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Abstract Association rule mining can provide genuine insight into the data being
analysed; however, rule sets can be extremely large, and therefore difficult and time-
consuming for the user to interpret. We propose reducing the size of Apriori rule
sets by removing overlapping rules, and compare this approach with two standard
methods for reducing rule set size: increasing the minimum confidence parameter,
and increasing the minimum antecedent support parameter. We evaluate the rule
sets in terms of confidence and coverage, as well as two rule interestingness measures
that favour rules with antecedent conditions that are poor individual predictors of the
target class, as we assume that these represent potentially interesting rules. We also
examine the distribution of the rules graphically, to assess whether particular classes
of rules are eliminated. We show that removing overlapping rules substantially
reduces rule set size in most cases, and alters the character of a rule set less than
if the standard parameters are used to constrain the rule set to the same size. Based
on our results, we aim to extend the Apriori algorithm to incorporate the suppression
of overlapping rules.

Keywords Apriori · Data mining · Interestingness · Partial classification · Rules

1 Introduction

Association rule mining algorithms generate rule sets from datasets. A rule set may
contain hundreds, thousands, or even tens of thousands of rules. In general, many of
the discovered rules will be trivial or well-known (for example, associating older age
with poorer health for a medical data-mining project), and there may be significant
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overlap between rules. Hence, a domain expert must be employed to examine the
rule set and identify the interesting rules. This can greatly increase the expense of
the data-mining process. One of the advantages of association rule mining is that the
models are comprehensible to non-expert users. However, the size of the rule set can
decrease the comprehensibility of the model. It is important, therefore, to minimise
the size of association rule sets.

The standard approach to reducing association rule set size (used in, for example,
Apriori (Agrawal and Srikant 1994)) involves eliminating rules with parameter
values (such as support and confidence) that are below certain thresholds. This form
of rule reduction has two major drawbacks. Firstly, deleting rules purely because,
for example, they do not cover enough instances can mean that interesting rules
describing niches in the space of possible cases are removed. Rules that cover few
cases but with high accuracy are known as exception rules (Liu et al. 1999; Hussain
et al. 2000), and are potentially of great interest, as they are more difficult to find
by manual analysis than strong rules (highly accurate rules covering many cases) or
general rules (less accurate rules covering many cases). The second disadvantage is
that the structure of the rule set is highly dependent on the parameter thresholds,
and the user has no a priori guidance on which values to choose. Recent research
has focused on finding other methods to reduce rule set size, either by adjusting the
rule induction algorithm (Shaharanee and Hadzic 2011; Xu et al. 2011), incorporating
new interestingness measures (Sarma and Mahanta 2012), or by pruning the rule set
(Liu et al. 2011).

We propose an algorithm for reducing the size of rule sets that is based on deleting
rules that overlap with other rules. The basic intuition behind this approach is that if
two rules are very similar in the cases they cover, then it is safe to delete one of them
(Reynolds and de la Iglesia 2006) discuss the case in which two semantically different
rules cover the same set of records; whether such rules are interesting is beyond the
scope of this paper). In contrast, if a rule uniquely covers a set of cases, then it is
worth retaining even if it has lower support and confidence than other rules in the
rule set.

We assess the overlap between rules using a measure based on suppression
(Gebhardt 1991). We construct the reduced rule set through a specifically-tailored
comparative enumeration of the rules in the original set. We evaluate our Brute-
Suppression algorithm on five data sets, and show that the rule sets reduced by
BruteSupression maintain the important characteristics of the original rules more
effectively than the sets reduced by parameter setting.

We make three main contributions:

1. We define the BruteSuppression algorithm for reducing rule set size by removing
overlapping rules.

2. We propose two novel interestingness measures, swing and swing surprisingness,
that incorporate information about the attributes that make up the rule.

3. We present experimental results showing that BruteSuppression causes less
disruption to the rule set structure than threshold setting.

The structure of the paper is as follows: Section 2 contains background and
related work. In Section 3 we describe the BruteSuppression algorithm, and in
Section 4, we document the results of our experiments. We conclude (Section 5) that
removing overlapping rules produces smaller, more comprehensible rule sets without
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Table 1 An example dataset Type Colour Age Claim

Estate Red 5 No
Saloon Blue 8 No
Sports Green 1 Yes
Compact Blue 5 Yes

structurally altering the original rule set. We aim in future work (Section 5.1) to
embed BruteSuppression within the Apriori algorithm. The datasets and additional
results for our experiments can be found on the companion website to this paper
(Paper Authors 2012).

2 Background

2.1 Association rules

Classif ication is a low-level data-mining task aimed at labelling each record in a
dataset as belonging to one of a number of pre-defined classes. The main goal
of partial classif ication is to discover rules that reveal characteristics of some pre-
defined class(es); such rules need not cover all classes or all records in the dataset
(Ali et al. 1997; de la Iglesia et al. 2006). Association rules can be used for partial
classification. Association rules take the form:

Antecedent ⇒ Consequent

and indicate the degree of co-occurrence between the antecedent conditions and the
consequent. In the case of partial classification, the consequent is the class label.
Association rules used in this way can provide insight into the characteristics that
co-occur within a given class.

We begin with a number of definitions. A dataset, D = {x1, ..., xn}, can be viewed
as a set of n instances, where each instance xi =< A1, ..., Am > is an ordered set
of m values. Each Ai represents the value of the ith attribute for that instance.
Each attribute has a range of acceptable values, which may be categorical (e.g.
{RED, BLU E, GREEN}), or continuous.1 (e.g. the integers 1–100) Table 1 shows
a dataset consisting of four instances and four attributes.

