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ABSTRACT 

 

The overall aim of the work detailed in this thesis was to design and analyse sugar-based 

(trehalose, raffinose and sucrose) carrier systems for the protection of naked plasmid DNA 

formulations generated by spray drying.   

 

Trehalose exists in multiple crystalline anhydrous and hydrated forms and is thought to 

exist in two different amorphous forms.  Reported thermal transitions of trehalose 

dihydrate vary with environmental conditions and particle size.  The first area of this thesis 

focused on investigating the inter-conversion properties of trehalose dihydrate to observe if 

an in-depth understanding of its physical properties will provide an insight into its bio-

protective properties.  Within this area, two standardised forms of α,α-trehalose dihydrate 

were generated and characterised by performing a series of thermal, spectroscopic and X-

ray diffraction techniques.  This resulted in the identification of an intermediary anhydrous 

form. 

 

Within the second area of this thesis the use of the fragility parameter m and the strength 

parameter D as predictors of amorphous stability of generated co-spray dried sucrose-

raffinose and sucrose-trehalose samples was investigated.  Results showed addition of both 

raffinose and trehalose improved predicted amorphous stability, with the greatest effect 

seen at highest additive concentrations. 

 

The third area of the thesis was to evaluate the degree of degradation of plasmid DNA 

spray dried in the presence of amorphous sugars.  Spray-drying can be used to develop 

biopharmaceutical particles for the pulmonary delivery. However, it runs the risk of loss of 
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biological activity, sample instability as well as thermal degradation of the 

biopharmaceutical.  Results showed that plasmid DNA degradation was reduced when co-

spray dried in the presence of raffinose and to a greater extent with trehalose.  Co-spray 

drying of plasmid DNA in the presence of sucrose, sucrose-raffinose and sucrose-trehalose 

formulations offered less protection than trehalose and raffinose. 

 

Overall, two key messages are concluded from the work detailed in this thesis.  Firstly, the 

thermal transitions of trehalose dihydrate can be influenced by environmental factors as 

well as inter-batch variability.  This can affect authenticity of polymorphous and 

amorphous forms identified.  Secondly, addition of raffinose and trehalose to amorphous 

sucrose formulations improved the predicted amorphous stability of the formulations 

however; these co-spray dried samples offered less protection compared to plasmid DNA 

co-spray dried in the presence of trehalose and raffinose alone. 
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C number of independent components 

N number of non-compositional variables 

Φ number of phases 

dA aerodynamic diameter 

Re Reynolds number 

RH% Relative humidity  

RH0 Critical relative humidity  

Th Trehalose dihydrate 

Tβ stable crystalline anhydrous form of trehalose 

Tα isomorph desolvate of Th 

Tε, Tk Anhydrous polymorphic forms of trehalose 

Tγ transient” crystalline metastable form of trehalose 

Tam1, Tam2 Amorphous forms of trehalose 

Aλ absorbance at a particular wavelength 

C concentration of the nucleic acid 

ελ extinction coefficient 

dab multivariate distance between two samples a and b 

dmax largest distance in the data set 

∆Q Heat 
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LIST OF ABBREVIATIONS 

 

 

VTF Vogel-Tamman-Fulcher 

LDA low-density amorphous ice 

HDA High-density amorphous ice 

AIDS Acquired Immunodeficiency Syndrome 

DNA Deoxyribonucleic acid 

siRNA short interfering RNA 

mRNA messenger RNA 

pDNA Plasmid DNA 

FDA U.S Food and Drug Administration 

biomolecules biological molecules 

E.coli Escherichia coli 

LB medium Luria-Bertani medium 

SDS sodium dodecyl sulfate 

HPMC Hydroxypropylmethylcellulose 

SEM Scanning electron microscopy 

DSC differential scanning calorimetry 

MTDSC Modulated temperature DSC 
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Qi-MTDSC Quasi-Isothermal MDSC 

TGA Thermogravimetric analysis 

XRPD X-ray powder diffraction 

PCA Principle component analysis 

HCA Hierarchical cluster analysis 

HSM  Hot stage microscopy 

FTIR Fourier Transform Infrared spectroscopy 

ATR attenuated total reflection 

2D two dimensional 

DVS Dynamic Vapour Sorption  

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

Th1, Th2 Standardised forms of trehalose dihydrate 

Thx Generated from Th2 

SR Mixed sugar glasses containing sucrose and raffinose 

ST Mixed sugar glasses containing sucrose and trehalose 
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1.1 GENERAL INTRODUCTION 

The relevance of amorphous and polymorphic states in biological, pharmaceutical and 

food science is well recognised.  It is important to accurately define thermodynamic 

transitions (at equilibrium) as well as study kinetically metastable transformations which 

characterize the physical properties of the material under different experimental conditions 

(Sussich et al., 1998).   

 

Sugars are found at relatively high concentrations in anhydrobiotic organisms (Crowe et 

al., 1992) where they exert a protective effect.  There has been considerable interest in 

amorphous sugars specifically regarding their hydration, glass transition and bio-

preservation properties.   

 

The work presented in this thesis details the generation and characterisation of two 

standardised forms of trehalose dihydrate, the effect sugar additives on amorphous sucrose 

stability and an evaluation of the degree of degradation of plasmid DNA spray dried in the 

presence of amorphous sugars.  In the following sections a comprehensive review of key 

areas in this study are explored followed by the research objectives.  

 

1.2 USE OF NUCLEIC ACIDS AS THERAPEUTIC AGENTS (DNA-BASED 

THERAPEUTICS) 

Nucleic acids are fundamental “molecules of life” and play key roles in gene expression 

and regulation (Li et al., 2011).  Gene therapy involves the introduction of a gene into 

target cells in a patient to induce a therapeutic effect or to correct or modulate a disease 
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(Durland and Eastman, 1998).  A biopharmaceutical is a protein or nucleic acid based 

pharmaceutical substance used for therapeutic or in vivo diagnostic purposes, which is 

produced by means other than direct extraction from a native (non engineered) biological 

source (Walsh, 2002).  Effective gene delivery requires targeted delivery of 

deoxyribonucleic acid (DNA) to a sufficient amount of target cells and high expression of 

the gene at concentrations high enough to induce a pharmacological effect.  Overall, gene 

delivery is a clinical strategy that has the potential to treat an array of genetic and non-

genetic disease (Sakurai et al., 2008).   

 

DNA (Figure 1.1) is comprised of two anti-parallel polynucleotide chains comprised of 

nucleotides monomer units with an alternating phosphate and deoxyribose 

(monosaccharide) backbone.  These strands are wound around each other with a right-

handed helical symmetry (Watson and Crick, 1953). The deoxyribose sugars are joined at 

3’-hydroxyl and 5’-hydroxyl groups to phosphate groups in ester linkage referred to as 

phosphodiester bonding.  There are four different nucleotides found within a DNA 

molecule.  They are the purine bases (adenine and guanine) and the pyrimidine bases 

(cytosine and thymine) (Figure 1.1).  With adenine and thymine only forming hydrogen 

bonds together whilst guanine and cytosine only forming hydrogen bonds together. 
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Figure 1.1 Illustration showing deoxyribonucleic acid which consists of two anti-parallel 

polynucleotides consisting of a sugar phosphate back bone and purine and pyrimidine base pairing 

(Take from http://ghr.nlm.nih.gov/handbook/basics/dna) 

 

The majority of DNA is located within the nucleus of a cell.  Some DNA is located within 

the mitochondria and referred to as mitochondrial DNA.  DNA holds essential genetic 

information for cell and organism function.  The DNA molecule is an important source for 

not only understanding of fundamental basis of human life but also for the development of 

a novel group of therapeutics modelled on its endogenous structure.  DNA-based 

therapeutics includes but is not limited to oligonucleotides for antisense and antigene 

applications, plasmids DNA and short interfering ribonucleic acid (siRNA).  A significant 

advantage of DNA-based drugs over low molecular weight drugs is their selective 

recognition of molecular targets and pathways with incredible specific of action.   

 

http://ghr.nlm.nih.gov/handbook/basics/dna
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1.2.1 OLIGONUCLEOTIDES FOR ANTISENSE AND ANTIGENE APPLICATIONS 

Oligonucleotides are short-single stranded segments of DNA once taken up by the cell they 

selectively inhibit the expression of a single protein.  For antisense applications, 

oligonucleotides interact with messenger RNA (mRNA) or precursor mRNA and forms a 

duplex inhibiting their translation or processing in turn inhibiting protein biosynthesis.  

Using antigene applications, oligonucleotides are required to enter the nucleus where it 

forms a triplex with double stranded genomic DNA. It inhibits translation as well as the 

transcription of the target protein (Crooke, 1999).  For therapeutic purposes, antisense 

oligonucleotides are used to downregulate gene expression.  This approach is very 

successful, though extensive experimental investigation is required to identify effective 

target sites within the gene which can prove not only expensive but time consuming 

(Thomas et al., 2007).   

 

1.2.2 PLASMID DNA 

Plasmid DNA (pDNA) is a high molecular weight double stranded DNA polyanion which 

contains transgenes encoding for specific proteins (Uherek and Wels, 2000).  pDNA can be 

thought of as pro-drug on a molecular level, as upon cellular internalization it facilitates 

DNA transcription and translation within the cell to biosynthesis a protein (the therapeutic 

entity) (Patil et al., 2005).  The role of pDNA in gene delivery is to introduce transgenes 

into the cell to produce the required protein that the transgene is sequenced to generate.  In 

order to exert a therapeutic effect pDNA is required to be delivered directly to the nucleus.   
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DNA condensation is a process by which the molecular volume of pDNA is dramatically 

reduced by its interaction with multivalent cationic agents.  It is characterised by molecular 

collapse that protects pDNA from nucleases and chemical degradation.  This process is 

limited to polynucleotides greater than approximately 400 bases (Bloomfield, 1991).  DNA 

condensation bears some similarities to protein folding.  The similarities include 

improbability of the formation of compact, ready reversibility, several non-covalent 

interactions that drive the processes and the requirement of the collapsed state for 

biological function.  However, DNA condensation does differ from protein folding in that 

no unique compact structure is formed, hydrophobic interactions do not drive collapse and 

a functional assay is not available for analysis of the condensed state (Bloomfield, 1996).  

