

Investigating the molecular mechanisms of the interactions between *Lactobacillus reuteri* strains and intestinal mucus

Faye Jeffers

Thesis submitted for the degree of Doctor of Philosophy

To
The University of East Anglia

Institute of Food Research
Norwich Research Park
Colney Lane
Norwich NR4 7UA

September 2012

This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.

Abstract

Mucus is the first point of contact between the gut microbiota and the host. Here we used the gut symbiont *Lactobacillus reuteri* to investigate the molecular mechanisms underlying the interactions between gut bacteria and mucus.

Firstly, the mucus binding ability of a collection of *L. reuteri* strains from different vertebrate hosts was assessed *in vitro* against mucus extracted from mouse and porcine gastrointestinal tracts. The adhesion profile was strain-specific showing the highest binding phenotype for strain ATCC 53608 (a pig isolate) and binding ability for a number of *L. reuteri* human isolates. Genome sequencing of the ATCC 53608 strain and comparative genomics was carried out to gain novel insights in the strain-specific determinants of *L. reuteri* adhesion to mucus.

The second part of this work investigated the occurrence at the genetic and protein level of two specific cell surface proteins, MUB and Lar_0958, expressed by the ATCC 53608 strain and human strains, respectively and their role in mediating mucus binding and autoaggregation ability of *L. reuteri* strains, as determined by flow-cytometry and *in vitro* mucus binding assays with recombinant and native proteins.

Finally a quantitative proteomic approach, stable isotope labelling with amino acids in cell culture (SILAC), was used to identify novel mucus binding protein candidates. This was achieved through detection of increased cell surface protein expression when *L. reuteri* was grown in presence of mucins, resulting in induced mucus binding phenotype. Collectively, these results shed new light on the nature and distribution of strain-specific surface proteins mediating *L. reuteri* adhesion to mucus.

Contents

Abstract	2
Contents	3
List of Figures	5
List of Tables	7
Preface	8
Abbreviations	9
Acknowledgements	11
1 Introduction	12
1.1 Physiology of the Vertebrate Gastrointestinal (GI) Tract	12
1.2 Mammalian GI Mucus	15
1.3 Human Gut Microbiota.....	21
1.3.1 Establishment of the microbial community	21
1.3.2 Composition and ecology of the human gut microbiota	22
1.3.3 <i>Lactobacillus reuteri</i> in the vertebrate GI tract	24
1.4 Bacterial mechanisms of adhesion	28
1.4.1 Biofilm formation, aggregation and mucosal recognition	28
1.4.2 Bacterial cell surface structures	30
1.5 Specific interactions between lactobacilli and mucus.....	33
1.6 Aims and objectives of the research project	40
1.6.1 Aim	40
1.6.2 Objectives.....	40
2 Materials and Methods	41
2.1 General Materials	41
2.2 Microbiology.....	42
2.2.1 Bacterial strains, media and culture conditions.....	42
2.2.2 Carboxyfluorescein (cF) labelling of bacteria	42
2.3 Biochemistry	44
2.3.1 Mucus preparation.....	44
2.3.2 Mucus characterisation: agarose/polyacrylamide composite gel electrophoresis (AgPAGE) and Western blot	44
2.3.3 Adhesion (Bacterial, Protein and Induction assays).....	45
2.3.4 Spectrophotometry autoaggregation assay.....	48
2.3.5 Statistical Analysis	48
2.3.6 Flow cytometry (FCM).....	48
2.3.7 Immunogold scanning electron microscopy (SEM).....	49
2.4 Molecular Biology	49
2.4.1 Genomic DNA extraction.....	49
2.4.2 General bioinformatics tools.....	50
2.4.3 Polymerase chain reaction (PCR) of <i>mub</i> and <i>lar_0958</i> genes	50
2.4.4 Agarose gel electrophoresis	50
2.4.5 Random amplified polymorphic DNA (RAPD) analysis.....	51
2.5 Proteomics.....	51
2.5.1 Protein Quantitation Assays.....	51
2.5.2 Preparation of cell wall extracts, soluble cytoplasmic extracts and spent media extracts.....	52
2.5.3 SDS-PAGE and Western Blotting	52
2.5.4 Cell surface proteome extraction.....	53
2.5.5 Purification of MUB and Lar_0958 proteins.....	54

2.5.6	Preparation of stable isotope labelling with amino acids in cell culture (SILAC) samples.....	54
2.5.7	Mass spectrometry of SILAC samples and data analysis.....	56
3	<i>L. reuteri</i> adhesion to mucus	58
3.1	Extraction and characterisation of GI mucus	58
3.2	Development, optimisation and standardisation of the mucus adhesion assay ..	62
3.2.1	Saturation of mucus coating and mucus preparation comparison.....	62
3.2.2	Adhesion assay optimisation and standardisation; bacterial cell numbers, viability, labelling and growth phase.....	64
3.3	Mucus adhesion ability of <i>L. reuteri</i> strains.....	68
3.4	Role of autoaggregation in mucus binding.....	73
3.5	Genome sequencing of <i>L. reuteri</i> ATCC 53608	75
3.6	Discussion	79
4	Role of MUB and Lar_0958 in <i>L. reuteri</i> adhesion to mucus	83
4.1	Occurrence of <i>mub</i> genes and proteins in <i>L. reuteri</i> strains	84
4.2	Comparison of spontaneous mutant 1063N to wild type ATCC 53608.....	91
4.3	MUB contribution to bacterial cell adhesion to mucus.....	95
4.4	Adhesion of MUB protein to mucus	97
4.5	Occurrence of <i>lar_0958</i> homologue genes and proteins in <i>L. reuteri</i> strains.....	100
4.6	Lar_0958 homologue contribution to bacterial cell adhesion to mucus	105
4.7	Adhesion of Lar_0958 to mucus	108
4.8	Discussion	111
5	Investigating novel <i>L. reuteri</i> mucus binding proteins.....	114
5.1	Induction of bacterial binding to mucus.....	114
5.2	Quantitative proteomic approach for differential expression of proteins.	117
5.3	SILAC experimental setup.....	122
5.4	SILAC data processing and protein identification.....	124
5.5	SILAC ratio calculation and statistical analysis	126
5.6	Discussion	130
5.6.1	Stimulation of mucus binding	130
5.6.2	Methodology for quantitatively measuring cell surface proteins.....	130
5.6.3	Mannosyl glycoprotein endo- β -N-acetylglucosaminidase is a candidate mucus binding protein.....	131
6	Conclusions and Future Work	133
Appendix 1.....		136
Composition of LDM II and LDM III.....		136
Appendix 2.....		138
Secreted proteome of <i>L. reuteri</i> MM4KO.....		138
Cell surface proteome of <i>L. reuteri</i> MM4KO		181
Cell wall proteome of <i>L. reuteri</i> MM4KO.....		203
Appendix 3.....		232
List of publications.....		232
References.....		234

List of Figures

Figure 1.1 Anatomy of vertebrate GI tracts.....	12
Figure 1.2 Anatomy of the human GI tract.	13
Figure 1.3 Schematic representation of pH and microbial biomass along the length of human GI tract.	14
Figure 1.4 Mucus thickness varies along the length of the rat GI tract.	15
Figure 1.5 Structure of human small intestine and colon	16
Figure 1.6 Schematic of mucin structures.....	17
Figure 1.7 Schematic representation of MUC2.	18
Figure 1.8 Schematic of mucin O-glycan structure,.....	18
Figure 1.9 The eight core structures of mucin O-glycans..	19
Figure 1.10 Phylogenetic classification of <i>L. reuteri</i>	25
Figure 1.11 Schematic representation of the interactions involved in bacterial adhesion to solid substrate	29
Figure 1.12 Zeta potential surrounding negatively charged bacteria.	29
Figure 1.13 Schematic representation of the cell surface architecture of Gram-negative bacteria.	30
Figure 1.14 Schematic representation of the cell surface architecture of Gram-positive bacteria..	31
Figure 1.15 Structure of mucus binding protein MUB.....	35
Figure 1.16 Crystal structures of Mub repeats, MucBP domains and related proteins.....	36
Figure 3.1 Electrophoresis of mucus samples using composite gel.	59
Figure 3.2 Western blot analysis of mucus samples separated by AgPAGE and probed with f-lectins ..	60
Figure 3.3 Binding of strain ATCC 53608 to varying concentrations of MCM-S.	63
Figure 3.4 Effect of MCM preparation and concentration on binding ability of <i>L. reuteri</i> ATCC 53608..	63
Figure 3.5 Effect of cell numbers on adhesion of strain DSM 20016 to MCM-S.....	65
Figure 3.6 Example of a FCM plot used to distinguish cF labelled population of <i>L. reuteri</i> cells from unlabelled population of cells.....	66
Figure 3.7 Impact of growth phase on adhesion of strain ATCC 53608 binding to MCM-S	67
Figure 3.8 Adhesion of <i>L. reuteri</i> strains to MCM-S	69
Figure 3.9 Adhesion of <i>L. reuteri</i> strains to MSIM.....	70
Figure 3.10 Adhesion of <i>L. reuteri</i> strains to PSIM	71
Figure 3.11.Measurement of OD ₆₀₀ over time of <i>L. reuteri</i> strains.	73
Figure 3.12 Measurement of autoaggregation of <i>L. reuteri</i> cells by spectrophotometry.	74
Figure 3.13 Large surface proteins predicted from genome sequence of <i>L. reuteri</i> ATCC 53608.	76
Figure 3.14 Genealogy of <i>L. reuteri</i> strains	81
Figure 4.1 Schematic representation of mucus binding protein MUB.....	83
Figure 4.2 Schematic representation of Lar_0958 from <i>L. reuteri</i> JCM 1112	83
Figure 4.3 Agarose gel used to separate <i>mub</i> PCR products amplified from <i>L. reuteri</i> strains.....	84
Figure 4.4 SDS-PAGE of cell wall extracts and spent medium samples from <i>L. reuteri</i> strains and anti- Mub Western blot of spent medium and soluble cytoplasmic extracts from <i>L. reuteri</i> strains....	85
Figure 4.5 Schematic representation of the truncated mucus binding protein MUB ^{trunc}	86
Figure 4.6 Quantification of cell surface MUB on <i>L. reuteri</i> strains detected by FCM.	86
Figure 4.7 Immunogold labelling of MUB on the surface of <i>L. reuteri</i> strains	87
Figure 4.8 Immunogold labelling of MUB ^{trunc} on surface of strain 1063N	88
Figure 4.9 Cell surface protein extracts from <i>L. reuteri</i> strains 1063N and ATCC 53608	88
Figure 4.10 Autoaggregation of <i>L. reuteri</i> cells determined by FCM	89
Figure 4.11 Agarose gel used to separate PCR products amplified from <i>L. reuteri</i> strain ATCC 53608...91	91
Figure 4.12 Agarose gel used to separate PCR products amplified from <i>L. reuteri</i> strains.....	92

Figure 4.13 SEM images of intact <i>L. reuteri</i> ATCC 53608 bacterial cells.....	93
Figure 4.14 Numbers of proteins identified in the surfaceomes of <i>L. reuteri</i>	93
Figure 4.15 Effect of Anti-MubRI on <i>L. reuteri</i> ATCC 53608, ATCC 55739, DSM 20016 and 1063N adhesion to mouse colonic mucus.	95
Figure 4.16 Effect of combined anti-MubR5 and anti-MubRI on <i>L. reuteri</i> ATCC 53608, ATCC 55739, DSM 20016 and 1063N adhesion to mouse colonic mucus.....	96
Figure 4.17 Elution profile of MUB purification sample from FPLC	97
Figure 4.18 SDS-PAGE of selected fractions from gel filtration of MUB purification.	98
Figure 4.19 Full length MUB and recombinant MubR5 binding to mucus	98
Figure 4.20 MubRI-II-III and PBS negative controls binding to mucus.....	99
Figure 4.21 Agarose gel separating PCR products of <i>lar_0958</i> amplified from <i>L. reuteri</i> strains	100
Figure 4.22 Western blot of Lar_0958 homologous proteins separated by electrophoresis from media extracts of <i>L. reuteri</i> strains.	101
Figure 4.23 Quantification of Lar_0958 on cell surface of <i>L. reuteri</i> strains	102
Figure 4.24 FCM quantification of Lar_0958 homologue expression by selected <i>L. reuteri</i> strains	103
Figure 4.25 Immunogold labelling of Lar_0958 homologues on the surface of <i>L. reuteri</i> strains.....	103
Figure 4.26 Adhesion of <i>L. reuteri</i> strains to MCM-S with pre-incubated bacterial cells	105
Figure 4.27 Western blot of SM proteins separated by electrophoresis from <i>L. reuteri</i> strains	106
Figure 4.28 Autoaggregation of <i>L. reuteri</i> cells determined by FCM.	107
Figure 4.29 Schematic representation of Lar_0958 from <i>L. reuteri</i> JCM 1112.	108
Figure 4.30 Western blot of <i>L. reuteri</i> SM samples separated by electrophoresis.	109
Figure 4.31 Elution profile of Lar_0958 homologue purification sample from FPLC	109
Figure 4.32 SDS-PAGE of Lar_0958 homologue purification stages.....	110
Figure 4.33 Western blot of SDS-PAGE of Lar_0958 homologue purification stages	110
Figure 5.1 Binding of <i>L. reuteri</i> strains grown in MRS or MRS supplemented with mucin to PSIM.....	115
Figure 5.2 Binding of <i>L. reuteri</i> strain MM4KO grown in MRS or MRS supplemented with mucin.	115
Figure 5.3 Adhesion of trypsin treated <i>L. reuteri</i> MM4KO cells to immobilised PSIM	116
Figure 5.4 Growth curves of <i>L. reuteri</i> MM4KO in LDM III media.....	118
Figure 5.5 Binding of strain MM4KO to PSIM.	119
Figure 5.6 Example MS plots showing incorporation of heavy arginine and heavy lysine.	120
Figure 5.7 Growth conditions of <i>L. reuteri</i> MM4KO cultures for SILAC experiment	122
Figure 5.8 Cell wall protein extracts separated by electrophoresis.....	123
Figure 5.9 Sample processing pipeline for SILAC experiment	123
Figure 5.10 H/L ratios of mannosyl-glycoprotein endo- β -N-acetylglucosaminidase peptides in Scaffold	127
Figure 5.11 Domain structural homology of mannosyl endo- β -N-acetylglucosaminidase.....	128

List of Tables

Table 1.1 Mucin expression in human, rodent and pig GI tract.	17
Table 1.2 Colonisation of human GI tract ratios of anaerobe: aerobe corresponding to age.	21
Table 1.3 Comparison of microbial composition and load of small intestine vs. colon.	22
Table 1.4 Strains of <i>L. reuteri</i> with reported probiotic actions.....	27
Table 1.5 Functionally characterised mucus adhesins from <i>Lactobacillus</i> species.	34
Table 1.6 Functionally characterised adhesins of <i>Lactobacillus</i> with putative mucus binding function.	38
Table 2.1 Polyclonal antibodies used throughout study.	41
Table 2.2 <i>L. reuteri</i> strains used in this study.....	43
Table 2.3 Primers used for <i>mub</i> and <i>lar_0958</i> gene detection by PCR.	50
Table 2.4 List of primers tested in RAPD-PCR analysis	51
Table 3.1 Specificity of lectins used in this study	59
Table 3.2 Determination of the number of <i>L. reuteri</i> cells by FCM across selected strains.	64
Table 3.3 Percentage of cfF-labelled bacteria, across <i>L. reuteri</i> strains as determined by FCM	66
Table 3.4 Collection of <i>L. reuteri</i> strains used in this study	68
Table 3.5 Binding ratios of <i>L. reuteri</i> strains (mucus: BSA).....	72
Table 3.6 Genomic characteristics of genome sequenced <i>L. reuteri</i> strains.	75
Table 3.7 Large surface proteins (> 750 aa) predicted from genome of <i>L. reuteri</i> ATCC 53608.....	76
Table 3.8 Predicted mucus binding proteins in genome sequenced <i>L. reuteri</i> strains	78
Table 4.1 Mucus binding proteins in lactobacilli.....	111
Table 5.1 Complete list of peptides used for identification of protein Elongation factor Tu.	121
Table 5.2 Proteins differentially expressed in the different proteome extracts from <i>L. reuteri</i> MM4KO grown in the presence of mucin.....	126

Preface

The present Ph.D. thesis entitled, “Investigating the molecular mechanisms of the interactions between *Lactobacillus reuteri* strains and mucus” summarises my work carried out under the supervision of Dr Nathalie Juge, under the Gut Health and Food Safety Institute Strategic Programme, at the Institute of Food Research, for the period of October 2008 to September 2012. This study was supported by the Biotechnology and Biological Sciences Research Council.

This work has resulted in the following publications:

MacKenzie D.A., **Jeffers F.**, Parker M.L., Vibert-Vallet A., Bongaerts R.J., Roos S., Walter J., and Juge N. *Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri*. Microbiology (2010) 156, 3368-3378.

Heavens D., Tailford L.E., Crossman L., **Jeffers F.**, MacKenzie D.A., Caccamo M. and Juge N. *Genome sequence of a vertebrate gut symbiont Lactobacillus reuteri ATCC 53608*. Journal of Bacteriology (2011) 193, 4015-4016.

In addition, I am the co-author of several publications listed in Appendix 3.

Abbreviations

A₂₈₀ = Absorbance measured at 280nm
ABC = adenosine-triphosphate binding cassette
AFM = atomic force microscopy
AgPAGE = agarose/polyacrylamide gel electrophoresis
AP = alkaline phosphatase
ATCC = American Type Culture Collection
BCA = bicinchoninic acid
BCIP/NBT = 5-bromo-4-chloro-3-indolyl phosphate/ nitroblue tetrazolium
BSA = bovine serum albumin
cF = carboxyfluorescein
cFDA = carboxyfluorescein diacetate
CnBP = collagen binding protein
ConA = concanavalin A
CPS = capsular polysaccharide
CSP = cell surface proteome
CWE = cell wall extract
CWP = cell wall proteome
DTT = dithiothreitol
EBI = European bioinformatics institute
ECM = extracellular matrix
EDTA = ethylenediaminetetraacetic acid
EF-Tu = elongation factor thermo unstable
EPS = extracellular polymeric substances
ER = endoplasmic reticulum
FCGBP = Fc gamma binding protein
FCM = flow cytometry
FDR = false discovery rate
FPLC = fast protein liquid chromatography
FS = forward scatter
GalNAc = N-acetyl galactosamine
GAPDH = glyceraldehyde-3-phosphate dehydrogenase
GH = glycoside hydrolase
GI = gastrointestinal
GlcNAc = N-acetyl glucosamine
GuHCl = guanidine hydrochloride
HEWL = hen egg white lysozyme
H/L = heavy to light ratio
IAA = iodoacetamide
IBD = inflammatory bowel disease
IFR = Institute of Food Research
Ig = immunoglobulin
IgA = immunoglobulin A
IgG = immunoglobulin G
IgG-AP = immunoglobulin G – alkaline phosphatase
LC-MS = liquid chromatography – mass spectrometry
LDM = *Lactobacillus* defined medium
LDS = lithium dodecyl sulphate
LiCl = lithium chloride
LPS = lipopolysaccharide
LTA = lipoteichoic acids
LTL = *Lotus tetragonolobus* lectin
LysM = lysine motif
MALDI = matrix assisted laser desorption ionisation
MapA = mucus adhesion promoting protein
MCM = mouse colonic mucus
MCM-C = crude mouse colonic mucus
MDM-S = solubilised mouse colonic mucus

MRS = de Man, Rogosa and Sharpe
MS = mass spectrometry
Msa = mannose specific adhesin
MSIM = mouse small intestinal mucus
MUB = mucus binding protein
MubR5 = mucus binding protein repeat 5
MUB^{trunc} = truncated MUB
MUC = mucin gene in humans
Muc = mucin gene in mammals
MucBP = mucus binding protein domain
MurNAc = N-acetylmuramic acid
MW = molecular weight
MWCO = molecular weight cut off
NCBI = National centre for biotechnology information
OD₆₀₀ = optical density measured at 600nm
PBS = phosphate buffered saline
PBST = phosphate buffered saline with tween
PCR = polymerase chain reaction
PG = peptidoglycan
PGM = porcine gastric mucin
PGMIII = type III porcine gastric mucin
PI = propidium iodide
PIS = preimmune serum
pNPP = p-nitrophenol phosphate
PSIM = pig small intestinal mucus
PVDF = polyvinylidene difluoride
RAPD = random amplification of polymorphic DNA
RAST = rapid annotations using subsystems technology
RT = room temperature
SCE = soluble cytoplasmic extract
SDP = sortase dependent proteins
SDS = sodium dodecyl sulphate
SDS-PAGE = sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SEM = scanning electron microscopy
SILAC = stable isotope labelling with amino acids in cell culture
S-layer = surface layer
SLU = Sveriges lantbruksuniversitet: Swedish University of Agricultural Sciences
SM = spent media
SNA = *Sambucus nigra* agglutinin
SP = secreted proteome
SPR = surface plasmon resonance
SPSS = statistical package for social sciences
SS = side scatter
SWGA = succinylated wheat germ agglutinin
TAE = Tris-base, acetic acid and EDTA
TEMED = tetramethylethylenediamine
TGAC = The Genome Analysis Centre
ToF = time of flight
UEA = *Ulex europaeus* agglutinin
UV = ultraviolet
WGA = wheat germ agglutinin
WHO = world health organisation
WTA = wall teichoic acids

Acknowledgements

The biggest thanks go to my supervisory team, Nathalie Juge, Don MacKenzie, Roy Bongaerts and Rob Field. Especially the time and effort put in by Nathalie during the writing up process.

Big thanks go to Fran Mulholland, not only did you help me scientifically with the proteomics work, you listened, understood, and took it all in your stride with good grace, a smile and an encouraging word – you are brilliant.

Thanks go to Udo Wegman for support with the genome exploitation, Jack Dainty for statistical support, and Roy Bongaerts for flow cytometry support. Thanks go to Don MacKenzie, Roy Bongaerts and Masters student Amandine Vibert-Vallet for their work in the collaboration for the MUB paper.

For general scientific and emotional support during the four years, thanks go to Don MacKenzie, Christine Fuell, Louise Tailford, Emmanuelle Crost, Sabrina Etzold, Olivia Kober, Marine Tison, Rob Green, Richard Mithen, Simon Carding, Gary Wortley, and the computing helpdesk team, Mark, David and Debbie, without you all I would have had a breakdown.

To the 11am coffee table crowd (you know who you are), thanks for the chats, cakes and kindness – you make the world a better place.

To the weekend crew – thanks for taking me in, for the dinners, drinking, laughing and tales of near death experiences – you are fantastic.

Special thanks go to Emmanuelle Crost and Alan Jeffers without whom I would not have made it to the end – you have my undying gratitude.

1 Introduction

1.1 Physiology of the Vertebrate Gastrointestinal (GI) Tract

The vertebrate gastrointestinal (GI) tract has a large surface (~400 m² in human adults [1]) covered in mucus which is colonised by bacteria after birth/hatching. These mucosal surfaces become the focal point of host-bacterial interactions, providing not only the first line of defence against invading pathogens, but also a habitat for mutualistic bacteria [2]. There are seven classes of extant vertebrates, mammals, birds, reptiles, amphibians, jawless fish, cartilaginous fish and bony fish [3]. The GI tract of vertebrates can be grouped into three fundamental variations, ruminant, cecal or straight tube (also called simple gut). In ruminants, the stomach is enlarged and compartmentalised and acts as a fermentation vat, whereas in the cecal adaptation, there are blind sacs extending from the intestinal canal at the end of the small intestine/beginning of large intestine [4]. Both of the adaptations functionally delay the transit of fibrous food in order to expose it to microbial degradation for longer. Chickens, rats and mice show cecal adaptations (Figure 1.1). Birds have a relatively short midgut and hindgut with a straight colon and paired ceca with the highest cecal length to total intestinal length ratio, whereas in rodents the single cecum is large and highly developed [3]. For pigs and humans with their straight tube variation, a hastrated colon (pouches), enables maximal surface area exposure for water absorption (Figure 1.1).

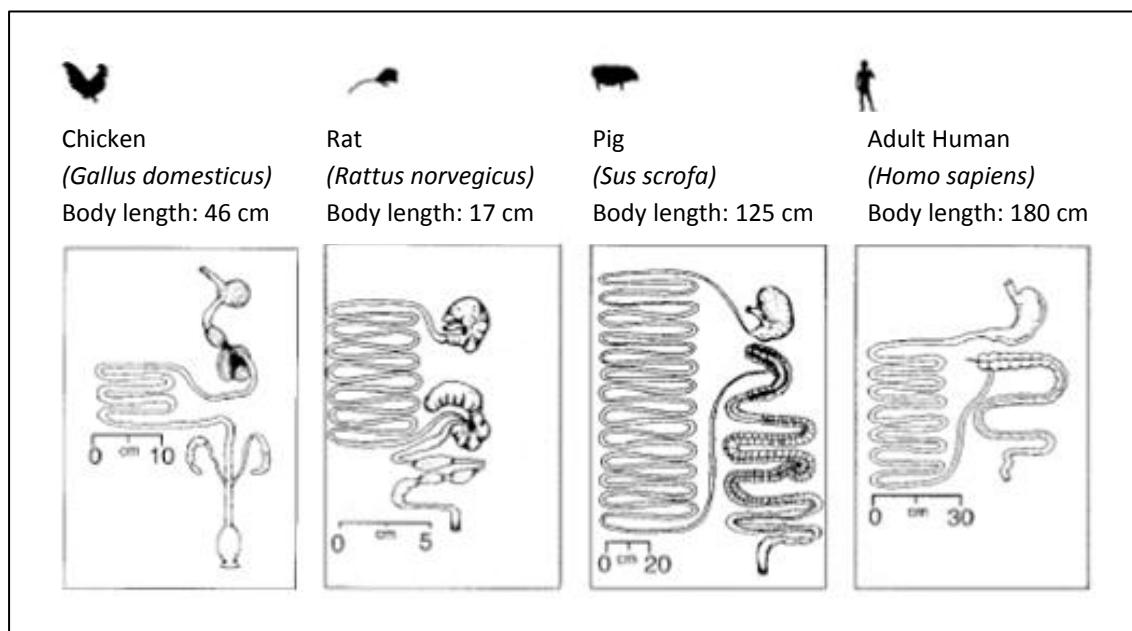


Figure 1.1 Anatomy of vertebrate GI tracts. Chicken and rat with cecal adaptations, pig and human with straight tube physiology. The colon of pigs and humans is hastrated throughout its entire length [3].

The anatomy of the human GI tract can be described in terms of foregut, (esophagus and stomach), midgut (small intestine, comprising of duodenum, jejunum and ileum) and hindgut (cecum and large intestine/colon) (Figure 1.2). The function of the foregut is to degrade large food particles, the midgut to absorb nutrients from the food and the hindgut to absorb water.

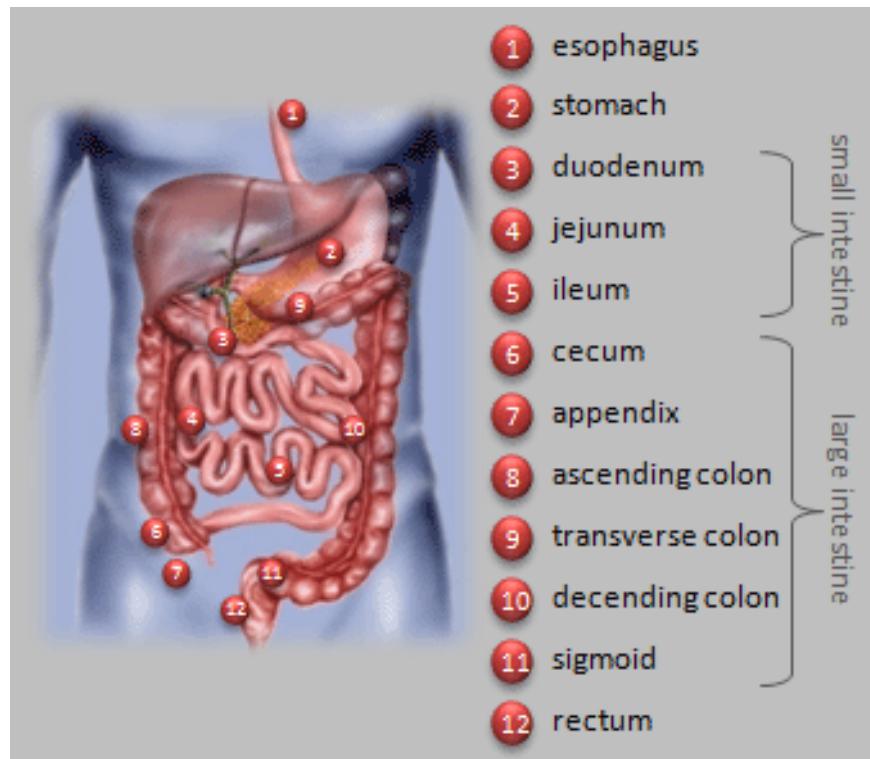


Figure 1.2 Anatomy of the human GI tract.

The GI tract is a highly dynamic environment including, food digestion, immune secretions (including mucus and anti-microbials), epithelial cell shedding, along with complex interactions between the host and the collection of resident microbes called the microbiota. However, some parameters remain relatively consistent such as body temperature, the normal range for the human body is 36.4 - 37.5 °C, while it is 37.5 – 38.5 °C in rats, 38 - 40 °C in pigs and 40.6 – 41.7 °C in chickens.

Other consistent parameters within the GI tract may be more regional, for example peristaltic movements, pH and microbial biomass (Figure 1.3). Peristaltic movements in the small intestine are continuous, creating a significantly different environment to the large intestine where transit time is greatly reduced. In the human stomach the pH is highly acidic (1.0-2.5), whereas it rises to 6.6 in the proximal intestine, and 7.5 in the terminal ileum, before a drop to 6.4 in the cecum, then rising progressively in the colon from right to left to 7.0 [5-7]. As a consequence, the microbial biomass is low (10^{2-3}

cells ml^{-1} of luminal contents) in the stomach, before rising in the small intestine to 10^{3-8} cells ml^{-1} with the highest concentration of microbes found in the colon with up to 10^{11} cells ml^{-1} (Figure 1.3) [8].

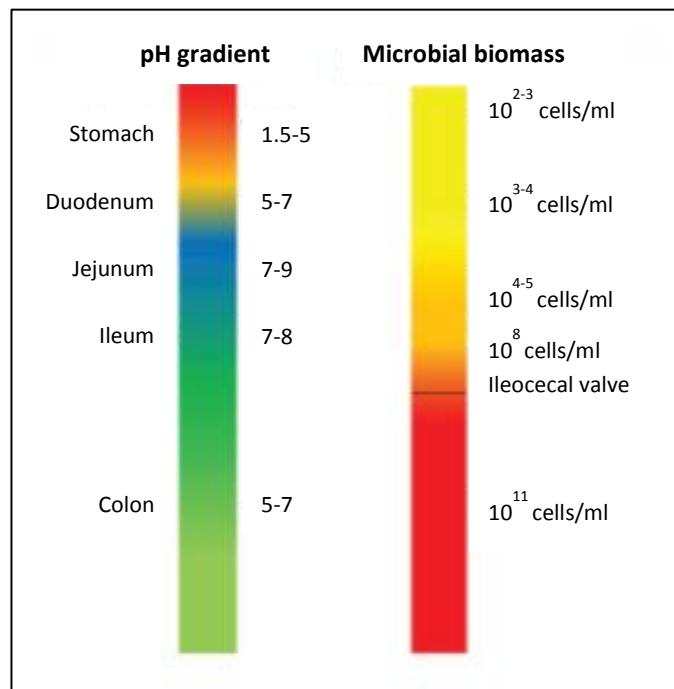


Figure 1.3 Schematic representation of pH and microbial biomass along the length of human GI tract [8].

1.2 Mammalian GI Mucus

The epithelium in the GI tract is covered by a layer of mucus which protects the host from the luminal contents and provides a habitat for the microbiota. Mucus is secreted by goblet cells which are one of the four main types of cells constituting the intestinal mucosal epithelium, the others being, absorptive enterocytes, Paneth cells and enteroendocrine cells. The proportion of goblet cells increases from 4 % in the duodenum to 16 % in the distal colon [9], correlating to the variation in mucus thickness along the length of the GI tract (Figure 1.4) [10]. Mucus plays an important role in the stomach (corpus and antrum) where it protects the underlying epithelium from harsh acidic digestion processes. However, the colon is the location of the greatest depth of mucus [10], which also corresponds to the highest number of permanent bacterial residents [11, 12]. Colonic mucus exists in two distinct layers, a firm and a loose layer, as shown in rats (Figure 1.4) [10] mice [13], and humans [14].

The firm mucus layer (50 μm thick in the mouse colon) is well organised, stratified in appearance and impenetrable to bacteria, thereby excluding direct contact between the gut microbiota and the colonic epithelium [15]. The loose mucus layer (100 μm thick in the mouse colon) which is easily aspirated and has a less defined outer border, is an expansion (4-5 fold in volume) of the firm layer due to endogenous proteolytic activity [13], and provides the habitat for the resident microbiota. The situation is thought to be equivalent in the human colon, however only the thickness of the firm mucus layer has been measured using histological methods with results varying from 70 to 155 μm [16, 17].

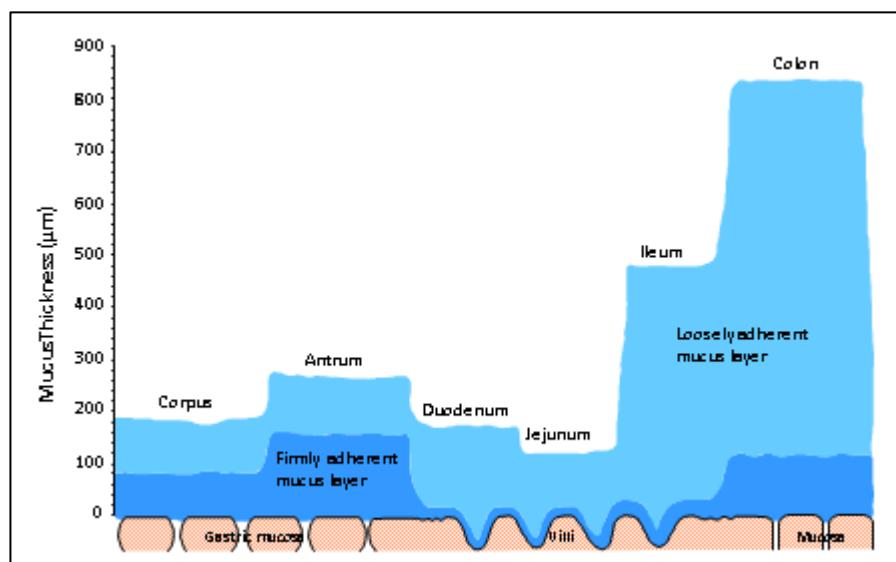


Figure 1.4 Mucus thickness varies along the length of the rat GI tract [10].

The conditions in the small intestine are different to those in the colon (Figure 1.5). Since the primary function of the small intestine is the absorption of nutrients, the structure of the epithelium reflects this with villi and crypts to enlarge the surface area and only one, thinner, loosely adherent mucus layer [18]. Although the bacterial load is greatly reduced in the small intestine, there is a need to manage the proximity of the bacteria to the epithelium. This is believed to be controlled by the host secreting antimicrobial peptides into the mucus, for example the secretion of RegIII γ , by multiple cell types including enterocytes and Paneth cells, controls the proximity of Gram-positive bacteria to the epithelium [19].

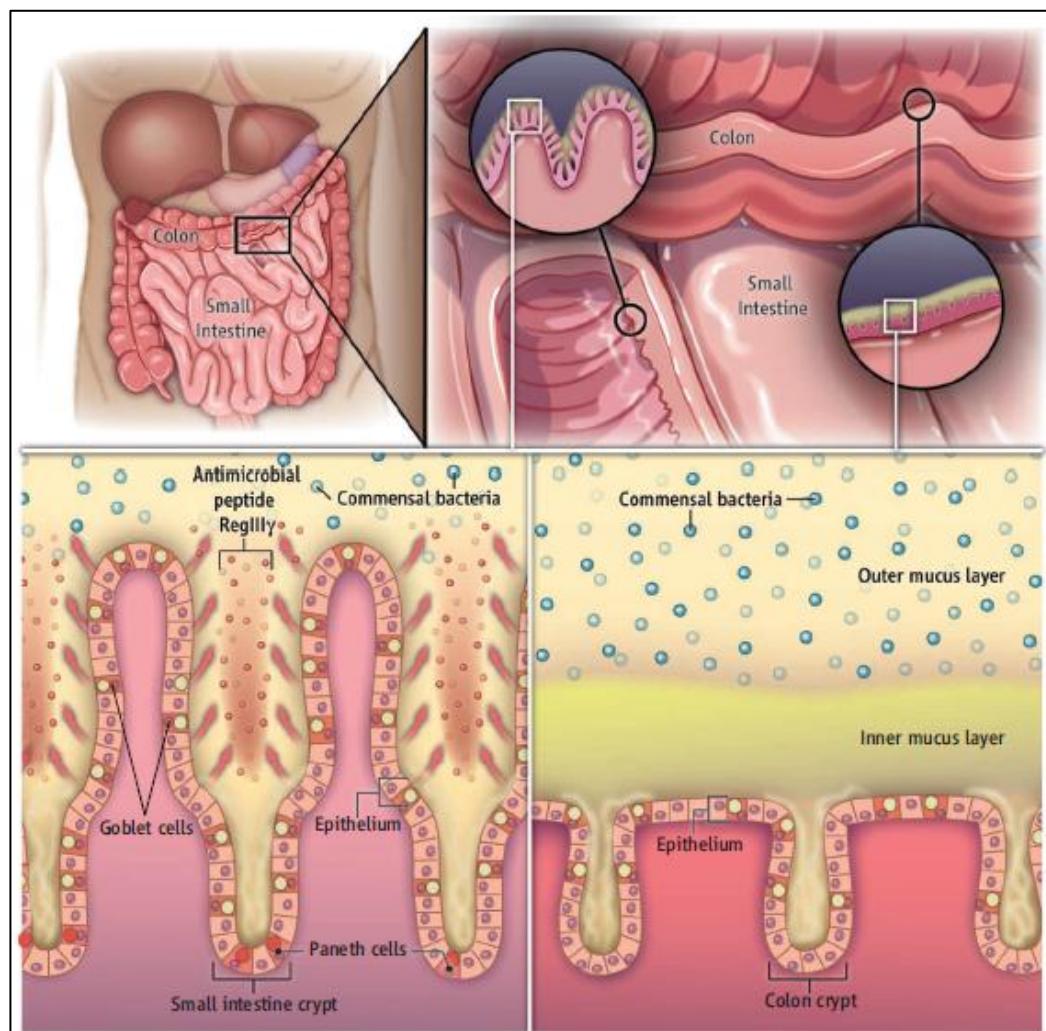


Figure 1.5 Structure of human small intestine and colon [20].

The principal constituents of mucus are large, highly glycosylated proteins called mucins [21, 22]. The protein backbone (apomucin) is highly decorated with mainly O-glycan structures. Mucins can be classified as either secreted or membrane bound (Figure 1.6), and it is the secreted gel-forming mucins which make up the bulk of the

mucus and provide its viscous properties [18]. The secreted mucins form homo-oligomers via the cysteine rich domains found at the amino and carboxyl termini, which form disulphide bonds with other mucin molecules creating a stable structure.

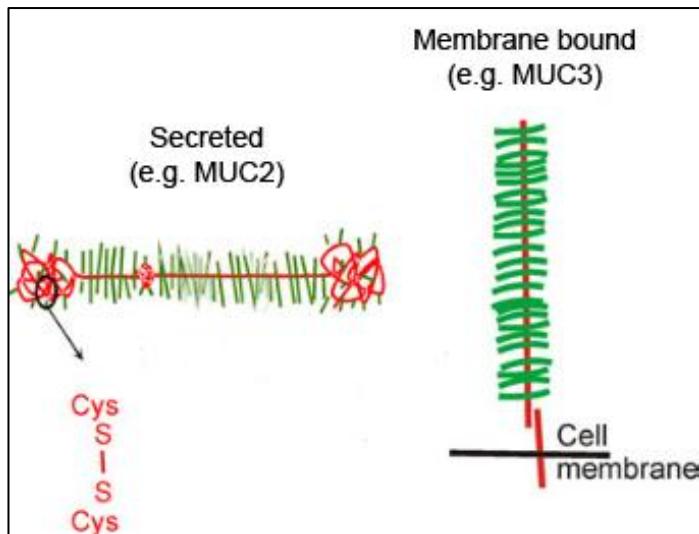


Figure 1.6 Schematic of mucin structures both secreted and membrane bound [23]. Cys S-S Cys represents the disulphide bonds of the cysteine rich apomucin.

In humans 17 different mucin genes (MUC), have been identified, however the predominant mucin expressed in the small intestine and colon, is the secreted gel-forming mucin MUC2 [24-26]. The mammalian homologue of human MUC2 is designated Muc2, and is also the predominant mucin expressed in small intestine and colon of mice, rats and pigs, while lower expression of the membrane bound mucins occur (Table 1.1) [27-29].

Mammal	Stomach	Small Intestine	Cecum & Colon
Human	MUC5AC, MUC6, MUC5B, MUC1, MUC13, MUC16	MUC2, MUC1, MUC3, MUC4, MUC5B, MUC6, MUC12, MUC13, MUC15, MUC17	MUC2, MUC1, MUC3, MUC4, MUC12, MUC13, MUC15, MUC17, MUC19, MUC20,
Mouse/Rat	Muc5ac	Muc2, Muc1, Muc3(17),	Muc2, Muc1, Muc3(17),
Pig	Muc6	Muc2, Muc4, Muc12, Muc13, Muc20	Muc2,

Table 1.1 Mucin expression in human, rodent and pig GI tract [30-32].

MUC2 forms large multimeric net-like structures, by first forming dimers in its C-terminus in the endoplasmic reticulum (ER) (Figure 1.7A), and then in the Golgi apparatus, the apomucin backbones are decorated with O-glycan structures before N-terminal oligomerisation and being tightly packed into secretory vesicles. During

secretion, these multimeric mucin structures combine to form large sheets (Figure 1.7B), which are further stabilised by crosslinking by both covalent and non-covalent mechanisms (Figure 1.7C) [25, 33].

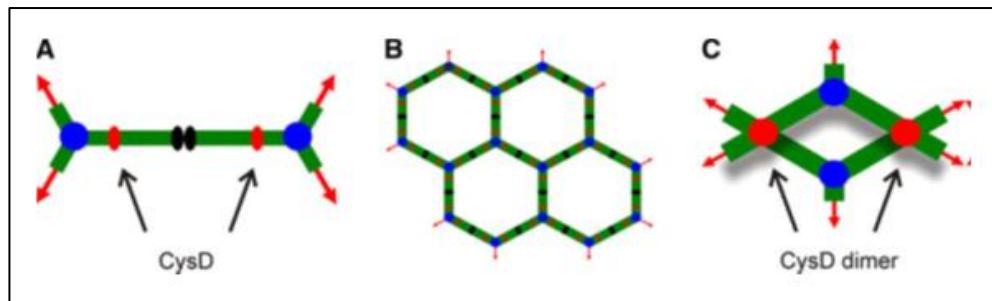


Figure 1.7 Schematic representation of MUC2 multimeric structures, A) dimerization, B) trimerisation forming net, C) stabilisation of the large sheets [23].

Glycosylation accounts for between 50-90 % of the mass of the mucin molecule (ranging from 200 - 40,000 kDa) and each glycan chain can consist of up to 12 monosaccharides, the exact oligosaccharide structure of which is influenced by specific glycosyltransferases, blood group of individual, diet, and bacteria [32, 34, 35]. The carbohydrates commonly found in mucins are N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), fucose, galactose and sialic acid with traces of mannose and sulphate [36]. The mucin O-glycan chain is initiated with a GalNAc attachment to serine or threonine residue and consists of three structural regions, the core, the backbone and the peripheral region (Figure 1.8).

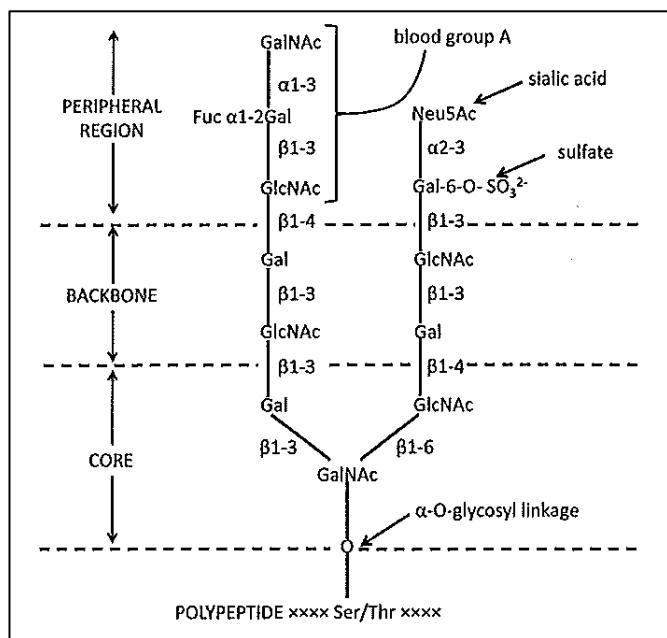


Figure 1.8 Schematic of mucin O-glycan structure, with core, backbone and peripheral regions [37].

There are eight reported core structures (Figure 1.9) [38], and in the human colon the mucin glycans are mainly built on core 3 structures [39], although core 1, 2, 4 and 5 are also present [40]. Core structures 1, 2, 3 and 4 have also been found on mucins in rat small and large intestines [41], pig stomach [42].

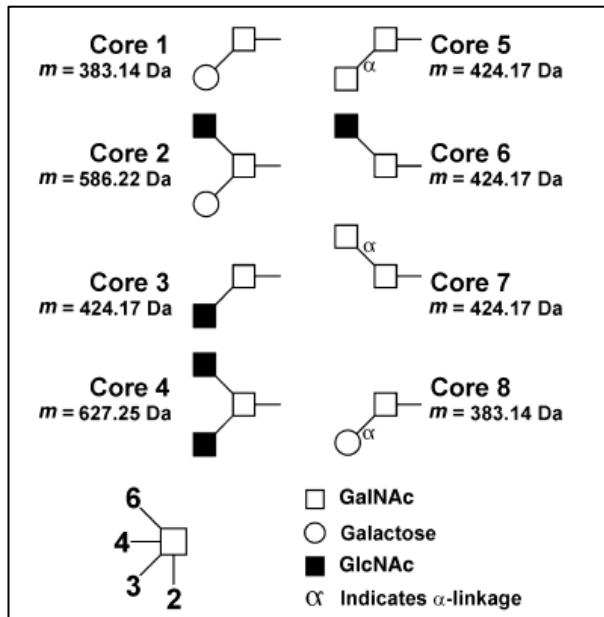


Figure 1.9 The eight core structures of mucin O-glycans. Linkage positions are illustrated by the line connecting the monosaccharides with α linkages labelled and β -anomers unlabelled [38].

The continued addition of glycans to the core structures gives rise to a large number of possible glycan structures. Over 100 different O-glycan structures, both linear and branched, are associated with colonic mucin in humans. Grouped in terms of acidity, 10 different neutral structures were described, 19 monosialylated, and 11 monosulphated structures, while the vast majority of structures present multiple acidic residues [39].

Analysis of the O-glycan structures associated with Muc2 in small and large intestines of rats, showed that the large intestine was enriched for sulphated residues whereas the small intestine was enriched in sialylated residues [41]. This region specific glycosylation was found to also occur in humans with a decreasing gradient of fucose from ileum to rectum and a corresponding increased gradient of sialic acid [43]. The acidic gradient was shown to be acquired after birth, perhaps due to bacterial colonisation or initiation of digestive and absorptive functions of GI tract [44].

These terminal mucin O-glycans have been proposed to serve as preferential binding sites for gut bacteria [45], which in the case of mouse colonic Muc2 were shown to

include fucose, GalNAc, GlcNAc, galactose, sialic acid and sulphated residues [46] whereas pig gastric mucin includes fucose, GlcNAc, GalNAc, galactose and sialic acid [47]. Furthermore, early work by Hoskins *et al* showed ~1 % of the fecal flora could degrade mucin [48], often viewed as a harmful bacterial activity it has become clearer more recently that commensal bacteria engage in mucin degradation and mucin could be designated as endogenous prebiotic [49]. Complete mucin degradation requires proteases which are produced by both bacteria and the host and a combination of saccharolytic enzymes including sialidases, α -glycosidases, β -D-galactosidases and β -N-acetylglucosaminidases [50], which are only produced by bacteria. Multiple genera have members which produce one or more mucin degrading enzymes, including, *Streptococcus*, *Akkermansia*, *Bacteroides*, *Bifidobacterium* and *Ruminococcus* [51, 52]. The mechanisms of mucin degradation in the human GI tract has recently reviewed in Derrien *et al* [49].

Mucins are not the sole constituents of mucus, a detailed proteomic analysis of the two mucus layers from mouse colon reported 1057 proteins identified within this complex mixture [53]. A large proportion of the proteins identified were predicted to be of cellular origin as a result of epithelial cells shedding into the mucus layer. Plasma proteins were also identified, although it is unclear whether these are normally found within the mucus or due to contamination during experimental manipulation of the tissue.

There are a wide variety of non-mucin proteins specifically secreted into the mucus, for example lysozyme, secretory immunoglobulin A (IgA), growth factors, defensins and β -galectins which all have well defined roles in the defence of the host. A number of proteins secreted by goblet cells are thought to interact with mucins to support the maintenance of the gel and/or contribute to the defensive functions of the mucosal barrier. These include Fc gamma binding protein (FCGBP), which may help stabilise and crosslink the net-like structure of the Muc2 mucin [53], calcyclin, a calcium binding protein which may have a role in mucus secretion [54], and intestinal trefoil factor, which may have a role in altering physiochemical properties of mucin through crosslinking [55]. Other proteins secreted into mucus include PEC-60 an inhibitor of insulin secretion [56] and Gob5 with sequence similarity to an epithelial chloride channel [57]. However the interactions of these proteins with mucin have not been well defined.

1.3 Human Gut Microbiota

1.3.1 Establishment of the microbial community

Vertebrates evolved around 500 million years ago from the multicellular eukaryotes which have existed for at least 1.2 billion years, which were preceded by the evolution of microbial communities. The co-evolution of vertebrates with associated microbial communities has shaped host biology [3, 58].

Defined as, “the community of microbes that lives in an individual’s GI tract” [59], the gut microbiota is composed of bacteria, archaea, eukarya and viruses. Metagenomics of 22 human fecal samples indicated that the archaea constitute 0.8 %, eukarya 0.5 % and viruses 5.8 %, while the vast majority (92.9 %) are of bacterial origin [60].

It is generally understood that from the sterile environment of the womb, the process of microbial colonisation begins at birth [61], although recent studies showed the presence of bacteria (*Enterococcus* and *Staphylococcus*) in the meconium of healthy new born infants [62], indicating interactions with microbes prior to birth. Studies suggest that colonisation in mammals is influenced by the type of delivery (vaginal vs. caesarean section) [63] and diet (formula vs. breast) [64].

The colonisation process in humans begins with aerobes and facultative anaerobes as they have the capability for oxidative metabolism, which is necessary in an environment which starts with a positive oxidation reduction potential. The colonisation is therefore initiated by *Escherichia coli* and other enterobacteriaceae (*Klebsiella*, *Enterobacter* and *Citrobacter* species), *Enterococci* and *Staphylococci* species. Other groups of aerobes such as *Aeromonas*, *Pseudomonas*, *Acinetobacter* may be found transiently in the first few weeks of life but disappear rapidly as the oxygen and redox potential is reduced to negative values, leading the way for anaerobes, *Bacteroides*, *Bifidobacteria* and *Clostridia* to colonise (Table 1.2) [4, 65, 66].

Age	1 week	1 month	6 months	1-4 yrs.	Adult
Ratio					
Anaerobe:Aerobe	1:1	10:1	100:1	100:1	500:1

Table 1.2 Colonisation of human GI tract ratios of anaerobe: aerobe corresponding to age.

The complexity of the microbiota increases gradually through childhood [67], until the community found in human adults reaches a relatively stable climax. The highest microbial load is found in the large intestine of the GI tract, where the flow rate of the contents does not exceed the doubling rate of the microbial populations [4], and where

commensals are found to inhabit the thick outer mucus layer. Changes to both the microbiota and to gut health generally occur in elderly adults, due to an increased frequency of antibiotic usage and changes in the diet [68, 69]. The stability of the adult microbiota is under question, for example the degree to which the unique bacterial communities of an individual are re-established after antibiotic treatment is unclear [70].

1.3.2 Composition and ecology of the human gut microbiota

The microbial composition of the human GI tract shows geographical distribution both along the length and cross-sectionally between lumen, mucus and epithelial layers [71]. The microbial composition in the small intestine of adult humans includes *Bacteroidetes* and members of *Clostridiales* clusters XIV and IV and *Enterobacteriaceae* [72-74]. Whereas the colonic microbiota achieves the highest cell densities recorded for any ecosystem [12, 75] and is made up of ~ 800 different species corresponding to >7000 different strains (Table 1.3). Bacteria from the Cytophaga-Flavobacterium-Bacteroides and the Firmicutes [75] divisions account for >98 % of all 16S rRNA [61], although bacteria have been identified from 9 of the 55 known bacterial divisions.

Small Intestine	Colon
10^8 cells ml ⁻¹	10^{11} cells ml ⁻¹
<i>Escherichia coli</i> , <i>Klebsiella</i> , <i>Enterococcus</i> , <i>Bacteroides</i> , <i>Ruminococcus</i> , <i>Dorea</i> , <i>Clostridium</i> , <i>Coprococcus</i> , <i>Weissella</i> , <i>Lactobacillus</i> , <i>Granulicatella</i> , <i>Streptococcus</i> , <i>Veillonella</i> .	Five major phyla: <i>Firmicutes</i> , <i>Bacteroidetes</i> , <i>Actinobacteria</i> , <i>Verrucomicrobia</i> and <i>Proteobacteria</i> – Hundreds of species.

Table 1.3 Comparison of microbial composition and load of small intestine vs. colon.

Recently, phylogenetic composition analysis of human fecal samples using metagenomic techniques revealed three clusters referred to as enterotypes, *Bacteroidetes*, *Prevotella* and *Ruminococcus* based on abundance, indicating that variability between humans is stratified rather than continuous [60]. Long term diet has been linked to enterotype partitioning [76]. However, at the species and strain level the microbiota is as individual as a fingerprint which has shifted the focus of some research from which strains are present to what they are doing functionally, since metabolic pathways are found to be evenly distributed and prevalent across individuals [77]. The stability of the system in terms of functionality can be achieved with fluctuating populations of bacteria [61] adapting as necessary to the stochastic factors, meaning that complex communities of quite different composition can have similar functional

characteristics. The microbial variability indicates that not all factors influencing the composition are predictable and that gut microbial communities are governed by a different set of ecological rules than free living communities [58].

Stochastic niche theory [78], which was first applied to the microbiota by Dethlefsen *et al* 2006 [79], combines the concepts that both predictable factors (e.g. genome of host and diet), and random factors (e.g. microbial exposure and disease), influence the composition of the microbiota, suggesting that the colonisation patterns outlined above are probabilistic rather than predictable. Predictable factors for vertebrate microbial community composition have been well studied for example, it was shown that the microbiota associated with hindgut and foregut herbivores form two distinct groups, confirming the importance of diet and/or gut physiology [58]. The random factors are less well understood and include historical contingencies occurring during the community assembly and temporal dynamics from complex microbe-microbe and microbe-host interactions [79].

Microbe-microbe interactions may involve multiple species and strains in complex food webs, where the metabolic product from one microbial strain becomes the substrate for another. These metabolic webs have the potential to be inconceivably complex and changeable when made of >7000 different strains of bacteria, able to adjust transcriptome and metabolomes to the variations in substrate availability [61]. As well as these positive interactions, the microbes may also compete and produce antimicrobials such as bacteriocins in order to gain competitive advantage. Microorganisms can compete and cooperate simultaneously, for example *Bacteroides thetaiotaomicron* and *Methanobrevibacter smithii* facilitate each other's growth by complementary energy metabolism, while competing for nitrogen [80].

Microbe-host interactions may also involve more than one microbial partner, for example lactate released by some *Bifidobacterium* species, is used by lactate fermenters such as *Eubacterium hallii*, to produce butyrate, which can then be metabolised by the host to maintain gut health [81]. Another example of these complex relationships is the one between mucin degrading bacteria e.g. *Bacteroides fragilis* which degrade sulpho-mucins present on the host, to release sulphate which is used by sulphate reducing bacteria (e.g. *Desulfovibrio desulfuricans*) to reduce to the highly toxic hydrogen sulphide [82].

The profound importance of the gut microbiota to host health was first revealed by germ free mice models, which provided evidence that intestinal bacteria are involved in a number of key physiological functions including nutrient absorption [83, 84], epithelial renewal [85], angiogenesis [83, 86], energy harvest, use and storage [87], development, expansion and function of the immune system [88], and the development of neural systems [89].

The increasing prevalence of chronic and degenerative diseases in industrialised countries has been linked to the disruption of the co-evolved mutualism between humans and their microbiota [59]. Some diseases are associated with a specific gut microbe for example peptic ulcer disease and *Helicobacter pylori* and *Streptococcus gallolyticus* (previously named *Streptococcus bovis*), has a well-known association with the pathology of colorectal cancer [90-92]. Whereas changes in composition of microbiota have been associated with obesity, with a lower proportion of Bacteroidetes and a higher proportion of Actinobacteria found when comparing obese to lean individuals [93]. The aetiologies of the inflammatory bowel diseases (IBD), (which include Crohn's disease and ulcerative colitis) are not associated with a specific species of gut microbe but chronic microbial infections are implicated in the pathology [94-96]. With antibiotic and probiotic use for the treatment of pouchitis [97, 98], an increase in bacterial translocation in Crohn's disease [99] and a colitogenic microbial flora has been described which can induce colitis in a mouse model [100].

Colonising gut microbes can be defined as either specialists, bacteria which show host specific evolutionary genetic adaptations such as *Lactobacillus reuteri* [101, 102] or generalists, with larger genomes and therefore the ability to adapt to variations in the environment, for example the ability to utilise a wide range of host and dietary carbohydrate moieties in *Bacteroides thetaiotaomicron*, *B. vulgatus* and *Parabacteroides distasonis* with their extensive array of carbohydrate active enzymes [8, 103].

1.3.3 *Lactobacillus reuteri* in the vertebrate GI tract

Gram-positive lactobacilli which belong to the Firmicutes phylum are natural mutualistic inhabitants of the GI tract of mammals [104, 105]. Within the genus *Lactobacillus*, there are 145 recognised species, although many members of which form part of the ecosystem in the GI tract, lactobacilli are also found in many other niches which may impact the GI environment, including plant, dairy, meat products and sourdough bread

[106]. *L. reuteri* belongs to the **Bacilli** class, a major group in the Firmicutes, one of the two dominant phyla of the GI microbiota (Figure 1.10).

Phylum : Firmicutes

Class : Bacilli

Order : Lactobacillales

Family : Lactobacillaceae

Genus : *Lactobacillus*

Species : *L. reuteri*

Figure 1.10 Phylogenetic classification of *L. reuteri*.

L. reuteri strains are ideal candidates for studying the adaptation of bacteria to their host due to the evidence of host-driven diversification with host specific clades. This was determined using phylogenetic analysis, consisting of principle component analysis using multi-locus sequence analysis of house-keeping genes. This is supported not only by their ubiquitous nature, inhabiting many species of mammals and birds including, human, pig, chicken, turkey, mouse and rat. but also by rodent isolates preferentially colonising *Lactobacillus* free mice *in vivo* [101].

L. reuteri strains are found in stomach, duodenum, jejunum, ileum, cecum and recto-sigmoidal colon of humans [72, 107]. The type strain DSM 20016 was detected in a human subject over several months and is considered autochthonous [108, 109], however the organism is not detected in every human subject [110]. In contrast, *L. reuteri* strains are commonly found in GI tract of pigs [111-113], rodents [114, 115] and chickens [116]. It is well documented that *Lactobacillus* species are able to adhere directly to the squamous epithelium in the forestomach of rodents, the stomach of pigs and the crops of chicken [116], however this does not exclude their colonisation of the lower GI tract.

A number of *L. reuteri* strains have had their genomes sequenced, a complete genome sequence is available for DSM 20016 (Genbank accession number CP000705.1), and JCM 1112 (Genbank accession number AP007281.1). Both strains have been considered as the type strains and are derived from the same original human faecal isolate, *L. reuteri* F275 [117]. Their genome sequences are very similar apart from the presence of two large unique regions in *L. reuteri* JCM 1112 that result in a 40-kb

difference between the strains. The draft genomes of seven other *L. reuteri* strains are also available (see www.ncbi.nlm.nih.gov/genome/438), including MM4-1a (human isolate), 100-23 (rat isolate), CF48-3A (human isolate), SD2112 (human isolate), MM2-3 (human isolate), Ipuph (rodent isolate) and mlc3 (rodent isolate).

Colonisation is a multifactorial process linked to cell surface properties and the ability of the bacteria to adapt to its environment. Persistence is often used as a measurement of colonisation and is reported to be strain specific [118]. Additionally, binding to the intestinal mucosa is considered a prerequisite for successful colonisation [119]. The ability of *L. reuteri* to colonise the GI tract has been attributed to a number of colonisation factors, including adherence to epithelial cells [120], binding of fibronectin [121], collagen binding ability [122, 123], ability to bind to mucus [124], autoaggregation [125], production of antimicrobial substances [126], presence of lipoteichoic acids (LTA) on the bacterial cell surface [127] along with extracellular polymeric substances (EPS) [128].

Probiotics are defined by the World Health Organisation (WHO) as, “Live microorganisms which when administered in adequate amounts confer a health benefit on the host” [129]. The criteria for selecting probiotic micro-organisms include the ability to adhere mucus and/or human epithelial cells and cell lines. Some *L. reuteri* strains are considered as probiotics especially since the discovery of their ability to produce an antimicrobial substance called reuterin [130]. However, a recent literature review on the subject reported that only one *L. reuteri* strain (human isolate ATCC 55730) presented substantial evidence for its probiotics properties in humans (Table 1.4) [131]. *L. reuteri* ATCC 55730 is used in humans for the prevention and cure of colitis, diarrhoea, gastroenteritis, rotavirus, and is also noted for its hypocholesterolemic effects [96, 132-138]. Other *L. reuteri* strains are effective in animal models and are widely used in livestock industries [112, 139, 140].

Other health related properties of *L. reuteri* strains are yet to be fully exploited, including the production of vitamin colbalamin (vitamin B12) by *L. reuteri* DSM 20016, a lack of this vitamin is characterised by anaemia and macrocytosis of red blood cells [141]. Furthermore, *L. reuteri* ATCC 53608 has the potential to be used to produce D-Mannitol (important in food, pharmaceuticals, medicine and chemistry) through the action of a mannitol-2-dehydrogenase [142].

Strain of <i>L. reuteri</i>	Probiotic action	Reference(s)
ATCC 55730	Prevention of diarrhoea and treatment of gastroenteritis in humans	[133, 134, 136, 143]
ATCC 55730	Reduction of colicky symptoms in 95% of human infants	[144, 145]
ATCC 55730	Reduction of IgE associated eczema in 2 yr old humans	[146]
ATCC 55730	Immune stimulation in humans – CD4 lymphocytes	[107]
SD2112	Tolerated in humans with HIV	[147]
DSM 12246 R2LC JCM 5869 ATCC PTA 4659 ATCC 55730 6798	Prevention of experimental colitis using animal models	[138, 148-151]
100-23	Immune stimulation and regulation in mice	[152, 153]

Table 1.4 Strains of *L. reuteri* with reported probiotic actions.

1.4 Bacterial mechanisms of adhesion

General mechanisms used by bacteria to adhere within the GI tract (including to mucus) involve biofilms, aggregation and mucosal recognition mediated by both specific and non-specific bacterial cell surface factors.

1.4.1 Biofilm formation, aggregation and mucosal recognition

Biofilms are mono or polymicrobial aggregates surrounded by a mixture of polysaccharides, proteins and nucleic acids which form a matrix, creating localised conditions and a lifestyle entirely different to the planktonic state. The matrix protects bacteria from desiccation, oxidising agents, antibiotics, ultraviolet radiation and in the GI tract against host immune defences [154]. The bacteria within the biofilm may express a different metabolic phenotype when compared to free-living counterparts [155]. Biofilms have been characterised in the squamous epithelium in the stomach of mice [156], however the situation in the rest of the GI tract is less well understood [157, 158]. The formation of biofilms requires adhesion and aggregation of bacterial cells. Bacterial aggregation to self (autoaggregation), or between mixed bacterial strains (coaggregation) is the initiation step for numerous functions to occur including conjugal pairing, biofilm formation, colonisation of the GI tract, and clearance of pathogens [159-162].

The classical theory of adhesion between bacteria and a solid substrate involves five types of forces with three stages in the process; at a distance > 50 nm van der Waals' attractive forces are at work, at 10-20 nm there is an addition of electrostatic interactions, salvation (hydration) and steric forces and at less than 1.5 nm, specific interactions become involved [163] (Figure 1.11). Both bacteria and the biological surfaces to which they adhere usually have a negative zeta potential. The liquid layer surrounding the bacteria exists as two parts, an inner region where ions are strongly bound and an outer region where they are less firmly associated. The potential at the boundary of inner and outer regions is the zeta potential (Figure 1.12). When the bacteria have a large negative zeta potential they will tend to repel each other.

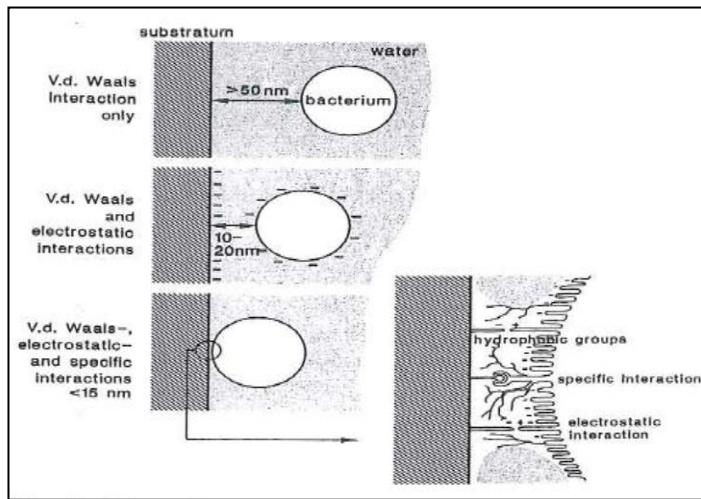


Figure 1.11 Schematic representation of the interactions involved in bacterial adhesion to solid substratum [163].

During the second stage of the interaction, hydrophobicity and hydrophobic surface components on bacteria (e.g. S-layers) probably have a dehydrating effect on the water film, enabling the third stage of direct contact of specific interactions between protuberant parts of the cell surface and the substratum to occur [163, 164]. Some *Lactobacillus* strains (*L. acidophilus* ATCC 4356 and *L. casei* ATCC 393), can alter their hydrophobicity in response to increasing ionic strength in the surrounding liquid [165], giving them an advantage in adhesion/ colonisation, although this is yet to be confirmed.

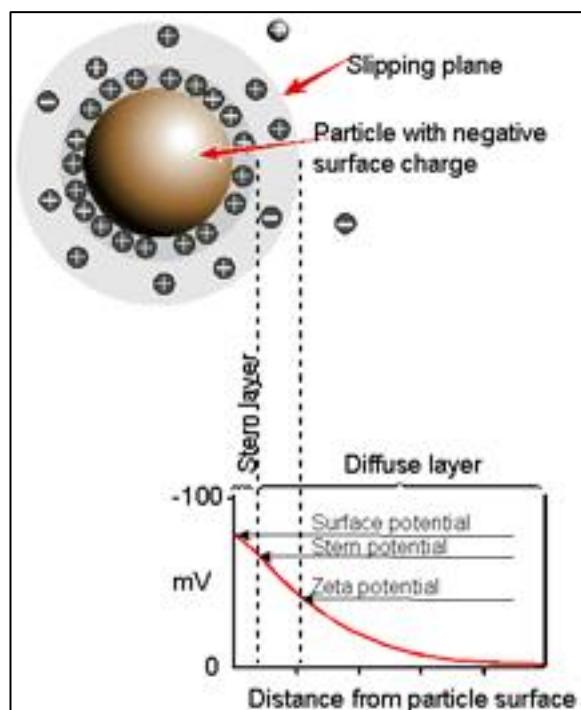


Figure 1.12 Zeta potential surrounding negatively charged bacteria.

1.4.2 Bacterial cell surface structures

Cell surface structures are used by bacteria to interact with their environment. Gram-positive and Gram-negative bacteria have different cell wall structures (Figure 1.13 and Figure 1.14).

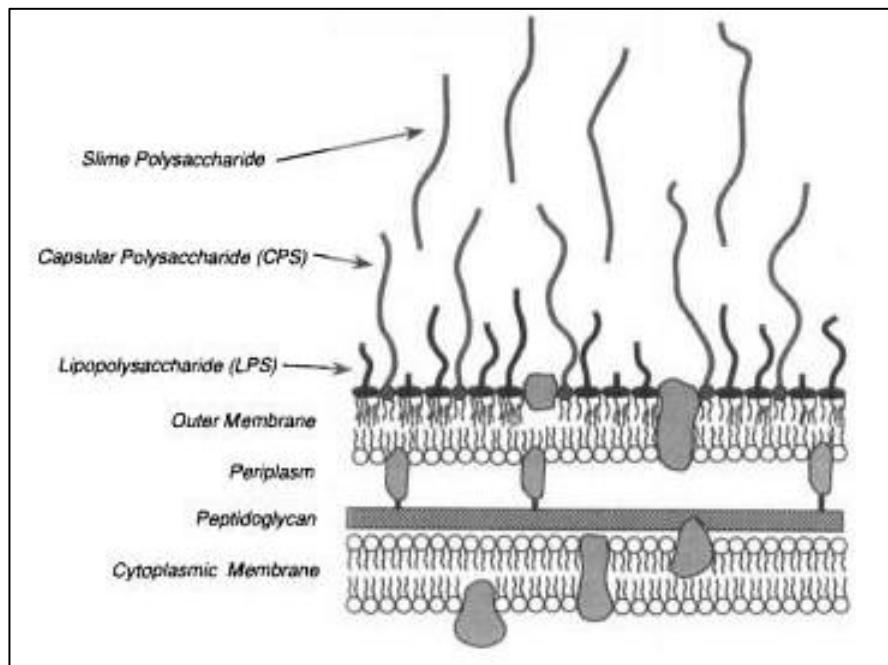


Figure 1.13 Schematic representation of the cell surface architecture of Gram-negative bacteria. Components include; slime and capsular polysaccharides (CPS), lipopolysaccharides (LPS), outer membrane, periplasm, peptidoglycan (PG), and cytoplasmic membrane [166].

The primary difference is the outer membrane which is present in Gram-negative bacteria but absent in Gram-positive bacteria. The peptidoglycan (PG) layer is thinner in Gram-negative bacteria and usually represent <10 % dry weight of the cell wall, whereas for Gram-positive bacteria the PG layer is thicker usually representing 10 % dry weight of the cell wall. Lipid content of the cell walls shows the reverse trend with higher values between 11-22 % in Gram-negative bacteria compared to 4 % in Gram-positive bacteria. In Gram-negative bacteria, the outer membrane contains lipopolysaccharides whereas unique to Gram-positive bacteria are the teichoic acid and lipoteichoic acid structures [167].

In certain species of both Gram-positive and Gram-negative bacteria, the cell is surrounded by an outer shell of proteins packed in a paracrystalline surface layer (S layer). The attachment site of the S-layer is the outer membrane in Gram-negative bacteria and the PG layer for Gram-positive bacteria. S-layers are generally monomolecular crystalline arrays exhibiting a morphologically similar, oblique lattice

structure and representing 10–15 % of the total protein of the bacterial cell wall [168–170]. However, the biological functions of most of these S-layer proteins remain to be defined [171].

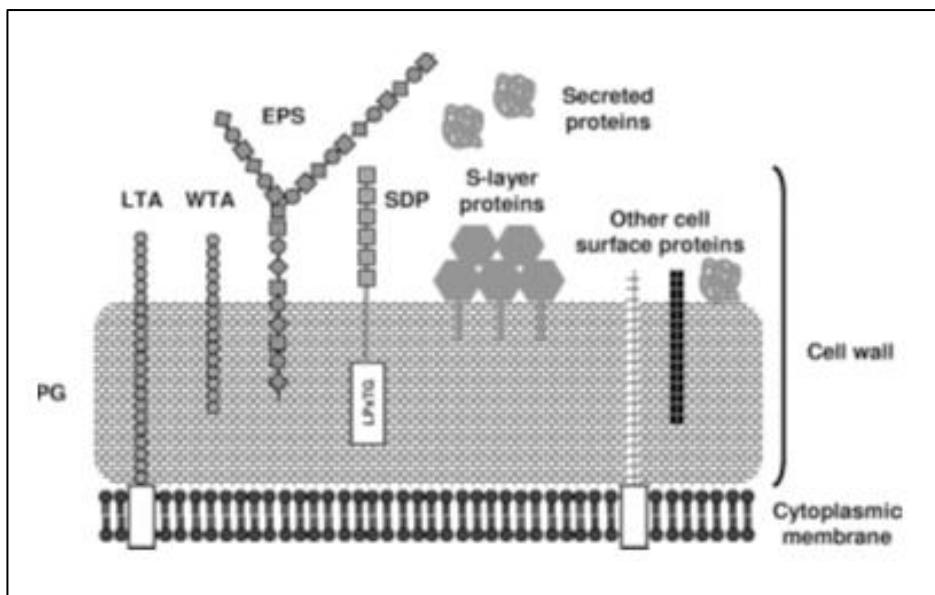


Figure 1.14 Schematic representation of the cell surface architecture of Gram-positive bacteria. Components include; peptidoglycan (PG), lipoteichoic acids (LTA), wall teichoic acids (WTA), extracellular polymeric substances (EPS), sortase dependent proteins (SDP), surface layer proteins (S-layer proteins) and secreted proteins [33].

Another possible feature of both Gram-positive and Gram-negative bacteria is a thick shell composed of capsular polysaccharides, often a characteristic of pathogenic bacteria thought to help mask the bacteria from an immune response [172]. Extracellular appendages such as pili/fimbriae and flagella are found in both Gram-positive and Gram-negative bacteria and are well studied in pathogens, although pili have recently been identified on the surface of probiotic *L. rhamnosus* GG [173]. The proteinaceous pilus fibre is composed of one major pilin that forms the pilus backbone and two minor pilin subunits [174–177]. These slender, elongated, surface appendages often mediate adherence between microbes and their host cell targets [178]. Flagella are substantially larger than pili and are composed of several thousand copies of flagellin subunits. Although the primary role of flagella is locomotion, they also have a role in adhesion [179].

EPS were previously known as exopolysaccharides, defined as long-chain polysaccharides composed of branched, repeating units of sugars loosely attached to the cell surface or secreted into the environment by certain Gram-positive bacteria [180]. They were later re-named as extracellular polymeric substances, when it

became clear that the matrix also contained proteins, nucleic acids, lipids and other biopolymers such as humic substances [154, 181, 182]. EPS form the bulk of many biofilms and can also play a role in adhesion via non-specific interactions by contributing to the physico-chemical properties of the cell surface. Being negatively charged, they have the potential to interfere electrostatically with the binding of the bacteria to the receptor on the mucus. For example, EPS extracted from *Bifidobacterium longum* NB667, reduced binding of *L. rhamnossis* GG to mucus in a dose dependent manner [183].

Bacterial adhesins are often large proteins consisting of repeating modules, anchored to the cell surface of Gram-positive and Gram-negative bacteria by various different mechanisms [184], such as single N- or C-terminal transmembrane anchors, lipoprotein anchors, LPxTG-type anchors, or other repeated cell wall-binding domains including Lysine Motif (LysM) domains or glycine-tryptophan dipeptide motifs [185, 186]. Other proteins are secreted in the surroundings, some of which have been shown to re-associate with the cell surface by electrostatic interactions [170, 185].

1.5 Specific interactions between lactobacilli and mucus

Many of the bacterial-mucus adhesion studies have been carried out with *Lactobacillus* species, since mucus binding is often studied in potential probiotic bacterial strains, with the aim to select probiotics based on their ability to persist in the gut [178, 187-201]. Bacterial adhesion to mucus has also been studied in pathogenic bacteria, as part of the infection process, *Helicobacter pylori* for example, has been shown to have at least four mechanisms of mucin adhesion [202]. Furthermore, mucus binding has been studied in the context of competitive exclusion, the preferential adhesion of probiotic bacteria, thereby reducing the virulence of pathogens [105, 111, 203-205]. The biochemical mechanisms for sensing host environments, interacting with host surfaces and even communicating with the host are often the same in human pathogenic, commensal and mutualistic organisms [70].

The majority of studies on *Lactobacillus* adhesion to mucus have been carried out using *in vitro* methods, where mucus is immobilised on microtitre plate wells and the adhesion of bacteria detected in a variety of ways, predominantly radioactive labelling or cell counting. Recently, more sensitive techniques have begun to be developed, surface plasmon resonance (SPR) has been used to determine binding of lactobacilli to mucin [195, 196], flow cytometry (FCM) used to determine the binding of *Bacteroides fragilis* to mucin [206] and atomic force microscopy (AFM) was used to determine the binding of *Lactococcus lactis* to mucin [207], these more sensitive techniques give further information on the kinetics of the interactions and can provide insights on the contributions of specific and non-specific interactions. However these labour intensive and costly methodologies are not generally used for screening.

Mucus glycoproteins are generally postulated to act as the molecular receptors of bacterial binding. The mucus and mucins used in these assays are from a variety of sources; extracted from intestines, faeces, from mucus-secreting cell lines such as HT29-MTX or from a commercial source, which may have an impact, since the identification of region-specific glycosylation [40, 43]. However only indirect evidence has been gathered for adhesion to mucin glycans in *Lactobacillus* species [208, 209], and further work is needed to confirm the role of mucin carbohydrates in adhesion.

Although EPS [118, 183, 210-212], LTA [213], S-layer proteins [168, 179, 214-217], undefined secreted factors [111, 218, 219], autoaggregation ability, and hydrophobicity [220] have been suggested as potential bacterial adhesion factors, little biochemical

evidence supporting their role in adhesion is available. In contrast, several bacterial cell surface proteins have been shown to act as mediators of specific *Lactobacillus* adhesion to mucus [124, 190, 216, 218, 219, 221, 222]. At present only a few mucus adhesins have been functionally and structurally characterised (Table 1.5).

Bacterial Strain	Bacterial Adhesin	Mucus Receptor	Reference
<i>L. reuteri</i> 1063	Mucus binding protein (MUB) (GenBank AF120104)	Sigma porcine gastric mucin, mucus from pig or hen intestines, fractionated mucus from pig or hen intestines. Immunoglobulin (non-immune Fab-dependent)	[124, 223]
<i>L. reuteri</i> 104R (previously named <i>L. fermentum</i> 104R)	Mucus adhesion-promoting protein (Map A) (Previously MAPP) (GenBank AJ293860)	None identified Binds to purified Sigma porcine gastric mucin, small intestinal porcine mucus. Also binds to epithelial cells, specifically ANXA13 and PALM from Caco2 cells	[203, 222, 224-227]
<i>L. johnsonii</i> La1 NCC 533	Elongation Factor Tu (La1 - EF-Tu) (GenBank NP 964043)	None identified, binds to purified mucus from HT-29MTX cells containing MUC5AC and human colonic mucus extract containing MUC2, also binds epithelial cells	[228]
<i>L. johnsonii</i> La1 NCC 533	Heat shock protein of GroEL class (La1 - GroEL) (GenBank NP 964487)	None identified, binds to purified mucus from HT-29MTX cells containing MUC5AC, also binds epithelial cells	[229]
<i>L. plantarum</i> LA 318	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (GenBank AL935254)	Binds to human colonic mucus.	[230]
<i>L. rhamnosus</i> GG	Pilin subunits SpaC, SpaF, SpaB (GenBank YP003170190, YP003172118, YP003170189)	Binds to human colonic mucus, SpaC and SpaF specific. SpaB non-specific electrostatic interactions	[173, 174]

Table 1.5 Functionally characterised mucus adhesins from *Lactobacillus* species.

Mucus binding protein (MUB), a 358 kDa protein from *L. reuteri* 1063, was the first functionally and structurally characterised mucus adhesion in commensals [124]. MUB, shows the typical structure of many Gram-positive cell surface proteins, with a YSIRK signal peptide for translocation across the cytoplasmic membrane and a C-terminal LPxTG anchor motif, recognised by a family of enzymes called sortases, which

covalently attach the protein to the PG. The 14 Mub repeats found in MUB, can be divided into six type 1 and eight type 2 domains based on sequence homology. The six type 1 repeats show 15-85% amino acid (aa) sequence identity, whereas the eight type 2 domains show higher conservation with >91% aa sequence identity [124] (Figure 1.15).

Figure 1.15 Structure of mucus binding protein MUB, with YSIRK signal sequence, Mub repeats (type 1 in orange and type 2 in white) and LPXTG cell wall anchor.

Mub repeats are believed to mediate binding to mucus, since fusion proteins consisting of different Mub repeats and the maltose-binding protein (MBP) were shown to adhere to pig mucus components, pig gastric mucin and hen intestinal mucus. The binding of Mub-MBP to mucus components could be partly inhibited by the glycoprotein fetuin, which suggests that the receptor of Mub adhesion is a sialylated glycan structure, possibly those attached to mucins.

By searching protein databases, Boekhorst *et al* [231], identified 48 proteins with at least one Mub domain in nine different lactic acid bacterial species, mostly lactobacilli from GI tract. More recently an *in silico* analysis of extracellular proteomes of lactobacilli revealed 47 proteins from six *Lactobacillus* genomes contained mucus binding domain(s) [232], strongly suggesting that the Mub repeat is a functional unit that could play an important role in host-microbe interactions. Many of these proteins contain multiple Mub repeats which raises interesting questions about the role and requirement of each repeat unit.

Furthermore, each Mub repeat, approximately 200 aa in length, consists of two domains B1 and B2. The B1 domain of Mub repeat 5 (MubR5), has structural similarity to repeat unit of Protein L, an immunoglobulin (Ig) binding protein from *Peptostreptococcus magnus*, and was shown to bind to mammalian Ig's including secretory IgA [223]. Further work by Coic *et al* [233] showed that the chemically synthesised MUB₇₀ which corresponds to the B1 domain has binding affinity for colonic mucus from humans, guinea pig and rabbits but not mice or rabbit ileal mucus, and specific recognition of Muc2.

A distinction needs to be made between MUB domains which have been characterised at both biochemical and structural level and the putative mucus binding MucBP domains found in the Pfam database (PF06458 <http://pfam.sanger.ac.uk/>). The MucBP domains are predicted to be smaller than the Mub domains and roughly correspond to the B2 domain, but show a much wider phylogenetic distribution than the Mub domains (Figure 1.16) [231, 234]. Spr1345 from *Streptococcus pneumonia* is one of the few MucBP domains to have been functionally characterised [235], binding to mucin and polysaccharides hyaluronan and chondroitin sulphate, suggesting specificity for the carbohydrate moiety of mucins [236].

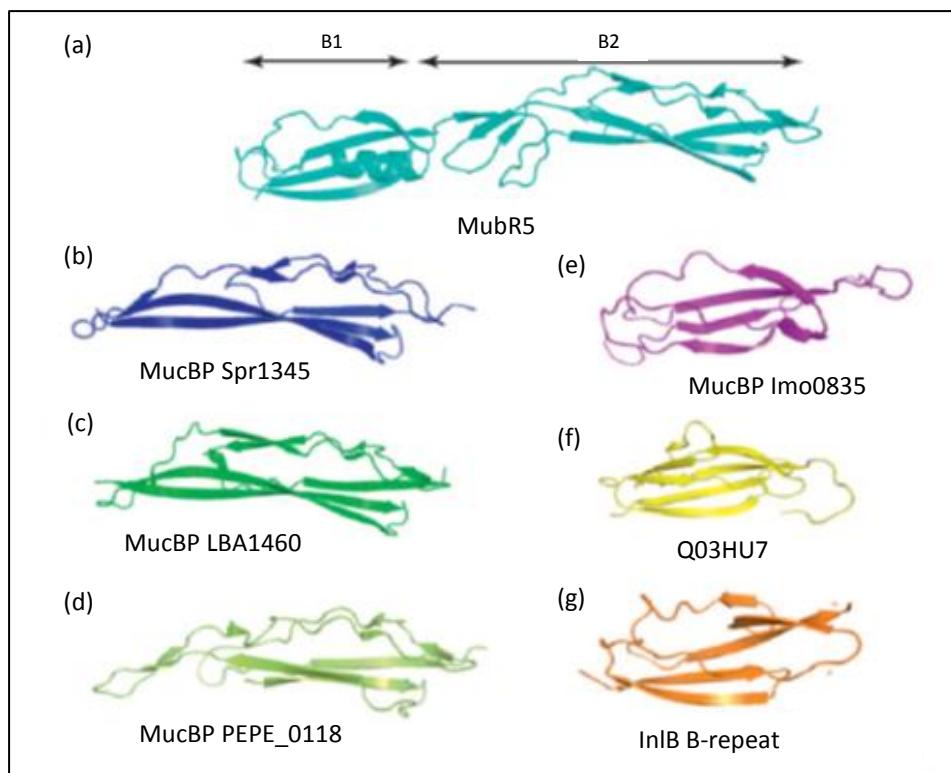


Figure 1.16 Crystal structures of Mub repeats, MucBP domains and related proteins. a) *L. reuteri* MubR5 (PDB 3I57); b) Spr1345 from *Streptococcus pneumonia* (PDB 3NZ3); c) LBA1460 from *L. acidophilus* (PDB 3O69); d) PEPE_0118 from *Pediococcus pentosaceus* (PDB 3LYY); e) Imo 0835 from *Listeria monocytogenes* (PDB 2KT7); f) related adhesion protein from *P. pentosaceus* (PDB 2KYW) and g) InlB B repeat from *L. monocytogenes* (PDB 3NZ3) [234].

Another *L. reuteri* mucus adhesion protein (Map A) was purified, identified, and characterised (Table 1.2.2) from strain 104R [224]. After lithium chloride (LiCl) extraction from the cell surface, proteins were purified by either gel filtration or mucin affinity purification, and MapA was detected in the fractions by dot blot assays with horseradish peroxidase-labelled porcine intestinal mucus and commercial porcine gastric mucin. Map A was also found to inhibit adhesion of *L. reuteri* 104R to porcine

intestinal mucus. Identification was performed by, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and Western blotting. Map A is part of the ATP-binding cassette (ABC) transporter family, which include adhesins specific to other GI tract receptors e.g. collagen, and epithelial cells.

Some of these adhesins are multifunctional molecules with at least two independent functions for example, in the cytoplasm protein elongation factor thermo unstable (EF-Tu) is part of the mechanism to synthesise new proteins as part of the ribosomal complex whereas on the cell surface EF-Tu binds to mucus and epithelial cells [228]. EF-Tu and a heat shock protein from Hsp60 class (GroEL), were recently identified as surface molecules and functionally characterised as mucus binding proteins in *L. johnsonii* NCC533 La1 (Table 1.2.2) [228, 229]. *L. johnsonii* NCC533 La1 EF-Tu was identified from cell surface proteins extracted with LiCl. Proteins which adhered to epithelial cells, were run on SDS-PAGE, transferred to nitrocellulose membrane, and identified using antibodies against cell surface proteins whereas the presence of GroEL at the bacterial surface was demonstrated using a whole-cell enzyme-linked immunosorbent assay. Recombinant proteins of both EF-Tu and GroEL were produced and shown to bind to mucins extracted from human colon and HT29-MTX cells. Although present at the cell surface, EF-Tu and GroEL, do not contain a signal sequence, LPxTG peptidoglycan anchor motif or lipoprotein motif and are considered as intracellular proteins. Interestingly the GroEL of *Salmonella typhimurium* induced aggregation of bacteria in the presence of mucus [229].

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isolated from the cell surface of *L. plantarum* LA 318 has also been functionally characterised as a mucus binding protein [230] (Table 1.2.2). *L. plantarum* LA 318 cells washed in PBS had reduced ability to bind to human colonic mucin as detected by SPR and GAPDH was identified as a protein in the PBS wash fraction, by SDS-PAGE followed by N-terminal aa sequencing. Purified with a two-step chromatographic procedure GAPDH was then shown to bind to human colonic mucin. GAPDH is common on the surface of many pathogenic bacteria, and the presence of adhesins on both pathogenic and mutualistic bacteria reinforces the theory of competitive exclusion.

L. rhamnosus GG has recently been shown to possess pilin structures [173]. Prototypically, the pilus fibre is composed of 3 pilin subunits only one of which shows adhesive ability, the other two contribute to structural integrity [174-177]. *L. rhamnosus*

GG has two pilus gene clusters, spaCBA and spaFED and the pilus subunits SpaC, SpaF and SpaB bind *in vitro* to human intestinal mucus [173, 174] (Table 1.2.2). Using recombinant proteins, the two adhesive pilin subunits SpaC and SpaF, showed specific mucus binding ability, whereas the binding between pilin subunit SpaB and mucus was shown to be mediated by electrostatic interactions.

Adhesion exhibited by these mucus binding proteins is not solely restricted to mucus, Map A, EF-Tu and GroEL also bind to epithelial cells whereas GAPDH from *L. crispatus* ST1 binds to plasminogen [237] and MUB to IgG [223].

Other functionally characterised adhesins are considered as mucus binding proteins (Table 1.6), although a careful inspection of the literature shows that these have been tested either indirectly, against epithelial cells or in a denatured form so no direct biochemical evidence of binding to mucus is available.

Bacterial Strain	Bacterial Adhesin	Receptor	Reference
<i>L. reuteri</i> NCIB11951	Collagen binding protein (CnBP)	Collagen	[123]
<i>L. plantarum</i> WCFS1	Mannose specific adhesin	Mannose	[221, 238-240]
<i>L. plantarum</i> 299v	(Msa)		
<i>L. acidophilus</i> NCFM	<i>La</i> -MUB	None stated	[216]
<i>L. reuteri</i> JCM 1081	29 kDa protein (<i>LrW1</i>)	Porcine gastric mucin and epithelial cells	[241]

Table 1.6 Functionally characterised adhesins of *Lactobacillus*, with putative mucus binding function.

The adhesion of Collagen binding protein (CnBP) isolated from *L. reuteri* NCIB11951 to collagen was inhibited by both porcine intestinal mucin and by a lectin with specificity for α-D-galactose [123], indicating a possible lectin-like adhesion to mucus although this has not been studied further. CnBP is a MapA homologue and part of the ABC transporter family, which include other types of adhesins.

Mannose specific adhesin (Msa) proteins from both *L. plantarum* WCFS1 and *L. plantarum* 299v show similar structure to MUB proteins, with N-terminal signal peptide, sortase dependent LPxTG anchor motif and the presence of Mub repeats [216, 221, 242]. Msa contributes to *L. plantarum* to bind to mannose but no experimental work has been carried out to assess its binding to mucus.

One of the MUB homologues from *L. acidophilus* NCFM (*La*-MUB), was shown to be involved in adhesion to epithelial cells as observed by the 65% reduction in binding with a MUB mutant strain, however no binding experiments to mucus were carried out [216].

A 29 kDa protein (named *Lr*W1) isolated from *L. reuteri* JCM 108 and separated on an SDS-PAGE was shown to bind to mucus and epithelial cells [241]. However the protein was in a denatured form and no experiment was performed using the native form of the protein. *Lr*W1 shows 71.1% sequence similarity to protein Lr0793 from *L. reuteri* ATCC 55730 which is a CnBP homologue. *Lr*W1 N-terminal aa sequence shows similarity to CnBP and like Map A and CnBP, *Lr*W1 is part of the ABC transporter family [122, 241, 243]. Together this information indicates that the role played by Map A, CnBP and *Lr*W1 in mucus adhesion may be similar.

A review on the extracellular biology of lactobacilli by Kleerebezem *et al* highlighted the prediction of 2451 putative extracellular proteins from 13 lactobacilli genomes. The largest exoproteomes were found in *L. casei* (306 proteins representing 11.1% of all proteins encoded in genome) and *L. plantarum* (313 proteins 10.4 %), whereas the smallest exoproteomes were found in *L. fermentum* (128 proteins 6.9 %) and *L. reuteri* (117 proteins 6.1 %). On average the function of up to 60 % of these exoproteins are unknown [232], revealing large numbers of potential cell surface proteins for the interaction of bacteria with the GI tract.

1.6 Aims and objectives of the research project

1.6.1 Aim

The overall aim of the project is to investigate the mechanisms by which mutualistic gastrointestinal (GI) microbes bind to intestinal mucus, assessing the contributions of specific molecular interactions involved in the adhesion process.

1.6.2 Objectives

The first objective is to screen mutualistic *Lactobacillus reuteri* strains from different host origin for mucus adhesion and autoaggregation properties, using *in vitro* adhesion and autoaggregation assays.

The second objective is to investigate the role played by specific mucus binding proteins of representative *L. reuteri* strains, in bacterial autoaggregation and mucus adhesion.

The third objective is to identify novel *L. reuteri* cell surface factors potentially involved in binding to mucus using a quantitative proteomics approach

2 Materials and Methods

2.1 General Materials

The water used in this study was deionised and ultrapure to resistance $18.2\text{ M}\Omega\text{ cm}^{-1}$, (Barnstead Nanopure Diamond, Barnstead Thermolyne Corporation, New Hampshire, USA). All chemicals used in this study were from Sigma-Aldrich (Poole, Dorset, UK) unless otherwise specified. Phosphate buffered saline (PBS) with the following composition, 8.1 mM Na_2HPO_4 , 1.5 mM KH_2PO_4 , 2.7 mM KCl , 137 mM NaCl (pH 7.4) was used throughout the study.

Porcine gastric mucin (PGM) from Orthana (Biofac A/S, Kastrup, Denmark), was used for the standard curve in protein concentration assays, and type III porcine gastric mucin (PGMIII) from Sigma (Sigma-Aldrich, Poole, Dorset, UK) was used for media supplementation and as a control throughout the optimisation of the mucus characterisation methods.

Blocking Buffer used in this study was Protein Free Blocking Buffer in PBS (Thermo Scientific, Waltham, USA). Fluorescein labelled lectins, Wheat germ agglutinin (WGA), succinylated wheat germ agglutinin (SWGA), *Sambucus nigra* agglutinin (SNA), *Ricinus communis* agglutinin I (RCA), concanavalin A (ConA), *Lotus tetragonolobus* lectin (LTL) and *Ulex europaeus* agglutinin (UEA) were all from Vector Labs (Peterborough, UK).

Rabbit polyclonal antibodies used in Western blotting, flow cytometry (FCM), immunogold labelling, competition assays, purification of native proteins and protein adhesion assays were produced by BioGenes (Berlin, Germany) to titres of $> 200\,000$ (Table 2.1). Preimmune serum (PIS) was provided for each rabbit.

Antibody	Raised against	AA sequence*
Anti-MubR5	Recombinant type 2 Mub repeat 5	G2105.....D2289
Anti-MubRI	Recombinant type 1 Mub repeat I	V550.....T742
Anti-Lar	Recombinant Lar repeat 1	K577.....D672

Table 2.1 Polyclonal antibodies used throughout study. * The aa positions given are those on the full-length protein before removal of the secretion signal.

2.2 Microbiology

2.2.1 Bacterial strains, media and culture conditions

L. reuteri strains used in this study are listed in Table 2.2. Bacterial culture media, de Man, Rogosa and Sharpe (MRS) and two variations of *Lactobacillus* defined media (LDM) were used in this study. The MRS is composed of 10 mg ml⁻¹ peptone, 8 mg ml⁻¹ "Lab-Lemco", 4 mg ml⁻¹ yeast extract, 20 mg ml⁻¹ glucose, 2 mg ml⁻¹ dipotassium hydrogen phosphate, 5 mg ml⁻¹ sodium acetate 3H₂O, 2 mg ml⁻¹ triammonium citrate, 0.2 mg ml⁻¹ magnesium sulphate 7H₂O, 0.05 mg ml⁻¹ Manganese sulphate 4H₂O and 1 ml sorbitan mono-oleate. The composition of LDM II and LDM III is reported in Appendix 1.

The cultures were maintained as frozen stocks held at -80 °C in MRS with 20-50 % (v/v) glycerol. *L. reuteri* strains were grown from frozen stocks to stationary phase in MRS broth at 37 °C for 20 h. Cells were subcultured to 0.2 % by volume (20 µl into 10 ml) in MRS or prewarmed (37 °C) LDM II and grown at 37 °C to exponential phase (9.5 h) or to early stationary phase (16 h). For the induction assay, bacterial cells were grown from frozen stocks as above then subcultured to 0.2 % by volume (20 µl into 10 ml) in either MRS or prewarmed (37 °C) LDM II, supplemented with 0.1 % (w/v) Type III porcine gastric mucin (PGMIII) and grown at 37 °C to early stationary phase (16 h). For growth curves, OD₆₀₀ values were measured every hour for ~80 h. Three biological replicates were performed.

2.2.2 Carboxyfluorescein (cF) labelling of bacteria

L. reuteri strains were grown to early stationary phase in MRS, cells were collected by centrifugation (1342 xg, 5 min, 15 °C), washed twice with PBS and resuspended in PBS. Cell suspensions were adjusted to an optical density at 600 nm (OD₆₀₀) of 0.5, representing approximately 2 x 10⁸ cells ml⁻¹. The bacterial cells were then labelled by incubation with 10 µM carboxyfluorescein diacetate (cFDA) (Sigma-Aldrich, Poole, Dorset, UK) at 37 °C for 40 min. Carboxyfluorescein (cF) labelled cells were then centrifuged, washed and resuspended in PBS.

Strain	Source	Comments
ATCC 53608	Pig	Purchased from the American Type Culture Collection (ATCC; Lab of the Government Chemist, LGC Standards, Teddington, UK), derived from strain 1063
DSM 20016	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
MM4-1a	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
MF2-3	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
CF4-6g	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
FJ1	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
MF14-C	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
LMS11-3	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
sr11	Human	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
JW2015	Pig	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
Lp167-67	Pig	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
20-2	Pig	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
3c6	Pig	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
CR	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
One-One	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
ATCC 55739	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
DSM 17509	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
N2D	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
R2LC	Rat	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
ML1	Mouse	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
#20	Mouse	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
r13	Mouse	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
Lr4020	Mouse	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
LB54	Chicken	Kindly supplied by Jens Walter, University of Nebraska, Lincoln, USA
MM4KO	Human	Full name MM4-1a Lar_0958 K/O was kindly provided by Stefan Roos, University of Agriculture Science (SLU), Uppsala, Sweden.
1063N	Pig	Isolated by Donald MacKenzie at the Institute of Food Research (IFR), Norwich, UK, was a spontaneous mutant derived from strain 1063 (isolated from pig) supplied by Jens Walter.

Table 2.2 *L. reuteri* strains used in this study.

2.3 Biochemistry

2.3.1 Mucus preparation

For preparation of the solubilised mouse colonic mucus (MCM-S), mouse large intestines (from wild type C57BL/6 mice) were washed with cold sterile PBS additionally containing a cOmplete Mini Protease Inhibitor Cocktail Tablet per 10 ml PBS (Roche, Basel, Switzerland). The mucosal surface was scraped with a glass slide to remove the mucus layer. Mucus scrapings were collected into 1 ml of ice-cold, PBS containing 4 M guanidine hydrochloride and protease inhibitors. The tissue was kept on ice and homogenised with both an Ultra-Turrax polytron (IKA, Staufen, Germany) and a Status 70 ultrasonicator set to 3 x 30 s pulses at 45 % power (Philip Harris Scientific, Lichfield, UK), with intermediate incubation steps on ice for 30 s, then the sample was centrifuged (17 000 xg, 1 h, 4 °C) to remove cell debris. The sample was stored at -20 °C. For preparation of the crude mouse colonic mucus (MCM-C), mouse small intestinal mucus (MSIM) and pig small intestinal mucus (PSIM), mouse small and large intestines (from wild type C57BL/6 mice) were rinsed with ice cold sterile PBS + 0.05 % (w/v) Tween 20 (PBST 0.05 %). The mucosal surface was scraped with a scalpel and the mucus layer placed into ~1 ml ice cold PBST 0.05 %. The tissue was rinsed using ice cold PBST 0.05 %, and material collected in the solution was combined with the scraped material. Fresh porcine small intestine, obtained from the local slaughterhouse, was rinsed with 67 mM phosphate buffer (pH 6.7) containing 0.02 % w/v sodium azide and a mix of protease inhibitors (Roche Diagnostics GmbH, Mannheim, Germany; 1 tablet per 50 mL buffer). Mucus was removed by scraping the epithelial surface of the jejeunal segment of the intestine with a plastic scraper (Corning, NY). After mixing by vortex (Genius 3- IKA, Staufen, Germany) the mucus extracts were centrifuged (17 000 xg, 1 min at room temperature (RT)). The supernatant was stored, 1 ml of fresh ice cold PBST 0.05 % was added to the pellet and mixed. The samples were sonicated (Branson 2110, Danbury, Connecticut, USA) for 15 min at RT then centrifuged (17 000 xg, 1 min at RT). The supernatant was combined with the saved supernatant and the sample was stored at -20 °C. Mucin concentrations were estimated using the bicinchoninic acid (BCA) assay (see section 2.5.1) with PGM for the standard curve.