An attribute test (AT; see, e.g., Richards and Rayward-Smith (2005)) is rep-
resented as an ordered triple, < ATT, OP, V AL >, where ATT is one of the
attributes of the records in the data set, OP is one member of the set {<,≤, >,≥,=},2
and VAL is a permissible value for the attribute. The notation |AT| is used to
indicate the number of records in the dataset that satisfy that AT. For any AT, the
support for that AT (Sup(AT)) is calculated as follows:

Sup(AT) = |AT|

1The implementation of Apriori used for our experiments is restricted to categorical attributes.
2Where ATT is categorical, ‘=’ is the only applicable OP.
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For example, for the dataset shown in Table 1, two records satisfy the AT {Colour =
Blue}, so Sup({Colour = Blue}) = 2. The support for a conjunction of ATs is the
number of records that satisfy all of the conjuncts:

Sup(AT1 ∧ AT2) = |AT1 ∧ AT2|
For the dataset in Table 1, a single record satisfies the conjunction of ATs {Colour =
Blue} ∧ {Type = Saloon}.

Association rules take the form Antecedent ⇒ Consequent (A ⇒ C), where both
the antecedent and consequent of the rule are some conjunction (or disjunction) of
ATs. An association rule for the dataset shown in Table 1 might be:

{Type = Sports} ⇒ {Claim = Yes}
The association rules studied here have a fixed consequent consisting of a single
attribute test with a pre-defined value; hence, they may be used for partial clas-
sification.

For any association rule R = A ⇒ C (where A and C are conjunctions of ATs
representing the antecedent and consequent of the rule respectively), the support for
the rule (Sup(R)) is calculated as follows:

Sup(R) = |A ∧ C|
which is the number of records in the dataset that satisfy both the antecedent and the
consequent of the rule. The confidence of R (denoted Conf (R)) is:

Conf (R) = Sup(A ⇒ C)

Sup(A)

The confidence of a rule is the support for the rule divided by the support for the
antecedent.

Consider the dataset shown in Table 1. Take R1 to be the rule {Colour = Blue} ⇒
{Claim = Yes}. Sup(R1) = 1, as only one record satisfies both the antecedent and the
consequent of the rule. Conf (R1) = 0.5, as two records satisfy the antecedent of R1

({Colour = Blue}), and Sup(R1) = 1, so Conf (R1) = 1
2 = 0.5.

Association rules also have a coverage value (see, e.g., Major and Mangano
(1995)). The coverage of R (Cov(R)) is calculated as:

Cov(R) = Sup(R)

Sup(C)

The coverage of a rule is the support for the rule divided by the support for the
consequent, and represents the proportion of records satisfying the consequent that
are correctly covered by the rule. Our example rule, R1, has coverage 0.5, as two
records satisfy the consequent ({Claim = Yes}); Cov(R1) = 1

2 = 0.5.

2.2 Apriori

We use the PASW-modeller 14 implementation of Apriori (Agrawal and Srikant
1994) to generate rule sets for our experiments (see Algorithm 1). The Apriori
algorithm operates on itemsets. An itemset is a combination of items, where each
item is an AT. Itemsets are arbitrarily ordered (this ordering is used in the generate-
Candidates procedure). We denote the kth AT as Ik. This notation is used because
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Apriori was originally formulated to solve the market basket problem (see Agrawal
et al. (1993)), where the antecedent of a rule is a set of boolean values indicating
the presence of items in a retail transaction. The algorithm first determines which
itemsets are large (above the minimum support constraint) and their support (it is
common to use a proportion or percentage for the minimum support parameter;
in Algorithm 1, minsup is assumed to be a count, so proportions, for example,
need to be multiplied by the number of records). To determine the large itemsets,
Apriori establishes which pairs of items have support above the minimum; these
items are retained for the next pass, which finds the sets of three items that have
support above the minimum, and so on, until no itemsets have sufficient support
(or the maximum number of items has been reached). The maximum support of
any itemset containing n items {I1, I2, ..., In} is Min(Sup(I1), Sup(I2), ..., Sup(In)), so
this approach is computationally more efficient than assessing every possible itemset.
Itemsets are pruned if they have any subset that has not appeared in a previous pass,
further reducing the final set of large itemsets, denoted LTot.

The generateCandidates procedure produces candidate itemsets (Ck) of k items
from the set Lk−1 (described below as Procedure 1). In the join stage, any k − 1
itemsets that differ only in their k − 1th item are combined to form a k itemset
including the k − 1th item of both itemsets. In the prune stage, any itemset generated
in the join stage that includes a k − 1 itemset not included in the set Lk−1 is removed
from the set Ck. The set is returned, the support is calculated, and the set of large k-
itemsets, Lk is formed from those candidate itemsets exceeding the minimum support
(Agrawal and Srikant 1994).

Once the set LTot is established, rules are generated by the procedure gener-
ateRules (Procedure 2). For each large itemset (lk), every subset a produces a
rule a ⇒ l ∼ {a},3 which is added to the rule set (RGR) if the confidence of the
rule exceeds the minconf parameter. The algorithm shown here will generate all

3We use the notation A ∼ B to indicate the set {x : x ∈ A ∧ x /∈ B}.
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association rules above the minimum support and confidence thresholds. To generate
association rules with a fixed, single AT consequent, we generate only itemsets that
contain the consequent, and replace the generateRules procedure with an assessment
of the confidence of the rule R = I ∼ {c} ⇒ c, where I is the itemset and c is the item
representing the fixed consequent.

The minimum support and minimum confidence parameters are used to reduce
the size of the rule set. Rules are eliminated based on counts; this is in contrast to the
instance-based BruteSuppression method we advocate. We assess the changes that
occur when rule sets are constrained using these parameters, and compare them with
the changes caused by our approach.

