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ABSTRACT. Let E/F be an unramified quadratic extension of p-adic fields and G be the
unitary group U(2,1)(E/F). In this thesis we construct all f~-modular irreducible cuspidal
representations of G by compact induction from irreducible representations of compact open
subgroups of GG. Under an assumption on the possible cuspidal subquotients of representa-
tions parabolically induced from an irreducible positive level representation, we show that
the supercuspidal support of an irreducible ¢-modular representation of G is unique up to

conjugacy.
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INTRODUCTION

In this thesis, we begin the study of the irreducible smooth /-modular representations of
unitary groups defined over a locally compact non-archimedean local field of residual charac-
teristic different from ¢. The irreducible /-modular representations of the general linear group
were classified in [Vig96]. Here, the majority of the general theory of ¢-modular represen-
tations was introduced. This has subsequently been developed; notably in [Vig98], [Dat05]
and [Dat09]. Recently, the irreducible £-modular representations of GL,, (D) have been clas-
sified in [MS11b] and [MS11a]. The theory is less developed than the complex or ¢-adic
theory and the non-semisimplicity of representations of compact open subgroups can lead to
striking differences. An example of this is the appearance of subquotients of parabolically
induced representations with trivial Jacquet module.

The theory of Langlands has greatly motivated the need to understand the ¢-adic represen-
tations of reductive p-adic groups. An area of study with great potential is to develop an
¢-modular Langlands theory. In this direction it is shown in [Vig0la] that the semisimple
local Langlands correspondence for general linear groups is compatible, in some sense, with
decomposition modulo-¢. This is done by first restricting to supercuspidal representations.
There is an f-adic local Langlands correspondence for U(2,1)(E/F), due to [Rog90]. While
we make little progress towards an ¢-modular Langlands correspondence for U(2,1)(E/F)

this does provide motivation for our study.

Eventually, we specialise to unramified unitary groups in three variables U(2,1)(E/F’) defined
over a p-adic field of odd residual characteristic and ¢ # 2,3. Our specialisation is in steps,

so many of our results apply in much more generality.

Firstly, our construction of all positive level cuspidal representations follows the general theory
of [Ste08] where the residual characteristic is assumed to be odd. Furthermore, we only show
that this construction produces all positive level cuspidal {-modular representations in the
case of U(2,1)(E/F). We classify the irreducible cuspidal level zero ¢-modular representations
of U(2,1)(E/F). Similarly for level zero representations, while the construction we follow
is more general, we only know that we have constructed all level zero cuspidal ¢-modular
representations in the case of U(2,1)(E/F). However, it should be possible to remove this
specialisation to U(2,1)(E/F) by adapting the general arguments of [Ste08] and [Mor99].
Our reason for specialising here was because it vastly simplified the arguments involved and
because we needed to make this specialisation later. In contrast to irreducible cuspidal /-
modular representations of GL,(F'), we find that there are irreducible cuspidal ¢-modular
representations of U(2,1)(E/F) which do not lift to ¢-adic representations. This essentially
follows from the analagous result for finite groups.

The next step after describing the cuspidal representations is to describe the decomposition
of the parabolically induced representations. Intricately connected to the unitary group we

study are the finite unitary groups which appear as quotients of the compact open maximal
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parahoric subgroups by their pro-p unipotent radicals. This is where our specialisation be-
comes necessary. For finite general linear groups it is known that the supercuspidal support
of an /-modular representation is unique up to conjugacy. However this is not known, in
general, for finite unitary groups. In these cases, this is only known for finite unitary groups
in two or three variables. Our further specialisation to U(2,1)(E/F) with E/F an extension
of p-adic fields is necessary to apply results of [Dat05]. Under these hypotheses we show that
the supercuspidal support of an irreducible level zero f-modular representation is unique up
to conjugacy. We then make an assumption which we see as an analogue of the level zero re-
sult that parabolic induction preserves level zero representations. Under this assumption, we
show that the supercuspidal support of an irreducible positive level /-modular representation
is unique up to conjugacy.



CHAPTER 1

REPRESENTATIONS OF p-ADIC GROUPS

In this chapter we review the definitions of the reductive p-adic groups we study and then

review the ¢-adic and ¢-modular representation theory of reductive p-adic groups.
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1. NOTATION

Let p,¢ be distinct prime numbers. Let F' be a non-archimedean local field of residual
characteristic p. We denote the ring of integers of F' by Op, the multiplicative valuation
associated to F' by | - |, the additive valuation associated to | - |r by vp, a chosen
uniformiser by wp, the unique maximal ideal (wp) by Pr, the residue field Op/Pr by kp,
and the cardinality of the residue field by ¢ (hence gr = p” for some r € N). We assume

p#2.

Let G be a connected reductive group defined over F' and G = G(F') the F-points of G. Let
R be a commutative ring with identity, of characteristic zero or £.

An R-representation of G is a pair (m, V) where V is a left R-module and 7 : G — GL(V) is a
homomorphism of groups. An R-representation (m,)) is called smooth if, for all v € V, the
stabilizer of v

stabg(v) = {g € G : 7(g)v = v}
is an open subgroup of G. Let Rg(G) denote the category of smooth R-representations of
G; a morphism from (71, V1) € Rr(G) to (w2, V2) € Rr(G) is an R-module homomorphism
® : V) — Vs such that, for all g € G,

m2(g) o ® = ® oy (g).

We denote the set of all such morphisms V; — V5 by Homg(V1, Vs) or by Homg (71, m2). By
[Vig96, Chapter 1, §4.2], Rr(G) is abelian with direct sums and direct products.

An R-representation (m,V) is called irreducible if there are no proper G-stable R-submodules
of V. We denote by Irrg(G) the set of isomorphism classes of irreducible R-representations of
G. The Grothendieck group of finite length R-representations of G is the free abelian group
with Z-basis Irrg(G), which we denote by Btr(G). Given a finite length R-representation
of G we denote by [r] its semisimplification in Gtr(G).

We are interested in three different cases of coefficient ring R for a representation:

(1) f-adic representations when R = Qy;
(2) f-integral representations when R = Zy;
(3) f-modular representations when R = Fy;

and the connections between these. Complex representations of G, when R = C, have been
well studied and in general the complex theory and the ¢-adic theory coincide. Let A, denote
the unique maximal ideal of Z,.

We say that ¢ is banal for G if it does not divide the pro-order of any maximal compact open
subgroup of G. These cases deviate less from the established f-adic theory and our main
interest is the non-banal primes for G.

2. CLASSICAL GROUPS

In this section, let F' be any field and let E/F be a separable quadratic or trivial extension
of F. Let — denote the generator of the cyclic group Gal(E/F).
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If E/F is an extension of non-archimedean local fields we suppose that we have normalised
the additive valuation vg to have image Z. If E/F' is ramified quadratic we choose wg so that
WE = —wg, if E/F is unramified quadratic we choose wg € F. When E/F is quadratic, by
local class field theory, there is a quadratic character wg g of F* associated to E/F.

Let e = £1. An e-hermitian form h on a finite dimensional E-vector space V is a nondegen-

erate form

h:VxV —=E
which is linear in the first variable, ~—-linear in the second variable and such that, for all
V1,02 € V7

h(vl, 1}2) = Eh(UQ, 1}1).
A pair (V,h) consisting of a finite dimensional E-vector space and an e-hermitian form on

V is called an e-hermitian space. An e-hermitian space (V,h) is called anisotropic if, for all
nonzero v € V, h(v,v) # 0 and is called totally isotropic if h(v,v) =0 for all v € V.

EXAMPLE 2.1.

(1) Let a € E such that a = a and let E(a) be a one dimensional E-vector with E-basis
{eo} equipped with the e-hermitian form h defined by: if v, w € E(a) such that v = vgpeg
and w = wpeg then,

h(v,w) = Toawy.
The form h is anisotropic.

(2) Let H be a two dimensional E-vector space with E-basis {e_1,e;} equipped with the
e-hermitian form A defined by: if v,w € H such that v = v_je_; + vie; and w =
w_1e_1 + wyey then,

h(v,w) = 7-7wy + ev1w_1.
The form h is totally isotropic. We call the e-hermitian space (H,h) the hyperbolic
plane.

An e-hermitian space (V, h) is the orthogonal sum of two subspaces V; and V5 of V if V =
V1@ Vs and h(vi,ve) =0, for all v1 € Vi, vy € Vo, By restriction h defines e-hermitian forms
on V; and V5 and we write V =V L V5. Given two e-hermitian spaces (V1, h1) and (V3, hs)
the orthogonal sum of V; and V5 is the direct sum Vj & V5 equipped with the e-hermitian
form hi @ heo, defined in the obvious way.

Let (V,hy) and (W, hyy) be e-hermitian spaces. A bijective linear map f : V — W is called
an isometry and V and W are called isometric if, for all vi,ve € V,

hv (v1,v2) = hw (f(v1), f(v2)).
We denote the subgroup of isometries of GL(V') by U(V, hy), i.e.
U(V,hy) = {g € GL(V) : hy(gv1, gv2) = hy(v1,v2), for all v1,vy € V}.

We denote the subgroup of isometries of GL(V) of determinant 1 by SU(V,hy) and the
subgroup of similitudes by GU(V, hy), i.e.

GU(V,hy) = {g € GL(V) : 3\, € F"* with h(gv1, gv2) = Agh(v1,v2), for all v, vy € V}.
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We fix an e-hermitian space (V,hy). If X € Endg(V) then there exists a unique X7 €
Endg (V) such that, for all v1,vy € V,

hy (Xv1,v2) = hy (v, X09).
The map ( )? : X — X7 is an anti-involution of Endg (V') and
U(V, hy) = {g € GL(V) : hy(gv1, gva) = hy(v1,v2), for all v1,ve € V}
={g € GL(V) : hy(v1,9° gv2) = hy(v1,v2), for all v1,vs € V}
={9€GL(V):¢7g =1}.

Let {eg, €1, ...,en} be a basis of V and define J € GL,,(F) by defining the (i, j)-th entry of J
to be hy (e, e;). Then with respect to this choice of basis, for all v,w € E"

hy (v,w) = vT Jw,

and if X € M, (E)
hyv(Xv,w) = (Xv)TJw =T J(JT ' XTT)@ = hy (v, JLXT Jw).

Hence X7 = J-1XTJ.

When E = F, and € = 1 the group of isometries U(V, hy ) is called the orthogonal group
of V. When E = F and € = —1 the group of isometries U(V, hy) is called the symplectic
group of V. When E/F is quadratic and e = 1 the group of isometries U(V, hy) is called the
unitary group of V.

The group of isometries U(V, hy) is the group of F-points of a reductive algebraic group
defined over F. We denote the algebraic group by U(V, hy). By a classical group, we mean
the F-points of the connected component of such an algebraic group U(V, hy). Thus the
orthogonal group is not a classical group, but the special orthogonal group is a classical

group.

2.1. Unitary groups with E/F quadratic. @~ We assume that E/F is quadratic and
e =1. If E/F is an extension of non-archimedean local fields, we call U(V, hy) an unramified

unitary group if E/F is unramified and a ramified unitary group if E/F is ramified.
Let mH denote the orthogonal sum of m copies of the hyperbolic plane H.

THEOREM 2.2 ([IMVWS&8T7, Chapter 1, §8]). Let (V,h) be an e-hermitian space. Then there
exists m € Z such that V is isometric to mH L V? with V° anisotropic.

The number of hyperbolic planes which appear in a decomposition of V' of the above form is
called the Witt index w(V) of V.

If E/F is an extension of finite fields then an anisotropic space, is zero or, has dimension one
and is isometric to F(a) with a € F*, see Example 2.1. Furthermore, all the spaces F(a)
are isometric. Hence, for all n € N, there is a single isomorphism class of unitary group of
dimension n.

If E/F is an extension of non-archimedean local fields then an anisotropic space has dimension
less than or equal to two. In dimension one the anisotropic spaces are of the form E(a) with
a € F* and E(a) is isometric to E(b), b € F*, if and only if a and b represent the same coset

in the quotient F*/Np,p(E™) which is of order two. There is a single isometry class of two
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dimensional anisotropic spaces. If n is odd, the unitary groups of the two different isometry
classes of hermitian space are isomorphic.

Let a(V) be the anisotropic dimension of V, i.e. the dimension of V. We denote the unitary
group U(V, hy) by

U(a(V) +w(V),w(V))(E/F).
If E/F is a finite field, as there is a single isomorphism class of unitary group of dimension

n, we will also use the notation U, (E/F).

EXAMPLE 2.3. Let V be a three dimensional E-vector space, and {e_1, eg, 1} be the standard
basis for V. Define hy : V xV — F

hy (v, w) = v_1w71 + voWp + V1W_T,

if v = (v_1,v0,v1) and w = (w_1,wp, wy) with respect to the standard basis. Then J is the
matrix with one’s on the anti-diagonal and zeroes elsewhere and

U(2,1)(E/F) = {g € GL3(E) : Jg' Jg = 1}.

2.2. Parabolic subgroups of G. Let (V,h) be an n-dimensional e-hermitian space. A
self dual flag in V' is a flag of subspaces of V

V=V,2V,p 2 -2V 22V 2V 22V, ={0}
such that, for all ¢ € {0,1,...,r},
Voi={veV:hy(v,w) =0, for all w e V;}.

The stabilisers of the self dual flags in U(V, hy) are the parabolic subgroups of U(V, hy). A
parabolic subgroup in a reductive group G has a Levi decomposition P = L x N where N
is the unipotent radical of P and L is reductive. We fix a maximal F-split torus Ty and
a minimal parabolic subgroup B in G with Levi decomposition B = T x Ny such that T
contains Ty. A parabolic subgroup of G containing B is called standard. The relative Weyl
group W of G is the quotient group Ng(Tp)/To.

EXAMPLE 2.4. In U(2,1)(E/F) there is one conjugacy class of proper self dual flags in V.
Choosing the standard basis {e_1, €, €1}, as in Example 2.3, then a representative is

V = (e—1,€0,€1) 2 (€0, €1) 2 (eo) 2 {0}.

This gives rise to the standard Borel subgroup

* x K
B=|0 « x|NG.
0 0 %
Letting
T = {diag(z,y,7 ') :x € EX, y € E'}
and

1
Ny = 0 x,2ye B y+y=ax
0

S = R
= 8

then B has Levi decomposition B = T x Ny. The maximal F-split torus Ty contained in 7' is

Ty = {diag(z, 1,27 ) 1z € F*}.
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The relative Weyl group of U(2,1)(E/F) is cyclic of order 2 and the (absolute) Weyl group
is isomorphic to the symmetric group Gs.

2.3. Parahoric subgroups of G. Let E/F be an extension of non-archimedean local
fields and let (V, h) be an n-dimensional e-hermitian space. The Lie algebra of U(V, h) is

g={X € Endg(V): X + X7 =0},
and we can decompose Endg(V) into a direct sum
Endg(V)=gog™,
where g7 = {X € Endg(V) : X — X7 = 0}.
An Og-lattice in V is a compact open Og-submodule of V. Equivalently, an Og-lattice in

V' is the Op-span of an E-basis of V. Let L be an Opg-lattice in V and let Lattp, V =
{Og-lattices in V'}. The lattice

L*={veV:h(v,L)C Py},
defined relative to h, is called the dual lattice of L. An Opg-order in a ring A is a subring of

A with unit which is also an Og-lattice in A.

An Og-lattice sequence is a function A : Z — Lattp, V which is decreasing and periodic, i.e.

(1) for alln € Z, A(n + 1) C A(n);
(2) there exists e(A) € N, called the period of A, such that, for all n € Z,

(wp)A(n) = A(n + e(A)).

An Og-lattice sequence is called an Opg-lattice chain if it is strictly decreasing. Let A be an
Op-lattice sequence. The dual Op-lattice sequence A? of A is the Op-lattice sequence defined
by

A¥(n) = (A(=n))F
for all n € Z. We call A self dual if there exists k € Z such that A(n) = Af(n + k) for all
n € Z. If A is self dual then we can always consider a translate Ax of A, i.e. kK € Z and Ay, is
defined by Ax(n) = A(n+ k) for all n € Z, such that either Ag(0) = Ai(O) or Ap(1) = AQ(O).

Let A be an Og-lattice sequence on V. For n € Z define
A, (A) = {x € Endg(V) : zA(m) C A(m + n), for all m € Z},
which is an Og-lattice in Endg(V). We let 2,(A)” =2A,(A) N g.

If A is self dual then the groups 2, (A) are stable under the anti-involution h induces on

Endg (V). Define compact open subgroups of G by
PA) =2%(A)* NG;
and
Pn(A)=00+2A,(A))NG, meN.
The pro-unipotent radical of P(A) is isomorphic to P1(A). The sequence (P, (A))men is a
fundamental system of neighbourhoods of the identity in G and forms a decreasing filtration

of P(A) by normal compact open subgroups. The quotient P(A)/P1(A) is a reductive group
over kr, but this may not be connected. We denote the connected component of P(A)/P;(A)
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by M(A) and denote the inverse image in P(A) of M(A) by P%(A) and call this a parahoric
subgroup of G.

In Appendix C' we describe a model for the building B(G) of G in terms of lattice functions.
The building B(G) of G can be used to study the geometry of the parahoric subgroups which
are related to the stabilisers of points in the building. We denote the parahoric subgroup of
G corresponding to z € B(G) by G, its pro-unipotent radical by G and the quotient G, /G
by M,. If the lattice sequence A corresponds to z € B(G) then PO(A) = G, P1(A) = G}
and M(A) = M.,.

LEMMA 2.5. Let A be a self dual Og-lattice sequence and let n,r € Z be such that r > n >
5 > 0. Then the map z + 1+ x induces an isomorphism

~

Q[;,A/Q[;,A Pn(A)/Pr(A)-

EXAMPLE 2.6. Let E/F be an unramified quadratic extension, V' a three dimensional E-
vector space and G = U(2,1)(E/F), as in Example 2.3. The parahoric subgroups of G will

appear often in this thesis and we fix our notation here.

We have three self dual lattice chains in V' up to conjugacy and three conjugacy classes of
parahoric subgroups, two of which are maximal. In all three cases P’(A) = P(A). For a
lattice chain A we let e(A) denote its period.

(1) Lattice chain Aq, e(A1) =1

A1(0) = O © Op @ Op;

Or O Og
(A1) =@y | Op Op Op|;
Or Op Og

M(A1) = U(2,1)(kg/kr).
(2) Lattice chain A9, e(Ag) =2
A2(0) = Og & O @ Pg;
As(1) = Op & P & P (= (A2(0)))
Op Op P!
Pe Pe Og
_ Pe Op Og
w[E Pp Pp Op| ifi=1(2);
P: Pr Pg
M(As) ~ U(L, 1) (ks /)  U(L) (ki ).

(3) The non-maximal case. Lattice chain As, e(A3) =3
A3(0) = Op @ O @ OF;
A3(1) = Op © O © Pg;
A3(2) = Op @ PE @ PE;
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Or Op Og
wi' | P O Og if i = 0(3);

Pe Pr Og
Pe Orp Og
W(A3) = wp® ' | Pr Pr O if i = 1(3);
P Pe Pg
Pe Pe Og
g Pe Pe Pg if i = 2(3);
77}29 Pe PE
M(A3) ~ {diag(z,y,T ') 1z € ki, y € k}

a maximal torus in U(2,1)(kg/kF).

We let © € B(G) be the point corresponding to Ay, y € B(G) be the point corresponding
to Ay and write 3 = P(A3). Let T° be the subgroup of T' generated by all of its compact
subgroups. The affine Weyl group Wog of U(2,1)(E/F) is the quotient group Ng(T)/T°. We

have a short exact sequence
1=T/T° - W =W — 1

hence W,g is generated by the cosets represented by the elements

0 01
wi= |0 1 0] and wy =
1 00 wgp 0
Furthermore, G = P(A1) = JUJwJ and Gy = P(Ag) = T U Jw,J.

3. REPRESENTATION THEORY OF p-ADIC GROUPS

Let (7, V) € Rr(G). We say that (m,V) is finitely generated if there exists a finite subset
Y ={v1,v2,...,v,} of V such that V is generated by ¥ as an RG-module, i.e.

V= i RG’Ui.
i=1

If (w,V) is of finitely generated then there exists an irreducible quotient of (m, V).

Let 4 be a fixed left R-Haar measure on G. Let Hr(G) be the global Hecke algebra of G
formed by the R-module of locally constant compactly supported functions f : G — R with
the convolution product defined by, if f1, fo € Hr(G) and h € G,

fi* fa(h /f1 ) f2(g du(g).

Let (7, V) € Rr(G), we can define a left H r(G)-module structure on V by, if f € Hr(G) and

veV, f-v=mn(f)v where
= [ r@r@ints).

A left Hr(G)-module M is called nondegenerate if M = Hr(G)M. Let Hr(G)-mod denote
the category of nondegenerate left Hr(G)-modules. The categories Rr(G) and Hr(G)-mod
are equivalent, [Vig96, Chapter 1, §4.4].
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3.1. Smoothness and the smooth dual. Let R}’ (G) denote the category of all, not
necessarily smooth, R-representations of G. Define a functor

(-)*:RE(G) = Rr(G)
(m,V) = (7%, V)
F: VoW Flpe: VX - W™
where
YV = {v € V: stabg(v) is an open subgroup of G}
and 7 is the restriction of 7 to the subspace V> of V. We say (7°°, V*°) is the smooth part

of (7, V). This functor is left exact, but not necessarily right exact [Vig96, Chapter 1, §4.3].

Let (7, V) be a smooth R-representation of G. We can define an R-representation 7* of G' on
V* = Hompg(V, R) by

(" (g)v*,v) = (v*,m(g™ v);
where (, ) is the natural pairing on V* x V given by evaluation. The contragredient repre-
sentation (7, V) of (m, V) is the smooth part of the R-representation (7*, V*).

THEOREM 3.1 ([Vig96, Chapter 1, §4.18]). Suppose R is a field. The functor Rr(G) —
Rgr(G) given by 7 — T is contravariant and exact.

3.2. Inflation and its adjoints. Let G be a reductive p-adic group and H a closed
subgroup of G. If H is normal in G then we have the inflation functor

infly : SRR(G/H) — ERR(G),
given by composing representations with the natural projection G — G/H.

Let (7,V) be a smooth R-representation of a connected reductive p-adic group G, and let H
be a closed subgroup of G. The H-invariants V¥ of (m,V) is the largest subrepresentation
on which H acts trivially, i.e.

VE = {veV:n(h)yv=wvforall he H}.
Suppose H is normal in G, let g € G and v € V#\{0}. For all h € H,
w(h)(m(g)v) = w(hg)v = 7(gg~ " hg)v = 7(g)(w (g~ hg)v) = m(g)v

since g~ 'hg € H by normality. Hence there is an action of G on V¥ and thus an action of
G/H on VH. In this case the H-invariants is the right adjoint of the inflation functor, i.e.
for smooth representations m of G, and o of G/H we have

Homg (infly o, 7) ~ Homg, g (o, ).

We can identify VH with Homp (1, 7) via

~

Hompy(ly,m) —— piH
® — o(1)
p:R—=V



14 1. REPRESENTATIONS OF p-ADIC GROUPS

The H-coinvariants Vi of (w,V) is the largest quotient of (7,)V) on which H acts trivially.
We let V(H) = (w(h)v —v:v €V, h € H); then

Vi = V/V(H).

If H is normal in G, there is an action of G on Vg by normality and thus an action of G/H
on Vy. In this case the H-coinvariants is the left adjoint of the inflation functor, i.e. for
smooth representations 7 of G, and o of G/H we have

Homg (7, inflg o) ~ Homg (7w, 0).

LeEMMA 3.2 ([Vig96, Chapter 1, §4.6 and §4.9]). Let K be a compact open subgroup of G
with pro-order invertible in R. Then the functors V — VX and V — Vi are exact and

VVEgV(K).

If K is a compact open subgroup with pro-order invertible in R then, by Lemma 3.2, VX ~

Vi ; the invariants and coinvariants are isomorphic.

We also use invy to denote the H-invariants and coinvy to denote the H-coinvariants.

3.3. Admissibility and Schur’s lemma. Let (7,)) be a smooth R-representation of a
connected reductive p-adic group G. We call (7,)) admissible if, for all open subgroups H

of G, the subspace of H-invariants V¥ of V is of finite dimension.

THEOREM 3.3 ([Vig96, Chapter 1 §4.18, Chapter 2, §2.8]). Let (7, V) € Rr(G), 7 is admis-
sible if and only if 7 ~ 7. Furthermore, suppose R is algebraically closed and = is irreducible,
then 7 is admissible.

THEOREM 3.4 (Schur’s Lemma). Suppose R is an algebraically closed field and let (7, V) be

an admissible representation of G then

Homg(V,V) ~ R.

If Homg(V,V) ~ R then the centre Z of G must act as a character via 7, i.e. there exists
a character w; : Z — R* such that, for all z € Z, 7(z) = wx(2). We call the character wr,

when it exists, the central character of .

3.4. Restriction and its adjoints. Let H be a closed subgroup of G. Then we have a
restriction functor

Res$ : Rp(G) — Rr(H),
given by restriction of representations and morphisms to H. The restriction functor is clearly
exact and transitive, i.e. if Hy and Hs are a closed subgroups of G such that H; C Hy C G

then we have an isomorphism of functors

Resg1 ~ Resgf o Resﬁ,2 .

The restriction functor Resg has a right adjoint, the Induction functor Indg, [Vig96, Chapter
1, 85.7]. There is a useful model for induction in terms of functions on G. Let (o, W) €
Rp(H). The induced representation (Ind$ o, Ind% (W)) is the space of all functions f : G —
W which satisfy
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(1) there exists a compact open subgroup K of G such that f(gk) = f(g) for all g € G,
ke K,
(2) f(hg) =0a(h)f(g), forallh e H, g € G,

with the action of G given by the right regular action, i.e. for all f € Indg W, xz,g € G,
Ind (g)f () = f(xg).

When H is open in G the restriction functor Resg has a left adjoint [Vig96, Chapter 1,
§5.7], compact induction ind%'}. In terms of our model for induction, the compactly-induced
representation (indg o, indg W), is the subspace of Indgo of all functions with compact
support modulo H, again with the right regular action of G. This also allows us to define
compact induction when H is not open in G; however it may not be adjoint to restriction.
Clearly, when G/H is compact the induction functors coincide.

The modulus character dp : P — R* is defined by

5p(g) = lgKg~ " : K]

where K is any compact open subgroup of P. This is a well defined character, independent
of the choice of K, which is trivial on all compact subgroups of P, [Vig96, Chapter 2, 2.7].

THEOREM 3.5.

(1) Exactness, [Vig96, Chapter 1, §5.10]: Induction and compact induction are exact
functors.

(2) Transitivity, [Vig96, Chapter 1, §5.3]: Induction and compact induction are transitive,
i.e. if H; and Hy are a closed subgroups of G such that H; C Ho C G then we have

isomorphisms of functors
s G s 1G i aG G G G
ind7, oindp, ~indp,, Indf, oIndy, ~ Indy, .

(3) Restriction-induction formula, [Vig96, Chapter 1, §5.5]: Let H and K be closed
subgroups of G. Let o0 € Rr(H). Then we have an isomorphism

Res% Ind% o ~ H Ind% o5 Resill o5 90.
H\G/K
Furthermore, suppose that the double cosets HgK, g € G, are open in G. Then we

have an isomorphism
Res% ind$ o ~ @ ind% o Resyil o 0.
H\G/K
(4) Contragredient of compact induction, [Vig96, Chapter 1, §5.11]: Let H be a
closed subgroup of G and let 0 € Rg(H) then

(ind% o)~ = Ind¥ 65 0na.

3.5. Tensor product. In this section by ® we mean ®g. If (71, V1), (72, Va) € Rr(G) we
define the internal tensor product of (71, V1) and (w2, V2) to be (71 ® m2, V1 ® V) € Ri(G)
where m ® g is defined by its action on the elements v; ® vo € Vi ® Vo, which generate
V1 ® Vs, by

T @ ma(g)(v1 ® v2) = T1(g)v1 ® T2(g)v2,
for all g € G.
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If (71, V1) € Rr(G) and (73, Vo) € Ri(H) we define the external tensor product of (71, V1)
and (g, V2) to be (m ® m2, V1 ® Vo) € Rr(G x H) where m; ® 79 is defined by its action on
the elements v1 ® v2 € V1 ® Vo by

T ® m2(g, h)(v1 @ v2) = m1(g)v1 @ T2 (h)v2,
for all (g,h) € G x H.

3.6. Parabolic induction. Let P = L x N be a parabolic subgroup of G and o € Rg(L).
We define a representation i% (o) of G by inflating o to P and then inducing to G, this
composite of functors is called parabolic induction:

. infl Indg
iG  Rp(L) 22 Re(P) —L Re(G).

Both inflation and induction have left adjoints and by composition we obtain a left adjoint

rg of parabolic induction ig called parabolic restriction or the Jacquet functor. Thus the

Jacquet functor is composed of first restricting to P, then taking the N-coinvariants:

Res§ inv
1% Rp(G) —L Rp(P) 2 Ry (L).
THEOREM 3.6 ([Vig96, Chapter 2, §2.1 and §5.13]). Parabolic induction and the Jacquet
functor are exact, transitive, preserve admissibility and take finite length (resp. finitely

generated) representations to finite length (resp. finitely generated) representations.

We fix a choice of square root of ¢ in R. It can be useful to normalise parabolic induction by
1
twisting by the character 67 and considering the composite:

G ox ®5é infly Ind§
ZP(SIQD : D%R(L) — D%R(L) — %R(P) — ?}%R(G)

1
which has left adjoint the normalised Jacquet functor § P"’rg given by:

652
Rr(L) —— Rp(L).

G
Res?

_1
(5P21”]C3; : ERR(G) E—d SRR(P)

coinv

3.7. Cuspidal and supercuspidal representations.

DEFINITION 3.7.

(1) An irreducible R-representation is called cuspidal if it is not a subrepresentation of any
representation parabolically induced from an irreducible R-representation of the Levi
factor of a proper standard parabolic subgroup of G.

(2) An irreducible R-representation is called supercuspidal if it is not a subquotient of any
representation parabolically induced from an irreducible R-representation of the Levi
factor of a proper standard parabolic subgroup of G.

For ¢-adic or complex representations, a representation is supercuspidal if and only if it is
cuspidal. However, for /-modular representations, the two properties can be different.

LEMMA 3.8. Let 7 be an irreducible R-representation of G. The following are equivalent:

(1) = is cuspidal.
(2) For all proper standard parabolic subgroups P of G the Jacquet module 7§ is trivial.
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(3) m is not a subrepresentation of a representation parabolically induced from any R-
representation of the Levi factor of a proper standard parabolic subgroup of G.

PROOF: (2) = (3): Let P = L x N be a standard parabolic subgroup of G and assume there
exists o € Rpr(G) such that 7 is a subrepresentation of iga. Then by reciprocity

Homp, (r8m, o) ~ Homg(m, i%0) # {0}
and we have a nontrivial Jacquet module.

(1) = (2): Suppose there exists a standard parabolic subgroup P = L x N of G such that
rG7 is not trivial. Let o be an irreducible quotient of r&m which exists because 7§ is of

finite length by Theorem 3.6. By reciprocity
Homg (7, i%0) ~ Homp (rGm, o) # {0}

and 7 is a subrepresentation of i%o. The implication (3) = (1) is clear. O

EXAMPLE 3.9. Let G = U(2,1)(E/F). Then all Levi factors of the proper parabolic sub-
groups of G are conjugate to T. There are two proper parabolic subgroups of G which contain

T. The subgroup of upper triangular matrices B and its opposite B. As B = 1B, we have

igx ~ z‘% Yy,
Hence we can remove the requirement that the parabolic subgroups considered are standard

in the definitions of cuspidal and supercuspidal, i.e.

(1) Anirreducible R-representation of G is cuspidal if and only if it is not a subrepresentation
of any representation parabolically induced from an irreducible R-representation of the
Levi factor of a proper parabolic subgroup of G.

(2) An irreducible R-representation of G is called supercuspidal if and only if it is not a sub-
quotient of any representation parabolically induced from an irreducible R-representation
of the Levi factor of a proper parabolic subgroup of G.

Let (7,V) € Rr(G). The matrix coefficient of 7 associated to v € V and ¥ € V is the function
Yp5:G— R
poi s g = (0,m(9)v),

Let Z denote the centre of G. We say that 7 is Z-compact if all matrix coefficients of 7 are

compactly supported modulo Z.

THEOREM 3.10 ([Vig96, Chapter 2, §2.7]). Let m be an irreducible R-representation of G
then 7 is cuspidal if and only if 7 is Z-compact.

LEMMA 3.11. An irreducible R-representation is cuspidal if and only if it is not a quotient of
a representation parabolically induced from an irreducible representation of the Levi factor

of a proper standard parabolic subgroup of G.

PROOF: An irreducible representation 7 is cuspidal if and only if its contragredient is cuspidal
by Theorems 3.10 and 3.3. If P = L x N is a proper standard parabolic subgroup of G
then © € Rg(L) is a quotient of iga if and only if the contragredient representation 7 is a
subrepresentation of igd po, by Theorems 3.5 and 3.1. O
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For standard Levi subgroups M;, i = 1,2, of G we let Wy, ¢ = 1,2, denote the Weyl group
of Mi and let W(Ml,MQ) = {w S WG : le = MQ}

LeEMMA 3.12 ([Vig96, Chapter 2, §2.19]). Suppose R is an algebraically closed field. Let
P;, i = 1,2, be standard parabolic subgroups of G with Levi decompositions P; = M; X N,
i =1,2. Let o1 be an irreducible cuspidal representation of Mj.

_1 1
(1) If My and My are not conjugate in G' then 0p° r% (i% op, (01)> does not have any

cuspidal subrepresentations or quotients.
(2) If M7 and My are conjugate in G then the irreducible subquotients of a composition

1 1
series of dp’ r% <ig1 op, (01)) are the conjugates Yoy of o1 with w € W(My, Ma) /Wy, .

THEOREM 3.13 ([Vig96, Chapter 2, §2.4 and §2.20]). Suppose R is an algebraically closed
field. Let (m, V) be an irreducible R-representation of G. There exist a standard Levi
subgroup M of G and an irreducible cuspidal representation 7 of M such that, for the standard
parabolic subgroup P of G with Levi decomposition P = M x N, (m,V) is a subrepresentation
of the parabolically induced representation igT. Furthermore the pair (M, 7) is unique up to

conjugacy.

PROOF: Put a partial order on the finite set of standard parabolic subgroups P(G) of G by
inclusion. For an irreducible representation 7 of G, by transitivity of the Jacquet module,
there exists an element P € P(G) such that r$(m) # 0, but ’I“g(ﬂ') = 0 for all @ € P(G)
properly contained in P. By transitivity of the Jacquet module, T%(ﬂ') is a cuspidal repre-
sentation of the Levi factor of P which is of finite length and so has an irreducible quotient
7. By reciprocity, « is a subrepresentation of igT. The pair (M, ) is unique up to conjugacy
by Lemma 3.12. O

Suppose 7 is an irreducible R-representation of G. Let cusp(r) be the set of pairs (M, 7) such
that M is a standard Levi subgroup of G, 7 is an irreducible cuspidal R-representation of M
and 7 is a subrepresentation of i%(7) where P is the standard parabolic of G with Levi factor
M. We call the set cusp(w) the cuspidal support of 7. When R is an algebraically closed
field, by Theorem 3.13, cusp(n) is nonempty and consists of a single G-conjugacy class: we

say that the cuspidal support exists and is unique up to conjugacy.