2.3.2 Mucus characterisation: agarose/polyacrylamide composite gel electrophoresis (AgPAGE) and Western blot

Composite gels were made by mixing two heated solutions, solution A (1.2 % agarose, 0.375 M Tris-HCl (pH 8.1), 12 % glycerol, 7 % acrylamide/bis-acrylamide w/w ratio

19:1) and solution B (0.5 % agarose, 0.375 M Tris-HCl (pH 8.1)). The 0.5-1.2 % agarose gradient, 0-7 % polyacrylamide gradient, 0-12 % glycerol gradient gels were cast in the mini-Protean gel casting apparatus (Bio Rad, Hertfordshire, UK), at 60 °C, after adding tetramethylethylenediamine (TEMED) 0.03 % and ammonium persulphate 0.01 % to both solutions. The gel was allowed to set for 3 h at RT, then kept at 4 °C overnight in a humidified environment.

Samples were reduced and alkylated in sample loading buffer to a final concentration 0.23 M Tris-HCl (pH 8.1), 18 % glycerol, 0.003 % bromophenyl blue, 0.6 % SDS, 200 mM dithiothreitol (DTT), for 3 h at 37 °C, and stored at -20 °C until needed. Immediately prior to loading on the gel, samples were boiled at 92 °C for 5 min. Gels were run at 300 V for 3 h at 4 °C in 192 mM Tris-borate (pH7.6), 1 mM ethylenediaminetetraacetic acid (EDTA), 0.1 % SDS. Gels were stained using Alcian Blue following the protocol in Schulz *et al* [244] and Colloidal Blue (Life Technologies, Ltd., Paisley, UK), following manufacturer's instructions.

Prior to Western Blotting, Colloidal Blue stained gels were destained with 10 % acetic acid overnight, incubated in 50 mM Tris-HCl pH 7.5, 1 % SDS for 1 h. Proteins were transferred at 150 V for 4 h at 4 °C to HybondP 0.45 µm polyvinylidene difluoride (PVDF) membrane (GE Healthcare, New Jersey, USA) using 3 mm filter paper (Whatman, Maidstone, UK), and following the procedure from Life Technologies blotting handbook (Life Technologies, Ltd., Paisley, UK), with blotting buffer 25 mM Tris-HCl, 192 mM glycine, 0.04 % SDS, 20 % methanol. Membranes were blocked with Blocking Buffer, incubated overnight with 1/1000 dilution in PBS of fluorescein labelled lectins. Membranes were washed twice in PBS before fluorescent signals were detected using a Pharos-FX Plus Molecular Imager (BioRad, Hemel Hempstead, UK).

2.3.3 Adhesion (Bacterial, Protein and Induction assays)

2.3.3.1 Bacterial Adhesion Assay

Bacteria were grown to early stationary phase and cF labelled as above (section 2.2.2), mucus prepared as above (section 2.3.1) was diluted in PBS (1 mg ml⁻¹ for adhesion to MCM-S, or 0.1 mg ml⁻¹ for adhesion to PSIM and MSIM) and 200 µl of the solution was loaded into high binding, black, polystyrene microtitre plate wells (Greiner Bio-One Ltd., Stonehouse, UK) and incubated for 20 h at 4 °C. The wells were washed three times with 200 µl PBST 0.05 % using a plate washer (Applied Quality Systems, Tonbridge, UK). Then, 200 µl of Blocking Buffer was added to each well and the plates incubated

at RT for 1 h. The wells were washed as above, before cF-labelled bacteria (200 μ l) were added to each well and incubated at 37 °C for 4 h. The wells were washed as above and adhered bacteria were lysed by incubation at 37 °C for 1 h with 200 μ l of 1 % (w/v) SDS in 0.1 M NaOH. The released cF fluorescence was measured in a FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany) at 485 and 520 nm as excitation and emission wavelengths, respectively. Negative controls of bovine serum albumin (BSA) coated wells were included. Each assay was performed in triplicate and on at least three separate occasions. Standards were included on each occasion also in triplicate consisting of 200 μ l of SDS lysed cF-labelled bacteria in order to evaluate the % adhesion.

Competitive bacterial binding assays were performed as described above but with the following modifications, prior to addition of 200 μ l of labelled bacterial suspension to each well, the bacterial suspensions were incubated at 37 °C for 1 h with 1 % (v/v) of one of the following, anti-Mub-R5, anti-Mub-RI, anti-MubR5 and anti-MubRI combined, 0.5 % (v/v) of anti-Lar or the preimmune serum from each corresponding rabbit as a negative control.

2.3.3.2 Protein adhesion assay

Mucus prepared as above (section 2.3.1) was diluted in PBS to 0.1 mg ml⁻¹ and 200 μ l of the obtained solution was loaded into high binding polystyrene microtitre plate wells (Greiner Bio-One Ltd., Stonehouse, UK) and incubated for 20 h at 4 °C. In order to remove unbound mucus components, the wells were washed three times with 200 μ l PBST 0.05 % using a plate washer (Applied Quality Systems, Tonbridge, UK). Then, 200 μ l of Blocking Buffer was added to each well and the plates incubated at RT for 1 h. The wells were washed as above, then, 100 μ l of protein (native MUB, recombinant MubR5, recombinant MubRI-II-III or recombinant Lar repeat) at a concentration of 0.1 mg ml⁻¹ was added per well and the plates incubated at RT for 2 h. The wells were washed as above to remove unbound protein. Primary antibody either anti-MubR5, anti-MubRI or anti-Lar or negative control PIS from the appropriate rabbit was added to the wells, (100 μ l at 1/20 000 dilution in PBS) and incubated at RT for 1.5 h. The wells were washed as above. Secondary antibody anti-rabbit IgG alkaline phosphatase (AP) (100 μ l at 1/30 000 dilution in PBS) was added to the wells and incubated at RT for 1.5 h. Substrate SIGMAFAST p-nitrophenol phosphate (pNPP) (100 μ l of 1 mg ml⁻¹ pNPP in 0.2 M Tris 5 mM MgCl₂, pH 9.6-10.5; Sigma) was added to the wells and absorbance was measured at 405 nm after overnight incubation at RT. Each assay was performed

in triplicate and the data were analysed in Excel (Microsoft, Washington, USA) see section 2.3.5.

2.3.3.3 Induction assay

Following the method by Jonsson *et al* 2001 [191], *L. reuteri* strains were grown to early stationary phase in MRS or LDM II broth either in the presence or absence of mucin supplementation at 0.1 % (w/v) PGMIII. Bacterial cells were collected by centrifugation (9000 xg, 6 min, RT), washed once with PBST 0.05 % and resuspended in PBST 0.05 % to an OD₆₀₀ of 0.5.

Mucus samples prepared as described in section 2.3.1 were diluted to 0.1 mg ml⁻¹ in PBS and 100 µl was loaded into sterile, flat bottom, 96-well microtitre plates (Greiner Bio-one, Stonehouse, UK) and incubated for 20 h, at 4 °C. In order to remove unbound mucus components, the wells were washed with 200 µl PBST 0.05%. Then, in order to block the wells, 200 µl of PBST 1 % was added per well and the plates incubated at RT for 1 h. The wells were washed twice as above with PBST 0.05 %. Then, 100 µl of PBST 0.05 %-washed bacteria was added per well and the plates incubated at RT for 2 h. The wells were washed four times with PBST 0.05 % to remove unbound bacteria, and 100 µl PBST 0.05 % was added to the wells before adhered bacteria were examined under an inverted microscope with an Olympus U-PMTVC 1514899 UC30 camera (Olympus, Southend on Sea, UK) to capture images. The PBST was removed from the plate, the wells allowed to dry for 20 h at RT and the dry plate was read at 460 nm using the FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany). Each assay was performed in triplicate and on at least three separate occasions. Negative controls of BSA coated wells were included on each occasion also in triplicate. Data were analysed in Excel (Microsoft, Washington, USA), see section 2.3.5.

For the protease treatment of bacterial cells, the induction assays were performed as outlined above with the following changes, the PBST washed bacteria were diluted to OD₆₀₀ 1 and incubated for 1 h at 37 °C with 1 ml of either PBS, shaving buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 M D-arabinose, 10 mM CaCl₂), or 1.7 µg ml⁻¹ trypsin in shaving buffer. After the incubation cells were washed once (5000 xg for 5 min) and then resuspended to OD₆₀₀ 0.5 in PBST 0.05 % and 100 µl of cell suspensions were added to the coated wells.

2.3.4 Spectrophotometry autoaggregation assay

L. reuteri strains were grown to early stationary phase in MRS broth, cells were collected by centrifugation (1342 xg, 5 min, 15 °C), washed twice with PBS and resuspended in PBS to an OD₆₀₀ of 0.5. Samples (1 ml) were analysed by spectrophotometry using a U-3010 Spectrophotometer (Hitachi, Tokyo, Japan) by recording OD₆₀₀ values every 10 min for 5 h at 37 °C.

2.3.5 Statistical Analysis

For bacterial adhesion assay (section 2.3.3.1), protein adhesion assay (section 2.3.3.2), and induction assay (section 2.3.3.3) the data were analysed in Excel (Microsoft, Washington, USA), statistical analysis using Student's *t*-test.

For the spectrophotometric autoaggregation assay (section 2.3.4), the data were analysed using Excel and One-way ANOVA statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) (IBM, New York, USA) on normalised data (inversed).

2.3.6 Flow cytometry (FCM)

FCM was carried out using bacteria were grown in filtered (0.2 µm) MRS broth to early stationary phase. Aliquots (1 ml) were harvested (17 000 xg, 2 min 4 °C) and washed once with filtered (0.2 µm) PBS buffer and the OD₆₀₀ value was adjusted to 2.5 with PBS. Bacterial cells were analysed in a FC500 flow cytometer using CXP software (Beckman Coulter, High Wycombe, UK). At least 20,000 events per sample were acquired at low flow rate.

To determine bacterial cell numbers, the number of events (corresponding to cells) was counted for 1 min at a constant flow rate of 10 µl min⁻¹. To determine bacterial autoaggregation ability, the forward scatter (FS) and side scatter (SS) signals of PBS-washed cells were recorded. To determine the cell surface expression of the MUB and Lar_0958 proteins, the following additions to the above method were made. Prior to FCM analysis, aliquots (50 µl) of PBS-washed cells were incubated with polyclonal anti-MubR5 or anti-Lar antibody (1:100 final dilution in PBS) in the dark on ice for 30 min. Following a wash with 1 ml PBS, the cells were resuspended in 25 µl PBS containing goat anti-rabbit IgG (whole molecule)-fluorescein conjugated antibody (1:26 final dilution in PBS) and incubated in the dark at RT for 15 min. Finally, 20 µl of this

treated cell suspension was diluted in 0.6 ml PBS, (for ATCC 53608) or 1 ml (all other strains). The level of protein on the cell surface was quantified by measuring the green fluorescent signal in FL1 channel (530/30 nm). Data were analysed using FlowJo (Tree Star Inc., Ashland, USA), Excel (Microsoft, Washington, USA) and SPSS (IBM, New York, USA).

2.3.7 Immunogold scanning electron microscopy (SEM)

In order to visualise MUB and Lar_0958 proteins on the surface of whole bacteria by immunogold SEM, bacteria were grown to stationary phase in MRS broth (16 h incubation at 37 °C), washed once with PBS and resuspended in PBS to OD₆₀₀ 3.0 (~ 1 × 10⁹ cells ml⁻¹). The PBS-washed bacteria were air dried on to carbon-coated nickel grids and fixed by exposure to 25 % (v/v) glutaraldehyde vapour. Residual free aldehydes were blocked with PBS buffer (pH 7.4) containing 50 mM glycine for 15 min. The grids were incubated in goat blocking solution (Aurion, Wageningen, The Netherlands) for 1 h, washed for 3 × 5 min with incubation buffer (PBS buffer containing 0.1 % (w/v) BSA-c™ (Aurion, Wageningen, The Netherlands)), then incubated overnight at 4 °C with anti-MubR5/anti-MubRI combined or singly, or anti-Lar polyclonal antibody (1:1000) in incubation buffer. Grids were washed 6 × 10 min with incubation buffer and then incubated for 2 h at RT with goat anti-rabbit IgG-15 nm gold particle conjugated antibody GAR-15 (Aurion, Wageningen, The Netherlands), 1:50 in incubation buffer). Following 6 × 5 min washes with incubation buffer and 3 × 5 min washes with PBS, the bacteria were re-fixed in PBS containing 2 % (v/v) glutaraldehyde. After 1 × 5 min wash with PBS and finally 2 × 5 min washes with ultrapure water, the grids were examined and photographed in a FEI Tecnai G2 20 Twin transmission electron microscope. Control grids treated with preimmune serum (PIS) or treated only with the secondary antibody were included.

2.4 Molecular Biology

2.4.1 Genomic DNA extraction

Bacteria were grown to early stationary phase in MRS (37 °C, 16 h) and the equivalent of 1.5 ml of an OD₆₀₀ value of 3 (approximately 2 × 10⁹ bacteria) was used for extraction. Genomic DNA was extracted using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Crawley, West Sussex, UK) following the manufacturer's instructions for Gram-positive bacteria and increasing the lysis incubation time at 37 °C to 1 h. DNA

was eluted in buffer “AE” (200 µl per extraction) (Qiagen, Crawley, West Sussex, UK) was stored frozen at -20 °C.

2.4.2 General bioinformatics tools

SignalP v4.0 was used for the prediction of secretion signals [245] (www.cbs.dtu.dk/services/SignalP/). Protein domain predictions were performed using the Conserved Domain search tool from the National Centre for Biotechnology Information (NCBI) website, (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

2.4.3 Polymerase chain reaction (PCR) of *mub* and *lar_0958* genes

Bacteria were grown to early stationary phase in MRS broth, cells were collected by centrifugation (1342 xg, 5 min, 15 °C), washed twice in ultrapure water, resuspended to OD₆₀₀ 5.5 in ultrapure water. Whole cell PCR was performed in 50 µl reaction volumes consisting of 10 pmol each primer, 125 U HotStarTaq (Qiagen, Crawley, West Sussex, UK), and 10 µl of washed bacterial cell suspension. For detection of the *mub* gene, primers MucB1-RVIf and MucB2-RVIr were used and for the *lar_0958* gene, primers lar0958-f1 and lar0958-r1 were used (see Table 2.3). The reactions were carried out in a thermocycler (Veriti 96 well - Applied Biosystems, Carlsbad, California USA) with the following programme: 15 min of initial denaturation and Taq activation at 95 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at either 50 °C (*mub*) or 58 °C (*lar_0958*) and either 60 s (*mub*) or 40 s (*lar_0958*) at 72 °C and a final extension step for 10 min at 72 °C. The resulting PCR products were analysed by agarose electrophoresis gel (section 2.4.4) and DNA sequencing.

Primer	Sequence	Tm
MucB1-RVIf	5'-ATGCAAGAAGCTCAAGCCATC-3'	66 °C
MucB2-RVIr	5'-TTAACAAAGCTTCTTGTAGGT-3'	55 °C
lar0958-f1	5'-AAAGTTACCTATAGTGGTAGTG-3	60 °C
lar0958-r1	5'-AATCCCTAGTGGATTAATCGTG-3	62 °C

Table 2.3 Primers used for *mub* and *lar_0958* gene detection by PCR.

2.4.4 Agarose gel electrophoresis

Agarose gels (1.5 %) were used for the separation of PCR amplification products. All gels were prepared using TAE buffer (20 mM Tris-base, 10 mM acetic acid, 5 mM EDTA, pH8). Samples were loaded into the gel after addition of the Orange G loading dye (New England BioLabs Inc., Massachusetts, USA) according to manufacturer’s

instructions. Electrophoresis was carried out using the Horizon58 system from Biometra (Goettingen, Germany) with a constant voltage of 100 V. The gels were incubated in 0.5-1 μ g ml⁻¹ ethidium bromide solution for 30 min before PCR products were visualised on a shortwave UV transilluminator. Gel images were taken using the Alphaimager (Protein Simple, Santa Clara, California, USA).

2.4.5 Random amplified polymorphic DNA (RAPD) analysis

RAPD analysis was performed in 50 μ l reaction volumes consisting of 100 pmol primer, (see Table 2.4) 125 U HotStarTaq in x1 PCR buffer and approximately 40 ng of genomic DNA (see section 2.4.1 for genomic DNA extraction method).

Primer	Sequence 5'-3'	Tm °C	GC%	Reference
BF2	CGGCCCCCTGT	29	80	[246]
1247	AAGAGCCCGT	25	60	[246]
1254	CCGCAGCCAA	27	70	[246]
XD8	CAAGGCCATCC	29	63.6	[246]
XD9	GAAGTCGTCC	25	54.5	[246]
M13	GAGGGTGGCGGTTCT	60	66.7	[246]
M14	GAGGGTGGGGCCGTT	65	73.3	[246]
Coc	AGCAGCGTGG	27	70	[246]
OPL-04	GACTGCACAC	25	60	[247]

Table 2.4 List of primers tested in RAPD-PCR analysis

The reactions were carried out in a thermocycler (Veriti 96 well - Applied Biosystems, Carlsbad, California USA) with the following programme: 15 min of initial denaturation and Taq activation at 95 °C, followed by 45 cycles of 30 s at 94 °C, 30 s at either 33 °C (primers BF2, 1247, 1254, XD8, XD9, Coc, and OPL-04) or 45 °C (primers M13 and M14) and 1 min at 72 °C and the final extension step for 10 min at 72 °C. The amplification products were analysed by agarose gel electrophoresis (see section 2.4.4).

2.5 Proteomics

2.5.1 Protein Quantitation Assays

Protein concentrations were estimated either using the BCA assay (Sigma-Aldrich, Poole, Dorset, UK) according to manufacturer's instructions, or by NanoDrop ND-1000 (Thermo Scientific, Waltham, USA), when an absorbance value of 1 at 280 nm was equivalent to 1 mg ml⁻¹ unless otherwise specified.

2.5.2 Preparation of cell wall extracts, soluble cytoplasmic extracts and spent media extracts

The bacteria were grown to early stationary phase in MRS broth, cells were harvested by centrifugation at 1342 $\times g$ for 10 min. The spent growth media (2 ml) was retained and concentrated using Vivaspin-2 ultrafiltration spin columns with a 100,000 Da molecular weight cut off (MWCO) (Sartorius Stedim Biotech, Aubagne Cedex, France) at 4 °C, following the manufacturer's instructions. The concentrated samples were then buffer-exchanged with PBS and centrifuged to give approximately 50-70 fold concentration, this sample was named spent media (SM) extract. Soluble cytoplasmic extracts (SCE) and cell wall extracts (CWE) were prepared from PBS-washed bacteria following the method described in [173] with modifications. Briefly, cell pellets from each 20 ml culture were weighed and the cells were disrupted by vortexing with an equal volume of 425-600 μm diameter glass beads (Sigma-Aldrich, Poole, Dorset, UK) and 17 ml PBS g^{-1} wet weight of cells for 3 \times 2 min pulses at full speed with 2 min intervals on ice between pulses. Undisrupted cells were removed by centrifugation at 1000 $\times g$ for 1 min, the supernatant was recovered and recentrifuged at 16 000 $\times g$ for 30 min at 4 °C to pellet the cell wall material. The supernatant from the latter spin was kept as the SCE. The cell walls were resuspended in 50 μl of digestion buffer (50 mM Tris-HCl, 5 mM MgCl₂, 5 mM CaCl₂, 10 mg ml⁻¹ hen egg white lysozyme (HEWL) and 150 U ml⁻¹ mutanolysin) and incubated for 3 h at 37 °C, to release the cell wall proteins. The CWE was clarified by centrifugation at 17 000 $\times g$ for 30 min at 4 °C, and the supernatant was recovered and stored at -20 °C.

2.5.3 SDS-PAGE and Western Blotting

NuPAGE® 4-12 % Bis-Tris gels were used with 3-(N-morpholino)propanesulphonic acid (MOPS) SDS running buffer (50 min at 200 V constant voltage) and HiMark™ Unstained High Molecular Weight Protein Standard as marker. Samples were prepared for SDS-PAGE by adding lithium dodecyl sulphate (LDS) and Reducing Agent, all according to manufacturer's instructions (Invitrogen, Life Technologies Ltd., Paisley, UK).

Gels were stained with the Colloidal Blue staining kit (Life Technologies Ltd., Paisley, UK) and scanned in a GS-800 calibrated densitometer (Bio-Rad, Hertfordshire, UK). The software TL120 v2006e from Nonlinear Dynamics Ltd (Newcastle-upon-Tyne, UK) was used for analysis of apparent molecular weight (MW).

For Western Blot, proteins were transferred electroblotted onto ImmobilonTM-P membrane with 0.45 µm pore size, (Millipore, Watford, UK) using the XCell II blot module and NuPAGE transfer buffer (Life Technologies Ltd., Paisley, UK), following the manufacturer's instructions. Membranes were blocked with Blocking Buffer for 1 h and proteins detected with either anti-MubR5 or anti-Lar polyclonal antibody (1:1000 dilution in PBS), followed by goat anti-rabbit IgG (whole molecule)-alkaline phosphatase conjugate (1:30,000 dilution in PBS) and incubated with 100 µg ml⁻¹ Nitroblue tetrazolium, 50 µg ml⁻¹ 5-bromo-4-chloro-3-indolyl phosphate-toluidine in 4 mM MgCl₂, 100 mM Tris-HCl (pH 9.6) as alkaline phosphatase substrate for 20 min. All washing steps between incubations were performed in PBST 0.05 %.

2.5.4 Cell surface proteome extraction

Bacteria were grown to early stationary phase in MRS broth, cells (50 ml) were harvested at 12 000 xg, 15 min, 4 °C and washed with shaving buffer (20 mM Tris-HCl, 150 mM NaCl pH 7.4). Cell pellets were resuspended in 0.5 ml of trypsin solution (10 µg ml⁻¹ trypsin, 1 M D-arabinose, 10 mM CaCl₂, 20 mM Tris-HCl, 150 mM NaCl pH 7.4) and incubated in at 37 °C for 30 min with gentle shaking (10 rpm, Innova 44, New Brunswick Scientific, Enfield, Connecticut, USA). Control samples were incubated in the solution without trypsin. Cells were then centrifuged at 17 000 xg, 20 min at RT, and the supernatant collected, filtered (0.2 µm), quick frozen on dry ice and stored at -20 °C. The protein concentration of samples was estimated using the standard BCA assay (see section 2.5.1) using BSA for the standard curve.

Shaved protein extracts were further digested with trypsin or chymotrypsin as follows, samples (50 µg) were diluted in digestion buffer 1 (DB1: 8 M Urea 100 mM Tris, pH 8, 5 mM DTT) to a volume of 50 µl and incubated at RT for 2 h before 389 µg iodoacetamide (IAA) was added to each sample, followed by an incubation in the dark at RT for 20 min. Ammonium bicarbonate (50 mM) was added to reduce the urea concentration to 1 M, and trypsin or chymotrypsin was added to the samples to make an enzyme: protein ratio of 1:50. Samples were incubated at 28 °C, 16 h and then adjusted to 0.1 % (w/v) with trifluoroacetic acid using a 2.5 % stock solution. The solution was filtered by OMIX Varian c18 tips (Walnut Creek, California, USA) following the manufacturer's instructions. The samples were dried using a speed vac (Thermo Scientific, Waltham, USA) and frozen at -80 °C. Samples were reconstituted with 80 µl, 0.5 % (v/v) formic acid, sonicated for 5 min, then 45 µl loaded into the LTQ-Orbitrap

plate (to enable two injections of 20 µl), with blanks of 50 % (v/v) acetonitrile in between each sample.

Samples were analysed by LTQ-Orbitrap, the resulting RAW files were converted to Mascot generic files using Proteome Discover version 1.1.0.263 (Thermo Scientific, Waltham, USA) prior to protein identification using the MS/MS ion search with an in-house version of Mascot search engine (Matrix Science Ltd., London, UK) against an in-house *L. reuteri* ATCC 53608 proteomic database.

2.5.5 Purification of MUB and Lar_0958 proteins

Bacteria (*L. reuteri* ATCC 53608 or MM4-1a) were grown to early stationary phase in LDM II media, cells were removed from the spent medium by centrifugation at 10 458 xg for 15 min at 4 °C. The medium was then filtered through a 0.22 µm filter before concentration using the Vivaflow tangential flow filtration system at 4 °C, with 50 and 200 cassettes run in parallel (Vivascience AG, Hannover, Germany). The concentrated medium extract was then dialysed in PBS using Spectra/Por membrane MWCO 2500 Da, before a final filtration step using 0.45 µm PVDF membrane spin columns (Millipore Ultrafree-CL Centrifugal devices). The proteins in the medium extract were then separated using a prepacked gel filtration Superpose 6 PC 3.2/30 column on an AKTA Fast Protein Liquid Chromatography (FPLC) system (GE Healthcare, New Jersey, USA), with PBS as the eluent, detecting protein content of the fractions at 280 nm. The fractions were analysed by SDS-PAGE and Western Blot (see section 2.5.3).

2.5.6 Preparation of stable isotope labelling with amino acids in cell culture (SILAC) samples

Bacterial cells were grown from frozen stocks overnight in MRS, then spun at 1342 xg for 6 min at RT, spent MRS was removed and cells were resuspended in LDM III without arginine or mucin then subcultured to 2 % by volume (3 ml into 150 ml) in LDM III, with one of four variations, a) heavy arginine b) heavy arginine supplemented with 0.1 % (w/v) PGMIII c) light arginine or d) light arginine supplemented with 0.1 % (w/v) PGMIII and grown at 37 °C to early stationary phase (16 h), the bacteria were subcultured again into the same media, grown at 37 °C to an OD₆₀₀ 0.4. The heavy arginine and light arginine pairs of cultures, 100 ml each (one with mucin, the other without) and the reciprocal pair were mixed in equal amounts to give 200 ml at OD₆₀₀ 0.4. Three biological replicates were performed.

Cells were harvested using the Avanti J-26XP (Beckman Coulter, High Wycombe, UK) high performance centrifuge at 10 000 xg, for 30 min, at 4 °C. The spent media supernatant was concentrated x8-fold through an Amicon Ultra 4 3000 Da MWCO cellulose spin column (Millipore, Watford, UK), as described in 2.4.6 and the sample was designated secreted proteome (SP).

Cells were treated with shaving buffer as described in section 2.3.8, but with 2.7 µg ml⁻¹ trypsin. Samples were centrifuged at 17 000 xg, 20 min at RT, and the supernatant collected, filtered (0.2 µm), quick frozen on dry ice and stored at -20 °C. This sample was designated cell surface proteome (CSP).

Cell pellets were further processed to extract cell wall proteins. Samples were re-suspended in 1 ml PBS and ultrasonicated on ice (Status 70 ultrasonicator 6 x 30 s at 55 % power with 30 s cooling intervals) (Philip Harris Scientific, Lichfield, UK). Samples were centrifuged at 17 000 xg, 30 min, 4 °C, and the supernatant discarded. The cell wall pellets were incubated with 1.8 ml g⁻¹ wet weight pellet of digestion buffer (50 mM Tris-HCl, pH 9.6, 5 mM MgCl₂, 5 mM CaCl₂, 10 mg ml⁻¹ HEWL at 93 000 U mg⁻¹, 150 U ml⁻¹ mutanolysin) for 3 h at 37 °C. The extract was clarified with centrifugation at 17 000 xg, 4 °C, 30 min, after which the cell wall proteome (CWP), was removed carefully and stored at – 80 °C until use.

The protein concentration of samples was estimated using the NanoDrop (see section 2.5.1). All samples were further digested with trypsin, following the digest protocol described in section 2.5.4 for the CSP samples while the SP and CWP samples were first separated by SDS-PAGE, (as described in section 2.5.3) and the lanes cut into five sections before an in-gel digestion as described below.

Gel slices were cut into ~1 mm³ pieces and washed twice with 1 ml Solution A (0.2 M ammonium bicarbonate in 50 % (v/v) acetonitrile) with 15 min incubations in the solution before removal with a pastette. Then gel pieces were washed with 100 % (v/v) acetonitrile, before a 10 min incubation in 100 % (v/v) acetonitrile, the liquid was removed by pastette and samples air-dried. DTT solution (1 ml of 10 mM DTT in 50 mM ammonium bicarbonate) was added to the samples and they were incubated for 30 min at 60 °C. DTT solution was removed by pastette before 1 ml IAA solution (100 mM IAA in 50 mM ammonium bicarbonate) was added and samples incubated for 30 min at RT in the dark. IAA solution was removed with a pastette and gel pieces washed twice

with Solution A, with 15 min incubations in between washes. Gel pieces were then treated with 100 % (v/v) acetonitrile, as described above and air-dried for 16 h. Trypsin solution (30 μ l of 10 μ g ml⁻¹ trypsin in 10 mM ammonium bicarbonate) was added to all samples. After the trypsin solution was fully absorbed, ammonium bicarbonate (10 mM) was added to cover the gel pieces. Samples were incubated at 37 °C for 3 h. An equal volume of 1 % (v/v) formic acid was added to the tubes which were vortexed then allowed to stand for 10 min. Samples containing the digested proteins were then recovered from the tubes by pastette, the gel pieces were incubated for a further 3 min with a further equal volume of 50 % (v/v) acetonitrile. Both samples were pooled together, dried using a speed vac (Thermo Scientific, Waltham, USA) and frozen at -80 °C.

2.5.7 Mass spectrometry of SILAC samples and data analysis

Prior to analysis, 90 μ l 0.5 % (v/v) formic acid was added to the SILAC samples above (section 2.5.6), samples were sonicated for 5 min, then 22 μ l loaded onto the LTQ-Orbitrap plate in duplicate with blanks of 50 % (v/v) acetonitrile in between samples from each lane of the gel.

All samples were analysed by LC-MS/MS, performed on an Nanoflow-HPLC system (NanoAQUITY) (Waters, Manchester, UK), coupled to the LTQ-Orbitrap MS (Thermo Scientific, Waltham, USA) using the following settings. Samples (20 μ l) of the digested peptides were trapped off-line to a Symmetry C18 Trap (5 μ m 180 μ m x 20 mm) which was then switched on-line to a UPLC BEH C18 column (1.7 μ m 75 μ m x 250 mm) and held at 45 °C. Peptides were eluted by a gradient of 0-80 % acetonitrile in 0.1 % formic acid over 80 min at a flow rate of 250nl min⁻¹. The MS was operated in positive ion mode with nano spray source at a capillary temperature of 200 °C. The LTQ-Orbitrap was run with a resolution of 60 000 over the mass range m/z 300-2000 and an MS target of 10⁶ and 1 s max scan time. The MS/MS was triggered by a minimal signal of 2000 with an automatic gain control target of 30000 ions and max scan time of 150 ms. For MS/MS events selection, a charge state of 2+ and 3+ was used. Dynamic exclusion was set to 1 count and 30 s exclusion time with an exclusion mass window of \pm 20 ppm.

Raw MS spectra were processed using MaxQuant software suite v 1.2.2.5 [248] (consisting of MaxQuant, Andromeda and Perseus programs from Max Planck Institute, Martinsried, Germany) and peak lists were searched using the Andromeda

search engine [249], for identification of proteins against forward and reversed protein database of *L. reuteri* downloaded from NCBI (<http://www.ncbi.nlm.nih.gov/protein/?term=lactobacillus%20reuteri>) containing 37,307 protein sequences. The default database search criteria were used, which included carbamidomethylation as a fixed modification, heavy arginine Arg 10 and oxidation (M) as variable modifications, two missed cleavages were allowed, mass tolerance was 0.5 Da at the fragment ion level. Search results were parsed at FDR 1 % at both the peptide and the protein level. The following modifications were made: under the modification and labels tab, Lys8 was removed from the heavy labels, the enzyme was changed to trypsin and the main search ppm to 5; under the identifications and quantification tab, the box for kept low-scoring versions of identified peptides was ticked and also the between parameter groups and match between runs boxes with a time window of 2 min. In Perseus, for SILAC ratios to be considered significantly different, there must be a ratio present in at least three out of the five samples, all going in the same direction (i.e. all positive or all negative), and at least one shown to be significantly different using the Significance B test with Benjamini Hochberg FDR set to 0.05.

For comparison, data were also analysed in Mascot Distiller v 2.4.3.1 (Matrix Science Ltd., London, UK). For quantification purposes the proteins had a minimum of two peptides, with ion score significance threshold of <0.05, a correlation threshold of >0.9 and a standard error threshold of <0.05. For SILAC ratio analysis, Scaffold Q + S v3.4.3 (Proteome Software, Portland, USA) [250] was used to distinguish protein up- or down-regulation displaying a \log_2 fold change. These proteins were investigated for subcellular localisation using a combination of bioinformatics tools, SignalP v4.0 (<http://www.cbs.dtu.dk/services/SignalP/>) [245] for secretion signal prediction, SecretomeP v2.0 (<http://www.cbs.dtu.dk/services/SecretomeP/>) [251] for non-classical secretion pathway prediction, TMHMM v2.0 (<http://www.cbs.dtu.dk/services/TMHMM-2.0/>) [252] for transmembrane helix prediction, LipoP v1.0 (<http://www.cbs.dtu.dk/services/LipoP/>) [253] for lipoprotein prediction, and PSORTb (<http://www.psort.org/psortb>) [254] for subcellular localisation prediction.

3 *L. reuteri* adhesion to mucus

Gastrointestinal (GI) mucus is the first point of contact between the gut microbiota and the host, providing the host with defence against pathogens and also a habitat for mutualistic bacteria. It is likely that bacteria which have evolved to reside in the mucosal niche will have developed mechanisms to specifically interact with mucus. Here we investigated autochthonous bacteria-host interactions, by testing the mucus binding ability of a large collection of strains of the model gut symbiont *L. reuteri*, isolated from different vertebrate species, (human, pig, rat, mouse and chicken).

3.1 Extraction and characterisation of GI mucus

Mucus was chosen in this study rather than commercially available mucin, as it represents a more native substrate for binding. Mucus was extracted from mouse colons (MCM), mouse small intestines (MSIM), and pig small intestines (PSIM). Crude mucus extracts were prepared using the method described in Roos *et al* 2000 [255], for PSIM, MSIM and MCM (referred to as MCM-C), resulting in material in a native form. For comparison, solubilised mucus extracts of MCM were also prepared using a GuHCl based extraction method (referred to as MCM-S).

A basic characterisation of the mucus samples was carried out using the agarose/polyacrylamide composite gel system based on the work of Schulz *et al* 2002 [256], with modifications (see Materials and Methods section 2.3.2). The use of AgPAGE composite gels allows the electrophoretic separation of very high molecular mass mucin glycoproteins, the nature of which make mucus samples unsuitable for traditional electrophoresis and analysis techniques. Commercially available type III pig gastric mucin (PGMIII) was used as a positive control during the optimisation of the method.

The BCA assay was first used to provide an approximate value of the protein concentration in mucus. The loading of the mucus samples onto the AgPAGE gel was further adjusted in order to obtain comparable Colloidal Blue signals from all samples, corresponding to 0.31 mg of MCM-S, 1.12 mg of MCM-C, 0.38 mg PSIM and 2.36 mg MSIM as estimated by BCA assay, using PGM for the standard curve. Mucus samples in the gel were initially probed with Alcian Blue stain (Figure 3.1A). Alcian Blue (copper phthalocyanine), stains acid mucopolysaccharides and glycosaminoglycans, through electrostatic forces with the negatively charged macromolecules.

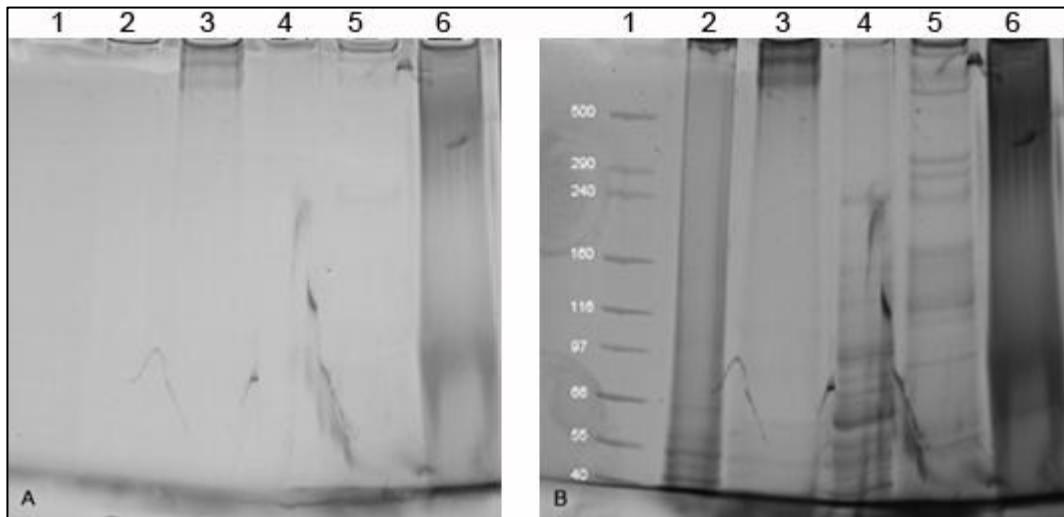


Figure 3.1 Electrophoresis of mucus samples using composite gel stained with A) Alcian Blue and B) Alcian Blue and Colloidal Blue. Lane 1, Hi MW markers; lane 2, MCM-S; lane 3, MCM-C; lane 4, PSIM; lane 5 MSIM and lane 6, mucin control.

At high apparent molecular mass > 500 kDa, strong Alcian Blue staining was observed for the MCM-C mucus sample, with fainter staining for the MCM-S and MSIM samples, indicating the presence of acidic mucins in these samples. The commercial mucin preparation showed strong Alcian Blue staining with a smeared appearance. Subsequent Colloidal Blue staining confirmed the presence of other proteins in the samples (Figure 3.1B), with discrete bands corresponding to apparent molecular mass between 40 and 66 kDa were observed across all samples. The small intestinal mucus samples showed discrete bands between 66 – 290 kDa, whilst bands above 500 kDa were observed across all samples. In order to further characterise the mucus samples with regard to their carbohydrate moieties, the proteins separated on AgPAGE were transferred onto a PVDF membrane and probed with fluorescently labelled lectins specific to mucin sugars (Table 3.1).

Lectin	Abbreviation	Sugar recognition
Wheat germ agglutinin	WGA	N-acetylglucosamine (GlcNAc) Neuraminic (sialic) acid
Succinylated wheat germ agglutinin	SWGA	N-acetylglucosamine (GlcNAc)
<i>Sambucus nigra</i> lectin	SNA	Neuraminic (sialic) acid
<i>Ricinus communis</i> agglutinin I	RCA	Galactose N-acetylglucosamine (GlcNAc) N-acetylgalactosamine (GalNAc)
Concanavalin A	Con A	Mannose
<i>Lotus tetragonolobus</i> lectin	LTL	Fucose
<i>Ulex europaeus</i> agglutinin	UEA	Fucose

Table 3.1 Specificity of lectins used in this study

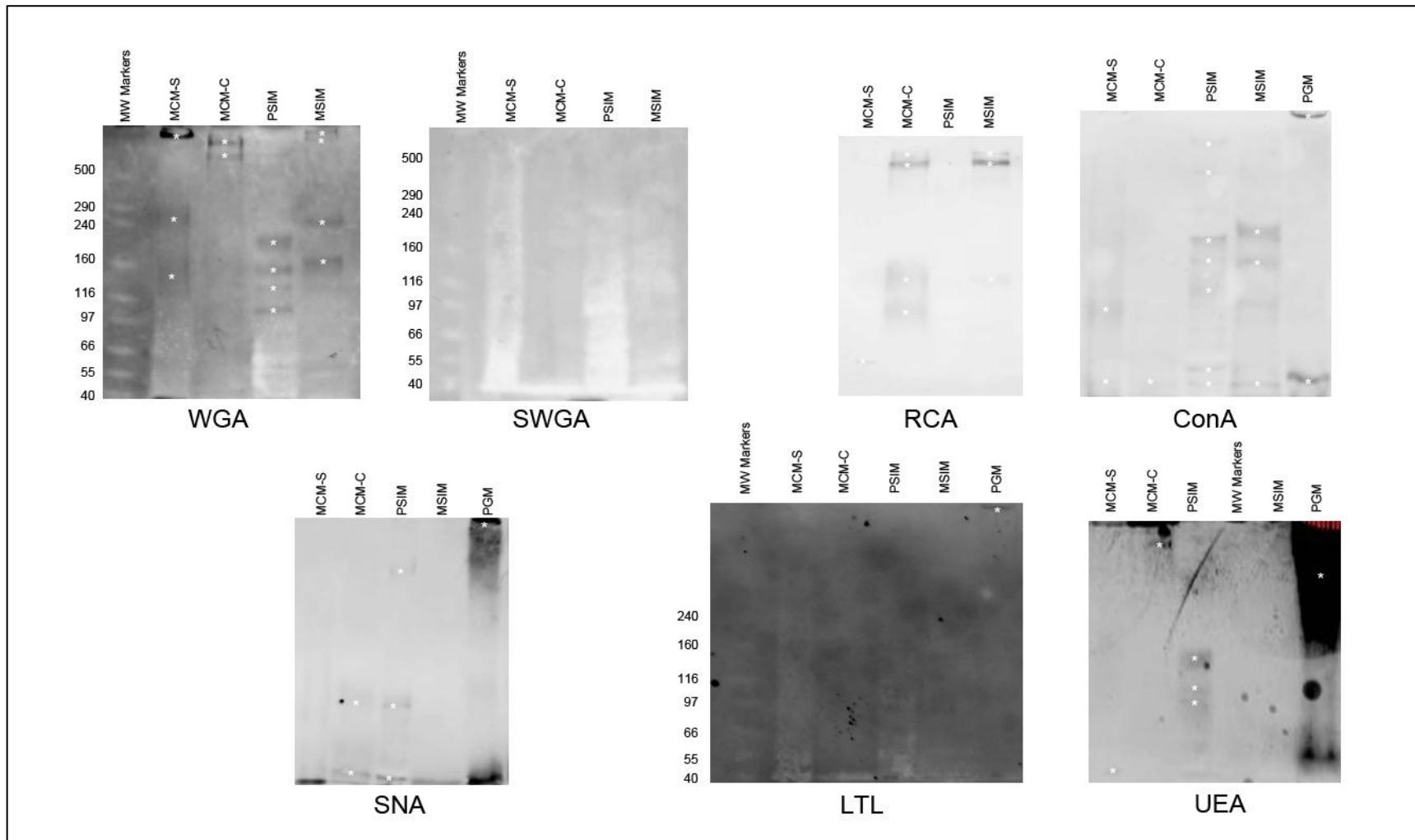


Figure 3.2 Western blot analysis of mucus samples separated by AgPAGE and probed with f-lectins (as indicated). Positive signals indicated with white stars.

Wheat germ agglutinin (WGA) recognises N-acetylglucosamine (GlcNAc) and has also been reported to interact with glycoproteins via sialic acid residues, whereas succinylated WGA (SWGA) does not recognise sialic acid (Table 3.1). All mucus samples tested were positive for WGA but negative for SWGA (Figure 3.2) indicating the presence of sialic acid in all samples. In order to further investigate the sialylated structure present in the mucus samples, the blots were probed with *Sambucus nigra* lectin (SNA), which binds preferentially to sialic acid attached to terminal galactose via an (α -2,6), and to a lesser degree, (α -2,3), linkage. There was a difference between the binding of WGA and SNA in all samples, indicating variation in the sialic acid forms present.

Ricinus communis agglutinin I (RCA) recognises galactose, GlcNAc and N-acetylgalactosamine (GalNAc) (Table 3.1). All samples apart from PSIM were positive for RCA (Figure 3.2). Since there was no SWGA signal, which may indicate a lack of GlcNAc, the RCA recognition may be attributed to presence of galactose or GalNAc. Concanavalin A (ConA) recognises mannose and showed positive signals for all samples although with a weaker signal for MCM-C, indicating mannose content across the mucus samples, which is present in low amounts in mucin, and along with other contaminating sugars may come from shed epithelial cells present in the native mucus extracts.

Ulex europaeus agglutinin (UEA) recognises α -linked fucose, whereas *Lotus tetragonolobus* lectin (LTL) recognises fucose linked to the C-2 of the galactose of β DGal(1-4)DGlcNAc, but not on β DGal(1-3)DGlcNAc [257]. There was positive recognition by UEA of bands in PSIM, MCM-C and MCM-S samples (Figure 3.2), but there was no recognition in any mucus sample by LTL, which suggests that fucose in the mucus samples is α -linked or on C-2 of β DGal(1-3)DGlcNAc. The PGMIII positive control, showed positive bands for all lectins tested.

Taken together these results showed that although different profiles were observed between colonic mucus and small intestinal mucus extracts, all mucus samples displayed similar responses to lectin probing, indicating the presence of expected sugar residues.

3.2 Development, optimisation and standardisation of the mucus adhesion assay

An adhesion assay was developed for assessment of bacterial adhesion to mucus. Briefly, carboxyfluorescein (cF) labelled bacteria [258] were incubated on mucus coated wells, non-adhering bacteria washed off and the bound cells were lysed before the fluorescence signal was measured at 520 nm using a plate reader. The use of cell permeant cF diacetate (cFDA) to label the bacterial cells was chosen over a range of alternatives due to its mechanism of action. Upon entering the cells, cFDA undergoes hydrolysis by intracellular esterases, releasing cF which is retained in the cell by an intact membrane. The two advantages of this method are that, only viable cells are labelled and furthermore since cF is internalised in the cells, the surface of the bacteria and therefore the cell surface proteins potentially involved in adhesion remain unaffected by labelling. However in order to measure fluorescence the bacterial cells need to be lysed (see Materials and Methods section 2.3.3.1).

Immobilised BSA was used as a control, as it was found to give minimum signal compared to casein, β -lactoglobulin, ovalbumin and an equivalent signal to PBS (data not shown). The adhesion assay was optimised and standardised both in terms of mucus coating and preparation and bacterial cell numbers, viability and growth phase (see section 3.2.1-3.2.2 below).

3.2.1 Saturation of mucus coating and mucus preparation comparison

In order to ensure that the microtitre plate wells were saturated with immobilised mucus, to avoid non-specific binding of the bacteria to the wells, the binding of cF labelled *L. reuteri* strain ATCC 53608 was tested against wells coated with a serial dilution of MCM-S ranging from 2 mg ml^{-1} to $0.24 \text{ }\mu\text{g ml}^{-1}$ (Figure 3.3). Binding is represented by the level of fluorescence detected after non-adhered bacteria were washed off and bound cells lysed to release the fluorescence. Immobilised BSA was included as a control.

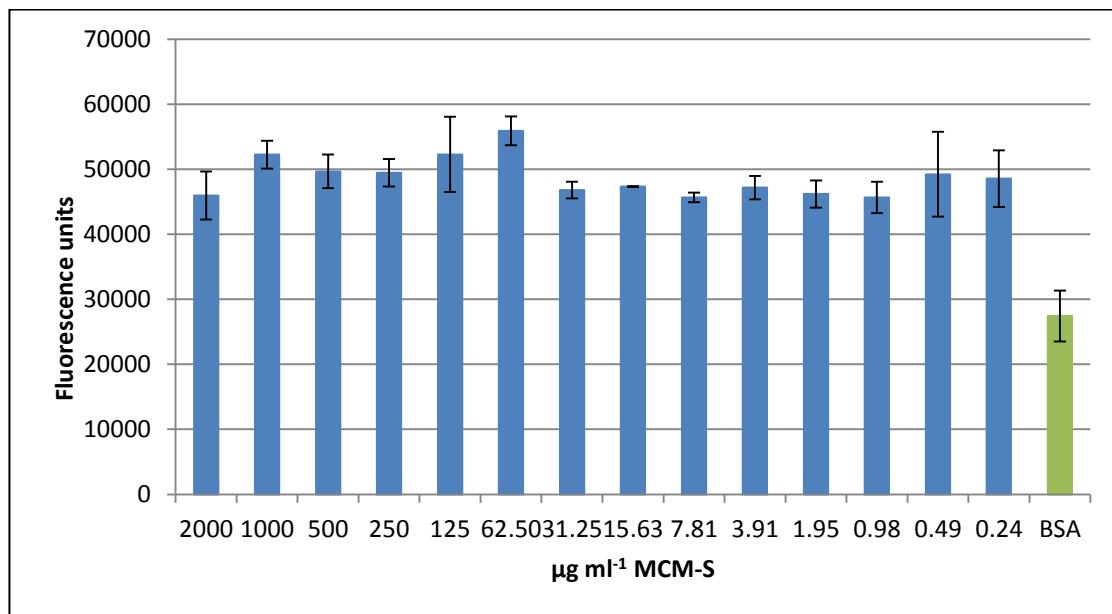


Figure 3.3 Binding of strain ATCC 53608 to varying concentrations of MCM-S (blue bars) immobilised on microtitre wells. Control BSA (green bar).

No significant variation was observed within the range of mucus tested, indicating that the concentrations used were above the saturation level. A value of 1 mg ml^{-1} was used for MCM-S and 0.1 mg ml^{-1} for further MSIM and PSIM adhesion studies.

Since two different methods were used for the MCM extraction, resulting in the samples MCM-C and MCM-S, the adhesion of strain ATCC 53608 was tested at two concentrations of both mucus preparations.

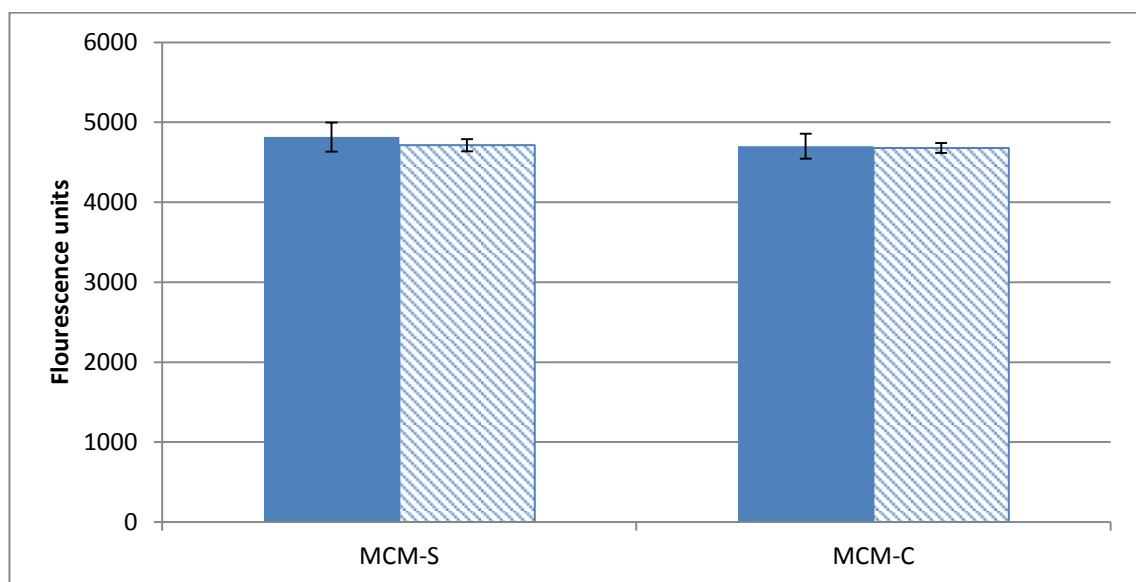


Figure 3.4 Effect of MCM preparation and concentration 1 mg ml^{-1} (blue bars), 0.1 mg ml^{-1} (blue and white bars) on binding ability of *L. reuteri* ATCC 53608.

There was no significant difference in the binding ability of strain ATCC 53608 to MCM prepared using the two different methods or at the two concentrations used (Figure 3.4), indicating that the method of extraction did not have an impact on the reproducibility of the assay.

3.2.2 Adhesion assay optimisation and standardisation; bacterial cell numbers, viability, labelling and growth phase

Adhesion assays generally rely on OD₆₀₀ values of bacterial suspensions to normalise the number of cells added to each well. However, differences in the size and shape of the cells may impact on OD₆₀₀ value, thus potentially affecting the dynamics of the adhesion assay by adding variable numbers of cells.

Flow cytometry (FCM) was used to count the cells and therefore determine whether the OD₆₀₀ value corresponds to an equivalent number of cells across the *L. reuteri* strains tested. Briefly, a selection of strains were diluted to an OD₆₀₀ of 0.5 and the number of events (corresponding to cells) was counted for 1 min at a constant flow rate using an FC500 cytometer (Table 3.2). The FC500 cytometer aspirates the cell suspension and the fluidics system passes each cell in front of a laser, the detectors measure the light scattered and the number of “events” passing through the laser corresponds to the number of cells.

Strain	Count*	No. cells added to microtitre well x 10 ⁶
MM4-1a	282000	5.64
CF4-6g	284000	5.68
FJ1	283000	5.66
LMS11-3	283000	5.66
1063N	280000	5.6
ATCC 55739	284000	5.68
ATCC 53608	269000	5.38
DSM 17509	274000	5.48
DSM 20016	280000	5.6
ML1	284000	5.68
r13	277000	5.54
MF2-3	255000	5.1
sr11	275000	5.5
R2LC	281000	5.62
N2D	283000	5.66

Table 3.2 Determination of the number of *L. reuteri* cells by FCM across selected strains. * In cell suspension measuring OD₆₀₀ 0.5.

The number of events counted was similar across the strains, with an average of 278267 +/- 7796, corresponding to $\sim 5.6 \times 10^6$ cells per well in the binding assay.

To further optimise the adhesion assay, a range of bacterial cell concentrations was tested, the assay was performed with a 16 h culture of *L. reuteri* strain DSM 20016 at a range of OD₆₀₀ values (Figure 3.5). Data are presented as percentage adhesion, comparing the fluorescent signal of bound bacteria to the fluorescent signal of the labelled bacterial aliquots originally added to the wells. The range of OD₆₀₀ values chosen extends to above the theoretical maximum number of cells that can bind if 100 % of cells adhered. The theoretical maximum number of cells that can bind is 377×10^6 , based on surface area of the well and size of cells, while an OD₆₀₀ of 6.8 is equivalent to $\sim 544 \times 10^6$ cells.

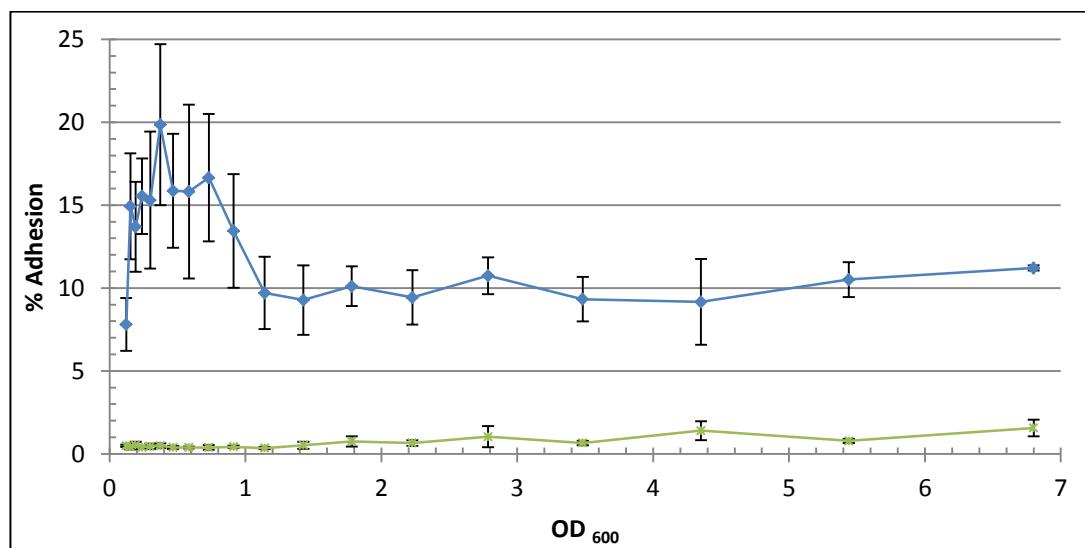


Figure 3.5 Effect of cell numbers on adhesion of strain DSM 20016 to MCM-S (blue diamonds) and immobilised BSA as a control (green crosses).

The measured maximum number of cells bound (11.2 % at OD₆₀₀ 6.8) corresponds to $\sim 61 \times 10^6$, indicating that the results are within the theoretical limits of the assay. A high percentage of adhesion of strain DSM 20016 to mucus was observed between OD₆₀₀ 0.3 and 0.7 (Figure 3.5). Above an OD₆₀₀ of 1, the adhesion stabilised at ~ 10 %, indicating that there is a proportional increase in the number of cells binding with the increase in cells added to the wells. A similar optimum adhesion range between OD₆₀₀ 0.3 and 0.7 was observed for strain ATCC 53608 (data not shown), therefore an OD₆₀₀ of 0.5 was chosen from the middle of this range in the rest of the study.

Only bound cF labelled bacteria are detected under the conditions of the binding assay. If unlabelled cells (corresponding to either dead cells or cells with leaky membranes) are present in the bacterial mix, they may interfere with the assay by binding to the immobilised mucus and thus competing with the cF labelled cells, leading to potential inaccuracies in the calculated binding percentage. Selected *L. reuteri* strains, prepared as described in section 2.2.2 for the adhesion assay, were characterised by FCM to determine the percentage of cells which are cF labelled (Figure 3.6).

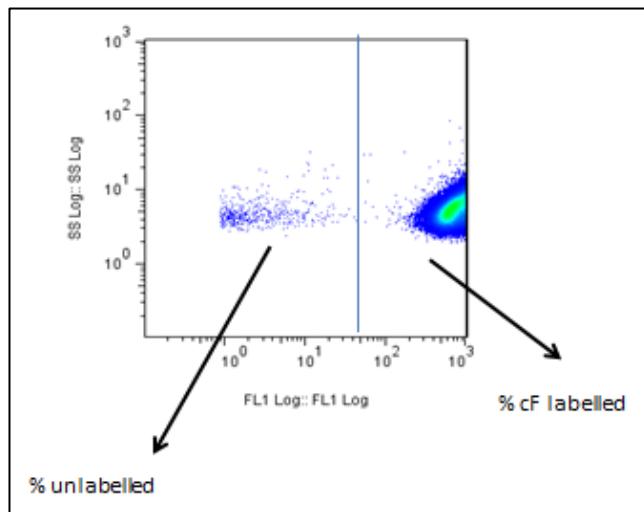


Figure 3.6 Example of a FCM plot used to distinguish cF labelled population of *L. reuteri* cells from unlabelled population of cells.

Cells are passed in single cell suspension through a laser and the fluorescent signal from the cells is detected. The SS signal gives information about the roughness and granularity of the cells, these two signals combined showed two distinct populations of cells, correspond to fluorescently labelled and unlabelled cells.

Strain	% cF labelled
MM4-1a	99.7
CF4-6g	99.8
FJ1	99.7
LMS11-3	99.7
sr11	96.6
1063N	99.8
ATCC 55739	99.8
ATCC 53608	99.8
DSM 20016	99.6
DSM 17509	99.5
ML1	99.3
r13	99.0
MF2-3	99.2
R2LC	98.3
N2D	99.7
Lr4020	99.3
MM4KO	99.7

Table 3.3 Percentage of cF-labelled bacteria, across *L. reuteri* strains as determined by FCM

For the majority of the strains tested, > 99 % of cells were cF-labelled (Table 3.3), indicating that any effect of unlabelled cells on the adhesion assay will be minimal. Two strains (sr11 and R2LC) showed higher numbers of unlabelled cells, sr11 (3.45% unlabelled) and R2LC (1.7% unlabelled), which may slightly affect the adhesion values of these two strains.

In order to investigate the influence of growth phase on bacterial adhesion to mucus, the binding ability of strain ATCC 53608 was tested in both mid-exponential and early stationary phase, diluted to an OD_{600} 0.5.

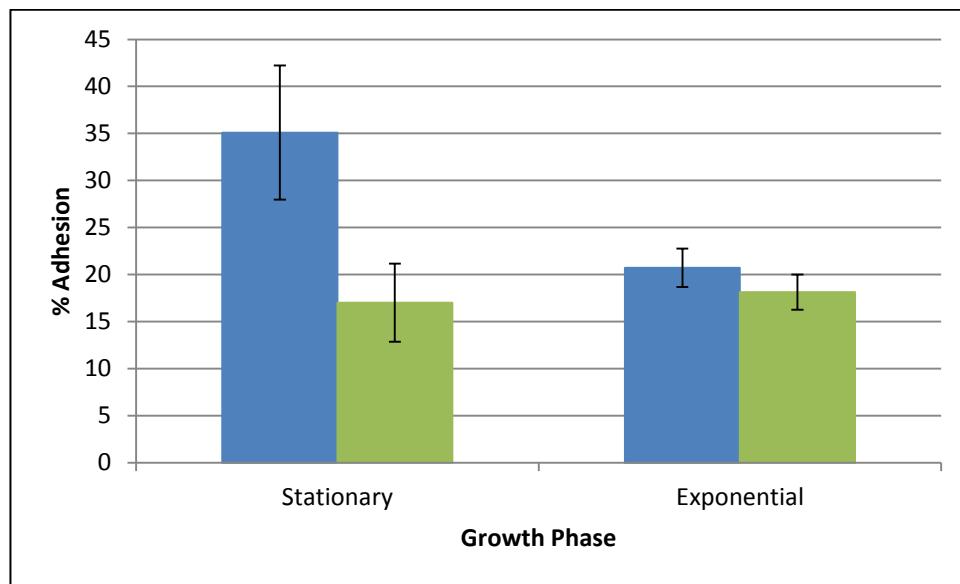


Figure 3.7 Impact of growth phase on adhesion of strain ATCC 53608 binding to MCM-S (blue bars) and BSA (green bars).

Significantly higher binding to mucus was observed when the cells were harvested in early stationary phase (16 h) compared to those in exponential phase (9.5 h) (Figure 3.7), probably due to differential expression of cell surface proteins. Early stationary phase was chosen for the rest of the study.

3.3 Mucus adhesion ability of *L. reuteri* strains

In order to investigate the mucus binding ability of *L. reuteri*, 26 strains (Table 3.4) were screened for adhesion ability to MCM-S, MSIM or PSIM (and BSA as non-specific binding control), using the microtitre plate binding assay. The identity of the *L. reuteri* strains in the collection was first confirmed by sequencing of a 194 bp fragment of 16S rRNA amplified by PCR from cells of the *L. reuteri* strains, showing 100 % identity with the sequence from type strain DSM 20016 (data not shown). The strains were originally isolated from five different vertebrate hosts, pig, human, chicken, mouse and rat (Table 3.4).

<i>L. reuteri</i> strain	Vertebrate host origin
ATCC 53608	Pig
1063N	Pig
Lp167-67	Pig
20-2	Pig
3c6	Pig
JW2015	Pig
DSM 20016	Human
MM4-1a	Human
MM4KO	Human
MF2-3	Human
CF4-6g	Human
FJ1	Human
MF14-C	Human
LMS11-3	Human
sr11	Human
LB54	Chicken
#20	Mouse
r13	Mouse
Lr4020	Mouse
ML1	Mouse
CR	Rat
One-One	Rat
DSM 17509	Rat
N2D	Rat
R2LC	Rat
ATCC 55739	Rat

Table 3.4 Collection of *L. reuteri* strains used in this study

In order to compare adhesion between the strains, percentage adhesion was normalised to the mucus binding of ATCC 53608 which was set to a value of 100 %.

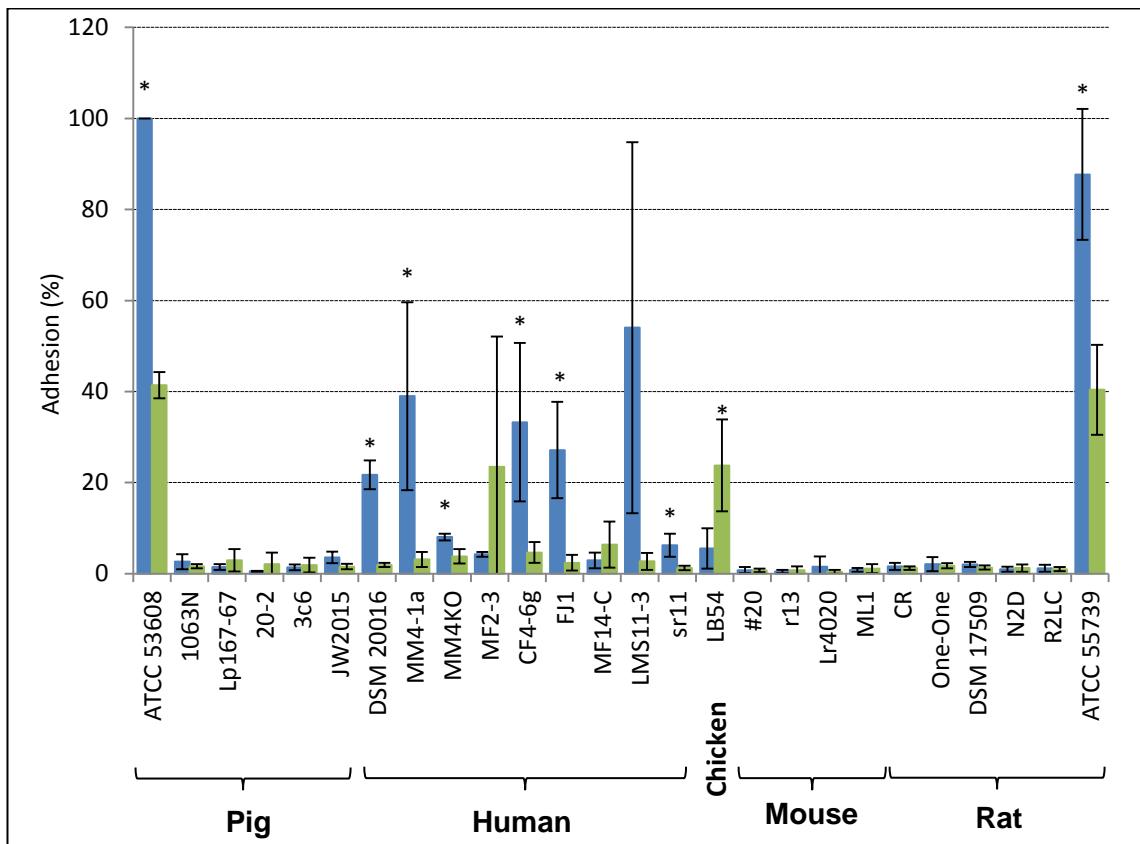


Figure 3.8 Adhesion of *L. reuteri* strains to MCM-S (blue bars) with BSA as a control (green bars). * P <0.05.

Adhesion to MCM-S was markedly varied for the different strains, with eight strains showing significantly higher binding to mucus compared to binding to BSA (Figure 3.8). Adhesion of *L. reuteri* strains to MCM-S was not correlated to the origin of the strain, i.e. there was no significant binding to mouse mucus by strains isolated from mice. Two strains (ATCC 53608 and ATCC 55739) showed significantly higher binding to mucus than to BSA but with a substantial binding to BSA. The six strains showing significant binding to mucus compared to BSA, but with very low levels of BSA binding (DSM 20016, MM4-1a, MM4KO, CF4-6g, FJ1 and sr11) were all human origin. Strain LB54 (chicken origin) showed significantly higher binding to BSA than to MCM-S.

In order to investigate whether mucus origin in the GI tract has an impact on *L. reuteri* ability to bind to mucus *in vitro*, the *L. reuteri* strains were tested against MSIM.

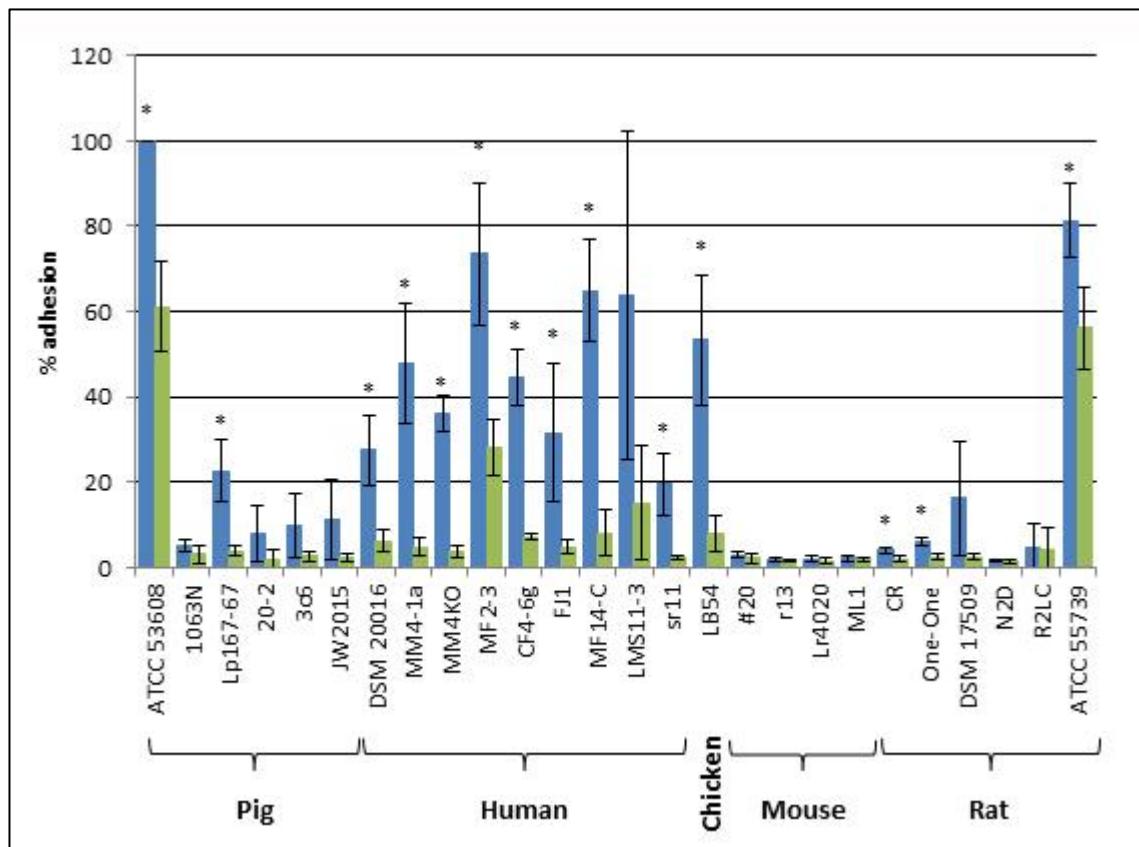


Figure 3.9 Adhesion of *L. reuteri* strains to MSIM (blue bars) with BSA as a control (green bars)
*P <0.05

The eight strains showing significant binding to MCM-S all showed the same binding pattern to MSIM (Figure 3.9). Furthermore significant binding was observed for six other strains to MSIM, Lp167-67, MF2-3, MF14-C, CR, One-One and LB54, which indicates that the differences in mucus composition may affect the adhesion of specific strains and that adhesion is not specific to colonic mucus.

The adhesion assay was also carried out against PSIM to assess whether the host origin of the mucus could have an impact on the adhesion of *L. reuteri* strains to mucus (Figure 3.10).

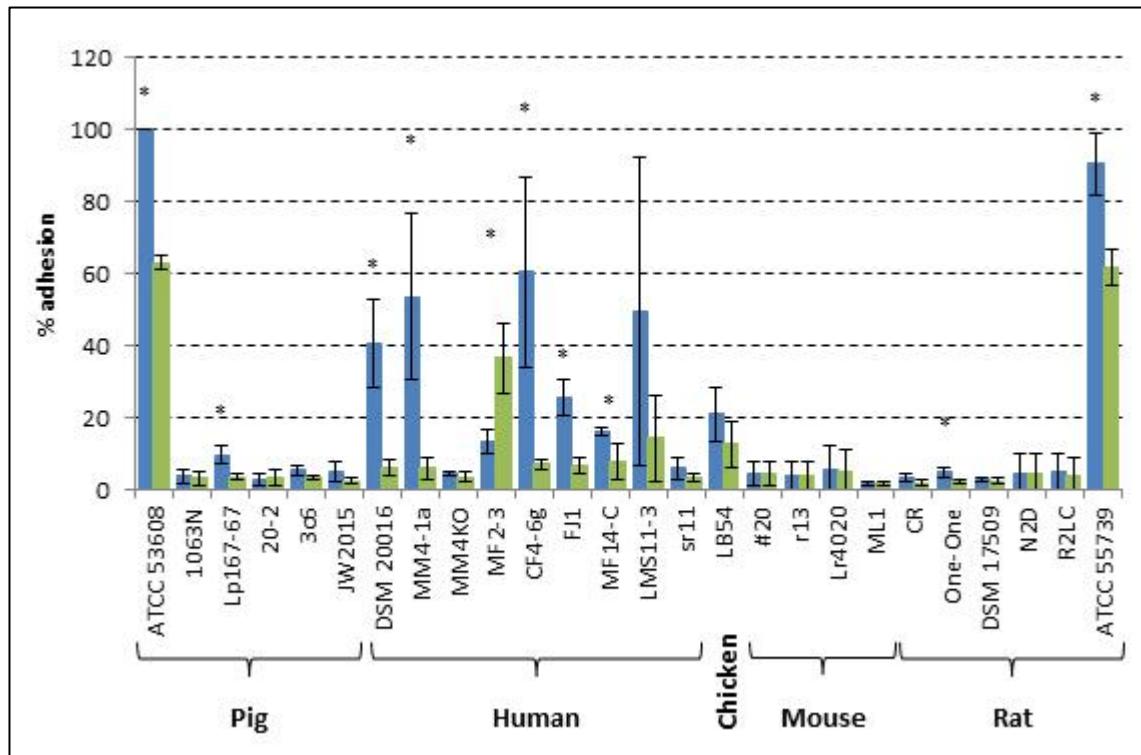


Figure 3.10 Adhesion of *L. reuteri* strains to PSIM (blue bars) with BSA as a negative control (green bars) *P <0.05

Comparable to the binding to MCM-S and MSIM, strains ATCC 53608 and ATCC 55739 showed very high binding to PSIM with high background binding to BSA, and human strains DSM 20016, MM4-1a, CF4-6g and FJ1 showed significant binding to PSIM. However, in contrast to the significant binding observed to MCM-S and MSIM, strains MM4KO and sr11 did not show any significant binding to PSIM. Strains Lp167-67, MF14-C and One-One showed significant binding to PSIM, whilst there was no significant binding observed to MCM-S and MSIM. Strain MF2-3 showed significant binding to BSA.

The specificity of the reported mucus binding ability can be inferred by comparing the binding to mucus to the binding to BSA. Binding ratios were calculated for each strain, where a higher ratio indicates a higher specificity for mucus (Table 3.5). Four strains (DSM 20016, MM4-1a, CF4-6g and FJ1) showed consistently high binding ratios along with significant binding to mucus. The ATCC 53608 and ATCC 55739 strains which displayed very high percentage binding to mucus, compared to the other *L. reuteri* strains tested in the present study, had a relatively low binding ratio (less than 2.5 for both strains), due to their high binding to BSA.

Strain	Ratio		
	MCM-S	MSIM	PSIM
ATCC 53608	2.42	1.63	1.59
1063N	1.62	1.61	1.19
Lp167-67	0.49	5.83	2.82
20-2	0.25	3.91	0.83
3c6	0.73	3.71	1.57
JW2015	2.34	4.48	2.09
DSM 20016	11.44	4.44	6.73
MM4-1a	12.53	9.88	8.88
MM4KO	2.11	9.69	1.23
MF2-3	0.18	2.62	0.37
CF4-6g	7.20	6.28	8.65
FJ1	11.36	6.51	3.83
MF14-C	0.45	7.95	2.10
LMS11-3	20.14	4.19	3.46
sr11	4.95	8.82	1.80
LB54	0.23	6.72	1.65
#20	1.12	1.43	1.04
r13	0.67	1.02	1.05
Lr4020	3.76	1.25	1.10
ML1	0.71	1.23	1.03
CR	1.31	2.01	1.70
One-One	1.22	2.43	2.11
DSM 17509	1.52	6.39	1.20
N2D	0.79	1.15	1.04
R2LC	1.21	1.17	1.25
ATCC 55739	2.17	1.45	1.46

Table 3.5 Binding ratios of *L. reuteri* strains (mucus: BSA).

Strains DSM 20016, MM4-1a, CF4-6g and FJ1 all isolated from human sources consistently showed significant binding to mucus. Eleven strains exhibited no binding under these conditions, porcine isolates 1063N, 20-2, 3c6 and JW2015, murine isolates #20, r13, Lr4020, ML1 and rat isolates DSM 17509, N2D and R2LC. The human isolate LMS11-3 displayed a highly variable binding ability, with a trend for higher binding to mucus than to BSA, but this was not statistically significant.

The pattern of mucus binding ability of *L. reuteri* strains remains similar across the mucus samples, with strains ATCC 53608 and ATCC 55739 consistently showing high binding to mucus.

3.4 Role of autoaggregation in mucus binding

Autoaggregation of *L. reuteri* has been reported [125], and this property may influence the mucus binding value reported in the above adhesion assay, since cell aggregates will release a higher fluorescent signal than individual cells.

In order to assess the potential role of autoaggregation in *L. reuteri* adhesion to mucus, the autoaggregation phenotype of all 26 *L. reuteri* strains was assessed by spectrophotometric assay. Bacterial cells were grown in MRS to early stationary phase, washed and diluted to an OD₆₀₀ of 0.5 in PBS. The OD₆₀₀ value was measured every 10 min for 5 h, at 37 °C closely mimicking the conditions of the binding assay. Strains which autoaggregate showed a rapid decrease in OD₆₀₀ values due to the formation of aggregates settling out at the bottom of the cuvette, compared to non-autoaggregating strains.

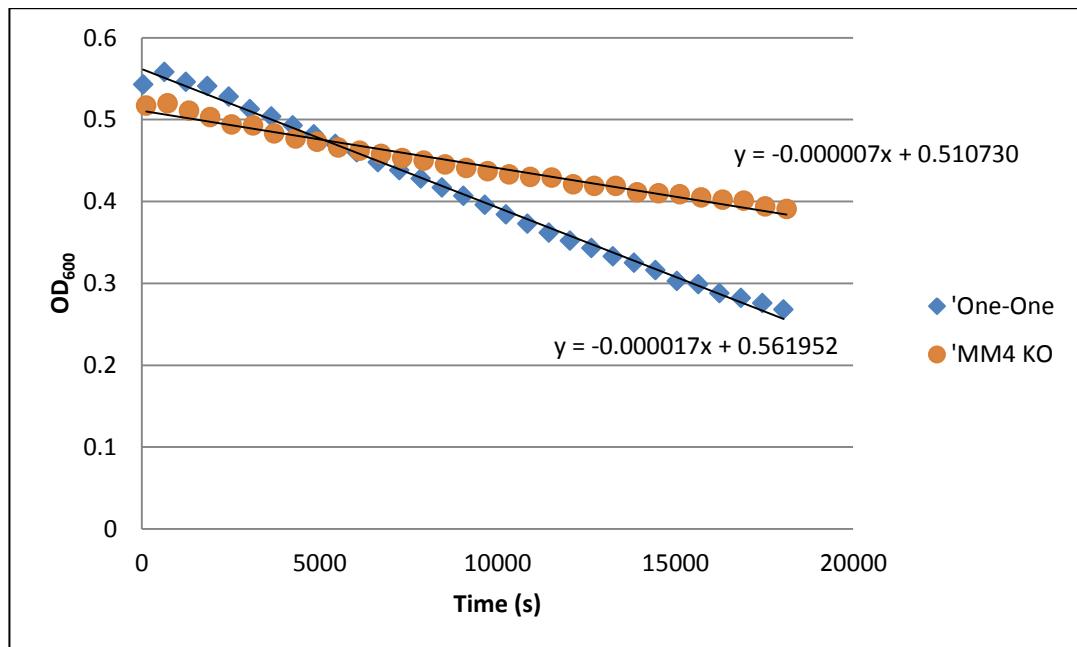


Figure 3.11. Measurement of OD₆₀₀ over time of *L. reuteri* strains. The gradient of the line is a surrogate marker for autoaggregation ability.

The OD₆₀₀ values were plotted on a graph against time (Figure 3.11) and a line of best fit applied to the data points for each strain, the gradient of the line (m in equation $y = mx+c$), was used as a measure of the degree of autoaggregation ability.

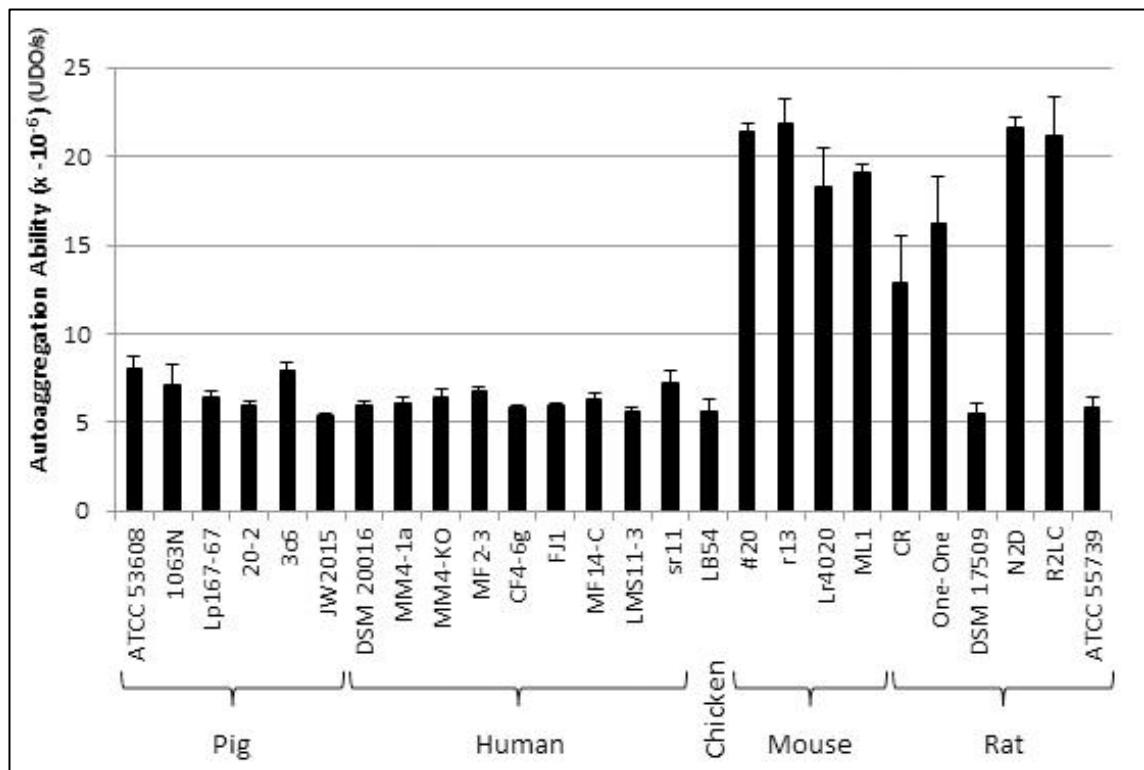


Figure 3.12 Measurement of autoaggregation of *L. reuteri* cells by spectrophotometry.

A clear autoaggregation phenotype was demonstrated for the majority of the rodent strains (#20, r13, Lr4020, ML1, CR, One-One, N2D, and R2LC) (Figure 3.12). Out of this group, only strains CR and One-One demonstrated mucus binding ability. Low levels of binding were exhibited by both strains, for CR 3.98 % to MSIM with a binding ratio of 2.01 while strain One-One showed binding to both MSIM and PSIM at 5.99 % and 2.33 %, with binding ratios of 2.43 and 2.11, respectively.

3.5 Genome sequencing of *L. reuteri* ATCC 53608

Since *L. reuteri* ATCC 53608 showed the highest binding ability across the mucus samples tested, this strain was selected for genome sequencing in order to obtain insights on the molecular determinants mediating *L. reuteri* binding to mucus.

Genomic DNA was extracted from early stationary phase culture of *L. reuteri* ATCC 53608 following a modified protocol described in [101] for Gram-positive bacteria. The genome was sequenced by 454 sequencing platform, with both shotgun and 3-kbp paired-end libraries in collaboration with The Genome Analysis Centre (TGAC, Norwich Research Park). This approach generated in excess of 365 Mbp of sequence, which were further assembled into a draft genome of 99 large contigs. [259]. The draft genome of *L. reuteri* ATCC 53608 is 1,969,869 bp in length with an average G+C content of 38.4 % which is slightly lower when compared to the other *L. reuteri* strains with genome sequences available (Table 3.6).

<i>L. reuteri</i> strain	RefSeq	Genome size (Mbp)	G+C content (%)	Genes	Proteins
ATCC 53608	CACS00000000.2	1.97	38.4	1910	1864
JCM 1112	NC_010609.1	2.04	38.9	1901	1820
DSM 20016	NC_009513.1	2.00	38.9	2027	1900
100-23	NZ_AAPZ00000000.2	2.31	38.7	2269	2181
ATCC 55730 (SD2112)	NC_015697.1	2.04	39.3	2370	2246
CF48-3A	NZ_ACHG00000000.1	2.03	38.7	2223	2164
MM2-3	NZ_ACLB00000000.1	1.94	38.7	2105	2045
MM4-1a	NZ_ACGX00000000.2	2.07	38.7	2226	2095

Table 3.6 Genomic characteristics of genome sequenced *L. reuteri* strains.

Automatic annotation of the genome sequence of ATCC 53608 using Glimmer3 and GeneMark software revealed 2024 protein coding sequences [259], with 1864 confirmed by RefSeq. Subsequently gaps in the genome were closed using PCR, automatic gene prediction was performed using Rapid Annotations using Subsystems Technology (RAST) [260] and prediction of secretion signals using SigP were performed in collaboration with Udo Wegman (IFR). Protein domain predictions were performed using the Interpro domain search tool from the European Bioinformatics Institute (EBI) website (www.ebi.ac.uk/interpro/). The characteristics of four large (> 750 aa) cell surface proteins are described in Table 3.7 and their schematic representation is shown in Figure 3.13.

Protein (AA)	Features (Interpro)	Similar proteins (GenBank)	Organisms (%identity/%coverage)
Lb_C_0736 (1166)	5 x MucBP LPxTG anchor	YP_005854578.1	<i>L. amylovorus</i> (36/56)
Lb_C_0892 (964)	No hits	ZP_03973805.1 ZP_03073444.1 YP_001270659.1	<i>L. reuteri</i> CF48-3A (98/100) <i>L. reuteri</i> 100-23 (96/100) <i>L. reuteri</i> DSM 20016 (91/100)
Lb_C_1034 (3269)	14 x MucBP Gram-pos anchor YSIRK signal	AAF25576.1 ZP_09814175.1	<i>L. reuteri</i> 1063 (100/100) <i>L. mucosae</i> LM1 (74/100)
Lb_C_1846 (787)	GH68 Gram-pos anchor KxYKxGKxW signal	ZP_03072364.1	<i>L. reuteri</i> 100-23 (66/100)

Table 3.7 Large surface proteins (> 750 aa) predicted from genome of *L. reuteri* ATCC 53608.

Two of the surface proteins are predicted to contain putative mucin-binding MucBP domains (Pfam PF06458), the largest of which is homologous to mucus binding protein MUB from strain 1063 (parent strain of *L. reuteri* ATCC 53608). Other large surface proteins included Lb_C_1846 with a glycoside hydrolase family 68 domain (Pfam PF02435) and Lb_C_0892 a protein of unknown function but with high similarity to proteins found in *L. reuteri* strains CF48-3A, 100-23 and DSM 20016.

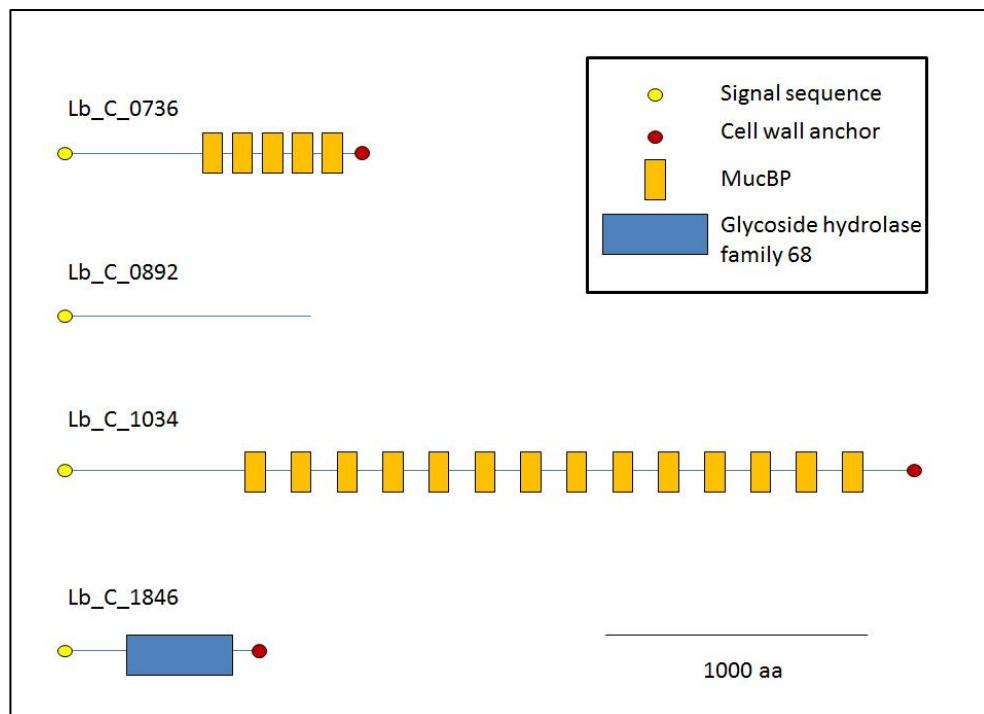


Figure 3.13 Large surface proteins (> 750 aa) predicted from genome sequence of *L. reuteri* ATCC 53608.

The genome sequence of ATCC 53608 along with those of strains MM4-1a, DSM 20016, JCM 1112, and 100-23 were interrogated for all mucus binding proteins identified so far in lactobacilli (Table 3.8). MUB (Lb_C_1034) was found to be a distinguishing feature of ATCC 53608, while genes encoding MapA and the cytoplasmic proteins EF-Tu, GroEL and GAPDH were present in all strains (GAPDH appears to be missing from strain DSM 20016). The genes encoding putative pili proteins were absent from all strains. The gene encoding Lar_0958 was found in *L. reuteri* strain JCM 1112 and a homologue was found in strain MM4-1a.

Mucus Binding Protein	Bacterial Strain	TBLASTN against genome of ATCC 53608		TBLASTN against genome of DSM 20016		TBLASTN against genome of JCM1112		TBLASTN against genome of MM4-1a		TBLASTN against genome of 100-23		Reference
		% Identity	% Coverage	% Identity	% Coverage	% Identity	% Coverage	% Identity	% Coverage	% Identity	% Coverage	
MUB (GenBank AF120104)	<i>L. reuteri</i> 1063	90	97	33	5	33	5	33	3	39	87	[124, 223]
Map A (Previously MAPP) (GenBank AJ293860)	<i>L. reuteri</i> 104R (previously named <i>L. fermentum</i> 104R)	95	100	94	100	94	100	94	100	95	100	[203, 222, 224-227]
EF-Tu (GenBank NP 964043)	<i>L. johnsonii</i> La1 NCC 533	84	100	84	100	84	100	84	100	84	100	[228]
GroEL (GenBank NP 964487)	<i>L. johnsonii</i> La1 NCC 533	70	98	70	98	70	98	70	98	70	98	[229]
GAPDH (GenBank AL935254)	<i>L. plantarum</i> LA 318	72	100	X	X	72	100	72	100	72	100	[230]
Pilin subunit SpaC (GenBank YP003170190)	<i>L. rhamnosus</i> GG	X	X	X	X	X	X	X	X	32	4	[173, 174]
Pilin subunit SpaF (GenBank YP003172118)	<i>L. rhamnosus</i> GG	X	X	X	X	X	X	X	X	X	X	[173, 174]
Pilin subunit SpaB (GenBank YP003170189)	<i>L. rhamnosus</i> GG	31	20	31	20	31	20	31	20	47	32	[173, 174]
Lar_0958 (GenBank YP001841954.1)	<i>L. reuteri</i> JCM1112	31	31	60	4	97	100	96	100	59	66	Personal Communication from Stefan Roos

Table 3.8 Predicted mucus binding proteins in genome sequenced *L. reuteri* strains

3.6 Discussion

In the lower GI tract the first point of contact between the bacteria and the host is the mucus covering the epithelial surfaces. Many studies have investigated direct interactions of the microbiota with epithelial cells and extracellular matrix (ECM) components of host [194]. These studies are more relevant for pathogens such as *Entamoeba histolytica* which can traverse the mucus layer and cause damage to the epithelium [261] or for bacterial-host interactions in the proximal regions of the GI tract where there is less mucus. Studies investigating adhesion interactions between gut microbes and mucus have focused on probiotic or pathogenic bacteria as mucus binding is generally thought to be a desirable trait for probiotic bacteria [188] and a virulence factor in pathogens [202], however the mechanisms underlying mucus binding is poorly understood for the resident microbiota.

The *Lactobacillus* species *reuteri* was used in this study as a model gut symbiont since it is found to inhabit the GI tract of many vertebrate species including, humans, pigs, horses, rodents, birds, and fish. Our study showed that the ability of *L. reuteri* to bind to mucus is strain specific, confirming previous findings using other lactobacilli species, for example *L. plantarum* [199]. In the present work, 17 out of the 26 strains tested showed consistent mucus binding phenotypes irrespective of the mucus origin, indicating a general absence of host specificity, since only two of the six pig isolates showed significant binding ability to the pig mucus, and three of the ten rodent strains showed mucus binding ability to mouse mucus. Such an absence of host specificity was previously reported in several other lactic acid bacteria species by Rinkinen *et al* 2003, including *L. rhamnosus* GG, *L. johnsonii* La1, and *L. pentosus* UK1A [193]. However, the human isolates in our study showed a trend for mucus binding ability, since eight out of the nine strains showed significant mucus binding ability to at least one type of mucus. This indicates that the mucus binding mechanism may be important in the colonisation of the particular niche specific to the human GI tract. Although *L. reuteri* is one of the most abundant species in GI tract of pigs rodents and chickens [113-116] and its prevalence is much lower in humans [110], lactobacilli are found in the human colon [71], where the mucosal associated microbial community is different to the lumen [262, 263] and microbial characteristics such as mucus binding are postulated to influence the colonisation of this microbial community [264]. This hypothesis is consistent with the genetic analysis of 126 *L. reuteri* strains showing host specific clades [101]. Following on from our work, the lack of mucus binding ability in mouse isolates may indicate that mucus binding is not a pre-requisite for *L. reuteri*

colonisation of this particular host environment. Instead the clear autoaggregating phenotype observed for the majority of rodent isolates indicates that this factor may be important for colonisation. Although inference of colonisation ability from *in vitro* mucus binding studies should be taken with caution, these data are in agreement with the colonisation of *L. reuteri* in rodents through biofilm-like association in the proximal regions (forestomach) [115, 265] of the GI tract where there is stratified squamous epithelium and reduced quantities of mucus compared to the colon. The idea that bacterial colonisation factors may vary depending on the target host is also indicated by the differential colonisation ability of *L. reuteri* strains Lr47 and Lr108. Lr47 was isolated from rat colon and found to have high colonisation ability in rats but not in humans while strain Lr108 which was isolated from human jejunum was found to have colonisation ability in humans, while no ability to colonise rats [266, 267].

The comparison of *L. reuteri* adhesion to mucus sourced from small or large intestine revealed that a small number of strains showed a specific preference (Lp167-67, MF14-C and One-One) for the small intestinal mucus. This observation of GI tract region specific preference is in line with the finding that a higher adhesion ability was exhibited by *L. acidophilus* I021 and *L. fermentum* I5007 to porcine ileal mucus compared to jejunal and duodenal mucus samples [111] and that mucosal conditions of the small intestine are different to those found in the colon in terms of amount of mucus [10], region-specific glycosylation of mucins [41], and surrounding pH [6]. This concept of region specific niches is also supported by the reported differences in the small intestinal microbiota compared to the colonic microbiota [71].

Mucus binding is regarded as a colonisation factor for many probiotics, for example the human probiotic *Lactobacillus rhamnosus* GG [268] has been shown to bind to mucus [269], and persists in human colonic mucosa more than a week after feeding [270]. However the term colonisation under these circumstances means persistence after consumption of the probiotic has ceased and is detected for a few days to weeks and it is unlikely that these probiotics would become permanent residents without continual input. Our study indicates that mucus binding may be a feature of autochthonous bacterial colonisation in the human GI tract for *L. reuteri* strains, however since 80 % of colonic mucosal associated bacteria remain uncultured [262] whether this is a general feature for all autochthonous bacteria remains to be determined.

Two very high mucus binders were highlighted by this study, strains ATCC 53608 (pig isolate) and ATCC 55739 (rat isolate), both of which also showed adhesion to BSA (Figure 3.8, Figure 3.9 and Figure 3.10). During the proteomic analysis of mouse colonic mucus, plasma proteins were identified including albumin [53], however it is not clear if this was due to a contamination during sample preparation or to plasma proteins secreted into the mucus, in which case albumin may be a potential adhesion target. The mucus binding and autoaggregation phenotype of strain ATCC 55739 was similar to the pig isolate ATCC 53608, which differs from the other rodent strains tested. Interestingly, the phylogenetic analysis performed by Oh *et al* showed that this strain clustered with the strains isolated from pigs (Figure 3.14) [101]. *L. reuteri* strains isolated from rodents generally show high colonisation ability in rodent models, such as strain 100-23 in a *Lactobacillus* free mouse model [102]. Additionally, rodent isolates R2LC and 6799jm-1 showed highest colonisation in a competition experiment with seven other *L. reuteri* strains from various origin performed in ex-germ-free mice [101]. In collaboration with Gerald Tannock, University of Otago, NZ, we tested the ability of strain ATCC 55739 to colonise a *Lactobacillus* free mouse model, unlike other rodent isolates, ATCC 55739 was unable to colonise, which taken together with previous results raises questions about the origin of this strain.

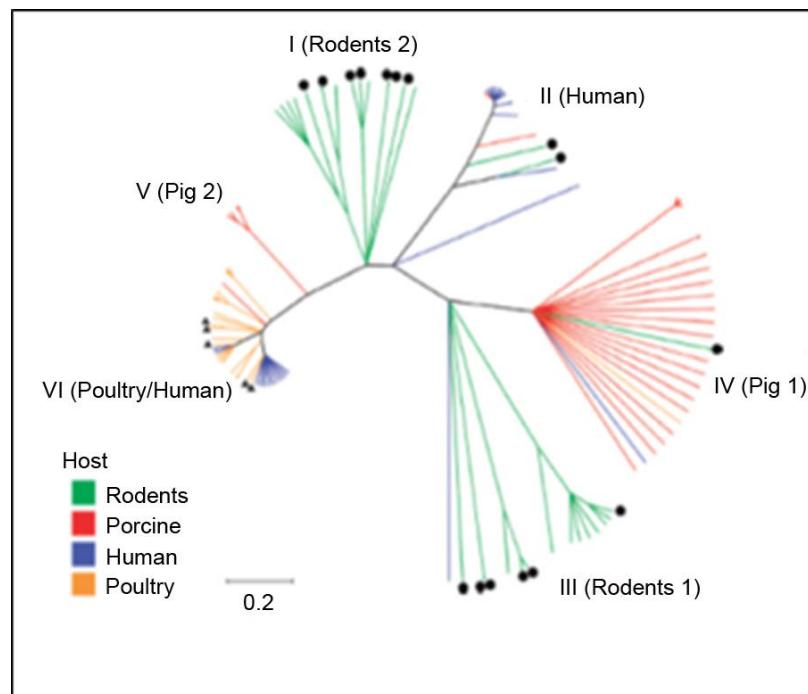


Figure 3.14 Genealogy of *L. reuteri* strains inferred by ClonalFrame [101], showing single green line of ATCC 55739 in Cluster IV (Pig 1).

Sequencing the genome of *L. reuteri* ATCC 53608 enabled the search for the presence or absence of known mucus binding proteins and a comparison with other *L. reuteri* strains. Initial bioinformatics approaches revealed four very large (> 750 aa) cell surface proteins, two of which contain the putative mucus binding MucBP domains. The larger of the two proteins with 14 domains was revealed to be a MUB homologue which has been well characterised as a mucus binding protein [124]. MUB contains 14 Mub repeats, each consisting of two domains (B1 and B2). The resolution of the crystal structure of one of the Mub repeats revealed that the B1 domain has structural homology to an immunoglobulin binding domain from *Peptostreptococcus magnus* and the B2 domain has structural homology to the MucBP domains [223]. The *in silico* search for Mub domains by Boekhorst *et al* 2006 [231], showed a wide distribution among the lactic acid bacteria and the recent *in silico* analysis of the exoproteomes of lactobacilli where a combination both MucBP domains and Mub domains to represent mucus binding proteins, a total of 47 were found in six *Lactobacillus* genomes and distributed over six separate Lactobacillales-specific clusters of orthologous protein-coding genes [232]. However no functional characterisation of MucBP domains has been reported in gut commensals.

Comparative genomics of the *L. reuteri* ATCC 53608 genome sequence with the other *L. reuteri* genomes available showed that MUB was specific to strain ATCC 53608, while Lar_0958 was specific to human isolates JCM 1112 and MM4-1a. The differences seen in mucus binding ability for these *L. reuteri* strains suggest that the specific expression of MUB and Lar_0958 may be important for mucus adhesion as the genes encoding these proteins are absent from the other *L. reuteri* genomes.

4 Role of MUB and Lar_0958 in *L. reuteri* adhesion to mucus

The *mub* gene has been identified in *L. reuteri* strain ATCC 53608, encoding a large (385 kDa) multimodular mucus binding protein with 14 Mub repeats, comprising six type 1 and eight type 2 repeats (Figure 4.1) (See Introduction, section 1.4.3 for more details).

