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Abstract 

Septoria tritici blotch (STB), caused by the fungus Mycosphaerella graminicola, is 

the major foliar disease of wheat in many countries. Most resistance in wheat 

cultivars is partial resistance, which is polygenic, or oligogenic and non-specific to 

particular pathogen genotypes, and hence is durable. Selection for partial resistance 

to STB may be restricted if that trait has a significant cost, for example reduced 

yield, which is the most important target for many wheat breeders. The first aim of 

the research reported here was to investigate if partial resistance to STB in wheat 

reduces yield, and if so, which yield components are affected. The second aim was to 

identify quantitative trait loci which account for this correlation. The data were 

obtained from a F1-doubled-haploid population of Senat x Savannah (Eriksen et al. 

2003, TAG 107:515-527). Quantitative trait loci (QTL) controlling STB were located 

on four chromosomes. Here, genes increasing STB scores were closely linked in 

coupling to genes increasing yield components, including thousand grain weight and 

grains m
-2

, and to genes that increase the qualitative trait grain protein content. 

Hence, there is a yield penalty of resistance to STB but it should be possible for 

breeders to select high-yielding resistant varieties by selecting genes which improve 

resistance but do not depress yield. The last part of this work refers to the location of 

a susceptible gene in the double haploid population Hobbit sib x Hobbit sib 

(Bezostaya 1 5BS-7BS). A QTL controlling susceptibility to STB was detected on a 

segment of chromosome 5B in this population. This QTL for susceptibility was 

closely linked with a QTL for heading date. 
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1.1 Disease importance 

Mycosphaerella graminicola (anamorph Septoria tritici) is the ascomycete fungus 

that causes the disease Septoria tritici leaf blotch (STB) on bread and durum wheat, 

Triticum aestivum and T. Turgidum, respectively. Septoria tritici blotch may cause 

yield losses up to 50 % (King et al., 1983a) and more than 60% of the grain yield 

(Shipton, 1971; van Ginkel and Scharen, 1988a; Cornish, 1990) in highly susceptible 

cultivars. It has been the most damaging foliar disease of wheat in recent years in the 

U.K. (Bayles et al., 1985; Polley and Thomas, 1991; Cook et al., 1999; Hardwick, et 

al., 2001; Fraaije et al., 2005). Since the introduction of highly susceptible semi-

dwarf, early-maturing varieties in the early 1970‘s, there has been a sustained 

increase in STB (Shipton, 1971; Danon et al., 1982; Shaner et al., 1975; Eyal et al., 

1987; Austin et al., 1980; Angus, 2001; Hardwick et al., 2001). The success of these 

varieties is based on their good characteristics as highest yielding, resistant to 

lodging (Austin et al., 1980; Angus, 2001). Some of them are considered adequately 

hardy for coldest winters, or yield higher grain protein content and a good bread-

making quality (Angus, 2001). Besides, the introduction of these cultivars very 

conveniently coincided with the use of fungicides, plant growth regulators and high 

quantities of nitrogen fertilizers (Shipton, 1971; Austin et al., 1980; Angus, 2001).  

 Although the control of the disease depends mainly on the application of 

fungicides, this activity has the inconvenience of being of high financial costs (Polley 

and Thomas, 1991), besides the fact that these pesticides have to be applied two or 

three times during the growing season (Cook et al., 1991; Hardwick et al., 2001; 

Robert et al., 2004). More recently, resistance of M. graminicola to the azole 

fungicides, sterol demethylation inhibitors (DMIs) has been reported by Cools and 

Fraaije (2006), Fraaije et al. (2007), and McCartney et al. (2007). They found that 
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mutations in the target enzyme, sterol 14-demethylase (CYP51 gene) of M. 

graminicola, confer the resistance to these fungicides. In addition, resistance to 

strobilurin fungicides, quinone outside inhibitors (QoI), has also been identified 

(Fraaije et al., 2005; McCartney et al., 2007). Resistance to QoI fungicides is 

attributed to a mutation in the mitochondrial cytochrome b gene, target gene 

(G143A) (Fraaije et al., 2005; Fraaije et al., 2007). It has been shown, at least for 

QoI fungicides, that successive applications trigger the resistance of strains within 

populations through selection and asexual multiplication in a single season (Fraaije et 

al., 2005). 

 Resistance to STB is another major control measure, though resistance to 

Septoria tritici blotch has been broken down in the cultivar Gene of the USA, only 

five years after its commercial introduction, due to a fast evolution of local strains; it 

was allowed by favourable environmental conditions, wherein the frequency of 

virulence increased in the fungal population in the region where this cultivar was 

grown (Cowger et al., 2000).  

1.2 Disease symptoms 

Leaves inoculated with the disease remain green during the first eight to nine days 

after inoculation (Eyal et al., 1985; Kema et al., 1996a). The first symptoms appear 

as irregular rectangular chlorotic lesions that emerge 14 to 21 days after the 

inoculation, though this depends on the environmental conditions and cultivar (Eyal 

et al., 1985). Next, there appear necrotic lesions developing at the chlorotic sites of 

leaves of some cultivars. Necrosis is usually distinguished by its straw-, or straw-

reddish- to greyish black- colour, with few and abundant pycnidia produced usually 

15 days after the necrosis developed on the necrotic area (Kema et al., 1996a, 

1996b). Pycnidia can also be found in green tissues of susceptible plants (Kema et 
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al., 1996b), and different isolates cause different symptoms in the host (Eyal, 1999). 

Although the genotype of the cultivar predisposes the symptoms (Lovell et al., 

2004a), the amount of disease is also influenced by the morphological traits as plant 

height, canopy growth and architecture (Shaw and Royle, 1993; Lovell et al., 1997, 

2004a). STB symptoms development is also influenced by light (Keon et al., 2007). 

 1.3 The pathogen  

1.3.1 Taxonomy 

The taxonomic name of the fungi involved in STB of wheat, in its sexual state 

(teleomorph), is Mycosphaerella graminicola (Fückel) J. Schröt in Cohn, while in its 

asexual state (anamorph), it is Septoria tritici Roberge in Desmaz. Mycosphaerella 

graminicola is classified in the kingdom Fungi (produce mycelium); Phylum 

Ascomycota (ascomycetes, the sac fungi, produce sexual spores called ascospores); 

Class Ascomycete (group of fungi that produces an ascus containing ascospores); 

Subclass Loculoascomycetes (the ascocarp -pseudothecia- is perithecioid in shape 

with an opening at the top, the ascus is bitunucate); Order Dothideales (the asci are 

developed in a stroma within perithecial cavities which lack a definitive wall); 

Family Dothideaceae; Genus Mycosphaerella. The asexual state, Septoria tritici is 

classified in the Deuteromycetes (imperfect or asexual fungi); Order Sphaeropsidales 

(produces pycnidiospores, in semi-closed fruiting bodies called pycnidia). 

1.3.2  Reproduction and dispersal 

Pycnidiospores, the asexual spores, can be present as macropycnidiospores or 

micropycnidiospores. Macropycnidiospores are 35-98 μm long by 1-3 μm wide, with 

three to five septa. Micropycnidiospores are 10.5 μm long by 0.8-1 μm wide without 

septa (Eyal et al., 1987), though there is variability in spore size (King et al., 1983a). 
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The former probably are generated from primary lesions and the latter from 

secondary lesions as a result of crowding (Shaw and Royle, 1993). Ascospores 

consist of two cells of unequal size and they are 10-15 μm long by 2-3 μm wide 

(Eyal et al., 1987). The bipolar heterothallic mating system (Kema et al., 1996c) 

results in a wide genetic variability (McDonald and Martinez, 1990). 

 The sexual form of the disease has been identified in Australia, the United 

Kingdom, the United States of America, the Netherlands, South America and 

Australia (Eyal et al., 1987), France (Halama, 1996) and Denmark (Eriksen and 

Munk, 2003). M. graminicola can complete several sexual cycles during the growing 

season (Kema et al., 1996a; Hunter et al., 1998). However, it seems that the number 

of sexual cycles completed in a season depends on cultivar susceptibility, and 

pseudothecia are only produced at the end of the growing season (Zhang et al., 1998; 

Cowger et al., 2002; Eriksen and Munk, 2003), and are developed on dead leaf tissue 

(Halama, 1996; Hunter et al., 1998; Eriksen and Munk, 2003). After working for 

three years with cultivars that differ in resistance to M. graminicola, Cowger et al. 

(2002) found a positive correlation between the susceptibility of the host cultivar and 

the frequency of sexual reproduction, as well as between the intensity of epidemics 

and the frequency of sexual fruiting. 

 Primary infections in new crops are due to airborne ascospores (Shaw and 

Royle, 1989a; McDonald and Martinez, 1990; Shaw and Royle, 1993; Eyal, 1999; 

Eriksen and Munk, 2003), probably from the remains of the crop from the previous 

year (Shaw and Royle, 1993; Eriksen and Munk, 2003). Infection of lower leaves 

and stem can occur as soon as they emerge after sowing (Shaw and Royle, 1989a, 

1993). Subsequent conidia dissemination occurs due to rain splash from lower to 

higher up leaves to leaves in the canopy or to the surrounding leaves (Shaw and 
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Royle, 1989a).  It has also been proposed that there is transmission by contact 

between different leaves with similar height or between emerging healthy leaves and 

infected ones (Shaw and Royle, 1993; Lovell, 1997, 2004a). Spatial distribution of 

STB is presented at random at the start of the infection in a crop; slowly, the disease 

spreads to infect the entire crop as it matures (Shaw and Royle, 1993). 

 Periods of rainfall are a key factor in the release and dispersal of spores, as 

well as in the initiation and development of the epidemics of STB in a crop (Eyal et 

al., 1987; Eyal, 1999; Thomas et al., 1989; Shaw and Royle, 1993; Lovell et al., 

1997, 2004b). Rain storms move spores in the area around the crop and by splash on 

leaf layers on a plant. Windblown ascospores are another source of epidemics (Eyal 

et al., 1987; Shaw and Royle, 1989a; Eyal, 1999). 

1.4 Wheat-Septoria tritici interaction 

1.4.1 Infection process 

Septoria tritici is a hemibiotrophic pathogen with a long symptomless phase 

considered as biotrophic, followed by the necrotrophic phase. This phase conducts to 

a tissue collapse which further results in chlorosis and necrosis development on the 

leaf, and pycnidia formation (Kema et al., 1996d; Dancer et al., 1999; Shetty et al., 

2003; Shetty et al., 2007). 

The infection process has been reported to appear with a relatively high 

frequency, through germination of ascospores and conidium on the surface of leaves 

(Kema et al., 1999). Germination of spores occurs by elongation or by budding (Eyal 

et al., 1987; Eyal, 1999) giving place to the formation of branched Germ tubes or  

clusters of hyphae (Kema et al., 1996d), sometimes forming even appressorium-like 

structures (Kema et al., 1996d; Shetty et al., 2003). After penetration takes place 



17 

 

through the stomata, (Cohen and Eyal, 1993; Eyal, 1999; Kema et al., 1996d, 1999; 

Duncan and Howard, 2000; Shetty et al., 2003) or in anticlinal cell wall grooves 

(Cohen and Eyal, 1993; Dancer et al., 1999), the mycelium is formed in the stomatal 

cavity. Hyphae colonize then the mesophyll intercellularly and continue growing and 

expanding (Kema et al., 1996d; Shetty et al., 2003). From a single penetration site, 

STB invades the apoplast and the neighbouring substomatal cavities establishing 

multiple stomata infections (Duncan and Howard, 2000).  

During colonization, a latent period exists where no visual symptoms are 

present (Kema et al., 1996d; Dancer et al., 1999; Shetty et al., 2003; Shetty et al., 

2007). The latent period could last for 11 to 36 days, depending on the temperature 

(Lovell et al., 2004b). In this period, no mesophyll cells are penetrated or damaged 

and it is supposed that the pathogen survives on available nutrients present in the 

apoplast (Dancer et al., 1999). The cell mesophyll walls will eventually become 

wrinkled, collapse and finally die (Kema et al., 1996d; Dancer et al., 1999; Palmer 

and Skinner, 2002). With cell death, mycelia proliferation takes place (Kema et al., 

1996d; Dancer et al., 1999; Jørgensen and Smedegaard-Peterson, 1999).  

Mature pycnidia form in the substomatal cavities and are of subglobose (not 

entirely spherical) shape, with the ostioles confined by the stomatal openings, usually 

with occupancy of one per substomatal cavity (Eyal et al., 1987; Kema et al., 1996d). 

The conidiophores on the pycnidium wall form aseptate conidia and they have two 

layer walls in their mature state, and are exuded through the ostiole in a cirrhus 

(Kema et al., 1996d). The number of pycnidiospores liberated per pycnidium has 

been reported to be of the order of 5-1010
3
 (Eyal, 1999). 

Infection success reaches its highest levels on rainy cloudy days with 

temperatures between 20-25°C and with high relative humidity (Magboul et al., 
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1992; Kema et al., 1996d; Dancer et al., 1999). Temperature and relative humidity 

(leaf wetness) are also important environmental factors for subsequent disease 

development (Magboul et al., 1992). Jørgensen and Smedegaard-Petersen (1999) 

mentioned that if one environmental factor is under the optimum, it is possible that 

another parameter may compensate the former during the STB process of infection 

(also in Septoria nodorum) and disease development. This is explained by Magboul 

et al. (1992), who studied the interaction of leaf wetness period and temperature on 

the infection process. He found that the temperature range at which infection occurs 

increases when the leaf wetness period is prolonged; thus, for example, with a leaf 

wetness period of 25 hours after inoculation (hai), the effective temperature range 

was 13-23ºC, but when the leaf wetness period was greater than 80 hai, the effective 

temperature range increased to 9–25ºC. 

The absence of an interaction or incompatible response can be explained by 

the lower colonization of the host tissues and no visible effects on the mesophyll 

cells (Kema et al., 1996d). Although hyphae can be observed in the vicinity of the 

stomata cavities and occasionally between the mesophyll cells (Shetty et al., 2003), 

no visible detrimental effects are caused. In such an incompatible interaction, the 

fungus is limited in colonization and often fails to form pycnidia (Kema et al., 

1996d; Shetty et al., 2003), or the number of pycnidia is low (King et al., 1983a; 

Cohen and Eyal, 1993).  

1.4.2 Wheat responses: metabolic processes 

The signal perception and signal transduction systems to activate defence responses 

by wheat against STB are not known; the pathogen molecules that result in plant 

susceptibility are not known either. Defence–related genes have been identified 

during the first hours after inoculation, as well as a second gene induction that begins 
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18-24 days after inoculation (dai) in resistant cultivars (Ray et al., 2003; Adhikari et 

al., 2007). In addition, reactive oxygen species (superoxide (O2
-
) and hydrogen 

peroxide (H2O2)) have been detected during the early and late gene-induction (Shetty 

et al., 2003, 2007; Keon et al., 2005, 2007). Features of hypersensitive response and 

host programmed cell death have also been investigated (Keon et al., 2007; Rudd et 

al., 2008).  

1.4.2.1 Early gene-induction 

Ray et al. (2003) identified genes that are differentially expressed by the plant during 

the resistance response to M. graminicola. While working with resistant and 

susceptible cultivars, Tadinia and Yecora Rojo, they detected: the putative defence 

response genes; a protein disulfide isomerase (PDI) gene; three defence response 

genes, the pathogenesis related proteins: PR-1, PR-2 (-1,3-endoglucanase) and PR-

5 (a thaumatin-like protein); and the WCI-2 gene, a lipoxygenase (LOX). Transcripts 

of LOX were detected at 0 hai in both susceptible and resistant cultivars, though in 

the resistant cultivar a maximum peak was detected at 3 hai with a sudden decreased; 

whereas in the susceptible cultivar the maximum peak was found at 6 hai, with a 

more continuous expression than that shown with the resistant cultivar. Ray et al. 

(2003) also found that PDI-transcripts were present at 0 hai with a maximum 

expression in the susceptible cultivar at 6 hai, remaining in this condition until 12 

hai; later, the levels of transcripts declined. Yet, in the resistant cultivar the 

maximum peak was at 12 hai, two times higher than in the susceptible cultivar. Ray 

and co-workers also detected that PR-transcripts began to accumulate at 3 hai, with a 

maximum expression at 12 hai, followed by a sharp decline in both, the resistant and 

the susceptible cultivars, though the expression was ten times higher in the resistant 

cultivar. 
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Early recognition (0 hai) of S. tritici by wheat is due probably to compounds 

delivered by the fungus that trigger the activation of defence related transcription 

genes by the plant (Ray et al., 2003). The precise role of these genes in the 

interaction wheat-S. tritici is unknown. Ray et al. (2003) suggest that PDI could have 

a regulatory role in the plant disease signalling pathway by preventing potential cell 

damage by reactive oxygen species (ROS). LOX could help in the establishment of 

S. tritici in the plant; thus, its expression is brief in resistant cultivars. It is known that 

the expression of the PR gene family confers important disease resistance responses. 

In agreement with the proposal function of PDI, Apel and Hirt (2004) pointed out 

that PDI is an antioxidant defence protein that accumulated during oxidative stress in 

Arabidopsis. Nevertheless, LOX has been found to be a chloroplastic enzyme 

involved in the first step of the jasmonates biosynthesis, signalling compounds that 

induce host defence, as well as its production of O2
-
 (Vidhyasekaran, 2008). PR 

genes as PR-1, PR-2, and PR-5 encode protective proteins against pathogens. Thus, it 

has been suggested that PR-1 proteins might be involved in cell wall thickening and 

may offer resistance to the spread of pathogens in the apoplast. PR-5 alters the 

permeability of fungal membranes. PR-2, an extracellular enzyme constitutively 

expressed in several plants (Vidhyasekaran, 2008), acts releasing -1,3 glucans, 

which are components of  fungal pathogens cell walls that have been characterized as 

elicitors that trigger other plant defence responses (Ray et al., 2003; Vidhyasekaran, 

2008). 

 In addition, Adhikari et al. (2007) when they were working with the resistant 

cultivars Tadinia and W7984 and the susceptible cultivars Yecora Rojo and Opata 85 

also found early induction (3 hai) of four defence genes: phenylalanine ammonia 

lyase (Pal), chitinase (Chit), peroxidase (Per) and PR-1 (a gene found also by Ray et 
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al., 2003). The time and magnitude of expression of these four genes differ among 

cultivars. Pal was induced at three hai in the resistant cultivars, but its expression was 

eight-fold over the mock in Tadinia and persisted until 6 hai, then dropped to two-

fold until 2 dai, while in W7984 the induction was only two-fold over the mock at 3 

hai and then disappeared at 12 hai. Chit reached a maximum peak at 3 hai in Tadinia, 

whereas in W7984 at 1 dai, 40-fold and 60-fold over the mock (control), 

respectively; the expression of this gene disappeared at 3 dai in both cultivars. Per 

had a maximum expression at 12 hai in Tadinia but only 10-fold over the mock, 

while in W7984 the maximum peak was reached at 1 dai and 50 times over the 

mock, then dropped and disappeared at 6 dai. In agreement with Ray et al. (2003), 

PR-1 presented a maximum expression at 12 hai in Tadinia, but at 1 dai in W7984; 

the magnitude of expression was similar in both cultivars, around 10-times over the 

mock.  

Adhikari et al. (2007) found that transcription of these four genes in the 

susceptible cultivars was very slight and that Pal was involved in the synthesis of 

antimicrobial compounds, of antioxidant protectans (as flavonoid compounds), and 

of precursors of lignin. Vidhyasekaran (2008) indicated that Pal was the key enzyme 

in the synthesis of the following compounds: 1) phenolics; constitutive secondary 

metabolites with antifungal properties which are implicated in disease resistant 

response and some of which are highly toxic to pathogens and have been found in 

wheat; 2) phytoalexins; compounds synthesized in response to infection as 

flavonoids, and; 3) salicylic acid, a signal molecule which induces several defence-

related genes as PR-1, PR-2 and PR-5 proteins. 

Chitinases have also been reported to be secreted extracellularly by plants 

when pathogen penetrates host tissues (Vidhyasekaran, 2008); as they degrade the 
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fungal cell wall and release the elicitor chitin Per and PR-9 proteins and are 

associated with the generation of superoxide (O2
-
) and hydrogen peroxide (H2O2) 

(Apel and Hirt, 2004; Vidhyasekaran, 2008). 

Pathogen elicitors that can induce defensive responses by both host and non 

host plants (Heath, 2000; Nürnberger and Brunner, 2002) are called general elicitors 

(Nürnberger and Brunner, 2002). Two of these have been identified as chitin and 

ergosterol from fungi (Zipfel et al., 2004). The cultivar-specific resistance expressed 

during the gene-for-gene interactions, is genetically determined by the 

complementary avirulence (Avr) genes and the resistance (R) genes. Each avirulence 

gene encodes a specific elicitor that is recognized by the product of the R gene, and 

specific defence responses from the host are triggered (Flor, 1971; Heath, 2000; 

Dangl and Jones, 2001; Cohn et al., 2001; Nürnberger and Brunner, 2002; Zipfel et 

al., 2004; Vidhyasekaran, 2008). In the non-cultivar-specific host resistance (non-

host plants), inducible defence responses (Heath, 2000) or basal defences (Dangl and 

Jones, 2001: Zipfel et al., 2004), or innate defence mechanisms (Nürnberger and 

Brunner, 2002) are also triggered without the activation of R genes and without 

compromising the entire resistance according to Heath (2000). Dangl and Jones 

(2001), and Heath (2000) pointed out that defence mechanisms are shared by both 

cultivar-specific and non-cultivar-specific systems (genetic overlap). 

1.4.2.2 Late gene-induction 

Adhikari et al. (2007) found that late gene response in resistant cultivars took place 

when the fungal biomass increased in susceptible cultivars (first lesions were visible 

at 16 or 18 dai in Opata 85 and Yecora Rojo, respectively). Resistant cultivars on the 

other hand seemed to recognize the change from biotrophic to necrotrophic phase of 

STB (no significant necrosis was observed in Tadinia and slight infection in W7984 
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at 24 dai). Three defence-related genes were detected during the late response 

induction to STB: ADP-glucose pyrophosphorylase (Agp), ATP synthase (ATPase) 

and brassinosteroid-6-oxidase (Brox). Maximum peak of expression of Agp at 24 dai 

took place in the resistant cultivars, though in Tadinia the magnitude of expression 

was 1400-fold over the mock, while W7984 an 800-fold over the mock was 

observed. The ATPase was expressed at 18 dai in Tadinia and at 24 dai in W7984, 

with a magnitude of 550-fold and 200-fold over the mock, respectively. Conversely, 

maximum expression of Brox in Tadinia was observed at 24 dai while in W7984 at 

18 dai, this corresponded to 300-fold and 400-fold over the mock, respectively. 

Differential expression of other six genes was also found in the resistant 

cultivars: 40S ribosomal protein (40Srp), protease inhibitor Bsi1 (Bsi), methionine 

sulfoxide reductase (Msr), peptidylprolyl isomerase (Ppi), RNase S-like protein 

precursor (RNase) and peroxidase 2 (Per2), at different times and magnitudes. A 

lower expression of these nine genes was found in the susceptible cultivars. Bimodal 

patterns of these genes were clear in the resistant cultivars, the first one at 1-3 dai and 

the second one (the strongest expression) at 12-24 dai, with expressions ranging from 

200 to 1400-fold higher than the mock. Only two of the nine genes have been 

associated with the induction of defence response, Bsi and Per2, though the function 

of Bsi is not known (Adhikari et al., 2007).  

  Differences in signal perception and signal transduction systems may be 

leading to resistance or susceptibility (Vidhyasekaran, 2008). Several of these 

differences have been identified and could partly explain the different expression in 

the genes identified in the interaction wheat-STB. For example, signalling pathways 

are expressed faster in the resistant cultivar than in the susceptible one. This 

performance gives rise to a delayed expression on pathways that trigger the 
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appearance of defence genes. Therefore, if the accumulation of defence compounds 

is delayed, the disease develops. Some elicitors are less active in the susceptible 

cultivar inducing fewer defence compounds than in the resistant cultivars 

(Vidhyasekaran, 2008). 

1.4.2.3 Reactive oxygen species accumulation 

During the germination, penetration, and colonization of the mesophyll by Septoria 

tritici, an accumulation of hydrogen peroxide (H2O2) was detected at 3 and 6 hai in 

outer epidermal cell walls, in mesophyll cells, and especially around the substomatal 

cavities, both in susceptible and resistant cultivars (Shetty et al., 2003). However, 

they observed that the accumulation of hydrogen peroxide was faster in the resistant 

cultivar, occurring particularly around the substomatal cavities where penetration 

took place, and in the mesophyll cell walls it was associated with the arrest of fungal 

growth in this cultivar. In contrast, in the susceptible cultivar a slight accumulation of 

hydrogen peroxide took place at the beginning of the infection (Shetty et al., 2003). 

An accumulation of superoxide ions, O2
-
, and hydrogen peroxide was detected at the 

chlorotic areas, ―water-soaked areas‖, just before the necrosis initiates (Keon et al., 

2007). A massive accumulation of H2O2 (Shetty et al., 2003, 2007) and O2
-
 (Keon et 

al., 2005, 2007) throughout the mesophyll and the substomatal cavities coincides 

with sporulation of the fungus (13 dai), and it is associated with cell collapse and 

visual symptoms e.g. necrosis (Shetty et al., 2003, 2007; Keon et al., 2005, 2007). 

 Shetty et al. (2003, 2007) proposed that the accumulation of hydrogen 

peroxide at the beginning of the infection, also during the sporulation of S. tritici, 

was a defence reaction of the plant. Their arguments were based, firstly, on the roles 

suggested in the defence reaction of active oxygen species [e.g. superoxide (O2
-
), 

hydroxyl radical (OH·) and hydrogen peroxide (H2O2)], the ―oxidative burst‖, such 
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as cell wall modifications, lipid peroxidation, phytoalexin production, and activation 

of defence related genes. Secondly, their arguments also rely on tests in which wheat 

leaves infiltrated with catalase detoxifying H2O2 in the first and late phases of 

infection result in an increased penetration, colonization and fungal biomass, and the 

latent period is reduced, while infiltration with H2O2 resulted in reduced colonization 

and an increased latent period. 

 Keon et al. (2005) suggested that the latest accumulation of reactive oxygen species 

(ROS) was probably originated from the fungus itself because the leaf at such stage 

is totally senesced. Keon et al. (2007) pointed out that it has to be defined if ROS is 

generated by the plant or by the fungus. It has been found that necrotrophic 

pathogens often promote susceptibility-related host cell death through the generation 

of ROS (Vidhyasekaran, 2008). 

1.4.2.4 Hypersensitive response (HR) and programmed cell death (PCD) in the 

interaction STB-wheat 

  With reference to the HR and PCD,  Keon et al. (2007) and Rudd et al. 

(2008) found, working with susceptible cultivars, that as disease symptoms develop, 

the following processes take place: 1) a loss of membrane integrity restricted to the 

mesophyll cells (9 dai onwards, beginning of symptoms); 2) an accumulation of 

cytochrome c in the cytosol (10 to 14 dai); 3) a host DNA laddering response 

{cleavage of genomic DNA into internucleosomal 180 bp fragments (Tada et al., 

2001) (9 dai onwards); 4) a disappearance of chloroplastic rRNA species (14 dai, 

pycnidial initials). All these features were associated with apoptosis (Vidhyasekaran, 

2008). They have proposed that the development of disease symptoms in STB-

susceptible wheat has characteristics of hypersensitive response (HR)-like 

programmed cell death (PCD). However, the hypersensitive response (HR) is a 
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feature of a resistance expression to host and less commonly to non host pathogens 

(Heath, 2000; Vidhyasekaran, 2008). This is also called hypersensitive cell death or 

HR-related cell death, and it is induced by host signals (endoelicitors) that trigger 

resistance gene-encoded proteins. Thus, HR is also called host-induced cell death, 

and it is a form of PCD, a genetically controlled cellular suicide (Vidhyasekaran, 

2008). 

The HR consists of a rapid cell death at the site of the infection that is 

associated with a pathogen limitation as well as with the defence gene activation 

(Heath, 2000; Cohn et al., 2001; Vidhyasekaran, 2008). Susceptible-related cell 

death or normosensitive cell death is found in susceptible interactions that seem to 

confer susceptibility to necrotrophic pathogens. In this case, the induction of the cell 

death may be by virulence factors from the pathogen, as toxins and cell wall 

degrading enzymes, or through generation of toxic levels of ROS; sometimes PCD is 

observed (Vidhyasekaran, 2008). Although both types of cell death could show 

similar characteristics, the function could be different. HR-cell death restricts the 

pathogen invasion and proliferation within the host, depraving it from water or 

nutrients and triggering other defence responses (Cohn et al., 2001; Vidhyasekaran, 

2008). In biotrophic/ necrotrophic pathogens, susceptible-related cell death supplies 

nutrients to the fungus and enhances the disease development (Vidhyasekaran, 

2008). Thus, though there is not an identified host elicitor that promotes PCD, the 

mesophyll cell death during the interaction STB-wheat seems to be a susceptible-

related cell death, not a HR-like PCD. 

 Putting all together and keeping in mind that timing depends both, on environmental 

factors and on cultivar, at least during the first hours of the S. tritici infection and 

during its sporulation. Several events occur in both resistant and susceptible 
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cultivars. Early events that occurred were: (i) at 0 hai, transcripts of PDI and LOX 

began to accumulate in both cultivars; (ii) at 2 hai, the germination of spores took 

place; (iii) at 3 hai, in the resistant cultivar, transients of LOX reached a peak, and 

slow accumulation of H2O2 was detected; maximum expression of Pal was detected 

in the resistant cultivars Tadinia and W7984, as well as Chit in Tadinia; (iv) at six 

hai, maximum expression of LOX and PDI were detected in the susceptible cultivar 

and H2O2 was present; then there was a decline in LOX transient but PDI sustained 

its expression; (v) at 12 hai, hyphae began to penetrate the substomal cavities and 

there was maximal expression of the defence response genes PDI, PR-1, PR-2 and 

PR-5, as well as for Per2 in the resistant cultivar Tadinia; (vi) at 24 hai, maximum  

peak of the defence response genes Chit, Per2 and PR-1 is detected in cultivar 

W7984. Later events that occurred were: (vii) at 9 dai, starting with the appearance 

of the first lesions onwards, there was a loss of membrane integrity which was 

restricted to the mesophyll cells, a disappearance of chloroplastic rRNA species, and 

a host DNA laddering response, as well as an accumulation of cytochrome c in the 

cytosol, in addition to the maximum expression of the ATPase reached in Tadinia 

and Brox in W7984 genes; (viii) at 13 dai, the sporulation of the fungus took place in 

an enriched superoxide and hydrogen peroxide environment, and a maximum 

expression of Agp was observed in both resistant cultivars. A maximum expression 

of ATPase in W7984 and Brox in Tadinia was also obtained. 

1.4.3 Crop physiology of the disease plants  

Infection with M. graminicola was reported in the past to cause a considerably 

reduction of the yield, characterized by the production of shrivelled grains in the 

susceptible cultivars tested. For the more tolerant cultivars the loss of yield and 

quality from severe infection was relatively low (Ziv and Eyal, 1976, 1978; King et 
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al., 1983a). In the literature, it has been widely documented that the STB 

colonization and dispersal in the crop is associated, firstly, with a reduction in the 

photosynthetic activity of the infected leaves after the lesion formation, mainly due 

to the green leaf area reduction (Shaw and Royle, 1989a; Thomas et al, 1989; 

Cornish et al., 1990; Magboul et al., 1992; Leitch and Jenkins, 1995; Zuckerman et 

al., 1997; Parker et al., 2004; Robert et al., 2006; Foulkes et al., 2006). Secondly, 

this phenomenon has also been associated with the earlier senescence of leaves 

(Shaw and Royle, 1989b; Cornish et al., 1990; Leitch and Jenkins, 1995; Zuckerman 

et al., 1997; Lovell et al., 1997; Parker et al., 2004), and with the induction of apical 

senescence, as reported by King et al. (1983b), Magboul et al. (1992) and Robert et 

al. (2006). 

 According to Robert et al. (2006), during the symptomless phase of the 

infection, STB has no significant effect on net photosynthesis and respiration but, 

with the expression of symptoms, both become significantly altered. In the period of 

the chlorotic symptoms, there is a decrease in the leaf photosynthesis and although 

this process persists in the chlorotic areas (Robert et al., 2006), a reduction in 

chlorophyll content (Zuckerman et al., 1997) is possible, lowering the effect on the 

net photosynthetic rate. Necrotic lesions however, decreased the net photosynthesis, 

the leaf photosynthetic capacity and, at the same time, it enhanced leaf respiration up 

to three times those found in diseased leaves (Robert et al., 2006). The increase in 

respiration of typical plants infected by virus, bacteria and fungi, has been related to 

the induction of host defence mechanisms, and/or to fungus respiration (Lucas, 1998; 

Robert et al., 2006). The consequence of all these is reflected on the assimilate 

supply alteration, due to the disrupted photosynthetic apparatus (Dimmock and 

Gooding, 2002b). The authors suggest that plant metabolism performances 
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differently, this in correspondence to the form of nutrition of STB, as biotrophic or 

necrotrophic fungus. As referred by them the biotrophic state consists in the ability 

of STB to redirect and retain N in infected tissues, whereas during the necrotrophic 

state STB reduces carbon assimilation due to the damage produce on the 

photosynthetic capacity. Furthermore, as a biotrophic fungus, STB reduces both 

nitrogen uptake and partitioning of N into the grain, decreasing the protein 

concentration (McCabe et al., 2001; Ruske et al., 2001; Ruske et al., 2003). As a 

necrotroph, STB probably has a greater effect on carbon accumulation, as has been 

detected in S. nodorum (Scharen et al., 1975).  

