
Extending Minkowski Norm
Illuminant Estimation

Perla Aurora Troncoso Rey

A thesis submitted for the Degree of
Doctor of Philosophy

University of East Anglia
School of Computing Sciences

October 2012

c©This copy of the thesis has been supplied on condition that anyone who consults it is understood to
recognise that its copyright rests with the author and that no quotation from the thesis, nor any information
derived therefrom, may be published without the author’s prior written consent.



Abstract

The ability to obtain colour images invariant to changes of illumination is called colour

constancy. An algorithm for colour constancy takes sensor responses - digital images

- as input, estimates the ambient light and returns a corrected image in which the illu-

minant influence over the colours has been removed. In this thesis we investigate the

step of illuminant estimation for colour constancy and aim to extend the state of the art

in this field.

We first revisit the Minkowski Family Norm framework for illuminant estimation.

Because, of all the simple statistical approaches, it is the most general formulation and,

crucially, delivers the best results. This thesis makes four technical contributions. First,

we reformulate the Minkowski approach to provide better estimation when a constraint

on illumination is employed. Second, we show how the method can (by orders of

magnitude) be implemented to run much faster than previous algorithms. Third, we

show how a simple edge based variant delivers improved estimation compared with the

state of the art across many datasets. In contradistinction to the prior state of the art our

definition of edges is fixed (a simple combination of first and second derivatives) i.e.

we do not tune our algorithm to particular image datasets. This performance is further

improved by incorporating a gamut constraint on surface colour -our 4th contribution.

The thesis finishes by considering our approach in the context of a recent OSA

competition run to benchmark computational algorithms operating on physiologically

relevant cone based input data. Here we find that Constrained Minkowski Norms oper-
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ating on spectrally sharpened cone sensors (linear combinations of the cones that behave

more like camera sensors) supports competition leading illuminant estimation.
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Chapter 1

Introduction

Colour is a visual feature which like shape, texture and size, is used by humans to de-

scribe objects. Of particular interest to my research is the ability of the human vision

system to determine -to some extent- the colour of an object despite the ambient light.

For example, take a white piece of paper viewed outside on a sunny day. The paper col-

our will remain white to a human observer even though it is viewed at different times of

the day and the wavelength composition of the daylight changes. Formally we see illu-

minant independent colour descriptors: our visual system, by some algorithmic means,

discounts the colour of the light. The ability to determine an object’s colour based on its

surface properties is called colour constancy. The degree to which human observers ex-

hibits colour constancy depends in part on the viewing conditions. However, even with

this caveat, the human visual system achieves reasonable colour constancy (in most

cases).

In computer vision if we could “solve for” a colour descriptor (surface properties

independent of the colour of the light) then this ability would be useful in a number

of areas including the enhancement of digital photography, object recognition, aerial

image analysis, image retrieval, and development of systems for automatic quality in-

1
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Figure 1.1: Three images showing the same scene viewed under different lights

spection [FBM98]. Yet, there is a gap between how we think about colour (a property

intrinsic to the reflectance of an object) and the physics of image formation (the picture

recorded by a camera). Camera images are confounded by the colour of the prevail-

ing illuminant. For example, Figure 1.1 shows images of the same scene comprising

coloured pieces of paper under different illuminants. Although the pieces of paper in

the scene are the same in the three pictures, they look different due to changes in the

illumination.

A number of algorithms have been proposed to solve colour constancy in computer

vision (often in analogy to what is known about human visual processing). The key

part of all methods in the literature is estimating (or inferring) the colour of the illu-

minant from an image (since, if this is known, it is simple to remove colour bias due to

illumination [HHFD97]). Over and above solving the problem for its own sake, colour

constancy in computer vision has mainly been considered as a preprocessing step for

allowing colour to be used as an aid in tasks such as object recognition.

For example, object recognition techniques aim to automatically locate and recog-

nise objects in digital images. Objects of interest are described by a set of features

which make it possible to differentiate them from other elements in the image. It is

desirable that these features are invariant to effects such as translation, rotation, scale

and, of primary relevance to this thesis, to a change of illumination [HS94] [JZQ11].

Furthermore, digital photography is another practical application of computational
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Figure 1.2: The simplified model of image formation. Figure (a) shows an ambient light and
its spectral power distribution. Figure (b) shows an object and its intrinsic surface property
represented by surface reflectance in Figure (c). Figure (d) represents the visual system and
its sensitivity functions.

colour constancy. Specifically in tasks such as colour balancing where the ambient

illumination is estimated from digital camera data and then used to “correct” the image

colours according to the type of illumination.

To tackle these problems, the first step is to understand how image formation works,

since it provides the basis to have a better understanding and insight to the problem.

Any response from a camera (or the human vision system) to a scene is determined by

three different factors: the ambient light illuminating the scene, the reflectance property

of the object (or objects) in the scene, and the camera’s sensor sensitivities. Now, this

process is called Image Formation and is illustrated in Figure 1.2.

The simplified model of image formation is defined by:

ρk =

∫
w

E(λ)S(λ)Qk(λ)dλ, (1.1)
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where ρk is the response to a surface colour over the wavelength range w (roughly

400 to 700 Nanometres). This response is produced when a surface reflectance, S(λ),

(where λ is the wavelength) is illuminated by a spectral power distribution, E(λ). The

reflected light from the surface (sometimes called the colour signal) is then perceived

by the camera’s sensor, Qk, resulting in the perception of colour.

According to the simplified model of image formation, a camera’s response to a

given surface is defined by the product of the ambient light illuminating the object, the

surface reflectance properties of the object, and the camera’s sensitivities. So let us

imagine, for an object with surface reflectance S(λ), two situations where the object is

illuminated by two different lights, E1 and E2. If we were to measure the amount of

light reflected by the same object but under different lights, these reflected light will be

the result ofE1(λ)S(λ) andE2(λ)S(λ). The camera’s response to this object under two

lighting conditions will then be represented by ρ1 and ρ2. These two camera’s responses

are different. However, they simply represent the same object under a different light. In

computer vision, the goal of colour constancy is to “see” the objects under all lights as

having the same colour. If we substitute the camera sensors with the human cones the

equations remain the same. Sometimes the goal of colour constancy in computer vision

is to “see like we do”. The colour constancy for humans is illustrated in Figure 1.3.

1.1 Discrete Image Formation

In practice we use a discrete version of the simplified model of image formation. Nor-

mally, the spectra are sampled evenly at fixed intervals, so that we can denote each of

the functions S(λ), E(λ) and Qk(λ) with a n-dimensional vector:

E = [E(λ1) E(λ2) ... E(λn)]t (1.2)
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Figure 1.3: Human Colour Constancy: The human visual system is able to perceive
”illuminant-invariant” colour descriptors (e.g. surface colour independent of the prevailing
illumination). The figure shows the cone’s response to the same object under two different
lights, E1 and E2. The reflected light from the object is the product of E1(λ)S(λ) and
E2(λ)S(λ) respectively, resulting in the cone’s responses, ρ1 and ρ2. Even though ρ1 and
ρ2 are different, they represent the same object under two different lights.

S = [S(λ1) S(λ2) ... S(λn)]t (1.3)

Qk = [Qk(λ1) Qk(λ2) ... Qk(λn)]t (1.4)

By adopting this discrete representation, Equation 1.1 can be written as the follow-

ing summation:

ρk =
n∑
i=1

E(λi)S(λi)Qk(λi)4λ (1.5)
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Figure 1.4: Two images viewed under two different lighting conditions

If we further assume that the4λ is incorporated into the sensor response functions,

the simplified image formation equation, Equation 1.1, can be rewritten as:

ρk =
n∑
i=1

E(λi)S(λi)Qk(λi) (1.6)

Typically, we sample these functions with increments of 1, 2, 4, 5 or 10 Nanometres.

The n used in Equation 1.5 and Equation 1.6 is between 31 and 301 (the visible range

is 300 Nanometres wide). However, it has been found [SSS92] that with increments of

10 Nanometres almost all colorimetric integrals can be calculated according to Equa-

tion 1.6 without loss of accuracy.

1.2 The Computational Colour Constancy Problem

In computer vision, the colour constancy problem can be defined as the ability to estim-

ate, from a digital image, colour descriptors that depend only on the surface reflectance,

S(λ), and not biased by the illuminant, E(λ). In this context, the only available inform-

ation for doing so is provided by the sensor response, ρ.

Typical attempts to achieve computational colour constancy divide the task as a two
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Figure 1.5: Colour constancy typically works in two stages. First, from a given image, it
estimates the illuminant of the scene. Second, it removes the illuminant influence to obtain a
corrected illuminant-invariant image.

step problem. First, we might attempt to calculate E(λ) given only RGB pixel values in

an image or, as an easier alternative, to estimate the 3-dimensional vector e = [R̂ Ĝ B̂]t

corresponding to the RGB values of the prevailing light. This first step is known as Illu-

minant Estimation. Second, if the illuminant is estimated correctly then the colour cast

due to the illuminant is readily removed from images [HHFD97]. This can be achieved

simply by mapping each RGB value in the image by the estimate of the light (typically

using a 3 × 3 matrix or a 3 × 3 diagonal matrix). When a diagonal matrix is used the

diagonal terms are often the reciprocal of the R, G and B of the illuminant. Clearly

dividing the light by itself gives (1, 1, 1), i.e. a coloured illuminant maps to white. Re-

markably “dividing out” the illuminant colour tends to work well for all surface colours

for almost all typical cameras that have fairly narrow-band sensitivities and can be made

to work even for systems that have broader response functions [FDF94b]. Figure 1.5

illustrates “typical” computational colour constancy.

While in the early years of colour constancy research the methods for removing

illuminant colour bias achieved close attention, generally, if the illuminant is known,

image colours can be made to “look correct”. Thus, the primary focus of this thesis is

to investigate and extend the state of the art in illuminant estimation.
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1.2.1 Illuminant Estimation

Illuminant estimation algorithms are based on different assumptions about the expected

state of the world. Depending on the kind of assumptions these algorithms adopt, they

can, broadly, be divided into three categories: physics-based, statistical and those using

a combination of the first two.

Physics-based algorithms work by assuming a known physical process is presented,

e.g. a specular highlight [Lee92] [TW96] or a mutual interreflection [FDH91] [Tom96],

and then apply this information to the physics of image formation to arrive at an illu-

minant estimation.

Statistical algorithms for illuminant estimation look at digital images as a distribu-

tion of measurements and use statistical tools to estimate the illuminant. The most well

known algorithms in this category are based on the principles of mean and maximum

value in a distribution, the Grey World [Buc80] and the MaxRGB [Lan77] respect-

ively. An illuminant estimation using the Grey World algorithm is calculated by:

e = [mean(R) mean(G) mean(B)]t, (1.7)

where e represents the 3-dimensional vector for the illuminant estimation, and R, G

and B, are the three colour channels in the image.

MaxRGB instead assumes that there is at least one white patch, or three surfaces

maximally reflecting in each R, G, B channel, reflecting all the light that is illuminating

it. An illuminant estimation, e, given by MaxRGB is calculated:

e = [max(R) max(G) max(B)]t (1.8)

Later, in 2004, the Shades of Gray algorithm was proposed by Finlayson and Trezzi

[FT04], which is based on the Minkowski family norms. They showed that a summary

of the statistics in the image taking the form of a Minkowski norm can be used to



CHAPTER 1. INTRODUCTION 9

estimate the illuminant.

A Minkowski norm is defined in a N dimensional real space. Let X = [X1...XN ]t

be a vector in RN . For every p ≥ 1 the quantity

‖X‖p =

{
N∑
i=1

|Xi|p
}1/p

(1.9)

defines a norm in RN [KF75] and Xi represents the ith component of X.

As p → ∞ the pth norm approaches the maximum component of X [FT04]. Re-

writing this equation to normalise it by the number of points in the distribution we have:

µp(X) =
‖X‖p
N (1/p)

. (1.10)

This p norm can be then used as an illuminant estimator, which results in the form-

alism of the Shades of Gray algorithm, where an estimation of the illuminant is calcu-

lated by:

e = [µp(R)µp(G)µp(B)]t, (1.11)

Furthermore, the Grey World and the MaxRGB algorithms are represented by the

extreme norms of a Minkowski Family [FT04]. Typically (and remarkably) a norm

between four and six was empirically shown to delivers good performance for different

image data sets [FT04].

It has been shown that a p-norm summary based on image differences (derivatives of

different order) can deliver improved performance [JGG07]. This is the principle of the

Grey Edge algorithm, where an estimation of the illuminant, e, is given by:

en,p,σk =

(∫ ∥∥∥∥∂nIσk (x)

∂xn

∥∥∥∥pdx)1/p

k ∈ R,G,B (1.12)
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where k denotes R, G or B, and n is the order of the derivative (n = 0 means no

derivative is taken, n = 1 indicates first derivative and n = 2 second derivative). The

term Iσk (x) is the result of a convolution of the image I with a Gaussian filter, G with σ

pixel standard deviation. This convolution is given by:

Iσk (x) = Ik ⊗Gσ (1.13)

where G represents a Gaussian filter.

An extension to this work allows the use of the discrete cosine decomposition of

8 × 8 windows in an image [CHZ08] [CHZ12], i.e. the DCT is used to carry out the

spatial filtering (instead of edges).

Intriguingly, and worryingly, the performance of van de Weijer et al. [JGG07] deriv-

ative approach appears highly database dependent. Thus, while by using derivatives of

different order and scale (i.e. the standard deviation of the smoothing Gaussian) we can

get good performance, the best derivatives and the best scale change with the images

under investigation. One of the goals of this thesis is to adopt this edge-based idea (it

really looks like this ideas has potential since it delivers good, albeit tuned results) but

to try and derive a method which works across data sets without tuning.

Simple statistical algorithms can also be improved by incorporating some additional

information. Forsyth [For90] observed that under a reference light, the observed colours

in an image are limited and fall inside a subspace of the RGB space. Thus when estim-

ating an scene’s illuminant only lights that are consistent with the set of all plausible

colours viewed under a reference light need to be considered. Furthermore, in [Fin96]

a constraint, a priori, is also placed on the set of typical lights, i.e., purple lights do not

occur in nature so these and other improbable lights are removed from the set of answers

to illuminant estimation. Recently, a constraint in the form of a feasible illuminant set



CHAPTER 1. INTRODUCTION 11

was also incorporated by Finlayson and Trezzi [FT05] into a Minkowski Family norm

formulation. Constraining the set of plausible lights helps, significantly, our ability to

estimate the light. We will also adopt this constraint in the work presented in this thesis.

1.2.2 New Contributions

In this thesis we present a new algorithm for illuminant estimation incorporating the

idea of colour edges with a weak constraint in illumination. A specific goal of this work

is to formulate an algorithm which is not tuned to datasets. The building block in our

approach is a simple x- and y- derivative calculation together with the “edge” image

calculated using a Laplacian operator. These “combined” derivatives are used in all our

experiments.

The foundation of our new algorithm is a fusion of four principles that we believe

are complementary in nature: our combined derivative, CD, approach, the Minkowski

p-norm estimator, a gamut constrained (which determines which lights are feasible),

and an error optimisation to select the best illuminant for a given test image.

To evaluate our new approach we use five benchmark datasets for colour constancy

algorithms: the Simon Fraser University (SFU) datasets [BMFC02] [Bar02], the Funt

and Ciurea’s Grey Ball dataset [CF03b], the Gehler’s Macbeth Colour Checker set

[GRB+08] (and the linear version provided by Funt and Shi [SF10]), and the Funt and

Shi’s HDR dataset [FS10]. Results show that our new approach delivers good illuminant

estimation, most of the time outperforming more complex art algorithms. Furthermore,

our algorithm’s performance can be described as stable across the different datasets,

which looks promising since one of the objectives of colour constancy algorithms is to

arrive at a general and optimum solution (non image-data-dependent).
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A further contribution of this work is related to the efficiency in terms of computa-

tional cost and processing time when computing illuminant estimation. Our new con-

strained approach keeps the simplicity of statistical algorithms without giving up good

performance.

A final contribution of this thesis is the experiments we realised in the context of

human vision. One of the assumptions underlying our constrained framework for illu-

minant estimation is the diagonal model for illumination change. However, it is known

that this model works better for “sharp” [FFB95] [Süs05] [FS00a] [FS00b] sensors in

the context of human vision. Thus we adapt the principles of our constrained approach

to illuminant spectrum recovery and also incorporate spectral sharpening to the task.

We report our findings and results, and show that the performance of our algorithm is

good. Furthermore, our algorithm outperforms most of the other approaches presen-

ted in the 2011 Illuminant Spectrum Recovery Competition organised by the Optical

Society of America, OSA.

1.3 Outline of the thesis

The outline of this thesis is described below.

In Chapter 2 we present a review of the state of the art for illuminant estimation

algorithms.

Our investigations begin with a short, but important, contribution set forth in Chapter 3.

There, we revisit the constrained Minkowski norm formulation presented previously in

the literature. We propose to adopt a modified formalism. Not only will we argue its

improved suitability, it is also shown to deliver much improved results. Second, we

show how the basic formalism can be implemented efficiently.

