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Abstract 

The aim of this thesis was to examine how neutral and adaptive processes shape patterns 

of genetic diversity across populations of Berthelot’s pipit (Anthus berthelotii), a passerine 

bird endemic to the Canary Islands, Selvagens and Madeira archipelagos. To achieve this, I 

examined variation in pathogen infection, neutral microsatellites and functional major 

histocompatibility complex (MHC) genes. I first reviewed previous evidence for pathogen-

mediated selection at the MHC, and showed that differentiating between specific 

mechanisms of balancing selection may not be possible, and that many studies that have 

attempted to do so have not fully considered alternative explanations. In Berthelot’s 

pipit, I found marked differences in prevalence of avian malaria and pox across 

populations, and showed that these differences were stable over time, largely because 

they were determined by biogeographic features. This, combined with an observed effect 

on host body condition, suggests that populations face differential selection pressures 

from pathogens. Microsatellite analyses indicated that the pipit colonised northwards 

across its range, resulting in genetic bottlenecks in the Selvagens and Madeira 

archipelagos. I then used the pipit system to assess how population genetic analyses were 

influenced by microsatellite markers with different levels of variability; lower variability 

loci appear to more accurately reflect population divergence, whereas higher variability 

loci better reflect past changes in population size. I also found that two commonly used 

measures of differentiation (GST and Jost’s D) are both strongly affected by marker 

variability, but in different ways. Finally, I found that just 11-15 MHC variants persisted 

through the initial colonisation event. However, since the bottleneck, at least 26 

functional MHC alleles have been generated in situ across the different populations, all 

but two by gene conversion. Taken together, my results provide an interesting example of 

how founder events, mutation, drift and selection can interact to drive differentiation 

across natural populations.  
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1.1 A (very) brief history of genetic variation 

 For centuries, humans have been aware that variation in exists in natural populations, 

and that traits can be passed on to subsequent generations. Families have long been 

recognised to possess distinctive features, which pass from parent to offspring. In Ancient 

Greece and Egypt, the belief that variation existed and was heritable was so strong that 

rulers often married within families to keep the blood pure and strengthen the line of 

succession. Similarly, the importance of variation and inheritance in animal husbandry has 

been understood since Biblical times. In Genesis (30:25-43), Jacob, a shepherd, and his 

father-in-law Laban agree that all of the white sheep born into their flock would be 

Laban’s, and all of the black and streaked sheep would be Jacob’s. Jacob shrewdly mated 

his black sheep with Laban’s white sheep to produce predominantly streaked sheep. After 

a few generations, virtually no white animals were left for Laban. Jacob, then, had an 

understanding of variation, dominance and inheritance, long before the age of genetics. 

 

Although inheritance in a broad sense has been understood for centuries, the mechanism 

by which traits are passed onto subsequent generations was not understood until Mendel 

formed his theories of inheritance in 1866 (in fact not until much later, as Mendel’s work 

was largely ignored at the time). Most scientists in the 19th century, including Darwin, 

accepted a theory of inheritance by ‘blending’ (Charlesworth and Charlesworth 2009). 

However, others noted at the time, and afterwards, that inheritance by blending was 

impossible, as traits would become homogenised over time (Jenkin 1867; Fisher 1930). 

Mendelian inheritance solves this problem, as under particulate inheritance variation is 

maintained over time (Charlesworth and Charlesworth 2009). Unfortunately, however, 

Darwin remained unaware of Mendel’s work, and never came to an understanding of the 

extent and evolutionary role of genetic variation in natural populations. Indeed, this was 

not addressed in detail by scientists until the 1930s, when R.A Fisher (1930), Sewall 

Wright (1931) and J.B.S. Haldane (1932) consolidated Mendelian genetics with Darwin’s 

theory of natural selection, thereby laying the foundations of population genetic theory. 

Two schools of thought developed, often termed the “classical” and “balance” views (see 

Lewontin 1974; Avise 2004 for an overview). The classical school believed that genetic 

variation in natural populations was low because purifying selection generally operated to 

eliminate deleterious mutants; high variation would incur too much “genetic load” 
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(Kimura and Crow 1964). The balance school, on the other hand, believed that variation 

within populations was high, and maintained by balancing selection (Dobzhansky 1955). 

The degree of difference between the two views was stark, with proponents of the 

classical and balance hypothesis suggesting that the proportion of genes that are 

polymorphic in a typical populations was 0.1% and “towards 100%”, respectively (Muller 

1950; Wallace 1958). The debate, however, reached a stalemate, unable to progress until 

population-level genetic variation could be visualised directly. 

 

In 1966, three landmark papers were published which showed, thanks to the first 

application of electrophoresis to population-level data, that levels of protein (and by 

inference genetic) diversity in natural populations were far higher than previously 

expected (Harris 1966; Hubby and Lewontin 1966; Lewontin and Hubby 1966). Lewontin 

and Hubby (1966) showed that across five wild populations of Drosophila pseudoobscura, 

9 out of 18 randomly chosen allozyme loci were polymorphic in at least one population; a 

surprising finding which the authors struggled to explain. Similarly, Harris (1966) showed 

that in a single human population, 2 out of 10 randomly chosen enzyme loci were 

polymorphic, leading Harris to posit that “unless we have been excessively lucky in our 

choice of enzymes... polymorphism to a similar degree may a fairly common phenomenon 

among the very large number of enzymes that occur in the human organism”. 

 

The work of Lewontin, Hubby and Harris provided both the impetus and the methodology 

for other researchers to directly observe levels of enzyme polymorphism in wild animal 

and plant populations. Many such studies were carried out in a wide range of taxa, 

showing that, in almost all cases, extensive variation existed (reviewed in Lewontin 1973; 

Lewontin 1985). However, some authors argued that the enzymes chosen for most of 

these population-level studies were not representative of other protein coding genes, and 

that polymorphism levels had been overestimated (Brown and Langley 1979; Racine and 

Langley 1980). Further technical innovation enabled population biologists to visualise 

variation at the DNA level; including restriction fragment length polymorphism (RFLP) 

analyses in the late 1970s (Avise et al. 1979; Moritz et al. 1987), polymerase chain 

reaction (PCR) mediated DNA sequencing in the late 1980s (Saiki et al. 1986; 1988; Kocher 

et al. 1989), and massively parallel sequencing in the 2000s (Allendorf et al. 2010; Stapley 
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et al. 2010). Studies using these methods quickly dispelled any remaining doubts over 

whether appreciable genetic diversity existed in natural populations (Avise 2004), and 

fuelled extensive study and debate about the relative role of neutral and adaptive 

processes in shaping genetic variation in natural populations. 

 

1.2 Neutral and adaptive genetic variation 

In the 1960s and 1970s, some proponents of the “balance school” maintained that the 

discovery of extensive genetic variation in natural populations validated their hypothesis; 

this variation, they argued, could only be explained by genome-wide balancing selection 

(Wallace 1968). However, it was still generally assumed that all genetic variation was 

functional, and so proponents of the classical view were still troubled by the problem of 

genetic load. With this in mind, Motoo Kimura posited that most of the variation 

observed at the molecular level was the product of random mutations and genetic drift, 

rather than natural selection; the so-called “neutral theory” of molecular evolution 

(Kimura 1968a, b; King and Jukes 1969). The neutral theory did not challenge the premise 

of evolution by natural selection, but suggested that most evolutionary change, at least at 

the genetic level, was non-adaptive. Richard Dawkins, probably the most famous 

populariser of natural selection in recent times, was customarily succinct when he wrote 

the following, in The Blind Watchmaker (Dawkins 1986): 

 

“... the neutralists think — rightly, in my opinion — that adaptations are the tip of 

the iceberg: probably most evolutionary change, when seen at the molecular 

level, is non-functional.” 

 

The “selectionism vs. neutralism” debate that ensued after Kimura’s theory was 

published has been one of the most publicised in the history of evolutionary biology 

(Lewontin 1974; Nei 2005). While there is still heated debate (e.g. Hahn 2008; Nei et al. 

2010), some consensuses have emerged. Perhaps most importantly, it is clear that some 

DNA sequences have, or continue to be, subject to some form of natural selection, while 

others appear to have been neutral throughout their evolutionary history (Ford 2002). 

The assumption of selective neutrality at certain regions of the genome has enabled 

researchers to use molecular markers as ‘windows’ into the myriad of past and present 
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ecological and evolutionary processes occurring at the organism, population and species 

levels (Sunnucks 2000). Furthermore, great progress has been made in identifying the 

processes contributing to the distribution of molecular variation. In particular, large 

amounts of research, facilitated by access to genome-scale sequence data, have been 

devoted to identifying the regions of the genome that are (or have been) subject to 

natural selection (Bustamante et al. 2005; Andrés et al. 2009; Hohenlohe et al. 2010). In 

some cases, these approaches have been enabled researchers to identify how and why 

selection has operated to produce the patterns of variation observed in wild populations 

(e.g. Gratten et al. 2008; Linnen et al. 2009; Hohenlohe et al. 2010; Nadeau et al. 2012), 

although this remains an ongoing and exciting area. 

 

1.2.1 Neutral markers as windows into whole-organism processes 

Molecular markers can be used to estimate historical and present-day processes that 

occur at the level of the individual, population and organism. At the individual level, 

genetic markers can be used to infer patterns of parentage, or kinship within populations, 

enabling the construction of pedigrees (Queller and Goodnight 1989; Marshall et al. 

1998). Within and across populations within a species, molecular markers can be used to 

estimate divergence times, migration rates, effective population size and, to some extent, 

past changes in population size (Cornuet and Luikart 1996; Beerli and Felsenstein 2001; 

Garza and Williamson 2001). Across recently separated species, molecular markers can be 

used to infer phylogenetic relationships, date divergence events and infer patterns of 

hybridisation (Swofford 2003; Drummond and Rambaut 2007). Finally, molecular markers 

have been used to identify the major lineages and patterns of relationship across 

distantly related groups of organisms (Shimamura et al. 1997; Murphy et al. 2001). Thus, 

studies that use molecular markers as windows into whole-organism processes can best 

be viewed as inferring patterns of relatedness at some point along an evolutionary 

continuum (Avise 2004), and have contributed enormously to our understanding of both 

ancient and contemporary evolution. 

 

In order to gain clear insight into evolutionary processes through the use of molecular 

markers, a number of factors need to be considered. First, the markers should be 

selectively neutral. Selective neutrality is generally assumed in population genetic and 
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phylogenetic models and analyses, mostly for simplicity (Avise 2004). Selection can distort 

allele frequencies and DNA sequences in unexpected ways, making it difficult to interpret 

patterns of population history and demography. Second, depending on the ecological or 

evolutionary question being asked, researchers should choose the molecular markers 

with the most appropriate manner and rate of mutation (Parker et al. 1998; Zhang and 

Hewitt 2003). For example, using very rapidly mutating markers to infer relationships 

among distantly related groups of organisms will result in problems with homoplasy 

(Garza and Freimer 1996; Estoup et al. 2002). On the other hand, if the marker chosen 

has too slow a mutation rate for the organisms being studied, too few mutations will have 

accumulated, and there will be insufficient power for analyses. Generally, studies of 

closely related groups of individuals or populations have used microsatellites, due to their 

extremely rapid mutation rate (c. 10-4 substitutions per site per year) (Ellegren 2004). 

Studies of more distantly related populations or closely related species often use 

mitochondrial DNA (c. 10-6) (Hasegawa et al. 1985; Moritz et al. 1987), and phylogenetic 

studies of distantly related species use nuclear (c. 10-9) or ribosomal (10-12) genes, or 

retroposons (Hillis and Dixon 1991; Shimamura et al. 1997). Increasingly, studies are using 

multiple markers, with different mutation rates, across the same set of samples to infer 

multiple evolutionary processes within individual systems (Zhang and Hewitt 2003; Brito 

and Edwards 2009). 

 

1.2.2 Adaptive genetic variation: selection at the molecular level 

Identifying how selection operates at the molecular level is a complex task, as it is usually 

extremely difficult to identify the genetic basis of a given trait of interest. Consequently, 

up until the last few years most studies investigating adaptive genetic variation have 

focused on the few model organisms for which detailed genetic information was 

available. More recently, population genomic and quantitative trait loci (QTL)-mapping 

approaches have increased in popularity, predominantly due to developments in 

molecular and analytical tools. These “top down” approaches usually involve scanning for 

polymorphisms that associate with variation at a trait of interest, and studies using them 

have achieved considerable success (see Slate 2005; Stinchcombe and Hoekstra 2007 for 

reviews). However, there are still practical issues with such approaches. First, resolving 

genome-wide variation is still costly, especially across large numbers of individuals or 
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populations. Second, QTL-mapping and population genomic approaches often use large 

numbers of statistical tests, making it difficult to differentiate between genuine effects 

and false positives. Third, for QTL-mapping, pedigrees and phenotype data are required, 

which are often not available for non-model organisms. Finally, without enormous sample 

sizes it is often only possible to pinpoint a trait of interest down to a large region of the 

genome, rather than to a specific gene or mutation (Stinchcombe and Hoekstra 2007). 

 

Candidate genes of known functional significance offer a reliable and rapid way of 

studying adaptation in the wild. Various candidate genes with clear links between 

genotype, phenotype and fitness have been identified in model systems and, due to being 

evolutionary conserved, many of these can be characterised and genotyped in non-model 

organisms with relative ease (see Piertney and Webster 2010 for a review). A wide range 

of fundamental questions in ecology and evolutionary biology can be addressed using 

candidate gene approaches, including: i) what are the relative roles of selection and drift 

at functional genes? ii) What mechanisms of selection drive genetic diversity? iii) What 

are the (interacting) effects of genes and the environment on phenotypic variation and 

fitness? Even in the age of genomics, “bottom up” approaches remain a useful tool for 

evolutionary biologists, and may prove to be even more powerful when used in 

combination with QTL-mapping and population genomics. 

 

1.3 The Major Histocompatibility Complex – a model gene for studying selection 

Genes of the vertebrate major histocompatibility complex (MHC) are among the most 

well-studied candidate genes in non-model organisms. Due to their importance in human 

health, their structure and function has been fully characterised in humans and mice 

(Meyer and Thomson 2001). From an evolutionary perspective, MHC genes are especially 

interesting due to their extraordinary levels of polymorphism and clear evidence of 

balancing selection, which has been demonstrated in a wide range of organisms 

(Bernatchez and Landry 2003; Piertney and Oliver 2005). 

 

1.3.1 Structure and function 

MHC genes code for molecules that bind to both self and foreign peptide antigens and 

present them to T-cells, resulting in a cascade of appropriate immune responses if foreign 
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antigen-MHC molecules are detected (Klein 1986). MHC molecules are polymorphic 

integral membrane proteins, consisting of an immunoglobulin ‘stalk’ that attaches the 

molecule to the cell membrane, and a peptide-binding region which is responsible for the 

recognition of one or more antigens. Binding at these antigen recognition sites is 

determined by the presence of a particular sequence of amino acids at specialised anchor 

point on the protein. Thus, whilst specificity exists, each MHC molecule can bind several 

peptides (Klein 1986). 

 

MHC genes exist in a multigene family, which includes two main subfamilies; class I and 

class II genes. The pathways involved in antigen presentation differ with MHC class I and 

II. The MHC class I antigen presentation pathway is present in almost all cells, and 

provides a mechanism for displaying samples of peptides from proteins that are present 

within the cell at any given time. Endogenous proteins are broken down in the cytoplasm 

by proteasomes and other enzymes, and the resulting peptides are actively transported 

into the endoplasmic reticulum before being bound to a peptide loading complex 

containing the MHC class I molecule. The peptide is trimmed before being released, still 

bound to the peptide-binding region of the MHC class 1 molecule. The MHC class I-bound 

peptide is then transported to the cell surface, where it displays the peptide antigen to 

CD8+ T cells, which have the ability to detect and kill cells expressing viral proteins or 

tumour antigens (Jensen 2007). The MHC class II presentation pathway is only found in 

specialist antigen presenting cells, namely thymic epithelial cells, dendritic cells, B cells 

and macrophages (Jensen 2007). MHC class II molecules bind primarily with proteins 

found in the endocytic pathway; usually these are exogenous protein sources that have 

entered the cell by a phagocytosis, endocytosis or similar mechanisms (Germain and 

Margulies 1993). Peptides from these proteins are then displayed to CD4+ T helper-cells. 

Thus, the MHC class II pathway facilitates the recognition and immune response primarily 

to extracellular pathogens. 

 

1.3.2 Polymorphism and selection 

MHC genes are the most polymorphic known in vertebrates; in humans, hundreds of 

alleles have been found in individual populations at both class I and class II loci (Garrigan 

and Hedrick 2003). In wild animal populations, allelic variation has been detected at the 
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MHC even when variation at other markers has been absent or extremely low (Richardson 

and Westerdahl 2003; Aguilar et al. 2004; van Oosterhout et al. 2006). MHC genes also 

display high levels of polymorphism at the nucleotide level; in some regions of the human 

MHC (often called human leukocyte antigen, or HLA), nucleotide diversity is several 

orders of magnitude higher than the genomic average (Garrigan and Hedrick 2003). 

 

New MHC alleles are generated by a combination of point mutation and gene conversion 

(see chapter 6). There is strong evidence for selection on MHC genes at the sequence 

level. Balancing selection (like positive selection) is expected to incorporate new adaptive 

mutations into populations at a higher rate than expected under neutrality. Additionally, 

under balancing selection, adaptive mutations are expected to be retained for longer 

periods of time than under neutrality. Both these phenomena can be clearly observed at 

the MHC. In one of the first studies of selection at MHC genes, Hughes and Nei (1988) 

showed that the rate of protein changing substitutions in HLA sequences greatly 

exceeded that of silent substitutions; something subsequently demonstrated within and 

across many other taxa (Bernatchez and Landry 2003). Evidence for retention of adaptive 

MHC alleles can be best observed by examining MHC variation across species in a 

phylogenetic context. By doing this, Jan Klein showed extensive ‘trans-species 

polymorphism’ at MHC genes; a phenomenon where MHC sequences  from one species 

clusters with sequences from another species, suggesting long-term retention of lineages 

(Klein 1980, 1987). More recently many studies have attempted to characterise the 

nature of selection at the MHC in more detail, with particular focus on the role of 

pathogens in driving MHC diversity. These studies are reviewed in detail in chapter 2. 

 

1.4 Study system 

Islands have been used as model systems for evolutionary research ever since Darwin’s 

fateful voyage on the Beagle (1831-1836) to, amongst other places, the Galapagos 

Islands, the fauna of which helped shape his ideas about natural selection. There are 

numerous reasons why island archipelagos are attractive places to study evolutionary 

biology (see Emerson 2002 for an in-depth review). For example, islands represent 

geographically distinct units, enabling clear delimitation of populations for analyses. 

Second, oceans act as barriers to gene flow between islands. Third, because of their small 
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size, islands are relatively simplistic in terms of species diversity and ecosystem 

complexity. Fourth within archipelagos there is often variation in the geological and 

ecological characteristics of individual islands. 

 

Macaronesia, which translates from Greek as “the fortunate islands”, is the collective 

name for five archipelagos in the North Atlantic: the Azores, Madeira, The Selvagens (or 

Savage Islands), the Canary Islands, and Cape Verde. All five archipelagos are volcanic in 

origin, formed between 0.8 (El Hierro, Canary Islands) and 21 million years ago 

(Fuerteventura, Canary Islands). The islands vary in size (between approximately 2 and 

2,000 km2), isolation (between approximately 100 and 1,000 km from the nearest 

mainland) and altitude (between approximately 100 and 3,000 metres above sea level). 

An amazingly wide range of habitats can be found on these islands, including semi-arid 

coastal scrub, pine forest, laurel forest and dry subalpine scrub. The Macaronesian 

archipelagos are characterised by distinctive flora and fauna, with large numbers of 

endemic species and subspecies (Silvertown 2004; Emerson and Kolm 2005). As a result, 

they have been the subject of many evolutionary and ecological studies (Juan et al. 2000). 

 

Berthelot’s pipit (Anthus berthelotii) is a small passerine bird, endemic to three of the 

Macaronesian archipelagos; Madeira (three island populations) Selvagens (one island 

population) and the Canary Islands (nine populations on eight islands; Fig. 1.1). On 

Tenerife in the Canary Islands, a population occurs on an alpine plateau on the mountain 

of Teide more than 2,000 m above sea level. This population is separated from the rest of 

the Tenerife population by dense pine and laurel forests on the mountainsides, which the 

pipit does not inhabit. For this reason, Teide is considered as a separate, thirteenth 

population throughout this thesis. The Berthelot’s pipit’s closest relative is the tawny pipit 

(Anthus campestris), a common passerine which breeds across Europe, Asia and North-

West Africa, from which Berthelot’s pipit has been separated for approximately two 

million years (Arctander et al. 1996). Berthelot’s pipit is presently split into two sub-

species: A. berthelotii berthelotii on the Canary Islands and the Selvagens, and 

A.berthelotii madeiriensis on Madeira (Clarke 2006; but see Illera et al. 2007). The pipit is 

one of the most abundant passerines throughout its range, where it occupies semi-arid 

habitats from coastal scrub to high subalpine regions (up to 2,500 metres on El Teide, 
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Tenerife) (Illera 2007; Fig. 1.2). The relative population size across islands is therefore 

largely a product of island size (Illera 2007), though nothing is known about historical 

population sizes. Berthelot’s pipits, like most pipits, have a generation time of 

approximately three years, and lay clutches of between two and four eggs per year 

(Garcia-Del-Rey and Cresswell 2007). 

 

Figure 1.1 Distribution and sampling locations of Berthelot’s 
pipits in the North Atlantic. Note that two populations were 
sampled from Tenerife; the coastal population, and the high 
mountain of Teide. 
 

 

Previous work on Berthelot’s pipit suggests that this species is an ideal model for 

population and evolutionary genetics research. The pipit has extremely low levels of 

genetic variation, with just one and four haplotypes at the mitochondrial control region 

and cytochrome b genes respectively, across all 13 populations (Illera et al. 2007). The 

pipit was also found to have lower levels of genetic variation compared to other passerine 

species at a set of conserved microsatellite markers (Dawson et al. 2010). Screening at 

five microsatellite loci revealed significant genetic structure across the 13 populations, 
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particularly across, but also within archipelagos, and significant isolation-by-distance was 

detected (Illera et al. 2007). These data are consistent with a small founding population of 

pipits having recently colonized these islands, with limited subsequent dispersal (Illera et 

al. 2007).  This sets the pipit apart from many other island bird systems, which have either 

been separated for very long periods of time (making it difficult to tease apart the 

complex array of processes affecting genetic diversity) or are too recently separated (with 

not enough time for differences to accumulate across populations). A preliminary 

screening of avian malaria and pox across the pipit populations suggests that there are 

marked differences in pathogen prevalence (Illera et al, 2008), although it is not clear 

whether these differences are stable over time. Thus, the Berthelot’s pipit provides an 

interesting opportunity to explore how neutral (demography) and adaptive (parasites) 

shape genetic diversity in the early stages of differentiation. 

 

1.5 Aims of thesis 

In this thesis, I examine how neutral and adaptive processes shape patterns of genetic 

diversity across natural populations. In chapter 2, I review the logic and evidence 

supporting the main hypothesised mechanisms proposed to explain how pathogen-

mediated balancing selection maintains genetic diversity at MHC genes. Then in chapter 3 

I explore the potential for pathogen-mediated selection in the Berthelot’s pipit, by 

screening spatio-temporal variation in pathogen prevalence across the 13 island 

populations. In chapter 4 I use microsatellites, derived both anonymously and from 

expressed regions of the genome, to explore how demographic processes have promoted 

divergence across the pipit populations, with particular focus on the importance of 

marker variability when using neutral markers to infer population history. In chapter 5, I 

expand upon the microsatellite analyses, and explore specifically how measures of 

genetic differentiation (GST and D) respond to marker variability. Finally, in chapter 6, I 

screen the pipit populations at a set of duplicated MHC loci, and explore how allelic 

variation at these functional genes is partitioned across the pipit populations, and discuss 

the roles of demography, mutation and natural selection in driving genetic diversity at 

these functional genes. Finally, in chapter 7 I discuss the overall findings from chapters 2-

6, and suggest some directions for future research.  
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Figure 1.2 Berthelot’s pipit (Anthus berthelotii; top), 
and typical Berthelot’s pipit habitat in coastal (middle) 
and alpine (bottom) regions. 
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2.1 Abstract 

Major histocompatibility complex (MHC) genes have been put forward as a model for 

studying how genetic diversity is maintained in wild populations. Pathogen-mediated 

selection (PMS) is believed to generate the extraordinary levels of MHC diversity 

observed. However, establishing the relative importance of the three proposed 

mechanisms of PMS (heterozygote advantage, rare-allele advantage and fluctuating 

selection) has proved extremely difficult. Studies have attempted to differentiate 

between mechanisms of PMS using two approaches: (i) comparing MHC diversity with 

that expected under neutrality and (ii) relating MHC diversity to pathogen regime. Here, 

we show that in many cases the same predictions arise from the different mechanisms 

under these approaches, and that most studies that have inferred one mechanism of 

selection have not fully considered the alternative explanations. We argue that, while it 

may be possible to demonstrate that particular mechanisms of PMS are occurring, 

resolving their relative importance within a system is probably impossible. A more 

realistic target is to continue to demonstrate when and where the different mechanisms 

of PMS occur, with the aim of determining their relative importance across systems. We 

put forward what we believe to be the most promising approaches that will allow us to 

progress towards achieving this.  
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2.2 Introduction 

Explaining how genetic variation is maintained in wild populations has long been a central 

question in evolutionary biology. Since previously unpredicted numbers of alleles were 

detected in populations of humans and Drosophila (Harris 1966; Lewontin & Hubby 

1966), biologists have debated the relative roles of balancing selection and neutral 

processes in maintaining the diversity observed in wild populations (reviewed in Nei 

2005; see also section 1.1). This debate has now matured, and the parsimonious appeal of 

neutral theory has led to it being accepted as the null hypothesis against which selection 

can be tested (Kreitman 1996). A number of genes believed to be subject to balancing 

selection (a bracket term encompassing a number of forms of selection that act to 

maintain multiple alleles within a population) have now been identified (Ford 2002). 

However, in the majority of cases, the exact causes and mechanisms behind the selection 

remain unclear. A major reason for this is that while DNA data have been relatively easy 

to collect, it has proved more difficult to identify gene function and more difficult still to 

show how variation in function is influenced by selection (Ford 2002). In wild-living 

organisms, finding suitable candidate genes for studying balancing selection is an 

especially difficult task, as the genetic basis of traits of interest is usually poorly 

understood.  

 

Genes of the vertebrate major histocompatibility complex (MHC) arguably provide the 

most promising opportunity for studying how balancing selection operates to maintain 

genetic variation in populations. The extensive population-level allelic richness (hereafter 

referred to as ‘diversity’) observed at these genes, alongside their central role in the 

vertebrate immune system, makes them ideal candidates for studying selection (Hedrick 

1994; Meyer & Thomson 2001). The structure and function of MHC genes is now well 

understood in a range of organisms (e.g. Bjorkman et al. 1987; Sato et al. 1998; Kaufman 

et al. 1999; Hess & Edwards 2002), allowing testable hypotheses to be formed concerning 

the nature of selection operating on these genes.  