Environmental factors are of great importance in the development cause- 

effects of the disease. Magboul et al. (1992) found, in the susceptible spring cultivar 

Anza in controlled conditions, that temperature and leaf wetness periods were critical 

for auguring the disease severity (percentage of infected area) and the senescence 

development (percentage of senescent area) of the flag leaf. These authors found, 

that the development rate of disease severity reached its maximum at 18ºC, ranging 

from 3.0 to 9.7% per day, this when testing different temperatures and misting 

periods (leaf wetness periods). Magboul and co-workers (1992) concluded the more 

the leaf wetness period increased, the more severe the disease was. Higher 

temperatures and long periods of leaf wetness tended to increase the maximum rate 

of senescence. Thus, maximum senescence (2% per day) was presented at 20ºC and 

96 h of wetness leaf period.  

 The effects of the senescence induced by STB have been investigated by the 

analysis of the green flag leaf duration (delayed senescence) after application of 

fungicides on plots, as compared with control plots of diseased plants. Senescence 

decreased the rate of grain filling, with the consequent effect on the diminution of 
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grain yield, grain weight, (Gooding et al., 1994, 2000; Ruske et al., 2001; Dimmock 

and Gooding, 2002a), specific weight (Gooding et al., 1994; Ruske et al., 2001; 

Dimmock and Gooding, 2002a), and grain size in some cultivars (Dimmock and 

Gooding, 2002a). However, Dimmock and Gooding (2002a) suggested that these 

effects probably overestimated the favourable physiological reactions the plant 

experienced (e.g., the delayed senescence) under the application of fungicides (Ruske 

et al., 2001; McCabe et al., 2001; Ruske et al., 2003; McCartney et al., 2007). As a 

consequence of this, grain yield improved (Gooding et al., 1994; Cook et al., 1999; 

Gooding et al., 2000; Dimmock and Gooding, 2002a, 2002b; Ruske et al., 2001, 

2003; McCartney et al., 2007), at least with strobilurin fungicides, increase triggered 

by a shift in the hormonal balance, producing the inhibition of ethylene biosynthesis, 

which in turn provokes a decrease in chlorophyll catabolism, and the maintenance or 

increase of cytokinin contents, inducing in turn a chlorophyll and thylakoid 

formation, and hence an increase in CO2 uptake (Grossmann and Retzlaff, 1997). 

 Analyses of the disease plants have showed a reduction in: leaf area by up to 

40 %; green area index by 23 %; leaf area index by 69 %; and dry matter by 20% 

according to Cornish et al. (1990), and a harvest index reduction of 40% has also 

been reported in susceptible cultivars by Zuckerman et al. (1997). Furthermore, the 

effect of STB on yield and yield components depended on the severity of the 

epidemic at a given developmental stage of the crop at the time of the infection (Ziv 

and Eyal, 1976; Cornish et al., 1990; Shaw and Royle, 1993; Simón et al., 2002). 

Infection of wheat by STB at the seedling stage reduced both, root development 

(31.4-61.1%), and according to King et al. (1983a), foliage (12.5-19.4%). Although 

on one hand early infections can reduce the number of ears per square metre, on the 

other, late infections can diminish the grains per ear or the thousand grains weight 
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(Leitch and Jenkins, 1995; Simón et al., 2002). Yield losses occur usually when the 

flag leaf, specially, was severely infected, as well as the second and third leaves 

(Shaner et al., 1975; Ziv and Eyal, 1978; King et al., 1983a; Thomas et al., 1989; 

Shaw and Royle, 1989a, 1989b, and 1993; Paveley, 1999). These leaves are mainly 

the responsible of providing photo-assimilates for the developing grain. 

Thus, in general, the damage that STB caused to the crop depended on: 1) the crop 

stage at the time of infection; 2) the developmental rate of infection; 3) the duration 

of the symptomless phase of the infection which could vary among cultivars (Shaw, 

1990); 4) the development rate of disease severity; 5) the percentage of infection and 

severity on the flag leaf; 6) the development rate of senescence, and 7) the 

environmental conditions in which the diseased crop develops.  

1.5 Factors that affect the risk and progression of STB on crop 

Disease response is a highly complex reaction of the plant to fungal attack. 

Resistance expression of plants to pathogens, though genetically inherent, may be 

increased or decreased by changes in plant metabolism and physiology through 

growth pattern, plant morphology and anatomy and by changes in chemical 

composition. Apparent host resistance known as ―escape of attack‖ or ―disease 

escape‖ has relatively small effects in highly susceptible or highly resistant cultivars, 

but considerable responses can be achieved in moderately susceptible and partially 

resistant cultivars (Marschner, 1990). The mechanisms of disease escape can vary, 

and are usually determined by environmental conditions which intricately affect 

plant metabolism to give such response. The performance of a genotype could 

change in different environments. Thus, environmental variables of a ―macro‖ nature 
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have to be considered, as well as other possible differences in the environment — 

―micro‖ ones that affect individual plants (Brown and Caligari, 2008). 

1.5.1  Agronomic practices 

Nitrogen (N) fertilization is a major factor affecting the morphology of leaf, shoot 

and root, as well as the yield and the yield components of wheat. However, there are 

controversial results about the effect of increasing the amount of N fertilizer in the 

development of STB. High quantities of applied N fertilizer promoted disease 

development (Howard et al., 1994; Leitch and Jenkins, 1995; Lovell et al., 1997; 

Simón et al., 2003; Olesen et al., 2003a and b) irrespective of the timing of its 

application (Leitch and Jenkins, 1995). Differences in severity could be either not 

statistically significant, until a few weeks after the first symptoms appear (Lovell et 

al., 1997), or they were not relatively high (Howard et al., 1994; Simón et al., 2003). 

The severity has been reported to be different for each year of experiment (Howard 

et al., 1994; Simón et al., 2003). The effect of N rate applied could diminish the 

severity with later application (Leitch and Jenkins, 1995; Olesen et al., 2003a and b). 

Conversely, no effect has been reported of high N fertilizer rate on the development 

of STB (Johnston et al., 1979; Tompkins, et al., 1993; Olesen et al., 2000; Olesen et 

al., 2003a). Furthermore, Olesen et al. (2003b) found no significant correlations 

between STB and leaf N concentration in two of the three seasons of experiments. 

These authors also found that splitting N-fertilizer application the disease was less 

severe whereas the severity increased under single applications of N.  

 Dense canopy structures with higher levels of N applied allowed favourable 

microclimatic conditions for STB development (Shaw and Royle, 1993 Leitch and 

Jenkins, 1995; Lovell et al., 1997). Some of the reasons suggested to explain the 

increasing severity of STB at higher rates of N fertilizer were the nutritional status of 
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the host (Leitch and Jenkins, 1995), the time of infection in relation to the emergence 

of the leaf layer (Leitch and Jenkins, 1995; Lovell et al., 1997), the type of N 

fertilizer applied (Simón et al., 2003), and the high N-leaf concentration and 

reduction of phenolic compounds (Olesen et al., 2003b). In contrast, in order to offer 

a sound explanation to the non-effect of N rates on the STB increase in plants, 

Olesen et al. (2000) and Johnston et al. (1979) referred to possible N fertilizer 

indirect effects on spore dispersal (higher plants present less risk of infection on 

upper leaves). Tompkins et al. (1993) stated that this response might be due to the 

environmental factors affecting the infection process. 

 Therefore, as stated before, it is concluded that contradictory performance 

and complexity of the plant metabolism and STB interaction with the environment, 

as applied to plant response as affected by N application may still not be sufficiently 

clear, needing more research. The studies exposed above, were realized using 

different rates and types of N fertilizers. N- ammonium nitrate was applied (i.e. 

Howard et al., 1994; Leitch and Jenkins, 1995), or urea (i.e. Simón et al., 2003) 

alone, or in combination with phosphorus (P) and potassium (K) fertilizers (i.e. 

Johnston et al., 1979; Howard et al., 1994; Tompkins et al., 1993; Leitch and 

Jenkins, 1995; Simón et al., 2003; Olesen et al., 2000, 2003a and b), and manganese 

(Mn) (i.e. Olesen et al., 2000). Applying N alone to the plant provokes a nutrient 

imbalance (Marschner, 1990; Tompkins et al., 1993), which may produce more 

disease-susceptible plants (Marschner, 1990). High rates of N fertilizer enhanced the 

susceptibility to biotrophic pathogens. The effect in necrotrophic pathogens was 

opposite (Marschner, 1990). Thus, it is possible that STB, as a hemibiotrophic 

pathogen, incited two different responses in wheat: the increase of the disease during 

the biotrophic state (i.e. Leitch and Jenkins, 1995; Lovell et al., 1997; Simón et al., 
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2003; Olesen et al., 2003a and b); and reducing it with later application, as 

necrotrophic fungus (i.e. Leitch and Jenkins, 1995; Simón et al., 2003; Olesen et al., 

2003a). High rates of N application depress the enzymes of phenol metabolism and 

consequently diminishing the concentration of phenolics (Marschner, 1990; Olesen 

et al., 2003b). Coincidently, in those experiments in which not only N, but also P and 

K fertilizer and/or Mn were applied to the soil, no significant STB severity increase 

or diverse responses to the increase of N were observed. Potassium increases the 

resistance to pathogens in plants; its effect has been related to the metabolic 

functions as: enzyme activation, synthesis of proteins, photosynthesis, and 

osmoregulation (Marschner, 1990). Manganese may be directly involved in phenolic 

synthesis in the cell wall, and it has been reported to play a role as inducer of 

phenylalanine ammonia-lyase (PAL), an enzyme involved in the biosynthesis of 

several defence compounds (Vidhyasekaran, 2008).  

 Incorporating wheat straw into the soil can reduce the severity of STB 

(Rodgers-Gray and Shaw, 2000). They suggested that straw incorporation results in 

changes in the availability of soil nutrients, probably altering the pH which may 

increase concentration of silica (Si) in leaves of plants grown in straw-treated plots. 

Relatively high Si contents (23 % of ashes) in leaves and sheaths of wheat straw have 

been reported (Hess et al., 2003). It has been found that Si is rapidly absorbed and 

transported by wheat (Rafi and Epstein, 1999). Also, a large deposition of phenolic 

compounds has been reported in infected epidermal cells in plants treated with Si 

solutions (Bélanger et al., 2003).   

 High tillering capacity or agronomic practices that promote it may increase 

the effect of STB on yield losses of susceptible varieties (Ziv and Eyal, 1976), 

perhaps as a result of green area increase. Reduced plant density in the field 
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increased nutrient availability aggravating the disease (Rodgers-Gray and Shaw, 

2000), and increasing the dispersal ability of STB spores by rain-splash (Shaw and 

Royle, 1993). 

Crops sown at early times pose greater risks of infection (Shaner et al., 1975; 

Thomas et al., 1989; Shaw and Royle, 1993). These plantings have shown a 

considerable higher severity of STB than those made in late sowing dates (Shaner et 

al., 1975; Shaw and Royle, 1986a, 1993). Early sown plants produced more leaves 

(Shaw and Royle, 1986a, 1993), and resulting in greater presence of inoculums 

(Shaner et al., 1975; Shaw and Royle, 1986a, 1993); stem extension was also slower, 

which give more time for the infection to move from older to younger leaves (Shaw 

and Royle, 1993; Lovell et al., 1997, 2004b). Time to maturation was longer too, 

giving rise to another STB cycle of multiplication in diseased plants (Shaw and 

Royle, 1993). However, leaves in late-sown crops emerged lower than those of an 

early-sown crops and therefore, closer to basal inoculum sources (Lovell et al., 

1997), though the rapid stem extension and reduced vegetative growth diminished 

the risk of STB disease diminished too through the reduced inoculums production 

and restricted opportunity for the inoculum to be transferred to the upper leaves 

(Shaw and Royle, 1993). 

1.5.2 Disease escape 

In wheat, disease escape prevents or reduces contact between pathogen spores and 

the upper canopy (Paveley et al., 2005), as the damage is mostly related to the 

disease on the top leaves whose effect is the reduction of yield (Shaner et al., 1975; 

Ziv and Eyal, 1978; King et al., 1983a; Thomas et al., 1989; Shaw and Royle, 1989a, 

b, and 1993; Paveley 1999; Paveley et al., 2005). 
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Late maturity and tall plants were associated with resistance to STB. Due to 

the fact that plants combining short stature and earliness with resistance have been 

difficult to obtain, it has been proposed that both traits could be genetically linked or 

present pleiotropy with resistance (Danon et al., 1982; Eyal and Talpaz, 1990; van 

Beuningen and Kohli, 1990). Negative and no significant correlations have been 

found between plant height and STB (Danon et al., 1982). Also negative significant 

associations have been reported (van Beuningen and Kohli, 1990; Camacho-Casas et 

al., 1995; Chartrain et al., 2004b; Simón et al., 2004b, 2005; Arraiano et al., 2006), 

probably because tall plants present a physical barrier to the spread of STB spores 

upwards (van Beuningen and Kohli, 1990; Fraaije et al., 2002). However, Arraiano 

et al. (2006) found a positive correlation between distance from flag leaf to leaf 2 

and STB, suggesting that there was more disease as the distance between leaf 2 and 

the flag leaf increased. Eriksen et al. (2003) found a quantitative trait locus (QTL) 

with a resistant effect to STB on chromosome 3A of Senat cultivar, probably the 

resistance gene Stb6 (Brading et al., 2002; Chartrain et al., 2005b), and a QTL with 

an effect on plant height on the same chromosome. Also, they found a QTL with a 

resistant effect on chromosome 2B and, on the same chromosome, a QTL with an 

effect on height. Thus, a genetic linkage between plant height and resistance to STB 

seems to exist.  

The height encoded by Rht genes is a major trait that confers disease escape 

(Fraaije et al., 2002). In the semi-dwarf varieties, Rht genes and susceptibility are not 

per se genetically linked. The susceptibility is related to the height because the 

pathogen has easier access to the upper leaves (van Ginkel and Rajaram, 1993). 

However, associations between each Rht gene and resistance have been found. Plants 

carrying the Rht-D1b (formerly Rht1) gene were more susceptible than those with 
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Rht-B1 (formerly Rht2) (Baltazar et al., 1990). Plants carrying Rht3 and Rht12 were 

more diseased than those with Rht1 and Rht2 (Simón et al., 2004b). Similar results 

were found by Paveley et al. (2005), where stronger dwarfing genes (Rht3) increase 

the disease.  

Apparent resistance was found in later-heading wheat plants where lower 

levels of STB were present than on earlier-heading ones (Shaner et al., 1975; Danon 

et al., 1982; Shaw and Royle, 1989a, b, 1993; Eyal and Talpaz, 1990; van Beuningen 

and Kohli, 1990; Arraiano et al., 2007a). It is considered as a mechanism of disease 

escape, most likely conferred by environmental factors (Shaner et al., 1975; Eyal and 

Talpaz, 1990; van Beuningen and Kohli, 1990), as lines  years interaction reveals 

differences that are explained by different environmental conditions (Eyal and 

Talpaz, 1990; Simón et al., 2004b; Simón et al., 2005). Thus, genotype  

environment interaction and variation in pathogenicity have been found among 

locations (van Beuningen and Kohli, 1990; Simón et al., 2004b, 2005). Therefore, no 

genetic association between resistance and heading date has been proposed (Arama 

et al., 1999; Simón et al., 2004b, 2005), due to the fact that, when late and early 

maturating cultivars were exposed to similar weather conditions, the disease began at 

the same development stage. The rate of epidemic development was also similar 

(Arama et al., 1999). Associations between heading date and susceptibility, positive 

or negative, depend on conditions, specially temperature, precipitation, relative 

humidity (Simón et al., 2004b, 2005), and radiation (Simón et al., 2005). 

Manipulation of some microenvironment variables, in order to increase yield, are 

usually applied, although they can frequently increase the risk of STB disease in the 

crop. As a complement of disease control, these practices can be improved in order 

to avoid or to diminish the damage caused by STB. Therefore, taking into account: 1) 
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the rate of each element applied (usually, N-P-K) and its equilibrium according with 

the soil characteristics; 2) addition of Mn fertilizer in adequate doses; 3) the time and 

system of fertilizer application; 4) the plant density and other practices related to the 

increase of vegetative parts; 5) the sowing date; 6) the cultivar, and 7) the addition of 

some organic matter as straw, could  improve the yield, and at the same time, 

diminish the risk of STB disease. Plant height and heading date are directly related to 

the cultivar traits. Thus, cultivars that allow disease escape due to macro 

environmental factors should be an objective for breeding; in this case, ―breeding for 

apparent resistance‖.   

1.6 Breeding for disease resistance   

Resistance in the wheat -M. graminicola system has been found to be expressed as a 

restriction of the pathogen growth within the host (Eyal et al., 1973) and, as fungal 

incapability to form pycnidia on leaves. It is not yet clear whether the mycelia were 

equally spread in the leaf tissues of susceptible and resistant hosts (Pnini-Cohen et 

al., 2000). However, no complete resistance has been observed (Van Ginkel and 

Scharen, 1988; Kema et al., 1996a and b; Kema and van Silfhout, 1997; Eyal, 1999).  

In wheat, there are essentially two types of resistance to septoria tritici blotch: 

specific resistance and partial resistance. Specific resistance is effective against some 

isolates of the septoria fungus Mycosphaerella graminicola, but not against others, 

and it is controlled by single genes (SR-genes) of large effect. It follows a gene-for-

gene relationship (Brading et al., 2002). As in rust and mildew (Parlevliet, 1993), 

partial resistance to Septoria tritici blotch is incomplete, polygenic and isolate non-

specific (Jlibene et al., 1994; Simón and Cordo, 1998; Zhang et al., 2001; Eriksen et 

al., 2003; Chartrain et al., 2004b). 
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1.6.1 Resistance 

Specificity of wheat cultivars-M. Graminicola isolates has been demonstrated in 

adult plants under field conditions (Kema and van Silfhout, 1996b and c, 1997; 

Brown et al., 2001). Specific expression of some resistant genes to specific isolates 

of STB at seedling stage, but not in adult plants, has been detected. Also, genes that 

confer resistance at seedling stage were also expressed in the adult stage of wheat 

(Kema and van Silfhout, 1997; Arraiano et al., 2001a). 

Several resistance genes have been identified in past. Rillo and Caldwell 

(1966) identified a single dominant gene Stb1 that controls resistance in Bulgaria 88 

variety. This gene has been recently mapped in the resistance line P881072-75-1 on 

the 5B chromosome (Adhikari et al., 2004a). Wilson (1979, 1985) reported the 

resistance genes Stb2 and Stb3 which control the resistance in Veranopolis and Israel 

493 varieties, respectively, but just recently been mapped (Adhikari et al., 2004b). 

Whereas; Stb2 gene is located on chromosome 3B, Stb3 found on chromosome 6D. 

Stb4 is a resistant gene identified in the variety Tadinia (Somasco et al., 1996), 

recently mapped near the centromere of chromosome 7D (Adhikari et al., 2004c). 

The Stb5 gene was found in the short arm of chromosome 7D in the synthetic 

hexaploid ‗Synthetic 6x‘ (Triticum dicoccoides  T. tauschii). It was the first gene 

located on a chromosome and mapped (Arraiano et al., 2001b). The Stb5 gene 

confers specific resistance to the M. graminicola isolate IPO94269. Brading et al. 

(2002) found, in cultivars (cvs.) Flame and Hereward, the gene Stb6 in the short arm 

of chromosome 3A; it confers specific resistance to isolate IPO323. At the same 

time, Brading et al. (2002) found in IPO323 a gene for specific avirulence on cv. 

Flame. It was the first time a gene-for-gene interaction between wheat and M. 

graminicola was tested and demonstrated genetically. Chartrain et al. (2005b) 
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showed that Stb6 was present in both European and Chinese landraces, suggesting 

that this is an old gene probably dating from the mid-Neolithic period. McCartney et 

al. (2003) mapped Stb7 gene on chromosome 4AL — it confers resistance in the line 

ST6 to isolate MG2 from Manitoba. In the synthetic hexaploid wheat W7984, a gene 

for resistance to the field isolate (IN95-Lafayette-1196-WW 1-4) was also mapped 

on chromosome 7BL, Stb8 (Adhikari et al., 2003). 

The gene Stb9, located on the long arm of chromosome 2B, confers resistance 

to varieties Courtot and Tonic to isolate IPO89011 (Chartrain et al., 2009). Stb10 and 

Stb12 genes were found in Kavkaz-K 4500 variety (Chartrain et al., 2005a). The 

Stb12 and Stb10 genes were determined on chromosome 4A and 1D respectively; the 

first one confers resistance to isolate ISR398 and the second one to IPO94269 and 

ISR8036. A newly identified gene, Stb11, was detected on chromosome 1BS in the 

variety TE 9111 (Nabão), gene that confers resistance to isolate IPO90012 (Chartrain 

et al., 2005c). Recently, a new gene of resistance to STB has also been identified in 

the wheat cultivar Arina and Riband, Stb15. It was located on chromosome 6AS and 

it confers resistance to the Ethiopian isolate IPO88004 (Arraiano et al., 2007a). 

Although specific resistance is not durable, `pyramiding´ single isolate-

specific resistance genes would be efficient when much of the pathogen population 

overcome the combined resistance (Brown et al., 2001; Chartrain et al., 2004a). Thus 

this combination of genes reduces the rate of evolution of the pathogen (Burdon, 

1993).  

Kema et al., (1996b) pointed that M. graminicola is a pathogen that is characterized 

by quantitative and qualitative aspects of resistance and virulence. However, the loss 

of resistance can be fast when optimal conditions for evolution of the pathogen are 

encountered, as presented by Cowger et al. (2000). 
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1.6.2    Partial resistance 

Partial resistance is a term associated with the control of the disease by a number of 

genes of a rather small individual effect (Johnson, 1984, 1993). It is expressed 

phenotypically in traits in the form of reduced infectivity and longer latency periods 

than those occurring on more susceptible cultivars (Burdon, 1993).  

Different genes confer partial resistance in seedlings and adult stages (Eriksen 

et al., 2003; Chartrain et al., 2004; Simón et al., 2004a). The segregation of partial 

resistance sometimes makes it difficult to identify specific resistant genes (Chartrain 

et al., 2005b).  

In wheat, evidence was found about the partial resistance to STB, but it is 

only recently that this kind of resistance has begun to be understood. Eriksen et al. 

(2003) have located five QTLs in the variety Senat on chromosomes 3A, 6B, 2B and 

7B, for resistance to the M. graminicola isolates Risø97-86 and IPO323, at seedling 

and adult stages. Chartrain et al. (2004b) have contributed with the identification of a 

quantitative trait locus on chromosome 6B for partial resistance in the susceptible 

variety Riband to the M. graminicola isolates IPO94269, IPO89011 and IPO290. 

Simón et al. (2004a) located, in seedlings of the synthetic hexaploid wheat `W7984`, 

three resistance loci in the short arms of chromosomes 1D, 2D and 6B, and two 

resistance QTLs for an adult stage of M. graminicola isolates IPO92067 and 

IPO93014. 

Several sources of partial resistance to Septoria tritici blotch have been 

detected in cultivars and breeding lines from Brazil, Portugal, France, Switzerland, 

the Czech Republic, Germany, USA, UK and The Netherlands (Brown et al., 2001). 

Partial resistance has also been reported in several host-pathogen systems 

(Parlevliet, 1993). Its durability in wheat to stripe rust (Puccinia striiformis) has been 
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mentioned by Zhang (1995) in old cultivars of China, where the cultivars Bai Qimai, 

Hong Huomai, Hong Qimai, Qing Shoumai and Yu Zhonghong maintained their 

quantitative resistance over substantial areas for at least 60 years. Another example 

of this is the cultivar Hope from the U.S.A., which has shown resistance to stem rust 

(Puccinia graminis f. sp. tritici) after 60 years (van Ginkel and Rajaram, 1993). 

However, some pathogens have the ability to adapt to such polygenic characters, 

though the lost of resistance will be slow (Burdon, 1993).  

 Quantitative inheritance research of resistance, at seedling stage (Zhang et al., 

1998) and adult plant stage (Jlibene et al., 1994; Camacho-Casas et al., 1995; Simón 

and Cordo, 1998) in the pathosystem wheat-STB, has been conducted in the diallel 

experiments. In diallel experiments (parental lines in cross combination), the 

estimation of general combining ability (GCA) and specific combining ability 

(SCA), as well as the reciprocal effects (parents used as female and male), have been 

tested in Triticum aestivum cultivars. A general combining ability and SCA, but not 

reciprocal effects, have been estimated in Triticum durum cultivars. General 

combining ability estimates the additive action of the genes, and it is also an inherent 

test for a particular line in hybrid combination with several other lines. The specific 

combining ability indicates mainly a dominant gene action, and the test measures the 

special combination of a specific cross (Brown and Caligari, 2008). Negative values 

(below the general mean) of GCA and SCA were associated with resistance to STB, 

and positive values (above the general mean) were associated to susceptibility. 

Estimation of GCA and SCA was made with crosses among resistant, moderate and 

susceptible cultivars (Jlibene et al., 1994; Simón and Cordo, 1998; Zhang et al., 

2001), as well as with the test of reciprocals (Jlibene et al., 1994; Zhang et al., 2001). 
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General combining ability effects account for the largest portion of the 

phenotypic variation. Therefore, additive gene effects were the most important in the 

inheritance of resistance to STB (Jlibene et al., 1994; Camacho-Casas et al., 1995; 

Simón and Cordo, 1998; Zhang et al., 2001). General combining ability effects were 

generally in agreement with parental performance in such a way that a negative value 

of GCA indicated that the corresponding parent was resistant, while a positive value 

was associated with susceptible parents (Jlibene et al., 1994; Simón and Cordo, 

1998; Zhang et al., 2001). General combining ability was significant for the resistant 

components incubation period, latent period, pycnidial coverage, and maturation 

period (Simón and Cordo, 1998). The F1 hybrids from crosses between susceptible 

cultivars were highly susceptible to STB (Zhang et al., 2001). Negative SCA effects 

were found only when one of the parents was resistant, and positive SCA effects 

when parents with medium resistance were involved (Jlibene et al., 1994). In 

general, SCA was significant only in some F1 combinations (Jlibene et al., 1994; 

Simón and Cordo, 1998; Zhang et al., 2001). Similarly, diallel analysis in Triticum 

durum showed a major role of GCA in the inheritance of resistance to STB, while 

SCA was significant only in particular crosses (van Ginkel and Scharen, 1988b).

 Reciprocal effects for enhanced resistance to STB were observed in a few 

combinations. When resistant cultivars were used as female, hybrids had a 

significantly lower disease score than those of the reciprocal crosses (Jlibene et al., 

1994; Zhang et al., 2001). This indicated a possible maternal effect (Jlibene et al., 

1994). A cytoplasmic resistance was found by Mazouz et al. (2002) when evaluating 

effects in the enhanced resistance of Triticum aestivum genotypes to STB. Resistant 

genotype parents were crossed with susceptible ones, using the resistant cultivar as a 

male providing nuclear inheritance, and as a female providing nuclear and 
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cytoplasmic inheritance (F1‘s). Additionally, backcrosses with resistant (BC1P1)
 
and 

susceptible (BC2P2) parents were tested as well as the F2. Cytoplasmic resistance was 

detected in two of eight parents, and the resistance was specific to few of seven STB 

isolates. Thus, nuclear genetic information and extra nuclear information, 

mitochondria and/or chloroplast genomes, seemed to be involved in the resistance 

expression of some wheat genotypes. 

1.6.3    Susceptibility 

Arraiano et al. (2007b) have been trying to identify the chromosomal locations of  

the genes controlling resistance and susceptibility to STB in a study of the 

substitution lines series of Cappelle Desprez (CD) and Hobbit sib (Dwarf A) (Hs) 

with chromosomes of Bezostaya 1 (Bez). A substitution line set consisted of 21 

monosomic plants (41 chromosomes), in which one of the chromosomes comes from 

a ―donor‖ variety and the background (40 chromosomes) comes from a ―recipient‖ 

variety. In this case, the recipient varieties were CD and Hs, while the donor variety 

was Bez. Thus, a complete set of substitution lines comprises, in the CD and Hs 

series: CD (Bez1A), CD (Bez1B), CD (Bez1D),…, CD (Bez7D), and Hs (Bez1A), 

Hs (Bez1B) Hs (1D),…, Hs (Bez7D) (Law and Worland, 1972; Law et al.,1987). CD 

and Hs have a reciprocal translocation with respect to Bez karyotypes involving 

chromosomes 5B and 7B. Thus, the substitution line Hobbit sib (Bez 5BS-7BS) has a 

chromosome 5B consisting of Hobbit sib 5BL and Bezostaya 5BS, and a 

chromosome 7B with Hobbit sib 7BL and Bezostaya 7BS (Johnson, 1992; Law and 

Worland, 1996). 

 Arraiano et al. (2007b) found that Hs (Bez5BS-7BS) was significantly more 

resistant to STB than the euploid line with isolates IPO323 and IPO94269 in adult 

trials, but not in a seedling test. CD (Bez5BS-7BS) had a similar disease score to 
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those on euploid CD with both isolates, moderately resistant in adult and seedling 

tests. CD series have been almost completely correctly substituted by Bez, except for 

a small telomeric part of 5BS. As the Bez 7BS chromosome arm does not confer 

resistance to STB in CD (Bez 5BS-7BS), and this arm has been substituted correctly 

into Hs (5BS-7BS), it does not explain the resistance of the Hs (Bez5BS-7BS) 

substitution line. However, Hs arm 5BS was not substituted by the homologous 

Bezostaya arm in the 5BS segment. The 5BS arm included a large segment of 

Chinese Spring material with a small segment of Hs in the telomeric region, possibly 

because the Hobbit sib monosomic series was developed from the original Chinese 

Spring monosomic series. Chinese Spring chromosome arm 5B did not confer 

resistance to Hobbit sib (5BS-7BS) line. Euploid CS was susceptible to IPO94269 

isolate, though it was resistant to IPO323, because 3A chromosome carries the 

resistant gene Stb6 (Chartrain et al., 2005b). Thus, either, it is possible that Hobbit 

sib carries a gene or genes for susceptibility to STB on chromosome 5BS, and its 

removal increases the resistance of the Hobbit sib (Bez5BS-7BS) substitution line; or 

there might be a gene which suppresses resistance in Hobbit sib. Thus, the 

substitution of chromosome arm 5BS of Hs by Chinese Spring would nullify the 

effect of the suppressor allowing expression of a previously inhibited resistance 

gene. However, Hs does not have a known resistance gene to STB (Arraiano et al., 

2007b). 

As a summary, resistance of wheat to STB is presented as: 1) specific resistance 

which is controlled by genes of large effect and is isolate-specific, and 2) partial 

resistance, conferred by genes that have partial effects and are isolate-non-specific. 

In addition, enhanced resistance could be obtained through the expression of 

cytoplasmic resistance, present in some cultivars to specific STB isolates. In contrast, 
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a gene (or genes) that suppressed resistance or increase susceptibility to STB seems 

to be present in wheat cultivars. 

1.7 Cost of resistance 

Cost of resistance has been defined as a reduction of fitness in the absence of the 

targeted pest (Simms and Rausher, 1987; Korves and Bergelson, 2004).  Korves and 

Bergelson (2004) defined net cost of infection as a ‗fitness advantage of infected, 

susceptible plants over infected, resistant plants‘. Active defence processes mean that 

the plant increases its biological activities as synthesis of salicylic acid, 

pathogenesis-related (PR) proteins, molecules that have toxic effects even to the 

plant itself, phytoalexins and cell wall material as callose and lignin (Smedegaard-

Petersen and Tolstrup, 1985; Heil and Baldwin, 2002; Vidhyasekaran, 2008). 

Defence may incur in costs to the plants in such a way that better protected 

plants probably have lower fitness than susceptible plants (Heil, 2001). Costs of 

resistance can also be important in the absence of attack (Heil et al., 2000; Korves 

and Bergelson, 2004). Active defence processes have a cost for the plant because of 

the diversion of energy, processes involved in plant growth, and synthesis of defence 

compounds (Smedegaard-Petersen and Tolstrup, 1985; Heil et al., 2000). They may 

be a limiting factor in plant growth and yield (Smedegaard-Petersen and Tolstrup, 

1985). Evidence of resistance cost has been investigated in wheat. On 7D 

chromosome from Aegilops ventricosa (relative of wheat) has been transferred to the 

variety VPM1. This chromosome has gene Pch1 that confers resistance to eyespot 

(Pseudocercosporella herpotrichoides), but the presence of this chromosome lead to 

a reduction in yield of around 8% (Worland et al., 1989). Leaf rust (Puccinia 

recondita) resistant near isogenic lines (NIL) of wheat, carrying the rust resistant 

gene Lr9 were compared to the susceptible recurrent parent Arina. When no leaf rust 
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was present, NIL had a 12% lower grain yield than Arina, due to the reduction of the 

grain number per square meter and of the mean grain weight (Ortelli et al., 1996). 

Indirect costs have been described by Brown (2002) associated with 

mechanisms of disease escape such as plant architecture, rate of development, and 

date of crop maturity, when the development or spreading of the disease was 

permitted. In the case of partial resistance there were no clear examples of cost of 

resistance, but Brown (2002) discussed the possible costs. This was based on the fact 

that resistance could be lost if selection is not frequently carried out, as in the case of 

the loss of partial resistance by the selection of R genes for long time in potato 

against the blight disease caused by Phytophthora infenstans (the Vertifolia effect), 

and the lack of partial resistance showed against tropical rust (Puccinia polysora) of 

maize in Africa, when this disease arrived and losses were severe. 

Both resistance and tolerance are different stages of a single process; 

resistance limits the amount of fungus on the leaf, tolerance increases growth and 

reproduction of the plant at a given level of infection (Brown and Handley, 2006). 