In Chapter 4 we present a new approach for colour constancy based on a combined

derivative approach, a constraint in illumination, and the use of the Minkowski Family
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Norm (the new approach is called CDC). Not only will we show that our new algorithm

delivers excellent (and leading) estimation results, it is (unlike the previous leading

methods) not tuned to the data sets. The same basic algorithm work across datasets.

In Chapter 5 we propose to incorporate the principles of Gamut Mapping as criterion

to select feasible illuminant for a given image. This criterion is incorporated into our

combined derivative approach. We will present experiments of this new variant and

show that estimation is improved.

In Chapter 6 we apply a variant of our constrained approach to an experiment pro-

posed by OSA (Optical Society of America) on Autumn 2011 for illuminant spectrum

recovery. CDC is based on the assumption of a diagonal model of illumination change.

Since the diagonal model works best for a “sharp” linear combination of cone response,

we also incorporate spectral sharpening and demonstrate with our experiments and res-

ults that we can achieve good results. We compare our results with those of the compet-

itors of the experiment last year, Autumn 2011, and we show that a simple Minkowski

norm approach, using sharp sensors, outperforms all the algorithms that took part in

that competition (over 30 approaches).

Finally, in Chapter 7 we present our general conclusions and future work.



Chapter 2

Illuminant Estimation

A number of algorithms for illuminant estimation have been proposed over the years

and much progress has been made in the field. Nowadays, illuminant estimation is

achieved to some extent, often under specific circumstances (e.g. significant colour

casts on digital photographs are rare). However, a general solution (or near perfect one)

to illuminant estimation has yet to be found.

To estimate scene illuminant, some sort of assumptions need to be made about the

expected state of the world. Researchers in the area have closely investigated differ-

ent hypotheses and so different algorithms for illuminant estimation have been pro-

posed. While some approaches are more popular than others (for example, statistical

approaches are thought as sometimes too simple), it cannot be declared that one ap-

proach is right or wrong when compared with a second one. Instead, the good (or bad)

performance of one approach depends on how often their principles are met (or not) in

the world [FS10]. All algorithms work poorly for some classes of image.

In this Chapter we present a review of the state of the art for illuminant estimation

algorithms. Typically, these approaches are divided according to the sort of assumptions

they are based on: statistical, learning approaches, gamut mapping algorithms, and

physics-based approaches.

14
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2.1 Statistical Algorithms

Statistical algorithms for illuminant estimation assume that simple statistics from an

image are sufficient to infer the scene illuminant. In a first subcategory, statistics were

taken from raw RGB pixel values. Recently, considering the output of linear, “deriv-

ative type”, filters instead of the pixel values has been shown to improve estimation.

In this section we describe the most well known statistical algorithms for these two

subcategories.

2.1.1 Using Pixel Values

The Grey World Algorithm

One of the best known assumptions used for illuminant estimation is the Grey World

hypothesis, which assumes that the average colour of a scene is grey [Buc80]. The

Grey World algorithm estimates the scene illuminant by computing the mean of each

RGB element in an image (an illuminant estimation given by Grey World is defined by

Equation 2.1). The Grey World algorithm sometimes produces good results (despite its

simplicity) when a sufficient range of colours are present in the image and if the image is

captured under a single uniform illuminant. However, the Grey World estimate is biased

by large coloured areas in the image, e.g., if a large blue area is present in the image,

the estimated illuminant will be bluer than it actually is. An illuminant estimation by

The Grey World algorithm is given by:

e = [mean(R) mean(G) mean(B)]t, (2.1)

where e represents the 3-dimensional vector for the illuminant estimation, and R, G

and B, are the three colour channels in the image.

Further work has focused on adapting the Grey World algorithm to achieve im-
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proved estimation. For example, Barnard et al., characterise a wide range of surfaces

whose mean is then used to estimate the illuminant [BCF02]. That is if, statistically,

the mean of the world, under the reference light with colour [1 1 1 ], is the vector p and

the image mean for an unknown light is the RGB q then the map p/q corrects for the

illuminant colour (the estimated light is the reciprocal vector q/p). Which is a complex

way of saying: “what should we do if the average colour in the image is achromatic”.

Another strategy that has improved the Grey World estimation is to segment the image

and calculate the average of all regions instead of individual pixels [BMCF02] [GJT87].

Incorporating this simple pre-processing step mitigates, to some extent, the sensitivity

of the algorithm to the presence of large coloured areas in the image.

The MaxRGB Algorithm

MaxRGB is generally attributed to be part of Land’s Retinex theory [Lan77]. This

algorithm assumes that there is a white patch in the scene that reflects the maximum

possible light of the scene illuminant. In practice, this is the maximum pixel value for

each channel in the image. The estimate of the illuminant given by the MaxRGB al-

gorithm is defined in Equation 2.2. MaxRGB is an example, similar to the case of Grey

World, of statistical algorithm leading to often good illuminant estimation. However,

by definition, the MaxRGB operator finds a single value in an image and use it as illu-

minant estimation, which is not a “robust”solution since it can be sensitive to noise (for

example, when pixels having maximum R, G or B values due to error in the imaging

process, such as clipping).

e = [max(R) max(G) max(B)]t (2.2)

Recently, Funt and Shi [FS10] carry out an exhaustive analysis of MaxRGB and

conclude that its apparent “poor”performance may in part be due to the lack of dynamic

range in standard 8-bit image data. This results in an inability to capture the full colour
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range presented in the original scene. Thus, Funt and Shi proposed a new strategy to

improve the MaxRGB performance by using simple pre-processing operations prior to

the estimation. This pre-processing includes image resizing and smoothing operation

(median filter). Other works have also showed that a smoothing operation alleviates the

influence of noisy pixels [GG07] [Ebn09].

Shades of Gray

Furthermore, Finlayson and Trezzi [FT04] presented the Shades of Gray algorithm, an

illuminant estimation algorithm based on `p norms, which is defined by:

e = [µp(R)µp(G)µp(B)]t, (2.3)

where the quantity µp is given by the normalised Minkowski Norm:

µp(X) =
‖X‖p
N (1/p)

. (2.4)

Shades of Gray generalises the Grey World and MaxRGB algorithms in a Minkowski

Norm framework for illuminant estimation. That is, using a norm p = 1 (Equation 2.3),

we are indeed calculating the mean operation (i.e. The Grey World estimator). When,

instead, as p→∞, the Minkowski norm estimator approaches the maximum compon-

ent in the image, equivalent to the MaxRGB estimation. Since for every p > 1, the `p

norm gives an estimation somewhere in between the extreme norms, one might wonder

if whether an norm in between these extremes might provide a reasonable estimation,

based on a different assumption of the scene average. Thus, Shades of Gray proposes

to estimate the scene illumination as a weighted colour average in a scene: the greater

p is, the more important the weights for colours that have at least a high value in one of

the RGB colour channels.

Significantly, across data sets the authors found that a p norm of around 4 or 6 con-
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sistently delivered better performance than either Grey World or MaxRGB. Effectively,

a p norm of 5 or 6 weights brighter pixels more yet is a more robust operator than the

maximum.

2.1.2 Using Linear filters

In a second class of statistical algorithms there are those using outputs of linear filters

instead of raw pixel values.

The Grey-Edge Hypothesis

The Grey-Edge algorithm was proposed in [JGG07] and it is a Minkoski-Norm-based

algorithm on first and second derivatives in images (edges). The idea is to take a deriv-

ative (of a given order and scale) of an image and then calculate a Minkowski Norm (in

the same way as Finlayson and Trezzi [FT04]). The formal definition of Grey Edge is

defined by:

en,p,σk =

(∫ ∥∥∥∥∂nIσk (x)

∂xn

∥∥∥∥pdx)1/p

k ∈ R,G,B (2.5)

where Iσk (x) is the convolution of the image Ik with a Gaussian filter G, with σ pixel

standard deviation, and n is the order of the derivative (n = 0 means no derivative is

taken, n = 1 indicates first derivative and n = 2 second derivative). Finally, e is the

3-dimensional RGB vector of the estimated light source,

en,p,σ = α[en,p,σR en,p,σG en,p,σB ]t (2.6)

where α is a scalar such that ||en,p,σ|| = 1, i.e., we seek only to recover the RGB of the

illuminant up to an unknown multiplicative scalar.

Furthermore, the Grey-Edge algorithm was extended to a weighted Grey-Edge al-

gorithm [GGJ09] to account for different types of edges in an image (materials, high-
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light, geometry and shadows). It is expected that for the Grey-Edge algorithm, different

edges can provide a different impact on the estimation. Gijsenij et al., conclude that

specular edges (specular edges are those caused by highlights) provide more informa-

tion about the scene illuminant and so they are given a higher weight. Even though this

weighted scheme has shown to improve illuminant estimation, it requires more complex

implementation and higher computational cost.

Although the Grey-Edge approach is a more rich computational formalism (and so

can deliver improved illuminant estimation) its generality is also problematic. The best

results for a given data set require a unique set of parameters (order of derivative, p norm

and smoothing parameter). For this reason, the method seems unnaturally “tuned” per

data set. Thus, the simplicity of calculating a Minkowski norm is lost. Remedying this

weakness is a central theme of this thesis.

Using spatial correlations

A further example of an illuminant estimation algorithm incorporates the use of the Dis-

crete Cosine Decomposition, DCT, of 8×8 windows in an image [CHZ08]. Chakrabarti

et al. propose to model the spatial dependencies between pixels as an alternative ap-

proach to illuminant estimation (instead of considering individual pixels or derivatives).

The accuracy of the estimation using this approach relies again on an adequate training

phase that includes sufficient (extensive) examples of images taken under a reference

(known) illumination.

Using colour categories

Finally, an algorithm based on colour category correlation is presented in [VCVBT12].

The authors use the eleven basic term categories defined by Berlin and Kay [BK69],

which are defined as the universal basic colour terms defined in most evolved lan-

guages. Then, they define a naming hypothesis, which is an illuminant constraint used
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to determine how likely a feasible illuminant is, according to its ability to transform

image colours to colour categories. The above is determined for every element in a set

of feasible illuminants. Then two criteria to select the best illuminant are proposed:

selecting the illuminant with the maximum probability or using a combining criterion

where estimations provided by other methods (for example Grey World or MaxRGB)

are taken into account.

2.2 Learning Approaches

First attempts in this category are those using machine learning techniques. For ex-

ample, in [CFB02] an approach for illuminant estimation using a neural network is

presented. The idea behind this approach is to use a neural network to determine the

chromaticity of an scene illuminant. For this, the neural network is first trained with sev-

eral images under different illuminants (in [CFB02] the chromaticity of the lights are

used). Once the neural network has “learnt” (or defined a series of rules), it will have a

“model” to determine the chromaticity of the illuminant from an image. Approaches

in the same category include those using support vector regression [FX04] [XF06]

[WXL09], linear regression techniques [AGKA06] [AGA07][VAA09], and thin-plate

spline interpolation [XSF+07].

2.2.1 Bayesian Methods

Other approaches, instead, are based on the Bayesian formulation [DIS95] [BF97]

[Sap99] [TCRK01] [RML03] [GRB+08]. These approaches first try to model the re-

lation among surfaces, illuminants, and sensor responses. Then, a priori distribution

is calculated to define the probability that a particular light and surface exists in the

world. Finally, they estimate the illuminant from the posterior distribution calculated

on the image data. Even when these algorithms can achieve good results, they are still
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influenced by changes in the collection of surfaces in the scene [BF97]. In an attempt

to find a more appropriate model, Rosenberg et al., proposed a Bayesian approach that

uses a non-Gaussian probabilistic model (in contrast with the previous model based

on Gaussian distribution [DIS95] [BF97]). This approach combines the principle of

the Bayesian framework combined with non-parametric image models, based on the

assumption of correlation among nearby pixels [RML03].

2.2.2 Combining algorithms

It has been shown that algorithms can achieve good (or reasonable good) illuminant

estimation when the image content meets the algorithm assumptions. However, no il-

luminant estimation algorithm has been proved to be a general and unique solution

for all image data. Inspired by this observation, a final group of learning algorithms

aims to combine approaches to improve estimation. Combining the output of various

algorithms is proposed in [CF99] [SHF05] [BGS08]. In [CF99], three illuminant es-

timation algorithms are considered: Grey World, MaxRGB and an approach based on

neural networks. Cardei and Funt showed that using an optimised (in a least-squares

sense) weighted average of the three algorithm estimations, results in more accurate es-

timation than that provided by the algorithms individually. Another example [BGS08]

combines the results of five (based on rather different assumptions) illuminant estim-

ation algorithms: Grey World, MaxRGB, Grey-Edge, Color-by-Correlation [FHH01a]

and Colour in Perspective [Fin96]. While combined approaches can deliver improved

estimation performance, the benefit is modest. Like the general Minkowski-edge form-

alism, it is possible that the increased performance is due to more and more parameters

being available to “tune” the algorithm.

Finally, in [GG07] [GG11], high-order statistics (of the spatial distribution of edges

in an image) are used to determine what illuminant estimation algorithm to use for a

specific scene content (using predefine categories of images). More specifically the
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edge distribution is parameterised by two numbers which control the shape of a Weibull

distribution. The Weibull parameters then index a particular constancy algorithm (a

variant of the Grey Edge approach).

2.2.3 Using semantic information

Further approaches consider some sort of semantic information to account for the best

colour constancy algorithms according to image categories. For example, Bianco et al.

proposed an indoor-outdoor classifier for image content [BCCS08a] based on decision

forests.

In [LGG+09] [RLG09], to use a stage classifier that distinguishes medium-level

semantic classes is proposed [NSRG10]. Also, likelihood of semantic content have

proven to be useful [JSV07]. Similar approaches applied what they called “memory

color” (colours that are associated with specific object categories) to refine the estimate

of the illuminant [RNK+09].

2.3 Gamut Mapping Algorithms

Let us imagine we can define a set of all feasible surfaces in the world. If these surfaces

are illuminated by a particular light, their observed colours will occupy a subregion

in the RGB colour space. If we then use a different light to illuminate these surfaces,

the subregion representing the observed colours will change, reflecting the illumination

change. This fact was first observed by Forsyth [For90] when looking at real images

and it inspired the Gamut Mapping Framework for colour constancy. For example, the

bluest blue RGB cannot occur under the reddest light.

Gamut Mapping algorithms work by finding a mapping (diagonal matrix) that map

observed image colours inside the gamut of colours under a reference illuminant. When

many maps are possible, one member must be chosen from the map set (effectively
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using a criterion akin to the ideas of Grey World and MaxRGB). However, unlike the

simple statistical estimator approach, the set of feasible maps places a strong constraint

on the plausible light (i.e. the Grey World solution is often not possible).

Gamut Mapping algorithms have proved to be among the most promising for illu-

mination estimation. Forsyth’s original Gamut Mapping assumptions about the world

were very restrictive (conditions relating to a Mondrian World, e.g., no presence of

specularities, uniform illumination). More recent versions of gamut mapping deal with

more realistic assumptions about the sort of surfaces that can be found in the real

world and with non-uniform illumination [Fin96] [BF99] [Bar99] [Kob00] [FHH01a]

[TEW01] [FX03] [FHX05] [FHT06] [GGJ07] [GGJ10]. Specifically, algorithms by

Barnard and Funt [BF99], and Tominaga et al., [TEW01] can work when specularities

[BF99], fluorescent surfaces [Bar99], or coloured metals [BF99] are presented in the

images. Over the years different approaches have been proposed to alleviate the limita-

tions of Forsyth’s gamut mapping. In the following sections we discuss the key aspects

of gamut mapping algorithms, where an optimal general solution is still yet to be found.

2.3.1 Model for illumination change.

A diagonal model for illumination change was first used in Forsyth’s original gamut

mapping. However, it has been much debated that the diagonal model does not hold in

practice and can be only an approximation. Therefore if using this model, it is necessary

to consider the cases where the model of illumination change is not appropriate.

2.3.2 Representation of the canonical gamut.

Ideally the canonical gamut represents all physically realisable surfaces in the world

under a reference light. In practice it is very difficult to have the complete full set of all

possible surfaces and so just a subset of these surfaces is commonly used.
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Another consideration is how to represent the canonical gamut. Originally, gamut

mapping algorithms represented the canonical gamut by its convex hull, enclosing all

observable colours. Due to the properties of convex hulls it is sufficient to work only

with the points representing the hull and not all the inner points. The issue with convex

hulls is that they have a very complex form, with many faces represented by triangles

(in a 3-dimensional space) and its computation is not trivial. A consequence of this

convexity is that computing the set of maps requires intersecting several convex sets.

Yet for a single illuminant we do not have to compute a mapping set at all. Indeed, it

was shown that by incorporating the estimation into the problem formulation, Gamut

Mapping Colour Constancy could be found using convex programming. In convex

programming gamuts are represented using “half-spaces”. Another simplified canonical

gamut representation is given by a cube in the RGB space.This cube is found by taking

the maximum and minimum RGB values of the gamut [MF10].Since the cube is a much

simpler shape than the convex hull, gamut mapping implementation is simpler and less

computationally expensive. Monsy and Funt [MF10] present experiments using a cube

to represent the canonical gamut and report better results in terms of median illuminant

estimation error. Furthermore, Monsy and Funt propose how to tune this simplified

version of gamut mapping to minimise the maximum error.

