# **Studies Towards a Total a Synthesis of Tagetitoxin**

**Christopher Andrew Pearce** 

A Doctoral Thesis

Submitted for the award of

Doctor of Philosophy

At the University of East Anglia

March 2013

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.

# **Abstract**

Tagetitoxin is a phytotoxin produced by the bacterium *Pseudomonas syringae* pv. *tagetis*. It is a selective inhibitor of RNA polymerase III in eukaryotic cells and RNA polymerase in bacteria. Since its initial isolation and partial characterization, more than thirty years have passed without a fully characterized structure for tagetitoxin. While much research has been carried out on the biological aspects of tagetitoxin, particularly with interests towards its activity as an inhibitor of RNA polymerase, very few published works are available from a synthetic perspective.

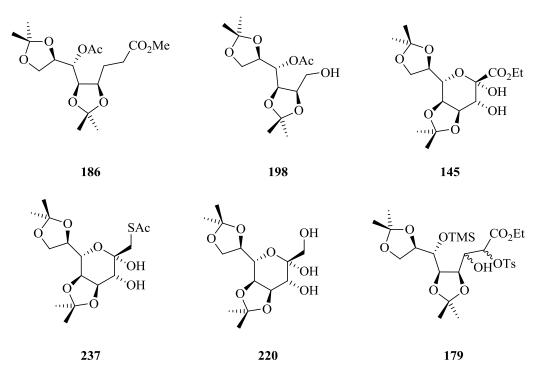



Figure 1: Synthetic intermediates towards tagetitoxin

In this thesis several promising synthetic intermediates towards the goal of tagetitoxin were synthesized (**Figure 1**). Herein the previous work related to the biology and synthetic studies of tagetitoxin and the recent studies conducted in the group towards a total synthesis of the molecule is described.

# **Acknowledgments**

First and foremost I would like to thank Professor Phil Page for the opportunity to work on this project within the group, for his encouragement and advice throughout the course of my PhD and his unwavering resolve during the difficult and sometimes unfathomable chemistry moments, and perhaps most importantly his ability to always be available for a pint at the end of the day.

I would like to acknowledge Prof. Alex M Z Slavin for her crystal structure determinations, and the EPSRC for the funding for this project.

I would also like to thank Dr Claude-Éric "KC" Roy for his help and his "lessons" at the beginning of my PhD, and getting me started with the project from day one.

I would also like to acknowledge all past and present members of the Page group: Dr Yohan Chan, David Day, Andrew "Timmy" Mace, Chris Bartlett, Brian Mahoney, Franklin Frimpong, Miklos de Kiss, Wei-Wei Wang, Ian Strutt, Chris Herbert, Alexander Sheldon, James Harvey, Mohammed Al Ahmdi, Amy and who could forget, Leandro.

I would also like to acknowledge the Kingfisher mandems: Ketan "Mudz" Panchal, Doyle Cassar, Chris Bartlett, Dave Day, Mark Walton and Big Sooz, and all the chemists on the third floor.

Finally I would like thank my family and especially Katie for her support, patience and understanding throughout my PhD.

# **Abbreviations**

| Å                 | Ångström                                       |
|-------------------|------------------------------------------------|
| aq.               | aqueous (solution)                             |
| Ar                | aromatic (proton)                              |
| [α] <sub>D</sub>  | specific optical rotation at the sodium D line |
| cat.              | catalytic                                      |
| cm <sup>-1</sup>  | wave number                                    |
| °C                | degrees Celsius                                |
| c                 | concentration                                  |
| δ                 | chemical shift                                 |
| DAM               | Diacetone mannose                              |
| DBDMH             | 1,3-dibromo-5,5dimethylhydantoin               |
| DCM               | dichloromethane                                |
| DIPA              | diisopropylamine                               |
| DMAP              | 4-(dimethylamino)pyridine                      |
| DMF               | N,N-dimethylformamide                          |
| DMP               | Dess-Martin Periodinane                        |
| DMSO              | dimethylsulfoxide                              |
| eq.               | equivalent                                     |
| FAB               | fast atom bombardment                          |
| h                 | hour(s)                                        |
| Hz                | Hertz                                          |
| IBX               | 2-iodoxybenzoic acid                           |
| IR                | Infrared                                       |
| Kdo               | 3-deoxy-D-manno-2-octulosonic acid             |
| LAIH <sub>4</sub> | lithium aluminium hydride                      |
| LDA               | lithium diisopropylamine                       |
| М                 | molarity                                       |
| <i>m</i> -CPBA    | meta-chloroperbenzoic acid                     |
| min               | minute(s)                                      |
| mp                | melting point                                  |
| m/z               | mass to charge ratio                           |
|                   |                                                |

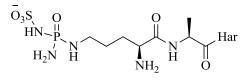
| Ms    | Mesyl                        |
|-------|------------------------------|
| MS    | mass spectrometry            |
| NBS   | N-bromo succinimide          |
| NIS   | N-iodo succinimide           |
| NCS   | N-chloro succinimide         |
| NMR   | nuclear magnetic resonance   |
| NTP   | nucleotidyl triphosphate     |
| PCC   | Pyridinium chlorochromate    |
| PDC   | Pyridinium dichromate        |
| ppm   | parts per million            |
| pTSA  | para-toluenesulfonyl acid    |
| pyr   | pyridine                     |
| RNA   | ribonucleic acid             |
| rt    | room temperature             |
| sat.  | saturated                    |
| SM    | starting material(s)         |
| TBAF  | tetrabutylammonium fluoride  |
| TBDMS | tert-butyldimethylsilyl      |
| TBDPS | tert-butyldiphenylsilyl      |
| TEA   | triethylamine                |
| Tgt   | tagetitoxin                  |
| THF   | tetrahydrofuran              |
| TIPS  | triisopropylsilyl            |
| TLC   | thin layer chromatography    |
| TLE   | thin layer electrophoresis   |
| Troc  | 2,2,2-Trichlorethoxycarbonyl |
| Ts    | Tosyl                        |
| TMS   | trimethylsilyl               |
|       |                              |

All other abbreviations are used according to the IUPAC nomenclature or SI units.

# **Table of Contents**

| Introduction                                    | 7   |
|-------------------------------------------------|-----|
| Background                                      | 8   |
| Discovery                                       | 8   |
| Structure                                       | 8   |
| Biological activity                             | 12  |
| Previous synthetic approaches to tagetitoxin    | 16  |
| Furneaux et al.                                 | 16  |
| Sammakia <i>et al</i>                           | 23  |
| Porter et al.                                   |     |
| Previous work in the Page group                 |     |
| D-galactose route                               |     |
| Mucic acid route                                |     |
| D-mannose route                                 | 40  |
| Dithioacetal route                              | 47  |
| Project                                         | 51  |
| References                                      | 54  |
| Results and Discussion                          | 56  |
| Dithioacetal protected ketoester route          | 57  |
| Corey-Winter olefination                        | 73  |
| Wittig route                                    | 75  |
| Sequential protection-deprotection of DAM route |     |
| Ring-closing metathesis route                   |     |
| Olefin metathesis route                         | 90  |
| Nitrile dithiane route                          | 92  |
| Reduction route                                 | 95  |
| D-Arabinose route                               |     |
| Conclusion and Future work                      | 104 |
| Conclusion                                      | 104 |
| Future Work                                     |     |
| References                                      |     |

| Experimental                            |     |
|-----------------------------------------|-----|
| Experimental Procedures                 | 110 |
| References                              | 159 |
| Appendix                                |     |
| X-ray Structure Report for compound 145 | 161 |
| X-ray Structure Report for compound 158 |     |


# Introduction

## Background

Since its initial isolation and partial characterization,<sup>1</sup> more than thirty years have passed without a fully characterized structure for tagetitoxin. While much research has been carried out on the biological aspects of tagetitoxin, particularly with interests towards its activity as an inhibitor of RNA polymerase, very few published works are available from a synthetic perspective. In fact at the time of writing this thesis there are no publications of a total synthesis of tagetitoxin and also there have been no crystal structures of the toxin in its free form.

## **Discovery**

In 1981 a new toxin of the *Pseudomonas syringae pv. Tagetis* family was produced in culture and isolated for the first time by Mitchell *et al.*<sup>1</sup> It was found to cause apical chlorosis in marigolds and zinnia. The toxin was partially characterized and found to contain a phosphorus, sulfur and also an amino function. These three features are only present in one other *Pseudomonas* toxin, phaseolotoxin (**Figure 2**). However tagetitoxin was found to be distinct from phaseolotoxin in t.l.c and t.l.e experiments.



Phaseolotoxin

Figure 2: Phaseolotoxin structure

## Structure

In 1983 Mitchell and Hart published the first proposed structure of tagetitoxin.<sup>2</sup> After purification of an extract from the culture medium by ion exchange chromatography and partition chromatography a noncrystalline glassy residue was obtained in *ca* 40% recovery. IR analysis of the residue gave only limited information, indicating the presence of an –OH, a carbonyl probably due to carboxylate group(s) and a phosphate group. Using field desorption mass spectrometry, tagetitoxin was found to have a MW of 435. In addition to an oxygen, other heteroatomic components of tagetitoxin were nitrogen in an amine moiety (confirmed

with ninhydrin staining), a phosphorus in a phosphate ester (blue colour with molybdate reagent and <sup>31</sup>P NMR) and sulfur (incorporation of <sup>35</sup>S). <sup>31</sup>P NMR showed a doublet (J = 11.5 Hz) at  $\delta 1.0$  downfield from the phosphate consistent with the presence of a phosphate ester of a secondary alcohol function. The <sup>13</sup>C NMR spectrum indicated 11 carbon atoms in total, three present in carbonyl groups and five adjacent to oxygen. The functionalities in the five carbons adjacent to oxygen were determined from <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts to be an acetyl, phosphate and either three hydroxyl functions or one hydroxyl and an ether function.

Combining the mass spec and NMR data, Mitchell and Hart deduced the molecular formula of tagetitoxin to be  $C_{11}H_{18}O_{13}SNP$  and suggested the presence of three hydroxyl functions as opposed to one hydroxyl function and an ether moiety. Using the data from the molecular formula and functional groups outlined, an acyclic compound would have to contain 20 hydrogens. As the <sup>13</sup>C NMR spectrum showed no signs of a carbon-carbon double bond it was deduced that tagetitoxin was a single ring structure. These assumptions were made based on the sulfur atom of tagetitoxin being present in a thiol or thioether. These assumptions were supported by the fact that the sulfur was not in a sulphate ester since strong acid hydrolysis of tagetitoxin did not liberate sulphate. Also the treatment of tagetitoxin with sodium nitroprusside gave no colour reaction indicating no sulfur was present, but when the toxin was pretreated with dilute hydrochloric acid a positive colour test for thiols was observed. A double labelling experiment was performed by growing *P.s Tagetis* in the presence of <sup>32</sup>PO<sub>4</sub><sup>3-</sup> and <sup>35</sup>SO<sub>4</sub><sup>2-</sup> which confirmed a sulfur-phosphorus ratio of 1:1 indicating the presence of only one sulfur atom in tagetitoxin.

The <sup>1</sup>H NMR spectrum of tagetitoxin showed only a single methyl group (present in the acetyl function) and well defined multiplets leading to useful information about the carbon skeleton. Using the NMR data in combination with the mass spectrometric and functional group knowledge the group proposed the following structure for tagetitoxin **1** (**Figure 3**).

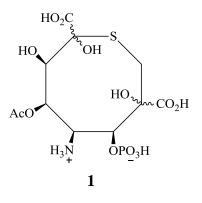



Figure 3: First proposed structure for tagetitoxin by Mitchell and Hart

This first proposed structure was not disputed until six years later, when Mitchell *et al* suggested a revised structure for tagetitoxin based on new higher resolution MS and NMR data.<sup>3</sup> FAB mass spectrometry gave a (M+H) of 417.0361, indicating that tagetitoxin had a molecular formula of  $C_{11}H_{17}N_2O_{11}PS$  in contrast to the previously reported  $C_{11}H_{18}O_{13}SNP$ .<sup>2</sup> The additional nitrogen present was deduced to be an amide from the NMR data, since the <sup>13</sup>C NMR data confirmed only one C-N bond and there was no phosphoramide nitrogen as shown by the <sup>31</sup>P chemical shift. This new data led to the following functional groups containing oxygen; one acetyl, one phosphate, one carboxylic acid, one carboxamide, and two oxygens present in either hydroxyl or ether groups. A fully saturated non-cyclic compound with these substituents would have 21 hydrogens; as the revised molecular formula only contained 17 hydrogens and the <sup>13</sup>C NMR data confirmed no carbon-carbon double bonds, it was deduced tagetitoxin must contain two rings. Using these data two possible ring structures were proposed, **2** and **3** (Figure 4).

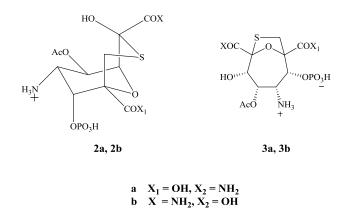



Figure 4: Revised structures for tagetitoxin.

These structures were both supported by nOe experiments. The coupling constants of the protons in 4-carbon series allowed the dihedral angles to be determined. These angles were more suited to the proposed structure **2** over **3** as the protons on C-6 and C-7 are in a true diaxial interrelationship. The 5-membered ring in structure **3** places constraint on the 7-membered ring that does not allow a true diaxial relationship between the C-6 and C-7 protons. Using this result, the authors' favoured structure **2**, but structure **3** could not be totally discounted.

Gronwald *et al* later published an article indicating that the previous structural assumptions made by Mitchell <sup>3</sup> and Hart <sup>2</sup> for tagetitoxin were incorrect due to errors in mass spec analysis.<sup>4</sup> Gronwald found that even using the same purification techniques used by previous authors that the MW of tagetitoxin was 678. This was significantly higher than the 416 previously reported by Mitchell.<sup>3</sup> Although the MS data was clearly different from previous reports, the NMR data obtained was similar to the data reported by Mitchell. This led Gronwald to conclude that the extra mass might be accounted for by the presence of oxygen, nitrogen and sulfur atoms and exchangeable protons that are not detected by 1D NMR. Using the data obtained the group concluded that previous proposed structures for tagetitoxin were incorrect; however they did not to propose a structure themselves.

In 2005 an article published by Vassylyev <sup>5</sup> confirmed the structure proposed by Mitchell <sup>3</sup> from a crystal structure of the *Thermus thermophilus* RNA polymerase (RNAP)-tagetitoxin complex.

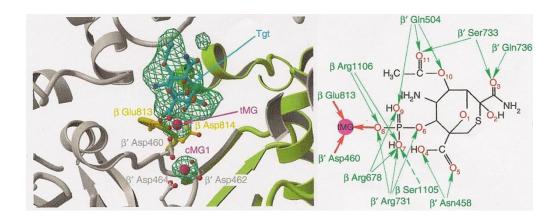



Figure 5: Left Structure of RNAP-tagetitoxin binding complex. Right tagetitoxin binding site<sup>. (5)</sup>

As well as confirming the bicyclic structure of tagetitoxin, this also removes the ambiguity of where the carboxamide and carboxylic acid groups are located. This bicyclic structure is the target molecule our group is working towards which is described in this thesis.

# **Biological activity**

Tagetitoxin is a bacterial phytotoxin that induces chlorosis and leaf spot in the *Asteraceae* family of plants such as zinnia (*Zinnia elegans* Jacq) and sunflower (*Helianthus annuus*).<sup>6,7</sup> This chlorosis happens through the translocation of the toxin to the apical regions where it inhibits RNA Polymerase (RNAP) in chloroplasts; this subsequently suppresses the chloroplast biogenesis.<sup>8,6</sup> Tagetitoxin has also been shown to inhibit *in vitro* RNAPs of bacteria, insects and vertebrates at micromolar concentrations. In eukaryotic cells, RNAP III has been shown to be inhibited by tagetitoxin while RNAPs I and II were resistant.<sup>5</sup>

In 1990 Mathews *et al.* found that concentrations of just 0.3-3.0  $\mu$ M of tagetitoxin were needed to inhibit RNAP III in *Xenopus leavis* oocytes, however RNAP II from wheat germ required concentrations of more than 100  $\mu$ M to produce the same effect.<sup>8</sup> It was also established that tagetitoxin affects the incorporation of uridine into RNA in chloroplasts; this was found when [<sup>32</sup>P] UTP was inhibited from incorporation to RNA upon addition of tagetitoxin to a transcriptionally active chloroplast protein.<sup>9</sup>

The simplest mechanism which can be envisaged for the inhibition of RNAP by tagetitoxin is a direct competition with the nucleotidyl triphosphate (NTP) substrate. However, this can be ruled out for two reasons: Firstly, kinetic data obtained shows tagetitoxin acting as an uncompetitive inhibitor, <sup>8,9</sup> which suggest that tagetitoxin does not prevent substrate binding. Secondly, it was shown that tagetitoxin inhibits catalytic reactions that use different substrates such as pyrophosphorolysis and exonucleic cleavages.

In 2005, Vassylyev and co-workers inspected the crystal structure of tagetitoxin-RNAP complex of bacterium *T. Thermophilus*, which argued against the competition between tagetitoxin and NTP substrate.<sup>5</sup> They suggested that the mechanism by which tagetitoxin acted was by stabilising some inactive intermediate during the substrate loading into the active site.

Structural analysis also indicated that the intermediate could either be formed during the preinsertion or insertion stage. The authors suggested that the intermediate was more likely to be formed in the pre-insertion stage, and then stabilised in the insertion step, suggesting a concerted two-step model (**Figure 6**).

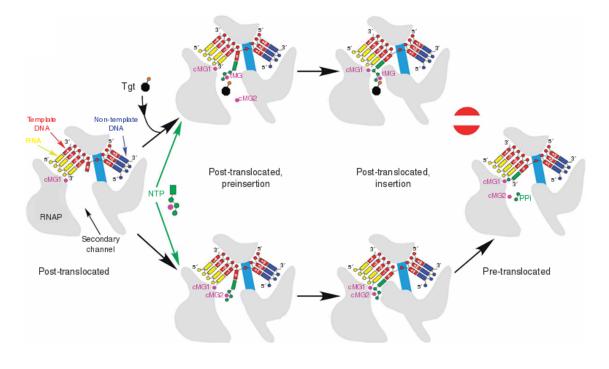



Figure 6: Proposed mode of action for tagetitoxin.<sup>5</sup>

The authors reasoned that during the binding in the pre-insertion step and in the presence of tagetitoxin, the phosphate of the NTP substrate, which coordinates the  $Mg^{2+}$  in the cMG2 ion site, would probably switch interactions to a well-fixed  $Mg^{2+}$  in the tMG ion site. Thus, a subsequent loss of interaction with cMG2 occurs. This theory suggests that the resulting interaction of NTP with the  $Mg^{2+}$  binding site tMG would not be disturbed during the isomerisation; the more compact conformation of the active site in the insertion stage would result in a tighter binding of tMG-bound substrate to prevent both the dissociation of the substrate and the catalytic reaction, therefore irreversibly locking RNAP in a non-productive state (**Figure 6**).

Before 2005 it was known that tagetitoxin inhibits RNAP, however the mechanism was still not proven. Vassylyev *et al.* published a crystal structure of (RNAP)-tagetitoxin complex at a resolution of 2.4 Å. <sup>(5</sup> The bacterial *T. thermophilus* RNAP (ttRNAP)-tagetitoxin complex showed that the binding site of tagetitoxin is situated at the base of the RNAP secondary channel and not the enzyme's active site. This binding was mediated exclusively by polar

interactions, whereby 9 of the 11 tagetitoxin oxygen atoms form 18 hydrogen bonding interactions with the adjacent protein side chain (**Figure 7**).

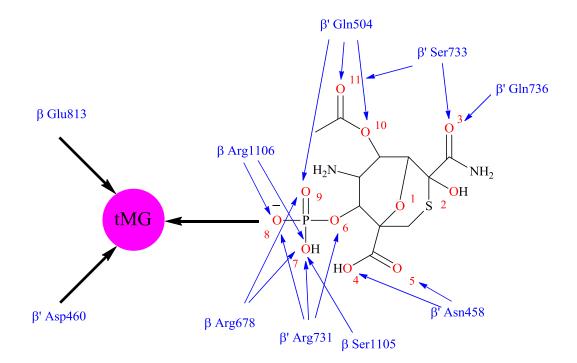



Figure 7: Tagetitoxin's binding locations to RNAP

This extensive network, which consisted of a set of basic and acidic side chains, forms a concerted mode of recognition that could be essential for the binding of tagetitoxin. The network is also highly unstable to small alterations in conformation or position of even one single residue.

Tagetitoxin also showed very strong interactions with three highly conserved RNAP basic residues ( $\beta$  Arg678,  $\beta$  Arg1106 and  $\beta$ 'Arg731). The authors also suggested that  $\beta$ 'Asn458 was probably involved in substrate recognition. It was further noted that the binding sites of tagetitoxin and nucleotidyl triphosphate do not overlap, which suggests that competition with the substrate is not a major factor in tagetitoxin's mode of action.

The authors suggested that the RNAP-tagetitoxin complex was strengthened by the wellfixed Mg<sup>2+</sup> ion binding site that mediates RNAP interactions with tagetitoxin. It was shown that the phosphate group in tagetitoxin was also coordinated to the Mg<sup>2+</sup> ion and two other active site residues,  $\beta$ 'Asp460 and  $\beta$  Glu813. Since RNAP contains more than one Mg<sup>2+</sup> binding site (e.g. cMG1, cMG2 and tMG), Vassylyev anticipated that the side chain of  $\beta$ 'Asp460 was better fixed in the complex by bridging the two Mg<sup>2+</sup> ions (cMG1 and tMG). Consequently, this would favour coordination and strengthen the binding of the catalytic cMG1. As a result tagetitoxin increases the RNAP affinity for the major catalytic Mg<sup>2+</sup> ion, cMG1.

# Previous synthetic approaches to tagetitoxin

## Furneaux et al.

Due to the biological activity of tagetitoxin and the lack of synthetic work on the molecule at the time, Furneaux and co-workers were interested in preparing substructures and analogues of tagetitoxin for evaluation as potential herbicides and plant growth regulators.<sup>2</sup> Working from one of the revised structures for tagetitoxin 4 proposed by Mitchell *et al.*<sup>3</sup> they suggested that the acetate, amine and phosphate groups were important for the activity of the toxin, and the sulfur bridge was required to insure the geometry of the pyranoid ring.

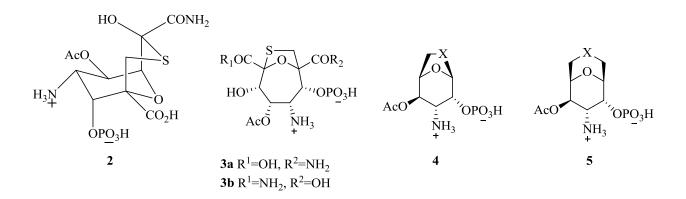
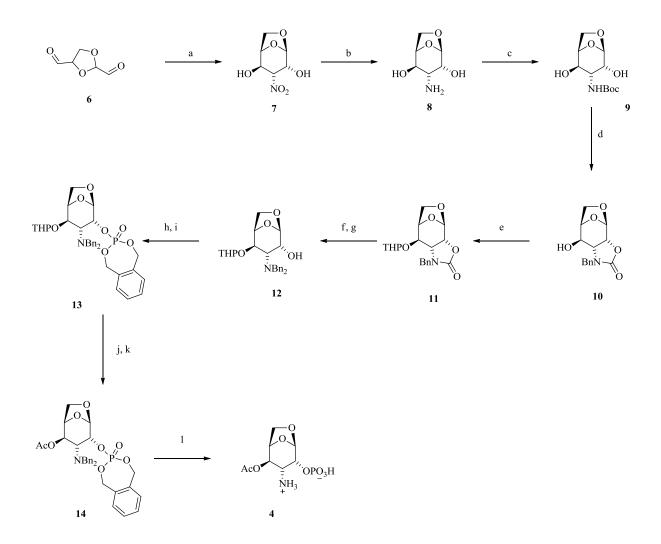
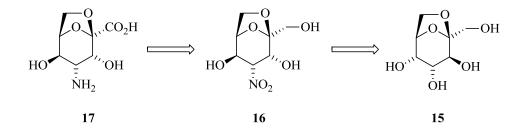




Figure 8: Initial Structures of tagetitoxin and the proposed analogues

The authors decided to start from D-hexoses as these can be easily transformed into 1,6anhydro-D-hexoses, which show herbicidal activity and also have structural similarities to **2**.

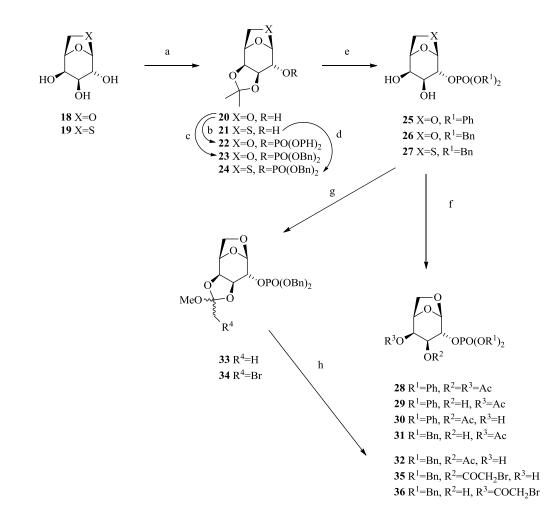


Reagents and conditions: a) MeNO<sub>2</sub>, NaOMe, MeOH; b) H<sub>2</sub>, Pd/C, 2M HCl, 50 p.s.i; c) (Boc)<sub>2</sub>O, NaCO<sub>3</sub>, H<sub>2</sub>O, THF; d) (Bu<sub>3</sub>Sn)<sub>2</sub>O, Bu<sub>4</sub>NBr, BnBr, toluene; e) dihydropyran, TsOH; f) NaOH, EtOH; g) Bu<sub>2</sub>SnO, Bu<sub>4</sub>NBr, BNBr, toluene; h) *O*-xylene-*N*,*N*-diethylphosphoramidite, 1*H*-tetrazole; i) *m*CPBA; j) 2M HCl; k) AC<sub>2</sub>O, py; l) H<sub>2</sub>, Pd/C, 50 p.s.i, EtOH, AcOH.




Their first route towards the analogue **4** proceeded from the cyclization of the dialdehyde **6** with nitromethane to give 1,6-anhydro-3-deoxy-3-nitro-D-gulose **7**. The compound was subjected to a hydrogenation to give the amine **8**. The configuration of the amine was confirmed by the large H<sup>1</sup>NMR coupling constant between C-3 and C-4 ( $J_{3,4} = 9.9$  Hz) and by the crystal structure of the amine in its hydrochloride salt form. Using the *syn* configuration of the C-2 and C-3 substituents to their advantage, the group were able to esterify the C-2 and

C-4 hydroxyl groups selectively. Amine **8** was *N*-Boc protected to give compound **9**, which was treated with bis(tributyltin) oxide, followed by tetrabutylammonium bromide and benzyl bromide in toluene under reflux to give the *N*-benzyl protected cyclic carbamate **10**. The free hydroxyl group at C-4 was then protected as the THP ether using dihydropyran under acidic conditions; the product was then subjected to a ring opening of the carbamate and a second *N*-benzyl protection to give compound **11**. Introduction of the phosphate group was preceded by a phosphitylation of the C-2 hydroxyl group with *o*-xylene *N*,*N*-diethylphosphoramidite and 1*H*-tetrazole, followed by an oxidation with *m*CPBA; removal of the THP group followed by an acetate protection and another hydrogenation and acidic work up gave the tagetitoxin analogue **4** (**Scheme 1**).

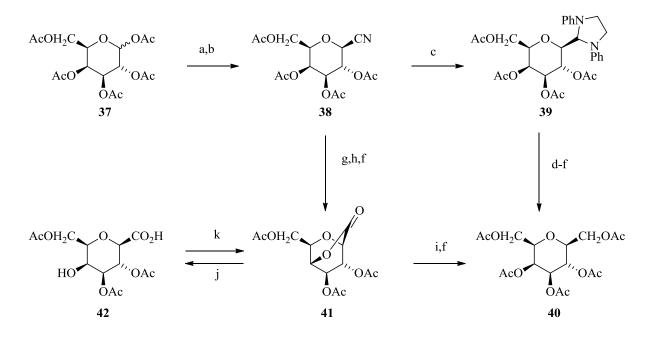

The tagetitoxin analogue **4** showed no activity when tested against agriculturally important weeds such as *Avena fatua* (wild oat), *Setaria viridis* (green foxtail), *Amaranthus retroflexus* (redroot pigweed) or *Chenopodium album* (fat hen).

Furneaux also suggested that his route could be modified to form analogues containing a carboxylic acid group at the C-1 position. Thus periodate oxidation of 2,7-anhydrosedoheptulose **15** gave a dialdehyde which was converted to 4-deoxy-4-nitro-D-gulo-anhydride **16** using the procedure previously described by Furneaux (**Scheme 2**).



Scheme 2: Proposed retrosynthetic route for carboxylic acid analogue 17

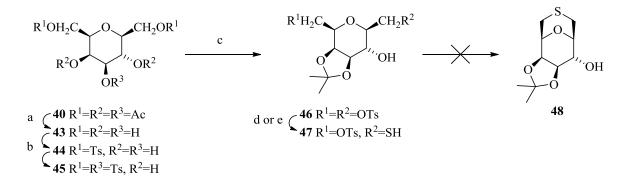
In an alternative method used by Furneaux to reach analogues based on compound 4 it was necessary to functionalize the O-2 and O-4 positions of 1,6-anhydro-D-galactose 18 differently; a good leaving group at the C-3 position was also needed to introduce the amino function with an inverted configuration. Phosphate 25 was prepared by the route indicated in scheme 3 and then treated with acetic anhydride (1.3 equiv) in pyridine to give the diacetate 28 (18%) and an inseparable mixture of monoacetates 29 and 30 (64%). The mixture contained over 90% of the 4-ester **29**, which was derived by the selective reaction of the more accessible equatorial hydroxyl group. After developing an acceptable procedure for the selective acetylation of compound 25, the group attempted to reproduce the same results with the anhydrides 26 and 27. Unfortunately attempts to produce compound 27 were unsuccessful due to the sensitivity of compound 24 to acidic conditions. The group presumed the sensitivity to be due to the participation of the sulfur atom in reactions of carbocations generated under the conditions used. Acetylation of diol 26 using acetic anhydride and bases, pyridine, dibutyltin oxide or bis(tributyltin)oxide resulted in a 1:1 inseparable mixture of the monoacetates 31 and 32, very different from the selectivity observed for compound 25. Using the bulkier pivaloyl chloride and dibutyltin oxide also gave inseparable mixtures of the monoesters. A selective acetylation on diol 26 was finally achieved when it was first converted to the cyclic orthoacetate 33 and subjected to a mild hydrolysis. This method gave the acetate 32 exclusively, but the authors were unable to make use of this result. The brominated orthoester 34 was expected to give an O-3 ester, which could be removed in the presence of an acetate group at C-4. The ester, however did not undergo hydrolysis selectively, and gave an inseparable mixture of bromoacetates 35 and 36.




Reagents and conditions: a)  $Me_2C(OMe)_2$ , Acetone, TsOH; b) CIPO(OPH)\_2, py; c) BuLi, [(BnO)\_2PO]\_2O; d) NaH, [(BnO)\_2PO]\_2O; e) 2M HCl; f) Ac\_2O and (py or Bu\_2SnO or (Bu\_3Sn)\_2O); g) for **33**: MeC(OEt)\_3, TsOH; for **34**: BrCH\_2C(OEt)\_3, TsOH; h) AcOH, H<sub>2</sub>O



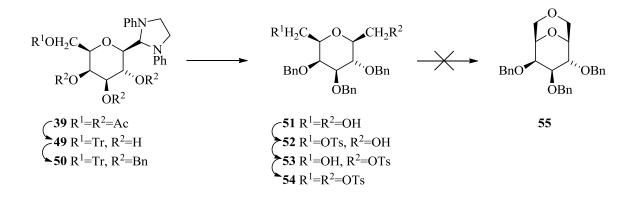
Having successfully developed a route to the tagetitoxin analogue 4 (X=O), the group focused their attention on the production of the closely related analogue 5. D-Galactose pentaacetate 37 was converted into the  $\alpha$ -glycosyl bromide and then treated with mercury(II) cyanide in nitromethane to give the  $\beta$ -nitrile 38 (Scheme 4). Reductive hydrolysis with Raney nickel and then trapping the unstable aldehyde with dianilinoethane gave the imidazolidine 39. The aldehyde was regenerated as its *p*-toluenesulfonic acid salt, reduced with sodium borohydride, and acetylated to give the pentaacetate 40. A second approach to this product was also achieved by the deacetylation of nitrile 38 with sodium methoxide and subsequent treatment with refluxing aqueous sodium hydroxide (6 M). Acetylation of the crude hydrolysis product gave a syrupy lactone. A sample of the lactone crystallized on


standing, and X-ray structural analysis and NMR analysis showed this to be the 5,1-hydroxy acid **42**.



Reagents and conditions: a) HBr, HOAc; b) Hg(CN)<sub>2</sub>, MeNO<sub>2</sub>; c) Raney Ni, NaH<sub>2</sub>PO<sub>2</sub>, PhHN(CH<sub>2</sub>)<sub>2</sub>NHPh; d) TsOH, Me<sub>2</sub>CO, DCM; e) NaBH<sub>4</sub>; f) Ac<sub>2</sub>O, py; g) MeONa, MeOH; h) 25% w/v NaOH; i) LiAlH<sub>4</sub>; j) H<sub>2</sub>O k) Ac<sub>2</sub>O, NaOAc.

Scheme 4: Furneaux's approach to the tagetitoxin analogue 5


The lactone was thought to be the 2,6-anhydroheptono-1,5-lactone ester **41**; this was confirmed when the hydroxyl acid **42** was converted into the lactone when heated in acetic anhydride in the presence of sodium acetate. Lithium aluminium hydride reduction of the lactone and peracetylation gave the desired pentaacetate **40**. Deacetylation of the anhydride **40** gave the pentaol **43**, followed by a selective tosylation of the primary alcohols to give the tosylate **44**. Four equivalents of tosyl chloride were required to obtain the ditosylate **44** in 33% yield, but this also resulted in the tritosylate **45** being isolated in 25% yield. The ditosylate was converted into the acetonide **46**. Subsequent attempts to form the cyclic sulphide **48** by treatment in DMF with either lithium sulfide or sodium sulfide, were unsuccessful, the only product isolated being thiol **47**; no traces of the cyclic sulphide were found even under extreme conditions (**Scheme 5**).

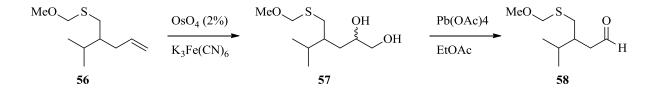


Reagents and conditions: a) MeONa, MeOH; b) TsCl, py; c) Me<sub>2</sub>C(OMe)<sub>2</sub>, TsOH; d) Na<sub>2</sub>S, DMF; e) Li<sub>2</sub>S, DMF.

Scheme 5: Furneaux's approach to the tagetitoxin analogue 5

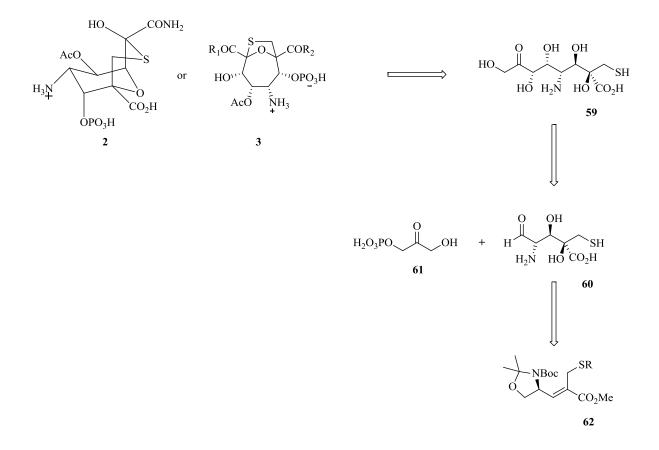
After the unsuccessful attempts to form the analogue 5 (X=S), the group turned their attention towards the oxygen analogue. Starting from tetraacetate **39**, a selective deacetylation followed by tritylation of the primary alcohol gave compound **49** (Scheme 6). Benzylation of the remaining alcohols gave compound **50**, and deprotection of the aldehyde function followed by a borohydride reduction and the detritylation gave the diol **51**. While successful tosylation of **51** to give the monotosylates **52** and **53** and the ditosylate **54** was achieved, treatment with sodium hydride failed to give the desired compound **55**.




Reagents and conditions: a) MeONa, MeOH; b)TrCl, Et<sub>3</sub>N; c) NaH, BnBr; d) TsOH, Me<sub>2</sub>CO, DCM; e) NaBH<sub>4</sub>; f) TsOH, MeOH; g) TsCl, py.

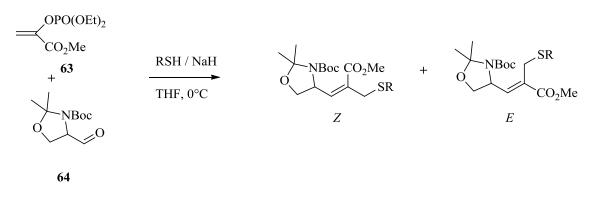
Scheme 6: Furneax's approach to the oxygen analogue 5

In conclusion, Furneaux was able to produce the tagetitoxin analogue 4 (X=O) as indicated in **scheme 1**, but he was unable to produce an analogue of the more closely related compound 5, and in both cases was unable to incorporate the sulfur present in tagetitoxin.


#### Sammakia et al.

Sammakia's work describes their studies of the dihydroxylation of olefins in the presence of sulfur functionalities, which they go on to use in their retrosynthetic analysis of tagetitoxin.<sup>12</sup> Their initial work was conducted on compound **56**. The Yamamoto procedure (OsO<sub>4</sub>, 0.02 equiv;  $K_3$ Fe(CN)<sub>6</sub>, 3 equiv; *t*-BuOH / water, 1:1) gave diols **57** in a 1:1 mixture of diastereoisomers, which was subjected to an oxidative cleavage with Pb(OAc)<sub>4</sub> in ethyl acetate to give the desired aldehyde **58** in 53% yield after purification (**Scheme 7**).




Scheme 7: Sammakia's initial studies on the dihydroxylation and oxidative cleavage in the presence of sulfur functionalities

Sammakia's retrosynthetic approach to tagetitoxin involved an enzymatic coupling of dihydroxy acetone phosphate **61** with aldehyde **60** to form the fully functionalised tagetitoxin precursor **59**. This precursor could then be cyclized to form either of the two proposed structures for tagetitoxin **2** and **3**. Aldehyde **60** could be prepared from the oxazolidine **62** by a dihydroxylation of the olefin, then a hydrolysis of the oxazolidine and oxidation of the primary alcohol to an aldehyde (**Scheme 8**).



Scheme 8: Sammakia's Retrosynthetic analysis of Tagetitoxin

Sammakia's synthesis began with the preparation of alkenes **62a-e** in a one pot synthesis by the generation of a phosphonate from alkene **63** *in situ*, followed by a condensation with the oxazolidine **64**. The authors were able to produce a range of oxazolidine alkenes with variously protected thiols with different steric and electronic properties (**Scheme 9**).



Scheme 9: One pot procedure for generation of oxazolidine alkenes with varying sulfur protecting groups

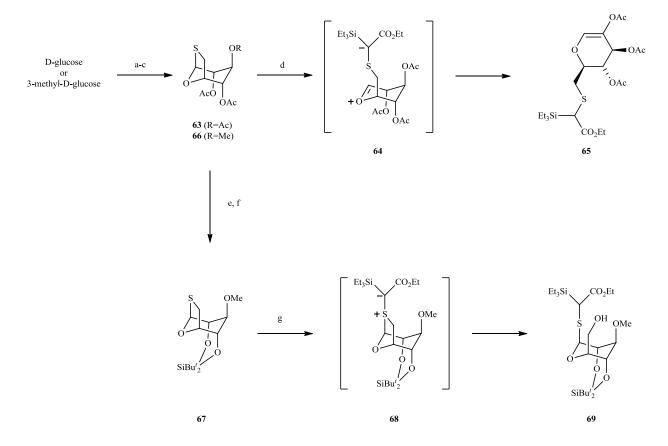
The ratio of Z to E alkenes was influenced by the protecting group present on the thiol as shown in **table 1**.

| R   | Ethyl | <i>i</i> -Propyl | <i>t</i> -Butyl | Phenyl | Benzyl |
|-----|-------|------------------|-----------------|--------|--------|
| Z:E | 60:40 | 70:30            | 100:0           | 20:80  | 30:70  |

#### Table 1: Effect of protecting group R of Z:E alkene ratio

Using conventional methods of dihydroxylation with catalytic or stoichiometric amounts of  $OsO_4$  gave only the sulfur-oxidized products, which led the group to examine the use of ferricyanide co-oxidants. AD-mix- $\beta$  gave poor results on substrates **62a-e**, probably due to the bulky nature of the osmium ligand complex and the electron deficient and sterically hindered alkenes. Attempted dihydroxylations of **62a**, **62b** and **62e** gave little if any of the desired product using both methods (**Table 2**). Over-oxidation was observed in most cases generally producing the sulfoxide product; substrate **62d** was the only compound to form the expected sulfone due to over-oxidation using K<sub>3</sub>Fe(CN)<sub>6</sub>. The bulky *t*-butyl thiol substrate **62c** was the only substrate to produce a reasonable amount of the dihydroxylation product using AD-mix- $\beta$ ; this was also the most successful substrate with K<sub>3</sub>Fe(CN)<sub>6</sub>, which produced isolated yields between 50% and 63%. The dihydroxylation gave a diastereoisomeric ratio of 25:1, the major isomer being the desired result for the author's proposed tagetitoxin synthesis. However, no further publications on the synthesis of tagetitoxin have been reported by this group.

| R                  | Oxidant                            | Recovered | CO <sub>2</sub> Me | CO <sub>2</sub> Me | CO <sub>2</sub> Me | $CO_2Me$  |
|--------------------|------------------------------------|-----------|--------------------|--------------------|--------------------|-----------|
|                    |                                    | SM        | OH<br>OH           | ÷ ÓH<br>ÓH         | `, 🌣 🔶             | 3 🗢 🗸 - 2 |
| Et (62a)           | AD-Mix-β                           | 54        | -                  | -                  | 46                 | -         |
|                    | K <sub>3</sub> Fe(CN) <sub>6</sub> | 30        | -                  | -                  | 70                 | -         |
| <i>i</i> -Pr (62b) | AD-Mix-β                           | 56        | 6                  | -                  | 28                 | -         |
|                    | K <sub>3</sub> Fe(CN) <sub>6</sub> | 39        | 15                 | -                  | 44                 | -         |
| <i>t</i> -Bu (62c) | AD-Mix-β                           | 86        | 14                 | -                  | -                  | -         |
|                    | K <sub>3</sub> Fe(CN) <sub>6</sub> | 32        | 55                 | -                  | 11                 | -         |
| Ph (62d)           | AD-Mix-β                           | 99        | -                  | -                  | <1                 | -         |
|                    | K <sub>3</sub> Fe(CN) <sub>6</sub> | 34        | 27                 | -                  | -                  | 39        |
| <b>Bn (62e)</b>    | AD-Mix-β                           | 82        | -                  | -                  | 10                 | -         |
|                    | K <sub>3</sub> Fe(CN) <sub>6</sub> | 22        | 6                  | -                  | 72                 | -         |

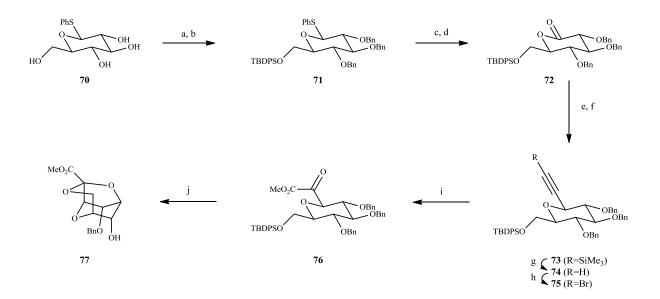

Table 2: Attempted dihydroxylations of Z alkenes using ferricyanide co-oxidants.

Conditions: AD mix-β: 1.5 g/mmol alkene in 30 ml of 1:1 *t*-butanol-water, RT 72h; K<sub>3</sub>Fe(CN)<sub>6</sub>: 3 eq. K<sub>3</sub>Fe(CN)<sub>6</sub> and K<sub>2</sub>CO<sub>3</sub>, 10 eq. OsO<sub>4</sub> in 30 ml of 1:1 *t*- butanol –water, RT 72h.

## Porter et al.

In 2006 Michael J. Porter and Julien R. H. Plet submitted a paper on the first synthesis of the tagetitoxin bicyclic core, achieved by a cyclization of a thiol onto an electrophilic ketone <sup>(13)</sup>. Their first strategy was to attempt a carbene ring expansion of a 1,3-oxathiolane, starting from a carbohydrate precursor. D-Glucose was converted to a bicyclic monothioacetal **63** through the displacement of an anomeric bromide and a 6-tosylate with potassium *O*-ethylxanthate. They then attempted a ring expansion using ethyl diazo(triethylsilyl)acetate and a catalytic amount of rhodium(II) acetate; this, however, did not lead to the predicted bicycle but instead gave the glycal **65**. This outcome was suggested by Porter to occur through a sulfur ylid formation and heterolytic C-S bond cleavage to give zwitterion **64**, instead of the desired C-C bond formation; the intermediate was presumed to undergo a ring-flip to the more stable conformer, followed by a proton transfer to give the observed product **65**.

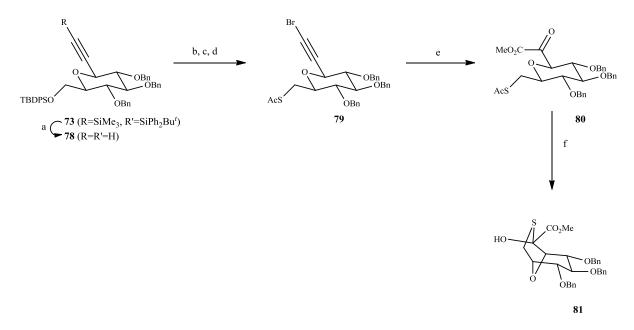
To try to prevent this from occurring the authors designed a conformationally constrained substrate whose derived zwitterion would be unable to ring-flip. 3-Methyl-D-glucose was converted to bicycle **66** under the same conditions used to produce compound **63**. The acetate groups were removed and a di-*tert*-butylsilylene was added to bridge the hydroxyl groups to give **67**. This compound was treated with ethyl diazo(triethylsilyl)acetate as before and with catalytic rhodium(II) heptafluorobutyrate to give the primary alcohol **69** in a low yield as the only isolable product. It appears in that while the sulfur ylid **68** formed it did not undergo C-S bond heterolysis and ring expansion. Instead water seems to have reacted with the ylid to form bicycle **69** (**Scheme 10**).




Reagents and conditions: a) TsCl, pyridine; Ac<sub>2</sub>O; b) HBr AcOH; c) KSCSOEt, DMF, 50 °C (46% **63** over 3 steps) or KSCSOEt, acetone, reflux (47% **66** over 3 steps); d) Et<sub>3</sub>SiC(N<sub>2</sub>)CO<sub>2</sub>Et, Rh<sub>2</sub>(OAc)<sub>4</sub>, benzene, reflux 34%; e) NH<sub>3</sub>, MeOH, H<sub>2</sub>O, 50%; f) <sup>*t*</sup>Bu<sub>2</sub>SiCl<sub>2</sub>, Et<sub>3</sub>N, DCM, 86%; g) Et<sub>3</sub>SiC(N<sub>2</sub>)CO<sub>2</sub>Et, Rh<sub>2</sub>(O<sub>2</sub>CC<sub>3</sub>F<sub>7</sub>)<sub>4</sub>, benzene, reflux, 21%.

#### Scheme 10: Porter's synthetic work using carbene mediated ring expansion of 1,3-oxathiolanes

After the lack of success using the ring expansion method, Porter moved on to forming the 1,4-oxathiane ring of tagetitoxin by the cyclization of a thiol onto an electron deficient ketone.


The authors began with phenyl 1-thio- $\beta$ -D-glucopyranoside **70** and selectively protected the primary alcohol with TBDPS and the remaining hydroxyl groups with benzyl groups to give the fully protected compound **71**. The thioglycoside linkage was hydrolysed using NBS and aqueous acetone and then oxidized to the  $\delta$ -lactone **72** using DMP. Cerium-mediated addition of trimethylsilylacetylene followed by deoxygenation and desilylation gave the terminal alkyne **74**. Bromination with NBS and silver nitrate gave **75**, which was oxidized by permanganate in aqueous methanol to give the  $\alpha$ -ketoester **76**. When the silyl ether was treated with TBAF, a simultaneous elimination of the 2-benzyloxy group was observed to form an enol ether. When **76** was treated with HF-pyridine only the single product, tricyclic acetal **77**, was observed. In this case the silyl ether and the 3 and 4-benzyl ethers had been cleaved and an acetal had formed between the ketone and the 6-hydroxy group (**Scheme 11**).

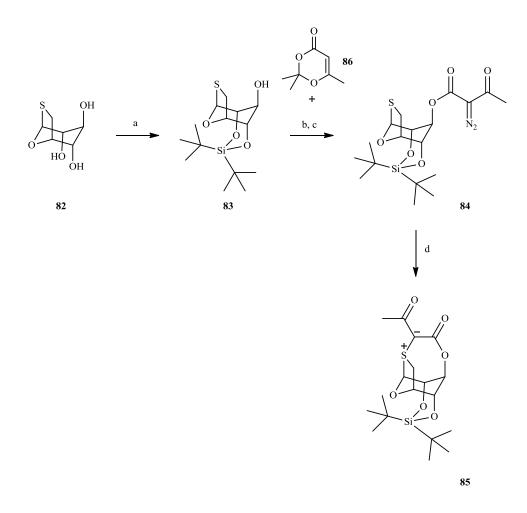


Reagents and conditions: a) TBDPSCl, imidazole, DMF, 99%; b) BnBr, NaH, DMF 87%; c) NBS, aq. acetone, 95%; d) DMP, pyridine, DCM, 69% e) TMSC=CH, *n*-BuLi, CeCl<sub>3</sub>·7H<sub>2</sub>O, THF, -78 °C to rt, 96%; f) Et<sub>3</sub>SiH, TMSOTf, DCM, 74%; g) NaOH, MeOH, DCM, 100%; h)NBS, AgNO<sub>3</sub>, acetone, 98%; i) KMnO<sub>4</sub>, NaHCO<sub>3</sub>, MgSO<sub>4</sub>, aq. MeOH, 84%; j)HF·py, THF, -78 °C to rt, 77%.

Scheme 11: Porter's synthetic work on the formation of a 1,4-oxathane ring

The formation of this acetal prevented the introduction of the sulfur group at C-6 however; using the same steps in a different order enabled the Porter group to produce the bicyclic core of the tagetitoxin skeleton successfully (**Scheme 12**).

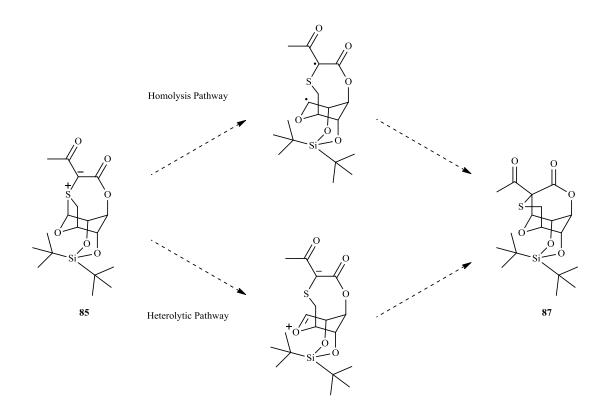



Reagents and conditions: a) TBAF, THF, 99%; b) MsCl, Et<sub>3</sub>N, DMAP, DCM, 95%; c) KSAc, DMF, 99%; d) NBS, AgNO<sub>3</sub>, acetone, 99%; e) KMnO<sub>4</sub>, NaHCO<sub>3</sub>, MgSO<sub>4</sub>, aq. MeOH, 71%; f)N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O, MeOH, 88%



Starting from compound **73** as described in **scheme 11**, Porter's group decided to remove both silyl groups simultaneously using TBAF to give the primary alcohol **78**. The alcohol was mesylated and subsequently displaced with potassium thioacetate, and the alkyne was brominated as before to give compound **79**. Oxidation with KMnO<sub>4</sub> gave the ketoester **80**, and removal of the *S*-acetyl protecting group led to the bicyclic compound **81**. Using this route, Porter *et al.* successfully synthesized the bicyclic core structure of tagetitoxin.

