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Abstract

Real-time rendering and the animation of realistic virtual environments and charac-

ters has progressed at a great pace, following advances in computer graphics hardware

in the last decade. The role of cloth simulation is becoming ever more important in

the quest to improve the realism of virtual environments.

The real-time simulation of cloth and clothing is important for many applications

such as virtual reality, crowd simulation, games and software for online clothes shop-

ping. A large number of polygons are necessary to depict the highly flexible nature of

cloth with wrinkling and frequent changes in its curvature. In combination with the

physical calculations which model the deformations, the effort required to simulate

cloth in detail is very computationally expensive resulting in much difficulty for its

realistic simulation at interactive frame rates. Real-time cloth simulations can lack

quality and realism compared to their offline counterparts, since coarse meshes must

often be employed for performance reasons.

The focus of this thesis is to develop techniques to allow the real-time simulation of

realistic cloth and clothing. Adaptive meshes have previously been developed to act as

a bridge between low and high polygon meshes, aiming to adaptively exploit variations

in the shape of the cloth. The mesh complexity is dynamically increased or refined to

balance quality against computational cost during a simulation. A limitation of many

approaches is they do not often consider the decimation or coarsening of previously

refined areas, or otherwise are not fast enough for real-time applications.

A novel edge-based adaptive mesh is developed for the fast incremental refine-

ment and coarsening of a triangular mesh. A mass-spring network is integrated into

the mesh permitting the real-time adaptive simulation of cloth, and techniques are

developed for the simulation of clothing on an animated character.
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Chapter 1

Introduction

Cloth simulation has had an increasing role in computer graphics in the last decade,

realistic characters require realistic clothing after-all. There are many methods and

techniques that have been developed to simulate deformable cloth, each with their

own strengths and weaknesses. Impressive realism of simulated cloth has already

been achieved, but at understandably high computational cost associated with the

use of dense meshes. The highly flexible nature of cloth can be challenging; complex

collisions with objects in the virtual environment must be detected and resolved

efficiently otherwise they become a significant bottleneck to performance. Offline

simulation may be performed where the final result is much more important than the

time spent computing it, such as the use in animated films where offline rendering is

also performed. However, real-time applications are just as important as their offline

counterparts including real-time virtual environments, crowd simulation, games and

online clothes shopping. The cloth unfortunately can suffer from unrealistic behaviour

and visual quality due to the simplifications made in order to achieve interactive

frame rates. Also it is not possible to repeat or manually tweak problematic frames

as can be done with offline work, in-order to be most useful, real-time simulations

must run adequately without constant user intervention. In this research we consider

an adaptive approach for the real-time simulation of cloth and virtual clothing on

1
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characters. At the heart of the approach, the mesh density is dynamically changed

to balance detail against computational cost.

In this thesis we present a novel edge-based approach for the fast incremental

adaptive refinement and coarsening of a mesh with sufficient performance for its real-

time use. Our adaptive mesh is designed with flexible support for both refinement

and coarsening criteria that trigger the splitting and re-joining of edges, such as the

commonly used curvature-based criteria but we also demonstrate the use of collision,

edge length, and back-face coarsening for clothing. We integrate a mass-spring net-

work improved with material coordinates and seaming to allow adaptive clothing to

be created and worn on virtual animated characters.

1.1 Background

Much research in computer graphics is focussed on the modelling and rendering of

real world phenomena and continuing advancements enable ever increasingly detailed

virtual environments. Human aspects are an important part of realism in these envi-

ronments, not only including modelling and animation of virtual characters but also

the simulation and rendering of their clothing. In the past virtual clothing for real-

time applications was part of character animation, garments were commonly baked

into the character’s mesh and texture. As hardware has improved, clothes could be

then constructed separately with their own mesh and textures such that a character

may change its outfit by swapping between garment meshes in real-time. This is

exploited in many games, where skeletally animated characters may be dressed with

clothes or fitted with various armour. However, this couples the clothing tightly with

the underlying character’s mesh, so it is only generally suitable for tightly fitting gar-

ments which deform directly with the skin. Free moving deformable clothing is much

more challenging and must be physically simulated or otherwise evolved over time.
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Cloth simulation is a large field, relying on the combined use of many areas in-

cluding applied mathematics, numerical analysis, computational geometry, physics,

collision detection and response, 3D modelling, rendering and user interaction. It is

not surprising that many different cloth simulation methods exist given the range of

perspectives that researchers in these fields will have. In the real world, cloth be-

haviour is the result of complex interactions between billions of atoms, and between

thousands of woven threads. It is not feasible to model cloth at such a level; re-

markably offline simulations are able to capture great realism by only considering the

macro properties of cloth that we see in our everyday lives. Often regarding it as a

very thin, flexible and nearly inextensible surface, many different models have been

constructed to approximate this behaviour.

1.2 Motivations and Research Objectives

The real-time simulation of cloth is difficult; real-time applications suffer from limited

processing resources with a requirement for a high update rate in order to achieve a

smooth and stable cloth simulation. It is hard to imagine a time when computer hard-

ware becomes so advanced that off-line simulations are made redundant; as hardware

improves, our expectations of quality also increases. Cloth simulation must keep pace

with advances in other areas of virtual environments and virtual reality otherwise it

will become a weak link in achieving overall realism of a scene. The computational

cost of simulated clothing is the main reason why it is not in widespread use through-

out real-time applications in computer graphics. One can sacrifice detail to achieve an

interactive cloth simulation with a coarse mesh relatively easily, however, the detail

of coarse meshes are not sufficient compared to what is achievable with tightly fitting

garments using character animation and skinning approaches. The task is even more

difficult considering that the cloth simulation will likely need to run with, and share
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the processing and memory resources on the host system with other tasks such as

character animation, artificial intelligence and motion planning.

In this work, we aim to present techniques that improve the ability to model cloth

and clothing on virtual characters in real-time. We particularly focus on the develop-

ment of an adaptive mesh that can change its detail in response to the current shape

of the cloth. Adaptive approaches have been shown to be effective for accelerating

cloth simulation but have been previously only used extensively for cloth draping. A

limitation of many approaches was that refinement in the mesh could not be reversed

(coarsened) although not strictly required for draping as the cloth has a final resting

position. There has only been one instance where an adaptive mesh has been devel-

oped and used for clothing on an animated character albeit offline, the approach took

87 milliseconds to maintain and update the adaptive mesh and 1.2 seconds to com-

pute the cloth simulation each frame [LV05]. Refinement was controlled by curvature

of the mesh and importantly featured coarsening. Coarsening is a requirement for

clothing on animated characters since without coarsening the character’s movements

could eventually cause the cloth to become completely refined negating any benefit to

using an adaptive mesh. It is important that the relative cost of any adaptive mesh

remain small compared to the simulation and collision costs in order to gain overall

performance improvements through their use. Therefore, the main objective of this

work is to achieve the real-time physical simulation of clothing using an adaptive

mesh which is to be developed with low overheads. The limitation of many previous

methods must be avoided and therefore it feature the ability to vary the coarseness

of the mesh in order to allow the dynamic simulation of clothing.
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1.3 Thesis Outline

In Chapter 2, we survey the state of the art of cloth simulation covering a wide range of

topics divided into the following areas: cloth simulation, modelling and visualisation;

collision detection; levels of detail techniques including adaptive meshes; and virtual

clothing. Chapter 3 describes our novel contribution of an edge-based method for fast

incremental refinement of triangular meshes. Refinement and coarsening is controlled

by splitting and rejoining edges in the mesh for which we investigate a number of edge-

based criteria. Simulation data is integrated in the edge-based adaptive mesh and

we apply it to the task of simulating cloth throughout this thesis using a mass-spring

network. Chapter 4 describes our initial work on clothing; we incorporate seaming

to allow garments to be created and draped on a static character in real-time using

pre-computed collision structures. Additional considerations are required to extend

the work for animated characters; Chapter 5 describes our efforts in this regard, an

adaptive simulation of cloth is performed on an animated character. In particular,

the cost of collision detection must be minimised and we partition the character using

two types of bounding structures including a simple new type of bounding cylinder.

The adaptive mesh is extended to allow simple visibility based criteria to be used

including for coarsening the back facing regions of garments. Finally, in Chapter 6

we present an extension to a curved surface which is modified to generate a more

plausible cloth-like surface at a minimal overhead. The adaptive mesh is employed

only for rendering the curved surface and we employ a fast coarse cloth simulation on

an animated character. We conclude in Chapter 7 and discuss possible future work

that could lead on from the research presented in this thesis.



Chapter 2

Literature Survey

Research into the physical characteristics and geometry of cloth has been studied for

more than 70 years in the textile industry, beginning with “The Geometry of Cloth

Structure” published in 1937 [PS37]. It was adopted in the 1980’s by the computer

graphics community, with more focus on visual realism and plausibility rather than

the strict mechanical properties required by the textile industry. Early work with

cloth predominantly featured draping of fabrics, such as e.g. [Wei86, BHW94, HC98,

WAY03], often focusing on the mechanical properties of draping. A key system to

measure the mechanical properties of real cloth is the Kawabata Evaluation System

(KES) [KG80] . It is important to be able to predict aesthetic qualities perceived

by human touch and performance in clothing manufacture relating to comfort and

best fit to the human body [KN89]. KES data are non-linear and collected using four

machines: tensile and shearing, bending, compression, surface friction and roughness

testing machines. For example tensile data can be collected for a sample of real

cloth describing the non-linear relationship between stretched length and the tension

force produced. A robust cheaper alternative is FAST (Fabric Assurance by Simple

Testing) but it only captures linear data [Min95]. Both Fast and KES data can be

used in cloth simulations, for example Luible and Magnenat-Thalmann compare and

use both for accurate cloth simulation [LMT08]. Also there has been research into

6
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estimating cloth properties from videos of real cloth [BTH+03]. Interest has moved

on to more dynamic situations from simple flags to whole garments. As such, cloth

simulation involves a very wide range of research from textiles and mathematics to

rendering and collision detection.

In this chapter we discuss and divide the previous related literature into four

parts. First we survey existing literature concerning cloth simulation, modelling and

visualisation, and then we explore the previous use of adaptive meshes as a technique

to accelerate cloth simulations. We provide an overview of virtual clothing and gar-

ment simulation techniques, and finally we cover collision detection. A relatively old,

but good general survey of deformable surfaces focusing on topology, geometry and

deformation can be found in [MDA01].

2.1 Cloth Simulation, Modelling and Visualisation

Cloth simulations generally either use a physically based or geometric method; phys-

ically based methods broadly fit into one of two categories, Discrete and Continuous

models. The simulation of cloth is a large field and there have been many methods,

most being variations on similar base concepts. There is also great variation in the

computational costs associated with these methods which is often a trade-off between

that and realism. The requirements of the cloth simulation depend on the application,

but generally we want the most realistic result that the hardware can achieve in a

finite amount of time. This is especially the case in interactive applications; although

sometimes fine-tuned control over the behaviour and the look and feel of cloth can

be a very important feature for users such as artists in the case of animations for

films (e.g. [CGW+07]). We also cover data driven techniques in relation to cloth

simulation.
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2.1.1 Physically-Based Simulation

Physically-based cloth simulation is formulated as a time-varying partial differential

equation (PDE), which after discretisation is solved as an ordinary differential equa-

tion (ODE) [BW98]. The state of the cloth is not predictive; the instantaneous forces

and accelerations of a point within the cloth depend on the surrounding positions

and velocities. In-order to evolve the cloth system with time; the system is stepped

forward in discrete time steps, numerically integrating Newton’s equations of motion

(ODE). The numerical solution convergences to the real solution as the time step ap-

proaches zero, but generally we want to use a time step that is as large as possible for

best performance while still producing a smooth animation. Haulth [Hau05] describes

numerical techniques for physical cloth simulation including particle systems, finite

difference methods and finite element methods while covering explicit and implicit

integration and stability. For a more general review, Nealen et al. [NMK+05] review

physically based deformable models and applications of them such as entertainment,

surgical simulations, fluid/smoke animation, hair and also cloth.

There are many numerical integration methods and techniques; their accuracy

and ease of use varies but we will discuss a few popular ones here for the reader’s

convenience. One of the simplest methods is Euler integration or the Forward Euler

method, which works on the premise that you can find the approximation of a nearby

point on a curve by advancing in the direction of the tangent to the curve (i.e.

yn+1 = yn + h.f(tn, yn) where h is the step size and f(t, y) is the gradient). It is a

1st order explicit method and as such relies on small time steps in order to remain

accurate and stable. An example of a 2nd order explicit method is Verlet integration,

which was made popular for molecular dynamics by Verlet [Ver67] but since has been

borrowed by the computer graphics field including for cloth simulation. Velocity

Verlet is a popular form where velocity is not stored separately but is incorporated
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as the difference between the current and previous positions [SABW82], which tends

to achieve a greater stability over that of Euler’s with little increase in computation

cost. Higher order methods also exist; the most well-known family being Runge-Kutta

which includes a 4th order method commonly referred to as RK4 that is popular.

Runge-Kutta is an example of a one-step method, although using intermediate steps

to compute the time step; all information is discarded and there is no memory of

the previous steps. On the other hand, multi-step methods save the information

from previous steps and use it to gain accuracy particularly for smooth problems;

linear examples of multi-step methods include the Adams-Bashforth and the Adams-

Moulton methods [AHS09]. Higher order methods can perform worse for numerically

stiff problems such as found in cloth simulation, where there can be large variations

from step to step which can be compounded by unpredictable collisions or external

forces. Explicit methods are solved one particle at a time independently as if particles

were not coupled and using only the current state of the system; conversely implicit

methods solve an equation for a coupled system based on both its current and next

(future) state. Implicit methods are not easy to use, requiring the use of iterative

solvers operating on large (but often sparse) matrices. Implicit methods can, however,

support a larger time step and as such their increased cost can be offset somewhat

by using a fewer number of larger steps. The Backward Euler method is one of the

simplest examples of an implicit method; it uses the approximation that the value

of the next step can be found by advancing in the direction of the gradient of the

next step, i.e. similar to Forward Euler but it is as if you are working backwards

towards the original state. The value of the next step appears on both sides of the

equation (see Equation 2.1.1); hence an iterative method is required to converge on

the solution.
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yn+1 = yn + h.f(tn+1, yn+1) (2.1.1)

The Conjugate Gradient (CG) method is often used to solve systems of linear

equations, normally applied to very sparse systems that are too large to be solved by

direct methods (for example by the Cholesky decomposition). An important aspect

of the CG method and other iterative solvers is the speed of convergence, and there-

fore they are often used with Pre-conditioners to improve the problems suitability for

numerical integration, hence the Preconditioned Conjugate Gradient (PCG) method

is used for cloth simulation. The work of Baraff and Witkin’s [BW98] is highly cited,

and was instrumental in the increased use of implicit integration for cloth simula-

tion. They used a maximum time step of 0.02 seconds (with adaptive time which

automatically reduces the time step when required for stability), this 20ms seconds

corresponds to 50Hz and although the author’s do not specify their reasoning for

using this maximum rate it may coincide with the character’s animation rate. Also

selecting a higher time step will likely result in the adaptive time stepping automati-

cally reducing it much of the time anyway to maintain stability, in their examples the

smallest adaptive time step needed was 0.625ms. Their approach was successfull in

employing a large range of bending stiffness’s while only effecting computation time

by 5%, taking around 10.3 seconds per frame for a 2602 particle system running in

O(n1.5) time. Baraff and Witkin were always able to maintain constraints exactly

(including those on individual particles) independently from the number of CG it-

erations needed using their Modified Preconditioned Conjugate Gradient (MPCG)

method.

Implicit-Explicit (IMEX) integrations schemes have been developed and used for

cloth simulation. IMEX schemes allow partially stiff problems to be solved more effi-

ciently, by performing implicit integration with the linear numerically stiff parts and
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explicit with the remaining non-stiff parts [EEH00]. Bridson et al. [BMF03] presented

a mixed implicit-explicit scheme where implicit integration was only performed with

the velocity-dependant forces (e.g. damping forces) that could be efficiently solved

by the CG method due to them being linear while not requiring any precondition-

ing. Explicit updates of positions allowed them to modify velocities to maintain

constraints such as strain limiting; this allows weaker springs to be used. They state

their method was well behaved even if bending forces are strong and dominate all

other elastic forces.

Boxerman and Ascher [BA04] presented a technique to improve the sparsity of

a cloth system and decompose it into parts that may be solved efficiently and in

parallel by including an adaptive IMEX scheme. They made further improvements

to sparsity by exploiting the physical model of Choi and Ko [CK02] and by also

considering static constraints while improving the performance of Baraff and Witkin’s

MPCG technique [BW98]. The performance was highly dependent on the situation,

but in a cloth covered arm bending simulation their method required 35-50% less

row-vector multiples which the authors say they have found to correspond well to

CG computation times but it remains to be seen how it would scale to a complete

garment.

Inextensibility requires large in-plane forces, creating a numerically stiff problem

that requires very small time steps to solve. Stability problems come from the fact

that the error differences in explicit methods overshoot; larger time steps and or

larger forces can cause the system to oscillate and explode as the overshoot gets

exponentially worse. Some form of damping is almost always required to remove

energy from the system; stability is improved but too much often reduces realism.

Baraff and Witkin’s [BW98] employed an adaptive time stepping approach to prevent

divergence; they discard a step and repeat it with a smaller time step when simply
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a large change in the stretch of a triangle is detected. Approaches like this must be

carefully balanced to give overall performance gains, returning to larger time steps

as fast as possible while minimizing discarded steps. Baraff and Witkin’s approach

is to retry a larger step size after two steps, if this fails the step size is reduced again

but a longer wait is imposed before trying a limit of up to 40 steps. The midpoint

method can be thought of as a combination of the Forward and Backward Euler

methods where the gradient is evaluated half way through the step and it is a one-

step method belonging to the Runge-Kutter family of methods and achieves 2nd order

accuracy. Implicit methods undershoot and therefore do not feature instability like

explicit methods, though errors still impose limitations on the size of the time step

tending to over damp the cloth. Volino et al. [VMT05] used the Implicit Midpoint

Method for cloth simulation; although the Midpoint Method never becomes unstable

they state damping is required for stability. So to improve its efficiency and stability,

they employ adaptive viscous damping leading to animations with similar motions

compared to the Backward Euler method but at a reduced cost since a larger time

step could be used.

The cost of implicit methods can be prohibitive to detailed cloth simulations,

many authors work to combat this. Kang et al. [KCCP00] proposed an efficient ap-

proximated implicit method that ran in O(n) time with n springs. They incorporated

a stable damping approach with air interactions. Although their method was stable,

they required the use of a technique to correct super-elongated springs (ones that are

unrealistically stretched) similarly to Provot’s method [Pro95].

Discrete Particle-based Simulations

Discrete simulations are where the cloth is made from by discrete parts, often it

is modelled by particles distributed over its surface; and interactions between the

particles give rise to the cloth’s behaviour. These interactions can be specified by
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energy equations, with distance and curvature constraints. A widely used method

is a mass-spring network or system. This approach uses an interconnected particle

system of point masses and springs. Often Hooke’s law type springs and equations

are applied with Newton’s Second law together with a numerical integrator. It has

been used with both Triangles and Quad meshes defining the mass-spring layout,

often with additional springs to simulate bending and shearing forces such as [Pro95,

DSB99, ZY01, RC02, FGL03] and others. Figure 2.1. shows typical spring layouts for

regular quad and triangle meshes. The popularity of the mass-spring network method

lies in its ease of implementation particularly with an explicit integrator, but it can

struggle with stability problems if care is not taken. In-extensibility requires large in-

plane forces, creating a numerically stiff problem that requires very small time steps

to solve. Bending forces are not always simulated by springs; variations based on

the angle between adjoining faces across an edge are popular. Volino and Magnenat-

Thalmann [VMT06] presented another alternative using the weighted sum of vertex

positions to derive linear bending forces suitable for implicit integration. Accurate

bending approaches from the field of engineering pose problems for standard cloth

simulation methods, Thomaszewski [TW06] explore some different bending models for

thin-flexible objects and describe their transition to a discrete sitting. Other bending

models exist such as the quadratic bending model of Bergou et al. [BWH+06]

Provot [Pro95] introduced an inverse dynamic procedure to correct the length of

super-elongated springs which improved the usability of mass-spring systems as lower

(more stable) spring constants could be used while still being able to limit stretching.

Corrections are applied to positions of vertices to restore the length of the springs

assuming that the direction is correct. The order of applying the corrections affects

the convergence of the method; Provot did not address this and used an ad-hoc order.

Kang et al. [KCCP00] proposed a dynamic ordering used with Provot’s method based
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Stretch Spring 

Bend Spring 

Shear Spring 

 

Figure 2.1: Mass spring networks constructed from a quad mesh (left) and a triangu-
lar mesh (right). Connected springs are highlighted in each around for a single vertex
(red). Left) Each vertex is connected to two horizontal and two vertical stretch springs
(blue), four diagonal shear springs (green) and four bend spring (yellow). Right) In
the case of a regular triangular mesh with valence size, each vertex is connected to six
stretch springs (blue) and six bend springs (yellow). There are no shear springs but
for each triangle, its three stretch springs while working together will also counteract
shearing.

on elongation length, using a bucket based sorting approach with buckets distributed

uniformly over the range of the elongation lengths for n springs. This worked effi-

ciently in O(n) time, they did not consider the order within buckets so the number

of buckets and distribution between them is important to the result. More recently

this has been researched by Ozgen and Kallman [OK11]. They considered the main

direction of stretch to be in the direction of gravity, they traverse cloth edges starting

simultaneously at fixed vertices and propagating along the direction of gravity build-

ing a correction map. The correction map describes the order in which to visit each

spring to correct the length. Only the second (lower) vertex of each spring needs to be

corrected assuming the first was either fixed or previously corrected. It is important

to synchronise the expansion from fixed vertices to avoid artefacts and each vertex
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has a visited count, and may only be visited a limited number of times. Springs were

classified into three categories: Horizontal, Vertical and Shear springs; they claimed

that this priority ordering produced correction maps with the “best-looking” defor-

mations out of six possible combinations but they only provided illustrations for four

out of the six combinations. Fixed correction maps are pre-computed for real-time

performance; however, multiple maps can be pre-computed and switched between.

This was demonstrated with a dress, vertices make contact with the knees at certain

places during the animation and can be considered fixed, so three correction maps

were needed: a) no knee contact, b) right knee contact, c) left knee contact. The

authors therefore conclude that their method is suitable for cyclic animations, where

multiple correction maps can be pre-computed. The approach is limited in situations

where dynamic correction maps are needed or there are variable external forces (in

addition to constant gravity) which would affect the main stretch directions. The

author’s say they achieved an improvement of the computation time by 80%, but

unfortunately they did not give any timings or further information.

A related area is the simulation of thin shells which are flexible and extremely thin

like cloth, but include a range of plastic to elastic materials such as light bulbs, paper

and rubber. Thin shells normally require continuum mechanics to solve. However,

Grinspun [GHDS03, Gri08] presented a simple discrete shell model for triangle meshes,

and described how it could be implemented quickly by modifying a standard cloth

simulator. Wardetzky et al. [WBG+08] proposed a hinge-based bending model for

the discrete simulation of plates and shells derived from a purely geometric view (and

also a derivation based on finite elements). They demonstrated their method on a

number of examples, more interesting including cloth, such as a flag and draping on

a sphere.

Kang and Cho [KC02] presented a bi-layered method to generate realistic wrinkles
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with a large number of vertices by using two mass-spring networks, one rough mesh

for global deformations (experiencing internal and external forces) and a fine mesh for

realistic wrinkles (experiencing only internal forces). The bi-layered approach avoids

over damping so relatively large time steps can be used (1/30 seconds).

Andrews [And06] modified a rigid body physics engine to simulate cloth, where

the engine itself provides no mechanism to model deformable objects by connecting

a grid of rigid body components by damped springs. The springs were created using

custom joints, to allow cloth-like behaviour at interactive frame rates. This presents

a very easy implementation, where many details such as numerical integration are

handled by the physics engine. Often simulations focus on one domain, i.e. just the

cloth simulation but its integration with other materials and objects are interesting

but two-way interactions between different domains are difficult. Baraff and Witkin’s

[BW97] present an interleaved method for accurate geometric behaviour with minimal

overhead compared to the simulations running independently. They were able to

simulate particles streams, rigid bodies and cloth that were interacting with each

other or otherwise connected together (cloth fixed to rigid objects).

Continuum-based Simulation

On the other hand, compared to discrete particle-based simulations, continuum-based

methods aim to model the cloth as a whole by treating it as a continuous surface, the

most widely used method to solve this is the Finite Elements Method (FEM). FEM

is a numerical method to find the solution of partial differential equations (PDEs) by

approximation, ensuring numerical stability applied to problems such as fluid flow,

heat and elasticity. In FEM complicated problems are discretised into a finite number

of small elements which are then solved in relation to each other. Cordero [Cor05]

presented a model based on this for realistic behaviour of cloth while also providing

a solution to the poor convergence of elastic properties usually associated with FEM.
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The example given was of a figure dressed with a poncho consisting of 3325 elements;

each frame took 14.67s with a time step of 10 µ seconds using a RK4 integrator

producing detailed folds and wrinkles.

Thomaszewski et al. [TWS06] presented a method to model consistent bending

using co-rotational subdivision finite elements in order to correctly simulate the fold-

ing and buckling behaviour of cloth. They compared the compression of a real fabric

cylinder with simulated ones. Their method produced visually similar folding pat-

terns to the real one, however, the cost of their method makes it only suitable for

offline simulation. In comparison using a standard simple bending model, the fold

patterns were different to the real sample; also the patterns completely changed using

a finer mesh with the simple model.

Rodriguez-Navarro and Susin [RNS06] also presented a FEM cloth simulation, this

time using the GPU. They improved a GPU-Gradient Conjugate method (required for

solving the linear equation systems) together with an image based collision and self-

collision detection algorithm. Achieving a frame rate of 27 fps on the GPU compared

to only 3 fps on the CPU for a 128 x 128 isolated square mesh, which is compared to

a Constraints based methods running at 2.6 and 0.3 fps, and a Mass-Spring System

running at 60 and 8 fps on the GPU and CPU respectively. Though they provided no

visual comparisons for the three methods, it would be unlikely all three would look the

same. They demonstrated the high quality produced by their method with a detailed

animated character wearing a dress, but unfortunately they gave no indication of the

performance in this complex case.

Goldenthal et al. [GHF+07] made use of Constrained Lagrangian Mechanics to

limit stretching in the warp and weft directions by enforcing constraint equations on

a quadrilateral mesh. Their Fast Projection method acts as a velocity filter, and can

be integrated into existing simulation code although in this claim they were referring
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to the use of implicit integration only. The method achieved a 25 times speed up

with 1% allowed strain compared to that of only using implicit springs. In the case

of draping a square 2D piece of cloth over a sphere; their method was faster than

all of the four previous methods they tested, for different values of allowed strain

and different numbers of vertices. Their work was also demonstrated on a virtual

dancer, with a 10600 vertices mesh taking an average of 9 seconds per frame using

fast projection and an implicit treatment of bending and shearing. Interestingly, the

low strain achieved by their method ensured that the character’s tight fitting trousers

did not fall below its waist line.

English and Bridson [EB08] presented a finite element method using non-conforming

elements to simulate in-extensible cloth with a new second order integration scheme.

The use of non-conforming elements allows zero in-plane deformation (stretching)

while freely allowing bending, but it produces discontinuous meshes. They therefore

required the use of a second mesh for rendering which is coupled to the mesh of non-

conforming elements. Improved convergence of their new integration scheme reduced

the cost of a simulation of a cape from 5.37 to 3.96 seconds per frame as well as

reducing numerical damping.

Non-linearity of cloth simulations is important to realism, but cloth systems are

often linearised for simplicity and performance. Volino and Magnenat-Thalmann

[VMTF09] presented an approach based on continuum mechanics for simulating non-

linear tensile stiffness in an efficient way, by using an adapted strain-stress laws that

precisely describes the cloth’s non-linear behaviour. Forces are calculated on triangles

elements based on their 2D parametric coordinates and their deformed 3D world coor-

dinates. Their method was only 15% more expensive than an equivalent mass-spring

network but was much more accurate. They were able to iterate 17,500 elements per

second, the CG method took more than 50% of the time (10-15 iterations) for each
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timestep. Thomaszewski et al. [TPS09] presented continuum-based strain limiting,

allowing accurate control over all strain components (such as shearing and stretching)

without the problem of discretisation dependant behaviour.

2.1.2 Geometric Techniques

In this section we cover geometric techniques; these are methods that do not make

use of physics equations or integration as such; including geometric simulation and

geometric wrinkles.

Geometric Simulation

Geometric techniques have been developed, the first being the use of skeletal an-

imation or skinning; this is not suited to free-flowing garments but can produce

good results for tight clothes. For instance cloth vertices remain fixed at a distance

away from a point on the underlying character’s mesh and the mesh is animated in

the same way as the character’s mesh. There has been work on a hybrid approach

that uses this method for some parts of garments and a physically-based method for

the parts that are free-flowing; Cordier and Magnenat-Thalmann [CMT02] achieved

good results with this, much faster than simulating the whole garment purely by a

physically-based method.

Müller [MHTG05] presented a new approach to the simulation of 3D deformable

objects without the need of connectivity information and also being unconditionally

stable unlike physically based methods. They replaced energies by geometric con-

straints, and replaced forces by distances between current and goal positions. The

approach is mesh-less and uses a point cloud; goal positions are calculated by shape-

matching of the undeformed state to the current state of the point cloud. Stumpp

et al. [SSBT08] proposed an adapted shape-matching approach for the efficient and

robust simulation of clothing that is based on Müller et al.’s deformation model. The
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problem is partitioned into a set of overlapping clusters of three points that enables

efficient extraction of the optimal rotation for the shape-matching as well as allowing

out of plane deformations. The method supports a consistent treatment of shearing,

stretching and bending moments and features additional 1D clusters to further reduce

stretching. Computing the elastic response (excluding collisions) for a square piece of

cloth was linear in time complexity taking approximately 30ms for 10k vertices. The

example given for user interaction consisted of 109 vertices running at only 38 frames

per second; evidently it is difficult to consider the methods real-time feasibility for

clothes without a breakdown of the timing for this example.

Decuadin et al. [DJW+06] presented a fully geometric approach to clothing design,

starting with 2D sketches of the contours and seam lines of the garment as drawn by

the user directly on to a virtual mannequin. A 3D surface is automatically created

and a natural rest state of the garment is calculated including folds due to collisions

and gravity. A 2D sewing pattern can then be output from the final garment and

used to create an actual real garment for a comparison to the 3D one. The method

is good for garment prototyping; however, if a dynamic simulation is required the

2D outputted patterns could be used for a traditional physically-based simulation or

another dynamic simulation method. Chen and Tang [CT10] also presented a fully

geometric cloth simulation but it was general purpose. Inextensible cloth is simulated

subject to gravity and collision-free constraint and their algorithm interpolates a

smooth developable surface through a set of anchor points (and dynamic anchor points

for collision) generating high quality cloth surfaces. The disadvantage is the approach

is not dynamic and a final steady shape is eventually found, (in one example, a 961

vertex mesh takes 28.33 seconds to complete 56 iterations to reach the final state).

However, it is robust and numerically stable and is able to achieve inextensibility and

triangles remain isometric to their initial shape within very small tolerances.
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Geometric Wrinkles

Wrinkles are very important to cloth animation; they give users visual cues that

suggest that the cloth is deformed. Even slightly crumpled clothes look very different

from that of perfectly flat cloth. There has been a lot of work recently in the area

of generating cloth with wrinkles. Many methods work on coarse meshes (that are

faster to simulate and allow real time rendering and interaction). Wrinkles can be

added as details through texture and bump mapping shading methods. Methods

designed explicitly with wrinkling in mind have become somewhat popular and several

methods have been developed such as these for skin: [BKN02, RDMB08], cloth:

[HBVMT99, KWH04, CGW+07, DJW+06, Lov06, RPC+10, WHRO10] and both:

[MC10].

Larboulette and Cani [LC04] presented a method for designing wrinkles on pre-

simulated cloth or skin using control curves and length conservation. Users define

regions of influence on the mesh by placing ’wrinkling tools’, the wrinkling tools con-

trols real-time local deformation and subdivision is performed on the fly as needed. In

a clothing example, it runs at 17 frames per second with 4 wrinkle regions. Loviscach

[Lov06] presented an easy to control method to generate and render wrinkles without

requiring a highly tessellated surface, wrinkles can be introduced in the rest pose

through a 3D painting interface. A shirt consisting of 455 vertices, covering a screen

area of 330,000 pixels was rendered with wrinkles at 328fps. It should be noted that

at this point the collision handling can destroy the wrinkles; Bridson et al. [BMF03]

noticed and addressed this by resolving collisions to a band above the surface such

that wrinkles were preserved.

Other methods work on entire meshes, requiring less work from users but often

with less user control. Rohmer et al. [RPC+10] combines a coarse cloth animation

with a post-processing step for efficient generation of realistic-looking fine dynamic
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wrinkles. It uses the stretch tensor of the coarse animation as a guide for wrinkle

placement, ensuring temporal coherence by using a space-time approach for the place-

ment mechanism. The method is fully automatic, with a single user control parameter

to mimic different fabrics. Coarse simulations take 25ms to 2s per frame, with wrinkle

generation taking 1s to 2s per frame compared to 10-25 seconds per frame for the high

resolution simulations. However, high resolution simulations run at 10 to 25 seconds

per frame, achieving a one order of magnitude speed up.

Wang et al.’s [WHRO10] method uses a pre-computed data set to perform example

based wrinkle synthesis for clothing animation. The wrinkles are layered onto a coarse

base mesh capturing similar fine scale wrinkles to the high-resolution simulation. The

high resolution mesh of 25k vertices took 2-3 minutes per frame; the coarse simulation

of 638 vertices took 72ms and 84ms with the added wrinkles.

Müller and Chentanez [MC10] presented a fast yet simple method to add wrinkles

to a dynamic mesh such as cloth or skin. A higher resolution wrinkle mesh is at-

tached to the coarse base mesh, wrinkle vertices are permitted to deviate from their

attachment position within a limited range (specified by the user by painting on the

mesh. A static solver is used to calculate the shape of the wrinkle mesh and it runs

in parallel to the motion of the base mesh. Real-time performance is achieved; for a

shirt on a character using a 7k triangle base mesh with a 28k triangle wrinkle mesh,

the solver takes 4ms for five iterations per time step.

It is not the case that all coarse simulations employ a fine mesh; Hadap et al.

[HBVMT99] makes use of bump mapping, by using a user defined wrinkle pattern

modulated by a triangle deformation. At the time, on a MIPS R10000 200 MHz

processor, wrinkle coefficients took 5 minutes per one thousand triangles. Later,

Kimmerle et al. [KWH04] extended Hadap et al.’s algorithm with automatic proce-

dural texture generation for the wrinkle pattern. They generated a multi-layer texture
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from the strain deformation tensor of the simulation with loop subdivision to resolve

collisions, taking a combined 3.48 minutes per simulation second compared to 12.2

minutes for the high resolution simulation.

2.1.3 Data-Driven Techniques

There are many techniques that are applied to pre-existing cloth simulations based

on machine learning and data-driven techniques. Data-driven method in this context

are methods which rely on the use of pre-recorded simulation data to create new

simulations with increased performance and or realism by capturing qualities found

in the pre-existing data. For instance, Kavan et al. [KSO10] presented a method

to construct a skinned mesh from arbitrary vertex animations suitable for standard

linear skinning. Their algorithm is based on iterative coordinate decent optimisation

which achieves greater accuracy than previous methods, and yet requires one to two

orders of magnitude less pre-processing time by employing sparse vertex weights. A

360 frame animation of a cloth skirt with 5095 vertices takes 22.8 seconds with 22

bones compared to a previous, less accurate method taking 25.2 minutes.

Cordier et al. [CMT04] presented a data-driven approach for real-time process-

ing of clothes, starting with an analysis of a pre-simulated cloth sequence assuming

positions at fixed time intervals are known. By comparing the cloth’s behaviour to

the character’s skeleton an optimal combination of physical simulation and geometric

approximation can be found. At run-time using this combination good performance

and decent quality is achieved as long as the character’s motion is close to the origi-

nal sequence used. An Evening Dress model is reduced from 2992 triangle faces to a

coarse mesh of 110 vertices and rendered using surface patches, running at 26 fps.

Online clothes shopping software (also known as virtual try-on software) aims to

give the customer an idea of how the garment will look on them; it is an important
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sales tactic preferable to using human models as it is not feasible to hire models

of every shape and build. Cloth simulation is generally too slow for use with this

software, it is important for the user to get immediate results as they will no-doubt

want to flick through many garments quickly to see at a glance if they look good.

Alternatively to cloth simulation, a set of models are used with pre-fitted clothes,

allowing the user to choose one with the greatest likeness to them. However, this

requires a great deal of different models all pre-fitted with different garments. Gillies

et al. [GBC04] presented a compromise with a data-driven technique, by performing

Principal Component Analysis on a set of avatars that had clothes pre-fitted to them

offline. Users are presented with a weighted sum of these avatars to represent them-

selves, created from the user’s tailored measurement or alternatively from a 3D scan.

Then using those same weightings, the pre-fitted clothes could be dressed onto the

user’s avatar.

On a related noted, Ruiz and Buxton [RB01] presented an approach to reconstruct

the surface of 3D scans of clothed people. They cite applications for creating, manip-

ulating and animating life like human models such as for use in entertainment and

films, games and the fashion industry. They use a model-based procedure designed

to cope with unorganised 3D point clouds produced by humans wearing clothes with

creases and folds. Exploiting the model of properties of fabric from [VSC01a], Ruiz

and Buxton’s procedure gives accurate results even with high levels of noise, irreg-

ular sampling and missing data. The surface fitting works by energy minimisation

with the cloth model constrained by ’data-fitting forces’, iteratively, the cloth model

converges to the scanned points.