 

It has long been suggested that pathogen-mediated selection (PMS) is the driving force 

maintaining diversity at MHC loci (Doherty & Zinkernagel 1975; Jeffery & Bangham 2000; 

Bernatchez & Landry 2003). Gene conversion and recombination, sexual selection and 
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maternal–foetal interactions may also play a role, though these factors are outside the 

scope of this chapter (for extensive reviews, see Edwards & Hedrick 1998; Martinsohn et 

al. 1999; Penn & Potts 1999). Three main hypotheses of PMS have been proposed, which 

are all forms of balancing selection: heterozygote advantage (Doherty & Zinkernagel 

1975), rare-allele advantage (Slade & McCallum 1992) and fluctuating selection (Hill 

1991). A strong theoretical framework has been established supporting the idea that any 

of the three mechanisms, or any combination of the three, could drive MHC diversity 

(Hughes & Nei 1988; Takahata & Nei 1990; Apanius et al. 1997). However, it has proved 

much more difficult to identify and differentiate between them empirically in wild 

populations, and so the key aim of determining the relative importance of the different 

mechanisms has remained elusive (Bernatchez & Landry 2003; Piertney & Oliver 2005). 

Early MHC studies focused on detecting selection operating over macro-evolutionary time 

scales, using methods based on coalescence theory or differences in synonymous and 

non-synonymous substitution rates (Hughes & Nei 1988; Takahata & Nei 1990). These 

methods proved useful for detecting the historical presence of selection on genes, but tell 

us little about the timing or nature of selection (Garrigan & Hedrick 2003). More recently, 

there has been increasing interest in examining selection at the MHC either within a 

single generation or over ecological time scales. Doing so allows for the detection of 

recent selection events and has led people to attempt to differentiate between 

mechanisms of PMS in non-model organisms. Indeed, over the last few years, the number 

of studies examining contemporary selection at the MHC has been overwhelming. Yet 

how much these studies have delivered, whether they are being conducted appropriately 

and how our understanding of MHC evolution is developing as a result have yet to be 

questioned.  

 

A number of excellent reviews on MHC evolution have been published (Edwards & 

Hedrick 1998; Meyer & Thomson 2001; Bernatchez & Landry 2003; Garrigan & Hedrick 

2003; Piertney & Oliver 2005; Sommer 2005); however, none has explicitly addressed the 

question of if and how we can differentiate between mechanisms of PMS. Our aim here is 

to assess the extent to which empirical studies have been able to do this. First, after a 

brief introduction to the MHC, we describe in detail the three mechanisms of PMS. This is 

important as some confusion appears to exist in the literature with regard to these 
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hypotheses. Second, we provide a critique of the approaches used to detect selection in 

contemporary populations. We then describe how the outcomes of each approach relate 

to the different mechanisms of PMS and review the current MHC literature in this 

context. Finally, we highlight the major problems with current approaches to MHC 

research and discuss whether we are ever likely to be able to determine the relative roles 

of different mechanisms of PMS in maintaining MHC diversity in the wild.  

 

2.3 MHC structure and function 

MHC genes code for molecules that bind to both self-peptide and non-self-peptide 

antigens, and present them to T-cells, thereby triggering a cascade of immune responses 

(Klein 1986; Potts & Wakeland 1990; Edwards & Hedrick 1998; Meyer & Thomson 2001; 

for a full overview see section 1.3.1). An important feature of the MHC for studies using 

non-model organisms is that different taxa exhibit different rates of gene conversion and 

recombination in this region. This has led to many MHC genes being found in multiple, 

tightly linked copies, making it extremely difficult to identify and isolate independent loci, 

with the consequence that studies are often only able to amplify multiple loci (e.g. Binz et 

al. 2001; Richardson & Westerdahl 2003; Babik et al. 2009).  

 

2.4 Mechanisms of selection at MHC loci 

The heterozygote advantage hypothesis proposes that individuals heterozygous at MHC 

loci are able to respond to a greater range of pathogen peptides than homozygotes and, 

consequently, benefit from increased resistance to pathogens. Heterozygotes are, 

therefore, more likely to have higher relative fitness and, as a result, on average more 

MHC alleles will persist in the population (Doherty & Zinkernagel 1975; Hughes & Nei 

1988).  

 

Heterozygote advantage can be, and has been, a confusing concept for a number of 

reasons. First, heterozygote advantage can occur through both dominant and 

overdominant selection. If pathogen resistance is dominant, the heterozygous genotype 

exhibits the same level of fitness as the fittest homozygote (but not higher) and so 

achieves higher levels of fitness than the average for all homozygotes. If it is 

overdominant then the combined, synergistic effect of two alleles at a locus will result in 
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the MHC heterozygote being fitter than the fittest homozygous genotype (Hughes & Nei 

1988). This distinction is important because dominance alone cannot maintain diversity 

within individual populations, whereas overdominance can (Takahata & Nei 1990; 

McClelland et al. 2003), although both may operate to maintain diversity across 

metapopulations (see fluctuating selection hypothesis below). Second, because infection 

with a given pathogen will result in more than one non-self-peptide being present in the 

host, the heterozygote advantage gained by being able to detect a wider range of 

peptides can operate in response to both single (Kurtz et al. 2004) and multiple 

(McClelland et al. 2003; Wegner et al. 2003b) pathogens. In a population subject to 

heterozygote advantage, one may therefore expect to observe associations between 

MHC heterozygosity and both pathogen load and diversity. Nonetheless, heterozygote 

advantage may be best understood when considered in the context of multiple 

pathogens, as MHC alleles conferring resistance to one pathogen can increase 

susceptibility to another (Penn & Potts 1999). Finally, it has been argued that, at the 

individual level, it is not maximized but rather optimized heterozygosity that provides 

maximum fitness benefits; having too high MHC diversity may have diminishing returns 

on T-cell diversity, owing to the deletion of T-cells that react with self-peptide–MHC 

combinations during development (Nowak et al. 1992). This ‘optimal’ theory has received 

considerable empirical support (Wegner et al. 2003a; Kalbe et al. 2009). Therefore, 

studies examining maintenance of population-level MHC diversity should consider the 

immunological constraints on intra-individual diversity in order to fully understand the 

processes underlying selection at these genes.  

 

The rare-allele advantage (also called negative frequency-dependence) hypothesis 

proposes that there is strong selection on pathogens to overcome the resistance of the 

most common host MHC alleles. Therefore, new alleles that arise within the population 

are likely to offer greater protection to pathogens than common alleles, and so have a 

selective advantage (Takahata & Nei 1990). Old, rare alleles may also be selected for; an 

allele may decrease in frequency within a population owing to pathogens evolving 

resistance, but once the allele becomes rare, the pathogen adaptation may decrease or 

disappear, causing the selective advantage of the allele to increase again. The result of 

this process is a cyclical, coevolutionary arms race in which pathogens and MHC alleles 
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fluctuate in frequency, thus maintaining diversity via a dynamic process (Slade & 

McCallum 1992).  

 

Finally, the fluctuating selection hypothesis proposes that spatial and temporal 

heterogeneity in the type and abundance of pathogens may maintain diversity at the 

MHC (Hill 1991). If the pathogen regime faced by an organism fluctuates spatio-

temporally, the intensity of directional selection at MHC genes will also fluctuate. This will 

lead to different subsets of MHC alleles being selected for at different points in space 

and/or time, thus maintaining genetic diversity across subpopulations. Key to this model 

is (i) that selection is directional, rather than cyclical and (ii) that pathogen fluctuations 

are determined externally—by the biotic or abiotic environment or chance dispersal and 

extinction events—rather than by coevolution of host and pathogen. Hedrick (2002) 

showed that, theoretically, diversity at the MHC could be maintained via fluctuating 

selection, even in the absence of heterozygote and rare-allele advantage.  

 

Defining the mechanisms of PMS is, however, the easy part. Determining their relative 

roles in maintaining MHC diversity is another matter as they are by no means mutually 

exclusive and may operate in concert with other selective and neutral forces (Apanius et 

al. 1997). Moreover, the mechanisms may interact with one another. For example, there 

is an inherent frequency-dependent component in the heterozygote advantage model, 

and vice versa; because individuals are unlikely to inherit two copies of a rare allele, such 

alleles will occur disproportionately in heterozygous individuals. The intensity of selection 

on an allele under heterozygote or rare-allele advantage may also vary in space and time, 

owing to fluctuations in pathogens.  

 

 

2.5 Empirical evidence for the nature of selection on MHC genes 

Selection upon genes in contemporary populations is expected to produce detectable 

effects on the distribution of alleles within those populations (Meyer & Thomson 2001; 

Hedrick 2002). Therefore, by comparing patterns of variation at MHC genes with those 

expected under neutrality, one can make inferences about the nature of selection. 

Contemporary selection can also be revealed by examining pathogen load in relation to 



Chapter 2: How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings 

 

30 
 

MHC characteristics. These approaches have been used not only to detect the presence 

of PMS, but also to try to differentiate between the models. However, it is often unclear 

exactly how the different results that arise from these approaches relate to different 

mechanisms of PMS, and so conclusions are often ambiguous. In an attempt to clarify 

predictions, in Table 2.1 we summarize the ways in which selection at MHC loci can be 

detected in contemporary populations, alongside the possible observations that arise 

from each of these approaches. We also state the mechanisms of PMS that we predict to 

be compatible with each observation. In what follows, these predictions are discussed in 

light of the empirical studies that have attempted to differentiate between mechanisms 

of PMS.  

 

2.5.1 Proportions of genotypes within populations 

Many studies have attempted to detect selection at MHC genes over a single generation 

by comparing the distribution of MHC genotypes with a theoretical neutral distribution. 

Balancing selection is expected to result in a surplus of heterozygotes, and this was 

originally interpreted as evidence of heterozygote advantage (Doherty & Zinkernagel 

1975). However, a simple excess of heterozygotes at MHC loci may also be compatible 

with rare-allele advantage, as heterozygotes may be selected for because they carry rare, 

resistant alleles, rather than because they are heterozygous per se (Penn 2002; Table 2.1). 

Nonetheless, a number of studies have used this method, though few have detected a 

heterozygote excess (Paterson et al. 1998; Gutierrez-Espeleta et al. 2001; Penn et al. 

2002; Seddon & Ellegren 2004; Oliver et al. 2009a). This may be because in many cases 

selection is not strong enough to be detected within a single generation. 

 

An alternative approach is to examine the frequency of alleles in populations, which can 

provide a ‘snapshot’ of ongoing evolutionary processes. Alleles are unlikely to occur at 

equal frequencies. Instead, under neutrality, we expect a few common alleles, with the 

rest occurring at a relatively low frequency. By calculating a theoretical neutral 

distribution and contrasting it with empirical observations, it is therefore possible to 

detect selection (Ewens–Watterson test; Ewens 1972; Watterson 1978). However, 

because the Ewens–Watterson test is based on patterns of heterozygosity, it is still not 

possible to confidently differentiate between heterozygote advantage and rare-allele 
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advantage using this method alone (Table 2.1). Studies that have used the Ewens–

Watterson test to assess selection at the MHC have found that the presence and/or 

strength of selection varies across subpopulations, with selection being detected in 15 to 

50 per cent of subpopulations (Garrigan & Hedrick 2003). Such findings could represent 

fluctuating selection, spatially heterogeneous patterns of heterozygote advantage or 

snapshots of ongoing rare-allele advantage at varying points in evolutionary time (Table 

2.1). Furthermore, the Ewens–Watterson test assumes constant population size, so 

departures from neutrality calculated using this method may arise owing to historical 

demographic processes (Nei 1987). The varying results from the studies that have used 

this test may, therefore, be due to differential demographic histories across populations 

and not because of fluctuations in selective forces. One way to circumvent the problems 

associated with a theoretically derived neutral allelic distribution has been to assess this 

distribution directly using neutral markers (Boyce et al. 1997). While demographic 

processes affect all loci, selection targets specific genes; therefore, by contrasting 

patterns of variation at MHC and neutral loci, the effects of demography can be 

controlled for.  
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Table 2.1 Predictions arising from different models of pathogen-mediated selection. Note 
that selection is assumed here - the effects of drift must be controlled for by measuring 
neutral variation empirically (see text). 
 

 Possible Observations Possible PMS Explanations 

Proportions of 
genotypes within 
populations 

An excess of heterozygotes Dominance, overdominance, rare-allele 
advantage (as rare alleles will normally exist 
in heterozygotes) 

An excess of homozygotes Underdominance 

An excess of heterozygotes in a 
subset of populations studied 

Fluctuating selection, Fluctuations in any 
mechanism 

No deviation from neutral 
expectations 

Neutrality 

Distribution of 
allelic frequencies 
within populations 

More even than expected under 
neutrality 

Dominance, overdominance, rare-allele 
advantage  

Less even than expected under 
neutrality 

Directional selection, fluctuating selection if 
variable across multiple populations 

More even than expected under 
neutrality in a subset of populations 
studied 

Fluctuating selection, fluctuating 
dominance, fluctuating overdominance, 
rare-allele advantage 

No deviation from neutral 
expectations 

Neutrality 

Levels of 
population 
structure relative 
to neutral loci 
across populations 

Higher population structure at MHC 
compared to neutral loci 

Fluctuating selection, rare-allele advantage 
maintaining old alleles 

Lower population structure at MHC 
compared to neutral loci 

Dominance, overdominance, rare-allele 
advantage selecting new alleles 

Equal population structure at MHC 
compared to neutral loci  

Neutrality 

Associations with 
pathogen regime 
 

Associations between individual 
pathogen load and MHC alleles 

Rare-allele advantage, fluctuating selection 

Association between individual 
pathogen load and MHC 
heterozygosity 

Heterozygote advantage (to a single 
pathogen). Overdominance if heterozygote 
associated with lower pathogen load than 
both homozygotes. 

Association between individual 
pathogen load and number of MHC 
alleles (across multiple duplicated 
loci) 

Heterozygote advantage, rare-allele 
advantage, fluctuating selection 

Associations between pathogen 
diversity and individual MHC alleles 

None 
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Table 2.1 (cont.) 
 Possible Observations Possible PMS Explanations 

Associations with 
pathogen regime 
 

Association between pathogen 
diversity and MHC heterozygosity 

Heterozygote advantage (to multiple 
pathogens). Overdominance if heterozygote 
associated with fewer pathogens than both 
homozygotes. 

 Associations between pathogen diversity and 
number of MHC alleles (across multiple 
duplicated loci) 

Heterozygote advantage, rare-allele 
advantage, fluctuating selection 

No association between MHC structure and 
pathogen regime 

Neutrality 

 

Incorporating neutral variation into tests of selection has highlighted that migration and 

drift may sometimes be more important than selection in shaping MHC diversity over 

micro-evolutionary time scales. Indeed, many studies have reported that neither MHC nor 

neutral variation differ from random expectations (Bernatchez & Landry 2003). However, 

in any system where multiple forces act on allelic distributions, there is the possibility that 

they may cancel each other out to produce patterns that do not deviate from neutral 

expectations. On the other hand, a few studies have reported selection at MHC loci after 

controlling for demographic processes, though only in subsets of populations. Studies on 

salmonids have reported elevated heterozygosity at MHC compared with neutral loci in 

16 to 43 per cent of populations (Landry & Bernatchez 2001; Miller et al. 2001; Aguilar & 

Garza 2006). Recently, Oliver et al. (2009a) reported elevated heterozygosity in 

metapopulations of water voles (Arvicola terrestris), but only in 3 out of 10 

metapopulation-years. Authors tend to attribute these findings to differential selection 

pressures arising from spatio-temporal variation in pathogen abundance, though due to 

its dynamic nature, rare-allele advantage cannot be ruled out. Westerdahl et al. (2004) 

adopted a temporal approach, comparing variation in nine successive cohorts of great 

reed warblers (Acrocephalus arundinaceus). Overall, variation in the frequency of MHC 

alleles was significantly greater than for microsatellite alleles. Moreover, the frequency of 

two MHC alleles, but no microsatellite alleles, varied more between cohorts than 

expected, suggesting that selection favours different MHC alleles in different years—

findings consistent with both the rare-allele advantage and fluctuating selection 

hypotheses. Hess et al. (2007) also observed temporal shifts in MHC allelic frequencies in 
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populations of house finches (Carpodacus mexicanus), though their results were less 

pronounced.  

 

Studies on bottlenecked populations have found higher levels of MHC compared with 

neutral diversity, indicating that balancing selection can act to counter demographic 

processes. For example, the San Nicolas Island fox (Urocyon littoralis dickeyi) is reportedly 

the most genetically monomorphic sexually reproducing animal population, having gone 

through a bottleneck of less than 10 individuals (Aguilar et al. 2004). Despite this, high 

levels of diversity were observed at three MHC-linked microsatellites and one class II gene 

(Aguilar et al. 2004). Similar, though less extreme, elevated MHC diversity relative to 

neutral loci has been observed in bottlenecked populations of several other species (e.g. 

Richardson & Westerdahl 2003; Jarvi et al. 2004; Hansson & Richardson 2005; van 

Oosterhout et al. 2006).  

 

2.5.2 Patterns of population structure 

Selection can also be detected by contrasting population structure at MHC and neutral 

loci across multiple populations (Table 2.1). In populations subject to heterozygote 

advantage, within-population MHC diversity is predicted to be high compared with total 

diversity, resulting in a lower population structure at MHC than at neutral loci (Schierup 

et al. 2000). Conversely, in populations subject to fluctuating selection, different subsets 

of MHC alleles will arise, and higher population structure will be observed at MHC relative 

to neutral loci (Charlesworth et al. 1997). The rare-allele advantage model adds confusion 

to this picture, as we know little about the nature of the rare alleles themselves. 

Obviously, only rare alleles that currently confer resistance to pathogens are selected. 

However, whether these alleles are predominantly old (i.e. ones that have previously 

been common within the population) or newly arisen will have different consequences 

for patterns of population structure. If they are old, population structure will be lower at 

MHC than neutral loci (Schierup et al. 2000). If newly arisen alleles are selected for, then 

different subsets of alleles will arise in different populations, and consequently structure 

will be relatively higher at the MHC.  
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Studies comparing population structure at MHC and neutral loci have yielded mixed 

results. Many studies have found no difference between MHC and neutral population 

structure (e.g. Boyce et al. 1997; Gutierrez-Espeleta et al. 2001; Babik et al. 2008; 

Biedrzycka & Radwan 2008), suggesting that little or no selection is operating across 

populations, or that multiple selective forces are operating and masking any overall 

effects. On the other hand, differentiation at MHC relative to neutral loci across 

populations has been reported, for example, in various fish species (Landry & Bernatchez 

2001; Miller et al. 2001; Aguilar & Garza 2006) and in great snipe (Gallinago media; 

Ekblom et al. 2007). In all these studies, the authors conclude that MHC diversity is 

maintained by different patterns of PMS across differing ecological environments. Alcaide 

et al. (2008) also reported elevated MHC differentiation across populations of lesser 

kestrel (Falco naumanni). In this case, as the kestrel populations inhabit similar habitats—

with presumably similar pathogen communities—the authors conclude that this pattern 

has arisen from geographically varying coevolution, supporting the rare-allele advantage 

model of selection. However, none of these studies demonstrate explicitly that the 

pathogen fauna does, or does not, vary across populations. Such studies are badly 

needed; without them attempts at differentiating between rare-allele advantage and 

fluctuating selection are speculative at best. Very few studies have detected lower levels 

of divergence at MHC than at neutral loci. van Oosterhout et al. (2006) found lower 

differentiation at MHC class II DAB genes than at microsatellite loci across two 

populations of Trinidadian guppies (Poecilia reticulata). These results suggest that MHC 

diversity may be maintained either by heterozygote advantage or by rare-allele 

advantage in which old, rare alleles are maintained. Two other studies have compared 

MHC and mitochondrial genes and found lower FST values at MHC loci (Sommer 2003; 

Mona et al. 2008); however, the use of mitochondrial genes as a neutral marker in this 

manner is questionable (William et al. 1995).  

 

This brings us to a major problem intrinsic to studies that compare MHC and neutral 

variation; namely, which markers are most appropriate for assessing neutral diversity. 

Most studies have used microsatellites, presumably because they allow an efficient, low-

cost assessment of neutral diversity. However, these studies are confounded by the fact 

that the manner and rate in which microsatellites and MHC sequences mutate are very 
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different. Specific statistical tests are often required for the different markers, and the 

outcomes of tests that can be used with both markers may be affected by their 

differential mutation rates (Hedrick 2005; Brito & Edwards 2009). A logical solution to this 

problem would be to use nuclear sequence polymorphisms, which are likely to evolve in a 

fashion more similar to MHC genes (Brito & Edwards 2009), though this has rarely been 

done.  

 

2.5.3 Associations with pathogens 

Contemporary selection at MHC genes may also be detected by examining associations 

between the MHC and pathogen load of an organism (Table 2.1). Associations between 

specific pathogens and particular MHC alleles suggest a role for either rare-allele 

advantage or fluctuating selection. Associations between MHC heterozygosity and 

pathogen abundance and/or richness suggest a role for heterozygote advantage, though 

other mechanisms cannot be ruled out from this observation alone. Studies of this kind 

should also measure neutral variation to control for potential confounding effects of 

demographic processes on MHC structure. Those that have done so, described below, 

constitute the most detailed examples of how PMS can act to maintain MHC diversity.  

 

In house sparrows (Passer domesticus), Bonneaud et al. (2006) found that two different 

MHC alleles were associated with resistance to the same malarial strain in different 

populations. Both alleles exist in both populations, indicating that local adaptation to 

malarial infection occurs. This study provides the strongest available evidence supporting 

rare-allele advantage, though a temporal component to the association between alleles 

and the pathogen would need to be incorporated to rule out other mechanisms 

completely. In great reed warblers, Westerdahl et al. (2005) found that the number of 

MHC class I alleles in an individual—a measure suggested to reflect heterozygosity across 

multiple loci—was associated with the presence of a particular malarial lineage, whereas 

heterozygosity measures derived from microsatellite data did not show this relationship. 

A single MHC allele was also associated with presence of the malarial lineage. While these 

findings indicate that PMS is important in the great reed warbler, they are compatible 

with all three mechanisms of selection. Other studies have screened for multiple 

pathogens. In three-spined sticklebacks (Gasterosteus aculeatus), Wegner et al. (2003b) 
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detected a positive correlation between the number of alleles across MHC loci (but not at 

microsatellites) within a population and population-level pathogen diversity, suggesting a 

role for heterozygote advantage, though other mechanisms could not be ruled out. Oliver 

et al. (2009b) contrasted MHC class II variation and pathogen regime in a population of 

water voles in which only two alleles, and thus three genotypes, are found. The 

heterozygous MHC genotype was associated with lower numbers, and fewer types, of 

ectoparasites. Importantly, the heterozygotes were more resistant than both 

homozygotes, indicating heterozygote advantage through overdominance. An association 

between infection with a specific parasite and an MHC allele was also detected, 

suggesting that rare-allele advantage and/or fluctuating selection may also operate. 

Finally, in populations of montane water voles (Arvicola scherman), Tollenaere et al. 

(2008) found an association between specific MHC alleles and pathogens, but no 

relationship between pathogen diversity and MHC diversity. This may suggest a greater 

role for rare-allele advantage and/or fluctuating selection and a lesser role for 

heterozygote advantage in this system. Overall, these studies indicate that all three 

mechanisms of PMS may operate to maintain MHC diversity in wild populations, but they 

do not allow us to rule out alternative mechanisms nor determine their relative 

importance.  

 

2.6 Can we differentiate between mechanisms of PMS in wild populations? 

The number of studies examining selection at the MHC over a micro-evolutionary time 

scale has increased rapidly over the last few years. This work has highlighted that while 

selection at MHC genes is almost always detected over macro-evolutionary time scales, in 

contemporary populations MHC diversity is shaped by a range of neutral and selective 

forces, any combination of which may be operating at particular points in space and time. 

The research has confirmed the role of pathogens in MHC evolution and highlighted that 

pathogens and MHC genes interact closely in a number of ways, and that these 

interactions vary spatio-temporally. Some progress has been made in studying the 

mechanisms of PMS and the evidence, though circumstantial, now suggests that all three 

mechanisms may operate in natural systems.  
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Collating studies that have attempted to differentiate between mechanisms of PMS have 

shown that in many situations, the three mechanisms can produce the same effects on 

MHC diversity. Indeed, as Table 2.1 shows, in the majority of cases, there are multiple 

explanations for any observation in a given test, and no one approach yields observations 

that allow the mechanisms to be differentiated between. To complicate matters further, 

the mechanisms are likely to interact, and other evolutionary processes, such as sexual 

selection, are also likely to contribute towards shaping MHC diversity (reviewed in Penn & 

Potts 1999). For example, MHC-based mate choice may often serve as an ‘amplifier’ to 

PMS, helping to achieve an optimal or maximal number of MHC alleles (Richardson et al. 

2005; Jager et al. 2007; Eizaguirre et al. 2009). However, if PMS within a population is 

directional (and so reduces diversity) and mate choice operates to maintain diversity, the 

two may effectively cancel each other out (Apanius et al. 1997).  

 

This leads us to ask: what can we resolve, and how can we best move forward? By 

contrasting MHC variation with pathogen load and/or survival, it should be possible to 

detect the presence of heterozygote advantage, though few studies have done this 

convincingly in wild populations (but see Oliver et al. 2009b). Doing so requires examining 

associations between pathogens and both genotypes (heterozygosity) and specific alleles. 

It also requires a sufficient range of pathogens and an appropriate MHC screening 

method (i.e. single-locus amplification). Therefore, though the lack of heterozygote 

advantage observed so far may be because this mechanism is relatively unimportant in 

maintaining MHC diversity, it may also be because appropriate study systems have 

proved difficult to find.  

 

A more serious challenge lies in separating rare-allele advantage and fluctuating 

selection. None of the approaches listed in Table 2.1 enables us to tease apart these 

mechanisms as their effects upon MHC allelic frequencies in populations and on 

associations between MHC and pathogen structure are likely to be the same. A number of 

studies infer the importance of one mechanism even though their results cannot rule out 

alternatives. In particular, studies claim evidence of fluctuating selection after finding 

different levels of balancing selection across populations, or higher levels of population 

structure at MHC than at neutral genes (Landry & Bernatchez 2001; Miller et al. 2001; 
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Aguilar & Garza 2006; Ekblom et al. 2007; Alcaide et al. 2008; Oliver et al. 2009a). 

However, as we have explained (Table 2.1), such patterns could be due to different 

intensities of heterozygote advantage, or specific forms of rare-allele advantage. 

Combining observations of allelic frequencies with the genealogy of MHC alleles may go 

somewhere towards disentangling these effects, as new, rare alleles are expected to be 

less divergent than older ones.  

 

The best way to differentiate between rare-allele advantage and fluctuating selection 

would be to study MHC and neutral variation in relation to pathogen load over periods of 

evolutionary time in multiple replicate populations. Under rare-allele advantage, one 

would expect to see different alleles conferring resistance to the same pathogen in 

different populations, and for resistance to change with time, so that different alleles 

become associated with resistance. Under fluctuating selection, one would expect to 

observe external biotic and/or abiotic forces driving spatio-temporal variation in 

pathogen abundance, leading to distinct subsets of alleles being selected for in different 

populations and/or different time periods. Of course, such long-term, multiple-population 

studies are difficult and costly to carry out, and appropriate study systems are difficult to 

find.  

 

As well as the theoretical problems with teasing apart mechanisms of PMS, there are 

technical issues that also need to be resolved if we are to progress towards a fuller 

understanding of MHC evolution. First, although much of the variation in findings from 

MHC studies may have arisen because MHC evolution is indeed sporadic, it is highly likely 

that poor quality control in the studies themselves has also confused matters. In 

particular, an inability to assign alleles to individual loci means that it is often not possible 

to identify true genotypes, making it difficult to employ many of the analyses used to 

separate mechanisms of PMS. The only way to circumvent this problem will be to use 

single-locus systems that allow for identification of true genotypes (e.g. Worley et al. 

2008; Oliver et al. 2009b). An equally serious problem is that it is often unknown whether 

the MHC loci being studied are actually expressed, or whether diversity at these loci is 

being fully characterized. Detailed molecular groundwork is required to ensure that the 

full complement of expressed MHC variation is accurately assessed. Real-time PCR can be 
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used to assess patterns of MHC expression in non-model organisms, though few studies 

have done so thus far (but see Wegner et al. 2006). The use of next-generation 

sequencing for MHC screening (Babik et al. 2009) is likely to be a great help in terms of 

more accurately characterizing MHC diversity, and we expect to see an increase in both 

the efficiency and resolution of MHC genotyping in non-model organisms in the near 

future.  

