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Abstract. Let E/F be an unramified quadratic extension of p-adic fields and G be the

unitary group U(2, 1)(E/F ). In this thesis we construct all `-modular irreducible cuspidal

representations of G by compact induction from irreducible representations of compact open

subgroups of G. Under an assumption on the possible cuspidal subquotients of representa-

tions parabolically induced from an irreducible positive level representation, we show that

the supercuspidal support of an irreducible `-modular representation of G is unique up to

conjugacy.
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Introduction

In this thesis, we begin the study of the irreducible smooth `-modular representations of

unitary groups defined over a locally compact non-archimedean local field of residual charac-

teristic di↵erent from `. The irreducible `-modular representations of the general linear group

were classified in [Vig96]. Here, the majority of the general theory of `-modular represen-

tations was introduced. This has subsequently been developed; notably in [Vig98], [Dat05]

and [Dat09]. Recently, the irreducible `-modular representations of GLm(D) have been clas-

sified in [MS11b] and [MS11a]. The theory is less developed than the complex or `-adic

theory and the non-semisimplicity of representations of compact open subgroups can lead to

striking di↵erences. An example of this is the appearance of subquotients of parabolically

induced representations with trivial Jacquet module.

The theory of Langlands has greatly motivated the need to understand the `-adic represen-

tations of reductive p-adic groups. An area of study with great potential is to develop an

`-modular Langlands theory. In this direction it is shown in [Vig01a] that the semisimple

local Langlands correspondence for general linear groups is compatible, in some sense, with

decomposition modulo-`. This is done by first restricting to supercuspidal representations.

There is an `-adic local Langlands correspondence for U(2, 1)(E/F ), due to [Rog90]. While

we make little progress towards an `-modular Langlands correspondence for U(2, 1)(E/F )

this does provide motivation for our study.

Eventually, we specialise to unramified unitary groups in three variables U(2, 1)(E/F ) defined

over a p-adic field of odd residual characteristic and ` 6= 2, 3. Our specialisation is in steps,

so many of our results apply in much more generality.

Firstly, our construction of all positive level cuspidal representations follows the general theory

of [Ste08] where the residual characteristic is assumed to be odd. Furthermore, we only show

that this construction produces all positive level cuspidal `-modular representations in the

case of U(2, 1)(E/F ). We classify the irreducible cuspidal level zero `-modular representations

of U(2, 1)(E/F ). Similarly for level zero representations, while the construction we follow

is more general, we only know that we have constructed all level zero cuspidal `-modular

representations in the case of U(2, 1)(E/F ). However, it should be possible to remove this

specialisation to U(2, 1)(E/F ) by adapting the general arguments of [Ste08] and [Mor99].

Our reason for specialising here was because it vastly simplified the arguments involved and

because we needed to make this specialisation later. In contrast to irreducible cuspidal `-

modular representations of GLn(F ), we find that there are irreducible cuspidal `-modular

representations of U(2, 1)(E/F ) which do not lift to `-adic representations. This essentially

follows from the analagous result for finite groups.

The next step after describing the cuspidal representations is to describe the decomposition

of the parabolically induced representations. Intricately connected to the unitary group we

study are the finite unitary groups which appear as quotients of the compact open maximal

3



4 INTRODUCTION

parahoric subgroups by their pro-p unipotent radicals. This is where our specialisation be-

comes necessary. For finite general linear groups it is known that the supercuspidal support

of an `-modular representation is unique up to conjugacy. However this is not known, in

general, for finite unitary groups. In these cases, this is only known for finite unitary groups

in two or three variables. Our further specialisation to U(2, 1)(E/F ) with E/F an extension

of p-adic fields is necessary to apply results of [Dat05]. Under these hypotheses we show that

the supercuspidal support of an irreducible level zero `-modular representation is unique up

to conjugacy. We then make an assumption which we see as an analogue of the level zero re-

sult that parabolic induction preserves level zero representations. Under this assumption, we

show that the supercuspidal support of an irreducible positive level `-modular representation

is unique up to conjugacy.



CHAPTER 1

Representations of p-adic groups

In this chapter we review the definitions of the reductive p-adic groups we study and then

review the `-adic and `-modular representation theory of reductive p-adic groups.
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6 1. REPRESENTATIONS OF p-ADIC GROUPS

1. Notation

Let p, ` be distinct prime numbers. Let F be a non-archimedean local field of residual

characteristic p. We denote the ring of integers of F by OF , the multiplicative valuation

associated to F by | · |F , the additive valuation associated to | · |F by ⌫F , a chosen

uniformiser by $F , the unique maximal ideal ($F ) by PF , the residue field OF /PF by kF ,

and the cardinality of the residue field by qF (hence qF = pr for some r 2 N). We assume

p 6= 2.

Let G be a connected reductive group defined over F and G = G(F ) the F -points of G. Let

R be a commutative ring with identity, of characteristic zero or `.

An R-representation of G is a pair (⇡,V) where V is a left R-module and ⇡ : G! GL(V) is a
homomorphism of groups. An R-representation (⇡,V) is called smooth if, for all v 2 V, the
stabilizer of v

stabG(v) = {g 2 G : ⇡(g)v = v}
is an open subgroup of G. Let RR(G) denote the category of smooth R-representations of

G; a morphism from (⇡1,V1) 2 RR(G) to (⇡2,V2) 2 RR(G) is an R-module homomorphism

� : V1 ! V2 such that, for all g 2 G,

⇡2(g) � � = � � ⇡1(g).

We denote the set of all such morphisms V1 ! V2 by HomG(V1,V2) or by HomG(⇡1,⇡2). By

[Vig96, Chapter 1, §4.2], RR(G) is abelian with direct sums and direct products.

An R-representation (⇡,V) is called irreducible if there are no proper G-stable R-submodules

of V. We denote by IrrR(G) the set of isomorphism classes of irreducible R-representations of

G. The Grothendieck group of finite length R-representations of G is the free abelian group

with Z-basis IrrR(G), which we denote by GrR(G). Given a finite length R-representation ⇡

of G we denote by [⇡] its semisimplification in GrR(G).

We are interested in three di↵erent cases of coe�cient ring R for a representation:

(1) `-adic representations when R = Q`;

(2) `-integral representations when R = Z`;
(3) `-modular representations when R = F`;

and the connections between these. Complex representations of G, when R = C, have been

well studied and in general the complex theory and the `-adic theory coincide. Let ⇤` denote

the unique maximal ideal of Z`.

We say that ` is banal for G if it does not divide the pro-order of any maximal compact open

subgroup of G. These cases deviate less from the established `-adic theory and our main

interest is the non-banal primes for G.

2. Classical groups

In this section, let F be any field and let E/F be a separable quadratic or trivial extension

of F . Let denote the generator of the cyclic group Gal(E/F ).
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If E/F is an extension of non-archimedean local fields we suppose that we have normalised

the additive valuation ⌫E to have image Z. If E/F is ramified quadratic we choose $E so that

$E = �$E , if E/F is unramified quadratic we choose $E 2 F . When E/F is quadratic, by

local class field theory, there is a quadratic character !E/F of F⇥ associated to E/F .

Let " = ±1. An "-hermitian form h on a finite dimensional E-vector space V is a nondegen-

erate form

h : V ⇥ V ! E

which is linear in the first variable, -linear in the second variable and such that, for all

v1, v2 2 V ,

h(v1, v2) = "h(v2, v1).

A pair (V, h) consisting of a finite dimensional E-vector space and an "-hermitian form on

V is called an "-hermitian space. An "-hermitian space (V, h) is called anisotropic if, for all

nonzero v 2 V , h(v, v) 6= 0 and is called totally isotropic if h(v, v) = 0 for all v 2 V .

Example 2.1.

(1) Let a 2 E such that a = "a and let E(a) be a one dimensional E-vector with E-basis

{e0} equipped with the "-hermitian form h defined by: if v, w 2 E(a) such that v = v0e0

and w = w0e0 then,

h(v, w) = v0aw0.

The form h is anisotropic.

(2) Let H be a two dimensional E-vector space with E-basis {e�1, e1} equipped with the

"-hermitian form h defined by: if v, w 2 H such that v = v�1e�1 + v1e1 and w =

w�1e�1 + w1e1 then,

h(v, w) = v�1w1 + "v1w�1.

The form h is totally isotropic. We call the "-hermitian space (H,h) the hyperbolic

plane.

An "-hermitian space (V, h) is the orthogonal sum of two subspaces V1 and V2 of V if V =

V1 � V2 and h(v1, v2) = 0, for all v1 2 V1, v2 2 V2. By restriction h defines "-hermitian forms

on V1 and V2 and we write V = V1 ? V2. Given two "-hermitian spaces (V1, h1) and (V2, h2)

the orthogonal sum of V1 and V2 is the direct sum V1 � V2 equipped with the "-hermitian

form h1 � h2, defined in the obvious way.

Let (V, hV ) and (W,hW ) be "-hermitian spaces. A bijective linear map f : V ! W is called

an isometry and V and W are called isometric if, for all v1, v2 2 V ,

hV (v1, v2) = hW (f(v1), f(v2)).

We denote the subgroup of isometries of GL(V ) by U(V, hV ), i.e.

U(V, hV ) = {g 2 GL(V ) : hV (gv1, gv2) = hV (v1, v2), for all v1, v2 2 V }.

We denote the subgroup of isometries of GL(V ) of determinant 1 by SU(V, hV ) and the

subgroup of similitudes by GU(V, hV ), i.e.

GU(V, hV ) = {g 2 GL(V ) : 9�g 2 F⇥ with h(gv1, gv2) = �gh(v1, v2), for all v1, v2 2 V }.
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We fix an "-hermitian space (V, hV ). If X 2 EndE(V ) then there exists a unique X� 2
EndE(V ) such that, for all v1, v2 2 V ,

hV (Xv1, v2) = hV (v1, X
�v2).

The map ( )� : X 7! X� is an anti-involution of EndE(V ) and

U(V, hv) = {g 2 GL(V ) : hV (gv1, gv2) = hV (v1, v2), for all v1, v2 2 V }
= {g 2 GL(V ) : hV (v1, g

�gv2) = hV (v1, v2), for all v1, v2 2 V }
= {g 2 GL(V ) : g�g = 1}.

Let {e0, e1, ..., en} be a basis of V and define J 2 GLn(E) by defining the (i, j)-th entry of J

to be hV (ei, ej). Then with respect to this choice of basis, for all v, w 2 En

hV (v, w) = vTJw,

and if X 2Mn(E)

hV (Xv,w) = (Xv)TJw = vTJ(J�1XTJ)w = hV (v, J�1XTJw).

Hence X� = J�1XTJ .

When E = F , and " = 1 the group of isometries U(V, hV ) is called the orthogonal group

of V . When E = F and " = �1 the group of isometries U(V, hV ) is called the symplectic

group of V . When E/F is quadratic and " = 1 the group of isometries U(V, hV ) is called the

unitary group of V .

The group of isometries U(V, hV ) is the group of F -points of a reductive algebraic group

defined over F . We denote the algebraic group by U(V, hV ). By a classical group, we mean

the F -points of the connected component of such an algebraic group U(V, hV ). Thus the

orthogonal group is not a classical group, but the special orthogonal group is a classical

group.

2.1. Unitary groups with E/F quadratic. We assume that E/F is quadratic and

" = 1. If E/F is an extension of non-archimedean local fields, we call U(V, hV ) an unramified

unitary group if E/F is unramified and a ramified unitary group if E/F is ramified.

Let mH denote the orthogonal sum of m copies of the hyperbolic plane H.

Theorem 2.2 ([MVW87, Chapter 1, §8]). Let (V, h) be an "-hermitian space. Then there

exists m 2 Z such that V is isometric to mH ? V 0 with V 0 anisotropic.

The number of hyperbolic planes which appear in a decomposition of V of the above form is

called the Witt index w(V ) of V .

If E/F is an extension of finite fields then an anisotropic space, is zero or, has dimension one

and is isometric to E(a) with a 2 F⇥, see Example 2.1. Furthermore, all the spaces E(a)

are isometric. Hence, for all n 2 N, there is a single isomorphism class of unitary group of

dimension n.

If E/F is an extension of non-archimedean local fields then an anisotropic space has dimension

less than or equal to two. In dimension one the anisotropic spaces are of the form E(a) with

a 2 F⇥ and E(a) is isometric to E(b), b 2 F⇥, if and only if a and b represent the same coset

in the quotient F⇥/NE/F (E
⇥) which is of order two. There is a single isometry class of two
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dimensional anisotropic spaces. If n is odd, the unitary groups of the two di↵erent isometry

classes of hermitian space are isomorphic.

Let a(V ) be the anisotropic dimension of V , i.e. the dimension of V 0. We denote the unitary

group U(V, hV ) by

U(a(V ) + w(V ), w(V ))(E/F ).

If E/F is a finite field, as there is a single isomorphism class of unitary group of dimension

n, we will also use the notation Un(E/F ).

Example 2.3. Let V be a three dimensional E-vector space, and {e�1, e0, e1} be the standard
basis for V . Define hV : V ⇥ V ! E

hV (v, w) = v�1w1 + v0w0 + v1w�1,

if v = (v�1, v0, v1) and w = (w�1, w0, w1) with respect to the standard basis. Then J is the

matrix with one’s on the anti-diagonal and zeroes elsewhere and

U(2, 1)(E/F ) = {g 2 GL3(E) : JgTJg = 1}.

2.2. Parabolic subgroups of G. Let (V, h) be an n-dimensional "-hermitian space. A

self dual flag in V is a flag of subspaces of V

V = V�r ) V�r+1 ) · · · ) V�1 ) V0 ◆ V0 ) V1 ) · · · ) Vr = {0}

such that, for all i 2 {0, 1, . . . , r},

V�i = {v 2 V : hV (v, w) = 0, for all w 2 Vi}.

The stabilisers of the self dual flags in U(V, hV ) are the parabolic subgroups of U(V, hV ). A

parabolic subgroup in a reductive group G has a Levi decomposition P = L n N where N

is the unipotent radical of P and L is reductive. We fix a maximal F -split torus T0 and

a minimal parabolic subgroup B in G with Levi decomposition B = T n N0 such that T

contains T0. A parabolic subgroup of G containing B is called standard. The relative Weyl

group W of G is the quotient group NG(T0)/T0.

Example 2.4. In U(2, 1)(E/F ) there is one conjugacy class of proper self dual flags in V .

Choosing the standard basis {e�1, e0, e1}, as in Example 2.3, then a representative is

V = he�1, e0, e1i ) he0, e1i ) he0i ) {0}.

This gives rise to the standard Borel subgroup

B =

0

B

@

? ? ?

0 ? ?

0 0 ?

1

C

A

\G.

Letting

T =
�

diag(x, y, x�1) : x 2 E⇥, y 2 E1
 

and

N0 =

8

>

<

>

:

0

B

@

1 x y

0 1 x

0 0 1

1

C

A

: x, y 2 E, y + y = xx

9

>

=

>

;

then B has Levi decomposition B = T nN0. The maximal F -split torus T0 contained in T is

T0 =
�

diag(x, 1, x�1) : x 2 F⇥ .
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The relative Weyl group of U(2, 1)(E/F ) is cyclic of order 2 and the (absolute) Weyl group

is isomorphic to the symmetric group S3.

2.3. Parahoric subgroups of G. Let E/F be an extension of non-archimedean local

fields and let (V, h) be an n-dimensional "-hermitian space. The Lie algebra of U(V, h) is

g = {X 2 EndE(V ) : X +X� = 0},

and we can decompose EndE(V ) into a direct sum

EndE(V ) = g� g+,

where g+ = {X 2 EndE(V ) : X �X� = 0}.

An OE-lattice in V is a compact open OE-submodule of V . Equivalently, an OE-lattice in

V is the OE-span of an E-basis of V . Let L be an OE-lattice in V and let LattO
E

V =

{OE-lattices in V }. The lattice

L] = {v 2 V : h(v, L) ✓ PE},

defined relative to h, is called the dual lattice of L. An OE-order in a ring A is a subring of

A with unit which is also an OE-lattice in A.

An OE-lattice sequence is a function ⇤ : Z! LattO
E

V which is decreasing and periodic, i.e.

(1) for all n 2 Z, ⇤(n+ 1) ✓ ⇤(n);
(2) there exists e(⇤) 2 N, called the period of ⇤, such that, for all n 2 Z,

($E)⇤(n) = ⇤(n+ e(⇤)).

An OE-lattice sequence is called an OE-lattice chain if it is strictly decreasing. Let ⇤ be an

OE-lattice sequence. The dual OE-lattice sequence ⇤] of ⇤ is the OE-lattice sequence defined

by

⇤](n) = (⇤(�n))]

for all n 2 Z. We call ⇤ self dual if there exists k 2 Z such that ⇤(n) = ⇤](n + k) for all

n 2 Z. If ⇤ is self dual then we can always consider a translate ⇤k of ⇤, i.e. k 2 Z and ⇤k is

defined by ⇤k(n) = ⇤(n+ k) for all n 2 Z, such that either ⇤k(0) = ⇤
]
k(0) or ⇤k(1) = ⇤

]
k(0).

Let ⇤ be an OE-lattice sequence on V . For n 2 Z define

An(⇤) = {x 2 EndE(V ) : x⇤(m) ⇢ ⇤(m+ n), for all m 2 Z},

which is an OE-lattice in EndE(V ). We let An(⇤)� = An(⇤) \ g.

If ⇤ is self dual then the groups An(⇤) are stable under the anti-involution h induces on

EndE(V ). Define compact open subgroups of G by

P(⇤) = A0(⇤)
⇥ \G;

and

Pm(⇤) = (1 + Am(⇤)) \G, m 2 N.
The pro-unipotent radical of P(⇤) is isomorphic to P1(⇤). The sequence (Pm(⇤))m2N is a

fundamental system of neighbourhoods of the identity in G and forms a decreasing filtration

of P(⇤) by normal compact open subgroups. The quotient P(⇤)/P1(⇤) is a reductive group

over kF , but this may not be connected. We denote the connected component of P(⇤)/P1(⇤)
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by M(⇤) and denote the inverse image in P(⇤) of M(⇤) by P0(⇤) and call this a parahoric

subgroup of G.

In Appendix C we describe a model for the building B(G) of G in terms of lattice functions.

The building B(G) of G can be used to study the geometry of the parahoric subgroups which

are related to the stabilisers of points in the building. We denote the parahoric subgroup of

G corresponding to z 2 B(G) by Gz, its pro-unipotent radical by G1
z and the quotient Gz/G

1
z

by Mz. If the lattice sequence ⇤ corresponds to z 2 B(G) then P0(⇤) = Gz, P1(⇤) = G1
z

and M(⇤) = Mz.

Lemma 2.5. Let ⇤ be a self dual OE-lattice sequence and let n, r 2 Z be such that r > n >
r
2 > 0. Then the map x 7! 1 + x induces an isomorphism

A�
n,⇤/A

�
r,⇤ Pn(⇤)/Pr(⇤).

⇠

Example 2.6. Let E/F be an unramified quadratic extension, V a three dimensional E-

vector space and G = U(2, 1)(E/F ), as in Example 2.3. The parahoric subgroups of G will

appear often in this thesis and we fix our notation here.

We have three self dual lattice chains in V up to conjugacy and three conjugacy classes of

parahoric subgroups, two of which are maximal. In all three cases P0(⇤) = P(⇤). For a

lattice chain ⇤ we let e(⇤) denote its period.

(1) Lattice chain ⇤1, e(⇤1) = 1

⇤1(0) = OE �OE �OE ;

Ai(⇤1) = $i
E

0

B

@

OE OE OE

OE OE OE

OE OE OE

1

C

A

;

M(⇤1) ' U(2, 1)(kE/kF ).

(2) Lattice chain ⇤2, e(⇤2) = 2

⇤2(0) = OE �OE � PE ;

⇤2(1) = OE � PE � PE

⇣

= (⇤2(0))
]
⌘

;

Ai(⇤) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

$
[ i
2

]
E

0

B

B

@

OE OE P�1
E

PE OE OE

PE PE OE

1

C

C

A

if i ⌘ 0(2);

$
[ i�1

2

]
E

0

B

B

@

PE OE OE

PE PE OE

P2
E PE PE

1

C

C

A

if i ⌘ 1(2);

M(⇤2) ' U(1, 1)(kE/kF )⇥U(1)(kE/kF ).

(3) The non-maximal case. Lattice chain ⇤3, e(⇤3) = 3

⇤3(0) = OE �OE �OE ;

⇤3(1) = OE �OE � PE ;

⇤3(2) = OE � PE � PE ;



12 1. REPRESENTATIONS OF p-ADIC GROUPS

Ai(⇤3) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

$
[ i
3

]
E

0

B

B

@

OE OE OE

PE OE OE

PE PE OE

1

C

C

A

if i ⌘ 0(3);

$
[ i�1

3

]
E

0

B

B

@

PE OE OE

PE PE OE

PE PE PE

1

C

C

A

if i ⌘ 1(3);

$
[ i�2

3

]
E

0

B

B

@

PE PE OE

PE PE PE

P2
E PE PE

1

C

C

A

if i ⌘ 2(3);

M(⇤3) '
�

diag(x, y, x�1) : x 2 k⇥E , y 2 k1E
 

a maximal torus in U(2, 1)(kE/kF ).

We let x 2 B(G) be the point corresponding to ⇤1, y 2 B(G) be the point corresponding

to ⇤2 and write I = P(⇤3). Let T 0 be the subgroup of T generated by all of its compact

subgroups. The a�ne Weyl group Wa↵ of U(2, 1)(E/F ) is the quotient group NG(T )/T 0. We

have a short exact sequence

1! T/T 0 !Wa↵ !W ! 1

hence Wa↵ is generated by the cosets represented by the elements

w1 =

0

B

@

0 0 1

0 1 0

1 0 0

1

C

A

and w2 =

0

B

@

0 0 $�1
E

0 1 0

$E 0 0

1

C

A

.

Furthermore, Gx = P(⇤1) = I [ Iw1I and Gy = P(⇤2) = I [ Iw2I.

3. Representation theory of p-adic groups

Let (⇡,V) 2 RR(G). We say that (⇡,V) is finitely generated if there exists a finite subset

⌃ = {v1, v2, . . . , vn} of V such that V is generated by ⌃ as an RG-module, i.e.

V =
n
X

i=1

RGvi.

If (⇡,V) is of finitely generated then there exists an irreducible quotient of (⇡,V).

Let µ be a fixed left R-Haar measure on G. Let HR(G) be the global Hecke algebra of G

formed by the R-module of locally constant compactly supported functions f : G! R with

the convolution product defined by, if f1, f2 2 HR(G) and h 2 G,

f1 ? f2(h) =

Z

G
f1(g)f2(g

�1h)dµ(g).

Let (⇡,V) 2 RR(G), we can define a left HR(G)-module structure on V by, if f 2 HR(G) and

v 2 V, f · v = ⇡(f)v where

⇡(f) =

Z

G
f(g)⇡(g)dµ(g).

A left HR(G)-module M is called nondegenerate if M = HR(G)M . Let HR(G)-mod denote

the category of nondegenerate left HR(G)-modules. The categories RR(G) and HR(G)-mod

are equivalent, [Vig96, Chapter 1, §4.4].
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3.1. Smoothness and the smooth dual. Let Rns
R (G) denote the category of all, not

necessarily smooth, R-representations of G. Define a functor

( · )1 : Rns
R (G)! RR(G)

(⇡,V) 7! (⇡1,V1)

F : V !W 7! F |V1 : V1 !W1

where

V1 = {v 2 V : stabG(v) is an open subgroup of G}
and ⇡1 is the restriction of ⇡ to the subspace V1 of V . We say (⇡1,V1) is the smooth part

of (⇡,V). This functor is left exact, but not necessarily right exact [Vig96, Chapter 1, §4.3].

Let (⇡,V) be a smooth R-representation of G. We can define an R-representation ⇡⇤ of G on

V⇤ = HomR(V,R) by

h⇡⇤(g)v⇤, vi = hv⇤,⇡(g�1)vi;
where h , i is the natural pairing on V⇤ ⇥ V given by evaluation. The contragredient repre-

sentation (e⇡, eV) of (⇡, V ) is the smooth part of the R-representation (⇡⇤,V⇤).

Theorem 3.1 ([Vig96, Chapter 1, §4.18]). Suppose R is a field. The functor RR(G) !
RR(G) given by ⇡ 7! e⇡ is contravariant and exact.

3.2. Inflation and its adjoints. Let G be a reductive p-adic group and H a closed

subgroup of G. If H is normal in G then we have the inflation functor

inflH : RR(G/H)! RR(G),

given by composing representations with the natural projection G! G/H.

Let (⇡,V) be a smooth R-representation of a connected reductive p-adic group G, and let H

be a closed subgroup of G. The H-invariants VH of (⇡,V) is the largest subrepresentation

on which H acts trivially, i.e.

VH = {v 2 V : ⇡(h)v = v for all h 2 H}.

Suppose H is normal in G, let g 2 G and v 2 VH\{0}. For all h 2 H,

⇡(h)(⇡(g)v) = ⇡(hg)v = ⇡(gg�1hg)v = ⇡(g)(⇡(g�1hg)v) = ⇡(g)v

since g�1hg 2 H by normality. Hence there is an action of G on VH and thus an action of

G/H on VH . In this case the H-invariants is the right adjoint of the inflation functor, i.e.

for smooth representations ⇡ of G, and � of G/H we have

HomG(inflH �,⇡) ' HomG/H(�,⇡H).

We can identify VH with HomH(1H ,⇡) via

HomH(1H ,⇡) VH

' '(1)

' : R! V
'(r) = rv

v.

⇠
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The H-coinvariants VH of (⇡,V) is the largest quotient of (⇡,V) on which H acts trivially.

We let V(H) = h⇡(h)v � v : v 2 V, h 2 Hi; then

VH = V/V(H).

If H is normal in G, there is an action of G on VH by normality and thus an action of G/H

on VH . In this case the H-coinvariants is the left adjoint of the inflation functor, i.e. for

smooth representations ⇡ of G, and � of G/H we have

HomG(⇡, inflH �) ' HomG/H(⇡H ,�).

Lemma 3.2 ([Vig96, Chapter 1, §4.6 and §4.9]). Let K be a compact open subgroup of G

with pro-order invertible in R. Then the functors V ! VK and V ! VK are exact and

V ' V K � V(K).

If K is a compact open subgroup with pro-order invertible in R then, by Lemma 3.2, VK '
VK ; the invariants and coinvariants are isomorphic.

We also use invH to denote the H-invariants and coinvH to denote the H-coinvariants.

3.3. Admissibility and Schur’s lemma. Let (⇡,V) be a smooth R-representation of a

connected reductive p-adic group G. We call (⇡,V) admissible if, for all open subgroups H

of G, the subspace of H-invariants VH of V is of finite dimension.

Theorem 3.3 ([Vig96, Chapter 1 §4.18, Chapter 2, §2.8]). Let (⇡,V) 2 RR(G), ⇡ is admis-

sible if and only if ee⇡ ' ⇡. Furthermore, suppose R is algebraically closed and ⇡ is irreducible,

then ⇡ is admissible.

Theorem 3.4 (Schur’s Lemma). Suppose R is an algebraically closed field and let (⇡,V) be
an admissible representation of G then

HomG(V,V) ' R.

If HomG(V,V) ' R then the centre Z of G must act as a character via ⇡, i.e. there exists

a character !⇡ : Z ! R⇥ such that, for all z 2 Z, ⇡(z) = !⇡(z). We call the character !⇡,

when it exists, the central character of ⇡.

3.4. Restriction and its adjoints. Let H be a closed subgroup of G. Then we have a

restriction functor

ResGH : RR(G)! RR(H),

given by restriction of representations and morphisms to H. The restriction functor is clearly

exact and transitive, i.e. if H1 and H2 are a closed subgroups of G such that H1 ⇢ H2 ⇢ G

then we have an isomorphism of functors

ResGH
1

' ResH2

H
1

�ResGH
2

.

The restriction functor ResGH has a right adjoint, the Induction functor IndGH , [Vig96, Chapter

1, §5.7]. There is a useful model for induction in terms of functions on G. Let (�,W ) 2
RR(H). The induced representation (IndGH �, IndGH(W )) is the space of all functions f : G!
W which satisfy
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(1) there exists a compact open subgroup K of G such that f(gk) = f(g) for all g 2 G,

k 2 K,

(2) f(hg) = �(h)f(g), for all h 2 H, g 2 G,

with the action of G given by the right regular action, i.e. for all f 2 IndGH W , x, g 2 G,

IndGH(g)f(x) = f(xg).

When H is open in G the restriction functor ResGH has a left adjoint [Vig96, Chapter 1,

§5.7], compact induction indGH . In terms of our model for induction, the compactly-induced

representation (indGH �, indGH W ), is the subspace of IndGH � of all functions with compact

support modulo H, again with the right regular action of G. This also allows us to define

compact induction when H is not open in G; however it may not be adjoint to restriction.

Clearly, when G/H is compact the induction functors coincide.

The modulus character �P : P ! R⇥ is defined by

�P (g) = [gKg�1 : K]

where K is any compact open subgroup of P . This is a well defined character, independent

of the choice of K, which is trivial on all compact subgroups of P , [Vig96, Chapter 2, 2.7].

Theorem 3.5.

(1) Exactness, [Vig96, Chapter 1, §5.10]: Induction and compact induction are exact

functors.

(2) Transitivity, [Vig96, Chapter 1, §5.3]: Induction and compact induction are transitive,

i.e. if H1 and H2 are a closed subgroups of G such that H1 ⇢ H2 ⇢ G then we have

isomorphisms of functors

indGH
2

� indGH
1

' indGH
1

, IndGH
2

� IndGH
1

' IndGH
1

.

(3) Restriction-induction formula, [Vig96, Chapter 1, §5.5]: Let H and K be closed

subgroups of G. Let � 2 RR(H). Then we have an isomorphism

ResGK IndGH � '
Y

H\G/K

IndKK\ gH Res
gH
K\ gH

g�.

Furthermore, suppose that the double cosets HgK, g 2 G, are open in G. Then we

have an isomorphism

ResGK indGH � '
M

H\G/K

indKK\ gH Res
gH
K\ gH

g�.

(4) Contragredient of compact induction, [Vig96, Chapter 1, §5.11]: Let H be a

closed subgroup of G and let � 2 RR(H) then

(indGH �)⇠ = IndGH ��1
G �He�.

3.5. Tensor product. In this section by ⌦ we mean ⌦R. If (⇡1,V1), (⇡2,V2) 2 RR(G) we

define the internal tensor product of (⇡1,V1) and (⇡2,V2) to be (⇡1 ⌦ ⇡2,V1 ⌦ V2) 2 RR(G)

where ⇡1 ⌦ ⇡2 is defined by its action on the elements v1 ⌦ v2 2 V1 ⌦ V2, which generate

V1 ⌦ V2, by

⇡1 ⌦ ⇡2(g)(v1 ⌦ v2) = ⇡1(g)v1 ⌦ ⇡2(g)v2,
for all g 2 G.
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If (⇡1,V1) 2 RR(G) and (⇡2,V2) 2 RR(H) we define the external tensor product of (⇡1,V1)

and (⇡2,V2) to be (⇡1 ⌦ ⇡2,V1 ⌦ V2) 2 RR(G⇥H) where ⇡1 ⌦ ⇡2 is defined by its action on

the elements v1 ⌦ v2 2 V1 ⌦ V2 by

⇡1 ⌦ ⇡2(g, h)(v1 ⌦ v2) = ⇡1(g)v1 ⌦ ⇡2(h)v2,

for all (g, h) 2 G⇥H.

3.6. Parabolic induction. Let P = LnN be a parabolic subgroup of G and � 2 RR(L).

We define a representation iGP (�) of G by inflating � to P and then inducing to G, this

composite of functors is called parabolic induction:

iGP : RR(L)
infl

N���! RR(P )
IndG

P���! RR(G).

Both inflation and induction have left adjoints and by composition we obtain a left adjoint

rGP of parabolic induction iGP called parabolic restriction or the Jacquet functor. Thus the

Jacquet functor is composed of first restricting to P , then taking the N -coinvariants:

rGP : RR(G)
ResG

P���! RR(P )
coinv

N����! RR(L).

Theorem 3.6 ([Vig96, Chapter 2, §2.1 and §5.13]). Parabolic induction and the Jacquet

functor are exact, transitive, preserve admissibility and take finite length (resp. finitely

generated) representations to finite length (resp. finitely generated) representations.

We fix a choice of square root of q in R. It can be useful to normalise parabolic induction by

twisting by the character �
1

2

P and considering the composite:

iGP �
1

2

P : RR(L)
⌦�

1

2

P���! RR(L)
infl

N���! RR(P )
IndG

P���! RR(G).

which has left adjoint the normalised Jacquet functor �
� 1

2

P rGP given by:

�
� 1

2

P rGP : RR(G)
ResG

P���! RR(P )
coinv

N����! RR(L)
⌦��

1

2

P����! RR(L).

3.7. Cuspidal and supercuspidal representations.

Definition 3.7.

(1) An irreducible R-representation is called cuspidal if it is not a subrepresentation of any

representation parabolically induced from an irreducible R-representation of the Levi

factor of a proper standard parabolic subgroup of G.

(2) An irreducible R-representation is called supercuspidal if it is not a subquotient of any

representation parabolically induced from an irreducible R-representation of the Levi

factor of a proper standard parabolic subgroup of G.

For `-adic or complex representations, a representation is supercuspidal if and only if it is

cuspidal. However, for `-modular representations, the two properties can be di↵erent.

Lemma 3.8. Let ⇡ be an irreducible R-representation of G. The following are equivalent:

(1) ⇡ is cuspidal.

(2) For all proper standard parabolic subgroups P of G the Jacquet module rGP ⇡ is trivial.
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(3) ⇡ is not a subrepresentation of a representation parabolically induced from any R-

representation of the Levi factor of a proper standard parabolic subgroup of G.

Proof: (2)) (3): Let P = LnN be a standard parabolic subgroup of G and assume there

exists � 2 RR(G) such that ⇡ is a subrepresentation of iGP�. Then by reciprocity

HomL(r
G
P ⇡,�) ' HomG(⇡, i

G
P�) 6= {0}

and we have a nontrivial Jacquet module.

(1) ) (2): Suppose there exists a standard parabolic subgroup P = L n N of G such that

rGP ⇡ is not trivial. Let � be an irreducible quotient of rGP ⇡ which exists because rGP ⇡ is of

finite length by Theorem 3.6. By reciprocity

HomG(⇡, i
G
P�) ' HomL(r

G
P ⇡,�) 6= {0}

and ⇡ is a subrepresentation of iGP�. The implication (3)) (1) is clear. ⇤

Example 3.9. Let G = U(2, 1)(E/F ). Then all Levi factors of the proper parabolic sub-

groups of G are conjugate to T . There are two proper parabolic subgroups of G which contain

T . The subgroup of upper triangular matrices B and its opposite B. As B = w
1B, we have

iGB� ' iG
B

w
1�.

Hence we can remove the requirement that the parabolic subgroups considered are standard

in the definitions of cuspidal and supercuspidal, i.e.

(1) An irreducibleR-representation ofG is cuspidal if and only if it is not a subrepresentation

of any representation parabolically induced from an irreducible R-representation of the

Levi factor of a proper parabolic subgroup of G.

(2) An irreducible R-representation of G is called supercuspidal if and only if it is not a sub-

quotient of any representation parabolically induced from an irreducibleR-representation

of the Levi factor of a proper parabolic subgroup of G.

Let (⇡,V) 2 RR(G). The matrix coe�cient of ⇡ associated to v 2 V and ev 2 eV is the function

'v,ev : G! R

'v,ev : g ! hev,⇡(g)vi,

Let Z denote the centre of G. We say that ⇡ is Z-compact if all matrix coe�cients of ⇡ are

compactly supported modulo Z.

Theorem 3.10 ([Vig96, Chapter 2, §2.7]). Let ⇡ be an irreducible R-representation of G

then ⇡ is cuspidal if and only if ⇡ is Z-compact.

Lemma 3.11. An irreducible R-representation is cuspidal if and only if it is not a quotient of

a representation parabolically induced from an irreducible representation of the Levi factor

of a proper standard parabolic subgroup of G.

Proof: An irreducible representation ⇡ is cuspidal if and only if its contragredient is cuspidal

by Theorems 3.10 and 3.3. If P = L n N is a proper standard parabolic subgroup of G

then ⇡ 2 RR(L) is a quotient of iGP� if and only if the contragredient representation e⇡ is a

subrepresentation of iGP �P e�, by Theorems 3.5 and 3.1. ⇤
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For standard Levi subgroups Mi, i = 1, 2, of G we let WM
i

, i = 1, 2, denote the Weyl group

of Mi and let W (M1,M2) = {w 2WG : M1
w = M2}.

Lemma 3.12 ([Vig96, Chapter 2, §2.19]). Suppose R is an algebraically closed field. Let

Pi, i = 1, 2, be standard parabolic subgroups of G with Levi decompositions Pi = Mi nNi,

i = 1, 2. Let �1 be an irreducible cuspidal representation of M1.

(1) If M1 and M2 are not conjugate in G then �
� 1

2

P
2

rGP
2

✓

iGP
1

�
1

2

P
1

(�1)

◆

does not have any

cuspidal subrepresentations or quotients.

(2) If M1 and M2 are conjugate in G then the irreducible subquotients of a composition

series of �
� 1

2

P
2

rGP
2

✓

iGP
1

�
1

2

P
1

(�1)

◆

are the conjugates w�1 of �1 with w 2W (M1,M2)/WM
1

.

Theorem 3.13 ([Vig96, Chapter 2, §2.4 and §2.20]). Suppose R is an algebraically closed

field. Let (⇡, V ) be an irreducible R-representation of G. There exist a standard Levi

subgroupM ofG and an irreducible cuspidal representation ⌧ ofM such that, for the standard

parabolic subgroup P of G with Levi decomposition P = MnN , (⇡,V) is a subrepresentation

of the parabolically induced representation iGP ⌧ . Furthermore the pair (M, ⌧) is unique up to

conjugacy.

Proof: Put a partial order on the finite set of standard parabolic subgroups P(G) of G by

inclusion. For an irreducible representation ⇡ of G, by transitivity of the Jacquet module,

there exists an element P 2 P(G) such that rGP (⇡) 6= 0, but rGQ(⇡) = 0 for all Q 2 P(G)

properly contained in P . By transitivity of the Jacquet module, rGP (⇡) is a cuspidal repre-

sentation of the Levi factor of P which is of finite length and so has an irreducible quotient

⌧ . By reciprocity, ⇡ is a subrepresentation of iGP ⌧ . The pair (M, ⌧) is unique up to conjugacy

by Lemma 3.12. ⇤

Suppose ⇡ is an irreducible R-representation of G. Let cusp(⇡) be the set of pairs (M, ⌧) such

that M is a standard Levi subgroup of G, ⌧ is an irreducible cuspidal R-representation of M

and ⇡ is a subrepresentation of iGP (⌧) where P is the standard parabolic of G with Levi factor

M . We call the set cusp(⇡) the cuspidal support of ⇡. When R is an algebraically closed

field, by Theorem 3.13, cusp(⇡) is nonempty and consists of a single G-conjugacy class: we

say that the cuspidal support exists and is unique up to conjugacy.

Let scusp(⇡) be the set of pairs (M, ⌧) such that M is a standard Levi subgroup of G, ⌧ is an

irreducible supercuspidal R-representation of M and ⇡ is a subquotient of iGP (⌧) where P is

the standard parabolic of G with Levi factor M . We call the set scusp(⇡) the supercuspidal

support of ⇡. The next lemma shows that scusp(⇡) exists.

Lemma 3.14 ([Vig96, Chapter 2, §2.6]). Let ⇡ be an irreducible R-representation of G. Then

scusp(⇡) is non-empty.