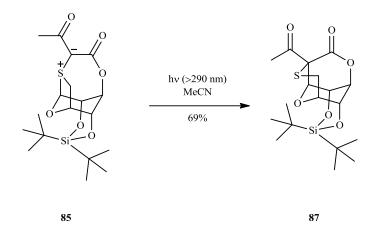
Two years later Porter *et al.* reported an alternative method for synthesizing the tagetitoxin bicyclic core utilizing a photo-Stevens rearrangement.<sup>14</sup> Building on their previous work which aimed to produce the tagetitoxin core by a ring expansion using a sulfur ylid rearrangement, <sup>13</sup> they concluded that the failure of the expected ring expansion was due to the conformational flexibility of the monocyclic intermediate **64**. They decided that carrying


out the ylid formation intramolecularly would lead to a more constrained intermediate, from which the desired C-C bond formation would be favoured.



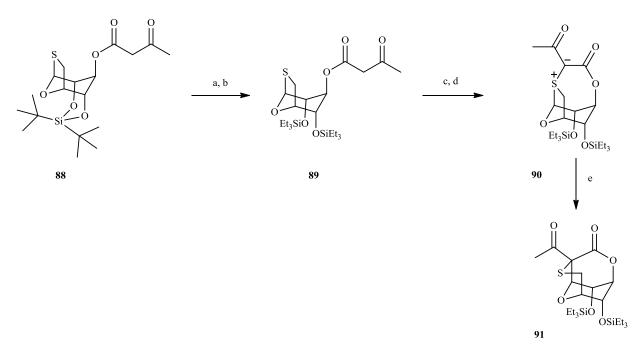
Reagents and conditions: a) t-Bu<sub>2</sub>SiCl<sub>2</sub>, AgNO<sub>3</sub>, Et<sub>2</sub>N, DMF, 65%; b) **86**, xylene, reflux, 88%; c) p-AcNHC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>N<sub>3</sub>, Et<sub>3</sub>N, MeCN, 100%; d) Rh<sub>2</sub>(OAc)<sub>4</sub> 1 mol %, benzene, reflux, 88%.

#### Scheme 13: Porter's Synthesis of ylid 85


D-glucose was converted to 1,6-thioanhydroglucose **82** in four steps using the procedure reported by Akagi.<sup>15</sup> The C-2 and C-4 hydroxyl were protected using a di-*tert*-butylsilene bridge to give **83** (**Scheme 13**). Acetoacetylation was followed by a diazo transfer to give **84**, which, when treated with 1 mol % rhodium(II) acetate, was converted to isolable tetracyclic ylid **85**. After successfully producing the desired ylid **85**, the group attempted a [1,2]-rearrangement of the sulfonium ylid under elevated temperatures using a variety of solvents to form compound **87**. This, however, proved unsuccessful, even when microwave irradiation was used, in most cases only starting material was recovered, and decomposition was observed after prolonged heating periods.



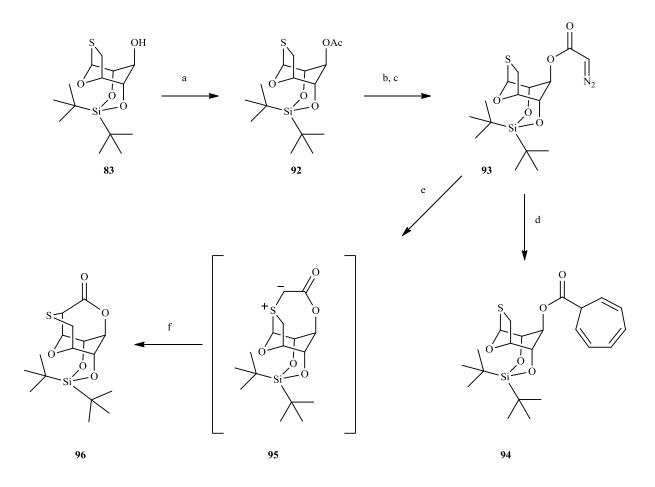
Scheme 14: Porter's proposed pathways for 1,2 thermal rearrangement


Porter's group proposed two possible mechanisms for the thermal rearrangement of the ylid to give the desired compound **87** (**Scheme 14**). The homolysis pathway is the usual mechanism of the Stevens rearrangement, but, they believed that the heterolytic pathway would be favoured in this case due to their experience with compound **63** to give compound **65** (**Scheme 10**).<sup>13</sup> In an attempt to promote the heterolysis pathway, protic (TFA, TfOH) and Lewis [Cu(acac)<sub>2</sub>] acids were added to the ylid **85** with the expectation that this would increase the polarization of the C-S bond. This was unsuccessful and no evidence of the ring expansion product was observed.

After the failure of the thermal- and acid-catalysed promotion of the Stevens rearrangement, Porter decided to use the photochemical variant (**Scheme 15**).



Scheme 15: Photo-Stevens rearrangement


Ylid **85** was subjected to photolysis in acetonitrile, which successfully converted **85** to the desired compound **87**. With the success of the photo-Stevens strategy the group turned their attention towards determining the structural elements necessary for the ylid formation and subsequent photo-Stevens reaction. They began by altering the bis-*tert*-butylsilene protecting group present on the C-2 and C-4 hydroxyls to bis-triethylsilyl groups (**Scheme 16**).



Reagents and conditions: a) TBAF, THF, 76%; b)  $Et_3SiCl$ , DMAP,  $Et_3N$ , DCM, 72%; c) *p*-HOOCC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>N<sub>3</sub>,  $Et_3N$ , MeCN, 75%; d)  $Rh_2(OAc)_4$  1 mol %, benzene, reflux, 53%; e) hv, MeCN, 65%

Scheme 16: Bis-triethylsilyl protected substrate

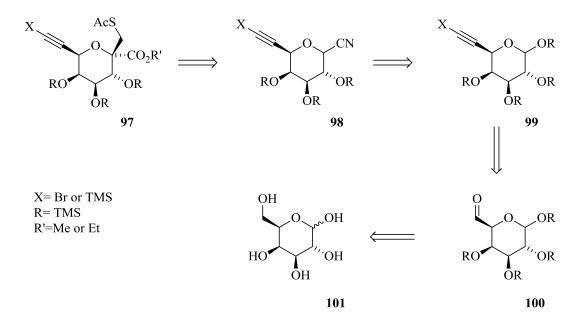
Converting to the bis-triethylsilyl groups had no effect on the rate or yield of the ylid formation or photo-Stevens reaction.



Reagents and conditions: a) Ac<sub>2</sub>O, DMAP, Et<sub>3</sub>N, DCM, 84%; b) LiHMDS, THF. -78 °C, CF<sub>3</sub>CO<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>; c) *p*-HOOCC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>N<sub>3</sub>, Et<sub>3</sub>N, MeCN, 65%; d) Rh<sub>2</sub>(OAc)<sub>4</sub> 1 mol %, benzene, reflux, 39%; e) Rh<sub>2</sub>(OAc)<sub>4</sub> 1 mol %, DCM, reflux; f) hv, MeCN, 65%.

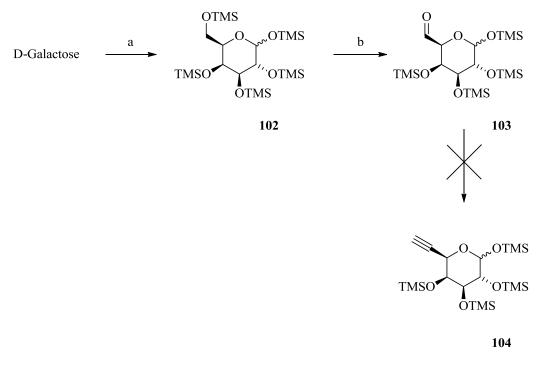
#### Scheme 17: Diazoacetate substrate

Diazoacetate **93** was also synthesized by Porter (**Scheme 17**), following treatment with rhodium(II) acetate in refluxing benzene the undesired cycloheptatriene **94** was obtained. Changing the solvent to dichloromethane gave the ylid **95**, which, when subjected to photolysis, gave the desired tetracycle **96** in 65% yield.


In conclusion Porter *et al* has successfully synthesized the tagetitoxin bicyclic core using two methods, the cyclisation of a thiol onto an electrophilic ketone, and a photo-Stevens rearrangement. At the time of writing these are the only successful attempts to synthesize the

tagetitoxin core structure that have been published however, a total synthesis has yet to be achieved.

# Previous work in the Page group


# **D-galactose route**

Initial studies towards the synthesis of tagetitoxin in the Page group were conducted by Claud-Éric Roy.<sup>16</sup> The first route undertaken by our group began with the functionalization of a pyranose ring with the goal of maintaining the configurations of the O-2, O-3 and O-4 hydroxyls until their conversion to the desired moieties later in the synthesis.



Scheme 18: Initial retrosynthesis proposed by the page group from D-galactose

Starting from D-galactose, a short sequence of steps was reported in the literature <sup>17</sup> to obtain compound **100**, which could be converted to the alkyne **99** using known methodology. The cyano moiety would be introduced by a glycosidation reaction. The thioacetate functionality could be achieved by the condensation of formaldehyde on the anomeric carbon followed by a displacement of the protected hydroxyl with a thioacetate anion. The cyano group would be converted to an ester using well known literature procedures.<sup>18</sup>



Reagents and conditions: a) TMSCl, pyridine, 3 h, 100%; b) (COCl<sub>2</sub>)<sub>2</sub>, DMSO, DCM, -78 °C, then Et<sub>3</sub>N, -50 °C.

Scheme 19: Attempted synthesis alkyne 104 from D-galactose

Silylation of D-galactose proceeded smoothly to give compound **102**, but initial attempts to oxidize the primary alcohol to the aldehyde using chromium trioxide led to no desired product being isolated. Several other oxidation procedures were attempted, including PCC, PDC, and sulfur trioxide-pyridine complex without any success. Lastly a Swern procedure was used to achieve the aldehyde in good yields (80-98%). A Corey-Fuchs procedure <sup>19</sup> was used to convert the aldehyde into the desired alkyne; this, however, proved unsuccessful and resulted in recovery of starting material in every attempt and variation of the procedure. This led to the deduction that a possible explanation for the lack of reactivity could be steric hindrance by the -OTMS group on the C-4 position preventing the ylid from reacting with the aldehyde (**Figure 9**).

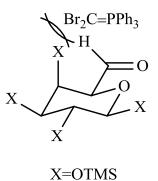
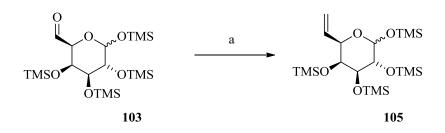
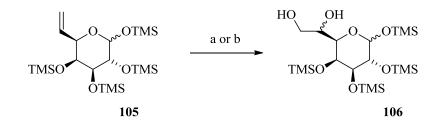




Figure 9: Steric hindrance generated from the C-4 OTMS group.

Several further attempts were made to produce the desired alkyne **104** using a Seyferth-Gilbert reaction with the Ohira-Bestmann protocol.<sup>20</sup> Unfortunately, these all proved unsuccessful. To deduce the reactivity and accessibility of the aldehyde, a standard Wittig reaction was performed using a methylene-phosphorus ylid to form the terminal alkene.



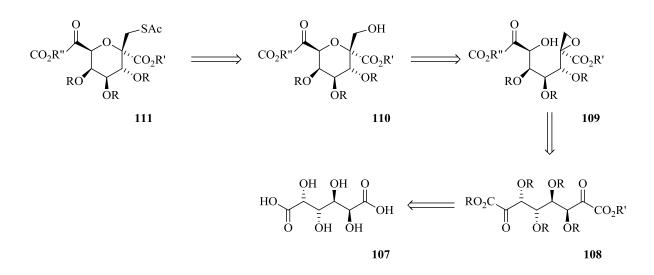

Reagents and conditions: a) Ph<sub>3</sub>PMeBr, tBuOK, 49%

Scheme 20: Wittig reaction on aldehyde 103

Several procedures were used to synthesize alkene 105 including phosphonium species generated *in situ* or pre-synthesized; also two different bases were used to form the ylid, *t*BuOK and *n*BuLi. The best yield was obtained when the phosphonium bromide was formed before the olefination step and *t*BuOK was used a base (Scheme 20). The relatively low yields overall were presumed to be due to steric hindrance around the pyranose cycle of the aldehyde 103.

With the alkene in hand an alternative strategy was devised to reach the final  $\alpha$ -ketoester by a dihydroxylation and sequential oxidation. Common methods for the dihydroxylation reaction were attempted including OsCl<sub>3</sub> and AD-mix (**Scheme 21**).



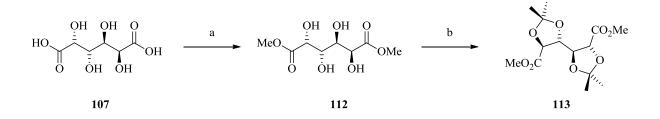

Reagents and conditions: a) AD-mix β, tBuOH, H<sub>2</sub>O; b) OsCl<sub>3</sub>, NMO, THF, rt, 18 h

Scheme 21: Attempted dihydroxylation of alkene 105

The first attempts to produce the diol using AD-mix were unsuccessful and only starting material was recovered from the reaction mixture. Under the OsCl<sub>3</sub> NMO conditions, the disappearance of the alkene signals observed by <sup>1</sup>H NMR spectroscopy indicated that the reaction had proceeded to give the diol, but after purification more complex mixtures were isolated, indicating that the product was unstable during flash chromatography. Later in this strategy it was planned to use anomeric chemistry to substitute the silyl ether with a cyanide moiety which would later be converted to the desired ester functionality. With this strategy in mind it was decided to protect the diol functionality in order to purify the crude mixture and reduce the likelihood of participation of the hydroxyl groups; ketal and acetate protecting groups were chosen for this purpose. Standard conditions for forming the acetal were used (2,2-DMP with catalytic amounts of acid), but instead of obtaining the desired ketal protected compound an unexpected loss of mass was observed. The introduction of acetate groups was also attempted but did not yield the desired compounds, instead giving a more complex mixture of products. Due to the instability of the silyl ether protecting groups under these conditions this strategy was abandoned, and other potential routes were examined before any further work on this step was conducted.

### **Mucic acid route**

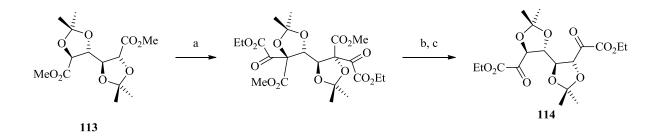
In an alternative approach to starting with a cyclic precursor, a new route was devised that would begin with the meso compound galactaric acid (mucic acid).




Scheme 22: Retrosynthesis from galactaric acid

Using this strategy, the pyranose ring would be formed through a ring closure by attack of a nucleophilic oxygen onto an epoxide to give an advanced intermediate towards the tagetitoxin synthesis **110** (**Scheme 22**). The precursor **111** would derive from a displacement of an activated hydroxyl by a thioacetate anion. Intermediate **110**, fully functionalized at this stage, could be derived from the terminal epoxide **109**. This intermediate could be achieved through a Tebbe olefination-epoxidation sequence, <sup>21</sup> or a Corey-Chaykovsky reaction <sup>22</sup> on one of the two ketone carbonyls from di-ketoester **108**, which could be synthesized in a few short steps from galactaric acid.

To obtain the di-ketoester **113**, a procedure by Hirsch *et al.*<sup>23</sup> was followed (**Scheme 23**). The initial step was a methyl ester formation using MeOH and THF to give diester **112** in nearly quantitative yields (90-99%). The next step was the bis-ketal formation using acetone and a Lewis acid. The fully protected compound **113** was obtained in very low yields despite

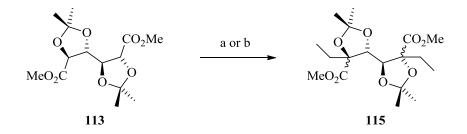

several attempts (17-25%, lit. 27%). Changing the Lewis acid catalyst for Brønsted acids ( $H_2SO_4$ , *p*TSA, HCl) led to reduced yields, and in some cases, decomposition.



Reagents and conditions: a) MeOH, THF, 90% b) Lewis acid, acetone, 17-25%

Scheme 23: Formation of dimethyl bis-acetonide galactarate 113

X-ray crystal structure analysis confirmed the structure of compound **113** and matched the result documented in the literature.<sup>23</sup> The second stage in this strategy was to obtain the diketoester moieties; the simplest route seemed to be the formation of the enolates of the ester functions on **113** and allow the enolate to attack a derivative of oxalic acid, diethyl oxalate. Following this would be a decarboxylation under acidic conditions and subsequent esterification to give the diketoester **114** (Scheme 24).

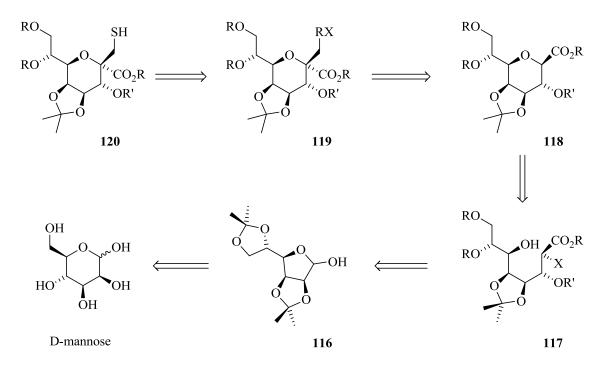



Reagents and conditions: a) EtONa, diethyl oxalate, EtOH, RT; b) HCl aq, reflux, 6 h; c) p-TsOH, EtOH, toluene, reflux 6 h

#### Scheme 24: Formation of α-ketoester moiety

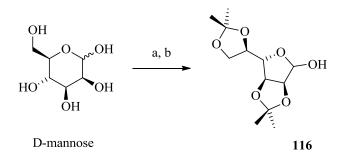
Unfortunately, several attempts to achieve the di-ketoester **114**, including the use of several bases and conditions, were unsuccessful and resulted in only starting material being

recovered. This led the group to try several alkylation reactions on compound **113** to assess the reactivity of the carbon to be deprotonated (**Scheme 25**). Both conditions failed to alkylate the esters and only starting material was recovered from the reactions. In one final attempt to investigate whether the enolate of ester **113** was being generated, following a similar procedure, LDA was used to form the enolate of ester **113** and D<sub>2</sub>O was added to quench the reaction. While the di-deuteriated compound was observed by <sup>1</sup>H NMR spectroscopy, further work on this route was abandoned due to the very poor yields for the bis-ketal formation and the lack of success producing the ketoester moieties.




Reagents and conditions: a) NaH, EtI, THF, 0 °C; b) LDA, EtI, THF, -78 °C

Scheme 25: Alkylation attempts on compound 113


## **D-mannose route**

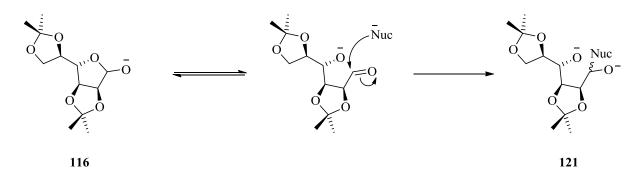
A new strategy was devised beginning with the compound diacetone mannose **116**, which can be easily prepared from D-Mannose in acetone with  $H_2SO_4$  (**Scheme 26**). Diacetone mannose could be converted to alcohol **117**, which in turn could be cyclized to form pyranose **118**. This could be converted to the intermediate **119** using enolate chemistry already reported in the literature.<sup>24</sup>



Scheme 26: Retrosynthesis from diacetone mannose

The first step in this strategy was the protection of mannose to form diacetone mannose **116**; this is a well-established reaction in carbohydrate chemistry first reported by Schmidt in 1963.<sup>25</sup>




Reagents and conditions: a) H<sub>2</sub>SO<sub>4</sub>, acetone, rt, 3 h; b) Na<sub>2</sub>CO<sub>3</sub>, charcoal, acetone, reflux, 1 h.

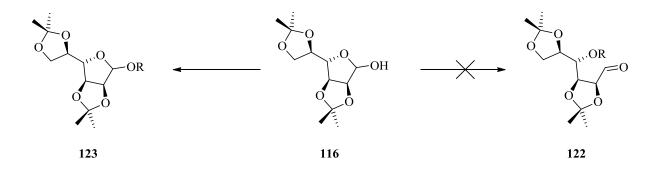
Scheme 27: Schmidt's synthesis of diacetone mannose

This procedure led to a variety of problems initially; the order of addition of sulfuric acid and mannose in acetone was critical, leading to decomposition of the starting material if not performed correctly. The problem was aggravated with smaller scale reactions, prompting the use of dilute sulfuric acid to prevent the decomposition of starting material, which led to the

production of an unidentifiable compound that had the same m/z as the desired product but did not match the NMR data expected. Neutralizing the reaction mixture before the second stage of the reaction was also found to be crucial as refluxing a slightly acidic solution also led to decomposition. Finally, an optimum reaction procedure was found and diacetone mannose was produced in good yields (75-90%) giving a mixture of the  $\alpha$ - and  $\beta$ -form; the crystallization procedure in the literature was not always sufficient to yield only the  $\alpha$ anomer, this, however, was not required for the next step in the synthesis.

The next step in the synthesis was the addition of a masked  $\alpha$ -ketoester onto the aldehyde moiety of diacetone mannose. The lactol function of diacetone mannose can exist in its closed form and the open hydroxy-aldehyde form shown in **scheme 28**, and therefore a nucleophilic species was chosen to add to the aldehyde function. Several methods were attempted to condense ethyl diazoacetate and ethyl and methyl bromoacetate onto diacetone mannose without success (**Table 3**).



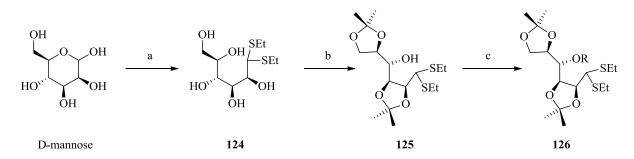

Scheme 28: Proposed reactivity of lactol-hydroxy aldehyde equilibrium

| Method | Conditions                                                                            | Result |
|--------|---------------------------------------------------------------------------------------|--------|
| 1      | Ethyl diazoacetate, Et <sub>2</sub> Zn, DCM, -78 °C to rt, overnight                  | SM     |
| 2      | Ethyl diazoacetate, Et <sub>2</sub> Zn, DCM, 0 °C to rt, 48 h                         | SM     |
| 3      | Ethyl diazoacetate, Ti(O <i>i</i> Pr) <sub>4</sub> , DME, H <sub>2</sub> O, rt, 120 h | SM     |
| 4      | Ethyl diazoacetate, neat, 24 h                                                        | SM     |
| 5      | Methyl bromoacetate, LiBr, TEA, Toluene, 0 °C to rt, overnight                        | SM     |
| 6      | Ethyl bromoacetate, LDA, THF, -78 °C to rt, overnight                                 | SM     |

Table 3: Reagents and conditions for addition of ketoester onto diacetone mannose

With the lack of successful results to produce ketoester intermediates **121**, another route was explored. While still focusing on the aldehyde moiety of diacetone mannose, the hydroxyl

group in the open form would be protected before any reaction involving the aldehyde was performed. Initially the protection of the open form hydroxyl was attempted directly from diacetone mannose.



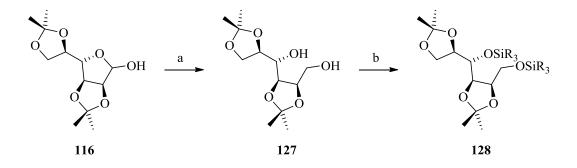

R= TBDPS, TBDMS, TIPS

### Scheme 29: Protection of 4-hydroxyl

Despite several procedures to protect the 4-O hydroxyl of diacetone mannose with a variety of silyl ethers, the end result was always either a protection of the 1-O hydroxyl **123** or recovery of starting material, the desired compound **122** never being observed (**Scheme 29**).

A new route to synthesize the target aldehyde was formulated involving the protection of the aldehyde function first as a thioacetal; subsequent protections of the different hydroxyl groups, and hydrolysis of the thioacetal would lead to the desired intermediate (**Scheme 30**).

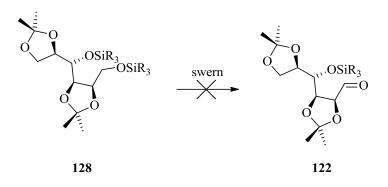



Reagents and conditions: a) EtSH, HCl, 89%; b) acetone, H<sub>2</sub>SO<sub>4</sub>; c) protection, cleavage

#### Scheme 30: Synthesis of protected aldehyde

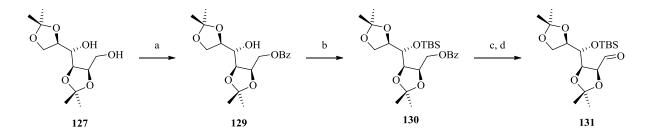
The initial thioacetal formation proceeded smoothly, D-mannose was dissolved in ethanethiol and HCl was used as a catalyst to give the protected compound **124** in 89% yield. The second

step was the selective 2,3-5,6-diisopropylidene formation. Acetone and sulfuric acid were used as previously described for the formation of diacetone mannose, but this procedure was not successful on this compound. Every attempt led to an inseparable mixture of compounds or decomposition of the starting material.


The lack of success of the thioacetal procedure prompted the group to try a sequential silvlation protection method on diacetone mannose. The synthesis began with the reduction of diacetone mannose **116** with lithium aluminium hydride to give the diol **127** in high to quantitative yields. Several silvlation procedures were tried using TESCl and TMSCl, leading to the diprotected species of both silvl ethers in good yields (**Scheme 31**).



Reagents and conditions: a) LiAlH<sub>4</sub>, Et<sub>2</sub>O, 4 h, 0 °C to rt; b) base, R<sub>3</sub>SiCl, solvent

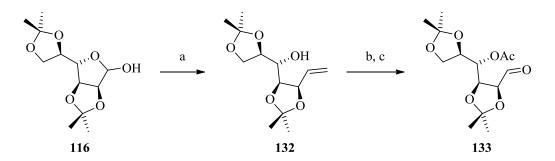

Scheme 31: Reduction and disilylation procedure

The next step was the selective oxidation of the primary silyl ether. Following literature procedures on silyl ether oxidations, <sup>26</sup> Swern reactions were performed on the disilylated compounds (**Scheme 32**).



Scheme 32: Selective oxidation on the primary silyl ether

Several attempts were made to oxidize the primary ether to form the desired aldehyde **122**, but none of the reactions led to the product and the route was therefore abandoned.

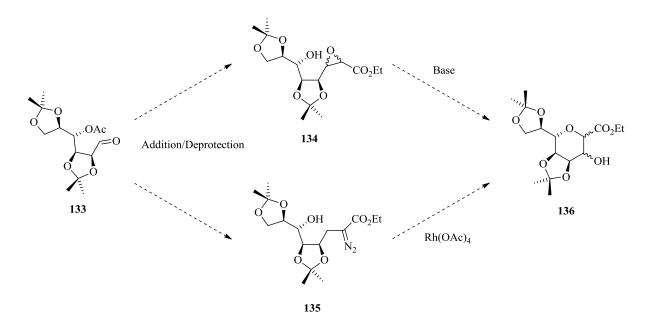



Reagents and conditions: a) BzCl, pyridine, 0 °C, rt; b) TBSCl, base, solvent; c) saponification; d) oxidation.

Scheme 33: Proposed synthesis for the aldehyde intermediate 131

A revised strategy for the synthesis of the desired silylated aldehyde was devised involving the sequential protection of diacetone mannose using a benzoylation, following a procedure by Hasimoto, <sup>27</sup> where diacetone mannose was converted to the TBS protected aldehyde **131** in five steps. Using this procedure, the benzoyl protected compound **129** was successfully prepared in 55% to 80% yield depending on the conditions used (**Scheme 33**). In some cases a by-product of this reaction was the di-benzoylated compound. The next step in this synthesis was the protection of the remaining secondary alcohol with the TBS ether. Two methods were reported in the literature, TBSOTf in TBME or pyridine, or TBSCl in DMF. TBSCl was unsuccessful in producing the target compound, the desired intermediate was never isolated and the reaction gave a complex mixture of unknown compounds. Using

TBSOTf gave better results, yielding the target compound **130** in 37% yield. The following step in this route was the saponification of the ester to deprotect the hydroxyl function and the subsequent oxidation to the aldehyde moiety. Saponification of the ester proceeded in almost quantitative yields without the need for purification, but none of the oxidation procedures led to the desired aldehyde **131**.

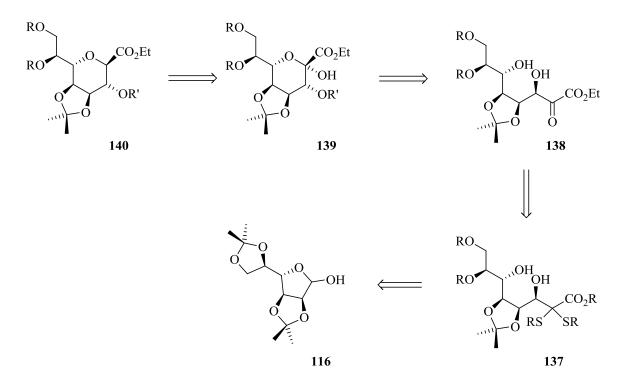



Reagents and conditions: a) Ph<sub>3</sub>PCH<sub>3</sub>Br, BuLi, THF, -20 °C, overnight; b) acetylation; c) ozonolysis

#### Scheme 34: Synthesis of aldehyde intermediate via Wittig procedure

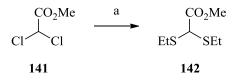
An alternate route to the protected aldehyde compound **133** using a Wittig olefination step was reported by López-Herrera. <sup>28</sup> The first step is the Wittig reaction to form the terminal olefin **132**, an acetylation followed by ozonolysis would then lead to the desired compound **133** (Scheme 133).

The olefination was performed with methyltriphenylphosphonium bromide and butyl lithium in THF at -20 °C. The reaction was successful and produced the desired alkene **132** in 47% to 76% yield. The next step was the protection of the secondary hydroxyl group; using acetic anhydride and pyridine the acetylation proceeded very smoothly to give between 84% and 97% yield. Several attempts at a silyl protection of this intermediate were made, to produce a shorter method of reaching the silyl ether mentioned earlier, but the desired product was never observed. The last step in this route was the ozonolysis; the reaction was performed at -78 °C to prevent any decomposition of the aldehyde. Both triphenylphosphine and dimethylsulfide were used as reducing agents and both led to the aldehyde in good yields Chromatography was necessary to remove triphenylphosphine oxide, whereas when using DMS, evaporation under reduced pressure was sufficient to obtain the pure compound.




Scheme 35: Proposed routes for pyranoside 136

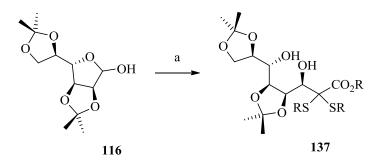
With aldehyde **133** in hand, the next step for the group was to add functionalities to the C-1 position. Two possible pathways were devised (**Scheme 35**). The first route was based on a Darzens reaction; an alkyl-haloacetate would be condensed onto the carbonyl group, followed by elimination of the halogen by attack from the anionic oxygen. The second route would consist of an alkyl-diazoacetate condensing onto the carbonyl group, the acetate ester would then be cleaved and the resulting diol treated with  $Rh(OAc)_4$  in order to trigger the formation of the epoxide or the direct 6-endo-tet cyclization to form pyranoside **136**. Both routes were attempted but neither gave the desired pyranoside of the  $\alpha$ -epoxyester, which led to the route being abandoned.


## **Dithioacetal route**

The final strategy previously attempted by the group consisted of a nucleophilic addition of a synthetically equivalent  $\alpha$ -ketoester onto diacetone mannose (**Scheme 36**).



Scheme 36: retrosynthesis of pyranoside ester 140

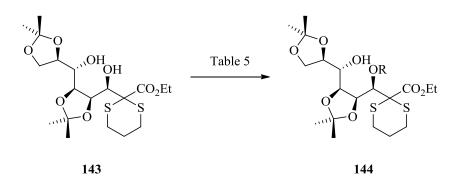

This route was developed from the synthesis of 3-deoxy-D-manno-2-octulusonic acid (KDO) which utilized thioacetal species to achieve the intermediate **139**.<sup>29</sup> The first step in this route was to synthesize one of the nucleophilic addition species as it was not commercially available and was relatively simple to produce on a large scale.



Reagents and conditions: a) MeONa, then EtSH, 82%.

Scheme 37: Formation of dithioacetal 142

Diethyldithioacetal **142** was formed from methyl dichloroacetate and ethane thiol using the literature procedure.<sup>30</sup> The next step was the nucleophilic addition onto diacetone mannose, performed as repoted in the literature.<sup>29</sup>

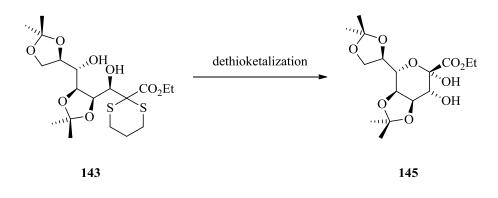



Reagents and conditions: a) LDA, dithioacetal species, 116

| Method | Thioacetal                   | Conditions                               | Yield |
|--------|------------------------------|------------------------------------------|-------|
| 1      | Diethyl dithioacetal         | DIPA, BuLi then                          | SM    |
|        |                              | dithioacetal, then MgBr <sub>2</sub> ,   |       |
|        |                              | then <b>116</b>                          |       |
| 2      | Ethyl dithiolane carboxylate | DIPA, BuLi then dithiolane,              | SM    |
|        |                              | then MgBr <sub>2</sub> , then <b>116</b> |       |
| 3      | Ethyl dithiane carboxylate   | DIPA, BuLi then dithiane,                | SM    |
|        |                              | then <b>116</b>                          |       |
| 4      | Ethyl dithiane carboxylate   | DIPA, BuLi then dithiane,                | 65%   |
|        |                              | then $MgBr_2$ , then <b>116</b>          |       |

Table 4: reagents and conditions for nucleophilic addition reaction

The next step in this synthesis was the selective protection of the C-3 hydroxyl group before the dethioketalization to trigger the cyclization to form the desired intermediate **139**. Several protecting groups were chosen, including a stable silyl group TBDMS, a benzyl group and a benzoyl group (**Table 5**).



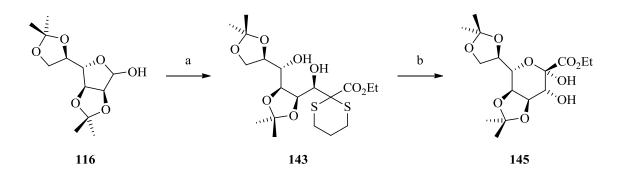

Scheme 38: Protection of C-3 hydroxyl on intermediate 143

| Method | R group | Conditions                                                 | Yield                 |
|--------|---------|------------------------------------------------------------|-----------------------|
| 1      | TBS     | TBDMSCl, imidazole, DMAP, Et <sub>2</sub> O, overnight, rt | SM                    |
| 2      | TBS     | TBSCL, imidazole, DMAP, Et <sub>2</sub> O, 3 d, rt         | SM, diacetone mannose |
| 3      | Bn      | DIAD, Ph <sub>3</sub> P, BnOH, THF, reflux, overnight      | Decomposition         |
| 4      | Bn      | MeMgBr, BnBr, THF                                          | SM, Diacetone mannose |
| 5      | Bz      | BzCl, pyridine, THF, then dithiane 143                     | SM                    |

Table 5: Reagents and conditions for protection of C-3 hydroxyl on compound 143

Unfortunately all the attempts to protect the C-3 hydroxyl were unsuccessful, in some cases even leading to the decomposition of the starting material, which reverted back to diacetone mannose **116**. This lack of reactivity was blamed on the steric hindrance in the compound **143**. The formation of diacetone mannose was thought to occur due to a fragmentation process initiated by deprotonation of the hydroxyl group  $\alpha$ - to the dithiane group, which would revert to an aldehyde and reform the lactol ring of diacetone mannose. Following the poor results from the protection reactions, the sequence was altered to begin with the dethioketalization step and then proceeded to protect the hydroxyl afterwards (**Scheme 39**).




Scheme 39: Dethioketalization and cyclization of compound 143

Initial attempts for the dethioketalization were performed as stated in the literature, <sup>29</sup> but the yields of the pyranose 145 obtained were significantly lower (18%), than that reported in the previous work (76%). This low yield was exacerbated when the reaction was scaled up, often leading to little if any product. Several methods were attempted to remove the dithiane group, NBS, I<sub>2</sub> and NIS all giving disappointing results. Even after using the purest components possible for the reaction, (recrystallized NBS, HPLC grade acetone and distilled water) the yields were not improved. Only a small quantity of pyranose 145 was obtained, which after purification led to either decomposition or total loss of the compound.

The initial studies on the synthesis of tagetitoxin in the Page group led to a number of possible routes that would be investigated further as described in this thesis. It also ruled out several routes that were deemed too problematic or simply not possible to undertake.

# Project

Following on from previous work in the group our aim was to build on several of the intermediates produced, particularly with the work on dithioacetal protected ketoesters, as we believed this was the most promising route developed at that point (**Scheme 40**).



Reagents and conditions: a) LDA, MgBr<sub>2</sub>, dithiane, 116; b) NBS, acetone/water

Scheme 40: Preparation of pyranose intermediate 145

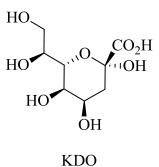
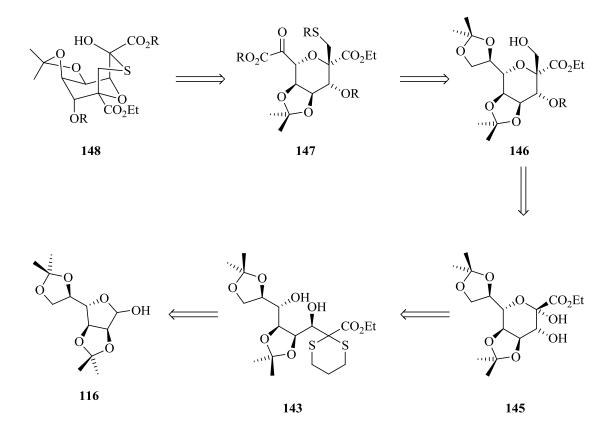




Figure 10: Structure of 3-Deoxy-D-gluco-oct-2-ulosonic Acid (KDO)

We also noted that one of our advanced intermediates was an almost identical structure to 3deoxy-D-gluco-oct-2-ulosonic acid (**KDO**) (**Figure 9**). There are many publications on KDO synthesis and syntheses of analogues using several different methods.<sup>31,32,33,29</sup> Therefore several of our synthetic routes began with modified versions of these syntheses. It must also be noted that from here onwards we abandoned any attempts to synthesize our target with smaller linear molecules and concentrated solely on working from a sugar starting material, in most cases this was D-mannose or the protected diacetone mannose **116**. We believed this was a far simpler method of obtaining the desired intermediate as most of the stereochemistry would be known and correct at the beginning of the synthesis.



Scheme 41: Retrosynthesis for target bicyclic compound 148

Our initial goal was always to reproduce the bicyclic structure of tagetitoxin **148** while ensuring that each of the functional groups were chemically different enough to convert each one individually to the correct moieties of the natural product. Working from pyranose **145**, we believed that the secondary hydroxyl could be protected without any reactions involving the tertiary hydroxyl  $\alpha$ - to the ester moiety. This alcohol would then be converted to a suitable leaving group and displaced with either a hydride source. Simple enolate chemistry with formaldehyde would follow to form **146**. This primary alcohol could then be converted to another leaving group, *e.g.* mesylate or tosylate and displaced with a thioacetate anion to form the protected thiol. The primary acetonide group could then be selectively deprotected to the diol followed by oxidation to the  $\alpha$ -ketoester or ketoacid to give **147**. Removal of the acetate on the thiol function should lead to the cyclization to form the target bicyclic structure **148**. From this structure, theoretically each functional group could be introduced using known carbohydrate chemistry to give the natural product tagetitoxin **2a**.

# References

1. Mitchell R. E, Durbin. R. D., Physiological Plant Pathology. 1981, 157-168.

2. Robin E. Mitchell, Philip A, Hart., Phytochemistry. 1983, 6, 22, 1425-1428.

3. Robin E. Mitchell, Jan M. Coddington, Harry Young., *Tetrahedron Lett.* **1989**, *30*, 501-504.

4. John W. Gronwald, Kathryn L. Plaisance, Sudha Marimanikkuppam, Beverly G. Ostrowski., *PMPP*. **2005**, *67*, 23-32.

5. Dmitry G Vassylyev, Vladimir Svetlov, Marina N Vassylyeva, Anna Perederina, Noriyuki Igarashi, Naohiro Matsugaki, Soichi Wakatsuki, Irina Artsimovtch., *Nat. Struct. Mol. Biol.* **2005**, *12*, 1086-1093.

6. Lukens, J. H., Durbin, R.D., Planta. 1985, 165, 311-321.

7. Rhodehamel, N. H., Durbin, R. D., Plant Disease. 1985, 69, 589-591.

8. Mathews, D. E, Durbin R. D., JBC. 1990, 265, 493-498.

9. Steinberg, T. H and Burgess, R. R., JBC. 1992, 267, 20204-20211.

10. Furneaux, Richard H., Tetrahedron. 1999, 55, 6977-6996.

11. Mitchell, Robin E., Tetrahedron Lett. 1989, 30, 501-504.

12. Tarek Sammakia, T. Brian Hurley, Douglas M. Sammond, and Randall S. Smith., *Tetrahedron Lett.* **1996**, *37*, 4427-4430.

13. Michael J. Porter, Julien R. H. Plet., Chem. Commun. 2006, 1197-1199.

14. Porter, Michael J., Org. Lett. 2008, 10, 5477-5480.

15. Masuo Akagi, Setsuzo Tejima and Masanobu Haga., *Chemical and Pharmaceutical Bulletin.* **1963**, *11*, 58-61.

16. Roy, Claud-Eric Jean. Studies toward the synthesis of tagetitoxin. *Ph.D. Thesis*. University of East Anglia, U.K., **2010**.

17. L. F. Garcia-Alles, A. Zahn and B. Erni., Biochemistry. 2002, 41, 10077-10086.

18. Miocque, P. L. Campagnon And M., Ann, Chim. (Paris). 1970, 14, 23-38.

19. Fuchs, E. J. Corey and P. L., Tetrahedron Lett. 1972, 36, 3769-3772.

20. S. Muller, B. Liepold, G.J. Roth and H. J. Bestmann., Synlett. 1996, 521-522.

21. F. N. Tebbe, G. W. Parshall and G. S. Reddy., J. Am. Chem. Soc. 1978, 100, 3611-3613.

- 22. Chaykovsky, E. J. Corey and M., J. Am. Chem. Soc. 1962, 84, 867-868.
- 23. S. Amsliger, A. Hirsch and F. Hampel., Tetrahedron. 2004, 60, 11565-11569
- 24. A. Claesson, T. Waglund, M. Orbe and K. Luthman., J. Org. Chem. 1987, 52, 3777-3784.

25. Schmidt, O. T., Methods in Carbohydrate Chemistry. 1963, 2, 318-325.

26. H. Shimizu, H. Okamura, T. Iwagawa and M, Nakatani., *Tetrahedron*. **2001**, *57*, 1903-1908.

27. H. Setoi, H. Takeno and M. Hasimoto., Tetrahedron Lett. 1985, 26, 4617-4620.

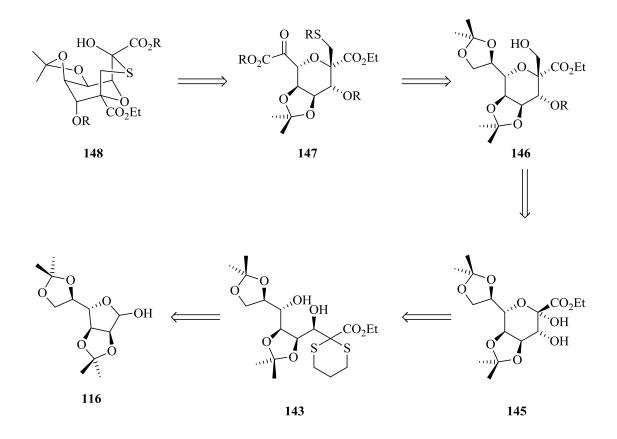
28. Sarabia-Garcia, F. J. Lopez-Herrera and F., Tetrahedron. 1997, 53, 3325-3346.

29. Schmidt, M. Reiner and R. R., Tetrahedron, 2000, 11, 319-335.

30. Lerner, L. M., J. Org. Chem. 1976, 41, 2228-2229.

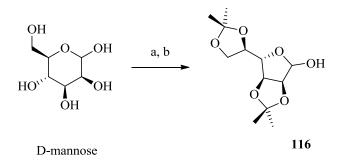
31. Shing, Tony K. M., Tetrahedron: Asymmetry. 1994, 5, 2405-2414.

32. Daniel W. Norbeck, James B. Kramer, and Paul A. Lartey., *J. Org. Chem.* **1987**, *52*, 2174-2179.


33. Kristina Luthman, Martin Orbe, Tommy Wadlund, and Alf Claesson., *J. Org. Chem.* **1987**, *52*, 3777-3784.

34. Hellmers, E., Acta Agric. Scand. 1984, 5, 185-200.

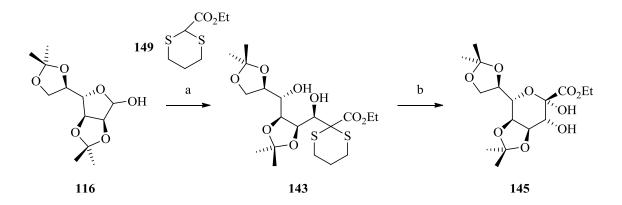
# **Results and Discussion**


# **Dithioacetal protected ketoester route**

In our initial route we decided to continue the work previously conducted in the group on the addition of a dithioacetal-protected ketoester onto diacetone mannose **116** (Scheme 42).



Scheme 42: Initial Retrosynthesis via the dithioacetal route

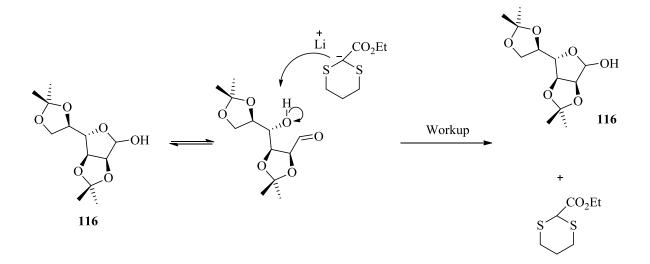

Following the procedure in the literature <sup>1</sup> D-mannose was successfully converted to diacetone mannose **116** in 60-80% yield (**Scheme 43**). The crystallization procedure used in the literature was not sufficient to give 100% of the single anomer; however this was not necessary as the next step in the procedure involves the open form of the protected furanose therefore negating the stereochemistry at the anomeric carbon atom.



Reagents and conditions: a) acetone, H<sub>2</sub>SO<sub>4</sub> 3-4 h; b) NaCO<sub>3</sub>, activated carbon, reflux 2 h.

Scheme 43: Synthesis of diacetone mannose 116

The next step in the synthesis was the nucleophilic addition of the dithiane protected ketoester onto diacetone mannose (DAM). Following the previous work in the group we decided to use the procedure reported by Schmidt *et al.*<sup>2</sup>




Reagents and conditions: a) LDA, MgBr<sub>2</sub>, dithiane 149, 116; b) NBS, acetone/water

Scheme 44: Addition of protected ketoester and subsequent deprotection and cyclization to form pyranose 145

The addition of dithiane **149** to diacetone mannose proceeded smoothly in very high yields of up to 98% after finding the optimal conditions and scale. We found working with less than 10 g of diacetone mannose reduced the yield; also more than three equivalents of dithiane **149** were needed to achieve a high yield. The presence of MgBr<sub>2</sub> was also crucial to the reaction; without it, only starting materials were recovered. We postulate that this may be due to the

potential of the lithiated dithiane to act as a base on the open form of diacetone mannose, as opposed to a nucleophile (**Scheme 45**).



Scheme 45: Possible mechanism for failed dithiane addition without the presence of magnesium dibromide

The addition of the MgBr<sub>2</sub> to reaction effectively converts the lithiated dithiane into a Grignard reagent by transmetalation leading to a nucleophilic attack instead of a deprotonation. With compound **143** in hand we moved on to the removal of the dithiane group and the cyclization to form the pyranose ring **145**. Using the literature procedure outlined by Schmidt, <sup>2</sup> the dithiane group was removed with NBS in acetone and water. The stereochemistry of **145** indicated that the cyclisation of the hydroxyl onto the ketone always occurred from a Re face approach. This was confirmed by X-Ray crystal structure determination for compound **145** (**Figure 11**).

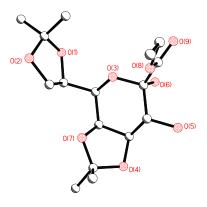
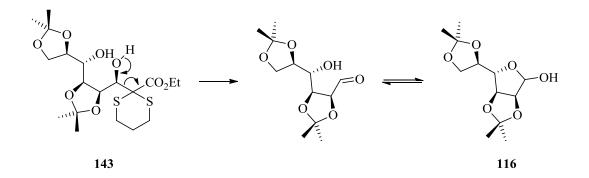
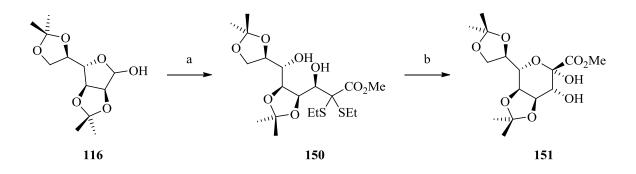




Figure 11: X-Ray crystal structure for 145

This reaction proved to be extremely troublesome, often giving little or no yield of product; the best yield obtained was 40%, and that only on very small scale reactions 100-200 mg. Purification of this compound was also hindered due to such small yields combined with a large amount of impurities obtained from the reaction. We found the best method to achieve a usable amount of pyranose **145** without lowering the percentage yield was to perform the reaction in twelve small scale carousel reaction vessels simultaneously. After workup the reaction mixtures were combined and extracted together and purified on a larger scale. This was the only method we devised that would yield gram quantities of the desired compound, and only after several repetitions of the procedure. We also found that diacetone mannose **116** made up a large proportion of the impurities in the reaction mixture, and this lead us to propose a mechanism for this possibility (**Scheme 46**). Although compound **143** was very stable in open bench conditions and even when heated to temperatures over 150 °C, we found that addition of a strong base led to complete conversion to diacetone mannose; we therefore concluded that this was the most likely competing reaction during the dithiane deprotection.



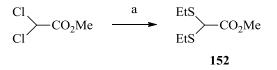
Scheme 46: Proposed mechanism for presence of diacetone mannose during dithiane removal


With the disappointing yields obtained from the NBS deprotection of the dithiane group, we decided to investigate alternatives for the removal of dithiane groups and conversion to ketones, including mercury reagents, <sup>3,4,5</sup> halogen donors and several oxidants <sup>6,7,8</sup> (**Table 6**). Disappointingly, none of these approaches improved the yield for the dethioketalization; in fact most of the alternatives to NBS gave far poorer results, usually yielding only diacetone mannose.

Only NIS and 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) gave comparable results to NBS, presumably because the mechanism of dithiane removal is identical with all three reagents.

|    | <b>Reagents and Conditions</b>                                | <b>Result/Yield</b> |
|----|---------------------------------------------------------------|---------------------|
| 1  | HgCl <sub>2</sub> , (MeOH/H <sub>2</sub> O 9:1) reflux, 18 h  | DAM                 |
| 2  | HgO, (MeOH/H <sub>2</sub> O 9:1) reflux, 18 h                 | DAM                 |
| 3  | IBX (DMSO/H <sub>2</sub> O 9:1) 5% AcOH, RT, 6 h              | DAM                 |
| 4  | H <sub>2</sub> O <sub>2</sub> (MeOH/H <sub>2</sub> O 5:1) 6 h | DAM                 |
| 5  | NIS, Acetone, 0 °C, 3 min                                     | 40%                 |
| 6  | NCS, Acetone, 0 °C, 3 min                                     | 10%                 |
| 7  | DBDMH, Acetone, 0 °C, 3 min                                   | 40%                 |
| 8  | DDQ, DCM, reflux 30 min                                       | 15%                 |
| 9  | MeI, DCM, reflux, 2 h                                         | SM                  |
| 10 | mCPBA, DCM, RT, 4 h                                           | DAM                 |
| 11 | Oxone <sup>®</sup> DCM, RT, 4 h                               | DAM                 |

**Table 6: Dethioketalization reagents and results** 


Schmidt *et al.*<sup>2</sup> also reported the use of a diethylmercaptal thioketal-protected ketoester where the dithioketal moiety had been utilized to form compound **150**, which was then treated with NIS to form the desired pyranose ring **151** in good yield (76% lit) (**Scheme 47**).