Let scusp(m) be the set of pairs (M, 7) such that M is a standard Levi subgroup of G, 7 is an
irreducible supercuspidal R-representation of M and 7 is a subquotient of ig(r) where P is
the standard parabolic of G with Levi factor M. We call the set scusp () the supercuspidal
support of 7. The next lemma shows that scusp(7) exists.

LeMMA 3.14 ([Vig96, Chapter 2, §2.6]). Let 7 be an irreducible R-representation of G. Then
scusp() is non-empty.

Proor: Either 7 is supercuspidal and scusp(7) = 7 or the set

Y ={(M,0): P =M x N standard, o € Irrg(M), 7 € [zg(o)]}

is nonempty. Choose an element (M,o) € ¥ with M minimal under the partial order of
inclusion of standard Levi subgroups of G. Suppose o is not supercuspidal then there exists
an irreducible representation of a standard Levi subgroup M’ of M such that o € [i%a’ ] for
some standard parabolic subgroup P’ = M’ x N’ and some ¢’ € Irrg(M’). By transitivity of
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induction,

G (0") = Gy (o)

and, by exactness of induction, 7 is a subquotient of ig, yo'. Hence M was not minimal. [

In general it is not known if scusp(w) is always a single G-conjugacy class, i.e. whether
the supercuspidal support of an f-modular representation is unique up to conjugacy. It is
unique up to conjugacy in the cases of GL,(F) and GL,,(D), [Vig96] and [MS11b], and it
is conjectured to be unique up to conjugacy in general, [Vig96, Chapter 2, §2.6].

EXAMPLE 3.15. Let G = GLo(F). Let T be the diagonal torus in G, and B the upper trian-
gular Borel subgroup containing T. Consider the parabolically induced representation igl.
The space of constant functions with trivial G action form an irreducible subrepresentation,
equivalent to (1g, R) and the quotient representation of igl by this is called the Steinberg
representation. In [Vig89] it is shown that the Steinberg is reducible if and only if £ | ¢ + 1,
and in this case has a unique subrepresentation (¢, W) and a unique quotient (v, R) where
v(g) = (—1)r(det9) By Lemma 3.12, 7§(i%1) has length 2. Thus, by exactness of the

Jacquet functor, o is cuspidal non-supercuspidal.

4. INTEGRAL REPRESENTATIONS AND DECOMPOSITION MODULO-/

DEFINITION 4.1. A finite length admissible Q,-representation (7,V) of G is called integral
if there exists a free G-stable Zg-submodule L of V which contains a Q-basis of V. The
Zg-module L is called a lattice, or integral structure, in V.

LEMMA 4.2 ([Vig96, Chapter 1, §9.3]). A subquotient of an integral Q,-representation is
integral.

Given a finite length integral f-adic representation (w,)), with lattice L, we can define a

finite length ¢-modular representation
L/AZL ~ L ®Z[ FZ,

called the reduction modulo ¢ of L. Note that this depends on the choice of L. However by
the Brauer—Nesbitt principle [Vig04, Theorem 1], its semisimplification in the Grothendieck
group of finite length ¢-modular representations is independent of the lattice chosen and we
define the decomposition modulo-£ of (m,V) by

de(m) = [L ®Z/z Fg} .
The decomposition modulo-¢ map extends by linearity to a group homomorphism between

Grothendieck groups.

THEOREM 4.3 ([Vig96, Chapter 2, §4.12 and §4.13]). Let m € Rg (G) be an irreducible

representation Then the following are equivalent:

(1) = is integral;
(2) the cuspidal support of 7 is integral;
(3) the central character of the cuspidal support of 7 is integral.
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5. CUSPIDAL REPRESENTATIONS AND DECOMPOSITION MODULO-/

We examine the relationship between cuspidality and decomposition modulo £.

THEOREM 5.1 ([Vig96, Chapter 1, §9.3]). Let H be a closed subgroup of G. Let o € Ry, (H)
be admissible and integral with lattice L. Then ind$ L is a lattice in ind% . Furthermore,
if Ind%, o is admissible then Ind¥ L is a lattice in Ind% o.

COROLLARY 5.2. Let H be a closed subgroup of G and o € %@Z(H) be admissible, integral
and of finite length. Suppose ind% o is of finite length then dy(ind% o) = [ind% dy(o)).
Suppose Ind$ o is admissible and of finite length then dy(Ind% o) = [Ind$% dy(o)].

PrOOF: The following proof was suggested by Alberto Minguez. Let L be a lattice in 0. We
have a short exact sequence of ZyH-modules

0— AL —L—L/AL— 0.
Induction, Ind$ : Rz, (H) — Rz, (G), is exact thus
0 — Ind%(AyL) — Ind% (L) — Ind% (L/A.L) — 0
is an exact sequence of ZyG-modules. Furthermore, Indg(AgL) ~ Ay Indg(L) hence
md$(L/A¢L) ~ Ind%(L)/A, Ind% (L).

This depends on the choice of lattice L. However Ind% L is a lattice in Ind% o, by The-
orem 5.1, hence the semisimplification of Ind$%(L)/A,Ind% (L) is independent of L by the
Brauer—Nesbitt principle for integral finite length representations of G. Furthermore L/A,L
is canonically an f-modular representation of G and the functor Ind : Ry, (H) = R, (G) is

naturally isomorphic to the functor Ind% : iﬁ/z\f(H ) — iﬁ%’j(G) where 9%%5 (H) consists of all
representations in W € ERZ(H) which satisfy Aw = 0 for all w € W, A € Ay. Thus

d¢ (Ind$} o) ~ [Ind§} dy(o)].
The same argument works for compact induction. O

It is more difficult to show that the Jacquet functor commutes with decomposition modulo-£.
The difficulty is in showing that if L is a lattice in an integral f-adic representation = of G

then r%(L) is a lattice in 7§ (7). For classical groups this is proved in [Dat05].

LeEMMA 5.3 ([Dat05, Proposition 1.4]). Let G be a classical group. Let P be a proper
parabolic subgroup of G and 7 an integral f-adic representation of G. Then dy(r§ (7)) =

[r%(de(m))]-

COROLLARY 5.4. Let G be a classical group. Let m € XR@(G) be an integral irreducible
representation such that

de(m) =T1 OT2® -+ O Tp
with 7; € R, (G) irreducible, i € {1,2,...,n}. Then 7 is cuspidal if and only if, for all
i€ {1,2,...,n}, the representation 7; is cuspidal.

PRrROOF: The f-adic representation 7 is cuspidal if and only if ’I“g(ﬂ') = 0 for all proper
parabolic subgroups P of G. By Lemma 5.3, dy(r§(m)) = [r$(de(r))] = 0 and the Jacquet
functor is exact. 0
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REMARK. Corollary 5.4 does not give any indication on the reducibility of the decomposition
modulo-£ of an irreducible cuspidal representation. Indeed we shall see that the decomposition
modulo-¢ of an integral irreducible f-adic cuspidal can be reducible.

Supercuspidal ~-modular representations are more elusive and difficult to describe via decom-
position modulo-¢ arguments. By Corollary 5.2, if 7 is a supercuspidal ¢-modular represen-
tation of GG it cannot appear in dg(iga) for any proper parabolic P of G and any irreducible

integral ¢-adic representation o of the Levi factor of P.

6. CONSTRUCTING CUSPIDALS

The following theorem suggests an effective way of constructing cuspidal representations of

G.

THEOREM 6.1 ([Car84, §1]). Let K be a compact modulo centre subgroup of G, let (o, W)
be an irreducible representation of K and let m = indﬁ o. If mis irreducible then it is cuspidal.

PRrROOF: Let V be the space of m. By admissibility the contragredient 7 of 7 is irreducible.
Fix vg € V and vg € V. By irreducibility, if v € V and v € V then there exist g;, g; € G such
that v =", 7m(gi)vo and ¥ = Y1 | 77 (gs)vo. Then

supp(pvs) C | i supp(pun)9;

i
and thus ¢, 3 has compact support modulo Z if ¢, 3 has compact support modulo Z.
Futhermore, by the same argument reversing the roles of v and vy, ¢y, 5, has compact support
modulo Z if ¢, 7 has compact support modulo Z. Therefore we only need to check that one
matrix coefficient of 7 has compact support modulo Z. Let w € W, w € W and let fwem
be defined by

fulg) = {71 TIER

0 otherwise.

Let f@ € 7 be defined by
fa(f) = (@, (1))
for all f € w. Then
T YO
e 0 otherwise,

is a matrix coefficient of m which is compactly supported modulo Z. Hence 7 is cuspidal by
Theorem 3.10. U

Our first candidate pairs (K, (o, W)) are the parahoric subgroups K of G and the irreducible
cuspidal representations o of K/K' which we inflate to K.






CHAPTER 2

(-ADIC REPRESENTATIONS OF FINITE REDUCTIVE GROUPS

In this chapter we classify the ¢-adic representations of some finite reductive groups which
appear as quotients of certain compact open subgroups of the p-adic groups we study. In
particular we are interested in the finite reductive groups related to the parahoric subgroups
of the unramified unitary group in three variables.

In this chapter and the next, to simplify notation, we let F' denote a finite field with ¢
elements and F a quadratic extension of F'.

23
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1. FINITE GROUPS OF LIE TYPE

Let G be a connected reductive linear algebraic group over F, with a Frobenius morphism
Fr: G — G; see [Sri79, Chapter 2]. The subgroup of fixed points G** of G under Fr is called
a finite group of Lie type.

ExampLE 1.1. Let G = GL, (ﬁp). We can define two Frobenius morphisms on G:

(1) Let Fr denote the standard Frobenius map defined by Fr : (255) — (z7;), ¢ = p", then
the fixed points of G under Fr form a finite general linear group:

G = GL,(F).

(2) Let Fr denote the twisted Frobenius map defined by Fr : (xi5) = (m?z—)_l, then the fixed

points of G under Fr form a finite unitary group:

G = U, (E/F).

We will denote a finite group of Lie type also by G when it is not easily confused with the
underlying algebraic group.

LeMMA 1.2 ([Sri79, Corollary 2.8]). Let (G, Fr) be a pair consisting of a connected reductive
group over Fp and a Frobenius morphism Fr : G — G. There exists a pair (Tp, By), unique
up to G -conjugacy, such that:

(1) By is a Fr-stable Borel subgroup;
(2) Ty is a Fr-stable maximal torus contained in By.

We fix a choice of (Tp, By). The Fr-stable proper parabolic subgroups P D By are called the
standard parabolic subgroups. For each standard parabolic subgroup P we have a standard
Levi decomposition

P=LxN,
where L is Fr-stable, contains Tj and is called the standard Levi factor; N is the unipotent
radical of P.

Let W(Ty) = Ng(To)/To be the absolute Weyl group of G. The Frobenius morphism Fr acts
on W (1) because Ty is Fr-stable. Two elements wi,wy € W(Tp) are called Fr-conjugate if

wwi (Fr w) " = ws

for some w € W(Tp).

LEMMA 1.3 ([Sri79, Corollary 2.8]). The G*-conjugacy classes of maximal tori in G* are
in bijection with Fr-conjugacy classes of W (Tp).

It follows from Lemma 1.3 that one can obtain the maximal tori in G from Tj by twisting
by elements representing the Fr-conjugacy classes of W (Tp).

REMARK. For convenience when GF = U,(E/F) we will always consider a conjugate of
G™, by a representative of the element in the Weyl group of maximal length. This has the
advantage of making the standard parabolic subgroups upper triangular.
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2. STRUCTURE OF FINITE UNITARY GROUPS

Let G = U,(E/F) denote the finite unitary group in n-variables
Un(E/F) = {g € GLn(E) : wgwgt — 1}’

where w is the n by n matrix with ones on the antidiagonal and zeroes elsewhere and
denotes the involution induced on g by the Frobenius morphism of Gal(E/F). We have a

natural surjective homomorphism of groups
det : U,(E/F) — Uy (E/F).

The normal subgroup of G defined by the kernel of this homomorphism is called the special
unitary group and denoted SU,,(E/F). The order of the special unitary groups in n variables
is

|SUL(E/F)| = |Un(E/F)|/(q+1).

The order of the finite unitary group in n variables is
|Un(B/F)| = (¢"+¢" )" =" ?) - (¢" = (=1)").

The special unitary group in two variables SUs(E/F) is conjugate to SLo(F') in GLao(E).
Assuming ¢ is odd, and choosing an element /e € E\F we have

SU,(E/F) = {( \/‘f_l b*f) ta,b,c,d€F, ad—bc:l}
C\/E

1 0 1 0
(0 L)t 8)

The centre Zgy, , of SU,(E/F) is equal to the centre Zy, , of U,(£/F) intersected with
SU,(E/F). And we have

Zu,,={ANd:xe B, X" =1};  Zsy,,={Ad: A€ E, Mt =1 \"=1}.
EXAMPLE 2.1.

(1) When n = 2 there are two cases:
(a) If q is even then Zgsy, , = {Id}.
(b) If q is odd then Zsy, , = {£Id}, which is cyclic of order 2.
(2) When n = 3 there are two cases:
(a) If ¢4+ 1 # 0 mod 3 then Zsy,, = {Id}.
(b) If g+ 1 =0mod 3 then Zsy,, = {)\Id A3 = 1}, which is cyclic of order 3.

We let d;, 4, or more simply d, denote the order of the cyclic group Zsy, ,- When the centre
Zgu,,, is trivial we have a direct product decomposition:

U,(E/F)~SU,(E/F) x 20, .-
3. PARABOLIC INDUCTION

Let G be a reductive group over Fp with a Frobenius morphism Fr: G — G. Let P = Lx N be
a standard parabolic subgroup of G' and ¢ an irreducible representation of L. Let infly (i)
be the representation of P¥* obtained by inflating ¢ to P, defining infly () to be trivial on
NTr. Parabolic induction, or Harish-Chandra induction, iggp is the composite of this inflation
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followed by induction from P™ to G™:

Fr
G
IndpFr

. infl

% Rp(LF) =25 Rp(PM) —25 Rp(G™).
Analogously to the p-adic case, parabolic induction has a natural left adjoint, composed of
first restricting to P then taking the N'"-coinvariants, which we denote by rg and call the
Jacquet functor or parabolic restriction:

Fr
G
Res Fr

S Rp(GFT) — 255 Rp(PFY) SN, oy (LFY).

An irreducible representation p of G is called cuspidal if p is not a subrepresentation of
ig(go)7 for all irreducible representations ¢ of the Frobenius fixed points of the Levi factors
of all standard proper Fr-stable parabolic subgroups of G. If p is not a subquotient of
ig(go), for all irreducible representations ¢ of the Frobenius fixed points of the Levi factors
of all standard proper Fr-stable parabolic subgroups of G then p is called supercuspidal.
Analogously to the p-adic setting the cuspidal support of an irreducible representation exists
and is unique up to conjugacy, see Chapter 1 Lemma 3.13. This reduces the classification of

irreducible representations of G to completing two steps:

(1) Constructing all cuspidal representations of every Levi factor of G*.
(2) The decomposition of ig(p) with p a cuspidal representation of L.

4. TWISTED INDUCTION

Let L be a Fr-stable Levi subgroup of G. Then L is contained in a parabolic subgroup of G
with Levi decomposition P = L x N: however P is not necessarily Fr-stable. In [DL76] a

map, called Deligne-Lusztig induction,
RS p: Gy (L) — G (G

is defined, which behaves as a “twisted” generalisation of parabolic induction seemingly
inducing through a parabolic subgroup which is invisible in G¥*. The definition is complicated:
see [Sri79, Chapter 6] and [CE04, Chapter 7]. The functor Rgc p has an adjoint, Deligne-
Lusztig restriction, denoted *R%C p- We write R%‘Y’ p for the corresponding map between
K-class functions, defined via the Z-bases Irr(L") and Irr(G™),

RY p: CF(L*™,K) — CF(G™, K).

Similarly, we define
*Rf p: CF(G™, K) — CF(L™, K).

When T is a torus, [Sri79, Proposition 6.18], R%CP is independent of the choice of Borel
subgroup B containing 7. Hence, when T is a torus, we have a well defined map R(T; :
Gy (TH) — By (GY). Furthermore, for any irreducible representation o of G, there exist
a Fr-stable torus 7" and an irreducible representation 6 of T such that o is a constituent of
R$0, [Sri79, Theorem 6.23]. The constituents of R$1, as T ranges over Fr-stable maximal
tori in G, are called the unipotent representations of G .

Let T be a torus, then T' = TyT, where T, is the maximal F-split part of T. Let o(T) =
dim(Ty), er = (=1)°T) and eg = (—1)70). For a finite set A we can write |A| = p°b with
(b,p) =1 and we set |A|, = b.
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(1) (Dimension Formula, [Sri79, Theorem 6.21]): Let 6 be an irreducible K-representation
of a maximal torus 7" in G¥*. Then

|GFr|p/

A

dim Rg@ =eqeT

Let Ty and Ty be Fr-stable maximal tori in G. Let N(T1,T3) = {g € G : gThg~! = Ty}
and W(T1,Te) = {¢gT1 : g € N(T1,T>)} then Fr acts on W (T, T) because T} and Tb are
Fr-stable. Furthermore, [Sri79, Page 79], W (T1, o)™ ~ N(Ty, T»)¥ /T}".

(2) (Weak orthogonality, [Sri79, Proposition 6.14]): Let 6;, i = 1,2, be f-adic characters of
TZH; then
(RS, (01), RS, (02)) = [{w € W (T, T2)™ : “0y = 61}
where Y0y (z) = Oy(grg™!) for w = gTj.

Let T be a Fr-stable maximal torus in G. A character y of T is said to be in general position
if the orbit under the Weyl group W (T) of x is maximal, i.e. of order of W (7).

(3) (General position implies irreducible, [Sri79, Theorem 6.17]): If § is in general position
then either Rg 0 or —Rg@ is an irreducible representation of GI.

The representations in general position are the irreducible representations equal to Rgﬂ or
—R$0 which are induced from characters in general position.

(4) (Transitivity, [Sri79, Proposition 8.6]): Suppose T is a Fr-stable maximal torus con-
tained in a Fr-stable Levi subgroup L of G, then R(L;C PR% = Rg.

(5) (Generalisation of parabolic induction, [Sri79, Theorem 6.24]): Suppose T is contained
in an Fr-stable Levi subgroup L which is contained in an Fr-stable parabolic subgroup
P; then

R$0 =i (RL).

(6) (Compatibility with characters and the determinant, [CE04, §8.20].) Let G = GL,(F,),
Fr a Frobenius morphism of G, and T a Fr-stable maximal torus in G. Let x be a
character of G that factors through the determinant map; then

RF(8) ® x = RE(0® (X |zw)).

A torus T in G is called minisotropic if it is not contained in any proper Fr-stable parabolic
subgroup of G.

(8) (Supercuspidals in general position): If T is minisotropic and € is in general position
then either Rg 0 or —RgG is an irreducible supercuspidal representation.

By (5) to determine the other supercuspidals of G it remains to decompose Rg 0 when T is
minisotropic and 6 is not in general position. In these cases the irreducible constituents may
or may not be supercuspidal.

5. THE {-ADIC REPRESENTATIONS OF GLgy(F)

In this section we realize the irreducible representations of GLa(F) as factors of induced
representations from maximal tori in GLg(F'). Similar computations are made for GLy(F)
and SLo(F) in [DM91, §15.9].
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Let G = GLy(F). There are two maximal tori in G up to G™-conjugacy. Let T§* be the
diagonal torus in GT*

Ty" = {diag(z,y) : 7,y € F*}.
The torus T¢* represents the G™*-conjugacy class of maximal Fr-split tori in G**. Choose a
representative 71" of the G**-conjugacy class of non Fr-split maximal tori in G**. The torus
TF is conjugate in GL2(E) to

{diag(z,2?) : 2 € EX}.

5.1. Parabolic induction from 73". Let 6 be a character of T¢*. Define characters x;,
i =1,2 of F* by

xi(x) = 0(diag(z,1)), xo(z) = 0(diag(1,z)).
We identify 8 with x; ® x2. The character 6 is in general position if and only if x; # x2. In

this case the induced representation R% 0= igoé’ is irreducible. By the dimension formula
dim(RZ,0) = (¢ + 1).
If 0 is not in general position, by weak orthogonality,
(R%.0,R%,0) = 2.

Suppose X = x1 = X2 then 6 extends to the character yodet of G™. Hence R%O = (igo(l))(xo
det) which is of dimension ¢+ 1 with a one dimensional subrepresentation 1g(x) = 1g(xodet)

and a ¢-dimensional quotient Stg(x) = Sta(x o det).

5.2. Deligne-Lusztig induction from TlFr. Let g € GLo(E) such that
(1) = {diag(z,2%) 1z € E*}.
Define a character Y of E* by
R(a) = 09(diag(z, 2%)).
We identify the character 6§ with x. By the dimension formula
dim(RG,0) = —(q— 1).

The character 6 is in general position if and only if 9~ # 1. In this case, fR%O is an

irreducible supercuspidal representation of G**. We let

G
o1 ,0 = —RTlH.

By counting we find that we have found all irreducible representations of G. Thus the
representations R%H, where 6 is a character not in general position of T}, must already
occur in our list. By weak orthogonality and the dimension formula for Deligne-Lusztig
representations we have

G 1 _
The character 6 of TlF ' is not in general position if and only if Y factors through the norm
map &;11 : @ — 277! and identifies with a character x of F*

X =Xx0°&+1-
Then

R%H = R%l(x o det)
= la(x) — Sta(x)-
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Deligne-Lusztig Decomposition Parameters Degree  Number

} . . - Fr
Representation in 6t@e (G )

x a character of F'*
la(x) + Sta 1, 2(g—1
RS0 (x) x) b=y q (¢—1)

X1, X2 characters of F'*

2
-3
S () X1 7# X2 041 q q
0 =x1® X2 2

i, (0) = i%, (x2® x1)
X a character of F’*

la(x) — Sta(x) L,q 2(g—1
R0 0=x0&+ (=)

0 a character of E*
—O0Ty,0 gt # 1 g—1
R$ 6 = RY 0

6. THE {-ADIC REPRESENTATIONS OF SLg(F)

Let G = SLy(F). In [Bon11] there is a complete description of the complex and modular
representations of GF*. There are two maximal tori in G up to conjugation by GF*. We can
choose a representative of the G™'-conjugacy class of maximal Fr-split tori in G™ to be the
diagonal torus Tg" = {diag(z, 2™ ') : 2 € F*}.

We choose a representative T}" of the maximal nonsplit tori in G and note that 71" is
isomorphic to E', being conjugate in GLy(E) to {diag(z,29) : x € E'} . A character 6 of T"
identifies with a character x of F'* and is in general position if 2 # 1. A character 6 of Tf*
identifies with a character x of E! and is in general position if §2 # 1. The following table
was extracted from [Bonll, Chapter 5].
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Deligne-Lusztig Decomposition Parameters Degree Number
Representation  in &g, (GFr)

1o + Ste 0 a cha;aitelr of FX 1g 9
R% 0 —

0 a character of F'*
ite+i76 0#£1
6% =1

0 a character of F'*
i%,(0) 0> # 1 q+1 .
i%,(0) = i5,(07")
1o — Sta 6 a character of E! 1q 9

=1
R$.0 f

0 a character of E1 1 1
—RYO— R0 0#1 K S
6% =1

0 a character of E!
om0 02 £ 1 g-1 1=
R 6 =R 07!

7. THE ¢-ADIC REPRESENTATIONS OF Uy(E/F) AND SUs(E/F)

Let G = Uy(E/F). Let T¢™ be the maximal diagonal torus in G

e = {diag(x,x_q) gt = 1} .

We choose a representative T° 1F " of the other G"-conjugacy class of maximal tori in G¥*. Then
T is conjugate in GLa(E) to

{diag(m,y) st = gt = 1} .

7.1. Parabolic induction from T}*. Let 6 be a character of T4*. Define a character x;
of E* by

v (@) = 0(diag(z,271)).
We identify 6 with x;. The character 6 is in general position if x'f“ # 1. In this case the
induced representation igUG is irreducible. By the dimension formula

dim(i% 0) = ¢ + 1.
If X‘{H = 1 then x; factors through the map ;1 : v — 2971, and corresponds to a character
x of E*
X1 = X081
Then 6 extends to the character x o det of G™, hence

i%,(0) = i%, (1)(x o det).

By Frobenius reciprocity igo(l) contains 1¢g and the irreducible quotient denoted by Stg of

igo(l) by 1¢ is g-dimensional. Thus

igo(e) = 1g(x o det) 4+ Stg(x o det).
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We denote 1¢(x o det) by 1g(x) and Stg(x o det) by Stg(x).

7.2. Deligne-Lusztig induction from T}*. Let g € GLy(F) such that (7f%) is equal
to the set of diagonal matrices in GLa(E) with entries in E'. Let 6 be a character of T}*.
Define characters x;, i = 1,2, of E! by

Xl(x) = Gg(dlag(x, 1))7 X?(x) = eg(dlag(Lx))

We can identify 6 with x1 ® x2. The character  is in general position if and only if x1 # xe.
By the dimension formula

dim(R%H) =—(¢g—1).
If 0 is in general position —R%G is an irreducible cuspidal representation of GI*. We let

G
0T, = _RTle.

If 6 is not in general position, by weak orthogonality,
(RY.0,R%.0) = 2.

Hence R% 0 contains two irreducible representations each with multiplicity +1. Moreover
R%G = (R%l)()ﬁ o det) and we know R%l contains 1g with multiplicity 1. Thus, by
comparing with igo(l) via weak orthogonality, R%l contains Stg with multiplicity —1 and

R%.0 =1c(x) — Sta(x)

Deligne-Lusztig Decomposition Parameters Degree  Number
Representation  in QSt@Z (GF r)

X a character of E'

1a(x) + Sta(x 1,q 2(q+1
_ (0 +siohy O (g+1)
0 a character of E* 9 5
i (6) gatl £ 1 g+1 %

i, () = i%,(079)

X a character of E'

La(x) — Sta(x)

R0 =x®Xx
9, characters of E!
Cors 0=x1®Xx2 i1 ¢ +4q
" X1 # X2 2

R%Q = R% (x2 ® x1)

Let H™ = SU,(E/F). Then H™ is isomorphic to SLy(F) by Section 2. The maximal F-split
tori in H¥ are isomorphic to F* and Sg\‘ = TOF * N HY is a representative. The non-split

maximal tori are isomorphic to E', and SI* = 71" N H' is a representative.

Following the same methods we have used for the groups GL2(F') and Ua(E/F) we produce

the following table of induced representations.
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Deligne-Lusztig Decomposition Parameters Degree Number
Representation in (’5t@£ (H Fr)

lg + Sty =1 1,q 2
RH ¢
So 0 a character of F'* ) .
O+ 0 02 =1 % % 2
0+#1
X a character of F’*
-H 2 41 1 q—3
iB,(X) X°# q+ —
H _H (-1
ZBO(X) = ZB/O(X )
lg — Sty =1 q,1 2
H
R, 0 0 a character of E* ) )
— q— q—
04 6~ 05,0 0> =1 T 2
0+#1
0 a character of E* .
—09,.,0 92 75 1 q— 1 qT

R{O=REO™!

8. THE (-ADIC REPRESENTATIONS OF U3(E/F)
Let G = U3(E/F). The maximal diagonal torus in G is
T = {diag(w,y,x’q) Pt =yt = 1} :

and W(T())Fr ~ (5. Let

g

i

Il
_ o O
o O =
o = O

g

)

I
o = O
o O =
= o O

which are representatives for the nontrivial Fr-conjugacy classes in W (Tp). Let TiFr, i1=1,2,
be representatives of the G¥-conjugacy class of maximal tori in G* obtained by twisting T(F r
by w;, i = 1,2. Let F3 be a cubic extension of F' and F3 a quadratic extension of F3. The
torus TF" is isomorphic to the kernel Fi of the norm map Ng,/m,- It is conjugate in GL3(FF )
to

{diag(x,xq(z,x*q) caH = 1}
and W (T1)¥ ~ C3. The torus T4" is conjugate in GL3(E) to
{diag(x,y, z) gttt = ot = ot = 1}
and W ()" ~ &3.

There is a Fr-stable Levi subgroup L of G

Lf = nG™

x O
o x O
x* O

which is isomorphic to Ui (E/F) x Ua(E/F). It is not contained in any proper Fr-stable
parabolic subgroup of G, but contains both Tg " and T3*. Thus when we are decomposing
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induced representations from TOF " and T4, by transitivity of induction, there will be two
steps: first inducing to L™ then to G™*. Let H' = Uy(E/F).

8.1. Parabolic induction from Topr. Let x1 be a character of E* and s be a character
of E. Define a character 6 of T¢" by
0(diag(z,y,z77)) = x1(z)x2(zz" ).

All characters 6 of TE™ appear in this way and we can identify § with the pair (y1,x2). The

character 6 is in general position if and only if x‘f“ # 1. By the dimension formula

dim(i%, (0)) = ¢* + 1.
If @ is not in general position, by weak orthogonality,
(i5,(0),15,(0)) = 2.
G

Hence ip (0) is the sum of two irreducible representations. In this case, because X‘lﬁ'l =1

)

x1 factors through the map §;—1 : v — 2971, and identifies with a character y of E!,

X1 =X0&1.

We have two cases:

(1) If x =1, then
i (0) = i, (x2 0 det)
= igo(l)(xg o det).
By Frobenius reciprocity igo (1) contains 15 and the irreducible quotient denoted by St
of igo(l) by 1¢ is ¢*>-dimensional. Thus
igO(G) = 1g(x2 o det) + Stg(x2 o det).

We denote 1¢(x2 o det) by 1g(x2) and Stg(xe o det) by Sta(x2)-
(2) Otherwise, when y # 1,

i (0) = i% (x1 ® 1) (x2 o det)

= RE (iB,n(x 0 &-1 ® 1)) (x2)
= Rg(lH(X odet) ® 1+ Sty (x odet) ® 1)(x2)
= RZ(1u(x) ® 1)(x2) + RF (St (x) ® 1)(x2)-

The dimension of RY (15(x) ® 1)(x2) is ¢> — ¢ + 1, and the dimension of RY(Sty(x) ®
1)(x2) is q(¢*> — ¢+ 1). By comparing with the complex character table, [Enn63], these
are irreducible representations of G

8.2. Deligne-Lusztig induction from 7f*. Let 0 be a character of T{*. The character
6 is in general position if 8971 # 1. By the dimension formula

dim(R%,0) = —(¢* — 1)(q + 1).
If @ is not in general position, by weak orthogonality,
(RZ,0.RG,0) =3.

Hence R%H contains three irreducible representations each with multiplicity +1. If  is not

in general position then 6 factors through the map {p2_qyq: 7z 27 ~9+1 and hence can be
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identified with character x of E*

0=x08p2_gt1-
Then R%Q = R% 1(xodet) and we are reduced to decomposing R% 1. We know R% 1 contains
1 with multiplicity 1. Thus by comparing with igo (1), via weak orthogonality, R% 1 contains
St with multiplicity —1. There is one other irreducible representation v of dimension ¢ — ¢
and because it did not appear in any of the induced representations from T(f\f it is . Thus

RE,0 = 16(x) — v(x o det) — Stg(x)

We let v, = v(x o det).

If 0 is in general position —R%H is an irreducible cuspidal representation of G*. We let

G
UT170 = —RTIQ.

8.3. Deligne-Lusztig induction from Ti*. Let g € GL3(FE) such that (73%)9 is equal
to the set of diagonal matrices in GL3(E) with entries in E'. Let 6 be a character of T5".
Define characters 6;, i = 1,2,3 of E! by

xi1(z) = 0(diag(z, 1,1)), xa(z) = 0(diag(1,z,1)), xs(z) = 6(diag(1, 1, z)).

We can thus identify 6 with x1 ® x2 ® x3. The character 6 is in general position if the
characters y;, i = 1,2, 3, are pairwise distinct. By the dimension formula

dim(RE,0) = —(q— 1)(¢* — g+ 1).

If 0 is in general position —R%H is an irreducible cuspidal representation of GF*, we let
O’Tz,g = —RgQQ.

When 6 is not in general position we have two cases:

(1) If x = x1 = x2 = X3, then by weak orthogonality
(R%,0,R%,0) = 6.

Thus either R%G contains six irreducible representations each with multiplicity =41,
or it contains three irreducible representations, two of which have multiplicity +1 and
one of which has multiplicity £2. Because R%H = R%l(x o det), we are reduced to
decomposing R%l. By comparing with igo(l) and R%l via weak orthogonality, we
have
R§1=1¢ — 211 — Stg.
(2) If x = x1 = x2 # X3, then by weak orthogonality
(R%,0,R%,0) = 2.

Thus R%G contains two irreducible representations each with multiplicity +1. In fact by
counting we have already found all irreducible representations of G*, and by comparing

dimensions we must have

RE, = R{(1n(x) ® 1)(x3) — RY (1a(x) ® 1)(x3)-
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9. THE ¢-ADIC REPRESENTATIONS OF GL3(F)

Let G = GL3(F). The maximal F-split diagonal torus in G' is
T8 = {diag(z,y,2) : x,y,2 € F*},
and W(Tp)F ~ &3. Let
010
w1 = 0 0 1
10

o O =
_ o O

0
and wg = | 1
0 0

be representatives of the two nontrivial Fr-conjugacy classes in W (Tp). Let TZ-F ,t=1,2, be
representatives of the G'"-conjugacy class of maximal tori in G'* obtained by twisting 74"
by w;, i = 1,2. The torus T}" is conjugate in GL3(F3) to

{diag($,xq2,xq) cx € F3X} .
and W(T1)¥ ~ C5. The torus Ti" is conjugate in GL3(E) to
{diag(z,2%,y) :x € EX, y € F*},
and W(TQ)F ~ (5. The tori Ty and T» are contained in the Fr-stable parabolic subgroup

* K *
P=1x x %
0 0 =

Let HY = GL(F) and SI* be a representative of the H-conjugacy class of non split
maximal tori in H'. Following the same methods we have used for the groups GLa(F),
Uq(E/F) and Us(E/F) we produce the following table of induced representations.
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CHAPTER 3

{-MODULAR REPRESENTATIONS OF FINITE REDUCTIVE GROUPS

In this chapter we study the relationship between f-modular and ¢-adic representations of
finite groups of Lie type. We then classify the /-modular representations of certain finite
reductive groups which appear as quotients of the parahoric subgroups of the p-adic unitary

group in three variables.

In this chapter, as in Chapter 2, F' is a finite field with g-elements and E a quadratic extension
of F.

39
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1. DECOMPOSITION MODULO-/

Let G be a finite group of Lie type. Let (K, Ok, k) be an f-modular splitting system for G.
Recall that this means

(1) Ok is a discrete valuation ring in characteristic 0 with maximal ideal p;

(2) K is the quotient field of Ok which is sufficiently large; containing all |G|-th roots of
unity;

(3) k= O/ is a finite field of characteristic ¢.

The representations of G over K are called ordinary and those over k are called ¢-modular.
In analogy with Chapter 1 Section 4 for p-adic groups we define a decomposition modulo-¢

map for representations of G.

Let (p, V) be an integral ordinary representation of G. Let L be an O G-lattice in V; define
the reduction modulo-£ of (p, V), with respect to L, to be the induced representation of G on
the k-vector space
L=L®o < k.
The Brauer-Nesbitt Principle, [CR81, Theorem 16.16], states that the composition factors
that appear are independent of the choice of lattice in V. Thus we define the decomposition
modulo ¢ of V by
de(V) = [L @0y k]
We extend d; by linearity to the Grothendieck group &t (G) of virtual ordinary represen-
tations of G. Then, [CR81, Theorem 17.17], dy is a surjective homomorphism between
Grothendieck groups
dg : @tK(G) — @tk(G),
which is compatible with extension of K, [CR81, Proposition 16.23]. The decomposition
matrix (di;) of G is the matrix formed by indexing the rows by the irreducible ordinary
representations (7;,V;), the columns by the irreducible f-modular representations (p;, W)
and the (¢, j)-th entry d;; is the multiplicity of (p;, W;) in de(Vs).