 

Even when all the variation at a particular MHC locus is screened, we are faced with the 

problem of what equates to a functionally important MHC allele. Clearly, two alleles that 

differ by multiple amino acids are going to be able to detect a broader spectrum of 

antigens than two that differ by a single substitution. Yet allelic divergence is rarely taken 

into account in MHC studies, and so it is questionable whether these studies have 

classified biologically meaningful alleles. One way to obviate this problem could be to 

group sequences into functionally important ‘supertypes’ (Doytchinova & Flower 2005; 

Naugler & Liwski 2008). Another may be to quantify levels of amino acid divergence and 

use this in analyses.  

 

A final ‘technical’ issue to consider is that MHC study systems are usually confounded by 

the very thing that makes the MHC variation an attractive subject to study—namely 

complexity. Most organisms are faced with enormous numbers of pathogens and are, in 

turn, characterized by a highly complex MHC. Is it any wonder therefore that studies 

contrasting a single exon of an MHC locus with individual pathogens produce mixed 

results? Fully characterizing the MHC and pathogen load is unlikely to be possible in most 

study systems, and even if it were, statistical analysis may be intractable. One rewarding 

approach could be to focus on highly simplified study systems (e.g. Richardson & 

Westerdahl 2003; Oliver et al. 2009b), though whether results from such studies are 

applicable to more complex systems is questionable. The best study systems will probably 

be characterized by intermediate levels of pathogen diversity and simple, well-

characterized MHC structures, thus avoiding oversimplification while retaining statistical 

tractability.  
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Experimental infection studies may also help alleviate some of the problems associated 

with differentiating between mechanisms of PMS. A number of experimental infection 

studies with MHC congenic mice have shown that heterozygote advantage, through both 

dominance and overdominance, can operate to combat pathogenic infection (reviewed in 

Penn 2002). Experiments that differentiate between rare-allele advantage and fluctuating 

selection have yet to be designed, perhaps because doing so would require long-term, 

controlled selection lines, with more generations than would be realistically possible in a 

vertebrate (though see Conover & Van Voorhees 1990). Even so, if this problem can be 

circumvented, the advantage of being able to control for demographic processes and 

external fluctuations in pathogen load may be extremely useful in differentiating between 

these two mechanisms.  

 

Given that in the majority of cases the three mechanisms of PMS produce similar final 

effects on MHC dynamics, and that they are likely to interact, is differentiating between 

them in wild populations actually important? We believe so: understanding how diversity 

is maintained in gene regions such as the MHC is fundamental to our understanding of 

natural selection and antagonistic coevolution. Experimental infections, though more 

controlled, are limited in the information they can provide about the dynamics of PMS. 

Moreover, balancing selection clearly operates in different ways across ecologically and 

evolutionarily differing environments. Only by assessing MHC diversity in the wild will we 

be able to further understand these patterns and processes. Furthermore, there are 

applied implications for understanding how PMS operates to maintain MHC diversity in 

the wild, such as in conservation. For example, different mechanisms of PMS are likely to 

produce different phenotypic and population-level effects in response to the introduction 

of novel pathogens—a phenomenon that is likely to increase with a warming global 

climate (Smith et al. 2009). Reduction and fragmentation of populations will change 

pathogen dynamics and are likely to affect the nature of selection acting upon MHC genes 

(van Oosterhout et al. 2006). Understanding how organisms are likely to respond 

evolutionarily to factors such as genetic bottlenecks requires knowledge of how PMS 

operates to maintain diversity. Such understanding may also help us determine how best 

to conserve diversity at the MHC—or, for that matter, at any immunologically important 
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genes—in wild populations, or how to maximize diversity through selective breeding in 

captive populations.  

 

2.7 Conclusions 

Owing to the non-exclusivity of the mechanisms of PMS, alongside the likely interference 

of other selective and neutral forces, we do not believe that it is possible to convincingly 

elucidate the relative roles of mechanisms of PMS within specific wild populations. A 

more realistic approach is to attempt to demonstrate whether a particular mechanism of 

PMS is occurring within a specific system. Doing so will be extremely difficult, not least 

because appropriate long-term study systems are vital for this. Researchers of 

contemporary MHC evolution therefore need to carefully consider which mechanisms of 

PMS can be detected within their study system and which can be ruled out, and interpret 

their findings accordingly. Technical issues concerning the characterization of expressed 

MHC variation also need to be carefully considered, as they have not been in much of the 

MHC literature to date. Nonetheless, with enough appropriate studies, we may be able to 

determine how often different mechanisms of PMS occur, as well as the different spatial 

and temporal scales at which they prevail. The accumulation of such knowledge across 

systems will allow us to evaluate the general importance of the different PMS 

mechanisms across vertebrates as a whole. Advances in our understanding of what 

maintains MHC diversity will also feed into our general understanding of host–pathogen 

coevolution and the maintenance of genetic diversity.  
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3.1 Abstract 

Pathogens can exert strong selective forces upon host populations. However, before we 

can make any predictions about the consequences of pathogen-mediated selection, we 

first need to determine whether patterns of pathogen distribution are consistent over 

spatio-temporal scales. We used molecular techniques to screen for a variety of blood 

pathogens (avian malaria, pox and trypanosomes) over a three-year time period across 13 

island populations of the Berthelot’s pipit. We screened 832 individuals, and identified 

two strains of Plasmodium, four strains of Leucocytozoon, and one pox strain. We found 

strong differences in pathogen prevalence across populations, ranging from 0 to 65%, and 

while some fluctuations in prevalence occurred, these differences were largely stable 

over the time period studied. Smaller, more isolated islands harboured fewer pathogen 

strains than larger, less isolated islands, indicating that at the population level, 

colonization and extinction play an important role in determining pathogen distribution. 

Individual-level analyses confirmed the island effect, and also revealed a positive 

association between Plasmodium and pox infection, which could have arisen due to dual 

transmission of the pathogens by the same vectors, or because one pathogen lowers 

resistance to the other. Our findings, combined with an effect of infection on host body 

condition, suggest that Berthelot’s pipits are subject to different levels of pathogen-

mediated selection both across and within populations, and that these selective pressures 

are consistent over time.  
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3.2 Introduction 

Pathogens—disease-causing organisms—play a vital role in the ecology and evolution of 

their hosts. In wild animal populations, pathogens can affect individual fitness in a 

number of ways, such as increasing predation risk, reducing survival and reducing 

reproductive output (Anderson and May 1979; Gulland 1995; Johnson et al. 2008; Møller 

and Nielsen 2007). These effects can be observed at higher organizational levels, with 

pathogens playing a decisive role in host population dynamics and range distributions 

(Anderson and May 1981; Hudson et al. 1998; Ricklefs 2010), driving genetic variation 

(Acevedo-Whitehouse et al. 2003; Ortego et al. 2007; see chapter 2) and sexual selection 

(Hamilton and Zuk 1982). Understanding how patterns of pathogen-mediated selection 

vary across populations may therefore provide new insights into the mechanistic 

processes behind adaptation and natural selection. However, before we can investigate 

how patterns of pathogen-mediated selection operate across populations, we first need 

to establish how and why pathogen regimes vary over spatio-temporal scales. Yet, 

determining the causes and consequences of pathogen distribution is likely to be 

extremely difficult in most cases, as in any given system an enormous array of pathogens 

may be present, and many different environmental, ecological and physiological variables 

may all influence pathogen distribution.  

 

Island archipelagos have been described as “natural laboratories” for ecological and 

evolutionary research, as they contain multiple populations in geographically discrete yet 

ecologically variable locations (Whittaker 1998). The simplified nature of island systems 

has meant that they have been particularly useful for host–pathogen association studies, 

as the pathogen fauna on islands is generally less diverse than on mainland systems 

(Alcaide et al. 2010; Dobson 1988), simplifying analyses. Moreover, island archipelagos 

provide an opportunity to tease apart the different factors governing pathogen 

distribution across populations. In a scenario where host–pathogen associations are 

replicated across islands, “island effects” may arise due to differing ecological conditions, 

which may affect pathogen success due to differences in the availability of a specific 

habitat or vector for the pathogen (Apanius et al. 2000). Alternatively, differences in 

pathogen community composition between islands may occur as a result of temporal 

patterns and fluctuations in pathogen colonization and extinction, independent of island 
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ecology (Fallon et al. 2004). For vector-borne pathogens, colonization and extinction are 

expected to play an especially important role, as the concurrent presence of both 

pathogen and vector is required for transmission. In addition to island effects, pathogen 

distribution may be constrained by factors related directly to the host. If the distribution 

of pathogens was determined solely by that of the host, one would expect the pathogen 

distribution to be homogeneous over the host’s range, even across islands (Apanius et al. 

2000). Within-host factors such as age, sex, host behaviour or immune competence 

(McCurdy et al. 1998; Mougeot and Redpath 2004; Sol et al. 2003; Sorci 1996; Tompkins 

et al. 2010; van Oers et al. 2010) may also affect the observed patterns of infection. In 

reality, the most likely scenario is that the effects of hosts and islands will interact, 

resulting in unique outcomes of host–pathogen relationships, and therefore different 

selection regimes, across populations (Apanius et al. 2000; Fallon et al. 2003).  

 

Spatio-temporal scale is a key factor to consider for host–pathogen association studies. 

For example, fine-scale ecological variations can result in marked differences in pathogen 

distribution within populations (Wood et al. 2007), meaning that effects of different biotic 

and abiotic variables on pathogen distribution may be obscured if the sampling regime is 

too coarse. Temporal variation in pathogen regimes, both seasonally and across longer 

time periods, also needs to be accounted for (Bensch and Åkesson 2003; Cosgrove et al. 

2008; Fallon et al. 2004; Marghoob 1995). Without sampling over more than one time 

period, it is not possible to tell whether any observed patterns of spatial variation in the 

pathogen distribution represent consistent differences across populations, or whether 

they represent a “snapshot” of a rapidly changing pathogen community. This distinction is 

particularly important in the context of pathogen-mediated selection, as selection is only 

likely to produce observable differences among host populations if the pathogen regime 

is consistent within populations. Studies conducted over a range of spatio-temporal scales 

will provide the most comprehensive overview of what governs the pathogen 

distribution, and therefore variation in pathogen-mediated selection, in wild populations. 

However, such studies are, at present, few and far between.  

 

In wild birds, the most widely studied pathogens are malarial species of the genera 

Haemoproteus, Plasmodium and Leucocytozoon (Bensch et al. 2004; Eggert et al. 2008; 
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Ishtiaq et al. 2008; Pérez-Tris et al. 2005; Ricklefs et al. 2008; van Riper et al. 1986; Vögeli 

et al. 2011). Avian malaria is a vector borne disease, transmitted by several genera of 

mosquito and biting midges (Martinez-de la Puente et al. 2011; Njabo et al. 2011). 

Malarial infection has been shown to have implications for host mate choice (Dale et al. 

1996), parental investment (Wiehn et al. 1999), reproductive success (Dufva 1996), 

immune gene variability (Bonneaud et al. 2006; Westerdahl et al. 2005) and population or 

species persistence (van Riper et al. 1986). Other avian pathogens have received less 

attention in the ecological literature. For example, trypanosomes (Trypanosoma spp.) are 

also vector-transmitted (by simuliid and hippoboscid flies) blood pathogens that infect 

avian hosts worldwide, and are known to be detrimental to host growth and fitness 

(Apanius 1991). Yet the factors affecting trypanosome distribution within and across 

avian host populations have rarely been studied. Avian pox is a viral disease comprising 

numerous species in the genus Avipoxvirus. This pathogen is often fatal, and can be 

transmitted by vectors (Culex mosquitoes), directly by contact, or indirectly through 

contact with contaminated water (Ritchie 1995; Smits et al. 2005). Avian pox is being 

reported in an increasingly large number of wild bird species (Mondal et al. 2008; Saito et 

al. 2009; Smits et al. 2005; Tarello 2008; Van Riper and Forrester 2007), and has been 

highlighted as a threat to island bird populations (Kleindorfer and Dudaniec 2006; van 

Riper et al. 2002). Again, this pathogen has so far been largely overlooked in an ecological 

and evolutionary context (but see Carrete et al. 2009). Less well explored still is how 

these pathogens interact in wild populations. For example, avian malaria and pox have 

recently been shown to be positively associated in Hawaiian birds (Atkinson et al. 2005), 

yet the extent to which this occurs in other systems is not known.  

 

In this study, we use molecular techniques to screen for avian malaria, pox and 

trypanosomes in all 13 Berthelot’s pipit populations (Fig. 1.1) over a 3 year time-period. 

We test two main hypotheses: first, that spatio-temporal variation in pathogen 

distribution can be explained by biogeographical factors (i.e., island size and isolation); 

and second, that there are significant associations between infection with different 

pathogens. We also explore whether, within an individual island, geographic structuring 

of pathogen infection occurs across subpopulations. The implications of our findings for 

host ecology and evolution are discussed. 
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3.3 Materials and methods 

3.3.1 Study species and sampling 

Representative samples (ca. 30 individuals) were obtained from each of the 12 main 

island populations (Fig. 1.1). Samples were obtained during two field seasons: the first 

was carried out by J.C. Illera between April 2005 (Selvagens), January–March 2006 

(Canary Islands) and September 2006 (Madeira), and the second was carried out by the 

author between January and April 2009 (for all islands). The three-year time period 

between screenings is likely to exceed the average lifespan of pipits (Coulson 1956), and 

thus the period over which selection can be expected to operate. Individuals were 

captured at multiple localities across each island to obtain a representative sample of the 

population as a whole. Nonetheless, fine-scale structuring of avian pathogens has been 

shown to occur (Wood et al. 2007). To explore this, in April 2010, one of the largest 

populations, Tenerife, was sampled more extensively, obtaining at least 30 individuals 

from three distinct subpopulations in the northwest, south, and east of the island, as well 

as from the top of Teide, which is located in the centre of Tenerife. Note that the pipits 

are less common in the wetter north-eastern peninsula of the island. 

 

Birds were captured using spring traps baited with Tenebrio molitor larvae. Each bird was 

fitted with a unique numbered aluminium ring from the relevant Spanish or Portuguese 

ministries, or with a coloured plastic ring. Individuals were aged on the basis of feather 

moult pattern (Cramp 1985), and seven morphological measurements (wing length, 

tarsus length, bill length, height and width, head length and mass) were taken. Individuals 

were examined for pox lesions, which usually consist of growths on the feet, legs or face 

(Smits et al. 2005); where possible, small samples were taken with a sterile scalpel, 

diluted in 800 μL of absolute ethanol in screw-cap microfuge tubes, and stored at room 

temperature. Blood samples (c. 40 μL) were collected by brachial venipuncture, and 

likewise preserved in absolute ethanol.  
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3.3.2 Molecular procedures 

Genomic DNA was extracted from blood using a salt extraction technique (Richardson et 

al. 2001). DNA extraction techniques do not appear to affect the accuracy of malarial 

identification (Freed and Cann 2006). However, amplifying pox DNA from blood and 

lesions could potentially be problematic. In order to minimize the possibility of the DNA 

extraction technique affecting the amplification of pox DNA, we extracted DNA from 

lesions and from blood samples of birds on which lesions were found using both the salt 

extraction method and DNeasy blood and tissue kits (Qiagen), following the 

manufacturer’s instructions. The quality of genomic DNA was visualized on 1.2% agarose 

gel after electrophoresis. Prior to pathogen screening, the extracted DNA was used to 

determine the sex of the birds using the molecular protocol described in Griffiths et al. 

(1998). Samples that did not produce strong amplicons for this sexing procedure were re-

extracted or discarded. This ensured that only samples which contained amplifiable DNA 

went on to be used in the pathogen screening procedures.  

 

Molecular methods were used to detect and characterize the strains of each pathogen. 

For avian malaria, a nested polymerase chain reaction (PCR) was used that amplifies a 422 

bp fragment of the mitochondrial cytochrome b gene (Waldenstrom et al. 2004). For 

avian pox, primers developed by Lee and Lee (1997) were used, which amplify a 578 bp 

fragment of the 4b gene. For both malaria and pox PCR reactions, the reagents and 

conditions described in Illera et al. (2008) were used. For trypanosomes, primers 

developed by Maslov et al. (1996) were used as well as the nested PCR reaction described 

in Sehgal et al. (2001), which amplifies a 326 bp fragment of the small subunit ribosomal 

RNA gene. To ensure the accuracy of the results, all samples were screened twice, and 

where results from two reactions were not concordant, samples were screened a third 

time. Given the low level of discrepancy between repeated PCRs (see section 3.4), this 

was deemed to be a sufficient number of replicates. PCR products were purified using a 

QIAquick PCR purification kit (Qiagen) and sequenced on a PerkinElmer ABI PRISM 3700 

automated sequencer. Only positive results that amplified twice and gave good 

sequences were counted as genuine infections. The quality of sequences was checked 

using FinchTV (http://www.geospiza.com/finchtv/), and sequences were aligned using 

BIOEDIT version 5.0.6 (Hall 1999), against homologous sequences published in the 
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National Centre for Biotechnology Information (NCBI) GenBank database. Malarial 

sequences were also searched for in the MalAvi public database for avian malaria 

sequences (Bensch et al. 2009) in order to identify if, when, and where strains had 

previously been found.  

 

3.3.3 Statistical analyses 

At the island level, linear regression was used to test whether larger, less isolated islands 

harboured more pathogen species than smaller or more isolated ones. For the purpose of 

this analysis, individual pathogen strains were counted as “species” (Bensch et al. 2004), 

and thus pathogen “species richness” is, for our purposes, the number of pathogen 

strains found on an island. A common problem with this kind of analysis is that sampling 

effort might correlate with both island size and pathogen species richness (Walther et al. 

1995). This is unlikely to be an issue in the present study, as sample size was roughly 

equal across all populations. Nonetheless, path analysis (Sokal and Rohlf 1995) was used 

to assess the direct and indirect effects of sampling effort (for details of methods, see 

Guégan and Kennedy 1996; Ishtiaq et al. 2010). Island isolation was calculated as both the 

total land area within a 100 km radius of the coastline of the focal island, and the distance 

to the nearest continental mainland (Europe or Africa), using Google Earth 

(http://earth.google.com). Island size was obtained from the Island Directory website 

(http://islands.unep.ch/isldir.htm). In all cases, least-squares regression was used on log-

transformed variables. As some islands had no pathogens, n + 1 was used for pathogen 

species richness (Cornell 1986; Hockin 1981).  

 

Generalized linear models (GLMs) were used to test the factors affecting infection at the 

individual level. First, to test whether pathogen prevalence varied across space and time, 

GLMs were constructed for each pathogen using all individuals, with pathogen 

presence/absence as the response variable and island identity and year as explanatory 

variables. A second set of GLMs were then carried out to test for associations between 

pathogens while controlling for potentially confounding factors. For these models, only 

islands where pathogens were found in more than two individuals were included, as the 

presence of individuals from islands where pathogens are very rare or absent may 

confound results. Again, a separate GLM was carried out for each pathogen, this time 
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including island, year, age and sex as explanatory variables. Presence/absence of infection 

with other pathogens was subsequently added as explanatory variables in order to test 

their independent explanatory power on likelihood of infection (Crawley 2007). For all 

GLMs, a quasi-binomial error structure was used, with a logit link function. To explore the 

effect of infection on body condition, mass was entered as the dependent variable in a 

general linear model (LM) with body size as a covariate—a preferable approach to using 

mass/length residuals (Green 2001). As an indicator of overall body size, the first 

component from a principal component analysis of the six morphometric measurements 

(excluding mass) was used (Freeman and Jackson 1990; Green 2001). Age, sex, island, 

year and infection with each pathogen were entered into the LM as additional 

explanatory variables. All statistical tests were carried out in R version 2.12.2 (R 

Development Core Team 2008), and P values are two-tailed unless indicated otherwise.  

 

3.4 Results 

3.4.1 Molecular characterization and prevalence levels 

In total, 832 individuals were screened for pathogenic infection. We found 27 instances of 

non-concordance between the two PCRs. In all but five cases, infection was confirmed by 

a third PCR. Those five cases were counted as negatives. In all cases, positive controls 

successfully amplified while negative controls did not. For avian malaria, no 

Haemoproteus was detected, but two Plasmodium strains were identified. These same 

strains were detected in Berthelot’s pipits by Illera et al. (2008). In the present study, the 

most common Plasmodium strain, TF413, was found in all but two of the individuals 

infected with Plasmodium. The other strain, PAL282, was detected in two individuals—

one from La Palma and one from El Hierro—in 2006, but was not found in any individuals 

in 2009. Leucocytozoon infection was rare (see below), though four different strains were 

detected. Three were identical in mitochondrial sequence to the previously described 

sequences RS4, REB11 and SYAT22 (Bensch et al. 2009), while the fourth strain, which we 

named ANBE1, has not previously been detected and appears to be unique to Berthelot’s 

pipit. This strain has been submitted to GenBank (accession number JF803824.1). In the 

2006 samples, Leucocytozoon infection was detected on three islands, with three strains 

on Porto Santo (REB11, RS4 and SYAT22), two (REB11 and ANBE1) on Gran Canaria, and 

one (REB11) on Tenerife. REB11 was the most common strain. In 2009, only REB11 was 
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found, and only on Porto Santo. No evidence for trypanosome infection was found in any 

of our samples, despite the successful amplification of trypanosome DNA from positive 

controls. For avian pox, successful amplification was achieved in seven samples from 2006 

(six from Porto Santo and one from Lanzarote), all of which gave identical sequences, 

apparently unique to Berthelot’s pipit (Illera et al. 2008). We were unable to achieve 

amplifications from any 2009 samples (discussed later).  

 

Considering all samples, Plasmodium prevalence was 19.2% in 2006 and 17.1% in 2009, 

Leucocytozoon prevalence was 0.02% in 2006 and 0.01% in 2009, and pox prevalence 

(determined from the presence of lesions) was 9.2% in 2006 and 11.2% in 2009. The low 

overall prevalence of Leucocytozoon was due to it being very rare or absent from all 

populations other than Porto Santo, where it was abundant in both years (Table 3.1). 

Indeed, the prevalence of all pathogens differed markedly across populations, ranging 

from 0 to 65% (Table 3.1). Temporal stability in pathogen abundance was observed: 

considering all populations, there was a strong correlation between population-level 

prevalence across the two sampling years for both malaria and pox (Pearson correlation: 

malaria, R = 0.71, d.f. = 11, P = 0.007; pox, R = 0.73, d.f. = 11, P = 0.005, Fig. 3.1). The 

central and eastern Canary Islands, as well as Porto Santo, had consistently moderate to 

high levels of pathogens in both years. Other islands had consistently low prevalence 

levels, while three islands (Madeira, Deserta Grande and Selvagem Grande) remained 

free of all screened pathogens in both years (Table 3.1). After removing populations with 

no parasites, this relationship was no longer significant (malaria, R = −0.22, d.f. = 8, P = 

0.69; pox, R = 40, d.f. = 8, P = 0.43), suggesting that a degree of temporal fluctuation in 

prevalence occurred in populations with moderate to high pathogen levels (Fig. 3.1). 
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Figure 3.1 Temporal patterns of pathogen prevalence 
(percentage of individuals infected) across island populations of 
Berthelot’s pipit (see table 3.1 for sample sizes). The filled circles 
and solid line represent malaria, and the open circles and dashed 
line represent pox. 

 

Pathogen species richness was positively related to island size (linear regression, R2 = 

0.35, d.f. = 11, P = 0.034; Fig. 3.2A), as well as to the total land area within a 100 km 

radius of the coastline (R2= 0.45, d.f. = 11, P = 0.012; Fig. 3.2B), suggesting that smaller 

and more isolated islands harbour fewer pathogens. It is possible that the latter of these 

two relationships was driven by a single point, Selvagem Grande, which is highly isolated 

(Fig. 1.1; bottom-left point in Fig. 3.2B). The regression was therefore performed again 

while excluding this population, and the relationship remained significant (R2 = 0.36, d.f. = 

10, P = 0.039). There was no significant relationship between pathogen species richness 

and distance to the nearest continental mainland (R2= 0.15, d.f. = 11, P = 0.19). Path 

analysis revealed no direct or indirect effect of sampling effort on pathogen species 
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richness (P > 0.05). There was no relationship between population level prevalence of 

Plasmodium or pox and island size or isolation (all P > 0.05). 

 

On Tenerife, a total of 217 samples were collected from the three coastal subpopulations 

and the mountain population of Teide, of which 62 were from 2006, 59 from 2009 and 97 

from 2010. Moderate levels of Plasmodium infection were observed in the southern and 

eastern subpopulations, though this pathogen was rare on Teide and absent from the 

north-western subpopulation (Table 3.2). There was even more pronounced geographic 

structuring of pox infection; high pox prevalence was observed in the southern 

subpopulation, but no pox infection was detected anywhere else other than in one 

individual on Teide (Table 3.2). The only individual found to be infected with 

Leucocytozoon was from the eastern subpopulation. 

 

3.4.2 Individual-level analyses 

As Leucocytozoon infection was largely restricted to a single population, GLMs including 

all individuals were only carried out for pox and Plasmodium. For both pathogens, there 

was a significant effect of island identity on infection, but not one of year (Table 3.3A). 

There was a significant island by year interaction for Plasmodium, and a near-significant 

interaction for pox (Table 3.3A). The second set of more detailed models revealed that 

infection with Plasmodium had a significant effect on pox infection, while controlling for 

age, sex, island, and year (Table 3.3B). This association was positive; pox prevalence was 

30% in individuals with Plasmodium, compared to 17% in those individuals without 

Plasmodium. Similarly, infection with pox was associated with an increased likelihood of 

Plasmodium infection (Table 3.3B); prevalence of Plasmodium in individuals with pox was 

52%, compared to 33% in individuals without pox. For Leucocytozoon, the individual-level 

analysis was restricted to individuals from Porto Santo (n = 60), the only island where it 

was found at anything but very low levels. Here, we found no effect of Plasmodium or pox 

on infection while controlling for other variables (Table 3.3B). A GLM restricted to 

individuals from Tenerife confirmed the intra-island variation, with a highly significant 

effect of region on infection with both pox and malaria. In this analysis, there was a less 

strong but nonetheless significant region × year interaction for pox, and an effect of year 

for Plasmodium (Table 3.4). 
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Table 3.1 Prevalence (percentage of individuals infected) of blood pathogen infection 
in 13 populations of Berthelot’s pipit across Macaronesia. 

