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Abstract

Recent research suggests that there are many favourable features of the asset-
pricing model of exchange rates incorporating Taylor rules. Against this back-
ground, this thesis focuses on the relationship between the exchange rate and
Taylor rule fundamentals. The introductory chapter provides a short summary
of the most relevant literature, and explains the connections between the main
chapters. In chapter 2, we mainly follow Engel and West’s (2006) framework of
the asset-pricing model of exchange rate incorporating Taylor rules to forecast
the yen/dollar exchange rate. The central research question is whether this type
of model has any predictive power with respect to the exchange rate.

In chapter 3, a more detailed analysis of the properties of Taylor rules is un-
dertaken. The main idea derives from one of the assumptions made in chapter 2,
concerning the structural stability of the Taylor rules. If there are unknown struc-
tural breaks, the estimation of the Taylor rule is likely to be biased. Furthermore,
both theoretical and empirical studies suggest that the Taylor rule in advanced
economies is asymmetric. If a central bank is minimizing an asymmetric loss
function in which negative and positive inflation- and output-gap deviation are,
respectively, assigned different weights, then a nonlinear Taylor rule is optimal.
Hence we set out to identify any structural breaks in the Taylor rule, and to
uncover the extent to which nonlinearity plays a role in Taylor rule modelling. In
our empirical study, a threshold model introduced by Caner and Hansen (2004) is
used to measure whether the Taylor rules are nonlinear or not, in order to explain
the existence of asymmetry of Taylor rules.

Chapter 4 compares the performance of the traditional monetary model and
the Taylor rule model in terms of out-of-sample forecasting performance. A key
study is by Molodtsova and Papell (2009) who derive a simple version of the
Taylor rule model and demonstrate that it can outperform a variety of monetary
models as well as the naive random walk, on the basis of the state-of-the-art
goodness-of-fit statistic developed by Clark and West (2006) (the CW statistic).
It is of considerable interest to discover whether Molodtsova and Papell’s (2009)
results are driven by the superior predictability of the Taylor rule fundamentals,
or by features of the CW statistic. To address this question, the sterling/dollar
exchange rate for the period 1975-2010 is investigated. A detailed analysis of
the CW statistic, including Monte-Carlo simulations, is conducted. In addition,
a variety of estimators are used, including the Vector Error Correction Method
(VECM) which is used to generate the out-of-sample forecast. Also, a number
of goodness-of-fit measures (in addition to CW) are used for comparing the pre-
dictability of the Taylor rule model with traditional monetary models. The overall
finding is that the out-of-sample forecasting predictability of the sterling/dollar



exchange rate obtained by the Taylor rule model is not as significant as we ex-
pect by using a variety of goodness-of-fit measures, but the traditional monetary
models have certain predictive power if VECM is applied.
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Chapter 1

Introduction
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In the modern world, currencies are exchanged for many different reasons. If

people intend to travel to another country, they may buy foreign currency in a

bank in the home country. A commercial company may want to seek foreign

currencies to pay for importing goods or services. Central banks may buy or sell

foreign currencies in order to stabilize the economy. Hedge fund or investment

firms may speculate one currency to make a huge profit.

An exchange rate between two currencies is the rate at which one currency will

be exchanged for another. Exchange rates are determined in the foreign exchange

rate market, which is the most liquid financial market in the world. It is open to

a wide range of different types of buyers and sellers, and trading is continuous: 24

hours a day except weekends. According to the Bank of International Settlement,

the average daily turnover in global foreign exchange rate markets is estimated

over 4 trillion US dollar in 2008, which means this market represents the largest

asset class in terms of the trading volume.

Due to the importance of exchange rates, both business and academia world

are keen to understand this particular financial asset. One of the topics in this

field is to forecast the future exchange rate. In the last four decades, numerous

literature has been trying to seek appropriate determinants of the exchange rate

for prediction purpose. However, at least in academia, this practice has not been

very successful. A cornerstone work is made by Meese and Rogoff (1983a,b), they

demonstrate that no structural models of exchange rates can outperform the ran-

dom walk model in terms of out-of-sample prediction; the fundamental variables

such as output, interest rate, and inflation rate have little correlations with ex-

change rates1. Cheung, Chinn and Pascual (2005) apply a wider set of empirical

1A random walk means the series at time t is only related to its own lag at time t− 1, thus, no
other variables can influence the series.
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exchange rate models and come to similar conclusions. Sarno and Valente (2009)

demonstrate that the the relationships between exchange rates and fundamentals

vary across currencies. Therefore, it is difficult to find one empirical model suit-

able for all exchange rates.

Although the results provided by the above literature are disappointing, many

researchers did continue studying the link between fundamentals and exchange

rate determination. A new direction in macroeconomics is to combine Taylor rule

fundamentals into exchange rate modelling. The Taylor rule is a monetary policy

rule which is introduced by John Taylor in 1993, the rule is used to describe a

central bank’s behaviour in monetary policy making. The idea is that a central

banks should consider to stabilize inflation and output as its main targets, in or-

der to do so, the bank needs to set both inflation and output target, and adjusts

its short-term nominal interest rate when inflation or output is deviated from its

target. It is believed that the central bank behaviour in advanced economy can

be best described by the Taylor rule.

Engel and West (2005) (hereafter EW05) first provide a theoretical frame-

work to understand the link between exchange rate and Taylor rule fundamentals

and derive a discounted present-value model by applying Taylor rules. Engel and

West (2006) (hereafter EW06) apply this present-value model of EW05 for the

Deutschmark/dollar real exchange rates. They find a positive correlation between

actual and model-based exchange rates, their results can be considered to be a

promising start for this type of research.(also see Mark, 2009; Molodtsova and

Papell, 2009)

Based on this literature we started our journey in the exploration of the rela-

tionships between exchange rate modelling and Taylor rules. In this introductory

3



chapter we briefly introduce the motivation of and connection between each chap-

ter.

As EW05 suggest, the asset approach of exchange rate modelling incorpo-

rating Taylor rules should be considered as a new direction in exchange rate

forecasting, and the exchange rate especially should be viewed as a linear combi-

nation of a series of discounted future fundamentals. Chapter 2 first provides a

short summary on the development of these type of models, and then follow this

idea and try to demonstrate the validity of it in empirical study of the yen/dollar

real exchange rate.

Our research, outlined in chapter 2, originated from EW06. They build up

a present value model for the Deutschmark/dollar real exchange rate based on

the assumptions that both Bundesbank and the Fed follow Taylor rules, and the

discounted factors and parameter coefficients are imposed based on the results

of Clarida et al. (1998) (CGG hereafter). The future fundamental variables are

forecasted by using unrestricted VAR. EW06’s forcasts show that there is a pos-

itive relationship between their fitted forecasts and the actual series.

A few changes are made in order to improve the out-of-sample predictability

of the exchange rates. First of all, in EW06’s paper, the parameter coefficients are

imposed for the forecast, suggesting that a better method would be to search for

the monetary policy rule parameters that lead to the best possible fit to the ex-

change rate. In chapter 2 our empirical study focuses on Japan and the US during

the period between February 1971 and December 2006. Instead of using imposed

parameters from CGG, we estimate the Taylor rules for the Bank of Japan (BOJ)

and the Fed in different periods of time. It is of interest to find out whether the

Taylor rules are used for both of these central banks, and to examine whether

4



or not both home and foreign central banks are using the same Taylor rules.

Furthermore, we not only consider the baseline case of Taylor rules, but a more

general form of the Taylor rule is discussed. For instance, we examine whether

or not the lagged interest rate play a role in the interest rate reaction function.

Since a series of lagged variables are used as the information set, assuming the

number of instruments (orthogonality conditions) exceeds the parameter set, and

the regressors are not orthogonal to the error term, the Generalized Method of

Moments (GMM) is used as the estimator of Taylor rules. Naturally, we also need

to test overidentifying restrictions, and Hansen’s (1982) method is conducted for

this purpose. Since the estimation period is over 3 decades, Hodrick and Srivas-

tava’s (1984) test is used to detect the validity of structural breaks. The results of

the estimations is also used for the exchange rate forecast, the detailed discussion

can be found in section 2.4.

The second contribution of chapter 2 is to forecast the yen/dollar real ex-

change rate based on our findings of the Taylor rule estimations. A variety of

specifications are examined in order to investigate whether or not these specifi-

cations can improve out-of-sample predictability using this class of exchange rate

model. The baseline case is to assume that both countries follow an identical

Taylor rule without a smoothing parameter (the lagged interest rate). The alter-

native cases allow for a specification with smoothing parameters. we also discuss

the specifications that the BOJ and the Fed follow different Taylor rules.

Third, we pay attention to the estimation of output gap. The output gap can

be considered as the difference between actual output and the potential output

the economy can achieve. Normally the output gap is obtained by the Quadratic

Time Trend (QTT) or the Hodrick-Prescott filter in empirical study, but both

these techniques have drawbacks. A new technique called B-spline method is

5



introduced in section 2.3. The idea of the B-spline method is to use several

quadratic or curbic curves to smooth out the actual output and the left over is

the output gap. All three output gap measures are used in chapter 2 to see if

the choice of different output gaps makes a difference in the estimation of Taylor

rules and the exchange rate forecasting2.

After finishing chapter 2 we began to realize the importance of the Taylor rule

in terms of studying the relationship between exchange rate forecast and macro

fundamental variables. Therefore, our interest in chapter 3 changed direction

to studying whether or not a central bank’s behaviour in an advanced economy

can be described as a Taylor rule and how to improve Taylor rule estimation in

empirical study. We focus on the Fed’s behaviour in chapter 3.

A number of studies indicate that the central bank’s behaviour is likely to be

asymmetric. For instance, the former vice president Blinder said that the central

bank tended to be more cautious about high inflation than high unemployment.

(also see Persson and Tabellini, 1999). Moreover, there might be different prior-

ities for a central bank in different time periods. For instance, in the 1980s the

Fed put most of its resources into curbing the high rate of inflation whereas in the

2000s all the attention was turned towards responding to poor economic growth.

If this is the case, then the study of the Taylor rule should focus on whether it is

symmetric or asymmetric 3.

Plenty of literature argues that a central bank’s reaction function is asym-

metric in both theoretical and empirical study. In empirical study there are two

2The B-spline method is also used in chapter 3 and 4
3Asymmetric Taylor rule means that a central bank, for instance, is more worried about the
output contraction than expansion. Therefore, the bank might set the interest reaction function
to put a larger weight to output contractions than to output expansions to the same magnitude.
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types of directions: one is to assume that the function follows a nonlinear form, so

that the nonlinear techniques can be used to estimate the reaction function. The

other is to assume that the instability is caused by economic structural changes,

and that one needs to find out what these potential structural changes are, to

estimate the reaction function in each subsample period, and then to test for

whether these functions are linear or nonlinear. Regarding the second method,

it is possible that the reaction function is still nonlinear even in the subsample

period, and thus nonlinearity should be tested even in the sub regimes.

The first strand has been widely developed (see Carlin and Sosikice, 2006;

Surico 2007; Castro 2010), whereas the second class has not been fully discussed.

One of the issues is to estimate the potential multiple structural breaks. There

are plenty of tests for detecting one or two structural breaks in the model (Perron,

1989; Clemente et al., 1998; Zivot and Andrews, 1992), but it is very difficult to

find an appropriate test to identify more than two structural breaks. The one

that has been used up to now is the Bai and Perron’s (2003) test, which can

only be used with OLS as the estimator. Section 3.3 modifies Andrews’ (1993)

method, which can be used under a GMM framework, in order to investigate the

potential economic structural changes. The sample is then divided into several

subsamples based on these change points and the Taylor rule is re-estimated un-

der each subsample, thus showing us whether or not the monetary authorities

behave symmetrically.

Another contribution in chapter 3 is to apply the GMM framework for the

nonlinear Taylor rule estimation. The majority of literature on the subject of

nonlinearity, in essence, uses Least Square (Qin and Enders, 2008; Surico, 2007;

Kenneth, 2007). However, as we have explained in the previous section, GMM

can be considered as a superior estimator for studying a Taylor rule. In sec-
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tion 3.5, Caner and Hansen’s (2004) (hereafter CH04) method is applied for the

task. CH04 introduce a threshold model under a GMM framework, and also

develop a method to identify the validity of the threshold estimation. We use

their method to estimate Taylor rules of the Fed in different sub regimes and

demonstrate whether there is nonlinearity in the estimation. We also estimate

linear Taylor rules in different periods of time as a comparison set for the analysis.

Chapter 4 concentrates on the empirical study of the traditional monetary

approach of exchange rates and the Taylor rule model in terms of out-of-sample

forecasting, especially discussing their performance against a naive random walk.

Three decades ago Meese and Rogoff (1983a,b) demonstrated that none of the

traditional models can out-perform a random walk, and countless literature has

confirmed their conclusions since then. However, there are still some interesting

areas we would like to explore.

Our first inspiration comes from MacDonald and Taylor (1994), who re-

examine the monetary model for the sterling/dollar exchange rate. Using the

multivariate cointegration technique (or Vector Error Correction Method), they

find that the unrestricted monetary model can outperform the random walk in

an out-of-sample forecasting context. In Meese and Rogoff’s (1983a) paper, the

rolling regression is used for the forecast, which is basically OLS, but their results

are not significant. In the following literature, Mark (1995) and Cheung et al.

(2005), using the Error Correction Model, obtain similar conclusions. It appears

that the choice of estimator can play a significant role in the forecasting. Thus,

in chapter 4, a variety of estimators are used for out-of-sample sterling/dollar

exchange rate forecasting. Three methods are included: VECM, VAR taking the

first differences, and rolling regression in first differences. We expect that VECM

can bring a better forecast since it loosens certain assumptions such as that only

8



the exchange rate should be endogenous in the estimation. Not only the long

term relationship between the exchange rate and fundamentals are considered,

but also the short term relationship between them. We are also interested in

comparing the model with both homogeneous and heterogeneous coefficients. It

is expected that allowing the coefficients between the home and the foreign coun-

try to be different can improve the forecasting performance.

In order to verify the validity of VECM, two types of tests are conducted (sec-

tion 4.8 and 4.9). The first type of test is a cointegration test. Most of the macro

fundamental variables are I(1) (see section 4.7), and if there is a cointegration

equation in the specifications one should use VECM or ECM for the estimation.

However, if there is no cointegration, one should consider VAR or regression

taking the first difference of variables. We apply Johansen’s Trace statistic and

Maximum eigenvalue statistic to find the number of cointegrating equations in

the VECM models. The second type of test is to identify the weak exogeneity

of each variable. If the dependent variable is endogenous and the explanatory

variable is weakly exogenous, then a partial system, such as ECM, is as efficient

as a full system. However, if both the dependent variable and at least one of

the explanatory variables are endogenous, then one should use VECM. The issue

here is that if the dependent variable is weakly exogenous, then neither VECM

nor ECM should be considered: one should consider ARIMA or VAR taking the

first difference of variables, depending on whether the variable is also strongly

exogenous. The detailed discussion is in section 4.3.

There is also a debate on which type of goodness-of-fit measures should be

used for comparing the out-of-sample forecasting performance. Meese and Ro-

goff(1983a) choose Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE) for out-of-sample forecast comparisons. Cheung et al (2005) use Diebold
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and Mariano (1995) and West (1996) statistic (DMW statistic hereafter), the

change of direction test, and the consistency test. Molodtsova and Papell (2009);

Molodtsova et al. (2008) use a modified MSPE ratio test which is introduced by

Clark and West (2006), the so called CW test. This comparison test can lead

to different results. For instance, Clark and West (2006) demonstrate the DMW

statistic fails to reject the null hypothesis that fundamental models cannot out-

perform random walks, whereas Rogoff and Stavrakeva (2008) imply that the CW

statistic is not a minimum mean squared forecast error statistic.

Since there is a debate of the performance of the CW statistic and the DMW

statistic, section 4.5 compare both techniques and find out which one is more

appropriate to be considered as a better goodness-of-fit measure for the out-of-

sample exchange rate forecasting. We use a variety of goodness-of-fit measures

for the out-of-sample forecasting in the empirical study (see section 4.10) and

these measures are introduced in section 4.4.

There is no independent literature review chapter in this thesis. This is be-

cause the main chapters are to a large extent independent of each other, and are

therefore built on different literatures. For this reason, it seems more natural to

provide literature reviews within each chapter. This is done in chapters 2 and 3

(see sections 2.2 and 3.1). In chapter 4, there is no section explicitly reviewing

the literature, because the subject matter is such that it feels more natural to

cite relevant literature where it is needed.
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Chapter 2

Taylor rule and exchange rate

modelling
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2.1 Introduction

A long-standing puzzle in macroeconomics is the difficulty of demonstrating the

linkage between the exchange rate and the fundamental variables such as money

supply, interest rate and output. Meese and Rogoff (1983a,b) demonstrate that

no time series or structural model of exchange rates can out-forecast the random

walk model in terms of out-of-sample prediction; the fundamental variables have

little correlation with exchange rates. Cheung et al. (2005) reassess a wider set

of empirical exchange rate models and come to a similar conclusion. Both papers

argue that, although there are some plausible models of exchange rate determi-

nation in these theories, exchange rates in advanced economies are more likely to

follow a random walk process empirically.

Although the above papers are authoritative, many researchers continue study-

ing the linkage between fundamentals and exchange rate determinations. Some

researchers (Frenkel, 1981; Dornbusch, 1976; Mussa, 1982) argue that the ex-

change rate should be viewed as an asset price, for example, stock price, which is

determined not only by the current fundamentals but also by the expectations of

future fundamental variables. However, Meese and Rogoff (1983a,b) and Cheung

et al. (2005), who examine the exchange rate movements at time t, find that they

are determined by various combinations of fundamentals at time t or t+ 1. One

drawback of these models is that all the fundamentals on the right-hand side of

the equations are very persistent, while the exchange rate is much more volatile

than these variables. Thus it is not difficult to understand why these models are

unable to do a good job in forecasting.

There are many ways of defining the exchange rate determination in interna-

tional economics. One of them is to combine the exchange rate determination
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with monetary policy. The traditional class of exchange rate models in combina-

tion with monetary policies derived from the money income model which assumes

that central banks in advanced economies adjust the stock of money in the mar-

ket to stabilize the economy. However, a recent belief is that the monetary policy

can be better modeled by the Taylor rule. In brief, the Taylor rule sets a nomi-

nal interest rate in response to the development of inflation and output. Taylor

(1993a) and Clarida et al. (1998, 2000) all demonstrate that it is more efficient

to adjust the short term interest rates rather than the money supply in order to

stabilize the economy.

Since the Taylor rule can be considered a monetary policy rule and the ex-

change rate should be viewed as an asset price, a number of models try to combine

them with the exchange rate model. The Taylor rules are used by Engel and West

(2005) as an example of present-value models where exchange rates will approach

a random walk when the discount factor approaches 1. Engel and West (2006)

(hereafter EW06) build a asset-pricing model for the Deutschmark/dollar real

exchange rates. In this study the identical Taylor rules for Germany and the US

are applied. They find a positive correlation between actual and model-based

exchange rates. Mark (2009) challenges some of the assumptions in the EW06’s

specifications and obtains similar results to those of EW06.

There are many favourable properties in the asset-pricing model of exchange

rates incorporating the Taylor rules in our discussions above. Nevertheless, few

studies discuss whether or not the class of model can outperform other structural

models and a random walk process in terms of the out-of-sample predictability.

Therefore, the economic question we would like to pursue is whether or not the

asset-pricing model can outperform other models. we intend to follow this line of

enquiry and try to improve the asset-pricing model.
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Our research approach is based mainly on the work of EW06. However, a few

changes are made in order to improve the out-of-sample predictability of exchange

rates. Firstly, one fundamental variable in the model is output gap. Normally

the output gap is obtained by the Quadratic Time Trend or the Hodrick-Prescott

filter, but both these techniques have their own drawbacks. We describe below,

therefore, how new techniques might be needed. Secondly, it is important to find

out if a central bank has applied the Taylor rules to its monetary policy decision

process at specific periods of time. If the Taylor rule is used, it is also critical

to examine whether or not the home and the foreign central banks are using this

same rule. We also need to consider whether or not economic structural breaks

have an impact on the changes in the Taylor rule at different periods of time,

and whether other fundamentals such as lagged interest rate are important in

the interest rate reaction function. Our third point regarding the exchange rate

modelling concerns a variety of specifications which are examined in order to find

out whether they can improve the out-of-sample predictability of this class of ex-

change rate models. In this empirical study we focus on the yen/dollar exchange

rates, the data for Japan and the US are collected from the IMF International

Financial Statistics database (IFS) and the Fed Reserve Bank of St. Louis Eco-

nomic Dataset (FRED).

2.2 Literature review

Since the breakdown of the Bretton Woods system in 1973 the major central

banks in developed countries have adjusted their exchange rate regimes from

‘pegged to the US dollar’ to ‘controlled floating’. This significant innovation has

brought in new characteristics, and these characteristics cannot be explained by
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the traditional macroeconomic theories. Above all, in comparison to fixed ex-

change rate regimes, with the floating exchange rate regime the adjustments in

exchange rates are much more volatile than other macroeconomic variables such

as output and inflation. Also, changes in spot exchange rates are almost unpre-

dictable. Exchange rates are more likely to follow a random walk process. The

first problem indicates that it might not be appropriate to model exchange rates

by using fundamental variables, as we explain later. Secondly, there has been a

dramatic evolution in the relationship between the interest rate and the exchange

rate. For instance, the empirical evidence shows that the rise in the federal fund

rates caused the devaluation of the dollar in the 1970s, but this negative rela-

tionship between these two variables reversed in the 1980s. In other words, a rise

in interest rate leads to the appreciation of the home currency. Finally, the pur-

chasing power parity does not hold, i.e. there is a systematic deviation between

exchange rates and aggregate price levels. Thus, economists have been trying to

find new ways of explaining these empirical questions.

A new theory, called ‘the asset market approach to exchange rate’ has been

developing in a great body of the literature in order to explain these new charac-

teristics of the exchange rate under the controlled floating exchange rate regime.

The theory suggests that

“the exchange rate should be viewed as price of asset (like stock and commod-

ity exchange) in which current prices reflect the markets expectation concerning

present and future economic conditions relevant for determining the appropriate

values of these durable assets, and in which price changes are largely unpredictable

and reflect primarily new information that alters expectations concerning these

present and future economic conditions.” (Frenkel and Mussa, 1985)
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Mussa (1976) explains why we should consider the exchange rate to be an

asset price. The nominal exchange rate was excessively volatile after the 1970s

compared to other macroeconomic fundamentals; therefore, it is hard to believe

that we should apply the measures which are used to forecast fundamental vari-

ables to the exchange rate forecasting. On the other hand, asset prices are very

volatile too; see, for example, movements in the stock prices. In addition, there

is a consensus that both the asset price and the exchange rate are sensitive to

future events. These coincidences imply that there are likely to be similarities

between the two. Specifically, since the changes in an asset price are considerably

influenced by the expectations of the market, it is possible that expectations also

cause fluctuations of the exchange rate. For instance, if the market expects the

home currency to devalue, its demand falls and the exchange rate will also fall

because of such expectations.

Frenkel and Mussa (1980) have managed to build a theoretical model for the

‘asset market approach to exchange rates’. The simplest asset market model of

the exchange rate can be written as:

st = zt + bE[st+1 − st] (2.1)

where E[st+1 − st] denotes the expected change in the nominal exchange rate

between time t and t + 1, based on information available at t, b measures the

sensitivity of the current exchange rate to its expected rate of change, and z rep-

resents the factors of supply and demand 1that affect the exchange rate at time

t. If we consider the rational expectations and by forward iteration:

1For instance, domestic and foreign money supply, income and output level, etc. Mussa (1976)
develops a monetary approach to analyze exchange rates. He points out that the expectations of
both the supply and demand of national currencies are significant in determining the exchange
rates. Under the rational expectations, the supply and demand of currencies are influenced
mainly by future monetary policy.
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Est+j =
1

1 + b

∞∑
k=0

(
b

1 + b

)k
× Ezt+j+k, j = 0, 1, 2, .... (2.2)

According to Eq. (2.2), there is a connection between the current exchange rate

(j = 0) and the current expectations of future exchange rate (j > 0), since both

of them depend on the expectations of future fundamentals. If there is an ex-

pected change in the future fundamental variables zt+j+k, the expectation of the

exchange rate will change accordingly.

Eq. (2.2) can be viewed as a “present-value model”. The empirical facts

for exchange rates above can be clarified by using this model. Firstly, the fact

that the exchange rate responds not only to current, but also to future events,

explains why we cannot find a link between exchange rates and past economic

variables. Furthermore, the exchange rate should be much more volatile than

other macroeconomic fundamentals such as output and inflation because the ex-

change rate responds to the ‘news’ quickly. Alongside this, it is difficult to predict

exchange rates due to the unpredictability of certain future events.

A number of models try to explain the movements in exchange rates by find-

ing the correlations between monetary policy and exchange rates. One critical

issue is to decide the instrument of the monetary policy. Initially, money aggre-

gates were considered to be the instrument of monetary policy (Dornbusch, 1976;

Mussa, 1982; Frankel and Rose, 1995). In other words, the authorities controlled

the aggregate money supply in order to stabilize the economy.2 Nevertheless,

empirical studies have shown that this class of exchange rate models that use the

money supply as an instrument cannot beat the random walk model. Frankel

and Rose (1995) build a monetary exchange rate model considering money sup-

2Dornbusch (1976) provides a model linking exchange rates and money stock. He argues that
the increase in money supply leads to the depreciation of exchange rates.
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ply as an instrument. In this model they prove that it cannot do a better job

than the random walk model irrespective of whether or not the price is sticky.

Bergin (2003) attempts to estimate a structural general equilibrium model of a

semi-small open economy. By adapting a ‘maximum-likelihood’ procedure, the

behaviour of exchange rates is tested and estimated with monetary shocks, nom-

inal price and wage rigidities. Bergin’s results show that the model cannot beat

a random walk model in predicting movements in exchange rates.

Another class of models suggests that the short-term interest rate should be

viewed as the instrument for monetary policy rather than the money supply

because since the 1980s most central banks in advanced economies have become

more and more sensitive to the change in expected inflation and so tend to control

inflation by changing the short-run nominal interest rates. Many models demon-

strate that the monetary policy models based on interest rate rules outperform

those that focus on other instruments. For instance, Bryant et al. (1993) com-

pare the performance of nine different monetary policy models. In all of them

they consider the interest rate as being the monetary instruments. They find

that the policy rules that focus on the price level and real output can deliver a

more significant performance than policies that focus on the exchange rate or the

money supply. Taylor (1993b) obtains similar results by simulating the economic

performance of the G7 countries under a variety of interest reaction functions.

Being inspired by these ideas and this evidence, Taylor (1993a) develops a simple

monetary policy rule which calls for changes in the federal fund rates in response

to a change in the level of real output and inflation. This reaction function rule

is known as the ‘Taylor rule’3:

3Although the Taylor rule is expressed as a mechanical function and its estimation of interest
rate can imitate the actual federal fund rates from 1987-1992 quite accurately, even Taylor
himself admits that this monetary policy rule is unable to work out or explain all circumstance
in practice. He emphasizes that there are two reasons for this: Firstly, the monetary authorities
might be aware of “the general instrument response that underlies the policy rule”, but they
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i∗t = r∗ + πt + γπ(πt − π∗) + γy(yt − y∗) (2.3)

where γπ > 0, γy > 0. In the Taylor rule, i∗t is the target of short-term nomi-

nal interest rate. r∗ is the long-run real interest rate, πt is the inflation rate, π∗

is the inflation target, yt is the real output, y∗ is the output target, and γπ and

γy are the weights that the central bank uses in the interest rate reaction function.

There are different versions of Taylor rules. One is the forward-looking ver-

sion developed by Clarida et al. (1998) (hereafter CGG). They assume that when

the central bank chooses its target interest rate, it is possible that it does not

have the information about GDP or price level at the time, so CGG specify the

interest rate reaction function as follows:

i∗t = i∗ + γπ(E[πt+n | Ωt]− π∗) + γy(E[yt | Ωt]− y∗) (2.4)

where i∗ is the long-run equilibrium nominal rate, E[πt+n | Ωt] is the expected

rate of inflation rate in period t+ n, based on the information set Ω available to

the central bank in period t. Then we need to consider the implied real interest

rate target 4.

r∗t = r∗ + (γπ − 1)(E[πt+n | Ωt]− π∗) + γy(E[yt | Ωt]− y∗) (2.5)

where r∗t = i∗t − E[πt+n | Ωt], r
∗ = i∗ − π∗. According to Eq. (2.5), the target

interest rate adjusts in response to the change in the deviations from the inflation

tend to operate the rule using their own judgment rather than simply following the function.
Secondly, there might be other real factors affecting the interest rate, but these factors are not
included in the Taylor rule.

4r∗t is an ‘approximate’ real rate since the forecast horizon for inflation will generally differ
from the maturity of the short-term nominal rate used as a monetary policy instrument. In
practice this is of little relevance, given the high correlation between short-term rates at maturity
associated with plausible target horizons.
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target and the output target. The coefficient γπ is critical in this specification.

With γπ > 1, the real interest rate can stabilize inflation. If γπ < 1 , it instead

accommodates any changes in inflation. In other words, if the central bank does

not raise the nominal interest rate enough when inflation is expected to rise, the

real interest rate could still rise, which would in turn provoke a burst in the rise

of inflation 5.

The policy reaction function represented by Eq.(2.5) is too restrictive to de-

scribe actual changes in the interest rate. The specification assumes an immediate

adjustment of the actual interest rate to its target level, and thus ignores the cen-

tral bank’s tendency to smooth changes in interest rates. In order to challenge

this assumption, CGG specify the relationship for the actual nominal interest

rate:

it = ρit−1 + (1− ρ)i∗t + υt (2.6)

where ρ ∈ [0, 1] captures the degree of interest rate smoothing. υt is an

exogenous random shock to the interest rate. CGG assume that it is i.i.d.

CGG define α = i∗ − γππ∗, xt = yt − y∗, γx = γy, and then rewrite Eq. 2.4 as:

i∗t = α + γπE[πt+n | Ωt] + γxE[xt | Ωt] (2.7)

Combining Eq. (2.6) with the target model Eq. (2.7) yields the policy reaction

function,

it = (1− ρ)(α + γπE[πt+n | Ωt] + γxE[xt | Ωt]) + ρit−1 + υt (2.8)

Finally, adding and subtracting (1 − ρ)γππt+n and (1 − ρ)γxxt on the right

5The idea that the real interest rate should be raised when inflation increases (requiring the
nominal interest rate to increase more than inflation does) has sometimes been called the
Taylor principle.
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hand side:

it = (1− ρ)(α + γππt+n + γxxt) + ρit−1 + εt (2.9)

where the error term εt = −(1 − ρ)[γπ(πt+n − E[πt+n | Ωt]) + γx(xt − E[xt |

Ωt])] + υt is a linear combination of the forecast errors of inflation, output and

exogenous disturbance.

The Taylor rule can also be tested for backward-looking specifications, in

which the central bank adjusts its interest rate in response to the lagged inflation

rate rather than the current or future value of inflation. Clarida et al. (2000) also

test the backward-looking specification and demonstrate that, in fact, in most in-

dustrialized countries, central banks tend to use the forward-looking one. We do

not, therefore, consider the backward-looking version in detail because of space

limitations.

Although it has not been verified in the theory that the nominal or real ex-

change rate should be considered as an explanatory variable, Clarida et al. (1998,

2000) find evidence that the Deutschmark/dollar and yen/dollar exchange rates

play an important role in the interest rate for Germany and Japan. Based on

their findings a considerable number of models have tried to develop the link

between exchange rates modelling and Taylor rules.

At least five strands of literature specifically analyze nominal or real exchange

rate modelling incorporating Taylor rules. The first strand of literature is from

Engel and West (2004, 2005, 2006) and Engel et al. (2007), who emphasize that ex-

change rates should be considered as an asset price, being determined by the sum

of present and discounted future macroeconomic fundamental variables. More-

over, they believe that the fundamentals are determined by the Taylor rules.
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The second strand is proposed by Mark (2009), who builds a present-value

model of the Deutschmark/dollar (euro/dollar) real exchange rate with learning,

thereby challenging some of the assumptions of EW06. He argues that the eco-

nomic agents know the structure of the economy and they also know that central

banks use Taylor rules. He believes, however, that the true parameters used by

policy makers are unknown to the public, and that these parameters also change

over time. Thus agents have to behave like econometricians in order to estimate

the parameters of the Taylor rules and to form their own present-value models of

exchange rates. In the long run they find the true parameters in these learning

environments.