The term “condensation” is often misused to describe electrostatic association of nucleic 

acids with a delivery agent regardless of polynucleotide size, valency of the cation or 

ability of the delivery system to affect molecular collapse.  The complexation of poly- and 

oligionucleotides with a cationic delivery agent results in nuclease resistance however 

condensation is rarely achieved (Xu and Anchordoquy, 2010).   

 

To obtain optimal biological effectiveness, pDNA should ideally be in its supercoiled 

circular form, as this form is important for genetic transfection into cells (be it prokaryotic 

or eukaryotic) and offers the highest transfection efficiency (Tse et al., 2009; Walther et 

al., 2003).  This also aides transport into the cell for successful gene expression.  Structural 

changes will convert the super-coiled circular form to an open-circular and/or linear form.  

Open-circular DNA has a "nick" in one of its strands (Figure 1.2).  The degradation of 

these forms can occur at near neutral pH by the two step process of depurination and β-

elimination, leading to cleavage of the phosphodiester backbone (Evans et al., 2000; 
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Suzuki et al., 1994).  The supercoiled form can be maintained when plasmid DNA 

solutions are stored at -80°C (Quaak et al., 2010).  Przybylowski et al., (2007) 

demonstrated plasmid DNA stability and biological functionality after storage for 3 years 

at -20°C. 

 

 

Figure 1.2 Schematic showing differences with super-coiled and open-circular DNA (taken from 

Redway,2012)  

 

 

pDNA based gene expression delivery systems are composed of three genetic components 

i) a prokaryotic plasmid vector allowing plasmid to be propagated in an appropriate host, 

usually the bacteria Escherichia coli; ii) eukaryotic regulatory elements that control the 

location, level and duration of therapeutic protein production in the target cells iii) a gene 

usually encoding for a therapeutic protein (Durland and Eastman, 1998).  Extensive 

research has been conducted on the design and engineering of pDNA to achieve optimal 

transfection.  pDNA contain regulatory signals which play an important role in regulating 

gene expression (Patil et al., 2005).  These regulatory signals are often endogenously 

present on viral delivery vectors, or can be artificially engineered in the viral genome 

(Anderson, 1984).   
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1.2.3 SHORT INTERFERING RNA (SIRNA) 

Research into the use of short interfering RNA (siRNA) as a sequence selective inhibitor 

of gene expression in mammalian cells is rapidly developing.  SiRNAs are small double 

stranded ribonucleic acid (dsRNA) that are functional mediators of post transcriptional 

gene silencing of a specific target protein, by disrupting messenger RNAs (mRNAs) which 

contains the complementary sequence.  This is a naturally occurring mechanism that 

regulates gene expression and is called RNA interference (RNAi).  RNAi is a post-

transcriptional gene process, in which dsRNA trigger the degradation of homologous 

mRNA.  RNAi was originally observed as an inherent property of plants, and is believed to 

play a role in the body’s natural defence against a viral attack.  RNAi (Figure 1.3) involves 

the cleavage of dsRNA to short 20-25bp siRNAs which is catalyzed by DICER (a member 

of the RNase III family of ds-RNA specific ribonucleases) resulting in siRNAs that have 5' 

phosphate and 3' hydroxyl termini and are recognised by RNA-induced silencing complex 

(RISC) (Thomas et al., 2007; Gewirtz, 2007; Aigner, 2007).  RISC has a helicase activity 

that unwinds the two strands of RNA molecules, allowing the antisense strand to bind to 

the targeted RNA molecule.  RISC also has an endonuclease activity which hydrolyzes the 

target mRNA at the site where the antisense strand is bound (Fattal and Bochot, 2006).  

Active RISC complexes (RISC*) promote the unwinding of siRNA through an adenosine 

triphosphate (ATP) dependent process.  The unwound antisense strand that is produced, 

guides RISC* towards complementary mRNA which is cleaved by RISC* at a single site 

defined by the location of the 5' end antisense strand bound to the mRNA target sequence.  

In order for RNA-mediated mRNA cleavage and degradation to occur successfully 5' 

phosphorylation of this antisense strand must occur.  This process highlights the role of 

siRNA in RNAi initiation and its potential function in RNAi induction. 
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Figure 1.3 Schematic illustration of the RNAi pathway (taken from Gewirtz (2007)) 

 

Endogenous siRNA (produced by DICER mediated cleavage of dsRNAs) as well as 

exogenous (chemically synthesised) siRNA can be introduced into cells.  Each approach 

has its unique advantages and disadvantages.  SiRNAs can be synthesized directly against 

its target with high specificity and can be prepared against any gene known (Sklan and 

Glenn, 2007).  Chemically synthesized siRNA are of defined length and composition 

however, they are expensive and their effects are often transient (Kettner-Buhrow et al., 

2006).   
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1.3 DELIVERY OF NUCLEIC ACIDS 

Most debilitating illnesses have an underlying genetic cause which pharmacological 

approaches can fail to treat effectively.  Gene therapy provides the opportunity for the 

correction of dysfunctional or deleted genes by supplying the lacking component.  This 

approach can be used as a means to treat or reverse such disorders.  Several pharmaceutical 

companies are actively trying to get nucleic acids into formulation and into the clinic with 

some success.  Table 1.1 provides examples of current DNA-based therapeutics in various 

stages of clinical development.   

 

For effective gene delivery it is imperative for the DNA-based therapeutic be delivered to 

its required site of action.  For example, comparing antisense oligonucleotides, pDNA and 

siRNA all are required to cross the cell membrane and escape lysosomal degradation.  The 

negative charge of these molecules suggests they are unable to bind to the cell surface or 

cross the cell membrane by passive diffusion.  pDNA requires entry into the nucleus to 

initiate transcription of encoded genes, whilst antisense oligonucleotides and siRNA is able 

to exert its therapeutic effect in the cytosol.   

 

Overall, for successful, efficient and safe gene delivery (and gene silencing) the nucleic 

acid e.g. pDNA, siRNA or antisense oligonucleotides must be delivered safely to its site of 

action at a sufficient concentration to exert its therapeutic effect.  Delivery methods can be 

classified into three general types, electrical techniques (such as electroporation (Regnier 

et al., 2000)), mechanical transfection (e.g. microinjection techniques (Pearton et al., 

2008)) and vector assisted delivery.   
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Table 1.1 Examples of current DNA-based therapeutics in various stages of clinical development 

*shttp://silence-therapeutics.com/pipeline/ *A http://www.alnylam.com/Programs-and-Pipeline/index.php *Ihttp://www.isispharm.com/Pipeline/index.htm 

COMPANY TYPE OF DNA-

BASED 

THERAPEUTIC 

DRUG NAME TARGET DISEASE STATUS 

SiBono Genetech Plasmid pDNA Gendicine 

Head and neck 

squamous cell 

carcinoma 

Chinese-

FDA 

approved 

Alnylam and partners Naked siRNA 

ALN-RSV01 
Respiratory 

syncytial virus 

infection 

Phase IIb *A 

ALN-VSP01 Liver cancer Phase I *A 

ALN-APC Hemophilla 
Preclinical 

*A 

Isis 

Pharmaceuticals and 

partners 

Antisense 

oligonucleotide 

Kynamro 

(mipomersen 

sodium) 

Reduction of LDL 

cholesterol 

Phase III*I 

Silence /Quark Naked siRNA QPI-100 
Acute kidney 

injury 
Phase II *s 

Silence/Quark/Pfizer Naked siRNA PF-04523655 
Diabetic macular 

oedema 
Phase II *s 

 

Ideal properties of a nucleic acid delivery vector include high transfection efficiency 

(accompanied with high specificity), low toxicity and immunogenicity, easy modifiable for 

customized nucleic acid release and good gene expression.  Vector assisted delivery can be 

categorised into two main groups, viral and non-viral and will be discussed in the 

following sections. 

 

1.3.1 VIRAL VECTORS 

The concept of viral vectors for gene delivery is relatively straightforward.  It involves 

insertion of genetic material into a viral genome taking advantage of the inherent ability of 

http://silence-therapeutics.com/pipeline/
http://www.alnylam.com/Programs-and-Pipeline/index.php
http://www.isispharm.com/Pipeline/index.htm
http://silence-therapeutics.com/images/stories/ppbig10.08.gif
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the virus to transduce cells from a desired therapeutic outcome (Patil et al., 2005).  

Unfortunately viral based delivery holds disadvantages, including the possibility of 

inflammatory, oncogenic transformations, immune and toxicity reactions.  Common 

viruses used as vectors for gene delivery are adenoviruses, adeno-associated virus, 

retrovirus and lentivirus (subclass of retrovirus).  Retroviral vectors infect only dividing 

cells whilst adenoviral vectors and adeno-associated viral vectors are able to infect non-

dividing cells.  Lentiviral vectors are able to infect dividing and non-diving cells.  Adeno-

associated viral vectors are the most superior in terms of their gene transfer abilities.  

Adeno-associated viral vectors appear to have the best safety profile as all viral genes have 

been removed as well as long lasting high level of gene expression (Walther and Stein, 

2000).  Properties of commonly used viral vectors in gene delivery are summarised in 

Table 1.2 (taken from Walther and Stein, (2000)). 

