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    Abstract 

Environmental Geochemistry of Soils and Stream Sediments from Anka and Birnin-Gwari 

Artisanal Gold Mining Areas, NW Nigeria 

 

By   

   

Nuhu Musa Waziri 

  

The geochemistry of surface soils and stream sediments from two areas in the north-

western Nigeria Schist Belt was studied in order to assess the environmental impact of 

artisanal mining of quartz-gold-sulfide mineralization. XRF determination of total 

elemental concentration was carried out, along with sequential extraction procedures 

(SEPs) and in vitro bioaccessibility tests using ICP-AES. The results show that the soils in 

both the Anka and Birnin-Gwari area are highly enriched in silica, zirconium and markedly 

depleted in base cations due to intense tropical weathering. The results further show that 

artisanal mining has only caused severe contamination, especially with respect to Pb and 

Cu, in the Anka area, highlighting the importance of mineralogical differences in the ore 

deposits. Most trace elements partition strongly into the carbonate and Fe/Mn oxides 

fractions in samples from the Anka area, indicating possible risk of mobilization under 

reducing, slightly acidic conditions; the exchangeable phase being the least significant in 

both areas. Very high bioaccessibility values, which correlate strongly with the sums of the 

SEP steps, were obtained for Pb, Cu and to a lesser extent, As and Mn in soils of the Anka 

area and the minimal risk levels and tolerable daily intakes are greatly exceeded. Low pH 

was found to enhance the bioaccessibility of Pb, Cr and Cu, while rising pH appears to 

favour the release of As. Only the bioaccessibility of Cr was found to change with the 

length of extraction time and the ratio of the mass of sample to extraction fluid volume 

only affects the extraction of As. The results show significant human health risks, mostly 

in the Anka area due to processing of ores and improper disposal of tailings. Ore 

processing at the mine sites and an end to using the tailings as construction materials may 

reduce the exposure of the local population to potentially toxic elements.                   
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Chapter One 

 

Introduction and Literature Review  

 

1.1 Background     

The environmental and health implications of mining have long been studied and scientific 

literature (e.g, Kelly, 1988; Thornton, 1996; Dudca and Adriano, 1997; Lottermoser, 2007; 

Plumlee and Morman, 2011) is full of documented cases of damage to the environment and 

human health directly linked to mining related pollution. Since the advent of civilization, 

we have continually exploited minerals and rocks for the production of goods, energy and 

building materials (Hudson-Edwards et al., 2011) with its attendant environmental 

consequences.  Base metal mining results in a variety of wastes, ranging from host rock 

debris and its associated gangue minerals, dusts from milling, to slags resulting from 

smelting operations. These, often potentially toxic element (PTE, Alloway, 1995) laden 

wastes serve as sources of contamination of the environment and provide pathways for 

human exposure. In many parts of the world, metalliferous mining activities have been 

shown to lead to heavy metal contamination of soils, sediments and water (Adriano, 1986; 

Thornton, 1996; Jung, 2001; Bird et al., 2003; Dolenec et al., 2007). Heavy metal in soil is 

one of the environmental problems resulting from mining on a global scale.  

 

In the Tsofon Birnin-Gwari and Anka regions and many other parts of Nigeria, exploitation 

of gold and associated sulfide minerals by artisans is a common practice and is thought to 

introduce associated PTEs into the soils and stream sediments in the area. Environmental 

problems related to artisanal gold mining are widely reported in the developing world, for 

example, Ghana (Hilson, 2002; Babut et al., 2003); Ecuador (Appleton et al., 2001) and the 

Brazilian Amazon (Hinton et al., 2003). As a result, elevated levels of the PTEs may be 

found in and around the metalliferous mines due to the dispersion of mine wastes down 

slope by surface runoff, wind action and effluent drainage into nearby soils and open water 

systems (Jung, 2001). One implication of having excessive levels of these elements in soils 
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is that crops may take them up and pass them through the food chain to human beings. 

Another route of transmission to humans, especially children, is hand to mouth ingestion, 

in addition to contamination of surface and groundwater resources and inhalation of dusts. 