The third strand of literature is mentioned in Engel et al. (2007). EMW07

demonstrate that panel data can increase the forecasting efficiency for the ex-

change rate model. They compare the out-of-sample predictive power of the

Taylor rule, monetary and PPP models with two versions of the random walk

model: with and without ‘drift’. The outcomes confirm that both the monetary

and PPP models have some probability of beating the random walk model in the

long run, when using panel data. However, the evidence for Taylor rule models is

mixed. It is difficult to conclude that panel techniques could definitely improve

the forecasting performance of Taylor rule models. One of the reasons could be

that these models all assume that every country on the panel have the identical

Taylor rules.

The fourth class of model follows Molodtsova et al. (2008) and Molodtsova

and Papell (2009), who examine out-of-sample exchange rate predictability with

Taylor rule fundamentals. They do not treat the exchange rate as an asset price.

The Taylor rule for a foreign country is subtracted from the rule for a home
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country (the US), the equation then having the interest rate differential on the

left-hand side and a sequence of fundamentals on the right-hand side. Molodtsova

et al. (2008) and Molodtsova and Papell (2009) assume that there is a negative

relationship between a change in the exchange rate and the interest rate differ-

ential, and thus that the rise in domestic interest rate causes an appreciation in

the home currency, and a forecasted appreciation in the following period.6 The

interest rate differential can then be replaced by the exchange rate differential.

Therefore, they succeed in finding the missing link between exchange rates and

Taylor rule fundamentals. The main difference between Molodtsova et al. (2008)

and Molodtsova and Papell (2009) and others is that they consider a variety of

specifications of the exchange rate model. They examine and compare the model

with or without a constant, the real exchange rate and an interest rate smoothing

variable (the lagged interest rate). They also consider the possibility that the cen-

tral banks may have different Taylor rules (a heterogeneous model) or that they

have the same coefficients in their Taylor rules (a homogeneous model). Their

findings provide strong evidence for the short run predictability of the exchange

rate model using Taylor rule fundamentals. Overall, the specification that pro-

duces the most evidence of exchange rate predictability is “a symmetric model

with heterogeneous coefficients, smoothing and a constant”.

Finally, the last strand follows Wang and Wu (2012). In their model they use

interval forecasting for exchange rates. Their method concentrates on interval

forecasting rather than point forecasting. They apply semi-parametric forecast

intervals to a group of Taylor rule exchange rate models for 12 OECD countries.

The results show that the forecasting intervals generated by Taylor rule models

are tighter than those obtained by the random walk model, especially in the long

6Molodtsova et al. (2008) and Molodtsova and Papell (2009) assume that UIP does not hold in
their model.
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run. There is also evidence that the Taylor rule models outperform both the

Monetary and PPP models in terms of out-of-sample interval forecasts.

Due to space limitations, in the following section, we only describe the first

class of model in detail.

Engel Mark and West’s present-value model of exchange rates in-

corporating the Taylor rule

Engel and West (2005) provide a theorem to explain why the exchange rate so

nearly follows a random walk in low-inflation advanced economies. They argue

that the exchange rate should be viewed as an asset and can be obtained by a

discounted value of a linear combination of observable fundamentals and unob-

servable shocks. They also apply the Taylor rules to generate a present-value

model of exchange rates.

The asset price follows a random walk if the following two requirements are

satisfied: first, at least one explanatory variable is an I(1) process; and second,

the discount factor is near unity. If the asset price is considered to be the dis-

counted sum of current and expected future ‘fundamentals’, then a general asset

price model could be expressed as follows:

st = (1− b)
∞∑
j=0

bjEt(a
′

1xt+j) + b
∞∑
j=0

bjEt(a
′

2xt+j) (2.10)

where st is the log of an asset price, xt is an n× 1 vector of fundamental at time

t, and b is a discount factor. With reference to Eq. (2.10), consider that either

a
′
1xt+j ∼ I(1) and a2 = 0 or a

′
2xt+j ∼ I(1) and a

′
1xt+j is unrestricted. Then,

in either case, when the discount factor approaches unity, the first difference in
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the nominal exchange rate approaches zero, which indicates a near-random walk

behaviour in the exchange rate. Further tests conducted by EM05 suggest that

the correlation between the change in exchange rate ∆st and the change in fun-

damentals and the autocorrelation of ∆st is near to zero when b approaches one.

These findings correspond with the properties of a random walk.

If the exchange rate models can be viewed as an asset price, the general model

of exchange rates is written as follows:

st = (1− b)(f1t + z1t) + b(f2t + z2t) + bEtst+1 (2.11)

Under the ‘no bubbles’ conditions,7 bjEtst+j → 0 when j →∞

st = (1− b)
∞∑
j=0

bjEt(f1t+j + z1t+j) + b
∞∑
j=0

bjEt(f2t+j + z2t+j), j = 0, 1, 2, 3, ....

(2.12)

where a
′
1xt+j = f1t+j + z1t+j, a

′
2xt+j = f2t+j + z2t+j and st is the log of the ex-

change rate which is the log of the price of foreign currency in terms of domestic

currency; fit are observable variables and zit are unobservable shocks.

EW05 employs two sorts of specific models which are the ‘money income

model’ and the ‘Taylor rule model’. Both these models can be transformed into

the general form above. In EW05’s empirical study, bilateral U.S. exchange rates

versus the currencies of six other countries in G7 are studied, using the quarterly

7“(Rational) bubbles represent a divergence from the equilibrium associated with the market
fundamentals. Bubbles could be considered as one possible explanation of the observed
volatility of exchange rates.”(Copeland, 2005, p.372). If there is bubble in the function, it can
be written as:
qt = b

∑∞
j=0 b

jEtZt+j +Bt, 0 < b < 1, j = 0, 1, 2, 3, ....

Where Bt is the bubble at time t. As long as it persists, the exchange rate deviates form its
fundamental equilibrium. In other words, under the ‘no-bubbles’ condition, the exchange rate
is the level dictated by the fundamentals.

25



data from January 1974 to March 2001. They find that all the observable vari-

ables 8, which are very persistent I(1) or nearly so. In addition, there is evidence

that the unobservable variables are also very persistent according to other pa-

pers 9. Although whether b approaches one is open to debate, plenty of evidence

proves that it is very near unity.10 Therefore, both theories about asset price

being a random walk process are vindicated in the exchange rate models. Thus

it is reasonable to infer that exchange rates follow a near-random walk process.

An alternative explanation for the near-random walk behaviour of exchange

rates is that the unobserved variables determine the changes in the exchange

rates, and if these variables follow a random walk process, exchange rates are

not far from a random walk. In 2004, Engel and West (hereafter EW04) provide

a simple empirical study for their EW05 theorem, in which they conclude that

both explanations are possible.

Engel and West (2006) (hereafter EW06) summarize that there are “at least

four strands of literature” that analyze real or nominal exchange rate models and

consider interest rate rules as the instrument of monetary policy. The first one

is the literature on identified VARs11. Kim (2002) develops a structural VAR

model to estimate the monetary policy reactions for European countries, espe-

8The fundamental variables in EW05’s paper are: mh
t −m

f
t , p

h
t − p

f
t , i

h
t − i

f
t , y

h
t − y

f
t and mh

t −
yht − (mf

t − y
f
t ).

9For money demand model, see Sriram (2001); for PPP, see Rogoff (1996); for Interest Rate
Parity, see Engel (1996).

10See Bilson (1978), Frankel (1979), Stock and Watson (1993), Clarida et al (1998).
11The VAR (vector autoregression) approach can be very helpful in examining the relationship

between a set of economic variables. Moreover, it can be used for forecasting purpose. The
following systems of equations are first-order vector autoregressions:
(1)yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt
(2)zt = b20 − b22yt + γ21yt−1 + γ22zt−1 + εzt
In this ‘two variable’ case, the series of y can be affected by the current and past value of z;
z can be affected by y too. This is a structural VAR. However, if we want to estimate the
coefficients of this model, we have to make restrictions (the restriction is based on the economic
theory or event) in identifying the structural model. The model which is identified is called an
‘identified VAR’. (Enders, 2010, p.326)
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cially the stabilization of exchange rates. A second strand of literature tests

the interest parity, using an unstructured method, decomposing real exchange

rate movements into components that can be linked to interest rates and those

that cannot. Examples include Campbell and Clarida (1988), Edison and Pauls

(1993), and Baxter (1994). A third strand of literature develops general equilib-

rium sticky-price models, and uses calibration. Examples include Benigno (2004)

and Benigno and Benigno (2001). These papers do find a strong connection be-

tween interest rates and exchange rates.

In the last strand of models the exchange rate is considered as an asset price,

which depends on the weighted average of the present value of future fundamen-

tals. This kind of model was discussed in detail in the 1970s, as we mentioned

above. But it is obvious that these models did not use the Taylor rule as a policy

feedback rule. Thus, it is wise to examine the performance of the exchange rate

present-value model with Taylor rule fundamentals.

EW06 define equations Eq.(2.13) and Eq.(2.14) as the Taylor rules for the

home and the foreign country. This differs from EW05’s specification in that in

EW06 the expectation of inflation is applied to the specification rather than the

actual inflation rate. Also, the dynamics of real Deutschmark/dollar exchange

rates are discussed rather than nominal rates. Therefore, this exchange rate model

deals with the relationship between the real exchange rate and the fundamental

variables. The Taylor rule models are as follows12:

Home : iht = γqqt + γπEtπ
h
t+1 + γxx

h
t + uhmt (2.13)

12In the EW06’s model the smoothing parameter is not included, but in the following section,
our model adds the lagged interest rate in the general case.

27



Foreign : ift = γπEtπ
f
t+1 + γxx

f
t + ufmt (2.14)

where h and f represent home and foreign country, respectively. Subtracting

Eq. (2.13) from Eq. (2.14):

iht − i
f
t = γqqt + γπ(Etπ

h
t+1 − Etπ

f
t+1) + γx(x

h
t − x

f
t ) + (uhmt − u

f
mt) (2.15)

Assuming UIP and PPP hold:

qt = bEtqt+1 + b(1− γπ)(Etπ
h
t+1 − Etπ

f
t+1)− bγx(xht − x

f
t )− b(uhmt − u

f
mt) (2.16)

where b = 1
1+γq

.

Under ‘no bubbles’ conditions:

qt = b
∞∑
j=0

bjEt[(1−γπ)(πht+1−π
f
t+1)−γx(xht −x

f
t )−(uhmt−u

f
mt)] j = 0, 1, 2, 3, ....

(2.17)

it should be noted that, in empricial study, EW06 quotes CGG’s paper and

advises that the annual expected inflation should appear in the Taylor rules13.

Therefore,

Etπt+1 = Etpt+12 − pt (2.18)

Then the Taylor rule becomes:

Home : iht = γqqt + γπ(Etp
h
t+12 − pht ) + γxx

h
t + uhmt (2.19)

Foreign : ift = γπ(Etp
f
t+12 − p

f
t ) + γxx

f
t + ufmt (2.20)

13CGG argue that central bank is not sensitive to the monthly change in the inflation rate. Thus,
an expectation of annual inflation is involved in their specification.
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Subtracting Eq. (2.20) from Eq. (2.19),

iht −i
f
t = γqqt+γπ[(Etp

h
t+12−pht )−(Etp

f
t+12−p

f
t )]+γx(x

h
t −x

f
t )+(uhmt−u

f
mt) (2.21)

In EW06 it is also emphasized that the Taylor rule places the annualized interest

rate on the left-hand side. Since monthly data are used throughout, UIP should

be expressed as:

(iht − i
f
t )/12 = st+1 − st (2.22)

The expectation of inflation differential is subtracted on both sides, implying that

in real terms

(iht − i
f
t )/12− (Etπ

h
t+1 − Etπ

f
t+1) = qt+1 − qt (2.23)

Thus, the exchange rate model becomes 14

qt = (12 + γq)
−1

∞∑
j=0

bjEt{12(Etπ
h
t+j+1 − Etπ

f
t+j+1)− γπ[(pht+j+12 − pht+j)

− (pft+j+12 − p
f
t+j)]− γx(xht − x

f
t )− (uhmt − u

f
mt)} j = 0, 1, 2, 3, .... (2.24)

where b = 1
1+γq

.

In the empirical work EW06 forecast the inflation and output gap with a

fourth-order vector autoregression (VAR). The baseline autoregression relies on

Zt = (πt, xt, it)
′
.15 EW06 do not estimate Taylor rules for both countries, but

instead 16 define the value of coefficients (γq, γx, γπ) according to CGG’s finding.

After calculating the forecasts of the fundamental variables and the relevant pa-

rameters, the forecasts of model-based exchange rates can be found.

14a more general case is introduced in Appendix A.
15In the more general case, they add the commodity prices in the autoregression.
16According to CGG, the following parameters are used in EW06’s work:γq = 0.1, γπ = 1.75, γx =

0.25.
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EW06 use monthly data from January 1979 to December 1998. The data are

obtained from International Financial Statistics (IFS). Output is the log of sea-

sonally adjusted industrial production rather than the gross domestic product.

The results show that the correlation between the model-based exchange rate and

the actual one is 0.32, which can be considered a promising start.

2.3 Output gap method

‘Output gap’ is an important concept in macroeconomics. Technically, it is the

difference between the output that can be achieved when the system is at its

most efficient or working under full capacity, and the actual output. The belief is

that without the nominal price rigidities and technological shocks, actual output

and potential output should converge in the long run. When the output gap is

positive, which means the actual output is above its potential level, it can be con-

sidered as a boom in the economy. When the output gap is negative, the actual

output drops below its potential level; this can be seen as a recession. In theory

the output gap can play a central role in monetary policy strategy. Firstly, one of

the goals of the central banks is to maintain full employment, which corresponds

to an output gap of zero. Secondly, the output gap is a key determinant of infla-

tion. A positive output gap implies an economy which is overheating and putting

upward pressure on inflation. A negative output gap implies a slack economy and

downward pressure on inflation.

Since the ‘potential output’ is the output the economy would be producing if

there were no nominal rigidities but all other real shocks remained unchanged,

the potential output should not be too volatile or, as we say, it should follow a
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certain trend. This (trend) potential output can be used to forecast the actual

GDP. In empirical studies there are many ways to estimate output gap. For in-

stance, Edge et al. (2008) use a dynamic stochastic general equilibrium (DSGE)

model to estimate the output gap. However, these kinds of economic models are

quite complicated and hard to operate in practice; instead, many studies tend to

seek simple statistical methods to extract the trend line from its actual output

data. Two statistic approaches are very popular. One is called the ‘Quadratic

Time Trend’ method (QTT), and the other one is the Hodrick-Prescott filter.

The advantage of these techniques is that they are easy to operate in practice. In

the following parts, the log of the monthly data of Industrial Production Index

(IPI) is taken as a proxy for GDP and the data from Japan and the US between

January 1971 and December 2009 is applied in the comparison of the two tech-

niques. Alongside that, a new output measure called B-spline is introduced, and

we believe that it could prove to be a better technique than the other two.

The idea that trend output can be obtained by the QTT can easily be observed

in the graph in which the log of output is plotted against time. If we plot the

output with time, the output line roughly matches a quadratic function (see Fig

2.1(a) and Fig 2.1(c)). Therefore, in the regression model, let the log of output be

the linear combination of time and time squared, then the error term (or residual)

left in the model can be considered as the output gap (see Fig 2.1(b) and Fig

2.1(d)). The difference between the actual data and the residual is the trend

curve (the dotted line in Fig 2.1(a) and 2.1(c)). The advantage of the QTT is

that the method is easy to observe and measure in practice. Its disadvantage is

its lack of flexibility. In other words, if there is a systematic shock in the output

trend, the QTT may not be able to capture it. If we take the data of Japan and

the US as examples, Fig 2.1(a) shows the output of Japan and its trend output

by using the Quadratic Time Trend. Fig 2.1(b) shows the corresponding output
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gap. As we can see from the actual GDP in Fig 2.1(a), there were several booms

between 1979 and 1982, and again between 2000 and 2001, but the trend line

obtained by a Quadratic Time Trend cannot capture them and consider all of

them as recessions. In addition, from 2005 to 2007 GDP had an upward trend,

but the QTT trend line was downward because it was affected by the recession

from 2007 to 2009. Fig 2.1(c) and Fig 2.1(d) show the case of the US. From

Fig 2.1(c) we can see the drawback of QTT clearly. Since the fluctuations of US

GDP are slightly less volatile than those of Japan, the trend curve obtained by

QTT becomes a straight line, failing to show the booms in 1985 and 1990. In

addition, according to the Dickey-Fuller test and the Phillips Perron test, the

outputs for both countries are I(1) without trend (not reported). After the de-

trending process we would expect the output gaps to become a stationary process.

Statistics show, however, that the residuals in Fig 2.1(b) and 2.1(d) are still I(1)

processes.

The second output gap measure is the Hodrick-Prescott filter (HP-filter),

which is a mathematical tool used in macroeconomics, especially in business cycle

theory. This filter can separate the trend component of the time series from the

raw data. The adjustment of the sensitivity of the trend to short-term fluctua-

tions is achieved by modifying a multiplier, λ. Normally the default multiplier is

1600. The benefit of this technique is that it does increase the sensitivity of the

trend to short-term fluctuation, but its drawback is that it imitates the fluctua-

tion of the time series too well. Thus, it is difficult to find the boom and bust by

using this technique.

Fig 2.2(a) and Fig 2.2(c) show the GDP of Japan and the US and their trends

obtained by HP-filter, respectively. Fig 2.2(b) and 2.2(d) show the corresponding

output gaps. Although both output gaps are made stationary by using HP-filter,
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(a) (b)

(c) (d)

Figure 2.1: Output gap measurement (Quadratic Time Trend)

it is hard to distinguish the trend line from the actual data since the HP-filter

trend line is too close to the actual data.

Having discussed both QTT and HP-filter, it seems that neither of them are

perfect for our requirements and another statistical model might be needed. One

that we would like to introduce is called B-spline. The definition is as follows:

“B-spline is a spline function that has minimal support with respect to a given

degree, smoothness, and domain partition. A fundamental theorem states that

every spline function of a given degree, smoothness, and domain partition can be

represented as a linear combination of B-splines of that same degree and smooth-

ness, and over that same partition.” (de Boor, 1978).
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(a) (b)

(c) (d)

Figure 2.2: Output gap measurement (HP filter)

The idea of applying B-spline to the de-trending process is rather simple.

Generally speaking, the QTT can be used to estimate trend output because the

actual output curve roughly follows a quadratic curve, but the drawback of the

technique is obvious. The Quadratic Time Trend line lacks flexibility. By using

the B-spline approach, several quadratic or cubic curves can be used to charac-

terize the shape of the output, which can produce a more flexible trend line. On

the other hand, it is expected that the consequent trend line should not be too

close to the actual time series; otherwise it fails to show the trend. Thus, how to

define the appropriate B-spline is essential.

Specifically, as the number of the quadratic or cubic curves increase in the
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de-trending process, the trend line will approach closer and closer to the actual

series. Eventually, the trend line and the actual time series should converge.

Our idea was to use the traditional way: trial and error. First of all, since both

quadratic and cubic curves tend to provide fairly similar results in practice, and

the cubic curve is commonly used, we suggested using a cubic curve in the esti-

mation, while keeping the number of curves as small as possible. Meanwhile, we

made as many observations as possible. For instance, there are 468 observations

in our sample and, in order to use the minimum number of B-splines, the distance

between knots had been set to 234. By doing this, no observation was missed in

the process of generating the trend output. In other words, in order to reduce the

missing variable in the sample, it would be better to keep the distance between

knots close to a divisor of the number of observations. In this case, the minimum

number of knots was 3, as can be observed in Fig 2.3. A regression was then run

of log output on a range of B-splines (in our case bs1-bs5 were used); the trend

line and residual were kept, and the actual time series and estimates observed.

If the estimated line fairly matched the actual data, we could keep the results

and use them in the following estimation. If not, the distance could be reduced

to another divisor, in our case, 156. In general, we are quite satisfied with the

outcome by using the divisors 234 and 156 in our sample data for Japan and the

US respectively.

Fig 2.4(a) shows a comparison between Japan’s output and its trend, obtained

by B-spline. Fig 2.4(b) illustrates the output gap made by B-spline. We defined

power 3 and 3 knots in the B-spline, which means that 4 or 5 cubic curves were

used in the de-trending process and the width of the B-spline was 234 the dis-

tance between knots. Comparing Fig 2.4(b) with Fig 2.1(a) and Fig 2.2(a), it

can be seen that the B-spline trend line tends to be more flexible and displays

a more reasonable trend. In addition, the output gap obtained by B-spline is
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Figure 2.3: B-spline

slightly more stationary than that obtained by QTT, but less than that obtained

by HP-filter.

The analysis of US output shows similar results. Fig 2.4(c) shows the com-

parison between US output and its trend obtained by B-spline, and Fig 2.4(d)

illustrates the output gap. We define power 3 and 4 knots, which means the cubic

curve is used in the filtering process and the distance between knots is 156. It

is obvious that the B-spline trend curve is much more flexible and captures the

performance of GDP much better than QTT. Meanwhile, the trend line is clearly

distinguishable from the actual data, so that it performs more acceptably than

the HP-filter. In terms of how stationary the output gap is, B-spline also falls

between the other techniques.

To sum up, in employing the monthly IPI data of Japan and the US, the

properties of various de-trending techniques are displayed clearly. The results of

the B-spline approach fall between those of QTT and HP-filter. In terms of both

flexibility and ‘stationarity’, it seems that B-spline can be considered an output
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(a) (b)

(c) (d)

Figure 2.4: Output gap measurement (B-spline)

gap method. Meanwhile, despite the B-spline approach has its own benefits, it

is still not perfect. Whether or not the trend line is appropriate is judged by

observation alone, rather than by solid evidence or theoretical support. In future

work it will be essential to compare the results of the B-spline approach with

those of other economic models. For instance, so far the DSGE models have

been commonly used to produce output gaps; this class of models believes that

output gap is a driver of inflation, which implies that the path of inflation has

an important bearing on the resulting output-gap path (Edge et al. 2007). If the

DGSE’s output gap estimates can be compared with those obtained by B-spline,

and if the estimates are closely correlated to each other, it can be considered as

strong proof that B-spline can be used as an output gap measure.
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2.4 Taylor rule estimation

CGG demonstrate that three central banks in the developed countries (US, Ger-

many and Japan) conducted Taylor rules in their monetary policy during the

period from 1979 to 1998. CGG claim that central banks are insensitive to the

monthly change in inflation rates, so that the expected inflation for next year is

used in their specification (n = 12). Rational expectations would suggest that

the expected inflation rate at time t+ 12 would be equivalent to actual inflation

at time t + 12. The baseline specification of a Taylor rule includes a lagged in-

terest rate, inflation rate and output gap. CGG also allow the central banks at

least some degree of autonomy in the monetary policy strategy, since the cen-

tral banks may have independent objectives; for instance, stabilizing the foreign

exchange market. Thus, money supply or exchange rates are tested in the alter-

native specifications. 17The generalized method of moments (GMM) is used for

the estimation. The reason GMM being used is that the regressors πt+n, xt as

well as it−1 are not orthogonal to the error term εt in the specification, in other

words, the regressors are not exogenous to the error term, or the regressors are

endogenous. Thus, the Ordinary Least Square (OLS) can not be used, because

it requires the orthogonality between error term and regressors.

In addition, CGG argue when the central bank chooses its interest rate, let ut

be the information set, the element of the information set include any previous

variables that might help to forecast the future inflation rate and output, as well

as any contemporaneous variables that are unrelated to the current interest rate

17In CGG’s estimation, the US Taylor rule does not react to the change in the real exchange rate
since the dollar is the dominant currency in the world.
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shock. Since the number of the elements in the information set, or we can say, the

instrument set exceeds endogenous variables, then GMM rather than two stage

least square (2SLS) should be used. Further, we need to test over-identifying re-

striction. Generally speaking, if the equation is exactly identified, the estimated

parameters are efficient, otherwise, they are not. Hansen’s J statistic is used to

detect if our GMM estimations are over-identified. The null hypothesis is that

the model is exactly identified. In the following discussion, we demonstrate most

of the time the null hypothesis is satisfied in our cases. The instrument variables

are the current and lagged interest rates, the current and lagged inflation rate

and the current and lagged output gaps (in the alternative specifications, the cur-

rent lagged variables of money supplies or real exchange rates are also instrument

variables)18.

All our study follows CGG’s work. The general specifications and estimation

techniques are completely identical; however, our interest is not just in the Taylor

rule estimations. We would also like to test whether the Taylor rules are consis-

tent during a longer period of time for both countries, and if other output gap

measures can improve the estimations. Japan and the US are taken as examples

in our empirical study.

The case of Japan

In order to test the consistency of the Taylor rules estimated for Japan and

the US we need to collect the data for a longer period of time. As we mentioned

in the introduction, the monthly data spans the period from January 1971 to

December 2009, but only the data between January 1971 and December 2006 are

used for Taylor rule estimations. In the middle of 2007 the global financial crisis

18The lagged variables are from t− 1 to t− 6, t− 9 and t− 12.
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broke; it is believed there was a break in the monetary policy for both countries.

Since the data from 2007 to 2009 are not enough for the GMM estimation, we

drop them in the following sections. The whole sample between 1971 and 2006

can be divided into three subsamples, pre-1979, 1979-1998, and post-1998. If the

parameters in the different periods of time vary significantly from each other then

this provides evidence of inconsistency in the Taylor rules. In CGG’s research

only the Quadratic Time Trend is used to obtain output gap. In our specifications

the HP-filter and the B-spline are also used.

Figure 2.5: Inflation rate and Interest rate for Japan

Fig 2.5 shows the nominal interest rates and the inflation rates of Japan

between January 1971 and December 2009. It can be clearly seen that Japanese

interest rates dropped to around zero at the beginning of 1999, while the inflation

rate in Japan also dropped to around zero. We would like to find out if there

was a structural break in monetary policy strategy during the subsample periods

of January 1971 to March 1979, April 1979 to December 1998 and January 1999

to December 2006. According to CGG, during April 1979 Japan experienced a

significant financial market deregulation. The second time break was in January
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1999 when the euro was born and Japan began to adopt an interest rate policy of

around zero. By using Hodrick and Srivastava’s (1984) test for structural change,

we can find out whether there are structural breaks between subsamples 1 and 2,

and between subsamples 2 and 3.

Table 2.1 displays the results of the estimation of the Taylor rule for Japan.

The output gap is measured by three different techniques: the Quadratic Time

Trend, the B-spline approach and the HP-filter. Under each technique the sample

period is divided into three subsample periods, and the hypothesis of no struc-

tural change in any of the coefficients between subsample 1 and 2, and between

subsample 2 and 3, are tested, the results being shown in the last row of the

table. Generally speaking there is some common ground between the estimations

in terms of different output gap measures. First of all, only the lagged interest

rate played an important role during the period between January 1971 and March

1979, the other parameters not having significant effects on interest rate reaction

function. This was possible because the Bank of Japan (BOJ) had not yet set

an inflation target at that time. Secondly, there is strong evidence that the BOJ

followed the Taylor rules between April 1979 and December 1998, there being

evidence that all the coefficients were significant, and the real exchange rate had

an influence on interest rate choices, but not for the money aggregates (not re-

ported). The value of the coefficient of inflation rate was greater than one during

this period, this being essential in order to identify whether or not the central

bank is using the Taylor rules in their monetary policy decisions. The reason is

that the rise in inflation will cause the central bank to raise nominal interest rates

high enough to raise the real interest rate at the same time so that the reaction

can compensate the effect of the inflation rate on the domestic economy. Thirdly,

at the beginning of 1999, since the Bank of Japan fell into the liquidity trap, the

nominal interest rate declined to zero, and monetary policy became inefficient.
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We do not have enough evidence that the BOJ still followed the Taylor rules

during this period. Although we have evidence that the interest rate still reacted

to the development of the output gap, lagged interest rate and real exchange rate,

the coefficient of the inflation rate during this period was around zero and not

significant in all cases. Thus, it seems that there has been a change in mone-

tary policy-making since then. Hodrick and Srivastava’s (1984) GMM test for

structural change also shows significant evidence that there are structural breaks

between different subsamples. Hansen’s GMM tests (J-statistic) reject the over-

identifying problem in all cases.

By comparison, it can be seen that the B-spline can produce results as good

as those of the QTT. The coefficients obtained by the B-spline are significant and

have the expected signs in most cases, since the results obtained by the QTT

are significant as well; it is difficult to see which method is better at this stage.

However, our estimation results are slightly less significant using the HP-filter.

Thus, using B-spline to obtain output gap may not be a bad idea.

The case of the US

CGG suggest that the Fed does not respond to the change in exchange rates

since the dollar is the dominant currency throughout the world. Therefore, all

the estimations below only measure the baseline case of the Taylor rule for the

US. Table 2.2 shows the Taylor rule estimation for the US by using different out-

put gap measures. Broadly speaking there is evidence of the structural changes

between the different subsample periods. The Hensen’s J statistic rejects the

over-identification problem in all cases. All the results are consistent with the

results of CGG and Mark (2009). Specifically, there is no evidence that the Fed

used a Taylor rule during the 1970s since none of the coefficients obtained by
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different output gap methods are significant, with the exception of the lagged

interest rates. In the second subsample period we find strong evidence that the

Taylor rule had been used. The coefficients of inflation and lagged interest rate

are strongly significant under different output gap methods. The coefficients of

output gaps are significant by using QTT and B-spline and strongly significant

by using HP-filter. However, the coefficient of output gap being about eight times

larger by using the HP-filter than those obtained by the other two methods, which

indicates that this method tends to magnify the effect of the output gap in the

interest reaction function. Since most studies demonstrate that the coefficient of

output gap is around 0.5, the results obtained by the HP-filter may not be as

appropriate as it would appear.

In the last subsample, the main difference is in the coefficient of inflation. The

QTT gives us a negative and insignificant coefficient (column 4, row 3), but there

is evidence that the Fed reacts to the inflation shown in B-spline and HP-filter.

This little difference is essential. As we discuss above, the main drawback in the

QTT is that it lacks flexibility. Both B-spline and HP-filter do not have this

problem. If we compare Fig 2.1(c), 2.2(c) and 2.4(c), it is clear that QTT cannot

capture the boom and recession in the 2000s, which is likely to cause QTT to

be unable to capture the effect of inflation in the monetary policy-making during

this period. Furthermore, the coefficients of inflation and output by HP-filter

(the last column) are too high to be believable. Therefore, the B-spline method

helps us to acquire the best estimations in this subsample.

It can be clearly seen that the results obtained by using B-spline are slightly

more significant than those obtained by using Quadratic Time Trend, especially

in the subsample of January 1999 to December 2006. There is no evidence that

the Fed reacts to the development in inflation during this period by using QTT,
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but the B-spline approach produces different results. The estimation made by

HP-filter is the worst, because the coefficient of the inflation rate is not signif-

icant, and the value of the coefficient of the output gap is too large. Although

the J-statistic indicates that there are overidentifying problems for the estima-

tions by using QTT and B-spline, if the number of instruments are decreased, the

problem can be solved (not reported), and the numerical value does not change

significantly.

To sum up, there are some similarities in the Taylor rules estimated for both

Japan and the US. First of all, Hodrick and Srivastava’s (1984) GMM test demon-

strates that there are structural breaks between different subsamples. Secondly,

there is strong evidence that the Bank of Japan (BOJ) and the Fed followed Tay-

lor rules between January 1979 and December 1998. All the coefficients obtained

by different output gap methods are significant, and the real exchange rate has

an influence on the BOJ’s interest rate reaction function. Thirdly, the B-spline

approach seems to perform better than the other two methods. The QTT method

and HP-filter may give us better results sometimes, but not in all cases. Since

there is strong evidence that both Japan and the US used Taylor rules in the

period between 1979 and 1998, we apply the estimates of Taylor rules for both

Japan and the US during 1979-1998 to the yen/dollar real exchange rate fore-

casting. This is also consistent with the time period chosen by CGG. We still use

these three output gap measures to see which one can bring a better forecasting

performance.
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2.5 Exchange rate modelling and Taylor rules

One of the purposes of the chapter is to improve the out-of-sample predictability

of the asset-pricing model of exchange rates incorporating Taylor rules. We follow

the EW06’s framework. The specific procedures are as follows: first of all, both

the home and the foreign country are assumed to use Taylor rules in the sample

period. We take Japan as the home country, the US as the foreign country, and

the sample period as January 1971 to December 1998. In addition, the BOJ

also reacts to the real exchange rate in the interest rate reaction function. In

conjunction with ‘Uncovered Interest Rate Parity’ and ‘Purchasing Power Parity’,

the real exchange rate can be determined by the sum of the current and discounted

future fundamental variables. In the baseline case, both Japan and the US are

assumed to use identical Taylor rules, so the parameters of inflation rates and

output gap for both countries are the same. In the alternative specifications, this

assumption is relaxed. We allow Japan’s parameters are not equal to the US’s

parameters. The alternative specification can be expressed as:

qt = (12 + γq)
−1

∞∑
j=0

bjEt{12(Etπ
h
t+j+1 − Etπ

f
t+j+1)− γhπ(pht+j+12 − pht+j)

+ γfπ(pft+j+12 − p
f
t+j)− γhxxht + γfxx

f
t − ρhiht+j−1

+ ρf ift+j−1 − (uhmt − u
f
mt)} j = 0, 1, 2, 3, .... (2.25)

Since the smoothing parameter lagged interest rate plays an important role in

the Taylor rules, it would be interesting to learn if adding a lagged interest rate

can make a difference in the exchange rate modelling. Three different output gap

methods are used in the specifications. It is of interest to discover which one of

them is the best fit to the model. In all, 12 different specifications are examined

in this section.
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An important technique in the forecasting process is to forecast the future

fundamentals. Our method is similar to the one used in EW06, where the un-

restricted vector autoregression is used for forecasting. Generally speaking, it

is believed that inflation rate, output gap and interest rate are closely corre-

lated with each other. Inflations affect output gaps and interest rates and visa

versa. This situation is perfect for the VAR approach. EW06 made a complicated

programme for VAR forecasting based on the software named “rats”.19 In Stata,

the one-step-ahead VAR forecast is easy to obtain by using the command “fcast′′.