Little is known about the cost of resistance in the wheat-M. graminicola interaction, 

and its effect on yield, but both aspects are relevant in breeding programs. 

1.8 Conclusion 

It has been suggested that partial resistance is costly and probably genetically based. 

The main purpose of this project was to find phenotypic relationships between 

agronomic traits and STB and how this might affect the reduction in yield and yield 

components. Also, the genetic basis of the reduction in yield and yield components 

due to partial resistance are investigated. To achieve this goal, the Senat x Savannah 

(SESA) doubled haploid population was studied. In this population, Senat presents 

good levels of partial resistance, while Savannah is a susceptible cultivar. 
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1.9 Outline of the thesis 

In chapter II yield penalty due to STB partial resistance has been studied through the 

analysis of eleven agronomic traits where phenotypic relationships have been 

established. Two specific traits, heading date and grain protein content, were 

detected as major factors related with disease and yield. 

In Chapter III, the genotypic analysis of the SESA population included the 

detection of quantitative trait loci (QTL) for agronomic traits and STB resistance. 

The genotypic screening allowed the detection of putative QTL for agronomic traits 

linked with QTL for STB resistance. Also, this analysis gives a new approach to 

understand how partial resistance allows a small loss of yield through maintenance of 

the TGW and the specific weight, due to equilibrium between protein content and 

starch content in the grain. 

Finally, in Chapter IV a susceptible gene was detected in the double haploid 

population Hobbit sib x Hobbit sib (5BS-7BS). This should allow breeders to 

identify cultivars or breeding lines carrying this susceptible gene and to remove it 

from their breeding programs. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 2 

Phenotypic relationships among agronomic traits and 

Septoria tritici blotch (Mycosphaerella graminicola) of wheat 
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2.1 Introduction 

The phenotype, that is, the observable or discernible characteristics of a crop, is 

usually analyzed through few traits. This is due to the economic and human 

resources it implies. In wheat, yield and yield components have been the focus of 

extensive phenotypic and genotypic analysis and they are the most important traits 

for plant breeders. Grain quality traits are the second group in which more effort has 

been applied. A great effort has also been applied to study the adaptative traits high 

to the flag leaf and heading date.  All these traits have been cited mostly individually 

as traits affected by the disease Septoria tritici blotch.   

In wheat, as in other cereals, compensatory effects among yield components 

are commonly found (Evans and Wardlaw, 1976, 1996; Evans, 1993). This is due to 

the fact that, during plant development, the components are determined successively 

(Evans and Wardlaw, 1976, 1996; Evans, 1993; Simane et al., 1993; García del 

Moral et al. 2003). Adverse conditions can limit the early formed yield components 

but they can be compensated by late ones (Evans and Wardlaw, 1976, 1996; Evans, 

1993). This performance of wheat may be the result of competition for limited 

resources (Evans and Wardlaw, 1976, 1996; Simane et al., 1993). The yield 

components interact in this way especially under stressed environments (Blum, 1983; 

Fischer, 1985; Simane et al., 1993). However, it seems that the negative association 

between grains m
-2

 and grain weight is independent of competition for assimilates, 

due to the fact that, when one or the other increase, the yield increases (Slafer, 2007). 

The mature grain of wheat is typically mainly composed of starch and 

proteins. Starch makes up about 64-74 % (Bechtel et al., 1990) or even 75-85 % 

(Jenner et al., 1991) of the total grain dry weight, and protein between 10-14 % in 

UK winter wheat (Blanco et al., 1996) and durum wheat (Blanco et al., 2006). 



 

51 

 

Basically, yield is dependent on the deposition of endosperm starch (Herzog, 1986; 

Jenner et al., 1991), but the quality of the grain is conferred by the protein content 

(Cox et al., 1985; Herzog, 1986; Panozzo and Eagles 1999; Panozzo et al., 2001; 

Monaghan et al., 2001 and others). Another grain quality character is the specific 

weight (Bayles, 1977a; Hook, 1984; Gaines et al., 1997; Clarke et al., 2004; 

Atkinson et al., 2005). It indicates grain density and packing properties (Bayles, 

1977b). Grain density indicates the plumpness of the grain, i.e. how well it has been 

filled (Atkinson et al., 2005). Low specific weight has been related to shrivelling 

grains, that is, reduction of total endosperm in the grain (Gaines et al., 1997; Clarke 

et al., 2004). Values of specific weight in UK cultivars are between 67.9 to 78.1 kg 

hl
-1

 (Hook, 1984). Specific weight generally helps to distinguish poorly or well filled 

grains, but not to distinguish grains with intermediate quality (Bayles, 1977b). As a 

trait of the grain, specific weight is related to yield and its components, especially 

with thousand grain weight and its major compounds, starch and proteins.  

The determination of the height of the plant and the heading date marks the 

final events of the vegetative and reproductive phase of the life cycle of the plant, 

respectively. The vegetative phase is characterized by the initiation and growth of 

leaves, tillers, and roots. The reproductive period begins when floral initiation occurs 

(double ridge); during the phase of floral initiation and anthesis the height, the 

number of potential ears per unit area and number of grains ear
-1

 is defined.  The late 

reproductive phase is of great importance because it is then the yield components, ear 

number, grains ear
-1

, and grain m
-2

, are mainly established and hence the potential 

yield (Kirby, 1988; Slafer and Rawson, 1994; Slafer, 2007). Heading is the visible 

change from the reproductive to the grain filling period (Slafer and Rawson, 1994). 

At heading, when ears and stem are growing at the most rapid rate and the peduncle 
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is also growing rapidly, there is still a considerable production of florets, but it is also 

the time for floret death (Kirby, 1980; Herzog, 1986). Height and heading seemed to 

be related at this time of crop development. 

The purpose of this research was to investigate the influence of partial 

resistance to Septoria tritici blotch of wheat on yield, yield components, quality grain 

traits, and plant adaptative traits (heading date and height). A Senat  Savannah 

(SESA) doubled haploid population was chosen as a suitable study population as the 

Senat parent has shown good levels of partial resistance, while the Savannah parent 

is susceptible towards STB. Segregation data on partial resistance to STB for the 

SESA DH population at two sites, NørreAaby (NrAaby02) and Sejet (Sejet02) 

Denmark was provided by Eriksen et al. (2003). 

The first approach was to understand the partial resistance responses of wheat to 

STB as part of the physiology of the whole plant (Brown, 2002). This describes the 

phenotypic variation of eleven agronomic traits in three different environments. The 

phenotypic relationship of partial resistance to yield and yield components, yield and 

other traits were treated as interconnected traits and their relationships with Septoria 

tritici blotch severity is investigated. 

2.2  Materials and methods 

2.2.1 Plant material 

A Senat  Savannah double haploid population (SESA) of 106 lines was used, which 

was developed using the wheat  maize technique from F1 generation at Sejet 

Planteforædling, Denmark (Eriksen et al., 2003). Savannah is a winter wheat cultivar 

highly susceptible to Septoria tritici blotch, which is grown in the UK since 1999 
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(Angus, 2001), while Senat is a Danish variety that expresses high partial resistance 

to M. graminicola isolates (Eriksen et al., 2003). 

2.2.2 Field experiments and disease data  

Phenotypic data of 104 DH lines and their parents stemmed from field experiments 

in the seasons 2004/2005, 2005/2006 at two sites  -Nickerson, UK (52º N, 0.96º E) 

and Sejet, Denmark (55º N, 9º E)- named Nickerson 2005, Nickerson 2006, Sejet 

2005, and Sejet 2006, respectively. Each experimental layout was a lattice design 

with two replicates of 11 miniblocks with 10 entries per miniblock, 110 total entries. 

The single plot size was 1.5  5 m. Appropriate doses of fertilizer (120 kg ha
-1

), 

fungicide (2.5 l ha
-1

 Opus Team; 0.3 l ha
-1

 Stereo; and, 0.4 l ha
-1

 Comet) and growth 

regulators (1 l ha
-1

 Terpal) were applied after sowing at appropriate stages of growth.  

 Segregation data on partial resistance to Septoria tritici blotch for the SESA 

population from previous field trials was provided by Sejet (Eriksen et al., 2003). 

Disease was not scored at Nickerson trials. Septoria tritici blotch severity data were 

collected at two sites Sejet02 (55° N, 9° E) and NrAaby02 (55° N, 9° E) which were 

about 38 km apart. These trials were inoculated twice with a mixture of 11 M. 

graminicola isolates. The first inoculation was performed after the flag leaves were 

fully expanded and the second one was performed 12 days after (Eriksen et al., 

2003). 

The area under the disease progress curve (AUDPC) on flag leaf (Shaner and 

Finney, 1977) was calculated as a measurement of STB severity. The AUDPC was 

calculated from the combined scores (Shaner and Finney, 1977). The maximum 

AUDPC was calculated assuming a score of 100 % on every date the test was scored 

with the formula:  

AUDPC =                  
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where: 

    is the Stb severity (per unit) at the ith observation;    is the time (days) at 

the ith observation; n is the total number of observations. 

Afterwards, data were transformed into logit area under the disease progress 

curve (lgtAUDPC) as a proportion of the maximum area under the disease progress 

curve. The logit (p) takes the logit transformation: log             of the 

percentages p (0 < p 100 %). The mean score for each line was calculated using 

generalized linear mixed modelling (GLMM) (GenStat 9.1). 

2.2.3 Data collection 

The crop phenotypic data set included the following traits: heading date (days from 

the 1
st
 of January onwards), height to the flag leaf (HFL) (cm), canopy maturity 

classification (maturity), grains per ear (grains ear
-1

), a thousand grain weight 

(TGW), grains per square meter (grains m
-2

), ears per square metre (ears m
-2

), yield (t 

ha
-1

), specific weight (SW), grain protein content (GPC) (% DM) and starch content 

(% DM). Canopy maturity was taken at Sejet 2005 on the 22
nd

 of July, at Nickerson 

2006 on the 19
th

 of July, and at Sejet 2006 on the 21
st
 of July. The classification of 

the canopy maturity was made according to the following groups: 1- green flags & 

straw; 3-flags half ripe; 5 straw half ripe, nodes green; 7- straw ripe, nodes green; 9- 

straw ripe, nodes ripe. Before harvest, the number of fertile tillers was counted in a 2 

m (2005) or 0.5 m (2006) row from two locations in the plot. The number of ears per 

square metre was calculated from these counts. Twenty ears were sampled from each 

plot. These were threshed and the cleaned grains weighed. Grains per ear, a thousand 

grain weight (gr) and grains per square metre were calculated from these 

measurements. Yield (t ha
-1

) was calculated from plot yield. The specific weight (kg 

hl
-1

), grain protein content (% DM) and grain starch content (% DM) were measured, 
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at the Sejet trials, on the combined harvested material on a FOSS infratec NIT 

instrument with a specific weight module. At Nickerson, a NIR instrument BRAN + 

LUEBBE Infra Analyzer 260 was used to obtain the grain protein content (% DM), 

and an apparatus for determining the mass by the hectolitre specific weight.  

The Sejet trials data sets were in general complete. The Nickerson 2005 data 

had only one replicate of the traits HD, TGW, SW and yield. This environmental 

data were thus excluded from the analysis. The Nickerson 2006 data were complete, 

only lacking the grain starch content. Data for six lines were discarded due to errors 

at sowing, impure seed or because they were present in one environment only. 

Data on rainfall and temperature were obtained from nearby weather stations, 

Wattisham, UK (52º N, 0.96º E) for the Nickerson trial and Aarhus Sid, Denmark 

(56º N, 10º E) for the Sejet trials. 

2.2.4 Statistical analysis 

Analysis of variance (ANOVA) was conducted for each trait at each trial. A 

Generalized Linear Models (GLM) analysis from the statistical package GenStat® 

9.1 (GenStat committee, 2006) was conducted to test for differences among trials for 

each trait. Mean values were calculated from replicates of each line for each trait for 

the different trials. Test of X
2
 goodness of fit was applied to investigate if there was 

normality performance of each trait at each trial. Pearson correlation coefficients (r) 

among each trial for each agronomic trait were calculated. In addition, Pearson 

correlation coefficients were calculated for all possible comparisons among the traits 

for each trial, as well as correlation coefficients among the traits of each trial versus 

(vs.) STB severity.  
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2.3  Results 

2.3.1 Analysis of variance 

The analysis of variance for each trial showed highly statistical significant 

differences among lines for most of the traits (P<0.001) in the three environments 

tested. However, differences among lines were not highly significant for grains m
-2

 

(Appendix A, Tables A.1, A.2, and A.3). Additionally, for the trait ears m
-2

 highly 

significant differences were only found at Sejet 2005 but not at Nickerson 2006 and 

Sejet 2006 (Appendix A, Table A.2). 

 The analysis of variance to detect differences among trials showed highly 

significant statistical differences (P ≤ 0.001) among trials and lines for all the traits 

(Table 2.1). Also, the analysis of variance for each trait showed a significant trial  

line interaction except for ears m
-2 

(Table 2.1). However, trials  line effects were all 

smaller than the main effects of the lines. These results suggest that the site-

environment influence on the performance of the DH population; it was probably due 

to the genotype  environment interaction, except for the trait ears m
-2

.  

Table 2.1 Analysis of variance for agronomic traits of Senat  Savannah double haploid 

population and parents at different environments 

 

    ***Significant at P ≤ 0.001; **Significant at P = 0.005; *Significant at P = 0.05 
   TGW, thousand grain weight: Protein, grain protein content; SW, specific weight; HD, heading date; HFL, height to the flag 

   leaf; Maturity, canopy maturity; Starch, grain protein starch 

  Ears/m2 Grains/m2 Grains/ear  TGW Yield GPC  

Source      df MS MS MS  MS MS MS  

Trial 2 2283468*** 2.760E+09***    16607.28***     3055.36*** 94.99*** 346.10***     

Line 97     10565*** 3.435E+07***           72.47***            37.04***   0.72***     0.90***       

Trial. 

Line 

194       7153 2.529E+07*          16.74*           5.73***   0.18***     0.16***       

Residual            215       6260 2.014E+07       11.67        3.04   0.07     0.09  

Total 587     15883 4.105E+07       99.33      21.31   0.61     1.52  

  SW HD HFL Maturity    Starch 

Source      df MS MS MS MS  Source      df MS 

Trial 2  964.91*** 2769.20*** 1614648***    141.81***      Trial     1 167.48***    

Line 97    14.58***     12.99***   132.40***         5.60***       Line   97     2.16***      

Trial.Line 194      2.12***       1.00**       8.11**          1.41***       Trial. Line   97     0.33***      

Residual            215       0.99       0.43       5.45     0.76  Residual            154     0.12 

Total 587       7.54     12.51     37.28     2.40  Total 391     1.29 
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The test of X
2
 goodness of fit for each agronomic trait showed normality of 

the data (X
2
 α = 0.001) for all the traits at each site (Appendix B). This performance 

was expected for quantitative traits as yield, height and other traits. Qualitative traits 

(or quasi-quantitative traits) as heading date and canopy maturity could not show 

normality if the size of the sample was not large enough, however, the trend of all the 

distributions tends towards normality when the sample is large, as in this study. 

Although the hypothesis of normality of the data (null hypothesis) could be accepted 

with a P < 0.05, the test showed a higher probability to be acceptable at P < 0.001 for 

all the traits.  

For most of the traits, the means measurements of the DH lines were between 

the means of the parents (Table 2.2, and Appendix C), except for ears m
-2

 and grains 

m
-2

 in Nickerson 2006 data.  

The overall trait means for each trait of the double haploid population showed 

significant differences at the three environments tested, except for grains m
-2

 and 

canopy maturity (Table 2.2). The DH population exhibited transgressive segregation 

with respect to the parents for the agronomic traits (Appendix C). 

Kearsey and Pooni (1998) stated that DH lines produced from the F1 were 

equivalent to F lines in their mean and variance. For a trait exhibiting heterosis, 

although the mean declined, the variance among lines increased reaching a maximum 

at F; they also showed that there may be lines which might show transgressive 

segregation.   
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Table 2.2 Means and standard deviations of Senat  Savannah DH lines and parents showing 

differences among environments 

 

                a H0:     =    =    , where     is the trait mean of the double haploid population at Nickerson 2005;    is the trait 

             mean of the double haploid population at Sejet 2005; and,    is the trait mean of the double haploid population at  

             Sejet 2006 

             *Tukey  = 0.05; **Tukey  = 0.01; NS_ not significant       

 

Analysis of variance for STB severity indicates highly significant differences 

between the trials and lines, also trial  line interaction (P < 0.001) is suggested. 

However, main effects were higher than the interaction effect (Table 2.3). 

Trait Genotype Nickerson 2006 Sejet 2005 Sejet 2006 Significance a 

Ears m-2 Senat 

Savannah 

DH lines 

SD 

          479 

560 

451 

76 

571 

458 

512 

  57 

     783 

588 

661 

  72 

 

 

* 

 
      

Grains m-2 Senat 

Savannah 

DH lines 

SD 

        34409 

34126 

27690 

  6073 

    25654 

22047 

23504 

  2352 

    37324 

28371 

30929 

  3378 

 

 

NS 

      

Grains ear-1 Senat 

Savannah 

DH lines 

SD 

           72 

61 

61 

 7 

       45 

48 

46 

 4 

      48 

48 

47 

4 

 

 

** 

      

TGW (gr) Senat 

Savannah 

DH lines 

SD 

         47.96 

54.56 

51.78 

  2.80 

    38.36 

48.52 

44.98 

  2.81 

    38.13 

46.97 

44.56 

  3.37 

 

 

** 

      

Yield (ton ha-1) Senat 

Savannah 

DH lines 

SD 

        10.14 

10.76 

10.52 

  0.42 

     8.44 

9.18 

9.20 

0.53 

     9.15 

9.16 

9.48 

0.48 

 

 

** 

      

 Protein (% DM) Senat 

Savannah 

DH lines 

SD 

        13.33 

11.69 

12.28 

  0.54 

    10.31 

  9.21 

  9.89 

  0.40 

    12.60 

11.29 

12.08 

  0.51 

 

 

** 

      

Starch (% DM) 

 

Senat 

Savannah 

DH lines 

SD 

_ 

_ 

_ 

_ 

    68.56 

69.26 

68.98 

  0.70 

    67.20 

68.01 

67.68 

  0.99 

 

 

** 

      

Specific weight 

(kg hl-1) 

Senat 

Savannah 

DH lines 

SD 

        78.08 

78.62 

78.41 

  1.60 

    74.84 

73.93 

74.71 

  1.81 

    72.28 

74.20 

74.37 

  2.33 

 

 

** 

      

Heading date 

(days 1/1) 

Senat 

Savannah 

DH lines 

SD 

          160 

155 

158 

    2 

      167 

162 

164 

    2 

      166 

163 

164 

    1 

 

 

** 

      

Height to the flag leaf 

(cm) 

Senat 

Savannah 

DH lines 

SD 

        60.89 

59.81 

61.37 

 4.97 

    55.74 

58.34 

59.74 

  5.73 

    63.65 

64.51 

65.23 

  5.47 

 

 

* 

 
     

Canopy maturity Senat 

Savannah 

DH lines 

SD 

            4 

6 

5 

1 

       3 

3 

3 

1 

        3 

5 

3 

1 

 

 

NS 
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Differences between the means are supported by the analysis of variance at 

NrAaby02 and Sejet02 trials. The means for site, cultivar, and for the double haploid 

population are presented in Table 2.4.  

 

Table 2.3 ANOVA for STB severity at NrAaby02 

and Sejet02 trials 
 

 

 

 

                                                              H0:     =   , where     is the Stb severity mean at  NrAaby02 

                                                                    and    is the Stb severity mean at Sejet02  

                                                              *** Significant at P ≤ 0.001 
 

 
Table 2.4 Means of Senat and Savannah parents and DH lines under  

STB disease pressure trials at NrAaby02 and Sejet02 trials 

 

 

 

 

2.3.2 Correlation analysis  

2.3.2.1 Correlation among agronomic traits and trials 

According with the analysis of variance presented in Table 2.1, Pearson correlation 

coefficients were calculated among the three trials for ten traits (Nickerson 2006, 

Sejet 2005, and Sejet 2006), and in two trials (Sejet 2005 and Sejet 2006) for starch 

content in the Senat  Savannah DH population (Table 2.5). The correlation 

coefficients were positive and highly significant among the three environments for 

each agronomic trait. However, ears m
-2

 and grains m
-2

 were not associated in the 

comparisons of Nickerson 2006 vs. Sejet 2005 and Nickerson 2006 vs. Sejet 2006 

trials.  

  STB 

Source                  df MS 

Trial 1    6.56*** 

Line 97  76.57*** 

Trial. Line 97    2.21*** 

Residual            3884    0.51 

Total 4079    2.36 

 Genotype NrAaby02 Sejet02 

STB 

(lgtAUDPC) 

 

 

 

Senat 

Savannah 

DH lines 

 

    -4.22 

     1.15 

    -1.55  

 

-5.08 

 0.19 

-2.37  
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Table 2.5 Correlation coefficients amongst three trials for eleven agronomic 

traits of the Senat  Savannah double haploid population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  *** Significance at P ≤ 0.001 

                                               

 

2.3.2.2 Correlations between STB severity and agronomic traits  

Septoria tritici blotch severity showed highly positive significant association (r = 

0.95) between both sites analyzed, NrAaby02 and Sejet02 (Table 2.6). 

The correlation coefficients were calculated from the Nickerson 2006, Sejet 

2005, and Sejet 2006 data sets and the segregation population data for STB 

resistance-susceptibility were obtained at NrAaby02 and Sejet02. In all three 

environments tested, a negative correlation coefficient was obtained between heading 

Trait Site Sejet 2005 Sejet 2006 

Ears m-2  

Nickerson 2006 

Sejet 2005 

 

- 0.03 

 

 

          0.02 

      0.65*** 

Grains m-2  

Nickerson 2006 

Sejet 2005 

 

 0.03 

 

          0.07 

     0.38*** 

Grains ear-1  

Nickerson 2006 

Sejet 2005 

 

       0.42*** 

 

0.42*** 

0.61*** 

TGW  

Nickerson 2006 

Sejet 2005 

 

       0.55*** 

 

0.59*** 

0.67*** 

Yield  

Nickerson 2006 

Sejet 2005 

 

       0.29*** 

 

0.54*** 

        0.27** 

Protein 

(DM %) 

 

Nickerson 2006 

Sejet 2005 

 

 

       0.51*** 

 

0.51*** 

0.46*** 

Starch 

(DM %) 

 

Sejet 2005 

 

---- 

 

0.74*** 

Specific Weight  

Nickerson 2006 

Sejet 2005 

 

       0.69*** 

 

0.61*** 

0.73*** 

Heading date  

Nickerson 2006 

Sejet 2005 

 

       0.83*** 

 

    0.79*** 

0.87*** 

Height to the  

flag leaf (cm) 

 

Nickerson 2006 

Sejet 2005 

 

       0.79*** 

 

0.78*** 

0.89*** 

    

Maturity  

Nickerson 2006 

Sejet 2005 

 

       0.43*** 

 

0.54*** 

0.41*** 
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date and STB severity. This means that in early heading lines the disease severity 

was higher than in late lines. This trend was more evident at Nickerson 2006 and 

Sejet 2005, where the association was highly significant for both STB trials (Table 

2.6). Maturity was positively associated to disease severity at Nickerson 2006 and 

Sejet 2006. This result suggests that in these environments STB severity was higher 

in mature tissues (straw, flag leaf and nodes) than in green tissues (Table 2.6). These 

results are in agreement with the findings of Ziv and Eyal (1976), Cornish et al., 

(1990), Shaw and Royle (1993), and Simón et al. (2002) who reported that the effect 

of STB on yield and yield components depended on the severity of the epidemic at a 

given developmental stage of the crop at the time of the infection. 

The yield components were significantly correlated to STB severity in 

NrAaby02 and Sejet02 trials (Table 2.6). The most remarkable association between 

STB severity and a yield component was to TGW in the three environments 

considered. A statistically significant positive association was found, suggesting that 

when STB severity increased, TGW did not decrease, especially for Sejet 2005 data, 

where the correlation coefficient was high (Table 2.6). Conversely, and similarly 

important, the association between grains m
-2

 and STB severity was negative at all 

the environments (Table 2.6). It suggests that, as STB severity increased, the number 

of grains m
-2

 decreased. The yield component ears m
-2

 was also negatively associated 

with STB severity at Sejet 2005 and Sejet 2006. The grains ear
-1

 was associated with 

STB only at Nickerson 2006. In contrast to the performance of ears m
-2

, a slightly 

negative association was obtained between grains per ear and STB severity at 

Nickerson 2006. Contradictory results were obtained by Leitch and Jenkins (1995) 

and Simón et al. (2002); they found that with early infections the number of ears m
-2
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is diminish by STB while with late infections the grains ear
-1

 or the thousand grain 

weight can be reduced.  

The negative association detected between STB severity and ears m
-2 

and 

grains ear
-1

 suggest that in these environments an increase of STB severity resulted in 

a decrease in these two yield components. For the DH population, contrasting 

performance was found for the association between yield and STB severity at Sejet 

2005 and 2006. At Sejet 2005, this association was positive. The slight correlation 

coefficient suggests that severity of disease increased in parallel with yield. 

However, at Sejet 2006 this association was negative. Thus, STB severity increased 

and yield decreased (Table 2.6). Several authors (Shaner et al., 1975; Ziv and Eyal, 

1978; King et al., 1983a; Thomas et al., 1989; Shaw and Royle, 1989a, b, and 1993; 

Paveley, 1999) have found that yield losses were present when the flag leaf is 

infected, and also the second and third leaves. However, in tolerant cultivars the 

yield is not severely affected (Ziv and Eyal, 1976, 1978; Ziv et al., 1981; Zilberstein 

et al., 1985; Cornish et al., 1990; Zuckerman et al., 1997; Simón et al., 2002). 

The correlation coefficient between disease severity and grain protein content 

was negative; suggesting that STB increased as grain protein content decreased. This 

negative correlation coefficient was highly significant at Nickerson 2006 and 

moderately significant at Sejet 2005, while at Sejet 2006 it was slightly and only 

significant with the STB severity data from Sejet02. 
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2.3.2.3 Correlation between different traits 

There were 131 Pearson significant correlation coefficients detected among eleven 

traits and between STB severity and agronomic traits in the phenotypic analysis. 

Thus, the more important associations are summarized in this section.  

2.3.2.3.1 Plant adaptation traits and yield  

The association between HD and yield was negative and highly significant in all the 

environments, suggesting that early lines yielded more than the late ones. Similarly, 

the association between HD and the yield components grains ear
-1

 and TGW was 

significant and negative at Sejet 2005 and 2006. These results suggest that, in early 

lines, the grains reached more weight than in later ones. However, the association 

between HD and ears m
-2

 was positive at Sejet 2005 and 2006. Also, the association 

between HD vs. grains m
-2

 was slightly positive only at Sejet 2006. Heading date and 

TGW were negatively associated at the Sejet trials. Also, factors related to TGW 

were associated to HD. The association between HD and SW, and between HD and 

starch %, was negative in the environments where they were assessed, meaning that 

early lines reached more SW and starch % than late ones. Conversely, the association 

between HD and GPC was positive, so that early lines have less GPC than late lines 

in all environments. Another highly negative association was found between HD and 

maturity at the three environments tested (Table 2.6). 

 The adaptative traits, HD and height to the flag leaf, were slightly negative 

associated at Nickerson 2006 and Sejet 2006, suggesting that early lines were taller 

than late lines. The height (HFL) was positively associated to TGW, SW, starch % 

and yield, meaning that in taller lines, the grains reached higher weight, SW, and 

starch % giving as result superior yield. The HFL was negatively associated to ears 
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m
-2

 and grains m
-2

 at the Sejet trials, suggesting that, in these environments, taller 

lines had less grains m
-2

 and ears m
-2

 (Table 2.6).  

2.3.2.3.2 Yield and yield components 

Of the yield components, only TGW was positively associated to yield in all the 

environments. The trait grains ear
-1

 was also positively associated to yield only at 

Nickerson 2006. At Sejet 2006, the yield and ears m
-2

 were negatively correlated. 

Only at Nickerson 2006, the association between yield vs. grains m
-2

 was positive. 

The yield components ears m
-2

 and grains m
-2

, and grains ear
-1

 and grains m
-2

 were 

positively associated in all environments. Conversely, negative correlations were 

found between ears m
-2

 and grains ear
-1

 at Sejet 2005 and 2006. A TGW and grains 

m
-2

 were in a significant way negatively associated at all the environments. 

Similarly, the association between TGW and ears m
-2

 was negative at Sejet 2005 and 

2006. Also, the association between TGW vs. grains ear
-1

 was negative at Nickerson 

2006 and Sejet 2006.  

2.3.2.3.3 Quality grain traits and yield 

The traits GPC, SW and percentage of starch are traits of the grain and thus it was 

expected they should be associated to yield and TGW. The associations yield-starch 

%, yield-SW, yield-TGW, TGW-starch %, TGW-SW, SW-starch %, were positive at 

all the environments, indicating that, as the starch % increased, TGW, SW and yield 

also increased (grain starch content was not measured at Nickerson 2006). 

Conversely, grain protein content was negatively associated to starch %, SW, TGW 

and yield, especially at Sejet 2005. However, SW vs. GPC and TGW vs. GPC did not 

show statistical significance association at Nickerson 2006 and Sejet 2006 (Table 
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2.6). These results suggested that, as GPC increased the starch %, SW and yield 

decrease (Table 2.6). 

The association between grains m
-2

 and SW was negatively significant at 

Sejet 2005 and 2006. Also, the association between grains m
-2

 and starch % was 

negative at Sejet 2005. For the grains m
-2

 factors, the association between ears m
-2

 

and GPC was positive only at Sejet 2006. The association between ears m
-2

 and SW 

was negative only at Sejet 2005. The association between grains ear
-1

 and GPC was 

negative at Sejet 2006. The association between grains ear
-1

 and SW was negative at 

Nickerson 2006 and Sejet 2006 (Table 2.6). 

2.3.3 Environmental factors 

Environmental factors are important in the performance of the DH population 

at each environment. Figure 2.1 shows precipitation and temperature during the crop 

development of the Savannah x Senat DH population at Nickerson 2006, Sejet 2005, 

and Sejet 2006. This figure intended to give a general idea of the climatic differences 

among the trials analysed.  

At Nickerson 2006, during most of the vegetative period the temperatures 

registered were around 3ºC higher than at the Sejet environments. Temperatures up 

to 14ºC were registered before heading and early grain filling period. There was a 

period of moisture stress during heading date and early grain filling period, after 

which the precipitation increased during the last month of the grain filling period. 

The total precipitation from January to August was 389.99 mm. 

At Sejet 2005 and 2006, lower temperatures were registered during the 

vegetative period. At Sejet 2005, the total amount of rainfall was the lowest (334.26 

mm) but its distribution was steady during the vegetative phase, and reached it its 

maximum during the heading, anthesis and grain-filling period.  
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Figure 2.1 Environmental factors: temperature and precipitation at Nickerson 2006, 

Sejet 2005 and Sejet 2006 from January to August 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At Sejet 2006, there was a period of scarce precipitation where temperature 

was up to 15ºC days before heading and during anthesis and early grain 

development. At the middle of the grain development, the precipitation increased. 

The total precipitation from January to August was 376.45 mm. 

2.4 Discussion 

The analysis of variance that compares the three trials reveals that there was much 

phenotypic variation in the Senat  Savannah DH population, as there were 

differences for almost all the traits. No significant trial  line interaction was found 
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for ears m
-2

, however there was no association found between Nickerson 2006 vs. 

Sejet 2005 and Nickerson 2006 vs. Sejet 2006 for this trait.  

These results clearly indicate that the DH population performed differently in 

the three environments. The differences become more evident throughout the 

comparison of the means among the trials and the correlation coefficients among the 

agronomic traits. Additionally, the associations between each agronomic trait and 

STB severity were different under each environment. The yield components TGW, 

grains m
-2

, ears m
-2

 and grains ear
-1

 were associated to STB severity, as well as the 

yield itself. Furthermore, other traits like SW, HD, maturity and grain protein content 

were also associated to STB severity.  

 These associations are presented as subsystems to allow a better 

understanding of the relationships among the agronomic traits and the agronomic 

traits and Septoria tritici blotch. 

Phenotypic association of plant adaptation traits and STB 

In wheat, disease escape prevents or reduces contact between pathogen spores and 

the upper canopy (Paveley et al., 2005), as yield reduction is mostly related to the 

disease of the top leaves (Shaner et al., 1975; Ziv and Eyal, 1978; King et al., 1983a; 

Thomas et al., 1989; Shaw and Royle, 1989a, b, and 1993; Paveley, 1999, 2005). 

The heading date and the plant height have been considered factors that confer 

‗disease escape‘ to STB severity, but its mechanisms may differ and are determined 

by the environment.  

Differences in time to heading in the Senat  Savannah DH population among 

the three environments may be due to sensitivity to temperature during the vegetative 

and generative phases. Heading date was found to be negatively associated to yield 

in a highly significantly way in all the environments (Fig. 2.2a, b, and c). 
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Figure 2.2 Associations of plant adaptation traits (shown by arrows) with yield and yield 

components and associations of heading date and yield components with STB                     

severity at three environments (only significant associations are shown). 
STB association with an agronomic trait;               Trait that contributes to increase another trait;                       

Inversely associated traits;    normal number, correlation coefficient at NrAaby02;   bold number, 

correlation coefficient at Sejet02 

Fig. 2.2a  Nickerson 2006; Fig. 2.2b Sejet 2005; Fig. 2.2c  Sejet 2006. 
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These results agree with those found by Zhong-hu and Rajaram (1994) under 

late planting. Also, HD was negatively associated to TGW at Sejet 2005 and 2006. 

