarter
Population with income up to two mini-
mum wages
Population without sewage and sanitary
system
Population without piped water
Private housing with crowding

Table A.1: Summary of empirical models available in the literature that estimate associations between dengue, weather and climate
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Table A.2

Province Dengue cases Tmeanlt (◦C) Preciplt (mm) GDP (thou-
sand MXN Pe-
sos)

Urbanisation (%) Latitude (◦N) Dominant climate

µ µ µ µ

Aguascalientes 11 17.4 40.6 85.6 90.2 22.2 Semi-dry temperate
Baja California 78 18.9 15.5 93.0 93.5 30.2 Very-dry temperate
Baja California Sur 4550 22.4 14.9 89.2 82.5 25.2 Dry semi-warm
Campeche 7815 26.2 112.6 121.7 72.5 19.2 Humid warm
Chiapas 13412 24.0 156.1 28.6 48.4 16.2 Humid warm
Chihuahua 199 17.4 36.5 102.9 83.8 28.7 Very-dry temperate
Coahuila 6865 20.1 33.4 98.3 94.1 27.2 Dry semi-warm
Colima 19327 25.3 72.7 70.0 89.6 19.7 Humid warm
Distrito Federal 27 16.1 66.4 185.5 100.0 19.2 Sub-humid temperate
Durango 1396 17.4 37.6 65.0 72.8 25.2 Dry temperate
Guanajuato 662 18.3 56.5 52.0 70.4 21.2 Semi-dry temperate
Guerrero 29124 25.1 84.9 39.4 55.9 17.7 Humid warm
Hidalgo 1636 16.5 60.0 41.6 55.9 20.2 Humid temperate
Jalisco 15963 20.5 65.5 69.5 86.9 20.7 Humid semi-warm
México 311 14.6 60.3 51.3 91.2 19.2 Sub-humid temperate
Michoacán 6271 19.5 63.0 39.9 67.1 19.2 Humid warm
Morelos 8514 21.5 76.3 64.9 92.9 18.7 Humid warm
Nayarit 13088 25.0 92.8 42.1 71.8 21.7 Humid warm
Nuevo León 31491 19.6 52.7 133.1 95.1 25.7 Dry warm
Oaxaca 28555 22.4 119.6 32.5 46.9 17.2 Humid warm
Puebla 5917 17.5 118.1 50.8 70.7 18.7 Humid temperate
Querétaro 190 18.2 46.1 83.3 78.6 20.7 Semi-dry temperate
Continued on next page . . .
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Table A.2 – Continued

Province Dengue cases Tmeanlt (◦C) Preciplt (mm) GDP (thou-
sand MXN Pe-
sos)

Urbanisation (%) Latitude (◦N) Dominant climate

µ µ µ µ

Quintana Roo 10870 25.8 110.0 107.5 84.1 19.2 Humid warm
San Luis Potosı́ 11015 21.0 70.9 57.2 65.2 22.2 Dry temperate
Sinaloa 30867 24.9 56.4 55.1 68.1 24.7 Dry warm
Sonora 14172 22.2 33.7 85.4 85.3 29.2 Dry semi-warm
Tabasco 17417 27.0 188.8 47.6 65.0 17.7 Humid warm
Tamaulipas 41965 23.6 66.0 83.1 87.6 24.2 Humid semi-warm
Tlaxcala 522 14.3 61.1 37.3 90.2 19.2 Sub-humid temperate
Veracruz 85017 22.9 129.3 44.2 65.4 19.2 Humid warm
Yucatán 10208 26.2 86.7 59.1 85.4 20.7 Humid warm
Zacatecas 213 17.1 42.3 39.7 57.2 23.2 Semi-dry temperate

Table A.2: Descriptive statistics
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Table A.3