Feng et al. [FYK10] developed a hybrid method to capture the relationship be-

tween two resolutions of a cloth simulation. The data driven approach is trained using

rotation invariant quantities extracted from the cloth models, and is independent of
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the simulation technique for the lower resolution model. Combined with fast collision

detection and handling, using dynamically transformed bounding volumes, real-time

performance is achieved on the GPU. The disadvantage of this method is that it does

not generalise well, where the fine mesh training data is very different from the coarse

simulation. This is an important consideration in many data driven approaches, not

just for cloth.

de Aguiar et al. [dASTH10] presented a method for learning clothing models that

treats training data as a black box. It approximately resolves cloth-body collisions,

and is a method to bridge skinning and physical simulation with the speed of the

1st and dynamic effects from the 2nd. The advantage of the method is the per-

formance allowing 1000 or more characters in real-time (0.00049s for 1,454 triangle

dress or 0.01497s for 40k triangle dress per 1/30th frame). However, the two-step

training method took 1.5 hours in pre-processing time, the limitation is that it may

not also generalise well to things not seen in the training data set and it also only

approximately resolves cloth-body collisions.

Kavan et al. [KGBS11] presented a method for learning linear up-sampling opera-

tors for physically-based cloth simulation allowing coarse meshes to be enriched with

mid-scale details in minimal time and memory budgets. They start by pre-computing

a pair of coarse and fine training simulations aligned with tracking constraints using

harmonic test functions. Then the upsampling operators are trained with a new reg-

ularization method, and reintroduce high frequency details into the coarse simulation

using oscillatory modes. A Skirt with 196 coarse and 7016 fine points took 0.8ms and

0.1ms to upsample on the CPU and GPU respectively; the coarse simulation took

0.5ms to simulate. The limitations include that there is no collision processing on

the fine mesh (bounding volumes were expanded instead). A simple coarse model is

used, with linear upsampling operators and in its current form it is not suitable for
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much higher resolutions.

Kim and Vendrovsky [KV08] presented a technique for a tool for animators, it

allows users to drive the deformations of one object (garment) using the shape of

another (character) for tight fitting clothes or where the deformation is closely linked

to the pose (of a character). By analysing reference poses weightings are then calcu-

lated for fast linear blending, but it requires the use of collision detection. Secondary

motions are missing, though if they are needed the technique can be used to guide the

cloth simulation using spring constraints. It can be used in a hybrid fashion applied

to more rigid areas and the dynamic areas are simulated.

2.1.4 Rendering, Texturing and Shading

Many authors do not specifically mention the rendering of the cloth, choosing to

focus on the simulation and collision. However, the visual appearance of cloth can

be as important as the deformation, often the look and feel of the cloth is due to

the deformation combined with lighting allowing us to see the shape and wrinkles

by way of shadowing and highlights. Subtle effects can make the difference between

a realistic looking leather garment and plastic looking one. Programmable graphics

shaders allows the use of many lighting models such as Phong [Pho75], Cook-Torrance

[CT81] and Oren-Nayar [ON94]. It is beyond the scope of this thesis to discuss

them here; however, one should try to select the lighting model to most accurately

reproduce the look and feel for the type of cloth you desire to model. Often the choice

of lighting parameters are more important than the actual choice of lighting model;

the perception of simulated materials has been widely studied, for instance [Rus08].

Many clothes have colour patterns and stripes, made from woven coloured thread,

dyed or printed; naturally rendering with textures can provide this. Daubert et al.
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[DLHS01] presented an approach that takes into account view-dependent effects in-

cluding occlusions, shadows and illumination for rendering of knitted patterns, in

particular a woollen sweater with knit and purl loops. They model the micro geome-

try of knits and weaves using an implicit surface of Bézier curves, and they employ a

spatially varying BRDF (bidirectional reflectance distribution function) representa-

tion. Later Sattler [SSK03] uses a BTF (bidirectional texture function) but instead of

using BRDF for each texel, they generate view-dependant texture maps using prin-

cipal component analysis. Their approach is able to be rendered and lit by point

lights or environmental maps and also including self-shadowing producing high qual-

ity results using graphics hardware. Adabala et al. [AMT03] presented a technique for

procedurally creating textures for twists of threads supporting variation in appearance

due to the tightness of twist, thickness and roughness. These thread textures were

composed into a texture which can be repeated seamlessly using a coloured weave

pattern. Adabala et al. [AMTF03] developed this further to create a multi-texturing

cloth rendered, combining procedural thread texture with generated BRDF textures

and horizon maps (for self-shadowing). The final result was demonstrated on a dress

allowing, in real-time, the illusion of woven thread with transparency resulting from

an adjustable gap size between threads.

Variation is also an important consideration for realism, this is largely considered

by the field of crowd rendering and often not considered in most cloth research.

Furthermore, most crowds do not employ cloth simulations and rely on skinning

approaches. A survey of real-time crowd rendering can be found here [RD05] and

another on real-time crowd simulation including behaviour and rendering can be found

here [ASDB08]. However, there is overlap in some research such as [DMK+06] where

Dobbyn et al. presented a real-time crowd rendering system for clothed characters

using imposters with pre-simulated cyclical cloth animations. UV mapped imposters
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are rendered and variation is added by selecting between diffuse textures.

Morimoto et al. [MTTT07] describes a method to simulate and visualise dyeing

cloth based on weave patterns using a liquid diffusion model. Later Morimot et al.

[MO09] were able to generate simulations of traditional tie-dyed cloth. It is possible

that this could be applied to colour complete garments such as Japanese tie-dyed

dresses. There has been work in simulating cloth while interacting with fluid [KSK04],

the cloth is modelled with thickness and fluid particles exert focus on a garment and

collisions can be treated uniformly. In reality, we expect the cloth to become wet

and behaviour differently than when dry, while also visually appearing ’wet’. For

instances, Huber et al.’s [HPS11] wet cloth simulation allowed the two-way coupling

cloth and fluid simulations; the cloth was able to soak up fluids by diffusion which

influenced the behaviour of the cloth via the additional weight.

2.1.5 Knitted and Yarn Level Simulation

Knitted fabrics appear very different to tightly woven ones, for example tending to

have visible holes and different knits or stitches change the properties of the resulting

cloth. A lower level approach can be employed to simulate or visualise cloth at the

yarn level. Physically correct micro structures of cloth are key to its appearance,

Meißeer and Eberhardt [ME98] presented an approach to correctly visualise them.

Their system is able to use ‘machine-code’ used by knitting machines directly, and

can be used for teaching or designing of knitted items by simulating a complete

knitting machine with global parameters. Stiches are approximated on a grid by

a mesh based structure, and then undergo physically based refinement simulating

stretching, repelling and bonding of yarn using a mass-spring system.

Nocent et al. [NNR01] presented a mechanical level of detail method for knitted

fabric, accelerated by reducing the degrees of freedom with parameter reduction using
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parametric bounding volumes. Ngoc and Boivin [NB04] describes a non-linear cloth

system which simulates the cloth as a complex yarn interlaced structure with friction

but avoids a detailed 3D geometric model of actual yarn. They incorporate the using

of KES data producing a realistic cloth simulation at fairly high cost, taking 0.115,

1.321 and 6.302 seconds per frame for 400, 2500 and 4900 particles respectively on a

2 GHz processor with a 0.001 second time step.

Kaldor et al. [KJM08] presented a detailed knitted cloth simulation at the yarn

level, modelling individual yarns by multiple B-splines with length constraints. Stretch,

bend and inter-yarn contact forces are simulated with damping and friction. One ex-

ample was a simulation of a legwarmer with 35,200 spline segments was achieved

offline in 10.8 minutes per frame. The method achieves similar static shapes and

properties as real knitted; characteristics emerge starting from a flat input configu-

ration and only differ by their interlocking pattern of stitches. For example, garter

stitch becomes shorted and width, rib stitch is the opposite and stockinette stitch

causes the fabric to start to roll up.
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2.2 Collision Detection

The field of collision detection (CD) covers a wide variety of techniques ranging on

input formats and complexity; therefore in this section we focus on reviewing collision

detection methods that have been specifically developed or used for cloth and clothing

or deformable surfaces while explaining general concepts that are important to the un-

derstanding of such work. There have been a number of surveys of collision detection

techniques, [JTT01, Yus02, KHI+07], including those suitable for deformable objects

[TKH+05], and a recent walk through of continuous collision detection techniques in

virtual environments [SB11].

Collision detection is an important part of cloth simulations; cloth must be pre-

vented from penetrating objects and surfaces, and garments must be prevented from

penetrating character bodies. It is indeed rare that cloth is considered by itself in

actual applications except perhaps flags or hanging clothes where a few simple par-

ticle positional constraints are enough. Depending on the situation, the cloth may

self-intersect and self-collision detection (SCD) can be important due to the often

very flexible nature of cloth. However, SCD is time consuming to detect and resolve,

so it is often left out in some time dependant situations such as real-time clothing on

characters. In the case of physically-based simulations; penalty forces can be applied

as the cloth comes close to the surface to repel it but it is hard to achieve the perfect

response to stop the collision, without under or over-shooting. Baraff and Witkins

[BW98] used strong damped springs to push the cloth apart between cloth-cloth col-

lisions with tangential damping forces to counteract sliding and emulating dynamic

friction. However, for cloth-object collisions they enforced positional constraints on

cloth particles. A simple approach is to ‘push’ cloth vertices onto the surface it has

penetrated. Bridson et al. [BMF03] pushed cloth vertices instead onto a band above

the surface so wrinkles were not overly destroyed, as they said they would be if pushed
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flat with the surface. A more complicated method is to resolve collisions in a global

way, Volino and Magnenat-Thalmann [VT00] presented a general geometrical correc-

tion method using the conjugate gradient method to find displacements to satisfy all

constraints simultaneously.

2.2.1 Two-Phase Collision Detection

Two phase collision detection is almost always used, beginning with a broad phase

followed by a narrow phase. The broad phase is to quickly prune away large areas

of non-intersecting objects or regions, outputting a potentially colliding set which

is then processed in the narrow phase. Most often bounding volume hierarchies

are employed for the broad phase, but alternatives exist such as spatial hashing

[THM+03]. Bounding volumes allow complicated objects to be represented by simpler

volumes such as boxes, spheres and convex hulls that encompass the object; generally

the quality of fit is traded-off against the cost of intersection testing. The narrow

phase is where actual contacts are computed and resolved, such as between cloth

particles or triangles and object triangles. It can be very costly, so an efficient broad

phase is needed for all but simple applications.

Zhang and Yuen [ZY01] use a bounding hierarchy for collision detection with their

multi-level cloth simulation; they add new nodes into leaves of the tree as the mesh

is refined. They also use their voxel-based self-collision method from [ZY00]. They

employ a uniform spatial subdivision technique, where the voxel size is determined

by the longest edge in the cloth guaranteeing no edge will penetrate more than four

voxels. Therefore each voxel will only need to be checked against four others reducing

the number of potential collisions. Self-collision performance is improved by consid-

ering the curvature, by the fact that low curvature areas cannot self-intersect which

is also exploited by [VT94, VCMT95, Pro97] previously.
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Other bounding volumes have been used such as k-DOPs (discrete oriented poly-

tope), constructed from k number of planes at infinity moved together until touching

the object. The simplest is an axis-aligned bounding box, made from 6 planes. Mezger

et al. [MKE02, MKE03] presented improvements for the efficiency of bounding volume

hierarchies for cloth animation, employing 18-DOP volumes. They perform orientated

inflation of the volumes with lazy updates using a tolerance distance. They also found

it was worth considering other trees such as a quad tree instead of binary if overlap

tests are cheap, reducing recursion depth although increasing the number of overlap

tests in the worst case. In an example of clothes (10757 particles) on a walking avatar

(28784 polygons), the hierarchy update took 114 milliseconds and collision detection

took 49 milliseconds per frame. Subsequently, K-DOPs have been used by several

other authors subsequently [WKK+05, BWH+06, TCYM08, HF07].

2.2.2 Discrete versus Continuous Collision Detection

There are two main collision detection approaches, Discrete Collision Detection (DCD)

and Continuous Collision Detection (CCD). Discrete collision detection is where ob-

jects are considered stationary or static at discrete time steps. Objects are firstly

advanced and then interpenetrations are detected and resolved at discrete steps. In

order to find the point of collision, the simulation may be backtracked and then re-

advanced with smaller and smaller time steps, homing in on the moment of collision.

This is rarely satisfactory and very expensive, analytic methods are often used instead

to find contact points between objects, and use them to resolve the collision using

constraints or with penalty forces. There is no concept of what happens to the objects

in-between time steps and as such DCD relies on small relative movements compared

to the size and velocity of the objects otherwise tunnelling may result. Tunnelling

is where a collision is completely missed due to the interpenetration only occurring
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in-between the discrete time steps. For example a small ball with a high velocity can

move completely through a wall in a single time step and no collision will be detected

by DCD (see Figure 2.2).

Figure 2.2: Discrete collision detection (DCD) can miss collisions due to tunnelling.
Left) The ball tunnels through the wall without a collision being detected. Right)
The time step is halved; resulting in smaller position updates such that a collision is
detected. In this simple case, it is trivial to see that the ball cannot be allowed to
move in a single step more than the sum of the ball’s width (diameter) in addition to
the wall’s thickness to prevent any chance of tunnelling with DCD.

Continuous collision detection solves tunnelling by considering the continuous

movement of objects in-between time steps, typically calculating a time of impact

for each collision. The path of an object over a time step defines a volume, called

its swept volume. The swept volumes of two objects do not intersect if there is no

collision. If the volumes do intersect then further investigation is needed as they

may or may not actually collide. It depends on the velocity and relative sizes, so the

time of impact must be verified (see Figure 2.3). CCD is therefore more complicated

and expensive than DCD; therefore often approximations are required for real-time

applications. Swept volumes can be approximated by boxes, providing a less accurate

fit but much cheaper intersection tests. Also, often linear movement over the time

step is assumed, allowing relative velocities to be used easily, greatly simplifying the

problem to that of a moving object against a static one. Similarly, objects can be
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updated sequentially instead of simultaneously such that only the current object be-

ing updated is considered dynamic and all others are considered static using relative

velocities. This allows objects to be simulated using different time steps and makes

handling CCD for many objects in contact easier (also it is easy to reverse an update

of a single object).

a) 

b) 

Figure 2.3: Continuous collision detection (CCD) can be performed between objects
by examining the intersections of swept volumes. Left: CCD prevents the ball from
tunnelling through the wall even though it moves large distances compared to the
wall’s thickness. Right: Intersection of paths does not guarantee a collision, it depends
where the intersection occurs and the speed of the objects.

2.2.3 History versus History-Free Approaches

There is another consideration for collision detection, whether to use a history-based

approach or a history-free approach. History-based approaches gain performance by

using information from collisions at previous simulation steps (with an associated

memory cost) often exploiting temporal coherence, and can make certain problem

easier to solve such as which direction to resolve interpenetration of two surfaces

(see Figure 2.4). One way to determine correct orientations is through voting, for

instance Volino and Magnenat-Thalmann [VCMT95] forced all collision in the same

region to have the same orientation according to the majority. Bridson et al. [BFA02]

history-free approach applied repulsive forces between surfaces in close proximity to
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reduce subsequent interpenetrations, but it had to be performed in a collision-free

state to avoid interpenetrated areas being made worse (attractive forces can be used

in interpenetrated areas [VCMT95, BWK03].) Selle at al. [SSIF09] noted that many

opportunities for repulsions are therefore missed, since the cloth can move enough in

a single step to generate interpenetrations without any causing any repulsive forces to

be applied. Their history-based approach improved this and was able to incorporate

history from the last collision-free state to determine pairs that they could then apply

repulsions to at a finer granularity than the outer collision loop (i.e. also during time

integration steps). They used the data to determine correct relative orientations and

therefore correctly directed could be applied.

Continuous collision detection (CCD) does not necessarily imply a history-based

approach, it can use information from the current step together with only predicted

positions rather than detecting the collision after it happens. History-based ap-

proaches can fail seriously when errors are introduced from numerical precision issues,

overlooked special cases or code bugs. Just as the history must be correct, assump-

tions must also be correct, often it is assumed there were no pre-existing intersections

and that the system corrects all new intersections before advancing. However, one

must consider what will result if the initial system configuration contains intersec-

tions and what if the resolution of a collision introduces additional intersections. The

approach must be very robust or new collisions may not be correctly resolved or they

may be missed entirely as the system progresses, leading to catastrophic failures such

as a garment completely falling off of the character wearing it. For instance even with

history data, Volino and Magnenat-Thalmann [VCMT95] approach required consis-

tency checking and correction, since inaccurate response or complicated cases lead

to incorrect orientations and therefore incorrect collision handling. The pinching of

cloth is also such a case where history can be invalidated; this is discussed in Section
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2.2.7. History-free approaches immediately have the benefit of being resilient to errors

by being designed to handle nearly any previous state (depending on assumptions,

e.g. intermediate collision-free state etc. but typically having no knowledge of the

previous states); therefore they have a greater chance of recovery when things go

wrong.

a) b) 

Figure 2.4: It is not always obvious how a collision should be resolved correctly;
this figure shows such an example between two colliding surfaces (green and red).
The intermediate state is identical for both a) and b), but knowledge of the previous
state leads to two very different intersection-free states. The relative positions of the
surfaces are maintained after collision resolution, a) green on the left and red on the
right, b) red on the left and green on the right.

2.2.4 Collision Detection for High-Resolution Cloth

High fidelity offline cloth simulations are of little use and are severely limited without

suitable collision detection and response. Bridson et al.’s [BFA02] work generates high

quality wrinkles with complex collisions. By robustly processing collisions, contacts

and friction, with a collision aware post processing step a surface is subdivided and

iteratively smoothed for rendering. Their approach took approximately two minutes

per frame for a square piece of cloth with 150 x 150 particles. Much work is fo-

cussed in the broad phase, reducing the number of elementary tests between adjacent

primitives such as edge-edge, edge-triangle and triangle-triangle tests; in fact efficient

collision detection is only achievable by reducing false positives as the performance of

elementary tests themselves cannot be significantly improved further. Govindaraju et
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al. [GKJ+05] presented a method that accurately detected all self-collisions for a 23K

triangle cloth dress in 400-550 milliseconds. Their chromatic decomposition partitions

a fixed topology mesh into independent sets, and uses a linear-time culling algorithm

performing 1D overlap tests on the CPU and a 2.5D on the GPU, hence greatly reduc-

ing the number of elementary comparisons required. Curtis et al. [CTM08] achieved

a 15 times reduction in the number of elementary tests and a 4.9 times speed in-

crease. Their example of a dress worn by a flamenco dancer (26k vertices, 75k edges

and 50k triangles) took 200ms to calculate all self-collisions and collisions with the

character. They employ what they call “representative triangles”, standard triangles

that have been augmented with mesh features information (a feature is a vertex, edge

or face used in elementary tests). Feature-based hierarchies which use three separate

bounding volumes (one for each feature type), eliminate duplicate elementary tests

and improve culling performance at the increased cost of memory (4-7 times more)

and increased maintenance and traversal costs. Their representative triangles, allow

the use of a single bounding hierarchy while retaining the benefits of feature-based

hierarchies, an improvement compared to Hutter and Fuhrmann’s [HF07] work which

used multiple trees.

Tang et al. [TCYM08] introduced the concept of “orphaned sets” to remove nearly

all redundant elementary tests between triangles achieving one order of magnitude

speed up used with a bounding volume hierarchy, by employing connectivity based

culling. Previous self-collision methods based on normal cones were limited to discrete

collision detection; they extended them for continuous collision detection. They were

able to reduce the number of false positives by 38 times for a high resolution piece

of cloth (46k vertices and 92k triangles) draped over a rotating sphere with many

self-collisions. It took on average 290ms to perform the CCD. Their approach is

general and also handles breaking of objects or n-body simulations, but performance
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is reduced with the loss or lack of connectivity information.

Cloth is not often simulated using high resolution meshes even off-line, typically

less than 100,000 elements and far less for real-time simulations. Often we strive to use

the fewest number of polygons that will generate an acceptable quality of simulations

to save processing time. However, interestingly Selle et al. [SSIF09] used much higher

resolutions producing impressive high fidelity simulations. Using meshes of up to

an incredible 2 million triangles importantly with a robust history based collision

framework that accurately handles friction, objects and self-collisions. Simulation

times were on average between 6 and 45 minutes per frames for different simulation

set-ups. It would be interesting to see how these off-line methods scale for much lower

resolution cloth; it may be there is too much overhead where there will be far less

false positive to prune away.

2.2.5 Impact Zones and Fast Moving Cloth

Fast moving cloth is a particular challenge, not only necessitating the use of contin-

uous collision detection as tunnelling becomes severe but collision response becomes

problematic. Penalty based approaches may not provide sufficient force to prevent

collision with fast moving cloth. So often cloth velocities are averaged in regions of

collision and the collision is resolved as if the cloth were rigid in so called zones of

impact or impact zones (IZ). Impact zones were originally proposed by Provot [Pro97]

for handling self-collisions but its definition was extended by Huh et al. [HMB01] to

include collision against other bodies. Over time, clumps of rigid regions form and

are merged together; it can be difficult for them to separate. Bridson et al.’s rigid

impact zones (RIZ) [BFA02] improved upon [Pro97], preserving linear and angular

momentum while including cloth thickness using proximity constraints. A few itera-

tions of local impulses were used first before switching to the RIZs. They state that
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their repulsion forces and initial collision impulses keep the zones small, isolated and

infrequent; while tending to separate zones after they are formed helped by the cloth’s

thickness. Huh and Metaxas [HM06] presented an algorithm for collision resolution

of clump-free fast moving cloth with self-collisions, taking 1-4 minutes per frame.

The ordering is important; they determined that self-collisions must be resolved be-

fore rigid-cloth collisions, and that penetrations must be resolved before proximity

constraints to minimise clumping. Collisions are grouped into impact zones, and edge-

contacted cloth nodes, called collision clusters are resolved simultaneously with fewer

worries of clumps forming. Later, Harmon et al. [HVTG08] achieved free-flowing

motion even when cloth was forced through a narrow funnel, pushed through by a

ball, generating complicated collisions. They presented an alternative fail-safe that

instead of making regions rigid, they only cancelled impact motion but not sliding

motion so that there is less artificial dissipation, replacing the “rigid impact zone”

step of Bridson et al.’s algorithm [BFA02]. The cost per frame was 9.61 seconds per

frame (compared to 18.81 seconds for the rigid impact zone) on a complicated funnel

example with 16569 degrees of freedom.

2.2.6 Sharp Features

Objects with sharp features present many challenges for collision detection, since

sharp features ’poke’ through the cloth and causing it to get stuck. Fuhrmann et al.

[FSG03] noticed this problem when using distance fields and only evaluated particles

against the field. To combat this they introduced collision tests on the centre of

edges and applied a correction to its two end particles if needed, for efficiency only

edges where both particles were in close proximity to an object need be tested. Wong

and Baciu [WB05] presented a dynamic collision detection approach for deformable

surfaces against non-smooth objects, the deformable surface is partitioned into a finite
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set of surfaces effectively pruning a large number of non-colliding areas. Collisions are

resolved by constructing a penetration free motion space for particles and keeping the

velocity within the motion space such that currently colliding pairs will not collide

in subsequent motion. They present a number of examples of cloth colliding against

very rough rigid surfaces with many spikes without penetrations.

2.2.7 Pinching of Cloth

There has been research into handling pinching of cloth between surfaces, such as

with garments pinched under the arms or between the legs. The main problem is

caused by object meshes self-intersecting, and therefore there is no correct way to

resolve a collision for cloth trapped in these self-intersecting areas. This typically

defeats history based approaches, and invalidates assumptions of the previous state

being collision free. Baraff et al. [BWK03] presented an offline approach to untangle

clothing with many self-collisions using a history-free approach and clever handling

of these pinched regions. Intersection curves were found between the cloth mesh and

another mesh (e.g. the character, or with the cloth itself) and then the meshes were

coloured on both sides of the curves using a flood fill algorithm. The smallest coloured

areas are taken to be intersection areas; this works well for small updates where

collisions are not left to become so large that the wrong side is chosen. Attractive

forces are applied between intersection areas and repulsive forces to non-intersecting

areas to resolve a collision. They handled pinching by attaching cloth particles to

the surfaces with weights when in close proximity of more than one surface allowing

relative motion of the pinching surfaces, while tending to position the cloth half way

between two stationary surfaces. Their approach with a garment with 18K vertices

increased costs by less than 0.5 seconds per frame on a 2 GHz CPU, which they say

is negligible for their offline simulation but obviously far too expensive for real-time
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work.

2.2.8 Real-Time and Interactive Approaches

Prez-Urbiola and Rudomin [PUR99] presented a way to model multi-layer clothing on

articulated implicit characters using a scalar distance field produced from ellipsoids.

Isosurfaces were used to place garments into one or more independent layers. Cloth

vertices are moved towards their assigned isosurface using the scalar field, together

with a mass-spring network to give the garments shape. Interestingly as long as

the garments remain locked to their different isosurfaces, no inter-garment collision

detection is needed since their respective isosurfaces do not intersect one another.

Rudomin and Meln [RM00] extended this approach to work with standard skinned

characters; however the calculation of the scalar fields remained a serious bottleneck.

Subsequently Rudomin and Castillo [RC02] achieved real-time performance but by

no longer supporting multi-layer cloth. They still used a hierarchy of ellipsoids to

approximate a virtual character, but made use of distance calculations instead of

implicit isosurfaces for collision detection. Mass-spring particles move with the ellip-

soids as the character is animated, and then they are allowed to move freely using

physics simulation step while correcting any penetrations with the ellipsoids. Meng

at al. [MMJ10] also used ellipsoids but with only a static character used for virtual

try-on software for clothing.

Armless mannequins have been represented by contours for Garment CAD [MK05],

a cloth particle that is between two contours is checked for collision by creating an

interpolated contour at the height of the particle. They resolve collisions by reversing

the velocity of a particle and damping it with a frictional force but the position is not

corrected but instead rolled-back. Rapid collision detection was achieved with dis-

tance fields for cloth against rigid objects [FSG03], they use a fixed distance envelope
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around objects for which they compute the field. Trilinear interpolation is used to

reconstruct the distance any point, but to reconstruct the normals they say it is faster

to analyse the gradient of the field. Collisions are resolved inelastically with added

friction but exact intersections are not computed for performance reasons. Decaudin

et al. [DJW+06] also used a precompiled distance field around a mannequin for col-

lision detection for virtual garments, and moved particles outside in the direction of

the distance field. Distance fields are problematic for animated or deformable objects;

this is because pre-computation of the fields is costly in both CPU time and memory.

Geometry images capture geometry (meshes) in a 2D space as an image of (x, y, z)

coordinates, additional information such as surface normals or colour can be stored

as additional images. Zink and Hardy’s [ZH07] novel approach employs geometry

images for the simulation and collision of cloth. Static objects are contained in a unit

cube surrounded by a bounding sphere, in pre-processing their coordinates are con-

verted into polar coordinates centred on the sphere stored in a square array indexed

by the two angular components. It can contain more than one entry for each array

position sorted by distance to the centre; additionally triangle interiors are rasterised

so that there are no gaps in the array. The collision detection is performed by firstly

checking cloth particles against the bounding sphere, and then each particle is tested

against the array in polar coordinates. In this way, the array can be used as if it were

a distance field.

Cordier and Magnenat-Thalmann’s [CMT02] real-time clothing approach was only

to perform collision detection with only floating parts of the clothing, skirts were

tested against the character’s leg which were approximated simply by cylinders. They

pre-computed a potentially colliding list based on distance to the legs and normal

orientations of vertices on the skirt, then during the simulated only these vertices

were tested and the response was to kinematical correct their position and velocity.
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They later [CMT04] employ pre-computed collision hulls created from offline pre-

simulated cloth, relying on sufficient variation and range of motion that the hulls

encompass all positions required during the runtime simulation. Again, only floating

or loose areas of cloth are tested for collisions, the collision hulls greatly reduce the

area of intersection needed to be tested against allowing real-time performance of 31-

74 fps with different coarse simulations although separate collision timings were not

given. Their pre-processing step took around 8 minutes for each simulation, excluding

the offline pre-simulated cloth.

Achieving real-time performance puts tight limits on the complexity of the cloth

and collision testing and approximation is a recurring theme for much real-time work.

For instance, Fuhrmann et al. [FGL03] achieved interactive animation of cloth with

self-collision by approximation only; it considered pairs of particles and held them

apart using a bounding hierarchy of particles. A 1000 particle square mesh ran at 30

Hz allowing a user to drag it around and over a table top. Andrews [And06] used

a rigid-body physics engine to simulate a small square piece of cloth at 40 fps. The

cloth was approximated by a bounding sphere at each vertex. Such approaches are

hard to work with, if the spheres are too large, the cloth will appear to hover above

surfaces or if they are too small other objects could pass through the cloth.

Vassilev and Spanlang [VS00] used image-space interference tests for collision de-

tection for the dressing of virtual characters using depth and normal maps. Subse-

quently, Vassilev et al. [VSC01b] used their image-space collision detection for clothes

on an animated virtual character, at the time allowing animations to be produced

at 3-4 fps. Front and back views are rendered, and the GPU is used to create two

depth maps, two normals maps and two velocity maps for the character. The maps

are transferred to the CPU’s main memory and the cloth is tested against them

by converting cloth vertex positions into the map coordinate system and then the
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information from the maps is used to resolve each collision.

There has been other work using the GPU but also based on traditional tech-

niques, such as Greßat al. [GGK06] presented real-time collision detection (including

self-collision) for deformable surfaces composed of NURBS (Non-uniform rational B-

spline) patches using a bounding volume hierarchy. Importantly there was no read-

back needed to the CPU from the GPU, they demonstrated it on a simple deformable

flag being hit by small balls running at 25 frames per second.

2.2.9 Multi-Core Collision Detection

Multi-core collision detection is proposed to accelerate the computation but it is not

easy to achieve good scaling performance. It is difficult to divide tasks efficiently be-

tween cores; loads are not predictable and depend on the simulation and current col-

lisions. Therefore, exploiting temporal coherence is important. Tang et al. [TMT09]

presented a parallel algorithm for continuous collision detection between deformable

models that does exploit temporal coherence. They maintain a “front” that records

information from the last simulation step and updates it to check for new collisions

in the current step. However, their incremental approach requires a large amount of

memory and did not achieve a linear speedup. Running time was reduced to 18.94%

with 16 cores compared to a single core, 37.34% and 24.06% with just 4 and 8 cores

respectively on 2.93 GHz CPU. Calculating non-adjacent pair collisions was a par-

ticular bottleneck, not scaling past 8 cores (only reduced to about 40%); nonetheless

interactive collision detection is achieved for a cloth-ball benchmark, taking 72ms per

frame. Subsequently, their improved approach [TMT10] scaled much better and was

able to achieve 7 and 13 times speed up for 8 and 16 cores, taking between 5.3ms

to 32.5ms in benchmarks with 4k to 92k triangles. They use a 2-3 (balanced) tree
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instead of a binary tree, they present adaptive strategies to decompose the compu-

tation in to sub-tasks while minimising synchronisation overheads and using a cache

friendly layout.
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2.3 Levels of Detail for Cloth Simulation

The use of Levels of Detail (LOD) techniques are common place in Computer Graph-

ics. They are particularly used for rendering that exploits view-dependant criteria

such as progressive meshes [Hop97] with criteria based on the view frustum, surface

orientation and screen-space-geometric error. Techniques such as these allow great

increases in performance for rendering, enabling large detailed scenes to be rendered

at real time frame rates. LOD approaches has been extended to simulations, so called

Simulation Levels of Detail (SLOD) [CH97] used subsequently, for example in multi-

agent control [BH02] and plant motion [BK04]. Also the adaptive simulation of 3D

deformable bodies have been researched [DDCB00, CHCK02, CHCK05]. LOD has

been introduced for cloth simulations by way of multilevel and adaptive meshes. The

geometric detail needs to be high in areas where the cloth is folded or wrinkled to

ensure a reasonable approximation to the ideal shape of the cloth; this increases the

computation time. In planar pieces, the shape can be represented faithfully by less

polygons and per-pixel lighting provides an illusion of a smooth surface. Hence cur-

vature is commonly used as a criteria to trigger increases in level of detail in cloth,

for example in [HPH96, LV05, VB05].

(a) (b) (c) (d) (e) (f) 

Figure 2.5: This figure shows various subdivision schemes for quads (a,b) and trian-
gles (c-f).
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Subdivision of quads and triangles are common place for rendering, multilevel and

adaptive meshes can use similar subdivision or refinement schemes. In this work we

will refer to the act of applying subdivision to a mesh as refinement and hence the

reversal of it as coarsening. We express the number of times a polygon is subdivided

by its refinement level. A polygon (or mesh) has a refinement level of zero before any

subdivision, each time it is refined (often recursively), its refinement level is increased

by one. A uniform refinement is when all polygons in a mesh are refined to the same

level; conversely a non-uniform refinement therefore contains polygons from many

different levels. Figure 2.5 shows various subdivision schemes for both quads and

triangles. The regularity of a mesh is often a concern for accurate cloth simulation;

the mesh’s geometry determines the cloth’s degrees of freedom and the ways in which

it can bend. For instance, if using the simple bisection schemes (Figure 2.5 (a) and

(c)) we must subdivide along the longest direction each time otherwise long thin

quads and triangles would result which only allow increased bending in one direction.

Subdividing triangles by inserting a new central point leads to two schemes; (d) is

simple but produces an irregular pattern, the valence of existing vertices in the mesh

are continually increased each level. Valence is important for performance, many

costs such as vertex lighting normals and vertex mass calculations are proportional

to the number of adjacent faces. The other scheme,
√

3-subdivision [Kob00] (f) is

preferred over (d) and does not suffer from this problem (note: it could be obtained

by flipping the original edges of (d) after subdivision). Regular subdivision of quads

(b) and triangles (e) into four is also popular, it also increases resolution faster than
√

3-subdivision at each level (four times compared to three). Faster refinement may

or may not be desired and it can be likened to tree structures where depth is often

an important consideration, slower refinement means that more levels of refinement

are required for a similar increase in resolution.
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Figure 2.6: T-junctions result from refining deformable polygons in isolation, leaving
holes between adjacent subdivided and non-subdivided polygons. Left: Three out of
four quads are subdivided into four. Right: Three out of six triangles are subdivided
into four.

A challenge with using subdivision for cloth modelling is dealing with adjacent

geometry, leading to so called T-junctions. T-junctions if left can manifest as holes

in the cloth, for example if the new vertices are free to move in Figure 2.6. This

problem is discussed further in the following text as each author has their own way

of generating a conforming mesh suitable for cloth simulation.

2.3.1 Multilevel and Multigrid Methods

Subdivision methods and simulations that perform or use uniform mesh refinements

are commonly referred to as multilevel or multigrid methods. However, the terms

multilevel and multigrid can lead to confusion because they have been used by differ-

ent authors to mean different things. At their heart, one can imagine that a coarse

mesh can be recursively refined to give a range of levels or grids, i.e. multilevel or

multigrid.

Firstly, we cover the less commonly used meaning of multi-level methods, which

have been previously used to accelerate draping simulations rather than full dynamic

cloth simulations, suitable for when the cloth has a final resting position. It is an
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interesting LOD technique that is based on elapsed time rather than traditional cri-

teria. Zhang and Yuen’s [ZY01] fast cloth draping simulation used this meaning of

multilevel meshes, by dividing the process into several phases. The simulation starts

with a coarse mesh, which is fastest to simulate. It is then subdivided after each

phase, thereby increasing the detail and cost of the whole mesh where the mesh is

closer to its final resting position. The time chosen to enter the next phase is crucial;

once the coarser mesh has reached its balanced position, the final shape could not

be noticeably improved by further subdivision. On the other hand, advancing phases

too quickly will cause the performance gains of this method to be lost, so a balance

must be achieved.

The more accepted meaning is from the field of numerical analysis where multigrid

methods have been developed to solve differential equations using a hierarchy of

discretisations, i.e. discrete levels of detail. They are designed to accelerate the

convergence of iterative methods by solving a coarser problem and using the coarser

levels to propagate global information to the finer levels. Such methods are commonly

applied to engineering problems such as electromagnetic field modelling and fluid

dynamics but have also been used for cloth simulation with a hierarchy of meshes.

Oh et al. [ONW08] presented an efficient multigrid algorithm for cloth simulation

with implicit integration; it was about four times faster than the preconditioned

Conjugate Gradient method. Starting from a coarse mesh, multi-resolution meshes

were generated and they were optimised for improved performance by making the

triangles equilateral and uniform, all having the same area. Their algorithm was

demonstrated on clothed characters, achieving from 3 to 10 frames per second and so

allowing interactive garment prototyping of garments with up to about 10k particles.

Multigrid methods have also been used to accelerate very high density meshes;

Lee et al. [LYO+10] presented a novel offline multi-resolution method to efficiently
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perform large-scale cloth simulation. Starting from a detailed mesh, they dynamically

simplify smooth regions and then reconstruct the full solution to the linear system by

interpolation. Their simplification metrics consider smoothness of stretching, shear

and bending forces, velocity, as well as collisions. The advantage of this method is

that it achieves large performance gains for little loss of simulation quality. In their

example, the cost for simulation of a character wearing a dress was reduced from

23,055ms with it’s the 240k triangle mesh to 2745ms using their simplification and

reconstruction technique. It would be interesting to know if this approach could scale

to much lower resolution meshes and still remain efficient.

Hardware has moved towards the increased use of multi-core processors where data

sharing becomes complicated, since simultaneous data writes must not be allowed.

Lario et al. [LGPT01] presented a multilevel cloth simulation but used OpenMP to

accelerate it and also compared its efficiency to MPI. OpenMP is an industry-standard

API (application programmer interface) for shared-memory parallel programming

[DM98]. MPI stands for Message Passing Interface, and it is a language independent

communications protocol that is used to program parallel computers [GLDS96]. In

Lario et al.’s [LGPT01] work, over 70% of the time was spent computing the finest

level scaling almost identically for different square grid sizes of 128, 256, 512 and 1024.

The parallel efficiency remained above 90% for 4, above 80% for 8 cores and above

40% for 16 cores for both OpenMP and MPI. In some cases OpenMP performed better

than MPI and always better on one particular IBM processor, however, OpenMP’s

main attraction is described by the author as an “effortless way to get a parallel

version of the code”. MPI on the other hand requires much more effort to use but

achieves better efficiency for large problem sizes using SGI and SUN processors.
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2.3.2 Adaptive Meshes

Adaptive meshes are used for cloth simulation, in a similar spirit to progressive meshes

or tessellation for rendering but they have wider uses for rendering, simulation and

collision purposes. The main difference between them and multilevel or multigrid

methods is that the local refinement is performed during simulation on a single adap-

tive mesh. The mesh complexity is dynamically increased (refined) and often can be

decreased (coarsened) to balance quality against computational cost during runtime.