1.1. Brauer Characters. Let G be a finite group and (K, Ok, k) an ¢-modular splitting
system for G.

The field k contains all |G|,-th roots of unity, where |G|, denotes the ¢-regular part of |G|.
These form a cyclic group of order |G|, under multiplication. Fix an isomorphism of cyclic

groups
U : {|G|, -th roots of unity in k*} — {|G|, -th roots of unity in K*}.

For (1, M) a d-dimensional /-modular representation of G, we define a function on the ¢-

regular elements of G by
d
xar(g) =D T(N),
i=1
where A1,...,\q are the eigenvalues of ¥ (g) counted with multiplicity.

Hence we have a map

XM : {conjugacy classes of f-regular elements of G} — K.
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The map xjs is called a Brauer character of (¢, M) and we let
IBr(G) = {xn : M is an irreducible ¢-modular representation of G}.

The definition of a Brauer character involves a choice of ¢-modular system and a choice
of isomorphism W. For a given G we assume we have fixed such choices so that a finite

dimensional /-modular representation of G defines a unique Brauer character.
THEOREM 1.1 ([CR81, Chapter 17]).

(1) A Brauer character is a class function on the ¢-regular classes of G.

(2) The set IBr(G) is a basis for the K-vector space of ¢-regular class functions on G. (Hence
|IBr(G)| is equal to the number of conjugacy classes of ¢-regular elements of G.)

(3) If £ 1 |G| then Irr(G) = IBr(G), where Irr(G) denotes the set of ordinary characters of
G.

Let H be a subgroup of G, (p, W) an ¢-modular representation of H, and ¢ € IBr(G) be the
Brauer character of (p, W), then ¢/¢ given by

1
\le Ziﬁ 99" ),

is the Brauer character of the induced representation i%p, [Nav98, Theorem 8.2].

A Z-linear combination of Brauer characters is called a virtual Brauer character. The set
of all irreducible ¢-modular representations of G is a Z-basis of &t;(G), and we have an
isomorphism of rings Q, : &t (G) — ZIBr(G) given by

Qk : Zaivi — ZaiXVz"
i i

Similarly there is an isomorphism of rings Qi between &t (G) and ZIrr(G). Define a map
d': CF(G, K) — CF(G, K) on the set of K-valued class functions of G by

Iy(g) = x(g) if g is f-regular;
0 otherwise.

Under the usual inner product on K-valued class functions of G,
(X1, x2) | €] Z x1(g ),
geG

d' is a self adjoint functor, i.e. for all x1, x2 € CF(G, K) we have (d'x1, x2) = (x1,d"x2).

LeMMA 1.2 ( [CR81, Proposition 17.15]). Let p € &tx(G) then
Qk o dg(p) = dl o QK(p).

We define a decomposition matrix using Brauer characters. The rows are indexed by the
irreducible ordinary characters x; of GG, the columns are indexed by the irreducible Brauer
characters 1); of G, the (i, j)-th entry is the multiplicity of ¢; in d'(x;). By Lemma 1.2 this
decomposition matrix is equal to the decomposition matrix of G given by dp.

1.2. Theory of ¢-blocks. Let (p;,V;), i = 1,2, be irreducible ordinary representations of
G. We say that p; and po are in the same ¢-block if there exists a sequence of irreducible
ordinary representations o;, i = 1,...,n, such that
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(1) p1 =01 and p2 = oy;
(2) For all i € {1,...,n — 1}, d¢(0;) and dy(o;4+1) share a composition factor.

With this equivalence relation we partition the irreducible ordinary representations Irr(G) of
G into ¢-blocks. We also consider irreducible /~-modular representations, ordinary characters
and Brauer characters as associated to a unique ¢-block in the obvious way.

Given an ¢-block B one can associate a conjugacy class of subgroups of G, [Nav98, Chapter
4], called the defect group of the block. The defect group gives an indication of the complexity
of the structure of B. A block with trivial defect group is called of defect zero. An ¢-block
B is of defect zero if and only if there are only one ordinary character y and one Brauer
character d'(x) associated to the block, [Nav98, Theorem 3.18].

When the defect group of a block is cyclic, the structure of B is particularly nice: One
associates to B a graph with IV vertices, where N — 1 vertices correspond to distinct ordinary
characters in B, and the N-th exceptional vertex corresponds to a collection of ordinary
characters in B with equal decomposition modulo ¢. A vertex corresponding to an ordinary
character x; is joined to a vertex corresponding to ordinary character yo if and only if d*(x1)
and d'(x2) have a common constituent. The graph defined in this way is a tree, [Nav98,
Page 271], called the Brauer tree of B.

1.3. R% and (-modular Representations. Let G be a finite group of Lie type, L
be an Fr-stable Levi subgroup of G and P be an Fr-stable parabolic subgroup of G. In
analogy with Chapter 1 Corollary 5.2, parabolic induction and restriction commute with
decomposition modulo-¢, i.e. dp(i%p) = [i%(de())] and de(rG(c)) = [r%(de(o))]. Thus
the decomposition modulo ¢ of an irreducible cuspidal representation is a sum of irreducible

cuspidal /-modular representations.

LEMMA 1.3. Let 61,6 be representations of L' such that dg(0;) = dy(f2). Then dg(Rgel) =
d¢(R$65).
PROOF: *Rﬁp commutes with decomposition maps d', i.e.

d'o *Rg,P = *RE,P od!

[CEO04, Definition 5.7, Theorem 21.4]. Hence R%’V’P commutes with d' because d! is a self-
adjoint functor. This gives the base square on the following commutative diagram, the vertical

arrows being the isomorphisms of rings introduced earlier:

dy

@tK(LFr) @tk(LFr)
%CP« d
Fr 4 Fr
G (G) G (GT)
dl
ZTrr (L) Z1Br(LFr)

% Rfﬁ RN

Z1Br(G™)
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The lemma follows by passing from the top incomplete square to the base commutative
square, using the commutativity there and then passing back. (I

REMARK. We can lift p € &t (L) to a virtual representation p € Sty (L), thus we can

define an -modular Deligne-Lusztig induction
RS p: &y (L) — &, (GT)
p = de(REcpp)

which completes the commutative cube.

Define an equivalence relation on Irr(GY) by x ~ 1 if there exists a sequence (x;)7; €
Irr(G™) such that

(1) x1 = x and x2 = 1),
(2) For i = 1,...,n — 1 there exist a Fr-stable maximal torus T' of G and a character 6 of
T™ such that

(RF0,x:)) #0  and (R0, xi1) #0.

The equivalence classes are called geometric conjugacy classes and can be parametrized by

semisimple conjugacy classes in the dual group G*™ [CE04, Section 8.4]

LEMMA 1.4. Let 6 be a character of T' in general position. Assume that dy(6) is also in
general position, i.e. w € W(T)™ and dy(9) = d¢(9)* implies that w = 1. Then either
dyR$(0) or —d,R$(0) is an irreducible representation.

ProOOF: The following proof was suggested by Gunter Malle. Let 8 be an /-modular character
of T*" such that for all w € W, 8% # 6. By [CE04, 9.12],

{R%0 : dy(0) = 0},

is both a union of ¢-blocks and a union of geometric conjugacy classes. By Lemma 1.3
the decomposition modulo ¢ of any of the representations Rg@ in this set are equal. These
ordinary representations are in general position and thus are all irreducible of the same
dimension. Hence, because decomposition modulo-/ is a surjective map between Grothendieck
groups, dRG(0) or —d,R% () is an irreducible representation. d

2. DECOMPOSITION MATRICES OF GLg(F)

We use the notation of Chapter 2 Section 5 to describe the decomposition matrices of GLa(F')
which are extracted from [Jam90] in Appendix A.

Notation in Appendix A Notation in Chapter 2 Section 5

Sk(s,(1%)) la(x)

Sk (s,(2)) Sta(x)
Ind(Sk(s1, (1)) ® Sk(s2,(1))) i%, (6)

Sk (s, (1)) or0

2.1. Decomposition matrices if { # 2 and ¢ | g — 1.
Let £ || ¢ — 1. There are three types of ¢-blocks.
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(1) The ¢-blocks Bi(X). Let X be an irreducible ¢-modular character of F*. Associated

to X we have an ¢-block B () with decomposition matrix:

Conditions  Number
la(x) 1 0 de(x)=X e
Ste(x) 0 1 de(x)=%X e
i0) 1 1 d() = ea(a—1)
X®X 2

There are qe_al irreducible ¢-modular characters of F'* hence qz_al distinct ¢-blocks B1 ().

(2) The (-blocks Ba(X;,X2)- Let X;, ¢ = 1,2 be irreducible ¢-modular characters of F*
such that X; # X,. Associated to the pair (X, Xxy) we have an ¢-block Ba (3, Xy) with

decomposition matrix:

Conditions Number
iG0) 1 d(0) = /2
X1 ® Xo

There are (¢ — 1)(¢ — 2) distinct ¢-blocks Ba (X1, X2)-
(3) ¢-blocks of defect zero. The irreducible supercuspidal representations o, ¢ are in
£-blocks of defect zero. Thus there are q2772q+2 cuspidal /-modular representations, all of

which are supercuspidal.

2.2. Decomposition matrices if / # 2 and /| ¢+ 1.
Let £ || ¢+ 1. There are three types of {-blocks.

(1) The ¢-blocks Bi(X). Let X be an irreducible ¢-modular character of F*. Associated

to X we have an ¢-block B () with decomposition matrix:

Conditions Number
la(x) 1 0 de(x)=X 1
Ste(x) 1 1 de(x)=%X 1
ore 0 1 de(0) = (v —1)
Xo© £q+1 2

There are g — 1 distinct ¢-blocks By ()
(2) The ¢-blocks Ba(X). Let X be an irreducible -modular character of E* such that
%71 # 1. Associated to ¥ we have an ¢-block Bs () with decomposition matrix:

Conditions Number

oTy .0 1 dg(e) =X A

There are q2€—1 — (g — 1) distinct £-blocks Ba(X)
(3) ¢-blocks of defect zero. The irreducible principal series representations ig@ are in
£-blocks of defect zero.

3. DECOMPOSITION MATRICES OF GL3(F')

We use the notation of Chapter 2 Section 9 to describe the decomposition matrices of GL3(F)
which are extracted from [Jam90] in Appendix A.
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Notation in Appendix A Notation in Chapter 2 Section 9

Sk(s, (1)) la(x)
Sk (s, (21)) vG(x)
Sk (s, (3)) Sta(x)

Ind(Sk (51, (1%)) © Sk (52, (1)) i3(1a(x1) ® x2)

Ind(Sk (s1,(2)) ® Sk(s2,(1))) iB(Str(x1) ® x2)

Ind(Sk (s1, (1)) ® Sk (s2, (1)) ® Sk (ss, (1)) i%,(0)

Ind(Sk (51, (1)) @ Sk (s2, (1)) iB(081,0 © X2)

Sk(s®,(1)) oTy 0

3.1. Decomposition matrices if ¢ # 2,3 and ¢ | ¢ — 1.
Let ¢% || ¢ — 1. There are four types of £-blocks.

(1) The ¢-blocks B1(¥). Let X be an irreducible ¢-modular character of F*. Associated
to Y we have an ¢-block B4 () with decomposition matrix:

Conditions Number

la(x) L 00 de(x)=X o

vy 01 0 diy)=¥X -

Sta(x) 0 1 1 d(x)=Xx 4
Blpx1)®x2) 1 1 0 dixi) =% et —1)
iB(Str(x1) ®x2) 0 L de(xi) =X et —1)

iG0 L2 1 d0)= (e —1)(e" —2)
X®XKXX 6

There are qu1 distinct ¢-blocks B ().
(2) The ¢-blocks Ba(X1,%2). Let X;, i = 1,2 be distinct irreducible f~-modular characters
of F*. Associated to the pair (X1, X2) we have an ¢-block Bs (X, Xs) with decomposition

matrix:
Conditions Number
Blax1)®x2) 1 0 divi) =7 >
iGSta(x1) ®@x2) 0 1 de(xi) =% s
i%0 11 d(0)= R —1)
X1 ® X1 ® Xz 2

There are qu1 (q;al - 1) distinct £-blocks Ba (X1, X2)-
(3) The {¢-blocks Bs(Xy,X2,X3)- Let X;, ¢ = 1,2,3 be distinct irreducible ¢-modular
characters of F*. Associated to the triple (1, X2, X3) we have an ¢-block Bs(X1, X2, X3)

with decomposition matrix:

Conditions Number
iG0) 1 de(0) = e
X1 ® X2 ® X3

There are qu1 (q[al - 1) (anl - 2) distinct ¢-blocks B3(X1, X2, X3)-
(4) ¢-blocks of defect zero. All other f-modular representations are in ¢-blocks of defect

Z€ero.
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3.2. Decomposition matrices if £ # 2 and ¢| ¢+ 1.
Let £* || ¢ + 1. There are four types of /-blocks.

(1) The ¢-blocks Bi(x). Let X be an irreducible f-modular character of F'*. Associated
to X we have an ¢-block B () with decomposition matrix:

Conditions Number
la(x) Lo de(x) =X 1
Sta(x) 11 de(x) =X 1
G080 @x2) 0 1 dy(0) = o

There are g — 1 distinct ¢-blocks By ().
(2) The ¢-blocks Ba(X,X2)- Let X;, ¢ = 1,2 be distinct irreducible ~-modular characters

of F*. Associated to the pair (3, X3) we have an ¢-block By (1, X2) with decomposition

matrix:
Conditions Number
@Au(x1) ®x2) 1 0 de(Xi) = Xi 1
iBSta(x1) ®x2) 1 1 de(Xi) = Xi 1
Gosm®xe) 0 1 difo) = o1

(X1 0&4+1) © X2
There are (¢ — 1)(¢ — 2) distinct ¢-blocks Ba (X1, X2)-
(3) The f¢-blocks Bs(xi,X2). Let X; be an irreducible f-modular character of E* such
that 711,1 # 1; and let X5 be an irreducible ¢-modular character of F*. Associated to
the pair (X, Xy) we have an ¢-block B3(;,X2) with decomposition matrix:

Conditions Number

B0 ®x2) 1 de(0) = o
X1 ® Xo

There are (q;ll - 1) (g — 1)? distinct £-blocks B3 (X1, X2)-
(4) ¢-blocks of defect zero. All other f-modular representations are in ¢-blocks of defect

Zero.

3.3. Decomposition matrices if £/ #2,3 and ¢ | ¢*> + ¢+ 1.
Let £¢ || ¢> + ¢ + 1. There are three types of ¢-blocks.

(1) The ¢-blocks B1(¥). Let X be an irreducible -modular character of F*. Associated

to Y we have an ¢-block B4 (%) with decomposition matrix:

Conditions Number
la(x) 1 0 de(x) =X 1
va(x) 1 0 de(x) =X
Ste(x) 0 1 1 de(x) =X 1
% —1

oTy,0 0 0 1 dg(@):yofqzwﬂ 5

There are g — 1 distinct ¢-blocks By ().
(2) The ¢-blocks By(X). Let Y be an irreducible f-modular character of F;* such that
%71 # 1. Associated to ¥ we have an ¢-block Bs () with decomposition matrix:
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Conditions Number

OTy .0 1 dg(&) =X @

There are qgé:l — (¢ — 1) distinct ¢-blocks Ba(X).
(3) ¢-blocks of defect zero. All other /-modular representations are in ¢-blocks of defect

Zero.

4. DECOMPOSITION MATRICES OF Us(E/F)

The decomposition matrices of SUo(E/F) coincide with the decomposition matrices of SLa(F')
because the groups are isomorphic. Using Clifford theory for Brauer Characters, see Appendix
B Section 1, we can work out the decomposition matrices for Us(E/F'). In Appendix B Section
3 we explain in detail how to apply Clifford theory in this context, but with the more difficult
case of SU3(E/F) and Us(E/F).

4.1. Decomposition matrices if { # 2 and ¢ | g — 1.
Let ¢ || ¢ — 1. There are three types of ¢-block.

(1) The ¢-blocks Bi(X). Let X be an irreducible -modular character of E'. Associated

to Y we have an ¢-block B4 () with decomposition matrix:

Conditions Number
le(x) 1 0 de(x) =X 1
Sta(x) 0 1 de(x) =X 1
i%0) 1 1 df)=Xo0&1 (2—1)
2

There are q + 1 irreducible f-modular characters of E', hence g + 1 distinct ¢-blocks
B1(X).

(2) The ¢-blocks Ba(Y). Let X be an irreducible ¢-modular character of E* such that
X9t #£ 1. Associated to ¥ we have an f-block Bz () with decomposition matrix:

Conditions Number

G 0) 1 d)=x

There are (q + 1) (qg_ul - 1) distinct ¢-blocks Ba(X).
(3) ¢-blocks of defect zero. The supercuspidal representations o, g are in ¢-blocks of

defect zero. We write O for dy(or 9)-

4.2. Decomposition matrices if £ # 2 and ¢| ¢+ 1.
Let £% || ¢ + 1. There are three types of ¢-block.

(1) The ¢-blocks B (). Let X be an irreducible -modular character of E!. Associated
to X we have an ¢-block B () with decomposition matrix:
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Conditions Number
la(x) 1 0  d(x)=X e
Sta(x) 1 1 de(x) =X e
orne 0 1 d(d)=x®X et —1)
2

There are qZ;I irreducible f-modular characters of E*, hence £t distinct £-blocks By ().

(2) The ¢-blocks Ba(Y;,Xs)- Let X;, i = 1,2 be irreducible f-modular characters of E*
such that x; # Y. Associated to the pair (Y;,Xs) we have an ¢-block By (7, Xs) with

decomposition matrix:

Conditions Number

UT1,0 1 dz(@) = 52(1
X1 @ X2

There are Lt (qz;l - 1) distinct £-blocks Ba (X1, X2)-
(3) ¢-blocks of defect zero. The irreducible principal series representations igo (0) are in
{-blocks of defect zero.

5. DECOMPOSITION MATRICES OF Us(E/F)

We use the notation of Chapter 2 Section 8 to describe the decomposition matrices of
Us(E/F) which are extracted from [Gec90] in Appendix B Section 3.

5.1. Decomposition matrices if / # 2 and ¢ | g — 1.
Let ¢% || ¢ — 1. There are four types of ¢-blocks.

(1) The ¢-blocks Bi(X). Let X be an irreducible -modular character of E'. Associated

to Y we have an ¢-block B4 (%) with decomposition matrix:

Conditions Number
la(x) 1 0  de(x)=X 1
Ste(x) 0 1 de(x) =X 1
i%,0) 1 1 dy(0) = (" —1)
(Xo&-1)®X 2

There are g + 1 distinct ¢-blocks By ().
(2) The ¢-blocks Ba(;,X2). Let X;, i = 1,2 be distinct irreducible f-modular characters
of E. Associated to the pair (X, Xy) we have an ¢-block Bz (¥, X,) With decomposition

matrix:
Conditions Number
RE(1g(x1)®1)(x2) 1 0 de(Xi) = Xi
RE(Sta(x1) @ 1)(x2) 0 1 de(Xi) = Xi 1
i%,(0) 1 1 d(0(diag(z,y,279)) = (4@ —1)
(X1 0 &g—1(2)) X2 (z2™Y) 2

There are g(q + 1) distinct ¢-blocks Ba (X1, X2)-
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(3) The ¢-blocks Bs(X;,xs)- Let X; be an irreducible ¢-modular character of E* such
that Y’f“ # 1; and let X, be an irreducible /~-modular character of E'. Associated to
the pair (X;,X2) we have an ¢-block B3(¥1,X2) with decomposition matrix:

Conditions Number

i%,(0) 1 de(0) =%, ®Xy 72

There are (¢ + 1)? (q[,ll — 1) distinct ¢-blocks Bs(Xy, Xa)-
(4) ¢-blocks of defect zero. All other f-modular representations are in ¢-blocks of defect

Zero.

5.2. Decomposition matrices if / # 2,3 and ¢ | ¢*> — ¢ + 1.
Let ¢¢ || ¢> — g + 1. There are three types of ¢-blocks.

(1) The /-blocks Bi(X). Let X be an irreducible -modular character of E'. Associated
to Y we have an ¢-block B4 () with decomposition matrix:

Conditions Number
lex) 1 00 de(x) =X 1
Ste(x) 1 1 0 de(x) =X 1
v 00 di(x) =X 1

OTy.,0 011 dg(e) =Xo© §q27q+1 -1
There are g + 1 distinct ¢-blocks By (). We write Dy for dy(vy) and

de(oT, 9) = Uy + O
The representation E;l 7 is an example of a cuspidal /~-modular representation which does
not lift. It is non-supercuspidal because it is a subquotient of ig(y ® X ®X) appearing
in the reduction of Sta(x).

(2) The /-blocks Ba(X). Let X be an irreducible f-modular character of Ei such that

X9t #£ 1. Associated to ¥ we have an f-block Bz () with decomposition matrix:

Conditions Number

OTy .0 1 dz(@) =X @

There are q‘;i-l — (¢ + 1) distinct £-blocks Ba(X).
(3) ¢-blocks of defect zero. All other f-modular representations are in ¢-blocks of defect

Zero.

5.3. Decomposition matrices if { # 2,3 and ¢ | ¢+ 1.
Let £% || ¢ + 1. There are five types of ¢-blocks.

(1) The /-blocks Bi(X). Let X be an irreducible -modular character of E'. Associated

to Y we have an ¢-block B () with decomposition matrix:
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(2)

®3)

()

3. -MODULAR REPRESENTATIONS OF FINITE REDUCTIVE GROUPS

Conditions Number
la(x) 1 0 0 de(x)=%X I
Uy 010 dx)=x I
Sta(x) 1 2 1 de(x)=%X i
RE(lp(x1)®@1)(x2) 1 1 0 di(xi) =X AGESY
RE(Sta(x1) ®@1)(x2) 1 1 1 de(xi) =X et — 1)
0Ty,0 0 0 1 de(0)=  ¢o(0®—1)(4* —2)
XXX 6

There are qézl distinct £-blocks By ().

The ¢-blocks Ba (Y, X2). Let X;, ¢ = 1,2 be distinct irreducible £-modular characters
of E. Associated to the pair (X7, X) we have an /-block Bz (1, X3) with decomposition
matrix:
Conditions Number
RE(lu(a)@)(x2) 1 0 d(x)=x £
RE(Sta(x) @ Dx2) 1 1 delxa) =X 2
oy, 01 de(0) = e — 1)
X1 ® X1 ® Xa 2

There are £t (q;ll — 1) distinct £-blocks Ba (X1, X2)-
The ¢-blocks Bs(X;, X2, X3)- Let X;, ¢ = 1,2,3 be pairwise distinct irreducible ¢-
modular characters of E'. Associated to the triple (%,Xa2,X3) we have an f-block

B3 (X1, X2, X3) With decomposition matrix:

Conditions Number

oo 1 dy(0) = 03
01® 02 03

There are qj,} (qzzl - 1) (qja - 2) distinet £-blocks B3 (X1, X2, X3)-
The (-blocks By(X). Let X be an irreducible /-modular character of E'. Associated

to X we have an ¢-block B4 () with decomposition matrix:

Conditions Number
i%0 1 di(0) = (Xoé1)@x £

There are qZLal distinct £-blocks By(X).

(-blocks of defect zero. All other /~-modular representations are in ¢-blocks of defect

Zero.



CHAPTER 4

LEVEL ZERO REPRESENTATIONS

In this chapter we study irreducible representations which have nontrivial invariants under

the pro-unipotent radical of a parahoric subgroup. These are called level zero representations.

Our initial observations apply to a general reductive p-adic group. Then we specialise to
unramified unitary groups. This has the advantage that for all parahoric subgroups G, we
have GI = G, and the affine Weyl group is a Coxeter group rather than an extended Coxeter
group. We then specialise to an unramified unitary group in three variables U(2,1)(E/F).
First, because both maximal parahoric subgroups of U(2,1)(E/F) admit Iwasawa decom-
positions. Then because, from Chapters 2 and 3, we understand the ¢-adic and ¢-modular
representations of the finite reductive groups M, which appear as quotients of the maximal
parahoric subgroups. For example, it is important to know that the supercuspidal support
of an /-modular representation of M, is unique up to conjugacy. Finally we specialise to an
unramified p-adic unitary group in three variables U(2,1)(E/F'), where F' is of characteristic
zero, so that we can apply results of [Dat05].

We partition the irreducible level zero f-modular representations of an unramified p-adic
unitary group in three variables U(2,1)(E/F) by supercuspidal support. We do this in two
steps:

(1) Giving a complete list of the irreducible cuspidal level zero f-modular representations
with each representation explicitly produced by compact induction from an irreducible
{-modular representation of a compact open subgroup.

(2) Describing the decomposition of the ¢-modular representations which are parabolically
induced from an irreducible ¢-modular representation of the standard torus and which
have irreducible cuspidal level zero subquotients.

51
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1. IRREDUCIBLE LEVEL ZERO REPRESENTATIONS

An irreducible representation (7,)) of G has level zero if there exists a parahoric subgroup
G, of G such that

VG £ {0}.
It is equivalent to ask for a maximal parahoric subgroup G, with e # {0}, because Gy C G,
implies that Gglc - Gzl/'

Suppose (7, V) is an admissible representation such that Y&z # {0}. By normality, G, acts
on VO . Thus the finite reductive group M, acts on VGa, By admissibility of 7, this is a finite
dimensional representation of M. Let o be an irreducible M,-subrepresentation of VG then

{0} # Homyy, (o, (Resgm W)G'}:) ~ Homg;, (inﬂ%’}i o, Resgx )
o~ Homg(indgz o inﬂfj; 0,7),
by reciprocity: we say that 7 contains (G.,o). Suppose that = is irreducible. Then

is a quotient of the induced representation indgw oinﬂf/[“; o. In general the representation
indgw o inﬂ]\G/j’; o is not irreducible.

Fix a chamber in the reduced building B(G). The standard parahoric subgroups are the
parahoric subgroups that only fix points in the closure of this chamber. If 7 contains (G, o),
then 97 contains (G g, 90). Thus, because 7 ~ 97, it is enough to consider only the standard

parahoric subgroups.

2. MINIMALITY

Let (m,V) be an irreducible representation of G of level zero. Thus there exists a standard
maximal parahoric subgroup G, of G such that V% #{0}. Let

LS (r) = {standard parahoric subgroups G, C G, : VG £ {0}}.
We are interested in the minimal elements in LOG'”(W) under the partial order of inclusion of

parahoric subgroups.

LEMMA 2.1. Let G, € L§"(n), and let o be an irreducible representation of M, such that =
contains (G, o). If G, is minimal under the partial order of inclusion on LS”(7) then o is

cuspidal.

PROOF: Assume that o is not cuspidal. Then there exists a proper standard parabolic
subgroup P of M, with Levi decomposition P = L x N such that Resf\\{z o contains the
trivial representation 15 of NV, i.e.

Homy (1x,Res\* o) # {0}.

Let G p be the parahoric subgroup of G equal to the preimage in G, of P under the projection
G, — M,.
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1 G! G. M, 1

The preimage of N under the projection from Gp to P is the pro-p unipotent radical G}J of
G p. By reciprocity

{0} # Homy (1w, Resy* 0) = Homy (1, invgy o Res; (inflgr o))
P z
~ HomG}D(lG};, Resg;(inﬂ@ 0)).
Because ¢ is contained in 7
{0} # Homyy, (o, (ResgZ W)Gi) ~ Homg, (inflg1 o, Resgz )
Thus, because G}; is pro-p, Resgi infl;1 o is a direct summand of Resgl 7. Hence
P z P
Gl G
VoP ~ HomG}?(lg}),ResG}D ) # {0}
contradicting the minimality of G . |

When G = GL,,(F), all maximal parahoric subgroups are conjugate in G and can be identified
GL» (OF) (71')

with GL,(OF). Thus it is enough to consider one set, L
When G is a unitary group of dimension greater than or equal to three, there are multiple
maximal parahoric subgroups. The minimal parahoric subgroups, the Iwahori subgroups, in
a reductive group G are always all conjugate in G. When G = U(2,1)(E/F), there are two
maximal parahoric subgroups up to conjugacy. We fix a choice of Iwahori subgroup J then

there are two maximal parahorics containing J.

The situation is more complex in higher dimensions: for example when G = U(2,2)(E/F)
and F/F is unramified there are three maximal parahoric subgroups up to conjugacy.

G.NG, ——— G,
3<GxﬂGz ’,:Gy
G,ne .

Not being able to work inside a single fixed maximal parahoric subgroup makes classification

arguments for level zero representations more difficult.

3. DECOMPOSITION OF CATEGORIES

Let Rr(G) denote the category of smooth R-representations of G. In this section we review
briefly some of the ¢-adic theory and then split off the subcategory of level zero representations
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from Rz(G) in the f-modular case. For ¢-adic representations the idea is to try to split 9%@ (G)
by cuspidal support, but one finds that this is slightly too fine.

3.1. The /-adic Bernstein decomposition. Let X (M)° be the set of unramified char-
acters of M; that is the characters of M which are trivial on every compact subgroup of M.
Let (m,V) be a smooth R-representation of G with supercuspidal support [M,c]. On these
pairs we define an equivalence relation, called inertial equivalence, by [Mi,o1] is equivalent
to [Ma,09] if and only if there exist ¢ € G and x € X(M;)? such that 9Ms = M; and
9g9 ~ 01 ® x. The equivalence classes are called inertial classes and the set of inertial classes
is called the Bernstein spectrum B(G).

We say Rr(G) is a direct product of subcategories R% (G), for i € I,
Re(G) = [ [ RR(6),
iel
if for all (7, V), (o, W) € Rr(G),

(1) there is a unique decomposition into subrepresentations
V=V
el
with V* an element of Ry (G);
(2) if
w=Ppw
iel
is the decomposition of W given by (1), then
Homg(V, W) = HHOI’Ilg(Vi, wh.
iel
For /-adic representations of p-adic groups the fundamental result is the optimal decomposi-
tion of Bernstein:

THEOREM 3.1 (Bernstein Decomposition, [DKV84, Chapter 1]). For 5 € B(G) let 9% (G)

£
denote the full subcategory of %@Z(G) of smooth representations all of whose irreducible
subquotients have inertial support s. Then

Ry, (G) = ] R, (G).
sEB(G)

LEMMA 3.2. Let G be a classical group and let m be an irreducible cuspidal representation
of G. Then 7 is integral.

ProoF: This follows as the centre of G is compact. A character is integral if and only if it
takes values in sz . By Chapter 1 Theorem 3.4, w has a central character w,. As the centre of
G is compact and the image of a compact group under a smooth homomorphism so compact,
wy is integral. Therefore, by Chapter 1 Theorem 4.3, 7 is integral. g

A similar proof when G = GL,(F') shows that every irreducible cuspidal representation is
inertially equivalent to an integral representation.

3.2. The /-modular decomposition by level. Optimal decompositions of D%FZ(G) are
not known in general. However it is possible to decompose Rg (&) by normalised level. In
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particular it is possible to decompose D%FZ(G) into a product of the level zero representations
and the positive level representations.

A smooth R-representation (m,V) of G has level zero if V' is generated by the union of its

Gl-invariant vectors as G, runs over the maximal parahoric subgroups of G.

A smooth R-representation (m,V) of G has positive level if, for any maximal parahoric sub-
group G, of G, V% = {0}.

THEOREM 3.3 ([Dat09, Proposition 6.3]). Let G be a reductive p-adic group, R%(G) the
full subcategory of Rp(G) consisting of representations of level zero and R7°(G) the full
subcategory of Rg(G) consisting of representations of positive level. Then

Rr(G) = Ry(G) x R (G).

Furthermore the functors of parabolic induction and parabolic restriction respect the decom-
position; i.e. take level zero (resp. positive level) representations to level zero (resp. positive
level) representations.

4. LEVEL ZERO R-TYPES

In this section we introduce R-types.

DEFINITION 4.1.

(1) An R-type of G is a pair (K, o) consisting of a compact open subgroup K of G and an
irreducible smooth R-representation ¢ of K.
(2) A smooth R-representation 7 of G is said to contain the R-type (K, o) if

Homp (o, Res% (7)) # {0}.

(3) Two R-types (K1,01) and (K2, 09) of G are called equivalent if ind?{1 o1~ ind?(2 o9.
DEFINITION 4.2.

(1) An R-type of level zero is an R-type of the form (G, o) where G, is a parahoric subgroup
of G and o is an irreducible representation of the finite reductive group M, inflated to
G,.

(2) An R-type of level zero (G, o) is called maximal if G, is a maximal parahoric subgroup
of G.

(3) An R-type of level zero (G, o) is called cuspidal if ¢ is a cuspidal representation of M,.

(4) An R-type of level zero (G, o) is called supercuspidal if ¢ is a supercuspidal represen-
tation of M,.

Thus, in terms of R-types, Lemma 2.1 implies:

LEMMA 4.3. Let 7 be an irreducible representation of level zero. Then 7 contains a cuspidal
R-type of level zero.

4.1. Spherical Hecke algebras. Let K be a compact open subgroup of G, R a com-
mutative ring with unit, (o, W) an irreducible smooth R-representation of K. The spher-
ical Hecke algebra, Hr(G, K, o), of o is the R-module consisting of the set of functions
f G — Endg(W) which satisfy:
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(1) The support of f, supp(f), is a finite union of double cosets Kh; K with h; € G.
(2) The function f transforms by o on the left and the right, i.e. for all k1, ke € K and all
geG
f(krgha) = o (k1) f(g)o (k).

The product fi * fa of fi, fa € Hr(G, K, o) is defined by convolution
fix fa(h) =" fi(9) falg™ h),

G/K
for all h € G.

Let 1,(0) = Homg (0, ind% s 90) and
Ig(o) ={g € G : 1y(0) # {0}}.
By reciprocity, I,(0) ~ Homgn o (0, 90).
LEMMA 4.4 ([Vig96, Chapter 1, Section 8.10]). Let f € H(G, K, o) be supported on Kg~'K.

Then f(g~!) € I,(0) and for each x € I,(o) there exists a unique f € Hr(G, K, o) supported
on Kg~'K with f(g~') = x.

PROOF: Let g € G, k € KN 9K and suppose there exists f € Hr(G, K, o) supported on
Kg 'K then f(g~') # 0 and

flg™ho(k) = f(g  kgg™t) = 9o (k) f(g7").
Hence f(g7') € Iy(o).

Let x € I;(0). Define f : G — Endg(W) by

0 ifgg Kg7'K;

f(h) =
U(k‘l)XU(kg) if h = ]ﬂg_lk‘g with ki, ko € K.

Then f € Hr(G, K, o), has support Kg~!K and is the unique element in Hg(G, K, o) with
support Kg~'K and f(g7!) = x. O

The R-algebra H(G, K, o) is isomorphic to Endg(ind% o) by [Vig96, Section 8.5 and 8.6(f)]
where Endg(ind?{ o) is given its natural multiplication of composition.