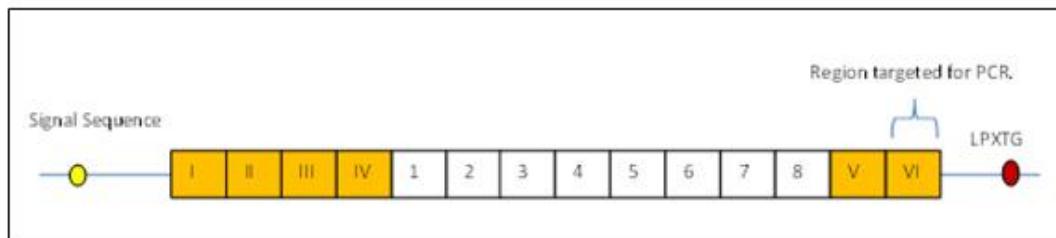


Figure 4.1 Schematic representation of mucus binding protein MUB, with six type 1 Mub repeats (orange) and eight type 2 Mub repeats (white). Blue bracket indicates region targeted by primers.

L. reuteri Lar_0958 is a smaller cell surface protein postulated to be involved in bacterial interaction with mucus and colonization of the digestive tract [271]. The 3690 bp *lar_0958* gene in *L. reuteri* JCM1112 encodes a protein of 1222 aa with a predicted molecular mass of 133 kDa. It is a modular protein containing six repeats domains, four of which are identical, the fifth has 99 % aa similarity and the sixth has only 46 % aa similarity (Figure 4.2).

The N terminal domain of both proteins contains an YSIRK signal sequence, [YF]SIRKxxxGxxS[VIA], which is commonly found in Gram-positive bacteria. Both proteins have an LPXTG anchor present at the C-terminal end for attachment to the cell wall PG.

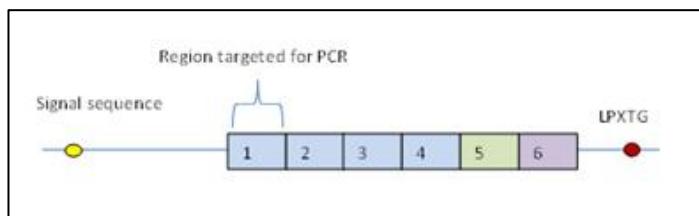


Figure 4.2 Schematic representation of Lar_0958 from *L. reuteri* JCM 1112, showing six Lar repeat domains, repeats 1-4 are identical (blue), repeat 5 has 99% aa similarity (green) and repeat 6 has 46 % aa similarity (purple).

In this chapter, the occurrence of the genes for these proteins across the collection of *L. reuteri* strains was tested, followed by an investigation into the role of these proteins in adhesion to mucus for selected strains.

4.1 Occurrence of *mub* genes and proteins in *L. reuteri* strains

In order to investigate the occurrence of *mub* genes across *L. reuteri* strains, PCRs were performed on cells of 26 strains, using primers designed to amplify a 624 bp fragment corresponding to Mub repeat RVI (between aa 3050 and 3236, QEAQAI.....DMTINITYK) (Figure 4.1).

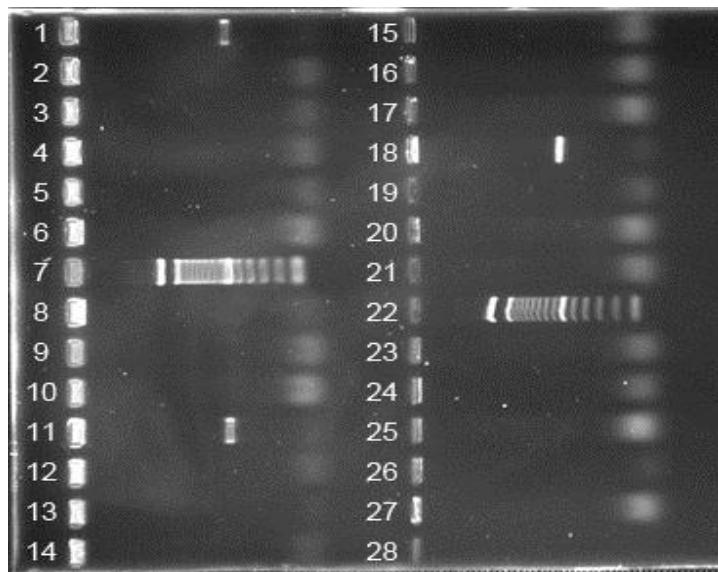


Figure 4.3 Agarose gel (1.5 %), used to separate *mub* PCR products amplified from *L. reuteri* strains. ATCC 53608 (lane 1), MM4-1a (lane 2), MF2-3 (lane 3), CF4-6g (lane 4), FJ1 (lane 5), DSM 20016 (lane 6), MF14-C (lane 8), LMS11-3 (lane 9), sr11 (lane 10), 1063N (lane 11), JW2015 (lane 12), Lp167-67 (lane 13), 20-2 (lane 14), 3c6 (lane 15), CR (lane 16), One-One (lane 17), ATCC 55739 (lane 18), DSM 17509 (lane 19), N2D (lane 20), R2LC (lane 21), ML1 (lane 23), #20 (lane 24), r13 (lane 25), Lr4020 (lane 26), LB54 (lane 27), with DNA ladder (lanes 7 and 22) and negative control (lane 28).

A PCR product of the expected size was generated from three of the 26 strains, ATCC 53608, ATCC 55739 and 1063N (Figure 4.3). DNA sequencing of the PCR products confirmed 100 % identity to the predicted 624 bp fragment from *mub*.

In order to confirm MUB expression at the protein level, strains ATCC 53608, ATCC 55739, 1063N and *mub* negative DSM 20016 were grown overnight and the spent media (SM) extracts, soluble cytoplasmic extracts (SCE) and cell wall extracts (CWE) were analysed by electrophoresis. When required, proteins were transferred to PVDF membrane and probed with polyclonal anti-MUB antibody raised against the type 2

repeat MubR5 (anti-MubR5). For confirmation of their identity, protein samples were excised from SDS-PAGE and trypsinised before analysis by Matrix Assisted Laser Desorption Ionisation – Time of Flight (MALDI-ToF/ToF) mass spectrometry (MS) (in collaboration with Fran Mulholland at IFR).

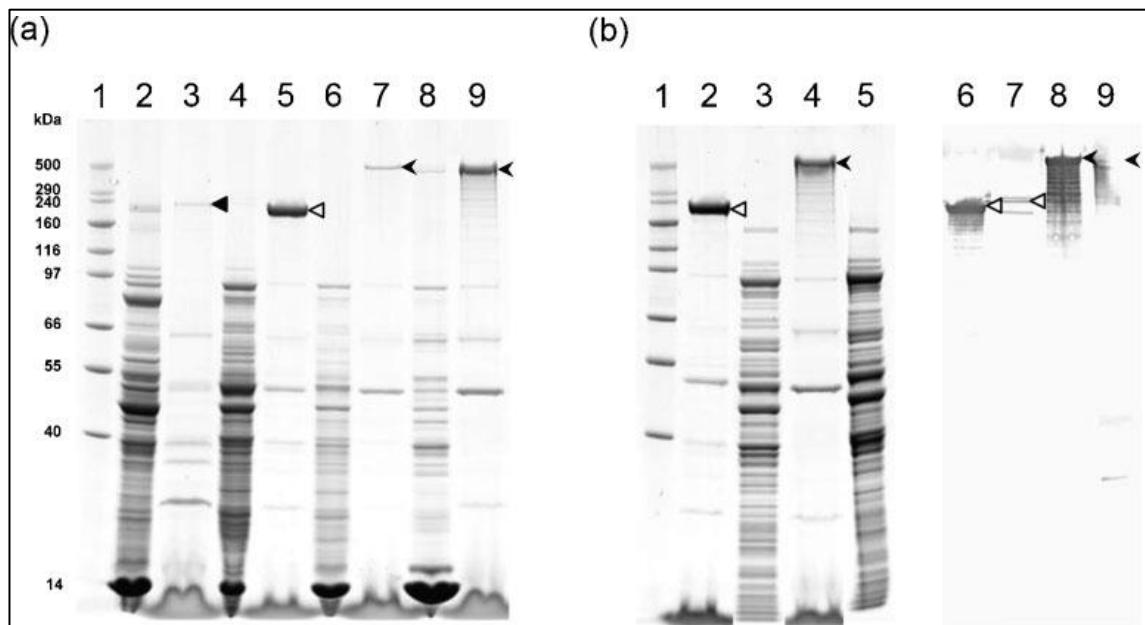


Figure 4.4 a) SDS-PAGE of cell wall extracts (CWE) and spent medium (SM) samples from *L. reuteri* strains. Lane 1, HiMark MW marker; lane 2, CWE from DSM 20016; lane 3, SM from DSM 20016; lane 4, CWE from 1063N; lane 5, SM from 1063N; lane 6, CWE from ATCC 55739; lane 7, SM from ATCC 55739; lane 8, CWE from ATCC 53608; lane 9, SM from ATCC 53608. MUBs are indicated by the arrowheads, the truncated MUB from 1063N by the open triangle and Lar_0958 from DSM20016 by the solid triangle. b) SDS-PAGE and anti-Mub Western blot of spent medium (SM) and soluble cytoplasmic extracts (SCE) from *L. reuteri* strains 1063N and ATCC 53608. Lane 1, HiMark MW marker; lanes 2 and 6 SM from 1063N; lanes 3 and 7 SCE from 1063N, lanes 4 and 8 SM from ATCC 53608, lanes 5 and 9 SCE from ATCC 53608. MUBs are indicated using the same symbols as in a). Taken from [271].

As indicated by SDS-PAGE and confirmed by MS, substantial amounts of MUB proteins were detected in the SM of strains ATCC 53608 and ATCC 55739 (Figure 4.4a, lanes 9 and 7 respectively), with an apparent size of 500 kDa, in accordance with earlier observations that large amounts of MUB are secreted into the media compared to the CWE [124]. For strain DSM 20016, no MUB was detected, however the high MW protein observed in the SM, was identified by MS as a Lar_0958 homologue which was not predicted from analysis of the genome sequence.

Strain 1063N produced a truncated MUB protein of approximately 200 kDa, substantial amounts of which were detected in the SM. Probing with anti-MubR5 confirmed the presence of the protein in both the SM and SCE (Figure 4.4b). MS data confirmed the identity of the protein and further analysis of 1063N DNA by PCR (in collaboration with

Donald MacKenzie from IFR) revealed the insertion of a duplicated 13 nt sequence in the *mub* gene causing a frameshift mutation leading to the secretion of a C-terminally truncated protein. The truncated MUB ($\text{MUB}^{\text{trunc}}$) has a predicted size of 1590 aa compared to full length MUB of 3269 aa, lacks the LPXTG cell wall anchor and consists of Mub repeats RI-RIV, R1 and the first part of Mub R2 (Figure 4.5) [271].

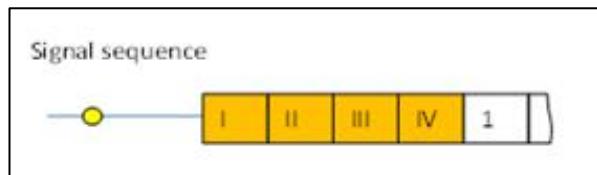


Figure 4.5 Schematic representation of the truncated mucus binding protein $\text{MUB}^{\text{trunc}}$, with type 1 Mub repeats (orange) and type 2 Mub repeats (white) from *L. reuteri* 1063N.

Expression of MUB on the bacterial cell surface was further assessed by FCM. *L. reuteri* strains ATCC 53608, ATCC 55739, 1063N and *mub* negative DSM 20016, grown to early stationary phase, incubated with primary antibody anti-MubR5, followed by a fluorescein labelled anti-rabbit IgG secondary antibody.

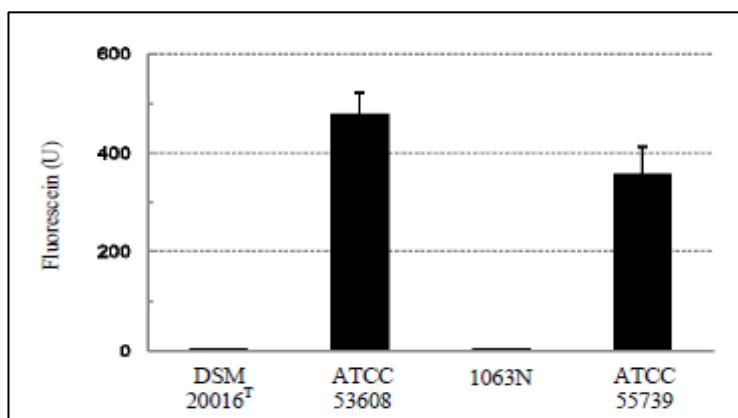


Figure 4.6 Quantification of cell surface MUB on *L. reuteri* strains detected by FCM. From MacKenzie *et al* 2010 [271].

MUB expression was confirmed for strains ATCC 53608 and ATCC 55739 with a 150-200 fold difference in MUB expression between ATCC 53608 and 1063N (Figure 4.6). In order to further investigate the distribution of MUB at the cell surface of *L. reuteri* strains, we used immunogold labelling with polyclonal antibodies raised against the type 1 Mub repeat MubRI (anti-MubRI) and anti-MubR5, either separately or in combination.

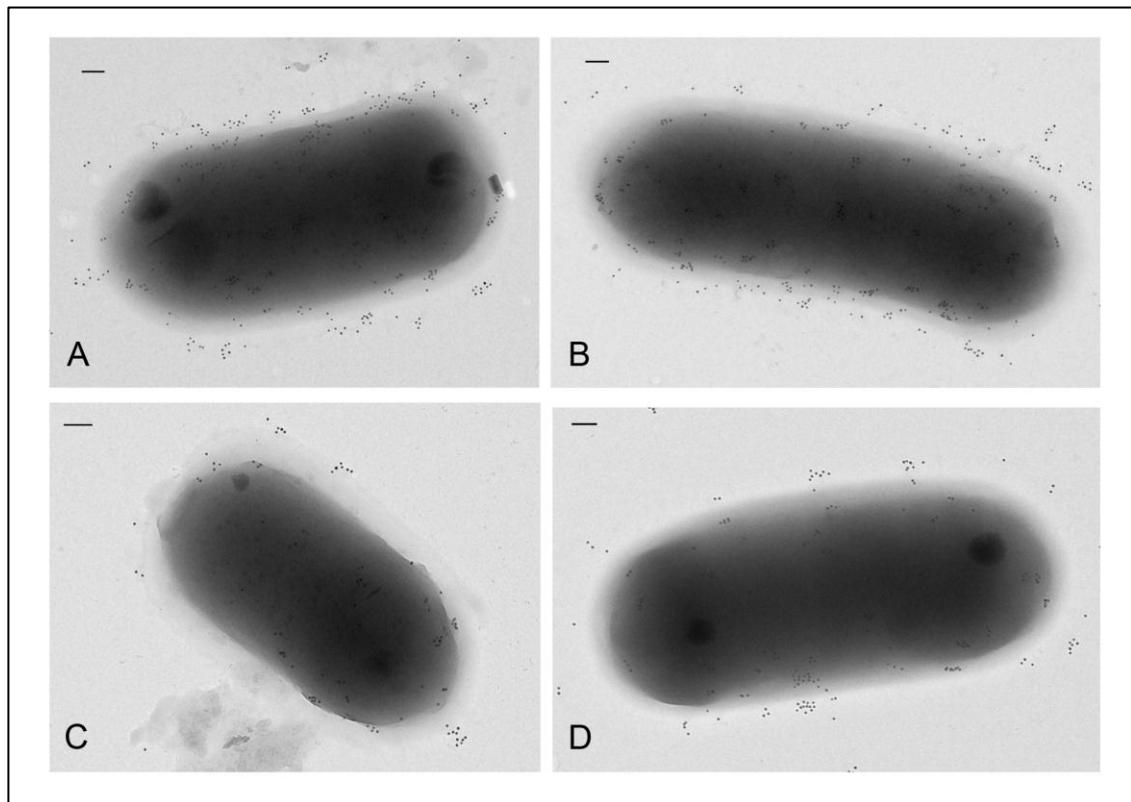


Figure 4.7 Immunogold labelling of MUB with combined anti-MubRI and anti-MubR5 antibodies on the surface of *L. reuteri* strains A) ATCC 55739, B) ATCC 53608 C) DSM 20016 and D) 1063N. Scale bar represents 100 nm.

As expected from the FCM data, strains ATCC 55739 and ATCC 53608 labelled positively with both anti-MubR5 and anti-MubRI antibodies (Figure 4.7). Labelling appears to be distributed over the cell surface and not localised to specific areas. MUB negative strain DSM 20016 showed low levels of non-specific background staining. Strain 1063N showed higher labelling than expected from the FCM data, which may indicate a difference in sensitivity or specificity between the antibodies, as confirmed in Figure 4.8 below, where only background binding was observed with anti-MubR5, while a higher labelling was observed with anti-MubRI.

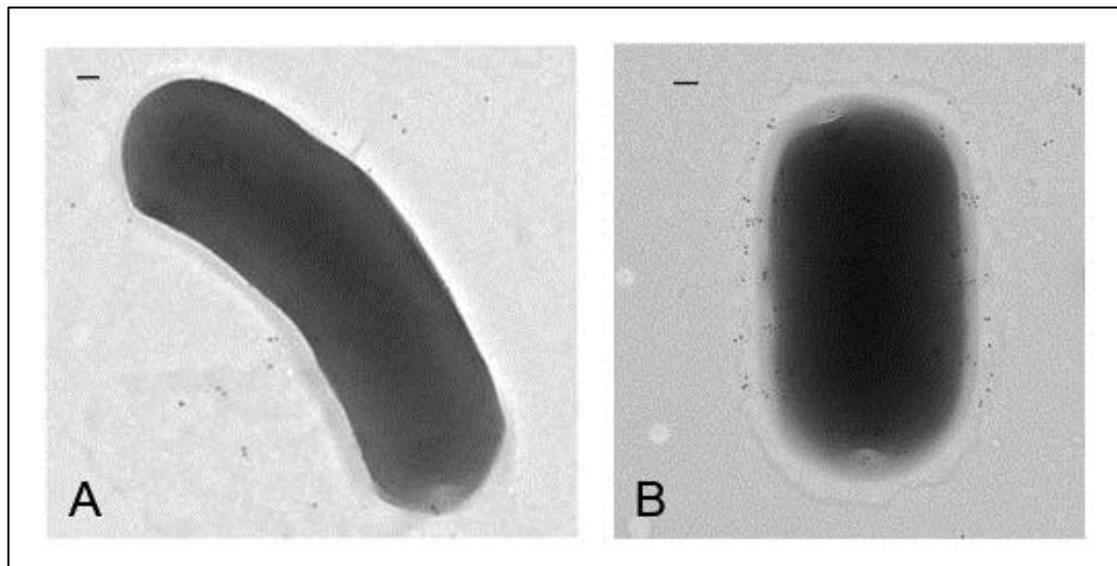


Figure 4.8 Immunogold labelling of $\text{MUB}^{\text{trunc}}$ on surface of strain 1063N using A) anti-MubR5 antibody, or B) anti-MubRI antibody. Scale bar represents 100 nm.

The specificity of the two antibodies towards MUB was further assessed using 1063N and ATCC 53608 cell surface protein extracts, separated by electrophoresis, transferred to PVDF membrane and probed with anti-MubRI or anti-MubR5 (Figure 4.9).

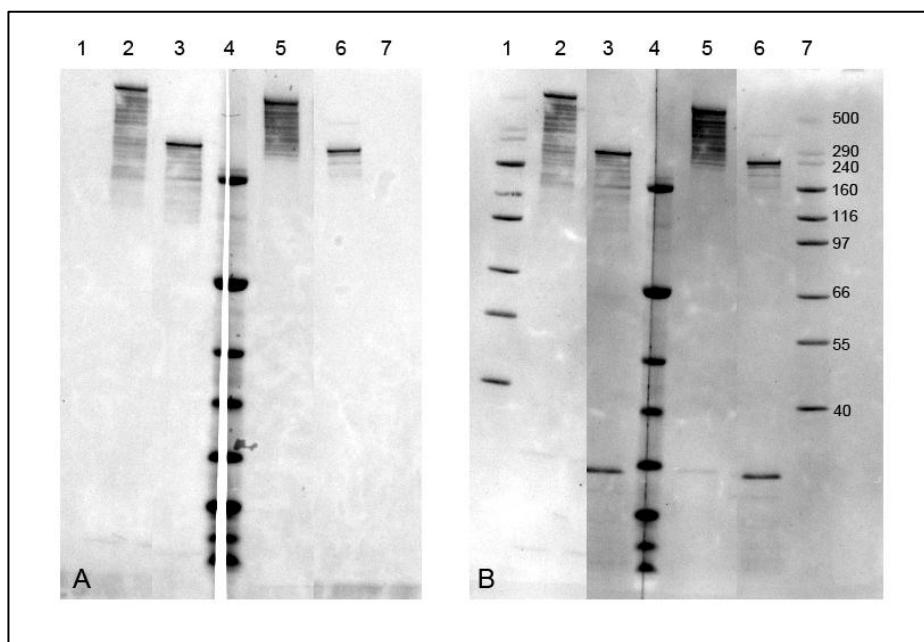


Figure 4.9 Cell surface protein extracts from *L. reuteri* strains 1063N and ATCC 53608 transferred to PVDF membrane after SDS-PAGE then A), probed with anti-MubRI (Lanes 1-3) or anti-MubR5 (Lanes 5-7) and B) followed by Gelcode blue stain of proteins. Lane 1 and 7, Hi MW markers; lane 2 and 5, extracts from ATCC 53608; lane 3 and 6, extracts from 1063N; lane 4, prestained markers.

Both polyclonal antibodies recognised full length MUB and MUB^{trunc} indicating that the anti-MubR5 cross reacts with Mub repeats, other than MubR5, which is not present in the truncated protein. Furthermore the specificity of the antibodies to MUB was confirmed since there was no recognition of other cell surface proteins. The immunogold labelling of 1063N by anti-MubRI may be due to higher sensitivity of the antibody to MUB^{trunc}, perhaps due to the number and type of Mub repeats present in the truncated form.

The autoaggregation phenotype of *L. reuteri* strain 1063, the parent strain of ATCC 53608, is well documented [125], however ATCC 53608 did not show a high autoaggregation ability using the spectrophotometry assay in section 3.4. Here FCM was used to quantify the autoaggregation phenotype of MUB expressing strains ATCC 53608 and ATCC 55739, MUB^{trunc} expressing strain 1063N and MUB negative strain DSM 20016. Briefly, bacterial cells were grown overnight, washed and diluted in PBS to an OD₆₀₀ 0.5. Cells were aspirated and using the fluidics system passed through a laser, the light scatter recorded in the FS and SS detectors was used to assess the autoaggregation. Bacteria exhibiting an autoaggregating phenotype displayed a “tail” on the scatter plots, whereas non autoaggregating strains showed an oval shaped population. For analysis, strains showing a value of less than 90 % of events as single cells were considered as autoaggregating (Figure 4.10).

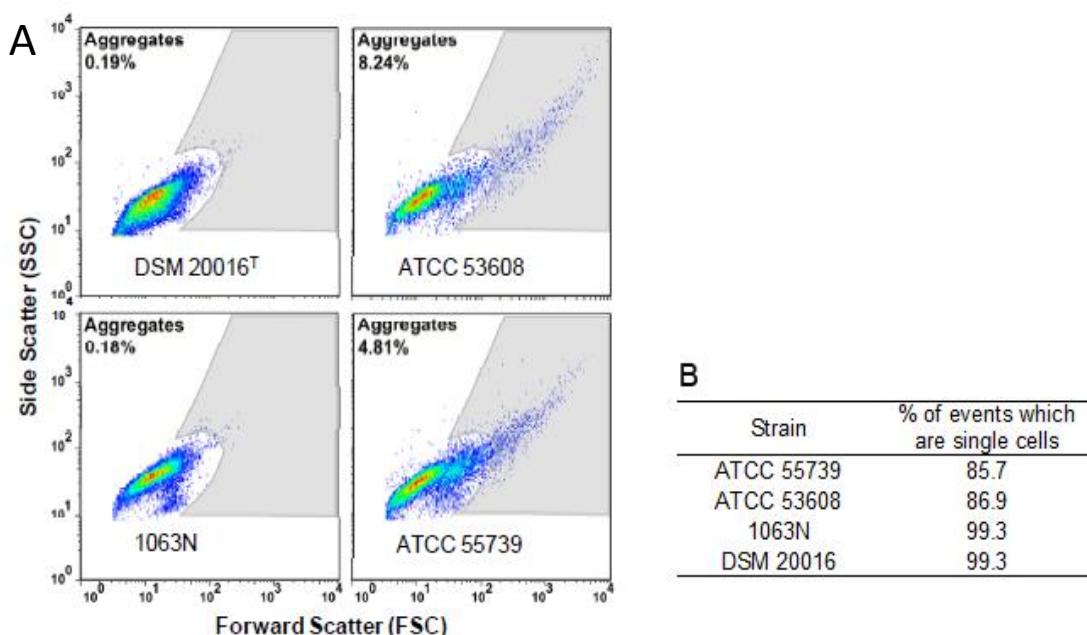


Figure 4.10 Autoaggregation of *L. reuteri* cells determined by FCM, A) quantified by determining the percentage of events with high FS and SS. From MacKenzie *et al* 2010 [271]. B) FCM analysis showing percentage of events which are single cells.

A clear autoaggregation phenotype was demonstrated for ATCC 53608 and ATCC 55739 compared to strains DSM 20016 and 1063N. The discrepancy between the apparent non-autoaggregating phenotype of ATCC 53608 and ATCC 5573 as detected by spectrophotometry and the aggregating phenotype as measured by FCM may be due to the high sensitivity of the flow cytometric assay. Furthermore the conditions used in both assays are not directly comparable, since for the FCM analysis the bacterial cells were analysed at RT within a fluidics system, whereas in the spectrophotometry assay the cells were maintained statically at 37 °C. Taken together, the FCM data showed a correlation between the level of MUB at the cell surface and the ability of strains ATCC 53608 and ATCC 55739 to autoaggregate, indicating a novel role for MUB in autoaggregation.

4.2 Comparison of spontaneous mutant 1063N to wild type ATCC 53608

In order to further characterise strain 1063N in comparison to ATCC 53608, Random Amplification of Polymorphic DNA (RAPD)-PCR analysis and cell surface proteomic surveys were conducted.

RAPD-PCR can be used to accurately differentiate between bacterial species [246], and strains [112]. To this end, random short primers are used to generate a profile of PCR products specific to the bacterial strain which is then used for comparison. Primers used previously for RAPD analysis on lactobacilli were selected from the literature [246, 272] and first tested on the genomic DNA extracted from strain ATCC 53608 (Figure 4.11).

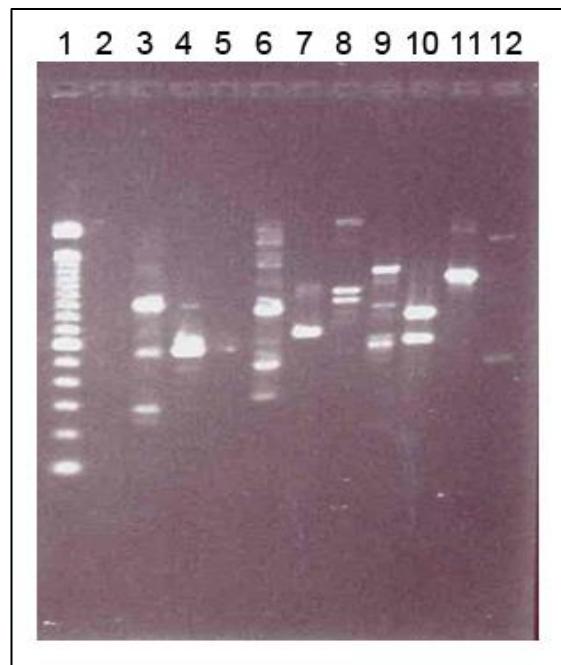


Figure 4.11 Agarose gel (1.5 %) was used to separate PCR products amplified from *L. reuteri* strain ATCC 53608, with primers M14 (lane 3), M13 (lane 4), XD8 (lane 6), XD9 (lane 7), OPL-04 (lane 8), Coc (lane 9), 1254 (lane 10), 1247 (lane 11) and BF2 (lane 12), with DNA ladder (lane 1) and negative control (lanes 2 and 5).

Four primers (M14, XD8, OPL-04 and Coc) produced a pattern of multiple PCR products and were subsequently used to obtain the RAPD profiles for strains 1063N and ATCC 53608.

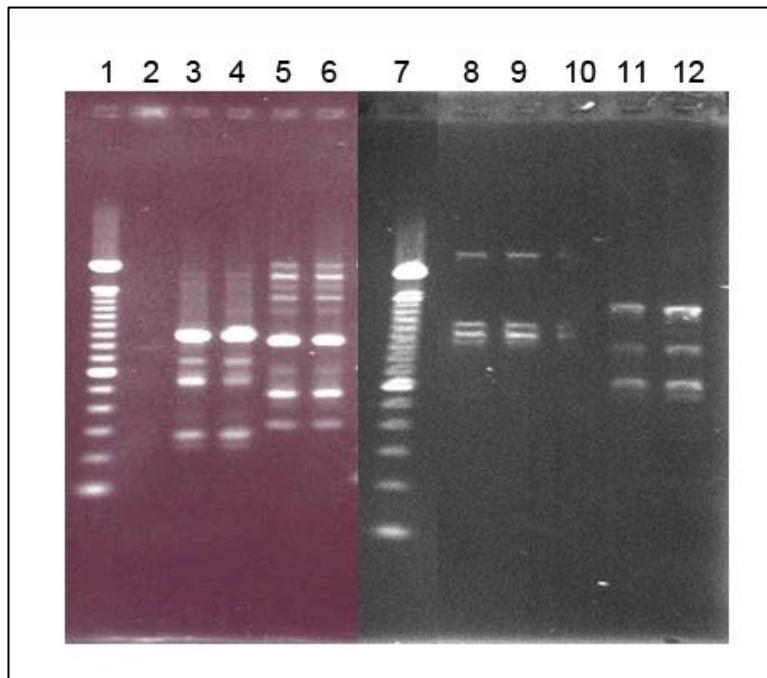


Figure 4.12 Agarose gel (1.5 %) was used to separate PCR products amplified from *L. reuteri* strains. ATCC 53608 (lanes 3, 5, 8 and 11) and 1063N (lanes 4, 6, 9 and 12) with primers M14 (lanes 3 and 4), XD8 (lanes 5 and 6), OPL-04 (lanes 8 and 9) and Coc lanes (11 and 12), with DNA ladder (lanes 1 and 7) and negative control (lanes 2 and 10).

RAPD profiles of strains ATCC 53608 and 1063N showed no apparent differences (Figure 4.12), suggesting that MUB is the major difference between the two strains although the genome of 1063N would need to be sequenced to confirm these findings.

In parallel, the two strains were compared in terms of their cell surface proteome (surfaceome). The extraction of the surfaceome using “shaving” methods has been successfully used to discover vaccine targets in pathogenic bacteria [273]. The use of proteases to digest the exposed peptides from the surface of intact bacterial cells can be problematic in terms of cytoplasmic protein contamination, which is why this technique is most suited to Gram-positive bacteria with their thick PG cell wall more resistant to spontaneous lysis.

Briefly, the surfaceomes of strains ATCC 53608 and 1063N were shaved using trypsin, three biological replicates were performed. These extracts were then further digested with an in-solution digest using one of two treatments, trypsin or chymotrypsin, before separation of peptides by liquid chromatography followed by analysis using MS on the LTQ-Orbitrap. After treatment, cell integrity was confirmed by SEM (Figure 4.13) and FCM (data not shown).

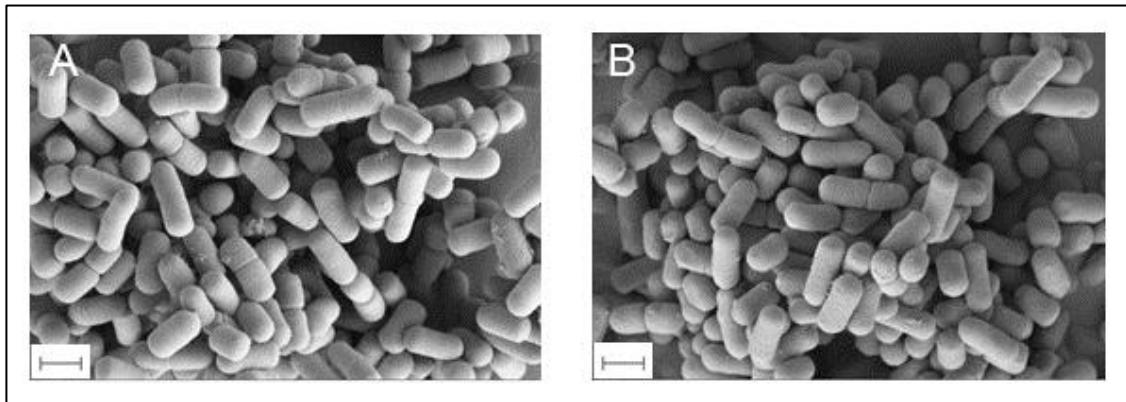


Figure 4.13 SEM images of intact *L. reuteri* ATCC 53608 bacterial cells. A) before trypsin shaving and B) after trypsin shaving. Scale bar represents 1 μ m.

MS data were analysed by Mascott to identify proteins from the peptide samples using an in-house protein database based on the annotated genome sequence of *L. reuteri* ATCC 53608 (courtesy of TGAC), and the surfaceome comparison was carried out in Scaffold. Identified proteins were tested for cell localisation using a combination of bioinformatics tools including SignalP for signal peptides, PSORTb for subcellular localisation, LipoP for lipoproteins, TMHMM for transmembrane helices and SecretomeP for non-classical protein secretion.

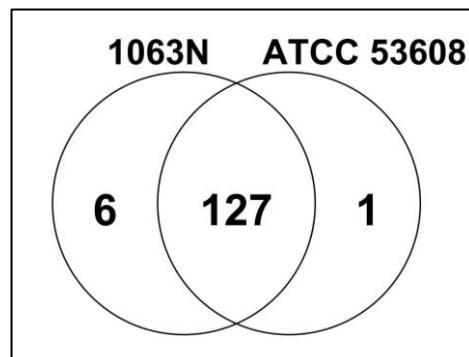


Figure 4.14 Numbers of proteins identified in the surfaceomes of *L. reuteri*, strains 1063N and ATCC 53608.

A total of 134 proteins were identified in the surfaceomes of ATCC 53608 and 1063N, 127 shared by both strains (Figure 4.14), with 51 predicted to be surface located and 83 cytoplasmic. The number of proteins predicted to be located in the cytoplasm should be taken with caution, as a number of them have been shown to have dual functions and localisation within cells, for example protein EF-Tu which is involved in protein synthesis via its guanosine nucleotide binding function when located in the cytoplasm and a role as a mucin binding protein when located on the cell surface of *L. johnsonii* NCC533 [228].

MUB was identified from both strains and a quantification based on the intensity of the peaks obtained by MS, using software Progenesis LC-MS, showed a MUB expression ratio of 29 : 1, for ATCC 53608 : 1063N, which is perhaps a more accurate representation than the difference provided by the FCM data as MS does not rely on antibody recognition. Proteins AggH and APF, known to be involved in autoaggregation in *Lactobacillus* strains [125, 274], were identified in the surfaceomes of strains ATCC 53608 and 1063N, with no differential expression found using Progenesis LC-MS. Of the strain specific proteins (1 for ATCC 53608 and 6 for 1063N), only NADH oxidase from 1063N was consistently found across the different biological and technical replicates. NADH oxidase is predicted to be a cytoplasmic protein produced during aerobic growth. This difference in expression by the two strains is perhaps due to a compensation for the loss of the autoaggregating phenotype for 1063N. During growth of ATCC 53608, the bacterial cells settle on the bottom of the culture flask where the oxygen concentration is at its lowest compared to the more dispersed growth of 1063N.

The proteomics survey supported by data from the RAPD-PCR analysis, indicate no major difference in protein expression at the cell surface, apart from MUB, suggesting that the differences in phenotype observed between strains ATCC 53608 and 1063N, with regard to mucus binding and autoaggregation are due to the absence of MUB on the 1063N cell surface.

4.3 MUB contribution to bacterial cell adhesion to mucus

As shown in section 3.3, the two strains expressing full length MUB on the surface of their cells (ATCC 53608 and ATCC 55739) showed highest mucus adhesion capacities, whereas MUB negative DSM 20016 showed lower percentage of adhesion to mucus and MUB^{trunc} strain 1063N showed no binding ability to MCM-S, MSIM, PSIM nor BSA.

In order to test further the contribution of MUB to bacterial adhesion to mucus, cF-labelled bacterial cells of strains ATCC 53608, ATCC 55739, DSM 20016 and 1063N were pre-incubated with anti-MubRI and anti-MubR5 antibodies, either individually (Figure 4.15) or in combination (Figure 4.16), or preimmune serum as a control, before adhesion to mucus was assessed.

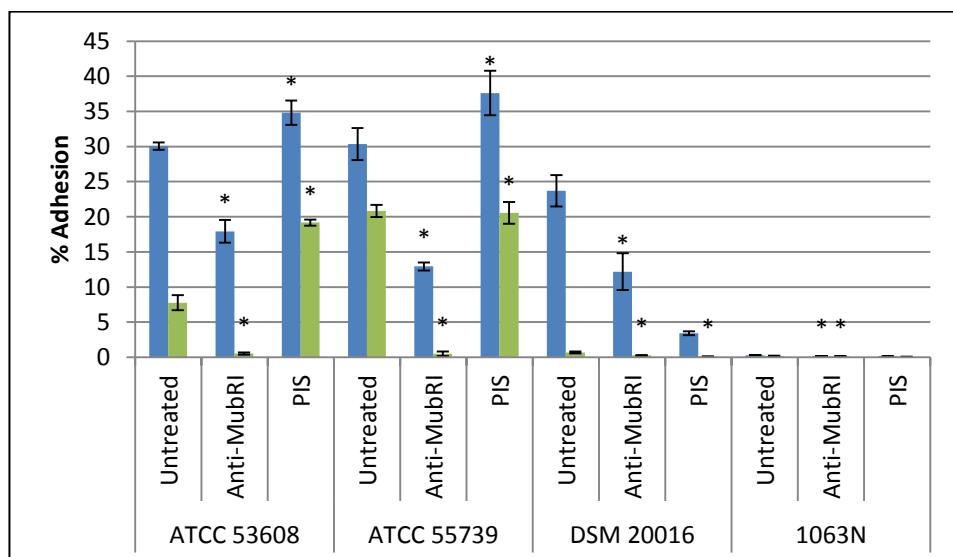


Figure 4.15 Effect of Anti-MubRI on *L. reuteri* ATCC 53608, ATCC 55739, DSM 20016 and 1063N adhesion to mouse colonic mucus (Blue bars) and BSA (Green bars). Pre-immune serum (PIS) was used as a control. * = $p < 0.05$.

Incubation of *L. reuteri* ATCC 53608 and strain ATCC 55739 with anti-MubRI (Figure 4.15) or anti-MubR5 (data not shown) significantly decreased the binding of the bacteria by ~2 fold and ~3 fold to MCM-S and BSA, respectively, providing indirect evidence of MUB involvement in bacterial adhesion. This difference was increased to ~4 fold and ~8 fold when the antibodies were used in combination (Figure 4.16), indicating the involvement of both types of Mub repeats in mucus binding. The non-binding phenotype of strain 1063N was unchanged by antibody incubation.

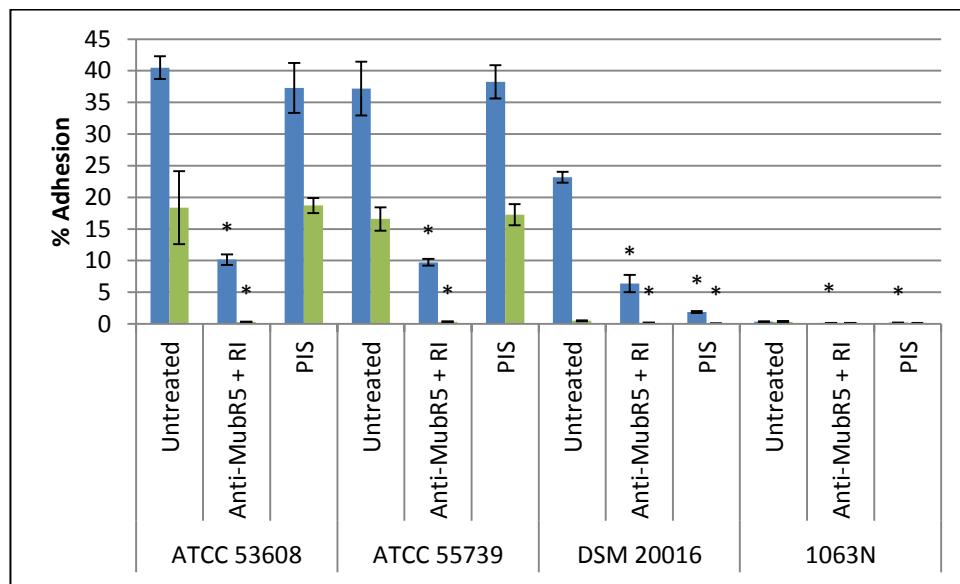


Figure 4.16 Effect of combined anti-MubR5 and anti-MubRI on *L. reuteri* ATCC 53608, ATCC 55739, DSM 20016 and 1063N adhesion to mouse colonic mucus (Blue bars) and BSA (Green bars). Pre-immune serum (PIS) was used as a control. * = $p < 0.05$

L. reuteri DSM 20016, the MUB negative strain surprisingly showed a reduction in adhesion upon pre-incubation with anti-MubRI or anti-MubR5 (alone or in combination), or with the preimmune serum (Figure 4.15 and Figure 4.16), which indicates that *L. reuteri* strains may employ different molecular effectors for adhesion to mucus.

4.4 Adhesion of MUB protein to mucus

In order to further assess the role of MUB in binding of ATCC 53608 to mucus, native MUB was purified from SM of ATCC 53608 cultures. Briefly, *L. reuteri* ATCC 53608 cells were grown overnight in LDM II broth (Appendix 1) as used in [124]. Bacteria were centrifuged and the supernatant filtered through a 0.22 µm PVDF membrane to remove all bacterial cells. The vivaflow system was used on the filtered spent media to both remove low MW proteins (less than 50 kDa) and concentrate the extract. The extract was then dialysed extensively in PBS before further concentration using a 0.45 µm spin column.

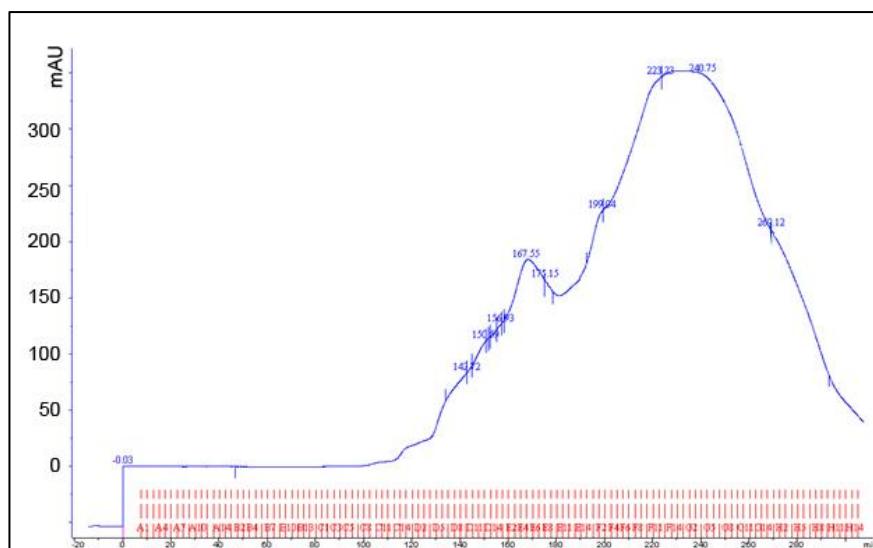


Figure 4.17 Elution profile (blue line) of MUB purification sample from FPLC with gel filtration column. (Fractions collected, indicated by red lines).

The proteins were then fractionated by FPLC using a Superose 6 column (Figure 4.17), using absorbance at 280 nm to follow elution profile. Fractions were collected and analysed by SDS-PAGE (Figure 4.18) and the identity of MUB was confirmed by MS. Fractions C15 - E2 were pooled, corresponding to the first peak observed on the gel filtration elution profile, which separates MUB from the contaminating proteins of the second peak as shown by SDS-PAGE in lanes 6-10 (Figure 4.18).

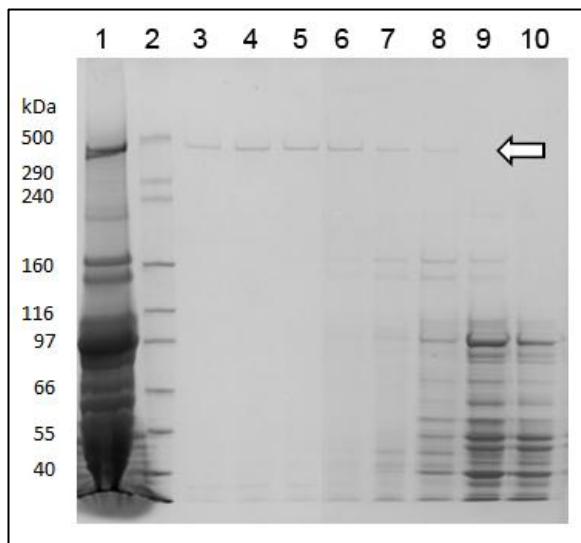


Figure 4.18 SDS-PAGE of selected fractions from gel filtration of MUB purification. Lane 1, SM pre-gel filtration column; lane 2, MW markers; lane 3, fraction D6; lane 4, fraction D10; lane 5, fraction D14; lane 6, fraction E4; lane 7, fraction E7; lane 8, fraction E13; lane 9, fraction F12; lane 10, fraction G7. MUB indicated by arrow.

The concentration of the purified MUB sample as measured by nanodrop (Abs_{280} 1 = 0.125 mg ml⁻¹) was 0.08 mg ml⁻¹. The MUB protein was used in mucus binding assays along with recombinant Mub repeat MubR5 and recombinant triple repeats MubRI-II-III (kindly provided by Donald MacKenzie and Sabrina Etzold, respectively).

The purified proteins were tested for mucus binding ability to immobilised PSIM, MSIM and MCM-C. Adhesion of full length MUB and MubR5 was detected using primary antibody anti-MubR5 while the adhesion of triple domain MubRI-II-III was detected using primary antibody anti-MubRI. Binding was revealed following incubation with anti-rabbit IgG-AP secondary antibody in combination with pNPP substrate.

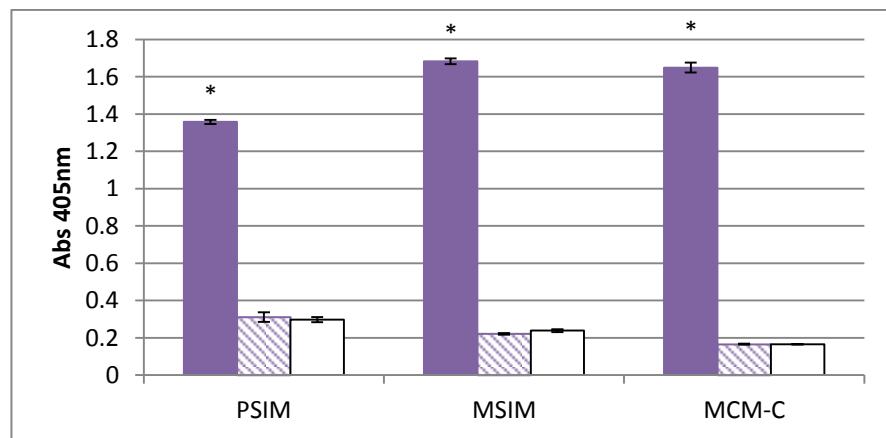


Figure 4.19 Full length MUB (purple bars) and recombinant MubR5 (purple and white bars) or PBS negative control (white bars) binding to mucus, PSIM, MSIM, and MCM-C. * = $P > 0.05$.

The full length MUB was shown to bind to all three types of mucus tested (Figure 4.19), whereas the recombinant MubRI-II-III only showed significant binding to MCM-C (Figure 4.20), while the single repeat MubR5 did not show binding (Figure 4.19). These data indicate that the number and type of Mub repeats present in the protein may be significant for functional binding as well as for the specificity of the interaction.

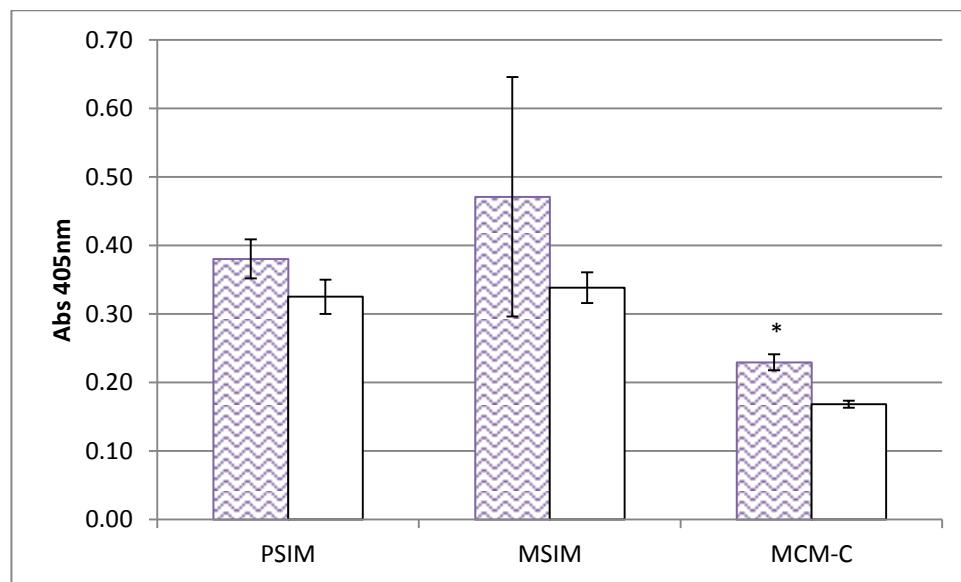


Figure 4.20 MubRI-II-III (purple and white bars) and PBS negative controls (white bars) binding to mucus, PSIM, MSIM, and MCM-C. * = $P>0.05$.

4.5 Occurrence of *lar_0958* homologue genes and proteins in *L. reuteri* strains

In order to assess the occurrence of *lar_0958* homologues in *L. reuteri*, PCRs were performed on bacterial cells from 26 *L. reuteri* strains using primers designed to amplify Lar repeat 1 (corresponding to aa 577-671, KVTY.....NPLGI), which is 100 % identical to repeat regions 2, 3, and 4 (Figure 4.2). PCR products of the expected size were generated in six of the 26 strains, DSM 20016, MM4-1a, CF4-6g, FJ1, LMS11-3 (Figure 4.21) and in strain MM4KO (data not shown).

Strain MM4KO (full name MM4-1a Lar_0958 K/O) is a Lar_0958 homologue mutant, generated by Rob Britton and co-workers (Michigan State University, USA). A ctg stop codon inserted after bp 41;

1 ATGCTATCAA GAAAAAATTA TAAGGAAACT ATACGAAAAC A_{ctg}ACCTAC resulted in a truncated translated product of 14 aa (MLSRKNYKETIRKH).

DNA sequencing of the PCR products showed 100 % identity to the predicted 285 bp fragment from *lar_0958* across the strains. Notably the six *lar_0958* positive strains were all human isolates.

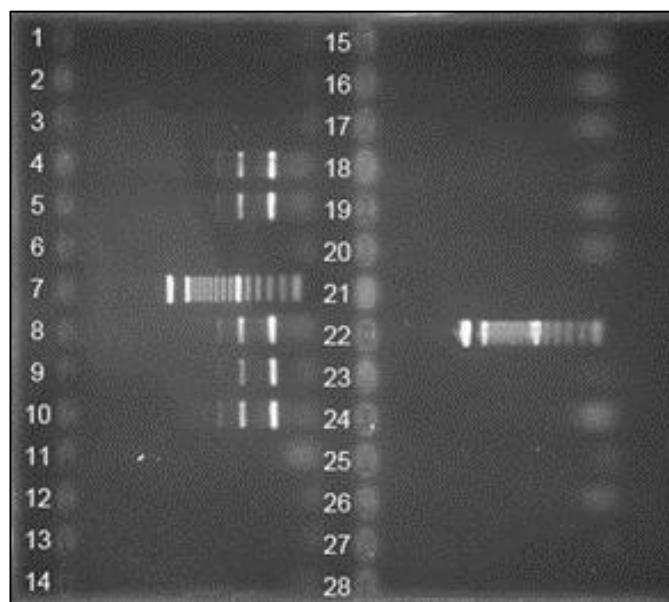


Figure 4.21 Agarose gel (1.5 %) separating PCR products of *lar_0958* amplified from *L. reuteri* strains. ATCC 53608 (lane 1), ATCC 55739 (lane 2), 1063N (lane 3), DSM 20016 (lane 4), MM4-1a (lane 5), MF2-3 (lane 6), CF4-6g (lane 8), FJ1 (lane 9), LMS11-3 (lane 10), sr11 (lane 11), JW2015 (lane 12), Lp167-67 (lane 13), 20-2 (lane 14), 3c6 (lane 15), CR (lane 16), One-One (lane 17), DSM 17509 (lane 18), N2D (lane 19), R2LC (lane 20), ML1 (lane 21), #20 (lane 23), r13 (lane 24), Lr4020 (lane 25), LB54 (lane 26), with DNA ladder (lanes 7 and 22) and negative control (lane 27). Lane 28 is blank.

Interestingly DSM 20016 gave a PCR product which was not predicted from the genome sequence. Strain JCM 1112 and DSM 20016 are both derived from the same human isolate (strain F275), however their genomes were sequenced in different laboratories and an alignment of the two sequences showed that strain JCM 1112 contains two large unique regions which results in a 40 kb difference between the two strains [275]. One of the “unique” regions in JCM 1112 contains the sequence of *lar_0958* which we have shown is present in DSM 20016. Originally the authors attributed the 40 kb difference between the two strains to the tendency of bacteria to undergo genomic changes during repeated laboratory culturing, however our work demonstrates the presence of at least part of one of the “unique” regions in the DSM 20016 genome.

Media extracts from overnight cultures were used to assess the expression of the *Lar_0958* protein homologues by all PCR positive strains, DSM 20016, MM4-1a, MM4KO, CF4-6g, FJ1, LMS11-3 and negative control ATCC 53608. Protein extracts were analysed by electrophoresis followed by western blotting using the anti-Lar antibody directed against the 100 % identical repeat domain of *Lar_0958*. The blot was subsequently stained with gelcode blue for estimation of the apparent molecular mass by reference to the high MW marker.



Figure 4.22 Western blot of *Lar_0958* homologous proteins separated by electrophoresis from media extracts of *L. reuteri* strains, DSM 20016 (lane 2), MM4-1a (lane 3), CF4-6g (lane 4), FJ1 (lane 5), LMS11-3 (lane 7), MM4KO (lane 8), ATCC 53608 (lane 9), and HiMark MW markers (lanes 1 and 6). A) Blot probed with anti-Lar antibody. B) Blot subsequently stained with gelcode blue. Lar_0958 homologues indicated with white star. MUB indicated with red star.

Several protein bands of different molecular masses were recognised by the anti-Lar antibody in protein extracts from strains DSM 20016, MM4-1a, CF4-6g, FJ1 and

LMS11-3 (Figure 4.22). For each strain there was one strong band with a number of weaker bands evenly spaced at lower MW, this ladder effect may correspond to the degradation of the full length proteins or be a result of transcriptional processing due to the repeat nature of the DNA sequence. No Lar_0958 protein homologue was identified in protein extracts from strains MM4KO or ATCC 53608, as expected from the genome sequences. The apparent molecular mass of the Lar_0958 homologues was determined using TotalLab software showing that strains DSM 20016, MM4-1a, CF4-6g, FJ1 and LMS11-3 expressed proteins of apparent MW ~182 kDa, ~174 kDa, ~176 kDa, ~129 kDa and ~279 kDa, respectively. The difference in the size of Lar_0958 homologues between the different *L. reuteri* strains may be due to the presence of a different number of repeat regions.

FCM was used to determine whether the Lar_0958 homologues are expressed on the bacterial cell surface. Cells from overnight cultures of strains MM4-1a, MM4KO, DSM 20016 and ATCC 53608 were incubated with primary anti-Lar antibody or PIS, followed by the secondary fluorescein labelled anti-rabbit IgG antibody before analysis by FCM (Figure 4.23). SS signals along with the fluorescent signals detected in the FL1 channel were used to measure the Lar_0958 expression at the cell surface.

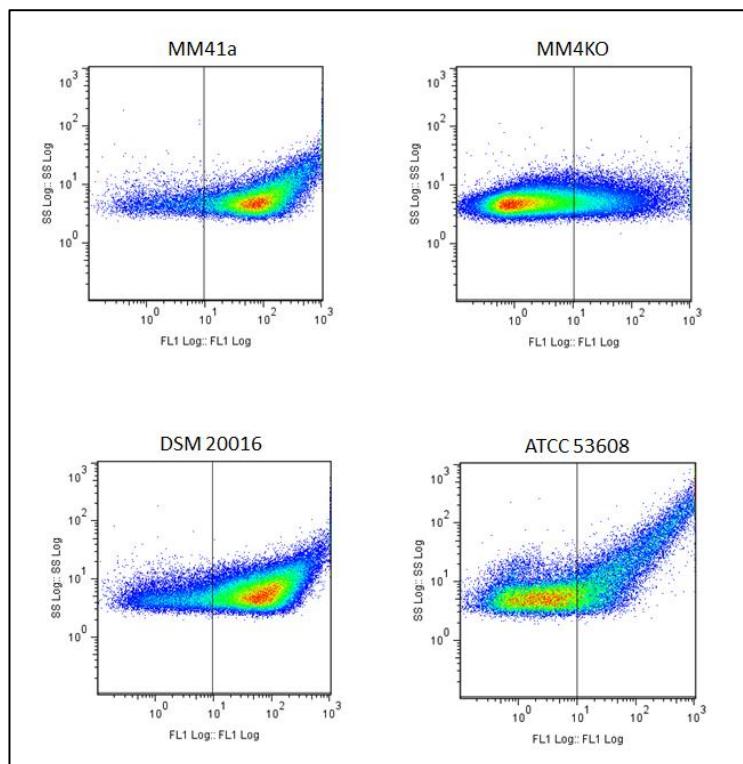


Figure 4.23 Quantification of Lar_0958 on cell surface of *L. reuteri* strains. Bacterial cells with high fluorescent signal were measured by FCM.

Lar_0958 homologues were clearly detected on the cell surface of strains MM4-1a and DSM 20016 (Figure 4.23), with a 22-33 fold higher expression of Lar_0958 compared to MM4KO and ATCC 53608 (Figure 4.24).

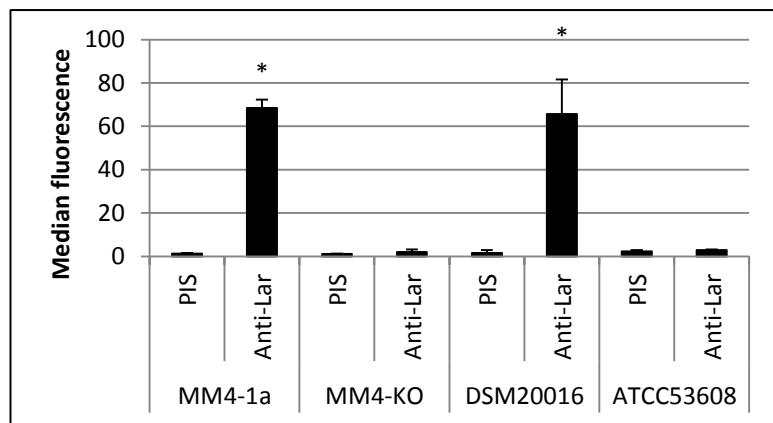


Figure 4.24 FCM quantification of Lar_0958 homologue expression by selected *L. reuteri* strains, with anti-Lar_0958 antibody compared to preimmune serum (PIS).

The localisation of Lar_0958 homologues on the cell surface of strains MM4-1a and DSM 20016 was further investigated by immunogold labelling using the anti-Lar antibody. Strain MM4KO was included as a negative control.

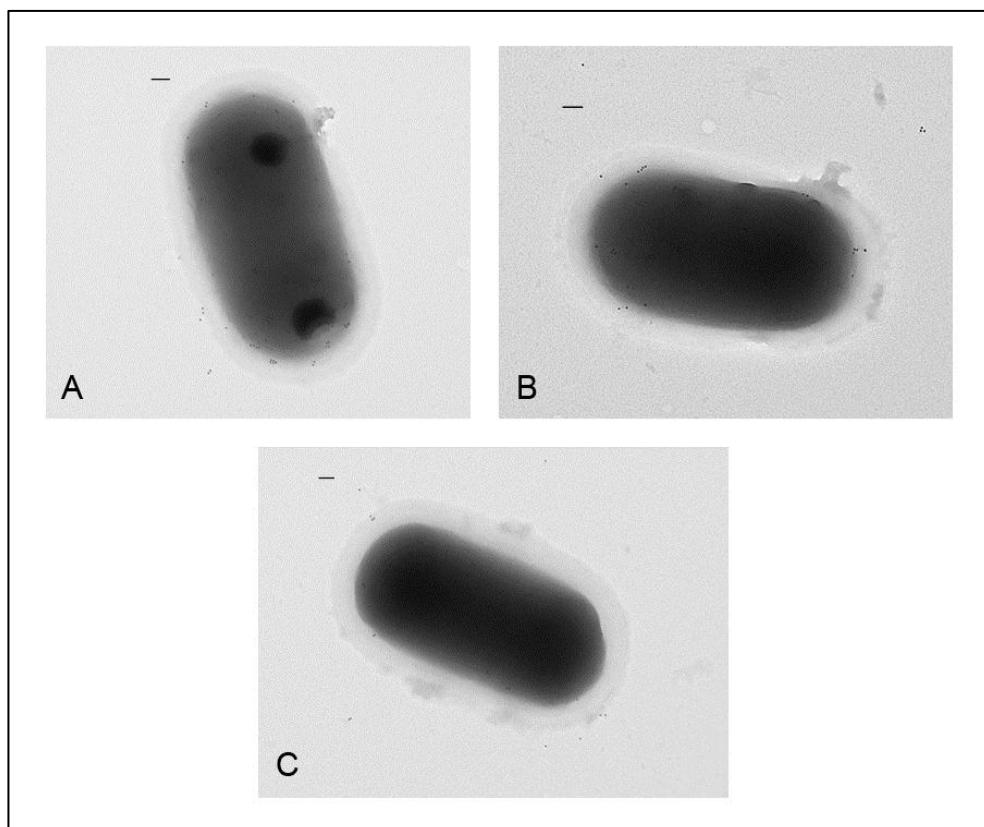


Figure 4.25 Immunogold labelling of Lar_0958 homologues on the surface of *L. reuteri* strains with anti-Lar0958 antibody. A) MM4-1a, B) DSM 20016, C) MM4KO. Scale bar represents 100 nm.

Lar_0958 homologues were detected on the cell surface of strains MM4-1a and DSM 20016 and absent from the cell surface of MM4KO (Figure 4.25), confirming the FCM data, although a low level of labelling was observed indicating that this technique is less sensitive than FCM, and prohibiting an accurate assessment of the protein distribution on the cell surface.

4.6 Lar_0958 homologue contribution to bacterial cell adhesion to mucus

The role of Lar_0958 homologues in the adhesion capacity of *L. reuteri* to mucus was investigated using two Lar_0958 expressing strains, MM4-1a and DSM 20016, and two non-expressing strains, MM4KO and ATCC 53608. A binding assay was performed where bacterial cells from overnight cultures were pre-incubated with either anti-Lar antibody, PIS, or left untreated, before testing their binding to MCM-S.

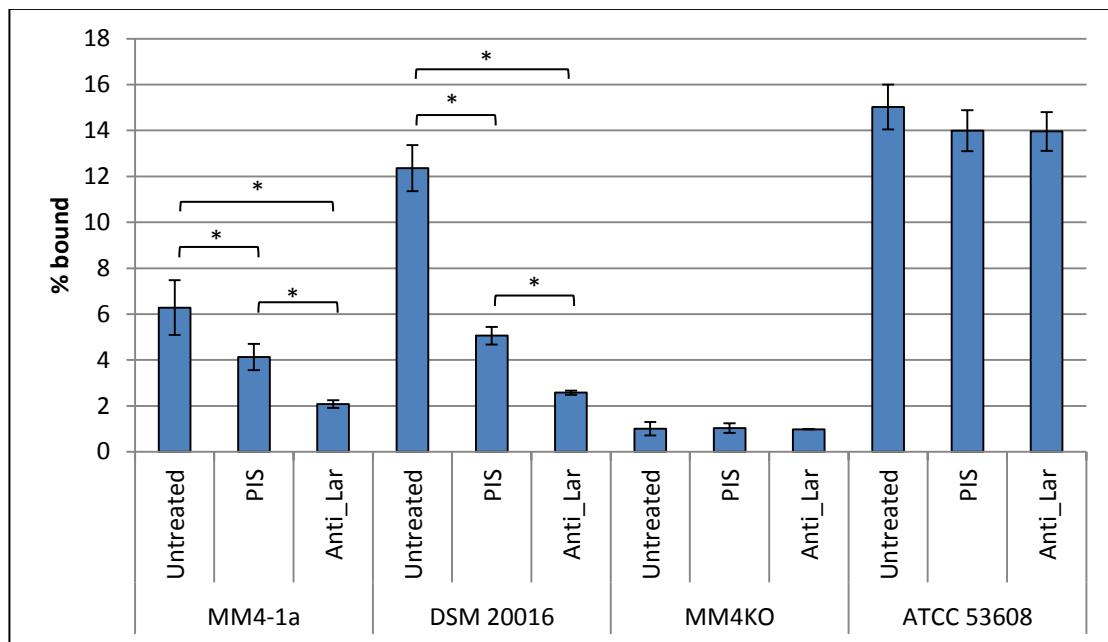


Figure 4.26 Adhesion of *L. reuteri* strains to MCM-S with pre-incubated bacterial cells, with anti-Lar_0958 antibody, PIS or left untreated. * P <0.05

Adhesion of untreated bacterial cells to MCM-S confirmed the binding results in section 3.3, with strain ATCC 53608 showing highest binding ability, MM4KO showing low levels of binding and strains MM4-1a and DSM20016 showing intermediate levels of binding. Pre-incubation of the bacterial cells with the anti-Lar antibody led to a significant decrease in the binding of strains MM4-1a and DSM 20016 to MCM-S, but had no effect on strains ATCC 53608 and MM4KO (Figure 4.26) which do not possess a Lar_0958 homologue. However the PIS also impacted significantly on the binding ability of Lar_0958 expressing strains MM4-1a and DSM 20016, and although the anti_Lar antibody has a more pronounced effect, this may indicate either an interaction of Lar_0958 with a component of the PIS or a non-specific interaction with other proteins.

In order to test if the PIS recognises Lar_0958 homologues or other proteins, strains MM4-1a, MM4KO, DSM 20016 and ATCC 53608 were grown in LDM II, the proteins in

the spent media were separated by electrophoresis, transferred to PVDF membrane and probed with PIS.

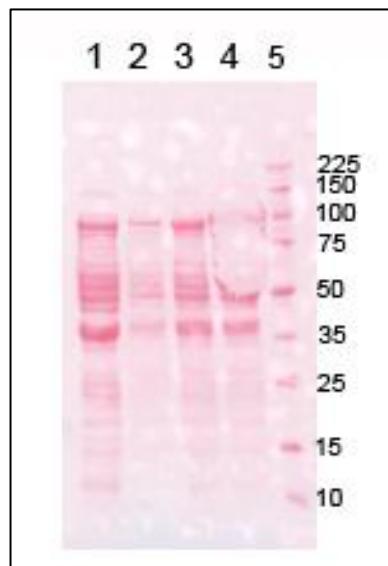


Figure 4.27 Western blot of SM proteins separated by electrophoresis from *L. reuteri* strains, ATCC 53608 (lane 1), DSM 20016 (lane 2), MM4KO (lane 3), MM4-1a (lane 4), with Broad range MW markers (lane 6), stained with ponceau red.

Although proteins from the SM extracts were shown to have been efficiently transferred to the PVDF membrane by reversible ponceau red staining (Figure 4.27), no signal was observed when PIS was used to probe the blot (data not shown), indicating that the reduction in binding observed in the competition assay was not due to interactions of PIS with *L. reuteri* proteins.

Since autoaggregation may also play a role in the ability of bacterial cells to bind to mucus, the autoaggregating phenotype of MM4-1a and MM4KO was investigated by FCM and compared to the non-aggregating DSM 20016 and the autoaggregating ATCC 53608 strains. FS and SS parameters were used to distinguish single cells from aggregates and the percentage of single cells was determined. Strains showing a single cell percentage value of less than 90 % were considered as autoaggregating (Figure 4.28).

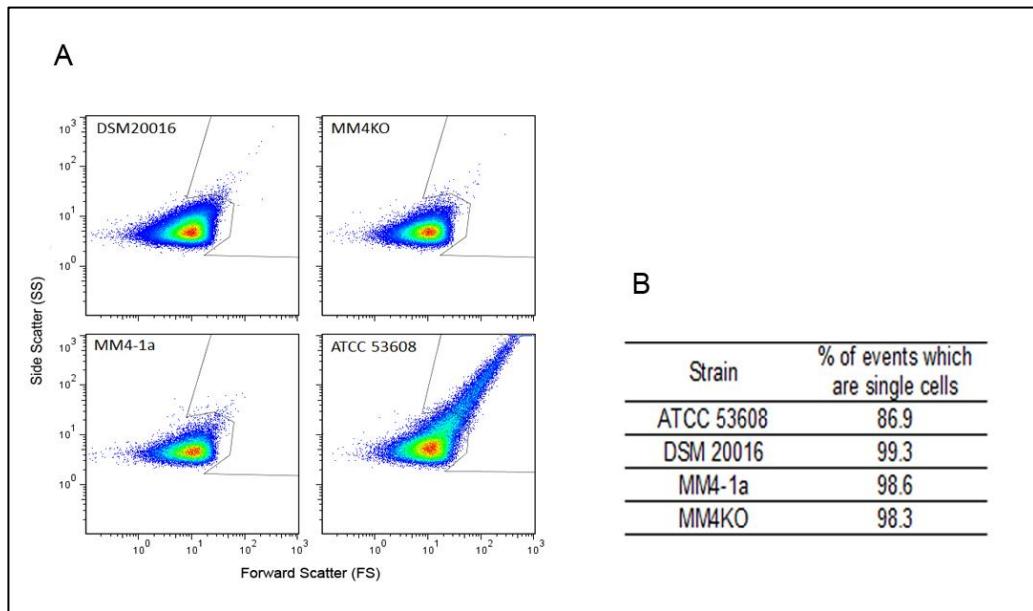


Figure 4.28 Autoaggregation of *L. reuteri* cells determined by FCM, A) quantified by determining the percentage of events with high FS and SS. B) FCM analysis showing percentage of events which are single cells.

The results indicate that strains MM4-1a, MM4KO and DSM 20016 are non-aggregating, therefore the observed binding to mucus in these strains is not an effect of autoaggregation.

4.7 Adhesion of Lar_0958 to mucus

In order to investigate the direct binding of Lar_0958 to mucus, a single Lar repeat, from aa 577 to 672 of DSM 20016 Lar_0958 homologue (Figure 4.29) was heterologously expressed in *E. coli* TUNER(DE3)pLacI cells using pETBlue-1 AccepTor (Novagen) vector and purified by ion exchange chromatography (in collaboration with Donald MacKenzie).

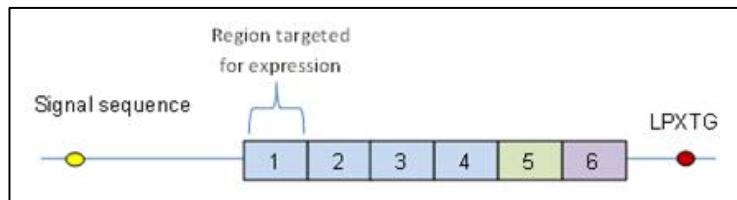


Figure 4.29 Schematic representation of Lar_0958 from *L. reuteri* JCM 1112, showing six Lar repeat domains, repeats 1-4 are identical (blue), repeat 5 has 99 % aa similarity (green) and repeat 6 is 46 % aa similarity (purple). Blue bracket indicating the region targeted for Lar repeat expression.

The recombinant Lar repeat was incubated with immobilised PSIM, MSIM, MCM-S, or BSA, unbound protein was washed off and the bound Lar repeat was detected using the anti-Lar antibody followed by secondary antibody, anti-rabbit IgG-AP and pNPP substrate. The single Lar repeat did not bind significantly to any of the mucus preparations, when compared to BSA (data not shown). The high background noise meant that once subtraction had occurred the levels of binding detected were negligible. The low level of binding may due to the nature of the recombinant Lar_0958 protein which contained only a single repeat.

Therefore the purification of native Lar_0958 homologue from spent media of bacterial cultures was undertaken. *L. reuteri* strains MM4-1a and DSM 20016 were first tested for their ability to secrete a Lar_0958 homologue into different media (MRS or LDM II). Lar_0958 homologues were produced in all conditions. No differences were observed between DSM 20016 and MM4-1a strains (Figure 4.30). Strain MM4-1a grown in LDM II was chosen for the larger scale purification of Lar_0958 homologue.

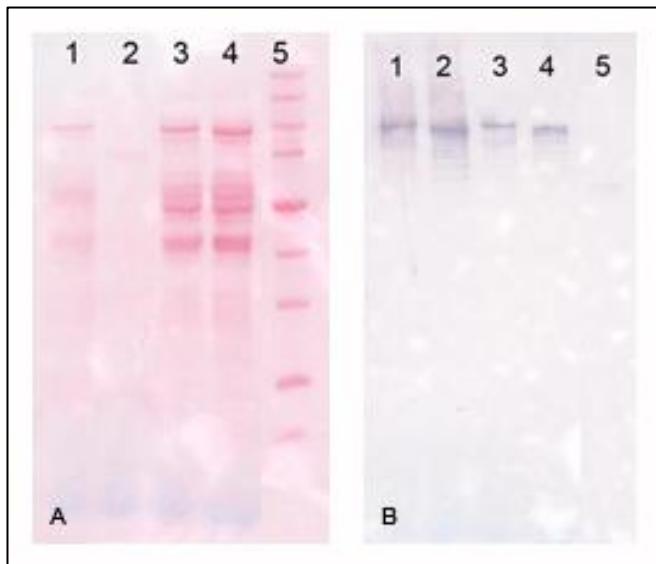


Figure 4.30 Western blot of *L. reuteri* SM samples separated by electrophoresis. Extracted from different *L. reuteri* strains, DSM 20016 (lanes 1 and 3), and MM4-1a (lanes 2 and 4), with Broad range MW markers (lane 5), when cells were grown in different media, MRS (lanes 1 and 2), LDM II (lanes 3 and 4). A) Reversible staining with Ponceau Red B) Recognition of Lar_0958 homologues with anti-Lar antibody.

L. reuteri MM4-1a cells were grown overnight in LDM II broth, bacteria were centrifuged and the supernatant was filtered through 0.22 µm PVDF membrane to remove all bacterial cells and concentrated using the vivaflow system. The sample was then dialysed extensively in PBS before further concentration of proteins using a 0.45 µm spin column. The proteins were then fractionated on a Superose 6 column, where the elution profile showed one large peak (Figure 4.31). Fractions were collected and analysed by SDS-PAGE (Figure 4.32).

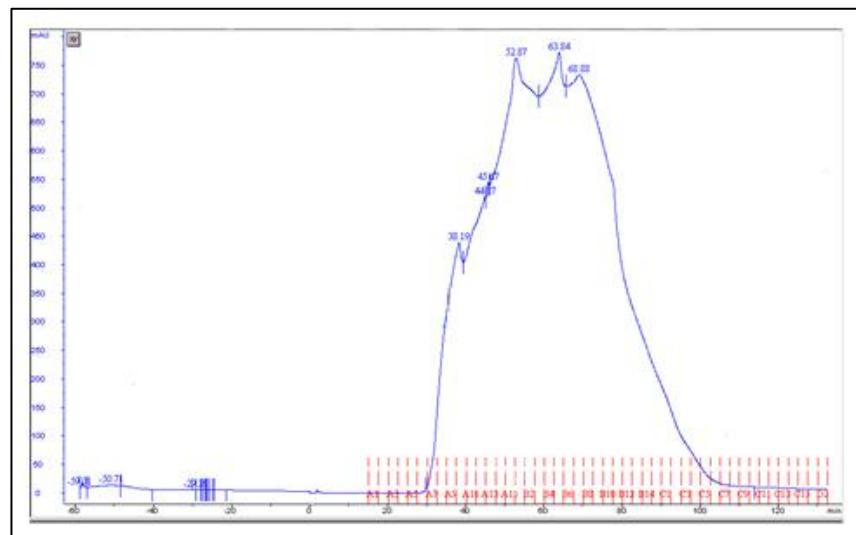


Figure 4.31 Elution profile (blue line) of Lar_0958 homologue purification sample from FPLC with gel filtration column. (Fractions collected indicated by red lines).

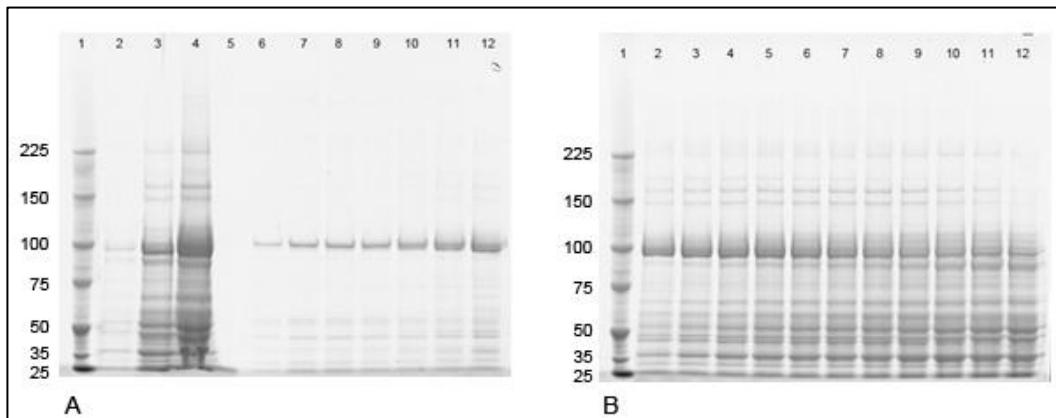


Figure 4.32 SDS-PAGE of Lar_0958 homologue purification stages. A) Lane 1, Broad range MW markers; lane 2, SM after filtration, lane 3, SM after vivaflow; lane 4, SM pre-gel filtration column; lane 5, fraction A6; lane 6, fraction A7; lane 7, fraction A8; lane 8, fraction A9; lane 9, fraction A10; lane 10, fraction A11; lane 11, fraction A12; lane 12, fraction A13. B) Lane 1, Broad range MW markers; lane 2, fraction A14; lane 3, fraction A15; lane 4, fraction B1; lane 5, fraction B2; lane 6, fraction B3; lane 7, fraction B4; lane 8, fraction B5; lane 9, fraction B6; lane 10, fraction B7; lane 11, fraction B8; lane 12, fraction B9.

The transfer of proteins to PVDF membrane and probing with anti-Lar antibody (Figure 4.33), in conjunction with excision from gel and MS analysis, confirmed the identity of the Lar_0958 homologue as a faint protein band at ~200 kDa, while the stronger protein band occurring at approximately 100 kDa did not react with the anti-Lar antibody (Figure 4.33), but was identified by MS to be an aldehyde-alcohol dehydrogenase with a MW of 97 kDa. The low recovery of Lar_0958 at this stage (10-20 fold less than MUB), prevented further pursuit of native Lar_0958 purification.

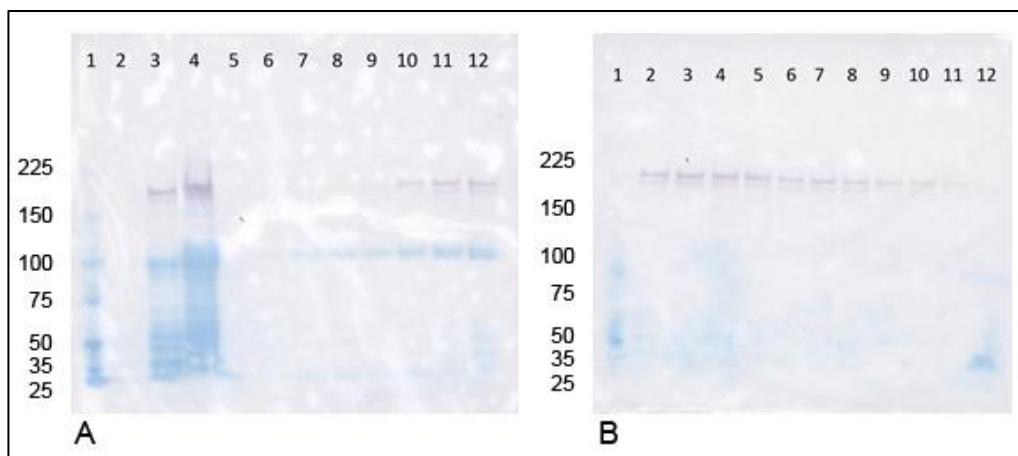


Figure 4.33 Western blot of SDS-PAGE of Lar_0958 homologue purification stages, probed with anti-Lar antibody (purple signal). A) Lane 1, Broad range MW markers; lane 2, SM after filtration, lane 3, SM after vivaflow; lane 4, SM pre-gel filtration column; lane 5, fraction A6; lane 6, fraction A7; lane 7, fraction A8; lane 8, fraction A9; lane 9, fraction A10; lane 10, A11; lane 11, fraction A12; lane 12, fraction A13. B) Lane 1, Broad range MW markers; lane 2, fraction A14; lane 3, fraction A15; lane 4, fraction B1; lane 5, fraction B2; lane 6, fraction B3; lane 7, fraction B4; lane 8, fraction B5; lane 9, fraction B6; lane 10, fraction B7; lane 11, fraction B8; lane 12, fraction B9.

4.8 Discussion

Cell surface proteins are thought to play a major role in mediating bacterial adhesion to mucus, however very few of the bacteria-mucus binding studies investigate the molecular mechanisms of the interactions. Only a few proteins have been functionally shown to bind to mucus and MUB, which was originally identified in *L. reuteri* 1063 (parent of ATCC 53608), was the first to have the crystal structure of one of the Mub repeats determined, providing structural insights into mucus binding proteins in Gram-positive bacteria [223]. Our work showed that both MUB and Lar_0958 homologues are mediators of mucus adhesion of *L. reuteri* strains. MUB homologues are found in many lactic acid bacteria [231], and specifically in the exoproteomes of lactobacilli isolated from the GI tract [232]. Currently there are 949 homologous proteins identified across all bacterial phylotypes in the NCBI non-redundant protein sequences database. Our study showed that the full length MUB was expressed by *L. reuteri* ATCC 53608 and ATCC 55739, whereas, Lar_0958 homologues were expressed by a larger number of *L. reuteri* strains (human isolates DSM 20016, MM4-1a, CF4-6g, FJ1, and LMS11-3). Lar_0958 is a novel mucus binding protein and currently 306 homologous proteins have been identified across all bacterial phylotypes in the NCBI non-redundant protein sequences database.

MUB and Lar_0958 share some structural and biochemical properties, they are both large, modular proteins with a cell surface anchor, they are much larger than the other functionally characterised mucus binding proteins in lactobacilli (Table 4.1) but share a similar acidic pI with the exceptions of MapA and SpaB.

Mucus Binding Protein	MW	Predicted pI
MUB	353	4.75
Lar_0958	133	5.6
Map A	26	9.7
EF-Tu	43	4.9
GroEL	57	4.7
GAPDH	36	5.4
Pili proteins SpaC	91	5
SpaF	104	5
SpaB	21	8

Table 4.1 Mucus binding proteins in lactobacilli.

Pili subunit SpaB is a small protein with a high pI (Table 4.1), interacts with mucus involving non-specific electrostatic interactions [174], due to the net difference in charge between mucus and SpaB. Although mucins remain net negatively charged at all values of pH, MUB and Lar_0958 with an acidic pI will have a net neutral to negative

charge in the GI tract, it is therefore likely that interactions between these mucus binding proteins and mucus involve specific interactions. The current hypothesis is that the target of mucus binding proteins are the O-glycan structures which decorate the mucin protein backbone, although this remains to be proved. Multivalency is the term used to describe the adhesion of multiple ligands with multiple receptors, a situation found in many biological interactions [276]. The repeat nature of both MUB and Lar_0958 homologues and the absence of mucus binding for single repeats may indicate the adaptation of these mucus binding proteins to the multivalent substrate. Due to the complexity of the mucin O-glycan structures, having an array of adhesive units with different sugar specificity would be an advantage for a mucus binding protein. It is also probable that the targets of adhesion involve the non-mucin mucus components as indicated by the binding of MubR5 to IgGs [223] and the demonstrated role of MUB in autoaggregation.

There was a clear autoaggregation phenotype for MUB expressing strains ATCC 53608 and ATCC 55739. The difference in autoaggregation phenotype observed between ATCC 53608 and the non aggregating strain 1063N can be attributed to MUB. This dual role of adhesion and autoaggregation has also been shown for the extracellular protein, transaldolase in *Bifidobacterium bifidum* A8 [277]. Furthermore, aggregation factors glucosyltransferase and inulosucrase from *L. reuteri* TMW1.106 were shown to have a dual role with biofilm formation leading to a reduction in colonisation ability in an ex-*Lactobacillus*-free mouse model [128]. In contrast, aggregation was not implicated in the specific mucus binding ability of Lar_0958 expressing human isolates DSM 20016 and MM4-1a, suggesting that differences in the host environment require different mechanisms for host-bacterial interactions.

We showed that MUB and Lar_0958 proteins are located on the bacterial cell surface and are also released into the growth media, as reported previously for MUB in strain 1063 by Roos & Jonsson (2002) [124]. This feature is perhaps an indication of an alternative function for these adhesive molecules. The secretion of adhesins into the surrounding milieu is postulated to secure a competitive advantage, by acting to aggregate competing bacteria and facilitate clearance, as shown for example with GroEL from *L. johnsonii* La1 which mediates aggregation of *H. pylori* [229].

The competition assays showed that MUB and Lar_0958 homologues are not the sole mediators of mucus adhesion. There are a number of other possible effectors,

including non-proteinaceous cell surface structures such as EPS which has been implicated in the colonisation of *L. reuteri* strain 100-23 in a *Lactobacillus* free mouse model [278]. While proteins with assigned functions may have a dual role with a secondary function in mucus binding, as highlighted by the cytoplasmic proteins EF-Tu [228], GroEL [229] and GAPDH [230], the mechanisms of when and how they become associated with the cell surface remain unknown. This may be through an as yet unidentified secretion pathway or as cells lyse and release their contents the cytoplasmic proteins become associated with the surface of neighbouring cells. Another possible type of mediator may be other mucus binding proteins as yet unidentified. Recently there has been a growing interest in the surface exposed proteomes of bacteria, with advances in both proteomic [279, 280] and *in silico* [281, 282] approaches. However the functions of up to 60 % of predicted extracellular proteins in lactobacilli are unknown [232], indicating a need for future functional studies.

5 Investigating novel *L. reuteri* mucus binding proteins

As we showed in the previous chapters, *L. reuteri* adhesion to mucus is strain specific and involves large cell surface proteins, MUB for strains ATCC 53608 and ATCC 55739 and Lar_0958 homologues for strains MM4-1a and DSM 20016, both proteins being constitutively expressed *in vitro*. These proteins are not the sole mediators of binding and the aim of the work reported in this chapter was to identify novel *L. reuteri* mucus binding protein candidates. A higher mucus binding phenotype can be induced in specific *L. reuteri* strains by the presence of mucin in the growth media, and using this characteristic in combination with a quantitative proteomics approach we investigated differentially expressed cell surface proteins when *L. reuteri* was grown in the presence and absence of mucin.

5.1 Induction of bacterial binding to mucus

L. reuteri strains DSM 20016, 100-23, ATCC 53608 and MM4-1a, for which the genome sequence is available, and related strains DSM 17509, 1063N, and MM4KO were tested for their mucus binding ability when grown in the presence of mucin, along with strains 11284 and DSM 17938 whose responses to mucin supplementation were reported earlier [191]. The factors responsible for this induction are unknown although changes in gene expression are likely to occur.

Briefly, bacteria were grown overnight in MRS broth in the presence and absence of mucin supplementation and the adhesion of cells to immobilised PSIM was examined under an inverted microscope and quantified at 460 nm [191].

Strains 100-23, MM4KO and 11284 showed a significant increase in mucus binding when the bacteria were grown in medium supplemented with mucin (Figure 5.1). In contrast, strain DSM 17509 which is derived from the same parent strain as 100-23 showed no difference in PSIM binding when cells were grown in the presence or absence of mucin. The difference in behaviour observed between strains DSM 17509 and 100-23 may be due to the tendency of bacteria to undergo spontaneous changes during regular laboratory culturing. Strain ATCC 53608 showed a decrease in adhesion ability to PSIM when cultures were grown in the presence of mucin. In addition, the cells were observed by microscopy to form large aggregates which may affect binding to mucus. No increase in binding was observed with strains 1063N, MM4-1a, DSM 20016 or DSM 17938.

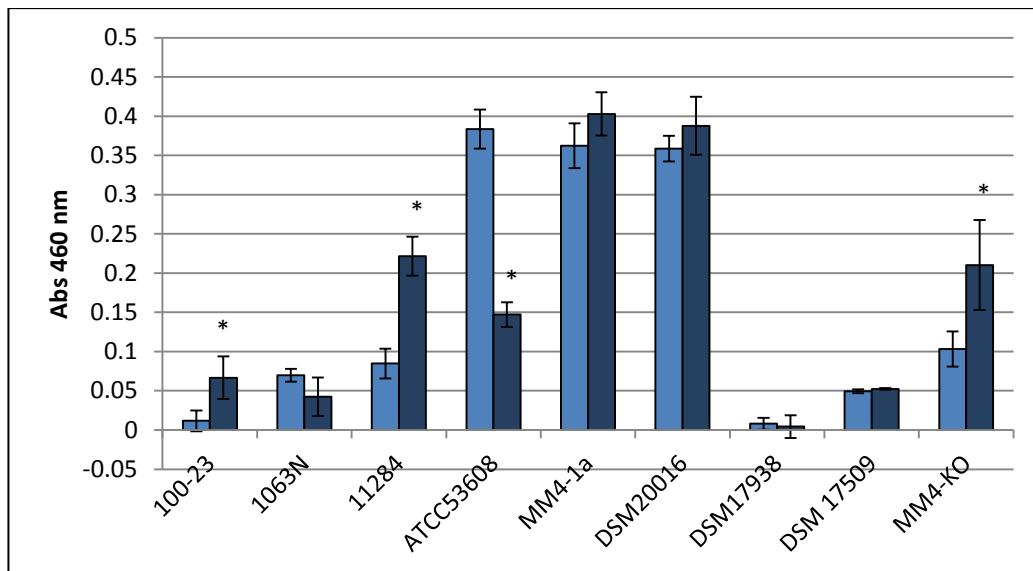


Figure 5.1 Binding of *L. reuteri* strains grown in MRS (pale blue bars) or MRS supplemented with mucin (dark blue bars) to PSIM * = $p < 0.05$.

The binding of strain MM4KO to immobilised mucus, when cells were grown in the presence or absence of mucin, was further investigated with different mucus substrates, PSIM, MCM-C, and MSIM, with immobilised BSA as a control.

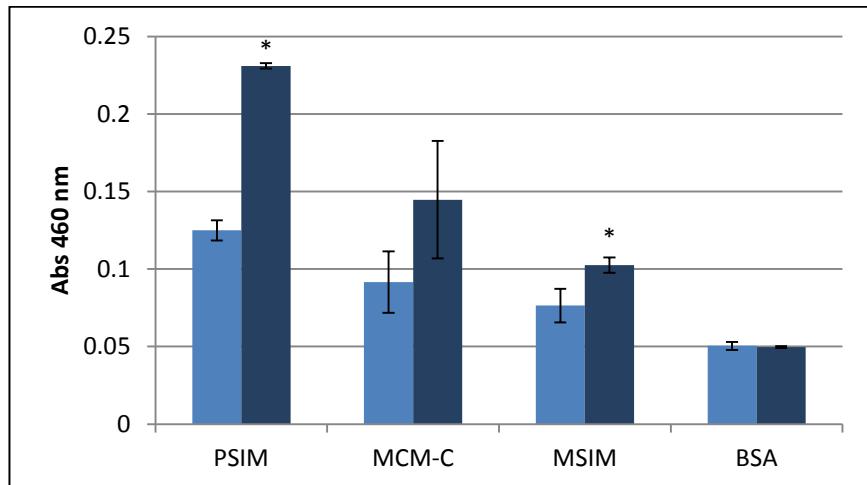


Figure 5.2 Binding of *L. reuteri* strain MM4KO grown in MRS (pale blue bars) or MRS supplemented with mucin (dark blue bars) to mucus * = $p < 0.05$.

Induction of higher binding phenotype was observed for all mucus types tested, with binding to PSIM and MSIM showing a significant increase when cells were grown in the presence of mucin (Figure 5.2). The enhanced adhesion phenotype from non-induced to induced was most notable when cells were tested against PSIM with 1.8 fold change, compared to 1.3 fold change when binding was to MSIM. This may result from an adaption of the response to the porcine mucin used in the growth media.

In order to investigate the nature of the molecular mechanisms underlying the induction of a higher binding phenotype of strain MM4KO, the bacterial cells were pre-treated with trypsin before assessing binding to immobilised PSIM, non-induced cells were included as a control (Figure 5.3).

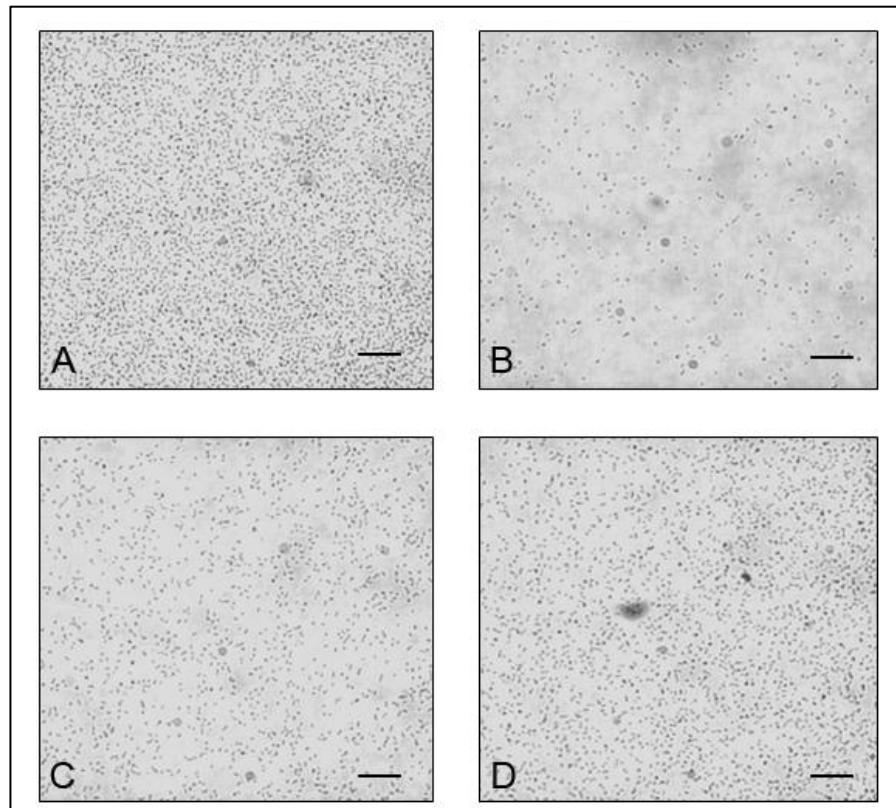


Figure 5.3 Adhesion of *L. reuteri* strain MM4KO to immobilised PSIM. Cells were grown in MRS, A) supplemented with mucin, B) supplemented with mucin then treated with trypsin, C) cells grown in the absence of mucin, D) grown in the absence of mucin then treated with trypsin. Scale bar represents 20 μ m.

The protease treatment of the bacteria resulted in a reduction of mucus binding phenotype of strain MM4KO when grown in the presence of mucin (Figure 5.3 A and B), indicating the contribution of proteins expressed at the cell surface to the observed phenotype. No significant difference in adhesion was observed for cells grown in the absence of mucin followed by trypsin treatment (Figure 5.3 C and D), which may indicate that without induction, non-proteinaceous factors may contribute to the basal mucus binding level of strain MM4KO.

Since MUB and Lar_0958 are not expressed by strain MM4KO, the present findings suggest that a novel cell surface protein involved in mucus binding may be expressed by strain MM4KO when the bacteria are grown in media supplemented with mucin.

5.2 Quantitative proteomic approach for differential expression of proteins.

In order to quantitatively measure the differential expression of proteins when *L. reuteri* strain MM4KO is grown in the presence and absence of mucin, we used a proteomics approach called stable isotope labelling with amino acids in cell culture (SILAC). SILAC was originally developed within the context of human tissue culture however, the technique is perfectly suited for culturable bacteria due to their fast growth and relatively small genome sizes as shown by its successful use with *Bifidobacterium longum* [283], and *E. coli* [284].

By growing bacterial cells in media containing “heavy” aa (with stable isotopes of carbon ^{13}C and nitrogen ^{15}N) the cells incorporate the labelled aa into all cellular proteins. The common usage of trypsin in MS to digest proteins to peptides specifically cleaving after arginine or lysine residues has prompted the use of heavy labelled arginine and lysine in many SILAC experiments.

In a basic SILAC experiment, one cell population is labelled with heavy aa (population A), and the other one is labelled with light (unlabelled) aa (population B). The cells are mixed and their proteomes are extracted and measured by MS. MS spectra provide peptide mass and intensity information. Identification of peptides and therefore proteins is achieved through matching MS/MS spectra against a sequence database. In a SILAC experiment, peptide and protein ratios are obtained by direct comparison of the light and heavy isotopes as each peptide appears as a pair in the mass spectrometer, the peptide with the higher mass contains heavy aa and originates from population A, and the peptide with the lower mass contains the light aa and originates from population B. The difference in mass is dependent on the heavy aa used for example with heavy arginine ($^{15}\text{N}_4^{13}\text{C}_6$ -arginine) the difference would be 10 Da. If the SILAC peptide pair has a one-to-one, heavy to light (H/L) ratio then there is no difference in the abundance of this protein between the proteomes.

The main advantage of SILAC over other quantitative techniques is the early pooling of samples which reduces variation due to sample processing [285, 286]. Another advantage is the sensitivity of SILAC compared to label free methods enabling the detection of smaller changes in protein expression [287].

In order to label proteins efficiently with heavy aa, the growth medium must be defined and lack the corresponding light aa. For that reason SILAC experiments require the

use of a synthetic chemically defined media such as LDM [288], which does not contain the peptone and meat extract present in MRS. LDM III was specifically adapted for this purpose from LDM II to control the aa composition, by replacing the vitamin-free casamino acids with individual aa. “Light” cultures used LDM III with unlabelled aa, while “heavy” cultures replace arginine with arginine $^{13}\text{C}_6\text{ }^{15}\text{N}_4$ and lysine with lysine $^{13}\text{C}_6$ (Appendix 1).

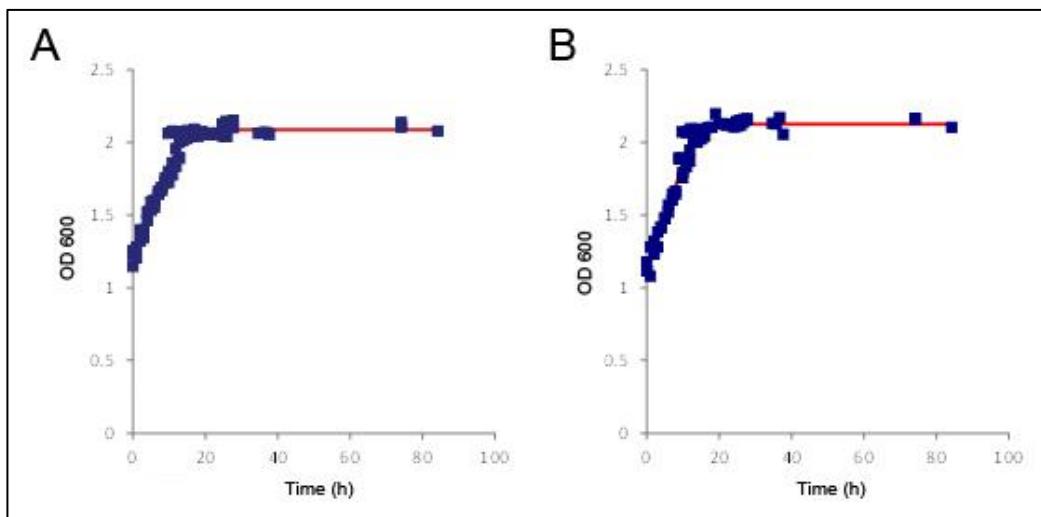


Figure 5.4 Growth curves of *L. reuteri* MM4KO in LDM III media A) in absence of mucin, B) in presence of mucin.

There was no difference between the growth curves when *L. reuteri* MM4KO was grown in LDM III in the presence or absence of mucin (Figure 5.4). The bacteria reached an $\text{OD}_{600} \sim 2$ in LDM III whereas a higher stationary phase OD_{600} was achieved when cells were grown in MRS ($\text{OD}_{600} 6.3\text{-}6.8$), reflecting the more stringent conditions of the synthetic medium. No growth was observed for *L. reuteri* MM4KO in mucin supplemented LDM III lacking both arginine and lysine (data not shown) indicating that MM4KO is auxotrophic for arginine and/or lysine.