Adaptive approaches typically aim to exploit the variations in shape (mainly curva-

ture), to allow faster computation without sacrificing the detail to the same extent as

using a coarse mesh all of the time. Ideally, the simulation will appear to the user to

be the same if a detailed mesh or the adaptive one is used, resolution independence

is therefore an important consideration.

Adaptive Meshes for Collision Detection

Figure 2.7: Coarse meshes have difficulties with resolving collisions; they may not
have enough resolution to faithfully approximate the underlying surface. The figure
shows a cross section of two coarse meshes (Left, Middle) and finer mesh (Right)
draping over the side of a table. Left: Vertex only collision detection causes edges
to intersect the table. Middle: Collision detection is performed with the edges also,
but the mesh exhibits pivoting on the edge on the corner of the table, causing the
cloth to not sit flat on the top of the table near the corners. Right) a finer mesh
with full collision detection can greatly increase the ability to faithfully represent the
underlying surface.

Coarse meshes can experience problems in conjunction with collision detection;



52

they may not be enough resolution to resolve intersections in a pleasant manner.

For example, a coarse table cloth may not be able to bend at just the right point

over the edge of a table, leading to a number of problems depending on how the

collision was resolved, see Figure 2.7. However, the increased cost of refinement on

simulation costs may be prohibitive and lessen the problem rather than removing it

altogether. Previously, non-active points had been used for correct collision handling

by Howlett and Hewitt [HH98]; savings were realised by not having to simulate those

points. The non-active points are placed half way along edges in a quad mesh and

also in the centre of each quad. They claimed that the constraint of a uniform mesh

only being able to bend along predefined lines was effectively removed and the cloth

could bend as required for collisions. The mesh was able to drape over edges of

objects accurately although there is noticeable stretching as a result of the non-active

points being moved to resolve collisions. They concluded that the edges’ rest lengths

must be modified or the non-active points must influence the simulation in-order to

overcome the stretching; however they did not resolve this. Etzmuß et al. [EEHS00]

presented a cloth particle system that adaptively generates new particles only when

they are necessary specifically for the correct handling of collisions. This allowed

them to perform fast and accurate simulations with coarse meshes. Their approach

was better, the virtual points applied forces to the mesh via springs but they were not

completely integrated into the simulation, their position is only valid for a single time

step as it is calculated from the edge collision itself so they can be positioned exactly

where needed. More recently, Sifakis et al. [SSIF07] presented a hybrid simulation of

deformable solids. Their framework allowed embedding arbitrary sample points into a

mesh for handling collisions, plasticity and fracture without the need for complex re-

meshing although it was not accomplished in real-time. Hard bindings are introduced

and constrained by barycentric coordinates of their location on a triangle in the mesh,
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having no degrees of freedom they redistribute forces applied to their parents and are

used to deal with T-junctions. Soft bindings connect additional simulated particles

to hard bindings or even original particles of the mesh enabling two-way interaction

between the particle-based system and the mesh-based framework.

Simulation with Adaptive Meshes

Hutchinson et al. [HPH96] presented the first adaptive method for mass-spring sim-

ulations; it was designed to resolve the guess work require by animators to select

a suitable resolution for cloth animations. The method uses a quad mesh that is

uniformly refined recursively to level 2, but for performance it uses a flattened data

structure where the coarse mesh is refined to the finest level before simulation begins

at the cost of memory. At the start, particles corresponding to coarsest level are

active, and all others are non-active. Refinement is triggered for active particles if

the angle across them between two connected springs (in either direction) exceeds

a user defined tolerance; the simulation is stepped backwards to be repeated after

refinement. Eight non-active particles are activated and then the simulation step is

repeated and then continues until another refinement is triggered. T-junctions caused

by the non-active points are handled by interpolation, i.e. fixing them to the centre

of edges. The method produces a good speed up of cloth draping particularly as

collision costs were large, but did not feature coarsening. An example of a piece of

cloth (73x73 at the finest level) draped over a cup took at the time around eighteen

hours for the full simulation but only one hour for the adaptive one.

The use of adaptive methods to simulate cloth introduces problems which are

particularly prevalent when the mesh deforms. Care is needed to preserve the cloth’s

physical properties to avoid visually distracting artefacts around the subdivision

seams. Furthermore the physical properties may be different from a uniform mesh.
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Volkov and Li [VL03] found that fine wrinkles observed in the non-adaptive simu-

lation were missing from their adaptive one, these fine wrinkles were attributed to

buckling behaviour which cannot be detected by their curvature based criterion. It

is easy to only focus on in-extensibility and in-plane forces, but bending can be an

important part of cloth simulation for realism. The potential for sharp creases to be-

come even more severe has also been noticed [LV05]. Villard and Borouchaki [VB05]

presented an adaptive method to allow the mechanical system to behave without any

constraint related to a uniform mesh e.g. resolution independence. New points are

added to the mesh based on local curvature at that point. Four elements (quads)

are subdivided into sixteen around the point creating eight new active nodes and

eight virtual nodes. This becomes more complicated at successive refinements, some

virtual nodes become active and the number of new nodes varies in order to preserve

the warp and weft structure. Their adaptive and uniform simulation of cloth draped

over a sphere produced very similar results as shown by a superimposed image of the

two final meshes together, nonetheless the simulation time is improved by as much

as six times by the adaptive mesh. However, a major limitation of the approach is

that the refinement cannot be reversed; and as such this method cannot be used for

clothing on animated characters. After much movement the mesh will eventually be

fully refined resulting in no computational savings at all.

Mujahid et al. [MKM+04] effectively used OpenMP to implement an adaptive

cloth simulation with both refinement and importantly coarsening using a quad mesh.

So called ‘ghost’ particles needed for handling T-junctions were not simulated. In the

work, load balancing was an important feature and improved simulation times by up

to 32% when running on 8 cores even without considering cache memory coherency.

Timings for 8 cores were 6.3 times faster than a single core, taking approximately 11.1

seconds for 20 iterations. The simulation is slower for early iterations, where a high
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density mesh is used to resolve collisions and is then coarsened in flat areas as the

simulation progresses. It would be advantageous to simulation times if a coarse mesh

could be used from the onset, possibly using collisions as an additional refinement

criterion.

Quad meshes are relatively easy to subdivide and to handle adaptation of the

simulation parameters to achieve resolution independence, but are normally only

demonstrated with square pieces of cloth. It is less simple for semi-regular triangle

meshes, but they make it easier to create complicated shapes needed for clothing

without becoming too irregular hence triangle meshes are commonly used for clothing.

For instance, Li and Volkov [LV05] applied the
√

3-subdivision rule to clothes on an

animated character. A conforming mesh was extracted from an adaptive hierarchy,

with adaptation taking 87ms and the simulation taking 1.2 seconds on average per

step for 12k triangle adaptive meshes. Their adaptive simulation used more slightly

more triangles than the non-adaptive one but was of higher quality. It is rare to

see adaptive meshes applied to clothing, most are demonstrated on square pieces of

cloth such as Wang’s [Wan02] earlier adaptive method which employed a triangular

mesh. The method featured local refinement based on the curvature between adjacent

triangles but a triangle is only refined using a 1-to-4 split if the curvature across all

three of its edges is sufficient. There is no retriangulation and T-junction vertices are

fixed with a force propagation model. It shows good resolution independence using

implicit integration, however, unfortunately no performance statistics were provided.

An interesting and more generic method for incremental mesh adaptation which

supports any triangle refinement rule such as 1-to-4 split or
√

3-subdivision was pre-

sented by Volkov and Li [VL03]. Incremental methods perform only small changes

in a single update, such that the local level can only increase by one in the single

step. It leads to a smooth transition between highly refined areas and coarse area.
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Volkov and Li’s method is based on a hierarchy of semi-regular meshes; it requires

the construction of a conforming mesh to bridge different layers built from the trian-

gles in the highest available resolution (this is more complicated than simply dealing

with T-junctions, depending on the refinement rule different levels may not share any

common vertices and vertices may be placed outside the original boundary of the

mesh and need to be moved). However, they state that they were able to perform

direct updates to the conforming mesh alleviating the need to rebuild it each frame.

Their mesh was used in three applications, a physically based simple cloth simulation,

real-time terrain visualisation and procedural modelling.

Large Adaptive Meshes and Out-of-core Storage

Large adaptive meshes can present additional challenges to remain efficient. The

memory architecture of the computer must be taken into account where out-of-core

storage is needed. Large multiscale terrain models in [VL03] exploited the subdivision

connectivity of the adaptive mesh by storing related data in each data block, their

hierarchical storage layout out performed linear storage by more than an order of

magnitude. Typically only each 100th data request resulted in disk access. Cignoni

et al. [CGG+03] faced similar problems in their approach for the interactive rendering

of planet-sized textured terrain surfaces using an adaptive mesh, they used prefetching

to hide disk latency when using out-of-core storage where less than 2% of their 4.7 GB

data set is loaded into memory at any time. The surfaces are made from adaptive

triangle patches suitable for batched rendering and they use right-angled triangles

such that a patch connects correctly to patches on the next coarser level, the same

level and the next finer level without any T-junctions. RAM is plentiful in modern

computers and CPU’s have large caches; for real-time or interactive cloth simulations

the burden on computational resources is the limiting factor and out-of-core storage

or memory usage is not normally a problem. However, it is important for the film
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industry, where they require the processing power of large servers and server farms for

modern block buster movies featuring many digitally created assets including offline

simulated cloth.

Adaptive Meshes for Rendering

An interesting alternative to adaptive simulations, but highly related, are subdivision

surfaces and tessellation methods where the surface of a mesh is subdivided, typi-

cally to increase the detail for rendering and lighting without imposing significant

costs on storage and animation for large meshes. This can therefore be applied to

coarse cloth simulations to improve the visual quality without increasing the cost

of the simulation. Curved PN-triangles [VPBM01] are a good example of a generic

method that can be performed in hardware and is applied to triangles. Three sided

cubic Bézier patches form each curved PN-triangle, coefficients are calculated such

that neighbouring patches match together perfectly without the need for adjacency

information. Each patch is specified by only the triangle’s three vertices and their

normals. Lorenz and Dllner [LD08] presented a dynamic refinement technique using

geometry shaders on the GPU with an incremental multi-pass scheme. Boubekeur

and Schlick [BS05] presented a generic method for uniform mesh refinement on the

GPU using a tessellation pattern and barycentric interpolation but could not support

adaptive refinement. Procedural normal and displacement maps transform vertices’

positions and normals to apply a variety of different refinement techniques including

PN-triangles. Later Boubekeur and Schlick [BS08] presented a flexible adaptive re-

finement method also on the GPU that used stored refinement patterns which were

looked up by coarse vertex ’depth-tags’ (which specified refinement depth). GPUs

are now starting to feature built in programmable tessellation units available through

DirectX 11 and Opengl 4.0, often used with displacement mapping to render detailed

objects from relatively simple geometry.
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Figure 2.8: A simple way of dealing with T-junctions or non-conformity between
adjacent polygons of different refinement levels is to split the coarser triangle into
potentially very long thin triangles. This is acceptable for rendering (while the trian-
gles are not near being degenerate), but will cause artefacts with deformations and
simulations with mass-spring networks.

Cloth is not often considered by itself; typically the simulation involves complex

interactions with other objects which occur as a result of collisions. Therefore, one

possible difficulty is that the rendered surface may intersect the object even if the

coarse cloth mesh does not. However, many fast GPU methods for rendering cannot

be easily integrated with collision detection, since no actual mesh is refined but only

passed out on the fly. If the actual mesh is topology updated, it could be used for

simulation but rendering methods do not always deal with T-junctions in the best

way for simulation. Often T-junctions are resolved simply by long thin triangles, see

Figure 2.8. These long thin triangles if simulated will favour bending along their

edges’ directions; as well introducing irregularity.

Xia et al. [XESV97] has previously incorporated lighting into their adaptive real-

time polygonal rendering approach, preserving the detail of specular highlights based

on view direction and visibility. The case for additional adaption of the cloth purely

for rendering is small; there is a good overlap between the criteria suitable for render-

ing and simulation. Furthermore, modern graphic cards capabilities for anti-aliasing
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and per-pixel lighting improve visual quality for coarser meshes. There has been

research into human perception for LOD methods. McDonnell et al. [MDCO06]

evaluated different LOD representations of characters wearing cloth that had been

physically simulated off-line. They showed that impostors work very well for these as

well as they do for characters clothed by standard skinning methods. Hoppe’s [Hop98]

work on progressive meshes identified difficulties with view-independent LOD meshes,

with many faces lying outside of the view frustum or being back facing incurring a

cost for rendering even when culled early in the pipeline. This is not such a problem

for cloth as non-visible regions are still required and interact with the visible sections;

however, it would still be beneficial to reduce their cost.
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2.4 Virtual Clothing and Garment CAD

This section explores the application of previous work for the design and simulation

of virtual clothing and garments related computer aided design (CAD) in the area.

This work can be valuable to the textile industry for prototyping garments and even

for bioengineering such as for the thermal performance of clothing [MLW+08], but

we focus on only the computer graphics aspects in relation to CAD. The simulation

of clothing is much more involved than the simulation of square pieces of cloth;

techniques from many areas must be brought together. Firstly garment patterns or

meshes must be designed, created and dressed on the character before simulation can

begin. Virtual characters must be created, rigged and animated together with efficient

collision processing techniques to allow the characters to wear the garments. A recent

survey on CAD methods in 3D garment design can be found here [LZY10], and

another focusing on 3D CAD systems specifically for the clothing industry [SKC10].

Dedicated CAD software can be found in the textile industry for the designing of

textiles, but custom software or 3D modelling packages such as Maya or 3DStudioMax

are typically used in the field of computer graphics.

2.4.1 Garment Creation, Seaming and Dressing

In the real world creation of items of clothing, flat panels of fabric are typically cut

into shapes and stitched together. For example a very simple T-shirt may be formed

from two pieces of fabric that are sewn inside out, then it is turned right-side out with

the seams hidden on the inside. Creating garments from 2D flat panels can make it

easier to simulate, because it can provide undeformed lengths between points that

can be used for spring rest lengths. It is possible to instead create (3D) all in one

garment meshes, but these lack the easily comparable point of reference of 2D panels.

The initial 3D state can be used for example to provide the rest lengths of springs
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for a mass-spring system. Since we are also typically representing a curved surface

with planar polygons in 3D models but shading them as if they were smooth then the

rest lengths may not be accurate. Real cloth is a developable surface, so clothes can

be unsewn, taken apart and flattened back into panels without distortion. Directly

created 3D models are unlikely to be developable, it is noted in [DJW+06] that they

therefore depict garments that are not physically plausible and are unlikely to be

able to depict fold patterns specific to real garments in any rest position. We would

also like to note that sometimes the important task of garment creation, seaming and

dressing are not even mentioned by some authors, for example no details were given

for the garment featured in [LV05].

Seams are visible on real garments but of course even if virtual garments are

created using flat 2D panels, it is not necessary to have visible seams. Meshes can be

joined together as if it was a single mesh. For instance Durapinar and Gudukbay’s

[DG07] virtual garment design and simulation system featured automatic pattern

generation from a convex hull of boundary points. A mass-spring system was used to

bring the seams close together by combining vertices into one by adding each vertex’s

total spring forces to the others, seaming took 4.313 seconds for a skirt with 1400

vertices.

Although not necessary to model visible seams, seams change the behaviour of real

cloth and the visual appearance can be important for realism. Ma et al.’s [MHB06]

method works using 3D irregular meshes with no seams, but then automatically

constructs them along an arbitrary path on the surface of the mesh. They created

seams using multiple layers of cloth (5, 3 and 4 layers for their three example seam

types); the seam line is cut flush and then the additional cloth needed to model

the seam is created rather than folding (and therefore shrinking) the existing cloth.

They were able to simulate very detailed seams and realistic results with pucker
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(the distortion of fabric along seams causing a rippled appearance) using a mass-

spring network which was demonstrated on a pair of trousers with around 18.5k

vertices and 35k triangles. The approach is only suitable for offline work; it requires

fine meshes to model the seams making the collision costs particularly expensive.

Pabst et al. [PKST08] looked at the influence of seams on the bending of fabric,

together with an accurate bending model. If using a relatively coarse mesh, they found

that it must be locally refined around the seams to smooth out the abrupt changes

that would otherwise be present in the bending stiffness between adjacent elements,

thus increasing the costs. However, while comparing a real garment with that of a

simulated one, they described it to match “many aspects of the real garment very

well” which was backed up by a visual comparison. In their simulation the bending

forces alone took 65ms to calculate which was more expensive than two previous

models by other authors.

It is not easy to animate a character such that it can get dressed as a human

would, but we must be able to dress a garment onto a character somehow (i.e. pre-

position it prior to simulation). A simple method is to simply place the garment at

the best place over the character, with the character in a reference pose such as a

T-pose which is common for rigging. Collision detection would then need to fix any

interpenetration, but it is difficult to produce good results since different poses of the

character and different positions of the clothes might be incompatible. Often dressing

is performed at the same step as sewing [VT97, Vas00, PLAMT02, DG07], the panels

are placed around the garment and are simulated with constraints or springs to bring

them close enough to be joined. Users of the systems are responsible for rotating and

positioning the panels to be in the best place to fit around the character. In response

to this time consuming burden on the user, automatic positioning has been proposed

[GFL03, FGLW03, LTG05]. Fuhrmann et al.’s [FGLW03] method employs bounding
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surfaces fitted around body segments to which cloth pieces can then be automatically

mapped to. Some additional data is needed including which side if visible (outward

facing) after dressing, the assigned body segment, a direction vector relating to the

bounding surface and a feature point. Their method takes less than 0.3 seconds

to preposition various simple garments onto 3D body scans. Their approach was

extended by Großet al. [GFL03] to enable a body to be dressed with several garments

simultaneously such that underwear can be positioned under a pair of trousers. The

approach took 1.5 and 3.5 minutes to position 2 and 4 cloth garments simultaneously

with 10k and 15k total vertices respectively. It also featured auxiliary particles to

help guide the sewing to ensure cloth correctly wraps around the body, as well as the

sewing of pockets onto garments.

Thanh and Gagalowicz [LTG05] developed automatic pre-positioning of virtual

garments by using 2D generic figurines placed over a generic silhouette of a character.

Two generic figurines are used for each garment, one for the front and back that

match the design type (e.g. shirt, skirt, trousers etc.). They create mappings from

generic silhouettes onto real ones (obtained from 3D characters), and the figurines are

transformed using the mappings with 2D collision detection. Although their intent

was for prepositioning of 3D garments, they left the extension from 2D to 3D for

future work.

Igarashi and Hughes [IH02] presented techniques for putting clothes onto a 3D

character and allowing interactive manipulation of them. Users are required to paint

freeform lines onto the 2D cloth and corresponding lines onto the character and the

system is able to automatically wrap clothes around the character in a best effort

attempt to match the lines. Rewrapping can be done to adjust the position which is

especially useful for topographical changes, with helpful pins to limit the area of effect

or hold the cloth in place. Additionally the user is able to manipulate the cloth by
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dragging it across the surface using a mouse, at the same time exploiting connectively

information to prevent cloth vertices becoming stuck in local minima.

Fuhrmann [FGW05] devised semantics and ontologies for garment patterns that

can be incorporated into the simulation of virtual clothing. Firstly they give an

abstract description of a human body using feature points (e.g. neck-back, neck-left,

left upper-arm etc.) and their associated body segment hulls (e.g. neck, left arm

etc.). A garment data structure holds information about a piece of cloth including

garment type, pattern information and seams. Garment properties are built from

binary relations, for example some trousers composed of two parts X and Y might

feature the relations: ’isLyingOn(X, leftLeg)’ and ’isLyingOn(Y, rightLeg)’. The data

is used for pre-positioning the cloth prior to sewing, editing the data can for example

cause the trousers to be worn backwards. Additionally garments can be dressed in

different orders using ’isDressedAfter(trousers, shirt)’ which says that the trousers are

dressed after the shirt, i.e. the shirt will be tucked into the trousers. The properties

are integrated into their collision detection by assigning garments to a layer and the

dressing order may even be changed robustly during simulation if not realistically

(i.e. they will intersect while crossing over to change order). Its limitation is that it

does not support garments to be both under and over each other, so a loosely tucked

in shirt that overhang the trousers is not possible. Layered clothing approaches

not only can allow more realistic dressing of characters but have also been used to

increase performance. Cordier and Magnenat-Thalmann’s [CMT02] three layered

approach gained real-time performance for simple garments by trading realism by

only simulating the third layer. The first and the simplest layer is for tight fitting

regions, fixed to the character’s skin using barycentric weights of the closest vertex

on the closest triangle. The second layer is looser, confined on discs so that they can

only move outwards from the surface, which is used for the sleeve and trouser regions
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of the character. In this way it achieved a frame rate of 29fps for a shirt and jacket

with 542, 1505 and 618 polygons on each layer respectively.

A combined approach for the creation and the dressing of clothing on virtual

characters is the sketch based approach of Turquin et al. [TCH04]. Users are required

to sketch 2D lines to form the outline of garments from front facing view, drawn

over the 3D model of a character. The 3D positions are inferred using depth values

and a mesh is created via sampling on a regular grid to fill in the outlines. Surface

tension is taken into account so clothes such as skirts do not fit tightly to the inside

of the legs. Only tightly fitting garments can be created but it is quick and easy for

users to create them in just a few minutes. It also lacks control over the draping

characteristics and is unaffected by gravity, so the realism of the approach could be

improved. This approach was used subsequently at a starting point by Decuadin et

al. [DJW+06] in their fully geometric approach for clothing design but they enhanced

it by allowing the users to draw seam lines and dart lines (cuts in a cloth panel to

help it fit better). The seam and dart lines are cut before they create a piecewise

developable approximation from the meshes, which they then unfold to provide 2D

garment patterns. The final 3D garment is realised using their specially designed

control patches for procedural twisting and buckling patterns, the patches are fitted

onto the 2D patterns and mapped back onto the 3D developable surface. In this way

the deformation of the garments can be computed in different poses geometrically,

however, the patterns are too regular which gives an unnaturally perfect feel.

2.4.2 Virtual Try-On

Online shopping for clothing typically features one or a few pictures of a garment but

usually only modelled by a single human model. The model’s shape and size most

likely does not represent the majority of the customers’ and therefore often items
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must be returned because they are unwanted. A garment might not fit properly or

maybe it just looked much nicer on the model but not on the customer after they

bought it and tried it on. Customers are either entirely put off from buying clothing

online or have to deal with the hassle of returning items. Virtual try-on approaches

are a solution to this, by allowing customers to visit a virtual fitting room from the

comfort of their own home but this is not easy. There have been several approaches

specifically aimed for virtual try-on such as [PLAMT02, CC03, WKK+05, MMJ10],

but one could argue that many of the approaches discussed previously in this chapter

could be applied to this too. One additional consideration is the accuracy of virtual

characters and their tailored measurements and often 3D body scanning is employed

for this. D’Apuzzo [DA09] presented recent advances in 3D body scanning, many

methods exist to capture body measurements and surfaces such as using lasers, white

light scanning, passive and active systems. The captured data can be used for tailored

garment design or for virtual garments on realistic bodies and virtual try-on software.

Protopsaltou et al. [PLAMT02] developed an internet based virtual fitting room

using real 2D CAD garment patterns with standard sizes found in shops. A series

of different sized generic body 3D models are generated using resized interpolated

contours from a 3D reference model. The garments are sewn together around the 3D

models and then are animated. Users could then select which model to use and browse

a catalogue of garments to display on the model in a 3D viewer within their internet

browser. While this goes some way to improving customers online shopping experi-

ences it does not allow user supplied measurement so the choice of model size and

appearance is improved but still limited. Chittaro and Corvagila [CC03] presented

a method using Java and VRML (Virtual Reality Modeling Language) to preview

3D garments created from 2D CAD designs for evaluation or publishing on the web.

They also created a cross-application data exchange format to combine CAD data
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with additional data not found in the CAD data for the simulation including material

properties and texturing. It takes ten minutes to stitch and reach a stable state for

a shirt and skirt each with 2.5k vertices on a body of 5k vertices.

Realism of the garments is important for customers to be able to have a good

representation of what the real item will be like in person before they actually buy it.

Wacker et al. [WKK+05] presented an approach designed for virtual try-on purposes

with photo realistic visualisation of clothes using BTF (bidirectional texture function)

and environmental (reflection) mapping. They showed a comparison of standard tex-

turing compared to their BTF rendered clothes, where standard texturing seriously

compromised the realism of garments. We have already touched upon about ren-

dering, texturing and shading for cloth in Section 2.1.4, much of this also applies

here.

Virtual try-on software for clothing remains a difficult endeavour for any retailer

to take up when high quality digital photographs provide cost effective and realistic

images that customers are used to. In comparison, virtual try-on for eye wear and

glasses is in widespread use by retailers, where simple approaches achieve realistic

results. For example, a system where users upload a digital photograph of their face

with images of glasses that can be overlaid is effective and easy to implement. Virtual

try-on software for clothing cannot provide such a simple solution while also providing

equivalent realism.



68

2.5 Summary

There has been much research in the area of cloth simulation in the field of computer

graphics starting in the 1980s and continuing strongly through to the present day.

We have a given a broad overview of the main methods and techniques for cloth

simulation in the literature; these are often highly coupled systems encompassing

many areas. Both implicit and explicit numerical integration used for physically based

cloth simulation dominates the literature but there are alternatives such as geometric

or data driven methods. Robust and stable collision detection is particularly difficult

for deformable bodies and cloth has the additional challenges of self-collisions. The

process of garment design which is at the heart of the textile industry is becoming

increasingly important in computer graphics because of the need to generate high

quality and realistic clothing. The fidelity of offline simulations is very good producing

plausible behaviour and fine wrinkles resulting in believable and realistic animations

and images. However, interactive and real time simulations face a severe lack of

computational budget to achieve comparable results where coarse meshes must be

employed that have low resolutions which cannot faithfully represent the shape of

naturally deforming clothing. Improvements in hardware and parallel processing have

enabled some of what was only achievable offline in the past to become available at

interactive frame rates but of course these improvements have also advanced offline

results as well making large scale cloth simulation possible. It is not sufficient to rely

on hardware alone; the use level of detail methods such as adaptive methods has been

shown to improve performance of cloth considerably but have rarely been used for

virtual clothing.



Chapter 3

The Edge-Based Adaptive Mesh

3.1 Introduction

In this chapter we introduce our edge-based adaptive mesh that we have developed

for use as a mass-spring network for cloth simulation. Many aspects of the adaptive

mesh are covered in this chapter, including triangulation, memory management, cloth

simulation and rendering. We will first motivate our approach and explain the idea

and workings of the edge-based adaptive mesh.

3.1.1 Motivation and Inspiration

Adaptive meshes have been used to accelerate offline cloth simulations with good

success, but they had not been fast enough for real-time work. Li and Volkov’s [LV05]

adaptive simulation spent 87ms on refinement and 1.2 seconds on average with 12k

triangles for the cloth simulation. Similarly, Volkov and Li’s [VL03] approach took

1.3 seconds in total with the adaption taking 9% of that (117ms) but simulation times

were on average 2.6 times faster than the non-adaptive mesh. These approaches focus

on the refinement of triangles and generating a conforming mesh between levels.

We were inspired to create an adaptive triangle mesh but where the triangles take

a secondary role to refinement. We started by examining the possibility of edge-based

refinement, since edges are simpler structures than triangles we thought it could lead

69
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to a more efficient approach. Another important motivation is that the refinement

must be able to be reversed, i.e. coarsened. Edges by themselves permit a very

simple (and hopefully fast) refinement approach through bisection, splitting into two

and coarsening by later rejoining those split edges. The natural way to represent this

was recursively just like a binary tree structure. The hierarchy then implicitly keeps

a history of edge splits, such that they can be reversed. If an edge was completely

replaced by a split with two new ones, it would be difficult to select which ones to

merge for coarsening. Triangles are important still, the next part was to come up

with a way to generate a conforming refinement of triangles in an efficient way. We

considered the simple cases where a triangle’s three edges are either split or not and

possible conforming triangulations that could be used in those cases. This lead us to

come up with a state based triangulation approach based on the status of a triangles

three edges, such that a refinement pattern is selected depending only on which edges

are split. Following the same recursive approach as the edges, we can then form a

hierarchy of triangles. New vertices are added on edge splits, and new edges are

created as necessary for the refinement patterns. We explain the approach and our

edge-based adaptive mesh in detail in the following sections of this chapter starting

with the mesh representation next.



71

3.2 Mesh Representation

Polygon meshes have been widely studied and there exists many representations which

differ in their memory use and efficiency for a particular application. Topological

connectivity of the mesh is particularly important to us, as it is with many other

subdivision methods. In this section we first provide some background information,

discussing briefly some existing mesh representations and then will introduce the

structure we use in our edge-based adaptive mesh.

3.2.1 Background

Vertex-vertex meshes are considered to have the simplest representation composed

only of vertices, where each vertex contains a list of connected vertices. Face and

edge information is completely implicit and can only be found by iterating over the

vertex information so operations on edges or faces are not efficient. However, it can

be efficient for shape morphing and it also has very small memory requirements.

Face-Vertex meshes store more information, faces are composed from a number of

vertices and each vertex stores its immediate neighbourhood of faces but again edges

are implicitly defined. The increased memory usage has made the representation

more efficient to use for tasks operating on faces and vertices, this format is com-

monly used in computer graphics for rendering. The Winged-Edge data structure

[Bau72] goes further and represents all vertices, edges and faces explicitly; an edge is

connected to its two vertices, to its two faces and its next and previous edge around

each face. It can be made more compact by storing only the next edge, the previous

edge can be found by iterating all the way around the face. The half-edge [Ket98]

representation is similar to the winged-edge format but each edge is split into two op-

positely directed half-edges, each contains half the connectivity information but with

references to each other. The half-edges explicitly encode edge orientation whereas
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the winged-edge does not, so direct traversal is possible whereas the winged-edge is

case distinctive. The half-edge mesh has been shown to handle arbitrary polygonal

meshes with irregular structure well and is the basis of Openmesh [BSBK02] which

is an open source polygonal mesh framework.

Edge centric formats are able to handle n-sided polygons efficiently since the edge

structures are always the same size. Faces only need to store a single reference to one

of its edges; the other edges and the triangle’s vertices can be found by traversing the

edge’s connectivity information. They are useful for editing meshes; however, they are

less efficient for rendering than Face-Vertex meshes. Tobler and Maierhofer’s [TM06]

mesh format for subdivision combines the merits of the Winged-Edge and the Face-

Vertex meshes, but requires slightly less memory than the Winged-Edge mesh uses

by itself. The main disadvantage is they disallow topology changes of the mesh once

it is created to enable efficient rendering on computer graphics hardware. The idea

is the topological information can be used to generate a whole new subdivision mesh

efficiently (rather than editing the existing one) for level of detail rendering of meshes.

They provide the means to ‘stitch’ meshes together by setting a face from each mesh

as equivalent, they show an example of a tree made from branches, twigs, leaves and

trunk parts stitched together and smoothly subdivided.

3.2.2 Mesh Structure

Our adaptive mesh has a number of requirements, some of which reduce the com-

plexity of the representation needed. For instance, the representation must be able

to store a mesh composed of triangles but only triangles so we do not need the ability

to handle arbitrary polygon meshes (such as those with n-sided polygons, or non-

manifold surfaces) for modelling clothing. The mesh must support a two-dimensional

manifold surface with boundary edges and holes (internal boundary edges) required
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for clothing, this may seem unnecessary to state but it introduces subtle issues with

connectivity. We cannot assume that an edge is adjacent to two triangles, but we

can guarantee that each edge is adjacent to at least one triangle by disallowing edges

without a face. There may be uses for an edge that has no adjacent triangles in

cloth simulation such as for modelling a piece of string or lace. However, such cases

would perhaps be better served by separate add on to the mesh where these special

edges could be handled and rendered specially. This allows the mesh to be rendered

efficiently as triangles in the same way normally realised in computer graphics.

In addition to connectivity information for the surface, the mesh must feature

links between refinement levels to support our recursive refinement approach. In tree

structures, a child node does not always require access to their parent node. This is

the case in our mesh; two-way access is not required for our refinement approach and

only one way access from parents to child is needed. However, parent references are

simple to implement or can be passed down through the hierarchy as parameters to

recursive functions if they are ever required for another application.

We formulate the mesh in an object orientated manner, where we store vertices,

edges and triangles explicitly as three objects (classes) using the C++ programming

language. The objects serve a dual purpose for adaptive refinement and cloth simu-

lation. We will discuss each of them in more detail in the next parts. We consider

what is needed for the adaptive mesh and what is also needed for the mass-spring

system.

3.2.3 Vertex Structure

A vertex is both a point in the edge-based adaptive mesh and also a particle in

the cloth simulation. Vertices are not responsible for the main operations during

refinement; they are managed and controlled by their adjacent edges and triangles.
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A vertex has the following variables stored in it:

Level The level on which this vertex resides in the adaptive mesh, a vertex in the

base mesh has a level equal to zero.

Position The position of the vertex in 3D space, expressed as an xyz vector.

Previous Position This provides a limited history of the particle’s position, when

the simulation is advanced, the position is updated and the old value is copied

here. The velocity of a particle can be found using this, and it is used by the

numerical integration and can be useful for collision processing.

Surface normal The normalised vector that is perpendicular to the tangent plane

on the surface at this vertex, we calculate it as an average of its adjacent triangle

face normals weighted by their area. This will be used for lighting the mesh

during rendering but also by refinement criteria.

Mass The mass of a particle, which is calculated as one third of the average mass of

the particles surrounding adjacent triangles.

Force A vector where forces acting on a particle are accumulated before numerical

integration.

The only connectivity information that a vertex requires is access to its adjacent

triangles for the calculation of its surface normal and mass, like that provided by

the Face-Vertex format. Typically, the lighting normals must be recalculated every

time the cloth deforms before rendering and the mass must be recalculated when the

adjacency of a vertex changes during refinement. We have chosen to store a list of

adjacent triangles for each vertex enabling direct access for best performance at the

cost of memory. In theory this list does not have a maximum size but in practice we

will see later that some very good estimates can be made once so dynamic memory will
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not be required even with the adaptive refinement of adjacent triangles (see Section

3.3.2). We illustrate the adjacent triangle connectivity required in Figure 3.1.

Triangle 

Edge 

Vertex 

Connectivity 

Figure 3.1: This figure shows the connectivity information for several vertices of a
mesh, each vertex stores connectivity links to its adjacent triangles indicated by the
arrows.

3.2.4 Edge Structure

Edges control refinement throughout the whole mesh, criteria decide when an edge

should be split or later rejoined, and they also serve as stretch springs for the mass-

spring simulation but also manage bending forces between their two adjacent trian-

gles. We have two different versions for the edge’s internal structure. This does not

impact the refinement procedure from a conceptual level but it does change some

of the details involved in the implementation of the adaptive mesh. We will firstly

explain edges from a higher level and then explain both versions at a lower level.

An edge is created between two vertices (A and B) and it is adjacent to either

one or two triangles only. On the boundary of the mesh there will be one adjacent

triangle, otherwise two for all internal edges. We define left and right sides of an edge

based on a local 2D view of the surface from above (the direction of surface normals)
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C are the central vertices created when an edge is split, AC and CB are child edges for the first and 

last half of the split edge, these labels are not unique but they are relative references from a par-

ent to its immediate children. In the figure an edge has been split into two and then only AC refer-

enced edges have been recursively split to level 3.  

Level: 0  

Level: 1  

Level: 2  

Level: 3  

Edge (CB) reference 

Vertex (C) reference 

Edge (AC) reference 

Edge (AB) 

Vertex 

Figure 3.2: C are the central vertices created when an edge is split, AC and CB are
child edges for the first and last half of the split edge, these labels are not unique but
they are relative references from a parent to its immediate children. In the figure an
edge has been split into two and then only AC referenced edges have been recursively
split to level 3.

with the edge directed from A to B. An edge stores pointers to vertices and adjacent

triangles. When refined, edges create a new vertex (C) at their centre and create two

new child edges (AC and CB) connected from A to C and from C to B respectively.

Coarsening of an edge is simple, the child edge central vertex are deleted. Edges

therefore form a hierarchical tree of edges and vertices, see Figure 3.2 for an example

tree. An edge has the following variables stored in it:

Level The level on which this edge resides in the adaptive mesh, an edge in the base

mesh has a level equal to zero and its immediate children (two edges and centre

vertex) will have a level of one.

Rest Length The undeformed length of this edge for the stretch spring.

Length The current length of this edge, optionally cached for reuse. Only needs to

be recalculated when vertices move.

Bending Vertex references Bending force calculation requires access to each of

the adjacent triangle’s opposite vertex, found using connectivity information
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but can be optionally cached.

Bending Data Depending on the bending model used, the edge may store some

additional data for that purpose.

Edge-Pair Implementation

In our first implementation (published in [SLD09, SLD10], edges are made from two

oppositely directed pieces that form a pair and are connected together with pointers

to each other and hold a pointer to their adjacent triangle. This is inspired from the

Half-Edge data structure but we do not store next and previous edge connectivity

(we can find it easily since faces are always triangles) and we store additional data

for refinement (vertex C and edges AC and BC).

In our approach, one edge is directed from A to B, and the other half is directed

from B to A. One of the edges is designated as the control edge, this choice is arbitrary

unless on the boundary. On the boundary of the mesh, only a single edge is used

so it will be the control edge. It is only necessary to store a reference to the control

edges in the mesh, the opposite edge in each pair can be found via the control edge.

The control edge is responsible for mirroring any operations required (splitting and

joining) so that both sides of the hierarchy are complete but oppositely directed. This

approach can be specified with the class defined in Listing 3.1, we call them ‘adaptive

half edges’ to avoid confusion with the Half-Edge data structure. The distinction

between C++ references and pointers is considered; a reference as a class member

variable can only be set in its constructors’ initializer list and they cannot be reseated

(changed to reference another object) or be null. Therefore in the majority of places

we require pointers. A and B in Listing 3.1 could be references but that would prevent

some topological changes (such as merging vertices) so for maximum flexibility we use

pointers everywhere.
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1 class AdaptiveHalfEdge

2 {

3 public:

4 AdaptiveHalfEdge *Opp; // oppositely directed edge , may be null

5 Triangle *T; // adjacent triangle , may be null if not control

edge.