Island 
Plasmodium Leucocytozoon Pox Sample size 

2006 2009 2006 2009 2006 2009 2006 2009 

Deserta Grande 0 0 0 0 0 0 31 4 

Madeira 0 0 0 0 0 0 33 29 

Porto Santo 64.5 30 25.78 13.33 45.25 36.77 31 30 

Selvagem Grande 0 0 0 0 0 0 34 42 

La Graciosa 4.20 0 0 0 0 0 24 26 

Lanzarote 23.13 48.38 0 0 53.83 16.13 13 31 

Fuerteventura 50 45.25 0 0 16.67 29 12 31 

Gran Canaria 45.25 15.25 6.50 0 16.13 27.36 31 33 

Teide 6.75 0 0 0 0 4 30 25 

Tenerife 9.42 32.37 3.13 0 12.50 5.91 32 34 

La Gomera 53.33 35 0 0 3.33 10 30 20 

La Palma 3.67 0 0 0 0 4.50 28 22 

El Hierro 9.73 0 0 0 0 0 31 30 

 
 

Table 3.2 Prevalence (percentage of individuals infected) of blood 
pathogen infection in four sub-populations of Berthelot’s pipit on Tenerife. 
Sub-population Plasmodium Leucocytozoon Pox Sample size 

North-West 0 0 0 46 

South 34.76 0 21.75 69 

East 33.27 2.08 0 48 

Teide 3.63 0 1.81 55 
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Figure 3.2 Pathogen species richness in island 
populations of Berthelot’s pipit in relation to 
A island area and B land area within 100 km of 
the coast of each island (isolation). See table 
3.1 for sample sizes 
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Table 3.3 Results of generalized linear models showing, A across all populations of 
Berthelot’s pipit, the effect of island identity and sampling year on pathogen load and, B 
within infected islands, the effect of other blood pathogens on likelihood of infection 
after controlling for island, year, sex and age. Significant results (P < 0.05) are highlighted 
in bold. 

 d.f. b s.e. Deviance Residual Deviance P 

A. All Islands       

Pox       

Null     531.21  

Island 12, 819 - - 148.09 383.12 < 0.001 

Year (2009) 1, 818  -0.001 0.001 0.11 383.01 0.66 

Island*Year 12, 806 - - 11.1 371.9 0.07 

       

Plasmodium       

Null     796.7  

Island 12, 818 - - 206.88 589.83 < 0.001 

Year (2009) 1, 817 -0.001 0.001 0.78 589.04 0.28 

Island*Year 12, 805 - - 28.93 560.12 < 0.001 

       

B. Infected Islands only       

Pox       

Null     405.26  

Island 5, 412 - - 35.89 369.37 < 0.001 

Year (2009) 1, 411 -0.3 0.25 0.17 369.2 0.68 

Sex (Male) 1, 410 0.03 0.27 0 .003 369.2 0.96 

Age (Juvenile) 1, 409 -0.12 0.26 0.76 368.43 0.39 

Plasmodium (Infected) 1, 408 0.64 0.3 10.71 357.72 < 0.001 

       

Plasmodium       

Null     537.06  

Island 5, 412 - - 16.51 520.55 0.01 

Year (2009) 1, 411 -0.11 0.31 0.14 520.41 0.71 

Sex (Male) 1, 410 -0.15 0.32 0.15 520.27 0.71 

Age (Juvenile) 1, 409 0.08 0.31 1.57 518.7 0.22 

Pox (Infected) 1, 408 0.65 0.3 10.85 507.85 0.001 

       

Leucocytozoon       

Null     56.76  

Year (2009) 1, 57 -2.05 0.88 3.09 53.67 0.07 

Age (Juvenile) 1, 56 -2.14 0.93 5.58 48.09 0.01 

Sex (Male) 1, 55 1.05 0.84 0.91 47.18 0.33 

Plasmodium (Infected) 1, 54 0.7 0.85 1.23 45.95 0.253 

Pox (Infected) 1, 53 0.94 0.8 1.37 44.58 0.23 
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Table 3.4 Results of generalized linear model showing the effect of intra-island 
variation on pathogen load in a single population (Tenerife) of Berthelot’s pipit. 
Significant results (P < 0.05) are highlighted in bold. 

 d.f. b s.e. Deviance Residual Deviance P 

Pox       

Null     114.38  

Region 3, 214 - - 27.47 86.91 < 0.001 

Year (2009) 1, 213 - - 0.68 86.23 0.23 

Region*Year 3, 210 - - 6.03 80.21 0.005 

       

Plasmodium       

Null     213.24  

Region 3, 213 - - 47.03 166.21 < 0.001 

Year (2009) 1, 212 - - 3.66 162.54 0.02 

Region*Year 3, 209 - - 5.01 157.54 0.07 

 

3.4.3 Effects on body condition 

Analyses of body condition were restricted to the six islands where pathogens were 

present in more than two individuals. There was a significant association between both 

pox and Plasmodium infection with mass, while controlling for body size, age, sex, island 

and year (Table 3.5). Infected individuals were, on average, heavier than uninfected 

individuals: mean ± S.D. mass for infected and uninfected individuals, respectively, was 

16.9 ± 0.8 and 16.2 ± 0.7 g for pox, and 16.7 ± 0.3 and 16.2 ± 0.7 g for malaria. 

 

3.5 Discussion 

Our study is one of the first to examine the distributions of multiple pathogens over a 

range of spatio-temporal scales across populations of a wild animal. The evidence 

indicates that, in Berthelot’s pipit, there are strong population-level differences in 

pathogen distribution, and that pathogen species richness is related to island size and 

isolation. These broad differences in distribution were stable over the three-year time 

period of this study. However, across some of the islands where the pathogens were 

present, prevalence levels varied considerably over the two sampling periods. Within a 

single population, we observed marked differences in pathogen presence and prevalence 

across subpopulations. Analysis at the individual level further supported the island effect, 
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and we also detected a positive association between pathogens. Finally, pathogenic 

infection was associated with the body condition of Berthelot’s pipits. 

Table 3.5 Results of general linear model, showing the effects of 
malaria and pox on mass in Berthelot’s pipit, while controlling for body 
size, age, sex, island and year. For body size, the first principal 
component from a principal components analysis of seven 
morphological measurements was used.  

Explanatory variable b s.e. F d.f. P 

Body Size 0.11 0.03 8.22 1 0.004 

Island - - 10.25 5 <0.001 

Year (2009) 0.06 0.11 0.17 1 0.68 

Sex (Male) -0.45 0.16 6.35 1 0.01 

Age (Juvenile) -0.23 0.11 3.31 1 0.07 

Malaria (Infected) 0.26 0.11 6.35 1 0.01 

Pox (Infected) 0.27 0.13 5.12 1 0.02 

 

Over the three-year time period of our study, which roughly corresponds to the lifespan 

of pipits (Coulson 1956), we observed a high degree of temporal stability in pathogen 

presence at the population level (Table 3.1). In all populations where a pathogen was 

observed in one year but not another, the pathogen occurred in less than three 

individuals in the infected year (Table 3.1). This suggests that our failure to detect them in 

both years may have been due to them being very rare and not picked up in our sample, 

rather than absent. In other words, pathogen load on some islands is consistently low (or 

zero), and consistently moderate to high on others. Little work has been done on the 

long-term temporal stability of avian pathogens, though recent evidence from Hawaii 

suggests that avian pox variants have been maintained in populations for over 100 years 

(Jarvi et al. 2008). Similarly, the presence of avian malarial lineages has been shown to be 

relatively stable within populations over periods of up to a decade (Fallon et al. 2004). 

Over these sorts of time periods, however, marked fluctuations in the prevalence of these 

pathogens are expected to occur (Fallon et al. 2004). This was the case in our study, 

where temporal shifts in prevalence did occur within a few of the populations where 

pathogens were present at moderate to high levels (Fig. 3.1). However, with only two 

sampling periods, we have to be cautious in interpreting the extent to which pathogen 

load varies over time. In order to do so more fully, long-term datasets, ideally from 

multiple populations, are now needed.  
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Island biogeography theory predicts that smaller, more isolated islands will exhibit lower 

species richness than larger, less isolated islands due to lower rates of colonization and 

higher rates of extinction (MacArthur and Wilson 1967). Biogeographic studies of 

pathogens have mostly considered hosts as the “islands” (Dritschilo et al. 1975; Kuris et 

al. 1980). However, island size itself may also affect patterns of pathogen distribution, 

though evidence for this in the literature is currently limited, and has yielded mixed 

results. In a recent study, Ishtiaq et al. (2010) examined species–area relationships in 

Plasmodium and Haemoproteus lineages infecting white-eyes (Zosterops spp.) in 16 

southwest Pacific islands. Significant species–area relationships were found for 

Plasmodium, but not for Haemoproteus. In Darwin’s finches (Geospiza fuliginosa), a 

positive relationship between pathogen (pox and ectoparasite) abundance, but not 

diversity, was observed (Lindström et al. 2004). In Anolis lizards, no relationship was 

found between island size, elevation or rainfall and the presence of malaria (Staats and 

Schall 1996). In our study, we observed significant effects of both island size and isolation 

on pathogen species richness across islands. One would predict island size and isolation to 

be especially important for vector-borne pathogens, as screened for here, as transmission 

to the host requires both the pathogen and vector to be present at a given point in time. 

Nonetheless, our population-level data suggest that colonization and extinction may have 

roles to play in determining pathogen distribution in our study system, and provide an 

explanation for why patterns of pathogen distribution are temporally stable across 

populations.  

 

Within a single island, Tenerife, we observed a high degree of structuring in pathogen 

distribution, suggesting that in addition to the observed island-level effects, intra-island 

level factors also play an important role. Recent evidence from blue tits (Cyanistes 

caeruleus) has shown that pathogen lineages can be restricted to defined spatial regions, 

and that changes of up to 50% in malarial prevalence can occur at distances of less than 1 

km (Wood et al. 2007). Our study confirms that local spatial variation in host–pathogen 

systems can occur. It is difficult to speculate about how variations at the inter- and intra-

island levels may interact. One possibility is that larger islands are more likely to contain 

within-population variation in the pathogen distribution, and higher pathogen species 

richness as a result. However, more fine-scale sampling is now needed to determine the 
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factors underlying within-population spatio-temporal variation, the scale at which it 

occurs, and its effects on population-level distribution.  

 

At the individual level, we detected a positive association between avian pox and 

Plasmodium. This is somewhat surprising, as one may expect to find a low number of 

individuals with multiple infections either because of competitive interactions between 

pathogens, or due to the potential fitness costs incurred to the host (Balmer et al. 2009; 

Beadell et al. 2004; Haukisalmi and Henttonen 1993). However, positive associations 

between pathogens can occur, and associations between avian malaria and pox have 

recently been detected in birds from Hawaii (Atkinson et al. 2005). There are a number of 

possible explanations for such findings. First, it could be that infection with one pathogen 

reduces host resistance and makes birds more susceptible to the other, or that a third, 

unknown pathogen makes the birds more susceptible to both malaria and pox. A number 

of pathogens, including malaria, are well known to have immunosuppressive effects, and 

this can often lead to positive associations between multiple pathogens (Cox 2001). 

Alternatively, the two pathogens could be transmitted by the same vector. This is also 

possible; for example, Culex mosquitoes have been demonstrated to transmit both pox 

and malaria to wild birds (Akey et al. 1981). Unfortunately, however, little is known about 

the distribution of invertebrate hosts across the North Atlantic archipelagos, and less still 

is known about the relationships between pathogens and invertebrate hosts across this 

region. More research in this area is now needed (see, for example, Hellgren et al. 2008; 

Njabo et al. 2011). Finally, it could be that the two pathogens are restricted to the same 

areas, and that the observed effect has arisen from sampling over multiple 

subpopulations (i.e., some with both pathogens and some with neither). Our data from 

Tenerife suggest that the latter of these explanations is unlikely to be the case in 

Berthelot’s pipits, as we found a subpopulation with only one of the two pathogens 

(Table 3.2). Such a finding would, if anything, obscure positive associations. In contrast, 

there was evidence of a positive association between the two pathogens in the southern 

subpopulation, the only one in which both pathogens occurred (χ2 = 5.37, P = 0.02), 

suggesting that Plasmodium and pox co-occur on a very local scale.  
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Research into the impact of avian diseases on host body condition has generally shown 

that, as one may expect, infected individuals present poorer body conditions than 

uninfected individuals (Marzal et al. 2008; Valkiunas et al. 2006). However, in our study, 

we found the opposite: infected individuals had better body conditions than uninfected 

individuals. One possible explanation for this is that there is variation in both size and 

immunocompetence within populations (i.e. larger subpopulations are less 

immunocompetent due to higher investment in growth). Another possible explanation is 

that infection kills low-quality individuals, and that our sample consisted of the high-

quality individuals that have been able to cope with infection. This is in line with the fact 

that we were, for the most part, unable to amplify pox DNA from the pox lesions we 

sampled, nor from the corresponding blood samples. Scars from pox lesions can last on 

birds for months (Ritchie 1995), making it possible that individuals in 2009 had retained 

lesions from a previous infection but were no longer infected. Alternatively, it may be 

that some of the pox-like lesions were caused by a different, unknown pathogen, 

although this seems highly unlikely given the similarity in appearance to the pox lesions 

observed in pipits by ourselves and others (Smits et al. 2005). Similarly, avian malaria can 

remain in bird blood at chronic levels for long periods of time after an initial, acute 

infection (Atkinson et al. 2001; Kilpatrick et al. 2006; Valkiunas 2005). If infection with pox 

and malaria does kill low-quality individuals, this implies that infection with the pathogens 

studied here confers severe fitness costs to the hosts. However, we cannot rule out the 

possibility that individuals with good body conditions are more susceptible to infection 

due to decreased immunocompetence, rather than the survivors of infection. An 

assessment of infection levels using qPCR (e.g. Knowles et al. 2010), as well as data on the 

effects of pathogenic infection on survival and reproduction, would help to confirm 

fitness costs.  

 

As Berthelot’s pipit has only recently dispersed across its range, with little subsequent 

migration between populations (Illera et al. 2007), the differential levels of pathogenic 

infection observed are likely to constitute an important selective force for promoting 

differentiation across populations. Moreover, because spatial variation in the pathogen 

regime appears to be constrained, at least in part, by biogeographical factors, these 

differential selective pressures are consistent over time, at least at scales comparable to 
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the lifespan of this species. This is an important point, as spatial variation in selection is 

only likely to produce detectable effects upon host populations if it is consistent over 

time. Thus, our findings provide a foundation for further research into the genetic, 

physiological and behavioural consequences of these differential selective pressures. 
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4.1 Abstract 

Genomic resources are facilitating the rapid discovery of microsatellite markers for non-

model species. However, the characteristics of marker sets designed using different 

methods can vary greatly, which may have significant consequences for the analyses 

undertaken. We test how microsatellite variability can be used to inform population 

history in Berthelot’s pipit. We analysed patterns of variation at 10 highly conserved loci 

that have low levels of variability across bird species (“LV loci”), and compared this to 12 

higher variability (HV) loci. We show that founder events resulted in dramatic reductions 

in allelic richness at HV, but not LV loci; a pattern reflected in tests for genetic 

bottlenecks, which yielded contrasting results depending on the marker set used. 

Similarly, pairwise analyses of population structure revealed inflated levels of 

differentiation in comparisons involving bottlenecked populations, but only when HV loci 

were used. We suggest that because LV loci are less sensitive to loss of variation during 

bottlenecks, they more accurately reflect population divergence. Meanwhile, HV 

microsatellites better reflect past changes in population size. Utilising differences in 

microsatellite variability to inform population genetic analyses more fully may therefore 

be a rewarding approach. 
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4.2 Introduction 

Genetic markers are powerful tools for making inferences about historical and 

contemporary processes that have occurred within and among populations, such as 

migration, changes in population size and divergence times. To provide the best 

resolution, genetic markers should have the appropriate mutation rates and levels of 

polymorphism to address the specific questions at hand (Parker et al. 1998; Sunnucks 

2000). The combined use of different markers with different properties (e.g. nuclear 

sequences, mitochondrial genes, microsatellites), may help maximise the information 

obtained and the accuracy of eventual conclusions, and reveal how evolutionary change 

operates over a range of temporal scales (Palumbi and Baker 1994; Ross et al. 1999; 

Wang 2010).  

 

Microsatellites are perhaps the most widely used genetic markers for investigating how 

genetic diversity is partitioned within and among closely related populations (Jarne and 

Lagoda 1996; Balloux and Lugon Moulin 2002). They are uniquely suited to this purpose, 

owing to their co-dominance, high mutation rates, selective neutrality and abundance 

across the genome. While microsatellites remain an invaluable source for population 

genetic studies (Guichoux et al. 2011), care needs to be taken when using microsatellites 

to infer population history. The manner and rapid rate by which microsatellites mutate 

can result in problems with homoplasy, potentially confounding estimates of 

differentiation (Garza and Freimer 1996; Estoup et al. 2002). The high variability observed 

at microsatellites also makes them particularly sensitive to reductions in population size. 

This can elevate population structure in bottlenecked populations, making it difficult to 

distinguish whether the levels of structure observed represent true divergence between 

populations, or whether they are a function of past changes in population size 

(Chakraborty and Nei 1977; Hedrick 1999; Hedrick et al. 2001; Whitehouse and Harley 

2001). 

 

Methodological developments, including the arrival of high-throughput sequencing, mean 

that microsatellites can now be isolated relatively quickly for most taxonomic groups (for 

an overview see Guichoux et al. 2011). Some loci have been successfully developed into 

markers with extensive cross-species utility (Dawson et al. 2010; Jan et al. 2012) and as a 
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result increasing numbers of markers are readily available for non-model organisms. 

Moreover, by multiplexing – combining multiple markers into single PCRs – large numbers 

of individuals can be genotyped at increasingly low cost (Chamberlain et al. 1988; Kenta 

et al. 2008). A consequence of the increased availability of microsatellites is that a greater 

degree of variability in marker characteristics is expected. Microsatellites vary in repeat 

length, repeat number and proximity to functional genes, all of which have consequences 

for mutation rate (Ellegren 2004). These factors, and thus marker variability, may differ 

depending on the criteria used when markers are developed (Dawson et al. 2010; Dawson 

et al. unpublished data). Where systematic differences in levels of variability occur across 

sets of microsatellite markers, some interesting and novel opportunities may arise for 

population genetic studies. For example, using microsatellite markers with lower 

mutation rates may result in reduced instances of homoplasy and less sensitivity to 

population bottlenecks, providing a clearer assessment of divergence between 

populations (O'Reilly et al. 2004; Woodhead et al. 2005). On the other hand, high levels of 

marker variability are required for some analyses, including the detection of bottlenecks 

(e.g. Primmer et al. 1995; Cornuet and Luikart 1996; Garza and Williamson 2001). To our 

knowledge, however, no studies to date have utilised systematic differences in 

microsatellite variability to better understand population history.   

 

Here we examine how differences in marker variability can inform population history in 

Berthelot’s pipit. We first use microsatellite data to infer the colonisation pathway of this 

species across its island distribution. Then, using a panel of 12 ‘high variability’ and 10 

‘low variability’ microsatellite loci, we test how genetic diversity has been affected by 

founder events, and whether these patterns are consistent for the two sets of markers. 

We then use two different approaches to test whether founder events resulted in 

detectable bottlenecks at the different marker sets. Finally, we examine the 

consequences of founder events for patterns of genetic differentiation across the two 

sets of markers. We discuss how utilising differences in marker variability can enable 

clearer interpretation of some commonly employed population genetic analyses.  
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4.3 Materials and Methods 

Representative samples (c. 30 individuals) were obtained from all 13 Berthelot’s pipit 

populations (see section 3.3 for full details). For this chapter, only samples from 2006 

were used (see chapter 7 for discussion). 

 

4.3.1 Marker selection and molecular procedures 

Genomic DNA was extracted using a modified salt extraction method (Bruford et al. 1992; 

Richardson et al. 2001) and diluted to a concentration of 10-50 ng/µL. For population 

genetic analyses we used the four loci genotyped by Illera et al. (2007) that conformed to 

Hardy-Weinberg expectations. In addition, we tested three sets of conserved 

microsatellite markers (80 loci in total) for variability in the pipit. Thirty-four of the loci 

tested were developed on the basis of having a high degree of sequence homology 

between the zebra finch (Taeniopygia guttatta), expressed sequence tag (EST) database 

and the chicken (Gallus gallus) genome. These ‘TG’ loci are therefore highly conserved 

across passerine birds (Dawson et al. 2010). In addition, we tested 24 loci isolated from 

the zebra finch and chicken genomes (Conserved Avian Microsatellite, or CAM loci; 

Dawson et al. unpublished data), and 22 house sparrow (Passer domesticus) loci of utility 

in other passerines (Dawson et al. 2012). On average, the TG loci have fewer repeat units 

compared to other conserved markers, and as a result fewer of these loci are 

polymorphic across bird species (Dawson et al. Unpublished data). We therefore classified 

the TG loci a priori as ‘low variability’ (LV), and the remaining loci as ‘high variability’ (HV). 

 

All loci were initially tested in four individuals from across the three archipelagos. Loci 

that amplified with clear, scorable products and at which at least two alleles were found 

were tested in 24 individuals from a single population (Tenerife) and checked for Hardy-

Weinberg equilibrium (HWE) and null alleles (see below for details). After excluding 

monomorphic loci, and loci that deviated from HWE/ showed evidence of null alleles, 22 

markers remained, which were arranged into five multiplex reactions (Table 4.1). PCRs 

were carried out in 2 µL reactions using a method based on Kenta et al. (2008). Briefly, 1 

µL of genomic DNA solution was added to each PCR well and the liquid evaporated. To 

this, 1 µL primer mix (containing all forward and reverse primers in the multiplex reaction 

at 0.2 µM) and 1 µL 2x QIAGEN Multiplex PCR Master Mix was added. Samples were 
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overlaid with mineral oil before PCR. An initial denaturing phase of 95ºC for 15 minutes 

was followed by 40 cycles of 94˚C for 30 seconds, 56˚C for 90 seconds and 72˚C for 60 

seconds. A final hold of 60˚C for 30 minutes completed the reaction. PCR products were 

diluted 1 in 400 and separated on an ABI 3730 DNA analyzer. Allele sizes were 

determined using GeneMapper version 3.7 (Applied Biosystems). To estimate the rate of 

scoring error, we random selected a subset of samples (30 individuals) to be scored by 

two different individuals (LGS and D.P. Padilla). The maximum number of mismatches at a 

locus was one, suggesting an error rate of less than 3%.  

 

4.3.2 Analyses 

Unless stated otherwise, all statistics and plots were generated in R version 2.12.2 (R 

Development Core Team 2008). For all variables used in parametric tests, normality was 

tested using Shapiro-Wilks tests and transformed where appropriate.  

 

For each microsatellite locus and population, HWE and linkage disequilibrium were tested 

using Genepop version 4.1 (Raymond and Rousset 1995) and null allele frequencies were 

estimated using CERVUS version 3.0.3 (Marshall et al. 1998). Allele frequencies and Nei’s 

gene diversity (Nei 1987) were calculated using Fstat version 2.9 (Goudet 1995). Summary 

statistics of genetic diversity (gene diversity, allelic richness and number of private alleles) 

within populations were calculated for each locus and averaged for each population and 

archipelago across HV and LV loci separately. Because significant differences occurred 

across, but not within archipelagos (see results), we focussed on differences at the 

archipelago level. Allelic richness and numbers of private alleles per archipelago were 

calculated after controlling for differences in sample size, using a rarefaction approach 

implemented in HP rare (Kalinowski 2004, 2005). Differences in genetic diversity across 

marker types and archipelagos were tested using general linear models. An interaction 

term was included in models (marker type*archipelago) to test whether archipelago-level 

differences in genetic diversity were consistent across the two marker types. 

 

The presence of positive selection at microsatellites, particularly those derived from EST 

databases, is a potential concern for population genetic studies (Ellis & Burke 2007). Thus, 

an outlier approach was used to test for selection at individual loci, plotting FST against 



Chapter 4: Microsatellite variability and population history  

 

86 
 

heterozygosity, and comparing this to a simulated null distribution (Beaumont and 

Nichols 1996). The null distribution was generated using 20,000 simulations and a finite 

island model, implemented in Arlequin version 3.5 (Excoffier and Lischer 2010). All loci 

were used to generate the original simulations, then loci with significantly high or low FST 

values were removed, and the simulations were run again. All loci were included in the 

final plot. Loci with significantly high overall FST values relative to heterozygosity are 

considered to be subject to diversifying selection, whereas those with low values are 

considered to be under balancing selection (Beaumont and Nichols 1996). 

 

Table 4.1 22 microsatellite loci amplified in the 
Berthelot’s pipit. Loci classified a priori as ‘high 
variability’ (see text for details) are in italics. 

Multiplex Locus Reference 

1 PCA7 (Dawson et al. 2000) 

 
TG03-002 (Dawson et al. 2010) 

 
TG13-009 (Dawson et al. 2010) 

2 TG01-047 (Dawson et al. 2010) 

 
TG02-088 (Dawson et al. 2010) 

 
CAM13 

(Dawson et al. unpublished 
data) 

3 PDO46 (Dawson et al. 2012) 

 
TG03-098 (Dawson et al. 2010) 

 
CAM2 

(Dawson et al. unpublished 
data) 

 
CAM23 

(Dawson et al. unpublished 
data) 

 
CAM4 

(Dawson et al. unpublished 
data) 

 
CAM8 

(Dawson et al. unpublished 
data) 

4 PDO47 (Dawson et al. 2012) 

 
PPI2 (Martinez et al. 1999) 

 
TG04-004 (Dawson et al. 2010) 

 
TG09-018 (Dawson et al. 2010) 

 
CAM18 

(Dawson et al. unpublished 
data) 

 
HRU5 (Primmer et al. 1995) 

5 PDO5 (Dawson et al. 2012) 

 
TG01-024 (Dawson et al. 2010) 

 
TG05-053 (Dawson et al. 2010) 

 
TG06-009 (Dawson et al. 2010) 
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Population-level pairwise differentiation was calculated as FST/(1-FST) (Slatkin 1995) in 

Arlequin, with P values obtained from 1000 bootstraps. Relationships between pairwise 

genetic and geographical distance matrices were tested using Mantel tests, implemented 

in the Ecodist package in R (Goslee and Urban 2007). To control for archipelago-level 

founder effects, which may be misinterpreted as genuine isolation-by-distance 

relationships (Slatkin 1993), partial Mantel tests were performed, including a coding 

variable that indicated which archipelagos were involved in each pairwise comparison 

(e.g. Canary Islands-Canary Islands, Canary Islands-Madeira, etc.). 

 

A Bayesian approach was used to identify the number of distinct genetic clusters (K), 

without using a priori information about the origin of individuals, implemented in the 

program STRUCTURE (Pritchard et al. 2000). A model allowing admixture and correlated 

gene frequencies was used. For each run a burn-in of 10,000 steps was followed by a run 

of 500,000 steps. Four independent runs were carried out for each value of K, and the 

value with the highest average ‘log probability of data’ was used. A statistic based on 

second order changes in likelihood (ΔK) was also calculated, as it may be a better 

representative of the true value of K than the log probability (Evanno et al. 2005).  

 

Two methods were used to detect whether populations had undergone genetic 

bottlenecks. First, a method that tests for heterozygosity excess, which occurs due to the 

loss of rare alleles shortly after bottlenecks (Cornuet and Luikart 1996), was implemented 

in the program BOTTLENECK (Piry et al. 1999). A two phase mutation model was used, 

with 95% stepwise and 5% non-stepwise mutations. The probability of heterozygosity 

excess was then calculated using Wilcoxon tests. Second, Garza and Williamson’s index 

(M) was calculated by dividing the number of alleles in a population (k) by the range in 

allele size (r) (Garza and Williamson 2001). This was modified to M = k/(r+1) to avoid 

dividing by zero in monomorphic populations (Excoffier et al. 2005). Following a reduction 

in population size, M is expected to be reduced, and the authors have suggested that 

values below c. 0.68 are indicative of a bottleneck (Garza and Williamson 2001). 
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4.4 Results 

In total, 371 individuals were genotyped at the 22 microsatellite loci. None of these loci 

were found to be in HW disequilibrium in more than two populations, and none were 

found to be in linkage disequilibrium after correction for multiple tests. Allele frequencies 

for each marker and population are shown in Appendix 1. 

 

4.4.1 FST outlier analyses 

One LV marker, TG01-124, had significantly high genetic structure relative to 

heterozygosity, indicating positive selection (Fig. 4.2). This marker was variable in 

Madeira, but had very low levels of heterozygosity across the Canary Islands (Appendix 1), 

the opposite pattern to that observed at other loci (Appendix 1, also see below). A BLAST 

search against the zebra finch genome found locus TG01-124 to be closely linked (0.01 kb) 

to the GABRB3 gene (Olano-Marin et al. 2011), which is associated with autism and other 

neurological disorders in humans and mice (Samaco et al. 2005). Due to being under 

selection in this species, TG01-124 was not included in the subsequent analyses 

presented here, though it should be noted that its presence did not significantly change 

results (data not shown). 