The binding of *L. reuteri* strain MM4KO to PSIM was performed using cells grown in LDM III, in the presence or absence of mucin, showing that the induction of higher binding phenotype is not dependent on the media used for growth (Figure 5.5) and that the conditions are suitable for identifying novel potential protein mediators of the binding to mucus.

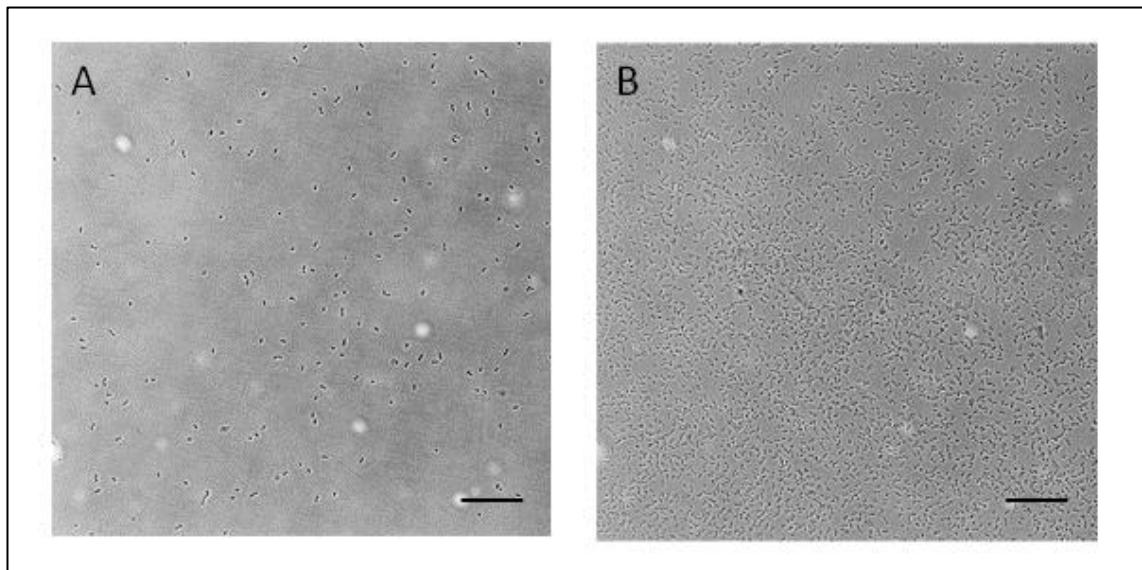


Figure 5.5 Binding of strain MM4KO to PSIM, when grown in LDM III medium, A) in absence of mucin, or B) presence of mucin. Scale bar represents 20 μ m.

Since the ratio of heavy to light (H/L) labelled peptides is the measurement of change of protein expression under two experimental conditions (absence or presence of mucin), it was important to confirm that the heavy labelling of proteins attained a level > 95 % to ensure accurate ratio calculation.

We tested the incorporation of heavy arginine and heavy lysine into the proteins of *L. reuteri* strain MM4KO by growing cells in the presence of heavy aa, and performing a spent media protein extract before analysing the samples using LTQ-Orbitrap. Incomplete incorporation is indicated by identified peptides which exhibit a dual population of masses relating to both heavy and light labels.

Using the most abundant proteins to assess the incorporation of heavy arginine and heavy lysine into the proteome of *L. reuteri* MM4KO, for example Elongation factor Tu (Figure 5.6 and Table 5.1), we found that heavy arginine was incorporated to > 99 %. However heavy lysine incorporation was much lower (~81 %) therefore only heavy arginine labelling was selected for our experimental setup. Addition of mucin to the media did not affect the incorporation of heavy arginine (data not shown),

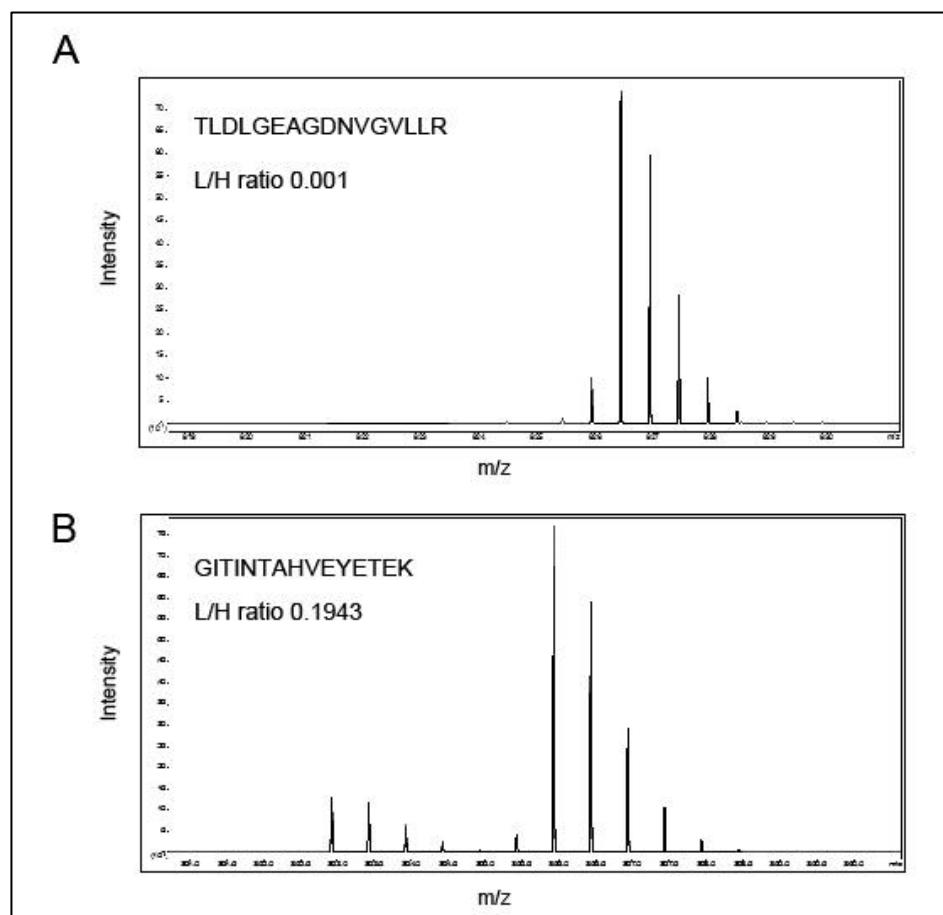


Figure 5.6 Example MS plots, two of the peptides used to identify protein Elongation factor Tu, from *L. reuteri* MM4KO grown in LDM III with heavy aa, showing incorporation of A) heavy arginine and B) heavy lysine.

Since bacterial conversion of arginine to proline, is a factor which may potentially affect the H/L ratios [289], we checked the proline containing peptides from the most abundant proteins of strain MM4KO for the occurrence of heavy proline. No evidence of arginine to proline conversion was found, indicating that the H/L ratios remained unaffected.

z	Sequence	Incl.	L/H	Std.Err.	Intensity	Modifications
3	GISHDQIQR	X	0.000924	2.1E-05	1.35E+07	
2	GISHDQIQR	X	0.001594	0.00083	8.37E+06	
2	ALEGDPEQEK		0.1831	0.1101	2.91E+05	
3	STVTGLEMFHK		0.2304	0.01785	2.89E+07	
3	STVTGLEMFHK		0.2193	0.02741	2.32E+06	(8) Oxidation (M)
2	STVTGLEMFHK		0.1924	0.01841	1.42E+06	(8) Oxidation (M)
3	GQVLAEPGSIQTHK		0.2279	0.01932	3.56E+07	
2	GQVLAEPGSIQTHK		0.2204	0.01872	2.02E+07	
2	QVGVQYIVVFLNK		0.2397	0.00882	1.06E+07	
2	AEDYADIDAAPEEK		0.2081	0.02582	2.36E+06	
2	TLDLGEAGDNVGVLLR	X	0.000952	8E-06	2.32E+07	
3	HYAHIDAPGHADYVK		0.1988	0.1608	1.19E+04	
4	HYAHIDAPGHADYVK		0.1711	0.0361	6.23E+04	
2	HYAHIDAPGHADYVK		0.1502	0.3469	1.91E+05	
3	GITINTAHVEYETEK		0.227	0.0307	2.51E+06	
2	GITINTAHVEYETEK		0.1943	0.04154	1.67E+06	
3	VGDEVEIVGLTEDVLK		0.2258	0.01237	7.34E+05	
2	VGDEVEIVGLTEDVLK		0.2434	0.00801	6.23E+06	
2	AEDYADIDAAPEEKER	X	0.002834	0.00014	7.21E+05	
2	GITINTAHVEYETEKR	X	0.00232	0.00016	3.47E+06	
4	GITINTAHVEYETEKR	X	0.007291	9.8E-05	1.45E+07	
2	DLLSEYDFPGDDVPVVR	X	0.000032	0	3.89E+06	
3	VILHLMVDVIDDYIPTPK	X	0.2362	0.01807	3.27E+06	
2	VILHLMVDVIDDYIPTPK	X	0.2075	0.01344	1.74E+06	
2	VILHLMVDVIDDYIPTPK		0.1221	0.2767	3.31E+04	(6) Oxidation (M)
3	VILHLMVDVIDDYIPTPK	X	0.2182	0.06384	1.16E+05	(6) Oxidation (M)
3	TDLVDDDELVDLVEMEVR	X	0.000028	0	1.84E+04	
2	TDLVDDDELVDLVEMEVR	X	0.00003	0	6.20E+04	
2	TDLVDDDELVDLVEMEVR	X	0.000035	0	5.32E+04	(15) Oxidation (M)
4	RPTDKPFMMPVEDVFTITGR	X	0.004892	8.8E-05	4.55E+06	
3	RPTDKPFMMPVEDVFTITGR	X	0.000348	3.4E-05	7.07E+06	
3	RPTDKPFMMPVEDVFTITGR	X	0.005092	0.00164	2.24E+05	(8) Oxidation (M)

Table 5.1 Complete list of peptides used for identification of protein Elongation factor Tu. The two highlighted in yellow are shown in more detail in Figure 5.6.

5.3 SILAC experimental setup

In order to identify differentially expressed proteins produced by strain MM4KO when grown in the presence or absence of mucin, we carried out a SILAC experiment using heavy arginine $^{13}\text{C}_6^{15}\text{N}_4$ (heavy vs. light arginine) with reciprocal labelling and three biological replicates.

One culture of *L. reuteri* MM4KO was labelled with heavy arginine (population A), and grown in the presence of mucin, the other culture was labelled with light arginine (population B); this configuration was prepared in triplicate. The reciprocal arrangement was also prepared i.e. the mucin present in the media of population B. Since one of the cultures failed to grow at the same rate, it was excluded from the experiment resulting in two biological replicates for the reciprocal labelling and a total of five experimental samples (Figure 5.7).

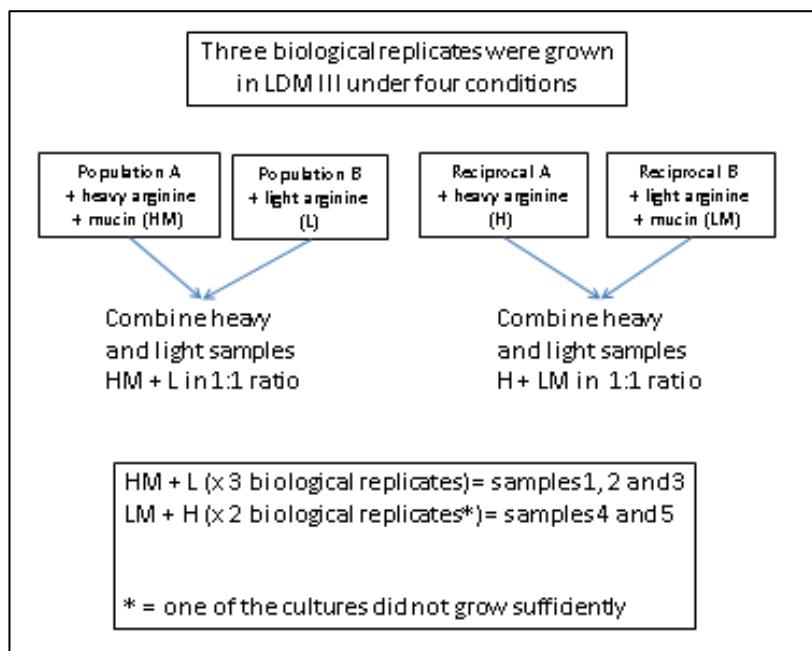


Figure 5.7 Growth conditions of *L. reuteri* MM4KO cultures for SILAC experiment

In order to extract the secreted proteome (SP), the five SILAC samples were centrifuged and the supernatant collected and concentrated. The five SILAC cell pellets were “shaved” with trypsin in order to extract the cell surface proteome (CSP) as described previously in section 4.2. The cell wall proteome (CWP) was obtained after the five shaved SILAC cell pellets were lysed, any contaminating soluble cytoplasmic proteins were washed off and the cell wall proteins were extracted with lysozyme and mutanolysin. The proteins present in the SP and CWP samples were separated by

SDS-PAGE gel, and each lane was cut into five slices in order to reduce the complexity of the peptide mixture injected onto the MS (Figure 5.8).

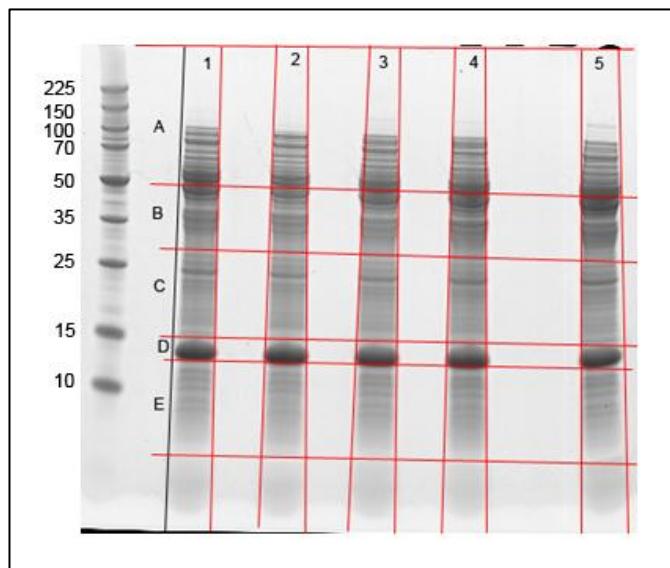


Figure 5.8 Cell wall protein extracts separated by electrophoresis, samples 1-5, were cut into 5 slices A-E as shown by the red lines.

The proteins in all samples were digested to peptides with trypsin; the SP and CWP extracts were processed with an in-gel digest protocol, while the CSP extracts were processed with an in-solution digest protocol. All samples were analysed by LTQ-Orbitrap, with duplicate injections to ensure technical reproducibility (Figure 5.9).

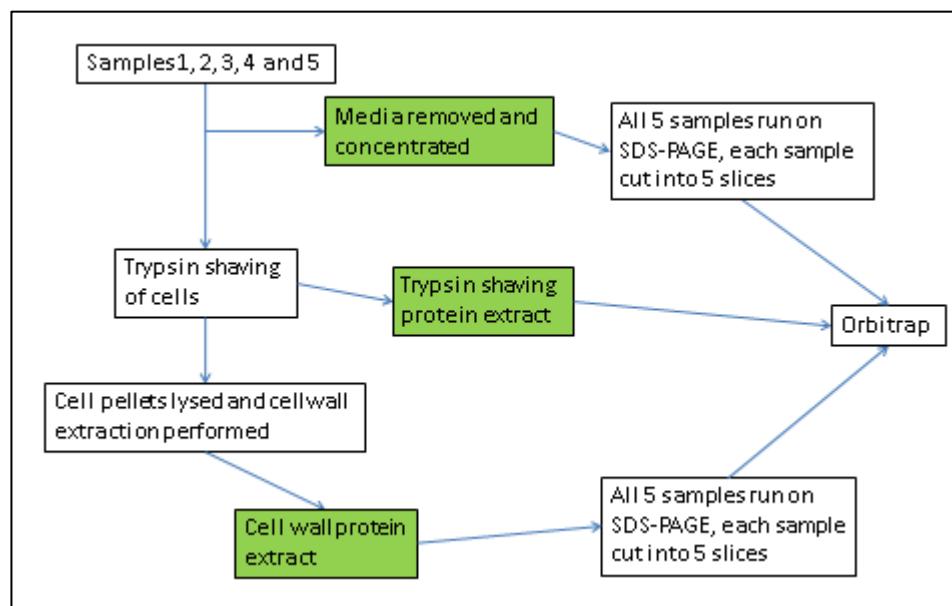


Figure 5.9 Sample processing pipeline for SILAC experiment

5.4 SILAC data processing and protein identification

Data were analysed using the MaxQuant software suite containing the Andromeda search engine, which, along with the statistical programme Perseus, have been specifically designed to achieve the highest possible quantitative accuracy in conjunction with SILAC. For validation purposes the data were also analysed with Mascot Distiller combined with Scaffold for statistical analysis.

MaxQuant uses a probabilistic approach for the identification of peptides that was originally pioneered by Mascot, i.e. calculating the probability that the observed number of matches between the calculated and measured fragment masses could have occurred by chance. As a commercial program, the exact algorithms used by Mascot Distiller are unknown. MaxQuant employs algorithms that determine the mass precision and accuracy of peptides individually combined with a “second peptide identification” algorithm used to resolve the frequent occurrence in complex mixtures of two peptides co-fragmenting. The first stage of the data analysis uses MS/MS spectra to give information on peptide sequences, to compare to known protein sequences in the *L. reuteri* database.

Using MaxQuant linked to search engine Andromeda, a total of 690, 1046 and 532 proteins were identified in CWP, SP and CSP respectively with high confidence across the biological and technical replicates (Appendix 2). Protein identifications were only accepted if the following quality parameters were met; a false discovery rate (FDR) of < 0.1 %, a minimum number of 2 unique peptides and a posterior error probability of < 0.05.

Using Mascot Distiller, a total of 429, 642 and 298 proteins were identified in CWP, SP and CSP respectively. The quality parameters used for acceptable protein identification were; a FDR of < 0.1 %, a minimum number of 2 unique peptides and a protein identification probability > 95 %. Considerably fewer identifications were made using the Mascot search engine compared to Andromeda. The sensitivity and specificity of both search engines was previously compared and found to be equivalent [249]. The differences can occur during the process of peak picking, the highest scoring peptide for each MS/MS spectrum is taken, which is not necessarily the same for Mascot and Andromeda scoring.

Among the potential mucus binding proteins previously identified in *Lactobacillus* species (Table 1.5), no peptides corresponding to MUB or pili (SpaC, SpaF, SpaB) were identified as expected from the genome sequence of parent strain MM4-1a. Lar_0958 was also absent as expected from the mutant strain. EF-Tu, GroEL, and GAPDH were identified in all three proteome extracts in agreement with their reported cell surface expression. However the lack of MapA identification was somewhat surprising since the gene encoding the protein is present in parent strain *L. reuteri* MM4-1a, and MapA is implicated in the adhesion of *L. reuteri* 104R to mucus [224] and *L. reuteri* DSM 20016 to Caco2 cells [225], consistent with a cell surface localisation.

5.5 SILAC ratio calculation and statistical analysis

During the second stage of the analysis, the H/L ratios determined for the identified proteins in each of the five SILAC samples were normalised across all data sets, since for the majority of proteins, no change in protein expression was expected under the two different experimental conditions. Not all identified proteins will possess a H/L ratio, only peptides containing arginine can be used for quantitation. In order to be considered in the statistical analysis a minimum of 3 H/L ratios must be present for each protein. Theoretically there may be proteins expressed only in one experimental condition, which would result in a H/L ratio of infinity. By searching the data for signal intensity values it is possible to identify proteins with a light only or heavy only label signal, it was confirmed that none of the proteins identified in these samples were expressed only in one experimental condition.

Data were exported from Mascot Distiller to Scaffold, where \log_2 fold change of 2 was used to indicate differential expression. The data exported from MaxQuant to Perseus, was tested for significant changes using the Significance B test with Benjamini Hochberg FDR threshold of 0.05. Differentially expressed proteins were then subjected to bioinformatics analysis for cell localisation using SigP, SecretomeP, LipoP, TMHMM and PSORTB.

SP	CSP	CWP
↓ Zinc/iron ABC super family ATP binding cassette transporter (MP)	↑ Cystathionine gamma- lyase (MP)	↑ mannosyl-glycoprotein endo-β-N- acetylglucosamidase (MP & MS)
↑ Phage replication protein (MP)	↓ SSU ribosomal protein S14P (MP)	↓ ATPase AAA 2 domain protein (MS)
↑ SSU ribosomal protein S3P (MP)	↑ Translation initiation factor IF-2 (MS)	
↑ 50S ribosomal protein L19 (MS)	↑ 1,3 propanediol dehydrogenase (MS)	
↑ 30S ribosomal protein S12 (MS)	↑ FAD dependent pyridine nucleotide disulphide oxidoreductase (MS)	
↓ Peptidyl-tRNA hydrolase (MS)	↑ Cold shock DNA binding protein (MS) ↑ UDP-N-acetyl enolpyruvoylglucosamine reductase (MS) ↑ Putative cold shock protein (MS)	

Table 5.2 Proteins differentially expressed in the different proteome extracts from *L. reuteri* MM4KO grown in the presence of mucin. Arrows indicate up-or down expression. Data analysis performed in MaxQuant and Perseus (MP) or Mascot Distiller and Scaffold (MS).

In total 16 proteins were found to be differentially expressed across the different proteome extracts (Table 5.2). Identified in all samples, mannosyl-glycoprotein endo- β -N-acetylglucosaminidase was found to be differentially expressed in the CWP samples and was the sole protein identified by both computational analysis approaches. Mannosyl-glycoprotein endo- β -N-acetylglucosaminidase was also the only differentially expressed protein predicted by SigP, SecretomeP, LipoP, TMHMM and PSORTB to be cell surface located. All other proteins identified as differentially expressed were predicted to be cytoplasmic, indicating that their involvement in cell surface adhesion mechanisms is unlikely, although these predictions should be taken with caution as several proteins, predicted to be cytoplasmic have been shown to be present on the cell surface and involved in mucus adhesion [228-230]. Mucus binding proteins EF-Tu, GroEL, and GAPDH were not found to be differentially expressed in any of the proteome extracts indicating that they are not playing a role in induced mucus binding for *L. reuteri* MM4KO grown in presence of mucin. The protease treatment of cells indicated non-proteinaceous mechanisms for the basal level of mucus binding, indicating that these proteins are not playing any role in mucus binding for strain MM4KO.

The overall expression of mannosyl-glycoprotein endo- β -N-acetylglucosaminidase showed two-fold Log₂ change when *L. reuteri* MM4KO cells were grown in LDM III in the presence of mucin. In addition, an increased expression was consistently detected across the different biological and technical replicates (Figure 5.10).

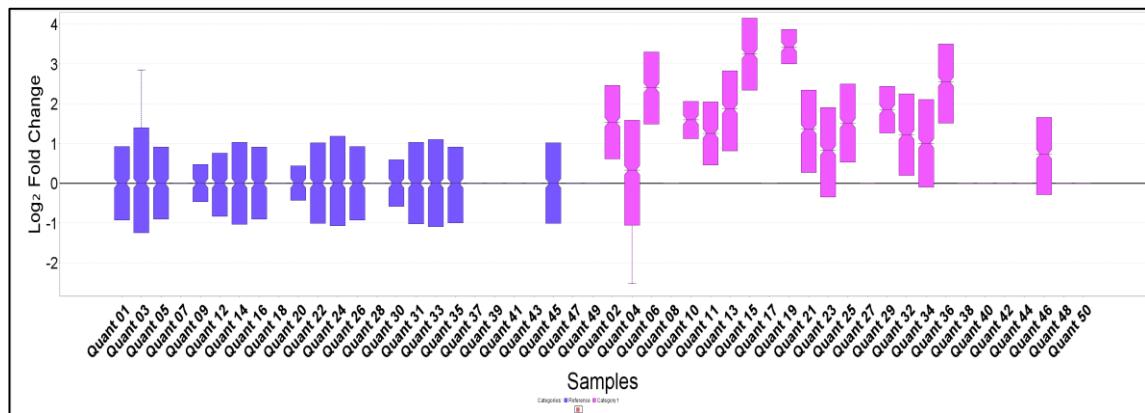


Figure 5.10 H/L ratios of mannosyl-glycoprotein endo- β -N-acetylglucosaminidase peptides in Scaffold, identified in CWP samples from bacterial cells grown in LDM III (blue bars) or LDM III supplemented with mucin (pink bars). Samples on x axis refer to the biological and technical replicates.

The peptides detected from MM4KO gave a 37 % coverage (209/568 aa) of mannosyl endo- β -N-acetylglucosamidase (ABQ84091) from *L. reuteri* DSM 20016. The protein was predicted to be 56 kDa in size with a pI between 9.3-9.7. The deduced aa sequence of mannosyl endo- β -N-acetylglucosamidase contains three types of domain, KxYKxGKxW, FlgJ and LysM (Figure 5.11) (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The KxYKxGKxW domain is an N-terminal signal peptide to target the protein to the cell surface in Gram-positive bacteria.

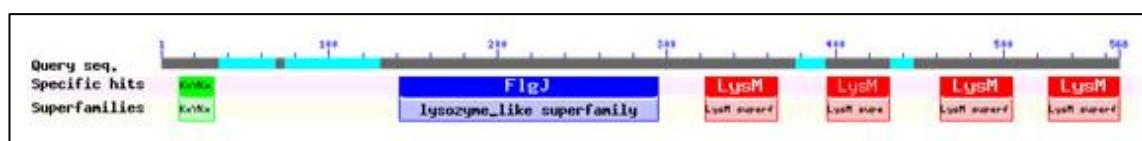


Figure 5.11 Domain structural homology of mannosyl endo- β -N-acetylglucosamidase

The FlgJ domain refers to the muramidase catalytic domain of the FlgJ protein, one of approximately ten proteins required to construct the basal rod portion of flagella and originally described in *Salmonella typhimurium* SJW1437. [290-293]. The muramidase domain belongs to the CAZy glycoside hydrolase (GH) family 73 (www.cazy.org), which contains enzymes which cleave the β -1,4-glycosidic linkage between N-acetylglucosaminyl (GlcNAc) and N-acetylmuramyl (MurNAc) moieties in the carbohydrate backbone of bacterial PGs. Enzymes from the GH73 family are mostly cell surface located and as for *L. reuteri* MM4KO mannosyl endo- β -N-acetylglucosamidase, exhibit repeat sequences involved in bacterial cell wall binding, in the form of LysM domains.

Four LysM domains were identified at the C-terminal end of *L. reuteri* mannosyl endo- β -N-acetylglucosamidase. LysMs are small (44-65 aa) globular domains, commonly found to non-covalently attach proteins to bacterial PG layer and also found to be involved in chitin binding in eukaryotes [294, 295]. The binding of LysM domains to PG is mediated through GlcNAc, but whether this is the sole moiety recognised is yet to be determined [294]. The combination of a muramidase catalytic domain with multiple LysM domains is typical for cell wall hydrolases for example AcmA from *Lactococcus lactis* [296]. Cell wall hydrolases enzymatically degrade the PG layer of bacteria and are cell surface or secreted proteins, often classified into five groups in terms of their specificity, N-acetylmuramidases (lysozymes), N-acetylglucosaminidases, N-acetylmuramyl-L-alanine amidases, endopeptidases and transglycosylases [296]. Functions of cell wall hydrolases include cell separation, autolysis, cell wall turnover,

cell division, cell competence for DNA transformation, sporulation, bacterial motility, signalling and adhesion to surfaces.

No change in growth was observed when *L. reuteri* MM4KO was grown in the presence of mucin (Figure 5.4) and no evidence of autolysis was detected after 80 h growth, indicating that a role of mannosyl endo- β -N-acetylglucosamidase in mucin degradation/utilisation or autolysis is unlikely in *L. reuteri* MM4KO. Hence the differential expression of mannosyl endo- β -N-acetylglucosamidase when *L. reuteri* MM4KO was grown in the presence of mucin, may indicate a role of this enzyme in mucus binding (possibly via LysM domains) as supported by the increased mucus binding phenotype of this strain reported under the same conditions.

5.6 Discussion

In this chapter we showed that the binding to mucus of *L. reuteri* strains can be induced by differential expression of proteins in response to mucin.

5.6.1 Stimulation of mucus binding

The environment in the GI tract influences the colonisation ability of the microbiota, in the same way, the outcome of *in vitro* adhesion assays can be influenced by the environment in which bacteria are grown, for example bile salts stimulate *E. coli* binding to HeLa cells [297], glucose stimulates *Staphylococcus epidermidis* binding to polymer surfaces [298], anaerobic growth induces mucus binding in *Salmonella typhimurium* [299] and mucin stimulates *L. reuteri* (strains T1, 11284, SD2112 and #71) adhesion to mucus [191]. In this study we showed that *L. reuteri* MM4KO and 100-23 can be induced to a higher mucus binding phenotype by the supplementation of the growth medium with mucin. The induced phenotype was observed across all mucus samples and was abolished when cells were treated with trypsin, suggesting that the nature of the factor responsible for the increased mucus binding was proteinaceous.

5.6.2 Methodology for quantitatively measuring cell surface proteins

In Gram-positive bacteria proteins can be sorted into four different destinations, the cytoplasm, the cytoplasmic membrane, the peptidoglycan cell wall and the extracellular environment [300]. It is the extracellular proteins and those protruding from the cell wall and cytoplasmic membrane which form the cell surface proteome, interacting with the host and other bacteria. Cell surface proteomes have been studied in both pathogenic bacteria for example *Streptococcus* in an attempt to identify targets for vaccines [273] and probiotic bacteria such as *Bifidobacteria* to explore mechanisms of bacterial-host interactions [283]. When extracting cell surface proteomes there is a well-documented risk of cytoplasmic protein contamination through cell lysis [301]. Through method development we limited the risk of cytoplasmic contamination. It should be noted that cytoplasmic proteins are commonly found in bacterial cell surface extracts, however their localisation on the cell surface should be confirmed by techniques such as immunogold labelling or FCM analysis [228, 301, 302].

Here SILAC was chosen as a sensitive quantitative proteomic approach. SILAC has been successfully applied to monitoring the changes in proteomes of bacteria in different conditions such as, i) stationary phase adaptation of *Bacillus subtilis* [303], ii)

response to nutritional challenges in *B. subtilis* [304], iii) comparison between pathogenic and non-pathogenic *E. coli* [284], and iv) the response to bile salts [283], and mucus [305] of *Bifidobacterium longum*. To date there has been no SILAC studies on *L. reuteri*. Here we used this method to both map the secreted, cell surface and cell wall proteomes, and also to determine the influence of mucin on protein expression level in these proteomes.

A requirement of SILAC is the complete labelling of proteins with the heavy aa in order to achieve accurate quantitation. Many bacteria possess metabolic pathways for aa synthesis and degradation, which may interfere with the heavy labelling of peptides [304]. *L. reuteri* strain JCM 1112 was extensively studied for metabolic pathways, lysine is non-essential for growth as JCM 1112 has a full complement of biosynthetic pathways, whereas arginine is an essential aa [306]. Our work indicated that strain MM4KO was similarly auxotrophic for arginine allowing > 99 % labelling with heavy arginine. The biological and technical replicates along with the reciprocal labelling led to a robust experimental design, however it was shown here and documented in previous SILAC experiments that some of the differentially expressed surface proteins were not found in all samples (proteomes and replicates) [284], indicating the importance of biological and technical replicates to decrease the number of false positives. The full list of proteins identified in the different proteomes can be found in Appendix 2.

5.6.3 Mannosyl glycoprotein endo- β -N-acetylglucosaminidase is a candidate mucus binding protein

This study showed that expression of mannosyl glycoprotein endo- β -N-acetylglucosaminidase was upregulated when *L. reuteri* strain MM4KO was grown in presence of mucin, which may contribute to the induction of higher mucus binding phenotype of this strain. N-acetylglucosaminidases are cell wall hydrolases which may have multiple functions, for example AcmA from *Lactococcus lactis* ssp. *cremoris* MG1363 is involved in autolysis and cell separation [296, 307] and EndoD from *Streptococcus pneumoniae* has both hydrolase and transglycosylation activity [308]. Additionally the N-acetylglucosaminidase from *B. longum* NCIMB8809 hydrolyses the glycans of host glycoproteins, thereby liberating nutrients to support growth [305]. Since data from the growth curves showed no evidence of autolysis or increased cell numbers in *L. reuteri* MM4KO when grown in the presence of mucin, this suggests that mannosyl endo- β -N-acetylglucosaminidase does not play a role in autolysis and mucin

degradation/utilisation *in vitro*. Instead, this may indicate a role of the enzyme in mucus binding.

The LysM domains of muramidases are often found in multiple copies, the number of which is crucial to the function of the enzyme. For example, in AcmA from *L. lactis*, three LysMs are required for optimum enzyme activity and the removal or addition of LysM domains led to a reduction of autolysis and cell separation [309]. The enzyme activity of N-acetylglucosaminidase AltA from *Enterococcus faecalis* was found to be dependent on the presence of six LysM domains with a 580-fold decrease in activity when the domains were removed [310]. The mechanism by which LysM domains affect enzyme activity has not been elucidated but it may be due to proper positioning of the catalytic domain towards the substrate or to promote the correct folding of the catalytic domain itself. LysM domains have been implicated in directing the subcellular localisation of their proteins, as demonstrated for the cell wall hydrolases Sle1 and LytN from *S. aureus* Newman [311].

LysM containing proteins are also implicated in host-microbial interactions for example autolysin Aaa from *S. aureus* 4074 was shown to have fibrinogen and fibronectin binding activity [312] and the *in silico* analysis of 126 *L. reuteri* ATCC 55730 extracellular proteins found seven proteins with LysM domains, including four with putative hydrolase functions and three of unknown function, but conserved across bacteria and similar to each other [185]. Mutation of LysM containing protein Lr_70152 in *L. reuteri* 100-23 was shown to drastically decrease the colonisation of the mutant strain to the forestomach of germ free mice compared to the wild type strain, indicating that LysM domains may play an important role in bacteria-host interactions (Personal communication, Steve Frese and Jens Walter), although the direct involvement of LysM in mucus adhesion remains to be demonstrated. Taken together, these studies suggest that the increased binding phenotype of *L. reuteri* MM4KO when grown in the presence of mucin may be due to the induction of mannosyl glycoprotein endo- β -N-acetylglucosamidase mediated mucus binding via LysM domains.

6 Conclusions and Future Work

One of the main findings of this work is that the mucus binding ability and the autoaggregation phenotype of *L. reuteri* is strain-specific, highlighting a potential adaptation of the strains to specific hosts or regions of the GI tract via different mechanisms. Indeed the rodent strains displayed a strong autoaggregation phenotype but low mucus binding ability, whereas the human isolates showed consistent mucus binding but no autoaggregation ability. The adaptation potential of *L. reuteri* strains was demonstrated by comparative genomic analysis of 126 different *L. reuteri* strains suggesting fundamentally different trends of genome evolution in rodent and human isolates, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution [101].

In order to gain further insights into the mechanisms of adhesion of the pig isolate *L. reuteri* ATCC 53608, the genome was sequenced, assembled and automatically annotated. Genome analysis highlighted the presence of a number of genes encoding cell surface proteins which have been implicated in mucus binding, in particular MUB and MucBPs. A comprehensive genome exploitation for strain ATCC 53608 will take place once full manual annotation has been achieved. This will include a comparative genomic analysis with other pig isolates, pg_3b, Lp167-67, 20-2 and 3c6 (currently being sequenced at TGAC), in order to evaluate the number and types of mucus binding proteins in the pig pangenome.

Here we functionally characterised strain specific mediators of mucus binding i.e. the MUB protein from pig isolate ATCC 53608 and the Lar_0958 homologue found in human isolates MM4-1a, DSM 20016, CF4-6g, LMS11-3 and FJ1. We showed that their contribution to bacterial adhesion involved specific interactions with mucus components although these are not the sole mediators of the interaction. MUB and Lar_0958 are constitutively expressed *in vitro* and attached to the bacterial cell surface in accordance with their function. The MUB and Lar_0958 non-expressing strains (1063N and MM4KO respectively) showed a dramatic decrease in binding to mucus, although a basal level of binding was observed for MM4KO to MCM-S and MSIM. We also showed that MUB contributed to the autoaggregation phenotype of *L. reuteri* ATCC 53608. The interactions between MUB and mucus may be direct recognition of mucus components or an indirect mechanism by promoting autoaggregation of the bacterial cells and perhaps inducing biofilm formation. A dual role for mucus binding

and autoaggregation has been reported earlier for transaldolase from *B. bifidum* [277]. This dual functionality could act as an important colonisation factor favouring bacteria establishment in the gut. These cell surface proteins may thus represent a molecular target for rational selection of probiotic *L. reuteri* strains in the future.

Our SILAC experiment identified a novel *L. reuteri* potential mucus binding protein candidate, mannosyl-glycoprotein endo- β -N-acetylglucosaminidase. Expression of this protein was upregulated when strain MM4KO was grown in the presence of mucin, thus closer to the conditions of the gut environment. Future mutagenesis studies will be required to abolish the expression of the enzyme in bacteria and assess binding activity of the *L. reuteri* K/O strains to mucus. Furthermore, heterologous expression of individual LysM and catalytic domains will enable discrimination of which of the domains are responsible for binding to mucus and help confirm the role of mannosyl glycoprotein endo- β -N-acetylglucosaminidase in *L. reuteri* adhesion to mucus.

MUB and Lar_0958 are modular proteins, characterised by a variable number of repeats. The crystal structure of MubR5 revealed two domains, B1 with structural homology to an immunoglobulin binding protein and B2 with structural homology to MucBP domain [223]. Mucus adhesins with their modular nature may have adapted to recognise multiple ligands within mucus. The exact nature of the receptors is still a matter of debate. Potentially hundreds of heterogeneous glycans structures attached to mucins are present but it is difficult to identify the biologically accessible epitopes and focusing on individual oligosaccharide components does not reflect the native environment of the mucin glycans in mucus. Future work will exploit the recent construction of mucin glycan arrays which display mucins from GI tracts of different vertebrates [313, 314]. These will be used to reveal the molecular targets recognised by the different mucus binding proteins and protein modules we identified and characterised in this study and to further assess their host and tissue specificity to GI mucins.

The contribution of specific interactions and non-specific interactions of MUB and Lar_0958 to mucus adhesion needs further investigation. Methodologies such as AFM, FCM and SPR have been successfully used with whole bacteria to measure kinetic association constants and to obtain information on the differential contributions of non-specific and specific forces [196, 207, 315]. Taking advantage of the *L. reuteri* mutant strains 1063N and MM4KO and their corresponding adhesins MUB and Lar_0958

respectively, these techniques could be used in competition experiments to decipher the specific contribution of these cell surface proteins in the mucus and mucin binding ability of bacteria and to determine whether the adhesion is mediated by lectin-carbohydrate type interactions.

Despite a few functionally characterised mucus binding proteins, mainly in *Lactobacillus* species, there is a paucity of information regarding the nature and structure of the bacterial adhesins mediating binding to mucus and mucins in commensal bacteria. This is despite the critical role played by the mucus layer in the maintenance of a homeostatic relationship with the microbiota. Lactobacilli are dominant gut microbes in many domesticated animals species important in our food chain such as pigs, although they only contribute 0.01 % to the bacterial count in human faecal samples [110]. Work on these lactobacilli strains isolated from humans is therefore more relevant for the selection of probiotics with increased persistence in the gut. More functional and structural work is needed in order to exploit the data coming from the large genome and metagenome sequencing projects. Combining these approaches will help us to understand how to keep the beneficial relationship with our gut bacteria, which may lead to novel strategies to readjust microbial communities or prevent dysbiosis.

Appendix 1

Composition of LDM II and LDM III

LDM II broth:

Ingredient	Amount per L
K ₂ HPO ₄ (anhydrous)	1.5 g
KH ₂ PO ₄ (anhydrous)	1.5 g
Vitamin-free casamino acids	10 g
Sodium acetate	15 g
Sodium citrate	0.22 g
Tryptophan	50 mg
Asparagine	0.2 g
Cysteine-HCl	0.2 g
Thiamine-HCl	0.2 mg
<i>para</i> -Aminobenzoic acid	0.04 mg
Calcium pantothenic acid	0.4 mg
Niacin	1.0 mg
Pyridoxine-HCl	0.5 mg
Biotin	0.05 mg
Folic acid	0.1 mg
Riboflavin	0.4 mg
Adenine sulphate	10 mg
Uracil	20 mg
Guanine-HCl	10 mg
Cytidine (acid)	50 mg
Thymidine	1.6 µg
Tween-80	1.0 ml
MgSO ₄ .7H ₂ O	0.163 g
MnSO ₄ .H ₂ O	23.4 mg
FeSO ₄ .7H ₂ O	13 mg
Sucrose	20 g

LDM III broth:

Ingredient	Amount per L
K ₂ HPO ₄ (anhydrous)	1.5 g
KH ₂ PO ₄ (anhydrous)	1.5 g
Sodium acetate	15 g
Sodium citrate	0.22 g
Tryptophan	50 mg
Asparagine	50 mg
Cysteine	50 mg
Glycine	50 mg
Serine	50 mg
Alanine	50 mg
Phenylalanine	50 mg
Histidine	50 mg
Isoleucine	50 mg
Methionine	50 mg
Proline	50 mg
Threonine	50 mg
Valine	50 mg
Tyrosine	50 mg
Leucine	50 mg
Glutamine	50 mg
Aspartic acid	50 mg
Glutamic acid	50 mg
Thiamine-HCl	0.2 mg
<i>para</i> -Aminobenzoic acid	0.04 mg
Calcium pantothenic acid	0.4 mg
Niacin	1.0 mg
Pyridoxine-HCl	0.5 mg
Biotin	0.05 mg
Folic acid	0.1 mg
Riboflavin	0.4 mg
Adenine sulphate	10 mg
Uracil	20 mg
Guanine-HCl	10 mg
Cytidine (acid)	50 mg
Thymidine	1.6 µg
Tween-80	1.0 ml
MgSO ₄ .7H ₂ O	0.163 g
MnSO ₄ .H ₂ O	23.4 mg
FeSO ₄ .7H ₂ O	13 mg
Sucrose	20 g
Optional amino acids (arginine and lysine)	50 mg (each)

Appendix 2

Secreted proteome of *L. reuteri* MM4KO

Appendix 2 - SP Proteins Identified	Peptides	Peptides Sample 1	Peptides Sample 2	Peptides Sample 3	Peptides Sample 4	Peptides Sample 5	Sequence Coverage [%]	Mol. Weight [kDa]	Sequence Length
>gi 148531499 gb ABQ83498.1 bacterial translation initiation factor 3 (bIF-3) [Lactobacillus reuteri DSM 20016]	6	4	5	3	5	4	40	19.487	170
>gi 148531703 gb ABQ83702.1 LSU ribosomal protein L17P [Lactobacillus reuteri DSM 20016]	12	10	11	7	11	9	68.5	14.201	127
>gi 133930435 gb ABO43789.1 DNA-binding protein [Lactobacillus reuteri];>	14	13	13	11	14	13	85.7	9.5238	91
>gi 183226688 dbj BAG27204.1 pyruvate kinase [Lactobacillus fermentum IFO 3956];	15	10	11	12	9	12	29.4	51.641	473
>gi 337728600 emb CCC03706.1 putative muramidase [Lactobacillus reuteri ATCC 53608]	15	13	10	11	14	11	39.1	60.348	565
>gi 194453977 gb EDX42874.1 ribosomal protein L5 [Lactobacillus reuteri 100-23]	16	16	15	14	14	14	69.4	20.172	180
>gi 148531718 gb ABQ83717.1 LSU ribosomal protein L5P [Lactobacillus reuteri DSM 20016]	16	16	16	15	15	15	69.4	20.171	180
>gi 148531711 gb ABQ83710.1 LSU ribosomal protein L15P [Lactobacillus reuteri DSM 20016]	17	15	16	12	14	13	75.7	15.447	144
>gi 148532099 gb ABQ84098.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016]	18	13	16	15	17	14	68.5	35.918	336
>gi 183225377 dbj BAG25894.1 50S ribosomal protein L18 [Lactobacillus reuteri JCM 1112]	18	17	17	13	16	18	77.7	13.342	121
>gi 148530829 gb ABQ82828.1 acetate kinase [Lactobacillus reuteri DSM 20016]ref	19	11	14	10	15	11	57.5	43.595	398
>gi 148532080 gb ABQ84079.1 glycerol 2-dehydrogenase (NAD+) [Lactobacillus reuteri DSM 20016]	19	11	14	18	16	15	57.6	40.698	373
>gi 148531716 gb ABQ83715.1 SSU ribosomal protein S8P [Lactobacillus reuteri DSM 20016]	19	18	17	13	18	18	87.9	14.536	132
>gi 148530404 gb ABQ82403.1 Formate-tetrahydrofolate ligase [Lactobacillus reuteri DSM 20016]	20	14	15	17	18	12	42.3	60.251	553
>gi 148530792 gb ABQ82791.1 RecA protein [Lactobacillus reuteri DSM 20016]	20	15	12	11	17	17	57.5	39.063	362
>gi 183226438 dbj BAG26954.1 elongation factor Tu [Lactobacillus fermentum IFO 3956]	20	16	17	17	17	15	57.8	43.474	396
>gi 183224383 dbj BAG24900.1 enolase [Lactobacillus reuteri JCM 1112]	20	18	19	19	20	18	57.1	49.951	457
>gi 148532119 gb ABQ84118.1 Bleomycin hydrolase [Lactobacillus reuteri DSM 20016]	21	12	14	17	10	12	51.4	50.851	440
>gi 148531290 gb ABQ83289.1 LPXTG-motif cell wall anchor domain [Lactobacillus reuteri DSM 20016]	21	13	17	18	17	16	33.1	80.889	752
>gi 148530989 gb ABQ82988.1 aspartyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	21	15	16	17	14	12	38.5	68.43	600
>gi 148531743 gb ABQ83742.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016]	22	19	19	18	19	18	59.6	36.124	342
>gi 227186481 gb EEI66552.1 D-alanine--D-alanine ligase [Lactobacillus reuteri CF48-3A]	23	18	19	18	17	16	68.8	42.569	378

>gi 183224464 dbj BAG24981.1 D-alanine--D-alanine ligase [Lactobacillus reuteri JCM 1112]	23	18	20	18	18	17	69.9	43.001	382
>gi 337727906 emb CCC02995.1 L-lactate dehydrogenase [Lactobacillus reuteri ATCC 53608]	23	21	16	17	19	19	50.8	34.069	319
>gi 148531688 gb ABQ83687.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit A [Lactobacillus reuteri DSM 20016]	23	21	17	14	18	14	59.4	53.009	490
>gi 148532092 gb ABQ84091.1 Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri DSM 20016]	24	21	20	21	23	23	52.6	60.446	568
>gi 227070122 gb EEI08498.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM2-3]	24	22	17	18	20	20	50.3	34.901	326
>gi 148530447 gb ABQ82446.1 pyridine nucleotide-disulfide oxidoreductase dimerization region [Lactobacillus reuteri DSM 20016]	28	23	25	23	24	22	63.9	49.944	451
>gi 227071557 gb EEI09855.1 glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) [Lactobacillus reuteri MM2-3]	28	24	24	22	23	22	72.5	37.062	345
>gi 112943172 gb ABI26299.1 glutamine synthetase [Lactobacillus reuteri]	28	24	26	24	24	21	65.3	50.777	447
>gi 148531006 gb ABQ83005.1 glycyl-tRNA synthetase beta chain [Lactobacillus reuteri DSM 20016]	28	25	24	23	23	22	44.6	78.536	691
>gi 148531459 gb ABQ83458.1 glutamyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];	29	23	25	23	24	24	47.9	58.349	501
>gi 148530917 gb ABQ82916.1 translation elongation factor 1A (EF-1A/EF-Tu) [Lactobacillus reuteri DSM 20016]	29	26	27	26	27	25	77.8	43.432	396
>gi 143798699 gb ABF06644.2 sucrose phosphorylase [Lactobacillus reuteri]	30	26	21	26	23	26	49.5	55.969	485
>gi 148530345 gb ABQ82344.1 Adenylosuccinate synthetase [Lactobacillus reuteri DSM 20016]	31	25	25	28	26	22	69.7	47.725	432
>gi 227186263 gb EEI66334.1 maltose phosphorylase [Lactobacillus reuteri CF48-3A]	32	25	22	26	28	26	34.9	87.449	757
>gi 148531528 gb ABQ83527.1 arginyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	32	27	28	27	26	26	53.9	63.878	562
>gi 148530903 gb ABQ82902.1 GTP-binding protein TypA [Lactobacillus reuteri DSM 20016]	32	29	26	26	28	25	52.3	68.827	614
>gi 183225744 dbj BAG26261.1 threonyl-tRNA synthase [Lactobacillus reuteri JCM 1112]	33	25	23	24	26	23	47.8	71.776	627
>gi 194454660 gb EDX43557.1 methionyl-tRNA synthetase [Lactobacillus reuteri 100-23]	33	29	23	22	29	21	53.6	76.583	675
>gi 337729319 emb CCC04448.1 ribonucleoside-diphosphate reductase alpha subunit [Lactobacillus reuteri ATCC 53608]	34	23	22	21	27	20	56.8	82.667	723
>gi 148532121 gb ABQ84120.1 lysyl aminopeptidase, Metallo peptidase, MEROPS family M01 [Lactobacillus reuteri DSM 20016]	34	27	28	27	31	27	42.3	95.323	843
>gi 227071019 gb EEI09341.1 bifunctional GMP synthase/glutamine amidotransferase protein [Lactobacillus reuteri MM2-3]	34	29	24	27	23	25	56.1	59.912	538
>gi 337729108 emb CCC04231.1 alanyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	35	27	30	30	28	26	44.8	98.679	884
>gi 337728287 emb CCC03382.1 translation elongation factor G [Lactobacillus reuteri ATCC 53608]	35	29	28	25	28	21	57.4	76.758	695
>gi 148530972 gb ABQ82971.1 chaperone protein DnaK [Lactobacillus reuteri DSM 20016]	37	19	11	19	22	16	60.4	67.211	621
>gi 148530481 gb ABQ82480.1 methionyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	37	31	28	26	33	24	60.7	76.638	675
>gi 148530594 gb ABQ82593.1 ribonucleoside-diphosphate reductase class Ib alpha subunit	38	26	29	26	33	26	59.2	82.738	723

[Lactobacillus reuteri DSM 20016]									
>gi 227184598 gb EEI64669.1 phosphoketolase [Lactobacillus reuteri CF48-3A]	38	33	29	31	37	32	43.2	91.435	803
>gi 148530417 gb ABQ82416.1 IMP cyclohydrolase [Lactobacillus reuteri DSM 20016]	39	26	28	26	32	20	70.5	57.032	512
>gi 148530592 gb ABQ82591.1 alcohol dehydrogenase AdhE / acetaldehyde dehydrogenase [Lactobacillus reuteri DSM 20016]	39	33	30	34	35	32	43.8	97.187	878
>gi 337729321 emb CCC04450.1 aldehyde-alcohol dehydrogenase [Lactobacillus reuteri ATCC 53608]	39	34	25	29	32	28	42	97.181	878
>gi 183224518 dbj BAG25035.1 alanyl-tRNA synthase [Lactobacillus reuteri JCM 1112]	40	30	35	34	31	30	49.4	98.648	885
>gi 145202295 gb ABF06651.2 pyruvate kinase [Lactobacillus reuteri]	40	32	34	33	33	27	76.7	51.853	473
>gi 337728521 emb CCC03625.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri ATCC 53608]	41	36	36	32	37	30	75.5	56.355	493
>gi 194452990 gb EDX41888.1 chaperonin GroEL [Lactobacillus reuteri 100-23]	43	32	25	33	38	29	79	57.092	542
>gi 337728005 emb CCC03094.1 isoleucyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	43	33	28	35	37	27	36.8	106.67	931
>gi 183224381 dbj BAG24898.1 phosphoglycerate kinase [Lactobacillus reuteri JCM 1112]	43	34	33	36	36	32	85	42.96	401
>gi 337727862 emb CCC02950.1 30S ribosomal protein S1 [Lactobacillus reuteri ATCC 53608]	43	36	32	33	36	33	76.4	45.982	416
>gi 148531028 gb ABQ83027.1 SSU ribosomal protein S1P [Lactobacillus reuteri DSM 20016]	43	36	34	35	36	34	76.4	45.995	416
>gi 148531733 gb ABQ83732.1 translation elongation factor 2 (EF-2/EF-G) [Lactobacillus reuteri DSM 20016]	43	36	36	34	37	29	67.9	76.77	695
>gi 227070837 gb EEI09162.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri MM2-3]	43	38	39	35	40	33	78.8	56.713	496
>gi 148530624 gb ABQ82623.1 chaperonin GroEL [Lactobacillus reuteri DSM 20016]	44	33	26	34	39	30	78.2	57.123	542
>gi 148531571 gb ABQ83570.1 hypothetical protein Lreu_1313 [Lactobacillus reuteri DSM 20016]	46	30	31	30	33	30	71.7	64.749	566
>gi 148530866 gb ABQ82865.1 Isoleucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	47	36	32	39	41	31	39.2	109.95	960
>gi 148530773 gb ABQ82772.1 valyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	47	40	41	38	43	38	50.3	102.29	884
>gi 337728522 emb CCC03626.1 6-phosphogluconate dehydrogenase [Lactobacillus reuteri ATCC 53608]	50	43	37	37	44	37	92.7	53.444	478
>gi 183225653 dbj BAG26170.1 6-phosphogluconate dehydrogenase [Lactobacillus reuteri JCM 1112]	51	44	39	38	45	38	92.7	53.417	478
>gi 337728440 emb CCC03541.1 xylulose 5-phosphate phosphoketolase [Lactobacillus reuteri ATCC 53608]	54	48	43	42	52	43	62.1	91.372	803
>gi 194454221 gb EDX43118.1 Phosphoketolase [Lactobacillus reuteri 100-23]	54	48	44	44	52	45	60.1	91.374	803
>gi 148531926 gb ABQ83925.1 Phosphoketolase [Lactobacillus reuteri DSM 20016]	54	49	45	44	52	44	62.1	91.403	803
>gi 183225401 dbj BAG25918.1 DNA-directed RNA polymerase beta subunit [Lactobacillus reuteri JCM 1112]	55	46	43	43	49	41	48.5	135.36	1205
>gi 227185605 gb EEI65676.1 DNA-directed RNA polymerase [Lactobacillus reuteri CF48-3A];	65	45	46	45	54	50	46.1	135.39	1211

>gi 148531738 gb ABQ83737.1 DNA-directed RNA polymerase subunit beta [Lactobacillus reuteri DSM 20016]	66	45	48	47	55	51	46.7	135.42	1211
>gi 148530322 gb ABQ82321.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016]	71	61	56	58	68	56	79.2	82.305	745
>gi 337728095 emb CCC03185.1 methionyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	32	28	22	21	28	19	55	76.572	675
>gi 148530410 gb ABQ82409.1 phosphoribosylaminoimidazole-succinocarboxamide synthase [Lactobacillus reuteri DSM 20016]	23	17	21	15	16	6	73.6	27.308	239
>gi 148530492 gb ABQ82491.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM 20016]	15	10	12	13	12	12	40.7	36.16	329
>gi 148531725 gb ABQ83724.1 LSU ribosomal protein L22P [Lactobacillus reuteri DSM 20016]	9	9	9	6	9	9	61.7	12.394	115
>gi 148530650 gb ABQ82649.1 alpha-phosphoglucomutase [Lactobacillus reuteri DSM 20016]	26	20	23	20	23	18	47	63.706	574
>gi 194453644 gb EDX42541.1 glutamine synthetase, type I [Lactobacillus reuteri 100-23]	25	21	22	20	21	19	57.5	50.84	447
>gi 148531706 gb ABQ83705.1 SSU ribosomal protein S13P [Lactobacillus reuteri DSM 20016]	16	14	15	13	14	15	60.3	13.687	121
>gi 148531009 gb ABQ83008.1 aminotransferase [Lactobacillus reuteri DSM 20016]	20	13	16	16	17	17	49	43.107	394
>gi 148531526 gb ABQ83525.1 protein of unknown function DUF964 [Lactobacillus reuteri DSM 20016]	15	12	14	10	14	12	91.9	14.096	123
>gi 148530555 gb ABQ82554.1 putative nicotinate phosphoribosyltransferase [Lactobacillus reuteri DSM 20016]	21	17	15	14	15	17	47.3	55.609	488
>gi 148530580 gb ABQ82579.1 LSU ribosomal protein L1P [Lactobacillus reuteri DSM 20016]	17	12	10	8	12	13	45.8	27.362	253
>gi 227070018 gb EEI08398.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3]	12	10	11	9	10	11	70.9	15.313	134
>gi 133930433 gb ABO43788.1 ribosomal protein L15 [Lactobacillus reuteri]	14	12	13	9	12	10	69.4	15.516	144
>gi 227186353 gb EEI66424.1 membrane alanyl aminopeptidase [Lactobacillus reuteri CF48-3A]	26	21	21	21	22	22	31.6	95.388	843
>gi 148530679 gb ABQ82678.1 phosphoglycosamine mutase [Lactobacillus reuteri DSM 20016]	18	14	11	12	11	9	47.2	48.902	451
>gi 148531932 gb ABQ83931.1 (R)-2-hydroxyisocaproate dehydrogenase [Lactobacillus reuteri DSM 20016]	22	15	17	17	16	15	69.8	37.358	334
>gi 269930518 gb ACZ5329.1 phosphoketolase [Lactobacillus reuteri]	15	13	12	11	15	11	87.3	21.654	189
>gi 269930626 gb ACZ53583.1 phosphoketolase [Lactobacillus reuteri]	15	13	12	10	15	10	92.1	21.656	189
>gi 183225128 dbj BAG25645.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	17	12	12	13	13	14	49.2	35.441	297
>gi 148531898 gb ABQ83897.1 Inosine/uridine-prefering nucleoside hydrolase [Lactobacillus reuteri DSM 20016]	8	6	7	7	6	7	30.6	34.905	320
>gi 148530950 gb ABQ82949.1 SSU ribosomal protein S2P [Lactobacillus reuteri DSM 20016]	20	17	15	15	14	16	78.2	29.657	262
>gi 148531171 gb ABQ83170.1 L-lactate dehydrogenase [Lactobacillus reuteri DSM 20016]	19	15	14	15	14	13	45.7	35.005	324
>gi 337727880 emb CCC02968.1 amino acid aminotransferase [Lactobacillus reuteri ATCC 53608]	18	11	12	13	14	14	47	43.078	394
>gi 148531464 gb ABQ83463.1 glucokinase [Lactobacillus reuteri DSM 20016]	13	9	10	12	11	9	34.4	34.42	323
>gi 148530610 gb ABQ82609.1 UDP-galactose 4-epimerase [Lactobacillus reuteri DSM 20016]	16	11	8	7	13	9	54.4	36.598	331

	21	14	15	15	19	17	50	50.13	464
>gi 148531776 gb ABQ83775.1 flavocytochrome c [Lactobacillus reuteri DSM 20016]									
>gi 227186110 gb EEI66181.1 protein of hypothetical function DUF964 [Lactobacillus reuteri CF48-3A]	12	12	11	9	12	10	91.9	14.126	123
>gi 148531709 gb ABQ83708.1 Adenylate kinase [Lactobacillus reuteri DSM 20016]	16	12	12	12	10	10	73.5	24.609	219
>gi 148530419 gb ABQ82418.1 phosphoglycerate mutase [Lactobacillus reuteri DSM 20016]	14	12	14	13	12	13	45.6	26.121	228
>gi 337728628 emb CCC03738.1 aminopeptidase N [Lactobacillus reuteri ATCC 53608]	26	21	20	19	22	20	31.6	95.484	843
>gi 148530736 gb ABQ82735.1 ATP synthase F1 subcomplex beta subunit [Lactobacillus reuteri DSM 20016]	21	17	14	13	17	15	58.5	51.631	475
>gi 148530959 gb ABQ82958.1 prolyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	29	22	18	21	21	17	53.6	64.256	577
>gi 148530771 gb ABQ82770.1 aminotransferase, class V [Lactobacillus reuteri DSM 20016]	22	13	17	16	13	16	49.5	42.097	382
>gi 148530951 gb ABQ82950.1 translation elongation factor Ts (EF-Ts) [Lactobacillus reuteri DSM 20016]	23	14	14	15	16	19	57.7	31.962	291
>gi 148531543 gb ABQ83542.1 ribokinase [Lactobacillus reuteri DSM 20016]	15	13	11	11	13	10	54.7	32.041	307
>gi 148531713 gb ABQ83712.1 SSU ribosomal protein S5P [Lactobacillus reuteri DSM 20016]	18	16	17	17	17	17	82.2	17.646	169
>gi 148530918 gb ABQ82917.1 trigger factor [Lactobacillus reuteri DSM 20016]	30	26	20	21	23	20	59.9	48.747	436
>gi 148531777 gb ABQ83776.1 fumarate lyase [Lactobacillus reuteri DSM 20016]	23	17	17	14	16	18	61	50.312	462
>gi 148530389 gb ABQ82388.1 inosine-5-monophosphate dehydrogenase [Lactobacillus reuteri DSM 20016]	16	14	12	11	14	12	56.1	39.373	380
>gi 148531734 gb ABQ83733.1 SSU ribosomal protein S7P [Lactobacillus reuteri DSM 20016]	15	14	14	11	14	12	63.5	17.985	156
>gi 148531715 gb ABQ83714.1 LSU ribosomal protein L6P [Lactobacillus reuteri DSM 20016]	16	14	15	14	13	12	58.4	19.635	178
>gi 148531102 gb ABQ83101.1 hypothetical protein Lreu_0838 [Lactobacillus reuteri DSM 20016]	22	15	15	17	19	18	48.3	39.346	358
>gi 227070899 gb EEI09222.1 D-lactate dehydrogenase [Lactobacillus reuteri MM2-3]	12	4	7	10	7	9	46.3	37.311	337
>gi 148532070 gb ABQ84069.1 histidyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	21	17	15	15	18	17	41.6	49.318	433
>gi 148531517 gb ABQ83516.1 YSIRK Gram-positive signal peptide [Lactobacillus reuteri DSM 20016]	10	8	9	9	9	9	33.8	35.991	328
>gi 148531730 gb ABQ83729.1 LSU ribosomal protein L3P [Lactobacillus reuteri DSM 20016]	16	13	16	11	12	13	74	23.757	219
>gi 148530755 gb ABQ82754.1 UspA domain protein [Lactobacillus reuteri DSM 20016]	17	11	16	12	11	11	87	18.017	162
>gi 148530642 gb ABQ82641.1 UDP-glucose pyrophosphorylase [Lactobacillus reuteri DSM 20016]	12	10	9	10	10	11	44.1	34.101	304
>gi 148532032 gb ABQ84031.1 cysteine synthase [Lactobacillus reuteri DSM 20016]	17	12	11	13	8	13	62.2	32.241	307
>gi 148530861 gb ABQ82860.1 cell division protein FtsZ [Lactobacillus reuteri DSM 20016]	19	15	12	13	12	14	48.4	44.45	415
>gi 148530501 gb ABQ82500.1 CTP synthase [Lactobacillus reuteri DSM 20016]	24	15	16	19	17	16	44.6	59.6	534
>gi 148531108 gb ABQ83107.1 hypothetical protein Lreu_0844 [Lactobacillus reuteri DSM 20016]	10	6	9	8	9	10	71.3	20.426	181

>gi 337727883 emb CCC02971.1 glycyl-tRNA synthase beta subunit [Lactobacillus reuteri ATCC 53608]	28	25	21	20	23	19	44	78.605	691
>gi 148531554 gb ABQ83553.1 methionine adenosyltransferase [Lactobacillus reuteri DSM 20016]	16	8	10	11	8	11	39.7	43.195	395
>gi 183227647 dbj BAG28163.1 dehydrogenase [Lactobacillus fermentum IFO 3956]	6	4	5	6	5	5	25.9	35.835	336
>gi 148530919 gb ABQ82918.1 ATP-dependent Clp protease ATP-binding subunit ClpX [Lactobacillus reuteri DSM 20016]	24	14	13	14	15	18	58.4	45.969	416
>gi 148530340 gb ABQ82339.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri DSM 20016]	15	11	10	13	10	13	49.7	32.62	288
>gi 227186142 gb EEI66213.1 S-adenosylmethionine synthetase [Lactobacillus reuteri CF48-3A]	15	9	9	10	8	10	38	43.222	395
>gi 148530778 gb ABQ82777.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016]	17	13	8	12	14	11	41.6	44.031	404
>gi 148530584 gb ABQ82583.1 LSU ribosomal protein L10P [Lactobacillus reuteri DSM 20016]	11	10	11	11	11	10	68.7	18.139	166
>gi 148531929 gb ABQ83928.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016]	25	21	16	15	14	17	60.3	54.294	478
>gi 337729082 emb CCC04205.1 acetate kinase [Lactobacillus reuteri ATCC 53608]	12	7	8	5	9	5	41.2	43.41	398
>gi 148530734 gb ABQ82733.1 ATP synthase F1 subcomplex alpha subunit [Lactobacillus reuteri DSM 20016]	24	19	16	16	21	19	40.7	55.226	509
>gi 148530593 gb ABQ82592.1 ribonucleoside-diphosphate reductase class Ib beta subunit [Lactobacillus reuteri DSM 20016]	15	12	11	11	11	13	44.5	39.248	339
>gi 227070649 gb EEI08979.1 1,3-propanediol dehydrogenase [Lactobacillus reuteri MM2-3]	19	14	15	11	17	14	57.8	44.01	405
>gi 148530684 gb ABQ82683.1 Cof-like hydrolase [Lactobacillus reuteri DSM 20016]	10	8	7	5	8	7	44.8	30.206	268
>gi 148530579 gb ABQ82578.1 LSU ribosomal protein L11P [Lactobacillus reuteri DSM 20016]	14	12	12	10	12	10	61.7	14.869	141
>gi 148530680 gb ABQ82679.1 glutamine--fructose-6-phosphate transaminase [Lactobacillus reuteri DSM 20016]	24	18	17	20	18	14	46.9	66.611	606
>gi 148530542 gb ABQ82541.1 lysyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	31	25	20	19	26	21	46.9	58.296	508
>gi 148531729 gb ABQ83728.1 LSU ribosomal protein L4P [Lactobacillus reuteri DSM 20016]	9	7	8	6	5	6	53.6	22.29	207
>gi 148530494 gb ABQ82490.1 UDP-N-acetylglucosamine pyrophosphorylase [Lactobacillus reuteri DSM 20016]	18	11	13	9	10	6	48.6	50.01	455
>gi 183225183 dbj BAG25700.1 ligase [Lactobacillus reuteri JCM 1112]	17	13	13	13	12	11	48.1	49.294	441
>gi 227186160 gb EEI66231.1 possible peptidoglycan-binding protein [Lactobacillus reuteri CF48-3A]	7	3	5	6	4	4	33.1	27.744	266
>gi 148530567 gb ABQ82566.1 amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016]	24	19	13	15	20	16	59.7	28.516	263
>gi 148530455 gb ABQ82454.1 Substrate-binding region of ABC-type glycine betaine transport system [Lactobacillus reuteri DSM 20016]	20	13	10	10	12	12	61.2	32.953	299
>gi 148530288 gb ABQ82287.1 LSU ribosomal protein L9P [Lactobacillus reuteri DSM 20016]	15	11	12	12	11	10	65.3	16.692	150

	21	9	6	9	12	9	29	67.123	618
>gi 183226571 dbj BAG27087.1 heat shock protein DnaK [Lactobacillus fermentum IFO 3956]									
>gi 183226183 dbj BAG26699.1 glyceraldehyde 3-phosphate dehydrogenase [Lactobacillus fermentum IFO 3956]	10	8	8	9	8	7	25.5	36.208	337
>gi 148531037 gb ABQ83036.1 degV family protein [Lactobacillus reuteri DSM 20016]	16	11	14	12	11	13	60	30.742	280
>gi 148531050 gb ABQ83049.1 Inorganic diphosphatase [Lactobacillus reuteri DSM 20016]	12	8	11	9	9	8	37	34.194	311
>gi 148531450 gb ABQ83449.1 LSU ribosomal protein L21P [Lactobacillus reuteri DSM 20016]	10	8	6	5	8	9	73.5	11.256	102
>gi 148531692 gb ABQ83691.1 ATP-dependent DNA helicase PcrA [Lactobacillus reuteri DSM 20016]	21	15	13	14	16	15	35.7	86.29	757
>gi 183225283 dbj BAG25800.1 putative autolysin [Lactobacillus reuteri JCM 1112]	12	7	5	5	7	8	33.1	60.393	532
>gi 148530740 gb ABQ82739.1 cell shape determining protein, MreB/Mrl family [Lactobacillus reuteri DSM 20016]	15	11	8	11	10	13	44.2	35.48	330
>gi 148531505 gb ABQ83504.1 DNA polymerase I [Lactobacillus reuteri DSM 20016]	28	21	19	14	24	17	32.2	100.78	888
>gi 148531486 gb ABQ83485.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016]	18	13	15	12	15	12	56.1	26.33	228
>gi 148530409 gb ABQ82408.1 Adenylosuccinate lyase [Lactobacillus reuteri DSM 20016]	22	15	17	19	16	13	52.9	49.454	431
>gi 148531824 gb ABQ83823.1 translation elongation factor P (EF-P) [Lactobacillus reuteri DSM 20016]	13	13	11	11	11	11	60	20.518	185
>gi 148531585 gb ABQ83584.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016]	27	17	17	21	20	16	42.4	81.867	734
>gi 148530811 gb ABQ82810.1 non-canonical purine NTP pyrophosphatase, rdgB/HAM1 family [Lactobacillus reuteri DSM 20016]	13	12	12	10	9	7	80.5	21.286	195
>gi 194454505 gb EDX43402.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri 100-23]	14	10	9	12	9	12	43.8	32.469	288
>gi 183225729 dbj BAG26246.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	11	7	11	8	9	8	69.2	19.891	169
>gi 148530835 gb ABQ82834.1 hypothetical protein Lreu_0566 [Lactobacillus reuteri DSM 20016]	11	9	9	8	8	8	52.1	18.628	163
>gi 148530865 gb ABQ82864.1 DivIVA family protein [Lactobacillus reuteri DSM 20016]	17	10	9	8	9	11	47.2	27.591	246
>gi 148530646 gb ABQ82645.1 thioredoxin reductase [Lactobacillus reuteri DSM 20016]	11	7	7	10	8	9	41.6	33.305	310
>gi 148530962 gb ABQ82961.1 NusA antitermination factor [Lactobacillus reuteri DSM 20016]	11	9	8	9	9	8	31.4	44.525	395
>gi 148531641 gb ABQ83640.1 oxidoreductase domain protein [Lactobacillus reuteri DSM 20016]	9	8	8	9	9	8	28.3	38.272	339
>gi 183226006 dbj BAG26522.1 methionyl-tRNA synthase [Lactobacillus fermentum IFO 3956]	9	5	6	4	5	6	13.8	74.982	666
>gi 148530953 gb ABQ82952.1 ribosome recycling factor [Lactobacillus reuteri DSM 20016]	12	8	10	9	11	6	67.4	20.783	187
>gi 227071142 gb EEI09458.1 acetoin dehydrogenase [Lactobacillus reuteri MM2-3]	10	8	9	7	7	5	55.8	28.157	267
>gi 148530952 gb ABQ82951.1 uridylate kinase [Lactobacillus reuteri DSM 20016]	12	10	10	10	8	8	43.8	25.876	240
>gi 148531003 gb ABQ83002.1 GTP-binding protein Era [Lactobacillus reuteri DSM 20016]	10	9	8	7	7	8	36.2	33.79	301
>gi 148530283 gb ABQ82282.1 DNA gyrase subunit A [Lactobacillus reuteri DSM 20016]	31	24	19	21	26	25	39.8	92.891	834

>gi 148531724 gb ABQ83723.1 SSU ribosomal protein S3P [Lactobacillus reuteri DSM 20016]	17	16	13	13	14	13	58.4	24.696	221
>gi 148530413 gb ABQ82412.1 phosphoribosylformylglycinamidine synthase subunit II [Lactobacillus reuteri DSM 20016]	17	10	9	10	13	4	30.9	80.944	742
>gi 148531658 gb ABQ83657.1 nitroreductase [Lactobacillus reuteri DSM 20016]	9	5	6	6	8	6	49.3	24.752	217
>gi 183225222 dbj BAG25739.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	11	9	11	10	8	9	67.6	18.557	170
>gi 148531704 gb ABQ83703.1 DNA-directed RNA polymerase subunit alpha [Lactobacillus reuteri DSM 20016]	18	14	11	10	13	14	42	34.901	314
>gi 148530846 gb ABQ82845.1 6-phosphogluconolactonase [Lactobacillus reuteri DSM 20016]	15	9	10	12	14	12	52	37.901	342
>gi 183225901 dbj BAG26417.1 inosine-5-monophosphate dehydrogenase [Lactobacillus fermentum IFO 3956]	7	6	7	5	6	4	22.4	39.708	380
>gi 227071794 gb EEI10083.1 glycero kinase [Lactobacillus reuteri MM2-3]	15	8	6	7	8	10	28.7	62.132	575
>gi 148531728 gb ABQ83727.1 LSU ribosomal protein L23P [Lactobacillus reuteri DSM 20016]	11	8	11	9	10	9	79.6	11.25	98
>gi 183224807 dbj BAG25324.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	12	4	3	9	8	9	35.6	43.954	413
>gi 148530695 gb ABQ82694.1 ornithine carbamoyltransferase [Lactobacillus reuteri DSM 20016]	17	12	11	11	12	12	43	37.559	335
>gi 183226422 dbj BAG26938.1 GTP-binding protein [Lactobacillus fermentum IFO 3956]	15	12	11	12	15	13	22.4	68.695	615
>gi 194454225 gb EDX43122.1 peptidase U34 dipeptidase [Lactobacillus reuteri 100-23]	22	18	14	12	13	15	49.6	54.429	478
>gi 148531722 gb ABQ83721.1 LSU ribosomal protein L29P [Lactobacillus reuteri DSM 20016]	5	5	4	2	4	4	58.8	8.0041	68
>gi 183226702 dbj BAG27218.1 DNA-binding protein [Lactobacillus fermentum IFO 3956]	6	6	5	4	6	5	63.7	9.5519	91
>gi 148531027 gb ABQ83026.1 cytidylate kinase [Lactobacillus reuteri DSM 20016]	15	10	12	11	11	11	69.7	25.015	228
>gi 148530344 gb ABQ82343.1 guanosine monophosphate reductase [Lactobacillus reuteri DSM 20016]	12	8	7	7	7	9	33.3	35.96	324
>gi 148530769 gb ABQ82768.1 SSU ribosomal protein S4P [Lactobacillus reuteri DSM 20016]	20	17	16	15	17	18	66.7	22.943	201
>gi 227070613 gb EEI08943.1 possible asparagine synthase (glutamine-hydrolyzing) [Lactobacillus reuteri MM2-3]	28	21	21	20	24	20	37.3	76.34	652
>gi 183225853 dbj BAG26369.1 ATP-dependent Clp protease ATP-binding subunit [Lactobacillus fermentum IFO 3956]	9	8	6	5	9	6	11.8	76.678	697
>gi 148530284 gb ABQ82283.1 SSU ribosomal protein S6P [Lactobacillus reuteri DSM 20016]	10	9	9	8	10	8	92.9	11.378	98
>gi 148531553 gb ABQ83552.1 leucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	23	17	16	18	21	16	28.8	92.918	806
>gi 183226626 dbj BAG27142.1 L-lactate dehydrogenase [Lactobacillus fermentum IFO 3956]	6	6	5	5	5	5	18.3	33.736	317
>gi 148532158 gb ABQ84157.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016]	9	7	9	8	6	5	47.2	20.407	178
>gi 148530724 gb ABQ82723.1 serine hydroxymethyltransferase [Lactobacillus reuteri DSM 20016]	15	14	12	10	14	11	34.3	44.95	411
>gi 148531687 gb ABQ83686.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B [Lactobacillus reuteri DSM 20016]	22	14	13	13	14	13	48.3	53.424	474

>gi 148531720 gb ABQ83719.1 LSU ribosomal protein L14P [Lactobacillus reuteri DSM 20016]	10	9	10	8	8	8	66.4	13.144	122
>gi 227071143 gb EEI09459.1 ribosomal protein S9 [Lactobacillus reuteri MM2-3]	10	10	8	7	10	9	66.9	14.494	133
>gi 148530367 gb ABQ82366.1 NADPH-dependent FMN reductase [Lactobacillus reuteri DSM 20016]	12	10	12	10	11	8	36.8	45.674	416
>gi 148531899 gb ABQ83898.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016]	16	10	11	7	8	9	68.1	26.924	251
>gi 148530597 gb ABQ82596.1 DNA polymerase III, subunits gamma and tau [Lactobacillus reuteri DSM 20016]	9	4	5	5	8	3	17.2	68.85	611
>gi 148531323 gb ABQ83322.1 glycerol kinase [Lactobacillus reuteri DSM 20016]	9	6	6	5	5	7	19.2	55.388	500
>gi 148530634 gb ABQ82633.1 SSU ribosomal protein S30P [Lactobacillus reuteri DSM 20016]	6	6	6	5	6	4	37.4	21.144	182
>gi 148530387 gb ABQ82386.1 purine nucleoside phosphorylase [Lactobacillus reuteri DSM 20016]	8	8	6	7	5	7	41.1	25.751	236
>gi 227070055 gb EEI08433.1 GTP-binding protein EngA [Lactobacillus reuteri MM2-3]	13	9	9	10	11	10	30.5	49.465	440
>gi 337728993 emb CCC04113.1 hypoxanthine-guanine phosphoribosyltransferase [Lactobacillus reuteri ATCC 53608]	9	6	9	8	6	4	47.2	20.349	178
>gi 148530685 gb ABQ82684.1 Peptidoglycan-binding LysM [Lactobacillus reuteri DSM 20016]	9	7	8	8	7	7	36.9	21.661	203
>gi 183224273 dbj BAG24790.1 transcription accessory protein [Lactobacillus reuteri JCM 1112];	19	14	15	11	15	14	31.2	82.072	727
>gi 148531705 gb ABQ83704.1 SSU ribosomal protein S11P [Lactobacillus reuteri DSM 20016];	5	5	5	5	4	5	32.6	13.759	129
>gi 148531448 gb ABQ83447.1 LSU ribosomal protein L27P [Lactobacillus reuteri DSM 20016];	8	5	8	6	7	6	60.2	9.9211	93
>gi 148531114 gb ABQ83113.1 hypothetical protein Lreu_0850 [Lactobacillus reuteri DSM 20016];	7	6	6	4	7	6	75.6	10.169	90
>gi 148530453 gb ABQ82452.1 3-beta hydroxysteroid dehydrogenase/isomerase [Lactobacillus reuteri DSM 20016];	9	8	9	7	8	8	40.1	31.632	284
>gi 148531583 gb ABQ83582.1 Phosphotransferase system, phosphocarrier protein HPr [Lactobacillus reuteri DSM 20016];	7	6	7	4	6	4	56.8	9.4076	88
>gi 148531727 gb ABQ83726.1 LSU ribosomal protein L2P [Lactobacillus reuteri DSM 20016];	21	17	18	16	17	19	69.8	30.47	281
>gi 148531731 gb ABQ83730.1 SSU ribosomal protein S10P [Lactobacillus reuteri DSM 20016];>gi 148544697 ref YP_001272067.1 30S ribosomal protein S10 [Lactobacillus reuteri DSM 20016];>gi 166991569 sp A5VLK6.1 RS10_LACRD RecName: Full=30S ribosomal protein	12	12	9	7	10	10	67.6	11.777	102
>gi 148530343 gb ABQ82342.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016]	10	9	9	9	9	8	24.5	49.604	449
>gi 148530566 gb ABQ82565.1 amino acid ABC transporter ATP-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];	11	7	8	4	7	8	52.6	27.538	249
>gi 148531225 gb ABQ83224.1 hypothetical protein Lreu_0962 [Lactobacillus reuteri DSM 20016]	16	9	10	9	12	7	23.8	88.735	774
>gi 227071698 gb EEI09989.1 phosphoesterase [Lactobacillus reuteri MM2-3]	7	6	6	6	7	7	37.5	19.857	176
>gi 148530877 gb ABQ82876.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM	13	10	10	12	12	10	38	36.06	324

20016]									
>gi 148530924 gb ABQ82923.1 GTP-binding protein Obg/CgtA [Lactobacillus reuteri DSM 20016];	22	16	11	12	16	15	56.6	47.975	438
>gi 148532124 gb ABQ84123.1 asparaginyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];	21	16	18	17	16	19	47	50.092	432
>gi 148531475 gb ABQ83474.1 phenylalanyl-tRNA synthetase beta subunit [Lactobacillus reuteri DSM 20016];	14	10	9	13	12	9	19.4	89.003	805
>gi 227071324 gb EEI09633.1 heat shock protein Hsp33 [Lactobacillus reuteri MM2-3];	14	10	9	9	9	12	53.9	35.232	323
>gi 148531494 gb ABQ83493.1 protein of unknown function UPF0044 [Lactobacillus reuteri DSM 20016];	5	5	4	3	5	5	62.1	11.655	103
>gi 227071790 gb EEI10079.1 ribulose-5-phosphate 3-epimerase [Lactobacillus reuteri MM2-3];	8	4	6	4	4	6	23.4	25.102	231
>gi 337729037 emb CCC04160.1 aminotransferase [Lactobacillus reuteri ATCC 53608];	16	11	11	9	11	11	43.6	43.766	397
>gi 148530370 gb ABQ82369.1 seryl-tRNA synthetase [Lactobacillus reuteri DSM 20016];	14	12	10	11	10	11	32.6	49.29	435
>gi 227070129 gb EEI08505.1 D-tyrosyl-tRNA(Tyr) deacylase [Lactobacillus reuteri MM2-3];	7	7	7	3	5	3	57.9	17.733	159
>gi 148530819 gb ABQ82818.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016];	13	12	8	8	10	10	44.6	36.722	336
>gi 148531721 gb ABQ83720.1 SSU ribosomal protein S17P [Lactobacillus reuteri DSM 20016];	8	7	7	6	7	6	67	10.168	88
>gi 148530382 gb ABQ82381.1 GTP-binding protein YchF [Lactobacillus reuteri DSM 20016];	14	8	7	8	6	9	38.6	39.844	365
>gi 148530808 gb ABQ82807.1 thioredoxin [Lactobacillus reuteri DSM 20016];	7	7	6	6	7	7	62.5	11.889	104
>gi 183224298 dbj BAG24815.1 aminotransferase [Lactobacillus reuteri JCM 1112];	16	11	11	9	10	11	42	44.088	400
>gi 148530585 gb ABQ82584.1 LSU ribosomal protein L12P [Lactobacillus reuteri DSM 20016];	18	13	16	8	14	13	95	12.356	121
>gi 148530810 gb ABQ82809.1 glutamate racemase [Lactobacillus reuteri DSM 20016];	11	7	10	8	7	5	51.7	28.92	267
>gi 324978533 gb EGC15482.1 cysteine--tRNA ligase [Lactobacillus reuteri MM4-1A];	16	8	13	10	8	9	37.2	54.852	478
>gi 148530870 gb ABQ82869.1 methylthioadenosine nucleosidase [Lactobacillus reuteri DSM 20016];	8	3	7	4	3	4	39.4	24.687	231
>gi 183225282 dbj BAG25799.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];	11	7	7	8	7	10	24.9	49.015	438
>gi 148531735 gb ABQ83734.1 SSU ribosomal protein S12P [Lactobacillus reuteri DSM 20016];	9	9	6	6	8	8	38.8	15.503	139
>gi 148531549 gb ABQ83548.1 peptidase V, Metallo peptidase, MEROPS family M20A [Lactobacillus reuteri DSM 20016];	20	14	15	16	15	10	53.3	51.22	467
>gi 183227319 dbj BAG27835.1 50S ribosomal protein L18 [Lactobacillus fermentum IFO 3956];	7	7	6	6	7	7	45.5	13.301	121
>gi 227185831 gb EEI65902.1 nucleoside-triphosphatase [Lactobacillus reuteri CF48-3A]	9	8	7	8	5	4	60.5	21.213	195
>gi 148531869 gb ABQ83868.1 GTP-binding protein, HSR1-related [Lactobacillus reuteri DSM 20016];	11	8	10	10	10	8	31.1	47.758	425
>gi 148532009 gb ABQ84008.1 UspA domain protein [Lactobacillus reuteri DSM 20016];	12	9	12	9	9	8	74.7	17.199	154
>gi 194453762 gb EDX42659.1 Peptidoglycan-binding LysM [Lactobacillus reuteri 100-23];	6	3	4	5	3	3	25.7	27.902	269
>gi 148532168 gb ABQ84167.1 signal peptidase I [Lactobacillus reuteri DSM 20016];	9	7	7	6	7	5	41.3	22.703	201
>gi 148531417 gb ABQ83416.1 RNase III [Lactobacillus reuteri DSM 20016];	11	10	10	7	10	9	44.2	26.606	233

>gi 148530347 gb ABQ82346.1 Uracil phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];	10	9	8	8	8	8	69.3	20.252	179
>gi 148531497 gb ABQ83496.1 LSU ribosomal protein L20P [Lactobacillus reuteri DSM 20016];	9	8	9	5	9	7	46.2	13.515	117
>gi 148531439 gb ABQ83438.1 farnesyl-diphosphate synthase [Lactobacillus reuteri DSM 20016];	4	2	3	1	2	2	16.9	31.64	290
>gi 148530402 gb ABQ82401.1 cyclopropane-fatty-acyl-phospholipid synthase [Lactobacillus reuteri DSM 20016]	14	10	11	7	9	10	33.3	46.488	403
>gi 337728387 emb CCC03488.1 GTPases [Lactobacillus reuteri ATCC 53608]	10	7	8	8	9	7	28.7	47.753	425
>gi 194453681 gb EDX42578.1 ribosomal protein L20 [Lactobacillus reuteri 100-23];	9	8	8	5	8	7	46.2	13.545	117
>gi 227186201 gb EEI66272.1 response regulator [Lactobacillus reuteri CF48-3A];	9	7	7	5	7	7	43	26.602	237
>gi 148531061 gb ABQ83060.1 hypothetical protein Lreu_0797 [Lactobacillus reuteri DSM 20016];	4	4	2	2	4	3	20.4	31.07	285
>gi 148532037 gb ABQ84036.1 Endothelin-converting protein 1 [Lactobacillus reuteri DSM 20016];	22	10	10	13	11	14	30.4	72.39	634
>gi 148531183 gb ABQ83182.1 penicillin-binding protein, 1A family [Lactobacillus reuteri DSM 20016];	10	9	7	6	9	10	14.1	82.075	754
>gi 148530721 gb ABQ82720.1 bacterial peptide chain release factor 1 (bRF-1) [Lactobacillus reuteri DSM 20016];	18	11	13	15	12	14	47.5	41.287	362
>gi 148530772 gb ABQ82771.1 thiamine biosynthesis/tRNA modification protein Thil [Lactobacillus reuteri DSM 20016];	20	14	9	10	17	12	39.4	45.726	406
>gi 148531412 gb ABQ83411.1 SSU ribosomal protein S16P [Lactobacillus reuteri DSM 20016];	7	7	7	5	7	6	62.6	10.449	91
>gi 148531107 gb ABQ83106.1 hypothetical protein Lreu_0843 [Lactobacillus reuteri DSM 20016]	6	4	6	3	4	4	30.2	23.788	215
>gi 148530883 gb ABQ82882.1 dihydrodipicolinate synthase [Lactobacillus reuteri DSM 20016]	6	5	5	5	5	4	20.5	33.823	307
>gi 183224279 dbj BAG24796.1 putative lipase/esterase [Lactobacillus reuteri JCM 1112]	9	6	6	5	6	7	37.7	33.174	292
>gi 148530326 gb ABQ82325.1 DNA helicase/exodeoxyribonuclease V, subunit B [Lactobacillus reuteri DSM 20016]	25	17	17	16	19	16	19.9	143.74	1260
>gi 183224869 dbj BAG25386.1 cell division protein [Lactobacillus reuteri JCM 1112]	8	8	8	7	8	7	56.9	14.251	123
>gi 148531415 gb ABQ83414.1 signal recognition particle-docking protein FtsY [Lactobacillus reuteri DSM 20016]	18	13	14	9	14	11	37	55.604	508
>gi 112943316 gb ABI26304.1 predicted flavoprotein [Lactobacillus reuteri];	10	10	10	9	9	9	47.4	21.504	190
>gi 194452797 gb EDX41695.1 Inorganic diphosphatase [Lactobacillus reuteri 100-23];>gi 194467944 ref ZP_03073930.1 Inorganic diphosphatase [Lactobacillus reuteri 100-23];>gi 337727840 emb CCC02928.1 inorganic pyrophosphatase [Lactobacillus reuteri ATCC	12	8	10	8	9	7	37	34.18	311
>gi 148530279 gb ABQ82278.1 DNA polymerase III, beta subunit [Lactobacillus reuteri DSM 20016];	10	8	7	9	9	7	30.8	41.831	380
>gi 337728969 emb CCC04089.1 two-component response regulator [Lactobacillus reuteri ATCC	9	7	6	4	7	6	44.5	25.811	229

53608]									
>gi 148530514 gb ABQ82513.1 UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase [Lactobacillus reuteri DSM 20016];	10	5	7	5	6	7	28.5	50.527	459
>gi 183226118 dbj BAG26634.1 ornithine carbamoyltransferase [Lactobacillus fermentum IFO 3956];	7	6	5	6	7	4	18.9	37.095	333
>gi 148531756 gb ABQ83755.1 UspA domain protein [Lactobacillus reuteri DSM 20016];	9	7	8	6	7	6	55.1	17.57	158
>gi 148531407 gb ABQ83406.1 LSU ribosomal protein L19P [Lactobacillus reuteri DSM 20016];	15	13	13	14	14	14	56.2	14.824	128
>gi 148530556 gb ABQ82555.1 NH(3)-dependent NAD(+) synthetase [Lactobacillus reuteri DSM 20016];	10	6	7	6	6	6	47.3	30.54	275
>gi 148530564 gb ABQ82563.1 cystathionine gamma-lyase [Lactobacillus reuteri DSM 20016];	11	5	5	5	7	5	31.8	41.498	380
>gi 148530664 gb ABQ82663.1 RNase R [Lactobacillus reuteri DSM 20016];	21	14	14	13	20	14	26.1	91.867	801
>gi 183224806 dbj BAG25323.1 hypothetical protein [Lactobacillus reuteri JCM 1112];	8	3	6	3	8	8	49.7	21.08	183
>gi 148531690 gb ABQ83689.1 CamS sex pheromone cAM373 family protein [Lactobacillus reuteri DSM 20016];	11	3	7	4	6	8	36.1	40.775	371
>gi 112943099 gb ABI26296.1 single-stranded DNA-binding protein [Lactobacillus reuteri]	8	7	8	5	5	8	38.5	20.605	187
>gi 148530282 gb ABQ82281.1 DNA gyrase subunit B [Lactobacillus reuteri DSM 20016];	18	13	10	13	13	12	29	72.528	649
>gi 148531419 gb ABQ83418.1 phosphate:acyl-[acyl carrier protein] acyltransferase [Lactobacillus reuteri DSM 20016];	6	3	1	3	1	3	22.2	36.975	343
>gi 148530523 gb ABQ82522.1 D-alanine-activating enzyme [Lactobacillus reuteri DSM 20016];	12	7	6	10	11	6	24.4	55.989	508
>gi 148531918 gb ABQ83917.1 UspA domain protein [Lactobacillus reuteri DSM 20016];	7	4	6	4	5	5	55.5	17.168	155
>gi 148531570 gb ABQ83569.1 Peptidoglycan-binding LysM [Lactobacillus reuteri DSM 20016];	6	3	4	4	4	5	34	24.901	235
>gi 227071637 gb EEI09931.1 uracil phosphoribosyltransferase [Lactobacillus reuteri MM2-3];	11	9	10	9	9	8	48.9	24.512	221
>gi 148531434 gb ABQ83433.1 guanylate kinase [Lactobacillus reuteri DSM 20016];	7	5	5	4	6	4	33.5	23.546	206
>gi 227071240 gb EEI09554.1 possible glutathione-disulfide reductase [Lactobacillus reuteri MM2-3];	7	5	3	6	5	5	18.1	48.997	443
>gi 148530857 gb ABQ82856.1 UDP-N-acetylmuramoylalanine--D-glutamate ligase [Lactobacillus reuteri DSM 20016];	10	5	6	4	5	3	34.9	50.332	456
>gi 148531033 gb ABQ83032.1 ABC transporter related [Lactobacillus reuteri DSM 20016];	14	9	4	9	8	8	26.1	72.792	636
>gi 227071437 gb EEI09740.1 transcriptional antiterminator NusG [Lactobacillus reuteri MM2-3];	9	6	9	4	5	6	59.1	20.875	186
>gi 148530327 gb ABQ82326.1 Recombination helicase AddA [Lactobacillus reuteri DSM 20016];	32	22	26	25	25	21	23.9	159.71	1392
>gi 194453194 gb EDX42092.1 glutamate racemase [Lactobacillus reuteri 100-23];	9	7	8	6	5	4	33	29	267
>gi 183224141 dbj BAG24658.1 tyrosyl-tRNA synthase [Lactobacillus reuteri JCM 1112];	14	10	9	6	10	12	35	47.69	420
>gi 148530732 gb ABQ82731.1 ATP synthase F0 subcomplex B subunit [Lactobacillus reuteri DSM 20016];	6	3	5	2	3	3	34.9	19.254	172
>gi 148530418 gb ABQ82417.1 phosphoribosylamine--glycine ligase [Lactobacillus reuteri DSM 20016];	15	6	10	11	9	6	36.8	45.76	419

>gi 148530821 gb ABQ82820.1 protein of unknown function DUF28 [Lactobacillus reuteri DSM 20016]	7	4	6	5	5	5	28.6	27.161	248
>gi 148530781 gb ABQ82780.1 cell shape determining protein, MreB/Mrl family [Lactobacillus reuteri DSM 20016];	12	7	8	8	11	10	35.4	34.966	333
>gi 148531188 gb ABQ83187.1 putative RNA methylase [Lactobacillus reuteri DSM 20016];	12	7	9	7	7	8	29.6	44.845	398
>gi 148530874 gb ABQ82873.1 Phosphoglycerate mutase [Lactobacillus reuteri DSM 20016];	10	8	7	4	5	8	45	24.793	218
>gi 194454328 gb EDX43225.1 histidyl-tRNA synthetase [Lactobacillus reuteri 100-23]	16	11	12	13	12	12	40.9	48.223	425
>gi 148530899 gb ABQ82898.1 Dihydrolipoyllysine-residue succinyltransferase [Lactobacillus reuteri DSM 20016];	8	5	4	4	6	6	26.8	48.372	444
>gi 148530995 gb ABQ82994.1 Choloylglycine hydrolase [Lactobacillus reuteri DSM 20016];	11	10	7	8	6	7	50.2	36.104	325
>gi 148531491 gb ABQ83490.1 iojap-like protein [Lactobacillus reuteri DSM 20016];	5	3	4	1	3	4	30.5	13.309	118
>gi 148532087 gb ABQ84086.1 histidyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];	16	12	13	14	11	12	40.9	48.236	425
>gi 1667472 gb AAB53259.1 chloramphenicol acetyltransferase-TC [Lactobacillus reuteri]	5	5	4	4	4	4	22.7	27.351	238
>gi 148530526 gb ABQ82525.1 alanine racemase [Lactobacillus reuteri DSM 20016];	4	3	3	3	3	4	13.3	41.162	375
>gi 148530412 gb ABQ82411.1 phosphoribosylformylglycinamide synthase subunit I [Lactobacillus reuteri DSM 20016];	7	5	6	5	5	2	42.5	24.732	226
>gi 148531495 gb ABQ83494.1 Nitric-oxide synthase [Lactobacillus reuteri DSM 20016]	10	7	6	7	8	8	28.8	42.288	375
>gi 194453001 gb EDX41899.1 sigma 54 modulation protein/ribosomal protein S30EA [Lactobacillus reuteri 100-23]	5	4	4	3	5	3	35.7	21.176	182
>gi 183224883 gb BAG25400.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	8	5	8	4	4	3	60.2	20.834	181
>gi 148531698 gb ABQ83697.1 LSU ribosomal protein L13P [Lactobacillus reuteri DSM 20016];	14	11	12	10	13	12	65.3	16.304	147
>gi 148530415 gb ABQ82414.1 phosphoribosylformylglycinamide cyclo-ligase [Lactobacillus reuteri DSM 20016];	11	6	9	5	8	2	40.6	36.975	345
>gi 148530504 gb ABQ82503.1 LSU ribosomal protein L31P [Lactobacillus reuteri DSM 20016];	9	7	8	5	8	7	95.1	9.123	81
>gi 148531691 gb ABQ83690.1 DNA ligase, NAD-dependent [Lactobacillus reuteri DSM 20016]	20	13	11	13	14	18	35.9	76.002	680
>gi 227186428 gb EEI66499.1 mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri CF48-3A];	8	5	5	5	6	4	37.4	25.86	222
>gi 337728946 emb CCC04066.1 phosphoribosylformylglycinamide synthase I [Lactobacillus reuteri ATCC 53608];	7	5	5	4	4	2	42.5	24.714	226
>gi 148531057 gb ABQ83056.1 gluconate kinase, FGGY family [Lactobacillus reuteri DSM 20016]	13	10	9	11	11	9	31.2	55.417	509
>gi 148530885 gb ABQ82884.1 aminotransferase [Lactobacillus reuteri DSM 20016];	11	8	5	6	8	7	36.3	42.991	394
>gi 148530622 gb ABQ82621.1 CoA-binding domain protein [Lactobacillus reuteri DSM 20016];	14	10	12	8	8	9	57	23.939	214
>gi 183227331 gb BAG27847.1 30S ribosomal protein S19 [Lactobacillus fermentum IFO 3956];	9	8	9	5	8	9	57	10.489	93
>gi 148530569 gb ABQ82568.1 ribose-5-phosphate isomerase [Lactobacillus reuteri DSM 20016];	13	12	12	7	10	10	52	25.036	227
>gi 148530641 gb ABQ82640.1 glycerol 3-phosphate dehydrogenase (NAD(P)+) [Lactobacillus reuteri DSM 20016];	17	16	11	11	12	13	46.7	36.905	338

>gi 148531075 gb ABQ83074.1 RecT protein [Lactobacillus reuteri DSM 20016];	13	5	5	6	8	13	41.7	34.762	309
>gi 148530913 gb ABQ82912.1 SSU ribosomal protein S20P [Lactobacillus reuteri DSM 20016];	4	2	3	2	4	2	36.9	9.2436	84
>gi 183225285 dbj BAG25802.1 muramidase [Lactobacillus reuteri JCM 1112];	6	4	3	4	5	5	14.2	55.89	492
>gi 337727893 emb CCC02982.1 conjugated bile salt hydrolase [Lactobacillus reuteri ATCC 53608]	9	8	4	6	5	4	36.9	36.06	325
>gi 148530832 gb ABQ82831.1 HAD-superfamily subfamily IIA hydrolase like protein [Lactobacillus reuteri DSM 20016];	7	4	4	5	4	5	25.8	28.505	256
>gi 148530611 gb ABQ82610.1 peptidase M22, glycoprotease [Lactobacillus reuteri DSM 20016];	5	4	4	2	3	3	28.2	26.806	241
>gi 148530799 gb ABQ82798.1 protein translocase subunit yajC [Lactobacillus reuteri DSM 20016];	5	5	5	5	5	5	28.6	16.384	154
>gi 148530760 gb ABQ82759.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri DSM 20016];	5	5	5	4	4	5	45.2	15.166	135
>gi 148531622 gb ABQ83621.1 lipopolysaccharide biosynthesis protein [Lactobacillus reuteri DSM 20016];	4	2	3	1	4	2	23.4	22.766	209
>gi 183224808 dbj BAG25325.1 pantothenate metabolism flavoprotein [Lactobacillus reuteri JCM 1112];	5	2	1	2	3	4	17	44.905	401
>gi 148531723 gb ABQ83722.1 LSU ribosomal protein L16P [Lactobacillus reuteri DSM 20016];	7	6	6	5	6	6	42.4	16.006	144
>gi 183225457 dbj BAG25974.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];	5	5	4	4	5	4	26.8	20.101	179
>gi 148531131 gb ABQ83130.1 hypothetical protein Lreu_0867 [Lactobacillus reuteri DSM 20016];	11	9	10	6	8	9	60.4	10.576	91
>gi 148531141 gb ABQ83140.1 Purine nucleosidase [Lactobacillus reuteri DSM 20016];	5	3	4	3	4	4	23.9	34.734	314
>gi 148532166 gb ABQ84165.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];	11	5	5	8	7	7	34.1	32.371	287
>gi 148530735 gb ABQ82734.1 ATP synthase F1 subcomplex gamma subunit [Lactobacillus reuteri DSM 20016];	9	6	2	7	4	6	36	34.796	314
>gi 133930513 gb ABO43828.1 triosephosphate isomerase [Lactobacillus reuteri];	7	6	4	4	4	4	31.1	29.214	264
>gi 148532120 gb ABQ84119.1 NAD-dependent epimerase/dehydratase [Lactobacillus reuteri DSM 20016];	9	6	8	5	6	7	59.2	23.187	213
>gi 148530457 gb ABQ82456.1 ABC transporter related [Lactobacillus reuteri DSM 20016];	11	7	8	6	6	8	49.6	29.359	256
>gi 148531523 gb ABQ83522.1 PpiC-type peptidyl-prolyl cis-trans isomerase [Lactobacillus reuteri DSM 20016];	10	3	5	3	6	6	38.8	34.663	312
>gi 148530974 gb ABQ82973.1 GTP-binding protein LepA [Lactobacillus reuteri DSM 20016];	12	6	8	7	8	8	25.5	68.063	611
>gi 148531054 gb ABQ83053.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016]	10	9	9	4	7	7	81.9	13.85	127
>gi 148531034 gb ABQ83033.1 thymidylate synthase [Lactobacillus reuteri DSM 20016];	9	5	7	4	7	7	30.6	36.982	320
>gi 148531575 gb ABQ83574.1 ribonucleoside-triphosphate reductase class III catalytic subunit / ribonucleoside-triphosphate reductase [Lactobacillus reuteri DSM 20016]	24	10	14	6	18	17	32.3	85.159	744
>gi 148531479 gb ABQ83478.1 tRNA/rRNA methyltransferase (SpoU) [Lactobacillus reuteri DSM	6	3	6	3	4	3	30.6	28.31	258