According to Sofield et al. (1977b), Angus and Moncur (1977), Evans (1993) and 

Beltrano et al. (2006), this may be due to the short grain growth period that limits the 

accumulation of dry matter in the grain. There was highly positive association 

between HD and ears m
-2

 at the Sejet trials (Fig. 2.2). A positive association was 

found between HD and grains m
-2

 only at Sejet 2006. A highly significant negative 

association between HD and grains ear
-1

 was calculated only at Sejet 2005 (Fig. 

2.2b), suggesting that HD was a limiting factor for the increase of grains numbers. 

According to Kirby (1988) and Herzog (1986), these associations between the 

HD and the yield components may be related to the time to heading. At this stage, 

when ears and stem were growing at the most rapid rate and peduncle was also 

growing rapidly, there was still a considerable production of florets, but it was also 

the time for floret death. 

The late reproductive phase is of great importance because the yield 

components ears m
-2

, grains ear
-1

 and grain m
-2

 are mainly established and hence, the 

potential yield (Kirby, 1988; Slafer and Rawson, 1994; Slafer, 2007). Competition 

for assimilates during the reproductive stage is mainly between the elongating stems 

and the ears development (Evans and Wardlaw, 1976; Kirby, 1988). However, stem 

growth is probably the principal sink before anthesis (Evans and Wardlaw, 1996). 

Under favourable conditions, competition is not significant (Herzog, 1986). Thus, 

height and heading seemed to be related at this time of the crop development. 

Slightly significantly negative associations were calculated between these traits at 

Nickerson 2006 and Sejet 2006, where the means for height were superior (Table 

2.2, Fig. 2.2a and c), though there were not statistically significant differences 
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between them. Nevertheless, there was no significant correlation between height and 

HD at Sejet 2005 (Fig. 2.2b), suggesting independent development between these 

traits at this environment. 

A highly negative significant association was found between heading date 

and STB at Nickerson 2006 and at Sejet 2005. This result agrees with several reports 

of associations between incidence of STB and earliness (Danon et al., 1982; 

Camacho-Casas et al., 1995; Arama et al., 1999; Simón et al., 2002 and 2004; 

Chartrain et al., 2004b; Arraiano et al., 2006). The negative association between HD 

and STB severity was slightly significant at Sejet 2006 trial (Table 2.6 and Fig. 2.2). 

This result agrees with those reported for late heading (Shaner et al., 1975; Danon et 

al., 1982; Shaw and Royle, 1989a, b, 1993; Eyal and Talpaz, 1990; van Beuningen 

and Kohli, 1990; Arraiano et al., 2007a).  

At Nickerson 2006 there was no association between height and yield 

components, except with TGW (Fig. 2.2a). However, at Sejet 2005 and 2006 there 

were negative associations between height and grains m
-2

 and height and ears m
-2

 

(Fig. 2.2b and c), suggesting competition for assimilates between stem elongation 

and ears and grains survival. The association between height and TGW and between 

height and yield was positive in all the environments. Similar results have been 

found by several authors (Ziv et al., 1981; Slafer and Andrade, 1991; Zhon-hu and 

Rajaram, 1994). Slafer and Andrade (1991) suggested that this positive association is 

based on the better light distribution within the leaf canopy of taller cultivars. Thus, 

the highly positive significant association between specific weight and height is 

important. This association is also related to the positive associations between height 

and starch content, between height and TGW, and between height and yield and 
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among these traits where positive associations were also found in all the 

environments (Fig. 2.2, Table 2.6).  

In this work, the height to the flag leaf did not show association with disease 

severity in the environments tested. Similar results were found by Eriksen et al. 

(2003) when they were working with the Savannah  Senat DH population. Danon et 

al. (1982) have also reported no significant associations between STB severity and 

height. However, several other authors have reported negatively significant 

associations (van Beuningen and Kohli, 1990; Camacho-Casas et al., 1995; Chartrain 

et al., 2004b; Simón et al., 2004, 2005; Arraiano et al., 2006).  

Phenotypic association between yield components and STB 

The yield components ears m
-2

, grains ear
-1

, grains m
-2

 and TGW are physiologically 

associated to the final yield, and these associations can be explained by the equation:  

Yield = grains m
-2

  grains weight  

           Grains m
-2

 = grains ear
-1

  ears m
-2 

which involves the major yield components (Slafer, 2007). These yield 

components were correlated with STB severity in a different way in each 

environment (Fig.2.3).  

At Nickerson 2006, the positive associations between the yield components 

indicate that compensatory effects were almost absent (Figure 2.3a), which agrees 

with the results found by García del Moral et al. (2003) in Triticum turgidum. In their 

work, under favourable conditions during the development process of the crop, with 

sufficient amount of water, nitrogen and moderate temperature, there were no 

compensatory effects or they were not significant. The significantly high yield in this 

environment (Table 2.2) proves there were better conditions for the development of 

the DH population than at the Sejet trials.  
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Nevertheless, a strong negative association was observed between grains ear
-1

 

and TGW. A similar association has also been found by García del Moral et al. 
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Figure 2.3 Associations between yield components with yield and STB severity at three 

environments and their relationships (shown by arrows. Only significant associations are 

shown). 
                             STB association with an agronomic trait;               Trait that contributes to increase another trait; 

                             Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number, 
                            correlation coefficient at Sejet02            

Fig. 2.3a Nickerson 2006; Fig. 2.3b Sejet 2005; Fig. 2.3c Sejet 2006. 
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(2003) and Huang et al. (2004). Early heading was registered at this environment 

(Table 2.2). In wheat, this performance is caused by its sensitivity to high 

temperatures (Herzog, 1986; Slafer and Rawson, 1994). Slafer and Rawson (1994) 

indicate that, although there were differences among genotypes, the response to 

temperature was stronger in the vegetative phase than in the spikelet initiation or 

stem elongation phases. 

The response to a short vegetative period is usually manifested as a reduction 

in ears m
-2

 formation, according to Herzog (1986). Values were lower in Nickerson 

2006, however, the higher amount of grains ear
-1

 was reached in this environment 

(Table 2.2), which in terms of the results reported by Evans & Wardlaw (1976) and 

Blum & Pnuel (1990), seemed to occur as a compensation response for the reduction 

in ear number; this in order to maintain yield. Both characteristics, low number of 

ears m
-2

 and high amount of grains ear
-1

, represent no competition for assimilates 

between these traits, which conducts towards a better filling of grains (Evans and 

Wardlaw, 1976; Giunta et al., 1993),  most probably this was the reason a thousand 

grain weight was significantly higher in Nickerson 2006 than in the Sejet trials 

(Table 2.2). The grains ear
-1

 contributed directly and positively to the yield (Fig. 

2.3a), as it has been found in Triticum turgidum (Gebeyehou et al., 1982; Simane et 

al., 1993; García del Moral et al., 2003) and T. aestivum wheat cultivars (Evans, 

1993; Zhong-hu and Rajaram, 1994; Denčić et al., 2000) under drought stress. A 

thousand grain weight also contributed positively with final yield (García del Moral 

et al., 2003). However, the positive associations of all these traits grains m
-2

, grains 

ear
-1

 and TGW to yield were individually slight (Figure 2.3a).  

Conversely, at Sejet 2005 and 2006, late heading of the DH population was 

present and the amount of ears m
-2

 was higher than at Nickerson 2006 (Table 2.2). 
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These characteristics have been found when the temperature was low during the 

vegetative period (Herzog, 1986). Also at Sejet 2005 and 2006, the number of grains 

ear
-1

 was significantly lower than at Nickerson 2006 (Table 2.2). Mainly, reduction 

in grains per ear was related to limited precipitation during the differentiation of 

spikelets and florets (Brocklehurst et al., 1978; Giunta et al., 1993; Simane et al., 

1993; Denčić et al., 2000; García del Moral et al., 2003; Beltrano et al., 2006). The 

association ears m
-2

 and TGW was negative at the Sejet environments, suggesting 

competition for assimilates between the growth of the surviving ears per plant and 

the grain growth (Fig. 2.3b and 2.3c). Similar results have been found by Gebeyehou 

et al. (1982), indicating that with an increase of ears m
-2

, the number of grains ear
-1

 

and the TGW diminished (Table 2.2). Compensatory effects at Sejet 2005 and 2006 

were indicated by the negative association between ears m
-2

 and grains ear
-1

 at both 

environments. Also, there was no positive contribution of grains m
-2

 to the yield (Fig. 

2.3b and 2.3c). The association between grains m
-2

 and TGW was highly negative in 

these two environments. The high positive association between yield and TGW 

indicates that this trait determined the final yield mostly in these environments. This 

result agrees with the findings of García del Moral et al. (2003) and Gross et al. 

(2003). García del Moral et al. (2003)  reported a highly positive correlation 

coefficient between grain yield and grain weight in cooler and warmer environments 

and two moisture regimes (irrigated and rain fed). However, the lowest TGW and 

yield were reached at the Sejet trials (Table 2.2). 

Compensatory effects among all the yield components were mainly found at 

Sejet 2006 (Figure 2.3c). This may be due to the higher number of ears m
-2

 which 

increased competition for assimilates. There was a highly negative association 

between ears m
-2

 and yield. Also, the association between ears m
-2

 and grains ear
-1

, 
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grains m
-2 

and TGW were highly significant negative. These results suggest a strong 

competition for assimilates between ears surviving against grains development. 

Several authors like Fischer and Maurer (1978), Giunta et al. (1993) and Denčić et 

al. (2000) have assumed that this response is due to the limited amount of water 

during the early grain-filling period. 

Yield and yield components data from the trials analyzed were correlated 

with the segregation data for STB severity at NrAaby02 and Sejet02 sites, giving the 

following results. At Nickerson 2006, the trait grains ear
-1

 was slightly negatively 

associated to STB severity at NrAaby02 and Sejet02. Reductions in grains ear
-1

 have 

been found as a result of early infections as reported by Ziv and Eyal (1976, 1978) 

and Simón et al. (2002). The trait ears m
-2

 was highly negatively associated to STB 

severity at Sejet 2005, while it was slightly negatively associated to STB severity at 

Sejet 2006. A reduction of the amount of ears m
-2

 by STB in some tolerant wheat 

cultivars has also been found by Simón et al. (2002) and Ziv and Eyal (1976), the 

latter suggesting it might be due to the high amount of tillers. Shaw and Royle 

(1989a) explained the dissemination of conidia from lower to higher up leaves in the 

canopy or to the surrounding leaves by rain splash. Also, Shaw and Royle (1993) and  

Lovell (1997, 2004a) indicated the transmission of septoria tritici by contact between 

different leaves with similar height may occur, both ways to infect healthy plants are 

easy allowed by the high amount of tillers. 

A thousand grain weight was positively associated with STB severity at 

Nickerson 2006, Sejet 2005 and Sejet 2006. This result agrees very well with those 

found by Ziv and Eyal (1976, 1978), Ziv et al. (1981), Zilberstein et al. (1985), 

Cornish et al. (1990), Zuckerman et al. (1997) and Simón et al. (2002) in tolerant 

cultivars. The positive association between these traits indicates the maintaining of a 
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TGW under STB severity stress. Conversely, in susceptible varieties TGW can be 

particularly reduced by STB disease (Ziv and Eyal, 1978; Zilverstein et al., 1985; 

Cornish et al., 1990; Leith and Jenkins, 1995; Simón et al., 2002). 

The yield component grains m
-2

 was negatively associated to STB severity. 

This negative association has not been reported before. Three points have to be 

clarified here with respect to grains m
-2

. Firstly, grains m
-2

 showed a negative 

association with TGW in the three environments. According to Evans and Wardlaw 

(1976), this trait tends to vary inversely with grain weight from up to 25,000 grains 

m
-2

 in wheat. The negative association between these traits indicate that the total 

amount of available assimilates for grain growth is not large enough to satisfy the 

demand of the grains to be completely filled (Slafer and Andrade, 1991), or grain set 

took place in distal positions within the central spikelets and/or in extreme spikelets 

of the ear, positions where grains have a lower weight potential (Slafer and Andrade, 

1991; Evans and Wardlaw, 1996). Secondly, but linked with the last point, we can 

mention the negative association between grains m
-2

 and yield at Sejet 2006 and the 

lack of association between these traits at Sejet 2005, it signals not only to the 

reduction of yield when there are many ears per unit area, but also to the existence of 

a further biological interpretation, the physiological limitation of potential yield 

(Evans and Fischer, 1999). To this respect, in terms of the arguments presented by 

Fischer and Wood (1979), the amount of ears m
-2

 was in super optimal conditions to 

reach the maximum yield. Thirdly, with reference to the association between grains 

m
-2

 and STB, since grains m
-2

 has not been explicitly reported in the literature as an 

independent trait affected by STB disease, it might be just because grains m
-2

 is the 

arithmetic product of ears m
-2

 and grains ear
-1

. However, it is not just the product of 

these traits; it is also the interaction between them and with the environment. 
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At Sejet 2005, yield was positively associated to STB severity. However, at 

Sejet 2006, yield was negatively associated to STB severity (Figure 2.3b and 2.3c). 

Yield is the integrated end product of a great variety of processes (Evans, 1993); it is 

the action and the interactions among different traits more than a trait itself, 

determined by particular genes (Slafer, 2003 and 2007). Thus, it is not easy to 

explain the positive association between yield and STB severity at Sejet 2005, and 

the negative association between these traits at Sejet 2006, although these 

associations were negligible. Maybe at Sejet 2005 the positive association would be a 

resemblance of the relation between TGW and STB severity (highly significant), 

since TGW is dependent on the deposition of starch in the grain, which mainly 

contributes to the weight of the grain (Jenner et al., 1991). Also, starch percentage 

was positively associated to yield. Interestingly to note that, the correlation 

coefficients between TGW and starch %, TGW and yield, and starch percentage and 

yield were highly positive and similar at this environment (Fig. 2.3b). These 

associations suggest that at Sejet 2005, the grain starch percentage was mainly 

determined the TGW and yield. On the other hand, at Sejet 2006, where TGW and 

STB severity association was moderately high, the association between TGW and 

starch percentage was negligible (Fig. 2.3c). Although grain starch percentage was 

positively and highly significantly associated to yield, this suggests that the TGW 

and yield do not only depend on starch percentage, but also on other compounds, at 

this environment. 

Association of grain protein content with STB 

Grain protein content was significantly negatively correlated with STB severity at the 

three environments tested. The extent of this association was different at each 
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environment. At Nickerson 2006, a highly significant association was found, while at 

Sejet 2005 it was moderately high, and slightly significant at Sejet 2006 (Figure 2.4).  
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Figure 2.4 Associations between grain protein content and grain starch content with    

agronomic traits that determine grain composition and their association with STB severity 

(shown as arrows). Also, associations between grain protein content and grain starch content 

with TGW and yield and their association with STB severity at three environments (only 

significant associations are shown). 
                               STB association with an agronomic trait;                 Trait that contributes to increase another trait; 

                               Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number, 

                               correlation coefficient at Sejet02            

Fig. 2.4a Nickerson 2006; Fig. 2.4b Sejet 2005; Fig. 2.4c Sejet 2006. 
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Grain protein content was negatively associated to yield in all the 

environments (Figure 2.4). This correlation agrees with those found by Evans and 

Wardlaw (1976), Cox et al. (1985), Herzog (1986), Jenner et al. (1991), Stone and 

Nicholas (1994), Monaghan et al. (2001), Groos et al. (2003), Brown et al. (2005) 

and many others. The relationship between GPC and yield actually depends on the 

available nitrogen according to Jenner et al. (1991), Monaghan et al. (2001), Brown 

et al. (2005) and Kichey et al. (2007). However, Evans and Wardlaw (1976) stated 

that a negative correlation between these traits is often found. They indicated that 

this performance is influenced by the available amount of nitrogen during grain 

development but also by other environmental factors as drought stress and high 

temperatures. 

Brown et al. (2005) found a positive correlation between GPC and yield at 

several locations if GPC protein was lower than 12.5%. These results suggest that 

available N at these sites was not sufficient for high yield. In contrast, a negative 

correlation between GPC and yield was found at other sites where GPC exceeded 

12.5%, meaning that N was adequate for maximizing yield. Conversely, at Sejet 

2005, GPC was less than 11.17 % in all the lines, but still a negative correlation 

between GPC and yield was found. The controversial results between Brown et al. 

(2005) and those found in this work suggest that the association between these traits 

was not a function of N availability only, but that other factors might be involved as 

climatic factors, management practices, soil conditions and/or further physiological 

relationships, as it was explained before. Thus, more investigation about the 

physiological and biochemical relationships between grain protein content and yield 

in wheat has to be developed. 
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At Nickerson 2006 and Sejet 2006, GPC means of the lines were high, i.e., 

12.27 % and 12.08 %, respectively, and a slight significant negative association of 

GPC and yield was found. These results indicate that GPC was adequate to reach the 

maximum yield (Fig. 2.4a and 2.4c). However, no significant association was found 

between GPC and TGW under these environments. Similar results were found by 

Kichey et al. (2007), when analysing two different levels of N fertilizer. Also, 

Pomeranz et al. (1985) have reported no association between GPC and TGW in 

several wheat varieties. At Sejet 2005, where the mean for GPC was inferior (9.89 

%) than at Nickerson 2006 (12.28 %) and Sejet 2006 (12.08 %), a highly significant 

negative association between yield and GPC was found. Cox et al. (1985) reported a 

similar association between these traits. In addition, GPC was highly negatively 

associated to TGW at this environment only, suggesting higher grain weight when 

the protein content was lower (Table 2.6 and Fig. 2.4b). 

At Sejet 2005 and 2006, starch percentage was found highly positively 

associated to yield and also positively correlated with TGW. The association of 

starch content and TGW was negligible at Sejet 2006, while it was highly significant 

at Sejet 2005, but the means for the yield were similar at both trials (Table 2.2 and 

Fig. 2.4). In addition, the association between GPC and starch content was negative 

under these environments (Figure 2.3b and 2.3c). A negative correlation between 

these traits has been reported before (Herzog, 1986; Jenner et al., 1991). Jenner et al. 

(1991) conducted a physiological analysis to find an explanation for this inverse 

relationship but failed. The authors concluded that their results were not enough to 

explain this association. 

At Nickerson 2006, where a statistically higher amount of grains ear
-1

 was 

obtained, also the TGW was superior. However, at Sejet 2005 and 2006 where a 
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lower amount of grains ear
-1

 was reached, the lower TGW was also found (see table 

2.2). At Sejet 2005, a slight negative correlation coefficient was calculated between 

starch content and grains m
-2

, suggesting that the last trait limited the accumulation 

of starch in the grains. At Sejet 2006, a significant negative association was found 

between GPC and grains ear
-1

. Conversely, a slight positive correlation coefficient 

was detected between GPC vs. ears m
-2

, suggesting the supra-optimal condition of 

ears m
-2

 increased protein content (Table 2.6). The contradictory results exposed 

above among GPC, grain starch content, TGW, yield and yield components could be 

explained by source and sink events, and the process of accumulation of protein and 

starch in the grains. 

There is certain synchronization, but not always, in the accumulation of both 

N and starch in the grain, though there is independence between these events 

(Herzog, 1986; Jenner et al., 1991), and the rate and duration of their deposition are 

determined by source and sink events (Herzog, 1986; Jenner et al., 1991; Evans and 

Wardlaw, 1996). If sink demand is reduced during the grain filling period, that is, the 

number of grains per ear is decreased, the deposition of assimilates in the grain is 

lowered (Herzog, 1986; Jenner et al., 1991; Evans, 1993; Evans and Wardlaw, 

1996). Under these circumstances, the single-grain weight is also lowered (Jenner et 

al., 1991), whereas with a greater sink, higher TGW has been found (Evans and 

Wardlaw, 1996). Fischer (1985) found that the 30 days before anthesis are critical in 

the onset of ears per unit area and grains ear
-1

. This effect may be related to source 

and sink relationships and assimilate supply. These last findings could explain some 

of the data obtained in this work. At Nickerson 2006, where more grains ear
-1

 were 

found (high sink demand) the TGW was superior. However, at Sejet 2005 and 2006 
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where lower number of grains ear
-1

 was found (low sink demand), also the lower 

TGW were found (Table 2.2). 

  The GPC and starch content during grain filling can be modified by the 

environment. Radiation, temperature (Fischer, 1985) and drought stress (Fischer and 

Wood, 1979) are the elements of the environment which affect mostly these traits. 

Environmental differences between the three trials during the reproductive period 

were basically in the precipitation distribution and temperature (Fig. 2.1). At 

Nickerson 2006, an increase in the temperature during the vegetative period 

compared with Sejet 2005 and 2006, probably was the reason why the heading was 

appeared 6 days before that found at Sejet trials as stated by Slafer and Rawson 

(1994) too; thus, the grain filling period was probably extended (Evans, 1993). At 

Sejet 2005, the precipitation was steady although at the late grain filling period it 

declined; the temperature was around 15ºC, considered the maximum for an 

optimum grain development and photosynthesis by Herzog (1986), Wardlaw et al. 

(1989) and Evans and Wardlaw (1996). Although at Sejet 2006 as well as at 

Nickerson 2006, a scarce water availability period was present before heading, the 

precipitation increased during anthesis and the early grain-filling phases (around a 

month). Besides that, when a drought stress is present, usually the temperature rises 

(Blum, 1998), as in these two trials, where the mean temperature was ca. 15ºC with a 

maximum of 25ºC (26.6ºC at Nickerson 2006) during the moisture stress. Under 

drought conditions during the grain growth, lower rates of accumulation of 

carbohydrates have been detected due to reduced remobilization (Brocklehurst et al., 

1978; Panozzo and Eagles, 1999; Beltrano et al., 2006). This performance is primary 

responsible for the ―apparent‖ increase of GPC as Evans and Warland (1976) and 

Jenner et al. (1991) stated. Possibly this effect took place at Sejet 2006, where the 
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grain starch content of the DH population was lower than at Sejet 2005 (67.68 % and 

68.98 %, respectively), but the mean for GPC (12.28 %) was similar to that at 

Nickerson 2006 (12.08 %), but with better environmental conditions. 

Water deficit also provoked loss of photosynthetic capacity (Evans and 

Wardlaw, 1976), premature induction of maturity (Brocklehurst et al., 1978; Clarke, 

1983; Beltrano et al., 1999; Beltrano et al., 2006), and shortened grain growth period 

(Brooks et al., 1982; Panozzo and Eagles, 1999; Beltrano et al., 2006) while the 

grain dry weight is reduced (Brocklehurst et al., 1978; Beltrano et al., 2006). 

According to Brooks et al. (1982), Panozzo et al. (1999, 2001), Beltrano et al. (1999) 

and Beltrano et al. (2006) protein accumulation does not seem to be severely affected 

by water stress. However, Panozzo et al. (1999, 2001) found a relatively short 

duration of N synthesis in dry environments and Brocklehurst et al. (1978) reported a 

reduction in N content in grain, but Brooks (1982) found an increase in amino acid 

concentration.  

Water deficit and high temperatures are environmental factors that may 

produce moderate stress, causing a reduction in the crop cycle as sustained by Angus 

(1977). Blum and Pnuel (1990) described that yield depends on water regimen, thus a 

positive correlation between yield and total precipitation in several trials can be 

presumed. Similar results were registered in the present work, since lowest yields 

were reached under low precipitation environments. This is the case of Sejet 2005 

with a precipitation of 334 mm, whereas highest yield was obtained at environments 

with maximum precipitation during the crop cycle. This latter case was found – at 

Nickerson 2006, with a precipitation of 390 mm (see Fig. 2.1, Table 2 .2). 

Jenner et al. (1991), and Stone and Nicolas (1994) declared that effects of 

high temperature are similar to those of drought stress, and the deposition of starch is 
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more sensitive than that of proteins. Stress by temperature effects provokes reduction 

in the duration of grain growth (Sofield et al., 1977a; Bhullard and Jenner, 1985; 

Herzog, 1986; Blum et al., 1994; Zhon-hu and Rajaram, 1994; Slafer and Rawson, 

1994; Blum, 1998; Evans and Wardlaw, 1996; Panozzo and Eagles, 1999) or even its 

ending (Bhullard and Jenner, 1985). High temperatures also accelerated the rate of 

deposition of starch (Jenner et al., 1991) and N compounds (Bhullard and Jenner, 

1985; Panozzo and Eagles, 1999; Beltrano et al., 1999, 2006; Brown et al., 2005), 

but their amounts could be less causing even, an early termination of their deposition, 

as reported by Evans and Wardlaw (1976), Bhullard and Jenner (1985), Jenner et al. 

(1991) and Beltrano et al. (2006), with the consequent reduction of the grain weight 

and yield (Bhullard and Jenner, 1985; Tashiro and Wardlaw, 1990; Jenner et al., 

1991; Shi et al., 1994; Blum et al., 1994; Stone and Nicolas, 1994; Evans and 

Wardlaw, 1976, 1996; Beltrano et al., 2006). The decline of photosynthetic activity 

and accelerated leaf senescence could also be present (Sofield et al., 1977a; Herzog, 

1986; Blum et al., 1994). On the other hand, low temperatures during the vegetative 

period delayed the heading date, and then the grain filling period becomes short 

(Evans, 1993) even with a low degree of senescent tissues of the plant (Sofield et al., 

1977a; Evans and Wardlaw, 1976; Jenner et al., 1991; Kichey et al., 2007). It is well 

known that the poor yield potential of late cultivars (Evans, 1993) is closely related 

to the amount of starch deposition. This last characteristic may have limited the yield 

potential in Sejet 2005 and Sejet 2006, where lateness of the Savannah  Senat DH 

population was found. 

Heading date seems to have a central position in the determination of grain 

final composition as it was positively correlated with grain protein content at all the 

environments tested. Conversely, HD was negatively correlated with grain starch 
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content at Sejet 2005 and 2006 (Table 2.6 and Figure 2.3). Canopy maturity also 

seemed to be involved in the determination of protein and starch deposition in the 

grains. Canopy maturity was highly significantly negatively correlated with HD in all 

the environments (Table 2.6 and Fig. 2.4). The performance of canopy maturity with 

GPC was completely opposite to that of HD with this grain trait at Nickerson 2006 

and Sejet 2006. Thus, canopy maturity was negatively associated to GPC. A negative 

association between canopy maturity and GPC has also been found by Cox et al. 

(1985) and Kichey et al. (2007). Conversely, a positive association between canopy 

maturity and grain starch content was found at Sejet 2006 (Figure 2.3c). At 

Nickerson 2006 canopy maturity was positively associated to yield (Fig. 2.4a). 

However, a negative correlation coefficient between leaf senescence and grain yield 

was found by Kichey et al. (2007). They proposed that extended metabolic activity 

influenced grain productivity. Thus, low degree of senescence of the plant tissues at 

maturity indicates the photosynthesis process is occurring (Sofield et al., 1977a; 

Evans and Wardlaw, 1976; Jenner et al., 1991; Kichey et al., 2007). It is suggested 

from the data that the character ‗greenness‘ is present in the Senat  Savannah DH 

population. The means for canopy maturity classification were 5 (straw half mature, 

nodes green) at Nickerson 2006 and 3 (flag leaf half mature) at the Sejet trials (Table 

2.2). 

 Zilberstein et al. (1985), Cornish et al. (1990), Gaunt (1995) and Blum 

(1998) offered a set of possible explanations for the small effect of STB on yield in 

tolerant cultivars of wheat. First, a high capacity for stem reserves utilization during 

grain filling; Second, due to a high rate of CO2 fixation of residual photosynthetic 

tissue (Zuckerman et al., 1997); and third, by a longer green area duration (Shaner et 

al., 1975; Cornish et al., 1990; Gaunt, 1995). 
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The relationships found between the data for STB severity and the trait GPC 

and GPC and grain starch content from the Savannah  Senat DH population are 

presented in Figure 2.4. Septoria tritici blotch severity showed a negative correlation 

coefficient with GPC at Nickerson 2006, Sejet 2005 and Sejet 2006 (highly, 

moderately and negligibly associated, respectively). Several authors have reported 

the change in plant N metabolism due to STB (MacCabe et al. 2001; Ruske et al., 

2001; Dimmock and Gooding, 2002; Ruske et al., 2003). Septoria tritici, as a 

biotrophic fungus, reduces both nitrogen uptake and partitioning of N to the grain, 

decreasing grain protein content (MacCabe et al. 2001; Ruske et al., 2001; Ruske et 

al., 2003). 

Canopy maturity was slightly positively correlated to STB severity at 

Nickerson 2006 and Sejet 2006 (Fig. 2.4a and 2.4c). Septoria tritici blotch provokes 

earlier senescence of leaves (Shaw and Royle, 1989b; Cornish et al., 1990; Leitch 

and Jenkings, 1995; Zuckerman et al., 1997; Lovell et al., 1997; Parker et al., 2004) 

and the induction of apical senescence (King et al., 1983b; Magboul et al., 1992; 

Robert et al., 2006).  

Association between specific weight and STB 

The specific weight was associated positively to yield (Table 2.6). A moderately high 

correlation was found at Nickerson 2006. However at Sejet 2006, this association 

was highly significant, while at Sejet 2005 there was no significant association 

between these traits. The specific weight at Nickerson 2006 had the highest mean of 

the three environments (Table 2.2). According to reported values (Hook, 1984), the 

grains were well filled. The means of SW and TGW at Sejet 2005 and 2006 were 

significantly lower than at Nickerson 2006, suggesting that a considerable percentage 
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of grains at the Sejet trials may be shrivelled and/or softer (Pomeranz et al., 1985; 

Gaines et al., 1997).  
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Fig. 2.5c Sejet 2006 

Figure 2.5 Significant associations between specific weight, yield components and yield at 

three environments (shown as arrows). Also, significant associations of these traits with 

STB severity at three environments (only significant associations are shown). 
                              STB association with an agronomic trait;              Trait that contributes to increase another trait; 

                              Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number, 
                              correlation coefficient at Sejet02            

Fig. 2.5a Nickerson 2006; Fig. 2.5b Sejet 2005; Fig. 2.5c Sejet 2006 
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The association between SW and TGW was positive (Table 2.6 and Fig. 2.5). 

At Sejet 2005 and 2006 it was moderately high and positive, while at Nickerson 2006 

it was negligible. According to Gaines et al. (1997), TGW can depend on the size of 

the grain, SW of small grains can be as high as that of larger grains, all depending on 

the texture properties (softness) and on the degree of grain filling (packing) during 

the grain growth period. The specific weight was negatively associated to grains m
-2

 

at the Sejet trials. It was also negatively associated to ears m
2
 in Sejet 2005. Also, 

slightly negative associations were found between SW and grains ear
-1

 at Nickerson 

2006 and Sejet 2006 (Fig. 2.5). 

Specific weight, as well as TGW, depends on the deposition of starch and 

proteins in the grain. Thus, it has been found that the cessation of starch 

accumulation in the grain is normally characterized by the incapacity of the 

endosperm to convert sucrose into starch (Jenner and Rathjen, 1975). Internal grain 

factors may be involved in the ending of starch and N accumulation in the grain 

(Jenner and Rathjen, 1975). Brooks et al. (1982) suggest that similar factors control 

grain maturation under optimal conditions as well as under stress. Stress just 

accelerates the production or action of these factors. Small grains with a reduced 

grain filling period do not fill out well (Brocklehurst et al., 1978; Gaines et al., 

1997). Also, secondary grains have not enough time to develop properly, thus they 

become shrivelled and softer. This is related to the form of deposition of starch 

granules and proteins, the amount of them accumulated in the grain, and the 

environmental conditions at each specific environment. 

At optimum grain-growth temperatures (18ºC), protein covers the starch 

granules in the grain, giving place to a strong interaction. However, at 25ºC (and 

higher) starch granules seemed not to be covered completely by proteins (Shi et al., 
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1994). At this temperature, the protein matrix between starch granules seems weaker 

than under optimal conditions (Shi et al., 1994). High temperatures weaken the 

interaction of starch and protein, which results in a decrease of grain hardness and 

reducing the number of starch granules (Shi et al., 1994).  

The SW seems to be affected by STB severity with NrAaby02 data only at 

Sejet 2006 (Fig. 2.5). McKendry et al. (1995) and Simón et al. (2002) have reported 

a reduction in SW by STB. McKendry et al. (1995) found, for resistant and 

susceptible cultivars that, even when the infection did not reach the flag leaf, SW 

was reduced. In their work, disease severity increased flour protein content, which 

indicates shrivelled grains. This was consistently related to the loss of photosynthetic 

area. Simón et al. (2002) also found a reduction in SW by STB only in one year of a 

two year trial of fertilization treatments, where SW did not change on fertilization. 

Also, reductions in specific weight have been observed by several authors in trials 

comparing the application of fungicide plots with control plots of diseased plants 

(Gooding et al., 1994; Ruske et al., 2001; Dimmock and Gooding, 2002a). 

Severity of Septoria tritici blotch and traits performance 

The trend of STB severity against each agronomic trait was very similar at both sites 

NrAaby02 and Sejet02. The significant correlations were mostly similar even though 

severity was about 10 % higher at NrAaby02 (Table 2.4). An exception to this was 

the grain protein content. The correlation at Sejet 2005 was moderately significant 

with STB at Sejet02 (r = -0.30), and just significant (r = -0.28) at NrAaby02, the site 

with higher STB severity (Fig. 2.5). Another exception is the association of STB 

severity vs. yield, which was highly significant at Sejet02 (r = 0.34) but negligibly 

significant at NrAaby02 (r = 0.27) also at Sejet 2005. This performance suggests that 

a high STB severity, the yield would not be maintained (Fig. 2.5). In Sejet 2006, the 
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association between STB severity and SW was not significant with Sejet02 data, but 

it was significant at NrAaby02 (Fig. 2.5). These associations suggest that a higher 

severity, the specific weight diminishes and consequently the grain quality.  