2.3 Rule quality

We assess rule set quality in terms of the quality of the individual rules in the set.
The term typically used in the literature for the quality of a rule is interestingness,
and we shall adopt this convention. Many measures of rule interestingness have
been proposed. These include support, confidence, and coverage (see Section 2.1),
novelty (Lavrač et al. 1999), relative risk (Ali et al. 1997), chi-square (Goodman
and Kruskal 1954; Bayardo Jr. and Agrawal 1999), gain (Fukuda et al. 1996), and
k-measure (Ohsaki et al. 2004). The majority of interestingness measures are based
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on counts, such that different rules that happen to have the same counts have the
same value. Over 100 of these measures are documented; however, in Bayardo Jr.
and Agrawal (1999), the authors demonstrate that many different measures impose
the same partial ordering on a rule set. In Hills et al. (2012), the authors show that,
for the class of rules that interest us here, a number of popular rule interestingness
measures are monotonic with respect to confidence. Hence, for our purposes, there
is no benefit in using a large variety of count-based interestingness measures, as
we are concerned with their application in terms of rule sets. Of the count-based
measures proposed in the literature, we use only confidence and coverage to assess
the interestingness of a rule.

3 The BruteSuppression algorithm

In this section, we outline two new interestingness measures, swing and swing sur-
prisingness, and describe our algorithm for reducing rule set size, BruteSuppression.

3.1 Swing and swing surprisingness

In contrast to count-based interestingness measures, there is another class of inter-
estingness measure that takes into account the ATs that form the rule. The particular
intuition we wish to capture is that good rules are rules that improve on the individual
predictive power of the ATs in their antecedent. A rule is more surprising (and
therefore interesting) if it is composed of ATs that are poor individual predictors
of the target class. To this end, we propose two measures: swing (an adaptation
of relative surprisingness (Hussain et al. 2000) and conf idence gain (Tamir and
Singer 2006)) and swing surprisingness (an adaptation of attribute surprisingness
(Freitas 1999)). These measures are particularly well-suited for data mining, as
they reveal cases where combinations of poor predictors have yielded a good rule.
This phenomenon can be of interest to domain experts, as it is difficult to identify
manually, especially with large datasets and rules consisting of many attributes.

In the following definitions, for any rule R, let ATi ⇒ C be the rule where the
antecedent is the ith AT of R, and the consequent (C) is the consequent of R.

We define swing as follows:

Swing(R) =
n∑

i=1

Conf (R) × n
Conf (ATi ⇒ C)

where rule R has n ATs. Swing focuses on the difference in confidence between the
ATs in the antecedent taken singly and the rule taken as a whole.

We define swing surprisingness, SS, as follows:

SS(R) =
n∑

i=1

n
Conf (ATi ⇒ C)

where rule R has n ATs. Swing surprisingness is inversely proportional to the mean
confidence of the ATs that make up the antecedent of the rule. The measure assigns
rules a higher value if they have less predictive ATs, irrespective of the confidence
of the rule.
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Swing and swing surprisingness are closely related measures; as can be seen,
Swing(R) = SS(R) × Conf (R). Hence, a rule of moderate confidence will have
lower swing than a more confident rule composed of equivalently good predictors.
This is not the case with swing surprisingness.

3.2 Redundancy of rules

Our aim is to test whether removing redundant rules changes the character of the
rule set. Hence, we require a measure to assess the redundancy of a rule. Trivially, if
A ⇒ C and A ∧ B ⇒ C have the same confidence, the second rule is redundant with
relation to confidence, as the extra AT adds no predictive power to the rule. Equally
(see Balcázar 2009), rule A ∧ B ⇒ C is redundant with respect to rule A ⇒ B ∧ C
and also rule A ∧ B ⇒ C ∧ D (assuming equivalent levels of confidence). Apriori
allows the user to set minimum support and minimum confidence thresholds; rules
that fall below these thresholds do not appear in the rule set. This form of rule set
reduction does not take into account any information about the records that the rules
cover, only the support and confidence counts for each rule. Hence, rules covering a
unique set of records may be eliminated, while rules that cover very similar sets of
records may be retained.

Here, we take redundant rules to be those rules that overlap to a large degree,
in terms of the records they cover, with rules of greater confidence. That is, if two
rules cover the same records (to some specified degree), then the rule with lower
confidence is redundant. This is an instance-based form of redundancy, in contrast
to the count-based method used to eliminate rules in Apriori. There are a number
of measures proposed in the literature to calculate this form of redundancy; see, for
example, Gebhardt (1991); Cohen et al. (2001); Reynolds and de la Iglesia (2006).
An intuitive measure of the overlap of two rules (R and Q) in terms of the records
they cover (DR and DQ) is:

O(R, Q) = |DR ∩ DQ|
|DR ∪ DQ|

This represents the size of the intersection of the two sets of records divided by the
size of the union of the two sets. We select suppression (Gebhardt 1991) as the means
to identify redundant rules, because it allows us to incorporate this measure of rule
redundancy. Gebhardt (1991) defines a metric for assessing the similarity of rules; we
use this metric in our algorithm to delete overlapping rules.

The suppression function calculates if one rule is redundant relative to another
rule. Rule R suppresses rule Q if:

V(Q) < (1 + ε) × [S(R, Q)] × V(R)

The function requires some measure of rule interestingness (denoted V), a parameter
for determining the intensity of the suppression (denoted as ε), and some affinity
function (denoted S(R, Q)) to measure the similarity of the rules. We use 0.1 for
ε (this is the most intense suppression recommended in Gebhardt (1991)), and
O(R, Q) as our affinity function, as we wish to measure similarity in terms of
overlapping coverage of records. We use confidence for V, as it is the standard
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measure of the quality of a rule. Our suppression function is as follows. Rule R
suppresses rule Q if:

Conf (Q) < 1.1 × |DR ∩ DQ|
|DR ∪ DQ| × Conf (R)

where |DR ∩ DQ| is the number of records covered by both rule R and rule Q, and
|DR ∪ DQ| is the number of records covered by either rule R or rule Q.