 

Table 1.2 Properties of viral vector systems commonly used in gene therapy (taken from Walker 

and Stein, (2000)) 
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1.3.2 NON-VIRAL VECTORS 

Non-viral vectors have several advantages over viral vectors mainly safety.  The downside 

of non-viral vectors however is that their level of gene expression and transfection 

efficiency is low compared to viral vectors.  Non-viral vectors can be modified and be 

incorporated by ligands for cell specific targeting to improve the transfection efficiency.  

The two major vector types for non-viral nucleic delivery are liposomal and polymeric 

based delivery systems. 

 

1.3.2.1 Liposomal non-viral delivery systems 

A liposome is a vesicle which consist of an aqueous compartment enclosed in a 

phospholipid bilayer (Figure 1.4).  When multiple lipid bilayers are formed around a 

primary core in a concentric fashion the complexes generated are known as multilamellar 

vesicles (Figure 1.4). 

 

 

 

Figure 1.4 Illustration showing a liposome and a multilamellar vesicle (taken from 

http://www.britannica.com/EBchecked/media/92244/Phospholipids-can-be-used-to-form-artificial-

structures-called-liposomes and http://www.encapsula.com/products_01.html 

 

                              LIPOSOME                              MULTILAMELLAR VESICLE 

http://www.britannica.com/EBchecked/media/92244/Phospholipids-can-be-used-to-form-artificial-structures-called-liposomes
http://www.britannica.com/EBchecked/media/92244/Phospholipids-can-be-used-to-form-artificial-structures-called-liposomes
http://www.encapsula.com/products_01.html
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Liposomes can be used as DNA drug delivery systems either by entrapping the DNA-

based therapeutics inside the aqueous core or complexing them to the phospholipid 

lamellae.  Liposomes offer significant advantages over viral delivery options for the 

delivery of DNA therapeutics as they are generally non-immunogenic, can be easier easily 

engineered to yield a desired size, surface charge, composition, and morphology.  A 

variety of cationic, anionic and synthetically modified lipids have been used to deliver a 

wide range of DNA-based therapeutics. 

 

Cationic lipids commonly used are 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) 

and N-[1-(2,3-dioleyloxy)propyl]-N,N,Ntrimethylammonium chloride (DOTMA).  

Commonly used helper lipids (also referred to as zwitterionic lipids) are DOPE and 

cholesterol.  The cationic surface change of lipids like DOTAP can aid in DNA 

complexation during the formation of the lipoplex (DNA and liposome complex).  The 

positive charge also aids in cellular entry.  Helper lipids help in membrane perturbation 

and fusion (Patil et al., 2005). 

 

1.3.2.2 Polymeric non-viral delivery systems 

Cationic polymers are commonly used as non-viral gene delivery systems because of their 

ability to easily complex with DNA molecules leading to the formation of polymer-DNA 

complexes (polyplexes).  Commonly used polymers include polyethyleneimine (PEI), 

dendrimers and chitosan.  Chitosan (1,4-2 amino-2-deoxy-b-D-glucan) is a linear 

biodegradable polymer derived from chitin (a polysaccharide abundant in nature) and is 

extracted from crustacean shells.  Chitosan is a weak base polysaccharide that contains 

amino acid groups which are protonated in an acid medium, resulting in a high positive 
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charge.  Chitosan based carriers are non-viral vectors that have gained  an increased 

interest in recent times as a safer and more cost effective delivery system for gene 

materials including plasmid DNA, oligonucleotides as well as proteins and peptides.  

Chitosan also has advantages as a non-viral vector as it has a low toxicity and 

immunogenicity profile, good biodegradability, biocompatibility, mucoadhesiveness, a 

high positive charge and can be used as an absorption enhancer (Katas and Alpar, 2006).  

Chitosan forms polyectrolyte complexes with negatively charged nucleotides by an 

electrostatic interaction (Katas and Alpar, 2006).   

 

1.4 PULMONARY DELIVERY  

Pulmonary delivery is used to deliver a variety of therapeutics including DNA based for 

the treatment of many localised diseases like respiratory tract infections, asthma, chronic 

obstructive pulmonary disease and cystic fibrosis.  In this section, the functional anatomy 

and physiology of the lung (including physiological barriers to pulmonary delivery), ideal 

particle characteristics and pulmonary delivery of nucleic acids are discussed. 

 

1.4.1 FUNCTIONAL ANATOMY AND PHYSIOLOGY OF THE RESPIRATORY SYSTEM 

1.4.1.1  Functional Anatomy of the Respiratory System 

The lungs occupy the thoracic cavity with the left lung being smaller than the right lung 

due to the position of the heart, which extends into the left thoracic space.  The lungs are 

almost pyramidal in shape, with an approximate height of 20cm, a density (when fully 

inflated) of  approximately 0.2kg dm
3
 and surface area of 72-140m

2
 in adults (Kumar and 

Clark, 2005).  The respiratory system consists of two functional sections, the airways 
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(nose, nasopharynx, oropharynx, trachea, bronchi and bronchioles) and the alveoli. The 

upper airways (the nose, nasopharynx and the oropharynx) are lined by ciliated cubical or 

columnar epithelium, interspersed with goblet cells and receptors or free nerve endings.  

The trachea is 10-12cm in length. It lies slightly to the right of the midline and divides into 

the right and left main bronchi.  The right main bronchus is more vertical than the left, 

because of this inhaled material is more likely to end up in the right lung than the left 

(Yang et al., 2008).  At the tracheobronchial region, a mucus layer protects the epithelium.   

 

Figure 1.5 Regions of the human respiratory system (taken from Seville et al.,(2007)) 

 

The mucus is a thick gelatinous substance that is secreted from goblet cells and mucous 

glands, under normal conditions the tips of the cilia are in contact with the under surface of 

the gel phase and coordinate their movement to push the mucus upwards.  It takes 

approximately 30-60minutes for mucus to be cleared from the large bronchi; however, 

there is delay of several days before clearance is achieved from the bronchioles.  Any 

particle deposited in this area is transported away from the lung by mucocilliary clearance 
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or diffused through the mucus layer to reach the epithelium cells.  Ciliated epithelium is a 

key defence mechanism of the lung.  Pseudostratified epithelia act as a barrier to 

absorption into the bloodstream; it is markedly different in airways and alveoli of the 

lungs.  Alveoli are not well protected against inhaled substances compared to the airways, 

because of the large alveoli surface area and the intimate air-blood contact.  The 

pulmonary artery is the main blood supply to the lung.  It divides into the right and left 

pulmonary arteries and these in turn subdivide to provide up to eight generations of elastic 

walled vessels with a diameter of more than 2mm.  Pulmonary receptors contribute to the 

pattern of breathing in a wide range of circumstances.  Their role in the upper airways is 

mainly protective. 

 

1.4.1.2 Physiology of the Respiratory System 

Lung ventilation is a two-part mechanical process of inspiration and expiration that control 

respiration to an appropriate level to satisfy metabolic needs (Figure 1.6).  Inspiration is an 

active process and results from the descent of the diaphragm and movement of the ribs 

upwards and outwards by the contraction of the intercostals muscles.  Expiration follows 

passively because of gradual relaxation of the intercostals muscles, allowing the lungs to 

collapse under the influence of their own elastic forces.  The lungs have a tendency to 

collapse away from the thoracic wall, generating a negative pressure within the pleural 

space.  The strength of the force relates to the lung volume.  At high lung volumes, the 

lung is stretched more, and a greater negative intrapleural pressure is generated. 
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Figure 1.6 Schematic showing the inhalation and exhalation process (taken from 

http://blm1128.blogspot.co.uk/2011/04/objective-49-contrast-inspiration-and.html) 

 

1.4.2 BARRIERS TO PULMONARY DELIVERY 

The lung has evolved both physical and immunological barriers that can hinder effective 

transduction of epithelial cells.  Pulmonary disease is often due to the failure of the lungs’ 

defence mechanisms which can be divided into physical, physiological, humoral and 

cellular mechanisms.  Once a particle is deposited onto the lining of the respiratory tract, it 

comes into contact with a thick gelatinous mucus water impermeable layer located within 

the airways or the surfactant-lining fluid layer in the alveolar region.  Airway mucus is 

about 5µm in depth and consists of electrolytes, proteins, glycoproteins (e.g. mucins, high-

molecular-weight glycosylated protein) and cell debris (varies on environmental and 

disease states).  The surfactant lining layer, also referred to as the airway surface liquid 

(ASL) is 10-20nm in thickness and covers the alveolar surface.  It consists of 

phospholipids, specific proteins and mucins.  These components are likely to affect the 

INSPIRATION EXPIRATION 

http://blm1128.blogspot.co.uk/2011/04/objective-49-contrast-inspiration-and.html
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transfer of nucleic acids.  In order to maintain lung function, facilitate gaseous exchange 

and prevent alveoli collapse phospholipids (in the ASL) form liquid crystals but not 

micelles in aqueous media therefore reducing the lung air interface surface tension (Yang 

et al., 2008).   

 

The negative charge of the surfactant lining constituents are capable of directly binding to 

positively charged complexes, altering their size and switching their overall charge density 

(to negative) affecting their diffusion to the target cells or cellular uptake.  DNA-based 

therapeutic agents may be displaced and delivery efficiency lowered.  Such effects have 

been seen by cationic liposome-mediated DNA transfection (Ernst et al., 1999).   

 

Defence mechanisms, include (but are not limited to) a mucocilliary escalator transport, 

phagocytosis by macrophages and pinocytosis are involved in the removal of deposited 

particles and the maintenance of the lung mucosal surface.  Particles consisting of slowly 

dissolving or insoluble materials in the airway mucus can be partially moved by the action 

of ciliated epithelial cells pushing the mucus either to the gastro-intestinal tract or excreted 

through the mouth.  Deposited particles may also be removed by coughing within a few 

days.   