2.5 Conclusion 

The results are clear; STB severity was associated to yield and yield components and 

with quality traits in the Savannah x Senat double haploid population. The traits 

affected are those cited in several papers. The yield components ears m
-2

 and grains 

ear
-1

 were negatively correlated to STB. Also, grains m
-2

 was negatively correlated to 

STB, a trait that has not been cited as affected by this disease. Conversely, a 

thousand grain weight was positively associated to STB, suggesting the maintaining 

of TGW, a trait closely linked with yield. This performance has been mentioned in 

tolerant cultivars, where the grain weight is the yield component less affected by 

STB. In opposition, in susceptible cultivars, the TGW is the trait that is mostly 

diminished by Septoria tritici blotch. Thus, the Senat x Savannah double haploid 

population seems to performance as a tolerant population to the Septoria tritici blotch 

disease, proving to be a partial resistance population which, although it is affected by 

STB, the yield losses are smaller than in susceptible cultivars. 

Grain protein content and heading date were also negatively associated to 

STB severity. Interestingly, the association was stronger when earliness of the double 

haploid population was present (Nickerson 2006), suggesting a physiological 

relationship among STB, earliness and grain protein content.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

Mapping quantitative trait loci for Septoria tritici blotch 

(Mycosphaerella graminicola) and agronomic characters in 

winter wheat 
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3.1  Introduction 

Mycosphaerella graminicola (Fückel) Schrot (anamorph Septoria tritici) causes the 

disease Septoria tritici leaf blotch (STB). This disease has caused yield losses up to 

60% of the grain yield in highly susceptible cultivars (Shipton, 1971; van Ginkel and 

Scharen, 1988; Cornish, 1990). Recent investigations on wheat have lead breeders to 

look for other options as partial resistance, that although less effective than resistant 

genes, could be durable because of polygenic inheritance (Brown, 2002). In wheat, 

although there has been found evidence of partial resistance to STB, it is only 

recently that this kind of resistance has begun to be understood (Eriksen et al., 2003; 

Chartrain et al., 2004; Simón et al., 2004). Quantitative or partial resistance to STB is 

incomplete and polygenic (Jlibene et al., 1994; Simon and Cordo, 1998; Zhang et al., 

2001).  

Partial resistance is also costly (Brown, 2002). The effect of STB on yield and 

yield components although depends on the severity of the epidemic at a given 

developmental stage of the crop at the time of infection (Ziv and Eyal, 1976; Cornish 

et al., 1990; Shaw and Royle, 1993; Simón et al., 2002), if it develops at an early 

stage infections can reduce the number of ears m
-2

.  Late infections can diminish the 

grains ear
-1 

or the thousand grains weight (TGW) (Leitch and Jenkins, 1995; Simón 

et al., 2002). In addition, yield losses occur usually when the flag leaf, specially, is 

severely infected, as well as the second and third leaves (Shaner et al., 1975; Ziv and 

Eyal, 1978; King et al., 1983a; Thomas et al., 1989; Shaw and Royle, 1989a, b, and 

1993; Paveley, 1999). In tolerant cultivars, there is a relatively small loss of yield and 

quality from severe infection (Ziv and Eyal, 1976, 1978; King et al., 1983a). 

Genetics for partial resistance, where several chromosomes seemed to be implicated 

in resistance to STB (Worland et al., 1995/1996), has also been investigated and 
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recently, QTL, which improve the levels of resistance to STB, have been reported 

(Simón et al., 2001; Eriksen et al., 2003; Simón et al., 2004; Chartrain et al., 2004b). 

Compensatory effects among yield components are commonly found in 

cereals, mainly because adverse conditions can limit the early formed yield 

components, but they can be compensated by late ones (Evans and Wardlaw, 1976, 

1996; Evans, 1993). It seems that under stress, biotic or abiotic, the best equilibrium 

between the yield components is tried to be reached between the major yield 

components and its factors, in order to achieve the highest yield under those 

unfavourable circumstances. However, compensatory effects were present among the 

yield and yield components, and they were mostly determined before heading. They 

also involve readjustments among quality traits of the grain determined after the 

heading date, as found in this work i.e. GPC and grain starch content (see Chapter 2). 

In terms of research, Kang (2002) expressed that some genotype characteristics, for 

instance efficiency and tolerance, can be identified and investigated only under stress 

based on the fact that  genome responds by selectively regulating (increasing or 

decreasing) the expression of specific genes. 

It has been demonstrated that a significant correlation coefficients between 

two agronomic traits (mostly yield and yield components) implies a high probability 

that the QTL for both traits are linked as demonstrated by Kato et al. 2000; Campbell 

et al., 2003; Huang et al., 2003 and 2004 and McCartney et al., 2005, among others. 

Though there was no indication that the degree of significance in this association 

(slight, moderately high or highly significant) was due to the number of linked QTL 

for both traits.  

Conversely, it is suggested that linked QTL on the same chromosome do not 

imply any phenotypic association (Chapter 2). This last finding also suggested that 
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physiological events that determine the traits may occur at different times. Because 

of this, perhaps a phenotypic association would not be detected. Affirming the words 

of Kato et al. (2000), trait correlations may reflect patterns of plant growth and 

development. 

In this work, the performance of the Senat  Savannah double haploid 

population was investigated under three different environments, where compensatory 

effects were detected differently. The genotype is analysed in order to establish their 

association with the Septoria tritici blotch disease and to detect how the attributes of 

partial resistance, conferred by the Senat cultivar, worked in order to provide 

tolerance to STB. The phenotype is analysed through Pearson correlation coefficients 

(see Chapter 2). The genotype is analysed by screening for QTL. In addition, this 

study incorporates those phenotypic associations related with QTL for STB 

resistance and those QTL for agronomic traits that were not linked with QTL for 

STB resistance. Finally, the response of the plant to a stress is a process that involves 

the whole system.   

3.2 Material and methods 

3.2.1 Plant material 

A Senat  Savannah (SESA) double haploid population of 106 lines was used as 

described in Chapter 2.  

3.2.2 Field trials and data collection. 

Field trials, agronomic practices and data collection, as well as segregation data on 

partial resistance of the Senat  Savannah double haploid population are described in 

Chapter 2.   
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3.2.3 Map construction and QTL analysis 

The genetic map of the Senat  Savannah DH population already existed, but it has 

gaps that were filled with genetic markers generated through Diversity Array 

Technology (DArT) (Triticarte Pty Ltd, 2007). Three types of genetic markers were 

used for the first map construction according to Eriksen et al. (2003), AFLPs 

(Amplified Fragment Length Polymorphism) markers, which show a high level of 

polymorphism and reproducibility (Vos et al., 1995). Simple sequence repeat 

markers (SSR), which are stable, abundantly dispersed throughout the wheat genome 

and are locus-specific (Röder et al., 1995). The resistant gene Stb6 (Brading et al., 

2002) was also used as a genetic marker. The new genetic mapping was carried out 

using JoinMap® 3.0 as presented by Jansen and van Ooijen (2004). Linked groups 

were formed at a log-likelihood (LOD) threshold of 5. Recombination fractions were 

converted to map distances using the Kosambi (1944) mapping function.  

 According with Jansen and van Ooijen (2004), a genetic linkage map is a 

representation of the relative positions of genetic loci (genes and genetic markers) on 

the chromosomes, determined on the basis of linkage (inherited together) or become 

separated by genetic recombination. Distances are measured in genetic map units 

called centiMorgans. The map units are derived from recombination frequencies. A 

linked group is a set of genes and/or markers that, by evidence, are linked. They are 

supposed to reside on the same chromosome. As a role, if genes are linked (that is, 

on the same chromosome) the recombinants will arise when crossing over occurs 

among them and their frequency will be < 0.5. Briefly, the likelihood (L) is defined 

as the probability of the data given a model that considered the recombination 

frequencies.  

 L α (1 - r)
N-R

 r
R
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where: 

α denotes proportionality, r is the recombination frequency, R is the observed 

number of recombinant individuals, N total number of individuals observed.  

The maximum likelihood is a statistical method to estimate parameters. The 

parameter that maximizes the likelihood function (L) will be a function of the 

unknown parameter r, L(r) is differentiated with respect to r, equated to zero, and the 

resulting equation is solved for r. The natural logarithm (ln (L(r)) and the maximum 

L(r) are determined by the same value of r. The log-likelihood, ℓ = ln (L(r)), is easier 

to differentiate than L(r) then usually log-likelihood is employed. The maximum 

estimator of r becomes: 

ȓ =  
 

 
  

The significance of linkage between two markers is tested by the statistic 

likelihood ratio, LR, defined as the ratio of the maximum likelihood under the 

assumption ‗no linkage‘ with r = 0.5. That is, the statistical test for determining 

the null hypothesis HO: r = 5 versus the alternative hypothesis H1: r < 0.5 is based 

on the likelihood ratio. The formula is: 

LR =       
 

 
      

 

 
   

The LOD or logarithm of odds, term used in genetics is defined as the 10-

base logarithm of the likelihood ratio: 

LOD = LR 
10

log (e) 

A mapping function describes the relationship between the recombination 

frequency (r) and the map distance (d): distance = mapping function (r). The 

Kosambi mapping function is an empirical mapping function that describes crossover 
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interference, that is, the presence of one crossover reduces the probability of another 

crossover in the area.  

Thus, steps in linkage analysis implies to create a segregating population (the 

segregating population in this work was the Senat  Savannah double haploid 

population); determine the genotypes of the loci; estimate recombination frequencies 

between all pair of loci; establish the linkage groups; and, finally, determine the 

order of loci and their distances per linkage group.  

Output from JoinMap was converted to a graphical format using the program 

MapChart (Vorrips, 2006). Komugi composite wheat map (2008), Sommers et al. 

(2004) consensus map, Triticarte wheat map alignment version 1.2 (2004), and 

Eriksen et al. (2003) Senat  Savannah DH population maps were consulted to 

confirm the linkage groups and alignment of markers assigned to chromosomes. 

Quantitative trait loci analysis for each trait at each environment, and also 

unified analysis of QTL across sites for each trait were done by interval mapping 

(Jansen, 1993), and MQM mapping was used to detect any possible secondary QTL 

(Jansen, 1993; Jansen and Stam, 1994) using the MAPQTL® 5 program (van Ooijen, 

2004). A QTL was declared significant at a 5% (P ≤ 0.05) threshold LOD score for 

genome wide identification of a QTL (van Ooijen 1999).  

Kearsey and Pooni (1998) defined a quantitative trait as a ‗trait for which the 

observed variation is due to the segregation of several to many naturally occurring 

polymorphic genes, for each of which the effects of the allelic differences on the 

phenotype are generally small compared with the effects of the environment‘. 

Quantitative trait loci (QTL or QTLs) analysis is called to the location of genes (or 

alleles) that affect a trait that is measure on a quantitative scale. 
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The steps in the QTL analysis according with Jansen and van Ooijen (2005) 

are: 1) create a segregation population; 2) determine the genotypes of all loci; 3) 

determine the phenotypes of the quantitative trait (s) of interest; 4) estimate the 

linkage map; and, 5) estimate the number and positions of the segregating QTLs (for 

each trait). Briefly, this statistically complex analysis works looking for associations 

among markers (that show a genotype and a recombination frequency), individuals 

(lines) and the mean trait of each individual. Many positions on the linkage map are 

statistically tested and calculated through the LOD score, a likelihood ratio statistic. 

The LOD thresholds will depend on the genome size of the specie analyzed (the 

number and length of the chromosomes) and on the number of markers on the 

chromosome (van Ooijen, 1999).  

3.2.4 Statistical analysis 

Additive Main effects and the Multiplicative Interaction (AMMI) model from Gauch 

(1988) were calculated for each trait in order to test whether the genotype  

environment interaction was present among the trials. A balanced design is necessary 

for the AMMI analysis (Gauch, 1988), thus 96 lines of the DH population were 

considered. The AMMI analysis combines analysis of variance for the genotype and 

environment main effects with principal components analysis of the genotype  

environment interaction into a single model with additive and multiplicative 

parameters. The AMMI model equation is: 

 Yger = μ + α g + β e + Σ n λ n γ gn δ en + ρ ge + ε ger  

where: 

Yger is the observed yield of genotype g in environment e for replicate r 

The additive parameters are: 
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μ the grand mean; α g  the deviation of genotype g from the grand mean; β e  

the deviation of environment e 

The multiplicative parameters are: 

λ n the singular value for interaction principal component axis (IPCA) n;  γ gn 

the genotype eigenvectors for axis n; δ en the environment eigenvector 

The eigenvectors are scaled as unit vectors and are unitless, whereas λ has the 

units of yield (in this work, the units for eleven agronomic traits). A scaling for the 

multiplicative parameter is λ
0.5

 γ g and λ
0.5

 δ e, termed the ‗genotype IPCA scores‘ 

and ‗environment IPCA scores‘, because their products give the expected interaction 

value directly without need of further multiplication by the singular value. There are  

at least two axes (G-1, E-1), but usually the number of axes N retained in the model 

is smaller, producing a reduced model, denoted in the present work AMMI2, due to 

the fact that it was retaining 2 IPCAs. A reduced model leaves residuals, ρ ge. Finally, 

if the experiment is replicated, there is also the error term εger. The last squares 

solution is found for balanced data by analysis of variance followed by PCA. The 

AMMI model is useful for understanding complex Genotype x Environment 

interactions. The results can be graphed in a very informative biplot that shows both 

main and interaction effects for both genotypes and environments. In addition, 

AMMI can partition the data into a pattern rich model and discard noise rich residual 

to gain accuracy. 

 The segregation data for STB disease were taken from two locations, Sejet02 

and NrAaby02, with two randomised replicates per location. There were ten 

replicates per plot for each line and more than one plot of Savannah and Senat per 

replicate. The data represents the percent coverage on flag leaves —10 leaves were 

assessed per plot. The average of leaf 1 was used as plot score for the calculation of 
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AUDPC per plot (Eriksen et al., 2002). A difference was found between the means 

for STB severity at NrAaby02 and Sejet02 (see Chapter 2), thus the t-Student test for 

means of the lines comparison, and the Mann-Whitney test were applied to the STB 

severity datum to prove if the difference was due to a difference in the location of the 

distribution (Conover, 1980). The statistical analysis was done using GenStat® 9.1 

(GenStat committee, 2006).  

Special attention is given in this Chapter to the data of HFL and HD related to 

STB, given to the fact that these agronomic traits have been considered to provide 

disease escape from STB (For height: van Beuningen and Kohli, 1990; Fraaije et al., 

2002. For HD: Shaner et al., 1975; Eyal and Talpaz, 1990; van Beuningen and Kohli, 

1990; Jlibene et al., 1994; Simón et al., 2004, 2005). The test of standardised 

residuals was applied in order to detect possible outliers (Montgomery and Peck, 

1982). The ordinary residuals from regression analysis are not independent as in 

general, they do not show the same variance. Standardised residuals are a 

transformed version of the ordinary residuals. The standardised residuals have zero 

mean and unit variance. They are found using an unbiased estimator of the standard 

deviation ( ). The ith standardised residual is found by substituting the standard 

deviation of the ith residual ( i) in a transformed version (


) of the ordinary 

residuals in the formula: 

          f (ei , ζj ) = ei /ζi   

where: 

  ζi is the standard deviation of the ith residual;  ei is the ordinary least squares 

residuals 

The standardised residuals were obtained using the General Model in the 

statistical package GenStat® 9.1 (GenStat committee, 2006). Quantitative trait locus 
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analysis of the standardised residuals with data of NrAaby02 and Sejet02 was 

conducted for these traits and STB in all the environments tested. The analysis of 

residuals for HFL and HD with respect to STB intensity of disease is due to the fact 

that the residual variance consists of environmental and unexplained genetic 

variances that, together with the trait variance induced by the QTL (the ratio), gave 

place to the power of detection of a QTL (Jansen, 1996). 

3.3 Results 

3.3.1 Additive Main effects and Multiplicative Interaction (AMMI) analysis 

Differences among the trials detected by the Analysis of Variance for each 

agronomic trait (Chapter 2, Table 2.1) were also confirmed with the AMMI analysis, 

where all the agronomic traits showed highly significant environmental differences 

(Table 3.1).  Similarly, differences among the genotypes for all agronomic traits 

detected in the ANOVA analysis (Table 2.1, Chapter 2, this Thesis) were also 

confirmed for HD, HFL, maturity, GPC, SW, TGW and yield. However, differences 

among genotypes were not detected with the AMMI analysis for ears m
-2

, grains m
-2

; 

grains ear
-1

 and starch content (Table 3.1). Also, interaction trial x line was suggested 

for all the traits except ears m
-2

 with the ANOVA analysis (Table 2.1, Chapter 2 this 

Thesis). The AMMI analysis showed highly significant genotype  environment 

interaction (G x E) for the heading date, specific weight, thousand grain weight and 

yield (P < 0.001) traits. Also, slightly significant G x E interaction was calculated for 

the traits grains m
-2

, HFL, grains ear
-1

, maturity and GPC, while there was not a G  

E interaction for the ears m
-2

 and grain starch content traits (Table 3.1).  
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Table 3.1 AMMI analysis for ten agronomic traits at three environments and for starch content 

at two environments for the Senat  Savannah double haploid population. 

 

 

TGW, thousand grain weight; GPC, grain protein content; SW, specific weight; HD, heading date; HFL, height to the flag  leaf;  

 Maturity, canopy maturity; Starch, grain starch content 
* Significant at 0.10 < P ≥ 0.01; ** Significant at 0.009 ≤ P ≥ 0.001; *** Significant at P < 0.001 

 

 

 

Differences among the environments were highly significant for all the traits 

and the genotype  environment interaction; although negligible for some traits, it 

was significant. Thus, the QTL analysis was done individually for each trait at each 

environment. However, QTL analysis was also carried out for the mean data set for 

each trait. 

3.2.2 t-Student test and Mann-Whitney test 

The Senat cultivar was more resistant (-4.22 and -5.08 lgtAUDPC at NrAaby02 and 

Sejet02, respectively) than the Savannah cultivar (1.15 and 0.19 lgtAUDPC at 

NrAaby02 and Sejet02, respectively) which was the susceptible parent. The t-Student 

test for means comparison of lines was applied with original data (maximum 

percentage of the area under the disease progress curve (AUDPC). The t-Student test 

showed 56 lines with similar disease severity at both locations (NrAaby02 and 

  Ears m-2  Grains m-2 Grains ear-1  TGW  Yield  GPC 

Source           df MS MS MS  MS  MS  MS 

Treatments 293     23427***     52666200***     160.0***      38.7***             1.1***              2.7***         

Genotypes   97       7015             32611152       45.0      39.4***             0.8***              0.4 *        
Environments     2 2 2283468***       2759951408*** 16607.0***  3055.4***         95.0***         346.1***       

Block     3     21300*     53214641         0.0        6.9      0.8***      1.8** 

Interactions 194       8333     34783567*       47.0*       7.2***              0.3***           0.4*         
IPCA   98             9733     56619812***       70.0***       7.9***              0.4***              0.5**         

IPCA   96       6904     12492401       24.0       6.6***              0.2**            0.3         

Error 291            8232     29232438       40.0                  4.0               0.1           0.3            
Total 587     15883     41051925       99.0      21.3             0.6               1.5            

   SW HD  HFL Maturity     Starch 

Source           df  MS MS  MS MS   Source           df MS 

Treatments 293      13.9***     24.6***      47.6***             3.3***           Treatments 195     1.6***         

Genotypes   97      17.1***     14.7***      43.3***             2.9***           Genotypes  97     0.7         

Environments     2 2    964.9*** 2769.2***  1614.6***        141.8***         Environments    1 167.5***       

Block     3        5.6**       1.6*      26.0     1.1   Block    2     0.4 
Interactions 194        2.5***       1.2***      33.7*           2.1*           Interactions  97     0.8         

IPCA   98              3.3***       1.4***      35.9*             2.3*           IPCA  97     0.8        

IPCA   96        1.6*       1.0***      31.4            1.8           IPCA  95     0.0 
Error 291             1.2       0.5      27.0                1.6              Error 194     1.0            

Total 587        7.5     12.5      37.3                2.4              Total 391     1.3            
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Sejet02), including the parents. Ten lines were significantly more resistant (averaged 

6 % less flag leaf area diseased) at NrAaby02 than at Sejet02, but nine lines were 

significantly more susceptible (averaged 10 % more flag leaf area diseased) at 

NrAaby02 than at Sejet02 (P < 0.01). In addition, the t-Student test between each line 

data of predicted means at each trial, showed a significant difference (P < 0.001) for 

some lines. Thus, the lines predicted means from both NrAaby02 and Sejet02 were 

evaluated through the Mann-Whitney test Assumption 5, where ‗if there was a 

difference between population distribution functions, that difference was a difference 

in the location of the distribution‘ (Conover, 1980). NrAaby02 population was 

assigned as F(x), while the population at Sejet02 was assigned as G(x). The 

hypothesis in terms of the means of X and Y was,  

H0: E(X)  E(Y) 

where: 

 E(X) = -1.55 logitAUDPC, denotes the mean sample population at NrAaby02  

               (Xi) 

E(Y) = -2.37 logitAUDPC, denotes the mean sample population at Sejet02    

              (Yi) 

 Value of T = 5931 

 Value of wp = 3176 

 Normal approximation: 3.29 (P = 0.001) 

 

Thus H0 is accepted, as the population NrAaby02 severity of disease 

presented a higher mean than that shown for the  population at Sejet 02. In other 

words, the STB severity at NrAaby02 was higher than at Sejet02 (Fig. 3.1).  It 

implies a statistically significant difference in the percentage of diseased leaves for 
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the SESA double haploid population at each location, probably due to environmental 

differences.  The next part of the assumption ‗If F(x) is not identical to G(x), then 

F(x) is identical to G(x + c), where c is some constant‘ being this  value at the same 

time, the confidence interval (Conover, 1980). Thus F(x) – G(x) = 0.83, which 

represents around 10% of the difference between the AUDPC between NrAaby02 

and Sejet02. Therefore, when c was applied to the G(x) sample of population 

Sejet02, with c = 0.83, , similar means at both sites resulted, that is: 

 E(X) = -1.55, E(Y + c) = -1.55 

 

Figure 3.1 Distribution of STB severity among the Senat  Savannah DH population at two 

different trials, NrAaby02 and Sejet02 

 

 

 

3.3.3 Map construction 

The bread wheat is a hexaploid (2n = 6, x = 42) organism with three (A, B, D) 

genomes originated from natural hybridizations. The first hybridization occurring 

between T. urartu (AA), and an unknown species (BB), related with T. speltoides, 

giving place to durum wheat T. turgidum (AABB). Triticum turgidum hybridized 
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with T. tauschii (DD) to generate the hexaploid wheat T. aestivum (Zohary et al., 

1969). 

The genetic map determined into 37 linkage groups (see Figs.  3.2, 3.3, and 

3.4), where groups 1D and 5D were represented by SSRs and DarT isolated markers. 

In comparison with the Eriksen et al. (2003) map, new AFLPs were anchored by 

SSRs and DarT markers, thus the map was constructed by 216 AFLPs, 79 SSRs, 43 

DarT markers and the resistant Stb6 gene locus IPO323 (Brading et al., 2002; 

Eriksen et al., 2003). These markers covered a map distance of 1683 cM. The 

Linkage group IX from Eriksen et al. (2003) was reassigned into chromosome 6B 

with a LOD score of 7 (JoinMap® 3.0). The marker wmc175b on chromosome 2Bb 

(Eriksen et al., 2003) was relocated to chromosome 2Db by JoinMap; this linkage 

group of five markers was formed at LOD score of 7. This suggests there is genetic 

similarity between the homoeologous chromosomes 2B and 2D in this population as 

it has been found in hexaploid wheat by Röder et al. (1995). 

 Linked groups are showed only when one or more QTL for the agronomic 

traits and/or QTL for STB resistance were detected. The QTL analysis for STB 

severity at NrAaby02 and Sejet02 data was performed again instead of using the 

Eriksen et al. (2003) QTL analysis, due to the fact that more markers were 

incorporated in this work. 

3.3.4 Genotypic analysis  

The quantitative trait loci analysis for STB severity and for the eleven traits analysed 

is discussed here. The unified analysis of QTL across sites is shown in Appendix E. 
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3.3.4.1 Quantitative trait loci for resistance to STB severity 

Quantitative trait loci for resistance to STB were detected at Sejet02 on 

chromosomes 2D, 3A and 6B (Table 3.2). The QTL on chromosome 2D was located 

near the marker wmc175b, the same marker reported by Eriksen et al. (2003) on 

chromosome 2B. The resistant to STB severity QTL at wmc388a marker position on 

chromosome 3A described by Eriksen et al. (2003) was also found in this work. A 

third QTL for STB resistance was located on chromosome 6B near the marker 

wmc397. It explained 49 % of the variance at this trial with a LOD score of 26.72 

(Table 3.2). This QTL has also been reported by Eriksen et al. (2003) between the 

same markers.  

 At NrAaby02, five QTL for resistance to STB were detected (Table 3.2). A 

QTL was also detected on chromosome 2D at position 14.48 cM, and it was 

associated with the marker wmc144. On chromosome 3A, a QTL was located at 

position 31.5 cM, and it was associated with the marker wmc388a (Table 3.2). This 

QTL was also found by Eriksen et al. (2003) associated with the same marker. Two 

QTL were detected on chromosome 6B. The first QTL on chromosome 6B was 

located closely linked with marker M49/P14_428. The second QTL on chromosome 

6B was also found with the Sejet02 data (Table 3.2). These two QTL for resistance 

on chromosome 6B have also been reported by Eriksen et al. (2003), one of them 

closely linked with the AFLP marker M48/P32_112, probably the same one reported 

here associated with the marker M49/P14_428. The second QTL was also flanked by 

the markers wmc397 and wmc341. Finally, the QTL on chromosome 7B was located 

on the AFLP marker M49/P11_229 at position 0.0 cM (Table 3.2). Also reported by 

Eriksen et al. (2003), this QTL on chromosome 7B was associated with the same 

marker that is described here, but at different position. 
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 All the alleles that confer resistance to STB detected within the Senat  

Savannah DH population came from the Senat cultivar, as Eriksen et al. (2003) also 

found. 

 

Table 3.2 Quantitative trait loci for STB resistance in Senat  Savannah double haploid 

population at NrAaby02 and Sejet02 trials 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 LOD, log-likelihood threshold scores (P ≤ 0.05); cM, centiMorgans  
               *Positive additive value indicate that the resistant allele is from Senat cultivar 

               % Exp, percent of the variation explained 

 

3.3.4.2 Residuals Analysis  

Quantitative trait loci analysis for standardised residuals was performed in order to 

detect hidden effects of HFL and HD for STB resistance. Normality of the residuals 

was indicated with the data for both traits at the three trials tested (Appendix D). No 

outliers were detected; all the residuals were calculated between less than three 

standard deviations showing the normality assumption (Montgomery and Peck, 

1982). Though some more resistant lines had large negative standardised residuals, 

and the more susceptible line presented a large positive standardised residuals in the 

plots for both traits, in general the same lines shown this performance for HD and 

HFL (Appendix D). 

Chromosome NrAaby02 

Markers 

Sejet02 

Markers 

LOD Position cM % Exp Additive value* 

2D 

 

3A 

 

6B 

 

 

7B 

wmc144 

 

wmc388a 

 

wmc341 

 

M49/P14_428 

M49/P11_229 

 

wmc175b 

 

wmc388a 

 

wmc397 

 

 

3.8 

8.7 

3.9 

6.4 

13.5 

26.7 

7.0 

3.7 

14.5 

43.6 

31.5 

31.5 

49.4 

48.4 

27.7 

 0.0 

5.6 

11.1 

3.7 

7.1 

17.1 

48.6 

7.0 

3.6 

0.38 

0.46 

0.30 

0.39 

0.83 

1.04 

0.53 

0.30 
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 3.3.4.2.1 Heading date effects 

According to the putative QTL detected for the residuals of STB-HD at Nickerson 

2006, Sejet 2005, and Sejet 2006, a strong effect of heading date was found. The 

putative QTL for the standardised residuals showed that those QTL on chromosome 

2D and 7B just disappeared with the NrAaby02 data in all the environments. At Sejet 

2006 the residual QTL on 7B chromosome showed a LOD score below the threshold 

of detection, there was still an indication of its presence (Table 3.3). The strong 

effect of the two QTL for STB resistance on chromosome 6B decreased with analysis 

of residuals at the three environments analysed, but there was still a significant effect 

(Table 3.3). 

The heading effects for the QTL for STB resistance with the Sejet02 data 

were particularly remarkable at Sejet 2005, where there simply were no putative 

QTL (Table 3.3). With the NrAaby02 data at the same environment, just three QTL 

were detected, those on chromosomes 3A and 6B. On the contrary, at Nickerson 

2006 and Sejet 2006 new putative QTL were also detected. At Nickerson 2006, with 

the NrAaby02 data, a putative QTL was detected on chromosome 3A, associated 

with the marker wmc264. During the analysis of QTL for STB resistance, the 

presence of this QTL for STB resistance on chromosome 3A (the allele also from the 

Senat cultivar) was suspected, but it was under the critical threshold. Also, with the 

Sejet02 data at Nickerson, the putative QTL for STB resistance on chromosome 6B 

associated with the marker M49/P14_428 was significant. This last putative QTL 

was also significant at Sejet 2006 together with other putative QTL on chromosome 

2B, both with the Sejet02 data (Table 3.3). 
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Table 3.3 Quantitative trait loci for STB resistance and putative QTL for residuals of STB and 

heading date, and residuals of STB and height to the flag leaf with data from two trials with 

differing  STB severity 

 

LOD* Original QTL for Septoria tritici blotch (STB) resistance, log-likelihood threshold scores (P ≤ 0.05) (LOD)  

LOD STB-HD, log-likelihood threshold (P ≤ 0.05) for residuals between Septoria tritici blotch and heading date 
LOD STB-HFL, log-likelihood threshold (P ≤ 0.05) for residuals between Septoria tritici blotch and height to the flag leaf 

Environments: N-06, Nickerson 2006; S-05, Sejet 2005; S-06 Sejet 2006 

 

These results suggest that variation in STB resistance is accounted for by 

variation in HD, specifically at Sejet 2005. It is also suggested that in partial 

resistance —Savannah  Senat DH population — there may be a physiological effect 

of HD on STB resistance at NrAaby02 and Sejet02 severity of the disease. This 

supports the fact that there were negatively significant correlation coefficients 

between HD and STB severity in the phenotypic analysis at Nickerson 2006, Sejet 

2005, and Sejet 2006 (see Chapter 2). 

 

 

 

Chromosome NrAaby02 Sejet02 LOD* LOD 

STB-

HD 

N-06 

LOD 

STB-

HD 

S-05 

LOD 

STB-

HD 

S-06 

LOD 

STB-

HFL 

N-06 

LOD 

STB-

HFL 

S-05 

LOD 

STB-

HFL 

S-06 

2D wmc144  

wmc175b 

3.8 

8.7 

0.7 

3.0 

0.3 

0.0 

1.5 

4.8 

3.5 

6.4 

3.3 

8.2 

3.3 

8.3 
2B  M48/P40_248 

M48/P40_248 

 

- 

- 

- 

- 

- 

- 

3.2 

- 

- 

3.2 

- 

- 

- 

- 

 
3A 

 

wmc388a  

 

wmc264 

 

wmc388a 

3.9 

6.4 

- 

0.6 

5.8 

4.2 

4.2 

0.5 

- 

5.3 

 9.0 

- 

4.4 

9.2 

- 

2.5 

5.4 

- 

2.9 

5.5 

- 

6B 

 

wmc341 

 

M49/P14_428 

 

wmc397  

 

M49/P14_428 

13.5 

26.7 

7.0 

- 

8.0 

9.6 

8.9 

5.1 

6.8 

0.4 

6.5 

- 

8.7 

13.2 

8.0 

3.4 

11.4 

14.3 

7.5 

3.4 

14.33 

26.7 

5.8 

- 

13.8 

27.3 

6.1 

- 7B M49/P11_229  3.7 1.6 0.8 2.4 3.4 4.3 3.9 
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3.3.4.2.2 Height to the flag leaf effects 

The QTL analysis of standardised residuals HFL-STB showed no significant 

differences from the original QTL for STB resistance in general. At Nickerson 2006, 

two new putative QTL on chromosome 2B and 6B were significant with the Sejet02 

data. The new QTL on chromosome 6B was associated with the marker 

M49/P14_428, the same marker where an original QTL for STB resistance was 

detected at NrAaby02. During the analysis of QTL for STB resistance, the presence 

of a QTL on chromosome 2B (the allele also from the Senat cultivar) was suspected, 

but it was under the critical threshold. The QTL analysis for standardised residuals 

uncovered this QTL for STB on chromosome 2B. Only at Sejet 2005 and 2006, the 

QTL on chromosome 3A near the marker wmc388a was under the threshold of 

confidence with the NrAaby02 data, but there was still a sign of its presence (Table 

3.3). 

 Thus, these results suggested that in partial resistance, Senat  Savannah DH 

population, there was not a physiological effect of HFL on resistance to STB at 

NrAaby02 and Sejet02 intensity of the disease. This supported the fact that there 

were no significant correlation coefficients between these traits in the phenotypic 

analysis. 

3.3.4.3  Quantitative trait loci for agronomic traits  

A total of 59 QTL were detected for agronomic traits at the three environments 

analyzed. However, with the unified analysis of QTL across sites, most of QTL 

disappeared, in general those with little effect (this effect has been found for several 

authors), and only 21 QTL remained significant. 