These elements are known to be toxic to plants (Radojevic and Bashkin, 1999; Berman, 

1980) and animals if taken up beyond certain limits. They pose potential health risk to 

local residents, because they can accumulate in the body to cause heavy metal poisoning.   

 

Little, if anything has been done to investigate the environmental impact of artisanal gold 

mining in general and soil heavy metal concentrations and bioaccessibility in these areas of 

Nigeria. Most previous work in the area has focused mainly on the geology (e.g. Russ, 

1957; Truswell and Cope, 1963; McCurry and Wright, 1977; Ogezi, 1977; Holt et al., 

1978; Rahman and Ocan, 1978; Turner, 1983; Fitches et al., 1985) and mineralization 

(Woakes et al., 1987), especially in relation to gold occurrences or deposits (Russ, 1957; 

Garba, 2000; 2002; 2003; Danbatta et al., 2009) to mention but a few. Not much attention 

has been paid to the possible implications of artisanal gold and base metal mining in the 

area and the effect it will have on the quality of the environment and human health. It is 

often viewed by many as a small-scale industry, incapable of posing any significant 

environmental and human health risks. As pointed out by Olade (1987), most studies on 

the biogeochemical cycling of heavy metals have been within temperate or sub-tropical 

ecosystems and therefore little is known about their behavior in the semi-arid tropics, such 

as northern Nigeria. A recent outbreak of acute lead poisoning among rural dwellers of the 

Anka area, which killed hundreds of children (UNEP/OCHA, 2010) has been traced to 

activities of the locals who try to extract gold from a mainly galena-chalcopyrite ore 

deposit. In fact, the work conducted by UNEP reported concentrations of up to 60,000 µg/g 

lead in the soil of some villages while the Blacksmith Institute (2011) reported soil lead 

concentrations in seven villages to be in excess of 100,000 µg/g, resulting in blood lead 
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levels in children generally exceeding the internationally acceptable limit of 10 µg/dl 

(Fig.1).  

 

 

Figure 1 Average blood lead levels (µg/dl) in children in two villages of Anka area, 

north-western Nigeria contaminated by artisanal gold mining over seven months in 

2010 (from Blacksmith Institute, 2011)  

 

It is therefore vital to study the effect of these small-scale mines on the quality of the 

environment and the possible human health risks incident upon potentially toxic element 

contamination of soils and sediments in the area. To address this gap, the present work has 

investigated the geochemistry of soils and sediments from Anka and Birnin-Gwari areas 

within the north-western Nigeria schist belts, both famous for artisanal gold mining. The 

work involved the determination of the spatial distribution of the elements in soils and 

sediments, along with their geochemical partitioning in different solid phases, which is a 

measure of their mobility. Their relative in vitro bioaccessibility was estimated using 

physiologically-based extraction tests.   
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1.2 Aim of the work 

The aim of this work is to assess the environmental and human health risks posed by 

artisanal mining in parts of the Nigerian north-west region. The geochemistry of soils and 

stream sediments in two mining areas was studied in terms of the total contaminant 

distribution, comparing the concentration with reference values in order to determine the 

extent of contamination. Geochemical mobility and relative bioaccessibility were estimated 

using sequential extraction procedures (SEPs) and in vitro extraction procedure.    

 

1.3 The Study Area 

1.3.1 Location and general geography 

The Tsofon Birnin-Gwari study area (Fig. 2) is located in Birnin-Gwari local government 

area of Kaduna state in north-western Nigeria. It lies between latitude 10
o
55ôN and 

11
o
05ôN and longitude 6

o
45ôE and 6

o
52ôE. The altitude of the area ranges from 518.16 m 

to 712.28 m above mean sea level and is traversed by the Birnin-Gwari/ Funtua road. The 

area, which covers about 226 km
2
, is characterized by granitic inselbergs and roughly 

north-south trending ridges, often in conformity with the general trend in the Nigerian 

Basement Complex. It is drained mainly by the Kureta and Gora Rivers which are fed by a 

number of other tributary channels such as the Baigado and Abuya Rivers (FSN, 1967). 
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Figure 2 Outline map of Nigeria showing the location of the two study areas. Detailed     

maps of the areas are presented in Figure 8 (modified from DivaGIS).   
 