 

4.4.2 Genetic diversity across marker types and archipelagos 

Within archipelagos, there were no significant differences between populations in any 

measure of genetic diversity (all P > 0.6). There were, however, significant differences in 

genetic diversity and number of private alleles across archipelagos, as well as between HV 

and LV markers (Table 4.2). Both measures of genetic diversity (allelic richness and gene 

diversity) were highest in the Canary Islands (Table 4.2), and almost all variation in 

Madeira and Selvagens was a subset of this (Fig. 4.2). 
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 Figure 4.1 Population structure in relation to heterozygosity 
at 10 low variability (filled circles) and 12 high variability loci 
(open circles) in 371 Berthelot’s pipit individuals. A finite island 
model was used, comparing patterns of differentiation among 
populations. Solid, dashed and dotted lines represent the 
expected median, 95% and 99% confidence intervals, 
respectively, from null distributions generated using 20,000 
simulations in Arlequin. 
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Figure 4.2 Distribution of allelic 
variation from 371 Berthelot’s pipit 
individuals at 22 microsatellite loci. 
Numbers represent the total number 
of alleles found within, or shared 
across, archipelagos.  

 

All measures of genetic diversity were significantly higher at loci selected a priori as HV, 

compared to LV loci (Table 4.2). Importantly, there was an interactive effect of 

archipelago and marker type on allelic richness and on the number of private alleles 

(Table 4.2), suggesting that differences across archipelagos are not consistent between 

HV and LV loci. Indeed, at the HV loci, allelic richness in the Canary Islands was more than 

twice that in Madeira and Selvagens, whereas at the LV loci this difference was much less 

pronounced, especially between the Canary Islands and Madeira, where there was no 

significant difference (Fig. 4.3). No significant interaction between archipelago and 

marker type was found for gene diversity, suggesting a consistent pattern across 

archipelagos between the two marker types for this measure (Table 4.2). 
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Table 4.2 Genetic diversity at low and high variability microsatellites in three archipelagos of Berthelot’s pipit (371 individuals), and results 
from a general linear model testing for differences across archipelagos and marker type. 
 

 Mean ± SE General linear model 

 Canary Islands Madeira Selvagens Archipelago Marker type Interaction 

 LV HV LV HV LV HV F P F P F P 

Allelic richness 2.92 ± 0.16 6.02 ± 0.41 2.43 ± 0.23 2.97 ± 0.27 1.6 ± 0.31 2.36 ± 0.39 15.4 < 0.001 40.7 < 0.001 5.1 0.007 

Private alleles 0.76 ± 0.09 2.68 ± 0.28 0.18 ± 0.09 0.21 ± 0.06 0.07 ± 0.07 0.08 ± 0.06 22.7 < 0.001 34.5 < 0.001 7.4 < 0.001 

Gene Diversity 0.36 ± 0.02 0.58 ± 0.03 0.35 ± 0.05 0.42 ± 0.04 0.16 ± 0.07 0.33 ± 0.08 9.9 < 0.001 40.5 < 0.001 1.5 0.22 
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Figure 4.3. Boxplots of allelic richness at low variability (grey) and high variability (white) microsatellite markers in 
Berthelot’s pipit populations. Solid lines represent medians, the edges of the boxes the inter-quartile range, and the bars 
represent the range (excluding outliers). Outliers are values more than 1.5 times the inter-quartile range outside the 
upper or lower quartiles. Sample sizes are given in brackets. 
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4.4.3 Genetic structure and isolation-by-distance 

Genetic clustering analysis in STRUCTURE yielded an optimum value of K = 3, regardless of 

which markers were used (Fig 4.4), and these clusters corresponded to the three 

archipelagos (Fig. 4.5). Geographic structuring was strongest when all 22 loci were 

combined into a single analysis, and stronger structuring was observed at HV compared 

to LV loci (Fig. 4.5). To test whether this difference in geographical structuring was 

significant, each of the K = 3 clusters was assigned to the best matching archipelago (i.e. 

in Fig. 4.5, dark grey bars for Canary Islands, light grey bars Madeira and white bars 

Selvagens). The mean proportion of genetic variation within individuals attributed to their 

‘archipelago cluster’ was significantly higher when all 22 loci were used (mean ± s.e. = 

0.96 ± 0.003) compared to HV loci (mean ± s.e. = 0.93 ± 0.006; paired Wilcoxon test, P < 

0.001). Both of these values far exceeded the level of geographic structuring at LV loci, 

(mean ± s.e. = 0.65 ± 0.015; P < 0.001). 

 

Population differentiation (measured as FST/(1-FST)) was significantly greater than zero in 

most pairwise comparisons at both LV (79% of comparisons with P < 0.05) and HV loci 

(86% of comparisons with P < 0.05; Table 4.3). Pairwise patterns of differentiation at the 

two marker types were positively related (Mantel test, R = 0.69, P < 0.001). Across all 

populations, there was an apparent signal of isolation-by-distance at both marker sets, 

and this pattern was strongest when LV loci were used (Mantel tests, LV loci: R = 0.52, P = 

0.002; HV loci: R = 0.26, P = 0 .024; all loci: R = 0.39, P = 0.002; Fig. 4.6). However, after 

controlling for archipelago-level effects these patterns were no longer significant (Partial 

Mantel tests, LV loci: R = 0.02, P = 0.89; HV loci: R = -0.03, P = 0 .78; all loci: R = -0.02, P = 

0.86; Fig. 4.6). Pairwise structuring at the archipelago-level differed substantially between 

the HV and LV markers. At the HV loci, there were elevated levels of differentiation in 

pairwise comparisons involving the Selvagens, with pairwise values reaching as high as 

0.75 (Fig. 4.6; Table 4.3). 
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Figure 4.4 Output from STRUCTURE analysis on 371 Berthelot’s pipit individuals, at low 

variability (A) and high variability (B) microsatellite loci. Graphs show the log likelihood of 

the microsatellite data being partitioned into K = 1 to K = 13 clusters (see text for details). 
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Figure 4.5 Output from a Bayesian clustering algorithm using microsatellite markers with A LV, B HV and C all loci combined, on 371 Berthelot’s 
pipit individuals, implemented in STRUCTURE. Each individual is represented by a single vertical bar, which is divided into K = 3 shaded 
segments, which represent the proportion of variation in each individual attributable to each of the K clusters 
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Table 4.3 Pairwise FST/(1-FST) at low variability (below diagonal) and high variability (above diagonal) microsatellite loci in Berthelot’s pipit 
populations. Non-significant comparisons (P > 0.05) are highlighted in bold. 

 GRA LZ FV GC TEID TF GOM PAL EH SG M DG PS 

La Graciosa - 0.022 0.025 0.026 0.023 0.022 0.022 0.047 0.054 0.390 0.117 0.170 0.182 

Lanzarote 0.057 - 0.011 0 0.004 0 0.006 0.003 0.013 0.319 0.097 0.167 0.130 

Fuerteventura 0.042 0.002 - 0.003 0.001 0.014 0.002 0.013 0.020 0.316 0.077 0.123 0.130 

Gran Canaria 0.088 0 0.036 - 0.003 0.012 0 0.015 0.011 0.338 0.084 0.147 0.119 

El Teide 0.043 0 0.012 0 - 0.006 0.007 0.021 0.025 0.321 0.097 0.163 0.136 

Tenerife 0.056 0.006 0.020 0.008 0.006 - 0.011 0.025 0.015 0.242 0.097 0.170 0.125 

La Gomera 0.059 0.019 0.045 0.018 0.011 0.030 - 0.014 0.022 0.310 0.088 0.130 0.134 

La Palma 0.058 0 0.008 0.002 0 0 0.026 - 0.022 0.241 0.109 0.161 0.135 

El Hierro 0.069 0.012 0.029 0.019 0.020 0 0.032 0.012 - 0.303 0.092 0.182 0.120 

Selvagem Grande 0.236 0.224 0.251 0.240 0.216 0.142 0.284 0.184 0.135 - 0.619 0.745 0.633 

Madeira 0.204 0.207 0.188 0.231 0.219 0.147 0.247 0.168 0.109 0.197 - 0.054 0.021 

Deserta Grande 0.3542 0.335 0.281 0.372 0.360 0.293 0.398 0.280 0.248 0.430 0.057 - 0.103 

Porto Santo 0.264 0.254 0.181 0.284 0.276 0.185 0.298 0.194 0.158 0.363 0.051 0.067 - 
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Figure 4.6 Pairwise genetic structure in relation to geographic distance at microsatellite 
markers in 371 Berthelot’s pipit individuals, using; A low variability loci, B high variability 
loci and, C all loci combined. Different shapes represent pairwise comparisons within and 
across archipelagos (C = Canary Islands, M = Madeira, S = Selvagens). 
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4.4.4 Bottleneck tests 

There was no evidence for a bottleneck in any of the Canary Island populations, 

regardless of the test or marker set used (Table 4.4). Tests for heterozygosity excess (Piry 

et al. 1999) strongly suggested a recent reduction in population size in Selvagem Grande 

at both HV and LV loci (Table 4.4). Similarly, both marker sets suggested evidence of a 

bottleneck in Deserta Grande, the smallest Madeiran island (Table 4.4). In the other two 

Madeiran islands there was no significant heterozygosity excess when either marker set 

was used in isolation, but when all loci were combined there was evidence of a bottleneck 

in both populations (Table 4.4). Garza and Williamson’s (2001) M ratio was lowest in 

Selvagem Grande (Table 4.4). In the Madeiran islands, M varied strongly across marker 

types. There was evidence for a bottleneck in all three populations when the HV loci were 

used, but in none at the LV loci (Table 4.4). Averaging across all loci resulted in 

intermediate values of M (Table 4.4). 

 

4.5 Discussion 

The data from the present study strongly support the previous hypothesis that Berthelot’s 

pipit dispersed northwards from the Canary Islands to Madeira and Selvagens to form its 

current range (Illera et al. 2007). Highest levels of allelic variation were found in the 

Canary Islands, and almost all allelic variation found in the other two archipelagos was a 

subset of this (Fig. 4.2). Moreover, of the allelic variation shared between the Canary 

Islands and the other two archipelagos, most is shared between all three archipelagos 

(Fig. 4.2), suggesting that Selvagens and Madeira were colonised at similar points in time, 

perhaps in a single dispersal event. The apparent pattern of isolation-by-distance 

previously detected in this species (Illera et al. 2007) was not detected after controlling 

for archipelago effects, suggesting that patterns of genetic diversity observed across the 

pipit populations are the product of very recent founder events and bottlenecks across 

archipelagos. Thus, contrary to the suggestion from our previous study (Illera et al. 2007), 

the pipit populations do not appear to be in mutation-drift equilibrium. Importantly we 

found that the effects of the founder events on levels of genetic diversity were not 

consistent across the two sets of microsatellite markers studied here, with significant 

implications for the population genetic analyses employed. 
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Table 4.4 Two tests for genetic bottlenecks in Berthelot’s pipit populations: Wilcoxon 
tests for heterozygote excess (Piry et al. 1999) and M (Garza and Williamson 2001). 
Values highlighted in bold are those indicative of a bottleneck (P < 0.05 for the Wilcoxon 
tests and M < 0.68 for the Garza-William statistic) 
 

 P (Heterozygote excess) M 

 LV HV ALL LV HV ALL 

Canary Islands       

La Graciosa 0.98 0.26 0.86 0.78 0.76 0.78 

Lanzarote 0.50 0.57 0.54 0.82 0.75 0.78 

Fuerteventura 0.65 0.40 0.44 0.89 0.77 0.82 

Gran Canaria 0.59 0.72 0.71 0.83 0.82 0.82 

El Teide 0.32 0.69 0.58 0.72 0.78 0.75 

Tenerife 0.75 0.48 0.58 0.79 0.84 0.82 

La Gomera 0.75 0.17 0.33 0.86 0.72 0.78 

La Palma 0.90 0.72 0.90 0.87 0.76 0.81 

El Hierro 0.27 0.45 0.31 0.75 0.76 0.75 

Selvagens       

Selvagem Grande 0.05 0.02 0.01 0.49 0.45 0.47 

Madeira       

Madeira 0.10 0.06 0.02 0.72 0.53 0.62 

Deserta Grande 0.03 0.03 0.01 0.73 0.50 0.60 

Porto Santo 0.13 0.16 0.03 0.71 0.47 0.57 

 

We utilised two tests designed explicitly to detect bottlenecks, which produced 

contrasting results across marker sets. Garza and Williamson’s (2001) M ratio and 

Cornuet and Luikart’s (1996) test for heterozygosity excess have different responses to 

the age or severity of the bottleneck, with M being more likely to retain a signal when 

bottlenecks are less recent or severe (Spear et al. 2006; Swatdipong et al. 2010). 

However, less often considered, at least in empirical studies, is that the signal of a 

bottleneck at a particular set of loci is a complex trade-off between the age and severity 

of the bottleneck and marker characteristics. Simulation studies have shown that 

detecting heterozygosity excess is strongly affected by the number of markers employed 

(Cornuet and Luikart 1996), and M by marker variability (Williamson-Natesan 2005). Our 

empirical results confirm this: in a previous study with five loci, no evidence for 

heterozygosity excess was found (Illera et al. 2007), and in the present study 

heterozygosity excess was detected most often when all 22 loci were combined. Similarly, 

the strongest signal of a bottleneck using M was found when marker variability was high. 

It is crucial that these effects are taken into account when interpreting tests for 
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bottlenecks. Moreover, by taking the effects of marker characteristics into account when 

employing tests for bottlenecks, it is possible to make inferences about the nature of the 

bottleneck itself. Our combined findings (Table 4.4) suggest that in the pipit, the founder 

bottleneck in Selvagem Grande was strongest and/or most recent: a bottleneck signal was 

detected using both tests, regardless of the number or variability of loci used. Likewise, 

our data suggest that in the Madeiran archipelago (particularly in the larger islands of 

Madeira and Porto Santo) bottlenecks were older and/or less severe, as both tests 

produced mixed results depending on marker characteristics (Table 4.4). 

 

Highly variable loci are, by their very nature, susceptible to disproportionate reductions in 

allelic richness during bottlenecks, which can increase levels of population structure 

across bottlenecked populations (Hedrick 1999). Accordingly, in our study we found that 

reductions in allelic richness were less severe at LV than HV loci. Therefore it may be that 

the patterns of population structure observed at LV loci better represent divergence time 

between populations, while those at HV loci reflect the history of bottlenecks. In the 

Berthelot’s pipit, similar levels of structure were observed between archipelagos at LV 

loci, a finding consistent with the hypothesis of the colonisation of Madeira and Selvagens 

at similar points in time (Fig. 4.6A). In contrast, at the HV loci elevated levels of 

population structure were observed in comparisons involving Selvagens (Fig. 4.6B), the 

most severely bottlenecked population (Table 4.4). Moreover, HV loci were considerably 

more effective at defining genetic groups (Fig. 4.5). It therefore appears that the two 

marker sets, with their different mutation rates, reflect different aspects of population 

history, and can be utilised to answer different questions within the same system.  

 

We found that one locus (TG01-124), linked to a gene involved with neurological function, 

was a clear FST outlier (Fig. 4.1). This marker had extremely low levels of heterozygosity in 

the Canarian founder populations, but high levels of heterozygosity in the more recently 

colonised Madeiran archipelago; the opposite pattern to that seen at other markers 

(Appendix 1). The most likely explanation for this, given that no evidence for null alleles 

was found, is that TG01-124 has undergone a selective sweep in the Canary Islands or, 

alternatively, that purifying selection was relaxed in the Madeiran islands after 

colonisation. Determining the cause of selection at loci where the function is not 
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completely understood is difficult (Ford 2002), and beyond the scope of this study. That 

only one locus was found to be under selection, combined with the lower levels of 

diversity at the LV loci, is consistent with the prevailing view that purifying, rather than 

positive selection is the predominant force acting on mutations at EST-linked 

microsatellites (Ellis and Burke 2007). Nonetheless, if the proportion of loci under 

selection is similar to the present study, microsatellites mined from EST databases may be 

a useful source for searching for functional polymorphisms in non-model organisms (see 

also Vasemägi et al. 2005). 

 

4.6 Conclusions 

Examining patterns of genetic variation at markers with different mutation rates can 

provide new understanding into different evolutionary processes. Researchers using 

sequence data, for example, take full advantage of the different mutation rates in 

mitochondrial and nuclear genes to uncover both fine-scale and deep evolutionary 

relationships between groups of organisms (Hillis and Dixon 1991; Zhang and Hewitt 

2003).Here we have found that, in recently separated populations, using sets of 

microsatellites with systematic differences in levels of variability may be useful in a similar 

manner. Utilising the variation in properties of microsatellites obtained using different 

methods may therefore prove to be a promising approach. Population genetic studies 

usually select microsatellites with high levels of heterozygosity (often 0.8 or higher; 

Meirmans and Hedrick 2011). Our results suggest that markers with lower levels of 

variability (HS of 0.3-0.5) may also be informative, albeit in a different manner.  At the 

least, we suggest that if microsatellites are to be used in studies of population history, 

explicitly accounting for how marker properties are expected to affect analyses will 

considerably improve the quality of interpretation. 
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5.1 Abstract 

Measuring and interpreting genetic differentiation across populations remains a central 

issue in evolutionary biology. Traditional measures of differentiation (FST, GST and their 

relatives) have recently been criticised, and a new measure, D, has been put forward as 

an alternative. Simulations have shown that GST and D are both affected by marker 

variability, but respond differently to migration and drift in non-equilibrium conditions. 

Here we provide the first empirical assessment of GST and D. We screened 13 Berthelot’s 

pipit populations at 21 microsatellite loci with wide-ranging heterozygosity. We found 

that first, relative levels of GST and D were strongly dependent on marker variability, with 

GST higher when heterozygosity was low and D higher when heterozygosity was high. 

Second, pairwise estimates of GST and D both ranked populations in different orders 

depending on the variability of markers used. Third, relative levels of GST and D revealed a 

history of recent bottlenecks in Berthelot’s pipit. Our results highlight that marker 

variability must be taken into account when calculating summary statistics of 

differentiation. If this is done, comparing GST and D across populations may provide 

greater insight than either measure in isolation. 
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5.2 Introduction 

Genetic differentiation between subpopulations has traditionally been measured as FST 

(Wright 1931) or one of a number of related measures (e.g. Nei 1973; Weir and 

Cockerham 1984; Slatkin 1995). These statistics can be used to estimate migration rates 

(Wright 1931), infer demographic history (Slatkin 1991), identify genetically distinct 

subpopulations of conservation interest (Hedrick and Parker 1998) and identify regions of 

the genome that have been subject to positive selection (Beaumont and Nichols 1996). As 

a result they are among the most widely used summary statistics in population and 

evolutionary genetics (see Holsinger and Weir 2009 for an overview). 

 

A criticism of FST is that because it is constrained by within-population heterozygosity, it is 

likely to underestimate differentiation (Charlesworth 1998; Hedrick 2005). This problem is 

most easily visualised by looking at Nei’s (1973) GST, which was developed to account for 

multiple alleles and is highly similar to FST: 

     
      
  

  

where HT is expected heterozygosity across the total population and HS is average 

heterozygosity within subpopulations. It is clear that as HS increases, the maximal value of 

GST is reduced. This is a problem for studies empirically evaluating differentiation, 

especially when highly polymorphic markers such as microsatellites are used, as the true 

level of differentiation will be underestimated (see for example O'Reilly et al. 2004). In 

fact, GST can be low even when calculated across two populations with non-overlapping 

sets of alleles (Charlesworth 1998; Jost 2008). Recently Jost (2008) proposed an 

alternative measure of allelic differentiation, which can be defined in terms of HT, HS and 

the number of subpopulations n: 

  (
 

   
) (
      
     

) 

Jost (2008) showed that D, unlike GST, is mathematically independent from HS and as a 

result provides a much better measure of allelic differentiation between populations. 

 

Since the publication of Jost’s (2008) paper many empirical studies have assessed 

population differentiation using D (e.g. White et al. 2010; Alberto et al. 2011; Edelaar et 
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al. 2012; Kerth and Van Schaik 2012). Meta-analyses have shown that D is generally 

higher than GST in natural populations, suggesting that GST does indeed under-estimate 

differentiation (Heller and Siegismund 2009). However, theoretical and simulation studies 

on GST and D suggest that relationship between the two measures depends on a range of 

factors, including marker mutation rate, population size, migration rate and time since 

divergence (Jost 2009; Ryman & Leimar 2009; Whitlock 2010; Leng & Zhang 2011; 

Meirmans & Hedrick 2011). Importantly, by examining how and where GST and D differ 

across a set of populations, it may be possible to make biological inferences that would 

not be possible based on either measure in isolation (Leng and Zhang 2011). For example, 

a recent simulation study of G and D in non-equilibrium populations showed that D is 

generally expected to be higher than GST, except when mutation rate is low, when 

populations are in the early stages of differentiation, or when the effective population 

size is small (Leng and Zhang 2011). To our knowledge, however, no empirical studies to 

date have explored how differences in GST and D can inform population history. 

 

The aim of this chapter is to use the pipit system as a model to empirically evaluate how 

GST and D behave in non-equilibrium populations. Using a panel of 21 microsatellites with 

wide-ranging levels of variability, we test how global values of D and GST at each locus are 

related to marker variability. We then divide the markers into ‘high variability’ and ‘low 

variability’ subsets (see chapter 4) and test whether average levels of differentiation are 

consistent across the two marker sets. Finally, we calculate pairwise values of GST and D at 

the two marker sets and test how the measure of differentiation used, and its interaction 

with marker variability, affects estimates of levels of differentiation across populations. 

We investigate and discuss how differences in GST and D can be used to inform population 

genetic studies. 

 

5.3 Materials and Methods 

5.3.1 Sampling and molecular procedures 

Representative samples (c. 30 individuals) were obtained from all 13 Berthelot’s pipit 

populations (see section 3.3 for full details). For this chapter, only samples from 2006 

were used (see chapter 7 for discussion). DNA was extracted from blood samples using a 

modified salt extraction method (Richardson et al. 2001) and diluted to 10-50 ng/µl. All 
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individuals were genotyped at 21 microsatellite markers arranged into five multiplex 

reactions (see chapter 4). 

  

Nine of the loci used were developed on the basis of having a high degree of sequence 

homology between the zebra finch, Taeniopygia guttatta, expressed sequence tag (EST) 

database and the chicken Gallus gallus genome. These ‘TG’ loci are therefore highly 

conserved across passerine birds (Dawson et al. 2010). Compared to other conserved 

microsatellite markers, on average, the TG loci are less polymorphic across bird species, 

including the Berthelot’s pipit (Dawson et al. 2010; Dawson et al. Unpublished data; see 

chapter 4). We therefore classified the TG loci a priori as ‘low variability’ (LV). The 

remaining loci come from other, less conserved marker sets (see chapter 4). 

 

5.3.2 Analyses 

Unless stated otherwise, all statistics and plots were generated using R version 2.14.1 (R 

Development Core Team 2008). For each microsatellite locus and population, HWE and 

linkage disequilibrium were tested using Genepop version 4.1 (Raymond and Rousset 

1995) and null allele frequencies were estimated using CERVUS version 3.0.3 (Marshall et 

al. 1998). 

 

Global and pairwise values of GST and DEST (the unbiased estimator of D; Jost 2008) were 

calculated using the MMOD package in R (https://github.com/dwinter/mmod). Each 

measure of differentiation was averaged across all loci, and separately across HV and LV 

loci. Jost’s D was designed as a single locus measure, but has been adapted for multiple 

loci by taking the harmonic mean of locus-specific values of DEST (Crawford 2010), or by 

averaging Hs across loci and calculating DEST based on this (Meirmans and Hedrick 2011). 

We calculated average DEST using both these methods. Confidence intervals were 

obtained using the bootstrapping approach developed by Chao et al. (2008). 

 

We visualised the overall relationship between variability at each microsatellite locus, DEST 

and GST by plotting DEST/GST against HS (Meirmans and Hedrick 2011). The minimum (HT = 

1) and maximum (HT = HS) possible values of D/GST were calculated for 0 ≤ HS ≤ 1 and n = 

13 populations (using equations 3 and 11 from Jost 2008). We then tested separately 

https://github.com/dwinter/mmod
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whether each measure of differentiation was related to marker polymorphism using 

linear and polynomial regression. Marker polymorphism was measured as both allelic 

richness and expected heterozygosity across islands. Relationships between pairwise 

patterns of differentiation were tested using Mantel tests, implemented in the Ecodist 

package in R (Goslee and Urban 2007). 

 

5.4 Results 

In total, 371 individuals were genotyped at the 21 microsatellite loci. None of the loci 

were in HW disequilibrium in more than two populations, and none were in linkage 

disequilibrium after correction for multiple tests. The loci exhibited marked variation in 

levels of variability across populations, with HS ranging between 0.04 and 0.81, and this 

was reflected in the relative levels of GST and DEST, which varied by orders of magnitude 

(Fig. 5.1A). GST was higher than DEST at loci with low levels of HS, whereas DEST  was higher 

than GST at loci with high HS (Fig. 5.1A). 

 

There was a positive linear relationship between DEST and marker variability, measured as 

HS (R
2 = 0.72, d.f. = 19, P < 0.001; Fig. 5.1B). This was not the case for GST (R2 = 0.002, d.f. = 

19, P = 0.82) which was instead highest at intermediate values of HS (Fig. 5.1C). Indeed, a 

significant relationship between GST and HS was detected when a second-order 

polynomial regression was fitted (R2 = 0.32, d.f. = 18, P = 0.01). DEST was also positively 

related to allelic richness, though GST was not (DEST: R2 = 0.77, d.f. = 19, P < 0.001; GST 

(linear): R2 = 0.02, d.f. = 19, P = 0.53; GST (polynomial): R2 = 0.09, d.f. = 18, P = 0.28). 

 

Heterozygosity was lower at a priori defined LV than at HV loci (mean HS: LV loci = 0.37, 

HV loci = 0.52; Table 5.1). When averaged over all loci, global estimates of GST and DEST 

were almost identical (Fig. 5.2A; Table 5.1). However, when averaged across LV and HV 

separately, the two measures of differentiation differed, and the direction of this 

difference depended on the class of markers used: at LV loci, GST was significantly higher 

than DEST, but at HV loci GST was significantly lower than DEST (Fig. 5.2A; Table 5.1). These 

patterns were only observed when DEST was calculated based on average HS; when 

harmonic mean was calculated, DEST was always very low (LV loci  = 0.006, HV loci = 0.05, 

all loci combined = 0.012; Table 5.1). 
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Figure 5.1 Genetic differentiation in relationship to marker variability at low variability 
(grey dots) and high variability (white dots) microsatellite loci across 13 Berthelot’s pipit 
populations (371 individuals). A Observed levels of DEST/GST in relation to HS. The solid lines 
represent lower and upper limits of D/GST (HT = HS and at HT = 1, respectively), when the 
number of subpopulations (n) = 13. The dotted line represents the relationship DEST = GST. 
B DEST in relation to HS, with a line fitted from a linear regression. C GST in relation to HS, 
with a line fitted from a second-order polynomial regression. Error bars represent 95% 
confidence intervals. 
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Table 5.1 Genetic differentiation at low variability (LV) and high variability (HV) 
microsatellite loci across 13 Berthelot’s pipit populations (371 individuals). Values in 
brackets are 95% confidence intervals. DEST was averaged across loci by averaging within-
population heterozygosity (Hz) and by taking the harmonic mean of single-locus estimates 
of DEST (H-mean; see text for details). 
 HS GST DEST (Hz) DEST  (H-mean) 

LV loci 0.366 0.105 (0.094-0.118) 0.074 (0.066-0.083) 0.006 (-0.004-0.02) 

HV loci 0.523 0.080 (0.072-0.088) 0.103 (0.090-0.111) 0.050 (0.026-0.072) 

All loci 0.456 0.089 (0.082-0.097) 0.088 (0.081-0.095) 0.012 (0.003-0.029) 

 

Pairwise values of DEST and GST were strongly related at both LV (Mantel test, R = 0.96, P < 

0.001; Fig. 5.2B) and HV loci (R = 0.98, P < 0.001; Fig. 5.2C). Importantly however, the 

relative levels of differentiation across archipelagos differed depending on the marker set 

and measure of differentiation used. At HV loci, DEST was consistently higher than GST, but 

the two measures ranked levels of differentiation across archipelagos in the same order, 

with highest levels of differentiation in comparisons involving the Selvagens (Fig. 5.2B). 