 



 

112 

 

 3.3.4.3.1 Quantitative trait loci for agronomic traits not linked with QTL for STB 

    resistance 

Nickerson 2006 

Quantitative trait loci for the yield component TGW was detected on chromosome 

2A, which explained 17 % of the phenotypic variance, the allele from the Senat 

cultivar. A second QTL for TGW was also detected on chromosome 2B, the allele 

from the Savannah cultivar (Table 3.4). In the same region of chromosome 2B, a 

QTL for grains ear
-1

 was detected, which alone explained 25 % of the phenotypic 

variance. On chromosome 4D, a QTL for GPC was found on the short arm of this 

chromosome (Fig. 3.2).  
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Figure 3.2 Linkage maps of chromosomes showing QTL for agronomic traits for the 

Savannah  Senat DH population of wheat and QTL for partial resistance to STB at 

Nickerson 2006 environment 
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Continued... 

 

 

 

First chromosomes 2D, 6B and 7B show QTL for STB resistance with NrAaby02 data set 

Second chromosomes 2D, 6B and 7B show QTL for STB resistance with Sejet02 data set 
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 Height, height to the flag leaf;   STB, Septoria tritici blotch;   HD, heading date;   Protein, grain protein content;   Maturity, canopy 

maturity;  GPE, grains ear-1;   Yield;   SW, specific weight;   TGW, thousand grain weight 
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For the trait HD, a QTL on chromosome 5A was detected, which explained 

23 % of the phenotypic variance (Table 3.4). Four QTL were detected on 

chromosome 5B, one for each of the following traits, HD, canopy maturity, GPC and 

grains per ear, all of them in a same region (Table 3.4). A QTL for TGW was 

distinguished on the short arm of chromosome 7A (Fig.  3.2). 

Sejet 2005 

For the yield component ears m
-2

 a QTL was found on chromosome 1A, which 

explained 20 % of the phenotypic variance. In contrast, four QTL were distinguished 

on chromosome 1B; three of them were located in a similar region of the short arm 

(Fig. 3.3), one for each of the traits HD, GPC and starch content. The fourth QTL 

was for grains m
-2

, located on the segment of chromosome 1Bb. The QTL for starch 

content explained 43 % of the phenotypic variance, suggesting it is a major gene 

(Table 3.4).  
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Figure 3.3 Linkage maps of chromosomes showing QTL for agronomic traits for the Senat  

Savannah DH population of wheat and QTL for partial resistance to STB at Sejet 2005 

environment 
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First chromosomes 2D, 6B and 7B show QTL for STB resistance with NrAaby02 data set 

Second chromosomes 2D, 6B and 7B show QTL for STB resistance with Sejet02 data set 

 

 

On the short arm of chromosome 2A, a QTL for HD was distinguished. 

Neighbouring QTL for height to the flag leaf and GPC were located on chromosome 

3B (Fig. 3.3). Also for GPC, a QTL was detected on the small segment of 

chromosome 3D (Fig. 3.3). 

For the traits HD and yield, a QTL for each were found on chromosome 5A. 

The QTL for yield explained 16 % of the phenotypic variance (Table 3.4). Two QTL 

were detected on the short segment of chromosome 6A, one for HD and the other for 

starch content. Also, two QTL were distinguished on chromosome 7A one of each 

for the yield components TGW and ears m
-2 

(Fig. 3.3). 
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 EPMS, Ears m-2;  Starch, grain starch content;   HD, heading date;    GPSM, grains m-2;   STB, Septoria tritici blotch;   Height, height to the flag 

leaf;    Maturity, canopy maturity;   Protein, grain protein content;   Yield;  TGW, thousand grain weight;   SW, specific weight 
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Sejet 2006 

On chromosome 1A a QTL for ears m
-2

 was detected, probably the same QTL for 

this trait was detected at Sejet 2005. Both were located between the markers 

M59/P40_317 and wmc84-1AS (Fig. 3.4), and with a large effect (33 % of the 

phenotypic variance at Sejet 2006). Also, the QTL detected on chromosome 1B for 

HD and starch content seemed to be the same ones detected at Sejet 2005 (Table 

3.4). 

 The QTL for starch content were detected between the markers M50/P37_142 

and M59/P19_403, and the QTL for HD was associated with the same marker, 

M59/P19_403. These QTL are either very close, or pleiotropic effects of the locus 

gave place to both traits (Fig. 3.4 and Table 3.4). Newly, the QTL for HD on 

chromosome 2A was associated to the same marker that the QTL for HD on the same 

chromosome at Sejet 2005 (Table 3.4). A similar result was found for the QTL for 

HFL on chromosome 3B, which was associated with the same marker at the Sejet 

trials (Table 3.4).  

 On chromosome 4D, a QTL for SW was detected, associated with the same 

marker where a QTL for GPC was found at Nickerson 2006. Thus, possibly GPC and 

SW traits are tightly linked, or pleiotropic effects are produced by this locus. Two 

QTL were linked on chromosome 5A, one for HD and another for canopy maturity. 

The QTL for HD was associated with the same marker than at Nickerson 2006 

(M60/P32_353). The QTL for canopy maturity is only suggested, due to the fact that 

it was just below the threshold of detection (LOD 3.2, P ≤ 0.05). Finally, two QTL 

were detected on chromosome 5B, one for HD and the other for GPC. The QTL for 

HD appeared to be associated with the same marker (wmc85b) than the one at 
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Nickerson 2006, suggesting it is the same QTL. However, the QTL for GPC seemed 

to be different to that QTL detected on the same chromosome at Nickerson 2006.  
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Figure 3.4 Linkage maps of chromosomes showing QTL for agronomic traits for the Senat 

 Savannah DH population of wheat and QTL for partial resistance to STB at Sejet 2006 

environment 
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Continued... 

 

 

 
 

First chromosomes 2D, 6B and 7B show QTL for STB resistance with NrAaby02 data set 

Second chromosomes 2D, 6B and 7B show QTL for STB resistance with Sejet02 data set 
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 EPSM, Ears m-2;  Starch, grain starch content;   HD, heading date;   STB, Septoria tritici blotch;   Protein, grain protein content;   Height, 

height to the flag leaf;   SW, specific weight;   Maturity, canopy maturity;     Yield;  TGW, thousand grain weight;   GPSM, grains m-2 

            
          



 

120 

 

Table 3.4 Quantitative trait loci for ten agronomic traits at three environments and for grain 

starch content at two environments for the Senat  Savannah DH population 

  N06 S05 S06     

Trait Chromosome Marker Marker Marker Position 
 cM 

LOD % Exp Additive  
effect* 

HD 

1Ba 

 

2A 

 

2Db 

5Aa 

 

 

5B 

 

6A 

 

 

 

 

M60/P32_353 

 

 

wmc85b 

 

M59/P19_403 

 

wmc177 

 

wmc144 

 

wmc388d 

 

 

 

M48/P37_341 

:::: 

M59/P19_403 

 

wmc177 

 

 

 

 

M60/P32_353 

:: 

wmc85b 

 

22.5 

22.5 

24.3 

25.8 

15.5 

22.4 

  8.0 

24.4 

26.7 

27.7 

13.5 

5.7 

5.7 

6.3 

4.2 

4.2 

6.9 

4.8 

6.0 

7.7 

6.1 

4.9 

12 

13 

14 

11 

 10 

23 

11 

16 

26 

15 

10 

0.7 

0.5 

-0.8 

-0.5 

-0.7 

-0.8 

-0.7 

-0.5 

-0.8 

-0.5 

-0.7 

HFL 

3A 

 

 

3B 

 

6Bb 

 

wmc505b 

 

 

 

 

M61/P15_180 

 

 

wmc505b 

 

M62/P38_373 

 

 

M61/P15_180 

 

 

 

wmc505b 

 

M62/P38_373 

 

 

M61/P15_180 

33.8 

33.8 

33.8 

   197.8 

   197.2 

13.0 

13.0 

13.0 

5.3 

 10.4 

 11.0 

5.4 

4.6 

4.3 

6.9 

8.7 

18 

28 

28 

13 

21 

14 

17 

10 

-2.1 

-3.0 

-3.0 

1.9 

2.1 

1.9 

2.3 

2.5 

Maturity 

3A 

5A 

5B 

 

 

M47/P35_247 

wmc264  

wmc388d 

54.3 

  4.0 

35.2 

3.8 

3.0 

3.4 

15 

13 

15 

     -0.5 

0.5 

0.4 

Ears m-2 

1A 

 

7A 

 

 

M59/P40_317 

 

M60/P10_308 

 

wmc84-1AS 

45.9 

51.9 

79.3 

5.4 

7.6 

3.3 

20 

33 

12 

-27.3 

-42.1 

       -19.9 

Grains m-2 

1Bb 

6B 

 M62/P35_234 

M49/P32_419 

 

 

M49/P37_484 

29.1 

44.4 

56,6 

4.8 

3.9 

4.6 

  18 

  13 

   19 

-1055.7 

-874.8 

-1587.6 

Grains ear-1 
2B 

5B 

M48/P11_321 

M59/P32_192 

  90.9 

49.8 

6.9 

3.5 

25 

14 

-3.6 

2.7 

TGW 

2A 

2B 

6B 

 

7A 

M48/P10_277 

M62/P38_258 

 

 

M60/P10_329 

 

 

M59/P38_120 

 

 

M48/P11_191 

 

 

 

M49/P37_484 

70.5 

94.1 

83.6 

56.6 

  9.3 

  8.3 

5.1 

4.8 

4.9 

3.5 

5.1 

3.4 

17 

14 

18 

15 

16 

13 

-1.3 

1.0 

1.3 

1.3 

1.1 

1.0 

Yield 

5Aa 

6B 

 

M59/P38_120 

M60/P38_295  

 

M59/P38_120 

85.4 

83.6 

83.6 

4.0 

4.1 

4.7 

16 

17 

19 

0.2 

0.2 

0.2 

GPC 

1Ba 

2D 

3A 

3B 

3D 

4D 

5B 

 

6B 

7B 

 

wmc144 

 

 

 

wPt-5809 

M59/P38_112 

 

M60/P38_397 

M48/P37_75 

M59/P19_265 

 

 

M47/P14_359 

wmc505a 

 

 

IPO323 

 

 

 

 

wPt-2586 

26.3 

  9.5 

  0.0 

   173.0 

  3.0 

15.7 

29.0 

16.8 

97.2 

97.7 

3.9 

5.0 

4.0 

3.3 

3.7 

6.0 

3.9 

4.7 

3.6  

3.5 

12 

12 

14 

12 

12 

13 

 8.0 

17 

 6 

 6 

0.2 

     -0.19 

     -0.2 

     -0.2 

     -0.2 

     -0.19 

     -0.15 

     -0.2 

     -0.14 

     -0.14 

Starch % 

1Ba 

 

6A 

6B 

 M50/P37_142 

 

M59/P38_217  

M59/P37_321 

 

M59/P19_403  

 

 

M59/P37_321 

21.7 

22.5 

       0.0 

82.6 

82.6 

 16.9 

 12.8 

3.2 

3.5 

3.5 

43 

41 

 7 

 8 

 9 

     -0.5 

     -0.6 

0.2 

0.2 

0.3 

SW 

4D 

6Bb 

 

 

7B 

 

M48/P15_141 

 

 

 

 

M61/P15_180  

 

wmc526 

wPt-5809 

 

 

M61/P15_180 

 

14.7 

  5.0 

  9.0 

11.0 

91.5 

4.6 

3.9 

5.6 

5.9 

3.8 

17 

18 

22 

22 

13 

    -1.0 

0.7 

0.8 

1.1 

     -0.7 

* Negative additive value indicate that the allele is from Senat cultivar; Marker, nearest marker associated with the QTL; 

LOD, log-likelihood threshold scores (P ≤ 0.05); cM, centiMorgans; % Exp, percent of the variation explained 

NO6_Nickerson 2006; SO5_Sejet 2005; S06_Sejet 2006  

HD, heading date; HFL, height to the flag leaf; Maturity, canopy maturity; TGW, thousand grain weight; GPC, grain protein content; Starch %, 

grain starch content; SW, specific weight  
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3.3.4.3.2 Quantitative trait loci for agronomic traits linked with Quantitative trait loci     

               for STB resistance 

Table 3.3 shows the QTL for STB resistance detected in the Senat  Savannah 

double haploid population at NrAaby02 and Sejet02, while Figures 3.2, 3.3 and 3.4 

show the QTL for agronomic traits linked with QTL for STB resistance at Nickerson 

2006, Sejet 2005 and Sejet 2006, respectively. Quantitative trait loci in wheat 

associated with QTL for STB resistance were detected for the yield, grains m
-2

, 

TGW, HD, maturity, SW, grain protein content, grain starch content and height to 

the flag leaf traits.  

Chromosome 2D 

At Nickerson 2006 with the Sejet02 data, the QTL for STB resistance on 

chromosome 2Db appeared to be linked with a QTL for GPC while, with NrAaby02 

data, the QTL for STB resistance was tightly linked, or pleiotropic effects exist (Fig. 

3.2). Senat alleles increased STB resistance and protein percentage. Similarly, at 

Sejet 2005 with the Sejet02 data, the QTL for STB resistance was linked with a QTL 

for HD while, at NrAaby02, the QTL for STB resistance was tightly linked, or this 

allele showed pleiotropy for both traits (Fig. 3.3).  

Chromosome 3A 

The QTL for STB resistance was associated with the marker wmc388a on this 

chromosome at Sejet02 and NrAaby02. This QTL appeared to be linked with an 

invariable QTL for height associated with the marker wmc505b at the three 

environments (Table 3.3, Figs. 3.2, 3.3, and 3.4). In addition, at Sejet 2005 this QTL 

for STB resistance appeared to be linked with a QTL for maturity (Fig. 3.3). At Sejet 
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2006, a QTL for grain protein content was associated with the marker IPO323, a 

QTL for STB resistance (Brading et al., 2002) (Fig. 3.4).  

Chromosome 6B 

At Nickerson 2006, QTL for each of the traits HFL, grain protein content, SW and 

yield were detected on this chromosome. They were linked with a QTL for STB 

resistance at Sejet02. Similarly, both QTL for STB resistance detected at NrAaby02 

were linked with these agronomic traits (Figs. 3.2). At Sejet 2005, quantitative trait 

loci for the HFL, SW, starch content, grains m
-2

 and TGW traits were also linked 

with QTL for STB resistance (Sejet02 and NrAaby02) (Figs. 3.3). At Sejet 2006, 

quantitative trait loci for the HFL, grain protein content, starch content, SW, grains 

m
-2

, TGW, and yield traits were linked with QTL for STB resistance at Sejet02 and 

NrAaby02 (Figs. 3.4).  

Chromosome 7B 

The QTL for STB resistance at NrAaby02 was linked with a QTL for protein content 

at Nickerson 2006 (Fig. 3.2). At Sejet 2005, this QTL for STB resistance was found 

to be linked with a QTL for SW (Fig. 3.3).  

3.3.4.3.3 Unified analysis of QTL for agronomic traits 

Quantitative trait loci analysis was performed using the means of each agronomic 

trait. This analysis across sites identified 21 QTL. Additional QTL identified 

previously were no longer present, in general those with little effect, ‗minor genes‘. 

From these QTL, few could be considered stable genes, usually the ‗major genes‘. 

Actually, the QTL for height to the flag leaf on 3A chromosome and a second one on 

6Bb chromosome were stable. They were found at Nickerson 2006 and Sejet 2005 
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and 2006 environments (Table 3.5). Also, a QTL on 6Bb chromosome for SW was 

calculated at the three environments showing stability. For yield, the QTL on 6B 

chromosome seemed to be a stable QTL; it was detected at Nickerson 2006 and Sejet 

2006 for this trait, however it was also detected at Sejet 2005 for the yield 

component TGW. It suggests that this QTL is stable for the trait yield (Table 3.5). 

For the trait starch content, two QTL appeared stable at the Sejet trials, the first one 

on 1Ba chromosome and the second on 6B chromosome, that in the combined 

analysis appeared very close to the marker where the QTL for yield was detected on 

the same chromosome (Table 3.5).  

 

Table 3.5 Quantitative trait loci for the means of ten agronomic traits at three environments and 

for means of grain starch content at two environments for the Senat  Savannah DH population 
Trait Chromosome Marker Position 

 cM 

LOD % Exp Additive  

effect* 
HD 

1Ba 

5Aa 

5B 

M59/P19_403 

M60/P32_353 

wmc85b 

22.5 

23.4 

26.7 

3.3 

7.2 

8.1 

9 

23 

24 

0.45 

-0.74 

 

HFL 
3A 

3B 

6B 

wmc505b 

M62/P38_373 

M61/P15_180 

33.8 

33.8 

13.0 

11.9  

4.9 

 8.3 

30 

11 

20 

-2.93 

1.73 

2.29 

Maturity 
- - - - - - 

Ears m-2 - - - - - - 

Grains m-2 2B 

6B 

wmc154 

M49/P37_484 

63.9 

57.3 

3.7 

4.7 

  15 

  16 

-1019.9 

-1114.1 

Grains ear-1 2B 

5B 

M48/P11_321 

M59/P32_192 

91.9 

48.8 

5.0 

4.2 

18 

16 

-1.70 

1.61 

TGW 
2B 

6B 

7A 

M62/P38_258 

M61/P15_180 

M60/P10_329 

94.1 

8.0 

9.3 

3.6 

5.7 

5.5 

9 

19 

17 

0.80 

1.11 

1.08 

Yield 6B M59/P38_120 83.5 6.8 26 0.20 

GPC 
3B 

3D 

5B 

M47/P14_359 

wmc505a 

M61/P32_278 

174.0 

1.0 

30.2 

3.4 

3.3 

4.4 

13 

10 

13 

-0.16 

-0.14 

-0.16  

Starch % 
1Ba 

6A 

6B 

M59/P19_403  

M59/P38_217  

M59/P38_120 

22.5 

0.0 

83.56 

17.0 

3.1 

4.4 

48 

6 

9 

-0.59 

0.22 

0.26 

SW 6B M61/P15_180  8.0 5.3 25 0.87 

                        * Negative additive value indicate that the allele is from Senat cultivar 
                        LOD, log-likelihood threshold scores (P ≤ 0.05); cM, centiMorgans; % Exp, percent of the  

                               variation explained 
                       HD, heading date; HFL, height to the flag leaf; Maturity, canopy maturity; TGW, thousand 

                       grain weight; GPC, grain protein content; Starch %, grain starch content; SW, specific weight  
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3.4 Discussion 

The representation of chromosome maps (shown below), especially of the genomes 

D (15 %) and genome A (37 %), limited in part the detection of QTL for the 

agronomic traits analysed in this work, mostly due to the lower polymorphism 

detected in the Senat  Savannah double haploid population, results also found by 

Eriksen et al. (2003). Similar results have also been found by others authors (e.g.  

Plaschke et al. (1996) reported 45 % of loci found in the B genome, 30 % in the A 

genome and 25 % in the D genome, working with nullisomic-tetrasomic and 

ditelosomic lines of Chinese Spring cultivar).  In addition, QTL may remain under 

the threshold of detection (50% of occasions) due to environmental variation 

(Kearsey, 2002) or modified by it (Shah et al., 1999a). Thus, QTL were not totally 

detected, especially for complex traits as the yield. Therefore, several of the 

phenotypic associations found in the Senat  Savannah double haploid population 

through the Pearson correlation analysis (see Chapter 2) could not be confirmed by 

the genotype screening in the course of the QTL analysis (Appendix   E).  

At Nickerson 2006, 17 QTL were detected for the agronomic traits, and six 

traits were associated with QTL for STB resistance. At this environment, the Senat  

Savannah DH population confronted the best environmental conditions for its 

development, giving the almost insignificant compensatory effects among the yield 

components. At Sejet 2005, 24 QTL were identified and also six agronomic traits 

were associated with QTL for STB resistance. This environment was possibly the 

most stressing for the DH population, receiving the lowest precipitation (see Chapter 

2). At Sejet 2006, 18 QTL were detected; eight QTL for agronomic traits were 

associated with QTL for STB resistance.  
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Septoria tritici blotch severity at NrAaby02 and Sejet02  

The severity of septoria tritici blotch was different at NrAaby02 and Sejet02 sites. 

The flag leaf was 10 % more affected (0.8247 logitAUDPC) at NrAaby02 than at 

Sejet02. These results suggest that environmental conditions were more favourable to 

the development of STB at NrAaby02 than at Sejet02. If similar environmental 

conditions at both sites are assumed, although there are minimal differences in 

latitude, longitude and altitude, microclimatic differences could allow a faster 

development of the disease at NrAaby02, due to the quantitative nature of partial 

resistance. Thus, the expression of QTL for STB resistance could differ. However, 

the difference in severity may be due to differences in the time the assessment was 

made at each site. Though the inoculation was carried out at the same date and at the 

same plant developmental stage at each trial, when the flag leaves were fully 

expanded, the disease assessment was not carried out simultaneously at both sites. 

The STB severity assessment at Sejet02 was made on June 20
th

 and 26
th

, and on July 

3
rd

 2002, while at NrAaby02 the assessment was made on June 25
th

 and on July 1
st
 

and 7
th

 2002 (Eriksen et al., 2003). According to Magboul et al. (1992), the 

minimum development rate of disease severity was 3% day
-1

 in chamber conditions, 

indicating that four days would make a difference of 12% in severity, very similar to 

the 10% of difference found between NrAaby02 and Sejet02 data sites in the field.  

Quantitative trait loci for STB resistance  

Quantitative trait loci which improve the levels of resistance to STB have been 

reported (Eriksen et al., 2003; Simón et al., 2001; Simón et al., 2004; Chartrain et 

al., 2004b). Different numbers of QTL for STB resistance at the adult stage were 

detected according to the intensity of STB severity in the Senat  Savannah double 
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haploid population. At Sejet02, where the STB severity was lower than at NrAaby02, 

one QTL for STB resistance was detected on each of the chromosomes 2D, 3A and 

6B. Five QTL for STB resistance were detected at NrAaby02, one on each of on 

chromosomes 2D, 3A and 7B, and two QTL for STB resistance on chromosome 6B. 

Little is known about the mechanisms throughout partial resistance operate, however 

possibly with a major increase of the disease, another locus or other loci are 

―switched on‖ by the plant in order to respond to the disease severity. 

The QTL for STB resistance detected on chromosome 2D, associated with 

different markers, —NrAaby02 (wmc144 marker) and Sejet02 (wmc175b marker) — 

may be the same one (Table 3.1). Walsh (2002) indicates that a QTL of large effect 

could be initially located to a region of around 20 to 50 cM. The QTL for STB 

resistance on chromosome 2D are separated by 29 cM. However, the alleles may be 

different for STB resistance. Quantitative trait loci for disease resistance have been 

found to be tightly linked (Hammond-Kosack and Jones, 1997). A QTL on 

chromosome 2D was found by Simón et al., (2004) at seedling stage. However, this 

QTL may not be the same reported in this work, firstly because it was not detected at 

seedling stage in the Senat  Savannah DH population (Eriksen et al., 2003). 

Secondly, they cannot be compared because the markers used were different and the 

position was different. 

 The QTL for STB resistance on chromosome 3A was detected at similar 

positions and was associated with the same marker (wmc388a) for both NrAaby02 

and Sejet02 data. The resistant gene Stb6 has been detected on chromosome 3A on 

the marker IPO323 (Brading et al., 2002), and its presence has been confirmed in the 

Senat cultivar at seedling stage (Eriksen et al., 2003; Chartrain et al., 2005b). 

However, this allele was not detected in the QTL analysis at adult stage in the 
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Savannah  Senat DH population in this work nor in Eriksen et al.‘s study (2003). At 

field trials, the inoculum consisted of eleven M. graminicola isolates. Thus, non-

specific ‗background resistance‘ (Brown et al., 2001) could diminish the effect of 

IPO323; that is, genes that confer partial resistance could modify the expression or 

mask the effects (Chartrain et al., 2005c) of Stb6. Also, environmental elements 

could inhibit the effect of resistant alleles (Kema and van Silfhout, 1997). The 

specific expression of some resistant genes to specific isolates of STB at seedling 

stage, but not in adult plants, has been detected. (Kema and van Silfhout, 1997; 

Arraiano et al., 2001a). 

The QTL for STB resistance detected between the markers wmc397 and 

wmc341 on chromosome 6Ba may be a major gene for STB resistance, due to the 

fact that the LOD score was higher than other QTL for STB resistance (Chartrain et 

al., 2004b), and also because it explained a high percentage of the phenotypic 

variance. Chartrain et al. (2004b) detected a minor QTL for partial resistance to STB 

on chromosome 6B in an F1 double haploid population from the cross between Arina 

and Riband cultivars. This QTL was detected at adult stage, and the allele that 

confers resistance was from Riband. However, this QTL can not be compared with 

the QTL found in this work, as the markers used were different. In addition, the 

allele on chromosome 6B for resistance to STB was from the Senat cultivar. The 

second QTL for STB resistance on chromosome 6Ba, and the QTL for STB 

resistance on chromosome 7B, were detected only at NrAaby02 site. The resistant 

gene Stb8 to M. graminicola was detected on chromosome 7B (Adhikari et al., 

2003). However, the QTL for STB resistance detected on chromosome 7B in this 

work may not be the same, due to the fact that the position was different and the 

variance explained was low, suggesting it is a minor gene.  
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Quantitative trait loci for plant adaptation traits 

In the Senat  Savannah DH population, seven different QTL for heading date were 

detected in the three environments tested (Table 3.4). At Nickerson 2006, two QTL 

for HD were found, five QTL for HD were detected at Sejet 2005, and four QTL for 

HD at Sejet 2006. From these seven QTL for HD, three were detected in the 

chromosomes 5 group, two on chromosome 5A and one on chromosome 5B. The 

first QTL on chromosome 5A was found at Nickerson 2006 and Sejet 2006 

associated with the same marker (M60/P32_353). On chromosome 5A, one QTL for 

earliness per se that possibly corresponds to that detected in this analysis has been 

detected near the centromere, as it was also found by Sourdille et al. (2000). The 

QTL for HD found on chromosome 5B also at Nickerson 2006 and Sejet 2006 

environments are located in similar position. Tóth et al. (2003) mapped an eps locus 

on chromosome 5B near the marker wmc73 (27.8 cM). In the Senat  Savannah DH 

population, the wmc73 marker was at 24.2 cM, in a similar region. The QTL for HD 

on chromosome 5A might be homoeologous to those found on chromosome 5B. 

They were detected in a similar region (22.4- 27.7 cM) and, in such a case, they 

would be Eps alleles.  

The QTL for HD on chromosome 2A, associated with the wmc177 marker at 

Sejet 2005 and Sejet 2006 (24.3 and 25.8 cM, respectively), and the QTL on 

chromosome 2D at Sejet 2005 (15.5 cM), probably correspond to eps alleles. They 

explain 11-14 % and 10 % of the phenotypic variance, respectively. Kuchel et al. 

(2006) and Huang et al. (2003) found a QTL for HD on the short arm of 

chromosome 2A. Some other authors have also detected eps alleles on chromosomes 

2B and 2D, close to the Ppd-B1 gene (Shindo et al., 2003; Hanocq et al., 2004; 

Sourdille et al., 2003; Kuchel et al., 2006) and the Ppd-D1 gene (Hanocq et al., 
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2004; Börner et al., 2002; Huang et al., 2003, 2004; Xu et al., 2005).  Hanocq et al. 

(2004) propose that eps genes exist close to the Ppd genes, or that pleiotropic effects 

of Ppd genes give place to the eps alleles (Worland, 1996; Börner et al., 2002), or 

that there is confusion between Ppd genes and eps alleles in the homoeologous group 

2.  

The QTL for HD detected on chromosome 1B (McEwan and Kaltsikas, 1970; 

Law et al., 1981; Hoogendoorn, 1985), chromosome 5A and chromosome 6A 

(Huang et al., 2003) may be related with those alleles for ‗earliness per se‘. Snape et 

al. (2001a) have predicted alleles for photoperiod response (on chromosomes group 

1 and 6), vernalization response (on chromosomes group 1 and 4), and earliness per 

se (on chromosomes groups 3, 4, 5, 6 and 7) in wheat from comparative analysis 

with barley. 

The cultivar Savannah (Riband  Brigadier) presumably possesses the 

semidwarf Rht-D1b (formerly Rht1) allele because it is present in both parents 

(Sherman et al., 2005), however, this gene was not detected in this work 

(chromosome 4D), which is also consistent with the findings of Eriksen et al. (2003), 

presumably by the under representation of this chromosome in the linked group. In 

the Senat  Savannah DH population only three QTL for HFL were detected, one on 

each chromosome 3A, 3B and 6B. The QTL on chromosome 3A was detected in all 

the environments tested, associated with the marker wmc505b, and it is comparable 

with that found by Eriksen et al. (2003). A quantitative trait locus for height on the 

short arm of chromosome 3A, which possibly correspond with the QTL in the SESA 

population, has been cited by several authors (Shah et al., 1999 b; Campbell et al., 

2003; Huang et al., 2004; Dilbirligi et al., 2006). On chromosome 3B, a QTL for 

HFL was also detected at the Sejet trials. Chromosome 3B did not account for height 
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variation, but interactions between the homoeologous chromosomes (3A and 3B) 

were found to be of negative type, although not significant, when using single 

chromosome substitution lines of Capelle Desprez into Chinese Spring cultivars 

(Snape et al., 1977). Eriksen et al. (2003) also detected a QTL for height on 

chromosome 3B, that in the new map is assigned to the long arm of chromosome 3B. 

Huang et al. (2004) and Marza et al. (2006) detected a QTL for height on the long 

arm of chromosome 3B that possibly corresponds to the QTL found in this work. 

 At Nickerson 2006, Sejet 2005 and Sejet 2006, the third QTL for HFL on 

chromosome 6Bb was associated with the same marker (M61/P15_180).  Snape et al. 

(1977) found that this chromosome has a significant additive effect and it is involved 

in interactions with other chromosomes. Eriksen et al. (2003) detected a QTL on 

group IX, assigned to chromosome 6B in the map constructed in this work. Cadalen 

et al. (1998) also found a QTL for plant height on chromosome 6BL that possibly 

corresponds to the QTL in the SESA population. 

 The cultivar Savannah presumably carried the 1BL.1RS translocation 

probably inherited by Brigadier (Sherman et al., 2005). Cultivars with the 

translocation 1BL.1RS, where the 1BS arm is replaced by the homoeologous rye 

(Secale cereale L.) 1RS arm, confer longer green leaf (at least 2 days) and yield 

benefits (Villarreal, et al., 1998; Foulkes et al., 2006). However the background 

effects are large and genotype  environment interactions could affect the expression 

of agronomic traits in wheats with the translocation (Villarreal, et al., 1998). No QTL 

was detected on this chromosome for canopy maturity. In the Senat x Savannah DH 

population, three QTL for canopy maturity were detected, one on each chromosome, 

3A, 5A and 5B. Marza et al. (2006) detected a QTL for maturity date on 

chromosome 3AS.  
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Quantitative trait loci for yield and yield components 

One QTL for yield on chromosome 5AL was detected in the Sejet 2005 dataset, 

position 85.4 cM, where the allele with additive effects was from Savannah cultivar 

(Fig. 4.2). A QTL on the long arm of chromosome 5A (position around 85 cM), that 

possibly corresponds with the QTL found here, has been described by several authors 

(Kato et al., 2000; Gross et al., 2003; Quarrie et al., 2005; Huang et al., 2006). The 

second QTL for yield was found on chromosome 6B, detected at 83.6 cM position, at 

Nickerson 2006 and Sejet 2006. Huang et al. (2004) and Marza et al. (2006) have 

described a QTL for yield on chromosome 6B, but in a different region than that for 

the QTL found in the SESA DH population. 

 Grain weight is a trait under polygenic control, where QTL with major effects 

are few, while QTL with minor effects are many (Kumar et al. 2006). For the yield 

component TGW, five QTL were detected on chromosomes 2A, 2B, 6B and 7A. 

Varshney et al. (2000) mentioned that chromosomes 2B and 7A carried alleles for 

high grain weight, while chromosome 6B carried alleles for low grain weight. On 

chromosome 2A, a QTL for TGW was found at 70.5 cM, position comparable with 

that QTL found by McCartney et al. (2005) also on chromosome 2A. On 

chromosome 2B, a second QTL for TGW was detected in the SESA DH population, 

at 94.1 cM position. This QTL is possibly the same one cited by several authors 

(Gross et al.,2003; Kumar et al., 2006; Hai et al., 2008), as they located it in interval 

68 to 90 cM. For chromosome 6B, two QTL were detected at position 56.6 cM, at 

Sejet 2005, and the second one at 83.6 cM, at Sejet 2006. These QTL possibly 

correspond with those ones cited by Börner et al. (2002), as supported intervals 

included the regions where the two QTL for TGW were found for the SESA DH 

population. Marza et al. (2006) reported a QTL for spike weight on chromosome 6B 
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(position around 97 cM). The QTL for TGW on chromosome 7A was detected 

between the markers M48/P11_191 and M60/P10_329 (interval position 7.3 to 9.9 

cM). Huang et al. (2004) mapped a QTL on the distal arm of chromosome 7AS, in 

the same region the QTL was found in this work. 

 Three QTL for the yield component grains m
-2

 were detected in the SESA DH 

population. One QTL on chromosome 1B and another on chromosome 6B were 

detected at Sejet 2005. A second QTL for grains m
-2

 on chromosome 6B was 

detected at Sejet 2006. However, in the literature considered, there were no QTL 

reported for this trait that was coincident with those QTL cited here. Nevertheless, 

for the grains m
-2 

factors, ears m
-2

 and grains ear
-1

, several QTL have been mapped. 

Two QTL for the trait ears m
-2

 were detected one on 1A chromosome and a second 

one on 7A chromosome. The first QTL on chromosome 1A was located at Sejet 2005 

(position 40.9-54.5 cM) and Sejet 2006. Kumar et al. (2007) reported a QTL for tiller 

number on this chromosome. However, they located the QTL at position 145.11 cM, 

very far from the QTL found in this work. Also, Li et al. (2007) detected a QTL for 

spike number on chromosome 1A, at position around 21 cM. It was difficult to make 

any comparisons in detail, because different markers and different maps were used. 