20016];									
>gi 227071710 gb EEI10001.1 phosphoesterase [Lactobacillus reuteri MM2-3];	10	6	3	2	7	7	27.2	37.97	342
>gi 148532170 gb ABQ84169.1 UDP-N-acetylmuramyl-tripeptide synthetase [Lactobacillus reuteri DSM 20016];	13	7	7	7	10	9	30.6	57.457	516
>gi 148531941 gb ABQ83940.1 porphobilinogen synthase [Lactobacillus reuteri DSM 20016];	13	9	7	7	9	11	41.2	35.84	323
>gi 148531221 gb ABQ83220.1 1-deoxy-D-xylulose-5-phosphate synthase [Lactobacillus reuteri DSM 20016];	13	6	4	6	6	7	26.6	65.608	591
>gi 148532085 gb ABQ84084.1 carbohydrate kinase, YjeF related protein [Lactobacillus reuteri DSM 20016];	6	4	6	2	4	3	34	22.43	212
>gi 148530512 gb ABQ82511.1 LemA family protein [Lactobacillus reuteri DSM 20016];	9	9	8	5	7	6	50.3	21.33	189
>gi 148530623 gb ABQ82622.1 chaperonin Cpn10 [Lactobacillus reuteri DSM 20016]	9	6	8	2	7	6	67	10.149	94
>gi 112943728 gb ABI26320.1 fructose-2,6-bisphosphatase [Lactobacillus reuteri];	8	7	7	5	6	5	48.8	24.287	217
>gi 227070968 gb EEI09291.1 glutamate-1-semialdehyde 2,1-aminomutase [Lactobacillus reuteri MM2-3]	6	4	4	3	5	6	19.2	48.026	443
>gi 148530654 gb ABQ82653.1 Excinuclease ABC subunit A [Lactobacillus reuteri DSM 20016]	19	10	10	10	14	16	20.4	105.77	954
>gi 148530696 gb ABQ82695.1 carbamate kinase [Lactobacillus reuteri DSM 20016];	12	6	7	6	6	8	41.6	33.008	310
>gi 183227302 dbj BAG27818.1 30S ribosomal protein S9 [Lactobacillus fermentum IFO 3956]	5	4	4	3	5	4	31.3	14.285	131
>gi 148531005 gb ABQ83004.1 glycyl-tRNA synthetase alpha chain [Lactobacillus reuteri DSM 20016]	10	6	7	8	7	6	25.6	37.843	328
>gi 148532002 gb ABQ84001.1 NrdI family protein [Lactobacillus reuteri DSM 20016]	6	4	5	4	5	3	41.9	17.501	155
>gi 227069775 gb EEI08201.1 GDSL family lipase [Lactobacillus reuteri MM2-3];	7	4	5	5	5	6	24	42.852	384
>gi 148530668 gb ABQ82667.1 phosphotransacetylase [Lactobacillus reuteri DSM 20016];	13	7	9	8	12	7	45.7	34.699	324
>gi 148530868 gb ABQ82867.1 NUDIX hydrolase [Lactobacillus reuteri DSM 20016];	9	7	8	6	7	5	55.2	20.827	183
>gi 130893190 gb ABO32597.1 ATP-dependent Clp protease ATP-binding subunit ClpC [Lactobacillus reuteri];	20	10	6	5	12	18	27.5	92.89	830
>gi 227184502 gb EEI64573.1 phosphoribosylformylglycinamide cyclo-ligase [Lactobacillus reuteri CF48-3A];	10	5	7	3	7	1	34.5	37.031	345
>gi 148530788 gb ABQ82787.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016];	8	4	6	4	6	6	24.5	49.689	432
>gi 194453205 gb EDX42103.1 protein of unknown function DUF28 [Lactobacillus reuteri 100-23];	7	4	6	4	5	4	28.6	27.188	248
>gi 148530714 gb ABQ82713.1 arginine deiminase [Lactobacillus reuteri DSM 20016]; 1	15	10	11	12	12	10	34.4	46.242	410
>gi 148530503 gb ABQ82502.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016];	15	6	7	5	10	10	46.8	45.676	425
>gi 194454673 gb EDX43570.1 conserved hypothetical protein [Lactobacillus reuteri 100-23];	5	3	3	4	3	3	26.8	25.988	246
>gi 183225058 dbj BAG25575.1 phage major head protein [Lactobacillus reuteri JCM 1112];	7	4	3	4	3	5	19.3	43.887	394

>gi 148530963 gb ABQ82962.1 protein of unknown function DUF448 [Lactobacillus reuteri DSM 20016];	7	5	5	4	5	4	46	11.662	100
>gi 183224780 dbj BAG25297.1 hypothetical protein [Lactobacillus reuteri JCM 1112];	4	3	1	0	2	1	49.1	12.105	106
>gi 148531719 gb ABQ83718.1 LSU ribosomal protein L24P [Lactobacillus reuteri DSM 20016];	4	4	4	2	4	4	47.1	10.975	102
>gi 148531712 gb ABQ83711.1 LSU ribosomal protein L30P [Lactobacillus reuteri DSM 20016];	5	4	5	3	4	4	76.7	6.5566	60
>gi 227070988 gb EEI09311.1 precorrin-8X methylmutase [Lactobacillus reuteri MM2-3];	6	2	6	1	1	1	34.3	25.708	230
>gi 194453265 gb EDX42163.1 NLP/P60 protein [Lactobacillus reuteri 100-23];	4	3	3	3	4	3	7.8	48.822	477
>gi 148530538 gb ABQ82537.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];	10	5	8	7	6	6	53.3	20.464	180
>gi 227071376 gb EEI09682.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM2-3];	10	5	4	5	4	8	28	35.211	321
>gi 148531436 gb ABQ83435.1 DNA replication and repair protein RecN [Lactobacillus reuteri DSM 20016];	6	5	2	5	3	3	12.3	62.895	559
>gi 133930481 gb ABO43812.1 RuvA [Lactobacillus reuteri];	3	0	2	0	2	2	16.6	22.369	199
>gi 148530310 gb ABQ82309.1 pyrrole-5-carboxylate reductase [Lactobacillus reuteri DSM 20016];	5	1	5	1	3	2	24.1	29.38	270
>gi 148531444 gb ABQ83443.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016]	10	7	7	2	6	5	73.8	15.835	145
>gi 296313256 gb ACZ97544.2 D-alanine-D-alanine ligase [Lactobacillus reuteri]	4	3	3	3	3	3	16.6	33.684	301
>gi 183226359 dbj BAG26875.1 catabolite control protein [Lactobacillus fermentum IFO 3956]	5	4	3	4	3	5	14.1	37.084	340
>gi 227071420 gb EEI09725.1 FMN reductase [Lactobacillus reuteri MM2-3];	7	7	6	4	7	7	31.9	26.152	238
>gi 148531276 gb ABQ83275.1 thiamine-phosphate diphosphorylase [Lactobacillus reuteri DSM 20016]	10	6	9	4	5	5	40.5	23.849	215
>gi 148531008 gb ABQ83007.1 RNA polymerase, sigma 70 subunit, RpoD [Lactobacillus reuteri DSM 20016]	15	10	8	9	8	12	38.9	43.385	380
>gi 148530920 gb ABQ82919.1 small GTP-binding protein [Lactobacillus reuteri DSM 20016]	7	6	6	5	5	6	38.3	22.641	196
>gi 148530377 gb ABQ82376.1 16S rRNA m(7)G-527 methyltransferase [Lactobacillus reuteri DSM 20016];	9	6	7	4	7	6	41.1	26.539	241
>gi 148531801 gb ABQ83800.1 TrkA-N domain protein [Lactobacillus reuteri DSM 20016];	5	4	5	4	2	3	27.9	24.531	222
>gi 183225758 dbj BAG26275.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];	7	6	6	4	6	7	32.5	22.577	203
>gi 148531442 gb ABQ83441.1 methenyltetrahydrofolate cyclohydrolase / 5,10-methylenetetrahydrofolate dehydrogenase (NADP+) [Lactobacillus reuteri DSM 20016];	4	3	4	3	3	3	16.8	30.424	286
>gi 148532172 gb ABQ84171.1 glucose inhibited division protein A [Lactobacillus reuteri DSM 20016];	8	5	5	5	5	7	15.9	71.918	647
>gi 183227567 dbj BAG28083.1 phosphoketolase [Lactobacillus fermentum IFO 3956];	7	4	5	4	6	5	8.1	90.724	799
>gi 148530828 gb ABQ82827.1 Adenine-specific DNA methylase-like protein [Lactobacillus reuteri DSM 20016];	5	3	4	4	4	3	18.8	31.155	277

>gi 148530723 gb ABQ82722.1 translation factor SUA5 [Lactobacillus reuteri DSM 20016];	11	6	4	5	6	6	39.2	37.261	342
>gi 148530659 gb ABQ82658.1 ATP-dependent Clp protease proteolytic subunit ClpP [Lactobacillus reuteri DSM 20016];	6	5	5	5	5	4	26.9	21.433	197
>gi 148531956 gb ABQ83955.1 precorrin-4 C11-methyltransferase [Lactobacillus reuteri DSM 20016];	8	4	4	2	3	2	33.2	27.872	253
>gi 148530886 gb ABQ82885.1 aspartate semialdehyde dehydrogenase [Lactobacillus reuteri DSM 20016];	7	4	2	3	3	5	29.5	38.274	352
>gi 194454462 gb EDX43359.1 peptidase S1 and S6 chymotrypsin/Hap [Lactobacillus reuteri 100-23];	6	1	2	3	2	5	20.2	43.882	425
>gi 148531416 gb ABQ83415.1 condensin subunit Smc [Lactobacillus reuteri DSM 20016];	18	13	13	13	12	12	16.4	135.2	1187
>gi 183227323 dbj BAG27839.1 50S ribosomal protein L5 [Lactobacillus fermentum IFO 3956];	5	5	4	4	5	5	27.8	20.091	180
>gi 148531330 gb ABQ83329.1 Peroxiredoxin [Lactobacillus reuteri DSM 20016];	6	5	5	3	4	5	38.5	21.041	187
>gi 227184503 gb EEI64574.1 amidophosphoribosyltransferase [Lactobacillus reuteri CF48-3A];	12	5	9	9	8	4	26.9	53.593	490
>gi 227071347 gb EEI09654.1 DNA-directed RNA polymerase delta subunit [Lactobacillus reuteri MM2-3];	4	2	4	1	1	1	36.5	21.639	189
>gi 148530787 gb ABQ82786.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016];	10	8	6	5	5	8	24.3	47.131	415
>gi 148530614 gb ABQ82613.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri DSM 20016]	7	3	5	3	2	3	37	26.78	257
>gi 148530971 gb ABQ82970.1 GrpE protein [Lactobacillus reuteri DSM 20016];	9	5	7	5	5	4	44.7	21.43	190
>gi 148530601 gb ABQ82600.1 thymidylate kinase [Lactobacillus reuteri DSM 20016];	9	6	8	3	5	6	46.5	24.198	213
>gi 148531757 gb ABQ83756.1 amino acid ABC transporter ATP-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];	10	6	8	3	5	5	37.8	27.486	246
>gi 148530925 gb ABQ82924.1 RNase Z [Lactobacillus reuteri DSM 20016];	5	1	3	3	4	4	22.7	34.498	309
>gi 148530374 gb ABQ82373.1 Na ⁺ dependent nucleoside transporter domain protein [Lactobacillus reuteri DSM 20016];	7	6	6	6	7	6	16.6	44.04	403
>gi 148531352 gb ABQ83351.1 N-acetyl muramoyl-L-alanine amidase, family 2 [Lactobacillus reuteri DSM 20016];	3	2	1	1	3	2	10.8	44.687	399
>gi 148530635 gb ABQ82634.1 protein translocase subunit secA [Lactobacillus reuteri DSM 20016];	15	7	9	6	8	12	20.8	90.351	787
>gi 148530576 gb ABQ82575.1 RNA methyltransferase, TrmH family, group 3 [Lactobacillus reuteri DSM 20016];	8	7	6	4	3	5	33.7	27.28	249
>gi 183227087 dbj BAG27603.1 50S ribosomal protein L27 [Lactobacillus fermentum IFO 3956];>gi 184155743 ref YP_001844083.1 50S ribosomal protein L27 [Lactobacillus fermentum IFO 3956];>gi 226737943 sp B2GD71.1 RL27_LACF3 RecName: Full=50S ribosomal prote	5	2	4	3	3	3	40.9	9.9871	93
>gi 148532139 gb ABQ84138.1 protein of unknown function DUF1002 [Lactobacillus reuteri DSM 20016];	10	2	4	5	4	8	35.1	35.908	333

>gi 148530405 gb ABQ82404.1 acetolactate synthase, catabolic [Lactobacillus reuteri DSM 20016]	8	6	3	5	6	3	16.3	60.994	559
>gi 183225693 dbj BAG26210.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];	7	3	5	2	3	3	22.3	41.737	364
>gi 148531530 gb ABQ83529.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016]	6	3	3	3	3	5	26.3	33.353	312
>gi 148531170 gb ABQ83169.1 LrgB family protein [Lactobacillus reuteri DSM 20016];	4	4	3	2	4	3	22.8	26.306	246
>gi 183226402 dbj BAG26918.1 isoleucyl-tRNA synthase [Lactobacillus fermentum IFO 3956];	7	6	4	5	6	4	6.5	105.63	930
>gi 148531897 gb ABQ83896.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016]	5	4	2	4	2	3	22	35.791	332
>gi 148531115 gb ABQ83114.1 hypothetical protein Lreu_0851 [Lactobacillus reuteri DSM 20016]	7	4	3	0	5	4	61.1	10.116	90
>gi 148531196 gb ABQ83195.1 degV family protein [Lactobacillus reuteri DSM 20016] J	4	1	4	2	1	3	17.5	32.228	292
>gi 148531360 gb ABQ83359.1 hypothetical protein Lreu_1102 [Lactobacillus reuteri DSM 20016]	6	3	4	0	3	2	61.8	10.015	89
>gi 148531143 gb ABQ83142.1 riboflavin synthase, alpha subunit [Lactobacillus reuteri DSM 20016]	6	4	4	4	4	4	37	21.593	200
>gi 183225127 dbj BAG25644.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	7	5	4	5	6	6	21.6	40.161	352
>gi 148531613 gb ABQ83612.1 hypothetical protein Lreu_1363 [Lactobacillus reuteri DSM 20016];	3	3	1	3	3	3	15.9	19.693	189
>gi 227070209 gb EEI08583.1 diaminopimelate decarboxylase [Lactobacillus reuteri MM2-3];	5	4	3	2	4	2	15.2	48.355	441
>gi 194453840 gb EDX42737.1 conserved hypothetical protein [Lactobacillus reuteri 100-23]	5	5	4	3	4	4	24.1	28.451	245
>gi 148531348 gb ABQ83347.1 exodeoxyribonuclease III Xth [Lactobacillus reuteri DSM 20016]	7	3	5	5	7	5	28.7	31.516	275
>gi 148531041 gb ABQ83040.1 Ras superfamily GTP-binding protein YlqF [Lactobacillus reuteri DSM 20016]	5	2	2	2	1	2	23.8	32.562	290
>gi 148531780 gb ABQ83779.1 Peptidylprolyl isomerase [Lactobacillus reuteri DSM 20016];	5	4	5	3	3	3	32	22.199	197
>gi 183227321 dbj BAG27837.1 30S ribosomal protein S8 [Lactobacillus fermentum IFO 3956];	6	6	5	4	5	6	35.6	14.515	132
>gi 183225444 dbj BAG25961.1 hypothetical protein [Lactobacillus reuteri JCM 1112	8	5	5	6	5	4	18.1	62.062	536
>gi 148530896 gb ABQ82895.1 peptide deformylase [Lactobacillus reuteri DSM 20016]	9	8	7	8	8	9	48.4	20.898	186
>gi 148530878 gb ABQ82877.1 diaminopimelate epimerase [Lactobacillus reuteri DSM 20016]	4	3	3	4	2	3	16.5	36.381	333
>gi 227071504 gb EEI09804.1 glutamate-5-semialdehyde dehydrogenase [Lactobacillus reuteri MM2-3];	7	2	4	4	4	6	16.3	45.499	416
>gi 148530690 gb ABQ82689.1 glucose-6-phosphate isomerase [Lactobacillus reuteri DSM 20016]	11	5	6	5	11	6	29.9	50.35	452
>gi 183224052 dbj BAG24569.1 beta-phosphoglucomutase [Lactobacillus reuteri JCM 1112	11	7	8	6	3	6	52.4	24.587	225
>gi 148530375 gb ABQ82374.1 Inosine/uridine-preferring nucleoside hydrolase [Lactobacillus reuteri DSM 20016]	5	4	3	5	4	4	21.5	32.573	302
>gi 148530984 gb ABQ82983.1 protein of unknown function DUF558 [Lactobacillus reuteri DSM 20016];	5	3	3	3	5	3	20.7	26.768	246

>gi 148530483 gb ABQ82482.1 RNase M5 [Lactobacillus reuteri DSM 20016];	4	1	4	0	2	0	28.7	21.042	188
>gi 148530478 gb ABQ82477.1 hypothetical protein Lreu_0207 [Lactobacillus reuteri DSM 20016];	6	5	2	1	5	3	25.1	36.908	319
>gi 227070615 gb EEI08945.1 tRNA modification GTPase TrmE [Lactobacillus reuteri MM2-3];>	7	4	4	4	5	4	17.2	52.527	477
>gi 148530926 gb ABQ82925.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016]	7	6	4	3	5	5	26.4	31.787	284
>gi 148530761 gb ABQ82760.1 hypothetical protein Lreu_0492 [Lactobacillus reuteri DSM 20016];	5	3	4	2	3	3	16.6	27.759	247
>gi 148531462 gb ABQ83461.1 hypothetical protein Lreu_1204 [Lactobacillus reuteri DSM 20016]	4	2	4	2	3	2	69	6.3153	58
>gi 148530860 gb ABQ82859.1 cell division protein FtsA [Lactobacillus reuteri DSM 20016];	11	5	3	5	10	6	25.2	50.485	457
>gi 227071203 gb EEI09517.1 UDP-galactopyranose mutase [Lactobacillus reuteri MM2-3]	9	5	5	3	4	6	21.1	44.975	384
>gi 183224788 dbj BAG25305.1 hypothetical phage protein [Lactobacillus reuteri JCM 1112]	12	8	9	9	10	9	58.9	25.075	219
>gi 183226202 dbj BAG26718.1 glutamine-fructose-6-phosphate transaminase [Lactobacillus fermentum IFO 3956];	5	4	2	4	4	5	7.8	66.739	606
>gi 227070517 gb EEI08850.1 deoxyribose-phosphate aldolase [Lactobacillus reuteri MM2-3];>	6	5	4	3	3	3	23.2	25.76	237
>gi 148531361 gb ABQ83360.1 hypothetical protein Lreu_1103 [Lactobacillus reuteri DSM 20016]	5	5	5	2	4	3	60	9.0878	80
>gi 148530541 gb ABQ82540.1 tRNA-U20-dihydrouridine synthase [Lactobacillus reuteri DSM 20016]	8	5	7	3	4	7	29.7	37.061	333
>gi 227070638 gb EEI08968.1 DNA-binding response regulator [Lactobacillus reuteri MM2-3]	7	4	5	3	4	4	32.4	27.524	241
>gi 183225783 dbj BAG26300.1 putative aminotransferase [Lactobacillus reuteri JCM 1112];	10	6	7	3	4	7	33	44.073	400
>gi 183224121 dbj BAG24638.1 hypothetical protein [Lactobacillus reuteri JCM 1112];	4	1	4	3	3	2	21.5	24.277	219
>gi 227070121 gb EEI08497.1 possible malate dehydrogenase [Lactobacillus reuteri MM2-3];>	6	2	2	2	2	2	24.2	39.19	360
>gi 337729312 emb CCC04441.1 thymidylate kinase [Lactobacillus reuteri ATCC 53608];>	8	7	6	3	5	5	36.6	24.299	213
>gi 148530673 gb ABQ82672.1 UDP-N-acetyl muramate dehydrogenase [Lactobacillus reuteri DSM 20016]	9	4	3	3	6	6	38.6	32.389	298
>gi 148530879 gb ABQ82878.1 aspartate kinase [Lactobacillus reuteri DSM 20016]	6	2	3	3	3	4	13.3	50.12	452
>gi 148531987 gb ABQ83986.1 Glycerol dehydratase [Lactobacillus reuteri DSM 20016]	10	2	3	5	10	4	22.4	62.092	558
>gi 148530435 gb ABQ82434.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016]	6	5	4	3	3	4	32.5	26.39	246
>gi 146749585 gb ABQ44378.1 deoxynucleoside kinase [Lactobacillus reuteri];	5	3	4	3	3	4	31	24.773	210
>gi 148530473 gb ABQ82472.1 nucleoside diphosphate kinase [Lactobacillus reuteri DSM 20016];	5	5	4	3	5	4	38.1	16.772	147
>gi 148530817 gb ABQ82816.1 hypothetical protein Lreu_0548 [Lactobacillus reuteri DSM 20016];	5	2	4	2	2	2	52	16.479	152
>gi 133930437 gb ABO43790.1 cytosine deaminase [Lactobacillus reuteri];	5	4	4	5	4	4	17.7	46.441	412

	4	3	2	2	3	3	22.6	22.822	212
>gi 148531474 gb ABQ83473.1 NLP/P60 protein [Lactobacillus reuteri DSM 20016];	4	3	2	2	3	3	22.6	22.822	212
>gi 227070071 gb EEI08449.1 aldose 1-epimerase [Lactobacillus reuteri MM2-3];	3	2	3	3	3	2	15.5	34.581	304
>gi 148530286 gb ABQ82285.1 SSU ribosomal protein S18P [Lactobacillus reuteri DSM 20016];	11	8	9	5	8	8	70.5	9.1536	78
>gi 148530311 gb ABQ82310.1 aldehyde dehydrogenase [Lactobacillus reuteri DSM 20016];	6	1	5	2	3	5	18.4	50.505	457
>gi 148531138 gb ABQ83137.1 type I site-specific deoxyribonuclease, HsdR family [Lactobacillus reuteri DSM 20016];	17	11	9	9	12	5	17.2	118.77	1041
>gi 148530873 gb ABQ82872.1 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase [Lactobacillus reuteri DSM 20016];	10	7	6	5	6	6	28.4	42.769	377
>gi 183224607 dbj BAG25124.1 pyruvate dehydrogenase complex E1 component alpha subunit [Lactobacillus reuteri JCM 1112	8	7	4	6	5	5	21.3	41.361	371
>gi 133930439 gb ABO43791.1 2-keto-4-pentenoate hydratase [Lactobacillus reuteri];	5	4	2	3	2	4	17.5	29.068	263
>gi 148532084 gb ABQ84083.1 ErfK/YbiS/YcfS/YnhG family protein [Lactobacillus reuteri DSM 20016	5	4	3	3	3	3	24.8	24.726	218
>gi 148530720 gb ABQ82719.1 thymidine kinase [Lactobacillus reuteri DSM 20016];	12	9	11	8	7	7	58.6	22.171	191
>gi 148531875 gb ABQ83874.1 phage shock protein C, PspC [Lactobacillus reuteri DSM 20016];	2	2	2	2	2	2	18.1	9.3228	83
>gi 148531473 gb ABQ83472.1 uridine kinase [Lactobacillus reuteri DSM 20016	6	5	6	3	5	4	33.9	25.134	218
>gi 148531098 gb ABQ83097.1 phage portal protein, SPP1 family [Lactobacillus reuteri DSM 20016];	14	4	3	5	9	12	27.3	63.32	553
>gi 227070201 gb EEI08575.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3	7	4	6	3	3	4	60.7	13.567	117
>gi 148531447 gb ABQ83446.1 alanine racemase domain protein [Lactobacillus reuteri DSM 20016];>	6	4	5	3	4	3	32.8	26.995	235
>gi 148532169 gb ABQ84168.1 ATP-grasp protein-like protein [Lactobacillus reuteri DSM 20016	9	7	4	7	6	7	19.6	48.604	414
>gi 183227039 dbj BAG27555.1 50S Ribosomal protein L19 [Lactobacillus fermentum IFO 3956];	5	4	4	3	4	4	25.2	13.668	119
>gi 148530494 gb ABQ82493.1 Cof-like hydrolase [Lactobacillus reuteri DSM 20016	7	2	6	4	3	5	28.2	30.465	273
>gi 148530507 gb ABQ82506.1 sortase family protein [Lactobacillus reuteri DSM 20016];>	5	5	3	2	2	2	26.5	26.348	234
>gi 337727992 emb CCC03081.1 diaminopimelate epimerase [Lactobacillus reuteri ATCC 53608]	2	1	1	1	1	1	9.5	35.836	328
>gi 148530602 gb ABQ82601.1 protein of unknown function DUF970 [Lactobacillus reuteri DSM 20016];>	5	5	5	2	4	4	69.2	11.874	107
>gi 183224278 dbj BAG24795.1 phosphoglycerate mutase [Lactobacillus reuteri JCM 1112];>	7	5	5	4	5	3	30.6	29.591	255
>gi 148530464 gb ABQ82463.1 NLPA lipoprotein [Lactobacillus reuteri DSM 20016	8	5	4	5	4	7	31.4	31.931	283
>gi 148530378 gb ABQ82377.1 Effector of nucleoid occlusion Noc [Lactobacillus reuteri DSM 20016];>	9	6	4	2	5	6	28.3	36.94	322
>gi 148531122 gb ABQ83121.1 holin, Cph1 family [Lactobacillus reuteri DSM 20016];>	2	2	2	0	2	2	10.1	17.139	149
>gi 148530319 gb ABQ82318.1 OsmC family protein [Lactobacillus reuteri DSM 20016];>	5	4	5	4	3	5	29.6	15.724	142
>gi 148530539 gb ABQ82538.1 membrane protease FtsH catalytic subunit [Lactobacillus reuteri DSM 20016	14	5	5	6	8	10	24.8	77.238	702

>gi 148531693 gb ABQ83692.1 5-(carboxyamino)imidazole ribonucleotide synthase [Lactobacillus reuteri DSM 20016]	7	6	6	3	7	4	21.5	42.001	377
>gi 183225042 gb BAG25559.1 hypothetical phage protein [Lactobacillus reuteri JCM 1112];>gi 184153698 ref YP_001842039.1 hypothetical protein LAR_1043 [Lactobacillus reuteri JCM 1112];>gi 227069922 gb EEI08309.1 conserved hypothetical protein [Lactobacillus reuteri DSM 20016];>	6	2	2	5	4	4	15.8	41.121	386
>gi 148531022 gb ABQ83021.1 ribosomal large subunit pseudouridine synthase B [Lactobacillus reuteri DSM 20016];>	6	3	6	3	4	3	29.8	26.693	238
>gi 148531286 gb ABQ83285.1 Phosphoglycerate mutase [Lactobacillus reuteri DSM 20016]	7	3	4	5	4	5	31.3	30.347	278
>gi 227070559 gb EEI08890.1 possible gamma-glutamyl-gamma-aminobutyrate hydrolase [Lactobacillus reuteri MM2-3];>	4	3	4	3	4	3	23.9	27.281	247
>gi 148531976 gb ABQ83975.1 ATP:cob(I)alamin adenosyltransferase [Lactobacillus reuteri DSM 20016];>	4	3	3	2	2	2	28	16.903	157
>gi 148530321 gb ABQ82320.1 aromatic amino acid aminotransferase apoenzyme [Lactobacillus reuteri DSM 20016];>	8	5	4	5	5	6	25.6	42.52	395
>gi 183224315 gb BAG24832.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	4	3	0	2	2	55.7	11.883	106
>gi 183226271 gb BAG26787.1 D-alanine-D-alanine ligase [Lactobacillus fermentum IFO 3956];>	2	2	2	2	2	2	7.2	42.344	377
>gi 148530914 gb ABQ82913.1 SSU ribosomal protein S15P [Lactobacillus reuteri DSM 20016]	7	7	7	5	6	6	64	10.416	89
>gi 148531241 gb ABQ83240.1 DSBA oxidoreductase [Lactobacillus reuteri DSM 20016];>	5	3	3	1	2	1	27.4	24.566	215
>gi 227071111 gb EEI09429.1 Dyp family peroxidase family protein [Lactobacillus reuteri MM2-3];>	8	6	5	7	6	5	24	36.463	317
>gi 148531694 gb ABQ83693.1 xanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016]	5	4	3	1	3	2	24.6	21.113	191
>gi 112943339 gb ABI26305.1 sphingosine kinase [Lactobacillus reuteri];>	8	4	2	4	4	3	26.1	37.14	337
>gi 148530942 gb ABQ82941.1 hydroxymethylglutaryl-CoA synthase [Lactobacillus reuteri DSM 20016];>	4	3	3	3	3	4	10.4	42.757	385
>gi 227070978 gb EEI09301.1 cobalt-precorrin-2 C(20)-methyltransferase [Lactobacillus reuteri MM2-3]	5	3	4	1	2	3	26.7	26.806	240
>gi 148531000 gb ABQ82999.1 PhoH family protein [Lactobacillus reuteri DSM 20016];>	7	3	3	5	3	7	19.7	37.467	335
>gi 148531487 gb ABQ83486.1 LSU ribosomal protein L32P [Lactobacillus reuteri DSM 20016]	5	4	4	2	4	4	64.4	6.5727	59
>gi 148530956 gb ABQ82955.1 Undecaprenyl pyrophosphate synthetase [Lactobacillus reuteri DSM 20016]	7	5	6	5	4	2	28.1	30.635	270
>gi 148530459 gb ABQ82458.1 methionine-R-sulfoxide reductase [Lactobacillus reuteri DSM 20016];>	6	4	4	2	3	6	40.1	16.101	142
>gi 148531657 gb ABQ83656.1 methylated-DNA-protein-cysteine methyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	2	0	1	0	13.8	17.204	152
>gi 227185629 gb EEI65700.1 SMC structural maintenance of chromosomes partitioning protein [Lactobacillus reuteri CF48-3A]	13	10	8	9	7	8	12	135.26	1187

>gi 148531334 gb ABQ83333.1 hypothetical protein Lreu_1076 [Lactobacillus reuteri DSM 20016]	3	2	3	1	2	2	21.4	17.798	154
>gi 183225185 gb BAG25702.1 thioredoxin [Lactobacillus reuteri JCM 1112]	4	3	2	2	3	2	27.5	12.828	109
>gi 194453683 gb EDX42580.1 translation initiation factor IF-3 [Lactobacillus reuteri 100-23]	6	3	5	3	4	4	40	19.488	170
>gi 183227137 gb BAG27653.1 DNA-directed DNA polymerase I [Lactobacillus fermentum IFO 3956]	6	4	5	3	6	3	7.2	99.23	886
>gi 148530407 gb ABQ82406.1 5-(carboxyamino)imidazole ribonucleotide mutase [Lactobacillus reuteri DSM 20016];>	6	3	6	2	4	2	59	16.958	161
>gi 148530785 gb ABQ82784.1 amino acid ABC transporter ATP-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];	6	6	5	4	5	5	29.2	23.926	216
>gi 148531433 gb ABQ83432.1 DNA-directed RNA polymerase subunit omega [Lactobacillus reuteri DSM 20016];	6	4	4	0	6	2	87.5	7.9219	72
>gi 227070037 gb EEI08415.1 S-adenosyl-L-methionine-dependent methyltransferase [Lactobacillus reuteri MM2-3];>	6	6	6	4	5	3	33.2	26.69	238
>gi 112943293 gb ABI26303.1 pyruvate/2-oxoglutarate dehydrogenase complex dihydrolipoamide dehydrogenase (E3) component [Lactobacillus reuteri];>	8	7	6	6	7	7	21.3	50.725	475
>gi 148530921 gb ABQ82920.1 MazG nucleotide pyrophosphohydrolase [Lactobacillus reuteri DSM 20016];>	2	1	2	0	1	1	20.2	11.475	99
>gi 148530490 gb ABQ82489.1 purine operon repressor, PurR [Lactobacillus reuteri DSM 20016]	5	5	2	3	5	5	22.4	30.926	281
>gi 130893136 gb ABO32595.1 D-lactate dehydrogenase [Lactobacillus reuteri];>	6	2	2	5	1	5	23.3	36.867	330
>gi 148530385 gb ABQ82384.1 phosphopentomutase [Lactobacillus reuteri DSM 20016];>	7	3	3	2	7	5	25.2	44.002	397
>gi 148531430 gb ABQ83429.1 methionyl-tRNA formyltransferase [Lactobacillus reuteri DSM 20016];>	9	4	4	6	3	7	27.4	34.729	317
>gi 148530733 gb ABQ82732.1 ATP synthase F1 subcomplex delta subunit [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	2	10.6	20.468	180
>gi 148531544 gb ABQ83543.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	5	37.693	338
>gi 148531488 gb ABQ83487.1 protein of unknown function DUF177 [Lactobacillus reuteri DSM 20016];>	3	0	2	1	2	2	19.5	20.961	185
>gi 227070644 gb EEI08974.1 phosphatidylglycerophosphatase [Lactobacillus reuteri MM2-3];>	7	5	7	4	5	5	36.7	18.978	169
>gi 148531067 gb ABQ83066.1 prophage antirepressor [Lactobacillus reuteri DSM 20016];	10	2	2	3	3	9	37	28.734	257
>gi 183224776 gb BAG25293.1 phage replication protein [Lactobacillus reuteri JCM 1112]	7	2	3	2	3	4	23.5	34.382	294
>gi 183224461 gb BAG24978.1 cell division membrane protein [Lactobacillus reuteri JCM 1112];>	1	1	0	1	0	1	4	44.8	399
>gi 183225137 gb BAG25654.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	2	2	2	2	2	13.7	16.242	139
>gi 148531954 gb ABQ83953.1 precorrin-3 methyltransferase [Lactobacillus reuteri DSM 20016];>	10	7	8	5	7	6	32.4	26.233	241

>gi 148531795 gb ABQ83794.1 Esterase/lipase-like protein [Lactobacillus reuteri DSM 20016];>	5	0	4	1	4	0	32.8	26.628	238
>gi 148531986 gb ABQ83985.1 dehydratase, medium subunit [Lactobacillus reuteri DSM 20016];	5	2	3	1	2	5	24.2	25.808	236
>gi 148532132 gb ABQ84131.1 hypothetical protein Lreu_1894 [Lactobacillus reuteri DSM 20016]	4	3	3	1	2	2	45.8	13.741	120
>gi 13930453 gb ABO43798.1 DnaB [Lactobacillus reuteri];>	2	1	1	1	1	2	5.2	51.331	463
>gi 183225054 dbj BAG25571.1 hypothetical phage protein [Lactobacillus reuteri JCM 1112];>	5	4	1	0	3	4	38.6	14.835	132
>gi 148531744 gb ABQ83743.1 Deoxyadenosine kinase [Lactobacillus reuteri DSM 20016]	8	4	6	0	3	1	53.1	24.647	213
>gi 227184813 gb EEI64884.1 aspartate racemase [Lactobacillus reuteri CF48-3A];>	5	4	4	4	4	5	17.2	27.131	239
>gi 148530653 gb ABQ82652.1 Excinuclease ABC subunit B [Lactobacillus reuteri DSM 20016];>	11	5	2	6	4	5	17.1	79.421	690
>gi 227070656 gb EEI08986.1 ABC superfamily ATP binding cassette transporter, ABC protein [Lactobacillus reuteri MM2-3];>g	2	1	2	0	1	1	12.2	26.94	238
>gi 148531689 gb ABQ83688.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C [Lactobacillus reuteri DSM 20016];	3	3	3	1	3	3	43.8	11.572	105
>gi 183225864 dbj BAG26380.1 adenylosuccinate synthase [Lactobacillus fermentum IFO 3956];>	2	1	2	1	1	1	5.6	47.282	429
>gi 227185635 gb EEI65706.1 protein of hypothetical function DUF322 [Lactobacillus reuteri CF48-3A];>	4	3	4	3	3	3	36.1	13.014	122
>gi 336449796 gb AEI58411.1 HD domain protein [Lactobacillus reuteri SD2112];>	1	1	1	1	1	1	3.5	29.851	257
>gi 148530379 gb ABQ82378.1 chromosome segregation ATPase [Lactobacillus reuteri DSM 20016];>	4	1	2	1	0	0	21.1	28.007	256
>gi 227070139 gb EEI08514.1 MazG nucleotide pyrophosphohydrolase [Lactobacillus reuteri MM2-3];>	2	1	1	1	1	1	13.3	13.023	113
>gi 227070646 gb EEI08976.1 SPOUT methyltransferase superfamily protein [Lactobacillus reuteri MM2-3]	6	2	3	3	3	3	35.3	19.733	173
>gi 148530662 gb ABQ82661.1 preprotein translocase, SecG subunit [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	0	24.1	8.5972	79
>gi 183227656 dbj BAG28172.1 asparagine synthase [Lactobacillus fermentum IFO 3956];>	7	5	6	6	6	6	8.8	73.993	636
>gi 148531843 gb ABQ83842.1 Peptidoglycan-binding LysM [Lactobacillus reuteri DSM 20016];>	3	1	2	3	2	2	17.5	37.509	355
>gi 148530941 gb ABQ82940.1 RNase HI [Lactobacillus reuteri DSM 20016];>	7	2	5	2	4	2	39.6	24.902	222
>gi 148531708 gb ABQ83707.1 bacterial translation initiation factor 1 (bIF-1) [Lactobacillus reuteri DSM 20016];	5	3	4	4	3	3	66.7	8.1615	72
>gi 148530520 gb ABQ82519.1 DltD, C-terminal domain protein [Lactobacillus reuteri DSM 20016];>	5	4	3	4	5	5	15.2	49.455	429
>gi 183225184 dbj BAG25701.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	5	3	3	0	2	2	33.8	23.595	216
>gi 227070541 gb EEI08874.1 phosphoribosylaminoimidazole carboxylase [Lactobacillus reuteri MM2-3];>	4	1	4	2	2	2	10.4	42.428	384
>gi 148530742 gb ABQ82741.1 hypothetical protein Lreu_0473 [Lactobacillus reuteri DSM	3	2	3	2	2	2	50	8.7648	74

20016];									
>gi 148530901 gb ABQ82900.1 protein of unknown function UPF0223 [Lactobacillus reuteri DSM 20016];	5	4	5	1	5	3	37.3	11.867	102
>gi 148531400 gb ABQ83399.1 phage antirepressor protein [Lactobacillus reuteri DSM 20016];>	10	3	2	2	4	10	36.7	30.203	267
>gi 227186252 gb EEI66323.1 possible aspartate transaminase [Lactobacillus reuteri CF48-3A	7	5	3	4	4	4	23	42.745	395
>gi 148531531 gb ABQ83530.1 hypothetical protein Lreu_1273 [Lactobacillus reuteri DSM 20016];>	4	3	4	3	3	2	48.9	10.018	90
>gi 227070870 gb EEI09194.1 iron-containing alcohol dehydrogenase [Lactobacillus reuteri MM2-3	3	2	3	0	2	3	11.9	40.929	379
>gi 148530842 gb ABQ82841.1 NAD(+) kinase [Lactobacillus reuteri DSM 20016];>	7	4	6	4	5	4	29.3	30.666	270
>gi 183225766 dbj BAG26283.1 aspartate-ammonia ligase [Lactobacillus reuteri JCM 1112];	13	7	6	5	7	8	42.8	39.72	339
>gi 148530479 gb ABQ82478.1 Silent information regulator protein Sir2 [Lactobacillus reuteri DSM 20016];>	5	2	4	1	1	1	23.7	26.454	232
>gi 148530853 gb ABQ82852.1 S-adenosyl-methyltransferase MraW [Lactobacillus reuteri DSM 20016];>	3	3	3	3	3	3	11.6	35.666	318
>gi 337728180 emb CCC03271.1 Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri ATCC 53608]	3	2	2	1	3	2	8.8	55.966	499
>gi 183225556 dbj BAG26073.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	3	3	2	1	1	16.1	33.021	286
>gi 148530571 gb ABQ82570.1 deoxyuridine 5-triphosphate nucleotidohydrolase [Lactobacillus reuteri DSM 20016];	5	4	4	1	3	3	29.2	20.3	178
>gi 148531772 gb ABQ83771.1 Uracil-DNA glycosylase superfamily [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	1	12	24.505	217
>gi 148531752 gb ABQ83751.1 iron dependent repressor [Lactobacillus reuteri DSM 20016]	7	6	5	5	5	4	31.7	25.242	224
>gi 148530329 gb ABQ82328.1 acetyl-CoA acetyltransferase [Lactobacillus reuteri DSM 20016];>	6	4	2	4	2	5	17.9	41.055	392
>gi 183226447 dbj BAG26963.1 metal-dependent hydrolase of the beta-lactamase superfamily III [Lactobacillus fermentum IFO 3956	2	1	1	1	1	1	6.8	34.44	310
>gi 183225182 dbj BAG25699.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	1	1	1	1	1	1	5.9	25.715	238
>gi 148530346 gb ABQ82345.1 hypothetical protein Lreu_0070 [Lactobacillus reuteri DSM 20016	3	2	2	2	2	2	13.4	29.491	261
>gi 133930447 gb ABO43795.1 E1 component beta subunit [Lactobacillus reuteri];>	5	2	1	2	3	3	18.5	35.243	325
>gi 148531423 gb ABQ83422.1 LSU ribosomal protein L28P [Lactobacillus reuteri DSM 20016	5	3	5	3	4	4	45.9	6.9271	61
>gi 148530383 gb ABQ82382.1 membrane protein of unknown function UCP033111 [Lactobacillus reuteri DSM 20016];>	5	4	4	2	2	4	24.6	28.788	256
>gi 148531981 gb ABQ83980.1 microcompartments protein [Lactobacillus reuteri DSM 20016];>	5	1	3	2	3	3	81.2	9.7479	96
>gi 148530744 gb ABQ82743.1 glycine cleavage H-protein [Lactobacillus reuteri DSM 20016];>	6	4	3	0	4	2	83.5	10.641	97
>gi 148531828 gb ABQ83827.1 quorum-sensing autoinducer 2 (AI-2), LuxS [Lactobacillus reuteri DSM 20016];>	7	6	6	4	4	3	41.8	17.695	158

>gi 148531111 gb ABQ83110.1 protein of unknown function DUF1306 [Lactobacillus reuteri DSM 20016];>	6	3	3	3	4	6	22	33.264	295
>gi 148531643 gb ABQ83642.1 conserved hypothetical protein 730 [Lactobacillus reuteri DSM 20016];>	3	3	3	2	3	3	14.9	21.895	195
>gi 227070830 gb EEI09155.1 BS_ykrK family protein [Lactobacillus reuteri MM2-3];>	5	4	4	1	3	4	23.3	21.839	193
>gi 148531602 gb ABQ83601.1 bacterial peptide chain release factor 3 (bRF-3) [Lactobacillus reuteri DSM 20016];>	9	6	5	6	6	5	19.6	59.477	525
>gi 148531012 gb ABQ83011.1 protein of unknown function DUF34 [Lactobacillus reuteri DSM 20016];>	5	4	4	2	3	3	20.4	30.534	274
>gi 148532059 gb ABQ84058.1 ABC transporter related [Lactobacillus reuteri DSM 20016];>	6	2	5	0	2	1	33.9	28.077	254
>gi 148531953 gb ABQ83952.1 precorrin-6A reductase [Lactobacillus reuteri DSM 20016]	6	5	4	4	4	4	29	28.054	252
>gi 148530871 gb ABQ82870.1 aminotransferase, class V [Lactobacillus reuteri DSM 20016];>	4	3	3	4	3	4	11.2	42.481	384
>gi 183227153 dbj BAG27669.1 arginyl-tRNA synthase [Lactobacillus fermentum IFO 3956];	2	2	1	1	1	1	4.6	63.149	562
>gi 183224876 dbj BAG25393.1 carbamoyl-phosphate synthase large subunit [Lactobacillus reuteri JCM 1112]	12	4	7	5	8	4	16.7	92.789	825
>gi 148532146 gb ABQ84145.1 hypothetical protein Lreu_1908 [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	1	13	18.28	161
>gi 154705574 gb ABS84213.1 AsnC-type transcription regulator [Lactobacillus reuteri];>	6	5	4	3	3	3	40.4	17.782	156
>gi 148531797 gb ABQ83796.1 cystathionine beta-synthase (acetylserine-dependent) [Lactobacillus reuteri DSM 20016]	8	5	3	3	4	6	28.6	32.602	304
>gi 183224612 dbj BAG25129.1 myo-inositol-1(or 4)-monophosphatase [Lactobacillus reuteri JCM 1112];>	8	5	7	6	4	4	26.1	28.91	261
>gi 148530548 gb ABQ82547.1 amino acid/peptide transporter [Lactobacillus reuteri DSM 20016];>	2	1	1	2	1	1	4.4	54.667	499
>gi 148531329 gb ABQ83328.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];	4	3	2	1	2	2	10.8	60.056	555
>gi 183225947 dbj BAG26463.1 phosphoribosylformylglycinamide synthase II [Lactobacillus fermentum IFO 3956];>	3	2	2	3	2	1	4.7	79.944	741
>gi 148530906 gb ABQ82905.1 putative methyltransferase [Lactobacillus reuteri DSM 20016];>	7	5	5	4	4	4	33.7	20.85	187
>gi 148530816 gb ABQ82815.1 protein of unknown function DUF948 [Lactobacillus reuteri DSM 20016];	2	2	2	2	2	2	11	16.569	146
>gi 227071772 gb EEI10061.1 transcription antitermination protein NusB [Lactobacillus reuteri MM2-3];>	7	5	6	1	4	4	41.1	16.148	141
>gi 148531472 gb ABQ83471.1 transcription elongation factor GreA [Lactobacillus reuteri DSM 20016];>	7	3	6	4	5	2	47.5	18.019	158
>gi 148530351 gb ABQ82350.1 peptidase C26 [Lactobacillus reuteri DSM 20016];>	5	3	3	3	4	4	20.1	26.977	244
>gi 148531326 gb ABQ83325.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016]	8	5	6	4	5	4	17.8	52.667	467

>gi 183226119 gb BAG26635.1 carbamate kinase [Lactobacillus fermentum IFO 3956];>	4	3	1	1	2	2	12.3	32.714	309
>gi 148531458 gb ABQ83457.1 aminotransferase [Lactobacillus reuteri DSM 20016];>	9	4	5	5	3	7	23.9	43.367	393
>gi 148531418 gb ABQ83417.1 acyl carrier protein [Lactobacillus reuteri DSM 20016];	4	4	2	1	3	2	52.4	9.4942	84
>gi 194454108 gb EDX43005.1 conserved hypothetical protein [Lactobacillus reuteri 100-23];>	3	2	0	1	3	2	11.7	38.01	350
>gi 148531410 gb ABQ83409.1 16S rRNA processing protein RimM [Lactobacillus reuteri DSM 20016];>	4	4	2	1	2	1	23.2	19.219	168
>gi 183224799 gb BAG25316.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	11	2	5	4	9	8	9.5	132.13	1198
>gi 227070039 gb EEI08417.1 peptidase T [Lactobacillus reuteri MM2-3];>	5	3	1	3	2	3	16.2	46.484	419
>gi 227071446 gb EEI09749.1 possible acetyltransferase [Lactobacillus reuteri MM2-3]	7	5	6	2	5	4	79.8	12.089	104
>gi 148530794 gb ABQ82793.1 DNA mismatch repair protein MutS [Lactobacillus reuteri DSM 20016]	8	5	3	1	7	6	8.5	99.674	881
>gi 148531477 gb ABQ83476.1 transcriptional regulator, HxIR family [Lactobacillus reuteri DSM 20016]	5	3	4	2	3	3	33	13.039	112
>gi 148531144 gb ABQ83143.1 GTP cyclohydrolase II [Lactobacillus reuteri DSM 20016];>	7	2	3	2	5	3	25.7	43.927	393
>gi 194454301 gb EDX43198.1 protein of unknown function DUF534 [Lactobacillus reuteri 100-23];>	2	0	1	0	0	1	7.5	37.857	345
>gi 148531619 gb ABQ83618.1 hypothetical protein Lreu_1369 [Lactobacillus reuteri DSM 20016]	5	5	3	3	3	2	11.2	38.188	338
>gi 148531536 gb ABQ83535.1 GTP cyclohydrolase I [Lactobacillus reuteri DSM 20016]	3	1	2	1	2	2	16.7	22.03	192
>gi 146345339 gb ABQ23681.1 Zn-dependent alcohol dehydrogenase [Lactobacillus reuteri]	5	4	4	5	4	4	14.7	37.938	348
>gi 148530718 gb ABQ82717.1 CobB/CobQ domain protein glutamine amidotransferase [Lactobacillus reuteri DSM 20016];>	6	5	4	2	2	4	30.6	26.134	235
>gi 183227318 gb BAG27834.1 30S ribosomal protein S5 [Lactobacillus fermentum IFO 3956]	5	5	4	3	4	5	18.9	17.581	169
>gi 148531533 gb ABQ83532.1 Dihydropteroate synthase [Lactobacillus reuteri DSM 20016]	6	2	5	3	4	2	18.3	43.584	387
>gi 148531039 gb ABQ83038.1 Uncharacterized protein [Lactobacillus reuteri DSM 20016]	5	4	2	3	3	3	20.5	22.591	200
>gi 148531975 gb ABQ83974.1 LSU ribosomal protein L29P [Lactobacillus reuteri DSM 20016]	6	3	2	3	3	4	15.7	51.127	477
>gi 148530997 gb ABQ82996.1 argininosuccinate lyase [Lactobacillus reuteri DSM 20016]	3	0	2	1	2	1	5	51.92	461
>gi 148530789 gb ABQ82788.1 Uncharacterized protein [Lactobacillus reuteri DSM 20016]	4	3	3	1	3	3	14.5	38.296	345
>gi 148531438 gb ABQ83437.1 hemolysin A [Lactobacillus reuteri DSM 20016]	5	4	3	5	3	3	20.5	30.273	273
>gi 227069946 gb EEI08331.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3]	5	3	1	0	4	0	33.1	19.78	175
>gi 148530657 gb ABQ82656.1 protein of unknown function UPF0052 and CofD [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	4.6	36.198	328
>gi 183225679 gb BAG26196.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	4	2	3	1	2	3	24.7	18.055	170
>gi 183224651 gb BAG25168.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	4	4	4	4	4	4	42.7	8.6646	75
>gi 148532042 gb ABQ84041.1 protein of unknown function DUF488 [Lactobacillus reuteri DSM 20016]	3	2	3	1	2	2	33.1	14.61	124

>gi 148531026 gb ABQ83025.1 hypothetical protein Lreu_0761 [Lactobacillus reuteri DSM 20016];>	3	2	3	3	2	3	17.9	21.977	190
>gi 148530739 gb ABQ82738.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016]	5	1	2	2	4	2	16.4	47.242	438
>gi 148531404 gb ABQ83403.1 protein of unknown function DUF1535 [Lactobacillus reuteri DSM 20016];>	3	2	1	2	1	2	23.7	18.631	169
>gi 148530475 gb ABQ82474.1 tryptophanyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	6	4	3	1	3	4	18.8	38.062	340
>gi 227070750 gb EEI09077.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	10	7	8	5	6	5	37.1	25.173	221
>gi 183224190 gb BAG24707.1 DNA helicase [Lactobacillus reuteri JCM 1112];>	8	1	4	2	5	7	12.2	88.988	773
>gi 227070893 gb EEI09216.1 DNA helicase [Lactobacillus reuteri MM2-3]	11	7	6	6	7	8	14.7	90.014	775
>gi 227071654 gb EEI09947.1 oxalyl-CoA decarboxylase [Lactobacillus reuteri MM2-3]	6	3	3	6	5	4	12.3	63.052	583
>gi 148531126 gb ABQ83125.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri DSM 20016]	3	2	1	1	2	2	22.6	20.109	177
>gi 148530420 gb ABQ82419.1 hypothetical protein Lreu_0147 [Lactobacillus reuteri DSM 20016]	7	4	5	3	3	3	15.8	40.003	349
>gi 148532108 gb ABQ84107.1 Methionine synthase, vitamin-B12 independent [Lactobacillus reuteri DSM 20016]	6	4	2	5	5	4	21.7	42.352	378
>gi 183226173 gb BAG26689.1 excinuclease ABC subunit B [Lactobacillus fermentum IFO 3956]	5	3	2	3	2	3	7.2	76.358	671
>gi 148531106 gb ABQ83105.1 hypothetical protein Lreu_0842 [Lactobacillus reuteri DSM 20016]	5	3	5	3	3	4	43.4	15.738	136
>gi 183224586 gb BAG25103.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	3	2	2	1	3	1	13	26.479	230
>gi 148532020 gb ABQ84019.1 PEBP family protein [Lactobacillus reuteri DSM 20016]	5	4	4	3	4	3	29.8	18.294	168
>gi 148531367 gb ABQ83366.1 phage major tail protein [Lactobacillus reuteri DSM 20016]	2	1	2	1	1	1	14.8	25.3	236
>gi 148531440 gb ABQ83439.1 Exodeoxyribonuclease VII small subunit [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	1	18.3	10.268	93
>gi 148532023 gb ABQ84022.1 hypothetical protein Lreu_1783 [Lactobacillus reuteri DSM 20016]	5	1	1	1	2	4	14.7	43.26	373
>gi 148531467 gb ABQ83466.1 5-formyltetrahydrofolate cyclo-ligase [Lactobacillus reuteri DSM 20016]	3	2	3	2	2	2	18.5	21.115	184
>gi 148532091 gb ABQ84090.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016]	7	6	5	3	6	3	20.7	35.062	314
>gi 148531468 gb ABQ83467.1 LSU ribosomal protein L33P [Lactobacillus reuteri DSM 20016]	2	2	2	2	2	2	46.9	5.9998	49
>gi 148530805 gb ABQ82804.1 protein of unknown function DUF1292 [Lactobacillus reuteri DSM 20016]	2	2	1	0	2	2	35.7	11.401	98
>gi 227070920 gb EEI09243.1 possible phosphatase [Lactobacillus reuteri MM2-3]	7	4	3	3	4	2	28.9	24.08	218
>gi 148531215 gb ABQ83214.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri DSM 20016]	5	5	5	1	4	4	36.9	14.777	130
>gi 148530484 gb ABQ82483.1 dimethyladenosine transferase [Lactobacillus reuteri DSM 20016]	8	5	6	3	6	5	31.6	33.039	297

>gi 148530964 gb ABQ82963.1 LSU ribosomal protein L7AE [Lactobacillus reuteri DSM 20016];>	3	3	3	3	2	3	33	11.651	103
>gi 183224803 gb BAG25320.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	4	1	1	3	3	4	12.1	40.672	371
>gi 148530978 gb ABQ82977.1 hypothetical protein Lreu_0712 [Lactobacillus reuteri DSM 20016]	3	3	2	3	3	3	19.7	17.36	152
>gi 148531985 gb ABQ83984.1 dehydratase, small subunit [Lactobacillus reuteri DSM 20016]	4	2	4	2	2	1	27.9	19.319	172
>gi 148531413 gb ABQ83412.1 signal recognition particle subunit FFH/SRP54 (srp54) [Lactobacillus reuteri DSM 20016];>	6	2	4	1	2	4	14.1	54.114	481
>gi 148531627 gb ABQ83626.1 hypothetical protein Lreu_1377 [Lactobacillus reuteri DSM 20016]	4	3	3	1	1	2	20.4	30.386	255
>gi 227070716 gb EEI09044.1 NAD-dependent epimerase/dehydratase [Lactobacillus reuteri MM2-3]	6	5	3	4	4	4	22.7	27.234	242
>gi 148531500 gb ABQ83499.1 replicative DNA helicase loader Dnal [Lactobacillus reuteri DSM 20016]	2	1	2	1	0	1	8.6	35.847	313
>gi 227070756 gb EEI09083.1 ABC superfamily ATP binding cassette transporter, ABC/membrane protein [Lactobacillus reuteri MM2-3]	5	2	1	1	2	4	7.4	72.445	666
>gi 148531133 gb ABQ83132.1 N-6 DNA methylase [Lactobacillus reuteri DSM 20016]	5	2	3	4	3	2	10	58.018	510
>gi 148531233 gb ABQ83232.1 nucleotide deoxyribosyltransferase [Lactobacillus reuteri DSM 20016];>	5	3	5	3	4	2	33.8	18.201	160
>gi 148530565 gb ABQ82564.1 amino acid ABC transporter membrane protein, PAAT family [Lactobacillus reuteri DSM 20016];>	5	5	5	4	4	4	21	26.062	233
>gi 148530719 gb ABQ82718.1 domain of unknown function DUF1727 [Lactobacillus reuteri DSM 20016];>	6	4	4	2	2	4	14.4	50.191	445
>gi 148531973 gb ABQ83972.1 acetate kinase [Lactobacillus reuteri DSM 20016]	6	5	4	4	5	6	18.5	43.802	394
>gi 112943862 gb ABI26325.1 tetrahydrodipicolinate N-succinyltransferase [Lactobacillus reuteri]	4	1	3	2	2	2	18.6	24.845	236
>gi 148530534 gb ABQ82533.1 RNA-binding S4 domain protein [Lactobacillus reuteri DSM 20016];>	3	3	3	1	3	2	31.1	10.249	90
>gi 183224722 gb BAG25239.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	2	2	3	3	4	16.6	33.759	296
>gi 148530568 gb ABQ82567.1 aminopeptidase C, Cysteine peptidase, MEROPS family C01B [Lactobacillus reuteri DSM 20016];>	5	4	2	4	1	5	13.2	51.985	446
>gi 148531846 gb ABQ83845.1 tRNA/rRNA methyltransferase (SpoU) [Lactobacillus reuteri DSM 20016]	4	1	3	2	3	1	16.6	31.804	290
>gi 148531889 gb ABQ83888.1 prolinase, Serine peptidase, MEROPS family S33 [Lactobacillus reuteri DSM 20016];>	2	1	1	2	1	1	8.6	34.841	303
>gi 148531496 gb ABQ83495.1 HAD superfamily (subfamily IIIA) phosphatase, TIGR01668 [Lactobacillus reuteri DSM 20016]	2	2	2	1	2	2	13.1	20.274	176
>gi 148531368 gb ABQ83367.1 protein of unknown function DUF806 [Lactobacillus reuteri DSM 20016]	4	3	2	1	3	4	26.8	14.543	127
>gi 148531335 gb ABQ83334.1 SSU ribosomal protein S14P [Lactobacillus reuteri DSM 20016]	5	5	2	1	2	3	30.3	10.399	89

>gi 227071316 gb EEI09625.1 peptidyl-tRNA hydrolase [Lactobacillus reuteri MM2-3];>	5	3	4	2	1	3	32.7	22.79	205
>gi 148530966 gb ABQ82965.1 ribosome-binding factor A [Lactobacillus reuteri DSM 20016]	6	5	3	2	5	3	32.8	13.412	119
>gi 227071224 gb EEI09538.1 glutamate-cysteine ligase [Lactobacillus reuteri MM2-3]	6	5	4	3	4	4	12	60.334	517
>gi 148531529 gb ABQ83528.1 phosphomethylpyrimidine kinase [Lactobacillus reuteri DSM 20016]	3	2	2	1	2	3	14.8	29.317	271
>gi 148532138 gb ABQ84137.1 asparaginase [Lactobacillus reuteri DSM 20016]	3	2	2	2	1	3	10	35.705	329
>gi 183224804 gb BAG25321.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	2	1	2	1	2	2	21.2	15.336	137
>gi 148530837 gb ABQ82836.1 Negative regulator of genetic competence [Lactobacillus reuteri DSM 20016]	3	2	3	1	2	1	19.7	25.701	223
>gi 148530994 gb ABQ82993.1 GatB/Yqey domain protein [Lactobacillus reuteri DSM 20016]	6	5	4	1	4	1	47.3	16.725	148
>gi 148530371 gb ABQ82370.1 amino acid ABC transporter membrane protein, PAAT family / amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	3	0	0	0	1	2	8.6	53.65	487
>gi 148532131 gb ABQ84130.1 glutamine amidotransferase class-I [Lactobacillus reuteri DSM 20016];>	5	3	2	2	2	1	25.1	25.353	223
>gi 148531683 gb ABQ83682.1 N-6 DNA methylase [Lactobacillus reuteri DSM 20016]	6	3	3	3	3	2	13.9	59.038	517
>gi 148530993 gb ABQ82992.1 SSU ribosomal protein S21P [Lactobacillus reuteri DSM 20016];>	4	3	4	2	4	3	44.4	7.7178	63
>gi 227184649 gb EEI64720.1 alcohol dehydrogenase class IV [Lactobacillus reuteri CF48-3A];>	3	3	2	0	2	3	11.3	40.915	379
>gi 133930561 gb ABO43851.1 TetW [Lactobacillus reuteri];>	2	1	1	0	0	0	2.2	71.362	639
>gi 194453331 gb EDX42228.1 cell envelope-related transcriptional attenuator [Lactobacillus reuteri 100-23];>	5	4	2	4	4	4	20.1	38.126	334
>gi 148530463 gb ABQ82462.1 ABC transporter related [Lactobacillus reuteri DSM 20016]	5	3	2	0	4	1	10.5	39.639	354
>gi 227070164 gb EEI08539.1 protein of hypothetical function DUF896 [Lactobacillus reuteri MM2-3];>	2	2	2	1	2	2	25.6	10.422	86
>gi 148531087 gb ABQ83086.1 hypothetical protein Lreu_0823 [Lactobacillus reuteri DSM 20016]	2	1	2	1	1	2	24.4	10.395	86
>gi 148531103 gb ABQ83102.1 hypothetical protein Lreu_0839 [Lactobacillus reuteri DSM 20016]	2	1	1	0	1	1	16.5	13.733	121
>gi 227184567 gb EEI64638.1 possible calcium-transporting ATPase [Lactobacillus reuteri CF48-3A]	6	3	4	3	4	2	7.6	100.19	911
>gi 183226408 gb BAG26924.1 tRNA (5-methylaminomethyl-2-thiouridylate)- methyltransferase [Lactobacillus fermentum IFO 3956]	2	1	1	2	1	0	5	42.445	377
>gi 6707064 gb AAF25576.1 AF120104_1 mucus binding protein precursor [Lactobacillus reuteri ATCC 53608];>	5	3	0	0	3	0	9.9	357.95	3269
>gi 148530803 gb ABQ82802.1 protein of unknown function DUF965 [Lactobacillus reuteri DSM 20016];>	3	3	3	1	3	2	37.5	10.353	88
>gi 148531074 gb ABQ83073.1 putative transcriptional regulator, XRE family [Lactobacillus reuteri DSM 20016]	3	1	2	1	1	1	36.7	10.465	90
>gi 148531375 gb ABQ83374.1 phage Terminase [Lactobacillus reuteri DSM 20016]	5	2	0	0	1	5	8.7	72.459	629

	3	1	2	2	1	2	8.6	37.11	347
>gi 183227399 dbj BAG27915.1 alcohol dehydrogenase [Lactobacillus fermentum IFO 3956]	3	1	2	2	1	2	8.6	37.11	347
>gi 148531370 gb ABQ83369.1 phage head-tail adaptor, putative [Lactobacillus reuteri DSM 20016];>	5	3	3	3	4	3	48.3	13.324	116
>gi 148531476 gb ABQ83475.1 phenylalanyl-tRNA synthetase, alpha subunit [Lactobacillus reuteri DSM 20016]	5	1	1	3	1	1	16.4	39.026	348
>gi 148531362 gb ABQ83361.1 Chromosome segregation ATPase-like protein [Lactobacillus reuteri DSM 20016]	5	1	4	2	4	4	4.5	149.31	1359
>gi 148530554 gb ABQ82553.1 transcriptional regulator, GntR family [Lactobacillus reuteri DSM 20016]	7	3	7	2	3	3	35.2	26.59	233
>gi 148530960 gb ABQ82959.1 DNA polymerase III catalytic subunit, PolC type [Lactobacillus reuteri DSM 20016]	5	1	1	0	4	4	3.9	163.27	1443
>gi 148531168 gb ABQ83167.1 two component transcriptional regulator, LytTR family [Lactobacillus reuteri DSM 20016]	5	3	4	4	2	2	21.4	27.714	243
>gi 148531521 gb ABQ83520.1 histidine triad (HIT) protein [Lactobacillus reuteri DSM 20016]	6	3	3	0	2	0	43.8	16.333	144
>gi 227070057 gb EEI08435.1 tetratricopeptide repeat family protein [Lactobacillus reuteri MM2-3];>	3	2	1	2	1	2	10.8	50.211	434
>gi 148531165 gb ABQ83164.1 Fmu (Sun) domain protein [Lactobacillus reuteri DSM 20016];>	2	0	1	2	0	0	6.4	51.193	455
>gi 227071872 gb EEI10159.1 DNA-3-methyladenine glycosylase I [Lactobacillus reuteri MM2-3];>	3	1	2	2	2	2	14.8	23.171	196
>gi 227070793 gb EEI09119.1 NADPH dehydrogenase [Lactobacillus reuteri MM2-3];>	2	1	2	1	1	1	10.9	26.711	230
>gi 148531635 gb ABQ83634.1 methionine aminopeptidase, type I [Lactobacillus reuteri DSM 20016]	6	3	3	3	4	4	16.1	31.665	285
>gi 183225571 dbj BAG26088.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	4	3	3	2	2	1	18.1	27.624	249
>gi 148530588 gb ABQ82587.1 large conductance mechanosensitive channel protein [Lactobacillus reuteri DSM 20016];>	4	1	3	1	1	1	40.7	13.773	123
>gi 148530784 gb ABQ82783.1 amino acid ABC transporter membrane protein, PAAT family [Lactobacillus reuteri DSM 20016]	3	2	1	0	1	0	17.7	24.169	215
>gi 227184608 gb EEI64679.1 ribonucleotide reductase, alpha subunit [Lactobacillus reuteri CF48-3A]	4	3	1	1	0	1	6.1	82.149	734
>gi 148530458 gb ABQ82457.1 binding-protein-dependent transport systems inner membrane component [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	1	8.5	23.399	212
>gi 183224626 dbj BAG25143.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	3	1	1	1	1	3	10.5	35.43	304
>gi 148532063 gb ABQ84062.1 thioredoxin [Lactobacillus reuteri DSM 20016];>	5	2	3	1	3	1	42.9	12.064	105
>gi 148531426 gb ABQ83425.1 ribosome small subunit-dependent GTPase A [Lactobacillus reuteri DSM 20016]	3	2	1	2	2	3	12.5	33.257	296
>gi 183226120 dbj BAG26636.1 arginine deiminase [Lactobacillus fermentum IFO 3956];>	3	2	3	2	3	2	8.4	45.948	407
>gi 148530884 gb ABQ82883.1 dihydridopicolinate reductase [Lactobacillus reuteri DSM 20016]	3	1	0	2	1	2	18.5	27.932	259

>gi 227071059 gb EEI09378.1 phosphate regulatory protein [Lactobacillus reuteri MM2-3]	3	2	1	1	1	1	13.2	27.712	243
>gi 148530686 gb ABQ82685.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016];>	3	1	3	2	2	2	16.7	27.76	239
>gi 148531492 gb ABQ83491.1 metal dependent phosphohydrolase [Lactobacillus reuteri DSM 20016];>	2	2	1	1	0	1	9.8	23.131	204
>gi 148531710 gb ABQ83709.1 protein translocase subunit secY/sec61 alpha [Lactobacillus reuteri DSM 20016]	5	1	1	2	3	4	12.6	47.772	438
>gi 148530858 gb ABQ82857.1 UDP-N-acetylglucosamine--N-acetylglucosamine transferase [Lactobacillus reuteri DSM 20016];>	5	1	2	1	4	2	18.6	40.606	370
>gi 148531274 gb ABQ83273.1 Hydroxyethylthiazole kinase [Lactobacillus reuteri DSM 20016];>	2	0	1	1	1	0	11.2	29.028	269
>gi 148531574 gb ABQ83573.1 ribonucleoside-triphosphate reductase class III activase subunit [Lactobacillus reuteri DSM 20016];>	3	2	2	2	3	3	15.1	22.234	192
>gi 183224837 gb BAG25354.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	6	3	3	3	3	3	17	48.212	430
>gi 148531338 gb ABQ83337.1 demethylmenaquinone methyltransferase [Lactobacillus reuteri DSM 20016];>	3	0	3	0	0	0	14.2	26.083	233
>gi 148531151 gb ABQ83150.1 1,4-Dihydroxy-2-naphthoate synthase [Lactobacillus reuteri DSM 20016]	4	3	2	3	3	2	17.9	30.019	273
>gi 227186158 gb EEI66229.1 ribonucleoside-triphosphate reductase class III activase subunit [Lactobacillus reuteri CF48-3A]	3	2	2	3	2	2	15.6	22.224	192
>gi 227070128 gb EEI08504.1 GTP diphosphokinase [Lactobacillus reuteri MM2-3]	4	1	0	2	3	2	5.3	85.34	751
>gi 148531503 gb ABQ83502.1 dephospho-CoA kinase [Lactobacillus reuteri DSM 20016]	4	2	3	1	2	3	24.1	21.94	199
>gi 148531891 gb ABQ83890.1 Ferritin, Dps family protein [Lactobacillus reuteri DSM 20016]	4	4	2	2	3	4	31	18.223	155
>gi 148530416 gb ABQ82415.1 formyltetrahydrofolate-dependent phosphoribosylglycinamide formyltransferase [Lactobacillus reuteri DSM 20016]	4	2	3	0	2	0	27.9	21.163	190
>gi 148530943 gb ABQ82942.1 SOS-response transcriptional repressor, LexA [Lactobacillus reuteri DSM 20016]	3	3	2	1	2	2	18.3	23.184	208
>gi 148531520 gb ABQ83519.1 ABC transporter related [Lactobacillus reuteri DSM 20016];>	5	2	4	3	2	3	26.5	27.345	245
>gi 148531166 gb ABQ83165.1 band 7 protein [Lactobacillus reuteri DSM 20016]	5	3	3	3	2	4	17.7	31.856	288
>gi 148532015 gb ABQ84014.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016]	3	2	0	3	3	3	9.1	36.929	330
>gi 148531145 gb ABQ83144.1 6,7-dimethyl-8-ribityllumazine synthase [Lactobacillus reuteri DSM 20016]	2	1	1	1	1	2	22.4	16.637	152
>gi 148531193 gb ABQ83192.1 carbamoyl-phosphate synthase small subunit [Lactobacillus reuteri DSM 20016];>	3	2	3	3	3	3	11.6	39.871	361
>gi 148530977 gb ABQ82976.1 hypothetical protein Lreu_0711 [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	1	8.7	16.649	149

>gi 148531429 gb ABQ83428.1 sun protein [Lactobacillus reuteri DSM 20016]	4	2	3	2	2	2	11.6	50.377	449
>gi 148531957 gb ABQ83956.1 precorrin-6Y C5,15-methyltransferase (decarboxylating), CbiT subunit [Lactobacillus reuteri DSM 20016];>	4	3	3	1	3	3	20.7	20.387	184
>gi 183225646 dbj BAG26163.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	2	3	2	2	1	18.5	19.84	178
>gi 148530983 gb ABQ82982.1 [LSU ribosomal protein L11P]-lysine N-methyltransferase [Lactobacillus reuteri DSM 20016]	5	3	3	3	2	2	17.6	34.966	319
>gi 148531099 gb ABQ83098.1 phage putative head morphogenesis protein, SPP1 gp7 family [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	2	7.6	35.825	316
>gi 227071855 gb EEI10143.1 penicillin-binding protein [Lactobacillus reuteri MM2-3];>	3	1	2	2	2	2	5.3	76.108	699
>gi 183224027 dbj BAG24544.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	4	1	1	4	3	29.4	20.228	180
>gi 227071501 gb EEI09801.1 LL-diaminopimelate aminotransferase [Lactobacillus reuteri MM2-3]	4	2	1	2	2	4	10.6	43.448	395
>gi 336448856 gb AEI57471.1 sensor histidine kinase [Lactobacillus reuteri SD2112]	5	2	0	1	0	2	17.9	44.299	390
>gi 227071080 gb EEI09398.1 metallo-beta-lactamase [Lactobacillus reuteri MM2-3];>	4	2	2	1	1	2	7.3	70.828	628
>gi 148531079 gb ABQ83078.1 hypothetical protein Lreu_0815 [Lactobacillus reuteri DSM 20016]	4	3	3	2	3	4	24.4	14.305	123
>gi 336448233 gb AEI56848.1 ribosomal large subunit pseudouridine synthase D [Lactobacillus reuteri SD2112]	3	0	3	1	0	0	11.1	37.027	325
>gi 148531769 gb ABQ83768.1 DJ-1 family protein [Lactobacillus reuteri DSM 20016]	2	1	2	0	1	1	17.9	20.995	190
>gi 148531874 gb ABQ83873.1 transcriptional regulator, TetR family [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	1	15.2	20.576	178
>gi 183224587 dbj BAG25104.1 exodeoxyribonuclease V alpha subunit [Lactobacillus reuteri JCM 1112]	6	3	2	0	5	2	7.6	91.732	828
>gi 148531084 gb ABQ83083.1 hypothetical protein Lreu_0820 [Lactobacillus reuteri DSM 20016];>	2	0	2	0	1	2	27.9	9.6179	86
>gi 148531409 gb ABQ83408.1 tRNA (Guanine37-N(1)-) methyltransferase [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	1	6.7	28.476	252
>gi 227070907 gb EEI09230.1 possible Bis(5-nucleosyl)-tetraphosphatase (asymmetrical) [Lactobacillus reuteri MM2-3];>	3	0	3	1	2	1	24.4	19.718	168
>gi 148530818 gb ABQ82817.1 Xaa-Pro aminopeptidase, Metallo peptidase, MEROPS family M24B [Lactobacillus reuteri DSM 20016];>	6	1	4	2	2	0	24.9	40.615	369
>gi 148530572 gb ABQ82571.1 DNA replication and repair protein RadA [Lactobacillus reuteri DSM 20016]	3	2	1	1	2	2	9.4	49.96	457
>gi 227071188 gb EEI09504.1 transcriptional regulator CtsR [Lactobacillus reuteri MM2-3];>	3	3	1	1	1	1	17.4	19.037	167
>gi 148530278 gb ABQ82277.1 chromosomal replication initiator protein DnaA [Lactobacillus reuteri DSM 20016]	3	1	1	1	1	3	8.4	49.942	440
>gi 148530753 gb ABQ82752.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	4	0	0	0	2	3	18.2	32.082	280

>gi 148531032 gb ABQ83031.1 Polynucleotide adenylyltransferase region [Lactobacillus reuteri DSM 20016]	2	2	1	2	1	2	6.7	45.099	403
>gi 227185796 gb EEI65867.1 rod shape-determining protein MreC [Lactobacillus reuteri CF48-3A];>	4	2	0	2	1	3	15.5	31.961	291
>gi 148531235 gb ABQ83234.1 hypothetical protein Lreu_0972 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	10	13.528	120
>gi 148531292 gb ABQ83291.1 SMC domain protein [Lactobacillus reuteri DSM 20016]	3	2	1	1	1	1	3.3	118.56	1033
>gi 148531095 gb ABQ83094.1 ParB domain protein nuclease [Lactobacillus reuteri DSM 20016];>	4	1	2	1	2	3	13.9	29.81	259
>gi 148531518 gb ABQ83517.1 tRNA (guanine-N(7)-)methyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	0	1	2	2	8.5	24.675	213
>gi 148531324 gb ABQ83323.1 4-oxalocrotonate tautomerase [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	18	6.8159	61
>gi 148531516 gb ABQ83515.1 LPXTG-motif cell wall anchor domain [Lactobacillus reuteri DSM 20016]	2	0	1	2	0	2	18.5	81.784	745
>gi 148530737 gb ABQ82736.1 ATP synthase F1 subcomplex epsilon subunit [Lactobacillus reuteri DSM 20016]	2	1	1	0	1	1	17.5	15.452	143
>gi 148531100 gb ABQ83099.1 hypothetical protein Lreu_0836 [Lactobacillus reuteri DSM 20016]	3	2	2	0	3	3	42	9.5449	81
>gi 148530907 gb ABQ82906.1 Phosphopantetheine adenylyltransferase [Lactobacillus reuteri DSM 20016]	3	3	2	2	2	3	15	19.361	173
>gi 148531640 gb ABQ83639.1 DEAD/DEAH box helicase domain protein [Lactobacillus reuteri DSM 20016]	3	3	1	0	2	1	8.1	48.772	433
>gi 148530656 gb ABQ82655.1 uncharacterized P-loop ATPase protein UPF0042 [Lactobacillus reuteri DSM 20016]	3	1	2	0	2	1	12.1	33.671	297
>gi 148531339 gb ABQ83338.1 Methionine synthase, vitamin-B12 independent [Lactobacillus reuteri DSM 20016]	4	1	2	2	1	3	11.6	42.705	379
>gi 148532077 gb ABQ84076.1 Phosphoglycerate mutase [Lactobacillus reuteri DSM 20016]	2	2	0	0	1	1	10.6	24.661	217
>gi 227185170 gb EEI65241.1 amidohydrolase [Lactobacillus reuteri CF48-3A]	2	1	1	1	1	0	5.7	42.662	383
>gi 148531787 gb ABQ83786.1 penicillin-binding protein, transpeptidase [Lactobacillus reuteri DSM 20016]	2	1	2	2	0	1	6.8	29.751	265
>gi 148530613 gb ABQ82612.1 O-sialoglycoprotein endopeptidase [Lactobacillus reuteri DSM 20016]	3	3	2	1	2	3	11.1	37.453	343
>gi 148530631 gb ABQ82630.1 protein of unknown function UPF0029 [Lactobacillus reuteri DSM 20016]	3	2	1	0	2	2	19.5	23.548	210
>gi 148530910 gb ABQ82909.1 ComE operon protein 2 [Lactobacillus reuteri DSM 20016];>	3	2	2	1	3	1	18	18.085	161
>gi 183224312 gb BAG24829.1 putative glutaredoxin [Lactobacillus reuteri JCM 1112]	2	1	1	0	1	2	40	8.662	75
>gi 148530511 gb ABQ82510.1 protein tyrosine phosphatase [Lactobacillus reuteri DSM 20016];>	3	3	1	1	0	1	33.1	17.398	154
>gi 148532003 gb ABQ84002.1 3-demethylubiquinone-9 3-methyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	1	15.6	15.941	141

>gi 148531566 gb ABQ83565.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016]	2	1	1	2	1	1	7.1	30.851	282
>gi 148531980 gb ABQ83979.1 Propanediol utilization protein [Lactobacillus reuteri DSM 20016]	5	2	3	2	5	3	25.2	23.962	214
>gi 148531174 gb ABQ83173.1 protein of unknown function DUF1440 [Lactobacillus reuteri DSM 20016]	3	3	3	2	3	3	20.5	18.375	166
>gi 183226397 dbj BAG26913.1 cell division protein FtsZ [Lactobacillus fermentum IFO 3956]	3	2	1	3	0	1	6.1	45.111	429
>gi 336448991 gb AEI57606.1 zinc/iron ABC superfamily ATP binding cassette transporter, ABC protein [Lactobacillus reuteri SD2112]	3	3	2	1	2	2	13.2	27.995	250
>gi 183226087 dbj BAG26603.1 transcription antitermination protein [Lactobacillus fermentum IFO 3956]	2	1	2	1	2	1	21	20.377	181
>gi 183224767 dbj BAG25284.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	1	0	0	1	1	1	13.7	20.916	190
>gi 148530495 gb ABQ82494.1 metal dependent phosphohydrolase [Lactobacillus reuteri DSM 20016];>	4	1	3	2	2	0	9.7	53.542	455
>gi 148530334 gb ABQ82333.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	1	11.3	24.908	221
>gi 148531751 gb ABQ83750.1 cold-shock DNA-binding protein family [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	1	34.8	7.3269	66
>gi 148530599 gb ABQ82598.1 DNA replication and repair protein RecR [Lactobacillus reuteri DSM 20016]	4	1	3	1	1	1	15.5	22.089	200
>gi 148530841 gb ABQ82840.1 RelA/SpoT domain protein [Lactobacillus reuteri DSM 20016];>	4	3	2	1	1	2	17.5	25.826	217
>gi 227070166 gb EEI08541.1 1-acyl-sn-glycerol-3-phosphate acyltransferase [Lactobacillus reuteri MM2-3]	2	1	2	1	1	1	9.5	28.013	243
>gi 148531758 gb ABQ83757.1 amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	3	2	2	3	2	2	12.3	30.556	276
>gi 183224605 dbj BAG25122.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	1	0	0	1	1	9.3	18.717	161
>gi 227071315 gb EEI09624.1 cystathionine beta-synthase (CBS) domain protein [Lactobacillus reuteri MM2-3];>	3	3	1	1	2	1	15.8	24.393	215
>gi 148530804 gb ABQ82803.1 Holliday junction resolvase YqgF [Lactobacillus reuteri DSM 20016];>	3	2	2	1	2	0	23.1	16.525	147
>gi 148530575 gb ABQ82574.1 ribonuclease III [Lactobacillus reuteri DSM 20016]	2	1	1	1	2	1	16.8	15.515	137
>gi 183224778 dbj BAG25295.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	0	3	0	1	4	44.5	15.26	128
>gi 148531760 gb ABQ83759.1 amino acid ABC transporter membrane protein 2, PAAT family [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	2	13.8	24.332	217
>gi 148531927 gb ABQ83926.1 transcriptional regulator, GntR family [Lactobacillus reuteri DSM 20016]	2	2	1	1	2	2	9.5	27.747	243
>gi 148530515 gb ABQ82514.1 DEAD/DEAH box helicase domain protein [Lactobacillus reuteri DSM 20016];>	4	3	1	0	1	3	8.4	56.522	498
>gi 148530636 gb ABQ82635.1 bacterial peptide chain release factor 2 (bRF-2) [Lactobacillus reuteri DSM 20016];>	2	2	1	2	0	1	8.4	37.463	332

>gi 227185380 gb EEI65451.1 site-specific DNA-methyltransferase (adenine-specific) [Lactobacillus reuteri CF48-3A];>	2	1	1	1	2	1	3.3	57.986	512
>gi 148530461 gb ABQ82460.1 acetylornithine deacetylase [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	0	6	41.681	381
>gi 148531774 gb ABQ83773.1 transcriptional regulator, LysR family [Lactobacillus reuteri DSM 20016];>	4	1	3	1	2	0	11.9	33.598	295
>gi 148531428 gb ABQ83427.1 Protein phosphatase 2C-like protein [Lactobacillus reuteri DSM 20016];>	3	2	3	1	2	2	12.2	26.923	246
>gi 183224761 gb BAG25278.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	2	1	1	1	2	10.9	21.003	184
>gi 148530813 gb ABQ82812.1 CBS domain containing protein [Lactobacillus reuteri DSM 20016];>	3	3	2	1	2	2	17	16.967	147
>gi 227070532 gb EEI08865.1 orotidine-5-phosphate decarboxylase [Lactobacillus reuteri MM2-3];>	2	1	2	1	1	1	8.5	26.968	248
>gi 148530848 gb ABQ82847.1 RNA methyltransferase, TrmH family, group 2 [Lactobacillus reuteri DSM 20016];>	3	1	3	0	1	1	20.7	19.557	169
>gi 194453849 gb EDX42746.1 cell envelope-related transcriptional attenuator [Lactobacillus reuteri 100-23]	2	1	1	1	1	1	5.3	55.148	489
>gi 119390607 pdb 2NT8 A Chain A, Atp Bound At The Active Site Of A Pduo Type Atp:co(I) Ribonucleosyltransferase From Lactobacillus Reuteri; >	2	1	1	0	1	2	9.9	25.598	223
>gi 148531071 gb ABQ83070.1 transcriptional regulator, XRE family [Lactobacillus reuteri DSM 20016];>	3	1	1	0	3	3	37.8	9.7862	82
>gi 148530790 gb ABQ82789.1 CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	1	0	1	0	11.8	21.79	195
>gi 227070045 gb EEI08423.1 possible reductase [Lactobacillus reuteri MM2-3]	2	1	1	1	1	2	20.8	14.924	125
>gi 148531512 gb ABQ83511.1 L-glutaminase [Lactobacillus reuteri DSM 20016];>	2	1	1	2	1	1	6.9	33.392	306
>gi 148532176 gb ABQ84175.1 ribonuclease P protein component [Lactobacillus reuteri DSM 20016]	2	2	2	0	2	1	18.8	13.651	117
>gi 148531992 gb ABQ83991.1 major intrinsic protein [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	4.7	25.304	235
>gi 183225835 gb BAG26351.1 two-component response regulator [Lactobacillus fermentum IFO 3956]	3	1	1	2	1	3	9.8	26.747	235
>gi 148530393 gb ABQ82392.1 branched-chain amino acid transport [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	8.8	12.954	114
>gi 300379508 gb ADK08386.1 alkyl hydroperoxide reductase F subunit [Lactobacillus reuteri]	2	1	1	0	1	0	4.9	55.347	512
>gi 148531175 gb ABQ83174.1 isopentenyl-diphosphate delta-isomerase, type 2 [Lactobacillus reuteri DSM 20016];>	3	2	1	2	3	2	10.3	38.769	348
>gi 148531449 gb ABQ83448.1 protein of unknown function DUF464 [Lactobacillus reuteri DSM 20016];>	2	1	2	0	1	1	32.7	11.705	107
>gi 227070762 gb EEI09089.1 NRAMP family manganese (Mn2+) transporter [Lactobacillus reuteri MM2-3]	3	1	1	1	3	2	6.4	59.447	546

>gi 148530836 gb ABQ82835.1 arsenate reductase-like protein [Lactobacillus reuteri DSM 20016]	4	2	3	0	3	3	34.6	15.539	133
>gi 183224289 dbj BAG24806.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	2	1	1	1	2	2	6.5	43.741	383
>gi 148530487 gb ABQ82486.1 periplasmic solute binding protein [Lactobacillus reuteri DSM 20016];>	2	1	2	1	0	0	7.3	34.078	303
>gi 148530499 gb ABQ82498.1 Domain of unknown function DUF1934 [Lactobacillus reuteri DSM 20016];>	3	1	1	1	2	0	22.7	15.33	132
>gi 227070084 gb EEI08461.1 metal-dependent hydrolase [Lactobacillus reuteri MM2-3]	2	1	1	1	1	2	11.2	18.134	160
>gi 337729366 emb CCC04496.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608]	2	2	0	0	0	0	4.7	44.72	402
>gi 227071130 gb EEI09446.1 TrmA family tRNA (uracil-5-)-methyltransferase [Lactobacillus reuteri MM2-3]	3	1	2	0	1	1	7.9	53.815	480
>gi 148530400 gb ABQ82399.1 orotate phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	2	2	1	0	1	1	8	23.434	213
>gi 227184596 gb EEI64667.1 transcriptional regulator [Lactobacillus reuteri CF48-3A]	2	1	1	1	2	1	9.1	27.898	243
>gi 148531537 gb ABQ83536.1 2-amino-4-hydroxy-6-hydroxymethylidihydropteridine pyrophosphokinase [Lactobacillus reuteri DSM 20016]	3	1	2	2	1	1	14.1	19.815	170
>gi 183225948 dbj BAG26464.1 amidophosphoribosyltransferase [Lactobacillus fermentum IFO 3956]	3	1	2	1	1	1	6.2	53.518	487
>gi 148530649 gb ABQ82648.1 thioesterase superfamily protein [Lactobacillus reuteri DSM 20016]	2	2	2	2	1	1	13.7	19.242	168
>gi 148531190 gb ABQ83189.1 hypothetical protein Lreu_0927 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	8.1	15.956	135
>gi 148531700 gb ABQ83699.1 cobalt transport protein [Lactobacillus reuteri DSM 20016]	3	1	2	0	1	1	12.4	30.347	267
>gi 183226825 dbj BAG27341.1 1-deoxy-D-xylulose-5-phosphate synthase [Lactobacillus fermentum IFO 3956]	2	2	0	1	0	1	5.4	65.874	592
>gi 183225944 dbj BAG26460.1 phosphoribosylaminoimidazole-succinocarboxamide synthase [Lactobacillus fermentum IFO 3956]	1	1	1	1	1	0	5.4	27.483	240
>gi 148532142 gb ABQ84141.1 Hydratase/decarboxylase [Lactobacillus reuteri DSM 20016]	2	2	2	2	2	2	6.3	29.863	270
>gi 148530456 gb ABQ82455.1 binding-protein-dependent transport systems inner membrane component [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	1	5	24.06	221
>gi 148530651 gb ABQ82650.1 hydrolase of HD superfamily-like protein [Lactobacillus reuteri DSM 20016];>gi 148543617 ref YP_001270987.1 HD superfamily hydrolase-like protein [Lactobacillus reuteri DSM 20016];>	4	0	2	1	2	0	18.9	24.304	212
>gi 148532000 gb ABQ83999.1 ABC-type multidrug transport system ATPase component-like protein [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	3.5	31.737	287
>gi 148531803 gb ABQ83802.1 67 kDa myosin-cross-reactive antigen family protein [Lactobacillus reuteri DSM 20016];>	4	2	3	1	3	3	8.1	67.715	590
>gi 227184772 gb EEI64843.1 protein-tyrosine-phosphatase [Lactobacillus reuteri CF48-3A];>	2	1	1	0	1	2	9.8	30.178	265

>gi 148531939 gb ABQ83938.1 adenosylcobinamide kinase [Lactobacillus reuteri DSM 20016];>	2	2	0	0	0	1	12.2	22.192	196
>gi 148530976 gb ABQ82975.1 hypothetical protein Lreu_0710 [Lactobacillus reuteri DSM 20016];>	2	0	1	1	0	1	8.2	28.409	244
>gi 194453872 gb EDX42769.1 hypothetical protein Lreu23DRAFT_4288 [Lactobacillus reuteri 100-23]	1	1	0	1	1	1	1.6	69.515	629
>gi 148531699 gb ABQ83698.1 tRNA pseudouridine synthase A [Lactobacillus reuteri DSM 20016];>	4	1	2	0	1	1	15.2	29.138	256
>gi 148531457 gb ABQ83456.1 NLPA lipoprotein [Lactobacillus reuteri DSM 20016];>	1	1	0	0	0	1	4.2	31.575	283
>gi 148531446 gb ABQ83445.1 peptidase M24 [Lactobacillus reuteri DSM 20016]	2	1	1	1	2	1	6.1	39.767	358
>gi 148531411 gb ABQ83410.1 hypothetical protein Lreu_1153 [Lactobacillus reuteri DSM 20016];>	3	1	2	2	2	2	34.9	9.7331	86
>gi 148531080 gb ABQ83079.1 hypothetical protein Lreu_0816 [Lactobacillus reuteri DSM 20016]	1	1	1	0	0	0	16.3	10.515	92
>gi 148530356 gb ABQ82355.1 Protein of unknown function DUF1975 [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	1	4.5	59.726	513
>gi 148531785 gb ABQ83784.1 hypothetical protein Lreu_1539 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	1	15.1	16.827	146
>gi 148530965 gb ABQ82964.1 bacterial translation initiation factor 2 (bIF-2) [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	2	3.1	83.537	752
>gi 148531636 gb ABQ83635.1 flavodoxin [Lactobacillus reuteri DSM 20016];>	2	2	2	1	1	2	12.5	16.373	152
>gi 148531996 gb ABQ83995.1 B3/4 domain protein [Lactobacillus reuteri DSM 20016]	3	1	2	1	2	2	12.4	27.29	241
>gi 148532096 gb ABQ84095.1 ABC transporter related [Lactobacillus reuteri DSM 20016]	2	1	2	0	0	0	11.4	25.064	229
>gi 148530932 gb ABQ82931.1 phage head-tail adaptor, putative [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	10.1	13.175	119
>gi 148531401 gb ABQ83400.1 transcriptional regulator, XRE family [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	14.9	7.715	67
>gi 148531835 gb ABQ83834.1 cytochrome b5 [Lactobacillus reuteri DSM 20016]	1	1	0	0	1	0	21.2	8.6688	80
>gi 148531212 gb ABQ83211.1 protein of unknown function DUF21 [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	2.4	52.119	453
>gi 148531490 gb ABQ83489.1 Methyltransferase type 12 [Lactobacillus reuteri DSM 20016];>	2	2	1	2	1	1	7.7	28.291	246
>gi 183225246 gb BAG25763.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	2	1	1	1	2	1	6.4	33.488	297
>gi 148531620 gb ABQ83619.1 glycosyl transferase, group 1 [Lactobacillus reuteri DSM 20016]	2	1	1	1	0	0	7.4	40.131	349
>gi 148531272 gb ABQ83271.1 hypothetical protein Lreu_1011 [Lactobacillus reuteri DSM 20016]	3	1	0	0	1	1	5.2	72.576	629
>gi 227070859 gb EEI09184.1 nicotinamide mononucleotide transporter [Lactobacillus reuteri MM-2-3];>	2	2	1	2	2	2	6.2	30.903	276
>gi 148530683 gb ABQ82682.1 transcriptional regulator, MarR family [Lactobacillus reuteri DSM 20016];>	2	2	1	0	0	0	12.6	17.828	151
>gi 194453686 gb EDX42583.1 ATP-cone domain protein [Lactobacillus reuteri 100-23];>	2	1	2	1	1	2	15.5	18.122	155

>gi 183227385 dbj BAG27901.1 malolactic regulator [Lactobacillus fermentum IFO 3956]	2	2	1	0	1	0	8.4	33.124	297
>gi 148531137 gb ABQ83136.1 restriction modification system DNA specificity domain [Lactobacillus reuteri DSM 20016];>	2	0	0	1	1	1	4.8	42.885	375
>gi 337729524 emb CCC04655.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608]	3	2	0	0	0	1	3.8	94.907	821
>gi 148531374 gb ABQ83373.1 phage portal protein, HK97 family [Lactobacillus reuteri DSM 20016];>	2	1	1	1	2	1	6.8	43.309	396
>gi 148531707 gb ABQ83706.1 LSU ribosomal protein L36P [Lactobacillus reuteri DSM 20016];>	1	0	0	1	0	1	25.6	4.5345	39
>gi 227185263 gb EEI65334.1 aldo/keto reductase [Lactobacillus reuteri CF48-3A]	2	1	2	0	2	0	6.4	35.985	326
>gi 194454517 gb EDX43414.1 Protein of unknown function DUF1975 [Lactobacillus reuteri 100-23];>	2	0	0	1	0	2	6.2	59.739	513
>gi 148530372 gb ABQ82371.1 amino acid ABC transporter ATP-binding protein, PAAT family [Lactobacillus reuteri DSM 20016]	3	3	2	1	2	1	15	27.521	247
>gi 227071659 gb EEI09952.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3]	2	1	1	0	0	2	11	19.844	173
>gi 337727943 emb CCC03032.1 adenine phosphoribosyltransferase [Lactobacillus reuteri ATCC 53608];>	3	3	0	0	0	0	19.2	18.664	172
>gi 148531452 gb ABQ83451.1 hypothetical protein Lreu_1194 [Lactobacillus reuteri DSM 20016];>	2	0	1	0	2	0	8.3	19.53	168
>gi 148531179 gb ABQ83178.1 DnaQ family exonuclease/DinG family helicase, putative [Lactobacillus reuteri DSM 20016];>	3	0	0	0	3	0	4	108.2	954
>gi 227070539 gb EEI08872.1 acetolactate decarboxylase [Lactobacillus reuteri MM2-3];>	3	1	1	2	2	2	9.3	27.238	246
>gi 148531565 gb ABQ83564.1 heat shock protein Hsp20 [Lactobacillus reuteri DSM 20016];>	2	0	2	0	2	0	16.1	16.747	143
>gi 148531789 gb ABQ83788.1 major facilitator superfamily MFS_1 [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	2.2	43.836	405
>gi 183227479 dbj BAG27995.1 transposase [Lactobacillus fermentum IFO 3956];>	2	1	0	0	1	0	5.9	29.427	256
>gi 148531804 gb ABQ83803.1 nitroreductase [Lactobacillus reuteri DSM 20016]	2	1	1	0	0	2	8.7	28.863	253
>gi 183224791 dbj BAG25308.1 hypothetical phage protein [Lactobacillus reuteri JCM 1112];>	1	1	1	0	1	1	15.9	12.096	107
>gi 148531759 gb ABQ83758.1 amino acid ABC transporter membrane protein 1, PAAT family [Lactobacillus reuteri DSM 20016];>	2	2	2	1	1	2	11.3	23.543	212
>gi 148531353 gb ABQ83352.1 hypothetical protein Lreu_1095 [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	1	13	13.383	123
>gi 227071585 gb EEI09882.1 uracil-DNA glycosylase [Lactobacillus reuteri MM2-3]	1	1	1	1	1	1	6.9	27.942	245
>gi 148530839 gb ABQ82838.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016];>	2	2	1	2	2	2	4.6	51.591	458
>gi 148531952 gb ABQ83951.1 uroporphyrinogen-III C-methyltransferase [Lactobacillus reuteri DSM 20016];>	2	0	0	1	1	0	6	51.349	464
>gi 148530411 gb ABQ82410.1 phosphoribosylformylglycinamidine synthase, purS [Lactobacillus	2	0	1	0	1	0	22	9.3323	82

reuteri DSM 20016									
>gi 148530320 gb ABQ82319.1 D-isomer specific 2-hydroxyacid dehydrogenase, NAD-binding protein [Lactobacillus reuteri DSM 20016]	1	1	1	0	0	1	4.2	36.471	331
>gi 183225293 gb BAG25810.1 galactosyltransferase [Lactobacillus reuteri JCM 1112 ;]	4	2	1	3	2	2	16.1	25.338	218
>gi 148531784 gb ABQ83783.1 aldose 1-epimerase [Lactobacillus reuteri DSM 20016]	1	1	0	1	0	1	2.9	37.927	345
>gi 148530754 gb ABQ82753.1 transcriptional regulator, GntR family [Lactobacillus reuteri DSM 20016]	2	1	1	0	1	2	4.9	41.571	365
>gi 148532052 gb ABQ84051.1 Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri DSM 20016]	2	1	1	1	2	1	14.7	22.38	197
>gi 148530678 gb ABQ82677.1 YbbR family protein [Lactobacillus reuteri DSM 20016 J]	3	0	0	2	1	0	13.4	32.748	299
>gi 337728183 emb CCC03274.1 hypothetical protein LRATCC53608_0523 [Lactobacillus reuteri ATCC 53608]	3	2	1	0	2	1	13.4	22.62	209
>gi 227185256 gb EEI65327.1 peptidase M10A and M12B, matrixin and adamalysin [Lactobacillus reuteri CF48-3A];>	2	1	2	1	2	1	7.8	26.997	244
>gi 148530694 gb ABQ82693.1 response regulator receiver protein [Lactobacillus reuteri DSM 20016];>	1	1	1	0	0	0	5.4	31.663	279
>gi 148531048 gb ABQ83047.1 DNA topoisomerase IV subunit A [Lactobacillus reuteri DSM 20016];>	4	1	1	2	4	1	6.1	92.718	821
>gi 49242758 emb CAG41483.1 transport system membrane protein [Staphylococcus aureus subsp. aureus MRSA252];>	2	1	1	2	1	1	9.2	26.496	239
>gi 183224486 gb BAG25003.1 cell division regulatory protein [Lactobacillus reuteri JCM 1112];>	3	1	0	2	0	1	6.3	66.585	570
>gi 148532145 gb ABQ84144.1 transcriptional regulator [Lactobacillus reuteri DSM 20016];>	2	2	0	1	1	0	6.9	32.842	289
>gi 148531083 gb ABQ83082.1 hypothetical protein Lreu_0819 [Lactobacillus reuteri DSM 20016]	1	1	0	0	1	1	17.2	7.5354	64
>gi 148531988 gb ABQ83987.1 microcompartments protein [Lactobacillus reuteri DSM 20016]	3	1	0	0	0	2	18.5	24.945	238
>gi 112944062 gb ABI26332.1 phosphoglycerate mutase [Lactobacillus reuteri]	2	0	1	1	1	1	7.8	24.692	218
>gi 194454116 gb EDX43013.1 hypothetical protein Lreu23DRAFT_4532 [Lactobacillus reuteri 100-23]	1	0	0	1	1	0	19.5	4.7396	41
>gi 227070651 gb EEI08981.1 rhodanese domain protein [Lactobacillus reuteri MM2-3];>	2	1	2	1	2	1	8.8	29.725	261
>gi 148531180 gb ABQ83179.1 Uncharacterized protein [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	2	12.2	19.912	172
>gi 227070790 gb EEI09116.1 possible DNA-3-methyladenine glycosylase II [Lactobacillus reuteri MM2-3];>	2	1	1	0	1	1	9	24.938	222
>gi 337728658 emb CCC03769.1 putative lipoprotein [Lactobacillus reuteri ATCC 53608]	2	2	0	0	0	0	10.2	24.095	216
>gi 148530603 gb ABQ82602.1 DNA polymerase III, delta prime subunit [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	0	4.5	37.892	337
>gi 148530535 gb ABQ82534.1 Septum formation initiator [Lactobacillus reuteri DSM 20016];>	1	0	1	1	0	1	8.5	14.01	118
>gi 148530915 gb ABQ82914.1 beta-lactamase domain protein [Lactobacillus reuteri DSM	2	1	1	1	1	2	3.5	66.72	593