2.3.3 2- or 3-dimensional space.

Forsyth’s gamut mapping was first proposed in a RGB 3-dimensional space but due to

its computationally cost in 3-dimensional space, Finlayson [Fin96] proposed the use of

a 2-dimensional chormaticity space. It was proven that the two versions are equivalent

in terms of recovery light approximation up to an unknown intensity.
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2.3.4 Criteria for mapping selection.

Different criteria have been proposed to select a single mapping. From the set of feas-

ible mappings Forsyth selects the maximum volume mapping [For90] [Fin96] [BF99]

[Bar99], while the mean is used in [Bar95] [BF99] [Bar00] [Bar99], median in [FH00],

a cone-based mean is used in [FH98], 3-d non-perspective mapping selection is used

in [FH98] and a hybrid approach is proposed in [Kob00]. In [FX03] [FHX05] [MF10]

an optimisation using linear programming is proposed, and recently the use of image

derivatives is presented in [GGJ07] [GGJ10].

2.3.5 Illumination.

Even when gamut mapping can find a mapping that transforms an image gamut to fit

inside the canonical gamut, this mapping may not represent a plausible illuminant. It is

also important to ensure that the solution to gamut mapping results in a real light.

Some researchers have proposed to include a constraint in illumination to ensure

that the resulting mapping corresponds to a real light [Fin96] [Bar95] [FH98] [BF99]

[Bar99] [FH00] [FHH01a] [FHT06]. For example, lights in the real world are yellow-

ish, whitish and bluish, but purple lights do not occur.This constraint in illumination

can be included by considering the gamut of possible illuminants, i.e., the algorithm re-

covers a feasible set of mappings representing the possible unknown illuminants which

are feasible. Also, the problem of illuminant estimation can be cast as one of illumin-

ant classification: Colour-by-correlation [FHH01a] proposes a probabilistic approach

for illuminant classification; [TEW01] uses an illuminant classification approach; and

GCIE [FHT06] provides three different criteria to select an illuminant consistent with

an image gamut from a set of possible illuminants.
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2.4 Non-Statistical Algorithms

Most of the algorithms for illuminant estimation are based on the simplified Lamber-

tian model of image formation (presented in Equation 1.6). Instead, Physics-based

algorithms work by assuming that a known physical process is present (such as specu-

larities or mutual illumination) and then they use this knowledge to derive an estimate

of the illuminant [Tom96] [FDH91] [Lee92] [GB94]. The algorithms that exploit spec-

ular highlights assume the world contains reflectances which can be modelled using the

dichromatic reflectance model. This dichromatic reflection model is given by:

ρk(x) = mb(x)S(λ)E(λ)Qk(λ) +ms(x)E(λb)Qk(λb) (2.7)

where the factors mb and ms determine the relative amount of surface and specular

reflectance that contribute to the overall light reflected at the position x.

Some algorithms have proposed to use specularities present in the image to estim-

ate the scene illuminant [Tom96] [TW96] [Sha85] [Lee92] [LJBS86] [Hea91] [KSK]

[GJT86] [RNI04].

The basic idea behind these algorithms is to find pixels where the body reflectance

factor mb in Equation 2.7 is zero (or close to zero) since they reflect most of the scene’s

light (pure specularities according to Equation 2.7 have the same colour as the illumin-

ation). Estimation will then be derived using these pixels, since their colours are similar

or identical to the colour of the illuminant.

However, it is not easy to find specular highlights in images. For example, the

brightest pixels in an image may or may not be specular, and, even if they are, they

may not be “pure” . While techniques exist for deriving the “pure” specular colour by

integrating information from two or more surfaces [Sha85] these algorithms tend to

work in laboratory conditions but not in the real world.

In other work on physics-based illuminant estimation, a number of authors have
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instead used mutual illumination [Tom96] [FDH91] between two surfaces to provide

further information of to the illuminant colour. Mutual reflection occurs when light

reflected from one surface is incident upon a second [FDH91]. They analysed how

sensor responses are modified in the mutual reflection region and showed that a good

approximation of the surface reflectance function can be recovered by using the extra in-

formation available. However, again it has proved difficult to engineer these approaches

to work outside laboratory conditions: it is not simple to identify image regions where

interreflection occurs.

2.5 Evaluating Illuminant Estimation Algorithms

It is common practice to evaluate an algorithm’s accuracy by determining how close

the estimated light colour is to the ground truth light colour. This distance can be

measured using angular error. Given the measured light e = [RGB]t and an estimation

ê = [ReGeBe]
t, the angular error between them is defined as:

θ = angle(e, ê) = cos−1
(

e · ê
‖e‖‖ê‖

)
(2.8)

where e · ê represents the dot product of e and ê. Angular error is independent of pixel

intensity.

When defining an algorithm’s performance or comparing several algorithms, care

must be taken to select a sensible statistical figure or merit [Hor06] [HF06]. Indeed,

Hordley and Finlayson showed that the error distribution tends to be strongly skewed

and hence using a mean angular error (sometimes proposed in the literature) is not

always an appropriate measure to compare algorithm relative performance. Instead,

it was argued that the median angular error was a more appropriate summary statistic

[HF06].
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Angular error (and its statistical summary) is normally used to define how successful

an algorithm is in recovering the scene illumination. From a mathematical and com-

putational point of view, angular error is a good measurement to use when evaluating

an algorithm’s accuracy at estimating the illuminant. However, how can we determ-

ine if this ’mathematical’ accuracy is relevant to a human observer (from a perceptual

perspective)? Recently, Gijsenij et al. [AG09] analysed the correlation between an al-

gorithm’s performance in terms of angular error and the quality of the output image

re-rendered to discard the illuminant estimated by the algorithm. From their experi-

ments they conclude that there is in fact a high correlation: angular error correlates with

perceptual judgements. In other words, subjective and objective evaluations of colour

constancy algorithms are highly correlated [AG09].

When comparing an algorithm’s performance, how can one determine that an im-

provement in the illuminant estimation is relevant? In terms of angular error, it has

been shown that a deviation of 1◦ from the ground truth is not noticeable, and 3◦ is

noticeable but acceptable [FHM05] [FF08].

Hordley concluded that a 2◦ angular error can be considered good enough for colour

constancy for object recognition [Hor06]. Regarding the perceptual difference between

two algorithms, Gijseni et al., show that improvements of up to 6% in terms of angular

error are not noticeable to human observers [AG09]. Conversely, reducing angular

error from 5 degrees to 4.5 (9%) is significant. Moreover, the same significance is,

relativistically, observed in improving 3 degrees to 2.7 (it is the % step that matters).
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2.6 Image data sets used to evaluate computational col-

our constancy algorithms

To investigate the performance colour constancy algorithms the following five bench-

mark image data sets are often used: the Simon Fraser calibrated data sets A and B

[BMFC02] [Bar02], the HDR image data set [FS10], the Grey Ball data set [CF03b]

and Gehler’s Cambridge data set [GRB+08] [SF10].

2.6.1 Simon Fraser University

The Simon Fraser University, SFU, datasets, contain images created under laboratory

conditions [BMFC02] and it is available in [Bar02]. The images consist of thirty one

scenes of coloured objects captured under eleven different lights. Images are provided

in a standard 8-bit TIFF format, but also a 16-bit TIFF format is available to allow tests

using extra dynamic range.

For this dataset, two groups of images are commonly used: a 321 image set (group

A) and a 220 image set (group B). Figure 2.1 shows examples of images in this data set.

2.6.2 The Ciurea and Funt Grey Ball Set

The grey ball data set [CF03b] contains more than 11,000 images captured under dif-

ferent lighting conditions. The images were extracted from a 2 hours of video recorded

in a variety of indoor and outdoor conditions. A small grey sphere is attached to the

camera which appears in all scenes. This grey sphere was then used to measure the

RGB of the light for every scene. Some images in this data set are shown in Figure 2.2.

The images are available in [CF03a].

The Grey Ball is the largest dataset for illuminant estimation (that we know of).

However, the images are extracted from a video, and hence the main disadvantage of
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this data set its the high correlation of the images in the same sequence. It has been

proposed the use of a representative subset instead of the complete set, for example, in

[JGG07] a subset of 150 (10 images per scene) are considered representative, enough,

of the whole set of images. Instead, Bianco [BCCS08b] have proposed a subset of 1135

images.

2.6.3 Gehler’s MacBeth Colour Checker Set

Gehler’s data set [GRB+08] consists of 568 images of scenes under different lighting

conditions, with a large variety of content: people, landscapes, buildings, objects in-

doors, outdoor images. Each scene’s illuminant is obtained using a Gretag MacBeth

Colour Checker Chart that was placed in the scenes (through analysis of the achromatic

patches). The main advantage of this database is that contains more realistic (and with

high quality) images. Figure 2.3 shows examples of images in this data set.

Since Gehler’s image data set was not linear, Shi and Funt [SF10] presented a linear

version of Gehler’s data set, which is available on-line.

2.6.4 Shi and Funt’s HDR Set

Funt and Shi [FS10] compiled a new dataset of HDR images. The images were created

using multiple exposures of the same scene. To measure the scene light they take an

extra image with reference colour checkers placed in the scene (similar to Gehler’s data

set). In Figure 2.4 examples of images in this set are presented.

2.6.5 Other datasets

There are in fact many other data sets which, while we metion here, are not use in this

thesis. Further examples of image data sets available to date include the hyperspectral

images of natural scenes [NFF02] [FNA04], the SFU hyperspectral data [BMFC02],
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and the Barcelona Calibrated Image Dataset [VPVB09] [PBV10] [PVCV09].

2.6.6 Conclusions

In this Chapter we presented the state of the art for illuminant estimation algorithms.

We described the most relevant algorithms in the field and presented the cases where

they achieve accurate estimation and the cases where they fail for this task. We dis-

cussed the state of the art approaches for illuminant estimation, we describe how these

computational algorithms are evaluated and the measurements that have been proposed

to compare with each other. Finally, we presented the image data sets more widely used

to test illuminant estimation algorithms and how they have been used. This review of

the state of the art provides the basis to present a new statistical algorithm for illuminant

estimation, which will be described in the following chapters of this thesis.
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Figure 2.1: Examples of images in Simon Fraser University, SFU, data set.
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Figure 2.2: Examples of images in Ciurea and Funt’s Grey Ball dataset
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Figure 2.3: Examples of images in Gehler dataset
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Figure 2.4: Examples of images in Shi and Funt’s HDR dataset



Chapter 3

Revisiting the Constrained `p

Minkowski Norm

In this chapter we carry out preliminary work essential for the rest of the thesis. We

make two small but important contributions. First, we observe that the baseline con-

strained Minkowski formalism (Section 3.1) is not, in a technical sense, well formu-

lated. We adopt a modified formulation in Section 3.2. Also, when we reimplemented

Minkowski norm illuminant estimation, we found that a naive implementation was ex-

tremely slow. Indeed, the computational complexity was proportional to the number of

pixels in the image. The optimisation necessarily implemented as a search albeit one

which is guaranteed to find the global optimal was very slow indeed. In Section 3.3 we

present a minor modification where we quantise pixel brightness and derive a formalism

where the complexity of finding the illuminant is proportional to the number of quant-

isation levels. Our new formalism is much faster. So, while the contributions of this

chapter are modest, they are essential to using constrained Minkowski norm illuminant

estimation.

36
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3.1 Constrained `p Minkowski Norm for Colour Con-

stancy

It is well known that the mean of a distribution is the single point that is closest to

all other points in the set in the least-squares sense. But, what happens if the mean

colour in our image is clearly not a plausible colour? For example, if the majority

of a scene is a field of purple lavender then the average will be purple, but, no purple

light exists in nature. So, for a Constrained p = 2 Minkowski norm algorithm we need

to calculate a given illuminant that summarises a set of points (this is the sum of the

squared differences from a plausible illuminant to the image points). More generally,

for the p-norm formulation, which light amongst the set of all plausible lights is the

illuminant that minimises the sum of p-norm deviations?

Before presenting the details of how we incorporate this illuminant constraint, we

draw attention to an important technical issue. Suppose that the best illuminant, e, in a

constraint set summarizes the colours in an image with an error u (u > 0). Furthermore,

let us suppose that this light is the actual correct answer to the illuminant estimation

problem. Let us now multiply all the red responses in the image by (say) 1.5 (we make

the illuminant colour redder). The correct light for this second image is the light vector

e but where we scale the R component by 1.5. Let this light also be in the constraint

set. When we calculate the error w for this light we find that w 6= u. That is, the correct

answer in both circumstances induces a different error measure. We found this issue to

be (slightly) problematic. Thus, at the outset we change our measure of error. If (r, g, b)

denotes the colour of the light (one light in a constraint set) and (Ri, Gi, Bi) is one pixel

value then the error for this pixel value is (Ri/r−1)2 +(Gi/g−1)2 +(Bi/b−1)2. That

is we divide by the illuminant. Now, the error with respect to the normalised RGBs is

the deviation from (1,1,1). Calculating the error in this way results in the same error as

the illuminant colour changes.
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So, let us assume that we have a representative set W of RGBs measured for dif-

ferent lights. This illuminant constraint set could be obtained by measuring the RGB

values of a white surface under different lights or by just demarcating part of the RGB

space as being candidates for light colour. An example of such an illuminant set is

presented by Barnard et al. [BMFC02]. They measure a set of plausible common illu-

minant sources which includes artificial and natural illuminants, i.e., the artificial light

sources used to capture the images of the SFU data set [Bar02] and spectra of nat-

ural light sources measured in and around the SFU campus in Canada at various times

of the day, in a variety of weather conditions. This is an example of illuminant set

W . Let wj denote the RGB of the jth illuminant in W . Let I be the n × 3 matrix

of image RGBs. For an illuminant wj = [r, g, b]t let us define the normalised image

Lj : LjR = [R1/r...Rn/r]
t,LjG = [G1/g...Gn/g]t,LjB = [B1/b...Bn/b]

t.

Given a finite set of lights W it could well be that the correct answer for an image

is in W but that its magnitude is wrong. Indeed if the mean of an image is µ and we

multiply the image by 10 the mean must also scale µ → 10µ (but we cannot expect

all lights of all intensities to be modelled by W ). We must somehow formulate this

unknown intensity scale into our problem formulation.

In [FT05] the error calculation for a single light j is defined as:

min
α

{ ∑
k∈R,G,B

||α1− Ljk||
p

}
k ∈ R,G,B (3.1)

where α represents the scaling vector, Ljk is the normalised image by the light j, 1 is

the corresponding vector of 1s and ||.||p denotes the sum of the absolute value of the

arguments raised to the power p.
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3.2 Modifying the constrained Minkowski formalism

Now the same scene viewed under two lights will return the same error measure. How-

ever, we found that there is an inherent bias in choosing awj whose elements are large.

Indeed, regardless of whether it is the right answer, a large wj will reduce the mag-

nitude of Lj and so reduce the magnitude of the whole error expression. To mitigate

this problem, in [FT05] the illuminant set contained unit length RGB vectors. But, even

when this is done, there is a significant bias against more chromatic lights being selec-

ted. Chromatic lights will tend to have at least one of R, G or B being relatively small

and so, in dividing out the light will still tend to increase the magnitude of Lj and hence

the error. That is if one of our lights was defined as [100, 200, 100] and another by

[0.1, 0.2, 0.1] the former will always induce a smaller error irrespective of whether it

was, in fact, the correct colour of light.

Here we modify this minimisation problem by switching the position of the scalar

α to avoid this problem. We then arrive at the following “percentage error” formalism

of illuminant estimation:

min
j,α

{ ∑
k∈R,G,B

||1− Ljkα||
p

}
(3.2)

where the magnitude of wj (or the individual components thereof) is not an issue.

Let us now stack the normalized red, green and blue values as a single long vector

denoted L which is of size m× 1 (m = 3n where n is the number of pixels). We write

this general `p constrained illuminant estimation as:

min
j,α

{∑
||1− Ljα||p

}
(3.3)

It is our contention that Equation 3.3, the third constrained illuminant estimation

formalism will simultaneously deliver the same error as the illuminant changes. In
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addition, it is not biased by the magnitude of the numbers describing an illuminant

RGB. Clearly, we want to investigate if this “percentage error” can indeed improve the

illuminant estimation (or rather, the illuminant selection).

First, an important aspect for our algorithm is the selection of the illuminant set. For

experiments we use two illuminant sets: the SFU 11 and the SFU 87 illuminant set. The

chromaticities of the lights for each set are presented in Figure 3.1 and were measured

by Brainard et al. [BMFC02]. The first illuminant set is represented by red stars and

contains 87 general lights which includes day lights measured at different times of the

day. The second illuminant set consists of the 11 lights that were used to create the

images of the actual scenes and is represented by the blue circles in the figure. The 87

illuminant set represents the case where more general information about illuminants is

available, while the 11 illuminant set represents a case where just limited information

is at hand. For this experiment we will use the SFU 11 illuminant set, the SFU 87

illuminant set will be used in the following chapters.