Proof: Either ⇡ is supercuspidal and scusp(⇡) = ⇡ or the set

⌃ =
�

(M,�) : P = M nN standard, � 2 IrrR(M), ⇡ 2
⇥

iGP (�)
⇤ 

is nonempty. Choose an element (M,�) 2 ⌃ with M minimal under the partial order of

inclusion of standard Levi subgroups of G. Suppose � is not supercuspidal then there exists

an irreducible representation of a standard Levi subgroup M 0 of M such that � 2
⇥

iMP 0�0
⇤

for

some standard parabolic subgroup P 0 = M 0 nN 0 and some �0 2 IrrR(M 0). By transitivity of
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induction,

iGP (i
M
P 0(�0)) = iGP 0N (�0)

and, by exactness of induction, ⇡ is a subquotient of iGP 0N�
0. Hence M was not minimal. ⇤

In general it is not known if scusp(⇡) is always a single G-conjugacy class, i.e. whether

the supercuspidal support of an `-modular representation is unique up to conjugacy. It is

unique up to conjugacy in the cases of GLn(F ) and GLm(D), [Vig96] and [MS11b], and it

is conjectured to be unique up to conjugacy in general, [Vig96, Chapter 2, §2.6].

Example 3.15. Let G = GL2(F ). Let T be the diagonal torus in G, and B the upper trian-

gular Borel subgroup containing T . Consider the parabolically induced representation iGB1.

The space of constant functions with trivial G action form an irreducible subrepresentation,

equivalent to (1G, R) and the quotient representation of iGB1 by this is called the Steinberg

representation. In [Vig89] it is shown that the Steinberg is reducible if and only if ` | q + 1,

and in this case has a unique subrepresentation (�,W ) and a unique quotient (⌫, R) where

⌫(g) = (�1)⌫F (det(g)). By Lemma 3.12, rGP (i
G
B1) has length 2. Thus, by exactness of the

Jacquet functor, � is cuspidal non-supercuspidal.

4. Integral representations and decomposition modulo-`

Definition 4.1. A finite length admissible Q`-representation (⇡,V) of G is called integral

if there exists a free G-stable Z`-submodule L of V which contains a Q`-basis of V. The

Z`-module L is called a lattice, or integral structure, in V.

Lemma 4.2 ([Vig96, Chapter 1, §9.3]). A subquotient of an integral Q`-representation is

integral.

Given a finite length integral `-adic representation (⇡,V), with lattice L, we can define a

finite length `-modular representation

L/⇤`L ' L⌦Z
`

F`,

called the reduction modulo ` of L. Note that this depends on the choice of L. However by

the Brauer–Nesbitt principle [Vig04, Theorem 1], its semisimplification in the Grothendieck

group of finite length `-modular representations is independent of the lattice chosen and we

define the decomposition modulo-` of (⇡,V) by

d`(⇡) =
h

L⌦Z
`

F`
i

.

The decomposition modulo-` map extends by linearity to a group homomorphism between

Grothendieck groups.

Theorem 4.3 ([Vig96, Chapter 2, §4.12 and §4.13]). Let ⇡ 2 RQ
`

(G) be an irreducible

representation Then the following are equivalent:

(1) ⇡ is integral;

(2) the cuspidal support of ⇡ is integral;

(3) the central character of the cuspidal support of ⇡ is integral.
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5. Cuspidal representations and decomposition modulo-`

We examine the relationship between cuspidality and decomposition modulo `.

Theorem 5.1 ([Vig96, Chapter 1, §9.3]). Let H be a closed subgroup of G. Let � 2 RQ
`

(H)

be admissible and integral with lattice L. Then indGH L is a lattice in indGH �. Furthermore,

if IndGH � is admissible then IndGH L is a lattice in IndGH �.

Corollary 5.2. Let H be a closed subgroup of G and � 2 RQ
`

(H) be admissible, integral

and of finite length. Suppose indGH � is of finite length then d`(ind
G
H �) = [indGH d`(�)].

Suppose IndGH � is admissible and of finite length then d`(Ind
G
H �) = [IndGH d`(�)].

Proof: The following proof was suggested by Alberto Minguez. Let L be a lattice in �. We

have a short exact sequence of Z`H-modules

0! ⇤`L! L! L/⇤`L! 0.

Induction, IndGH : RZ
`

(H)! RZ
`

(G), is exact thus

0! IndGH(⇤`L)! IndGH(L)! IndGH(L/⇤`L)! 0

is an exact sequence of Z`G-modules. Furthermore, IndGH(⇤`L) ' ⇤` IndGH(L) hence

IndGH(L/⇤`L) ' IndGH(L)/⇤` Ind
G
H(L).

This depends on the choice of lattice L. However IndGH L is a lattice in IndGH �, by The-

orem 5.1, hence the semisimplification of IndGH(L)/⇤` Ind
G
H(L) is independent of L by the

Brauer–Nesbitt principle for integral finite length representations of G. Furthermore L/⇤`L

is canonically an `-modular representation of G and the functor IndGH : RF
`

(H)! RF
`

(G) is

naturally isomorphic to the functor IndGH : R⇤
`

Z
`

(H) ! R⇤
`

Z
`

(G) where R⇤
`

Z
`

(H) consists of all

representations in W 2 RZ
`

(H) which satisfy �w = 0 for all w 2W , � 2 ⇤`. Thus

d`
�

IndGH �
�

' [IndGH d`(�)].

The same argument works for compact induction. ⇤

It is more di�cult to show that the Jacquet functor commutes with decomposition modulo-`.

The di�culty is in showing that if L is a lattice in an integral `-adic representation ⇡ of G

then rGP (L) is a lattice in rGP (⇡). For classical groups this is proved in [Dat05].

Lemma 5.3 ([Dat05, Proposition 1.4]). Let G be a classical group. Let P be a proper

parabolic subgroup of G and ⇡ an integral `-adic representation of G. Then d`(rGP (⇡)) =

[rGP (d`(⇡))].

Corollary 5.4. Let G be a classical group. Let ⇡ 2 RQ
`

(G) be an integral irreducible

representation such that

d`(⇡) = ⇡1 � ⇡2 � · · ·� ⇡n
with ⇡i 2 RF

`

(G) irreducible, i 2 {1, 2, . . . , n}. Then ⇡ is cuspidal if and only if, for all

i 2 {1, 2, . . . , n}, the representation ⇡i is cuspidal.

Proof: The `-adic representation ⇡ is cuspidal if and only if rGP (⇡) = 0 for all proper

parabolic subgroups P of G. By Lemma 5.3, d`(rGP (⇡)) = [rGP (d`(⇡))] = 0 and the Jacquet

functor is exact. ⇤
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Remark. Corollary 5.4 does not give any indication on the reducibility of the decomposition

modulo-` of an irreducible cuspidal representation. Indeed we shall see that the decomposition

modulo-` of an integral irreducible `-adic cuspidal can be reducible.

Supercuspidal `-modular representations are more elusive and di�cult to describe via decom-

position modulo-` arguments. By Corollary 5.2, if ⇡ is a supercuspidal `-modular represen-

tation of G it cannot appear in d`(iGP�) for any proper parabolic P of G and any irreducible

integral `-adic representation � of the Levi factor of P .

6. Constructing cuspidals

The following theorem suggests an e↵ective way of constructing cuspidal representations of

G.

Theorem 6.1 ([Car84, §1]). Let K be a compact modulo centre subgroup of G, let (�,W )

be an irreducible representation ofK and let ⇡ = indGK �. If ⇡ is irreducible then it is cuspidal.

Proof: Let V be the space of ⇡. By admissibility the contragredient e⇡ of ⇡ is irreducible.

Fix v0 2 V and ev0 2 eV. By irreducibility, if v 2 V and ev 2 eV then there exist gi, egi 2 G such

that v =
Pn

i=1 ri⇡(gi)v0 and ev =
Pn

i=1 erie⇡(egi) ev0. Then

supp('v,ev) ✓
[

i

egi supp('v
0

,ev
0

)g�1
i

and thus 'v,ev has compact support modulo Z if 'v
0

,ev
0

has compact support modulo Z.

Futhermore, by the same argument reversing the roles of v and v0, 'v
0

,ev
0

has compact support

modulo Z if 'v,ev has compact support modulo Z. Therefore we only need to check that one

matrix coe�cient of ⇡ has compact support modulo Z. Let w 2 W , ew 2 fW and let fw 2 ⇡
be defined by

fw(g) =

8

<

:

⇢(g)w if g 2 K

0 otherwise.

Let ef ew 2 e⇡ be defined by
ef ew(f) = h ew, f(1)i

for all f 2 ⇡. Then

'
f
w

, ef ew
(g) =

8

<

:

h ew, ⇢(g)wi if g 2 K

0 otherwise,

is a matrix coe�cient of ⇡ which is compactly supported modulo Z. Hence ⇡ is cuspidal by

Theorem 3.10. ⇤

Our first candidate pairs (K, (�,W )) are the parahoric subgroups K of G and the irreducible

cuspidal representations � of K/K1 which we inflate to K.





CHAPTER 2

`-adic representations of finite reductive groups

In this chapter we classify the `-adic representations of some finite reductive groups which

appear as quotients of certain compact open subgroups of the p-adic groups we study. In

particular we are interested in the finite reductive groups related to the parahoric subgroups

of the unramified unitary group in three variables.

In this chapter and the next, to simplify notation, we let F denote a finite field with q

elements and E a quadratic extension of F .

23
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1. Finite groups of Lie type

Let G be a connected reductive linear algebraic group over Fp with a Frobenius morphism

Fr : G! G; see [Sri79, Chapter 2]. The subgroup of fixed points GFr of G under Fr is called

a finite group of Lie type.

Example 1.1. Let G = GLn

�

Fp

�

. We can define two Frobenius morphisms on G:

(1) Let Fr denote the standard Frobenius map defined by Fr : (xij) ! (xqij), q = pr, then

the fixed points of G under Fr form a finite general linear group:

GFr = GLn(F ).

(2) Let eFr denote the twisted Frobenius map defined by eFr : (xij)! (xqji)
�1, then the fixed

points of G under eFr form a finite unitary group:

G
eFr = Un(E/F ).

We will denote a finite group of Lie type also by G when it is not easily confused with the

underlying algebraic group.

Lemma 1.2 ([Sri79, Corollary 2.8]). Let (G,Fr) be a pair consisting of a connected reductive

group over Fp and a Frobenius morphism Fr : G ! G. There exists a pair (T0, B0), unique

up to GFr-conjugacy, such that:

(1) B0 is a Fr-stable Borel subgroup;

(2) T0 is a Fr-stable maximal torus contained in B0.

We fix a choice of (T0, B0). The Fr-stable proper parabolic subgroups P ◆ B0 are called the

standard parabolic subgroups. For each standard parabolic subgroup P we have a standard

Levi decomposition

P = LnN,

where L is Fr-stable, contains T0 and is called the standard Levi factor; N is the unipotent

radical of P .

Let W (T0) = NG(T0)/T0 be the absolute Weyl group of G. The Frobenius morphism Fr acts

on W (T0) because T0 is Fr-stable. Two elements w1, w2 2W (T0) are called Fr-conjugate if

ww1(Frw)
�1 = w2

for some w 2W (T0).

Lemma 1.3 ([Sri79, Corollary 2.8]). The GFr-conjugacy classes of maximal tori in GFr are

in bijection with Fr-conjugacy classes of W (T0).

It follows from Lemma 1.3 that one can obtain the maximal tori in GFr from T0 by twisting

by elements representing the Fr-conjugacy classes of W (T0).

Remark. For convenience when G
eFr = Un(E/F ) we will always consider a conjugate of

G
eFr, by a representative of the element in the Weyl group of maximal length. This has the

advantage of making the standard parabolic subgroups upper triangular.
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2. Structure of finite unitary groups

Let G = Un(E/F ) denote the finite unitary group in n-variables

Un(E/F ) = {g 2 GLn(E) : wgwgt = 1},

where w is the n by n matrix with ones on the antidiagonal and zeroes elsewhere and

denotes the involution induced on g by the Frobenius morphism of Gal(E/F ). We have a

natural surjective homomorphism of groups

det : Un(E/F ) �! U1(E/F ).

The normal subgroup of G defined by the kernel of this homomorphism is called the special

unitary group and denoted SUn(E/F ). The order of the special unitary groups in n variables

is

| SUn(E/F )| = |Un(E/F )|/(q + 1).

The order of the finite unitary group in n variables is

|Un(E/F )| = (qn + qn�1)(qn � qn�2) · · · (qn � (�1)n).

The special unitary group in two variables SU2(E/F ) is conjugate to SL2(F ) in GL2(E).

Assuming q is odd, and choosing an element
p
" 2 E\F we have

SU2(E/F ) =

( 

a b
p
"

c
p
"
�1

d

!

: a, b, c, d 2 F, ad� bc = 1

)

=

 

1 0

0
p
"
�1

!

SL2(F )

 

1 0

0
p
"

!

.

The centre ZSU
n,q

of SUn(E/F ) is equal to the centre ZU
n,q

of Un(E/F ) intersected with

SUn(E/F ). And we have

ZU
n,q

=
�

�Id : � 2 E, �q+1 = 1
 

; ZSU
n,q

=
�

�Id : � 2 E, �q+1 = 1,�n = 1
 

.

Example 2.1.

(1) When n = 2 there are two cases:

(a) If q is even then ZSU
2,q

= {Id}.
(b) If q is odd then ZSU

2,q

= {±Id}, which is cyclic of order 2.

(2) When n = 3 there are two cases:

(a) If q + 1 6⌘ 0 mod 3 then ZSU
3,q

= {Id}.
(b) If q + 1 ⌘ 0 mod 3 then ZSU

3,q

=
�

�Id : �3 = 1
 

, which is cyclic of order 3.

We let dn,q, or more simply d, denote the order of the cyclic group ZSU
n,q

. When the centre

ZSU
n,q

is trivial we have a direct product decomposition:

Un(E/F ) ' SUn(E/F )⇥ ZU
n,q

.

3. Parabolic induction

Let G be a reductive group over Fp with a Frobenius morphism Fr : G! G. Let P = LnN be

a standard parabolic subgroup of G and ' an irreducible representation of LFr. Let inflN (')

be the representation of PFr obtained by inflating ' to PFr, defining inflN (') to be trivial on

NFr. Parabolic induction, or Harish-Chandra induction, iGP' is the composite of this inflation
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followed by induction from PFr to GFr:

iGP : RR(L
Fr)

infl
N���! RR(P

Fr)
IndG

Fr

P

Fr����! RR(G
Fr).

Analogously to the p-adic case, parabolic induction has a natural left adjoint, composed of

first restricting to PFr then taking the NFr-coinvariants, which we denote by rGP and call the

Jacquet functor or parabolic restriction:

rGP : RR(G
Fr)

ResG
Fr

P

Fr����! RR(P
Fr)

coinv
N����! RR(L

Fr).

An irreducible representation ⇢ of GFr is called cuspidal if ⇢ is not a subrepresentation of

iGP ('), for all irreducible representations ' of the Frobenius fixed points of the Levi factors

of all standard proper Fr-stable parabolic subgroups of G. If ⇢ is not a subquotient of

iGP ('), for all irreducible representations ' of the Frobenius fixed points of the Levi factors

of all standard proper Fr-stable parabolic subgroups of G then ⇢ is called supercuspidal.

Analogously to the p-adic setting the cuspidal support of an irreducible representation exists

and is unique up to conjugacy, see Chapter 1 Lemma 3.13. This reduces the classification of

irreducible representations of GFr to completing two steps:

(1) Constructing all cuspidal representations of every Levi factor of GFr.

(2) The decomposition of iGP (⇢) with ⇢ a cuspidal representation of LFr.

4. Twisted induction

Let L be a Fr-stable Levi subgroup of G. Then L is contained in a parabolic subgroup of G

with Levi decomposition P = L n N : however P is not necessarily Fr-stable. In [DL76] a

map, called Deligne-Lusztig induction,

RG
L⇢P : GrK(LFr)! GrK(GFr)

is defined, which behaves as a “twisted” generalisation of parabolic induction seemingly

inducing through a parabolic subgroup which is invisible inGFr. The definition is complicated:

see [Sri79, Chapter 6] and [CE04, Chapter 7]. The functor RG
L⇢P has an adjoint, Deligne-

Lusztig restriction, denoted ⇤RG
L⇢P . We write RG

L,P for the corresponding map between

K-class functions, defined via the Z-bases Irr(LFr) and Irr(GFr),

RG
L,P : CF(LFr,K)! CF(GFr,K).

Similarly, we define
⇤RG

L,P : CF(GFr,K)! CF(LFr,K).

When T is a torus, [Sri79, Proposition 6.18], RG
T⇢P is independent of the choice of Borel

subgroup B containing T . Hence, when T is a torus, we have a well defined map RG
T :

GrK(TFr)! GrK(GFr). Furthermore, for any irreducible representation � of GFr, there exist

a Fr-stable torus T and an irreducible representation ✓ of TFr such that � is a constituent of

RG
T ✓, [Sri79, Theorem 6.23]. The constituents of RG

T 1, as T ranges over Fr-stable maximal

tori in G, are called the unipotent representations of GFr.

Let T be a torus, then T = TdTa where Td is the maximal F -split part of T . Let �(T ) =

dim(Td), "T = (�1)�(T ) and "G = (�1)�(T0

). For a finite set A we can write |A| = psb with

(b, p) = 1 and we set |A|p0 = b.
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(1) (Dimension Formula, [Sri79, Theorem 6.21]): Let ✓ be an irreducible K-representation

of a maximal torus TFr in GFr. Then

dimRG
T ✓ = "G"T

|GFr|p0
|TFr| .

Let T1 and T2 be Fr-stable maximal tori in G. Let N(T1, T2) = {g 2 G : gT1g
�1 = T2}

and W (T1, T2) = {gT1 : g 2 N(T1, T2)} then Fr acts on W (T1, T2) because T1 and T2 are

Fr-stable. Furthermore, [Sri79, Page 79], W (T1, T2)Fr ' N(T1, T2)Fr/TFr
1 .

(2) (Weak orthogonality, [Sri79, Proposition 6.14]): Let ✓i, i = 1, 2, be `-adic characters of

TFr
i ; then

(RG
T
1

(✓1), R
G
T
2

(✓2)) =
�

�{w 2W (T1, T2)
Fr : w✓2 = ✓1}

�

�

where w✓2(x) = ✓2(gxg�1) for w = gT1.

Let T be a Fr-stable maximal torus in G. A character � of TFr is said to be in general position

if the orbit under the Weyl group W (T )Fr of � is maximal, i.e. of order of W (T )Fr.

(3) (General position implies irreducible, [Sri79, Theorem 6.17]): If ✓ is in general position

then either RG
T ✓ or �RG

T ✓ is an irreducible representation of GFr.

The representations in general position are the irreducible representations equal to RG
T ✓ or

�RG
T ✓ which are induced from characters in general position.

(4) (Transitivity, [Sri79, Proposition 8.6]): Suppose T is a Fr-stable maximal torus con-

tained in a Fr-stable Levi subgroup L of G, then RG
L⇢PR

L
T = RG

T .

(5) (Generalisation of parabolic induction, [Sri79, Theorem 6.24]): Suppose T is contained

in an Fr-stable Levi subgroup L which is contained in an Fr-stable parabolic subgroup

P ; then

RG
T ✓ = iGP

�

RL
T ✓
�

.

(6) (Compatibility with characters and the determinant, [CE04, §8.20].) Let G = GLn(Fp),

Fr a Frobenius morphism of G, and T a Fr-stable maximal torus in G. Let � be a

character of GFr that factors through the determinant map; then

RG
T (✓)⌦ � = RG

T (✓ ⌦ (� |TFr

)).

A torus T in G is called minisotropic if it is not contained in any proper Fr-stable parabolic

subgroup of G.

(8) (Supercuspidals in general position): If T is minisotropic and ✓ is in general position

then either RG
T ✓ or �RG

T ✓ is an irreducible supercuspidal representation.

By (5) to determine the other supercuspidals of GFr it remains to decompose RG
T ✓ when T is

minisotropic and ✓ is not in general position. In these cases the irreducible constituents may

or may not be supercuspidal.

5. The `-adic representations of GL2(F )

In this section we realize the irreducible representations of GL2(F ) as factors of induced

representations from maximal tori in GL2(F ). Similar computations are made for GL2(F )

and SL2(F ) in [DM91, §15.9].
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Let GFr = GL2(F ). There are two maximal tori in GFr up to GFr-conjugacy. Let TFr
0 be the

diagonal torus in GFr

TFr
0 =

�

diag(x, y) : x, y 2 F⇥ .

The torus TFr
0 represents the GFr-conjugacy class of maximal Fr-split tori in GFr. Choose a

representative TFr
1 of the GFr-conjugacy class of non Fr-split maximal tori in GFr. The torus

TFr
1 is conjugate in GL2(E) to

�

diag(x, xq) : x 2 E⇥ .

5.1. Parabolic induction from TFr
0 . Let ✓ be a character of TFr

0 . Define characters �i,

i = 1, 2 of F⇥ by

�1(x) = ✓(diag(x, 1)), �2(x) = ✓(diag(1, x)).

We identify ✓ with �1 ⌦ �2. The character ✓ is in general position if and only if �1 6= �2. In

this case the induced representation RG
T
0

✓ = iGB
0

✓ is irreducible. By the dimension formula

dim(RG
T
0

✓) = (q + 1).

If ✓ is not in general position, by weak orthogonality,

(RG
T
0

✓, RG
T
0

✓) = 2.

Suppose � = �1 = �2 then ✓ extends to the character ��det ofGFr. Hence RG
T
0

✓ = (iGB
0

(1))(��
det) which is of dimension q+1 with a one dimensional subrepresentation 1G(�) = 1G(��det)
and a q-dimensional quotient StG(�) = StG(� � det).

5.2. Deligne-Lusztig induction from TFr
1 . Let g 2 GL2(E) such that

(TFr
1 )g =

�

diag(x, xq) : x 2 E⇥ .

Define a character e� of E⇥ by

e�(x) = ✓g(diag(x, xq)).

We identify the character ✓ with e�. By the dimension formula

dim(RG
T
1

✓) = �(q � 1).

The character ✓ is in general position if and only if ✓q�1 6= 1. In this case, �RG
T
1

✓ is an

irreducible supercuspidal representation of GFr. We let

�T
1

,✓ = �RG
T
1

✓.

By counting we find that we have found all irreducible representations of G. Thus the

representations RG
T
1

✓, where ✓ is a character not in general position of TFr
1 , must already

occur in our list. By weak orthogonality and the dimension formula for Deligne-Lusztig

representations we have

RG
T
1

1 = 1G � StG .

The character ✓ of TFr
1 is not in general position if and only if e� factors through the norm

map ⇠q+1 : x 7! xq+1 and identifies with a character � of F⇥

e� = � � ⇠q+1.

Then

RG
T
1

✓ = RG
T
1

1(� � det)
= 1G(�)� StG(�).
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Deligne-Lusztig Decomposition Parameters Degree Number

Representation in GrQ
`

�

GFr
�

RG
T
0

✓
1G(�) + StG(�)

� a character of F⇥

✓ = �⌦ �
1, q 2(q � 1)

iGB
0

(✓)

�1,�2 characters of F⇥

�1 6= �2

✓ = �1 ⌦ �2

iGB
0

(✓) = iGB
0

(�2 ⌦ �1)

q + 1
q2 � 3q

2

RG
T
1

✓
1G(�)� StG(�)

� a character of F⇥

✓ = � � ⇠q+1
1, q 2(q � 1)

��T
1

,✓

✓ a character of E⇥

✓q�1 6= 1

RG
T
1

✓ = RG
T
1

✓q
q � 1

q2 � q � 2

2

6. The `-adic representations of SL2(F )

Let GFr = SL2(F ). In [Bon11] there is a complete description of the complex and modular

representations of GFr. There are two maximal tori in GFr up to conjugation by GFr. We can

choose a representative of the GFr-conjugacy class of maximal Fr-split tori in GFr to be the

diagonal torus TFr
0 =

�

diag(x, x�1) : x 2 F⇥ .

We choose a representative TFr
1 of the maximal nonsplit tori in GFr and note that TFr

1 is

isomorphic to E1, being conjugate in GL2(E) to
�

diag(x, xq) : x 2 E1
 

. A character ✓ of TFr
0

identifies with a character � of F⇥ and is in general position if ✓2 6= 1. A character ✓ of TFr
1

identifies with a character � of E1 and is in general position if ✓2 6= 1. The following table

was extracted from [Bon11, Chapter 5].
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Deligne-Lusztig Decomposition Parameters Degree Number

Representation in GrQ
`

�

GFr
�

RG
T
0

✓

1G + StG
✓ a character of F⇥

✓ = 1
1, q 2

i+✓ + i�✓
✓ a character of F⇥

✓ 6= 1

✓2 = 1

q + 1

2
,
q + 1

2
2

iGB
0

(✓)

✓ a character of F⇥

✓2 6= 1

iGB
0

(✓) = iGB
0

(✓�1)

q + 1
q � 3

2

RG
T
1

✓

1G � StG
✓ a character of E1

✓ = 1
1, q 2

�R+✓ �R�✓
✓ a character of E1

✓ 6= 1

✓2 = 1

q � 1

2
,
q � 1

2
2

��T
1

,✓

✓ a character of E1

✓2 6= 1

RG
T
1

✓ = RG
T
1

✓�1

q � 1
q � 1

2

7. The `-adic representations of U2(E/F ) and SU2(E/F )

Let GFr = U2(E/F ). Let TFr
0 be the maximal diagonal torus in GFr

TFr
0 =

n

diag(x, x�q) : xq
2�1 = 1

o

.

We choose a representative TFr
1 of the other GFr-conjugacy class of maximal tori in GFr. Then

TFr
1 is conjugate in GL2(E) to

�

diag(x, y) : xq+1 = yq+1 = 1
 

.

7.1. Parabolic induction from TFr
0 . Let ✓ be a character of TFr

0 . Define a character �1

of E⇥ by

�1(x) = ✓(diag(x, x�q)).

We identify ✓ with �1. The character ✓ is in general position if �q+1
1 6= 1. In this case the

induced representation iGB
0

✓ is irreducible. By the dimension formula

dim(iGB
0

✓) = q + 1.

If �q+1
1 = 1 then �1 factors through the map ⇠q�1 : x 7! xq�1, and corresponds to a character

� of E1

�1 = � � ⇠q�1.

Then ✓ extends to the character � � det of GFr, hence

iGB
0

(✓) = iGB
0

(1)(� � det).

By Frobenius reciprocity iGB
0

(1) contains 1G and the irreducible quotient denoted by StG of

iGB
0

(1) by 1G is q-dimensional. Thus

iGB
0

(✓) = 1G(� � det) + StG(� � det).
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We denote 1G(� � det) by 1G(�) and StG(� � det) by StG(�).

7.2. Deligne-Lusztig induction from TFr
1 . Let g 2 GL2(E) such that (TFr

1 )g is equal

to the set of diagonal matrices in GL2(E) with entries in E1. Let ✓ be a character of TFr
1 .

Define characters �i, i = 1, 2, of E1 by

�1(x) = ✓g(diag(x, 1)), �2(x) = ✓g(diag(1, x)).

We can identify ✓ with �1⌦�2. The character ✓ is in general position if and only if �1 6= �2.

By the dimension formula

dim(RG
T
1

✓) = �(q � 1).

If ✓ is in general position �RG
T
1

✓ is an irreducible cuspidal representation of GFr. We let

�T
1

,✓ = �RG
T
1

✓.

If ✓ is not in general position, by weak orthogonality,

(RG
T
1

✓, RG
T
1

✓) = 2.

Hence RG
T
1

✓ contains two irreducible representations each with multiplicity ±1. Moreover

RG
T
1

✓ = (RG
T
1

1)(�1 � det) and we know RG
T
1

1 contains 1G with multiplicity 1. Thus, by

comparing with iGB
0

(1) via weak orthogonality, RG
T
1

1 contains StG with multiplicity �1 and

RG
T
1

✓ = 1G(�)� StG(�)

Deligne-Lusztig Decomposition Parameters Degree Number

Representation in GrQ
`

�

GFr
�

RG
T
0

✓
1G(�) + StG(�)

� a character of E1

✓ = � � ⇠q�1
1, q 2(q + 1)

iGB
0

(✓)

✓ a character of E⇥

✓q+1 6= 1

iGB
0

(✓) = iGB
0

(✓�q)

q + 1
q2 � q � 2

2

RG
T
1

✓
1G(�)� StG(�)

� a character of E1

✓ = �⌦ �
q, 1 2(q + 1)

��T
1

,✓

✓i characters of E1

✓ = �1 ⌦ �2

�1 6= �2

RG
T
1

✓ = RG
T
1

(�2 ⌦ �1)

q � 1
q2 + q

2

Let HFr = SU2(E/F ). Then HFr is isomorphic to SL2(F ) by Section 2. The maximal F -split

tori in HFr are isomorphic to F⇥ and SFr
0 = TFr

0 \ HFr is a representative. The non-split

maximal tori are isomorphic to E1, and SFr
1 = TFr

1 \HFr is a representative.

Following the same methods we have used for the groups GL2(F ) and U2(E/F ) we produce

the following table of induced representations.
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Deligne-Lusztig Decomposition Parameters Degree Number

Representation in GrQ
`

�

HFr
�

RH
S
0

✓

1H + StH ✓ = 1 1, q 2

i+✓ + i�✓
✓ a character of F⇥

✓2 = 1

✓ 6= 1

q + 1

2
,
q + 1

2
2

iHB
0

(�)

� a character of F⇥

�2 6= 1

iHB
0

(�) = iHB0
0

(��1)

q + 1
q � 3

2

RH
S
1

✓

1H � StH ✓ = 1 q, 1 2

��+S
1

,✓ � �
�
S
1

,✓

✓ a character of E1

✓2 = 1

✓ 6= 1

q � 1

2
,
q � 1

2
2

��S
1

,✓

✓ a character of E1

✓2 6= 1

RH
S
1

✓ = RH
S
1

✓�1

q � 1
q � 1

2

8. The `-adic representations of U3(E/F )

Let GFr = U3(E/F ). The maximal diagonal torus in GFr is

TFr
0 =

n

diag(x, y, x�q) : xq
2�1 = yq+1 = 1

o

,

and W (T0)Fr ' C2. Let

w1 =

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

w2 =

0

B

@

0 1 0

1 0 0

0 0 1

1

C

A

,

which are representatives for the nontrivial Fr-conjugacy classes in W (T0). Let TFr
i , i = 1, 2,

be representatives of the GFr-conjugacy class of maximal tori in GFr obtained by twisting TFr
0

by wi, i = 1, 2. Let F3 be a cubic extension of F and E3 a quadratic extension of F3. The

torus TFr
1 is isomorphic to the kernel E1

3 of the norm map NE
3

/F
3

. It is conjugate in GL3(Fq6)

to
n

diag(x, xq
2

, x�q) : xq
3+1 = 1

o

and W (T1)Fr ' C3. The torus TFr
2 is conjugate in GL3(E) to

�

diag(x, y, z) : xq+1 = yq+1 = zq+1 = 1
 

and W (T2)Fr ' S3.

There is a Fr-stable Levi subgroup L of G

LF =

0

B

@

? 0 ?

0 ? 0

? 0 ?

1

C

A

\GFr

which is isomorphic to U1(E/F ) ⇥ U2(E/F ). It is not contained in any proper Fr-stable

parabolic subgroup of G, but contains both TFr
0 and TFr

2 . Thus when we are decomposing



8. THE `-ADIC REPRESENTATIONS OF U
3

(E/F ) 33

induced representations from TFr
0 and TFr

2 , by transitivity of induction, there will be two

steps: first inducing to LFr then to GFr. Let HFr = U2(E/F ).

8.1. Parabolic induction from TFr
0 . Let �1 be a character of E⇥ and �2 be a character

of E1. Define a character ✓ of TFr
0 by

✓(diag(x, y, x�q)) = �1(x)�2(xx
�qy).

All characters ✓ of TFr
0 appear in this way and we can identify ✓ with the pair (�1,�2). The

character ✓ is in general position if and only if �q+1
1 6= 1. By the dimension formula

dim(iGB
0

(✓)) = q3 + 1.

If ✓ is not in general position, by weak orthogonality,

(iGB
0

(✓), iGB
0

(✓)) = 2.

Hence iGB
0

(✓) is the sum of two irreducible representations. In this case, because �q+1
1 = 1,

�1 factors through the map ⇠q�1 : x 7! xq�1, and identifies with a character � of E1,

�1 = � � ⇠q�1.

We have two cases:

(1) If � = 1, then

iGB
0

(✓) = iGB
0

(�2 � det)

= iGB
0

(1)(�2 � det).

By Frobenius reciprocity iGB
0

(1) contains 1G and the irreducible quotient denoted by StG
of iGB

0

(1) by 1G is q3-dimensional. Thus

iGB
0

(✓) = 1G(�2 � det) + StG(�2 � det).

We denote 1G(�2 � det) by 1G(�2) and StG(�2 � det) by StG(�2).

(2) Otherwise, when � 6= 1,

iGB
0

(✓) = iGB
0

(�1 ⌦ 1)(�2 � det)

= RG
L (i

L
B

0

\L(� � ⇠q�1 ⌦ 1))(�2)

= RG
L (1H(� � det)⌦ 1 + StH(� � det)⌦ 1)(�2)

= RG
L (1H(�)⌦ 1)(�2) +RG

L (StH(�)⌦ 1)(�2).

The dimension of RG
L (1H(�)⌦ 1)(�2) is q2 � q + 1, and the dimension of RG

L (StH(�)⌦
1)(�2) is q(q2� q+1). By comparing with the complex character table, [Enn63], these

are irreducible representations of GFr.

8.2. Deligne-Lusztig induction from TFr
1 . Let ✓ be a character of TFr

1 . The character

✓ is in general position if ✓q+1 6= 1. By the dimension formula

dim(RG
T
1

✓) = �(q2 � 1)(q + 1).

If ✓ is not in general position, by weak orthogonality,

(RG
T
1

✓, RG
T
1

✓) = 3.

Hence RG
T
1

✓ contains three irreducible representations each with multiplicity ±1. If ✓ is not

in general position then ✓ factors through the map ⇠q2�q+1 : x 7! xq
2�q+1 and hence can be
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identified with character � of E1

✓ = � � ⇠q2�q+1.

Then RG
T
1

✓ = RG
T
1

1(��det) and we are reduced to decomposing RG
T
1

1. We know RG
T
1

1 contains

1G with multiplicity 1. Thus by comparing with iGB
0

(1), via weak orthogonality, RG
T
1

1 contains

StG with multiplicity �1. There is one other irreducible representation ⌫ of dimension q2� q

and because it did not appear in any of the induced representations from TFr
0 it is . Thus

RG
T
1

✓ = 1G(�)� ⌫(� � det)� StG(�)

We let ⌫� = ⌫(� � det).

If ✓ is in general position �RG
T
1

✓ is an irreducible cuspidal representation of GFr. We let

�T
1

,✓ = �RG
T
1

✓.

8.3. Deligne-Lusztig induction from TFr
2 . Let g 2 GL3(E) such that (TFr

2 )g is equal

to the set of diagonal matrices in GL3(E) with entries in E1. Let ✓ be a character of TFr
2 .

Define characters ✓i, i = 1, 2, 3 of E1 by

�1(x) = ✓g(diag(x, 1, 1)), �2(x) = ✓g(diag(1, x, 1)), �3(x) = ✓g(diag(1, 1, x)).

We can thus identify ✓ with �1 ⌦ �2 ⌦ �3. The character ✓ is in general position if the

characters �i, i = 1, 2, 3, are pairwise distinct. By the dimension formula

dim(RG
T
2

✓) = �(q � 1)(q2 � q + 1).

If ✓ is in general position �RG
T
2

✓ is an irreducible cuspidal representation of GFr, we let

�T
2

,✓ = �RG
T
2

✓.

When ✓ is not in general position we have two cases:

(1) If � = �1 = �2 = �3, then by weak orthogonality

(RG
T
2

✓, RG
T
2

✓) = 6.

Thus either RG
T
2

✓ contains six irreducible representations each with multiplicity ±1,

or it contains three irreducible representations, two of which have multiplicity ±1 and

one of which has multiplicity ±2. Because RG
T
2

✓ = RG
T
2

1(� � det), we are reduced to

decomposing RG
T
2

1. By comparing with iGB
0

(1) and RG
T
1

1 via weak orthogonality, we

have

RG
T
2

1 = 1G � 2⌫1 � StG .

(2) If � = �1 = �2 6= �3, then by weak orthogonality

(RG
T
2

✓, RG
T
2

✓) = 2.

Thus RG
T
2

✓ contains two irreducible representations each with multiplicity ±1. In fact by

counting we have already found all irreducible representations of GFr, and by comparing

dimensions we must have

RG
T
2

= RG
L (1H(�)⌦ 1)(�3)�RG

L (1H(�)⌦ 1)(�3).
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`

�

G
F
r�

R
G T
0

✓
1 G

(�
)
+
S
t G

(�
)

�
a
ch
ar
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te
r
of

E
1

�
1
=
�
�⇠

q
�1

✓(
d
ia
g(
x
,1
,x

�q
))

=
�
1
(x
)�

(x
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�q

y
)

1,
q3

2(
q
+
1)

R
G L
(1
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1)
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G L
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t H
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2
)
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0

(✓
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=
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)

q3
+
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�
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G T
1

✓
1 G
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+
⌫ �
�

S
t G

(�
)
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of

E
1

✓
=
�
�⇠

q
2
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+
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1,
q2
�
q,
q3

3(
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+
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�
�
T
1

,✓

✓
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of

E
1 3

✓q
+
1
6=

1
R

G T
1

✓
=

R
G T
1

✓q
(q

2
�
1)
(q

+
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(q
+
1)
q(
q
�
1)

3

R
G T
2

✓
1 G
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)
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�
�
S
t G

(�
)

�
a
ch
ar
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te
r
of

E
1

✓
=
�
⌦
�
⌦
�

1,
q2
�
q,
q3

3(
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+
1)

R
G L
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H
(�

)
⌦
1)
(�

2
)
�
R

G L
(S
t H

(�
)
⌦
1)
(�

2
)

�
,�

2
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of
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�
6=
�
2

✓
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�
⌦
�
⌦
�
2

q2
�
q
+
1,

q(
q2
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q
+
1)

2(
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+
q)

�
�
T
2

,✓

�
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ch
ar
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te
rs

of
E

1

�
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p
ai
rw

is
e
d
is
ti
n
ct

✓
=
�
1
⌦
�
2
⌦
�
3

R
G T
2

(�
1
⌦
�
2
⌦
�
3
)
=

R
G T
2

(�
�
(1
)
⌦
�
�
(2
)
⌦
�
�
(3
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�
2
S

3

(q
�
1)
(q

2
�

q
+
1)

(q
+
1)
q(
q
�
1)

6
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9. The `-adic representations of GL3(F )

Let GFr = GL3(F ). The maximal F -split diagonal torus in GFr is

TFr
0 =

�

diag(x, y, z) : x, y, z 2 F⇥ ,

and W (T0)F ' S3. Let

w1 =

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

and w2 =

0

B

@

0 1 0

1 0 0

0 0 1

1

C

A

,

be representatives of the two nontrivial Fr-conjugacy classes in W (T0). Let TF
i , i = 1, 2, be

representatives of the GFr-conjugacy class of maximal tori in GFr obtained by twisting TFr
0

by wi, i = 1, 2. The torus TFr
1 is conjugate in GL3(F3) to

n

diag(x, xq
2

, xq) : x 2 F⇥
3

o

.

and W (T1)F ' C3. The torus TFr
2 is conjugate in GL3(E) to

�

diag(x, xq, y) : x 2 E⇥, y 2 F⇥ ,

and W (T2)F ' C2. The tori T0 and T2 are contained in the Fr-stable parabolic subgroup

P =

0

B

@

? ? ?

? ? ?

0 0 ?

1

C

A

.