The second QTL detected only at Sejet 2005, on chromosome 7A, was located at 

position 79.3 cM. Huang et al. (2003, 2004) and Kumar et al. (2007) mapped a QTL 

for tiller number m
-2

 on the short arm of this chromosome, near the centromere, 

which possibly corresponds to the QTL detected in this work. For the trait grains ear
-

1
, two QTL were detected only at Nickerson 2006, one on each chromosome, 2B 

(position 90.9 cM) and 5B (position 49.8 cM). The first QTL (on chromosome 2B) 

was detected in a region described by Hai et al. (2008), where yield parameters have 

been detected.  Kumar et al. (2007) and Hai et al. (2008) mapped two QTL on 
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chromosome 2B for grains per ear, the first one may correspond with the QTL 

described in the SESA DH population, but the markers used where different. On 

chromosome 5B, Quarrie et al. (2005) reported a QTL for grains per ear. 

Quantitative trait loci for quality grain traits 

Grain protein content is a complex trait determined by many genes distributed in 

different chromosomes of hexaploid wheat and, as a quantitative character, strongly 

influenced by the environment as studied by several authors (Joppa et al., 1997; Chee 

et al., 2001; Prasad et al., 2003; Blanco et al., 2002; Gross et al., 2003; Prasad et al., 

2003; Turner et al., 2004). In the SESA DH population, nine chromosomes that 

determined the trait grain protein content on chromosomes 1B, 2D, 3A, 3B, 3D, 4D, 

5B, 6B and 7B were detected. No QTL for GPC were coincident in the three 

environments analysed. From the nine QTL, five were located at Nickerson 2006 (on 

chromosomes 2D, 4D, 5B, 6B and 7B), three at Sejet 2005 (on chromosomes 1B, 3B, 

and 3D), and only two at Sejet 2006 (on chromosomes 3A and 5B). The QTL on 

chromosome 1B was found at position 26.3 cM. Sourdille et al. (2003) also detected 

on this chromosome a QTL for GPC with a confidence interval of 39.0-103 cM. 

Prasad et al. (1999, 2003) and Börner et al. (2002) detected one QTL for GPC on the 

long arm of chromosome 2DL and another on the short arm of the same chromosome 

2DS, respectively. In the homoeologous group 3, one QTL on each chromosome was 

detected, two of them were detected at Sejet 2005; they appeared on an 

homoeologous region on chromosomes 3A and 3D, as they were located at 0.0 and 

3.0 cM position, respectively. The QTL on chromosome 3A was detected at Sejet 

2006 on a similar position (0.0 cM) to that found by Gross et al. (2003) on the same 

chromosome. On chromosome 3B, also Gross et al. (2003) reported a QTL for GPC 

in the confidence interval 19-175 cM, that possibly corresponds to that one found in 
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the SESA population on this chromosome at position 173.0 cM, at Sejet 2005. Prasad 

et al. (2003) reported a QTL on chromosome 3D near the marker gwm456 at position 

1.8 cM; possibly, it corresponds with the one detected in this work. Huang et al. 

(2006) and McCartney et al. (2006) detected a region on chromosome 4D between 

0.0 to 30 cM (in the same position than the one found by Gross et al., 2003), where 

not only a QTL for GPC, but also several QTL for agronomic and quality grain traits 

were found, respectively. This QTL is comparable to that found in the SESA DH 

population. For chromosome 5B, two QTL were detected, one at Nickerson 2006 and 

the second one at Sejet 2006, that differ in position (29.0 and 16.8 cM, respectively). 

Gross et al. (2003) detected a QTL for GPC only in one location of six in their 

research. It was detected in the confidence interval 27-128 cM, thus possibly, it 

corresponds with the QTL found at Nickerson 2006. It has been described that a QTL 

for high GPC on 6B chromosome accounted for a high percentage of the total 

phenotypic variation, the allele from Triticum turgidum, in a variety dicoccoides 

accession (Joppa et al., 1997; Chee et al., 2001; Blanco et al., 2002), donor of A and 

B genomes of common wheat. Turner et al. (2004) also detected a QTL on 

chromosome 6B in the Avalon x Hobbit Sib RIL population (Triticum aestivum), 

differing in location in two years data (76.5 and 86.5 cM), which possibly correspond 

with the QTL for GPC found in the SESA DH population (97.2 cM). The QTL for 

GPC detected on 7B chromosome (position 97.7 cM) possibly corresponds to the 

QTL for this trait detected by Blanco et al. (2006) on 7BL chromosome, the allele 

from an accession of variety dicoccoides. Huang et al. (2006) reported a QTL for 

GPC also on chromosome 7B in Triticum aestivum, difficult to compare with the one 

found here.  
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 Three QTL for specific weight were located in the SESA DH population, one 

in the short arm of chromosome 4D at Sejet 2006, the second one in the short 

segment of chromosome 6Bb at Nickerson 2006, Sejet 2005 and Sejet 2006. The 

third QTL for SW was detected at Sejet 2005 on chromosome 7B. Huang et al. (2006 

and McCartney et al. (2006) detected a QTL for SW on the short arm chromosome 

4D, in the same segment where several QTL for agronomic and grain quality traits 

have been detected. McCartney et al. (2006) associated this QTL for SW with 

reduced height, low grain yield, low TGW and longer time to maturity. These 

characteristics associated with the dwarfing gene Rht-D1, are presumably present in 

the Savannah cultivar. However, the dwarfing gene was not detected on this 

chromosome in the SESA DH population, and neither was the QTL for TGW, yield 

or maturity. Nonetheless, the QTL for GPC and another for SW were detected (at 

Nickerson 2006 and Sejet 2006, respectively), associated with the same marker (wPt-

5809); the decrease of these traits was due to the Savannah cultivar. McCartney et al. 

(2006) also detected a QTL for SW on chromosome 6B, but it cannot be compared 

with the QTL found for this trait in the SESA SH population.  

 Three QTL for starch content were detected in the SESA DH population. On 

chromosome 1B, a QTL was detected at Sejet 2005 and Sejet 2006, between the 

markers M50/P37_142 to M59/P19_403 (position 21.7 cM and 22.5 cM, 

respectively). This QTL was comparable with the QTL detected by McCartney et al. 

(2006) in Triticum aestivum, where a QTL for starch content was located on the short 

arm of chromosome 1B (position 19 cM).  

Phenotypic associations and genotypic associations 

There were 131 significant correlation coefficients (Chapter 2, this Thesis), and 57 of 

them were confirmed to be linked to at least one chromosome during the genotypic 
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screening, that is, one QTL for each trait was detected on the same chromosome 

(Appendix E). These results suggested that physiological relationships between two 

(or more) traits took place at the same time. On the contrary, traits where QTL were 

detected on the same chromosome (even in the same region), appeared not to be 

associated (no significant correlation coefficient), during the phenotypic analysis, i.e. 

GPC and grains ear
-1

 on 5B chromosome, at Nickerson 2006. These results suggest 

that physiological events for each trait took place at different times. 

Plant adaptation traits 

Associations between HD and yield components were found at Sejet 2005 and Sejet 

2006. Heading date was also associated with yield and HFL. Only the high negative 

association HD vs. yield was confirmed by the genotypic analysis at Sejet 2005 

(Appendix E).  These associations are most likely due to the series of genes involved 

in the duration of the life cycle and consequently with the time to heading and the 

floral development. These genes control the vernalization requirement (Vrn genes) 

on group 5 chromosomes, photoperiod response (Ppd genes) on group 2 

chromosomes, and developmental rate, ‗earliness per se’ genes (Eps), on several 

chromosomes (Snape et al., 2001a and b). The Vrn genes reduce the vernalization 

requirements (decrease sensitivity to vernalization), giving place to a faster rate of 

primordia production, resulting in early flowering (Sourdille et al., 2000; Snape et 

al., 2001a). For chromosomes 5A and 5B, the Vrn genes have also been related with 

the duration of the phenological phases: emergence to floral initiation, and terminal 

spikelet to heading. They are also related with the increase of number of spikelets 

and rate of generation (Whitechurch and Snape, 2003). The Ppd genes affect the 

timing of terminal spikelet production and stem elongation. These genes participate 

in accelerating the days to flowering (Scarth and Law, 1983; Hoogendoorn, 1985; 
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Börner et al., 1993; Worland and Sayers, 1996; Snape et al., 2001a) and interact with 

the Vrn genes. The Ppd genes are also associated with the reduction in plant height, 

reduced tiller number (Worland et al., 1998) and fewer numbers of spikelets per ear 

(Worland et al., 1994, 1998). However, the grain setting increases, implying that 

spikelet fertility improves (Worland et al., 1994, 1996; Börner et al., 1993).  The 

same authors found an increase in some European areas of 5% to 30 % in yield, due 

to the Ppd-D1 gene, depending on environmental conditions. The ‗earliness per se‘ 

(Eps) genes effects, detected in this work, have been described as differences in 

growth and development, independent of photoperiod and vernalization stimuli 

(Hoogendoorn, 1985; Worland et al., 1994; Worland and Sayers, 1996; Snape et al., 

2001a). Also, the Eps genes have been associated with fewer spikelets 

(Hoogendoorn, 1985) and improved yield (Worland et al., 1994). They determine the 

duration of phenological phases until flowering (Whitechurch and Snape, 2003). 

The phenotypic analysis showed that HD was negatively and significantly 

associated with STB resistance at all the environments (Chapter 2, this Thesis). Only 

at Sejet 2005 was the phenotypic association confirmed by the genotypic analysis 

(Appendix E). Accordingly, a physiological relationship was suggested between 

these traits, at least at Sejet 2005. In addition, the results for heading date and STB 

residuals suggest that variation in STB resistance is accounted for by variation in 

HD. These results also suggest that in partial resistance, Savannah  Senat DH 

population, there may be a genetic linkage and a physiological effect of HD on STB 

resistance. The results presented in this research agree with several reports of 

associations between incidence of STB and earliness, as it has been cited in Chapter 

2, this Thesis. 
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Height to the flag leaf was associated with the yield and the yield 

components. Some of these associations were confirmed by the genotypic analysis 

(Appendix E). The Rht genes (Rht1 and Rht2) promoted the reduction in height 

approximately 20 % and increased spikelet fertility (Kuchel et al., 2007). On the 

other hand, Börner et al., 1993 state that the number of grains per ear increase, but 

that there are negative effects on grain weight and reduction in tiller number.  Yet, a 

higher number of grains m
-2

 is associated with small grain size (Kuchel et al., 2007). 

They also increase yield, subjected to temperature stress at the period between flag 

leaf to ear emergence (Worland and Law, 1985). Rht genes are important in the 

determination of plant height, but they do not explain all the variation for this 

character, thus the final plant height is under polygenic control (Snape et al., 1977; 

Cadalen et al., 1998), where seventeen chromosomes accounted for genetic variation, 

and interactions between these chromosomes are an important component of the final 

height (Snape et al., 1977).  

The results of the analysis of residuals between HFL and STB suggest that, 

although both chromosomes 3A and 6B carry alleles for STB resistance and HFL, 

this last trait does not account for variation in STB resistance. Thus, these results also 

suggest that in partial resistance, Savannah x Senat DH population, there is not a 

physiological effect of HFL on resistance to STB at NrAaby02 and Sejet02 severity 

of the disease. This supports the fact that there were no significant correlation 

coefficients between height to the flag leaf and STB severity in the phenotypic 

analysis (see Chapter 2) — results also found by Danon et al. (1982) and Eriksen et 

al. (2003).  

Canopy maturity was negative, associated with HD at all the trials. At 

Nickerson 2006, a QTL for each trait was linked on chromosome 5B, while at Sejet 
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2006, a QTL for each trait was linked on chromosome 5A (Appendix E). At 

Nickerson 2006, one QTL for maturity and one QTL for GPC were linked on 

chromosome 5B, confirming the negative association found in the phenotypic 

analysis (Appendix E). 

Yield and yield components 

The yield and the yield components were associated at all the environments 

differently (Chapter 2, this Thesis), suggesting different physiologic relationships. 

However, few of these associations were confirmed by the genotypic screening 

(Appendix E).  Nevertheless, yield and the yield components TGW and grains m
-2

 

were linked at Sejet 2006 by the chromosome 6B, confirming their strong association 

and the central physiological relationship among them (Fig. 3.4). The QTL for TGW 

and the QTL for grains m
-2

 were found associated with the same marker 

(M49/P37_484), suggesting opposite pleiotropy gene effects or loci tightly linked for 

these factors of the final yield (Fig. 3.4). In the phenotypic analysis, the highest 

negative association between TGW and grains m
-2

 was found at this trial. Also, TGW 

was positively associated with yield, while grains m
-2

 was negative associated with it 

(see Chapter 2).  

The QTL for yield distinguished on 6B chromosome in Nickerson 2006 and 

Sejet 2006 environments possibly indicates a major gene. Additionally, this QTL for 

yield on chromosome 6B was associated with the marker M59/P38_120. However, 

the trait TGW was also associated with the same marker at Sejet 2005 (Table 3.4, 

Fig. 3.3). It suggests a tight physiological relationship between yield and TGW at the 

last environment, possibly a pleiotropy effect where TGW ‗substitutes‘ the yield. In 

the phenotypic analysis at this trial, TGW was the trait that mainly contributed with 

the yield, since no association between yield vs. grains m
-2

 was found at this trial.  



 

140 

 

Quantitative trait loci for STB resistance is related with TGW and grains m
-2

. 

They were linked with chromosome 6B at Sejet 2005 and Sejet 2006, as the 

phenotypic analysis suggested (Fig. 3.3 and 3.4). Thus, physiological relationships 

are suggested between TGW, grains m
-2

 and STB resistance.  

A stable QTL for yield and TGW was found on 6B chromosome, which 

presented a moderately high effect across the three environments. The stability 

shown by this QTL is unusual, given the fact that yield is a character 

environmentally dependent (Quarrie et al., 2005). The allele was conferred by the 

Savannah cultivar thus; this QTL is a good candidate to be considered for plans on 

plant breeding. 

Quality grain traits 

Quality grain traits were associated between them and with yield and yield 

components. Furthermore, they were also associated with the plant adaptation traits. 

Newly, these associations differ in each environment and not all of them were 

confirmed by the genotypic analysis. 

The phenotypic analysis showed that GPC and yield were negatively 

associated at the three environments. This association was confirmed by the 

genotypic analysis only at Nickerson 2006 (Table 3.4 Appendix E). One QTL for 

GPC was co-located with a QTL for yield on chromosome 6B, suggesting a 

physiological relationship between GPC and yield (Table 3.4, Fig. 3.2). 

Starch percentage was significant and positively associated with TGW and 

yield at the Sejet trials. This association was confirmed by the genotypic analysis 

only at Sejet 2006. One QTL for each trait was detected on chromosome 6B, linked 

by close markers (Table 3.4, Fig. 3.4). Thus, a strong physiological relationship is 

suggested among yield, TGW and grain starch content. Physiological relationships 
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were suggested between starch % and GPC in the phenotypic analysis at Sejet 2005 

and 2006, where negative associations were found between these traits. A QTL for 

each trait was nearly linked on 1B chromosome at Sejet 2005 (Fig. 3.3). At this 

environment, the highest percentage of starch and the lowest content of grain protein 

were found (see Chapter 2).  

The phenotypic analysis indicated a positive association between HD and 

GPC at the three environments analysed. Also, a QTL for each trait was co-located 

on 5B chromosome at Nickerson 2006 and Sejet 2006 (Fig. 3.2 and 3.4). Also, at 

Sejet 2005, a QTL for each trait was linked by chromosome 1B (Fig. 3.3). The fact 

that different chromosomes were involved in the association HD and GPC at all the 

trials, suggests that different environmental signals turned on the QTL implicated in 

these responses. In addition, it has to be noted that the alleles for HD and GPC at 

Nickerson 2006 and Sejet 2006 were conferred by the Senat cultivar, while those at 

Sejet 2005 for the same traits were conferred by the Savannah cultivar. 

  In opposition, highly negative associations were detected between HD and 

grain starch content in the phenotypic analysis at Sejet 2005 and Sejet 2006. This 

association was also confirmed by the genotypic analysis at both trials (Appendix E). 

At Sejet 2005, two chromosomes showed to have linked QTL for both traits on 

chromosome 1B and 6A. At Sejet 2006, a QTL for each trait was also detected on 

chromosome 1B. Thus, physiological relationships are suggested among GPC and 

HD (Fig. 3.3 and 3.4). 

The data from the trials tested and the segregation data for STB in the 

Savannah x Senat population indicated that grain protein content was negatively 

associated with STB severity at all the trials. At Nickerson 2006, from five QTL 

detected for GPC, three were linked with QTL for STB resistance on chromosomes 
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2D, 6B and 7B (Fig. 3.2). At Sejet 2006, a QTL for GPC was linked with a QTL for 

STB resistance on chromosome 3A.  Interestingly, this QTL for GPC was associated 

with the same marker where the resistant gene Stb6 is located, IPO323 (Brading et 

al., 2002), suggesting pleiotropic effects or alleles for each trait that are tightly 

linked.  

The phenotypic analysis showed association between SW and yield at 

Nickerson 2006 and Sejet 2006 (Chapter 2, this Thesis). A QTL for SW and a QTL 

for yield were detected on chromosome 6B at both environments (Fig. 3.2 and 

Fig.3.4).  

From segregation data for STB at NrAaby02 and the data of the Savannah x 

Senat DH population, Septoria tritici blotch was negatively associated with SW at 

Sejet 2006 (Chapter 2, this Thesis). A QTL for SW was detected on chromosome 6B, 

where two QTL for STB resistance have been cited above. Thus, this result may be 

suggesting a physiological relationship between SW and STB resistance. The QTL 

for SW on chromosome 6B showed a strong effect at the three trials tested. The 

results suggest it is a major gene. The allele that increased the trait was from the 

Savannah cultivar. 

3.5 Conclusion 

Putting all together and keeping in mind this is a projection of the performance of the 

Savannah  Senat DH population associated with segregation data of STB from the 

same population. The detection of QTL for GPC, where most of the alleles that 

increase this trait were conferred by the Senat cultivar, gave place to a new sight not 

considered in the phenotypic analysis: In partial resistance, with the decrease of GPC 

by STB, different responses could be achieved. That is, if GPC is diminished under 
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disease stress, the protein matrix is reduced avoiding shrivelled and/or soft grains 

when the deposition of starch in the grain is not completed. This performance 

allowed the preservation of SW, although the TGW could be diminished by the small 

size of the grains (Gaines et al., 1997). It has been reported that STB is associated 

with reduction of photosynthetic activity by infected leaves, early senescence of 

leaves and apical senescence (Chapter 1). Since the leaves are the principal source of 

carbohydrates to the growing grain, this suggests the decrease of the photosynthetic 

capacity of the plant, due to STB that has a greater effect on carbon accumulation. 

Thus, the maintaining of TGW and SW in partial resistance cultivars (Senat cultivar) 

may be due to equilibrium between GPC-starch granules; in other words, equilibrium 

in the interaction starch granules-protein matrix (Chapter 2). 

In addition, the alleles that increase the GPC were mostly conferred by the 

Senat cultivar in the Senat  Savannah DH population. These results suggest that, in 

partial resistance, there may be a trade-off:  Losing grain protein content by STB 

attack, but maintaining TGW and specific weight, due to equilibrium between 

protein content and starch content in the grain that, at the same time, avoid the 

reduction in yield.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 4 

 A gene for susceptibility to septoria tritici blotch  
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4.1 Introduction 

Hobbit sib is an old UK cultivar which is susceptible to Septoria tritici blotch. Hobbit 

sib has shown to be susceptible to the Mycosphaerella graminicola isolates IPO323 

and IPO94269 in detached leaf test, at seedling stage, and at adult stage in polytunnel 

trials (Arraiano, 2001a; Arraiano et al., 2007b). Susceptibility has also been shown in 

the same isolates in field experiments (Brown et al., 2001). Hobbit sib has a 

reciprocal chromosome translocation 5BS-7BS and 5BL-7BL with respect to 

Chinese Spring, which is considered to have a primitive chromosome structure 

(Riley et al., 1967). The cultivar Cappelle Desprez, which also carries the reciprocal 

translocation 5BS-7BS (Riley et al., 1967; Law and Worland, 1996 and 1997), has 

shown moderate levels of resistance to the same M. graminicola isolates in field 

trials (Brown et al., 2001). However, Cappelle Desprez has been susceptible in 

polytunnel trials to these isolates (Arraiano, 2001a; Arraiano et al., 2007b). The 

Russian cultivar Bezostaya 1 has shown to be resistant to IPO323 isolate, but 

susceptible to IPO94269 isolate (Arraiano, 2001a; Arraiano et al., 2007b). This 

cultivar lacks the 5BS-7BS translocation (Law and Worland, 1996 and 1997). 

 In experiments conducted to identify the chromosomal location for specific 

resistance of cultivar Bezostaya 1 to the M. graminicola isolate IPO323, two series of 

substitution lines of chromosomes from Bezostaya 1 in Hobbit sib and in Cappelle 

Desprez cultivars were used. The results of these experiments indicate that the 

substitution line Hobbit sib (Bez 5BS-7BS) was resistant not only to isolate IPO323, 

but also to isolate IPO94269. Conversely, the Cappelle Desprez (Bez 5BS-7BS) 

substitution line was susceptible to both isolates (Arraiano, 2001a). 

 In further tests to confirm the presence of the translocated chromosome 5BS-

7BS of Bezostaya 1 into the Hobbit sib and Cappelle Desprez substitution lines, it 
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has been shown that no Bezostaya 1 DNA is present in the 5BS arm of Hobbit sib 

(Bez 5BS-7BS) substitution line. Chinese Spring DNA is the other material present, 

and a small segment of Hobbit sib DNA was found in the telomeric region of this 

arm (Arraiano et al., 2007b). The development of the Hobbit sib monosomic series 

originated from the Chinese Spring monosomic series (Law et al., 1987). It was 

confirmed that the 7BS arm from Bezostaya 1 was correctly substituted in the Hobbit 

sib (Bez 5BS-7BS) substitution line. The 5BS-7BS chromosome in the substitution 

line Cappelle Desprez (Bez 5BS-7BS) was also correctly substituted (Korzun et al., 

1997). These results suggested that Hobbit sib carries a gene or genes for 

susceptibility to STB on 5BS, and its removal increases the resistance of Hobbit sib 

(Bez 5BS-7BS) substitution line. Alternatively, there is a gene in the Hobbit sib 

euploid 5BS-7BS chromosome that suppresses resistance in this cultivar, and its 

removal nullifies the effect of this suppressor, allowing the expression of an inhibited 

resistance gene (Arraiano et al., 2007). 

 Wheat chromosomal substitution lines, as well as varieties carrying a 

reciprocal translocation have been used before with the purpose of locating important 

disease related genes on specific chromosomes (Johnson and Law, 1975; Pink et al., 

1983; Law et al., 1987; Law and Worland, 1991, 1996). The varieties Besoztaya 1, 

Hobbit Sib, Cappelle Desprez, and the inter-varietal chromosome substitution lines 

Hobbit Sib (Bezostaya 5BS-7BS) and Cappelle Desprez (Bezostaya 5BS-7BS) have 

been studied in order to determine genes that promote resistance to yellow rust and 

mildew in wheat (Law and Worland, 1991, 1996, and 1997), and Septoria tritici 

blotch of wheat (Arraiano, 2001; Arraiano et al. 2001b; Arraiano et al., 2007b). 
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 The aim of this work was to investigate if a gene for susceptibility is present 

in the double haploid population Hobbit sib  Hobbit sib (5BS-7BS) and if so, to 

identify and map this gene.  

4.2 Materials and methods 

4.2.1 Plant Material 

Forty lines of Hobbit sib (5BS-7BS)  Hobbit sib double haploid population 

(Arraiano, John Innes Centre) were tested in a polytunnel trial at adult stage at the 

John Innes Centre in 2006 in the first year of experiments. Also the following 

cultivars and lines were considered: 

 Hobbit sib 

 Bezostaya 1 (Bez) 

 Chinese Spring (CS) 

 The substitution lines Hobbit sib (Bez 5BS-7BS) and Cappelle Desprez (Bez 

5BS-7BS), the line Hobbit sib nullisomic for 5BS-7BS (Law and Worland, 

1996), and the Chinese Spring nullitetrasomics N5A T5B, N5B T5A, N5B 

T5D and N5D T5B (Sears, 1954) 

In a second year of polytunnel trials at the same institute in 2007, the same 

lines and cultivars were tested. In addition, the following lines and varieties were 

also used: 

 The F1 lines (created in 2006) 

 The Chinese Spring nullitetrasomics: N5A T5D, N5D T5A 

 Hobbit sib ditelosomic 5BS 

 Hobbit sib ditelosomic 7BL 

 Hobbit sib (Hope 5BS-7BS) 
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 Hobbit sib (Fiorello 5BS-7BS) 

 Hobbit sib (Bersee 5BS-7BS) 

 Hobbit sib (Triticum macha 5BS-7BS) 

 Hobbit sib (Mara 5BS-7BS) 

 Cappelle Desprez (Vilmorin 27 5BS-7BS) 

 Cappelle Desprez (Desprez 80 5BS-7BS) Duplicate A and Duplicate 

B 

 Cappelle Desprez 

 Hope 

 Fiorello 

 Bersee 

 Triticum macha 

 Mara 

 Vilmorin 27 

 Desprez 80 

4.2.2 Disease tests  

The M. graminicola isolates IPO323 and IPO94269 were separated by the Institute of 

Plant Protection (IPO) Wageningen, The Netherlands. The IPO323 isolate was 

isolated in 1981 from the commercial cultivar Arminda (Kema and van Silfhout, 

1997). It is highly specific to a range of wheat cultivars at adult plant stage (Kema 

and Van Silfhout, 1997; Brown et al., 2001). The IPO94269 isolate was derived from 

a single ascospore. It is highly virulent to a range of commercial wheat cultivars 

(Kema et al., 1996).  
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The isolates from stock were allowed to grow on potato dextrose agar plates 

(PDA) for six days. From the initial culture, spore suspension was used to inoculate 

yeast-glucose liquid medium (glucose 10g lt
-1

, yeast extract 30g lt
-1

) in Erlenmeyer 

flasks, where isolates were allowed to grow for 6 days. Spore concentration was 

adjusted to 3.78  10
6
 spores ml

-1
 and Tween 20 (polyoxyethilene-sorbitan 

monolaurate) was added to 0.15 % as a surfactant when spores were applied using a 

knapsack sprayer at a rate of 3.38 x 10
9
 spores m

-2
.  

Inoculations were carried out twice with an interval of seven days after 50 % 

of the plants had reached the heading stage. Disease of leaves was scored as the 

percentage of leaf area covered by lesions bearing pycnidia. This assessment was 

undertaken three times between 15 and 27 days after the second inoculation, in both 

years. The area under the disease progress curve was calculated from the combined 

scores (Shaner and Finney, 1977). Afterwards, data were transformed into logit area 

under the disease progress curve (lgtAUDPC) as a proportion of the maximum area 

under AUDPC. The maximum AUDPC was calculated assuming a score of 100 % 

on every date the test was scored. The mean score from each line and each isolate 

was calculated using generalized linear mixed modelling (GLMM) (Genstat 9.1 for 

Windows, 2005). The heading date (HD) was assessed when 50 % of the plants 

reached this stage. The height to the flag leaf (HFL) was measured from the soil 

surface to the base of the spike on the main tiller. Spring during 2007 was warmer 

than usual, and it caused earliness of the lines. In addition, significant plot and block 

effects in the polytunnel affected the reliability of data. Thus, the data presented here 

only relate to experiments conducted in the first year of the polytunnel trial (2006). 
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4.2.3 Molecular mapping 

The microsatellite marker map of chromosome 5BS-7BS of the Hobbit sib  Hobbit 

sib (Bez 5BS-7BS) double haploid population has been developed using 

microsatellite markers by Arraiano et al. (2007b). However, some regions of the 5BS 

arm were not completely covered by markers. Four further microsatellite markers 

were employed to obtain more information of markers in that region. The 

microsatellite markers were Xbarc004, Xbarc072, Xbarc176 and Xbarc267 (US 

Wheat and Barley Scab Initiative). The marker Xbarc176 is located on 5B arm at 

position 36.5 cM in the Avalon  Cadenza progeny and at position 32.5 cM in the 

Spark  Rialto progeny (TriticartewhtmapalingVI-2(1)). However, this marker has 

also been found on the long arm of 7B chromosome at position 51.33 cM in the 

Komugi composite wheat map (2008). The marker Xbarc267 located on 7BS 

chromosome (Komugi composite wheat map, 2008), has also been reported on 

chromosome 5B at position 41.7 cM in the Arina  NK93604 progeny 

(TriticartewhtmapalingVI-2(1)). According to Arraiano et al., (2007b) Xbarc004 and 

Xbarc072 markers were located on chromosome 5BS at position 44.99 cM, near 

positions in the TriticartewhtmapalingVI-2(1)), and at position 42.00 cM on 

chromosome 7BS, respectively. 

DNA from the Hobbit sib  Hobbit sib (Bez 5BS-7BS) double haploid 

population was extracted from two week old seedlings of each line and parents. 

Polymerase chain reaction (PCR) was conducted in a volume of 15 μl in order to 

generate 20 ng of DNA. Reactions consisted of 2 μl of 2 μM of the appropriate 

primer pair, 2.5 mM each of dATP, dCTP, dGTP and dTTP, and 0.07 μl of Taq DNA 

polymerase (Roche) in 10 mM Tris-HCL (pH 8.3), 1.5 mM MgCl2, 50 Mm KCl, 100 

μg ml
-1

 gelatine, 0.05 % (w/v) Tween 20, and Nonidet 40. Water was added to a final 
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reaction volume of 15 μl total. Samples of the PCR product were checked by gel 

electrophoresis and detected by silver staining (de Vienne, 2003). To do so, an 

aliquot of 5 μl of each PCR product was added to 5 μl of formamide dye loading 

buffer (10 ml formamide, 10 mg xylene cyanol FF, 10 mg bromophenol blue and 200 

μl of 0.5 M EDTA (pH 8.0)), it was denatured for five minutes at 95°C and cooled 

on ice  5 μl. Then it was loaded into the gel.  

4.2.4 Map development and QTL analysis  

A linkage map segment for chromosome 5BS-7BS was calculated using JoinMap 3.0 

(van Ooijen and Vorrips, 2001). The linked segment was formed at a log-likelihood 

(LOD) threshold of 4. Recombination fractions were converted to map distances 

using the Kosambi (1944) mapping function. The output from JoinMap was 

converted to a graphical format using the program MapChart (Vorrips, 2006). 

Quantitative trait loci analysis was performed for the separated data of STB severity 

for IPO323 and IPO94269 isolates. Also, QTL analysis for traits HFL and HD were 

conducted. MQM mapping was used to detect QTL (Jansen, 1993; Jansen and Stam, 

1994). The threshold LOD score for genome-wide significant identification of QTL 

was selected (P = 0.05) (van Ooijen 1999). 

4.2.5 Statistical analysis 

The trials were conducted in a randomised complete blocks layout generated with the 

Experimental Design Generator and Randomiser (EDGAR) (Brown, 2000). In each 

trial there were two blocks per isolate and five randomised plots per block. Each 

plant line was present once in each plot. Mean values were calculated from replicates 

of each line for each trait for the different trials. A test of X
2
 goodness of fit was 

applied to investigate if each trait at each trial was normally distributed. Data were 
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analysed using a generalised linear mixed modelling of binomial proportions 

(GLMM) in GenStat® 9.1 (VSN International, Oxford, UK). Line, isolate and the 

interaction line  isolate were considered as fixed effects. Blocks were considered as 

random effects. Pearson correlations coefficients were calculated between heading 

date versus STB isolates severity data and height to the flag leaf versus STB isolates 

severity data.  

4.3 Results 

4.3.1 Generalised linear mixed modelling of binomial proportions 

The line term in the GLMM analysis was large and significant, indicating that there 

was variation in the mean responses of lines to infection by M. graminicola IPO323 

and IPO94269 isolates. There was also a large and highly significant effect of line  

isolate interaction, suggesting that isolate-specific resistance or susceptibility 

accounted for much of the variation in the data. When the lines Bezostaya 1, Chinese 

Spring, Chinese Spring nullitetrasomics, Hobbit sib nullisomic for 5BS-7BS and 

Cappelle Desprez (Bez 5BS-7BS) were removed from the analysis, the isolate main 

effect was not significant anymore, suggesting that there was no significant variation 

in the mean response of the DH population lines to both IPO323 and IPO94269 

isolates. Also, there was no significant difference in the line  isolate interaction to 

any further extent, meaning there were not specific responses of the lines to a 

particular isolate (Table 4.1). 

 

 



 

153 

 

 

Table 4.1 Generalised linear mixed modelling of percentage leaf area covered by lesions bearing 

pycnidia of the Mycosphaerella graminicola IPO323 and IPO04269 isolates in the Hobbit sib 

(5BS-7BS)  Hobbit sib double haploid population in a polytunnel trial   

Term d.f. Wald statistic Deviance ratio X
2
 Pr 

Line 41 1036.21 25.27 *** 

Isolate   1      1.06   1.06 NS 

Line. Isolate 41   44.73    1.09 NS 
*** Significant at P < 0.001; NS not significant 
 

 

4.3.2 Pearson correlation coefficients  

The correlation coefficient of height to the flag leaf versus M. graminicola isolate 

severity was not significant. However, there was a significant negative association 

between HD and STB disease for both IPO323 and IPO94269 isolates. Also, a 

positive significant correlation coefficient was found for IPO323 vs. IPO94269 

isolates severity (Table 4.2).  