However at the LV loci DEST was higher than GST in comparisons within and across the 

Canary Islands and Madeira, but lower in comparisons involving the Selvagens. As a result 

the two measures did not rank levels of differentiation across archipelagos in the same 

order (Fig. 5.2C). 

 

5.5. Discussion 

Theoretical and simulation studies examining how GST and D behave under different 

scenarios of mutation, drift and gene flow have warned that the two measures are 

strongly affected by the mutation rate of markers, and in different ways (Ryman and 

Leimar 2009; Leng and Zhang 2011). We provide the first empirical demonstration of the 

strong relationships between GST, D and marker variability within a single system. Our 

results are consistent with the theory and simulations, and highlight some of the potential 

pitfalls - and opportunities - associated with investigating differentiation using these 

measures in wild populations. 
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Figure 5.2 Average GST and DEST across 13 Berthelot’s pipit populations (371 individuals) at 
low (LV) and high variability (HV) microsatellites. A Mean GST (squares) and DEST (circles) 
across all populations. Error bars represent 95% confidence intervals obtained by 
booststrapping. The relationship between pairwise GST and DEST at LV (B) and HV (C) 
markers. The dotted line represents the relationship DEST = GST. Coloured shapes 
represent comparisons within and across the different archipelagos (C = Canary Islands, M 
= Madeira, S = Selvagens).  
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In a recent meta-analysis Heller and Siegismund (2009) showed that D was higher than 

GST in all but two of 34 studies, and concluded that GST underestimates population 

differentiation. In an extended meta-analysis, Meirmans and Hedrick (2011) showed that 

D is only higher than GST when HS is high, as is usually the case with microsatellites; 

however when HS is low, the opposite is true. In our empirical study we also found this to 

be the case, with relative levels of GST and DEST at individual loci varying by orders of 

magnitude, depending on marker variability (Fig. 5.1A). However in contrast to the 

previous meta-analyses, which found a negative relationship between HS and both D and 

GST, we found that DEST was positively related to HS and that GST was highest at 

intermediate values of HS (Fig. 5.1B and 5.1C). A decrease in GST at high HS is consistent 

with evidence from theoretical and empirical studies (O'Reilly et al. 2004; Meirmans and 

Hedrick 2011), and suggests that GST does indeed underestimate differentiation when 

marker variability is high. The quadratic relationship we observed between GST and Hs has 

most likely arisen because we used a few markers with very low HS (Fig. 5.1A), something 

which few other studies have done. Likewise, although D is mathematically independent 

of HS, theoretical and simulation studies have shown that D is also expected to be strongly 

affected by mutation rate, which may lead to a correlation between D and HS (Ryman and 

Leimar 2009; Leng and Zhang 2011). To our knowledge, our findings represent the first 

empirical example of a positive relationship between D and marker variability. Jost (2009) 

has argued that a positive relationship between D and marker variability is to be expected 

from a true measure of allelic differentiation, which should be influenced not only by 

migration and drift, but also mutation. However, as others have pointed out, evolutionary 

biologists are rarely interested in the mutational properties of markers per se, but instead 

in using neutral markers to infer patterns of demography or population history within and 

across populations (Whitlock 2010; Meirmans and Hedrick 2011). Thus, the observed 

relationships between GST, DEST and Hs pose a significant problem for most population 

genetic studies. In special cases where allelic differentiation itself is of interest, D will be 

useful, for example when examining how adaptive genetic variation (e.g. at genes of the 

vertebrate major histocompatibility complex) is partitioned across populations of 

conservation concern (Sommer 2005; see also chapter 2). 
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Because GST and D are influenced by marker variability, it has been suggested that 

comparing levels of differentiation across species or marker sets is difficult (Ryman and 

Leimar 2009; Whitlock 2010). We detected strong differences in both measures of 

differentiation when used with sets of microsatellites with systematic differences in levels 

of variability, with D higher at HV markers and GST higher at LV markers (Fig. 5.2A). If such 

pronounced differences can arise within a single species and class of marker, directly 

comparing levels of differentiation across markers (e.g. microsatellites and SNPs) is largely 

meaningless. Similarly, comparisons of differentiation across species will be extremely 

difficult to interpret unless the effects of marker variability and ascertainment bias can be 

ruled out. The method by which multi-locus measures of differentiation are calculated is 

also important. Jost’s D was designed as a single-locus measure (Jost 2008), though a 

multi-locus measure can be obtained by either taking the harmonic mean of single locus 

estimate of D (Crawford 2010), or by averaging HS across loci (Meirmans and Hedrick 

2011). Most empirical studies to date have used the harmonic mean (e.g. Portnoy et al. 

2010; Rutledge et al. 2010; Schrey et al. 2011); however, our findings suggest that if there 

is large variation in locus-specific estimates of D, this method will drastically 

underestimate average differentiation across loci (Table 5.1). We therefore suggest that 

future studies averaging D across loci do so by calculating both the harmonic mean and 

heterozygosity-based methods, and interpret differences accordingly. 

 

Within-population heterozygosity at neutral loci is affected by a combination of mutation, 

migration and drift. As a result of the simple relationship between GST, D and HS, 

comparing relative levels of GST and D across multiple populations at the same set of loci 

may shed light on past and/or present evolutionary processes. Recent simulations have 

shown that GST is expected to be higher than D only when mutation rate is low, when 

populations are recently separated or when the effects of drift (either gradual or due to 

recent bottlenecks) are most pronounced (Leng and Zhang 2011). We found that GST was 

only higher than D in pairwise comparisons involving the Selvagens archipelago, and only 

at LV loci. This is consistent with our previous detection of a bottleneck in the Selvagens 

(see chapter 4), and suggests the differences in GST and D can be used to make inferences 

about the evolutionary history of populations. 
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Novel coalescent and Bayesian approaches can estimate genetic structure, migration 

rates, recombination rates, effective population sizes and test hypotheses of colonisation 

history, while taking mutation rate into account  (Pritchard et al. 2000; Beerli and 

Felsenstein 2001; McVean et al. 2002; Cornuet et al. 2008). Some have argued that with 

the development of these approaches, summary statistics such as FST, GST and D are 

increasingly of limited value (Pearse and Crandall 2004). However, these new approaches 

still make (often unrealistic) assumptions, such as mutation-drift equilibrium, and due to 

their complexity can be misleading when not properly understood and/or when 

assumptions are violated (Faubet et al. 2007; Kuhner 2009; Karl et al. 2012). In contrast it 

is much easier to quantify how simple summary statistics behave in different ecological 

and evolutionary scenarios, and interpret them accordingly (Holsinger and Weir 2009). 

GST and D are therefore (in our opinion rightly) going to continue be used in population 

genetic studies. However, it is crucial that these measures are interpreted in light of the 

variability of the markers being used, and the many mutational, ecological and 

evolutionary forces that influence them. 
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6.1 Abstract 

Population bottlenecks can restrict variation at functional genes, reducing the ability of 

populations to adapt to new and changing environments. Understanding how populations 

generate adaptive genetic variation following bottlenecks is therefore central to 

evolutionary biology. Genes of the major histocompatibility complex (MHC) are ideal 

models for studying adaptive genetic variation due to their central role in pathogen 

recognition. While de novo MHC sequence variation is generated by point mutation, gene 

conversion can generate new haplotypes by transferring sections of DNA within and 

across duplicated MHC loci. However, the extent to which gene conversion generates 

new MHC haplotypes in wild populations is poorly understood. We developed a 454 

sequencing protocol to screen MHC class I exon 3 variation across all 13 island 

populations of Berthelot’s pipit. We reveal that just 11–15 MHC haplotypes were retained 

when the Berthelot’s pipit dispersed across its island range in the North Atlantic ca. 

75 000 years ago. Since then, at least 26 new haplotypes have been generated in situ 

across populations. We show that most of these haplotypes were generated by gene 

conversion across divergent lineages, and that the rate of gene conversion exceeded that 

of point mutation by an order of magnitude. Gene conversion resulted in significantly 

more changes at nucleotide sites directly involved with pathogen recognition, indicating 

selection for functional variants. We suggest that the creation of new variants by gene 

conversion is the predominant mechanism generating MHC variation in genetically 

depauperate populations, thus allowing them to respond to pathogenic challenges. 
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6.2 Introduction 

Reductions in population size can result in loss of diversity at functional genes, 

compromising the ability of populations to adapt (Mayr 1965; Dlugosch & Parker 2008). 

While populations with low levels of genetic variation may be able to persist in stable 

environments, loss of adaptive genetic diversity is likely to be especially important in 

scenarios where changes in habitat, climate or pathogens occur (Lande & Shannon 1996). 

Following a population bottleneck, novel genetic diversity may be introduced by 

migration or mutation. In isolated populations where migration rates are low, mutation 

may be the only mechanism for generating new variation. Understanding how mutation 

generates adaptive genetic diversity in isolated populations is therefore central to 

evolution, and given the role of such diversity in the persistence of populations, is key 

from a long-term conservation perspective. 

 

Vertebrate major histocompatibility complex (MHC) genes are arguably the best studied 

examples of how selection operates at the genetic level. The MHC genes code for cell 

surface glycoproteins that present pathogenic peptides to cells of the immune system, 

and so play a direct role in pathogen defence (Klein 1986). These genes display 

extraordinary levels of polymorphism, often with hundreds of alleles at individual loci 

(Garrigan & Hedrick 2003). Patterns of MHC variation are directly associated with 

pathogen resistance (Doherty & Zinkernagel 1975; Ilmonen et al. 2007; Oliver et al. 2009) 

and survival (Brouwer et al. 2010; Worley et al. 2010), suggesting that pathogen-

mediated natural selection is the predominant force driving MHC diversity (reviewed in 

Jeffery & Bangham 2000; see also chapter 2). MHC-based mate choice (Penn 2002; 

Richardson et al. 2005) and selection against deleterious mutations at MHC-linked regions 

(e.g. van Oosterhout 2009) can operate alongside pathogen-mediated selection to 

maintain MHC variation, and a large body of research has been devoted to establishing 

the relative roles of these processes (Apanius et al. 1997; Piertney & Oliver 2005). 

 

Demographic processes can also play an important role in regulating genetic diversity at 

the MHC (Alcaide 2010). In small, isolated populations, the effect of genetic drift can 

override the effects of selection at MHC loci, leading to depletion in diversity (e.g. Hedrick 

et al. 2001; Miller & Lambert 2004; Seddon & Ellegren 2004). Such reductions in MHC 
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variation may compromise the ability of populations to adapt to new and rapidly evolving 

pathogens, although establishing direct links between reduced MHC variation, and 

population viability has proved difficult (Edwards & Potts 1996; Radwan et al. 2010). Even 

less well understood is how, and at what rate, populations are able to recover from the 

reduced MHC variation caused by reductions in population size over evolutionary 

timescales. These are questions of fundamental importance for conservation biologists, 

and of intrinsic interest to molecular biologists, but are difficult to address, and so have 

received comparatively little attention. 

 

New MHC sequence variation is generated by point mutation, with positive selection 

resulting in an excess of amino acid changing substitutions in the peptide-binding region 

(PBR)—the part of the molecule directly involved with pathogen recognition (Hughes & 

Nei 1988). Gene conversion-like processes (sometimes referred to as ‘micro-

recombination’; Geliebter & Nathenson 1988; hereafter referred to as ‘gene conversion’) 

can also generate new haplotypes, by shuffling existing MHC variation within or across 

duplicated loci (Ohta 1991). Gene conversion can occur between alleles within loci, or 

across duplicated loci, and is therefore an important feature of multigene families such as 

the MHC. Gene conversion may be particularly important for regenerating MHC 

haplotype variation in bottlenecked populations, as the rate at which it can do so may 

greatly exceed that of point mutation (Parham & Ohta 1996). The occurrence, and to 

some extent, the mechanics of gene conversion, have been documented (Baltimore 1981; 

Schulze et al. 1983; Reusch & Langefors 2005; Chen et al. 2007), including in the avian 

MHC (Wittzell et al. 1999; Burri et al. 2010). However, the ability of gene conversion to 

generate MHC variation relative to point mutation is still highly controversial, primarily 

due to a lack of empirical data from natural populations (Martinsohn et al. 1999; Klein et 

al. 2007). Moreover, statistical methods for detecting gene conversion lack power 

(Mansai & Innan 2010), and it can be difficult to separate gene conversion from 

convergent accumulation of point mutations due to selection (Kriener et al. 2000; Sato et 

al. 2011). 

 

Here, we use the Berthelot’s pipit as a model to study how MHC genes evolve in the early 

stages of differentiation. We first test whether MHC diversity in Berthelot’s pipit has been 
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reduced to a similar extent as the neutral diversity as a result of the founder event. We 

then test whether novel MHC haplotype variation has been generated in situ post-

colonization. Finally, we quantify the relative roles of point mutation and gene conversion 

in generating new MHC haplotypes in the pipit populations. 

 

6.3 Methods 

6.3.1 Sampling 

Representative samples (c. 30 individuals) were obtained from all 13 Berthelot’s pipit 

populations (see section 3.3 for full details). For this chapter, only samples from 2006 

were used. 

 

6.3.2 Molecular procedures 

Genomic DNA was extracted from blood using a salt extraction method (Richardson et al. 

2001), and diluted to 10–50 ng/μL. Degenerate fusion primers based on those designed 

by Westerdahl et al. (2004; DG2, TTGCGCTCYAGCTCYTTCTGCT; GENDG, 

TCCCCACAGGTCTCCACAC), incorporating the Roche 454 FLX adapter sequences were 

used to amplify 240 bp (out of 270 bp) of the MHC class I exon 3 locus of each individual. 

Exon 3 contains sites which code for the PBR of the class I molecule, and variation at 

these sites is likely to be directly associated with immune defence (Hughes & Yeager 

1998). 

 

Initial amplification and cloning was performed on five individuals from Tenerife and one 

from Madeira, using the amplification and cloning protocols outlined in Westerdahl et al. 

(1999). Twelve alleles were found, all of which were confirmed by subsequent 454 

sequencing (Table 6.1). Between four and seven alleles were detected per individual, 

indicating that a minimum of four loci were present (Table 6.1). This is concordant with 

the number of class I loci found in other passerine birds (Richardson & Westerdahl 2003; 

Promerováet al. 2009). 

 

We used population-level tagged primers and 454 sequencing to screen population-level 

MHC variation. Thirteen variants of the MHC primers were designed, each with a 7-bp 
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population-specific tag at the 5′ end. To reduce the risk of sequencing errors, tags were 

preceded with a ‘CCD’ (D = G, A or T) motif, stretches of the same nucleotide longer than 

two were avoided, and all tags differed by at least 2 bp (Valentini et al. 2009). With 

primers and tags included, the amplicon was longer than the average read length of the 

454 sequencer (the total target amplicon length including all primers and tags was 322 

bp). Both forward and reverse primers were tagged, so that, amplicons could be 

sequenced using bi-directional beads and the exon could be re-assembled using the read 

overlap. Each individual within a population was amplified in a separate PCR using the 

same population tagged primer. The PCRs were performed in 15 μL reactions, containing 

7.5 μL 2× Thermoprime PCR mastermix (ABgene), 2 μL each primer, 1.5 μL H2O and 2 μL 

template DNA, under the following conditions: initial denaturation at 96 °C for 3 min, 

followed by 27 cycles of 94 °C for 30 s, 61 °C for 30 s, and 72 °C for 60 s, with a final 

extension stage of 72 °C for 10 min. The reduced number of cycles and long extension 

time were used to reduce the formation of chimeric sequences (Lenz & Becker 2008). The 

PCR products were purified using MinElute PCR Purification Kits (Qiagen). Concentrations 

were assessed using 1.2% agarose gels and a NanoDrop ND-1000 spectrophotometer. 

 

Table 6.1 Sequences obtained from amplifying and 
cloning duplicated MHC class I exon 3 loci from individual 
Berthelot’s pipits from Tenerife (TF) and Madeira (M). All 
sequences were confirmed by subsequent 454 sequencing 
(see main text). 
TF1 TF2 TF3 TF4 TF5 M1 

ANBE 10 ANBE 10 ANBE 28 ANBE 10 ANBE 10 ANBE 10 

ANBE 2 ANBE 9 ANBE 8 ANBE 8 ANBE 8 ANBE 9 

ANBE 8 ANBE 8 ANBE 24 ANBE 6 ANBE 4 ANBE 8 

ANBE 24 ANBE 6 ANBE 2 ANBE 2 ANBE 2 ANBE 23 

 ANBE 19    ANBE 2 

 ANBE 2     

 ANBE 4     

 

Amplicons from all individuals from a given population were equalized and pooled. The 

mixed amplicons from each separate population were then equalized and pooled into one 

overall sample containing all populations and individuals. The final sample was sequenced 

using bi-directional sequencing on half a 454 FLX plate. 
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6.3.3 Identification of MHC haplotypes 

Forward and reverse reads corresponding to each of the 13 population-specific tags were 

extracted using an in-house Perl script, and grouped into the populations. The reads from 

each population were assembled into contigs with the Roche 454 Newbler assembler 

version 2.3, using highly stringent settings (99% minimum overlap identity and 200 bp 

minimum overlap length). Most short and low frequency reads, which may represent PCR 

and sequencing artefacts (Babik et al. 2009; Galan et al. 2010), would not group into 

contigs using this procedure. Nonetheless, some may, and so contigs shorter than 220 bp 

and low frequency contigs (see below) were excluded. If each individual in a population 

(30 individuals) had eight different haplotypes (based on the estimate of four duplicated 

loci), the frequency of a single haplotype copy in the population would be ∼0.4%. To 

minimize the possibility of missing very rare haplotypes, the identified haplotypes from 

each population were mapped back to the discarded contigs from all other populations, 

with the aim of identifying haplotypes that had been verified in some populations, but 

discarded in others. 

 

6.3.4 Founder population size and drift 

We developed a simple simulation to establish the minimum number of founder 

individuals required to introduce the observed number of MHC haplotypes, using a macro 

developed in Minitab version 12.1 (Minitab Inc.; available from the author on request). 

The rationale behind this simulation was that if the number of founder individuals 

required to introduce the total observed number of haplotypes is much larger than is 

plausible based on the mitochondrial diversity, then it is likely that some MHC variation 

has evolved in situ, post-colonization. 

 

The simulation re-sampled eight haplotypes per individual (based on four duplicated loci) 

from the contemporary gene pool 1000 times, increasing the number of individuals until 

the observed number of MHC haplotypes occurred in 1%, 50% and 99% of simulations. 

The simulations assumed equal sex ratio and no genetic drift after the founder event. 

Although the second assumption is unrealistic, it will result in an underestimation of the 

number of founding individuals required. As our aim was to simulate the minimum 



Chapter 6: Gene conversion rapidly generates MHC variation 

135 
 

number of founding individuals required to introduce all MHC variation, it can be 

considered conservative. 

 

The effect of genetic drift was examined by comparing population size with allelic 

richness at both the MHC and at the five microsatellite loci amplified by Illera et al. (2007) 

using linear regression. 

 

6.3.5 Sequence analyses 

To visualize the time frame over which MHC loci have been diverging across populations, 

it is necessary to obtain an estimate of how long the populations have been separated. To 

do so, time to most recent common ancestor (TMRCA) of the pipit mitochondrial 

cytochrome b sequences from Illera et al. (2007) was estimated using beast version 1.6.1 

(Drummond & Rambaut 2007). Two independent MCMC analyses of 10,000,000 steps, 

each with a burn-in of 1,000,000 steps, were performed. We used the HKY model of 

nucleotide substitution (Hasegawa et al. 1985) and a rate of 0.01 substitutions per site 

per million years, corresponding to a divergence rate of 2% per million years. 

Convergence of the chains to a stationary distribution was assessed with Tracer version 

1.4. Mutation rates at passerine mitochondrial genes can vary, and 2% per million years is 

likely to be an underestimate (Nabholz et al. 2009). The true date of dispersal may 

therefore be more recent than our conservative estimate of TMRCA. 

 

At the MHC, nucleotide sites known to code for the PBR in humans (Brown et al. 1993) 

were used to estimate PBR and non-PBR sites in the pipit sequences. We calculated dN 

and dS separately for PBR and non-PBR regions (Nei & Gojobori 1986) in MEGA (Tamura et 

al. 2007). Differences between dN and dS, as well as differences across PBR and non-PBR 

regions, were assessed using Mann–Whitney U-tests. 

 

We tested for individual gene conversion events using GENECONV (Sawyer 1999), and 

recombination using the RDP (Martin & Rybicki 2000), MaxChi (Smith 1992) and methods 

implemented in the RDP3 package. However, GENECONV, the most commonly used 

statistical method to detect gene conversion, has been shown to suffer from low power 

(Mansai & Innan 2010), and other methods are not designed to detect the transfer of 
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small sequence fragments. We also calculated rate of recombination (ρ) relative to point 

mutation (θ) across the global alignment using LDHat (McVean et al. 2002). This program 

uses a coalescent-based approach, and therefore while estimates of ρ/θ > 1 are likely to 

be indicative of recombination, absolute estimates from data across populations need to 

be interpreted with caution. 

 

We developed a macro to quantify the level of shared polymorphism across unrelated 

haplotypes (hereafter ‘convergence’), using Minitab version 12.1. Each haplotype (the 

‘derived’) is first paired with its closest matching haplotype (the ‘ancestor’) using a 3-bp 

sliding window, and the percentage sequence similarity between the two is calculated. 

The macro then searches for a ‘donor’ haplotype within the genepool that can explain 

100% of sequence similarity at the regions where the ancestor and derived haplotypes 

differ. A ‘construct’ haplotype is then created by recombining the derived haplotype with 

the donor at the region of mismatch. The percentage sequence similarity between the 

construct haplotype and the ancestor haplotype is then calculated to give the level of 

sequence similarity after allowing ‘convergence’ with one donor. The average 

improvement in sequence similarity was compared to a data set simulated to evolve 

neutrally via point mutation only (see below). Differences between average levels of 

sequence divergence in the observed and simulated datasets were tested using Wilcoxon 

tests. For these, each of the haplotypes (41 empirical and 41 x 5 = 205 simulated) was a 

data point. The value represents the percentage similarity between that haplotype and its 

ancestor after simulating convergence. A significant increase in sequence similarity is 

predicted to arise from convergent evolution via either point mutation or by gene 

conversion. We therefore stress that the above method quantifies the level of 

convergence in haplotypes, rather than gene conversion per se. We assessed the 

likelihood of the convergent evolution occurring via point mutation by looking for 

independent point mutations at synonymous sites (see section 6.4, below). 

 Simulated sequences were generated in the program Seq-Gen v. 1.3.2 

(http://tree.bio.ed.ac.uk/software/seqgen). This program simulates sequences along a 

given tree topology according to a user-specified model of sequence evolution. We 

generated a neighbour joining tree using the 41 pipit MHC class I exon 3 haplotypes. This 

tree was used to simulate nucleotide divergence assuming the HKY model of substitution. 
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We generated five simulated sets, each containing 41 240 bp sequences. As these 

sequences conform to the same tree as the real MHC sequences, levels of divergence 

prior to running the gene conversion macro were identical. 

 

6.4 Results 

6.4.1 454 sequencing and identification of MHC haplotypes 

The 454 run yielded 268,267 reads, 257,708 (96%) of which exactly matched one of the 

13 population-level tags. Thus, the rate of error was relatively low. The number of reads 

obtained per population ranged from 7,763 to 33,102. The Newbler assembler grouped 

these sequences into between 12 and 91 contigs per population, using 227,056 (88%) of 

the reads. After removing short contigs, and those with <0.4% of the reads (this 

corresponded to 38 reads in the population with the lowest read number), between 9 and 

14 haplotypes per population were identified (Table 6.2) making use of 208,199 (81%) of 

the reads. None of the remaining haplotypes contained indels or stop codons. Some 

haplotypes occurred at high frequencies across most populations, whereas others were 

rare, and only present in one, or a subset of populations, making a total of 41 unique 

haplotypes (Table 6.3). 

 

A phylogenetic network of the MHC haplotypes revealed eleven divergent lineages, each 

containing between one and twelve closely related haplotypes (Fig. 6.1). Lineages 

typically consist of one geographically widespread haplotype and a few rarer haplotypes, 

unique to just one or two populations (Table 6.2). Not all populations contain all 11 

lineages (range 6–10), but with the exception of the more complicated L1 and L3 lineages, 

all populations possess only one haplotype from each of the lineages they do contain 

(Table 6.2). We tested whether MHC haplotypes within lineages were mutually exclusive 

in populations using a binomial mass function. For each haplotype lineage i, we calculated 

the binomial probability that the ancestral haplotype was absent in the populations 

where a derived haplotype was present. The probability that the ancestral haplotype was 

present in a population (Ai) was calculated as the number of populations in which the 

ancestral haplotype was observed (k) divided by the total number of populations (Ai = 

k/13). We then tallied the number of populations where the derived haplotype was 

present (n) and where ancestral and derived haplotypes were both present (m), and 
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calculated the binomial probability of finding m or fewer populations with the ancestral 

haplotype: 

mn
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These 11 p-values, one for each lineage, were then analysed using Fisher’s combined 

probability test with 22 degrees of freedom.  We found that haplotypes within lineages 

are mutually exclusive across populations (Fisher’s combined probability test: χ2 = 53.8, 

d.f. = 20, P = <0.001, Table 6.2). 

 

6.4.2 Colonization time, founder population size and drift 

Analyses of the pipit mitochondrial DNA sequences using beast yielded a mean age 

estimate for the MRCA of extant mtDNA haplotype diversity of 75,000 years (HPD 

20,000–170,000), which we take as a conservative estimate of when the Berthelot’s pipit 

dispersed to form its current range. This assumes a single founding mtDNA lineage from 

which all extant lineages are derived, and it should be pointed out that if colonization had 

involved more than one of the four mtDNA haplotypes from which the single extant 

haplotype diversity is derived, or if our mutation rates are too low, colonization time 

would be closer to the present. 
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Table 6.2 Haplotype and lineage diversity at MHC class I genes across Berthelot’s pipit populations. Columns L1-11 represent haplotype 
lineages, the numbers inside cells are the labels of individual MHC haplotypes. The colour of cells corresponds to whether, within each 
population, we found only the most widespread haplotype within a lineage (blue), a rare haplotype found in just a few populations (red), or 
cases where multiple haplotypes of the same lineage were present (yellow). Also included are the probabilities from binomial mass functions 
that haplotypes within lineages are mutually exclusive across populations (see text for details). 
 