Let HFr = GL2(F ) and SFr
1 be a representative of the HFr-conjugacy class of non split

maximal tori in HFr. Following the same methods we have used for the groups GL2(F ),

U2(E/F ) and U3(E/F ) we produce the following table of induced representations.
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CHAPTER 3

`-modular representations of finite reductive groups

In this chapter we study the relationship between `-modular and `-adic representations of

finite groups of Lie type. We then classify the `-modular representations of certain finite

reductive groups which appear as quotients of the parahoric subgroups of the p-adic unitary

group in three variables.

In this chapter, as in Chapter 2, F is a finite field with q-elements and E a quadratic extension

of F .

39
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1. Decomposition modulo-`

Let G be a finite group of Lie type. Let (K,OK , k) be an `-modular splitting system for G.

Recall that this means

(1) OK is a discrete valuation ring in characteristic 0 with maximal ideal };

(2) K is the quotient field of OK which is su�ciently large; containing all |G|-th roots of

unity;

(3) k = OK/} is a finite field of characteristic `.

The representations of G over K are called ordinary and those over k are called `-modular.

In analogy with Chapter 1 Section 4 for p-adic groups we define a decomposition modulo-`

map for representations of G.

Let (⇢,V) be an integral ordinary representation of G. Let L be an OKG-lattice in V; define
the reduction modulo-` of (⇢,V), with respect to L, to be the induced representation of G on

the k-vector space

L = L⌦O
K

k.

The Brauer-Nesbitt Principle, [CR81, Theorem 16.16], states that the composition factors

that appear are independent of the choice of lattice in V. Thus we define the decomposition

modulo ` of V by

d`(V) = [L⌦O
K

k] .

We extend d` by linearity to the Grothendieck group GrK(G) of virtual ordinary represen-

tations of G. Then, [CR81, Theorem 17.17], d` is a surjective homomorphism between

Grothendieck groups

d` : GrK(G)! Grk(G),

which is compatible with extension of K, [CR81, Proposition 16.23]. The decomposition

matrix (dij) of G is the matrix formed by indexing the rows by the irreducible ordinary

representations (⇡i,Vi), the columns by the irreducible `-modular representations (⇢j ,Wj)

and the (i, j)-th entry dij is the multiplicity of (⇢j ,Wj) in d`(Vi).

1.1. Brauer Characters. Let G be a finite group and (K,OK , k) an `-modular splitting

system for G.

The field k contains all |G|`0-th roots of unity, where |G|`0 denotes the `-regular part of |G|.
These form a cyclic group of order |G|`0 under multiplication. Fix an isomorphism of cyclic

groups

 :
�

|G|`0 -th roots of unity in k⇥
 

!
�

|G|`0 -th roots of unity in K⇥ .

For ( ,M) a d-dimensional `-modular representation of G, we define a function on the `-

regular elements of G by

�M (g) =
d
X

i=1

 (�i),

where �1, . . . ,�d are the eigenvalues of  (g) counted with multiplicity.

Hence we have a map

�M : {conjugacy classes of `-regular elements of G}! K.
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The map �M is called a Brauer character of ( ,M) and we let

IBr(G) = {�M : M is an irreducible `-modular representation of G}.

The definition of a Brauer character involves a choice of `-modular system and a choice

of isomorphism  . For a given G we assume we have fixed such choices so that a finite

dimensional `-modular representation of G defines a unique Brauer character.

Theorem 1.1 ([CR81, Chapter 17]).

(1) A Brauer character is a class function on the `-regular classes of G.

(2) The set IBr(G) is a basis for the K-vector space of `-regular class functions on G. (Hence

| IBr(G)| is equal to the number of conjugacy classes of `-regular elements of G.)

(3) If ` - |G| then Irr(G) = IBr(G), where Irr(G) denotes the set of ordinary characters of

G.

Let H be a subgroup of G, (⇢,W ) an `-modular representation of H, and  2 IBr(G) be the

Brauer character of (⇢,W ), then  G given by

 G(x) =
1

|H|`0
X

g2G
 (gxg�1),

is the Brauer character of the induced representation iGH⇢, [Nav98, Theorem 8.2].

A Z-linear combination of Brauer characters is called a virtual Brauer character. The set

of all irreducible `-modular representations of G is a Z-basis of Grk(G), and we have an

isomorphism of rings ⌦k : Grk(G)! Z IBr(G) given by

⌦k :
X

i

aiVi 7!
X

i

ai�V
i

.

Similarly there is an isomorphism of rings ⌦K between GrK(G) and Z Irr(G). Define a map

d1 : CF(G,K)! CF(G,K) on the set of K-valued class functions of G by

d1�(g) =

8

<

:

�(g) if g is `-regular;

0 otherwise.

Under the usual inner product on K-valued class functions of G,

h�1,�2i =
1

|G|
X

g2G
�1(g)�2(g

�1),

d1 is a self adjoint functor, i.e. for all �1,�2 2 CF(G,K) we have hd1�1,�2i = h�1, d
1�2i.

Lemma 1.2 ( [CR81, Proposition 17.15]). Let ⇢ 2 GrK(G) then

⌦k � d`(⇢) = d1 � ⌦K(⇢).

We define a decomposition matrix using Brauer characters. The rows are indexed by the

irreducible ordinary characters �i of G, the columns are indexed by the irreducible Brauer

characters  j of G, the (i, j)-th entry is the multiplicity of  j in d1(�i). By Lemma 1.2 this

decomposition matrix is equal to the decomposition matrix of G given by d`.

1.2. Theory of `-blocks. Let (⇢i,Vi), i = 1, 2, be irreducible ordinary representations of

G. We say that ⇢1 and ⇢2 are in the same `-block if there exists a sequence of irreducible

ordinary representations �i, i = 1, ..., n, such that
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(1) ⇢1 = �1 and ⇢2 = �n;

(2) For all i 2 {1, ..., n� 1}, d`(�i) and d`(�i+1) share a composition factor.

With this equivalence relation we partition the irreducible ordinary representations Irr(G) of

G into `-blocks. We also consider irreducible `-modular representations, ordinary characters

and Brauer characters as associated to a unique `-block in the obvious way.

Given an `-block B one can associate a conjugacy class of subgroups of G, [Nav98, Chapter

4], called the defect group of the block. The defect group gives an indication of the complexity

of the structure of B. A block with trivial defect group is called of defect zero. An `-block

B is of defect zero if and only if there are only one ordinary character � and one Brauer

character d1(�) associated to the block, [Nav98, Theorem 3.18].

When the defect group of a block is cyclic, the structure of B is particularly nice: One

associates to B a graph with N vertices, where N�1 vertices correspond to distinct ordinary

characters in B, and the N -th exceptional vertex corresponds to a collection of ordinary

characters in B with equal decomposition modulo `. A vertex corresponding to an ordinary

character �1 is joined to a vertex corresponding to ordinary character �2 if and only if d1(�1)

and d1(�2) have a common constituent. The graph defined in this way is a tree, [Nav98,

Page 271], called the Brauer tree of B.

1.3. RG
T and `-modular Representations. Let GFr be a finite group of Lie type, L

be an Fr-stable Levi subgroup of G and P be an Fr-stable parabolic subgroup of G. In

analogy with Chapter 1 Corollary 5.2, parabolic induction and restriction commute with

decomposition modulo-`, i.e. d`(i
G
P') =

⇥

iGP (d`('))
⇤

and d`(rGP (�)) =
⇥

rGP (d`(�))
⇤

. Thus

the decomposition modulo ` of an irreducible cuspidal representation is a sum of irreducible

cuspidal `-modular representations.

Lemma 1.3. Let ✓1, ✓2 be representations of LFr such that d`(✓1) = d`(✓2). Then d`(RG
L✓1) =

d`(RG
L✓2).

Proof: ⇤RG
L,P commutes with decomposition maps d1, i.e.

d1 � ⇤RG
L,P = ⇤RG

L,P � d1

[CE04, Definition 5.7, Theorem 21.4]. Hence RG
L,P commutes with d1 because d1 is a self-

adjoint functor. This gives the base square on the following commutative diagram, the vertical

arrows being the isomorphisms of rings introduced earlier:

GrK(LFr) Grk(LFr)

GrK(GFr) Grk(GFr)

Z Irr(LFr) Z IBr(LFr)

Z Irr(GFr) Z IBr(GFr)

d`

RG
L⇢P d`

RG
L,P

d1

RG
L,P

d1
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The lemma follows by passing from the top incomplete square to the base commutative

square, using the commutativity there and then passing back. ⇤

Remark. We can lift ⇢ 2 Grk(LFr) to a virtual representation ⇢ 2 GrK(LFr), thus we can

define an `-modular Deligne-Lusztig induction

RG
L⇢P : Grk(L

Fr)! Grk(G
Fr)

⇢ 7! d`(R
G
L⇢P⇢)

which completes the commutative cube.

Define an equivalence relation on Irr(GFr) by � ⇠  if there exists a sequence (�i)ni=1 2
Irr(GFr) such that

(1) �1 = � and �2 =  ,

(2) For i = 1, ..., n � 1 there exist a Fr-stable maximal torus T of G and a character ✓ of

TFr such that

(RG
T ✓,�i) 6= 0 and (RG

T ✓,�i+1) 6= 0.

The equivalence classes are called geometric conjugacy classes and can be parametrized by

semisimple conjugacy classes in the dual group G⇤Fr⇤ , [CE04, Section 8.4]

Lemma 1.4. Let ✓ be a character of TFr in general position. Assume that d`(✓) is also in

general position, i.e. w 2 W (T )Fr and d`(✓) = d`(✓)w implies that w = 1. Then either

d`R
G
T (✓) or �d`RG

T (✓) is an irreducible representation.

Proof: The following proof was suggested by Gunter Malle. Let ✓ be an `-modular character

of TFr such that for all w 2W , ✓w 6= ✓. By [CE04, 9.12],

{RG
T ✓ : d`(✓) = ✓},

is both a union of `-blocks and a union of geometric conjugacy classes. By Lemma 1.3

the decomposition modulo ` of any of the representations RG
T ✓ in this set are equal. These

ordinary representations are in general position and thus are all irreducible of the same

dimension. Hence, because decomposition modulo-` is a surjective map between Grothendieck

groups, d`RG
T (✓) or �d`RG

T (✓) is an irreducible representation. ⇤

2. Decomposition matrices of GL2(F )

We use the notation of Chapter 2 Section 5 to describe the decomposition matrices of GL2(F )

which are extracted from [Jam90] in Appendix A.

Notation in Appendix A Notation in Chapter 2 Section 5

SK(s, (12)) 1G(�)

SK(s, (2)) StG(�)

Ind(SK(s1, (1))⌦ SK(s2, (1))) iGB
0

(✓)

SK(s, (1)) �T
1

,✓

2.1. Decomposition matrices if ` 6= 2 and ` | q � 1.

Let `a || q � 1. There are three types of `-blocks.
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(1) The `-blocks B1(�). Let � be an irreducible `-modular character of F⇥. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 d`(�) = � `a

StG(�) 0 1 d`(�) = � `a

iGB
0

(✓) 1 1 d`(✓) =

�⌦ �
`a(`a � 1)

2

There are q�1
`a irreducible `-modular characters of F⇥ hence q�1

`a distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be irreducible `-modular characters of F⇥

such that �1 6= �2. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with

decomposition matrix:

Conditions Number

iGB
0

(✓) 1 d`(✓) =

�1 ⌦ �2

`2a

There are (q � 1)(q � 2) distinct `-blocks B2(�1,�2).

(3) `-blocks of defect zero. The irreducible supercuspidal representations �T
1

,✓ are in

`-blocks of defect zero. Thus there are q2�q+2
2 cuspidal `-modular representations, all of

which are supercuspidal.

2.2. Decomposition matrices if ` 6= 2 and ` | q + 1.

Let `a || q + 1. There are three types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of F⇥. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 d`(�) = � 1

StG(�) 1 1 d`(�) = � 1

�T
1

,✓ 0 1 d`(✓) =

� � ⇠q+1

(`a � 1)

2

There are q � 1 distinct `-blocks B1(�)

(2) The `-blocks B2(�). Let � be an irreducible `-modular character of E⇥ such that

�q�1 6= 1. Associated to � we have an `-block B2(�) with decomposition matrix:

Conditions Number

�T
1

,✓ 1 d`(✓) = � `a

There are q2�1
`a � (q � 1) distinct `-blocks B2(�)

(3) `-blocks of defect zero. The irreducible principal series representations iGB✓ are in

`-blocks of defect zero.

3. Decomposition matrices of GL3(F )

We use the notation of Chapter 2 Section 9 to describe the decomposition matrices of GL3(F )

which are extracted from [Jam90] in Appendix A.
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Notation in Appendix A Notation in Chapter 2 Section 9

SK(s, (13)) 1G(�)

SK(s, (21)) ⌫G(�)

SK(s, (3)) StG(�)

Ind(SK(s1, (1
2))⌦ SK(s2, (1))) iGP (1H(�1)⌦ �2)

Ind(SK(s1, (2))⌦ SK(s2, (1))) iGP (StH(�1)⌦ �2)

Ind(SK(s1, (1))⌦ SK(s2, (1))⌦ SK(s3, (1))) iGB
0

(✓)

Ind(SK(s21, (1))⌦ SK(s2, (1))) iGP (�S1

,�
1

⌦ �2)

SK(s3, (1)) �T
1

,✓

3.1. Decomposition matrices if ` 6= 2, 3 and ` | q � 1.

Let `a || q � 1. There are four types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of F⇥. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 0 d`(�) = � `a

⌫� 0 1 0 d`(�) = � `a

StG(�) 0 1 1 d`(�) = � `a

iGP (1H(�1)⌦ �2) 1 1 0 d`(�i) = � `a(`a � 1)

iGP (StH(�1)⌦ �2) 0 1 1 d`(�i) = � `a(`a � 1)

iGB✓ 1 2 1 d`(✓) = `a(`a � 1)(`a � 2)

6�⌦ �⌦ �

There are q�1
`a distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be distinct irreducible `-modular characters

of F⇥. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with decomposition

matrix:

Conditions Number

iGP (1H(�1)⌦ �2) 1 0 d`(�i) = �i `2a

iGP (StH(�1)⌦ �2) 0 1 d`(�i) = �i `2a

iGB✓ 1 1 d`(✓) = `2a(`a � 1)

2�1 ⌦ �1 ⌦ �2

There are q�1
`a

⇣

q�1
`a � 1

⌘

distinct `-blocks B2(�1,�2).

(3) The `-blocks B3(�1,�2,�3). Let �i, i = 1, 2, 3 be distinct irreducible `-modular

characters of F⇥. Associated to the triple (�1,�2,�3) we have an `-block B3(�1,�2,�3)

with decomposition matrix:

Conditions Number

iGB
0

(✓) 1 d`(✓) = `3a

�1 ⌦ �2 ⌦ �3

There are q�1
`a

⇣

q�1
`a � 1

⌘⇣

q�1
`a � 2

⌘

distinct `-blocks B3(�1,�2,�3).

(4) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.
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3.2. Decomposition matrices if ` 6= 2 and ` | q + 1.

Let `a || q + 1. There are four types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of F⇥. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 d`(�) = � 1

StG(�) 1 1 d`(�) = � 1

iGP (�S1

,�
1

⌦ �2) 0 1 d`(✓) =

(� � ⇠q+1)⌦ �
`a � 1

There are q � 1 distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be distinct irreducible `-modular characters

of F⇥. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with decomposition

matrix:

Conditions Number

iGP (1H(�1)⌦ �2) 1 0 d`(�i) = �i 1

iGP (StH(�1)⌦ �2) 1 1 d`(�i) = �i 1

iGP (�S1

,�
1

⌦ �2) 0 1 d`(✓) =

(�1 � ⇠q+1)⌦ �2

`a � 1

There are (q � 1)(q � 2) distinct `-blocks B2(�1,�2).

(3) The `-blocks B3(�1,�2). Let �1 be an irreducible `-modular character of E⇥ such

that �q�1
1 6= 1; and let �2 be an irreducible `-modular character of F⇥. Associated to

the pair (�1,�2) we have an `-block B3(�1,�2) with decomposition matrix:

Conditions Number

iGP (�S1

,�
1

⌦ �2) 1 d`(✓) =

�1 ⌦ �2

`a

There are
⇣

q+1
`a � 1

⌘

(q � 1)2 distinct `-blocks B3(�1,�2).

(4) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.

3.3. Decomposition matrices if ` 6= 2, 3 and ` | q2 + q + 1.

Let `a || q2 + q + 1. There are three types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of F⇥. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 0 d`(�) = � 1

⌫G(�) 1 1 0 d`(�) = � 1

StG(�) 0 1 1 d`(�) = � 1

�T
1

,✓ 0 0 1 d`(✓) = � � ⇠q2+q+1
`a � 1

2
There are q � 1 distinct `-blocks B1(�).

(2) The `-blocks B2(�). Let � be an irreducible `-modular character of F⇥
3 such that

�q�1 6= 1. Associated to � we have an `-block B2(�) with decomposition matrix:
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Conditions Number

�T
1

,✓ 1 d`(✓) = � `a

There are q3�1
`a � (q � 1) distinct `-blocks B2(�).

(3) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.

4. Decomposition matrices of U2(E/F )

The decomposition matrices of SU2(E/F ) coincide with the decomposition matrices of SL2(F )

because the groups are isomorphic. Using Cli↵ord theory for Brauer Characters, see Appendix

B Section 1, we can work out the decomposition matrices for U2(E/F ). In Appendix B Section

3 we explain in detail how to apply Cli↵ord theory in this context, but with the more di�cult

case of SU3(E/F ) and U3(E/F ).

4.1. Decomposition matrices if ` 6= 2 and ` | q � 1.

Let `a || q � 1. There are three types of `-block.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 d`(�) = � 1

StG(�) 0 1 d`(�) = � 1

iGB
0

(✓) 1 1 d`(✓) = � � ⇠q�1 (`a � 1)

2

There are q + 1 irreducible `-modular characters of E1, hence q + 1 distinct `-blocks

B1(�).

(2) The `-blocks B2(�). Let � be an irreducible `-modular character of E⇥ such that

�q+1 6= 1 . Associated to � we have an `-block B2(�) with decomposition matrix:

Conditions Number

iGB
0

(✓) 1 d`(✓) = � `a

There are (q + 1)
⇣

q�1
`a � 1

⌘

distinct `-blocks B2(�).

(3) `-blocks of defect zero. The supercuspidal representations �T
1

,✓ are in `-blocks of

defect zero. We write �T
1

,✓ for d`(�T
1

,✓).

4.2. Decomposition matrices if ` 6= 2 and ` | q + 1.

Let `a || q + 1. There are three types of `-block.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B1(�) with decomposition matrix:
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Conditions Number

1G(�) 1 0 d`(�) = � `a

StG(�) 1 1 d`(�) = � `a

�T
1

,✓ 0 1 d`(✓) = �⌦ � `a(`a � 1)

2

There are q+1
`a irreducible `-modular characters of E1, hence q+1

`a distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be irreducible `-modular characters of E1

such that �1 6= �2. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with

decomposition matrix:

Conditions Number

�T
1

,✓ 1 d`(✓) =

�1 ⌦ �2

`2a

There are q+1
`a

⇣

q+1
`a � 1

⌘

distinct `-blocks B2(�1,�2).

(3) `-blocks of defect zero. The irreducible principal series representations iGB
0

(✓) are in

`-blocks of defect zero.

5. Decomposition matrices of U3(E/F )

We use the notation of Chapter 2 Section 8 to describe the decomposition matrices of

U3(E/F ) which are extracted from [Gec90] in Appendix B Section 3.

5.1. Decomposition matrices if ` 6= 2 and ` | q � 1.

Let `a || q � 1. There are four types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 d`(�) = � 1

StG(�) 0 1 d`(�) = � 1

iGB
0

(✓) 1 1 d`(✓) =

(� � ⇠q�1)⌦ �
(`a � 1)

2

There are q + 1 distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be distinct irreducible `-modular characters

of E1. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with decomposition

matrix:

Conditions Number

RG
L (1H(�1)⌦ 1)(�2) 1 0 d`(�i) = �i 1

RG
L (StH(�1)⌦ 1)(�2) 0 1 d`(�i) = �i 1

iGB
0

(✓) 1 1 d`(✓(diag(x, y, x�q))) =

(�1 � ⇠q�1(x))�2(xx
�qy)

(`a � 1)

2

There are q(q + 1) distinct `-blocks B2(�1,�2).
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(3) The `-blocks B3(�1,�2). Let �1 be an irreducible `-modular character of E⇥ such

that �q+1
1 6= 1; and let �2 be an irreducible `-modular character of E1. Associated to

the pair (�1,�2) we have an `-block B3(�1,�2) with decomposition matrix:

Conditions Number

iGB
0

(✓) 1 d`(✓) = �1 ⌦ �2 `2a

There are (q + 1)2
⇣

q�1
`a � 1

⌘

distinct `-blocks B3(�1,�2).

(4) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.

5.2. Decomposition matrices if ` 6= 2, 3 and ` | q2 � q + 1.

Let `a || q2 � q + 1. There are three types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B1(�) with decomposition matrix:

Conditions Number

1G(�) 1 0 0 d`(�) = � 1

StG(�) 1 1 0 d`(�) = � 1

⌫� 0 0 1 d`(�) = � 1

�T
1

,✓ 0 1 1 d`(✓) = � � ⇠q2�q+1 `a � 1

There are q + 1 distinct `-blocks B1(�). We write ⌫� for d`(⌫�) and

d`(�T
1

,✓) = ⌫� + ��
T
1

,✓
.

The representation ��
T
1

,✓
is an example of a cuspidal `-modular representation which does

not lift. It is non-supercuspidal because it is a subquotient of iGB(�⌦ �⌦ �) appearing
in the reduction of StG(�).

(2) The `-blocks B2(�). Let � be an irreducible `-modular character of E1
3 such that

�q+1 6= 1. Associated to � we have an `-block B2(�) with decomposition matrix:

Conditions Number

�T
1

,✓ 1 d`(✓) = � `a

There are q3+1
`a � (q + 1) distinct `-blocks B2(�).

(3) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.

5.3. Decomposition matrices if ` 6= 2, 3 and ` | q + 1.

Let `a || q + 1. There are five types of `-blocks.

(1) The `-blocks B1(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B1(�) with decomposition matrix:
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Conditions Number

1G(�) 1 0 0 d`(�) = � `a

⌫� 0 1 0 d`(�) = � `a

StG(�) 1 2 1 d`(�) = � `a

RG
L (1H(�1)⌦ 1)(�2) 1 1 0 d`(�i) = � `a(`a � 1)

RG
L (StH(�1)⌦ 1)(�2) 1 1 1 d`(�i) = � `a(`a � 1)

�T
2

,✓ 0 0 1 d`(✓) = `a(`a � 1)(`a � 2)

6�⌦ �⌦ �

There are q+1
`a distinct `-blocks B1(�).

(2) The `-blocks B2(�1,�2). Let �i, i = 1, 2 be distinct irreducible `-modular characters

of E1. Associated to the pair (�1,�2) we have an `-block B2(�1,�2) with decomposition

matrix:

Conditions Number

RG
L (1H(�1)⌦ 1)(�2) 1 0 d`(�i) = �i `2a

RG
L (StH(�1)⌦ 1)(�2) 1 1 d`(�i) = �i `2a

�T
2

,✓ 0 1 d`(✓) = `2a(`a � 1)

2�1 ⌦ �1 ⌦ �2

There are q+1
`a

⇣

q+1
`a � 1

⌘

distinct `-blocks B2(�1,�2).

(3) The `-blocks B3(�1,�2,�3). Let �i, i = 1, 2, 3 be pairwise distinct irreducible `-

modular characters of E1. Associated to the triple (�1,�2,�3) we have an `-block

B3(�1,�2,�3) with decomposition matrix:

Conditions Number

�T
2

,✓ 1 d`(✓) = `3a

✓1 ⌦ ✓2 ⌦ ✓3

There are q+1
`a

⇣

q+1
`a � 1

⌘⇣

q+1
`a � 2

⌘

distinct `-blocks B3(�1,�2,�3).

(4) The `-blocks B4(�). Let � be an irreducible `-modular character of E1. Associated

to � we have an `-block B4(�) with decomposition matrix:

Conditions Number

iGB
0

✓ 1 d`(✓) = (� � ⇠q�1)⌦ � `2a

There are q+1
`a distinct `-blocks B4(�).

(5) `-blocks of defect zero. All other `-modular representations are in `-blocks of defect

zero.



CHAPTER 4

Level zero representations

In this chapter we study irreducible representations which have nontrivial invariants under

the pro-unipotent radical of a parahoric subgroup. These are called level zero representations.

Our initial observations apply to a general reductive p-adic group. Then we specialise to

unramified unitary groups. This has the advantage that for all parahoric subgroups Gz we

have G+
z = Gz and the a�ne Weyl group is a Coxeter group rather than an extended Coxeter

group. We then specialise to an unramified unitary group in three variables U(2, 1)(E/F ).

First, because both maximal parahoric subgroups of U(2, 1)(E/F ) admit Iwasawa decom-

positions. Then because, from Chapters 2 and 3, we understand the `-adic and `-modular

representations of the finite reductive groups Mz which appear as quotients of the maximal

parahoric subgroups. For example, it is important to know that the supercuspidal support

of an `-modular representation of Mz is unique up to conjugacy. Finally we specialise to an

unramified p-adic unitary group in three variables U(2, 1)(E/F ), where F is of characteristic

zero, so that we can apply results of [Dat05].

We partition the irreducible level zero `-modular representations of an unramified p-adic

unitary group in three variables U(2, 1)(E/F ) by supercuspidal support. We do this in two

steps:

(1) Giving a complete list of the irreducible cuspidal level zero `-modular representations

with each representation explicitly produced by compact induction from an irreducible

`-modular representation of a compact open subgroup.

(2) Describing the decomposition of the `-modular representations which are parabolically

induced from an irreducible `-modular representation of the standard torus and which

have irreducible cuspidal level zero subquotients.

51
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1. Irreducible level zero representations

An irreducible representation (⇡,V) of G has level zero if there exists a parahoric subgroup

Gx of G such that

VG1

x 6= {0}.
It is equivalent to ask for a maximal parahoric subgroup Gx with ⇡G

1

x 6= {0}, because Gy ✓ Gx

implies that G1
x ✓ G1

y.

Suppose (⇡,V) is an admissible representation such that VG1

x 6= {0}. By normality, Gx acts

on VG1

x . Thus the finite reductive group Mx acts on VG1

x . By admissibility of ⇡, this is a finite

dimensional representation of Mx. Let � be an irreducible Mx-subrepresentation of VG1

x then

{0} 6= HomM
x

(�, (ResGG
x

⇡)G
1

x) ' HomG
x

(inflGx

M
x

�,ResGG
x

⇡)

' HomG(ind
G
G

x

� inflGx

M
x

�,⇡),

by reciprocity: we say that ⇡ contains (Gx,�). Suppose that ⇡ is irreducible. Then ⇡

is a quotient of the induced representation indGG
x

� inflGx

M
x

�. In general the representation

indGG
x

� inflGx

M
x

� is not irreducible.

Fix a chamber in the reduced building B(G). The standard parahoric subgroups are the

parahoric subgroups that only fix points in the closure of this chamber. If ⇡ contains (Gx,�),

then g⇡ contains (Ggx,
g�). Thus, because ⇡ ' g⇡, it is enough to consider only the standard

parahoric subgroups.

2. Minimality

Let (⇡,V) be an irreducible representation of G of level zero. Thus there exists a standard

maximal parahoric subgroup Gx of G such that VG1

x 6= {0}. Let

LG
x

0 (⇡) = {standard parahoric subgroups Gy ✓ Gx : VG1

y 6= {0}}.

We are interested in the minimal elements in LG
x

0 (⇡) under the partial order of inclusion of

parahoric subgroups.

Lemma 2.1. Let Gz 2 LG
x

0 (⇡), and let � be an irreducible representation of Mz such that ⇡

contains (Gz,�). If Gz is minimal under the partial order of inclusion on LG
x

0 (⇡) then � is

cuspidal.

Proof: Assume that � is not cuspidal. Then there exists a proper standard parabolic

subgroup P of Mz with Levi decomposition P = L n N such that ResMz

N � contains the

trivial representation 1N of N , i.e.

HomN (1N ,ResMz

N �) 6= {0}.

Let GP be the parahoric subgroup of G equal to the preimage in Gz of P under the projection

Gz !Mz.
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1 G1
z Gz Mz 1

1 G1
z GP P 1

The preimage of N under the projection from GP to P is the pro-p unipotent radical G1
P of

GP . By reciprocity

{0} 6= HomN (1N ,ResMz

N �) ' HomN (1N , invG1

P

�ResGz

G1

P

(inflG1

z

�))

' HomG1

P

(1G1

P

,ResGz

G1

P

(inflG1

z

�)).

Because � is contained in ⇡

{0} 6= HomM
z

(�, (ResGG
z

⇡)G
1

z) ' HomG
z

(inflG1

z

�,ResGG
z

⇡)

Thus, because G1
P is pro-p, ResGz

G1

P

inflG1

z

� is a direct summand of ResG
G1

P

⇡. Hence

VG1

P ' HomG1

P

(1G1

P

,ResGG1

P

⇡) 6= {0}

contradicting the minimality of Gz. ⇤

When G = GLn(F ), all maximal parahoric subgroups are conjugate in G and can be identified

with GLn(OF ). Thus it is enough to consider one set, LGL
n

(O
F

)
0 (⇡).

When G is a unitary group of dimension greater than or equal to three, there are multiple

maximal parahoric subgroups. The minimal parahoric subgroups, the Iwahori subgroups, in

a reductive group G are always all conjugate in G. When G = U(2, 1)(E/F ), there are two

maximal parahoric subgroups up to conjugacy. We fix a choice of Iwahori subgroup I then

there are two maximal parahorics containing I.

Gx

I

Gy

The situation is more complex in higher dimensions: for example when G = U(2, 2)(E/F )

and E/F is unramified there are three maximal parahoric subgroups up to conjugacy.

Gx \Gy Gx

I Gx \Gz Gy

Gy \Gz Gz

Not being able to work inside a single fixed maximal parahoric subgroup makes classification

arguments for level zero representations more di�cult.

3. Decomposition of categories

Let RR(G) denote the category of smooth R-representations of G. In this section we review

briefly some of the `-adic theory and then split o↵ the subcategory of level zero representations
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fromRR(G) in the `-modular case. For `-adic representations the idea is to try to splitRQ
`

(G)

by cuspidal support, but one finds that this is slightly too fine.

3.1. The `-adic Bernstein decomposition. Let X(M)0 be the set of unramified char-

acters of M ; that is the characters of M which are trivial on every compact subgroup of M .

Let (⇡,V) be a smooth R-representation of G with supercuspidal support [M,�]. On these

pairs we define an equivalence relation, called inertial equivalence, by [M1,�1] is equivalent

to [M2,�2] if and only if there exist g 2 G and � 2 X(M1)0 such that gM2 = M1 and
g�2 ' �1⌦�. The equivalence classes are called inertial classes and the set of inertial classes

is called the Bernstein spectrum B(G).

We say RR(G) is a direct product of subcategories Ri
R(G), for i 2 I,

RR(G) =
Y

i2I
Ri

R(G),

if for all (⇡,V), (�,W ) 2 RR(G),

(1) there is a unique decomposition into subrepresentations

V =
M

i2I
V i

with V i an element of Ri
R(G);

(2) if

W =
M

i2I
W i

is the decomposition of W given by (1), then

HomG(V,W ) =
Y

i2I
HomG(V i,W i).

For `-adic representations of p-adic groups the fundamental result is the optimal decomposi-

tion of Bernstein:

Theorem 3.1 (Bernstein Decomposition, [DKV84, Chapter 1]). For s 2 B(G) let Rs
Q

`

(G)

denote the full subcategory of RQ
`

(G) of smooth representations all of whose irreducible

subquotients have inertial support s. Then

RQ
`

(G) =
Y

s2B(G)

Rs
Q

`

(G).

Lemma 3.2. Let G be a classical group and let ⇡ be an irreducible cuspidal representation

of G. Then ⇡ is integral.

Proof: This follows as the centre of G is compact. A character is integral if and only if it

takes values in Z⇥
` . By Chapter 1 Theorem 3.4, ⇡ has a central character !⇡. As the centre of

G is compact and the image of a compact group under a smooth homomorphism so compact,

!⇡ is integral. Therefore, by Chapter 1 Theorem 4.3, ⇡ is integral. ⇤

A similar proof when G = GLn(F ) shows that every irreducible cuspidal representation is

inertially equivalent to an integral representation.

3.2. The `-modular decomposition by level. Optimal decompositions of RF
`

(G) are

not known in general. However it is possible to decompose RF
`

(G) by normalised level. In
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particular it is possible to decompose RF
`

(G) into a product of the level zero representations

and the positive level representations.

A smooth R-representation (⇡,V) of G has level zero if V is generated by the union of its

G1
x-invariant vectors as Gx runs over the maximal parahoric subgroups of G.

A smooth R-representation (⇡,V) of G has positive level if, for any maximal parahoric sub-

group Gx of G, VG1

x = {0}.

Theorem 3.3 ([Dat09, Proposition 6.3]). Let G be a reductive p-adic group, R0
R(G) the

full subcategory of RR(G) consisting of representations of level zero and R>0
R (G) the full

subcategory of RR(G) consisting of representations of positive level. Then

RR(G) = R0
R(G)⇥R>0

R (G).

Furthermore the functors of parabolic induction and parabolic restriction respect the decom-

position; i.e. take level zero (resp. positive level) representations to level zero (resp. positive

level) representations.

4. Level zero R-types

In this section we introduce R-types.

Definition 4.1.

(1) An R-type of G is a pair (K,�) consisting of a compact open subgroup K of G and an

irreducible smooth R-representation � of K.

(2) A smooth R-representation ⇡ of G is said to contain the R-type (K,�) if

HomK(�,ResGK(⇡)) 6= {0}.

(3) Two R-types (K1,�1) and (K2,�2) of G are called equivalent if indGK
1

�1 ' indGK
2

�2.

Definition 4.2.

(1) An R-type of level zero is an R-type of the form (Gz,�) where Gz is a parahoric subgroup

of G and � is an irreducible representation of the finite reductive group Mz inflated to

Gz.

(2) An R-type of level zero (Gz,�) is called maximal if Gz is a maximal parahoric subgroup

of G.

(3) An R-type of level zero (Gz,�) is called cuspidal if � is a cuspidal representation of Mz.

(4) An R-type of level zero (Gz,�) is called supercuspidal if � is a supercuspidal represen-

tation of Mz.

Thus, in terms of R-types, Lemma 2.1 implies:

Lemma 4.3. Let ⇡ be an irreducible representation of level zero. Then ⇡ contains a cuspidal

R-type of level zero.

4.1. Spherical Hecke algebras. Let K be a compact open subgroup of G, R a com-

mutative ring with unit, (�,W ) an irreducible smooth R-representation of K. The spher-

ical Hecke algebra, HR(G,K,�), of � is the R-module consisting of the set of functions

f : G! EndR(W ) which satisfy:
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(1) The support of f , supp(f), is a finite union of double cosets KhiK with hi 2 G.

(2) The function f transforms by � on the left and the right, i.e. for all k1, k2 2 K and all

g 2 G

f(k1gk2) = �(k1)f(g)�(k2).

The product f1 ? f2 of f1, f2 2 HR(G,K,�) is defined by convolution

f1 ? f2(h) =
X

G/K

f1(g)f2(g
�1h),

for all h 2 G.

Let Ig(�) = HomK(�, indKK\gK
g�) and

IG(�) = {g 2 G : Ig(�) 6= {0}}.

By reciprocity, Ig(�) ' HomK\ gK(�, g�).

Lemma 4.4 ([Vig96, Chapter 1, Section 8.10]). Let f 2 H(G,K,�) be supported onKg�1K.

Then f(g�1) 2 Ig(�) and for each � 2 Ig(�) there exists a unique f 2 HR(G,K,�) supported

on Kg�1K with f(g�1) = �.

Proof: Let g 2 G, k 2 K \ gK and suppose there exists f 2 HR(G,K,�) supported on

Kg�1K then f(g�1) 6= 0 and

f(g�1)�(k) = f(g�1kgg�1) = g�(k)f(g�1).

Hence f(g�1) 2 Ig(�).

Let � 2 Ig(�). Define f : G! EndR(W ) by

f(h) =

8

<

:

0 if g 62 Kg�1K;

�(k1)��(k2) if h = k1g
�1k2 with k1, k2 2 K.

Then f 2 HR(G,K,�), has support Kg�1K and is the unique element in HR(G,K,�) with

support Kg�1K and f(g�1) = �. ⇤

The R-algebra H(G,K,�) is isomorphic to EndG(ind
G
K �) by [Vig96, Section 8.5 and 8.6(f)]

where EndG(ind
G
K �) is given its natural multiplication of composition.

4.2. G-Covers for R-types. In the framework of R-types G-covers are a tool for studying

parabolic induction. Let P be a parabolic subgroup ofG with Levi decomposition P = MnN ,

and let P be the opposite parabolic subgroup with Levi decomposition P = M nN . Let K

be a compact open subgroup of G.

Definition 4.5. An element z of the centre of M is called strongly (P,K)-positive if

(1) zK+z�1 ⇢ K+ and zK�z�1 � K� where K� = K \N and K+ = K \N .

(2) For all compact subgroups H1, H2 of N (resp. N) there exists a positive (resp. negative)

integer m such that zmH1z
�m ⇢ H2.

Definition 4.6. Let (KM , ⇢M ) be an R-type of M . An R-type (K, ⇢) of G is called a G-cover

of (KM , ⇢M ) relative to the parabolic subgroup P of G if the following three properties are

satisfied:



4. LEVEL ZERO R-TYPES 57

(1) We have an Iwahori decomposition:

K \M = KM

K = K�KMK+

where K� = K \N and K+ = K \N .

(2) ResKK
M

(⇢) = ⇢M , and ResKK+

(⇢) and ResKK�(⇢) are both multiples of the trivial repre-

sentation.

(3) There exists a strongly (P,K)-positive element z of the centre of M such that the double

coset KzK supports an invertible element of HR(G,K, ⇢).

Let G = U(2, 1)(E/F ) be the unramified unitary group in three variables and B be the

standard Borel subgroup of upper triangular matrices in G with Levi decomposition B =

T nN . Let

I =

0

B

@

OE OE OE

PE OE OE

PE PE OE

1

C

A

\G

be the standard Iwahori subgroup of G and IT = T \ I.

Let � be a level zero character of T . Define a character e� of I by

e�(i�iT i+) = �(iT )

for all i� 2 I�, i+ 2 I+, and iT 2 IT .

Lemma 4.7. The level zero R-type (I, e�) is a G-cover of (IT ,�).

Proof: Properties (1) and (2) of Definition 4.6 are clear. Let

w1 =

0

B

@

0 0 1

0 1 0

1 0 0

1

C

A

, w2 =

0

B

@

0 0 $�1
F

0 1 0

$F 0 0

1

C

A

.

If g 2 IG(�),

Ig(e�) ' HomI
T

(�,�) ' R,

because � is an character. Hence, up to a scalar, there exists a unique function inHR(G,K,�)

supported on IgI. For x 2 IG(e�) and a 2 R define fx,a 2 HR(G, I, e�) to be the unique

function with support IxI such that fx(x) = a. If a = 1 we write fx = fx,1. The proof is

split into two cases:

If � is regular: let ⇣ = w1w2. Then

f⇣ ? f⇣�1(1G) =
X

G/I

f⇣(x)f⇣�1(x�1)

=
X

G/I

f⇣(x)

= [I⇣I : I]

= [I : I \ ⇣I⇣�1] = q4.

The support of f⇣ ? f⇣�1 is contained in I⇣I⇣�1I.
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The double coset space I\IG(e�)/I is contained in

I\G/I '
[

w2W
a↵

IwI.

An element w 2Wa↵ of the form

w =

0

B

@

0 0 $a

0 1 0

$�a 0 0

1

C

A

intertwines e� if and only if w1 intertwines �. But � is regular, i.e. w1 does not intertwine �.

