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Abstract

Using examples generated with a realistic model of the imaging physics, we have

assessed and compared the performance of three popular multi-scale vessel detectors

due to: Frangi et al., Sato et al. and Lorenz et al. We find that there is only a small

difference between the performances of the Frangi and Sato detectors for the conditions

considered in this work; for small-diameter vessels the response of these two detectors is

complex although both suggest some promise for segmenting the vessels in the collateral

bed around an occlusion. The Lorenz detector is shown to be the worst performing across

a range of conditions.

1 Introduction

Occlusive vascular disease affecting arterial circulations is the major and fastest growing

health problem worldwide, and underlies common conditions such as heart attack, stroke

and peripheral vascular disease. The World Heath Organisation estimates that these diseases

were responsible for 17.3 million deaths worldwide in 2008, forecast to rise to 23.6 million

in 2030. Occlusion of major arteries is naturally compensated, to some extent, by the devel-

opment of minor channels to carry blood around the occlusion, termed collateral circulation.

Traditionally, occlusive disease is treated by surgical methods although recently, phar-

macological treatments, especially biological products have been researched. Unlike bypass

or angioplasty, pharmacological candidates do not address the occlusion directly but are

thought to encourage the formation of additional or better collateral vessels either through

angiogenesis (the development of new blood vessels) and arteriogenesis (the development of

flow-carrying arterial circulation from capillary precursors). Currently the success of treat-

ments is judged on clinical endpoints like improved exercise ability or fewer amputations;

such endpoints are massively confounded by other variables apart from blood flow changes.
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Thus a major roadblock to the clinical evaluation of new drug treatments is the lack of an

objective anatomical measurement of any enhancement in the blood conveying capacity of a

collateral circulation—the development of such a methodology is our longer term goal. Such

a direct measure of anatomical change from before to after-treatment would not be subject

to confounding factors, and provide credible evidence of effect.

As a precursor to progress in this area, a means of accurately quantifying the properties

the collateral network is needed and a fundamental step in this is the extraction of the, often

fine, vessel segments which comprise the collateral bed. We have consequently studied the

performance of a number of popular, low-level multi-scale vessel extraction algorithms [2,

4, 5] for digital-subtraction X-ray angiography, a common diagnostic procedure for patients

presenting with the symptoms of occlusive vascular disease. This preliminary study seeks

to compare performance in the ideal case of an isolated, straight vessel of infinite extent—

see, however, Section 4 (Future Work). (We envisage that the low-level detector outputs

will ultimately be combined to extract the whole vessel network using tracking, or Markov

random field approaches; such higher-level methods are not the immediate concern of this

paper.)

Here, we principally address two research questions: i) Which low-level vessel detector

has the ‘best’ properties, and ii) How do these detectors perform on small-diameter vessels

since these are a major concern for imaging collateral beds. We find that within the limits of

this work, there is little to choose between the Frangi and Sato detectors. As far as we are

aware, we are the first to present a quantitative comparison of these vessel detectors.

2 Methodology

We compare the performance of three much-used multi-scale detectors due to: Frangi et

al. [2], Sato et al. [5] and Lorenz et al. [4]. All three algorithms calculate the eigen-

decomposition of the Hessian matrix of the image at multiple scales. They then compute

some scalar measure of ‘vessel-ness’ at each scale and select as the final vessel-ness mea-

sure, the maximum response across all scales. Essentially, the detectors only differ in how

the hand-crafted scalar measures are calculated from the eigenvalues of the Hessian, λ1 and

λ2. The Frangi detector [2] computes as a measure of eigenvalue eccentricity RB = λ1/λ2,

where |λ1|≤ |λ2|. For some scale σ , the measure of ‘vessel-ness’, LF is given by:

LF(σ) =

{

0 λ2 > 0

exp(−RB
2/2β 2)[1− exp(−S 2/2c2)] otherwise

(1)

where S =
√

λ 2
1 +λ 2

2 . We have used Frangi’s suggestions of taking β = 0.5 and adjusting

c for best results.

The vessel-ness measure due to Sato [5] is defined, for |λ1|< |λ2|, by:

LS(σ) =







−λ2 exp(−
λ 2

1

2(α1λc)2 ) (λ2 < 0)∧ (λ1 < 0)

−λ2 exp(−
λ 2

1

2(α2λc)2 ) (λ2 < 0)∧ (λ1 > 0)

where α1 < α2. We have used Sato’s suggested values of α1 = 0.5 and α2 = 2.