In the baseline case we followed EW06’s method to forecast the inflation and

output gap differential based on a fourth-order VAR, which depends on a vector

Z1t = (πt, xt, it)
20; in alternative specifications a range of different VARs are

used for forecasting. However, if we look at Eq.(2.24) or (2.25), there is another

fundamental variable that needs to be forecasted: the expected annual inflation

for next year, pt+12 − pt.21

To make it clear, in the baseline case, the vector Z1t includes the Japanese/US

monthly inflation rate differential, output gap differential and interest rate dif-

ferential in order to obtain the one-step-ahead forecast of monthly inflation and

output gap differential. In order to obtain the 12-step-ahead forecasts of annual

inflation, monthly inflation rates are replaced by the annual one in the vector

Z1t, so that it becomes Z2t = (pt − pt−12, xt, it). In alternative specifications, the

Japanese and the US monthly inflation rate, output gap and annual inflation rate

are forecast separately based on the vectors Zh
1t = (πht , x

h
t , i

h
t ), Z

f
1t = (πft , x

f
t , i

f
t )

19The specific programming file can be found on Charles Engel’s homepage.
20πt, xt and it are the inflation rate differential, output gap differential and interest rate differential

respectively between the home and the foreign country.
21The forecasting method we introduced is not accurate. The reason is that the exchange rate

at time t is equal to the sum of current and discounted future variables far into the future, so
it is important to forecast the future variables based on the data before time t; in other words,
several periods ahead rather than just a one-period-ahead forecast should be estimated.
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and Zh
2t = (pht − pht−12, x

h
t , i

h
t ), Z

f
2t = (pft − p

f
t−12, x

f
t , i

f
t ). The reason for making

such changes is simple, EW06 argue that the differential variables are endogenous

in general equilibrium, which indicates that the inflation rate differential between

the home and the foreign country might affect output gap differential, and output

gap differential might affect inflation rate differential. However, we believe that

the domestic and foreign fundamental variables should be forecasted separately

for each country. For instance, the past domestic interest rates can have an effect

on the current domestic inflation, but it would be difficult to imagine that it could

also have a simultaneous influence on current foreign inflation.

In order to forecast the fundamental variables for the whole sample period, a

simple program is needed. The rough procedure is as follows: taking the baseline

case as an example, the period of January 1971 to January 1972 was used as the

initial period for estimating the fourth-order VAR model which relies on vector

Z1t. Then one-step-ahead monthly forecasts for inflation and output gap differ-

ential could be generated and the forecasts stored; for the next period’s forecast

the data between January 1971 and February 1972 were used, and the forecast

for the time period March 1972 could be generated and stored. The procedures

were repeated, 453 estimates for monthly inflation and output gap differential

being obtained. The forecast of the expected annual inflation rate differential

could be obtained in a similar way. The period of January 1971 to February 1973

was used as the initial period; since the first 12 observations were missing due to

the fact that the annual inflation was generated by Z2t. We were interested in

the forecasting of inflation differentials for next year, the 12-step-ahead forecasts

were generated by the VAR based on vector pt − pt−12, and then the last step

forecast was stored. 441 estimates for annual inflation differential were generated

in Stata22.

22Although the fundamentals are forecasted between March 1972 and December 2009, we only
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Panel A Correlation

( ˆπmt, πmt) (x̂t, xt) (π̂t, πt)

QTT 0.0821 0.9795 0.2449
B-spline 0.0892 0.9541 0.2071
HP-filter 0.0563 0.6282 0.3283

Panel B

Without l.i With l.i

corr(q̂1
t , qt) RMSE corr(q̂t

2, qt) RMSE

QTT -0.1489 4.6971 -0.0090 4.6958
B-spline -0.0264 4.6900 0.1134 4.6886
HP-filter 0.0303 4.7196 0.1861 4.7078

Table 2.3: The baseline case
Note:πmt, xt, it, qt and πt are the monthly inflation rate differential, output gap differential,

interest rate differential, the log of real exchange rate and annual inflation differential,

respectively. “hat” denotes the estimates of variables. All the correlations are only for the

time period of 1979.10 to 1998.12. Three different output gap methods are used in the model,

which are the Quadratic Time Trend (QTT), B-spline and HP-filter. q̂1t is the model-based

exchange rate without adding lagged interest rate differential in the model, q̂2t includes the

lagged interest rates differential. The value of parameters for the annual inflation differential,

the output gap and the lagged interest rate are as follows: 1.75, 0.25, 0.95.

Last but not least, in the last section the estimates of the weight on real ex-

change rate in the Taylor rule for Japan is roughly equal to 0.1, which indicates

that the discount factor b is 0.99. In this case, the model-based real exchange

rate depends on the discount fundamental variables far into the future. To make

it clear, we specify the current and one to four periods-ahead discounted funda-

mental variables into Eq. (2.24) or (2.25).

Table 2.3 reports the results of the baseline forecasts of the yen/dollar ex-

change rates. Panel A shows the correlations between estimated fundamental

variables by the VAR forecasts and actual data under different output gap mea-

sures. It is clear that the estimated output gaps and annual inflation rate differ-

use the data between April 1979 and December 1998 for exchange rate forecasting.
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entials can imitate the actual data fairly well. However, the estimates of monthly

inflation rate differentials do not match the actual data very well, regardless of

the output gap methods used. In addition, with the increase in the flexibility

of trend outputs, the correlations between the forecasted fundamentals and the

observed values decrease.

Panel B displays the correlations and the Root Mean Square Error (RMSE)

between model-based real exchange rates and the observed values. Columns 2

and 3 do not consider the lagged interest rate in the estimations. Columns 4 and

5 include the lagged interest rate. Column 2 shows that the correlation between

the model-based real exchange rate and the actual data are negative in 2 out of

3 cases; the situation can be improved by adding lagged interest rate into the

model, and Column 4 shows that the correlation is positive by using B-spline and

HP-filter. However, the correlations are only 0.1134 and 0.18 respectively. In

terms of the correlation, applying an HP-filtered output gap can provide the best

results. Nevertheless, in terms of the RMSE, it seems that the B-spline approach

can do a better job because it has the smallest RMSE in all cases.

In Table 2.4, Panel C describes the correlations between forecasted funda-

mental variables and the actual data. Columns 2 to 4 describe the case of Japan

as the home country. The fifth to seventh columns show the correlations for the

case of the US. Panel C reveals that, once we forecast the data for individual

countries, the predictability can be improved. Specifically, by using the B-spline

approach, the correlations between estimates and real data are higher than those

obtained by the other two techniques. HP-filter provides the worst forecasts in 5

out of 6 cases. The results are similar to those obtained in Table 2.3.

Panel D shows the correlations and RMSEs between model-based real ex-
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change rates and the actual data. The estimates of the real exchange rate are

based on specification Eq. (2.25). Columns 2 and 3 do not consider the smooth-

ing parameter, but Columns 4 and 5 include the lagged interest rate. There is a

huge improvement in predictability in terms of the corrections between the esti-

mates and the actual data. All the correlations are positive. If taking the lagged

interest rate into account, by using B-spline, the correlation almost approaches

a half. By using HP-filter, the correlation can approach three quarters. These

results indicate that if the fundamental variables are forecasted on the basis of

individual countries, using heterogeneous Taylor rule coefficients for both coun-

tries and adding smoothing parameters, the movements of real data can be better

captured by the models. In addition, in terms of correlation, HP-filter provides

the best results.

In terms of the RMSE, B-spline provides the best results, which indicates

that B-spline can improve the accuracy of predictions more than the other two

techniques. In addition, adding the interest rate deteriorates the RMSE in all

cases, since adding new variables decreases the degree of freedom.

Comparing our results to those of EW06 and Mark (2009), mine are fairly sig-

nificant. The correlation in Engel and West’s specification is 0.32 and in Mark’s

(2009) is 0.26, but mine can achieve more than 0.5. However, Table 2.4 sug-

gests that the results are not consistent. For instance, adding lagged interest rate

could increase the correlation but also raise the RMSE. The B-spline approach

can produce the smallest RMSE but HP-filter can have the largest correlation.

The alternative specifications are unable to produce an optimal result at this

stage.
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2.6 Conclusions

This chapter investigated whether or not Japan and the US follow the Taylor rule

throughout different subsample periods. The results confirm that both countries

followed the Taylor rules during the period between 1979 and 1998. Out-of-

sample exchange rate forecasting was conducted by combining the Taylor rule

with a discounted present value model originating from Engel and West (2005,

2006). The discount factor and the coefficients of the model were imposed based

on our estimations of Taylor rule for both countries. A variety of specifications

were tested, and the model with heterogeneous coefficients and smoothing coef-

ficients was demonstrated to be the best performer. Three output gap methods

were used in the chapter, and there is strong evidence that B-spline and HP filter

could provide better results in terms of Taylor rule estimations and the exchange

rate forecasting than the Quadratic Time Trend method.

This chapter did not take into account the effect of unknown structural breaks

on the exchange rate forecasting, or the possibility of nonlinearity of the model,

or the unemployment as a replacement for the output gap measure. The forecasts

of fundamentals were based on an unrestricted VAR. More advanced or more ac-

curate methods such as the Kalman filter can be used in future.
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Chapter 3

Does the Fed follow a nonlinear

Taylor rule?
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3.1 Introduction

Macroeconomists are always interested in studying central bank behaviour. In

the past two decades a simple interest rate reaction function developed by Taylor

in 1993 which is known as the Taylor rule has been widely studied and demon-

strated as being a rule to describe the monetary policy of central banks in the

developed economies. In empirical study, one of the debates is the linearity of the

Taylor rule. Several economists have managed to prove empirically that central

banks follow linear Taylor rules (Clarida et al., 1998, 2000), whereas others have

suggested that nonlinear or asymmetric Taylor rules are better at mimicking a

central bank’s behaviour (Dolado et al., 2005; Surico, 2007; Kenneth, 2007; Alex

and Anton, 2008; Castro, 2011). This chapter is attempting to discuss this issue

from a different angle. Taking the changes of economic structure into account,

the Fed may follow varied linear or symmetric Taylor rules under different sub

regimes instead of one nonlinear Taylor rule over time.

In order to understand whether or not a central bank’s interest rate reaction

function is symmetrical, a good starting point would be to consider the comments

from the central bank authorities regarding whether or not the bank interventions

are symmetric.

Blinder (1997) argues that ‘academic macroeconomists tend to use quadratic

loss functions for reasons of mathematical convenience, thinking much about their

substantive implications. The assumption is not innocuous...I believe that both

practical central bankers and academics would benefit from more serious thinking

about the functional form of the loss function’ Describing his experience as Fed

Vice-Chairman, Blinder (1999) pushes the argument even further and claims ‘in

most situations the central bank will take far more political heat when it tightens
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pre-emptively to avoid higher inflation than when it eases pre-emptively to avoid

higher unemployment’, suggesting that political pressures can induce asymmetric

central bank interventions.1

On the theoretical side, a number of recent studies suggest that the monetary

authorities’ responses to the business cycle are asymmetric. Persson and Tabellini

(1999) shows that, under the assumption of imperfect information, politicians

with career concerns are more likely to allow the monetary authorities to have

a larger response to the poor economy. Gali et al. (2007) finds that the costs of

output fluctuations for the US have been large and asymmetric.

If we assume that a central bank’s interest rate reaction function is indeed

asymmetric, in empirical study, the question is how to measure this phenomenon.

In general, there are two directions: one is to assume that the function takes a

nonlinear form, so that the nonlinear techniques can be used to estimate the re-

action function; the other is to assume that the instability is caused by economic

structural changes. One needs to identify the potential structural changes first,

and then estimate the reaction function in each subsample period and test if these

functions are linear or nonlinear. For the second method, it should be noted that

it is possible the reaction function is still nonlinear, even in the subsample period,

and thus nonlinearity should be tested even within the sub regimes.

The first type of direction has been well developed. Several papers argue that

the nonlinear Taylor rule can do a better job in terms of mimicking the behaviour

of a central bank. For instance, Carlin and Sosikice (2006) and Surico (2007) both

find that the Fed behaved asymmetrically before 1979, with the interest rate re-

acting more aggressively to output contraction than expansion. In particular, the

1Collected from Surico (2007).
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Fed attaches a larger weight to output contractions than to output expansions of

the same magnitude. Dolado et al. (2005), Kenneth (2007) and Alex and Anton

(2008) also suggest that the Fed prefers to have a more aggressive response to

the inflation when it is higher than the target. Castro (2011) finds evidence that

the European Central Bank and the Bank of England are best described by a

non-linear rule.2

The other direction has not been fully discussed. One of the issues is how to

estimate the potential structural changes in the Taylor rule. One way to over-

come this issue is to assume that certain events can cause the structural changes;

for instance, changes in the central bank’s chairmanship. Qin and Enders (2008)

estimate the Taylor rule separately under each chairmanship of the Federal Re-

serve. They find evidence that the estimated Taylor rule differs between the

pre-Greenspan and the Greenspan period. Nonetheless, we can not be sure that

a change in the Fed’s chairmanship can cause systematic changes in their mon-

etary policies, which means that this assumption is lacking in solid empirical

evidence. If there are unknown structural changes inside the sample period or

false structural changes are assumed in the estimation it is possible that the es-

timates of both linear and nonlinear Taylor rules are biased. Bunzel and Enders

(2010) view the Taylor rule as a threshold process but find only mild empirical

support for their specifications. In the meantime, they also indicate that the

threshold model is unstable.

Thus it is worthwhile investigating whether or not there are structural changes

2Note the asymmetric Taylor rule in this chapter is different from the asymmetric exchange rate
model incorporating Taylor rules in chapter 2. In chapter 2, when we derive the exchange rate
model, if assuming that both the home and foreign country follow an identical Taylor rule, the
exchange rate model derived from it is called a symmetric model. If we assume that the foreign
country takes the real exchange rate into account, then there is a component of real exchange
rate in the exchange rate model, so the model is called asymmetric model.
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in the interest reaction function. The popular method for testing multiple struc-

tural changes is based on Bai and Perron (2003). This method, however, cannot

be applied to the GMM framework. This chapter applies Andrews’ method to

find the potential economic structural changes. The sample is then divided into

several subsamples based on these change points, and by re-estimating the Tay-

lor rule under each subsample, whether or not the monetary authorities behave

symmetrically might be revealed.

Another contribution of this chapter is to choose a more advanced estimator

to estimate Taylor rules. In general one can choose between Least Square (LS),

Instrument Variables (IV) and Generalized Method of Moments (GMM). In the

early empirical studies a number of papers (Clarida et al., 1998, 2000; Mark,

2009) imply that GMM is a more consistent estimator. There are two reasons:

first, the explanatory variables lagged interest rate, the expectation of inflation

rate (or inflation rate) and output gap are all endogenous, and are correlated

with the error term in the regression, which implies that the LS estimates are

biased. Instead, Instrument Variables or GMM should be used. Second, GMM is

superior to IV when heteroskedasticity is present in the regression. Clarida et al.

(1998) suggest that there is evidence of heteroskedasticity in the error term, that

IV is not asymptotically efficient, and that the GMM estimator should be a more

appropriate choice than the other two techniques.

Despite the superiority of using GMM for the estimation, it is seldom applied

to the non-linear estimation. The majority of papers that study the nonlinear-

ity of the Taylor rule in general still use LS in principle. For instance, Qin and

Enders (2008) and Alcidi et al. (2009) apply the smooth transition regression

model (STR) to estimate the Federal Reserve’s interest rate reaction function.

Surico (2007), Kenneth (2007) and Bunzel and Enders (2010) employ the thresh-
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old model for the same purpose. The difference between these two techniques

is that the threshold model assumes that a model can switch between a higher

regime and a lower regime, and that the switch between the two regimes is instant.

The smooth transition model allows the speed of the adjustment to be slow, so to

speak, that the change from a high to a low regime can be gradual, which is more

plausible in reality. However, even if a Taylor rule follows a nonlinear function

it is difficult to justify which technique is more appropriate, and sometimes the

choices between them simply depend on the researchers’ preferences. Up until

now there have been few discussions regarding which method is better and how

to demonstrate which method should be applied in various situations.

One of the reasons why the nonlinear form IV or GMM are rarely used in

the Taylor rule estimation is that these methods have not been fully developed

in statistical theory. Consequently the related software package is very rare as

well. The latest development of the threshold model under a GMM framework is

introduced by Caner and Hansen (2004) (CH04 hereafter). They considered one

threshold model with endogenous variables but an exogenous threshold variable.

They developed a two-stage least square estimator of the threshold parameter

and a GMM estimator of the slope parameters. Zisimos and Jean-Francois (2009)

apply CH04’s method to a forward-looking Taylor rule where nonlinearity is in-

troduced by inflation threshold. They demonstrate that the Bank of England did

not follow a nonlinear Taylor rule during 1992-2003 period.

Regarding the threshold process of the Taylor rule, the threshold is always

chosen between πt−d and yt−d, where πt−d is the inflation rate at time t− d, and

yt−d is the output gap at time t− d, d > 0. In this chatper we use Andrews’ test

to find out which variable should be treated as threshold, and then use Caner

and Hansen’s method to estimate the nonlinear Taylor rule.
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The downside to using the threshold model is that, assuming a function fol-

lows a threshold model, most of the time, one can find a result. This does not

mean, however, that the results are robust. In order to investigate whether or not

the results are meaningful, further investigation is required. Caner and Hansen

(2004) also develop a method to detect the existence of nonlinearity in the estima-

tion, which can be very useful in investigating the nonlinearity or asymmetry of

Taylor rule estimations in various subsample periods in order to find out whether

unknown structural changes are the sole reason for the nonlinearity of the func-

tion in the long run.

The chapter is organized as follows: section 3.2 presents the linear and non-

linear version of Taylor rules. In section 3.3 a GMM test for unknown structural

breaks developed by Andrews (1993) is introduced and the stability of the Fed’s

monetary policy is investigated. In section 3.4 the linear Taylor rules in various

sub-regimes for the US are estimated. In section 3.5 the non-linear form of the

Taylor rule are estimated in each subsample based on the breaking points ob-

tained in section 3.3 and compared with those of the linear form. Meanwhile,

Ch04’s test is used to identify whether or not the Taylor rule can be viewed as a

threshold process, even in a short period of time. Section 3.6 concludes.

3.2 A linear and nonlinear Taylor rule

The simple monetary policy rule described by Taylor (1993a) calls for changes

in the federal fund rates in response to the change in the level of output and
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inflation. This reaction function rule can be written as:

i∗t = r∗ + πt + απ(πt − π∗) + αxxt (3.1)

where απ > 0, αx > 0. In the Taylor rule, i∗t is the target for short term

nominal interest rate, r∗ is the long-run real interest rate, πt is the inflation rate,

π∗ is the inflation target, xt is the deviation of GDP from its trend, and απ and

αx are the weights that the central bank put in the interest rate reaction function.

Clarida et al (1998)(CGG hereafter) develop a forward-looking version of the

Taylor rule,

it = (1− ρ)(α + γππt+n + γxxt) + ρit−1 + εt (3.2)

The details of the derivation of this Taylor rule can be found in section 2.2.

Thus, rearrange equation 3.2, the linear Taylor rule can then be written as:

it = α0 + α1πt+n + α2xt + ρit−1 + εt (3.3)

where α0 = (1− ρ)α, α1 = (1− ρ)απ and α2 = (1− ρ)αx.

The nonlinear Taylor rule can be written as:

it = (α0 +α1Etπt+12 +α2xt+α3it−1)It+(1−It)(β0 +β1Etπt+12 +β2xt+β3it−1)+εt

(3.4)

where It = 1 if δt−d ≥ τ and It = 0 otherwise. δt−d is the threshold variable in

period t− d and τ is the threshold.
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3.3 A GMM test for structural breaks in the

Taylor rule

This section focuses on testing the stability of the Taylor rule of the Fed by

applying Andrews’ (1983) method. The rationale is that if the linear form of

the interest rate reaction function of the Fed is unstable and there are structural

breaks in the model, then it is appropriate to find the structural break points and

study the properties of the Taylor rule of the Fed under each subsample. The

merits of Andrews’ method are: first, it is conducted under a GMM framework,

which can keep the consistency of the analysis. There are other methods available

for testing structural changes, but none of them can be applied under a GMM

framework. Second, this method can be applied for testing a model or just the

parameter of a variable in the model. It is particularly useful to have an idea

whether or not an estimation of a model is stable and, in the mean time, find

out which parameter of the model is the cause of the instability. Furthermore,

the most volatile variable should be considered to be the threshold variable for

the nonlinear estimation. This section also investigates whether or not different

output gap measures would cause differences in the results of structural changes.

Which method should be used in empirical study for measuring the output gap is

always an issue. In this chapter three methods are applied: the Quadratic Time

Trend (QTT) method, the B-spline and the HP filter.

3.3.1 Methodology

The mechanism of testing structural changes introduced by Andrews (1993) is as

follows:
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Considering a parametric model indexed by parameters (βt, δ0) for t = 1, 2, ...,.

the null hypothesis of this is the parameter βt is stable:

H0 : βt = β0 for all t ≥ 1

Regarding testing a pure structural change for the model, δ0 would be as-

sumed to be zero, as it only appears when testing the stability of a particular

parameter in the model; in other words, in the test of a partial structural change.

For instance, if one is only interested in the stability of the coefficient of the in-

flation rate, then this coefficient is βt, and the constant term, the coefficients of

the output gap and the lagged interest rate are all treated as the parameter δ0.

The alternative hypothesis has several forms. If we consider a one-time struc-

tural change with the change point γ ∈ (0, 1), where T is the sample size, Tγ

is the change of time, then the alternative hypothesis with the one-time change

point Tγ is:

H1T (γ) :


β1(γ) for t = 1, ..., Tγ

β2(γ) for t = Tγ + 1, ...

where β1(γ) 6= β2(γ). Let us assume that Tγ is known, then the GMM is

used to estimate β1(γ), β2(γ), V̂1(γ) and V̂1(γ) and we can then form the Wald

statistic:

WT (γ) = (β̂1(γ)− β̂2(γ))
′
(V̂1(γ) + V̂1(γ))−1(β̂1(γ)− β̂2(γ)) (3.5)

where β̂1(γ) and β̂2(γ) are the coefficient parameters before and after the

change point, V̂1(γ) and V̂1(γ) are the corresponding variance-covariance matrix of

the estimators. The Wald statistic follows an asymptotic chi-square distribution
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with k degree of the freedom; k is the number of the parameters in βt. However,

the change point Tγ is always unknown, so that one can estimate all the Wald

statistics for each time point and the one with the largest statistic is the potential

change point. Thus, in order to find structural changes one needs to find the

largest Wald statistic in the sample period:

supγ∈ΠWT (γ)

If this statistic is greater than the related asymptotic critical value, there is

evidence of rejecting the null hypothesis and implying a structural change or pa-

rameter instability in the model.

Note that Π is a pre-specified subset of [0,1], Π allows one to test for a struc-

tural change that is initiated by some political or institutional change that has

occurred in a known time period. For example, we have the monthly data from

1971 to 2009, so that in order to test the chairman of the Federal Reserve effect

in 1979 we can simply specify Π ∈ [0.19, 0.23] 3. Even if we have no information

regarding the change point, the choice of using the full sample set is not desirable

as the statistical power of supγ∈ΠWT (γ) is lower when the change occurs near

the boundary of the sample. Thus Andrews suggests using the restricted interval

Π ∈ [0.15, 0.85].

The issue with Andrews’ test is that it is designed to detect a single struc-

tural break in the model. However, the desired sample period can be defined by

the researcher. For instance, the sample period in our case is between January

1971 and December 2009, and we can detect whether there are structural breaks

between January 1980 and January 1981. In this way we can actually discuss

3The sample section corresponds to the period between May 1978 and January 1980.
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whether or not there are multiple structural breaks during the whole sample pe-

riod. In the following work we calculate the Wald statistics for the whole sample

period and plot them in the graph against time, thus providing a straightforward

image that shows any multiple breaks in the model.

3.3.2 The Andrews’ Wald test for structural changes in

the Taylor rule of the US

3.3.2.1 Testing the Taylor rule

In this section the stability of the Taylor rule for the US is tested. All parameters

in the Taylor rule are considered as a group in an effort to check whether there

are structural changes in the Taylor rule. This is estimated by using a GMM

estimator. The Quadratic Time Trend (QTT) method is used in the estimation

in sub-section 3.3.2.1. All the data are collected from International Financial

Statistics (IFS) and Fed Reserve Bank of St. Louis Economic Dataset (FRED).

The Federal fund rate is viewed as the nominal interest rate; the first difference

of consumer price indices are used for monthly inflation rates; the industrial pro-

duction indices (IPI) as proxies for GDP. The data range from January 1971 to

December 2009, but only data from October 1978 to January 2004 are used for

the test. The reason for this is that, according to the setting of the test, the inter-

val of the observations for the test should be around γ ∈ [0.2, 0.85] so as to reduce

the biased statistical power near the boundary of the sample. Fig 3.1 shows the

Wald statistics of the Taylor rule model plotted against time. As we can see in

Fig 3.1, the Wald statistics at the beginning and the end are significantly greater

than those in the middle.4 In other words, the evidence suggests huge structural

4The asymptotic critical value of Andrews’ Wald test is not a fixed number. It is greater at
the beginning of the sample than at mid-term, and becomes even lower after the mid-point
of the sample. Thus, the actual asymptotic critical line should be approximately a negative
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changes at the beginning (pre-1981) and towards the end (post-2001). Further-

more, the policy was less stable between March 1981 and February 1993 since the

value of Wald statistics are large and volatile during this period. The monetary

policy was relatively stable throughout the rest of the 1990s. Specifically, the

indicated change points are as follows: The first change point is not far from the

majority of literature. Most of the studies assume that the first change point

was in September 1979 after Volcker became the Chairman of the Fed, while the

Wald statistic suggests that the change occurred one year later.

The second potential change point in the literature was in September 1987,

after Greenspan replaced Volcker, as suggested by Qin and Enders (2008). This

point is also captured by the Andrews’ Wald test. The third change point based

on the Wald statistic is a special case. The statistic suggests that the break occurs

in 1993. After this change point the monetary policy becomes relatively stable

as there is a downward trend in the Wald statistics. One historic event starting

in 1990 was that the US government began to tackle the huge leftover deficits

spawned by the Reagan years. In order to curb the deficit the Bush government

began to cut spending and raise tax rates. In November 1990 the Omnibus Bud-

get Reconciliation Act of 1990 was enacted to reduce the United States federal

budget deficit. In the meantime the interest rate and inflation rate went down

together. By the midyear of 1992 both interest and inflation rates reached their

lowest level in years, but the unemployment rate reached 7.8 percent, the highest

since 1984. After Bill Clinton entering the White House the government contin-

ued to curb the deficit and the economy experienced a rapid growth. Thus, one

potential source of the change in monetary policy is the reverse stance of fiscal

policy.

sloped quadratic line rather than a straight horizontal line as indicated on the graph; however,
Andrews did not provide the whole critical value table for all the sample periods so the true
critical value line is not available.
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Figure 3.1: Andrews’ Wald test for testing pure structural breaks in the US Taylor
rule estimation

Note: the sold line is the Wald statistics obtained by using the Quadratic Time Trend. The

Wald statistic starts to be calculated at sample period of 0.2T , the 5% asymptotic critical

value suggested by Andrews (1993) at this time point is 16.45 with 4 degree of freedom. The

reference horizontal line (Waldqtt = 9.49) on the graph is the 5% asymptotic critical value of

structural changes with 4 degree of freedom (df) at time point 0.5T

The next potential change point was suggested by CGG to be in December

1998, after the euro was born. There is only mild evidence supporting this break

point based on the Andrews’ Wald statistic, however. The last change point

suggested by the Wald statistic is around October 2001 and the monetary rule

becomes quite volatile afterwards. In fact, it is reasonable to set the change point

in October 2001. Due to the September 11 attacks and the various corporate

scandals which undermined the economy the Greenspan-led Federal Reserve was

afraid of the expectation of future recession so, in 2004, it initiated a series of

interest cuts that brought down the Federal Funds rate to 1%. The real inter-

est rate was negative during this period. The switch in monetary policy during

this period had little to do with the interest rate reaction function; in fact, the

inflation rate and output at that time were relatively stable. Another intriguing

event which happened after 2001 was that the Bush government authorized wars
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in Afghanistan and Iraq, which increased military spending enormously. Thus,

the tightening fiscal policy during the Clinton years was loosening again. These

fiscal policy changes were likely to contribute to the change in monetary policy

as well.

3.3.2.2 The inflation rate

Figure 3.2: Andrews’ Wald statistics for testing the partial structural break in
the US Taylor rule (the case of inflation)

Note:the sold line is the Wald statistics obtained by using the Quadratic Time Trend. The

Wald statistic starts to be calculated at sample period of 0.2T , the 5% asymptotic critical

value suggested by Andrews (1993) at this time point is 8.45 with 1 df . The reference

horizontal line (Waldqtt = 3.84) on the graph is the 5% asymptotic critical value of structural

changes with 1 df at time point 0.5T .

Fig 3.1 shows the Wald statistics for the performance of all the coefficients

as a group. It provides us with a general idea as to whether or not there are

structural changes in the Taylor rule estimation over time. However, if one needs

to find out the cause of these changes it is better to investigate the properties

of each variable. By using Andrews’ method one can find out which variable in

the model has more structural breaks than the others, or in other words, which

parameter of the variables is the most volatile. Testing the parameter of each
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variable can assist us in discovering which variable leads to structural innovation

and, thus, which variable should be set as the threshold.

Thus, let us discuss the coefficient parameters of the Taylor rule one by one.

The assumption here is that the structural changes in the Taylor rule in the US

may have various causes. They could be the result of instabilities in the weight

parameter of inflation rate, output gap, or lagged interest rate. Alternatively,

they might be caused by the changes in the inflation rate target. By checking the

performance of the coefficients of different variables in the Taylor rule one can

find out how the Federal Reserve has developed its monetary policy in the long

run.

Fig 3.2 shows that the Wald statistics of the coefficient of expected inflation

rate plotted against time. The changes in the coefficient parameter of inflation

rate were relatively small between the end of 1970s and the start of 1980s. There

were massive changes in the middle of 1980s and a significant downward trend

at the end of 1980s, which imply that there were breaks in the mid-1980s. The

statistics began to rebound at the beginning of the 1990; which suggests that the

Federal Reserve altered the way of reacting to the inflation rate. Thus, there is

evidence of the structural changes having started in the 1990s. The Wald statis-

tics rose sharply and reached their peak in 2001, which suggests that there were

significant changes of monetary policy regarding interest rate response to the in-

flation rate. The fluctuations in the Wald statistics in the 2000s indicate that

the Fed’s behaviour cannot be measured using the standard Taylor rule. The

reason for this can be seen by comparing inflation rate and interest rate (Fig 3.3

and Fig 3.4). The Fed cut the interest rate constantly between 2001 and 2005

and raised it sharply afterwards, even though there were only mild fluctuations

in the inflation rate. As we have suggested in the previous part, the abnormal
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behaviour of the interest rate was due to the expected recession arising from the

September 11, 2001 attack and the increase in budget spending.