Reagents and conditions: a) (EtS)<sub>2</sub>CHCOOMe, LDA, MgBr<sub>2</sub>, THF 76%; b) NIS, acetone 76%

Scheme 47: Diethyl mercaptal route

As the yields reported for this route were much higher than with the dithiane compound **143** and were also reported to work on a larger scale we decided to proceed with this method. Unlike dithiane **149**, methyl glyoxylate diethyl mercaptal **152** was not commercially available and was prepared following the procedure by Lerner (**Scheme 48**).<sup>9</sup>

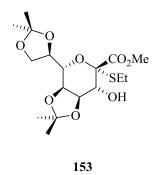
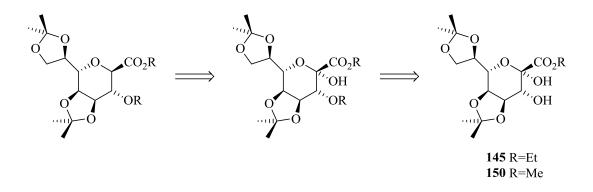


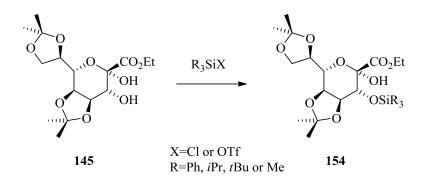
Reagents and conditions: a) Na, MeOH, EtSH, methyl dichloroacetate

Scheme 48: Preparation of diethylmercaptal 152

With sufficient quantities of compound **152** in hand, we proceeded with Schmidts' procedure, unfortunately we could not duplicate the high yields reported in the literature, and after several attempts only managed to produce compound **150** in 34% yield. This disappointing result led to only a few grams of the desired compound being obtained and was a lengthy procedure when compared to the dithiane route. When we treated compound **150** with NIS we were again confronted with very low yields 24% (lit 76%). During the attempts to improve the yield of this reaction we also noticed an unexpected product after purification, initially thought to be the desired compound plus an impurity. However, after several purifications we concluded that the unknown compound must be **153** (**Figure 9**). While this was not the desired compound we were trying to achieve, it did offer a potentially useful

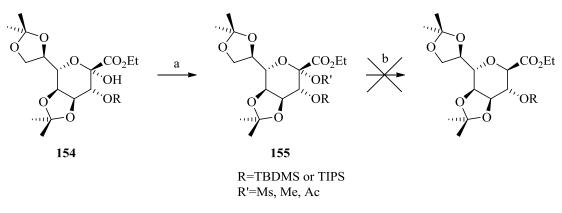
route towards compound **146**. If we could have produced compound **153** as the major product during the reaction of dithioketal **150** with NIS, we would have explored the possibility of cleaving the thioether bond to remove the ethane thiol function and proceed with an enolate addition to formaldehyde.



Figure 9: Unexpected product during NIS reaction

Despite the very low yields of compounds **145** and **150** we decided to continue with the route. Our next task was the selective protection of the secondary hydroxyl at C-3 and then an activation and removal of the tertiary hydroxyl at C-2 (**Scheme 48**).



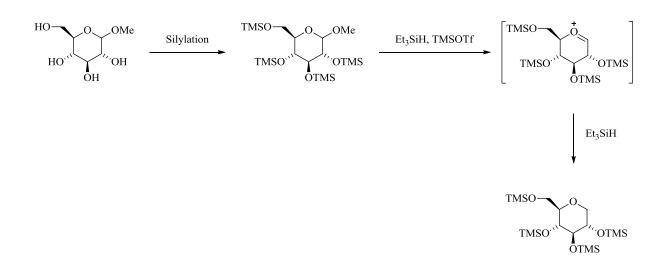

Scheme 48: Retrosynthesis from compounds 145 and 150

A range of bulky silyl protecting groups were chosen to protect the secondary hydroxyl, including TBDMSCl, TBDMSOTf, TIPSCl and TBDPSCl. This would enable us to activate and remove the tertiary alcohol at C-2 without affecting the hydroxyl at position C-3 (Scheme 49).



Scheme 49: Silyl protection of 3-OH on compound 145

All attempts to produce the *tert*-butyldiphenylsilyl ether of the C-3 hydroxyl were unsuccessful even after several days under reflux conditions; presumably the TBDPS group was simply too bulky for our substrate. TBDMS and TIPS ethers of the C-3 hydroxyl were successfully synthesized but with very low yields (20%-30%). This was again attributed to the bulky nature of both groups. Having obtained the TBDMS and TIPS silyl ethers **154** our next task was the activation and removal of the C-2 hydroxyl (**Scheme 50**).

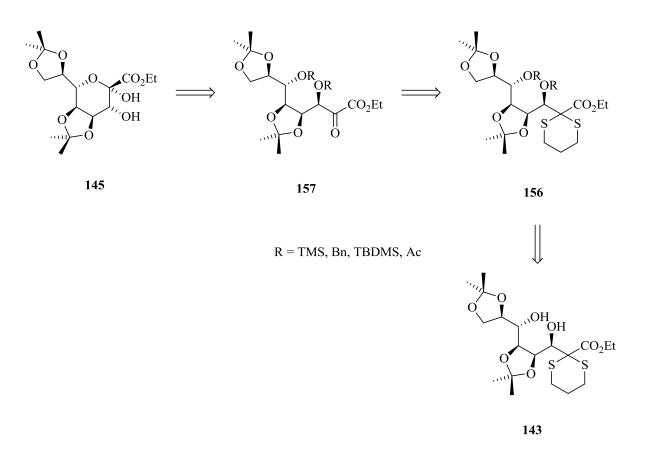



Reagents and conditions: a) NaH, MeI, DMF or  $Et_3N$ , MsCl, DMAP, DCM or  $Ac_2O$ ,  $Et_3N$ , DMAP, DCM; b) Lewis acid,  $Et_3SiH$ 

Scheme 50: Activation and removal of C-2 hydroxyl

Following work reported by Gray *et al.*<sup>10</sup> (**Scheme 51**) on the reductive cleavage of methoxy groups in the anomeric position of alkyl glycosides we began by methylation of the hydroxy group at position C-2 on compound **154**, this proceeded smoothly to give compound **155a** in

88% yield. We also mesylated the hydroxyl at position C-2 as we believed this would provide a better leaving group than the methoxy moiety, however the yields for this reaction were disappointingly low 15%-30%. A tosylation was also attempted without success, most likely due to the tertiary nature of the alcohol.




Scheme 51: Gray's synthesis of anhydroalditols from alkyl glycosides <sup>(10)</sup>

With the mesylated and methylated products in hand we attempted the removal of the anomeric hydroxyl using Gray's <sup>10</sup> conditions. This proved unsuccessful on both the mesylate and the methoxy groups. After several attempts using Gray's conditions, we tested a range of Lewis acids (TiCl<sub>4</sub>, AlCl<sub>3</sub>, SnCl<sub>3</sub> and BF<sub>3</sub>•Et<sub>2</sub>O) and hydride donors (NaBH<sub>3</sub>CN and Et<sub>3</sub>SiH) under similar conditions in all cases starting material was the only compound recovered from the reaction (**Scheme 50**).

Following these disappointing results we decided to revisit the dethioketalization reaction (**Scheme 44**) as we believed the lack of success with the removal of the anomeric hydroxyl from compound **154** was partly due to the very small amount of pyranose **145** we had to work with. We believed the poor yields obtained previously by the dethioketalization reaction could be improved if the mechanism for reversion back to diacetone mannose could be prevented. A simple protection of the hydroxyl groups in compound **143** was proposed to prevent formation of the aldehyde moiety present in the open form of diacetone mannose, as

we presumed this would prevent any possible mechanism for diacetone mannose being produced and would also lead to a clean and efficient conversion of the dithiane moiety to a ketone. Subsequent removal of the hydroxyl protecting groups would lead to a cyclization to form the desired pyranose **145** (Scheme 52).



Scheme 52: Hydroxyl protection of dithiane 143 before dethioketalization and cyclization

We proceeded to protect both hydroxyls on dithiane **143** with several protecting groups. Forming the TMS and TBDMS ethers proved problematic giving poor or zero yields. The benzyl ether also proved difficult to form. Forming the acetate groups however, was highly successful, often being produced in 99% yield with  $Ac_2O$ ,  $Et_3N$  and DMAP. The diacetylated compound was also a crystalline material, enabling an X-ray crystal structure determination to be made (**Figure 12**), giving us an absolute stereochemistry (due to the sulfur atoms) for compound **158** (Scheme 53).

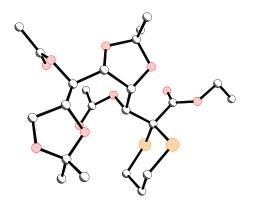
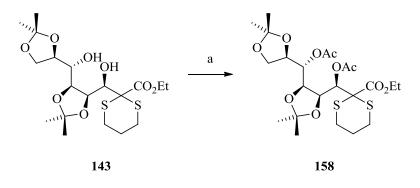
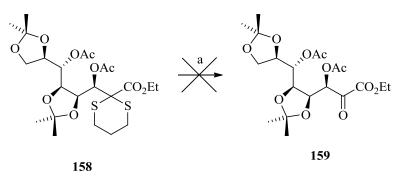



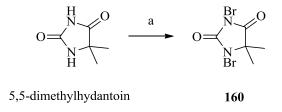

Figure 12: X-ray crystal structure of compound 158


This reaction proved to be effective when working on larger scales (5g-10g), and also no decomposition or formation of diacetone mannose was detected.



Reagents and conditions: a) Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, DCM, 0 °C, 99%

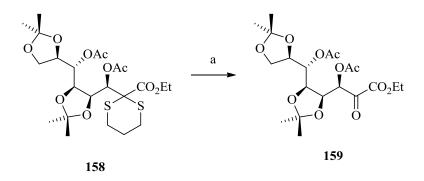
Scheme 53: Acetylation of dithiane 143


With the protected compound **158** in hand we moved on to the removal of the dithiane group, believing the dethioketalization to be a mere formality at this stage, and we were therefore surprised and disappointed to find no reactivity when dithiane **158** was treated with NBS under the same conditions used previously on compound **143** (**Scheme 54**).



Reagents and conditions: a) NBS, acetone/H2O

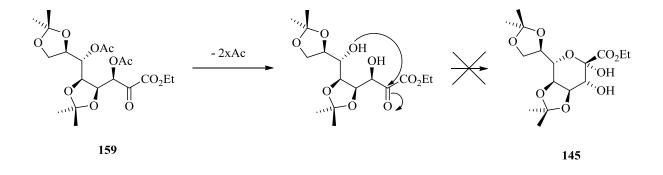
Scheme 54: No reaction when dithiane 158 was treated with NBS


While there appeared to be no reactivity with the acetate protected compound **158** and NBS, we were able to recover almost all of the starting material after each reaction. This result was not entirely without merit, as we had successfully prevented the unwanted production of diacetone mannose. After increasing the temperature and reaction time with NBS led to no improvement, we decided to repeat the reaction using the range of reagents listed in **Table 6**. Again we were surprised to see no reactivity with any of the reagents except 1,3-dibromo-5,5-dimethylhydantoin **160** (DBDMH), prepared with 5,5-dimethylhydantoin, sodium hydroxide and elemental bromine using the procedure outlined by in the literature <sup>11</sup> (**Scheme 55**).



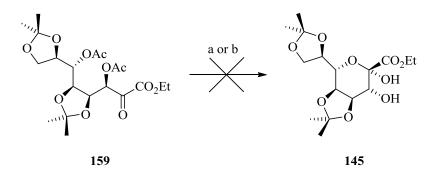
Reagents and conditions: a) NaOH, Br2, H2O

Scheme 55: Preparation of 1,3-dibromo-5,5-dimethylhydantoin


This was an especially surprising result as the mechanism for the reaction of DBDMH with the dithiane was assumed to be identical as that for NBS, which had shown no reactivity at all with the dithiane. The reaction with DBDMH proceeded smoothly to give compound **159** in between 54% and 84% yield (**Scheme 56**).



Reagents and conditions: a) DBDMH, acetone/H2O


Scheme 56: Dethioketalization of compound 158 with DBDMH

Having successfully produced the acetate-protected ketoester **159**, we believed that a simple removal of the acetate groups would promote the cyclization of the compound to form the desired pyranose **145** in a good yield (**Scheme 57**).



Scheme 57: Removal of acetates and cyclization to form pyranose 145

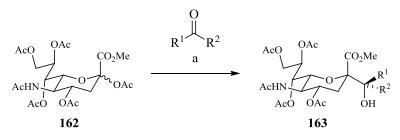
However this was not the case; when subjected to standard acetate deprotection conditions, (MeOH,  $K_2CO_3$ ) the desired pyranose **145** was not detected. Complete decomposition of the starting material was observed. After this disappointing result we tried an alternate strategy for the removal of the acetate groups. An ion exchange resin, activated Amberlite<sup>®</sup> IRA-400, was used as a hydroxyl anion donor. This also led to a decomposition of the starting material and no product was observed (**Scheme 58**).



Reagents and conditions: a) K<sub>2</sub>CO<sub>3</sub>, MeOH; b) Activated Amberlite<sup>®</sup> IRA-400, MeOH

Scheme 58: Attempted acetate removal

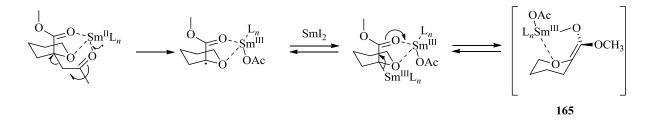
We also used the acetate protection methodology on the diethylmercaptal protected ketoester **149**, despite the poor yields experienced with its production. Conversion to the diacetate **160** was achieved in the same high yields >95% achieved with the dithiane **158**. However all attempts to remove the diethylmercaptal moiety were unsuccessful (**Scheme 59**), even when using the DBDMH compound that worked previously with the dithiane **158**.




Reagents and conditions: a) Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, DCM; b) DBDMH, Acetone/H<sub>2</sub>O

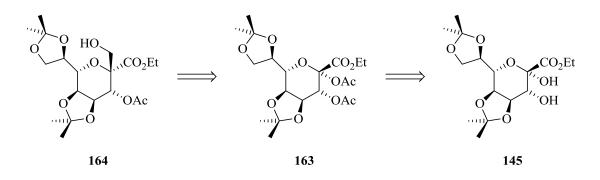
Scheme 59: Acetate protection and attempted removal of diethyl mercaptal moiety

Faced with the disappointing results from the protected compounds **159** and **160**, we decided to abandon this route and continue with the small yields of compound **145** we were able to obtain.


One of our investigations into the removal of the anomeric hydroxyl on pyranose **145** led us to a report of a samarium diiodide-promoted coupling of anomeric acetates with carbonyl compounds.<sup>11</sup> The authors described a procedure to convert the anomeric acetate in the *N*-acetylneuraminic acid derivative **162** to the corresponding alcohol **163** using samarium diodide and a range of ketones and aldehydes (**Scheme 60**).

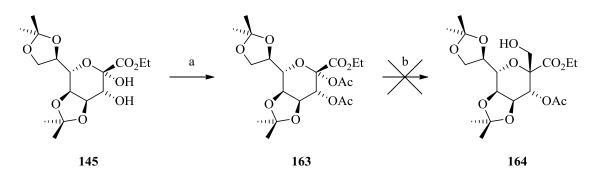


Reagents and Conditions: a) SmI<sub>2</sub> 3 equiv, THF, r.t


Scheme 60: Samarium diodide promoted coupling between acetate and carbonyl compounds

The group also proposed a mechanism for the formation of the reactive samarium enolate **165** that reacts with the carbonyl compounds reported (**Scheme 61**).




Scheme 61: Postulated mechanism for the formation of the samarium enolate 165  $^{(11)}$ 

We believed we could apply this procedure to our compound **145** to remove the anomeric hydroxyl and introduce the methylene alcohol group in one step. Conversion of the diacetate **163** to the alcohol **164** would take place using a modified version of the samarium diiodide procedure the authors described using formaldehyde as the carbonyl source; theoretically this would give us the desired alcohol. Diacetate **163** could be prepared simply using Ac<sub>2</sub>O, Et<sub>3</sub>N and DMAP from pyranose **145** (Scheme 62).

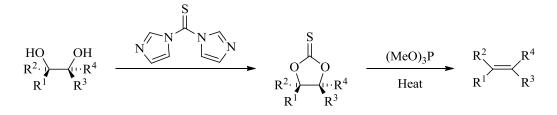


Scheme 62: Retrosynthesis of alcohol 164 from pyranose 145

We began with the diacetylation of pyranose **145** using  $Ac_2O$ ,  $Et_3N$  and DMAP which resulted in the production of compound **163** in 88% yield. This was followed by the samarium diiodide mediated coupling reaction. Unfortunately we were unable to reproduce the results reported in the literature and no alcohol **164** was detected (**Scheme 63**).

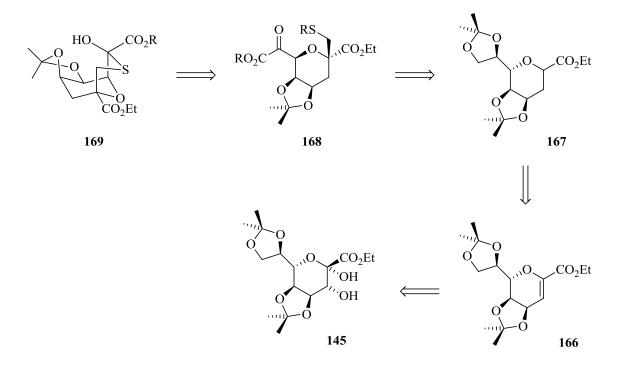


Reagents and conditions: a) Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, DCM 88%; b) SmI<sub>2</sub>, CH<sub>2</sub>O, THF


Initially we were using commercially available samarium diiodide solution in THF. After the lack of success with the reaction we attempted to prepare our own solution of samarium diiodide in THF. Following the procedure outlined in the literature, <sup>11</sup> samarium powder and 1,2-diiodoethane were stirred in THF overnight under argon. Again, disappointingly we were unable to reproduce the results reported in the literature and failed to detect any samarium diiodide in the solution, confirmed due to the lack of any dark blue colour. We attempted to produce a SmI<sub>2</sub> solution using several methods and reagents including CHI<sub>3</sub>, I<sub>2</sub> and 1,2-diiodoethane. Unfortunately even after microwave irradiation we were unable to produce a

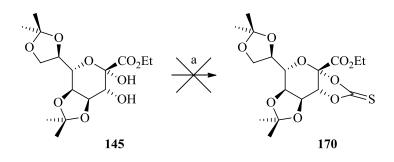
Scheme 63: Attempted samarium diiodide reaction

samarium diiodide solution. While the methods we chose to produce samarium diiodide had been reported to work in the literature, it must be noted that we found it to be an extremely difficult reagent to produce and also to work with. After our unsuccessful attempts at producing a samarium diiodide solution and with no sign of any improvement using the commercially available samarium diiodide, we chose to abandon this route.


# **Corey-Winter olefination**

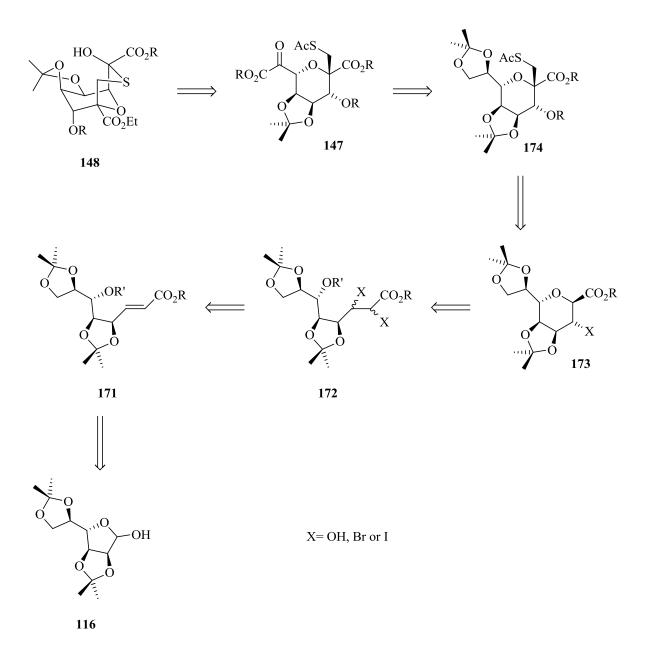
Going back to pyranose **145** we envisaged a new route based on the conversion of the diol functionality in compound **145** to an alkene using a Corey-Winter olefination <sup>(12)</sup> (**Scheme 64**).




Scheme 64: Corey-Winter olefination

Alkene **166** would then be reduced to the alkane by hydrogenation giving compound **167**; simple enolate chemistry could then be used to introduce the methylene alcohol function followed by mesylation or tosylation of the primary alcohol and subsequent displacement with a thioacetate anion. Selective removal of the primary acetal followed by oxidation and esterification would lead to compound **168**, which would cyclize to bicycle **169** upon deprotection of the thiol (**Scheme 65**).

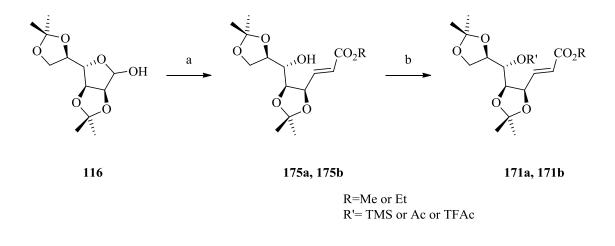



Scheme 65: Retrosynthesis from 145 using a Corey-Winter olefination

While this route would leave no functionality at C-3 we believed it was a worthy sacrifice to aid the synthesis of the bicyclic core. Alternate strategies for introducing functionality at this position would be revisited later if the route proved successful. Unfortunately when diol **145** was subjected to the Corey-Winter olefination conditions, the thionocarbonate **170** was not observed (**Scheme 66**). Due to this result we decided not to proceed any further with this strategy, and focused our efforts on an alternative to the dithiane route.



Reagents and conditions: a) thiocarbonyldiimidazole, toluene, reflux 30 min


Scheme 66: Corey winter olefination attempt on pyranose 145

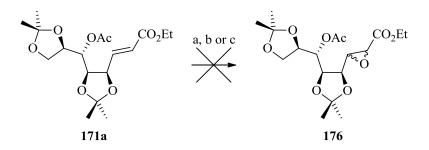


Scheme 67: Retrosynthesis from diacetone mannose using Wittig procedure

Following the unsuccessful attempts to remove or substitute the anomeric hydroxyl from pyranose **145**, a new route was postulated involving a Wittig reaction to introduce the ester moiety. We would begin from diacetone mannose **116** as we did with the dithiane route, a Wittig reaction on the aldehyde function of the open form furanose would lead to alkene **171** after a simple protection of the secondary hydroxyl. The alkene would then be subjected to either a bromination, iodination or a dihydroxylation to give the functionalized product **172**.

Removal of the protecting group on the secondary alcohol and subsequent displacement of either the halogen or manipulated hydroxyl group alpha to the ester function would lead to the cyclized pyranose **173**. The protected thiol function would be introduced as described above using enolate chemistry to introduce the primary alcohol, then a displacement with a thioacetate anion to give **174**. Following a selective acetal removal and then oxidation and protection, compound **147** would only require the removal of the acetate protection on the thiol to enable the cyclization to give the bicyclic structure **148** (**Scheme 67**).

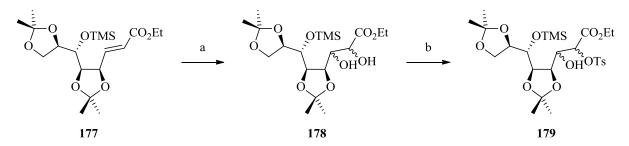



Reagents and conditions: a) Ph<sub>3</sub>PCHCO<sub>2</sub>Me or Ph<sub>3</sub>PCHCO<sub>2</sub>Et, toluene, reflux, 1 h; b) Ac<sub>2</sub>O, TFAc<sub>2</sub>O or TMSCl, Et<sub>3</sub>N, DMAP, DCM rt

Scheme 68: Wittig reaction and hydroxyl protection from diacetone mannose

The first step was a Wittig reaction performed with the ethyl and methyl ester-stabilized ylids prepared from methyl bromoacetate and ethyl bromoacetate with triphenylphosphine heated under reflux in toluene, followed by a NaOH wash. The reaction was carried out using conditions outlined in the literature.<sup>13</sup> Diacetone mannose was refluxed with the corresponding ester ylid for 1 hour in toluene to give the alkenes **175a-b**. Under these conditions the *E*-alkene was the major product, easily separated from the *Z*-alkene using flash column chromatography. Yields varied between 50-70% for the *E*-isomer and between 10-20% for the *Z*-isomer. With the desired alkenes **175** in hand, we proceeded to protect the hydroxyl moiety with a trimethylsilyl group and acetate group. The acetate was formed in good yields following reaction of **175a-b** with acetic anhydride, triethylamine and DMAP in

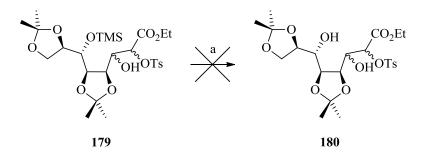
DCM to give the protected alkene **171a-b**. The TMS protection gave poorer results, with yields between 20-50% (**Scheme 68**).


Initially, after we obtained the protected alkene **171** we attempted an epoxidation in the hope that this would lead to a cyclization to the pyranose **173** after removal of the protecting group, but after several epoxidation conditions were tried we were unable to form the epoxide **176** and also unable to salvage any starting material from each reaction (**Scheme 69**).



Reagents and conditions: a) Oxone<sup>®</sup>, MeCN/H<sub>2</sub>O 10:1, rt; b) H<sub>2</sub>O<sub>2</sub>, MeCN/H<sub>2</sub>O 1:1, NaOH rt; c) *t*BuOOH, MeCN/H<sub>2</sub>O 1:1, NaOH, rt.

### Scheme 69: Epoxidation attempts on alkene 171

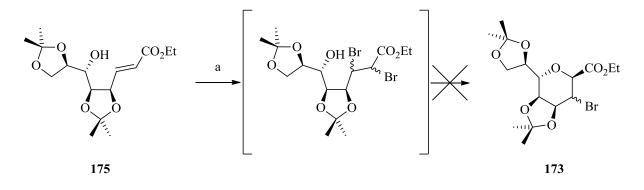

This led us to abandon any further epoxidation attempts and move on to a dihydroxylation reaction to give the diol **178**, to be followed by selectively tosylating the hydroxyl  $\alpha$  to the ester moiety. We believed the bulkier nature of the tosyl group compared to the mesyl would enable only the hydroxyl  $\alpha$  to the ester group reacting, as the second alcohol would be sterically hindered by the TMS group or acetal group in close proximity.



Reagents and conditions: a) OsCl<sub>3</sub> 5%, NMO, THF/H<sub>2</sub>O 1:1, rt, overnight; b) TsCl, Pyr, DCM, rt, overnight.

Scheme 70: Dihydroxylation of alkene 177 and tosylation of hydroxyl a to ester

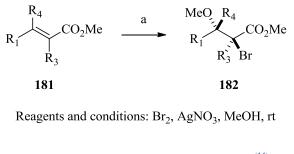
Alkene **177** was successfully converted to the diol **178** using  $OsCl_3$  and NMO in 67% yield. The tosylation was also successful and gave compound **179**, but in a low yield <20%. This was probably due to the fairly mild reaction conditions used that were necessary to prevent formation of the ditosylated compound (**Scheme 70**).




Reagents and conditions: a) TBAF, THF, rt, overnight.

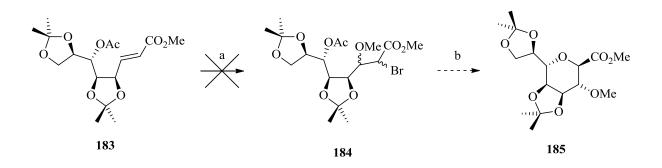
Scheme 71: Attempted removal of TMS group

Unfortunately when we came to remove the TMS group from compound **179** expecting to obtain compound **180**, or possibly even direct cyclization to the pyranose **173**, we were disappointed to find complete decomposition of the starting material and did not observe either the cyclized product or the diol **179** (Scheme **71**).


After the low yield from the tosylation reaction and the unexpected result from the TMS removal we decided to move on to a different method of functionalizing the alkene. We postulated that a direct bromination of the alkene could lead to a cyclization to form compound **173** in a single step. We attempted the reaction by adding neat molecular bromine to a solution of the alkene in DCM at 0 °C, but this did not lead to the desired result and gave a mixture of unidentified compounds, and pyranose **173** was not isolated from the reaction mixture (**Scheme 72**).



Reagents and conditions: a) Br2, DCM, 0 °C

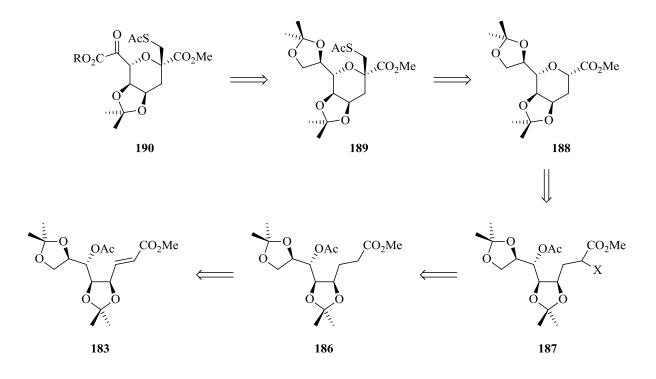

Scheme 72: Bromination of alkene 175

With the failure of the direct bromination on the unprotected alkene we moved on to a method of methoxy-bromination reported in the literature, <sup>14</sup> in which the authors successfully added a bromide and a methoxy group across a double bond with the bromide positioned  $\alpha$  to the ester function. The authors produced a range of compounds by methoxy-bromination of an alkene to give the substituted compounds **182** (Scheme 73).



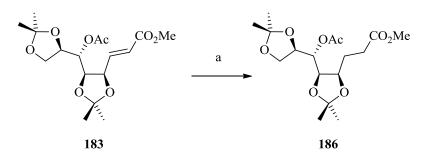
Scheme 73: Methoxy-bromination of alkenes<sup>(14)</sup>

Following the procedure outlined in the literature we attempted to apply the method to our alkene **183**, which would put the bromide in the correct position to allow cyclization to the desired ring **185**, after removal of the acetate protecting group (**Scheme 74**).




Reagents and conditions: a) Br<sub>2</sub>, AgNO<sub>3</sub>, MeOH, 0°C to rt, 1 h; b) MeOH, KOH, rt.

#### Scheme 74: Attempted methoxy-bromination and cyclization from alkene 183

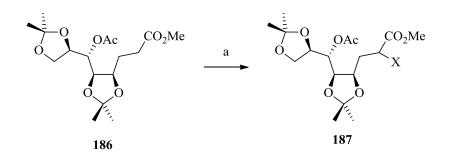

After following the procedure reported in the literature, <sup>14</sup> we were disappointed to find no trace of compound **184**; in every attempt at the reaction only starting material was recovered. We also tried the reaction at higher temperatures and longer reaction times to promote the methoxy-bromination but this did not lead to any improvement on the yield. Substituting molecular bromine for NBS did not improve the yield either; the reaction was also attempted in the absence of silver nitrate with no success.

After being confronted with the poor results from functionalizing the alkene, we considered a new route which would involve the reduction of alkene **183** to the alkane **186**. A suitable leaving group, most likely a halide could be introduced from the enolate of **186** to give compound **187**. Removal of the acetate group and cyclization by elimination of the halide would give compound **188**. The protected thiol could be introduced by an enolate addition of formaldehyde, tosylation of the resulting primary alcohol and then displacement of the tosylate with a thioacetate anion would give **189**. Selective removal of the primary acetal and oxidation to the ketoester would give **190**, which would cyclize to the bicyclic structure after removal of the acetate group protecting the thiol moiety (**Scheme 75**).



Scheme 75: Retrosynthesis from reduction of the alkene 183

We proceeded with a hydrogenation of alkene **183** with hydrogen gas over palladium on carbon. The reaction gave almost quantitative yields of alkane **186** and required no purification after filtering through celite to remove the Pd/C solids (**Scheme 76**).




Reagents and conditions: a) H<sub>2</sub>, Pd/C, MeOH, 4 h, rt

### Scheme 76: Hydrogenation of alkene 18

Our next task was the  $\alpha$ -halogenation of the ester to introduce a suitable leaving group, as in **187**. Following the method of  $\alpha$ -halogenation of lithium ester enolates reported by Rathke, <sup>15</sup> LDA was added to alkane **186** at -78 °C in THF to form the lithium enolate. This was added to a solution of iodine in THF also at -78 °C and allowed to reach room temperature.

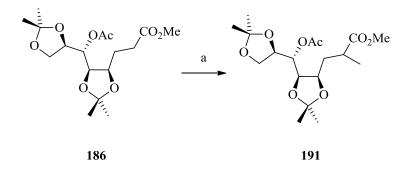
Unfortunately this did not lead to the alpha halogenated ester **187**; we isolated only starting material from the reaction (**Scheme 77**).



Reagents and conditions: a) see table 6

18

Scheme 77: Attempted alpha halogenations of ester 187


Following this result we decided to test a range of bases and halogen donors to attempt to halogenate  $\alpha$  to the ester. Several methods for brominating and iodonating were tried all without any success; in all cases only starting material was recovered (**Table 7**). We also tried NCS to introduce a chloride  $\alpha$  to the ester, which also resulted in only starting material being recovered from the reaction.

| Method | Reagents and conditions                                   | Result |
|--------|-----------------------------------------------------------|--------|
| 1      | I <sub>2</sub> , LDA, THF, $-78$ °C to rt                 | SM     |
| 2      | Br <sub>2</sub> , LDA, THF, -20 °C to rt                  | SM     |
| 3      | Br <sub>2</sub> , <i>t</i> -BuLi, HMPA, THF, -78 °C to rt | SM     |
| 4      | I <sub>2</sub> , DBU, DCM, rt                             | SM     |
| 5      | NBS, NEt <sub>3</sub> , DCM, rt                           | SM     |
| 6      | NCS, LDA, THF, -78 °C to rt                               | SM     |

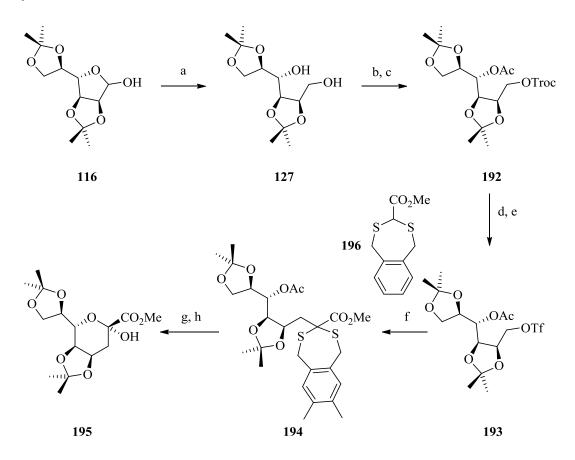
Table 7: Methods for attempted alpha ester halogenation

After having no success with halogenating alkane **186** we decided to test if we were generating the lithium enolate before adding the halogenating reagent. To test if the enolate was being formed we reacted the alkane with LDA (using the same procedure as the

halogenation attempts) then added MeI as an alkylating reagent. If the lithium enolate was formed and was sufficiently reactive, we would isolate compound **191** (Scheme 78).



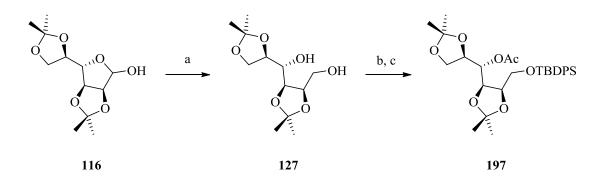
Reagents and conditions: a) MeI, LDA, THF, -20 °C to rt


Scheme 78: Alkylation of alkane 186

Surprisingly we were unable to observe any trace of compound **191** from the reaction, leading us to believe that we were ether not generating the lithium enolate of the ester or that it is unreactive. While this explains why we were unsuccessful in halogenating alkane **186** it is unclear why we might not be able to produce the enolate. After this result we concluded any further work on this route, however further investigation of introducing a suitable leaving group alpha to the ester moiety in compound **186** was not ruled out.

# Sequential protection-deprotection of DAM route

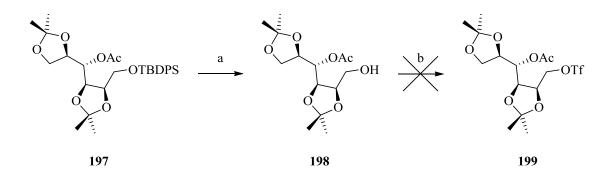
After consulting the literature on syntheses of KDO we discovered a report by Shiba *et al.*<sup>16</sup> that described a procedure for the synthesis of KDO starting from diacetone mannose. Their procedure involved the reduction of diacetone mannose to the diol **127**, the primary alcohol group was then selectively protected with 2,2,2-trichloroethoxycarbonyl chloride, followed by an acetylation of the secondary alcohol with acetic anhydride. With two distinctly different protecting groups in place, the authors were able to remove the Troc group and triflate the deprotected primary hydroxyl to give compound **193**, while leaving the acetate group untouched. The triflate was then displaced with lithiated methyl ester dithioketal **196**.


Removal of the acetate and dithioketal groups gave the diisopropylidene derivative of KDO methyl ester **195** (Scheme 79).



Reagents and conditions: a) LiAlH<sub>4</sub>, Et<sub>2</sub>O, 1 h, rt, 100%; b) TrocCl, py, DCM, 0 °C, 30 min; c) Ac<sub>2</sub>O, py, DMAP, DCM, rt, 2 h; d) Zn, AcOH, EtOAc, 0 °C, 30 min 96% over 3 steps; e) Tf<sub>2</sub>O, py, DCM, -45 °C 15 min; f) **196**, BuLi, HMPA, THF, -75 °C to 0 °C, 1 h, 73%; g) 0.1 M NaOMe, rt, 2 h; h) NBS, *aq* acetone 95%, 0 °C, 2 min, 57% over 2 steps.

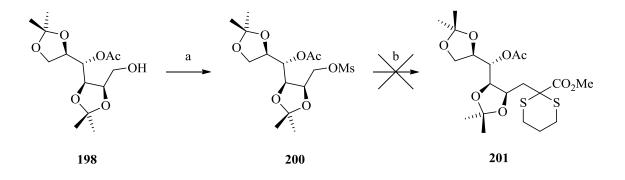
Shibas' synthesis highlighted the fact that the removal of the secondary hydroxyl from **194** by the triflation and displacement with the dithioketal group, as opposed to the direct addition of the methyl ester dithioketal group to the aldehyde function of diacetone mannose, greatly improved the yield of the dethioketalization reaction using NBS.


Scheme 79: Shiba's synthesis of KDO from diacetone mannose following a reduction and sequential protection of primary and secondary hydroxyls <sup>16</sup>



Reagents and conditions: a) LiAlH<sub>4</sub>, Et<sub>2</sub>O, rt, 1 h, quantitative; b) TBDPSCl, Et<sub>3</sub>N, DMAP, DCM, overnight, rt, 59%; c) Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, DCM, rt, overnight, 92%

Scheme 80: Synthesis of independently protected compound 197

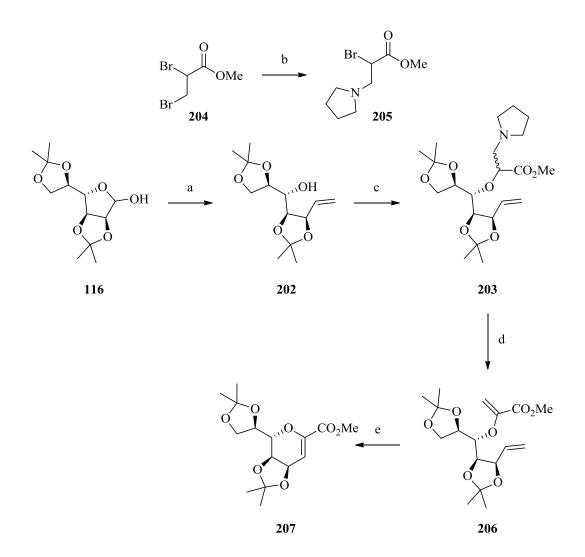

Following the procedure from the literature.<sup>16</sup> we reduced lactol diacetone mannose **116** to the diol 127 with LiAlH<sub>4</sub> in quantitative yield. We chose to use TBDPSCl to selectively protect the primary hydroxyl function due to its extremely bulky nature. Using 1.1 equiv of the silvlating agent under mild reaction conditions we were confident that the secondary alcohol function would remain unchanged. We were successful in producing the singly protected silvl ether in 59% yield, and we were also able to recover the majority of unreacted starting material from this reaction. With the TBDPS protected primary alcohol in hand, we acetylated the secondary hydroxyl to give the protected species 197 in 92% yield (Scheme 80). The silvl ether group was removed with TBAF in THF overnight in 52% yield to give alcohol 198. After initial reactions on a small scale we performed the reduction of diacetone mannose, sequential protections and removal of TBDPS on a large scale without purification until the final step with an overall yield of 55%. When we came to the triflation of alcohol 198 we were unable to produce compound 199 using the same conditions reported by Shiba et al. (Scheme 81). Even after increased reaction time, increased temperature and the addition of DMAP we were unable to produce the triflate 199; in each case we recovered only starting material.



Reagents and conditions: a) TBAF, THF, rt, overnight, 52%; b) Tf<sub>2</sub>O, py, DCM, -45 °C.

Scheme 81: TBDPS removal and attempted triflation

Following the lack of success in triflating alcohol **198** we decided to substitute the triflate with a mesylate, hoping this would not adversely affect the next step in the route. Alcohol **198** was successfully converted to mesylate **200** in 83% yield. Unfortunately we were unable to displace the mesylate with the dithiane methyl ester and did not observe any of compound **201** after reaction workup; in all attempts of the reaction we recovered only starting material (**Scheme 82**).



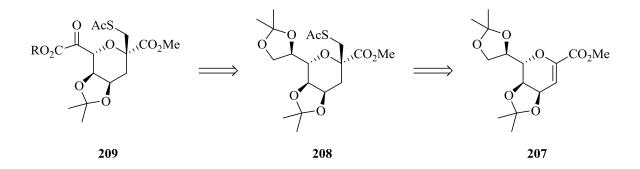

Reagents and conditions: a) MsCl, DMAP, Et<sub>3</sub>N, DCM, rt, overnight, 83%; b) Methyl 1,3-dithiane-2-carboxylate, LDA, THF, -20 °C to reflux

Scheme 82: Mesylation of alcohol 198 and attempted displacement with methyl ester dithiane

While we were unsuccessful in moving forward with this synthetic route towards the bicyclic structure **190**, it certainly warrants further investigation.

## **Ring-closing metathesis route**

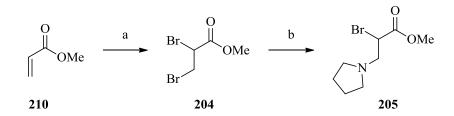



Reagents and conditions: a)  $Ph_3PCH_3Br$ , nBuLi, THF, rt, 98%; b) Pyrrolidine,  $Et_3N$ , toluene, 0 °C, 30 min, 91%; c) **205**, NaH, THF/DMF, 0 °C $\rightarrow$ rt, 18 h, 75%; d) MeI, Na<sub>2</sub>CO<sub>3</sub>, MeOH, reflux, 48 h, 78%; e) Grubbs 2<sup>nd</sup> generation, toluene, 70 °C, 1 h, 84%

Scheme 83: Hekking's synthesis of KDO precursor utilizing ring closing metathesis <sup>17</sup>

An interesting synthesis of KDO precursor **207** reported by Hekking *et al.*<sup>17</sup> involved the use of a ring-closing metathesis reaction to generate alkene **207**. This compound was very similar to compound **166**, which we had previously attempted to make using a Corey-Winter olefination on diol **145**. Hekking's route began with the conversion of diacetone mannose **116** into terminal alkene **202**. Addition of compound **205** in the presence of NaH gave ester **203** 

in 75% yield. The second alkene function was generated by the methylation of the pyrrolidine-nitrogen with MeI and subsequent elimination to give diene **206**. Finally a ring closing metathesis reaction using Grubbs  $2^{nd}$  generation catalyst gave alkene **207** (Scheme **83**).


As compound **207** was identical to compound **166** except for the methyl ester function as opposed to the ethyl ester, we believed it was a valid route to follow. Our target bicyclic structure could be formed from the removal of the acetate function on compound **209**. A selective removal of the primary acetal in **208** followed by an oxidation and protection to the ketoester function would yield **209**. A hydrogenation of Hekking's KDO precursor, alkene **207**, followed by addition of the acetate protected thiol function would give compound **208** (**Scheme 84**).

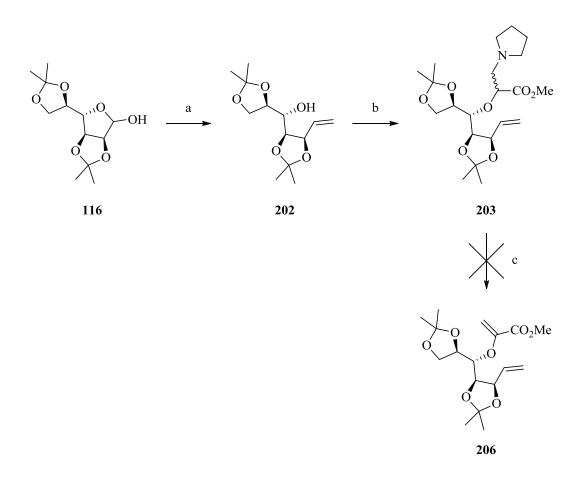


Scheme 84: Retrosynthesis of bicyclic structure precursor 209 from Hekking's final compound

Following the route reported by Hekking, we began with a Wittig reaction to convert diacetone mannose to the terminal alkene **202.** While the reaction was successful we were only able to achieve a yield of 50%, far lower than the 93% reported in the literature <sup>18</sup>. We performed the reaction with commercially available  $Ph_3PCH_3Br$ , and also with  $Ph_3PCH_3I$  that we prepared by the addition of MeI to PPh<sub>3</sub> in refluxing toluene. Both reagents gave the same 50% yield consistently. With the alkene **202** in hand, our next step was the preparation of bromide **205**. Molecular bromine was added to methyl acrylate **210** in DCM at room temperature to give the dibromo compound **204**; this was in turn reacted with pyrrolidine and Et<sub>3</sub>N to give **205**. We found this compound to be extremely unstable: while purification was unnecessary as initial H<sup>1</sup>NMR spectroscopy of the crude product indicated high purity, if the

compound was left for more than a few hours, it decomposed from a clear oil to an unidentified brown solid, even if immediately stored under argon at -30 °C in darkness (Scheme 85).

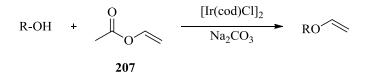



Reagents and conditions: a)  $Br_2$ , DCM, rt, 30 min, 88%; b) Pyrrolidine,  $Et_3N$ , toluene, 0 °C, 30 min

Scheme 85: Preparation of compounds 204 and 205

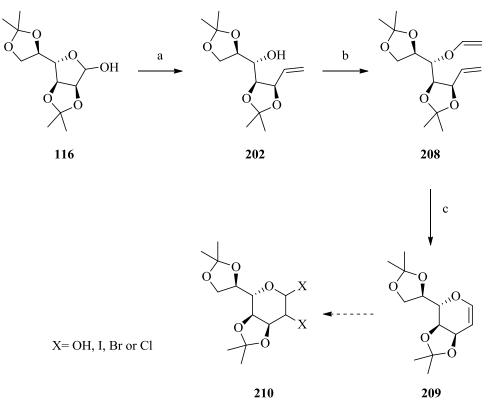
Due to the unstable nature of compound **205** it was used immediately after production for the reaction with alkene **202**, but we were unable to reproduce the yields reported by Hekking, in fact in most cases we were unable to produce any trace of compound **203** and at best managed a 10% yield. It is possible this was due to the unstable nature of bromide **205** leading to impurities in the reaction and lowering the yield. All our attempts to improve the yield of the reaction were unsuccessful. Using the small amounts of compound **203** we were able to obtain, we proceeded with the next step in the synthesis, unfortunately the reaction of compound **203** with MeI and Na<sub>2</sub>CO<sub>3</sub> did not lead to the elimination to form diene **206** (Scheme 86).

This was a disappointing result as we were unable to attempt the ring closing metathesis reaction. Due to the very low yields we obtained for compound **203** and the failure to produce compound **206**, we abandoned any further study on this route.


# **Olefin metathesis route**



Reagents and conditions: a)  $Ph_3PCH_3I$ , *n*BuLi, THF, rt, 98%; b) **205**, NaH, THF/DMF, 0 °C $\rightarrow$ rt, 18 h, 10%; c) MeI, Na<sub>2</sub>CO<sub>3</sub>, MeOH, reflux, 48 h


### Scheme 86: Our synthesis towards ring closing metathesis reaction

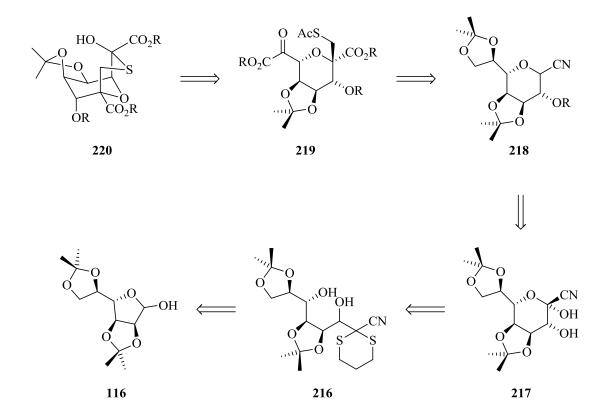
As we were unsuccessful in generating the diene **206** and therefore unable to attempt the ring closing metathesis reaction we proposed a different route that would still utilize a ring closing metathesis step. A report published by Okimoto *et al.*<sup>19</sup> involved the use of an  $[Ir(cod)Cl]_2$  catalyst and vinyl acetate **207** to generate vinyl ethers from alcohols under fairly mild conditions (**Scheme 87**).



Scheme 87: Okimoto's synthesis of vinyl ethers from alcohols <sup>(19)</sup>

We believed we could apply this reaction to our synthesis, reacting vinyl acetate directly to alcohol **202** using the conditions reported by Okimoto. This would give diene **208**, which would undergo a ring-closing metathesis reaction to generate alkene **209**. From alkene **209** we envisaged several methods for functionalizing the double bond, including asymmetric epoxidation, dihydroxylation or halogenation reactions (**Scheme 88**).

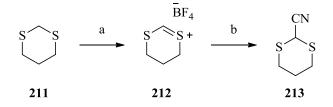



Reagents and conditions: a)  $Ph_3PCH_3Br$ , *n*BuLi, THF, rt; b) vinyl acetate,  $[Ir(cod)Cl]_2$ ,  $Na_2CO_3$ , toluene; c) Grubbs 2nd generation, toluene, 70 °C, 1 h

Scheme 88: Our proposed synthesis of alkene 209

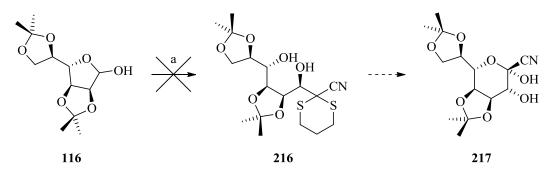
Unfortunately all our attempts to generate vinyl ether **208** failed. We therefore abandoned any further work towards a ring-closing metathesis reaction.

## Nitrile dithiane route


With a lack of success with both the Wittig reaction routes and the ring closing metathesis routes we decided to revisit the dithiane method. In this case we changed the ester moiety to a nitrile, in the hope this would aid in the removal of the anomeric hydroxyl group of compound **217** (Scheme 89).



Scheme 89: Retrosynthesis from diacetone mannose using nitrile dithiane


The nitrile moiety could be converted to an ester at a later stage in the synthesis and eventually converted to the carboxylic acid in the final target compound 2a.

Our first step in this route was the generation of 2-cyano-1,3-dithiane **213** following the procedure reported in the literature by the Page group.<sup>20</sup> 1,3-Dithiane **211** was treated with triphenylcarbenium tetrafluoroborate in DCM under reflux to give tetrafluoroborate salt **212**. Addition of TMSCN to salt **212** in cold DCM (-20 °C) gave nitrile **213** in 50% yield over two steps.