4.2. G-Covers for R-types. In the framework of R-types G-covers are a tool for studying
parabolic induction. Let P be a parabolic subgroup of G with Levi decomposition P = M x N,
and let P be the opposite parabolic subgroup with Levi decomposition P = M x N. Let K

be a compact open subgroup of G.
DEFINITION 4.5. An element z of the centre of M is called strongly (P, K)-positive if

(1) 2K*2 ' c Kt and 2K~ 27! D K~ where K- = KNN and Kt = KN N.
(2) For all compact subgroups Hy, Ha of N (resp. N) there exists a positive (resp. negative)
integer m such that z™H12~™ C Ho.

DEFINITION 4.6. Let (Kjz, par) be an R-type of M. An R-type (K, p) of G is called a G-cover
of (K, par) relative to the parabolic subgroup P of G if the following three properties are
satisfied:
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(1) We have an Iwahori decomposition:
KNM =Ky
K = K_KA[K_‘—
where K- =KNNand Kt =KNN.
(2) Res%M (p) = pum, and Resk . (p) and Resk_(p) are both multiples of the trivial repre-
sentation.

(3) There exists a strongly (P, K)-positive element z of the centre of M such that the double
coset KzK supports an invertible element of Hr(G, K, p).

Let G = U(2,1)(E/F) be the unramified unitary group in three variables and B be the
standard Borel subgroup of upper triangular matrices in G with Levi decomposition B =
T x N. Let

Or O Og
J=|Peg O O |NG
Pe Pr Og

be the standard Iwahori subgroup of G and Jr =T N7J.

Let x be a level zero character of T'. Define a character Y of J by
X(i7iri*) = x(ir)
for all i= € 3=, it € JF, and ip € Jp.

LEMMA 4.7. The level zero R-type (J,X) is a G-cover of (Jr, x).

PROOF: Properties (1) and (2) of Definition 4.6 are clear. Let
00 1 0 0 wp'
wi=|0 1 0f, Wy = 0 1 0
100 wrp 0 0

If g € Ig(x),
I,(X) ~ Homs,. (x, x) ~ R,

because  is an character. Hence, up to a scalar, there exists a unique function in Hr(G, K, o)
supported on JgJ. For z € Ig(X) and ¢ € R define f,, € Hr(G,J,X) to be the unique
function with support JzJ such that f,(z) = a. If a = 1 we write f; = fz1. The proof is
split into two cases:

If x is regular: let ( = wjws. Then

foxfer(la) =D fel@) fer(a™h)

G/3

=Y fel)

G/3
=[3¢3: 7]
=[3:3Nn¢I¢ Y =qL

The support of fc x f.-1 is contained in JCIC.
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The double coset space T\Ig(X)/T is contained in
NG/~ | dud.

weW,g
An element w € W,g of the form
0 0 w
w = 0 1 0
w0 0

intertwines X if and only if w; intertwines x. But y is regular, i.e. w; does not intertwine x.
Thus Ig(x) = 3T7.

Hence J15(x)INJICIC1T = J which by Lemma 4.4 implies that Jex fe-1 is supported on J.
Thus f; is invertible with inverse q% fe1-

If x is not regular: then wy,wy € Ig(x) and hence, fu,, fu, € H(G,T,X) by Lemma 4.4.

Furthermore,

Jur * fur (1g) = wal ) fu, (2 )

G/3

=3 fur (@) fun (2

G/3
= [Jw1J: 7]
=[J:TNwJw] = ¢
which is nonzero. Similarly, fu, * fuw,(1lg) = ¢ which is nonzero. The support of fy, is
contained in the group G, = JU Jw,J, thus
Supp(fw1 *fwl) - GxGm = Gw

Similarly the support of fi, x fuw, is contained in J U JwJ. Hence

fw1 *fw1 = rfwl + q3f1

with 7 € R, and f,, is invertible with inverse f,! = q%( fw, —7f1). Similarly, f,, is invertible
with inverse f;zl = é( fuwy —sf1) for some s € R. Hence f = fy, * fu, is an invertible element
of Hr(G,J,X). Using the Iwahori decomposition of J, because

(j_)wl g j-‘r
3%y C o

we have
JwTJweJ = J(wlj wl)wlwg(ngng)(w2§+w2) = JwiwsJ.

Thus the support of f is contained in the double coset
leng,

and hence, as f is invertible, f = cfy,w, With ¢ € R nonzero.

In both cases, the element wyws is a strongly (B, J)-positive element of the centre of T' and
furw, is an invertible element of Hr(G,J, X) supported on JwjwsJ. O
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THEOREM 4.8. Let R = F, or Q, and suppose that x is not regular. The Hecke algebra
Hr(G,T,X) is generated as an R-algebra by f,, and fy, and the relations

fwl,a *fwl,a = (qr - 1)fw1,a + qrfl;
Jway * fuwy = (q - 1)fw2 +qf1-

where r = 3 and a = 1 if x factors through the determinant; and »r =1 and a = % otherwise.

PROOF: The algebra Hr(G, K, 0) is generated as an R-module by the functions which are
supported on a single double coset.

As in the proof of Lemma 4.7, where we showed

(*1) Jwy * fwy = fuyw,

with ¢ € R nonzero, but using the Iwahori decomposition J = J¥J73~ we have JwsJwJ =

Jwow,J and hence

(*2) Jws * fuwy = €fuwguwy

with ¢ € R nonzero. For any w € Wyg, because w; and wo generate Wog, we have w =
Wiy Wiy -+ - w;, with w;; € {wy, w2} such that w;, , # w;; and, by the method that gave us
(*1) and (*2), we have
fwil *fwi2 L *fwin = cfuw
with ¢ € R nonzero. Thus, by Lemma 4.4 and the Bruhat decomposition,
NG/T =~ U Jw3,
wEW, g
fu, and fy, generate Hr(G, K, o). Hence it remains to calculate fy, * fu,, ¢ = 1,2. We do
this by restricting to the maximal parahoric subgroups G, = JU Jw;J and Gy = J U Jw,J.
Let B =T x N denote the Borel subgroup in M, and let ¥ be the character of T given by
Res%; X = inﬂle X- Then
HR(Gza j’ )Z) = HR(M:E? Ba Y)
If R = Fy, we choose a lift ¢ of ¥ such that (' = (. If L is a lattice in ¢ then ( is a
?Hcd roductionitablc lift if HE(MZ,E, X) ~ F, ®z, HZ(Mj’ B, L) and H@K(MI,F, () ~
Qy ®7, 'HZZ(MJC, B, L), [DF92, Page 64]. A basis of H@[ (M, B, () is called reduction stable
if it is a basis of HZ(Mx, B, L) and ( is reduction stable . Then the image of this basis in
Hg,(Mq, B,X) is a basis of Hg, (M, B,X). By [GHM94, Section 3.1] an (-adic character ¢
of T such that d¢(¢) = X and ¢** = ( is a reduction stable lift and a basis of ’HZ(MQE, B, ()
is reduction stable.

By [HL80, Theorem 4.14], if Ind% ¢ = p; @ py with dim p; > dim py then ’H@(Mw,g, Q) is
generated by T, which is supported on the double coset BwB and satisfies the quadratic

relation

Tw*Tw< T

where 77 is the identity of H@e(MJC’E’ ¢). By Chapter 2 Section 8,

di di
o), G
dim po dim po

dim p; ¢® if ¢ factors through the determinant;

dim po q otherwise.
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By inflation, the element T\, € Hgr(M,, B,Y) determines an element fy, o € Hr(Gs,J,X)
supported on JwiJ. Furthermore in the proof of Lemma 4.7 we showed

Jwy * fuy = 7”/fwl + qgfla
with 7' € R, hence we can recover a. The same method, using the computations of Chapter
2 Section 7, shows that the element f,, € Hr(Gy,J,X) supported on JwyJ satisfies the
quadratic relation
Juws * fuoy = (@ = 1) fuw, + af1-
O

COROLLARY 4.9. There are four one dimensional Qy-modules of the algebra ”H@Z(G,J, 1)

which are determined by their values on the generators fy, and f,.

Character x of Hr(G,J3,1) X(fuw) X(fuwn)

Xsgn -1 -1

Xind 7 q
X1 q3 -1
X2 -1 q

(1) If ¢ # —1 mod ¢ then there are four one dimensional Fy-modules of HE(G, J3,1).
(2) If ¢> = —1 mod ¢, but ¢ Z —1 mod ¢, then there are two one dimensional Fy-modules of
Hg,(G,3,1).
(3) If ¢ = —1 mod ¢ then there is a unique one dimensional Fy-module of Hg,(G,3,1).
Let H(G, K, 0)-M0od denote the right modules over H(G, K, 0). We have a functor
My : Rg(G) — H(G, K, 0)-DMod
7 — Homg (ind$ o, 7)

where Homg (ind% o, ) is a right H(G, K, o')-module by identifying H(G, K, o) with Endg(ind% o)
and the action of Endg(ind$ o) is given by composition. By reciprocity,

M, (m) = Homg (o, Res% )
the o-invariants of .

Let P = M x N be a parabolic subgroup of G and let (K,0) be a G-cover of (K, onr)
relative to P. There is an injective homomorphism of algebras, [Vig98, , IT 10.1(2)],

jp: H(M, K]\/[7O']\/[) — H(G, K,CT).
This homomorphism induces a restriction functor
Jip  H(G, K, 0)-DMod — H(M, Ky, o )-D00.
THEOREM 4.10 ([Vig98, Section 2, 10.1(3)]). There is an isomorphism

p(Mq () = Mo, (rE ().

An immediate consequence of Theorem 4.10 is:
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COROLLARY 4.11. If 7 € Rr(G) contains an R-type which is a G-cover relative to P then

rG(7) is nonzero.

THEOREM 4.12 ([Blo05, Theorem 2]). There is an isomorphism
ind% o ~ ind% ind%M oM-
5. LEVEL ZERO PARAHORIC FUNCTORS

Let (Gy,0) be a level zero R-type. The functor taking smooth R-representations of M, to
smooth R-representations of G defined by inflating ¢ to GG, and compactly inducing to G is

called level zero parahoric induction.

9{R(Gﬂﬁ)

19, : Re(M,) Rr(G)

or———inflg1 o indgz (inflg1 o)

It has a right adjoint called level zero parahoric restriction.

R%@ :Rr(G) Rr(Ge) Rr(My)

T Resgz T invG}D(Resgm )
If we fix a maximal parahoric subgroup G, and consider the level zero parahoric functors Iﬁh

and Rg;/jz for parahoric subgroups G, C G, our viewpoint is that these functors mirror the

parabolic functors inside the finite reductive group M,.

REMARK. Let G, be a maximal parahoric subgroup of a classical group G. Let

G = Ng(G,).
There are two short exact sequences:
1 Gl GF Mf 1
1 Gl Gy M, 1

where M' is a finite reductive group that contains M, as a normal subgroup of finite index.
Let o be an irreducible cuspidal representation of M, and let X be an irreducible quotient of
ind%f 0. When trying to construct all irreducible representations of a general p-adic group
G it is more natural to define level zero parahoric induction making this initial step from o
to 3 before inflating to G and inducing to G. We have chosen to define level zero parahoric
induction without this step because we are going to specialize to unramified p-adic unitary
groups, where G, = G

The following theorem reduces the classification of irreducible cuspidal level zero representa-

tions to the classification of maximal cuspidal level zero R-types.
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THEOREM b5.1. Let G be an unramified unitary group in three variables, and (7, V) an ir-
reducible cuspidal level zero representation of G. Then 7 contains a maximal cuspidal level
zero R-type and this R-type is unique up to conjugacy.

We follow [Vig01b] to prove Theorem 5.1.

Level zero R-types (G, 0) and (Gy, 0y) are called associate, [MP94, Definition 5.1], if there
exists g € G such that G, N Ggy surjects onto M, and My, and o, ~ 90,.

THEOREM 5.2 ([Vig01b, Corollary 5.2]). Let G be an unramified unitary group. Let x,y be
points in B(G) and let o, (respectively o,) be an irreducible cuspidal representation of M,
(respectively M,). If

Home (16}, (02). 15, (o)) # {0},

then (G, 0,) and (G, 0y) are associate.

6. LEVEL ZERO RESTRICTION-INDUCTION
In this section we give a proof of Theorem 5.2 due to [Vig01b]

6.1. Distinguished double coset representatives. Let G be an unramified unitary
group, W be the affine Weyl group of G and S be a set of fundamental reflections for W.
The choice of S corresponds to a choice of chamber in the building of G. This choice defines
the standard Iwahori subgroup J of G. The group W is a Coxeter group. If J C S, we let
W be the subgroup generated by the reflections in J. The standard parahoric subgroups
of G correspond to proper subsets J of S, where J maps to Gy = JN;J, for N; any set of
representatives of Wy in G.

Let J,K C S. A set of double coset representatives D, g i for W \W/Wk is called distin-
guished if each d € D has minimal length in its double coset, [Mor93, 3.10]. A set
of double coset representatives D in Ng(T') for G;\G/Gk is called distinguished if the
projection to W of the set Dy is a set of distinguished double coset representatives for

WAW/Wg, [Mor93, 3.12].

For w € W the length of w is equal to the length of w~!. Thus if EJ,K is a set of distinguished
double coset representatives for W;\W/Wj then b;}( is a set of distinguished double coset
representatives for Wi \W/W. If n € Dk has projection w € Wy i then n=1 € Ng(T) has
projection w™! € Wi 5. Thus if Dk is a set of distinguished double coset representatives for
Gj\G/Gg, then D;}( is a set of distinguished double coset representatives for Gx\G/G .

6.2. Intersections of parahoric subgroups. Let z,y € B(G). Fix a set of distinguished
double coset representatives D, , for G,\G/G5.

THEOREM 6.1 ([Mor93, Corollary 3.20, Lemma 3.21]). Let n € D, , then
Pyny = G(Go N Gry) /Gy

is a parabolic subgroup of G,./GL. Furthermore, the pro-p unipotent radical of G1 (G, NGny)
is GL(G, N G}w).
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By Section 6.1, D, ! is a set of distinguished double coset representatives for G;\G/G, hence

Py,n71$ = Gy(Gy N anlw)/Ggll

is a parabolic subgroup of Gy/G;. Furthermore, the pro-p unipotent radical of G;(Gyﬁanlx)
is Gé(Gy N G}L,lz).

Suppose P, ,-1, has Levi decomposition P, ,-1, = M, -1, X Ny,-1, and Py, has Levi
decomposition Py pny = My ny X N py.

1 G, Gy M, 1
1 Gy Gy (GyNGh-1y) —— Bypo1y, —— 1
I%G;(GyﬁG}L,lw)%G ﬂGn1)4> yn 1, — 1

1 Gl (G Jm Ghy) G. (GIHm Ghny) My 1
1 Gl G (Go N Gry) Py ny 1
1 Gglc Gy M, 1

6.3. Level zero parahoric restriction-induction. Following [Vig01lb] we recover a
convenient formula for the composition of level zero parahoric restriction and induction. The
first step is an application of the usual restriction-induction formula for compact induction.

LEMMA 6.2. Let z,y € B(G) and oy be a representation of M,. Then

Gl
G _+G N o Ga Goy gy B
Ry, oLy, (oy) =~ @ (demGgy Resc!fa, (mﬁGé oy) .
9eGy\G/Gx

Proor: We have o
R§, oIM (oy) = (ResG ode oinflg cry) )

and we apply the restriction-induction formula, Chapter 1 Lemma 3.5, to Resgm o indgy . g

Let G be a group, H be a subgroup of G and g € G. We let conj(g) : Rr(H) — Rr(9H) be
the functor that takes m € Rr(H) to 97 € Rp(9H).

Let G be a group and H a normal subgroup of G. In the following proof we identify the
category RE(G) of R-representations of G trivial on H with Rg(G/H). This allows us to
act on m € Rr(G/H) by conjugation by elements of a group which contains G' as a normal
subgroup.

LEMMA 6.3 (Level zero restriction induction formula). Let z,y € B(G) and Dy, a set of
distinguished double coset representatives for G,\G/G,. Let o be a representation of M.
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There is an isomorphism

RGm OIGy(O') ~ iMe (rft\,iyflz (U)).

P ny
n€EDy o

n--x

where rﬁ\;/i’ . denotes the Jacquet functor associated to the parabolic subgroup P, -1, of

the finite reductive group M, and z'%zny denotes the parabolic induction functor associated

to the parabolic subgroup P, n, of the finite reductive group M,.

Proor: We start with the isomorphism of Lemma 6.2, choosing D, ;. as a set of double coset
representatives for Gy, \G/G5, and consider the functor associated to one of the summands
with n € Dy,

V(o) =inve o inngﬂGw o Resg:ﬁ]any o conj(n) o inflg: ().

1
Thus ¥, : Rr(M,) — Rr(M,) which we also consider as a functor %gy(Gy) — 9%%1”(6}).
Let (m,V) € Rp(GL(Gy N Gyy)). By normality of GL in GL(G, N Gyy) and in G, any
[ €invgi o indgf( - has image in invg1 7. Moreover, again by normality of Gl if f e
. G
Gt (Ganay)
inflgy (o), by transitivity of induction

GGy
oinvgr mand g € Gl then g- f = f. Hence, letting ¥ = Resg:%Gny oconj(n) o

V(o) =invg o indgszny b

+(G2NGny) »

. . Gy . .G
= invg o de;(GmGny) o demGny

. . o GL(GaNGiny)
= de}E(GmGny) oinvg: o demGny 3.

By normality the map f — f(1) induces an isomorphism of representations of GL(G, N Gpy)
1
nvg: o indgiﬁ%”n:G"y) Y ~inflgi oinvging,, &
1
where infl;1 denotes the functor iﬁg”mcw (GxNGry) = Rr(GL(G2NGyy)) by letting GL act
trivially. Hence

U, (o) ~ indg”

. . Gy ) .
1 (GaGny) © inflgr oinvging,, © Resc .., © conj(n) o inflg 0.

The conjugation commutes with restriction thus

U, (o) ~ ind%

. . : Gy .
L (GaGiny) © inflg o invging,, © conj(n) o Reanilszy ) mﬂgé o.

A subgroup H of G acts trivially on 7 if and only if "H acts trivially on "7 hence

G . . . Gy .
U, (o) = de;(GmGw) oinflgi o conj(n) o Inver | g, © ReSGn,lszy o mﬂ% o.

Restriction is transitive, as functors Rr(Gy) = Rr(Gp-1, N Gy),

v (anllﬂcy)

G'y — Gy G?l
ReSGn,lszy = Reanflmey oRes 1

u(Gn=1,NGy) ’

By normality of G; in Gy and because G’zl/ acts trivially, the largest (G,,-1, N Gy)-submodule
on which (G}_,, N G,) acts trivially is equal to the largest G (G,-1, N G, )-submodule on
which Gzl;(Gwlrlx N Gy) acts trivially. Furthermore, by normality of Gllj in Gy,

(Gne12 NGy /(Gy N Gp-1,)(Ghory NGy) = Go(Gro1, N Gy) /G(Gh_1, N Gy).

n~lx n~lz
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Hence we can identify the (G,,-1, N Gy)-submodule on which (G; NGp-1,)(Gh_1, NG,y) acts
trivially with the G}J(Gn_lx N G,)-submodule on which G} (G} _,, N G,) acts trivially. Thus

n-lx

i 1Ga . . . Gy .
U, (o) ~ de;(szGny) oinflg1 o conj(n) o VGGt nG,)© RebG}/(Gn_lszy) oinflgi 0.

Invariants and coinvariants under a pro-p group are isomorphic, thus
. . . G .
U, (o) ~ 1ndG1(G (Gny) © inflg1 o conj(n) o oVl | na,) OReng(Gflmey) oinflgy 0.
By Theorem 6.1 we identify
sz”y = Gi(Gr N Gny)/Giv P n~ly = G;(Gy n Gn’lz)/Gl

Y, Y

M, = G,/GL and M, = Gy/Gzl/. Hence

i M, . . .
U, (o) ~ indp* oinfly, ,, o conj(n) o coinvy ., © Res o.

yn 1g

Therefore

RS, 015, (0) = € il ( . (a)).

’I’lEDy z

PROOF: [Proof of Theorem 5.2] By Lemma 6.3,
" M,
Homg (IMI(UJC) IM gy ) @ Homjy, (o’x,zpz - (TPJ » (ay)))
nEDy
Hence
Homg (157, (02),15;, () ) # {0}

if and only if there exists n € D, ; such that

Homyy, <Uz,2% "yn(rg%nilx (O'y))> # {0}.

Assume there exists n € D, , such that

n
Homy, (Uz,i%”:‘ny (Tﬁ\fy L (O'y))> # {0}.

y,n
By cuspidality of o, P, ,-1, = M,; hence G;(Gy N Gn—lx)/G;‘} = M,. By cuspidality of oy,
Pyny = My; hence GL(G, N Gyy)/GL = M,. Thus

Homyy, (03,"0y) # {0}.
Therefore (G, 0;) and (Gy,0,) are associate. d
COROLLARY 6.4. Let G be an unramified unitary group, G, (respectively G,) be a maximal

parahoric subgroup of G, o, (respectively o) be an irreducible cuspidal representation of
M, (respectively M,). If

Homg (15, (02), 15, (¢,)) # {0}

then (G, 0,) and (G, 0y) are conjugate.

PRrROOF: By Theorem 5.2 the R-types (G, 0,) and (Gy, 0y) are associate. If G, and G, are
not conjugate then for all g € G, in particular n € D, ;, the group G, N Gy, must stabilise
an edge in the building and hence is not maximal. Thus it cannot surject onto either M, or
M,. Hence there exists n € D, , such that G, = Gy and

Homyy, (04, "oy) # {0},

i.e. 0, and o, are conjugate. O
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6.4. Maximal parahoric subgroups and irreducibility.

LEMMA 6.5 ([Vig01b, Lemma 4.2]). Let (K, o) be an R-type. For all irreducible ¢-modular
representations 7 of G, suppose that o is a subrepresentation of Res% 7 implies that o is a
quotient of Res& 7 and that dimg Homg(ind% o, ind% o) = 1. Then ind% o is irreducible.

PROOF: Let 7 be an irreducible quotient of ind% o then
{0} # Homg(ind% o, ) ~ Homp (o, Res$ )

by reciprocity. Hence, because ¢ is irreducible, ¢ is a subrepresentation of Res?( 7w and thus,
by our hypotheses, a quotient of Resg’; 7. Hence

{0} # Hompg (Res$ 7, 0) ~ Homg (7, Ind% o)

by reciprocity. Thus we have nonzero G-morphisms ¢ : 7 — Ind[G( o and @9 : ind?( o — .
The composite ¢ = @1 0 9 gives a nonzero G-morphism indf(a — Ind%’;a with image
isomorphic to .

By reciprocity and Chapter 1 Lemma 3.5
Homg (ind% o, ind$ o) ~ H Hompg (0, ind% o 5 ResglS o i 90)
K\G/K
~ Homg(ind% o, Ind$ o).
Thus dimpL(Homg(ind}G( o, Ind}G( o)) =1, and for any 1) € Homg(ind?( o, Ind?( o) there exists
r € R such that ¢ = r¢. But the embedding
(e : ind% o — Ind% o) € Homg(ind% o, nd¥ o),

hence 7 ~ ind% o and ind% ¢ is irreducible. O

LEMMA 6.6 ([Vig01lb, Proposition 7.1]). Let G be an unramified unitary group, G, be a
maximal parahoric subgroup of G and o be an irreducible cuspidal representation of M,.
Then R%I (I%‘Zz(a)) ~ ¢ and I%‘Zz(a) is irreducible. Furthermore, if G, is a maximal parahoric
subgroup of G not conjugate to G, then R%U (IGZ(O')) = {0}.

PrOOF: By Lemma 6.3, because G, is equal to the full stabilizer of the vertex x hence
G \G/Gy ~ 1,
R§, (15 (0)) ~ 0.

Let 7 be an irreducible quotient of IJ\C}T (o) then

{0} # Homg (I}, (), ) = Homay, (o, Rf, ()

and o is a subrepresentation of R]Cé[w (m).

If G, is a maximal parahoric subgroup of G' not conjugate to G then, by Lemma 6.3,

R, (157, (0)) = {0}

because P, -1, is properly contained in M, and o is cuspidal thus the Jacquet modules
rg[z _, (o) vanish.

Yy

By Theorem 3.3, 7 is level zero hence there exists a maximal parahoric subgroup G, of G such
that R%z () is non-zero. Assume R%y (m) # {0} then, by exactness, R%y (If{x (o)) # {0}, a
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contradiction.Hence R, () # {0} and, by exactness,

RGE (r) ~o.

Because G is pro-p and normal in G, by Chapter 1 Lemma 3.2, as representations of G,
T~ Rf/[m (m) @ m(GL).

Thus inflg1 o is a direct factor of Resgz .

Furthermore
dim(Homg(IAG/Iz(U), Igfz(a)) = dim(Homy, (o, R%z o IJC\Z (0))
= dim(Homyy, (0,0)) = 1.
Therefore, by Lemma, 6.5, I%I (o) is irreducible. d

6.5. Cuspidal level zero representations.

LEMMA 6.7. Let G be an unramified unitary group and (w, V) be an irreducible representation
of level zero of G. Suppose 7 contains a maximal and cuspidal level zero R-type (G, o). Then
7 is cuspidal.

PROOF: As 7~ IAG/IZ (o), by Chapter 1 Theorem 6.1, 7 is cuspidal. O

REMARK. By Chapter 3 Sections 4 and 5, o appears in the decomposition modulo ¢ of a
cuspidal f-adic representation A. In this case we can adapt the lifting argument used for
GL,(F), [Vig96, Chapter 3, 3.3, to give a proof of Lemma 6.7. In the f-adic case the
representation Iglz A is irreducible and cuspidal, [Mor99, Section 2]. Decomposition modulo

¢ commutes with compact induction, by Chapter 1 Corollary 5.2,
do(15, A) = (17, deA],

and I§; o is contained in d,(I§; ). By Chapter 1 Lemma 5.4, dy(ind§; A) is a sum of
irreducible cuspidal representations. Hence I%z o is cuspidal and 7 ~ I]\G/[z .

The next two lemmas are applications of the theory of G-covers. Hence we specialise to an
unramified unitary group in three variables. Let J be the standard Iwahori subgroup of G
and Jr =TN7J.

LEMMA 6.8. Let G be an unramified unitary group in three variables. Let (G, 0) be a
maximal cuspidal level zero R-type in G with o a cuspidal subquotient of i%/[mx where B is

the standard Borel subgroup of M,. Then 7 ~ I%z o is a subquotient of zg(ind%; X)-

PROOF: By exactness, Ig[z o is a subquotient of Iﬁ‘}m (i%{’x) and we have

. xX) = indgz inflgy z'%/[zx ~ indgz ind?’” inflj1 x

~ ind§ infly1 x.
By Lemma 4.7, (J,%) is a G-cover of (Jp,x). Hence, by Theorem 4.12, ind§ infly1 x =~
i%(ind3, x)- O

LEMMA 6.9. Let G be an unramified unitary group in three variables. Let (7,)) be an
irreducible cuspidal representation of level zero of G. Let (K,o0) be a cuspidal level zero
R-type contained in 7. Then (K, o) is maximal.
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PROOF: Suppose that (K,0) is a cuspidal level zero R-type contained in 7 which is not
maximal. Thus K =7, and by Lemma 4.7 (J,0) is a G-cover of (Jr, or). The representation
rgﬂ # 0 by Corollary 4.11 . Thus 7 is not cuspidal. O

REMARK. For /-adic representations the analogous theorem is true for a general p-adic re-
ductive group, [Mor99] . Any non-maximal cuspidal ¢-adic type is shown to be a G-cover
relative to some parabolic subgroup and Corollary 4.11 then implies the analogous theorem.

Assume that the Jacquet functor commutes with dp, i.e. [Tg odg] =dgo rg for all parabolic
subgroups P of G. By Chapter 1 Lemma 5.3, this is known for classical groups. Then if o
lifts to an ¢-adic representation, which is true if G = U(2,1)(E/F) and K is a non-maximal
parahoric subgroup, we can use the f-adic result and a decomposition modulo ¢ argument to
give an alternative proof of Lemma 6.9.

LEMMA 6.10. Let G be an unramified unitary group. Let G, be a maximal parahoric sub-
group of G for which we have an Iwasawa decomposition G = BG,. Let B =T x N be the
standard Borel subgroup of the finite group M,. Let x be an irreducible level zero character
of T and o be a cuspidal representation of M,. Then

G (.G M. (s T
Ry, (1Bx) = 553 (inveinr (Reszng, (X)))-
Furthermore, if IAG/IZ o is a subquotient of igx then
‘Mz .
o € [ (invesrr (Reshoe. (1)
and hence is not supercuspidal.
PROOF: By the restriction-induction formula, Chapter 1 Lemma 3.5, and the Iwasawa de-

composition G = BG, we have
Gl

z

12

. & WG )
R§. (i%x) = (Res&_ (i%x)) H Ind?BmGz (ResPnc. Y(X))

B\G/G.

(mdGrg, (Resfg. ()

We proceed with similar arguments as those given in the proof of Lemma 6.3. We identify the

1
z

¢

1
categories Rp(M,) and SR% (G,) representations of G trivial on G1. Because G! is normal
in G, and N NG, acts trivially on infly(x)

G, Gl G, . . B .
(Indpf g, x)7= ~ Ind(BmGZ)G; oinflgi oinvginpg o Resgng, oinfly (x)

~ Tnd%:

. . . T
(BG.)G1 © inflg1 oinfinng, o invgiqg o Respng, (X)

The character invGiﬂToResgﬂcz (x) of TN G, is trivial on T N G and identifies with a
character of T and we have
)G

G. L oM. T
(Indf, X)7* ~iz” invgiar © Restng, (X)-

Thus, by exactness of level zero parahoric restriction and because RICC}Z (I%Z o) =o0,0is a
. M. - T
subquotient of i%* invginy o Respng, (x)- O
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7. LEVEL ZERO TYPES FOR UNRAMIFIED U(2,1)(E/F)

Let G be the unramified unitary group U(2,1)(E/F). Then G has two classes of maximal
parahoric subgroups, Chapter 1 Section 2.3. We fix representatives

Op Op Pg'
GxZMg,(OE)ﬁG, Gy: Pe Op O | NG,
Pe Pe Og
which both contain the standard Iwahori subgroup
Or O Og
J=|Pg Op Og|NG.
Pe Pe Og

Both G, and G, are equal to their normalizers in G, M, ~ U(2,1)(kg/kr) and M, ~
UL, 1)(kp/kr) x U(L)(ke/kF).

7.1. The level zero cuspidal representations of unramified U(2,1)(E/F). The re-
sults of the preceding sections, in particular Lemmas 6.6 and 6.9 together with the decom-
position matrices of Chapter 3, allow us to completely list the irreducible cuspidal level zero
¢-modular representations of U(2,1)(E/F).

THEOREM 7.1. Let G be an unramified p-adic unitary group in three variables and suppose
¢ # 2,3. Every irreducible cuspidal ¢-modular level zero representation of G appears in the
decomposition modulo £ of an irreducible cuspidal ¢-adic level zero representation of G. When
01 ¢*—q+1 all irreducible cuspidal ~-modular level zero representations lift. If £ | ¢> —q + 1
there are ¢+ 1 irreducible cuspidal -modular level zero representations I%Zz E;} 7 that do not
lift. All irreducible /-modular and f¢-adic cuspidal level zero representations of G are listed
in the table; for the conditions on x and 6 see Chapter 3 Sections 4 and 5.

Irreducible f-adic Decomposition modulo ¢
level zero cuspidal llg—1 llg+1 (> —q+1
197, vx 19, 7x 157, 7x 19, 7x
15 om0 15,905 N, o5 nLox@li, g
Igh 01,0 IJC\;/Iw or,5 IJ?/Ix o1, 8 Ilcélm 07,5

G G (= G (= — G = _
Ly, (one®o) Iy, (@r3®0) Iy, @rnz©0) 15, (05 ©0)

ProoOF: By Corollary 6.4 all cuspidal level zero ¢-modular representations of G are of the
form Iﬁ,z o where (G, is a maximal parahoric subgroup of G and ¢ an irreducible cuspidal /-
modular representation of M,. Furthermore these are all cuspidal and irreducible by Lemmas
6.6 and 6.7, and are distinct by Corollary 6.4. Suppose ¢ is an irreducible cuspidal f-adic
representation of M, with

do(o) = P
i=1

By Chapter 1 Corollary 5.2 decomposition modulo ¢ commutes with compact induction. Thus

4 (15, 0) = [ind§_ dro]
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n
_ |inde. o,
i=1
n
G =
= @ IMz ;.
=1

The remaining statements follow from the decomposition matrices, Chapter 3 Sections 4 and
5, of the finite groups M, and M,. O

8. QUASI-PROJECTIVE REPRESENTATIONS

A representation (71, V1) of G is called quasi-projective if, for all representations (2, Vs) of
G and all surjective morphisms
¢ € Homg(V1, Va),

the homomorphism

Endg (V1) — Homg(Vi, V2)

a— poa

is surjective.

THEOREM 8.1 ([Vig98, Appendix, Theorem 10]). Let (7, V) be quasi-projective and finitely
generated. Let (o, W) be a be a representation of G such that Homg(V, W) # 0. The map
taking W to Homg(V, W) induces a bijection between the irreducible quotients of V and the
simple Endg(V)-modules.

Irreducibl tati w

rreduable Tepresentations +— {Simple right Endg(V)-modules}

such that Homg(V, W) # {0}
Let K be a closed subgroup of G, (7,V) € Rr(G) and o € Irrg(K). The o-isotypic component
(77, V7) of (m,V) is the largest subrepresentation of Res% (o) which is semisimple and all of
whose irreducible subquotients are isomorphic to . Hence

w7 = Z m(o)
meEHom (a,ResE (7))

is equal to the o-isotypic component of 7.

LEMMA 8.2 ([Vig01b, Lemma 3.1]). Let (K, o) be an R-type of G and V = ind% o. If there
is a decomposition

V=V"&YV,
as representations of K such that no subquotient of V, is isomorphic to ¢ then V is quasi-

projective.

LeMMA 8.3 ([VigO1b, Proposition 6.1]). Let (G, o) be a cuspidal level zero R-type. Then
1?42 o is quasi-projective and finitely generated.

PROOF: As compact induction sends finitely generated representations to finitely generated
representations, I]C\'le o is finitely generated. Let V be the space of If{z o. As Gl is pro-p, by
Chapter 1 Lemma 3.2,

V=V g V(Gh).
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No irreducible subquotient of Resgz (V(GY)) is trivial on G hence no irreducible subquotient
can be isomorphic to . Because ¢ is cuspidal, by Lemma 6.3,

VO~ EB "o.

Dz,z
Therefore VE* ~ V7 and we have a direct sum decomposition V =V, ® V7. O
LEMMA 8.4. Let G be an unramified unitary group in three variables and B = T x N be

the standard Borel subgroup of G. Suppose ¢ # 2,3 and ¢ | ¢+ 1. Let x be an unramified
character of T' such that Indg x is reducible. Then 1¢ is an irreducible quotient of Indg X-

Proor: By Theorem 8.3, ind? 15 is quasi-projective and of finite type. Thus, by Theorem
8.1, the map:
M, : Rr(G) = H(G,T,15)-Dod
T Homg(ind? 15,m)

induces a bijection between irreducible quotients of ind? 15 and simple H(G, 7, 15)-modules.
Let 37 =T N7J. By Theorem 4.12

ind§ 15 ~ Ind§ ind?, 15,.
Thus, an irreducible quotient of Indg X is an irreducible quotient of ind? 15 as x is a quotient
of indgT 13,.
By Theorem 4.8
Hy,(G,3,15) ~ Ty [fi.fo: (i+1)?=(fo+1)*=0].