Figure 3.3: The nominal interest rate

Figure 3.4: The inflation rate

3.3.2.3 The lagged interest rate

In terms of the lagged interest rate, the first conflict period was at the beginning

of the sample, as shown in Fig 3.5. The reason for this could be that in order
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Figure 3.5: Andrews’ Wald statistics for testing the partial structural breaks in
the US Taylor rule estimation(the lagged interest rate)

to fight the high inflation rate during this period, the Fed had to raise the short

term interest rate sharply in a short period of time, suggesting that the smooth

parameter (the coefficient of the lagged interest rate) might not have been taken

into consideration in the Fed’s policy framework. There is one bump around 1993

and another one around 2003. The potential reasons for the change in 1993 can

be seen in the interest rate graph. Firstly, the nominal interest rates in the 1980s

were much higher than they were in the 1990s and 2000s. Secondly, after a signif-

icant cut in the interest rate began in 1990, the Fed adopted a cautious approach

in adjusting the nominal interest rate, the Fed having intended to smooth the

change in the interest rate in the 1990s. Thirdly, The break around 2003 is in

line with the dramatic fall and rise in the nominal interest rate due to the budget

spending increase and the expectation of recession.
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Figure 3.6: Andrews’ Wald statistics for testing the partial structural break in
the US Taylor rule estimation(the output gap)

3.3.2.4 The output gap

For the output gap measured by the QTT, the first change point is at the begin-

ning of the sample, which is in line with the event of stagflation in 1970s (see Fig

3.6). The second break point is in December 1984, which coincides with ending of

the United States’s stagflation. The third break point is around 1993, when the

economy had emerged from the recession and experienced a high-speed growth.

The major change is at the end. During that period, the Fed focused on the

demand side of the economy, it is possible that the Fed did not want to upset

economic growth. In other words, the Fed may put less weight on the positive

output gap in the Taylor rule.

3.3.2.5 The constant term

The constant term is unimportant in Clarida et al. (1998, 2000) because it should

be around zero in theory, while the Wald statistics suggests that the constant ac-
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Figure 3.7: Andrews’ Wald statistics for testing the partial structural break in
the US Taylor rule estimation(the constant term)

tually evolved during the sample periods (Fig 3.7). The constant term includes

interest rate target and inflation targets. One explanation for the change in the

constant term is that there might have been little consensus in the Fed with re-

gard to the appropriate target for these two variables, a variety of experiments

having been conducted to find the right targets. Another one could be that the

Fed began to conduct a more sophisticated Taylor rule. In fact, although there

is no evidence that the Fed set a target in the 1970s and 1980s, the nominal

interest rates were higher than 5% during most of this period. In the Greenspan

(1987-2006) era, the inflation target was set implicitly at around 1.5% to 2%.

Bernanke favours the explicit inflation target, and in 2006 the target was 1.5%.

In October 2010, Bernanke announced that the new inflation target should be set

to 2%. Thus, it seems that the target has been changing slightly over time.

To sum up, from the mid-1980s to the beginning of the 1990s the Taylor rule

for the US was quite volatile, and in the 1990s the interest rate feedback rule
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became consistent. Starting in the late 2001, however, the simple rule seemed to

be failing in interpreting the policy. Thus a more sophisticated model might be

needed.

3.3.3 A robust Andrews’ Wald test for structural changes

Figure 3.8: The robust Andrews’ Wald test for pure structural changes in the US
Taylor rule estimation

Note: the tight-dash line, sold line and long-dashed line are the Wald statistics obtained by

using the Quadratic Time Trend, the B-spline and the HP-filter, respectively.

In the last section only the Quadratic Time Trend method is applied to mea-

sure the output gap. In this section, both the B-spline and the HP-filter are also

used to investigate whether or not the output gap measures can lead to different

results.

Fig 3.8 presents the test for structural changes in the Taylor rule by using

different output gap measures. Apparently, by using B-spline and HP filter, the

test statistics follow a similar trend to that obtained by QTT. However, the mag-
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nitude of the statistic becomes greater with the increase in the flexibility of the

output gap measures. As we know, the HP filter provides the smoothest filter of

the three of them and, correspondingly, the leftover gap is the most volatile. It

appears that the rise in the volatility of the output gap increases the instability

of the Taylor rule estimates. In order to confirm this observation we discuss the

properties of the coefficient of each variable in the follow part of this subsection

in order to find out which variable results in the volatility of the Wald statistics.

Figure 3.9: The robust Andrews’ Wald test for partial structural changes in the
US Taylor rule estimation.(the inflation rate)

Note: the tight-dash line, sold line and long-dashed line are the Wald statistics obtained by

using the QTT, the B-spline and the HP-filter, respectively.

Fig 3.9 presents the test for the structural changes in the coefficient of the ex-

pected inflation rate. The results imply that the coefficient of the inflation rate in

the Taylor rule estimation by using B-spline and HP filter are far more inconsis-

tent than that obtained by using QTT. The coefficients are unstable throughout

most of the sample period, which suggests that the Fed might not follow a consis-

tent monetary policy in terms of responding to the expectation of inflation rate.
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Although the results are not desirable, the test obtained by both B-spline and

HP filter follow a similar trend to that obtained by QTT. There is a downward

trend starting in 1992, which implies that the coefficient of the inflation rate is

likely to be more stable than the rest of the sample period. Furthermore, there

is a spike in the Wald statistics in 1997 using B-spline and HP filter that cannot

be fully captured by those of QTT. This could be important because this period

coincides with the Asian financial crisis. This might lead to a monetary policy

inconsistency.

Figure 3.10: The robust Andrews’ Wald test for partial structural changes in the
US Taylor rule estimation.(the lagged interest rate)

Note: the tight-dash line, sold line and long-dashed line are the Wald statistics obtained by

using the QTT, the B-spline and the HP-filter, respectively.

Fig 3.10 illustrates the structural changes in terms of the lagged interest rate.

The change points are at the beginning of the sample, the time period during

1993, and post 2001. The B-spline provides the most volatile results and the

HP filter provides the most tranquil ones. Of note is that the HP filter indicates

that there was a structural break at the end of 2003, which is different from the
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results obtained from QTT and B-spline, which suggest that the change could

have happened in 2001.

Figure 3.11: The robust Andrews’ Wald test for partial structural changes in the
US Taylor rule estimation (the output gap)

Note: the tight-dash line, sold line and long-dashed line are the Wald statistics obtained by

using the QTT, the B-spline and the HP-filter, respectively.

In terms of output gap, the results vary (Fig 3.11). The HP filter provides the

most consistent estimation of the coefficient of output gap and the B-spline pro-

vides the most volatile results. However, all of them suggest that the coefficient

of the output gap does not develop significantly over time except at the beginning

of the sample, in 1993 and again post-2001. The Fed’s response to output gap is

relatively consistent throughout the sample period.

The structural change test for the constant term is displayed in Fig 3.12. It

is clear that the constant is not at a fixed level in the 1970s and 1980s by using

B-spline and QTT, which is not the case for HP filter. In the 1990s all the esti-

mates suggest that the constant term is relatively stable. There is also evidence
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Figure 3.12: The robust Andrews’ Wald test for partial structural changes in the
US Taylor rule estimation (the constant)

Note: the tight-dash line, sold line and long-dashed line are the Wald statistics obtained by

using the QTT, the B-spline and the HP-filter, respectively.

of structural changes after 2001.

To sum up, the estimation of the Taylor rule for the US suggests that the

Fed’s policy is not consistent over time, irrespective of the output gap measures.

All test results follow a similar trend and suggest there might have been struc-

tural changes at the beginning of the 1980s, during 1993, and after 2001. The

coefficients of inflation rate are more volatile than the other coefficients, and thus

it is they that should be viewed as the threshold variable in the nonlinear Taylor

rule analysis.
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3.4 Linear Taylor rule

In this section we estimate the linear Taylor rules for the US from January 1971

to December 2006 in an effort to interpret the instability of the monetary policy.

Both long-run and short-run Taylor rules are estimated, as the subsample periods

have been identified in the last section. The first potential structural break date

is March 1981, which is in line with Volcker becoming the chairman of the Fed,

the break date also being confirmed by Andrews’ Wald test. The second potential

point is January 1988, which is close to the date when Greenspan became the

Chairman and the 1987 financial crisis hit. The third one is January 1993, which

is supported by the empirical test. The fourth one is July 1997, which coincides

with the start of the Asian financial crisis. The last one is October 2001, after

the 9/11 attack. GMM is used for the estimation, and three output gap measures

are used for the estimation of the Taylor rule.

The results are displayed in the table 3.1-3.3. Firstly, there is evidence that

the Fed has followed a Taylor rule in the long run if one looks at the results

based on the estimations for the time periods of January 1971 to December 2006,

March 1981 to December 2006, January 1971 to December 2001 or March 1981

to December 2001, irrespective of the output gap measures. Secondly, in the

short run the results are not consistent over time; there is little evidence that the

Fed employed a Taylor rule between January 1971 and March 1981 by applying

any output measures. By using the QTT and the B-spline, there is no evidence

of Taylor rules being employed during the periods of February 1988 to January

1993, July 1997 to September 2001, or October 2001 to December 2006. Thirdly,

there is strong evidence of a Taylor rule being employed between March 1981 and

January 1988. The coefficient of the expected inflation rate is around 5, which

suggests that the Fed was very tough on the inflation rate at the time. The Fed
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raised nominal interest rates by 5% when the inflation rate was 1% higher than

the target. Thus, the real interest rate would have risen by around 4 percentage

points. The high real interest rate would have harmed the aggregate demand,

which would in turn have impaired the domestic economy and raised unemploy-

ment. This is consistent with the literature due to the fact that the Fed’s priority

was to contain high inflation and in turn sacrifice the domestic economy. There is

significant evidence from using QTT and B-spline that the Fed followed a Taylor

rule between January 1993 and July 1997, as the magnitude of the coefficient of

inflation rate is much smaller than that of the 1980s. The coefficient is around

1.2. The reason for this might be that since inflation was not as high as in the

1980s the Fed did not need to conduct extreme means to curb it. Thus, if inflation

was 1% higher than the target, then the real interest rate would have risen by

around 0.2 percentage points and price level would be reined in gradually without

hurting the health of the economy.

Fourth, it is important to be aware of the differences in estimation results

caused by the choices of changing points. For instance, examining the results for

the periods of January 1988 to October 2001 and February 1988 to December

2006, which fall in the Greenspan era, there is strong evidence that the Fed were

following a standard Taylor rule. However, the results for the subsample periods

of February 1988 to January 1993, July 1997 to September 2001, and October

2001 to December 2006 are contradictory. In addition, the performances of J-

statistics differ under various time period selections. If there are no structural

changes in the model then the p-value of the J-statistic is very high, which im-

plies that the instruments are valid. Nevertheless, if the potential break point is

involved in the regression the p-value decreases sharply. In certain cases the iden-

tification problems appear. These changes indicate that these potential breaks

are likely to result in the misspecification of the model. Thus the J-statistic could
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be another method of investigating structural changes, but further investigation

does not be carried out for inclusion in this chapter due to limitations of space.

Last but not least, if a GMM is used in the regression the traditional methods

for selecting the suitable model does not seem to work. Akaike’s information

criterion (AIC), Bayesian information criterion (BIC) and the sum of squared

residual (SSR) are the standard criteria for the model selection. Normally the

lower the value of the criteria, the better the model fits the data. However, in

this case, with more and more data being involved in the regression, both AIC

and BIC become smaller, which implies that they are better models. In other

words, the most appropriate specification of a Taylor rule is in the one for the

period from January 1971 to December 2006. However, the SSR provides totally

different results, it being smallest when the smallest amount of data is involved.

Thus it is unclear which method should be considered the best benchmark for

the selection of the model, and which periods should be considered following the

Taylor rule. Nonetheless, given the structural breaks, there is mild evidence that

the Fed was following the Taylor rule in the subsamples for the periods of March

1981 to January 1988 and January 1993 to July 1997.
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Table 3.1: The Taylor rule estimation over time (QTT)

Start End α0 α1 α2 ρ AIC BIC RSS J-
statistic

(stdev) (P-value)

1971.1 1981.3 0.003 0.085 0.981 0.956** -435.055 -424.715 0.011 28.115
(0.003) (1.262) (1.096) (0.035) (0.172)

1988.1 0.005* -0.292 0.844 0.955** -748.878 -736.106 0.015 39.039
(0.003) (0.637) (0.381) (0.018) (0.014)

1993.2 0.031 0.073 0.984* 0.963** -1003.272 -989.333 0.015 38.004
(0.002) (0.817) (0.432) (0.015) (0.018)

1997.7 0.001 1.112 0.564 0.969 -1221.808 -1207.073 0.015 37.899
(0.002) (0.950) (0.354) (0.012) (0.019)

2001.10 -0.001 2.876* 0.156 0.975** -1421.128 -1405.754 0.016 38.676
(0.001) (1.418) (0.131) (0.012) (0.015)

2006.12 -0.002* 3.563** 0.118 0.978** -1667.765 -1651.730 0.016 37.130
(0.000) (1.410) (0.137) (0.009) (0.023)

1981.3 1988.1 -0.004 5.202** 0.628* 0.955** -447.818 -438.240 0.0036 25.627
(0.002) (2.039) (0.353) (0.021) (0.267)

1993.1 -0.026 5.056* 0.900 0.976** -780.459 -768.636 0.0039 36.170
(0.002) (2.507) (0.699) (0.014) (0.029)

1997.7 0.001 1.858 0.968* 0.974 -1066.168 -1053.076 0.0041 34.001
(0.001) (1.524) (0.530) (0.015) (0.0491)

2001.10 -0.003** 4.153** 0.219** 0.956 -1330.034 -1316.013 0.0043 42.918
(0.001) (0.816) (0.068) (0.016) (0.005)

2006.12 -0.004** 5.681** 0.281** 0.970** -1649.064 -1634.144 0.0046 45.344
(0.001) (1.326) (0.101) (0.011) (0.002)

1988.1 1993.1 0.007** -0.101 1.225** 0.931** -510.786 -502.408 0.0001 22.353
(0.001) (0.329) (0.169) (0.108) (0.439)

1997.7 0.002** 1.519** 0.452** 0.002** -889.604 -878.695 0.0004 32.641
(0.000) (0.135) (0.051) (0.000) (0.067)

2001.10 -0.002** 2.423** 0.210** 0.911** -1165.809 1153.409 0.0008 48.828
(0.001) (0.225) (0.027) (0.018) (0.001)

2006.12 -0.003** 4.944** 0.364** 0.966 -1563.505 -1549.823 0.0010 57.666
(0.001) (0.770) (0.077) (0.008) (0.000)

1993.2 1997.7 0.002* 1.156** 0.360** 0.914** -464.325 -456.521 0.0001 29.268
(0.001) (0.299) (0.043) (0.024) (0.1374)

2001.10 -0.003** -4.809 0.200* 1.020** -829.123 -818.583 0.0003 33.492
(0.001) (3.722) (0.104) (0.015) (0.0553)

2006.12 -0.004** -1.427 0.288** 1.019** -1268.785 -1256.361 0.0004 40.806
(0.001) (2.542) (0.112) (0.007) (0.0087)

1997.7 2001.10 -0.009 -1.400** 0.298** 1.146** -440.6842 -433.0361 0.0002 25.093
(0.017) (0.241) (0.073) (0.042) (0.2927)

2006.12 -0.004** -3.440** 0.402** 1.045** -904.257 -893.383 0.0003 29.320
(0.001) (0.919) (0.060) (0.013) (0.1359)

2001.10 2006.12 -0.002** -1.427* 0.282 1.040** -560.038 -551.595 0.0000 21.648
(0.001) (0.472) (0.258) (0.007) (0.4811)
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Table 3.2: The Taylor rule estimation over time (B-spline)

Start End α0 α1 α2 ρ AIC BIC RSS J-
statistic

(stdev) (P-value)

1971.1 1981.3 0.005 -0.180 1.023 0.949** -436.711 -426.371 0.0107 28.249
(0.004) (1.336) (0.979) (0.034) (0.168)

1988.1 0.003 0.513 0.519* 0.949** -752.228 -739.457 0.0146 40.148
(0.002) (0.503) (0.193) (0.019) (0.010)

1993.2 0.001 1.121 0.568* 0.958** -1006.382 -992.444 0.0149 39.333
(0.002) (0.735 (0.189) (0.017) (0.013)

1997.7 0.001 1.220* 0.476** 0.957** -1225.750 -1211.015 0.0150 36.709
(0.001) (0.615) (0.160) (0.014) (0.026)

2001.10 -0.001 2.085** 0.370** 0.966** -1428.966 -1413.592 0.0155 37.144
(0.001) (0.843) (0.152) (0.012) (0.020)

2006.12 -0.011 2.251** 0.331** 0.965** -1679.811 -1663.775 0.0158 37.944
(0.001) (0.729) (0.114) (0.010) (0.019)

1981.3 1988.1 -0.005 6.224* 0.624 0.963** -447.245 -437.667 0.0037 25.988
(0.002) (2.819) (0.434) (0.020) (0.252)

1993.1 -0.004 5.623* 0.712 0.977** -779.710 -767.887 0.0039 36.261
(0.002) (2.782) (0.613) (0.014) (0.029)

1997.7 -0.002 3.275** 0.329 0.960** -1063.484 -1050.392 0.0041 33.460
(0.002 (1.148 (0.283) (0.017) (0.056)

2001.10 -0.004** 3.922** 0.210** 0.939** -1313.717 -1299.695 0.0050 35.273
(0.001) (0.607) (0.081) (0.017) (0.036)

2006.12 -0.005** 4.663** 0.317** 0.946** -1619.814 -1604.893 0.0050 37.053
(0.001) (0.717) (0.084) (0.013) (0.023)

1988.1 1993.1 0.005** -0.164 0.953** 0.923** -510.057 -501.678 0.0002 22.921
(0.001) (0.302) (0.121) (0.010) (0.406)

1997.7 0.005** 0.379* 0.656** 0.901** -904.653 -893.744 0.0002 27.345
(0.001) (0.216) (0.070) (0.012) (0.1983)

2001.10 -0.000 1.886** 0.283** 0.883** -1159.636 -1147.236 0.0008 40.870
(0.001) (0.175) (0.041) (0.020) (0.008)

2006.12 -0.002** 2.658** 0.411** 0.926** -1548.915 -1535.233 0.0010 48.109
(0.001) (0.304 (0.047) (0.011) (0.001)

1993.2 1997.7 0.004** 1.383** 0.693** 0.858** -470.625 -462.820 0.0001 25.667
(0.001) (0.166) (0.049) (0.021) (0.266)

2001.10 -0.002** 197.513 0.786 0.999** -828.015 -828.015 0.0003 34.324
(0.001) (6552.577) (19.744) (0.015) (0.046)

2006.12 -0.004** -9.285 0.191 1.014** -1266.787 -1254.363 0.0004 42.727
(0.001) (6.709) (0.235) (0.011) (0.005)

1997.7 2001.10 -0.001 0.385 1.542** 0.955** -451.993 -444.345 0.0001 26.753
(0.002) (0.702) (0.058) (0.029) (0.221)

2006.12 -0.002* 5.651 0.710* 0.981** -912.693 -901.819 0.0003 36.202
(0.001) (7.664) (0.333) (0.023) (0.029)

2001.10 2006.12 0.004** 0.467* 0.948** 0.897** -577.184 -568.741 0.0001 25.696
(0.001) (0.206) (0.105) (0.029) (0.265)

3.5 The nonlinear Taylor rule

3.5.1 The estimation of nonlinear Taylor rules

In this section there are two tasks: the first is to estimate nonlinear Taylor rules

under each subsample period, this being determined in section 3.4; and the second

is to test for whether or not the nonlinear form exists. The Taylor rule is viewed

as a threshold process, the estimation method being based on the one introduced

by Caner and Hansen (2004). The advantage of their method is that it allows

the estimation to be conducted under the GMM framework so that the appro-

priate value of the threshold for the specification can be investigated. CH04 also

propose a method to test the existence of the threshold process, which can help
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Table 3.3: The Taylor rule estimation over time (HP-filter)

Start End α0 α1 α2 ρ AIC BIC RSS J-
statistic

(stdev) (P-value)

1971.1 1981.3 -0.003 1.830* 2.311 0.955** -438.751 -428.411 0.0105 29.608
(0.002) (0.871) (1.989) (0.033) (0.121)

1988.1 0.002 0.683 2.426* 0.965** -752.043 -739.272 0.0147 42.947
(0.002) (0.701) (1.296) (0.019) (0.005)

1993.2 -0.001 2.557 4.962 0.985** -1002.831 -988.892 0.0151 42.096
(0.002) (2.938) (4.867) (0.014) (0.006)

1997.7 -0.001 2.352 3.738 0.981** -1223.160 -1208.422 0.0152 39.862
(0.001) (1.736) (2.370) (0.012) (0.011)

2001.10 -0.001 2.808 4.409 0.983** -1432.141 -1416.766 0.0154 40.580
(0.001) (2.128) (3.081) (0.012) (0.009)

2006.12 -0.001 3.062* 4.032* 0.982** -1685.909 -1669.872 0.0156 37.584
(0.001) (1.619) (2.088) (0.009) (0.020)

1981.3 1988.1 -0.001 2.774* 1.568** 0.951** -448.760 -439.182 0.0036 24.908
(0.002) (1.268) (0.613) (0.019) (0.302)

1993.1 -0.002 6.003 6.402 0.988** -775.436 -763.612 0.0040 29.280
(0.002) (5.043) (7.216) (0.014) (0.1371)

1997.7 -0.002 3.323** 2.163* 0.962** -1064.183 -1051.091 0.0041 23.663
(0.001) (0.888) (1.056) (0.017) (0.365)

2001.10 -0.002* 3.640** 2.329** 0.961** -1335.221 -1321.200 0.0043 25.049
(0.001) (0.804) (0.889) (0.015) (0.295)

2006.12 -0.002 4.493** 2.695** 0.967** -1656.012 -1641.091 0.0045 23.854
(0.001) (0.928) (0.957) (0.011) (0.355)

1988.1 1993.1 -0.003** 3.102** 3.730** 0.968** -495.660 -487.282 0.0002 31.980
(0.001) (0.805) (1.530) (0.012) (0.078)

1997.7 0.001** -3.998 11.137 0.992** -863.882 -852.973 0.0004 37.982
(0.001) (10.332) (19.576) (0.013) (0.018)

2001.10 -0.000 2.022** 1.680** 0.931** -1206.136 -1193.737 0.0006 54.030
(0.001) (0.255) (0.300) (0.013) (0.000)

2006.12 -0.003** 4.683** 2.870** 0.966** -1576.697 -1563.014 0.0009 55.596
(0.001) (0.727) (0.626) (0.007) (0.000)

1993.2 1997.7 0.003* -0.644 3.505** 0.967** -473.848 -466.043 0.0001 32.697
(0.000) (0.690) (1.168) (0.012) (0.066)

2001.10 -0.001 2.902* 2.774** 0.968** -844.374 -833.836 0.0003 34.002
(0.001) (1.256) (0.892) (0.012) (0.049)

2006.12 -0.003** -33.704 -19.736 1.003** -1289.797 -1277.373 0.0004 35.795
(0.001) (52.653) (32.714) (0.005) (0.032)

1997.7 2001.10 0.001 1.452* 1.702** 0.911** -447.450 -439.801 0.0001 20.848
(0.002) (0.627) (0.428) (0.038) (0.530)

2006.12 -0.003 70.294 44.572 0.998** -925.864 -914.990 0.0002 26.834
(0.001) (228.777) (41.701) (0.005) (0.218)

2001.10 2006.12 -0.002** -1.851** -1.060* 1.040** -568.891 -560.447 0.0001 24.699
(0.000) (0.505) (0.452) (0.008) (0.312)
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us to identify whether or not there is a threshold process in various subsample

periods.

Many papers suggest that the threshold variable should be chosen between

the lagged inflation rate and the output gap. Based on the finding that the An-

drews’ Wald statistics of inflation rate are more volatile than those of the other

variables, the inflation rate is considered to be the threshold variable. In the

following section, the first-, second-, third- and sixth-lagged inflation rates are

considered as the threshold variable, respectively. The reason for this arrange-

ment is that the majority of studies choose the first- and second-lagged inflation

rate as the threshold variable using quarterly data, but we use monthly data for

the estimation, which corresponds to the third- and sixth-lagged monthly infla-

tion rate. The difficulty is to find the optimum threshold τ , since we assume

that four different variables can be viewed as threshold variables. The estimation

process is in two stages: the first stage is to find the value of the threshold, given

the threshold variable, and the second stage is to compare the estimation results

under each estimated threshold, and then determine the optimum threshold vari-

able.

For the first stage, CH04 propose a method for finding the value of the thresh-

old. According to their method the process is as follows: first, by programming,

the order of the data for the inflation rate is reorganised, being sorted into the

lowest to the highest. The lowest and highest 15% of the values are trimmed.

The reason for this is that, in order to have enough observations for the follow-

ing estimation, it is necessary to remove the extreme cases. The remaining data

forms the threshold variable set (Γ). Given any τ ∈ Γ, the nonlinear Taylor rule
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is estimated as follows:

it = (α0 + α1Etπt+12 + α2xt + α3it−1)I(πt−d ≥ τ)

+ I(πt−d < τ)(β0 + β1Etπt+12 + β2xt + β3it−1) + εt (3.6)

where I(πt−d ≥ τ) is equal to 1 if πt−d ≥ τ and zero otherwise. Then the

sum of squared residual (SSR) is stored. The appropriate threshold is found by

minimizing the SSR:

τ = minSSR = minτ∈Γε̂(τ)
′
ε̂(τ) (3.7)

Since four different lagged inflation rates are viewed as potential threshold

variables, the optimum threshold needs to be determined by comparing the re-

sults of these four different threshold models. Since SSR is a key indicator of

goodness of fit, as indicated by CH04, we still use SSR as the key parameter for

selecting the optimum threshold. In brief, the one with lowest SSR is considered

to be the optimum threshold.

At this stage we only use QTT to measure output gap for simplicity. One

intriguing issue we would like to address is whether or not the nonlinear Taylor

rule can outperform the linear Taylor rule, especially regarding the periods of

1981 to 1993 and 1993 to 2001. A number of studies demonstrate that the Fed’s

can be described as a nonlinear Taylor rule from 1980 to 2000. If that is the

case then on dividing this sample period into two subsample periods one should

still expect the existence of nonlinearity. As we have demonstrated in the last

section, there is evidence of the linear Taylor rule being used during the time

periods of 1981 to 1988 and 1993 to 1997. However, we failed to find evidence

for the linear Taylor rule having been used in the period between 1988 and 1993.
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If the data from 1993 to 2001 is used in the estimation there is no evidence of a

linear Taylor rule either. In addition, there is no evidence of the use of the Taylor

rule pre-1981 or between 2001 and 2006. Thus, the testing periods are pre-March

1981, March 1981 to January 1993, January 1993 to October 2001, and October

2001 to February 2006.

The table 3.4 shows the results if the Taylor rule for the US is viewed as a

threshold process. The first sample period to be investigated is the period be-

tween January 1971 and March 1981. As we have demonstrated in the previous

section, there is no evidence of a linear Taylor rule for the US being used during

this period. Using a threshold model does not improve the performance. All the

parameters of the variables are insignificant except for those of lagged interest

rates.

The second sample period is March 1981 to January 1993. According to the

Andrews’ Wald statistics, the Taylor rule was very volatile at that time. Thus,

although there is evidence of the linear Taylor rule being applied, especially as

the parameter of expected inflation rate is very high, the nonlinear Taylor rule is

worth investigating. The results confirm that the coefficients of expected infla-

tion rate (α1) above the thresholds are all positive, the magnitude being greater

than 4. It is an important result as it proves the Fed’s determination to curb

the high inflation. However, there is no evidence that the Fed reacted to output

gap or inflation when it was below the threshold. These results imply that the

Fed’s priority was to curb high inflation, and thus only reacted to a high infla-

tion rate at that period of time. Moreover, the six-lagged inflation rate provides

the lowest SSR, and thus should be considered as the optimum threshold variable.

The third sample period is from January 1993 to October 2001, this period
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being distinguished from the 1970s and 1980s in that the US economy experi-

enced steady growth and inflation was low. The Andrews’ test suggests that the

Fed might have employed a Taylor rule in general during this period as the Wald

statistic line in Fig3.2 has a downward trend. It is expected that the Fed was

likely to have followed a simple Taylor rule as much of the literature suggested,

but we do not find significant evidence of linearity in section 3.4. On considering

the Taylor rule model as a threshold model the result is not significant either. In

general, none of the coefficients of output gap are significant, the inflation rate

coefficient is significant in only 2 out of 8 cases, and these 2 cases do not have

a positive sign. Hence the results contradict the Taylor principle, which indi-

cates that the threshold process is unable to explain the Fed’s behaviour at this

time. Nonetheless, the parameter of the lagged interest rate is significant and its

magnitude is greater than those in the previous periods. As we recall in section

3.3, the Andrews’ Wald statistic suggests that there is a structural change in the

lagged interest rate in the 1990s, which is confirmed by the threshold models. In

addition, the threshold during this period is around 2.5%, which is much smaller

than those in the first and second sample periods. This difference is likely to

explain why there is a huge break in Taylor rule estimation around 1993. The

first-lagged inflation rate is considered to be the optimum threshold model, since

it provides the smallest SSR. This is also different from the results in the previous

periods. After conducting the above analysis it is still not clear whether or not

the Fed followed a Taylor rule from 1993 to 2001. It is worth exploring the ra-

tionale behind these results. As we explained in the last section, the Fed follows

a Taylor rule in the long term, but might not do so in the short term. During

this period there are 8 years of data available; there is evidence of the linear

Taylor rule being used for the first 4 years, from 1993 to 1997. However, after

the Asian financial crisis the Fed was unable to implement the same policies, as

had been indicated by a simple Taylor rule, especially when inflation was higher
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than the target and thus the Fed had to cut the real interest rate in order to

prevent a potential economic recession, even if there was pressure on prices. This

abnormal behaviour virtually caused the stock market bubble in 2000. Thus, the

main reason for the failure of demonstrating the linearity of the Taylor rule dur-

ing this period could have arisen through the influence of the Asian financial crisis.

The last sample period is from October 2001 to December 2006. There is no

evidence of a linear Taylor rule being employed during this period. In fact, the

coefficient of inflation rate is negative in the linear estimation, which deviates

from the implication of a Taylor rule having been used. In terms of the nonlinear

Taylor rule, the results are mixed. The coefficient of the inflation rate above

the threshold is not significant in 3 out of 4 cases, and all of them are negative,

which means that the Fed did not intend to curb inflation when the price pres-

sure increased. When the inflation rate is less than the threshold, the coefficient

becomes significant. If the first- or second-lagged inflation rates are taken as the

threshold variable, the coefficient is positive, while it is negative when taking

the third-or sixth-lagged inflation rates as the threshold variable. The positive

coefficient of the inflation rate when it is below the threshold indicates that a fall

in inflation drives the nominal and real interest rates down, which will provoke a

rise in inflation back to the target; the value of negative coefficients calculated by

using third- or sixth-lagged inflation rates is in fact less than 1, which indicates

that the rise of nominal interest rates caused by inflation will not be sufficient

to prevent the real interest rate from declining; in other words, the results are,

in general, consistent, regardless of which lagged inflation rate is chosen. The

first-lagged inflation rate, however, provides the lowest SSR, it should therefore

be viewed as the optimum threshold variable.

Based on the estimated results obtained by using first-lagged inflation, the
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coefficient of inflation rate is negative when the inflation is higher than the tar-

get; the coefficient turns to positive and the magnitude is greater than 1 when

inflation is lower than the target. These results indicate that the Fed is willing

to cut interest rates when inflation is lower than the target but reluctant to raise

it when the inflation rate is higher. The coefficients of output gap are positive

in all cases, and significant in 6 out of 8 cases. In addition, the magnitude of

output gap is greater than 1 in 6 out of 8 cases. The results for the parameter

of output gap is different from those in the previous period, which indicates that

the Fed was more concerned about the stabilization of the business cycle. The

coefficients of lagged interest rate are significant in all cases, and 4 of them are

greater than 1. These results are important because it demonstrates that the

Fed was more concerned about the output gap than the inflation rate, and the

negative inflation gap rather than the positive one. Specifically, if the inflation

rate was less than the threshold, the government was willing to lower the interest

rate so as to provoke inflation; but if inflation was higher than the threshold the

Fed did not have the motivation to push it down. This discovery confirmes many

criticisms of the Greenspan Fed. In an effort to tackle the potential recession that

could be caused by the 9/11 attack and military spending increases, the interest

rate was cut to 0.01% in 2004 so as to stimulate the economy, and this policy

eventually caused the asset bubble and the financial crisis in 2007.

