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Abstract. The generalised Burgers’ equation has been subject to a considerable amount of research
on how the equation should behave according to asymptotic analysis, however there has been limited
research verifying the asymptotic analysis. In order to verify the asymptotic analysis, this paper aims
to run long time and detailed numerical simulations of Burgers’ equation by employing suitable
rescalings of Burgers’ equation. It is hoped that this technique will make it possible to notice subtle
changes in the shock structure which would otherwise be impossible to observe. The main aim of
this paper is to validate the numerical methods used in order to allow further research into shock
evolution where further relaxation effects will be included.
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BACKGROUND AND BREAKDOWN OF WEAK SHOCK THEORY

The generalised Burgers’ equation is best known in the following form:

∂u
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+u
∂u
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= εg(t)
∂ 2u
∂x2 , (1)

where ε� 1 is the inverse Reynolds’ number and g(t)= 1, t+t0−1
2 ,exp( t

t0
) is the term due

to planar, cylindrical and spherical spreading respectively with t0 a parameter related to
the source amplitude. In this paper the aim is to investigate the leading order asymptotic
behaviour and old age solutions. Crighton and Scott [1] considered asymptotic solutions
of (1) in the small ε limit for an initial N-wave For moderate times the solution consists
of a shock moving outwards with speed t

1
2 and the height decreasing as t−

1
2 . To capture

the internal structure of a moving shock requires sophisticated numerical techniques.
Instead we use rescalings to ensure that we deal with a shock which is centred at ±1
with amplitude 1 by letting X = t−

1
2 x, U = t

1
2 u and T = ln t. This reduces (1) to:

UT =

[
U
2
+

(
X
2
−U

)
UX + εG(T )UXX

]
, U(X ,0) =

{
X for |X | ≤ 1
0 for |X |> 1

(2)

where G(T ) = 1, exp(T )
2 ,exp(exp(T )) corresponding to the planar, cylindrical and spher-

ical cases. The solution consists of an outer solution U = X for |X | < 1 together with
Taylor [2] shocks at X =±1. The leading order solution about X = 1 is given by:

U0 =
1
2
[1− tanh(θ)] , θ =

X− (1− ε
∫

g(T ))
4εg(T )

. (3)



The agrees with the equation derived by Crighton and Scott [1] in equation (3.8). Weak
shock theory can break down in three possible ways: The shock moves too far away
from its original location (i.e. ε

∫
g(T ) dT = O(1)), the shock width is no longer small

compared to the size of the N-wave (i.e. εg(T ) = O(1)), the leading order asymptotic
solution is no longer significantly larger than the next order correction term.

In order to see when the third condition breaks down we need to obtain the next order
behaviour of the modified Burgers’ equation. We accomplish this by searching for a
solution of the form U = U0 + εU1. U1 is determined as a function involving θ and
G(T ). The details of the solution are not included here for reasons of space but the result
obtained agrees with the form obtained by Crighton and Scott [1] in equation (3.13). It
is found that the third condition will break down when any one of; ε

∫
g(T )dT , εg(T ),

εg′(T ) = O(1). In due course we consider the hierarchy of breakdown for the cases of
planar, cylindrical and spherical spreading and compare the results with the numerical
solutions, but first we consider the old-age behaviour.

OLD AGE BEHAVIOUR

Returning to (1), as t→ 0, u→ 0 due to the dissipative term and as such we can ignore
the nonlinear effects in (1). We now set y = x(ε

∫
g)−

1
2 (and τ = t) to give:∫

g dτ

g
uτ =

y
2

uy +uyy, (4)

Now we have the equation in a form which is separable. Then writing u(x, t) =Y (y)T (τ)
in (4) we arrive at the following equations:

T ′ =
Ag∫

g
T, Y ′′+

y
2

Y ′−AY = 0, (5)

where A is a separation constant. The solution to (5) is:

T (τ) = B
(∫

g
)A

, Y = exp(−η
2) f (η), (6)

where η = y
2 and f satisfies the Hermite equation, f ′′− 2η f + λ f = 0, where λ =

−2(2A+ 1). This standard equation has polynomial solutions (Hermite Polynomials)
when λ = 2n (n an non-negative integer) and solutions that grow exponentially other-
wise. Exponentially growing solutions are not physically appropriate, and hence we are
restricted to λ = 0,2,4,6, ... which corresponds to A =−0.5,−1,−1.5, ... The condition
Y (0) = 0 restricts us to the integer values of A, of which A =−1 is the slowest decaying
and will dominate the behaviour at long times. We obtain that A =−1, f (η) = η and:

u(x, t) = D
(

xexp
(
− x2

4ε
∫

g dt

))(∫
g dt
)− 3

2

, (7)

where D = D(ε) is an undetermined constant dependent on the form of g(t). Now we
wish to numerically determine the constant for all three cases and compare the results to
the asymptotic expressions found by Crighton and Scott [1] and Enflo [3].



NUMERICAL SOLUTIONS

The numerical method used here is a finite difference approach using an uneven mesh
in order to provide higher resolution for the shock region solved by the Runge-Kutta
method in order to advance forward in time. In this section we’ll look at the three differ-
ent types of breakdown of the weak-shock theory mentioned earlier. The asymptotic pre-
dictions were confirmed by numerical results. Here, we only present key results which
best illustrate comparisons for the initial shock structure and old age solution.

From the leading order behaviour of (3) for the planar case we would expect the
shock location to move along the path 1− εT + O(ε2) and this to breakdown when
T ≈ O(ε−1). The comparison of numerical and asymptotic results of the shock location
is shown in Figure 1. By looking at the modified Burgers’ equation we would expect the

FIGURE 1. Asymptotic and Numerical Comparison of the shock location for the planar case with
ε = 0.005 and ε = 0.001 with predicted breakdowns when T ≈ 200 and 1000 respectively.

shock width to grow like 2ε exp(T ) for the cylindrical case and the shock width to grow
like 4ε exp(exp(T )) for the spherical case. The comparison of numerical and asymptotic
behaviour for the cylindrical and spherical cases are shown in Figure 2. For the old age

FIGURE 2. Asymptotic and Numerical Comparison for the normalised shock width for the cylindrical
and spherical cases

solution in the cylindrical case, the constant D has been determined by Enflo [3] through



FIGURE 3. The values of D for various values of ε for the cylindrical and spherical cases.

matching the tail region through to the main shock region and is given by:

D =
1
ε2

27
16
√

6e

[
1+2ε− 1

2

(
1+

8
3

ε

)(
π2

6
− ln2− 11

36

)]
. (8)

For the spherical case, the constant D has been found by Crighton and Scott [1] to be
C

1
2 (6π

1
2 ε

3
2 )−1 where C is such that ε exp(C)C−1 = 1. Now the comparison between the

asymptotic and numerical results for various values of ε are shown in Figure 3.

CONCLUSIONS

In this paper extensive research has been undertaken to verify asymptotic results of
Burgers’ equations using a variable mesh. Particular time has been spent trying to verify
the asymptotic predictions of the shock width and location using a numerical finite
difference scheme. Also, long age solutions have been investigated and the asymptotic
predictions have been found to hold true.
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