The second site which lies to the northwest of the Birnin-Gwari site (Fig.2) and covering 

about 990 km
2
 is in the Anka local government area of Zamfara state also in the north-

western part of Nigeria. It falls between latitude 11
o
51ôN and 12

o
08ôN, and longitude 

5
o
51ôE and 6

o
08ôE and is characterized by generally gentler relief compared to the Tsofon 

Birnin-Gwari area. The main surface water body in the area is the Anka River, which lies 

about a kilometer to the north of the town from which it derives its name, but there are 

numerous seasonal streams or channels which cut the entire landscape that feed into the 

main river and many are used as sources of water for domestic use, irrigation and livestock 

watering, especially during the wet season. A small number of these streams, such as the 

one at Abare village were observed to remain running well into the dry season. Vegetation 

in the entire region is generally sparse, and has been described by Russ (1957) as savannah 
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forest together with scrubs, which thin out in a northerly direction, with semi- deciduous 

high forests along streams and depressions. Generally, the inhabitants of this area are 

farmers, who are engaged in the cultivation of a large number of cereal and vegetable 

crops.  

 

1.3.2 Geology of the study area 

1.3.2.1 Regional setting  

The study area is in the schist belt of the Nigerian basement complex which is part of the 

Pan-African mobile belt, sandwiched between the West African craton and the Congo 

Craton. This Neoproterozoic to early Phanerozoic belt is covered in many places by 

Cretaceous and younger sedimentary rocks. It has been described by McCurry and Wright 

(1977) as a system of synclinorial belts of low-grade metasediments downfolded into high-

grade gneisses and migmatites, the whole intruded by batholitic granites. This was further 

explained by Woakes et al., (1987, Fig. 3) who summarized the major geologic units in the 

area to include a polycylic metamorphic migmatite- gneiss basement, with entrained supra-

crustal remains, ranging in age from Archaean (2700 Ma) to Palaeoproterozoic (2000 Ma).  

This suite of rocks which constitutes about 60% of the Nigerian basement (Rahman and 

Ocan, 1978) consisting of gneisses, migmatites and quartzites is of medium to high grade 

amphibolite facies metamorphism. It is followed upwardly by the low- grade, deformed 

schist belts developed mostly in the western flanks of Nigeria. These upper Proterozoic 

generally north-south trending belts, have been infolded into the migmatite- gneiss 

basement complex. Metamorphism in these belts is generally of low grade, falling within 

the green-schist facies and characterized mainly (Turner, 1983) by schists, phyllites, 

banded iron formations, carbonate rocks and mafic metavolcanics which are now in the 

form of amhibolites and meta-conglomerates. These and the migmatite-gneiss basement 

have been cut by Pan-African granites. The syn- to late tectonic igneous intrusions include 

mainly granites, granodiorites, diorites and some gabbro, syenites and charnokites.  Some 
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unmetamorphosed volcanic and hypabyssal rocks dated as late Pan-African by McCurry 

and Wright (1977) overlie or intrude the basement rocks in the Anka area of north-western 

Nigeria. 

 
Figure 3 Outline geological map of Nigeria. The Anka (2) and Kushaka (7) Schist      

Belts in the box at the top left have been described in this work as the study sites. 

Reproduced from Woakes et al. (1987) with permission from Elsevier Limited, 

Oxford. 
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1.3.2.2 Local geology and mineralization 

The study sites for this work lie within the Anka and Kushaka schist belts of north-western 

Nigeria. These belts although of different ages, have generally similar lithologies (Fig. 

3&4a-c) and mineral paragenesis.  They have both, like many other similar belts in Nigeria 

and the entire West African region been the focus of artisanal gold exploitation for several 

decades. 

 

The Anka schist belt is the more westerly of the two and Holt et al. (1978, in Turner 1983) 

has summarized the lithology in the area to include metaconglomerates, sandstones, slates, 

phyllites and acid violcanics. According to Turner (1983), the metaconglomerates form 

units of up to 150-200 m, interbedded with feldspathic metasandstones and contain 

rounded to angular fragments of granites, quartzites, quartz, phyllites and volcanics. 