3.5.2 Testing for nonlinearity of the Taylor rule

In the last section we have reviewed the Taylor rule regarding the threshold

process in each sub period. There is mild evidence that the Taylor rule for the

US is likely to have followed a threshold process during the periods of 1981 to

1993 and 2001 to 2006. In this section we would like to conduct a formal test to
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demonstrate the existence of the threshold behaviour. The test is proposed by

Caner and Hansen (2004), and the procedure is as follows:

The general form of a threshold model is:

yi = θ
′
1zi + e1i, qi ≤ τ

yi = θ
′
2zi + e2i, qi > τ

which may also be written in the form

yi = θ
′

1zi(qi ≤ τ) + θ
′

2zi(qi > τ) + ei (3.8)

where yi is an dependent variable, zi is an m vector, and qi is the threshold

variable, where qi ∈ Ξ. The threshold parameter is τ ∈ Γ where Γ and is a strict

subset of Ξ.

The null hypothesis of the no threshold effect in the model is:

H0 : θ1 = θ2

The alternative hypothesis for the existence of the threshold effect is:

H1 : θ1 6= θ2

To test H0, CH04 recommend the extension of a Sup test developed by Davies

(1977) to the GMM framework.

The statistic is formed as follows: First, τ ∈ Γ is fixed at any value, and the

model is estimated by the GMM estimator under the right moment conditions.

Thus the parameter θ̂1(τ), θ̂2(τ) and the corresponding covariance matrices V̂1

and V̂2 can be obtained.
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The Wald statistic for H0 is:

Wn = (θ̂1(τ)− θ̂2(τ))
′
(V̂1(γ) + V̂2(γ))(θ̂1(τ)− θ̂2(τ)) (3.9)

The calculation is repeated for all τ ∈ Γ. The SupW statistic for H0 is then

the largest value of these statistics:

SupW = SupWn(τ) (3.10)

Since the parameter is not identified under the null hypothesis, the asymptotic

distribution is not chi-square but can be written as the supremum of a chi-square

process. In order to obtain the asymptotic distribution of SupW , Caner and

Hansen (2004) suggest estimating the pseudo-dependent variable y∗i = êi(τ)ηi,

where êi(τ) is the estimated residual under the unrestricted model for each τ , and

ηi is simulated as independent and identically distributed (i.i.d)N(0, 1). Then y∗i

is used in place of yi to estimate the threshold model given the fixed regressor

and each potential threshold. The Wald statistic is then calculated and SupW ∗

selected. The process is repeated 1,000 times; the resulting SupW ∗ having a

asymptotic distribution of SupW .

The p-value of the SupW is used to demonstrate whether or not the null hy-

pothesis is rejected. It is approximately equal to the number of SupW ∗greater

than SupW divided by the total number of SupW ∗. Thus, if 20 SupW ∗ is greater

than SupW , the p-value = 20/1000 = 0.02. If it is less than 0.05, we have ev-

idence that the null is rejected. If it is less than 0.01, we have strong evidence

that the null is rejected.

For the period from 1981 to 1993 the sixth-lagged inflation rate is viewed as

94



the threshold variable based on the results in the last section. The total number

of observations is 142. The value of the threshold is 4%, which is also obtained

in the last section, where 52 are greater than the threshold. The SupW is 45.82.

The simulation is repeated 1,000 times, and the number of SupW ∗ greater than

SupW is 470. Thus, the p-value is 0.478, which implies that we can reject the

null hypothesis of linearity for a significance level greater than 47.8%. Given this

result, the null hypothesis is not rejected at any conventional level. The test

does not support the presence of the nonlinear Taylor rule during this period of

time. Because the test suggests that the highly persistent structural changes in

the 1980s are unable to be explained by a threshold model. Although the thresh-

old model estimation is not significant for the 1980s and 1990s, one difference

is that the indicated threshold of inflation rate was around 4% in the 1980s but

decreased to 2% afterwards. Furthermore, Fig 3.4 shows clearly that the level

of inflation was much higher in the 80s than for the rest of the samples, and

thus, the change in the level of inflation might have been a potential cause of

the structural changes, but it is inappropriate to interpret the evolution by using

the threshold model. These findings are consistent with those obtained by Surico

(2007).

For the period from 2001 to 2006 the first lagged inflation rate is viewed as the

threshold variable, and the estimated threshold is 2.6%. There are 61 observa-

tions during this period, 34 of them having been greater than the threshold. Thus,

there were enough data to perform the test. The SupW was 194.75. The simu-

lation is repeated 1,000 times. The number of the SupW ∗ greater than SupW is

8. So the p-value is 0.008, which is considerably less than 0.05 and thus the null

hypothesis can be rejected following any conventional level. In other words, there

is evidence that the Fed was following a Taylor rule when the first lagged inflation

rate was less than the threshold, but this was not the case when the lagged in-
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flation was greater than the threshold, as the coefficient of the expected inflation

rate was negative, which violates the Taylor principle. This result confirms the

changes made in monetary policy by the Fed, from controlling high inflation to

deliberately provoking inflation.

3.6 Conclusions

This chapter has discussed the stability of the forward-looking interest rate reac-

tion function - the Taylor rule for the US by applying Andrews’ Wald test, and

attempted to determine whether threshold models can explain the instability of

the Taylor rule under each subsample, given the structural breaks indicated by

the Andrews test. The empirical results suggested that, although the Fed is likely

to follow a linear Taylor rule in the long run, the monetary policy was very unsta-

ble between 1971 and 2006, and especially throughout the 1980s and post-2001,

irrespective of any output gap measures. There is also evidence of a linear Taylor

rule being used from March 1981 to January 1988 and again from January 1993

to July 1997. By employing Caner and Hansen(2004)’s method, the nonlinear

Taylor rule was estimated for different sub-periods. There is no evidence of a

threshold model being used in the 1980s, which indicated that the instability

cannot be explained by a threshold process, so that it might be due to the fact

that the level of inflation was substantially different at that time. There is evi-

dence supporting the existence of a threshold process during the period between

October 2001 and December 2006, although the process cannot be characterized

as a classic nonlinear Taylor rule.
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Chapter 4

Exchange rates and fundamentals
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4.1 Introduction

Meese and Rogoff (1983b) demonstrate that there are no structural models that

can outperform the naive random walk in terms of out-of-sample exchange rate

forecasting performance. Cheung et al. (2005) use the data from the 1990s and

more up-to-date structural models to investigate whether fundamentals have pre-

dictive power on the exchange rate, and the results confirm that no model can

consistently do a better job than the naive random walk. However, there is

literature that suggests that the monetary model may not be as bad as it ap-

pears. MacDonald and Taylor (1994) examine the sterling/dollar exchange rate

and find evidence of the unrestricted monetary model outperforming the ran-

dom walk using a multivariate co-integration technique; more recent research

also find evidence that the exchange rate model incorporating the Taylor rule

can increase the out-of-sample predictability. (Engel and West, 2004, 2005, 2006;

Engel et al., 2007; Molodtsova et al., 2008; Molodtsova and Papell, 2009; Mark,

2009). It should be noted that the choice of the forecasting comparison methods

(goodness-of-fit measures) and estimators for forecasting play a significant role in

this type of literature. This chapter examines whether or not the out-of-sample

forecasting performance of structural models can be improved when macro fun-

damentals, estimating methods, or goodness-of-fit measures vary. We include the

latest developed model-the Taylor rule models-in the discussion, it having been

demonstrated in recent studies that this model is superior to other traditional

fundamental models.

The best choice of estimators varies according to the features of the funda-

mentals. The mainstream literature applies to an Error Correction Model (ECM)

or regression in first differences model for exchange rate forecasts (Cheung et al.,

2005; Mark, 1995). If all the fundamentals are I(1), we can test for whether or
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not the fundamentals are co-integrated with the exchange rate and, if so, the

Error Correction Mechanism (ECM) should be used for the estimation. If not,

all the variables should take first differences for the estimation. Both the spec-

ifications above imply that the exchange rate is endogenous and that the other

variables are exogenous. Nonetheless, the macroeconomic theory implies that

other fundamental variables such as the interest rate cannot be considered to be

exogenous variables, since their behaviour is affected by fundamentals like the

inflation rate or the money supply. On the other hand, the endogeneity of the

exchange rate is also questionable. The assumption that it is only the exchange

rate that is endogenous implies simultaneous bias. For instance, if the interest

rate in Frenkel-Bilson’s flexible approach is correlated to the error term, the es-

timator of the model would be biased. Engel and West (2005) also prove that

exchange rates can granger cause macro fundamentals, implying the endogeneity

of macro variables. If we consider both the non-stationarity of the variables and

the endogeneity of fundamental variables in exchange rate models, then the Vec-

tor Error Correction Model (VECM) or the Vector Autoregressive Model (VAR)

in first differences should be used, both specifications challenging the assumption

that only the exchange rate is endogenous, all the variables having been treated

symmetrically. If the fundamental are co-integrated, VECM should be used; if

not, the VAR model should be used.

The choice of different goodness-of-fit measures can lead to different conclu-

sions. Meese and Rogoff (1983a) choose Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) for the out-of-sample forecasting comparison. Che-

ung et al. (2005) use the Diebold Mariano and West statistic (the DMW statistic

hereafter), the ‘change of direction’ test, and the ‘consistency’ test. Molodtsova

et al. (2008); Molodtsova and Papell (2009) use a modified MSPE ratio test in-

troduced by Clark and West (2006) (the CW statistic hereafter), so called CW
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test. Since there are no unanimous comparison techniques in the literature, we

use a variety of tests in the following sections.

Clark and West (2006) demonstrate that the DMW statistic tends to re-

ject the hypothesis that fundamental models can outperform the naive random

walk, whereas Rogoff and Stavrakeva (2008) imply that the CW statistic is not

the minimum mean squared forecast error statistic. Since there is a debate on

the performance of the DMW statistic and the CW statistic for testing nested

models, this chapter performs a thorough investigation on both tests based on

Monte-Carlo simulations, in order to find out which test is more appropriate for

measuring the out-of-sample predicative power of exchange rate models. We ex-

plain why the DMW statistic is biased based on its mathematic function, and

then describe the simulation designs for both statistics. The Q-Q plots are used

to identify whether or not the statistic follows a standard normal distribution.

At the end of this section the size and power of the CW statistic are discussed to

examine whether the CW statistic has the appropriate size and power even if the

rolling window or sample size varies. Our investigations are more thorough than

those of Clark and West (2006); hence, we may be able to provide more insights

on the issue.

This chapter is organised as follows: section 4.2 provides a description of the

theoretical models which are applied to the following empirical study; section

4.3 explains the best choice of the estimators for the exchange rate forecasting

based on the properties of the macro fundamentals; section 4.4 displays the out-

of-sample comparison techniques; in section 4.5 the performances of the DMW

and CW statistic for nested models based on the Monte-Carlo simulations are dis-

cussed; section 4.6 presents the relevant data of the UK and the US for empirical

studies; section 4.7 tests whether the level and the first difference of fundamen-
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tal variables and the differential between the home and the foreign country have

unit roots; sections 4.8 and 4.9 test whether there are co-integrating vectors and

weak exogeneity in the traditional monetary models; in section 4.10 the out-of-

sample predictability of the exchange rate based on monetary models and Taylor

rule models are shown. A variety of estimators are chosen to predict the ster-

ling/dollar nominal exchange rates, and a list of goodness-of-fit measures are

applied to show which model and estimator can provide the most robust results;

section 4.11 concludes.

4.2 The theoretical models

Model 1 is a naive random walk model, the movements of today’s exchange rate

are only related to yesterday’s movements of exchange rate and an error term (or

noise term). Under a RW framework, none of the structural model can be useful

for forecasting.

st = st−1 + ut (4.1)

where st is the log nominal exchange rate, the domestic currency price of a

dollar. In other words, the exchange rate is the number of domestic currency

units needed to buy one unit of dollar. ut is the error term.

Model 2 is the Purchasing Power Parity (PPP):

st = α + β1(pht − p
f
t ) + ut (4.2)

where p is the log price level, and h and f represent home and foreign country,

respectively. The US is the foreign country in the sample. The model indicates
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that the increase of st is the depreciation in domestic currency. If the domestic

price is higher than the foreign price, the domestic currency depreciates. The

model above is in fact the relative PPP condition, which allows a constant term.

The relative version is examined because the price indices rather than price levels

are used.

Model 3 is the Frenkel-Bilson’s flexible-price monetary model (FB model):

st = α0 + α1(mh
t −m

f
t ) + α2(yht − y

f
t ) + α3(iht − i

f
t ) + ut (4.3)

where m is the money supply, y is the output, i is the nominal interest rate. The

flexible-price monetary model implies that the PPP and Uncovered Interest Rate

(UIP) hold. α1 > 0 means that given other things being equal, the increase in do-

mestic money supply pushes up the demand for goods, raising domestic price level

which, in turn, causes the domestic currency to depreciate. α2 < 0 means that

other things being equal, the rise in domestic nominal income increases money

demand, which lowers the price level. The fall in price will require an apprecia-

tion in domestic currency. α3 > 0 means that the rise in interest rate lowers the

money demand, the excess money supply leads to a rise in the price level, so that

the domestic currency depreciates.

Model 4 is the Dornbusch -Frankel’s sticky-price monetary model (DF model):

st = α0 + α1(mh
t −m

f
t ) + α2(yht − y

f
t ) + α3(iht − i

f
t ) + α4(πht − π

f
t ) + ut (4.4)

where π is the inflation rate. This model allows for slow domestic price adjust-

ments and consequent deviations from PPP. α3 < 0 means that the changes

in the nominal interest rate reflect changes in the tightness of monetary policy.
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“When the domestic interest rate rises relative to the foreign rate it is because

there is a contraction in the domestic money supply... the higher interest rate at

home than abroad attracts a capital inflow, which causes the domestic currency

to appreciate instantly” (Frankel, 1979). α4 > 0 because demand for currency

falls when domestic inflation is higher relative to the foreign inflation rate, which

causes a depreciation in domestic currency.

It is worth noting that the inflation rate in the model can be replaced by the

price level; Engel and West (2005) use the price level instead of the inflation rate

for investigating the relationship between the exchange rate and fundamentals.

There is not much difference in theory between the price level and the inflation

rate but, as we discuss later, they have quite different statistical characteristics.

Model 5 is the Taylor rule model, different from the above in that, the first

difference of log exchange rate is on the left-hand side of the equation. The detail

on how to derive the model can be found in Appendix B.

∆st = α0 + α1(πht − π
f
t ) + α2(iht−1 − i

f
t−1) + α3(xht − x

f
t ) + α4qt + ut (4.5)

where q is the log real exchange rate and x is the output gap. If we believe

that the UK central bank reacts to the Forex market then the real exchange rate

should be included in the specification. In this case, the exchange rate model

is known as an asymmetric Taylor rule model.1 If not, it is called a symmet-

ric Taylor rule model. Molodtsova and Papell (2009) apply Model 5 to examine

the out-of-sample performance of the exchange rate model incorporating Taylor

rules. They find strong evidence of predictability for 11 out of 12 currencies vis

a vis the US dollar. Molodtsova et al. (2008) apply real-time data to forecast

1This is different from the asymmetric Taylor rule which is introduced in chapter 3.

103



the dollar/Mark exchange rate and also find the strong predictability based on

Taylor rule fundamentals.

One intriguing assumption in the Taylor rule model is to link the interest rate

differential with the exchange rate forecast. Molodtsova and Papell (2009) be-

lieve that assuming Uncovered Interest rate Parity does not hold, so interest rate

differential should cause an appreciation in the expected exchange rate (α2 < 0).

The argument here is that under the Uncovered Interest rate Parity conditions,

the rise of domestic interest rate will cause immediate appreciation followed by

forecasted depreciation. In this case, the rise in domestic inflation will cause an

interest rate rise, followed by a forecast of exchange rate depreciation. However,

there is evidence that the UIP does not hold in the short run. (Chinn, 2006;

Eichenbaum and Evans, 1995). Gourinchas and Tornell (2004) provide the ra-

tionale behind this phenomenon. Their explanations are that the investors may

systematically underestimate the persistence of interest rate shocks. For instance,

if the Bank of England (BOE) raises the interest rate, then it will regain its equi-

librium level gradually. If the investors know the path of interest rates, they will

buy sterling against the dollar to a level equal to the interest rate differential.

Then the future exchange rate would depreciate accordingly. This is called the

‘forward premium’ effect. If investors misperceive that the increase is transitory

and will revert to its equilibrium quickly, the exchange rate will only appreciate

moderately. In the following period these investors will find out that the rise in

interest rate is in fact higher than they expected, leading them to revise their

opinions about the persistence of the interest rate shock, thus causing further ap-

preciation of sterling. This is called the ‘updating’ effect. If the updating effect

dominates the forward premium effect then sterling will appreciate against the

dollar. Gourinchas and Tornell’s (2004) explanation would seem more reasonable

if a central bank smoothed interest rate changes. Because the initial changes in
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the interest rate are smaller than those that have the maximum impact, a degree

of under-prediction persists. The update effect will be stronger relative to the

forward premium effect. Thus, the interest rate differential will cause an appre-

ciation in exchange rates.

There are other classes of models, one of which includes the Balassa-Samuelson

effect, adding productivity differential at the end of the second model. The other

one is called a ‘composite’ model:

st = α0 + α1(pht − p
f
t ) + α2(ωht − ω

f
t ) + α3(iht − i

f
t ) + α4(gdebtht−gdebtft )

+ α5(totht−totft ) + α6(nfaht−nfaft ) + ut (4.6)

where ω is the relative price of non-tradables, “gdebt” is the government debt to

GDP ratio, “tot” is the log terms of trade and “nfa” is the net foreign asset. The

specification closely resembles the Behavior Equilibrium Exchange Rate (BEER)

model of Clark and MacDonald (1998).

Detailed discussion on Model 3, Model 4, Model 5 and the BEER model can

be found in Appendix B. Although the BEER model is also popular in this field,

it is quite difficult to get relevant monthly data. Thus, we do not apply the BEER

model in this chapter.

4.3 The out-of-sample Forecasting Methodology

The conventional methods of estimation used in the forecast process in the em-

pirical exchange rate modelling are ‘rolling regression’ and ‘recursive regression’.
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With regard to rolling regression, given that the sample size is T , using the first

P (P < T ) period for initial estimation, one period out-of-sample forecast is pro-

duced. We then drop the first data point, add one additional data point at the

end of the sample, and re-estimate the model. The procedure is repeated until all

the out-of-sample observations are exhausted. The process has the potential ad-

vantage of alleviating parameter instability effects over time. Regarding recursive

regression, the process is similar, except that after selecting the initial period and

adding one additional data point at each step, we do not drop any of the earlier

observations. The drawback of recursive regression is that the method puts more

weight on the early sample period.2

Meese and Rogoff (1983a,b) use recursive regression3 and choose the instru-

ment variables (IV) technique as the benchmark estimator for estimating the

structural model in order to deal with the endogeneity of the explanatory vari-

ables.

Four specifications are normally used for the estimation of exchange rate: an

Error Correction Model (ECM), a regression in first differences specification, a

VAR in first differences and a Vector Error Correction Model (VECM). All four

specifications are based on the fact that most of the macro variables are non-

stationary, so that the level regression is not appropriate for the estimation.

Regression in first differences model

If all the variables are non-stationary, and there is no co-integration in the

model, assuming only one variable (st) is endogenous, regression in first differ-

2For adetailed discussion on rolling regression, see section 4.5.
3In Meese and Rogoff (1983b), they claim that rolling regression is used, but in fact their rolling
regression is viewed as recursive regression.
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ences should be used to estimate the model. This refers to a regression model

taking the first difference of variables.

∆st = ∆Ztβt + ut (4.7)

where ∆Zt is an 1× n vector of the first difference of fundamental variables, and

βt is an n × 1 vector of sloping parameters. In this type of specifications, Zt is

a vector of exogenous variables, and st is endogenous. In other words, Zt has an

impact on st, whereas st cannot influence Zt.

Error Correction model (ECM)

If all the variables are non-stationary, and there is co-integration in the model,

assuming only one variable (st) is endogenous, then the error correction model

(ECM) should be used instead of the regression in first differences. ECM involves

a two-step procedure. The first step is to identify the long-run co-integrating

relationship using the Johansen procedure. In the second step, the estimated co-

integrating vector (st−k − Zt−kΓ̂) is incorporated into the error correction term,

and the resulting equation

st − st−k = δ0 + δ1(st−k − Zt−kΓ̂) + ut (4.8)

is estimated via OLS. k denotes the forecast step, Zt−k is an 1 × n vector

of the fundamental variables, Γ̂ is an n × 1 vector of sloping parameters. The

term in brackets, st−k−Zt−kΓ̂, represents the co-integrating vectors in the model.

The differences between regression in first differences and ECM are that in

the error correction specification, contemporaneous values of the right-hand side

variables are not necessary in ECM, so it is true ex ante forecasts. On the other
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hand, regression in the first differences specification has an informational advan-

tage in forecasting.

Molodtsova and Papell (2009) use rolling regression and error correction spec-

ification introduced by Mark (1995), and do not find evidence that the traditional

monetary models estimated by ECM have any significant predicative power on

exchange rates. Cheung et al. (2005) use a different type of ECM for the forecast.

The difference between Cheung et al and Mark’s method is that the co-integrating

vector is imposed a priori in Mark’s case and he considers only money supply

and price level to be the explanatory variables in his research, whereas Cheung

et al. estimate the co-integrating vector before each forecasting step, which could

improve the accuracy of the forecasts. Although Cheung’s method is more ac-

curate, it is also difficult to apply in practice. It involves complex programming

for multi-step-ahead forecasts. Since the forecasting results based on the results

which are provided by Cheung et al. are not robust, we do not use this method

in this chapter.

Vector auto-regressive (VAR) model in first differences

If all the variables are non-stationary and there is no co-integration in the

model, assuming more than one variable is endogenous, then the Vector autore-

gressive model (VAR) in first differences should be used in the estimation. One of

the advantages of VAR is that it allows more than one variable to be endogenous,

so that it treats all variables symmetrically. That said, VAR model results are

difficult to explain in economic terms.

The general VAR(k) framework is:
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Xt =
k∑
i=1

Xt−iβi + ut (4.9)

Xt include the nominal exchange rate and the fundamentals. Since most of

the fundamental variables are non-stationary, if there is no co-integration in the

equations, one can take VAR in first differences form, so all the variables in the

VAR are taken the first differences.

∆Xt =
k∑
i=1

∆Xt−iβi + ut (4.10)

Vector Error Correction Model (VECM)

In the presence of a unit root, using unrestricted VAR in levels or in first differ-

ences, as the estimator can be problematic (Phillips, 1991; Phillips and Loretan,

1991), Granger (1986) proposes the following vector error correction representa-

tion to solve the underlying problems above:

∆Xt = c+
k−1∑
i=1

Πi∆Xt−i + ΠXt−1 + ε (4.11)

where

Π = −(I −
∑k

i=1 Ai),

Πi = −(I − A1 − ...− Ai), i+ 1, ..., k − 1,

X is an n × 1 vector, c is the deterministic drift term in ∆Xt, Xt and ε are

n× 1 vectors, and Aj is an n× n matrix of parameters.

There are two main methods in terms of estimating the equation above. One

is by ‘maximum likelihood’ procedures introduced by Johansen (1988) and the

other is a generalized version of Engle and Granger (1987). Since Johansen’s

method dominates the research, we focus on his method in the following discus-
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sion.

When Π is full rank, n, all the elements in the model are stationary. It is

appropriate to estimate the model in levels. When Π is zero rank, Π = 0 , there

is no co-integration in the model, which should be estimated in first differences.

If, however, Π is of reduced rank, Π = r < n, then there will exist (r×n) matrices

α and β such that Π = αβ
′

where β is the matrix of co-integrating parameters

and the α is viewed as the matrix of speed-of-adjustment parameters, indicating

the speed with which the system responds to the last periods’ deviation from

equilibrium. In brief, the difference between VECM and VAR in first differences

model depends on the existence of the co-integration.

We use the two tests for the co-integration which are proposed by Johansen.

The first statistic test is the likelihood ratio (or trace) statistic test which investi-

gates the null hypothesis that the number of distinct co-integrating vectors is less

than or equal to r against a general alternative. The second test, the maximum

eigenvalue statistic tests the null hypothesis that the number of co-integrating

vectors is r against the alternative of r + 1 co-integrating vectors. The critical

values for both tests are generated by Osterwald-lenum (1992). Both are dis-

played below4:

λtrace(r) = −T
∑n

i=r+1 ln(1− λ̂i)

λmax(r, r + 1) = −T ln(1− λ̂i+1)

where λi is the estimated values of the characteristic roots (also called eigen-

values) obtained from the estimated Π matrix. T is the number of useable obser-

4For detail, see Enders (2010): “Applied Econometrics Time Series, 3rd Edn.”. pp 385-395.
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vations.

If a co-integrating vector exists, then Π = αβ
′
. If any of the adjustment coef-

ficients α are significant, these variables are endogenous, whereas failing to find

a significant α indicates that the variables are weakly exogenous.

Weak exogeneity is an important concept in VECM. The differences between

weak and strong exogeneity can be found in Johansen (1992a,b). Let us assume

the vector ∆Xt can be divided into two parts [∆X1t,∆X2t]. Johansen proves that

for ∆X2t to be weakly exogenous, ∆X2t does not respond to any disequilibrium

error term βXt−1, and only responds to the lagged changes in vector ∆Xt. Fur-

thermore, a strong form of exogeneity of ∆X2t requires that it only respond to

its own lagged changes, In other words, ∆X1t does not cause ∆X2t.

The knowledge that ∆X2t is weakly exogenous is important for determining

the parsimonious estimator for the system. If some of the variables are exogenous,

a partial system may be as efficient as a full system. For instance, let us assume

that the exchange rate follows Purchasing Power Parity (PPP) and the exchange

rate is endogenous, and the log of price levels for both the home and the foreign

country are weakly exogenous, then one can use ECM instead of VECM as the

estimator. However, if any of the price levels are endogenous, a VECM model

should be used for the estimation. Another issue concerning weak exogeneity in

terms of forecasts is that if a variable is weakly exogenous this means that it is

unpredictable using the long run condition and, thus, VAR in first differences

should be used as the estimator instead of VECM; a strong form of exogeneity

means that a variable is unpredictable using other variables, and that the variable

is only related to its own lags, that is, a autoregressive model (ARIMA) should

be applied to the forecast.
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The VECM can be considered to be a superior estimator compared to the

other estimators in terms of the exchange rate forecasts. Similar to a VAR, a

VECM treats all variables symmetrically. In addition, since most of the funda-

mental variables are non-stationary, it is plausible that the exchange rate and

fundamentals have long run relationships. Taking both endogeneity and nonsta-

tionarity into account, the VECM framework is more appealing than a regression

estimator or a VAR. Under the VECM, the co-integration between fundamental

variables is considered, while also treating each fundamental symmetrically. An

attractive feature of this method is that it also facilitates computing the short-run

dynamic behaviour of the chosen exchange rates. In theory we can also consider

the short-run dynamic behaviour in the ECM framework. It is difficult, however,

to estimate the co-integrating vectors and short-run dynamics over time for fore-

casting purposes due to the limitations of econometrics techniques and related

software packages. This might be partly the reason why only long run relation-

ships between the exchange rate and fundamentals are discussed in the work of

Cheung et al. (2005) and Molodtsova and Papell (2009). Since it is quite difficult

to use the full function of the ECM specification, in this chapter we do not use

ECM for forecasts but VECM is applied.

In the following part, the rank of the fundamental models are discussed first,

and then display the forecast results using different models and techniques.

For the purpose of testing and forecasting the corresponding Xt for each model

is displayed as follows:

Model 2: Xt = [pht , p
f
t , st]

′
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Model 3: Xt = [mh
t ,m

f
t , i

h
t , i

f
t , y

h
t , y

f
t , st]

′

Model 4: Xt = [mh
t ,m

f
t , i

h
t , i

f
t , y

h
t , y

f
t , π

h
t , π

f
t , st]

′

The Taylor rule is not discussed under the VECM framework because we are

unable to derive the VECM specifications using a Taylor rule model. The reason

is that on the left-hand side of the equation the exchange rate has already taken

in first difference. Thus, we cannot put in a lagged exchange rate to form a co-

integrating vector on the right-hand side of the equation. In this case, we forecast

the first difference of a sterling/dollar exchange rate using traditional models and

the Taylor rule model in order to make our results comparable.

4.4 Forecast evaluation methods

At least six different methods are used to investigate the forecast accuracy. The

first one is the Root Mean Square Error (RMSE), which compares the differences

between the forecasts and the corresponding observed values, which are squared

and then averaged over the sample. Then the square root of the average is taken.

Since the errors are squared before they are averaged, the RMSE gives a rela-

tively high weight to large errors. This means that the RMSE is most useful

when large errors are particularly undesirable. It is a widely used measure of

the differences between values predicted by a model and values produced by the

actual series. The drawback of this method is that it would be an inappropriate

criterion if exchange rates are governed by a non-normal stable process with an

infinite variance.5

5Non-normal stable distribution is also called ‘stable paretian’ distribution or ‘fat-tailed’ distri-
bution. Exchange rates having ‘fat tails’ indicate the market is likely to moves more extreme
than would be predicted by the normal distribution.
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The second method is the Mean Absolute Error (MAE). The MAE measures

the average magnitude of the errors in a set of forecasts, without considering their

direction. The MAE is the average over the verification sample of the absolute

values of the differences between the forecasts and the corresponding observa-

tions. The MAE is a linear score which means that all the individual differences

are weighted equally in the average. MAE is particularly useful for the case of

exchange rates since they have fat tails.

Let k = 1, ...n denotes the forecast step, and Nk is the total number of fore-

casts in the projection period. The observed value A(t) is known, and F (t) is the

forecast value:

RMSE = {
∑Nk−1

s=0
[F (t+s+k)−A(t+s+k)]2

Nk
} 1

2

,

MAE =
∑Nk−1

s=0
|F (t+s+k)−A(t+s+k)|

Nk

The DMW statistic

The third method is called the DMW statistic, proposed by Diebold and Mar-

iano (1995) and West (1996). Cheung et al. (2005) use this method for forecasting

comparison.

Specifically, given an actual series and two competing predictions, one may

apply a loss differential, which is defined as the difference between the squared

forecast error of the structural models and that of the random walk, and then

calculate its standard error, which is constructed from a weighted sum of the

sample autocovariances of the loss differential vector. The DMW statistic is the
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ratio between the loss differential and its standard error.

The CW statistic

Although the DMW statistic is valid for non-nested models, it has been

demonstrated to be biased for two-nested models because it does not have a stan-

dard normal distribution when applied to forecasts from nested models.6 Clark

and West (2006) demonstrate analytically that the sample difference between the

two MSPE’s is biased downward from zero. Clark and West (2006) propose a cor-

rection, which results in the statistic being asymptotically normally distributed

for rolling regression. The test is known as the CW statistic.

The detailed discussion on the performance of the DMW and CW tests can

be found in the following section.

The Correlation

The correlation between forecasts and corresponding observations is a simple

way to detect the forecast performance. A positive correlation indicates that the

forecasts and observed values move in the same direction, close to zero or negative

correlation indicates bad forecasts. The test is used by Engel and West (2006).

6Two models are nested if both of them contain the same terms and one has at least one
additional term.
For example:

y = α+ α1x1 + α2x2 + ε (1)

y = α+ α1x1 + α2x2 + α3x3 + ε (2)

Model (1) is nested within model (2). Model (1) is a reduced model and model (2) is the full
model.
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The ‘direction of change’ test

The idea of the ‘direction of change’ test is straightforward. If the forecasts

are insightful, the forecasts should move in the same direction as the observed

values. In terms of the exchange rate, if we define ∆et+k as the observed values,

and ∆êt+k as the k step-ahead forecasts, these two series evolve as follows:

∆et =


1 if st+k > st

−1 otherwise

∆êt =


1 if Etst+k > st

−1 otherwise

Once the two series are calculated we can measure the performance of the

forecast model in terms of correct direction changes (CDC):

CDC = 1
T

∑T
t=1 Φ{∆et = ∆êt}

where Φ takes the value 1 when the argument is true, that is, ∆et = ∆êt,

and zero otherwise. The CDC above 0.5 or 50% indicates that the forecast has

a better performance than a random walk randomly tossing a coin because the

number of times that the forecasts agree with the observed values are more than

one would expect by chance.

In this chapter all these methods are used for the out-of-sample forecast com-

parisons in order to find out whether or not using different goodness-of-fit mea-

sures lead to different conclusions on our exchange rate forecasting performance
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based on monetary models.