Now that the illuminant set has been defined, we tested our new formalism using the

321 Simon Fraser University set of calibrated images [BMFC02] and the SFU 11 illu-

minant set. In this experiment, we used an estimator using the optimisation expression

defined in Equation 3.1, for norms in the [1, 16] range. We do the same for the “per-

centage error” formalism defined in Equation 3.3. The results for this experiment are

presented in Figure 3.2, where the mean and angular error for SoG using Equation 3.1

are represented by blue square line and the red circle respectively. The results using

Equation 3.3 are represented by the green triangle line and the star magenta line, mean

and median angular error respectively.

We can observe from the figure that using our “percentage error” formalism helps

to select the best illuminant for a test image. And, for this particular data set the per-

formance increment is highly significant. Let us take, for example, the best result for

the original SoG formalism corresponding to norm four, which achieves a mean angular
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Figure 3.1: Chromaticities of the two illuminant sets used for SFU (A and B) [Bar02]. The
red star points represent the chromaticities for the 87 light set, and the blue circle points
represent the 11 light set.

error of 6.7 degrees and a median of 5.1. For the new ”percentage formalism“, the mean

and median angular errors for the same norm four are 5.7 and 3.6 degrees respectively.

This improvement corresponds to 1 and 1.5 degrees in terms of mean and median an-

gular errors. This is equivalent to a 14.9% and 29.4% reduction in mean and median

angular errors. This improvement is encouraging. Furthermore, we can observe from

the figure that for norms larger than six, the angular error reduction achieved by using

the ”percentage formalism“, is more significant. For example, for norm sixteen, our new

illuminant estimator reduces the median angular error by 3.5 degrees, corresponding to

a 60.3 % reduction.
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Figure 3.2: Performance for SFU A using two different optimisation criteria (see text for
more details). Results for a constrained estimator using Equation 3.1 are represented by the
blue square line and the red circle line (mean and median angular error respectively). For a
constrained estimator using Equation 3.3, the mean and median angular error are represented
by the green triangle line and the star magenta line respectively.

3.3 Improving Computational Performance

In previous sections we show how the Minkowski-based framework for illuminant es-

timation is extended to include extra information regarding feasible lights (in the form

of a constraint in illumination) [FT05]. To select the best illuminant from a predefined

set, an error is minimised for a test image based on ’distances’ which are calculated for

every pixel in an image. Even when this results in an improved estimation, it comes (not

surprisingly) at an increase in the computational time to derive the estimation. Further-

more, this cost is large. Carrying out the minimisation might take up to several minutes
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for a single image.

In this thesis we want to investigate if, for a constrained Minkowski estimator, this

calculation time can be reduced. To do so, we propose simply the use of histograms to

describe the image colour distribution. So that Equation 3.3 becomes:

min
j,α

 ∑
k∈{R,G,B}

||1− qj,kα||pHj,k

 (3.4)

where Lj in Equation 3.3 is replaced with the quantised sensor values in q and H is

the vector with the counts for the values in q. This equation looks similar as before.

However, the vector q is a small number of quantised sensor values. The p norm of the

quantised value vector minus the 1’s vector is then weighted by the frequency (number

of times) that the value occurs in the image (for each channel). This small modification

to the formalism is essential to making the constrained Minkowski norm algorithm

practical for illuminant estimation.

So, almost by definition, we expect to see a large increase in performance, but let

us measure the time taken to calculate estimation errors for commonly used datasets.

We compare the performance of our constrained approach using pixels and histograms

in terms of mean, median, minimum and maximum values, as well as first and third

quantiles (Q1 and Q3 respectively) of the processing distribution.

Here we run the constrained Minkowski norm formalism for a single p-norm (we

select norm 4). The timing results are summarised in Table 3.3. The SFU A data set has

321 images in total. As we transit from left to right in this graph we see the standard

formalism takes more and more time to process the images. For the 321 images in the

data set it takes over one second per image to carry out the conventional processing.

Using histograms reduces this by a factor of 100 to 0.01 seconds.

In Figure 3.3 we present a comparison of computational time required to derive an
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Figure 3.3: SFU A, processing time for different implementations of our constrained ap-
proach.

estimation for SFU A. The time presented in the table is given in seconds.

Table 3.1: SoGC processing time, in seconds, for SFU A

Algorithm min max mean median Q1 Q3

unconstrained 0.12 0.28 0.22 0.22 0.22 0.24
constrained, pixels 2.63 343.59 131.14 116.24 64.25 203.57

constrained, histograms 0.96 10.3 1.33 1.27 1.18 1.32

3.4 Conclusions

In this Chapter we showed that: 1) using quantisation dramatically decreases the pro-

cessing time for the five data sets used for experiments (the total time for illuminant

estimation was reduced to more than 95%), and 2) our redefinition of a constraint based

on the Minkowski Family Norm framework achieves more accurate estimation.



Chapter 4

The General `p Combined Derivative

Constrained Minkowski Norm

There are many algorithms for illuminant estimation which can, broadly, be split into

three classes: physics-based, statistical algorithms, and a combination of the prevous.

Physics-based algorithms work by assuming a known physical process is presented,

e.g., a specular highlight [Lee92] [TW96] or mutual interreflection [FDH91] [Tom96],

and then an estimate is derived by reasoning about the physics of image formation. In

the second class of algorithms, and the class we concern ourselves with in this chapter,

an image is viewed as a distribution of measurements and the tools of statistics are

applied to estimate the illuminant. Statistical approaches are arguably more general

in that their operation does not require a particular physical process to be present in

the scene. Examples of simple statistical approaches include Grey World [Buc80] and

MaxRGB [Lan77] which respectively estimate the light as the average R, G and B in

an image or as the per-channel maximum. The average and maximum of a distribution

are particular instantiations of the Minkowski p-norm (with p = 0 and p =∞). Across

many data sets a p-norm in the range 4-6 reliably outperforms Grey World or MaxRGB

colour constancy [FT04].

45
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The input to statistical algorithms need not be the raw image RGBs. Van de Weijer

et al. [JGG07], and Gijsenij and Gevers [GG11] have shown that a p-norm summary

based on image derivatives (first and second) can deliver improved performance. The

derivatives may be taken over a simple 3× 3 image neighbourhood or, by incorporating

a Gaussian smoothing step, over larger neighbourhoods (over scale). Chakrabarti et

al. extended this approach to allow for all (excepting the DC component) terms in the

discrete cosine decomposition of 8×8 windows in an image (e.g., using the Jpeg decod-

ing) [CHZ08]. It may not be surprising that algorithms based on a particular p-norm,

degree of Gaussian smoothing and spatial derivative deliver better constancy than Grey

World or MaxRGB. We are effectively giving the algorithm designer several parameters

in which colour constancy performance can be tuned to a particular data set.

Simple statistical algorithms can also be improved by incorporating some additional

weak physical information. Forsyth [For90] observed that under a reference light the

colours of surfaces do not fall in the RGB cube but rather in a convex subset. It fol-

lows that we need only to consider illuminant estimates which are consistent with this

‘gamut’ constraint. In [Fin96] a gamut constraint is also placed on illumination colours:

typical lights are bluish, whitish or yellowish (in the gamut) but saturated purples and

greens are disallowed (not in the gamut).

In this chapter, we present a new algorithm that falls in the statistical algorithm class.

The foundation of our new algorithm is the Minkowki p-norm statistical estimator. We

then incorporate an illumination constraint (which determines which lights are feasible)

into the Minkowski-norm formulation. Our work improves upon a previous approach

reported in the literature [FT05] by fusing two approaches which have recently been

presented in the literature and which we believe are complementary in nature. First,

we review and then extend the Minkowski p-norm approach so that it incorporates, in a

mathematically rigorous way, a constraint on illumination. Second, we incorporate the

idea of image derivatives into the Constrained Minkowski norm problem formulation
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(since there is evidence that colour constancy on derivatives seems to work better than

on the colours themselves).

This next algorithm, Combined Derivative, is a simple fixed combination of x and y

spatial derivatives together. Rather than laboriously tune our algorithm by choosing the

kind of derivatives we use (order and scale) we instead propose a simple combination

of first and second derivative information. We do however, optimise over p.

Evaluating our algorithm on five benchmark data sets our Combined Derivative

Constrained, CDC, Minkowski norm algorithm performed very well indeed. It is al-

ways the top performer. This is a remarkable result as our constrained Minkowski norm

approach is a simple approach and is far less complex than other leading algorithms.

4.1 Background

Over many years several authors have proposed computational theories and algorithms

for illuminant estimation. All algorithms work by making some sort of prior assumption

about the expected state of the world. For example Land [Lan77] implicitly assumes

that every image contains a white patch (or a white per channel e.g., bright yellow and

bright blue appear in the scene) and so the maximum [RGB] responses are a good

estimate for the RGB values of the light source. Buchsbaum proposed the Grey World

hypothesis that assumes the average reflectance of all surfaces in a scene is achromatic

[Buc80]. Under this assumption, the average RGB values in an image are used to

approximate the illuminant RGB values. If the shape of spectral reflectances are suf-

ficiently limited (typically this is not the case) Maloney and Wandell [MW86] provide

an elegant mathematical algorithm for spectral light recovery. Finlayson and Trezzi de-

veloped the “Shades of Gray” algorithm in [FT04], which applies Minkowski Norms to

compute illuminant estimation. They showed that Grey World and MaxRGB are rep-

resented by the extreme Minkowski norms, where Grey World is equivalent to `1 and
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MaxRGB is equivalent to `∞. Shades of Gray works well but not as well as algorithms

based on more complex inference procedures.

Highly relevant is the recent work on using derivatives in colour constancy (instead

of image RGBs). Van de Weijer et al. [JGG07] developed a ‘Grey Edge’ algorithm

which estimates the illuminant colour by taking the average of the absolute values of

image derivatives (Grey World over edges). Van de Weijer et al. also incorporated the

Minkowski Norm approach into their Grey Edge algorithm. Consistent with the original

Shades of Gray algorithm a p norm greater than one and less than infinity was found to

work best (the best Minkowski norm algorithm was somewhere between Grey World

and MaxRGB). Bianco et al. [BCCS08b] showed that by choosing a particular instan-

tiation of the Grey Edge algorithm (e.g. particular p or particular type of derivative)

according to image content improves illuminant estimation. Gijsenij et al. [GGJ09] ex-

tended the Grey Edge approach by classifying edge types (material, shadow-geometry,

highlights) to formulate a weighted Grey Edge algorithm. Chakrabarti et al. [CHZ08]

generalised the Grey Edge algorithm using a Discrete Cosine decomposition in a small

image neighbourhood (8 × 8 pixel window to compute spatial correlation) to capture

spatial variation. Combining the terms in the Discrete Cosine expansion in a probabil-

istic framework was shown to deliver good results.

All the above algorithms (except for the classification step in the Gijsenij and Gevers

[GG11] algorithm) considered so far are simple. They are simple in the sense they have

low computational complexity and are straightforward to implement. The best perform-

ance in colour constancy research is found for complex algorithms. Forsyth [For90],

Finlayson [Fin96] and Barnard et al. [BMCF02] make the assumption that image RGB

values under a reference light fall within a convex gamut. Illuminant estimation in this

framework involves finding the mappings that take the gamut of image colours to the

reference lighting conditions. The gamut mapping computation involves the intersec-

tion of many 3-dimensional convex sets and so is computationally complex. Algorithms
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based on probabilistic reasoning e.g. Finlayson et al. [FHH01b] and Brainard and Free-

man [BF97] are also more complex but here the complexity is, in part, due to modelling

the prior assumptions.

4.1.1 Minkowski `P Norm for Illuminant Estimation or Shades of

Gray

A Minkowski norm is defined in a N dimensional real space. Let X = [X1...XN ]T be

a vector in RN . For every p ≥ 1 the quantity

‖X‖p =

{
N∑
i=1

|Xi|p
}1/p

(4.1)

defines a norm in RN [KF75] and Xi represents the ith component of X. Here and

throughout this thesis bold letters denote vector quantities.

As p→∞ the pth norm approaches the maximum component of X. Rewriting this

equation to normalise it by the number of points in the distribution we have:

µp(X) =
‖X‖p
N (1/p)

. (4.2)

Finlayson and Trezzi [FT04] propose an illuminant estimator given by the following

equation:

ê = [µp(R)µp(G)µp(B)]T , (4.3)

where ê is the 3-dimensional RGB vector for the illuminant estimation, and R, G, B

represent the three colour channels in the image.
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4.1.2 The Grey Edge hypothesis

Van de Weijer et al.’s Grey Edge hypothesis [JGG07] assumes that the average absolute

derivative (1st, 2nd or nth order) in an image is achromatic. Across several studies the

average of image derivatives was found to be a better estimator of illuminant colour

than the average of the pixels.

Van de Weijer et al. also incorporated the Minkowski-norm idea into the problem

formulation [JGG07] and found that a norm greater than one (i.e., not Grey World) and

less than infinity (not MaxRGB) delivers the best illuminant estimation. Grey World,

Shades of Gray, and Grey Edge are similar and can be combined in a single framework

for illuminant estimation methods based on low-level image features:

(∫ ∥∥∥∥∂nIσk (x)

∂xn

∥∥∥∥pdx)1/p

= en,p,σk k ∈ R,G,B (4.4)

where k denotes R, G or B.

Iσk (x) = Ik ⊗Gσ (4.5)

where Iσk (x) is the convolution of the image Ik with a Gaussian filterG, with σ pixel

standard deviation, and n is the order of the derivative (n = 0 means no derivative is

taken, n = 1 indicates first derivative and n = 2 second derivative). Finally, e is the

3-dimensional RGB vector of the estimated light source,

en,p,σ = α[en,p,σR en,p,σG en,p,σB ]t (4.6)

where α is a scalar such that ||en,p,σ|| = 1, i.e., we seek only to recover the RGB of the

illuminant up to an unknown multiplicative scalar.
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4.2 Constrained `p Minkowski Norm for Colour Con-

stancy

Let us recall the error calculation for a single light j defined in Section 3.1. Let W be

a representative set of RGBs measured for different lights. Let wj denote the RGB of

the jth illuminant in W . Let I be the N × 3 matrix of image RGBs. For an illuminant

wj = [r, g, b]T let us define the normalised image Lj : LRj = [R1/r...RN/r]
T ,LGj =

[G1/g...GN/g]T ,LBj = [B1/b...BN/b]
T . Our ’percentage error’ formalism of illumin-

ant estimation for a jth light in W is given by:

min
j,α

{ ∑
k∈R,G,B

||1− Lkjα||p
}

(4.7)

Let us now stack the normalized red, green and blue values as a single long vector

denoted L and using the previous notation n, p, σ to denote the nth order differential

operator, pth Minkowski norm and smoothing with σ pixel standard deviation. We

define a normalised image vector F, so that Fj = Ln,p,σj , where Fj is of size M × 1

(M = 3N where N is the number of pixels). We write this general `p constrained

illuminant estimation as:

min
j,α
{ err = ||1− Fjα||p} . (4.8)

4.2.1 Solving for α

Let us differentiate Equation 4.8 with respect to p (and assuming p is even) we see that,

for a fixed light and Fi denoting the ith component of F:

∂err
∂α

= p
M∑
i=1

Fi(1− Fiα)p−1 (4.9)
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and the second derivative

∂2err
∂α2

= p(p− 1)
M∑
i−1

F 2
i (1− Fiα)p−2. (4.10)

Clearly, (because pwas assumed to be even) the above expression is always positive,

which implies that ∂err
∂α

is monotonically increasing and this in turn implies that the

optimisation has one minimum. We can solve for α by simple gradient descent. A

similar (but slightly more complex) argument can be made for odd powers. In either

case a simple search suffices to find α.

4.2.2 Combined Derivative Approach

As discussed earlier, through choosing the best Minkowski norm (best p), smoothing

parameter (σ), and order of derivative (n), the basic Minkowski-norm algorithm can

be tuned to a particular image content. Moreover, published results find quite different

parameter combinations work best for individual images [BCCS08b]. Here, we propose

a single variant of the algorithm which we call the Combined Derivative Approach, CD.

We do this for two reasons. First, we wish to evaluate how much (or how little) incor-

porating a constraint in the illuminant helps without the increment being clouded by

the question of parameter selection. Second, the fixed-parameter operation typically

reflects real-world conditions where cameras typically have a single white point estim-

ation algorithm.

Our combined derivative optimisation is written as:

min
α,j

{
||1− F1,p,1

j α||p + ||1− F2,p,1
j α||p

}
, (4.11)

where we minimise the percentage error for the first derivative operator (x and y derivat-

ives treated separately) and the deviation for the second derivative (x-y second derivat-

ives added together). Both first and second derivatives are calculated after smoothing by
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a symmetric Gaussian filter with a standard deviation of one pixel. The only parameter

left to optimise for is p. Thus, the above expression brings us back to the simplicity of

the Shades of Gray algorithm in terms of its number of free parameters.

There is no magic in the above expression: we suggest the above formula only

because we observed first, the real power of edges and, secondly, that sometimes first

derivatives worked better than second and vice versa. Therefore, it seemed natural to

combine first and second derivatives to account for a wider range of information for

diverse image content. Thus avoiding the task of tuning parameters to image content

which results in a more general algorithm.

4.3 Experiments and Results

To investigate the performance of our general constrained p norm algorithm we test it

with five benchmark image data sets: the Simon Fraser calibrated data sets A and B

[BMFC02] [Bar02], the Grey Ball data set [CF03b], the Gehler’s Cambridge data set

[GRB+08] [FS10] and the HDR image data set [FS10]. For each data set there are

per image measured answers of the correct light. The set of such lights is used as our

illuminant data set.