 

Pulmonary alveolar macrophages are derived from precursors in the bone marrow and 

migrate to the lungs via the bloodstream.  They phagocytise particles, these are then 

removed by the mucocilliary escalator, lymphatics and the blood stream.  Macrophage 

phagocytosis mainly clears slow dissolving and insoluble particles from the alveoli.  The 
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uptake of deposited particles by alveolar macrophages depends on the particle size and 

composition of the coating material.   

 

1.4.3 IDEAL PARTICLE CHARACTERISTICS FOR PULMONARY DELIVERY 

The aerodynamic diameter dA, is the diameter of a sphere of unit density which achieves 

the same velocity in an air stream as a non-spherical particle of arbitrary density.  dA is 

dependent on the morphology, density and size of the particle.  The correct aerodynamic 

particle size is often expressed as the mass median aerodynamic diameter (MMAD).  dA 

defines the mechanism of particle deposition of the respiratory system and generally 

depends on the airflow (particle Reynolds number, Re) as well as particulate properties 

(geometric, size, morphology and density) (Chow et al., 2007).   

 

There are three principal mechanisms that lead to pulmonary deposition; inertial 

impaction, gravitational sedimentation and diffusion (Brownian diffusion).  Particles with 

a MMAD of more than 5µm are subject to inertial impaction; 1 to 5µm are subject to 

sedimentation by gravitational forces; 0.5µm (less or equal to) are subject to diffusion by 

Brownian motion (Yang et al., 2008).  The size, extent and efficacy of particle deposition 

after inhalation is influenced by several factors such as aerosol properties and physiology 

during breathing, particle/droplet diameter, density, surface properties or shape and 

anatomy of the upper and lower airways.  Successful deposition into the deep lung requires 

the particle to be small enough to avoid deposition by inertial impaction at the upper 

airways but large enough to avoid exhalation.  The optimal particle size for achieving 
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delivery deep into an alveolar region has been established to be dA between 1 to 3µm 

(Yang et al., 2008).   

 

1.4.4 PULMONARY DELIVERY OF NUCLEIC ACIDS 

Pulmonary delivery offers a non-invasive route for the administration of DNA-based 

therapeutics.  The lungs have a large surface area and a good blood supply therefore 

pulmonary administration of small hydrophobic molecules results in rapid local and 

systemic effects.  Therefore this route can be used to treat local conditions like chronic 

obstructive pulmonary disease, asthma and upper respiratory tract infections. 

 

Particle engineering for DNA-based therapeutics for pulmonary delivery requires particles 

to be within the respirable range (1 to 5µm).  Formulation strategies are employed to 

reduce the particle size to within the respirable range whilst preventing loss of biological 

activity.  Popular techniques include spray drying, spray freeze drying and freeze drying 

which have been discussed in Section 1.9.7.  Currently there are three types of inhalation 

devices for pulmonary delivery they are nebulizers, metered dose inhalers (MDIs) and dry 

powder inhalers (DPIs). 

 

Jet nebulisers uses compressed gases to produce aerosol droplets in the respirable size 

range.  Ultrasonic nebulisers use ultrasonic energy to convert liquids into a spray, they 

have been less studied and characterised than jet nebulisers.  Nebulisers deliver large 

volumes of drug solutions and suspensions for inhalation.  They are more commonly used 

for drugs that cannot be easily formulated into a MDI or DPI.  The temperature of the drug 
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solution in the ultrasonic nebulisers can rise up to about 20
o
C above ambient temperature 

during use.  The heat generated can cause degradation of heat liable materials like nucleic 

acids.   

 

Pressurised MDIs have the active substance dissolved or suspended in a propellant system, 

which contains at least one liquefied gas in a pressurised container that is sealed with a 

metering valve.  The activation of the valve delivers a metered dose of the medicament in 

the form of an aerosol spray, which is directed by a suitable adaptor or actuator for 

administration via oral or nasal inhalation.  MDIs are advantageous due to their portability, 

low cost and disposability.  Up to 200 doses are stored in one canister and drug delivery is 

reproducible.  However, instability of biological molecules is a problem. 

 

DPIs are favoured for pulmonary delivery of nucleic acids and other delicate molecules 

because of instability issues with MDIs and nebulisers.  DPIs are portable, simple 

formulation, easy to operate, propellant free and inexpensive. DPIs impart energy into the 

powder formulation to overcome gravitation and electrostatic forces.  This process also 

disrupts aggregates that may form as a result of inter-particulate forces.  This ensures that 

the particles that are inhaled and deposited are at their primary particle size (Son and 

McConville, 2008).   

 

Delivery of DNA-based therapeutic molecules relevant to lung diseases has been attempted 

through multiple routes and using various carriers in animal models.  An influenza 

pandemic occurs annually due to the development of a new strain of the influenza virus 

that the population does not have immunity to.  The vaccine is formulated yearly because 
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viral antigens (HA and NA) change therefore previous year’s vaccines are ineffective 

against new strains.  It can take up to 6 months to produce vaccines and early on in the 

formulation processes a calculation is made as to which strain to include.  The ability of 

synthetic siRNAs to inhibit influenza virus production in cell culture has been extensively 

reviewed (Thomas et al., 2007).  Experiments conducted by Ge et al., (2004) using 

polycation mediated intratracheal delivery of siRNAs specific for genes encoding the 

nucleocapsid protein and components of the influenza virus in mice, overall saw promising 

results implying there may be potential for the use of siRNAs as a prophylactic therapeutic 

agent to inhibit influenza virus production in humans.   

 

Other experiments have looked at formulation strategies and the potential to produce 

respirable dry powders for stable and efficient non-viral gene delivery to the lung (Seville 

et al., 2002; Li et al., 2005; Colonna et al., 2008; Kuo, 2003).   

 

For example, Seville et al., (2002) produced respirable lipid-peptide-DNA complexes 

(LPD) (lipid used was DOTAP, cationic peptide was protamine) by either freeze drying or 

spray drying.  Transfection studies conducted on A549 (human lung epithelial carcinoma) 

cells saw that formulated DNA was able to mediate β-Galactosidase reporter gene 

expression interestingly with spray-dried formulations proving superior even when 

compared to freshly prepared LPD complexes. 
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1.4.5 OTHER ROUTES OF DELIVERY OF NUCLEIC ACIDS 

1.4.5.1  Ocular Delivery  

The negative charge of nucleic acids make them strong potential candidates for ocular 

delivery using iontophoresis.  Iontophoresis is a non-invasive technique commonly used to 

transfer ionized drugs using an electric field into the skin and more recently the eye 

(Halhal et al., 2004).  Using this technique delivery of antisense oligionucleotides have 

been explored with great success (Fattal and Bochot, 2006).  

 

1.4.5.2  Topical Delivery 

The transdermal entry of DNA has been studied liposomes (Li et al., 2010) and electrical 

techniques (e.g. electroporation) mechanical transfection (e.g. microneedles (DeMuth et 

al., 2010)).  The size of sweat pores and the follicular openings of the skin are 30µm to 

100µm in size therefore it is reasonable to assume that DNA or small oligonucleotides 

such as siRNA would be able to penetrate through the skin.  Wang et al., (2008) developed 

a topical siRNA delivery system based on chitosan nanoparticles.  The target was a 

natriuretic peptide receptor and was chosen because it was recently found that this receptor 

when silenced prevented lung inflammation in mouse models for allergic asthma.  

Transdermal delivery of siRNA significantly decreased lung inflammation (mice model) 

confirmed by evidence produced from lung section staining, eosinophil counting and 

quantification of inflammatory markers (Wang et al., 2008).   
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1.5 ANHYDROBIOSIS 

Anhydrobiosis (a form of cryptobiosis) involves the partial or total desiccation of living 

organisms resulting in a reduction in metabolism however, upon exposure to moisture vital 

functions are restored (Crowe et al., 1992).  Many organisms like plants, fungi or insects 

are able to thrive in essentially complete dehydration and may exist without water for 

decades and sometimes centuries these organisms are called anhydrobiotic organisms.  

Surprisingly, they are able to survive even when greater than 99% of their body water is 

removed resulting in dry but viable tissues containing at least 0.1% water content (Crowe 

et al., 1998).  Their metabolic processes are reduced as concentration of water within the 

cells decreases.  Upon rehydration full functionality is resorted along with metabolic 

processes.  It has been found that anhydrobiotic organisms usually contain high 

concentrations of sugars in particular trehalose.  An example of such an organism is the 

nematode Aphelenchus avenae.  When this organism was slowly dehydration, 20% of its 

dry weight was converted to trehalose.  It appears as though survival of anhydrobiotic 

molecules in the absence of water is correlated to the synthesis of sugars like trehalose or 

sucrose.  There are two main hypothesis proposed for this effect they are i) the water 

replacement hypothesis and ii) the vitrification hypothesis. 

 

The Water Replacement Hypothesis 

The water replacement hypothesis is a thermodynamically based theory which suggests 

that protective sugars interact with anhydrobiotic organisms through hydrogen bonding in 

a similar manner to replaced water (removed by drying).  The sugar in an amorphous or 

anhydrate form is thought to stabilise biological molecules by absorbing surrounding 
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water, crystallising and then phase separating therefore acting as a desiccant (Moran and 

Buckton, 2007).   

 

Vitrification of Carbohydrates 

According to this hypothesis, vitrified sugars form an amorphous matrix surrounding the 

anhydrobiotic organisms preventing any conformational distortion (i.e. degradation).  The 

higher the glass transition of the protecting sugar, the greater the physical stability of the 

system (Simperler et al., 2006).  Crowe et al., 1998 concluded that vitrification alone was 

insufficient to achieve complete stabilization and maintenance of a dry cell in an 

anhydrobiotic organism.  Direct and specific interactions were also required.  Therefore 

vitrification and was not mutually exclusive with the water replacement hypothesis.   