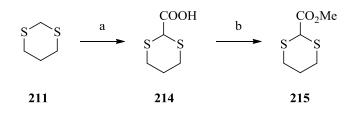


Reagents and conditions: a) PhC<sup>+</sup>BF<sub>4</sub><sup>-</sup>, DCM, reflux, 45 min; b) TMSCN, DCM, -20 °C, 1 h

Scheme 90: Synthesis of 2-cyano-1,3-dithiane 213



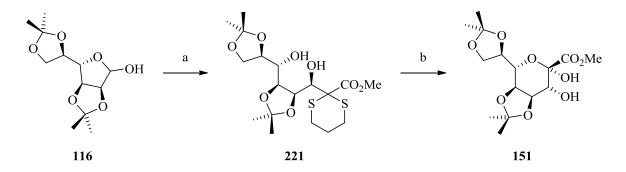
Reagents and conditons: a) LDA, **213**, MgBr<sub>2</sub>, THF,  $-20 \text{ °C} \rightarrow \text{rt}$ 


Our next task was the nucleophilic attack of the anion of nitrile dithiane **213** on diacetone mannose **116**. Initially we repeated the reaction using identical conditions to those used to form dithiane **143**, this, however, proved unsuccessful (**Scheme 91**). Surprised by this result we attempted to confirm whether the lithiated cyano-dithiane was being generated. Therefore, dithiane **213** was reacted with several lithiating reagents (*n*BuLi, *t*BuLi, *s*BuLi) in THF followed by the addition of  $D_2O$ , with the aim of replacing the proton at the C-2 position with a deuterium atom. Unfortunately after repeated attempts we were unable to introduce the deuterium atom leading us to conclude we were not generating the lithiated species, or that the lithiated species was unreactive.

We also explored the possibility that a different ester group present at the C-2 position of the dithiane might have an effect on the yield of the dethioketalization. In the report by Schmidt *et al.*<sup>2</sup> they showed a far greater yield for the dethioketalization reaction on the methyl ester

Scheme 91: Attempted synthesis of nitrile 217

compound **150**, compared to ethyl ester **143**. While we were unable to duplicate this yield with the diethylmercaptaldithioketal species **150**, we proposed that the methyl ester dithiane **215** might give more promising results.

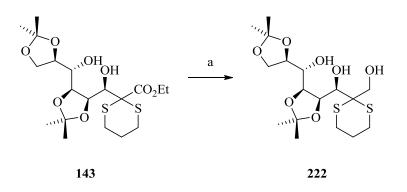

Dithiane **215** was prepared from commercially available 1,3-dithiane **211**, following the literature procedure, <sup>21</sup> lithiation with *n*BuLi in THF followed by the addition of solid carbon dioxide and an acidic workup led to dithiane carboxylic acid **214**. HCl gas was then bubbled through a solution of **214** in MeOH to give the methyl ester **215** (**Scheme 92**).



Reagents and conditions: a) *n*BuLi, CO<sub>2</sub>(s), THF,  $-78 \degree \rightarrow \text{rt b}$ ) HCl(g), MeOH, 10 min

#### Scheme 92: Preparation of methyl ester dithiane 215

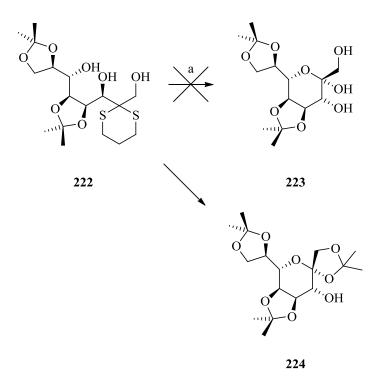
With dithiane **215** in hand we began the next step in the synthesis. Following the same conditions used to form compound **143**, dithiane **215** was coupled with diacetone mannose successfully to give compound **221** in 83% yield. Dethioketalization of **221** by NBS in 95% aqueous acetone gave pyranose **151**; we were pleased to find the yield was slightly higher (40-60%) when compared with our previous attempts with the ethyl ester **143** (**Scheme 93**).




Reagents and conditions: a) **215**, LDA, MgBr<sub>2</sub>, THF, -20 °C  $\rightarrow$  reflux, 83%; b) NBS, 95% aqueous acetone, 0 °C, 3 min, 40-60%

Scheme 93: Preparation of methyl ester 151 through dithiane 221

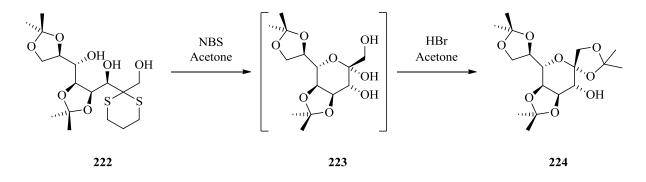
# **Reduction route**


While we were successful in producing dithiane methyl ester 221, and subsequently increasing the yield of the dethioketalization by a modest amount, the difficulty in removing the anomeric hydroxyl still remained. With this in mind we decided to continue the dethioketalization strategy but remove the ester moiety completely. A simple reduction of ester 143 to the triol 222 was conducted with  $LiAlH_4$  (Scheme 94)



Reagents and conditions: a) LiAlH<sub>4</sub>, Et<sub>2</sub>O, rt, 3 h. 76%

Scheme 94: Reduction of ester 143 to triol 222


We believed removing the ester moiety in this way would reduce the likelihood of a reversion back to diacetone mannose **116** following reaction with NBS, without the ester moiety present the dithiane anion, likely generated during the production of diacetone mannose when reacting **145** with NBS would be far less stable. We therefore subjected compound **222** to the dethioketalization conditions using NBS in 95% aqueous acetone (**Scheme 95**).

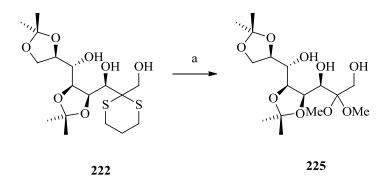


Reagents and conditions: a) NBS, 95% acetone, 0 °C, 3 min

### Scheme 95: Dethioketalization of dithiane 222

Fully expecting to generate pyranose **223**, we were surprised to find no trace of this compound after work up. Instead we found the major product of the reaction (55%) to be the tri-acetal protected species **224**. While this was not the intended target it was pleasing to note the lack of any diacetone mannose present after workup. We presumed the formation of the tri-acetal species was due to catalytic amounts of HBr present in the reaction generated by NBS and water, combined with the large excess of acetone this could lead to acetal formation between the primary and tertiary alcohols present in the intended product **223** (**Scheme 96**).




Scheme 96: Possible route for the formation of tri-acetal 224

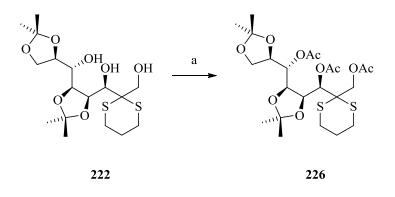
This was not an entirely unhelpful result; it proved that removing the ester moiety from the dithiane prevented the formation of diacetone mannose during dethioketalization. Working from this result we deduced that changing the solvent from acetone and also the conditions used for the dethioketalization would prevent the formation of the third acetal (**Table 8**).

| Method | Conditions                                                  | Result  |
|--------|-------------------------------------------------------------|---------|
| 1      | NBS, 95% Acetone, 0 °C, 3 min                               | 224     |
| 2      | NBS, DCM, 0 °C, 3 min                                       | SM      |
| 3      | HgO, HgCl <sub>2</sub> , MeOH:H <sub>2</sub> O, reflux, 1 h | SM      |
| 4      | NBS, MeOH:H <sub>2</sub> O, 0 °C, 3 min                     | 225     |
| 5      | NBS, MeCN;H <sub>2</sub> O, 0 °C, 3 min                     | 87% 223 |

### Table 8: Conditions tried for dethioketalization of triol 222

NBS and DCM led to no reaction and complete recovery of starting material, as did the use of mercury reagents in MeOH under reflux conditions. We noted an interesting result when NBS was used in MeOH and water, it appeared that the dithiane had been successfully removed but before cyclization could occur the ketone moiety was converted to a ketal to give **225** (Scheme 97).

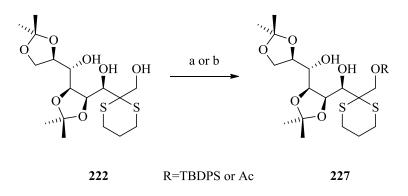



Reagents and conditons: a) NBS, MeOH:H<sub>2</sub>O, 0 °C, 3 min

Scheme 97: Formation of ketal 225

This formation of ketal **225** could be explained in a similar fashion to the formation of triacetal **224**. Catalytic amounts of HBr and the great excess of MeOH in the reaction mixture presumably led to formation of the ketal **225**.

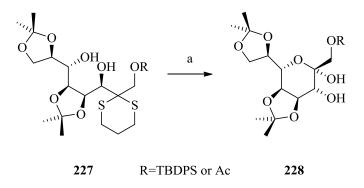
We were pleased to find the combination of NBS in acetonitrile and water gave the desired product **223** in 87% yield.


Protection of the primary hydroxyl on compound **222** before the dethioketalization reaction was also investigated. Acetylation of the primary hydroxyl proved problematic when using DMAP in the reaction mixture, leading to production of the tri-acetylated compound **226**, and a large proportion of starting material recovered (**Scheme 98**).



Reagents and conditions: a) Ac<sub>2</sub>O, Et<sub>3</sub>N, DMAP, DCM, rt, 4 h

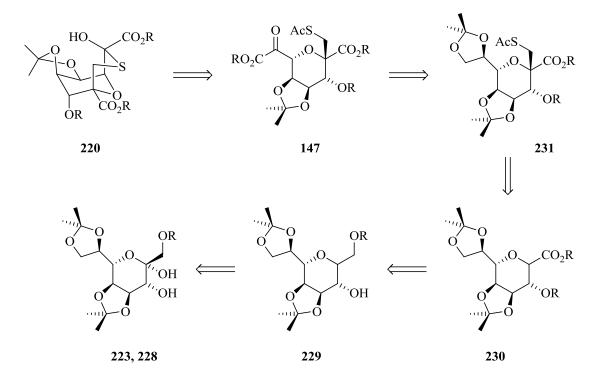
Scheme 98: Production of undesired tri-acetyl compound 226


Repeating the procedure without the presence of DMAP, and over a longer reaction time led to acetylation of the primary hydroxyl only, to give **227**. We also attempted to form the tertiarybutyldiphenylsilyl ether of the primary alcohol; the reaction was successful but in a very low yield (18%) (**Scheme 99**).



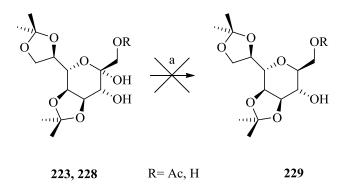
Reagents and conditions: a) Ac<sub>2</sub>O, Et<sub>3</sub>N, DCM, rt, overnight, 67%; b) TBDPSCl, Et<sub>3</sub>N, DMAP, DCM, rt, overnight, 18%

Scheme 99: Protection of primary hydroxyl on triol 222


Both compounds were subjected to the dethioketalization reaction initially using NBS in aqueous acetone. Unfortunately both compounds were unreactive to this method. When treated with 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), however, both compounds reacted in good yield to give the corresponding protected pyranoses (**Scheme 100**).



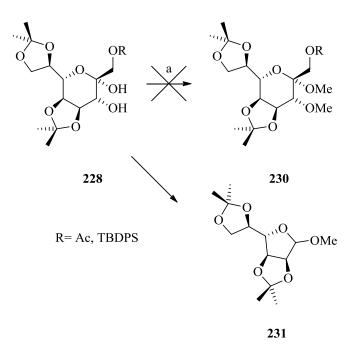
Reagents and conditions: a) DBDMH, 95% acetone, 0 °C, 3 min, (66-100% R=Ac) (67% R=TBDPS)


Scheme 100: Dethioketalization of protected compounds 227

Our next step in this route was to remove the anomeric hydroxyl group on compounds **223** and **228**. Following the removal of the hydroxyl group the ester functionality would need to be restored giving compound **230**; this would enable the enolate addition of formaldehyde and subsequent displacement of the primary alcohol with the thioacetate anion to give **231**. The retrosynthesis from this compound was identical to our previous routes, generation of keto-ester **147**, followed by removal of the acetate function leading to the bicyclic structure **220** (Scheme 101)



Scheme 101: Retrosynthesis of bicyclic structure 220 from triol 223


Our initial attempt to remove the anomeric hydroxyl from compounds **223** and **228** followed the procedure outlined in the literature, <sup>10</sup> unfortunately this method was unsuccessful on both the triol **223** and the acetate protected compound **228**. As well as failing to remove the anomeric hydroxyl these conditions also led to decomposition of the compound preventing any recovery of starting material.

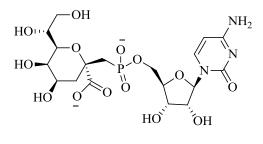


Reagents and conditions: a) TMSOTf, Et<sub>3</sub>SiH, MeCN

Following the disappointing results from the attempted anomeric hydroxyl removal we considered converting the hydroxyl moiety to a methoxy group in the hope that this would aid the removal of the group in the anomeric position. We believed this would be a simple procedure and expected a clean conversion to compound **230** using the same conditions used to generate compound **154** in a previous route. Unfortunately we were surprised to find that when reacting the acetate protected compound **228** we observed complete decomposition of the starting material, and no trace of the intended product was detected. When applying the same conditions to TBDPS protected compound **228** we not only observed a decomposition of the starting material and none of the intended product, but we also identified one of the decomposition products as the methoxy diacetone mannose compound **231** (Scheme 103).

Scheme 102: Attempted removal of anomeric hydroxyl using Gray's procedure <sup>10</sup>

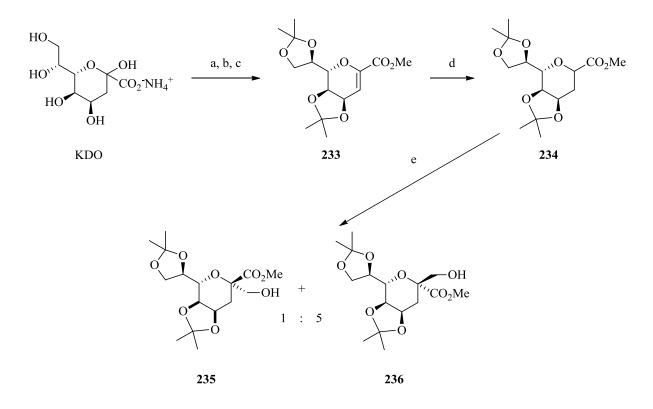



Reagents and conditions: a) NaH, MeI, DMF

Scheme 103: Attempted methylation of diols 228

Following these disappointing results we postponed any further work on this route and proceeded to move to our final strategy.

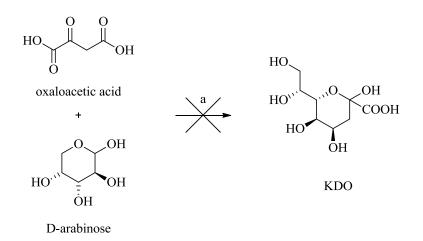
# **D-Arabinose route**


A report published in the literature by Norbeck *et al.*<sup>22</sup> described a synthesis of a phosphonate analogue of cytidine 5-monophospho-3-deoxy-D-*manno*-2-octulosonic acid **232** (**Figure 13**).



232

Figure 13: Cytidine 5-monophospho-3-deoxy-D-manno-2-octulosonic acid 232


During their synthesis of **232**, Norbeck and colleagues proceeded through compound **236**, which was one of our target precursors for the bicyclic structure (**Scheme 104**).



Reagents and Conditons: a) Acetone,  $H_2SO_4$ ; b)  $CH_2N_2$ ,  $Et_2O$ ; c) MsCl,  $Et_3N$ , DCM, 66% over 3 steps; d) W-2-Ra-Ni,  $H_2$ , EtOH, 88%; e) LDA,  $CH_2O$ , THF, 91%

Scheme 104: Norbeck's synthesis of 236 starting from KDO<sup>22</sup>

Perhaps the most intriguing part of Norbeck's synthesis was their production of KDO, which they reported was performed in a single step, following a Cornforth condensation <sup>23</sup> of D-arabinose and oxaloacetate. We attempted to replicate this very short synthesis of KDO, following the conditions in the literature. <sup>23</sup> We reacted oxalic acid and D-arabinose in water under basic conditions, unfortunately we were unable to reproduce the results reported and after several attempts we were unable to obtain any of the product KDO (**Scheme 105**).



Reagents and conditions: a) (i) H<sub>2</sub>O, 10 M NaOH, (ii) AcOH, 0 °C

Scheme 105: Attempted condensation of oxaloacetic acid and D-arabinose

Due to time constraints and the lack of any promising results from this method no further work was attempted with this strategy.

## **Conclusion and Future work**

# Conclusion

During our synthetic studies towards tagetitoxin 2a a range of strategies were investigated, leading to several key compounds of interest. Our first strategy involving the use of a dithiane protected ketoester followed by a dethioketalization led to compounds 145 and 151. While we were unable to progress any further with this route it still presents as the most likely method to reaching the goal of the bicyclic structure, prompting us to revisit the use of a dithiane later in our work.

Compounds **179** and **186**, both produced involving the use of a Wittig reaction to introduce the ester moiety, which would eventually become the carboxylic acid function in the final compound, showed significant promise. While it was unfortunate that we were unable to displace the tosylate group with the hydroxyl moiety after removal of TMS on compound **179**, leading to a cyclization, this route did show an alternative way of introducing the ester moiety. Work on compound **186** to introduce a suitable leaving group  $\alpha$ - to the ester was also

unsuccessful. We believed if a suitable group (I, Cl, Br) was in this position, deprotection of the hydroxyl would lead to a cyclization.

Compound **198** seemed to be a significant step forward in our work with diacetone mannose. Using this strategy of reduction and sequential protection we had hoped to eliminate a hydroxyl group from an intermediate further on in the synthesis, however, the inability to generate the triflate from the primary hydroxyl was a major setback. Mesylating the primary hydroxyl as an alternative to triflation was inadequate to promote the displacement with a lithiated dithiane protected ketoester, leading to the abandonment of this route.

One of our final synthetic routes led to intermediate **220**, and it was only due to time constraints that more extensive work was not carried out on this compound. Having removed the problem of low yields for dethioketalization we were confident that this route would lead to the bicyclic structure. Our lack of success in removing the anomeric hydroxyl was unfortunate, but further work on this route should not be discounted (**Figure 14**).






Figure 14: Synthetic intermediates formed during the project

# **Future Work**

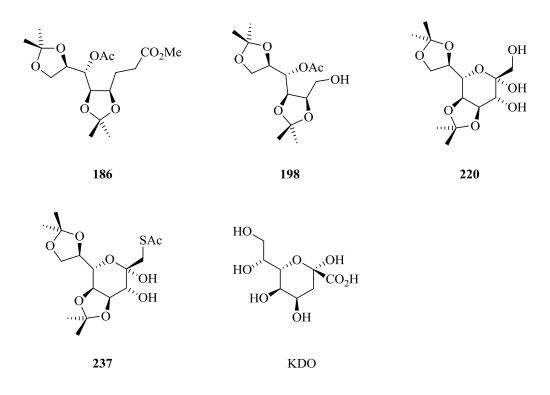



Figure 15: Compounds meriting further study

While we were unable to produce the core bicyclic structure of tagetitoxin, we did synthesize a number of intermediates which prompt further studies. Compound **186** certainly merits further studies; halogenation alpha to the ester still appears to be the most likely strategy to proceed further with this route, despite our lack of success with this methodology.

The reduction of diacetone mannose followed by the sequential protection and deprotection of the primary and secondary hydroxyl group to give compound **198** also requires further study. Triflation of the primary alcohol and subsequent displacement with the dithiane protected ketoester should work, despite our unsuccessful attempts at the triflation. Also, during our synthetic work, only the acetate protection was used on the secondary hydroxyl. A large range of alternate protecting groups could be screened for further study.

One of our most promising intermediates, compound **220**, leaves many options for further work. Continued attempts for the removal of the anomeric hydroxyl group would be prudent. A different strategy for this compound would also involve the tosylation of the primary

hydroxyl group, followed by displacement with a thioacetate anion. This would give an interesting intermediate **237**. The remaining hydroxyl groups could be protected and the previously proposed route for deprotection of the primary ketal, followed by oxidation to a ketoester, and finally removal of the acetate group protecting the primary thiol would lead to the bicyclic structure. This would leave the functionalization of the protected hydroxyl groups for a later stage in the synthesis.

Finally, the work conducted on the direct conversion of D-arabinose and oxaloacetic acid to KDO warrants further investigation. If successfully completed in reasonable yields this provides a fast and efficient route to more advanced intermediates (**Figure 15**)

#### References

1. Schmidt, O. T., Methods in Carbohydrate Chemistry. 1963, 2, 318-325.

2. Schmidt, M. Reiner and R. R., Tetrahedron. 2000, 11, 319-335.

3. Braja G. Hazra, Sourav Basu, Bharat B. Bahule, Vandana S. Pore, Brahmanande N. Vyas and Veleawamy. M Ramraj., *Tetrahedron*. **1997**, *53*, 4909-4920.

4. Jack B. Jiang, Maud J. Urbanski, and Zoltan G. Hajos., *J. Org. Chem.* **1983**, *48*, 2001-2005.

5. Yoshihide Usami, Takashi Ikura, Taro Amagata and Atsushi Numata., *Tetrahedron: Asymmetry*. **2000**, *11*, 3711-3725.

6. Kiyoshi Tanemura, Hiroshi Dohya, Masanori Imamura, Tsuneo Suzuki and Takaaki Horaguchi., *Journal of the Chemical Society, Perkin Transactions 1*. **1995**, 453-457.

7. Nemai C Ganguly, Sujoy Kumar Barik., Synthesis. 2009, 1393-1399.

8. K. C. Nicolaou, Casey J. N. Mathison and TAmsyn Montagnon., J. Am. Chem. Soc. 2004, 5192-5201.

9. M, Lerner L., J. Org. Chem. 1976, 41, 2228-2229.

10. Gary R. Gray, John A. Bennek., J. Org. Chem. 1987, 52, 892-897.

11. Adeline Malapelle, Anna Coslovi, Gilles Doisneau and Jean-Marie Beau., *Eur. J. Org. Chem.* **2007**, 3145-3157.

12. Corey, E. J, Winter, A. E., J. Am. Chem. Soc. 1963, 85, 2677-2678.

13. Shing, Tony K. M., Tetrahedron: Asymmetry. 1994, 5, 2405-2414.

14. Yvan Guindon, J. Rancourt., J. Org. Chem. 1998, 63, 6554-6565.

15. Michael W. Rathke, Andreas Lindbert. Tetrahedron Lett. 1971, 43, 3995-3998.

16. Masahiro Imoto, Shoichi Kusumoto and Tetsuo Shiba. *Tetrahedron Lett.* **1987**, *28*, 6235-6238.

17. Koen F. W. Hekking, Floris L. van Delft and Floris P. J. T. Rutjes., *Tetrahedron*. **2003**, *59*, 6751-6758.

18. Frank O. H. Pirrung, Henk Hiemstra, W. Nico Speckamp, Bernard Kaptein, Hanse. Schoemaker., *Synthesis*. **1995**, 458-472.

19. Yoshio Okimoto, Satoshi Sakaguchi, and Yasutaka Ishii., J. Am. Chem. Soc. 2002, 124, 1590-1591.

20. Phillip C. Bulman Page, Robin D. Wilkes, Ernest S, Namwindwa, and Michael J. Witty., *Tetrahedron.* **1996**, *52*, 2125-2154.

21. Eusebio Juaristi, Josefina Tapia and rodolfo Mendez., Tetrahedron. 1986, 42, 1253-1264.

22. Daniel W. Norbeck, James B. Kramer, and Paul A. Lartey., *J. Org. Chem.* **1986**, *52*, 2174-2179.

23. Firth, J. W. Cornforth and M. E., Biochem. J. 1958, 68, 57-61.

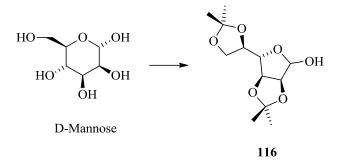
**Experimental** 

#### **Experimental Procedures**

Air sensitive reactions were run using flame-dried glassware and under an argon atmosphere. Extractions were performed using the reported organic solvent and, if not indicated, were equivolumetric. Where petroleum ether fractions 40/60 has been used, it is referred to in the term "petrol".

Chromatography on silica gel was performed using a standard purification procedure using Fluka Kieselgel 60, 0.023-0.063 mm particle size with the reported solvent systems. Thin layer chromatography was performed using Merck aluminium-backed plates coated with Kieselgel 60 F254 silica coating. The plates were visualized by U.V. irradiation at a wavelength of 254 nm, or by dipping the plate in an ethanolic solution of phosphomolybdic acid, or potassium permanganate solution.

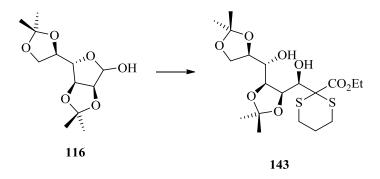
Fourier transformation Infrared spectroscopy was recorded using a Perkin Elmer Model spectrophotometer in the range of 4000-500  $cm^{-1}$ . Samples were dissolved in the reported solvent and applied onto a sodium plate as thin films.


Nuclear magnetic resonance spectroscopy was acquired using a Varian Unity Plus instrument operating at a frequency of 399.96 MHz for 1H NMR analyses and 100.58 MHz for 13C NMR analyses. The spectra were calibrated where possible to the signals of tetramethylsilane, at d = 0.00 ppm, or else using the residual peak of CHCl<sub>3</sub> present in CDCl<sub>3</sub>, at  $\delta$  = 7.26 ppm. Chemical shifts ( $\delta$ ) are reported in ppm. When possible, coupling constants (J) are shown denoting the multiplicity as: singlet (s), doublet (d), triplet (t), quarter (q), multiplet (m) or any combination of those. The size of the coupling constant is given in Hertz. Carbons are shown as follows: CH<sub>3</sub>, CH<sub>2</sub>, CH and C<sub>q</sub> (quaternary carbons).

Optical rotations values were measured with a Bellingham and Stanley ADP-440 polarimeter, operating at  $\lambda = 589$  nm, corresponding to the sodium line (D), at the temperatures indicated. The solvent used for these measurements were of spectrophotometric grade and the solutions for these measurements were prepared in volumetric flasks for maximum accuracy.

High resolution mass spectroscopy was carried out by the EPSRC national mass spectrometry service at the University of Wales, Swansea, utilizing electrospray (ES), nanoelectrospray (NESP) and MALDI-TOF ionization techniques.

Melting points were obtained using an Electrothermal-IA 9100 melting point instrument.

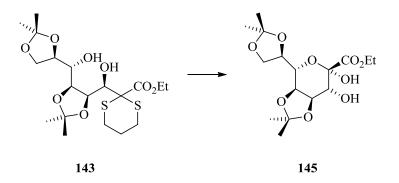

#### **<u>2,3;5,6-di-O-isopropylidene-α-D-mannofuranose (116)</u><sup>1</sup>**



D-Mannose (20 g) was stirred with anhydrous acetone (600 mL); concentrated sulfuric acid (14 mL) was added to the solution and stirred for 3-4 h at rt until all of the sugar had dissolved. The light yellow solution was neutralized with anhydrous sodium carbonate and filtered. The filtrate was refluxed for a further 1 h with activated charcoal and 2-3 g sodium carbonate. The solution was filtered through celite and evaporated under reduced pressure to give a colourless solid. Crystallization using diethyl ether and petrol gave the product **116** as colourless crystals, 20 g from the first crystallization and a further 6-7 g from recrystallization of the mother liquor (26.6 g, 92%).

Rf 0.42, (1:1), (toluene:EtOAc); M.p. 122-123 °C; IR  $v_{max}$  (film)/cm<sup>-1</sup>: 3427, 2985, 2945, 2898, 1457, 1437, 1373, 1226, 1203, 1069;  $\delta_{H}$  (300 MHz, CDCl<sub>3</sub>): 1.32, 1.37, 1.45, 1.46 (4s, 12H, CH<sub>3 isopropylidene</sub>), 4.06 (dd, 2H, J = 3.45, 5.44Hz, 6-H), 4.17 (dd, 1H, J = 3.62, 7.16 Hz, 5-H), 4.40 (dd, 1H, J = 6.5, 11.53 Hz, 4-H), 4.61 (d, 1H, J = 5.91Hz, 2-H), 4.80 (dd, 1H, J = 3.67, 5.91 Hz, 3-H), 5.37 (s, 1H, 1-H),  $\delta_{C}$  (100 MHz, CDCl<sub>3</sub>): 24.23, 25.16, 25.68, 26.55 (4 CH<sub>3</sub>), 65.80 (C-6), 72.75 (C-5), 79.09 (C-4), 79.26 (C-3), 85.38 (C-2), 100.30 (C-1), 107.83, 111.26 (2C<sub>q isopropylidene</sub>); *m/z* [M+H]<sup>+</sup>: 261.1333; [C<sub>12</sub>H<sub>21</sub>O<sub>6</sub>+H]<sup>+</sup> requires 261.1333.

#### Ethyl 2-deoxy-4,5:7,8-di-O-isopropylidene-D-glycero-D-galacto-octulosonate 1,3propane dithio-acetal (143)<sup>2</sup>




A solution of DIPA (16.8 mL, 126 mmol) in 145 mL of THF was cooled to -20 °C, *n*BuLi, 2.5M in hexanes, (50.56 mL, 126 mmol) was added dropwise, and this solution stirred for 15 minutes. Ethyl 1,3-dithiane-2-carboxylate (18.1 mL, 115.2 mmol) was then added slowly to the solution and stirred for 2 h at -20 °C. The mixture was cannulated slowly into a solution of MgBr<sub>2</sub> in 185 mL of THF, prepared from Mg (4.2 g, 172 mmol) and 1,2-dibromoethane (13.2 mL, 152.8 mmol) at -20 °C. Compound **116** (10 g, 38.4 mmol, was added to the solution without any solvent, the reaction mixture was left to reach rt over 3 h, heated to 50 °C for a further 3 h, then poured into ice-cold saturated aqueous NH<sub>4</sub>Cl solution (400 mL). The solution was extracted with EtOAc 3x200 mL; the organic layer was washed with water and then brine and dried over MgSO<sub>4</sub>. The filtrate was concentrated *in vacuo* and purified by flash column chromatography (toluene:EtOAc) (4:1) to give **143** as a yellow glassy residue (16.62 g,95.6%).

Rf 0.5 (1:1), (toluene:EtOAc); IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3452, 2983, 2933, 1727, 1424, 1380, 1370, 1245, 1215, 1063;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.36 (t, 3H, J = 7.2 Hz, CH<sub>3 ester</sub>), 1.36, 1.38, 1.43, 1.52 (4s, 12H, CH<sub>3 isopropylidene</sub>), 1.91 (m, 1H, CH<sub>2 dithiane</sub>), 2.10 (m, 1H, CH<sub>2 dithiane</sub>), 2.78 (m, 2H, CH<sub>2 dithiane</sub>), 3.02 (dd, 1H, J = 2.8 Hz, J = 11.6 Hz, CH<sub>2 dithiane</sub>), 3.23 (dd, 1H, J = 2.8 Hz, J = 11.2 Hz, CH<sub>2 dithiane</sub>), 3.64 (d, 1H, J = 6 Hz, 5-H), 3.78 (d, 1H, J = 2.4 Hz, OH), 3.95 (d, 1H, J = 10 Hz, CH <sub>carbo</sub>), 4.03-4.08 (m, 1H, CH <sub>carbo</sub>), 4.11-4.16 (m, 2H, CH <sub>carbo</sub>), 4.25-4.33 (m, 3H, CH<sub>2 ester</sub>, CH <sub>carbo</sub>), 4.44 (dd, 1H, J = 1.2 Hz, J = 7.6 Hz, 4-H), 4.58 (d, 1H, J = 7.6 Hz, 3-H);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): 14.10 (CH<sub>3 ester</sub>), 24.16 (CH<sub>2 dithiane</sub>), 25.14, 25.14, 26.10, 26.93 (4 CH<sub>3 isopropylidene</sub>), 27.25, 27.56 (2 CH<sub>2 dithiane</sub>), 54.65 (C<sub>q dithiane</sub>), 62.76 (CH<sub>2 ester</sub>), 67.60

(CH<sub>2 carbo</sub>), 70.63, 72.50, 74.17, 75.71, 77.30 (5 CH <sub>carbo</sub>), 109.20, 109.36 (2 C<sub>q isopropylidene</sub>), 169.94 (C<sub>q ester</sub>); m/z [M+H]<sup>+</sup>: 453.1612; [C<sub>19</sub>H<sub>32</sub>O<sub>8</sub>S<sub>2</sub>+H]<sup>+</sup> requires 453.1611.

#### Ethyl 4,5:7,8-di-O-isopropylidene- $\alpha$ -D-glycero-D-galacto-2-octulopyranosanate (145)<sup>2</sup>

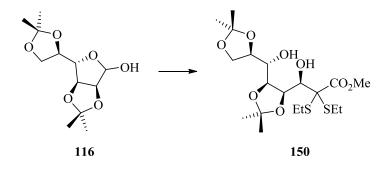


A solution of **143** (150 mg, 330  $\mu$ mol) in 95% acetone (5 mL) was treated with NBS (210 mg, 1.18 mmol) dissolved in 95% acetone (10 mL) and the mixture stirred vigorously for 3 min at 0 °C. Saturated aqueous NaHCO<sub>3</sub> and saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> were added to the reaction mixture, followed by extraction with EtOAc. The organic layer was dried over MgSO<sub>4</sub> and evaporated to dryness *in vacuo*. The crude residue was purified by column chromatography (toluene:acetone) (5:1) to give **145** (48 mg, 40%). Compound **145** was further purified by recrystallization from hot ethanol to give a crystal for X-ray crystal structure determination.

Rf 0.29 (1:1) (toluene:EtOAc); M.p. 123-124 °C; IR vmax (film)/cm<sup>-1</sup>: 3443, 2987, 2933,

2360, 2339, 1775, 1741, 1711, 1431, 1373;  $\delta_{\rm H}$  (600 MHz, DMSO-*d6*): 1.19 (t, 3H, J = 7.1 Hz, CH<sub>3</sub> ester), 1.26 (s, 6H, CH<sub>3</sub> isopropylidene), 1.32 (s, 3H, CH<sub>3</sub> isopropylidene), 1.40 (s, 3H, CH<sub>3</sub> isopropylidene), 3.75 (td, 1H, J = 7.7, 1.5 Hz, 7-H), 3.83 (dd, 1H, J = 8.5, 5.0 Hz, 7-H), 3.93 (dd, 1H, J = 8.4, 2.5 Hz, 5-H), 3.96 (dd, 1H, J = 8.4, 6.4 Hz, CH <sub>carbo</sub>), 4.05 (dd, 1H, J = 7.5, 5.6 Hz, CH <sub>carbo</sub>), 4.09-4.16 (m, 2H, CH<sub>2</sub> ester), 4.16-4.22 (m, 2H, CH <sub>carbo</sub>), 5.23 (d, 1H, J = 7.8 Hz, OH), 6.91 (d, 1H, J = 1.6 Hz, OH);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.01 (CH<sub>3</sub> ester), 25.54, 26.43, 26.94, 28.27 (4 CH<sub>3</sub> isopropylidene), 63.43 (CH<sub>2</sub> ester), 66.91 (CH<sub>2</sub> carbo), 66.99 (CH <sub>carbo</sub>), 71.01 (CH <sub>carbo</sub>), 73.01 (CH <sub>carbo</sub>), 74.13 (CH <sub>carbo</sub>), 77.41 (CH <sub>carbo</sub>), 95.25 (C<sub>q</sub> C-1), 109.59, 109.99

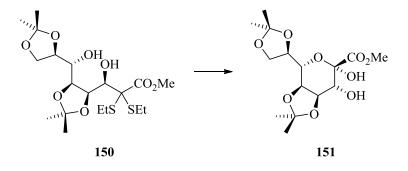
(2  $C_{q \text{ isopropylidene}}$ ), 169.47 ( $C_{q \text{ ester}}$ ); m/z [M+NH<sub>4</sub>]<sup>+</sup>: 380.1920; [ $C_{16}H_{26}O_9$ +NH<sub>4</sub>]<sup>+</sup> requires 380.1915


#### Methyl bis(ethylthio)acetate (152)<sup>3</sup>



Sodium metal (0.322 g, 14 mmol) was placed in a 3-neck flask with a condenser under nitrogen atmosphere. The flask was cooled to 0 °C and methanol (20 mL) was added slowly. After all the sodium had reacted, ethanethiol (2.48 g, 14 mmol) was added dropwise to the solution. Methyl dichloroacetate (2.86 g, 7 mmol) was added dropwise and the solution was stirred for 48 h at rt. The mixture was treated with water (10 mL) then diethyl ether (50 mL). The ethereal layer was washed with water then brine and dried over MgSO<sub>4</sub>. The liquid was evaporated to dryness to give a yellow oil. The oil was distilled to give the pure compound **152** as a clear and colourless oil (1.11g 76%)

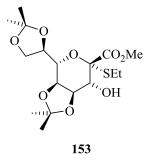
bp 125-127 °C (5 Torr);  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.27 9t, 6H, J = 7.4 Hz, 2CH<sub>3</sub>), 2.72 (q, 4H, J = 7.4 Hz, 2CH<sub>2</sub>), 3.78 (s, 3H, CH<sub>3 ester</sub>), 4.38 (s, 1H, CH).


#### <u>Methyl 2-deoxy4,5:7,8-di-O-isopropylidene-D-glycero-D-galacto-octulosonate</u> diethylthioacetal (150)<sup>2</sup>



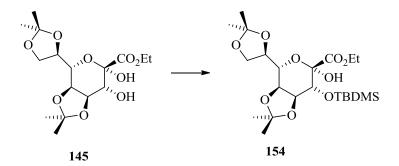
A solution of DIPA (17.8 mL, 127 mmol) in dry THF (127 mL) was treated with *n*BuLi, 2.5 M in hexanes (50.6 mL, 127 mmol) at -20 °C. After 15 min compound **152** (22.3 g, 115 mmol) was added slowly. The dark red solution was stirred at -20 °C for 2 h and then cannulated to a solution of MgBr<sub>2</sub> in THF (127 mL) at -20 °C prepared from magnesium (4.2 g , 165 mmol) and 1,2-dibromoethane (13.2 mL, 152 mmol). Compound **116** (10 g, 38 mmol) was added without solvent, the reaction mixture was warmed to rt and stirred for 3 h. the reaction was then heated to 50 °C and stirred for a further 3 h. The solution was poured into ice-cold saturated aqueous NH<sub>4</sub>Cl (400 mL) and extracted with EtOAc 3 times. The organic layer was washed with water then brine, and dried over MgSO<sub>4</sub>. The mixture was evaporated to dryness *in vacuo* and purified by column chromatography (toluene:EtOAc, 6:1) to give **150** as a yellow glassy residue (7.82 g, 45%)

Rf 0.54 (toluene:EtOAc, 1:1);  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.24 (td, 6H, J = 7.5, 5.0 Hz, CH<sub>3</sub> mercaptal), 1.36 (s, 6H, CH<sub>3</sub> isopropylidene), 1.41 (s, 3H, CH<sub>3</sub> isopropylidene), 1.50 (s, 3H, CH<sub>3</sub> isopropylidene), 2.55-2.79 (m, 4H, CH<sub>2</sub> mercaptal), 3.61 (d, 1H, J = 6.9 Hz, CH <sub>carbo</sub>), 3.79 (s, CH<sub>3</sub> ester), 4.00-4.17 (m, 4H, CH <sub>carbo</sub>), 4.43 (d, 1H, J = 7.6 Hz, 4-H), 4.77 (d, 1H, J = 7.6 Hz, 3-H); m/z [M+H]<sup>+</sup>: 455.1768; [C<sub>19</sub>H<sub>34</sub>O<sub>8</sub>S<sub>2</sub>+H]<sup>+</sup> requires 455.1768.


#### Methyl 4,5:7,8-di-O-isopropylidene-α-D-glycero-D-galacto-2-octulopyranosonate (151)<sup>2</sup>



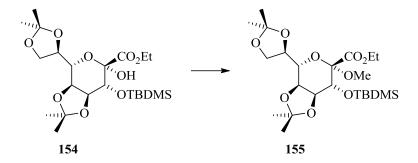
A solution of **150** (1 g, 2.1 mmol) in 95% acetone (45 mL) was treated with NIS (1.2 g, 5.34 mmol) at 0 °C and stirred for 30 min. Et<sub>3</sub>N (2.2 ml) was added to the solution followed by saturated aqueous  $Na_2S_2O_3$ . The solution was extracted with EtOAc 3x50 mL and the organic layers combined and dried over MgSO<sub>4</sub>. The crude product was purified by column chromatography (toluene:acetone, 5:1) to give the product **151** as a colourless solid (175 mg, 24%).


Rf 0.21 (toluene:EtOAc, 1:1);  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.33, 1.36, 1.38, 1.52 (4s, 12H, CH<sub>3</sub> isopropylidene), 2.89 (s, 1H, OH), 3.83 (s, 3H, CH<sub>3 ester</sub>), 3.92-4.04 (m, 3H, CH <sub>carbo</sub>), 4.14 (ddd, 2H, J = 10.2, 7.8, 1.9 Hz, H-7), 4.28 (dd, 1H, J = 5.3, 2.3 Hz, H-5), 4.34 (ddd, 1H, J = 8.4, 6.1, 3.1 Hz H-4), 4.68 (s, 1H, H-2).

#### Side product from previous reaction (153)

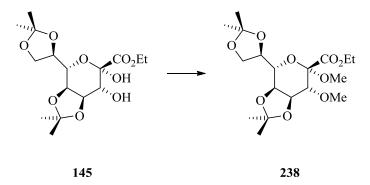


IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3436, 2985, 2934, 1726, 1436, 1373, 1261, 1215, 1165, 1115;  $\delta_{\rm H}$  (600 MHz, DMSO-*d6*): 1.11 (t, 3H, J = 7.5 Hz, CH<sub>3 mercaptal</sub>), 1.23, 1.26, 1.27, 1.32 (4s, 12H, CH<sub>3</sub> isopropylidene) 2.35-2.48 (m, 2H, CH<sub>2 mercaptal</sub>) 3.65 (s, 3H, CH<sub>3 ester</sub>), 3.75 (dd, 1H, J = 8.3, 4.9 Hz, H-7), 3.91 (d, 1H, J = 7.9 Hz, 5-H), 4.01 (dd, 1H, J = 11.9, 5.4 Hz, 7-H), 4.10 (dd, 1H, J = 12.9, 6.3 Hz, 6-H), 4.27 (dd, 1H J = 7.6, 1.2 Hz, 4-H), 4.39 (dd, 1H, J = 7.5, 3.7 Hz, 3-H), 4.47 (dd, 1H, J = 6.7, 3.7 Hz, 2-H), 6.31 (d, 1H, J = 6.7 Hz, OH);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.22 (CH<sub>3 mercaptal</sub>), 21.39 (CH<sub>2 mercaptal</sub>), 25.60, 25.97, 26.85, 27.30 (4CH<sub>3 isopropylidene</sub>), 52.95 (CH<sub>3 ester</sub>), 66.70 (CH, 2-C), 70.40, 71.50, 72.56, 74.32, 75.42, (5CH <sub>carbo</sub>), 87.85 (C<sub>q</sub>, 1-C), 109.59, 110.23 (2C<sub>q isopropylidene</sub>), 170.69 (C<sub>q ester</sub>); *m*/z [M+NH<sub>4</sub>]<sup>+</sup>: 410.1845; [C<sub>17</sub>H<sub>28</sub>O<sub>8</sub>S+NH<sub>4</sub>]<sup>+</sup> requires 410.1843.


# (3aS,4S,6R,7R,7aS)-ethyl 7-((tert-butyldimethylsilyl)oxy)-4-((R)-2,2-dimethyl-1,3dioxolan-4-yl)-6-hydroxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6carboxylate (154)



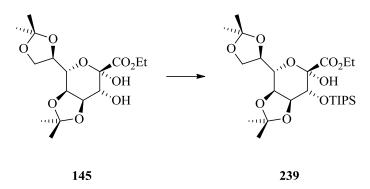
To a solution of **145** (150 mg, 414 $\mu$ m) in DMF (2 mL) imidazole (37.5 mg, 551 $\mu$ m) and TBDMSCl (124 mg, 822  $\mu$ m) were added and left to stir at rt under a nitrogen atmosphere for 24 h. The solution was then diluted with CHCl<sub>3</sub> and washed with water then brine. The organic layer was dried over MgSO<sub>4</sub> and concentrated to dryness *in vacuo*. Purification by column chromatography gave **154** as a colourless oil (64 mg, 32.4%).


 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 0.05, 0.16 (2s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>), 0.84 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.33 (t, 3H, J = 7.17 Hz, CH<sub>3 ester</sub>), 1.36, 1.37, 1.40 (3s, 12H, CH<sub>3 isopropylidene</sub>), 3.9-4.4 (m, 9H, CH <sub>carbo</sub>, CH<sub>2</sub> <sub>ester</sub>); *m*/*z* [M+NH<sub>4</sub>]<sup>+</sup>: 494.2772; [C<sub>22</sub>H<sub>40</sub>O<sub>9</sub>Si+NH<sub>4</sub>]<sup>+</sup> requires 494.2780.

# (3aS,4S,6R,7R,7aS)-ethyl 7-((tert-butyldimethylsilyl)oxy)-4-((R)-2,2-dimethyl-1,3dioxolan-4-yl)-6-methoxy-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6carboxylate (155)



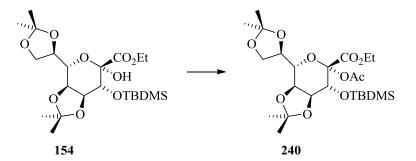
NaH (5.23 mg, 209  $\mu$ mol) was added to a solution of **154** (100 mg, 209  $\mu$ mol) in DMF (2 mL), followed by MeI (19  $\mu$ L, 0.314 mmol) and stirred at rt for 2 h. The solution was diluted with CHCl<sub>3</sub> and washed with water then brine and dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The crude mixture was purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **155** as a colourless oil (90 mg, 88%).


 $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 0.06 (s, 3H, SiCH<sub>3</sub>), 0.10 (s, 3H, SiCH<sub>3</sub>), 0.86 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.29 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.32, 1.36, 1.39, 1.43 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.31-4.42 (m, 9H, CH <sub>carbo</sub>, CH<sub>2 ester</sub>);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): -4.98, -4.74 (2C, Si(CH<sub>3</sub>)<sub>2</sub>), 14.26 (CH<sub>3</sub> ester), 18.34 (C<sub>q</sub>, SiC(CH<sub>3</sub>)<sub>3</sub>), 25.64, 25.73, 25.88, 26.43, 27.02, (7C, 4CH<sub>3 isoproylidene</sub>, SiC(CH<sub>3</sub>)<sub>3</sub>), 50.48 (OCH<sub>3</sub>), 61.59 (CH<sub>2 ester</sub>), 67.09, 70.40, 70.88, 72.82, 74.27, 75.48 (6C, 2C-7C <sub>carbo</sub>), 98.17 (C<sub>q</sub> 1-C), 109.26, 110.36 (2C<sub>q isopropylidene</sub>), 167.19 (C<sub>q ester</sub>); *m/z* [M+NH<sub>4</sub>]<sup>+</sup>: 508.2926; [C<sub>23</sub>H<sub>42</sub>O<sub>9</sub>SI+NH<sub>4</sub>]<sup>+</sup> requires 508.2936.



NaH (52.3 mg, 2.09 mmol) was added to a solution of **145** (0.5 g, 1.05 mmol) in DMF (10 mL), MeI was added (188  $\mu$ L, 3.14 mmol) and the solution was left to stir for 2 h at rt. The mixture was diluted with CHCl<sub>3</sub> and washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude mixture was purified using column chromatography (petrol:EtOAc, 3:1) to give the pure compound **238** as a colourless solid (307 mg, 75%).

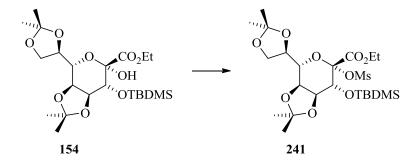
 $δ_{\rm H}$  (400 MHz, DMSO-*d6*): 1.22 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.27, 1.28, 1.33, 1.41 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.26, 3.37 (2s, 6H, OCH<sub>3</sub>), 3.61 (d, 1H, 3.7 Hz, 7-H), 3.72 (dd, 1H, J = 7.4, 1.0 Hz, 7-H), 3.90 (dd, 1H, J = 8.6, 5.1 Hz, CH <sub>carbo</sub>), 3.98-4.07 (m, 1H, CH <sub>carbo</sub>), 4.11-4.31 (m, 5H, CH <sub>carbo</sub>, CH<sub>2 ester</sub>); *m*/*z* [M+NH<sub>4</sub>]<sup>+</sup>: 408.2228; [C<sub>18</sub>H<sub>30</sub>O<sub>9</sub>+NH<sub>4</sub>]<sup>+</sup> requires 408.2228.


# (3aS,4S,6R,7R,7aS)-ethyl 4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-hydroxy-2,2dimethyl-7-((triisopropylsilyl)oxy)tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6carboxylate (239)



TIPSOTf (0.81 mL, 3 mmol) was added dropwise to a solution of **145** (0.9 g, 2.5 mmol) and 2,6-lutidene (0.35 mL, 3 mmol) in DCM (20 mL) at -78 °C and stirred for 1 h. Saturated aqueous NaHCO<sub>3</sub> was added to the solution followed by extracting with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was evaporated *in vacuo* and the crude mixture was purified via column chromatography (petrol:EtOAc, 5:1) to give the pure product **239** (0.88 g, 68%).

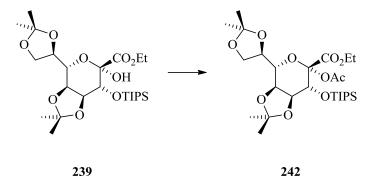
IR  $\nu_{max}$  (film)/cm<sup>-1</sup>: 3463, 2943, 2868, 1748, 1464, 1371, 1247, 1219, 1148, 1073, 970, 920, 883, 815, 732;  $\delta_{H}$  (300 MHz, CDCl<sub>3</sub>): 0.96-1.12 (m, 21H, Si(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>3</sub>), 1.21 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.26, 1.28, 1.31, 1.40 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.84 (dd, 1H, J = 8.5, 4.9 Hz, 7-H), 3.98 (ddd, 2H, J = 9.9, 7.2, 4.4 Hz, CH <sub>carbo</sub>), 4.03-4.24 (m, 5H, CH <sub>carbo</sub>, CH<sub>2 ester</sub>), 4.27 (dd, J = 4.6, 2.5 Hz, 2-H), 6.90 (s, 1H, OH).


# (3aS,4S,6S,7R,7aS)-ethyl 6-acetoxy-7-((tert-butyldimethylsilyl)oxy)-4-((R)-2,2-dimethyl-<u>1,3-dioxolan-4-yl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6-carboxylate</u> (240)



Ac<sub>2</sub>O (198  $\mu$ L, 2.1 mmol) was added to a solution of **154** (0.45 g, 0.94 mmol) and Et<sub>3</sub>N (292  $\mu$ L, 2.1 mmol) in DCM (25 mL) at 0 °C. DMAP was added (72 mg, 0.59 mmol) and the solution was stirred at rt overnight. Saturated NaHCO<sub>3</sub> solution was added and the mixture was extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. Purification by column chromatography (petrol:EtOAc, 4:1) gave the pure compound **240** (91 mg, 18.6%).