The algorithm we use to apply the suppression function and indicate redundant
rules is given in the next section. Although we test the algorithm on rule sets
generated by Apriori, it can be adapted to other association rule mining algorithms
such as Dense Miner (Bayardo et al. 2000) and All Rules Algorithm (Richards and
Rayward-Smith 2001).

3.3 BruteSuppression

The BruteSuppression algorithm is shown below as Algorithm 2. The algorithm
iterates through a rule set, testing pairs of rules with the suppression function and
removing rules deemed to be redundant. Due to the nature of the suppression
function, a given rule need only be checked against unsuppressed rules of higher
confidence. Hence, the sooner a given rule is suppressed, the fewer total comparisons
are required. It is important for efficiency to suppress redundant rules as early as
possible. In the worst case, where no rules are suppressed, a rule set of n rules
requires n(n−1)

2 comparisons (this is lower than the computational complexity of the
Apriori algorithm itself). However, since rules are not tested against suppressed
rules, in many cases far fewer comparisons are required than in the worst case.
In practice, we may achieve a high level of suppression (e.g. on the Adult dataset
50–80 % of the rules are suppressed, see Section 4.3); we have implemented the
algorithm to maximise the saving from suppressed rules. This is achieved as follows.
The BruteSuppression algorithm iterates through a rule set ordered by confidence,
beginning at rule r2, and comparing each ri against rule ri−1, then ri−2, and so on, until
ri is suppressed or has been compared to r1. At this point the algorithm moves to the
rule after the current rule. If ri is suppressed, it will be removed from the rule set; the
indexing updates accordingly.

Our implementation checks whether ri is suppressed, rather than what ri sup-
presses, on the following grounds. Empirically, we have observed that rules in
Apriori rule sets are most often suppressed by the rules immediately preceding
them in the confidence ordering, as overlapping rules tend to have very similar
confidence values. It is more common for ri to be suppressed by, say, ri−3, than for
it to be suppressed by ri−200. If the overlapping rules in a rule set are distributed
randomly, there is no benefit to any specific ordering. However, for the rule sets we
have observed, there is a clear reduction in the number of comparisons if the rules
immediately preceding a rule in the confidence ordering are the first rules to which
that rule is compared.

Consider the following illustrative example. Assume we have a rule set with 50 %
suppression, where rule 1 suppresses rule 2, rule 3 suppresses rule 4, etc. If there
are ten rules in the rule set, our approach requires 15 comparisons; testing the
rules in descending order of confidence against ri requires 25 comparisons (with
no suppression, 45 comparisons are required). This reduction in the number of
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comparisons scales to larger rule sets where the overlapping rules cluster together,
resulting in a substantial saving. Clearly, the saving occurs only if rule sets exhibit the
clustering of overlapping rules that we have observed in our experiments. We have
reason to believe that this is the case, because the confidence values of overlapping
rules tend to be very similar, as may be expected, meaning that such rules are close
to one another in the ordered rule set.

We use confidence in the BruteSuppression algorithm, but any rule interesting-
ness measure can be substituted, depending on the goals of the data-mining project.
We chose to use confidence, rather than swing or swing surprisingness, because it is
the most commonly-used and easily-understood interestingness measure. We use the
two new measures to assess the performance of the algorithm, and recognise that they
may have a role to play as learning criteria in future iterations of BruteSuppression
(see Section 5). We note, however, that our results (Section 4) show that using
confidence as the interestingness measure does not have a negative effect on the
swing or swing surprisingness of rule sets. Swing surprisingness in particular is
sensitive to pruning by minimum confidence, so it is positive that confidence-based
suppression does not have the same effect.

Our method prunes Apriori rule sets; as such, if the state of the dataset on
which the rules are based changes, a new rule set must be generated and then, if
necessary, pruned with our algorithm to reduce the number of rules and increase
comprehensibility. The rule sets do not update dynamically as the data changes;
we recognise that this is an interesting problem in its own right, but it is outside of
the scope of our current approach, which is proposed as complementary to Apriori,
rather than as part of an incremental learning algorithm.

4 Experimental results

4.1 Methodology

We compare reduced rule sets with the original rule sets, reducing them to ap-
proximately the same size using the minimum confidence parameter, the minimum
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Table 2 Summary of datasets

Name Atts/Cont. N(U)Train/Test Cons. N(C) Base rate

Adult 14/6 30,162/12,435 >50K 7,051/3,846 0.249/0.236
CreditApproval 16/6 411/255 + 172/127 0.419/0.498
HouseVotes 17/0 279/156 republican 110/58 0.394/0.372
Mushroom 23/0 3,700/1,944 e 2,310/1,178 0.624/0.606
Tic-Tac-Toe 10/0 600/358 negative 204/128 0.34/0.358

The column Atts./Cont gives the total number of attributes and the number of continuous attributes
in a dataset, N(U) indicates the total number of records in the training and test sets, Cons. the target
class, N(C) the number of records satisfying the target class, and Base rate the proportional incidence
of records satisfying the target class in the training and test sets.

antecedent support parameter, or the BruteSuppression algorithm. The effects of the
reduction mechanisms are assessed in two ways. Firstly, we estimate the impact of the
reduction method on the distribution of the rule set in comparison to the complete
rule set. Secondly, we assess the effect on potentially interesting rules caused by the
changes in distribution. We take it that a rule set reduction method should cause as
little loss of potentially interesting rules as possible, and that a markedly different
distribution of values caused by the elimination of whole classes of rules is indicative
of this loss.