Fitches et al. (1985) report that the belt is composed chiefly of poorly exposed, 

homogenous quiet-water argillites, associated with coarse clastics and a province of acid- 

intermediate volcanic and intrusive rocks. The coarse clastics are said to generally overlie 

the argillites, but are intercalated with the latter in the lower parts of the coarse clastic 

layers (Fitches et al., 1985). The coarse clastics in the form of green and purple grits 

interbedded with shales and siltstones predominate in the eastern flanks of the belt, 

whereas in the west, phyllites are the dominant lithology (Turner, 1983). The age of this 

belt is not very certain, but Turner (1983) has reported a Rb/Sr date of 450±50Ma obtained 

by Ogezi (1977) as placing the metamorphism in the late Pan-African.  

 

As with the other schist belts in the western part of Nigeria, gold and sulfide mineralization 

have been identified and exploited in the Anka area. Gold in this area is hosted by schists, 

phyllites and quarzites related to sub-regional structural elements subsidiary to the Anka 

fault (Garba, 2003) and metaconglomerates (Russ, 1957). The gold mineralizing fluids 

were interpreted, based on Na2O/Al2O3-K2O/Al2O3 discrimination diagram and inter-

lithophile elements ratios to be of metamorphic origin (Danbatta et al., 2009). The 
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mineralized concordant veins are generally short, not exceeding half a kilometre of strike 

length and trace metal concentration in altered wall rock reported by Garba (2003) of 647-

5410 ppm Cu; 7550-22600 ppm Pb; 1.5-8.6 ppm Ag and 123-6320 ppb Au show that the 

ores are very rich in lead and copper minerals, mostly galena which has been observed 

during field work and also chalcopyrite.   

 

The Kushaka schist belt on its part is characterized by a number of curved schist belts. It is 

underlain mainly by semi-pelitic biotite muscovite schist, along with phyllites, 

metasiltstones and graphitic schists (Turner, 1983). Interbedded with these units is a 

banded iron formation and the thick amphibolites in part of the area have been interpreted 

by Turner as indication of large volcanic accumulation. Truswell and Cope (1963) have 

described the rocks in the area as lying in a number of N-S trending isoclinal fold 

structures; pelitic metasediments been the dominant lithology, with the presence however 

of both psammites, pelites and amphibolites. The metasediments in this area, like those in 

the other belts have been extensively invaded by granites and granodiorites of the Pan-

African series and the belt has been placed by Turner (1983) in the Kibaran (1100 ± 200 

Ma). The granites were observed to form very prominent geomorphological features 

especially in the southern part of the study area, while to the north-west, the older 

migmatite-gneiss basement outcrops. According to Garba (2000) the entire sequence in this 

area has been cut and displaced by the NE-SW trending Kalangai transcurrent fault.  
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Figure 4 Some common rock types in the study area: (a) slumping schist blocks on the 

banks of Kureta river near Tsofon Birnin-Gwari, showing original bedding; (b) 

outcrops of the older granites near the village of Jenruwa, south of Tsofon Birnin-

Gwari and (c) schist and quartzite exposed in artisanal mine east of Dareta village in 

the Anka area (Photos by author).  
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The Tsofon Birnin-Gwari area which is in the Kushaka schist belt is associated with 

extensive mineralization. Woakes and Bafor (1983) have named it as one of the areas 

associated with gold mineralization within the Nigerian schist belt. Elueze (1981a) and  

Bafor (1981) reported the presence of sulphide minerals in the schist belts. The Tsofon 

Birnin-Gwari (TBG) gold-sulphide-quartz reef mineralization is the most extensive in 

Nigeria with a strike length of over 7 km and the mineralization is hosted by  graphitic and 

micaceous phyllites of the Kushaka schist belt of the northwestern Nigeria Pan-African 

(600 ± 150 Ma) terrane (Garba, 2002). The mineralization appears to lie in several narrow, 

near parallel shear zones, exploiting strong vertical foliation parallel to the axial planes of 

the fold structures (Garba, 2000). The mineral deposits, especially gold, have over the 

years been exploited by small-scale mining outfits. The Tsofon Birnin-Gwari area has had 

active gold mines since the 1930s and was reported to have yielded over 600 ounces (over 

17kg) of reef and alluvial gold between 1932 and 1940 using the cyanide process (Russ, 

1957). This, and the neighboring Kwaga site are still been exploited by artisanal miners. 