4.5 The CW statistic VS the DMW statistic

In order to evaluate whether or not the series follows a martingale difference

against the alternative that it is linearly predictable, Diebold and Mariano (1995)

and West (1996) (DMW) suggest using out-of-sample mean squared prediction

errors (MSPEs). The null hypothesis is that the series follows a martingale dif-

ference, and its MSPE should equal the MSPE calculated by its linear prediction;

the alternative is that the series can be better estimated by a linear function.

Clark and West (2006) suggest that the DMW test is not normally distributed

under the null; the Mean Square Prediction Error (MSPE) calculated by the mar-

tingale difference series is usually smaller than the MSPE arrived at by using the

linear function if H0 is true. Thus, the DMW test tends to accept the null hy-

pothesis.

Clark and West improve the DMW test and demonstrate that the CW test

can do a better job. In the following process we try to reproduce the CW statistic

and discuss whether or not the test is suitable for exchange rate forecasting.

The specification for both the DMW and the CW statistic are as follows:

The null model : yt = εt (4.12)

The alternative model : yt = X
′

tβ + εt (4.13)

yt and X
′
t are assumed to be stationary processes (I(0)). Under the null hy-
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pothesis, β = 0; under the alternative, β 6= 0. We are interested in comparing

the mean square prediction errors (MSPE) from the two models. Under the null,

one would assume that the MPSEs of both models are equal to each other so that

the difference in MPSEs between the two is close to zero. Under the alternative,

the linear function should have a smaller error term compared with that of the

martingale difference. The reason is that the null model is nested in the alterna-

tive model, if the restriction (β = 0) is not true, we would expect the alternative

model to predict better than the null model. Thus, both DMW and CW tests

are one-sided.

For simplicity, only the one-step-ahead forecast is considered for comparing

the performance of the CW and DMW tests. The rolling regression is used to

estimate β in each period. The full process of rolling regression is shown in Fig

4.1. One assumes the sample size is T + 1. The first R observations are used

to estimate the model initially, and the reminding P observations are used for

predications. Thus, one has T + 1 = R + P . The first step is to estimate the

model using the first R observations, and then, using the estimated coefficients

β̂R and XR+1 , one can forecast ŷR+1. (see step 1 in Fig 4.1)

After that, before the procedure is repeated, the sample is moved down or

‘rolled’ forward one observation, and the initial observation is removed from the

estimation to keep the size fixed at R (step two in Fig 4.1). This process contin-

ues until all the out-of-sample observations are exhausted. Since the size of the

observations is fixed and moving forward through the process, the fixed size R is

called a moving window or rolling window.

The loss function or the sample forecast errors from the null and the alterna-

tive model are ê1,t+1 = yt+1 and ê2,t+1 = yt+1−X
′
t+1β̂t, respectively. The MSPEs
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Figure 4.1: The procedure of the rolling regression

for both models are:

σ̂2
1 =

∑T
t=T−P+1 y

2
t+1

P

σ̂2
2 =

∑T
t=T−P+1(yt+1−X

′
t+1β̂t)

2

P

The DMW statistic

The null hypothesis of the DMW is equal in accuracy between the null and the

alternative model, and the MSPE of both models should have equal predicative

power, σ̂2
1 − σ̂2

2 ≈ 0. The alternative hypothesis is that the linear fundamental

model has a smaller MSPE. Thus, the DMW test is a one-tailed test. Using the

following notations,

f̂t+1 = ê2
1,t+1 − ê2

2,t+1 = y2
t+1 − (yt+1 −X

′
t+1β̂t)

2
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f̄ =
∑T
t=T−P+1 f̂t+1

P
= σ̂2

1 − σ̂2
2

V̂ =
∑T
t=T−P+1 (f̂t+1−f̄)

P

the DMW test can be computed in the following way:

DMW =
f̄√
P−1V̂

(4.14)

Although the DMW statistic is valid for non-nested models, it has been

demonstrated to be biased for nested models because it does not have a stan-

dard normal distribution when applied to forecasts from nested models. Clark

and West (2006) demonstrate analytically that the sample difference between the

two MSPEs is biased downwards from zero:

σ̂2
1 − σ̂2

2 =

∑T
t=T−P+1 y

2
t+1

P
−
∑T

t=T−P+1 (yt+1 −X
′
t+1β̂t)

2

P

=
2
∑T

t=T−P+1 yt+1X
′
t+1β̂t

P
−
∑T

t=T−P+1 (X
′
t+1β̂t)

2

P
(4.15)

Under the null, the first term is zero, whereas the second one is negative by

construction. The reason for this is that yt+1 = ê1,t+1, Etê1,t+1 = 0. Therefore,

Etyt+1X
′
t+1β̂t = 0 . The second term by construction is negative because when

one simulates the statistic under the null, a non-zero slope estimate β̂t can always

be generated by the regression, which is in fact not equal to zero (see Clark and

West, 2006, p.160).

Based on the simulation, the density distribution of σ̂2
1− σ̂2

2 is displayed in Fig

4.2. It is clear that the distribution is negative skewed and most of the statistics

are negative, which indicates that the statistic of the DMW is likely to be biased.
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Figure 4.2: The density distribution

The CW test

Clark and West (2006) propose a correction of the DMW statistic, which

results in the following statistic to be asymptotically normally distributed for

regression. Molodtsova and Papell (2009) and Engel et al. (2007) strongly recom-

mend the CW statistic for the evaluation of exchange rate models and, by using

this criterion, demonstrate that the Taylor rule fundamentals outperform a naive

random walk.

σ̂2
1 − (σ̂2

2 −
∑T
t=T−P+1 (X

′
t+1β̂t)

2

P
) = σ̂2

1 − (σ̂2
2 − adj) = f̄

To construct the point estimate of the statistic, we can define:

f̂t+1 = y2
t+1 − [(yt+1 −X

′
t+1β̂t)

2 − (X
′
t+1β̂t)

2]

f̄ =
∑T
t=T−P+1 f̂t+1

P
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V̂ =
∑T
t=T−P+1 (f̂t+1−f̄)

P

The CW statistic is computed as:

CW =
[σ̂2

1 − (σ̂2
2 − adj)]√
P−1V̂

(4.16)

4.5.1 Simulation design

The baseline data-generating processes (DGPs) are similar to Clark and West

(2006) as follows:

yt = βxt + et

xt = 0.95xt−1 + νt

where Etet = 0, Etνt = 0, var(et) = 0.1 and var(νt) = σ2
v = 0.17.

The null hypothesis is set to β = 0 , and the series becomes a martingale

difference process. The alternative is to run a regression of yt on xt , giving a

rolling window of R observations. For simplicity, σ2
ν is set to 0.1, and there is no

correlation between et and νt. 400 observations are generated to be the baseline

case; the first 50 estimations are removed from the analysis to avoid the initial

bias caused by the selection of first random number.

7In CW06, the DGPs are yt = βxt−1 + et, which might be more accurate considering we are
interested in out-of-sample forecast. In addition, var(et) = 1 in CW06, the difference is that
the smaller the variance is in the series, the more concentration of the density of distribution
and the more likely the power function will reach one as the slope coefficient increases, as we
explain in the following section.
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4.5.2 Simulation results

Figure 4.3: The density distribution of the DMW statistic

Based on the formula of the DMW test, we simulated the DMW statistic 5000

times in order to obtain the density graph of distribution (Fig 4.3). Although

the shape of distribution is close to a normal distribution, the majority of the

statistics are negative, which demonstrates that the DMW test tends to accept

the null hypothesis of the series following a martingale difference.

After 5000 simulations, the summary of the statistic are shown in the table

below. As we can see here, after the adjustment σ̂2
1 − (σ̂2

2 − adj), the mean of the

simulation is -0.1216, the standard deviation is 0.9705, the skewness is 0.0689 and

the kurtosis is 2.8706. The four moments suggest that the distribution is close

to a standard normal distribution, which means the CW adjustment can improve

the test.

sum cw, detail

r(cw)

-------------------------------------------------------------
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Percentiles Smallest

1% -2.265666 -3.700092

5% -1.697813 -3.215853

10% -1.381155 -3.16073 Obs 5000

25% -.7810394 -3.055263 Sum of Wgt. 5000

50% -.1248715 Mean -.121585

Largest Std. Dev. .9705302

75% .5272542 2.885763

90% 1.13886 2.954384 Variance .9419288

95% 1.536779 3.026332 Skewness .0688597

99% 2.107144 3.139072 Kurtosis 2.87064

Figure 4.4: The density distribution of the CW statistic

Fig 4.4 show the density distribution graph of the CW statistic. The reference

line x = 0 indicates that the distribution has shifted slightly to the left, which

is very close to the results obtained by CW06. The explanation from CW06 is

that this small sample phenomenon cannot be captured by the asymptotic theory.

This phenomenon can also explain why the statistic is undersized; the size of the

CW statistic is 0.0386 at 5% significance level (p-value), which is smaller than

the standard figure of 0.05.8 As we demonstrate later, the change in the size of

the sample and the rolling window will not systemically improve the statistical

8The p-value reports the rejection of the null using a one-sided test at 5% level. Our simulation
results indicate that in 193 of the 5000 simulations the CW statistic was greater than 1.64.
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performance, and there is no clear pattern either.

Quantile-quantile plots (Q-Q plots)

Figure 4.5: The Q-Q plots of the DMW statistic

Figure 4.6: The Q-Q plots of the CW statistic

One can also use Q-Q plots (quantile-quantile plots) to investigate the density

distribution of the statistics. Q-Q plots describe the quantiles of the statistics
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against the quantiles of distribution we choose - in our case, a standard normal

distribution. Fig 4.5 shows that the DMW statistic does not follow a standard

normal distribution since all plots are parallel to the reference line representing

the plots of standard normal distribution, whereas the CW statistic is very close

to be standard normally distributed, since all the data are plotted along the ref-

erence line (Fig 4.6).

4.5.3 The size and the power of the CW statistic

In this section there are several questions that need to be answered: firstly,

whether or not the increase of the sample size improves the CW test performance,

and secondly, whether or not the choice of rolling windows has a significant effect

on the CW statistic. In order to answer these questions we discuss the size and

the power of the CW statistic.

In order to test whether the CW statistic has the correct size and power, two

experiments are designed: in the first experiment we fix the rolling window at 50

observations and vary the sample size from 400, to 700, to 1000. In the second

experiment, the sample size is fixed at 400, whereas the rolling window R = 50,

100, 120, 150. In order to examine the size of the statistic, the slope coefficient

for both experiments is set to zero; to test the power of the statistic, the slope

coefficient β is set to equal 0, 0.01, 0.03, ...0.35. Since it is a one-sided test, the

normal size is 0.05, and the null is rejected if the CW statistic is greater than 1.64.

Size

Table 4.1 shows that the actual size of the CW statistic based on 5000 simu-
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400 obs 700 obs 1000 obs
Actual size 0.0386 0.0438 0.0378

Table 4.1: The actual size of the CW statistics, given that sample sizes vary.

lations. The rolling window is fixed at 50 observations. It is clear that the actual

size of all three statistics are smaller than the 0.05 which is the correct size under

the standard normal distribution. In addition, the size of the statistic does not

increase or decrease as the sample size increases. Thus, the CW statistic is always

undersized based on our simulations, and the increase in the sample size would

not improve the size of the CW statistic.

R=50 R=100 R=120 R=150
Actual size 0.0386 0.0362 0.0304 0.0176

Table 4.2: The actual size of the CW statistics, given that the rolling windows
vary.

Table 4.2 reports the actual size of the CW statistic based on the simulations,

allowing the rolling window to be different and the sample size to be fixed at

400 observations. The results show that the increase in the rolling window of a

given sample size would lower the size of the statistic. It is worth noting that this

exercise is different from those of CW06. In their experiment the sample size also

increases as the rolling window increases (see Clark and West, 2006, p.173), and

the prediction period P is 144 when R increases from 60 to 240, whereas in our

experiment, the prediction period P will decrease as the rolling window moves

forward.

Power

The power function is used to check what would happen if the true statistic had

a different value from the null hypothesis; in other words, the power function is
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dealing with the situation when the alternative hypothesis is true.

The power function graph is displayed in Fig 4.7:

Figure 4.7: The Power function of the CW statistic,different sample size, R=50

Fig 4.7 shows that the power function of the CW statistic under different sam-

ple sizes, given a rolling window of 50 observations. The probability of rejecting

the null is increasing as the slope parameter rises. When the parameter is up

to 0.3, the probability of rejecting null for all three functions is close to 1. The

power function suggests that the CW test can work quite well.

Fig 4.7 also shows that the power rises with sample size as expected. Thus,

the increase in the sample size can improve the power of the CW statistic.

Fig 4.8 reports the power functions of the CW statistic as the rolling window

changes, the sample size being 400 observations. As the number of observations in

the rolling window increases, it is not obvious that the power of the test increases

accordingly. Between R = 100 and R = 150, the results are not quantitatively dif-

ferent. Thus, the increase in R is unable to increase the power of the CW statistic.

It is worth noting the difference between our methods and those of CW06.

In their work the power of the test is examined based on the assumption that
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Figure 4.8: The Power function of the CW statistic,different window size, 400
observations

the slope coefficient is β=-2 or 0.365. and thus the actual size of the statistic is

around 0.04-0.06. In our case β is set to equal 0, 0.01, 0.03, ...0.35, which is why

we can draw a power function into the graph and our method is, to some extent,

more thorough. Furthermore, our power function curve bends towards one much

faster as the coefficient increases, considering that the actual size is close to one

as the slope coefficient reaches 0.3. Part of the reason is that we set a smaller

variance for the error term of the DGPs. If we increase the variance, the curve

would be more dispersed.

4.5.4 Brief conclusions

The section studied the performance of the CW statistic based on the Monte-

Carlo simulations. Our method was similar to those of Clark and West (2006).

The section focused on the properties of the distribution of the CW statistic. By

using graphic methods and Q-Q plots we demonstrated that the distribution of

the CW statistic closely follows a standard normal distribution. In addition, our

simulations imply that the statistic is undersized, regardless of the size of the

observations and the choice of rolling windows. we also demonstrated that the
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power of the CW test is very strong by using a power function.

4.6 Data description

We use monthly data from January 1975 to August 2010. The International

Financial Statistics (IFS) is the main source for the UK and US data on the

consumer price index, UK overnight interbank lending rate, Fed fund rate and

Industrial Production Index (IPI). The monetary base is defined as m0 for the

UK and m1 for the US for the purpose of comparison, we also collect m4 for

the UK and m2 for the US as they are defined as the ‘broad money’, which in-

cludes monetary base and private-sector deposits, the data for m2USt and m4UKt

start from July 1982. For interest rates, three-month Treasury bill rates are also

collected, since for Models 3 and 4, short term bill rates are frequently used for

forecasting purposes. The nominal exchange rate is the British sterling price per

unit of US dollar; an increase indicates a deprecation in sterling. Both season-

ally unadjusted and adjusted IPI data are collected as the proxy of output. All

data except the interest rate are taking logarithms. Interest rates are divided

by 100. The inflation rate is defined as the annual change in the log of the

price level lnPt − lnPt−12. The output gap is calculated by the Quadratic Time

Trend (QTT) method, B-Spline and HP-filter (the smooth parameter is 129,600).

4.7 Unit root testing

Before deciding which specifications should be implemented in the forecast, the

first step is to investigate the properties of each of the macro fundamental vari-

ables in order to find out if all of them are I(1). Only then it is reasonable to
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verify further that there are co-integrating relationships in each model and which

specifications should be included in the estimation. The test we applied here was

the Dickey Fuller (DF) test and the Phillips-Perron test. Macro variables are dis-

cussed in both level and first differences in this section. Data from January 1975

to August 2010 are used, m2USt and m4UKt starting from July 1982 to October

2010.

Dickey-Fuller test

Dickey-Fuller (or augmented Dickey-Fuller) (DF or ADF for short) test es-

tablishes whether or not a series follows a unit root process. The null hypothesis

is that the variable contains a unit root, and the alternative is that the variable

is generated by a stationary process. We may also select to exclude the drift,

include a trend term or lagged values of the first differences of the variable in

the regression. One weakness of the ADF test is how to select an appropriate

number of lagged variables in the regression. In the following process we only

apply the DF test for each fundamental and the test consists of three options: 1.

The default option, which is the unit root with drift; 2. Unit root without drift;

and 3. Unit root with trend.

Table 4.3 (Column 2 and 3)represents the DF statistics of fundamental vari-

ables in levels (Column 2) and in first differences (Column 3). Most of the tests

include a constant in the DF regression. For testing price level we also include

a time trend. The Dickey-Fuller test suggests that most of variables are non-

stationary because the statistics are greater than 10% significant level, so that

one cannot reject the null of unit root except in cases where the output gaps are

measured by B-spline and HP filter, and the UK interest rate. Furthermore, the

first difference of each variable is stationary. Thus, one can conclude that most
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Dickey-Fuller test Phillips-Perron Test

Level The first difference Level The first difference

st -2.078 -15.015*** -2.448 -14.894***

US

pt -2.177 -14.730*** -0.950 -15.549***
it -1.701 -16.457*** -2.400 -29.807***
i3m -1.271 -15.044*** -2.031 -18.422***
m1t -0.393 -27.320*** -4.635 -32.757***
m2t -1.714 -22.969*** -2.324 -24.541***
πt -1.744 -19.813*** -2.205 -19.984***
yt -2.714 -17.278*** -1.968 -18.174***
xqttt -1.243 -17.414*** -2.079 -18.286***
xbst -3.534*** -17.421*** -4.302*** -18.239***

xhpt -3.581*** -18,182*** -4.788*** -18.933***

UK

pt -1.066 -16.640*** -1.006 -17.834***
it -3.607** -28.532*** -2.400 -29.839***
i3m -2.279 -14.022*** -1.855 -16.081***
m0t -1.368 -28.572*** -2.010 -33.941***
m4t -2.420 -18.620*** -2.708* -17.726***
πt -1.608 -17.119*** -2.650 -17.831***
yt -1.608 -17.119*** -2.119 -29.140***
xqttt -3.007** -29.167*** -2.624* -29.332***
xbst -5.259*** -29.257*** -5.010*** -29.477***

xhpt -6.385*** -29.550*** -6.205*** -29.958***

Table 4.3: The unit root test

Note: The second and third columns show the DF statistics, and the fourth and fifth columns
show the statistics which are calculated by Phillips-Perron test. The second column and
fourth column show the statistics in level variables, the third and fifth column show the

statistics in first differences of the variables.
*** indicates 1% significant level, ** indicates 5% significant level, * indicates 10% significant

level.

pt refers to the log of CPI, it is the Fed fund rate for the US and overnight lending rate for

the UK, i3m is the 3-month Treasury bill rate, and yt is the seasonally unadjusted IPI. The

adjusted IPI produces the similar results. xqttt , xbst and xhpt represent the output gap

measured by the QTT, B-spline and HP filter, respectively.
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of the variables in the table follow unit root processes.

Phillips-Perron Test

The Phillips and Perron (1988) (PPerron) test also investigates whether or

not a variable has a unit root. The null hypothesis is that the variable contains

a unit root, and the alternative is that the variable is stationary. The difference

between PPerron and the ADF test is that PPerron uses Newey and West (1987)

standard errors to account for serial correlations in the series whereas ADF uses

additional lags of the first-differenced variable. Since it is difficult to justify the

appropriate number of lags for the ADF test, the Phillips-Perron test can be

considered as a better way to investigate a unit-root process.

Table 4.3 (Column 3 and 4)represents the PPerron statistics of fundamental

variables in levels (Column 3) and in first differences (Column 4). The results

obtained by the PPerron test are similar to those obtained by the DF test, the dif-

ference being that by using Phillips-Perron test the level of money supply, M4, for

the UK is stationary at the 10% level. The level of the UK interest rate, UK out-

put is I(1) regardless of the choice of critical values, whereas the DF test indicates

that the interest rate is a stationary process at a 10% significance level. Further-

more, the output gap measured by the Quadratic Time Trend is less stationary by

the Phillips-Perron criterion than the Dickey-Fuller test. Overall, it appears that

the Phillips-Perron test has more power to accept the null hypothesis of unit root.

Since, in the following empirical study, the differential variables between the

UK and the US are also used, it is necessary to check the features of these

variables. Table 4.4 shows the results of the unit root for differential variables

between the home and the foreign country. In Columns 2 and 3, the DF statistic
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Dickey Fuller test Phillips-Perron Test

Level The first difference Level The first difference

pdifft -2.764 -21.181*** -2.411 -21.389***

idifft -4.688*** -24.345*** -4.356*** -24.931***

idiff3m -3.826 *** 18.081*** -4.454*** -17.711***

m1difft -1.073 -33.281*** -1.200 -33.724***

m2difft -2.112 -19.607*** -2.041 -19.617***

ydifft -0.707 -27.986*** -0.575 -28.206***

πdifft -2.685* -21.158*** -3.376** -21.525***

xdiffqtt -3.360 ** -27.986*** -3.065** -28.205***

xdiffbs -5.604*** -27.967*** -5.471*** -28.189***

xdiffhp -7.308*** -28.179*** -7.366*** -28.508***

Table 4.4: The unit root test (differential variables)

Note: all the variables in the first column are differential variables between the UK and the

US. idifft = iukt − iust , i
diff
3m = iuk3m − ius3m,m1difft = m0ukt −m1ust and m2difft = m4ukt −m2ust .

of differential variables in levels and in first differences are displayed. Columns

4 and 5 are those statistics calculated by the Phillips-Perron test. It is clear

that both the interest rate differential and output gap measured by B-spline and

HP filter are stationary. The inflation rate differential is stationary at 10% and

5% significance levels in the DF test and Phillips-Perron test respectively. The

output gap measured by QTT is stationary at a 5% significance level. The other

differential variables in levels are shown to be non-stationary by both the tests

and, in addition, the first differences of these differential variables are stationary,

which indicates that these non-stationary variables are I(1) processes.

4.8 Co-integration test

Before estimating the parameters of VECM models, we need to choose the num-

ber of lags in the underlying VAR, and the number of co-integrating equations.

Since both AIC and SBIC indicate different numbers of lags for the period (not
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reported), for simplicity, 4 lags were selected for estimating the VECM. In this

section, we apply Johansen’s trace statistic and maximum eigenvalue statistic to

find the number of co-integrating equations in VECM models. Models 2, 3 and

4 are tested in this section.

Table 4.5 represents the trace and maximum eigenvalue statistics obtained

using Johansen’s method. The trace statistic tests the null that co-integrating

vectors are less than or equal to r against a general alternative, and maximum

eigenvalue statistic tests the null that the number of co-integrating vectors is r

against the alternative of r + 1 co-integrating vectors. Take the results in Model

3, for example, and one can reject the null of no co-integrating equations because

the trace statistic at r=0 of 164.79 exceeds its critical value of 124.24 (Row 6,

Columns 2 and 3). In contrast, because the trace statistic at r=1 of 92.25 is

less than its critical value of 94.15 (Row 7, Columns 2 and 3), one cannot reject

the null that there are one or fewer co-integrating equations. Thus, there is one

co-integrating vector in Model 3 by the trace statistic. The maximum eigenvalue

statistic comes to the same conclusion. The λ −max statistic at r = 0 of 72.53

exceeds its critical value of 45.28, suggesting that the null can be rejected that

r = 0 in favour of r = 1 (Row 6, Columns 5 and 6); however, one cannot reject

the null that r = 1 against r = 2, because the λ−max statistic at r = 1 of 31.96

is less than its critical value of 39.37 (Row 7, Columns 5 and 6). The results in

Table 4.5 suggest that at least one co-integrating vector is in the specifications of

Models 2 to 4. Therefore, VECM or ECM should be considered as the estimator

for these specifications.

Table 4.6 reports the results of testing co-integrating vectors for homogeneous

VECM specifications. The results are less obvious than those in Table 4.5. The

evidence suggests that the models are less likely to have at least one co-integrating
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λ− trace 5% critical value λ−max 5% critical value

Model 2 (pust , p
uk
t , st)

H0 : r ≤ 1 39.54 29.68 H0 : r ≤ 1 35.27* 20.97
H0 : r ≤ 2 14.21* 15.41 H0 : r ≤ 2 13.28 14.07

Model 3 (iust , i
uk
t ,m1ust ,m0ukt , y

us
t , y

uk
t , st)

H0 : r ≤ 0 164.79 124.24 H0 : r ≤ 0 72.53* 45.28
H0 : r ≤ 1 92.25* 94.15 H0 : r ≤ 1 31.96 39.37

Model 3’ (ius3m, i
uk
3m,m1ust ,m0ukt , y

us
t , y

uk
t , st)

H0 : r ≤ 2 69.0971 68.52 H0 : r ≤ 1 56.3314* 39.37
H0 : r ≤ 3 43.9201* 47.21 H0 : r ≤ 2 25.1770 33.46

Model 3” (ius3m, i
uk
3m,m2ust ,m4ukt , y

us
t , y

uk
t , st)

H0 : r ≤ 4 31.1743 29.68 H0 : r ≤ 2 34.4383* 33.46
H0 : r ≤ 5 14.3841* 15.41 H0 : r ≤ 3 19.2110 27.07

Model 4 (iust , i
uk
t ,m1ust ,m0ukt , y

us
t , y

uk
t , πust , π

uk
t , st)

H0 : r ≤ 3 99.71 94.15 H0 : r ≤ 1 65.91* 51.42
H0 : r ≤ 4 68.19* 68.52 H0 : r ≤ 2 41.55 45.28

Model 4’ (ius3m, i
uk
3m,m1ust ,m0ukt , y

us
t , y

uk
t , πust , π

uk
t , st)

H0 : r ≤ 3 94.2465 94.15 H0 : r ≤ 2 46.0806* 45.28
H0 : r ≤ 4 57.4595* 68.52 H0 : r ≤ 3 36.7870 39.37

Model 4” (ius3m, i
uk
3m,m2ust ,m4ukt , y

us
t , y

uk
t , πust , π

uk
t , st)

H0 : r ≤ 3 94.6112 94.15 H0 : r ≤ 1 54.1009* 51.42
H0 : r ≤ 4 65.0601* 68.52 H0 : r ≤ 2 42.0952 45.28

Table 4.5: Testing co-integrating vectors for heterogeneous VECM specifications

Note: Model 2-Mdoel 4 allow the parameter coefficients of the home and the foreign country
to be different. The sample period is 1975:1- 1984.12. “r” denotes the number of

cointegrating vectors. The 5 % critical value of the λ− trace and λ−max are taken from
Osterwald-Lenum (1990). The vector autoregressions includes a constant. An asterisk denotes
significance at the 5 % level. 4 lags are used for estimating each of the VECM models. yt is

the seasonally unadjusted IPI. The adjusted IPI produces the similar results.
For Model 3, the baseline case uses iust , i

uk
t ,m1ust ,m0ukt , yust , y

uk
t as explanatory variables in

the estimation. The alternative Model 3’ uses the Treasury bill rate (ius3m, i
uk
3m) instead of the

Fed fund rate and UK market rate (iust , i
uk
t ) as explanatory variables. The alternative Model

3” uses the Treasury bill rates, broad money supply (m2ust ,m4ukt ) and output as explanatory
variables.

For Model 4, the baseline case uses iust , i
uk
t ,m1ust ,m0ukt , yust , y

uk
t , πust , π

uk
t as explanatory

variables in the estimation. The alternative Model 4’ uses the Treasury bill rate (ius3m, i
uk
3m)

instead of the Fed fund rate and UK market rate (iust , i
uk
t ) as explanatory variables. The

alternative Model 4” uses the Treasury bill rate, broad money supply (m2ust ,m4ukt ), output
and inflation rate as explanatory variables.
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λ− trace 5% critical value λ−max 5% critical value

Model 2 (pdifft , st)

H0 : r ≤ 0 24.25 15.41 H0 : r ≤ 0 24.16* 14.07
H0 : r ≤ 1 0.08* 3.76 H0 : r ≤ 1 0.08 3.76

Model 3 (idifft ,m1difft , ydifft , st)

H0 : r ≤ 0 26.9112* 29.68 H0 : r ≤ 0 16.5433 20.97
H0 : r ≤ 1 10.3678 15.41 H0 : r ≤ 1 8.5698 14.07

Model 3’ (idiff3m ,m1difft , ydifft , st)

H0 : r ≤ 0 31.9220 29.68 H0 : r ≤ 0 17.4021 20.97
H0 : r ≤ 1 14.5199* 15.41 H0 : r ≤ 1 10.0515 14.07

Model 3” (idiff3m ,m2difft , ydifft , st)

H0 : r ≤ 0 32.8794 29.68 H0 : r ≤ 0 26.4773* 20.97
H0 : r ≤ 1 6.4021* 15.41 H0 : r ≤ 1 6.2225 14.07

Model 4 (idifft ,m1difft , ydifft , πdifft , st)

H0 : r ≤ 0 72.43 68.52 H0 : r ≤ 0 20.2023 27.07
H0 : r ≤ 1 46.20* 47.21 H0 : r ≤ 1 13.3711 20.97

Model 4’ (idiff3m ,m1difft , ydifft , πdifft , st)

H0 : r ≤ 0 46.7712* 47.21 H0 : r ≤ 0 19.2170 27.07
H0 : r ≤ 1 27.5542 29.68 H0 : r ≤ 1 15.9234 20.97

Model 4” (idiff3m ,m2difft , ydifft , πdifft , st)

H0 : r ≤ 3 43.0272* 47.21 H0 : r ≤ 1 29.2760* 27.07
H0 : r ≤ 4 13.7511 29.68 H0 : r ≤ 2 7.1947 20.97

Table 4.6: Testing co-integrating vectors for homogeneous VECM specifications

Note: Model 2-Model 4 allow the parameter coefficients of the home and the foreign country
to be the same. The sample period is January 1975- December 1984. “r” denotes the number
of cointegrating vectors. The 5 % critical value of the λ− trace and λ−max are taken from

Osterwald-Lenum (1990). The vector autoregressions includes a constant. An asterisk denotes
significant at the 5 % level. 4 lags are used for estimating each VECM models. yt is the

seasonally unadjusted IPI differntial. The adjusted IPI produces the similar results.
For Model 3, the baseline case uses idifft ,mdiff

t , ydifft as explanatory variables in the

estimation. The alternative Model 3’ uses the Treasury bill rate differential (idiff3m = iuk3m− ius3m)

instead of the Fed fund rate and UK market rate differential (idifft = iukt − iust ) as explanatory
variables. The alternative Model 3” uses the Treasury bill rate differential, broad money

supply differential (m2difft = m4ukt −m2ust ), and output differential as explanatory variables.

For Model 4, the baseline case uses idifft ,mdiff
t , ydifft , πdifft as explanatory variables in the

estimation. The alternative Model 4’ uses the Treasury bill rate differential
(idiff3m = iuk3m − ius3m) instead of the Fed fund rate and UK market rate differential

(idifft = iukt − iust ) as explanatory variables. The alternative Model 4” uses the Treasury bill

rate differential, broad money supply differential(m2difft = m4ukt −m2ust ), output differential
and inflation rate differential as explanatory variables.
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vector. It is worth noting that the Johansen’s test is sensitive to the choice of the

number of lags and number of observations. If we change the number of lags in

the models or increase the observations in the estimation, disagreements appear,

although we did not report those results here.

On the basis of these statistics we can reject the hypothesis that there are

no co-integrating vectors for all fundamental models. The findings are consistent

with those of Macdonald and Taylor (1994). It is of interest to note that the trace

statistic and the λ −max statistic may indicate different results. For instance,

in the process of testing Model 4, its trace statistics suggested the presence of

four co-integrating vectors, whereas the λ−max statistic suggested only one co-

integrating equation. In addition, the models that used the three-month Treasury

bill rate for the UK and the US were performed better than those using the Fed

fund rate and UK market rate. The use of the broad money supply instead of the

monetary base did not have a significant effect on the performance of the tests.

Although the evidence suggests that there is at least one co-integrating vector

in the selected models, further tests are needed to find out which variables are

endogenous so as to decide if VECM, ECM or other techniques should be applied

to the out-of-sample forecast.

4.9 Testing weak exogeneity using VECM

In order to determine weak exogeneity we should focus on testing the adjust-

ment coefficient α, giving Mackinnon’s critical values. If the absolute value of the

t-statistic of α is smaller than the absolute value of Mackinnon’s critical value,

there is no evidence of the significance of α, which means that the corresponding

variable does not react to the disequilibrium error, ergo, the variable is weakly
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exogenous. Another issue regarding estimation is to set up the appropriate β.

One can use theory to impose an exact structure for β and then estimate the

adjusting parameter α. Using the previous example, assuming the exchange rate

follows PPP, the vector can be written as X = [st, p
h
t , p

f
t ], and β = [1,−1, 1] can

be set based on PPP9. β can also be estimated by using Johansen’s full informa-

tion maximum likelihood technique. For simplicity, in the following discussion all

the β of empirical specifications are estimated by using Johansen’s method.