The datasets we use for our experiments are shown in Table 2. All five data
sets are available from the UCI machine learning repository (http://archive.ics.uci.
edu/ml/datasets.html), and can also be found at Paper Authors (2012). The dataset
referred to as ‘HouseVotes’ is the Congressional Voting Records set. All other
datasets use the names from the UCI repository. For each dataset, we remove any
records with missing values4 and randomly partition the data into training (65 %)
and test (35 %) sets. All of the classification problems we study are binary problems.

The parameters used for the experiments are summarised in Table 3. For each
row in the table, we generate a number of rule sets from the appropriate dataset
using Apriori, with the maximum permitted number of ATs set to each value shown
in the column ATs. Setting the maximum number of ATs to three produces a
rule set containing more general rules, i.e. rules with fewer antecedent conditions.
Setting the maximum number of ATs to seven produces more specific rules, i.e. rules
with more antecedent conditions. For the datasets we use, rule set size increases
when the maximum number of ATs increases. Beyond seven, rule set size does not
increase substantially. We do not include the results for the intervening values of the
maximum ATs parameter (4–6) in this paper; they are consistent with the results we
present, and can be found at Paper Authors (2012). We select the parameter settings
for the increased min. confidence and increased min. antecedent support rule sets to
produce rule sets similar in size to the suppressed set. This way, a fair comparison
can be made between the effects of the BruteSuppression algorithm and the effects
of the same degree of reduction from the standard parameters. We do not include
parameters for the rule sets generated on the Tic-Tac-Toe dataset, as our algorithm

4Records with the value ‘?’ in the HouseVotes dataset are not removed, as they do not represent
missing data.
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Table 3 Parameters for experiments

Data set ATs Original settings Increased min. conf. Increased min. sup.

Adult 3 Sup. 2 %, Conf. 0.25 Sup. 2 %, Conf. 0.44 Sup. 5 %, Conf. 0.25
Adult 7 Sup. 2 %, Conf. 0.25 Sup. 2 %, Conf. 0.69 Sup. 8 %, Conf. 0.25
CreditApproval 3 Sup. 10 %, Conf. 0.42 Sup. 10 %, Conf. 0.75 Sup. 30 %, Conf. 0.42
CreditApproval 7 Sup. 10 %, Conf. 0.42 Sup. 10 %, Conf. 0.88 Sup. 30 %, Conf. 0.42
HouseVotes 3 Sup. 30 %, Conf. 0.40 Sup. 30 %, Conf. 0.90 Sup. 37 %, Conf. 0.40
HouseVotes 7 Sup. 30 %, Conf. 0.40 Sup. 30 %, Conf. 0.91 Sup. 37 %, Conf. 0.40
Mushroom 3 Sup. 50 %, Conf. 0.63 Sup. 50 %, Conf. 0.93 Sup. 87 %, Conf. 0.63
Mushroom 7 Sup. 50 %, Conf. 0.63 Sup. 50 %, Conf. 0.93 Sup. 87 %, Conf. 0.63
Tic-Tac-Toe 3 Sup. 5 %, Conf. 0.35 N/A N/A
Tic-Tac-Toe 7 Sup. 5 %, Conf. 0.35 N/A N/A

The parameters used in the generation of the rule sets are shown in the columns Original Settings,
Increased Min. Conf., and Increased Min. Sup.

is ineffective on these rule sets. We take it that the BruteSuppression algorithm does
not yield large reductions in rule set size for rule sets generated on the Tic-Tac-Toe
dataset because these rule sets do not contain very many overlapping rules. Using
another method to reduce Tic-Tac-Toe rule sets may change the character of the
rule set, as is the case with rule sets generated on other datasets.

The minimum confidence settings for the original rule sets are just above the base
rate of the consequent in the training set. We use the base incidence rate as the
minimum confidence on the assumption that rules with confidence lower than this
are uninteresting. The minimum support settings are chosen on a pragmatic basis to
prevent an explosion in the number of rules. We feel that this has not compromised
the results, however, as the settings correspond to those a user might select, giving us
a more realistic idea of the effectiveness of our algorithm. In addition, we have tested
the algorithm on a single unconstrained rule set with similar results to the constrained
rule sets. Ultimately, we intend for suppression to be used in conjunction with the
standard parameters, to allow those parameters to be set at lower levels than they
would be otherwise.

We generate rule sets with three ATs and seven ATs to collect data on rule
sets containing only short rules (the three AT sets), and rule sets that also contain
longer rules (the seven AT sets). All of the rule sets are assessed on previously
unencountered test sets.

We examine how suppression affects the distribution of rules on cover-
age/confidence, confidence/swing, and confidence/swing surprisingness graphs. In
particular, we are interested in whether certain classes of rules are eliminated by
suppression. For the coverage/confidence graph, we divided rules into four classes:
strong (high coverage and high confidence), general (high coverage, low confidence),
exception (low coverage, high confidence, see Liu et al. (1999); Hussain et al. (2000)),
and weak (low coverage, low confidence). We do not discuss the effect of suppression
on weak rules, as these are unlikely to be of interest. We are also interested in
the distribution of rules on confidence/swing and confidence/swing surprisingness
graphs, as rules of high swing/swing surprisingness relative to their confidence are
potentially of interest.

The second area we investigate is the effect of the reduction methods on the
distribution of rules in a rule set using the chi-squared statistic. If two sets of
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Table 4 Ranking of rule reduction methods by resemblance to original rule set

Rule set Avg.rank Rank 1 Rank 2 Rank 3

Suppressed 1.22 25 7 0
Increased minimum confidence 2.38 3 14 15
Increased minimum antecedent support 2.41 4 11 17

The columns indicate the average rank of the reduced rule sets, and the number of instances in which
the reduced rule set was ranked first, second, or third.

values are drawn from the same distribution, the chi-squared statistic obtained by
comparing them is likely to be small. Large chi-squared values are indicative of the
rule sets having different distributions of the qualities in question. We assess the
significance of changes at a significance level of 0.01, as well as ranking the different
methods by their chi-squared values (see Table 4) for rule confidence, coverage,
swing, and swing surprisingness. We discuss the results of our experiments on the
Adult dataset in detail (Section 4.3) and summarise the results for the other datasets
(Section 4.2, 4.4, see also Paper Authors 2012).