6 Vertex *A; // edge start

7 Vertex *B; // edge end

8 Vertex *C; // pointer to centre vertex , not split if null

9 AdaptiveHalfEdge *AC; // child first half , between A and C

10 AdaptiveHalfEdge *CB; // child second half , between C and B

11 /* Rest of Edge Data */

12 };

Listing 3.1: Edge-Pair Implementation: AdaptiveHalfEdge

The advantage of this approach is that there are no special considerations needed

to exploit the connectivity, each edge in the pair works without needing to know which

side you are accessing it from so it is simple to use. For example, triangles can refer

to their three edges and rely on the fact that they are all defined in an anticlockwise

direction. However, the cost to memory is high; every piece of data is duplicated for

each edge in the pair including the hierarchy although each stores an opposite version

of the other. Also some of the data is not directional, so care is needed to synchronise

the duplicated data or only use data from the control edge. Storage is only efficient

for edges on the boundary, since only a single side is stored.

Edge-Trio Implementation

The ability to be able to store a reference to a particular side is very useful, if not one

must store a Boolean value with the reference which indicates the side pointed to.

This has been used by [TM06], but they stored a tightly packed separate bit array

(global to the whole mesh) for this purpose for optimal memory usage. However,

their approach did not allow the mesh topology to change as the order in the array

(and other arrays) had to be fixed. We do not want to have to store and maintain

this extra Boolean variable, so we designed an approach where a single pointer can
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reference an edge side as in our edge-pair implementation by using a trio of edge

pieces including a main edge and two side pieces.

We create a main single edge directed from A to B, which stores all data about an

edge and its hierarchy but does not directly store the references to adjacent triangles.

We create two edge-sides that store a reference to the main edge and their adjacent

triangle. The edge-sides are members of the main edge, so explicit references to them

do not need to be stored and therefore the whole edge including the edge-sides can

be allocated efficiently in a single block of memory. In this way, only a single pointer

is duplicated and we keep many of the advantages of having half-edges without as

much duplication of data, see Listing 3.2 and Figure 3.3.

Triangle 

Edge (implicit) 

Vertex 

Connectivity 

AdaptiveHalfEdge 

Edge (explicit) 

EdgeSide 

Figure 3.3: This figure shows the connectivity information for an edge, the Edge-Pair
implementation is shown on the left and the Edge-Trio implementation is shown on
the right.
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1 class EdgeSide

2 {

3 public:

4 Edge *E; // pointer to edge this side belongs to.

5 Edge *T; // pointer to adjacent triangle , may be null if not

control side and on a boundary of the mesh

6 };

7 class Edge

8 {

9 public:

10 EdgeSide leftside; // left edge side

11 EdgeSide rightside; // right edge side

12 Vertex *A; // edge start

13 Vertex *B; // edge end

14 Vertex *C; // pointer to centre vertex , not split if null

15 Edge *AC; // child first half , between A and C

16 Edge *CB; // child second half , between C and B

17 /* Rest of Edge Data */

18 }

Listing 3.2: Edge-Trio Structure

Although we have lost direct access to an edge side without considering the di-

rection, member functions for the edge-sides can at least remove much of this new

burden. For example, if we wish to access the first vertex in relation to an edge-side

we can use the function in Listing 3.3. The theoretical cost of access is increased com-

pared to the edge-pairs with an extra layer of indirection even if the direction is not

important (e.g. to access the central vertex from a side, side→C vs. side→E→C).

However, the performance of modern CPU’s is highly dependent on access patterns

and cache effects. In this approach, the edge is held in a single smaller block of mem-

ory so it should be more cache friendly, and the cost may be unnoticeable. Also the

efficiency of operations on the edge itself is improved including importantly refine-

ment, and coarsening since removing duplicate data so it is hard to ascertain overall

performance. Therefore, we feel the main attraction to this approach is the memory

requirements and the removal of data duplication. Each side of the Edge-Pair ap-

proach requires 7 pointers (28 Bytes) plus data so the pair costs 56 Bytes plus twice

the size of the data; the Edge-Trio requires a total of just 9 pointers (36 Bytes) plus
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data. Therefore the memory usage is reduced to 64.3% in the worst case (no data),

if we assume edge data of 12 bytes (storing level, rest length and length) it becomes

60%, and it tends to 50% as data size increases and duplication of data becomes the

overriding factor.

1 Vertex* EdgeSide :: getVertexStart(void)

2 {

3 If(this == &E->leftside)

4 return E->A; // on the leftside , A is first

5 else

6 return E->B; // on the rightside , B is first.

7 }

Listing 3.3: EdgeSide::getVertexStart()

3.2.5 Triangle Structure

Triangles have the important responsibility for creating triangles on the next level

and re-triangulating existing triangles on the next level. A single triangle is only

responsible for its immediate children of which there can be up to 3 internal edges

and up to 4 internal triangles. We cover the refinement approach in detail in Section

3.3. Triangles have no direct duties in the mass-spring simulation but provide data for

the calculation of the particle’s masses and surface normals, they have the following

variables:

Level The level on which this triangle resides in the adaptive mesh, a triangle in the

base mesh has a level equal to zero and its immediate children would have a

level of one.

Material Coordinates The 2D coordinates of the triangle’s vertices in an unde-

formed frame of reference (explained later in detail in Section 3.6.1).

Area The area of the underformed triangle.

Mass The mass of the triangle, found by its area multiplied by the cloth’s density,
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optionally cached for performance.

Face Normal The normalised vector that is perpendicular to the plane of this face,

we calculate using the cross-product of two edge vectors.

Triangles require access to their three corner vertices and three (external) edges,

providing the edges alone would give access to the vertices. However, we store direct

references to the vertices for best performance for vertex access since they are used

frequently for rendering. The basic outline of the structure can be seen in Listing 3.4,

it does not make any difference which edge implementation is used and we illustrate

the connectivity also in Figure 3.4. The first edge runs between the first and second

vertices defined in an anti-clockwise order, therefore the second edge runs between the

second and third vertices and the third edge is between the third and first vertices.

Triangle 

Vertex 

Connectivity 

Directed Edge Side  

Figure 3.4: This figure shows the connectivity information for a triangle, each
triangle is connected to three vertices and three edge sides which are defined in an
anti-clockwise order.
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1 class Triangle

2 {

3 public:

4 Vertex* V[3]; // corner vertices.

5 EdgeSide *exE [3]; // external edge sides.

6 Edge *inE [3]; // internal edges on the next level.

7 Triangle *inT [4]; // internal Triangles on the next level;

8 /* rest of triangle data */

9 }

Listing 3.4: Triangle Structure

3.2.6 Managing properties and settings

There are many properties and settings for both the simulation and adaptive mesh,

and a lot of them are required to be used in many places. The use of global variables

can be considered bad practice but it serves a good purpose here to avoid passing many

frequently and widely used variables. This brings performance savings by reducing

function overheads and makes code easier to maintain. The properties that make

up the cloth simulation and adaption are most conveniently stored in two classes,

called ClothProperties and AdaptiveProperties. They provide convenient support

for loading and saving properties to the hard disk in a human readable text format.

The cloth properties also feature helper functions for converting S.I. units (lengths,

accelerations, areas) to internal units using a scale factor of internal units per metre.

All units are presented to the user in S.I. and are saved to disk in S.I., this makes it

easier to use internal units other than metres but the user does not have to adjust the

physical properties of the cloth themselves. Adaptive properties store the settings for

refinement, such as the maximum refinement level allowed and criteria settings for

refinement and coarsening.

We access each through a global pointer, which initially points to a static object

with default values. Typically when a garment is updated, it has its own properties

and they are bound to the global pointer, the update is performed and then unbound
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by setting the pointer back to the default properties. This allows edges, vertices and

triangles of the mesh access to the properties whenever required without the overhead

or maintenance requirement of explicit passing. The cost of binding is very little, just

a pointer is set manually or by the provided functions which can be inlined by the

compiler. A possible usage of the cloth properties is shown below in Listing 3.5, the

cloth should not be updated if the user has paused the simulation.

1 void Cloth : : Update ( void )
2 {
3 i f ( mClothPropert ies ) // bind the c l o th ’ s p r op e r t i e s ( i f i t has any )
4 mClothProperties−>Bind ( ) ;
5

6 i f ( ! g l o b a l c l o t hP r op e r t i e s−>paused ) // ac c e s s through g l oba l po in t e r
7 Simulate ( ) ;
8

9 ClothProper t i e s : : BindDefault ( ) ; // r e s t o r e d e f au l t p r op e r t i e s
10 }

Listing 3.5: Example usage of the ClothProperty class to store and access global cloth
settings
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3.3 Adaptive Triangles

In this section we detail the refinement of triangles in the edge-based adaptive mesh;

we focus on many implementation details important for run-time performance. Edges

are responsible for controlling the adaptive mesh; however, the triangles form an im-

portant part of the refinement. We leave edges for now, since they are key details

about the triangles to be understood which are important for edge refinement and

coarsening. The representation of each triangle is straight forward; the vertices and

edge sides are defined in an anti-clockwise order. As discussed earlier, this is accom-

plished by storing a reference to a directed edge side using either the edge-pair or

edge-trio implementation.

3.3.1 State-based Refinement

We generate a refinement or subdivision pattern using a state-based approach, this

ensures that the refinement is conforming between levels with no T-junctions. We

refer to a triangle’s original edges as its external edges; additional internal edges and

internal triangles are created as required by the subdivision patterns. Internal edges

and internal triangles are children of the triangle and it is their parent. A triangle

is refined based upon the status of its external edges, that is whether they are split

or not. This leads naturally to eight (23) states as there are three external edges of

which each has two possible states. We label these eight states as S0 to S7, where

S0 represents a triangle with no internal subdivision whilst S7 represents a triangle

that has completed a full 1-to-4 subdivision. Subdivision patterns are generated as

follows: States 1-3 uses the bisection rule, for states 4-6 the triangle is specially

divided into three to match the edges. Notice that in this case of states 4-6, one of

the internal edges could be placed in two ways (we address this later, see Section

3.3.5. The refinement patterns and their corresponding states can be seen in Figure
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S0

S1 S2 S3

S5S4 S6

S7

Figure 3.5: The state of a triangle is found from the status of its external edges,
triangles are triangulated internal to conform to the edges. The eight states are
labelled from S0 to S7.

3.5. Edges trigger refinement and retriangulation of their adjacent triangles when

they are refined or coarsened.

In our incremental approach, it is important to prevent a difference of more than

one refinement level between adjacent regions. This ensures a semi-regular refinement



87

This figure shows eight example refinements of a single level 0 triangle (shown top left) 

in different configurations and refined recursively up to level 2. Internal child triangles 

are illustrated as smaller triangles inside of their parent, thus the hierarchy of triangles  

can be visualised. The arrows indicate the permitted incremental transitions between 

the refinements. 

Figure 3.6: This figure shows some possible refinement patterns where internal
triangles are drawn inside of their parent, in this way the triangle hierarchy can be
visualised in 2D. The arrows indicate the possible incremental transitions between
the refinement patterns.

on the borders between regions of different refinement levels and regular 1-to-4 refine-

ment within regions of the same level. This is accomplished in two parts, first and

simply, we only recurse to child triangles from a parent if the parent is in S7 (hence, we

prohibit recursive refinement until S7). Secondly, since edges trigger the refinement,

we have to prevent some edge splits. We provide a special state that indicates to edges

that a triangle cannot be refined and this can be checked efficiently. We number this

state -1 (minus one, labelled S-1); it is the same as S0 in all other respects. Child

triangles are created with their S-1 as their state, when a triangle transitions to S7 it

must change its children’s states to S0 to enable further refinement. We show some

possible refinement patterns and incremental transitions between them in Figure 3.6.

3.3.2 Vertex-Triangle Adjacency

Our refinement approach tends to keep the number of adjacent triangles around each

vertex low (and the vertex valence low also); a base vertex originally surrounded by

n refined triangles will have a worst case triangle adjacency of 2n (if all triangles
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are bisected radially outwards from the vertex). A base vertex surrounded by n

triangles that have been fully subdivided into four will still only be surrounded by n

child triangles. Non-base vertices on (level one and up) will have a worst case triangle

adjacency of 12 and a best case of 6 within the mesh. Non-base border vertices have a

best case of 2 or 3 and worst case of 6 on the edge of the mesh. By knowing this we can

easily allocate efficient fixed size arrays to store the adjacent triangle lists discussed

earlier, that is the lists must be able to hold a minimum of 12 triangle references while

also having a enough space for two times the largest number of adjacent triangles in

the base mesh. This is specified at compile time; we lean on the safe side and allocate

enough space for 20 triangle references allowing base meshes with up to 10 triangles

adjacent surrounding any one vertex. This is very convenient for triangle adjacency

since it is not affected by holes in the mesh; unlike vertex valence where the number of

adjacent vertices and edges can exceed the number of adjacent triangles. If vertices

require edge connectivity or vertex connectivity then any holes in the mesh would

need to be taken into account.

When a triangle is retriangulated, it is responsible for maintaining the vertex

triangle’s lists so they are up to date with the current state. We do not require the

list to be in any particular order so we do not spend any resources in maintaining

the order. Vertices provide three relatively fast operations for the triangle to use to

maintain the list: Insert, Remove and Replace. Insert adds a triangle to the list by

placing at the end of the list and increments the size of the list. Remove searches

the list for a specified triangle and removes it by swapping it with the triangle at the

end of the list and decrements the size of the list. Replace searches for a triangle

and swaps it with another specified triangle such that list does not change size (more

efficient that using Remove followed by Insert).
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3.3.3 Delayed Retriangulation

Retriangulation is a costly operation, it is not ideal to immediately perform it on the

two adjacent triangles when an edge is refined or coarsened, this will lead to situa-

tions where triangles are retriangulated up to three times instead of once in a single

refinement update. Although the problem seems straight forward, it is hard to come

to a perfect solution to manage this. If there are few retriangulations needed in a

single step, retriangulating a few triangles three times is unlikely to make noticeable

difference. However, we must ensure good worst case performance for interactive ap-

plications, so we should only perform it once. We delay retriangulation until the final

step, at a point where all edges have been processed for refinement or coarsening.

We tag triangles where their triangulation is not up to date with their state; edges

are responsible for setting this when they are split or rejoined. Then during retrian-

gulation, triangles only retriangulate themselves if they are tagged, after which it is

cleared to indicate that they are up to date.

3.3.4 State Transitioning

Triangulation is very simple to implement if transitioning starting from S0 to any

other state (i.e. S0→SX). So to change from any state to another, we could first

clear the triangulation completely back to S0 first and then triangulate to the desired

state as if we were transitioning from S0. However, a triangle in S0 has vertices that

contain references to it so we define a special cleared state where the triangle has no

internal edges, no internal triangles and additionally there are no vertices that contain

any references to it. We refer to this cleared state as SC, so a transition from S4 to

S6 we follow this indirect route: S4→SC→S6. Clearing a state therefore involves the

removal of all triangle references in the adjacent vertices, and deletion of all internal

edges and internal triangles.
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It can be seen that many transitions between two states share common features,

so the indirect method is not ideal. For better performance it would be good to try to

reuse as much as possible in the current state and therefore directly transition from

one state to another. This requires much more code, since now we must implement

every transition possible to take full advantage of this, i.e. every permutation of

unique state pairs since the transition S1→S2 is different from S2→S1. There are 56

unique transitions required for the main eight states. Retriangulation of a triangle

now involves calculating a state transition; we know that the external edges will

not match the current state if a triangle has been marked to be updated. So given

a triangle’s current state and the status of its three edges, its new state can be

determined quickly and the transition can be implemented using two layers of nested

switch statements. The memory is reused for the internal edges and triangles, extra

memory is only allocated or deleted when the number of edges or triangle increases

or decreases respectively from one state to another. After the triangle is reconfigured

into that state, it is untagged to indicate it is now up to date.

3.3.5 Triangle Configurations

Triangle states are uniquely defined by the status of their edges. However, as men-

tioned earlier the triangulation for states 4, 5 and 6 are not unique. We had arbitrarily

chosen one of the possible two triangulations for each but this was not ideal. We have

expanded this approach to include the other three triangulations missing from the

previously defined eight states. We therefore require an additional identifier other

than state for the triangulations; we call this a triangle’s ‘configuration’. There are

a total of eleven configurations starting with an empty parent triangle to a com-

pletely sub-divided one (1-to-4 split) and all the possibilities in-between. Every state

is mapped to a configuration, except in three cases where now each of those states
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S0 C0

S1 C1 S2 C2 S3 C3

S5S4 S6

S7 C10

C4

C5

C6

C7

C8

C9

Figure 3.7: The state of a triangle maps to a configuration, in three cases two
configurations share the same state.

maps to two possible configurations. Figure 3.7 shows all eight states and eleven

configurations and their corresponding subdivision patterns.

The major motivation for employing configurations as well as states is to improve

the performance of state transitioning; we can exploit the extra three configurations
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for greater reuse. For example, consider that when transitioning from S1 (C1) to S4

(C4/C5), we can choose to transition to C4 as it is closer to the initial configuration

than the other choice. If C5 were chosen instead the change may be visually detectable

and manifest as popping in the rendered cloth. By choosing transitions of minimal

change, not only is retriangulation faster and there may be less popping, it also keeps

the forces more consistent between simulation steps as the cloth adapts.

The only unfortunate consequence is we now have even more transitions to im-

plement, increasing from 56 with eight states, to 110 with eleven configurations.

The triangulation is still state-based, i.e. there is no retriangulation unless the state

changes so this removes six possibilities where the configuration changes without the

state changing also. Also if we prohibit the non-minimal changes (where there is

a choice), even less transitions are needed. However, we have implemented all of

the transitions in order that we may provide complete performance statistics for all

transitions.

We have looked at reducing the burden to implement so many direct transitions,

such as by exploiting rotational symmetry. In the simple transitions such as C0→C1,

C0→C2, C0→C3 it is easy to exploit the rotational symmetry of C1, C2 and C3.

We could rotate the configuration just by altering the indices used to configure the

triangle, for example if C1 places the new vertex on the first edge; then C2 places it on

the second edge and C3 places it on the third edge. However, this can also create a lot

of complexity and additional problems that can overshadow the benefits of code reuse.

For instance, configurations can have more than one internal representation, in C1 the

left or right child triangle may appear first in its array, and they could be swapped

in C2 or C3. Also C10 could be rotated without any change in appearance, but

the transition C10→C9 needs to know internal representation to reuse the lower left

triangle. We feel it should be possible to come up with a conceptual model to describe
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our configurations in a high level way. This could be used with automatic or generative

programming to create source code for transitions between pairs of configurations by

searching for the differences between them at compile time. However, this remains a

large research problem in itself but it would be interesting to explore in the future

since it would make refactoring the mesh for different purposes very easy.

The configurations can be seen in more detail in Figure 3.8, they tend to favour

transitions where there are few internal edge changes. We feel this is good for per-

formance, not only because they permit faster transitioning but we also expect them

to be used more often. For example we expect transitions such as S1→S4 (a second

edge splits) will occur more often than S1→S5 (where one edge rejoins and the other

two split in a single step).

We have looked at this using the draping experiments that are employed later

in this chapter (see Section 3.8.2), and we have recorded the total numbers of state

transitions used for these. The results are summarised in Table 3.1, transitions such

S1→S4 do occur more than S1→S5, and actually S1→S5 is not used at all. This is

also the case with transitions S2→S5 versus S2→S6 and S3→S6 versus S3→S1, but

overall these make up only a small percentage of the transitions. It can be seen that

over 40% of transitions are those to State 7, including 29.5% from States 4,5,6 (two

edge splits) and 9.1% from State 0 but very few from States 1,2,3 (one edge split).

This means that the triangles are more likely to gradually refine where edges split

one after another in contrast to all three of their edges splitting at once in a single

update.

Configuration Selection

Whenever we wish to configure a triangle into states 4, 5 or 6 there is two possible

configurations for each state, one of the edges may be placed in one of two positions.

We have discussed that minimal changes are best, and we always use them. There
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Figure 3.8: This figure shows the configurations in more detail, C0 has the exter-
nal vertices and edges labelled V0,V1,V2 and E0,E1,E2. The internal triangles are
labelled t0, t1, t2, t3 and the internal edges are labelled e0, e1, e2. The orange arrow
indicates the order of vertices and edges in which the triangle is defined, for instance
in C1, t0 starts from V0 with the first child of E0 in an anticlockwise direction.

are some case where the cost to transition between them is similar (e.g. C0→C4/C5),

and we need to either use a default selection (choose C4 over C5, C6 over C7 and C8
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Table 3.1: This table shows the frequency of state transitions as a percentage of a
total of 30,471 recorded transitions for the draping experiments in Section 3.8.2. A
state transition consists of a triangle changing from one state (row) to another state
(collumn), for instance 9.1% of transitions were from State 0 (S0) to State 7 (S7) and
2.7% were from S7 to S0.

0 1 2 3 4 5 6 7

0 - 1.6% 4.3% 1.6% 3.7% 3.7% 1.8% 9.1%
1 0.6% - 0.0% 0.0% 1.5% 0.0% 1.1% 0.6%
2 0.8% 0.0% - 0.0% 2.3% 2.3% 0.0% 1.2%
3 0.7% 0.0% 0.0% - 0.0% 1.6% 0.9% 0.6%
4 0.5% 0.8% 1.0% 0.0% - 0.1% 0.1% 10.8%
5 0.5% 0.0% 0.8% 0.9% 0.1% - 0.1% 10.6%
6 0.4% 0.7% 0.0% 0.5% 0.1% 0.1% - 8.1%
7 2.7% 0.8% 0.7% 0.8% 6.4% 6.0% 6.3% -

over C9) or select it based on some criteria. We have investigated the use of three

simple approaches based on edge curvature, edge length and edge rest length. The

two length criteria choose the configuration that gives the shorter new edge length (to

avoid long thin triangles), based on either the current length or its rest length. The

curvature criterion looks to see which way the parent triangle is bending by evaluating

the curvature along the two of the external edges. For the transition C0→C4/C5, if

the bottom edges have more curvature than the top right edge, then C4 is chosen in

preference to C5. Figure 3.9 shows very small differences between different selection

criteria. The reason for this is that in most cases there is a faster transition available

that will be used in precedence to the selection criteria, such that it will have little

effect overall. Therefore we consider the use of the default criterion is perfectly

valid, since it requires no additional processing while not negatively impacting on the

refinement.
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Figure 3.9: A comparison of resulting refinements generated from using different
transition selection methods for transitions that are equal work when choosing be-
tween configuration 4/5,6,7 and 8/9 for states 4, 5 and 6 respectively. Top Left: De-
fault choice, Top Right: edge length, Bottom Left: edge rest length, Bottom Right:
edge curvature. The resulting refinements are very similar, so we consider the use of
the default criterion (top left) is perfectly valid and beneficial since it does not require
extra processing.

3.3.6 Transitioning Performance

We cannot analyse the performance using a standard mesh easily as we cannot set

all triangles in the mesh to be the same configuration at once. Since we must split

the external edges to match the configuration we wish to test; this is only possible

if all triangles do not share edges with triangles adjacent to them. So for simplicity

we have tested the performance on isolated triangles, each with their own unique

three edges and three vertices. The vertices’ adjacent triangle lists are maintained

by the triangles, the cost of insertion, removal and replacing triangles in this list are

important. So we additionally insert fake references into the lists for each vertex
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to simulate other adjacent triangles so we do not bias the results by using isolated

triangles. They only serve to take up space in the list, so the remove and replace

operations will be slowed down as the list will have to be searched. We insert 4 null

pointers followed by the actual triangle followed by 4 more null pointers, as if there

were 9 adjacent triangles around each vertex.

We have repeated the performance tests on the 2000 triangles (this gives 8000 tri-

angles after a 1-to-4 split which is a reasonable maximum amount of triangles expected

in the mesh for real-time simulation) and averaged over 200 runs (the number of runs

was chosen to give consistent averages where the operating system can introduce some

variability); the results do not include the cost of splitting or rejoining edges but only

the triangle configuration costs. We pre-allocated enough memory for the tests such

that we achieve constant time allocation and deletion costs for triangles, edges and

vertices (the memory pool approach we use is discussed later in Section 3.5). Table

3.2 shows the cost of configuring a triangle from starting from SC and the cost to

clear the configuration back again in microseconds. The amount of work to configure

a triangle is proportional to the number of internal triangles and internal edges; the

performance shows three distinct groups i.e. C0-3 with two such triangles and one

such edge, C4-C9 with three triangles and two edges and C10 with four triangles and

three edges. Next we have performed tests to see the cost of a transition from one

configuration indirectly to another via SC. Finally, Table 3.4 shows the performance

achieved by implementing direct transitions and they can be compared to Table 3.3

to see the improvement. The improvement in transition costs varied significantly, in

the worst case, the transition C0→C7 was only reduced to 99.6% (from 0.313 µs to

0.311 µs). However, the best case shows a large improvement reducing the cost of

C9→C1 to 29.6% (from 0.292 µs to 0.087 µs). The average improvement was 62.1%,

and the relative performance of all the transitions is summarised in Table 3.5.
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Table 3.2: This table shows the average cost (in microseconds) to clear a triangle’s
configuration into the cleared state (SC) and the cost to configure it back the original
configuration from SC.

State Configuration Clear (to SC) Configure (from SC)
(µs) (µs)

0 0 0.0467 0.0472
1 1 0.0650 0.1866
2 2 0.0646 0.1842
3 3 0.0648 0.1850
4 4 0.0738 0.2821
4 5 0.0748 0.2863
5 6 0.0751 0.2857
5 7 0.0744 0.2892
6 8 0.0740 0.2850
6 9 0.0739 0.2826
7 10 0.0781 0.3983
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Table 3.3: This table shows the average performance (in microseconds) of transitioning from a starting configuration (row)
to another configuration (column) indirectly via State 0, e.g C1→C2 takes 0.246 µs.

0 1 2 3 4 5 6 7 8 9 10

0 - 0.207 0.209 0.208 0.310 0.311 0.320 0.313 0.314 0.314 0.430
1 0.067 - 0.246 0.252 0.394 0.398 0.382 0.384 0.399 0.403 0.507
2 0.068 0.246 - 0.251 0.398 0.406 0.406 0.398 0.379 0.389 0.512
3 0.067 0.252 0.258 - 0.384 0.389 0.409 0.402 0.405 0.408 0.511
4 0.076 0.276 0.273 0.262 - 0.401 0.409 0.389 0.406 0.406 0.527
5 0.077 0.277 0.277 0.264 0.407 - 0.407 0.393 0.394 0.406 0.535
6 0.078 0.260 0.273 0.272 0.391 0.390 - 0.396 0.389 0.405 0.530
7 0.077 0.258 0.271 0.274 0.389 0.397 0.400 - 0.396 0.413 0.538
8 0.078 0.307 0.256 0.273 0.403 0.403 0.417 0.461 - 0.429 0.538
9 0.077 0.292 0.279 0.293 0.448 0.401 0.405 0.397 0.407 - 0.529
10 0.078 0.287 0.290 0.289 0.413 0.408 0.409 0.409 0.408 0.413 -
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Table 3.4: This table shows the average performance (in microseconds) of directly transitioning from a starting configuration
(row) to another configuration (column), e.g C1→ C2 takes 0.145 µs.

0 1 2 3 4 5 6 7 8 9 10

0 - 0.198 0.201 0.200 0.306 0.307 0.305 0.311 0.309 0.309 0.428
1 0.060 - 0.145 0.146 0.202 0.266 0.292 0.273 0.276 0.271 0.378
2 0.060 0.145 - 0.153 0.290 0.215 0.224 0.281 0.304 0.297 0.394
3 0.060 0.148 0.147 - 0.287 0.304 0.292 0.215 0.217 0.308 0.388
4 0.068 0.083 0.164 0.159 - 0.151 0.231 0.212 0.246 0.218 0.279
5 0.068 0.144 0.090 0.170 0.151 - 0.192 0.231 0.226 0.242 0.270
6 0.069 0.153 0.082 0.157 0.216 0.180 - 0.148 0.239 0.224 0.277
7 0.069 0.154 0.154 0.085 0.209 0.217 0.152 - 0.194 0.230 0.280
8 0.067 0.140 0.169 0.090 0.227 0.212 0.241 0.190 - 0.161 0.264
9 0.068 0.087 0.166 0.169 0.209 0.220 0.226 0.236 0.158 - 0.348
10 0.067 0.161 0.177 0.177 0.158 0.217 0.163 0.151 0.199 0.161 -
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Table 3.5: This table shows the relative cost of directly transitioning (Table 3.4) compared with indirecty transitioning
(Table 3.3), expressing the direct methods cost as a percentage of the indirect method. Therefore transitioning from a
starting configuration C1 to C2, the cost has been reduced to 58.8% by using the direct method (e.g. reduced by 41.2%).

0 1 2 3 4 5 6 7 8 9 10

0 - 96.0% 95.9% 96.2% 98.6% 98.7% 95.5% 99.6% 98.6% 98.2% 99.5%
1 89.0% - 58.8% 58.1% 51.2% 66.9% 76.3% 70.9% 69.3% 67.2% 74.7%
2 88.1% 58.9% - 60.8% 72.7% 53.1% 55.3% 70.7% 80.2% 76.3% 77.0%
3 90.2% 58.8% 56.9% - 74.7% 78.1% 71.3% 53.4% 53.6% 75.4% 75.9%
4 88.5% 30.1% 60.0% 60.7% - 37.5% 56.6% 54.6% 60.6% 53.8% 52.9%
5 89.1% 51.9% 32.4% 64.5% 37.2% - 47.2% 58.6% 57.5% 59.6% 50.5%
6 88.8% 58.7% 30.1% 57.8% 55.2% 46.3% - 37.2% 61.6% 55.4% 52.3%
7 90.3% 59.8% 57.0% 31.0% 53.7% 54.7% 38.1% - 48.8% 55.7% 52.1%
8 85.6% 45.5% 66.2% 33.1% 56.2% 52.6% 57.8% 41.3% - 37.4% 49.0%
9 89.3% 29.6% 59.5% 57.5% 46.8% 54.9% 55.8% 59.3% 38.8% - 65.8%
10 86.0% 56.1% 61.1% 61.3% 38.2% 53.2% 39.8% 37.0% 48.6% 38.9% -
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3.4 Edge Refinement and Coarsening

This section describes the refinement and coarsening procedures for edges, and the

criteria that govern when refinement or coarsening should be triggered. We always

impose a maximum refinement level; this can be changed at run-time as desired and

it acts to stop infinite refinement (or too deep) refinement even with no other criteria

(or unsuitable ones). All other criteria are specified separately and there can be as

many different criteria as needed for a particular application. There are also some

simple rules which determine whether the refinement or coarsening is permitted; these

are needed to ensure a conforming and error free state for the mesh.

3.4.1 Edge Adaption

Our incremental refinement procedure means an edge may be prevented from refine-

ment by its two adjacent triangles; if the adjacent triangle’s parents have not yet

undergone 1-to-4 subdivision. Conversely an edge may refine once the triangles’ par-

ents are in state 7. We efficiently use the triangles state for the check required, as we

previously defined the state of a child triangle whose parent is not in state 7 is set to

‘-1’, i.e. S-1. In this way we do not need to check the parents’ states and therefore

we do not need to store a parent reference in each triangle. This allows maximum

flexibility since edges may check for themselves to see if they are permitted to re-

fine. We perform the maximum refinement level check first since it is the cheapest to

compute followed by checking if a split is permitted. Once we know that an edge is

allowed to split, we can then check the refinement criteria to see if we should split the

edge by creating its immediate children (centre vertex and two edges). The recursive

refinement procedure can be seen in Listing 3.6.
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1 bool Edge:: adapt_AllowSplit(void) const

2 {

3 if(left.T->state == -1)

4 return false; // may not split

5 if(right.T!=0 && right.T->state == -1)

6 return false; // may not split

7 return true; // may split.

8 }

9 void Edge:: adapt_SplitRecursive_criteria(void)

10 {

11 if(isSplit ()) // if this is already split , recurse to children.

12 {

13 AC ->adapt_SplitRecursive_criteria (); // first half.

14 CB ->adapt_SplitRecursive_criteria (); // second half.

15 }

16 else if(level < adaptiveProperties ->adapt_maxLevel)

17 {

18 if(adapt_Split_isAllowed ()) // allowed to split?

19 {

20 if(adapt_SplitCriteria ()) // check criteria.

21 {

22 /* create centre vertex and two child edges */

23 }

24 }

25 }

26 }

Listing 3.6: Recursive edge refinement procedure for the splitting of edges.

The coarsening procedure is a little more involved than refining; an edge that is

split can be rejoined by simply deleting its immediate children. However, there are

some checks needed so we do not destroy detail on subsequent levels and leave the

mesh in an inconsistent state. It is logical that an edge cannot rejoin (coarsen) if

its children are also split, so we must wait for them to rejoin. The allowable splits

and rejoins of a single base (level 0) edge is shown in Figure 3.10, we have imposed

a maximum refinement level of 3 in this case. Another way of looking at this is that

the edge’s adjacent triangles contain triangles on levels two higher than itself (may

be as a result of the existence of the edge’s childrens’ children) and we do not allow a

local change of more than one level in a single step. This exposes the fact that there

are cases where this will be true, even though the edge’s children are not split. Other

edges of the adjacent triangle may have split children. The solution is we must check
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This figure shows how a hierarchical view of an edge can be flattened without loss of information 

for showing permitted edge splits or rejoins. The hierarchical view shows the parent-child tree of 

edge and vertices, for instance the level 0 edge is split and has 2 child edges and 1 child vertex on 

level 1. In this example, we have imposed a maximum refinement level of 3, the edges shown on 

level 3 would be able to be split if we had used a maximum level of 4.  

Level: 0  

Level: 1  

Level: 2  

Level: 3  

Levels 0-3 

Hierarchical View 

Flattened View 

Can Rejoin 

Cannot Rejoin 

Vertex  

Can Split 

Cannot Split 

Edge 

Figure 3.10: This figure shows how a hierarchical view of an edge can be flattened
without loss of information for showing permitted edge splits or rejoins. The hierar-
chical view shows the parent-child tree of edge and vertices, for instance the level 0
edge is split and has 2 child edges and 1 child vertex on level 1. In this example, we
have imposed a maximum refinement level of 3; the edges shown on level 3 would be
able to be split if we had used a maximum level of 4.

the adjacent triangles’ states and their children’s state. If the adjacent triangles are

in state 7 and if their children are further subdivided (state > 0) then the edge cannot

be rejoined, see Listing 3.7. To help clarify this, we show some example refinements

indicating allowable splits and rejoins in Figure 3.11.

1 bool Tr iang l e : : adapt BlockExternalEdgeJoin ( void ) const
2 {
3 re turn ( s t a t e==7 && ( inT[0]−> s t a t e > 0 | | inT[1]−> s t a t e > 0 | | inT

[2]−> s t a t e > 0 | | inT[3]−> s t a t e > 0) ;
4 )
5 void Edge : : a dap t Jo i nR c r i t e r i a ( void )
6 {
7 i f ( i s S p l i t ( ) ) // can ’ t j o i n i f not s p l i t .
8 {
9 i f ( ! (AC−> i s S p l i t ( ) | | CB−> i s S p l i t ( ) ) ) // I f c h i l d s edges are not

themse lves s p l i t .
10 {
11 i f ( l e f t −>T−>adapt BlockExternalEdgeJoin ( ) )
12 re turn ; // l e f t Tr iang l e prevent ing j o i n .
13 i f ( r i ght−>T && right−>T−>adapt BlockExternalEdgeJoin ( ) )
14 re turn ; // r i gh t Tr iang l e prevent ing j o i n .
15 i f ( adap t Jo i nCr i t e r i a ( ) ) // may r e j o i n , check c r i t e r i a .
16 {
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17 /∗ j o i n edge , d e l e t e ch i l d r en ∗/
18 }
19 }
20 e l s e // e i t h e r or both ch i l d edges are s p l i t , r e cu r s e .
21 {
22 AC−>adap t Jo i nR c r i t e r i a ( ) ;
23 CB−>adap t Jo i nR c r i t e r i a ( ) ;
24 }
25 }
26 }

Listing 3.7: Recursive edge coarsening procedure for the rejoining of edges.

Refinement and coarsening of edge must take into account of adjacent triangles internal structure, 

the examples show the permitted splits and rejoins for different cases using the flattened view in-

troduced for edges in Figure \ref{}.  

Top Left: Most edges cannot be refined further until the last edge A is split and the main triangle 

has been subdivided into four (State 7) like the example shown Bottom Left.  

Top Right: Similarly, until edge B is split then edges cannot be refined further, leading to the exam-

ple Bottom Right. Also edge C cannot be rejoined until edges C0 and C1 are rejoined, leading to the 

Botton Left example. 

Can Rejoin 

Cannot Rejoin 

Vertex  

Can Split 

Cannot Split 

Edge A C 

B 

C0 

C2 

Figure 3.11: Refinement and coarsening of edge must take into account of adjacent
triangles internal structure, the examples show the permitted splits and rejoins for
different cases using the flattened view introduced for edges in Figure 3.10. Top
Left: Most edges cannot be refined further until the last edge A is split and the
main triangle has been subdivided into four (State 7) like the example shown Bottom
Left. Top Right: Similarly, until edge B is split then edges cannot be refined further,
leading to the example Bottom Right. Also edge C cannot be rejoined until edges C0
and C1 are rejoined, leading to the Botton Left example.

3.4.2 Refinement and Coarsening Criteria

The adaptive mesh supports any condition for refinement or coarsening that can

be expressed as an edge based criteria. Most conveniently, criteria are implemented
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through functions returning a Boolean value. We have three main criteria that we have

used for cloth simulation with the adaptive mesh: Curvature, Length and Collision

[SLD09].

Curvature

Curvature based criteria are very commonly used with adaptive meshes; there are

different methods of measuring curvature. Previously on regular grids, the curvature

has been measured simply by the angle at a vertex between two oppositely directed

springs which are connected to the vertex [HPH96]. Li and Volkov [LV05] employed

estimates of local approximation error using discrete mean curvature at the mesh

vertices. Villard and Borouchaki [VB05] approximated curvature at a vertex by the

deviation between the surface and the tangent plane by using the largest deviation

found between the vertex normal and an adjacent face. Wang [Wan02] measured the

angle between adjacent face normals. We must define curvature in a way suitable

for our edge-based criteria, the most efficient way to do that is to measure curvature

along an edge.