Province Niños Niñow Tmean1:2 Precipitation1:2

B (95% CI) B (95% CI) B (95% CI) B (95% CI)
Aguascalientes 0.800 (-7728.028 – 7729.628) 0.672 (-1.433 – 2.777) -0.628 (0.289 – 967) -0.150 (0.060 – 0.220)
Baja California 6.929 (-29771.580 – 29785.440) 26.019 (-13282.820 – 13334.850) -0.689 (-2372.289 – 2370.911) -2.040 (-699.800 – 695.720)
Baja California Sur -0.009 (-0.703 – 0.685) 1.862 (1.194 – 2.530) 0.502 (0.220 – 0.784) 0.070 (0.037 – 0.103)
Campeche 1.588 (1.118 – 2.058) 0.989 (0.540 – 1.438) 0.220 (0.044 – 0.396) 0.007 (-0.009 – 0.023)
Chiapas -0.198 (-0.612 – 0.216) -0.205 (-0.611 – 0.201) 0.332 (0.209 – 0.455) 0.010 (0.002 – 0.018)
Chihuahua -15.660 (-4668.765 – 4637.445) -1.908 (-4.617 – 0.801) -0.389 (-0.634 – -0.144) 0.005 (-0.052 – 0.062)
Coahuila -0.853 (-2.221 – 0.515) 1.548 (0.429 – 2.667) -0.503 (-0.740 – -0.266) 0.048 (-0.017 – 0.113)
Colima 0.653 (0.255 – 1.051) 0.667 (0.279 – 1.055) -0.090 (-0.186 – 0.006) 0.008 (0.000 – 0.016)
Distrito Federal 0.826 (-0.244 – 1.896) -0.366 (-1.485 – 0.753) 0.009 (-0.258 – 0.276) 0.057 (0.004 – 0.110)
Durango 0.397 (-1.332 – 2.126) 1.307 (-0.365 – 2.979) -0.323 (-0.631 – -0.015) -0.001 (-0.075 – 0.073)
Guanajuato -0.864 (-24.490 – 22.762) -0.299 (-19.613 – 19.611) -0.683 (-29.495 – 28.129) -0.108 (-2.264 – 2.048)
Guerrero 0.812 (0.479 – 1.145) 0.735 (0.417 – 1.053) -0.111 (-0.223 – 0.001) -0.016 (-0.027 – -0.004)
Hidalgo 0.977 (-1.747 – 3.701) 0.784 (-2.246 – 3.814) -0.219 (-0.687 – 0.249) 0.005 (-0.064 – 0.074)
Jalisco 0.773 (-0.085 – 1.631) 1.083 (0.321 – 1.845) -0.640 (-0.948 – -0.332) -0.076 (-0.117 – -0.035)
México -0.719 (-1.625 – 0.187) 0.539 (-0.259 – 1.337) 0.129 (-0.121 – 0.380) -0.021 (-0.071 – 0.030)
Michoacán 0.113 (-0.469 – 0.695) 0.237 (-0.296 – 0.770) -0.261 (-0.398 – -0.124) 0.023 (0.001 – 0.045)
Morelos 0.112 (-0.311 – 0.535) 0.176 (-0.261 – 0.613) 0.012 (-0.084 – 0.108) 0.037 (0.023 – 0.051)
Nayarit 0.251 (-0.292 – 0.794) 1.021 (0.525 – 1.517) -0.012 (-0.282 – 0.258) 0.006 (-0.008 – 0.020)
Nuevo León -0.345 (-1.390 – 0.700) 1.477 (0.587 – 2.367) -0.411 (-0.566 – -0.256) 0.069 (0.040 – 0.098)
Oaxaca -0.027 (-0.460 – 0.406) 0.444 (0.038 – 0.850) -0.095 (-0.226 – 0.036) 0.005 (-0.005 – 0.015)
Puebla 1.548 (0.966 – 2.130) -0.558 (-1.456 – 0.340) -0.051 (-0.312 – 0.210) -0.032 (-0.061 – 0.003)
Querétaro 2.976 (2.147 – 3.805) 2.432 (1.638 – 3.226) -0.400 (-0.780 – -0.020) 0.047 (-0.008 – 0.102)
Quintana Roo 1.287 (0.952 – 1.622) 0.621 (0.341 – 901) 0.217 (0.046 – 0.388) 0.011 (0.001 – 021)
San Luis Potosı́ -0.653 (-1.978 – 0.672) 0.812 (-0.419 – 2.043) -0.153 (-0.312 – 0.006) 0.017 (-0.001 – 0.035)
Continued on next page . . .
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Table A.3 – Continued

Province Niños Niñow Tmean1:2 Precipitation1:2

B (95% CI) B (95% CI) B (95% CI) B (95% CI)
Sinaloa -1.366 (-2.399 – -0.333) -0.038 (-0.930 – 0.854) 0.634 (0.226 – 1.042) 0.081 (0.054 – 0.108)
Sonora -0.497 (-3.698 – 2.704) -1.657 (-5.287 – 1.973) -1.640 (-2.796 – -0.483) -0.144 (-0.315 – 0.027)
Tabasco 0.813 (0.215 – 1.411) 0.349 (-0.249 – 0.947) -0.040 (-0.218 – 0.138) 0.002 (-0.006 – 0.010)
Tamaulipas -1.250 (-2.334 – -0.166) 0.077 (-0.791 – 0.945) -0.354 (-0.477 – -0.231) 0.036 (0.022 – 0.050)
Tlaxcala -3.494 (-30.773 – 23.785) -1.584 (-32.803 – 29.635) -0.436 (-1.524 – 0.652) 0.040 (-0.105 – 0.185)
Veracruz 0.571 (0.228 – 0.914) 0.402 (0.034 – 0.770) -0.090 (-0.186 – 0.006) 0.008 (0.000 – 0.016)
Yucatán 1.259 (0.802 – 1.716) 0.950 (0.513 – 1.387) 0.063 (-0.102 – 0.228) 0.017 (-0.003 – 0.037)
Zacatecas -35.080 (-4376.480 – 4306.320) -14.590 (-2964.390 – 2935.210) -7.327 (-156.469 – 141.815) -3.301 (-45.770 – 39.168)