20016];>									
>gi 148532105 gb ABQ84104.1 ketopantoate reductase [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	2	5.3	36.285	318
>gi 227184639 gb EEI64710.1 propanediol dehydratase, large subunit [Lactobacillus reuteri CF48-3A];>	2	1	2	1	1	2	2.3	65.4	615
>gi 148531951 gb ABQ83950.1 anaerobic cobaltochelatase [Lactobacillus reuteri DSM 20016];>	3	1	0	1	1	2	16.6	29.176	259
>gi 194454644 gb EDX43541.1 hypothetical protein Lreu23DRAFT_5063 [Lactobacillus reuteri 100-23]	1	1	1	1	1	0	5.9	19.747	169
>gi 148532114 gb ABQ84113.1 transcriptional regulator, HxIR family [Lactobacillus reuteri DSM 20016];>	2	0	2	0	1	0	11.5	14.22	122
>gi 148530779 gb ABQ82778.1 FolC bifunctional protein [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	0	3.2	47.999	437
>gi 227071709 gb EEI10000.1 ATP-dependent RNA helicase [Lactobacillus reuteri MM2-3]	2	0	1	1	0	2	4.7	53.802	467
>gi 148531437 gb ABQ83436.1 transcriptional regulator, ArgR family [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	0	8.7	16.881	150
>gi 148530337 gb ABQ82336.1 glutamate-cysteine ligase [Lactobacillus reuteri DSM 20016]	2	0	1	0	1	0	5.8	51.01	446
>gi 337728749 emb CCC03868.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608]	3	0	1	1	1	1	13.7	33.684	292
>gi 148532016 gb ABQ84015.1 UTP-hexose-1-phosphate uridylyltransferase [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	2.3	54.926	483
>gi 148531876 gb ABQ83875.1 hypothetical protein Lreu_1635 [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	5.4	31.711	279
>gi 148531224 gb ABQ83223.1 DNA/RNA non-specific endonuclease [Lactobacillus reuteri DSM 20016]	2	0	2	1	1	1	8.8	31.236	284
>gi 228752976 gb EEM02516.1 Transposase IS116/IS110/IS902 [Bacillus mycoides Rock1-4];>	2	1	2	1	2	0	5.7	47.304	403
>gi 148531644 gb ABQ83643.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016]	3	1	1	0	2	1	10.7	33.353	307
>gi 227070914 gb EEI09237.1 ABC superfamily ATP binding cassette transporter, ABC protein [Lactobacillus reuteri MM2-3];>	2	1	0	1	2	1	6.8	41.798	370
>gi 148531298 gb ABQ83297.1 hypothetical protein Lreu_1037 [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	0	2.1	69.932	630
>gi 148530908 gb ABQ82907.1 secreted protein containing a PDZ domain-like protein [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	0	4.3	38.633	350
>gi 183224812 dbj BAG25329.1 putative amidase [Lactobacillus reuteri JCM 1112];>	2	1	1	2	1	1	2.6	70.612	645
>gi 148531534 gb ABQ83533.1 Ham1 family protein [Lactobacillus reuteri DSM 20016];>	1	1	1	1	0	1	6.2	21.804	195
>gi 183227658 dbj BAG28174.1 glucose inhibited division protein [Lactobacillus fermentum IFO 3956];>	2	1	2	1	1	1	3.2	70.176	634
>gi 148531919 gb ABQ83918.1 translation elongation factor 2 (EF-2/EF-G) [Lactobacillus reuteri DSM 20016];>	2	2	1	2	1	1	2.6	71.217	642
>gi 194453810 gb EDX42707.1 VRR-NUC domain protein [Lactobacillus reuteri 100-23];>	1	1	1	1	1	1	7.1	12.669	112

>gi 148530713 gb ABQ82712.1 beta-lactamase [Lactobacillus reuteri DSM 20016]	2	0	0	0	2	0	6.5	38.305	339
>gi 133930445 gb ABO43794.1 AraA [Lactobacillus reuteri];>gi 148530751 gb ABQ82750.1 L-arabinose isomerase [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	0	4	53.759	473
>gi 337728903 emb CCC04023.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608];>	2	1	0	2	1	2	5.6	30.777	286
>gi 183225651 dbj BAG26168.1 putative transport protein [Lactobacillus reuteri JCM 1112]	2	1	1	0	0	0	4.3	42.512	392
>gi 183224728 dbj BAG25245.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	1	1	1	1	1	2.6	40.889	344
>gi 227186022 gb EEI66093.1 recombination regulator RecX [Lactobacillus reuteri CF48-3A];>	2	0	1	0	1	1	8.5	31.88	271
>gi 148530715 gb ABQ82714.1 transcriptional regulator, ArgR family [Lactobacillus reuteri DSM 20016];>	2	1	2	0	2	0	14.4	17.482	153
>gi 148532081 gb ABQ84080.1 protein of unknown function DUF915, hydrolase family protein [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	0	3.2	31.277	284
>gi 148531717 gb ABQ83716.1 SSU ribosomal protein S14P [Lactobacillus reuteri DSM 20016]	3	2	3	1	3	1	27.9	7.1065	61
>gi 324978619 gb EGC15568.1 APC family amino acid transporter [Lactobacillus reuteri MM4-1A];>[4	2	0	1	2	1	7.2	49.893	460
>gi 148530702 gb ABQ82701.1 hypothetical protein Lreu_0432 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	7	18.525	158
>gi 148531105 gb ABQ83104.1 hypothetical protein Lreu_0841 [Lactobacillus reuteri DSM 20016];>	2	0	0	0	0	2	9.7	20.695	186
>gi 183226724 dbj BAG27240.1 topoisomerase IV subunit A [Lactobacillus fermentum IFO 3956]	3	2	2	1	2	1	3.4	92.09	825
>gi 148531178 gb ABQ83177.1 mevalonate kinase [Lactobacillus reuteri DSM 20016]	3	2	0	0	1	1	13.3	34.209	316
>gi 227185375 gb EEI65446.1 type I site-specific deoxyribonuclease [Lactobacillus reuteri CF48-3A];>	2	1	1	2	2	1	1.5	118.02	1038
>gi 183224941 dbj BAG25458.1 molybdopterin biosynthesis protein MoeA [Lactobacillus reuteri JCM 1112];>	1	1	0	1	1	1	3.2	44.877	405
>gi 148530373 gb ABQ82372.1 amino acid/polyamine/organocation transporter, APC superfamily [Lactobacillus reuteri DSM 20016]	1	1	1	0	1	1	2.7	49.337	449
>gi 148531063 gb ABQ83062.1 hypothetical protein Lreu_0799 [Lactobacillus reuteri DSM 20016];>	2	0	0	0	1	1	20.9	14.8	134
>gi 148530513 gb ABQ82512.1 Heat shock protein, Metallo peptidase, MEROPS family M48B [Lactobacillus reuteri DSM 20016];>gi	1	1	1	0	0	0	3.7	32.779	298
>gi 183224263 dbj BAG24780.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	0	1	1	2	1	11	25.982	237
>gi 148532141 gb ABQ84140.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016];>	3	0	0	0	1	2	9.5	34.793	316
>gi 148530922 gb ABQ82921.1 hypothetical protein Lreu_0656 [Lactobacillus reuteri DSM 20016];>	1	1	1	0	0	0	22.2	5.307	45
>gi 148530863 gb ABQ82862.1 protein of unknown function YGGT [Lactobacillus reuteri DSM	1	1	1	1	1	1	8.1	9.7797	86

20016];>									
>gi 148531540 gb ABQ83539.1 hypothetical protein Lreu_1282 [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	0	14.1	10.138	92
>gi 227185036 gb EEI65107.1 DNA primase [Lactobacillus reuteri CF48-3A];>	1	1	1	1	1	1	2.1	59.979	522
>gi 148531397 gb ABQ83396.1 RecT protein [Lactobacillus reuteri DSM 20016];>	1	1	0	0	0	1	4.3	36.317	329
>gi 227071516 gb EEI09815.1 APC family amino acid-polyamine-organocation transporter [Lactobacillus reuteri MM2-3];>	4	1	0	1	3	1	7.6	48.252	445
>gi 133930409 gb ABO43776.1 triosephosphate isomerase [Lactobacillus reuteri	1	1	1	1	0	0	4.4	27.379	249
>gi 148530376 gb ABQ82375.1 3-hydroxyacyl-CoA dehydrogenase [Lactobacillus reuteri DSM 20016	1	0	1	0	0	1	3.7	32.931	294
>gi 183224401 dbj BAG24918.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	1	1	1	1	0	1	4.9	32.584	287
>gi 148532054 gb ABQ84053.1 ABC transporter related [Lactobacillus reuteri DSM 20016	2	0	0	1	1	1	3.3	58.081	513
>gi 227071701 gb EEI09992.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	1	0	1	0	1	0	5.2	22.201	193
>gi 112943598 gb ABI26315.1 modification methylase HemK [Lactobacillus reuteri	1	1	1	0	0	0	3.1	32.592	288
>gi 227069913 gb EEI08301.1 P27 family phage terminase small subunit [Lactobacillus reuteri MM2-3	1	1	0	0	1	0	6.3	18.213	158
>gi 148531525 gb ABQ83524.1 metallophosphoesterase [Lactobacillus reuteri DSM 20016];>	1	0	0	1	0	1	2	45.056	394
>gi 183225267 dbj BAG25784.1 dextranucrase [Lactobacillus reuteri JCM 1112	3	3	2	1	1	3	2.1	167.91	1488
>gi 148530536 gb ABQ82535.1 RNA binding S1 domain protein [Lactobacillus reuteri DSM 20016];> p	2	0	2	1	1	0	11	18.376	164
>gi 183224509 dbj BAG25026.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	1	1	0	1	0	0	1.7	57.982	517
>gi 183225365 dbj BAG25882.1 cobalt ABC transporter ATP-binding component [Lactobacillus reuteri JCM 1112];>	2	0	2	1	1	1	7.5	31.093	281
>gi 148530666 gb ABQ82665.1 hypothetical protein Lreu_0396 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	0	1	5.2	22.065	194
>gi 148531021 gb ABQ83020.1 condensin subunit ScpB [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	0	8.5	22.54	201
>gi 148531177 gb ABQ83176.1 diposphomevalonate decarboxylase [Lactobacillus reuteri DSM 20016];>	2	1	1	1	2	2	7.4	35.168	323
>gi 183225010 dbj BAG25527.1 hypothetical protein [Lactobacillus reuteri JCM 1112	2	1	1	0	1	0	13.5	20.282	170
>gi 148531200 gb ABQ83199.1 protein of unknown function DUF915, hydrolase family protein [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	0	7.5	31.402	281
>gi 148531569 gb ABQ83568.1 exodeoxyribonuclease III Xth [Lactobacillus reuteri DSM 20016];>	2	1	0	2	0	0	8.3	29.639	253
>gi 183226310 dbj BAG26826.1 thiamine biosynthesis protein Thil [Lactobacillus fermentum IFO 3956];>	2	1	0	0	1	0	4.2	45.199	406
>gi 183225665 dbj BAG26182.1 hypothetical protein [Lactobacillus reuteri JCM 1112	2	0	2	0	0	0	25.6	10.074	86
>gi 148530665 gb ABQ82664.1 SsrA-binding protein [Lactobacillus reuteri DSM 20016];>	2	1	1	0	1	2	9.6	18.262	157

>gi 148530982 gb ABQ82981.1 hypothetical protein Lreu_0717 [Lactobacillus reuteri DSM 20016];>	2	0	2	1	0	1	17.9	13.889	112
>gi 337729355 emb CCC04485.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608];>	2	1	0	1	1	0	6.4	58.193	517
>gi 148530791 gb ABQ82790.1 competence/damage-inducible protein cinA [Lactobacillus reuteri DSM 20016];>	2	1	0	1	1	1	5.8	45.373	415
>gi 183226723 dbj BAG27239.1 topoisomerase IV subunit B [Lactobacillus fermentum IFO 3956];>	2	1	0	2	2	2	2.4	73.864	665
>gi 337729337 emb CCC04466.1 putative phage minor tail protein [Lactobacillus reuteri ATCC 53608];>	2	1	1	1	2	1	0.8	335.06	3023
>gi 148530533 gb ABQ82532.1 transcription-repair coupling factor [Lactobacillus reuteri DSM 20016];>	2	1	2	0	1	1	1.6	133.43	1179
>gi 133930577 gb ABO43859.1 putative replication protein [Lactobacillus reuteri];>	2	1	1	2	1	1	2.1	80.698	705
>gi 183226575 dbj BAG27091.1 histidyl-tRNA synthase [Lactobacillus fermentum IFO 3956];>	2	0	1	0	0	1	5.2	43.193	386
>gi 183227095 dbj BAG27611.1 glutamine synthase [Lactobacillus fermentum IFO 3956];>	2	1	0	0	0	1	4	50.271	450
>gi 194453843 gb EDX42740.1 ABC transporter related [Lactobacillus reuteri 100-23];>	1	0	0	1	1	0	3.5	32.935	288
>gi 134081895 emb CAK42150.1 unnamed protein product [Aspergillus niger];>	2	0	1	1	0	0	2.8	60.461	541
>gi 148532031 gb ABQ84030.1 Homoserine O-succinyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	1	2	1	1	5.8	32.139	275
>gi 227185207 gb EEI65278.1 ATPase family protein [Lactobacillus reuteri CF48-3A];>	2	0	1	0	1	0	1.4	139.08	1221
>gi 194454127 gb EDX43024.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri 100-23];>	2	1	0	0	0	1	10.4	20.084	173
>gi 183224053 dbj BAG24570.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	1	2	1	1	1	8.7	24.002	206
>gi 183225802 dbj BAG26319.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	1	1	0	0	0	7.1	24.47	225
>gi 194454399 gb EDX43296.1 aminotransferase class I and II [Lactobacillus reuteri 100-23];>	2	0	1	1	2	1	3.6	43.686	386
>gi 148531015 gb ABQ83014.1 DNA polymerase III catalytic subunit, DnaE type [Lactobacillus reuteri DSM 20016];>	3	0	1	0	2	1	2.5	126.23	1115

Cell surface proteome of *L. reuteri* MM4KO

Appendix 2 - CSP Protein Identified	Peptides	Peptides sample 1	Peptides sample 2	Peptides sample 3	Peptides sample 4	Peptides sample 5	Sequence Coverage [%]	Mol. Weight [kDa]	Sequence Length
>gi 148531475 gb ABQ83474.1 phenylalanyl-tRNA synthetase beta subunit [Lactobacillus reuteri DSM 20016]	6	4	3	3	1	5	11.7	89.003	805
>gi 183226183 dbj BAG26699.1 glyceraldehyde 3-phosphate dehydrogenase [Lactobacillus fermentum IFO 3956]	7	4	4	4	3	5	28.8	36.208	337
>gi 227186429 gb EEI66500.1 acetoin dehydrogenase [Lactobacillus reuteri CF48-3A];>	7	6	5	4	4	5	42.7	28.27	267
>gi 227071142 gb EEI09458.1 acetoin dehydrogenase [Lactobacillus reuteri MM2-3]	8	6	6	6	6	7	65.5	28.157	267
>gi 133930435 gb ABO43789.1 DNA-binding protein [Lactobacillus reuteri];>	8	8	6	6	7	6	72.5	9.5238	91
>gi 148531729 gb ABQ83728.1 LSU ribosomal protein L4P [Lactobacillus reuteri DSM 20016]	8	8	7	7	7	7	49.8	22.29	207
>gi 183224383 dbj BAG24900.1 enolase [Lactobacillus reuteri JCM 1112]	15	9	11	14	15	12	47.3	49.951	457
>gi 148530951 gb ABQ82950.1 translation elongation factor Ts (EF-Ts) [Lactobacillus reuteri DSM 20016]	15	12	12	11	11	13	66	31.962	291
>gi 148531718 gb ABQ83717.1 LSU ribosomal protein L5P [Lactobacillus reuteri DSM 20016];>	17	12	14	13	11	13	87.8	20.171	180
>gi 148532099 gb ABQ84098.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016]	17	14	14	12	14	13	74.4	35.918	336
>gi 148530650 gb ABQ82649.1 alpha-phosphoglucomutase [Lactobacillus reuteri DSM 20016]	19	15	15	13	11	13	40.8	63.706	574
>gi 227070122 gb EEI08498.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM2-3];>gi 227185101 gb EEI65172.1 L-lactate dehydrogenase [Lactobacillus reuteri CF48-3A];>gi 227364859 ref ZP_03848906.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM	20	16	16	15	16	16	74.2	34.901	326
>gi 148531743 gb ABQ83742.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016];>gi 148544709 ref YP_001272079.1 alcohol dehydrogenase [Lactobacillus reuteri DSM 20016];>gi 183225405 dbj BAG25922.1 alcohol dehydrogenase [Lactoba	22	17	18	18	20	17	87.4	36.124	342
>gi 148531460 gb ABQ83459.1 L-glutamine synthetase [Lactobacillus reuteri DSM 20016]	23	14	18	15	18	18	66.2	50.835	447
>gi 148530455 gb ABQ82454.1 Substrate-binding region of ABC-type glycine betaine transport system [Lactobacillus reuteri DSM 20016];>	24	17	20	20	13	15	59.9	32.953	299
>gi 148530917 gb ABQ82916.1 translation elongation factor 1A (EF-1A/EF-Tu) [Lactobacillus reuteri DSM 20016];>gi 148543883 ref YP_001271253.1 elongation factor Tu [Lactobacillus reuteri DSM 20016];>gi 183224627 dbj BAG25144.1 elongation factor Tu [Lacto	24	22	22	23	22	22	75.8	43.432	396
>gi 227186481 gb EEI66552.1 D-alanine--D-alanine ligase [Lactobacillus reuteri CF48-3A];>	25	24	18	19	16	13	70.9	42.569	378
>gi 183224464 dbj BAG24981.1 D-alanine--D-alanine ligase [Lactobacillus reuteri JCM 1112]	25	24	19	20	17	14	72	43.001	382
>gi 227071557 gb EEI09855.1 glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) [Lactobacillus reuteri MM2-3]	26	23	23	22	21	22	77.7	37.062	345

>gi 148530918 gb ABQ82917.1 trigger factor [Lactobacillus reuteri DSM 20016]	27	18	18	15	19	18	64.4	48.747	436
>gi 143798699 gb ABF06644.2 sucrose phosphorylase [Lactobacillus reuteri]	27	21	18	21	20	20	66.8	55.969	485
>gi 183224381 dbj BAG24898.1 phosphoglycerate kinase [Lactobacillus reuteri JCM 1112];>	27	25	23	19	14	12	82.3	42.96	401
>gi 148530972 gb ABQ82971.1 chaperone protein DnaK [Lactobacillus reuteri DSM 20016]	29	14	18	18	21	20	65.9	67.211	621
>gi 148530417 gb ABQ82416.1 IMP cyclohydrolase [Lactobacillus reuteri DSM 20016]	30	22	25	23	21	10	65.2	57.032	512
>gi 148530345 gb ABQ82344.1 Adenylosuccinate synthetase [Lactobacillus reuteri DSM 20016]	30	23	20	22	21	22	75.5	47.725	432
>gi 145202295 gb ABF06651.2 pyruvate kinase [Lactobacillus reuteri]	31	23	28	26	24	22	73.6	51.853	473
>gi 227184598 gb EEI64669.1 phosphoketolase [Lactobacillus reuteri CF48-3A];>	32	31	26	27	29	25	41.2	91.435	803
>gi 337728287 emb CCC03382.1 translation elongation factor G [Lactobacillus reuteri ATCC 53608]	33	26	28	26	25	27	67.2	76.758	695
>gi 148531028 gb ABQ83027.1 SSU ribosomal protein S1P [Lactobacillus reuteri DSM 20016]	33	27	27	28	24	27	85.6	45.995	416
>gi 148531528 gb ABQ83527.1 arginyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	34	26	25	28	23	22	67.4	63.878	562
>gi 337727862 emb CCC02950.1 30S ribosomal protein S1 [Lactobacillus reuteri ATCC 53608]	34	28	26	27	24	26	88.9	45.982	416
>gi 337728521 emb CCC03625.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri ATCC 53608]	36	28	29	31	28	27	73.8	56.355	493
>gi 148530624 gb ABQ82623.1 chaperonin GroEL [Lactobacillus reuteri DSM 20016];>	36	28	30	29	30	26	75.5	57.123	542
>gi 148531733 gb ABQ83732.1 translation elongation factor 2 (EF-2/EF-G) [Lactobacillus reuteri DSM 20016]	37	27	35	33	31	33	74.2	76.77	695
>gi 227070837 gb EEI09162.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri MM2-3]	38	30	32	34	30	29	77.2	56.713	496
>gi 148531571 gb ABQ83570.1 hypothetical protein Lreu_1313 [Lactobacillus reuteri DSM 20016]	39	26	31	32	29	25	79.5	64.749	566
>gi 183225653 dbj BAG26170.1 6-phosphogluconate dehydrogenase [Lactobacillus reuteri JCM 1112]	41	38	37	38	36	34	87.9	53.417	478
>gi 337729321 emb CCC04450.1 aldehyde-alcohol dehydrogenase [Lactobacillus reuteri ATCC 53608];>	43	37	36	34	27	34	61.5	97.181	878
>gi 148530322 gb ABQ82321.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016];>	50	44	37	32	44	38	71.4	82.305	745
>gi 337728440 emb CCC03541.1 xylulose 5-phosphate phosphoketolase [Lactobacillus reuteri ATCC 53608]	51	49	42	43	45	41	70.2	91.372	803
>gi 194454221 gb EDX43118.1 Phosphoketolase [Lactobacillus reuteri 100-23];>	52	50	43	45	46	42	70.2	91.374	803
>gi 148531926 gb ABQ83925.1 Phosphoketolase [Lactobacillus reuteri DSM 20016]	52	50	44	45	46	44	71.2	91.403	803
>gi 148530592 gb ABQ82591.1 alcohol dehydrogenase AdhE / acetaldehyde dehydrogenase [Lactobacillus reuteri DSM 20016];>gi 148543558 ref YP_001270928.1 bifunctional acetaldehyde-CoA/alcohol dehydrogenase [Lactobacillus reuteri DSM 20016];>gi 183224309 dbj	55	46	50	46	39	47	74.8	97.187	878
>gi 337727906 emb CCC02995.1 L-lactate dehydrogenase [Lactobacillus reuteri ATCC 53608]	19	15	15	14	15	15	75.2	34.069	319
>gi 269930626 gb ACZ53583.1 phosphoketolase [Lactobacillus reuteri]	14	14	11	12	13	12	89.9	21.656	189

>gi 183227647 dbj BAG28163.1 dehydrogenase [Lactobacillus fermentum IFO 3956];>	7	5	5	4	4	5	25.9	35.835	336
>gi 183224518 dbj BAG25035.1 alanyl-tRNA synthase [Lactobacillus reuteri JCM 1112	22	20	16	15	15	14	36.3	98.648	885
>gi 148530453 gb ABQ82452.1 3-beta hydroxysteroid dehydrogenase/isomerase [Lactobacillus reuteri DSM 20016];>	11	7	8	10	8	7	51.8	31.632	284
>gi 148532121 gb ABQ84120.1 lysyl aminopeptidase, Metallo peptidase, MEROPS family M01 [Lactobacillus reuteri DSM 20016];>	23	13	14	15	11	8	37.1	95.323	843
>gi 148531698 gb ABQ83697.1 LSU ribosomal protein L13P [Lactobacillus reuteri DSM 20016];>	13	13	12	10	9	8	80.3	16.304	147
>gi 148532092 gb ABQ84091.1 Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri DSM 20016];>	21	17	14	16	15	16	51.8	60.446	568
>gi 148531290 gb ABQ83289.1 LPXTG-motif cell wall anchor domain [Lactobacillus reuteri DSM 20016];>	22	12	19	15	15	13	45.7	80.889	752
>gi 148530866 gb ABQ82865.1 Isoleucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>gi 148543832 ref YP_001271202.1 isoleucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	33	22	16	21	15	17	48.3	109.95	960
>gi 148530340 gb ABQ82339.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri DSM 20016];>	15	10	11	9	7	7	72.6	32.62	288
>gi 148530567 gb ABQ82566.1 amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	19	14	18	15	11	15	57.8	28.516	263
>gi 337729108 emb CCC04231.1 alanyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	21	19	13	15	14	12	35.5	98.679	884
>gi 183225729 dbj BAG26246.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	10	8	4	3	9	7	68	19.891	169
>gi 148531932 gb ABQ83931.1 (R)-2-hydroxyisocaproate dehydrogenase [Lactobacillus reuteri DSM 20016];>	21	14	16	13	14	12	80.5	37.358	334
>gi 148530447 gb ABQ82446.1 pyridine nucleotide-disulfide oxidoreductase dimerization region [Lactobacillus reuteri DSM 20016];>	16	16	13	13	11	14	50.3	49.944	451
>gi 148531711 gb ABQ83710.1 LSU ribosomal protein L15P [Lactobacillus reuteri DSM 20016];>	14	12	12	12	10	11	72.9	15.447	144
>gi 227186263 gb EEI66334.1 maltose phosphorylase [Lactobacillus reuteri CF48-3A];>	24	15	19	15	14	10	40	87.449	757
>gi 148531526 gb ABQ83525.1 protein of unknown function DUF964 [Lactobacillus reuteri DSM 20016];>	12	9	8	10	8	8	88.6	14.096	123
>gi 148530584 gb ABQ82583.1 LSU ribosomal protein L10P [Lactobacillus reuteri DSM 20016];>	11	8	9	10	8	9	66.3	18.139	166
>gi 337728005 emb CCC03094.1 isoleucyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	29	20	14	18	13	14	43	106.67	931
>gi 148531713 gb ABQ83712.1 SSU ribosomal protein S5P [Lactobacillus reuteri DSM 20016];>	16	14	15	14	14	13	81.1	17.646	169
>gi 148530953 gb ABQ82952.1 ribosome recycling factor [Lactobacillus reuteri DSM 20016];>	9	9	7	8	7	7	57.8	20.783	187
>gi 148531724 gb ABQ83723.1 SSU ribosomal protein S3P [Lactobacillus reuteri DSM 20016];>	10	9	9	7	9	9	58.8	24.696	221
>gi 148531543 gb ABQ83542.1 ribokinase [Lactobacillus reuteri DSM 20016];>	14	11	11	12	9	11	66.8	32.041	307
>gi 133930433 gb ABO43788.1 ribosomal protein L15 [Lactobacillus reuteri	12	10	9	9	8	8	66.7	15.516	144
>gi 148531716 gb ABQ83715.1 SSU ribosomal protein S8P [Lactobacillus reuteri DSM 20016];>	11	8	9	8	8	9	75.8	14.536	132

>gi 148530580 gb ABQ82579.1 LSU ribosomal protein L1P [Lactobacillus reuteri DSM 20016];>	11	9	7	6	7	8	47.4	27.362	253
>gi 183225401 gb BAG25918.1 DNA-directed RNA polymerase beta subunit [Lactobacillus reuteri JCM 1112];>	28	22	18	20	19	22	33.3	135.36	1205
>gi 148530865 gb ABQ82864.1 DivIVA family protein [Lactobacillus reuteri DSM 20016];>	12	9	11	10	11	11	44.3	27.591	246
>gi 148530679 gb ABQ82678.1 phosphoglcosamine mutase [Lactobacillus reuteri DSM 20016];>	13	12	11	9	9	9	37.9	48.902	451
>gi 148530736 gb ABQ82735.1 ATP synthase F1 subcomplex beta subunit [Lactobacillus reuteri DSM 20016];>	14	9	9	10	7	4	48.4	51.631	475
>gi 148530962 gb ABQ82961.1 NusA antitermination factor [Lactobacillus reuteri DSM 20016];>	11	7	9	8	10	9	45.3	44.525	395
>gi 148530642 gb ABQ82641.1 UDP-glucose pyrophosphorylase [Lactobacillus reuteri DSM 20016];>	14	10	8	10	11	8	65.5	34.101	304
>gi 148531722 gb ABQ83721.1 LSU ribosomal protein L29P [Lactobacillus reuteri DSM 20016];>	5	4	2	4	3	3	58.8	8.0041	68
>gi 337728880 emb CCC04000.1 hypothetical protein LRATCC53608_1247 [Lactobacillus reuteri ATCC 53608]	10	7	6	9	8	7	79.7	14.126	123
>gi 148531553 gb ABQ83552.1 leucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	17	9	10	12	11	7	37.6	92.918	806
>gi 148530989 gb ABQ82988.1 aspartyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	13	9	6	7	6	5	27.5	68.43	600
>gi 148530903 gb ABQ82902.1 GTP-binding protein TypA [Lactobacillus reuteri DSM 20016];>	25	22	21	21	21	19	48	68.827	614
>gi 148531725 gb ABQ83724.1 LSU ribosomal protein L22P [Lactobacillus reuteri DSM 20016];>	6	6	6	6	6	6	52.2	12.394	115
>gi 148531009 gb ABQ83008.1 aminotransferase [Lactobacillus reuteri DSM 20016];>	17	14	11	14	11	12	52.3	43.107	394
>gi 148530950 gb ABQ82949.1 SSU ribosomal protein S2P [Lactobacillus reuteri DSM 20016];>	18	15	13	15	13	15	80.2	29.657	262
>gi 148530959 gb ABQ82958.1 prolyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	20	17	15	16	15	14	52.3	64.256	577
>gi 148531738 gb ABQ83737.1 DNA-directed RNA polymerase subunit beta [Lactobacillus reuteri DSM 20016]	29	19	18	19	17	20	32.7	135.42	1211
>gi 183225377 gb BAG25894.1 50S ribosomal protein L18 [Lactobacillus reuteri JCM 1112];>	9	9	7	7	8	8	69.4	13.342	121
>gi 148531730 gb ABQ83729.1 LSU ribosomal protein L3P [Lactobacillus reuteri DSM 20016];>	11	9	8	7	7	7	57.5	23.757	219
>gi 227186160 gb EEI66231.1 possible peptidoglycan-binding protein [Lactobacillus reuteri CF48-3A];>	5	3	3	2	5	5	23.3	27.744	266
>gi 183225744 gb BAG26261.1 threonyl-tRNA synthase [Lactobacillus reuteri JCM 1112];>	18	11	10	13	10	11	33.5	71.776	627
>gi 148530419 gb ABQ82418.1 phosphoglycerate mutase [Lactobacillus reuteri DSM 20016];>	13	10	11	9	10	11	53.5	26.121	228
>gi 227071019 gb EEI09341.1 bifunctional GMP synthase/glutamine amidotransferase protein [Lactobacillus reuteri MM2-3];>	26	18	20	18	20	15	61.3	59.912	538
>gi 130893166 gb ABO32596.1 ATP-dependent Clp protease ATP-binding subunit ClpX [Lactobacillus reuteri];>	15	11	4	6	5	8	52.6	45.969	416
>gi 337728880 emb CCC02968.1 amino acid aminotransferase [Lactobacillus reuteri ATCC 53608]	14	12	10	14	11	10	41.4	43.078	394
>gi 148530413 gb ABQ82412.1 phosphoribosylformylglycinamidine synthase subunit II	17	7	14	14	12	6	40	80.944	742

[Lactobacillus reuteri DSM 20016									
>gi 148530404 gb ABQ82403.1 Formate-tetrahydrofolate ligase [Lactobacillus reuteri DSM 20016]	19	7	16	15	16	10	41.4	60.251	553
>gi 148531727 gb ABQ83726.1 LSU ribosomal protein L2P [Lactobacillus reuteri DSM 20016];>	18	17	17	13	13	13	65.1	30.47	281
>gi 148532119 gb ABQ84118.1 Bleomycin hydrolase [Lactobacillus reuteri DSM 20016];>	14	12	9	8	5	4	38.2	50.851	440
>gi 148530623 gb ABQ82622.1 chaperonin Cpn10 [Lactobacillus reuteri DSM 20016];>	8	7	8	7	5	5	61.7	10.149	94
>gi 194454505 gb EDX43402.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri 100-23];>	11	9	8	6	6	4	46.2	32.469	288
>gi 148532124 gb ABQ84123.1 asparaginyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	18	14	12	11	9	11	60.2	50.092	432
>gi 148531709 gb ABQ83708.1 Adenylate kinase [Lactobacillus reuteri DSM 20016];>	12	9	9	9	11	9	68.5	24.609	219
>gi 183225183 gb BAG25700.1 ligase [Lactobacillus reuteri JCM 1112];>	18	11	10	12	11	13	59.2	49.294	441
>gi 183225853 gb BAG26369.1 ATP-dependent Clp protease ATP-binding subunit [Lactobacillus fermentum IFO 3956];>	7	6	4	4	6	6	10.8	76.678	697
>gi 148531554 gb ABQ83553.1 methionine adenosyltransferase [Lactobacillus reuteri DSM 20016];>	12	7	8	8	7	6	40.8	43.195	395
>gi 227071143 gb EEI09459.1 ribosomal protein S9 [Lactobacillus reuteri MM2-3];>	6	5	6	6	6	6	55.6	14.494	133
>gi 148530769 gb ABQ82768.1 SSU ribosomal protein S4P [Lactobacillus reuteri DSM 20016]	18	16	13	14	12	14	83.6	22.943	201
>gi 227071324 gb EEI09633.1 heat shock protein Hsp33 [Lactobacillus reuteri MM2-3];>	11	8	9	7	5	5	48.3	35.232	323
>gi 148531687 gb ABQ83686.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B [Lactobacillus reuteri DSM 20016];>	15	11	7	8	5	8	44.7	53.424	474
>gi 194453944 gb EDX42841.1 glutamyl-tRNA(Gln) amidotransferase, B subunit [Lactobacillus reuteri 100-23];>/	15	11	6	8	5	8	44.7	53.408	474
>gi 148531171 gb ABQ83170.1 L-lactate dehydrogenase [Lactobacillus reuteri DSM 20016];>	14	10	13	11	11	11	55.9	35.005	324
>gi 148531688 gb ABQ83687.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit A [Lactobacillus reuteri DSM 20016];>	13	10	9	8	8	9	45.1	53.009	490
>gi 148532166 gb ABQ84165.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	11	10	7	5	5	2	47.7	32.371	287
>gi 183224883 gb BAG25400.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	6	5	5	4	5	4	50.3	20.834	181
>gi 148531824 gb ABQ83823.1 translation elongation factor P (EF-P) [Lactobacillus reuteri DSM 20016];>	12	9	9	9	7	7	72.4	20.518	185
>gi 148531706 gb ABQ83705.1 SSU ribosomal protein S13P [Lactobacillus reuteri DSM 20016];>	11	11	9	9	9	10	70.2	13.687	121
>gi 148530668 gb ABQ82667.1 phosphotransacetylase [Lactobacillus reuteri DSM 20016];>	13	7	8	7	8	3	61.7	34.699	324
>gi 194453968 gb EDX42865.1 Adenylate kinase [Lactobacillus reuteri 100-23];>	12	9	8	8	10	8	68.5	24.61	219
>gi 148530585 gb ABQ82584.1 LSU ribosomal protein L12P [Lactobacillus reuteri DSM 20016]	11	8	8	7	9	8	90.1	12.356	121
>gi 337727893 emb CCC02982.1 conjugated bile salt hydrolase [Lactobacillus reuteri ATCC 53608	9	7	0	4	2	0	48.3	36.06	325
>gi 148530857 gb ABQ82856.1 UDP-N-acetylmuramoylalanine--D-glutamate ligase [Lactobacillus	4	2	3	4	3	3	17.8	50.332	456

reuteri DSM 20016];>									
>gi 148531728 gb ABQ83727.1 LSU ribosomal protein L23P [Lactobacillus reuteri DSM 20016];>	7	6	4	7	5	4	60.2	11.25	98
>gi 148531734 gb ABQ83733.1 SSU ribosomal protein S7P [Lactobacillus reuteri DSM 20016];>	13	12	10	11	6	7	74.4	17.985	156
>gi 148532158 gb ABQ84157.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	4	2	3	4	3	3	27	20.407	178
>gi 148530771 gb ABQ82770.1 aminotransferase, class V [Lactobacillus reuteri DSM 20016];>	11	7	8	7	6	8	43.2	42.097	382
>gi 148530744 gb ABQ82743.1 glycine cleavage H-protein [Lactobacillus reuteri DSM 20016];>	5	3	4	2	3	4	79.4	10.641	97
>gi 183224141 gb BAG24658.1 tyrosyl-tRNA synthase [Lactobacillus reuteri JCM 1112];>	13	7	9	9	10	9	35.7	47.69	420
>gi 148530610 gb ABQ82609.1 UDP-galactose 4-epimerase [Lactobacillus reuteri DSM 20016];>	12	8	6	9	8	7	62.5	36.598	331
>gi 148531721 gb ABQ83720.1 SSU ribosomal protein S17P [Lactobacillus reuteri DSM 20016];> r	7	6	5	4	3	4	65.9	10.168	88
>gi 227070899 gb EEI09222.1 D-lactate dehydrogenase [Lactobacillus reuteri MM-2-3];> g	11	9	11	8	8	7	53.1	37.311	337
>gi 148530564 gb ABQ82563.1 cystathione gamma-lyase [Lactobacillus reuteri DSM 20016]	10	6	6	5	5	5	47.4	41.498	380
>gi 148531054 gb ABQ83053.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016];>	7	6	4	5	5	6	59.8	13.85	127
>gi 148530646 gb ABQ82645.1 thioredoxin reductase [Lactobacillus reuteri DSM 20016];>	7	6	4	4	4	3	33.2	33.305	310
>gi 148530685 gb ABQ82684.1 Peptidoglycan-binding LysM [Lactobacillus reuteri DSM 20016];>	7	4	1	5	4	6	40.9	21.661	203
>gi 183227337 gb BAG27853.1 elongation factor G [Lactobacillus fermentum IFO 3956];>	11	6	10	9	9	9	29.1	76.351	694
>gi 148530861 gb ABQ82860.1 cell division protein FtsZ [Lactobacillus reuteri DSM 20016]	14	7	10	9	5	9	51.8	44.45	415
>gi 148530828 gb ABQ82827.1 Adenine-specific DNA methylase-like protein [Lactobacillus reuteri DSM 20016];>	4	2	3	3	3	3	22.4	31.155	277
>gi 148530755 gb ABQ82754.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	11	9	7	10	8	8	74.7	18.017	162
>gi 148530284 gb ABQ82283.1 SSU ribosomal protein S6P [Lactobacillus reuteri DSM 20016];>	7	6	5	7	5	6	84.7	11.378	98
>gi 148530503 gb ABQ82502.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016]	10	5	5	7	6	5	34.1	45.676	425
>gi 141553038 gb ABD13939.2 ornithine carbamoyltransferase [Lactobacillus reuteri];>	13	9	4	8	8	5	50.1	37.56	335
>gi 148531703 gb ABQ83702.1 LSU ribosomal protein L17P [Lactobacillus reuteri DSM 20016];>	6	5	5	6	5	4	52	14.201	127
>gi 148530504 gb ABQ82503.1 LSU ribosomal protein L31P [Lactobacillus reuteri DSM 20016];>	9	7	6	8	7	7	95.1	9.123	81
>gi 148531412 gb ABQ83411.1 SSU ribosomal protein S16P [Lactobacillus reuteri DSM 20016];>	7	5	6	6	4	4	68.1	10.449	91
>gi 148531704 gb ABQ83703.1 DNA-directed RNA polymerase subunit alpha [Lactobacillus reuteri DSM 20016];>	16	8	12	10	8	12	71	34.901	314
>gi 148531459 gb ABQ83458.1 glutamyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	12	5	5	7	6	5	32.7	58.349	501
>gi 148530870 gb ABQ82869.1 methylthioadenosine nucleosidase [Lactobacillus reuteri DSM 20016];>	7	3	5	6	4	4	51.1	24.687	231
>gi 148531720 gb ABQ83719.1 LSU ribosomal protein L14P [Lactobacillus reuteri DSM 20016];>	6	6	6	6	6	6	43.4	13.144	122
>gi 148530773 gb ABQ82772.1 valyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	23	16	13	16	15	10	31.7	102.29	884

>gi 227070649 gb EEI08979.1 1,3-propanediol dehydrogenase [Lactobacillus reuteri MM2-3];>	15	11	12	11	10	7	55.8	44.01	405
>gi 227184503 gb EEI64574.1 amidophosphoribosyltransferase [Lactobacillus reuteri CF48-3A];>	6	5	5	5	5	1	20	53.593	490
>gi 148531751 gb ABQ83750.1 cold-shock DNA-binding protein family [Lactobacillus reuteri DSM 20016];>	4	4	3	4	4	4	74.2	7.3269	66
>gi 194452927 gb EDX41825.1 Cystathionine gamma-synthase [Lactobacillus reuteri 100-23];>	9	5	4	5	5	4	41.8	41.471	380
>gi 337729137 emb CCC04260.1 valyl-tRNA synthase [Lactobacillus reuteri ATCC 53608];>	22	16	11	15	14	8	30.4	102.21	884
>gi 337729037 emb CCC04160.1 aminotransferase [Lactobacillus reuteri ATCC 53608];>	16	14	9	10	8	5	55.7	43.766	397
>gi 148530808 gb ABQ82807.1 thioredoxin [Lactobacillus reuteri DSM 20016];>	4	4	3	4	3	3	42.3	11.889	104
>gi 148532037 gb ABQ84036.1 Endothelin-converting protein 1 [Lactobacillus reuteri DSM 20016];>	12	6	5	6	2	4	25.2	72.39	634
>gi 227071240 gb EEI09554.1 possible glutathione-disulfide reductase [Lactobacillus reuteri MM2-3];>	6	2	3	3	4	2	19.9	48.997	443
>gi 148531145 gb ABQ83144.1 6,7-dimethyl-8-ribityllumazine synthase [Lactobacillus reuteri DSM 20016];>	6	3	4	6	3	5	78.3	16.637	152
>gi 148530382 gb ABQ82381.1 GTP-binding protein YchF [Lactobacillus reuteri DSM 20016];> L	8	5	4	2	2	3	38.4	39.844	365
>gi 148530410 gb ABQ82409.1 phosphoribosylaminoimidazole-succinocarboxamide synthase [Lactobacillus reuteri DSM 20016];>	11	5	9	3	7	5	47.3	27.308	239
>gi 148531006 gb ABQ83005.1 glycyl-tRNA synthetase beta chain [Lactobacillus reuteri DSM 20016];>	17	12	11	13	13	9	34.4	78.536	691
>gi 148532032 gb ABQ84031.1 cysteine synthase [Lactobacillus reuteri DSM 20016];>	7	7	3	0	0	0	34.9	32.241	307
>gi 148531464 gb ABQ83463.1 glucokinase [Lactobacillus reuteri DSM 20016];>	8	7	6	5	4	6	34.1	34.42	323
>gi 148530343 gb ABQ82342.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	8	7	6	6	6	6	30.1	49.604	449
>gi 148532080 gb ABQ84079.1 glycerol 2-dehydrogenase (NAD+) [Lactobacillus reuteri DSM 20016];>	8	6	7	5	6	6	39.1	40.698	373
>gi 148531715 gb ABQ83714.1 LSU ribosomal protein L6P [Lactobacillus reuteri DSM 20016];>gi 148544681 ref YP_001272051.1 50S ribosomal protein L6 [Lactobacillus reuteri DSM 20016];>gi 166990974 sp A5VLJ0.1 RL6_LACRD RecName: Full=50S ribosomal protein L6	9	8	7	8	7	8	44.4	19.635	178
>gi 148532070 gb ABQ84069.1 histidyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	12	8	8	8	7	7	33.7	49.318	433
>gi 148531549 gb ABQ83548.1 peptidase V, Metallo peptidase, MEROPS family M20A [Lactobacillus reuteri DSM 20016	9	9	2	5	3	2	25.7	51.22	467
>gi 148532120 gb ABQ84119.1 NAD-dependent epimerase/dehydratase [Lactobacillus reuteri DSM 20016];>	10	7	6	4	4	5	61.5	23.187	213
>gi 183225184 dbj BAG25701.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	8	4	5	4	6	5	62	23.595	216
>gi 148531583 gb ABQ83582.1 Phosphotransferase system, phosphocarrier protein HPr [Lactobacillus reuteri DSM 20016];>	3	2	2	2	1	2	55.7	9.4076	88

>gi 148530367 gb ABQ82366.1 NADPH-dependent FMN reductase [Lactobacillus reuteri DSM 20016];>	12	6	9	9	4	8	47.6	45.674	416
>gi 148530579 gb ABQ82578.1 LSU ribosomal protein L11P [Lactobacillus reuteri DSM 20016];>	6	5	6	6	4	4	40.4	14.869	141
>gi 148530781 gb ABQ82780.1 cell shape determining protein, MreB/Mrl family [Lactobacillus reuteri DSM 20016];>	10	7	6	7	4	5	46.2	34.966	333
>gi 148530402 gb ABQ82401.1 cyclopropane-fatty-acyl-phospholipid synthase [Lactobacillus reuteri DSM 20016];>	4	2	3	4	3	2	14.1	46.488	403
>gi 148530721 gb ABQ82720.1 bacterial peptide chain release factor 1 (bRF-1) [Lactobacillus reuteri DSM 20016];>	6	4	4	3	4	4	26.5	41.287	362
>gi 148531108 gb ABQ83107.1 hypothetical protein Lreu_0844 [Lactobacillus reuteri DSM 20016];>	5	2	1	2	0	5	41.4	20.426	181
>gi 148530491 gb ABQ82490.1 UDP-N-acetylglucosamine pyrophosphorylase [Lactobacillus reuteri DSM 20016];>	15	11	12	7	5	4	42.4	50.01	455
>gi 148530418 gb ABQ82417.1 phosphoribosylamine--glycine ligase [Lactobacillus reuteri DSM 20016]	11	5	6	7	5	2	37.5	45.76	419
>gi 148531723 gb ABQ83722.1 LSU ribosomal protein L16P [Lactobacillus reuteri DSM 20016];>	7	6	6	6	6	5	54.9	16.006	144
>gi 148530555 gb ABQ82554.1 putative nicotinate phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	9	6	4	3	3	4	25.8	55.609	488
>gi 148530811 gb ABQ82810.1 non-canonical purine NTP pyrophosphatase, rdgB/HAM1 family [Lactobacillus reuteri DSM 20016]	8	5	4	7	4	5	67.2	21.286	195
>gi 148531499 gb ABQ83498.1 bacterial translation initiation factor 3 (bIF-3) [Lactobacillus reuteri DSM 20016];>	6	3	3	3	3	4	46.5	19.487	170
>gi 146142505 gb ABQ01722.1 fumarase [Lactobacillus reuteri];>	15	7	11	8	11	8	42	50.302	462
>gi 148531491 gb ABQ83490.1 iojap-like protein [Lactobacillus reuteri DSM 20016]	4	3	4	4	3	3	47.5	13.309	118
>gi 227071376 gb EEI09682.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM2-3];>	5	3	3	3	3	3	27.4	35.211	321
>gi 148531450 gb ABQ83449.1 LSU ribosomal protein L21P [Lactobacillus reuteri DSM 20016];>	5	5	3	2	3	3	54.9	11.256	102
>gi 148531929 gb ABQ83928.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016];>	10	9	7	6	6	6	29.5	54.294	478
>gi 148530366 gb ABQ82365.1 NADPH-dependent FMN reductase [Lactobacillus reuteri DSM 20016];>	7	5	6	7	7	6	56.2	23.02	203
>gi 148530739 gb ABQ82738.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016]	4	4	2	3	1	1	15.8	47.242	438
>gi 148530965 gb ABQ82964.1 bacterial translation initiation factor 2 (bIF-2) [Lactobacillus reuteri DSM 20016];>	8	3	5	5	4	8	17.2	83.537	752
>gi 227071794 gb EEI10083.1 glycerone kinase [Lactobacillus reuteri MM2-3];>	9	1	5	4	3	6	25.2	62.132	575
>gi 148530288 gb ABQ82287.1 LSU ribosomal protein L9P [Lactobacillus reuteri DSM 20016];>	11	8	9	7	8	7	61.3	16.692	150
>gi 148530542 gb ABQ82541.1 lysyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	15	11	11	10	9	4	33.7	58.296	508

>gi 148532090 gb ABQ84089.1 hypothetical protein Lreu_1851 [Lactobacillus reuteri DSM 20016];> L	2	1	2	2	2	1	52.5	7.0627	61
>gi 148531050 gb ABQ83049.1 Inorganic diphosphatase [Lactobacillus reuteri DSM 20016];>	9	4	4	7	6	7	36.3	34.194	311
>gi 148531705 gb ABQ83704.1 SSU ribosomal protein S11P [Lactobacillus reuteri DSM 20016];>	5	3	5	4	5	3	58.1	13.759	129
>gi 183225766 gb BAG26283.1 aspartate-ammonia ligase [Lactobacillus reuteri JCM 1112];>	7	6	2	5	3	4	25.4	39.72	339
>gi 183224315 gb BAG24832.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	3	2	2	2	2	2	55.7	11.883	106
>gi 148530407 gb ABQ82406.1 5-(carboxyamino)imidazole ribonucleotide mutase [Lactobacillus reuteri DSM 20016];>	6	3	4	5	4	1	62.1	16.958	161
>gi 148531889 gb ABQ83888.1 prolinase, Serine peptidase, MEROPS family S33 [Lactobacillus reuteri DSM 20016];>	4	2	3	3	2	2	19.1	34.841	303
>gi 148531413 gb ABQ83412.1 signal recognition particle subunit FFH/SRP54 (srp54) [Lactobacillus reuteri DSM 20016]	7	4	4	3	3	2	16.6	54.114	481
>gi 227071709 gb EEI10000.1 ATP-dependent RNA helicase [Lactobacillus reuteri MM2-3];>	6	5	1	0	0	1	17.8	53.802	467
>gi 148530526 gb ABQ82525.1 alanine racemase [Lactobacillus reuteri DSM 20016]	4	2	3	2	3	1	14.7	41.162	375
>gi 148530594 gb ABQ82593.1 ribonucleoside-diphosphate reductase class Ib alpha subunit [Lactobacillus reuteri DSM 20016]	17	15	12	10	9	10	34.7	82.738	723
>gi 148530370 gb ABQ82369.1 seryl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	9	6	7	5	8	7	32	49.29	435
>gi 148531225 gb ABQ83224.1 hypothetical protein Lreu_0962 [Lactobacillus reuteri DSM 20016];>	4	1	1	1	4	2	14.1	88.735	774
>gi 148531486 gb ABQ83485.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016];>	3	2	1	2	2	2	20.6	26.33	228
>gi 183224607 gb BAG25124.1 pyruvate dehydrogenase complex E1 component alpha subunit [Lactobacillus reuteri JCM 1112]	7	5	4	5	3	5	28.6	41.361	371
>gi 148530556 gb ABQ82555.1 NH(3)-dependent NAD(+) synthetase [Lactobacillus reuteri DSM 20016];>	7	6	2	4	2	2	42.9	30.54	275
>gi 227070039 gb EEI08417.1 peptidase T [Lactobacillus reuteri MM2-3];>	6	4	3	3	5	2	24.1	46.484	419
>gi 148530942 gb ABQ82941.1 hydroxymethylglutaryl-CoA synthase [Lactobacillus reuteri DSM 20016];>	4	4	3	3	3	1	16.4	42.757	385
>gi 148531575 gb ABQ83574.1 ribonucleoside-triphosphate reductase class III catalytic subunit / ribonucleoside-triphosphate reductase [Lactobacillus reuteri DSM 20016];>	4	1	2	1	2	1	5	85.159	744
>gi 296313256 gb ACZ97544.2 D-alanine-D-alanine ligase [Lactobacillus reuteri]	3	3	2	2	2	2	17.9	33.684	301
>gi 183227099 gb BAG27615.1 glucose kinase [Lactobacillus fermentum IFO 3956];>	4	4	4	2	1	2	17.2	33.926	320
>gi 148530994 gb ABQ82993.1 GatB/Yqey domain protein [Lactobacillus reuteri DSM 20016];>	3	2	2	2	3	1	25.7	16.725	148
>gi 148531735 gb ABQ83734.1 SSU ribosomal protein S12P [Lactobacillus reuteri DSM 20016];>	8	6	5	5	5	4	56.8	15.503	139
>gi 148531417 gb ABQ83416.1 RNase III [Lactobacillus reuteri DSM 20016];>	5	2	3	4	3	3	39.9	26.606	233
>gi 148531286 gb ABQ83285.1 Phosphoglycerate mutase [Lactobacillus reuteri DSM 20016];>	10	9	6	7	7	4	38.1	30.347	278

>gi 133930489 gb ABO43816.1 conserved hypothetical protein [Lactobacillus reuteri];>	3	1	2	2	2	3	54.8	8.2855	73
>gi 148530501 gb ABQ82500.1 CTP synthase [Lactobacillus reuteri DSM 20016];>	11	6	9	6	6	3	30.7	59.6	534
>gi 148531497 gb ABQ83496.1 LSU ribosomal protein L20P [Lactobacillus reuteri DSM 20016];>	8	8	7	6	5	5	46.2	13.515	117
>gi 148530553 gb ABQ82552.1 aspartate racemase [Lactobacillus reuteri DSM 20016];> 1112];>	7	6	4	5	4	4	39	26.763	236
>gi 194453683 gb EDX42580.1 translation initiation factor IF-3 [Lactobacillus reuteri 100-23];>	6	3	4	4	2	3	46.5	19.488	170
>gi 183225693 dbj BAG26210.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	3	2	2	3	2	16.2	41.737	364
>gi 148530484 gb ABQ82483.1 dimethyladenosine transferase [Lactobacillus reuteri DSM 20016];>	7	4	2	2	2	4	26.9	33.039	297
>gi 148530409 gb ABQ82408.1 Adenylosuccinate lyase [Lactobacillus reuteri DSM 20016];>	7	0	5	5	4	3	23.2	49.454	431
>gi 227186201 gb EEI66272.1 response regulator [Lactobacillus reuteri CF48-3A];>	6	4	4	4	5	4	41.4	26.602	237
>gi 148530993 gb ABQ82992.1 SSU ribosomal protein S21P [Lactobacillus reuteri DSM 20016];>	5	3	4	4	4	3	44.4	7.7178	63
>gi 148531037 gb ABQ83036.1 degV family protein [Lactobacillus reuteri DSM 20016];>	8	7	4	5	5	4	35.4	30.742	280
>gi 183225222 dbj BAG25739.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	5	1	3	3	3	1	46.5	18.557	170
>gi 148531899 gb ABQ83898.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016	6	4	2	1	2	2	37.5	26.924	251
>gi 148530952 gb ABQ82951.1 uridylate kinase [Lactobacillus reuteri DSM 20016];>	9	7	6	5	5	4	42.5	25.876	240
>gi 148531003 gb ABQ83002.1 GTP-binding protein Era [Lactobacillus reuteri DSM 20016];>	3	2	2	3	1	1	13.6	33.79	301
>gi 148530492 gb ABQ82491.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM 20016	7	6	4	3	3	1	24.9	36.16	329
>gi 148531468 gb ABQ83467.1 LSU ribosomal protein L33P [Lactobacillus reuteri DSM 20016];>	3	3	3	3	3	3	49	5.9998	49
>gi 148530899 gb ABQ82898.1 Dihydrolipoylysine-residue succinyltransferase [Lactobacillus reuteri DSM 20016];>	3	1	1	1	1	2	10.4	48.372	444
>gi 148530412 gb ABQ82411.1 phosphoribosylformylglycinamidine synthase subunit I [Lactobacillus reuteri DSM 20016];>	5	2	5	3	3	2	33.6	24.732	226
>gi 183227331 dbj BAG27847.1 30S ribosomal protein S19 [Lactobacillus fermentum IFO 3956];>	7	5	6	4	4	6	37.6	10.489	93
>gi 148531529 gb ABQ83528.1 phosphomethylpyrimidine kinase [Lactobacillus reuteri DSM 20016L	3	1	1	1	0	1	22.9	29.317	271
>gi 148530995 gb ABQ82994.1 Choloylglycine hydrolase [Lactobacillus reuteri DSM 20016];>	8	6	0	3	1	0	42.2	36.104	325
>gi 148531731 gb ABQ83730.1 SSU ribosomal protein S10P [Lactobacillus reuteri DSM 20016];>	10	8	8	8	9	7	73.5	11.777	102
>gi 148532002 gb ABQ84001.1 Nrdl family protein [Lactobacillus reuteri DSM 20016];>	4	4	3	3	3	3	27.1	17.501	155
>gi 112943421 gb ABI26308.1 carbamate kinase [Lactobacillus reuteri];>	7	2	2	1	4	2	35.8	33.007	310
>gi 133930543 gb ABO43842.1 tryptophanyl-tRNA synthetase [Lactobacillus reuteri];>	5	4	3	3	4	3	22.4	38.079	340
>gi 148530877 gb ABQ82876.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM 20016];>	9	7	5	5	0	3	33.3	36.06	324

>gi 148530673 gb ABQ82672.1 UDP-N-acetyl muramate dehydrogenase [Lactobacillus reuteri DSM 20016]	4	4	3	2	2	2	19.1	32.389	298
>gi 227071578 gb EEI09875.1 ribokinase [Lactobacillus reuteri MM2-3];>	3	3	2	2	2	3	11.7	34.703	326
>gi 227184829 gb EEI64900.1 cysteinyl-tRNA synthetase [Lactobacillus reuteri CF48-3A];>	4	1	2	1	2	1	10.3	54.866	478
>gi 148530914 gb ABQ82913.1 SSU ribosomal protein S15P [Lactobacillus reuteri DSM 20016]	5	4	3	3	3	3	52.8	10.416	89
>gi 148531141 gb ABQ83140.1 Purine nucleosidase [Lactobacillus reuteri DSM 20016]	4	1	2	2	0	0	24.8	34.734	314
>gi 148530515 gb ABQ82514.1 DEAD/DEAH box helicase domain protein [Lactobacillus reuteri DSM 20016];>	8	7	2	1	1	1	22.5	56.522	498
>gi 337728387 emb CCC03488.1 GTPases [Lactobacillus reuteri ATCC 53608]	6	3	2	3	1	4	16.9	47.753	425
>gi 183225282 dbj BAG25799.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	3	1	1	1	1	1	12.6	49.015	438
>gi 148530772 gb ABQ82771.1 thiamine biosynthesis/tRNA modification protein Thil [Lactobacillus reuteri DSM 20016];>	8	7	0	2	1	1	30.5	45.726	406
>gi 112943728 gb ABI26320.1 fructose-2,6-bisphosphatase [Lactobacillus reuteri];>	5	4	4	3	2	2	33.2	24.287	217
>gi 148531523 gb ABQ83522.1 PpiC-type peptidyl-prolyl cis-trans isomerase [Lactobacillus reuteri DSM 20016];>	3	3	1	0	3	2	11.2	34.663	312
>gi 148530411 gb ABQ82410.1 phosphoribosylformylglycinamidine synthase, purS [Lactobacillus reuteri DSM 20016];>	3	0	2	2	3	1	54.9	9.3323	82
>gi 148531415 gb ABQ83414.1 signal recognition particle-docking protein FtsY [Lactobacillus reuteri DSM 20016];>	4	4	4	4	4	4	11.2	55.604	508
>gi 183227650 dbj BAG28166.1 threonyl-tRNA synthetase [Lactobacillus fermentum IFO 3956]	5	4	2	3	2	3	8	72.259	634
>gi 148530821 gb ABQ82820.1 protein of unknown function DUF28 [Lactobacillus reuteri DSM 20016];> p	5	3	3	3	5	3	32.3	27.161	248
>gi 148531458 gb ABQ83457.1 aminotransferase [Lactobacillus reuteri DSM 20016]	2	1	1	2	2	1	7.1	43.367	393
>gi 183224869 dbj BAG25386.1 cell division protein [Lactobacillus reuteri JCM 1112];>	4	2	1	2	4	2	43.1	14.251	123
>gi 148531448 gb ABQ83447.1 LSU ribosomal protein L27P [Lactobacillus reuteri DSM 20016];>	4	4	3	3	3	4	48.4	9.9211	93
>gi 148531400 gb ABQ83399.1 phage antirepressor protein [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	2	12.7	30.203	267
>gi 227071437 gb EEI09740.1 transcriptional antiterminator NusG [Lactobacillus reuteri MM2-3];>	3	3	3	3	2	1	28.5	20.875	186
>gi 148531005 gb ABQ83004.1 glycyl-tRNA synthetase alpha chain [Lactobacillus reuteri DSM 20016];>	5	5	4	4	4	3	19.2	37.843	328
>gi 148530913 gb ABQ82912.1 SSU ribosomal protein S20P [Lactobacillus reuteri DSM 20016];>	3	2	3	3	3	2	34.5	9.2436	84
>gi 148530415 gb ABQ82414.1 phosphoribosylformylglycinamidine cyclo-ligase [Lactobacillus reuteri DSM 20016];>	10	8	6	7	6	3	49	36.975	345
>gi 148531712 gb ABQ83711.1 LSU ribosomal protein L30P [Lactobacillus reuteri DSM 20016];>	3	3	3	3	3	2	58.3	6.5566	60
>gi 148531102 gb ABQ83101.1 hypothetical protein Lreu_0838 [Lactobacillus reuteri DSM 20016];>	12	11	6	8	5	8	37.4	39.346	358

>gi 148530311 gb ABQ82310.1 aldehyde dehydrogenase [Lactobacillus reuteri DSM 20016];>	3	2	1	0	1	1	9.6	50.505	457
>gi 148531407 gb ABQ83406.1 LSU ribosomal protein L19P [Lactobacillus reuteri DSM 20016]	10	10	9	8	8	8	49.2	14.824	128
>gi 183224788 gb BAG25305.1 hypothetical phage protein [Lactobacillus reuteri JCM 1112]	5	2	3	3	2	3	28.8	25.075	219
>gi 183225283 gb BAG25800.1 putative autolysin [Lactobacillus reuteri JCM 1112];>	2	0	1	1	2	1	7.9	60.393	532
>gi 148530734 gb ABQ82733.1 ATP synthase F1 subcomplex alpha subunit [Lactobacillus reuteri DSM 20016]	12	8	5	9	6	3	25.7	55.226	509
>gi 148530873 gb ABQ82872.1 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase [Lactobacillus reuteri DSM 20016]	5	3	2	1	1	4	21	42.769	377
>gi 148531869 gb ABQ83868.1 GTP-binding protein, HSR1-related [Lactobacillus reuteri DSM 20016];>	7	4	3	4	2	5	19.3	47.758	425
>gi 227071698 gb EEI09989.1 phosphoesterase [Lactobacillus reuteri MM2-3];>	1	1	1	0	0	0	8.5	19.857	176
>gi 148531433 gb ABQ83432.1 DNA-directed RNA polymerase subunit omega [Lactobacillus reuteri DSM 20016];>	4	3	3	2	3	3	75	7.9219	72
>gi 148531769 gb ABQ83768.1 DJ-1 family protein [Lactobacillus reuteri DSM 20016];>	4	1	3	4	1	1	31.1	20.995	190
>gi 148531430 gb ABQ83429.1 methionyl-tRNA formyltransferase [Lactobacillus reuteri DSM 20016];>	3	2	1	1	1	1	15.5	34.729	317
>gi 148530792 gb ABQ82791.1 RecA protein [Lactobacillus reuteri DSM 20016];>	5	2	1	2	1	4	19.1	39.063	362
>gi 148531196 gb ABQ83195.1 degV family protein [Lactobacillus reuteri DSM 20016];>	4	0	2	3	1	2	27.4	32.228	292
>gi 148530459 gb ABQ82458.1 methionine-R-sulfoxide reductase [Lactobacillus reuteri DSM 20016]	4	3	1	2	2	1	36.6	16.101	142
>gi 148531776 gb ABQ83775.1 flavocytochrome c [Lactobacillus reuteri DSM 20016];>	9	7	7	7	6	6	27.8	50.13	464
>gi 112943339 gb ABI26305.1 sphingosine kinase [Lactobacillus reuteri];>	2	2	0	0	1	0	8.9	37.14	337
>gi 227071203 gb EEI09517.1 UDP-galactopyranose mutase [Lactobacillus reuteri MM2-3];>	6	4	5	5	5	2	21.1	44.975	384
>gi 227185166 gb EEI65237.1 aspartate semialdehyde dehydrogenase [Lactobacillus reuteri Cf48-3A];>	6	2	3	4	5	3	29.3	38.935	358
>gi 148531329 gb ABQ83328.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	4	2	1	2	2	2	7.6	60.056	555
>gi 148530569 gb ABQ82568.1 ribose-5-phosphate isomerase [Lactobacillus reuteri DSM 20016];>	5	5	4	4	4	3	26	25.036	227
>gi 133930447 gb ABO43795.1 E1 component beta subunit [Lactobacillus reuteri];>	3	1	2	2	1	2	18.8	35.243	325
>gi 148530634 gb ABQ82633.1 SSU ribosomal protein S30P [Lactobacillus reuteri DSM 20016];>	5	3	3	1	3	3	46.2	21.144	182
>gi 227070968 gb EEI09291.1 glutamate-1-semialdehyde 2,1-aminomutase [Lactobacillus reuteri MM2-3]	5	3	3	4	4	2	18.1	48.026	443
>gi 148531476 gb ABQ83475.1 phenylalanyl-tRNA synthetase, alpha subunit [Lactobacillus reuteri DSM 20016];>	3	1	1	0	2	1	11.5	39.026	348
>gi 148531008 gb ABQ83007.1 RNA polymerase, sigma 70 subunit, RpoD [Lactobacillus reuteri DSM 20016];>	5	4	2	4	2	2	17.6	43.385	380

>gi 148531221 gb ABQ83220.1 1-deoxy-D-xylulose-5-phosphate synthase [Lactobacillus reuteri DSM 20016];>	6	3	2	4	4	3	18.3	65.608	591
>gi 148530819 gb ABQ82818.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016];>	7	5	5	4	4	3	27.4	36.722	336
>gi 148530319 gb ABQ82318.1 OsmC family protein [Lactobacillus reuteri DSM 20016];>	3	3	2	2	2	1	22.5	15.724	142
>gi 337729366 emb CCC04496.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608]	3	3	0	0	0	0	8.2	44.72	402
>gi 227070870 gb EEI09194.1 iron-containing alcohol dehydrogenase [Lactobacillus reuteri MM2-3];>	3	0	2	1	2	1	12.9	40.929	379
>gi 148531487 gb ABQ83486.1 LSU ribosomal protein L32P [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	1	25.4	6.5727	59
>gi 148530523 gb ABQ82522.1 D-alanine-activating enzyme [Lactobacillus reuteri DSM 20016];>	9	4	5	8	3	1	28.3	55.989	508
>gi 148530389 gb ABQ82388.1 inosine-5-monophosphate dehydrogenase [Lactobacillus reuteri DSM 20016]	5	4	4	4	5	3	23.7	39.373	380
>gi 148531780 gb ABQ83779.1 Peptidylprolyl isomerase [Lactobacillus reuteri DSM 20016]	4	3	3	3	4	2	35.5	22.199	197
>gi 183225758 dbj BAG26275.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112 [3	2	3	3	2	2	20.7	22.577	203
>gi 183225128 dbj BAG25645.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	3	1	0	2	0	0	12.1	35.441	297
>gi 148530538 gb ABQ82537.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	5	3	3	2	2	2	31.1	20.464	180
>gi 148531027 gb ABQ83026.1 cytidylate kinase [Lactobacillus reuteri DSM 20016]	4	2	1	1	3	3	24.1	25.015	228
>gi 148531233 gb ABQ83232.1 nucleotide deoxyribosyltransferase [Lactobacillus reuteri DSM 20016];>	1	1	0	0	0	1	11.9	18.201	160
>gi 148531479 gb ABQ83478.1 tRNA/rRNA methyltransferase (SpoU) [Lactobacillus reuteri DSM 20016];>	3	3	0	0	1	2	16.7	28.31	258
>gi 148530337 gb ABQ82336.1 glutamate-cysteine ligase [Lactobacillus reuteri DSM 20016]	3	1	1	0	1	2	10.8	51.01	446
>gi 183225058 dbj BAG25575.1 phage major head protein [Lactobacillus reuteri JCM 1112];>	1	1	1	0	1	1	3.8	43.887	394
>gi 227186252 gb EEI66323.1 possible aspartate transaminase [Lactobacillus reuteri CF48-3A];>	6	6	0	2	0	0	24.3	42.745	395
>gi 148531241 gb ABQ83240.1 DSBA oxidoreductase [Lactobacillus reuteri DSM 20016];>J	2	2	0	1	0	0	16.3	24.566	215
>gi 148530690 gb ABQ82689.1 glucose-6-phosphate isomerase [Lactobacillus reuteri DSM 20016];>	3	3	0	0	0	0	10.6	50.35	452
>gi 148530481 gb ABQ82480.1 methionyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	7	6	5	4	4	2	12.3	76.638	675
>gi 148530860 gb ABQ82859.1 cell division protein FtsA [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	1	5.3	50.485	457
>gi 148531330 gb ABQ83329.1 Peroxiredoxin [Lactobacillus reuteri DSM 20016];>	6	3	1	2	2	1	34.2	21.041	187
>gi 148531472 gb ABQ83471.1 transcription elongation factor GreA [Lactobacillus reuteri DSM 20016];>	7	5	5	5	3	4	60.1	18.019	158
>gi 148531067 gb ABQ83066.1 prophage antirepressor [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	2	12.1	28.734	257
>gi 148531094 gb ABQ83093.1 hypothetical protein Lreu_0830 [Lactobacillus reuteri DSM	3	1	3	2	3	0	22.7	16.079	141

20016];>									
>gi 183225267 gb BAG25784.1 dextranucrase [Lactobacillus reuteri JCM 1112	1	1	1	1	1	1	1.1	167.91	1488
>gi 148531941 gb ABQ83940.1 porphobilinogen synthase [Lactobacillus reuteri DSM 20016	1	0	1	1	0	0	4.6	35.84	323
>gi 148531613 gb ABQ83612.1 hypothetical protein Lreu_1363 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	2	13.8	19.693	189
>gi 148530657 gb ABQ82656.1 protein of unknown function UPF0052 and CofD [Lactobacillus reuteri DSM 20016];>	4	3	2	2	0	0	17.7	36.198	328
>gi 148531444 gb ABQ83443.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016];>	5	4	4	2	1	2	40.7	15.835	145
>gi 148531785 gb ABQ83784.1 hypothetical protein Lreu_1539 [Lactobacillus reuteri DSM 20016];>	4	3	2	3	1	0	39	16.827	146
>gi 148531708 gb ABQ83707.1 bacterial translation initiation factor 1 (bIF-1) [Lactobacillus reuteri DSM 20016];>	5	1	2	4	4	3	75	8.1615	72
>gi 183226401 gb BAG26917.1 cell division initiation protein [Lactobacillus fermentum IFO 3956];>	4	3	4	3	4	4	11.4	25.101	228
>gi 148531846 gb ABQ83845.1 tRNA/rRNA methyltransferase (SpoU) [Lactobacillus reuteri DSM 20016];>	4	2	1	2	1	1	22.4	31.804	290
>gi 148530684 gb ABQ82683.1 Cof-like hydrolase [Lactobacillus reuteri DSM 20016];>	3	2	2	1	2	1	16.8	30.206	268
>gi 227070209 gb EEI08583.1 diaminopimelate decarboxylase [Lactobacillus reuteri MM2-3];>	5	5	0	1	1	1	13.6	48.355	441
>gi 148531975 gb ABQ83974.1 LSU ribosomal protein L29P [Lactobacillus reuteri DSM 20016];>	5	0	1	3	2	2	26.8	51.127	477
>gi 148530611 gb ABQ82610.1 peptidase M22, glycoprotease [Lactobacillus reuteri DSM 20016];>	3	1	2	2	1	1	17	26.806	241
>gi 148530405 gb ABQ82404.1 acetolactate synthase, catabolic [Lactobacillus reuteri DSM 20016	10	6	4	6	4	2	32.6	60.994	559
>gi 148532050 gb ABQ84049.1 hypothetical protein Lreu_1810 [Lactobacillus reuteri DSM 20016];>	8	4	4	4	3	5	20.4	46.453	411
>gi 148531719 gb ABQ83718.1 LSU ribosomal protein L24P [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	1	10.8	10.975	102
>gi 148530791 gb ABQ82790.1 competence/damage-inducible protein cinA [Lactobacillus reuteri DSM 20016];>	1	0	0	0	1	1	4.8	45.373	415
>gi 148530881 gb ABQ82880.1 Tetrahydrodipicolinate succinyltransferase N-terminal domain protein [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	1	27.1	24.876	236
>gi 148530680 gb ABQ82679.1 glutamine--fructose-6-phosphate transaminase [Lactobacillus reuteri DSM 20016];>	10	4	3	4	6	1	30.7	66.611	606
>gi 148530883 gb ABQ82882.1 dihydrodipicolinate synthase [Lactobacillus reuteri DSM 20016];>	6	4	2	2	2	4	32.6	33.823	307
>gi 148532020 gb ABQ84019.1 PEBP family protein [Lactobacillus reuteri DSM 20016];>	1	1	0	1	1	0	10.7	18.294	168
>gi 148530788 gb ABQ82787.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016];>	4	3	1	1	1	1	15.5	49.689	432

>gi 194453256 gb EDX42154.1 Tetrahydrosipicolinate succinyltransferase domain protein [Lactobacillus reuteri 100-23];>	2	1	0	1	0	0	27.1	24.89	236
>gi 148531434 gb ABQ83433.1 guanylate kinase [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	10.7	23.546	206
>gi 148531057 gb ABQ83056.1 gluconate kinase, FGGY family [Lactobacillus reuteri DSM 20016];>	8	3	5	7	5	3	30.8	55.417	509
>gi 183224052 gb BAG24569.1 beta-phosphoglucomutase [Lactobacillus reuteri JCM 1112];>	7	1	5	1	2	2	44.4	24.587	225
>gi 148530659 gb ABQ82658.1 ATP-dependent Clp protease proteolytic subunit ClpP [Lactobacillus reuteri DSM 20016];>	4	2	3	3	4	2	44.7	21.433	197
>gi 227185294 gb EEI65365.1 HAD superfamily hydrolase [Lactobacillus reuteri CF48-3A];>	5	3	4	4	3	4	22.7	30.425	273
>gi 148530442 gb ABQ82441.1 triosephosphate isomerase [Lactobacillus reuteri DSM 20016];>	4	1	3	4	2	1	35.5	28.377	256
>gi 148531423 gb ABQ83422.1 LSU ribosomal protein L28P [Lactobacillus reuteri DSM 20016];>	3	3	3	3	3	3	31.1	6.9271	61
>gi 227070541 gb EEI08874.1 phosphoribosylaminoimidazole carboxylase [Lactobacillus reuteri MM2-3];>	7	4	6	2	2	2	32.8	42.428	384
>gi 148532170 gb ABQ84169.1 UDP-N-acetylglucosamine-tripeptide synthetase [Lactobacillus reuteri DSM 20016];>	5	3	2	4	1	1	14.5	57.457	516
>gi 148530622 gb ABQ82621.1 CoA-binding domain protein [Lactobacillus reuteri DSM 20016];>	4	2	0	1	2	3	29.9	23.939	214
>gi 148531276 gb ABQ83275.1 thiamine-phosphate diphosphorylase [Lactobacillus reuteri DSM 20016];>	2	1	2	2	1	0	18.1	23.849	215
>gi 337728189 emb CCC03281.1 UDP-galactopyranose mutase [Lactobacillus reuteri ATCC 53608]	5	5	3	3	3	2	16.7	43.523	372
>gi 130893190 gb ABO32597.1 ATP-dependent Clp protease ATP-binding subunit ClpC [Lactobacillus reuteri];>	7	3	5	4	6	6	12.5	92.89	830
>gi 337728167 emb CCC03258.1 putative cold shock protein [Lactobacillus reuteri ATCC 53608]	4	4	1	1	0	0	71.2	7.2839	66
>gi 148530641 gb ABQ82640.1 glycerol 3-phosphate dehydrogenase (NAD(P)+) [Lactobacillus reuteri DSM 20016]	7	4	1	3	5	3	26	36.905	338
>gi 148531418 gb ABQ83417.1 acyl carrier protein [Lactobacillus reuteri DSM 20016];>	3	2	2	3	3	2	45.2	9.4942	84
>gi 227070893 gb EEI09216.1 DNA helicase [Lactobacillus reuteri MM2-3];>	6	5	3	3	2	3	10.2	90.014	775
>gi 133930439 gb ABO43791.1 2-keto-4-pentenoate hydratase [Lactobacillus reuteri];>	2	2	0	1	1	1	9.5	29.068	263
>gi 148530846 gb ABQ82845.1 6-phosphogluconolactonase [Lactobacillus reuteri DSM 20016]	5	4	3	0	2	0	21.6	37.901	342
>gi 227070638 gb EEI08968.1 DNA-binding response regulator [Lactobacillus reuteri MM2-3];>	2	1	2	2	2	2	11.6	27.524	241
>gi 148530493 gb ABQ82492.1 hypothetical protein Lreu_0222 [Lactobacillus reuteri DSM 20016]	3	2	2	3	3	3	24.1	25.919	245
>gi 148530511 gb ABQ82510.1 protein tyrosine phosphatase [Lactobacillus reuteri DSM 20016];>	2	0	2	0	0	0	26.6	17.398	154
>gi 148530787 gb ABQ82786.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016]	3	1	2	2	0	2	13.3	47.131	415
>gi 148531897 gb ABQ83896.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	3	1	3	3	3	1	15.7	35.791	332

>gi 148530924 gb ABQ82923.1 GTP-binding protein Obg/CgtA [Lactobacillus reuteri DSM 20016];>	10	5	5	6	3	2	28.8	47.975	438
>gi 148530514 gb ABQ82513.1 UDP-N-acetylglucosamine-4-epimerase [Lactobacillus reuteri DSM 20016];>	4	2	2	2	1	1	12.2	50.527	459
>gi 148530344 gb ABQ82343.1 guanosine monophosphate reductase [Lactobacillus reuteri DSM 20016]	3	2	2	1	2	2	15.1	35.96	324
>gi 148531928 gb ABQ83927.1 ybaK/ebsC protein [Lactobacillus reuteri DSM 20016]	1	0	1	1	1	1	11.9	18.647	168
>gi 148530723 gb ABQ82722.1 translation factor SUA5 [Lactobacillus reuteri DSM 20016]	3	1	0	2	2	1	12.6	37.261	342
>gi 148531462 gb ABQ83461.1 hypothetical protein Lreu_1204 [Lactobacillus reuteri DSM 20016];>	3	2	2	2	2	3	69	6.3153	58
>gi 148530724 gb ABQ82723.1 serine hydroxymethyltransferase [Lactobacillus reuteri DSM 20016]	7	4	5	4	3	4	24.8	44.95	411
>gi 148530416 gb ABQ82415.1 formyltetrahydrofolate-dependent phosphoribosylglycinamide formyltransferase [Lactobacillus reuteri DSM 20016]	2	0	2	1	2	0	35.3	21.163	190
>gi 148531989 gb ABQ83988.1 microcompartments protein [Lactobacillus reuteri DSM 20016];>reuteri DSM 20016];>gi 183225636 gb BAG26153.1 propanediol utilization protein PduA [Lacto	1	0	1	1	1	1	33.3	9.5708	93
>gi 300379511 gb ADK08388.1 OsmC family protein [Lactobacillus reuteri]	3	2	2	1	2	2	19.7	15.723	142
>gi 148531530 gb ABQ83529.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016];>	6	5	3	4	4	4	29.5	33.353	312
>gi 227071420 gb EEI09725.1 FMN reductase [Lactobacillus reuteri MM2-3];>	3	3	3	3	3	3	13	26.152	238
>gi 148530971 gb ABQ82970.1 GrpE protein [Lactobacillus reuteri DSM 20016];>	2	1	1	2	2	2	11.6	21.43	190
>gi 148531795 gb ABQ83794.1 Esterase/lipase-like protein [Lactobacillus reuteri DSM 20016];>	4	2	4	1	2	2	29.8	26.628	238
>gi 183225127 gb BAG25644.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	5	4	1	4	3	2	16.5	40.161	352
>gi 148530605 gb ABQ82604.1 Uroporphyrin-III C/tetrapyrrole (Corrin/Porphyrin) methyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	0	0	1	0	14.6	32.603	288
>gi 148531075 gb ABQ83074.1 RecT protein [Lactobacillus reuteri DSM 20016]	2	1	2	2	2	1	7.4	34.762	309
>gi 148530868 gb ABQ82867.1 NUDIX hydrolase [Lactobacillus reuteri DSM 20016];>	3	2	0	1	0	0	22.4	20.827	183
>gi 148532082 gb ABQ84081.1 D-Ala-D-Ala carboxypeptidase A, Serine peptidase, MEROPS family S11 [Lactobacillus reuteri DSM 20016];>	2	0	1	1	0	0	9.7	44.354	403
>gi 148530602 gb ABQ82601.1 protein of unknown function DUF970 [Lactobacillus reuteri DSM 20016];>	1	0	1	1	1	0	15.9	11.874	107
>gi 148530286 gb ABQ82285.1 SSU ribosomal protein S18P [Lactobacillus reuteri DSM 20016];>	4	3	3	3	2	1	51.3	9.1536	78
>gi 148530885 gb ABQ82884.1 aminotransferase [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	4.6	42.991	394
>gi 148531640 gb ABQ83639.1 DEAD/DEAH box helicase domain protein [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	3	48.772	433
>gi 148530810 gb ABQ82809.1 glutamate racemase [Lactobacillus reuteri DSM 20016];>	2	2	1	1	0	1	15.7	28.92	267
>gi 148530966 gb ABQ82965.1 ribosome-binding factor A [Lactobacillus reuteri DSM 20016];>	3	2	2	1	2	2	16.8	13.412	119

>gi 148530664 gb ABQ82663.1 RNase R [Lactobacillus reuteri DSM 20016];>	6	5	4	4	5	4	9.4	91.867	801
>gi 148532172 gb ABQ84171.1 glucose inhibited division protein A [Lactobacillus reuteri DSM 20016];>	4	3	4	3	4	3	7.9	71.918	647
>gi 148531131 gb ABQ83130.1 hypothetical protein Lreu_0867 [Lactobacillus reuteri DSM 20016];>	5	3	3	2	5	2	69.2	10.576	91
>gi 148530760 gb ABQ82759.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri DSM 20016]	4	3	2	0	2	1	45.2	15.166	135
>gi 148530279 gb ABQ82278.1 DNA polymerase III, beta subunit [Lactobacillus reuteri DSM 20016];>	7	5	4	5	3	4	26.3	41.831	380
>gi 148531622 gb ABQ83621.1 lipopolysaccharide biosynthesis protein [Lactobacillus reuteri DSM 20016];>r	2	2	1	1	1	1	15.3	22.766	209
>gi 148530920 gb ABQ82919.1 small GTP-binding protein [Lactobacillus reuteri DSM 20016];>	2	1	1	2	0	0	19.4	22.641	196
>gi 148531473 gb ABQ83472.1 uridine kinase [Lactobacillus reuteri DSM 20016]	4	1	4	3	2	2	38.5	25.134	218
>gi 148531188 gb ABQ83187.1 putative RNA methylase [Lactobacillus reuteri DSM 20016]	1	0	1	1	1	0	5	44.845	398
>gi 148531409 gb ABQ83408.1 tRNA (Guanine37-N(1)-) methyltransferase [Lactobacillus reuteri DSM 20016]	2	2	0	1	0	0	7.9	28.476	252
>gi 148530539 gb ABQ82538.1 membrane protease FtsH catalytic subunit [Lactobacillus reuteri DSM 20016];>gi 148543505 ref YP_001270875.1 ATP-dependent metalloprotease FtsH [Lactobacillus reuteri DSM 20016];>gi 194454716 gb EDX43613.1 ATP-dependent metall	4	0	2	4	2	1	8.4	77.238	702
>gi 148531585 gb ABQ83584.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016];>	7	2	2	1	2	4	15.8	81.867	734
>gi 227070055 gb EEI08433.1 GTP-binding protein EngA [Lactobacillus reuteri MM2-3];>	5	3	2	2	2	4	13.2	49.465	440
>gi 227071710 gb EEI10001.1 phosphoesterase [Lactobacillus reuteri MM2-3];>	5	4	3	2	2	3	12.6	37.97	342
>gi 194453106 gb EDX42004.1 Glycine hydroxymethyltransferase [Lactobacillus reuteri 100-23];>	6	3	2	4	1	1	20.7	44.929	411
>gi 148531144 gb ABQ83143.1 GTP cyclohydrolase II [Lactobacillus reuteri DSM 20016]	2	2	0	0	0	1	6.9	43.927	393
>gi 148531658 gb ABQ83657.1 nitroreductase [Lactobacillus reuteri DSM 20016];>	3	2	2	2	3	1	12.9	24.752	217
>gi 300379499 gb ADK08380.1 D-alanine-D-alanyl carrier protein ligase [Lactobacillus reuteri]	3	1	2	3	2	1	10.3	29.719	271
>gi 227070071 gb EEI08449.1 aldose 1-epimerase [Lactobacillus reuteri MM2-3]	3	2	2	2	3	2	12.2	34.581	304
>gi 148530714 gb ABQ82713.1 arginine deiminase [Lactobacillus reuteri DSM 20016];>	6	2	5	4	4	2	22	46.242	410
>gi 227070613 gb EEI08943.1 possible asparagine synthase (glutamine-hydrolyzing) [Lactobacillus reuteri MM2-3]	5	3	3	1	1	3	8.1	76.34	652
>gi 148531438 gb ABQ83437.1 hemolysin A [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	1	8.8	30.273	273
>gi 227070057 gb EEI08435.1 tetratricopeptide repeat family protein [Lactobacillus reuteri MM2-3];>	3	3	0	1	2	1	10.8	50.211	434
>gi 183224279 gb BAG24796.1 putative lipase/esterase [Lactobacillus reuteri JCM 1112];>	4	3	1	1	2	1	15.4	33.174	292
>gi 227070559 gb EEI08890.1 possible gamma-glutamyl-gamma-aminobutyrate hydrolase	4	1	4	4	0	0	30.8	27.281	247

[Lactobacillus reuteri MM2-3]									
>gi 148531143 gb ABQ83142.1 riboflavin synthase, alpha subunit [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	1	12.5	21.593	200
>gi 148531778 gb ABQ83777.1 Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP(+)) [Lactobacillus reuteri DSM 20016];>	2	1	0	0	0	1	5.4	59.597	542
>gi 148531335 gb ABQ83334.1 SSU ribosomal protein S14P [Lactobacillus reuteri DSM 20016];>	5	5	3	4	3	3	32.6	10.399	89
>gi 68160862 gb AYA86877.1 unknown extracellular protein Ir1434 [Lactobacillus reuteri	1	0	0	1	0	1	4.1	22.351	193
>gi 148531828 gb ABQ83827.1 quorum-sensing autoinducer 2 (AI-2), LuxS [Lactobacillus reuteri DSM 20016];>	4	2	3	2	2	2	33.5	17.695	158
>gi 148532110 gb ABQ84109.1 cytochrome b5 [Lactobacillus reuteri DSM 20016	1	0	0	1	1	1	34.7	8.1163	72
>gi 148530983 gb ABQ82982.1 [LSU ribosomal protein L11P]-lysine N-methyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	0	0	0	1	12.5	34.966	319
>gi 148531752 gb ABQ83751.1 iron dependent repressor [Lactobacillus reuteri DSM 20016];>	1	1	0	1	1	1	5.4	25.242	224
>gi 148531126 gb ABQ83125.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri DSM 20016	1	1	1	1	0	1	6.8	20.109	177
>gi 337729100 emb CCC04223.1 glutamate racemase [Lactobacillus reuteri ATCC 53608]	2	2	0	0	0	0	15.7	28.972	267
>gi 183225285 dbj BAG25802.1 muramidase [Lactobacillus reuteri JCM 1112];>	2	1	0	2	0	1	9.8	55.89	492
>gi 227071772 gb EEI10061.1 transcription antitermination protein NusB [Lactobacillus reuteri MM2-3];>	4	2	2	3	1	2	39	16.148	141
>gi 148531439 gb ABQ83438.1 farnesyl-diphosphate synthase [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	4.5	31.64	290
>gi 148531452 gb ABQ83451.1 hypothetical protein Lreu_1194 [Lactobacillus reuteri DSM 20016];>	3	3	1	1	0	0	23.2	19.53	168
>gi 148530896 gb ABQ82895.1 peptide deformylase [Lactobacillus reuteri DSM 20016	1	0	1	1	0	1	7	20.898	186
>gi 148531404 gb ABQ83403.1 protein of unknown function DUF1535 [Lactobacillus reuteri DSM 20016];>	2	0	0	0	1	1	16.6	18.631	169
>gi 148532093 gb ABQ84092.1 transcriptional regulator, ArsR family [Lactobacillus reuteri DSM 20016];>	2	0	2	2	2	2	29.8	12.182	104
>gi 227070037 gb EEI08415.1 S-adenosyl-L-methionine-dependent methyltransferase [Lactobacillus reuteri MM2-3];>	3	1	3	2	1	3	24.8	26.69	238
>gi 183227291 dbj BAG27807.1 glutamyl-tRNA amidotransferase subunit B [Lactobacillus fermentum IFO 3956];>	3	3	0	0	0	0	5.9	52.972	474
>gi 183226941 dbj BAG27457.1 glycerol kinase [Lactobacillus fermentum IFO 3956];>	2	2	2	2	2	2	2.4	55.633	503
>gi 148531804 gb ABQ83803.1 nitroreductase [Lactobacillus reuteri DSM 20016];>	2	2	1	1	0	0	13.4	28.863	253
>gi 183224586 dbj BAG25103.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112	3	0	0	2	1	2	20	26.479	230
>gi 227071080 gb EEI09398.1 metallo-beta-lactamase [Lactobacillus reuteri MM2-3];>	2	1	1	0	0	0	7.3	70.828	628
>gi 148531689 gb ABQ83688.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C	1	1	0	1	0	0	13.3	11.572	105

[Lactobacillus reuteri DSM 20016];>									
>gi 148531635 gb ABQ83634.1 methionine aminopeptidase, type I [Lactobacillus reuteri DSM 20016];>	3	2	0	0	1	0	7.4	31.665	285
>gi 148531871 gb ABQ83870.1 CsbD family protein [Lactobacillus reuteri DSM 20016];>	1	0	1	1	1	1	18.5	7.1913	65
>gi 148530789 gb ABQ82788.1 Uncharacterized protein [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	0	7	38.296	345
>gi 148530740 gb ABQ82739.1 cell shape determining protein, MreB/Mrl family [Lactobacillus reuteri DSM 20016];>	4	2	1	1	1	3	10.9	35.48	330
>gi 148530879 gb ABQ82878.1 aspartate kinase [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	0	7.1	50.12	452
>gi 227069946 gb EEI08331.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	3	2	1	1	1	0	16.6	19.78	175
>gi 148530385 gb ABQ82384.1 phosphopentomutase [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	1	4.8	44.002	397
>gi 148531693 gb ABQ83692.1 5-(carboxyamino)imidazole ribonucleotide synthase [Lactobacillus reuteri DSM 20016];>	5	1	3	5	2	2	21.5	42.001	377
>gi 183224803 gb BAG25320.1 hypothetical protein [Lactobacillus reuteri JCM 1112	2	1	2	0	0	0	11.6	40.672	371
>gi 148531891 gb ABQ83890.1 Ferritin, Dps family protein [Lactobacillus reuteri DSM 20016];>	2	1	0	2	0	0	20	18.223	155
>gi 227071130 gb EEI09446.1 TrmA family tRNA (uracil-5-)methyltransferase [Lactobacillus reuteri MM2-3];>	3	3	1	1	1	1	7.5	53.815	480
>gi 148532085 gb ABQ84084.1 carbohydrate kinase, YjeF related protein [Lactobacillus reuteri DSM 20016];>	2	1	1	2	2	0	14.2	22.43	212
>gi 148530310 gb ABQ82309.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri DSM 20016];>	3	2	1	0	2	0	18.1	29.38	270
>gi 148530742 gb ABQ82741.1 hypothetical protein Lreu_0473 [Lactobacillus reuteri DSM 20016];>	3	2	2	2	2	2	56.8	8.7648	74
>gi 148531987 gb ABQ83986.1 Glycerol dehydratase [Lactobacillus reuteri DSM 20016];>	4	0	2	0	3	0	9.3	62.092	558
>gi 227070920 gb EEI09243.1 possible phosphatase [Lactobacillus reuteri MM2-3];>	1	1	0	1	1	1	6.9	24.08	218
>gi 148530818 gb ABQ82817.1 Xaa-Pro aminopeptidase, Metallo peptidase, MEROPS family M24B [Lactobacillus reuteri DSM 20016];>	4	2	1	1	2	0	19.8	40.615	369
>gi 148531942 gb ABQ83941.1 hydroxymethylbilane synthase [Lactobacillus reuteri DSM 20016];>	2	0	2	1	1	1	8.9	33.658	305
>gi 148530901 gb ABQ82900.1 protein of unknown function UPF0223 [Lactobacillus reuteri DSM 20016];>	2	0	0	0	2	1	28.4	11.867	102
>gi 148530732 gb ABQ82731.1 ATP synthase F0 subcomplex B subunit [Lactobacillus reuteri DSM 20016];>	3	2	1	0	0	1	20.3	19.254	172
>gi 148530839 gb ABQ82838.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016];>	3	0	0	1	2	0	7.4	51.591	458
>gi 227070615 gb EEI08945.1 tRNA modification GTPase TrmE [Lactobacillus reuteri MM2-3];>	1	0	0	1	1	1	3.6	52.527	477
>gi 148531114 gb ABQ83113.1 hypothetical protein Lreu_0850 [Lactobacillus reuteri DSM 20016];>	2	0	0	1	0	1	22.2	10.169	90

>gi 148530807 gb ABQ82806.1 MutS2 family protein [Lactobacillus reuteri DSM 20016];>	1	0	1	1	0	1	3.7	88.897	791
>gi 148530576 gb ABQ82575.1 RNA methyltransferase, TrmH family, group 3 [Lactobacillus reuteri DSM 20016];>	3	2	1	1	1	2	12.9	27.28	249
>gi 148530520 gb ABQ82519.1 DltD, C-terminal domain protein [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	1	4.4	49.455	429
>gi 148531488 gb ABQ83487.1 protein of unknown function DUF177 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	1	18.9	20.961	185
>gi 183224273 dbj BAG24790.1 transcription accessory protein [Lactobacillus reuteri JCM 1112	3	0	1	0	2	2	8.1	82.072	727
>gi 148530907 gb ABQ82906.1 Phosphopantetheine adenylyltransferase [Lactobacillus reuteri DSM 20016];>	3	1	1	1	1	1	43.9	19.361	173
>gi 148531951 gb ABQ83950.1 anaerobic cobaltochelatase [Lactobacillus reuteri DSM 20016];>	2	0	2	1	0	0	18.5	29.176	259
>gi 15667450 dbj BAB68226.1 putative autoaggregation-mediating protein [Enterococcus faecium]	2	1	1	0	1	1	12.4	23.402	210
>gi 148531410 gb ABQ83409.1 16S rRNA processing protein RimM [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	1	7.1	19.219	168
>gi 148532087 gb ABQ84086.1 histidyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	5	4	2	2	2	1	15.3	48.236	425
>gi 148530614 gb ABQ82613.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri DSM 20016];>	4	3	2	1	1	1	21	26.78	257
>gi 148530963 gb ABQ82962.1 protein of unknown function DUF448 [Lactobacillus reuteri DSM 20016	2	1	2	1	2	1	21	11.662	100
>gi 148531021 gb ABQ83020.1 condensin subunit ScpB [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	0	12.4	22.54	201
>gi 148531915 gb ABQ83914.1 hypothetical protein Lreu_1675 [Lactobacillus reuteri DSM 20016];>	1	0	1	1	0	0	15.1	17.238	152
>gi 194453122 gb EDX42020.1 conserved hypothetical protein [Lactobacillus reuteri 100-23];>	3	2	1	1	2	2	55.4	8.7849	74
>gi 148532109 gb ABQ84108.1 cytochrome b5 [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	0	23.5	8.9459	81
>gi 183224377 dbj BAG24894.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	1	1	1	1	1	20.9	5.106	43
>gi 148531981 gb ABQ83980.1 microcompartments protein [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	43.8	9.7479	96
>gi 227071654 gb EEI09947.1 oxalyl-CoA decarboxylase [Lactobacillus reuteri MM2-3];>]	2	2	2	2	1	1	3.9	63.052	583
>gi 148532091 gb ABQ84090.1 transcriptional regulator, LacI family [Lactobacillus reuteri DSM 20016];>	1	1	0	1	0	0	3.5	35.062	314
>gi 148530327 gb ABQ82326.1 Recombination helicase AddA [Lactobacillus reuteri DSM 20016];>	2	0	0	0	0	2	2	159.71	1392
>gi 148530541 gb ABQ82540.1 tRNA-U20-dihydrouridine synthase [Lactobacillus reuteri DSM 20016];>	2	1	1	1	0	0	8.4	37.061	333
>gi 227070201 gb EEI08575.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	3	1	1	1	1	3	37.6	13.567	117
>gi 148531740 gb ABQ83739.1 transcriptional regulator, TetR family [Lactobacillus reuteri DSM 20016];>	1	0	1	1	1	1	15	22.79	200

>gi 273067912 gb ACZ97545.1 methionyl-tRNA synthetase [Lactobacillus reuteri]	3	3	1	0	1	0	12.2	28.262	254
>gi 148531115 gb ABQ83114.1 hypothetical protein Lreu_0851 [Lactobacillus reuteri DSM 20016]	2	0	0	2	0	2	21.1	10.116	90
>gi 194454750 gb EDX43647.1 hypothetical protein Lreu23DRAFT_5175 [Lactobacillus reuteri 100-23];>	2	1	0	0	0	2	10.9	26.491	230
>gi 148531041 gb ABQ83040.1 Ras superfamily GTP-binding protein YlqF [Lactobacillus reuteri DSM 20016]	1	0	0	0	1	1	4.1	32.562	290
>gi 148531985 gb ABQ83984.1 dehydratase, small subunit [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	9.3	19.319	172
>gi 183224263 dbj BAG24780.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	2	1	1	0	1	1	9.7	25.982	237
>gi 148531756 gb ABQ83755.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	1	1	0	1	1	1	7	17.57	158
>gi 183224837 dbj BAG25354.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	1	0	0	0	1	5.3	48.212	430
>gi 183224293 dbj BAG24810.1 50S ribosomal protein L33 [Lactobacillus reuteri JCM 1112];>	1	0	0	1	1	0	20.4	5.8137	49
>gi 148530735 gb ABQ82734.1 ATP synthase F1 subcomplex gamma subunit [Lactobacillus reuteri DSM 20016];>	2	2	0	0	0	0	9.2	34.796	314
>gi 148530858 gb ABQ82857.1 UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase [Lactobacillus reuteri DSM 20016];>	1	1	0	0	1	0	8.4	40.606	370
>gi 148532176 gb ABQ84175.1 ribonuclease P protein component [Lactobacillus reuteri DSM 20016];>	1	1	0	1	0	0	10.3	13.651	117
>gi 183226906 dbj BAG27422.1 NADH dehydrogenase [Lactobacillus fermentum IFO 3956];>	1	1	1	1	1	1	2.9	43.987	407
>gi 148531170 gb ABQ83169.1 LrgB family protein [Lactobacillus reuteri DSM 20016];>	2	2	1	0	2	0	15.9	26.306	246
>gi 148531561 gb ABQ83560.1 hypothetical protein Lreu_1303 [Lactobacillus reuteri DSM 20016];>	2	2	0	1	1	1	49.1	6.3843	55
>gi 148530753 gb ABQ82752.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	2	2	0	0	0	0	8.2	32.082	280
>gi 148531976 gb ABQ83975.1 ATP:cob(I)alamin adenosyltransferase [Lactobacillus reuteri DSM 20016];>	3	1	3	1	2	3	21	16.903	157
>gi 148531694 gb ABQ83693.1 xanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	2	2	0	0	0	0	16.8	21.113	191
>gi 183227494 dbj BAG28010.1 ribonucleoside-diphosphate reductase alpha subunit [Lactobacillus fermentum IFO 3956];>	1	0	1	1	1	1	1.1	81.572	721
>gi 227071855 gb EE10143.1 penicillin-binding protein [Lactobacillus reuteri MM2-3];>	1	0	0	0	1	1	1.7	76.108	699
>gi 148531033 gb ABQ83032.1 ABC transporter related [Lactobacillus reuteri DSM 20016];>	2	1	2	0	1	1	4.2	72.792	636
>gi 148531690 gb ABQ83689.1 CamS sex pheromone cAM373 family protein [Lactobacillus reuteri DSM 20016];>	3	2	0	1	0	1	10.8	40.775	371
>gi 146749579 gb ABQ44375.1 inosine-uridine nucleoside N-ribohydrolase [Lactobacillus reuteri];>	3	3	0	0	0	0	14.9	32.558	302
>gi 194453331 gb EDX42228.1 cell envelope-related transcriptional attenuator [Lactobacillus	1	1	1	1	1	1	4.2	38.126	334

reuteri 100-23];>								
>gi 194452845 gb EDX41743.1 Cof-like hydrolase [Lactobacillus reuteri 100-23];>	1	1	1	1	1	0	5.1	30.945
>gi 148531531 gb ABQ83530.1 hypothetical protein Lreu_1273 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	2	1	25.6	10.018
>gi 148531691 gb ABQ83690.1 DNA ligase, NAD-dependent [Lactobacillus reuteri DSM 20016]	1	1	0	0	1	1	1.6	76.002
>gi 148531361 gb ABQ83360.1 hypothetical protein Lreu_1103 [Lactobacillus reuteri DSM 20016];>	2	1	0	1	1	1	28.8	9.0878
>gi 227185710 gb EEI65781.1 hypothetical protein HMPREF0534_0888 [Lactobacillus reuteri CF48-3A];>	1	0	1	1	1	1	15	6.9798
>gi 148530613 gb ABQ82612.1 O-sialoglycoprotein endopeptidase [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	4.4	37.453
>gi 183224190 gb BAG24707.1 DNA helicase [Lactobacillus reuteri JCM 1112];>	2	1	0	1	0	0	2.8	88.988
>gi 148530894 gb ABQ82893.1 protein of unknown function DUF1447 [Lactobacillus reuteri DSM 20016];>	1	0	1	1	1	1	10	8.3122
>gi 148531717 gb ABQ83716.1 SSU ribosomal protein S14P [Lactobacillus reuteri DSM 20016]	3	3	3	1	1	1	27.9	7.1065
>gi 227185217 gb EEI65288.1 cytochrome b5 [Lactobacillus reuteri CF48-3A];>	2	0	0	0	1	1	35.4	9.2174
>gi 148531692 gb ABQ83691.1 ATP-dependent DNA helicase PcrA [Lactobacillus reuteri DSM 20016];>	2	2	2	2	1	2	2.9	86.29
>gi 148530733 gb ABQ82732.1 ATP synthase F1 subcomplex delta subunit [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	0	15.6	20.468
>gi 148530347 gb ABQ82346.1 Uracil phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	1	0	0	1	1	0	6.7	20.252
>gi 227071504 gb EEI09804.1 glutamate-5-semialdehyde dehydrogenase [Lactobacillus reuteri MM2-3]	4	4	0	1	0	0	9.9	45.499
>gi 148531876 gb ABQ83875.1 hypothetical protein Lreu_1635 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	2.9	31.711
>gi 148531498 gb ABQ83497.1 LSU ribosomal protein L35P [Lactobacillus reuteri DSM 20016]	2	2	0	1	0	0	20	7.615