 

1.6 MAILLARD REACTIONS 

Maillard reaction (also known as the amino-carbonyl cascade) is a cascade initiated by 

Schiff base formation which leads to cross-linking and fragmentation of a protein and 

browning via the generation of melanoid pigments (Kett, 2000).  Its reaction is well known 

in food science to cause not only browning of colour and flavour change as well as a loss 

of nutritional or functional value (Kawai et al., 2004).  The non-reducing character of these 

sugars like trehalose is crucial in the stabilization of a biological molecule to avoid 

Maillard reactions which can lead to detrimental effects on the biological molecule 

(Schebor et al., 2010).   
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1.7 DELIQUESCENCE 

The presence of atmospheric water whether it is behaving as a reactant, a product, a 

reaction medium or enhancing the molecular mobility at disordered sites can cause 

undesirable changes to the physical and chemical properties of a pharmaceutical material 

(e.g. sugars).  These effects can include phase transformations or chemical degradation.  

Deliquescence is a property exhibited by a variety of different compounds including some 

inorganic salts, sugars and drugs (Crowe, 2002).  When a material undergoes 

deliquescence, phase transformation occurs whereby the material absorbs water vapour 

from the atmosphere leading to dissolution of the solid and presence of bulk water in the 

system at a partial vapour pressures less than 1 (Hernandez Garcia, 2011).   

 

The relative humidity (RH%) at which deliquescence occurs is a characteristic of the 

material and has been found to be the same as the RH% produced by a saturated aqueous 

solution.  At elevated water vapour pressures (generally >65% RH) crystalline sugars and 

sugar derivatives may experience deliquescence.  Where sugar molecules at the material 

surface start to dissolve in adsorbed water vapour and form a saturated sugar solution 

(Hancock and Shamblin, 1998).  The RH% at which deliquescence first occurs is 

commonly referred to as the 'critical relative humidity' (RH0) (Hancock and Shamblin, 

1998).  RH0 is an important parameter for pharmaceutical systems as above RH0 formation 

of a liquid phase can occur leading to accelerated chemical reactions or physical changes.  

Table 1.3 provides examples of RH0 for common sugars. 
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Table 1.3 Critical relative humidities (RH0) for crystalline sucrose, raffinose and trehalose (taken 

from Hancock and Shamblin, (1998)) 

MATERIAL CRITICAL RELATIVE HUMIDITIES (RH0) 

Sucrose 84% at 25 
o
C 

Raffinose ~100% at 23 
o
C 

Trehalose ~98% at 23 
o
C 

Lactose ~99% at 24°C 

Glucose 81% at 25°C 

 

1.8 SOLID STATE 

The three states of matter are solids, liquids and gases.  Molecular arrangement between 

these states differs greatly.  Materials in the solid state can be crystalline, amorphous or a 

combination of both.  Figure 1.7 is a schematic representation of the molecular 

arrangement of a crystalline solid, amorphous solid and gas.  Molecules in the crystalline 

state are located in a fixed position, closely bound together by different inter-molecular 

forces (such as van der Waals forces and hydrogen bonding).  They exhibit long-range 

translational, rotational and conformational order.  This is in contrast to the molecular 

arrangement within an amorphous solid (also termed glass) which are located in a random 

order (not to the same extent as molecules in the gaseous phase) and feature short-range 

translational, rotational and conformational order.  Molecules in the gaseous phase are 

random and do not exhibit any order.   
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Figure 1.7 Schematic representation of the structure of a crystalline solid, an amorphous solid and 

a gas (taken from Yu, (2001)) 

 

Amorphous solids are interesting as their structure is similar to a liquid although 

possessing the rheological properties of a solid.  Therefore, they are generally described in 

terms of their viscoelastic behaviour. 

 

1.9 THE AMORPHOUS STATE 

When a solid is heated above its melt and rapidly cooled to below its melting temperature 

(Tm), it forms of a “supercooled liquid” (also termed an undercooled liquid) (Figure 1.8).  

The supercooled liquid is usually a brittle, transparent solid referred to as a glass, glassy 

solid or an amorphous solid which is characterised by its glass transition temperature (Tg).  

A glass transition occurs when an amorphous solid undergoes a decrease in its molecular 

mobility and an increased viscosity to such an extent that eventually a temperature is 

reached at which zero molecular mobility is achieved.  The temperature at which this 

occurs is referred to as the Tg.  The glass transition is a kinetic event rather than a 

thermodynamic transition (further discussed in Section 1.9.1).  At Tg, the rheological 

properties of the glass changes from being solid-like to becoming more liquid like in 

character.  In effect, a glass is a solid with the structure of a liquid however, possessing the 
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energy levels of a solution.  The average time scale of molecular motions within a glass is 

usually in excess of 100s and viscosity is typically greater than 10
12

 Pa·s (Angell, 1995).  

 

Amorphous materials are thermodynamically unstable as a result of their high energy state 

making them more prone to recrystallise to a lower energy crystalline state over time.  

From a pharmaceutical perspective, due to its higher internal energy, the amorphous state 

would be expected to possess enhanced thermodynamic properties relative to the 

crystalline state (such as solubility, vapour pressure), greater molecular mobility and 

greater chemical reactivity (potential for spontaneous crystallisation above and below Tg) 

(Hancock and Zograf, 1996).   

 

 

Figure 1.8 Schematic depiction of the variation of enthalpy (or volume) with temperature (taken 

from Hancock and Zografi (1996)) 

 

ΔHTm 
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Tg is defined as the temperature at which the extrapolated glass and liquid equilibrium 

lines cross (Figure 1.8) and is accurately measured on cooling from the equilibrium state.  

Figure 1.8 is a schematic plot of the enthalpy or specific volume of a solid material as a 

function of its temperature.  Figure 1.8 also depicts the relationship between the enthalpy 

and temperature for a liquid, supercooled liquid, glass and crystalline phases (taken from 

Hancock and Zografi (1996)).  As a viscous liquid is cooled below its Tm it described as 

being “supercooled”.  The discontinuity observed in the enthalpy at Tm illustrates the first-

order phase transition to the liquid state.  Cooling of the melt results in enthalpy values 

which may follow the equilibrium line for the liquid beyond the temperature into a 

“supercooled liquid” region.  At Tg, a change in the slope is observed as the properties of 

the glass deviates from the properties of the equilibrium supercooled liquid.  Tg appears to 

be a thermodynamic requirement for a supercooled liquid as without Tg, the glass will 

reach a lower enthalpy than the crystalline state at a critical temperature resulting in a 

negative enthalpy.  The critical temperature is known as the Kauzmann temperature (TK).  

Walter Kauzmann (1948) conducted a series of experiments exploring the properties of 

supercooled liquids at low temperatures below their Tg.  Experimental entropy versus 

temperature curves were extrapolated to below Tg and it was discovered that the 

extrapolated entropy of some supercooled liquids appeared to fall below that of a crystal as 

shown in Figure 1.8.  This phenomenon was in conflict with Newton’s third law of 

thermodynamics which states “The entropy of a perfect crystal at absolute zero is exactly 

equal to zero”.  As the crystalline state is the most ordered system (in terms of molecular 

arrangement) it is expected to have the lowest entropy.  TK (also termed the calorimetric 

ideal glass transition temperature, Toc) represents the lower limit to the Tg where the 

configuration entropy of the system reaches zero, this is known as the Kauzmann paradox.  

In practice, experimental Tg occurs 20K or more above TK (Craig et al., 1999).   
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The glass transition differs from a change in state as Tg values are dependent on the 

cooling rate of the system with slower rates resulting in lower transition values and denser 

glasses.  Figure 1.9 is a schematic illustration of the enthalpy or specific volume of a solid 

material as a function of its temperature (as in Figure 1.8) showing the effect that cooling 

rate has on Tg and the more thermodynamically favorable path taken on slow cooling that 

allows for re-crystallization to occur.   

 

 

Figure 1.9 Schematic illustration of the enthalpy or the free volume as a function of temperature 

showing the effect of cooling on the Tg where Glass 1 has been cooled at a faster rate than Glass 2 

(taken from Ediger et al., 1996)  

(Ediger et al., 1996) 

Tg1 shows the Tg of a rapidly cooled glass (Glass 1) which has been cooled at a faster rate 

than Glass 2 and has deviated from the equilibrium at a higher temperature.  Glass 2 has 

been cooled at a slow rate and has a lower Tg value as it deviated from the equilibrium of 

the supercooled liquid at a lower temperature.  The cooling process is too fast in both 

glasses for crystallization to occur, this could be due to a rapid cooling rate or 

crystallization not favored because of sample molecular size or shape. 

Glass 1 

 Glass 2 
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The basic physico-chemical parameter used to characterize amorphous materials is the Tg.  

It can be used to predict the physical and chemical stability, as well the as rheological 

properties (temperature dependent) of an amorphous sample.  Tg is characterised by a step 

change in the heat capacity (Cp) or thermal expansivity (α) and is often determined using 

calorimetric techniques like differential scanning calorimetry (DSC) by measuring the heat 

flow or heat capacity as a function of time.  Using this technique, Tg can be measured as 

the point in the transition region where the step change in the heat capacity, Cp (a 

derivative of enthalpy) or thermal expansivity attains half the value of the total step change 

(Figure 1.10).  The Tg can also be determined by measurement of the volume as a function 

of temperature using dilatomery techniques.  Tg is evaluated as shown in Figure 1.11. 

 

Figure 1.10 Schematic of the change in thermal expansivity (α) or the heat capacity (Cp) upon 

cooling from the equilibrium liquid state to the glassy state (taken from Badrinarayanan et 

al.,(2007))  

 

Figure 1.11 Schematic of the evolution of specific volume (v) or enthalpy (H) with temperature 

upon cooling from the equilibrium liquid state to the glassy state 
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1.9.1 GLASS TRANSITION THEORIES  

The complex nature of a glass and its Tg is still poorly understood and several theories 

exist that can be used to describe the physical changes that occur during the transition.  The 

three main theories are the free volume theory, entropy theories and thermodynamic phase 

transition theory.   