We follow common practice of determining how close the estimated light colour

is to the ground truth light. The distance is measured using angular error. Given the

measured light e = [R,G,B]T , we run the colour constancy algorithm to recover the

estimated light ê = [Re, Ge, Be]
T . The angular error between them is defined as

θ = angle(e, ê) = cos−1
(

e · ê
‖e‖‖ê‖

)
(4.12)

For each data set we test 4 instantiations of our algorithm. First, we run the con-

strained and unconstrained algorithm using the raw pixels of the image (here we are fo-

cussed only on how important the illuminant constraint is in the context of the ‘Shades
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of Gray’ Minkowski norm algorithm). We label these two algorithms as SoG and SoGC

(C for constrained). In a second test we wish to evaluate the power of derivatives. Here

we test the combined derivative approach without constraining the illuminant, denoted

CD, and the combined derivative constraint approach, labelled CDC.

4.3.1 Simon Fraser data sets A and B

The Simon Fraser calibrated data set is a large data set of many colourful objects meas-

ured under different lights. The data set is divided in two groups: the first one, group

A, contains 32 scenes of colourful objects; the second, group B, consists of 20 scenes

of one object per scene. Group A and B’s scenes are captured under 11 coloured lights

(not all scenes in set B are imaged under all lights). Details about the images, how they

were collected and the illuminants used can be found in [BMFC02] [Bar02].

The results of our experiments on this data set is shown in Figure 4.1 (data set A),

and Figure 4.2 (data set B). The figures show mean and median angular error respect-

ively for SoG (blue square line), SoGC (green dotted line), the combined derivatives

CD (black star line) and its constrained counterpart CDC (magenta triangle line).

We make three observations about the results. First, across p norms, as expected,

SoGC performs better than unconstrained SoG: an illuminant constraint helps. Second,

across p norms CDC (combined derivative and constrained) works better than using

derivatives alone (CD). SoGC and CDC algorithms clearly work best overall. While

SoGC provides better mean and median angular error than SoG and CD, CDC per-

formance is better across p norms for both mean and median angular error.

In Table 4.1 we highlight the results of our algorithms (for the best norm) and for

Gamut Mapping (method described in [For90]) and Gamut Constrained Illuminant Es-

timation (GCIE) [FHT06]. Recently Funt and Shi showed that MaxRGB’s performance

for illuminant estimation over preprocessed images leads to more accurate illuminant

estimation [FS10]. They used two preprocessing operations: a 5 × 5 median filtering,
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Figure 4.1: A comparison of algorithm performance, in terms of mean and median angular
error, is presented using the SFU dataset group A [Bar02]. The square blue line represents
SoG, SoGC is represented by the (dotted green line), CD is represented by the star black
line), and CDC is represented by the magenta triangle line.

and image resizing to 64× 64 pixels using bicubic interpolation. We also include these

results for comparison. In Table 4.1, Funt and Shi’s results are labeled as ’MaxRGB

filtering’ and ’MaxRGB resizing’. This idea of smoothing as a preprocessing step for

colour constancy was originally discussed by Choudhury and Medioni [CM09].

From Table 4.1 it can be observed that our CDC algorithm achieves good results

and is the best among simple algorithms. For data set A, CDC performs as well as

the much more complex Gamut Mapping approach, and it is very close in performance

to GCIE, but at significantly lower computational cost. The GCIE algorithm works by

modelling the gamut of colours that can appear under different lights. Each light (and

its plausible gamut) is tested in turn to see how well it accounts for the real image data.
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Figure 4.2: A comparison of algorithm performance using the SFU data set [Bar02], group
B is presented. The algorithms included are: SoG (square blue line), SoGC (dotted green
line), CD (star black line), and CDC (magenta triangle line). The performance is measured
in terms of mean and median angular error (degrees).

Considerable fitting was carried out to optimise the shape of the gamuts to represent the

image data to return the best results. That our simple normalisation procedure works so

well without optimisation is encouraging. For data set B, CDC outperforms CD, SoG

and SoGC, with mean angular error of 5.85 and median angular error of 2.88.

4.3.2 HDR Images, Simon Fraser University

This data set has been compiled by Funt and Shi [FS10] and contains 105 scenes in

HDR format. This data set was designed so that data was not clipped and algorithms

could be tested on cleaner data (than for other data sets). MaxRGB in particular is

known to perform less well in the face of extensive clipping artefacts.
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Table 4.1: The results of our experiments on Simon Fraser University data sets A and B
[Bar02]. We highlight the best results of our algorithms for each data set. For data set A we
also include results for other algorithms presented in [FS10].

angular error (degrees)
Algorithm Group A Group B

Mean Median Mean Median
Grey World 9.8 7.0 7.35 6.48
MaxRGB 9.1 6.5 7.43 4.38

MaxRGB, filtering 5.8 3.4 5.8 3.1
MaxRGB, resizing 5.6 3.1 6.5 3.0

1st order Grey Edge,p = 7 A and B 5.6 3.2 7.5 6.1
2nd order Grey Edge,p = 7 A and B 5.2 2.7 7.4 4.1

SoG,p = 7 A and B 6.4 3.7 7.35 4.18
SoGC,p = 16 A and B 5.3 2.3 7.30 6.45

CD,p = 5 A and B 7.6 4.2 7.62 3.96
CDC,p = 5 A and B 5.1 2.0 5.85 2.88

Gamut Mapping - 2.9 - -
GCIE v3, 11 lights - 1.3 - -
GCIE v3, 87 lights - 2.6 - -

In order to estimate the ground truth for scene illuminant they placed four mini

Macbeth Colour Checkers in each image, each in a different position and angle with

respect to the camera and the predominant scene illuminant. Achromatic patches in

each colour checker provide an RGB estimate of the scene illuminant. The average of

the 4 RGB illuminants provided by each of the colour checkers is used as the scene

illuminant.

Overall, it is clear from Figure 4.3 that a constraint on the illuminant does aid al-

gorithm performance. However, the effect is less evident than in the Simon Fraser

data set. The lesser performance benefit is, we believe, related to the way the ground

truth is ‘estimated’ (which draws attention to the fact that some of the scenes are really

viewed under mixed lighting conditions). While we, ultimately, seek algorithms for

these scenes it is not clear how a simple statistical approach developed here can (reas-

onably) unpick one light from another or find the best compromise for illumination.

Funt and Shi reported results of MaxRGB and Grey World on this data set: Grey

World, mean and median angular of 7.9 and 7.3, ‘MaxRGB filtering’, mean and me-

dian angular error of 6.3 and 4.3, and ‘MaxRGB resizing’, mean and median angular
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Table 4.2: Performance of our algorithms using the Funt and Shi’s HDR Image data set
[FS10] is presented. The performance is measured in terms of the mean and median angular
error (degrees). Boldface highlights our algorithm’s best result.

angular error (degrees)
Algorithm Mean Median
Grey World 7.9 7.3

MaxRGB, filtering 6.3 4.3
MaxRGB, resizing 6.3 3.9

1st order Grey Edge 5.98 3.96
2nd order Grey Edge 5.91 4.0

SoG, p = 5 6.6 5.1
SoGC, p = 5 6.6 4.8

CD, p = 5 6 4.1
CDC, p = 5 5.8 3.8

error of 6.3 and 3.9 respectively [FS10]. CDC’s best performance is for p = 9, with

mean angular error of 5.8 and median of 3.62. Our CDC delivers the best performance

amongst these simple statistical methods.

In Table 4.2 we compare the performance of SoG, SoGC, CD, and CDC algorithms

with other methods available in the literature. Compared with previously published

results both the CD and CDC algorithms perform best overall. We can observe in the

table that our CDC delivers the best performance overall.

4.3.3 Ciurea and Funt data set

This is a large image data set that contains 11340 images, commonly used to evaluate

colour constancy algorithms. Created by Ciurea and Funt [CF03b], the images are taken

from a video sequence recorded in a variety of indoor and outdoor places. A small grey

ball was placed in a fixed position at the bottom of the right hand side of the camera.

The area of the grey ball in an image is then used to compute the RGB values of the

scene illuminant. For our experiments the area of the grey ball is masked so that it does

not bias how algorithms perform. Further, following van de Weijer et al. [JGG07] we

use a subset of 150 of the images because the whole image set is, in fact, a sequence of
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Figure 4.3: A comparison of performance for four algorithms on HDR Funt and Shi’s data set
[FS10] is presented. Where SoG is represented by the square blue line), SoGC is represented
by the dotted green line, CD is represented by the star black line and CDC is represented
by the magenta triangle line. The performance of the algorithms is measured in terms of the
mean and median angular error (degrees).

150 clips. We need only test one frame per clip.

In Figure 4.4 we show the results for SoG, SoGC, CD, and CDC algorithms. As

before we observe that the constrained approach achieves significantly better perform-

ance than the unconstrained method. Even though the effect is less dramatic than for

the Simon Fraser data set, it can be observed from the figure that the best results are

achieved by CDC for norms 3 and higher.

Gijsenij and Gevers’s [GG11] best result for Grey Edge is mean angular error of

6.1 and median of 5.2 for second order; from Gijsenij and Gever’s parameter tuning

approach the best results are mean and median angular error of 5.0 and 3.7 respectively

[GG11]; and Chakrabarti et al. ’s spatial correlation with mean and median angular error
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Table 4.3: A comparison of performance of our new constrained approach using the Ciurea
and Funt data set [CF03b] is presented. Results for other state of the art algorithms are also
included. For this experiment the 150 image subset proposed in [JGG07] is used.

angular error (degrees)
Algorithm Mean Median
Grey World 7.9 7.0
MaxRGB 6.8 5.3

1st order Grey Edge 5.9 4.7
2nd order Grey Edge 6.1 4.9
Tuning Approach*1 5.0 3.7

Spatial Corr.*2 6.0 4.4
SoG, p = 8 6.4 5.1

SoGC, p = 4 6.1 4.3
CD, p = 2 5.4 4.4

CDC, p = 12 5.2 3.8

of 6.0 and 4.4 [CHZ10]. While the best results for CDC were for p = 12 with mean

angular error of 5.25 and median of 3.81, performing as well as the aforementioned

algorithms.

In Table 4.3 we summarise the results of our algorithms and compare them with the

results presented in [CHZ10] for different algorithms. In all cases our CDC approach

works best overall.

4.3.4 Gehler data set

This is a set of 568 images from indoor and outdoor scenes taken in Cambridge, Eng-

land, and is perhaps the most realistic photographic data set. Each picture either con-

tains people, places and different objects and many are typical photos (like the ones we

all take with our point and shoot cameras). Unlike the images we take ourselves, in

every scene there is a Macbeth colour checker placed in a known position. The scene

illumination is given by the achromatic patches in the Macbeth colour checker.

The nature of the images in this data set is much debated. It has been pointed out

that the images were created using an automatic white balance operation included in

the camera used to capture the images. Some algorithms need to work with linear data
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Figure 4.4: A comparison of algorithm performance for our four algorithms on the Ciurea
and Funt’s Grey Ball data set [CF03b] is presented: SoG (square blue line), SoGC (dotted
green line), CD (star black line), and CDC (magenta triangle line). The results are presented
in terms of the mean and median angular error (degrees). For this experiment the 150 image
subset proposed in [JGG07] is used.

so Shi and Funt [SF10] presented a new linear version of this data set.

Figure 4.5 shows results on Shi and Funt’s linear version of Gehler’s Macbeth data

set for our algorithms: SoG (square blue line), SoGC (dotted green line), CD (star

black line) and CDC (magenta triangle line). It can be observed from the figure that our

combined derivatives constrained CDC performs better that SoG, SoGC and remark-

ably better than its unconstrained counterpart CD. Results on linear Gehler’s Macbeth

data set shows very encouraging results.

Recently Gijsenij et al. presented results for most algorithms [GGJ11] on this data

set. In Table 4.4 we compare some of these algorithm performances with our own.

We observe from the table that the CDC approach performs best among statistical al-
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Figure 4.5: Performance for four algorithms on Shi and Funt’s linear version [SF10] of
Cambridge data set [GRB+08] are presented: SoG (square blue line), SoGC (dotted green
line), CD (star black line), and CDC (magenta triangle line). Performance is presented in
terms of mean angular error (left panel) and median angular error (right panel).

gorithms. Only the approaches which effectively apply different algorithms to different

images depending on the scene content perform significantly better [GG11] [CHZ08].

4.4 Conclusion

We have presented a new approach for illuminant estimation. Our algorithm is based

on the use of image derivatives and Minkowski norms. We have showed that these two

approaches are complementary and by combining them good illuminant estimation is

achieved. Furthermore, we add a weak illuminant constraint to our preferred Combined

Derivatives Constrained approach. Experiments on five of the most common image
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Table 4.4: A comparison of algorithm performance on Shi and Funt’s linear version [SF10]
of Gehler data set [GRB+08]. Our new algorithm is compared with other methods available
in the literature (* results presented in [GGJ11])

angular error (degrees)
Algorithm Mean Median
Grey World 6.4 6.3
MaxRGB 7.6 5.7

1s order Grey Edge 5.3 4.5
2nd order Grey Edge 5.1 4.4

Spatial Corr. (without reg)*1 5.9 5.1
Spatial Corr. (with reg)*1 4.0 3.1

SoG, p = 10 5.7 4.6
SoGC, p = 6 5.5 4.5

CD, p = 5 5.2 4.2
CDC, p = 5 4.9 3.8

data sets proved the good performance of our algorithm.

The Combined Derivatives Constrained method is in the simple class of statistical

algorithms, yet its almost excellent performance across all data sets is either better or

close to the performance of the best complex algorithms.



Chapter 5

Extending the Constrained Minkowski

approach using Gamut Mapping

The chapter will start with an introduction to gamut mapping, continuing with its form-

alisation and principles. Next, a review of the state of the art is presented, where the

most important aspects of gamut mapping are discussed. We then incorporate CDC,

Combined Derivative Constrained, for a new version of gamut mapping. We test the

new approach in the image sets more widely used for colour constancy algorithms and

present our results and findings. Experiments using real and synthetic images provide

evidence that our new approach achieves good colour constancy while requiring a lower

computational cost than previous algorithms. We finish the chapter with conclusions

and future work.

5.1 Colour Constancy

A camera’s response to surfaces, or observed colour, depends both on the surface prop-

erties and the lighting conditions illuminating the scene. An invariant colour descriptor

is defined here as the camera response to surfaces under a known light. Colour con-

64
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stancy can be defined as the problem of finding colour descriptors that are independent

of the lighting conditions, and colour constancy algorithms attempt to solve this prob-

lem.

Gamut mapping algorithms, following from Forsyth [For90], were based on a di-

agonal model of illumination change where an estimate of the illuminant is recovered

in the form of a mapping transforming observed colours to invariant colour descriptors.

In Forsyth’s original algorithm a 3-dimensional diagonal model mapping RGB colour

observations to colour descriptors was proposed [For90]. Then Finlayson [Fin96] mod-

ified Forsyth’s gamut mapping and proposed a 2-dimensional chromaticity algorithm to

map observations to descriptors.

In gamut mapping a canonical gamut represents sensor responses to all possible

surfaces under a canonical light. An image is captured for a scene under unknown

lighting conditions, or in other words, sensor responses to a set of surfaces are imaged

under an unknown light. These sensor responses are represented by an image gamut.

Then a mapping that transforms the image gamut to fit inside the canonical gamut is

computed and effectively estimates the unknown illuminant. Once an estimate of the

illumination is recovered, an equivalent image of the scene under a reference light can

be determined by applying this mapping to the image data.

Gamut mapping can achieve good illuminant estimation but its implementation is

normally complex and computationally intensive (at least compared with simple ideas

like Grey World and Grey Edge). A great deal of research has been carried out both

to exploit its potential and to try to solve its weaknesses. In the following sections

we provide a detailed analysis of the gamut mapping approach, its more important as-

pects and the most relevant variations to it since first introduced in 1990 [For90]. We

then present a new algorithm of gamut mapping by using a new constrained approach

and by including our Combined Derivative Constrained, CDC approach, presented in

Chapter 4.
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5.2 Gamut Mapping

Gamut mapping was first presented by Forsyth [For90] when observing that all possible

colours viewed under one light are restricted to a specific area in the RGB space. Under

this assumption any change in the light will be reflected in the RGB space of these

observable colours. In other words, any variation in this RGB space reflects a variation

in the light. This change of the RGB colour space can be used to determine the change

in illumination. For example let us take Figure 5.1: a set of surfaces are imaged under

two different lights (Figure 5.1 (c), and (d)). The gamut of colours for these surfaces

under the two different lights are presented in Figure 5.1 (a) and (b) for each light

respectively. Indeed, we can observe the gamuts are slightly skewed reflecting each

illuminant, i.e., the area in the RGB space of this set of surfaces change to reflect the

change in the light.