The model we are testing first is the Purchasing Power Parity; the data for the

estimation is the monthly UK and US data from January 1975 to December 1984,

which is the initial period of the in-sample estimation in the next section. All the

variables are taken in log. For the estimation, the lags length of the VECM is 4,

and a constant term is included in the estimation.

In Stata, one can obtain the information for α and β by using the option

“dforce” under command “vec”, respectively. The results are displayed below:

vec lnexchukus lncpi_uk lncpi_us, alpha lag(4), if t>228&t<385

(the Stata info on short run coefficients are not recorded due to limits of space)

Cointegrating equations

Equation Parms chi2 P>chi2

-------------------------------------------

_ce1 2 24.82789 0.0000

-------------------------------------------

Identification: beta is exactly identified

Johansen normalization restriction imposed

------------------------------------------------------------------------------

9In this study, the exchange rate is a direct quote, which means the unit of sterling per dollar.
In this case, the long run equilibrium restriction in the equation 4.2 becomes st − pht + pft = 0
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beta | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_ce1 |

lnexchukus | 1 . . . . .

lncpi_us | 25.41605 7.277848 3.49 0.000 11.15173 39.68037

lncpi_uk | -17.27474 5.264727 -3.28 0.001 -27.59341 -6.956059

_cons | -34.86249 . . . . .

------------------------------------------------------------------------------

Adjustment parameters

Equation Parms chi2 P>chi2

-------------------------------------------

D_lnexchukus 1 .3278412 0.5669

D_lncpi_us 1 34.62182 0.0000

D_lncpi_uk 1 .729295 0.3931

-------------------------------------------

------------------------------------------------------------------------------

alpha | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

D_lnexchukus |

_ce1 |

L1. | -.0036022 .0062912 -0.57 0.567 -.0159326 .0087283

-------------+----------------------------------------------------------------

D_lncpi_us |

_ce1 |

L1. | -.0033513 .0005696 -5.88 0.000 -.0044676 -.002235

-------------+----------------------------------------------------------------

D_lncpi_uk |

_ce1 |

L1. | -.0011745 .0013754 -0.85 0.393 -.0038702 .0015211

------------------------------------------------------------------------------

The table above displays the key information of the VECM estimation on

PPP. The co-integrating parameter β is [1, -17.27474, 25.41605], the parameters

are significant and have the expected signs. The estimates of α are displayed at

the bottom of the table. Norrbin et al. (1997) argue that the critical value used

for the t-statistics for α are higher than usual because of the non-stationarlity

of the error correction variable. Therefore, the critical value from MacKinnon

(1991) should be used. If the absolute value of the critical value is greater than

the absolute value of the estimated t-statistic, there is no evidence that α in the
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equation is significant, and thus, the variable is weakly exogenous. The 5% abso-

lute critical value from Mackinnon is 4.296. The spot rate and the UK price level

are weakly exogenous because the absolute value of critical values are greater

than those of t-statistics(|−0.57| < |−4.296| and |−0.85| < |−4.296|, indicating

that the parameter α is not significant. Thus the US price level is endogenous

and the null hypothesis of α = 0 can be rejected.

It is a very interesting result, because the exchange rate is weakly exogenous,

which means that neither ECM nor VECM should be used to forecast exchange

rates, since they are not affected by the co-integrating vector ΠXt−1, these re-

sults being similar to those of Norrbin et al. (1997). In this case, as we explained

before, VAR in first differences or autoregressive model should be applied, de-

pending on whether or not the exchange rate is strongly exogenous.

A detailed analysis on the weak exogeneity of each variable in the empirical

specifications used in the chapter is reported as follows:

The lagged error correction variable is called ECV (βXt−1) in Table 4.7, and

Models 2 to 4 were tested. The VECMs had a lag of the deviation from the theo-

retical relationship (βXt−1), a constant, and 4 lags of the differenced variables as

regressors. The number of lags of the differenced variables denotes the order of

VAR. We also tested lower order or higher order VARs, which produced similar

results. The testing period was from January 1975 to December 1984. The UK

and US monthly data were applied.

Table 4.7 displays the estimations of α in different specifications by VECM,

the p-value being in brackets. The results in Table 4.7 show that the US price

level in the PPP model, and UK interest rate in both the Frenkel-Bilson and
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ECVt−1(PPP ) ECVt−1(FB) ECVt−1(DF )

∆st
-0.0036022 .0103563 .0024024

(-0.57) (1.96) (0.22)

∆pust
-0.0033513** - -

(-5.88) - -

∆pukt
-0.0011745 - -

(-0.85 ) - -

∆mus
t

- 0.0023722 0.0132243
- (1.14) (3.29)

∆muk
t

- 0.0131936 0.0241792
- (2.96) (2.75)

∆iust
- -0.0011012 0.0079059
- (-0.68) (2.59)

∆iukt
- 0.0157799** 0.0295744 **
- (5.64) (5.46)

∆yust
- -0.0020675 -0.00074
- (-1.52) (-0.28)

∆yukt
- -0.0031004 -0.0192928
- (-1.10) (-3.58)

∆πust
- - 0.0052414
- - (4.04)

∆πukt
- - 0.0080171
- - (3.64)

Table 4.7: Testing weakly exogeneity on heterogeneous models using VECMs

Note: PPP refers to Purchasing Power Parity model (Model 2), FB is short for

Frenkel-Bilson’s model (Model 3) and DF is short for Dornbusch -Frankel’s model (Model 4),

we allow the parameter coefficients for the US and the UK to be different. In Model 3,

iust , i
uk
t ,m1ust ,m0ukt , yust , y

uk
t , st are applied. In Model 4,

iust , i
uk
t ,m1ust ,m0ukt , yust , y

uk
t , πust , π

uk
t , st are applied. The value in the first line of each row is

the value of α. The value in parentheses are t-statistics, the critical values are from

MacKinnon (1991). Significance is at the 5% critical value of 4.296. Significance is at the 1%

critical value of 4.949.
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Dornbusch-Frankel models are endogenous since the α is significant. However,

there was no evidence that the other variables in these models were endogenous.

Therefore we have evidence that the spot rate is weakly exogenous in these three

models during the testing period. We also tested the VECMs using different

orders of lag, longer testing periods, homogeneous models and other alternative

models, for instance, changing from the Fed fund rate and the UK market rate

to the Treasury bill rates. The results were similar. Other fundamental variables

rather than the spot exchange rate were found to be endogenous during the test-

ing period, our results being similar to those of Norrbin et al. (1997). Results

in this section also reveal why there is at least one co-integrating vector in the

exchange rate models, this being caused by explanatory variables rather than the

dependent variable. However, since the data we used for the test in the section

are only a part of the whole sample, and we allow the parameter coefficients to

vary over time, in the following sections we still use VECM as a method to fore-

cast exchange rates.

4.10 Out-of-sample forecasting

4.10.1 Out-of-sample forecasting using traditional mone-

tary models

In this section Models 2 to 4, introduced above, are applied to the out-of-sample

exchange rate forecasting. The initial sample period of estimation was from Jan-

uary 1975 to December 1984, the forecasting period having lasted from January

1985 to August 2010, the window size being 120. This means that the first one-

month-ahead forecast was generated from January 1985, then the sample was

moved up one observation before the procedure was repeated. In the meantime
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the first observation in the sample was removed from the estimation so that the

number of data in each estimation remained fixed at 120. The process was contin-

ued until all the out-of-sample observations were exhausted. The first difference

of the exchange rate was forecasted and compared with a naive random walk in

order to make our results consistent with those obtained by the Taylor rules in

the next section.

Three estimators of these theoretical models are examined: a Vector Error

Correction Model, a VAR in the first differences and a rolling regression in first

differences. These estimators have different implications for the relationships

between the exchange rate and its economic determinants. As we have demon-

strated in the previous section, most of the macro variables are I(1), so that if the

variables are co-integrated then ECM or VECM specifications should be imple-

mented. The majority of the literature applies ECM to their forecasts. However,

the drawbacks of ECM techniques are that they assume that only the exchange

rate is endogenous, which is not the case, as we have demonstrated in section

4.9, and the two step estimating procedure for ECM is troublesome in practice.

The VECM model can avoid both these drawbacks, given the fact that because

VECM considers all the variables in the model symmetrically, and there is a

written program for VECM forecasts in Stata, so that it is sensible to apply this

technique.

Although in section 4.8 we have demonstrated that there is at least one co-

integrating equation in Models 2 to 4, it is worth noting that the long run re-

lationships between exchange rate and macro variables may vary over time. If

the variables are not cointegrated, the VECM specification can lead to spurious

results. Therefore the VAR in first differences and rolling regression in first dif-

ferences are also considered.
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In terms of forecasting performance comparison methods, we chose the MPSE

ratio, MAE ratio, DMW statistic, CW statistic, correlation and change of direc-

tion statistic (or correct direction change test). The MPSE (or MAE) ratio is

the fraction of competing model’s MPSE (or MAE) divided by random walk’s

MPSE (or MAE). A ratio of less than one indicates that the competing model

can outperform random walk.10 The correlation between the observed values and

the forecasts indicates the co-movement between the two series, and the higher

the correlation, the better the forecasts. The DMW statistic, in essence, can

still be clarified to be a version of the MPSE method, the difference being that

DMW provides the extent of the significance of the comparison results. As we

have demonstrated in section 4.5, the CW statistic can be considered as a mod-

ified technique of the DMW test. It is also of interest to observe how different

the results of the CW statistic are from the DMW statistic. The correct direc-

tion change test (CDC) shows the extent to which the forecasts correctly reflect

the direction of the observed values. This test is different from the traditional

techniques since it does not involve the loss function. The reason we chose six

different techniques is because there is no unanimous agreement on which method

is the best indicator for the out-of-sample forecasting. In order to make our re-

sults for traditional models comparable to those of the Taylor rules model, we

would like to compare ∆st and ∆ŝt. For each competing model we assume two

scenarios: that the parameter coefficients of macro variables between the home

and the foreign countries are either homogeneous or heterogeneous. Most of the

literature concludes that the forecasts perform better when the coefficients are

homogeneous. Nevertheless, allowing the heterogeneous coefficients is likely to

10In terms of the out-of-sample forecast, the random walk model is not generated by lagged
variables plus a random error term but is the true series of exchange rates. Therefore, out-
performing a random walk means that a better forecast has to be provided than the actual
series.

145



Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 0.9903 1.0205 1.0128 1.0075 1.0337 1.0220
MAE 1.0022 1.0163 1.0153 1.0315 1.0240 1.0078
DMW 0.3473 -2.1856 -1.5617 -0.2412 -2.9040 -2.0186
CW 3.6979** -1.1539 -0.5376 3.4132** -1.7238 -0.7157
Correlation 0.2457 -0.0729 -0.0276 0.2284 -0.1146 -0.0348
CDC 0.5628 0.4951 0.4610 0.5889 0.4822 0.4935

Table 4.8: The out-of-sample forecasting performance of the PPP model

include more information in the forecasts, so it is interesting to investigate both

cases.

In section 4.10.1, we consider the baseline case for competing models. This

means the consumer price indices, Fed fund rate, UK market rate and mone-

tary base (M1US, M0UK) are used for constructing differential variables and the

forecasts. In Sections 4.8.2 to 4.8.4, other data are also considered. In all, 36

estimations and 216 tests were implemented in section 4.8.

PPP model

The results in Table 4.8 suggest that the VECM model can outperform VAR

in first differences and rolling regression in first differences model, especially with

homogeneous coefficients. For the homogeneous VECM model, MPSE is less than

1, indicating that the MPSE (MAE) of PPP model is less than that of random

walk, the CW statistic of 3.6979 is significant at a 5% level, and it is the most

significant result of the six cases in this table. The correlation is 0.2457, sug-

gesting that there is positive co-movement between actual exchange rate in first

difference and the forecasts. The change of direction test is 0.5682, which is above

50%, so our forecasts using the homogeneous VECM PPP model are better than
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Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 1.0040 1.03157 1.0262 1.0322 1.0378 1.0181
MAE 1.0384 1.02335 1.0134 1.0642 1.0513 1.0293
DMW 0.3521 -2.0373 -3.5719 -0.8483 -2.3259 -2.1605
CW 3.7282** -0.5180 -2.4805 4.0050** -0.1030 -0.1248
Correlation 0.2350 -0.0295 -0.1507 0.2644 -0.0039 -0.0068
CDC 0.5566 0.4983 0.4481 0.5663 0.4692 0.5292

Table 4.9: the out-of-sample forecasting performance of the FB model

tossing a coin.

Frenkel-Bilson’s flexible-price monetary model

For Model 3, the traditional tests including the MPSE, MAE and DMW in-

dicate that none of the specifications can outperform a random walk. The CW

statistic suggests that the VECM model with heterogeneous coefficients performs

the best. The CDC statistic suggests that the forecasts by the VECM and the

rolling regression model with heterogeneous coefficients can predict the move-

ment of the nominal exchange rate better than tossing a coin. The correlation

test also shows that the VECM model can forecast at least 23%-26% of exchange

rate movements. (see Fig 4.9)

The results in Table 4.10 are similar to those in Table 4.9. In terms of the

MPSE and MAE ratios and DMW statistic all the specifications of the DF model

were rejected. The CW statistic indicates that the VECM estimator is a bet-

ter performer than a random walk and the other estimators, and the correlation

and CDC also confirm that the VECM models have certain predictive powers.

Comparing VECM with homogeneous coefficients to those with heterogeneous
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Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 1.0140 1.0278 1.0265 1.0337 1.0554 1.0072
MAE 1.0503 1.0366 1.0310 1.0969 1.0921 1.0149
DMW -0.4621 -2.5122 -2.9115 -0.7955 -1.9686 -0.7652
CW 3.8708** -0.7142 -1.6077 4.4809** 1.5630 1.4233
Correlation 0.2295 -0.0380 -0.1017 0.2991 0.0853 0.1048
CDC 0.5728 0.4886 0.4415 0.6019 0.4983 0.5422

Table 4.10: the out-of-sample forecasting performance of the DF model

coefficients, the MPSE, MAE and DMW statistics increase as the corresponding

parameter coefficients between the home and the foreign countries are allowed to

diverge, but the CW, the correlation and the CDC statistic all suggest that the

heterogeneous VECM DF model performs better.

4.10.2 A robust test on out-of-sample forecasting using

traditional monetary models

In this section, certain new data replace the baseline case data to see if the choice

of data would make any differences in terms of out-of-sample forecast perfor-

mance. The 3-month Treasury bill rates, broad money supply (M2 for the US

and M4 for the UK) and seasonally adjusted output are applied.

Frenkel-Bilson’s flexible-price monetary model(Treasury bill rate

used)

The results shown in Table 4.11 suggest that there is a significant improve-

ment on overall predictive performance by using the data of 3-month Treasury

bill rates. The MPSE, MAE suggest that rolling regression in first differences of
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Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 0.9943 1.0243 1.0334 1.0178 1.0347 0.9820
MAE 1.0340 1.0175 1.0204 1.0376 1.0313 0.9749
DMW 0.1650 -1.9392 -1.4512 -0.3834 -2.1556 0.4986
CW 4.0102** -0.5732 -0.4549 3.6387** -0.0379 2.0382**
Correlation 0.2727 -0.0401 -0.0483 0.3012 0.0003 0.2352
CDC 0.5954 0.4951 0.5275 0.6245 0.5145 0.5728

Table 4.11: Robust tests on the out-of-sample forecasting performance of the FB
model (Treasury bill rates)

the heterogeneous model perform better than the other specifications, as well as

out-performing a random walk. The CW, correlation test and CDC also support

this model. The second best performer in the table is the VECM model with

homogeneous coefficients; MPSE, CW, the correlation test and CDC all support

this specification. The VECM model with heterogeneous coefficients can predict

the movement and direction of exchange rates the best; however, the model may

involve too much information (or noise), which causes the MPSE and MAE to

become greater than 1. Again, the VAR in first differences model does not have

any predictive power.

Dornbusch -Frankel’s sticky-price monetary model (Treasury bill

rate used)

Table 4.12 shows that the rolling regression model with heterogeneous coeffi-

cients performs the best regarding the MPSE, MAE and CDC test. All the tests

support this model except the DMW statistic. The CW statistic suggests that

both homogeneous and heterogeneous VECMs can outperform a random walk,

the correlation and CDC test also indicating that both of them have some ability

to predict the movements of the sterling/dollar exchange rate. The VAR in first
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Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 1.0102 1.0301 1.0300 1.0302 1.0466 0.9687
MAE 1.0435 1.0309 1.0198 1.0678 1.0567 0.9579
DMW -0.3174 -2.3418 -1.1825 -0.6022 -2.3142 0.7922
CW 4.0894** -0.7941 -0.1043 3.8585** 0.1113 2.3861**
Correlation 0.2515 -0.0557 -0.0124 0.3172 0.0095 0.2859
CDC 0.5922 0.4725 0.5275 0.6214 0.5081 0.5922

Table 4.12: Robust tests on the out-of-sample forecasting performance of the DF
model (Treasury bill rates)

differences models still does not work.

It is worth noting that the MPSE and MAE are smaller for the heterogeneous

rolling regression model than the results in Table 4.12 (Column 7, Rows 3 and 4),

as the inflation rate is introduced in the model. However, the results for VECMs

do not improve. We do not have any explanation for these results at this stage.

Board money supply V S monetary base

In this section We use M2 for the US and M4 for the UK as the money supply

for the forecast, since the Treasury bill rates perform better than the base rates;

We also keep using Treasury bill rates in the forecast process. The results do not

show a significant improvement if board money is used as money supply variables

for the models. We do not report the results here. Molodtsova and Papell (2009)

obtain similar results.

Seasonally unadjusted IPI V S Seasonally adjusted IPI

If seasonally adjusted series are used in the application of the exchange rate
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Homogeneous coefficients Heterogeneous coefficients

VECM VAR in
differ-
ences

Regression
in differ-
ences

VECM VAR in
differ-
ences

Regression
in differ-
ences

MPSE 0.9638 1.013 1.0289 0.9655 1.0200 0.9822
MAE 0.9942 1.008 1.0083 1.0035 1.0166 0.9560
DMW 1.2903 -1.2415 -1.1190 0.9613 -1.5257 0.4618
CW 4.8147** -0.0686 -0.3114 4.6352** 0.0609 1.4539
Correlation 0.3089 -0.0027 -0.0360 0.3404 0.0050 0.2161
CDC 0.5825 0.5081 0.5242 0.5987 0.5242 0.5598

Table 4.13: The out-of-sample forecasting performance of the interest rate model
(Treasury bill rates)

forecasts the results would not change dramatically, and thus, they are not re-

ported. The CDC and correlation become less significant if the latter are used.

The MPSE and MAE, however, also become smaller. The result is not surprising,

since the idea of seasonal adjustment is to smooth the month-to-month changes.

The process would remove some information, leading to lower CDC and correla-

tion, also removing the useless noise which lower the MPSE and MAE.

Does interest rate matter?

In this last section we found out that changing interest rate data from the

central bank base rates to the Treasury bill rates can improve the forecasting

performance. Dick et al. (2012) apply survey data and find out that the interest

rate plays a significant role in predicting the movement of exchange rates com-

pared to other fundamental variables. In this section we only forecast the change

of the spot exchange rate by using 3-month Treasury bill rates from both the UK

and the US. Since there is no unanimous theory behind this estimation, this sec-

tion is purely an empirical exercise. The main idea is to identify how important

interest rates are in exchange rate forecasting.

The estimators were the same as in the previous section, and we also compared
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the specification with homogeneous coefficients to those with heterogeneous coef-

ficients. The results in Table 4.13 are similar to those in Tables 4.11 and 4.12, but

the homogeneous VECM performed the best in this case in terms of the MPSE,

MAE and CW statistic, and the correlation and CDC test also supported the

model. The heterogeneous VECM also performed well in terms of the MPSE and

CW, and also had the highest ranking in terms of the correlation and CDC statis-

tic. The MPSE, MAE and CDC supported the heterogeneous rolling regression

model in first differences, but not in terms of the CW. The DMW statistic still

rejected all the specifications.

It is an interesting finding, since the CW, correlation and CDC statistic in-

dicate that the forecasting performance of the interest rate on exchange rate is

as good as those include other fundamental variables. Our finding suggests that,

even by using realized data, Dick et al.’s results can be supported, and that the

interest rate plays a more significant role than other fundamentals in predicting

the movements of sterling/dollar exchange rates.

4.10.3 Discussion

There are several intriguing findings in this section. First, the traditional perfor-

mance comparison methods, the MPSE, MAE and DMW statistic tend to reject

the predictability of fundamental models regardless of which estimator is cho-

sen. This finding coincides with the majority of the literature. Second, the CW

statistic tends to suggest that the VECM models can outperform a random walk.

This finding indicates that the choice of performance comparison test can make

a difference to the conclusion drawn as to whether or not fundamentals play a

role in forecasting. Third, the CDC and correlation test indicate that the funda-

152



mental models have a certain power of predictability but the results are not very

significant. Fourth, the interest rate is a more important fundamental variable

than the other fundamentals in sterling/dollar exchange rate forecasting. Fifth,

in terms of the choice of estimators, the VECM produces the most consistent

results, the VAR in first differences is not a valid estimator for the forecasting,

and the rolling regression in first differences works in some cases. Sixth, models

with heterogeneous coefficients provide a good forecast of the directions of ex-

change rate but it may also lose the efficiency of the forecast by including too

much information. Seventh, the choice of data plays a significant role in forecast-

ing, and 3-month Treasury bill rates should be used for traditional models. The

money supply does not have a significant impact on forecast performance. The

seasonally unadjusted industrial production index can improve the prediction of

the direction of the exchange rate, but the noise also lowers the efficiency of the

forecast since the MPSE and MAE will increase.

4.10.4 The Taylor rule model

For the Taylor rule model we are unable to derive the VECM specification from

this theoretical framework; thus we only used rolling regression on the first dif-

ference of exchange rate and the level of the fundamental variables such as in-

flation rate, output gap and interest rate. The process was identical to those in

Molodtsova et al. (2008) and Molodtsova and Papell (2009), but the data had

been updated and a variety of goodness-of-fit measures were applied.

For the forecast, several options were considered. First, we allowed the specifi-

cation to have homogeneous or heterogeneous coefficients; second, whether or not

the smoothing parameter (lagged interest rate) played a role in the forecasting is
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Homogeneous coefficients Heterogeneous coefficients

Without s With s With s/q With q
Without s

Without s With s With s/q With q
Without s

MPSE ratio 1.0214 1.0434 1.0316 1.0165 1.0248 1.0447 1.0417 1.0219
MAE ratio 1.0135 1.02661 1.0183 1.0096 1.0233 1.0519 1.0608 1.0261
DMW -1.3536 -2.2926 -1.8624 -1.0688 -1.1047 -1.6636 -2.0014 -1.2048
CW 0.4964 0.0912 0.4091 0.9684 1.9182** 1.9851** 1.3575 1.7846**
Correlation 0.0278 0.0211 0.0353 0.0513 0.1231 0.1222 0.0903 0.1131
CDC 0.5162 0.5162 0.5065 0.5162 0.5389 0.5317 0.5129 0.5324

Table 4.14: The out-of-sample forecasting performance of the Taylor rule
model(QTT)

discussed; third, three different output measurements were used for the forecasts:

they are Quadratic Time Trend (QTT), B-spline and HP filter. Fourth, whether

or not the real exchange rate played a role in forecasting was tested. The speci-

fication with the real exchange rate as one of the explanatory variables is known

as the asymmetric Taylor rule model, while a specification without it is called

the symmetric Taylor rule model. The initial estimating sample period was from

January 1975 to December 1984, while the forecast period lasted from January

1985 to August 2010, and the window size was 120. Six performance comparison

tests are used for discussion. 24 forecasts are made and 144 tests are calculated

in this section.

Forecasting results

The data selected for this section are the overnight leading rates as the UK

interest rate, Fed fund rate, seasonally adjusted IPI and the inflation rate. We

have also tried the seasonally unadjusted IPI and the Treasury bill rates but the

results are not significant so we do not report them in this chapter.

Table 4.14 shows the forecasting results obtained by using the QTT method.

Our results are similar to those obtained by Molodtsova and Papell (2009). The

models with heterogeneous coefficients perform better than those with homoge-
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Homogeneous coefficients Heterogeneous coefficients

Without s With s With s/q With q
Without s

Without s With s With s/q With q
Without s

MPSE ratio 1.0121 1.0384 1.0430 1.0271 1.0142 1.0412 1.0455 1.0296
MAE ratio 1.0072 1.0195 1.0371 1.0194 1.0141 1.0461 1.0632 1.0433
DMW -0.8441 -1.9864 -2.2337 -1.7792 -0.6358 -1.5297 -2.2536 -1.4580
CW 0.8804 0.3272 -0.0188 0.1727 2.0926*** 2.0616**** 1.3327 1.6253**
Correlation 0.0431 0.0245 -0.0159 0.0025 0.1467 0.1364 0.0905 0.1084
CDC 0.4902 0.5162 0.5092 0.4935 0.5422 0.5455 0.5259 0.5325

Table 4.15: The out-of-sample forecasting performance of the Taylor rule model
(B-spline)

neous coefficients. The CW statistic confirms that, in the models with hetero-

geneous coefficients, the one without a smooth parameter and the one with an

asymmetric parameter real exchange rate perform better than the others. The

traditional methods MPSE, MAE and DMW statistic do not support the Tay-

lor rule models. The correlation test and CDC test suggest that the models has

some predicative power but it is considerably less compared to those of traditional

monetary models in previous sections.

Table 4.15 show the results obtained by the B-spline method. The results are

similar to those in Table 4.14. Models with heterogeneous coefficients perform

better, in this type of models, those without smoothing and asymmetric parame-

ters perform the best (Column 6). Our finding also suggest by using the B-spline

method, the results are systematic improved by all the criteria, if we compare the

best results in Table 4.15 (Column 6) with those in table 4.14 (Column 6).

The results in Table 4.16 are obtained by the HP filter. The results are con-

sistent with those in Table 4.14 and 4.15. The best performer is the model with a

heterogeneous coefficient, without smoothing parameter and asymmetric param-

eter (Column 6). Furthermore, the performance in Table 4.16 is less significant

than those obtained in Table 4.15 in general, with a few exceptions, but better

than those in Table 4.14, which indicates that the model measured by the B-
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Homogeneous coefficients Heterogeneous coefficients

Without s With s With s/q With q
Without s

Without s With s With s/q With q
Without s

MPSE ratio 1.0139 1.0402 1.0409 1.0231 1.0117 1.0303 1.0440 1.0295
MAE ratio 1.0082 1.0160 1.0322 1.0232 1.0157 1.0413 1.0662 1.0497
DMW -1.2944 -2.2073 -2.4580 -1.6103 -0.6135 -1.2593 -2.2991 -1.5118
CW -0.3223 -0.4006 -0.3073 0.1641 2.0499*** 1.8522*** 0.9425 1.5363
Correlation -0.0164 -0.0487 -0.0217 0.0211 0.1328 0.1227 0.0726 0.1051
CDC 0.5324 0.4870 0.5064 0.5097 0.5454 0.5227 0.5097 0.5292

Table 4.16: The out-of-sample forecasting performance of the Taylor rule model
(HP filter)

spline is the best estimation in our findings.

In this section, Taylor rule models are discussed, our specification and esti-

mator having been identical to those in Molodtsova and Papell (2009). Overall,

our results are similar to their results, with a few new findings. The CW statistic

tends to accept the model with heterogeneous coefficients regardless of the output

gap measures; the model with heterogeneous coefficients consistently outperform

those with homogeneous coefficients and HP filter can improve the forecasting

performance. However, by using a variety of criteria, our results do not signif-

icantly support the models with smoothing and asymmetric parameters. The

B-spline method produces the best forecasts in this section.

Although there is evidence that the Taylor rule model has some predictive

power, the results are less significant than those of traditional monetary mod-

els measured by using VECM based on a variety of criteria. These results are

particularly interesting because in Molodtsova and Papell’s paper the forecasting

results from the traditional model by using the ECM technique are worse than

those of the Taylor rule model in comparison to the CW statistic. It appears

that the choices of estimator can make a difference and that, by using the VECM

technique, one can improve the forecasting capacity of the exchange rate. Also,

although the CW statistic is significant for Taylor rule specification, if we use a
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series of criteria it is not difficult to discover that the traditional models are not

as useless as some literature indicates.

4.11 Conclusions

The chapter discussed the traditional monetary models and Taylor rule model

on the forecasting performance of the first difference of sterling/dollar exchange

rate with a random walk. Three types of estimators, VECM, and VAR in first

differences and rolling regression in first differences were applied and a variety

of performance comparison techniques were introduced. Our results suggested

that the monetary model, and especially Frenkel-Bilson’s flexible-price monetary

model, had the power of predictability in exchange rate forecasting, and that the

VECM estimator could improve the forecasting performance to some extent.

Since our simulations on CW statistic and DMW statistic suggested that the

CW statistic could be a better goodness-of-fit measure than DMW, by focusing

on the CW statistic, We found strong and consistent evidence that the tradi-

tional model could outperform a random walk. Although the CW statistic also

supported the forecasts with Taylor rule fundamentals, the results were as strong

as those obtained by traditional monetary models.

The out-of-sample forecasting comparison results also indicated that the se-

lection of comparison techniques could induce different conclusions, and thus it

might be a good idea to use a variety of techniques in exploring the matter of

forecasting. It was found that the data selection could also induce different re-

sults. For instance, forecasts with traditional fundamentals work better if the

three-month Treasury bill rate is considered as the nominal interest rate rather
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than the overnight leading rate, so that it is important to choose appropriate data.

There are some limitations in the chapter. Firstly, this chapter only considered

sterling/dollar exchange rates, and the findings in this chapter did not cover the

features of other exchange rate series. This paper did not consider the microeco-

nomic fundamentals such as order flow in dealing with exchange rate forecasting,

which could be a fruitful direction to take. Evans and Lyons (2005) first pro-

pose a theoretical model demonstrating that the order flow can explain a large

proportion of the exchange rate variation. Combining the conventional specifica-

tion with the monetary model and the Evans and Lyons (2005) microstructure

approach, Chinn and Moore (2011) propose a hybrid model of exchange rates.

By searching out the private preference shocks which render the money demand

unstable, the preference can be revealed through order flow. In their empirical

study the hybrid model can make a significant improvement in forecasting for the

yen/dollar and euro/dollar in terms of both in-sample and out-of-sample fore-

casting performance (see Bjonnes and Rime, 2005, as well).

The realized data instead of real-time data were used in the chapter as there

is an argument that the real-time data can improve forecasting power. This

chapter did not consider the expectation of the effect of fundamental variables

on exchange rate movements, which is also worth investigating (Engel and West,

2005, 2006). Structural breaks or nonlinear forms of specification were also left

for future research.
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Chapter 5

Conclusions
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This thesis has carefully discussed the connection between Taylor rule funda-

mentals and the exchange rate. In chapter 2 we made a short summary on the

development of the asset-pricing model of exchange rates incorporating Taylor

rule fundamentals in order to set up a background for this type of the topics that

follow. A few of the papers in this field suggest that the exchange rate should be

considered as an asset price which is not only determined by current fundamen-

tals, but also by discounted future fundamentals.

Based on this idea, our empirical study focused on the present-value model of

yen/dollar exchange rates incorporating Taylor rule fundamentals, and in order

to apply this type of model to forecasting we needed the current and future data

of inflation rate, interest rate and output gap. The future data of the fundamen-

tals were estimated based on an unrestricted VAR. The output gap was measured

by three different techniques: the Quadratic Time Trend method, the B-spline,

and the HP filter. The B-spline is a new technique for estimating output gap and

has not yet been used widely in the research up until now. However, the output

gap measured by the B-spline has performed well throughout our whole thesis,

indicating that it can be considered as a output gap method.

The Taylor rule, for both Japan and the US, were estimated during three spe-

cific periods of time: January 1971 to September 1979, October 1979 to December

1998, and January 1999 to December 2006. The GMM estimator was used. We

found strong evidence that both countries applied the Taylor rules from October

1979 to December 1998. Thus, the yen/dollar exchange rate was forecasted in

that period of time, based on the present-value model. A variety of specifications

were considered: the forecasts were based on different output gap measures; the

corresponding coefficients of each fundamental between Japan and the US were

allowed to be the same or different; whether or not the smoothing parameters
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play an role was also discussed. The forecasting results suggested that the best

performer was the specification with heterogeneous coefficients and smoothing

parameters, and HP filter measured the output gap. The correlation between the

model-based exchange rate and the observed value could approach 72%, which

was much higher than the results obtained by EW06 and Mark (2009). In addi-

tion, the B-spline and HP filter could provide better results than the Quadratic

Time Trend.