The Hecke algebra HE (T,371,15,) ~ F;[X], and the inclusion jp is induced by mapping X
to f1f2. Suppose o is a quotient of Indg x- By Theorem 4.10

5(Miy(0)) = My, (r§(a)).
G

If Indg x is reducible and o is a proper quotient, then by the geometric lemma r%(o) is a
character. Hence Mj,(o) is a simple one dimensional Fy-module. By Corollary 4.9 when
¢ | ¢+ 1 there is a unique one dimensional Fy-module of HE(G, J,15). By reciprocity 1¢ is
always an irreducible quotient of ind? 15, hence 0 ~ 14. (]

LEMMA 8.5.

(1) Suppose £ # 2,3 and £ | ¢*> — ¢+ 1. Then
|{Irreducible quotients of Indg X @ X is unramified and Indg X is reducible}| <2
(2) Suppose £ # 2,3 and £ | g — 1 or £ is banal. Then

|{Irreducible quotients of Indg X : X is unramified and Indg X is reducible}| <4

PROOF: The proof is similar to the proof of Lemma 8.4. Suppose ¢ # 2,3 and ¢ | ¢*> —
q + 1. Then by Corollary 4.9 there are two distinct characters of ’HE(GJ7 1), hence if
the unramified principal series representation Indg x is reducible then there are two possible
quotients. One of these is 1g. Similarly if ¢ # 2 and ¢ is banal or £ | ¢ — 1, there are four
possible quotients. O
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9. REDUCIBILITY POINTS OF UNRAMIFIED REPRESENTATIONS OF U(2,1)(E/F)

Let G = U(2,1)(E/F) be the unramified unitary group in three variables. In the ¢-adic case
the reducibility points of the parabolic induction of G are worked out in [Key84], which
are the same as the reducibility points of SU(2,1)(E/F). Recall, Ty denotes the diagonal
maximal F-split torus

Ty = {diag(z, L YH:ze F*},

isomorphic to F'*, T the centraliser of Ty in G,
T = {diag(z,y,7 ') : 2 € EX, y € B}
isomorphic to EX x E', B =T x N the standard Borel subgroup containing T’

S—
B=|0 x x|NG.
0 0 =

The Weyl group W ~ Cy and if w € W is the nontrivial element, then

dlag($7 Y, E71)w = diag(filv Y, QZ‘)

Let x1 be a character of E* and 2 be a character of E'. Let x be the character of T' defined
by
X (diag(z,y,771)) = x1(2)x2(27 " 'y)

1

which is well defined because z — Z ! is a surjective map E* — E'. Every character of T

appears in this way; we can recover x1 and ys from y
xi(z) = x(diag(z,z/2, 7)),  xa(y) = x(diag(L,y, 1)).
The character xo factors through the determinant and
iG(x) = i%(x1 ®1)(x2 o det)

where x1 ® 1 is defined by x1 ® 1(diag(x,y,Z7!)) = x1(z). Hence the reducibility of ig(X)
is completely determined by that of ig(Xl ® 1). The character y is regular when x1(z) #

x1(Z)71, i.e. when y; is non-trivial on the norm 1 elements E' of E.

The modulus character dp : T — R* is given by

z 0 0
sglo y 0 _ q74valp(:v) )
00 z!

Thus dp is trivial when ¢ | ¢ — 1 and when ¢ | ¢ + 1.

9.1. Harish-Chandra j-functions. We suppose that G has discrete co-compact sub-
groups. By a p-adic field we mean a non-archimedean local field of characteristic zero By
[BH78, Theorem A, if F' is a p-adic field and G is the F points of a reductive group defined
over F' then G has discrete co-compact subgroups. Thus, while it may not be necessary, we
specialise to when G is an unramified p-adic unitary group in three variables.

1
Fix a character x >~ x1 ® 1 of T. The reducibility of the representation Indg 0% ®x is related
to the order of the zero at 1 of the associated j-function j,, [Dat05].
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By [Dat05, Proposition 8.2], given an irreducible ¢-modular representation o of T which lifts
to an f-adic representation o, the £-modular j-function j, is given by restriction of the ¢-adic
j-function jz. All irreducible /-modular representations of T' lift. Let 01 (j,) denote the order
of vanishing of j, at 1.

THEOREM 9.1 ([Dat05, Proposition 8.4]). Suppose ¢ # 2. Let G be an unramified p-adic
unitary group in three variables and let x be an irreducible /-modular representation of T,

(1) If x* # x, then ig(éé ® x) is reducible if and only if 01 (jy) > 1
(2) If X = x, then 01(jy) > —21i is even, and:
(a) If 01(jy) = —2, then 23(62 ® x) is irreducible.
(b) If 01(jy) = 0, then 23(52 ® x) is reducible and semisimple.
(c) If 01(jy) = 2, then ig(éé ® x) is reducible.

In fact, in our case, there is a necessary and sufficient condition for a cuspidal representation
1

appearing in the composition series of i% (0% ® ).

THEOREM 9.2 ([Dat05, Proposition 8.6]). Suppose ¢ # 2 prime. Let G be an unramified
p-adic unitary group in three variables and x be an irreducible ¢-modular representation of

1
T. Then o(j, (1)) > 2 if and only if ig(dé ® x) has a cuspidal subquotient.

REMARK. Theorems 9.1 and 9.2 are special cases of the propositions given in [Dat05] which
we have not stated in full generality. However we have to specialise to a group with discrete
cocompact subgroups to apply Theorems 9.1 and 9.2.

Let wg/p be the unique unramified character of E* whose restriction to F'* is the unique
character related by class field theory to the quadratic unramified extension of E/F. Assume
¢ # 2,3. Using the computations of [Key84, Section 5] and Theorems 9.1 and 9.2, we can
calculate the reducibility points of Ind%(y):

THEOREM 9.3. Let G be an unramified p-adic unitary group in three variables. Let y = y1®1
be an unramified character of T. Then iG(x) is irreducible unless y is one of the four
1 3

characters 17, 05", wp/p® 5" and wp/r @0 " . Furthermore, if i%x is reducible then it has
length two if ¢* # —1 mod ¢ and length greater than or equal to three if ¢> = —1 mod £.

Proor: By [Key84, Section 5],

k(@ — x1(@E)) (g + x1(@wr)) (72 — x1(@wr) (¢ + x1(@E))
(1 -x1(@we))1+x1(we)) (1 —xi(@we))+ x1(@E))

Jlx)=gq

1
with k£ € Z. Thus ig(&g ® x) is irreducible unless x1(wg) = —¢*!, ¢*2, by Theorem 9.1,
1

. +1 +1
which corresponds to x = 057, wp/F® og*

If ¢ = —1 mod ¢, then ¢*2? = ¢™! mod ¢ and there are only two cases. Equivalently, notice

1 =1
that when ¢® = —1 mod ¢ we have 6;2 =wg/F ® 61;4. Applying Theorem 9.2:

(L) Ife]qg—1,
(a) In the case x = 6B , Ol(jX) = 0 and the length of 13(52 ®X) 1s two.
(b) In the case, x = wg/r ®5B , 01(jy) = 0 and the length of 13(62 ® x) is two.
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1
(2) If £| g+ 1, then 01(jy) = 2, and the length of ig(dg ® x) is greater than or equal to
three. )
3) If £ | ¢> — ¢ + 1, then 01(jy) = 2, and the length of iG(6% ® x) is greater than or equal
X B\%B
to three.

vl
U

Finally twist by the character 6,2.

10. DECOMPOSITION OF i%(17)

In this section we do not appeal to Theorems 9.1 and 9.2, hence the decompositions we obtain

also apply when F' is of positive characteristic.

THEOREM 10.1. Let G = U(2,1)(E/F) be the unramified unitary group in three variables,
and assume ¢ # 2,3. Then

(1) If ¢ | ¢— 1 or if £ is banal, then i§1 has length two with an irreducible subrepresentation

isomorphic to 1 and an irreducible countably infinite dimensional quotient Stq.

0 lg iG1r Ste 0

Furthermore, if £ | ¢ — 1 there is a direct sum decomposition:
ing =1g ® Stg -

(2) If¢| g+1, then igl has length six with a unique irreducible subrepresentation isomorphic
to 1@, a unique irreducible quotient isomorphic to 1g, and four cuspidal subquotients
isomorphic to

G = G = G =
L, 71 W, 0,50 101, 01 g

with Igjz U7 appearing with with multiplicity 2.

0 lg iG1r S

Q
=)

—— P —— J— O

—
Q

O —

The quotient St is reducible with subrepresentation 7 with 7 ~ Iffy Op, g ©T,
~ G - ¢ - G =
[71'] ~ IMQ; VT (a2} I]wz VT ) I]\/[f UTZE.

(3) If £ | ¢ — ¢ + 1, then i%1 has length three with a unique irreducible subrepresentation
isomorphic to 1g, a unique irreducible quotient 7 with 74 (n) = ép, and one cuspidal

subquotient isomorphic to I%;/Iz o7 5
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|

o g

0 la iG1r Sta 0
0

n

PrOOF: The space of constant functions is an irreducible subrepresentation in all three cases

isomorphic to 1. We denote by Stg the quotient of ig 17 by 1g.

0 la iG1r St 0

By the Chapter 1 Lemma 3.12, rg(ing) has length two and its semisimplification is
[rG(i1r)] = 17 ® 0p.
By exactness of the Jacquet functor, knowing that 1g is a subrepresentation of ing with

T‘g(lg) =1, Tg(stg) ~ {p.

0 Ip r(iGir) 0B 0

Because the Jacquet functor of a quotient of a parabolically induced representation is non-
zero, Chapter 1 Lemma 3.11, and a quotient of St is a quotient of ing there is an irreducible
quotient 1 of Stg which is a quotient of ing with Tg(n) = dp. By exactness of the Jacquet
functor all other irreducible subquotients of St must be cuspidal. Hence either ing has
a unique irreducible subrepresentation and a unique irreducible quotient 7, which could be
Stg, or 1¢ is a direct factor. If 14 is a direct factor then ing ~ 1g @ St and Stg must be
irreducible; otherwise the irreducible subrepresentation of Stg would be a subrepresentation
of ing and not cuspidal.

Let G be one of the two standard maximal parahoric subgroups G, and G, of G. The
next step is a slight simplification of the proof of Lemma 6.10. By the restriction-induction
formula, Lemma 3.5, and the Iwasawa decomposition G = BG, we have

Gl

x

. . G} .
R§7 (i%1) = (Res@, (i%1)) * ~ | J] mdSi~, (Resfprg, 9(1))
B\G/Gy

GL
G ®
~ (IndBmGz(Resgme(l))) .
Because G is normal in G,

G, Gl G,
(IndBmGz 1)~z ~ Ind(BmGz)G; 1.

Inflation and induction commute hence

Ind%:

(BNG.)GL 1 ~inflg i L.
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By Theorem 3.3, all subquotients of igl are level zero. Thus every irreducible subquotient
must have non-trivial invariants under the pro-unipotent radical of one of the two maximal

parahoric subgroups G, and Gy. Furthermore, we know that
RS, (i51) ~ inflgy i2+1
and we listed the subquotients of i%f[zl in Chapter 3. Let Stps, denote the, not necessarily

irreducible, quotient of i%[zl by 1, -

M1 Sty, ——— 0

By exactness of Gl-invariants

(%) R, (Ste) ~ Stas, .

All cuspidal level zero representations of G are listed in Theorem 7.1. These cuspidal sub-

quotients are isomorphic to I]\G/Iz o where G is one of the two maximal parahoric subgroups

of G and o is a cuspidal representation of M.

Let G, be one of the two maximal parahoric subgroups of G, and ¢ a cuspidal representation
of M,. By Lemma 6.3, because G, is equal to the full stabilizer of the vertex z,

RJ%Z OI%Z (0) ~o.

Furthermore if (7, V) is a level zero irreducible representation of G, then (V)Gi ~ ¢ implies
that m ~ indgz o. Note that this requires o to be cuspidal.

By Lemma 6.6, for all cuspidal representations o, of M,,

(t1) RS}, o 17, (02) = {0}.
Similarly, for all cuspidal representations o, of M,,
(t2) R, o1, (o) = {0}.

Using these properties of invariance under the pro-p unipotent radicals of the maximal para-

horic subgroups of G we can identify all subquotients of the induced representation Indg 1:

If | q—1, or £is banal for G then, by (x) and Chapter 3 Sections 4.1 and 5.1,

R, (Sta) = Sty(2,1) (ks /kp) and R]\G/Iy(StG) = StU(1,1) (ke /kr)

where Styy, are irreducible ¢-modular representations of M,. Because there are no cuspidal
representations in either the Gl-invariants or the Ggl!—invariants Ste cannot have any cuspidal
subquotients, and by exactness of the Jacquet functor ing has length 2.

By Chapter 1 Theorem 3.5,
(ing)N >~ zgéB
The contragredient is a contravariant and exact functor, Chapter 1 Theorem 3.1, thus we

have an exact sequence of representations of G:

0 St %68 lg 0
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If | g+ 1, then 0 = 1. Hence 1¢ appears as a quotient of ig 17 in these cases. If £ | ¢ — 1
because ing is of length two, 15 is a direct factor of ing:

i1y = 1¢ @ Stg .

If £| ¢+ 1 then, by (%) and Chapter 3 Sections 4.2 and 5.3,
[Rg\;/lz (St(;)] = TMI SeNZ SN2 S ET%E'

The representation R]C\;/Iw (St) has a cuspidal subrepresentation ¢. If 15 was a direct factor of
i%17 then, by exactness, R]C\*'/Ix (Ste) would be a subrepresentation of Rg’;[z (i%17) = Ind]\g’c 1
contradicting the cuspidality of (. Hence 14 appears twice in the composition series of ing,
as the unique irreducible subrepresentation and as the unique irreducible quotient. Further-
more, ing has length greater than equal to three and there is a proper subrepresentation 7

of Stg. All irreducible subquotients of 7 are cuspidal by exactness of the Jacquet functor.

Thus 1¢ is a quotient of Ste with R]C\;/[m(].g) = 1p7,. By exactness

[R?/[I (7‘(’)] =v{dryd ETQ,E
is cuspidal. Therefore, by reciprocity,

(Isz vr @15, 77 01§, 7y, ’g) e [n].
Similarly,
G T —

[R]V[y(StG)] = 1My @ 0T1,§'

Therefore, by exactness,
R, (7) =57, 5
and by reciprocity
Homg(Ij\G@ G, 5, m) = Homay, (07, 5, R%;/[z (m)) # {0}.

Thus I]C\"/[y O, p is an irreducible subrepresentation of 7. In fact, I]C;}y T, p Is a direct factor of
7 by applying the same reciprocity argument to Rﬁlz (m). Hence, because every irreducible
subquotient must have nontrivial invariants under one of the two maximal parahoric sub-
groups,
_ 16 — G = G = G =
(7] = Tor, 71 © Tog, 71 © T, 0, 5 © 13y, T 5

If £| ¢> — ¢+ 1 then, by (x) and Chapter 3 Sections 4 and 5.2,

RS, (Sta)] = T, ® Tpy 5 and [RE) (Sta)] = Sto 1) (e /kr)
where 7. 5 is irreducible and cuspidal and Sty (1,1)(kp/kp) 18 irreducible. By cuspidality of
G, 3 it cannot be a quotient of Styy, ~ R]C('h (Ste). Hence 7, 5 is an irreducible subrepresen-

tation of RgII(Stg) and, by reciprocity,
Homg (15, 77, 5, Ste) ~ Homay, (34, 5, RY7, (Sta)) # {0}

Thus I]\G/[z 07, g 1s a subrepresentation of St and ing has length three. By exactness of level
zero parahoric restriction the irreducible quotient 7 of Stg has R%‘}Z n = 1y, and Rg\;/[y n =

StU(1,1) (ke /o) O
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_1
11. DECOMPOSITION OF i (wpg/p ® d5")

In this section we finish our description of the decomposition of the unramified principal series
representations of the unramified unitary group in three variables. It remains to describe the
1 _3
decomposition of ig(wE/F ® 05*) and its contragredient ig(wE/F ®0p*) when £ is banal or
_1
£ | g — 1. The length of ig(wE/F ® dz*) is two because there are no irreducible cuspidal
1

representations in R, (i%(wg/r ®65*)), by the same proof as Theorem 10.1 when £ is banal
M. \"B / B
orl|qg—1

_1
We let U denote an irreducible subrepresentation of ig(wE /F ®6p*) with quotient V. Thus

_3 ~ ~
the contragredient ig(wE /F ®0g*) has V as an irreducible subrepresentation and U as an

irreducible quotient.

0 U i§ (g B b51) V0

_3
0 v ig(wE/F@)&B“) U 0

When ¢ | ¢ — 1 the character dp is trivial. If E/F is p-adic, by Theorem 9.1, when ¢ | ¢ — 1,
ig(wE/F) is semisimple.

12. REDUCIBILITY POINTS; RAMIFIED CHARACTERS

Using Theorem 9.1 we find the reducibility points not yet considered where the induced
representation has cuspidal subquotients. Then we decompose the level zero induced repre-

sentations with this property.

THEOREM 12.1. Assume ¢ # 2,3. Let G be an unramified p-adic unitary group in three
variables. Let x = x1 ® 1 be a ramified character of T. Then ig(x) is semisimple unless
¢| g+ 1and x; | F* is trivial. Furthermore when ¢ | ¢+ 1 and x; | F* is trivial, i%(x) has
length greater than or equal to three.

PROOF: Assume ¢ # 2,3. When x; is ramified if x1 |px is nontrivial then the j-function is
1

a power of ¢, by [Key84, Section 5], hence, by Theorem 9.1, ig(éé ® x) is irreducible. By

[Key84, Section 5|, if x1 |px is trivial, or equivalently *y = x, then

g+ x1(@we) (¢ + xa(@E))

(1) =q (1+x1(@p)(A + x1(@E))

1
for some 7 € Z. Thus, by Theorem 9.1, i%(63 ® x) is semisimple unless o1 (j,) = 2 which
occurs if and only if £ | g+ 1 because x1(wg) = 1. Because ¢ | ¢+1, the character dp is trivial.
By Theorem 9.2, when ¢ | ¢ + 1 the length of i%(x) is greater than or equal to three. O

We consider two cases:

(1) The level zero case: If x; is trivial on 1 + Pg. Then x1 = inﬂ<wE> Xram Where Xram i a

character of O, because E* = O (wg). The character x;am is trivial on 14 Pg. Thus
Xram identifies with a character X,,,, of k. Furthermore X,,,, is trivial on kj because
X1 is trivial on F* hence on O and 1+ Pp.
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(2) The positive level case: If x; is not trivial on 1+ Pg. By smoothness there exists i € N

such that x; is trivial on 1 + ’PE. Similarly y; = inﬂ< Xram With Xram a character of

(’)E trivial on 1 + P}é.

wE)

In this chapter we only consider case (1) when ¢ | ¢ + 1 and the induced representations are
of the form ig(inﬂ<wE> Xram ® 1).

THEOREM 12.2. Let ¢ | g + 1. The representation ig(inﬂ<wE> Xram @ 1) has length four with
cuspidal subquotients isomorphic to If/[m (@7, 5) and IAG4y Cra® 1). Furthermore,

ig(inﬂ<wE> Xram @ 1) has a unique irreducible subrepresentation and a unique irreducible
quotient, the irreducible quotient is isomorphic to the irreducible subrepresentation and we
have the following exact diagram:

0

|

IJ\G/II (@r,5 @ Ichfy @r5®1)

0 ¢ Zg (inﬂ(wE> Xram & 1)

|
l
%

Proor: By Theorem 12.1, ig(inﬂ<wE> Xram ®1) is reducible with length greater than or equal
to three. By Chapter 3 Sections 4 and 5

[RE7, (5 (0l ) Xram © 1))] = Tar, (Kram) © Tat, (eam) © T, s

(RS, (15 08l Xram © 1)] = (T, (Rran) @ 1) © (Tat, (Rram) ©T) © (7,5 @ 1),
By cuspidality of 01,50 R%z (ig(inﬂ<wE> Xram @ 1)) =~ Indgx (Xram ® 1) has a unique compo-
sition series

0 C Tar, (Xramm) & V & RE, (15 (10fl( ) Xram ©1)
with RS, (1% (infli ) Xeam ® 1))/V =~ Tar, (Xyam) a0d V/Tar, (Xram) ~ 1, -
Similarly, R%Zy (ig(inﬂ<w ) Xram @ 1)) has a unique composition series
0 C Tat, (Xramn) © T & W & REy, (15(infli ) Xeam @ 1))

with R, (15 (infl ) Xram © 1))/W = Tat, (Rram) © T and W/Tas, (Xyam) @ T~ 74, 5 © 1.
By the Chapter 1 Lemma 3.12, rg(ig(ian(wE) Xram ® 1))) has length two with

[Tg(ig(inﬂ<wE> Xram ® 1)))] = infli5 ) Xram @ 1@ infl iy Xram ® 1.

By exactness of the Jacquet functor, either ig(inﬂ<wE) Xram @ 1) has a unique irreducible
subrepresentation m; and a unique irreducible quotient (, or is semisimple. However, as the
length of ig(ian(wE) Xram ® 1)) is greater than or equal to three, it cannot be semisimple. We
let 2 denote the quotient of i (infl{ ) Xram ® 1)) by 1. Because ¢ and m; are not cuspidal,

by exactness of the Jacquet functor, rg(g ) and rg(wl) are non-zero and irreducible.
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By Theorem 4.12 and Lemma 4.7,
IJC\% (Xram ® 1) = Zg (ind%;" (Xram ®1)).

By reciprocity, ¢ is a quotient of I%j (Xram ® 1).

By Theorem 4.8, HE(G’ J, (Xram ® 1)) is generated by f, 1 and fy, and the quadratic
’q

relations

(fw, + 1) * (fw, +1) = (fwl,% +1) % (fwl,% +1)=0.

Thus HE(G , 3, (Xram ® 1) has a unique simple one-dimensional module M. Because

(3,infl 5 ) Xram ®1) is quasi-projective by Lemma 8.3, a simple module of Hg, (G, 7, (Xram®1)
corresponds to ¢ by the bijection of Theorem 8.1. By Theorem 4.10, because r§(¢) is irre-
ducible, ¢ must correspond to the unique simple one dimensional module of ’HE (G, 7, (Xram ®

1). Hence, if V is the space of ¢, V7" is one dimensional and the action of J is given by X,am®1.
By Chapter 1 Theorem 3.5,
(1% (infl ) Xeam ® 1)) 8% ((infl () Xram @ 1)),
as d0p is trivial. Furthermore
(infl (o) Xram ® 1)~ = (infl () Xram @ 1)

where X;,L, is the character of O} defined by

Xr_ain(x) = Xram(x_l)

for all z € OF.
Similar arguments, given for ig(inﬂ<wE> Xram & 1), apply to ig(mﬂwm Xram ® 1). We find:

(1) ig(inﬂ<w ) Xram ® 1) has a unique irreducible subrepresentation and a unique irreducible
quotient n;

(2) n corresponds to the unique simple one dimensional module of Hz, (G,3J, Xram © 1))
under the bijection of Theorem 8.1.

Let V be the space of . By Chapter 1 Lemma 3.2,
v =V" gy

and Res§ (invs1 7)) is one dimensional, hence isomorphic to (., ®1). By Chapter 1 Theorem

3.1, 77 is a subrepresentation of ig(inﬂ< Xram ® 1). Because

wE)

(le)m ~ PV
~1

77" is one dimensional hence must be isomorphic to (Xram ® 1). Hence 77 must be irreducible
and isomorphic to (. Thus ( appears twice in the composition series of ig(mﬂm ) Xram @ 1)
as the unique irreducible quotient and as the unique irreducible subrepresentation. Let 73
denote the subrepresentation of 7wy such that the quotient of mo by 73 is (. By exactness
of level zero parahoric restriction, R (m3) ~ G, 5 and R%/Iy (m3) =~ (Gp, 5 ® 1). Therefore,
by reciprocity, I]\G/LT (@1, 5) and I]\G/[y (@7, 5@ 1) are subrepresentations of 73. Every irreducible
subquotient of w3 must have nontrivial invariants under a maximal parahoric subgroup hence
3 =1, (77, 5) @1, (77,5 © 1) O

REMARK. Choose alift of infl 5y Xram ®1 to an integral ¢-adic character p of T'. By [Key84],

the induced ¢-adic representation ig(p) is semisimple of length two. By Chapter 1 Theorem
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5.1, ig(p) is an integral (-adic representation. We let L be a lattice in infl 5 ) Xram ® 1 and
ig(L) the induced lattice in ig(p). Note that, by a slight adaption to the proof of Chapter 1
Corollary 5.2, because L/AyL =~ infl,y Xram ® 1 is irreducible we have

Zg(lnﬂ(wE) Xram & 1) = Zg(L)/AZ(Zg(L))

Hence there is a lattice in the semisimple representation i%(p) whose reduction modulo ¢ is

ig(inﬂ<wE> Xram ® 1). This lattice i%(L) cannot be semisimple.

13. THE CUSPIDAL SUBQUOTIENTS OF i%(X)

Let x a level zero character of T. By Section 9, there exist characters 1 of EX and x» of E'

such that

Zg(X) ~ ig()ﬁ ® 1)(x2 o det).

Therefore the length of i%(x) is equal to length of i%(x1 ® 1). By Theorems 10.1 and 12.2,
we have described the decomposition of ig(xl ® 1) in the cases where the length is greater
than or equal to three. Let 75 =T NJ and le =TnNJ'. By Theorem 6.10,

R (1§ (x)) = i3 (v, (Rest, X))-
The character y is level zero if and only if both x; and xo are level zero and

R, (i5(x)) ~ i (invr,, (Resh (x1 ® 1)))(invz, (Resh (x2)) o det).

By Theorems 10.1 and 12.2, we have described all parabolically induced representations with
x2 trivial which have irreducible cuspidal subquotients. Thus, the remaining parabolically
induced representations with cuspidal subquotients have y2 nontrivial and are a twist of a
case already considered. In these cases the cuspidal subquotients are twists of the cuspidal

subquotients of the parabolically induced representation with xs trivial by the same character.

14. SUPERCUSPIDAL SUPPORT

Let G =U(2,1)(E/F) be the unramified p-adic unitary group in three variables.

THEOREM 14.1. Let 7 be an irreducible smooth level zero f-modular representation of G.

Then scusp(7) exists and is unique up to conjugacy.

ProoF: By Chapter 1 Lemma 3.14, scusp(r) exists. Suppose 7 is not cuspidal then cusp(r) is
supercuspidal and, by Chapter 1 Theorem 3.13, cusp() exists and is unique up to conjugacy.

Hence scusp(r) exists and is unique up to conjugacy.

If 7 is a level zero cuspidal representation it is in the list given in Theorem 7.1 and we have
seen by the decomposition of the level zero principal series, Theorems 10.1 and 12.2 and
Section 13, that scusp(m) exists and is unique up to conjugacy. O

Let II‘I‘%[ (G) denote the set of isomorphism classes of irreducible level zero ¢-modular represen-
tations of G. Thus, by Theorem 14.1, we can partition Irr%e (G) by supercuspidal support. For
(L, o) a pair consisting of a Levi subgroup L of G and an irreducible supercuspidal representa-
tion o of L we let 2 denote the conjugacy class of (L, o) and let Irr(2) denote the set of all irre-
ducible representations of G with supercuspidal support €2. By Theorem 3.3, ¢ is a level zero
representation of L if and only if Irr(Q2) C Irr%é(G). Let X0 = {Q = (L,0) : o is level zero}.
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By Theorem 14.1,

Irr%e(G) = |_| Irr ().
Qexo

LEMMA 14.2. Let (G, 0y) and (G, o) be supercuspidal standard level zero F,-types in G.
Then I%w (ow) and I%Z(O'Z) have an irreducible subquotient in common if and only if they

are isomorphic.

PRrROOF: Suppose G, and G, are maximal then the result follows from Corollary 6.4. Suppose
G, is a standard maximal parahoric subgroup and G, is the standard Iwahori subgroup
of G. Then I]\G/Iz (02) is irreducible, by Lemma 6.6. Hence I%w (o) and I%Zz (o) have an
irreducible subquotient in common if and only if I]\G/Iz (02) is a subquotient of Iffw (0w). Suppose
I%’}z (02) is a subquotient of I%w(ow) then, by exactness, Rf/[z (Ifb (02)) is a subquotient of
R]%z (IJC\;/Iw (0w)). By Lemma 6.6, R%Z (IGZ(O'Z)) ~ ¢, and, by Lemma 6.3,

G (G ~ M, (M,
(%) RE. (15, 0w = @ it (e (ow):
nEDy, - ’
Because M,, does not have any proper parabolic subgroups, My = P, ,-1, and P, ny is a

proper parabolic subgroup of M,. Hence o, is a subquotient of i%znw ("o ) for some proper

parabolic subgroup of M, contradicting the supercuspidality of o,.

Suppose G, and G, are both equal to the standard Iwahori subgroup J of G. If I%ﬁ (01) and
I]%j (o2) share a common subquotient X then, because X is level zero, there exists a standard
maximal parahoric subgroup G, of G such that Rg&, (X) # 0. By exactness, R]CL’}U (IJC('{TJ (1))
and RI?/IU (Igfj (02)) share a common subquotient. Thus, by (%), there exist n1,ng € Dy, such
that ijg” (") and iABf[” ("209) share a common subquotient where B is the standard Borel
subgroup of M,. Thus ™oy is conjugate to ™oy in M, by unicity of supercuspidal support

in M,. Hence o7 is conjugate to o2 in G and Ig[j(al) ~ If/[j(@) O

By Lemma 14.2, we can partition Irr%e(G) by supercuspidal standard level zero Fy-types. Let
(G.,0.) be a supercuspidal level zero Fy-type. We write Irr(G,, 0.) as the subset of Irr%Z(G)
of irreducible subquotients of Iﬁ[z(az). Let O be the set of all supercuspidal standard level

zero Fy-types, up to equivalence, then

Irr%Z(G) = |_| Irr(G,, 02).
(Gz,02)€00

LEMMA 14.3. The partition of Irr%e(G) by supercuspidal support is a refinement of the par-

tition of Irr%e(G) by conjugacy classes of supercuspidal standard level zero Fy-types.

PROOF: Let (Gy,0,) be a supercuspidal standard level zero Fy-type. If Gy, is maximal
then I]C\;/[w (ow) is irreducible and supercuspidal. Furthermore all irreducible supercuspidal
representations of G appear in this way. Thus we can suppose G, is the standard Iwahori
subgroup of G.

Suppose o is a subquotient of ig(x) for some level zero character x of T. At least one of
R%’;,z (o) and R%y(a) is nonzero. Without loss of generality we assume R%z (o) is nonzero.

By Lemma 6.10, R%m (o) is a subquotient of i%[’” (X)-

(1) If o is cuspidal then 7 = R%m (o) is irreducible and cuspidal and o ~ I]Cé[m (@) which is a
subquotient of I%j (%) by exactness of level zero parahoric induction.
(2) If o is a quotient of i%(x) then it is a quotient of I?/[;, (%) by reciprocity.
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(3) If o is a subrepresentation of i () then it is a quotient of (i§(x))™~ ~iG(x ') and thus
a quotient of IJ\G43 (x 1) by reciprocity.

|

REMARK. Let 5 be the subset of B(G) consisting of the level zero inertial classes. Let
Qc 5% and let ERE () denote the full abelian subcategory of level zero representations of
G all of whose irreducible subquotients have inertial support 2. Then the results of this
section should be a first step towards establishing a decomposition of the category of level
zero ¢-modular representations into a product of indecomposable subcategories,

R (G) = [] %, @)

Qex’
15. LEVEL ZERO SUPERCUSPIDAL BASE CHANGE

We show that the level zero stable base change map, defined in [ALO5],
BC: DL%Z(U(Z )(E/F)) — %%Z(GL;),(E))

from irreducible level zero ¢-adic representations of U(2,1)(E/F) to irreducible level zero ¢-
adic representations of GL3(FE), when restricted to the irreducible representations of U(2,1)(E/F)

whose image is supercuspidal, is compatible with decomposition modulo £.

LEMMA 15.1. Assume ¢ # 2,3. Let m;, ¢ = 1,2, be irreducible integral level zero f-adic
representations of U(2,1)(E/F') such that BC(m;) is supercuspidal, i = 1,2. If do(BC(m)) =
d¢(BC(m2)) then dy(m1) = de(m2).

PROOF: Let ETl 7 be a supercuspidal f-adic representation of GL3(kg), Chapter 2 Section 9.
By [Vig96, Chapter 3 3.3],

. G .
indgx GL3(Op) infl Or 3

is supercuspidal. By [ALO5, Table 1], these are the only irreducible supercuspidal represen-

tations appearing in the image of BC.

Let o7, ¢ be the {-adic representation of U(2,1)(kg/kr) given in Chapter 2 Section 8. By
Theorem 7.1, the -adic representation 1§} (o7, ) is irreducible and cuspidal.

By [ALO5, Table 1],

BC : 1§, (o7,,9) + ind% GLy(op) 0T, 5

where 6 is the Shintani lift, see [ALO5, Section 2.2], of . The Shintani lift of  is 0 = fo&y1
where §;_1 : 2 241,

By Chapter 3 Sections 3 and 5, if £ [ ¢+ 1 or £ | q — 1 then 7, 5 is in an {-block of GL3(kp)

of defect zero and o, g is in an ¢-block of Us(kg/kF) of defect zero.

Suppose ¢ | ¢> — ¢ + 1. By Chapter 3 Section 3, dg(&Thg) is supercuspidal if and only if
dg(9)7 ! £ 1 and is irreducible in this case. Furthermore, dg(6)7"~! # 1 if and only if de(oT, )
is irreducible and, by Chapter 3 Section 5, if d¢(0)9! # 1 then dy(o7, ¢) is irreducible and
supercuspidal. Comparing the structures of the ¢-blocks, dg(&Thgl) = df(&Tl,%) if and only
if de(ory,0,) = de(omy0)- 0
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By Lemma 15.1 we can define a level zero f-modular base change map BC from certain
supercuspidal level zero ¢-modular representations of U(2,1)(E/F) to supercuspidal level
zero (-modular representations of GL3(E). An interesting question is: is it possible to extend
BC to all level zero representations of U(2,1)(E/F) in a natural way?



CHAPTER 5

POSITIVE LEVEL REPRESENTATIONS

Let G be an unramified unitary group in three variables. In this chapter we construct
the positive level irreducible cuspidal /-modular representations of G. We show that the
supercuspidal support of the irreducible representations of G is unique up to conjugacy under
an assumption on the possible R-types which the subquotients of ig(x) can contain.

85
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1. INTRODUCTION

Let G = U(V,h), (7,V) € Rr(G) and A be a self dual lattice sequence in V. Then, by
smoothness, V = J,,>, VP2(A) . Thus there exists n € N such that VP»®) is non-zero. In
this section we assume 7 is not of level zero, hence n > 1. Because P, (A) is normal in
P,_1(A) we get a representation of P,_;(A) on VPn(A) - The quotient P._1(A)/P,(A) is
abelian, as n > 1, hence Resgn_l( A)(ﬂ') contains a character. This is the starting point of
the construction of the positive level irreducible smooth cuspidal representations of G. One
attempts to refine groups and consider irreducible representations of these new groups which
contain this character on restriction; the goal being to find an R-type (K, o) contained in
7 such that ind% o is irreducible and hence isomorphic to 7. The first part of the complex
construction for classical groups of [Ste08] involves pro-p compact open subgroups of G.
This is where we start; however we eventually specialise to unramified unitary groups in
three variables.