 

Island 
# MHC 
haplotypes 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

Madeira Deserta Grande 12 10 9 8,6,21 2 1 7 26 4 3 5  

 Madeira 11 10 9 8,21 2 1 7 26 33 3 23  

 Porto Santo 12 10 35 8,6,21 2 1 40 32 36 3 23  

Selvagens Selvagem Grande 11 10 30 8,6 2 27 37  4 3 11 38 

Canary Islands La Graciosa 9  9 6,42,25  1 7  4 3  16 

 Lanzarote 10 10  8,24 2 1 7  4 31 11 16 

 Fuerteventura 11 10,13 9 8,12,14 2 1 7   3 11  

 Gran Canaria 14 
10,13,2

8  
8,6,15,

17 2 1 7  4 3 11 16 

 El Teide 10 10  8,12 2 39 19  4 3 11 16 

 Tenerife 13 10,28 9 8,6,24 2 41 19  4 3 11 16 

 La Gomera 13 
10,13  

8,6,24,
22 2 1 7  4 3 11 16 

 La Palma 9 10,13  8,22,34 2 1 7   3   

 El Hierro 12 
10,18,2

8 30 8,6 2 1 7  4 3  29 

  Probability 1 0.2330 1 1 0.0123 0.0090 0.8462 0.0947 0.0769 0.0123 0.2899 
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Table 6.3 – Frequencies of MHC class I exon 3 haplotypes across 13 island populations of Berthelot’s pipit, grouped by lineage. 

Lineage Haplotype DG FV GOM GRAC GC HIER LZ PAL M PS SG TEIDE TF Number pops 

L1 ANBE10 0.402 0.272 0.225 
 

0.178 0.297 0.375 0.315 0.407 0.441 0.271 0.282 0.285 12 

 
ANBE13 

 
0.026 0.025 

 
0.013 

  
0.021 

     
4 

 
ANBE28 

     
0.012 

      
0.011 2 

 
ANBE18 

    
0.020 0.009 

       
2 

                L2 ANBE9 0.078 0.030 
 

0.478 
    

0.050 
   

0.053 5 

 
ANBE30 

     
0.024 

    
0.043 

  
2 

 
ANBE35 

         
0.005 

   
1 

                L3 ANBE8 0.179 0.216 0.206 
 

0.197 0.186 0.205 0.223 0.243 0.193 0.174 0.260 0.191 12 

 
ANBE6 0.025 

 
0.029 0.079 0.012 0.007 

   
0.046 0.072 

 
0.017 8 

 
ANBE21 0.014 

       
0.032 0.035 

   
3 

 
ANBE42 

   
0.059 

         
1 

 
ANBE24 

  
0.009 

   
0.031 

     
0.036 3 

 
ANBE14 

 
0.069 

           
1 

 
ANBE22 

  
0.050 

    
0.014 

     
2 

 
ANBE15 

    
0.026 

        
1 

 
ANBE25 

   
0.026 

         
1 

 
ANBE34 

       
0.035 

     
1 

 
ANBE12 

 
0.029 

         
0.015 

 
2 

 
ANBE17 

    
0.009 

        
1 

                L4 ANBE2 0.013 0.159 0.117 
 

0.215 0.172 0.114 0.110 0.029 0.030 0.143 0.148 0.126 12 

                L5 ANBE1 0.069 0.033 0.021 0.045 0.007 0.016 0.030 0.076 0.053 0.062 
   

10 

 
ANBE41 

            
0.037 1 

 
ANBE39 

           
0.029 

 
1 

 
ANBE27 

          
0.007 

  
1 

                L6 ANBE7 0.083 0.080 0.118 0.196 0.122 0.076 0.076 0.141 0.098 
    

9 

 
ANBE19 

           
0.094 0.100 2 

 
ANBE37 

          
0.073 

  
1 
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Table 6.3 (cont.) 

Lineage Haplotype DG FV GOM GRAC GC HIER LZ PAL M PS SG TEIDE TF Number pops 

L7 ANBE26 0.009 
       

0.009 
    

2 

 
ANBE32 

         
0.021 

   
1 

                L8 ANBE4 0.028 
 

0.117 0.077 0.120 0.148 0.088 
   

0.153 0.080 0.076 9 

 
ANBE36 

         
0.027 

   
1 

 
ANBE33 

        
0.042 

    
1 

                L9 ANBE3 0.033 0.032 0.031 0.028 0.040 0.036 
 

0.034 0.015 0.021 0.046 0.048 0.034 12 

 
ANBE31 

      
0.034 

      
1 

                L10 ANBE11 
 

0.053 0.021 
 

0.038 
 

0.029 
   

0.008 0.025 0.020 7 

 
ANBE23 

        
0.054 0.050 

   
2 

 
ANBE5 0.065 

            
1 

                L11 ANBE16 
  

0.03 0.013 0.02 
 

0.02 
    

0.019 0.01 6 

 
ANBE38 

          
0.01 

  
1 

 
ANBE29 

     
0.02 

       
1 
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Figure 6.1 Neighbour-net constructed from 41 Berthelot’s pipit MHC class I exon 3 
haplotypes (from 371 individuals) using Jukes–Cantor distances. Labels L1-L11 
represent putative lineages. The length along the lines between two sequences is 
proportional to their genetic distance, and intersections are formed when the 
relationship between sequences is ambiguous (for example, due to recombination, 
recurrent mutations or gene conversion). 
 

Simulations revealed that a minimum founder population size of 320 (outbred individuals) 

is required to introduce the observed number of 41 MHC haplotypes. A founder size of ca. 

500 birds will introduce a median of 41 MHC haplotypes, and more than 2000 birds are 

required to explain the presence of 41 haplotypes with 99% confidence (Fig. 6.2). Given 

that no drift was allowed after the founder event, these simulations are conservative (i.e. 

they are underestimating the ‘true’ founder population size if all extant MHC variation 

has to be introduced during founding). As a single ancestral mitochondrial haplotype was 

involved in colonization (Illera et al. 2007), such a large number of colonizing individuals 

seems highly unlikely, given the levels of mitochondrial haplotype diversity seen in other 

outbred bird populations (Grapputo et al. 1998; Questiau et al. 1998; Kimura et al. 2002). 

Furthermore, if all 41 haplotypes were present in the founding population, and the extant 

haplotype distribution was caused by stochastic patterns of loss across populations due to 
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drift, there should be a correlation between population size and number of MHC 

haplotypes. We found strong evidence for drift at neutral loci, indicated by a positive 

relationship between microsatellite variation and population size (R2 = 0.87, d.f. = 11, P < 

0.001; Fig. 6.3); however, this was not the case for the MHC, which showed a strikingly 

different pattern (R2 = 0.001, d.f. = 11, P = 0.89; Fig. 6.3). Consequently, we suggest that 

the geographically widespread haplotypes of each lineage are ancestral, that novel 

haplotype variation has been generated in situ within each population, and that new 

haplotypes normally replaced the haplotype from which they were derived. Depending on 

the number of ancestral haplotypes in the complicated L1 and L3 lineages, there are 

between 11 and 15 founder MHC haplotypes, with between 26 and 30 haplotypes having 

evolved in situ after the initial founding event. In subsequent analyses, we assume 12 

ancestral alleles—one from each lineage, and the two most widespread haplotypes from 

lineage L3 (ANBE6 and ANBE8). Fewer than 20 individuals are required to introduce 11–15 

haplotypes to each island with 99% confidence (Fig. 6.2). This founder population size 

appears to be more consistent with the low mtDNA variation of the species. 

 

Figure 6.2 Mean (± 99% CI) number of MHC haplotypes in the Berthelot’s pipit 
metapopulation as a function of the number of founders. The estimates are based on a 
simulation of 4 MHC genes (8 haplotypes) per individual drawn from the contemporary 
gene pool with the haplotype frequencies based on those observed across the entire 
range of pipits (see Table 6.3). The simulations make the following conservative 
assumptions: equal sex ratio, no sperm storage and no genetic drift after the founder 
event. 
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Figure 6.3 Variation at major histocompatibility complex (MHC) 
and microsatellite loci in relation to rank population size (Illera 
2007) 13 Berthelot’s pipit populations (371 individuals). For the 
MHC, this is the number of haplotypes found in each 
population. For microsatellites, it is the total number of 
haplotypes detected across five loci (Illera et al. 2007). Dotted 
lines represent 95% confidence intervals. 
 

6.4.3 Sequence analyses 

Putative derived MHC haplotypes differed from their ancestral forms by distinctive 

nucleotide clusters that were present in ancestral haplotypes from other lineages (Fig. 

6.4). The effect of these recurring motifs was apparent in the phylogenetic network (Fig. 

6.1), which reveals widespread conflicting splits, indicating ambiguous relationships 

among the MHC haplotypes. The RDP, GENECONV and MaxChi methods of recombination 

detection found 3, 11 and 19 recombination events respectively, strongly suggesting that 

micro-recombination or gene conversion has occurred at the pipit MHC. However, these 

methods failed to detect instances of gene conversion that were very clear when 

inspected by eye (the event shown in Fig. 6.5, for example, was not detected). 

Considering all sequences together, the estimated population recombination rate (ρ) was 

26.94 (5% and 95% bounds were 18.34 and 38.22 respectively), compared to a mutation 
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rate (θ) of 15.89, giving a recombination–mutation ratio of 1.695. This indicates that 

recombination is more prevalent than point mutation. 

 

Our macro developed to detect convergence among haplotypes revealed that MHC 

haplotypes were highly similar to their closest relative, differing on average by just over 

1% (Table 6.4). In contrast, putative donor haplotypes were on average 10% different to 

the derived haplotypes across the sequence as a whole, but usually matched perfectly in 

the donor regions. The size of donor regions varied, with minimum insert size ranging 

from 2 to 35 bp (Table 6.4). There was an increase in sequence similarity between 

haplotypes and their closest relatives after allowing a single donor haplotype, and after 

allowing two donors, 100% of the observed nucleotide polymorphisms could be explained 

in all but two putative derived haplotypes, which both differed from their closest relative 

by a single point mutation (Table 6.4). Sequence variation in the putative ancestral 

haplotypes could be less well explained by donor haplotypes (Table 6.4). Moreover, 

putative ancestral haplotypes were identified by the macro as donor sequences in 26 of 

27 cases. Thus, these analyses strongly support our identification of ancestral and derived 

haplotypes. The average level of convergence in the observed MHC sequences was much 

greater than that at sequences simulated to evolve neutrally via point mutation 

(Wilcoxon tests, P < 0.001; Fig. 6.6). In other words, to explain the shared polymorphisms 

observed across lineages, either gene conversion or convergent evolution by point 

mutation must be operating. Assuming 12 ancestral and 29 derived sequences, a 

combination of 27 gene conversion events and two point mutations could potentially 

explain all the MHC sequence variation in the pipit populations. 
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Figure 6.4 Amino acid alignment of 41 Berthelot’s pipit major histocompatibility complex 
(MHC) class I exon 3 haplotypes, grouped by lineage according to a neighbour-net (Fig. 
6.1). Putative ancestral haplotypes are at the top of each lineage, and highlighted in bold. 
Sites marked with a * indicate those that encode for the human peptide-binding region.   

                10        20        30        40        50        60        70        80 

        ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

L1      * * *             * *                          *  **     *  **  *   *   *   *  

ANBE10  RLRVYGCDLMSDGTVHGSQRYGYDGQDFISFDLGIGKFVPADSAAEITRRRWEQEG-VAERWTNYLKHECPEWLRRHIRY  

ANBE13  ..................................F.....................-...GL..................  

ANBE28  ..................................F.....................-.......................  

ANBE18  ....................................RY..................-.......................  

 

L2 

ANBE9   .........................R...........................E.E-...GF..................  

ANBE30  .........................R...........................E.E-...GF..................  

ANBE35  .........................R...........................E.E-...GF..................  

 

L3 

ANBE6   W........L...S.R..E......R........F.RY.................E-...GF......V......KYVG. 

ANBE8   W........L...S....E......R.......ES.RW.................E-...GL............QKYVG. 

ANBE21  L......E.L...SIR..E......R........F....................E-...GL......V....V.KYVG.  

ANBE42  L......E.L...SIR..E......R........F....A...............E-...GL......V....V.KYVG.  

ANBE24  L......E.L...SIR..E......R........F....................E-...GF......V....V.KYVG.  

ANBE14  L...V....L...SIR..E......R........F....A...............E-...GF......V....V.KYVG.  

ANBE22  L...V..E.L...SIR..E......R........F....A...............E-...GF...........V.KYVG.  

ANBE15  W........L...S....E......R........F....................E-...GF......V....V.KYVG.  

ANBE25  W........L...S.R..E......R........F.R..................E-...GF......V......KYVG.  

ANBE34  L........L...S.R..E......R........F.RY.................E-...GF......V......KYVG.  

ANBE12  .........L...S.R..E......R........F.RY.................E-...GF......V......KYVG.  

ANBE17  W........L...S.R..E......R........F.RL.................E-...GF......V......KYVG.  

L4 

ANBE2   ..WLK..E.L....IR..Y.D....R........F....A...............E-...GL......V......KYV.. 

L5  

ANBE1   VQWLK..E.L....IR..Y.E....R.L......F.RL.....VG..S........-...Q.......V......KYL..  

ANBE41  ..WLK..E.L....IR..Y.E....R.L......F.RL.....VG..S........-...Q.......V......KYL..  

ANBE39  VQWLK..E.L....IR..Y.E....R.L......F.RL.....VG..S........-...Q...................  

ANBE27  VQGLK..E.L....IR..Y.E....R.L......F.RL.....VG..S........-...Q.......V......KYL..  

L6 

ANBE7   W...I........S.R..YQ.....R........FE....................-....QA.....V......QYVG. 

ANBE19  W...I........S.R..YQ.....R........FE....................-....QA.....V...........  

ANBE37  W...I........S.R..YQ.....R........FE....................-....QA.....V......KYV..  

ANBE40  W...I........S.R..YQ.....R........FE....................-....QA.....V......QYAG.  

L7 

ANBE26  ..T.S..E.L....IR....I..N.R.H.....ES.R....S..............-...G.......V...........  

ANBE32  ..T.S..E.L....IR....I....R.H.....ES.R....S..............-...G.......V...........  

L8 

ANBE4   ....A..E.L...S.R.FL.I..N.R.H.....ES.RW.L................-E..Y...........R..KYL.. 

ANBE36  ....A..E.L...S.R.FL.I..N.R.H.....ES.RW.L................-...SL.............KYL..  

ANBE33  ....A..E.L...S.R.FL.I..N.R.H.....ES.RW.L................-E..Y...................  

L9 
ANBE3   .........L...S.C..Y.D..N.R.......ES.R..A................NEV............DAIQKYL.. 

ANBE31  .........L...S.C..Y.D..N.R.......ES.R..A................NEV............DAIQKY...  

L10 

ANBE11  L......E.L...S.R..Y.N....R........F.RW.................E-...GF......V......KY.G. 

ANBE23  L......E.L...S.R..R.D....R........F.RW.................E-...GL......V......KY.G. 

ANBE5   W......E.L...S.R..R.D....R........F.RW.................E-...GL......V......KY.G. 

L11 

ANBE16  W......E.L...S.R..Y.D....R.......ES.RW.................E-...........V......KY.G.  

ANBE38  W........L...S.R..Y.D....R.......ES.RW.................E-...........V......KY.G. 

ANBE29  ..WLK..E.L...S.R..Y.D....R.......ES.RW.................E-...........V......KY.G.  
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Figure 6.5  Nucleotide alignment showing an example of gene conversion in 
three Berthelot’s pipit MHC sequences. This example consists of a widespread 
ancestral haplotype (ANBE10), a closely related haplotype derived from this 
(derived, ANBE13), and another distantly related ancestral haplotype (donor, 
ANBE2). Areas in which the ancestral and derived haplotypes differ are outlined 
with shaded boxes, and non-synonymous and synonymous substitutions are 
highlighted in red and blue respectively. All differences between the ancestral 
and derived sequences can be explained by variation present in the donor, 
strongly suggesting that gene conversion has occurred. 

 

To assess the likelihood that convergent accumulation of point mutations, rather than 

gene conversion, explained our observed patterns, patterns of variation at (mostly 

neutral) third codon positions were examined. If all within-lineage variation could be 

explained by point mutation, we would expect to see, by chance, some evidence of 

independent neutral mutations within lineages. We did not see this: of 80 third codon 

sites, 50 were conserved across all haplotypes, 14 sites were variable across (but not 

within) lineages and 15 sites exhibited within-lineage variation. Importantly, all within-

lineage variation could be explained by polymorphism found across lineages, with no 

evidence of independent mutations within lineages. The probability of 15 neutral 

mutations occurring at the same nucleotide positions in different lineages by chance 

given the number of variable sites is extremely low (χ2 = 29.17, d.f. = 1, P <0.001). 

Considering all 240 sites, only two unique within-lineage mutations occurred, which were 

also identified by the macro and appear to represent point mutations.

Figure 3B 1 

 2 

 3 
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Derived 
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Table 6.4 Output from a sliding window analysis created to detect gene conversion in Berthelot’s pipit MHC haplotypes (see text for details). 
Donor haplotypes identified by the macro that we had previously identified as ancestral are highlighted in bold. 

Haplotype 
Similarity 
to CMH 

(%) 
1

st
  donor 

Similarity 
to 1

st
 

donor (%) 

Minimum 
insert size 1

st
 

donor (bp) 

Similarity to 1
st

 
construct sequence 

(%) 
2

nd
 donor 

Similarity to 
2

nd
 donor 
(%) 

Insert size 
2

nd
 donor 
(bp) 

Similarity to 2
nd

 
construct sequence (%) 

Putative ancestral 
         

ANBE10 99.16 ANBE2 87.25 6 100 
 

87.25 
 

100 

ANBE11 97.90 ANBE16 96.36 7 99.16 ANBE9 89.78 3 99.58 

ANBE16 99.58 ANBE11 96.36 3 100 
 

96.36 
 

100 

ANBE9 99.58 ANBE10 96.64 3 100 
 

96.64 
 

100 

ANBE6 99.86 ANBE16 91.18 1 100 
 

91.18 
 

100 

ANBE8 95.80 ANBE35 87.68 17 98.46 ANBE13 90.90 5 99.16 

ANBE2 93.28 ANBE42 92.44 35 98.74 ANBE1 91.18 8 99.86 

ANBE1 99.58 ANBE39 97.34 3 100 
 

97.34 
 

100 

ANBE7 99.58 ANBE6 90.76 3 100 
 

90.76 
 

100 

ANBE26 99.58 ANBE3 83.61 3 100 
 

83.61 
 

100 

ANBE4 97.76 ANBE1 81.93 12 99.58 
 

81.93 
 

99.58 

ANBE3 99.58 ANBE1 81.51 3 100 
 

81.51 
 

100 

Putative derived 
         

ANBE13 98.32 ANBE8 90.90 10 100 
 

90.90 
 

100 

ANBE18 99.16 ANBE6 90.48 6 100 
 

90.48 
 

100 

ANBE28 99.16 ANBE2 88.10 5 100 
 

88.10 
 

100 

ANBE23 99.72 ANBE11 97.90 2 100 
 

97.90 
 

100 

ANBE5 99.72 ANBE16 96.22 2 100 
 

96.22 
 

100 

ANBE29 97.76 ANBE2 93.28 12 100 
 

93.28 
 

100 

ANBE38 99.58 ANBE3 90.20 3 100 
 

90.20 
 

100 

ANBE30 99.58 ANBE6 91.74 3 100 
 

91.74 
 

100 
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Table 6.4 (cont.) 

Haplotype 
Similarity 
 to CMH 

(%) 
1

st
  donor 

Similarity 
to 1

st
 

donor (%) 

Minimum 
insert size 1

st
 

donor (bp) 

Similarity to 1
st

 
construct sequence 

(%) 
2

nd
 donor 

Similarity to 
2

nd
 donor 
(%) 

Insert size 
2

nd
 donor 
(bp) 

Similarity to 2
nd

 
construct sequence (%) 

ANBE35 99.58 ANBE10 96.64 3 100 
 

96.64 
 

100 

ANBE12 99.86 ANBE10 89.78 1 100 
 

89.78 
 

100 

ANBE14 98.74 ANBE6 96.78 7 100 
 

96.78 
 

100 

ANBE15 98.46 ANBE8 94.12 8 99.58 ANBE38 90.34 3 100 

ANBE17 99.16 ANBE1 85.29 6 100 
 

85.29 
 

100 

ANBE21 99.58 ANBE8 93.42 3 100 
 

93.42 
 

100 

ANBE22 98.74 ANBE39 82.49 5 99.72 ANBE2 90.76 2 100 

ANBE24 99.58 ANBE11 92.86 3 100 
 

92.86 
 

100 

ANBE25 99.58 ANBE10 90.06 3 100 
 

90.06 
 

100 

ANBE34 99.72 ANBE11 94.12 2 100 
 

94.12 
 

100 

ANBE42 99.58 ANBE2 92.44 3 100 
 

92.44 
 

100 

ANBE27 99.58 
   

99.58 
   

99.58 

ANBE39 97.34 ANBE10 86.13 16 100 
 

86.13 
 

100 

ANBE41 98.32 ANBE2 92.86 5 100 
 

92.86 
 

100 

ANBE19 98.60 ANBE10 90.20 9 100 
 

90.20 
 

100 

ANBE37 98.60 ANBE2 89.78 9 100 
 

89.78 
 

100 

ANBE40 99.58 
   

99.58 
   

99.58 

ANBE32 99.58 ANBE10 88.52 3 100 
 

88.52 
 

100 

ANBE33 97.76 ANBE10 84.03 15 100 
 

84.03 
 

100 

ANBE36 97.06 ANBE8 87.68 17 99.58 ANBE16 90.20 2 100 

ANBE31 99.58 ANBE10 84.31 3 100 
 

84.31 
 

100 

Mean (all) 98.85 
 

90.33 6 99.85 
 

90.39 4 99.93 

Mean (derived) 99.04 
 

90.07 6 99.93 
 

90.30 2 99.97 
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Figure 6.6 Convergence and mean (± s.e.) sequence similarity 
between MHC haplotypes. Each sequence was matched to its 
closest relative, and percentage similarity was calculated using a 
sliding window analysis. This value was then re-calculated 
allowing for the transfer of sections of DNA from one or two 
donor haplotypes from within the dataset. The analysis was 
performed on Berthelot’s pipit MHC class I exon 3 haplotypes 
(observed), and sequences that were simulated to evolve via 
point mutation (see text for details). 

 

Gene conversion resulted in more changes at putative PBR sites than at non-PBR sites (χ2 

= 10.89, d.f. = 1, P = 9.6 × 10−4; Fig. 6.7). This is reflected in rates of non-synonymous (dN) 

and synonymous (dS) substitutions across the pipit sequences. Both dN and dS were 

significantly higher at PBR compared to non-PBR sites (Fig. 6.7), but dN was not 

significantly higher than dS in the PBR. However, dS was significantly higher than dN at 

non-PBR sites (Fig. 6.7) indicating purifying selection in these areas. 
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Figure 6.7 Rates of non-synonymous (dN) and synonymous (dS) 
substitutions in peptide-binding (PBR) and non-PBR regions in 41 
Berthelot’s pipit major histocompatibility complex (MHC) class I 
exon 3 sequences. Significance levels were evaluated with Mann–
Whitney U-tests (*P < 0.05, **P < 0.01, ***P < 0.001). Error bars 
represent 95% confidence intervals. 

 

6.5 Discussion 

Here, we show that, in the Berthelot’s pipit, only a limited number of divergent MHC 

haplotypes persisted when this species dispersed across its range ca. 75 000 years ago. 

Importantly, we were able to characterize the generation of MHC diversity subsequent to 

the founding event. We found that gene conversion rapidly generated functional MHC 

haplotype diversity across populations, with conversion events outstripping point 

mutations by as much as an order of magnitude. 

 

The argument could be made that the recombinant haplotypes we observe are 

chimeras—artefacts of the PCR process known to occur when amplifying multiple loci. We 

believe that this is highly unlikely. First, we used a PCR protocol designed to minimize the 

formation of chimeras (Lenz & Becker 2008). Second, chimeras are expected to be rare in 
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comparison to true haplotypes (Babik et al. 2009), whereas we find the same 

recombinants occurring at high frequencies both within a population, and most 

importantly, across multiple independently amplified populations. To invoke an 

explanation of chimeras for our data would require independent non-random generation 

of the same chimeric sequence in independent PCR reactions, from independent 

populations. Third, by virtue of the dynamics of their formation, chimeras should co-occur 

with the parental sequences, from which they formed in a PCR reaction (Lenz & Becker 

2008). In contrast, we find that recombinant and parental haplotypes do not typically co-

occur within populations (Table 6.2). Fourth, there would be no reason to expect 

chimeras to form preferentially at the PBR, as we have found. Finally, we would generally 

expect chimeras to resemble single breakpoint recombination events within our short 

fragment, and many (but not all) of the recombination events we observe would require 

multiple breakpoints (Fig. 6.4). We can thus exclude any explanation of chimeric origin for 

our recombinant sequences. 

 

Using population-level tagged primers and 454 sequencing allowed us to MHC genotype a 

large number of individuals rapidly and efficiently. With this approach, however, 

individual-level variation could not be resolved. While initial cloning indicated that four 

duplicated class I loci are present in Berthelot’s pipit—a similar number to other studies 

on passerines (Richardson & Westerdahl 2003; Promerováet al. 2009)—we cannot 

exclude the possibility that more loci are present. However, given the number of 

haplotypes we detected per population (between 9 and 14), it is unlikely that we have 

drastically underestimated the number of loci present.  

 

A second challenge that our approach presented was that our amplicon exceeded the 

available read length, meaning that we had to assemble forward and reverse reads into 

contigs. With this approach, there is a possibility that chimeric sequences could arise if 

overlapping sequences are incorrectly assembled. However, it is important to remember 

that the observed differences within lineages can be explained by variation across 

lineages (i.e. ‘donor’ sequences in Table 6.4). This difference between “ancestral” and 

“derived” sequence (which is also the similarity between the “derived” and “donor” 

sequence) we suggest arises by gene conversion across lineages. In order for this same 
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result to arise from incorrect assembly would require sequences from across lineages to 

be assembled together into contigs. We are confident that our bioinformatics procedures 

eliminated the possibility of this happening. In order for a contig to assemble, the forward 

and reverse reads must have 200bp overlap, and 99% sequence identity within that 

overlap. Yet the haplotype lineages observed are much more divergent than this (10% on 

average across the sequence). Indeed, no two sequences from different lineages meet 

the levels of similarity required from our assembly settings. The longer read-lengths now 

available with 454 sequencing are likely to eliminate the need for this bioinformatics 

phase for amplicons up to ∼300 bp (see for example Galan et al. 2010), although our 

paired-end approach offers the opportunity for longer amplicons (up to ∼700 bp) to be 

genotyped. 

 

As derived haplotypes appear to have replaced their ancestors within the pipit 

populations, gene conversion has not increased haplotype diversity within each 

independent population. This same pattern has been found in humans (Parham & Ohta 

1996), suggesting that it may be a widespread phenomenon in MHC evolution. The 

replacement of ancestral MHC haplotypes by new haplotypes within populations may be 

because of direct positive selection of the derived haplotype, or because derived 

haplotypes share the same ‘sheltered load’ of deleterious mutations at MHC-linked 

regions as their ancestors (van Oosterhout 2009). Importantly, gene conversion 

generated different MHC haplotypes in eight of the 13 populations. Consequently, these 

results show that while haplotype diversity did not increase within populations, gene 

conversion can rapidly increase MHC haplotype diversity at the metapopulation level. 

 

Although there is a large body of evidence suggesting that gene conversion operates 

within the MHC, the evolutionary significance of this has remained both poorly 

understood and controversial (Martinsohn et al. 1999; Klein et al. 2007). This is largely 

due to the difficulty of detecting gene conversion in wild populations. In populations that 

have evolved independently for long periods of time, homoplasy arising from recurrent 

gene conversion events and/or point mutations will make the two difficult to distinguish. 

In Berthelot’s pipit, the combination of multiple populations and limited migration has 

allowed us to separate ancestral and derived variation, and as a result, clearly observe 
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gene conversion. Moreover, the recent divergence among populations has provided a 

‘window of opportunity’ to characterize how MHC genes evolve in the first stages of 

diversification, without the effects of homoplasy. Additional research is now required to 

determine how selection and/or drift operate to maintain new haplotypes within 

populations, and how migration may affect how patterns of MHC variation and newly 

evolved haplotypes are distributed across populations. 