R

a)

G

B

480 530 580 630 680 730 780

nm

c)

0 530 580 630 680 730 780

d)

nm

R

b)

G

B

Figure 5.1: A set of surfaces illuminated by two different lights. The gamut of colours is
skewed in the direction of the illuminant
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Gamut mapping aims to find mappings that transforms an unknown light gamut so

that it is contained within the canonical gamut. Such a mapping represents the change

in illumination and one can apply the inverse of this mapping to the canonical light to

estimate the unknown light (e.g. if the canonical light is w and D maps unknown to

canonical, the Gamut Mapping estimate of the light is D−1w).

However, there are many diagonal maps taking an image gamut inside the canonical

gamut. Forsyth’s original gamut mapping solves for all possible mappings, and then

selects the mapping with maximum volume as the solution. At the time of its pub-

lication, Forsyth’s Gamut Mapping outperformed all other state of the art algorithms

for colour constancy. A significant amount of research has been done since Forsyth

first presented Gamut Mapping [Fin96] [FH98] [Bar00] [FHH01a] [FX03] [FHX05]

[FHT06] [GGJ07] [GGJ10] [MF10].

5.2.1 Formal definition of Gamut Mapping

Forsyth assumed that the observed colours in the scene depends on the scene illuminant.

This assumption is based on the observation that surfaces cannot reflect more light

than it is cast on them. For example, if a sensor response to a surface is strongly red,

the illuminant lighting the surface cannot be deep blue. From this observation and by

imposing some constraints in the world, a scene illumination can be estimated starting

from the observed colours in the scene.

These constraints on the world are quite restrictive since they are based on the Mon-

drian world assumptions and they do not correspond to scenes in the real world. The

constraints for Mondrian world are:

1. Surfaces are matte and frontally presented. There are no shadows.

2. There is only one illumination and this is uniform across the scene.

3. All surfaces are Lambertian (and all reflection is diffuse). There are no fluores-

cent surfaces in the scene.
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Gamut mapping imposes a constraint on possible illuminants since it assumes that

the space of possible colours depends on the light. Sensor responses to all physic-

ally realisable surface reflectances under a canonical light form the canonical gamut.

This is defined to be a convex set of RGB responses obtained by imaging all reflect-

ances under the canonical illuminant. In practice a good approximation can be formed

by considering a representative subset of surface reflectances [Fin96]. The canonical

gamut serves as a constraint for ruling out certain illuminants.

Sensor responses to surfaces under an unknown light form the image gamut. Sup-

pose that a few reflectances are viewed under unknown light conditions generating im-

age colours. We know that under the canonical light these same reflectances would

induce responses which fall inside the canonical gamut. If we can state a formal rela-

tionship between these two gamuts we will have some knowledge of the unknown light.

This is only valid if certain restrictions are imposed in the world, and if colour responses

under different lights can be approximated by a linear transform [For90] [MW86].

Let us represent an image taken under an unknown light o, with a set Io of n sensor

responses, Io = {po1,po2, ...,pon}. For this image, we would like to determine the cor-

responding set of sensor responses Ic which would be observed under a reference light,

c. Solving this problem implies determining a mapping F such that:

pci = Fo,c(poi ), i = 1...n (5.1)

For a reference light, c, we define the canonical gamut denoted by Γ(C). A change

of illumination implies a different gamut of observable image colours and this new

gamut is related to the first one by a mapping F . That is, if Γ(C) denotes the canon-

ical gamut under the reference light, c, and Γ(I) denotes the image gamut under the

unknown light, o, then:

po ∈ Γ(O)↔ Fo,c(po) ∈ Γ(C) (5.2)
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The gamuts Γ(C) and Γ(I) taken together, provide sufficient constraint for solving

the set of mappings that transform Γ(I) inside Γ(C) and these form the gamut mapping

solution to colour constancy.

It follows then that colour constancy was a problem of parameterising the linear

transforms which take the image colours into the canonical gamut. Forsyth’s MWEXT

algorithm does just that:

∀po ∈ Γ(Io),Mp ∈ Γ(Ic) (5.3)

The 3x3 mapM is a possible solution to the colour constancy problem if and only if

each RGB response vector p in the image gamut, Γ(I), is mapped inside the canonical

gamut Γ(C).

To this point, characterising the solutions to Equation 5.3 is problematic in three

respects. First, in order for gamut mapping to work the following assumptions are

imposed: the surfaces should be matte, have uniform illumination and have no specu-

larities. In general these conditions are too restrictive. Second, linear maps have nine

parameters. This implies that solving Equation 5.3 is a nine-dimensional problem. For-

syth [For90] found this to be “computationally laboriously”. Third, not all linear maps

correspond to plausible changes in illumination.

To overcome these three problems Forsyth [For90] proposes that mappings should

be restricted to three parameter diagonal matrices. When Forsyth proposed this restric-

tion it was deemed rather arbitrary, but shortly after Finlayson et al. [FDF94a] showed

that it is generally reasonable (if a diagonal model is not a physically realistic model of

light change it can be made to hold by an appropriate change of sensor basis). This led

to the second version of Forsyth’s gamut mapping, known as CRULE. It solves for all

those diagonal matrices D which take the image gamut into the canonical gamut.

∀po ∈ Γ(I), Dpo ∈ Γ(C) (5.4)
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The uth point in Io can be mapped to the vth point in Ic by applying a diagonal matrix

Dv,u such that:

Dv,upou = pcv (5.5)

The set of diagonal mappings, Dc,o, that simultaneously map all points of Γ(I) into

Γ(C) is the intersection of all the mappings transforming the individual points of Γ(I)

into Γ(C):

Dc,o =
n⋂
i=1

Dc,oi (5.6)

Let us illustrate with the example shown in Figure 5.2 how this idea works (where

for ease of illustration we look at mapping two component colours instead of three).

Let us suppose that we want to map the three coloured points in Figure 5.2 (b) to the

canonical gamut in Figure 5.2 (a). The mappings transforming each vertex in (b) inside

the canonical gamut in (a) are represented in (c). The intersection of the three mappings

is the grey area in (c).

To choose a good candidate from Dc,o and thereby provide a unique estimate of the

unknown illuminant, Forsyth employs the heuristic of selecting the mapping with the

maximum volume [For90] and consequently the mapping with a wider range of colours.

With the diagonal restriction, colour constancy is simpler and has lower computa-

tional cost. However, gamut mapping is still computationally expensive and only an

approximate solution to Equation 5.4 is actually calculated [For90].

Forsyth tested his CRULE algorithm on images which meet Mondrian world condi-

tions [For90]: the scenes contained flat matte reflectances under uniform illumination.

For such scenes, CRULE was capable of delivering good colour constancy. Achiev-

ing colour constancy in such conditions was Forsyth’s aim when he presented gamut

mapping in 1990. However, even though research has been done to develop the ability
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Figure 5.2: Intersection of feasible mappings, where a) represents a canonical gamut, b)
represents an image gamut, and c) is the intersection of mappings transforming the three
points in b) inside the canonical gamut in a)

of the algorithm to deal with “more interesting objects than matte, frontally presen-

ted surfaces” [For90], there is still scope for further improvements. Different versions

to Forsyth’s original version have been proposed to tackle different aspects of gamut

mapping.

More recent versions of gamut mapping deal with more realistic assumptions about

the sort of surfaces that can be found in the real world and with non-uniform illumina-

tion [Fin96] [Bar00] [FHH01a] [FX03] [FHX05] [FHT06] [GGJ07] [GGJ10]. Specific-

ally, algorithms by Barnard and Funt and Tominaga et al. can work when specularities,

fluorescent surfaces, or coloured metals are presented in the images.
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5.3 CDC and a generalised gamut mapping approach

We are interested in the principles that Gamut Mapping, GM, provides about colour

information on images. CDC estimates the illuminant using statistical theory but no

canonical gamut constraint is used. However, GM has been shown to be very powerful

colour constancy algorithm. Thus, here we fuse them into a new colour constancy

algorithm, Gamut Combined Derivative Constrained, GCDC.

Our new approach for colour constancy is based on the following assumptions:

1. We have some knowledge about physically realisable lights in the world that

allows us to build an illuminant set. This set contains all possible and physically real-

isable lights. Let us define a set of RGB values corresponding to real lights, W , such

that the jth element in the set is of the form: wj = [rj, gj, bj] (constraint in illumination

from CDC). The same illuminant chromaticity presented several times corresponding

to the same light but at slightly different intensities. This is an important nuance. In

common with most algorithms for colour constancy we assume the input image has

a maximum value of 1. It could be that the diagonal matrix [1, 1.33, 2] cannot be a

solution to colour constancy (corresponding to the light colour [1, 3/4, 0.5]. But, the

mapping 0.9[1, 1.33, 2] does work i.e., it is necessary to assume that the prevailing

light is bright in order to map the image gamut inside the canonical gamut. That is, we

have found that only the brightest lights need to be considered.

2. The observed colour in a scene are constrained by the illuminant conditions

(Assumption of Gamut Mapping).

3. Under a diagonal model for illumination change, each wj in the illuminant set

defined in Assumption 1, corresponds to a mapping, Dj , that transforms an image

gamut, such that:

Dj = diag

([
1

r
,

1

g
,
1

b

])
(5.7)
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We then define the set of m mappings such that D = [D1, D2, ..., Dm]. Note that here

we assume that the canonical light is [1, 1, 1].

4. Given assumptions 2 and 3 we could determine which lights from the illumin-

ant set are consistent with a given test image. That is, to determine if the illuminant

wj could be the scene illuminant, we evaluate if its corresponding mapping, Dj , trans-

forms the test image gamut to fall inside the canonical gamut. Only those lights with

corresponding mappings that transform the image gamut inside the canonical gamut are

considered candidates for the scene illuminant. Thus we discard lights that cannot be

the scene’s illuminant (derived from Asumption 2), and just keep those lights that are

consistent with the test image, i.e., we form a set, W ′, of lights corresponding to these

mappings. W ′ is a subset of W .

5. Once we have W ′ we want to select a single light as the scene’s illuminant.

We define an error criteria to be optimised, so that the light that minimises it is the

best candidate and so selected as the illuminant for the given test image. This criterion

is provided by our CDC approach according to Equation 4.11. As a point of detail,

Assumption 1 may return more than one light brightness (for the same chromaticity of

light). This is no concern to CDC. So, W ′ contains only one element (for each unique

chromaticity).

5.4 Experiments and Results

We test our algorithm on different sets of images both synthetically generated and real

images, using the five best known and widely used image datasets to test colour con-

stancy algorithms. We show that our results on images taken under controlled condi-

tions (SFU A and SFU B) are very good and our approach outperforms other state of

the art algorithms. This is expected since these images have been created under very

specific requirements to test the theory behind a model. Yet, when testing our algorithm
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on real images, the performance is also good and most times better than state of the art

illuminant estimation algorithms.

Simon Fraser University, SFU, sets A and B

In Chapter 4 we showed that our CDC algorithm outperforms the state of the art al-

gorithms for SFU A and B. So we first want to determine if adding an extra constraint

in the illuminant, GCDC, helps illuminant estimation. In Figure 5.3 results for an exper-

iment using the SFU 11 illuminant set (see Figure 3.1 for the 11 and 87 illuminant set

chromaticities) are presented. We present mean and median angular error as a function

of p norms. The results for our GCDC are presented for norms from one to sixteen. We

can observe that the performance of GCDC is considerably improved when compared

with our CDC approach. Furthermore, we can observe from the figure that the angular

error as a function of the p norm is quite stable in terms of its median and considerably

smaller, reduced even by half.

Results of GCDC using the actual lights is presented in Figure 5.3. We can observe

from the figure that the performance of GCDC over the p norms is also stable. The

angular error in terms of median angular error is quite small, this is expected since

for this experiment only the 11 lights used to create the scenes are included in the

illuminant set. However this is good evidence of the good performance of GCDC if a

consistent and relevant illuminant set is provided, which is ideally the result of including

the constraint in illumination.

We next want to test our constrained approach in the case when the available in-

formation about the feasible illuminants is more general (in the previous experiment we

test the case when only the true lights were included in the illuminant set). Thus, we

carry out a further experiment for SFU A using the SFU 87 illuminant set and present

the results in Figure 5.4. We can observe from the figure that even though the mean and

median angular errors are not improved, our constrained approaches, CDC and GCDC
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Figure 5.3: A comparison of algorithm performance on the SFU A dataset [Bar02] for:
CDC (red circle represents the mean angular error while the green star line represents the
median) and GCDC (blue circle and magenta star represent the mean and median angular
error respectively). For this experiment, the SFU 11 illuminant set was used..

achieve the most accurate results over norms. These results are still better than other

state of the art algorithms (see Table 5.1). Furthermore, we can observe from these res-

ults the importance of a well characterised illuminant set to achieve a reasonably good

estimation.

Results for the experiments in SFU B using the SFU 11 and 87 illuminant sets are

presented in Figure 5.5 and in Figure 5.6 respectively. The images for the SFU group

B are similar to the ones in SFU group A and so good performance of our algorithm

is expected. These images were created synthetically and we know that the diagonal

model for illumination change holds for this sort of images, so we expect our algorithm

to deliver a good and stable illuminant estimation, as it is shown in the figure.

In Table 5.1 the results for the SFU set, groups A and B, are presented. We can
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Figure 5.4: A comparison of algorithm performance on the SFU A dataset [Bar02], with the
SFU 87 illuminant set, for: CDC (the mean and median angular error are represented by the
red circle and green star lines respectively) and GCDC (blue circle and magenta star lines
represent the mean and median angular error respectively)

observed that our new GCDC outperforms Gamut Mapping and GCIE v3 for 87 lights

results for SFU A: original Gamut Mapping achieves a median angular of 2.9, GCIE

v3 for 87 lights 2.6, while our GCDC achieves 1.3. GCIE v3 for 11 lights achieves a

median angular error of 1.3, while for norm 4 and also 11 lights we obtain a median

angular error of of 1.1.

For SFU B, the best result for CDC is for norm 5, with a mean angular error of 5.85

and a median angular error of 2.88, while our GCDC achieves the best result for norm

2, with a mean angular error of 3.19 and a median of 1.0.

Ciurea and Funt Grey Ball dataset

Results for Ciurea and Funt dataset are presented in Figure 5.7. We compare the per-

formance of our CDC algorithm against GCDC, where plain blue and green lines rep-
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Figure 5.5: A comparison of algorithm performance on the SFU B dataset [Bar02] for: CDC
(mean angular error is presented by the red circle line and the median by the green star line)
and GCDC (mean and median angular error are represented by the blue circle and magenta
star lines respectively). For this experiment the SFU 11 illuminant set was used.

resent the mean and median angular error respectively for CDC, and the star blue and

green line represent mean and median angular error for GCDC. There has been much

discussion about the nature of the images in this datatset, especially regarding the ques-

tion if the images have been provided with gamma correction or not. In these exper-

iments we used the images as provided by the authors (ready for display) [CF03b] to

be able to compare our results with those presented by other works. For this dataset

the results show again that the new GCDC achieves significantly better results than its

predecessor CDC algorithm. This is a good evidence of the improvement by adding the

constraint in illumination.

In Table 5.2 we compare the results for our GCDC with other algorithms presented

in the literature and our previous version of CDC. We can observe that our GCDC

achieves better performance in terms of both mean and median angular error, for norm
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Figure 5.6: A comparison of algorithm performance on the SFU B dataset [Bar02], with
the SFU 87 illuminant set, for: CDC (red circle and green star lines represent the mean and
median angular error respectively) and GCDC (blue circle and magenta star lines represent
the mean and median angular error respectively)

9, with 5.1 and 3.9, respectively. While the previous CDC version achieved, for norm

10, a mean angular error of 5.3 and median of 4.3. Our CDCs algorithms work best

overall.

Gehler dataset

As in Chapter 4 we use Funt and Shi’s linear version of the Gehler dataset. In Figure 5.9

we presented a comparison between the performance of CDC and that of GCDC. We

can observe from the figure that in terms of the mean angular error, GCDC is of very

little help. For norms larger than 4, we can see a small improvement in terms of median

angular error. We suspect Gamut Mapping does not improve our CDC algorithm for

this set as the range of illuminants is modest (SFU A and B have much more chromatic

lights). Gamut Mapping, typically, does not hold for many lights in this set.
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Table 5.1: Result of Experiments on Simon Fraser University data sets A and B [Bar02]. We
highlight the best results of our algorithms for each data set. For data set A we also include
results for other algorithms presented in [FS10].

angular error (degrees)
Algorithm Group A Group B

Mean Median Mean Median
Grey World 9.8 7.0 7.35 6.48
MaxRGB 9.1 6.5 7.43 4.38

MaxRGB, filtering 5.8 3.4 5.8 3.1
MaxRGB, resizing 5.6 3.1 6.5 3.0

1st order Grey Edge,p = 7 A and B 5.6 3.2 7.5 6.1
2nd order Grey Edge,p = 7 A and B 5.2 2.7 7.4 4.1

SoG,p = 7 A and B 6.4 3.7 7.35 4.18
SoGC,p = 16 A and B 5.3 2.3 7.30 6.45

CD,p = 5, A and B 7.6 4.2 7.62 3.96
CDC, p = 5 A and B 5.1 2.0 5.85 2.88

Gamut Mapping - 2.9 - -
GCIE v3, 11 lights - 1.3 - -
GCIE v3, 87 lights - 2.6 - -

GCDC, v11, p = 4 A and p = 2 B 3.8 1.3 3.19 1.0
GCDC, v87, p = 5 A and p = 3 B 5.0 3.0 4.4 2.9

Table 5.2: Result of Experiments with the Ciurea and Funt data set [CF03b]. The 150 image
subset proposed in [JGG07] is used for this experiment.

angular error (degrees)
Algorithm Mean Median
Grey World 7.9 7.0
MaxRGB 6.8 5.3

1st order Grey Edge 5.9 4.7
2nd order Grey Edge 6.1 4.9

SoG, p = 8 6.4 5.1
SoGC, p = 4 6.1 4.3

CD, p = 2 5.4 4.4
CDC, p = 10 5.3 4.3
GCDC, p = 9 5.1 3.9

Gijsenij et al. [GGJ11] presented results for this linear version of Gehler dataset

for most common algorithms for colour constancy and we include them in Table 5.3

in addition to our previous results for CDC. We also include the results for our new

GCDC, which achieves the best result for norm 5, with a mean angular error of 4.8, and

a median of 3.7. In this dataset our CDC’s algorithms perform best overall for basic

statistical algorithms as well, being outperform just by the more complex pixel-based
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Figure 5.7: A comparison of algorithm performance on the Ciurea and Funt Grey Ball dataset
[CF03b] for: CDC (red circle and green star lines represent the mean and median angular
error respectively) and GCDC (mean and median angular error are represented by the blue
circle and the magenta star lines respectively). For this experiment the 150 image subset
proposed in [JGG07] is used.

gamut mapping.