Thus IG(e�) = ITI.

Hence I IG(�)I\ I⇣I⇣�1I = I which by Lemma 4.4 implies that f⇣ ? f⇣�1 is supported on I.

Thus f⇣ is invertible with inverse 1
q4
f⇣�1 .

If � is not regular: then w1, w2 2 IG(�) and hence, fw
1

, fw
2

2 H(G, I, e�) by Lemma 4.4.

Furthermore,

fw
1

? fw
1

(1G) =
X

G/I

fw
1

(x)fw
1

(x�1)

=
X

G/I

fw
1

(x)fw
1

(x)

= [Iw1I : I]

= [I : I \ w1Iw1] = q3.

which is nonzero. Similarly, fw
2

? fw
2

(1G) = q which is nonzero. The support of fw
1

is

contained in the group Gx = I [ Iw1I, thus

supp(fw
1

? fw
1

) ✓ GxGx = Gx.

Similarly the support of fw
2

? fw
2

is contained in I [ Iw2I. Hence

fw
1

? fw
1

= rfw
1

+ q3f1

with r 2 R, and fw
1

is invertible with inverse f�1
w

1

= 1
q3
(fw

1

�rf1). Similarly, fw
2

is invertible

with inverse f�1
w

2

= 1
q (fw2

� sf1) for some s 2 R. Hence f = fw
2

? fw
1

is an invertible element

of HR(G, I, e�). Using the Iwahori decomposition of I, because

(I�)w1 ✓ I+

(I+)w2 ✓ I�

(IT )
w

1 = (IT )
w

2 = IT ,

we have

Iw1Iw2I = I(w1I
�w1)w1w2(w2ITw2)(w2I

+w2)I = Iw1w2I.

Thus the support of f is contained in the double coset

Iw1w2I,

and hence, as f is invertible, f = cfw
1

w
2

with c 2 R nonzero.

In both cases, the element w1w2 is a strongly (B, I)-positive element of the centre of T and

fw
1

w
2

is an invertible element of HR(G, I, e�) supported on Iw1w2I. ⇤
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Theorem 4.8. Let R = F` or Q` and suppose that � is not regular. The Hecke algebra

HR(G, I, e�) is generated as an R-algebra by fw
1

and fw
2

and the relations

fw
1

,a ? fw
1

,a = (qr � 1)fw
1

,a + qrf1;

fw
2

? fw
2

= (q � 1)fw
2

+ qf1.

where r = 3 and a = 1 if � factors through the determinant; and r = 1 and a = 1
q otherwise.

Proof: The algebra HR(G,K,�) is generated as an R-module by the functions which are

supported on a single double coset.

As in the proof of Lemma 4.7, where we showed

fw
1

? fw
2

= cfw
1

w
2

(?1)

with c 2 R nonzero, but using the Iwahori decomposition I = I+ITI
� we have Iw2Iw1I =

Iw2w1I and hence

fw
2

? fw
1

= cfw
2

w
1

(?2)

with c 2 R nonzero. For any w 2 Wa↵, because w1 and w2 generate Wa↵, we have w =

wi
1

wi
2

· · ·wi
n

with wi
j

2 {w1, w2} such that wi
j+1

6= wi
j

and, by the method that gave us

(?1) and (?2), we have

fw
i

1

? fw
i

2

? · · · ? fw
i

n

= cfw

with c 2 R nonzero. Thus, by Lemma 4.4 and the Bruhat decomposition,

I\G/I '
[

w2W
a↵

IwI,

fw
1

and fw
2

generate HR(G,K,�). Hence it remains to calculate fw
i

? fw
i

, i = 1, 2. We do

this by restricting to the maximal parahoric subgroups Gx = I [ Iw1I and Gy = I [ Iw2I.

Let B = T n N denote the Borel subgroup in Mx and let � be the character of T given by

ResTI
T

� = inflI1
T

�. Then

HR(Gx, I, e�) ' HR(Mx, B,�).

If R = F`, we choose a lift ⇣ of � such that ⇣w1 = ⇣. If L is a lattice in ⇣ then ⇣ is a

called reduction stable lift if HF
`

(Mx, B,�) ' F` ⌦Z
`

HZ
`

(Mx, B, L) and HQ
`

(Mx, B, ⇣) '
Q` ⌦Z

`

HZ
`

(Mx, B, L), [DF92, Page 64]. A basis of HQ
`

(Mx, B, ⇣) is called reduction stable

if it is a basis of HZ
`

(Mx, B, L) and ⇣ is reduction stable . Then the image of this basis in

HF
`

(Mx, B,�) is a basis of HF
`

(Mx, B,�). By [GHM94, Section 3.1] an `-adic character ⇣

of T such that d`(⇣) = � and ⇣w1 = ⇣ is a reduction stable lift and a basis of HZ
`

(Mx, B, ⇣)

is reduction stable.

By [HL80, Theorem 4.14], if IndGB ⇣ = ⇢1 � ⇢2 with dim ⇢1 > dim ⇢2 then HQ
`

(Mx, B, ⇣) is

generated by Tw which is supported on the double coset BwB and satisfies the quadratic

relation

Tw ? Tw =

✓

dim ⇢1
dim ⇢2

� 1

◆

Tw +
dim ⇢1
dim ⇢2

T1

where T1 is the identity of HQ
`

(Mx, B, ⇣). By Chapter 2 Section 8,

dim ⇢1
dim ⇢2

=

8

<

:

q3 if ⇣ factors through the determinant;

q otherwise.
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By inflation, the element Tw 2 HR(Mx, B,�) determines an element fw
1

,a 2 HR(Gx, I, e�)

supported on Iw1I. Furthermore in the proof of Lemma 4.7 we showed

fw
1

? fw
1

= r0fw
1

+ q3f1,

with r0 2 R, hence we can recover a. The same method, using the computations of Chapter

2 Section 7, shows that the element fw
2

2 HR(Gy, I, e�) supported on Iw2I satisfies the

quadratic relation

fw
2

? fw
2

= (q � 1)fw
2

+ qf1.

⇤

Corollary 4.9. There are four one dimensional Q`-modules of the algebra HQ
`

(G, I, 1)

which are determined by their values on the generators fw
1

and fw
2

.

Character � of HR(G, I, 1) �(fw
1

) �(fw
2

)

�sgn �1 �1

�ind q3 q

�1 q3 �1

�2 �1 q

(1) If q3 6⌘ �1 mod ` then there are four one dimensional F`-modules of HF
`

(G, I, 1).

(2) If q3 ⌘ �1 mod `, but q 6⌘ �1 mod `, then there are two one dimensional F`-modules of

HF
`

(G, I, 1).

(3) If q ⌘ �1 mod ` then there is a unique one dimensional F`-module of HF
`

(G, I, 1).

Let H(G,K,�)-Mod denote the right modules over H(G,K,�). We have a functor

M� : RR(G)! H(G,K,�)-Mod

⇡ 7! HomG(ind
G
K �,⇡)

where HomG(ind
G
K �,⇡) is a rightH(G,K,�)-module by identifyingH(G,K,�) with EndG(ind

G
K �)

and the action of EndG(ind
G
K �) is given by composition. By reciprocity,

M�(⇡) = HomK(�,ResGK ⇡)

the �-invariants of ⇡.

Let P = M n N be a parabolic subgroup of G and let (K,�) be a G-cover of (KM ,�M )

relative to P . There is an injective homomorphism of algebras, [Vig98, , II 10.1(2)],

jP : H(M,KM ,�M )! H(G,K,�).

This homomorphism induces a restriction functor

j⇤P : H(G,K,�)-Mod! H(M,KM ,�M )-Mod.

Theorem 4.10 ([Vig98, Section 2, 10.1(3)]). There is an isomorphism

j⇤P (M�(⇡)) 'M�
M

(rGP (⇡)).

An immediate consequence of Theorem 4.10 is:
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Corollary 4.11. If ⇡ 2 RR(G) contains an R-type which is a G-cover relative to P then

rGP (⇡) is nonzero.

Theorem 4.12 ([Blo05, Theorem 2]). There is an isomorphism

indGK � ' indGP indMK
M

�M .

5. Level zero parahoric functors

Let (Gx,�) be a level zero R-type. The functor taking smooth R-representations of Mx to

smooth R-representations of G defined by inflating � to Gx and compactly inducing to G is

called level zero parahoric induction.

IGM
x

: RR(Mx) RR(Gx) RR(G)

� inflG1

x

� indGG
x

(inflG1

x

�)

It has a right adjoint called level zero parahoric restriction.

RG
M

x

: RR(G) RR(Gx) RR(Mx)

⇡ ResGG
x

⇡ invG1

x

(ResGG
x

⇡)

If we fix a maximal parahoric subgroup Gz and consider the level zero parahoric functors IGM
x

and RG
M

x

for parahoric subgroups Gx ✓ Gz our viewpoint is that these functors mirror the

parabolic functors inside the finite reductive group Mz.

Remark. Let Gx be a maximal parahoric subgroup of a classical group G. Let

G+
x = NG(Gx).

There are two short exact sequences:

1 G1
x G+

x M+
x 1

1 G1
x Gx Mx 1

where M+
x is a finite reductive group that contains Mx as a normal subgroup of finite index.

Let � be an irreducible cuspidal representation of Mx and let ⌃ be an irreducible quotient of

indM
+

x

M
x

�. When trying to construct all irreducible representations of a general p-adic group

G it is more natural to define level zero parahoric induction making this initial step from �

to ⌃ before inflating to G+
x and inducing to G. We have chosen to define level zero parahoric

induction without this step because we are going to specialize to unramified p-adic unitary

groups, where Gx = G+
x .

The following theorem reduces the classification of irreducible cuspidal level zero representa-

tions to the classification of maximal cuspidal level zero R-types.
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Theorem 5.1. Let G be an unramified unitary group in three variables, and (⇡,V) an ir-

reducible cuspidal level zero representation of G. Then ⇡ contains a maximal cuspidal level

zero R-type and this R-type is unique up to conjugacy.

We follow [Vig01b] to prove Theorem 5.1.

Level zero R-types (Gx,�x) and (Gy,�y) are called associate, [MP94, Definition 5.1], if there

exists g 2 G such that Gx \Ggy surjects onto Mx and Mgy and �x ' g�y.

Theorem 5.2 ([Vig01b, Corollary 5.2]). Let G be an unramified unitary group. Let x, y be

points in B(G) and let �x (respectively �y) be an irreducible cuspidal representation of Mx

(respectively My). If

HomG

⇣

IGM
x

(�x), I
G
M

y

(�y)
⌘

6= {0},
then (Gx,�x) and (Gy,�y) are associate.

6. Level zero restriction-induction

In this section we give a proof of Theorem 5.2 due to [Vig01b]

6.1. Distinguished double coset representatives. Let G be an unramified unitary

group, W be the a�ne Weyl group of G and S be a set of fundamental reflections for W .

The choice of S corresponds to a choice of chamber in the building of G. This choice defines

the standard Iwahori subgroup I of G. The group W is a Coxeter group. If J ⇢ S, we let

WJ be the subgroup generated by the reflections in J . The standard parahoric subgroups

of G correspond to proper subsets J of S, where J maps to GJ = INJI, for NJ any set of

representatives of WJ in G.

Let J,K ⇢ S. A set of double coset representatives DJ,K for WJ\W/WK is called distin-

guished if each d 2 DJ,K has minimal length in its double coset, [Mor93, 3.10]. A set

of double coset representatives DJ,K in NG(T ) for GJ\G/GK is called distinguished if the

projection to W of the set DJ,K is a set of distinguished double coset representatives for

WJ\W/WK , [Mor93, 3.12].

For w 2W the length of w is equal to the length of w�1. Thus if DJ,K is a set of distinguished

double coset representatives for WJ\W/WK then D
�1
J,K is a set of distinguished double coset

representatives for WK\W/WJ . If n 2 DJ,K has projection w 2WJ,K then n�1 2 NG(T ) has

projection w�1 2WK,J . Thus if DJ,K is a set of distinguished double coset representatives for

GJ\G/GK , then D�1
J,K is a set of distinguished double coset representatives for GK\G/GJ .

6.2. Intersections of parahoric subgroups. Let x, y 2 B(G). Fix a set of distinguished

double coset representatives Dy,x for Gy\G/Gx.

Theorem 6.1 ([Mor93, Corollary 3.20, Lemma 3.21]). Let n 2 Dy,x then

Px,ny = G1
x(Gx \Gny)/G

1
x

is a parabolic subgroup of Gx/G
1
x. Furthermore, the pro-p unipotent radical of G1

x(Gx\Gny)

is G1
x(Gx \G1

ny).
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By Section 6.1, D�1
y,x is a set of distinguished double coset representatives for Gx\G/Gy hence

Py,n�1x = G1
y(Gy \Gn�1x)/G

1
y

is a parabolic subgroup ofGy/G
1
y. Furthermore, the pro-p unipotent radical ofG1

y(Gy\Gn�1x)

is G1
y(Gy \G1

n�1x).

Suppose Py,n�1x has Levi decomposition Py,n�1x = My,n�1x n Ny,n�1x and Px,ny has Levi

decomposition Px,ny = Mx,ny nNx,ny.

1 G1
y Gy My 1

1 G1
y G1

y (Gy \Gn�1x) Py,n�1x 1

1 G1
y

�

Gy \G1
n�1x

�

G1
y (Gy \Gn�1x) My,n�1x 1

1 G1
x

�

Gx \G1
ny

�

G1
x (Gx \Gny) Mx,ny 1

1 G1
x G1

x (Gx \Gny) Px,ny 1

1 G1
x Gx Mx 1

6.3. Level zero parahoric restriction-induction. Following [Vig01b] we recover a

convenient formula for the composition of level zero parahoric restriction and induction. The

first step is an application of the usual restriction-induction formula for compact induction.

Lemma 6.2. Let x, y 2 B(G) and �y be a representation of My. Then

RG
M

x

� IGM
y

(�y) '
M

g2G
y

\G/G
x

⇣

indGx

G
x

\G
gy

Res
G

gy

G
x

\G
gy

g(inflG1

y

�y)
⌘G1

x

.

Proof: We have

RG
M

x

� IGM
y

(�y) =
⇣

ResGG
x

� indGG
y

� inflG1

y

�y

⌘G1

x

and we apply the restriction-induction formula, Chapter 1 Lemma 3.5, to ResGG
x

� indGG
y

. ⇤

Let G be a group, H be a subgroup of G and g 2 G. We let conj(g) : RR(H)! RR( gH) be

the functor that takes ⇡ 2 RR(H) to g⇡ 2 RR( gH).

Let G be a group and H a normal subgroup of G. In the following proof we identify the

category RH
R (G) of R-representations of G trivial on H with RR(G/H). This allows us to

act on ⇡ 2 RR(G/H) by conjugation by elements of a group which contains G as a normal

subgroup.

Lemma 6.3 (Level zero restriction induction formula). Let x, y 2 B(G) and Dy,x a set of

distinguished double coset representatives for Gy\G/Gx. Let � be a representation of My.
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There is an isomorphism

RG
M

x

� IGM
y

(�) '
M

n2D
y,x

iMx

P
x,ny

⇣

r
M

y

P
y,n

�1

x

(�)
⌘n
.

where r
M

y

P
y,n

�1

x

denotes the Jacquet functor associated to the parabolic subgroup Py,n�1x of

the finite reductive group My and iMx

P
x,ny

denotes the parabolic induction functor associated

to the parabolic subgroup Px,ny of the finite reductive group Mx.

Proof: We start with the isomorphism of Lemma 6.2, choosing Dy,x as a set of double coset

representatives for Gy\G/Gx, and consider the functor associated to one of the summands

with n 2 Dy,x

 n(�) = invG1

x

� indGx

G
x

\G
ny

�ResGny

G
x

\G
ny

� conj(n) � inflG1

y

(�).

Thus  n : RR(My) ! RR(Mx) which we also consider as a functor R
G1

y

R (Gy) ! R
G1

x

R (Gx).

Let (⇡,V) 2 RR(G1
x(Gx \ Gny)). By normality of G1

x in G1
x(Gx \ Gny) and in Gx, any

f 2 invG1

x

� indGx

G1

x

(G
x

\G
ny

) ⇡ has image in invG1

x

⇡. Moreover, again by normality of G1
x, if f 2

indGx

G1

x

(G
x

\G
ny

) � invG1

x

⇡ and g 2 G1
x then g · f = f . Hence, letting ⌃ = Res

G
ny

G
x

\G
ny

� conj(n) �
inflG1

y

(�), by transitivity of induction

 n(�) = invG1

x

� indGx

G
x

\G
ny

⌃

= invG1

x

� indGx

G1

x

(G
x

\G
ny

) � ind
G1

x

(G
x

\G
ny

)
G

x

\G
ny

⌃

= indGx

G1

x

(G
x

\G
ny

) � invG1

x

� indG
1

x

(G
x

\G
ny

)
G

x

\G
ny

⌃.

By normality the map f 7! f(1) induces an isomorphism of representations of G1
x(Gx \Gny)

invG1

x

� indG
1

x

(G
x

\G
ny

)
G

x

\G
ny

⌃ ' inflG1

x

� invG1

x

\G
ny

⌃

where inflG1

x

denotes the functor R
G1

x

\G
ny

R (Gx\Gny)! RR(G1
x(Gx\Gny)) by letting G1

x act

trivially. Hence

 n(�) ' indGx

G1

x

(G
x

\G
ny

) � inflG1

x

� invG1

x

\G
ny

�ResGny

G
x

\G
ny

� conj(n) � inflG1

y

�.

The conjugation commutes with restriction thus

 n(�) ' indGx

G1

x

(G
x

\G
ny

) � inflG1

x

� invG1

x

\G
ny

� conj(n) � ResGy

G
n

�1

x

\G
y

� inflG1

y

�.

A subgroup H of G acts trivially on ⇡ if and only if Hn acts trivially on ⇡n hence

 n(�) = indGx

G1

x

(G
x

\G
ny

) � inflG1

x

� conj(n) � invG1

n

�1

x

\G
y

�ResGy

G
n

�1

x

\G
y

� inflG1

y

�.

Restriction is transitive, as functors RR(Gy)! RR(Gn�1x \Gy),

Res
G

y

G
n

�1

x

\G
y

= Res
G1

y

(G
n

�1

x

\G
y

)
G

n

�1

x

\G
y

�ResGy

G1

y

(G
n

�1

x

\G
y

) .

By normality of G1
y in Gy and because G1

y acts trivially, the largest (Gn�1x \Gy)-submodule

on which (G1
n�1x \ Gy) acts trivially is equal to the largest G1

y(Gn�1x \ Gy)-submodule on

which G1
y(G

1
n�1x \Gy) acts trivially. Furthermore, by normality of G1

y in Gy,

(Gn�1x \Gy)/(G
1
y \Gn�1x)(G

1
n�1x \Gy) ' G1

y(Gn�1x \Gy)/G
1
y(G

1
n�1x \Gy).
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Hence we can identify the (Gn�1x \Gy)-submodule on which (G1
y \Gn�1x)(G

1
n�1x \Gy) acts

trivially with the G1
y(Gn�1x \Gy)-submodule on which G1

y(G
1
n�1x \Gy) acts trivially. Thus

 n(�) ' indGx

G1

x

(G
x

\G
ny

) � inflG1

x

� conj(n) � invG1

y

(G1

n

�1

x

\G
y

) �Res
G

y

G1

y

(G
n

�1

x

\G
y

) � inflG1

y

�.

Invariants and coinvariants under a pro-p group are isomorphic, thus

 n(�) ' indGx

G1

x

(G
x

\G
ny

) � inflG1

x

� conj(n) � coinvG1

y

(G1

n

�1

x

\G
y

) �Res
G

y

G1

y

(G
n

�1

x

\G
y

) � inflG1

y

�.

By Theorem 6.1 we identify

Px,ny = G1
x(Gx \Gny)/G

1
x, Py,n�1x = G1

y(Gy \Gn�1x)/G
1
y,

Mx = Gx/G
1
x and My = Gy/G

1
y. Hence

 n(�) ' indMx

P
x,ny

� inflN
x,ny

� conj(n) � coinvN
y,n

�1

x

�ResMy

P
y,n

�1

x

�.

Therefore

RG
M

x

� IGM
y

(�) '
M

n2D
y,x

iMx

P
x,ny

⇣

r
M

y

P
y,n

�1

x

(�)
⌘n
.

⇤

Proof: [Proof of Theorem 5.2] By Lemma 6.3,

HomG

⇣

IGM
x

(�x), I
G
M

y

(�y)
⌘

=
M

n2D
y,x

HomM
x

⇣

�x, i
M

x

P
x,ny

⇣

r
M

y

P
y,n

�1

x

(�y)
⌘n ⌘

.

Hence

HomG

⇣

IGM
x

(�x), I
G
M

y

(�y)
⌘

6= {0}
if and only if there exists n 2 Dy,x such that

HomM
x

⇣

�x, i
M

x

P
x,ny

⇣

r
M

y

P
y,n

�1

x

(�y)
⌘n ⌘

6= {0}.

Assume there exists n 2 Dy,x such that

HomM
x

⇣

�x, i
M

x

P
x,ny

⇣

r
M

y

P
y,n

�1

x

(�y)
⌘n ⌘

6= {0}.

By cuspidality of �y, Py,n�1x = My; hence G1
y(Gy \Gn�1x)/G

1
y = My. By cuspidality of �x,

Px,ny = Mx; hence G1
x(Gx \Gny)/G1

x = My. Thus

HomM
x

�

�x, �y
n
�

6= {0}.

Therefore (Gx,�x) and (Gy,�y) are associate. ⇤

Corollary 6.4. Let G be an unramified unitary group, Gx (respectively Gy) be a maximal

parahoric subgroup of G, �x (respectively �y) be an irreducible cuspidal representation of

Mx (respectively My). If

HomG

⇣

IGM
x

(�x), I
G
M

y

(�y)
⌘

6= {0}
then (Gx,�x) and (Gy,�y) are conjugate.

Proof: By Theorem 5.2 the R-types (Gx,�x) and (Gy,�y) are associate. If Gx and Gy are

not conjugate then for all g 2 G, in particular n 2 Dy,x, the group Gx \ Ggy must stabilise

an edge in the building and hence is not maximal. Thus it cannot surject onto either Mx or

My. Hence there exists n 2 Dy,x such that Gx = Gny and

HomM
x

(�x,
n�y) 6= {0},

i.e. �x and �y are conjugate. ⇤
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6.4. Maximal parahoric subgroups and irreducibility.

Lemma 6.5 ([Vig01b, Lemma 4.2]). Let (K,�) be an R-type. For all irreducible `-modular

representations ⇡ of G, suppose that � is a subrepresentation of ResGK ⇡ implies that � is a

quotient of ResGK ⇡ and that dimR HomG(ind
G
K �, indGK �) = 1. Then indGK � is irreducible.

Proof: Let ⇡ be an irreducible quotient of indGK � then

{0} 6= HomG(ind
G
K �,⇡) ' HomK(�,ResGK ⇡)

by reciprocity. Hence, because � is irreducible, � is a subrepresentation of ResGK ⇡ and thus,

by our hypotheses, a quotient of ResGK ⇡. Hence

{0} 6= HomK(ResGK ⇡,�) ' HomG(⇡, Ind
G
K �)

by reciprocity. Thus we have nonzero G-morphisms '1 : ⇡ ! IndGK � and '2 : indGK � ! ⇡.

The composite ' = '1 � '2 gives a nonzero G-morphism indGK � ! IndGK � with image

isomorphic to ⇡.

By reciprocity and Chapter 1 Lemma 3.5

HomG(ind
G
K �, indGK �) '

Y

K\G/K

HomK(�, indKK\ gK Res
gK
K\ gK

g�)

' HomG(ind
G
K �, IndGK �).

Thus dimR(HomG(ind
G
K �, IndGK �)) = 1, and for any  2 HomG(ind

G
K �, IndGK �) there exists

r 2 R such that  = r'. But the embedding

(e : indGK � ,! IndGK �) 2 HomG(ind
G
K �, IndGK �),

hence ⇡ ' indGK � and indGK � is irreducible. ⇤

Lemma 6.6 ([Vig01b, Proposition 7.1]). Let G be an unramified unitary group, Gx be a

maximal parahoric subgroup of G and � be an irreducible cuspidal representation of Mx.

Then RG
M

x

(IGM
x

(�)) ' � and IGM
x

(�) is irreducible. Furthermore, if Gy is a maximal parahoric

subgroup of G not conjugate to Gx then RG
M

y

(IGM
x

(�)) = {0}.

Proof: By Lemma 6.3, because Gx is equal to the full stabilizer of the vertex x hence

Gx\G/Gx ' 1,

RG
M

x

(IGM
x

(�)) ' �.

Let ⇡ be an irreducible quotient of IGM
x

(�) then

{0} 6= HomG(I
G
M

x

(�),⇡) = HomM
x

(�,RG
M

x

(⇡))

and � is a subrepresentation of RG
M

x

(⇡).

If Gy is a maximal parahoric subgroup of G not conjugate to Gx then, by Lemma 6.3,

RG
M

y

(IGM
x

(�)) = {0}

because Px,n�1y is properly contained in Mx and � is cuspidal thus the Jacquet modules

rMx

P
x,n

�1

y

(�) vanish.

By Theorem 3.3, ⇡ is level zero hence there exists a maximal parahoric subgroup Gz of G such

that RG
M

z

(⇡) is non-zero. Assume RG
M

y

(⇡) 6= {0} then, by exactness, RG
M

y

(IGM
x

(�)) 6= {0}, a
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contradiction.Hence RG
M

x

(⇡) 6= {0} and, by exactness,

RG
M

x

(⇡) ' �.

Because G1
x is pro-p and normal in Gx, by Chapter 1 Lemma 3.2, as representations of Gx

⇡ ' RG
M

x

(⇡)� ⇡(G1
x).

Thus inflG1

x

� is a direct factor of ResGG
x

⇡.

Furthermore

dim(HomG(I
G
M

x

(�), IGM
x

(�)) = dim(HomM
x

(�,RG
M

x

� IGM
x

(�))

= dim(HomM
x

(�,�)) = 1.

Therefore, by Lemma 6.5, IGM
x

(�) is irreducible. ⇤

6.5. Cuspidal level zero representations.

Lemma 6.7. Let G be an unramified unitary group and (⇡,V) be an irreducible representation

of level zero of G. Suppose ⇡ contains a maximal and cuspidal level zero R-type (Gx,�). Then

⇡ is cuspidal.

Proof: As ⇡ ' IGM
x

(�), by Chapter 1 Theorem 6.1, ⇡ is cuspidal. ⇤

Remark. By Chapter 3 Sections 4 and 5, � appears in the decomposition modulo ` of a

cuspidal `-adic representation �. In this case we can adapt the lifting argument used for

GLn(F ), [Vig96, Chapter 3, 3.3], to give a proof of Lemma 6.7. In the `-adic case the

representation IGM
x

� is irreducible and cuspidal, [Mor99, Section 2]. Decomposition modulo

` commutes with compact induction, by Chapter 1 Corollary 5.2,

d`(I
G
M

x

�) = [IGM
x

d`�],

and IGM
x

� is contained in d`(I
G
M

x

�). By Chapter 1 Lemma 5.4, d`(ind
G
M

x

�) is a sum of

irreducible cuspidal representations. Hence IGM
x

� is cuspidal and ⇡ ' IGM
x

�.

The next two lemmas are applications of the theory of G-covers. Hence we specialise to an

unramified unitary group in three variables. Let I be the standard Iwahori subgroup of G

and IT = T \ I.

Lemma 6.8. Let G be an unramified unitary group in three variables. Let (Gx,�) be a

maximal cuspidal level zero R-type in G with � a cuspidal subquotient of iMx

B
� where B is

the standard Borel subgroup of Mx. Then ⇡ ' IGM
x

� is a subquotient of iGB(ind
T
I
T

�).

Proof: By exactness, IGM
x

� is a subquotient of IGM
x

(iMx

B
�) and we have

IGM
x

(iMx

B
�) = indGG

x

inflG1

x

iMx

B
� ' indGG

x

indGx

I inflI1 �

' indGI inflI1 �.

By Lemma 4.7, (I,�) is a G-cover of (IT ,�). Hence, by Theorem 4.12, indGI inflI1 � '
iGB(ind

T
I
T

�). ⇤

Lemma 6.9. Let G be an unramified unitary group in three variables. Let (⇡,V) be an

irreducible cuspidal representation of level zero of G. Let (K,�) be a cuspidal level zero

R-type contained in ⇡. Then (K,�) is maximal.
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Proof: Suppose that (K,�) is a cuspidal level zero R-type contained in ⇡ which is not

maximal. Thus K = I, and by Lemma 4.7 (I,�) is a G-cover of (IT ,�T ). The representation

rGB⇡ 6= 0 by Corollary 4.11 . Thus ⇡ is not cuspidal. ⇤

Remark. For `-adic representations the analogous theorem is true for a general p-adic re-

ductive group, [Mor99] . Any non-maximal cuspidal `-adic type is shown to be a G-cover

relative to some parabolic subgroup and Corollary 4.11 then implies the analogous theorem.

Assume that the Jacquet functor commutes with d`, i.e. [rGP � d`] = d` � rGP for all parabolic

subgroups P of G. By Chapter 1 Lemma 5.3, this is known for classical groups. Then if �

lifts to an `-adic representation, which is true if G = U(2, 1)(E/F ) and K is a non-maximal

parahoric subgroup, we can use the `-adic result and a decomposition modulo ` argument to

give an alternative proof of Lemma 6.9.

Lemma 6.10. Let G be an unramified unitary group. Let Gz be a maximal parahoric sub-

group of G for which we have an Iwasawa decomposition G = BGz. Let B = T nN be the

standard Borel subgroup of the finite group Mz. Let � be an irreducible level zero character

of T and � be a cuspidal representation of Mz. Then

RG
M

z

(iGB�) = iMz

B
(invG1

z

\T (ResTT\G
z

(�))).

Furthermore, if IGM
z

� is a subquotient of iGB� then

� 2
h

iMz

B
(invG1

z

\T (ResTT\G
z

(�)))
i

and hence is not supercuspidal.

Proof: By the restriction-induction formula, Chapter 1 Lemma 3.5, and the Iwasawa de-

composition G = BGz we have

RG
M

z

(iGB�) =
�

ResGG
z

(iGB�)
�G1

z '

0

@

Y

B\G/G
z

IndGz

gB\G
z

(ResBgB\G
z

g(�))

1

A

G1

z

'
⇣

IndGz

B\G
z

(ResBB\G
z

(�))
⌘G1

z

.

We proceed with similar arguments as those given in the proof of Lemma 6.3. We identify the

categories RR(Mz) and R
G1

z

R (Gz) representations of Gz trivial on G1
z. Because G1

z is normal

in Gz and N \Gz acts trivially on inflN (�)

(IndGz

B\G
z

�)G
1

z ' IndGz

(B\G
z

)G1

z

� inflG1

z

� invG1

z

\B �ResBB\G
z

� inflN (�)

' IndGz

(B\G
z

)G1

z

� inflG1

z

� inflN\G
z

� invG1

z

\T �ResTT\G
z

(�)

The character invG1

z

\T �ResTT\G
z

(�) of T \ Gz is trivial on T \ G1
z and identifies with a

character of T and we have

(IndGz

B\G
z

�)G
1

z ' iMz

B
invG1

z

\T �ResTT\G
z

(�).

Thus, by exactness of level zero parahoric restriction and because RG
M

z

(IGM
z

�) = �, � is a

subquotient of iMz

B
invG1

z

\T �ResTT\G
z

(�). ⇤
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7. Level zero types for unramified U(2, 1)(E/F )

Let G be the unramified unitary group U(2, 1)(E/F ). Then G has two classes of maximal

parahoric subgroups, Chapter 1 Section 2.3. We fix representatives

Gx = M3(OE) \G, Gy =

0

B

@

OE OE P�1
E

PE OE OE

PE PE OE

1

C

A

\G,

which both contain the standard Iwahori subgroup

I =

0

B

@

OE OE OE

PE OE OE

PE PE OE

1

C

A

\G.

Both Gx and Gy are equal to their normalizers in G, Mx ' U(2, 1)(kE/kF ) and My '
U(1, 1)(kE/kF )⇥U(1)(kE/kF ).

7.1. The level zero cuspidal representations of unramified U(2, 1)(E/F ). The re-

sults of the preceding sections, in particular Lemmas 6.6 and 6.9 together with the decom-

position matrices of Chapter 3, allow us to completely list the irreducible cuspidal level zero

`-modular representations of U(2, 1)(E/F ).

Theorem 7.1. Let G be an unramified p-adic unitary group in three variables and suppose

` 6= 2, 3. Every irreducible cuspidal `-modular level zero representation of G appears in the

decomposition modulo ` of an irreducible cuspidal `-adic level zero representation of G. When

` - q2� q+1 all irreducible cuspidal `-modular level zero representations lift. If ` | q2� q+1

there are q+1 irreducible cuspidal `-modular level zero representations IGM
x

��
T
1

,✓
that do not

lift. All irreducible `-modular and `-adic cuspidal level zero representations of G are listed

in the table; for the conditions on � and ✓ see Chapter 3 Sections 4 and 5.

Irreducible `-adic Decomposition modulo `

level zero cuspidal ` | q � 1 ` | q + 1 ` | q2 � q + 1

IGM
x

⌫� IGM
x

⌫� IGM
x

⌫� IGM
x

⌫�

IGM
x

�T
1

,✓ IGM
x

�T
1

,✓ IGM
x

�T
1

,✓ IGM
x

⌫� � IGM
x

��
T
1

,✓

IGM
x

�T
2

,✓ IGM
x

�T
2

,✓ IGM
x

�T
2

,✓ IGM
x

�T
2

,✓

IGM
y

(�T
1

,✓ ⌦ �) IGM
y

(�T
1

,✓ ⌦ �) IGM
y

(�T
1

,✓ ⌦ �) IGM
y

(�T
1

,✓ ⌦ �)

Proof: By Corollary 6.4 all cuspidal level zero `-modular representations of G are of the

form IGM
z

� where Gz is a maximal parahoric subgroup of G and � an irreducible cuspidal `-

modular representation of Mz. Furthermore these are all cuspidal and irreducible by Lemmas

6.6 and 6.7, and are distinct by Corollary 6.4. Suppose � is an irreducible cuspidal `-adic

representation of Mz with

d`(�) =
n
M

i=1

�i.

By Chapter 1 Corollary 5.2 decomposition modulo ` commutes with compact induction. Thus

d`
�

IGM
z

�
�

=
⇥

indGG
z

d`�
⇤
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=

"

indGG
z

n
M

i=1

�i

#

=
n
M

i=1

IGM
z

�i.

The remaining statements follow from the decomposition matrices, Chapter 3 Sections 4 and

5, of the finite groups Mx and My. ⇤

8. Quasi-projective representations

A representation (⇡1,V1) of G is called quasi-projective if, for all representations (⇡2,V2) of

G and all surjective morphisms

' 2 HomG(V1,V2),

the homomorphism

EndG(V1)! HomG(V1,V2)

↵ 7! ' � ↵

is surjective.

Theorem 8.1 ([Vig98, Appendix, Theorem 10]). Let (⇡,V) be quasi-projective and finitely

generated. Let (�,W) be a be a representation of G such that HomG(V,W) 6= 0. The map

taking W to HomG(V,W) induces a bijection between the irreducible quotients of V and the

simple EndG(V)-modules.
(

Irreducible representations W

such that HomG(V,W ) 6= {0}

)

 ! {Simple right EndG(V)-modules}

LetK be a closed subgroup ofG, (⇡,V) 2 RR(G) and � 2 IrrR(K). The �-isotypic component

(⇡�,V�) of (⇡,V) is the largest subrepresentation of ResGK(�) which is semisimple and all of

whose irreducible subquotients are isomorphic to �. Hence

⇡� =
X

m2Hom
K

(�,ResG
K

(⇡))

m(�)

is equal to the �-isotypic component of ⇡.

Lemma 8.2 ([Vig01b, Lemma 3.1]). Let (K,�) be an R-type of G and V = indGK �. If there

is a decomposition

V = V� � V�
as representations of K such that no subquotient of V� is isomorphic to � then V is quasi-

projective.

Lemma 8.3 ([Vig01b, Proposition 6.1]). Let (Gz,�) be a cuspidal level zero R-type. Then

IGM
z

� is quasi-projective and finitely generated.

Proof: As compact induction sends finitely generated representations to finitely generated

representations, IGM
z

� is finitely generated. Let V be the space of IGM
z

�. As G1
z is pro-p, by

Chapter 1 Lemma 3.2,

V = VG1

z � V(G1
z).
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No irreducible subquotient of ResGG
z

(V(G1
z)) is trivial on G1

z hence no irreducible subquotient

can be isomorphic to �. Because � is cuspidal, by Lemma 6.3,

VG1

z '
M

D
z,z

n�.

Therefore VG1

z ' V� and we have a direct sum decomposition V = V� � V�. ⇤

Lemma 8.4. Let G be an unramified unitary group in three variables and B = T n N be

the standard Borel subgroup of G. Suppose ` 6= 2, 3 and ` | q + 1. Let � be an unramified

character of T such that IndGB � is reducible. Then 1G is an irreducible quotient of IndGB �.

Proof: By Theorem 8.3, indGI 1I is quasi-projective and of finite type. Thus, by Theorem

8.1, the map:

M1I : RR(G)! H(G, I, 1I)-Mod

⇡ 7! HomG(ind
G
I 1I,⇡)

induces a bijection between irreducible quotients of indGI 1I and simple H(G, I, 1I)-modules.

Let IT = T \ I. By Theorem 4.12

indGI 1I ' IndGB indTI
T

1I
T

.

Thus, an irreducible quotient of IndGB � is an irreducible quotient of indGI 1I as � is a quotient

of indTI
T

1I
T

.

By Theorem 4.8

HF
`

(G, I, 1I) ' F`
⇥

f1, f2 : (f1 + 1)2 = (f2 + 1)2 = 0
⇤

.

The Hecke algebra HF
`

(T, IT , 1I
T

) ' F` [X], and the inclusion jB is induced by mapping X

to f1f2. Suppose � is a quotient of IndGB �. By Theorem 4.10

j⇤B(M1I(�)) 'M1I
T

(rGB(�)).

If IndGB � is reducible and � is a proper quotient, then by the geometric lemma rGB(�) is a

character. Hence M1I(�) is a simple one dimensional F`-module. By Corollary 4.9 when

` | q + 1 there is a unique one dimensional F`-module of HF
`

(G, I, 1I). By reciprocity 1G is

always an irreducible quotient of indGI 1I, hence � ' 1G. ⇤

Lemma 8.5.

(1) Suppose ` 6= 2, 3 and ` | q2 � q + 1. Then
�

�

�

Irreducible quotients of IndGB � : � is unramified and IndGB � is reducible
 

�

� 6 2

(2) Suppose ` 6= 2, 3 and ` | q � 1 or ` is banal. Then
�

�

�

Irreducible quotients of IndGB � : � is unramified and IndGB � is reducible
 

�

� 6 4

Proof: The proof is similar to the proof of Lemma 8.4. Suppose ` 6= 2, 3 and ` | q2 �
q + 1. Then by Corollary 4.9 there are two distinct characters of HF

`

(G, I, 1I), hence if

the unramified principal series representation IndGB � is reducible then there are two possible

quotients. One of these is 1G. Similarly if ` 6= 2 and ` is banal or ` | q � 1, there are four

possible quotients. ⇤
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9. Reducibility points of unramified representations of U(2, 1)(E/F )

Let G = U(2, 1)(E/F ) be the unramified unitary group in three variables. In the `-adic case

the reducibility points of the parabolic induction of G are worked out in [Key84], which

are the same as the reducibility points of SU(2, 1)(E/F ). Recall, T0 denotes the diagonal

maximal F -split torus

T0 =
�

diag(x, 1, x�1) : x 2 F⇥ ,

isomorphic to F⇥, T the centraliser of T0 in G,

T =
�

diag(x, y, x�1) : x 2 E⇥, y 2 E1
 

isomorphic to E⇥ ⇥ E1, B = T nN the standard Borel subgroup containing T

B =

0

B

@

? ? ?