 

An additional factor underpinning the difficulty of quantifying gene conversion in natural 

populations is that detecting individual gene conversion events using statistical methods 

is highly problematic, although all three methods implemented in the present study 

yielded positive results. This is a particular problem when gene conversion does not result 

in large changes—for example, when small sequence tracts are transferred. We present a 

simple method for detecting the overall degree of convergence between sequences. 

Again, we stress that this method does not distinguish between gene conversion and 

convergence of point mutations; in our study, this was only achieved by looking at 

patterns of synonymous variation. The probability that point mutation can explain the 

high levels of convergence seen in the pipit MHC is exceedingly small (P = 6.7 × 10−8). We 

acknowledge, however, that we were not able to statistically identify all of the gene 

conversion events, and cannot completely rule out the possibility that some of the 

convergent substitutions observed were the result of point mutations. 

 

No evidence was found for elevated dN/dS in the PBR, which is widely regarded as the 

classic sign of selection at MHC genes (Hughes & Nei 1988). Instead, we found that both 

dN and dS were higher in PBR compared to non-PBR regions. This pattern is to be expected 

under a scenario of gene conversion combined with positive selection (Ohta 1995), 

whereby conversion events that contain beneficial non-synonymous mutations at the PBR 

are positively selected, and synonymous mutations hitchhike across with them (Fig. 6.5). 

While a number of other population genetic studies have found elevated dS at PBR 

compared to non-PBR sites (e.g. Richardson & Westerdahl 2003; Ekblom et al. 2007), to 

our knowledge, none have considered the possibility that gene conversion may be the 

cause. 
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A 

 
B 
 

 
Figure 6.8 Mean amino acid p-distance (proportion of amino acid differences between 
pairs of sequences) between all pairwise combinations of Berthelot’s pipit MHC 
haplotypes in populations for amino acids coded by the a) non-PBR and b) PBR codons. 
The pale bars show the p-distances of populations in which all derived haplotypes have 
been replaced by their ancestral form. This removes the effect of gene conversion. The 
dark bars show the p-distances based on all observed haplotypes. The rate of loss is lower 
for the PBR sites (3.48%) than for the non-PBR sites (4.50%), (paired t-test: t = 2.48, P = 
0.024). Error bars represent standard error. 
 

Gene conversion can occur across alleles or across loci when genes have been duplicated 

(Chen et al. 2007). Thus, gene conversion across loci has the potential to generate new 

haplotypes, even if the population is entirely homozygous at each of the paralogous MHC 
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loci. Nonetheless, gene conversion can only re-shuffle existing (intra- or inter-locus) 

polymorphisms to create new variants. Therefore, although it can rapidly generate 

variation at the haplotype level, variation at the sequence level is expected to be 

homogenized over time, especially when larger fragments are being transferred (Takuno 

et al. 2008). In populations of Berthelot’s pipit, gene conversion did cause a reduction in 

amino acid variation, although to a lesser extent in the PBR than non-PBR regions, and 

not in all populations (Fig. 6.8). It therefore appears that in these populations, the 

beneficial effect of novel haplotype variation from gene conversion outweighed the effect 

of sequence variation becoming marginally homogenized. This is to be expected when 

sequences within a population are divergent—a common observation at the MHC 

following population bottlenecks (Hedrick et al. 2000, 2002; Richardson & Westerdahl 

2003; van Oosterhout et al. 2006). In such scenarios, we suggest that gene conversion 

may be the primary mechanism generating new functional haplotypes. 
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7.1 General discussion 

In this thesis, I set out to explore how neutral and adaptive genetic diversity are 

partitioned across recently separated populations of Berthelot’s pipit. As is often the case 

with research projects of this size and nature, some aspects of the research were 

serendipitous, whereas other analyses and approaches I had planned at the start of the 

project turned out not to be feasible. In this final chapter, I discuss: i) what I believe to be 

the most salient overall messages from this work; ii) some research that I had planned but 

which turned out to be unfeasible, and; iii) some future directions for research into the 

Berthelot’s pipit system.  

 

7.1.1 Selection and drift in Berthelot’s pipit 

In Berthelot’s pipit I found that demography, and consequently genetic drift, was an 

important factor shaping patterns of genetic diversity within and across populations at 

both neutral and adaptive loci. In an earlier study on Berthelot’s pipit, Illera et al. (2007) 

suggested that the low mitochondrial and microsatellite variation observed were 

indicative of a recent dispersal across the islands. However, the lack of evidence for 

recent bottlenecks that this study found, along with indications of isolation-by-distance, 

suggested that the populations had reached mutation-drift equilibrium (Illera et al. 2007). 

By revisiting the same data set with an increased number of markers in chapters 4 and 5, I 

have confirmed that there are low levels of neutral genetic diversity across all three 

archipelagos, but in contrast to the previous work, found that recent bottlenecks have 

occurred in two of them. The patterns of divergence across populations observed by Illera 

et al. (2007) and in this study, including the isolation-by-distance effect, were in fact an 

artefact of this. The low levels of intra-island MHC diversity observed in chapter 6 are also 

consistent with a recent bottleneck, though I was unable to explicitly compare patterns of 

variation at MHC and neutral loci (see below). Thus, Berthelot’s pipit is an example of a 

recent colonisation, characterised by a series of bottlenecks resulting from founder 

events. 

 

In addition to drift, natural selection appears to have played an important role during the 

recent evolutionary history of Berthelot’s pipit. By analysing spatio-temporal patterns of 
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pathogen prevalence (chapter 3) I have shown that differences in pathogen fauna across 

populations were consistent, and constrained by basic biogeographic features. This, 

combined with the known virulence of avian malaria and pox (van Riper et al. 1986; Jarvi 

et al. 2008), and an observed effect on pipit body condition, suggests different levels of 

pathogen-mediated selection operate across the different island populations (chapter 3). 

I also found evidence of selection in the microsatellite outlier analyses in chapter 4, 

where I showed that one EST-linked marker had much higher structure across populations 

than expected by chance. Finally, I found indirect evidence of selection at the MHC, 

where gene conversion appeared to disproportionately target amino acid sites involved in 

pathogen recognition, suggesting that alleles with functional, phenotypic differences are 

positively selected, and thus recruited into the population (chapter 6).  

 

Many studies have looked for associations between patterns of MHC diversity and 

pathogenic infection, which can help differentiate between mechanisms of pathogen-

mediated selection (e.g. Paterson et al. 1998; Westerdahl et al. 2005; Bonneaud et al. 

2006; see also chapter 2). In this thesis I screened both population-level pathogen load 

and MHC variation, but have not explicitly analysed them together. There are various 

reasons for not doing so: one key reason was to do with the method I used to screen 

population-level MHC variation, using 454 sequencing and population-level tagged 

primers. This method was rapid, efficient and in many ways very effective, but is not 

without its problems. A lack of individual MHC profiles severely hinders the ability and 

power one has to make associations between MHC variability and pathogen regime. 

Furthermore, as discussed in chapter 2, relationships between MHC variability and 

pathogen regime are often highly complex: sometimes there is selection for specific 

alleles, sometimes for heterozygosity, and sometimes a combination of both (see also 

Smith et al. 2010; Worley et al. 2010). Such associations will almost certainly be obscured 

by population-level pooling. Recently, other research groups have utilised the increased 

read-length available from 454 sequencing and developed approaches to efficiently 

genotype MHC genes at the individual level (Galan et al. 2010). However, when we nlevel 

typing would have been prohibitively costly (for this PhD project) and inefficient due to 

the shorter read-lengths available at that time (see section 6.5). In the future, individual-
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level MHC screening across the pipit populations should provide interesting insight into 

the nature of selection at the MHC. 

 

Unlike the MHC, I did have individual-level microsatellite data, and it would have been 

possible to test for correlations between multi-locus microsatellite heterozygosity and 

susceptibility to pathogen infection (cf. heterozygosity-fitness correlations; see Chapman 

et al. 2009 for a review). Associations between microsatellite heterozygosity and 

pathogen infection may be expected if i) if heterozygosity is a proxy for inbreeding, and 

inbred individuals are more susceptible to disease; or ii) individual microsatellite loci are 

linked to genes involved with disease resistance (Coltman et al. 1999). However, 

numerous problems exist with this approach. First, it has been shown that multi-locus 

heterozygosity is a poor proxy for inbreeding unless a very large number of loci (>100s) 

are used (Balloux et al. 2004; Slate et al. 2004). The 22 loci I used differed widely in levels 

of heterozygosity (Chapters 4 and 5), suggesting that using them to estimate “genome-

wide” heterozygosity would be very weak indeed. Second, there is no reason to expect 

that we would choose, by chance, microsatellites linked to disease resistance genes. 

Third, pathogen load varied markedly across the pipit populations (chapter 3), and as a 

result relationship between heterozygosity and pathogen infection will be confounded by 

population-specific effects, and it is unlikely that I have sufficient sample sizes to detect 

subtle, within-population effects. 

 

Another commonly employed analysis in studies of selection at the MHC is to compare 

patterns of population structure at MHC and microsatellite markers (e.g. Ekblom et al. 

2007; Alcaide et al. 2008; Cammen et al. 2011; see also chapter 2).  However, a major 

problem with many of these studies is that they cannot amplify individual MHC loci, 

which presents a real problem when calculating population structure. In my study, in 

addition to being unable to amplify individual MHC loci, I estimated allele frequencies 

from pooled population-level samples based on read depth from 454 sequencing. While I 

am confident that the 454 approach provided an accurate estimate of the 

presence/absence of MHC alleles across the pipit populations, it is unclear how accurate 

estimates of allele frequencies obtained using this method would be. Even slight error in 
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estimating allele frequencies will introduce further error into estimates of population 

structure. Finally, even if it were possible to calculate individual heterozygosity and 

population structure at duplicated MHC genes with high accuracy, comparing MHC and 

microsatellites is highly problematic due to the different mutation rates and levels of 

variability at the two marker types (see chapter 2). Indeed, in this thesis (chapters 4 & 5) I 

have shown that marker variability has enormous effects on estimates of population 

structure, even across sets of markers of the same type. These problems, when 

considered in concert, led me to decide not to conduct any MHC analyses that were 

heavily dependent on accurate estimates of allele frequencies or heterozygosity. 

 

7.1.2 General conclusions and future directions 

Selecting the appropriate model system for evolutionary and ecological studies is of 

utmost importance (Bernasconi et al. 2009; Clutton-Brock and Sheldon 2010). This is a 

message that I have tried to emphasise throughout this thesis – a study which adds to the 

large and growing body of evolutionary research using island systems as models for 

population and species level research (Whittaker 1998; Emerson 2002). It is unlikely that 

the main results of this thesis would have been so clear were it not for the replicated and 

simple nature of the study system. In chapter 3, the island setup enabled me to use 

populations as replicates, and demonstrate clear, consistent biogeographic patterns of 

pathogenic infection. In chapters 4 and 5, the lack of migration between the island 

populations enabled me to observe clear patterns of population structure and signatures 

of bottlenecks, and thus to disentangle the population history of the pipit. Then in 

chapter 6, the replicated populations and lack of migration were essential for identifying 

ancestral and derived MHC sequences, without which it would have not been possible to 

observe so clearly how gene conversion generates new MHC alleles. 

 

The other overall theme that I think is apparent throughout this research is the 

importance of interpreting population genetic and ecological analyses in light of their 

assumptions, and of fully considering alternative explanations for any given finding. When 

I first began to read the literature on pathogen-mediated selection at the MHC it became 

clear that there was a great deal of confusion about how to differentiate between 
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mechanisms of selection, and that many studies had not fully considered alternative 

explanations for their findings. Chapter 2 of this thesis is an attempt to clarify some of this 

confusion. Chapters 4 and 5 originated in similar circumstances: when I revisited the 

previous work by Illera et al. (2007) on population history in Berthelot’s pipit with an 

increased number of markers, my results differed. This led me to explore in more detail 

the effects of marker variability on different population genetic analyses, and find that it 

can severely affect outcomes. The confusion that can occur when interpreting population 

genetic data and analyses was also a central theme to producing chapter 6. When I first 

looked for evidence of recombination and gene conversion in the pipit MHC sequences, I 

found that some published algorithms detected extensive evidence for gene conversion 

within our dataset, whereas others did not. It was this that led us to develop the visual 

method presented in chapter 6. 

 

The research presented in this thesis goes some way to establishing the Berthelot’s pipit 

as a model system for population and ecological genetics and leaves many exciting 

questions to be addressed. For example, temporal analyses of genetic diversity were 

beyond the scope of the project, though I was able to analyse temporal patterns of 

pathogenic infection (which was central to establishing whether the populations faced 

different selective pressures). Very few study systems have good multi-population, multi-

year sampling regimes, and thus further temporal sampling of the pipit populations could 

provide novel insight into the micro-evolutionary processes that operate across wild 

populations. Examining spatio-temporal patterns of variation across the pipit populations 

would be particularly interesting if done from both “top-down” and “bottom-up” 

perspectives. Using newly developed genomic techniques, such as restriction-site 

associated DNA (RAD) sequencing, it is now possible to generate genome-scale sets of 

markers in any non-model species (Baird et al. 2008; Etter et al. 2011). Moreover, as costs 

of high-throughput sequencing decrease, it is now becoming possible to run large marker 

panels on a population-scale. At the same time, many new candidate genes of functional 

importance are being identified, and markers developed for a wide range of organisms 

(Piertney and Webster 2010). The pipit system, in which founder events, genetic drift and 

natural selection have all played a role promoting adaptation and differentiation across 
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populations, provides an interesting opportunity to utilise these approaches, and explore 

how different evolutionary forces operate across the genome. 
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Appendix 1  

Allele frequencies at 22 microsatellite loci across island populations of Berthelot’s pipit. 
SG: Selvagem Grande, DG: Deserta Grande, M: Madeira, PS: Porto Santo, EH: El Hierro, 
PAL: La Palma, GOM: La Gomera, TEID: El Teide, TF: Tenerife, GC: Gran Canaria, FV: 
Fuerteventura, LZ: Lanzarote, GRAC: La Graciosa. 

Locus SG DG M PS EH PAL GOM TEID TF GC FV LZ GRAC 

TG03-
002 - 0.103 0.18 0.192 0.15 0.056 0.117 0.069 0.1 - 0.067 0.05 - 

 
1 0.293 0.46 0.308 0.75 0.759 0.767 0.845 0.767 0.793 0.85 0.85 0.935 

 
- 0.017 0.02 0.154 0.083 0.13 0.1 0.086 0.133 0.172 0.083 0.1 0.065 

 
- 0.431 0.26 0.346 0.017 0.056 0.017 - - 0.017 - - - 

 
- - 0.08 - - - - - - 0.017 - - - 

 
- 0.155 - - - - - - - - - - - 

              TG13-
009 1 0.828 0.688 0.673 0.914 0.962 0.897 0.926 0.967 0.821 0.95 0.87 0.826 

 
- 0.172 0.313 0.327 0.086 0.038 0.103 0.074 0.033 0.179 0.05 0.13 0.174 

              TG01-
047 0.893 0.883 0.96 0.981 0.8 0.648 0.786 0.607 0.75 0.607 0.683 0.615 0.891 

 
0.107 0.117 0.04 0.019 0.2 0.352 0.214 0.393 0.25 0.393 0.317 0.385 0.109 

              TG02-
088 1 1 1 1 1 0.981 0.958 1 0.981 1 0.933 0.962 0.933 

 
- - - - - 0.019 0.042 - 0.019 - 0.067 0.038 0.067 

              TG03-
098 - - - - 0.35 0.13 0.411 0.089 0.214 0.259 0.259 0.154 0.13 

 
0.357 0.042 0.075 0.043 0.233 0.093 0.125 0.232 0.107 0.086 0.259 0.269 0.022 

 
0.643 0.958 0.925 0.957 0.417 0.778 0.464 0.679 0.679 0.655 0.483 0.577 0.848 

              TG04-
004 - - 0.021 - 0.1 0.143 0.31 0.172 0.1 0.172 0.155 0.183 0.196 

 
1 0.517 0.646 0.788 0.75 0.804 0.655 0.759 0.867 0.724 0.776 0.7 0.717 

 
- 0.483 0.333 0.212 0.15 0.018 0.034 0.069 0.033 0.069 0.052 0.05 0.065 

 
- - - - - 0.036 - - - 0.034 0.017 0.067 0.022 

              TG09-
018 - - - - - 0.019 - - - - - - - 

 
- 0.172 0.065 - 0.017 0.115 0.069 0.052 0.1 0.034 0.107 0.052 0.109 

 
0.517 0.414 0.391 0.417 0.267 0.288 0.19 0.155 0.183 0.224 0.107 0.155 0.065 

 
0.328 0.138 0.239 0.146 0.267 0.077 0.224 0.207 0.167 0.138 0.214 0.276 0.217 

 
0.034 - - - 0.017 - - - - - 0.018 0.017 - 

 
0.121 0.224 0.261 0.25 0.283 0.154 0.121 0.172 0.317 0.31 0.143 0.207 0.022 

 
- 0.052 0.043 0.188 0.133 0.288 0.379 0.379 0.217 0.276 0.375 0.276 0.565 

 
- - - - - 0.019 0.017 0.034 0.017 - - 0.017 0.022 

 
- - - - 0.017 0.038 - - - 0.017 0.036 - - 
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TG01-
124 1 0.271 0.676 0.525 1 1 0.983 1 1 0.982 0.933 1 1 

 
- 0.729 0.324 0.475 - - 0.017 - - 0.018 0.067 - - 

TG05-
053 - - - - - - - - - 0.018 - 0.018 0.065 

 
- - - - 0.017 0.04 0.183 0.056 0.067 0.018 0.083 0.036 0.022 

 
1 1 1 0.864 0.567 0.58 0.367 0.556 0.567 0.482 0.5 0.518 0.696 

 
- - - 0.136 0.417 0.38 0.45 0.389 0.35 0.482 0.417 0.429 0.217 

 
- - - - - - - - 0.017 - - - - 

              TG06-
009 0.817 0.183 0.558 0.288 0.733 0.704 0.867 0.804 0.75 0.845 0.517 0.724 0.717 

 
0.183 0.55 0.442 0.712 0.267 0.278 0.117 0.196 0.25 0.155 0.467 0.276 0.283 

 
- 0.267 - - - 0.019 0.017 - - - 0.017 - - 

              PCA7 1 1 1 1 0.967 0.804 0.917 0.948 0.9 0.966 0.95 0.85 0.826 

 
- - - - 0.033 0.196 0.083 0.052 0.1 0.034 0.05 0.15 0.174 

               
CAM13 0.768 0.56 0.5 0.643 0.9 0.907 0.948 0.857 0.85 0.875 0.933 0.926 0.87 

 
0.232 0.16 0.167 - 0.1 0.093 0.052 0.143 0.15 0.125 0.067 0.074 0.13 

 
- 0.28 0.333 0.357 - - - - - - - - - 

              PDO46 - 0.05 0.06 - 0.05 - - 0.018 0.033 0.017 - - - 

 
0.31 0.95 0.9 1 0.783 0.714 0.717 0.857 0.733 0.776 0.75 0.852 0.739 

 
- - 0.04 - 0.083 0.232 0.183 0.107 0.083 0.155 0.217 0.093 0.196 

 
- - - - - - - - 0.017 - - - - 

 
0.69 - - - 0.067 0.054 0.1 - 0.117 0.034 0.033 0.037 0.065 

 
- - - - 0.017 - - 0.018 0.017 0.017 - 0.019 - 

              CAM2 1 0.357 0.188 0.34 0.25 0.482 0.217 0.304 0.276 0.19 0.35 0.36 0.087 

 
- - - - - - 0.017 0.018 0.069 - 0.017 - 0.043 

 
- 0.161 0.063 0.04 0.033 0.054 0.083 0.018 0.034 0.052 0.033 0.02 0.217 

 
- - - - - - 0.033 - - - - - - 

 
- 0.089 0.083 0.1 0.2 0.125 0.25 0.268 0.224 0.19 0.233 0.04 0.196 

 
- - - - 0.05 - - - - - - - - 

 
- - 0.021 - 0.133 0.107 0.167 0.125 0.086 0.121 0.1 0.16 0.065 

 
- - - - 0.033 0.054 0.067 0.054 0.034 0.052 0.017 0.06 0.065 

 
- 0.375 0.417 0.5 0.05 0.036 - 0.054 0.034 0.052 0.033 0.04 0.043 

 
- - - - - 0.036 0.05 0.018 0.086 0.103 - - - 

 
- 0.018 0.229 0.02 0.133 0.071 0.067 0.107 0.069 0.172 0.183 0.18 0.065 

 
- - - - 0.067 - - 0.018 0.052 0.034 - 0.06 - 

 
- - - - 0.033 0.036 - 0.018 0.017 0.017 0.017 0.06 0.217 

 
- - - - 0.017 - 0.05 - 0.017 0.017 0.017 0.02 - 

              CAM23 - - - - 0.1 0.089 0.1 0.017 0.1 0.034 0.083 - - 

 
- - - - - 0.054 - - - - - - - 
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- - - - 0.017 0.036 0.017 0.034 0.017 0.052 0.05 0.115 - 

 
- - - - - - - - - 0.052 - 0.038 0.087 

 
- - - - - 0.018 - 0.017 0.083 0.017 - 0.038 0.043 

 
0.414 - - - 0.067 0.089 0.3 0.31 0.267 0.224 0.217 0.154 0.348 

 
- - - - 0.067 0.036 - - - - 0.033 0.019 - 

 
0.517 0.259 0.458 0.6 0.633 0.464 0.333 0.293 0.333 0.414 0.3 0.365 0.217 

 
0.069 0.741 0.542 0.4 0.083 0.125 0.217 0.19 0.1 0.103 0.2 0.173 0.152 

 
- - - - - 0.054 0.033 0.103 0.05 0.034 0.067 0.038 0.043 

 
- - - - 0.033 - - 0.017 0.05 0.017 0.05 0.058 0.109 

 
- - - - - 0.036 - 0.017 - - - - - 

 
- - - - - - - - - 0.017 - - - 

 
- - - - - - - - - 0.034 - - - 

              CAM4 0.638 - 0.02 - 0.267 0.25 0.183 0.268 0.2 0.207 0.183 0.2 0.13 

 
- - - - 0.133 0.036 0.05 0.018 0.233 0.069 0.017 0.16 0.196 

 
0.31 0.862 0.56 0.54 0.45 0.571 0.583 0.5 0.4 0.603 0.633 0.48 0.565 

 
0.052 0.138 0.42 0.46 0.15 0.143 0.183 0.214 0.167 0.121 0.167 0.16 0.109 

              CAM8 0.036 0.396 0.717 0.568 0.317 0.444 0.65 0.259 0.417 0.393 0.467 0.313 0.391 

 
0.964 0.604 0.283 0.432 0.683 0.556 0.35 0.741 0.583 0.607 0.533 0.688 0.609 

              PDO47 - - - - 0.083 0.018 - - 0.017 0.017 0.052 - - 

 
0.086 - - - 0.033 0.054 - 0.036 0.017 - 0.034 0.017 0.022 

 
0.5 - - - 0.05 0.25 0.121 0.089 0.083 0.052 0.017 0.117 0.043 

 
- - - - 0.15 - 0.052 - 0.067 0.069 0.069 - 0.043 

PDO47 - - - 0.058 - - - - - - - - - 

 
- - - - 0.067 0.018 0.034 0.071 0.017 0.017 0.034 0.017 0.022 

 
- 0.431 0.375 0.192 0.1 0.107 0.19 0.036 0.05 0.052 0.155 0.033 0.217 

 
0.345 0.414 0.417 0.615 0.117 0.196 0.19 0.143 0.217 0.259 0.103 0.267 0.109 

 
- 0.052 - - 0.083 0.071 0.155 0.107 0.1 0.103 0.052 0.183 0.174 

 
0.069 0.103 0.167 0.135 0.083 0.107 0.052 0.179 0.117 0.138 0.155 0.117 0.283 

 
- - - - 0.033 - 0.034 0.036 0.017 0.034 0.017 0.017 - 

 
- - - - 0.067 0.036 0.052 - 0.05 0.017 0.069 0.033 0.022 

 
- - 0.042 - 0.05 0.054 0.069 0.107 0.1 0.086 0.103 0.067 0.065 

 
- - - - 0.017 0.018 0.017 0.054 0.033 0.017 - 0.083 - 

 
- - - - 0.033 0.018 - 0.036 0.067 0.069 0.052 0.033 - 

 
- - - - 0.017 0.036 0.034 - 0.033 0.017 0.034 - - 

 
- - - - 0.017 0.018 - 0.089 0.017 0.052 0.052 0.017 - 

 
- - - - - - - 0.018 - - - - - 

              PPI2 - - - - - 0.037 - - 0.017 - 0.093 - - 

 
- - - - - 0.037 - - 0.017 - - - - 

 
- - - - 0.083 0.019 0.069 0.052 0.083 0.052 0.037 0.093 0.022 

 
0.267 0.37 0.318 0.5 0.367 0.222 0.19 0.19 0.25 0.241 0.167 0.093 0.37 

 
- 0.037 0.091 0.045 0.033 0.148 0.086 0.069 0.067 0.086 0.056 0.111 0.065 
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- 0.019 - - 0.217 0.259 0.241 0.138 0.117 0.155 0.074 0.111 0.152 

 
0.2 0.037 0.159 0.091 - 0.037 0.052 0.034 0.017 0.017 0.037 0.019 0.022 

 
0.067 0.296 0.364 0.318 0.183 0.056 0.259 0.328 0.217 0.259 0.259 0.426 0.239 

 
- - 0.045 0.045 0.083 0.13 0.017 0.052 0.067 0.069 0.093 0.148 - 

 
0.117 0.222 - - 0.017 0.019 0.017 0.086 0.083 0.052 0.074 - 0.022 

 
0.35 - - - 0.017 0.019 0.034 - - - - - 0.043 

 
- - - - - - 0.017 0.017 0.017 0.017 0.019 - 0.065 

PPI2 - 0.019 0.023 - - - - - 0.033 0.017 0.019 - - 

 
- - - - - - - - - - 0.019 - - 

 
- - - - - - - 0.017 - - - - - 

 
- - - - - 0.019 0.017 0.017 0.017 0.034 0.056 - - 

              CAM18 - - - - - - - - 0.033 - 0.056 - 0.043 

 
0.143 0.452 0.615 0.8 0.411 0.241 0.362 0.315 0.45 0.446 0.407 0.185 0.239 

 
0.857 0.548 0.385 0.167 0.375 0.463 0.483 0.537 0.333 0.429 0.444 0.519 0.543 

 
- - - 0.033 0.214 0.296 0.155 0.148 0.183 0.125 0.093 0.296 0.174 

              PDO5 - 0.224 0.104 0.091 0.15 0.231 0.283 0.111 0.1 0.25 0.2 0.148 0.065 

 
- - - - 0.1 0.038 0.05 0.019 0.017 0.036 - 0.037 0.065 

 
- - - - - - - - - - - 0.019 - 

 
1 0.759 0.771 0.841 0.617 0.538 0.55 0.611 0.75 0.5 0.65 0.593 0.609 

 
- 0.017 0.125 0.068 0.1 0.077 0.05 0.037 0.017 0.089 0.083 0.019 0.065 

 
- - - - 0.033 0.019 0.067 0.037 0.067 0.036 - 0.111 0.022 

 
- - - - - 0.096 - 0.148 0.05 0.071 0.067 0.074 0.174 

 
- - - - - - - - - 0.018 - - - 

 
- - - - - - - 0.037 - - - - - 

              HRU5 0.741 0.367 0.577 0.481 0.617 0.732 0.617 0.586 0.655 0.638 0.417 0.531 0.63 

 
0.259 0.633 0.423 0.519 0.383 0.268 0.383 0.414 0.345 0.362 0.583 0.469 0.37 

 

 