Table 5.3: The perfomance of our algorithms on Funt and Shi’s linear version [SF10]
of Gehler data set [GRB+08], and compared with other methods (* results presented in
[GGJ11])

angular error (degrees)
Algorithm Mean Median
Grey World 6.4 6.3
MaxRGB 7.6 5.7

1st order Grey Edge 5.3 4.5
2nd order Grey Edge 5.1 4.4

SoG, p = 10 5.7 4.6
SoGC, p = 6 5.5 4.5

CD, p = 5 5.2 4.2
CDC, p = 5 4.9 3.8

Pixel-based Gamut Mapping* 4.1 2.5
Edge-based Gamut Mapping* 6.7 5.5

GCDC, p = 5 4.8 3.7
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CDC          9.7

GM+CDC 8.3

CDC              5.9

GM+CDC     3.8

CDC           7.2
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CDC           7.1

GM+CDC   5.2

CDC         13.2

GM+CDC   10.1

CDC           6.3

GM+CDC   4.4

Figure 5.8: Gehler dataset: cases of outdoor images where including GM to CDC helps

HDR dataset

For this dataset we compare the results of CDC with our new GCDC, presented in

Figure 5.10. The results are again shown in terms of the mean and median angular

error for norms 1 to 16. From the figure we can observe that by adding the constraint

in the illumination in the form of GCDC results in a stable performance for illuminant

estimation and helps, slightly, to improve the accuracy, even though it is less dramatic

than that of the SFU set.

We are the first to admit the performance increment here is small. Like in Gehler’s

dataset the performance increment is small thought, in this case, more significant.

In Table 5.4 we compare results presented by Funt and Shi in this dataset for Grey

World, with mean and median of 7.9 and 7.3, “MaxRGB filtering ”mean and median
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Figure 5.9: A comparison of algorithm performance on the Gehler dataset [GRB+08] (linear
version provided by Funt and Shi [SF10]) for CDC (mean and median angular error are
represented by the red circle and green star lines respectively) and GCDC (blue circle and
magenta star lines represent the mean and median angular errors respectively).

of 6.3, 4.3, “MaxRGB resizing ”mean and median of 6.3 and 3.9, and the results of

our CDC presented in Chapter 4 for norm 5, mean and median of 5.8 and 3.8, and

compare them with our GCDC best results, for norm 6, with mean and median angu-

lar error of 5.6 and 3.2 respectively. From the table, we can observe once more that

our CDC’s algorithms, original and GCDC versions, perform best overall over these

statistical methods.

Finally, in Table 5.5 we resume the results for all five data sets used for the exper-

iments in this chapter. We compare the median angular error for norms four, five and

six, and compare them with the best angular error and their corresponding p norm. We

can observe that for SFU A, Gehler and HDR data sets, the most accurate estimation

is given by a norm in the range [4,6]. Furthermore, for SFU B and Grey Ball, even

though the best result was not obtained with a norm in this range, the variation in angu-
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Figure 5.10: A comparison of algorithm performance on Funt and Shi’s HDR dataset [FS10]
for: CDC (the mean and median angular error are represented by the red circle and green star
lines) and GCDC (blue circle and magenta star represent the mean and median angular error
respectively).

Table 5.4: The performance of our algorithms on HDR Funt and Shi’s Image data set [FS10]
in terms of mean and median angular error.

angular error (degrees)
Algorithm Mean Median
Grey World 7.9 7.3

MaxRGB, filtering 6.3 4.3
MaxRGB, resizing 6.3 3.9

1st order Grey Edge 5.98 3.96
2nd order Grey Edge 5.91 4.0

SoG, p = 5 6.6 5.1
SoGC, p = 5 6.6 4.8

CD, p = 5 6 4.1
CDC, p = 6 5.7 3.4

GCDC, p = 6 5.6 3.2

lar error across the norms tested is not significant. These results support the argument

that a norm in the range [4,6] will provide a good illuminant estimation for different

image content. These results are encouraging when striving to find a general illuminant
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estimator.

Table 5.5: Results of experiments for all five data sets using GCDC. The best norm result per
data set is compared with the results for norms in the range [4,6].

Median angular error
Algorithm (in degrees) Best Median angular error

norm 4 norm 5 norm 6 norm (in degrees)
SFU A, v11 1.3 1.4 1.5 4 1.3
SFU A, v87 3.2 3.0 3.1 5 3.0
SFU B, v11 1.3 1.4 1.5 2 1.0
SFU B, v87 3 3.1 3.3 3 2.9
Grey Ball 4.3 4.0 4.3 9 3.9

Gehler 3.8 3.7 3.75 5 3.7
HDR 3.5 3.5 3.2 6 3.2

5.5 Conclusions and Future Work

In this Chapter we proposed a fusion of our CDC approach and Gamut Mapping into a

new algorithm for colour constancy. We showed in the previous chapter that our CDC

algorithm is a stable algorithm providing good results. Gamut Mapping on the other

hand provides extra information about an image’s illuminant and so it is incorporated

here to extend the original CDC approach.

We do not use gamut mapping as such to estimate the illuminant scene but use it to

determine if a light, from an illuminant set, is a candidate to be the illuminant scene of a

test image. Thus we rule out lights that are not consistent with a test image, reducing the

size of the illuminant set. We proved that by doing so we optimise CDC computations,

since CDC computation time depends directly on the size of the illuminant set, and its

performance is improved.

GCDC maintains the simplicity of a statistical algorithm, while exploiting a con-

straint in illumination inspired by Gamut Mapping principles. Experiments in synthetic

and real images provide enough evidence of the algorithm good performance.

The new algorithm provides a general framework for illuminant estimation and so

future work would naturally lead to include additional information such as results of
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spatial filters. Moreover in terms of the illuminant set, future work could aim to build a

general illuminant set. Aditionally, future work could also consider the case of images

created using multiple illuminants such are the cases of HDR and Gehler datasets.



Chapter 6

The OSA Illuminant Spectrum

Recovery Competition 2011

In this Chapter, a final evaluation of a constrained Minkowski algorithm is presented.

We want to investigate how our approach, and the principles on which it is based, per-

forms in an experiment relevant to what is known about how the human visual system

responds to light. Specifically, we evaluate our approach when applied to a problem

of illuminant spectrum recovery proposed by the organisers of the Optical Society of

America, OSA 2011 Fall Vision Meeting.

In this Chapter, we present the context of the illuminant spectrum estimation prob-

lem. We also show how computational illuminant estimation (in the form of our al-

gorithm) can be adapted to this human vision experiment. We begin by recalling that

all our algorithm development assumes a diagonal model of illumination change. The

“cone response” images used in the OSA experiment are known not to adhere to the

diagonal model. Rather, our idea is that via a process called Spectral Sharpening

[FDF94b] [FS00a] [FS00b], cone responses are transformed to a new “sharp” basis

where the diagonal model does hold. So, we include spectral sharpening and we also

describe its principles and how we include it on the spectrum recovery task. The OSA

86
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experiment placed over 30 algorithms in competition with each other. Each algorithm’s

performance is given a single score (described later). Here we show that if care is taken

to use the correct sensor basis, then a simple constrained Minkowski norm approach

outperforms all other algorithms.

6.1 The competition

The OSA’s Fall Vision Meeting is an annual meeting designed to motivate scientific

discussion among researchers on key aspects in vision science, such as, the visual sys-

tem, colour vision, perception, application areas and clinical vision. During the Fall

Vision Meeting in 2011, David H. Brainard and Alex R. Wade presented the Spectrum

Recovery Competition 2011. The aim of the competition was to estimate (using com-

putational algorithms) the illuminant spectra for a set of 10 cone response images. That

is, an algorithm will have the set of 10 test images as input, compute a series of oper-

ations and finally provide 10 illuminant spectra (one for each scene). Shortly after the

competition closed on July 2010, all details about it (instructions, rules), the data, the

final participant’s scores, and the correct answers were made available on line [BW11]

for further reference. This provides an excellent opportunity to test future (and our)

algorithms in the context of illuminant spectrum recovery.

The competition ran for a period of several weeks. Every week the participants

were allowed to submit their illuminant estimations and a score for these submissions

was provided. The score was computed as the sum of the squared differences between

the relative spectrum of the illuminant spectrum estimations and the actual illuminant

spectra. The participants could then revise their estimations (tweak their algorithms) to

submit a new set of guesses the following week and all participants could see each other

scores.

There were no restrictions regarding the type of algorithm that could be used and
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so the participants could hold to any assumptions they would find relevant for the avail-

able data. Moreover, the weekly feedback provided a continuous evaluation of one’s

algorithm.

The available data consisted of:

The test images. 10 “cone generated” images (rendered from 10 hyperspectral im-

ages) from which 10 spectrum estimates of their illuminant need to be recovered. The

images, “rendered”for display, are shown in Figure 6.1.

Figure 6.1: Hyperspectral images for the Spectrum Recovery Competition, as part of the
OSA’s Fall Vision Meeting 2011. The competition was organised by David H. Brainard and
Alex R. Wade [BW11]

Three illuminant basis functions. Every scene’s illuminant was created as a weighted

sum of the three illuminant basis functions (presented in Figure 6.2). The 10 SPDs of
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the scene’s illuminants are shown in Figure 6.3.
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Figure 6.2: The three illuminant basis functions provided for the competition. The spec-
trum power distribution of each illuminant corresponds to the range from 400 nm to 700 nm
sampled every 10 nm.

Three reflectance basis functions. The scenes created for the experiments contain

objects with both diffuse and specular reflectances. The diffuse components are created

as a weighted sum of three reflectance basis functions (Figure 6.4).

Cone Sensitivities. The LMS cone sensitivities are also provided. This functions

are sampled every 10 Nanometres from a range of 400 to 700 Nanometres. The cone

fundamentals are shown in Figure 6.5.

Calibration Image. Considering that some calibrated algorithms need to compute

some sort of training (of image data over known conditions), a scene under a reference
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Figure 6.3: The 10 Illuminant SPD for the illuminant spectrum recovery competition

light and the SPD of the light was also made available (Figure 6.6).

Sample code. A sample code was provided as example of how to manipulate the

data and compute the spectrum estimation for a particular scene. Moreover, the score

for Grey World was given as reference (clearly we wish to do better than Grey World)

which achieved a score of 3544.88 (details are in [BW11], the precise meaning of this

“score” is not important but the idea is that if we run an algorithm with a score 1750, this

tell us the algorithm is “twice as good” as Grey World). Remarkably by the end of the

competition Grey World came on 13th place out of 38 participants. That Grey World

did so well offers a salutary lesson for the community: simple statistical algorithms

generally offer reasonable performance and are not fragile. We presume that many of

the 25 algorithms which performed worse were adopting “advance reasoning”.
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Figure 6.4: The three surface reflectance basis functions. The figure presents the spectral
power distribution for each basis function, sampled every 10 nm, in the range from 400 to
700 nm.

Other approaches (participants that came second and fifth position) used to com-

pute the illuminant spectra in this competition included the use of Bayesian algorithms

(see Section 2.2.1), placing constraints over surface reflectances and illuminant spectra

(used by the algorithm that achieved the fourth place) and exploiting information from

specular highlights present in the scenes (see Section 2.4).

The final scores for the participants in the competition are presented in Table 6.1. The

winning approach, the leopards, obtained a score of 597.92, the ales, obtain a score of

1224.6, the third place achieved a score of 1299.71, and fourth and fifth places obtained

scores of 1331.71 and 1635.85 respectively. It is worth commenting about the leading

solution. It turns out by the nature of the experiment, i.e., where estimates are submitted
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Figure 6.5: The LMS cone fundamentals for the spectrum range from 400 to 700 nm,
sampled every 10 nm

to the organisers on a weekly basis and the scores returned, that by this paradigm one

can adopt a testing procedure where you can discover the exact answer for all images.

That the leopards score 592 (and not 0) is only because they could not get enough

feedback to discover all the lights exactly. The best conventional (and implementable)

illuminant estimation algorithm is, thus, the one at the second position in the table.

6.2 Computational Illuminant Estimation for a prob-

lem of Human Vision

In Chapter 4 we have presented an new constrained approach for colour constancy

which proved to deliver reasonable estimation of an scene’s illuminant. Furthermore,

the results of the experiments showed that our algorithm’s performance is stable when
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Figure 6.6: The calibration image for the competition is presented in the top side, and its
corresponding illuminant’s spectral power distribution is presented in the bottom panel. Such
calibration image and corresponding light could be used for calibrated algorithms

evaluated in different image data sets. We believe that at this point, a natural next step

is to investigate whether (or not) our algorithm can be used for a practical application.

Specifically, in the context of the illuminant spectrum recovery task, an experiment for

human vision. Thus, in this Chapter we want to investigate if our constrained frame-

work for illuminant estimation can be applied so that we compute the spectrum of the

illuminants for the test images.

Our constrained algorithm belongs to the same category (statistical algorithms) as

the Grey World algorithm. However, it has proved to provide a more accurate estimation

and hence, we would expect our algorithm to beat the Grey World’s score of 3544.88.
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Table 6.1: OSA Spectrum Recovery Competition 2011: The final Scores. The wining team
was the leopards for a set of 38 participants, with a final score of 597.92. The Grey World
algorithm occupies the 13th position at the end of the competition.

Algorithm Score
1 the leopards 597.92
2 ales 1224.95
3 abe 1299.71
4 pinkStinks 1331.71
5 alaf 1635.85
6 jili 1702.12
7 simbian 1792.64
8 uciduo 2048.92
9 hamed 2750.31

10 mirch 3163.52
11 oaksey 3322.71
12 yichang 3532.46
13 Grey World 3544.88
... ... ...
38 IliaLebedev 18656.95

6.2.1 Spectral Sharpening

The principles of the illuminant estimation algorithms that we have presented in this

thesis are based on a diagonal model of illumination change, which has been proved

not to always hold when using in human vision. A disadvantage of the diagonal model

is that the cone sensitivities have broad functions and the model do not perform well in

these cases. However, it has been shown that by using spectral sharpening and working

with narrower-band cone sensitivities improves the accuracy of illuminant estimation

[FDF94b] [Fin95].

Narrow-band sensors are those that are sensitive to just one wavelength. Spectral

sharpening methods find linear combinations of broad sensors (for example the cone

fundamentals) that are maximally sensitive in a given wavelength interval [λ1, λ2], and

which are narrower. Using sharp sensors helps algorithms for colour constancy (based

on the diagonal model of illumination change) to achieve better estimation than using
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broad sensors [FDF94b].

Finlayson and Susstrunk showed that The Sharp Adaptation Transformation,

which was derived by using a sensor-based spectral sharpening method, is a good spec-

tral sharpening transformation [FS00a] and [FS00b]. Not only does it provide more nar-

row sensors. It also models psychophysical corresponding colour data. We incorporate

the Sharp Adaptation Transform to derive sharp cones for our experiments. Numeric-

ally, this transform is represented by:

Msharp =


1.2694 −0.0988 −0.1706

−0.8364 1.8006 0.0357

0.0297 −0.0315 1.0018

 (6.1)

Note that when refer to Sharp, we refer to the sensors illustrated in Figure 6.7, which

are derived by multiplying the CIE XYZ matching function with Equation 6.1 (which

themselves are a linear combination of the cones). We can observe from the Figure 6.7

that cones are actually narrower but there is still some overlapping.

6.2.2 Illuminant set

An illuminant set needs to be define prior running our constrained algorithm. We selec-

ted to test our algorithm with two illuminant sets. We use the 99 Granada University’s

measurements of day light [HRNL01]. To a second set we add the actual correct an-

swers published with the results to the competition.