Fig. 1 Confidence/swing rule distribution, CreditApproval 3 ATs
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4.2 Summary of results

A summary of the results of our chi-squared distribution tests is shown in Table 4.
The hypothesis we test is that, for each reduced rule set, there is no difference in
the distribution of confidence, coverage, swing, or swing surprisingness between that
rule set and the original, larger rule set. For each reduced rule set, we generate a chi-
squared statistic for each of the four properties by comparing the reduced rule set to
the original set. The lower the chi-squared statistic (for a given original rule set), the
more closely the distribution of rules in the reduced set matches that of the rules in
the original set for that property. For each original set, we ranked the three reduced
rule sets by their chi-squared statistic, assigning rank one to the reduced rule set with
the lowest chi-squared statistic, and hence the greatest resemblance to the original
rule set. Table 4 shows the number of instances in which each type of reduced rule
set is ranked first, second, and third, and the average rank.

As can be seen in Table 4, the suppressed rule sets had consistently lower chi-
squared values when compared to the original rule set than rule sets reduced by
the other two methods. For 25 of the 32 original rule sets, the suppressed set bears

Fig. 2 Coverage/confidence rule distribution, Adult 3 ATs
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the closest resemblance to the original set, and in no cases are both of the other
methods closer to the original rule set than the suppressed set is. We also examine the
distribution of rules visually, an example of which is shown in Fig. 1. The suppressed
rule set is the most similar to the original rule set, and it is clear that large classes of
potentially interesting rules are eliminated by the other two reduction methods.

We turn now to a more detailed examination of our experimental results.

4.3 Results: Adult dataset

4.3.1 Coverage/conf idence distribution

For rule sets generated on the Adult dataset, the distribution of rules on a cover-
age/confidence graph is consistent between the original rule set and the suppressed
rule set (see Figs. 2 and 3). This is the case both for the rule set generated on Adult
with a maximum of three ATs (Fig. 2), and where the maximum number of ATs
is seven (Fig. 3). Increasing the minimum confidence parameter to constrain the
size of the rule set removes all rules with confidence below 0.4 for the 3 AT Adult
rule sets. This may be acceptable depending on the requirements of the mining

Fig. 3 Coverage/confidence rule distribution, Adult 7 ATs
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project. Such rules are not, however, intrinsically uninteresting, and it may be the
case that interesting rules (those with confidence between the base rate and 0.4) are
removed. This is not the case with the suppressed rule set, as the remaining rules are
representative of the original rule set.

The obvious weakness of the 3 AT rule set generated with higher minimum
antecedent support is that a large number of exception rules (rules with high
confidence but low support) have been eliminated from the set, and these rules can
be highly interesting, as they are strong predictors of the target class that are difficult
to find by manual analysis.

Other than the differences mentioned above, all three rule sets generated with 3
ATs on the Adult data sets have mostly maintained the original distribution; this is
not the case with the rule sets generated on Adult with 7 ATs.

The suppressed rule set generated on Adult with 7ATs has maintained the
shape of the original distribution. The rule set constrained with increased minimum
confidence has lost every general rule and a large number of exception rules, chang-
ing the distribution substantially. The rule set constrained with increased minimum
antecedent support has lost all of the higher confidence rules (both exception rules

Fig. 4 Confidence/swing rule distribution, Adult 3 ATs
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and strong rules). The coverage/confidence distributions suggest that increasing the
minimum confidence or antecedent support parameters to constrain rule set size
negatively affects the rule set, relative to a suppressed set of similar size.

4.3.2 Conf idence/swing distribution

The suppressed rule sets generated on Adult with 3 ATs and 7 ATs both maintain
the shape of the confidence/swing distribution to a high degree (see Figs. 4 and 5).
This suggests that swing is unlikely to be negatively affected by suppression. For the
3 AT rule sets (Fig. 4), the set constrained by increased minimum confidence has
all rules of confidence lower than 0.4 removed. This has removed a number of rules
with high swing relative to their confidence. The rule set constrained with increased
minimum antecedent support has a number of missing rules with high swing relative
to their confidence.

For the rule sets generated with 7 ATs (Fig. 5), neither of the sets constrained
with the Apriori parameters have maintained the shape of the confidence/swing
distribution. Many rules with high swing relative to their confidence have been

Fig. 5 Confidence/swing rule distribution, Adult 7 ATs
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eliminated, suggesting that the rule sets are compromised in terms of swing relative
to the original set and the suppressed set.

4.3.3 Conf idence/swing surprisingness

The suppressed rule sets generated on Adult maintain the shape of the
confidence/swing surprisingness distribution of the original rule set (Figs. 6 and 7).
The rule set constrained with increased minimum confidence (Fig. 6) has many
rules of high swing surprisingness missing, relative to the original set. The rule
set constrained with increased minimum antecedent support (Fig. 6) resembles the
original set more closely, with only a few rules of high swing surprisingness missing
from the original rule set.

The differences between the rule sets are more marked for the sets generated on
Adult using 7 ATs (Fig. 7). The shape of both the increased minimum confidence
and the increased minimum antecedent support rule sets has altered considerably
relative to the original rule set. This shows that using these measures to constrain
rule set size may adversely affect rule sets.

Fig. 6 Confidence/swing surprisingness rule distribution, Adult 3 ATs
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Fig. 7 Confidence/swing surprisingness rule distribution, Adult 7 ATs

4.3.4 Test of distribution

Table 5 shows how the distribution of values for the rule sets have been affected by
the three methods of reducing rule set size.