Figure 3.12: Left: Normals for two vertices (blue) shown for a highlighted edge on
part of a mesh, the central vertex (yellow) is shown as if the edge were split. Right:
Curvature is defined locally as the angle between the two normals, calculated by the
dot product between the vectors.

We define curvature locally to each edge by the angle between the two surface
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normals of the two vertices at the end of each; this is shown in Figure 3.12. When

the angle is greater than an adjustable threshold, the edge is split; conversely when

it is less than another threshold the edge can be rejoined. This permits an edge to

have a curvature between the two values and remains unchanged, giving a tolerance

to the threshold. It prevents the edge from flipping between split and joined states

if the curvature oscillates back and forth. However, too large a difference between

the two thresholds is not good, edges may remain coarse or refined for too long. The

larger the difference, larger oscillations are ignored but edges may remain unchanged

for too long. This can be implemented by the two functions shown in Listing 3.8.

1 bool Edge:: adapt_SplitCriteria_Curature(void) const

2 {

3 return acos(dot_product(A->n,B->n)) > adaptiveProperties ->

criteria_split_curvature_angle;

4 }

5

6 bool Edge:: adapt_JoinCriteria_Curature(void) const

7 {

8 return acos(dot_product(A->n,B->n)) < adaptiveProperties ->

criteria_join_curvature_angle);

9 }

Listing 3.8: Edge Curvature Criteria

Length and Edge Buckling

The almost inextensibility of cloth is often strived for in simulations, the type of fabric

plays a big part in both extension and compression. For instance knitted wool’s loose

stitches and holes provide slack allowing limited extension of the cloth with small

forces beyond which cause stretching and eventually breaking of the fibres occurs.

This can be simulated by non-linear springs and forces using real measured data such

as discussed in the literature review chapter (see Chapter 2). Compression is more

interesting in some ways, because cloth buckles quickly under compression and it is

the way in which wrinkles are created giving cloth its tell-tale look. Stretching cloth
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in one direction also often causes compression in the other direction.

It is clear that coarse meshes cannot possibly produce fine wrinkles; the resolution

of a mesh greatly changes its ability to model folding and buckling. Thomaszewski

et al. [TWS06] noticed that if using a simple bending model, the fold patterns were

different to real samples, but also the patterns changed completely with a finer mesh

with the simple model. Their simulation method using finite elements was much bet-

ter and produced a very good likeness compared to the samples but its computational

cost limit it to only offline use. Volkov and Li [VL03] found that fine wrinkles ob-

served in the non-adaptive simulation were missing from their adaptive one, and that

these fine wrinkles were attributed to buckling behaviour which cannot be detected

by the curvature based criterion but gave no solution. Mujahid et al. mentions the

possible use of stretching as refinement criteria, though they did not link this to any

particular use. In our own opinion we feel that refinement for stretched edges is not

advantageous, greatly stretched edges apply large forces to the particles would be less

numerically stable if refined. That is since more refined particles have lower masses

typically causing them to experience larger accelerations (i.e. from f = ma), which

without reducing the time step this will manifest as extra instability. However, re-

ducing the time step has the implication that the cloth will need to be updated more

frequently thus increasing the computational cost.

However, refinement on compression is a way to allow coarse meshes to buckle and

simulate wrinkles and we applied this to draping of cloth in [SLD09]. Compression

of an edge is measured by its current length compared to its rest length expressed as

a percentage, e.g. 50% implies an edge has been compressed to half its undeformed

size. Buckling behaviour is therefore enabled by the split edge’s central vertex being

created and then is free to move. This can be implemented as shown in Listing 3.9,

like curvature we use two threshold values. It shows the case where caching edge
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length can be beneficial to performance since it can be reused here.

1 bool Edge:: adapt_SplitCriteria_Length(void) const

2 {

3 float stretch = length(B->p - A->p) / restLength; // 100% = 1.0f

4 return stretch < adaptiveProperties ->criteria_split_length_percent

5 }

6

7 bool Edge:: adapt_JoinCriteria_Length(void) const

8 {

9 float stretch = length(B->p - A->p) / restLength; // 100% = 1.0f

10 return stretch > adaptiveProperties ->criteria_join_length_percent;

11 }

Listing 3.9: Edge Length Criteria

Collision

Collision can also be used as a refinement criteria, this is advocated when performing

fast point-object collision checks. Point-object collision detection and response when

combined with a coarse mesh and a relatively small object can result in the cloth

falling through the object or the object sticking through the cloth. A solution to this is

to perform full polygon-polygon collision detection and response but this is much more

computationally expensive. If the fast point-object detection is to be used, the mesh

must have enough vertices required to resolve the collision correctly. We therefore

want to cause refinement in the adaptive mesh around the area of the collision, even

if the curvature is not sufficient to cause edge splitting. We can refine edges that are

deemed in collision and project its new centre vertex on to the surface of the object,

see Figure 3.13. The criteria is very simple, the complexity is contained within the

collision detection approach. In this work we deem that an edge is in collision when

its centre (the location where the new vertex would be created) is inside of the object.

At first glance this method appears to suffer from stretching like in [HH98]; the sum

of two child edge lengths will be greater than their parent’s length. However, in our

case the new vertex is fully integrated into the cloth simulation successive iterations
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will restore the edge lengths and the net effect is no different than when moving a

vertex for any other collision. Additionally this criterion is combined with its own

maximum level, so we can limit the refinement depth caused by collisions as needed

while still allowing refinement to higher levels triggered by other criteria.

Figure 3.13: When a collision is detected with an edge, we can trigger refinement in
the edge to allow the cloth to approximate the objects shape better. Left) collision
is detected, Middle) edge is split and new vertex is created, Right) the vertex is
projected out on to the surface of the object.

3.4.3 Conflicting Criteria

When using multiple criteria to control the refinement and coarsening of the mesh,

problems can arise from these conflicting. For example, an edge may be in collision

and therefore should be split, but the curvature criteria may determine that the edge

should not be split and would therefore be rejoined in the next step. A simple way

to deal with this is to impose a delay after an edge is split before it is allowed to

rejoin [SLD09]. We found this was quite effective in most regards, but it did not

remove the problem entirely. The edges could still rejoin and then immediately split

every time the rejoin wait was finished. In [SLD10], the collision criterion was the

main culprit causing the most visual flickering. So we checked that an edge was not

in collision before rejoining, such that it would not immediately be split on the next

step. The cost of additional collision checks were expensive so we kept the rejoin wait
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count as a way to spread out the coarsening checks. Each time a rejoin is attempted,

the rejoin wait count is reset and then another attempt at rejoining is not tried until

the count exceeds a user settable number of steps. This setting can be determined

experimentally, we have found a wait count of 10 adaptive steps works well when

updating the mesh at 30Hz. In this case an edge (split and) rejoin may only occur a

maximum of 3 times a second for a balance of greater performance and less flickering.

Simulation performance can be hurt by using a too long setting; the mesh may be

unnecessarily delayed from coarsening.

In general, it can be seen that to eliminate the problem fully, we must check all

refinement criteria (not just collision) and verify that the edge should not remain

split. If the refinement criteria indicates that the edge should be split (as if it was

rejoined) then we do not need to check the coarsening criteria and therefore we should

not rejoin the edge. This also permits a new rejoining criterion, which rejoins an edge

whenever possible (i.e. as soon as not blocked by splitting criteria) for if specific

rejoining criteria are not required.

3.4.4 Implementation

There is often more criteria defined than we wish to use in a simulation, e.g. we may

wish to disable criteria based on collision for the simulation of a flag where there are

no colliding objects nearby for optimal performance. This presents either a problem

of performing an extra test to see if a criterion is enabled (once per edge per criteria);

or a programming maintenance problem with replication of the edge splitting and

edge joining functions with different combinations of criteria. We make use of C++

templates in combination with bit masks to provide us with a solution that combine

criteria functions, and then we rely on the compiler to automatically generate different

versions (such that disabled criteria are optimised away). We can order the calls to
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the different criteria functions with the least costly first; typically collision tests last

for best performance. We show how several edge refinement criteria can be combined

using a template in Listing 3.10.

1 const unsigned Criteria_Split_Length = 0x0001; // binary: 0001

2 const unsigned Criteria_Split_Curvature = 0x0002; // binary: 0010

3 const unsigned Criteria_Split_Collision = 0x0004; // binary: 0100

4

5 template <int Criteria >

6 bool Edge:: adapt_SplitCriteriaT () const

7 {

8 return (( Criteria & Criteria_Split_Length) &&

adapt_SplitCriteria_Length ()) ||

9 (( Criteria & Criteria_Split_Curvature) &&

adapt_SplitCriteria_Curvature ()) ||

10 (( Criteria & Criteria_Split_Collision) &&

adapt_SplitCriteria_Collision ());

11 }

12

13 typedef bool (Edge ::* emptr)(void); // Edge member function pointer

14

15 emptr Edge:: adapt_SplitCriteria_Curvature () const

16 {

17 // curvature

18 return &Edge:: adapt_SplitCriteriaT <Criteria_Split_Curvature >;

19 }

20

21 emptr Edge:: adapt_SplitCriteria_LengthCurvature () const

22 {

23 // length and curvature

24 return &Edge:: adapt_SplitCriteriaT <Criteria_Split_Length |

Criteria_Split_Curvature >;

25 }

Listing 3.10: Edge criteria template and example usage for combining criteria

Then we need only instantiate the template for used combinations of criteria and

provide a facility to return a member function pointer at run-time based on enabled

and disabled criteria. This is repeated for edge joining criteria in the same way.
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3.5 Memory Management

Memory considerations are often overlooked in real-time simulations and often pre-

computation is preferred wherever possible. However, adaptive meshes require a large

amount of memory to store subsequent levels even for small base meshes because the

hierarchy must be stored to enable efficient incremental refinement and coarsening.

For instance, the number of triangles increases by four each level which adds onto the

total of previous levels, one triangle is subdivided into 64 on level 4 but requires 85

triangles in total in the hierarchy (1+4+16+64). Real-time constraints could force the

use of pre-allocation for all levels that may be needed; this is because the operating

system’s managed dynamic memory imposes a relatively large overhead for creation

and deletion. In the case of C++, a heap structure is used to manage variable sized

allocations of memory. The overhead is particularly troublesome if allocating many

small objects one by one. Allocation performance is improved by allocating fewer

objects, since we can use fixed sized triangle lists in the vertices and have combined

directed edge sides into a single edge structure then we only have three objects to

dynamically allocate (vertices, edges and triangles). The process of mesh refinement

and coarsening is extremely likely to also cause memory fragmentation, just as if we

were to allocate and free many different sized objects in a random order.

3.5.1 Memory Pools

The purpose of the adaptive mesh is to allow refinement only in areas that require

more triangles through the use of user definable criteria. There is a limit on the overall

number of triangles in a piece of cloth that can be simulated and rendered in real-time,

and the refinement criteria should be chosen accordingly. We can make use of this to

achieve large memory savings, by only pre-allocating the maximum memory needed

by the mesh over the course of a real-time simulation. However, where that memory is
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needed changes during the simulation so it needs to be dynamic in some regards so we

employ memory pools. A memory pool is also known as fixed-size-blocks allocation,

where a number of blocks with the same size are pre-allocated. If the blocks are the

same size as the objects, efficient use of space is achieved so objects can be tightly

packed with no wasted space. For this reason we use three memory pools, one for

each of the core building blocks of the mesh: triangles, edges and vertices. We have

overloaded C++’s operator for new and delete so that the pools can be used trans-

parently (see Listing 3.11). As the mesh is refined and coarsened the pools are used

dynamically, in the same way but with much less overhead compared to system man-

aged memory. Several memory pool implementations can be defined and then selected

between at compile time or disabled entirely so that comparisons can be made easily.

1

2 template <typename T>

3 class MemoryPool

4 {

5 public:

6 void * allocate(size_t bytes);

7 void free(void * p);

8 /* rest of implementation */

9 };

10

11 class Vertex

12 {

13 public:

14 static MemoryPool <Vertex > memoryPool; // Static global memory pool

for vertices.

15

16 void * operator new(size_t bytes)

17 {

18 return memoryPool.allocate(bytes); // return a pointer from the

memory pool.

19 }

20 void operator delete(void * p)

21 {

22 memoryPool.free(p); // pass the pointer to the memory pool to be

freed.

23 }

24 };

Listing 3.11: Memory Pool and Vertex usage.
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3.5.2 List based Memory Pool

We use a simple list approach that allows constant time access to the pools, a list of

pointers to unused objects is maintained. When an allocation is requested, a pointer

to a single object is taken from the list and returned. If the list is empty, we allocate

the memory for many objects at once and add them all to the list. When an object

is deleted, we place its pointer back into the list. The number of objects to allocate

at once is configurable; we have found allocating enough memory for 250 objects at a

time to work well. If much fewer than 250 objects at allocated at once the performance

advantages of the memory pools are noticeably reduced. However, allocating many

more objects at once gives little improvement in performance while increasing the

amount of wasted memory space. In order for the pools to automatically shrink in

size, additional overheads would be required to detect if a complete unused block is

free. There is no guarantee that a block would ever become free especially with larger

block sizes this become more unlikely. We have deemed this overhead for dynamically

shrinking inacceptable, so the memory pools are not designed to decrease in memory

usage. It is difficult to predict the exact requirements for a complex simulation

especially with collisions; so the ability to grow dynamically with minimal overheads

is favoured compared to manually selecting the size. Experimentation can achieve

very good estimates, but requires the simulation to be run once with large pools to

find maximum usage in a kind of pre-computation step which defeats the purpose of

dynamic memory.
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3.6 Cloth Simulation Integration

As previously mentioned the edge-based adaptive mesh was designed as a mass-spring

network. The cloth simulation proceeds by firstly calculating spring forces and ap-

plying them to the vertices. The accumulated force vector of each vertex is used to

calculate the acceleration of the particle and numerical integration is performed. Any

collisions are then processed and finally the surface normals are recalculated.

3.6.1 Material Coordinates

During refinement we require access to un-deformed quantities of the mesh such as

lengths and areas. Some of these values can be found easily by interpolation, such as

the rest lengths of new edges when an edge is split into two equal pieces. However, we

wanted something that we could fall back on in any situation with minimal overheads

so we do not need rely on special cases. Most un-deformed cloth is flat and clothing is

typically made from flat cloth panels so the natural solution is to store 2D undeformed

coordinates in the mesh, i.e. material coordinates. The material coordinates are

fixed during simulation, so no matter how the cloth is deformed we can calculate

undeformed lengths and areas between any points.

One may think of material coordinates being like texture coordinates, texture

coordinates map 2D textures on to 3D objects and material coordinates map 2D

undeformed coordinates onto 3D deformed objects. However, texture coordinates are

typically created during texture mapping by projecting vertices from a 3D object onto

a simple developable surface such as planes, cylinders and spheres. Depending on the

object and the suitability of the projection method this can create much distortion,

lengths and areas on the texture will not map uniformly to lengths and areas on the

object. Material coordinates need to be very precise for accurate simulation, so we

have to create flat cloth meshes in 2D and directly use the 2D coordinates as the
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material coordinates. The material coordinates are automatically calculated for new

vertices during refinement, which map the newly created vertex to its correct relative

undeformed position in 2D.

3.6.2 Spring Forces

Every edge in the adaptive mesh is a spring that applies directed forces to the two

end masses. An edge has a rest length that is the undeformed length calculated from

the material coordinates. At any instant, the force can be calculated by Hooke’s law,

f = −kx where k is the spring constant and x is the extension. The extension is

calculated from the difference between the current length and the rest length.

The spring constant must be recalculated as the mesh refines for each edge.

Hooke’s law type springs can be combined in series and parallel, the equivalent spring

constants, kp and ks respectively are given by:

kp =
n∑

i=1

ki (3.6.1)

1

ks
=

n∑
i=1

1

ki
(3.6.2)

ks =
k

n
(for n identical springs) (3.6.3)

We define a global spring constant for a piece of cloth, kg with units Nm−1 for a

1m length spring. From Equation 3.6.3., for an edge of length, l we can calculate ke

by dividing the global spring into n (now fractional) pieces:

ke = kgn (where n =
1

l
) (3.6.4)

This allows the calculation of spring constants for both the initial mesh and edges

in the mesh resulting from splitting, next we must account for new edges introduced
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1-to-4 Split

L/2

L/2

L/2L
(a) (b)

Figure 3.14: A triangle (a) is split into four (b), each edge is split into two equal
lengths and for each edge direction (one such direction is highlighted in red), a new
edge is introduced with the same length.

into the adaptive mesh. A triangle undergoes a 4-to-1 split each time it is fully refined

(See Figure 3.14). Resolving along any of its original three edge directions, an edge

with spring constant, ke is bisected (two springs in series) and an additional spring

of equal length is added in parallel. Following Equation 3.6.4. each spring will be

assigned the constant 2ke as the length has halved. This introduces undesirable extra

stiffness, the new equivalent spring constant including the extra spring in parallel is

equal to 3
2
ke when it should still be ke. Simply, we must multiply Equation 3.6.4. by

2
3

for each level the mesh is refined. Therefore, the corrected spring constant for any

edge in the mesh at any level is given by:

ke =
kg
l

(
2

3

)level

(3.6.5)
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3.6.3 Bending Forces

Bending forces are important for realism, because all materials have some resistance to

bending but these forces are much less than the in-plane forces preventing stretching.

Bending forces in mass-spring networks are commonly implemented by springs but

they do not have to be. We have implemented bending springs and another simple

method based on curvature. The benefit of using a curvature based force is that no

lengths are needed, whereas the springs require the undeformed lengths to be updated

as the mesh refines.

Bending Springs

Bending springs stretch across an edge, connecting the adjacent triangles opposite

vertices. During mesh refinement an edges adjacent triangle can change often, even

if the edge itself is unchanged because of retriangulation. A triangle is responsible to

keep the adjacent vertices of its edges updated if they are being cached by the edge,

otherwise edges will find them by using connectivity information. A triangle is also

responsible for invalidating the undeformed length of a bend spring, signalling to an

edge that it must recalculate it from the material coordinates.

Bending Elements

Bending forces can be introduced through simple bending elements, made from an

edge with vertices A and B shared by its two adjacent triangles with surface normals,

Nleft and Nright, and from the triangle’s two opposite vertices L and R (see Figure

3.15). Conceptually like bending springs these are separate elements, the edges serve

a dual purpose as bending elements just as they also serve as springs. These bending

elements simulate a simple bending force, producing a surface normal directed force

and uses a global bending constant, kb, for the whole garment which is expressed as

in newtons per angle (radians). The force is zero when the triangles are perfectly flat,
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smoothly rising to a maximum when the angle is 180◦:

fmag = kb.
cos−1(Nleft •Nright)

π
(3.6.6)

The forces for the four vertices are calculated such that the resultant force on each

triangle is zero, but each triangle experiences a turning force that flattens the pair:

1: Aforce = Nleft.
fmag

2
+ Nright.

fmag

2

2: Bforce = Nleft.
fmag

2
+ Nright.

fmag

2

3: Lforce = −Nleft.fmag

4: Rforce = −Nright.fmag

The forces must be applied in opposite directions when the bending element is

folded the other way in order to flatten the pair, we detect this by checking if (Nright•

(L−R)) > 0.

A

BT
left

T
right

L

N
left

N
right

(a) (b)
R

Figure 3.15: a) A bending element is made from two adjacent triangles and an edge
(red), with shared edge vertices A and B and opposite vertices L and R. b) Forces
are applied following the normal directions for each triangle (Nleft and Nright).
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3.6.4 Verlet Integration

Numerical integration is an important part of physical simulations, allowing the simu-

lation to be evolved over time integrating Newton’s equations of motion. As discussed

in the literature review (see Chapter 2.1.1), Verlet integration is used frequently in

molecular dynamics for the trajectories of particles and has since become popular in

computer graphics. There are many reasons for its popularity, not the least of which

is that it offers greater stability than the Euler method but at little additional cost.

Verlet is a 2nd order method compared to Euler which is only a 1st order method with

regard to global error; but also since velocity can be implicit in Verlet, the velocity

and position to cannot come out of sync so it is more stable. So we use the form

where the velocity is incorporated as the difference between the previous and current

positions, i.e. how far a particle has travelled in the last time step, ∆t. The new

position of a particle is calculated by:

xt+∆t = xt + (xt − xt−∆t) +
1

2
at(∆t)

2 (3.6.7)

The particle experiences a total force, f and has mass, m, from Newton’s 2nd law,

acceleration is given by:

at =
f

m
(3.6.8)

Simple damping can be performed to emulate air resistance by removing a fraction

of the velocity each step; this is done by moving the previous position closer to the

current position. Also it is useful to be able to fix a particle in one place; we used

it to simulate hanging cloth. A simple way to prevent a vertex from moving is to

store and use the inverse (reciprocal) mass for Equation 3.6.8 and multiplying with
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the force instead of the force being divided by the mass. Therefore a particle may be

fixed in place by giving it an artificial inverse mass of zero (in theory infinite mass);

the equation will then calculate zero acceleration. However, if the particles are to be

moved by other means than forces, then the particles should be checked to see if they

are fixed before moving them.

3.6.5 Collision Constraints

Verlet integration allows a very simple collision response that is fast to calculate,

by projecting the particles’ positions outwards onto the surface of a collided object.

The velocity is automatically affected by moving the current position, and can be

further modified if needed by changing the particles’ previous position. Although the

response will not necessarily be realistic, collisions are handled in a plausible way and

particles will appear to slide over surfaces. The adaptive mesh can generate enough

vertex density that the cloth will not fall through objects. Vertex only collision

detection and response has implications for newly created vertices (from edge splits).

The collision detection method cannot always rely on the previous position of a new

vertex being in a collision free state, as it may have been created within an object

(although the collision is immediately resolved). Also, if the previous position is

modified to change the velocity, that act may invalidate its collision free state.

3.6.6 Edge Length Constraints

The almost inextensibility of cloth is an important part of the realism when simulating

it. The use of a very strong spring constant to combat this is problematic due to the

numerical instabilities it can introduce by creating too large restorative forces that

impart very large accelerations on particles which leads to progressive overshooting of

particle positions and divergence of the solution. A smaller integration time step or

more complex methods could be used but these are typically too costly for real-time
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work. As previously disused, Provot [Pro95] presented an ad-hoc inverse dynamic

method to apply to super-elongated springs, it works by assuming the spring direction

is correct but not the distance between the two ends. When used with non-uniform

meshes such as adaptive meshes, the approach must be modified to preserve the edge’s

centre of mass. For each edge in the mesh, a correction is applied to its end particles if

it has stretched beyond a certain percentage of the length, MaxStretch, (See Figure

3.12 for the basic code). Additionally, we check if particles are fixed, if one is fixed

then the correction is applied to the non-fixed particle ignoring relative masses.

1 void Edge:: ConstrainLength(void)

2 {

3 vector3 vec( B->p - A->p ); // vector from A to B.

4 float extens = Length(vec);

5 float stretch = extens / restLength;

6

7 if(stretch > clothProperties ->physics_MaxStretch)

8 {

9 float correction = (extens - restLength*clothProperties ->

physics_ MaxStretch)/extens;

10 float massA = A->getMass ();

11 float massB = B->getMass ();

12 float totalMass = massA + massB;

13 A->p += vec*( correction*massA/totalMass);

14 B->p -= vec*( correction*massB/totalMass);

15 }

16 }

Listing 3.12: Edge length constraining procedure, based on the work of [Pro95]
modified for unequal masses

The order of which edges are processed does affect the convergence, we do as

Provot did and thus perform it in no-particular order (i.e. the order that the edges

happen to be stored in the mesh is followed). order. However, Ozgen and Kallman’s

[OK11] technique of following the direction of gravity may be better but it was limited

to only static orderings for performance so it would not be suitable in an adaptive

setting.



124

3.6.7 Decoupled Simulation

In our use of the edge based adaptive mesh, we have found often there are very few

changes between updates such that the majority of refinement and coarsening costs

are the criteria calculations. This is particularly the case with finer meshes which

require small time steps for numerical stability where it is typical for the number of

triangles in the mesh to only change by less than 20 in a single update. Also finer

meshes have more edges for which the criteria must be checked. In order to not waste

resources in this circumstances we proposed to completely decouple the simulation

updates from the adaptive updates [SLD10]. In doing so, we can run the simulation

at a higher rate, for example, the simulation can be run at 120Hz and the adaptive

refinement can be updated at 30Hz. This is entirely up to the user to decide, since

it is highly dependent on the situation. For instance, fast moving cloth will require

a higher mesh update rate to keep the topology acceptably up to date compared to

slowly deforming cloth. What is deemed acceptable may vary, and depend on distance

to the cloth and the relative importance of the cloth compared to other objects in

the in the scene.

3.6.8 Data Structure Traversal

Our adaptive mesh’s hierarchy enables an efficient algorithm for refinement but we

should consider if it imposes an overhead in other situations. The hierarchical data

structure must be recursively traversed many times for many operations even when

we only need access to the highest level in use (as used for simulation and rendering).

This cost can be reduced by constructing a temporary list of references (pointers) to

triangles, edges and vertices each time the adaptive mesh is updated. It is important

to verify that a saving is achieved when factoring in the cost of the list creation, and

also the list will use up some memory (pointers of four bytes for every vertex, edge
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and triangle). The lists may be particularly effective with a decoupled simulation

since they remain valid for a number of simulation steps. They can be used for face

and vertex normal computation, edge spring forces, numerical vertex integration and

edge length constraining. Table 3.6 shows our results of this approach from [SLD10].

Level Triangles Simulation List Simulation
Creation with List

0 128 0.0498 0.0015 0.0339
1 512 0.2143 0.0066 0.1362
2 2048 0.8804 0.0332 0.5735
3 8192 2.9647 0.1362 2.4078

Table 3.6: Simulation times (in milliseconds) for a single simulation step using
recursive traversal and temporary lists updated each adaptive step. A base mesh of
128 triangles is used and the cost of list creation can be seen.
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3.7 Visualisation and Rendering

In this section we describe rendering techniques to visualise the adaptive mesh and

render the cloth. The visualisation of the adaptive mesh can assist the users of the

adaptive mesh greatly; choosing suitable edge criteria and their values is not easy.

Statistics can be displayed to the user, just as showing the cost of adaption and the

number of triangles in use but a visual representation can be more powerful. For

example, the mesh may be too deeply refined in areas due to edge length criteria but

not deeply enough in other areas due to curvature, the easiest way to check for this

is visually with the ability to enable and disable criteria and watch their effect. We

describe a number of ways to visualise the adaptive mesh, and finally we describe

how we render the final mesh with lighting using OpenGL.

Mesh Levels

The most helpful rendering of the adaptive mesh is one showing the mesh’s levels. We

render each triangle of the mesh colour coded by its level; this gives a clear illustration

of the depth of recursions. We use a simple orange to yellow colour scheme, where

level 0 triangles are colour bright yellow and each successive level is rendered in a

darker colour. We achieve this by the RGB triple (1, 1 − (0.1 ∗ level), 0), such that

level0 = (1, 1, 0), level1 = (1, 0.9, 0) and level2 = (1, 0.8, 0) etc. Edge levels may

be drawn as simple lines, in a similar way; we must draw them if we wish to clearly

distinguish between adjacent triangles. Z-fighting can occur between the rendered

edges and the triangles; to combat this we must offset the triangles further away

in the depth buffer so the edges are drawn clearly over the triangles. This can be

achieved simply using OpenGl’s polygon offset facility.

Unlike triangles and edges where they are effectively replaced by their children
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Figure 3.16: An adaptively refined mesh lying on a sphere, Left: mesh triangles are
rendered and coloured according to their level, Middle: coloured edges are added,
Right: Vertices are rendered as small spheres, level 0 at the largest and size is halved
with each subsequent level.

during refinement, vertices of all levels are in use during the cloth simulation. Visual-

ising the levels of vertices provides a way to see the corners of triangles on each level.

Instead of colour coding vertices, we render them as scaled spheres, so as not to be

overwhelmed by the different colours. A level 0 vertex is drawn with an appropriately

sized radius (we use 1cm) and then we half the radius with each level. This is better

than a linear scale because the level 0 vertices are clearly visible, but the higher level

vertices are not drawn with such large spheres that occlude the edges and triangles.

Figure 3.16, shows an example of an adaptive mesh lying over a sphere which is then

rendered using combinations of these three techniques.

Visualising the Hierarchy

It is hard to relate 2D representations of the adaptive mesh to the 3D hierarchy;

however, the hierarchy can be illustrated in 3D quite easily. We render the hierarchy

using 2D material coordinates where each level is rendered on a different parallel plane

which is offset vertically by a distance by the previous level. We connect the planes

together with lines between common vertices shared between the levels. Higher levels

are coloured darker, and also triangles which have children are coloured darker to
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Figure 3.17: Left: A top down view of an adaptively refined mesh lying on a sphere,
Right: its corresponding hierarchy is illustrated in 3D.

give a shadowing effect, see Figure 3.17.

3.7.1 Rendering and Lighting

In order to render the adaptive mesh on the GPU using OpenGL we must upload the

data to the GPU every frame since the mesh is constantly changing. The simplest

way to do this is to use OpenGL’s immediate mode where vertex data is specified

individually by individual commands. However, more efficient methods exist such

as Vertex Arrays (VA) and Vertex Buffer Objects (VBO). VAs use client (CPU)

memory data, and the display driver handles copying the data to the GPU when a

draw command is issued. In the case of VBOs, the GPU maintains a buffer in its own

memory, users must upload the data. VBO’s achieve the best rendering performance

when the data is not changed and can be reused for rendering, since the transferring

of data from the GPU to the GPU is a significant bottleneck. One drawback to edge-

based adaptive mesh is that it does not expose triangles in the most efficient way

for rendering; on the other hand static geometry can be arranged very efficiently for

rendering. So we cannot upload adaptive triangle data directly because the data is not

contiguous in memory. We have achieved the best performance by copying triangle



129

vertex data from the mesh to an intermediate tightly packed array in order to get

the best transfer rate to the GPU using Vertex Arrays. The array stores interleaved

(positions and normals) vertex data for each triangle and it therefore stores three

times as many vertices as there are triangles. The vertex data is duplicated for

shared vertices, this is not ideal, an index array could be used. However, the cost

of creating and maintaining a dynamic index array is prohibitively expensive for the

adaptive mesh (triangles store pointers to their vertices, there are no inbuilt indices).

Once the array is copied, we stream and render it on the GPU using the code shown

in Listing 3.13.

1

2 struct Vertex

3 {

4 GLfloat normal [3];

5 GLfloat position [3];

6 };

7

8 void render(Vertex* data , unsigned int vertexCount)

9 {

10

11 // tell OpenGL where the data starts.

12 glEnableClientState(GL_NORMAL_ARRAY);

13 glNormalPointer(GL_FLOAT ,sizeof(VERTEX), &data [0]. normal [0]);

14 glEnableClientState(GL_VERTEX_ARRAY);

15 glVertexPointer (3, GL_FLOAT ,sizeof(VERTEX), &data [0]. position

[0]);

16

17 // draw the array as triangles.

18 glDrawArrays(GL_TRIANGLES , 0, vertexCount);

19

20 glDisableClientState(GL_NORMAL_ARRAY);

21 glDisableClientState(GL_VERTEX_ARRAY);

22 }

Listing 3.13: Triangle vertex data streaming to GPU using OpenGL

We employ per-pixel lighting with the Phong lighting model using GLSL (OpenGL

Shading Language) shaders, where the material is specified by standard ambient,

diffuse and specular colour terms and combined with a shininess constant which alters

the size of the specular highlights. Many different looks and feels of cloth-like material
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can be achieved, see Figure 3.18 for some examples.

Figure 3.18: This figure shows a selection of different material colours applied to the
render of a piece on cloth lying on a sphere, they are rendered using per-pixel lighting
with a Phong lighting model shader.

3.7.2 Texturing

Plain rendered cloth, even with per-pixel lighting can look unrealistic and very much

like plastic, real textiles are not so smooth. They can feature colourful patterns and

pictures, ranging from modern printed t-shirts often sold as souvenirs with illustra-

tions of holiday destinations to more traditional patterns such as check and tartan.
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We can use texturing to add these extra details to cloth, but texture mapping requires

texture coordinates. However, we have been able to use the 2D material coordinates

we store in the adaptive mesh for simulation purposes also for texturing purposes. We

can therefore perform simple texture mapping without adding any more overhead to

the adaptive mesh. If independent texture coordinates were used instead, then these

would need to be stored, generated and maintained during refinement and coarsening.

40cm x 40cm mesh  p = (-20,-20) s = (40,40)  p = (-20,-20) s = (20,40) 

 p = (-20,-20) s = (80,80)  p = (0,0) s = (30,30)  p = (0,0) s = (10,10) 

Figure 3.19: Texturing mapping from material coordinates to texture coordinates
is demonstrated on a 40cm x 40cm square mesh (Top Left). The rest of the images
show a simple test pattern textured onto the mesh. The texture is positioned onto
the mesh in material coordinates, the green coordinate axis indicate the position (p),
the size (s) of the texture effects its scale.

We define a simple mapping function to convert from a 2D material coordinate

to a texture coordinate where the texture is defined in coordinates between 0 and
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1. We accomplish this by placing the texture onto the cloth mesh in 2D, giving it a

position, p = (px, py) and size, s = (sx, sy) defined in material coordinates. Then a

texture coordinate, t = (tx, ty) maps to a material coordinate m = (mx,my) using

the following formula:

mx = px+ (tx ∗ sx) (3.7.1)

my = py + (ty ∗ sy) (3.7.2)

Trivially rearranging, the mapping from material coordinates to texture coordinates

is therefore given by:

tx =
mx− px

sx
(3.7.3)

ty =
my − py

sy
(3.7.4)

We have tested this on a square mesh whose size in materials coordinates is 40

cm by 40 cm, centred at (0,0) extending from (-20,-20) to (20,20). The texture can

be made to fill the whole mesh by simply setting p = (-20,-20) and s = (40,40), if

instead s = (20,40) then the texture will repeat twice horizontally (see Figure 3.19

for these and other examples using a test pattern). The texture’s colour is modulated

with the diffuse component of the Phong lighting model, see Figure 3.20 for examples

of rendering with tartan textures.
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Figure 3.20: A hanging cloth mesh is rendered with three different tartan style
textures.
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3.8 Results

In this section we will now present the results and overall performance of the edge-

based adaptive mesh as a whole and its use for cloth simulation as a mass-spring

network. Firstly we will examine the performance of our adaptive mesh in a very

controlled environment with uniform refinements. Secondly we will test it in a more

dynamic and unpredictable setting, by performing cloth simulations with simple col-

lisions.

3.8.1 Uniform Refinement

We have created a number of square meshes to test the performance of the adaptive

mesh as a whole. They are created using quad meshes of sizes 4×4, 8×8, 16×16

and 32×32 where each quad is divided into two triangles such that the 4×4 mesh

has 4 × 4 × 2 = 32 triangles etc. The reason for choosing this range of sizes is that

when they are uniformly refined they have the same triangle counts but on different

respective levels. For instance, the 4×4 mesh will have 128 triangles on level 1 and

the 8×8 mesh has 128 triangles on level 0. We can compare the performance for the

same triangle counts but on different levels, therefore the overheads of the hierarchy

can be seen where we expect that lower levels will be more efficient than higher levels

with the same triangle counts. We perform uniform refinements of all the meshes to

a maximum triangle count of 131,072, which includes the 4×4 mesh refined to level

6, 8×8 to level 5, 16×16 to level 4 and the 32×32 refined to level 3.

We have timed uniform refinement and coarsening of the meshes using both stan-

dard memory allocations and allocations using our memory pools, and we have re-

peated and averaged these timings over 100 runs. The timings together with the mesh

sizes can be found in Tables 3.7, 3.8, 3.9 and 3.10. The most significant observation

is that the memory pools are very effective; reducing the refinement times on average



135

to 47.8%. The coarsening times are also greatly improved; the memory pools reduce

those costs to 43.4% on average. The recursions depth shows expected effects on

performance in many cases, for instance refinement from 512 to 2048 triangles (using

the memory pool) cost 0.270 ms for 4×4 mesh, 0.269 ms for 8×8 and 0.253 ms for

16×16. So the recursion depth does not affect the performance by any significant

amount. However, with standard memory allocations there is much more variability

from effects out of our control, so again recursion depth isn’t a large performance

concern.
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Figure 3.21: A comparison of the cost of refinement per existing triangle in the mesh
using standard and memory pool allocations. Refinement increases the number of
triangles by four times in the mesh and increases its level by one.

We can gain more insight into the relative performance of adaption by expressing

the refinement and coarsening costs on a per triangle basis. For simplicity we divide

the cost among the existing triangles, e.g. if a 32 triangle mesh is refined to 128
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Figure 3.22: A comparison of the cost of coarsening per existing triangle in the mesh
using standard and memory pool allocations. Coarsening reverses previous refinement
of a mesh, decreasing the triangle count to a quarter and its level by one.

triangles then we divide the cost by 32, and, if a 128 triangle mesh is coarsened to 32

triangles, we divide the cost by 128. These costs are summarised on the graphs shown

in Figures 3.21 and 3.22. The refinement cost per triangle is almost constant up to

2048 triangles (refining to 8192 triangles) at around 1.25 µs (microseconds) and 0.5

µs for standard and memory pool allocations respectively. After this the performance

starts to drop off as the cost begins to increase with successive refinement, increasing

to over 1.5 µs and 0.75 µs for standard and memory pool allocations respectively by

the refinement of 32768 triangles (to 131072 triangles). This is most likely due to the

CPU’s cache size, we show the basic memory requirements for the meshes in Table

3.11. This is worked out from the size and number of vertices (144 bytes), edges

(52 bytes) and triangles (120 bytes) that are in the hierarchy. The processor has a
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level 3 cache (shared between all cores) of 8 MB and each physical core has a 256

KB level 2 cache. Therefore we can infer that the performance drop-off is caused by

increased cache misses when the memory requirement of a single mesh exceed the

CPU’s level 3 cache of 8 MB by itself. Refinement from 8192 to 32768 increases

memory consumption from around 2.65 MB to 10.5 MB, refining again to 131072

takes the memory costs up to around 42 MB. The memory usage for the different

meshes refined to 131072 triangles is only marginally different, for example, the 4×4

mesh takes 42.12 MB and the 32×32 takes 41.99 MB. The number of vertices is

the same for the matching triangle count (in the highest active level) and does not

depend on the level. However, the edges and triangles in previous levels add to the

total memory, the 4×4 mesh has an additional 1064 edges and 672 triangles in levels

0 to 2 and levels 3 to 6 correspond to the 32×32 mesh levels 0 to 3.