The Granada illuminant set. This dataset contains 99 SPD measurements of day

light at different times of the day in Granada, Spain. Results using this dataset set are

labelled as v99. When including the real answers we our algorithm as v99+10.
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Figure 6.7: The LMS cone fundamentals (discontinuous lines) are presented. The LMS
sharp cones (star continuous lines) transformed by Equation 6.1 are also included.

6.3 Experiments and Results

In this section we present the results of experiments using SoG, SoGC, CD and CDC

for spectrum recovery (i.e. simple Shades of Gray with a constraint on the illuminant,

the Minkowski norm approach working on derivatives and constrained version thereof).

All these algorithms return an RGB estimate of the light. As part of the competition the

standard method for mapping this RGB to spectral power distribution is supplied as

a Matlab function. Thus, we simply use the same competition code to turn our RGB

estimates into spectra. The test images and their corresponding illuminant spectrum are

presented in Figure 6.8.

We first want to investigate if by including spectral sharpening will help in this

context. Thus, we first test SoG using the cone fundamentals and with sharp cone sens-
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Figure 6.8: OSA 2011 Illuminant Spectrum Recovery Competition: the ten test images and
their corresponding illuminant SPDs

itivities to compare their respective performance. The results for this test is presented

in Figure 6.9, where we present the score obtain for SoG for norms from one to 32.

The blue continuous line represents the performance of applying SoG over cone sens-

itivities and the star magenta line represents the performance when using sharp cone

sensitivities.

We can observe from the figure that a remarkable improvement is achieved when us-

ing sharp cone sensitivities from norm 2 and onwards. Furthermore, large norms, from

15 and onwards, the score remains constant, much more constant than the performance

of the cone sensitivities.

It has been shown in previous works [BMCF02] [FS10] that by applying a pre-

processing step illuminant estimation can be improved. Thus, in our next experiment we
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Figure 6.9: A comparison of SoG performance using cone sensitivities (the circle blue line)
and sharp cones (the star magenta line).

incorporate a pre-processing step to SoG by applying a Gaussian smoothing operation

before the estimation. In our experiments we use a Gaussian filter with different σ

values varying from 1 to 10 pixels. We found that the performance for SoG for different

σ values varies having the extreme errors obtained for σ = 1 and σ = 10. In Figure 6.10

we present these results. The figure shows the performance of SoG for three cases: with

no pre-processing step, for a smoothing operation with σ = 1 and with σ = 10. This

experiment was first done using cone sensitivities.

This same previous experiment for different σ values for the Gaussian filter was

also done using sharp cone sensitivities. As in the previous case, the performance for

SoG with σ = 1 provided the smallest error while case with σ = 10 provided the
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Figure 6.10: Using cone sensitivities. A comparison of SoG performance with a pre-
processing smoothing operation: σ = 1 (the green line) and σ = 10 (the red line). The
results for SoG with no pre-processing are included for reference (the blue line).

larger errors for values from one to 10. In Figure 6.11 we present the results for this

experiment.

It can be observed from the figure that the smoothing effect on the score is more

significant when using sharp cone sensitivities, specially for large norms. Even though

it helps, specially for larger norm, we can see from the figure that for norms 22 and

larger the smoothing operation (with σ = 1) helps to improve SoG performance. In the

case of using cone sensitivities this is not the case since the best results over the norms

is always given for the case where no pre-processing was applied.
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Figure 6.11: Using sharp cones. A comparison of SoG performance with a pre-processing
smoothing operation: σ = 1 (the green line) and σ = 10 (the red line). The results for SoG
with no pre-processing are included for reference (the blue line).

We then want to investigate if including derivatives in the image helps for the es-

timation. In Figure 6.12 we summarise the performance for Shades of Gray using de-

rivatives and the performance of corresponding variants where the light is constrained.

For this illuminant constraint we use the Granada data set. Immediately, we can con-

clude that a constraint on an illuminant is powerful. Yet, equally apparent is the fact

that the derivative-based approach is not working. We propose the explanation of this

is simple. Looking back to the images in Figure 6.1, we see that in the colour chart im-

ages, the individual patches are surrounded by black. Moreover, there is not sufficient

edge information in the rest of the images either. This makes all the edge information

calculated in these images unreliable. Yet, Shades of Gray Constrained (on RGB col-



CHAPTER 6. AN EXPERIMENT FOR HUMAN VISION 101

our distributions) works well. However, the best result is only slightly better than the

unconstrained version. This tell us simply that Shades of Gray estimation is always

close to one of the Granada Lights.
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Figure 6.12: The results for sharp cone sensitivities using the Granada Daylights for SoG
(circle blue line), SoGC (star magenta line), CD (triangle red line) and CDC (square green
line).

In Figure 6.13 the results for sharp cone sensitivities are presented for norms from

one to thirty two for the second data set, the Granada Daylights and the actual Daylights

used in the experiment. The best results achieved in this experiment are: SoG with a

score of 1023.6, SoGC with a score of 297. Here we awe the adding a constraint on the

illuminant does make a significant difference. Another conclusion is that the Daylights

used in the OSA experiment are not representative of typical everyday light.

Finally, in Table 6.3 we summarise and present the best scores for the algorithms

tested in this experiment: for SoG, the best scores were 1033 and 1023.6 with a smooth-
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Figure 6.13: The results for sharp cone sensitivities using the Granada Daylights and the
actual Daylights used in the experiments for SoG (circle blue line) and SoGC (star magenta
line)

ing using σ = 1, both cases for p = 32, while for SoGC, using the Granada Daylight

data set, the best score is 1078.8 for p = 11. Again, we can see how the constraint

helps to improve the illuminant spectrum estimation. Furthermore, for SoGC the res-

ults are comparable with those of the algorithms participating in the competition, even

the results of the winning algorithm.

6.4 Conclusions

We provided the details of the implementation of our constrained approach for spectrum

recovery in a human vision test. We show that even when the nature of the test images
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Table 6.2: OSA Spectrum Recovery Competition 2011: The final scores and results using
the Granada Daylight data set.

Algorithm Score
the leopards (1st place) 597.92

ales (2nd place) 1224.95
abe (3rd place) 1299.71

pinkStinks (4th place) 1331.71
Grey World (13th place) 3544.88

SoG, p = 32 1033
SoG, p = 32, σ = 1 1023.6

SoGC, p = 11, v99+10 297

there is not enough information for our Constrained Minkowski approach to outperform

other algorithms, by adding the constraint in illumination improves performance in this

context.

Furthermore we showed that by implementing spectral sharpening is essential for

our algorithm to deliver the best performance. Our final results outperform the best res-

ults for algorithms that participated in the experiment, the winning algorithm included.



Chapter 7

Conclusions

The principal aim of this thesis is to propose an efficient statistical algorithm for illu-

minant estimation. First, we presented a review of the state of the art for illuminant es-

timation algorithms, highlighting the relevance and potential of the framework based on

the Minkowski Family Norms. We then presented our new algorithm and experiments

on different image datasets. The results showed that the new approach delivered good

illuminant estimation, most of the time outperforming the state of the art algorithms and

sometimes achieving as good estimation as much more complex algorithms.

In this Chapter we summarise the main contributions of this thesis together with a

discussion of the possible applications of the work.

7.1 Contributions

Adopting a Reformulation of a constrained approach based on the Minkowski

Norm Framework for Illuminant Estimation. An illuminant estimation based on

Minkowski Norms uses the assumption that basic statistics in an image can be used

to infer the illuminant of the scene. It has been shown that this framework integrates

the basic and well known statistical algorithms, the Grey World and the MaxRGB,

104
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proving that they are norm based approaches [FT04]. From the category of statistical

approaches, the Minkowski-based algorithm is the most general formulation and re-

markably it achieves the best performance. In Chapter 3 we revisited this approach and

modified the original error optimisation for illuminant constraint based on the Mink-

woski Family Norm framework [FT05]. In the approach by Finlayson and Trezzi, an

illuminant set is created a priori and then a criterion is defined to select the best illumin-

ant from the set. This criterion establishes the consistency of an illuminant with regard

to a test image. Finlayson and Trezzi calculate this consistency as an ’error measure-

ment’ using a distance error in the form of a Minkwoski norm. This error is calculated

for every light in the set and the light with the smallest error is selected.

We found that this ’error measurement’ was biased by either lights with very large

RGB values or by achromatic lights. We considered these situations and reformulated

the error expression as follows: a test image is normalised by an illuminant (’dividing

out’ the illuminant), so that a ’white surface’ will be mapped to the vector [1 1 1]. The

error measurement will then add the deviations from this vector [1 1 1] for all pixel

vectors. Furthermore, a change in intensity was also taken into account in the error

formalism by adding an intensity smoothing factor. We carried out experiments using

one of the standard image datasets (SFU A) to evaluate our new constrained approach.

The results showed that our new formalism is more accurate than the previous approach.

Improving Computational Efficiency One of the key aspects of an illuminant estim-

ation algorithm is their performance in terms of computational efficiency. This is highly

relevant for applications where an illuminant estimation needs to be calculated in real

time, for example, in tasks such as white balance. In Chapter 3 we show how our method

can be implemented to run much faster than our previous constrained Minkowski form-

alism.

The time to estimate an illuminant for our constrained approach is directly affected
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by the calculation of the error measurements since an error distance is calculated for

every pixel in the image. This means that the computation increases based on the num-

ber of pixels in the image. Thus, to reduce the calculation time, we proposed the use of

histograms to describe the colour distribution in an image and then calculate the error

for every illuminant. In Chapter 3 we run our algorithm using both RGB pixel values

and histograms. We found that the simple strategy of using histograms significantly

affects the processing time required to compute the distance measurements. The total

time for illuminant estimation was reduced dramatically, in some cases the processing

time was reduced to more than 95 percent. The simple insight of using quantisation

and frequency histograms is essential for the Minkowski Norm approach to be used in

practice.

Combined Derivative Constrained Approach It has been shown that edges in an

image can provide extra information about the light illuminating a scene. Edges in

an image can be found using derivatives (typically first and second order). Gijsenij et

al. [JGG07], showed that, for some image content, derivatives of first order achieved

good estimation while second order derivatives achieved good estimation for a different

image content. Moreover, applying a Gaussian filter with a smoothing factor (pixel

standard deviation) can improve the results. Thus finding a good estimation for specific

image content is directly affected by the combination of derivative order and smoothing

factor. Indeed, the previous work on edge-based constancy which purports to deliver

leading estimation does so by tuning the order and smoothing used to the data set.

We believe that an ideal colour constancy algorithm would be able to obtain illu-

mination -invariant colour images despite the sort of scene or content that the image

contains (the “tuning”required in previous research is a weakness of that approach).

In Chapter 4 we proposed a new edge-based algorithm for illuminant estimation, the

Combined Derivative, CD, approach. Our new CD algorithm includes x- and y- de-
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rivatives and a Laplacian operator over images, providing a fixed derivative approach

for illuminant estimation. We take into consideration first and second order derivatives

simultaneously to exploit the use of differences in images avoiding tuning our algorithm

to image content. Lastly, we included an illuminant constraint (which was defined in

Chapter 4), to arrive at a new algorithm, the Combined Derivative Constrained, CDC,

illuminant estimation.

We carried out experiments to evaluate our new CDC approach using five different

datasets for colour constancy algorithms. Results were shown that our CDC’s perform-

ance is stable across all of them, moreover, we did not need to tune the algorithm per

dataset. CDC’s results outperformed other statistical algorithms, in some cases achiev-

ing almost as good results as more complex approaches (i.e., approaches which need

much more sophisticated processing compared with the simple statistical algorithms

which are the focus of this thesis).

Gamut Combined Derivative Approach. Gamut Mapping algorithm is one of the

most important algorithms for colour constancy to date and so we presented a detailed

description of state of the art for Gamut Mapping in Chapter 1. The principle of Gamut

mapping assumes that the observed colours in an image are constrained by the lighting

conditions in the scene. The reddest red colour cannot occur under the bluest light.

Gamut mapping works by finding a mapping that takes image colour within the set, or

gamut, of typical surfaces viewed under a fixed reference light. We believe important

when trying to solve the problem of illuminant estimation in general and so we proposed

to include it in the form of a ’gamut’ constraint to our CDC algorithm. We proposed

to use this constraint to determine what lights, from an illuminant set, are consistent

with a test image. This reduces the set of plausible lights for which CDC tests. Thus,

the fusion of these two algorithms resulting in our new approach, the Gamut Combined

Derivative Constrained, GCDC. This new algorithm is presented in Chapter 5.
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Our new approach benefits from a dividing the illuminant estimation in two steps:

first, it selects the feasible lights for a given test image (discard lights that are not con-

sistent with the image). Second, our CDC approach selects the best illuminant for the

image. By adding the the ’pre-selection’ step, we are reducing the number of elements

to consider for CDC, and so in consequence we are reducing the number of calculations

carried out select the illuminant.

We tested our new algorithm and compared our results with our previous CDC’s

results and found that performance is improved. For the SFU datasets (A and B), where

images where created under laboratory conditions and we can ensure that the diagonal

model for illumination change holds, the improvement is remarkable. For the rest of

the datasets improvement is modest, though often significant. We conclude that: a)

the ’gamut’ constraint helps, b) the performance of our new GCDC algorithm is stable

across datasets, and c) that GCDC remains the simplicity of being a statistical algorithm,

outperforming other statistical state of the art algorithms

An experiment in the context of human vision Finally, we wanted to investigate if

our computational illuminant algorithm could be applied more generally. For this aim

we tested our constrained algorithm in the context of human vision. We carried out

experiments for the OSA Illuminant Spectrum Recovery Competition. In Chapter 6 we

give the details of the experiment and the results obtained.

We show that by using our constrained approach on spectral sharpened cone sens-

itivities achieves good illuminant spectrum recovery in terms of this Human Vision Test.

The results of our constrained algorithm outperforms other computational algorithms

(if our algorithm had entered the competition it would have been in first place, out of

32 entries!).
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7.2 Future Work

Possible applications from this work include the general framework provided by the

constrained approach adopted in Chapter 4 and 5 (CDC and GCDC). We indeed pro-

posed the use of derivatives in images (first and second order) into a Minkowski frame-

work for illuminant estimation. However, our constrained approach is not limited to

use only such statistics and higher order statistics such as DCT or wavelengths could be

also included.

In the field of digital photography, most digital cameras have means to carry out

colour correction based on the type of scene illumination, where automatic illuminant

selection could benefit the illuminant estimator presented in this work. Furthermore,

the UEA colour group has close relationships with the industry and another future work

would involve the commercialisation of the algorithms presented in this thesis into real

processing pipelines.



Appendix A

Future work: Using brightest pixels

In this appendix we report on some recent work we carried out with colleagues else-

where which, in effect, encompass our first ideas of how to extend the work presented

in this thesis. Implicit in the Minkowski norm idea that “bright is right” and make it

even more important to our formalism. Recently, Funt and Shi [FS10] showed that the

MaxRGB algorithm worked better on significantly downsampled thumbnail images (it

is advantageous to smooth the input). Rather than use a maximum we wish to test a

Minkowski norm operating on the brightest pixels in the thumbnail. And, then we re-

peat the experiment where a thumbnail is not used. We considered the following cases:

Case 1. Using RGB values a 64× 64 resized image

Case 2. Using the 5% brightest pixels of a 64× 64 resized image. That is, 204 pixels

out of 4096 pixels.

Case 3. Using the 5% brightest pixels in an image (full size).

For this experiment, we use the SFU calibrated image set and Funt and Shi’s HDR

dataset. The results are presented in Figure A.1 and in Figure A.2. And, as this is on-
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going (and so-future) work we have only tested the simple Shades of Gray formalism.
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Figure A.1: Left and right panels show mean and median angular error for the SFU A data
set for 4 varieties of Shades of Gray. Blue line: thumbnails Shades of Gray. Green line: 5%
of thumbnail. Magenta shows performance using top 5% of the original (not downsampled)
image. Red line is the normal Shades of Gray.

Our experimental results are shown in Figure A.1. The best performing algorithm

(green line) is for Shades of Gray operating on the 5% brightest pixels of the thumbnail.

This seems to validate Funt and Shi’s [FS10] insight (that huge amounts of smoothing

helps). Next best performance is for Shades of Gray operating on the whole thumbnail

(blue line). Interestingly, the brightest pixel idea does not work on the full resolution

image (magenta). Here, we hypothesise that this is because we are, more or less, mak-

ing the Shades of Gray operator more like MaxRGB which we know is not a robust

statistical estimator. For reference, the red line shows normal Shades of Gray (for full

resolution images).

Figure A.2 show the same experiment for the HDR image data set where the data in
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Figure A.2: Left and right panels show mean and median angular error for the HDR data
set for 4 varieties of Shades of Gray. Blue line: thumbnails Shades of Gray. Green line: 5%
of thumbnail. Magenta shows performance using top 5% of the original (not downsampled)
image. Red line is the normal Shades of Gray.

the brightest regions is better preserved. Arguably, here the best performance is for the

Shades of Gray algorithm working on the full resolution image but using the top 5%

brightest pixels (at least for the mean error). But, the bright thumbnail Shades of Gray

also works well. Taken together our experiments over both data sets, further validate the

premise behind the robustness of the Shades of Gray framework and that preprocessing

prior illuminant estimation helps.
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