For the (parameter-less) detector of Lorenz [4] and |λ1|≤ |λ2|, LL(σ) = |λ1|/|λ2|.
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We compute the Hessian matrix over the ten linearly-spaced scales of σ = 1 to 10 pixel

units and take the overall vessel-ness measure as the maximum detector response across all

scales. We then threshold this measure to decide a label (vessel of non-vessel).

Obtaining ground-truth data in medical image processing is an enduring problem due to

the uncertainties of inter- and intra-expert hand labelling. Here we adopt the well-established

procedure of using synthetic data based on a physically-realistic model of the image forma-

tion process. Starting with out assumption of an isolated, straight vessel of infinite extent

and circular cross-section irradiated with a uniform X-ray beam normal to the longitudinal

vessel direction. We assume the vessel is uniformly filled with contrast agent. As the rays

pass through the vessel, the intensity of the X-ray beam will be reduced according to the

Beer-Lambert Law, I = I0 exp(−αℓ) where I0 is the incident beam intensity, α is the ab-

sorption coefficient, and ℓ is the path length through the (contrast agent in the) vessel. See

Figure 1. Cleary ℓ = ℓ(x), where x is the spatial dimension in Figure 1, which also shows

the resulting intensity profile projected onto the camera’s focal plane. We selected α to give

maximum contrast at the largest vessel diameter considered while allowing±3σ ‘headroom’

for the largest noise perturbations of the pixel values in the output image. The process thus

mirrors a radiographer optimising the X-ray imaging conditions.
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Figure 1: Formation of the vessel intensity

model. The lower figure shows the projected

intensity profile.

A distinguishing feature of the present

work is the realistic image formation

model: previous work, for example Kris-

sian et al. [3], has usually assumed the

projected vessel intensity profile is Gaus-

sian with a physically-implausible infinite

region of support. Drechsler and Laura [1]

used the data of Krissian et al. in a qualita-

tive comparison of vessel detectors.

We have no a priori reason to suppose

that a vessel will present at any particular

orientation to, or displacement from the im-

age lattice so we select a uniformly-random

orientation θ ∈ [0 . . .45o] and a displace-

ment ∆x ∈ [−0.5 pixel . . .+ 0.5 pixel] from

the notional origin in Figure 1. (In prac-

tice, these are applied by an affine trans-

formation of the projected intensity image

above.) To account for the limitations of

the imaging optics, we convolve the affine-

transformed image with a Gaussian of

σPSF = 1 and then add Gaussian-distributed

noise of some σN which assumes that the

dominant noise process is due to thermal

noise in the camera/electronics. Finally, we

quantise the pixel intensities into the range

[0 . . .255] to mimic analogue-to-digital con-

version in the camera. This final image con-

taining a single vessel is passed to one of

the above detectors. In assessing a detector, we consider only the label of the central pixel
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of the image through which the centreline of the vessel passes. Our rationale here is that

the signal-to-noise ratio is maximised at the centre of the vessel—if the vessel cannot be

detected at its centre, it cannot probably be detected anywhere else across its diameter. We

thus implicitly investigate the upper bound of the detectors’ performance. Additionally, each

image represents an independent Monte Carlo trial.

To form counter-example images (i.e. genuine absence of a vessel) we form an image of

uniform background intensity but with each pixel corrupted by noise of the same variance as

the positive vessel examples. The method of generating positive and negative examples thus

closely mirrors the process of digital-subtraction X-ray angiography.

We have repeated the above steps of generating positive and negative vessel examples

in a Monte Carlo experiment (1000 trials) and and labelled with each of the detectors using

various thresholds to construct receiver operating characteristic (ROC) plots. We also use

the area-under-the-curve (AUC) as a summary statistic for the ROC plot.

3 Results

We have considered a range of vessel diameters (D ∈ [1,3,5,7 . . . ,15] pixel units) and noise

powers (σN ∈ [5,10,15,20,25]). For brevity we only show results for the four permutations

of small/large vessels, and lowest/highest noise powers since these represent the extremes

of detector performance between which there is a more-or-less smooth variation. For the

(physically unrealistic) absence of noise (σN = 0) all three detectors perform ‘perfectly’

(AUC = 1.0) apart from the case of unit vessel width (D = 1) where the Frangi and Lorenz

detectors are tied (AUC = 0.95) and perform slightly worse than Sato (AUC = 0.97).