Table 3.7: Uniform refinement and coarsening performance for a square base mesh
of 32 triangles (4×4 quad grid divided into two), the times show the refinement and
coarsening performance (in milliseconds) with standard memory allocations (C++
new and delete) compared with overloaded operators which delegate the allocations
to the memory pools.

Standard Allocation Memory Pool

Level Vertices Edges Triangles Refine Coarsen Refine Coarsen

0 25 56 32 0.041 - 0.017 -
1 81 208 128 0.159 0.019 0.072 0.007
2 289 800 512 0.641 0.075 0.270 0.024
3 1089 3136 2048 2.692 0.295 1.114 0.108
4 4225 12416 8192 12.041 1.177 5.305 0.445
5 16641 49408 32768 50.712 6.029 25.061 2.357
6 66049 197120 131072 - 26.952 - 11.970
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Table 3.8: Uniform refinement and coarsening performance for a square base mesh
of 128 triangles (8×8 quad grid divided into two), the times show the refinement and
coarsening performance (in milliseconds) with standard memory allocations (C++
new and delete) compared with overloaded operators which delegate the allocations
to the memory pools.

Standard Allocation Memory Pool

Level Vertices Edges Triangles Refine Coarsen Refine Coarsen

0 81 208 128 0.160 - 0.065 -
1 289 800 512 0.641 0.075 0.269 0.025
2 1089 3136 2048 2.787 0.294 1.105 0.105
3 4225 12416 8192 12.061 1.189 5.379 0.436
4 16641 49408 32768 50.203 6.033 24.856 2.359
5 66049 197120 131072 - 26.476 - 12.081

Table 3.9: Uniform refinement and coarsening performance for a square base mesh of
512 triangles (16×16 quad grid divided into two), the times show the refinement and
coarsening performance (in milliseconds) with standard memory allocations (C++
new and delete) compared with overloaded operators which delegate the allocations
to the memory pools.

Standard Allocation Memory Pool

Level Vertices Edges Triangles Refine Coarsen Refine Coarsen

0 289 800 512 0.629 - 0.253 -
1 1089 3136 2048 2.485 0.293 1.109 0.102
2 4225 12416 8192 11.697 1.124 5.171 0.409
3 16641 49408 32768 50.117 5.730 24.619 2.123
4 66049 197120 131072 - 26.481 - 12.072

3.8.2 Adaptive Refinement and Cloth Simulation

The results of uniform refinement tests in the previous section give a very good insight

into its performance for refinement and coarsening. We are very interested in its per-

formance with dynamic refinements and cloth simulation, where the costs of adaption

criteria are also included. We drop cloth on to simple geometric objects (spheres and

cylinders), the cloth drapes over and eventually slides off of the objects thereby gener-

ating constantly changing dynamic refinements. Collisions are performed analytically
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Table 3.10: Uniform refinement and coarsening performance for a square base mesh of
2048 triangles (32×32 quad grid divided into two), the times show the refinement and
coarsening performance (in milliseconds) with standard memory allocations (C++
new and delete) compared with overloaded operators which delegate the allocations
to the memory pools.

Standard Allocation Memory Pool

Level Vertices Edges Triangles Refine Coarsen Refine Coarsen

0 1089 3136 2048 2.646 - 1.105 -
1 4225 12416 8192 12.186 1.201 4.777 0.415
2 16641 49408 32768 51.666 5.848 26.670 1.942
3 66049 197120 131072 - 26.670 - 11.995

with the objects; we project collided vertices out of the objects on to their surfaces.

We render the objects at 95% of their collision size, such that very small intersections

are removed. Even with this, the coarse meshes still experience intersections with the

rendered objects so refinement is needed to remove these.

We use a base mesh of 32 triangles with a maximum refinement depth of level 4

(8192 triangles maximum). We have first performed a cloth simulation on a sphere

and cylinder using uniform refinements of the mesh, the results of this are summarised

in Table 3.12 and Table 3.13. The simulation and rendering costs are very similar

to one another; this is expected because all costs are proportional to mesh density.

The only variable cost is the edge length constraints, because the corrections are only

applied to over stretched edges (over 105% of length). The collision costs are very

fast in comparison with the totat costs with such simple objects since they permit

very fast intersection tests for each vertex; still the sphere is much cheaper than the

cylinder (0.0673 ms or 1.85% of the total compared to 0.2832 ms or 7.48% of the total

for level 4 refined meshes).

Next we repeated the simulation with dynamic refinements using different combi-

nations of criteria, A) collision, B) curvature and C) edge length (extension). We fol-

low the decoupled simulation approach, and we perform one adaption update (30Hz)
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to each four simulations steps (120Hz). We present our results showing average costs

over four steps for simplicity; this means that the cost of the adaptive mesh update is

shown at 25% of its actual cost each step instead of 100% every 4 steps. The results

from all combinations of criteria are summarised in Table 3.14, showing the average

costs per step. The most interesting result comes from the collision criteria when used

alone, which shows our mesh is effective at coarsening. The cloth refines when it is in

collision (so there are no visible intersections), and parts which are no longer colliding

coarsen as the cloth falls off of the object bringing rapid savings (see Figure 3.23).

The detailed step by step cost for the simulation with collision criteria falling onto a

cylinder is shown in Figure 3.25, and for a sphere in Figure 3.26. The performance

is proportional to the number of triangles, the trend holds with other criteria, for

example Figure 3.27 and Figure 3.28 shows the results if curvature criteria are used

(in this instance, split when greater than 7◦, rejoin when less than 6.7◦). Criteria can

also be combined, Figure 3.29 shows the results if the collision and curvature criteria

are used together. In this situation there is some coarsening as it falls off the sphere,

but as the cloth becomes more wrinkled when it is no longer in contact with the

smooth surface, so curvature criterion causes more refinement. The length criterion

by itself causes no refinement on the cylinder (split when less than 98% and rejoin

when greater than 99%) as the edges are stretched when draping over the object.

However, when dropped onto a sphere, the corners of the cloth drape down around

the sphere causes compression in the middle sections which in turn causes refinement,

see Figure 3.30. Figure 3.24 shows a selection of screen captures from the simulations.
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3.9 Summary

In this chapter we have presented an edge-based incremental approach to adaptively

refine and coarsen a mesh, this has involved detailed explanations of its implementa-

tion focusing on efficiency and performance. We have also covered many important

details of the mesh representation and the refinement procedure. The refinement and

coarsening of the mesh is triggered by two main operations on edges, namely splitting

and rejoining of edges. Any manner of edge-based criteria can be implemented and

combined easily through functions returning Boolean values. We have demonstrated

the use of three kinds of criteria based on curvature, edge length and collisions. We

have seen that our state based triangulation approach allows very fast incremental

retriangulation with a maximum transition cost of 0.529 microseconds and an aver-

age of 0.341 microseconds (Table 3.3). Especially with our reconfiguration approach

that exploits similarities between configurations, the average transitions costs were

reduced to 59.5% (Tables 3.4 and 3.5). We have seen that the standard methods

of allocating memory dynamically using C++ impose large overheads, and we have

alleviated them by employing three memory pools, one each for vertices, edges and

triangles in the adaptive mesh.

We have demonstrated the adaptive mesh’s suitability for real-time mass-spring

network for cloth simulation using a simple piece of cloth colliding with geometric

objects. The need for small time steps for stability can be problematic due to the many

updates required each second, a rate much higher than required for the rendering of

smooth animations. In these situations the cloth is moving very little between steps,

so we have decoupled the simulation, so that the adaptive mesh may be updated

independently when required. In our tests, the adaptive mesh updates cost an average

of 7.51% of the total update costs, when we update it at 30Hz while running the

simulation at 120Hz.
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The coarsening ability of our adaptive mesh has been shown very effective with

collision criteria; but the other criteria did not allow such coarsening since they do

not coarsen wrinkled regions. However, the use of the collision criterion alone does

not produce visually plausible cloth animations, even after a collision the resulting

wrinkles should not be coarsened away. So the result is not unexpected, the selection

of criteria is important and depends on the situation. It can be difficult to select good

criteria thresholds for relatively unconstrained cloth, the cloth can stay too coarse or

become totally refined. We anticipate the coarsening ability of our adaptive mesh

will be utilised better with clothing, since the characters body shape will constrain

the cloths shape and motion, such that the adaptive mesh can respond to the current

pose of the character. Hence, the next stage is to move from single pieces of cloth

to full garments and clothing for 3D virtual characters. This involves the creation of

garments, character animation and more complicated collision detection.



143

Table 3.11: The memory requirements for the total number of vertices, edges and
triangles in the adaptive hierarchy for uniform refinements of the square meshes.
Vertices are 144 Bytes (including 80 Bytes for the adjacent triangle list that can
accommodate up to 20 triangles), edges are 52 Bytes and triangles are 120 Bytes.
The total memory is given in KB and MB.

Total Total Total Total
Mesh Level Triangles Vertices Edges Triangles Memory

4×4 0 32 25 56 32 10.11 KB
1 128 81 264 160 43.55 KB
2 512 289 1064 672 173.42 KB
3 2048 1089 4200 2720 685.17 KB
4 8192 4225 16616 10912 2.65 MB
5 32768 16641 66024 43680 10.56 MB
6 131072 66049 263144 174752 42.12 MB

8×8 0 128 81 208 128 37.95 KB
1 512 289 1008 640 166.82 KB
2 2048 1089 4144 2688 678.58 KB
3 8192 4225 16560 10880 2.65 MB
4 32768 16641 65968 43648 10.55 MB
5 131072 66049 263088 174720 42.11 MB

16×16 0 512 289 800 512 141.27 KB
1 2048 1089 3936 2560 653.02 KB
2 8192 4225 16352 10752 2.62 MB
3 32768 16641 65760 43520 10.53 MB
4 131072 66049 262880 174592 42.09 MB

32×32 0 2048 1089 3136 2048 552.39 KB
1 8192 4225 15552 10240 2.52 MB
2 32768 16641 64960 43008 10.42 MB
3 131072 66049 262080 174080 41.99 MB

Table 3.12: Average computational cost in milliseconds for each step of the cloth
simulation for a 32 triangle base mesh dropped onto a cylinder with uniform refine-
ments.

Level Triangles Simulation Collision Render

0 32 0.0148 0.0028 0.0128
1 128 0.0516 0.0067 0.0191
2 512 0.1990 0.0207 0.0304
3 2048 0.7773 0.0746 0.1171
4 8192 3.0893 0.2832 0.4155
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Table 3.13: Average computational cost in milliseconds for each step of the cloth
simulation for a 32 triangle base mesh dropped onto a sphere with uniform refine-
ments.

Level Triangles Simulation Collision Render

0 32 0.0180 0.0018 0.0117
1 128 0.0597 0.0031 0.0149
2 512 0.2205 0.0061 0.0302
3 2048 0.8040 0.0186 0.1207
4 8192 3.1552 0.0673 0.4230

Table 3.14: Average computational costs in milliseconds for adaptive simulation
of cloth falling onto a cylinder and a sphere with different combinations of criteria:
A) Collisions, B) Curvature and C) Edge Length. Corresponding screen captures of
these simulations can be found in Figure 3.24.

Shape A B C Triangles Adaption Simulation Collision Render

Cylinder x 1844.3 0.0810 0.9541 0.0901 0.1357
x 2456.9 0.1039 1.1997 0.0932 0.1796

x 32.0 0.0017 0.0159 0.0029 0.0130
x x 3840.9 0.1819 1.9710 0.1616 0.2709
x x 3483.0 0.1307 1.5719 0.1487 0.2162

x x 3909.6 0.1740 1.8972 0.1519 0.2735
x x x 5535.7 0.2480 2.8129 0.2236 0.3769

Sphere x 1307.1 0.0500 0.6626 0.0260 0.0985
x 5529.4 0.2191 2.7015 0.0644 0.3629

x 1627.5 0.0803 0.8089 0.0175 0.1223
x x 5800.1 0.2398 2.9184 0.0732 0.3878
x x 3313.6 0.1553 1.6504 0.0547 0.2355

x x 6012.8 0.2547 2.9422 0.0807 0.4093
x x x 6378.2 0.2217 2.9484 0.0701 0.3808
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Figure 3.23: Sphere [A]: Screen captures from the sphere simulation with collision
criteria, immediate coarsening is seen in parts of the cloth no longer in contact with
the sphere.
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Figure 3.24: Screen captures from the simulations corresponding to those in Table
3.14 with the sphere (top) and Cylinders (bottom), they are shown for different
combinations of criteria: A) Collision, B) Curvature and C) Length. Notice how C by
itself is ineffective, but combined with other criteria it produces increased wrinkling.
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Figure 3.25: Cylinder [A]: Step by step timings for the cloth being dropped onto
and falling off of a cylinder with collision criteria. All times are given in milliseconds
(left axis), the total update includes the adaption, simulation and collision costs, the
render cost is also given. The adaptive triangle count is shown (right axis).
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Figure 3.26: Sphere [A]: Step by step timings for the cloth being dropped onto and
falling off of a cylinder with collision criteria. All times are given in milliseconds
(left axis), the total update includes the adaption, simulation and collision costs, the
render cost is also given. The adaptive triangle count is shown (right axis).
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Figure 3.27: Cylinder [B]: Step by step timings for the cloth being dropped onto and
falling off of a cylinder with curvature criteria. All times are given in milliseconds
(left axis), the total update includes the adaption, simulation and collision costs, the
render cost is also given. The adaptive triangle count is shown (right axis).
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Figure 3.28: Sphere [B]: Step by step timings for the cloth being dropped onto and
falling off of a cylinder with curvature criteria. All times are given in milliseconds
(left axis), the total update includes the adaption, simulation and collision costs, the
render cost is also given. The adaptive triangle count is shown (right axis).
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Figure 3.29: Sphere [AB]: Step by step timings for the cloth being dropped onto
and falling off of a cylinder with collision and curvature criteria. All times are given
in milliseconds (left axis), the total update includes the adaption, simulation and
collision costs, the render cost is also given. The adaptive triangle count is shown
(right axis).
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Figure 3.30: Sphere [C]: Step by step timings for the cloth being dropped onto
and falling off of a cylinder with length criteria. All times are given in milliseconds
(left axis), the total update includes the adaption, simulation and collision costs, the
render cost is also given. The adaptive triangle count is shown (right axis).



Chapter 4

Real-Time Clothing using
Edge-based Adaptive Meshes

4.1 Introduction

The simulation of clothing is much more involved than the simulation of simple small

pieces of cloth; techniques from many areas must be brought together. Firstly gar-

ment patterns or meshes must be designed, created and dressed on the character

before simulation can begin. Virtual characters must be created, rigged and ani-

mated together with efficient collision processing techniques to allow the characters

to wear the garments. In this Chapter we focus on the initial stages of this problem,

leaving out the complexity of animated characters for now. We refer the reader to

Chapter 2.4 of our literature review for background information. This chapter begins

with a description of the garment creation process that we follow to create cloth-

ing using our edge-base adaptive mesh. We employ efficient pre-computed collision

structures to enable the real-time draping of clothing on a static character.

4.2 Garment Creation

In this section we will explain how we handle the creation of garments in our work;

the approach we took was to create virtual garments in a similar way to real ones,

150
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by seaming multiple cloth pieces together. A garment is specified by a cloth pattern,

which is made from a group of 2D meshes including data that describes how the

meshes are placed and joined together. Each 2D mesh is defined in its own coordinate

space which we refer to as material coordinates. Meshes are combined following the

cloth pattern to create an intermediate 3D cloth mesh which stores 3D positions and

the 2D material coordinates. The 3D cloth mesh can be passed to constructors to

create actual cloth simulation meshes such as a uniform mass-spring system or our

edge-based adaptive mesh, see Figure 4.1.

 

2D Mesh 2D Mesh 
Cloth Pattern 

2D Mesh 

3D Cloth Mesh 

Edge-Based Adaptive Mesh Uniform Mass-Spring System 

Group of 2D Mesh 

Figure 4.1: Data flow for the construction of cloth meshes, groups of 2D meshes
are combined following a cloth pattern. The meshes are seamed together into an
intermediate 3D mesh that combines 3D positions and 2D material coordinates, which
is used as input to meshes for simulation.

4.2.1 Computer Aided Design of Cloth Patterns

In order to facilitate the creation of the 2D cloth meshes and most importantly com-

plete patterns for garments, we implemented a simple user friendly design editing

program with a graphical user interface. We have many operations for using the edi-

tor; we began with a small set of them required for basic functionality such as for the
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creation, selection, moving, scaling and deletion of vertices and triangles. The advan-

tage of custom software is the ability to add features as the need arises, and we have

exploited this to enhance productivity with additional operations such as copy and

paste or mirroring. Pictures may be imported and displayed as a background image,

this can be helpful if you have a pattern to wish to trace (for example a scanned image

or photo of a pattern). Commercial CAD packages support more features than our

editor; ours was not designed to compete with them. For instance, we do not support

curved outlines of patterns and their conversion to triangular meshes, however, we

allow meshes to be imported and exported from our editor. The main focus is to

create garments by seaming patterns together, and we have a 3D user interaction

process by which this is achieved. The ability to easily edit the meshes was useful; it

is very hard to envisage the final 3D shape of the garment on a body from its pattern,

so often changes are needed to improve the fit of the garment.

2D Mesh Representation and File Format

We use Wavefront’s Object (.obj) file format for the 2D meshes, it is a geometry

definition file format that stores 3D geometry with normal and texture data in a

simple human-readable text file. Although its specification includes other features

such as curves and curved surfaces, these features are not commonly supported as

people tend to implement their own simple functions to load and save them. We

store the cloth vertices’ 2D positions using XY coordinates, with a zero value for

the Z coordinate, triangles are stored as three indices to their vertices. Triangles

are defined in an anti-clockwise order, the surface normals are defined to be positive

in the positive Z-direction using a right-handed coordinate system. Our program

automatically reorders the triangle’s vertices to ensure correct facing normals. We

store additional data such as which meshes make up a pattern and their relative

placements in simple text files.
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Mesh Editing

Figure 4.2: A screen capture from our pattern editor is shown. It features two
meshes; the second mesh (back.obj) is currently being edited and is displayed on the
material coordinate grid. Three vertices of a triangle has been selected with the scale
tool active, the vertices are highlighted in both the 2D grid and 3D views (top right).
The transformations are specified in the bottom right text boxes: global translation
(GT XYZ), 2D mesh scale (S XY), 3D mesh translation and 3D mesh rotation (R
XYZ).

Garment patterns are created from one or more 2D meshes that are loaded into

the editor at once, meshes are selected between using tabs, see Figure 4.2. Meshes

lay in the XY plane; they can be scaled (S) in 2D and then positioned in 3D using

rotations about each axis (R) and translations (T) prior to seaming. Garments also

feature a 3D global translation (GT) for convenience; this can be used for example to

position a whole garment at the correct height on a character. A small viewing area

shows the meshes in their transformed 3D positions in real-time during editing.

In order to define garment seams, links are added in a special mode that expands

the small viewing area to cover the full screen. The links are specified by the user

with the mouse by selecting groups of vertices that should be joined together. It is
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permitted for a single mesh to be sewn between itself; this is useful to model cuts

and darts (used in tailoring to improve the fit of the garment). It is not necessary for

the user to specify which edges should be sewn together; they can be automatically

worked out if two edges vertices are linked.

Seaming

x2

Figure 4.3: Left: initial 2D meshes, Middle: meshes are transformed and positioned
in 3D with seaming links according to a cloth pattern, Right: after seaming, the
original seams are highlighted in green.

The cloth pattern is followed to combine multiple 2D cloth meshes into a 3D cloth

mesh, this involves joining the seams together along the meshes. Although the seams

influence the behaviour of real garment, we do not believe that complicated models for

seaming are currently feasible for real-time simulations. For instance, in Pabst et al.’s

[PKST08] work, looking at the influence of seams on bending we found that coarse

meshes had to be refined around seams. The cost of their bending force computation

was 65 ms alone without considering the rest of the simulation or collision detection.

Also Ma et al.’s [MHB06] method to construct detailed seams onto irregular meshes

was also only suitable for offline work. Therefore we follow a simple approach of

merging the 2D meshes along the seam lines into a single 3D cloth mesh. To combine

the meshes, we insert the triangles into the 3D mesh one by one and perform vertex

merging (sometime referred to as welding) by proximity. This relies on the cloth

pattern returning identical positions for vertices that should be merged at the seams,



155

found from the user defined vertex links. The position returned for merged vertices

is the average of all their positions, and we note that this causes stretching in edges

connected to the merged vertices but the 3D cloth mesh contains the 2D material

coordinates so the un-deformed size of the cloth is not lost. The 3D cloth mesh also

constructs explicit edges including some simple connectivity data that can make the

later construction of simulation meshes easier. Seaming for a T-Shirt is illustrated

in Figure 4.3, using a mesh for the front and one for the back with seams above the

shoulders, under the arms and down the sides.

4.2.2 Dressing

As previously mentioned, seaming causes stretching in the mesh from merging vertices

but these does not cause major problems. Often dressing is performed at the same step

as sewing [VT97, Vas00, PLAMT02, DG07], the panels are placed around the garment

and are simulated with constraints or springs to bring them close enough to be joined.

Although automatic positioning has been proposed [GFL03, FGLW03, LTG05] for

dressing, we have not found any need to perform a complicated dressing procedure.

We are able to dress the character successfully so the clothes are worn as would be

expected in reality by employing heavy damping with a small time step to slowly and

smoothly relax the cloth around a character’s body. One could perform a simulation

to bring the 2D cloth meshes together before seaming by enforcing a constraint that

merged vertices remain at identical positions; however, the result is no different than

performing the simulation after seaming, without the need for the constraints.

4.3 Discontinuous material coordinates

We have already explained that we create pieces of cloth, using a 2D mesh, which are

defined in an un-deformed coordinate system, i.e. material coordinates. 2D material
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co-ordinates allow the quick determination of un-deformed lengths needed for the

physics calculations between any two points of the mesh and they are readily acquired

from flat textile patterns. However, there is a challenge with managing material

coordinates for the meshes. Ultimately there exists discontinuous co-ordinates along

the seam lines between multiple meshes and this is also the case for a single mesh

(e.g. a single mesh seamed to form a cylinder).

Commonly in computer graphics information such as normals and texture coordi-

nates is stored per-vertex, and if a two adjacent faces need separate (non-continuous)

ones then the vertices are duplicated. Therefore there are multiple vertices in the same

place, this is fine for rendering and cracks do not appear as long as they remain in the

exact same place. Material coordinates are like texture coordinates, but we cannot

store the material coordinates as a vertex attribute as we cannot duplicate vertices

along the seams for discontinuities like we can for rendering. The connectivity of the

adaptive mesh must be maintained, so we need to handle this in a way that does not

complicate refinement and coarsening too much or spoil the efficiency of the adaptive

mesh. For this reason, as discussed earlier, we store three materials coordinates per

triangle in both the intermediate 3D cloth mesh and the edge-based adaptive mesh.

However, we would first like explain the initial way we handled discontinuous material

coordinates and how this led to the current way.

We only need to support discontinuous material coordinates between base triangles

of the adaptive mesh, along the edges and therefore the coordinates are continuous

across a base triangle as it is subdivided. Since an edge between adjacent triangles

consists of two sides, each side can have its own material co-ordinates. Rather than

duplicating the vertices, we store the material coordinates separately such that each

end of an edge holds pointers to both its vertex and material coordinate. Where

the material coordinates are continuous, both sides of the edge hold pointers to the
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Figure 4.4: Left: Three meshes are shown each with their own set of material
coordinates (red, orange, green) that are to be seamed together across their shared
boundary edges. Right: Vertices are merged (blue) but material coordinates cannot
be merged since they are discontinuous.

same pair of material coordinates. In the case of discontinuous coordinates, each

side will hold reference to a different pair of co-ordinates. Figure 4.4 illustrates this;

three meshes are to be seamed together with three sets of continuous material co-

ordinates where vertices along the seams are merged but the material co-ordinates

are not. The advantage of this is discontinuity can be detected by comparing pointers

across two edge sides. However, there are disadvantages to this, the main one being

that the memory for the material coordinates must be allocated and freed separately

in addition to the vertices since it is more efficient to allocate fewer larger objects.

Also the memory cost is not optimal; the size of a 32 bit pointer and floating point
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number is the same (4 bytes). A material coordinate consists of two floats, so they

are 8 bytes which is the size of two pointers. Each edge (two sides) stores 4 pointers

which is enough memory to store two actual material coordinates. The total memory

cost for the material coordinates in Figure 4.4 is 432 bytes (19x4x4 + 16x8, 19 edges

and 16 material coordinates) which is enough to store 54 materials coordinates. In

order to remove the separate allocation of material coordinates we can store them

directly in the edge or triangles. If we store four material coordinates per edge, two

within each side to support discontinuous coordinates then the memory cost will

increase to 608 bytes (19x4x8). However, if we store three material coordinates per

triangles it only costs 240 bytes (10x3x8) for the 10 triangles in the example. We feel

that the loss of pointer comparisons to check for discontinuous coordinates is a good

compromise. Since we are now dealing with floating point representation, instead of

directly checking for equality, it is safer to check the length between them is less than

a tolerance. Furthermore, the squared length can be checked which saves the cost of

a square root.

4.3.1 The length of edges at discontinuous seams

 

Figure 4.5: Two triangles are to be seamed together, but their edge’s lengths are not
conforming, the seamed edge is given the average length. The only way for the other
edges (red) to maintain their length is to distort the shapes of the triangles which
will have a knock-on effect to other surrounding triangles (not shown).

The average length can be used for edges on the seam boundary, but for best results

we recommend that the edge lengths conform to each other and are equal on both



159

sides of the boundary. If not, it will cause artefacts through adjoining edges as there

will be conflicting rest states. Figure 4.5 highlights this, the adjoining edges will not

be able to obtain their rest length without distorting the shape of the cloth triangles;

this effect will propagate to neighbouring triangles. An equilibrium point may result

where the difference between the deformed length and rest length is minimised but is

likely to increase oscillation problem in the simulation as there will be no global rest

state.

4.3.2 The calculation of lengths across discontinuous seams

After seaming has been performed, we wish to work out the length across the seam

line for each pair of adjacent triangles on the seam for their bending springs. Although

the edges will already be aligned in 3D, the triangles will be likely deformed and not

lying flat compared with each other. Therefore, we cannot correctly use either the

3D distance or the discontinuous material coordinates.

 

 A B 

C 

T0 

  A B 

C 

T1 

 

Figure 4.6: Two adjacent triangles (T0 and T1) material coordinates’ are trans-
formed to make them continuous across the seam along AB between them. The
central point (orange) of the adjacent edges is aligned in case the edge lengths are
different.

We transform the materials coordinates so that they are not discontinuous across

the seam. We take the seamed triangles in pairs, labelling their vertices in anti-

clockwise order A,B and C, such that the first triangle’s (T0) vertices A and B matches
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with the second’s (T1) vertices B and A respectively across the seam edge, see Figure

4.6. The two opposite vertices are labelled C; the distance between those can be

used for a bending spring. We arbitrarily choose T0’s coordinates frame and for

simplicity translate T0 such that A moves to the origin. Next we rotate T0, to

make B coincide with the x-axis. Our method takes into account the possibility that

boundary edge lengths are not conforming to increase flexibility for the user (even

though it is preferable that they be the same length). We accomplish this by using

an anchor point half way between A and B on both triangles; these will be aligned

and we translate T1 to do so. Finally we must rotate T1 about the anchor point

such that A and B are aligned with the x-axis and C is on the negative side of the

x-axis. It is then trivial to find the length between T0-C and T1-C. We perform the

transformation calculations directly for efficiency; however, a transformation matrix

can be created if needed for other lengths or for reuse.

4.4 Collision Detection for Static Objects

Although geometric shapes provide straight forward collision checks by use of their

parametric equations, building complex objects out of them is not easy. The deci-

sion was made to implement a general method that can be used with any 3D triangle

model. The only requirement is that the triangles of the mesh must be outward facing

(determined by an anticlockwise vertex winding) forming a surface where the cloth

will not be allowed to penetrate through into the object. We have discussed that a

problem with the highly flexible nature of cloth is that even if the vertices are not

penetrating the object, edges and triangles may intersect the object’s surface causing

very noticeable visual artefacts. The use of the adaptive mesh greatly increases the

cloths ability to approximate the underlying surface it is in contact with, but this

alone is not sufficient. A full triangle-triangle collision approach provides a potential
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solution although at a cost to processing compared to only vertex-triangle collision

detection. We seek a compromise for use with real-time simulations; a suitable ap-

proach is to leave a region above the surface to hide these intersections. If too great a

region is used, the gap will be very noticeable and unrealistic; relatively too small and

intersections will still be visible. We saw this was effective for the simple spheres and

cylinders, where we rendered them at 95% of their size. However, it is more difficult

with arbitrary triangle meshes since we cannot simple scale their size for rendering.

For example, a model of a character has its arms outstretched; if we scale character

as a whole the central axis of arms change position and no longer be aligned. Fur-

thermore with the simple spheres and cylinders, it is no different if their radii are

scaled down for rendering or scaled up for collision. However, we do not want parts

of a character’s body to be scaled down for rendering that are not covered by the

cloth, e.g. a character’s head and facial features. Therefore scaling is not going to

provide the answer, because scaling individual body parts will lead to discontinuities

between them.

It can be seen we need to actually expand the surface outwards by a distance and

test the expanded surface for collisions. To enable this, we use a separate mesh for

collision and rendering. The original mesh is loaded, and then uploaded to the GPU

and stored in a vertex buffer object (VBO) for rendering. The use of a VBO allows

the efficient rendering of static geometry by removing the need to stream vertex data

to the GPU every frame. The collision mesh is constructed using the smooth normals

which are used for rendering, by using them to define the outwards direction of the

surface. We expand the mesh by moving the vertices in the direction of the normals

by an adjustable distance. The result is a shell around the original object, giving us

the region to hide intersections within. Since the mesh used for rendering is stored

in a VBO in GPU memory, the original mesh may be deleted from CPU memory so



162

the use of the collision mesh does not double the memory requirements.

Although the mesh is static, we allow for it to be arbitrarily rotated and translated

in the scene, using a 3x3 rotation matrix and a 3D translation vector. The cloth is

simulated in world co-ordinates, and vertices are first transformed into the object’s

local coordinate space to undergo the collision detection and response. Each cloth

particle has a current position and one previous; used with Verlet numerical integra-

tion; since the object is static we can consider that the previous position is outside

of the object. Hence the collision with a static object can be determined by checking

the path from the previous position to the current position has not intersected the

object. This process involves a broad phase to cull large areas of the object, and a

narrow phase where we perform actual collision detection with the object’s triangles.

4.4.1 Grid Construction

Figure 4.7: A cylinder object, showing the collision grid with triangles from the
collision mesh for a highlighted cell.

The object is potentially a large polygon-soup (i.e. an arbitrary mesh of triangles
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with no defined structure or relationships between the triangles.), and therefore we

initially must partition it into a more efficient structure for collision detection in

order to permit real-time computation. We employ a 3D grid of bounding structures

or cells, where each cell is an axis aligned bounding box that contains a list of indices

to all of the triangles of the object that are either inside or partially overlapping it.

The first advantage is that it is possible to find directly the cell that a vertex is inside,

so it can outperform tree based spatial subdivision techniques like octrees that have

to be recursively searched. We have verified this by performing a simple experiment

which builds and inserts a random distribution of points into both an octree and a

grid based structure, and we have then timed the cost of searching the structures

for the cell (or tree node) which contains each point. The sizes of the structures

are modified to encompass different proportions of the total number of points (e.g.

some point may be outside of the structure in which no cell or node will be found to

contain the point) and the timings are repeated. The results of this is summarised

in Table 4.1, it shows that a grid based structure is able to outperform an octree in

all cases and takes between 87% to 22% of the time to search compared to the octree

(with the octree becoming relatively worse as the structures fill up). Additionally

the second advantage is that we can follow a path (or ray) through the grid of cells

more easily, checking them in turn. We begin the construction by calculating the

axis aligned bounding box of the object and then dividing it up into user defined

divisions along each axis. The cells are not required to be cubes, and can be different

sizes in each dimension. The memory and performance can be tuned by altering the

size of the 3D cells. If large cells are used, more triangles are contained within each

grid increasing the cost of the narrow phase. As the size of the cells are reduced, the

memory cost increases because the number of cells increases and the total number

of triangles indices in the cells increases since more and more triangles are contained
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in multiple cells. The memory cost of an empty cell can be very small, just the size

of a single pointer which is null for empty cells otherwise it points to the cell’s list

of indices. The cells are populated with indices of triangles that intersect them in

pre-processing stage: We calculate a bounding box for each triangle and only test the

triangle against cells which intersect the bounding box. Figure 4.7 shows the grid for

a cylinder mesh, highlighting the triangles contained within one of the cells.

Table 4.1: This table shows the total time to search for a number of 3D points within
an grid based structure and a octree in milliseconds. The grid structure is divided
up into 32 × 32 × 32 cells and the octree has a maximum level imposed such that
it can only contain a corresponding maximum of 32 × 32 × 32 leaf nodes (e.g 32768
cells and leaf nodes). We generate a random distribution of 32,768 3D points within
a cube volume, then we vary the size of the structures (they are placed in the centre)
to take up a certain amount of the total volume (% Vol.) and therefore enclose a
variable number of points (Points Contained). Cells and leaf nodes may contain more
than one point, in which case there is a list that must be linearly searched.

% Vol. Points Contained Grid Search Time (ms) Octree Search Time (ms)

0% 0 0.431 0.490
10% 3337 0.826 1.698
20% 6582 0.976 2.838
30% 9869 1.183 4.038
40% 13152 1.381 5.303
50% 16440 1.584 6.560
60% 19721 1.828 7.880
70% 22900 2.078 9.145
80% 26227 2.342 10.515
90% 29599 2.637 12.037
100% 32768 2.917 13.395

4.4.2 Collision detection and response

The main collision algorithm between a cloth particle and an object proceeds as fol-

lows. The previous and current position are transformed into the object’s coordinate

space, the transformed points are hence referred to as A and B. We always check for

intersections with the cell that A is contained within. If no intersections are found,
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Figure 4.8: Vertex-triangle collision: The vertex’s current position (B) is moved to
the surface point, if the intersection point is within the triangle. Right: Shows a
single grid cell with its overlapping triangles that are highlighted on the left shoulder
of a character.

then we step along the AB advancing through all the cells along the way until a

collision is found. If no collision is found upon reaching B’s cell then the particle has

not intersected the surface of the object.

Firstly for a particle to have intersected a triangle, B must be on negative side

of the triangles plane (inside the object) and A must be on the positive side of the

plane (outside of the object). We do not consider a particle moving from the inside

to the outside to be a collision, so if they were inside for any reason they would never

be trapped there by the collision detection. Figure 4.8 illustrates the vertex triangle

collision test; firstly the line segment AB is intersected with the triangle’s plane to

find an intersection point (IP). If IP exists, the barycentric coordinates are calculated

to determine if this lies within the triangle face; if this is so, the surface point (SP)

is calculated by projecting B in the direction of the triangle’s normal. The current

position is moved to the SP after transforming it back into world coordinates.

4.4.3 Collision aware mesh refinement

We have previously discussed the problem of a vertex being created within a collision

object where we described the collision criteria in Chapter 3.4.2. After an edge split,

it is necessary to test the newly created vertex for collision because its initial position
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Figure 4.9: Detecting and correction of the position of a new vertex that has been
generated inside an object: An ray is tested against the surface for an intersection; if
an intersection is found then the vertex is moved out onto the surface.

is assigned the average of the edge’s end vertices. We must be able to determine when

this has occurred and find a suitable location to relocate the vertex to, but we cannot

rely on its previous position being collision free as it was also interpolated. We test

for collision by constructing a ray pointing outwards from the object and testing it

for collision with the collision mesh. The direction we use is the average of the edges’

two end normals. If there is a collision, then the vertex is moved to the intersection

point adjusting the previous position to preserve the velocity, see Figure 4.9. This

does rely on the cloth being orientated in the same direction as the surface it rests on.

This may or not be acceptable depending on the application. In this work, clothes

are never worn inside out so local cloth and surface directions always point in the

same general direction. If the cloth were to be placed the other way up on a surface,

the vertex will be moved onto the wrong part of the surface or if the surface is not

closed then no intersection will be found. However, it is straight forward to extend
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this approach so that cloth may drape on surfaces anyway up. Instead of testing the

ray in one direction, the ray must be traced in opposite direction as well. Then the

closest intersection out of the two will be on the correct part of the surface, see Figure

4.10.

B2) Correct Intersection (Closest)A2) Correct IntersectionA1) No Intersection B1) Wrong Intersection

Figure 4.10: This figure shows the cloth’s surface direction flipped compared to
that of Figure 4.9, in this case the ray does not find the intersection (A1 and B1).
However, if the ray is also followed in the opposite direction, correct intersections can
be found (A2 and B2). A shows an open surface, whereas B shows a closed surface
which encloses a volume such there is an inside and outside.

The importance of this is evident now with the need to dress a character; the

coarse base mesh may be used to speed up the initial placement of the garment before

enabling refinement with no fear of intersections when refinement is enabled. Figure

4.11 shows a coarse T-shirt dressed on the character before and after refinement is

enabled.
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Figure 4.11: Left: A T-shirt is dressed and draped onto the static character; the
base mesh is too coarse to prevent intersections with the character’s surface. Right:
refinement is enabled and the adaptive mesh generates sufficient vertices to resolve
all intersections, newly created vertices are correctly moved onto the surface.

4.5 Results

We implemented our cloth simulation using C++ and used Opengl for rendering, the

results presented in this paper were performed using a PC with a Intel 2.66 GHz

Core i7 920 using a single thread with 6GB of RAM. The static character’s mesh

contained 67k triangles; we divided the collision grid into 32x32x32 cells with an

average of 40 triangles for each non-empty cell. The limit of our approach with regard

to achieving real-time performance on the hardware we employed is is approximately

seven thousand triangles, with the simulation times being the limiting factor where

mesh adaption takes less than 8% of the total time. The collision detection was

slightly more expensive but was still efficient; it takes around 10-12% of the total

time, therefore 80% of the overall costs were the mass-spring simulation and edge-

length constraints. Figure 4.12 shows a mesh of this size, worn as a T-shirt by a

static character that is simulated in real-time. Each four simulation updates and one
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Figure 4.12: A T-shirt is draped on a static character with 67k triangles. The cloth
is constructed from two base meshes seamed together, which totals 316 triangles, and
are adaptively refined to 6199 out of a possible 20224 (Level 3) triangles. It takes
approximately 22ms for each adaption and 4 simulation steps, running at 30Hz in
real-time.

adaptive mesh update take a total of 22 ms running at 30 Hz, (e.g the simulation

runs at 120 Hz). Figure 4.13 shows the corresponding adaptive hierarchy for the front

mesh of the T-Shirt.