Table A.3: Parameter estimates of the associations between log-transformed dengue, weather and El Niño. Models were controlled for long-term trends, seasonality and
autocorrelation. Values in bold font were statistically significant at the 0.05 level.
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97Figure B.1: Dengue incidence normalized anomalies (in standard deviations) for October (month of highest incidence) with respect to the 1985–2007 base
period.
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Figure B.2: Observed and GAM-estimated mean monthly dengue incidence (cases/100,000 people
per month) across Mexico during the whole year, the wet season (Nov–Apr), and the dry season
(May–Oct)
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Figure B.3: Estimated 1970–1999 average annual dengue incidence (cases/100,000 people) across
Mexico (Baseline) and difference in mean annual dengue incidence relative to the baseline sce-
nario (cases/100,000 people) by 2030, 2050, and 2080 under the A1B, A2, and B1 climate change
scenarios.
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Universidad Nacional Autónoma de México and Secretarı́a de Gobernación, México. (In
Spanish).

Martens, P. (1998). Health and Climate Change: Modelling the Impacts of Global Warming
and Ozone Depletion. Earthscan Publications Ltd., London.



References 107

McLean, D. M., Clarke, A. M., Coleman, J. C., Montalbetti, C. A., Skidmore, A. G., Wal-
ters, T. E., and Wise, R. (1974). Vector capability of Aedes aegypti mosquitoes for
California encephalitis and dengue viruses at various temperatures. Can J Microbiol,
20(2):255–262.

Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M.,
Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver,
A. J., and Zhao, Z. (2007). Global climate projections. In Solomon, S., Qin, D., Manning,
M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., editors, Contribution
of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, chapter 10, pages 747–845. Cambridge University Press.
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47:163–165. (In Spanish).

Padmanabha, H., Soto, E., Mosquera, M., Lord, C., and Lounibos, L. (2010). Ecological
Links Between Water Storage Behaviors and Aedes aegypti Production: Implications for
Dengue Vector Control in Variable Climates. Ecohealth, 7:78–90.

Patz, J., Githeko, A. K., McCarty, J. P., Hussein, S., and Confalonieri, U. (2003). Cli-
mate Change and infectious diseases. In McMichael, A. J., Campbell-Lendrum, D. H.,
Corvalán, C. F., Ebi, K. L., Githeko, A. K., Scheraga, J. D., and Woodward, A., edi-
tors, Climate change and human health - risks and responses, chapter 6, pages 103–132.
World Health Organization, Geneva.

Patz, J. A., Martens, W. J. M., Focks, D. A., and Jetten, T. H. (1998). Dengue Fever Epi-
demic Potential as Projected by General Circulation Models of Global Climate Change.
Environ Health Perspect, 106(3):147–153.

Pfaff, B. (2008). Analysis of Integrated and Cointegrated Time Series with R . Use R!
Springer, New York.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of
species geographic distributions. Ecol Modell, 190(3-4):231–259.

Phillips, S. J., Dudı́k, M., and Schapire, R. E. (2004). A Maximum Entropy Approach to
Species Distribution Modeling. In Proceedings of the 21st International Conference on
Machine Learning, Canada.

Phuanukoonnon, S., Mueller, I., and Bryan, J. H. (2005). Effectiveness of dengue control
practices in household water containers in Northeast Thailand. Trop Med Int Health,
10(8):755–763.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna.

Reiter, P. (2001). Climate Change and Mosquito-Borne Disease. Environ Health Perspect,
109(Suppl. 1):141–161.

Reiter, P. (2008). Global warming and malaria: knowing the horse before hitching the cart.
Malar J, 7(Suppl1):S3.

Robins, J. M. and Morgenstern, H. (1987). The foundations of confounding in epidemiol-
ogy. Comput Math Applic, 14(9-12):869–916.

Rodrı́guez, M. M., Bisset, J., de Fernandez, D. M., Lauzána, L., and Soca, A. (2001).
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