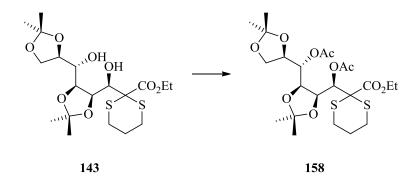
IR  $v_{max}$  (film)/cm<sup>-1</sup>: 2932, 1756, 1473, 1371, 1308, 1249, 1216, 1142, 1077, 972, 949, 873, 829, 783;  $\delta_{H}$  (400 MHz, CDCl<sub>3</sub>): 0.14 (s, 3H, SiCH<sub>3</sub>), 0.18 (s, 3H, SiCH<sub>3</sub>), 0.90 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.26 (t, 3H, CH<sub>3 ester</sub>), 1.36, 1.4, 1.54 (3s, 12H, CH<sub>3 isopropylidene</sub>), 2.06 (s, 3H, CH<sub>3 acetyl</sub>), 4.06 (d, 2H, J = 5.2 Hz, 7-H), 4.09-4.15 (m, 2H, CH<sub>2 ester</sub>), 4.15-4.24 (m, 1H, CH <sub>carbo</sub>), 4.25-4.32 (m, 2H, CH <sub>carbo</sub>), 4.39 (dt, 1H, J = 7.8, 5.2 Hz, 6-H), 5.36 (d, 1H, J = 6.3 Hz, 2-H);  $\delta_{C}$  (75 MHz, CDCl<sub>3</sub>): -3.79, -3.50 (2C, SiCH<sub>3</sub>), 13.90 (CH<sub>3 ester</sub>), 18.88 (C<sub>q</sub>, SiC(CH<sub>3</sub>)<sub>3</sub>), 20.97 (CH<sub>3</sub>, OC(O)CH<sub>3</sub>), 25.59, 25.95, 26.30, 27.01, 27.23 (7CH<sub>3</sub>, SiC(CH<sub>3</sub>)<sub>3</sub>, CH<sub>3 isopropylidene</sub>), 62.19 (CH<sub>2 ester</sub>), 66.68, 69.79, 71.43, 72.86, 74.34, 74.70 (2-7C <sub>carbo</sub>), 95.63 (C<sub>q</sub>, 1-C), 109.50, 110.26 (2C<sub>q isopropylidene</sub>), 167.64, 169.74 (2C<sub>q</sub>, C=O <sub>ester, acetate</sub>); *m*/z [M+NH<sub>4</sub>]<sup>+</sup>: 536.2885; [C<sub>24</sub>H<sub>4</sub>O<sub>10</sub>Si+NH<sub>4</sub>]<sup>+</sup> requires 536.2883.


# <u>(3aS,4S,6S,7R,7aS)-ethyl 7-((tert-butyldimethylsilyl)oxy)-4-((R)-2,2-dimethyl-1,3-</u> <u>dioxolan-4-yl)-2,2-dimethyl-6-((methylsulfonyl)oxy)tetrahydro-3aH-[1,3]dioxolo[4,5-</u> <u>c]pyran-6-carboxylate (241)</u>



MsCl (71  $\mu$ L, 0.92 mmol) was added to a solution of **154** (0.4 g, 0.84 mmol), Et<sub>3</sub>N (128  $\mu$ L, 0.92 mmol) and DMAP (65 mg, 0.53 mmol) in DCM (10 mL) at 0 °C. The solution was left to stir at rt for 3 h and then refluxed overnight. Saturated NaHCO<sub>3</sub> solution was added and the mixture was extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The crude mixture was purified by column chromatography (petrol:EtOAC, 9:1) to give the pure product **241** as a colourless oil (94 mg, 20%).

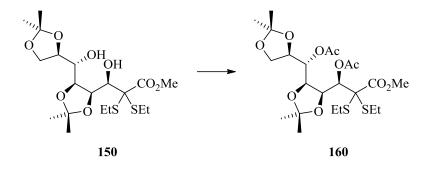
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2987, 2933, 2859, 1754, 1473, 1381, 1372, 1251, 1222, 1152, 1089, 1073, 1052, 1006, 950, 906, 842, 781;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 0.07 (s, 3H, SiCH<sub>3</sub>), 0.14 (s, 3H, SiCH<sub>3</sub>), 0.82 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.33 (t, 3H, J = 7.2 Hz, CH<sub>3 ester</sub>), 1.35, 1.38 (2s, 12H, CH<sub>3 isopropylidene</sub>), 1.54 (s, 3H, CH<sub>3 mesyl</sub>) 4.01 (d, 1H J = 9.3 Hz, 7-H), 4.06-4.39 (m, 5H, CH carbo), 4.45 (s, 2H, CH<sub>2 ester</sub>), 4.54 (t, 1H, J = 1.5 Hz, 2-H).


## (3aS,4S,6S,7R,7aS)-ethyl 6-acetoxy-4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-7-((triisopropylsilyl)oxy)tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6-carboxylate (242)



Ac<sub>2</sub>O (132  $\mu$ L, 1.4 mmol) was added to a solution of **239** (325 mg, 0.63 mmol), Et<sub>3</sub>N (194  $\mu$ L, 1.4 mmol) and DMAP (39 mg, 0.32 mmol) in DCM (25 mL) at 0°C. The reaction was allowed to reach rt and stirred for 4 h. Saturated NaHCO<sub>3</sub> solution was added and the mixture was extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The crude mixture was purified by column chromatography (petrol:EtOAC, 9:1) to give the pure product **242** as a colourless oil (0.234 g, 67%).

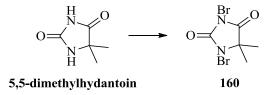
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2985, 2943, 2868, 1761, 1739, 1464, 1370, 1300, 1244, 1220, 1149, 1072, 1076, 1041, 1008, 971;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.04-1.13 (m, 18H, CH<sub>3 TIPS</sub>), 1.13-1.19 (m, 3H, Si(CH)<sub>3</sub>), 1.26 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.33, 1.34, 1.37, 1.50 (4s, 12H, CH<sub>3</sub> isopropylidene), 2.07 (s, 3H, CH<sub>3 acetyl</sub>), 3.88 (dd, 1H, J = 9.0, 3.3 Hz, 7-H), 4.02-4.13 (m, 2H, CH carbo), 4.12-4.28 (m, 2H, CH<sub>2 ester</sub>), 4.36 (ddd, 1H, J = 9.1, 6.0, 3.3 Hz, 6-H), 4.39-4.51 (m, 2H, 3-H, 4-H), 4.58 (d, 1H, J= 3.7 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 12.44 (CH<sub>3 ester</sub>), 13.78 (3C<sub>q</sub>, Si(C(CH<sub>3</sub>)<sub>2</sub>)<sub>3</sub>), 17.95, 17.98 (6CH<sub>3 TIPS</sub>), 21.11 (CH<sub>3 acetate</sub>), 24.92, 25.41, 25.46, 27.08 (4CH<sub>3</sub> isopropylidene), 62.20 (CH<sub>2 ester</sub>), 67.28 (CH<sub>2</sub>, 7-C), 69.83, 71.75, 72.04, 73.46 (4CH, 3C-6C), 74.57 (CH, 2-C), 96.81 (C<sub>q</sub>, 1-C), 109.60, 111.15 (2C<sub>q isopropylidene</sub>), 167.99, 169.03 (2C<sub>q</sub>, 2C=O).


## <u>Ethyl 2-((R)-acetoxy((4S,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-</u> 2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-1,3-dithiane-2-carboxylate (158)



Ac<sub>2</sub>O (4.6 mL, 48.4 mmol), Et<sub>3</sub>N (6.7 mL, 48.4 mmol) and DMAP (0.92 g, 7.5 mmol) were added to a solution of **143** (5 g, 11 mmol) in DCM (100 mL) at 0 °C and stirred for 3 h at rt. The solution was quenched with saturated aqueous NaHCO<sub>3</sub> solution and extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solution was evaporated to dryness and purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **158** as a yellow solid (5.8 g, 98%). The compound was further purified by recrystallization from hot ethanol to give a crystal for X-ray crystal structure determination.

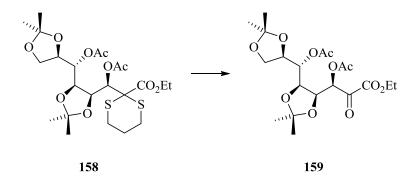
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2986, 2938, 2901, 1746, 1427, 1371, 1217, 1160, 1067, 1038, 982, 884, 845, 735, 702;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.31 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.33, 1.37, 1.45, 1.47 (4s, CH<sub>3 isopropylidene</sub>), 1.86-2.07 (m, 2H, CH<sub>2</sub> dithiane), 2.10, 2.11 (2s, 6H, CH<sub>3 acetyl</sub>), 2.80-2.93(m, 3H, CH<sub>2</sub> dithiane), 3.16 (ddd, 1H, J = 13.3, 9.7, 3.4 Hz, CH<sub>2</sub> dithiane), 3.85 (dd, 1H, J = 8.5, 7.4 Hz, 7-H), 4.05 (dd, 1H, J = 8.5, 6.1 Hz, 7-H), 4.15 (td, 1H, J = 7.2, 6.1 Hz, 6-H), 4.21 (q, 2H, J = 7.1 Hz, CH<sub>2 ester</sub>), 4.44 (dd, 1H, J = 6.1, 5.4 Hz, CH <sub>carbo</sub>), 4.91 (dd, 1H, J = 6.1, 5.4 Hz, CH <sub>carbo</sub>), 5.39 (dd, 1H, J = 7.0, 5.3 Hz, 5-H), 5.71 (d, 1H, J = 5.3 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 13.84 (CH<sub>3 ester</sub>), 20.85, 21.16 (2CH<sub>3 acetate</sub>), 24.03, 25.72, 25.81 (3CH<sub>2 dithiane</sub>), 25.91, 26.30, 27.18, 27.57 (4CH<sub>3 isopropylidene</sub>), 58.12 (C<sub>q</sub>, 1-C), 62.68 (CH<sub>2 ester</sub>), 70.29, (CH<sub>2</sub>, 7-C), 71.73, 74.71, 75.95, 77.69 (4CH <sub>carbo</sub>), 108.76, 110.09 (2C<sub>q isopropylidene</sub>), 169.10, 169.61, 170.19 (3C<sub>q</sub>, C=O); *m*/z [M+NH<sub>4</sub>]<sup>+</sup>: 554.2077; [C<sub>23</sub>H<sub>36</sub>O<sub>10</sub>S<sub>2</sub>+NH<sub>4</sub>]<sup>+</sup> requires 554.2088.


## (R)-methyl 3-acetoxy-3-((4S,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4yl)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-bis(ethylthio)propanoate (160)



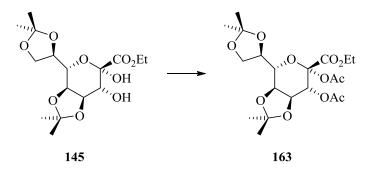
Ac<sub>2</sub>O (0.92 mL, 9.68 mmol), Et<sub>3</sub>N (1.35 mL, 9.68 mmol) and DMAP (183.5 mg, 1.5 mmol) were added to a solution of **150** (1 g, 2.2 mmol) in DCM (20 mL) at 0 °C and stirred for 3 h at rt. The solution was quenched with saturated aqueous NaHCO<sub>3</sub> solution and extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solution was evaporated to dryness and purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **160** as a yellow solid (1.05 g, 88%).

IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2985, 2935, 2874, 1747, 1456, 1434, 1371, 1217, 1159, 1111, 1066, 1041, 980, 917, 847;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.16 (t, 3H, J = 7.5 Hz, SEt), 1.21 (t, 3H, J = 7.5 Hz, SEt), 1.31, 1.34, 1.41, 1.44 (4s, 12H, CH<sub>3</sub> isopropylidene), 2.08, 2.09 (2s, 6H, CH<sub>3</sub> acetyl), 2.57, 2.80 (m, 4H, SEt), 3.75 (s, 3H, CH<sub>3</sub> ester), 3.83 (dd, 1H, J = 8.5, 7.2 Hz, 7-H), 4.01 (dd, 1H, J = 8.5, 6.0 Hz, 7-H), 4.12 (dt, 1H, J = 13.1, 6.6 Hz, 6-H), 4.41 (dd, 1H, J = 6.0, 4.6 Hz, 4-H), 4.91 (t, 1H, J = 6.0 Hz, 3-H), 5.31 (dd, 1H, J = 6.9, 4.6 Hz, 5-H), 5.44 (d, 1H, J = 6.0 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 12.85, 13.35 (2CH<sub>3</sub> mercaptal), 20.82, 21.15 (2CH<sub>3</sub> acetate), 24.73, 25.41 (2CH<sub>3</sub> isopropylidene), 25.66, 25.72 (2CH<sub>2</sub> mercaptal), 25.81, 26.37 (2CH<sub>3</sub> isopropylidene), 53.25 (CH<sub>3</sub> ester), 66.86, (CH<sub>2</sub>, 7-C), 68.59 (C<sub>q</sub>, C(SEt)<sub>2</sub>), 70.18, 72.15, 74.98, 75.86, 77.18 (5CH carbo), 108.49, 109.79 (2C<sub>q</sub> isopropylidene), 169.21, 169.53, 170.25 (3C<sub>q</sub>, C=O); *m*/z [M+NH<sub>4</sub>]<sup>+</sup>: 556.2235; [C<sub>23</sub>H<sub>38</sub>O<sub>10</sub>S<sub>2</sub>+NH<sub>4</sub>]<sup>+</sup> requires 556.2245.


## **<u>1,3-dibromo-5,5-dimethylhydantoin (160)</u>**<sup>4</sup>



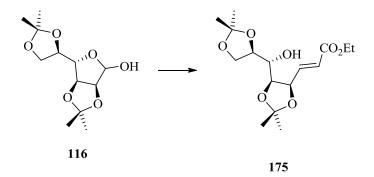
5,5-dimethylhydantoin (5 g, 39 mmol) was dissolved in a 5% solution of NaOH at room temperature. Neat bromine (4 mL, 78 mmol) was added to the solution dropwise and left to stir for 1 h. After formation of a colourless precipitate, the solution was filtered and the solid was washed with ice-cold water until the filtrate ran clear. The solid was then dried in a vacuum oven at 50 °C to give the pure compound **160** (8.8 g, 72%).


IR  $\nu_{max}$  (film)/cm<sup>-1</sup>: 1777, 1725, 1456, 1383, 1336, 1202, 1118, 854, 734;  $\delta_{H}$  (300 MHz, CDCl<sub>3</sub>): 1.38 (s, 6H, 2CH<sub>3</sub>);  $\delta_{C}$  (75 MHz, CDCl<sub>3</sub>): 23.8 (2CH<sub>3</sub>), 68.9 (C<sub>q</sub> 5-C), quaternary carbonyls not observed.

## (R)-ethyl 3-acetoxy-3-((4S,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4yl)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-oxopropanoate (159)



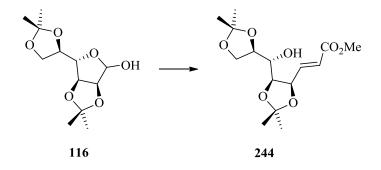
A solution of **158** (1 g, 1.9 mmol) in 95% acetone (50 mL) was treated with compound **160** (1.2 g, 4.1 mmol) dissolved in 95% acetone (20 mL) and stirred vigorously for 45 min at room temperature. Saturated aqueous NaHCO<sub>3</sub> and saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> were added to the reaction mixture, followed by extraction with EtOAc. The organic layer was dried over MgSO<sub>4</sub> and evaporated to dryness *in vacuo*. The crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give **159** as a yellow oil (0.7 g, 84%). Compound **159** was further purified be recrystallization from hot ethanol to give a pale yellow solid.


IR  $v_{max}$  (film)/cm<sup>-1</sup>: 2987, 2940, 1747, 1457, 1372, 1218, 1160, 1077, 1038, 984, 941, 890, 849, 734;  $\delta_{H}$  (400 MHz, CDCl<sub>3</sub>): 1.30 (s, 3H, CH<sub>3 isopropylidene</sub>), 1.37 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.38 (s, 3H, CH<sub>3 isopropylidene</sub>), 1.45, 1.46 (2s, 6H, CH<sub>3 isopropylidene</sub>), 2.09, 2.23 (2s, 6H, CH<sub>3 acetyl</sub>) 3.68-3.76 (m, 1H, 7-H), 4.04-4.14 (m, 2H, 6-H, 7-H) 4.29-4.37 (m, 2H, CH<sub>2 ester</sub>), 4.40 (dd, 1H, J = 8.3, 6.1 Hz, 4-H), 4.88 (dd, 1H, J = 6.1, 3.1 Hz, 3-H), 5.09-5.17 (m, 1H, 5-H), 6.1 (d, 1H, J = 3.1 Hz, 2-H);  $\delta_{C}$  (75 MHz, CDCl<sub>3</sub>): 14.0 (CH<sub>3 ester</sub>), 20.6, 20.9 (2CH<sub>3 acetyl</sub>), 25.5, 25.7, 26.1 (4CH<sub>3 isopropylidene</sub>), 62.8 (CH<sub>2 ester</sub>), 67.7 (CH<sub>2</sub>, 7-C), 70.7 (CH, 5-C), 74.8 (CH, 3-C), 75.4 (CH, 6-C), 76.6 (CH, 2-C), 77.9 (CH, 4-C), 110.1, 110.9 (2C<sub>q isopropylidene</sub>), 160.0, 169.9, 170.2, 187.3 (4C<sub>q</sub>, C=O).



Ac<sub>2</sub>O (0.29 mL, 3.0 mmol), Et<sub>3</sub>N (0.42 mL, 3.0 mmol) and DMAP (0.24 g, 2.0 mmol) were added to a solution of **145** (250 mg, 0.69 mmol) in DCM (25 mL) at 0 °C and stirred for 3 h at rt. The solution was quenched with saturated aqueous NaHCO<sub>3</sub> solution and extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solution was evaporated to dryness and purified by column chromatography (petrol:EtOAc, 5:1) to give a colourless solid **163** (0.27 g, 88%).

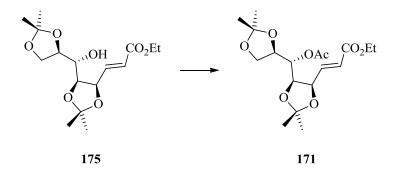
IR vmax (film)/cm<sup>-1</sup>: 2988, 1754, 1373, 1218, 1168, 1068, 969, 929, 874;  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>): 1.25 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.36, 1.38, 1.42, 1.53 (4s, 12H, CH<sub>3 isopropylidene</sub>), 2.11, 2.15 (2s, 6H, CH<sub>3 acetyl</sub>), 3.71 (dd, 1H, J = 8.2, 1.9 Hz, 5-H), 3.97 (dd, 1H, J = 9.1, 4.1 Hz, 7-H), 4.10 (dd, 1H, J = 9.1, 6.2 Hz, 7-H), 4.18 (qd, 2H, J = 7.1, 2.2 Hz, CH<sub>2 ester</sub>), 4.35-4.40 (m, 2H, 4-H, 3-H), 4.44 (ddd, 1H, J = 8.2, 6.2, 4.1 Hz, 6-H), 5.23 (d, 1H, J = 6.9 Hz, 2-H);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): 14.0 (CH<sub>3 ester</sub>), 20.9 (2CH<sub>3 acetyl</sub>), 25.4, 26.3, 27.1, 27.5 (4CH<sub>3 isoproylidene</sub>), 62.8 (CH<sub>2 ester</sub>), 67.1 (CH<sub>2</sub>, 7-C), 69.7 (CH, 2-C), 71.7 (CH, 5-C), 72.3 (CH, 4-C), 73.6 (CH, 6-C), 73.8 (CH, 3-C), 95.9 (C<sub>q</sub>, 1-C), 109.7, 110.7 (2C<sub>q isoproylidene</sub>), 164.9, 168.1, 169.8 (3C<sub>q</sub>, C=O).


## (E)-ethyl 3-((4R,5S)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)acrylate (175)



A solution of **116** (8.8 g 19.2 mmol) and ethyl 2-(triphenylphosphoranylidene)acetate (13 g 21.2 mmol) in toluene (250 mL) was heated under reflux for 1 h. The solvent was then removed under reduced pressure and the crude residue was triturated with cold diethyl ether to precipitate the triphenylphosphine oxide by-product. The solid was filtered off and the solution evaporated to dryness. The crude mixture was purified by column chromatography (petrol:Et<sub>2</sub>O, 1:1) to give the pure compound **175** as a colourless oil (7.04 g, 63%).

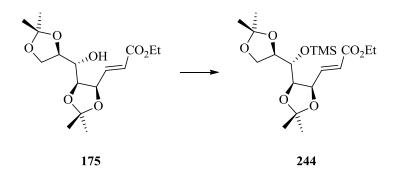
IR vmax (film)/cm<sup>-1</sup>: 3497, 2986, 2937, 1719, 1660, 1459, 1372, 1303, 1256, 1213, 1162, 1069, 983, 850;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.29 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.35, 1.40, 1.42, 1.55 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.44 (dd, 1H, J = 8.0, 2.1 Hz, 5-H), 3.96-4.03 (m, 2H, 6-H, 7-H), 4.07-4.14 (m, 1H, 7-H), 4.21 (q, 2H, J = 7.1 Hz, CH<sub>2 ester</sub>), 4.46 (dd, 1H, J = 7.5, 2.1 Hz, 4-H), 4.83 (dd, 1H, J = 7.6, 6.2 Hz, 3-H), 6.09 (dd, 1H, J = 15.7, 1.5 Hz, 1-H), 7.06 (dd, 1H, J = 15.7, 6.2 Hz, 2-H);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): 14.4 (CH<sub>3 ester</sub>), 24.7, 25.2, 26.7, 26.7 (4CH<sub>3 isopropylidene</sub>), 60.6 (CH<sub>2 ester</sub>), 67.2 (CH<sub>2</sub>, 7-C), 70.5 (CH, 5-C), 76.2 (CH, 6-C) 76.6 (CH, 3-C), 77.4 (CH, 4-C), 109.4, 109.5 (2C<sub>q isopropylidene</sub>), 123.7 (CH <sub>alkene</sub>, 1-C), 143.7(CH <sub>alkene</sub>, 2-C), 165.8 (C<sub>q</sub> C=O); *m*/*z* [M+NH<sub>4</sub>]<sup>+</sup>: 348.2013; [C<sub>16</sub>H<sub>26</sub>O<sub>7</sub>+NH<sub>4</sub>]<sup>+</sup> requires 348.2017.


## (E)-methyl 3-((4R,5S)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)acrylate (243)



A solution of **116** (1 g 3.8 mmol) and methyl 2-(triphenylphosphoranylidene)acetate (1.6 g 4.8 mmol) in toluene (50 mL) was heated under reflux for 1 h. The solvent was then removed under reduced pressure and the crude residue was triturated with cold diethyl ether to precipitate the triphenylphosphine oxide by-product. The solid was filtered off and the solution evaporated to dryness. The crude mixture was purified by column chromatography (petrol:Et<sub>2</sub>O, 1:1) to give the pure compound as a colourless oil (0.8 g, 66%).

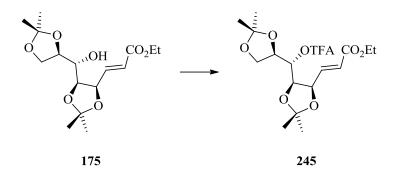
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3505, 2988, 2938, 1726, 1438, 1372, 1307, 1258, 1213, 1163, 1118, 1069, 888, 851;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.34, 1.40, 1.41, 1.54 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.42 (td, 1H, J = 7.8, 2.1 Hz, CH <sub>carbo</sub>), 3.75 (s, 3H, CH<sub>3 ester</sub>), 3.38-3.47 (m, 2H, CH <sub>carbo</sub>), 4.03-4.15 (m, 1H, CH <sub>carbo</sub>), 4.47 (dd, 1H, J = 7.5, 2.0 Hz, CH <sub>carbo</sub>), 4.82 (ddd, 1H, J = 7.7, 6.2, 1.5 Hz, 3-H), 6.10 (dd, 1H, J = 15.7, 1.5 Hz, 1-H <sub>alkene</sub>), 7.07 (dd, 1H, J = 15.7, 6.2 Hz, 2-H <sub>alkene</sub>);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 25.1, 25.5, 26.7, 27.0 (4CH<sub>3 isopropylidene</sub>), 51.7 (CH<sub>3 ester</sub>), 67.4, 70.5, 70.8, 77.4, 81.2 (5C <sub>carbo</sub>), 109.6, 109.7 (2C<sub>q isopropylidene</sub>), 123.3 (CH <sub>alkene</sub>, 1-C), 144.1 (CH <sub>alkene</sub>, 2-C) 166.5 (C<sub>q</sub> C=O).


#### (E)-ethyl 3-((4R,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)acrylate (171)



Ac<sub>2</sub>O (252  $\mu$ L, 2.67 mmol) and pyridine (216  $\mu$ L, 2.67 mmol) were added to a solution of **175** (0.8 g, 2.43 mmol) in DCM and left to stir for 48 h at rt. Saturated aqueous NaHCO<sub>3</sub> solution was added to the mixture, the solution was extracted with DCM, washed with CuSO<sub>4</sub> solution, water and brine and dried over MgSO<sub>4</sub>. The solent was removed *in vacuo* and the crude mixture was purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **171** (0.66 g, 75%)

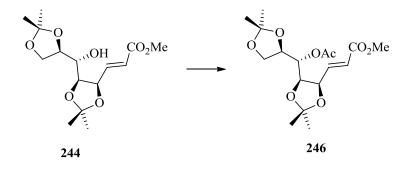
 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.29 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.35, 1.38, 1.40, 1.56 (4s, 12H, CH<sub>3</sub> isopropylidene), 2.02 (s, 3H, CH<sub>3 acetyl</sub>), 3.86 (dd, 1H, J = 8.7, 6.5 Hz, 7-H), 3.98 (dd, 1H, J = 8.7, 6.1 Hz, 7-H), 4.15-4.23 (m, 3H, CH<sub>2 ester</sub>, 6-H), 4.52 (dd, 1H, J = 7.2, 2.1 Hz, 4-H), 4.83 (ddd, 1H, 7.1, 5.3, 1.8 Hz, 3-H), 4.97 (dd, 1H, J = 6.9, 2.1 Hz, 5-H), 6.05 (dd, 1H, J = 15.7, 1.8 Hz, 1-H), 6.82 (dd, 1H, 15.6, 5.3 Hz, 2-H);  $δ_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): 14.7 (CH<sub>3 ester</sub>), 21.2 (CH<sub>3 acetyl</sub>), 25.2, 25.6, 26.8, 27.1 (4CH<sub>3 isopropylidene</sub>), 61.1 (CH<sub>2 ester</sub>), 66.7, 72.0, 74.9, 75.8, 78.7 (5C carbo), 110.3, 110.5 (C<sub>q isopropylidene</sub>), 123.9 (CH alkene, 1-C), 143.2 (CH alkene, 2-C), 167.8, 171.3 (2C<sub>q</sub> C=O).


## (E)-ethyl 3-((4R,5R)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4yl)((trimethylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (244)



Alkene **175** (0.5 g, 1.52 mmol) was added to a solution of TMSCl (203  $\mu$ L, 1.67 mmol) and Et<sub>3</sub>N (232  $\mu$ L, 1.67 mmol) in DCM (2 mL) and stirred at rt overnight. Saturated aqueous NaHCO<sub>3</sub> was added to the solution and the mixture was extracted with DCM. The organic layer was washed with water then brine, dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The crude mixture was purified by column chromatography (petrol:EtOAc, 3:1) to give the pure compound **244** (0.23 g, 38%).

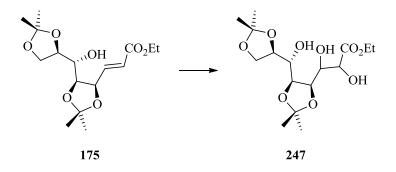
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2985, 1721, 1658, 1457, 1370, 1301, 1249, 1216, 1154, 1110, 1076, 1035, 983, 876, 839;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 0.12 (s, 9H, Si(CH<sub>3</sub>)<sub>3</sub>), 1.28 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.33, 1.37, 1.42, 1.53 (4s, 12H, CH<sub>3 isopropylidene</sub>), 3.71 (t, 1H, J = 7.2 Hz, 7-H), 3.80 (t, 1H, J = 7.6 Hz, 7-H), 3.99 (dd, 1H, J = 6.7, 6.4 Hz, 5-H), 4.09 (dd, 1H, J = 8.1, 6.4, 6-H), 4.15 (dd, 1H, J = 7.5, 6.2 Hz 4-H), 4.20 (q, 2H, J = 7.1 Hz, CH<sub>2 ester</sub>), 4.72 (dd, 1H, J = 8.2, 3.7 Hz, 3-H), 6.06 (dd, 1H, J = 15.7, 1.5 Hz, 1-H), 7.07 (dd, 15.7, 5.8 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 0.7 (3CH<sub>3 TMS</sub>), 14.3 (CH<sub>3 ester</sub>), 25.4, 25.7, 26.3, 27.6 (4CH<sub>3 isopropylidene</sub>), 60.6 (CH<sub>2 ester</sub>), 67.7, 72.5, 77.3, 80.9 (4C carbo), 109.0, 110.0 (2C<sub>q isopropylidene</sub>), 123.7 (CH <sub>alkene</sub>, 1-C), 144.8 (CH <sub>alkene</sub>, 2-C), 166.3 (C<sub>q</sub> C=O); *m*/z [M+NH<sub>4</sub>]<sup>+</sup>: 420.2414; [C<sub>19</sub>H<sub>34</sub>O<sub>7</sub>Si+NH<sub>4</sub>]<sup>+</sup> requires 420.2412.


## (E)-ethyl 3-((4R,5R)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(2,2,2trifluoroacetoxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate (245)



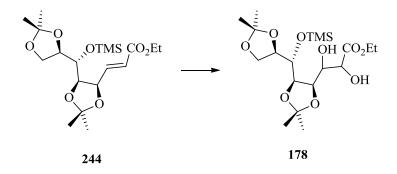
TFAA (1 mL, 6.8 mmol) pyridine (20 mL) and DMAP (0.18 g, 1.5 mmol) were added to a solution of **175** (1.5 g, 4.5 mmol) in DCM at 0 °C. The solution was allowed to reach rt and stirred for 4 h. Saturated NaHCO<sub>3</sub> solution was added and the mixture was extracted with DCM. The organic layers were combined, washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give compound **245** (0.71 g, 37%).

IR vmax (film)/cm<sup>-1</sup>: 2988, 2939, 1794, 1720, 1664, 1371, 1338, 1309, 1216, 1149, 1060, 1041, 986;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.27 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.34, 1.39, 1.54 (3s, 12H, CH<sub>3 isopropylidene</sub>), 3.86 (dd, 1H, J = 8.9, 6.9 Hz, 7-H), 4.04 (dd, 1H, J = 8.9, 6.1 Hz), 4.10-4.30 (m, 3H, CH<sub>2 ester</sub>, 6-H), 4.51 (dd, 1H, J = 7.3, 1.9 Hz, 4-H), 4.92 (ddd, 1H, J = 7.4, 4.5, 2.0 Hz, 3-H), 5.17 (dd, 1H, J = 5.1, 1.9 Hz, 5-H), 6.11 (dd, 1H, J = 15.7, 1.9 Hz, 1-H), 6.81 (dd, 1H, J = 15.7, 4.5 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.1 (CH<sub>3 ester</sub>), 25.3, 25.5, 26.1, 26.2 (4CH<sub>3</sub> isopropylidene), 60.8 (CH<sub>2 ester</sub>), 65.5, 74.3, 75.3, 75.7, 76.2 (5C carbo), 109.6, 110.6 (2Cq isopropylidene), 123.9 (CH alkene, 1-C), 140.1 (CH alkene, 2-C), 165.5 (Cq, C=O). TFA carbons not observed.


#### (E)-methyl 3-((4R,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)acrylate (246)

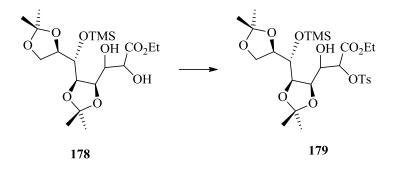


Ac<sub>2</sub>O (1.5 mL, 16.1 mmol) Et<sub>3</sub>N (3 mL, 21.9 mmol) and DMAP (0.45 g, 3.7 mmol) were added to a solution of **244** in DCM at 0 °C. The solution was allowed to reach rt and stirred for 1 h. Saturated NaHCO<sub>3</sub> solution was added and the mixture was extracted with DCM. The organic layers were combined, washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give **246** (2.1 g, 81%).


IR vmax (film)/cm<sup>-1</sup>: 2987, 2939, 1747, 1725, 1663, 1457, 1437, 1371, 1310, 1214, 1162, 1124, 1070, 1041, 983;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.34, 1.38, 1.40, 1.56 (4s, 12H, CH<sub>3</sub> isopropylidene), 2.02 (s, 3H, CH<sub>3 acetyl</sub>), 3.74 (3, 3H, CH<sub>3 ester</sub>), 3.85 (dd, 1H, J = 8.1, 6.5 Hz, 7-H), 3.98 (dd, 1H, J = 8.6, 6.2 Hz, 7-H) 4.19 (dd, 1H, J = 6.8, 6.6 Hz, 6-H), 4.52 (dd, 1H, J = 7.2, 1.5 Hz, 4-H), 4.79-4.85 (m, 1H, 3-H), 4.96 (dd, 1H, J = 7.0, 1.5 Hz, 5-H), 6.06 (dd, 1H, J = 15.7, 1.8 Hz, 1-H), 6.83 (dd, 1H, J = 15.7, 5.3 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 18.5 (CH<sub>3 acetyl</sub>), 25.4, 25.6, 26.4, 26.7 (4CH<sub>3 isopropylidene</sub>), 52.0 (CH<sub>3 ester</sub>), 70.4, 70.8, 75.2, 75.9, 76.9 (5C carbo), 109.6, 109.9 (2Cq isopropylidene), 122.5 (CH alkene, 1-C), 142.5 (CH alkene, 2-C), 166.3, 170.1 (2Cq, C=O).

## Ethyl 3-((4R,5S)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)-2,3-dihydroxypropanoate (247)

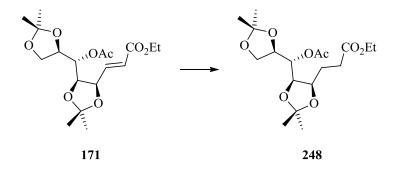



OsCl<sub>3</sub> (15.9 mg, 0.05 mmol) and NMO (1.02 g, 8.7 mmol) were added to a solution of **175** (1 g, 3 mmol) in THF:H<sub>2</sub>O, 1:1 (40 mL) and stirred overnight at rt. Anhydrous Na<sub>2</sub>SO<sub>3</sub> was added to the solution followed by water. The Mixture was then extracted with CHCl<sub>3</sub> and the organic layers dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude mixture purified by column chromatography (toluene:acetone, 4:1) to give the pure product **247** (0.6 g, 55%).

 $δ_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.31 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.35, 1.40, 1.49 (3s, 12H, CH<sub>3</sub> isopropylidene), 3.94-4.17 (m, 4H, CH carbo), 4.19-4.37 (m, 4H, CH<sub>2 ester</sub>, CH carbo), 4.42 (dd, 1H, J = 6.1, 1.5 Hz, 1-H), 4.47 (dd, 1H, J = 5.2, 1.3 Hz, 2-H);  $δ_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.7 (CH<sub>3 ester</sub>), 25.4, 25.6, 26.2, 26.4 (4CH<sub>3</sub> isopropylidene), 61.8 (CH<sub>2 ester</sub>), 66.8, 69.6, 71.2, 74.1, 76.2, 76.8, 77.1 (7CH carbo), 110.2, 112.9 (C<sub>q</sub> isopropylidene), 175.3 (C<sub>q</sub>, C=O); *m/z* [M+NH<sub>4</sub>]<sup>+</sup>: 382.2067; [C<sub>16</sub>H<sub>28</sub>O<sub>9</sub>+NH<sub>4</sub>]<sup>+</sup> requires 382.2072.



OsCl<sub>3</sub> (3.7 mg, 0.01 mmol) and NMO (0.23 g, 2.0 mmol) were added to a solution of **244** (0.23 g, 0.6 mmol) in THF:H<sub>2</sub>O, 1:1 (10 mL) and stirred overnight at rt. Anhydrous Na<sub>2</sub>SO<sub>3</sub> was added to the solution followed by water. The Mixture was then extracted with CHCl<sub>3</sub> and the organic layers dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude mixture purified by column chromatography (petrol:EtOAc, 4:1) to give the pure product **247** (0.16 g, 63%).


IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3451, 2985, 1738, 1370, 1247, 1215, 1156, 1096, 1156, 1054, 972, 893, 840, 752;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 0.14 (s, 9H, Si(CH<sub>3</sub>)<sub>3</sub>), 1.27 (t, 3H, J = 7.2 Hz, CH<sub>3 ester</sub>), 1.30, 1.32, 1.39, 1.44 (4s, CH<sub>3 isopropylidene</sub>), 3.28, (d, 1H, J = 6.3 Hz, 2-OH), 3.35 (d, 1H, J = 7.6 Hz, 1-OH), 3.80 (t, 1H, J = 7.5 Hz, 7-H), 4.01-4.16 (m, 5H, 5CH <sub>carbo</sub>), 4.19 (t, 1H, J = 5.7 Hz, CH <sub>carbo</sub>), 4.25 (q, 2H, 7.0 Hz, CH<sub>2 ester</sub>), 4.5 (d, 1H, J = 5.6 Hz, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 0.8 (Si(CH<sub>3</sub>)<sub>3</sub>), 14.1 (CH<sub>3 ester</sub>), 25.1, 25.8, 26.2, 27.3 (4CH<sub>3 isopropylidene</sub>), 62.0 (CH<sub>2 ester</sub>), 67.2, 70.1, 70.8, 70.9, 75.8, 77.5, 79.2 (7CH <sub>carbo</sub>), 108.6, 109.6 (C<sub>q isopropylidene</sub>), 174.0 (C<sub>q</sub>, C=O); *m*/*z* [M+H]<sup>+</sup>: 437.2199; [C<sub>19</sub>H<sub>36</sub>O<sub>9</sub>Si+H]<sup>+</sup> requires 437.2201.



TsCl (240 mg, 1.26 mmol) was added to a solution of **178** (0.5 g, 1.15 mmol) and pyridine (102  $\mu$ L, 1.26 mmol) in DCM (5 mL) at rt and stirred overnight. Saturated NaHCO<sub>3</sub> solution was added to the mixture followed by extraction with DCM, the organic layers were combined, washed CuSO<sub>4</sub> solution, water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **179** (128 mg, 19%).

IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3450, 2985, 1766, 1599, 1370, 1249, 1177, 1190, 1037, 841, 755;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 0.13 (s, 9H, Si(CH<sub>3</sub>)<sub>3</sub>), 1.20 (s, 3H, CH<sub>3 isopropylidene</sub>), 1.24 (t, 3H, J = 7.1 Hz, CH<sub>3 ester</sub>), 1.32, 1.38, 1.40 (3s, 9H, CH<sub>3 isopropylidene</sub>), 2.43 (s, 3H, CH<sub>3 tosyl</sub>), 3.27 (d, 1H, J = 7.6 Hz, OH), 3.71-3.81 (m, 1H, CH <sub>carbo</sub>), 3.95 (dd, 1H, 9.8, 5.2 Hz, CH <sub>carbo</sub>), 4.00-4.11 (m, 3H, CH <sub>carbo</sub>), 4.14-4.25 (m, 4H, CH<sub>2 ester</sub>, CH <sub>carbo</sub>), 5.24 (d, 1H, J = 1.5 Hz, 1-H), 7.32 (d, 2H, J = 8.0 Hz, CH <sub>aryl</sub>), 7.86 (d, 2H, J = 8.3 Hz, CH <sub>aryl</sub>);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 0.0 (Si(CH<sub>3</sub>)<sub>3</sub>), 13.2 (CH<sub>3 ester</sub>), 20.9 (CH<sub>3 tosyl</sub>), 24.4, 24.8, 25.4, 26.6 (4CH<sub>3 isopropylidene</sub>), 61.4 (CH<sub>2 ester</sub>), 66.9, 69.4, 70.2, 74.3, 76.7, 77.2, 78.6 (7CH <sub>carbo</sub>), 107.9, 109.2 (C<sub>q isopropylidene</sub>), 127.7, 129.0, 133.2, 144.3 (C <sub>aryl</sub>), 167.3 (C<sub>q</sub>, C=O).

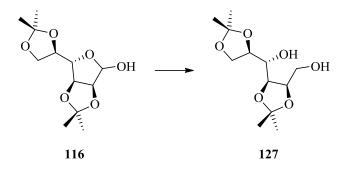
## Ethyl 3-((4R,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)propanoate (248)



A solution of **171** (2 g, 5.4 mmol) in EtOAc (100 mL) was degassed with argon for 10 min. Pd/C (10%) was added to the solution and the reaction vessel was flushed with hydrogen gas and stirred under a hydrogen atmosphere for 2 h. The solution was filtered through a pad of celite and the solvent removed *in vacuo* to give the pure compound **248** (2 g, 99%).

IR vmax (film)/cm<sup>-1</sup>: 2985, 2938, 1733, 1457, 1370, 1212, 1158, 1064, 1037, 980, 845;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.21 (t, 3H, J = 6.8 Hz, CH<sub>3 ester</sub>), 1.29, 1.30, 1.33, 1.44 (4s, 12H, CH<sub>3</sub> isopropylidene), 1.60-1.87 (m, 2H, CH<sub>2</sub>, 1-H), 2.06 (s, 3H, CH<sub>3 acetyl</sub>), 2.29-2.51 (m, 2H, CH<sub>2</sub>, 2-H), 3.86 (t, 1H, J = 7.7 Hz, 7-H), 3.96 (dd, 1H, J = 13.8, 7.6 Hz, 7-H), 4.03-4.10 (m, 2H, CH carbo), 4.10-4.17 (m, 2H, CH<sub>2</sub> ester), 4.17-4.25 (m, 1H, CH carbo), 5.07 (t, 1H, J = 6.7 Hz, 5-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.3 (CH<sub>3 ester</sub>), 21.32 (CH<sub>3 acetyl</sub>), 24.7 (CH<sub>2</sub>, 2-C), 25.5, 25.7, 26.5, 26.8 (4CH<sub>3</sub> isopropylidene), 31.3 (CH<sub>2</sub>, 1-C), 60.5 (CH<sub>2 ester</sub>), 66.1 (CH<sub>2</sub>, 7-C), 70.4, 75.6, 76.2, 76.3 (CH carbo), 108.7, 109.2 (Cq isopropylidene), 170.1, 172.9 (2Cq, C=O).

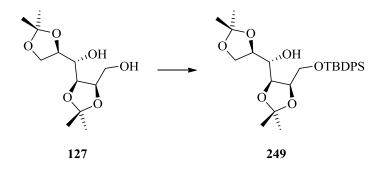
# $\underbrace{Methyl 3-((4R,5R)-5-((S)-acetoxy((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-2,2-}_{dimethyl-1,3-dioxolan-4-yl)propanoate (186)}$


246

A solution of **246** (8 g, 22.3 mmol) in EtOAc (250 mL) was degassed with argon for 10 min. Pd/C (10%) was added to the solution and the reaction vessel was flushed with hydrogen gas and stirred under a hydrogen atmosphere for 3 h. The solution was filtered through a pad of celite and the solvent removed *in vacuo* to give the pure compound **186** (7.97 g, 99%).

186

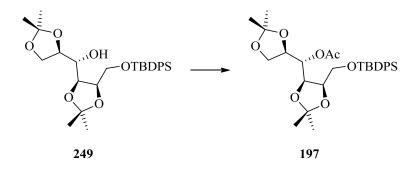
 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.28, 1.30, 1.35, 1.44 (4S, 12H, CH<sub>3 isopropylidene</sub>), 1.64-1.73 (m, 1H, CH<sub>2</sub>, 2-H), 1.76-1.84 (m, 1H, CH<sub>2</sub>, 2-H), 2.08 (s, 3H, CH<sub>3 acetyl</sub>), 2.34-2.56 (m, 2H, CH<sub>2</sub>, 1-H), 3.64 (s, CH<sub>3 ester</sub>), 3.88 (dd, 1H, J = 8.0, 4.0 Hz, 7-H), 3.97 (dd, 1H, J = 8.0, 4.0 Hz, 7-H), 4.11-4.20 (m, 2H, CH <sub>carbo</sub>), 4.23 (dd, 1H, 9.6, 8.0 Hz, CH <sub>carbo</sub>), 5.08 (t, 1H, 9.6 Hz, 5-H),  $δ_{\rm C}$  (100 MHz, CDCl<sub>3</sub>): 21.2 (CH<sub>3 acetyl</sub>), 25.4, 25.5, 26.3, 26.5 (CH<sub>3 isopropylidene</sub>), 27.5 (CH<sub>2</sub>, 2-C), 29.7 (CH<sub>2</sub>, 1-C), 51.8 (CH<sub>3 ester</sub>), 66.7 (CH<sub>2</sub>, 7-C), 73.3, 75.8, 77.4, 77.8 (CH <sub>carbo</sub>), 110.3, 111.9 (C<sub>q isopropylidene</sub>), 171.3, 174.7 (C<sub>q</sub>, C=O).


#### (S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)((4S,5R)-5-(hydroxymethyl)-2,2-dimethyl-1,3dioxolan-4-yl)methanol (127)<sup>5</sup>



LiAlH<sub>4</sub> (2.2 g, 58 mmol) was added to a solution of **116** (10 g, 38 mmol) in diethyl ether (200 mL), at 0 °C the solution was allowed to reach rt and stirred for 1 h. Anhydrous Na<sub>2</sub>SO<sub>4</sub> was added to the solution. Water was added drop wise until the reaction stopped fizzing. The solution was filtered through celite and the solvent removed *in vacuo* to yield the pure compound **127** (10.1 g, quantitative).

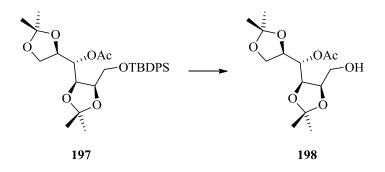
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3449, 2987, 1373, 1216, 1158, 1067, 850;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.36, 1.40, 1.41, 1.52 (4s, 12H, CH<sub>3 isopropylidene</sub>), 2.54, (s, 1H, 1-OH), 3.08 (s, 1H, 4-OH), 3.58 (d, 1H, J = 6.8 Hz, 4-H), 3.78-3.95 (m, 2H, CH<sub>2</sub>, 1-H), 4.00-4.15 (m, 3H, 5-H, 6-H), 4.32 (dt, 1H, J = 7.3, 4.4 Hz, 2-H), 4.40 (dd, 1H, J = 7.3, 1.5 Hz 3-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 25.8, 25.2, 26.6, 26.7 (4CH<sub>3 isopropylidene</sub>), 60.7 (CH<sub>2</sub>, 1-C), 67.3, 70.3, 75.8, 76.0, 77.1 (4CH <sub>carbo</sub>), 108.4, 109.5 (2C<sub>q isopropylidene</sub>).


# (S)-((4S,5R)-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4yl)((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (249)



TBDPSCl, (1.48 mL, 5.7 mmol) Et<sub>3</sub>N (0.8 mL, 5.7 mmol) and DMAP (0.23 g, 1.9 mmol) were added to a solution of **127** (1 g, 3.8 mmol) and left to stir overnight. Saturated NaHCO<sub>3</sub> solution was added to the mixture and the solution was extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **249** (1.13 g, 59%).

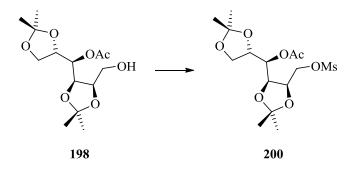
IR vmax (film)/cm<sup>-1</sup>: 3459, 2986, 2934, 2859, 1473, 1428, 1380, 1256, 1213, 1113, 1067, 702;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.06 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.36, 1.36, 1.39, 1.48 (4s, CH<sub>3 isopropylidene</sub>), 2.88 (d, 1H, J = 6.9 Hz, OH), 3.77 (t, 1H, J = 7.6 Hz, CH <sub>carbo</sub>), 3.84 (dd, 1H, J = 10.9, 4.3 Hz, CH <sub>carbo</sub>), 4.00 (dd, 1H, J = 7.7, 4.6 Hz), 4.02-4.16 (m, 3H, CH <sub>carbo</sub>), 4.28 (td, 1H, J = 7.0, 4.3 Hz, 2-H), 4.41 (d, 1H, J = 7.0 Hz, 3-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 19.25 (C<sub>q TBDPS</sub>), 24.8, 25.4, 26.8 (3CH<sub>3 isopropylidene</sub>), 26.9 (CH<sub>3 TBDPS</sub>), 26.9 (CH<sub>3 isopropylidene</sub>), 62.6 (CH<sub>2</sub>, 1-C), 67.7, 70.5, 75.8, 76.0, 77.0 (CH <sub>carbo</sub>), 108.5, 109.5 (C<sub>q isopropylidene</sub>), 128.0, 130.1, 133.2, 135.86, 135.90 (C <sub>aryl</sub>).


## (S)-((4R,5R)-5-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4yl)((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl acetate (197)



Ac<sub>2</sub>O, (0.42 mL, 4.4 mmol) Et<sub>3</sub>N (0.61 mL, 4.4 mmol) and DMAP (122 mg, 1 mmol) were added to a solution of **249** (1 g, 2 mmol) in DCM and stirred for 4 h at rt). Saturated NaHCO<sub>3</sub> was added to the solution and the mixture was extracted with DCM. The organic layers were combined and washed with water then brine, dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **197** (1g, 92%).

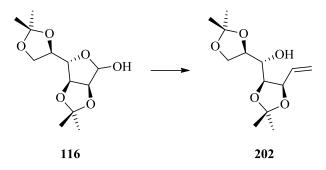
IR vmax (film)/cm<sup>-1</sup>: 2934, 1748, 1428, 1371, 1216, 1113, 1069, 851, 740, 703;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.06 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.33, 1.34, 1.45, (3s, 12H, CH<sub>3 isopropylidene</sub>), 1.92 (s, 3H, CH<sub>3 acetyl</sub>), 3.71 (dd, 2H, 6.2, 1.5 Hz, 1-H), 3.90 (dd, 1H, J = 8.6, 6.8 Hz, 6-H), 3.98 (dd, 1H, J = 8.6, 6.2 Hz, 6-H), 4.22 (dd, 1H, J = 12.7, 6.4 Hz, CH <sub>carbo</sub>), 4.27-4.39 (m, 2H, CH <sub>carbo</sub>), 5.23 (dd, 1H, J = 6.2, 2.1 Hz, 4-H), 7.33-7.47 (m, 6H, CH <sub>aryl</sub>), 7.33-7.47 (m, 4H, CH <sub>aryl</sub>);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 19.3 (C<sub>q TBDPS</sub>), 21.1 (CH<sub>3 acetyl</sub>), 25.6, 25.7, 26.5, 26.6 (4CH<sub>3 isopropylidene</sub>), 26.9 (CH<sub>3 TBDPS</sub>), 62.5 (CH<sub>2</sub>, 1-C), 66.2, 70.6, 75.5, 75.8, 77.4 (5CH <sub>carbo</sub>), 109.3, 109.4 (C<sub>q isopropylidene</sub>), 127.9, 128.0, 130.0, 133.3, 133.5, 135.92, 135.94 (C <sub>aryl</sub>), 170.1 (C<sub>q</sub>, C=O).


### (R)-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)((4R,5R)-5-(hydroxymethyl)-2,2-dimethyl-1,3dioxolan-4-yl)methyl acetate (198)



TBAF (1M in THF) (5.5 mL, 5.5 mmol) was added to a solution of **197** (1 g, 1.8 mmol) in THF (50 mL) and stirred at rt overnight. EtOAc (100 mL) was added to the solution and the organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography to give the pure compound **198** (0.29 g, 52%).

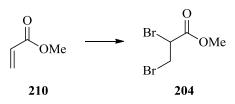
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3490, 2987. 2937, 1737, 1457, 1371, 1211, 1157, 1066, 1038, 985, 916, 847, 730;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.30, 135, 1.36, 1.47 (4s, 12H, CH<sub>3 isopropylidene</sub>), 2.05 (s, 3H, CH<sub>3 acetyl</sub>), 2.27 (d, 1H, J = 9.0 Hz, OH), 3.47 (t, 1H, J = 7.9 Hz, CH <sub>carbo</sub>), 3.92-4.00 (m, 2H, CH <sub>carbo</sub>), 4.05 (td, 1H, J = 8.4, 6.4 Hz, 2-H), 4.22-4.30 (m, 1H, CH <sub>carbo</sub>), 4.35-4.43 (m, 3H, CH <sub>carbo</sub>);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 20.9 (CH<sub>3 acetyl</sub>), 24.6, 25.2, 26.76, 26.79 (4CH<sub>3 isopropylidene</sub>), 64.0 (CH<sub>2</sub>, 1-C), 67.2, 70.2, 75.1, 75.3, 76.2 (5CH <sub>carbo</sub>), 109.0, 109.6 (C<sub>q isopropylidene</sub>), 170.9 (C<sub>q</sub>, C=O).