Fig. 2(a) and 2(b) show the ROC plots for D = 1 and the extremes of (a) low-noise

(σN = 5) and (b) high-noise (σN = 25). Interestingly, in the low-noise regime all three

detectors perform to some degree although the Sato and Frangi detectors are clearly better

than Lorenz. (The straight line segments of the ROC plots are due to the discontinuities

introduced by the case of λ2 = 0 in Eqn. 1, and so on.) The detectors’ behaviour is quite

complex with the ROC plots crossing although there is generally little to choose between

Frangi and Sato. Note that for the case of high noise, the performance of all three methods

reduces to little better than random guessing—the 45o line—as might be expected since the

signal-to-noise (SNR) ratio becomes very low for this case. Since we have use a fixed value

of attenuation coefficient (α), the SNR reduces as a function of reducing vessel diameter,

hence small vessels are intrinsically harder to label.

For D = 1 and 3, and σN = 25 (high noise), there is little to choose between the perfor-

mances of all three detectors. There is , however, an interesting transition between D = 3

and D = 5 (see Fig. 2(c) and (d)) where the Frangi and Sato algorithms begin to out-perform

Lorenz, with Frangi slightly ahead of Sato, a trend which continues up to large diameters.

Fig. 2(e) and (f) show the corresponding plots for D = 15. At this stage, the Sato and

Frangi algorithms both perform ‘perfectly’ (AUC = 1) regardless of noise power. The Lorenz

detector, however, is clearly inferior, even for low noise powers.

As a summary, Fig. 3 shows the AUC statistic vs. vessel diameter D. The region between

these two pairs of curves (low noise and high noise) delineates the useful operating envelope

of the two detectors.
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(a) (b) (c)

(d) (e) (f)

Figure 2: ROC plots for: D = 1 and (a) low-noise (σN = 5) and (b) high-noise (σN = 25).

(c) D = 3 and (d) D = 5; high-noise (σN = 25). D = 15 and low-noise (e) (σN = 5) and (f)

high-noise (σN = 25).

4 Future Work

Figure 3: AUC vs. vessel diameter D for the

Frangi and Sato detectors only.

The present preliminary report considers

only the idealised case of a straight, isolated

vessel. In future work, we will consider the

effects on detector response of curved ves-

sels and bifurcations. In addition, since the

detectors are all multi-scale approaches, we

anticipate that the responses from two ves-

sels which approach closer than the scale

of a Gaussian filter will interact with each

other. For extracting vessel networks this

is an important factor. Moreover, the ves-

sels in a collateral bed frequently present

as a ‘corkscrew’ and it is possible that the

response (even) from an isolated corkscrew

collateral could be affected by the proxim-

ity of other sections of the same vessel. These and other factors will be the subject of future

studies.

We are assuming all vessels lie in a plane and can be imaged normal to the longitudinal



PAREDES et al.: COMPARISON OF VESSEL DETECTION ALGORITHMS

vessel direction. In reality, it is highly likely that vessels will have some component passing

into a 2D image plane so extracting an entire network will be problematic. In this situation,

3D magnetic resonance angiography (MRA) will be highly desirable. We believe, given

a suitable MRI simulator, the methodology in this paper can be directly applied to MRA

images—this too is an area of future work.

5 Conclusions

From constructing a physics-based model of the process by which the image of a vessel is

formed in digital-subtraction X-ray angiography, we have compared the performances of the

vessel detectors devised by: Frangi et al., Sato et al. and Lorenz et al. On the basis of the

present results, the Lorenz detector is clearly inferior to the Frangi and Sato detectors be-

tween which there is little to choose for anything other than the smallest vessel diameters.

Whether Frangi or Sato is better for vessels on the 1 pixel scale would seem to depend on ex-

act operating point. Nonetheless, these methods seem to offer some promise for segmenting

fine vessels if combined with a contextual approach (e.g. Markov random fields).

The present results are limited to straight, isolated vessels. Whether any detector is

superior for real, rather than idealised, vessel networks remains to be established in future

work. For example, qualitative observations suggest the Frangi detector does not perform

well at vessel bifurcations [1].
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