 

 
Table 4.2 Pearson correlation coefficients for heading date, height to the flag 

leaf and isolates  IPO323 and IPO94269 severity of disease 

 

  Height Heading date IPO323 IPO94269 

Height 1    

Heading date -0.21 1   

IPO323 -0.01 -0.69*** 1  

IPO94269 0.06 -0.75*** 0.94*** 1 

  *** Significant at P < 0.001 

  

Figure 4.1 shows there exists an association between heading date and 

susceptibility/resistance to Septoria tritici blotch. The scatter diagram represents the 

susceptibility of Hobbit sib to both isolates and the characteristic heading date from 

Hobbit sib (Bez5BS-7BS).  
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Figure 4.1 lgtAUDPC vs heading date association between septoria tritici blotch 

severity and heading date for the Hobbit sib  Hobbit sib (Bez 5BS-7BL) DH 

population 

 

 

The difference in time to heading associated with the difference in severity of 

the disease very strongly suggests that a gene determining heading date must be 

closely linked with a gene for susceptibility (or resistance) which is an important 

contribution of this research that contradict the statement made by Arama et al. 

(1999) and Simón et al. (2004b, 2005) who mentioned that there is no genetic 

association between resistance and heading date.  

4.3.3 Line performance 

In the polytunnel trial, Hobbit sib was found to be susceptible to both M. graminicola 

isolates IPO323 and IPO94269. Bezostaya 1 and Chinese Spring —they both lacking 

the 5BS-7BS translocation— were significantly resistant to the M. graminicola 

IPO323 isolate. However, both cultivars were significantly more susceptible to 

IPO94269 isolate as compared with Hobbit sib (Fig. 4.2). This difference in 

resistance was also reflected in the response of the Chinese Spring nullitetrasomics 
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lines with IPO94269 isolate of M. graminicola in this experiment; all these lines 

were as susceptible as CS (Fig. 4.2). 

The Cappelle Desprez (Bez 5BS-7BS) line was  as susceptible as Hobbit sib 

to both isolates. This line was found in other polytunnel trials to be as susceptible as 

the Cappelle Desprez euploid. Unfortunately, the Cappelle Desprez cultivar 

performance could not be confirmed in the present work due to the fact that during 

the second year of experiments the results were not convinced.  

 

 
Figure 4.2 Visual sympthom severity of various cultivars and lines under disease stress caused 

by IPO323 and IPO94269 isolates of Mycosphaerella graminicola  

 

 

 

 

 

 

 

 

 

 

Hobbit sib (Bez 5BS-7BS) line showed to be resistant to both isolates which 

confirms previous results in polytunnel trials (Arraiano, 2001; Arraiano et al., 

2007b). Hobbit sib nullisomic for 5BS-7BS line results showed a moderate resistance 

to both isolates (22 % of leaf area covered by lesions bearing pycnidia with IPO323 

isolate and 12 % with IPO04269 isolate). This also suggests that there exist 

background resistant effects on Hobbit sib to M. graminicola IPO323 and IPO94269 

isolates.  

H
o
b
b
it 

s
ib

H
o
b
b
it 

s
ib

 (
B

e
z
 5

B
S

-7
B

S
)

H
o
b
b
it 

n
u
lli
s
o
m

ic
 5

B
S

-7
B

S

C
a
p
e
lle

 D
e
s
p
re

z
 (

B
e
z
 5

B
S

-7
B

S
)

C
h
in

e
s
e
 S

p
ri
n
g

C
h
in

e
s
e
 S

p
ri
n
g
 N

5
A

 T
5
B

C
h
in

e
s
e
 S

p
ri
n
g
 N

5
B

 T
5
A

C
h
in

e
s
e
 S

p
ri
n
g
 N

5
B

 T
5
D

C
h
in

e
s
e
 S

p
ri
n
g
 N

5
D

 T
5
B

B
e
z
o
s
ta

y
a
 -6

-5

-4

-3

-2

-1

0

1

2

lo
g

it
A

U
D

P
C

IPO323

IPO94269

***

*** *** ***
*** ***

***

***

**

**

***Signif icant at P< 0.001;**Signif icant at P < 0.01



 

156 

 

Figure 4.3 shows the logit area under the disease progress curve (lgtAUDP) 

of the flag leaf for each isolate from which  the severity disease caused by M. 

graminicola isolates IPO323 and IPO94269 in the Hobbit sib × Hobbit sib (Bz 5Bs-

7Bs) DH population in 2006 can be inferred. 

  

Figure 4.3 Resistance and susceptibility response (lgtAUDPC) of the lines of the Hobbit sib × 

Hobbit sib (Bez 5BS-7BS) DH population when inoculated with isolates IPO323 and IPO94269 

of Mycosphaerella graminicola 

 

 

 

Based on the fact that positive values indicate susceptibility and negative 

values indicate resistance the response to STB severity of the 40 DH lines can be 

classified into two different groups. The first one being, the susceptible group, 

Hobbit sib and 18 lines were both susceptible to IPO323 isolate, with more than 32 

% of the leaf area covered by pycnidia (mean value of -1.79 for lgtAUDPC). And 

IPO94269 isolate with more than 23 % of the leaf area covered by pycnidia (mean-

value of -1.8 for lgtAUDPC). The heading date mean-value for this group was 49 

days.  
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In the second group, we include the resistant lines, Hobbit sib (Bz 5BS-7BS) 

substitution line and 22 lines more showed resistance to both isolates (Fig. 4.3). The 

means lgtAUDPC values were -3.17 and -3.92 for IPO323 and IPO94269, 

respectively. For this last group, the mean heading date value was 53 days. 

There was no significant difference from the segregation ratio 1:1 resistant and 

susceptible lines for each isolate (X
2
 = 0.4 both isolates, P < 0.001). In Figure 4.4 the 

bimodal distribution performance of the DH population for both isolates indicates 

that resistance and/or susceptibility might be controlled by a single gene. Data very 

strongly suggest that a single gene or a tightly linked group of genes segregate from 

this population. This is the first time this is demonstrated for susceptibility/resistance 

studies. 

 

Figure 4.4 Segregation responses to IPO323 and IPO94269 isolates of Mycosphaerella 

graminicola in the Hobbit sib  Hobbit sib (Bez 5BS-7BS) double haploid population 

 

4.3.4 Mapping a gene for Septoria tritici blotch  

Figure 4.5 shows the screening of three out of the four microsatellite markers that 

appeared to be linked building a segment of 14.3 cM,   in the Hobbit sib  Hobbit sib 

(Bez 5BS-7BS) DH population. Only two markers, Xbarc176 and Xbarc004, of the 
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three linked markers, were assigned to the chromosome segment 5BS 

(TriticartewhtmapalingVI-2(1) and Arraiano et al., 2007b). The marker Xbarc072 

was assigned to 7BS (Fig. 4.5). The Xbarc267 marker was not linked with this small 

segment of the 5BS-7BS chromosome. 

 

Figure 4.5 Segments of chromosome 5BS-7BS of Hobbit sib (Hs), Hobbit sib  Hobbit sib (5BS-

7BS) DH population, and Hobbit sib (Bez5BS-7BS) substitution line (Hs (Bez5BS-7BS)), 

respectively   

 

 
 

 
 

 
Left. The segment of chromosome 5BS-7BS of Hobbit sib cultivar is shown where segments of Hobbit sib DNA and Cappelle 

Desprez DNA were detected (Arraiano et al., 2007b). 

Centre. Quantitative trait loci detected for the M. graminicola isolates IPO323 and IPO94269 response on a segment of the 
5BS-7BS chromosome of Hobbit sib x Hobbit sib DH population. Also, a QTL for heading date distinguished tightly associated 

to the QTL for susceptibility/resistance to STB disease in the same population. 

Right. The segment of chromosome 5BS-7BS of Hobbit sib (Bez 5BS-7BS) substitution line is shown where segments of 
Hobbit sib DNA and Chinese Spring were detected (Arraiano et al., 2007b)  

 

When conducting the QTL analysis for susceptibility to the IPO323 isolate 

specific QTL associated with the marker barc004 was detected with a LOD score of 

14.96, explaining 87 % of the variance. The additive value was -1.42 and the line that 

decreased resistance the most was Hobbit sib. 
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Similar results were found for the IPO94269 isolate. In this case, the QTL 

associates with the same marker (barc004) with a high LOD score of 19.3, explaining 

93 % of the variance. The additive value was -1.61 and the susceptibility was also 

ascribed to the Hobbit sib line. 

The QTL for HD was also associated with the same marker barc004 in the 

chromosome segment 5BS (LOD score of 8, explaining 67 % of the variance). The 

allele was conferred by the Hobbit sib (Bez 5BS-7BS) substitution line, with an 

additive value of 1.66 (Fig. 4.5). 

4.4 Discussion 

The experimental data collected demonstrate that the susceptibility of Hobbit sib 

wheat cultivar to IPO323 and IPO94269 isolates of M. graminicola is partly 

controlled by its chromosome 5BS-7BS. The results of these studies confirm Brown 

et al., (2001) and Arraiano 2001; Arraiano et al., 2007b studies as Hobbit sib was 

found to be  susceptible to IPO323 and IPO94269 in field trials and polytunnel trials  

respectively, at an adult plant stage. In correspondence with these, segments of 

Hobbit sib and Cappelle Desprez in the Hobbit sib 5BS-7BS chromosome were 

reported by Arraiano et al. (2007b), but not surprisingly as Cappelle Desprez is one 

of the complex lines used as parents of the Hobbit sib cultivar (Annual report, 1975). 

Also, Cappelle Desprez has shown to have a similar level of susceptibility to Hobbit 

sib in polytunnel trials (Arraiano et al., 2007b). 

The Hobbit sib (Bez 5BS-7BS) substitution line showed resistance to IPO323 

and IPO94269 isolates in polytunnel trials, which demonstrates that the 5BS arm of 

this line does not derive from Bezostaya 1 DNA.  Instead, the arm consists of a large 

segment of the Chinese Spring material and, in the telomeric region, of a small 
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segment from Hobbit sib chromosome. The 7BS arm was, as assumed, substituted by 

the Bezostaya 1 arm, as also has been supported by Arraiano et al. (2007b). 

The cultivar Chinese Spring was found to be specifically resistant to IPO323 

isolate and susceptible to IPO94269 isolate at an adult stage in the field and in 

polytunnel trials as reported by Brown et al. (2001) and Arraiano et al. (2007b),  

respectively. In this study, the performance of this cultivar was confirmed with the 

isolates tested in adult plants growing in a polytunnel trial. Chinese Spring has the 

gene Stb6 that confers resistance to IPO323 isolate (Chartrain et al., 2005b). The 

Chinese Spring nulli tetrasomic lines showed resistance to IPO323 too, because they 

also have this Stb6 resistant gene. These lines were also as susceptible as Chinese 

Spring to IPO94269 isolate. In contrast with this, the Chinese Spring nullitetrasomic 

N5B T5D showed significantly less disease severity than the Chinese Spring euploid 

to this isolate (Fig. 4.2). Similar allelic variations in the homoeologous chromosomes 

group 5 were detected by Pink et al. (1983) when they investigated the resistance to 

yellow rust and powdery mildew in Chinese Spring. Nevertheless, the resistance of 

Hobbit sib (Bez 5BS-7BS) to IPO94269 isolate seemed not to be conferred by 

Chinese Spring, as supported by Pink et al. (1983) studies and this work. 

Bezostaya 1 was reported by Brown et al. (2001) and Arraiano et al. (2007b) 

to be resistant to IPO323 at an adult plant stage, results that are confirmed by the 

polytunnel research conducted as part of this study. Susceptibility of Bezostaya 1 to 

IPO94269 at an adult plant stage reported in Brown et al. (2001) and Arraiano et al. 

(2007b) studies was also confirmed by these research studies. 

 The Cappelle Desprez (Bez 5BS-7BS) substitution line has almost 

completely substituted by the chromosome 5BS-7BS from Bezostaya 1, according to 

Korzun et al. (1997). This substitution line on our studies showed to be as 
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susceptible as Hobbit sib to IPO323 and IPO94269 isolates, confirming also previous 

reports (Arraiano et al., 2007b). Based on all this, it can be concluded the 5BS-7BS 

chromosome of Bezostaya 1 does not confer resistance to IPO94269 isolate.  

Although the moderate resistance of Hobbit sib nullisomic for 5BS-7BS 

chromosome line to the M. graminicola isolates IPO323 and IPO94269 indicates the 

existence of a background resistance, the background chromosomes resistance 

effects are nullified by the chromosome 5BS-7BS of the Hobbit sib euploid. Thus, it 

is suggested that the background chromosome effects of Hobbit sib, the ―Bezostaya 1 

chromosome 5BS-7BS‖ effects, and the interaction between both gave place to the 

Hobbit sib (5BS-7BS) substitution line resistance to IPO323 and IPO94269 isolates. 

Figure 4.2 shows the 5BS-7BS chromosome strong effect on the Hobbit sib 

background. Law and Worland (1997) found resistance to yellow rust to be caused 

by the chromosome 5BS-7BS of Cappelle Desprez cultivar, but not by its 

background. Conversely with the results found in this work, the susceptibility to 

yellow rust of two varieties (Hybride du Joncquois and Nord Desprez) occurred due 

to their backgrounds, but not by their 5BS-7BS chromosome. These results point to 

the importance of the interaction between the background and an individual locus on 

one chromosome. 

Figure 4.5 shows that a QTL for resistance/susceptibility on the 5BS segment 

from chromosome 5BS-7BS of Hobbit sib  Hobbit sib (Bez 5BS-7BS) DH 

population associates with marker barc004, through disease data of each M. 

graminicola isolates. This QTL was found on the segment which came from 

Cappelle Desprez into the Hobbit sib cultivar and from Chinese Spring in the Hobbit 

sib (Bez 5BS-7BS) substituted line (Fig. 4.5). This QTL therefore signals an allele 

for susceptibility to the M. graminicola isolates IPO323 and IPO94269, the coming 
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from the translocated chromosome 5BS-7BS of the Hobbit sib cultivar. These results 

also very clearly suggest there is a gene for resistance to the M. graminicola isolates 

IPO323 and IPO94269 on the short arm of the Chinese Spring chromosome 5B 

segment of the Hobbit sib (Bez 5BS-7BS) line. This QTL seems to be due to a major 

gene present at this position as the LOD score was high for both isolates. 

Pink et al. (1983) suggested that the Chinese Spring 5BS must carry a gene 

for resistance to yellow rust and powdery mildew. In addition, it has also been 

suggested that Hobbit sib (Law and Worland, 1991), Cappelle Desprez and Chinese 

Spring carry genes promoting resistance to yellow rust on their chromosome 5BS 

(Law and Worland, 1997). Conversely, susceptibility is promoted by their 

chromosomes 5BL. 

The identification of a QTL for HD, also associated with marker barc004, 

suggests that this QTL for HD is most tightly linked to the QTL for susceptibility. 

The substitution line Hobbit sib (Bez 5BS-7BS) contributes the allele that delays 

days to heading. Thoth et al. (2003) detected a QTL for heading date (earliness per 

se locus) near to marker Xgwm371 on 5BL chromosome in the Hobbit sib  Hobbit 

sib (Chinese Spring 5BL) population. Also, Hanocq et al. (2004) detected a QTL for 

earliness per se on chromosome 5B, associated with the same marker that in the 

Renan  Recital population. This marker (Xgwm371) is located on the long arm of 

chromosome 5B at position 50 cM in the Komugi composite wheat map (2008). It 

has also been cited in Hobbit sib and Hobbit sib (Bez 5BS-7BS) lines, and its 

position appeared to be 5cM away from marker barc004 (Arraiano et al., 2007b). 

Thus, the QTL for HD and the QTL for susceptibility to IPO323 and IPO94269 are 

closely located on the 5B segment. The closely linked QTL for HD was also clearly 

shown by the significant correlation coefficient found between heading date and both 
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isolates severity data shown in Table 4.1 and the almost undetectable recombination 

events that took place between these traits, as shown in Figure 4.1. This association 

was also confirmed by the genotypic analysis.  

Further marker information has to be developed in order to obtain a dense 

map of the 5BS chromosome of the Hobbit sib  Hobbit sib (5BS-7BS) double 

haploid population to improve the localisation of the susceptibility gene.  

4.5 Conclusion 

The results of this experiment indicate that the 5BS-7BS chromosome of Hobbit sib 

is responsible for the susceptibility or suppression of resistance to M. graminicola 

isolates IPO323 and IPO94269 in this cultivar. The resistance of Hobbit sib 

nullisomic for 5BS-7BS to these isolates proved it. However, the Hobbit sib 

background cannot alone confer the high levels of resistance of the Hobbit sib (Bez 

5BS-7BS) line to these isolates. Thus, the segment of Chinese Spring 5BS 

chromosome must carry a gene for resistance, suggesting also that its 5BL 

chromosome carries a gene or genes that confer susceptibility to IPO94269 isolate. 

Septoria tritici blotch severity scores between Hobbit sib nullisomic for 5BS-7BS 

and Hobbit sib (Bez 5BS-7BS) showed a highly significant difference (P ≤ 0.001) 

between both lines. 

 Important implications for plant breeding originate from the discovery that 

Hobbit sib carries a gene for susceptibility to STB. Hobbit sib is a cultivar which was 

present during the 1970´s as a high yield variety in the National Institute of 

Agricultural Botany (NIAB) recommended list of wheat varieties, although it showed 

susceptibility to several diseases (Annual report, 1976). It was used as a parent of 

other U.K. varieties delivered during the 1980s such as Sentry, Norman, Fenman, 
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Galahad and Longbow. Relatives of Hobbit sib, such as the Riband and Savannah 

varieties (Angus, 2001), also susceptible to STB, have also been used as parents 

during the 1990s. The susceptible gene seems to have been selected and spread into 

different varieties. This may be due to the tight linkage of the susceptibility gene to a 

gene or genes related to yield or yield components. Hobbit sib has been a source of 

susceptibility, and then the identification of this susceptible gene will give breeders 

the chance to remove it from their breeding programs. 
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The first purpose of this work was to find phenotypic relationships between 

agronomic traits from the partial resistance cultivar Senat and Septoria tritici blotch 

disease. The Senat × Savannah doubled haploid population, in which Savannah is a 

susceptible cultivar, was studied. Phenotypic associations between agronomic traits 

and STB disease detected have been described by several authors. However, the 

detection of a negative association between the yield component grains m
-2

 and STB 

severity has not been described before. Conversely, a thousand grain weight was 

positively associated to STB severity, suggesting that TGW is maintained under 

disease pressure (Chapter 2, section 2.4 Discussion, Table 2.6, and Figure 2.3). Grain 

protein content and heading date were also associated with STB; in this case 

negatively (Chapter 2, section 2.4 Discussion, Table 2.6, and Figures 2.2 and 2.4). 

According with Kato et al. (2000), ―trait correlations may reflect a consequence of 

patterns of plant growth and development‖, thus the associations detected in the three 

trials analysed strongly suggest there exist close physiological relationships between 

STB resistance and the following agronomic traits: grains m
-2

, 
 
thousand grain 

weight, heading date and grain protein content. In addition, these associations were 

confirmed by the QTL analysis.   

 The second aim of this thesis was to investigate the genetic basis of partial 

resistance in wheat to STB resistance and its genetic association with agronomic 

traits, due to the fact that a yield penalty is always found (Chapter 3). It was found 

that QTL for the agronomic traits thousand grain weight, grains m
-2

, heading date 

and grain protein content were linked with QTL for STB resistance. A QTL for 

heading date was localized on the same chromosome for STB resistance (2D); QTL 

for grains m
-2

 and thousand grain weight were localized on chromosome 6B, where 

QTL for STB resistance were also localized. A remarkable finding was the three 
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QTL for grain protein content on chromosomes 3A, 2D, 6B and 7B, where also QTL 

for STB resistance were found; those on chromosomes 3A and 2D closely linked or 

the allele showed a pleiotropic effect for these traits. (see Chapter 3, Table 3.4, 

Figures 3.2, 3.3, 3.4, and Appendix F). In Chapter 3, it is also described how the 

QTL increasing grain protein content showed mostly to be conferred by the partial 

resistant cultivar Senat. It is also discussed the possible physiological bases for the 

preservation of thousand grain weight, the specific weight and consequently, the 

yield (Chapter 3, 3.5 Conclusions). Thus, the results of this research suggest that in 

partial resistance there may be a trade-off between the lost of grain protein content 

by STB attack, but the preservation of the TGW, the specific weight and the yield, 

due to equilibrium between protein content and starch content in the grain. In other 

words, STB damage is associated with the reduction of photosynthetic activity by 

infected leaves, early senescence of leaves and apical senescence (Chapter 1, section 

1.4.3 Crop physiology of the disease plants). The consequence of leaf senescence is 

the decrease of the photosynthetic capacity of green tissues, thus the source of 

carbohydrates to the growing grain is affected. However, STB severity also affects 

the deposition of protein in the grains. These interactions allow the equilibrium 

between the protein matrix that involves the starch granules, avoiding shrivelled 

grains (Chapter 2, 2.4 Discussion, Association between specific weight and STB).  

The findings of this work contradict the statement made by Arama et al. 

(1999) and Simón et al. (2004b, 2005) who mentioned that there is no genetic 

association between resistance and heading date. Hence, the results of this work 

suggest that in partial resistance, Senat × Savannah DH population, the heading date, 

a trait that confers disease escape, is genetically linked to STB (Chapter 1, 1.5.2 
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Disease escape; Chapter 3, Table 3.3 and 3.4) and it is suggested variation in STB 

severity is accounted for by variation in HD.  

 On the other hand, the results suggest that in partial resistance, Senat x 

Savannah DH population, there is not a physiological effect of high to the flag leaf 

on resistance to STB at NrAaby02 and Sejet02 intensity of the disease. This 

supported the fact that there were no significant correlation coefficients between 

these traits in the phenotypic analysis (Chapter 2, 2.4 Discussion, Phenotypic 

association of plant adaptation traits and STB) and the residual analysis (Chapter 3, 

3.3.4.2.2 Height to the flag leaf effects). 

Finally, the third objective of this thesis was to detect the gene that confers 

susceptibility to specific isolates of M. graminicola in the cultivar Hobbit sib 

(Chapter 5). Indeed, there was found a gene for susceptibility near the centromere of 

chromosome 5BS-7BS of Hobbit sib cultivar; its detection will certainly allow 

breeders to avoid this source of susceptibility from their breeding programs in wheat. 

Furthermore, the presence of a gene for resistance to M. graminicola on chromosome 

5BS of Chinese Spring cultivar is also important for plant breeding for disease 

resistance (Chapter 5).    

 In the Hobbit sib (5BS-7BS)  Hobbit sib double haploid population, as in the 

case of the Senat x Savannah DH population, the heading date was associated with 

STB severity and also a QTL for both traits were found tightly linked (Chapter 5). 
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APPENDIX A. Analysis of variance for agronomic traits of the Senat  

Savannah double haploid population and parents at Nickerson 2006, 

Sejet 2005 and Sejet 2006. 

 

 

Table A.1 Analysis of variance for agronomic traits of the Senat  Savannah double haploid 

population and parents at Nickerson 2006 

 

 

 

 

 

 

 

 

 

 

 

 
                        *** Significant at P ≤ 0.001 

       HD, heading date; HFL, height to the flag leaf; SW, specific weight; TGW, thousand grain weight 

 

 

 

 

 

 

Table A.2 Analysis of variance for agronomic traits of the Senat  Savannah double haploid 

population and parents at Sejet 2005 

 

 

 
 

 

 
 

 
                   HD, heading date; HFL, height to the flag leaf; SW, specific weight; TGW, thousand grain weight 

                   *** Significant at P ≤ 0.001 

 

 

 

 

 

 

 

 
 

 

  Ears/m2 Grains/m2 HD HFL Grains/ear 

Source      df MS MS MS MS MS 

Block 1   4834 2.677E+07 3.19 51.02     0.03 

iBlock 18 11325 1.856E+08*** 3.71*** 66.13*** 505.13*** 
Line 97 10720 6.178E+07 4.45*** 40.37***   52.92*** 

Residual            79 11184 4.251E+07 0.43   6.92   19.18 

Total 195 10934 6.522E+07 2.75 29.25   80.72 

  Maturity Protein SW TGW Yield 

Source      df MS MS MS MS MS 

Block 1 0.41 1.14 0.13   1.11 0.01 

iBlock 18 1.60***  0.21 4.75*** 21.39*** 0.70*** 
Line 97 2.26*** 0.59*** 4.56*** 12.89*** 0.28*** 

Residual            79 0.34 0.13 0.90   3.65  0.04 

Total 195 1.41  0.37 3.07   9.87 0.22 

  Ears/m2 Grains/m2 HD HFL Grains/ear Maturity  

Source      df MS MS MS MS MS MS  

Block 1     156   3159270 1.30 10.33   0.42 2.47  
iBlock 10 15627***   7067099 3.70***  18.24*** 66.92***  2.05***  

Line 97   5472*** 11049664 8.27*** 63.17*** 29.07*** 3.31***  

Residual            87   2906   6669886 0.69   2.55 10.83 0.33  
Total 195   4821   8850911 4.62 33.55 22.73 1.91  

  Protein SW TGW Yield Starch  

Source      df MS MS MS MS MS  

Block 1 2.45*** 0.96 19.41 0.94 0.68  

iBlock 10 0.44*** 6.24***   3.82 0.85*** 0.86***  
Line 97 0.32*** 5.83*** 16.87*** 0.50*** 0.91***  

Residual            87 0.09 0.66   2.58 0.13 0.12  

Total 195 0.23 3.52   9.84 0.35 0.55  
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Table A.3 Analysis of variance for agronomic traits of the Senat  Savannah double haploid 

population and parents at Sejet 2006 

 

 

 

 

 

 

 

 
                   HD, heading date; HFL, height to the flag leaf; SW, specific weight; TGW, thousand grain weight 
                   *** Significant at P ≤ 0.001 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Ears/m2 Grains/m2 HD HFL Grains/ear Maturity 

Source      df MS MS MS MS MS MS 

Block 1 58910 129712164 0.41 16.58   0.02 0.33 

iBlock 10   7724   57196015*** 1.88*** 27.62*** 93.97*** 4.41 

Line 97 10146   20131539 3.36*** 56.75*** 32.27*** 3.27*** 
Residual            87   6486   16999288 0.29   7.02   9.78 1.55 

Total 195   8639   21196767 1.90 32.86 25.24 2.54 

  Protein SW TGW Yield Starch  

Source      df MS MS MS MS MS  

Block 1 1.77 15.66   0.21 1.47*** 0.03  

iBlock 10 1.55*** 10.00*** 24.51*** 0.62*** 1.51***  

Line 97 0.47***   9.82*** 20.75*** 0.42*** 1.86***  
Residual            87 0.25   1.66   3.41 0.09 0.40  

Total 195 0.43   6.22 13.10 0.29 1.18  
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APPENDIX B. Test of X
2
 goodness of fit for eleven agronomic traits of the Senat 

 Savannah double haploid population and parents 

 

 

 
Table B.1 Test of X2 Goodness of fit for eleven agronomic traits at three 

 different environments 

 

 

 

 

 

 

 

 

 
 

 

 
      

 

 
                HD, heading date; HFL, height to the flag leaf; SW, specific weight; 

                TGW, thousand grain weight 
a DF = 5, X2

α=0.001 = 21 
                                         b DF = 4, X2

α=0.001 = 18.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Ears/m2 Grains/m2 HD HFL Grains/ear Maturity 

   X2a X2a X2b X2a X2a X2b 

Nickerson 2006    4.97   7.64   6.16 7.63 3.87 12.45 

Sejet 2005 14.56 11.22   5.74 7.04 4.26 12.99 
Sejet 2006    5.75   4.72 14.79 6.90 3.40  9.85 

 Protein  SW TGW Yield Starch  

   X2a X2a X2a X2a X2a 

Nickerson 2006 6.48 11.86 5.98 5.50     - 
Sejet 2005 2.55   2.66 6.66 4.90   4.19 

Sejet 2006 8.81   5.90 0.87 5.00 11.32 



 

209 

 

 

 

APPENDIX C. Phenotypic distribution for eleven agronomic traits and septoria 

tritici blotch resistance-susceptibility of the Senat  Savannah double 

haploid population  

 

Figure C.2 Phenotypic distribution of the DH lines for ears m
-2

 at Nickerson 2006,  

Sejet 2005 and Sejet 2006 environments 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.2 Phenotypic distribution of the DH lines for grains m

-2
 at Nickerson 2006,  

Sejet 2005 and Sejet 2006 environments 
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Figure C.3 Phenotypic distribution of the DH lines for heading date (days 1/1) at Nickerson2006,  

Sejet 2005 and Sejet 2006 environments 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.4 Phenotypic distribution of the DH lines for height to the flag leaf (cm) 

at Nickerson 2006, Sejet 2005 and Sejet 2006 environments 
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Figure C.5 Phenotypic distribution of the DH lines for grains ear

-1
 at Nickerson 2006,  

Sejet 2005 and Sejet 2006 environments 

 

 

 
 

 

 
 

 

 
Figure C.6 Phenotypic distribution of the DH lines for canopy maturity (classification 1 to 9) at 

Nickerson 2006, Sejet 2005 and Sejet 2006 environments 

 

 

 
 

 

 
 

 

 

 

Nickerson 2006

0

10

20

30

45 50 55 60 65 69 74 79

Grains per ear

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s

Senat

   72

Savannah

      61

Sejet 2006

0

10

20

30

40

34 37 41 44 48 51 55 58

Grains per ear

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s

Savannah

   Senat

      48

Nickerson 2006

0

10

20

30

40

2 3 4 5 6 7 8

Canopy maturity

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s

Savannah

       6

Senat

    4

Sejet 2006

0

10

20

30

1 2 3 4 5 6 7

Canopy maturity

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s Savannah

       5

Senat

    3

Sejet 2005

0

10

20

30

36 39 42 44 47 50 52 55

Grains per ear

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s

Savannah

      48Senat

   45

Sejet 2005

0

10

20

30

40

1 2 3 4 5 6 7

Canopy maturity

N
u

m
b

e
r 

o
f 

D
H

 l
in

e
s

Savannah 

Senat

 3

                    Confidence interval of μ

                    Confidence interval of μ



 

212 

 

 
Figure C.7 Phenotypic distribution of the DH lines for protein content (% DM) 

at Nickerson 2006, Sejet 2005 and Sejet 2006 environments 

 

 

 
 

 

 

 
 

 

 
Figure C.8 Phenotypic distribution of the DH lines for specific weight (kg hl

-1
) 

at Nickerson 2006, Sejet 2005 and Sejet 2006 environments 
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Figure C.9 Phenotypic distribution of the DH lines for thousand grain weight (gr) 

at Nickerson 2006, Sejet 2005 and Sejet 2006 environments 

 

 

 
 

 

 
 

 

 

 
Figure C.10 Phenotypic distribution of the DH lines for yield (ton ha

-1
) 

at Nickerson 2006, Sejet 2005 and Sejet 2006 environments 
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Figure C.11 Phenotypic distribution of the DH lines for starch content (% DM) 

at Sejet 2005 and Sejet 2006 environments 

 

 

 
 

 

 

 

 
Figure C.12 Phenotypic distribution of the DH lines for resistance-susceptibility to septoria 

tritici blotch logitAUDPC (logit area under the disease progress curve) at NrAaby02 

and Sejet02 environments 
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APPENDIX D. Normality of standardized residuals. Heading date and STB 

severity, and height to the flag leaf and STB severity, both at three 

environments and two STB severity data 

 
                                                    
     

Figure D.1 Normality of Standardised residuals for heading date and STB severity 
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Figure D.2 Normality of Standardised residuals for height to the flag leaf and STB severity 
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APPENDIX E. Phenotypic associations among agronomic traits. The 

chromosome or chromosomes where both traits were linked by QTL, detected 

at Nickerson 2006, Sejet 2005 and Sejet 2006 are signalled. 

 
Figure E.1 Associations of plant adaptation traits (shown by arrows) with yield and yield 

components and associations of heading date and yield components with STB severity at three 

environments (only significant associations are shown). 
               STB association with an agronomic trait;               Trait that contributes to increase another trait;  
               Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number,  

               correlation coefficient at Sejet02; Linked traits in chromosomes are showed in blue  

Fig. E.1a Nickerson 2006; Fig.E.1b Sejet 2005; Fig. E.1c Sejet 2006. 
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Figure E.2 Associations between yield components with yield and STB severity at three 

environments and their relationships (shown by arrows; only significant associations are 

shown).  
                                   STB association with an agronomic trait;                    Trait that contributes to increase another trait;   

                               Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number,  

                               correlation coefficient at Sejet02;  Linked traits in chromosomes are showed in blue  

Fig. E.2a Nickerson 2006; Fig. E.2b Sejet 2005; Fig. E.2c Sejet 2006. 
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Figure E.3 Associations between grain protein content and grain starch content with agronomic 

traits that determine grain composition and their association with STB severity (shown as 

arrows). Also, associations between grain protein content and grain starch content with TGW 

and yield and their association with STB severity at three environments (only significant 

associations are shown).  
                                   STB association with an agronomic trait;                  Trait that contributes to increase another trait; 

                     ;        Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number,  
                              correlation coefficient at Sejet02; Linked traits in chromosomes are showed in blue  

Fig. E.3a Nickerson 2006; Fig. E.3b Sejet 2005; Fig. E.3c Sejet 2006. 
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Figure E.4 Significant associations between specific weight, yield components and yield at three 

environments (shown as arrows). Also, significant associations of these traits with STB severity 

at three environments (only significant associations are shown). 
                               STB association with an agronomic trait;               Trait that contributes to increase another trait; 

                               Inversely associated traits; normal number, correlation coefficient at NrAaby02; bold number,  

                               correlation coefficient at Sejet02;  Linked traits in chromosomes are showed in blue  

Fig. E.4a Nickerson 2006; Fig. E.4b Sejet 2005; Fig. E.4c Sejet 2006 
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