### (S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)((4R,5R)-5-(hydroxymethyl)-2,2-dimethyl-1,3dioxolan-4-yl)methyl acetate (200)



MsCl (0.1 mL, 1.2 mmol) was added to a solution of **198** (0.25 g, 0.82 mmol) and Et<sub>3</sub>N (0.22 mL, 1.6 mmol) in DCM (25 mL) at rt. DMAP (50 mg, 0.41 mmol) was added and the solution was stirred overnight. Saturated NaHCO<sub>3</sub> was added to the solution and the mixture was extracted with DCM. The organic layers were combined, washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **200** (0.26 g, 83%).

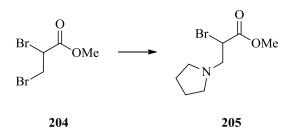
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2987, 1742, 1356, 1215, 1173, 1046, 947, 860, 826, 793;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.32, 1.35, 1.40, 1.47 (4s, 12H, CH<sub>3 isopropylidene</sub>), 2.08 (s, 3H, CH<sub>3 acetyl</sub>), 3.11 (s, 3H, CH<sub>3 mesyl</sub>), 3.95-4.03 (m, 1H, CH <sub>carbo</sub>), 4.11-4.18 (m, 2H, CH<sub>2</sub>, 1-H), 4.19-4.32 (m, 3H, CH <sub>carbo</sub>), 4.32-4.38 (m, 1H, CH <sub>carbo</sub>), 4.77 (dd, 1H, 4-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 20.8 (CH<sub>3 acetyl</sub>), 25.1, 25.7, 26.0, 27.3 (CH<sub>3 isopropylidene</sub>), 39.3 (CH<sub>3 mesyl</sub>), 63.0 (CH<sub>2</sub>, 1-C), 66.8 (CH<sub>2</sub>, 6-C), 74.9, 75.0, 76.6, 79.0 (4CH <sub>carbo</sub>), 109.4, 110.5 (C<sub>q isopropylidene</sub>), 170.8 (C<sub>q</sub>, C=O).


### (S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)((4S,5R)-2,2-dimethyl-5-vinyl-1,3-dioxolan-4yl)methanol (202)<sup>6</sup>



*n*BuLi (2.5M) (1.3 mL, 3.25 mmol), was added to a suspension of Ph<sub>3</sub>PCH<sub>3</sub>I (1.6 g, 4.0 mmol) in THF (14 mL) at -25 °C. The solution was cooled to -78 °C and a solution of **116** (0.35 g, 1.3 mmol) in THF (10 mL) was added. The solution was allowed to reach rt and stirred overnight. The solution was refluxed for 30 min, allowed to cool to rt and washed with water. The mixture was extracted with DCM and the organic layers were dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **202** (180 mg, 52%).

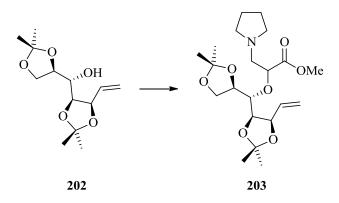
 $δ_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.34, 1.39, 1.41, 1.53 (4s, 12H, CH<sub>3 isopropylidene</sub>), 2.20 (d, 1H, J = 7.9 Hz, OH), 3.45 (t, 1H, J = 7.3 Hz, 5-H), 3.95-4.15 9m, 3H, 6-H, 7-H), 4.39 (dd, 1H, J = 7.5, 1.3 Hz, 4-H), 4.70 (t, 1H, J = 7.6 Hz, 3-H), 5.29-5.45 (m, 2H, CH<sub>2 alkene</sub>, 1-H), 6.02-6.18 (m, 1H, CH<sub>alkene</sub>, 2-H);  $δ_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 24.6, 25.4, 26.7, 26.9 (4CH<sub>3 isopropylidene</sub>), 67.3, 70.7. 76.2. 76.8. 79.3 (CH <sub>carbo</sub>), 108.9, 109.5 (C<sub>q isopropylidene</sub>), 120.0 (CH<sub>2</sub>, 1-C), 134.4 (CH, 2-C).


#### Methyl 2, 3-dibromopropanoate (204)<sup>6</sup>



Neat bromine (1.3 mL, 25.3 mmol) was added to a solution of methyl acrylate **210** (2.1 mL, 23 mmol) in DCM (25 mL) at rt and stirred for 30 min. Saturated  $Na_2S_2O_3$  was added to the solution followed by extraction with DCM. The organic layers were combined and washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* to give the pure compound **204** (5 g, 88.3%).

 $δ_{\rm H} (300 \text{ MHz, CDCl}_3): 3.67 (dd, 1H, J = 9.9, 4.4 Hz, CH_2Br), 3.84 (s, 3H, CH_3 ester), 3.92 (dd, 1H, J = 11.4, 9.9 Hz, CH_2Br), 4.45 (dd, 1H, J = 11.4, 4.4 Hz, CHBr); <math>δ_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 29.5 (CH<sub>2</sub>Br), 40.6 (CHBr), 53.3 (CH<sub>3 ester</sub>), 168.2 (C<sub>q</sub>, C=O).

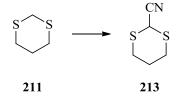

#### Methyl 2-bromo-3-(pyrrolidin-1-yl)propanoate (205)<sup>6</sup>



Pyrrolidine (1.7 mL, 20.5 mmol) and  $Et_3N$  (2.84 mL, 20.5 mmol) were added to a solution of **204** (5 g, 20.5 mmol) in toluene (60 mL), at 0 °C and stirred for 30 min. The solution was filtered through celite and washed with water. The solvent was removed *in vacuo* to give the pure product **205** (4.3 g, 90%).

 $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.70-1.81 (m, 4H, CH<sub>2 pyrrolidine</sub>), 2.50-2.76 (m, 4H, NCH<sub>2 pyrrolidine</sub>), 2.89 (dd, 1H, J = 12.8, 5.9 Hz, CH<sub>2</sub>Br), 3.23 (dd, 1H, J = 12.8, 9.3 Hz, CH<sub>2</sub>Br), 3.78 (s, 3H, CH<sub>3 ester</sub>), 4.28 (dd, 1H, J = 9.1, 6.1 Hz, CHBr).

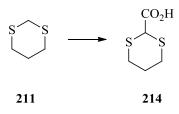
# Methyl 2-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)((4R,5R)-2,2-dimethyl-5-vinyl-1,3dioxolan-4-yl)methoxy)-3-(pyrrolidin-1-yl)propanoate (203)<sup>6</sup>




NaH (89 mg, 3.7 mmol), was added to a solution of **202** (0.45 g, 1.7 mmol) in THF (50 mL) and DMF (15 mL) at 0 °C and stirred for 1 h at rt. The solution was cooled to 0 °C and compound **205** (1.5 g, 6.3 mmol) was added and the solution was stirred at rt for 18 h. The solution was quenched with water and extracted with petrol. The organic layers were combined and dried over MgSO<sub>4</sub> and the solvent was removed *in vacuo*. The crude residue was purified by column chromatography (EtOAc:petrol:Et<sub>3</sub>N, 66:33:1) to give the pure compound **203** (72 mg, 10%).

IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2984, 2935, 2787, 1750, 1663, 1457, 1435, 1370, 1211, 1146, 1057, 1034, 925, 852, 794;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.30, 1.30, 1.39, 1.46 (4s, 12H, CH<sub>3 isopropylidene</sub>), 1.63-1.83 (m, 4H, CH<sub>2 pyrrolidene</sub>), 2.42-2.66 (m, 4H, NCH<sub>2 pyrrolidene</sub>), 2.75 (dd, 2H, J = 8.0, 6.2 Hz, CH<sub>2</sub>N), 3.70 (s, 3H, CH<sub>3 ester</sub>), 3.72-3.83 (m, 1H, CHCO<sub>2</sub>Me), 4.03-4.14 (m, 4H, 5-H, 6-H, 7-H), 4.35 (dd, 1H, J = 6.9, 5.5 Hz, 4-H), 4.47-4.55 (m, 1H, 3-H), 5.20-5.39 (m, 2H, CH<sub>2</sub> alkene, 1-H), 5.95-6.11 (m, 1H, CH <sub>alkene</sub>, 2-H);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 14.1 (CH<sub>2 pyrrolidene</sub>), 25.3, 25.5, 26.1, 26.2 (CH<sub>3 isopropylidene</sub>), 60.8 (CH<sub>3 ester</sub>), 65.5 (NCH<sub>2 pyrrolidene</sub>), 74.3, 75.3, 75.7, 76.2

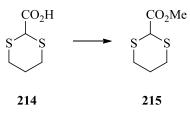
(CH <sub>carbo</sub>), 109.6, 110.6 (C<sub>q</sub> isopropylidene), 123.9 (CH<sub>2</sub> alkene, 1-C), 140.1 (CH <sub>alkene</sub>, 2-C), 165.5 (C<sub>q</sub>, C=O).


#### **<u>2-cyano-1,3-dithiane (213)</u>**<sup>7</sup>



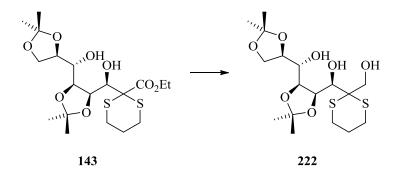
Triphenylcarbenium tetrafluoroborate (3.02 g, 9.1 mmol) was added to a solution of 1,3dithiane **211** (1 g, 8.3 mmol) in DCM (60 mL) and the mixture was heated under reflux for 45 min. the solution was allowed to cool to rt and the solvent was removed *in vavuo*. The solid was triturated with cold diethyl ether to give 1,3-dithienium tetrafluoroborate as a yellow solid (1.55g). TMSCN (0.93 mL, 7.5 mmol) was added to a solution of 1,3-dithienium tetrafluoroborate (1.55 g, 7.5 mmol) in DCM (100 mL) under a nitrogen atmosphere at -20°C. The solution was stirred for 1 h at -20 °C and quenched by the addition of HCl 1M (2 mL). The solution was washed the saturated NH<sub>4</sub>Cl solution and the aqueous layer extracted with DCM. The combined organic layers were dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The crude residue was purified by column chromatography (petrol:EtOAc, 9:1), to give the pure compound **213** (0.72 g, 60%).

IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 2931, 2908, 2843, 2228, 1669, 1438, 1427, 1412, 1286, 1274, 1242, 1212, 942, 910, 766;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.95-2.08 (m, 1H, CH<sub>2 dithi</sub>), 2.16-2.26 (m, 1H, CH<sub>2 dithi</sub>), 2.76-2.85 (m, 2H, SCH<sub>2 dithi</sub>), 3.28-3.38 (m, 2H, SCH<sub>2 dithi</sub>), 4.42 (s, 1H, SCHCN);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 25.0 (CH<sub>2 dithi</sub>), 26.9 (SCH<sub>2 dithi</sub>), 28.6 (SCH dithi), 116.0 (CN).


#### **<u>1,3-dithiane-2-carboxylic acid (214)</u>**<sup>8</sup>



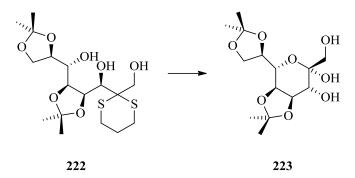
*n*BuLi (2.5 M) (35.6 mL, 91.3 mmol), was added to a solution of 1,3-dithiane **211** (10 g, 83 mmol) in THF (250 mL) at -20 °C. the solution was stirred at -20 °C for 1.5 h then cooled to -78 °C and added to CO<sub>2</sub>(s). The solution was stirred at -78 °C for 30 min, then allowed to reach -40 °C and stirred for a further 2 h. Saturated NH<sub>4</sub>Cl solution in MeOH was added slowly and the reaction was allowed to reach rt. Diethyl ether (250 mL) and water (100 mL) were added to the solution and the aqueous layer was extracted with diethyl ether. Conc HCl (5 mL) was added to the aqueous layer and extracted with petrol. The petrol fractions were combined and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* to give the pure compound **214** (8 g, 59%).


IR  $\nu_{max}$  (film)/cm<sup>-1</sup>: 2971, 2942, 2927, 2908, 2826, 2681, 2570, 1692, 1422, 1212, 1301, 1242, 922;  $\delta_{H}$  (300 MHz, CDCl<sub>3</sub>): 1.91-2.24 (m, 2H, CH<sub>2 dithi</sub>), 2.50-2.69 (m, 2H, SCH<sub>2 dithi</sub>), 3.35-3.50 (m, 2H, SCH<sub>2</sub>), 4.16 (s, 1H, SCH <sub>dithi</sub>), 10.76 (s, 1H, COOH);  $\delta_{C}$  (75 MHz, CDCl<sub>3</sub>): 24.6 (CH<sub>2 dithi</sub>), 25.5 (SCH<sub>2 dithi</sub>), 39.0 (SCH <sub>dithi</sub>), 176.3 (C<sub>q</sub>, C=O).

#### Methyl 1,3-dithiane-2-carboxylate (215)<sup>8</sup>



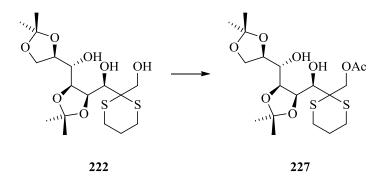
HCl gas was bubbled through a solution of **214** (8 g, 49 mmol) in MeOH (50 mL) over 5 min. The solvent was removed *in vacuo* and dissolved in diethyl ether; the ethereal solution was washed with water then brine and evaporated to dryness. The crude residue was purified by Kugerohl distillation to give the pure compound **215** (7.7 g, 89%).


IR  $\nu_{max}$  (film)/cm<sup>-1</sup>: 2928, 1726, 1426, 1285, 1138, 1000, 914, 815;  $\delta_{H}$  (300 MHz, CDCl<sub>3</sub>): 1.93-2.22 (m, 2H, CH<sub>2 dithi</sub>), 2.50-2.66 (m, 2H, SCH<sub>2 dithi</sub>), 3.31-3.46 (m, 2H, SCH<sub>2 dithi</sub>), 3.78 (s, 3H, CH<sub>3 ester</sub>), 4.19 (s, 1H, SCH dithi);  $\delta_{C}$  (75 MHz, CDCl<sub>3</sub>): 25.0 (CH<sub>2 dithi</sub>), 26.1 (SCH<sub>2</sub> dithi), 26.3 (SCH dithi), 40.0 (CH<sub>3 ester</sub>), 170.6 (C<sub>q</sub>, C=O).



LiAlH<sub>4</sub> (0.17 g, 4.4 mmol) was added to a solution of **143** (1 g, 2.2 mmol) in diethyl ether (50 mL) at rt and stirred for 3 h. Anhydrous  $Na_2SO_4$  was added to the solution followed by water. The solution was filtered through a pad of celite and the solvent removed *in vacuo*. The crude residue was purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **222** (0.69 g, 76%).

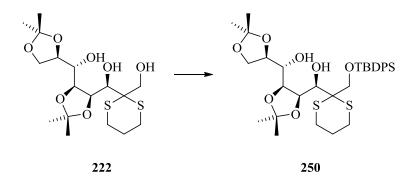
IR vmax (film)/cm<sup>-1</sup>: 3416, 2984, 2934, 1372, 1245, 1215, 1137, 1064, 911, 853;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.35, 1.41, 1.41 1.56 (4s, 12H, CH<sub>3 isopropylidene</sub>), 1.94-2.06 (m, 2H, CH<sub>2 dithi</sub>), 2.71-2.85 (m, 4H, CH<sub>2 dithi</sub>), 3.41 (t, 1H, J = 7.1 Hz, 1-OH), 3.62 (dd, 1H, J = 7.5, 3.1 Hz, CH <sub>carbo</sub>), 3.92-4.00 (m, 4H, CH<sub>2</sub>OH, CH <sub>carbo</sub>), 4.00-4.06 (m, 1H, CH <sub>carbo</sub>), 4.06-4.17 (m, 3H, CH <sub>carbo</sub>, OH), 4.44 (d, 1H, J = 7.4 Hz, 4-H), 4.81 (d, 1H, J = 7.4 Hz, 3-H);  $\delta_{\rm C}$  (101 MHz, CDCl<sub>3</sub>): 24.6 (CH<sub>2 dithi</sub>), 25.1 (SCH<sub>2 dithi</sub>), 25.4 (SCH<sub>2 dithi</sub>), 25.49, 25.54, 26.1, 27.1 (4CH<sub>3 isopropylidene</sub>), 58.4 (C<sub>q dithi</sub>), 65.0, 67.5, 70.7, 71.2, 73.5, 75.8, 76.9 (CH <sub>carbo</sub>), 109.38, 109.43 (C<sub>q isopropylidene</sub>); *m/z* [M+Na]<sup>+</sup>: 433.1315; [C<sub>17</sub>H<sub>30</sub>O<sub>7</sub>S<sub>2</sub>+Na]<sup>+</sup> requires 433.1325.


# <u>(3aR,4S,6S,7R,7aR)-4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-(hydroxymethyl)-2,2-</u> <u>dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6,7-diol (223)</u>



NBS (0.38 g, 2.1 mmol) was added to a solution of **222** (0.25 g, 0.61 mmol) in a 9:1 mixture of acetonitrile and water (20 mL) at 0 °C. The solution was stirred vigorously for 3 min at 0 °C, saturated NaHCO<sub>3</sub> and saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solutions were added and the mixture was extracted with EtOAc. The organic layers were washed with water then brine and dried over MgSO<sub>4</sub>. The crude residue was purified by column chromatography (petrol:EtOAc, 1:1) to give the pure compound **223** (0.17 mg, 87%).

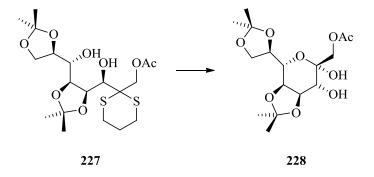
IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3411. 2988. 2924. 1374, 1220, 1150, 1065, 840;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.36, 1.37, 1.43, 1.48 (4s, CH<sub>3 isopropylidene</sub>), 2.69 (s, 1H, CH<sub>2</sub>OH), 3.10 (s, 1H, 2-OH), 3.66 (s, 2H, CH<sub>2</sub>OH), 3.73 (d, 1H, J = 4.5 Hz, 2-H), 3.98-4.08 (m, 3H, 6-H, 7-H), 4.23 (s, 1H, 1-OH), 4.25-4.37 (m, 3H, 3-H, 4-H, 5-H);  $\delta_{\rm C}$  (101 MHz, CDCl<sub>3</sub>): 25.4, 25.9, 27.0, 27.5 (4CH<sub>3</sub> isopropylidene), 66.6 (CH<sub>2</sub>OH), 66.7 (CH<sub>2</sub>, 7-C), 69.2 (CH, 6-C), 69.5 (CH, 2-C), 72.8, 74.3, 76.4 (CH carbo, 3-C, 4-C, 5-C), 96.2 (Cq, 1-C), 109.5, 109.9 (2Cq isopropylidene); *m*/*z* [M+Na]<sup>+</sup>: 343.1363; [C<sub>14</sub>H<sub>24</sub>O<sub>8</sub>+Na]<sup>+</sup> requires 343.1363.


# (2-((R)-((4R,5S)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-2,2dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-1,3-dithian-2-yl)methyl acetate (227)



Ac<sub>2</sub>O (0.25 mL, 2.7 mmol) was added to a solution of **222** (1 g, 2.4 mmol) and Et<sub>3</sub>N (0.38 mL, 2.7 mmol) at 0 °C and left to stir overnight at rt. Saturated NaHCO<sub>3</sub> was added to the solution and the mixture was extracted with DCM. The organic layers were combined and washed with water then brine, dried over MgSO<sub>4</sub> and the solvent removed *in vacuo*. The crude residue was purified by column chromatography (petrol:EtOAc, 5:1) to give the pure compound **227** (0.72 g, 67%).

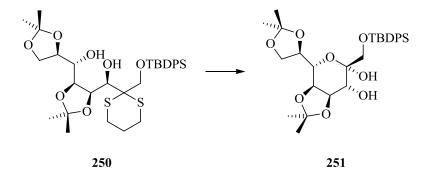
IR vmax (film)/cm<sup>-1</sup>: 3462, 2985, 1742, 1372, 1216, 1138, 1066;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.36, 1.42, 1.54 (3s, 12H, CH<sub>3 isopropylidene</sub>), 1.82-1.97 (m, 1H, CH<sub>2 dithi</sub>), 2.02-2.12 (m, 1H, CH<sub>2 dithi</sub>), 2.12 )s, 3H, CH<sub>3 acetyl</sub>), 2.64-2.80 (m, 2H, SCH<sub>2</sub>), 2.86-3.03 (m, 2H, SCH<sub>2</sub>), 3.52 (d, 1H, J 8.8 Hz, 4-H), 3.62 (d, 2H, J = 8.2 Hz, 7-H), 4.00 (d, 1H, J = 8.1 Hz, 3-H), 4.02-4.13 (m, 2H, CH<sub>2</sub>OAc), 4.12-4.16 (m, 1H, 6-H), 4.41-4.50 (m, 2H, 5-H, 2-OH), 4.71 (d, 1H, J = 7.6 Hz, 2-H), 4.81 (d, 1H, J = 11.9 Hz, 5-OH);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 21.0 (CH<sub>3 acetyl</sub>), 24.3 (CH<sub>2 dithi</sub>), 25.0, 25.2 (2CH<sub>3 isopropylidene</sub>), 25.70 (SCH<sub>2</sub>), 25.74, 26.0 (2CH<sub>3 isopropylidene</sub>), 26.9 (SCH<sub>2</sub>), 56.6 (C<sub>q dithi</sub>), 63.8, 67.4, 70.6, 72.2, 73.6, 75.8, 77.0 (7CH <sub>carbo</sub>), 109.1, 109.4 (C<sub>q isopropylidene</sub>), 170.4 (C<sub>q</sub>, C=O); *m*/*z* [M+Na]<sup>+</sup>: 475.1420; [C<sub>19</sub>H<sub>32</sub>O<sub>8</sub>S<sub>2</sub>+Na]<sup>+</sup> requires 475.1431.


# $\frac{(R)-(2-(((tert-butyldiphenylsilyl)oxy)methyl)-1,3-dithian-2-yl)((4R,5S)-5-((S)-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (250)$



TBDPSCl, (0.95 mL, 3.6 mmol) Et<sub>3</sub>N (0.5 mL, 3.6 mmol) and DMAP (0.15 g, 1.2 mmol) were added to a solution of **222** (1 g, 2.4 mmol) and left to stir overnight. Saturated NaHCO<sub>3</sub> solution was added to the mixture and the solution was extracted with DCM. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue was purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **250** (0.28 g, 18%).

IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3413, 2932, 1428, 1380, 1244, 1213, 1113, 1063, 823;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.06 (s, 9H, Si(CH<sub>3</sub>)<sub>3</sub>), 1.36, 1.40, 1.42 ,1.58 (4s, 12H, CH<sub>3</sub> isopropylidene), 1.74-1.95 (m, 2H, CH<sub>2</sub> dithi), 2.24-2.40 (m, 1H, CH<sub>2</sub> dithi), 2.46-2.74 (m, 3H, CH<sub>2</sub> dithi), 3.57 (dd, 1H, J = 8.2, 2.3 Hz, 4-H), 3.92 (dd, 1H, J = 10.6, 1.3 Hz, 3-H), 3.98-4.07 (m, 1H, CH<sub>2</sub>OSi), 4.11-4.23 (m, 3H, CH<sub>2</sub>OSi, 7-H), 4.30-4.41 (m, 2H, 6H, 5-H, 4.46 (d, 1H, J = 2.3 Hz, 2-OH), 4.69 (d, 1H, J = 7.4 Hz, 5-OH), 4.87 (d, 1H, J = 9.9 Hz, 2-H) 7.36-7.51 (m, 6H, CH aryl), 7.74-7.86 (m 4H, CH aryl);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 19.1 (Cq, SiC), 24.5 (CH<sub>2</sub> dithi), 25.1, (CH<sub>3</sub> isopropylidene), 25.4 (SCH<sub>2</sub>), 25.7 (CH<sub>3</sub> isopropylidene), 26.1 (CH<sub>2</sub> dithi), 26.3 (CH<sub>3</sub> isopropylidene), 26.8 (SiC(CH<sub>3</sub>)<sub>3</sub>), 27.0 (CH<sub>3</sub> isopropylidene), 128.0, 128.1, 130.3, 130.4, 132.3, 132.6, 136.1, 136.4 (C aryl); *m*/z [M+Na]<sup>+</sup>: 671.2492; [C<sub>33</sub>H<sub>48</sub>O<sub>7</sub>S<sub>2</sub>Si+]<sup>+</sup> requires 671.2503.


# ((3aR,4S,6S,7R,7aR)-4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-6,7-dihydroxy-2,2dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6-yl)methyl acetate (228)



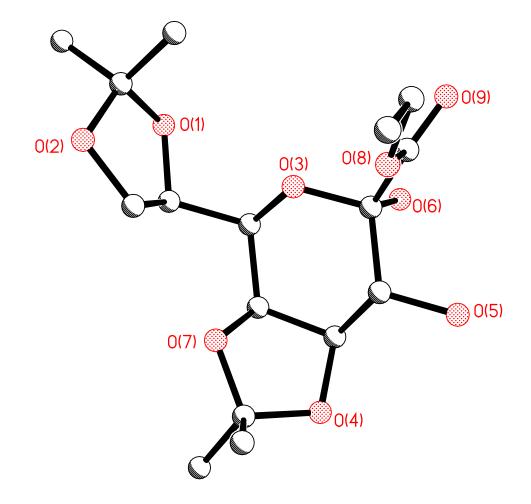
DBDMH (0.47 g, 1.7 mmol) was added to a solution of **227** (0.25 g, 0.6 mmol) in 95% acetone (10 mL) at 0 °C and stirred for 30 min. Saturated NaHCO<sub>3</sub> and saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solutions were added and the mixture was extracted with EtOAc. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **228** (0.14 g, 66%)

IR vmax (film)/cm<sup>-1</sup>: 3415. 2987, 2937, 1745, 1374, 1243, 1220, 1152, 1064, 842;  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>): 1.35, 1.40, 1.46 (3s, 12H, CH<sub>3 isopropylidene</sub>), 2.09 (CH<sub>3 acetyl</sub>), 3.11 (d, 1H, J = 4.6 Hz, 2-OH), 3.81 (t, 1H, J = 4.8 Hz, 2-H), 3.94-4.07 (m, 3H, 7-H, 6-H), 4.11 (d, 1H, CH<sub>2</sub>OAc), 4.15 (s, 1H, 1-OH), 4.26 (m, 1H, CH <sub>carbo</sub>), 4.32 (d, 1H, CH<sub>2</sub>OAc), 4.30-4.41 (m, 2H, CH <sub>carbo</sub>);  $\delta_{\rm C}$  (75 MHz, CDCl<sub>3</sub>): 20.8 (CH<sub>3 acetyl</sub>), 25.4, 25.5, 26.9, 27.1 (4CH<sub>3 isopropylidene</sub>), 66.7, 67.3, 69.4, 72.4, 74.1, 75.6 (6C <sub>carbo</sub>), 95.2 (C<sub>q</sub>, 1-C), 109.5, 110.0 (2C<sub>q isopropylidene</sub>), 171.9 (C<sub>q</sub>, C=O); *m/z* [M+Na]<sup>+</sup>: 385.1474; [C<sub>16</sub>H<sub>26</sub>O<sub>9</sub>+Na]<sup>+</sup> requires 385.1469.

(3aR,4S,6S,7R,7aR)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-4-((R)-2,2-dimethyl-1,3dioxolan-4-yl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-6,7-diol (251)



DBDMH (0.33 g, 1.2 mmol) was added to a solution of **250** (0.25 g, 0.4 mmol) in 95% acetone (10 mL) at 0 °C and stirred for 30 min. Saturated NaHCO<sub>3</sub> and saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solutions were added and the mixture was extracted with EtOAc. The organic layer was washed with water then brine and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo* and the crude residue purified by column chromatography (petrol:EtOAc, 4:1) to give the pure compound **251** (0.15 g, 67%).


IR v<sub>max</sub> (film)/cm<sup>-1</sup>: 3257, 2986, 2931, 2859, 1462, 1428, 1380, 1371, 1248, 1214, 1113, 1060, 1001, 907;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>): 1.09 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 1.12, 1.32, 1.34, 1.41 (4s, 12H, CH<sub>3</sub> isopropylidene), 1.74 (d, 1H, J = 15.1 Hz, 2-OH), 3.18 (m, 4H, CH<sub>2</sub>OSi, CH <sub>carbo</sub>), 3.48 (m, 3H, CH <sub>carbo</sub>, 1-OH), 3.85-3.97 (m, 1H, CH <sub>carbo</sub>), 4.58 (s, 1H, CH <sub>carbo</sub>), 4.76 (s, 1H, 1-OH), 4.88 (d, 1H, J = 11.7 Hz, 2-H);  $\delta_{\rm C}$  (101 MHz, CDCl<sub>3</sub>): 19.4 (C<sub>q</sub>, SiC), 25.3, 25.2, 26.0, 26.8 (4CH<sub>3</sub> isopropylidene), 27.0 (SiC(CH<sub>3</sub>)<sub>3</sub>), 61.5, 66.9, 67.8, 70.2, 72.4, 74.6, 75.5, 75.8 (8C <sub>carbo</sub>), 108.8, 109.6 (C<sub>q</sub> isopropylidene), 128.0, 128.1, 130.1, 130.3, 131.7, 132.6, 135.7, 135.9 (C <sub>aryl</sub>).

#### References

- 1. Schmidt, O. T., Methods in Carbohydrate Chemistry. 1963, 2, 318-325.
- 2. 2. Schmidt, M. Reiner and R. R., Tetrahedron. 2000, 11, 319-335.
- 3. M, Lerner L., J. Org. Chem. 1976, 41, 2228-2229.
- 4. Adeline Malapelle, Anna Coslovi, Gilles Doisneau and Jean-Marie Beau., *Eur. J. Org. Chem.* **2007**, 3145-3157.
- 5. Masahiro Imoto, Shoichi Kusumoto and Tetsuo Shiba. *Tetrahedron Lett.* **1987**, 28, 6235-6238.
- 6. Koen F. W. Hekking, Floris L. van Delft and Floris P. J. T. Rutjes., *Tetrahedron*. **2003**, *59*, 6751-6758.
- 7. Phillip C. Bulman Page, Robin D. Wilkes, Ernest S, Namwindwa, and Michael J. Witty., *Tetrahedron*. **1996**, *52*, 2125-2154.
- 8. Eusebio Juaristi, Josefina Tapia and rodolfo Mendez., *Tetrahedron*. **1986**, *42*, 1253-1264.

# Appendix

# X-ray Structure Report for compound 145



#### Experimental

#### Data Collection

A colorless prism crystal of  $C_{16}H_{26}O_9$  having approximate dimensions of 0.150 x 0.150 x 0.150 mm was mounted in a loop. All measurements were made on a diffractometer using graphite monochromated Mo-K $\alpha$  radiation.

Cell constants and an orientation matrix for data collection, obtained from a leastsquares refinement using the setting angles of 3828 carefully centered reflections in the range  $7.26 < 20 < 48.50^{\circ}$  corresponded to a primitive orthorhombic cell with dimensions:

a = 9.669(3) Å b = 11.832(3) Å c = 16.455(4) Å V = 1882.6(9) Å<sup>3</sup>

For Z = 4 and F.W. = 362.38, the calculated density is 1.278 g/cm<sup>3</sup>. The reflection conditions of:

h00: h = 2n0k0: k = 2n001: l = 2n

uniquely determine the space group to be:

The data were collected at a temperature of  $-180 \pm 1^{\circ}$ C using the  $\omega$ -2 $\theta$  scan technique to a maximum 2 $\theta$  value of 56.1°.

#### Data Reduction

Of the 11235 reflections that were collected, 3805 were unique ( $R_{int} = 0.0814$ ). No decay correction was applied.

The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 1.045 cm<sup>-1</sup>. The data were corrected for Lorentz and polarization effects.

#### Structure Solution and Refinement

The structure was solved by direct methods<sup>1</sup> and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Some hydrogen atoms were refined isotropically and the rest were refined using the riding model. The final cycle of full-matrix least-squares refinement<sup>2</sup> on F<sup>2</sup> was based on 3805 observed reflections and 234 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0685$$

wR2 = 
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1425$$

The standard deviation of an observation of unit weight<sup>3</sup> was 1.09. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.35 and -0.24 e<sup>-</sup>/Å<sup>3</sup>, respectively. The absolute structure was deduced based on Flack parameter, -1.8(16), using 1538 Friedel pairs.<sup>4</sup>

Neutral atom scattering factors were taken from Cromer and Waber<sup>5</sup>. Anomalous dispersion effects were included in Fcalc<sup>6</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>7</sup>. The values for the mass attenuation coefficients are those of Creagh and Hubbell<sup>8</sup>. All calculations were performed using the CrystalStructure<sup>9</sup> crystallographic software package except for refinement, which was performed using SHELXL-97<sup>10</sup>.

#### References

(1) <u>SIR2004</u>: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna (2005)

(2) Least Squares function minimized: (SHELXL97)

 $\Sigma w (F_0^2 - F_c^2)^2$  where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where:  $N_0$  = number of observations

 $N_V$  = number of variables

(4) Flack, H. D. (1983), Acta Cryst. A39, 876-881.

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(10) SHELX97: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

#### EXPERIMENTAL DETAILS

A. Crystal Data

| Empirical Formula                | C <sub>16</sub> H <sub>26</sub> O <sub>9</sub> |
|----------------------------------|------------------------------------------------|
| Formula Weight                   | 362.38                                         |
| Crystal Color, Habit             | colorless, prism                               |
| Crystal Dimensions               | 0.150 X 0.150 X 0.150 mm                       |
| Crystal System                   | orthorhombic                                   |
| Lattice Type                     | Primitive                                      |
| No. of Reflections Used for Unit |                                                |
| Cell Determination (20 range)    | 3828 ( 7.3 - 48.5 <sup>o</sup> )               |
|                                  |                                                |
| Lattice Parameters               | a = 9.669(3)  Å                                |
|                                  | b = 11.832(3)  Å                               |
|                                  | c = 16.455(4)  Å                               |

| Space Group       | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (#19) |
|-------------------|-----------------------------------------------------|
| Z value           | 4                                                   |
| D <sub>calc</sub> | 1.278 g/cm <sup>3</sup>                             |
| F000              | 776.00                                              |
| μ(ΜοΚα)           | 1.045 cm <sup>-1</sup>                              |

 $V = 1882.6(9) \text{ Å}^3$ 

# B. Intensity Measurements

| Diffractometer               |                                                                                 |
|------------------------------|---------------------------------------------------------------------------------|
| Radiation                    | MoK $\alpha$ ( $\lambda = 0.71069$ Å)<br>graphite monochromated                 |
| Take-off Angle               | 2.80                                                                            |
| Detector Aperture            | <ul><li>2.0 - 2.5 mm horizontal</li><li>2.0 mm vertical</li></ul>               |
| Crystal to Detector Distance | 21 mm                                                                           |
| Temperature                  | -180.0°C                                                                        |
| Scan Type                    | ω-2θ                                                                            |
| 20 <sub>max</sub>            | 56.10                                                                           |
| No. of Reflections Measured  | Total: 11235<br>Unique: 3805 (R <sub>int</sub> = 0.0814)<br>Friedel pairs: 1538 |

Corrections

Lorentz-polarization

# C. Structure Solution and Refinement

| Structure Solution                 | Direct Methods                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                         | Full-matrix least-squares on F <sup>2</sup>                                                                                          |
| Function Minimized                 | $\Sigma \le (Fo^2 - Fc^2)^2$                                                                                                         |
| Least Squares Weights              | w = 1/ [ $\sigma^2(Fo^2)$ + (0.0404 · P) <sup>2</sup><br>+ 1.5183 · P ]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| 2θ <sub>max</sub> cutoff           | 56.1 <sup>0</sup>                                                                                                                    |
| Anomalous Dispersion               | All non-hydrogen atoms                                                                                                               |
| No. Observations (All reflections) | 3805                                                                                                                                 |
| No. Variables                      | 234                                                                                                                                  |
| Reflection/Parameter Ratio         | 16.26                                                                                                                                |
| Residuals: R1 (I>2.00σ(I))         | 0.0685                                                                                                                               |

| Residuals: R (All reflections)   | 0.0873                               |
|----------------------------------|--------------------------------------|
| Residuals: wR2 (All reflections) | 0.1425                               |
| Goodness of Fit Indicator        | 1.094                                |
| Flack Parameter                  | -1.8(16)                             |
| Max Shift/Error in Final Cycle   | 0.003                                |
| Maximum peak in Final Diff. Map  | 0.35 e <sup>-</sup> /Å <sup>3</sup>  |
| Minimum peak in Final Diff. Map  | -0.24 e <sup>-</sup> /Å <sup>3</sup> |

| atom | Х         | у          | Z           | Beq      |
|------|-----------|------------|-------------|----------|
| 01   | 0.8619(3) | 0.1995(2)  | 0.68811(13) | 2.23(4)  |
| 05   | 0.8083(3) | -0.0508(2) | 0.8146(2)   | 2.97(5)  |
| 06   | 0.9659(3) | 0.1530(2)  | 0.8118(2)   | 2.51(5)  |
| 08   | 0.9772(3) | 0.3585(2)  | 0.5777(2)   | 2.83(5)  |
| O10  | 0.8129(3) | 0.3351(2)  | 0.4808(2)   | 2.76(5)  |
| O14  | 0.9100(3) | 0.0100(2)  | 0.56658(13) | 2.49(5)  |
| O16  | 0.9374(3) | -0.1330(2) | 0.6583(2)   | 2.60(5)  |
| O19  | 0.7245(4) | 0.2558(3)  | 0.8559(2)   | 5.15(8)  |
| O20  | 0.6090(3) | 0.1645(3)  | 0.7584(2)   | 3.97(6)  |
| C2   | 0.9829(4) | 0.1751(3)  | 0.6413(2)   | 2.00(6)  |
| C3   | 1.0026(4) | 0.0492(3)  | 0.6280(2)   | 2.11(6)  |
| C4   | 0.9649(4) | -0.0273(3) | 0.6986(2)   | 2.13(6)  |
| C5   | 0.8370(4) | 0.0124(3)  | 0.7444(2)   | 2.22(6)  |
| C6   | 0.8513(4) | 0.1392(3)  | 0.7622(2)   | 2.32(6)  |
| C7   | 0.9699(4) | 0.2394(3)  | 0.5616(2)   | 2.17(6)  |
| C9   | 0.8651(4) | 0.4144(3)  | 0.5371(3)   | 2.92(7)  |
| C11  | 0.8334(4) | 0.2266(3)  | 0.5157(2)   | 2.52(6)  |
| C12  | 0.7569(5) | 0.4474(4)  | 0.5990(3)   | 4.59(10) |
| C13  | 0.9226(5) | 0.5132(4)  | 0.4903(3)   | 4.42(10) |
| C15  | 0.9036(4) | -0.1101(3) | 0.5742(2)   | 2.58(7)  |
| C17  | 1.0105(4) | -0.1649(3) | 0.5204(3)   | 3.19(7)  |
| C18  | 0.7588(4) | -0.1489(4) | 0.5561(3)   | 3.50(8)  |
| C19  | 0.7215(4) | 0.1923(3)  | 0.7992(2)   | 2.93(7)  |

| Table 1. Atomic coordinates and $B_{iso}/B_{eq}$ |  |
|--------------------------------------------------|--|
|                                                  |  |

| C20 | 0.4815(5) | 0.2223(6) | 0.7802(3) | 6.00(13) |
|-----|-----------|-----------|-----------|----------|
| C21 | 0.3701(6) | 0.1793(8) | 0.7332(4) | 9.1(3)   |

 $B_{eq} = 8/3 \ \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)cos \ \gamma + 2U_{13}(aa^*cc^*)cos \ \beta + 2U_{23}(bb^*cc^*)cos \ \alpha)$ 

| atom | X        | У          | Z        | B <sub>iso</sub> |
|------|----------|------------|----------|------------------|
| Нбо  | 0.973(4) | 0.2326(10) | 0.827(3) | 3.4(8)           |
| H2   | 1.0653   | 0.2047     | 0.6712   | 2.40             |
| H3   | 1.1001   | 0.0341     | 0.6110   | 2.53             |
| H4   | 1.0450   | -0.0353    | 0.7366   | 2.55             |
| H5   | 0.7564   | 0.0032     | 0.7069   | 2.67             |
| H5o  | 0.893(3) | -0.062(4)  | 0.846(3) | 5.8(12)          |
| H7   | 1.0480   | 0.2175     | 0.5249   | 2.60             |
| H11A | 0.8404   | 0.1677     | 0.4732   | 3.02             |
| H11B | 0.7571   | 0.2070     | 0.5532   | 3.02             |
| H12A | 0.7269   | 0.3801     | 0.6289   | 5.51             |
| H12B | 0.6774   | 0.4812     | 0.5711   | 5.51             |
| H12C | 0.7963   | 0.5024     | 0.6370   | 5.51             |
| H13A | 0.8493   | 0.5469     | 0.4571   | 5.31             |
| H13B | 0.9977   | 0.4872     | 0.4549   | 5.31             |
| H13C | 0.9584   | 0.5698     | 0.5283   | 5.31             |
| H17A | 1.1029   | -0.1392    | 0.5364   | 3.83             |
| H17B | 0.9931   | -0.1440    | 0.4637   | 3.83             |
| H17C | 1.0049   | -0.2472    | 0.5261   | 3.83             |
| H18A | 0.7337   | -0.1266    | 0.5007   | 4.20             |
| H18B | 0.6945   | -0.1140    | 0.5947   | 4.20             |
| H18C | 0.7537   | -0.2313    | 0.5611   | 4.20             |
| H20A | 0.4622   | 0.2109     | 0.8387   | 7.20             |
| H20B | 0.4916   | 0.3044     | 0.7703   | 7.20             |

Table 2. Atomic coordinates and  $\mathrm{B}_{\mathrm{iso}}$  involving hydrogen atoms

| H21A | 0.3581 | 0.0986 | 0.7447 | 10.88 |
|------|--------|--------|--------|-------|
| H21B | 0.3903 | 0.1896 | 0.6753 | 10.88 |
| H21C | 0.2851 | 0.2200 | 0.7471 | 10.88 |

 Table 3. Anisotropic displacement parameters

| atom             | U <sub>11</sub>          | U22        | U33        | U <sub>12</sub> | U13         | U23       |
|------------------|--------------------------|------------|------------|-----------------|-------------|-----------|
| 01               | 0.0308(13)<br>0.0037(10) | 0.0228(11) | 0.0310(12) | 0.0087(10)      | 0.0007(10)  |           |
| O5               | 0.035(2)<br>0.0110(12)   | 0.0371(13) | 0.041(2)   | -0.0031(12)     | -0.0016(12) |           |
| O6<br>0.0009(10  | 0.037(2)<br>)            | 0.0222(10) | 0.0358(12) | 0.0025(10)      | -0.0076(11) | -         |
| O8               | 0.036(2)<br>0.0033(11)   | 0.0200(11) | 0.052(2)   | -0.0031(10)     | -0.0122(12) |           |
| O10              | 0.038(2)<br>0.0070(10)   | 0.0284(12) | 0.0387(13) | -0.0018(11)     | -0.0071(11) |           |
| O14<br>0.0006(10 | 0.038(2)<br>)            | 0.0220(11) | 0.0345(12) | 0.0006(10)      | -0.0052(11) | -         |
| O16              | 0.039(2)<br>0.0001(10)   | 0.0194(11) | 0.0408(13) | -0.0022(10)     | -0.0041(11) |           |
| 019              | 0.057(2)                 | 0.090(3)   | 0.049(2)   | 0.025(2)        | 0.000(2)    | -0.026(2) |
| O20              | 0.032(2)                 | 0.075(2)   | 0.044(2)   | 0.017(2)        | 0.0012(12)  | -0.007(2) |
| C2<br>0.0012(13  | 0.018(2)                 | 0.021(2)   | 0.036(2)   | 0.0010(12)      | -0.002(2)   | -         |
| C3<br>0.0029(13  | 0.020(2)<br>)            | 0.024(2)   | 0.037(2)   | 0.0022(13)      | -0.0029(13) | -         |
| C4               | 0.029(2)<br>0.0002(13)   | 0.0173(13) | 0.035(2)   | 0.0006(13)      | -0.007(2)   |           |
| C5               | 0.025(2)                 | 0.031(2)   | 0.029(2)   | -0.001(2)       | -0.005(2)   | 0.003(2)  |
| C6               | 0.029(2)                 | 0.029(2)   | 0.031(2)   | 0.004(2)        | -0.004(2)   | 0.001(2)  |
| C7               | 0.027(2)<br>0.0026(13)   | 0.021(2)   | 0.035(2)   | -0.0014(13)     | 0.004(2)    |           |
| C9               | 0.036(2)                 | 0.026(2)   | 0.049(2)   | 0.003(2)        | -0.012(2)   | 0.005(2)  |

| C11 | 0.032(2) | 0.028(2) | 0.036(2) | -0.005(2) | -0.005(2) | 0.006(2)  |
|-----|----------|----------|----------|-----------|-----------|-----------|
| C12 | 0.062(3) | 0.051(3) | 0.061(3) | 0.027(3)  | -0.002(3) | -0.000(2) |
| C13 | 0.061(3) | 0.038(2) | 0.069(3) | -0.009(2) | -0.019(3) | 0.017(2)  |
| C15 | 0.033(2) | 0.022(2) | 0.043(2) | -0.001(2) | -0.003(2) | -0.003(2) |
| C17 | 0.046(3) | 0.025(2) | 0.050(3) | 0.001(2)  | 0.005(2)  | -0.006(2) |
| C18 | 0.043(3) | 0.039(2) | 0.051(3) | -0.009(2) | -0.003(2) | -0.009(2) |
| C19 | 0.040(3) | 0.038(2) | 0.034(2) | 0.012(2)  | -0.002(2) | 0.000(2)  |
| C20 | 0.038(3) | 0.139(5) | 0.052(3) | 0.039(3)  | 0.000(3)  | -0.015(3) |
| C21 | 0.061(4) | 0.191(9) | 0.092(5) | 0.051(5)  | -0.008(4) | -0.018(5) |

The general temperature factor expression:  $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$ 

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| 01   | C2   | 1.430(4) | 01   | C6   | 1.416(4) |
| O5   | C5   | 1.404(4) | O6   | C6   | 1.386(4) |
| O8   | C7   | 1.436(4) | 08   | C9   | 1.435(5) |
| O10  | C9   | 1.413(5) | O10  | C11  | 1.420(4) |
| O14  | C3   | 1.428(4) | O14  | C15  | 1.428(4) |
| O16  | C4   | 1.441(4) | O16  | C15  | 1.446(5) |
| O19  | C19  | 1.197(5) | O20  | C19  | 1.320(5) |
| O20  | C20  | 1.454(6) | C2   | C3   | 1.517(5) |
| C2   | C7   | 1.521(5) | C3   | C4   | 1.517(5) |
| C4   | C5   | 1.521(5) | C5   | C6   | 1.535(5) |
| C6   | C19  | 1.530(5) | C7   | C11  | 1.528(5) |
| С9   | C12  | 1.510(6) | С9   | C13  | 1.507(6) |
| C15  | C17  | 1.507(6) | C15  | C18  | 1.504(6) |
| C20  | C21  | 1.420(8) |      |      |          |

| atom | atom | distance | atom | atom | distance  |
|------|------|----------|------|------|-----------|
| O5   | H5o  | 0.98(3)  | O6   | H60  | 0.978(15) |
|      |      |          |      |      |           |
| C2   | H2   | 1.000    | C3   | H3   | 1.000     |
| C4   | H4   | 1.000    | C5   | H5   | 1.000     |
| C7   | H7   | 1.000    | C11  | H11A | 0.990     |
| C11  | H11B | 0.990    | C12  | H12A | 0.980     |
| C12  | H12B | 0.980    | C12  | H12C | 0.980     |
| C13  | H13A | 0.980    | C13  | H13B | 0.980     |
| C13  | H13C | 0.980    | C17  | H17A | 0.980     |
| C17  | H17B | 0.980    | C17  | H17C | 0.980     |
| C18  | H18A | 0.980    | C18  | H18B | 0.980     |
| C18  | H18C | 0.980    | C20  | H20A | 0.990     |
| C20  | H20B | 0.990    | C21  | H21A | 0.980     |
| C21  | H21B | 0.980    | C21  | H21C | 0.980     |

## Table 5. Bond lengths involving hydrogens (Å)

| Table 6. Bond angles ( <sup>0</sup> ) | Table | 6. | Bond | angles | (0) |
|---------------------------------------|-------|----|------|--------|-----|
|---------------------------------------|-------|----|------|--------|-----|

| atom | atom | atom | angle    | atom | atom | atom | angle    |
|------|------|------|----------|------|------|------|----------|
| C2   | 01   | C6   | 115.0(3) | C7   | 08   | C9   | 109.3(3) |
| C9   | O10  | C11  | 106.6(3) | C3   | 014  | C15  | 106.8(3) |
| C4   | 016  | C15  | 108.7(3) | C19  | O20  | C20  | 117.1(4) |
| 01   | C2   | C3   | 112.2(3) | 01   | C2   | C7   | 107.2(3) |
| C3   | C2   | C7   | 112.2(3) | O14  | C3   | C2   | 110.0(3) |
| O14  | C3   | C4   | 101.4(3) | C2   | C3   | C4   | 116.5(3) |
| 016  | C4   | C3   | 102.1(3) | O16  | C4   | C5   | 110.3(3) |
| C3   | C4   | C5   | 112.9(3) | O5   | C5   | C4   | 113.8(3) |
| O5   | C5   | C6   | 112.4(3) | C4   | C5   | C6   | 108.9(3) |
| 01   | C6   | O6   | 112.9(3) | 01   | C6   | C5   | 109.5(3) |
| 01   | C6   | C19  | 101.3(3) | O6   | C6   | C5   | 107.4(3) |
| O6   | C6   | C19  | 111.9(3) | C5   | C6   | C19  | 113.8(3) |
| 08   | C7   | C2   | 109.1(3) | 08   | C7   | C11  | 103.3(3) |
| C2   | C7   | C11  | 116.6(3) | 08   | C9   | O10  | 105.5(3) |
| 08   | C9   | C12  | 109.2(4) | 08   | C9   | C13  | 108.5(3) |
| O10  | C9   | C12  | 111.5(4) | O10  | C9   | C13  | 108.2(3) |
| C12  | C9   | C13  | 113.6(4) | O10  | C11  | C7   | 103.4(3) |
| O14  | C15  | 016  | 105.1(3) | O14  | C15  | C17  | 110.3(3) |
| O14  | C15  | C18  | 109.0(3) | O16  | C15  | C17  | 109.0(3) |
| 016  | C15  | C18  | 110.1(3) | C17  | C15  | C18  | 113.0(3) |
| O19  | C19  | O20  | 124.9(4) | O19  | C19  | C6   | 123.3(4) |
| O20  | C19  | C6   | 111.7(3) | O20  | C20  | C21  | 109.9(5) |

| atom | atom | atom | angle  | atom | atom | atom | angle  |
|------|------|------|--------|------|------|------|--------|
| C5   | O5   | H5o  | 110(3) | C6   | 06   | H60  | 109(3) |
| 01   | C2   | H2   | 108.4  | C3   | C2   | H2   | 108.4  |
| C7   | C2   | H2   | 108.4  | O14  | C3   | H3   | 109.5  |
| C2   | C3   | H3   | 109.5  | C4   | C3   | H3   | 109.5  |
| O16  | C4   | H4   | 110.4  | C3   | C4   | H4   | 110.4  |
| C5   | C4   | H4   | 110.4  | O5   | C5   | Н5   | 107.1  |
| C4   | C5   | H5   | 107.1  | C6   | C5   | H5   | 107.1  |
| 08   | C7   | H7   | 109.2  | C2   | C7   | H7   | 109.2  |
| C11  | C7   | H7   | 109.2  | O10  | C11  | H11A | 111.1  |
| O10  | C11  | H11B | 111.1  | C7   | C11  | H11A | 111.1  |
| C7   | C11  | H11B | 111.1  | H11A | C11  | H11B | 109.1  |
| C9   | C12  | H12A | 109.5  | C9   | C12  | H12B | 109.5  |
| C9   | C12  | H12C | 109.5  | H12A | C12  | H12B | 109.5  |
| H12A | C12  | H12C | 109.5  | H12B | C12  | H12C | 109.5  |
| C9   | C13  | H13A | 109.5  | C9   | C13  | H13B | 109.5  |
| C9   | C13  | H13C | 109.5  | H13A | C13  | H13B | 109.5  |
| H13A | C13  | H13C | 109.5  | H13B | C13  | H13C | 109.5  |
| C15  | C17  | H17A | 109.5  | C15  | C17  | H17B | 109.5  |
| C15  | C17  | H17C | 109.5  | H17A | C17  | H17B | 109.5  |
| H17A | C17  | H17C | 109.5  | H17B | C17  | H17C | 109.5  |
| C15  | C18  | H18A | 109.5  | C15  | C18  | H18B | 109.5  |
| C15  | C18  | H18C | 109.5  | H18A | C18  | H18B | 109.5  |
| H18A | C18  | H18C | 109.5  | H18B | C18  | H18C | 109.5  |

| Table 7. Bond angles | s involving | hydrogens ( | 0) |
|----------------------|-------------|-------------|----|
|----------------------|-------------|-------------|----|

| O20  | C20 | H20A | 109.7 | O20  | C20 | H20B | 109.7 |
|------|-----|------|-------|------|-----|------|-------|
| C21  | C20 | H20A | 109.7 | C21  | C20 | H20B | 109.7 |
| H20A | C20 | H20B | 108.2 | C20  | C21 | H21A | 109.5 |
| C20  | C21 | H21B | 109.5 | C20  | C21 | H21C | 109.5 |
| H21A | C21 | H21B | 109.5 | H21A | C21 | H21C | 109.5 |
| H21B | C21 | H21C | 109.5 |      |     |      |       |