(Badrinarayanan et al., 2007) 

1.9.1.1    Free volume theories 

Fox and Flory (1950) first proposed the free volume theory for understanding transport 

properties of a liquid i.e. viscosity.  It was speculated that the transport properties of a 

liquid were determined by its free volume defined as the unoccupied space available within 

a liquid which is free to be filled by molecules.  Tg therefore occurs due to a gradual 

reduction in the occupied volume of a material.   

 

The Doolittle equation (1951) depicted in Eq.1.1 relates the viscosity of a liquid to its 

volume and free volume temperature above Tg.  It predicts that an increase in pressure will 

result in a reduced Tg and at a temperature below Tg the free volume will be equal to zero. 

          Eq. 1.1  

where η is the viscosity, ηo and C are adjustable parameters.  V is the volume and Vf is the 

free volume. 

 

Cohen and Turnbull (1959) later further developed the free volume theory by defining a 

relation between the diffusion constant, D in a liquid of hard spheres and the free volume, 
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Vf.  This was based on the concept that statistical redistribution of the free volume 

occasionally opens up voids large enough for diffusive displacement.  The relationship is 

depicted in Equation 1.2. The equation is of the same form as the Doolittle equation 

(Eq.1.1) 

Eq. 1.2  

 

where v* is the minimum required volume of the void and A and γ are constants.  This 

theory assumes that the total volume of a liquid is made up of two parts with one part 

occupied by a series of hard spheres or molecules.  The second portion of the liquid is 

made up of unoccupied space where spheres are free to move randomly by diffusion 

(Cohen and Turnbull, 1959).  Therefore, as the temperature decreases the occupied and 

free volume within a liquid will also decrease.   

 

Assumptions based on this model are that the free volume within a liquid is dependent on 

its geometrical arrangements, molecular size and intermolecular interactions.  It also 

assumes that thermal expansion will remain linear even for a small free volume.   

 

1.9.1.2    Thermodynamic phase transition theory 

According to the Ehrenfest classification scheme, a phase transition is a second derivative 

of the free energy and is discontinuous at a critical point.  The glass transition is therefore 

classified as a second-order phase transition according to this classification.  At the glass 

transition a sample demonstrates a continuation of thermodynamic properties which are 

associated with the first derivatives (of free energy) like the specific volume or enthalpy 
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however; the sample demonstrates a discontinuity in the second derivative (of free energy) 

like the specific heat or thermal expansion coefficient.  The thermodynamic phase 

transition theory overall states that latent heat is not associated with the glass transition.  

However, as the glass transition can be kinetically influenced (i.e. by factors such as the 

cooling rate) this weakens the concept that the glass transition is a genuine second-order 

phase transition. 

 

1.9.1.3    Entropy theories 

The step change seen at the heat capacity can also be related to the entropy (S) of the 

system at constant pressure (Eq.1.3) 

                                                     Eq.1.3 

The glass transition occurs because of excess entropy within the system.  As discussed in 

Section 1.9, experiments conducted by Kauzmann (1948) found that the extrapolated 

entropy of some supercooled liquids fell below that of a crystal (Figure 1.8) which was in 

conflict with the third law of thermodynamics (Kauzmann paradox).  These results showed 

that the glass transition was a thermodynamic requirement in preventing the volume (or 

enthalpy) of the supercooled liquid from reaching Kauzmann temperature, Tk.  Gibbs and 

Di Marizo (1958) developed an entropy model to avoid the Kauzmann paradox.  

Experiments were conducted with a focus on the bonding energy of straight chained 

polymers.  Their model assumed that a true second-order thermodynamic phase transition 

with decreasing entropy existed below the glass transition temperature.  It was then 

possible to relate the relaxation time of an amorphous system to the configurational 
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entropy where the larger the entropy the faster the material will relax.  Unfortunately this 

model was limited to polymers.   

 

1.9.2 GLASS FRAGILITY 

The fragility of a liquid is a measure of the temperature dependence of the viscosity (or 

molecular motions) approaching Tg.  It can also be defined as the sensitivity of a liquid 

structure to temperature fluctuations describing the kinetic behaviour of an undercooled 

liquid.  This property has been linked to its glass forming ability where glass formers are 

classified as being either “strong” or “fragile”.  Strong glass formers are typically 

inorganic, they possess high viscosities at Tm and are resistant to structural changes which 

is shown by their characteristic small heat capacity changes at Tg (Angell 1995).  Viscosity 

changes above Tg is described using Equation 1.4 which is based on the Arrhenius 

equation which shows that strong glass formers show linear dependence of their viscosity 

on temperature (Figure 1.12). 

                                    Eq.1.4 

where η is the viscosity,        is the rate of decreasing viscosity, k is a rate constant,        is 

the activation energy for the deterioration process and R is the gas constant (8.314 JK
-1

mol
-

1
).   
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Figure 1.12 A plot of viscosity versus temperature scaled to Tg for Boron Trioxide (+); sorbitol 

(x), o-terphenyl (  ) and IMC (  ) (taken from Crowley and Zografi 2001) 

 

Figure 1.12 shows that strong liquids exhibit Arrhenius like behaviours whilst fragile 

liquids deviate from this and exhibit non-Arrhenius like behaviour.  The Vogel-Tamman-

Fulcher (VTF) equation (Eq. 1.5) in its modified from describes the non-Arrhenius 

behaviour of fragile liquids.  It describes the relationship between η and temperature (T) in 

the supercooled region. 

 

Eq.1.5 

where η(T) is the temperature dependence of viscosity above the glass transition 

temperature, T is the temperature and η0, D and T0 constants.  D is a variable termed the 

strength parameter; a large D value (i.e. greater than 30) represents a strong liquid whilst a 
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low value (i.e. less than 10) represents fragile behaviour.  Changes in molecular dynamics 

can be described using the structural relaxation time. 

 

Structural relaxation (also referred to as aging or annealing) is a process where an 

amorphous solid is held below its Tg, the material relaxes towards the metastable 

supercooled liquid state, therefore decreasing in energy, entropy and free volume (Ediger 

et al., 1996).  This process occurs because the amorphous solid is in a non-equilibrium 

state with significant molecular mobility.  Structural relaxation is an indicator of molecular 

mobility and if it occurs exponentially at a characteristic time (τ) can be defined and used 

to measure the molecular mobility within a material.  Both η and τ have comparable 

relationships with temperature and so the VTF equation can also be presented as in 

Equation 1.6 (using a pre-exponential constant τ0) 

                                                                                           Eq.1.6 

where    is the mean molecular relaxation time (or viscosity),  is the zero mobility 

temperature,    is the relaxation time constant for the unrestricted material, and D is a 

variable termed the strength parameter.  Estimations of TK using free volume calculations 

have shown to match VTF T0 with some accuracy (Hodge, 1996) .This is not entirely 

suprising as T0 represents the temperature at which either η or τ become infinite, a point 

which can be conceptually related to TK (Crowley and Zografi, 2001).  When T is equal to 

T0 (this is usually 50K below Tg), the viscosity goes to infinity (Angell, 1995).  

 

The Adam-Gibbs (1965) theory identifies that the non-Arrhenius behaviour within the 

supercooled region could be due to the presence of co-operative molecular motions.  The 
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size of these co-operative regions can be defined using the configurational entropy (Sc) by 

the use of the Adam-Gibbs equation (Eq.1.7).  

                                                                                                                         Eq.1.7 

where C is a constant.  Sc can be defined as in Equation 1.8.  

                                                                                                                                     Eq.1.8 

where           represents the configurational heat capacity, i.e. the difference in heat 

capacity (Cp) between liquid and crystalline states, T2 the temperature at which 

configurational entropy reaches zero so is taken to represent the Kauzmann temperature                  

                          (Kauzmann, 1948).   

 

The fragility parameter (also termed the steepness parameter (Plazek 1991)) m is related to 

the VTF parameters by Eq.1.9. 

                                           Eq.1.9 

m can also be determined from the slope of a plot at Tg of log τ versus Tg/T and can also be 

related to the Arrhenius activation energy, ∆H
*
 (Eq.1.10)  

 

Eq.1.10 

By replacing ∆H
*
with ∆ETg at a single temperature, an alternative fragility parameter is 

defined (Eq.1.11). 

Eq.1.11 
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where ∆ETg is the activation enthalpy for structural relaxation at temperatures around the 

glass transition and R is the gas constant (8.314 JK
-1

mol
-1

).  Strong liquids have m values 

less than 40 whilst fragile liquids have m values greater than 75.  ∆ETg can be calculated 

using the glass width or the scanning rate dependency of Tg .  Solving Eq.1.10 requires a 

minimum value for m (Eq.1.12) 

Eq.1.12 

τ at Tg is approximately 100s (measured using DSC at 10K/min) (Moynihan 1974) whilst 

τ0 represents a timescale of vibrational motions of approximately 10
-14

s (Crowley and 

Zografi, 2001).  Using these approximations mmin=16.  Combining Eq.1.10 and Eq.1.12 an 

alternative equation for D is provided (Eq.1.13). 

Eq.1.13 

 

The Williams-Landel-Ferry (1955) equation (Eq.1.14) was developed to illustrate the 

temperature dependence of the viscosity for fragile materials.  It is an alternative to the 

VTF equation to describe the non-Arrhenius behavior of a fragile liquid 

Eq.1.14 

where ηg is the mean viscosity at Tg and C1 is related to the inverse of the free volume in 

the system at Tg.  C2 is proportional to the ratio of the free volume at Tg over the increase 

in free volume caused by thermal expansion above Tg.  C1 and C2 are both constants are 

related to DT0/(T-T0) and Tg - To respectively and will be different depending on the 

system that is being studied. 
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1.9.3 THE FICTIVE TEMPERATURE 

The fictive temperature (Tf) was first introduced by Tool and Eichlin (1931) and is defined 

as the temperature at the intersection between the equilibrium liquid curve and the linear 

extrapolation of the glass line.  Tf provides the “true” glass transition temperature 

irrespective of heating rate and can be measured on heating.  Tg can be replaced by using 

Tf as they have similar values (Borde et al., 2002). 