0 ? ?

0 0 ?

1

C

A

\G.

The Weyl group W ' C2 and if w 2W is the nontrivial element, then

diag(x, y, x�1)w = diag(x�1, y, x).

Let �1 be a character of E⇥ and �2 be a character of E1. Let � be the character of T defined

by

�
�

diag(x, y, x�1)
�

= �1(x)�2(xx
�1y)

which is well defined because x! xx�1 is a surjective map E⇥ ! E1. Every character of T

appears in this way; we can recover �1 and �2 from �

�1(x) = �(diag(x, x/x, x�1)), �2(y) = �(diag(1, y, 1)).

The character �2 factors through the determinant and

iGB(�) = iGB(�1 ⌦ 1)(�2 � det)

where �1 ⌦ 1 is defined by �1 ⌦ 1(diag(x, y, x�1)) = �1(x). Hence the reducibility of iGB(�)

is completely determined by that of iGB(�1 ⌦ 1). The character � is regular when �1(x) 6=
�1(x)�1, i.e. when �1 is non-trivial on the norm 1 elements E1 of E.

The modulus character �B : T ! R⇥ is given by

�B

0

B

@

x 0 0

0 y 0

0 0 x�1

1

C

A

= q�4val
F

(x).

Thus �B is trivial when ` | q � 1 and when ` | q + 1.

9.1. Harish-Chandra j-functions. We suppose that G has discrete co-compact sub-

groups. By a p-adic field we mean a non-archimedean local field of characteristic zero By

[BH78, Theorem A], if F is a p-adic field and G is the F points of a reductive group defined

over F then G has discrete co-compact subgroups. Thus, while it may not be necessary, we

specialise to when G is an unramified p-adic unitary group in three variables.

Fix a character � ' �1⌦ 1 of T . The reducibility of the representation IndGB �
1

2

B ⌦� is related

to the order of the zero at 1 of the associated j-function j�, [Dat05].
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By [Dat05, Proposition 8.2], given an irreducible `-modular representation � of T which lifts

to an `-adic representation e�, the `-modular j-function j� is given by restriction of the `-adic

j-function je�. All irreducible `-modular representations of T lift. Let o1(j�) denote the order

of vanishing of j� at 1.

Theorem 9.1 ([Dat05, Proposition 8.4]). Suppose ` 6= 2. Let G be an unramified p-adic

unitary group in three variables and let � be an irreducible `-modular representation of T ,

(1) If �w 6= �, then iGB(�
1

2

B ⌦ �) is reducible if and only if o1(j�) > 1.

(2) If �w = �, then o1(j�) > �2 is even, and:

(a) If o1(j�) = �2, then iGB(�
1

2

B ⌦ �) is irreducible.
(b) If o1(j�) = 0, then iGB(�

1

2

B ⌦ �) is reducible and semisimple.

(c) If o1(j�) > 2, then iGB(�
1

2

B ⌦ �) is reducible.

In fact, in our case, there is a necessary and su�cient condition for a cuspidal representation

appearing in the composition series of iGB(�
1

2

B ⌦ �).

Theorem 9.2 ([Dat05, Proposition 8.6]). Suppose ` 6= 2 prime. Let G be an unramified

p-adic unitary group in three variables and � be an irreducible `-modular representation of

T . Then o(j�(1)) > 2 if and only if iGB(�
1

2

B ⌦ �) has a cuspidal subquotient.

Remark. Theorems 9.1 and 9.2 are special cases of the propositions given in [Dat05] which

we have not stated in full generality. However we have to specialise to a group with discrete

cocompact subgroups to apply Theorems 9.1 and 9.2.

Let !E/F be the unique unramified character of E⇥ whose restriction to F⇥ is the unique

character related by class field theory to the quadratic unramified extension of E/F . Assume

` 6= 2, 3. Using the computations of [Key84, Section 5] and Theorems 9.1 and 9.2, we can

calculate the reducibility points of IndGB(�):

Theorem 9.3. Let G be an unramified p-adic unitary group in three variables. Let � = �1⌦1
be an unramified character of T . Then iGB(�) is irreducible unless � is one of the four

characters 1T , �
�1
B , !E/F ⌦ �

� 1

4

B and !E/F ⌦ �
� 3

4

B . Furthermore, if iGB� is reducible then it has

length two if q3 6⌘ �1 mod ` and length greater than or equal to three if q3 ⌘ �1 mod `.

Proof: By [Key84, Section 5],

j1(�) = qk
(q2 � �1($E))(q + �1($E))

(1� �1($E))(1 + �1($E))

(q�2 � �1($E))(q�1 + �1($E))

(1� �1($E))(1 + �1($E))

with k 2 Z. Thus iGB(�
1

2

B ⌦ �) is irreducible unless �1($E) = �q±1, q±2, by Theorem 9.1,

which corresponds to � = �
± 1

2

B , !E/F ⌦ �
± 1

4

B .

If q3 = �1 mod `, then q±2 = q⌥1 mod ` and there are only two cases. Equivalently, notice

that when q3 = �1 mod ` we have �
± 1

2

B = !E/F ⌦ �
�⌥ 1

4

B . Applying Theorem 9.2:

(1) If ` | q � 1,

(a) In the case � = �
± 1

2

B , o1(j�) = 0 and the length of iGB(�
1

2

B ⌦ �) is two.
(b) In the case, � = !E/F ⌦ �

± 1

4

B , o1(j�) = 0 and the length of iGB(�
1

2

B ⌦ �) is two.
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(2) If ` | q + 1, then o1(j�) = 2, and the length of iGB(�
1

2

B ⌦ �) is greater than or equal to

three.

(3) If ` | q2 � q + 1, then o1(j�) = 2, and the length of iGB(�
1

2

B ⌦ �) is greater than or equal

to three.

Finally twist by the character �
� 1

2

B . ⇤

10. Decomposition of iGB(1T )

In this section we do not appeal to Theorems 9.1 and 9.2, hence the decompositions we obtain

also apply when F is of positive characteristic.

Theorem 10.1. Let G = U(2, 1)(E/F ) be the unramified unitary group in three variables,

and assume ` 6= 2, 3. Then

(1) If ` | q�1 or if ` is banal, then iGB1 has length two with an irreducible subrepresentation

isomorphic to 1G and an irreducible countably infinite dimensional quotient StG.

0 1G iGB1T StG 0

Furthermore, if ` | q � 1 there is a direct sum decomposition:

iGB1T = 1G � StG .

(2) If ` | q+1, then iGB1 has length six with a unique irreducible subrepresentation isomorphic

to 1G, a unique irreducible quotient isomorphic to 1G, and four cuspidal subquotients

isomorphic to

IGM
x

⌫1, IGM
x

�T
2

,✓, IGM
y

�T
1

,✓

with IGM
x

⌫1 appearing with with multiplicity 2.

0

⇡

0 1G iGB1T StG 0

1G

0

The quotient StG is reducible with subrepresentation ⇡ with ⇡ ' IGM
y

�T
1

,✓ � b⇡,

[b⇡] ' IGM
x

⌫1 � IGM
x

⌫1 � IGM
x

�T
2

,✓.

(3) If ` | q2 � q + 1, then iGB1 has length three with a unique irreducible subrepresentation

isomorphic to 1G, a unique irreducible quotient ⌘ with rGB(⌘) = �B, and one cuspidal

subquotient isomorphic to IGM
x

�T
1

,✓.
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0

IGM
x

�T
1

,✓

0 1G iGB1T StG 0

⌘

0

Proof: The space of constant functions is an irreducible subrepresentation in all three cases

isomorphic to 1G. We denote by StG the quotient of iGB1T by 1G.

0 1G iGB1T StG 0

By the Chapter 1 Lemma 3.12, rGB(i
G
B1T ) has length two and its semisimplification is

[rGB(i
G
B1T )] = 1T � �B.

By exactness of the Jacquet functor, knowing that 1G is a subrepresentation of iGB1T with

rGB(1G) = 1T , rGB(StG) ' �B.

0 1T rGB(i
G
B1T ) �B 0

Because the Jacquet functor of a quotient of a parabolically induced representation is non-

zero, Chapter 1 Lemma 3.11, and a quotient of StG is a quotient of iGB1T there is an irreducible

quotient ⌘ of StG which is a quotient of iGB1T with rGB(⌘) = �B. By exactness of the Jacquet

functor all other irreducible subquotients of StG must be cuspidal. Hence either iGB1T has

a unique irreducible subrepresentation and a unique irreducible quotient ⌘, which could be

StG, or 1G is a direct factor. If 1G is a direct factor then iGB1T ' 1G � StG and StG must be

irreducible; otherwise the irreducible subrepresentation of StG would be a subrepresentation

of iGB1T and not cuspidal.

Let Gz be one of the two standard maximal parahoric subgroups Gx and Gy of G. The

next step is a slight simplification of the proof of Lemma 6.10. By the restriction-induction

formula, Lemma 3.5, and the Iwasawa decomposition G = BGz we have

RG
M

z

(iGB1) =
�

ResGG
x

(iGB1)
�G1

x '

0

@

Y

B\G/G
x

IndGx

gB\G
x

(ResB
gB\G

x

g(1))

1

A

G1

x

'
⇣

IndGx

B\G
x

(ResBB\G
x

(1))
⌘G1

x

.

Because G1
z is normal in Gz

(IndGz

B\G
z

1)G
1

z ' IndGz

(B\G
z

)G1

z

1.

Inflation and induction commute hence

IndGz

(B\G
z

)G1

z

1 ' inflG1

z

iMz

B
1T .
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By Theorem 3.3, all subquotients of iGB1 are level zero. Thus every irreducible subquotient

must have non-trivial invariants under the pro-unipotent radical of one of the two maximal

parahoric subgroups Gx and Gy. Furthermore, we know that

RG
M

z

(iGB1) ' inflG1

z

iMz

B
1

and we listed the subquotients of iMz

B
1 in Chapter 3. Let StM

z

denote the, not necessarily

irreducible, quotient of iMz

B
1 by 1M

z

.

0 1M
z

iMz

B
1 StM

z

0

By exactness of G1
z-invariants

(?) RG
M

z

(StG) ' StM
z

.

All cuspidal level zero representations of G are listed in Theorem 7.1. These cuspidal sub-

quotients are isomorphic to IGM
z

� where Gz is one of the two maximal parahoric subgroups

of G and � is a cuspidal representation of Mz.

Let Gz be one of the two maximal parahoric subgroups of G, and � a cuspidal representation

of Mz. By Lemma 6.3, because Gz is equal to the full stabilizer of the vertex z,

RG
M

z

� IGM
z

(�) ' �.

Furthermore if (⇡,V) is a level zero irreducible representation of G, then (V)G1

z ' � implies

that ⇡ ' indGG
z

�. Note that this requires � to be cuspidal.

By Lemma 6.6, for all cuspidal representations �x of Mx,

RG
M

y

� IGM
x

(�x) = {0}.(†1)

Similarly, for all cuspidal representations �y of My,

RG
M

x

� IGM
y

(�y) = {0}.(†2)

Using these properties of invariance under the pro-p unipotent radicals of the maximal para-

horic subgroups of G we can identify all subquotients of the induced representation IndGB 1:

If ` | q � 1, or ` is banal for G then, by (?) and Chapter 3 Sections 4.1 and 5.1,

RG
M

x

(StG) = StU(2,1)(k
E

/k
F

) and RG
M

y

(StG) = StU(1,1)(k
E

/k
F

)

where StM
z

are irreducible `-modular representations of Mz. Because there are no cuspidal

representations in either the G1
x-invariants or the G

1
y-invariants StG cannot have any cuspidal

subquotients, and by exactness of the Jacquet functor iGB1T has length 2.

By Chapter 1 Theorem 3.5,
�

iGB1T
�⇠ ' iGB�B.

The contragredient is a contravariant and exact functor, Chapter 1 Theorem 3.1, thus we

have an exact sequence of representations of G:

0 eStG iGB�B 1G 0
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If ` | q ± 1, then �B = 1T . Hence 1G appears as a quotient of iGB1T in these cases. If ` | q � 1

because iGB1T is of length two, 1G is a direct factor of iGB1T :

iGB1T = 1G � StG .

If ` | q + 1 then, by (?) and Chapter 3 Sections 4.2 and 5.3,
⇥

RG
M

x

(StG)
⇤

= 1M
x

� ⌫1 � ⌫1 � �T
2

,✓.

The representation RG
M

x

(StG) has a cuspidal subrepresentation ⇣. If 1G was a direct factor of

iGB1T then, by exactness, RG
M

x

(StG) would be a subrepresentation of RG
M

x

(iGB1T ) = IndMx

B
1

contradicting the cuspidality of ⇣. Hence 1G appears twice in the composition series of iGB1T ,

as the unique irreducible subrepresentation and as the unique irreducible quotient. Further-

more, iGB1T has length greater than equal to three and there is a proper subrepresentation ⇡

of StG. All irreducible subquotients of ⇡ are cuspidal by exactness of the Jacquet functor.

Thus 1G is a quotient of StG with RG
M

x

(1G) = 1M
x

. By exactness
⇥

RG
M

x

(⇡)
⇤

= ⌫1 � ⌫1 � �T
2

,✓

is cuspidal. Therefore, by reciprocity,
⇣

IGM
x

⌫1 � IGM
x

⌫1 � IGM
x

�T
2

,✓

⌘

2 [⇡].

Similarly,

[RG
M

y

(StG)] = 1M
y

� �T
1

,✓.

Therefore, by exactness,

RG
M

x

(⇡) = �T
1

,✓

and by reciprocity

HomG(I
G
M

y

�T
1

,✓,⇡) ' HomM
y

(�T
1

,✓,R
G
M

x

(⇡)) 6= {0}.

Thus IGM
y

�T
1

,✓ is an irreducible subrepresentation of ⇡. In fact, IGM
y

�T
1

,✓ is a direct factor of

⇡ by applying the same reciprocity argument to RG
M

x

(⇡). Hence, because every irreducible

subquotient must have nontrivial invariants under one of the two maximal parahoric sub-

groups,

[⇡] = IGM
x

⌫1 � IGM
x

⌫1 � IGM
x

�T
2

,✓ � IGM
y

�T
1

,✓.

If ` | q2 � q + 1 then, by (?) and Chapter 3 Sections 4 and 5.2,

[RG
M

x

(StG)] = 1M
x

� �T
1

,✓ and [RG
M

y

(StG)] = StU(1,1)(k
E

/k
F

)

where �T
1

,✓ is irreducible and cuspidal and StU(1,1)(k
E

/k
F

) is irreducible. By cuspidality of

�T
1

,✓ it cannot be a quotient of StM
x

' RG
M

x

(StG). Hence �T
1

,✓ is an irreducible subrepresen-

tation of RG
M

x

(StG) and, by reciprocity,

HomG(I
G
M

x

�T
1

,✓, StG) ' HomM
x

(�T
1

,✓,R
G
M

x

(StG)) 6= {0}.

Thus IGM
x

�T
1

,✓ is a subrepresentation of StG and iGB1T has length three. By exactness of level

zero parahoric restriction the irreducible quotient ⌘ of StG has RG
M

x

⌘ = 1M
x

and RG
M

y

⌘ =

StU(1,1)(k
E

/k
F

). ⇤
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11. Decomposition of iGB(!E/F ⌦ �
� 1

4

B )

In this section we finish our description of the decomposition of the unramified principal series

representations of the unramified unitary group in three variables. It remains to describe the

decomposition of iGB(!E/F ⌦ �
� 1

4

B ) and its contragredient iGB(!E/F ⌦ �
� 3

4

B ) when ` is banal or

` | q � 1. The length of iGB(!E/F ⌦ �
� 1

4

B ) is two because there are no irreducible cuspidal

representations in RG
M

z

(iGB(!E/F ⌦ �
� 1

4

B )), by the same proof as Theorem 10.1 when ` is banal

or ` | q � 1.

We let U denote an irreducible subrepresentation of iGB(!E/F ⌦ �
� 1

4

B ) with quotient V. Thus

the contragredient iGB(!E/F ⌦ �
� 3

4

B ) has eV as an irreducible subrepresentation and eU as an

irreducible quotient.

0 U iGB(!E/F ⌦ �
� 1

4

B ) V 0

0 eV iGB(!E/F ⌦ �
� 3

4

B ) eU 0

When ` | q � 1 the character �B is trivial. If E/F is p-adic, by Theorem 9.1, when ` | q � 1,

iGB(!E/F ) is semisimple.

12. Reducibility points; ramified characters

Using Theorem 9.1 we find the reducibility points not yet considered where the induced

representation has cuspidal subquotients. Then we decompose the level zero induced repre-

sentations with this property.

Theorem 12.1. Assume ` 6= 2, 3. Let G be an unramified p-adic unitary group in three

variables. Let � = �1 ⌦ 1 be a ramified character of T . Then iGB(�) is semisimple unless

` | q + 1 and �1 | F⇥ is trivial. Furthermore when ` | q + 1 and �1 | F⇥ is trivial, iGB(�) has

length greater than or equal to three.

Proof: Assume ` 6= 2, 3. When �1 is ramified if �1 |F⇥ is nontrivial then the j-function is

a power of q, by [Key84, Section 5], hence, by Theorem 9.1, iGB(�
1

2

B ⌦ �) is irreducible. By

[Key84, Section 5], if �1 |F⇥ is trivial, or equivalently w� = �, then

j�(1) = qr
(q + �1($E))(q�1 + �1($E))

(1 + �1($E))(1 + �1($E))

for some r 2 Z. Thus, by Theorem 9.1, iGB(�
1

2

B ⌦ �) is semisimple unless o1(j�) = 2 which

occurs if and only if ` | q+1 because �1($E) = 1. Because ` | q+1, the character �B is trivial.

By Theorem 9.2, when ` | q + 1 the length of iGB(�) is greater than or equal to three. ⇤

We consider two cases:

(1) The level zero case: If �1 is trivial on 1 + PE . Then �1 = inflh$
E

i �ram where �ram is a

character of O⇥
E , because E

⇥ = O⇥
Eh$Ei. The character �ram is trivial on 1+PE . Thus

�ram identifies with a character �ram of k⇥E . Furthermore �ram is trivial on k⇥F because

�1 is trivial on F⇥ hence on O⇥
F and 1 + PF .
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(2) The positive level case: If �1 is not trivial on 1 +PE . By smoothness there exists i 2 N
such that �1 is trivial on 1 + P i

E . Similarly �1 = inflh$
E

i �ram with �ram a character of

O⇥
E trivial on 1 + P i

E .

In this chapter we only consider case (1) when ` | q + 1 and the induced representations are

of the form iGB(inflh$
E

i �ram ⌦ 1).

Theorem 12.2. Let ` | q + 1. The representation iGB(inflh$
E

i �ram ⌦ 1) has length four with

cuspidal subquotients isomorphic to IGM
x

(�T
2

,✓) and IGM
y

(�T
1

,✓ ⌦ 1). Furthermore,

iGB(inflh$
E

i �ram ⌦ 1) has a unique irreducible subrepresentation and a unique irreducible

quotient, the irreducible quotient is isomorphic to the irreducible subrepresentation and we

have the following exact diagram:

0

IGM
x

(�T
2

,✓)� IGM
y

(�T
1

,✓ ⌦ 1)

0 ⇣ iGB(inflh$
E

i �ram ⌦ 1) ⇡2 0

⇣

0

Proof: By Theorem 12.1, iGB(inflh$
E

i �ram⌦1) is reducible with length greater than or equal

to three. By Chapter 3 Sections 4 and 5
⇥

RG
M

x

(iGB(inflh$
E

i �ram ⌦ 1))
⇤

' 1M
x

(�ram)� 1M
x

(�ram)� �T
2

,✓,
h

RG
M

y

(iGB(inflh$
E

i �ram ⌦ 1))
i

' (1M
y

(�ram)⌦ 1)� (1M
y

(�ram)⌦ 1)� (�T
1

,✓ ⌦ 1).

By cuspidality of �T
2

,✓, R
G
M

x

(iGB(inflh$
E

i �ram ⌦ 1)) ' IndMx

B (�ram ⌦ 1) has a unique compo-

sition series

0 ( 1M
x

(�ram) ( V ( RG
M

x

(iGB(inflh$
E

i �ram ⌦ 1))

with RG
M

x

(iGB(inflh$
E

i �ram ⌦ 1))/V ' 1M
x

(�ram) and V/1M
x

(�ram) ' �T
2

,✓.

Similarly, RG
M

y

(iGB(inflh$
E

i �ram ⌦ 1)) has a unique composition series

0 ( 1M
y

(�ram)⌦ 1 ( W ( RG
M

y

(iGB(inflh$
E

i �ram ⌦ 1))

with RG
M

y

(iGB(inflh$
E

i �ram ⌦ 1))/W ' 1M
y

(�ram)⌦ 1 and W/1M
y

(�ram)⌦ 1 ' �T
1

,✓ ⌦ 1.

By the Chapter 1 Lemma 3.12, rGB(i
G
B(inflh$

E

i �ram ⌦ 1))) has length two with
⇥

rGB(i
G
B(inflh$

E

i �ram ⌦ 1)))
⇤

= inflh$
E

i �ram ⌦ 1� inflh$
E

i �ram ⌦ 1.

By exactness of the Jacquet functor, either iGB(inflh$
E

i �ram ⌦ 1) has a unique irreducible

subrepresentation ⇡1 and a unique irreducible quotient ⇣, or is semisimple. However, as the

length of iGB(inflh$
E

i �ram⌦1)) is greater than or equal to three, it cannot be semisimple. We

let ⇡2 denote the quotient of iGB(inflh$
E

i �ram⌦ 1)) by ⇡1. Because ⇣ and ⇡1 are not cuspidal,

by exactness of the Jacquet functor, rGB(⇣) and rGB(⇡1) are non-zero and irreducible.
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By Theorem 4.12 and Lemma 4.7,

IGMI
(�ram ⌦ 1) ' iGB(ind

T
I
T

(�ram ⌦ 1)).

By reciprocity, ⇣ is a quotient of IGMI
(�ram ⌦ 1).

By Theorem 4.8, HF
`

(G, I, (�ram ⌦ 1)) is generated by fw
1

, 1
q

and fw
2

and the quadratic

relations

(fw
2

+ 1) ? (fw
2

+ 1) = (fw
1

, 1
q

+ 1) ? (fw
1

, 1
q

+ 1) = 0.

Thus HF
`

(G, I, (�ram ⌦ 1) has a unique simple one-dimensional module M . Because

(I, inflh$
E

i �ram⌦1) is quasi-projective by Lemma 8.3, a simple module of HF
`

(G, I, (�ram⌦1)
corresponds to ⇣ by the bijection of Theorem 8.1. By Theorem 4.10, because rGB(⇣) is irre-

ducible, ⇣ must correspond to the unique simple one dimensional module of HF
`

(G, I, (�ram⌦
1). Hence, if V is the space of ⇣, VI1 is one dimensional and the action of I is given by �ram⌦1.

By Chapter 1 Theorem 3.5,
�

iGB(inflh$
E

i �ram ⌦ 1)
�⇠ ' iGB

�

(inflh$
E

i �ram ⌦ 1)⇠
�

,

as �B is trivial. Furthermore

(inflh$
E

i �ram ⌦ 1)⇠ = (inflh$
E

i ��1
ram ⌦ 1)

where ��1
ram is the character of O⇥

E defined by

��1
ram(x) = �ram(x

�1)

for all x 2 O⇥
E .

Similar arguments, given for iGB(inflh$
E

i �ram ⌦ 1), apply to iGB(inflh$
E

i ��1
ram ⌦ 1). We find:

(1) iGB(inflh$
E

i ��1
ram⌦1) has a unique irreducible subrepresentation and a unique irreducible

quotient ⌘;

(2) ⌘ corresponds to the unique simple one dimensional module of HF
`

(G, I, (��1
ram ⌦ 1))

under the bijection of Theorem 8.1.

Let V be the space of ⌘. By Chapter 1 Lemma 3.2,

V = VI1 � V(I1)

and ResGI (invI1 ⌘) is one dimensional, hence isomorphic to (��1
ram⌦1). By Chapter 1 Theorem

3.1, e⌘ is a subrepresentation of iGB(inflh$
E

i �ram ⌦ 1). Because
⇣

VI1
⌘⇠
' eVI1

e⌘I
1

is one dimensional hence must be isomorphic to (�ram⌦ 1). Hence e⌘ must be irreducible

and isomorphic to ⇣. Thus ⇣ appears twice in the composition series of iGB(inflh$
E

i �ram ⌦ 1)

as the unique irreducible quotient and as the unique irreducible subrepresentation. Let ⇡3
denote the subrepresentation of ⇡2 such that the quotient of ⇡2 by ⇡3 is ⇣. By exactness

of level zero parahoric restriction, RG
M

x

(⇡3) ' �T
2

,✓ and RG
M

y

(⇡3) ' (�T
1

,✓ ⌦ 1). Therefore,

by reciprocity, IGM
x

(�T
2

,✓) and IGM
y

(�T
1

,✓ ⌦ 1) are subrepresentations of ⇡3. Every irreducible

subquotient of ⇡3 must have nontrivial invariants under a maximal parahoric subgroup hence

⇡3 = IGM
x

(�T
2

,✓)� IGM
y

(�T
1

,✓ ⌦ 1). ⇤

Remark. Choose a lift of inflh$
E

i �ram⌦1 to an integral `-adic character ⇢ of T . By [Key84],

the induced `-adic representation iGB(⇢) is semisimple of length two. By Chapter 1 Theorem
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5.1, iGB(⇢) is an integral `-adic representation. We let L be a lattice in inflh$
E

i �ram ⌦ 1 and

iGB(L) the induced lattice in iGB(⇢). Note that, by a slight adaption to the proof of Chapter 1

Corollary 5.2, because L/⇤`L ' inflh$
E

i �ram ⌦ 1 is irreducible we have

iGB(inflh$
E

i �ram ⌦ 1) ' iGB(L)/⇤`(i
G
B(L)).

Hence there is a lattice in the semisimple representation iGP (⇢) whose reduction modulo ` is

iGB(inflh$
E

i �ram ⌦ 1). This lattice iGB(L) cannot be semisimple.

13. The cuspidal subquotients of iGB(�)

Let � a level zero character of T . By Section 9, there exist characters �1 of E⇥ and �2 of E1

such that

iGB(�) ' iGB(�1 ⌦ 1)(�2 � det).
Therefore the length of iGB(�) is equal to length of iGB(�1 ⌦ 1). By Theorems 10.1 and 12.2,

we have described the decomposition of iGB(�1 ⌦ 1) in the cases where the length is greater

than or equal to three. Let TI = T \ I and T 1
I = T \ I1. By Theorem 6.10,

RG
M

z

(iGB(�)) ' iMz

B
(invTI1

(ResTTI
�)).

The character � is level zero if and only if both �1 and �2 are level zero and

RG
M

z

(iGB(�)) ' iMz

B
(invTI1

(ResTTI
(�1 ⌦ 1)))(invTI1

(ResTTI
(�2)) � det).

By Theorems 10.1 and 12.2, we have described all parabolically induced representations with

�2 trivial which have irreducible cuspidal subquotients. Thus, the remaining parabolically

induced representations with cuspidal subquotients have �2 nontrivial and are a twist of a

case already considered. In these cases the cuspidal subquotients are twists of the cuspidal

subquotients of the parabolically induced representation with �2 trivial by the same character.

14. Supercuspidal support

Let G = U(2, 1)(E/F ) be the unramified p-adic unitary group in three variables.

Theorem 14.1. Let ⇡ be an irreducible smooth level zero `-modular representation of G.

Then scusp(⇡) exists and is unique up to conjugacy.

Proof: By Chapter 1 Lemma 3.14, scusp(⇡) exists. Suppose ⇡ is not cuspidal then cusp(⇡) is

supercuspidal and, by Chapter 1 Theorem 3.13, cusp(⇡) exists and is unique up to conjugacy.

Hence scusp(⇡) exists and is unique up to conjugacy.

If ⇡ is a level zero cuspidal representation it is in the list given in Theorem 7.1 and we have

seen by the decomposition of the level zero principal series, Theorems 10.1 and 12.2 and

Section 13, that scusp(⇡) exists and is unique up to conjugacy. ⇤

Let Irr0F
`

(G) denote the set of isomorphism classes of irreducible level zero `-modular represen-

tations of G. Thus, by Theorem 14.1, we can partition Irr0F
`

(G) by supercuspidal support. For

(L,�) a pair consisting of a Levi subgroup L of G and an irreducible supercuspidal representa-

tion � of L we let ⌦ denote the conjugacy class of (L,�) and let Irr(⌦) denote the set of all irre-

ducible representations of G with supercuspidal support ⌦. By Theorem 3.3, � is a level zero

representation of L if and only if Irr(⌦) ⇢ Irr0F
`

(G). Let ⌃0 = {⌦ = (L,�) : � is level zero}.
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By Theorem 14.1,

Irr0F
`

(G) =
G

⌦2⌃0

Irr(⌦).

Lemma 14.2. Let (Gw,�w) and (Gz,�z) be supercuspidal standard level zero F`-types in G.

Then IGM
w

(�w) and IGM
z

(�z) have an irreducible subquotient in common if and only if they

are isomorphic.

Proof: Suppose Gw and Gz are maximal then the result follows from Corollary 6.4. Suppose

Gz is a standard maximal parahoric subgroup and Gw is the standard Iwahori subgroup

of G. Then IGM
z

(�z) is irreducible, by Lemma 6.6. Hence IGM
w

(�w) and IGM
z

(�z) have an

irreducible subquotient in common if and only if IGM
z

(�z) is a subquotient of I
G
M

w

(�w). Suppose

IGM
z

(�z) is a subquotient of IGM
w

(�w) then, by exactness, RG
M

z

(IGM
z

(�z)) is a subquotient of

RG
M

z

(IGM
w

(�w)). By Lemma 6.6, RG
M

z

(IGM
z

(�z)) ' �z and, by Lemma 6.3,

(?) RG
M

z

(IGM
w

(�w)) '
M

n2D
w,z

iMz

P
z,nw

⇣

rMw

P
w,n

�1

z

(�w)
⌘n
.

Because Mw does not have any proper parabolic subgroups, Mw = Pw,n�1z and Pz,nw is a

proper parabolic subgroup of Mz. Hence �z is a subquotient of iMz

P
z,nw

( �wn ) for some proper

parabolic subgroup of Mz contradicting the supercuspidality of �z.

Suppose Gz and Gw are both equal to the standard Iwahori subgroup I of G. If IGMI
(�1) and

IGMI
(�2) share a common subquotient X then, because X is level zero, there exists a standard

maximal parahoric subgroup Gv of G such that RG
M

v

(X) 6= 0. By exactness, RG
M

v

(IGMI
(�1))

and RG
M

v

(IGMI
(�2)) share a common subquotient. Thus, by (?), there exist n1, n2 2 Dw,v such

that iMv

B ( �1
n
1 ) and iMv

B ( �2
n
2 ) share a common subquotient where B is the standard Borel

subgroup of Mv. Thus �1
n
1 is conjugate to �2

n
2 in Mv by unicity of supercuspidal support

in Mv. Hence �1 is conjugate to �2 in G and IGMI
(�1) ' IGMI

(�2) ⇤

By Lemma 14.2, we can partition Irr0F
`

(G) by supercuspidal standard level zero F`-types. Let
(Gz,�z) be a supercuspidal level zero F`-type. We write Irr(Gz,�z) as the subset of Irr0F

`

(G)

of irreducible subquotients of IGM
z

(�z). Let ⇥0 be the set of all supercuspidal standard level

zero F`-types, up to equivalence, then

Irr0F
`

(G) =
G

(G
z

,�
z

)2⇥0

Irr(Gz,�z).

Lemma 14.3. The partition of Irr0F
`

(G) by supercuspidal support is a refinement of the par-

tition of Irr0F
`

(G) by conjugacy classes of supercuspidal standard level zero F`-types.

Proof: Let (Gw,�w) be a supercuspidal standard level zero F`-type. If Gw is maximal

then IGM
w

(�w) is irreducible and supercuspidal. Furthermore all irreducible supercuspidal

representations of G appear in this way. Thus we can suppose Gw is the standard Iwahori

subgroup of G.

Suppose � is a subquotient of iGB(�) for some level zero character � of T . At least one of

RG
M

x

(�) and RG
M

y

(�) is nonzero. Without loss of generality we assume RG
M

x

(�) is nonzero.

By Lemma 6.10, RG
M

x

(�) is a subquotient of iMx

B
(�).

(1) If � is cuspidal then � = RG
M

x

(�) is irreducible and cuspidal and � ' IGM
x

(�) which is a

subquotient of IGMI
(�) by exactness of level zero parahoric induction.

(2) If � is a quotient of iGB(�) then it is a quotient of IGMI
(�) by reciprocity.
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(3) If � is a subrepresentation of iGB(�) then it is a quotient of (iGB(�))
⇠ ' iGB(�

�1) and thus

a quotient of IGMI
(��1) by reciprocity.

⇤

Remark. Let ⌃
0
be the subset of B(G) consisting of the level zero inertial classes. Let

⌦ 2 ⌃0
and let RF

`

(⌦) denote the full abelian subcategory of level zero representations of

G all of whose irreducible subquotients have inertial support ⌦. Then the results of this

section should be a first step towards establishing a decomposition of the category of level

zero `-modular representations into a product of indecomposable subcategories,

R0
F
`

(G) =
Y

⌦2⌃0

RF
`

(⌦).

15. Level zero supercuspidal base change

We show that the level zero stable base change map, defined in [AL05],

BC : R0
Q

`

(U(2, 1)(E/F ))! R0
Q

`

(GL3(E))

from irreducible level zero `-adic representations of U(2, 1)(E/F ) to irreducible level zero `-

adic representations of GL3(E), when restricted to the irreducible representations of U(2, 1)(E/F )

whose image is supercuspidal, is compatible with decomposition modulo `.

Lemma 15.1. Assume ` 6= 2, 3. Let ⇡i, i = 1, 2, be irreducible integral level zero `-adic

representations of U(2, 1)(E/F ) such that BC(⇡i) is supercuspidal, i = 1, 2. If d`(BC(⇡1)) =

d`(BC(⇡2)) then d`(⇡1) = d`(⇡2).

Proof: Let e�
T
1

,e✓ be a supercuspidal `-adic representation of GL3(kE), Chapter 2 Section 9.

By [Vig96, Chapter 3 3.3],

indGE⇥ GL
3

(O
E

) infl e�T
1

,e✓

is supercuspidal. By [AL05, Table 1], these are the only irreducible supercuspidal represen-

tations appearing in the image of BC.

Let �T
1

,✓ be the `-adic representation of U(2, 1)(kE/kF ) given in Chapter 2 Section 8. By

Theorem 7.1, the `-adic representation IGM
x

(�T
1

,✓) is irreducible and cuspidal.

By [AL05, Table 1],

BC : IGM
x

(�T
1

,✓) 7! indGE⇥ GL
3

(O
E

) infl e�T
1

,e✓

where e✓ is the Shintani lift, see [AL05, Section 2.2], of ✓. The Shintani lift of ✓ is e✓ = ✓ �⇠q�1

where ⇠q�1 : x 7! xq�1.

By Chapter 3 Sections 3 and 5, if ` | q + 1 or ` | q � 1 then e�
T
1

,e✓ is in an `-block of GL3(kE)

of defect zero and �T
1

,✓ is in an `-block of U3(kE/kF ) of defect zero.

Suppose ` | q2 � q + 1. By Chapter 3 Section 3, d`(e�T
1

,e✓) is supercuspidal if and only if

d`(e✓)q
2�1 6= 1 and is irreducible in this case. Furthermore, d`(e✓)q

2�1 6= 1 if and only if d`(�T
1

,✓)

is irreducible and, by Chapter 3 Section 5, if d`(✓)q+1 6= 1 then d`(�T
1

,✓) is irreducible and

supercuspidal. Comparing the structures of the `-blocks, d`(e�T
1

,e✓
1

) = d`(e�T
1

,e✓
2

) if and only

if d`(�T
1

,✓
1

) = d`(�T
1

,✓). ⇤
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By Lemma 15.1 we can define a level zero `-modular base change map BC from certain

supercuspidal level zero `-modular representations of U(2, 1)(E/F ) to supercuspidal level

zero `-modular representations of GL3(E). An interesting question is: is it possible to extend

BC to all level zero representations of U(2, 1)(E/F ) in a natural way?



CHAPTER 5

Positive level representations

Let G be an unramified unitary group in three variables. In this chapter we construct

the positive level irreducible cuspidal `-modular representations of G. We show that the

supercuspidal support of the irreducible representations of G is unique up to conjugacy under

an assumption on the possible R-types which the subquotients of iGB(�) can contain.

85



86 5. POSITIVE LEVEL REPRESENTATIONS

1. Introduction

Let G = U(V, h), (⇡,V) 2 RR(G) and ⇤ be a self dual lattice sequence in V. Then, by

smoothness, V =
S

n>1 VP

n

(⇤). Thus there exists n 2 N such that VP

n

(⇤) is non-zero. In

this section we assume ⇡ is not of level zero, hence n > 1. Because Pn(⇤) is normal in

Pn�1(⇤) we get a representation of Pn�1(⇤) on VP

n

(⇤). The quotient Pn�1(⇤)/Pn(⇤) is

abelian, as n > 1, hence ResG
P

n�1

(⇤)(⇡) contains a character. This is the starting point of

the construction of the positive level irreducible smooth cuspidal representations of G. One

attempts to refine groups and consider irreducible representations of these new groups which

contain this character on restriction; the goal being to find an R-type (K,�) contained in

⇡ such that indGK � is irreducible and hence isomorphic to ⇡. The first part of the complex

construction for classical groups of [Ste08] involves pro-p compact open subgroups of G.

This is where we start; however we eventually specialise to unramified unitary groups in

three variables.

Let G = U(2, 1)(E/F ) be an unramified unitary group in three variables. For complex repre-

sentations of G, under a similar construction to that of [Ste08], it is shown in [Bla02] that

every irreducible positive level cuspidal representation of G is compactly induced. We follow

the construction of [Ste08] for G together with adaptations to this construction introduced

in [Vig01b] and [Vig96] when dealing with generalising the construction of all cuspidal

complex representations of GLn(F ) in [BK93] to the construction of all cuspidal `-modular

representations of GLn(F ). We show that every irreducible positive level cuspidal `-modular

representation of G is compactly induced.

2. Semisimple characters

We let eG = GL(V ), G = U(V, h), eA be the Lie algebra of eG and g be the Lie algebra of G.

The filtration An(⇤) induces a valuation ⌫⇤ on eA by

⌫⇤(x) =

8

<

:

sup{n 2 Z : x 2 An(⇤)} if x 2 eA \{0},
1 otherwise.

2.1. Simple strata. A stratum in eA is a quadruple [⇤, n, r,�] with ⇤ an OE-lattice

sequence in V, r, n 2 Z such that n > r > 0 and � 2 A�n(⇤). Two strata [⇤1, n1, r1,�1] and

[⇤2, n2, r2,�2] are called equivalent if n1 = n2, r1 = r2, and �1 � �2 2 A�r
1

(⇤). A stratum is

called null if n = r and � = 0.

The level of a stratum [⇤, n, r, b] is the rational number n
e(⇤) where e(⇤) is the OE-period of

⇤. Let g = (n, e(⇤)). The characteristic polynomial '� 2 kE [X] of [⇤, n, r,�] is the reduction

modulo ($E) of the characteristic polynomial of $
n

g

E�
e(⇤)

g . The characteristic polynomial and

level of a stratum are invariant under equivalence of strata.

A stratum [⇤, n, r,�] is called self dual if ⇤ is a self dual OE-lattice sequence and � 2 A�
n (⇤).

For a locally compact abelian group H, we let H^ denote the Pontryagin dual of H.