Gold in this area is generally associated with pyrite and minor sphalerite, chalcopyrite, 

pyrrhotite, galena and magnetite (Garba, 2003), with quartz, potassic feldspar and 

carbonaceous matter constituting the gangue minerals.  
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1.4 Heavy Metals in the environment 

One of the major environmental problems in parts of the world at present is the high levels 

of heavy metals in soils and other components of the environment. The term ñheavy 

metalsò describes a group of metallic elements and metalloids with considerably high 

densities- typically exceeding 6g/cm
3
. Elements such as arsenic, cadmium, chromium, 

copper, lead, mercury, nickel and zinc have been shown to be toxic to both human beings 

and plants, in spite of some of them being essential elements. 

 

1.4.1 Routes of entry of heavy metals into soil 

There are various ways by which heavy metals find their way into soils. According to 

Ward (1995), soils and sediments are considered as sinks for trace elements (including 

heavy metals), and therefore they play an important role in the environmental recycling of 

elements. The routes of entry have been classified into two broad categories-namely, 

natural and cultural (anthropogenic). 

 

Naturally, heavy metals are introduced into soils through the weathering of rocks. 

According to Olade (1987), the overall abundance of trace elements in surficial materials 

depends initially on their concentrations in bedrocks and mineralized zones. Rocks are 

aggregates of minerals and the minerals are composed of certain elements including heavy 

metals. Weathering processes release these metals from the mineral systems and they end 

up in the environment as metal solutions in surface water, solids, and suspensions or 

adsorbed to soil particles (Fifield, 1995). Soils overlying certain rock types are generally 

richer in heavy metals. For example, the chromium content of soils overlying chromite 

bearing rocks (serpentinites) is higher than other soils, and a similar situation exists for 

lead in galena rich areas (Radojevic and Bashkin, 1999). 
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Cultural or anthropogenic sources of heavy metal pollution are linked to the activities of 

man. Mining is one such human activity which introduces metals into the environment. 

Because of the large volumes of materials handled, mining and smelting activities give rise 

to varying degrees of contamination of soil, air and water that lead to perturbations in the 

cycling of metals in the surficial environment (Thornton, 1996).  Ciccu et al. (2003) have 

pointed at acid mine drainage, tailing embankments, mining rock dumps and metallurgical 

waste piles as some of the sources of pollution, posing serious threats to the environment.  

 

The gradual abandonment of mines and the lack of maintenance or failure to adopt 

appropriate safety measures have increased the risk of pollution spreading to areas far 

removed from the mining sites. Mining introduces contaminants, including PTEs into the 

environment through low grade ore, overburden and barren rocks heaps; tailings heaps and 

acid mine drainage, especially where sulfide-bearing mine tailings are involved (Anju and 

Banerjee, 2010). 

 

The type and abundance of contaminants from mines is directly linked to the geologic 

characteristics of the deposit being mined and type of host rock, local climatic conditions 

and the processing methods and chemicals used (Lottermoser, 2010; Plumlee and Morman, 

2011). For example, in  humid environments acid mine drainage (AMD) is generated by 

the oxidation of sulfide-bearing minerals in mine wastes exposed to weathering conditions, 

resulting in low quality effluents characterized by acidic pH and a high level of dissolved 

metals (Razo et al., 2003).   
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Figure 5 Pathways of contaminant elements into the environment from artisanal 

mining in the study area: a; abandoned mine pit, b; mineralized rock moved in sacks 

to processing sites, c; crushing and grinding mineralized rock in order to extract ore, 

and c; using gravity method along a stream channel to separate minerals in a slurry 

of powdered rock (Photos a, b and c are by the author; d, courtesy of Kabir Isa). 

 

 

 

 

 