 

1.9.4 PLASTICIZATION 

A plasticizer is a molecule that fits in-between molecules of an amorphous solid.  This 

action leads to an increase in molecular mobility, which as a result lowers the Tg of the 

system.  Water acts not only as a plasticizer to amorphous materials, but can also act as a 

reactant or medium.  The complicated effects of water may be responsible for an apparent 

lack of relationship between chemical stability and molecular mobility (Yoshioka and Aso, 

2007).  The presence of water in an amorphous formulation can affect the crystallisation 

tendency of the formulation.  In this event water can act as both a plasticizer (reducing the 

Tg) as well as a building unit for hydrated crystals impacting the stability of the 

formulation.  An anti-plasticizer is a molecule that possesses a high Tg (higher than the Tg 

of material used).  Adding an anti-plasticizer to a formulation not only increases Tg but 

reduces structural mobility, therefore increasing the stability of the formulation (Shamblin 

and Zografi, 1998).  The presence of low levels of low molecular weighted contaminants 

or additives (which include water vapour) are predicted and observed to have a plasticizing 

effect (Hancock and Zografi, 1994) on amorphous pharmaceutical formulations.  Whilst, 

the addition of low levels of high molecular weighted additives results in anti-plasticizing 

effects on pharmaceutical formulations (Shamblin and Zografi, 1998). 
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The Fox equation (Fox and Flory, 1950) and the Gordon-Taylor Equation (Gordon and 

Taylor, 1952) are models commonly used to predict the plasticising effect of water on the 

Tg.  The Fox equation is described in Equation 1.15.  

Eq.1.15 

 

where Tg1 is the Tg of the first component of the sample and W1 is the weight fraction of 

this sample (Fox and Flory, 1950).  Tg2 is the second component of the sample and W2 is 

its weight fraction.  The accuracy of the Fox equation in predicting Tg for low molecular 

weight glass formers (e.g. sugars) is debatable due to densities difference in amorphous 

samples which are not accounted for in the Fox equation (Hancock and Zografi, 1994).  

The plasticizing effect of water on various amorphous pharmaceutical solids can be 

accurately described using the Gordon-Taylor equation (Equation 1.16) (Hancock and 

Zografi, 1994; Gordon and Taylor, 1952).   

Eq.1.16 

Eq.1.17 

Where  is true density kg/m
3
and K (Equation 1.17) is a sample specific parameter which 

can be considered to be the ratio of the free volumes of the two components.  Equation 

1.16 is the simplified Gordon-Taylor/Kelley-Bueche equation allowing for the calculation 

of K from the densities of two components.  Water in its amorphous state has a confirmed 

Tg of 136K (-137°C) (Angell, 2002) it is expected when absorbed by an amorphous sample 

with a different Tg value, it would produce mixtures with intermediate Tg values (Gordon 

and Taylor, 1952).  For two amorphous materials with the same Tg, the material with the 
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higher density will be plasticized the most by any given amount of water.  Whereas for two 

materials with the same density, the one with the higher dry Tg should experience the 

greatest plasticization (Hancock and Zografi, 1994).   

 

1.9.5 CRYSTALLIZATION/NUCLEATION 

Metastability by definition requires that there be intermediate states of higher free energy 

than the metastable state along all possible routes between the metastable and stable states 

of a thermodynamic system (Kauzmann, 1948).  Intermediate states give rise to free energy 

barriers which prevent the transformation of the metastable state to the stable state.  When 

a glass undergoes crystallisation it must go through intermediate states with higher free 

energies than the crystal.  Spontaneous crystallisation can occur and be interpreted as a 

result of random accumulation (by thermal fluctuations) of sufficient free energy for the 

glass to pass over these barriers.  Crystallization from an amorphous material involves two 

steps, crystal nuclei formation followed by crystal/nuclei growth.  The rate of spontaneous 

crystallization is determined by the temperature and the starting material itself.  Nucleation 

must occur before crystallization can occur, therefore preventing, inhibiting or retarding 

nucleation could result in a more stable amorphous system.  Figure 1.13 is a schematic 

illustrating the parameters controlling crystallization from the amorphous state.  A 

maximal crystallization rate occurs at a temperature between Tg and Tm which is caused by 

a lowering of the temperature and an increased viscosity (that accompanies the temperature 

reduction).  The crystallization temperature of an amorphous sample in particular 

amorphous sugars, is reduced by the presence of absorbed water and can be raised by the 

incorporation of high Tg additives (Hancock and Shamblin, 1998).   
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Figure 1.13 Schematic of the parameters controlling crystallization from the amorphous state 

(taken from Hancock and Zografi (1996) who adapted from Jolley (1970)) 

 

1.9.6 POLYAMOPHORPHISM 

“Polyamorphism” is an analogue of crystalline polymorphism meaning that a pure 

amorphous material can exist in more than one amorphous state.  An example of 

polyamorphism is the behavior of water.  Water exists as glassy water referred to as 

amorphous ice which exists in two different forms, low-density amorphous ice (LDA) 

(Hallbrucker et al., 1989) and high density amorphous ice (HDA) (Mishima et al., 1985).  

In general terms, for any glassy materials abrupt changes in density and glass structure 

with changing pressure resembles behaviour associated with first-order phase transitions 

and are termed as being "polyamorphic" (Poole et al., 1997).  Polyamorphism can also 

occur in amorphous solids produced by different annealing times or preparative routes.   

 

1.9.7 PHARMACEUTICAL RELEVANCE OF THE AMORPHOUS STATE 

Most pharmaceutical solids have an amorphous state either induced as a result of 

processing or due to their large molecular size (in the case of peptides and proteins).  In the 
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pharmaceutical industry, the amorphous state possesses useful and desirable properties 

such as higher solubility and dissolution rate and occasionally possessing better 

compression characteristics compared to crystalline products (for example with lactose 

(Lerk, 1993)).  However, as the amorphous state is a high-energy state it is not as stable as 

its corresponding crystalline form.  It is therefore important that storage of amorphous 

materials are ideal to suppress its tendency to undergo unwanted physical changes like 

crystallisation, aggregation of protein or chemical degradation over the product shelf life 

(Shamblin et al., 1999).  An example of an Active Pharmaceutical Ingredient (API) 

formulated in the amorphous form is the synthetic lipid lowering drug (also known as a 

“statin”) rosuvastatin (amorphous salt, rosuvastatin calcium), manufactured by 

AstraZeneca and is marketed under the brand name Crestor
®
 in tablet form.   

 

In the preparation of nucleic acid, protein and peptide formulations, the drying stage is 

very important.  Delicate molecules under drying conditions can be detrimental.  It has 

been observed that addition of certain excipients like sugars their amorphous form can 

have stabilising effects on the formulations though a clear mechanism for the stabilising 

effects have not been established.  They are suspected to involve vitrification and direct 

interactions between the sugars and delicate molecule via hydrogen bonding.  This is 

further discussed in Section 1.5. 

 

Partially or wholly amorphous solids may be generated via a number of methods, so long 

as the method prevents crystals from forming within the product.  Common methods are 

vapour condensation, supercooling of the melt (quench cooling), mechanical activation of 

the crystalline mass (milling), precipitation from solution and dehydration from a crystal 

hydrate.  These methods are briefly discussed in the following sections.   
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1.9.7.1  Vapour condensation 

Vapour deposition is a useful method for preparing an amorphous solid from the vapour of 

a corresponding liquid with poor glass-forming ability.  Many liquids with poor glass-

forming ability require an ultra-fast cooling technique in order to by-pass undesirable 

crystallisation.  This process can rapidly extract the thermal energy of molecules during 

production of the amorphous solid in a molecule by molecule fashion and avoid the 

passage in which crystallisation might take place (Takeda et al 1994). 

 

1.9.7.2  Quench cooling 

Quench cooling is a technique used to generate amorphous matter by rapid cooling of the 

melt and by-passing crystallization.  Once all of sample has melted the sample is then 

rapidly cooled using liquid nitrogen to form a glassy material.  Below the melting 

temperature the generated liquid becomes metastable due to the existence of a 

thermodynamic barrier which controls nucleation of supercritical clusters of the stable 

crystalline phase (Willart and Descamps, 2008).  The cooling process is too fast for 

crystallisation to occur because of the rapid rate of cooling. 

 

1.9.7.3  Milling 

Phase transformation of crystalline materials can occur during sample processing.  Milling 

is generally the last processing step in the production of bulk drug substance to reduce 

particle size.  Due to high levels of mechanical energy used this can cause a reduction in 

crystallinity due to the creation of lattice defects occurring at the crystal surface.  Lattice 
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defects would contribute to lattice disorder therefore inducing phase transformation of the 

crystalline material.  Thermodynamically, as a result of high levels of mechanical energy 

this can also generate heat causing a local heating effect which is followed by rapid 

quenching.   

 

1.9.7.4  Precipitation from solution 

Freeze drying also known as lyophilisation is commonly used to generate amorphous 

samples.  A typical freeze-drying process involves three stages, freezing, primary drying 

and secondary drying.  The first stage (freezing stage) is a separation of the solvent (water) 

from the solute results in the formation of ice.  The solute phase becomes concentrated and 

is termed the “freeze concentrate”.  The second stage (primary drying) starts when the 

chamber pressure decreases (to below the vapour pressure of ice) and the shelf temperature 

is raised facilitating sublimation of ice.  During this stage, ice is transferred from the 

product to the condenser by sublimation and crystallisation onto cold coils (set at -50°C).  