The null hypothesis is that the values in the reduced set are drawn from the same
distribution as those in the original set, and the alternative hypothesis is that they
are not. We use a chi-squared test, and reject the null hypothesis at a significance
level of 0.01. As can be seen from Table 5, reducing rule set size by increasing the
minimum confidence causes significant changes in the distribution of confidence,
swing, and swing surprisingness of rule sets generated on Adult, as well as significant
changes in the distribution of coverage values of rule sets generated with a maximum
of 7 ATs. Only the distribution of coverage values for the 3 AT rule set was
unchanged from the original set. Reducing rule set size by increasing the minimum
antecedent support causes significant changes in the distribution of coverage values
for 3 AT and 7 AT rule sets, and in the distribution of confidence, swing, and
swing surprisingness values for the 7 AT rule sets. This occurs because the 7 AT
rule set contains more rules, so must be constrained with higher parameter settings
than the 3 AT sets. The suppressed sets have significantly different distributions
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Table 5 Tests of distribution for reduced Adult rule sets compared to original rule set

Rule set Max. ATs Measure χ2 D.F. Significant?

Adult suppressed 3 Conf. 5.768 11 No
Adult mod. conf. 3 Conf. 103.233 11 Yes
Adult mod. sup. 3 Conf. 17.797 11 No
Adult suppressed 7 Conf. 43.643 11 Yes
Adult mod. conf. 7 Conf. 360.815 11 Yes
Adult mod. sup. 7 Conf. 105.867 11 Yes
Adult suppressed 3 Cov. 6.534 9 No
Adult mod. conf. 3 Cov. 10.857 9 No
Adult mod. sup. 3 Cov. 73.349 9 Yes
Adult suppressed 7 Cov. 9.133 9 No
Adult mod. conf. 7 Cov. 66.599 9 Yes
Adult mod. sup. 7 Cov. 234.239 9 Yes
Adult suppressed 3 Swing 11.394 11 No
Adult mod. conf. 3 Swing 58.2 11 Yes
Adult mod. sup. 3 Swing. 4 11 No
Adult suppressed 7 Swing 5.098 11 No
Adult mod. conf. 7 Swing 309.183 11 Yes
Adult mod. sup. 7 Swing 63.489 11 Yes
Adult suppressed 3 SS. 1.592 6 No
Adult mod. conf 3 SS 60.711 6 Yes
Adult mod. sup. 3 SS. 4.369 6 No
Adult suppressed 7 SS. 24.653 6 Yes
Adult mod. conf. 7 SS. 150.697 6 Yes
Adult mod. sup. 7 SS. 18.431 6 Yes

The column χ2 contains the chi-squared statistic for each rule set, the column D.F. shows the degrees
of freedom, and the column Signif icant? indicates whether any difference in distribution is significant
at 0.01.

only for confidence and swing surprisingness of the 7 AT rule sets. For both of
these measures, all three reduction methods make a significant difference to the
distribution of values. Our results show that, of the three rule set reduction methods
tested, the BruteSuppression algorithm has the least effect on the rule set, for rule
sets generated on the Adult dataset.

4.3.5 Size of rule sets

The BruteSuppression algorithm with ε = 0.1 reduces rule set size by approximately
49 % for rule sets generated on Adult with 3 ATs, and approximately 81 % for rule
sets generated on Adult with 7 ATs. Similar reductions in size were also achieved
using the minimum confidence and minimum antecedent support parameters (see
Table 6).

4.4 Other datasets

For brevity, we exclude the distribution graphs for the remaining datasets (CreditAp-
proval, HouseVotes, Mushroom, Tic-Tac-Toe). The graphs for three of the datasets
(CreditApproval, HouseVotes, and Mushroom) can be found in Paper Authors
(2012). For rule sets generated on the Tic-Tac-Toe dataset, suppression is ineffective
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Table 6 Size of Adult rule sets

Rule set Max. ATs Size before Size after Percentage
reduction

Adult Suppressed 3 343 176 48.7
Adult mod. conf. 3 343 174 49.3
Adult mod. sup. 3 343 164 52.2
Adult suppressed 7 880 169 80.8
Adult mod. conf. 7 880 175 80.1
Adult mod. sup. 7 880 157 82.2

at reducing rule set size; we conclude from this that suppression does not work on
every rule set, as some rule sets will not contain overlapping rules. Given that this is
the case, we conclude that, for our instance-based approach at least, the vast majority
of the rules are required to cover the Tic-Tac-Toe data. Hence, BruteSuppression
eliminates only small numbers of rules and does not compromise the coverage of the
rule set.

The distribution graphs show similar characteristics across the Adult, Credi-
tApproval, HouseVotes, and Mushroom datasets. The suppressed rule sets retain
the shape of the original rule set; to some extent, this is also the case for rule
sets generated with increased minimum antecedent support and 3 ATs. The main
difference is that the sets with increased minimum antecedent support are prone
to excluding exception rules, and certain rules with high swing/swing surprisingness
relative to their confidences. When generated with 7 ATs, the minimum antecedent
support constraint must be increased to compensate for the larger size of the rule set.
This results in rule sets with very different distributions to the original sets, and many
potentially interesting rules missing.

The rule sets generated with increased minimum confidence lose all rules with
lower confidence than some threshold. This means that many rules with confidence
above the base rate (i.e. rules that are potentially interesting to domain experts)
are lost. The distributions are changed dramatically for the 7 AT sets, as these sets
require a higher minimum confidence to prevent an explosion in rule set size. These
rule sets omit numerous potentially interesting rules.