Cell wall proteome of *L. reuteri* MM4KO

Appendix 2 - CWP Proteins Identified	Peptides	Peptides sample 1	Peptides sample 2	Peptides sample 3	Peptides sample 4	Peptides sample 5	Sequence Coverage [%]	Mol. Weight [kDa]	Sequence Length
>gi 296313256 gb ACZ97544.2 D-alanine-D-alanine ligase [Lactobacillus reuteri]	5	4	3	3	4	3	20.9	33.684	301
>gi 183227647 gb BAG28163.1 dehydrogenase [Lactobacillus fermentum IFO 3956];>	10	9	8	8	8	9	30.1	35.835	336
>gi 227070018 gb EEI08398.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	10	8	8	9	9	8	68.7	15.313	134
>gi 183226184 gb BAG26700.1 phosphoglycerate kinase [Lactobacillus fermentum IFO 3956];>	11	8	8	10	7	7	21.2	42.696	401
>gi 183225951 gb BAG26467.1 phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase [Lactobacillus fermentum IFO 3956]	12	10	10	9	10	9	20.3	57.132	517
>gi 183226186 gb BAG26702.1 enolase [Lactobacillus fermentum IFO 3956];>	12	11	11	11	12	10	38.2	47.79	440
>gi 148531658 gb ABQ83657.1 nitroreductase [Lactobacillus reuteri DSM 20016];>	12	7	9	9	12	10	68.2	24.752	217
>gi 148530868 gb ABQ82867.1 NUDIX hydrolase [Lactobacillus reuteri DSM 20016]	12	9	8	9	9	12	76	20.827	183
>gi 337728880 emb CCC04000.1 hypothetical protein LRATCC53608_1247 [Lactobacillus reuteri ATCC 53608]	12	10	8	11	11	10	76.4	14.126	123
>gi 183224883 gb BAG25400.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	13	9	10	11	12	13	65.2	20.834	181
>gi 148530835 gb ABQ82834.1 hypothetical protein Lreu_0566 [Lactobacillus reuteri DSM 20016];>	14	12	12	11	9	10	77.9	18.628	163
>gi 148531898 gb ABQ83897.1 Inosine/uridine-preferring nucleoside hydrolase [Lactobacillus reuteri DSM 20016];>	14	11	11	10	12	13	81.9	34.905	320
>gi 148530811 gb ABQ82810.1 non-canonical purine NTP pyrophosphatase, rdgB/HAM1 family [Lactobacillus reuteri DSM 20016];>	14	12	11	12	10	12	83.6	21.286	195
>gi 148531526 gb ABQ83525.1 protein of unknown function DUF964 [Lactobacillus reuteri DSM 20016];>	14	13	10	13	12	13	89.4	14.096	123
>gi 148530453 gb ABQ82452.1 3-beta hydroxysteroid dehydrogenase/isomerase [Lactobacillus reuteri DSM 20016];>	15	14	15	15	15	14	69	31.632	284
>gi 183225729 gb BAG26246.1 hypothetical protein [Lactobacillus reuteri JCM 1112]	15	11	10	7	12	13	80.5	19.891	169
>gi 148531716 gb ABQ83715.1 SSU ribosomal protein S8P [Lactobacillus reuteri DSM 20016];>	15	11	13	12	12	13	87.1	14.536	132
>gi 227071142 gb EEI09458.1 acetoин dehydrogenase [Lactobacillus reuteri MM2-3];>	15	12	11	12	11	14	89.9	28.157	267
>gi 337728896 emb CCC04016.1 ribokinase [Lactobacillus reuteri ATCC 53608]	16	14	13	15	14	15	75.6	32.044	307
>gi 148530952 gb ABQ82951.1 uridylate kinase [Lactobacillus reuteri DSM 20016]	16	11	13	12	15	13	76.7	25.876	240
>gi 227071324 gb EEI09633.1 heat shock protein Hsp33 [Lactobacillus reuteri MM2-3];>	17	13	13	11	14	11	64.1	35.232	323
>gi 148532120 gb ABQ84119.1 NAD-dependent epimerase/dehydratase [Lactobacillus reuteri DSM 20016];>	17	10	10	10	16	10	95.3	23.187	213

>gi 183227337 dbj BAG27853.1 elongation factor G [Lactobacillus fermentum IFO 3956];>	18	14	15	14	15	14	34.3	76.351	694
>gi 148532119 gb ABQ84118.1 Bleomycin hydrolase [Lactobacillus reuteri DSM 20016]	18	14	14	14	14	13	55.5	50.851	440
>gi 227070209 gb EEI08583.1 diaminopimelate decarboxylase [Lactobacillus reuteri MM2-3];>	18	9	5	11	12	14	59.4	48.355	441
>gi 194453648 gb EDX42545.1 glucokinase, ROK family [Lactobacillus reuteri 100-23]	18	16	14	14	14	15	63.2	34.493	323
>gi 148530668 gb ABQ82667.1 phosphotransacetylase [Lactobacillus reuteri DSM 20016]	18	17	17	16	14	13	75.9	34.699	324
>gi 148530340 gb ABQ82339.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri DSM 20016];>	18	14	15	11	11	14	79.2	32.62	288
>gi 227186201 gb EEI66272.1 response regulator [Lactobacillus reuteri CF48-3A];>	18	15	14	11	14	11	79.3	26.602	237
>gi 148531543 gb ABQ83542.1 ribokinase [Lactobacillus reuteri DSM 20016]	18	15	14	15	15	17	92.5	32.041	307
>gi 148532092 gb ABQ84091.1 Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri DSM 20016];>	19	11	13	14	17	10	46.3	60.446	568
>gi 148531464 gb ABQ83463.1 glucokinase [Lactobacillus reuteri DSM 20016];>	19	18	15	14	16	17	63.2	34.42	323
>gi 148530523 gb ABQ82522.1 D-alanine-activating enzyme [Lactobacillus reuteri DSM 20016];>	19	15	17	15	16	16	66.7	55.989	508
>gi 148530646 gb ABQ82645.1 thioredoxin reductase [Lactobacillus reuteri DSM 20016];>	19	16	15	13	12	11	81	33.305	310
>gi 148530593 gb ABQ82592.1 ribonucleoside-diphosphate reductase class Ib beta subunit [Lactobacillus reuteri DSM 20016];>	20	16	15	16	16	20	81.1	39.248	339
>gi 324978533 gb EGC15482.1 cysteine--tRNA ligase [Lactobacillus reuteri MM4-1A];>	21	16	15	17	14	14	56.9	54.852	478
>gi 183226438 dbj BAG26954.1 elongation factor Tu [Lactobacillus fermentum IFO 3956];>	21	21	20	20	20	19	57.1	43.474	396
>gi 148532080 gb ABQ84079.1 glycerol 2-dehydrogenase (NAD+) [Lactobacillus reuteri DSM 20016];>	21	19	19	18	17	18	69.4	40.698	373
>gi 148530778 gb ABQ82777.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	21	17	18	15	20	17	74.8	44.031	404
>gi 183225128 dbj BAG25645.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	21	19	16	18	14	17	81.8	35.441	297
>gi 68161011 gb AAY86937.1 lr0280 [Lactobacillus reuteri]	22	14	10	18	10	18	70.7	36.729	331
>gi 148530857 gb ABQ82856.1 UDP-N-acetylmuramoylalanine--D-glutamate ligase [Lactobacillus reuteri DSM 20016];>	22	16	14	15	15	18	74.6	50.332	456
>gi 148531776 gb ABQ83775.1 flavocytochrome c [Lactobacillus reuteri DSM 20016]	22	18	15	14	19	19	76.9	50.13	464
>gi 194452797 gb EDX41695.1 Inorganic diphosphatase [Lactobacillus reuteri 100-23];>	22	21	17	19	17	18	77.2	34.18	311
>gi 227071240 gb EEI09554.1 possible glutathione-disulfide reductase [Lactobacillus reuteri MM2-3];>	22	19	10	16	14	18	77.7	48.997	443
>gi 148530995 gb ABQ82994.1 Choloylglycine hydrolase [Lactobacillus reuteri DSM 20016];>	22	20	17	15	19	18	83.1	36.104	325
>gi 148530419 gb ABQ82418.1 phosphoglycerate mutase [Lactobacillus reuteri DSM 20016];>	22	17	21	22	21	21	87.3	26.121	228
>gi 148530846 gb ABQ82845.1 6-phosphogluconolactonase [Lactobacillus reuteri DSM 20016];>	22	17	18	20	20	16	90.4	37.901	342
>gi 148530724 gb ABQ82723.1 serine hydroxymethyltransferase [Lactobacillus reuteri DSM 20016];>	23	20	18	21	21	19	67.2	44.95	411

>gi 148530414 gb ABQ82413.1 amidophosphoribosyltransferase [Lactobacillus reuteri DSM 20016]	23	16	22	21	19	9	67.4	52.984	484
>gi 148530679 gb ABQ82678.1 phosphoglucosamine mutase [Lactobacillus reuteri DSM 20016];>	23	21	17	20	19	20	76.5	48.902	451
>gi 148531050 gb ABQ83049.1 Inorganic diphosphatase [Lactobacillus reuteri DSM 20016]	23	21	18	20	19	19	77.8	34.194	311
>gi 148531899 gb ABQ83898.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016];>	23	17	20	18	15	17	78.5	26.924	251
>gi 148530491 gb ABQ82490.1 UDP-N-acetylglucosamine pyrophosphorylase [Lactobacillus reuteri DSM 20016];>	24	18	20	19	18	20	61.8	50.01	455
>gi 148531554 gb ABQ83553.1 methionine adenosyltransferase [Lactobacillus reuteri DSM 20016];>	24	22	17	20	17	19	76.5	43.195	395
>gi 148532032 gb ABQ84031.1 cysteine synthase [Lactobacillus reuteri DSM 20016];>	24	20	18	19	16	18	87	32.241	307
>gi 148530641 gb ABQ82640.1 glycerol 3-phosphate dehydrogenase (NAD(P)+) [Lactobacillus reuteri DSM 20016];> G	24	18	20	17	17	18	88.8	36.905	338
>gi 148530389 gb ABQ82388.1 inosine-5-monophosphate dehydrogenase [Lactobacillus reuteri DSM 20016];>	24	21	19	22	21	23	92.6	39.373	380
>gi 227185848 gb EEI65919.1 acetate kinase [Lactobacillus reuteri CF48-3A];>	25	19	20	22	21	20	72.6	43.61	398
>gi 148531549 gb ABQ83548.1 peptidase V, Metallo peptidase, MEROPS family M20A [Lactobacillus reuteri DSM 20016];>	26	22	23	22	22	19	67.7	51.22	467
>gi 183225183 dbj BAG25700.1 ligase [Lactobacillus reuteri JCM 1112];>	26	21	16	21	23	23	69.2	49.294	441
>gi 148532099 gb ABQ84098.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016];>	26	22	21	21	24	22	81.5	35.918	336
>gi 148530695 gb ABQ82694.1 ornithine carbamoyltransferase [Lactobacillus reuteri DSM 20016];> L	26	20	19	18	23	21	83.3	37.559	335
>gi 227185071 gb EEI65142.1 elongation factor EF1B [Lactobacillus reuteri CF48-3A]	26	22	20	20	22	20	85.2	31.961	291
>gi 148530410 gb ABQ82409.1 phosphoribosylaminoimidazole-succinocarboxamide synthase [Lactobacillus reuteri DSM 20016]	26	22	20	17	18	14	86.2	27.308	239
>gi 148531171 gb ABQ83170.1 L-lactate dehydrogenase [Lactobacillus reuteri DSM 20016];>	26	21	20	20	23	22	87	35.005	324
>gi 148530972 gb ABQ82971.1 chaperone protein DnaK [Lactobacillus reuteri DSM 20016];>	27	18	18	14	18	23	61	67.211	621
>gi 148530555 gb ABQ82554.1 putative nicotinate phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	27	21	20	21	21	22	66.6	55.609	488
>gi 148531641 gb ABQ83640.1 oxidoreductase domain protein [Lactobacillus reuteri DSM 20016];>	27	25	20	18	20	21	70.8	38.272	339
>gi 148531932 gb ABQ83931.1 (R)-2-hydroxyisocaproate dehydrogenase [Lactobacillus reuteri DSM 20016];>	27	26	24	24	25	24	88	37.358	334
>gi 148531688 gb ABQ83687.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit A [Lactobacillus reuteri DSM 20016];>gi 148544654 ref YP_001272024.1 aspartyl/glutamyl-tRNA amidotransferase subunit A [Lactobacillus reuteri DSM 20016];>gi 166989678 sp	28	19	18	23	23	22	77.8	53.009	490

>gi 148530951 gb ABQ82950.1 translation elongation factor Ts (EF-Ts) [Lactobacillus reuteri DSM 20016];>	29	26	24	23	26	23	85.2	31.962	291
>gi 337728297 emb CCC03392.1 alcohol dehydrogenase [Lactobacillus reuteri ATCC 53608]	29	25	26	24	28	26	92.7	36.158	342
>gi 227185611 gb EEI65682.1 alcohol dehydrogenase [Lactobacillus reuteri CF48-3A];>	29	25	26	24	28	26	92.7	36.184	342
>gi 148530918 gb ABQ82917.1 trigger factor [Lactobacillus reuteri DSM 20016]	30	21	15	26	17	25	69.5	48.747	436
>gi 227186481 gb EEI66552.1 D-alanine--D-alanine ligase [Lactobacillus reuteri CF48-3A]	30	27	27	26	28	25	75.1	42.569	378
>gi 183224464 dbj BAG24981.1 D-alanine--D-alanine ligase [Lactobacillus reuteri JCM 1112];>	30	27	28	26	28	26	76.2	43.001	382
>gi 148531929 gb ABQ83928.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016]	30	21	23	25	21	28	78.9	54.294	478
>gi 337728095 emb CCC03185.1 methionyl-tRNA synthase [Lactobacillus reuteri ATCC 53608]	31	22	18	26	17	28	56.1	76.572	675
>gi 148531687 gb ABQ83686.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B [Lactobacillus reuteri DSM 20016]	31	17	22	24	25	27	75.7	53.424	474
>gi 148530370 gb ABQ82369.1 seryl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	31	24	20	25	24	27	79.1	49.29	435
>gi 148530447 gb ABQ82446.1 pyridine nucleotide-disulfide oxidoreductase dimerization region [Lactobacillus reuteri DSM 20016];>	31	28	26	28	27	30	79.8	49.944	451
>gi 148531743 gb ABQ83742.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016]	31	27	29	27	30	29	92.7	36.124	342
>gi 227184598 gb EEI64669.1 phosphoketolase [Lactobacillus reuteri CF48-3A];>	33	27	27	27	30	24	47.6	91.435	803
>gi 148530959 gb ABQ82958.1 prolyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	33	16	4	19	12	25	73.7	64.256	577
>gi 183224383 dbj BAG24900.1 enolase [Lactobacillus reuteri JCM 1112];>	33	29	28	29	31	29	75.7	49.951	457
>gi 148530409 gb ABQ82408.1 Adenylosuccinate lyase [Lactobacillus reuteri DSM 20016];>	33	27	28	27	28	28	82.8	49.454	431
>gi 148530829 gb ABQ82828.1 acetate kinase [Lactobacillus reuteri DSM 20016];>	33	24	26	28	28	26	88.9	43.595	398
>gi 148531460 gb ABQ83459.1 L-glutamine synthetase [Lactobacillus reuteri DSM 20016];>	33	31	28	30	32	29	89	50.835	447
>gi 148531290 gb ABQ83289.1 LPXTG-motif cell wall anchor domain [Lactobacillus reuteri DSM 20016];>	34	24	29	24	28	28	62.4	80.889	752
>gi 148530680 gb ABQ82679.1 glutamine--fructose-6-phosphate transaminase [Lactobacillus reuteri DSM 20016];>	34	23	27	24	27	28	72.3	66.611	606
>gi 148530917 gb ABQ82916.1 translation elongation factor 1A (EF-1A/EF-Tu) [Lactobacillus reuteri DSM 20016];>	34	33	31	32	33	31	81.3	43.432	396
>gi 148532037 gb ABQ84036.1 Endothelin-converting protein 1 [Lactobacillus reuteri DSM 20016];>	35	19	19	25	24	26	62.8	72.39	634
>gi 227071557 gb EEI09855.1 glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) [Lactobacillus reuteri MM2-3];>	35	34	34	33	35	33	91.6	37.062	345
>gi 148531028 gb ABQ83027.1 SSU ribosomal protein S1P [Lactobacillus reuteri DSM 20016];>gi 148543994 ref YP_001271364.1 30S ribosomal protein S1 [Lactobacillus reuteri DSM 20016];>gi 183224732 dbj BAG25249.1 30S ribosomal protein S1 [Lactobacillus reut	35	32	22	31	19	27	92.5	45.995	416
>gi 148530903 gb ABQ82902.1 GTP-binding protein TypA [Lactobacillus reuteri DSM 20016];>	36	29	29	32	33	31	63	68.827	614

>gi 183225744 dbj BAG26261.1 threonyl-tRNA synthase [Lactobacillus reuteri JCM 1112];>	36	19	20	25	19	33	64.8	71.776	627
>gi 337727906 emb CCC02995.1 L-lactate dehydrogenase [Lactobacillus reuteri ATCC 53608];>	37	30	30	31	30	30	90	34.069	319
>gi 148530404 gb ABQ82403.1 Formate-tetrahydrofolate ligase [Lactobacillus reuteri DSM 20016];>	38	23	29	29	35	24	74.1	60.251	553
>gi 227070122 gb EEI08498.1 malate dehydrogenase (NAD) [Lactobacillus reuteri MM2-3];>	38	31	31	32	31	31	88.7	34.901	326
>gi 148531006 gb ABQ83005.1 glycyl-tRNA synthetase beta chain [Lactobacillus reuteri DSM 20016];>	39	31	31	35	33	32	66.9	78.536	691
>gi 148530481 gb ABQ82480.1 methionyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	39	28	26	31	24	36	69.6	76.638	675
>gi 227185690 gb EEI65761.1 GMP synthase (glutamine-hydrolyzing) [Lactobacillus reuteri CF48-3A];>	39	33	29	30	32	31	77.1	59.976	538
>gi 148531553 gb ABQ83552.1 leucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	43	26	26	32	26	26	59.1	92.918	806
>gi 148530331 gb ABQ82330.1 maltose phosphorylase [Lactobacillus reuteri DSM 20016];>	43	27	31	31	37	30	62.3	86.744	750
>gi 148531528 gb ABQ83527.1 arginyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	43	32	28	36	40	38	80.1	63.878	562
>gi 148530345 gb ABQ82344.1 Adenylosuccinate synthetase [Lactobacillus reuteri DSM 20016];>	43	39	41	39	38	37	83.1	47.725	432
>gi 227071019 gb EEI09341.1 bifunctional GMP synthase/glutamine amidotransferase protein [Lactobacillus reuteri MM2-3];>	43	35	31	33	35	35	85.7	59.912	538
>gi 337729265 emb CCC04392.1 phosphoglucomutase [Lactobacillus reuteri ATCC 53608];>	44	35	37	35	36	32	82.8	63.747	574
>gi 148530650 gb ABQ82649.1 alpha-phosphoglucomutase [Lactobacillus reuteri DSM 20016];>	44	36	38	36	36	32	82.8	63.706	574
>gi 227185787 gb EEI65858.1 valyl-tRNA synthetase [Lactobacillus reuteri CF48-3A];>	45	36	34	33	32	30	53.9	104.65	907
>gi 148530417 gb ABQ82416.1 IMP cyclohydrolase [Lactobacillus reuteri DSM 20016];>	45	39	43	40	39	32	83.4	57.032	512
>gi 194453154 gb EDX42052.1 valyl-tRNA synthetase [Lactobacillus reuteri 100-23];>	47	39	35	34	32	31	56.8	102.19	884
>gi 337729137 emb CCC04260.1 valyl-tRNA synthetase [Lactobacillus reuteri ATCC 53608];>	47	38	35	34	33	31	57.2	102.21	884
>gi 143798699 gb ABF06644.2 sucrose phosphorylase [Lactobacillus reuteri];>	47	40	38	41	36	37	84.1	55.969	485
>gi 148531459 gb ABQ83458.1 glutamyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	47	38	36	39	37	42	84.2	58.349	501
>gi 148530624 gb ABQ82623.1 chaperonin GroEL [Lactobacillus reuteri DSM 20016];>	47	41	38	41	35	37	94.5	57.123	542
>gi 337728521 emb CCC03625.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri ATCC 53608];>	48	43	45	44	44	43	87.2	56.355	493
>gi 227070837 gb EEI09162.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri MM2-3];>	49	46	47	46	46	46	86.7	56.713	496
>gi 194454244 gb EDX43141.1 glucose-6-phosphate 1-dehydrogenase [Lactobacillus reuteri 100-23];>	49	45	47	45	45	45	87.2	56.374	493
>gi 148531016 gb ABQ83015.1 pyruvate kinase [Lactobacillus reuteri DSM 20016];>	50	45	46	46	44	45	78.9	51.825	473
>gi 148532121 gb ABQ84120.1 lysyl aminopeptidase, Metallo peptidase, MEROPS family M01 [Lactobacillus reuteri DSM 20016];>	51	39	42	39	34	40	75.8	95.323	843
>gi 183224518 dbj BAG25035.1 alanyl-tRNA synthase [Lactobacillus reuteri JCM 1112];>	52	38	33	37	35	43	72.9	98.648	885

>gi 148530773 gb ABQ82772.1 valyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	53	43	39	38	37	38	64.1	102.29	884
>gi 148530866 gb ABQ82865.1 Isoleucyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	56	36	30	42	45	47	73.5	109.95	960
>gi 194453034 gb EDX41932.1 Phosphoglycerate kinase [Lactobacillus reuteri 100-23];>	56	48	47	47	48	46	96	42.961	401
>gi 337728440 emb CCC03541.1 xylulose 5-phosphate phosphoketolase [Lactobacillus reuteri ATCC 53608];>	57	48	43	47	51	42	78.2	91.372	803
>gi 194454221 gb EDX43118.1 Phosphoketolase [Lactobacillus reuteri 100-23];>	57	47	43	47	51	42	78.2	91.374	803
>gi 183224381 dbj BAG24898.1 phosphoglycerate kinase [Lactobacillus reuteri JCM 1112];>	57	49	48	48	50	48	96	42.96	401
>gi 148531926 gb ABQ83925.1 Phosphoketolase [Lactobacillus reuteri DSM 20016];>	58	48	45	47	51	45	79.2	91.403	803
>gi 148531733 gb ABQ83732.1 translation elongation factor 2 (EF-2/EF-G) [Lactobacillus reuteri DSM 20016];>	60	49	48	51	50	50	85.2	76.77	695
>gi 337729321 emb CCC04450.1 aldehyde-alcohol dehydrogenase [Lactobacillus reuteri ATCC 53608];>	61	49	55	49	51	36	71	97.181	878
>gi 337728522 emb CCC03626.1 6-phosphogluconate dehydrogenase [Lactobacillus reuteri ATCC 53608];>	62	60	59	56	59	58	96.7	53.444	478
>gi 183225653 dbj BAG26170.1 6-phosphogluconate dehydrogenase [Lactobacillus reuteri JCM 1112];>	64	62	61	58	61	60	96.7	53.417	478
>gi 148531571 gb ABQ83570.1 hypothetical protein Lreu_1313 [Lactobacillus reuteri DSM 20016];>	65	59	48	56	54	51	89.8	64.749	566
>gi 148530592 gb ABQ82591.1 alcohol dehydrogenase AdhE / acetaldehyde dehydrogenase [Lactobacillus reuteri DSM 20016]	75	57	71	66	68	51	83.6	97.187	878
>gi 148530322 gb ABQ82321.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016];>	86	80	68	51	71	63	85.1	82.305	745
>gi 227070899 gb EEI09222.1 D-lactate dehydrogenase [Lactobacillus reuteri MM2-3];>g	17	12	13	12	14	12	65.6	37.311	337
>gi 148531037 gb ABQ83036.1 degV family protein [Lactobacillus reuteri DSM 20016];>J	17	12	11	12	12	14	78.2	30.742	280
>gi 227070649 gb EEI08979.1 1,3-propanediol dehydrogenase [Lactobacillus reuteri MM2-3];>	25	16	21	15	22	20	73.6	44.01	405
>gi 148531009 gb ABQ83008.1 aminotransferase [Lactobacillus reuteri DSM 20016];>	26	10	12	15	24	17	78.9	43.107	394
>gi 130893244 gb ABO32599.1 D-lactate dehydrogenase [Lactobacillus reuteri]	13	12	12	10	11	10	37.8	40.533	362
>gi 148530455 gb ABQ82454.1 Substrate-binding region of ABC-type glycine betaine transport system [Lactobacillus reuteri DSM 20016];>	19	13	14	9	14	15	59.9	32.953	299
>gi 269930626 gb ACZ53583.1 phosphoketolase [Lactobacillus reuteri]	16	13	8	13	12	9	83.1	21.656	189
>gi 148531057 gb ABQ83056.1 gluconate kinase, FGGY family [Lactobacillus reuteri DSM 20016];>	21	17	16	16	12	16	63.9	55.417	509
>gi 148530556 gb ABQ82555.1 NH(3)-dependent NAD(+) synthetase [Lactobacillus reuteri DSM 20016];>	20	14	14	12	15	16	86.9	30.54	275
>gi 183227581 dbj BAG28097.1 6-phosphogluconate dehydrogenase [Lactobacillus fermentum IFO 3956];>	12	12	11	11	11	10	22.8	53.488	479
>gi 148530989 gb ABQ82988.1 aspartyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	11	5	2	5	7	7	21.2	68.43	600

	9	6	8	6	7	9	71.4	26.628	238
>gi 148531795 gb ABQ83794.1 Esterase/lipase-like protein [Lactobacillus reuteri DSM 20016];>	9	6	8	6	7	9	71.4	26.628	238
>gi 183225853 gb BAG26369.1 ATP-dependent Clp protease ATP-binding subunit [Lactobacillus fermentum IFO 3956];>	9	9	6	5	9	6	10.9	76.678	697
>gi 148530828 gb ABQ82827.1 Adenine-specific DNA methylase-like protein [Lactobacillus reuteri DSM 20016];>	14	12	13	9	12	13	75.1	31.155	277
>gi 146142505 gb ABQ01722.1 fumarase [Lactobacillus reuteri];>	21	10	13	12	20	16	61.3	50.302	462
>gi 148531824 gb ABQ83823.1 translation elongation factor P (EF-P) [Lactobacillus reuteri DSM 20016];>	11	8	9	8	10	8	55.7	20.518	185
>gi 148530870 gb ABQ82869.1 methylthioadenosine nucleosidase [Lactobacillus reuteri DSM 20016];>	10	8	8	9	8	9	64.9	24.687	231
>gi 227070039 gb EEI08417.1 peptidase T [Lactobacillus reuteri MM2-3];>	18	15	9	12	11	11	52.5	46.484	419
>gi 183226063 gb BAG26579.1 nicotinate phosphoribosyltransferase [Lactobacillus fermentum IFO 3956];>	6	6	4	6	5	5	14.6	55.469	486
>gi 148530771 gb ABQ82770.1 aminotransferase, class V [Lactobacillus reuteri DSM 20016];>	16	9	14	11	12	13	66.8	42.097	382
>gi 148530760 gb ABQ82759.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri DSM 20016];>	7	5	7	5	5	4	51.1	15.166	135
>gi 183224279 gb BAG24796.1 putative lipase/esterase [Lactobacillus reuteri JCM 1112];>	13	10	10	12	10	9	65.1	33.174	292
>gi 183225901 gb BAG26417.1 inosine-5-monophosphate dehydrogenase [Lactobacillus fermentum IFO 3956];>	9	8	8	8	8	9	28.2	39.708	380
>gi 148532158 gb ABQ84157.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	11	10	11	11	11	10	53.4	20.407	178
>gi 148531690 gb ABQ83689.1 CamS sex pheromone cAM373 family protein [Lactobacillus reuteri DSM 20016];>	5	3	3	3	3	5	19.9	40.775	371
>gi 148530387 gb ABQ82386.1 purine nucleoside phosphorylase [Lactobacillus reuteri DSM 20016];>	13	9	12	11	12	11	66.5	25.751	236
>gi 148531709 gb ABQ83708.1 Adenylate kinase [Lactobacillus reuteri DSM 20016];> r	15	12	11	12	11	10	85.4	24.609	219
>gi 148530564 gb ABQ82563.1 cystathione gamma-lyase [Lactobacillus reuteri DSM 20016];>	10	9	7	9	8	9	46.1	41.498	380
>gi 148530578 gb ABQ82577.1 transcription antitermination protein nusG [Lactobacillus reuteri DSM 20016]	14	12	11	11	12	12	72.8	20.289	180
>gi 148531828 gb ABQ83827.1 quorum-sensing autoinducer 2 (AI-2), LuxS [Lactobacillus reuteri DSM 20016];>	16	11	13	12	11	13	91.1	17.695	158
>gi 148530539 gb ABQ82538.1 membrane protease FtsH catalytic subunit [Lactobacillus reuteri DSM 20016];>	22	17	17	15	13	16	37	77.238	702
>gi 148530343 gb ABQ82342.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	14	10	10	13	12	12	64.1	49.604	449
>gi 194453968 gb EDX42865.1 Adenylate kinase [Lactobacillus reuteri 100-23];>	15	12	10	11	10	9	85.4	24.61	219
>gi 148531330 gb ABQ83329.1 Peroxiredoxin [Lactobacillus reuteri DSM 20016];>	14	10	8	8	10	9	92	21.041	187

>gi 337727893 emb CCC02982.1 conjugated bile salt hydrolase [Lactobacillus reuteri ATCC 53608];>	15	13	11	12	15	12	60.3	36.06	325
>gi 183226183 gb BAG26699.1 glyceraldehyde 3-phosphate dehydrogenase [Lactobacillus fermentum IFO 3956];>	10	8	7	7	9	8	34.1	36.208	337
>gi 148530953 gb ABQ82952.1 ribosome recycling factor [Lactobacillus reuteri DSM 20016];>	16	12	10	8	6	12	85.6	20.783	187
>gi 148531713 gb ABQ83712.1 SSU ribosomal protein S5P [Lactobacillus reuteri DSM 20016];>	16	13	15	14	13	12	81.1	17.646	169
>gi 148532132 gb ABQ84131.1 hypothetical protein Lreu_1894 [Lactobacillus reuteri DSM 20016];>	6	5	3	3	4	2	53.3	13.741	120
>gi 148531221 gb ABQ83220.1 1-deoxy-D-xylulose-5-phosphate synthase [Lactobacillus reuteri DSM 20016];>	19	10	11	10	11	10	41.6	65.608	591
>gi 227071790 gb EEI10079.1 ribulose-5-phosphate 3-epimerase [Lactobacillus reuteri MM2-3];>	14	8	10	11	13	11	55	25.102	231
>gi 1667472 gb AAB53259.1 chloramphenicol acetyltransferase-TC [Lactobacillus reuteri];>	13	11	6	8	7	7	54.6	27.351	238
>gi 148531415 gb ABQ83414.1 signal recognition particle-docking protein FtsY [Lactobacillus reuteri DSM 20016];>	21	15	15	14	12	13	40.7	55.604	508
>gi 148531196 gb ABQ83195.1 degV family protein [Lactobacillus reuteri DSM 20016];>	10	8	3	6	6	7	53.4	32.228	292
>gi 148530696 gb ABQ82695.1 carbamate kinase [Lactobacillus reuteri DSM 20016];>	16	13	13	10	11	9	76.5	33.008	310
>gi 148531869 gb ABQ83868.1 GTP-binding protein, HSR1-related [Lactobacillus reuteri DSM 20016];>	18	15	12	12	12	14	52.2	47.758	425
>gi 194454118 gb EDX43015.1 quorum-sensing autoinducer 2 (AI-2), LuxS [Lactobacillus reuteri 100-23];>	13	9	10	10	9	10	82.9	17.727	158
>gi 227071698 gb EEI09989.1 phosphoesterase [Lactobacillus reuteri MM2-3];>	8	7	6	7	8	7	55.1	19.857	176
>gi 38018477 gb AAR08285.1 GroEL [Lactobacillus reuteri DSM 20016];>	8	7	8	8	6	6	59.5	18.192	168
>gi 148530310 gb ABQ82309.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri DSM 20016];>	7	6	4	3	2	4	37.4	29.38	270
>gi 112943316 gb ABI26304.1 predicted flavoprotein [Lactobacillus reuteri];>	11	10	11	10	10	10	64.2	21.504	190
>gi 148531889 gb ABQ83888.1 prolinase, Serine peptidase, MEROPS family S33 [Lactobacillus reuteri DSM 20016];>	9	3	3	7	9	8	58.7	34.841	303
>gi 148530865 gb ABQ82864.1 DivIVA family protein [Lactobacillus reuteri DSM 20016];>	17	10	7	13	6	13	41.5	27.591	246
>gi 148530569 gb ABQ82568.1 ribose-5-phosphate isomerase [Lactobacillus reuteri DSM 20016];>	15	12	13	12	11	12	80.2	25.036	227
>gi 148532002 gb ABQ84001.1 Nrdl family protein [Lactobacillus reuteri DSM 20016];>	6	5	5	6	6	6	41.9	17.501	155
>gi 148532070 gb ABQ84069.1 histidyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	24	15	17	21	18	22	78.5	49.318	433
>gi 148530878 gb ABQ82877.1 diaminopimelate epimerase [Lactobacillus reuteri DSM 20016];>	11	8	6	4	9	7	59.5	36.381	333
>gi 183225766 gb BAG26283.1 aspartate-ammonia ligase [Lactobacillus reuteri JCM 1112];>	18	10	6	13	15	15	62.2	39.72	339
>gi 148531417 gb ABQ83416.1 RNAse III [Lactobacillus reuteri DSM 20016];>	16	12	7	11	13	13	87.6	26.606	233
>gi 112943099 gb ABI26296.1 single-stranded DNA-binding protein [Lactobacillus reuteri];>	7	6	5	7	6	6	38.5	20.605	187

	5	1	1	2	2	5	14.7	52.076	448
>gi 227070727 gb EEI09055.1 asparaginyl-tRNA synthetase [Lactobacillus reuteri MM2-3];>	5	1	1	2	2	5	14.7	52.076	448
>gi 148530690 gb ABQ82689.1 glucose-6-phosphate isomerase [Lactobacillus reuteri DSM 20016];>	23	17	16	17	17	16	62.4	50.35	452
>gi 194452927 gb EDX41825.1 Cystathionine gamma-synthase [Lactobacillus reuteri 100-23];>	9	8	7	8	7	8	40.5	41.471	380
>gi 194453139 gb EDX42037.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri 100-23];>	6	3	5	4	3	3	51.1	15.183	135
>gi 148531521 gb ABQ83520.1 histidine triad (HIT) protein [Lactobacillus reuteri DSM 20016];>	8	3	3	3	5	4	61.8	16.333	144
>gi 148531583 gb ABQ83582.1 Phosphotransferase system, phosphocarrier protein HPr [Lactobacillus reuteri DSM 20016]	7	7	5	5	4	5	62.5	9.4076	88
>gi 148530721 gb ABQ82720.1 bacterial peptide chain release factor 1 (bRF-1) [Lactobacillus reuteri DSM 20016];>	7	5	4	3	3	7	27.6	41.287	362
>gi 148531973 gb ABQ83972.1 acetate kinase [Lactobacillus reuteri DSM 20016];>	9	3	3	5	7	6	36.8	43.802	394
>gi 148530413 gb ABQ82412.1 phosphoribosylformylglycinamidine synthase subunit II [Lactobacillus reuteri DSM 20016];>	17	5	9	11	13	8	37.2	80.944	742
>gi 148531241 gb ABQ83240.1 DSBA oxidoreductase [Lactobacillus reuteri DSM 20016];> J	7	7	1	4	4	5	41.9	24.566	215
>gi 148530514 gb ABQ82513.1 UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase [Lactobacillus reuteri DSM 20016];>	15	10	9	6	9	11	47.7	50.527	459
>gi 148530755 gb ABQ82754.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	9	7	4	9	7	7	48.1	18.017	162
>gi 148530792 gb ABQ82791.1 RecA protein [Lactobacillus reuteri DSM 20016];>	8	5	6	5	5	7	26.8	39.063	362
>gi 148530415 gb ABQ82414.1 phosphoribosylformylglycinamidine cyclo-ligase [Lactobacillus reuteri DSM 20016 R]	19	15	16	12	17	6	81.7	36.975	345
>gi 130893166 gb ABO32596.1 ATP-dependent Clp protease ATP-binding subunit ClpX [Lactobacillus reuteri];>	16	7	4	9	8	14	52.6	45.969	416
>gi 148530580 gb ABQ82579.1 LSU ribosomal protein L1P [Lactobacillus reuteri DSM 20016];>	8	7	7	4	4	6	37.2	27.362	253
>gi 227070541 gb EEI08874.1 phosphoribosylaminoimidazole carboxylase [Lactobacillus reuteri MM2-3];>	18	10	15	10	12	12	72.9	42.428	384
>gi 148531276 gb ABQ83275.1 thiamine-phosphate diphosphorylase [Lactobacillus reuteri DSM 20016];>	14	9	12	6	11	12	86.5	23.849	215
>gi 148530601 gb ABQ82600.1 thymidylate kinase [Lactobacillus reuteri DSM 20016];>	8	7	7	6	5	7	34.7	24.198	213
>gi 148530538 gb ABQ82537.1 hypoxanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	14	8	12	12	11	14	58.9	20.464	180
>gi 148530877 gb ABQ82876.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM 20016];>	17	15	11	11	10	12	69.1	36.06	324
>gi 148530808 gb ABQ82807.1 thioredoxin [Lactobacillus reuteri DSM 20016];>	7	7	7	7	7	7	55.8	11.889	104
>gi 148530568 gb ABQ82567.1 aminopeptidase C, Cysteine peptidase, MEROPS family C01B [Lactobacillus reuteri DSM 20016];>	17	8	10	11	9	6	44.6	51.985	446
>gi 148530279 gb ABQ82278.1 DNA polymerase III, beta subunit [Lactobacillus reuteri DSM	14	13	14	11	12	12	49.7	41.831	380

20016];>									
>gi 148530965 gb ABQ82964.1 bacterial translation initiation factor 2 (bIF-2) [Lactobacillus reuteri DSM 20016];>	9	7	6	5	8	5	19.5	83.537	752
>gi 148531054 gb ABQ83053.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016];>	11	8	7	7	10	11	74	13.85	127
>gi 227071794 gb EEI10083.1 glycerone kinase [Lactobacillus reuteri MM2-3];>	12	5	7	6	6	7	32.2	62.132	575
>gi 148531975 gb ABQ83974.1 LSU ribosomal protein L29P [Lactobacillus reuteri DSM 20016];>	14	5	10	10	8	10	46.1	51.127	477
>gi 183225457 dbj BAG25974.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	5	6	5	5	3	40.2	20.101	179
>gi 227070201 gb EEI08575.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	14	11	6	4	7	10	85.5	13.567	117
>gi 337728945 emb CCC04065.1 phosphoribosylformylglycaminidine synthase II [Lactobacillus reuteri ATCC 53608]	14	3	6	7	9	7	30.9	80.963	742
>gi 148531012 gb ABQ83011.1 protein of unknown function DUF34 [Lactobacillus reuteri DSM 20016];>	6	4	5	5	3	5	23.4	30.534	274
>gi 148531233 gb ABQ83232.1 nucleotide deoxyribosyltransferase [Lactobacillus reuteri DSM 20016];>	10	5	7	5	6	9	60.6	18.201	160
>gi 148530418 gb ABQ82417.1 phosphoribosylamine-glycine ligase [Lactobacillus reuteri DSM 20016];>	13	3	9	11	11	1	46.5	45.76	419
>gi 148530375 gb ABQ82374.1 Inosine/uridine-preferring nucleoside hydrolase [Lactobacillus reuteri DSM 20016];>	12	6	8	8	8	10	62.3	32.573	302
>gi 148531734 gb ABQ83733.1 SSU ribosomal protein S7P [Lactobacillus reuteri DSM 20016];>	6	5	5	6	5	5	38.5	17.985	156
>gi 183224027 dbj BAG24544.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	10	7	9	6	7	5	45	20.228	180
>gi 148531034 gb ABQ83033.1 thymidylate synthase [Lactobacillus reuteri DSM 20016];>	9	6	8	8	6	9	27.2	36.982	320
>gi 148530494 gb ABQ82493.1 Cof-like hydrolase [Lactobacillus reuteri DSM 20016]	9	8	7	6	3	5	32.2	30.465	273
>gi 183225222 dbj BAG25739.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	9	6	6	6	6	5	56.5	18.557	170
>gi 148530832 gb ABQ82831.1 HAD-superfamily subfamily IIA hydrolase like protein [Lactobacillus reuteri DSM 20016];>	9	6	3	4	6	7	42.6	28.505	256
>gi 148530871 gb ABQ82870.1 aminotransferase, class V [Lactobacillus reuteri DSM 20016];>	6	2	1	4	2	5	27.9	42.481	384
>gi 148530787 gb ABQ82786.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016];>	10	7	7	6	7	9	33	47.131	415
>gi 148530492 gb ABQ82491.1 ribose-phosphate pyrophosphokinase [Lactobacillus reuteri DSM 20016];>	11	9	10	10	10	8	38.9	36.16	329
>gi 148530623 gb ABQ82622.1 chaperonin Cpn10 [Lactobacillus reuteri DSM 20016];>	8	6	5	6	8	6	71.3	10.149	94
>gi 148531694 gb ABQ83693.1 xanthine phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	10	7	7	7	7	8	52.4	21.113	191
>gi 112943728 gb ABI26320.1 fructose-2,6-bisphosphatase [Lactobacillus reuteri];>	8	5	6	6	8	7	48.8	24.287	217

>gi 148530585 gb ABQ82584.1 LSU ribosomal protein L12P [Lactobacillus reuteri DSM 20016];>	10	7	5	6	4	6	95	12.356	121
>gi 148531033 gb ABQ83032.1 ABC transporter related [Lactobacillus reuteri DSM 20016];>	16	6	10	10	10	6	32.2	72.792	636
>gi 148531131 gb ABQ83130.1 hypothetical protein Lreu_0867 [Lactobacillus reuteri DSM 20016];>	11	11	9	8	10	9	63.7	10.576	91
>gi 148530873 gb ABQ82872.1 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase [Lactobacillus reuteri DSM 20016];>	12	5	0	7	8	11	50.7	42.769	377
>gi 148531941 gb ABQ83940.1 porphobilinogen synthase [Lactobacillus reuteri DSM 20016];>	9	7	7	6	5	8	44	35.84	323
>gi 148531141 gb ABQ83140.1 Purine nucleosidase [Lactobacillus reuteri DSM 20016];>	10	8	5	6	7	5	67.8	34.734	314
>gi 148530769 gb ABQ82768.1 SSU ribosomal protein S4P [Lactobacillus reuteri DSM 20016];>	15	15	15	13	13	14	57.2	22.943	201
>gi 183225185 gb BAG25702.1 thioredoxin [Lactobacillus reuteri JCM 1112];>	5	4	4	4	3	5	28.4	12.828	109
>gi 148531891 gb ABQ83890.1 Ferritin, Dps family protein [Lactobacillus reuteri DSM 20016];>	10	4	2	3	5	7	89	18.223	155
>gi 148530571 gb ABQ82570.1 deoxyuridine 5-triphosphate nucleotidohydrolase [Lactobacillus reuteri DSM 20016]	8	4	6	6	7	7	44.9	20.3	178
>gi 148531730 gb ABQ83729.1 LSU ribosomal protein L3P [Lactobacillus reuteri DSM 20016];>	10	9	9	6	5	8	45.2	23.757	219
>gi 148530714 gb ABQ82713.1 arginine deiminase [Lactobacillus reuteri DSM 20016];>	19	14	9	11	15	18	64.9	46.242	410
>gi 148531477 gb ABQ83476.1 transcriptional regulator, HxR family [Lactobacillus reuteri DSM 20016];>	10	8	7	9	8	9	67.9	13.039	112
>gi 148531718 gb ABQ83717.1 LSU ribosomal protein L5P [Lactobacillus reuteri DSM 20016];>	10	5	8	8	5	10	60	20.171	180
>gi 133930435 gb ABO43789.1 DNA-binding protein [Lactobacillus reuteri];>	6	4	5	5	4	2	48.4	9.5238	91
>gi 183225377 gb BAG25894.1 50S ribosomal protein L18 [Lactobacillus reuteri JCM 1112];>	6	5	5	6	5	4	55.4	13.342	121
>gi 183226422 gb BAG26938.1 GTP-binding protein [Lactobacillus fermentum IFO 3956];>	14	13	13	12	14	11	21.3	68.695	615
>gi 148531329 gb ABQ83328.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016];>	9	2	4	3	6	7	23.6	60.056	555
>gi 148530659 gb ABQ82658.1 ATP-dependent Clp protease proteolytic subunit ClpP [Lactobacillus reuteri DSM 20016];>	11	7	9	8	8	10	78.7	21.433	197
>gi 148531780 gb ABQ83779.1 Peptidylprolyl isomerase [Lactobacillus reuteri DSM 20016];>	9	6	5	6	7	8	58.9	22.199	197
>gi 148531452 gb ABQ83451.1 hypothetical protein Lreu_1194 [Lactobacillus reuteri DSM 20016];>	8	7	8	5	6	6	51.8	19.53	168
>gi 148530412 gb ABQ82411.1 phosphoribosylformylglycinamidine synthase subunit I [Lactobacillus reuteri DSM 20016];>	9	6	7	8	8	5	73.9	24.732	226
>gi 148530884 gb ABQ82883.1 dihydrodipicolinate reductase [Lactobacillus reuteri DSM 20016];>	8	4	2	5	4	3	50.6	27.932	259
>gi 148531434 gb ABQ83433.1 guanylate kinase [Lactobacillus reuteri DSM 20016]	10	6	7	7	6	8	49	23.546	206
>gi 148530584 gb ABQ82583.1 LSU ribosomal protein L10P [Lactobacillus reuteri DSM 20016];>	5	3	3	3	2	3	39.2	18.139	166
>gi 227070613 gb EEI08943.1 possible asparagine synthase (glutamine-hydrolyzing) [Lactobacillus reuteri MM2-3];>gi 227186280 gb EEI66351.1 possible asparagine synthase	14	10	11	8	7	4	25.9	76.34	652

(glutamine-hydrolyzing) [Lactobacillus reuteri CF48-3A];>gi 227364300 ref ZP_03848393.									
>gi 148532020 gb ABQ84019.1 PEBP family protein [Lactobacillus reuteri DSM 20016];>J	6	3	5	3	5	3	37.5	18.294	168
>gi 227071420 gb EEI09725.1 FMN reductase [Lactobacillus reuteri MM2-3];>	6	3	4	4	4	2	24.8	26.152	238
>gi 148531323 gb ABQ83322.1 glycerol kinase [Lactobacillus reuteri DSM 20016]	12	7	8	7	10	7	32.4	55.388	500
>gi 227070129 gb EEI08505.1 D-tyrosyl-tRNA(Tyr) deacylase [Lactobacillus reuteri MM2-3];>	5	4	4	4	3	4	53.5	17.733	159
>gi 133930437 gb ABO43790.1 cytosine deaminase [Lactobacillus reuteri];>	11	9	10	9	8	10	37.9	46.441	412
>gi 148530405 gb ABQ82404.1 acetolactate synthase, catabolic [Lactobacillus reuteri DSM 20016];>	11	0	5	0	11	2	31.5	60.994	559
>gi 148530924 gb ABQ82923.1 GTP-binding protein Obg/CgtA [Lactobacillus reuteri DSM 20016];>	17	13	10	8	9	13	48.2	47.975	438
>gi 148530579 gb ABQ82578.1 LSU ribosomal protein L11P [Lactobacillus reuteri DSM 20016];>	9	6	5	8	6	8	53.9	14.869	141
>gi 148531486 gb ABQ83485.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016];>	5	5	3	3	4	4	28.9	26.33	228
>gi 183224837 dbj BAG25354.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	7	4	7	3	4	3	25.3	48.212	430
>gi 227070517 gb EEI08850.1 deoxyribose-phosphate aldolase [Lactobacillus reuteri MM2-3];>	10	7	6	5	4	5	51.1	25.76	237
>gi 148530821 gb ABQ82820.1 protein of unknown function DUF28 [Lactobacillus reuteri DSM 20016];>	11	9	8	7	6	7	63.3	27.161	248
>gi 227071111 gb EEI09429.1 Dyp family peroxidase family protein [Lactobacillus reuteri MM2-3];>	11	7	7	5	10	6	40.1	36.463	317
>gi 148531334 gb ABQ83333.1 hypothetical protein Lreu_1076 [Lactobacillus reuteri DSM 20016];>	1	1	1	0	0	0	9.7	17.798	154
>gi 148531061 gb ABQ83060.1 hypothetical protein Lreu_0797 [Lactobacillus reuteri DSM 20016];>	4	3	1	1	0	3	27.4	31.07	285
>gi 148531725 gb ABQ83724.1 LSU ribosomal protein L22P [Lactobacillus reuteri DSM 20016];>	7	5	5	3	4	4	53	12.394	115
>gi 148531458 gb ABQ83457.1 aminotransferase [Lactobacillus reuteri DSM 20016];>	11	5	6	7	8	6	41	43.367	393
>gi 148530344 gb ABQ82343.1 guanosine monophosphate reductase [Lactobacillus reuteri DSM 20016]	11	6	5	7	7	9	48.5	35.96	324
>gi 148530883 gb ABQ82882.1 dihydrodipicolinate synthase [Lactobacillus reuteri DSM 20016];>	8	7	3	7	5	7	46.9	33.823	307
>gi 148531980 gb ABQ83979.1 Propanediol utilization protein [Lactobacillus reuteri DSM 20016];>	7	2	4	3	3	6	33.6	23.962	214
>gi 183225130 dbj BAG25647.1 peptide methionine sulfoxide reductase [Lactobacillus reuteri JCM 1112];>	5	4	4	5	3	3	45.4	21.132	185
>gi 148531027 gb ABQ83026.1 cytidylate kinase [Lactobacillus reuteri DSM 20016];>	9	6	6	5	4	7	46.9	25.015	228
>gi 133930513 gb ABO43828.1 triosephosphate isomerase [Lactobacillus reuteri];>	12	10	7	9	7	8	64.4	29.214	264
>gi 148530610 gb ABQ82609.1 UDP-galactose 4-epimerase [Lactobacillus reuteri DSM 20016];>	16	11	12	7	12	4	81.3	36.598	331

>gi 227070968 gb EEI09291.1 glutamate-1-semialdehyde 2,1-aminomutase [Lactobacillus reuteri MM2-3];>	12	10	7	5	5	8	53.7	48.026	443
>gi 148531721 gb ABQ83720.1 SSU ribosomal protein S17P [Lactobacillus reuteri DSM 20016];>	8	8	7	6	6	5	68.2	10.168	88
>gi 183226317 dbj BAG26833.1 valyl-tRNA synthase [Lactobacillus fermentum IFO 3956	13	12	9	9	7	5	15.8	101.85	884
>gi 227070651 gb EEI08981.1 rhodanese domain protein [Lactobacillus reuteri MM2-3];>	10	7	6	6	8	8	57.1	29.725	261
>gi 148531143 gb ABQ83142.1 riboflavin synthase, alpha subunit [Lactobacillus reuteri DSM 20016];>	6	4	5	4	6	5	33	21.593	200
>gi 183224298 dbj BAG24815.1 aminotransferase [Lactobacillus reuteri JCM 1112	12	6	5	9	10	9	50.5	44.088	400
>gi 148531444 gb ABQ83443.1 protein of unknown function DUF322 [Lactobacillus reuteri DSM 20016];>	6	2	4	3	4	3	48.3	15.835	145
>gi 148531723 gb ABQ83722.1 LSU ribosomal protein L16P [Lactobacillus reuteri DSM 20016];>	9	6	7	6	6	6	61.8	16.006	144
>gi 148531005 gb ABQ83004.1 glycyl-tRNA synthetase alpha chain [Lactobacillus reuteri DSM 20016];>	14	12	7	7	10	10	56.7	37.843	328
>gi 183224803 dbj BAG25320.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	12	4	9	9	6	6	48	40.672	371
>gi 148530530 gb ABQ82529.1 Hydratase/decarboxylase [Lactobacillus reuteri DSM 20016];>	4	2	0	4	2	2	41.4	29.033	263
>gi 148531715 gb ABQ83714.1 LSU ribosomal protein L6P [Lactobacillus reuteri DSM 20016];>	13	7	6	11	6	10	44.4	19.635	178
>gi 148530501 gb ABQ82500.1 CTP synthase [Lactobacillus reuteri DSM 20016];>	7	4	3	3	5	4	20.6	59.6	534
>gi 148530321 gb ABQ82320.1 aromatic amino acid aminotransferase apoenzyme [Lactobacillus reuteri DSM 20016];>	11	9	4	8	6	9	42.5	42.52	395
>gi 148531442 gb ABQ83441.1 methenyltetrahydrofolate cyclohydrolase / 5,10-methylenetetrahydrofolate dehydrogenase (NADP+) [Lactobacillus reuteri DSM 20016];>	10	6	7	6	6	3	45.5	30.424	286
>gi 148530435 gb ABQ82434.1 short-chain dehydrogenase/reductase SDR [Lactobacillus reuteri DSM 20016];>	11	8	4	3	4	9	61.8	26.39	246
>gi 337728953 emb CCC04073.1 acetolactate synthase [Lactobacillus reuteri ATCC 53608]	10	0	5	1	10	2	24.9	61.077	559
>gi 227070793 gb EEI09119.1 NADPH dehydrogenase [Lactobacillus reuteri MM2-3];>	4	1	2	0	3	1	26.1	26.711	230
>gi 148530861 gb ABQ82860.1 cell division protein FtsZ [Lactobacillus reuteri DSM 20016];>	12	8	7	8	9	10	42.2	44.45	415
>gi 227184822 gb EEI64893.1 possible 2-amino adipate transaminase [Lactobacillus reuteri CF48-3A];>	10	6	5	7	9	7	40.6	43.84	397
>gi 148531693 gb ABQ83692.1 5-(carboxyamino)imidazole ribonucleotide synthase [Lactobacillus reuteri DSM 20016];>	13	8	8	8	10	11	57.6	42.001	377
>gi 227185166 gb EEI65237.1 aspartate semialdehyde dehydrogenase [Lactobacillus reuteri CF48-3A	6	0	2	1	6	2	29.3	38.935	358
>gi 148531473 gb ABQ83472.1 uridine kinase [Lactobacillus reuteri DSM 20016];>	7	3	7	5	6	7	40.4	25.134	218
>gi 112943339 gb ABI26305.1 sphingosine kinase [Lactobacillus reuteri	8	7	4	2	5	5	27.3	37.14	337
>gi 227071141 gb EEI09457.1 mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase [Lactobacillus reuteri MM2-3];>	4	2	1	4	2	2	22.1	25.877	222

>gi 183225693 gb BAG26210.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	2	1	2	3	4	19.8	41.737	364
>gi 148530734 gb ABQ82733.1 ATP synthase F1 subcomplex alpha subunit [Lactobacillus reuteri DSM 20016];>	16	14	10	9	9	6	35.4	55.226	509
>gi 148530542 gb ABQ82541.1 lysyl-tRNA synthetase [Lactobacillus reuteri DSM 20016];>	14	7	1	9	8	13	31.7	58.296	508
>gi 148531976 gb ABQ83975.1 ATP:cob(I)alamin adenosyltransferase [Lactobacillus reuteri DSM 20016];>	5	1	4	4	4	4	33.1	16.903	157
>gi 148530651 gb ABQ82650.1 hydrolase of HD superfamily-like protein [Lactobacillus reuteri DSM 20016];>	9	6	7	8	7	6	42.9	24.304	212
>gi 148530744 gb ABQ82743.1 glycine cleavage H-protein [Lactobacillus reuteri DSM 20016];>	6	3	2	4	3	6	75.3	10.641	97
>gi 183225184 gb BAG25701.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	5	1	2	2	1	2	40.3	23.595	216
>gi 148531499 gb ABQ83498.1 bacterial translation initiation factor 3 (bIF-3) [Lactobacillus reuteri DSM 20016];>	4	3	3	2	3	4	31.2	19.487	170
>gi 183225758 gb BAG26275.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	4	3	2	5	5	33	22.577	203
>gi 148530319 gb ABQ82318.1 OsmC family protein [Lactobacillus reuteri DSM 20016];>	8	6	8	5	6	6	45.1	15.724	142
>gi 148531724 gb ABQ83723.1 SSU ribosomal protein S3P [Lactobacillus reuteri DSM 20016];>	9	8	9	8	8	7	40.3	24.696	221
>gi 148531729 gb ABQ83728.1 LSU ribosomal protein L4P [Lactobacillus reuteri DSM 20016];>	6	6	6	4	4	5	41.1	22.29	207
>gi 183224273 gb BAG24790.1 transcription accessory protein [Lactobacillus reuteri JCM 1112];>	10	4	5	4	4	6	23.1	82.072	727
>gi 148530614 gb ABQ82613.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri DSM 20016];>	8	6	5	3	5	4	46.7	26.78	257
>gi 148530311 gb ABQ82310.1 aldehyde dehydrogenase [Lactobacillus reuteri DSM 20016];>	7	3	6	3	3	0	22.3	50.505	457
>gi 148531769 gb ABQ83768.1 DJ-1 family protein [Lactobacillus reuteri DSM 20016];>	5	2	3	4	5	2	35.3	20.995	190
>gi 148530379 gb ABQ82378.1 chromosome segregation ATPase [Lactobacillus reuteri DSM 20016];>	6	4	3	2	2	4	30.1	28.007	256
>gi 227184876 gb EEI64947.1 pyrroline-5-carboxylate reductase [Lactobacillus reuteri CF48-3A];>	7	5	6	2	5	3	33.9	26.871	257
>gi 148531565 gb ABQ83564.1 heat shock protein Hsp20 [Lactobacillus reuteri DSM 20016]	3	2	1	1	3	2	25.2	16.747	143
>gi 148530950 gb ABQ82949.1 SSU ribosomal protein S2P [Lactobacillus reuteri DSM 20016];>	10	7	6	9	4	9	36.3	29.657	262
>gi 148531756 gb ABQ83755.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	6	2	2	4	4	6	38	17.57	158
>gi 227071504 gb EEI09804.1 glutamate-5-semialdehyde dehydrogenase [Lactobacillus reuteri MM2-3]	12	8	8	8	10	9	38.5	45.499	416
>gi 148531915 gb ABQ83914.1 hypothetical protein Lreu_1675 [Lactobacillus reuteri DSM 20016];>	1	0	1	1	1	0	8.6	17.238	152
>gi 183225283 gb BAG25800.1 putative autolysin [Lactobacillus reuteri JCM 1112]	2	0	0	0	1	1	7.7	60.393	532

>gi 148530881 gb ABQ82880.1 Tetrahydrodipicolinate succinyltransferase N-terminal domain protein [Lactobacillus reuteri DSM 20016];>	5	3	2	2	3	5	38.6	24.876	236
>gi 148531412 gb ABQ83411.1 SSU ribosomal protein S16P [Lactobacillus reuteri DSM 20016];>	4	4	4	3	2	3	45.1	10.449	91
>gi 194454489 gb EDX43386.1 aminotransferase class I and II [Lactobacillus reuteri 100-23]	8	6	2	5	3	6	32.4	42.531	395
>gi 148530962 gb ABQ82961.1 NusA antitermination factor [Lactobacillus reuteri DSM 20016];>	5	4	1	0	3	2	22.3	44.525	395
>gi 148530371 gb ABQ82370.1 amino acid ABC transporter membrane protein, PAAT family / amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>gi 148543337 ref YP_001270707.1 polar amino acid ABC transporter i	2	1	0	1	0	1	6.6	53.65	487
>gi 148531728 gb ABQ83727.1 LSU ribosomal protein L23P [Lactobacillus reuteri DSM 20016];>	7	7	5	5	2	4	66.3	11.25	98
>gi 148530842 gb ABQ82841.1 NAD(+) kinase [Lactobacillus reuteri DSM 20016]	6	4	6	3	5	6	24.8	30.666	270
>gi 148530804 gb ABQ82803.1 Holliday junction resolvase YqgF [Lactobacillus reuteri DSM 20016];>	6	3	4	6	4	5	40.8	16.525	147
>gi 148532168 gb ABQ84167.1 signal peptidase I [Lactobacillus reuteri DSM 20016];>	3	1	2	2	2	2	18.4	22.703	201
>gi 148532131 gb ABQ84130.1 glutamine amidotransferase class-I [Lactobacillus reuteri DSM 20016]	4	3	3	3	4	3	31.8	25.353	223
>gi 148530718 gb ABQ82717.1 CobB/CobQ domain protein glutamine amidotransferase [Lactobacillus reuteri DSM 20016];>	3	3	1	0	0	2	21.3	26.134	235
>gi 148530475 gb ABQ82474.1 tryptophanyl-tRNA synthetase [Lactobacillus reuteri DSM 20016]	10	4	2	5	9	8	47.9	38.062	340
>gi 227071501 gb EEI09801.1 LL-diaminopimelate aminotransferase [Lactobacillus reuteri MM2-3];>	3	0	1	2	2	1	10.4	43.448	395
>gi 148531738 gb ABQ83737.1 DNA-directed RNA polymerase subunit beta [Lactobacillus reuteri DSM 20016];>	14	5	3	7	7	11	20.6	135.42	1211
>gi 148531215 gb ABQ83214.1 Glyoxalase/bleomycin resistance protein/dioxygenase [Lactobacillus reuteri DSM 20016];>	4	3	3	4	4	4	28.5	14.777	130
>gi 148530964 gb ABQ82963.1 LSU ribosomal protein L7AE [Lactobacillus reuteri DSM 20016];>	5	5	3	1	2	4	43.7	11.651	103
>gi 183224121 dbj BAG24638.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	9	3	8	6	6	6	54.3	24.277	219
>gi 148530284 gb ABQ82283.1 SSU ribosomal protein S6P [Lactobacillus reuteri DSM 20016];>	7	6	5	5	5	6	63.3	11.378	98
>gi 148530288 gb ABQ82287.1 LSU ribosomal protein L9P [Lactobacillus reuteri DSM 20016];>	7	3	5	2	4	3	37.3	16.692	150
>gi 148531488 gb ABQ83487.1 protein of unknown function DUF177 [Lactobacillus reuteri DSM 20016];>	4	4	3	3	2	3	25.9	20.961	185
>gi 183227420 dbj BAG27936.1 autoinducer-2 production protein [Lactobacillus fermentum IFO 3956];>	8	5	6	6	6	6	50	17.719	158
>gi 148531987 gb ABQ83986.1 Glycerol dehydratase [Lactobacillus reuteri DSM 20016];>	13	1	10	2	6	6	29	62.092	558
>gi 148531286 gb ABQ83285.1 Phosphoglycerate mutase [Lactobacillus reuteri DSM 20016];>	6	4	5	3	4	5	21.9	30.347	278
>gi 148531703 gb ABQ83702.1 LSU ribosomal protein L17P [Lactobacillus reuteri DSM 20016];>	4	4	2	2	2	3	32.3	14.201	127
>gi 148530459 gb ABQ82458.1 methionine-R-sulfoxide reductase [Lactobacillus reuteri DSM 20016]	7	4	5	4	5	4	54.9	16.101	142

>gi 148530385 gb ABQ82384.1 phosphopentomutase [Lactobacillus reuteri DSM 20016];>	13	8	7	10	10	8	51.4	44.002	397
>gi 183226446 gb BAG26962.1 GTP-binding protein [Lactobacillus fermentum IFO 3956];>	9	9	8	6	8	8	24.4	47.427	435
>gi 148531540 gb ABQ83539.1 hypothetical protein Lreu_1282 [Lactobacillus reuteri DSM 20016];>	3	3	3	3	3	3	38	10.138	92
>gi 148532166 gb ABQ84165.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	7	3	3	4	6	3	29.6	32.371	287
>gi 148530541 gb ABQ82540.1 tRNA-U20-dihydrouridine synthase [Lactobacillus reuteri DSM 20016];>	10	4	1	3	4	4	52	37.061	333
>gi 148530761 gb ABQ82760.1 hypothetical protein Lreu_0492 [Lactobacillus reuteri DSM 20016];>	3	2	2	2	2	3	16.6	27.759	247
>gi 148530631 gb ABQ82630.1 protein of unknown function UPF0029 [Lactobacillus reuteri DSM 20016];>	5	4	3	2	3	2	29	23.548	210
>gi 148530642 gb ABQ82641.1 UDP-glucose pyrophosphorylase [Lactobacillus reuteri DSM 20016];>	4	1	3	2	2	2	14.1	34.101	304
>gi 148531708 gb ABQ83707.1 bacterial translation initiation factor 1 (bIF-1) [Lactobacillus reuteri DSM 20016];>	6	4	3	2	3	5	55.6	8.1615	72
>gi 148532063 gb ABQ84062.1 thioredoxin [Lactobacillus reuteri DSM 20016]	5	4	3	4	3	4	49.5	12.064	105
>gi 148530691 gb ABQ82690.1 hypothetical protein Lreu_0421 [Lactobacillus reuteri DSM 20016];>	5	3	1	1	3	5	36.4	11.143	99
>gi 183225646 gb BAG26163.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	2	0	0	0	0	2	13.5	19.84	178
>gi 148530896 gb ABQ82895.1 peptide deformylase [Lactobacillus reuteri DSM 20016];>	5	3	4	4	3	4	28.5	20.898	186
>gi 227071772 gb EEI10061.1 transcription antitermination protein NusB [Lactobacillus reuteri MM2-3]	3	2	2	3	3	3	32.6	16.148	141
>gi 148530837 gb ABQ82836.1 Negative regulator of genetic competence [Lactobacillus reuteri DSM 20016];>	4	2	0	3	4	4	24.7	25.701	223
>gi 148530983 gb ABQ82982.1 [LSU ribosomal protein L11P]-lysine N-methyltransferase [Lactobacillus reuteri DSM 20016]	11	6	7	7	7	9	73	34.966	319
>gi 227070539 gb EEI08872.1 acetolactate decarboxylase [Lactobacillus reuteri MM2-3];>	6	4	6	6	6	5	42.7	27.238	246
>gi 148531705 gb ABQ83704.1 SSU ribosomal protein S11P [Lactobacillus reuteri DSM 20016];>	3	3	2	2	2	2	22.5	13.759	129
>gi 227070644 gb EEI08974.1 phosphatidylglycerophosphatase [Lactobacillus reuteri MM2-3];>	9	6	8	5	7	5	56.2	18.978	169
>gi 148531731 gb ABQ83730.1 SSU ribosomal protein S10P [Lactobacillus reuteri DSM 20016];>	5	4	4	3	4	5	46.1	11.777	102
>gi 148530997 gb ABQ82996.1 argininosuccinate lyase [Lactobacillus reuteri DSM 20016];>	5	3	2	1	1	0	13	51.92	461
>gi 148530860 gb ABQ82859.1 cell division protein FtsA [Lactobacillus reuteri DSM 20016];>	4	3	4	3	3	4	9.2	50.485	457
>gi 227071143 gb EEI09459.1 ribosomal protein S9 [Lactobacillus reuteri MM2-3];>	7	7	6	6	5	7	33.1	14.494	133
>gi 183224278 gb BAG24795.1 phosphoglycerate mutase [Lactobacillus reuteri JCM 1112]	7	6	4	1	3	3	36.1	29.591	255
>gi 148531843 gb ABQ83842.1 Peptidoglycan-binding LysM [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	0	4.5	37.509	355
>gi 148530634 gb ABQ82633.1 SSU ribosomal protein S30P [Lactobacillus reuteri DSM 20016];>	4	3	2	3	4	3	35.7	21.144	182

>gi 148530681 gb ABQ82680.1 hypothetical protein Lreu_0411 [Lactobacillus reuteri DSM 20016];>	4	3	3	3	3	2	44.7	12.29	103
>gi 148531711 gb ABQ83710.1 LSU ribosomal protein L15P [Lactobacillus reuteri DSM 20016];>	6	6	5	5	4	5	31.9	15.447	144
>gi 227071637 gb EEI09931.1 uracil phosphoribosyltransferase [Lactobacillus reuteri MM2-3];>	5	3	3	5	4	4	27.1	24.512	221
>gi 148530736 gb ABQ82735.1 ATP synthase F1 subcomplex beta subunit [Lactobacillus reuteri DSM 20016];>	7	6	4	4	4	4	16.4	51.631	475
>gi 148531735 gb ABQ83734.1 SSU ribosomal protein S12P [Lactobacillus reuteri DSM 20016];>	3	3	2	2	2	2	19.4	15.503	139
>gi 148531720 gb ABQ83719.1 LSU ribosomal protein L14P [Lactobacillus reuteri DSM 20016];>	7	5	6	3	3	5	51.6	13.144	122
>gi 148531538 gb ABQ83537.1 dihydroneopterin aldolase [Lactobacillus reuteri DSM 20016];>	3	1	0	2	3	2	71.2	12.739	111
>gi 148530994 gb ABQ82993.1 GatB/Yqey domain protein [Lactobacillus reuteri DSM 20016];>	2	1	2	2	2	2	17.6	16.725	148
>gi 148531536 gb ABQ83535.1 GTP cyclohydrolase I [Lactobacillus reuteri DSM 20016];>	7	5	6	7	5	6	42.7	22.03	192
>gi 148531841 gb ABQ83840.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri DSM 20016];>	6	2	0	3	0	4	38.2	19.96	173
>gi 148531888 gb ABQ83887.1 dipeptidyl-peptidase IV, Serine peptidase, MEROPS family S15 [Lactobacillus reuteri DSM 20016]	3	0	0	0	3	0	5.8	90.378	800
>gi 148531698 gb ABQ83697.1 LSU ribosomal protein L13P [Lactobacillus reuteri DSM 20016];>	7	3	5	4	3	3	45.6	16.304	147
>gi 337728903 emb CCC04023.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608];>	7	3	4	4	3	4	28.3	30.777	286
>gi 148531566 gb ABQ83565.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	8	6	3	6	4	4	45.4	30.851	282
>gi 148531897 gb ABQ83896.1 FAD-dependent pyridine nucleotide-disulfide oxidoreductase [Lactobacillus reuteri DSM 20016]	8	7	3	6	4	6	45.2	35.791	332
>gi 227185170 gb EEI65241.1 amidohydrolase [Lactobacillus reuteri CF48-3A];>	5	2	2	5	3	3	23.5	42.662	383
>gi 227070071 gb EEI08449.1 aldose 1-epimerase [Lactobacillus reuteri MM2-3];>	7	4	4	5	4	5	45.7	34.581	304
>gi 148532139 gb ABQ84138.1 protein of unknown function DUF1002 [Lactobacillus reuteri DSM 20016];>	8	2	4	3	3	6	20.7	35.908	333
>gi 148530739 gb ABQ82738.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016];>	5	4	3	4	4	4	16.2	47.242	438
>gi 148530367 gb ABQ82366.1 NADPH-dependent FMN reductase [Lactobacillus reuteri DSM 20016];>	7	5	1	4	3	6	27.4	45.674	416
>gi 227070907 gb EEI09230.1 possible Bis(5-nucleosyl)-tetraphosphatase (asymmetrical) [Lactobacillus reuteri MM2-3];>	3	1	3	1	2	2	23.2	19.718	168
>gi 148531449 gb ABQ83448.1 protein of unknown function DUF464 [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	1	28	11.705	107
>gi 148530526 gb ABQ82525.1 alanine racemase [Lactobacillus reuteri DSM 20016];>	3	2	2	2	1	1	11.5	41.162	375
>gi 148531531 gb ABQ83530.1 hypothetical protein Lreu_1273 [Lactobacillus reuteri DSM 20016];>	5	4	4	5	4	5	52.2	10.018	90
>gi 148531352 gb ABQ83351.1 N-acetylmuramoyl-L-alanine amidase, family 2 [Lactobacillus	3	0	1	3	3	2	10.8	44.687	399

reuteri DSM 20016];>									
>gi 148530885 gb ABQ82884.1 aminotransferase [Lactobacillus reuteri DSM 20016]	5	1	0	4	2	4	19.8	42.991	394
>gi 148530622 gb ABQ82621.1 CoA-binding domain protein [Lactobacillus reuteri DSM 20016];>	6	2	3	3	3	5	29.9	23.939	214
>gi 148531448 gb ABQ83447.1 LSU ribosomal protein L27P [Lactobacillus reuteri DSM 20016];>	5	5	4	4	4	4	50.5	9.9211	93
>gi 148531151 gb ABQ83150.1 1,4-Dihydroxy-2-naphthoate synthase [Lactobacillus reuteri DSM 20016];>	7	6	3	3	4	4	33.3	30.019	273
>gi 336448856 gb AEI57471.1 sensor histidine kinase [Lactobacillus reuteri SD2112];>	4	2	0	0	0	3	10.8	44.299	390
>gi 148531917 gb ABQ83916.1 lipoate-protein ligase [Lactobacillus reuteri DSM 20016];>	3	2	1	0	1	1	9.8	38.474	337
>gi 148531212 gb ABQ83211.1 protein of unknown function DUF21 [Lactobacillus reuteri DSM 20016];>	3	2	1	1	3	2	7.1	52.119	453
>gi 148531585 gb ABQ83584.1 ATPase AAA-2 domain protein [Lactobacillus reuteri DSM 20016];>	7	5	3	2	1	7	12.5	81.867	734
>gi 148530478 gb ABQ82477.1 hypothetical protein Lreu_0207 [Lactobacillus reuteri DSM 20016];>	5	2	1	2	1	4	21.9	36.908	319
>gi 337728714 emb CCC03829.1 succinate-semialdehyde dehydrogenase [Lactobacillus reuteri ATCC 53608]	4	1	3	0	0	1	12.3	50.52	457
>gi 148532165 gb ABQ84164.1 Amidohydrolase 3 [Lactobacillus reuteri DSM 20016]	2	1	1	0	1	0	8	57.42	522
>gi 148530913 gb ABQ82912.1 SSU ribosomal protein S20P [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	1	25	9.2436	84
>gi 183225401 dbj BAG25918.1 DNA-directed RNA polymerase beta subunit [Lactobacillus reuteri JCM 1112];>	10	4	0	6	3	9	11	135.36	1205
>gi 148530653 gb ABQ82652.1 Exinuclease ABC subunit B [Lactobacillus reuteri DSM 20016];>	5	3	2	5	1	0	12.9	79.421	690
>gi 148531404 gb ABQ83403.1 protein of unknown function DUF1535 [Lactobacillus reuteri DSM 20016];>	2	1	0	1	2	2	7.7	18.631	169
>gi 148530740 gb ABQ82739.1 cell shape determining protein, MreB/Mrl family [Lactobacillus reuteri DSM 20016];>	6	2	2	3	4	4	25.2	35.48	330
>gi 183225948 dbj BAG26464.1 amidophosphoribosyltransferase [Lactobacillus fermentum IFO 3956	3	3	3	3	3	2	9.2	53.518	487
>gi 130893136 gb ABO32595.1 D-lactate dehydrogenase [Lactobacillus reuteri];>	9	5	6	6	5	5	34.2	36.867	330
>gi 148531986 gb ABQ83985.1 dehydratase, medium subunit [Lactobacillus reuteri DSM 20016];>	5	3	2	2	3	3	27.1	25.808	236
>gi 148530742 gb ABQ82741.1 hypothetical protein Lreu_0473 [Lactobacillus reuteri DSM 20016];>	4	4	2	2	2	3	58.1	8.7648	74
>gi 148531145 gb ABQ83144.1 6,7-dimethyl-8-ribityllumazine synthase [Lactobacillus reuteri DSM 20016]	4	0	0	3	1	4	49.3	16.637	152
>gi 183224141 dbj BAG24658.1 tyrosyl-tRNA synthase [Lactobacillus reuteri JCM 1112];>	8	2	3	5	4	7	28.1	47.69	420
>gi 148530599 gb ABQ82598.1 DNA replication and repair protein RecR [Lactobacillus reuteri DSM 20016];>	7	3	5	1	6	4	39	22.089	200

>gi 183224612 dbj BAG25129.1 myo-inositol-1(or 4)-monophosphatase [Lactobacillus reuteri JCM 1112];>	6	3	3	4	4	4	36	28.91	261
>gi 148531752 gb ABQ83751.1 iron dependent repressor [Lactobacillus reuteri DSM 20016];>	6	5	3	2	2	3	47.8	25.242	224
>gi 148532003 gb ABQ84002.1 3-demethylubiquinone-9 3-methyltransferase [Lactobacillus reuteri DSM 20016];>	2	2	0	2	2	2	22.7	15.941	141
>gi 148531643 gb ABQ83642.1 conserved hypothetical protein 730 [Lactobacillus reuteri DSM 20016]	4	3	3	3	3	3	23.1	21.895	195
>gi 148532146 gb ABQ84145.1 hypothetical protein Lreu_1908 [Lactobacillus reuteri DSM 20016];>	3	2	2	1	1	1	17.4	18.28	161
>gi 148531438 gb ABQ83437.1 hemolysin A [Lactobacillus reuteri DSM 20016];>	4	3	2	1	4	3	15	30.273	273
>gi 148530817 gb ABQ82816.1 hypothetical protein Lreu_0548 [Lactobacillus reuteri DSM 20016];>	4	1	1	1	2	4	52.6	16.479	152
>gi 148531846 gb ABQ83845.1 tRNA/rRNA methyltransferase (SpoU) [Lactobacillus reuteri DSM 20016];>	6	4	2	3	3	1	32.8	31.804	290
>gi 227070920 gb EEI09243.1 possible phosphatase [Lactobacillus reuteri MM2-3];>	5	5	4	4	4	4	26.6	24.08	218
>gi 148530836 gb ABQ82835.1 arsenate reductase-like protein [Lactobacillus reuteri DSM 20016];>	4	2	0	1	0	4	29.3	15.539	133
>gi 183227318 dbj BAG27834.1 30S ribosomal protein S5 [Lactobacillus fermentum IFO 3956]	4	3	3	2	3	2	16.6	17.581	169
>gi 337728555 emb CCC03974.1 primosomal protein Dnal [Lactobacillus reuteri ATCC 53608]	2	2	1	1	2	2	7.3	35.819	313
>gi 183226170 dbj BAG26686.1 phosphoglucomutase [Lactobacillus fermentum IFO 3956]	6	5	5	6	4	4	8.9	63.671	574
>gi 148532108 gb ABQ84107.1 Methionine synthase, vitamin-B12 independent [Lactobacillus reuteri DSM 20016]	7	5	1	1	0	3	28.8	42.352	378
>gi 337728259 emb CCC03354.1 DNA-directed RNA polymerase alpha subunit [Lactobacillus reuteri ATCC 53608]	8	1	1	1	2	5	37.3	34.887	314
>gi 148531689 gb ABQ83688.1 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C [Lactobacillus reuteri DSM 20016]	4	3	1	2	2	1	51.4	11.572	105
>gi 148530799 gb ABQ82798.1 protein translocase subunit yajC [Lactobacillus reuteri DSM 20016];>	3	0	1	1	3	2	22.1	16.384	154
>gi 183227208 dbj BAG27724.1 ATP-dependent Clp protease ATP-binding subunit [Lactobacillus fermentum IFO 3956]	3	2	0	1	1	2	6.4	82.854	748
>gi 148531956 gb ABQ83955.1 precorrin-4 C11-methyltransferase [Lactobacillus reuteri DSM 20016];>	6	1	3	2	5	2	33.6	27.872	253
>gi 227071446 gb EEI09749.1 possible acetyltransferase [Lactobacillus reuteri MM2-3];>	5	5	4	2	3	3	53.8	12.089	104
>gi 148530788 gb ABQ82787.1 peptidase M16 domain protein [Lactobacillus reuteri DSM 20016];>	8	6	4	5	5	5	29.4	49.689	432
>gi 60172697 gb AAX14531.1 ABC-type cobalt transport system [Lactobacillus reuteri]	1	0	0	1	0	1	13.6	12.127	110
>gi 148531160 gb ABQ83159.1 protein of unknown function DUF59 [Lactobacillus reuteri DSM 20016]	3	3	3	2	3	3	28.2	12.081	110

	4	1	2	1	1	4	15.6	39.844	365
>gi 148530382 gb ABQ82381.1 GTP-binding protein YchF [Lactobacillus reuteri DSM 20016];>	4	1	2	1	1	4	15.6	39.844	365
>gi 148531350 gb ABQ83349.1 hypothetical protein Lreu_1092 [Lactobacillus reuteri DSM 20016];>	2	2	0	2	1	2	16.9	9.0102	77
>gi 148530400 gb ABQ82399.1 orotate phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	2	0	0	1	1	2	10.8	23.434	213
>gi 148530503 gb ABQ82502.1 UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Lactobacillus reuteri DSM 20016];>	12	8	8	5	5	3	45.2	45.676	425
>gi 194453840 gb EDX42737.1 conserved hypothetical protein [Lactobacillus reuteri 100-23];>	3	3	2	2	3	2	12.7	28.451	245
>gi 148530789 gb ABQ82788.1 Uncharacterized protein [Lactobacillus reuteri DSM 20016];>	3	1	3	1	1	2	11.6	38.296	345
>gi 148530810 gb ABQ82809.1 glutamate racemase [Lactobacillus reuteri DSM 20016];>	3	2	2	1	3	2	20.6	28.92	267
>gi 148531475 gb ABQ83474.1 phenylalanyl-tRNA synthetase beta subunit [Lactobacillus reuteri DSM 20016]	4	1	1	1	2	3	7.5	89.003	805
>gi 148532009 gb ABQ84008.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	2	1	2	2	1	1	15.6	17.199	154
>gi 148531712 gb ABQ83711.1 LSU ribosomal protein L30P [Lactobacillus reuteri DSM 20016];>	3	2	2	2	1	2	58.3	6.5566	60
>gi 148531706 gb ABQ83705.1 SSU ribosomal protein S13P [Lactobacillus reuteri DSM 20016];>	5	4	2	5	2	4	38	13.687	121
>gi 183225952 gb BAG26468.1 phosphoribosylamine-glycine ligase [Lactobacillus fermentum IFO 3956];>	2	1	1	1	2	1	4.3	45.159	417
>gi 148530853 gb ABQ82852.1 S-adenosyl-methyltransferase MraW [Lactobacillus reuteri DSM 20016]	1	1	0	0	0	1	6	35.666	318
>gi 148530901 gb ABQ82900.1 protein of unknown function UPF0223 [Lactobacillus reuteri DSM 20016];>	3	2	2	2	3	3	23.5	11.867	102
>gi 148530553 gb ABQ82552.1 aspartate racemase [Lactobacillus reuteri DSM 20016];>	8	2	1	0	8	0	53	26.763	236
>gi 148530906 gb ABQ82905.1 putative methyltransferase [Lactobacillus reuteri DSM 20016];>	5	3	0	2	2	4	28.3	20.85	187
>gi 183227331 gb BAG27847.1 30S ribosomal protein S19 [Lactobacillus fermentum IFO 3956];>	3	3	2	3	2	2	34.4	10.489	93
>gi 148530907 gb ABQ82906.1 Phosphopantetheine adenylyltransferase [Lactobacillus reuteri DSM 20016];>	5	5	5	5	4	3	27.2	19.361	173
>gi 148530479 gb ABQ82478.1 Silent information regulator protein Sir2 [Lactobacillus reuteri DSM 20016];>	8	5	3	4	3	5	47	26.454	232
>gi 148531951 gb ABQ83950.1 anaerobic cobaltochelatase [Lactobacillus reuteri DSM 20016];>	4	1	3	0	2	3	17	29.176	259
>gi 148531918 gb ABQ83917.1 UspA domain protein [Lactobacillus reuteri DSM 20016];>	3	1	3	2	2	1	18.7	17.168	155
>gi 148531910 gb ABQ83909.1 Alcohol dehydrogenase GroES domain protein [Lactobacillus reuteri DSM 20016]	4	3	2	3	3	3	32.9	34.921	328
>gi 148530411 gb ABQ82410.1 phosphoribosylformylglycinamidine synthase, purS [Lactobacillus reuteri DSM 20016];>	2	1	0	2	0	0	32.9	9.3323	82
>gi 148531126 gb ABQ83125.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	2	2	2	2	19.2	20.109	177
>gi 148531274 gb ABQ83273.1 Hydroxyethylthiazole kinase [Lactobacillus reuteri DSM 20016];>	3	2	2	3	3	2	18.2	29.028	269

>gi 227185635 gb EEI65706.1 protein of hypothetical function DUF322 [Lactobacillus reuteri CF48-3A];>	3	3	2	3	3	3	10.7	13.014	122
>gi 183225127 dbj BAG25644.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	5	1	4	3	5	24.7	40.161	352
>gi 112944062 gb ABI26332.1 phosphoglycerate mutase [Lactobacillus reuteri];>	4	2	3	4	4	4	20.6	24.692	218
>gi 227070057 gb EEI08435.1 tetratricopeptide repeat family protein [Lactobacillus reuteri MM2-3];>	7	3	1	4	4	5	26	50.211	434
>gi 148531988 gb ABQ83987.1 microcompartments protein [Lactobacillus reuteri DSM 20016];>	4	0	3	1	0	1	32.4	24.945	238
>gi 148530346 gb ABQ82345.1 hypothetical protein Lreu_0070 [Lactobacillus reuteri DSM 20016];>	2	2	0	1	1	0	12.3	29.491	261
>gi 148531170 gb ABQ83169.1 LrgB family protein [Lactobacillus reuteri DSM 20016];>	3	1	2	2	3	2	20.3	26.306	246
>gi 148530942 gb ABQ82941.1 hydroxymethylglutaryl-CoA synthase [Lactobacillus reuteri DSM 20016]	6	4	3	4	3	5	19.2	42.757	385
>gi 148530993 gb ABQ82992.1 SSU ribosomal protein S21P [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	30.2	7.7178	63
>gi 148530848 gb ABQ82847.1 RNA methyltransferase, TrmH family, group 2 [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	17.2	19.557	169
>gi 227070559 gb EEI08890.1 possible gamma-glutamyl-gamma-aminobutyrate hydrolase [Lactobacillus reuteri MM2-3];>	1	1	0	1	1	1	7.3	27.281	247
>gi 148530473 gb ABQ82472.1 nucleoside diphosphate kinase [Lactobacillus reuteri DSM 20016];>	5	1	3	3	3	2	40.1	16.772	147
>gi 148531727 gb ABQ83726.1 LSU ribosomal protein L2P [Lactobacillus reuteri DSM 20016]	6	2	2	2	4	2	27.8	30.47	281
>gi 148530818 gb ABQ82817.1 Xaa-Pro aminopeptidase, Metallo peptidase, MEROPS family M24B [Lactobacillus reuteri DSM 20016]	7	4	3	5	5	2	32	40.615	369
>gi 148530567 gb ABQ82566.1 amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	3	3	0	0	1	0	12.9	28.516	263
>gi 148531875 gb ABQ83874.1 phage shock protein C, PspC [Lactobacillus reuteri DSM 20016];>	2	2	0	1	2	2	18.1	9.3228	83
>gi 227185529 gb EEI65600.1 translation factor SUA5 [Lactobacillus reuteri CF48-3A];>	2	0	1	1	2	1	7.9	38.904	354
>gi 227070164 gb EEI08539.1 protein of hypothetical function DUF896 [Lactobacillus reuteri MM2-3];>	5	2	1	2	4	2	61.6	10.422	86
>gi 148531439 gb ABQ83438.1 farnesyl-diphosphate synthase [Lactobacillus reuteri DSM 20016];>	4	2	2	3	2	3	26.2	31.64	290
>gi 194453403 gb EDX42300.1 molybdenum cofactor synthesis domain protein [Lactobacillus reuteri 100-23];>	4	3	2	1	2	3	14.3	44.908	405
>gi 148530805 gb ABQ82804.1 protein of unknown function DUF1292 [Lactobacillus reuteri DSM 20016];>	2	1	1	0	1	1	33.7	11.401	98
>gi 194453194 gb EDX42092.1 glutamate racemase [Lactobacillus reuteri 100-23];>	3	2	1	0	3	1	24.7	29	267
>gi 148531492 gb ABQ83491.1 metal dependent phosphohydrolase [Lactobacillus reuteri DSM 20016];>	2	0	2	0	0	0	13.2	23.131	204

>gi 148531008 gb ABQ83007.1 RNA polymerase, sigma 70 subunit, RpoD [Lactobacillus reuteri DSM 20016];>	6	4	1	2	2	4	18.9	43.385	380
>gi 148530597 gb ABQ82596.1 DNA polymerase III, subunits gamma and tau [Lactobacillus reuteri DSM 20016];>	3	2	0	0	1	0	7.9	68.85	611
>gi 148530416 gb ABQ82415.1 formyltetrahydrofolate-dependent phosphoribosylglycinamide formyltransferase [Lactobacillus reuteri DSM 20016];>	4	1	3	0	2	0	34.7	21.163	190
>gi 148530327 gb ABQ82326.1 Recombination helicase AddA [Lactobacillus reuteri DSM 20016];>	4	0	0	0	2	4	5.2	159.71	1392
>gi 148530604 gb ABQ82603.1 protein of unknown function DUF972 [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	12.9	13.587	116
>gi 148531497 gb ABQ83496.1 LSU ribosomal protein L20P [Lactobacillus reuteri DSM 20016];> r	4	4	4	4	4	4	27.4	13.515	117
>gi 148530839 gb ABQ82838.1 dipeptidase A, Cysteine peptidase, MEROPS family C69 [Lactobacillus reuteri DSM 20016];>	2	1	2	2	2	2	6.1	51.591	458
>gi 148530511 gb ABQ82510.1 protein tyrosine phosphatase [Lactobacillus reuteri DSM 20016];>	2	2	2	1	0	1	23.4	17.398	154
>gi 148532023 gb ABQ84022.1 hypothetical protein Lreu_1783 [Lactobacillus reuteri DSM 20016];>	3	0	1	3	3	3	11.5	43.26	373
>gi 227185295 gb EEI65366.1 hypothetical extracellular protein [Lactobacillus reuteri CF48-3A];>	1	1	0	1	0	1	4.5	26.125	247
>gi 148531416 gb ABQ83415.1 condensin subunit Smc [Lactobacillus reuteri DSM 20016];>	2	0	0	1	1	2	2.7	135.2	1187
>gi 148531410 gb ABQ83409.1 16S rRNA processing protein RimM [Lactobacillus reuteri DSM 20016	5	3	3	3	3	3	32.1	19.219	168
>gi 148531623 gb ABQ83622.1 hypothetical protein Lreu_1373 [Lactobacillus reuteri DSM 20016];>	2	0	0	0	2	0	7.8	46.111	398
>gi 148531785 gb ABQ83784.1 hypothetical protein Lreu_1539 [Lactobacillus reuteri DSM 20016	3	2	2	1	2	0	21.9	16.827	146
>gi 148531533 gb ABQ83532.1 Dihydropteroate synthase [Lactobacillus reuteri DSM 20016	5	0	1	1	4	2	19.4	43.584	387
>gi 227071502 gb EEI09802.1 cyanide hydratase [Lactobacillus reuteri MM2-3];>	1	1	0	0	0	1	6	30.185	266
>gi 130893190 gb ABO32597.1 ATP-dependent Clp protease ATP-binding subunit ClpC [Lactobacillus reuteri];>	5	0	2	3	1	2	6.1	92.89	830
>gi 183224980 gb BAG25497.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	1	1	1	0	1	5.2	22.333	194
>gi 148531472 gb ABQ83471.1 transcription elongation factor GreA [Lactobacillus reuteri DSM 20016];>	4	1	3	2	2	4	35.4	18.019	158
>gi 148531003 gb ABQ83002.1 GTP-binding protein Era [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	7	33.79	301
>gi 148530525 gb ABQ82524.1 holo-acyl-carrier-protein synthase [Lactobacillus reuteri DSM 20016	3	1	1	2	1	2	56.7	13.167	120
>gi 148531035 gb ABQ83034.1 dihydrofolate reductase [Lactobacillus reuteri DSM 20016];>	2	1	2	2	1	2	13.6	18.66	162
>gi 194453686 gb EDX42583.1 ATP-cone domain protein [Lactobacillus reuteri 100-23];>	2	1	0	0	0	1	13.5	18.122	155

>gi 183225937 dbj BAG26453.1 formate-tetrahydrofolate ligase [Lactobacillus fermentum IFO 3956];>	2	2	2	1	2	1	2.5	59.287	553
>gi 148531450 gb ABQ83449.1 LSU ribosomal protein L21P [Lactobacillus reuteri DSM 20016];>	2	1	1	1	0	0	26.5	11.256	102
>gi 148531622 gb ABQ83621.1 lipopolysaccharide biosynthesis protein [Lactobacillus reuteri DSM 20016];>	3	1	2	2	1	2	18.2	22.766	209
>gi 148530899 gb ABQ82898.1 Dihydrolipoyllysine-residue succinyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	0	1	0	1	5.2	48.372	444
>gi 148531272 gb ABQ83271.1 hypothetical protein Lreu_1011 [Lactobacillus reuteri DSM 20016];>	2	1	1	0	2	0	4.5	72.576	629
>gi 148531138 gb ABQ83137.1 type I site-specific deoxyribonuclease, HsdR family [Lactobacillus reuteri DSM 20016]	2	1	1	1	1	1	2.6	118.77	1041
>gi 148531407 gb ABQ83406.1 LSU ribosomal protein L19P [Lactobacillus reuteri DSM 20016];>	6	3	5	4	5	4	33.6	14.824	128
>gi 148531298 gb ABQ83297.1 hypothetical protein Lreu_1037 [Lactobacillus reuteri DSM 20016]	2	0	2	0	1	1	5.2	69.932	630
>gi 227186326 gb EEI66397.1 conserved hypothetical protein [Lactobacillus reuteri CF48-3A];>	2	1	1	1	1	1	78.9	4.2448	38
>gi 148530286 gb ABQ82285.1 SSU ribosomal protein S18P [Lactobacillus reuteri DSM 20016];>	5	3	4	3	3	4	39.7	9.1536	78
>gi 148530720 gb ABQ82719.1 thymidine kinase [Lactobacillus reuteri DSM 20016]	1	0	1	0	0	1	7.9	22.171	191
>gi 148530635 gb ABQ82634.1 protein translocase subunit secA [Lactobacillus reuteri DSM 20016];>	5	3	4	3	2	2	5.1	90.351	787
>gi 148531876 gb ABQ83875.1 hypothetical protein Lreu_1635 [Lactobacillus reuteri DSM 20016]	2	1	2	0	2	0	14.7	31.711	279
>gi 148530347 gb ABQ82346.1 Uracil phosphoribosyltransferase [Lactobacillus reuteri DSM 20016];>	4	2	2	2	1	3	25.1	20.252	179
>gi 183224052 dbj BAG24569.1 beta-phosphoglucomutase [Lactobacillus reuteri JCM 1112];>	5	3	2	0	0	1	35.6	24.587	225
>gi 148531763 gb ABQ83762.1 hypothetical protein Lreu_1517 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	2	19.1	13.119	115
>gi 148531954 gb ABQ83953.1 precorrin-3 methyltransferase [Lactobacillus reuteri DSM 20016];>	5	2	3	2	3	4	19.9	26.233	241
>gi 148532142 gb ABQ84141.1 Hydratase/decarboxylase [Lactobacillus reuteri DSM 20016];>	2	1	0	0	2	1	11.1	29.863	270
>gi 148530374 gb ABQ82373.1 Na ⁺ dependent nucleoside transporter domain protein [Lactobacillus reuteri DSM 20016];>	3	0	2	2	1	2	8.2	44.04	403
>gi 183224607 dbj BAG25124.1 pyruvate dehydrogenase complex E1 component alpha subunit [Lactobacillus reuteri JCM 1112];>	3	3	3	2	1	1	15.4	41.361	371
>gi 148530966 gb ABQ82965.1 ribosome-binding factor A [Lactobacillus reuteri DSM 20016];>	2	2	2	2	1	2	19.3	13.412	119
>gi 148531512 gb ABQ83511.1 L-glutaminase [Lactobacillus reuteri DSM 20016];>	3	2	1	2	1	2	12.4	33.392	306
>gi 227070371 gb EEI08733.1 diaminohydroxypyrophoribosylaminopyrimidine deaminase / 5-amino-6-(5-phosphoribosylamino)uracil reductase [Lactobacillus reuteri MM2-3];>	3	1	3	1	0	0	11	39.658	355
>gi 148531144 gb ABQ83143.1 GTP cyclohydrolase II [Lactobacillus reuteri DSM 20016];>	4	2	1	1	1	3	16	43.927	393
>gi 112943293 gb ABI26303.1 pyruvate/2-oxoglutarate dehydrogenase complex	4	4	2	1	2	1	11.6	50.725	475

dihydrolipoamide dehydrogenase (E3) component [Lactobacillus reuteri								
>gi 148531413 gb ABQ83412.1 signal recognition particle subunit FFH/SRP54 (srp54) [Lactobacillus reuteri DSM 20016];>	5	4	2	2	1	0	10.2	54.114 481
>gi 148531292 gb ABQ83291.1 SMC domain protein [Lactobacillus reuteri DSM 20016];>	2	2	0	1	0	1	3.2	118.56 1033
>gi 227071080 gb EEI09398.1 metallo-beta-lactamase [Lactobacillus reuteri MM2-3];>	3	1	3	2	2	2	3.8	70.828 628
>gi 148531719 gb ABQ83718.1 LSU ribosomal protein L24P [Lactobacillus reuteri DSM 20016];>	2	2	1	1	1	2	10.8	10.975 102
>gi 227070756 gb EEI09083.1 ABC superfamily ATP binding cassette transporter, ABC/membrane protein [Lactobacillus reuteri MM2-3	1	1	0	1	0	0	1.7	72.445 666
>gi 148530633 gb ABQ82632.1 amidophosphoribosyltransferase-like protein [Lactobacillus reuteri DSM 20016];>	2	2	2	1	2	2	3.5	26.055 226
>gi 183225571 dbj BAG26088.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	6	4	1	1	3	3	28.1	27.624 249
>gi 183224651 dbj BAG25168.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	4	3	3	3	3	56	8.6646 75
>gi 148530351 gb ABQ82350.1 peptidase C26 [Lactobacillus reuteri DSM 20016];>	2	1	1	1	2	1	20.9	26.977 244
>gi 148531602 gb ABQ83601.1 bacterial peptide chain release factor 3 (bRF-3) [Lactobacillus reuteri DSM 20016	3	2	2	1	2	2	5.9	59.477 525
>gi 148532084 gb ABQ84083.1 ErfK/YbiS/YcfS/YnhG family protein [Lactobacillus reuteri DSM 20016];>	1	1	1	0	1	1	6.4	24.726 218
>gi 189485784 gb AAU08014.2 inactive glucansucrase [Lactobacillus reuteri];>	1	0	0	1	1	0	0.6	179.41 1619
>gi 148531187 gb ABQ83186.1 NrdI family protein [Lactobacillus reuteri DSM 20016	2	0	0	0	2	2	17.1	18.082 158
>gi 148530779 gb ABQ82778.1 FolC bifunctional protein [Lactobacillus reuteri DSM 20016	2	0	1	0	2	0	8.9	47.999 437
>gi 119390607 pdb 2NT8 A Chain A, Atp Bound At The Active Site Of A Pduo Type Atp:co(I) Rrinoid Adenosyltransferase From Lactobacillus Reuteri;>	3	2	3	1	2	2	13.5	25.598 223
>gi 227070045 gb EEI08423.1 possible reductase [Lactobacillus reuteri MM2-3];>	1	1	1	1	1	1	8	14.924 125
>gi 227185113 gb EEI65184.1 conserved hypothetical protein [Lactobacillus reuteri CF48-3A];>	3	2	3	1	1	2	38.8	8.7612 80
>gi 148530703 gb ABQ82702.1 hypothetical protein Lreu_0433 [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	1	22.9	12.718 109
>gi 148531183 gb ABQ83182.1 penicillin-binding protein, 1A family [Lactobacillus reuteri DSM 20016	4	2	0	1	0	1	6.2	82.075 754
>gi 6707064 gb AAF25576.1 AF120104_1 mucus binding protein precursor [Lactobacillus reuteri ATCC 53608	2	2	0	0	0	0	7.8	357.95 3269
>gi 148530566 gb ABQ82565.1 amino acid ABC transporter ATP-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	1	1	0	0	0	1	6	27.538 249
>gi 227186386 gb EEI66457.1 ArsR family transcriptional regulator [Lactobacillus reuteri CF48-3A];>	4	4	3	1	3	2	22.6	12.411 106
>gi 148530664 gb ABQ82663.1 RNase R [Lactobacillus reuteri DSM 20016];>	3	1	0	0	0	3	4.6	91.867 801