In chapter 3, our interests changed to the study of central bank behaviour.

Since we demonstrated that the GMM should be considered to be the estimator

for Taylor rule estimation in chapter 2, in chapter 3 we continued to use this

technique. The US was the sample country for the study. In order to investigate

whether or not the Fed’s behaviour has been consistent over the last four decades,

Andrews’(1993) method was used for testing potential structural changes. An-

drews’ method, in essence, is to split a model into two by assuming the potential

structural break point, estimating the two sub models, and collecting the coef-

ficients and corresponding variances to generate the Wald statistic. If the Wald

statistic is greater than the critical value then we have evidence that there might

be a structural break at the testing point. The results provided by Andrews’ test

suggested that the Fed’s behaviour was not stable from the period of October

1978 to January 2004, and that this was especially true in the 1980s. Five struc-

tural break points were found: March 1981, January 1988, January 1993, July

1997, and October 2001. The robust tests based on different output gap measures

provided similar results; however, the instability of the Taylor rule of the Fed was

magnified by using the B-spline and the HP filter.

In section 3.4 a variety of linear Taylor rules were estimated based on different

subsample periods and different output gap measures. The results suggested that
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the Fed might follow a Taylor rule in the long term, but it might not be the case

during specific subsample periods. There was evidence of a linear Taylor rule

being used from March 1981 to January 1988 and again from January 1993 to

July 1997.

In section 3.5, the Taylor rules in linear form under different subsample pe-

riods were estimated based on the break points which were obtained in section

3.3. we treated the Taylor rule as a threshold process, the estimating method

being based on Caner and Hansen (2004). The advantage of their method is that

it allows the estimation to be conducted under the GMM framework, enabling

the estimation in the thesis to be kept consistent. CH04 also proposes a method

to test the existence of the threshold process, which could help us to identify

whether or not there is a threshold process during various subsample periods.

The inflation rate were considered to be the threshold variable. There was no

evidence of a threshold model being used in the 1980s, which indicated that the

instability could not be explained by a threshold process, so that it might be

due to the fact that the level of inflation was substantially different at that time.

There is evidence supporting the existence of a threshold process during the pe-

riod between October 2001 and December 2006, although the process could not

be characterized as a classic nonlinear Taylor rule because the coefficients of in-

flation rates did not have the expected sign.

Chapter 4 tried to answer the important question we asked at the beginning of

the thesis: “Can Taylor rule fundamentals outperform a naive random walk and

the traditional monetary models?” The exchange rate model with Taylor rule fun-

damentals being used in this chapter was built based on Molodtsova et al. (2008)

and Molodtsova and Papell (2009), who have conducted the most up-to-date re-

search in this area, and provided convincing results that the Taylor rule models
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could outperform other models. Three monetary models were also selected to

compare with the Taylor rule models: PPP model, Frankel-Bilson’s flexible-price

monetary model, and Dornbusch-Frankel’s sticky-price monetary model.

Unlike other literature on the subject, this chapter conducted detailed research

into whether or not different estimators, goodness-of-fit measures, or selections

of data could produce different forecasting performances. In an empirical study

the first difference of the log sterling/dollar exchange rates from January 1975 to

August 2010 was studied.

A detailed discussion on the best choice of estimators in terms of estimating

exchange rates could be found in section 4.3. Three estimators were chosen for

this empirical study: VECM, VAR in first differences and rolling regressions in

first differences. Six goodness-of-fit measures were selected in the study: RMSE,

MAE, DMW statistic, CW statistic, and the correlation and change of direction

tests. There has been a debate on which will be the best performer between the

CW and the DMW statistic when the testing models are nested. In section 4.5

a detailed comparison was made between the two based on Monte Carlo sim-

ulations. The density distribution and the Q-Q plots suggested that the CW

statistic performed better than the DMW statistic. A further investigation also

showed that the CW statistic was slightly undersized. Our results in section 4.5

are similar to those of Clark and West (2006).

The out-of-sample forecasting results of the sterling/dollar exchange rates pro-

vided some interesting findings: First, overall the VECM estimators performed

better than the other two estimators, the best model being Frankel-Bilson’s

flexible-price model. Second, since our simulation of the CW statistic and the

DMW statistic suggested that the CW statistic could be a better goodness-of-
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fit measure than the DMW statistic; by focusing on the CW statistic we found

strong and consistent evidence that the traditional model could outperform a ran-

dom walk. Although the CW statistic also supported the forecasts with Taylor

rule fundamentals, the results were not as strong as those obtained by tradi-

tional monetary models. Third, it was found that the data selection could indeed

induce different results. For instance, forecasts with traditional fundamentals

worked better if the three-month Treasury bill rate was considered as the nomi-

nal interest rate rather than the market rate, so that it was important to choose

appropriate data.

Based on this thesis, we would like to make a short conclusion on whether

or not Taylor rule fundamentals could predict exchange rates. In chapter 2 a

present-value model of yen/dollar exchange rates incorporating Taylor rules was

built, and there was evidence that the model had some predicative power. We

did not use a variety of goodness-of-fit measures to investigate its performance

because the model-based exchange rate had a much smaller mean and standard

deviation than the observed exchange rate (not reported), which means that by

using other criteria we would not be able to prove the forecasts were better than a

naive random walk. In chapter 4 the models with Taylor rule fundamentals failed

to outperform other monetary models or a naive random walk. Thus, it appears

that we have failed to find solid evidence that the Taylor rule fundamentals have

significant predicative power on the exchange rate.

However, there might be other reasons for these results, and these possible rea-

sons suggest natural avenues for further research. First, in chapter 2 an important

factor for forecasting exchange rates was the expectation of future fundamentals,

which were generated by an unrestricted VAR in our case. This method was not

quite appropriate because the forecasts were based on the interest rate, inflation
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rate and output gap, and we omitted the effect of the real exchange rate on these

variables because the aim was to forecast exchange rates. However, by using

VAR, the forecasts for the fundamentals were less reasonable. A better technique

for forecasting the expectations for the fundamentals might be to use better data

in future.

Second, Molodtsova and Papell (2009) demonstrate strong evidence of the

out-of-sample predictability of Taylor rule fundamentals for 12 out of 15 curren-

cies against the dollar. Thus there is a possibility that our choices of exchange

rate (yen/dollar and sterling/dollar) were not very representative for this type of

models. Third, we did not fully consider the effect of structural breaks for the

Taylor rule model in chapter 4. Chapter 3 showed that the Fed’s behaviour had

been very unstable over time, which might affect the market’s perception on the

monetary policy of the central bank and, consequently, affected the exceptions

of exchange rate modelling. It could be the case that the Taylor rule model only

worked for certain periods of time; however, it was difficult to model this effect

in empirical study.

Fourth, the thesis did not consider the microeconomic fundamentals such as

order flow in dealing with exchange rate forecasting, which could be a fruitful

direction to take. Fifth and finally, the realized data instead of real-time data

were used in the thesis, however, there is an argument that the real-time data

can improve forecasting power. It might provide different conclusion if the real

data is used in the thesis. This thesis did not consider the expectation of the

effect of fundamental variables on exchange rate movements, which is also worth

investigating. We leave all of these open questions to future researchers.
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Appendix A

The generalized exchange rate

modelling incorporating Taylor

rules

Home : iht = γqqt + γπEtπ
h
t+1 + ρiht−1 + γxx

h
t + γ∆x∆x

h
t + uhmt (A.1)

Foreign : ift = γπEtπ
f
t+1 + ρift−1 + γxx

f
t + γ∆x∆x

f
t + ufmt (A.2)

where γq > 0, γπ > 1, γx > 0, γ∆x > 0, 0 < ρ < 1.

Take home country as an example, the domestic central bank sets the nomi-

nal interest rate iht , to target the deviation of expected inflation from the central

bank’s target Etπ
h
t+1; the output gap, xht ; the lagged interest rate, iht−1; the dif-

ference between the output growth and its potential ∆xht ; the monetary policy

shock uhmt; and the real exchange rate qt. qt is measured in home currencies per

unit of foreign currency. The increase in qt means the home currency depreciates.

Note that the foreign country (i.e. the US) follows the similar monetary policy

rule; however, “the foreign central bank is passive with respect to exchange rate
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fluctuations”1. Here followed by EMW07, both the home country and the foreign

country have the same policy parameters. (γπ, γx, γ∆x, ρ) are the weights on the

relative variables in the interest rate rules. These definitions of parameters follow

the board interpretation of Taylor rule.

Under the Uncovered interest parity (UIP):

iht − i
f
t = Etst+1 − st + ω (A.3)

Where Etst+1 is the expected value of next period’s nominal exchange rate. st is

the nominal exchange rate in period t. ω is the UIP deviation or risk premium.

EW05 assume that

qt = st − s̄t (A.4)

s̄t = pht − p
f
t (A.5)

where s̄t is a target for the exchange rate. pht and pft are the logged home and

foreign price level, respectively. So the model also satisfies the purchasing power

parity (PPP) according to Equation A.4 and A.5.

Eq A.1−A.2, we get:

iht−i
f
t = γqqt+γπ(Etπ

h
t+1−Etπ

f
t+1)+γx(x

h
t−x

f
t )+ρ(iht−1−i

f
t−1)+γ∆x(∆x

h
t−∆xft )+(uhmt−u

f
mt)

(A.6)

Subtracting Etπ
h
t+1 − Etπ

f
t+1 on both sides of Eq A.3:

iht − i
f
t − (Etπ

h
t+1 − Etπ

f
t+1) = Etst+1 − st − (Etπ

h
t+1 − Etπ

f
t+1) + ω (A.7)

1Engel and West (2006) state, in the empirical study of Clarida et al. (1998), the coefficient
of real exchange rate is only statistically significant for Germany, not for the US. Thus, it is
reasonable to assume the Fed does not take into account real exchange rate.
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Since

Etπ
h
t+1 = Etp

h
t+1 − pht (A.8)

Etπ
f
t+1 = Etp

f
t+1 − p

f
t (A.9)

Put Eq A.8 and A.9 into Eq A.7, and rearrange it, we get,

iht − i
f
t − (Etπ

h
t+1−Etπ

f
t+1) = Etst+1− (Etp

h
t+1−Etp

f
t+1)− [st− (pht − pht )] +ω

According to Eq A.4 and A.5,

iht − i
f
t − (Etπ

h
t+1 − Etπ

f
t+1) = (Etst+1 − Ētst+1)− (st − s̄t) + ω

iht − i
f
t = Etqt+1 − qt + (Etπ

h
t+1 − Etπ

f
t+1) + ω (A.10)

Put Eq. A.10 into A.6, we get,

Etqt+1 − qt + (Etπ
h
t+1 − Etπ

f
t+1) + ω = γqqt + γπ(Etπ

h
t+1 − Etπ

f
t+1) + γx(x

h
t −

xft ) + ρ(iht−1 − i
f
t−1) + γ∆x(∆x

h
t −∆xft ) + (uhmt − u

f
mt)

Rearrange it,

(1 +γq)qt = Etqt+1 + (1−γπ)(Etπ
h
t+1−Etπ

f
t+1)−γx(xht −x

f
t )−ρ(iht−1− i

f
t−1)−

γ∆x(∆x
h
t −∆xft )− (uhmt − u

f
mt − ω)

Dividing 1 + γq on both sides of the equation, define

b = 1
1+γq

,

Z = (1− γq)(Etπht+1−Etπ
f
t+1)− γx(xht − x

f
t )− ρ(iht−1− i

f
t−1)− γ∆x(∆x

h
t −∆xft )−

(uhmt − u
f
mt − ω)

we get:

qt = Etqt+1 + EtZt (A.11)
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Here,

Etqt+1 = bEtqt+2 + bEtZt+1,

Etqt+2 = bEtqt+3 + bEtZt+2,

Put them into Eq A.11, we get:

qt = bZt + b2EtZt+1 + b3EtZt+3 + ...bjZt+j + bjEtqt+j+1, where j = 0, 1, 2, 3...

Upon imposing the ‘no-bubbles’ condition,2 that goes to zero as j −→ ∞, I

has the present-value relationship:

qt = b
∞∑
j=0

bjEtZt+j, 0 < b < 1, j = 0, 1, 2, 3, ... (A.12)

2“(Rational) bubbles represent a divergence from the equilibrium associated with the market
fundamentals. Bubbles could be considered as one possible explanation of the observed volatility
of exchange rates.”(Copeland, 2005, p.372) if there is bubble in the function, it can be written
as:
qt = b

∑∞
j=0EtZt+j +Bt, 0 < b < 1, , j = 0, 1, 2, 3, ...

Where Btis the bubble at time t. As long as it persists, the exchange rate deviates form its
fundamental equilibrium. In other words, under the “no-bubbles” condition, the exchange rate
is the level dictated by the fundamentals.
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Appendix B

The detailed description of

theoretical models

Model 3: Frenkel-Bilson’s flexible-price monetary model

The model is derived from a conventional money demand function and Pur-

chasing Power Parity. The conventional money demand function for the home

and the foreign country are:

Home: mh
t − pht = α1y

h
t − α2i

h
t (B.1)

Foreign: mf
t − p

f
t = α1y

f
t − α2i

f
t (B.2)

where mt is the log of money supply; pt is the log of price level; yt is the

log of real income; it is the nominal interest rate. h, f denote home and foreign

country, respectively. The money demand function expresses that the demand for

real balances will increase with the volume of real incomes (α1 > 0), but decrease

with interest rate (α2 > 0). The interest rate refers to the opportunity cost the

economy has for holding money. The assumption here is that the agent chooses
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between holding money and goods, and the rise in interest rate will increase the

opportunity cost of holding money, which will create a temporary excess supply

of money and an excess demand for goods, price levels will be driven up and

consequently generate inflation.

By subtracting equation B.2 from equation B.1, and moving the money sup-

ply to the right-hand side of the equation, we have:

pht − p
f
t = (mh

t −m
f
t )− α1(yht − y

f
t ) + α2(iht − i

f
t ) (B.3)

Under the Purchasing Power Parity (PPP),

st = pht − p
f
t (B.4)

In putting the PPP back into the equation B.3, we have

st = (mh
t −m

f
t )− α1(yht − y

f
t ) + α2(iht − i

f
t ) (B.5)

In the empirical study, we can add a slope coefficient for money supply dif-

ferential, a constant term, and an error term, so that the general specification of

Frenkel-Bilson’s flexible model can be written as:

st = β0 + β1(mh
t −m

f
t ) + β2(yht − y

f
t ) + β3(iht − i

f
t ) + ut (B.6)

Model 4: Dornbusch -Frankel’s sticky-price monetary model

The main assumption of this model is that the product markets adjust goods

prices slowly, whereas the financial markets appear to adjust far more rapidly.

The consequence of this assumption is that the financial markets have to over-
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adjust to disturbances in order to compensate for the stickiness of prices in the

goods markets. The reason is that, with goods prices initially fixed, the increase

in money stock will create an instantaneous increase in demand for real balance.

If the money market is clear rapidly, based on the demand function (equation

B.1), the interest rate will fall and the nominal exchange rate will depreciate as

well1. In the long run goods prices rise gradually and the change in real balance

starts to reverse, driving aggregate demand, interest rate and exchange rate back

towards their original level. The new nominal exchange rate only reflects the

proportional change in the money supply, as in the Frankel-Bilson’s flexible price

model.

Dornbusch and Frankel assume that since the financial markets adjust instan-

taneously, the Uncovered Interest Rate Parity (UIRP) holds at all time. In other

words, the fall of UK interest rate will raise the expectation of a future appreci-

ation in sterling.

Etst+1 − st = iht − i
f
t (B.7)

where Etst+1 is the current rate of expected exchange rate at time t+ 1. The for-

ward discount is also a function of the gap between the current spot rate and the

equilibrium rate and of the expected long run inflation rate differential between

domestic and foreign country.

Etst+1 − st = −θ(st − s̄) + Etπ
h
t − Eπ

f
t (B.8)

1The reason the nominal exchange rate would depreciate after the rise in money supply in the
short run can be explained at follows: let us assume that for some reason the UK interest
rate falls, then from the UIRP condition we know that market participants become convinced
that the pound will appreciate in coming months, in order to compensate for the low interest
rate paid on sterling securities. In Dornbusch’s world, the fall of interest rate will cause an
immediate fall in the pound’s value which is below to its long run level (equilibrium exchange
rate) so as to generate the expectations of future sterling appreciation as it moves back towards
its equilibrium.
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where s̄ is the log of long run equilibrium exchange rate, Etπ
h
t and Eπft are the

current rates of expected long run inflation rate. θ is the exchange rate expecta-

tion elasticity. This equation assumes that in the short run the exchange rate is

expected to return to its equilibrium level at a rate which is proportional to the

current gap. In the long run, since st = s̄, the change in exchange rate is only

affected by the long run inflation rate differential.

Combining equation B.7 and B.8, we get

st − s̄ = −1

θ
[(iht − Etπht )− (ift − Etπ

f
t )] (B.9)

The expression inside the brackets is real interest rate differential. Assuming PPP

holds in the long run,

s̄ = p̄t
h − p̄tf (B.10)

Also, assuming the conventional money demand function holds (equation B.1 and

B.2), combining B.10 and B.1, B.2, we get:

s̄ = p̄t
h − p̄tf = (m̄t

h − m̄t
f )− α1(ȳt

h − ȳtf ) + α2(īt
h − ītf ) + ut (B.11)

According to B.8, when st = s̄, iht − i
f
t = Etπ

h
t −Etπ

f
t , then putting this equation

into B.11,

s̄ = p̄t
h − p̄tf = (m̄t

h − m̄t
f )− α1(ȳt

h − ȳtf ) + α2(Etπ
h
t − Etπ

f
t ) + ut (B.12)

Equation B.12 indicates that the domination of the long run equilibrium exchange

rate. The rise in money supply differential raises the equilibrium exchange rate

proportionally, and a rise in income or a fall in the expected inflation rate lowers

the exchange rate.
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Rearranging B.9 and substituting it into B.12, we get the spot rate determi-

nation:

st = (mh
t −m

f
t )−α1(yht − y

f
t )− 1

θ
(iht − i

f
t ) + (

1

θ
+α2)(Etπ

h
t −Etπ

f
t ) + ut (B.13)

The model for the empirical study can be reduced to:

st = β0 +β1(mh
t −m

f
t ) +β2(yht − y

f
t ) +β3(iht − i

f
t ) +β4(Etπ

h
t −Etπ

f
t ) +ut (B.14)

This model allows for a slow domestic price adjustment and consequent de-

viation from PPP. β1 > 0, the increase in domestic money supply pushes up

the demand for goods, raising domestic price level which, in turn, causes the

domestic currency to depreciate, and β2 < 0 because the rise in nominal income

will increase money demand, which will lower the exchange rate. This model

distinguishes itself from that of Frenkel-Bilson, β3 < 0, because the change in

the nominal interest rate reflects changes in the tightness of monetary policy.

“When the domestic interest rate rises relative to the foreign rate it is because

there is a contraction in the domestic money supply the higher interest rate at

home than abroad attracts a capital inflow, which causes the domestic currency

to appreciate instantly.”(Frankel, 1979). The sign of β4 can be quite different

based on these assumptions. In Dornbusch (1976)’s overshooting model in terms

of β4 = 0 because his theory indicates that the inflation rate differential is very

stable, whereas Frenkel (1976) implies that the inflation differential can be very

volatile, so that β4 > 0 , the expected inflation differential, captures the effect

of the real interest rate on money demand, and thus on the exchange rate. An

example of this is when the demand for currency falls when domestic inflation

is high relative to the foreign inflation rate, which causes the depreciation of do-
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mestic currency.

The Fundamental Equilibrium Exchange rate model (FEER model)

and The Behavioural Equilibrium Exchange Rate Model (BEER model)

The FEER and BEER model have been widely discussed in the literature and

it is important to understand the differences between them. Clark and MacDon-

ald (1998) have made a detailed comparison of these two models, which will be

briefly summarized in this section.

In general, the FEER approach calculates the real exchange rate based on

the assumptions that the current account is at full employment level and net

capital flow is persistent. Thus, the function of the real exchange rate can be

derived from the equation of ‘current account’ being equal to ‘capital account’.

The BEER approach, which uses econometric methods to establish the behaviour

link between the real exchange rate and relevant economic variables, makes no

attempt to deal with internal or external balances.

The Fundamental Equilibrium Exchange rate model (FEER ap-

proach)

The FEER concept, first introduced by Williamson (1985), is based on the

internal and external balance in the economy in the medium term. Internal bal-

ance is identified as the level of output consistent with both full employment

and a low and sustainable rate of inflation. External balance is described as the

sustainable net capital flow between two countries when they are in internal bal-

ance. It abstracts itself from short term fluctuations and focuses on the economic

fundamentals, which are likely to be persist over the medium term. The FEER
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approach is designed to assess whether the current exchange rate is overvalued

or undervalued.

The key function for the FEER approach is that the current account (CA) is

equal to the negative of the capital account (KA):

CA = −KA (B.15)

Furthermore, assuming that the economy approaches both internal and external

balance, the sustainable level of a current account is defined as:

C̄A = b0 + b1qt + b2ȳh + b3ȳf = −K̄A (B.16)

where b1 < 0, b2 < 0 and b3 > 0. qt is the real effective exchange rate, and ȳh

and ȳf are defined as the home and foreign sustainable level of aggregate demand

or output. K̄A, which is the sustainable level of a net capital account, is normally

replaced by the difference between desired aggregate saving (S̄) and investment

at full employment (Ī). In rearranging equation B.16, the real effective exchange

rate or fundamental equilibrium exchange rate is defined as:

FEER = qt =
−K̄A− b0 − b2ȳh − ȳf

b1

(B.17)

The FEER is consistent with medium-term macroeconomic equilibrium. It

has the implicit assumption that the actual real exchange rate will converge into

the FEER over time. The FEER approach only characterizes the equilibrium

condition and the nature of adjustment is left unspecified.

The Behavioural Equilibrium Exchange Rate Model (BEER ap-

proach)

177



The BEER model, developed by Clark and MacDonald (1998), has been

widely applied by central banks and financial researchers to assess the extent

of misalignment between major world currencies. It can be considered as an

alternative to the FEER approach, and uses a reduced form equation of funda-

mental variables to explain the behaviour of real exchange rate over time.

The starting point of the model is the risk-adjusted interest parity condition,

Et∆st+k = (iht − i
f
t ) +$t (B.18)

where $t = λt + k is the risk premium that has a time-varying component, λt.

Equation B.18 can be converted into a relationship between the real exchange

rate and the real interest rate by subtracting the expected inflation differential

from both sides of the equation:

Et∆st+k − (Etπ
h
t+k − Etπ

f
t+k) = (iht − i

f
t )− (Etπ

h
t+k − Etπ

f
t+k) +$t

Et∆qt+k = (rht − r
f
t ) +$t

qt = Etqt+k − (rht − rt)f −$t (B.19)

where rt = it−Etπt+k is the ex ante real interest rate. Equation B.19 describes

the real exchange rate, which is determined by the expected real exchange rate,

the real interest rate differential and the risk premium. Clark and MacDonald

(1998) assume that the time-varying component of the risk premium is a function

of the relative supply of domestic to foreign government debt:
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λt = f(
gdebtht
gdebtft

)

An increase in the domestic debt level relative to foreign debt will increase

the risk premium, thus requiring a depreciation of domestic currency.

The expected exchange rate is considered as the long run equilibrium exchange

rate (q̄t) in Clark and MacDonalds specification, and three variables are consid-

ered to be the determination of the equilibrium exchange rate. The details of

the selection of these variables are discussed in Faruqee (1995) and MacDonald

(1998):

q̄t = Etqt+k = f(tott, tntt, nfat) (B.20)

where tott is the terms of trade, tntt is the Balassa-Samuelson effect, which refers

to the relative price of non-traded to traded goods, and nfat is the net foreign

assets. The increase in value of these variables will lead to an appreciation in

home currency. These three determinants of exchange rate will be explained as

follows:

Terms of trade (TOT): ‘Terms of trade’ refers to the price of exports di-

vided by the price of imports. It indicates the quantity of import goods that

can be purchased through the sale of exportable goods. The impact of TOT on

real exchange rate is through the income and the substitution effect. In other

words, the deterioration of TOT decreases in the level of TOT and generates a

negative income effect through the decline of domestic purchasing power, offset-

ting the demand of non-traded domestic goods. This leads to a decline in overall

price level and depreciation of the exchange rate. On the other hand, the weak-

ening of TOT induces a positive substitution effect as imported goods appear

relatively more expensive than non-traded domestic goods, and thus consumers
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tend to purchase more domestic goods, which will raise the overall price level and

a real appreciation in the home currency. The total effect of TOT depends on

the strength of substitution and income effect. Recent studies suggest that the

income effect is dominant and that, therefore, an improvement in TOT will lead

to a real appreciation of the real exchange rate.

Balassa-Samuelson effect (B-S effect): The Balassa-Samuelson effect (or

Balassa-Samuelson hypothesis), introduced independently by Balassa (1964) and

Samuelson (1964), explains the main driving force behind the real appreciation

of exchange rate. Their analysis is based on the observation that, at least in the

industrialized world, productivity growth rises more rapidly in traded than in

non-traded goods sectors. Thus, wages in the traded goods sector will tend to

rise more rapidly than in the non-traded goods sector. If the labour market is

integrated, wages in the non-tradable sector will tend to rise to the same level

as in the tradable sector, even though their productivity has been slower. This

means that the prices in the non-tradable sector will rise relative to those in the

traded goods sector in order to maintain profitability. Thus, when productivity

growth in one country is higher than in the other, inflation will be higher in the

former. Hence the CPI-based real exchange rate is likely to appreciate in the long

run. The Balassa-Samuelson effect also offers an explanation why consumer price

levels in richer countries are systematically higher than in poorer ones. The B-S

effect requires that PPP holds:

qt = st − pft + pht (B.21)

where qt denotes the real exchange rate, and st denotes the nominal spot ex-

change rate, defined as the foreign currency price of a unit of home currency. A

similar relationship can be defined for the price of traded goods:
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qTt = sTt − p
fT
t + phTt (B.22)

where T indicates that the variables are defined for traded goods.

The general price level can be divided into traded and non-traded components:

pht = (1− αht )phTt + αtp
hNT
t (B.23)

pft = (1− αft )pfTt + αtp
fNT
t (B.24)

where αt denotes the weights of non-traded goods in the economy, which are

assumed to be time-varying, and NT denotes a non-traded good. Substituting

B.23 and B.24 into B.21, we have:

qt = st − (1− αft )pfTt − αtp
fNT
t + (1− αht )phTt + αtp

hNT
t

And rearranging it:

qt = (st − phTt + pfTt ) + αft (pfTt − p
fNT
t )− αht (phTt − phNTt )

Substituting B.22 into the above equation:

qt = (st − sTt + qTt ) + αft (pfTt − p
fNT
t )− αht (phTt − phNTt )

MacDonald (1998) assumes the long-run equilibrium real exchange rate, q̄t,

may be defined as:

q̄t = qt − st + sTt
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Therefore,

q̄t = qTt + αft (pfTt − p
fNT
t )− αht (phTt − phNTt ) (B.25)

Equation B.25 indicates that the long-run real equilibrium exchange rate is

determined by three components: the real exchange rate for traded goods, which

will arise if the traded goods are not perfect substitutes; movements in the rel-

ative prices of traded goods and non-traded goods between the home and the

foreign country.

Productivity differences can induce a bias in the real exchange rate because

productivity growth rises more rapidly in the tradable sector than in the non-

tradable sector. If wages tend to be equalized in the market, and wages are linked

to the price of goods, then the relative price of traded goods to non-traded goods

tends to rise less rapidly for a country with relatively higher productivity. Assum-

ing the law of one prices holds and the home country is a relatively fast growing

country, equation B.22 will have a positive αft (pfTt − pfNTt ) − αht (phTt − phNTt )

term, thereby, pushing q̄t above qTt . Therefore, the equations above demonstrate

the rationale that the real exchange rates of fast growing countries are likely to

appreciate over time.

Net Foreign Assets (NFA): Net foreign assets are the difference between

total foreign assets and total foreign liabilities. These are important determinants

of the real exchange rate and influence it through various channels (Faruqee, 1995;

Lane and Milesi-Ferretti, 2001; Villavicencio and Bara, 2006). The portfolio-

balances theory suggests that a deficit in the current account creates an increase

in the net foreign debt of a country, given the interest rate, and that addressing

the deficit can only be achieved by a depreciation in domestic currency. The
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depreciation will help the country to increase the international competitiveness

of its exports and improve its current account.

After addressing the determinants suggested by Faruqee (1995) and MacDon-

ald (1998) , according to the BEER approach, the real exchange rate is determined

by:

BEER = f(rht − r
f
t ,
gdebtht

gdebtft
, tott, tntt, nfat) (B.26)

Compared with the FEER approach, the BEER approach chooses to use the

actual values of fundamental determinants of the real exchange rate instead of

using domestic and foreign output at their potential level. Thus, the BEER ap-

proach can be considered as the best method to use for forecasting exchange rates.

Molodtsova and Papell’s model

Molodtsova and Papell (2009) examine out of sample exchange rate pre-

dictability using Taylor rule fundamentals.

Following Clarida et al. (1998), they declare that both the home country and

the foreign country follow a similar Taylor rule.

iht = (1− ρh)(γππht + γxx
h
t ) + ρhiht−1 + uhmt (B.27)

ift = (1− ρf )(γqqt + γππ
f
t + γxx

f
t ) + ρf ift−1 + ufmt (B.28)

The Taylor rule for the home country is subtracted from the rule for the for-

eign country, the equation having the interest rate differential on the left-hand

side and a series of fundamentals on the right-hand side.
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iht − i
f
t = α− αqqt + αhππ

h
t − αfππ

f
t + αhxx

h
t − αfxx

f
t + ρhiht−1 − ρf i

f
t−1 + η

where α is a constant, η is the error term, απ = (1− ρ)γπ, αx = (1− ρ)γx and

αq = (1− ρ)γq.

Under the assumption of Uncovered Interest rate Parity (UIRP) and rational

expectations, a rise in the domestic interest rate will cause immediate appreciation

and a forecasted depreciation in the home currency. However, Molodtsova and

Papell argue that UIRP is not held in the empirical study, so that in their model

the rise in interest rate for the home country will cause a immediate appreciation

and a forecasted appreciation2. Therefore, Molodtsova and Papell find a link

between exchange rates and Taylor rule fundamentals.

∆st+1 = α0 + αqqt − αhππht + αfππ
f
t − αhxxht + αfxx

f
t − ρhiht−1 + ρf ift−1 − η (B.29)

where st is the log of the nominal exchange rate which is determined by the home

currency price of a unit of foreign currency, so that an increase in is a depreci-

ation of domestic currency.3 This model describes how anything that causes a

rise in domestic interest rate (or a fall in foreign interest rate) will cause both an

immediate appreciation and a forecasted appreciation in the home currency.

One significant difference between Molodtsova and Papell’s paper and those

of others is that they consider a variety of specifications. Firstly, in the original

Taylor rule model (Taylor, 1993a), the central bank sets their interest rate based

on real interest rate, inflation rate, output gap, and inflation gap, which is the

difference between inflation rate and potential inflation. If both the home and

2This assumption is different from that of EW06, EMW07 and Mark(2009) who believe that an
Uncovered Interest Rate Parity is held in the long run.

3In Molodtsova an Papell’ model, US is the home country, UK is the foreign country.
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foreign countries follow this rule, and the foreign country does not take the real

exchange rate (γq) into account, then the exchange rate model is a symmetric

model. If the foreign country also considers that the real exchange rate, the

model is asymmetric. Secondly, following CGG, Molodtsova and Papell consider

the model with smoothing (ρh, ρf > 0) and without smoothing (ρh = ρf = 0),

and the model can be symmetric or asymmetric. Thirdly, the two central banks

can have the same coefficients in their interest rate reaction functions so that

a homogeneous model is constructed where the fundamental differentials have

the same coefficients (αhπ = αfπ, α
h
x = αfx). If banks do not respond identically

to changes in the inflation and output gap (αhπ 6= αfπ, α
h
x 6= αfx), a heterogeneous

model is derived. Both homogeneous and heterogeneous models can be symmetric

and asymmetric. Fourth, if the two central banks have identical target inflation

rate and real equilibrium interest rate then there is no constant in the exchange

rate model (α0 = 0); otherwise, a constant is included on the right-hand side

of the model (α0 6= 0). Likewise the model, with or without a constant, can be

symmetric or asymmetric.
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