Silver and gold glyconanoparticles for colorimetric bioassays

Schofield, Claire L., Haines, Alan H., Field, Robert A. and Russell, David A. (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir, 22 (15). pp. 6707-6711. ISSN 0743-7463

Full text not available from this repository. (Request a copy)

Abstract

The color changes associated with the aggregation of metal nanoparticles has led to the development of colorimetric-based assays for a variety of target species. We have examined both silver- and gold-based nanoparticles in order to establish whether either metal exhibits optimal characteristics for bioassay development. These silver and gold nanoparticles have been stabilized with a self-assembled monolayer of a mannose derivative (2-mercaptoethyl α-d-mannopyranoside) with the aim of inducing aggregation by exploiting the well-known interaction between mannose and the lectin Concanavalin A (Con A). Both metal glyconanoparticles were determined to be ca. 16 nm in diameter (using TEM measurements). Aggregation was observed on addition of Con A to both silver and gold nanoparticles resulting in a shift in the surface plasmon absorption band and a consequent color change of the solution, which was monitored using UV−visible spectrophotometry. Mannose-stabilized silver nanoparticles at a concentration of 3 nM provide an assay for Con A with the largest linear range (between 0.08 and 0.26 μM). Additionally, the kinetic rate of aggregation of the silver-nanoparticle-based bioassay was significantly greater than that of the gold-nanoparticle system. However, in terms of sensitivity, the mannose-stabilized gold-nanoparticle-based assay was optimum with a limit of detection of 0.04 μM Con A, as compared with a value of 0.1 μM obtained for the mannose-stabilized silver nanoparticles. Additionally, a lactose derivative (11-mercapto-3,6,9-trioxaundecyl β-D-lactoside) was used to stabilize gold nanoparticles to induce aggregation upon addition of the galactose specific lectin Ricinus communis agglutinin (RCA120). To examine the specificity of the bioassay, lactose-stabilized gold nanoparticles were mixed with a solution of mannose-stabilized silver nanoparticles to give an aggregation assay capable of detecting two different lectins. When either Con A or RCA120 was added to the mixed glyconanoparticles, selective recognition of the respective natural ligand was shown by aggregation of a single metal nanoparticle. Centrifugation and removal of the aggregated species enabled further bioassay measurements using the second glyconanoparticle system.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Physical and Analytical Chemistry (former - to 2017)
Depositing User: Users 2731 not found.
Date Deposited: 28 Jan 2013 21:00
Last Modified: 03 Jun 2024 10:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/41015
DOI: 10.1021/la060288r

Actions (login required)

View Item View Item