Let G = U(2,1)(E/F) be an unramified unitary group in three variables. For complex repre-
sentations of G, under a similar construction to that of [Ste08], it is shown in [Bla02] that
every irreducible positive level cuspidal representation of G is compactly induced. We follow
the construction of [Ste08] for G together with adaptations to this construction introduced
in [Vig01b] and [Vig96] when dealing with generalising the construction of all cuspidal
complex representations of GL, (F') in [BK93] to the construction of all cuspidal {-modular
representations of GL,(F'). We show that every irreducible positive level cuspidal {-modular
representation of G is compactly induced.

2. SEMISIMPLE CHARACTERS

We let G = GL(V), G = U(V, h), A be the Lie algebra of G and g be the Lie algebra of G.
The filtration 2, (A) induces a valuation vy on A by

() sup{n € Z: x € A, (A)} if z € A\{0},
UA(T) =
00 otherwise.

2.1. Simple strata. A stratum in A is a quadruple [A,n,r, 8] with A an Opg-lattice
sequence in V, r, n € Z such that n > r > 0 and § € A_,(A). Two strata [Ay, ny, 71, 81] and
[A2,n2, 72, Bo] are called equivalent if n; = ng, r1 = ro, and 1 — f2 € A_,, (A). A stratum is
called null if n =r and 8 = 0.

The level of a stratum [A,n, r,b] is the rational number % where e(A) is the Og-period of
A. Let g = (n,e(A)). The characteristic polynomial g € kg[X] of [A,n,r, 3] is the reduction

o e
modulo (wg) of the characteristic polynomial of w3 ¢ . The characteristic polynomial and

level of a stratum are invariant under equivalence of strata.

A stratum [A, n,r, (] is called self dual if A is a self dual Og-lattice sequence and 8 € 2, (A).
For a locally compact abelian group H, we let H” denote the Pontryagin dual of H.

THEOREM 2.1. If n > r > § > 0 and A is self dual we have a P(A)-equivariant isomorphism
A, (M)/AL(A) = (Pr(A)/Pr(A))"
B4 (A) g £ (14 2) o i 0 Trg  (B).
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Thus, if n > r > § > 0 then an equivalence class of a skew stratum [A,n,r, 3] corresponds
to a character of P,(A) trivial on P, (A).

Let [A,n,r, (] be a stratum in A. Suppose D = E[f] is a field, then the action of D on V
gives V the structure of a D-vector space. We call [A,n,r, 8] pure if D is a field, A is an

Op-lattice sequence and v (8) = —n.

Let [A,n,r, 8] be a pure stratum in A. Let
B={¢pecA:pd=dgforallde D}

and put Bo(A) = Ag(A) N B. Let d = [D : E] then V is an N-dimensional E-vector space

hence it is an %—dimensional D-vector space. Let éD = EX, the D-automorphisms of V.

Choosing an E-basis for V identifies G with GL ~(E) and choosing a D-basis for V' identifies
Gp with GLu (D). We let Gp = Gp NG and P(Ap) = P(A)NGp.

For k € Z, we define
(8, A) = {z € Ao(A) : Bz — 28 € Ap(A)},
which is an Og-lattice in A. Let
ko(B, A) = max {—n, max{k € Z : nx(8,A) ¢ Bo(A) + A1 (A)}}.

This is a integer greater than or equal to —n. If ko(8,A) = —n we call § minimal. A pure
stratum [A, n,r, 5] is called simple if ko(53, A) < —r. A stratum is called simple if it is either

a null stratum or it is a pure stratum which is simple.

Let [A,n,0, 8] be a simple stratum in A. If B is minimal over E, define Og-orders

H(B,A) =DBo(A) + Ay 941(A)
J(B,A) = Bo(A) + Ajny1)/2(A).

If 8 is not minimal over E put r = —ko(8,A) and suppose that » < n. Let [A,n,r,v] be
a simple stratum equivalent to [A,n,r, 8], which exists by [BK93, Theorem 2.4.1], define
Opg-orders

H(B,A) =Bo(A) + (H(7, A) N Ap, 941 (A))
3(ﬁ7 A) = %O(A) + (3(7’ A) N Ql'[(nJrl)/Q](A))

The Og-orders $H(5,A) and J(B,A) are well defined, independent of the choice of simple
stratum [A,n,r,~], [BK93, Proposition 3.1.9]. For i > 0, let H{(8,A) = H(8,A) N P;(A)
and ﬁ(B,A) = J(B8,A) N P;(A). If [A,n,0, 5] is skew then the groups are stable under the
involution % induces on G. We let Hi(3,A) = H'(8,A) NG and Ji(8,A) = J'(8,A) NG and
put J(B,A) = J°(B,A). These are compact open subgroups of G and J'(3,A) is normal in
J(B,A) with

J(8.)/ 7 (B, A) = P(Ap) /Py (Ap).

2.2. Semisimple strata. Let [A,n,r, (] be a stratum in A A decomposition V = @é:l Vi
of V' is called a splitting for [A, n,r, 8] if A(k) = @ﬁzl(A(k) NV;)and 8 = Zé:l 1,51; where
1; : V — V; is the projection map. We let 5; = 1,61;, A; = ANV, and set

r if 61 = 07

i =
' —vp,(Bi) otherwise.
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DEFINITION 2.2 ([Ste05, Definition 3.2]). A stratum [A,n,r, 8] in A is called semisimple if
it is null or () = —n and there exists a splitting V = @2:1 V; of V such that for 1 <i,<
the stratum [A;,g;,r, 8;] is either simple or null and, for all 1 < i < j < [, the stratum
[A; & A, max{q;,q;}, 7, Bi + B;] is not equivalent to a simple or null stratum.

A semisimple stratum [A,n,r, 3] is called skew if A is self dual, 8 € g and the splitting
V= @Z 1 Vi is orthogonal with respect to h, ie. if 1 <@ < j <[, v; € V; and v; € V; then
h(vi,v;) = 0. If [A,n, 7, 8] is a skew semisimple stratum then, for all 1 < ¢ < I, the stratum

[Ai, qi, 1, Bi] is a skew simple stratum in Endg(V;).

Let [A, n, 0, 8] be a skew semisimple stratum with associated splitting V' = @l 1 Vi. We deﬁne
D =E[f] ~ @Z 1 D; to be the sum of field extensions given by 5. We let B= @Z 1 Bi,

Gp = (H §f> naG
=1

2.3. Semisimple characters. Fix [A,n,0, (] a non-null skew semisimple stratum in G.
Define ko(8,A) to be the least r such that [A, n,r, 8] is not semisimple. By [Ste05, Lemma
3.5], [A,n,r, 0] is equivalent to a semisimple stratum [A,n,r,~] and [Ste05, Page 143] de-

and set P(AD) = P(A) NGp.

fines orders $(3, A) and J(B, A) inductively analogously to the simple case; this definition is
independent of the choice of v by [Ste05, Lemma 3.9].

We have compact open subgroups J(8,A) = J(8,A)* NG and H(B,A) = H(8,A)* NG of G,
such that H(8,A) C J(8,A), with decreasing filtrations by pro-p subgroups

HY(B,A) = H(B,A) NP(A) and J'(B,A) = J(B,A) N P(A),

i > 1. We have J(B,A) = P(Ap)J! and J(B,A)/J (B3,A) ~P(Ap)/P1(Ap). Let J°(B,A) =
PY(Ap)JY(B, A) which is the inverse image of the connected component of J(3,A)/J (3, A)
in J(B,A). Associated to [A,n,0,3] is a set of characters C_(A, ) of H'(3,A) which are
intertwined by all of Gp.

THEOREM 2.3 ([Ste05, Proposition 3.27 and Theorem 5.1]). Let 7 be an irreducible positive
level cuspidal representation of G. Then there exists a skew semisimple stratum [A,n, 0, §]

such that 7 contains a semisimple character § € C_(A, 8). Furthermore,

I6(0) = J'(8, N)GpJ' (B, 7).

This is our starting point for constructing all irreducible positive level cuspidal representations
of G. Let m € Rr(G). We say that 7 contains the stratum [A,n,0, 8] if 7 contains some
semisimple character 6 € C_(A, 8).

Let [A;, 1,0, ], i = 1,2, be skew semisimple strata in G and § € C_(A;,3), i = 1,2.

THEOREM 2.4 ([Ste08, Proposition 3.2]). Let 6; € C_(Ay, ). There exists a unique character
02 € C_(Ag, B) such that Gp N1Ig(61,602) is non-empty.

In the setting of Theorem 2.4, we say that 0> is the transfer of 6; and write T, a, g for the
bijection induced C_(Aq, 8) — C_(Aq, 8).
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3. SKEW SEMISIMPLE STRATA IN U(2,1)(E/F)

Let G = U(2,1)(E/F) be an unramified unitary group in three variables considered as the
group of isometries, with respect to a hermitian form h, of a three dimensional E-vector space
V. A skew semisimple stratum [A, n,0, 3] in V defines a sum of field extensions D = @}, D;
of E. The involution defined by h on Endg(V;) restricts to an involution o on D; and we let
DY denote the fixed field of this involution. The extension D;/D? is of degree two, otherwise
the involution would fix E, and is unramified because E/F is unramified.

D;
2
Dy

E
2|
F
We consider the different classes of skew semisimple strata in G:

(SS-1) Skew simple strata, [A, n,0, 5].
(a) If B € E then |f|g = —n and

J(8,8)/J*(8,A) = P(A)/P1(A),

which is isomorphic to U(2,1)(kg/kr), or U(1,1)(kg/kr) x U(1)(kg/kF), or
GLi(kg) x U(1)(kg/kr). These strata include the skew strata, [A,0,0,0]; in
other words the level zero case which we have considered in Chapter 4.

(b) If D/E is cubic then

J(B,N)/J (B,A) ~ P(Ap)/P1(Ap) ~ Uy (kp/kpo)

is a cyclic group of order gpo + 1 where gpo is either gr or q% depending on

whether D/FE is ramified or unramified.
(SS-2) Skew semisimple (2, 1)-strata, [A,n,0, 5], which are not equivalent to a skew simple
stratum and for which we have a splitting V' = V; L V5 orthogonal with respect to h

such that )

[Aa n, 07 B] = @[Ala qi, Oa ﬁl]
i=1
with [As, ¢, 0, 8;] skew simple strata in Endg(V;), ¢ = 1,2. We suppose V; is one-
dimensional and V3 is two-dimensional. Let Dy = E[B2]. We have two cases
(a) If B2 € E then

J(B,A)/JN(B,A) ~ P(Ap,)/Pi(Ap,) x P(Ap,)/P1(Ap,),

which is isomorphic to U(1,1)(kg/kr) x U(1)(kg/kr) or GL1(kg) x U(1)(kg/kF)
it Gp, ~ U(1, 1)(E/F), or isomorphic to U(1)(kg/kr)xU(1)(kg/kr)xU1)(kg/kr)
if Gp, ~ U(2)(E/F). The case GL1(kg) x U(1)(kg/kr) corresponds to when
P(Ap,) is an Iwahori subgroup of U(1,1)(E/F).

(b) If Dy/E is quadratic. Suppose Dy/E is unramified then DY would be equal to
E because there is a unique unramified extension of F' in each degree hence F
would be fixed by o, a contradiction. Thus Dy/FE is ramified and

J(8,8)/ 4 (8,A) = UQ)(kp/kr) x U(1)(ke/kF).
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(SS-3) Skew semisimple (1,1, 1)-strata, [A,n,0, 8] which are not equivalent to a skew simple
stratum or a skew semisimple (2, 1)-stratum. Thus we have a splitting V =V, L V5 L
V3 which is orthogonal with respect to h with V;, ¢ = 1,2, 3, one-dimensional. We

have
3

[A7 n, 0, B] = @[Ai, g, 0, ﬂz]
i=1
with [A;, ¢;, 0, 8;] skew simple strata in Endg(V;), i = 1,2,3. We have

J(B,0)/TH(B,A) =~ U()(kp/kr) x U()(kp/kr) x U(1)(kp/kF).

LEMMA 3.1. Let 7 be an irreducible representation of G. Suppose 7 contains a skew simple
stratum [A,n,0, 3] such that 8 € E. Then there exists an irreducible character y of E! such
that 7 ® (x o det) is level zero.

PROOF: By definition 7 contains a simple character § € C_(A, ). By [BK93, Definition
3.23], 6 |P[n/2]+l(A): g and 8 = x o det for some character x of P1(A). The character x
extends to a character ¥ of E' and m ® (X! o det) contains # ® (xy ! odet) = 1 on Py(A).
Hence 7 ® (x ! o det) is level zero. O

Using Chapter 4 and Lemma 3.1 we can construct by compact induction the irreducible

cuspidal representations of G which contain a skew simple stratum with g € F.

4. HEISENBERG EXTENSIONS

We return to a general G = U(V,h). Let [A,n,0,(] be a skew semisimple stratum in G
and 6 € C_(A, ). Continuing on from Theorem 2.3, the next step is to extend 6 to an
irreducible representation n of J(3,A) called a Heisenberg extension. As J!(3,A) is pro-p,
the analogous result holds for /~-modular representations.

THEOREM 4.1 ([Ste05, Corollary 3.29 and Proposition 3.31]). There is a unique irreducible
1

representation 1 of J!(3, A) which contains . The dimension of 7 is (J1(8,A) : HY(B,A))=.
Furthermore,
1 ifge JU(B,A)GpJ'(B,A),

dimp(I4(n)) = _
0 otherwise.

Let [A,n;,0,4], i = 1,2,3, be skew semisimple strata in G with the same splitting such that
P(A') € P(A?) C P(A®). Let 6; € C_(A", ), i = 1,2,3, such that 6; = 7p2 z1 5(62) and
03 = Ta2 p3 5(62). Let 1; be the unique irreducible representation of J!(3, A?) which contains
0i,i=1,2,3. Set Ji 3 = P1(Ap)J (3, A%).

THEOREM 4.2 ([Ste08, Proposition 3.7]). There exists a unique irreducible representation 7
1
(AY) (a

(3 i\)l) n1. Furthermore
3 b

Ji . —~ . P ~ . P
of J] 3 such that Resjﬁ’€B7A3) 7 =mn3 and 1ndJ1111 7=~ ind

) R 1 ifge Ji3GpJis,
dimp(Iy(7)) = ” ’
0 otherwise.
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5. B-EXTENSIONS

By Theorems 2.3 and 4.1, for any irreducible positive level /~-modular cuspidal representation
7 of G there exist a pro-p subgroup J'(B,A) of G and an irreducible representation 1 of
JY(B,A) such that 7 contains . We suppose that M(Ap) = P(Ap)/P1(Ap) is connected;
this is the case for all skew semisimple strata [A,n,0, 5] when G is an unramified unitary

group.

The next step is to extend 7 to an irreducible representation x of J(8,A) for which Ig(k ®
infl ;) j1(c)) = J for all irreducible cuspidal representations o of M(Ap). To that end, ideally
we would like to define a 3-extension of 7 to be an irreducible representation x of J(8, A) such
that Res’, (k) = n and I(k) = Ig(n). This is the definition given in [Bla02]. This is different
to the definition of [Ste08, Section 4]; the difficulty in defining [-extensions in this way is
showing that such an extension always exists. It is not known for classical groups in general
whether such extensions, with the maximal intertwining possible, do exist. However, in the
maximal case, by [Ste08, Section 4, Proposition 6.18] for complex representations, extensions
% of 1 such that the representations x ® infl;,j1(0) have the minimal intertwining possible
exist; this is the property of the extensions which is needed to show that ind§ (k®infl, 11(0))

is irreducible.

Let [A,n,0, 5] be a skew semisimple stratum in G. Let [Amin, 7,0, 8] be a skew semisimple
stratum in G with the same splitting such that P(Amin,p) is minimal and such that P(Amin) C
P(A). Let 6 € C_(A, ) and J' = P (Amin,p)J (B, A). Then J'is a Sylow p-subgroup of
J(B,A). Let i be the unique irreducible representation of Jt given by Theorem 4.2. We write

a subscript Q, for f-adic representations and a subscript F, for f~-modular representations.

LEMMA 5.1. There exists an irreducible representation  of J(3, A) which extends 7.

Proor: As J'(B,A) and J! are pro-p, decomposition modulo-¢ defines a bijection from /(-
adic to f~-modular representations. For ﬁE an {-modular representation of J* we let ﬁ@( be
the lift of . Then, by [Ste08, Theorem 4.1], 7jg, extends to a representation rg, of J(8,A)
and kg, = dg(kg,) is an extension of 7z, to J(B,A). O

In the case where P(Ap) is a maximal parahoric subgroup of Gp we call an extension as in

Lemma 5.1 a [-extension.

REMARK. Let G be an unramified unitary group in three variables and let [A, n, 0, 8] be any
skew semisimple stratum such that P(Ap) is maximal and which is not a simple stratum
with 8 € E. It is possible to show that there exist extensions k of i which are extensions
of 7 and such that I(k) = JY(B,A)GpJ (B,A). Either Gp is abelian and contained in
J(B,A) and all extensions are intertwined by Gp or Gp ~ U(Va, he) x U(V4, hy) with V5 two-
dimensional and V; one-dimensional. In the ¢-adic case it is shown in [Bla02, Lemma 5.8]
that such extensions exist and for /~-modular representations we can obtain such extensions

by decomposition modulo-£ from the ¢-adic case.

Let [A, n,0, 3] be a skew semisimple stratum in A. If P(Ap) is maximal we set Jyax (8, A) =
J(B,A). If P(Ap) is not maximal we choose a maximal parahoric subgroup P(AF™) of Gp
such that

P(AB™) 2 P(Ap) 2 Py(Ap) 2 Py (AB™)

and let Jmax = J(8, AB¥).
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We define -extensions in the case when P(Ap) is not maximal and P(A™#*) D P(A). This
is enough for an unramified unitary group in three variables. For the general case see [Ste08,
Section 4].

LEMMA 5.2. Let [A,n,0,8] be a skew semisimple stratum, § € C_(A, ), n a Heisenberg
extension of #. Choose Amax such that P(AR?) is maximal and P(A™) D P(A). Let
Omax = TA Amax 3(0), Tmax & Heisenberg extension of Omax and Kmax a [-extension of Omax.

There exists a unique irreducible representation « of J(3, A) such that:

(1) k extends n;

J(/B’Amax)
(2) k and ReSP(AD)Jl(ﬁ,AmaX)

P(Ap)PL(A).

(Kmax) induce equivalent irreducible representations of

PRroOOF: Of course, if P(Ap) is maximal then rmax = & and there is nothing to prove. If
P(Ap) is not maximal then [A,n,0, ] is a skew semisimple (2, 1)-stratum, in the notation
of Section 3, and we have P(Ap) = P(Ap,) x P(Ap,) with P(Ap,) an Iwahori subgroup
in U(1,1)(E/F) and P(Ap,) ~ Gp, ~ E'. In the f-adic case, by [Ste08, Lemma 4.3],
there exists a unique irreducible representation % of J(/3, A) which satisfies (1) and (2). By
decomposition modulo-¢, we have an irreducible representation k = d;(k) which satisfies (1)
and such that

. P(Ap)PY(A) ] _ [, JP(Ap)PY(A) J(8,Amax)
[mdj(gj) /{| = {lndP(Ag)Jl(ﬁ,Amux) R SP(AD)Jl(ﬁ,Amax)(’imax):|

. . Ap)PL(A
Furthermore, Ip s, )p1(a) (%) € Ip(a,)pi(a)(n) = J hence by Clifford Theory md?((ﬂ’ﬁgp Wy

is irreducible. O

6. K-INDUCTION

Let [A, n,0, 5] be a skew semisimple stratum. Let § € C_(A, 8), n be the unique irreducible
representation of J!(3, A) containing  and « a B-extension of n to J(3,A). Let J = J(3,A),
J' = JYB,A) and M = M(Ap).

As M = J/J', we have an inflation functor infl ;1 : Rp(M) — Rp(J). Let x-15; : Rp(M) —
Rr(G) be defined by

k-15(0) = ind§ (k @ infl 1 o),
for all 0 € M. When R = F; or Q, the functor of x-induction is exact as it is composed of

exact functors.
Let 5-R$; : Rp(G) — Rr(M) be defined by
#-R$; (1) = Hom j1 (Res’y k, ResS: 7),

for all 7 € RR(G), where action of M on k- Rg\;/jz(ﬂ') is given by if m € M, f € Hom j1 (Res’, k, Res§, 7)
and g € J is a representative of the coset m of .J/.J! then

-1
m- f=m(g)ofor(g ).
In this chapter we often omit the restriction in our notation and write this, more simply, as

#-R§) (1) = Hom j1 (s, 7).

LEMMA 6.1. Let m € Rr(G) and o € Rr(M) then

Homj(k ® infl j1 0, 7) ~ Homs (o, Hom j1 (k, 7)).
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PROOF: Let
¥ : Hom(k ® infl ;1 0, Res§ 7) — Homy (o, Hom ;1 (Res% K, Resﬁ m))
P U(p) w1y,

where 1,(v) = ¢(v ® w). Let m € M and j be a representative of the coset in J/J!
corresponding to m. Because p(v ® o(j)w) = m(j)¢(k(j~1)v ® w), we have

V() (o (j)w)(v) = 7(j) 0 U(p)(w) o k(5H)(v).
Hence ¥(p) € Homy (o, Hom j1 (Res§, &, ResGy 7)). Let
® : Homyy(o, Hom 1 (ResGi s, ResGi 7)) — Homy(x @ infl ;1 o, Res§ 7)
Y () v @w = (Y(w)) (v).
We have

() (r(J)v @ o (j)w)

P(o(F)w)(x(j)v)

m(7)P(w) (5~ r(5)v) = 7(5) 2 (%) (v ® w).

Hence ® (1)) € Homy(k @ infl ;1 0, ResG 7). Tt is easy to check ®(¥(p)) = ¢ and ¥(D(¢))) =
. 0

By Lemma 6.1 and reciprocity, x-restriction is right adjoint to x-induction.
Let K be a pro-p subgroup of G. For p € Irr(K), define e, € Hr(G) by

e)(z) = p(K) =" dim(p) Tr(p(z™1)) if 2 € K,
. 0 otherwise.

LEMMA 6.2. Let (m,V) € Rr(G). The functor V — V¥ is exact and V? is a direct factor of
Res§ (V).

PRroOOF: Let (m;, Vi) € Rr(G), i = 1,2,3 and suppose
0=V SV B V-0

is a short exact sequence of representations of G. We define a sequence

V{J Res(p) Vg Res(v)) Vg,

where the morphisms are given by restriction. It is routine to show this sequence is left exact.
Let p1,p2 € Irrg(K), we have

e * p(7) = /G e (@)en (9™ 2)dpg)

/KM(K)’Qdim(m)dim(pz)TY(m(g’l))Tr(m(x’lg))du(g) if v e K!
0 otherwise.

There exists a normal compact open subgroup K; C K such that p; and py are trivial on K
and e, , e, € Hr(K\G/K). Thus if z € K
€1 * €py () = p(K) 7 dim(py) dim(pa) (K1) ok Tr(p1(g~ ")) Tr(pa(z " g))du(g).
1
This integral is a finite sum and, if we identify Tr(p;) and Tr(L(x)p2) with trace characters
7, and L(x)p,y, where L(x) denotes the left translation by 2 =1, of the finite group K/Kj, we
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can write
epr % €py () = p(K) ™" dim(p1) dim(p2)(L(2)pz, p1)
where ( , ) is the inner product on the space of R-valued class functions

_ 1 P RN
(L(2)p2, 1) = e >, P2z 'g)pilg ™).
|K/ K|
geK/K,
By the generalised orthogonality relation for characters of a finite group [Isa06, Theorem
2.13],
o dim(p1) ™' Tr(py(z71)) if p1 = po,
(L(x)p2, p1) = .
otherwise.
Thus

epy  if p1 = pa,

€p1 ¥ €py = .
0 otherwise.

Hence e, is an idempotent of Hg(G). Thus we can write
Vi =mi(ep)Vi @ (1 — mi(ep)) Vi,

i =1,2,3. Furthermore, m;(e,)V ~ V! and, because

v= P v
o€lrr(J1)

and 7;(ep, )mi(ep,) = 0 if p1 # pa, we have that m;(e,) is a projection onto V/, i = 1,2,3 and
VP is a direct factor of Res% (7).

The proof is now clear. Suppose vs € V4 then there exists vo € V such that 1)(v2) = vs. Then
ma(e,)vg € VE and
Y(ma(ep)v2) = m3(ep)h(v2) = vs.

Hence Res(v) is surjective. O

LEMMA 6.3. When R = F; or Qy, the functor of k-restriction is exact.

PRrROOF: Let (m,V) € Rr(G) and let W be the space of . We have an isomorphism
Hom ji(n,7) ® W ~ V" induced by the map f ® w — f(w). Thus, by Lemma 6.2, the
functor 7 — k- R%I(ﬂ) ® W is exact and if follows that x-restriction is exact. O

6.1. Kmax-induction. Lemma 5.2 allows us to relate certain x-induction functors. We do
this by defining kmax-induction. Suppose we are in the setting of Lemma 5.2 with [A, n, 0, §]
a skew semisimple stratum, 8 € C_(A, ), n a Heisenberg extension of 6 and a chosen Apax
with P(AB™) maximal and P(A™) O P(A).. Let ¢ be an irreducible representation of
M and infl j1 (o) denote the inflation of o to J. We have P1(A)P(Ap)/P1(A) ~ M and
JhaxP(AD)/ T3 P1(Ap) ~ M. We denote the inflation of o to P1(A)P(Ap) by inflp, (4)(0)
and the inflation of o to Jy,, P(Ap) by infl ;1

to infl;1 p (a,)(0) and to inflp, (x)(0). Thus, using transitivity of compact induction and

P1(Ap)(0). Thus infl 1 (o) extends by inflation

Lemma 5.2,
k=157 (o) = ind§ (k @ infl 1 (0))
. . JPi(A)P(A .
~ lndgl(A)P(AD)lndJl( JP( D)(m®1nﬁJ1(U))

. . P, (AP(A .
~ ind§ (yypa ) (inds VT (5) @ inflp, ) (o)
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. . PlA rnax j
~ ind§ ) p(a,,) (ind’ (P( ))(R i b (a ) (Kimax)) @ inflp, (1) (0))

m ax

lndPI(A)P(AD)(lnd ( P),(A/(\D) )(ReSJmaXP(A ("‘Cmax) ® inﬂJrlnaxpl(AD)(U)))

m ax m ax

~ lndelnaxP(AD) (RGS‘J&]&XP(AD) (Hmax) & lnﬂJrlﬂaxl:'l (Ap) (U))

If P(Ap) is maximal then this is just Kpax- I]C\"/[(a). In the non-maximal case we define K ax-
induction
kmax- 1S : Rr(M) = Rr(G)

by

Fnax- 157 (0) = nds piy ) (ResTi™p ) (Kimax) @ inflyy py(ap)(9)),
for all o € Rr(M). As we have seen, if we are in the setting of Lemma 5.2 and in particular
for unramified U(2,1)(E/F), this is isomorphic to s-15,(c). However, choosing to work with
Kmax-induction allows us to make some comparisons between the k-induced representations
from the different subgroups J which are contained in a fixed maximal group Jyax. We define
Kmax-Trestriction Kmax- R]Cf{ to be the right adjoint of Kpax-induction Kmpax- I]C\;/[. By Lemma 6.1
and reciprocity, for all 7 € Rg(G), we have

Fmax~ Rg]( ) = Hom,1 PI(AD)(Hmax,W)-
7. K-RESTRICTION-INDUCTION FOR U(2,1)(E/F)

From now on we specialise to G = U(2,1)(E/F). We show that x-induction and restriction
in G is related to level zero induction and restriction in Gp.

THEOREM 7.1. Let [A%,n;,0,5], i = 1,2, be semisimple strata and let (Jmax, A™™, Fmax)
be a triple as defined in Lemma 5.2 such that P(A%*) D P(A%), i = 1,2. Let M; =
P(A%)/P1(A%), i = 1,2 and oy be a finite length representation of M;. Then

Ka- RS, 0 k1-157, (01) = RGP 0 15 (01).
LEMMA 7.2. Let 01 =infli p (ap)(0). Then

Ka- RM2 (111 IM1 01 @Hom JhaP1(A2) (Kmax;, ®(01,9))

geY
where
Y= J&laxP(AD)\ max max/ Pl(A2 )
max ( ) ( maxP(Al )) g ~
®(o1,9) = de}naxPl(AQ )N 9(ThaP(A])) (Re S ThaxP1(AB)N 9(Jh, P(AL)) (”m”@“’l))'
PROOF: We use the relation between the k;-induction functors, ¢ = 1,2, and the Kmax-

induction functors,
Ko- R‘%Z (/{1— I]CC}I (01)) >~ RKmax~ R]C\;/IQ (Hmax' 1?41 (01)) .
By Lemma 6.1, exactness of k-restriction and the restriction-induction formula, Chapter 1

Lemma 3.5, we have

Rmax= R?@ (ﬂmaX' Igﬁ (Ul)) = @ HomngPl(AQD) (Kmax, (01, 9)) -
max]':)(A1 )\G/ maxPl(A%})
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Let g € G be such that

HomJémxpl(AQD) (Kmax; ®(01,9)) # {0}.

Because J1, P1(A3)/ (Jha P1(A%) N 9(JL P(A}))) is compact, compact induction is right
adjoint to restriction, hence

Hom j:

L axP1(A5)N (T P(AL)) (Fimax, ? (Rmax © 1)) 7 {0}
We have
Jrlnax ( max) C J maxPl(A )ﬁ ( max (AD))

Thus, restricting to JL.. N 9(J}..), we have
Homz 0 9(780) (Fma, *(Fmax ® 01)) # {0}

The tensor product satisfies 9(kmax ® 1) = YKmax ® 901. Furthermore, by transitivity of
restriction and as the restriction commutes with the conjugation,

9L PAT)) 9 )
Res 1 "oy (TRmax) = Res ;0 "5 - (9hnax)

and
Res a0 Ginlyy | 01) = dim(o1) Ly 5004,
a sum of copies of the trivial representation. Thus
dim(oy)

9 1)) = g
HomJ}naxﬂ 9(JL ) (Kmax, ? (Fmax ® 01)) = HoerlnaXm 9(JL.) | Mmax; @ (Mmax)
i=1

dim(o1)

@ Hoerlﬂ,dXﬂ 9(JL.) (77max7 g(nmax)) .

i=1
However, Ig(Nmax) = JLGpJL . by Lemma 4.2. Hence if
HomJ}ﬂaxﬂ 9(JLax) (”max, g("ﬁmax ® 51)) 7é {0}
then g € JL..GpJl ... O

LEMMA 7.3. Let AL and A% be self dual Op-lattice sequences such that P(AL), P(A%) C
P(AF™). Then the map
P(AlD)\GD/Pl(A2 ) - JILaX (AD)\ maxGD']ILax/Jéla.xpl(AQD)
X = T X T

max max

is a bijection.

PROOF: Let g € Gp. We have P1(A™2) D JL  hence

max
Imax (P(AD)gP1(AD)) Jmax NGp C P1(A™™) (P(A)gP1(AD)) P1(A™) N Gp.
We choose a set of representatives for the finite double coset space
P (AB*)\P(AD)gP1(AD)/P1(AB™).

For each representative ® of this double coset space we apply the semisimple intersection
property [Ste08, Lemma 2.6] to get Pi(A™*)OP(A™) N Gp = P (AF*)OP(AD™).
Hence

P (A™) (P(Ab)gP1(A%)) P1(A™) N Gp = P(AD)gP:(A}).
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Therefore
P(Ap)gP1(AD) = J}

max

(P(Ap)gP1(AD))Jmax NGD

and the map is injective. O
LEMMA 7.4. Let g € Gp then

Hom 1 p,(a2)n 9(s,.P(aL)) (Fmax: ! (Fmax @ 01)) = Homp, (x2 )~ s (p(at)) (1,7 (inflp, 51, (01))).

PROOF: The argument is essentially the same as [BK93, Proposition 5.3.2]. We identify
Kmax With Kmax ® 1. We showed at the start of the proof of Lemma 7.2,

max max

Hom 1 p,(A2)0 (s, P(AL)) (Fmax ® L7 (Kmax ® 71)) # {0}

if and only if g € J} . GpJL,.. Let ¢ € Hom j:

max

P1(A3)0 9(Jh e P(AE) (Fmax @ 1, (Kinax © 01))
be non-zero. We write

o= STy
k

with S € Hompg(V,V) and T, € Hompg(R, W) where V is the space of kmax and W is the
space of 5. We further assume that {7}} are linearly independent. Let h € JL N 9(JL..)
and v € V then
O((Fmax ® 1)(h)v) = ?(Kmax @ 71)(h)p(v)
and, as & is trivial on JL_ N 9(JL..), we have
> (Skkmax(h) = (Ikmax(h))Sk) ® Tp = 0.
k

Hence, by linear independence of T}, we have S € Hom Jh o 9(JL

max

)(/‘imam g“max)- By

Lemma 4.1
Homji o(sr ) (Kmax, YFmax) =~ R.
Furthermore,
Homs | ) (42)n 0(s3,P(AL)) (Fmax; “Kmax) = R
because J}, P1(A%) N 9(JL. P(A})) is contained in 9(J) for J a Sylow p-subgroup of

JrP(AL) and, by Lemma 4.2, we have
Hom g(~)(nmax7 IKmax) = R

Thus S € Homy 2y (a3)09(Jh0e

we can write ¢ = S ® T with T € Homg(1,51). Furthermore, for h € JL .
I(JEP(AL)) and v €V,

(S @T)((Fmax ® 1)(h)v) = (?(Kmax) (h)S © ?(01)(h)T)(v)

P(A}D))(“maXa 9Kmax) 18 a scalar multiple of S = S; and
Pi(A%) N

and
(8@ T)((Kmax ® 1)(h)v) = (S © kmax(h) ® T)(v) = (?(Kmax)(h) 0 S @ T')(v).

Therefore T € Homjy1  p,(a2)n g(Jé]axP(A}j))(l’ 9(c1)) and the map T — S ® T defines an
isomorphism from Hom:  p, (a2)n g(J&mP(A}D))(l’ 9(a1)) to

Hom 1 p,(a2)n (s, P(AL)) (Fmax, ! (Fmax ® G1)) -

max

Furthermore, we have an isomorphism

Hom 1 p,(a2)n (s, p(aL) (1, (01)) = Homp, (z2 1 op(a1 ) (L, 7 (inflp, (z1 ) (1))

max
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PROOF: [Proof of Theorem 7.1] By Lemmas 7.2, 7.3 and 7.4 we have

Ko~ RY, 0 k1- 157, (01) ~ EB Homp, 52y s(p(at)) (1, ?(inflp, a1 (01))).
P(Ap)\Gp/P1(A})
AsP1(A2)/P1(A%L)N 9(P(AL)) is compact, compact induction is right adjoint to restriction,

and we have

Ro- Rglg OR1- ]:%1 (O—l) =~ @ Hompl(/\%)(]‘i \If(g))
P(AL)\Gp/P1(A})
~ HOIHPI(A%) 1, @ \I/(g)
P(AL)\Gp/P1(AD)
where , )
_ . Pi(A) I(P(AD)) :
U(g) = mdP](AQi)m o(P(AL) ResP](AQDfm 2(P(AL)) g(mﬂpl(A}D)(m)).
By the restriction-induction formula, Chapter 1 Lemma 3.5, we have
G G
Respf(AzD) olyf(o1) ~ @ T(g).
P(AL)\Gp/P1(A})

Therefore

G G
Ko~ be o K1- I%l(al) ~ Homp, 52 (1, ResPID(AQD) oIy (01))

G G
~ Ry o If (o).