Theorem 2.1. If n > r > n
2 > 0 and ⇤ is self dual we have a P(⇤)-equivariant isomorphism

A�
1�n(⇤)/A

�
1�r(⇤)! (Pr(⇤)/Pn(⇤))

^

� + A�
1�r(⇤) 7!  � : (1 + x) 7!  E � Tr eA/E

(�x).
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Thus, if n > r > n
2 > 0 then an equivalence class of a skew stratum [⇤, n, r,�] corresponds

to a character of Pr(⇤) trivial on Pn(⇤).

Let [⇤, n, r,�] be a stratum in eA. Suppose D = E[�] is a field, then the action of D on V

gives V the structure of a D-vector space. We call [⇤, n, r,�] pure if D is a field, ⇤ is an

OD-lattice sequence and ⌫⇤(�) = �n.

Let [⇤, n, r,�] be a pure stratum in eA. Let

eB = {� 2 eA : �d = d� for all d 2 D}

and put B0(⇤) = A0(⇤) \ eB. Let d = [D : E] then V is an N -dimensional E-vector space

hence it is an N
d -dimensional D-vector space. Let eGD = eB⇥, the D-automorphisms of V .

Choosing an E-basis for V identifies eG with GLN (E) and choosing a D-basis for V identifies
eGD with GL

N

d

(D). We let GD = eGD \G and P(⇤D) = P(⇤) \GD.

For k 2 Z, we define

nk(�,⇤) = {x 2 A0(⇤) : �x� x� 2 Ak(⇤)},

which is an OE-lattice in eA. Let

k0(�,⇤) = max {�n,max{k 2 Z : nk(�,⇤) 6⇢ B0(⇤) + A1(⇤)}} .

This is a integer greater than or equal to �n. If k0(�,⇤) = �n we call � minimal. A pure

stratum [⇤, n, r,�] is called simple if k0(�,⇤) < �r. A stratum is called simple if it is either

a null stratum or it is a pure stratum which is simple.

Let [⇤, n, 0,�] be a simple stratum in eA. If � is minimal over E, define OE-orders

H(�,⇤) = B0(⇤) + A[n/2]+1(⇤)

J(�,⇤) = B0(⇤) + A[(n+1)/2](⇤).

If � is not minimal over E put r = �k0(�,⇤) and suppose that r < n. Let [⇤, n, r, �] be

a simple stratum equivalent to [⇤, n, r,�], which exists by [BK93, Theorem 2.4.1], define

OE-orders

H(�,⇤) = B0(⇤) + (H(�,⇤) \ A[n/2]+1(⇤))

J(�,⇤) = B0(⇤) + (J(�,⇤) \ A[(n+1)/2](⇤)).

The OE-orders H(�,⇤) and J(�,⇤) are well defined, independent of the choice of simple

stratum [⇤, n, r, �], [BK93, Proposition 3.1.9]. For i > 0, let eH i(�,⇤) = H(�,⇤) \ Pi(⇤)

and eJ i(�,⇤) = J(�,⇤) \ Pi(⇤). If [⇤, n, 0,�] is skew then the groups are stable under the

involution h induces on eG. We let H i(�,⇤) = eH i(�,⇤) \G and J i(�,⇤) = eJ i(�,⇤) \G and

put J(�,⇤) = J0(�,⇤). These are compact open subgroups of G and J1(�,⇤) is normal in

J(�,⇤) with

J(�,⇤)/J1(�,⇤) ' P(⇤D)/P1(⇤D).

2.2. Semisimple strata. Let [⇤, n, r,�] be a stratum in eA. A decomposition V =
Ll

i=1 Vi

of V is called a splitting for [⇤, n, r,�] if ⇤(k) =
Ll

i=1(⇤(k)\ Vi) and � =
Pl

i=1 1i�1i where

1i : V ! Vi is the projection map. We let �i = 1i�1i, ⇤i = ⇤ \ Vi and set

qi =

8

<

:

r if �i = 0,

�⌫⇤
i

(�i) otherwise.
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Definition 2.2 ([Ste05, Definition 3.2]). A stratum [⇤, n, r,�] in eA is called semisimple if

it is null or ⌫(�) = �n and there exists a splitting V =
Ll

i=1 Vi of V such that for 1 6 i,6 l

the stratum [⇤i, qi, r,�i] is either simple or null and, for all 1 6 i < j 6 l, the stratum

[⇤i � ⇤j ,max{qi, qj}, r,�i + �j ] is not equivalent to a simple or null stratum.

A semisimple stratum [⇤, n, r,�] is called skew if ⇤ is self dual, � 2 g and the splitting

V =
Ll

i=1 Vi is orthogonal with respect to h, i.e. if 1 6 i < j 6 l, vi 2 Vi and vj 2 Vj then

h(vi, vj) = 0. If [⇤, n, r,�] is a skew semisimple stratum then, for all 1 6 i 6 l, the stratum

[⇤i, qi, r,�i] is a skew simple stratum in EndE(Vi).

Let [⇤, n, 0,�] be a skew semisimple stratum with associated splitting V =
Ll

i=1 Vi. We define

D = E[�] '
Ll

i=1Di to be the sum of field extensions given by �. We let eB =
Ll

i=1
eBi,

GD =

 

l
Y

i=1

eB⇥
i

!

\G

and set P(⇤D) = P(⇤) \GD.

2.3. Semisimple characters. Fix [⇤, n, 0,�] a non-null skew semisimple stratum in G.

Define k0(�,⇤) to be the least r such that [⇤, n, r,�] is not semisimple. By [Ste05, Lemma

3.5], [⇤, n, r,�] is equivalent to a semisimple stratum [⇤, n, r, �] and [Ste05, Page 143] de-

fines orders H(�,⇤) and J(�,⇤) inductively analogously to the simple case; this definition is

independent of the choice of � by [Ste05, Lemma 3.9].

We have compact open subgroups J(�,⇤) = J(�,⇤)⇥ \G and H(�,⇤) = H(�,⇤)⇥ \G of G,

such that H(�,⇤) ✓ J(�,⇤), with decreasing filtrations by pro-p subgroups

H i(�,⇤) = H(�,⇤) \Pi(⇤) and J i(�,⇤) = J(�,⇤) \Pi(⇤),

i > 1. We have J(�,⇤) = P(⇤D)J1 and J(�,⇤)/J1(�,⇤) ' P(⇤D)/P1(⇤D). Let J0(�,⇤) =

P0(⇤D)J1(�,⇤) which is the inverse image of the connected component of J(�,⇤)/J1(�,⇤)

in J(�,⇤). Associated to [⇤, n, 0,�] is a set of characters C�(⇤,�) of H1(�,⇤) which are

intertwined by all of GD.

Theorem 2.3 ([Ste05, Proposition 3.27 and Theorem 5.1]). Let ⇡ be an irreducible positive

level cuspidal representation of G. Then there exists a skew semisimple stratum [⇤, n, 0,�]

such that ⇡ contains a semisimple character ✓ 2 C�(⇤,�). Furthermore,

IG(✓) = J1(�,⇤)GDJ
1(�,⇤).

This is our starting point for constructing all irreducible positive level cuspidal representations

of G. Let ⇡ 2 RR(G). We say that ⇡ contains the stratum [⇤, n, 0,�] if ⇡ contains some

semisimple character ✓ 2 C�(⇤,�).

Let [⇤i, ni, 0,�], i = 1, 2, be skew semisimple strata in G and ✓ 2 C�(⇤i,�), i = 1, 2.

Theorem 2.4 ([Ste08, Proposition 3.2]). Let ✓1 2 C�(⇤1,�). There exists a unique character

✓2 2 C�(⇤2,�) such that GD \ IG(✓1, ✓2) is non-empty.

In the setting of Theorem 2.4, we say that ✓2 is the transfer of ✓1 and write ⌧⇤
1

,⇤
2

,� for the

bijection induced C�(⇤1,�)! C�(⇤2,�).
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3. Skew semisimple strata in U(2, 1)(E/F )

Let G = U(2, 1)(E/F ) be an unramified unitary group in three variables considered as the

group of isometries, with respect to a hermitian form h, of a three dimensional E-vector space

V . A skew semisimple stratum [⇤, n, 0,�] in V defines a sum of field extensions D =
Ln

i=1Di

of E. The involution defined by h on EndE(Vi) restricts to an involution � on Di and we let

D0
i denote the fixed field of this involution. The extension Di/D

0
i is of degree two, otherwise

the involution would fix E, and is unramified because E/F is unramified.

Di

E D0
i

F

2

2

We consider the di↵erent classes of skew semisimple strata in G:

(SS-1) Skew simple strata, [⇤, n, 0,�].

(a) If � 2 E then |�|E = �n and

J(�,⇤)/J1(�,⇤) ' P(⇤)/P1(⇤),

which is isomorphic to U(2, 1)(kE/kF ), or U(1, 1)(kE/kF ) ⇥ U(1)(kE/kF ), or

GL1(kE) ⇥ U(1)(kE/kF ). These strata include the skew strata, [⇤, 0, 0, 0]; in

other words the level zero case which we have considered in Chapter 4.

(b) If D/E is cubic then

J(�,⇤)/J1(�,⇤) ' P(⇤D)/P1(⇤D) ' U1(kD/kD0)

is a cyclic group of order qD0 + 1 where qD0 is either qF or q3F depending on

whether D/E is ramified or unramified.

(SS-2) Skew semisimple (2, 1)-strata, [⇤, n, 0,�], which are not equivalent to a skew simple

stratum and for which we have a splitting V = V1 ? V2 orthogonal with respect to h

such that

[⇤, n, 0,�] =
2
M

i=1

[⇤i, qi, 0,�i]

with [⇤i, qi, 0,�i] skew simple strata in EndF (Vi), i = 1, 2. We suppose V1 is one-

dimensional and V2 is two-dimensional. Let D2 = E[�2]. We have two cases

(a) If �2 2 E then

J(�,⇤)/J1(�,⇤) ' P(⇤D
2

)/P1(⇤D
2

)⇥P(⇤D
1

)/P1(⇤D
1

),

which is isomorphic to U(1, 1)(kE/kF )⇥U(1)(kE/kF ) or GL1(kE)⇥U(1)(kE/kF )

ifGD
2

' U(1, 1)(E/F ), or isomorphic to U(1)(kE/kF )⇥U(1)(kE/kF )⇥U(1)(kE/kF )
if GD

2

' U(2)(E/F ). The case GL1(kE) ⇥ U(1)(kE/kF ) corresponds to when

P(⇤D
2

) is an Iwahori subgroup of U(1, 1)(E/F ).

(b) If D2/E is quadratic. Suppose D2/E is unramified then D0
2 would be equal to

E because there is a unique unramified extension of F in each degree hence E

would be fixed by �, a contradiction. Thus D2/E is ramified and

J(�,⇤)/J1(�,⇤) ' U(1)(kE/kF )⇥U(1)(kE/kF ).
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(SS-3) Skew semisimple (1, 1, 1)-strata, [⇤, n, 0,�] which are not equivalent to a skew simple

stratum or a skew semisimple (2, 1)-stratum. Thus we have a splitting V = V1 ? V2 ?
V3 which is orthogonal with respect to h with Vi, i = 1, 2, 3, one-dimensional. We

have

[⇤, n, 0,�] =
3
M

i=1

[⇤i, qi, 0,�i]

with [⇤i, qi, 0,�i] skew simple strata in EndF (Vi), i = 1, 2, 3. We have

J(�,⇤)/J1(�,⇤) ' U(1)(kE/kF )⇥U(1)(kE/kF )⇥U(1)(kE/kF ).

Lemma 3.1. Let ⇡ be an irreducible representation of G. Suppose ⇡ contains a skew simple

stratum [⇤, n, 0,�] such that � 2 E. Then there exists an irreducible character � of E1 such

that ⇡ ⌦ (� � det) is level zero.

Proof: By definition ⇡ contains a simple character ✓ 2 C�(⇤,�). By [BK93, Definition

3.23], ✓ |
P

[n/2]+1

(⇤)=  � and ✓ = � � det for some character � of P1(⇤). The character �

extends to a character e� of E1 and ⇡ ⌦ (e��1 � det) contains ✓ ⌦ (��1 � det) = 1 on P1(⇤).

Hence ⇡ ⌦ (e��1 � det) is level zero. ⇤

Using Chapter 4 and Lemma 3.1 we can construct by compact induction the irreducible

cuspidal representations of G which contain a skew simple stratum with � 2 E.

4. Heisenberg extensions

We return to a general G = U(V, h). Let [⇤, n, 0,�] be a skew semisimple stratum in G

and ✓ 2 C�(⇤,�). Continuing on from Theorem 2.3, the next step is to extend ✓ to an

irreducible representation ⌘ of J1(�,⇤) called a Heisenberg extension. As J1(�,⇤) is pro-p,

the analogous result holds for `-modular representations.

Theorem 4.1 ([Ste05, Corollary 3.29 and Proposition 3.31]). There is a unique irreducible

representation ⌘ of J1(�,⇤) which contains ✓. The dimension of ⌘ is (J1(�,⇤) : H1(�,⇤))
1

2 .

Furthermore,

dimR(Ig(⌘)) =

8

<

:

1 if g 2 J1(�,⇤)GDJ
1(�,⇤),

0 otherwise.

Let [⇤i, ni, 0,�], i = 1, 2, 3, be skew semisimple strata in G with the same splitting such that

P(⇤1) ✓ P(⇤2) ✓ P(⇤3). Let ✓i 2 C�(⇤i,�), i = 1, 2, 3, such that ✓1 = ⌧⇤2,⇤1,�(✓2) and

✓3 = ⌧⇤2,⇤3,�(✓2). Let ⌘i be the unique irreducible representation of J1(�,⇤i) which contains

✓i, i = 1, 2, 3. Set J1
1,3 = P1(⇤1

D)J
1(�,⇤3).

Theorem 4.2 ([Ste08, Proposition 3.7]). There exists a unique irreducible representation ⌘̂

of J1
1,3 such that Res

J1

1,3

J1(�,⇤3) b⌘ = ⌘3 and indP1

(⇤1)
J1

1,3

b⌘ ' indP1

(⇤1)
J1(�,⇤1) ⌘1. Furthermore

dimR(Ig(b⌘)) =

8

<

:

1 if g 2 J1
1,3GDJ

1
1,3,

0 otherwise.
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5. �-extensions

By Theorems 2.3 and 4.1, for any irreducible positive level `-modular cuspidal representation

⇡ of G there exist a pro-p subgroup J1(�,⇤) of G and an irreducible representation ⌘ of

J1(�,⇤) such that ⇡ contains ⌘. We suppose that M(⇤D) = P(⇤D)/P1(⇤D) is connected;

this is the case for all skew semisimple strata [⇤, n, 0,�] when G is an unramified unitary

group.

The next step is to extend ⌘ to an irreducible representation  of J(�,⇤) for which IG( ⌦
inflJ/J1(�)) = J for all irreducible cuspidal representations � of M(⇤D). To that end, ideally

we would like to define a �-extension of ⌘ to be an irreducible representation  of J(�,⇤) such

that ResJJ1

() = ⌘ and IG() = IG(⌘). This is the definition given in [Bla02]. This is di↵erent

to the definition of [Ste08, Section 4]; the di�culty in defining �-extensions in this way is

showing that such an extension always exists. It is not known for classical groups in general

whether such extensions, with the maximal intertwining possible, do exist. However, in the

maximal case, by [Ste08, Section 4, Proposition 6.18] for complex representations, extensions

 of ⌘ such that the representations  ⌦ inflJ/J1(�) have the minimal intertwining possible

exist; this is the property of the extensions which is needed to show that indGJ (⌦ inflJ/J1(�))

is irreducible.

Let [⇤, n, 0,�] be a skew semisimple stratum in G. Let [⇤min, n, 0,�] be a skew semisimple

stratum in G with the same splitting such that P(⇤min,D) is minimal and such that P(⇤min) ✓
P(⇤). Let ✓ 2 C�(⇤,�) and bJ1 = P1(⇤min,D)J1(�,⇤). Then bJ1 is a Sylow p-subgroup of

J(�,⇤). Let b⌘ be the unique irreducible representation of bJ1 given by Theorem 4.2. We write

a subscript Q` for `-adic representations and a subscript F` for `-modular representations.

Lemma 5.1. There exists an irreducible representation  of J(�,⇤) which extends b⌘.

Proof: As J1(�,⇤) and bJ1 are pro-p, decomposition modulo-` defines a bijection from `-

adic to `-modular representations. For b⌘F
`

an `-modular representation of bJ1 we let b⌘Q
`

be

the lift of b⌘F
`

. Then, by [Ste08, Theorem 4.1], b⌘Q
`

extends to a representation Q
`

of J(�,⇤)

and F
`

= d`(Q
`

) is an extension of b⌘F
`

to J(�,⇤). ⇤

In the case where P(⇤D) is a maximal parahoric subgroup of GD we call an extension as in

Lemma 5.1 a �-extension.

Remark. Let G be an unramified unitary group in three variables and let [⇤, n, 0,�] be any

skew semisimple stratum such that P(⇤D) is maximal and which is not a simple stratum

with � 2 E. It is possible to show that there exist extensions  of ⌘ which are extensions

of b⌘ and such that IG() = J1(�,⇤)GDJ
1(�,⇤). Either GD is abelian and contained in

J(�,⇤) and all extensions are intertwined by GD or GD ' U(V2, h2)⇥U(V1, h1) with V2 two-

dimensional and V1 one-dimensional. In the `-adic case it is shown in [Bla02, Lemma 5.8]

that such extensions exist and for `-modular representations we can obtain such extensions

by decomposition modulo-` from the `-adic case.

Let [⇤, n, 0,�] be a skew semisimple stratum in eA. If P(⇤D) is maximal we set Jmax(�,⇤) =

J(�,⇤). If P(⇤D) is not maximal we choose a maximal parahoric subgroup P(⇤max
D ) of GD

such that

P(⇤max
D ) ) P(⇤D) ) P1(⇤D) ) P1(⇤

max
D )

and let Jmax = J(�,⇤max
D ).
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We define �-extensions in the case when P(⇤D) is not maximal and P(⇤max) ◆ P(⇤). This

is enough for an unramified unitary group in three variables. For the general case see [Ste08,

Section 4].

Lemma 5.2. Let [⇤, n, 0,�] be a skew semisimple stratum, ✓ 2 C�(⇤,�), ⌘ a Heisenberg

extension of ✓. Choose ⇤max such that P(⇤max
D ) is maximal and P(⇤max) ◆ P(⇤). Let

✓max = ⌧⇤,⇤max,�(✓), ⌘max a Heisenberg extension of ✓max and max a �-extension of ✓max.

There exists a unique irreducible representation  of J(�,⇤) such that:

(1)  extends ⌘;

(2)  and ResJ(�,⇤
max)

P(⇤
D

)J1(�,⇤max)(max) induce equivalent irreducible representations of

P(⇤D)P1(⇤).

Proof: Of course, if P(⇤D) is maximal then max =  and there is nothing to prove. If

P(⇤D) is not maximal then [⇤, n, 0,�] is a skew semisimple (2, 1)-stratum, in the notation

of Section 3, and we have P(⇤D) = P(⇤D
1

) ⇥ P(⇤D
2

) with P(⇤D
2

) an Iwahori subgroup

in U(1, 1)(E/F ) and P(⇤D
1

) ' GD
1

' E1. In the `-adic case, by [Ste08, Lemma 4.3],

there exists a unique irreducible representation e of J(�,⇤) which satisfies (1) and (2). By

decomposition modulo-`, we have an irreducible representation  = d`(e) which satisfies (1)

and such that
h

indP(⇤
D

)P1(⇤)
J(�,⇤) 

i

=
h

indP(⇤
D

)P1(⇤)
P(⇤

D

)J1(�,⇤max)Res
J(�,⇤max)
P(⇤

D

)J1(�,⇤max)(max)
i

.

Furthermore, I
P(⇤

D

)P1(⇤)() ✓ I
P(⇤

D

)P1(⇤)(⌘) = J hence by Cli↵ord Theory indP(⇤
D

)P1(⇤)
J(�,⇤) 

is irreducible. ⇤

6. -induction

Let [⇤, n, 0,�] be a skew semisimple stratum. Let ✓ 2 C�(⇤,�), ⌘ be the unique irreducible

representation of J1(�,⇤) containing ✓ and  a �-extension of ⌘ to J(�,⇤). Let J = J(�,⇤),

J1 = J1(�,⇤) and M = M(⇤D).

As M = J/J1, we have an inflation functor inflJ1 : RR(M)! RR(J). Let - I
G
M : RR(M)!

RR(G) be defined by

- IGM (�) = indGJ (⌦ inflJ1 �),

for all � 2 M . When R = F` or Q`, the functor of -induction is exact as it is composed of

exact functors.

Let - RG
M : RR(G)! RR(M) be defined by

- RG
M (⇡) = HomJ1(ResJJ1

,ResGJ1

⇡),

for all ⇡ 2 RR(G), where action ofM on - RG
M

x

(⇡) is given by ifm 2M , f 2 HomJ1(ResJJ1

,ResGJ1

⇡)

and g 2 J is a representative of the coset m of J/J1 then

m · f = ⇡(g) � f � (g�1).

In this chapter we often omit the restriction in our notation and write this, more simply, as

- RG
M (⇡) = HomJ1(,⇡).

Lemma 6.1. Let ⇡ 2 RR(G) and � 2 RR(M) then

HomJ(⌦ inflJ1 �,⇡) ' HomM (�,HomJ1(,⇡)).
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Proof: Let

 : HomJ(⌦ inflJ1 �,ResGJ ⇡)! HomM (�,HomJ1(ResGJ1

,ResGJ1

⇡))

' 7!  (') : w 7!  w

where  w(v) = '(v ⌦ w). Let m 2 M and j be a representative of the coset in J/J1

corresponding to m. Because '(v ⌦ �(j)w) = ⇡(j)'((j�1)v ⌦ w), we have

 (')(�(j)w)(v) = ⇡(j) � (')(w) � (j�1)(v).

Hence  (') 2 HomM (�,HomJ1(ResGJ1

,ResGJ1

⇡)). Let

� : HomM (�,HomJ1(ResGJ1

,ResGJ1

⇡))! HomJ(⌦ inflJ1 �,ResGJ ⇡)

 7! �( ) : v ⌦ w 7! ( (w)) (v).

We have

�( )((j)v ⌦ �(j)w) =  (�(j)w)((j)v)

= ⇡(j) (w)((j�1)(j)v) = ⇡(j)�( )(v ⌦ w).

Hence �( ) 2 HomJ( ⌦ inflJ1 �,ResGJ ⇡). It is easy to check �( (')) = ' and  (�( )) =

 . ⇤

By Lemma 6.1 and reciprocity, -restriction is right adjoint to -induction.

Let K be a pro-p subgroup of G. For ⇢ 2 Irr(K), define e⇢ 2 HR(G) by

e⇢(x) =

8

<

:

µ(K)�1 dim(⇢) Tr(⇢(x�1)) if x 2 K,

0 otherwise.

Lemma 6.2. Let (⇡,V) 2 RR(G). The functor V ! V⇢ is exact and V⇢ is a direct factor of

ResGJ (V).

Proof: Let (⇡i,Vi) 2 RR(G), i = 1, 2, 3 and suppose

0! V1
'�! V2

 �! V3 ! 0

is a short exact sequence of representations of G. We define a sequence

V⇢1
Res(')����! V⇢2

Res( )����! V⇢3 ,

where the morphisms are given by restriction. It is routine to show this sequence is left exact.

Let ⇢1, ⇢2 2 IrrR(K), we have

e⇢
1

? e⇢
2

(x) =

Z

G
e⇢

1

(g)e⇢
2

(g�1x)dµ(g)

=

8

<

:

Z

K
µ(K)�2 dim(⇢1) dim(⇢2) Tr(⇢1(g

�1)) Tr(⇢2(x
�1g))dµ(g) if x 2 K1

0 otherwise.

There exists a normal compact open subgroup K1 ⇢ K such that ⇢1 and ⇢2 are trivial on K

and e⇢
1

, e⇢
2

2 HR(K\G/K). Thus if x 2 K

e⇢
1

? e⇢
2

(x) = µ(K)�2 dim(⇢1) dim(⇢2)µ(K1)

Z

K/K
1

Tr(⇢1(g
�1)) Tr(⇢2(x

�1g))dµ(g).

This integral is a finite sum and, if we identify Tr(⇢1) and Tr(L(x)⇢2) with trace characters

⇢1 and L(x)⇢2, where L(x) denotes the left translation by x�1, of the finite group K/K1, we
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can write

e⇢
1

? e⇢
2

(x) = µ(K)�1 dim(⇢1) dim(⇢2)hL(x)⇢2, ⇢1i
where h , i is the inner product on the space of R-valued class functions

hL(x)⇢2, ⇢1i =
1

|K/K1|
X

g2K/K
1

⇢2(x
�1g)⇢1(g

�1).

By the generalised orthogonality relation for characters of a finite group [Isa06, Theorem

2.13],

hL(x)⇢2, ⇢1i =

8

<

:

dim(⇢1)�1Tr(⇢1(x�1)) if ⇢1 = ⇢2,

0 otherwise.

Thus

e⇢
1

? e⇢
2

=

8

<

:

e⇢
1

if ⇢1 = ⇢2,

0 otherwise.

Hence e⇢ is an idempotent of HR(G). Thus we can write

Vi = ⇡i(e⇢)Vi � (1� ⇡i(e⇢))Vi,

i = 1, 2, 3. Furthermore, ⇡i(e⇢)V⇢i ' V⇢i and, because

V =
M

�2Irr(J1)

V�

and ⇡i(e⇢
1

)⇡i(e⇢
2

) = 0 if ⇢1 6= ⇢2, we have that ⇡i(e⇢) is a projection onto V⇢i , i = 1, 2, 3 and

V⇢ is a direct factor of ResGK(⇡).

The proof is now clear. Suppose v3 2 V⇢3 then there exists v2 2 V such that  (v2) = v3. Then

⇡2(e⇢)v2 2 V⇢2 and

 (⇡2(e⇢)v2) = ⇡3(e⇢) (v2) = v3.

Hence Res( ) is surjective. ⇤

Lemma 6.3. When R = F` or Q`, the functor of -restriction is exact.

Proof: Let (⇡,V) 2 RR(G) and let W be the space of ⌘. We have an isomorphism

HomJ1(⌘,⇡) ⌦ W ' V⌘ induced by the map f ⌦ w 7! f(w). Thus, by Lemma 6.2, the

functor ⇡ 7! - RG
M (⇡)⌦W is exact and if follows that -restriction is exact. ⇤

6.1. 
max

-induction. Lemma 5.2 allows us to relate certain -induction functors. We do

this by defining max-induction. Suppose we are in the setting of Lemma 5.2 with [⇤, n, 0,�]

a skew semisimple stratum, ✓ 2 C�(⇤,�), ⌘ a Heisenberg extension of ✓ and a chosen ⇤max

with P(⇤max
D ) maximal and P(⇤max) ◆ P(⇤).. Let � be an irreducible representation of

M and inflJ1(�) denote the inflation of � to J . We have P1(⇤)P(⇤D)/P1(⇤) ' M and

J1
maxP(⇤D)/J1

maxP1(⇤D) 'M . We denote the inflation of � to P1(⇤)P(⇤D) by infl
P

1

(⇤)(�)

and the inflation of � to J1
maxP(⇤D) by inflJ1

max

P

1

(⇤
D

)(�). Thus inflJ1(�) extends by inflation

to inflJ1

max

P

1

(⇤
D

)(�) and to infl
P

1

(⇤)(�). Thus, using transitivity of compact induction and

Lemma 5.2,

- IGM (�) = indGJ (⌦ inflJ1(�))

' indG
P

1

(⇤)P(⇤
D

) ind
P

1

(⇤)P(⇤
D

)
J (⌦ inflJ1(�))

' indG
P

1

(⇤)P(⇤
D

)(ind
P

1

(⇤)P(⇤
D

)
J ()⌦ infl

P

1

(⇤)(�))
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' indG
P

1

(⇤)P(⇤
D

)(ind
P

1

(⇤)P(⇤
D

)
J1

max

P(⇤
D

) (ResJmax

J1

max

P(⇤
D

)(max))⌦ infl
P

1

(⇤)(�))

' indG
P

1

(⇤)P(⇤
D

)(ind
P

1

(⇤)P(⇤
D

)
J1

max

P(⇤
D

) (ResJmax

J1

max

P(⇤
D

)(max)⌦ inflJ1

max

P

1

(⇤
D

)(�)))

' indGJ1

max

P(⇤
D

)(Res
J
max

J1

max

P(⇤
D

)(max)⌦ inflJ1

max

P

1

(⇤
D

)(�)).

If P(⇤D) is maximal then this is just max- I
G
M (�). In the non-maximal case we define max-

induction

max- I
G
M : RR(M)! RR(G)

by

max- I
G
M (�) = indGJ1

max

P(⇤
D

)(Res
J
max

J1

max

P(⇤
D

)(max)⌦ inflJ1

max

P

1

(⇤
D

)(�)),

for all � 2 RR(M). As we have seen, if we are in the setting of Lemma 5.2 and in particular

for unramified U(2, 1)(E/F ), this is isomorphic to - IGM (�). However, choosing to work with

max-induction allows us to make some comparisons between the -induced representations

from the di↵erent subgroups J which are contained in a fixed maximal group Jmax. We define

max-restriction max- R
G
M to be the right adjoint of max-induction max- I

G
M . By Lemma 6.1

and reciprocity, for all ⇡ 2 RR(G), we have

max- R
G
M (⇡) ' HomJ1

max

P

1

(⇤
D

)(max,⇡).

7. -restriction-induction for U(2, 1)(E/F )

From now on we specialise to G = U(2, 1)(E/F ). We show that -induction and restriction

in G is related to level zero induction and restriction in GD.

Theorem 7.1. Let [⇤i, ni, 0,�], i = 1, 2, be semisimple strata and let (Jmax,⇤max,max)

be a triple as defined in Lemma 5.2 such that P(⇤max
D ) ◆ P(⇤i

D), i = 1, 2. Let Mi =

P(⇤i
D)/P1(⇤i

D), i = 1, 2 and �1 be a finite length representation of M1. Then

2- R
G
M

2

�1- IGM
1

(�1) ' RG
D

M
2

� IGD

M
1

(�1).

Lemma 7.2. Let e�1 = inflJ1

max

P

1

(⇤
D

)(�). Then

2- R
G
M

2

�

1- I
G
M

1

(�1)
�

'
M

g2⌃
HomJ1

max

P

1

(⇤2

D

) (max,�(�1, g))

where

⌃ = J1
maxP(⇤1

D)\J1
maxGDJ

1
max/J

1
maxP1(⇤

2
D),

�(�1, g) = ind
J1

max

P

1

(⇤2

D

)

J1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))

⇣

Res
g(J1

max

P(⇤1

D

))

J1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))
(max ⌦ e�1)g

⌘

.

Proof: We use the relation between the i-induction functors, i = 1, 2, and the max-

induction functors,

2- R
G
M

2

�

1- I
G
M

1

(�1)
�

' max- R
G
M

2

�

max- I
G
M

1

(�1)
�

.

By Lemma 6.1, exactness of -restriction and the restriction-induction formula, Chapter 1

Lemma 3.5, we have

max- R
G
M

2

�

max- I
G
M

1

(�1)
�

'
M

J1

max

P(⇤1

D

)\G/J1

max

P

1

(⇤2

D

)

HomJ1

max

P

1

(⇤2

D

) (max,�(�1, g)) .
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Let g 2 G be such that

HomJ1

max

P

1

(⇤2

D

) (max,�(�1, g)) 6= {0}.

Because J1
maxP1(⇤2

D)/
�

J1
maxP1(⇤2

D) \ g(J1
maxP(⇤1

D))
�

is compact, compact induction is right

adjoint to restriction, hence

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

)) (max, (max ⌦ e�1)g ) 6= {0}.

We have

J1
max \ g(J1

max) ✓ J1
maxP1(⇤

2
D) \ g(J1

maxP(⇤1
D)).

Thus, restricting to J1
max \ g(J1

max), we have

HomJ1

max

\ g(J1

max

) (max, (max ⌦ e�1)g ) 6= {0}.

The tensor product satisfies (max ⌦ e�1)g = max
g ⌦ e�1

g . Furthermore, by transitivity of

restriction and as the restriction commutes with the conjugation,

Res
g(J1

max

P(⇤max

D

))
J1

max

\ g(J1

max

) ( max
g ) = Res

g(J1

max

)
J1

max

\ g(J1

max

)( ⌘max
g )

and

Res
g(J1

max

P(⇤max

D

)))
J1

max

\ g(J1

max

) ( inflJ1

max

�1
g ) = dim(�1)1J1

max

\ g(J1

max

),

a sum of copies of the trivial representation. Thus

HomJ1

max

\ g(J1

max

) (max, (max ⌦ e�1)g ) = HomJ1

max

\ g(J1

max

)

0

@⌘max,

dim(�
1

)
M

i=1

(⌘max)
g

1

A

'
dim(�

1

)
M

i=1

HomJ1

max

\ g(J1

max

) (⌘max, (⌘max)
g ) .

However, IG(⌘max) = J1
maxGDJ

1
max by Lemma 4.2. Hence if

HomJ1

max

\ g(J1

max

) (max, (max ⌦ e�1)g ) 6= {0}

then g 2 J1
maxGDJ

1
max. ⇤

Lemma 7.3. Let ⇤1
D and ⇤2

D be self dual OD-lattice sequences such that P(⇤1
D),P(⇤2

D) ✓
P(⇤max

D ). Then the map

P(⇤1
D)\GD/P1(⇤

2
D)! J1

maxP(⇤1
D)\J1

maxGDJ
1
max/J

1
maxP1(⇤

2
D)

X 7! J1
maxXJ1

max

is a bijection.

Proof: Let g 2 GD. We have P1(⇤max) ◆ J1
max hence

J1
max

�

P(⇤1
D)gP1(⇤

2
D)
�

J1
max \GD ✓ P1(⇤

max)
�

P(⇤1
D)gP1(⇤

2
D)
�

P1(⇤
max) \GD.

We choose a set of representatives for the finite double coset space

P1(⇤
max
D )\P(⇤1

D)gP1(⇤
2
D)/P1(⇤

max
D ).

For each representative � of this double coset space we apply the semisimple intersection

property [Ste08, Lemma 2.6] to get P1(⇤max)�P1(⇤max) \ GD = P1(⇤max
D )�P1(⇤max

D ).

Hence

P1(⇤
max)

�

P(⇤1
D)gP1(⇤

2
D)
�

P1(⇤
max) \GD = P(⇤1

D)gP1(⇤
2
D).



7. -RESTRICTION-INDUCTION FOR U(2, 1)(E/F ) 97

Therefore

P(⇤1
D)gP1(⇤

2
D) = J1

max(P(⇤1
D)gP1(⇤

2
D))J

1
max \GD

and the map is injective. ⇤

Lemma 7.4. Let g 2 GD then

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

)) (max, (max ⌦ e�1)g ) ' Hom
P

1

(⇤2

D

)\ g(P(⇤1

D

))(1, (infl
P

1

(⇤1

D

)(�1))
g ).

Proof: The argument is essentially the same as [BK93, Proposition 5.3.2]. We identify

max with max ⌦ 1. We showed at the start of the proof of Lemma 7.2,

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

)) (max ⌦ 1, (max ⌦ e�1)g ) 6= {0}

if and only if g 2 J1
maxGDJ

1
max. Let � 2 HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

)) (max ⌦ 1, (max ⌦ e�1)g )

be non-zero. We write

� =
X

k

Sk ⌦ Tk

with Sk 2 HomR(V,V) and Tk 2 HomR(R,W) where V is the space of max and W is the

space of e�1. We further assume that {Tk} are linearly independent. Let h 2 J1
max \ g(J1

max)

and v 2 V then

�((max ⌦ 1)(h)v) = (max ⌦ e�1)g (h)�(v)

and, as e�1 is trivial on J1
max \ g(J1

max), we have
X

k

(Skmax(h)� ( gmax(h))Sk)⌦ Tk = 0.

Hence, by linear independence of Tk, we have Sk 2 HomJ1

max

\ g(J1

max

)(max,
gmax). By

Lemma 4.1

HomJ1

max

\ g(J1

max

)(max,
gmax) ' R.

Furthermore,

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))(max,
gmax) ' R

because J1
maxP1(⇤2

D) \ g(J1
maxP(⇤1

D)) is contained in g( eJ) for eJ a Sylow p-subgroup of

J1
maxP(⇤1

D) and, by Lemma 4.2, we have

Hom
g( eJ)(max,

gmax) ' R

Thus Sk 2 HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))(max,
gmax) is a scalar multiple of S = S1 and

we can write � = S ⌦ T with T 2 HomR(1, e�1). Furthermore, for h 2 J1
maxP1(⇤2

D) \
g(J1

maxP(⇤1
D)) and v 2 V,

(S ⌦ T )((max ⌦ 1)(h)v) = ( g(max)(h)S ⌦ g(e�1)(h)T )(v)

and

(S ⌦ T )((max ⌦ 1)(h)v) = (S � max(h)⌦ T )(v) = ( g(max)(h) � S ⌦ T )(v).

Therefore T 2 HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))(1,
g(e�1)) and the map T 7! S ⌦ T defines an

isomorphism from HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))(1,
g(e�1)) to

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

)) (max, (max ⌦ e�1)g ) .

Furthermore, we have an isomorphism

HomJ1

max

P

1

(⇤2

D

)\ g(J1

max

P(⇤1

D

))(1,
g(e�1)) ' Hom

P

1

(⇤2

D

)\ g(P(⇤1

D

))(1, (infl
P

1

(⇤1

D

)(�1))
g ).

⇤
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Proof: [Proof of Theorem 7.1] By Lemmas 7.2, 7.3 and 7.4 we have

2- R
G
M

2

�1- IGM
1

(�1) '
M

P(⇤1

D

)\G
D

/P
1

(⇤2

D

)

Hom
P

1

(⇤2

D

)\ g(P(⇤1

D

))(1, (infl
P

1

(⇤1

D

)(�1))
g ).

As P1(⇤2
D)/P1(⇤2

D)\ g(P(⇤1
D)) is compact, compact induction is right adjoint to restriction,

and we have

2- R
G
M

2

�1- IGM
1

(�1) '
M

P(⇤1

D

)\G
D

/P
1

(⇤2

D

)

Hom
P

1

(⇤2

D

)(1, (g))

' Hom
P

1

(⇤2

D

)

0

@1,
M

P(⇤1

D

)\G
D

/P
1

(⇤2

D

)

 (g)

1

A

where

 (g) = ind
P

1

(⇤2

D

)

P

1

(⇤2

D

)\ g(P(⇤1

D

))
Res

g(P(⇤1

D

))

P

1

(⇤2

D

)\ g(P(⇤1

D

))
(infl

P

1

(⇤1

D

)(�1))
g .

By the restriction-induction formula, Chapter 1 Lemma 3.5, we have

ResGD

P

1

(⇤2

D

)
� IGD

M
1

(�1) '
M

P(⇤1

D

)\G
D

/P
1

(⇤2

D

)

 (g).

Therefore

2- R
G
M

2

�1- IGM
1

(�1) ' Hom
P

1

(⇤2

D

)

⇣

1,ResGD

P

1

(⇤2

D

)
� IGD

M
1

(�1)
⌘

' RG
D

M
2

� IGD

M
1

(�1).

⇤

Remark. It should be possible to generalise Theorem 7.1 in two ways.

(1) With a more general definition of �-extensions in the non-maximal case, together with

compatibility with the definitions in the maximal case, the proof would apply to a general

classical group. Note that at the moment it does apply if one has 1 = 2 = max.