The major difference between the suppressed sets and the original set appears
to be that suppression affects general rules (low confidence and high coverage) the
most, so some suppressed rule sets have fewer general rules. This is a weakness
of the BruteSuppression method, and could be countered by using coverage, for
example, as the rule interestingness measure for the suppression function (assuming
that general rules are the main goal of the project). Overall, suppressed rule sets offer
a smaller rule set that retains the character of the rules in the original set, in contrast
to rule sets generated using increased minimum confidence or antecedent support.

Table 7 lists counts of cases where the reduced set differed significantly in its
distribution of values (using a chi-squared test with a significance level of 0.01) from
the original set (the results from Adult are included for completeness). Overall,
as is evident, the suppressed rule sets display far fewer significant differences than
the reduced rule sets generated using the other two methods. This suggests that
suppression is the rule reduction method that least affects the distribution of values
in Apriori rule sets. Suppression performs most poorly on rule sets generated on the
HouseVotes dataset; in this case, the performance is similar to that of the other two
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Table 7 Counts of significant differences at 0.01 between reduced rule sets and the original rule set

Data set Suppressed Increased min. Increased min.
confidence antecedent support

Adult 2/8 7/8 5/8
CreditApproval 0/8 7/8 5/8
HouseVotes 5/8 4/8 6/8
Mushroom 1/8 8/8 7/8
Total 8/32 26/32 23/32

The total number of possible differences is 32, as there are two rule sets, four values (confidence,
coverage, swing, and swing surprisingness), and four datasets (2 × 4 × 4 = 32).

methods. For the other datasets, suppression has only three significant differences
out of a possible 24.

Our results show that, of the three methods for reducing rule set size, suppression
has the least effect on the distribution of values for rule sets generated on the Adult,
CreditApproval, and Mushroom datasets, and performs no worse than the other
methods on rule sets generated on the HouseVotes dataset. This is consistent with
the distribution patterns, which show that suppression causes the least change in the
character of the rule sets. Where the suppression algorithm is effective, it yields
rule sets that share the characteristics of the original rule set. This is not the case
for the other two methods used to reduce rule set size. Rule sets sizes are shown
in Table 8. Although our methodology is different to that in Liu et al. (2011), we
achieve a very similar degree of size reduction for association rule sets derived from
the Mushroom dataset, which is common to both papers; BruteSupression gives a
93.5 %–96.9 % reduction, compared to the method in Liu et al. (2011), which yields
a 96.3 % reduction.

Table 8 Size of rule sets

Rule set Max. ATs Size Size Percentage
before after reduction

CreditApproval suppressed 3 178 61 65.7 %
CreditApproval mod. conf. 3 178 62 65.2 %
CreditApproval mod. sup. 3 178 52 70.8 %
CreditApproval suppressed 7 388 61 84.3 %
CreditApproval mod. conf. 7 388 57 85.3 %
CreditApproval mod. sup. 7 388 58 85.1 %
HouseVotes suppressed 3 269 63 76.6 %
HouseVotes mod. conf. 3 269 58 78.4 %
HouseVotes mod. sup. 3 269 58 78.4 %
HouseVotes suppressed 7 428 61 85.7 %
HouseVotes mod. conf. 7 428 67 84.3 %
HouseVotes mod. sup. 7 428 58 86.4 %
Mushroom suppressed 3 184 12 93.5 %
Mushroom mod. conf. 3 184 8 95.7 %
Mushroom mod. sup. 3 184 14 92.4 %
Mushroom suppressed 7 519 12 97.7 %
Mushroom mod. conf. 7 519 16 96.9 %
Mushroom mod. sup. 7 519 16 96.9 %
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5 Conclusions

We tested the effect of removing overlapping rules from Apriori rule sets (suppres-
sion), and compared the rule sets to similarly-sized sets reduced using the minimum
confidence and minimum antecedent support parameters. We discovered that the
suppressed sets have the strongest resemblance to the original rule sets. Increasing
the minimum confidence parameter removed many potentially interesting rules
of lower confidence, while increasing the minimum antecedent support tended to
eliminate the exception rules, a potentially interesting class of rules.

Removing overlapping rules did not effectively decrease the size of the rule sets
generated on the Tic-Tac-Toe dataset. This suggests that it is not a suitable method
for reducing the size of every rule set. In contrast, increasing the minimum confidence
or minimum antecedent support reduces rule set size for any rule set (within certain
bounds), but also has a strong effect on the character of the rule set.

We demonstrated that removing overlapping rules can reduce rule set size without
altering the character of a rule set, or removing classes of potentially interesting rules.
BruteSuppression could be used in combination with suitable Apriori parameter
settings to ensure that rule sets are small enough to be comprehensible, without the
loss of potentially interesting rules that occurs if the Apriori parameter settings are
used alone to reduce rule set size.

5.1 Future work

The primary application of this work in the future will be to produce a modified
version of Apriori that incorporates suppression to avoid generating overlapping
rules. Using the current BruteSuppression algorithm involves post-processing the
rule set. By incorporating suppression into the association rule mining process,
smaller rule sets can be generated that are representative of the rule sets that would
otherwise be generated. By definition, suppression only eliminates rules with a high
degree of overlap with other rules, and we have shown empirically that the rule sets
are altered more by the standard Apriori parameters than they are by removing the
overlapping rules.

Having established the efficacy of BruteSuppression based on the well-known
confidence measure, we intend to test different interestingness measures in place
of confidence in the suppression function, particularly our new measures, swing and
swing surprisingness. It might be the case that better results can be obtained with
these functions, or that different qualities of the rule set can be emphasised by using
a function based on, for example, coverage, rather than confidence. Additionally, it
may be possible to implement a suppression ensemble, with different suppression
functions contributing to the algorithm.

A final area to examine is the effect of using values of ε greater than 0.1, to
investigate how this affects rule set size and composition.
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