REMARK. It should be possible to generalise Theorem 7.1 in two ways.

(1) With a more general definition of S-extensions in the non-maximal case, together with
compatibility with the definitions in the maximal case, the proof would apply to a general
classical group. Note that at the moment it does apply if one has k1 = kK9 = Kmax-

(2) Let [A%,n;,0,8], i = 1,2, be skew semisimple strata in G. Let 6; € C_(A%, ), i = 1,2,
such that 61 = Ta2 p1 5(62). Let 7; be Heisenberg extensions of 6; to Hi1 and k; be
[B-extensions of 7; to J;, ¢ = 1,2. Then, an analogous proof to that of Theorem 7.1
would show that

Ko- R%Z oK1- Iﬁl (o) >~ Rff; o Ifff (o)
if we assume that
1 ifge JoGpdy,

dimR(HomJ%m _qul(nQa gnl)) = .
0 otherwise.

8. CUSPIDAL POSITIVE LEVEL REPRESENTATIONS

Combining Theorem 7.1 and the results of Chapter 4 we can construct cuspidal positive level

representations.

THEOREM 8.1. Let [A,n,0, 3] be a skew semisimple stratum. Let 6 € C_(A, (), n be the
unique irreducible representation of J! containing 6 and x be a -extension of 1) to J. Suppose
J = P(Ap)J' with P(Ap) a maximal parahoric subgroups of Gp. Let ¢ be an irreducible
cuspidal representation of M(Ap). Then

K- R%(AD) (K/- I%(AD)(O—)) ~ 0
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and
n
(E—IIC\:/‘[(AD)(U)) :H@G—.

Furthermore, k- If,l( AD)(U) is irreducible, cuspidal and quasi-projective.

PrOOF: By Theorem 7.1 and Chapter 4 Lemma 6.6, we have
G G e G
F RSty (a0 (@) = B ) (1000,)(@)) -
~ 0.
Hence

n
(Ii— If,I(AD)(U)) ~KQo.
By reciprocity,
Homg (k- If/I(AD)(Ux’D), K- If/I(AD)(a)) ~ Hompg(p ) (0,0) ~ R.
If 7 is an irreducible quotient of k- If,l( Ap) (o) then, by reciprocity, k®o is a subrepresentation
of Res§ (r). Furthermore, by Lemma 6.2,
T~ @ w(n).

Because J! is pro-p, f-modular representations of J! are semisimple, and no irreducible sub-
quotient of m(n) is isomorphic to 7. Thus, as representations of J, no irreducible subquotient
of m(n) is isomorphic to k ® 0. As k ® o is a direct factor of Resg’znax(w)7 by reciprocity,
is a subrepresentation of x- If,[(AD)(J). Therefore, by Chapter 4 Lemma 6.5, - I&(AD)(0> is
irreducible and, by Chapter 4 Lemma 8.2, x- If/[( AD)(U) is quasi-projective. O

9. THE NON-MAXIMAL SEMISIMPLE CASE FOR U(2,1)(E/F)

In this section let G be an unramified unitary group in three variables. Recall that B denotes
the parabolic subgroup of G given by

* ok
B=10 « x| NG,
00
with Levi decomposition B = T x N Let [A,n,0, 8] be a skew semisimple stratum which is
not a simple stratum with 8 € E. The only such semisimple stratum of G which does not

give rise to a maximal P(Ap) is the case of a skew semisimple (2, 1)-strata, see Section 3,
[Aa n, Oa ﬁ] = [Ala ni, 07 Bl} ©® [A27 na, 07 BQ}
with 3 € E, Gp, ~ U(1,1)(E/F) and P(A2 p) an Iwahori subgroup. We have

Op P Op
JBA) =|PY Op P
Pr Ph Og

with a > 0 and 8 > 1. Furthermore,
1+Pg  Og OFp
P PE 1+ Pg
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Write J = J(B,A). Let € C_(A, 8), n be the unique irreducible representation of J!(3, A)
containing 6, x a S-extension of 7 to J(3,A) and ¢ an irreducible representation of .J/J!.

For i > 0, we have

Or Op Of
wlil Pr Op Og ifi=0 mod 4;
Pe Pr Og
Pr Op Og
o] Pr Pg Opg| ifi=1 mod 4
W(A) = Pr Pr Pg
Pr Pr Og
=7 Pr Pr Pg ifi=2 mod 4;
Pe Pr Pg
Pe Pe Pr
ol 7] Pr Pr Pg ifi=3 mod 4.
P% Pr Pr

Therefore J! = H'. In [Ste08], G-covers relative to a parabolic subgroup P for a general
classical group are defined and from an R-type (J,\) one forms a group Jp = H'(J N P) on
which the cover lives. However, in our case, Jp = J which makes things a bit simpler. Let
Jr = JNT, this is the group we denoted Jp in Chapter 4.

LEMMA 9.1. The R-type (J,k ® o) is a G-cover of the R-type (Jr, Resz (k®0)).

PRroOF: In the f-adic case this is a special case of the general results of [Ste08, Propositions
7.10 and 7.13]. Thus, in the ¢-modular case, (J,x ® o) satisfies properties (1) and (2) of
Chapter 4 Definition 4.6. It remains to show that there exists a strongly (B, J)-positive
element z of the centre of T' such that JzJ supports an invertible element of H(G, J, k ® o).
The proof is similar to the proof of Chapter 4 Lemma 4.7. Let

00 1 0 0 wp'
wr=1]10 1 0], wr=1]1 0 1 0
100 wp 00

and ¢ = wiwy. For z € Ig(k ® ), as in the proof of Chapter 4 Lemma 4.7, because k ® o
is a character there is a unique function in f, € H(G, J, k ® o) with support JzJ such that
fz(z) = 1. By [Ste05, Lemma 2.1] ¢,("! € Ig(k ® o) hence fo, fer € HG, J,k @ o).
Suppose that wy € Ig(k®@0). Then fex fe-1(1g) = ¢*. Furthermore, supp( f; * fe1)=J by
[Ste08, Corollary 7.12]. Hence f; is an invertible element of #(G, J, k ® o) supported on J.

Now, suppose that wy € Ig(k ® o). Then, because w; normalises Jp, we have w; normalises
ReS§T(m ® o). For all x € Jpr we have wizw; = wazws, hence wy normalises ResﬁT(n ® o).
Let 5 € J NwsJws such that j = wej’'ws. Using the Iwahori decomposition of J we have
J=Jyjrin and j = jy j’Tj’ﬁ with jx, jiy upper triangular unipotent, jx, j’ﬁ lower triangular
unipotent and jr, j; in 7. Thus

= waj'wy " = (wajiywa) (wajrws) (wajkws)

and, by uniqueness of the Iwahori decomposition, jy = wajywe, jr = wojrwe and jy =
ng'ﬁwg. Therefore wy € Ig(k®0). Hence fy,, fu, € H(G, J,k@0c). We have fy,, * fu,(1a)
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[J: JNw;Jw] is a power of ¢, i = 1,2. By [Ste08, Lemma 5.12], Is(n) = JGpJ, thus the
support of H(G, J, k®0) is contained in JGpJ. Hence, supp(fuw,* fu;) C (JUJw;J)NJGpJ =
J(K N Gp)J where K is a maximal parahoric subgroup of G. Therefore supp(fuw, * fuw,;) =
JUJw;J and fy,, ¢ = 1,2, are invertible elements of H(G, J, k®0c). By [Ste08, Lemma 7.11]
we have (JNN)¥t C JNN and (JNN)¥2 C JNN. Thus, by the Iwahori decomposition of
J,
JwiJwoJ = J(wl(JﬁN)wl)wlwg(wg(JﬂT)wg)(wg(Jﬂ N)wg)J = JwiwaJ.

Hence fu, * fu, is an invertible element of H(G, J, kK ® o) supported on the single double coset
JCJ. O

LEMMA 9.2. Let G be an unramified unitary group in three variables. Suppose that (m,V)
is an irreducible cuspidal representation of G which contains the R-type (J,x ® o). Then 7
is not cuspidal.

PROOF: Suppose that 7 contains (J,kx ® o). By Lemma 9.1, (J,x ® o) is a G-cover of
(Jr, Rcsz(/f ® 0)). Hence, by Chapter 4 Corollary 4.11, r$m # 0 and 7 is not cuspidal. O

By Theorem 2.3, every positive level cuspidal representation of G contains a semisimple
character. Every cuspidal positive level representation 7 is either a twist of a cuspidal level
zero representation and for these we refer to Chapter 4; or contains a positive level Fj-type
(J,k @ o). If (J,k ® o) is not maximal then, by Lemma 9.2, 7 is not cuspidal. Hence 7
contains a positive level Fy-type (J, x ® o) of the form given in Theorem 8.1 and is compactly
induced. Therefore, we have constructed all irreducible cuspidal representations of G by

compact induction.

9.1. k-induction and parabolic induction for U(2,1)(E/F). Recall that B the para-
bolic subgroup of M = .J/J! given by

* K *
B=|0 ~ «|NM,
0 0 %

with Levi decomposition B =T x N.

LEMMA 9.3. Let 7 € R, (T) be an irreducible representation and let 7 € Rg, (T) be a lift
of 7. Suppose we are in the situation of Lemma 9.1 with (Jp, k7 ® ) an R-type contained
in 7 and (J,k ® o) an f-adic G-cover of (Jr, kr ® o) which has associated skew semisimple
stratum [A,n 0, 3] together with a semisimple character 8 € C_(A, 5), a S-extension x and
an irreducible representation o of J/J!. associated to a semisimple character 6 € C_(A, 3).
Choose A™** such that P(AS*) is maximal and define Opmax, Mmax and Kmax as in Lemma
5.2. Let Fmax = d¢(Fmax), Fr = de(k7) and Miax = Jmax/J L ax- Then

ax”*

[Fnax- R, 0iG(m)] ~ [z%j o Fr-RL(m)) .
PROOF: In the ¢-adic case a stronger result for GL, (F) is shown in [SZ99, Proposition 7).
First we give references to adapt this proof in the f-adic case for U(2,1)(E/F). Recall,
from Lemma 9.1, that ky = Res (k) and let p = ind} p(k ® o), Qr = [T, plr and
Q= [T, plg- Recall that R(£2) denotes the full subcategory of Ry, (G) of representations all
of whose irreducible subquotients have inertial support Q; 93(Q7) denotes the full subcategory
of 9%@4 (T') of representations all of whose irreducible subquotients have inertial support Q7.

Let w denote the Mpac-conjugacy class of ¢ and wp denote the T-conjugacy class of o.
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We let RR(w) be the full subcategory of %@K(M ) of representations all of whose irreducible
subquotients have supercuspidal support in w and let R (w7 ) be the full subcategory of %@Z (T)
of representations all of whose irreducible subquotients have supercuspidal support in wy. Let
H(T, kr®0o) =H(T, Jr,kr®0), H(G,k@0) = H(G, J, ®0), H(Mmnax, o) = H(Mmax, B, 0)
and H(T,0) = H(T, T, o) denote the spherical Hecke algebras as defined in Chapter 4 Section
4.1. The strategy of [SZ99] is to show that the following diagram is commutative where the

horizontal arrows are equivalences of categories:

R

R(w) — — H(Munax, 0)-M0d == H(Minax, 0)-M0d R(w)
Fmax- RMMJ i Res (153)*] ] %/[m“x
R(Q) H(G, K @ o)-DMod H(T, o)-Dod T R(wr)
[ (tB)« Res [ rp-RY
R(Qr H(T, ki @ 0)-Mod =——— H(T, ki @ 0)-Mod ——— R(Qr)
HT®<7 KT Qo

The bottom left commutative square, M,@Joig ~ (tg)xo My, 20, where (tp) is an induction

functor given by an injective homomorphism of algebras ¢t in [BK98, Theorem 7.2], follows

from the general result of [BK98, Corollary 8.4] using Lemma 9.1. The top right commutative
M

square, M, o iE ~ (tg)« © My, is the analogue of this result for finite reductive groups.

y [Ste08, Proposition 7.1], we have a support preserving isomorphism
H(G, T,k @ 0) = H(G, P(AD) I RSEIR ) 11 (Rimax) © 0)

where o is considered as a representation of P(Ap).Jl.. by inflation; this makes sense as

max
P(Ap)J}

max

has P(Ap)/P1(Ap) as a quotient. By [Ste08, Proposition 7.2], we have a support

preserving isomorphism

H(Jmaxa (AD) max,Res H(‘ZXD) Jlas (Hmax) ®U) = H(P(A%ax)7P(AD)7U).

Furthermore, we have a support preserving isomorphism of Hecke algebras

H(Mpax, o) =~ H(P(AB™),P(Ap), o).
Hence we have a support preserving injective map of algebras

H(Mpax,0) = H(G, k@ 0)

given by the injection
H(Jmax, P(Ap)JL Resp"(‘j\" . (Kmax) ® 0) = H(G,P(Ap)JL..,Res lr(lj\XD)J,%ax(ﬁmaX) ®o).
Therefore we can view H(Mpyax, ) as a subalgebra of H(J, k@0 ); similarly we view H (T, o) as
a subalgebra of H(Jp, kr ® o). Hence we have restriction functors, denoted in the diagram by
Res, between the categories of modules over these algebras. The top left commutative square,
M, 0 Kmax- R]C;}mx ~ Res oMy s, and the bottom right commutative square, M,,,. o k7- R% ~

Res oMy, @0, follow from [SZ99, Lemma 4] whose proof applies to U(2,1)(E/F). Consider
the inclusions of algebras
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H(T, KT & O’)

H(G,k® o)

H(Mmax, o)

H(T, o)

All the maps are injective homomorphisms of algebras hence must send the identity to the
identity. But H(T, o) is one-dimensional hence the diagram must commute. Thus the middle
square commutes in our initial diagram, Reso(tp)« =~ (t)« © Res. Therefore we have the
¢-adic result: For all finite length representations p € R(Sr)

Kmax- R, 015 (p) ~ i3 o k- RE(p).

Let € be a finite length integral ¢-adic representation of G. By [MS11b, Lemma 5.14],

de(Fmax-RSL, . (6)) = [Fmax- RSy (de())]

i.e. Kmax-restriction commutes with decomposition modulo-¢. Similarly, for finite length
integral representations of T', kp-restriction commutes with decomposition modulo-¢. Thus,
by the ¢-adic result, we have

G G - Mmax T/~
Kmax- Ry, 0 15(T) ~ im" 0 K- RT(TI').
Hence, by decomposition modulo-£,

[Funao R, 035(m)] = [i3f o - RE(m)]

10. THE POSITIVE LEVEL PRINCIPAL SERIES OF U(2,1)(E/F)

In this section let G be an unramified unitary group in three variables. We describe the
decomposition of the the positive level induced representations which have cuspidal subquo-
tients. These are of the form:

(1) Twists i%(x1®1)(xaodet) with x; level zero and x2 positive level and for the description
of the decomposition in this case we refer back to Chapter 4 Theorems 10.1 and 12.2.
(2) Of the form i%(x1 ® 1)(x2 o det) with x1 a positive level character of E*.

We describe the decomposition of i%(x1 ® 1) when y; has positive level and when ¢ | ¢ + 1.

Let (Jr, Resz(/-i ® 7)) be an R-type contained in (y1 ® 1) such that (J,x ® o) is a G-cover
of (JT,Resz(/f ® 0)) as in Lemma 9.1. Then J = P(A)J! with P(A) ~ J x E! where J is
an Iwahori subgroup of U(1,1)(E/F). Suppose (Kmax, A™*¥) is chosen to be compatible with
(k,A), as in Lemma 5.2. There are two such possible choices corresponding to the two non-
conjugate maximal parahoric subgroups of U(1,1)(E/F) which contain J. We denote these

oy AIEX) 1 = 1,2, We have Mypax; = M(AP) ~ U(1,1)(kg/kr) x U(1)(kg/kF). For

by (Kinax:
our proof of the next theorem we require an assumption:

Assumption 1: Let w be an irreducible subquotient of ig(Xl ® 1). Then at least one of the
i

two representations sy, .-

R%i (m), i = 1,2, is nonzero.
max
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We consider this assumption as a generalisation of the result stated in Chapter 4 Theorem

3.3: parabolic induction preserves level zero representations.

THEOREM 10.1. Let G be an unramified p-adic unitary group in three variables. Suppose
¢#2or3and?|g+1. Let x1 be a positive level character of E* trivial on F'* and let x1 ®1
be the positive level of character of T' given by x1 ® 1(diag(x,y, 7 !)) = x1(z). Let X be the
character of T' given by inviip, (Resgjé (x1)) ® 1. Let o; denote the cuspidal subquotient of

i%/["‘ax’i(y). The representation i%(y; ® 1) has the following composition series

0 m iGoa®1)

O<7§<7§<7>}<7O
o

with 7 semisimple and either irreducible and isomorphic to s .
with

x” Iﬁrln ax(01) or of length two

TR - If/[ém (01) ® K2, If{%ax (02).

ProoF: By Chapter 4 Theorem 12.1, the length of ig()a ® 1) is greater than or equal to
three. By Chapter 1 Theorem 3.12, Tg(ig(xl ® 1)) has length two. Hence, as in the proof
of Chapter 4 Theorem 10.1, ig(xl ® 1) has a unique irreducible subrepresentation, a unique
irreducible quotient and at least one cuspidal subquotient. Let 71 be the unique irreducible
subrepresentation of i%(x; ® 1), 72 the quotient of i%(xy; ® 1) by 7 and 73 the unique
irreducible subquotient.

By Lemmas 8.1 and 9.3, and Chapter 3 Section 4

i R G500 1)) 2 1y, (0) © Tty (0) @ 0

max

Thus, by Assumption 1, every cuspidal subquotient must be of the form x! Igjé]ax(ai).
Hence either we have two non-isomorphic cuspidal subquotients

1

Fomax™ IJGMém (01) and K2, - If/[%ax (02)

appearing in the composition series of i%(x1®1) or, without loss of generality, £~ I%l (o1)

is the only cuspidal subquotient. By reciprocity, as in the proof of Chapter 4 Theorem 10.1,
if i% (1 ®1) is of length four then &%, -1§,; (0;) are both subrepresentations of m and hence

7 is semisimple. O

REMARK. We conjecture that the length of i%(x1 ® 1) in Theorem 10.1 is four. A general-
isation of Theorem 7.1, of the form remarked after our proof of Theorem 7.1, would imply

that the length was greater than or equal to four.

10.1. Supercuspidal Support.
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THEOREM 10.2. Let G be an unramified p-adic unitary group in three variables and 7 be an
irreducible smooth ¢-modular representation of G. Then scusp(w) exists and is unique up to
conjugacy.

ProoOF: This follows from Theorem 10.1 and Chapter 4 Theorem 14.1. (]






APPENDIX A

(-MODULAR REPRESENTATIONS OF FINITE GL, (F)

In this appendix we extract the decomposition matrices for GLa(F') and GL3(F') from [Jam90].

107
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1. DECOMPOSITION NUMBERS OF GLo(F) AND GL3(F)

Let G = GL,(F,), and (K, O, k) be an ¢-modular splitting system for G.

Let d,w be positive integers such that dw = n. For every partition A of w, and every element
s of degree d over Fy, in [DJ89, Section 3] certain representations of G are defined:

(1) Sk(s,A) an irreducible ordinary representation of Gj

(2) Sk(s,A) a reduction modulo ¢ of Sk (s, A) relative to a chosen lattice in Sk (s, \).

(3) Dg(s,A) an irreducible £-modular representation of G; (in fact equal to the quotient of
Sk (s, \) by its unique maximal submodule).

When s = 1 these representations are called unipotent. For A, Ao partitions of w if
Sk(s, A1) ~ Sk(s,A2) then Ay = A2 (similarly for Si, and for Dy if Dy # 0) . We will
use the shorthand A - w for A is a partition of w.

LEMMA 1.1 ([DJ89, Section 3 (v)]). For s an element of degree d over Fq, and A - w,

[Sk(sv )‘)] = @ dAMDk(S’ N)'

pEw

For a fixed s, in [DJ89] a matrix A(s,w) of decomposition numbers is defined
A(s,w) = (dxy)-

This is part of the {~-modular decomposition matrix of G, but it is not immediately clear how
these matrices overlap. The problem is split into two: first choosing a uniform notation for all
the irreducible complex and irreducible /~-modular representations in terms of induced repre-
sentations involving the Sy and Dy, then calculating the necessary decomposition matrices.
Finally we can align these matrices to find the full decomposition matrix.

LEMMA 1.2 ([DJ89, Theorem 6.2]). Let s be an element of degree d over F,. The matrix
A(s,w) coincides with the matrix A’(1,w) of decomposition matrices for unipotent represen-
tations of GLy,(Fa).

Let e(a) be the least positive integer such that | 14 ¢%+ - - ¢~ and e = e(1).
LeMMA 1.3 ([Jam90, Theorem 6.4]). When n < e, A(1,w) is the identity matrix.

In [Jam90, Appendix 1] the matrices A(1,w) are listed for e = 2,3, n < 10, and a procedure
for working out the matrices n < 10 for higher e is given.

We first recall the parametrisation of [DJ89] of the irreducible complex and ¢-modular rep-
resentations of G and then in the case of n = 2,3 follow an algorithm for gluing the matrices
A(s,w) in a coherent way to get the full /~-modular decomposition matrix of G.

LeEMMA 1.4 ([DJ89, Section 7.2]).

(1) If s,t are roots of the same irreducible polynomial over Fy, then Sk (s, X) >~ Sk (t, ).

(2) If s,t are roots of irreducible polynomials of the same degree over F, and their ¢-regular
parts are roots of the same irreducible polynomial over F, then Dy (s, ) ~ Dg(t, ) and
Sk(s,A) = Sk(t, N).
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(3) Let C’ be a complete set of roots from every irreducible monic polynomial over F, of
degree at most n, i.e. C' = J,,<, Fgm. Define an equivalence relation ~ on C’ by two
roots are equivalent if and only if they are roots of the same irreducible monic polynomial
over F, and let C = C’/ ~. Put a total order < on the finite set C. The following classes
of representations give complete sets of irreducible inequivalent ordinary and /-modular
representations of G:

(a) Let s1 < s9 < --- < s, be classes of C, with d; = deg(s;), such that

diwy + dows + - - -dyw, = n,
and for each w; # 0 let A\; - w;. Then
Ind (SK (817 )‘1) ® Sk (827 /\2) ®---®Sk (Sr7 )\r)) )

is an irreducible ordinary representation of GG, where we consider the representation
& Sk (si, Ai) as a representation of the Levi subgroup GLy, (Fq) X - -+ X GLy, (Fy).
The induction, Ind, is Harish-Chandra induction.

(b) Let s1 < s2 < -+ < s, be f-regular elements of C, \; as above, then

Ind (Dk (51, )\1) ® Dy, (32, )\2) ® - Dy, (ST, )\r))

is an irreducible /-modular representation of G.

REMARK. This classification originates in [DJ86]. They call certain sets of data,

EpY
di wi]’

(n, £)-indices. These give induced representations as in Lemma 1.4 part (3). The “head”
(n, £)-indices are the ones that satisfy the conditions in (3)(b) (or (a) if ¢ = oo0). Thus this
classification is referred to as a classification in terms of head (n,¢)-indices. In their paper
they also construct a bijection from head (n,¢)-indices to “special foot” (n,¢)-indices where
some of the properties required on the s; in a head (n,¢)-index are weakened and replaced

with stronger properties on the ;.

Our goal is to write the ¢~-modular decomposition of the representations in (a) in terms of
the representations in (b) in the cases n = 2,3. Thankfully it is explained how to do this
in the penultimate section of [DJ89]. Given a partition A = (A1, Az,..., Ar) of n, the dual
partition A’ of n is the partition (A, \y,...,\,) where X = [{j : \; > i}|. We write s* for
the l-regular part of s. We require two more Lemmas to apply the algorithm:

LEMMA 1.5 ([DJ89, Section 3.5]). ] Let s be an element of degree d over Fy, A\; F w;, i = 1,2,
d(wy + wy) =n. Then

Ind(Sk (s, M) @ Sk (s, X)) = | Y. anarS(s,7)|,

Thwi+ws

where ay,\,r is calculated using the Littlewood-Richardson rule.

LEMMA 1.6 ([DJ89, Section 7.3]). Let s be an element of degree d over Fy, A - w. Let a
be the degree of s/. Then a | d, and defining u - dTw to be the partition given via its dual
partition p1' = (p1, fia, ..., i) with pf = 4X, we have

Di(s,\) = Dy(s", ).



110 A. ¢-MODULAR REPRESENTATIONS OF FINITE GL (F)

1.1. Decomposition modulo ¢/ when n = 2. The order of GLy(F,) is (¢ + 1)(g — 1)%q.
In non-describing characteristic, as ged(q + 1,q — 1) = 2, there are three cases to consider

(A-1) £#2and ¢ | q—1;
(A-2) £#£2and 0| q+1;
(A-3) £=2.

Case (A-1) corresponds to e > 3, cases (A-2) and (A-3)¢ to e = 2. The classification gives
three classes of ordinary representation of G:

(B-1) Sk (s, (1?)) and Sk (s, (2)) with s of degree 1 over Fg;
(B-2) Ind(Sk(s1,1) ® Sk(s2,1)) with s; both of degree 1 over Fy, and s1 # s9;
(B-3) Sk(s,1) with s of degree 2 over F,.

Class (B-1) constitutes the characters and special representations of G that appear as quo-
tients and subquotients of the reducible principal series; class (B-2) are the irreducible prin-
cipal series; class (B-3) are the supercuspidals.

We compute the decomposition of each of these three classes:

In [Jam90] we find the matrices A(1,2) for GLo(F'), e = 2,3 are the following:

)
Sk(1,(1%)) 1 0
Sk(1,(2)) 1 1
e=2
< S
& S
Sk (1,(1%)) 1 0
Sk(1,(2)) 0 1
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We will see that the circled ¢-modular representation is cuspidal non-supercuspidal, the ap-
pearance of such representations being one of the key differences between the ordinary and
{-modular theory of representations of finite reductive groups.

(B-1) Applying Lemmas 1.1 - 1.3, and looking at the matrices A(1,2) we find
[Sk(s, (1%))] = Di(s", (1%))  always;

Di(st, (12)) + Dy(s,(2)) ife=2;
Dk(séa (2) otherwise.

[Sk(s,(2))] =

(B-2) Applying Lemma 1.4,

[Ind(Sk(s1, (1)) ® Sk(s2, (1)))] = [Ind(Dy(s1, (1)) @ D(s2, (1)))]
= [Ind(Dy(s1, (1)) ® Di(s5, (1)))]-

Either

(a) s{ # s in C then Ind(Dy(s, (1)) ® Di(sh,(1))) is irreducible and in the
classification; or

(b) st = s in C, then the idea is to show that the representation is reducible.
The plan is to work with the Si. Then Lemma 1.5 applies, because reduction
modulo ¢ commutes with induction. For GLo(F) this is all very simple;

applying Lemma 1.5
[Id(Sk(s1, (1)) @ Sk(s2, (1))] = Sk(s1, (1%)) + Su(s1, (2)).
Further d = 1, hence by case (B-1):

2D4(st, (12)) + Dy(st, (2)) ife =2

[Ind(Si(s1, (1)) @ Sipls2 (1)) = Dy(s%, (1)) + Di(s%,(2))  otherwise.

REMARK. It is worth noting that a necessary condition for sf = sg in C, but
s1 # so in C is that ¢ divides ¢ — 1. The only ¢ which has e = 2 and divides g — 1
is [ = 2. Hence unless | = 2, the e = 2 case of (b) is empty.

(B-3) Applying Lemmas 1.1

[Sk(s, (1))] = Di(s, (1))

There are two possibilities:

(a) s’ is of degree 2 over F,. Then, by Lemma 1.6, Dy(s, (1)) = Di(s*, (1)) is in
the classification. These correspond to the cuspidal ordinary representations
of GLy(F) which on reduction are supercuspidal.

(b) s’ is of degree 1 over F,. In this case Dy(s", (1)) is not in the classification
and we need to apply Lemma 1.6. We have d =2, a =1, e(a) = 2, and find

[Sk(s, (1))] = Di(s", (1))
= Dk(5é7 (2))

These ¢-modular representations occur in the decomposition of ordinary spe-
cial representations, and are cuspidal non-supercuspidal.
An element o is of degree 1 over Fy if and only if a? = «, i.e. the order of o
divides ¢ — 1. We consider the different cases for ¢, where we can have an element
s of degree 2 over F, such that st is of degree 1 over F,.
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Assume that s’ is of degree 1 over F, then (s*)7~! = 1, hence s~} = (s,)?7 L.
Thus s has the same degree as s, the ¢-part of s. Furthermore, as sy is at most of
degree 2 over F,, the order of s, has to divide ¢> — 1. When ¢ # 2 we have two
cases:
(i) £]g—1. Asged(g—1,q+ 1) = 2, the order of sy and hence of s must divide
q — 1. Therefore no cuspidal non-supercuspidal representations appear.
(ii) €| ¢+ 1. Any nontrivial {-element has degree 2 over Fy. Let £*||g + 1, then
there are (¢* — 1) nontrivial ¢-elements, (¢ — 1) ¢-regular elements of degree
one over [F, and two roots of each irreducible polynomial of degree two over

F,. Hence

1 —1)(g—1
Number of cuspidal subquotients = #

Finally when [ = 2, let 2%||g — 1 and 27||g + 1. The 2-elements x of degree two
over F, are the ones that satisfy 2°*! < o(z), where o(x) denotes the order of z.
Because o(z) | ¢> — 1 we have 2°*1 < o(x) < 29, Thus there are 2% 2-elements

of degree two over F, and (q;hl) 2-regular elements of degree one over F,. Hence
2%(q —1
Number of cuspidal subquotients = %.

1.2. Decomposition modulo ¢ when n = 3. The order of GL3(F,) is ¢*(¢ — 1)3(q¢ +
1)(¢>+q+1). In non-describing characteristic, as ged(¢+1,¢—1) | 2, ged(¢—1,¢*+q+1) | 3,
and ged(q + 1,¢% + ¢+ 1) = 1 there are five cases to consider:

(A-1) £ #2,3and 0| g—1,

(A-2) £#£2and | q+1,

(A-3) £#23and 0| > +q+1,

(A4) =3 and ¢|q—1,

(A-5) L =2.

Case (A-2) has e = 2, case (A-1) has e > 3, case (A-3) has e = 3, case (A-4) has e = 3, case
(A-5) has e = 2. By Lemma 1.3 and [Jam90], we know the matrices A(1,3) in each of these
cases. Note that, to follow the same procedure for GL,(F,;) when n > 4 one has to use an
algorithm in [Jam90] to compute the matrices A(1,w) for the values of e between 3 and n

and w dividing n.

The classification gives five classes of ordinary representation of G:

(B-1) Sk (s, (1*)), Sk (s, (21)), and Sk (s, (3)) with s is of degree 1 over Fy;

(B-2) Ind(Sk(s1,2) ® Sk(s2,1)), Ind(Sk(s1,(12)) ® Sk (s2,1)) with s; both of degree 1
over Fy;

(B-3) Ind(Sk(s1,1) ® Sk(s2,1)) with s; of degree 2, and sy of degree 1 over Fg;

(B-4) Ind(Sk(s1,1) ® Sk(s2,1) ® Sk(s3,1)) with s; all of degree 1 over Fy;

(B-5) Sk(s,1) with s of degree 3 over F,.

Class (B-1) constitutes the unipotent representations of GL3(F,), the characters , the gen-
eralized Steinberg representations, and the special representations (also generalized Stein-
berg representations). Class (B-4) and, classes (B-2) and (B-3), the irreducible representa-
tions induced from characters of the diagonal torus and of the Levi subgroup isomorphic to
GLy(F,) x GLy(Fy). Class (B-5) are the supercuspidal representations of GL3(F,).
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In [Jam90] we find the matrices A(1,3) for GL3(F), e = 2,3 are the following:

< S
Q Q
Sr(1,(1%)) 1 0 0
Sk (1,(21)) 0 1 0
Sk (1,(3)) 1 0 1
e=2
5 ) 5
S 3 S
Sk (1,(13)) 1 0 0
Sk (1,(21)) 1 1 0
Sk (1,(3)) 0 1 1
e=3

We apply the algorithm we have followed already for GLo(F') to each of the classes of repre-
sentations of GL3(F)

(B-1) Applying Lemmas 1.1 - 1.3 and looking at the decomposition matrices A(1, 3) we
find

[Sk(s, (1°)] = Da(s", (1%))  always;

Di(s%, (13)) + Dy(s%, (21)) ife=3;

[Sk(s, (21))] = Di(s', (21)) otherwise.
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Dy(st, (19)) + Di(s", (3))  if e = 2;
[Sk(s,(3))] = § Di(s%, (21)) + Dp(s%,(3)) if e = 3;
Dy (st (3)) otherwise.

(B2) If f # s} in €. Ind(D(sf, (2)) © Di(s5, (1))) and Ind(Di(sf, (12)) & Di(s5, (1))
are irreducible and in the classification. By the decomposition matrices A(1,2)
we have:

Ind(Sk(s1, (1%)) ® Sg(s2, (1)) = Ind(D(s1, (1%)) ® Dy(s5, (1))  always;
Ind(Sk(s1,(2)) ® Sk(s2,(1)))

l
1
¢
1

Ind(Dy(sf, (1)) ® Dy(s5, (1)) + Ind(Dy(s{, (2)) ® Di(s5, (1)) if e =2;
Ind(Dy(s{, (2)) ® Di(s5, (1)) otherwise.

Now assume sli = sg in C. Applying Lemmas 1.5 and 1.4 and using the matrices

A(1,3):
[Ind(Sk(s1, (2)) ® Sk(s2, (1)))] = Sk(s!, (3)) + Sk(s], (21))
Di(sf, (3)) + Di(sf, (21)) + Di(sf, (1)) if e =2
= Di(s%, (3)) +2Dg(sf, (21)) + Di(s4, (1%)) ife=3;
Di(s5,(3)) + Di(st, (21)) if e > 3.

)
[Ind(Sk(s1, (12)

)

)

)

) @ Sk(s2, (1)))] = Sk(s1, (21)) + Sk(s1, (1%))
Dy(s$,(21)) + Di(s, (1)) ife=2;

= ¢ Di(st, (21)) + 2D, (8, (13)) if e = 3;
Dy(s%,(21)) + Dy(s5, (1%))  if e > 3.

(B-3) Applying Lemma 1.4,

[Ind(Sk(s1, (1)) @ Sk(s2, (1)))] = [Ind(Dx(s1, (1)) @ Di(s2, (1)))]
= [Ind(Dy(s1, (1)) ® Di(s3, (1)))]-
Either
(a) s{ is of degree 2 over F,, then Ind(Dy(s%, (1)) ® D (s5, (1))) is irreducible and

in the classification.
(b) s is of degree 1 over F, then by Lemma 1.6 [Ind(Dx(s1, (1)) ® Dy (s5, (1)))] =
[Ind(Dy(sf, (2)) ® Dy(s5,(1)))] and we have two further subcases:
(i) If s§ # s& in C. Then Ind(Dy(s{,(2)) ® Dy(s5,(1))) is irreducible and
in the classification.

(ii) If s = 5% in C. We use the matrices A(1,2). to write Dy(s%,(2)) in
terms of Sj, then apply Lemma 1.5, and the decomposition matrices
A(1,3):
[Ind(Dy(s5, (2)) ® Di(s4))]

[ Ima(Si(sh (2)) - Silsh. (12) @ (s ()] if e =2
[Ind(Sk(s4, (2)) @ Sk(sf, (1))] otherwise.