(2) Let [⇤i, ni, 0,�], i = 1, 2, be skew semisimple strata in G. Let ✓i 2 C�(⇤i,�), i = 1, 2,

such that ✓1 = ⌧⇤2,⇤1,�(✓2). Let ⌘i be Heisenberg extensions of ✓i to H1
i and i be

�-extensions of ⌘i to Ji, i = 1, 2. Then, an analogous proof to that of Theorem 7.1

would show that

2- R
G
M

2

�1- IGM
1

(�) ' RG
D

M
2

� IGD

M
1

(�)

if we assume that

dimR(HomJ1

2

\ gJ1

1

(⌘2,
g⌘1)) =

8

<

:

1 if g 2 J2GDJ1,

0 otherwise.

8. Cuspidal positive level representations

Combining Theorem 7.1 and the results of Chapter 4 we can construct cuspidal positive level

representations.

Theorem 8.1. Let [⇤, n, 0,�] be a skew semisimple stratum. Let ✓ 2 C�(⇤,�), ⌘ be the

unique irreducible representation of J1 containing ✓ and  be a �-extension of ⌘ to J . Suppose

J = P(⇤D)J1 with P(⇤D) a maximal parahoric subgroups of GD. Let � be an irreducible

cuspidal representation of M(⇤D). Then

- RG
M(⇤

D

)

⇣

- IG
M(⇤

D

)(�)
⌘

' �
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and
⇣

- IG
M(⇤

D

)(�)
⌘⌘
' ⌦ �.

Furthermore, - IG
M(⇤

D

)(�) is irreducible, cuspidal and quasi-projective.

Proof: By Theorem 7.1 and Chapter 4 Lemma 6.6, we have

- RG
M(⇤

D

)

⇣

- IG
M(⇤

D

)(�)
⌘

' RG
D

M(⇤
D

)

⇣

IGD

M(⇤
D

)(�)
⌘

.

' �.

Hence
⇣

- IG
M(⇤

D

)(�)
⌘⌘
' ⌦ �.

By reciprocity,

HomG(- I
G
M(⇤

D

)(�x,D),- I
G
M(⇤

D

)(�)) ' Hom
M(⇤

D

)(�,�) ' R.

If ⇡ is an irreducible quotient of - IG
M(⇤

D

)(�) then, by reciprocity, ⌦� is a subrepresentation

of ResGJ (⇡). Furthermore, by Lemma 6.2,

⇡ ' ⇡⌘ � ⇡(⌘).

Because J1 is pro-p, `-modular representations of J1 are semisimple, and no irreducible sub-

quotient of ⇡(⌘) is isomorphic to ⌘. Thus, as representations of J , no irreducible subquotient

of ⇡(⌘) is isomorphic to  ⌦ �. As  ⌦ � is a direct factor of ResGJ
max

(⇡), by reciprocity, ⇡

is a subrepresentation of - IG
M(⇤

D

)(�). Therefore, by Chapter 4 Lemma 6.5, - IG
M(⇤

D

)(�) is

irreducible and, by Chapter 4 Lemma 8.2, - IG
M(⇤

D

)(�) is quasi-projective. ⇤

9. The non-maximal semisimple case for U(2, 1)(E/F )

In this section let G be an unramified unitary group in three variables. Recall that B denotes

the parabolic subgroup of G given by

B =

0

B

@

? ? ?

0 ? ?

0 0 ?

1

C

A

\G,

with Levi decomposition B = T n N Let [⇤, n, 0,�] be a skew semisimple stratum which is

not a simple stratum with � 2 E. The only such semisimple stratum of G which does not

give rise to a maximal P(⇤D) is the case of a skew semisimple (2, 1)-strata, see Section 3,

[⇤, n, 0,�] = [⇤1, n1, 0,�1]� [⇤2, n2, 0,�2]

with �2 2 E, GD
2

' U(1, 1)(E/F ) and P(⇤2,D) an Iwahori subgroup. We have

J(�,⇤) =

0

B

@

OE P↵
E OE

P�
E OE P↵

E

PE P�
E OE

1

C

A

with ↵ > 0 and � > 1. Furthermore,

J(�,⇤) = J(�,⇤)⇥ \G; J1(�,⇤) = J(�,⇤) \

0

B

@

1 + PE OE OE

PE 1 + PE OE

PE PE 1 + PE

1

C

A

.
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Write J = J(�,⇤). Let ✓ 2 C�(⇤,�), ⌘ be the unique irreducible representation of J1(�,⇤)

containing ✓,  a �-extension of ⌘ to J(�,⇤) and � an irreducible representation of J/J1.

For i > 0, we have

Ai(⇤) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

$[ i
4

]

0

B

B

@

OE OE OE

PE OE OE

PE PE OE

1

C

C

A

if i ⌘ 0 mod 4;

$[ i�1

4

]

0

B

B

@

PE OE OE

PE PE OE

PE PE PE

1

C

C

A

if i ⌘ 1 mod 4;

$[ i�2

4

]

0

B

B

@

PE PE OE

PE PE PE

PE PE PE

1

C

C

A

if i ⌘ 2 mod 4;

$[ i�3

4

]

0

B

B

@

PE PE PE

PE PE PE

P2
E PE PE

1

C

C

A

if i ⌘ 3 mod 4.

Therefore J1 = H1. In [Ste08], G-covers relative to a parabolic subgroup P for a general

classical group are defined and from an R-type (J,�) one forms a group JP = H1(J \ P ) on

which the cover lives. However, in our case, JB = J which makes things a bit simpler. Let

JT = J \ T , this is the group we denoted IT in Chapter 4.

Lemma 9.1. The R-type (J,⌦ �) is a G-cover of the R-type (JT ,Res
J
J
T

(⌦ �)).

Proof: In the `-adic case this is a special case of the general results of [Ste08, Propositions

7.10 and 7.13]. Thus, in the `-modular case, (J, ⌦ �) satisfies properties (1) and (2) of

Chapter 4 Definition 4.6. It remains to show that there exists a strongly (B, J)-positive

element z of the centre of T such that JzJ supports an invertible element of H(G, J,⌦ �).
The proof is similar to the proof of Chapter 4 Lemma 4.7. Let

w1 =

0

B

@

0 0 1

0 1 0

1 0 0

1

C

A

, w2 =

0

B

@

0 0 $�1
F

0 1 0

$F 0 0

1

C

A

and ⇣ = w1w2. For x 2 IG( ⌦ �), as in the proof of Chapter 4 Lemma 4.7, because  ⌦ �
is a character there is a unique function in fx 2 H(G, J,⌦ �) with support JxJ such that

fx(x) = 1. By [Ste05, Lemma 2.1] ⇣, ⇣�1 2 IG( ⌦ �) hence f⇣ , f⇣�1 2 H(G, J, ⌦ �).

Suppose that w1 62 IG(⌦ �). Then f⇣ ? f⇣�1(1G) = q4. Furthermore, supp(f⇣ ? f⇣�1) = J by

[Ste08, Corollary 7.12]. Hence f⇣ is an invertible element of H(G, J,⌦ �) supported on J .

Now, suppose that w1 2 IG(⌦ �). Then, because w1 normalises JT , we have w1 normalises

ResJJ
T

( ⌦ �). For all x 2 JT we have w1xw1 = w2xw2, hence w2 normalises ResJJ
T

( ⌦ �).
Let j 2 J \ w2Jw2 such that j = w2j

0w2. Using the Iwahori decomposition of J we have

j = jN jT jN and j0 = j0N j0T j
0
N

with jN , j0N upper triangular unipotent, jN , j0
N

lower triangular

unipotent and jT , j
0
T in T . Thus

j = w2j
0w�1

2 = (w2j
0
Nw2)(w2j

0
Tw2)(w2j

0
N
w2)

and, by uniqueness of the Iwahori decomposition, jN = w2j
0
Nw2, jT = w2j

0
Tw2 and jN =

w2j
0
N
w2. Therefore w2 2 IG(⌦�). Hence fw

1

, fw
2

2 H(G, J,⌦�). We have fw
i

?fw
i

(1G) =
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[J : J \ wiJwi] is a power of q, i = 1, 2. By [Ste08, Lemma 5.12], IG(⌘) = JGDJ , thus the

support ofH(G, J,⌦�) is contained in JGDJ . Hence, supp(fw
i

?fw
i

) ✓ (J[JwiJ)\JGDJ =

J(K \ GD)J where K is a maximal parahoric subgroup of G. Therefore supp(fw
i

? fw
i

) =

J [JwiJ and fw
i

, i = 1, 2, are invertible elements of H(G, J,⌦�). By [Ste08, Lemma 7.11]

we have (J \N)w1 ✓ J \N and (J \N)w2 ✓ J \N . Thus, by the Iwahori decomposition of

J ,

Jw1Jw2J = J(w1(J \N)w1)w1w2(w2(J \ T )w2)(w2(J \N)w2)J = Jw1w2J.

Hence fw
2

?fw
1

is an invertible element of H(G, J,⌦�) supported on the single double coset

J⇣J . ⇤

Lemma 9.2. Let G be an unramified unitary group in three variables. Suppose that (⇡,V)
is an irreducible cuspidal representation of G which contains the R-type (J, ⌦ �). Then ⇡

is not cuspidal.

Proof: Suppose that ⇡ contains (J, ⌦ �). By Lemma 9.1, (J, ⌦ �) is a G-cover of

(JT ,Res
J
J
T

(⌦ �)). Hence, by Chapter 4 Corollary 4.11, rGB⇡ 6= 0 and ⇡ is not cuspidal. ⇤

By Theorem 2.3, every positive level cuspidal representation of G contains a semisimple

character. Every cuspidal positive level representation ⇡ is either a twist of a cuspidal level

zero representation and for these we refer to Chapter 4; or contains a positive level F`-type
(J, ⌦ �). If (J, ⌦ �) is not maximal then, by Lemma 9.2, ⇡ is not cuspidal. Hence ⇡

contains a positive level F`-type (J,⌦�) of the form given in Theorem 8.1 and is compactly

induced. Therefore, we have constructed all irreducible cuspidal representations of G by

compact induction.

9.1. -induction and parabolic induction for U(2, 1)(E/F ). Recall that B the para-

bolic subgroup of M = J/J1 given by

B =

0

B

@

? ? ?

0 ? ?

0 0 ?

1

C

A

\M,

with Levi decomposition B = T nN .

Lemma 9.3. Let ⇡ 2 RF
`

(T ) be an irreducible representation and let e⇡ 2 RQ
`

(T ) be a lift

of ⇡. Suppose we are in the situation of Lemma 9.1 with (JT ,T ⌦ �) an R-type contained

in e⇡ and (J, ⌦ �) an `-adic G-cover of (JT ,T ⌦ �) which has associated skew semisimple

stratum [⇤, n,0,�] together with a semisimple character ✓ 2 C�(⇤,�), a �-extension  and

an irreducible representation � of J/J1. associated to a semisimple character ✓ 2 C�(⇤,�).
Choose ⇤max such that P(⇤max

D ) is maximal and define ✓max, ⌘max and max as in Lemma

5.2. Let max = d`(max), T = d`(T ) and Mmax = Jmax/J
1
max. Then

⇥

max- R
G
M

max

� iGB(⇡)
⇤

'
h

iMmax

B
� T - RT

T
(⇡)
i

.

Proof: In the `-adic case a stronger result for GLn(F ) is shown in [SZ99, Proposition 7].

First we give references to adapt this proof in the `-adic case for U(2, 1)(E/F ). Recall,

from Lemma 9.1, that T = ResJJ\T () and let ⇢ = indTJ\T ( ⌦ �), ⌦T = [T, ⇢]T and

⌦ = [T, ⇢]G. Recall that R(⌦) denotes the full subcategory of RQ
`

(G) of representations all

of whose irreducible subquotients have inertial support ⌦; R(⌦T ) denotes the full subcategory

of RQ
`

(T ) of representations all of whose irreducible subquotients have inertial support ⌦T .

Let ! denote the Mmax-conjugacy class of � and !T denote the T -conjugacy class of �.
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We let R(!) be the full subcategory of RQ
`

(M) of representations all of whose irreducible

subquotients have supercuspidal support in ! and letR(!T ) be the full subcategory ofRQ
`

(T )

of representations all of whose irreducible subquotients have supercuspidal support in !T . Let

H(T,T ⌦�) = H(T, JT ,T ⌦�), H(G,⌦�) = H(G, J,⌦�), H(Mmax,�) = H(Mmax, B,�)

and H(T ,�) = H(T , T ,�) denote the spherical Hecke algebras as defined in Chapter 4 Section

4.1. The strategy of [SZ99] is to show that the following diagram is commutative where the

horizontal arrows are equivalences of categories:

R(!) H(Mmax,�)-Mod H(Mmax,�)-Mod R(!)

R(⌦) H(G,⌦ �)-Mod H(T ,�)-Mod R(!T )

R(⌦T ) H(T,T ⌦ �)-Mod H(T,T ⌦ �)-Mod R(⌦T )
'

M
T

⌦�
'

M
T

⌦�

'
M⌦�

'
M!

T

iGB (tB)⇤ Res T - R
G
T

'
M!

'
M!

max- R
G
M

max

Res (tB)⇤ iMmax

B

The bottom left commutative square, M⌦� �iGB ' (tB)⇤�M
T

⌦�, where (tB)⇤ is an induction

functor given by an injective homomorphism of algebras tB in [BK98, Theorem 7.2], follows

from the general result of [BK98, Corollary 8.4] using Lemma 9.1. The top right commutative

square, M! � iMB ' (tB)⇤ �M!
T

, is the analogue of this result for finite reductive groups.

By [Ste08, Proposition 7.1], we have a support preserving isomorphism

H(G, J,⌦ �) ' H(G,P(⇤D)J
1
max,Res

J
max

P(⇤
D

)J1

max

(max)⌦ �)

where � is considered as a representation of P(⇤D)J1
max by inflation; this makes sense as

P(⇤D)J1
max hasP(⇤D)/P1(⇤D) as a quotient. By [Ste08, Proposition 7.2], we have a support

preserving isomorphism

H(Jmax,P(⇤D)J
1
max,Res

J
max

P(⇤
D

)J1

max

(max)⌦ �) ' H(P(⇤max
D ),P(⇤D),�).

Furthermore, we have a support preserving isomorphism of Hecke algebras

H(Mmax,�) ' H(P(⇤max
D ),P(⇤D),�).

Hence we have a support preserving injective map of algebras

H(Mmax,�)! H(G,⌦ �)

given by the injection

H(Jmax,P(⇤D)J
1
max,Res

J
max

P(⇤
D

)J1

max

(max)⌦ �)! H(G,P(⇤D)J
1
max,Res

J
max

P(⇤
D

)J1

max

(max)⌦ �).

Therefore we can viewH(Mmax,�) as a subalgebra ofH(J,⌦�); similarly we viewH(T ,�) as

a subalgebra of H(JT ,T ⌦�). Hence we have restriction functors, denoted in the diagram by

Res, between the categories of modules over these algebras. The top left commutative square,

M! �max- R
G
M

max

' Res �M⌦�, and the bottom right commutative square, M!
T

�T - RG
T
'

Res �M
T

⌦�, follow from [SZ99, Lemma 4] whose proof applies to U(2, 1)(E/F ). Consider

the inclusions of algebras



10. THE POSITIVE LEVEL PRINCIPAL SERIES OF U(2, 1)(E/F ) 103

H(T,T ⌦ �) H(G,⌦ �)

H(T ,�) H(Mmax,�)

All the maps are injective homomorphisms of algebras hence must send the identity to the

identity. But H(T ,�) is one-dimensional hence the diagram must commute. Thus the middle

square commutes in our initial diagram, Res �(tB)⇤ ' (tB)⇤ � Res. Therefore we have the

`-adic result: For all finite length representations ⇢ 2 R(⌦T )

max- R
G
M

max

� iGB(⇢) ' iMmax

B
� T - RT

T
(⇢).

Let ⇠ be a finite length integral `-adic representation of G. By [MS11b, Lemma 5.14],

d`(max- R
G
M

max

(⇠)) '
⇥

max- R
G
M

max

(d`(⇠))
⇤

,

i.e. max-restriction commutes with decomposition modulo-`. Similarly, for finite length

integral representations of T , T -restriction commutes with decomposition modulo-`. Thus,

by the `-adic result, we have

max- R
G
M

max

� iGB(e⇡) ' iMmax

B
� T - RT

T
(e⇡).

Hence, by decomposition modulo-`,
⇥

max- R
G
M

max

� iGB(⇡)
⇤

'
h

iMmax

B
� T - RT

T
(⇡)
i

.

⇤

10. The positive level principal series of U(2, 1)(E/F )

In this section let G be an unramified unitary group in three variables. We describe the

decomposition of the the positive level induced representations which have cuspidal subquo-

tients. These are of the form:

(1) Twists iGB(�1⌦1)(�2�det) with �1 level zero and �2 positive level and for the description

of the decomposition in this case we refer back to Chapter 4 Theorems 10.1 and 12.2.

(2) Of the form iGB(�1 ⌦ 1)(�2 � det) with �1 a positive level character of E⇥.

We describe the decomposition of iGB(�1 ⌦ 1) when �1 has positive level and when ` | q + 1.

Let (JT ,Res
J
J
T

(⌦ �)) be an R-type contained in (�1 ⌦ 1) such that (J,⌦ �) is a G-cover

of (JT ,Res
J
J
T

( ⌦ �)) as in Lemma 9.1. Then J = P(⇤)J1 with P(⇤) ' I ⇥ E1 where I is

an Iwahori subgroup of U(1, 1)(E/F ). Suppose (max,⇤max) is chosen to be compatible with

(,⇤), as in Lemma 5.2. There are two such possible choices corresponding to the two non-

conjugate maximal parahoric subgroups of U(1, 1)(E/F ) which contain I. We denote these

by (imax,⇤
max
i ), i = 1, 2. We have Mmax,i = M(⇤max

i ) ' U(1, 1)(kE/kF )⇥U(1)(kE/kF ). For

our proof of the next theorem we require an assumption:

Assumption 1: Let ⇡ be an irreducible subquotient of iGB(�1 ⌦ 1). Then at least one of the

two representations imax- R
G
M i

max

(⇡), i = 1, 2, is nonzero.
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We consider this assumption as a generalisation of the result stated in Chapter 4 Theorem

3.3: parabolic induction preserves level zero representations.

Theorem 10.1. Let G be an unramified p-adic unitary group in three variables. Suppose

` 6= 2 or 3 and ` | q+1. Let �1 be a positive level character of E⇥ trivial on F⇥ and let �1⌦1

be the positive level of character of T given by �1 ⌦ 1(diag(x, y, x�1)) = �1(x). Let � be the

character of T given by inv1+P
E

(ResE
⇥

O⇥
E

(�1))⌦ 1. Let �i denote the cuspidal subquotient of

i
M

max,i

B
(�). The representation iGB(�1 ⌦ 1) has the following composition series

0

⇡

0 ⇡1 iGB(�1 ⌦ 1) ⇡2 0

⇡3

0

with ⇡ semisimple and either irreducible and isomorphic to 1max- I
G
M1

max

(�1) or of length two

with

⇡ ' 1max- I
G
M1

max

(�1)� 2max- I
G
M2

max

(�2).

Proof: By Chapter 4 Theorem 12.1, the length of iGB(�1 ⌦ 1) is greater than or equal to

three. By Chapter 1 Theorem 3.12, rGB(i
G
B(�1 ⌦ 1)) has length two. Hence, as in the proof

of Chapter 4 Theorem 10.1, iGB(�1 ⌦ 1) has a unique irreducible subrepresentation, a unique

irreducible quotient and at least one cuspidal subquotient. Let ⇡1 be the unique irreducible

subrepresentation of iGB(�1 ⌦ 1), ⇡2 the quotient of iGB(�1 ⌦ 1) by ⇡1 and ⇡3 the unique

irreducible subquotient.

By Lemmas 8.1 and 9.3, and Chapter 3 Section 4
h

imax- R
G
M

max,i

(iGB(�1 ⌦ 1))
i

' 1M
max,i

(�)� 1M
max,i

(�)� �i.

Thus, by Assumption 1, every cuspidal subquotient must be of the form imax- I
G
M i

max

(�i).

Hence either we have two non-isomorphic cuspidal subquotients

1max- I
G
M1

max

(�1) and 
2
max- I

G
M2

max

(�2)

appearing in the composition series of iGB(�1⌦1) or, without loss of generality, 1max- I
G
M1

max

(�1)

is the only cuspidal subquotient. By reciprocity, as in the proof of Chapter 4 Theorem 10.1,

if iGB(�1⌦1) is of length four then imax- I
G
M i

max

(�i) are both subrepresentations of ⇡ and hence

⇡ is semisimple. ⇤

Remark. We conjecture that the length of iGB(�1 ⌦ 1) in Theorem 10.1 is four. A general-

isation of Theorem 7.1, of the form remarked after our proof of Theorem 7.1, would imply

that the length was greater than or equal to four.

10.1. Supercuspidal Support.
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Theorem 10.2. Let G be an unramified p-adic unitary group in three variables and ⇡ be an

irreducible smooth `-modular representation of G. Then scusp(⇡) exists and is unique up to

conjugacy.

Proof: This follows from Theorem 10.1 and Chapter 4 Theorem 14.1. ⇤





APPENDIX A

`-modular representations of finite GLn(F )

In this appendix we extract the decomposition matrices for GL2(F ) and GL3(F ) from [Jam90].

107
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1. Decomposition numbers of GL2(F ) and GL3(F )

Let G = GLn(Fq), and (K,O, k) be an `-modular splitting system for G.

Let d, w be positive integers such that dw = n. For every partition � of w, and every element

s of degree d over Fq, in [DJ89, Section 3] certain representations of G are defined:

(1) SK(s,�) an irreducible ordinary representation of G;

(2) Sk(s,�) a reduction modulo ` of SK(s,�) relative to a chosen lattice in SK(s,�).

(3) Dk(s,�) an irreducible `-modular representation of G; (in fact equal to the quotient of

Sk(s,�) by its unique maximal submodule).

When s = 1 these representations are called unipotent. For �1, �2 partitions of w if

SK(s,�1) ' SK(s,�2) then �1 = �2 (similarly for Sk, and for Dk if Dk 6= 0) . We will

use the shorthand � ` w for � is a partition of w.

Lemma 1.1 ([DJ89, Section 3 (v)]). For s an element of degree d over Fq, and � ` w,

[Sk(s,�)] =
M

µ`w
d�µDk(s, µ).

For a fixed s, in [DJ89] a matrix �(s, w) of decomposition numbers is defined

�(s, w) = (d�µ).

This is part of the `-modular decomposition matrix of G, but it is not immediately clear how

these matrices overlap. The problem is split into two: first choosing a uniform notation for all

the irreducible complex and irreducible `-modular representations in terms of induced repre-

sentations involving the Sk and Dk, then calculating the necessary decomposition matrices.

Finally we can align these matrices to find the full decomposition matrix.

Lemma 1.2 ([DJ89, Theorem 6.2]). Let s be an element of degree d over Fq. The matrix

�(s, w) coincides with the matrix �0(1, w) of decomposition matrices for unipotent represen-

tations of GLn(Fqd).

Let e(a) be the least positive integer such that ` | 1 + qa + · · ·qa(e�1), and e = e(1).

Lemma 1.3 ([Jam90, Theorem 6.4]). When n < e, �(1, w) is the identity matrix.

In [Jam90, Appendix 1] the matrices �(1, w) are listed for e = 2, 3, n 6 10, and a procedure

for working out the matrices n 6 10 for higher e is given.

We first recall the parametrisation of [DJ89] of the irreducible complex and `-modular rep-

resentations of G and then in the case of n = 2, 3 follow an algorithm for gluing the matrices

�(s, w) in a coherent way to get the full `-modular decomposition matrix of G.

Lemma 1.4 ([DJ89, Section 7.2]).

(1) If s, t are roots of the same irreducible polynomial over Fq, then SK(s,�) ' SK(t,�).

(2) If s, t are roots of irreducible polynomials of the same degree over Fq and their `-regular

parts are roots of the same irreducible polynomial over Fq then Dk(s,�) ' Dk(t,�) and

Sk(s,�) ' Sk(t,�).
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(3) Let C0 be a complete set of roots from every irreducible monic polynomial over Fq of

degree at most n, i.e. C0 =
S

m6n Fqm . Define an equivalence relation ⇠ on C0 by two

roots are equivalent if and only if they are roots of the same irreducible monic polynomial

over Fq and let C = C0/ ⇠. Put a total order < on the finite set C. The following classes

of representations give complete sets of irreducible inequivalent ordinary and `-modular

representations of G:

(a) Let s1 < s2 < · · · < sr be classes of C, with di = deg(si), such that

d1w1 + d2w2 + · · ·drwr = n,

and for each wi 6= 0 let �i ` wi. Then

Ind (SK (s1,�1)⌦ SK (s2,�2)⌦ · · ·⌦ SK (sr,�r)) ,

is an irreducible ordinary representation of G, where we consider the representation
N

SK(si,�i) as a representation of the Levi subgroup GLw
1

(Fq)⇥ · · ·⇥GLw
2

(Fq).

The induction, Ind, is Harish-Chandra induction.

(b) Let s1 < s2 < · · · < sr be `-regular elements of C, �i as above, then

Ind (Dk (s1,�1)⌦Dk (s2,�2)⌦ · · ·⌦Dk (sr,�r))

is an irreducible `-modular representation of G.

Remark. This classification originates in [DJ86]. They call certain sets of data,
 

si �i

di wi

!

,

(n, `)-indices. These give induced representations as in Lemma 1.4 part (3). The “head”

(n, `)-indices are the ones that satisfy the conditions in (3)(b) (or (a) if ` = 1). Thus this

classification is referred to as a classification in terms of head (n, `)-indices. In their paper

they also construct a bijection from head (n, `)-indices to “special foot” (n, `)-indices where

some of the properties required on the si in a head (n, `)-index are weakened and replaced

with stronger properties on the �i.

Our goal is to write the `-modular decomposition of the representations in (a) in terms of

the representations in (b) in the cases n = 2, 3. Thankfully it is explained how to do this

in the penultimate section of [DJ89]. Given a partition � = (�1,�2, . . . ,�r) of n, the dual

partition �0 of n is the partition (�01,�02, . . . ,�0s) where �0i = |{j : �j > i}|. We write s` for

the `-regular part of s. We require two more Lemmas to apply the algorithm:

Lemma 1.5 ([DJ89, Section 3.5]). ] Let s be an element of degree d over Fq, �i ` wi, i = 1, 2,

d(w1 + w2) = n. Then

[Ind(SK(s,�1)⌦ SK(s,�2))] =

2

4

X

⌧`w
1

+w
2

a�
1

�
2

⌧SK(s, ⌧)

3

5 ,

where a�
1

�
2

⌧ is calculated using the Littlewood-Richardson rule.

Lemma 1.6 ([DJ89, Section 7.3]). Let s be an element of degree d over Fq, � ` w. Let a

be the degree of s`. Then a | d, and defining µ ` dw
a to be the partition given via its dual

partition µ0 = (µ1, µ2, ..., µr) with µ0
i =

d
a�

0
i, we have

Dk(s,�) = Dk(s
`, µ).
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1.1. Decomposition modulo ` when n = 2. The order of GL2(Fq) is (q + 1)(q � 1)2q.

In non-describing characteristic, as gcd(q + 1, q � 1) = 2, there are three cases to consider

(A-1) ` 6= 2 and ` | q � 1;

(A-2) ` 6= 2 and ` | q + 1;

(A-3) ` = 2.

Case (A-1) corresponds to e > 3, cases (A-2) and (A-3)t to e = 2. The classification gives

three classes of ordinary representation of G:

(B-1) SK

�

s,
�

12
��

and SK (s, (2)) with s of degree 1 over Fq;

(B-2) Ind(SK(s1, 1)⌦ SK(s2, 1)) with si both of degree 1 over Fq, and s1 6= s2;

(B-3) SK(s, 1) with s of degree 2 over Fq.

Class (B-1) constitutes the characters and special representations of G that appear as quo-

tients and subquotients of the reducible principal series; class (B-2) are the irreducible prin-

cipal series; class (B-3) are the supercuspidals.

We compute the decomposition of each of these three classes:

In [Jam90] we find the matrices �(1, 2) for GL2(F ), e = 2, 3 are the following:

D
k
(1
,(
12
))

D
k
(1
,(
2)
)

SK(1, (12)) 1 0

SK(1, (2)) 1 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

e = 2

D
k
(1
,(
12
))

D
k
(1
,(
2)
)

SK(1, (12)) 1 0

SK(1, (2)) 0 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

e = 3
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We will see that the circled `-modular representation is cuspidal non-supercuspidal, the ap-

pearance of such representations being one of the key di↵erences between the ordinary and

`-modular theory of representations of finite reductive groups.

(B-1) Applying Lemmas 1.1 - 1.3, and looking at the matrices �(1, 2) we find

[Sk(s, (1
2))] = Dk(s

`, (12)) always;

[Sk(s, (2))] =

8

<

:

Dk(s`, (12)) +Dk(s`, (2)) if e = 2;

Dk(s`, (2)) otherwise.

(B-2) Applying Lemma 1.4,

[Ind(Sk(s1, (1))⌦ Sk(s2, (1)))] = [Ind(Dk(s1, (1))⌦Dk(s2, (1)))]

= [Ind(Dk(s
`
1, (1))⌦Dk(s

`
2, (1)))].

Either

(a) s`1 6= s`2 in C then Ind(Dk(s`1, (1)) ⌦ Dk(s`2, (1))) is irreducible and in the

classification; or

(b) s`1 = s`2 in C, then the idea is to show that the representation is reducible.

The plan is to work with the Sk. Then Lemma 1.5 applies, because reduction

modulo ` commutes with induction. For GL2(F ) this is all very simple;

applying Lemma 1.5

[Ind(Sk(s1, (1))⌦ Sk(s2, (1)))] = Sk(s
`
1, (1

2)) + Sk(s
`
1, (2)).

Further d = 1, hence by case (B-1):

[Ind(Sk(s1, (1))⌦ Sk(s2, (1)))] =

8

<

:

2Dk(s`1, (1
2)) +Dk(s`1, (2)) if e = 2;

Dk(s`1, (1
2)) +Dk(s`1, (2)) otherwise.

Remark. It is worth noting that a necessary condition for s`1 ⌘ s`2 in C, but

s1 6⌘ s2 in C is that ` divides q � 1. The only ` which has e = 2 and divides q � 1

is l = 2. Hence unless l = 2, the e = 2 case of (b) is empty.

(B-3) Applying Lemmas 1.1

[Sk(s, (1))] = Dk(s, (1))

There are two possibilities:

(a) s` is of degree 2 over Fq. Then, by Lemma 1.6, Dk(s, (1)) = Dk(s`, (1)) is in

the classification. These correspond to the cuspidal ordinary representations

of GL2(F ) which on reduction are supercuspidal.

(b) s` is of degree 1 over Fq. In this case Dk(s`, (1)) is not in the classification

and we need to apply Lemma 1.6. We have d = 2, a = 1, e(a) = 2, and find

[Sk(s, (1))] = Dk(s
`, (1))

= Dk(s
`, (2)).

These `-modular representations occur in the decomposition of ordinary spe-

cial representations, and are cuspidal non-supercuspidal.

An element ↵ is of degree 1 over Fq if and only if ↵q = ↵, i.e. the order of ↵

divides q� 1. We consider the di↵erent cases for `, where we can have an element

s of degree 2 over Fq such that s` is of degree 1 over Fq.
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Assume that s` is of degree 1 over Fq then (s`)q�1 = 1, hence sq�1 = (s`)q�1.

Thus s has the same degree as s` the `-part of s. Furthermore, as s` is at most of

degree 2 over Fq, the order of s` has to divide q2 � 1. When ` 6= 2 we have two

cases:

(i) ` | q� 1. As gcd(q� 1, q+1) = 2, the order of s` and hence of s must divide

q � 1. Therefore no cuspidal non-supercuspidal representations appear.

(ii) ` | q + 1. Any nontrivial `-element has degree 2 over Fq. Let `a||q + 1, then

there are (`a � 1) nontrivial `-elements, (q � 1) `-regular elements of degree

one over Fq and two roots of each irreducible polynomial of degree two over

Fq. Hence

Number of cuspidal subquotients =
(`a � 1)(q � 1)

2
.

Finally when l = 2, let 2b||q � 1 and 2a||q + 1. The 2-elements x of degree two

over Fq are the ones that satisfy 2b+1 6 o(x), where o(x) denotes the order of x.

Because o(x) | q2 � 1 we have 2b+1 6 o(x) 6 2a+b. Thus there are 2a 2-elements

of degree two over Fq and (q�1)
2b

2-regular elements of degree one over Fq. Hence

Number of cuspidal subquotients =
2a(q � 1)

2b+1
.

1.2. Decomposition modulo ` when n = 3. The order of GL3(Fq) is q3(q � 1)3(q +

1)(q2+q+1). In non-describing characteristic, as gcd(q+1, q�1) | 2, gcd(q�1, q2+q+1) | 3,
and gcd(q + 1, q2 + q + 1) = 1 there are five cases to consider:

(A-1) ` 6= 2, 3 and ` | q � 1,

(A-2) ` 6= 2 and ` | q + 1,

(A-3) ` 6= 2, 3 and ` | q2 + q + 1,

(A-4) ` = 3 and ` | q � 1,

(A-5) ` = 2.

Case (A-2) has e = 2, case (A-1) has e > 3, case (A-3) has e = 3, case (A-4) has e = 3, case

(A-5) has e = 2. By Lemma 1.3 and [Jam90], we know the matrices �(1, 3) in each of these

cases. Note that, to follow the same procedure for GLn(Fq) when n > 4 one has to use an

algorithm in [Jam90] to compute the matrices �(1, w) for the values of e between 3 and n

and w dividing n.

The classification gives five classes of ordinary representation of G:

(B-1) SK

�

s,
�

13
��

, SK (s, (21)), and SK (s, (3)) with s is of degree 1 over Fq;

(B-2) Ind(SK(s1, 2)⌦ SK(s2, 1)), Ind(SK(s1, (12))⌦ SK(s2, 1)) with si both of degree 1

over Fq;

(B-3) Ind(SK(s1, 1)⌦ SK(s2, 1)) with s1 of degree 2, and s2 of degree 1 over Fq;

(B-4) Ind(SK(s1, 1)⌦ SK(s2, 1)⌦ SK(s3, 1)) with si all of degree 1 over Fq;

(B-5) SK(s, 1) with s of degree 3 over Fq.

Class (B-1) constitutes the unipotent representations of GL3(Fq), the characters , the gen-

eralized Steinberg representations, and the special representations (also generalized Stein-

berg representations). Class (B-4) and, classes (B-2) and (B-3), the irreducible representa-

tions induced from characters of the diagonal torus and of the Levi subgroup isomorphic to

GL2(Fq)⇥GL1(Fq). Class (B-5) are the supercuspidal representations of GL3(Fq).
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In [Jam90] we find the matrices �(1, 3) for GL3(F ), e = 2, 3 are the following:

D
k
(1
,(
13
))

D
k
(1
,(
21

))

D
k
(1
,(
3)
)

SK(1, (13)) 1 0 0

SK(1, (21)) 0 1 0

SK(1, (3)) 1 0 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

e = 2

D
k
(1
,(
13
))

D
k
(1
,(
21
))

D
k
(1
,(
3)
)

SK(1, (13)) 1 0 0

SK(1, (21)) 1 1 0

SK(1, (3)) 0 1 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

e = 3

We apply the algorithm we have followed already for GL2(F ) to each of the classes of repre-

sentations of GL3(F )

(B-1) Applying Lemmas 1.1 - 1.3 and looking at the decomposition matrices �(1, 3) we

find

[Sk(s, (1
3))] = Dk(s

`, (13)) always;

[Sk(s, (21))] =

8

<

:

Dk(s`, (13)) +Dk(s`, (21)) if e = 3;

Dk(s`, (21)) otherwise.
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[Sk(s, (3))] =

8

>

>

<

>

>

:

Dk(s`, (13)) +Dk(s`, (3)) if e = 2;

Dk(s`, (21)) +Dk(s`, (3)) if e = 3;

Dk(s`, (3)) otherwise.

(B-2) If s`1 6= s`2 in C, Ind(Dk(s`1, (2)) ⌦Dk(s`2, (1))) and Ind(Dk(s`1, (1
2)) ⌦Dk(s`2, (1)))

are irreducible and in the classification. By the decomposition matrices �(1, 2)

we have:

Ind(Sk(s1, (1
2))⌦ Sk(s2, (1))) = Ind(Dk(s

`
1, (1

2))⌦Dk(s
`
2, (1))) always;

Ind(Sk(s1, (2))⌦ Sk(s2, (1)))

=

8

<

:

Ind(Dk(s`1, (1
2))⌦Dk(s`2, (1))) + Ind(Dk(s`1, (2))⌦Dk(s`2, (1))) if e = 2;

Ind(Dk(s`1, (2))⌦Dk(s`2, (1))) otherwise.

Now assume s`1 = s`2 in C. Applying Lemmas 1.5 and 1.4 and using the matrices

�(1, 3):

[Ind(Sk(s1, (2))⌦ Sk(s2, (1)))] = Sk(s
`
1, (3)) + Sk(s

`
1, (21))

=

8

>

>

<

>

>

:

Dk(s`1, (3)) +Dk(s`1, (21)) +Dk(s`1, (1
3)) if e = 2;

Dk(s`1, (3)) + 2Dk(s`1, (21)) +Dk(s`1, (1
3)) if e = 3;

Dk(s`1, (3)) +Dk(s`1, (21)) if e > 3.

[Ind(Sk(s1, (1
2))⌦ Sk(s2, (1)))] = Sk(s

`
1, (21)) + Sk(s

`
1, (1

3))

=

8

>

>

<

>

>

:

Dk(s`1, (21)) +Dk(s`1, (1
3)) if e = 2;

Dk(s`1, (21)) + 2Dk(s`1, (1
3)) if e = 3;

Dk(s`1, (21)) +Dk(s`2, (1
3)) if e > 3.

(B-3) Applying Lemma 1.4,

[Ind(Sk(s1, (1))⌦ Sk(s2, (1)))] = [Ind(Dk(s1, (1))⌦Dk(s2, (1)))]

= [Ind(Dk(s
`
1, (1))⌦Dk(s

`
2, (1)))].

Either

(a) s`1 is of degree 2 over Fq, then Ind(Dk(s`1, (1))⌦Dk(s`2, (1))) is irreducible and

in the classification.

(b) s`1 is of degree 1 over Fq, then by Lemma 1.6 [Ind(Dk(s1, (1))⌦Dk(s`2, (1)))] =

[Ind(Dk(s`1, (2))⌦Dk(s`2, (1)))] and we have two further subcases:

(i) If s`1 6⌘ s`2 in C. Then Ind(Dk(s`1, (2)) ⌦Dk(s`2, (1))) is irreducible and

in the classification.

(ii) If s`1 ⌘ s`2 in C. We use the matrices �(1, 2)e to write Dk(s`1, (2)) in

terms of Sk, then apply Lemma 1.5, and the decomposition matrices

�(1, 3)e:

[Ind(Dk(s
`
1, (2))⌦Dk(s

`
1))]

=

8

<

:

[Ind((Sk(s`1, (2))� Sk(s`1, (1
2)))⌦ Sk(s`1, (1))] if e = 2;

[Ind(Sk(s`1, (2))⌦ Sk(s`1, (1))] otherwise.

=

8

<

:

[Ind(Sk(s`1, (2))⌦ Sk(s`1, (1))� Ind(Sk(s`1, (1
2))⌦ Sk(s`1, (1))] if e = 2;

[Ind(Sk(s`1, (2))⌦ Sk(s`1, (1))] otherwise.
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=

8

<

:

[(Sk(s`1, (3)) + Sk(s`1, (21)))� (Sk(s`1, (21)) + Sk(s`1, (1
3)))] if e = 2;

[Sk(s`1, (3)) + Sk(s`1, (21))] otherwise.

=

8

>

>

<

>

>

:

Dk(s`1, (3)) if e = 2;

Dk(s`1, (1
3)) + 2Dk(s`1, (21)) +Dk(s`1, (3)) if e = 3;

Dk(s`1, (3)) +Dk(s`1, (21)) otherwise.