## Table 8. Torsion Angles(<sup>0</sup>)

(Those having bond angles > 160 or < 20 degrees are excluded.)

| atom1 | atom2      | atom3 | atom4 | angle     | atom1 | atom2      | atom3 | atom4      | angle     |
|-------|------------|-------|-------|-----------|-------|------------|-------|------------|-----------|
| C2    | 01         | C6    | O6    | 55.1(4)   | C2    | 01         | C6    | C5         | -64.5(3)  |
| C2    | <b>O</b> 1 | C6    | C19   | 174.9(2)  | C6    | 01         | C2    | C3         | 51.6(3)   |
| C6    | <b>O</b> 1 | C2    | C7    | 175.2(2)  | C7    | <b>O</b> 8 | C9    | O10        | -14.6(4)  |
| C7    | <b>O</b> 8 | C9    | C12   | 105.3(3)  | C7    | <b>O</b> 8 | C9    | C13        | -130.4(3) |
| C9    | <b>O</b> 8 | C7    | C2    | -131.1(3) | C9    | <b>O</b> 8 | C7    | C11        | -6.4(3)   |
| C9    | O10        | C11   | C7    | -34.9(3)  | C11   | O10        | C9    | <b>O</b> 8 | 31.5(4)   |
| C11   | O10        | C9    | C12   | -87.0(3)  | C11   | O10        | C9    | C13        | 147.4(3)  |
| C3    | O14        | C15   | O16   | 25.7(3)   | C3    | O14        | C15   | C17        | -91.7(3)  |
| C3    | O14        | C15   | C18   | 143.7(3)  | C15   | O14        | C3    | C2         | -163.0(3) |
| C15   | O14        | C3    | C4    | -39.1(3)  | C4    | O16        | C15   | O14        | -0.7(4)   |
| C4    | 016        | C15   | C17   | 117.5(3)  | C4    | O16        | C15   | C18        | -118.0(3) |
| C15   | O16        | C4    | C3    | -22.4(3)  | C15   | O16        | C4    | C5         | 97.8(3)   |
| C19   | O20        | C20   | C21   | -177.5(3) | C20   | O20        | C19   | O19        | 4.9(6)    |
| C20   | O20        | C19   | C6    | -171.4(4) | O1    | C2         | C3    | O14        | 77.1(3)   |
| 01    | C2         | C3    | C4    | -37.5(4)  | 01    | C2         | C7    | <b>O</b> 8 | 66.9(3)   |
| 01    | C2         | C7    | C11   | -49.6(3)  | C3    | C2         | C7    | <b>O</b> 8 | -169.5(3) |
| C3    | C2         | C7    | C11   | 74.0(4)   | C7    | C2         | C3    | O14        | -43.7(4)  |
| C7    | C2         | C3    | C4    | -158.3(3) | O14   | C3         | C4    | O16        | 37.0(3)   |
| O14   | C3         | C4    | C5    | -81.4(3)  | C2    | C3         | C4    | O16        | 156.4(3)  |
| C2    | C3         | C4    | C5    | 38.0(4)   | O16   | C4         | C5    | O5         | 72.4(3)   |
| O16   | C4         | C5    | C6    | -161.3(2) | C3    | C4         | C5    | O5         | -174.1(3) |
| C3    | C4         | C5    | C6    | -47.9(4)  | 05    | C5         | C6    | 01         | -172.4(3) |

| 05 | C5 | C6  | 06  | 64.7(4)   | O5         | C5 | C6  | C19 | -59.8(4)  |
|----|----|-----|-----|-----------|------------|----|-----|-----|-----------|
| C4 | C5 | C6  | 01  | 60.6(3)   | C4         | C5 | C6  | O6  | -62.4(3)  |
| C4 | C5 | C6  | C19 | 173.2(3)  | 01         | C6 | C19 | 019 | -107.4(4) |
| 01 | C6 | C19 | O20 | 69.0(3)   | O6         | C6 | C19 | 019 | 13.2(5)   |
| O6 | C6 | C19 | O20 | -170.4(3) | C5         | C6 | C19 | 019 | 135.2(4)  |
| C5 | C6 | C19 | O20 | -48.4(4)  | <b>O</b> 8 | C7 | C11 | O10 | 24.9(3)   |
| C2 | C7 | C11 | O10 | 144.5(3)  |            |    |     |     |           |

Table 9. Possible hydrogen bonds

| Donor | Н   | Acceptor         | DA       | D-H  | HA      | D-HA   | A               |
|-------|-----|------------------|----------|------|---------|--------|-----------------|
| 05    | H5o | $O8^1$           | 2.932(4) | 0.98 | 2.01(3) | 156(4) |                 |
| O6    | H6o | O16 <sup>2</sup> | 2.744(3) | 0.98 | 1.824(1 | 5)     | 155(4)          |
| O6    | Нбо | 019              | 2.731(4) | 0.98 | 2.469(1 | 5)     | 95(3) intramol. |

Symmetry Operators:

(1) -X+2,Y+1/2-1,-Z+1/2+1

(2) -X+2,Y+1/2,-Z+1/2+1

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| 01   | O8   | 2.843(4) | 01   | O14  | 3.040(3) |
| 01   | O19  | 3.136(4) | 01   | O20  | 2.736(4) |
| 01   | C4   | 2.867(4) | 01   | C9   | 3.556(5) |
| 01   | C11  | 2.868(5) | O1   | C12  | 3.434(6) |
| O5   | O6   | 2.854(4) | O5   | O16  | 3.020(4) |
| 05   | O20  | 3.326(4) | O5   | C19  | 3.008(5) |
| 06   | O19  | 2.731(4) | O6   | O20  | 3.563(4) |
| 06   | C2   | 2.822(4) | O6   | C3   | 3.282(4) |
| 06   | C4   | 2.831(4) | O14  | C5   | 3.009(4) |
| O14  | C7   | 2.777(4) | O14  | C11  | 2.797(4) |
| O19  | C5   | 3.585(5) | O19  | C20  | 2.688(6) |
| O20  | C5   | 2.856(5) | C2   | C5   | 2.928(5) |
| C2   | С9   | 3.500(5) | C3   | C6   | 2.854(5) |
| C3   | C11  | 3.240(5) | C3   | C17  | 3.092(5) |

| Table 10. Intramolecular contacts less than 3.60 Å |  |
|----------------------------------------------------|--|
|                                                    |  |

| C3  | C18 | 3.529(5) | C4  | C17 | 3.383(5) |
|-----|-----|----------|-----|-----|----------|
| C4  | C18 | 3.398(5) | C5  | C15 | 3.218(5) |
| C7  | C12 | 3.268(6) | C7  | C13 | 3.476(5) |
| C11 | C12 | 3.041(6) | C11 | C13 | 3.524(6) |
| C19 | C21 | 3.571(7) |     |     |          |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| 01   | H60  | 2.56(4)  | 01   | H3   | 3.277    |
| 01   | H4   | 3.389    | 01   | Н5   | 2.556    |
| 01   | H7   | 3.239    | 01   | H11A | 3.562    |
| 01   | H11B | 2.442    | 01   | H12A | 2.688    |
| 05   | H4   | 2.630    | O6   | H2   | 2.578    |
| O6   | H4   | 2.660    | O6   | Н5   | 3.198    |
| O6   | H5o  | 2.70(5)  | 08   | H2   | 2.530    |
| 08   | H11A | 3.131    | O8   | H11B | 2.811    |
| 08   | H12A | 2.575    | 08   | H12B | 3.243    |
| 08   | H12C | 2.629    | O8   | H13A | 3.231    |
| 08   | H13B | 2.538    | O8   | H13C | 2.636    |
| O10  | H7   | 2.762    | O10  | H12A | 2.629    |
| O10  | H12B | 2.629    | O10  | H12C | 3.249    |
| O10  | H13A | 2.561    | O10  | H13B | 2.572    |
| O10  | H13C | 3.210    | O14  | H2   | 3.245    |
| O14  | H4   | 3.134    | O14  | Н5   | 2.746    |
| O14  | H7   | 2.878    | O14  | H11A | 2.510    |
| O14  | H11B | 2.770    | O14  | H17A | 2.615    |
| O14  | H17B | 2.613    | O14  | H17C | 3.247    |
| O14  | H18A | 2.587    | O14  | H18B | 2.589    |
| O14  | H18C | 3.231    | O16  | H3   | 2.643    |
| O16  | Н5   | 2.510    | O16  | H5o  | 3.23(4)  |
|      |      |          |      |      |          |

## Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens

| 016 | H17A | 2.566   | 016 | H17B | 3.249 |
|-----|------|---------|-----|------|-------|
| 016 | H17C | 2.642   | 016 | H18A | 3.258 |
| 016 | H18B | 2.581   | 016 | H18C | 2.658 |
| 019 | Нбо  | 2.47(4) | O19 | H20A | 2.607 |
| 019 | H20B | 2.717   | O20 | Н5   | 2.529 |
| O20 | H12A | 3.514   | O20 | H21A | 2.559 |
| O20 | H21B | 2.536   | O20 | H21C | 3.206 |
| C2  | Нбо  | 3.13(4) | C2  | H4   | 3.003 |
| C2  | Н5   | 3.179   | C2  | H11A | 3.091 |
| C2  | H11B | 2.647   | C2  | H12A | 3.472 |
| C3  | H5   | 2.765   | C3  | H7   | 2.653 |
| C3  | H11A | 3.304   | C3  | H11B | 3.261 |
| C3  | H17A | 2.860   | C3  | H17B | 3.542 |
| C3  | H18B | 3.592   | C4  | H2   | 2.947 |
| C4  | H5o  | 2.56(4) | C4  | H17A | 3.264 |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| C4   | H18B | 3.288    | C5   | H6o  | 3.22(3)  |
|      |      |          |      |      |          |
| C5   | H2   | 3.391    | C5   | H3   | 3.369    |
| C5   | H18B | 3.194    | C6   | H2   | 2.669    |
| C6   | H4   | 2.819    | C6   | Н5о  | 2.78(5)  |
|      |      |          |      |      |          |
| C7   | H3   | 2.854    | C7   | H12A | 3.086    |
| C7   | H13B | 3.428    | C9   | H7   | 2.932    |
| C9   | H11A | 3.112    | C9   | H11B | 2.681    |
| C11  | H2   | 3.411    | C11  | H12A | 2.797    |
| C11  | H12B | 3.489    | C12  | H11B | 2.943    |
| C12  | H13A | 2.763    | C12  | H13B | 3.355    |
| C12  | H13C | 2.691    | C13  | H12A | 3.356    |
| C13  | H12B | 2.745    | C13  | H12C | 2.709    |
| C15  | H3   | 2.624    | C15  | H4   | 3.130    |
| C15  | H5   | 2.931    | C17  | H3   | 2.918    |
| C17  | H18A | 2.734    | C17  | H18B | 3.345    |
| C17  | H18C | 2.689    | C18  | Н5   | 3.065    |
| C18  | H17A | 3.345    | C18  | H17B | 2.729    |
| C18  | H17C | 2.695    | C19  | Нбо  | 2.52(4)  |
|      |      |          |      |      |          |
| C19  | H5   | 2.726    | C19  | Н5о  | 3.52(5)  |
| C19  | H12A | 3.578    | C19  | H20A | 2.600    |

| Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued) |
|------------------------------------------------------------------------------------|
|                                                                                    |

| C19  | H20B | 2.632 | Нбо  | H2   | 2.735   |
|------|------|-------|------|------|---------|
| Н6о  | H4   | 3.570 | Нбо  | H5o  | 3.58(5) |
|      |      |       |      |      |         |
| H2   | H3   | 2.274 | H2   | H4   | 3.044   |
| H2   | H7   | 2.418 | H2   | H11B | 3.557   |
| H3   | H4   | 2.287 | H3   | H7   | 2.640   |
| H3   | H17A | 2.389 | Н3   | H17B | 3.374   |
| H4   | H5   | 2.869 | H4   | H5o  | 2.346   |
| H4   | H17A | 3.560 | Н5   | H5o  | 2.754   |
| H5   | H11B | 3.494 | Н5   | H18B | 2.384   |
| H7   | H11A | 2.258 | H7   | H11B | 2.854   |
| H7   | H13B | 3.426 | H11B | H12A | 2.415   |
| H11B | H12B | 3.347 | H12A | H13C | 3.575   |
| H12A | H20B | 3.375 | H12B | H13A | 2.624   |
| H12B | H13C | 2.996 | H12C | H13A | 3.051   |
| H12C | H13B | 3.578 | H12C | H13C | 2.508   |
| H17A | H18C | 3.571 | H17B | H18A | 2.590   |
| H17B | H18C | 2.999 | H17C | H18A | 3.016   |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| H17C | H18B | 3.573    | H17C | H18C | 2.504    |
| H20A | H21A | 2.273    | H20A | H21B | 2.788    |
| H20A | H21C | 2.283    | H20B | H21A | 2.788    |
| H20B | H21B | 2.291    | H20B | H21C | 2.266    |

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

| atom | atom             | distance | atom | atom             | distance |
|------|------------------|----------|------|------------------|----------|
| O5   | O8 <sup>1</sup>  | 2.932(4) | O6   | O16 <sup>2</sup> | 2.744(3) |
| O6   | C17 <sup>2</sup> | 3.510(5) | O8   | O5 <sup>2</sup>  | 2.932(4) |
| O10  | C7 <sup>3</sup>  | 3.501(5) | O10  | C21 <sup>4</sup> | 3.569(7) |
| O16  | O6 <sup>1</sup>  | 2.744(3) | O16  | O19 <sup>1</sup> | 3.532(5) |
| O19  | O16 <sup>2</sup> | 3.532(5) | O19  | C17 <sup>2</sup> | 3.405(5) |
| O19  | C18 <sup>5</sup> | 3.533(5) | C7   | O10 <sup>4</sup> | 3.501(5) |
| C17  | O6 <sup>1</sup>  | 3.510(5) | C17  | O19 <sup>1</sup> | 3.405(5) |
| C17  | C18 <sup>6</sup> | 3.493(6) | C18  | O19 <sup>7</sup> | 3.533(5) |
| C18  | C17 <sup>8</sup> | 3.493(6) | C21  | O10 <sup>3</sup> | 3.569(7) |

|           | • • • • • • • • • • • • • • • • • • •    |  |
|-----------|------------------------------------------|--|
| Table 12. | Intermolecular contacts less than 3.60 Å |  |

Symmetry Operators:

| (1) -X+2,Y+1/2-1,-Z+1/2+1 | (2) -X+2,Y+1/2,-Z+1/2+1   |
|---------------------------|---------------------------|
| (3) X+1/2-1,-Y+1/2,-Z+1   | (4) X+1/2,-Y+1/2,-Z+1     |
| (5) $-X+1/2+1, -Y, Z+1/2$ | (6) X+1/2,-Y+1/2-1,-Z+1   |
| (7) -X+1/2+1,-Y,Z+1/2-1   | (8) X+1/2-1,-Y+1/2-1,-Z+1 |

| atom | atom              | distance  | atom | atom              | distance |
|------|-------------------|-----------|------|-------------------|----------|
| 01   | $H4^1$            | 3.492     | O5   | $H2^2$            | 3.148    |
| 05   | H11A <sup>3</sup> | 3.285     | O5   | H21C <sup>4</sup> | 3.033    |
| 06   | H12C <sup>2</sup> | 3.029     | O6   | $H13C^2$          | 2.903    |
| 06   | H17A <sup>1</sup> | 3.568     | O6   | H17C <sup>1</sup> | 2.930    |
| 06   | H21C <sup>5</sup> | 3.359     | 08   | $H4^1$            | 3.310    |
| 08   | H50 <sup>1</sup>  | 2.01(4)   | O8   | H11B <sup>6</sup> | 3.545    |
| O10  | H2 <sup>7</sup>   | 3.495     | O10  | H3 <sup>7</sup>   | 2.986    |
| O10  | H7 <sup>7</sup>   | 2.638     | O10  | H21B <sup>6</sup> | 2.692    |
| O14  | H12B <sup>6</sup> | 3.439     | O16  | H60 <sup>2</sup>  | 1.82(3)  |
|      |                   |           |      |                   |          |
| 016  | $H2^2$            | 3.400     | 016  | $H21C^4$          | 3.175    |
| 019  | H13A <sup>8</sup> | 2.954     | 019  | $H17A^1$          | 2.733    |
| 019  | H17B <sup>3</sup> | 3.054     | 019  | $H17C^1$          | 3.259    |
| 019  | H17C <sup>3</sup> | 3.575     | 019  | H18A <sup>3</sup> | 2.860    |
| 019  | H18C <sup>3</sup> | 3.395     | O20  | H17B <sup>3</sup> | 3.529    |
| C2   | H50 <sup>1</sup>  | 3.34(5)   | C2   | H21C <sup>5</sup> | 3.443    |
| C4   | H60 <sup>2</sup>  | 2.933(15) | C4   | $H12C^2$          | 3.574    |
| C7   | H50 <sup>1</sup>  | 3.10(5)   | C7   | H11B <sup>6</sup> | 3.418    |
| C9   | H3 <sup>7</sup>   | 3.589     | C9   | H50 <sup>1</sup>  | 3.04(4)  |
|      |                   |           |      |                   |          |
| C9   | H7 <sup>7</sup>   | 3.589     | C11  | $H7^7$            | 2.916    |
| C11  | H21B <sup>6</sup> | 3.342     | C12  | $H4^1$            | 3.321    |
| C12  | H50 <sup>1</sup>  | 3.51(3)   | C12  | H7 <sup>7</sup>   | 3.471    |
| C12  | H17A <sup>7</sup> | 3.511     | C12  | H21A <sup>9</sup> | 3.324    |
|      |                   |           |      |                   |          |

## Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens

| C13 | H3 <sup>7</sup>    | 3.580   | C13 | H50 <sup>1</sup>   | 3.35(4)   |
|-----|--------------------|---------|-----|--------------------|-----------|
| C13 | H17A <sup>7</sup>  | 3.460   | C13 | H17C <sup>10</sup> | 3.002     |
| C13 | H18A <sup>6</sup>  | 3.296   | C13 | H18B <sup>6</sup>  | 3.207     |
| C15 | H60 <sup>2</sup>   | 2.74(3) | C17 | H60 <sup>2</sup>   | 2.79(4)   |
|     |                    |         |     |                    |           |
| C17 | H12B <sup>6</sup>  | 3.098   | C17 | H13A <sup>6</sup>  | 3.580     |
| C17 | H13C <sup>11</sup> | 3.181   | C17 | H18A <sup>12</sup> | 3.296     |
| C17 | H18C <sup>12</sup> | 2.972   | C17 | H20A <sup>13</sup> | 3.051     |
| C18 | H60 <sup>2</sup>   | 3.52(4) | C18 | H13B <sup>7</sup>  | 3.172     |
| C18 | H13C <sup>7</sup>  | 3.353   | C18 | H17A <sup>14</sup> | 3.299     |
| C18 | H17B <sup>14</sup> | 3.565   | C18 | H17C <sup>14</sup> | 3.060     |
| C18 | $H20A^4$           | 3.212   | C19 | H17B <sup>3</sup>  | 3.458     |
| C19 | H18A <sup>3</sup>  | 3.432   | C20 | H17B <sup>3</sup>  | 3.168     |
| C20 | H18B <sup>9</sup>  | 3.300   | C20 | H18C <sup>9</sup>  | 3.507     |
| C21 | H2 <sup>15</sup>   | 3.134   | C21 | H12C <sup>4</sup>  | 3.395     |
| H60 | O16 <sup>1</sup>   | 1.82(3) | H60 | C4 <sup>1</sup>    | 2.933(15) |

| atom | atom              | distance | atom | atom              | distance |
|------|-------------------|----------|------|-------------------|----------|
| H60  | C15 <sup>1</sup>  | 2.74(3)  | H6o  | C17 <sup>1</sup>  | 2.79(4)  |
|      |                   |          |      |                   |          |
| Нбо  | C18 <sup>1</sup>  | 3.52(4)  | Нбо  | $H4^1$            | 2.945    |
| Нбо  | $H12C^2$          | 3.567    | Нбо  | H13C <sup>2</sup> | 3.131    |
| H60  | $H17A^1$          | 2.809    | Н6о  | $H17C^1$          | 2.435    |
| H60  | H18C <sup>1</sup> | 3.245    | H60  | H21C <sup>5</sup> | 3.291    |
| H2   | $O5^1$            | 3.148    | H2   | O10 <sup>6</sup>  | 3.495    |
| H2   | O16 <sup>1</sup>  | 3.400    | H2   | C21 <sup>5</sup>  | 3.134    |
| H2   | $H4^1$            | 3.592    | H2   | H50 <sup>1</sup>  | 2.806    |
| H2   | H21A <sup>5</sup> | 3.325    | H2   | H21B <sup>5</sup> | 3.148    |
| H2   | H21C <sup>5</sup> | 2.472    | H3   | O10 <sup>6</sup>  | 2.986    |
| H3   | C9 <sup>6</sup>   | 3.589    | H3   | C13 <sup>6</sup>  | 3.580    |
| H3   | H12B <sup>6</sup> | 3.094    | H3   | H13A <sup>6</sup> | 2.825    |
| H3   | H21A <sup>5</sup> | 3.413    | H3   | H21B <sup>5</sup> | 3.518    |
| H4   | $O1^2$            | 3.492    | H4   | $O8^2$            | 3.310    |
| H4   | C12 <sup>2</sup>  | 3.321    | H4   | H60 <sup>2</sup>  | 2.945    |
| H4   | $H2^2$            | 3.592    | H4   | H12A <sup>2</sup> | 3.281    |
| H4   | $H12C^2$          | 2.622    | H4   | H21A <sup>5</sup> | 3.419    |
| H5   | $H20B^4$          | 3.380    | H5   | $H21C^4$          | 3.459    |
| H5o  | $O8^2$            | 2.01(4)  | H50  | $C2^2$            | 3.34(5)  |
|      |                   |          |      |                   |          |
| H5o  | $C7^2$            | 3.10(5)  | H5o  | C9 <sup>2</sup>   | 3.04(4)  |

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

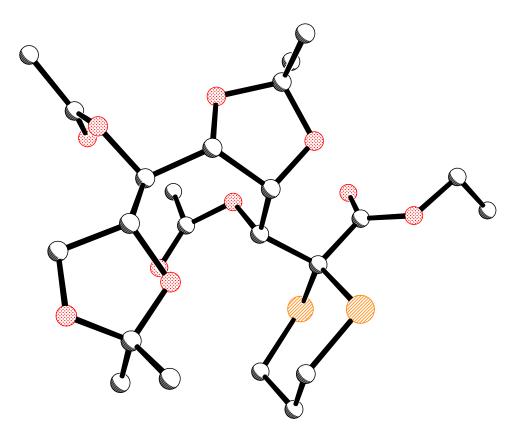
| H5o  | C12 <sup>2</sup>  | 3.51(3) | H50  | C13 <sup>2</sup>  | 3.35(4) |
|------|-------------------|---------|------|-------------------|---------|
| H5o  | H2 <sup>2</sup>   | 2.806   | H5o  | H7 <sup>2</sup>   | 3.413   |
| H5o  | H11A <sup>3</sup> | 3.322   | H50  | H12C <sup>2</sup> | 3.111   |
| H5o  | H13B <sup>2</sup> | 3.489   | Н5о  | H13C <sup>2</sup> | 2.959   |
| H5o  | H18A <sup>3</sup> | 3.596   | Н5о  | $H21C^4$          | 3.462   |
| H7   | O10 <sup>6</sup>  | 2.638   | H7   | C9 <sup>6</sup>   | 3.589   |
| H7   | C11 <sup>6</sup>  | 2.916   | H7   | C12 <sup>6</sup>  | 3.471   |
| H7   | H50 <sup>1</sup>  | 3.413   | H7   | H11A <sup>6</sup> | 3.137   |
| H7   | H11B <sup>6</sup> | 2.557   | H7   | H12A <sup>6</sup> | 3.276   |
| H7   | H12B <sup>6</sup> | 3.097   | H11A | O5 <sup>13</sup>  | 3.285   |
| H11A | H50 <sup>13</sup> | 3.322   | H11A | H7 <sup>7</sup>   | 3.137   |
| H11A | H21B <sup>6</sup> | 3.009   | H11B | $\mathbf{O8}^7$   | 3.545   |
| H11B | C7 <sup>7</sup>   | 3.418   | H11B | H7 <sup>7</sup>   | 2.557   |
| H11B | H13B <sup>7</sup> | 3.404   | H12A | $H4^1$            | 3.281   |
| H12A | H7 <sup>7</sup>   | 3.276   | H12A | H21A <sup>9</sup> | 3.418   |
| H12B | O14 <sup>7</sup>  | 3.439   | H12B | C17 <sup>7</sup>  | 3.098   |
| H12B | H3 <sup>7</sup>   | 3.094   | H12B | H7 <sup>7</sup>   | 3.097   |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| H12B | H17A <sup>7</sup>  | 2.673    | H12B | $H17B^7$           | 2.686    |
| H12B | H18C <sup>10</sup> | 3.485    | H12B | H20A <sup>9</sup>  | 3.378    |
| H12B | H21A <sup>9</sup>  | 3.352    | H12C | $O6^1$             | 3.029    |
| H12C | $C4^1$             | 3.574    | H12C | C21 <sup>9</sup>   | 3.395    |
| H12C | H60 <sup>1</sup>   | 3.567    | H12C | $H4^1$             | 2.622    |
| H12C | H50 <sup>1</sup>   | 3.111    | H12C | H18C <sup>10</sup> | 3.415    |
| H12C | H20A <sup>9</sup>  | 3.534    | H12C | H21A <sup>9</sup>  | 2.703    |
| H12C | H21C <sup>9</sup>  | 3.298    | H13A | O19 <sup>16</sup>  | 2.954    |
| H13A | C17 <sup>7</sup>   | 3.580    | H13A | H3 <sup>7</sup>    | 2.825    |
| H13A | H17A <sup>7</sup>  | 2.623    | H13A | H17C <sup>10</sup> | 3.080    |
| H13A | H18B <sup>6</sup>  | 3.535    | H13A | H18C <sup>10</sup> | 3.266    |
| H13A | H21B <sup>6</sup>  | 3.568    | H13B | C18 <sup>6</sup>   | 3.172    |
| H13B | H50 <sup>1</sup>   | 3.489    | H13B | H11B <sup>6</sup>  | 3.404    |
| H13B | H17C <sup>10</sup> | 3.355    | H13B | H18A <sup>6</sup>  | 2.909    |
| H13B | H18B <sup>6</sup>  | 2.557    | H13B | H21B <sup>6</sup>  | 3.169    |
| H13C | $O6^1$             | 2.903    | H13C | C17 <sup>10</sup>  | 3.181    |
| H13C | C18 <sup>6</sup>   | 3.353    | H13C | $H60^{1}$          | 3.131    |
| H13C | H50 <sup>1</sup>   | 2.959    | H13C | $H17B^{10}$        | 3.565    |
| H13C | H17C <sup>10</sup> | 2.211    | H13C | H18A <sup>6</sup>  | 2.786    |
| H13C | H18B <sup>6</sup>  | 3.096    | H13C | H18C <sup>10</sup> | 3.122    |
| H17A | $O6^2$             | 3.568    | H17A | O19 <sup>2</sup>   | 2.733    |
| H17A | C12 <sup>6</sup>   | 3.511    | H17A | C13 <sup>6</sup>   | 3.460    |
| H17A | C18 <sup>12</sup>  | 3.299    | H17A | H60 <sup>2</sup>   | 2.809    |
|      |                    |          |      |                    |          |

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

| H17A | H12B <sup>6</sup>  | 2.673 | H17A | H13A <sup>6</sup>  | 2.623 |
|------|--------------------|-------|------|--------------------|-------|
| H17A | H18A <sup>12</sup> | 3.108 | H17A | H18C <sup>12</sup> | 2.655 |
| H17A | H20A <sup>13</sup> | 3.421 | H17B | O19 <sup>13</sup>  | 3.054 |
| H17B | O20 <sup>13</sup>  | 3.529 | H17B | C18 <sup>12</sup>  | 3.565 |
| H17B | C19 <sup>13</sup>  | 3.458 | H17B | C20 <sup>13</sup>  | 3.168 |
| H17B | H12B <sup>6</sup>  | 2.686 | H17B | H13C <sup>11</sup> | 3.565 |
| H17B | H18B <sup>12</sup> | 3.594 | H17B | H18C <sup>12</sup> | 2.948 |
| H17B | H20A <sup>13</sup> | 2.246 | H17C | $O6^2$             | 2.930 |
| H17C | O19 <sup>2</sup>   | 3.259 | H17C | O19 <sup>13</sup>  | 3.575 |
| H17C | C13 <sup>11</sup>  | 3.002 | H17C | C18 <sup>12</sup>  | 3.060 |
| H17C | H60 <sup>2</sup>   | 2.435 | H17C | H13A <sup>11</sup> | 3.080 |
| H17C | H13B <sup>11</sup> | 3.355 | H17C | H13C <sup>11</sup> | 2.211 |
| H17C | H18A <sup>12</sup> | 2.705 | H17C | H18B <sup>12</sup> | 3.164 |
| H17C | H18C <sup>12</sup> | 2.812 | H17C | H20A <sup>13</sup> | 3.131 |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| H18A | O19 <sup>13</sup>  | 2.860    | H18A | C13 <sup>7</sup>   | 3.296    |
| H18A | C17 <sup>14</sup>  | 3.296    | H18A | C19 <sup>13</sup>  | 3.432    |
| H18A | H50 <sup>13</sup>  | 3.596    | H18A | H13B <sup>7</sup>  | 2.909    |
| H18A | H13C <sup>7</sup>  | 2.786    | H18A | H17A <sup>14</sup> | 3.108    |
| H18A | H17C <sup>14</sup> | 2.705    | H18B | C13 <sup>7</sup>   | 3.207    |
| H18B | $C20^4$            | 3.300    | H18B | H13A <sup>7</sup>  | 3.535    |
| H18B | H13B <sup>7</sup>  | 2.557    | H18B | H13C <sup>7</sup>  | 3.096    |
| H18B | H17B <sup>14</sup> | 3.594    | H18B | H17C <sup>14</sup> | 3.164    |
| H18B | $H20A^4$           | 2.791    | H18B | $H20B^4$           | 3.018    |
| H18B | H21C <sup>4</sup>  | 3.267    | H18C | O19 <sup>13</sup>  | 3.395    |
| H18C | C17 <sup>14</sup>  | 2.972    | H18C | $C20^4$            | 3.507    |
| H18C | H60 <sup>2</sup>   | 3.245    | H18C | H12B <sup>11</sup> | 3.485    |
| H18C | H12C <sup>11</sup> | 3.415    | H18C | H13A <sup>11</sup> | 3.266    |
| H18C | H13C <sup>11</sup> | 3.122    | H18C | H17A <sup>14</sup> | 2.655    |
| H18C | H17B <sup>14</sup> | 2.948    | H18C | H17C <sup>14</sup> | 2.812    |
| H18C | $H20A^4$           | 2.747    | H18C | H21C <sup>4</sup>  | 3.230    |
| H20A | C17 <sup>3</sup>   | 3.051    | H20A | C18 <sup>9</sup>   | 3.212    |
| H20A | $H12B^4$           | 3.378    | H20A | $H12C^4$           | 3.534    |
| H20A | H17A <sup>3</sup>  | 3.421    | H20A | H17B <sup>3</sup>  | 2.246    |
| H20A | H17C <sup>3</sup>  | 3.131    | H20A | H18B <sup>9</sup>  | 2.791    |
| H20A | H18C <sup>9</sup>  | 2.747    | H20B | H5 <sup>9</sup>    | 3.380    |
| H20B | H18B <sup>9</sup>  | 3.018    | H21A | C12 <sup>4</sup>   | 3.324    |
| H21A | H2 <sup>15</sup>   | 3.325    | H21A | H3 <sup>15</sup>   | 3.413    |
|      |                    |          |      |                    |          |


Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

| H21A | H4 <sup>15</sup>  | 3.419 | H21A | $H12A^4$          | 3.418 |
|------|-------------------|-------|------|-------------------|-------|
| H21A | H12B <sup>4</sup> | 3.352 | H21A | $H12C^4$          | 2.703 |
| H21B | O10 <sup>7</sup>  | 2.692 | H21B | C11 <sup>7</sup>  | 3.342 |
| H21B | H2 <sup>15</sup>  | 3.148 | H21B | H3 <sup>15</sup>  | 3.518 |
| H21B | H11A <sup>7</sup> | 3.009 | H21B | H13A <sup>7</sup> | 3.568 |
| H21B | H13B <sup>7</sup> | 3.169 | H21C | O5 <sup>9</sup>   | 3.033 |
| H21C | O6 <sup>15</sup>  | 3.359 | H21C | O16 <sup>9</sup>  | 3.175 |
| H21C | C2 <sup>15</sup>  | 3.443 | H21C | H60 <sup>15</sup> | 3.291 |
| H21C | H2 <sup>15</sup>  | 2.472 | H21C | H5 <sup>9</sup>   | 3.459 |
| H21C | H50 <sup>9</sup>  | 3.462 | H21C | $H12C^4$          | 3.298 |
| H21C | H18B <sup>9</sup> | 3.267 | H21C | H18C <sup>9</sup> | 3.230 |

Symmetry Operators:

| (1) $-X+2,Y+1/2,-Z+1/2+1$ | (2) $-X+2,Y+1/2-1,-Z+1/2+1$ |
|---------------------------|-----------------------------|
| (3) -X+1/2+1,-Y,Z+1/2     | (4) -X+1,Y+1/2-1,-Z+1/2+1   |
| (5) X+1,Y,Z               | (6) X+1/2,-Y+1/2,-Z+1       |
| (7) X+1/2-1,-Y+1/2,-Z+1   | (8) -X+1/2+1,-Y+1,Z+1/2     |
| (9) -X+1,Y+1/2,-Z+1/2+1   | (10) X,Y+1,Z                |
| (11) X,Y-1,Z              | (12) X+1/2,-Y+1/2-1,-Z+1    |
| (13) -X+1/2+1,-Y,Z+1/2-1  | (14) X+1/2-1,-Y+1/2-1,-Z+1  |
| (15) X-1,Y,Z              | (16) -X+1/2+1,-Y+1,Z+1/2-1  |

# X-ray Structure Report for compound 158



#### **Experimental**

#### Data Collection

A colorless prism crystal of  $C_{23}H_{36}O_{10}S_2$  having approximate dimensions of 0.200 x 0.200 x 0.180 mm was mounted in a loop. All measurements were made on a Rigaku Mercury70 diffractometer Mo-K $\alpha$  radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 10.505(3) Å b = 14.468(3) Å c = 17.268(4) Å V = 2624.6(9) Å<sup>3</sup>

For Z = 4 and F.W. = 536.65, the calculated density is  $1.358 \text{ g/cm}^3$ . The reflection conditions of:

h00: h = 2n0k0: k = 2n001: l = 2n

uniquely determine the space group to be:

P212121 (#19)

The data were collected at a temperature of  $-180 \pm 1^{\circ}$ C to a maximum 20 value of 50.7°.

#### Data Reduction

Of the 16354 reflections that were collected, 4769 were unique ( $R_{int} = 0.0734$ ); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).

The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 2.552 cm<sup>-1</sup>. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.658 to 0.955. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods<sup>2</sup> and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement<sup>3</sup> on F<sup>2</sup> was based on 4769 observed reflections and 316 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0435$ 

wR2 = 
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1340$$

The standard deviation of an observation of unit weight<sup>4</sup> was 1.11. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.42 and -0.63 e<sup>-</sup>/Å<sup>3</sup>, respectively. The absolute structure was deduced based on Flack parameter, 0.04(8), using 2064 Friedel pairs.<sup>5</sup>

Neutral atom scattering factors were taken from Cromer and Waber<sup>6</sup>. Anomalous dispersion effects were included in Fcalc<sup>7</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>8</sup>. The values for the mass attenuation coefficients are those of Creagh and Hubbell<sup>9</sup>. All calculations were performed using the CrystalStructure<sup>10</sup> crystallographic software package except for refinement, which was performed using SHELXL-97<sup>11</sup>.

#### References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) <u>SIR2004</u>: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna (2005)

(3) Least Squares function minimized: (SHELXL97)

 $\Sigma w (F_0^2 - F_c^2)^2$  where w = Least Squares weights.

(4) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where:  $N_0$  = number of observations

 $N_V$  = number of variables

(5) Flack, H. D. (1983), Acta Cryst. A39, 876-881.

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(10) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(11) SHELX97: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

### EXPERIMENTAL DETAILS

A. Crystal Data

| Empirical Formula    | C <sub>23</sub> H <sub>36</sub> O <sub>10</sub> S <sub>2</sub>                        |
|----------------------|---------------------------------------------------------------------------------------|
| Formula Weight       | 536.65                                                                                |
| Crystal Color, Habit | colorless, prism                                                                      |
| Crystal Dimensions   | 0.200 X 0.200 X 0.180 mm                                                              |
| Crystal System       | orthorhombic                                                                          |
| Lattice Type         | Primitive                                                                             |
| Lattice Parameters   | a = 10.505(3) Å<br>b = 14.468(3) Å<br>c = 17.268(4) Å<br>V = 2624.6(9) Å <sup>3</sup> |
| Space Group          | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (#19)                                   |

| Z value           | 4                       |
|-------------------|-------------------------|
| D <sub>calc</sub> | 1.358 g/cm <sup>3</sup> |
| F000              | 1144.00                 |
| μ(ΜοΚα)           | 2.552 cm <sup>-1</sup>  |

### B. Intensity Measurements

| Diffractometer              | Mercury70                                                                       |
|-----------------------------|---------------------------------------------------------------------------------|
| Radiation                   | ΜοΚα (λ = 0.71075 Å)                                                            |
| Voltage, Current            | 50kV, 16mA                                                                      |
| Temperature                 | -180.0°C                                                                        |
| Detector Aperture           | 70 x 70 mm                                                                      |
| Pixel Size                  | 0.068 mm                                                                        |
| 20 <sub>max</sub>           | 50.7 <sup>0</sup>                                                               |
| No. of Reflections Measured | Total: 16354<br>Unique: 4769 (R <sub>int</sub> = 0.0734)<br>Friedel pairs: 2064 |
| Corrections                 | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.658 - 0.955)           |

### C. Structure Solution and Refinement

| Structure Solution                 | Direct Methods                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                         | Full-matrix least-squares on F <sup>2</sup>                                                                                          |
| Function Minimized                 | $\Sigma \le (Fo^2 - Fc^2)^2$                                                                                                         |
| Least Squares Weights              | w = 1/ [ $\sigma^2(Fo^2)$ + (0.0837 · P) <sup>2</sup><br>+ 0.2810 · P ]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| 2θ <sub>max</sub> cutoff           | 50.7 <sup>0</sup>                                                                                                                    |
| Anomalous Dispersion               | All non-hydrogen atoms                                                                                                               |
| No. Observations (All reflections) | 4769                                                                                                                                 |
| No. Variables                      | 316                                                                                                                                  |
| Reflection/Parameter Ratio         | 15.09                                                                                                                                |
| Residuals: R1 (I>2.00σ(I))         | 0.0435                                                                                                                               |

| Residuals: R (All reflections)         | 0.0482                               |
|----------------------------------------|--------------------------------------|
| Residuals: wR2 (All reflections)       | 0.1340                               |
| Goodness of Fit Indicator              | 1.110                                |
| Flack Parameter (Friedel pairs = 2064) | 0.04(8)                              |
| Max Shift/Error in Final Cycle         | 0.002                                |
| Maximum peak in Final Diff. Map        | 0.42 e <sup>-</sup> /Å <sup>3</sup>  |
| Minimum peak in Final Diff. Map        | -0.63 e <sup>-</sup> /Å <sup>3</sup> |

| atom | X          | У           | Z           | Beq     |
|------|------------|-------------|-------------|---------|
| S20  | 0.49355(7) | 0.98225(5)  | 0.79422(4)  | 1.43(2) |
| S24  | 0.57206(7) | 0.80565(5)  | 0.87725(4)  | 1.46(2) |
| 01   | -0.0725(2) | 0.76218(13) | 0.79921(10) | 1.37(4) |
| O5   | 0.3253(2)  | 0.72887(13) | 0.80835(9)  | 1.25(4) |
| O6   | 0.0188(3)  | 0.6328(2)   | 0.84776(12) | 2.21(4) |
| 08   | 0.1064(2)  | 0.9539(2)   | 0.87881(11) | 1.70(4) |
| O10  | -0.0630(2) | 0.9843(2)   | 0.95888(11) | 1.80(4) |
| O14  | 0.1181(2)  | 0.74709(13) | 0.69612(10) | 1.31(4) |
| O16  | 0.2966(2)  | 0.8310(2)   | 0.66748(10) | 1.45(4) |
| O25  | 0.5574(2)  | 0.73224(13) | 0.71848(11) | 1.71(4) |
| O26  | 0.5744(2)  | 0.87864(13) | 0.67513(10) | 1.51(4) |
| O29  | 0.2753(2)  | 0.7287(2)   | 0.93588(10) | 1.54(4) |
| C2   | 0.0417(3)  | 0.8144(2)   | 0.8158(2)   | 1.18(5) |
| C3   | 0.1111(3)  | 0.8308(2)   | 0.7393(2)   | 1.08(5) |
| C4   | 0.2504(3)  | 0.8639(2)   | 0.7411(2)   | 1.24(5) |
| C5   | 0.3338(3)  | 0.8278(2)   | 0.8067(2)   | 1.15(5) |
| C6   | -0.0693(3) | 0.6701(2)   | 0.8168(2)   | 1.50(5) |
| C7   | -0.0034(3) | 0.9047(2)   | 0.8508(2)   | 1.49(5) |
| C9   | 0.0690(3)  | 1.0025(2)   | 0.9487(2)   | 1.55(5) |
| C11  | -0.0867(3) | 0.8972(2)   | 0.9220(2)   | 1.89(6) |
| C12  | 0.1444(3)  | 0.9656(3)   | 1.0167(2)   | 2.08(6) |
| C13  | 0.0874(3)  | 1.1048(2)   | 0.9352(2)   | 1.84(5) |
| C15  | 0.2087(3)  | 0.7647(2)   | 0.6359(2)   | 1.39(5) |

| Table 1. Atomic coordinates and $B_{iso}/B_{eq}$ |  |
|--------------------------------------------------|--|
|                                                  |  |

| C17 | 0.1439(3)  | 0.8087(3) | 0.5658(2) | 1.78(6) |
|-----|------------|-----------|-----------|---------|
| C18 | 0.2769(3)  | 0.6757(2) | 0.6177(2) | 1.87(5) |
| C19 | 0.4768(3)  | 0.8561(2) | 0.7990(2) | 1.33(5) |
| C21 | 0.4472(3)  | 1.0157(2) | 0.8912(2) | 1.68(5) |
| C22 | 0.5312(4)  | 0.9748(3) | 0.9546(2) | 2.01(6) |
| C23 | 0.5173(3)  | 0.8699(2) | 0.9615(2) | 1.81(5) |
| C25 | 0.5390(3)  | 0.8138(2) | 0.7259(2) | 1.40(5) |
| C26 | 0.6426(3)  | 0.8457(2) | 0.6075(2) | 1.63(5) |
| C27 | 0.7832(3)  | 0.8377(3) | 0.6233(2) | 2.21(6) |
| C28 | -0.1898(4) | 0.6235(2) | 0.7926(2) | 2.14(6) |
| C29 | 0.3024(3)  | 0.6871(2) | 0.8771(2) | 1.41(5) |
| C30 | 0.3130(3)  | 0.5849(2) | 0.8683(2) | 1.89(5) |

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$ 

| atom | Х       | У      | Z      | Biso |
|------|---------|--------|--------|------|
| H2   | 0.0974  | 0.7802 | 0.8530 | 1.42 |
| H3   | 0.0606  | 0.8764 | 0.7085 | 1.29 |
| H4   | 0.2522  | 0.9330 | 0.7415 | 1.49 |
| H5   | 0.3004  | 0.8525 | 0.8568 | 1.38 |
| H7   | -0.0476 | 0.9424 | 0.8103 | 1.79 |
| H11A | -0.1776 | 0.8902 | 0.9079 | 2.27 |
| H11B | -0.0606 | 0.8448 | 0.9553 | 2.27 |
| H12A | 0.1317  | 0.8987 | 1.0208 | 2.50 |
| H12B | 0.1154  | 0.9956 | 1.0644 | 2.50 |
| H12C | 0.2350  | 0.9787 | 1.0088 | 2.50 |
| H13A | 0.0553  | 1.1393 | 0.9799 | 2.21 |
| H13B | 0.0408  | 1.1235 | 0.8886 | 2.21 |
| H13C | 0.1782  | 1.1179 | 0.9283 | 2.21 |
| H17A | 0.1052  | 0.8676 | 0.5812 | 2.13 |
| H17B | 0.0778  | 0.7671 | 0.5463 | 2.13 |
| H17C | 0.2072  | 0.8197 | 0.5252 | 2.13 |
| H18A | 0.2150  | 0.6291 | 0.6010 | 2.24 |
| H18B | 0.3213  | 0.6538 | 0.6641 | 2.24 |
| H18C | 0.3388  | 0.6864 | 0.5762 | 2.24 |
| H21A | 0.4499  | 1.0839 | 0.8951 | 2.02 |
| H21B | 0.3582  | 0.9959 | 0.9002 | 2.02 |
| H22A | 0.5085  | 1.0036 | 1.0048 | 2.41 |
| H22B | 0.6212  | 0.9900 | 0.9435 | 2.41 |

Table 2. Atomic coordinates and  $B_{\mbox{iso}}$  involving hydrogen atoms

| H23A | 0.4265  | 0.8551 | 0.9706 | 2.17 |
|------|---------|--------|--------|------|
| H23B | 0.5657  | 0.8488 | 1.0074 | 2.17 |
| H26A | 0.6287  | 0.8889 | 0.5639 | 1.96 |
| H26B | 0.6088  | 0.7845 | 0.5922 | 1.96 |
| H27A | 0.7973  | 0.7941 | 0.6659 | 2.65 |
| H27B | 0.8171  | 0.8985 | 0.6377 | 2.65 |
| H27C | 0.8267  | 0.8155 | 0.5767 | 2.65 |
| H28A | -0.2317 | 0.5970 | 0.8381 | 2.57 |
| H28B | -0.1703 | 0.5743 | 0.7555 | 2.57 |
| H28C | -0.2465 | 0.6688 | 0.7682 | 2.57 |
| H30A | 0.2311  | 0.5561 | 0.8809 | 2.27 |
| H30B | 0.3787  | 0.5615 | 0.9035 | 2.27 |
| H30C | 0.3362  | 0.5700 | 0.8148 | 2.27 |

 Table 3. Anisotropic displacement parameters

| atom             | U11                     | U22        | U33        | U <sub>12</sub> | U13         | U23 |
|------------------|-------------------------|------------|------------|-----------------|-------------|-----|
| S20<br>0.0019(3) | 0.0181(4)               | 0.0147(4)  | 0.0214(4)  | -0.0026(3)      | 0.0024(3)   | -   |
| S24<br>0.0006(3) | 0.0158(4)               | 0.0211(4)  | 0.0187(4)  | 0.0015(3)       | -0.0028(3)  | -   |
| 01               | 0.0140(10)<br>0.0007(8) | 0.0167(10) | 0.0213(9)  | -0.0037(8)      | -0.0005(9)  |     |
| O5<br>0.0002(7)  | 0.0185(10)              | 0.0143(10) | 0.0148(9)  | 0.0003(8)       | 0.0003(9)   | -   |
| O6               | 0.0277(13)<br>0.0038(9) | 0.0229(11) | 0.0333(11) | -0.0010(10)     | -0.0077(11) |     |
| O8<br>0.0107(8)  | 0.0176(11)              | 0.0208(10) | 0.0262(10) | -0.0047(9)      | 0.0063(9)   | -   |
| O10<br>0.0103(9) | 0.0163(10)              | 0.0259(11) | 0.0262(10) | -0.0025(10)     | 0.0049(9)   | -   |
| O14<br>0.0017(8) | 0.0176(10)              | 0.0186(11) | 0.0134(8)  | -0.0040(8)      | 0.0032(8)   | -   |
| O16<br>0.0021(8) | 0.0148(10)              | 0.0222(11) | 0.0180(9)  | -0.0039(9)      | 0.0010(8)   | -   |
| O25<br>0.0045(8) | 0.0231(11)              | 0.0163(11) | 0.0256(10) | 0.0027(9)       | 0.0047(9)   | -   |
| O26              | 0.0204(11)<br>0.0012(8) | 0.0184(10) | 0.0187(9)  | -0.0018(9)      | 0.0051(9)   |     |
| O29              | 0.0214(11)<br>0.0006(8) | 0.0226(11) | 0.0145(9)  | 0.0012(9)       | 0.0009(9)   |     |
| C2<br>0.0004(10) | 0.0110(13)              | 0.020(2)   | 0.0136(12) | -0.0022(11)     | -0.0025(10) | -   |
| C3<br>0.0025(10) | 0.016(2)<br>)           | 0.0111(13) | 0.0135(11) | 0.0005(11)      | -0.0008(11) | -   |

| C4                | 0.018(2)<br>0.0004(10)   | 0.0125(13) | 0.0166(12) | -0.0008(12) | 0.0015(12)  |   |
|-------------------|--------------------------|------------|------------|-------------|-------------|---|
| C5                | 0.0153(13)<br>0.0009(10) | 0.0119(13) | 0.0166(12) | -0.0031(11) | -0.0006(12) |   |
| C6<br>0.0033(11)  | 0.023(2)<br>)            | 0.021(2)   | 0.0128(12) | 0.0000(13)  | 0.0003(13)  | - |
| C7<br>0.0028(11)  |                          | 0.0169(13) | 0.025(2)   | -0.0018(12) | 0.0010(13)  | - |
| C9<br>0.0035(11)  | . ,                      | 0.024(2)   | 0.0179(13) | -0.0014(13) | 0.0064(12)  | - |
| C11<br>0.0080(13) | 0.017(2)<br>)            | 0.028(2)   | 0.027(2)   | -0.002(2)   | 0.0058(13)  | - |
| C12               | 0.024(2)<br>0.0040(13)   | 0.035(2)   | 0.0203(13) | 0.002(2)    | 0.0031(13)  |   |
| C13<br>0.0053(12) | 0.021(2)                 | 0.023(2)   | 0.025(2)   | 0.0006(13)  | 0.000(2)    | - |
| C15<br>0.0015(11) |                          | 0.020(2)   | 0.0167(12) | -0.0042(12) | 0.0021(12)  | - |
| C17               | 0.026(2)<br>0.0010(12)   | 0.028(2)   | 0.0129(12) | -0.004(2)   | -0.0019(12) |   |
| C18<br>0.0069(12) | 0.022(2)                 | 0.025(2)   | 0.024(2)   | 0.0006(13)  | 0.0047(13)  | - |
| C19               | 0.0135(13)<br>0.0009(11) | 0.017(2)   | 0.0202(12) | 0.0005(12)  | 0.0026(12)  |   |
| C21<br>0.0033(12) | 0.021(2)                 | 0.021(2)   | 0.0222(13) | -0.0008(13) | 0.0018(12)  | - |
| C22<br>0.0059(12) |                          | 0.026(2)   | 0.024(2)   | -0.001(2)   | 0.0019(13)  | - |
| C23<br>0.0053(12) | 0.021(2)                 | 0.026(2)   | 0.0219(13) | -0.000(2)   | -0.0029(13) | - |
| C25<br>0.0000(12  | 0.012(2)                 | 0.022(2)   | 0.0193(13) | -0.0027(12) | 0.0005(11)  | - |
| C26<br>0.0007(12) |                          | 0.024(2)   | 0.0151(12) | -0.0000(13) | -0.0018(12) | - |

| C27<br>0.0005(13) | 0.026(2)                 | 0.034(2) | 0.024(2) | 0.007(2)    | 0.009(2)    | - |
|-------------------|--------------------------|----------|----------|-------------|-------------|---|
| C28<br>0.0017(12) | 0.029(2)                 | 0.022(2) | 0.031(2) | -0.005(2)   | -0.003(2)   | - |
| C29               | 0.0102(13)<br>0.0057(12) | 0.024(2) | 0.020(2) | -0.0009(12) | -0.0027(11) |   |
| C30               | 0.031(2)<br>0.0071(12)   | 0.017(2) | 0.023(2) | -0.001(2)   | 0.002(2)    |   |