4.6 Summary

In this Chapter we have described the computer aided design process that we follow

to create cloth patterns using 2D meshes which are seamed and combined together

into an intermediate 3D mesh format. The process is demonstrated on a garment

of a T-shirt to be dressed and draped on a 3D static character. To enable this,

we implemented a robust collision detection scheme for the cloth against arbitrary
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Figure 4.13: A T-Shirt draped on a static character, with the adaptive hierarchy of
the front mesh illustrated.

triangle meshes and have integrated this into the adaption process, which together

with seaming allows the real-time simulation of a detailed T-shirt on a virtual char-

acter. The next stage of our research is to move from a static character to moving

animated character. Although the grid based approach is very efficient, it cannot

support animated characters as it would need to be rebuilt each frame which is too

costly. Therefore we have anticipated that much of the work and challenges will be

in developing efficient collision handling for non-static objects.

The results show that the adaptive mesh would work well with additional level

of detail approaches, for instance an off-screen character could be simulated using

purely their base mesh (level 0). Figure 4.11 shows that our refinement method could

cope well and be able to quickly return to detailed garments if the character were to
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come back into view.



Chapter 5

Real-time Clothing using Adaptive
Meshes with Animated Characters

5.1 Introduction

Collision detection costs can be a significant bottleneck for cloth especially with an-

imated characters compared to static objects which can be partitioned into very

efficient structures for collision detection. The mesh of animated characters is con-

tinuingly being deformed and so any bounding structures used for collision detection

must be constantly updated every frame. In this chapter we advance our work on

real-time clothing using our edge-based adaptive mesh, but instead of static objects,

we perform the simulations on skeletally animated virtual characters. To this end

we have developed a new method for fast collision detection using cylinders specially

subdivided for regions of a character’s mesh that we approximate with rigid sections

for improved performance. Together with traditional bounding sphere hierarchies

for deformable regions, we are able to perform real-time collision detection against

a character’s triangle mesh. Our adaptive mesh is augmented with additional re-

finement criteria based on visibility where large computational savings are achieved

through back-face coarsening. We show how the adaptive mesh can be automatically

controlled to achieve user defined targets for the number of triangles or time per

172
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frame.

5.2 Character Animation

Computer animation is a very large field and animated characters bring additional

complexities and costs to the simulation of clothing and there is a lot of work involved

in their use. The simulation of clothing is especially difficult because it brings together

many research areas together. In this section we will explain the main aspects of

character animation for our work with clothing.

We employ skeletal animation which represents a character in two parts by a

hierarchy of interconnected bones (also known as the skeleton or rig) and a surface

mesh (or skin). The surface mesh is typically created in a T-pose or similar pose which

aids the creation of the skeleton (rigging) and the process of skinning (attaching) the

mesh to the skeleton. This pose is called the bind pose from which the mesh vertices

are given a set of bone influences. If a vertex has a single influence, then it is said to

be rigidly attached to the bone and will follow the relative translations and rotations

of the bone exactly. It is the similar for multiple influences; a position is calculated

for each bone as if they were rigidly attached but then all the positions according to

each bone are combined using a weighted average.

A skeletal hierarchy of bones is required so that when a bone is rotated or trans-

lated its children are affected, for instance moving your upper arm causes relative

movement of your lower arm and hand as well. Transformation matrices are com-

posed for the skeletons bones; for each bone a world transformation matrix is cal-

culated concatenating its parent’s world matrix with its local one. The translation

components of a bone’s world matrix define its end position in world coordinates and

the beginning of the bone can be found from its parent’s position. In each skeleton

there is a root bone with no parent that places the skeleton in relation to the origin
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(0,0,0). In order to update the skin correctly, we must refer back to the bind pose to

be able to relate each vertex to a bone. We can transform a vertex from its initial

world space position into a bone’s local space, and then transform it back to a new

world space position which is relative to the bone’s new position and orientation. To

this end, we save the inverse matrix of the world transform for each bone from the

bind pose; this matrix will transform a vertex into local bone space. Instead of per-

forming the final calculation using two matrix multiplications, it is more efficient to

concatenate a bone’s current world matrix with the inverse bind matrix and use that

instead. An animation for a character is made from a number of frames, where each

frame describes a character’s pose for that frame by bone positions and orientations

for the whole skeleton. The process of updating the skin to match any pose of a

character using the transformations is shown in Listing 5.1.

1 void updateSkin ()

2 {

3 for(int b=0; b<boneCount; ++b)

4 {

5 // compute the matrix which transforms a vertex from the bind

pose to the current pose.

6 skinMatrix[b] = boneWorldMatrix[b] * inverseBindMatrix[b];

7 }

8

9 for(int v=0; v<vertexCount; ++v)

10 {

11 Vector3 p(0,0,0);

12

13 for(int w=0; w<vertexWeight[v]. count; ++w)

14 {

15 // transform the vertex from the bind pose to the current pose

relative to an attached bone weighted it by its influence.

16 p += (skinMatrix[vertexWeight[v]. boneIndex[w]] *

vertexBindPosition[v]) * vertexWeight[v]. boneWeight[w];

17 }

18 mesh ->setVertexPosition(v, p);

19 }

20 }

Listing 5.1: Procedure for the update of the skin’s surface vertex positions
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5.2.1 Blending between Poses

We dress the character in the bind pose, we cannot just jump from one pose to

a completely different pose in a single frame once the character is dressed; So for

example, if we load an animation that doesn’t start with the bind pose then we need

a way to move the cloth to conform to the initial pose of the animation. We could try

to create some temporary attachments between the cloth and the character’s mesh

or skeleton to use to move the cloth with the character in a single step. However,

this is not easy and does not guarantee that the cloth will be positioned in a realistic

or natural way in the new pose. Therefore we took the approach of generating a

set of blended poses to move the character from one pose to another smoothly while

simulating the cloth. The number of blended poses to generate and use are specified

by the user since it is not worth the effort to automatically calculate how many is

needed, it depends on the difference between the two poses. The character only needs

to move slowly enough between the poses such that the cloth moves smoothly with the

character without the discrete collision detection failing (it would fail if the character

moved too far in a single step). The blended frames are calculated by interpolating

bone matrices between the poses; for this we use spherical linear interpolation (Slerp)

which is commonly used in computer graphics for animation.

5.3 Collision Detection with Skeletally Animated

Characters

Collision detection with animated characters is expensive and could be a severe bottle

neck that prevents the real-time simulation of clothing for all but low polygon char-

acters and coarse cloth meshes. Efficient bounding structures can be constructed but

it is the need to update or rebuild them each time the character moves that then be-

comes the bottleneck. We continue with performing only cloth-vertex collision checks
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against the triangles of the character’s mesh, but we no longer include the entirety

of the mesh as we did with static meshes in the broad phase. Savings are realised

by not considering collisions with the hands, feet or head, and therefore we do not

have to maintain bounding volumes in these regions. The way the character is ani-

mated is important and must be considered to achieve good performance. The final

intersection checks are made independent from the bounding structures such that we

can employ two types of bounding structures efficiently. We perform discrete collision

detection where the broad phase collects a list of potentially colliding triangles for

each cloth vertex using the bounding structures, and in the narrow phase the vertex

is tested against the list.

As we described earlier, we employ skeletal animation for the character and with

this technique each vertex of the character’s skin is connected to bones with weights.

Bones connected with a higher weighting influence the position of that vertex more

than those with low weightings; typically up to four bones are connected to any

given vertex on the surface. In order to achieve real-time performance we exploit

the fact that the greatest deformations of human’s skin appear at joints and so for

improved performance we consider that areas of small deformations can instead be

approximated by rigid sections. That is, vertices that are influenced strongly by one

bone can be skinned using that only that single bone and any small influences are

ignored. For example, the middle sections of the lower and upper arms and legs can

be considered rigid. We believe that this this simplification is justified due to the tight

constraints imposed by real-time simulation and the tendency for collision detection

to be a bottleneck for deformable objects like cloth. Furthermore, a viewer is unlikely

to notice the difference unless inspecting the character in close detail and much of the

time these areas will be covered by cloth. The character is therefore partitioned into

two different types of regions, deformable and rigid, treating each differently for the
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broad phase of the collision detection.

5.3.1 Bone Map

In order to create bounding structures, we need to be able to refer regions of the

character to access vertices and triangles to place within the structures. It is useful to

be able to load characters which are created in different 3D modelling and animation

programs with different hierarchies or naming conventions for bones. We have created

a bone map to indirectly map a bone name used for the collision structures to the

name from the loaded in the file and find the index of the bone in the skeleton.

Users can register an unlimited number of aliases for bones, for example the left

upper arm bone may be registered as ‘L Upper Arm’, ‘LUA’, or however it appears

in the file. The collision structures are created using the internal names, using a

C++ enumeration type which specifies all common main bones for humans. This

also allows a variable number of bones in the character, for example sometimes the

number of bone segments for the spine varies. Bounding structures are specified

for the maximum number of bones expected for any given character, and if there

are bones missing from the loaded character then we simply do not create bounding

structures for them.

5.3.2 Deformable Regions

Vertices that are skinned by more than one weight cause affected triangles to deform;

we employ a standard bounding sphere hierarchy for collision detection in these re-

gions. Many of these regions are around joints, vertices are concentrated and spheres

can provide a good fit around them. Bounding sphere hierarchies are typically created

by specifying two bone influences, such as the upper arm and the lower arm which

would create a top level sphere around vertices around the elbow of the character.

Some vertices and therefore triangles are influenced by more than two bones, so the
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order of construction can affect the resulting bounding spheres. A triangle should

only be placed in a single bounding structure, otherwise the bounding structures will

be less efficient with more overlap and the collision detection could select the same

triangle more than once as being potentially colliding with a cloth vertex. Therefore

a triangle is checked that it has not been registered to another bounding structure

before placing and registering it in a new one.

We construct the complete hierarchy in a top-down approach using a binary tree

method. At each level the triangles within the bounding spheres are separated into

two groups, split along the widest axis that the triangles span. Two bounding spheres

are created at each level around the two groups and this is repeated until the bottom

of the tree. At the bottom of the tree, the leaf nodes contain a bounding sphere which

encompasses only a single triangle.

At runtime, each time the character is animated the bounding sphere hierarchy

must be refitted. It would be too slow to reconstruct it completely, and as such we refit

the hierarchy without changing its topology using a bottom-up approach. For every

triangle, i.e. for every leaf node we calculate a bounding sphere that is centred on the

average position of its three vertices. The radius is therefore the largest distance from

the centre to one of the vertices. It is then straightforward to merge pairs of bounding

spheres upwards through the tree to refit it without any further expensive operations

on the triangles themselves, while still ensuring the spheres are fully encompassing. A

cloth vertex can then be recursively tested against the hierarchy in world coordinates,

returning a list of potentially colliding triangles.

5.3.3 Rigid Regions

One may pre-calculate simple bounding volumes to approximate the rigid regions as

is typically done for static objects. The volume which naturally approximates the
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rigid regions of our character is the cylinder. Our novel technique is to subdivide

the cylinders, but importantly in order to preserve performance we do not use a

deep recursive hierarchy (like with bounding spheres). We present a technique to

directly access a list of nearest triangles within the cylinders. Each cylinder is sub-

divided along its length into stacks, and then each stack is sub-divided into pie-shaped

slices radially. Each slice contains a list of triangle indices that are either inside or

overlapping it. A cylinder is constructed along a bone in the skeleton, vertices and

triangles which are only influenced by the specified bone are inserted into it.
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Figure 5.1: Left: A bone (red) is shown in world space with coordinate axis
(WX,WY,WZ) in two poses: the current pose and the initial bind pose. An ar-
bitrary rigid vertex (blue) from surface is selected which together with the direction
of the bone defines local coordinate vectors (lx,ly,lz) for any pose. Right: A axis
aligned coordinate system is shown, the start of the bone is placed at (0,0,0) and
coordinate axis (X,Y,Z) correspond to local coordinate vectors (lx,ly,lz).

We perform collision detection with our cylinder structures in two coordinate

spaces: world space to enable very fast early rejection tests for a vertex against the

whole cylinder and a local axis aligned space for the final intersection tests. A bind

pose is needed for skinning to be able to relate and transform a skin vertex from

its initial position to its current world position depending on the current pose of
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the character. We employ a similar approach for the cylinders using the bind pose,

and so we initially define a cylinder in the bind pose along a bone. We select an

arbitrary rigid vertex from surface in the bind pose to define its up direction, i.e. to

define the Y-direction for the cylinder in its axis aligned space and the Z-direction

is defined along the bone’s length such that the selected vertex lies in the XZ plane

(see Figure 5.1). We do not use the bind pose for collision detection at runtime, the

direct transformation from the world space current pose to the axis aligned pose is

used. However, the vertex positions from the bind pose are transformed to the axis

aligned space for cylinder fitting process. We calculate the smallest radius (using

the point-line distance to the main axis of the cylinder) possible that encloses all

vertices. We bound the ends of the cylinder by the minimum (dmin) and maximum

(dmax) distances along the main axis from the XY plane. The length of the cylinder

is therefore the difference between the (dmin) and (dmax) and may be smaller or larger

than the bone’s actual length depending on the attached surface.

The next step of construction is to subdivide the cylinder into stacks (which are

also cylinders) and then into slices radially from the centre each with their own radii.

The cylinders are divided up into equally sized stacks along the Z-axis using a user

specified length per stack rounded to up nearest integer number of stacks. Then each

stack (which may be offset) is divided into a user specified number of slices radiating

from the centre (see Figure 5.2).

Although the radii are always minimally fitting in each part of the cylinder; the

best fit is achieved if we offset the stacks of the cylinder in a perpendicular direc-

tion from the main axis of the cylinder. We can calculate an minimally enclosing

cylinder with an offset (see Figure 5.3) as follows: For every pair of vertices, (i, j)

contained within the cylinder with positions p(i) and p(j), calculate a offset centre

point, (p(i)+p(j)
2

) and a corresponding offset radius. Then we find the pair with the
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Figure 5.2: The figure shows two cross-sectional views of a cylinder bounding collision
structure along a bone, the grey backgrounds show the maximum bounds of the
cylinder. It is subdivided and its internal structure is shown, Left: The cylinder is
divided into a number of stacks along the Z-axis and they also may be offset from
this axis in the XY plane. Right: Each stack is divided into slices radially, one such
slice is shown.

smallest offset radius which also satisfies the constraint that all other vertices are en-

closed within it. The offset vector in axis aligned space is therefore given by the XY

components of the offset centre vector and the Z component is discarded (it represents

the distance along from the start of the bone).

The main advantage of this approach is that it allows very fast early out rejection

tests in world coordinates. Given the cylinder’s normalised local Z-axis (axisZ) and

start position (A) in world coordinates then the distance along the cylinder (per-

pendicular to the cylinder’s XY plane) for a point can be calculated: distancealong =

DotProduct(axisZ, point−A). So we can immediately reject this point if distancealong

lies outside of the cylinder’s bounds, i.e. less than or greater than the cylinders min-

imum (dmin) or maximum (dmax) distances we computed earlier. It is also quite fast
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offset_centre(i,j) 
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B p(i) 

p(j) 

offset(i,j) 
radius(i,j) 

distance(i) 

distance(j) 

Figure 5.3: Construction of a cylinder for pairs of vertices (i, j) from the surface,
the cylinder (A to B, red axis) can be offset (blue axis) to provide a tighter fit with
a smaller radius. A minimally enclosing offset cylinder is found by searching all
such pairs for the pair whose radius encloses all other vertices. The cylinders ends
are bounded by a minimum and maximum distance along from A which bounds all
vertices.

to check the radius against the point-line distance using: closestpoint = A+ axisZ ∗

distancealong) with the radial distance (point-line distance) to the cylinder given by:

distanceradial = Length(point − closestpoint). It is possible to directly find which

stack the vertex is in using the distance along the cylinder, and the stack’s radius is

compared. Then we transform the vertex into the axis aligned space to calculate the

slice index using the angle around the Z-axis (in the XY plane) and perform a final

radial check against the slice. If all checks pass then the slice’s list of triangle indices

is returned. Square roots can again be avoided by storing and using squared dis-

tances and radii in the calculations. The sub-division resolution used has no impact

on the cost of a full vertex test (one in which there was no early rejection) against a

cylinder, although memory usage and floating point accuracy could become an issue.

At higher resolutions: each slice will provide a better fit and contain fewer triangles
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which should reduce the effective cost of the collision detection against triangles since

there will be less false positives.

5.3.4 Cloth-Triangle Collisions

?  

 

Figure 5.4: Collisions can be resolved by projecting cloth vertices outwards onto the
offset surface (grey) by finding the closest points (red crosses) on the closest triangle
of the surface (black). A cloth surface is initially shown in red and again after collision
detection is performed in green.

We need to create an expanded surface for collision processing as we did for the

static meshes and character in the previous chapter. However, it is not as easy as

before where we could pre-calculate the surface and perform continuous collision de-

tection between the previous and current position of a cloth particle. The effect of

the character moving potentially invalidates the collision free state of the previous

position of a cloth particle and also means the collision surface will need to be con-

tinually updated. The approach we take is to perform collision with an imaginary

offset surface instead of the expanded surface and we must detect a collision using

only current position of a cloth particle. Unlike the expanded surface where only the

vertices were offset outwards their surface normals, all points on the offset surface are

the same distance away from the original surface. We discussed in Chapter 2.2.2 that

discrete collision detection (DCD) relies on small relative movements or tunnelling
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can result. However, it is much faster to compute than the complex alternative of

continuous collision detection that would need to consider movements of both the

cloth and the character. So for performance we perform DCD with the offset surface

of the character but since the surface is closed we can consider its volume. Therefore

instead of looking for an intersection of a cloth particle moving through the surface,

we just need to detect if a cloth particle is within the surface and then project it out

onto the surface. We search for the closest triangle to a cloth particle; we can use it

to check whether we are outside or inside of the offset surface. The particle is within

the surface if it is below the triangle’s plane. If the particle is above the triangle’s

plane then it is only inside of the offset surface if the distance from the particle to the

triangle is less than the offset distance. So we need to find the closest point on the

closest triangle, it lies either on a corner, along an edge or on the face. The direction

to project the particle along extends from the closest point to the particle’s position

if it is above the surface or the opposite direction if it is below such that it points out

of the surface (see Figure 5.4).

The approach is inherently self-correcting so we do not require a different approach

for newly created vertices which may create within the surface as we did with static

meshes. The only limitations are with respect to tunnelling effects, for example: if

a particle or character moves so fast between two steps that the particle remains

outside of the offset surface then no collision will be detected but their swept volumes

between the steps may actually intersect. If a particle is within the offset surface

then a collision will always be detected, however, the particle could be projected out

of the surface in the wrong direction. For example, if a particle moves more than

half-way into the surface than it will be projected out of the opposite side to where

it entered. We have not seen these problems manifest since the cloth and character

move relatively small distances each step where time steps are small (e.g. 8.33 ms for
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120Hz updates) for stability.

Our collision structures (spheres and cylinders) are inflated to accommodate this

collision surface offset, for an example of the cylinders see Figure 5.5. The list of po-

tentially colliding triangles that is collected using the bounding structured is searched

for the closest triangle for which the closest point is then computed then it will be

projected out if there is a collision detected. The particle’s velocity is set to the

closest triangle’s velocity if it is likely that there will be a collision next frame, i.e.

the triangle is moving in the general direction of the cloth surface.

Figure 5.5: Screenshot of cylinder bounding structures on a character, subdivided
into stacks of length 2 cm and 32 slices. Only the outer edges of the Slices are drawn
for clarity.
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5.3.5 Cloth-Character Synchronisation

When simulating garments being worn by an animated character, for optimal results

we have found that their updates must be synchronised. If the character is being

updated at a lower rate than the cloth, a garment will start to settle on the character

in-between the character updates. So when the character is eventually updated and

moves, the collision response can cause larger impulses on the cloth then if they were

running at the same rate. This affects the smoothness of the cloth’s motion compared

to the character’s animation. On the other hand, if the character is run at a higher

rate than the cloth then collision there could still be smoothness issues on some frames

if the rates are not multiples of each other. Also it is a waste of resources to update

the character at a higher rate than the cloth.

 

0 2 4 6 8 10 12 

Current Time  

Time 

Frame Blended Frame & Cloth Update  

F0 F1 F2 

Figure 5.6: Animation frames (Red) and Synchronised Blended frames and Cloth
Updates (Yellow) are positioned on a timeline. Blended frames are generated dynam-
ically; the time between them is determined by the cloth time step (2 in this case) and
use a blend factor of the proportion between them (3

5
.F2 and 2

5
.F1 for the current

time show).

We synchronise the updates using the garment’s frame rate, the character is there-

fore also updated at the synchronised frame rate. This does not affect the playback

speed of the animation but merely causes updates to occur at the same rate as the

cloth. Blended frames are generated dynamically for the current time at each update

by blending between the two closest frames, see Figure 5.6. To minimise the cost

we only perform collision detection once and we do this as the final step of the cloth
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update, so the character should be updated immediately before the cloth is updated.

Therefore the cloth and character will only ever be rendered after all collisions have

been resolved.

5.4 Cloth Simulation

In this work we employ a mass-spring network as described in Chapter 3.6 with an

adaptive mesh. Springs are placed along the edges within the mesh, which influence

both stretching and shearing, and bending forces are computed using the bending

element approach. The simulation is advanced using Verlet numerical integration

(see Section 3.6.4).

5.4.1 Unrealistic Stretching

Animated characters put much more demands on the simulation than we’ve seen up

till now, and we’ve had problems being able to create good quality simulations using

the mass-spring network. One of the main issues we have found with garments is

unrealistic stretching under their own weight alone. This is particularly with long

dresses; the stretching worsens as the mesh is refined but also is more pronounced

as you move up the garment vertically (as the number of particles below increases,

being pulled down by gravity). Although the edge length constraints procedure is

quite effective (see Chapter 3.6.6), one problem with it is that as with all convergence

problems, increasing the number of elements decreases the convergence rate. This

is not something that Provot [Pro95] had to deal with since only uniform meshes

were used. If we assume a single iteration is sufficient, as the mesh is refined we can

increase the number of iterations in the same ratio as the increase in the number of

edges as follows. This works well in practice and more similar results are achieved

across uniform refinements, albeit at a (predictable) cost for heavily refined meshes,
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strengthening the case for only refining where necessary. The numbers of iterations

are global to the whole garment; this is not ideal for an adaptive refinement since

coarse regions may undergo more iterations than needed and refined regions may

undergo too few. There is not an easy solution to this, mesh segmentation could be

considered but handling the borders between segments would be difficult and costly.

Also a single iteration may not be sufficient for the coarse mesh.

We should also consider that garments draping on a static object are a different

problem set to garments worn by an animated character. Stretching cannot be re-

duced by increasing spring forces without stability issues and the use of a smaller

integration time steps or increased damping. High damping is not compatible with

fast and fluid cloth motion on a moving character; it can make the cloth appear slow

as if moving through a high viscous liquid whereas it’s less noticeable on static ob-

jects. Also on static objects, edge lengths will eventually converge with time even if

a single iteration is performed each step. Convergence is worsened by the animated

character’s constant movements, so on each frame the cloth’s vertices need to converge

to different locations than the previous frame to achieve the edge length constraints.

So ultimately, even with the extra iterations to combat stretching; the weight of a

dress still causes problems in the worst areas around the neck line and shoulders.

The cost of combating stretching is already verging on ‘too expensive’ for a real-time

simulation, and so we have added the ability to fix base (level 0) vertices of the mesh

to the character’s skin. After dressing, we automatically link the fixed vertices to the

nearest character’s triangle using barycentric coordinates with a surface offset (these

can be edited and repositioned manually if needed). During the simulation the at-

tached vertices will move and deform with the character’s skin and give some savings

since these vertices could be removed from the simulation and collision processing.

The positions for vertices on higher levels are calculated using Bézier control points
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based on PN-triangle patches [VPBM01]. After the simulation stage but before the

normals are recalculated, we perform a smoothing of the mesh to produce a softer

and less rigid look and feel for the cloth at a small cost. We use a weighted average

of adjacent vertex positions and the weighting is defined by a Gaussian distribution

calculated using adjacent edge lengths.

5.4.2 Dynamic Collision Contact Forces

In order to avoid unrealistic behaviour from simplifications made for real-time perfor-

mance, such as the lack of a sophisticated friction model; we have looked to incorpo-

rate the collisions with the simulation using dynamic forces. When a collision occurs,

we save the barycentric coordinate and a surface offset from the vertex to the collided

triangle. We use it as a dynamic target position for a cloth vertex, based on the

premise that clothes tend to move along with the character’s skin due to friction and

momentum. We use this dynamic target to calculate in-plane and out-of-plane weak

spring forces to control sliding along and lifting from the surface, the cloth vertex’s

surface normal is used to define the out-of-plane direction with the in-plane being

orthogonal to that.

These links automatically break after a set number of simulation steps or a pre-

determined distance is exceeded between the vertex and the surface dynamic po-

sition. Also the force is reduced proportionally with duration by multiplying by

(1.0 - (durationSoFar/durationMax)), allowing the cloth to smoothly detach. A col-

lision at any time will reset the link and its duration, whether or not the actual linked

triangle changed.
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5.5 View-Dependent LOD for Cloth

In this section we show how we have integrated view-dependent criteria for refinement

and coarsening, with the Edge-based adaptive mesh for cloth simulation. Firstly

introducing visibility determination for edges to use in the mesh adaption algorithm

and then vertex based for use with back-face coarsening. Finally, we show measures

assuring real-time performance.

5.5.1 Visibility Determination and Coarsening

The refinement is controlled by edges in the adaptive mesh, so we compute the vis-

ibility of the edges but it is often much easier to implement visibility determination

for vertices. So we consider an edge as visible when either one of its two endpoints

are visible (strictly it is partially visible). When an edge is not visible (both vertices

are not visible), we either prevent it from splitting or otherwise we force it to rejoin if

it has been previously split. An important consideration for performance is that this

criterion overrides all others, such that when an edge is not visible the computation

of calculating other potentially expensive criteria (such as curvature and collisions)

is not performed. However, there is a problem with the Edge-based adaptive mesh

due to the fact that it is incremental and requires a triangle to be fully refined before

allowing further refinement on the next level. Non-visible regions will be completely

coarse such that visible regions are not able to refine completely (after level 1) up

to the border between them. Really, if an edge split is prevented and the edge is

visible we should trigger refinement (edge splits) in the offending non-visible regions.

Refinement needed in coarse regions may also be prevented; the iterative nature of

the adaptive mesh will rectify this over a few steps. The end result of this is that

the perceived transitional border of levels is moved onto the non-visible region of the

cloth where it can no longer be seen. Furthermore, this approach to visibility based
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coarsening allows any Boolean vertex visibility tests to be defined and they can auto-

matically be used without needing them to be specifically designed for the edge-based

adaptive mesh.

Back-face Coarsening

Figure 5.7: Screenshots of a character from the front and back camera views showing
back-face coarsening.

We have experimented with the use of back-face coarsening for performance im-

provements by reducing the level of detail of the cloth in non-visible areas. Completely

culling back-face regions from the cloth simulation would be very problematic, as they
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are a major influence on the deformation of the front-facing regions. There are poten-

tial quality implications with back-face coarsening, however, we believe for real-time

character clothing the trade off against performance is worthwhile. Typically, the

back facing regions of garments are obscured by the front facing regions as well as

the character’s body. Furthermore, particularly in the case of virtual clothing, the

rendering of the lining or inside of the garments is not often of interest. The vertex

visibility test we use for back-face coarsening is based on surface orientation; the

surface normal of each vertex is efficiently compared to the camera’s view direction

using a dot product. We have demonstrated this on a character, while simultaneously

rendering the front and back views where the difference in quality and therefore per-

formance savings are evident between the refined and coarse regions of the cloth, see

Figure 5.7. The importance of moving the transitional between levels of refinement

onto the non-visible areas is now evident, see Figure 5.8.

Figure 5.8: Front, Side and Back views of a character with back-face coarsening,
edges which are not visible are coloured in green. The transitional zone between the
fully refined and completely coarse regions is placed on the non-visible regions.

5.5.2 Assuring Real-time Performance

In real-time simulations, it is important that update times do not exceed an amount

that disallows interactive frame rates. Adaptive meshes can be controlled in order

to achieve this; one way is to impose a maximum triangle budget and stop further
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refinement once the count is reached. The problem with this is that it relies on

sufficient coarsening elsewhere such that areas that need to be refined are allowed

too. Our approach is to try to balance the refinement and coarsening criteria in order

to achieve a desired triangle count automatically. That is we can increase or decrease

the curvature parameter to influence the number of triangles in the mesh. However,

this is not completely predictable with the shape of the cloth dynamically changing

in response to collisions with the character. It is more useful to assign the simulation

a time budget instead of a triangle one, and if it exceeds this then steps should be

taken to correct it. Conversely, when there is free time, the simulation detail can be

increased. Distance can then be easily used to regulate the triangle or time budget,

we use the distance from the camera to the character between user settable minimum

and maximum distances and budgets. The adaptive mesh will therefore become more

detailed when close to it and less detailed when far away.

Since it is not possible to achieve the exact desired budgets by modifying the

criteria, smoothing was needed such that the cloth level of detail did oscillate too

much from frame to frame with over and under shooting of the target. We use a 10-

point weighted average for curvature criteria to control the adaption for this purpose.

After adaption, the current curvature angle used to control joining (coarsening)

is added to the average which is weighted by the inverse of the target difference

(target budget - actual achieved). The angle is then set to the updated weighted av-

erage, together with an additional correction to form the curvature criteria for the

next step. The correction is a value based on the latest target difference, calculated as

Angle * -(Difference / Budget). The angle used for splitting (refining) is more than

that of joining and we find a four degrees difference works well. The initial conditions
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are not very important, as long as the initial refinement conforms to the initial curva-

ture criteria. Otherwise the first correction will be too extreme and cause a large over-

shoot next frame. Although this will eventually stabilise, it is undesirable so we per-

form three adaption steps (for a maximum refinement level set to three) before start-

ing the simulation. For the time budgets; rather than following the above approach

directly, we instead calculate an average cost per triangle and use that to set an appro-

priate triangle budget using: Triangle Budget = (TimeBudget / CostPerTriangle).

5.6 Results

The results presented are from tests performed on a PC with an Intel core i7 920

2.66GHz processor, 6GB RAM. We make use of OpenMP to parallelise loops, where

there is no chance of simultaneous writes to the same memory location e.g. integration

and collision processing. The character consists of 17043 triangles of which 4402 are

used for collision with the cloth; 1978 rigid triangles in bounding cylinders and 2424

deformable triangles in bounding sphere hierarchies.

Table 5.1: Table of simulation parameters that we used for all of the experiments,
these were chosen experimentally to give plausible cloth behaviour for all of the ex-
periments.

Spring k Bending k Density Max.
kg (N/m) kb (N/degree) (kg/m2) stretch (%)

80 0.002 0.1 1.05

We have performed a total of six experiments, four uniform (level 0 to 3) and

two adaptive experiments with and without back-face coarsening. We use the same

cloth properties for all the experiments, see Table 5.1. We set the splitting and

joining angles to 16 and 12 degrees respectively for the adaptive experiments. The

simulation is run at a rate of 100 Hz, using a time step, ∆t, of 0.01 seconds for
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the Verlet numerical integration. We automatically control the camera to test back-

face coarsening fully; the camera starts facing the front of the character and slowly

rotates 360 degrees around the character, pausing every 90 degrees such that the

camera spends the same time stationary as it does rotating. Although the camera’s

position only directly effects back-face coarsening, it may cause differences in the

rendering times so we use the same camera control sequence for all experiments.

Table 5.2: Average timings for updating the character each time it is animated. Total
update includes the bounding structures cost (also shown separately), the triangle face
normal and the origin-plane distance calculations needed for the collision detection.
The average character skinning and rendering times are also shown.

Collision Data Structures Character
Cylinders Spheres Total Skinning Rendering

(ms) (ms) (ms) (ms) (ms)

0.018 0.115 0.357 0.454 0.201

Table 5.3: Average triangle counts and the cloth’s simulation, collision processing
and rendering times for each of the experiments.

Exp. Triangles Simulation Collision Rendering
(ms) (ms) (ms)

Level 0 238 0.358 0.310 0.032
Level 1 952 0.971 1.160 0.082
Level 2 3808 8.330 4.507 0.299
Level 3 15232 120.333 17.852 1.165
Adapt. 1631 2.978 2.047 0.148
Adapt. BFC. 914 1.430 1.156 0.099

A visual comparison of the six experiments can be found Figure 5.9. The mass-

spring simulation was not able to capture significant extra detail with finer meshes;

there are few wrinkles and most of the time the cloth is lying flat over the surface

of the character. The adaptive mesh is therefore effective in comparison on a visual

quality versus cost point of view; refinement improves the smoothness of the mesh

compared to the coarse simulation. The level 3 simulation achieves little gains in
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visual quality since it is largely similar in appearance to the level 2 simulation except

for a slight increase in wrinkling in the lower parts of the dress. However, it has a much

increased cost, where the edge length constraints to combat stretching dominates

simulation the costs. Back-face coarsening introduces some differences to the shape

of the visible cloth; however, it was very effective in reducing the total average costs by

approximately 52% with a reduction of around 56% of the triangles. The simulation

times particularly favour fewer triangles, see Table 5.3 for a breakdown of the timings

for the experiments. The cost each frame for mesh adaption (included in simulation

costs in the table) was on average 0.103 ms for the adaptive experiment and 0.067

ms for the adaptive experiment with back-face coarsening. More detailed collision

statistics can be found in Table 5.4, showing the number and cost of collecting the

lists of potentially colliding triangles together with the number of vertices in the

cloth. On average, the collected list of potentially colliding triangles for each vertex

contained 17.04 triangles, out of which the closest triangle was found and used to

resolve the collision.

Table 5.4: Collision statistics showing the total number of potentially colliding
triangles (PCT) and the time took to collect them for the bounding cylinders and
spheres. The total number of cloth vertices in the mesh and the number of these that
were found to be in collision are shown. All values shown are averaged over the entire
simulations, the corresponding total time spent on collisions can be seen in Table 5.3.

Exp. Cylinder PCT Sphere PCT Cloth Cloth
Num. Time Num Time Verts. Vert.

(ms) (ms) Colls.

Level 0 1364 0.058 658 0.081 125 60
Level 1 5318 0.239 2468 0.326 490 203
Level 2 21845 0.918 9775 1.225 1934 763
Level 3 92269 3.210 39420 4.291 7678 3165
Adapt. 11099 0.450 4393 0.605 846 338
Adapt. (BFC) 5990 0.316 2168 0.411 474 177

In order to evaluate the ability of the adaptive mesh to conform to triangle or
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time budgets as discussed in Section 5.5.2., we have performed an additional two

experiments where the budget is a predefined curve. Both methods show a similar

ability at maintaining the budget, triangle budgets were on average 12.3% from the

specified target and time budgets were slightly better at 8.2%. There is periodic over

and under shoot due to the very unpredictable nature of the cloth’s refinement while

the character is moving. It may be possible to pre-calculate information that could

help infer the correct angle to use at a given point in the animation. However, we

feel this would negate the reason for using real-time cloth where you wish the cloth

to respond to any character movement without running the simulation offline first.

See Figure 5.10 for the achieved triangle budget and Figure 5.11 for the time budgets

in relation to the allotted budgets.

5.7 Summary

In this Chapter, we have presented an approach for using adaptive meshes for clothing

on animated characters. The deformable regions are a serious bottle neck for collision

processing but the efficiency afforded by cylindrical bounding structures for the rigid

regions has offered overall satisfactory performance. The cylindrical bounding struc-

tures have a very small update cost each frame (0.018 ms) compared to the bounding

spheres (0.115 ms) that must be refitted in a bottom-up approach.

The adaptive mesh was extended to support visibility criteria that permit au-

tomatic coarsening in non-visible regions while leaving a necessary transitional bor-

der for increment refinement where it cannot be seen. This was demonstrated with

back-face coarsening which achieves large computational savings while only minimally

affecting the front-facing visible regions of the cloth. The difficult task of assuring

real-time performance is partially solved by the adaptive mesh’s ability to maintain

time or triangle budgets through the automatic changing on curvature criteria.
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The simulation method of using a mass-spring network has become cumbersome in

our work with animated characters with complicated collisions; it particularly suffers

from unrealistic stretching becoming worse with higher resolutions. Although we

were able to combat these problems to some extent, the visual quality afforded by

highest resolution mesh (level 3) is not much better than the lower resolution one as

the increased resolution does not allow much more detailed wrinkling. However, the

adaptive mesh is able produce higher quality simulations than the coarse mesh while

adapting to any pose of the character. Important future work focuses on exploring

other simulation methods that may perform better, even a method with a more

expensive update costs could be used as long as it frequency of updates is lessened

such that the total cost per second is not increased.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Screenshots of each experiment, taken at identical frame times shown
rendered with lighting and adaptive mesh level-coloured triangles. Screenshots (a) to
(d) correspond to Levels 0 to 3, (e) is the adaptive experiment and (f) is the adaptive
experiment with back-face coarsening. (The fixed region of cloth on the shoulders
are shown with coloured turquoise edges.). Note the visible interpenetrations on the
level 0 simulation (a), there is insufficient vertex density.
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Figure 5.10: Graph showing the ability of the adaptive mesh to achieve a changing
triangle budget.
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Figure 5.11: Graph showing the ability of the adaptive mesh to achieve a changing
time budget, indirectly controlled by setting a triangle budget.



Chapter 6

Cloth Simulation with an Adaptive
Curved Surface

6.1 Introduction

In this chapter we present a technique to simulate clothing using a coarse cloth sim-

ulation and an adaptive mesh for rendering. Focusing on real-time performance, we

employ a fixed time step for the simulation and generate the surface of the adap-

tive mesh using a modified curved surface. The main contribution of this work is

an extension of a curved surface to generate a more plausible cloth-like surface at a

minimal overhead compared to the basic curved surface using an adaptive mesh. We

also provide the user with parameters to control the surface.