(B-4) Applying Lemma 1.4,

[Ind(Sk(s1, (1))⌦ Sk(s2, (1))⌦ Sk(s3, (1)))] = [Ind(Dk(s1, (1))⌦Dk(s2, (1))⌦Dk(s3, (1)))]

= [Ind(Dk(s
`
1, (1))⌦Dk(s

`
2, (1))⌦Dk(s

`
3, (1)))].

We have three further subcases:

(a) When s`i are pairwise distinct in C, then Ind(Dk(s`1, (1)) ⌦ Dk(s`2, (1)) ⌦
Dk(s`3, (1))) is irreducible and is in the classification.

(b) When s`1 ⌘ s`2 ⌘ s`3 in C, then we apply Lemma 1.5 using the transitivity of

induction first inducing to GL2(Fq)⇥GL1(Fq)

[Ind(Sk(s
`
1, (1))⌦ Sk(s

`
2, (1))⌦ Sk(s

`
3, (1)))]

= [Ind(Ind(Sk(s
`
1, (1))⌦ Sk(s

`
1, (1)))⌦ Sk(s

`
1, (1)))]

= [Ind((Sk(s
`
1, (1

2)) + Sk(s
`
1, (2)))⌦ Sk(s

`
1, (1)))]

= [Ind((Sk(s
`
1, (1

2)) + Sk(s
`
1, (2)))⌦Dk(s

`
1, (1)))]

=

8

<

:

[Ind((2Dk(s`1, (1
2)) +Dk(s`1, (2)))⌦Dk(s`1, (1)))] if e = 2;

[Ind((Dk(s`1, (1
2)) +Dk(s`1, (2)))⌦Dk(s`1, (1)))] otherwise.

=

8

<

:

[2 Ind((Dk(s`1, (1
2))⌦Dk(s`1, (1))) + Ind(Dk(s`1, (2))⌦Dk(s`1, (1)))] if e = 2;

[Ind((Dk(s`1, (1
2))⌦Dk(s`1, (1))) + Ind(Dk(s`1, (2))⌦Dk(s`1, (1)))] otherwise.

Now we write the Dk in terms of the Sk using the matrices �(1, w)e, and

apply the relevent case from (2):

= [Ind((Sk(s
`
1, (1

2))⌦ Sk(s
`
1, (1))) + Ind(Sk(s

`
1, (2))⌦ Sk(s

`
1, (1)))]

= [Sk(s
`
1, (1

3)) + 2Sk(s
`
1, (21)) + Sk(s

`
1, (3))]

=

8

>

>

<

>

>

:

2Dk(s`1, (1
3)) + 2Dk(s`1, (21)) +Dk(s`1, (3)) if e = 2;

3Dk(s`1, (1
3)) + 3Dk(s`1, (21)) +Dk(s`1, (3)) if e = 3;

Dk(s`1, (1
3)) + 2Dk(s`1, (21)) +Dk(s`1, (3)) otherwise.

(c) When exactly two of s`i are equal. We can assume that either s`1 = s`2 or

s`2 = s`3 by the order imposed in Lemma 1.4 on the si. It is possible to

rearrange the Sk(si, (1)) without changing the composition factors. Thus by

symmetry we just need to consider one of the two cases. Assume s`1 ⌘ s`2 in

C. Following the calculations in the last subcase we find:

[Ind(Sk(s
`
1, (1))⌦ Sk(s

`
1, (1))⌦ Sk(s

`
3, (1)))]

=

8

<

:

2 Ind((Dk(s`1, (1
2))⌦Dk(s`3, (1))) + Ind(Dk(s`1, (2))⌦Dk(s`3, (1))) if e = 2;

Ind((Dk(s`1, (1
2))⌦Dk(s`3, (1))) + Ind(Dk(s`1, (2))⌦Dk(s`3, (1))) otherwise.

(B-5) Applying Lemmas 1.1 and 1.4

[Sk(s, (1))] = Dk(s, (1))
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= Dk(s
`, (1)).

There are two possibilities (as the degree of the extension generated by s` has to

divide 3):

(a) s` is of degree 3 over Fq. Then Dk(s`, (1)) is in the classification. These corre-

spond to the cuspidal ordinary representations of GL2(F ) which on reduction

are supercuspidal.

(b) s` is of degree 1 over Fq. By Lemma 1.6

[Sk(s, (1))] = Dk(s
`, (1))

= Dk(s
`, (3)).

Assume that ` 6= 2, 3. Following the same arguments as we gave for GL2(Fq) we

find that if ` | q+1 or ` | q�1 there are no cuspidal subquotients and if ` | q2�q+1

there are (`a�1)(q�1)
2 cuspidal subquotients.

Remark. For GLn(Fq) with n prime, the only cuspidal non-supercuspidal representations

that appear are quotients of special representations (generalised Steinberg representations)

by their maximal submodules.



APPENDIX B

Normal subgroups and decomposition numbers

In this appendix using Brauer characters and the decomposition matrices of SU3(E/F ),

[Gec90], we find the decomposition numbers of U3(E/F ).

117
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1. Clifford theory for Brauer characters

Let G be a finite group of Lie type, H a subgroup of G and ✓ 2 IBr(H). Denote by IBr(G|✓)
the subset of IBr(G) of Brauer characters which on restriction to H contain ✓.

Theorem 1.1 ([Nav98, Theorems 8.9, 8.12, Corollaries 8.7, 8.20]). Let N be a normal

subgroup of G.

(1) Let ✓ 2 IBr(N) and ' 2 IBr(G). Then ' is an irreducible constituent of ✓G if and

only if ✓ is an irreducible constituent of 'N . Furthermore suppose ✓ is an irreducible

constituent of 'N and let ✓1, ✓2, ..., ✓r be the distinct conjugates of ✓ in G. Then

'N = e
r
X

i=1

✓i.

(2) (Cli↵ord correspondence) Let ✓ 2 IBr(N). The map

IBr(NG(✓)|✓)! IBr(G|✓)

 7!  G

is a bijection.

(3) Suppose G/N is cyclic and NG(✓) = G. Then there exists ' 2 IBr(G) such that 'N = ✓.

(4) Let ⌘ 2 IBr(G) and suppose ⌘N = ✓ for some ✓ 2 IBr(N). Then the characters �⌘ for

� 2 IBr(G/N) are irreducible, pairwise distinct and are all the irreducible constituents

of ✓G.

Suppose we can extend ✓ 2 IBr(N) to '✓ 2 IBr(NG(✓)). Then by Theorem 1.1 part (4)

IBr(NG(✓)|✓) = {�'✓ : � 2 IBr(NG(✓)/N)}

and by Theorem 1.1 part (2)

IBr(G|✓) = {(�'✓)G : � 2 IBr(NG(✓)/N)}.

Furthermore

IBr(G) =
[

✓2IBr(N)

IBr(G|✓).

However this union is not necessarily disjoint: by (1) we see that IBr(G|✓1) = IBr(G|✓2) if

and only if there exists g 2 G such that ✓g1 = ✓2. If there is no such g then the sets are

disjoint. Define an equivalence relation on IBr(N) by ✓1 ⇠ ✓2 if and only if there exists g 2 G

such that ✓g1 = ✓2, then

IBr(G) =
˙[

✓2IBr(N)/⇠ IBr(G|✓)

a disjoint union.

1.1. Direct products and decomposition numbers. Given a direct product of groups

G⇥H, by [Nav98, Theorem 8.21],

IBr(G⇥H) = {✓ ⇥ ' : ✓ 2 IBr(G), ' 2 IBr(H)},

where ✓ ⇥ '(g) = ✓(g)'(g). The trick is to show that ✓ ⇥ ' is irreducible in each case; it is

easy to see that they are pairwise distinct then the equality follows by counting.

Therefore if we know the decomposition of the ordinary characters of G and H then we can

work out the decomposition of the irreducible characters of G⇥H. Suppose d1(✓) =
P

↵i✓i
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with ✓i 2 IBr(G) and d1(') =
P

�j'j with 'j 2 IBr(H). Then

d1(✓ ⇥ ') =
X

i,j

↵i�j(✓i ⇥ 'j).

1.2. The conjugacy classes of two and three dimensional finite unitary groups.

Let G = U3(E/F ) and N = SU3(E/F ). Due to Theorem 1.1 we are interested in the action

of G by conjugation on the classes of N . The conjugacy classes of G are given in [Enn63,

Page 29] and the conjugacy classes of N in [Gec90, Table 1.1].

If d = 1 the N -conjugacy classes are the intersection of the G-conjugacy classes with N , i.e.

the N -conjugacy classes are the G-conjugacy classes of determinant one.

If d = 3 there are three N -conjugacy classes, denoted by C
(k,0)
3 ,C(k,1)

3 , and C
(k,2)
3 in [Gec90],

which are G-conjugate. The other N -conjugacy classes remain fixed under the action of G

by conjugation. The group index [G : N ] = q + 1 and by transitivity

[G : N ] = [G : Z(G)N ][Z(G)N : N ].

By the second isomorphism theorem for groups

[Z(G)N : N ] = [Z(G) : Z(N)] =
q + 1

d
.

Thus

[G : Z(G)N ] = d.

Therefore, if d = 3 there are three distinct cosets in the space G/Z(G)N which must permute

the conjugacy classes C
(k,0)
3 ,C(k,1)

3 and C
(k,2)
3 because the conjugacy classes remain fixed by

Z(G)N yet form a single conjugacy class in G

Let G2 = U2(E/F ) and N2 = SU2(E/F ). The conjugacy classes of G2 are found in [Enn63,

Page 26], We assume q is odd. When intersected with N2 the conjugacy classes of G2 of

determinant 1 are all N2-conjugacy classes apart from two classes which are denoted by C
(0)
2

and C
( q+1

2

)
2 in [Enn63]. These have representatives

 

1 0

1 1

!

and

 

�1 0

1 �1

!

.

Explicit calculations show theseG2-conjugacy classes both split into twoN2-conjugacy classes.

2. Brauer characters of SU3(E/F )

2.1. The characters of SU3(E/F ) and U3(E/F ). The ordinary character table for

U3(E/F ) is given in [Enn63, Pages 30-31]. The ordinary character of a representation ⇢ is

denoted by

�
(i)
dim(⇢),

where (i) is some list of parameters. For example, let ⇣ be an irreducible representation of

F⇥ then StG(⇣) has character �(u)
q3

for some u = 1, .., q � 1. Relating the parameter u to ⇣

depends on a choice of q � 1-th root of unity.

We use the notation from the ordinary character table for SU3(E/F ), [Gec90, Table 3.1].

We follow the description of the decomposition numbers of SU3(E/F ) in non-defining char-

acteristic given in [Gec90, Theorems 4.1-4.5]. In [Gec90] there are two parameters ↵ and

� missing from the decomposition matrices, these are found in [OW02, Lemma 2.2]. The
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order of SU3(E/F ) is q3(q � 1)(q + 1)2(q2 � q + 1). In non-describing characteristic, since

gcd(q + 1, q � 1) | 2, gcd(q + 1, q2 � q + 1) | 3 and gcd(q + 1, q2 + q + 1) = 1 there are five

di↵erent cases to consider:

A-1 ` 6= 2 and ` | q � 1,

A-2 ` 6= 2, 3 and ` | q + 1,

A-3 ` 6= 2, 3 and ` | q2 � q + 1,

A-4 ` = 3 and ` | q + 1,

A-5 ` = 2.

2.2. Decomposition matrices of SU3(E/F ) if ` 6= 2 and ` | q � 1, [Gec90, Theorem

4.1]. Let `a || q � 1.

(1) The principal `-block:

Conditions Number

�1 1 0 1

�q3 0 1 1

�
(u)
q3+1 1 1 q�1

`a | u `a � 1

The non-exceptional characters are �1 and �q3 and we have the following Brauer tree:

(2) `-blocks B(u)
1 :

Conditions Number

�
(u)
q2�q+1 1 0 1

�
(u)
q(q2�q+1) 0 1 1

�
(v)
q3+1 1 1 q2�1

`a | v � (q � 1)u `a � 1

The non-exceptional characters are �(u)
q2�q+1 and �

(u)
q(q2�q+1) and we have the following

Brauer tree:

(3) `-blocks B(u)
2 :

Conditions Number

�
(u)
q3+1 1 1

�
(v)
q3+1 1 q2�1

`a | v � u or v + uq `a � 1

The non-exceptional character is �(u)
q3+1 and we have the following Brauer tree:

(4) `-blocks of defect zero. All other Brauer characters are in `-blocks of defect zero.

2.3. Decomposition matrices of SU3(E/F ) if ` 6= 2, 3 and ` | q2 � q + 1, [Gec90,

Theorem 4.2]. Let `a || q2 � q + 1.

(1) The principal `-block:
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Conditions Number

�1 1 0 0 1

�q3 1 1 0 1

�q2�q 0 0 1 1

�
(u)
(q+1)2(q�1) 0 1 1 q2�q+1

`a | u `a � 1

The non-exceptional characters are �1, �q3 , and �q2�q, and we have the following Brauer

tree:

(2) `-blocks B(u)
1 :

Conditions Number

�
(u)
(q+1)2(q�1) 1 1

�
(u)
(q+1)2(q�1) 1 q2�q+1

`a | v � u or v � uq2 `a � 1

The non-exceptional character is �(u)
(q+1)2(q�1) and we have the following Brauer tree:

(3) `-blocks B(v)
2 , v = 1, 2: If d = 3 we have the additional blocks:

Conditions Number

�
(0,v)
(q+1)2(q�1)/3 1 0 0 1

�
(1,v)
(q+1)2(q�1)/3 0 1 0 1

�
(2,v)
(q+1)2(q�1)/3 0 0 1 1

�
(u)
(q+1)2(q�1) 1 1 1 q2�q+1

`a | u� q2�q+1
3 v `a � 1

The non-exceptional characters are �(0,v)
(q+1)2(q�1)/3, �

(1,v)
(q+1)2(q�1)/3 and �(2,v)

(q+1)2(q�1)/3. We

have the following Brauer tree:

(4) `-blocks of defect zero. All other Brauer characters are in `-blocks of defect zero.

2.4. Decomposition matrices of SU3(E/F ) if ` 6= 2, 3 and ` | q + 1, [Gec90, Theorem

4.3]. Let `a || q + 1.

(1) The principal `-block:

Conditions Number

�1 1 0 0 1

�q2�q 0 1 0 1

�q3 1 2 1 1

�
(u)
q2�q+1 1 1 0 q+1

`a | u `a � 1

�
(u)
q(q2�q+1) 1 1 1 q+1

`a | u `a � 1

�
(v,w)
(q�1)(q2�q+1) 0 0 1 q+1

`a | v, w 1

6
(`a � 1)(`a � 2)

(2) `-blocks B(u)
1 :
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Conditions Number

�
(u)
q3+1 1 1

�
(v)
q3+1 1 q2�1

`a | v � u or v + uq `a � 1

The non-exceptional character is �(u)
q3+1 and we have the following Brauer tree:

(3) `-blocks B(u)
2 :

Conditions Number

�
(u)
q2�q+1 1 0 1

�
(u)
q(q2�q+1) 1 1 1

�
(v)
q2�q+1 1 0 q+1

`a | v � u `a � 1

�
(v)
q(q2�q+1) 1 1 q+1

`a | v � u `a � 1

�
(v,w)
(q�1)(q2�q+1) 0 1 q+1

`a | w, v � u 1
2`

a(`a � 1)

(4) `-blocks B(u,v)
3 , q+1

`a - v:

Conditions Number

�
(u,v)
(q�1)(q2�q+1) 1 1

�
(x,w)
(q�1)(q2�q+1) 1 q+1

`a | x� u,w � v `2a � 1

The non-exceptional character is �(u,v)
(q�1)(q2�q+1) and we have the following Brauer tree:

(5) `-blocks B3: If d = 3 we have in addition an `-block:

Conditions Number

�0
(q�1)(q2�q+1)/3 1 0 0 1

�1
(q�1)(q2�q+1)/3 0 1 0 1

�2
(q�1)(q2�q+1)/3 0 0 1 1

�
(v,w)
(q�1)(q2�q+1) 1 1 1

q+1
3`a | v, w

q+1
`a | v + w, q+1

`a - v
`2a�1

3

(6) `-blocks of defect zero. All other Brauer characters are in `-blocks of defect zero.

2.5. Decomposition matrix of the principal `-block of SU3(E/F ) if ` = 3 and ` | q+1,

[Gec90, Theorem 4.5]. The principal `-block:



3. BRAUER CHARACTERS OF U
3

(E/F ) 123

Conditions Number

�1 1 0 0 0 0 1

�q2�q 0 1 0 0 0 1

�
(0)
(q�1)(q2�q+1)/3 0 0 1 0 0 1

�
(1)
(q�1)(q2�q+1)/3 0 0 0 1 0 1

�
(2)
(q�1)(q2�q+1)/3 0 0 0 0 1 1

�q3 1 2 1 1 1 1

�
(u)
q2�q+1 1 1 0 0 0 q+1

3a | u 3a � 1

�
(u)
q(q2�q+1) 1 1 1 1 1 q+1

3a | u 3a � 1

�
(v,w)
(q�1)(q2�q+1) 0 0 1 1 1 q+1

3a | v, w 3a(3a�1�1)
2

�
(0,v)
(q+1)2(q�1)/3 0 1 1 0 0 v = 1, 2 2

�
(1,v)
(q+1)2(q�1)/3 0 1 0 1 0 v = 1, 2 2

�
(2,v)
(q+1)2(q�1)/3 0 1 0 0 1 v = 1, 2 2

3. Brauer characters of U3(E/F )

In this section we find the decomposition matrices of U3(E/F ). We use Cli↵ord theory for

Brauer characters from IBr(SU3(E/F )) to IBr(U3(E/F )) and the decomposition matrices of

SU3(E/F ). There are two cases, depending on whether 3 is prime to q + 1 or not.

3.1. The Brauer Characters of U3(E/F ) when d = 1, ` 6= 2, 3, p. Let N := SU3(E/F )

and G := U3(E/F ). Because d = 1 we have a direct product decomposition

G ' N ⇥ Z(G).

Thus the Brauer characters of G and decomposition matrices follow from Section 1.1.

3.2. Brauer characters of U(3) when d = 3, ` 6= 2, 3, p.

In the first lemma we deal with certain complex characters whose normaliser is G and thus

extend to G by Theorem 1.1 part (3).

Lemma 3.1. Let  2 Irr(N) such that NG( ) = G and NG(') = G for all irreducible

constituents ' of d1( ). Suppose d1(') =
Pn

i=1 'i with 'i and 'j distinct when i 6= j. Let
e be any extension of  to G. Then d1( e ) =

Pn
i=1 e'i where e'i is an extension of 'i to G.

Proof: Suppose d1( e ) =
Pn

i=1 ej⌘j .

G e d1( e ) =
Pm

j=1 ej⌘j

N  d1( ) =
Pn

i=1 'i

d1

d1

Restriction to the `-regular elements commutes with restriction from G to N hence

ResGN

⇣

d1( e )
⌘

= d1( ).
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By Theorem 1.1 part (3) for each i there exists an extension of 'i to an irreducible Brauer

character i of G. Let ✓ 2 IBr(G), by Theorem 1.1 part (1), 'i is an irreducible constituent

of ✓N if and only if ✓ is an irreducible constituent of 'G. The set {�i : � 2 IBr(G/N)}
consists of all irreducible constituents of 'G and these are pairwise distinct by Theorem 1.1

part (4). Hence the ⌘j must all be extensions of 'i. Because the decomposition numbers are

all ones we must have m = n and ej = 1 for all j. ⇤

Comparing with the decomposition matrices of N in Section 2, Lemma 3.1 deals with ex-

tending all complex characters  2 Irr(G) whose normaliser is G and such that all irreducible

constituents in d1( ) have normaliser G except one: the Steinberg character  q3 when ` | q+1

Lemma 3.2. Suppose ` | q + 1 and let e q3 be any extension of  q3 to G. Then

d1( e q3) = e�1 + 2e�q2�q + eY

where e�1 is an extension of �1 to G, e�q2�q is an extension of �q2�q to G and eY is an extension

of the irreducible Brauer character d1(�q3)� d1(�1)� 2d1(�q2�q) to G.

Proof: Let �1 = d1(�1) and �q2�q = d1(�q2�q) which are irreducible Brauer characters of

N . As in the proof of Lemma 3.1 we find d1( e q3) = e�1+ eX+� eX+ eY where e�1 extends �1 to

G, eY extends Y to G, and eX and � eX are two extensions of �q2�q to G which, by Theorem

1.1 part (4), are related by twisting by � 2 IBr(G/N). Claim: these two extensions coincide,

i.e. � is trivial.

G e�q3 e�1 + eX + � eX + eY

N �q3 �1 + 2�q2�q + Y

d1

d1

We can translate this into a problem using the notation of Chapter 2 Section 8: because d`

commutes with Deligne-Lusztig induction, Chapter 3 Lemma 1.3, there is a cuspidal repre-

sentation �T
1

,✓, by Chapter 2 Section 8, with the same decomposition modulo-` as the virtual

representation StG(�) � 2⌫� � 1G(�). Thus the decomposition modulo-` of the virtual rep-

resentation StG(�) � 2⌫� � 1G(�) is an `-modular representation. Hence the decomposition

modulo-` of StG(�) must contain the decomposition modulo-` of ⌫� with multiplicity 2. ⇤

Let  2 Irr(G) such that NG( ) = G then

G � NG(d
1( )) � NG( );

thus NG(d1( )) = G. While not every Brauer character is equal to the restriction of an

ordinary character to the `-regular elements; the decomposition matrices of N can all be

rearranged to be lower unitriangular. Starting at the top of these decomposition matrices

and working top to bottom and left to right, if the first n ordinary characters have normaliser

G, then so does the n-th Brauer character.

Following this algorithm all but two `-blocks ofN contain only ordinary and Brauer characters

with normalisers equal to G. Using Lemmas 3.1 and 3.2 we can find the decomposition

matrices for these blocks. We use the lower unitriangular shape of the decomposition matrices

to choose the extensions of the ordinary characters to ensure compatibility with decomposition
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modulo-`. We start with the ordinary character of the first row  1 and fix any extension e 1

of  1 to G then

Irr(G| 1) = {� e 1 : � 2 Irr(G/N)}
and d1(�1 e 1) = d1(�2 e 2) if and only if d1(�1) = d1(�2). We then move onto the next row

with ordinary character  2 in the decomposition matrix of N .

(1) If d1( 2) contains d1( 1) we fix an extension e 2 of  2 such that d1( e 2) contains d1( e 1).

This is not necessarily unique, but exist: d1( e 2) contains some extension of d1( 1) thus

the twists of this extension by � 2 IBr(G/N), and hence all extensions of d1( 1), appear

in d1( e 2) as e 2 runs over all extensions of  2. Let ✓ 2 Irr(G| 2) then ✓ = � e 2 with

� 2 Irr(G/N) and ✓ is in the same `-block as e 1 if and only if d1(�) = 1.

(2) If d1( 2) does not contain d1( 1) we choose an ordinary character ⇣ in the `-block which

contains both d1( 2) and d1( 1), this is possible by Section 2. Fix an extension e 2 of

 2 such that, for some extension e⇣ of ⇣, d1(e⇣) contains both e 1 and e 2. Then, as in the

last case, if ✓ 2 Irr(G| 2) then ✓ = � e 2 with � 2 Irr(G/N) and ✓ is in the same `-block

as e 1 if and only if d1(�) = 1.

It is easy to extrapolate from this and produce the decomposition matrices of G.

The two remaining blocks of N , one when ` | q + 1 and one when ` | q2 � q + 1, both have

the following structure:

d1(�1) d1(�2) d1(�3) Conditions Number

�1 1 0 0 1

�2 0 1 0 1

�3 0 0 1 1

�i
ex 1 1 1 1 6 i 6 k k

Furthermore NG(�1) = NG(�2) = NG(�3) = Z(G)N and NG(�ex) = G. Because ` 6= 3 the

conjugacy classes C(k,0)
3 , C(k,1)

3 and C
(k,2)
3 are `-regular and as the restriction of the �i to the

`-regular elements is irreducible NG(d1(�1)) = NG(d1(�2)) = NG(d1(�3)) = Z(G)N.

Using Theorem 1.1, as explained in Section 1, we have Irr(G|�1) = Irr(G|�2) = Irr(G|�3);

IBr(G|d1(�1)) = IBr(G|d1(�2)) = IBr(G|d1(�3)) and it remains to describe d1 restricting the

domain to Irr(G|�1) [ ([ki=1 Irr(G|�i
ex)).

Lemma 3.3. For all ⇢ 2 Irr(G|�1) the Brauer character d1(⇢) is irreducible and contained in

IBr(G|d1(�1)).

Proof: Fix an extension e�1 of �1 to Z(G)N which exists by Theorem 1.1 part (3). Alter-

natively, as Z(G)\N is equal to Z(N) we can extend by choosing an extension of the central

character of �1 to Z(G).
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G e�G
1 d1(e�G

1 )

Z(G)N
e�1 d1(e�1)

N �1 d1(�1)

d1

d1

d1

By the second isomorphism theorem for groups Z(G)N/N ' Z(G)/Z(N). Hence by Theorem

1.1 part (4)

Irr (Z(G)N |�1) = {�e�1 : � 2 Irr(Z(G)/Z(N))} .
The Brauer character d1(e�1) extends d1(�1) to Z(G)N and by Theorem 1.1 (4)

IBr
�

Z(G)N |d1(�1)
�

=
�

�d1(e�1) : � 2 IBr(Z(G)/Z(N))
 

.

Furthermore d1(�e�1) = d1(�)d1(e�1). By Theorem 1.1 part (2),

Irr (G|�1) =
n

(�e�1)
G : � 2 Irr(Z(G)/Z(N))

o

;

IBr
�

G|d1(�1)
�

=
n

�

�d1(e�1)
�G

: � 2 IBr(Z(G)/Z(N))
o

.

Because induction commutes with d1

d1
⇣

(�e�1)
G
⌘

=
�

d1(�)d1(e�1)
�G 2 IBr(G|d1(�1)).

⇤

The last sets of ordinary characters to consider are Irr(G|�i
ex) and we let Irr(G|�ex) denote

any one of these sets.

Lemma 3.4. For all ⇢ 2 Irr(G|�ex) the Brauer character d1(⇢) is irreducible and contained

in IBr(G|d1(�1)).

Proof: Let e�ex be an extension of �ex to G which exists by Theorem 1.1 part (3). By

Theorem 1.1 part (4)

Irr (G|�ex) = {�e�ex : � 2 Irr(G/N)} .
The restriction of d1(e�ex) to N is d1(�ex).

G e�ex d1(e�ex)

N �ex d1(�ex) =
P3

i=1 d
1(�i)

d1

d1

Let ⇣ 2 IBr(G) be an irreducible constituent of d1(e�ex) By Theorem 1.1 part (1):

ResGN (⇣) = e
3
X

i=1

d1(�i).

Therefore e = 1 and ⇣ = d1(e�ex). Thus d1(�e�ex) = d1(�)d1(e�ex) is irreducible as a Brauer

character and is contained in IBr(G|d1(�1)). ⇤



3. BRAUER CHARACTERS OF U
3

(E/F ) 127

Using Lemmas 3.3 and 3.4 we can find the decomposition matrices of the remaining `-blocks

of G. If ✓1, ✓2 2 Irr(G|�ex) then ✓1 = �1e�ex, ✓2 = �2e�ex with �1, �2 2 Irr(G/N) and

d1(✓1) = d1(✓2) if and only if d1(�1) = d1(�2).

Let ✓1, ✓2 2 Irr(G|�1) then ✓1 = (�1e�1)G, ✓2 = (�2e�1)G with �1, �2 2 Irr(Z(G)N/N) and

d1(✓1) = d1(✓2) if and only if d1(�1) = d1(�2) because d1 commutes with induction.

Let ✓1 2 Irr(G|�1), ✓2 2 Irr(G|�ex) then ✓1 = (�1e�1)G with �1 2 Irr(Z(G)N/N) and ✓2 =

�2e�ex with �2 2 Irr(G/N). Fix the extension e�ex so that d1(e�ex) = d1(e�1)G. By restriction

induction ResGZ(G)N (e�ex) ' e�1 � e�g
1 �f�1

h where {1, g, h} is a set of coset representatives of

G/Z(G)N . By restriction toN , we see that e�1, e�
g
1,f�1

h are distinct. Therefore d1(✓1) = d1(✓2)

if and only if d1(�1) = ResGZ(G)N (d1(�2)).

Similar arguments apply to the sets Irr(G|�2) and Irr(G|�3). To relate ✓1 2 Irr(G|�1
ex) and

✓2 2 Irr(G|�2
ex) we can go via Irr(G|�1).





APPENDIX C

The building of parahoric subgroups

In this appendix we briefly describe a model for the reduced building of U(2, 1)(E/F ).
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1. The reduced building of U(2, 1)(E/F )

The geometry of parahoric subgroups of a p-adic reductive group can be described using the

reduced building B(G) of G. We give a description of the reduced building of a unitary group

in terms of lattice functions.

An OE-lattice function on V is a map

⇤ : R! LatO
E

(V )

such that

(1) ⇤ is decreasing and periodic,

(2) ⇤ is left continuous.

Denote the set of OE-lattice functions on V by Latt1O
E

(V ). The image of a lattice function

defines a lattice sequence. Define an equivalence relation on Latt1O
E

(V ) by ⇤1 ⇠ ⇤2 if there

exists r 2 R such that for all x 2 R

⇤1(x) = ⇤2(x+ r).

The set of equivalence classes is denoted B(GL(V )) and called the reduced building of GL(V ).

We have a transitive action of GL(V ) on Latt1O
E

(V ) by

g · ⇤(x) = g(⇤(x)),

and this action stabilises equivalence classes, hence we get an action of GL(V ) on B(GL(V )).

A decomposition of V

V =
n
M

i=1

Vi,

splits ⇤ 2 Latt1O
E

(V ) if for all x 2 R

⇤(x) =
n
M

i=1

Vi \ ⇤(x),

and splits [⇤] 2 B(GL(V )) if it splits some representative of [⇤].

Theorem 1.1. For any two lattice functions ⇤1 and ⇤2 in V , there exists a basis (ai)ni=1 of

V such that
Ln

i=1Eai splits ⇤1 and ⇤2.

The subset of [⇤] 2 B(GL(V )) which are split by the decomposition of V given by a chosen

basis (vi)ni=1 is called an apartment A of B(GL(V )). The equivalence class [⇤] 2 LattO
E

(V )

is in the apartment given by a basis (vi)ni=1 if and only if, there exists a representative ⇤ of

[⇤] and (ci)ni=1 2 Rn such that for all r 2 R

⇤(r) = $dr+c
1

eOEv1 �$dr+c
2

eOEv1 � · · ·�$dr+c
n

eOEvn.

An equivalence class [⇤] is called hyperspecial if the period of the image of a representative of

[⇤] as a lattice sequence is 1, i.e. (ci)ni=1 2 Zn. Thus the hyperspecial points can be indexed

by the lattices in V .

Let [⇤i] 2 B(GL(V )), i = 1, 2 and ⇤i, i = 1, 2 be representatives of [⇤i]. We define a metric

d on B(GL(V )) via choosing a common splitting basis for ⇤i

⇤1(r) = $dr+c
1

eOEv1 �$dr+c
2

eOEv1 � · · ·�$dr+c
n

eOEvn,
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⇤2(r) = $dr+d
1

eOEv1 �$dr+d
2

eOEv1 � · · ·�$dr+d
n

eOEvn,

then

d([⇤1], [⇤2]) = min{max{|cj � dj | : 1 6 j 6 n} : ⇤i 2 [⇤i]}.

The apartment has a (n � 1)-simplicial structure. The vertices are the hyperspecial points

in B(GL(V )). A sequence of k hyperspecial points [⇤i], i = 1, . . . , k form a k-simplex if and

only if there exist lattices Li in the image of representatives ⇤i of [⇤i] such that

$L1 ( · · · ( Lk ( L1.

The maximal simplices are called chambers.

Let ⇤ 2 Latt1O
E

(V ), define

⇤(r+) =
[

s>r

⇤(s),

the dual lattice function ⇤] 2 B(GL(V )) of ⇤ is defined by

⇤](r) = (⇤((�r)+))]

for all r 2 R. The lattice function ⇤ is called self dual if ⇤ = ⇤]. The equivalence class [⇤] is

called self dual if ⇤ 2 [⇤] implies that ⇤] 2 [⇤]. If [⇤] is self dual, there exists a unique self

dual lattice function ⇤ 2 [⇤].

The involution attached to the hermitian form h acts on the (reduced) building of GL(V ) by

taking the equivalence class of lattice function ⇤ to the equivalence class of its dual lattice

function ⇤]. The building B(U(V, h)) of U(V, h) is the space of self dual lattice functions on

V . Thus

B(U(V, h)) = B(GL(V ))h,

and we can embed B(U(V, h)) in the building of GL(V ). The group U(V, h) acts on the

building.

The subset of [⇤] 2 B(U(V, h)) which are split by a chosen basis (vi)ni=1 of V which is stable

under h is called an apartment of B(U(V, h)). The apartment has a simplicial structure. An

OE-lattice sequence L is called almost self dual if

PEL ✓ L] ✓ L.

The equivalence class of ⇤ is a vertex if and only if ⇤ is constant on the interval [0, 12). If [⇤]

is a vertex then

⇤(x) =

8

<

:

L] if x 2 [0, 12);

L if x 2 [12 , 1).

Hence a vertex corresponds to an almost self dual lattice sequence. A sequence of r vertices

[⇤i], i = 1, . . . , k form an r � 1-simplex if and only if there exist lattices lattices Li in the

image of representatives ⇤i of [⇤i] such that

PEL
]
r ✓ Lr ( Lr�1 ( Lr�2 ( · · · ( L0 ✓ L]0 ( · · · ( L]r�1 ( L]r.

The maximal simplices are called chambers. Then h induces a nondegenerate form h on

L]r/L
]
r�1 � L]r�1/L

]
r�2 � · · ·� L]0/L0 � L0/L1 � · · ·� Lr/PEL

]
r

via h = hr � hr�1 � · · ·� h0 � hr+1. Where if 1 6 i 6 r

hi : Li�1/Li ⇥ L]i/L
]
i�1 ! kE ,
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hi : (x+ Li, y + L]i�1) 7! h(x, y) + PE ,

and

h0 : L
]
0/L0 ⇥ L]0/L0 ! kE ,

h0 : (x+ L0, y + L0) 7! h(x, y) + PE ,

and

hr+1 : Lr/PEL
]
r ⇥ Lr/PEL

]
r ! kE ,

hr+1 : (x+ PEL
]
r, y + PEL

]
r) 7! $�1

E h(x, y) + PE .

A facet F is a simplex in the building, a vertex is a 0-simplex. The stabiliser in G of F
under the action of G on B(G) is a compact open subgroup of G, we denote by G+

F . Letting
x be the barycentre of F we have G+

x = G+
F . Let F be an r � 1-simplex, as above, which

corresponds to a flag of lattices

PEL
]
r ✓ Lr ( Lr�1 ( Lr�2 ( · · · ( L0 ✓ L]0 ( · · · ( L]r�1 ( L]r.

We have a map

⇡ : G+
F !

r
Y

i=0

Autk
E

(Li/Li+1)

whose image consists of elements which preserve the form h, i.e.

im(⇡) =
r�1
Y

i=0

Autk
E

(Li/Li�1)⇥U(L]0/L0)⇥U(Lr/PEL
]
r).

The kernel of ⇡ is the pro-unipotent radical of G+
F and is denoted G1

F . In general, the finite

reductive group M+
F = im(⇡) need not be connected. A parahoric subgroup of G, associated

to the facet F , is the preimage GF of the connected component MF of M+
F in G+

F . We then

have a short exact sequence

1! G1
F ! GF !MF ! 1.

When the facet F is a chamber in the building, a parahoric subgroup is called an Iwahori

subgroup. All Iwahori subgroups are conjugate in G. We fix a choice of Iwahori subgroup

I, this determines a chamber C in the building B(G). If x is any point in the closure C the

Iwahori subgroup I is equal to the inverse image of a Borel subgroup Bx,C of Mx in Gx. In

fact, for any point x 2 B(G), G+
x is equal to G(OF ) for some smooth a�ne OF -group scheme

G whose generic fibre is G, [Tit79, 3.4.1].

A parahoric subgroup Gx corresponding to a point in the closure of the chamber C is called

maximal if it is maximal under inclusion. There can be multiple non-conjugate maximal

parahoric subgroups in G. Fix a maximal parahoric subgroup Gx. The non-maximal para-

horic subgroups Gz contained in Gx and which correspond to a point z in the closure of C

are equal to the preimage of parabolic subgroups Pz,C of Mx which contain Bx,C in Gx.
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1 G1
x Gx Mx 1

1 G1
x Gz Pz,C 1

1 G1
x I Bx,C 1

Example 1.2. Let V be a three dimensional E-vector space. The (reduced) building B(GL(V ))

is a union of apartments that are isometric to the plane. The simplicial structure on an apart-

ment is a tesselation of the plane by equalateral triangles.

Choosing the standard basis (ei)3i=1 for V , and identifying GL(V ) with GL3(E), let

⇤1(r) = $dreOEe1 �$dreOEe2 �$dreOEe3,

⇤2(r) = $dreOEe1 �$dreOEe2 �$dr+1eOEe3,

⇤3(r) = $dreOEe1 �$dr+1eOEe2 �$dr+1eOEe3,

and let [⇤i], i = 1, 2, 3 be the equivalence class of ⇤i. The standard chamber of B(GL3(E))

is

[⇤1]

[⇤2] [⇤3]

We can describe representatives of the equivalence classes of other lattice functions in this

chamber in terms of linear combinations of ⇤i, i = 1, 2, 3. For example the midpoint of the

line from [⇤2] to [⇤3] has representative

⇤23 = $dreOEe1 �$dr+ 1

2

eOEe2 �$dr+1eOEe3.

Let h be the form on V given by

(h((ei, ej)) =

0

B

@

0 0 1

0 1 0

1 0 0

1

C

A

,

see Example 2.3. Then the duality acts as a reflection in the vertical line on the standard

apartment of GL3(E)
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The points [⇤1] and [⇤23] in B(GL3(E)) are self dual, whereas the dual of [⇤2] is [⇤3] and vice-

versa. Thus the standard chamber of B(U(2, 1)(E/F )) is the line with vertices [⇤1] and [⇤23].

The standard parahoric subgroups of U(2, 1)(E) are contained in the pointwise stabilisers

of the simplices in the chamber. We have two maximal standard parahoric subgroups: one

contained in

StabU(2,1)(E/F )[⇤1] =

0

B

@

OE OE OE

OE OE OE

OE OE OE

1

C

A

⇥

\U(2, 1)(E/F );

the other contained in

StabU(2,1)(E/F )[⇤23] =

0

B

@

OE OE $�1OE

$OE OE OE

$OE $OE OE

1

C

A

⇥

\U(2, 1)(E/F ).

The stabilizer of the chamber is the standard Iwahori subgroup I of U(2, 1)(E/F )

I =

0

B

@

OE OE OE

$OE OE OE

$OE $OE OE

1

C

A

⇥

\U(2, 1)(E/F ).

This is equal to the stabiliser of the central point in the chamber [⇤123] which is the equivalence

class of

⇤123(r) = $dreOEe1 �$dr+ 1

4

eOEe2 �$dr+ 1

2

eOEe3.

If E/F is unramified then the form h is hermitian and the parahoric subgroup associated to

a point is equal to the pointwise stabiliser of that point. If E/F is ramified then the form h

is orthogonal and the parahoric subgroup associated to a point has index 2 in the pointwise

stabiliser of that point.

The building of U(2, 1)(E/F ) is a tree. If E/F is unramified then the vertices conjugate to

[⇤1] have q3+1 neighbours and the vertices conjugate to [⇤23] have q+1 neighbours. If E/F

is ramified then the tree of U(2, 1)(E/F ) is q + 1-regular.
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