The general temperature factor expression:  $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$ 

Table 4. Bond lengths (Å)

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| S20  | C19  | 1.835(3) | S20  | C21  | 1.810(3) |
| S24  | C19  | 1.834(3) | S24  | C23  | 1.820(3) |
| 01   | C2   | 1.447(4) | 01   | C6   | 1.367(4) |
| O5   | C5   | 1.434(4) | O5   | C29  | 1.354(3) |
| O6   | C6   | 1.198(4) | 08   | C7   | 1.439(4) |
| O8   | C9   | 1.451(4) | O10  | C9   | 1.422(4) |
| O10  | C11  | 1.433(4) | O14  | C3   | 1.424(4) |
| O14  | C15  | 1.433(4) | O16  | C4   | 1.442(3) |
| 016  | C15  | 1.439(4) | O25  | C25  | 1.202(4) |
| O26  | C25  | 1.337(4) | O26  | C26  | 1.451(4) |
| O29  | C29  | 1.214(4) | C2   | C3   | 1.527(4) |
| C2   | C7   | 1.516(4) | C3   | C4   | 1.541(4) |
| C4   | C5   | 1.524(4) | C5   | C19  | 1.563(4) |
| C6   | C28  | 1.493(5) | C7   | C11  | 1.513(4) |

| C9  | C12 | 1.513(4) | С9  | C13 | 1.511(5) |
|-----|-----|----------|-----|-----|----------|
| C15 | C17 | 1.526(4) | C15 | C18 | 1.507(4) |
| C19 | C25 | 1.547(4) | C21 | C22 | 1.525(5) |
| C22 | C23 | 1.529(5) | C26 | C27 | 1.506(5) |
| C29 | C30 | 1.490(5) |     |     |          |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| C2   | H2   | 1.000    | C3   | H3   | 1.000    |
| C4   | H4   | 1.000    | C5   | Н5   | 1.000    |
| C7   | H7   | 1.000    | C11  | H11A | 0.990    |
| C11  | H11B | 0.990    | C12  | H12A | 0.980    |
| C12  | H12B | 0.980    | C12  | H12C | 0.980    |
| C13  | H13A | 0.980    | C13  | H13B | 0.980    |
| C13  | H13C | 0.980    | C17  | H17A | 0.980    |
| C17  | H17B | 0.980    | C17  | H17C | 0.980    |
| C18  | H18A | 0.980    | C18  | H18B | 0.980    |
| C18  | H18C | 0.980    | C21  | H21A | 0.990    |
| C21  | H21B | 0.990    | C22  | H22A | 0.990    |
| C22  | H22B | 0.990    | C23  | H23A | 0.990    |
| C23  | H23B | 0.990    | C26  | H26A | 0.990    |
| C26  | H26B | 0.990    | C27  | H27A | 0.980    |
| C27  | H27B | 0.980    | C27  | H27C | 0.980    |
| C28  | H28A | 0.980    | C28  | H28B | 0.980    |
| C28  | H28C | 0.980    | C30  | H30A | 0.980    |
| C30  | H30B | 0.980    | C30  | H30C | 0.980    |

Table 5. Bond lengths involving hydrogens (Å)

| Table 6. Bond angles | ; (O) |
|----------------------|-------|
|----------------------|-------|

| atom | atom            | atom      | angle      | atom | atom | atom | angle    |
|------|-----------------|-----------|------------|------|------|------|----------|
| C19  | S20<br>102.30(1 | C21<br>4) | 101.45(13) | C19  | S24  | C23  |          |
| C2   | 01              | C6        | 116.4(3)   | C5   | 05   | C29  | 118.3(2) |
| C7   | 08              | C9        | 107.6(2)   | C9   | O10  | C11  | 106.1(3) |
| C3   | O14             | C15       | 105.3(2)   | C4   | 016  | C15  | 109.8(2) |
| C25  | O26             | C26       | 115.8(3)   | 01   | C2   | C3   | 107.8(2) |
| 01   | C2              | C7        | 105.6(3)   | C3   | C2   | C7   | 111.1(3) |
| O14  | C3              | C2        | 110.2(2)   | O14  | C3   | C4   | 103.0(2) |
| C2   | C3              | C4        | 119.0(2)   | 016  | C4   | C3   | 101.5(2) |
| O16  | C4              | C5        | 110.4(3)   | C3   | C4   | C5   | 117.1(3) |
| 05   | C5              | C4        | 108.7(2)   | O5   | C5   | C19  | 108.9(3) |
| C4   | C5              | C19       | 113.5(3)   | 01   | C6   | O6   | 123.9(3) |
| 01   | C6              | C28       | 110.9(3)   | O6   | C6   | C28  | 125.2(3) |
| 08   | C7              | C2        | 108.0(3)   | O8   | C7   | C11  | 103.0(3) |
| C2   | C7              | C11       | 116.3(3)   | O8   | C9   | O10  | 106.1(3) |
| 08   | C9              | C12       | 109.4(3)   | O8   | C9   | C13  | 108.1(3) |
| O10  | C9              | C12       | 110.5(3)   | O10  | C9   | C13  | 109.0(3) |
| C12  | C9              | C13       | 113.5(3)   | O10  | C11  | C7   | 101.4(3) |
| O14  | C15             | 016       | 105.6(2)   | O14  | C15  | C17  | 110.7(3) |
| O14  | C15             | C18       | 108.3(3)   | 016  | C15  | C17  | 108.0(3) |
| O16  | C15             | C18       | 110.1(3)   | C17  | C15  | C18  | 113.8(3) |
| S20  | C19<br>110.93(1 | S24<br>9) | 112.13(15) | S20  | C19  | C5   |          |

| S20 | C19<br>110.90(1 | C25<br>8) | 108.49(19) | S24 | C19 | C5  |          |
|-----|-----------------|-----------|------------|-----|-----|-----|----------|
| S24 | C19             | C25       | 102.27(18) | C5  | C19 | C25 | 111.8(3) |
| S20 | C21             | C22       | 113.9(2)   | C21 | C22 | C23 | 112.7(3) |
| S24 | C23             | C22       | 114.5(2)   | O25 | C25 | O26 | 125.0(3) |
| O25 | C25             | C19       | 123.0(3)   | O26 | C25 | C19 | 112.0(3) |
| O26 | C26             | C27       | 111.3(3)   | 05  | C29 | O29 | 123.6(3) |
| 05  | C29             | C30       | 109.9(3)   | O29 | C29 | C30 | 126.5(3) |

| atom | atom | atom | angle | atom | atom | atom | angle |
|------|------|------|-------|------|------|------|-------|
| O1   | C2   | H2   | 110.7 | C3   | C2   | H2   | 110.7 |
| C7   | C2   | H2   | 110.7 | O14  | C3   | H3   | 108.1 |
| C2   | C3   | H3   | 108.0 | C4   | C3   | H3   | 108.1 |
| O16  | C4   | H4   | 109.2 | C3   | C4   | H4   | 109.2 |
| C5   | C4   | H4   | 109.1 | O5   | C5   | H5   | 108.5 |
| C4   | C5   | H5   | 108.5 | C19  | C5   | H5   | 108.5 |
| 08   | C7   | H7   | 109.7 | C2   | C7   | H7   | 109.7 |
| C11  | C7   | H7   | 109.7 | O10  | C11  | H11A | 111.5 |
| O10  | C11  | H11B | 111.5 | C7   | C11  | H11A | 111.5 |
| C7   | C11  | H11B | 111.5 | H11A | C11  | H11B | 109.3 |
| C9   | C12  | H12A | 109.5 | C9   | C12  | H12B | 109.5 |
| C9   | C12  | H12C | 109.5 | H12A | C12  | H12B | 109.5 |
| H12A | C12  | H12C | 109.5 | H12B | C12  | H12C | 109.5 |
| C9   | C13  | H13A | 109.5 | C9   | C13  | H13B | 109.5 |
| C9   | C13  | H13C | 109.5 | H13A | C13  | H13B | 109.5 |
| H13A | C13  | H13C | 109.5 | H13B | C13  | H13C | 109.5 |
| C15  | C17  | H17A | 109.5 | C15  | C17  | H17B | 109.5 |
| C15  | C17  | H17C | 109.5 | H17A | C17  | H17B | 109.5 |
| H17A | C17  | H17C | 109.5 | H17B | C17  | H17C | 109.5 |
| C15  | C18  | H18A | 109.5 | C15  | C18  | H18B | 109.5 |
| C15  | C18  | H18C | 109.5 | H18A | C18  | H18B | 109.5 |
| H18A | C18  | H18C | 109.5 | H18B | C18  | H18C | 109.5 |
| S20  | C21  | H21A | 108.8 | S20  | C21  | H21B | 108.8 |
|      |      |      |       |      |      |      |       |

| Table 7. Bond angle | s involving | hydrogens | (0) |
|---------------------|-------------|-----------|-----|
|---------------------|-------------|-----------|-----|

| C22  | C21 | H21A | 108.8 | C22  | C21 | H21B | 108.8 |
|------|-----|------|-------|------|-----|------|-------|
| H21A | C21 | H21B | 107.7 | C21  | C22 | H22A | 109.1 |
| C21  | C22 | H22B | 109.1 | C23  | C22 | H22A | 109.1 |
| C23  | C22 | H22B | 109.1 | H22A | C22 | H22B | 107.8 |
| S24  | C23 | H23A | 108.6 | S24  | C23 | H23B | 108.6 |
| C22  | C23 | H23A | 108.6 | C22  | C23 | H23B | 108.6 |
| H23A | C23 | H23B | 107.6 | O26  | C26 | H26A | 109.4 |
| O26  | C26 | H26B | 109.4 | C27  | C26 | H26A | 109.4 |
| C27  | C26 | H26B | 109.4 | H26A | C26 | H26B | 108.0 |
| C26  | C27 | H27A | 109.5 | C26  | C27 | H27B | 109.5 |
| C26  | C27 | H27C | 109.5 | H27A | C27 | H27B | 109.5 |
| H27A | C27 | H27C | 109.5 | H27B | C27 | H27C | 109.5 |
| C6   | C28 | H28A | 109.5 | C6   | C28 | H28B | 109.5 |
| C6   | C28 | H28C | 109.5 | H28A | C28 | H28B | 109.5 |

| atom | atom | atom | angle | atom | atom | atom | angle |
|------|------|------|-------|------|------|------|-------|
| H28A | C28  | H28C | 109.5 | H28B | C28  | H28C | 109.5 |
| C29  | C30  | H30A | 109.5 | C29  | C30  | H30B | 109.5 |
| C29  | C30  | H30C | 109.5 | H30A | C30  | H30B | 109.5 |
| H30A | C30  | H30C | 109.5 | H30B | C30  | H30C | 109.5 |

Table 7. Bond angles involving hydrogens (<sup>0</sup>) (continued)

## Table 8. Torsion Angles(<sup>0</sup>)

(Those having bond angles > 160 or < 20 degrees are excluded.)

| atom1          | atom2         | atom3       | atom4 | angle       | atom1 | atom2 | atom3 | atom4 | angle     |
|----------------|---------------|-------------|-------|-------------|-------|-------|-------|-------|-----------|
| C19<br>56.30(1 | S20<br>17)    | C21         | C22   | 60.4(2)     | C21   | S20   | C19   | S24   | -         |
| C21<br>168.51  | S20<br>(16)   | C19         | C5    | 68.31(18)   | C21   | S20   | C19   | C25   | -         |
| C19            | S24           | C23         | C22   | -56.6(3)    | C23   | S24   | C19   | S20   | 54.75(18) |
| C23            | S24<br>170.78 | C19<br>(15) | C5    | -69.86(18)  | C23   | S24   | C19   | C25   |           |
| C2<br>176.66   | O1<br>(17)    | C6          | 06    | 3.7(4)      | C2    | 01    | C6    | C28   | -         |
| C6<br>137.91   | O1<br>(19)    | C2          | C3    | 103.3(3)    | C6    | 01    | C2    | C7    | -         |
| C5<br>173.02   | O5<br>(19)    | C29         | O29   | 8.1(4)      | C5    | 05    | C29   | C30   | -         |
| C29            | O5            | C5          | C4    | -131.3(2)   | C29   | O5    | C5    | C19   | 104.6(3)  |
| C7             | O8            | C9          | O10   | -2.3(3)     | C7    | O8    | C9    | C12   | 116.9(3)  |
| C7             | 08            | C9          | C13   | -119.1(2)   | C9    | 08    | C7    | C2    | -144.8(2) |
| C9             | <b>O</b> 8    | C7          | C11   | -21.1(3)    | C9    | O10   | C11   | C7    | -39.0(3)  |
| C11            | O10           | C9          | O8    | 26.6(3)     | C11   | O10   | C9    | C12   | -91.9(3)  |
| C11            | O10           | C9          | C13   | 142.84(19)  | C3    | O14   | C15   | O16   | 30.2(3)   |
| C3             | O14<br>148.11 | C15<br>(18) | C17   | -86.4(3)    | C3    | 014   | C15   | C18   |           |
| C15            | O14           | C3          | C2    | -166.89(18) | C15   | O14   | C3    | C4    | -39.0(3)  |
| C4             | O16           | C15         | O14   | -8.4(3)     | C4    | O16   | C15   | C17   | 110.1(2)  |
| C4             | O16           | C15         | C18   | -125.2(2)   | C15   | O16   | C4    | C3    | -14.6(3)  |
| C15            | O16           | C4          | C5    | 110.2(3)    | C25   | O26   | C26   | C27   | -86.0(3)  |

| C26           | O26<br>175.37 | C25<br>7(19) | O25 | -1.5(4)     | C26 | O26 | C25 | C19 |          |
|---------------|---------------|--------------|-----|-------------|-----|-----|-----|-----|----------|
| O1<br>165.51  | C2<br>(19)    | C3           | O14 | -46.9(3)    | 01  | C2  | C3  | C4  | -        |
| 01            | C2            | C7           | O8  | 171.74(18)  | 01  | C2  | C7  | C11 | 56.6(3)  |
| C3            | C2            | C7           | O8  | -71.6(3)    | C3  | C2  | C7  | C11 | 173.2(2) |
| C7            | C2            | C3           | O14 | -162.2(2)   | C7  | C2  | C3  | C4  | 79.2(3)  |
| O14           | C3            | C4           | O16 | 32.5(3)     | O14 | C3  | C4  | C5  | -87.7(3) |
| C2            | C3            | C4           | O16 | 154.8(2)    | C2  | C3  | C4  | C5  | 34.5(4)  |
| 016           | C4            | C5           | O5  | -63.0(3)    | 016 | C4  | C5  | C19 | 58.3(3)  |
| C3            | C4<br>173.72  | C5<br>2(19)  | 05  | 52.4(3)     | C3  | C4  | C5  | C19 |          |
| 05            | C5            | C19          | S20 | 178.64(16)  | O5  | C5  | C19 | S24 | -56.1(3) |
| 05            | C5            | C19          | C25 | 57.4(3)     | C4  | C5  | C19 | S20 | 57.4(3)  |
| C4            | C5            | C19          | S24 | -177.28(18) | C4  | C5  | C19 | C25 | -63.8(3) |
| 08            | C7            | C11          | O10 | 36.5(3)     | C2  | C7  | C11 | O10 | 154.4(3) |
| S20           | C19           | C25          | O25 | 169.7(2)    | S20 | C19 | C25 | O26 | -7.3(3)  |
| S24<br>125.95 | C19<br>(18)   | C25          | O25 | 51.0(3)     | S24 | C19 | C25 | O26 | -        |
| C5            | C19           | C25          | O25 | -67.7(3)    | C5  | C19 | C25 | O26 | 115.3(3) |
| S20           | C21           | C22          | C23 | -67.4(3)    | C21 | C22 | C23 | S24 | 65.1(3)  |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| S20  | O26  | 2.683(2) | S20  | C4   | 3.209(3) |
| S20  | C23  | 3.324(3) | S24  | 05   | 3.061(2) |
| S24  | O25  | 2.944(2) | S24  | O29  | 3.461(3) |
| S24  | C21  | 3.318(4) | S24  | C29  | 3.312(3) |
| 01   | O14  | 2.689(3) | 01   | C11  | 2.887(4) |
| 05   | O6   | 3.573(3) | 05   | O14  | 2.926(3) |
| O5   | O16  | 2.862(3) | O5   | O25  | 2.891(3) |
| 05   | C2   | 3.228(4) | O5   | C3   | 2.943(4) |
| O5   | C15  | 3.262(4) | O5   | C18  | 3.419(4) |
| 05   | C25  | 2.928(4) | O6   | O14  | 3.268(3) |
| O6   | O29  | 3.392(3) | O6   | C2   | 2.695(4) |
| O6   | C3   | 3.557(4) | O6   | C29  | 3.122(4) |
| 06   | C30  | 3.187(4) | 08   | C3   | 2.996(4) |
| 08   | C4   | 3.104(4) | O8   | C5   | 3.254(4) |

|                                                | 0             |
|------------------------------------------------|---------------|
| Table 9. Intramolecular contacts less than 3.0 | 50 Å          |
| Tuble 31 Indunioiceului contucto iess than 31  | <b>JO I I</b> |

| O14 | C5  | 3.185(4) | O14 | C6  | 3.076(4) |
|-----|-----|----------|-----|-----|----------|
| O16 | O25 | 3.213(3) | O16 | O26 | 3.001(3) |
| O16 | C19 | 2.978(4) | O16 | C25 | 2.750(4) |
| O25 | C5  | 3.122(4) | O25 | C18 | 3.519(4) |
| O25 | C26 | 2.678(4) | O25 | C27 | 3.264(4) |
| O26 | C4  | 3.595(4) | O26 | C5  | 3.477(4) |
| O29 | C2  | 3.444(4) | O29 | C5  | 2.721(4) |
| 029 | C23 | 3.291(4) | C2  | C5  | 3.079(4) |
| C2  | С9  | 3.572(4) | C2  | C29 | 3.466(4) |
| C3  | C6  | 3.284(4) | C3  | C17 | 3.032(4) |
| C3  | C18 | 3.533(4) | C4  | C7  | 3.323(4) |
| C4  | C17 | 3.324(4) | C4  | C18 | 3.468(4) |
| C4  | C25 | 3.128(4) | C4  | C29 | 3.515(4) |
| C5  | C15 | 3.357(4) | C5  | C21 | 3.307(4) |
| C5  | C23 | 3.351(4) | C6  | C7  | 3.513(4) |
| C7  | C12 | 3.376(4) | C7  | C13 | 3.379(5) |
| C11 | C12 | 3.090(5) | C11 | C13 | 3.523(5) |

| C19 | C22 | 3.240(4) | C19 | C29 | 3.341(4) |
|-----|-----|----------|-----|-----|----------|
|     |     |          |     |     |          |

C25 C27 3.137(4)

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| S20  | H4   | 2.787    | S20  | H5   | 2.968    |
| S20  | H22B | 2.907    | S24  | H5   | 2.955    |
| S24  | H21B | 3.575    | S24  | H22B | 2.947    |
| 01   | H3   | 2.672    | 01   | H7   | 2.627    |
| 01   | H11A | 2.859    | 01   | H11B | 2.951    |
| 01   | H28A | 2.994    | 01   | H28B | 3.003    |
| 01   | H28C | 2.335    | O5   | H2   | 2.623    |
| 05   | H4   | 3.263    | O5   | H18B | 2.718    |
| 05   | H23A | 3.509    | O5   | H30A | 2.966    |
| 05   | H30B | 2.980    | O5   | H30C | 2.305    |
| 06   | H2   | 2.288    | O6   | H28A | 2.687    |
| 06   | H28B | 2.683    | O6   | H28C | 3.150    |
| 06   | H30A | 2.556    | O6   | H30C | 3.503    |
| 08   | H2   | 2.554    | O8   | H3   | 3.184    |
| 08   | H4   | 2.840    | O8   | H5   | 2.539    |
| 08   | H11A | 3.162    | O8   | H11B | 2.703    |
| 08   | H12A | 2.592    | O8   | H12B | 3.262    |
| 08   | H12C | 2.644    | O8   | H13A | 3.246    |
| 08   | H13B | 2.555    | O8   | H13C | 2.632    |
| 08   | H21B | 2.740    | O10  | H7   | 2.641    |
| O10  | H12A | 2.619    | O10  | H12B | 2.619    |
| O10  | H12C | 3.249    | O10  | H13A | 2.589    |
| O10  | H13B | 2.592    | O10  | H13C | 3.231    |
|      |      |          |      |      |          |

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

| O14 | H2   | 2.760 | O14 | H4   | 3.135 |
|-----|------|-------|-----|------|-------|
| O14 | H17A | 2.645 | O14 | H17B | 2.638 |
| O14 | H17C | 3.270 | O14 | H18A | 2.578 |
| O14 | H18B | 2.585 | O14 | H18C | 3.230 |
| 016 | H3   | 2.661 | O16 | H5   | 3.284 |
| 016 | H17A | 2.558 | O16 | H17B | 3.244 |
| 016 | H17C | 2.636 | O16 | H18A | 3.253 |
| 016 | H18B | 2.578 | O16 | H18C | 2.657 |
| 016 | H26B | 3.592 | O25 | H18B | 2.885 |
| O25 | H18C | 3.428 | O25 | H26A | 3.582 |
| O25 | H26B | 2.371 | O25 | H27A | 2.824 |
| O26 | H27A | 2.647 | O26 | H27B | 2.646 |
| O26 | H27C | 3.279 | O29 | H2   | 2.469 |
| O29 | H5   | 2.268 | O29 | H12A | 3.237 |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| O29  | H23A | 2.494    | O29  | H30A | 2.712    |
| O29  | H30B | 2.710    | O29  | H30C | 3.171    |
| C2   | H4   | 3.079    | C2   | Н5   | 2.862    |
| C2   | H11A | 3.008    | C2   | H11B | 2.674    |
| C3   | H5   | 2.858    | C3   | H7   | 2.625    |
| C3   | H17A | 2.783    | C3   | H17B | 3.477    |
| C4   | H2   | 2.790    | C4   | H7   | 3.539    |
| C4   | H17A | 3.156    | C4   | H18B | 3.400    |
| C4   | H21B | 3.532    | C5   | H2   | 2.699    |
| C5   | H3   | 3.408    | C5   | H18B | 3.524    |
| C5   | H21B | 2.930    | C5   | H23A | 3.018    |
| C6   | H2   | 2.448    | C6   | H11B | 3.481    |
| C7   | H3   | 2.579    | C7   | H4   | 3.308    |
| C7   | H5   | 3.281    | C7   | H12A | 3.263    |
| C7   | H13B | 3.266    | C9   | H7   | 2.823    |
| C9   | H11A | 3.137    | C9   | H11B | 2.659    |
| C9   | H21B | 3.153    | C11  | H2   | 2.833    |
| C11  | H12A | 2.860    | C11  | H12B | 3.547    |
| C11  | H13B | 3.583    | C12  | H11B | 2.969    |
| C12  | H13A | 2.756    | C12  | H13B | 3.360    |
| C12  | H13C | 2.703    | C12  | H21B | 3.047    |
| C12  | H23A | 3.460    | C13  | H7   | 3.490    |
| C13  | H12A | 3.360    | C13  | H12B | 2.749    |
|      |      |          |      |      |          |

| C13 | H12C | 2.710 | C13 | H21B | 3.307 |
|-----|------|-------|-----|------|-------|
| C15 | H3   | 2.570 | C15 | H4   | 3.076 |
| C17 | Н3   | 2.792 | C17 | H18A | 2.771 |
| C17 | H18B | 3.373 | C17 | H18C | 2.712 |
| C18 | H17A | 3.370 | C18 | H17B | 2.765 |
| C18 | H17C | 2.726 | C19 | H4   | 2.791 |
| C19 | H21B | 2.949 | C19 | H22B | 3.504 |
| C19 | H23A | 3.010 | C21 | H4   | 3.509 |
| C21 | H5   | 2.882 | C21 | H12C | 3.062 |
| C21 | H13C | 3.253 | C21 | H23A | 2.706 |
| C21 | H23B | 3.377 | C22 | H5   | 3.444 |
| C22 | H12C | 3.249 | C23 | H5   | 2.920 |
| C23 | H12C | 3.454 | C23 | H21A | 3.376 |
| C23 | H21B | 2.690 | C25 | H4   | 3.482 |

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| C25  | H5   | 3.421    | C25  | H18B | 3.424    |
| C25  | H26A | 3.147    | C25  | H26B | 2.461    |
| C25  | H27A | 2.919    | C25  | H27B | 3.515    |
| C29  | H2   | 2.574    | C29  | H5   | 2.420    |
| C29  | H23A | 3.196    | H2   | H3   | 2.884    |
| H2   | H4   | 3.353    | H2   | H5   | 2.377    |
| H2   | H7   | 2.893    | H2   | H11A | 3.432    |
| H2   | H11B | 2.598    | H2   | H12A | 3.386    |
| H2   | H30A | 3.565    | Н3   | H4   | 2.246    |
| H3   | H7   | 2.301    | H3   | H17A | 2.252    |
| H3   | H17B | 3.223    | H4   | H5   | 2.362    |
| H4   | H7   | 3.369    | H4   | H17A | 3.307    |
| H4   | H21B | 3.096    | Н5   | H12A | 3.407    |
| Н5   | H12C | 3.270    | H5   | H21B | 2.288    |
| H5   | H23A | 2.369    | H7   | H11A | 2.297    |
| H7   | H11B | 2.876    | H7   | H13B | 3.091    |
| H11B | H12A | 2.443    | H11B | H12B | 3.425    |
| H12A | H13C | 3.584    | H12A | H21B | 3.461    |
| H12A | H23A | 3.277    | H12B | H13A | 2.617    |
| H12B | H13C | 3.015    | H12C | H13A | 3.036    |
| H12C | H13B | 3.586    | H12C | H13C | 2.519    |
| H12C | H21A | 3.356    | H12C | H21B | 2.292    |
| H12C | H22A | 2.897    | H12C | H23A | 2.771    |

| H13C | H21A | 2.952 | H13C | H21B | 2.631 |
|------|------|-------|------|------|-------|
| H17A | H18C | 3.591 | H17B | H18A | 2.637 |
| H17B | H18C | 3.025 | H17C | H18A | 3.054 |
| H17C | H18B | 3.600 | H17C | H18C | 2.531 |
| H18B | H30C | 2.876 | H18C | H26B | 3.184 |
| H21A | H22A | 2.306 | H21A | H22B | 2.405 |
| H21A | H23A | 3.566 | H21B | H22A | 2.402 |
| H21B | H22B | 2.863 | H21B | H23A | 2.478 |
| H21B | H23B | 3.565 | H22A | H23A | 2.389 |
| H22A | H23B | 2.319 | H22B | H23A | 2.866 |
| H22B | H23B | 2.394 | H26A | H27A | 2.850 |
| H26A | H27B | 2.358 | H26A | H27C | 2.347 |
| H26B | H27A | 2.358 | H26B | H27B | 2.850 |
| H26B | H27C | 2.348 |      |      |       |

| atom | atom             | distance | atom | atom             | distance |
|------|------------------|----------|------|------------------|----------|
| 01   | C27 <sup>1</sup> | 3.566(4) | O6   | C23 <sup>2</sup> | 3.294(4) |
| O10  | C30 <sup>2</sup> | 3.406(4) | O25  | C28 <sup>3</sup> | 3.341(4) |
| O26  | C30 <sup>4</sup> | 3.297(4) | O29  | C11 <sup>5</sup> | 3.383(4) |
| O29  | C23 <sup>2</sup> | 3.539(4) | C11  | O29 <sup>2</sup> | 3.383(4) |
| C23  | O6 <sup>5</sup>  | 3.294(4) | C23  | O29 <sup>5</sup> | 3.539(4) |
| C26  | C30 <sup>4</sup> | 3.517(5) | C27  | O1 <sup>3</sup>  | 3.566(4) |
| C28  | O25 <sup>1</sup> | 3.341(4) | C30  | O10 <sup>5</sup> | 3.406(4) |
| C30  | O26 <sup>6</sup> | 3.297(4) | C30  | C26 <sup>6</sup> | 3.517(5) |

Table 11. Intermolecular contacts less than 3.60 Å

Symmetry Operators:

| (1) X-1,Y,Z             | (2) $X+1/2-1, -Y+1/2+1, -Z+2$ |
|-------------------------|-------------------------------|
| (3) X+1,Y,Z             | (4) $-X+1,Y+1/2,-Z+1/2+1$     |
| (5) X+1/2,-Y+1/2+1,-Z+2 | (6) -X+1,Y+1/2-1,-Z+1/2+1     |

| atom | atom               | distance | atom | atom              | distance |
|------|--------------------|----------|------|-------------------|----------|
| S20  | $H18B^1$           | 3.234    | S20  | $H30C^1$          | 2.890    |
| S24  | H11A <sup>2</sup>  | 2.949    | S24  | H12A <sup>3</sup> | 3.498    |
| S24  | $H28C^2$           | 3.331    | 01   | H27A <sup>4</sup> | 2.717    |
| O6   | H22A <sup>5</sup>  | 3.223    | O6   | H23A <sup>5</sup> | 3.289    |
| 06   | H23B <sup>5</sup>  | 2.563    | O8   | H28B <sup>6</sup> | 2.977    |
| O10  | H18A <sup>6</sup>  | 2.830    | O10  | $H22B^4$          | 3.329    |
| O10  | H26A <sup>7</sup>  | 2.670    | O10  | H30A <sup>5</sup> | 3.560    |
| O10  | H30B <sup>5</sup>  | 2.541    | O14  | H13B <sup>8</sup> | 2.851    |
| O14  | $H27A^4$           | 3.478    | 016  | H12B <sup>9</sup> | 3.212    |
| O25  | H21A <sup>10</sup> | 2.908    | O25  | $H28C^2$          | 2.413    |
| O26  | H12B <sup>9</sup>  | 3.308    | O26  | H30A <sup>1</sup> | 3.421    |
| O26  | H30B <sup>1</sup>  | 3.014    | O26  | $H30C^1$          | 2.928    |
| O29  | H11A <sup>3</sup>  | 3.237    | O29  | H11B <sup>3</sup> | 2.763    |
| O29  | H23B <sup>5</sup>  | 2.659    | C3   | $H27A^4$          | 3.572    |
| C3   | H28B <sup>6</sup>  | 3.578    | C4   | H28B <sup>6</sup> | 3.159    |
| C6   | H23B <sup>5</sup>  | 3.362    | C6   | $H27A^4$          | 3.460    |
| C7   | H28B <sup>6</sup>  | 3.566    | C9   | H26A <sup>7</sup> | 3.276    |
| C9   | H30B <sup>5</sup>  | 3.371    | C11  | $H22B^4$          | 3.369    |
| C11  | H30B <sup>5</sup>  | 3.093    | C12  | H17C <sup>7</sup> | 3.478    |
| C12  | H28A <sup>3</sup>  | 2.967    | C12  | H30B <sup>5</sup> | 3.138    |
| C13  | H17B <sup>6</sup>  | 2.937    | C13  | H17C <sup>7</sup> | 2.875    |
| C13  | H18A <sup>6</sup>  | 3.257    | C13  | $H26A^7$          | 3.178    |
| C13  | H27A <sup>1</sup>  | 3.466    | C13  | H27C <sup>1</sup> | 3.186    |
|      |                    |          |      |                   |          |

| Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

|     |                    |       |     | 0                  |       |
|-----|--------------------|-------|-----|--------------------|-------|
| C13 | $H28B^{6}$         | 3.434 | C15 | H13B <sup>8</sup>  | 3.350 |
| C17 | H12C <sup>9</sup>  | 3.471 | C17 | H13A <sup>8</sup>  | 3.318 |
| C17 | H13A <sup>9</sup>  | 3.572 | C17 | H13B <sup>8</sup>  | 3.401 |
| C17 | H13C <sup>9</sup>  | 3.204 | C17 | H21A <sup>9</sup>  | 3.476 |
| C17 | H22A <sup>9</sup>  | 3.324 | C17 | H26B <sup>11</sup> | 3.066 |
| C17 | $H27C^4$           | 3.339 | C18 | H13B <sup>8</sup>  | 3.423 |
| C18 | H21A <sup>10</sup> | 3.171 | C18 | H22B <sup>10</sup> | 3.080 |
| C18 | H27C <sup>11</sup> | 3.401 | C21 | $H18B^1$           | 3.289 |
| C21 | H18C <sup>1</sup>  | 3.387 | C22 | H11A <sup>2</sup>  | 3.392 |
| C22 | H17A <sup>7</sup>  | 3.468 | C22 | H18C <sup>1</sup>  | 3.394 |
| C22 | H30A <sup>3</sup>  | 3.561 | C23 | H11A <sup>2</sup>  | 3.349 |
| C23 | H11B <sup>3</sup>  | 3.520 | C25 | $H28C^2$           | 3.164 |
| C26 | H13A <sup>9</sup>  | 3.036 | C26 | H17B <sup>12</sup> | 3.190 |
| C26 | H17C <sup>12</sup> | 3.382 | C26 | $H30A^1$           | 3.327 |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| C26  | $H30B^1$           | 3.135    | C26  | $H30C^1$           | 3.518    |
| C27  | H3 <sup>2</sup>    | 3.311    | C27  | H13C <sup>10</sup> | 3.328    |
| C27  | H17A <sup>2</sup>  | 3.487    | C27  | H17B <sup>2</sup>  | 3.520    |
| C27  | H17C <sup>12</sup> | 3.522    | C27  | H18C <sup>12</sup> | 3.512    |
| C27  | $H28C^2$           | 3.512    | C27  | $H30A^1$           | 3.164    |
| C28  | H4 <sup>8</sup>    | 2.894    | C28  | H13B <sup>8</sup>  | 3.499    |
| C28  | H27A <sup>4</sup>  | 3.301    | C29  | H11B <sup>3</sup>  | 3.266    |
| C29  | H23B <sup>5</sup>  | 3.229    | C30  | H11B <sup>3</sup>  | 3.475    |
| C30  | H12B <sup>3</sup>  | 3.577    | C30  | H23B <sup>5</sup>  | 3.503    |
| C30  | H26A <sup>10</sup> | 3.128    | C30  | H27B <sup>10</sup> | 3.026    |
| H2   | H23B <sup>5</sup>  | 3.066    | H3   | C27 <sup>4</sup>   | 3.311    |
| H3   | H27A <sup>4</sup>  | 3.100    | H3   | $H27B^4$           | 2.853    |
| H3   | $H27C^4$           | 3.463    | H3   | H28B <sup>6</sup>  | 3.148    |
| H4   | C28 <sup>6</sup>   | 2.894    | H4   | H12B <sup>9</sup>  | 3.515    |
| H4   | H28A <sup>6</sup>  | 2.750    | H4   | $H28B^{6}$         | 2.218    |
| H4   | H28C <sup>6</sup>  | 3.417    | H7   | H18A <sup>6</sup>  | 3.569    |
| H7   | $H27B^4$           | 3.363    | H7   | $H28B^{6}$         | 3.189    |
| H11A | $S24^4$            | 2.949    | H11A | O29 <sup>5</sup>   | 3.237    |
| H11A | C22 <sup>4</sup>   | 3.392    | H11A | C23 <sup>4</sup>   | 3.349    |
| H11A | H18A <sup>6</sup>  | 3.482    | H11A | $H22B^4$           | 2.632    |
| H11A | $H23B^4$           | 3.253    | H11A | H30B <sup>5</sup>  | 3.382    |
| H11B | O29 <sup>5</sup>   | 2.763    | H11B | C23 <sup>5</sup>   | 3.520    |
| H11B | C29 <sup>5</sup>   | 3.266    | H11B | C30 <sup>5</sup>   | 3.475    |
|      |                    |          |      |                    |          |

| H11B | H23A <sup>5</sup> | 3.167 | H11B | H23B <sup>5</sup> | 3.167 |
|------|-------------------|-------|------|-------------------|-------|
| H11B | H30B <sup>5</sup> | 2.862 | H12A | S24 <sup>5</sup>  | 3.498 |
| H12A | H28A <sup>3</sup> | 2.828 | H12A | H30B <sup>5</sup> | 3.017 |
| H12B | O16 <sup>7</sup>  | 3.212 | H12B | O26 <sup>7</sup>  | 3.308 |
| H12B | C30 <sup>5</sup>  | 3.577 | H12B | $H4^7$            | 3.515 |
| H12B | H17A <sup>7</sup> | 3.552 | H12B | H17C <sup>7</sup> | 3.328 |
| H12B | H26A <sup>7</sup> | 3.060 | H12B | H28A <sup>3</sup> | 2.685 |
| H12B | H30B <sup>5</sup> | 2.678 | H12C | C17 <sup>7</sup>  | 3.471 |
| H12C | H17A <sup>7</sup> | 3.054 | H12C | H17C <sup>7</sup> | 2.993 |
| H12C | H28A <sup>3</sup> | 2.883 | H13A | C17 <sup>6</sup>  | 3.318 |
| H13A | C17 <sup>7</sup>  | 3.572 | H13A | C26 <sup>7</sup>  | 3.036 |
| H13A | H17B <sup>6</sup> | 2.361 | H13A | H17C <sup>7</sup> | 2.682 |
| H13A | H18A <sup>6</sup> | 3.168 | H13A | H18C <sup>7</sup> | 3.219 |
| H13A | H26A <sup>7</sup> | 2.450 | H13A | H26B <sup>7</sup> | 2.818 |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| H13A | H27C <sup>1</sup>  | 2.998    | H13B | O14 <sup>6</sup>   | 2.851    |
| H13B | C15 <sup>6</sup>   | 3.350    | H13B | C17 <sup>6</sup>   | 3.401    |
| H13B | C18 <sup>6</sup>   | 3.423    | H13B | C28 <sup>6</sup>   | 3.499    |
| H13B | H17B <sup>6</sup>  | 2.670    | H13B | H18A <sup>6</sup>  | 2.694    |
| H13B | H26A <sup>7</sup>  | 3.515    | H13B | H27A <sup>1</sup>  | 3.142    |
| H13B | H27C <sup>1</sup>  | 3.164    | H13B | H28B <sup>6</sup>  | 2.924    |
| H13B | $H28C^6$           | 3.527    | H13C | C17 <sup>7</sup>   | 3.204    |
| H13C | C27 <sup>1</sup>   | 3.328    | H13C | H17A <sup>7</sup>  | 3.492    |
| H13C | H17B <sup>6</sup>  | 3.476    | H13C | H17C <sup>7</sup>  | 2.251    |
| H13C | $H26B^1$           | 3.307    | H13C | $H27A^1$           | 3.035    |
| H13C | H27C <sup>1</sup>  | 2.860    | H13C | H28B <sup>6</sup>  | 3.236    |
| H13C | $H28C^6$           | 3.545    | H17A | C22 <sup>9</sup>   | 3.468    |
| H17A | C27 <sup>4</sup>   | 3.487    | H17A | H12B <sup>9</sup>  | 3.552    |
| H17A | H12C <sup>9</sup>  | 3.054    | H17A | H13C <sup>9</sup>  | 3.492    |
| H17A | H21A <sup>9</sup>  | 3.340    | H17A | H22A <sup>9</sup>  | 2.577    |
| H17A | H27B <sup>4</sup>  | 3.212    | H17A | $H27C^4$           | 3.022    |
| H17B | C13 <sup>8</sup>   | 2.937    | H17B | C26 <sup>11</sup>  | 3.190    |
| H17B | C27 <sup>4</sup>   | 3.520    | H17B | H13A <sup>8</sup>  | 2.361    |
| H17B | H13B <sup>8</sup>  | 2.670    | H17B | H13C <sup>8</sup>  | 3.476    |
| H17B | H18C <sup>11</sup> | 3.351    | H17B | H21A <sup>9</sup>  | 3.398    |
| H17B | H22A <sup>9</sup>  | 3.513    | H17B | H26A <sup>11</sup> | 2.999    |
| H17B | H26B <sup>11</sup> | 2.525    | H17B | H27C <sup>4</sup>  | 2.779    |
| H17B | H27C <sup>11</sup> | 3.574    | H17C | C12 <sup>9</sup>   | 3.478    |
|      |                    |          |      |                    |          |

| H17C | C13 <sup>9</sup>   | 2.875 | H17C | C26 <sup>11</sup>  | 3.382 |
|------|--------------------|-------|------|--------------------|-------|
| H17C | C27 <sup>11</sup>  | 3.522 | H17C | H12B <sup>9</sup>  | 3.328 |
| H17C | H12C <sup>9</sup>  | 2.993 | H17C | H13A <sup>9</sup>  | 2.682 |
| H17C | H13C <sup>9</sup>  | 2.251 | H17C | H21A <sup>9</sup>  | 3.117 |
| H17C | H21B <sup>9</sup>  | 3.500 | H17C | H22A <sup>9</sup>  | 3.434 |
| H17C | H26A <sup>11</sup> | 3.487 | H17C | H26B <sup>11</sup> | 2.729 |
| H17C | H27C <sup>11</sup> | 2.915 | H18A | O10 <sup>8</sup>   | 2.830 |
| H18A | C13 <sup>8</sup>   | 3.257 | H18A | H7 <sup>8</sup>    | 3.569 |
| H18A | H11A <sup>8</sup>  | 3.482 | H18A | H13A <sup>8</sup>  | 3.168 |
| H18A | H13B <sup>8</sup>  | 2.694 | H18A | H21A <sup>10</sup> | 3.582 |
| H18A | H22B <sup>10</sup> | 2.758 | H18A | H26A <sup>11</sup> | 3.000 |
| H18A | H27C <sup>11</sup> | 3.383 | H18B | S20 <sup>10</sup>  | 3.234 |
| H18B | C21 <sup>10</sup>  | 3.289 | H18B | H21A <sup>10</sup> | 2.801 |
| H18B | H22B <sup>10</sup> | 3.071 | H18C | C21 <sup>10</sup>  | 3.387 |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| H18C | C22 <sup>10</sup>  | 3.394    | H18C | C27 <sup>11</sup>  | 3.512    |
| H18C | H13A <sup>9</sup>  | 3.219    | H18C | H17B <sup>12</sup> | 3.351    |
| H18C | H21A <sup>10</sup> | 2.716    | H18C | H22A <sup>10</sup> | 3.394    |
| H18C | H22B <sup>10</sup> | 2.893    | H18C | H26A <sup>11</sup> | 3.451    |
| H18C | H27C <sup>11</sup> | 2.644    | H21A | O25 <sup>1</sup>   | 2.908    |
| H21A | C17 <sup>7</sup>   | 3.476    | H21A | C18 <sup>1</sup>   | 3.171    |
| H21A | H17A <sup>7</sup>  | 3.340    | H21A | H17B <sup>7</sup>  | 3.398    |
| H21A | H17C <sup>7</sup>  | 3.117    | H21A | H18A <sup>1</sup>  | 3.582    |
| H21A | $H18B^1$           | 2.801    | H21A | $H18C^1$           | 2.716    |
| H21A | $H26B^1$           | 2.975    | H21B | H17C <sup>7</sup>  | 3.500    |
| H21B | H28B <sup>6</sup>  | 3.523    | H22A | $O6^3$             | 3.223    |
| H22A | C17 <sup>7</sup>   | 3.324    | H22A | H17A <sup>7</sup>  | 2.577    |
| H22A | H17B <sup>7</sup>  | 3.513    | H22A | H17C <sup>7</sup>  | 3.434    |
| H22A | $H18C^1$           | 3.394    | H22A | H27B <sup>13</sup> | 3.261    |
| H22A | H27C <sup>13</sup> | 3.375    | H22A | H30A <sup>3</sup>  | 3.180    |
| H22B | O10 <sup>2</sup>   | 3.329    | H22B | C11 <sup>2</sup>   | 3.369    |
| H22B | C18 <sup>1</sup>   | 3.080    | H22B | H11A <sup>2</sup>  | 2.632    |
| H22B | H18A <sup>1</sup>  | 2.758    | H22B | $H18B^1$           | 3.071    |
| H22B | $H18C^1$           | 2.893    | H22B | H30A <sup>3</sup>  | 3.313    |
| H23A | $O6^3$             | 3.289    | H23A | H11B <sup>3</sup>  | 3.167    |
| H23B | $O6^3$             | 2.563    | H23B | O29 <sup>3</sup>   | 2.659    |
| H23B | $C6^3$             | 3.362    | H23B | C29 <sup>3</sup>   | 3.229    |
| H23B | C30 <sup>3</sup>   | 3.503    | H23B | $H2^3$             | 3.066    |
|      |                    |          |      |                    |          |

| H23B | H11A <sup>2</sup>  | 3.253 | H23B | H11B <sup>3</sup>  | 3.167 |
|------|--------------------|-------|------|--------------------|-------|
| H23B | H30A <sup>3</sup>  | 2.938 | H26A | O10 <sup>9</sup>   | 2.670 |
| H26A | C9 <sup>9</sup>    | 3.276 | H26A | C13 <sup>9</sup>   | 3.178 |
| H26A | C30 <sup>1</sup>   | 3.128 | H26A | H12B <sup>9</sup>  | 3.060 |
| H26A | H13A <sup>9</sup>  | 2.450 | H26A | H13B <sup>9</sup>  | 3.515 |
| H26A | H17B <sup>12</sup> | 2.999 | H26A | H17C <sup>12</sup> | 3.487 |
| H26A | H18A <sup>12</sup> | 3.000 | H26A | H18C <sup>12</sup> | 3.451 |
| H26A | H30A <sup>1</sup>  | 2.988 | H26A | H30B <sup>1</sup>  | 2.560 |
| H26A | $H30C^1$           | 3.374 | H26B | C17 <sup>12</sup>  | 3.066 |
| H26B | H13A <sup>9</sup>  | 2.818 | H26B | H13C <sup>10</sup> | 3.307 |
| H26B | H17B <sup>12</sup> | 2.525 | H26B | H17C <sup>12</sup> | 2.729 |
| H26B | H21A <sup>10</sup> | 2.975 | H27A | O1 <sup>2</sup>    | 2.717 |
| H27A | O14 <sup>2</sup>   | 3.478 | H27A | C3 <sup>2</sup>    | 3.572 |
| H27A | $C6^2$             | 3.460 | H27A | C13 <sup>10</sup>  | 3.466 |

| atom | atom               | distance | atom | atom                     | distance |
|------|--------------------|----------|------|--------------------------|----------|
| H27A | C28 <sup>2</sup>   | 3.301    | H27A | H3 <sup>2</sup>          | 3.100    |
| H27A | H13B <sup>10</sup> | 3.142    | H27A | H13C <sup>10</sup>       | 3.035    |
| H27A | H28B <sup>2</sup>  | 3.553    | H27A | H28C <sup>2</sup>        | 2.573    |
| H27B | C30 <sup>1</sup>   | 3.026    | H27B | H3 <sup>2</sup>          | 2.853    |
| H27B | H7 <sup>2</sup>    | 3.363    | H27B | H17A <sup>2</sup>        | 3.212    |
| H27B | H22A <sup>14</sup> | 3.261    | H27B | $H30A^1$                 | 2.359    |
| H27B | H30B <sup>1</sup>  | 3.209    | H27B | H30C <sup>1</sup>        | 3.070    |
| H27C | C13 <sup>10</sup>  | 3.186    | H27C | C17 <sup>2</sup>         | 3.339    |
| H27C | C18 <sup>12</sup>  | 3.401    | H27C | H3 <sup>2</sup>          | 3.463    |
| H27C | H13A <sup>10</sup> | 2.998    | H27C | H13B <sup>10</sup>       | 3.164    |
| H27C | H13C <sup>10</sup> | 2.860    | H27C | H17A <sup>2</sup>        | 3.022    |
| H27C | H17B <sup>2</sup>  | 2.779    | H27C | H17B <sup>12</sup>       | 3.574    |
| H27C | H17C <sup>12</sup> | 2.915    | H27C | H18A <sup>12</sup>       | 3.383    |
| H27C | H18C <sup>12</sup> | 2.644    | H27C | H22A <sup>14</sup>       | 3.375    |
| H28A | C12 <sup>5</sup>   | 2.967    | H28A | H4 <sup>8</sup>          | 2.750    |
| H28A | H12A <sup>5</sup>  | 2.828    | H28A | H12B <sup>5</sup>        | 2.685    |
| H28A | H12C <sup>5</sup>  | 2.883    | H28B | O8 <sup>8</sup>          | 2.977    |
| H28B | C3 <sup>8</sup>    | 3.578    | H28B | C4 <sup>8</sup>          | 3.159    |
| H28B | C7 <sup>8</sup>    | 3.566    | H28B | C13 <sup>8</sup>         | 3.434    |
| H28B | H3 <sup>8</sup>    | 3.148    | H28B | $H4^8$                   | 2.218    |
| H28B | H7 <sup>8</sup>    | 3.189    | H28B | H13B <sup>8</sup>        | 2.924    |
| H28B | H13C <sup>8</sup>  | 3.236    | H28B | H21B <sup>8</sup>        | 3.523    |
| H28B | $H27A^4$           | 3.553    | H28C | <b>S</b> 24 <sup>4</sup> | 3.331    |
|      |                    |          |      |                          |          |

| H28C | O25 <sup>4</sup>   | 2.413 | H28C | C25 <sup>4</sup>   | 3.164 |
|------|--------------------|-------|------|--------------------|-------|
| H28C | C27 <sup>4</sup>   | 3.512 | H28C | H4 <sup>8</sup>    | 3.417 |
| H28C | H13B <sup>8</sup>  | 3.527 | H28C | H13C <sup>8</sup>  | 3.545 |
| H28C | H27A <sup>4</sup>  | 2.573 | H30A | O10 <sup>3</sup>   | 3.560 |
| H30A | O26 <sup>10</sup>  | 3.421 | H30A | C22 <sup>5</sup>   | 3.561 |
| H30A | C26 <sup>10</sup>  | 3.327 | H30A | C27 <sup>10</sup>  | 3.164 |
| H30A | H22A <sup>5</sup>  | 3.180 | H30A | H22B <sup>5</sup>  | 3.313 |
| H30A | H23B <sup>5</sup>  | 2.938 | H30A | H26A <sup>10</sup> | 2.988 |
| H30A | H27B <sup>10</sup> | 2.359 | H30B | O10 <sup>3</sup>   | 2.541 |
| H30B | O26 <sup>10</sup>  | 3.014 | H30B | C9 <sup>3</sup>    | 3.371 |
| H30B | C11 <sup>3</sup>   | 3.093 | H30B | C12 <sup>3</sup>   | 3.138 |
| H30B | C26 <sup>10</sup>  | 3.135 | H30B | H11A <sup>3</sup>  | 3.382 |
| H30B | H11B <sup>3</sup>  | 2.862 | H30B | H12A <sup>3</sup>  | 3.017 |
| H30B | H12B <sup>3</sup>  | 2.678 | H30B | H26A <sup>10</sup> | 2.560 |

| atom | atom               | distance | atom | atom               | distance |
|------|--------------------|----------|------|--------------------|----------|
| H30B | H27B <sup>10</sup> | 3.209    | H30C | S20 <sup>10</sup>  | 2.890    |
| H30C | O26 <sup>10</sup>  | 2.928    | H30C | C26 <sup>10</sup>  | 3.518    |
| H30C | H26A <sup>10</sup> | 3.374    | H30C | H27B <sup>10</sup> | 3.070    |

Symmetry Operators:

| (1) -X+1,Y+1/2,-Z+1/2+1       | (2) X+1,Y,Z                |
|-------------------------------|----------------------------|
| (3) X+1/2,-Y+1/2+1,-Z+2       | (4) X-1,Y,Z                |
| (5) $X+1/2-1, -Y+1/2+1, -Z+2$ | (6) -X,Y+1/2,-Z+1/2+1      |
| (7) $-X+1/2, -Y+2, Z+1/2$     | (8) $-X,Y+1/2-1,-Z+1/2+1$  |
| (9) $-X+1/2, -Y+2, Z+1/2-1$   | (10) -X+1,Y+1/2-1,-Z+1/2+1 |
| (11) X+1/2-1,-Y+1/2+1,-Z+1    | (12) X+1/2,-Y+1/2+1,-Z+1   |
| (13) -X+1/2+1,-Y+2,Z+1/2      | (14) -X+1/2+1,-Y+2,Z+1/2-1 |