[ md(Sist, (2)) @ Silsf, (1) — Ind(Sy(st, (12) @ (st (1)) iF e =2;
(Ind(Si (s}, (2))  Si(s, (1)] otherwise.
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_ {[(Sk(8§,(3))+Sk($§,(2l)))—(Sk(% ,(21)) + Si(s§, (%)) ife=2;

[Sk(s{, (3)) + Sk(st, (21))] otherwise.
Dy(sf, (3)) if e = 2;

= d Dyl (19)) + 2D, (21)) + Dilsly (3)) it e =3
Dy(s4,(3)) + Dy(s{, (21)) otherwise.

(B-4) Applying Lemma 1.4,

[Ind(Sk(s1, (1)) @ Sk(s2, (1)) @ Sk(s3, (1)))] = [Ind(Dy(s1, (1)) @ Dy(s2, (1)) @ Dy(s3, (1)))]
[Ind(Dy(s1, (1)) ® Dy(s5, (1)) © Di(s5, (1))]-

We have three further subcases:

(a) When s are pairwise distinct in C, then Ind(Dg(s{, (1)) ® Di(s5, (1)) ®
Dy(s5, (1)) is irreducible and is in the classification.

(b) When s{ = s§ = s§ in C, then we apply Lemma 1.5 using the transitivity of
induction first inducing to GLg(Fq) x GL1(Fy)

Ind(Sk(s1, (1)) ® Sk(s5, (1)) ® Si(s5, (1)))]
[Ind(Ind(Sk (1, (1)) @ S(st, (1)) © Sk(s1, (1)))]

= [Ind((Sk(s1, (1)) + Sk(s1, (2))) ® Sk(st, (1))]
[Ind((Sk(s1, (1%)) + Sk(s1, (2))) © D(s1, (1)))]

{mdaDk {.(12) + Dy(st, (2))) ® Di(sh, (1)] if e =2;

(
(

Ind((Dy(s%, (12)) + Di(s%,(2))) @ Dp(s,(1)))] otherwise.

[2Ind((Di(s{, (1%)) ® Di(s{, (1)) + Ind(Di(s{, (2) ® Di(s, (1)) if e = 2;
[Ind((Dx(s%, (12)) ® Dg(s, (1)) + Ind(D(s%, (2)) ® Di(s%,(1)))]  otherwise.

Now we write the Dy in terms of the Sy using the matrices A(1,w)e, and
apply the relevent case from (2):

= [Ind((Sk(s1, (1%)) ® Sk(s1, (1)) + Ind(S(s1, (2)) @ Sk(st, (1)))]
[Sk(s1, (1%)) + 25k(s1, (21)) + Su(s1. (3))]

2Dy (s, (13)) + 2Dk (sf, (21)) + Dy(s, (3)) ife=2;

3D (s{, (1%)) + 3Dy(s1, (21)) + Di(s{, (3)) if e = 3;

Dy (st (1%)) + 2Dy (%, (21)) + Di(s{,(3))  otherwise.

¢) When exactly two of s¢ are equal. We can assume that either s¢ = s% or
) 1 2

sé = sg by the order imposed in Lemma 1.4 on the s;. It is possible to

rearrange the Si(s;, (1)) without changing the composition factors. Thus by
symmetry we just need to consider one of the two cases. Assume s‘i = sg in
C. Following the calculations in the last subcase we find:

[Ind(Sk(s1, (1)) @ Sk(s1, (1)) © Sk(ss, (1)))]

_ ) 2Imd((Dk(s{, (1%)) @ Di(s5, (1)) + Ind(D(s{, (2)) @ Di(s5, (1)) if e =2;
Ind((Dg(sf, (12)) ® Dy (s, (1)) + Ind(Dy(s%, (2)) ® Dy(s§, (1)))  otherwise.
(B-5) Applying Lemmas 1.1 and 1.4

[Sk(s, (1))] = Di(s, (1))
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= Di(s', (1
= Dy(s", (1)).

There are two possibilities (as the degree of the extension generated by s’ has to
divide 3):

(a) s*is of degree 3 over F,. Then Dy(s%, (1)) is in the classification. These corre-
spond to the cuspidal ordinary representations of GLo(F') which on reduction
are supercuspidal.

(b) s’ is of degree 1 over F,. By Lemma 1.6

[Sk(s, (1))] = Di(s", (1))
= Di(s", (3)).

Assume that ¢ # 2,3. Following the same arguments as we gave for GLa(FF,) we
find that if ¢ | ¢+1 or £ | g—1 there are no cuspidal subquotients and if £ | ¢>—g+1
there are W cuspidal subquotients.
REMARK. For GL,(F;) with n prime, the only cuspidal non-supercuspidal representations
that appear are quotients of special representations (generalised Steinberg representations)

by their maximal submodules.



APPENDIX B

NORMAL SUBGROUPS AND DECOMPOSITION NUMBERS

In this appendix using Brauer characters and the decomposition matrices of SU3(E/F),
[Gec90], we find the decomposition numbers of Uz(E/F).

117
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1. CLIFFORD THEORY FOR BRAUER CHARACTERS

Let G be a finite group of Lie type, H a subgroup of G and 6 € IBr(H). Denote by IBr(G|6)
the subset of IBr(G) of Brauer characters which on restriction to H contain 6.

THEOREM 1.1 ([Nav98, Theorems 8.9, 8.12, Corollaries 8.7, 8.20]). Let N be a normal
subgroup of G.

(1) Let 6 € IBr(N) and ¢ € IBr(G). Then ¢ is an irreducible constituent of < if and
only if 6 is an irreducible constituent of . Furthermore suppose 6 is an irreducible
constituent of px and let 01,05, ..., 0, be the distinct conjugates of 6 in G. Then

,
PN =€ Z 0;.
i=1
(2) (Clifford correspondence) Let § € IBr(N). The map
IBr(Ng(6)|0) — IBr(G|9)
by
is a bijection.
(3) Suppose G/N is cyclic and Ng(0) = G. Then there exists ¢ € IBr(G) such that oy = 6.
(4) Let n € IBr(G) and suppose ny = 0 for some 6 € IBr(N). Then the characters 87 for

B € IBr(G/N) are irreducible, pairwise distinct and are all the irreducible constituents
of 6.

Suppose we can extend 8 € IBr(N) to @y € IBr(Ng(6)). Then by Theorem 1.1 part (4)
IBr(Ng(0)0) = {Byo : B € IBr(Ng(0)/N)}

and by Theorem 1.1 part (2)
IBr(G0) = {(B¢9)“ : B € IBr(Ng(0)/N)}.

Furthermore
Br(G)= |J IBr(Glo).
0€TBr(N)
However this union is not necessarily disjoint: by (1) we see that IBr(G|61) = IBr(G|62) if
and only if there exists g € G such that 6] = 6. If there is no such g then the sets are
disjoint. Define an equivalence relation on IBr(N) by 61 ~ 02 if and only if there exists g € G
such that 67 = 65, then

Br(G) = | J IBr(G|0)

0€IBr(N)/~
a disjoint union.

1.1. Direct products and decomposition numbers. Given a direct product of groups
G x H, by [Nav98, Theorem 8.21],

IBr(G x H) ={0 x ¢ : 6 € IBr(G), ¢ € IBr(H)},

where 6 x ¢(g) = 0(g)¢(g). The trick is to show that § x ¢ is irreducible in each case; it is
easy to see that they are pairwise distinct then the equality follows by counting.

Therefore if we know the decomposition of the ordinary characters of G and H then we can
work out the decomposition of the irreducible characters of G x H. Suppose d'(6) = > a;0;
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with 6; € IBr(G) and d*(p) = Y 8;%; with @; € IBr(H). Then
d'(0 x @) =Y iB;(0; x B;).
i,

1.2. The conjugacy classes of two and three dimensional finite unitary groups.
Let G = U3(E/F) and N = SU3(E/F). Due to Theorem 1.1 we are interested in the action
of G by conjugation on the classes of N. The conjugacy classes of G are given in [Enn63,
Page 29] and the conjugacy classes of N in [Gec90, Table 1.1].

If d = 1 the N-conjugacy classes are the intersection of the G-conjugacy classes with IV, i.e.
the N-conjugacy classes are the G-conjugacy classes of determinant one.

If d = 3 there are three N-conjugacy classes, denoted by C:gk’o),Cék’l), and C?()k’g) in [Gec90],
which are G-conjugate. The other N-conjugacy classes remain fixed under the action of G
by conjugation. The group index [G : N] = ¢+ 1 and by transitivity

[G: N =[G : Z(G)N][Z(G)N : NJ.

By the second isomorphism theorem for groups

q+1
[Z(G)N : N] = [Z(G) : Z(N)] = —
Thus
G :Z(G)N] =d.
Therefore, if d = 3 there are three distinct cosets in the space G/ Z(G)N which must permute

(k,0) Cék’l)

the conjugacy classes Cj and Cék’g) because the conjugacy classes remain fixed by

Z(G)N yet form a single conjugacy class in G

Let Gy = Ua(E/F) and Ny = SU(E/F). The conjugacy classes of Gy are found in [Enn63,
Page 26], We assume ¢ is odd. When intersected with Ny the conjugacy classes of G of
)

determinant 1 are all Na-conjugacy classes apart from two classes which are denoted by Céo

g+l
and CQ( =) in [Enn63]. These have representatives

() = (00

Explicit calculations show these Ga-conjugacy classes both split into two No-conjugacy classes.

2. BRAUER CHARACTERS OF SU3(E/F)

2.1. The characters of SU3(E/F) and Us(E/F). The ordinary character table for
Us(E/F) is given in [Enn63, Pages 30-31]. The ordinary character of a representation p is
denoted by
(@)
Xdim(p)’
where (7) is some list of parameters. For example, let ¢ be an irreducible representation of
F* then Stg(¢) has character X((;;) for some u = 1,..,q — 1. Relating the parameter u to ¢

depends on a choice of ¢ — 1-th root of unity.

We use the notation from the ordinary character table for SUs(E/F'), [Gec90, Table 3.1].
We follow the description of the decomposition numbers of SU3(E/F') in non-defining char-
acteristic given in [Gec90, Theorems 4.1-4.5]. In [Gec90] there are two parameters o and
B missing from the decomposition matrices, these are found in [OWO02, Lemma 2.2]. The
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order of SU3(E/F) is ¢*(¢ — 1)(q¢ + 1)%(¢> — ¢ + 1). In non-describing characteristic, since
ged(g+1,¢—1) | 2, ged(q+1,¢> — g+ 1) | 3 and ged(q + 1,¢% + ¢+ 1) = 1 there are five

different cases to consider:

A1 /l0#2and ¢ |q—1,
A2/¢#23and (| g+1,
A3 0#23and (| ¢*>—q+1,
A4 ¢=3and l|q+1,

A-5 0 =2.

2.2. Decomposition matrices of SU3(E/F) if { # 2 and ¢ | ¢ — 1, [Gec90, Theorem
4.1]. Let ¢# ] ¢—1.

(1) The principal ¢-block:

Conditions Number

X1

10
X 01

X((;;)Jrl 11 Zlu -1

The non-exceptional characters are x1 and x,s and we have the following Brauer tree:

o——O0—@
(2) ¢-blocks B{":
Conditions Number
(w)
>(<q>2_q L 10 1
Xq(q2—q+1) 01 1
v 2_
X¢(13)+1 11 qea1|v—(q—1)u -1
The non-exceptional characters are Xf};‘[q 41 and X%Lq ) and we have the following
Brauer tree:
o——O0—@
(3) (-blocks B
Conditions Number
()
Xgpg1 L 1
Xf;s))Jrl 1 qizl |lv—worv+ug (*—1

)

1 and we have the following Brauer tree:

The non-exceptional character is X‘(IZ
e—O

(4) ¢-blocks of defect zero. All other Brauer characters are in ¢-blocks of defect zero.

2.3. Decomposition matrices of SU3(E/F) if ¢ # 2,3 and ¢ | ¢*> — ¢ + 1, [Gec90,
Theorem 4.2]. Let £¢ || ¢> —q+ 1.

(1) The principal ¢-block:
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Conditions Number

X1 100 1
X 11 1
Xe—g 0 0 1 1
(w) 01 1 L=gtl|y o1

X(q+1)2(g-1) &

The non-exceptional characters are x1, x,43, and x42_g, and we have the following Brauer

tree:
[ { J @
(2) (-blocks B{"):
Conditions Number
(u)
X(g+1)2(¢-1) i 1
2 a
XEZ-)H)Q(Q—I) 1 5 [v—uorv—ug® (-1

(u)
(g+1)2(¢—1)
e—O

(3) (-blocks B, v =1,2: If d = 3 we have the additional blocks:

The non-exceptional character is y and we have the following Brauer tree:

Conditions Number
(071))
Mot 1O 1
X&gﬂ)?(rl)/s 1.0 !
X(gr12g-1ys 0 01 1

2 2
I N R e A

The non-exceptional characters are XESi}i)Q(q—l)/S’ xgﬂ)g(q_l)/g and XEQ’U))Q( 1y a- We

have the following Brauer tree:

(4) ¢-blocks of defect zero. All other Brauer characters are in ¢-blocks of defect zero.

2.4. Decomposition matrices of SU3(E/F) if £ # 2,3 and ¢ | ¢ + 1, [Gec90, Theorem
4.3]. Let || g+ 1.

(1) The principal ¢-block:

Conditions Number
X1 1 00
Xq2—q 01 0 1
Xg3 1 21 1
?é;;)*qﬂ 110 %|u =1
u +1 a
Xo@2—q+ny 1 11 G | u . =1
(v,w) +1 o @
X(g-1)g2—g+1) U 0 1 G | v,w 6(5 -1 -2)

(2) (-blocks B{"):
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Conditions Number
X1 1
xgglquzzgl\v—uorv—i—uq -1
The non-exceptional character is szg)ﬂ and we have the following Brauer tree:
e—O
(3) (-blocks B
Conditions Number
X(’;{q L 10 1
Xq(qLﬁl) L1 1
x(’é),qﬂ 10 ¢y —y -1
Xg-ng2—q+n 0 1 @ | w,v—u (" = 1)
(4) -blocks B{""), L 4y
Conditions Number
XEZ vi) (¢®—q+1) i 1
o Vg L | r—ww =
The non-exceptional character is XE“ U)) D(g2—q+1) and we have the following Brauer tree:
e—O

(5) ¢-blocks Bs: If d = 3 we have in addition an ¢-block:

Conditions Number
0
Xig—1)(a?-a+1)/3 100 1
X(a—1)(@2—g+1)/3 010 1
Xig-)(@—g+1/3 0 0 1 1
1
(v,w) 11 1 %—ga |vw 2a_1
(g=1)(¢%—g+1) q+1 | v+ w, q+1 fo 3

(6) ¢-blocks of defect zero. All other Brauer characters are in ¢-blocks of defect zero.

2.5. Decomposition matrix of the principal ¢-block of SU3(E/F) if ¢ = 3 and ¢ | ¢+1,

[Gec90, Theorem 4.5]. The principal ¢-block:
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Conditions Number

xi 1000 0 1
Xe?—a 01000 1
X%l)(qzqm/s 00100 L
Xlg a0t 1)/3 00010 L
X1z 0 0 0 01 :
X 12111 1
W 11000 e 31
X ey 11111 e 3
R R
XEQ%W—W?’ 01100 ov=12 2
Xy 01010 v=12 2
X geys 01001 w=12 2

3. BRAUER CHARACTERS OF Us(E/F)

In this section we find the decomposition matrices of Us(E/F). We use Clifford theory for
Brauer characters from IBr(SU3(E/F)) to IBr(Us(E/F)) and the decomposition matrices of
SU3(E/F). There are two cases, depending on whether 3 is prime to ¢ + 1 or not.

3.1. The Brauer Characters of U3(E/F) whend =1, { #2,3,p. Let N :=SU3(E/F)
and G := U3(E/F). Because d = 1 we have a direct product decomposition

G~ N x Z(@Q).
Thus the Brauer characters of G and decomposition matrices follow from Section 1.1.

3.2. Brauer characters of U(3) when d =3, { # 2,3, p.
In the first lemma we deal with certain complex characters whose normaliser is G and thus
extend to G by Theorem 1.1 part (3).

LeMMA 3.1. Let ¢ € Irr(N) such that Ng(v) = G and Ng(p) = G for all irreducible
constituents ¢ of d'(1). Suppose d'(¢) = 31" | ¢; with ¢; and ¢; distinct when i # j. Let
1 be any extension of ¢ to G. Then d'(¢) = Y"1 | ¢; where @; is an extension of ¢; to G.

PROOF: Suppose dl(lz) =30 em;.

- dl ~

G o ———— d'(¥) = I, ejn;
dl

N ) ————d () = Y, pi

Restriction to the f-regular elements commutes with restriction from G to N hence

Res§ (d (1)) = d ().
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By Theorem 1.1 part (3) for each i there exists an extension of ¢; to an irreducible Brauer
character k; of G. Let 6 € IBr(G), by Theorem 1.1 part (1), ¢; is an irreducible constituent
of @y if and only if § is an irreducible constituent of ¢“. The set {Bx; : B € IBr(G/N)}
consists of all irreducible constituents of & and these are pairwise distinct by Theorem 1.1
part (4). Hence the n; must all be extensions of ;. Because the decomposition numbers are
all ones we must have m = n and e; = 1 for all j. O

Comparing with the decomposition matrices of N in Section 2, Lemma 3.1 deals with ex-
tending all complex characters ¢ € Irr(G) whose normaliser is G and such that all irreducible
constituents in d' (1)) have normaliser G except one: the Steinberg character g3 when £ | g+1

LEMMA 3.2. Suppose ¢ | ¢+ 1 and let an be any extension of 1,3 to G. Then
dl (Jq3) = 551 + 25{q27q + i;

where X1 is an extension of x1 to G, X,2_, is an extension of x2_, to G and Y is an extension
of the irreducible Brauer character d'(x,s) — d*(x1) — 2d"* (x,2_,) to G.

PROOF: Let Y; = d*(x1) and X,2_, = d*(x,2—,) which are irreducible Brauer characters of
N. As in the proof of Lemma 3.1 we find d*(¢3) = X1+ X +BX +Y where X, extends Y; to
G, Y extends Y to G, and X and X are two extensions of Y,2_, to G which, by Theorem
1.1 part (4), are related by twisting by 5 € IBr(G/N). Claim: these two extensions coincide,

i.e. B is trivial.

dl

G %q3 ?1"’5&"‘3)’24’?

1
N Xq3

Y1 + 2Yq2—q + Y

We can translate this into a problem using the notation of Chapter 2 Section 8: because dp
commutes with Deligne-Lusztig induction, Chapter 3 Lemma 1.3, there is a cuspidal repre-
sentation o7, g, by Chapter 2 Section 8, with the same decomposition modulo-¢ as the virtual
representation Stg(x) — 2vy — 1g(x). Thus the decomposition modulo-¢ of the virtual rep-
resentation Stg(x) — 2, — 1g(x) is an ¢-modular representation. Hence the decomposition

modulo-¢ of Stg(x) must contain the decomposition modulo-¢ of v, with multiplicity 2. O

Let ¢ € Irr(G) such that Ng(y) = G then

G D Ng(d* (1)) D Ng(v);

thus Ng(d'(y)) = G. While not every Brauer character is equal to the restriction of an
ordinary character to the f-regular elements; the decomposition matrices of N can all be
rearranged to be lower unitriangular. Starting at the top of these decomposition matrices
and working top to bottom and left to right, if the first n ordinary characters have normaliser
G, then so does the n-th Brauer character.

Following this algorithm all but two ¢-blocks of IV contain only ordinary and Brauer characters
with normalisers equal to G. Using Lemmas 3.1 and 3.2 we can find the decomposition
matrices for these blocks. We use the lower unitriangular shape of the decomposition matrices
to choose the extensions of the ordinary characters to ensure compatibility with decomposition
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modulo-f. We start with the ordinary character of the first row ¢ and fix any extension U
of Y1 to G then

Irr(Gleh1) = {v¢n : 7 € Irr(G/N)}
and d*(y111) = d*(y2tb2) if and only if d'(y1) = d'(y2). We then move onto the next row
with ordinary character ¥ in the decomposition matrix of V.

(1) If d' (1b2) contains d* (1) we fix an extension ¥ of 1hy such that d'(13) contains d* ().
This is not necessarily unique, but exist: d* (i) contains some extension of d'(a1) thus
the twists of this extension by 8 € IBr(G/N), and hence all extensions of d'(¢;), appear
in dl(QZQ) as 1’52 runs over all extensions of 9. Let 6 € Irr(G|ye) then 6 = 'y{bvg with
v € Irr(G/N) and 6 is in the same (-block as ¢ if and only if d!(v) = 1.

(2) If d*(¢2) does not contain d* (1) we choose an ordinary character ¢ in the ¢-block which
contains both d' (1) and d'(1/1), this is possible by Section 2. Fix an extension 1;2 of
19 such that, for some extension gof ¢, dt (E) contains both 1;1 and @ZQ. Then, as in the
last case, if 6 € Irr(Gi)2) then 6 = Y4y with v € Irr(G/N) and 6 is in the same (-block
as ¢ if and only if d*(v) = 1.

It is easy to extrapolate from this and produce the decomposition matrices of G.

The two remaining blocks of N, one when ¢ | ¢ + 1 and one when ¢ | ¢> — ¢ + 1, both have
the following structure:

d'(x1) d'(x2) d'(x3) Conditions Number

X1 1 0 0 1
X2 0 1 0 1
X3 0 0 1 1
X, 1 1 1 1<i<k k

Furthermore Ng(x1) = Na(x2) = Na(x3) = Z(G)N and Ng(Xex) = G. Because £ # 3 the
conjugacy classes ngk’o), Cék’l) and C?()k’Q) are (-regular and as the restriction of the y; to the

(-regular elements is irreducible Ng(d'(x1)) = Na(d(x2)) = Na(d'(x3)) = Z(G)N.

Using Theorem 1.1, as explained in Section 1, we have Irr(G|x1) = Irr(G|x2) = Irr(G|xs);
IBr(G|d!(x1)) = IBr(G|d*(x2)) = IBr(G|d*(x3)) and it remains to describe d' restricting the
domain to Trr(G|x1) U (UL, Trr(Gxi,)).

LEMMA 3.3. For all p € Irr(G|x1) the Brauer character d*(p) is irreducible and contained in
IBr(Gd* (x1))-

PRrOOF: Fix an extension Y; of x1 to Z(G)N which exists by Theorem 1.1 part (3). Alter-
natively, as Z(G) N N is equal to Z(N) we can extend by choosing an extension of the central
character of x; to Z(G).
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~G dl 1/=G
G Xy ——— d'(XY)
N ! _
Z(G)N X1 — d*(x1)
|
N xa— i)

By the second isomorphism theorem for groups Z(G)N/N ~ Z(G)/ Z(N). Hence by Theorem
1.1 part (4)
Irr (Z(G)N|x1) = {vx1: v € r(Z(G)/ Z(N)) } .
The Brauer character d'(X1) extends d'(x1) to Z(G)N and by Theorem 1.1 (4)
IBr (Z(G)Nld' (x1)) = {Bd"(X1) : B € IBr(Z(G)/ Z(N))} -
Furthermore d'(yx1) = d'(7)d'(x1). By Theorem 1.1 part (2),
I (Gla) = { (%) 7 € In(Z(G)/ ZN)) }
IBr (Gld(x1)) = {(ﬁdl(gl))G B e IBr(Z(G)/Z(N))}.
Because induction commutes with d*
d" ((%)%) = (d'()a! (1) € Br(Gla* (x1)).
O

The last sets of ordinary characters to consider are Irr(G|x%,) and we let Irr(G|xes) denote
any one of these sets.

LEMMA 3.4. For all p € Irr(G|xez) the Brauer character d'(p) is irreducible and contained
in IBr(G|d*(x1))-

PROOF: Let X¢, be an extension of y., to G which exists by Theorem 1.1 part (3). By
Theorem 1.1 part (4)

Irr (GlXex) = {7Xex : v € Ir(G/N) } .
The restriction of d*(Yez) to N is d*(xez)-

- d! ~
G Xew ———— d" (Xex)
! 3
N Xex ——— dl (Xem) = Zi:l d1 (Xl)

Let ¢ € IBr(G) be an irreducible constituent of d'(X.,) By Theorem 1.1 part (1):

3
Res{(¢) =e > d'(xa)-
i=1
Therefore e = 1 and ¢ = d'(Xez). Thus d'(vXez) = d'(7)d* (Xez) is irreducible as a Brauer
character and is contained in IBr(G|d*(x1)). O
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Using Lemmas 3.3 and 3.4 we can find the decomposition matrices of the remaining ¢-blocks
of G. 1If 01,0y € Irr(G|xes) then 61 = Y1Xex, 02 = Y2Xex With 71,72 € Irr(G/N) and
d*(01) = d'(69) if and only if d'(y1) = d*(v2).

Let 61,09 € Trr(Glx1) then 01 = (71x1)%, 02 = (92x1)¢ with v1,72 € Irr(Z(G)N/N) and
d'(#1) = d'(6) if and only if d' (1) = d*(v2) because d' commutes with induction.

Let 61 € Irr(G|x1), 02 € Trr(G|xez) then 01 = (11%1)¢ with 1 € Irr(Z(G)N/N) and 6, =
Y2Xez With 72 € Trr(G/N). Fix the extension Ye, so that d'(Yer) = d'(X1)®. By restriction
induction Resg(G)N(SZez) ~ X1 DX ® Sah where {1, g, h} is a set of coset representatives of
G/Z(G)N. By restriction to N, we see that X1, X7, X1 are distinct. Therefore d*(6;) = d*(6,)
if and only if d'(71) = Res%g)n (d" (12))-

Similar arguments apply to the sets Irr(G|xz2) and Irr(G|x3). To relate 6; € Irr(G|x.,) and
05 € Irr(G|x2,) we can go via Irr(G|x1).






APPENDIX C

THE BUILDING OF PARAHORIC SUBGROUPS

In this appendix we briefly describe a model for the reduced building of U(2,1)(E/F).
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1. THE REDUCED BUILDING OF U(2,1)(E/F)

The geometry of parahoric subgroups of a p-adic reductive group can be described using the
reduced building B(G) of G. We give a description of the reduced building of a unitary group

in terms of lattice functions.

An Og-lattice function on V is a map
A:R — Lato, (V)
such that

(1) A is decreasing and periodic,
(2) A is left continuous.

Denote the set of Og-lattice functions on V' by Latt%QE(V). The image of a lattice function
defines a lattice sequence. Define an equivalence relation on Latt}oE(V) by Ay ~ Asg if there
exists 7 € R such that for all x € R

A (z) = Aa(z + 7).

The set of equivalence classes is denoted B(GL(V')) and called the reduced building of GL(V).
We have a transitive action of GL(V') on Latt%gE(V) by

g9-Az) = g(A(z)),

and this action stabilises equivalence classes, hence we get an action of GL(V) on B(GL(V)).

A decomposition of V
V=
i=1

splits A € Latt, (V) if for all z € R

A@) =D VinAw),
i=1
and splits [A] € B(GL(V)) if it splits some representative of [A].

THEOREM 1.1. For any two lattice functions A; and Ap in V, there exists a basis (a;); of
V such that @), Ea; splits A1 and As.

The subset of [A] € B(GL(V')) which are split by the decomposition of V' given by a chosen
basis (v;)}_; is called an apartment A of B(GL(V')). The equivalence class [A] € Lattp, (V)
is in the apartment given by a basis (v;)"_; if and only if, there exists a representative A of
[A] and (¢;)?; € R” such that for all r € R

A(r) = @™t Ogy @ w210 & - & @t Oy,

An equivalence class [A] is called hyperspecial if the period of the image of a representative of
[A] as a lattice sequence is 1, i.e. (¢;)P; € Z". Thus the hyperspecial points can be indexed
by the lattices in V.

Let [A;] € B(GL(V)), i = 1,2 and A;, i = 1,2 be representatives of [A;]. We define a metric
d on B(GL(V)) via choosing a common splitting basis for A;

A (r) = @™ Ogy ® @210 @ - @ "1 Ogw,,
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Ao(r) = w[r—‘rdl]oEvl ® oolrtda] Opv1 @ - @ ool mtdn] Opvn,

then
d([A]L [AQ]) = min{max{|cj — d]‘ 1<y < TL} (A € [Al]}

The apartment has a (n — 1)-simplicial structure. The vertices are the hyperspecial points
in B(GL(V)). A sequence of k hyperspecial points [A;], ¢ = 1,...,k form a k-simplex if and
only if there exist lattices L; in the image of representatives A; of [A;] such that

leg'“g_Lkg_Ll.

The maximal simplices are called chambers.

Let A € Latth(V), define
A(r+) = [ J AGs),

s>r

the dual lattice function Af € B(GL(V)) of A is defined by
AF(r) = (A((=r)+))F

for all » € R. The lattice function A is called self dual if A = A*. The equivalence class [A] is
called self dual if A € [A] implies that A € [A]. If [A] is self dual, there exists a unique self
dual lattice function A € [A].

The involution attached to the hermitian form h acts on the (reduced) building of GL(V') by
taking the equivalence class of lattice function A to the equivalence class of its dual lattice
function Af. The building B(U(V, h)) of U(V,h) is the space of self dual lattice functions on
V. Thus

B(U(V,h)) = B(GL(V))",
and we can embed B(U(V,h)) in the building of GL(V). The group U(V,h) acts on the
building.

The subset of [A] € B(U(V, h)) which are split by a chosen basis (v;)?_; of V' which is stable
under h is called an apartment of B(U(V,h)). The apartment has a simplicial structure. An
Op-lattice sequence L is called almost self dual if

PpL C L C L.

The equivalence class of A is a vertex if and only if A is constant on the interval [0, 3). If [A]

is a vertex then

Lf ifxe|o,d);

Alz) = . ) 2
L lf T € [5, 1)

Hence a vertex corresponds to an almost self dual lattice sequence. A sequence of r vertices
[Ai], i = 1,...,k form an r — 1-simplex if and only if there exist lattices lattices L; in the
image of representatives A; of [A;] such that

PpLiCL CLiy CLr oG CLyCLyC - C L, C L
The maximal simplices are called chambers. Then A induces a nondegenerate form A on
) el I} ,&---&Li/Ly®Ly/L1& & L,/PpLt
via h = hy @ hy_1 @-~-EBEOEBET+1. Whereif 1 <i<r

hi:Li—1/L; x L?/Lg_l — kg,
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i (z+ Li,y+ L}_)) = h(z,y) + Pg,
and
o LY /Lo x L} /Lo — kg,
ho : (z + Lo,y + Lo) = h(z,y) + Pg,
and
hys1: Ly /PeLt x L, /PpLi — kg,
Bps1 ¢ (z+ PeLi,y+ PpLl) — wp'h(z,y) + Pe.

A facet F is a simplex in the building, a vertex is a O-simplex. The stabiliser in G of F
under the action of G on B(G) is a compact open subgroup of G, we denote by Gj{-. Letting
x be the barycentre of F we have G = GJ}C. Let F be an r — 1-simplex, as above, which
corresponds to a flag of lattices

PeliCL CL 1 GCLiaG - CLCLyC - CLE CLL
We have a map
m: G — [ [ Autey (Li/Lit1)
i=0

whose image consists of elements which preserve the form A, i.e.

r—1

im(m) = [ [ Autr,(Li/Li-1) x U(L§/Lo) x U(Ly/PpLE).

i=0
The kernel of 7 is the pro-unipotent radical of Gj{- and is denoted G;-. In general, the finite
reductive group M}' = im(7) need not be connected. A parahoric subgroup of G, associated
to the facet F, is the preimage G'r of the connected component Mx of M}t in G}'_-. We then

have a short exact sequence

1 -Gy - Gr— Mr—1.

When the facet F is a chamber in the building, a parahoric subgroup is called an Iwahori
subgroup. All Iwahori subgroups are conjugate in G. We fix a choice of Iwahori subgroup
J, this determines a chamber C' in the building B(G). If z is any point in the closure C the
Iwahori subgroup J is equal to the inverse image of a Borel subgroup B¢ of M, in G;. In
fact, for any point z € B(G), G is equal to G(OF) for some smooth affine Op-group scheme
G whose generic fibre is G, [Tit79, 3.4.1].

A parahoric subgroup G, corresponding to a point in the closure of the chamber C is called
maximal if it is maximal under inclusion. There can be multiple non-conjugate maximal
parahoric subgroups in G. Fix a maximal parahoric subgroup G,. The non-maximal para-
horic subgroups G, contained in G, and which correspond to a point z in the closure of C
are equal to the preimage of parabolic subgroups P, ¢ of M, which contain B, ¢ in G.
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1 Gl G, M, 1
1 G;lC Gz PZ,C 1
1 Gl :J B:zc,C 1

EXAMPLE 1.2. Let V be a three dimensional E-vector space. The (reduced) building B(GL(V))
is a union of apartments that are isometric to the plane. The simplicial structure on an apart-
ment is a tesselation of the plane by equalateral triangles.

Choosing the standard basis (e;)?_; for V, and identifying GL(V') with GL3(E), let
A(r) =@ Oge; ® @M Opes ® @M Opes,
As(r) = w1 Oper ® @M Opes ® @™ Opes,
As(r) = @I Oper @ @™ Opes @ @™ Opes,
and let [A;], i = 1,2,3 be the equivalence class of A;. The standard chamber of B(GL3(E))

1S

[A1]

/N

[Ao] [As]

We can describe representatives of the equivalence classes of other lattice functions in this
chamber in terms of linear combinations of A;, i = 1,2,3. For example the midpoint of the
line from [Asg] to [As] has representative

Aog = W[T] Ope1 & w[”%]OE@ D w[T+ﬂ Oges.

Let h be the form on V given by

0 01
(h((ei,ej)) = 0 1 0 5
1 00

see Example 2.3. Then the duality acts as a reflection in the vertical line on the standard
apartment of GL3(E)
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The points [A1] and [Ags] in B(GL3(E)) are self dual, whereas the dual of [Ag] is [A3] and vice-
versa. Thus the standard chamber of B(U(2,1)(E/F)) is the line with vertices [A1] and [Ags].
The standard parahoric subgroups of U(2,1)(E) are contained in the pointwise stabilisers
of the simplices in the chamber. We have two maximal standard parahoric subgroups: one

contained in y

Orp O Opg
Staby(e,1)ye/p)M] = | Op Op Or| NUQ2,1)(E/F);
Op Op Opg

the other contained in

Og Or w_loE
Stabyo,1y(g/F)[A23] = | @O Op Ogp NU(2, 1)(E/F).
wOE wOE OE

The stabilizer of the chamber is the standard Iwahori subgroup J of U(2,1)(E/F)

X

Og O Opg
J=|wO0Og O Og ﬂU(2,1)(E/F).
wOE wOE OE
This is equal to the stabiliser of the central point in the chamber [A123] which is the equivalence
class of
Ai2s(r) = @1 Oper ® @11 0pes ® w210 es.
If E/F is unramified then the form A is hermitian and the parahoric subgroup associated to
a point is equal to the pointwise stabiliser of that point. If F/F is ramified then the form h
is orthogonal and the parahoric subgroup associated to a point has index 2 in the pointwise

stabiliser of that point.

The building of U(2,1)(E/F) is a tree. If E/F is unramified then the vertices conjugate to
[A1] have ¢ + 1 neighbours and the vertices conjugate to [As3] have ¢+ 1 neighbours. If E/F
is ramified then the tree of U(2,1)(E/F) is ¢ + 1-regular.
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