>gi 148531240 gb ABQ83239.1 Alpha/beta hydrolase fold-3 domain protein [Lactobacillus reuteri DSM 20016];>	4	4	3	2	4	2	16	34.992	312
>gi 148531644 gb ABQ83643.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016];>	3	1	1	2	1	3	20.8	33.353	307
>gi 148530504 gb ABQ82503.1 LSU ribosomal protein L31P [Lactobacillus reuteri DSM 20016];>	1	1	1	1	0	1	17.3	9.123	81
>gi 148531537 gb ABQ83536.1 2-amino-4-hydroxy-6-hydroxymethylidihydropteridine pyrophosphokinase [Lactobacillus reuteri DSM 20016]	4	0	2	1	3	3	28.2	19.815	170
>gi 183225679 dbj BAG26196.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112]	2	0	0	0	1	1	12.9	18.055	170
>gi 183224626 dbj BAG25143.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	4	1	0	0	1	3	22.4	35.43	304
>gi 148530719 gb ABQ82718.1 domain of unknown function DUF1727 [Lactobacillus reuteri DSM 20016];>	2	2	1	2	2	2	5.6	50.191	445
>gi 148530512 gb ABQ82511.1 LemA family protein [Lactobacillus reuteri DSM 20016]	4	1	1	1	3	2	22.2	21.33	189
>gi 194454712 gb EDX43609.1 Septum formation initiator [Lactobacillus reuteri 100-23];>	2	1	1	0	0	2	19.5	14.007	118
>gi 183225630 dbj BAG26147.1 propanediol dehydratase reactivation protein PduH [Lactobacillus reuteri JCM 1112];>	4	2	2	2	2	3	34.6	14.213	127
>gi 183224761 dbj BAG25278.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	0	0	1	0	0	4.9	21.003	184
>gi 183225866 dbj BAG26382.1 pyrimidine operon regulator [Lactobacillus fermentum IFO 3956];>	3	1	1	2	0	2	19	20.167	179
>gi 148531324 gb ABQ83323.1 4-oxalocrotonate tautomerase [Lactobacillus reuteri DSM 20016];>	3	3	2	2	2	2	47.5	6.8159	61
>gi 148531498 gb ABQ83497.1 LSU ribosomal protein L35P [Lactobacillus reuteri DSM 20016];>	2	2	2	2	2	2	32.3	7.615	65
>gi 194453567 gb EDX42464.1 hypothetical protein Lreu23DRAFT_3980 [Lactobacillus reuteri 100-23];>	1	1	0	1	1	1	1.1	96.477	880
>gi 148530282 gb ABQ82281.1 DNA gyrase subunit B [Lactobacillus reuteri DSM 20016];>	3	2	0	0	2	2	4.6	72.528	649
>gi 148530732 gb ABQ82731.1 ATP synthase F0 subcomplex B subunit [Lactobacillus reuteri DSM 20016]	4	0	1	2	3	1	18	19.254	172
>gi 148530621 gb ABQ82620.1 ABC transporter related [Lactobacillus reuteri DSM 20016];>	2	0	1	1	0	0	5.3	73.56	645
>gi 148532010 gb ABQ84009.1 transcriptional regulator, AsnC family [Lactobacillus reuteri DSM 20016];>	3	1	2	2	1	1	22.4	17.758	156
>gi 148530673 gb ABQ82672.1 UDP-N-acetylmuramate dehydrogenase [Lactobacillus reuteri DSM 20016];>	2	0	0	1	0	2	12.8	32.389	298
>gi 194454703 gb EDX43600.1 alanine racemase [Lactobacillus reuteri 100-23];>	2	1	1	0	0	1	8.3	41.257	375
>gi 148530894 gb ABQ82893.1 protein of unknown function DUF1447 [Lactobacillus reuteri DSM 20016];>	3	2	1	2	3	2	21.4	8.3122	70
>gi 227184517 gb EEI64588.1 possible acetolactate decarboxylase [Lactobacillus reuteri CF48-3A];>	3	3	2	2	2	2	9.3	27.057	246

>gi 148530982 gb ABQ82981.1 hypothetical protein Lreu_0717 [Lactobacillus reuteri DSM 20016];>	2	1	1	2	2	2	22.3	13.889	112
>gi 227071855 gb EEI10143.1 penicillin-binding protein [Lactobacillus reuteri MM2-3];>	4	2	2	1	1	2	5.4	76.108	699
>gi 148531436 gb ABQ83435.1 DNA replication and repair protein RecN [Lactobacillus reuteri DSM 20016];>	2	1	2	2	0	0	4.5	62.895	559
>gi 148530684 gb ABQ82683.1 Cof-like hydrolase [Lactobacillus reuteri DSM 20016];>	2	2	1	0	1	1	7.8	30.206	268
>gi 148532149 gb ABQ84148.1 aminotransferase, class I and II [Lactobacillus reuteri DSM 20016];>	3	1	1	1	2	1	13.2	43.732	386
>gi 148531784 gb ABQ83783.1 aldose 1-epimerase [Lactobacillus reuteri DSM 20016]	2	1	2	0	1	0	14.2	37.927	345
>gi 148530636 gb ABQ82635.1 bacterial peptide chain release factor 2 (bRF-2) [Lactobacillus reuteri DSM 20016]	3	2	1	2	1	1	15.4	37.463	332
>gi 148531007 gb ABQ83006.1 DNA primase [Lactobacillus reuteri DSM 20016]	3	0	0	0	3	0	4.5	71.586	621
>gi 227070716 gb EEI09044.1 NAD-dependent epimerase/dehydratase [Lactobacillus reuteri MM2-3];>	2	2	0	0	1	0	11.2	27.234	242
>gi 148531462 gb ABQ83461.1 hypothetical protein Lreu_1204 [Lactobacillus reuteri DSM 20016]	2	1	0	2	0	1	31	6.3153	58
>gi 183227545 dbj BAG28061.1 ribose 5-phosphate isomerase [Lactobacillus fermentum IFO 3956];>	2	1	0	0	0	2	12.4	24.932	226
>gi 133930415 gb ABO43779.1 L-lactate dehydrogenase [Lactobacillus reuteri];>	5	1	1	2	3	3	16.3	33.427	312
>gi 227070037 gb EEI08415.1 S-adenosyl-L-methionine-dependent methyltransferase [Lactobacillus reuteri MM2-3];>	1	1	1	1	1	0	5.5	26.69	238
>gi 148531530 gb ABQ83529.1 malate dehydrogenase (NAD) [Lactobacillus reuteri DSM 20016]	5	1	1	1	4	2	14.7	33.353	312
>gi 148531744 gb ABQ83743.1 Deoxyadenosine kinase [Lactobacillus reuteri DSM 20016]	1	0	1	1	1	1	4.7	24.647	213
>gi 148530796 gb ABQ82795.1 Holliday junction DNA helicase subunit RuvA [Lactobacillus reuteri DSM 20016];>	2	0	0	0	2	0	18.1	22.298	199
>gi 148531529 gb ABQ83528.1 phosphomethylpyrimidine kinase [Lactobacillus reuteri DSM 20016];>	3	3	1	1	0	2	15.9	29.317	271
>gi 183226376 dbj BAG26892.1 conserved hypothetical protein [Lactobacillus fermentum IFO 3956];>	2	0	1	0	0	1	18.7	15.706	134
>gi 148531904 gb ABQ83903.1 hypothetical protein Lreu_1664 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	8	12.648	113
>gi 148532031 gb ABQ84030.1 Homoserine O-succinyltransferase [Lactobacillus reuteri DSM 20016];>	2	1	1	0	1	1	11.6	32.139	275
>gi 183227422 dbj BAG27938.1 aspartate-ammonia ligase [Lactobacillus fermentum IFO 3956];>	3	0	0	2	2	2	8.6	38.795	336
>gi 183226154 dbj BAG26670.1 peptide chain release factor 2 [Lactobacillus fermentum IFO 3956];>	2	2	2	2	2	1	7	39.961	355
>gi 183225888 dbj BAG26404.1 tyrosyl-tRNA synthase [Lactobacillus fermentum IFO 3956];>	2	0	1	1	0	2	5.5	46.933	417
>gi 183224304 dbj BAG24821.1 hypothetical protein [Lactobacillus reuteri JCM 1112];>	3	2	1	1	1	0	27.1	11.379	96

>gi 227070646 gb EEI08976.1 SPOUT methyltransferase superfamily protein [Lactobacillus reuteri MM2-3];>	2	1	2	2	2	2	10.4	19.733	173
>gi 337729425 emb CCC04555.1 conserved hypothetical protein [Lactobacillus reuteri ATCC 53608];>	2	1	1	1	1	2	9.4	26.142	223
>gi 227070121 gb EEI08497.1 possible malate dehydrogenase [Lactobacillus reuteri MM2-3];>	3	3	1	1	2	3	8.1	39.19	360
>gi 148530588 gb ABQ82587.1 large conductance mechanosensitive channel protein [Lactobacillus reuteri DSM 20016];>	3	2	2	1	1	1	21.1	13.773	123
>gi 183225058 dbj BAG25575.1 phage major head protein [Lactobacillus reuteri JCM 1112];>	1	1	0	0	1	0	3.8	43.887	394
>gi 183225285 dbj BAG25802.1 muramidase [Lactobacillus reuteri JCM 1112];>	4	2	2	3	3	3	14	55.89	492
>gi 148530863 gb ABQ82862.1 protein of unknown function YGGT [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	8.1	9.7797	86
>gi 148531635 gb ABQ83634.1 methionine aminopeptidase, type I [Lactobacillus reuteri DSM 20016];>	2	0	1	0	1	0	7	31.665	285
>gi 148531335 gb ABQ83334.1 SSU ribosomal protein S14P [Lactobacillus reuteri DSM 20016];>	3	3	1	2	2	2	32.6	10.399	89
>gi 183224586 dbj BAG25103.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	3	1	1	0	0	1	12.6	26.479	230
>gi 112944038 gb AB26331.1 folylpolyglutamate synthase [Lactobacillus reuteri];>	2	0	1	0	2	0	8.5	48.081	437
>gi 337728982 emb CCC04102.1 glucose-inhibited division protein B [Lactobacillus reuteri ATCC 53608];>	2	1	0	1	2	1	16.6	26.683	241
>gi 227185796 gb EEI65867.1 rod shape-determining protein MreC [Lactobacillus reuteri CF48-3A];>	1	1	1	0	0	1	4.1	31.961	291
>gi 148531188 gb ABQ83187.1 putative RNA methylase [Lactobacillus reuteri DSM 20016];>	1	1	1	1	0	0	5	44.845	398
>gi 183224889 dbj BAG25406.1 flavodoxin [Lactobacillus reuteri JCM 1112];>	2	1	0	0	1	2	10.5	19.402	172
>gi 148532090 gb ABQ84089.1 hypothetical protein Lreu_1851 [Lactobacillus reuteri DSM 20016];>	1	1	1	1	0	1	26.2	7.0627	61
>gi 148530594 gb ABQ82593.1 ribonucleoside-diphosphate reductase class Ib alpha subunit [Lactobacillus reuteri DSM 20016];>	3	1	1	0	1	1	7.7	82.738	723
>gi 183227462 dbj BAG27978.1 cation-transporting ATPase [Lactobacillus fermentum IFO 3956];>	3	1	0	1	1	1	3	100.37	921
>gi 148531079 gb ABQ83078.1 hypothetical protein Lreu_0815 [Lactobacillus reuteri DSM 20016];>	1	1	0	1	0	0	9.8	14.305	123
>gi 148530393 gb ABQ82392.1 branched-chain amino acid transport [Lactobacillus reuteri DSM 20016];>	1	1	0	1	0	1	8.8	12.954	114
>gi 148531487 gb ABQ83486.1 LSU ribosomal protein L32P [Lactobacillus reuteri DSM 20016];>	1	1	1	0	0	0	23.7	6.5727	59
>gi 148531751 gb ABQ83750.1 cold-shock DNA-binding protein family [Lactobacillus reuteri DSM 20016];>	1	1	0	1	0	1	19.7	7.3269	66
>gi 148531427 gb ABQ83426.1 protein kinase [Lactobacillus reuteri DSM 20016];>	3	2	3	2	2	2	7.1	70.819	634
>gi 183225432 dbj BAG25949.1 conserved hypothetical protein [Lactobacillus reuteri JCM 1112];>	1	1	0	1	1	1	2.9	35.145	313
>gi 148531205 gb ABQ83204.1 2,5-didehydrogluconate reductase [Lactobacillus reuteri DSM 20016];>	3	0	2	0	1	0	12.7	34.433	300

>gi 227071659 gb EEI09952.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3]	2	0	1	0	0	2	10.4	19.844	173
>gi 148530914 gb ABQ82913.1 SSU ribosomal protein S15P [Lactobacillus reuteri DSM 20016]	1	1	1	1	1	1	7.9	10.416	89
>gi 227070978 gb EEI09301.1 cobalt-precorrin-2 C(20)-methyltransferase [Lactobacillus reuteri MM2-3]	1	0	1	0	1	1	6.7	26.806	240
>gi 148531465 gb ABQ83464.1 protein of unknown function DUF910 [Lactobacillus reuteri DSM 20016]	1	1	0	1	0	0	12.7	9.4478	79
>gi 336448118 gb AEI56733.1 P4 family prophage LambdaSa04 protein [Lactobacillus reuteri SD2112]	2	1	1	1	1	2	1.7	85.238	751
>gi 183226040 gb BAG26556.1 hypoxanthine-guanine phosphoribosyltransferase [Lactobacillus fermentum IFO 3956];>	2	0	1	2	1	1	9.3	20.442	182
>gi 183226928 gb BAG27444.1 chorismate synthase [Lactobacillus fermentum IFO 3956];>	3	2	1	1	2	1	7.5	41.636	388
>gi 148532169 gb ABQ84168.1 ATP-grasp protein-like protein [Lactobacillus reuteri DSM 20016];>	2	1	2	1	1	0	6.8	48.604	414
>gi 148531424 gb ABQ83423.1 thiamine diphosphokinase [Lactobacillus reuteri DSM 20016];>	1	0	0	0	1	1	8.3	24.536	216
>gi 148531267 gb ABQ83266.1 hypothetical protein Lreu_1006 [Lactobacillus reuteri DSM 20016];>	2	2	0	0	1	0	14.7	16.149	143
>gi 148531174 gb ABQ83173.1 protein of unknown function DUF1440 [Lactobacillus reuteri DSM 20016]	1	1	0	1	1	1	7.2	18.375	166
>gi 148530686 gb ABQ82685.1 two component transcriptional regulator, winged helix family [Lactobacillus reuteri DSM 20016];>	2	1	1	1	1	2	11.7	27.76	239
>gi 148531107 gb ABQ83106.1 hypothetical protein Lreu_0843 [Lactobacillus reuteri DSM 20016];>	1	1	1	0	0	0	4.2	23.788	215
>gi 148531647 gb ABQ83646.1 GCN5-related N-acetyltransferase [Lactobacillus reuteri DSM 20016];>	3	2	3	2	2	1	21.9	17.195	151
>gi 148531071 gb ABQ83070.1 transcriptional regulator, XRE family [Lactobacillus reuteri DSM 20016];>	3	0	2	2	1	2	28	9.7862	82
>gi 227070084 gb EEI08461.1 metal-dependent hydrolase [Lactobacillus reuteri MM2-3];>	2	2	1	1	1	1	10	18.134	160
>gi 148531021 gb ABQ83020.1 condensin subunit ScpB [Lactobacillus reuteri DSM 20016];>	2	0	0	0	0	2	11.4	22.54	201
>gi 148531173 gb ABQ83172.1 glycoside hydrolase, clan GH-D [Lactobacillus reuteri DSM 20016];>	2	1	1	0	0	0	2.7	84.003	729
>gi 148530329 gb ABQ82328.1 acetyl-CoA acetyltransferase [Lactobacillus reuteri DSM 20016];>	4	2	3	0	0	2	14.3	41.055	392
>gi 183224876 gb BAG25393.1 carbamoyl-phosphate synthase large subunit [Lactobacillus reuteri JCM 1112];>	2	0	0	0	2	1	3.3	92.789	825
>gi 148532172 gb ABQ84171.1 glucose inhibited division protein A [Lactobacillus reuteri DSM 20016];>	2	1	0	0	0	2	4	71.918	647
>gi 148531678 gb ABQ83677.1 isochorismatase hydrolase [Lactobacillus reuteri DSM 20016];>	4	0	1	1	0	2	18.9	19.239	164
>gi 227070750 gb EEI09077.1 conserved hypothetical protein [Lactobacillus reuteri MM2-3];>	3	0	0	1	1	1	14.9	25.173	221

>gi 148530499 gb ABQ82498.1 Domain of unknown function DUF1934 [Lactobacillus reuteri DSM 20016];>	2	0	2	0	0	1	18.2	15.33	132
>gi 148530487 gb ABQ82486.1 periplasmic solute binding protein [Lactobacillus reuteri DSM 20016];>	2	2	1	0	0	0	7.3	34.078	303
>gi 148532114 gb ABQ84113.1 transcriptional regulator, HxlR family [Lactobacillus reuteri DSM 20016];>	3	3	2	1	0	2	17.2	14.22	122
>gi 183227079 dbj BAG27595.1 hemolysin [Lactobacillus fermentum IFO 3956];>	2	1	1	1	1	2	4.1	29.737	271
>gi 227185320 gb EEI65391.1 2-dehydropantoate 2-reductase [Lactobacillus reuteri CF48-3A];>	1	1	0	1	1	1	3.2	35.797	315
>gi 148530753 gb ABQ82752.1 aldo/keto reductase [Lactobacillus reuteri DSM 20016];>	3	2	0	0	2	1	11.1	32.082	280
>gi 133930471 gb ABO43807.1 Smf [Lactobacillus reuteri];>gi 148531043 gb ABQ83042.1 DNA protecting protein DprA [Lactobacillus reuteri DSM 20016];>	2	2	1	1	0	0	5.5	31.8	291
>gi 148531957 gb ABQ83956.1 precorrin-6Y C5,15-methyltransferase (decarboxylating), CbiT subunit [Lactobacillus reuteri DSM 20016];>	2	0	1	0	0	1	9.2	20.387	184
>gi 337729525 emb CCC04656.1 putative replication initiator protein [Lactobacillus reuteri ATCC 53608]	2	0	1	1	0	1	1.7	102.72	909
>gi 148530648 gb ABQ82647.1 amino acid ABC transporter substrate-binding protein, PAAT family [Lactobacillus reuteri DSM 20016];>	1	1	1	1	1	1	5.8	33.273	294
>gi 183227290 dbj BAG27806.1 conserved hypothetical protein [Lactobacillus fermentum IFO 3956]	2	1	0	2	1	2	6.3	36.249	335

Appendix 3

List of publications

Oral presentations

22nd March 2012. *Using SILAC to identify potential mucus binding proteins in Lactobacillus reuteri*. Mass Spectacular JIC conference centre.

24th March 2012. *What are calories? Measuring calories in food* Hands on demonstration. Science in Norwich.

1st April 2010. *How do gut microbes bind to mucus?* SGM – Edinburgh.

Poster presentations

Jeffers F., Mulholland F., Etzold S., Roos S., MacKenzie D.A., and Juge N. *Exploring molecular interactions of Lactobacillus reuteri with mucus by quantitative proteomics*. Exploring Human Host-Microbiome Interactions in Health and Disease, Wellcome Trust, Genome Campus, Hinxton, Cambridge. 8th-10th May 2012.

Jeffers F., MacKenzie D., and Juge N. *How do gut microbes bind to mucus?* SET for Britain, Houses of Parliament, London. 14th March 2011.

Jeffers F., Fuell C., MacKenzie D.A., Tailford L.E., Bongaerts R.J., and Juge N. *Mucin-lectin binding assessed by flow cytometry and mass spectrometry*. RSC Carbohydrates in Dundee Conference 30th-31st August 2010.

Jeffers F., MacKenzie D.A., Fuell C., Tailford L.E., Bongaerts R. and Juge N. *Mucin-lectin interactions assessed by flow cytometry*. RSC Carbohydrate Group Meeting: Sugars in Norwich, IFR, 15th-16th September 2009.

Jeffers F., MacKenzie D.A., Fuell C., Tailford L.E. and Juge N. *How do gut microbes bind to mucus*. RSC Carbohydrate Group Meeting: Sugars in Norwich, IFR, 15th-16th September 2009.

Jeffers F., MacKenzie D.A., Fuell C., Tailford L.E., Bongaerts R. and Juge N. *How do commensal gut microbes bind to mucus?* IFR Student Showcase May 2009.

Posters and conference talks (given by others)

MacKenzie D.A., Crost E.H., Etzold S., Kober O., **Jeffers F.**, Le Gall G., Fuell C., Tailford L.E. and Juge N. *Investigating the role of mucins in the interaction between gut bacteria and the host.* 8th INRA-Rowett Symposium on Gut Microbiology, Gut Microbiota: Friend or Foe? Polydome Congress Centre, Clermont-Ferrand France 17th-20th June 2012.

Kober O., Schreiber O., **Jeffers F.**, Wakenshaw L., Roos S., Holm L. and Juge N. *Functional modulation of the rodent mucus layer by gut bacteria.* Molecular mechanisms of inflammatory bowel disease, Biochemical Society, Durham 20th-22nd March 2011.

Kober O.K., **Jeffers F.**, Hemmings A., Wakenshaw L., MacKenzie D.A. and Juge N. *Functional modulation of the murine mucus layer by gut bacteria.* British Society of Immunology Congress, Liverpool, 6th-10th December 2010.

MacKenzie D.A., **Jeffers F.**, Tailford L.E., Parris A., Williams M.R., Hemmings A.M. and Juge N. *Structural and functional analysis of a mucus-binding protein repeat: role in bacterial adhesion to mucus.* BBSRC-INRA-WUR Workshop on Food and Gut Health, IFR, 6th-8th October 2010. MacKenzie D.A., **Jeffers F.**, Etzold S., Kober O., Hemmings A. and Juge N. *Structure and function of Lactobacillus reuteri mucus binding proteins in the maintenance of gut homeostasis.* 3rd ASM Conference on Beneficial Microbes, Miami, Florida, USA. 25th-29th October 2010.

MacKenzie D.A., **Jeffers F.**, Etzold S., Parris A., Fais M., Tailford L.E., Fairhurst S., Williams M.R., Field R., Hemmings A.M. and Juge N. *Gut bacteria – host interaction: the role of mucus binding proteins.* INRA-Rowett Symposium on Gut Microbiology, new insights into gut microbial ecosystems. Aberdeen Exhibition and Conference Centre 22nd-25th June 2010.

MacKenzie D.A., **Jeffers F.**, Tailford L.E., Ruiz-Moyano S., Parris A., Williams M.R., Parker M.L., Hemmings A.M. and Juge N. *Structural and functional analysis of a mucus-binding protein repeat: role in bacterial adhesion to mucus.* 4th International Probiotic Conference, Kosice, Slovakia 15th-17th June 2010.

MacKenzie D.A., **Jeffers F.**, Tailford L.E., Parris A., Williams M.R., Hemmings A.M. and Juge N. *Structural and functional analysis of a mucus binding protein repeat:role in bacterial adhesion to mucus.* Microbes in Norwich, JIC Conference Centre 27th November 2009.

Fuell C., MacKenzie D.A., Tailford L.E., **Jeffers F.** and Juge N. *Mucin analysis by mass spectrometry.* RSC Carbohydrate Group Meeting: Sugars in Norwich, IFR, 15th-16th September 2009.

MacKenzie D.A., **Jeffers F.**, Tailford L.E., Parris A., Williams M.R., Hemmings A.M. and Juge N. *Structural and functional analysis of a mucus binding protein repeat:role in bacterial adhesion to mucus.* RSC Carbohydrate Group Meeting: Sugars in Norwich, IFR, 15th-16th September 2009.

Fuell C., **Jeffers F.**, MacKenzie D.A., Tailford L.E., Bongaerts R.J. and Juge N. *Mucin-lectin binding assessed by flow cytometry and mass spectrometry.* 15th European Carbohydrate Symposium. 19th-24th July 2009.

Publication (with other projects)

Jeffers F., Fuell C., Tailford L.E., MacKenzie D.A., Bongaerts R.J. and Juge N. *Mucin-lectin interactions assessed by flow cytometry.* Carbohydrate Research (2010) 345, 1486-1491.

References

1. Mowat, A.M. and J.L. Viney, *The anatomical basis of intestinal immunity*. Immunological Reviews, 1997. **156**(1): p. 145-166.
2. Linden, S., J. Mahdavi, C. Semino-Mora, C. Olsen, I. Carlstedt, T. Boren, and A. Dubois, *Role of ABO secretor status in mucosal innate immunity and *H. pylori* infection*. Public Library of Science Pathogens, 2008. **4**(1): p. e2.
3. Stevens, C.E. and I.D. Hume, *Contributions of Microbes in Vertebrate Gastrointestinal Tract to Production and Conservation of Nutrients*. Physiological Reviews, 1998. **78**(2): p. 393-427.
4. Savage, D.C., *Microbial ecology of the gastrointestinal tract*. Annual Review of Microbiology, 1977. **31**: p. 107-133.
5. Evans, D.F., G. Pye, R. Bramley, A.G. Clark, T.J. Dyson, and J.D. Hardcastle, *Measurement of gastrointestinal pH profiles in normal ambulant human subjects*. Gut, 1988. **29**(8): p. 1035-1041.
6. Sasaki, Y., R. Hada, H. Nakajima, S. Fakuda, and A. Munakata, *Improved Localizing Method of Radiopill in Measurement of Entire Gastrointestinal pH Profiles: Colonic Luminal pH in Normal Subjects and Patients with Crohn's Disease*. American Journal of Gastroenterology, 1997. **92**(1): p. 114-118.
7. McConnell, E.L., H.M. Fadda, and A.W. Basit, *Gut instincts: Explorations in intestinal physiology and drug delivery*. International Journal of Pharmaceutics, 2008. **364**(2): p. 213-226.
8. Walter, J. and R. Ley, *The Human Gut Microbiome: Ecology and Recent Evolutionary Changes*. Annual Review of Microbiology, 2011. **65**(1): p. 411-429.
9. Karam, S.M., *Lineage commitment and maturation of epithelial cells in the gut*. Frontiers in bioscience : a journal and virtual library, 1999. **4**: p. 286-298.
10. Atuma, C., V. Strugala, A. Allen, and L. Holm, *The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo*. American Journal of Physiology - Gastrointestinal and Liver Physiology, 2001. **280**(5): p. 922-929.
11. Smith, H.W., *Observations on the flora of the alimentary tract of animals and factors affecting its composition*. Journal of Pathology and Bacteriology, 1965. **89**: p. 95-122.
12. Whitman, W.B., D.C. Coleman, and W.J. Wiebe, *Prokaryotes: The unseen majority*. Proceedings of the National Academy of Sciences of the United States of America, 1998. **95**(12): p. 6578-6583.
13. Johansson, M.E.V., M. Phillipson, J. Petersson, A. Velcich, L. Holm, and G.C. Hansson, *The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria*. Proceedings of the National Academy of Sciences, 2008. **105**(39): p. 15064-15069.
14. Matsuo, K., H. Ota, T. Akamatsu, A. Sugiyama, and T. Katsuyama, *Histochemistry of the surface mucous gel layer of the human colon*. Gut, 1997. **40**(6): p. 782-789.
15. Swidsinski, A., C. Beate, S.Y. Doerffel, V. Loening-Baucke, M. Vaneechoutte, M. Lupicki, . . . L.A. Dieleman, *Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota*. Inflammatory Bowel Diseases, 2007. **13**(8): p. 963-970.
16. Pullan R.D., T.G.A.O., Rhodes M., Newcombe R.G., Williams G.T., Allen A., Rhodes J., *Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis*. Gut, 1994. **35**: p. 353-359.
17. Swidsinski, A., V. Loening-Baucke, F. Theissig, H. Engelhardt, S. Bengmark, S. Koch, . . . Y. Dorffel, *Comparative study of the intestinal mucus barrier in normal and inflamed colon*. Gut, 2007. **56**(3): p. 343-350.

18. Hansson, G.C., *Role of mucus layers in gut infection and inflammation*. Current Opinion in Microbiology, 2012. **15**(1): p. 57-62.
19. Vaishnavi, S., M. Yamamoto, K.M. Severson, K.A. Ruhn, X. Yu, O. Koren, . . . L.V. Hooper, *The Antibacterial Lectin RegIII gamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine*. Science, 2011. **334**(6053): p. 255-258.
20. Johansson, M.E.V. and G.C. Hansson, *Keeping Bacteria at a Distance*. Science, 2011. **334**(6053): p. 182-183.
21. Dekker, J., J.W.A. Rossen, H.A. Büller, and A.W.C. Einerhand, *The MUC family: an obituary*. Trends in Biochemical Sciences, 2002. **27**(3): p. 126-131.
22. Callaghan Rose, M. and J.A. Voynow, *Respiratory tract mucin genes and mucin glycoproteins in health and disease*. Physiological Reviews, 2006. **86**(1): p. 245-278.
23. Johansson, M., D. Ambort, T. Pelaseyed, A. Schütte, J. Gustafsson, A. Ermund, . . . G. Hansson, *Composition and functional role of the mucus layers in the intestine*. Cellular and Molecular Life Sciences, 2011. **68**(22): p. 3635-3641.
24. Tytgat, K.M., H.A. Buller, F.J. Opdam, Y.S. Kim, A.W. Einerhand, and J. Dekker, *Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin*. Gastroenterology, 1994. **107**(5): p. 1352-1363.
25. Herrmann, A., J.R. Davies, G. Lindell, S. Martensson, N.H. Packer, D.M. Swallow, and I. Carlstedt, *Studies on the "Insoluble" Glycoprotein Complex from Human Colon*. Journal of Biological Chemistry, 1999. **274**(22): p. 15828-15836.
26. Makkink, M., N. Schwerbrock, M. Mähler, J. Boshuizen, I. Renes, M. Cornberg, . . . J. Dekker, *Fate of Goblet Cells in Experimental Colitis*. Digestive Diseases and Sciences, 2002. **47**(10): p. 2286-2297.
27. Van der Sluis, M., B.A.E. De Koning, A.C.J.M. De Bruijn, A. Velcich, J.P.P. Meijerink, J.B. Van Goudoever, . . . A.W.C. Einerhand, *Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection*. Gastroenterology, 2006. **131**(1): p. 117-129.
28. Malmberg, E.K., K.A. Noaksson, M. Phillipson, M.E.V. Johansson, M. Hinojosa-Kurtzberg, L. Holm, . . . G.C. Hansson, *Increased levels of mucins in the cystic fibrosis mouse small intestine, and modulator effects of the Muc1 mucin expression*. American Journal of Physiology - Gastrointestinal and Liver Physiology, 2006. **291**(2): p. 203-210.
29. Smith, A.G., J.V. O'Doherty, P. Reilly, M.T. Ryan, B. Bahar, and T. Sweeney, *The effects of laminarin derived from Laminaria digitata on measurements of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig*. British Journal of Nutrition, 2011. **105**(5): p. 669-677.
30. Shekels, L.L., C. Lyftogt, M. Kieliszewski, J.D. Filie, C.A. Kozak, and S.B. Ho, *Mouse gastric mucin: cloning and chromosomal localization*. Biochemical Journal, 1995. **311**(3): p. 775-785.
31. Yakubov, G.E., A. Papagiannopoulos, E. Rat, R.L. Easton, and T.A. Waigh, *Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin*. Biomacromolecules, 2007. **8**(11): p. 3467-3477.
32. Corfield, A.P., D. Carroll, N. Myerscough, and C.S. Probert, *Mucins in the gastrointestinal tract in health and disease*. Frontiers in Bioscience, 2001. **6**: p. 1321-1357.
33. Park, S.-W., G. Zhen, C. Verhaeghe, Y. Nakagami, L.T. Nguyenvu, A.J. Barczak, . . . D.J. Erle, *The protein disulfide isomerase AGR2 is essential for production of intestinal mucus*. Proceedings of the National Academy of Sciences, 2009. **106**(17): p. 6950-6955.

34. Brockhausen, I., H. Schachter, and P. Stanley, O-GalNAc Glycans, in *Essentials of Glycobiology*, A. Varki, et al., Editors. 2009, Cold Spring Harbor. p. 115-127.

35. Montagne, L., C. Piel, and J.P. Lalles, *Effect of diet on mucin kinetics and composition: nutrition and health implications*. Nutrition Reviews, 2004. **62**(3): p. 105-114.

36. Bansil, R. and B.S. Turner, *Mucin structure, aggregation, physiological functions and biomedical applications*. Current Opinion in Colloid & Interface Science, 2006. **11**(2-3): p. 164-170.

37. Barnett, A.M., N.C. Roy, W.C. McNabb, and A.L. Cookson, *The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel*. Food & Function, 2012. **3**(7): p. 690-699.

38. Jensen, P.H., D. Kolarich, and N.H. Packer, *Mucin-type O-glycosylation – putting the pieces together*. FEBS Journal, 2010. **277**(1): p. 81-94.

39. Holmen Larsson, J.M., H. Karlsson, H. Sjovall, and G.C. Hansson, *A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn*. Glycobiology, 2009. **19**(7): p. 756-766.

40. Robbe, C., C. Capon, B. Coddeville, and J.-C. Michalski, *Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract*. Biochemical Journal, 2004. **384**(2): p. 307-316.

41. Karlsson, N.G., A. Herrmann, H. Karlsson, M.E.V. Johansson, I. Carlstedt, and G.C. Hansson, *The Glycosylation of Rat Intestinal Muc2 Mucin Varies between Rat Strains and the Small and Large Intestine*. Journal of Biological Chemistry, 1997. **272**(43): p. 27025-27034.

42. Karlsson, N.G., H. Nordman, H. Karlsson, I. Carlstedt, and G.C. Hansson, *Glycosylation differences between pig gastric mucin populations: a comparative study of the neutral oligosaccharides using mass spectrometry*. Biochem. J., 1997. **326**(3): p. 911-917.

43. Robbe, C., C. Capon, E. Maes, M. Rousset, A. Zweibaum, J.-P. Zanetta, and J.-C. Michalski, *Evidence of Regio-specific Glycosylation in Human Intestinal Mucins*. Journal of Biological Chemistry, 2003. **278**(47): p. 46337-46348.

44. Robbe-Masselot, C., E. Maes, M. Rousset, J.-C. Michalski, and C. Capon, *Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract*. Glycoconjugate Journal, 2009. **26**(4): p. 397-413.

45. Andrianifahanana, M., N. Moniaux, and S.K. Batra, *Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases*. Biochimica et Biophysica Acta - Reviews on Cancer, 2006. **1765**(2): p. 189-222.

46. Liquori, G.E., M. Mastrodonato, D. Mentino, G. Scillitani, S. Desantis, P. Portincasa, and D. Ferri, *In situ characterization of O-linked glycans of Muc2 in mouse colon*. Acta Histochemica, 2012. **114**(7): p. 723-732.

47. Jeffers, F., C. Fuell, L.E. Tailford, D.A. MacKenzie, R.J. Bongaerts, and N. Juge, *Mucin-lectin interactions assessed by flow cytometry*. Carbohydrate Research, 2010. **345**(10): p. 1486-1491.

48. Hoskins, L.C. and E.T. Boulding, *Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes*. Journal of Clinical Investigation, 1981. **67**(1): p. 163-172.

49. Derrien, M.M.N., v.M.W.J. Passel, v.d.J.H.B. Bovenkamp, R.G. Schipper, and d.W.M. Vos, *Mucin-bacterial interactions in the human oral cavity and digestive tract*. Gut Microbes, 2010. **1**(4): p. 254 - 268.

50. Hoskins, L.C., M. Agustines, W.B. McKee, E.T. Boulding, M. Kriaris, and G. Niedermeyer, *Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and*

oligosaccharides from mucin glycoproteins. Journal of Clinical Investigation, 1985. **75**(3): p. 944-953.

51. Derrien, M., E.E. Vaughan, C.M. Plugge, and W.M. de Vos, *Akkermansia muciniphila* gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2004. **54**(5): p. 1469-1476.

52. Corfield, A.P., S.A. Wagner, J.R. Clamp, M.S. Kriaris, and L.C. Hoskins, *Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterease, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria.* Infection and Immunity, 1992. **60**(10): p. 3971-3978.

53. Johansson, M.E.V., K.A. Thomsson, and G.C. Hansson, *Proteomic Analyses of the Two Mucus Layers of the Colon Barrier Reveal That Their Main Component, the Muc2 Mucin, Is Strongly Bound to the Fcgbp Protein.* Journal of Proteome Research, 2009. **8**(7): p. 3549-3557.

54. Timmons, P.M., C.T. Chan, P.W. Rigby, and F. Poirier, *The gene encoding the calcium binding protein calcyclin is expressed at sites of exocytosis in the mouse.* Journal of Cell Science, 1993. **104**(1): p. 187-196.

55. Tomita, M., H. Itoh, N. Ishikawa, A. Higa, H. Ide, Y. Murakumo, . . . Y. Nawa, *Molecular cloning of mouse intestinal trefoil factor and its expression during goblet cell changes.* Biochemical Journal, 1995. **311**: p. 293-297.

56. Mesis, M., A. Cintra, V. Solfrini, P. Ernfors, F. Bortolotti, D.G. Morrasutti, . . . V. Mutt, *Molecular cloning of PEC-60 and expression of its mRNA and peptide in the gastrointestinal tract and immune system.* Journal of Biological Chemistry, 1992. **267**(28): p. 19829-19832.

57. Komiya, T., Y. Tanigawa, and S. Hirohashi, *Cloning and Identification of the Gene Gob-5, Which Is Expressed in Intestinal Goblet Cells in Mice.* Biochemical and Biophysical Research Communications, 1999. **255**(2): p. 347-351.

58. Ley, R.E., C.A. Lozupone, M. Hamady, R. Knight, and J.I. Gordon, *Worlds within worlds: evolution of the vertebrate gut microbiota.* Nature Reviews Microbiology, 2008. **6**(10): p. 776-788.

59. Gordon, J.I., *Honor Thy Gut Symbionts Redux.* Science, 2012. **336**(6086): p. 1251-1253.

60. Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, . . . P. Bork, *Enterotypes of the human gut microbiome.* Nature, 2011. **473**(7346): p. 174-180.

61. Ley, R.E., D.A. Peterson, and J.I. Gordon, *Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine.* Cell, 2006. **124**(4): p. 837-848.

62. Jiménez, E., M.L. Marín, R. Martín, J.M. Odriozola, M. Olivares, J. Xaus, . . . J.M. Rodríguez, *Is meconium from healthy newborns actually sterile?* Research in Microbiology, 2008. **159**(3): p. 187-193.

63. Grölund, M.-M., O.-P. Lehtonen, E. Eerola, and P. Kero, *Fecal Microflora in Healthy Infants Born by Different Methods of Delivery: Permanent Changes in Intestinal Flora After Cesarean Delivery.* Journal of Pediatric Gastroenterology and Nutrition, 1999. **28**(1): p. 19-25.

64. Yoshioka, H., K.-i. Iseki, and K. Fujita, *Development and Differences of Intestinal Flora in the Neonatal Period in Breast-Fed and Bottle-Fed Infants.* Pediatrics, 1983. **72**(3): p. 317-321.

65. Adlerberth, I., L. A. Hansson, and A.E. Wold, eds. *Development of the gastrointestinal tract: The ontogeny of the intestinal flora.* ed. I.R. Sanderson and W.A. Walker. 1999, B. C. Decker Publishing, Hamilton, Ontario, Canada. 279-292.

66. Dai, D. and W.A. Walker, *Protective nutrients and bacterial colonization in the immature human gut*. Advances in Pediatrics, 1999. **46**: p. 353-382.

67. Hopkins, M.J., R. Sharp, and G.T. Macfarlane, *Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles*. Gut, 2001. **48**(2): p. 198-205.

68. Bartosch, S., A. Fite, G.T. Macfarlane, and M.E.T. McMurdo, *Characterization of Bacterial Communities in Feces from Healthy Elderly Volunteers and Hospitalized Elderly Patients by Using Real-Time PCR and Effects of Antibiotic Treatment on the Fecal Microbiota*. Applied and Environmental Microbiology, 2004. **70**(6): p. 3575-3581.

69. Françoise Gavini, C.C., Jean-Michel Antoine, Catherine Lecoq, Bernard Lefebvre, Jeanne-Marie Membré, Christel Neut, *Differences in the Distribution of Bifidobacterial and Enterobacterial Species in Human Faecal Microflora of Three Different (Children, Adults, Elderly) Age Groups*. Microbial Ecology in Health and Disease, 2001. **13**(1): p. 40-45.

70. Dethlefsen, L., M. McFall-Ngai, and D.A. Relman, *An ecological and evolutionary perspective on human-microbe mutualism and disease*. Nature, 2007. **449**(7164): p. 811-818.

71. Zoetendal, E.G., A. von Wright, T. Vilpponen-Salmela, K. Ben-Amor, A.D.L. Akkermans, and W.M. de Vos, *Mucosa-Associated Bacteria in the Human Gastrointestinal Tract Are Uniformly Distributed along the Colon and Differ from the Community Recovered from Feces*. Applied and Environmental Microbiology, 2002. **68**(7): p. 3401-3407.

72. Hayashi, H., R. Takahashi, T. Nishi, M. Sakamoto, and Y. Benno, *Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism*. Journal of Medical Microbiology, 2005. **54**(11): p. 1093-1101.

73. Booijink, C.C.G.M., S. El-Aidy, M. Rajilić-Stojanović, H.G.H.J. Heilig, F.J. Troost, H. Smidt, . . . E.G. Zoetendal, *High temporal and inter-individual variation detected in the human ileal microbiota*. Environmental Microbiology, 2010. **12**(12): p. 3213-3227.

74. Wang, M., S. Ahrné, B. Jeppsson, and G. Molin, *Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes*. Federation of European Microbiological Societies - Microbiology Ecology, 2005. **54**(2): p. 219-231.

75. Backhed, F., R.E. Ley, J.L. Sonnenburg, D.A. Peterson, and J.I. Gordon, *Host-Bacterial Mutualism in the Human Intestine*. Science, 2005. **307**(5717): p. 1915-1920.

76. Wu, G.D., J. Chen, C. Hoffmann, K. Bittinger, Y.-Y. Chen, S.A. Keilbaugh, . . . J.D. Lewis, *Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes*. Science, 2011. **334**(6052): p. 105-108.

77. Consortium, H.M.P., *Structure, function and diversity of the healthy human microbiome*. Nature, 2012. **486**(7402): p. 207-214.

78. Tilman, D., *Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly*. Proceedings of the National Academy of Sciences of the United States of America, 2004. **101**(30): p. 10854-10861.

79. Dethlefsen, L., P.B. Eckburg, E.M. Bik, and D.A. Relman, *Assembly of the human intestinal microbiota*. Trends in Ecology & Evolution, 2006. **21**(9): p. 517-523.

80. Samuel, B.S. and J.I. Gordon, *A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism*. Proceedings of the National Academy of Sciences, 2006. **103**(26): p. 10011-10016.

81. Belenguer, A., S.H. Duncan, A.G. Calder, G. Holtrop, P. Louis, G.E. Lobley, and H.J. Flint, *Two Routes of Metabolic Cross-Feeding between *Bifidobacterium adolescentis* and Butyrate-Producing Anaerobes from the Human Gut*. Applied and Environmental Microbiology, 2006. **72**(5): p. 3593-3599.
82. Willis, C.L., J.H. Cummings, G. Neale, and G.R. Gibson, *In Vitro Effects of Mucin Fermentation on the Growth of Human Colonic Sulphate-Reducing Bacteria*. Anaerobe, 1996. **2**(2): p. 117-122.
83. Hooper, L.V., M.H. Wong, A. Thelin, L. Hansson, P.G. Falk, and J.I. Gordon, *Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine*. Science, 2001. **291**(5505): p. 881-884.
84. Savage, D.C., *Gastrointestinal microflora in mammalian nutrition*. Annual Review of Nutrition, 1986. **6**: p. 155-178.
85. Rawls, J.F., B.S. Samuel, and J.I. Gordon, *Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota*. Proceedings of the National Academy of Sciences of the United States of America, 2004. **101**(13): p. 4596-4601.
86. Stappenbeck, T.S., L.V. Hooper, and J.I. Gordon, *Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells*. Proceedings of the National Academy of Sciences of the United States of America, 2002. **99**(24): p. 15451-15455.
87. Turnbaugh, P.J., F. Bäckhed, L. Fulton, and J.I. Gordon, *Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome*. Cell Host & Microbe, 2008. **3**(4): p. 213-223.
88. Hrncir, T., R. Stepankova, H. Kozakova, T. Hudcovic, and H. Tlaskalova-Hogenova, *Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice*. BioMed Central Immunology, 2008. **9**(1): p. 65-76.
89. Sudo, N., Y. Chida, Y. Aiba, J. Sonoda, N. Oyama, X.-N. Yu, . . . Y. Koga, *Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice*. Journal of Physiology, 2004. **558**(1): p. 263-275.
90. Boleij, A., R. Roelofs, R.M.J. Schaeps, T. Schülin, P. Glaser, D.W. Swinkels, . . . H. Tjalsma, *Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients*. Cancer, 2010. **116**(17): p. 4014-4022.
91. Vanhaecke, L., F. Vercruyse, N. Boon, W. Verstraete, I. Cleenwerck, M. De Wachter, . . . T. van de Wiele, *Isolation and Characterization of Human Intestinal Bacteria Capable of Transforming the Dietary Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine*. Applied Environmental Microbiology, 2008. **74**(5): p. 1469-1477.
92. Klein, R.S., R.A. Recco, M.T. Catalano, S.C. Edberg, J.I. Casey, and N.H. Steigbigel, *Association of *Streptococcus bovis* with Carcinoma of the Colon*. New England Journal of Medicine, 1977. **297**(15): p. 800-802.
93. Turnbaugh, P.J., M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, . . . J.I. Gordon, *A core gut microbiome in obese and lean twins*. Nature, 2009. **457**(7228): p. 480-484.
94. Haller, D., *Nutrigenomics and IBD: The Intestinal Microbiota at the Cross-road Between Inflammation and Metabolism*. Journal of Clinical Gastroenterology, 2010. **44**(11).
95. Walzer, N. and A.L. Buchman, *Development of Crohn's Disease in Patients With Intestinal Failure: A Role for Bacteria?* Journal of Clinical Gastroenterology, 2010. **44**(5): p. 361-363.
96. Holma, R., P. Salmenperä, J. Lohi, H. Vapaatalo, and R. Korpela, *Effects of *Lactobacillus rhamnosus* GG and *Lactobacillus reuteri* R2LC on Acetic Acid-*

Induced Colitis in Rats. Scandinavian Journal of Gastroenterology, 2001. **36**(6): p. 630 - 635.

97. Gionchetti, P., F. Rizzello, A. Venturi, P. Brigidi, D. Matteuzzi, G. Bazzocchi, . . . M. Campieri, *Oral Bacteriotherapy as Maintenance Treatment in Patients With Chronic Pouchitis: A Double-Blind, Placebo-Controlled Trial.* Gastroenterology, 2000. **119**(2): p. 305-309.

98. Sartor, R.B., *Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics.* Gastroenterology, 2004. **126**(6): p. 1620-1633.

99. Ryan, P., R.G. Kelly, G. Lee, J.K. Collins, G.C. O'Sullivan, J. O'Connell, and F. Shanahan, *Bacterial DNA within Granulomas of Patients with Crohn's Disease - Detection by Laser Capture Microdissection and PCR.* American Journal of Gastroenterology, 2004. **99**(8): p. 1539-1543.

100. Garrett, W.S., G.M. Lord, S. Punit, G. Lugo-Villarino, Sarkis K. Mazmanian, S. Ito, . . . L.H. Glimcher, *Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System.* Cell, 2007. **131**(1): p. 33-45.

101. Oh, P.L., A.K. Benson, D.A. Peterson, P.B. Patil, E.N. Moriyama, S. Roos, and J. Walter, *Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution.* International Society for Microbial Ecology Journal, 2009.

102. Frese, S.A., A.K. Benson, G.W. Tannock, D.M. Loach, J. Kim, M. Zhang, . . . N. Juge, *The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri.* Public Library of Science Genetics, 2011. **7**(2): p. 837-848.

103. Walter, J., R.A. Britton, and S. Roos, *Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm.* Proceedings of the National Academy of Sciences, 2011. **108**: p. 4645-4652.

104. Tuomola, E.M. and S.J. Salminen, *Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures.* International Journal of Food Microbiology, 1998. **41**(1): p. 45-51.

105. Balcázar, J.L., D. Vendrell, I. de Blas, I. Ruiz-Zarzuela, O. Gironés, and J. Múzquiz, *In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens.* Veterinary Microbiology, 2007. **122**(3-4): p. 373-380.

106. Kleerebezem, M. and E.E. Vaughan, *Probiotic and Gut Lactobacilli and Bifidobacteria: Molecular Approaches to Study Diversity and Activity.* Annual Review of Microbiology, 2009. **63**(1): p. 269-290.

107. Valeur, N., P. Engel, N. Carbalal, E. Connolly, and K. Ladefoged, *Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract.* Applied Environmental Microbiology, 2004. **70**(2): p. 1176-1181.

108. Dal Bello, F., J. Walter, W.P. Hammes, and C. Hertel, *Increased Complexity of the Species Composition of Lactic Acid Bacteria in Human Feces Revealed by Alternative Incubation Condition.* Microbial Ecology, 2003. **45**(4): p. 455-463.

109. Reuter, G., *The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession.* Current Issues in Intestinal Microbiology, 2001. **2**(2): p. 43-53.

110. Walter, J., *Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for Fundamental and Biomedical Research.* Applied Environmental Microbiology, 2008. **74**(16): p. 4985-4996.

111. Li, X.J., L.Y. Yue, X.F. Guan, and S.Y. Qiao, *The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus.* Journal of Applied Microbiology, 2008. **104**(4): p. 1082-1091.

112. Korhonen, J.M., Y. Sclivagnac, and A.v. Wright, *Characterization of dominant cultivable lactobacilli and their antibiotic resistance profiles from faecal samples*

of weaning piglets. *Journal of Applied Microbiology*, 2007. **103**(6): p. 2496-2503.

113. Leser, T.D., J.Z. Amenuvor, T.K. Jensen, R.H. Lindecrona, M. Boye, and K. Moller, *Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited*. *Applied and Environmental Microbiology*, 2002. **68**(2): p. 673-690.
114. Brooks, S.P.J., M. McAllister, M. Sandoz, and M.L. Kalmokoff, *Culture-independent phylogenetic analysis of the faecal flora of the rat*. *Canadian Journal of Microbiology*, 2003. **49**(10): p. 589-601.
115. Salzman, N.H., H. de Jong, Y. Paterson, H.J.M. Harmsen, G.W. Welling, and N.A. Bos, *Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria*. *Microbiology*, 2002. **148**(11): p. 3651-3660.
116. Abbas Hilmi, H.T., A. Surakka, J. Apajalahti, and P.E.J. Saris, *Identification of the Most Abundant *Lactobacillus* Species in the Crop of 1- and 5-Week-Old Broiler Chickens*. *Applied and Environmental Microbiology*, 2007. **73**(24): p. 7867-7873.
117. Kandler, *Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 8*. *International Journal of Systematic and Evolutionary Microbiology*, 1982. **32**(2): p. 266.
118. Denou, E., R.D. Pridmore, B. Berger, J.-M. Panoff, F. Arigoni, and H. Brussow, *Identification of Genes Associated with the Long-Gut-Persistence Phenotype of the Probiotic *Lactobacillus johnsonii* Strain NCC533 Using a Combination of Genomics and Transcriptome Analysis*. *Journal of Bacteriology*, 2008. **190**(9): p. 3161-3168.
119. Finlay, B. and S. Falkow, *Common themes in microbial pathogenicity revisited*. *Microbiology and Molecular Biology Reviews*, 1997. **61**(2): p. 136-169.
120. Wadstrom, T., K. Andersson, M. Sydow, L. Axelsson, S. Lindgren, and B. Gullmar, *Surface properties of *lactobacilli* isolated from the small intestine of pigs*. *Journal of Applied Microbiology*, 1987. **62**(6): p. 513-520.
121. Lindgren, S., H. Swaisgood, V. Janolino, L. Axelsson, C. Richter, J. Mackenzie, and W. Dobrogosz, *Binding of *Lactobacillus reuteri* to fibronectin immobilized on glass beads*. *Zentralblatt für Bakteriologie: international journal of medical microbiology*, 1992. **277**(4): p. 519-528.
122. Aleljung, P., W. Shen, B. Rozalska, U. Hellman, Å. Ljungh, and T. Wadström, *Purification of collagen-binding proteins of *Lactobacillus reuteri* NCIB 11951*. *Current Microbiology*, 1994. **28**(4): p. 231-236.
123. Aleljung, P., *Collagen binding of intestinal *Lactobacillus reuteri*:characterisation, purification and cloning.*, in *Department of Medical Microbiology*. 1994, University of Lund: Lund.
124. Roos, S. and H. Jonsson, *A high-molecular-mass cell-surface protein from *Lactobacillus reuteri* 1063 adheres to mucus components*. *Microbiology*, 2002. **148**(2): p. 433-442.
125. Roos, S., S. Lindgren, and H. Jonsson, *Autoaggregation of *Lactobacillus reuteri* is mediated by a putative DEAD-box helicase*. *Molecular Microbiology*, 1999. **32**(2): p. 427-436.
126. Axelsson, L.T., S.E.I. Ahrné, M.C. Andersson, and S.R. Ståhl, *Identification and cloning of a plasmid-encoded erythromycin resistance determinant from *Lactobacillus reuteri**. *Plasmid*, 1988. **20**(2): p. 171-174.
127. Walter, J., D.M. Loach, M. Alqumber, C. Rockel, C. Hermann, M. Pfizenmaier, and G.W. Tannock, *d-Alanyl ester depletion of teichoic acids in *Lactobacillus reuteri* 100-23 results in impaired colonization of the mouse gastrointestinal tract*. *Environmental Microbiology*, 2007. **9**(7): p. 1750-1760.

128. Walter, J., C. Schwab, D.M. Loach, M.G. Ganzle, and G.W. Tannock, *Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract*. *Microbiology*, 2008. **154**(1): p. 72-80.

129. Araya, M., L. Morelli, G. Reid, M.E. Sanders, and C. Stanton, *Guidelines for the Evaluation of Probiotics in Food*. 2002, Food and Agriculture Organization of the World Health Organisation.

130. Talarico, T.L., I.A. Casas, T.C. Chung, and W.J. Dobrogosz, *Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri*. *Antimicrobial Agents & Chemotherapy*, 1988. **32**(12): p. 1854-1858.

131. Reid, G., *The Scientific Basis for Probiotic Strains of Lactobacillus*. *Applied Environmental Microbiology*, 1999. **65**(9): p. 3763-3766.

132. Casas, I.A. and W.J. Dobrogosz, *Validation of the Probiotic Concept: Lactobacillus reuteri Confers Broad-spectrum Protection against Disease in Humans and Animals*. *Microbial Ecology in Health and Disease*, 2000. **12**(4): p. 247 - 285.

133. Ruiz-Palacios, G., M. Guerrero, M. Hilty, M. Dohnalek, P. Newton, J. Calva, . . . F. Arteaga, *Feeding of a probiotic for the prevention of community-acquired diarrhea in young Mexican children*. *Pediatric Research*, 1996. **39**(4): p. 184-184.

134. Shornikova, A.V., I.A. Casas, H. Myhhanen, E. Salo, and T. Vesikari, *Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis*. *The Pediatric Infectious Disease Journal*, 1997. **16**(12): p. 1103-1107.

135. Shornikova, A.-V., I.A. Casas, E. Isolauri, H. Mykkänen, and T. Vesikari, *Lactobacillus reuteri as a Therapeutic Agent in Acute Diarrhea in Young Children*. *Journal of Pediatric Gastroenterology and Nutrition*, 1997. **24**(4): p. 399-404.

136. Weizman, Z., G. Asli, and A. Alsheikh, *Effect of a Probiotic Infant Formula on Infections in Child Care Centers: Comparison of Two Probiotic Agents*. *Pediatrics*, 2005. **115**(1): p. 5-9.

137. Pena, J.A., S.Y. Li, P.H. Wilson, S.A. Thibodeau, A.J. Szary, and J. Versalovic, *Genotypic and Phenotypic Studies of Murine Intestinal Lactobacilli: Species Differences in Mice with and without Colitis*. *Applied Environmental Microbiology*, 2004. **70**(1): p. 558-568.

138. Pena, J.A., A.B. Rogers, Z. Ge, V. Ng, S.Y. Li, J.G. Fox, and J. Versalovic, *Probiotic Lactobacillus spp. Diminish Helicobacter hepaticus-Induced Inflammatory Bowel Disease in Interleukin-10-Deficient Mice*. *Infection and Immunity*, 2005. **73**(2): p. 912-920.

139. Anadón, A., M. Rosa Martínez-Larrañaga, and M. Aranzazu Martínez, *Probiotics for animal nutrition in the European Union. Regulation and safety assessment*. *Regulatory Toxicology and Pharmacology*, 2006. **45**(1): p. 91-95.

140. Simpson, J.M., V.J. McCracken, H.R. Gaskins, and R.I. Mackie, *Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA Amplicons To Monitor Changes in Fecal Bacterial Populations of Weaning Pigs after Introduction of Lactobacillus reuteri Strain MM53*. *Appl. Environ. Microbiol.*, 2000. **66**(11): p. 4705-4714.

141. Sriramulu, D.D., M. Liang, D. Hernandez-Romero, E. Raux-Deery, H. Lunsdorf, J.B. Parsons, . . . M.B. Prentice, *Lactobacillus reuteri DSM 20016 Produces Cobalamin-Dependent Diol Dehydratase in Metabolosomes and Metabolizes 1,2-Propanediol by Disproportionation*. *Journal of Bacteriology*, 2008. **190**(13): p. 4559-4567.

142. Sasaki, Y., M. Laivenieks, and J.G. Zeikus, *Lactobacillus reuteri* ATCC 53608 *mdh* gene cloning and recombinant mannitol dehydrogenase characterization. *Applied Microbiology and Biotechnology*, 2005. **68**(1): p. 36-41.

143. Shornikova, A., I. Casas, E. Isolauri, H. Mykkänen, and T. Vesikari, *Lactobacillus reuteri* as a therapeutic agent in acute diarrhea in young children. *Journal of Pediatric Gastroenterology and Nutrition*, 1997. **24**(4): p. 399.

144. Savino, F., E. Pelle, E. Palumeri, R. Oggero, and R. Miniero, *Lactobacillus reuteri* (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. *Pediatrics*, 2007. **119**(1): p. e124.

145. Indrio, F., G. Riezzo, F. Raimondi, M. Bisceglia, L. Cavallo, and R. Francavilla, The Effects of Probiotics on Feeding Tolerance, Bowel Habits, and Gastrointestinal Motility in Preterm Newborns. *The Journal of Pediatrics*, 2008. **152**(6): p. 801-806.

146. Bottcher, M., T. Abrahamsson, M. Fredriksson, and T. Jakobsson, Low breast milk TGF- β 2 is induced by *Lactobacillus reuteri* supplementation and associates with reduced risk of sensitization during infancy. *Pediatric Allergy and Immunology*, 2008. **19**(6): p. 497-504.

147. Wolf, B.W., K.B. Wheeler, D.G. Ataya, and K.A. Garleb, Safety and tolerance of *Lactobacillus reuteri* supplementation to a population infected with the human immunodeficiency virus. *Food and Chemical Toxicology*, 1998. **36**(12): p. 1085-1094.

148. Møller, P.L., A. Pærregaard, M. Gad, N.N. Kristensen, and M.H. Claesson, Colitic scid mice fed *Lactobacillus* spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells. *Inflammatory Bowel Diseases*, 2005. **11**(9): p. 814-819.

149. Schreiber, O., J. Petersson, M. Phillipson, M. Perry, S. Roos, and L. Holm, *Lactobacillus reuteri* prevents colitis by reducing P-selectin-associated leukocyte-and platelet-endothelial cell interactions. *American Journal of Physiology- Gastrointestinal and Liver Physiology*, 2009. **296**(3): p. 534-542.

150. Madsen, K.L., J.S. Doyle, L.D. Jewell, M.M. Tavernini, and R.N. Fedorak, *Lactobacillus* species prevents colitis in interleukin 10 gene-deficient mice. *Gastroenterology*, 1999. **116**(5): p. 1107-1114.

151. Fabia, R., A. Ar'Rajab, M. Johansson, R. Willen, R. Andersson, G. Molin, and S. Bengmark, The effect of exogenous administration of *Lactobacillus reuteri* R2LC and oat fiber on acetic acid-induced colitis in the rat. *Scandinavian Journal of Gastroenterology*, 1993. **28**(2): p. 155-162.

152. Livingston, M., D. Loach, M. Wilson, G. Tannock, and M. Baird, Gut commensal *Lactobacillus reuteri* 100-23 stimulates an immunoregulatory response. *Immunology and Cell Biology*, 2009. **88**: p. 99-102.

153. Hoffmann, M., E. Rath, G. Holzlwimmer, L. Quintanilla-Martinez, D. Loach, G. Tannock, and D. Haller, *Lactobacillus reuteri* 100-23 Transiently Activates Intestinal Epithelial Cells of Mice That Have a Complex Microbiota during Early Stages of Colonization. *Journal of Nutrition*, 2008. **138**(9): p. 1684-1691.

154. Flemming, H. and J. Wingender, The biofilm matrix. *Nature Reviews Microbiology*, 2010. **8**(9): p. 623-633.

155. van Loosdrecht, M.C., J. Lyklema, W. Norde, and A.J. Zehnder, Influence of interfaces on microbial activity. *Microbiological Reviews*, 1990. **54**(1): p. 75-87.

156. Tannock, G.W., S. Ghazally, J. Walter, D. Loach, H. Brooks, G. Cook, . . . C. Hertel, Ecological Behavior of *Lactobacillus reuteri* 100-23 Is Affected by Mutation of the luxS Gene. *Applied Environmental Microbiology*, 2005. **71**(12): p. 8419-8425.

157. Lebeer, S., T.L.A. Verhoeven, M. Perea Velez, J. Vanderleyden, and S.C.J. De Keersmaecker, Impact of Environmental and Genetic Factors on Biofilm

Formation by the Probiotic Strain Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2007. **73**(21): p. 6768-6775.

158. Macfarlane, S. and J. Dillon, *Microbial biofilms in the human gastrointestinal tract.* Journal of Applied Microbiology, 2007. **102**(5): p. 1187-1196.

159. Reniero, R., P. Cocconcelli, V. Bottazzi, and L. Morelli, *High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor.* Journal of General Microbiology, 1992. **138**(4): p. 763-768.

160. Schachtsiek, M., W.P. Hammes, and C. Hertel, *Characterization of Lactobacillus coryniformis DSM 20001T Surface Protein Cpf Mediating Coaggregation with and Aggregation among Pathogens.* Applied Environmental Microbiology, 2004. **70**(12): p. 7078-7085.

161. Bujnakova, D. and V. Kmet, *Aggregation of Animal Lactobacilli with O157 Enterohemorrhagic Escherichia coli.* Journal of Veterinary Medicine, Series B, 2002. **49**(3): p. 152-154.

162. Cesena, C., L. Morelli, M. Alander, T. Siljander, E. Tuomola, S. Salminen, . . . A. von Wright, *Lactobacillus crispatus and its Nonaggregating Mutant in Human Colonization Trials.* Journal of Dairy Science, 2001. **84**(5): p. 1001-1010.

163. Busscher, H. and A. Weerkamp, *Specific and non-specific interactions in bacterial adhesion to solid substrata.* Federation of European Microbiological Societies Microbiology Letters, 1987. **46**(2): p. 165-173.

164. Israelachvili, J., *Intermolecular & Surface Forces.* 2 ed. 1991, Oxford: Academic Press.

165. Vadillo-Rodriguez, V., H.J. Busscher, W. Norde, J. de Vries, and H.C. van der Mei, *Dynamic Cell Surface Hydrophobicity of Lactobacillus Strains with and without Surface Layer Proteins.* J. Bacteriol., 2004. **186**(19): p. 6647-6650.

166. Whitfield, C. and A.V. Miguel, eds. *Biosynthesis and Expression of Cell-Surface Polysaccharides in Gram-Negative Bacteria.* Advances in Microbial Physiology ed. A.H. Rose. Vol. 35. 1993, Academic Press Limited: San Diego

167. Krieg, N.R., *Prokaryotic Domains*, in *Bergey's Manual of Systematic Bacteriology Second Edition*, D.R. Boone and R.W. Castenholz, Editors. 2009, Springer: New York, USA. p. 25.

168. Antikainen, J., L. Anton, J. Sillanpää, and T.K. Korhonen, *Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly.* Molecular Microbiology, 2002. **46**(2): p. 381-394.

169. Jakava-Viljanen, M., S. Avall-Jaaskelainen, P. Messner, U.B. Sleytr, and A. Palva, *Isolation of Three New Surface Layer Protein Genes (slp) from Lactobacillus brevis ATCC 14869 and Characterization of the Change in Their Expression under Aerated and Anaerobic Conditions.* Journal of Bacteriology, 2002. **184**(24): p. 6786-6795.

170. Avall-Jääskeläinen and Palva, *Lactobacillus surface layers and their applications.* Federation of European Microbiological Societies Microbiology Letters, 2005. **29**(3): p. 511-529.

171. Vélez, M.P., S.C.J.D. Keersmaecker, and J. Vanderleyden, *Adherence factors of Lactobacillus in the human gastrointestinal tract.* Federation of European Microbiological Societies Microbiology Letters, 2007. **276**(2): p. 140-148.

172. Roberts, I., *The biochemistry and genetics of capsular polysaccharide production in bacteria.* Annual Reviews in Microbiology, 1996. **50**(1): p. 285-315.

173. Kankainen, M., L. Paulin, S. Tynkkynen, I. von Ossowski, J. Reunanan, P. Partanen, . . . W.M. de Vos, *Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.* Proceedings of the National Academy of Sciences, 2009. **106**(40): p. 17193-17198.

174. von Ossowski, I., J. Reunanen, R. Satokari, S. Vesterlund, M. Kankainen, H. Huhtinen, . . . A. Palva, *Mucosal Adhesion Properties of the Probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED Pilin Subunits*. Applied and Environmental Microbiology, 2010. **76**(7): p. 2049-2057.

175. Mandlik, A., A. Das, and H. Ton-That, *The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria*. Proceedings of the National Academy of Sciences, 2008. **105**(37): p. 14147-14152.

176. Proft, T. and E. Baker, *Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease*. Cellular and Molecular Life Sciences, 2009. **66**(4): p. 613-635.

177. Scott, J. and D. Zähner, *Pili with strong attachments: Gram-positive bacteria do it differently*. Molecular Microbiology, 2006. **62**(2): p. 320-330.

178. Kline, K.A., S. Fälker, S. Dahlberg, S. Normark, and B. Henriques-Normark, *Bacterial Adhesins in Host-Microbe Interactions*. Cell Host & Microbe, 2009. **5**(6): p. 580-592.

179. Hynonen, U., B. Westerlund-Wikstrom, A. Palva, and T.K. Korhonen, *Identification by Flagellum Display of an Epithelial Cell- and Fibronectin-Binding Function in the SlpA Surface Protein of Lactobacillus brevis*. Journal of Bacteriology, 2002. **184**(12): p. 3360-3367.

180. Ruas-Madiedo, P. and C. De los Reyes-Gavilan, *Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria*. Journal of Dairy Science, 2005. **88**(3): p. 843-856.

181. Wingender, J., T. Neu, and H. Flemming, *What are bacterial extracellular polymeric substances*, in *Microbial Extracellular Polymeric Substances*, J. Wingender, T. Neu, and H. Flemming, Editors. 1999, Springer: London. p. 1-19.

182. Allison, D., *Exopolysaccharide production in bacterial biofilms*. Biofilm Journal, 1998. **3**: p. 1.

183. Ruas-Madiedo, P., M. Gueimonde, A. Margolles, L.-G. de los, C.G. n, and S. Salminen, *Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus*. Journal of Food Protection, 2006. **69**: p. 2011-2015.

184. Navarre, W.W. and O. Schneewind, *Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope*. Microbiology and Molecular Biology Reviews, 1999. **63**(1): p. 174-229.

185. Båth, K., S. Roos, T. Wall, and H. Jonsson, *The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence*. Federation of European Microbiological Societies Microbiology Letters, 2005. **253**(1): p. 75-82.

186. Pijkeren, J., C. Canchaya, and K. Ryan, *Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118*. Applied and Environmental Microbiology, 2006. **72**(6): p. 4143-4153.

187. Kirjavainen, P.V., A.C. Ouwehand, E. Isolauri, and S.J. Salminen, *The ability of probiotic bacteria to bind to human intestinal mucus*. Federation of European Microbiological Societies Microbiology Letters, 1998. **167**(2): p. 185-189.

188. Ouwehand, A.C., P.V. Kirjavainen, M.M. Grönlund, E. Isolauri, and S.J. Salminen, *Adhesion of probiotic micro-organisms to intestinal mucus*. International Dairy Journal, 1999. **9**(9): p. 623-630.

189. Ouwehand, A.C., P. Niemi, and S.J. Salminen, *The normal faecal microflora does not affect the adhesion of probiotic bacteria in vitro*. Federation of European Microbiological Societies Microbiology Letters, 1999. **177**(1): p. 35-38.

190. Tuomola, E.M., A.C. Ouwehand, and S.J. Salminen, *Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins*. International Journal of Food Microbiology, 2000. **60**(1): p. 75-81.

191. Jonsson, H., E. Ström, and S. Roos, *Addition of mucin to the growth medium triggers mucus-binding activity in different strains of *Lactobacillus reuteri* in vitro*. Federation of European Microbiological Societies Microbiology Letters, 2001. **204**(1): p. 19-22.

192. Ouwehand, A.C., S. Salminen, S. Tolkko, P. Roberts, J. Ovaska, and E. Salminen, *Resected human colonic tissue: new model for characterizing adhesion of lactic acid bacteria*. Clinical and Diagnostic Laboratory Immunology, 2002. **9**(1): p. 184-186.

193. Rinkinen, M., E. Westermarck, S. Salminen, and A.C. Ouwehand, *Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus*. Veterinary Microbiology, 2003. **97**(1-2): p. 55-61.

194. Styriak, I., R. Nemcová, Y.H. Chang, and Å. Ljungh, *Binding of extracellular matrix molecules by probiotic bacteria*. Letters in Applied Microbiology, 2003. **37**(4): p. 329-333.

195. Uchida, H., K. Fujitani, Y. Kawai, H. Kitazawa, A. Horii, K. Shiiba, . . . T. Saito, *A new assay using surface plasmon resonance (SPR) to determine binding of the *Lactobacillus acidophilus* group to human colonic mucin*. Bioscience, Biotechnology, and Biochemistry, 2004. **68**(5): p. 1004-1010.

196. Kinoshita, H., H. Uchida, Y. Kawai, H. Kitazawa, K. Miura, K. Shiiba, . . . T. Saito, *Quantitative evaluation of adhesion of *lactobacilli* isolated from human intestinal tissues to human colonic mucin using surface plasmon resonance (BIACORE assay)*. Journal of Applied Microbiology, 2007. **102**(1): p. 116-123.

197. Collado, M.C., J. Meriluoto, and S. Salminen, *Development of New Probiotics by Strain Combinations: Is It Possible to Improve the Adhesion to Intestinal Mucus?* Journal of Dairy Science, 2007. **90**(6): p. 2710-2716.

198. Sun, J., G.-W. Le, Y.-H. Shi, and G.-W. Su, *Factors involved in binding of *Lactobacillus plantarum* Lp6 to rat small intestinal mucus*. Letters in Applied Microbiology, 2007. **44**(1): p. 79-85.

199. Tallon, R., S. Arias, P. Bressollier, and M.C. Urdaci, *Strain- and matrix-dependent adhesion of *Lactobacillus plantarum* is mediated by proteinaceous bacterial compounds*. Journal of Applied Microbiology, 2007. **102**(2): p. 442-451.

200. Muñoz-Provencio, D., M. Llopis, M. Antolín, I. de Torres, F. Guarner, G. Pérez-Martínez, and V. Monedero, *Adhesion properties of *Lactobacillus casei* strains to resected intestinal fragments and components of the extracellular matrix*. Archives of Microbiology, 2009. **191**(2): p. 153-161.

201. Van den Abbeele, P., C. Grootaert, S. Possemiers, W. Verstraete, K. Verbeken, and T. Van de Wiele, *In vitro model to study the modulation of the mucin-adhered bacterial community*. Applied Microbiology and Biotechnology, 2009.

202. Lindén, S., C. Wickström, G. Lindell, K. Gilshenan, and I. Carlstedt, *Four Modes of Adhesion are Used During *Helicobacter pylori* Binding to Human Mucins in the Oral and Gastric Niches*. Helicobacter, 2008. **13**(2): p. 81-93.

203. Blomberg, L., A. Henriksson, and P.L. Conway, *Inhibition of adhesion of *Escherichia coli* K88 to piglet ileal mucus by *Lactobacillus* spp*. Applied Environmental Microbiology, 1993. **59**(1): p. 34-39.

204. Tuomola, E.M., A.C. Ouwehand, and S.J. Salminen, *The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus*. Federation of European Microbiological Societies Immunology & Medical Microbiology, 1999. **26**(2): p. 137-142.

205. Vesterlund, S., M. Karp, S. Salminen, and A.C. Ouwehand, *Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria*. *Microbiology*, 2006. **152**(6): p. 1819-1826.

206. Huang, J.Y., S.M. Lee, and S.K. Mazmanian, *The human commensal *Bacteroides fragilis* binds intestinal mucin*. *Anaerobe*, 2011. **17**(4): p. 137-141.

207. Dague, E., D.T.L. Le, S. Zanna, P. Marcus, P. Loubière, and M. Mercier-Bonin, *Probing In Vitro Interactions between *Lactococcus lactis* and Mucins Using AFM*. *Langmuir*, 2010. **26**(13): p. 11010-11017.

208. Henriksson, A. and P.L. Conway, *Adhesion of *Lactobacillus fermentum* 104-S to Porcine Stomach Mucus*. *Current Microbiology*, 1996. **33**(1): p. 31-34.

209. Matsumura, A., T. Saito, M. Arakuni, H. Kitazawa, Y. Kawai, and T. Itoh, *New Binding Assay and Preparative Trial of Cell-Surface Lectin from *Lactobacillus acidophilus* Group Lactic Acid Bacteria*. *Journal of Dairy Science*, 1999. **82**(12): p. 2525-2529.

210. van Geel-Schutten, G.H., F. Flesch, B. ten Brink, M.R. Smith, and L. Dijkhuizen, *Screening and characterization of *Lactobacillus* strains producing large amounts of exopolysaccharides*. *Applied Microbiology and Biotechnology*, 1998. **50**(6): p. 697-703.

211. Schembri, M.A., D. Dalsgaard, and P. Klemm, *Capsule Shields the Function of Short Bacterial Adhesins*. *Journal of Bacteriology*, 2004. **186**(5): p. 1249-1257.

212. Lorca, G., M.a.I. Torino, G.F.d. Valdez, and Å. Ljungh, *Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin*. *Federation of European Microbiological Societies Microbiology Letters*, 2002. **206**(1): p. 31-37.

213. Granato, D., F. Perotti, I. Masserey, M. Rouvet, M. Golliard, A. Servin, and D. Brassart, *Cell Surface-Associated Lipoteichoic Acid Acts as an Adhesion Factor for Attachment of *Lactobacillus johnsonii* La1 to Human Enterocyte-Like Caco-2 Cells*. *Applied and Environmental Microbiology*, 1999. **65**(3): p. 1071-1077.

214. Johnson-Henry, K.C., K.E. Hagen, M. Gordonpour, T.A. Tompkins, and P.M. Sherman, *Surface-layer protein extracts from *Lactobacillus helveticus* inhibit enterohaemorrhagic *Escherichia coli* O157:H7 adhesion to epithelial cells*. *Cellular Microbiology*, 2007. **9**(2): p. 356-367.

215. Avall-Jaaskelainen, S., K. Kyla-Nikkila, M. Kahala, T. Miikkulainen-Lahti, and A. Palva, *Surface Display of Foreign Epitopes on the *Lactobacillus brevis* S-Layer*. *Applied and Environmental Microbiology*, 2002. **68**(12): p. 5943-5951.

216. Buck, B.L., E. Altermann, T. Svingerud, and T.R. Klaenhammer, *Functional Analysis of Putative Adhesion Factors in *Lactobacillus acidophilus* NCFM*. *Applied and Environmental Microbiology*, 2005. **71**(12): p. 8344-8351.

217. Leeuw, E.d., X. Li, and W. Lu, *Binding characteristics of the *Lactobacillus brevis* ATCC 8287 surface layer to extracellular matrix proteins*. *Federation of European Microbiological Societies Microbiology Letters*, 2006. **260**(2): p. 210-215.

218. Conway, P.L. and S. Kjelleberg, *Protein-mediated Adhesion of *Lactobacillus fermentum* Strain 737 to Mouse Stomach Squamous Epithelium*. *Journal of General Microbiology*, 1989. **135**(5): p. 1175-1186.

219. Coconnier, M.H., T.R. Klaenhammer, S. Kerneis, M.F. Bernet, and A.L. Servin, *Protein-mediated adhesion of *Lactobacillus acidophilus* BG2FO4 on human enterocyte and mucus-secreting cell lines in culture*. *Applied and Environmental Microbiology*, 1992. **58**(6): p. 2034-2039.

220. Kos, B., J. ukovi, S. Vukovi, M. impraga, J. Frece, and S. Matoi, *Adhesion and aggregation ability of probiotic strain *Lactobacillus acidophilus* M92*. *Journal of Applied Microbiology*, 2003. **94**(6): p. 981-987.

221. Pretzer, G., J. Snel, D. Molenaar, A. Wiersma, P.A. Bron, J. Lambert, . . . M. Kleerebezem, *Biodiversity-Based Identification and Functional Characterization*

of the Mannose-Specific Adhesin of *Lactobacillus plantarum*. *Journal of Bacteriology*, 2005. **187**(17): p. 6128-6136.

222. Rojas, M. and P.L. Conway, *Colonization by lactobacilli of piglet small intestinal mucus*. *Journal of Applied Microbiology*, 1996. **81**(5): p. 474-480.

223. MacKenzie, D.A., L.E. Tailford, A.M. Hemmings, and N. Juge, *Crystal Structure of a Mucus-binding Protein Repeat Reveals an Unexpected Functional Immunoglobulin Binding Activity*. *Journal of Biological Chemistry*, 2009. **284**(47): p. 32444-32453.

224. Rojas, M., F. Ascencio, and P.L. Conway, *Purification and Characterization of a Surface Protein from Lactobacillus fermentum 104R That Binds to Porcine Small Intestinal Mucus and Gastric Mucin*. *Applied and Environmental Microbiology*, 2002. **68**(5): p. 2330-2336.

225. Miyoshi, Y., S. Okada, T. Uchimura, and E. Satoh, *A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells*. *Bioscience, Biotechnology, and Biochemistry*, 2006. **70**(7): p. 1622-1628.

226. Ouwehand, A.C. and P.L. Conway, *Purification and characterization of a component produced by Lactobacillus fermentum that inhibits the adhesion of K88 expressing Escherichia coli to porcine ileal mucus*. *Journal of Applied Microbiology*, 1996. **80**(3): p. 311-318.

227. Matsuo, Y., S. Okada, T. Uchimura, and E. Satoh, *Analysis of the receptor-like molecules from the human intestinal epithelial cells interacting with the adhesion factor of Lactobacillus reuteri*, in *Proceedings of the 4th International Scientific Conference on Probiotics and Prebiotics (IPC2010)*. 2010: Košice, Slovakia. p. 138-139 Poster Abstracts.

228. Granato, D., G.E. Bergonzelli, R.D. Pridmore, L. Marvin, M. Rouvet, and I.E. Corthesy-Theulaz, *Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins*. *Infection and Immunity*, 2004. **72**(4): p. 2160-2169.

229. Bergonzelli, G.E., D. Granato, R.D. Pridmore, L.F. Marvin-Guy, D. Donnicola, and I.E. Corthesy-Theulaz, *GroEL of Lactobacillus johnsonii La1 (NCC 533) Is Cell Surface Associated: Potential Role in Interactions with the Host and the Gastric Pathogen Helicobacter pylori*. *Infection and Immunity*, 2006. **74**(1): p. 425-434.

230. Kinoshita, H., H. Uchida, Y. Kawai, T. Kawasaki, N. Wakahara, H. Matsuo, . . . T. Saito, *Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin*. *Journal of Applied Microbiology*, 2008. **104**(6): p. 1667-1674.

231. Boekhorst, J., Q. Helmer, M. Kleerebezem, and R.J. Siezen, *Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria*. *Microbiology*, 2006. **152**(1): p. 273-280.

232. Kleerebezem, M., P. Hols, E. Bernard, T. Rolain, M. Zhou, R. Siezen, and P. Bron, *The extracellular biology of the lactobacilli*. *Federation of European Microbiological Societies Microbiology Reviews*, 2010. **34**(2): p. 199-230.

233. Coïc, Y.-M., F. Baleux, Ö. Poyraz, R. Thibeaux, E. Labruyere, F. Chretien, . . . B.S. Marteyn, *Design of a Specific Colonic Mucus Marker Using a Human Commensal Bacterium Cell Surface Domain*. *Journal of Biological Chemistry*, 2012. **287**(19): p. 15916-15922.

234. Juge, N., *Microbial adhesins to gastrointestinal mucus*. *Trends in Microbiology*, 2012. **20**(1): p. 30-39.

235. Du, Y., Y.-X. He, Z.-Y. Zhang, Y.-H. Yang, W.-W. Shi, C. Frolet, . . . Y. Chen, *Crystal structure of the mucin-binding domain of Spr1345 from Streptococcus pneumoniae*. *Journal of Structural Biology*, 2011. **174**(1): p. 252-257.

236. Bumbaca, D., J. Littlejohn, H. Nayakanti, A.H. Lucas, R. D.J, G. M.Y., and J. M.J., *Genome-based identification and characterization of a putative mucin-binding protein from the surface of <I>Streptococcus pneumoniae</I>*. Proteins: Structure, Function, and Bioinformatics, 2007. **66**(3): p. 547-558.

237. Antikainen, J., V. Kuppanen, K. Lähteenmäki, and T. Korhonen, *pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids*. Journal of Bacteriology, 2007. **189**(12): p. 4539-4543.

238. Adlerberth, I., S. Ahrne, M. Johansson, G. Molin, L. Hanson, and A. Wold, *A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29*. Applied and Environmental Microbiology, 1996. **62**(7): p. 2244-2251.

239. Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O.P. Kuipers, R. Leer, . . . R.J. Siezen, *Complete genome sequence of Lactobacillus plantarum WCFS1*. Proceedings of the National Academy of Sciences, 2003. **100**(4): p. 1990-1995.

240. Gross, G., J.v.d. Meulen, J. Snel, R.v.d. Meer, M. Kleerebezem, T.A. Niewold, . . . M.A. Smits, *Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium*. Federation of European Microbiological Societies Immunology & Medical Microbiology, 2008. **54**(2): p. 215-223.

241. Wang, B., H. Wei, J. Yuan, Q. Li, Y. Li, N. Li, and J. Li, *Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells*. Current Microbiology, 2008. **57**(1): p. 33-38.

242. Boekhorst, J., M.W.H.J. de Been, M. Kleerebezem, and R.J. Siezen, *Genome-Wide Detection and Analysis of Cell Wall-Bound Proteins with LPxTG-Like Sorting Motifs*. Journal of Bacteriology, 2005. **187**(14): p. 4928-4934.

243. Roos, S., P. Aleljung, N. Robert, B. Lee, T. Wadström, M. Lindberg, and H. Jonsson, *A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system?* Federation of European Microbiological Societies Microbiology Letters, 1996. **144**(1): p. 33-38.

244. Schulz, B.L., D. Oxley, N.H. Packer, and N.G. Karlsson, *Identification of two highly sialylated human tear-fluid DMBT1 isoforms: the major high-molecular-mass glycoproteins in human tears*. Biochemical Journal, 2002. **366**(2): p. 511-520.

245. Petersen, T.N., S. Brunak, G. von Heijne, and H. Nielsen, *SignalP 4.0: discriminating signal peptides from transmembrane regions*. Nature Methods, 2011. **8**(10): p. 785-786.

246. Torriani, S., F. Clementi, M. Vancanneyt, B. Hoste, F. Dellaglio, and K. Kersters, *Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplatantarum Species by RAPD-PCR and AFLP*. Systematic and Applied Microbiology, 2001. **24**(4): p. 554-560.

247. Van Reenen, C.A. and L.M.T. Dicks, *Evaluation of Numerical Analysis of Random Amplified Polymorphic DNA (RAPD)-PCR as a Method to Differentiate Lactobacillus plantarum; and Lactobacillus pentosus*. Current Microbiology, 1996. **32**(4): p. 183-187.

248. Cox, J. and M. Mann, *MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification*. Nature Biotechnology, 2008. **26**(12): p. 1367-1372.

249. Cox, J.r., N. Neuhauser, A. Michalski, R.A. Scheltema, J.V. Olsen, and M. Mann, *Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment*. Journal of Proteome Research, 2011. **10**(4): p. 1794-1805.

250. Searle, B.C., *Scaffold: A bioinformatic tool for validating MS/MS-based proteomic studies*. Proteomics, 2010. **10**(6): p. 1265-1269.

251. Bendtsen, J., L. Kiemer, A. Fausboll, and S. Brunak, *Non-classical protein secretion in bacteria*. BioMed Central Microbiology, 2005. **5**(1): p. 58-71.

252. Lu, Z., D. Szafron, R. Greiner, P. Lu, D.S. Wishart, B. Poulin, . . . R. Eisner, *Predicting subcellular localization of proteins using machine-learned classifiers*. Bioinformatics, 2004. **20**(4): p. 547-556.

253. Rahman, O., S. Cummings, D. Harrington, and I. Sutcliffe, *Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria*. World Journal of Microbiology and Biotechnology, 2008. **24**(11): p. 2377-2382.

254. Yu, N.Y., J.R. Wagner, M.R. Laird, G. Melli, S. Rey, R. Lo, . . . F.S.L. Brinkman, *PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes*. Bioinformatics, 2010. **26**(13): p. 1608-1615.

255. Roos, S., F. Karner, L. Axelsson, and H. Jonsson, *Lactobacillus mucosae* sp. nov., a new species with *in vitro* mucus-binding activity isolated from pig intestine. International Journal of Systematic and Evolutionary Microbiology, 2000. **50**(1): p. 251-258.

256. Schulz, B.L., N.H. Packer, and N.G. Karlsson, *Small-scale analysis of O-linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis*. Analytical Chemistry, 2002. **74**(23): p. 6088-6097.

257. Pereira, M.E.A. and E.A. Kabat, *Specificity of purified hemagglutinin (lectin) from *Lotus tetragonolobus**. Biochemistry, 1974. **13**(15): p. 3184-3192.

258. Olivares, M., M.P. Díaz-Ropero, R. Martín, J.M. Rodríguez, and J. Xaus, *Antimicrobial potential of four *Lactobacillus* strains isolated from breast milk*. Journal of Applied Microbiology, 2006. **101**(1): p. 72-79.

259. Heavens, D., L.E. Tailford, L. Crossman, F. Jeffers, D.A. MacKenzie, M. Caccamo, and N. Juge, *Genome sequence of a vertebrate gut symbiont *Lactobacillus reuteri* ATCC 53608*. Journal of Bacteriology, 2011. **193**(15): p. 4015-4016.

260. Aziz, R., D. Bartels, A. Best, M. DeJongh, T. Disz, R. Edwards, . . . O. Zagnitko, *The RAST Server: Rapid Annotations using Subsystems Technology*. BMC Genomics, 2008. **9**(1): p. 75-90.

261. Lidell, M.E., D.M. Moncada, K. Chadee, and G.C. Hansson, *Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel*. Proceedings of the National Academy of Sciences, 2006. **103**(24): p. 9298-9303.

262. Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, . . . D.A. Relman, *Diversity of the human intestinal microbial flora*. Science, 2005. **308**(5728): p. 1635-1638.

263. Lepage, P., P. Seksik, M. Sutren, M.-F. de la Cochetière, R. Jian, P. Marteau, and J. Doré, *Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD*. Inflammatory Bowel Diseases, 2005. **11**(5): p. 473-480.

264. Van den Abbeele, P., T. Van de Wiele, W. Verstraete, and S. Possemiers, *The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept*. FEMS Microbiology Reviews, 2011. **35**(4): p. 681-704.

265. Tannock, G.W., *Lactic Microbiota of pigs, mice and rats*, in *The Lactic Acid Bacteria in Health and Disease*, W. BJB, Editor. 1992, Elsevier: London. p. 21-48.

266. Johansson, M.L., G. Molin, B. Jeppsson, S. Nobaek, S. Ahrne, and S. Bengmark, *Administration of different *Lactobacillus* strains in fermented oatmeal soup: *in vivo* colonization of human intestinal mucosa and effect on the indigenous flora*. Appl. Environ. Microbiol., 1993. **59**(1): p. 15-20.

267. Molin, G., R. Andersson, S. Ahrné, C. Lönnér, I. Marklinder, M.L. Johansson, . . . S. Bengmark, *Effect of fermented oatmeal soup on the cholesterol level and the<it;>Lactobacillus</it;> colonization of rat intestinal mucosa*. Antonie Van Leeuwenhoek, 1992. **61**(3): p. 167-173.

268. Saxelin, M., *Lactobacillus GG—a human probiotic strain with thorough clinical documentation*. Food Reviews International, 1997. **13**(2): p. 293-313.

269. Juntunen, M., P.V. Kirjavainen, A.C. Ouwehand, S.J. Salminen, and E. Isolauri, *Adherence of Probiotic Bacteria to Human Intestinal Mucus in Healthy Infants and during Rotavirus Infection*. Clinical and Diagnostic Laboratory Immunology, 2001. **8**(2): p. 293-296.

270. Alander, M., R. Satokari, R. Korpela, M. Saxelin, T. Vilpponen-Salmela, T. Mattila-Sandholm, and A. von Wright, *Persistence of Colonization of Human Colonic Mucosa by a Probiotic Strain, Lactobacillus rhamnosusGG, after Oral Consumption*. Applied and Environmental Microbiology, 1999. **65**(1): p. 351-354.

271. MacKenzie, D.A., F. Jeffers, M.L. Parker, A. Vibert-Vallet, R.J. Bongaerts, S. Roos, . . . N. Juge, *Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri*. Microbiology, 2010. **156**(11): p. 3368-3378.

272. Plessis, E.M. and L.M.T. Dicks, *Evaluation of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri and Lactobacillus johnsonii*. Current Microbiology, 1995. **31**(2): p. 114-118.

273. Rodriguez-Ortega, M.J., N. Norais, G. Bensi, S. Liberatori, S. Capo, M. Mora, . . . G. Grandi, *Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome*. Nature Biotechnology, 2006. **24**(2): p. 191-197.

274. Jankovic, I., M. Ventura, V. Meylan, M. Rouvet, M. Elli, and R. Zink, *Contribution of Aggregation-Promoting Factor to Maintenance of Cell Shape in Lactobacillus gasseri 4B2*. Journal of Bacteriology, 2003. **185**(11): p. 3288-3296.

275. Morita, H., H. Toh, S. Fukuda, H. Horikawa, K. Oshima, T. Suzuki, . . . T. Takizawa, *Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production*. DNA Research, 2008. **15**: p. 151-161.

276. Jung, H., A.D. Robison, and P.S. Cremer, *Multivalent ligand–receptor binding on supported lipid bilayers*. Journal of Structural Biology, 2009. **168**(1): p. 90-94.

277. González-Rodríguez, I., B. Sánchez, L. Ruiz, F. Turroni, M. Ventura, P. Ruas-Madiedo, . . . A. Margolles, *Role of Extracellular Transaldolase from *Bifidobacterium bifidum* in Mucin Adhesion and Aggregation*. Applied and Environmental Microbiology, 2012. **78**(11): p. 3992-3998.

278. Sims, I.M., S.A. Frese, J. Walter, D. Loach, M. Wilson, K. Appleyard, . . . G.W. Tannock, *Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23*. International Society for Microbial Ecology Journal, 2011. **5**(7): p. 1115-1124.

279. Tjalsma, H., L. Lambooy, P. Hermans, and D. Swinkels, *Shedding & shaving: disclosure of proteomic expressions on a bacterial face*. Proteomics, 2008. **8**(7): p. 1415-1428.

280. Sánchez, B., P. Bressollier, S. Chaignepain, J.-M. Schmitter, and M.C. Urdaci, *Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG*. International Dairy Journal, 2009. **19**(2): p. 85-88.

281. Barinov, A., V. Loux, A. Hammani, P. Nicolas, P. Langella, D. Ehrlich, . . . M. van de Guchte, *Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria*. *Proteomics*, 2009. **9**(1): p. 61-73.

282. Giombini, E., M. Orsini, D. Carrabino, and A. Tramontano, *An automatic method for identifying surface proteins in bacteria: SLEP*. *BioMed Central Bioinformatics*, 2010. **11**(1): p. 39-45.

283. Ruiz, L., Y. Coute, B. Sanchez, C.G. de los Reyes-Gavilan, J.-C. Sanchez, and A. Margolles, *The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment*. *Microbiology*, 2009. **155**(3): p. 957-967.

284. Sommer, U., J. Petersen, M. Pfeiffer, P. Schrotz-King, and C. Morsczeck, *Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal Escherichia coli strains*. *Journal of Microbiological Methods*, 2010. **83**(1): p. 13-19.

285. Ong, S.-E., B. Blagoev, I. Kratchmarova, D.B. Kristensen, H. Steen, A. Pandey, and M. Mann, *Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics*. *Molecular & Cellular Proteomics*, 2002. **1**(5): p. 376-386.

286. Ong, S.-E., L.J. Foster, and M. Mann, *Mass spectrometric-based approaches in quantitative proteomics*. *Methods*, 2003. **29**(2): p. 124-130.

287. Patel, V., K. Thalassinos, S. Slade, J. Connolly, A. Crombie, J. Murrell, and J. Scrivens, *A comparison of labeling and label-free mass spectrometry-based proteomics approaches*. *Journal of Proteome Research*, 2009. **8**(7): p. 3752-3759.

288. Kotarski, S.F. and D.C. Savage, *Models for Study of the Specificity by Which Indigenous Lactobacilli Adhere to Murine Gastric Epithelia*. *Infection and Immunity*, 1979. **26**(3): p. 966-975.

289. Bendall, S.C., C. Hughes, M.H. Stewart, B. Doble, M. Bhatia, and G.A. Lajoie, *Prevention of Amino Acid Conversion in SILAC Experiments with Embryonic Stem Cells*. *Molecular & Cellular Proteomics*, 2008. **7**(9): p. 1587-1597.

290. Hashimoto, W., A. Ochiai, K. Momma, T. Itoh, B. Mikami, Y. Maruyama, and K. Murata, *Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ*. *Biochemical and Biophysical Research Communications*, 2009. **381**(1): p. 16-21.

291. Hirano, T., T. Minamino, and R.M. Macnab, *The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase*. *Journal of Molecular Biology*, 2001. **312**(2): p. 359-369.

292. Nambu, T., T. Minamino, R.M. Macnab, and K. Kutsukake, *Peptidoglycan-Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation in Salmonella typhimurium*. *Journal of Bacteriology*, 1999. **181**(5): p. 1555-1561.

293. Kikuchi, Y., H. Matsunami, M. Yamane, K. Imada, and K. Namba, *Crystallization and preliminary X-ray analysis of a C-terminal fragment of FlgJ, a putative flagellar rod cap protein from Salmonella*. *Acta Crystallographica Section F*, 2009. **65**(1): p. 17-20.

294. Buist, G., A. Steen, J. Kok, and O.P. Kuipers, *LysM, a widely distributed protein motif for binding to (peptido)glycans*. *Molecular Microbiology*, 2008. **68**(4): p. 838-847.

295. Bateman, A. and M. Bycroft, *The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD)*. *Journal of Molecular Biology*, 2000. **299**(4): p. 1113-1119.

296. Buist, G., J. Kok, K.J. Leenhouts, M. Dabrowska, G. Venema, and A.J. Haandrikman, *Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation*. *Journal of Bacteriology*, 1995. **177**(6): p. 1554-1563.

297. Torres, C.B., T. Lisabeth, D. Vsevolod, P. Abdelhakim, B. Nasr, J. Michalski, and I.C.A. Scaletsky, *Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli*. *Cellular Microbiology*, 2007. **9**(4): p. 1039-1049.

298. Mack, D., N. Siemssen, and R. Laufs, *Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent *Staphylococcus epidermidis*: evidence for functional relation to intercellular adhesion*. *Infection and Immunity*, 1992. **60**(5): p. 2048-2057.

299. Singh, R.D., M. Khullar, and N.K. Ganguly, *Role of anaerobiosis in virulence of *Salmonella typhimurium**. *Molecular and Cellular Biochemistry*, 2000. **215**(1): p. 39-46.

300. Buist, G., A.N.J.A. Ridder, J. Kok, and O.P. Kuipers, *Different subcellular locations of secretome components of Gram-positive bacteria*. *Microbiology*, 2006. **152**(10): p. 2867-2874.

301. Severin, A., E. Nickbarg, J. Wooters, S.A. Quazi, Y.V. Matsuka, E. Murphy, . . . S.B. Olmsted, *Proteomic Analysis and Identification of *Streptococcus pyogenes* Surface-Associated Proteins*. *Journal of Bacteriology*, 2007. **189**(5): p. 1514-1522.

302. Jeffery, C.J., *Moonlighting proteins: old proteins learning new tricks*. *Trends in Genetics*, 2003. **19**(8): p. 415-417.

303. Dreisbach, A., A. Otto, D. Becher, E. Hammer, A. Teumer, J.W. Gouw, . . . U. Völker, *Monitoring of changes in the membrane proteome during stationary phase adaptation of *Bacillus subtilis* using in vivo labeling techniques*. *Proteomics*, 2008. **8**(10): p. 2062-2076.

304. Soufi, B., C. Kumar, F. Gnad, M. Mann, I. Mijakovic, and B. Macek, *Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of *Bacillus subtilis**. *Journal of Proteome Research*, 2010. **9**(7): p. 3638-3646.

305. Ruiz, L., M. Gueimonde, Y. Couté, S. Salminen, J.-C. Sanchez, C.G. de los Reyes-Gavilán, and A. Margolles, *Evaluation of the ability of *Bifidobacterium longum* to metabolize human intestinal mucus*. *Federation of European Microbiological Societies Microbiology Letters*, 2011. **314**(2): p. 125-130.

306. Kuratsu, M., Y. Hamano, and T. Dairi, *Analysis of the *Lactobacillus* Metabolic Pathway*. *Applied and Environmental Microbiology*, 2010. **76**(21): p. 7299-7301.

307. Buist, G., G. Venema, and J. Kok, *Autolysis of *Lactococcus lactis* Is Influenced by Proteolysis*. *Journal of Bacteriology*, 1998. **180**(22): p. 5947-5953.

308. Fan, S.-Q., W. Huang, and L.-X. Wang, *Remarkable Transglycosylation Activity of Glycosynthase Mutants of Endo-D, an Endo- β -N-acetylglucosaminidase from *Streptococcus pneumoniae**. *Journal of Biological Chemistry*, 2012. **287**(14): p. 11272-11281.

309. Steen, A., G. Buist, G.J. Horsburgh, G. Venema, O.P. Kuipers, S.J. Foster, and J. Kok, *AcmA of *Lactococcus lactis* is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning*. *Federation of European Biochemical Societies Journal*, 2005. **272**(11): p. 2854-2868.

310. Eckert, C., M. Lecerf, L. Dubost, M. Arthur, and S. Mesnage, *Functional Analysis of AtlA, the Major N-Acetylglucosaminidase of *Enterococcus faecalis**. *Journal of Bacteriology*, 2006. **188**(24): p. 8513-8519.

311. Frankel, M.B. and O. Schneewind, *Determinants of Murein Hydrolase Targeting to Cross-wall of *Staphylococcus aureus* Peptidoglycan*. *Journal of Biological Chemistry*, 2012. **287**(13): p. 10460-10471.

312. Heilmann, C., J. Hartleib, M.S. Hussain, and G. Peters, *The Multifunctional *Staphylococcus aureus* Autolysin Aaa Mediates Adherence to Immobilized Fibrinogen and Fibronectin*. *Infection and Immunity*, 2005. **73**(8): p. 4793-4802.

313. Kilcoyne, M., J.Q. Gerlach, R. Gough, M.E. Gallagher, M. Kane, S.D. Carrington, and L. Joshi, *Construction of a Natural Mucin Microarray and Interrogation for Biologically Relevant Glyco-Epitopes*. Analytical Chemistry, 2012. **84**(7): p. 3330-3338.
314. Godula, K. and C.R. Bertozzi, *Density Variant Glycan Microarray for Evaluating Cross-Linking of Mucin-like Glycoconjugates by Lectins*. Journal of the American Chemical Society, 2012.
315. Le, Doan Thanh L., Y. Guérardel, P. Loubière, M. Mercier-Bonin, and E. Dague, *Measuring Kinetic Dissociation/Association Constants Between Lactococcus lactis Bacteria and Mucins Using Living Cell Probes*. Biophysical Journal, 2011. **101**(11): p. 2843-2853.