6.1.1 Motivation

A popular technique for the simulation of cloth is to use a coarse mesh because

of reduced costs; however, sufficient visual quality demands a more detailed fine

mesh for rendering. These can be used in conjunction by the fine mesh typically

sharing vertices with, or otherwise be coupled to the coarse mesh. Generally this is

achieved by using curved or subdivision surfaces, or by other techniques specifically

designed for wrinkling cloth. We have seen that adaptive meshes can provide increased

performance compared to fine meshes, where a piece of cloth is adaptively subdivided
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or refined to give greater local detail where it is needed most. The overheads of

such approaches must remain small; we have presented a fast incremental edge-based

adaptive mesh that can be used for real-time cloth simulation. Mass-spring networks

are popular for cloth simulation, due to their simplicity and speed when working with

coarse meshes. However, we found in the previous chapter that they can become

cumbersome when working with animated characters, necessitating much expense

by using many updates with small time steps for stability and measures to combat

unrealistic stretching. We previously employed a simple curved surface for the fixed

regions around the shoulders where the worst stretching occurs. Coarse mass-spring

networks are also inherently more stable and easier to work with. So in this chapter,

we propose to use a coarse simulation, but to achieve sufficient realism employ our

edge-based adaptive mesh with a curved surface for rendering. The related work in

the literature can be found in Chapter 2.1.2. We explain our adaptive curved surface

approach in Section 6.2, the results are presented in Section 6.3 and finally we give a

summary in Section 6.4.

6.2 Adaptive Curved Surface Approach

Curved surfaces are typically very smooth, whereas cloth will buckle and wrinkle. At

the heart of our approach, we modify a curved surface in response to edge length to

generate a better cloth like appearance. The adaptive mesh’s base (least detailed)

level vertices follow the positions of those of the coarse simulation exactly and vertices

on finer levels are positioned according to the curved surface. This imposes only

minimal restrictions on the simulation method, requiring only the vertices to match

between the coarse simulation mesh and the base level of the adaptive mesh. The

approach therefore involves copying vertex data from the coarse cloth simulation to

the base level of the adaptive mesh each step. The complete algorithm proceeds as



204

follows:

1. Update simulation mesh (including collision processing).

2. Copy coarse vertex data (vertex positions and surface normals) from the simu-

lation to the adaptive mesh and interpolate.

3. Update the adaptive mesh.

4. Update the surface.

6.2.1 Cloth Simulation

In this work we employ a mass-spring network just as we used in the previous chap-

ters; however, in this instance using a separate coarse mesh for the simulation from

the adaptive mesh. The coarse simulation uses a semi-regular triangular mesh for

garments, they are created from seaming as described in Chapter 4.2.1. Springs are

placed along the edges within the mesh, which influence both stretching and shearing.

For every edge adjacent to two triangles, we have a cross-bending spring connected

across it between the two triangles’ opposite vertices.

As with the adaptive simulations in previous chapters, the simulation is advanced

using Verlet numerical integration. As we are using a coarse mesh, the simulation is

less expensive so we can afford to perform 5 iterations of the edge-length constraints

(Chapter 3.6.6) per step to reduce unrealistic stretching in the mesh.

The adaptive mesh is not used for any part of the simulation, so some of the data

we have previously stored in it are not needed (e.g. vertex force vector, mass and

previous position). However, we still maintain the 2D material coordinates in the

mesh together with undeformed rest lengths that they are used to calculate. One

advantage of using the adaptive mesh is that non-uniform coarse meshes can be used

more effectively, the coarse mesh can be designed for the simulation and the adaptive
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mesh’s criteria set for best visual results. For example, it is better to have a greater

density of vertices where collisions are more likely and also where collision surfaces

are less-planar e.g. more vertices near the thighs and chest. This is particularly

favourable to this work, where we perform cloth-vertex against character-triangle

collision detection. One could also perform collision detection with the adaptive

mesh, but in this work we do not in order to get maximum performance, as collision

processing is a major cost in cloth simulation. Instead, we leave a sufficient gap

between objects and cloth such that no intersections occur.

6.2.2 Curved Surface

We base our curved surface on Curved PN-triangles [VPBM01], specifically the way

in which Bézier control points are calculated for the edges to create a patch with

an additional control point in the centre of the triangle. Curved PN-triangles are

triangles that can be sub-divided in isolation, by using shared normals. This works

by using the position and normal of each corner of a triangle to define a plane, and

then points one third along each edge are projected onto their closest corner plane

to calculate control points. As an alternative, Phong Tessellation [BS08] also uses

similar projections but without control points, by barycentrically interpolating the

projections of the flat points onto the plane defined by its normal at each corner.

However they must then linearly blend between the flat surface and curved surfaces

using a shape factor, they use a value of 3
4

for convincing results. The tangents are

not continuous across the patch borders, and it is designed to work in conjunction

with Phong Shading [Pho75] for rendering of smooth meshes, it is especially suited

for silhouettes with adaptive tessellation on characters and objects rather than cloth.

Instead of using triangle patches, we apply the PN-triangle approach just to edges

(see Figure 6.1), with the two end points of edges fixed and use it to calculate the
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P0 

P1 P2 

P3 C1 C2 

Figure 6.1: Surface normals at the ends of an edge (orange) are used to calculate two
Bézier control points (P1,P2) just like in Curved PN-triangles [VPBM01], using the
projection of the construction points, C1 and C2 (red) on to the normal planes (grey).
(P0, P1, P2, P3) define a cubic Bézier curve (green). Blue lines show correspondence
between vertices on the flat edge and the curve, for three recursive bisections of the
edge.

positions for the vertices in-between. We start with the base edges of the adaptive

mesh, positioning its central vertex and those in child edges. Then we recursively

process the base triangles’ internal edges, and finally the base triangles’ internal sub-

triangles. This works as if building scaffolding for the surface, calculating positions

for vertices before processing the edges that have those as end points, see Figure 6.2.

6.2.3 Modifying the Curved Surface

Now that we have specified the basic curved surface using the PN-triangle inspired

curved edges, we wish to modify the surface to generate a more wrinkled cloth like

appearance. The Bézier control points of the curved edges are unfortunately not

very convenient to modify in response to edge length. Also a curves’ length cannot

be calculated directly and many different curves can be found with the same length

between any two points. Oshita et al. [OM01] tackle this with a large additional cost

(60% more, increasing from 4ms to 6.4ms each frame); firstly their surface normals

are weighted using the magnitudes of elastic forces (requiring data additional from
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Construction order: 

1) Red 
2) Blue 
3) Green 

Figure 6.2: A triangle fully subdivided to level 3 into 64 triangles, i.e. 3 iterations of
1-to-4 splits. When constructing the surface, we must process edges such that edges
and vertices are processed recursively with the following priority 1) Red, 2) Blue,
3) Green. The position of corner vertices (black), are copied from the coarse cloth
simulation.

the cloth simulation); then to control curve length they split cubic Bézier (trian-

gle) patches into 4 quadratic patches and iteratively move the centre point of each

quadratic curve starting with an initial guess. Additionally they did not handle elon-

gated edges and imposed constraints to prevent them in the simulation. Although

cloth is often treated as inextensible, most real garments exhibit stretching as the

body moves. Also it is possible to reason that when an edge is the correct length

there should be no wrinkling; however, if we make such an edge flat visual quality

will suffer due to smooth shading. Smooth shading breaks down when polygons are

subdivided into co-planar regions. It is not acceptable to use less refinement for edges

that are the correct length because it will conflict with any refinement criteria not
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based on edge length. The curvature based criteria are especially important, so we

make the argument that the surface must always be curved to some extent.

Therefore we follow a different approach focusing on performance and not imposing

tight restrictions on inextensibility. We convert to use a Lagrangian polynomial to

create a cubic curve whose property of intersecting all of its four control points is

exploited for our needs. First we derive the equations for the interpolation curve.

The curve is defined by (n+1) data (control) points: (t0, y0), , (ti, yi), , (tn, yn), then

the interpolation polynomial in the Lagrange form given is:

L(x) =
n∑

i=0

li(x).yi (6.2.1)

Where the Lagrange basis polynomials given by:

li(t) =
∏

0≤j≤n
i 6=j

t− tj
ti − tj

(6.2.2)

In the cubic case, there are 4 control points (n=3), this produces expected coeffi-

cients at the control points, intersecting all four control points perfectly:

t l0(t) l1(t) l2(t) l3(t)
0 1 0 0 0
1
3

0 1 0 0
2
3

0 0 1 0
1 0 0 0 1

Then for any value of t:

l0(t) =
(t− t1)(t− t2)(t− t3)

(t0 − t1)(t0 − t2)(t0 − t3)
=

(t− 1
3
)(t− 2

3
)(t− 1)

(0− 1
3
)(0− 2

3
)(0− 1)

(6.2.3)

=
−9t3 + 18t2 − 11t+ 2

2
(6.2.4)
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l1(t) =
(t− t0)(t− t2)(t− t3)

(t1 − t0)(t1 − t2)(t1 − t3)
=

(t− 0)(t− 2
3
)(t− 1)

(1
3
− 0)(1

3
− 2

3
)(1

3
− 1)

(6.2.5)

=
27t3 − 45t2 + 18t

2
(6.2.6)

l2(t) =
(t− t0)(t− t1)(t− t3)

(t2 − t0)(t2 − t1)(t2 − t3)
=

(t− 0)(t− 1
3
)(t− 1)

(2
3
− 0)(2

3
− 1

3
)(2

3
− 1)

(6.2.7)

=
−27t3 + 36t2 − 9t

2
(6.2.8)

l3(t) =
(t− t0)(t− t1)(t− t2)

(t3 − t0)(t3 − t1)(t3 − t2)
=

(t− 0)(t− 1
3
)(t− 2

3
)

(1− 0)(1− 1
3
)(1− 2

3
)

(6.2.9)

=
9t3 − 9t2 + 2t

2
(6.2.10)

Therefore, the final combined equation we use is as follows (taking four position

control points, L0, L1, L1, L2 and a parameter, t ):

L =
−9t3 + 18t2 − 11t+ 2

2
.L0 +

27t3 − 45t2 + 18t

2
.L1+

−27t3 + 36t2 − 9t

2
.L2 +

9t3 − 9t2 + 2t

2
.L3

(6.2.11)

The four actual coefficients calculated for each value of t that are used at run-

time are pre-calculated from the parts of the formula and stored in a lookup table

for best performance. We only need a small lookup table because we perform edge

bisections. Therefore we know in advance the set of t’s required for edges at each level

e.g. level one: {0.5}, level two: {0.25, 0.75}, level three: {0.125, 0.375, 0.625, 0.875}

and so on. Given a value for t, the lookup can resolve exactly to its four coefficients

without approximation. We can use the index directly instead of t, so no floating
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point conversion or calculations are needed. Given an edge, with two indices, A and

B, corresponding to t at each end, e.g. A = 0 (t = 0.0) and B = 2max level (t = 1.0)

for a base edge, the centre index, C = (A + B)/2. If C is an odd number, then the

maximum level has been reached and no coefficients are stored for the next level. The

table size required is therefore 2max level + 1 rows by 4 columns, for t = 0.0 to t=1.0

inclusive, we give an example in Table 6.1.

Table 6.1: Example of a look up table for the coefficients of the cubic Lagrangian
polynomial supporting a maximum refinement level of 3, the value of t and its corre-
sponding index and coefficients are shown.

t Index L0(t) L1(t) L2(t) L3(t)

0.000 0 1 0 0 0
0.125 1 0.4443 0.7998 -0.3076 0.0635
0.250 2 0.1172 1.0547 -0.2109 0.0391
0.375 3 -0.0342 0.9229 0.1318 -0.0205
0.500 4 -0.0625 0.5625 0.5625 -0.0625
0.625 5 -0.0205 0.1318 0.9229 -0.0342
0.750 6 0.0391 -0.2109 1.0547 0.1172
0.875 7 0.0635 -0.3076 0.7998 0.4443
1.000 23 = 8 0 0 0 1

The Bézier curve that our surface is based on can be used to calculate control

points for the Lagrangian curve simply as follows:

L0 = P0 (6.2.12)

L1 = CubicBézier(
1

3
, P0, P1, P2, P3) (6.2.13)

L2 = CubicBézier(
2

3
, P0, P1, P2, P3) (6.2.14)

L3 = P3 (6.2.15)

Also, for performance we hard code two cubic Bézier functions with the coefficients

pre-calculated for t = 1
3

and t = 2
3

(Equations 6.2.13 and 6.2.14 respectively).
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P0 

P1 P2 

P3 C1 C2 

L1 L2 

Figure 6.3: Bézier control points P0, P1, P2, P3 are used to calculate the two central
control points (L1 and L2) for the cubic Lagrangian curve (green), at t = 1

3
and t = 2

3

on the Bézier curve. Blue lines show correspondence between vertices on the flat edge
and the curve, for three recursive bisections of the edge.

We control wrinkling by moving the 2nd and 3rd control points (L1 and L2),

along a line formed from their initial positions to the construction points (C1 and C2)

respectively, see Figure 6.3. The aim of this is to change both the curved length and

flatness in response to compression or stretching of the edge compared to its original

length (RestLength). L1 and L2 are moved using the following formula:

Ln = Ln + (Cn − Ln) ∗M where n = 0, 1 (6.2.16)

We illustrate this with a curve modifier, M = RestLength
Length

2
on three curves with

different edge lengths but all have the equal rest length, see Figure 6.4. The curved

length is directly proportional to the edge length. If we take the edge length to be the

desired curved length, it would be possible to iteratively calculate M to yield that as

the curved length for any percentage of edge length, but there are two problems with

this approach. Firstly, edges longer than 100% (stretched) will be represented by

flat curves, which is a problem we discussed earlier. The desired curved length could

be inflated so stretched edges are curved, but care would be needed as compressed

edges would have very long curved lengths. Secondly, there will be a different set
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of Ms for each unique relative configuration of the two edge normals. Looking up a

set from the normal vectors is difficult; one must consider how many different cases

to pre-calculate with a trade-off of accuracy and memory usage with some kind of

interpolation between them. We should mention that hashing has previously been

used for collision detection of dynamically deforming tetrahedrons [THM+03], using

a spatial hash function of 3D vectors. It seems possible that a similar hash function

for 3D vectors could be used to lookup the sets of pre-calculated M values, possibly

by hashing on the difference between the two normals vectors.

 

 60% 

 80% 

100% 

120% 

140% 

Length 

Figure 6.4: Diagrams to show the effect on three curve shapes at different percentages

of rest length, for these we use a factor of: M = (RestLength
Length

)
2
.

In our case, guaranteed efficiency and allowing stretched curved edges won over

true length preserving curves. User control is often important particularly if the users

are artists which wish to make adjustments the simulation to suit their needs, so we

define several parameters to control the curves’ response to edge length. The formulae

are:

C =
RestLength

Length
.Compress (6.2.17)
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M = K0 +K1.C +K2.C
2 +K3.C

3 (6.2.18)

Where Compress is a multiplier to allow the mesh to appear globally more or less

compressed. K0 is a constant factor, K1, K2 and K3 are linear, quadratic and cubic

respective factors to control the response to edge-length.
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Figure 6.5: Graph illustrating the simple soft cap function we use
(SoftCap(M,SC) = SC + M−SC

M
). In this case a soft cap, SC=1.0 is shown, values

less than this are not modified. We apply this to the curve modifier, M which is a
dimensionless multiplier.

Modification of the original curve will affect the continuity of the surface, but

significant discontinuities will only occur with significant compression; in areas where

we expect greater wrinkling. However, we give the user a way to reduce this, by softly

capping to the result of M . This prevents the surface looking excessively bumpy if

there are large local compressions along edges while producing a smoother result

than clamping the value to a maximum. The user can set this soft cap value as they
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require, the following formula (illustrated in Figure 6.5) is used for when M exceeds

the cap (SC):

SoftCap(M,SC) = SC +
M − SC

M
(6.2.19)

6.2.4 Lighting Normals and Curvature Adaptive Criteria

Before we adapt the mesh, we interpolate the normals along the edges. This provides

normals that are consistent with the coarse base mesh, no matter if the normal or

positions of the adaptive surface have been modified by our curved surface. It helps

avoid edges oscillating between splitting and joining, as the curvature criteria will

give the same result whether the edge’s child vertices are modified or not. Also

these same interpolated normals are used to create the curved surface. Otherwise the

surface would form a feedback loop with itself, using its current normals to calculate a

new surface that has different normals, which in turn would create a different surface

with again different normals and so on. The adaptive mesh’s update (refinement

and coarsening) is decoupled from the simulation and surface construction so they

may be performed at different rates. The surface is always updated at the same rate

as the cloth simulation. On any step where we do not update the adaptive mesh,

we interpolate the normals at the same time as performing the surface construction.

This provides slightly improved performance since we only iterate over the mesh

once rather than twice in this case. Otherwise it is sufficient to only interpolate the

normals once before we adapt the mesh because the adaptive mesh assigns any newly

created vertices an interpolated normal as well, so the surface construction method

will always have access to correct normals.

The interpolated surface normals can be thought of as construction normals, and

unfortunately do not accurately represent the resulting curved surface (See Figure
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Interpolated 

Normals 

Recalculated 

Normals 

Figure 6.6: Interpolated surface normals are not sufficient to represent the curved
surface, recalculated smooth surface normals reveal many hidden details.

6.6). Therefore we must finally calculate smooth normals for the entire surface at a

cost; for each vertex we sum the adjacent triangles’ normals weighted by their area

and normalise.

6.2.5 Buckling and Edge-Length Adaptive Criteria

We have seen that an interesting alternative to curvature as criteria for adapting

the mesh is edge length, this can simulate buckling behaviour. We implemented

this simply, such that an edge can be split when it is when it is compressed past a

certain percentage of edge length i.e. when Length% < Split% and re-joined when

Length% > Join%. However, this also presents a problem in that we do not wish the

surface positions to effect the refinement as it is the coarse mesh that should drive it,

we can use calculated bisected edge lengths instead. This means that the compression

percentage is the same for an edge and its children. If we used this directly, as soon as

an edge was compressed over the threshold, it would try to recursively refine infinitely
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(limited by only the defined max level). We tackle this by imposing that successive

levels must be more compressed before they are allowed to refine further; therefore

we modify the criteria depending on the level of the mesh it is operating on. A

user defined value which decreases Split% and Join% by a percentage each level,

Level%Modifier (with a value less than one) is employed. For example, if a level

0 edge is set to be split at 80%, then a modifier of 90% means than a level 1 edge

will split at 72% and a level 1 edge will split when compressed to 64.8%. The final

criteria used for each level are therefore given by:

Split%level = Split% ∗ Level%Modifierlevel (6.2.20)

Join%level = Join% ∗ Level%Modifierlevel (6.2.21)

In order to improve performance we calculate the edge length as the final step in

the simulation after collision instead of at the beginning. This does not affect the

simulation, since it is used for the edge spring forces on the next frame and is still valid

since the vertex positions are not modified in-between. However, if it is needed by the

adaptive mesh this frame, it is copied from the simulation mesh to the adaptive mesh

to be used by the edge length criteria (for joining and splitting), saving the need to

recalculate it. The adaptive mesh must calculate the lengths for edges not part of the

simulation, but only top-most edges (those without parent edges) are calculated with

their children being cheaply assigned bisected (50%) lengths thus bringing further

savings.

6.3 Results

In order to quantify the performance and appearance, we have tested our method with

cloth simulations based on three experiments as follows: A) a of square horizontal
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Flat Constant Linear Quadratic Cubic 

Figure 6.7: Screenshots of character wearing a dress (uniformly refined to level 2),
with {K0, K1, K2, K3} set to different values, Flat={0,0,0,0}, Constant = {1, 0, 0, 0},
Linear = {0, 1, 0, 0}, Quadratic = {0, 0, 1, 0}, Cubic = {0, 0, 0, 1}, all with no soft
cap.

piece of cloth pinned at two corners and dropped, B) a flag blowing in the wind

and C) a dress worn on an animated virtual character. Experiments A and B run

at a frame rate of 60Hz with time steps of 1/60 seconds, Experiment C runs at

80Hz with time steps of 1/80 seconds. We perform uniform and adaptive refinements

to test the curved surface for each experiment. In all simulations with adaptive

refinements, we perform it every five frames, i.e. so its cost is amortised over five

frames. Additionally for Experiment C, we perform another adaptive simulation

employing back face coarsening (discussed in Chapter 5.5.1). The results presented

here were performed on a PC with an Intel core i7 920, 2.67 GHz processor using a

single core; and an Nvidia GTX 285 graphics card using OpenGL for rendering with

dynamic vertex buffers and Phong pixel shaders. The times for copying data from

the coarse simulation to the adaptive mesh are included in the coarse simulations

times, but in all cases were less than 0.005 ms. We use the same surface parameters

(Compress = 1.0, K0 = 0, K1 = 0.55, K2 = 0.55, K3 = 0.20, SC = 2) for all
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three simulation setups. However, screen captures of the dress (Experiment C) can

be found in Figure 6.7 to illustrate the effect of different surface parameters.

The performance of the experiments A and B can be found in Tables 6.2, 6.3 and

screen captures in Figures 6.8, 6.9. The first thing to notice is A has greater simulation

costs than B even though they share the same sized mesh, this is because the edge

length correction comes into effect more with experiment A. The effect of gravity on

the hanging cloth causes more stretching than on the flag, the flag experiences a wind

force that acts against gravity to some extent (the direction of the wind force was

around 50 degrees upwards from the horizontal and to the right). The wind force we

applied is not constant; the magnitude of force is attenuated with time and distance

using a simple sine function where the wind has a cycle duration and velocity). This

generates more natural movements of the cloth and causes a constantly changing

refinement in the adaptive case. The curved surface construction is very fast and

actually cost less than the surface normal recalculation, however, as discussed the

surface normal calculation is a very necessary part.

Experiment C, the dress, involved collision detection and a virtual character where

the other experiments did not. The character consists of 30834 triangles, it takes

2.34 ms to animate and skin each frame. There are 15 bounding sphere hierarchies

(containing 3058 triangles) taking 0.56 ms to refit, whereas 9 bounding cylinders

(containing 646 triangles) only take 0.013 ms to update. Rendering of the character

takes 4.61 ms, the total cost for the character is therefore 7.52 ms each frame. We

had still had problems with the weight of the dress causing too much stretching

around the shoulder areas although much less than we experienced in the previous

chapter. The problem was that the collision approach could be defeated with the very

coarse simulation mesh where the dress could slip down the character. This happens

when the separation distance between adjacent vertices (linked by springs) becomes
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so much that for two connected vertices on the shoulders; one of them slides down the

front and the other slides down the back of the character. Expensive solutions for this

include increasing vertex density of the coarse mesh, performing more iterations of the

edge length correction procedure or detecting and resolving edge collisions. However,

mindful of performance we decided again to fix the offending shoulder vertices to

the character. Overall the collision costs were a significant part of the total cloth

simulation costs with the coarse mesh, they were between 1.21 to 1.23 ms (66.8%

of the simulation costs). The dress also experienced some high frequency jittering,

mainly around the character’s chest while the character is in motion. It is hard to

determine the exact cause, but it seems to be an artefact of moving cloth vertices

multiple times (by the edge length correction procedure) for each single collision check

combined with the local shape of the geometry of the character and coarse simulation

mesh. When the cloth is stretched over a very rounded surface such as the character’s

chest, the procedure causes the cloth to shrink inwards under the surface. So when

the collisions are finally resolved, coarse vertices can sometimes move large distances

imparting large impulses on them. If we were to perform collision detection after

each iteration of edge length correction the problem would be lessened, but the cost

is prohibitively expensive to perform it multiple times each step. We were able to

filter out much of the jittering by restricting the distance a cloth vertex may move

in a single frame by imposing a speed limit to only problematic groups of vertices.

It would be beneficial to explore the effect of Provot’s procedure [Pro95] on collision

detection in detail in the future, considering local curvature or comparing surface

directions (cloth and collision surface) to isolate and constrain problematic vertices

automatically. We would like to note that this problem is a limitation of only the

cloth simulation and not with the curved surface approach we have presented in this

chapter.
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Table 6.2: Simulation A) a square horizontal piece of cloth pinned at two corners
with a 250 triangle coarse simulation mesh. Rendered triangle counts are given, and
times as average costs per frames are given in milliseconds (ms).

Level Triangles Coarse Adapt Surface Surface Render Total
Simulation Update Normals

0 250 0.419 - 0.004 0.029 0.023 0.483
1 1000 0.419 - 0.098 0.114 0.061 0.699
2 4000 0.418 - 0.360 0.464 0.270 1.519
3 16000 0.421 - 1.637 1.909 1.017 4.992

Adaptive 1286 (avg.) 0.426 0.411 0.099 0.125 0.079 0.815

 

Level 0 Level 1 Level 2 Level 3 Adaptive 

Figure 6.8: Simulation A), Screen captures from the simulation of the piece of cloth
pinned at two corners showing it uniformly refined from level 0 (coarse) to level 3 and
the adaptive refinement, these correspond to the results in Table 6.2.

6.4 Summary

We have presented a simple method to generate a curved surface for cloth in real-time

with the integration of edge-length based parameters. The use of the adaptive mesh

allows non-uniform coarse meshes to be used more effectively, with criteria set for best

visual results. The smooth normal calculation is a significant cost but is important

as interpolated normals are not sufficient, obscuring much of the surface detail. We

have demonstrated the approach on a piece of hanging cloth, a flag and a character

wearing an animated dress. In the case of the dress, back-face coarsening proved

suitable and effectively reduced the combined cost of the surface construction, surface
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Table 6.3: Simulation B) A cloth flag consisting of a 250 triangle coarse simulation
mesh blowing in simulated wind. Rendered triangle counts are given, and times as
average costs per frames are given in milliseconds (ms).

Level Triangles Coarse Adapt Surface Surface Render Total
Simulation Update Normals

0 250 0.365 - 0.004 0.022 0.022 0.419
1 1000 0.372 - 0.077 0.087 0.050 0.593
2 4000 0.368 - 0.272 0.348 0.210 1.204
3 16000 0.368 - 1.121 1.428 0.788 3.713

Adaptive 1206 (avg.) 0.365 0.485 0.097 0.118 0.080 0.748

 

Level 0 Level 1 Level 2 Level 3 Adaptive 

Figure 6.9: Simulation B), Screen captures from the simulation of the flag showing
it uniformly refined from level 0 (coarse) to level 3 and the adaptive refinement, these
correspond to the results in Table 6.3.

normals and adaption by 24%, including the coarse simulation costs and collision we

made a more modest saving of 9.3% overall. Our surface mesh is suitable for further

processing by additional techniques that require connectivity information, i.e. the

normal calculation and rendering. It is able to capture medium scale wrinkles but

unable to model very fine ones, such that refinement of the mesh past level 2 causes

the surface to appear more bumpy than wrinkled. This leads to the possibility of

future work for the development of a hybrid approach, using dynamic texturing based

approach to introduce fine detailed wrinkles in conjunction with the work presented

in this chapter.
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Table 6.4: Simulation C) A dress on an animated character with a 488 triangle coarse
simulation mesh. Rendered triangle counts are given, and times as average costs per
frames are given in milliseconds (ms). The collision costs are included in the coarse
simulation cost, and were between 1.21 to 1.23 ms (66.8% of the simulation costs).

Level Triangles Coarse Adapt Surface Surface Render Total
Simulation Update Normals

0 488 1.81 - 0.01 0.04 0.08 1.94
1 1952 1.81 - 0.16 0.17 0.16 2.30
2 7808 1.82 - 0.84 0.78 0.48 3.93
3 31232 1.83 - 3.33 2.98 1.67 9.81

Adaptive 3013 (avg.) 1.83 0.36 0.38 0.41 0.26 3.24
Adpt. BFC 2103 (avg.) 1.84 0.27 0.27 0.31 0.22 2.91

 

Level 0 Level 1 Level 2 Level 3 Adaptive Adapt. BFC 

Figure 6.10: Screenshots of character wearing a dress showing levels 0 to 3 and the
two adaptive surfaces (with and without back face coarsening, BFC), these correspond
to the results in Table 6.4.



Chapter 7

Conclusions

7.1 Discussion and Conclusions

Since the 1980’s cloth simulation has moved from being predominately based in textile

research to becoming an important research interest in the field of computer graphics.

The real-time simulation of cloth and in particular clothing remains a difficult task,

in part due to the myriad of techniques from many areas that must be employed effi-

ciently together. Before simulation can begin; garments must be designed and meshes

created, which can have significant impacts on the final behaviour and the cost of the

simulation. Coarse meshes can be used to achieve fast simulations, although they

cannot accurately represent all possible shapes of very flexible materials like cloth.

On the other hand, the use of fine meshes for large scale and detailed cloth simula-

tion is unfortunately only achievable offline. Interactive and real-time applications

cause severe computational constraints on the simulation of cloth, but there are many

applications for its use in virtual reality, games and even virtual shopping software.

Collision detection is almost always required for cloth simulation, but it represents

a significant cost which can quickly grow out of control if additional measures are

not taken. Level of detail techniques are commonly employed for real-time rendering

in computer graphics for performance and it is for this same reason that adaptive

223
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methods such as adaptive meshes have been developed for cloth simulation. Adap-

tive meshes aim to be a hybrid of coarse and fine meshes where local detail is created

only as needed, exploiting that simulation and collision costs scale proportionally

with mesh density. Adaptive meshes can improve the performance considerably but

have been rarely used for virtual clothing and mainly feature for cloth draping in the

literature.

We presented our main contributions in Chapter 3, namely the development of

the edge-based adaptive mesh which is a novel approach for the adaptive refinement

of a triangular mesh. The main difference from previous adaptive meshes is that we

do not perform the direct subdivision of quads or triangles in the mesh. Such ap-

proaches often require special handling of the T-junctions that can result between two

adjacent quads or triangles; this can happen if each are not subdivided to the same

level or they are otherwise not subdivided in a conforming manner. Our approach

is edge-based by the fact that refinement and coarsening of the mesh is controlled

by two main operations on the edges; an edge split including the creation of central

vertex for refinement and an edge rejoin for coarsening previously split edges. After

which an efficient state-based retriangulation approach is followed for triangles that

are adjacent to newly split or rejoined edges. The refinement pattern specified by

the state of a triangle’s three edges does not allow T-junctions to occur in the mesh.

The approach is incremental and builds a hierarchy of levels; triangles must be fully

subdivided into four before further refinement on higher levels is permitted to main-

tain the semi-regular refinement of the mesh. This strategy has permitted a very fast

refinement approach; a 32 triangle base mesh can be refined by four levels to 8192

triangles for a total cost of 3.53 ms and subsequently coarsened back to 32 triangles in

1.57 ms. At all times connectivity of the mesh is maintained, both important for the

refinement procedure but also important for the simulation and the surface normal
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calculations. Refinement and coarsening criteria are specified by edge-based Boolean

functions; we demonstrated the adaptive simulation of pieces of cloth on geometric

objects with the use of three different kinds of criteria: curvature, edge length and

collision. We found that the cost of evaluating criteria often exceed the refinement

costs where very few changes occur between frames. It was for this reason we decou-

pled the adaptive update from the simulation, so that in our tests the adaptive mesh

cost an average of 7.51% of total costs when updating it at 30Hz while the simulation

ran at 120Hz.

The process of creating clothing, and the real-time adaptive simulation of the

clothing draping on a static character was described in Chapter 4. We paid par-

ticular attention to the seaming of 2D meshes and their implications on supporting

material coordinates within the mesh, where discontinuities occur across seams. A

robust collision detection scheme was implemented using a pre-calculated grid based

approach allowing the demonstration of collision aware refinement with clothing.

We advanced our work in order to perform the adaptive simulation of clothing on

animated characters in Chapter 5. Collision detection was tightly integrated with the

character animation and skinning methods employed. We made a small contribution

in the form of a new type of bounding structure based on a cylinder subdivided both

length ways and radially. The cylinder structures were employed for vertices that were

approximated at being rigidly attached to a single bone for performance. Together

with traditional bounding sphere hierarchies that were employed for deformable joints,

overall real-time performance of the collision detection was achieved. However, in this

work the simulation method using a mass-spring network became cumbersome when

working with animated characters with complicated collisions; and it particularly

suffered from unrealistic stretching that became worse at higher resolutions. This

prevented a proper comparison of the adaptive simulation compared to fine meshes



226

(such as the level 3 uniform refinement), since the fine simulation cannot be regarded

as a high quality ground truth. There were no particular fine wrinkles generated and

the differences in many regions of the cloth were subtle except for the bottom free

handing portion of the dress. However, the adaptive simulation can be considered

higher quality than that of the coarse simulation because it was able to dynamically

and more accurately approximate the curved areas better while preventing any visible

intersections with the character’s skin. However, the coarse simulation alone is not

sufficient in this regard to quality; neither does it produce a plausible cloth animation

since visible intersections are evident.

Also in Chapter 5, the extension of the adaptive mesh to support vertex-based

visibility criteria was also described; using edge criteria to combine the Boolean vis-

ibility status of each edge’s end vertices. This enabled large computation saving by

permitting the coarsening of back-facing regions of clothing such that overall costs for

a dress were reduced by approximately 52% with a reduction of around 56% of the

triangles. The back-face regions do influence the front facing ones so back-face coars-

ening does introduce some differences; however, the savings afforded by this technique

cannot be ignored.

Chapter 6 describes a novel approach for the real-time rendering of cloth using an

adaptive curved surface which is simulated by a coarse mesh. The main benefits of

employing coarse meshes are the reduction of the cost of the mass-spring network and

collision detection while improving the stability and behaviour of the cloth. Standard

curved surfaces are often designed for rendering smooth surfaces that are approxi-

mated with fewer polygons but have smooth lighting normals. Bézier control points

are calculated following the approach inspired by PN-triangles patches [VPBM01],

however, we converted to use a Lagrangian interpolation polynomial which permitted

the simple integration of edge-length based parameters to generate a more plausible
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cloth look and feel with small overheads. The approach is particularly able to model

medium scale wrinkles, but is unable to model very fine one where higher refinement

levels appear bumpy rather than wrinkled. Only so much can be achieved without

moving the shared coarse vertices, however, there is a danger that moving them could

introduce visible intersections with the character’s surface which would need to be

detected and resolved. Considering this, a particular attraction to the approach is its

simplicity and speed where it has proved sufficient to only perform collision detec-

tion with the coarse mesh using a small offset from the characters surface. Back-face

coarsening technique was again demonstrated and effectively reduced the combined

cost of the surface construction, surface normals and adaptive mesh by 24%, a more

modest saving of 9.3% was achieved overall if the coarse simulation and collision costs

are included.

In conclusion we have advanced adaptive meshes into realms of real-time use for

clothing where before it had only been achieved offline. The real-time physical simu-

lation of clothing remains a difficult task due to the relativity limited computational

budget that is available compared to offline simulation cloth. Both prior work and the

techniques presented in this thesis will benefit from the trend of ever faster hardware

in the future, however, there is still scope for improvements and new techniques for

the real-time simulation of clothing.

7.2 Future Work

There are several areas of future research that could lead on from the work presented

in this thesis. The first is the investigation of the use of more advance cloth simu-

lation methods with the edge-based adaptive mesh. Although mass-spring networks

seem simple and fast, the specific issues with stretching and stability can require
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great expense to be resolved. For example the four times increase in the number of

triangles for level 3 compared to the level 2 refinement resulted in an approximate

14.45 times increase in the simulation’s computational cost (Table 5.3). This large

discrepancy was due to the repeated edge-length constraints that were required to

combat excess stretching, but compared to the collision costs which only increased

by 3.95 times. The alternative to increase the spring constant which would increase

both the simulation and collision costs since to remain stable a smaller time step with

a higher update rate would have to be employed. The overall balance of computation

time versus quality is difficult given real-time constraints and the effects of collision

detection cannot be ignored. Even if real-time performance cannot be realised with

a high quality simulation method, the edge-based adaptive mesh could still provide

beneficial performance improvements. A related avenue of research is with regard

to the evaluation and comparison of simulated cloth with reality, specifically in the

context of this thesis the realism of adaptive cloth simulations needs to be studied.

Then the adaptive simulation with a mass-spring network could be compared to both

more advanced simulations but also to real cloth. It may then become possible to

automatically set refinement criteria to achieve the best realism.

A specific large cost with the adaptive mesh is the constant calculation and mon-

itoring of the edge criteria that control refinement and coarsening. We previously

discussed that we decouple the adaptive update from the simulation for this reason

as when the cloth is moving slowly very few changes are needed in the adaptive re-

finement each frame and the cost of evaluating criteria becomes dominant. However,

it would be better to not to delay update of the refinement while finding a new way of

improving the performance for the evaluation of criteria. To this end, future research

could focus on the identification and partitioning of edges or small groups of them

based on expected outcomes of criteria. For instance, curvature criteria evaluation
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could be prioritised by the using the current rate of change of local curvature with a

prediction of when the current curvature is likely to exceed the criteria’s refinement

thresholds. Also collision criteria evaluation could exploit additional broad phase

collision detection techniques to prune away whole groups of edges.

An additional major area of future exploration lies in the use of parallel processing,

particularly considering the use of GPUs. The edge-based adaptive mesh permits

a very fast incremental refinement of triangular meshes on the CPU particularly

benefitting from large cache sizes, we have seen performance decline for large meshes

that exceed the CPU’s cache size. The CPU’s inherent friendliness to random access

of data and recursion (recursive hierarchy of levels in the mesh) in processing is heavily

relied upon. Whereas GPU’s tend to have poor random access performance but have

very high sequential throughput so locality of data is of the utmost importance. In the

past GPUs did not support hardware recursion, however, for example NVidia’s Fermi

architecture [WKP11] supports a subset of C++ in CUDA including recursion while

the hardware also provides fully cached data accesses to improve the performance of

random access. Given the advancement of hardware and the continuing improvements

to general purpose computing on graphics processing units (GPGPU) in recent years,

this will be an important and worthwhile area of research. The main challenges with

the edge-based adaptive mesh will be to reformulate the tasks of edge splits, edge

rejoins, and retriangulation in an efficient way for parallelism. A major benefit to

performance may be realised if all aspects i.e. simulation, collision detection and

rendering can be performed on the GPU without the overheads of transferring data

to and from the CPU each frame.
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