Primary drying is the longest stage of the freeze drying process.  The final stage is the 

secondary drying stage.  During this stage water is desorbed from the freeze concentrate at 

low pressure and elevated temperature.  Freeze drying in the presence of suitable 

stabilizing agents and cryopreservatives is a common method for generating dry protein 

formulations (Johnson, 1997) as well as non-viral gene delivery vectors (Talsma et al., 

1997) 

 

Spray drying is a rapid solidification process used to yield amorphous samples and can be 

used to generate respirable nucleic acid powders (Kuo, 2003).  The spray drying process 

involves four stages i) atomization of the feed solution into a spray ii) spray air contact 
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(mixing) iii) drying of spray dried droplets at elevated temperatures iv) separation of dried 

product from the air.  Unfortunately with this technique there is a risk of sample 

degradation (especially biological molecules) during the atomization step which requires 

high shear rates.  This technique is discussed in great detail in Chapter 2, Section 2.2.1.  

 

Spray freeze drying involves the atomization of an aqueous drug solution via a two-fluid or 

an ultrasonic nozzle into a spray chamber filled with a cryogenic liquid (liquid nitrogen) or 

halocarbon refrigerant such as chlorofluorocarbon or fluorocarbon (Rogers et al., 2001).  

Spray freeze drying can be performed below (spray-freezing into liquid) or above the 

surface of the cryogenic liquid, depending on the position of nozzle (Yu et al., 2004).  The 

level of cryogenic liquid will inevitably drop due to evaporation therefore; continuous 

addition of fresh cryogenic liquid is required.  This is particularly important when a 

lengthy atomization process or a large spray volume is used.  On contact with the 

cryogenic medium, the liquid droplets solidify rapidly (in milliseconds time scale) because 

of the high heat-transfer rate (Chow et al., 2007).  Stirring of cryogenic liquid may be 

required to prevent possible aggregation of newly formed frozen particles.  Particles 

produced from this process are porous and spherical suitable for inhalation. The main issue 

with this technique when formulating proteins is the risk of adsorption of the protein at the 

air-liquid interface during atomization which accounts for loss of activity during spray 

freeze drying (as seen in spray drying) (Shoyele and Cawthome, 2006). 

 

1.9.7.5  Dehydration of crystalline hydrates 

Phase transformations can occur when a crystalline hydrate or solvate is dehydrated 

resulting in the formation of an amorphous form.  This is a feasible and gentle method of 
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generating an amorphous form of an organic solid.  Within a crystal hydrate, water 

molecules occupy definite positions in the crystal lattice forming hydrogen bond(s) and/or 

co-ordinate covalent bond(s) with the anhydrate molecules (Khankari and Grant, 1995).  

Removal of these water molecules would result in structural collapse leading to structural 

re-organisation either towards a stable or metastable crystalline anhydrous form or towards 

an amorphous state.  

 

1.10 THE CRYSTALLINE STATE 

Molecules in the crystalline state are packed in a defined order and exhibit long range 

molecular order.  A crystalline solid can be characterised by its melting temperature (Tm) 

and Specific Heat of Fusion (∆Hfus).  At Tm, the crystal lattice is disrupted when the 

molecules within the lattice have gained sufficient energy from heating to overcome the 

attractive forces holding the molecules together.  Generally, a low Tm is observed in 

crystals with weak inter-molecular forces such as van der Waals forces, whilst crystals 

with stronger intermolecular forces such as extensive hydrogen bonding have high Tm 

(Aulton M E and Taylor, 2001).  Crystals are produced by inducing a change from the 

liquid to the solid state.  Crystallisation is a multi-step process, molecules with structures 

resembling the mature crystals referred to as “pre-nucleation aggregates” assemble in 

crystal nuclei.  The crystal nuclei then grow into mature crystals.  There are several factors 

affecting the rate and mechanism of crystal formation, these include but are not limited to 

the solubility, rate of supersaturation, temperature and the reactivity of surfaces towards 

nucleation (Vippagunta et al., 2001).  Crystallisation from the amorphous state has been 

discussed in detail in Section 1.3.4.2. 
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Pharmaceutical solids exist in different physical forms; the two most common forms are 

polymorphs and solvates (also known as pseudomorphs).  Polymorphism can be 

characterised as the ability of a crystal (or a drug) to exist as two or more crystalline phases 

possessing different molecular arrangements and conformations within the crystal lattice.  

Polymorphs and crystal hydrates differ in crystal packing, molecular arrangement, lattice 

energy and entropy.  They also have different physical properties such as density, Tm, 

∆Hfus, and other thermodynamic and kinetic properties.   

 

1.10.1 POLYMORPHISM 

A polymorph is a solid crystalline phase of a given compound resulting from the 

possibility of at least two different molecular arrangements of that compound in the solid 

state (Haleblia.J and McCrone, 1969).  Pharmaceutical polymorphs of the same chemical 

compound differ in their internal structure and have different chemical and physical 

properties (i.e. packing, thermodynamic, spectroscopic, kinetic and mechanical properties).  

Such properties have a direct impact on drug processability and product performance (Raw 

et al., 2004) and affect drug stability, dissolution and bioavailability.  Polymorphs are 

classified as being either enantiotropes or monotropes.  An enantiotropic system allows for 

a reversible transformation between polymorphs at a definite transition temperature below 

its Tm.  In a monotropic system a reversible transition is not observed between the 

polymorphs below Tm (Vippagunta et al., 2001).  Unexpected appearance or disappearance 

of a polymorphic form may result in serious pharmaceutically relevant consequences as in 

the case of ritonavir.  Ritonavir is a protease inhibitor and was first marketed for the 

treatment of Acquired Immunodeficiency Syndrome (AIDS) in 1996.  Only one crystal 
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form of ritonavir was identified during its development with no apparent stability 

problems.  In 1998, several batches of capsules containing ritonavir failed dissolution 

testing.  Further examination identified a new polymorph of ritonavir with reduced 

solubility compared to the parent crystal form.  This was an example of conformational 

polymorphism which can occur when different conformational isomers of a compound 

crystallise as distinct polymorphs.  As a result of this ritonavir had to be reformulated as 

the sudden appearance of this new less soluble form (which was also very difficult to 

crystallise) made the initial formulation un-manufacturable.  This phenomenon is further 

discussed in great detail elsewhere (Bauer et al., 2001).   

 

1.10.2 CRYSTAL HYDRATES 

A pseudomorph is a crystalline solid that contains solvent molecules within its crystal 

structure.  Crystal hydrates are formed when water is the solvent of crystallisation.  Water 

molecules within crystal hydrates occupy definite positions within the crystal lattice 

usually by forming hydrogen bonds or co-ordinate covalent bonds with the anhydrate 

molecule.  The solvent molecules can be located in either stoichiometric or non-

stoichiometric proportions which results in unique differences in the physical and 

pharmaceutical properties.  Hydrates have different physical properties to the anhydrate 

due to the incorporation of water molecules into the crystal lattice of the anhydrate which 

produces a new unit cell.  At the negatively charged region, water molecules interact with 

neighbouring molecules via covalent (dative) bonding or acts as a hydrogen bond acceptor.  

At the positively charged region, the water molecule interacts with its neighbouring 

molecule by a donated hydrogen bond.  Therefore neighbouring molecules within a crystal 
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hydrate include electron acceptor groups (or proton donors) and electron donor groups (or 

proton acceptors) (Khankari and Grant, 1995). 

 

At least two main types of hydrates are said to exist, stoichiometric hydrate and non-

stoichiometric hydrates.  Stoichiometric hydrates have well defined water contents and a 

different crystal structure to the anhydrate or other hydrates.  Whilst non-stoichiometric 

hydrates have a continuously variable composition within a certain range, without any 

significant change in the crystal structure except when required to accommodate additional 

water molecules.  It is also common for a non-stoichiometric hydrate to lose its 

crystallinity when the last water molecule is lost.  Mineral hydrates differ from organic 

hydrates by the nature and intensity of water-substrate interaction.  This is because water in 

mineral hydrates is mainly linked by chemical sorption as oppose to hydrogen bonding in 

organic hydrates (Authelin, 2005). 

 

1.10.2.1   The Gibbs’ Phase rule 

A system is said to be in thermodynamic equilibrium when it is in thermal, mechanical, 

and chemical equilibrium.  For a system in equilibrium, the phase rule relates the number 

of components (substances), variables (temperature, pressure) and phases to the degree of 

freedom or variance F.  Equation 1.21 describes the Gibb’s Phase rule. 

 

F = C + N – ϕ                                                                  Eq.1.18 

Where F is the degrees of freedom, i.e. the number of independent variables used to 

establish the state of the system; C the number of independent components, i.e. the number 

of components minus the number of stoichiometric relationships; ϕ the number of phases 
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and N is the number of non-compositional variables i.e. N=2 (pressure and temperature).  

The Gibbs’ Phase rule can be used to correlate the stoichiometric and non-stoichiometric 

behavior with variance of the hydrate system (Authelin, 2005). 

 

1.10.3 STRUCTURE ASPECTS 

Pharmaceutical hydrates are classified (from a structural viewpoint) into three categories. 

 

i. Class I are the isolated site hydrates, where water molecules are located at well-

defined and isolated crystallographic sites.  

ii. Class II are channel hydrates or planar hydrates where water molecules are 

included in the crystal next to each other, forming either channels or planar 

networks.  

iii. Class III are ion-associated hydrates.  

 

Class I hydrates are generally stoichiometric, whilst Class II are generally non-

stoichiometric however can be sub-classified into two sub-categories.  One category are 

non-stoichiometric hydrates that are able to take up addition moisture when exposed to 

high humidities.  The crystal lattice can expand or contract as the hydration or dehydration 

process effects changes in the dimension of unit cell.  The second sub-category consist of 

channel hydrates where water is localized in a two dimensional order.  Class III hydrates 

can be stoichiometric or non-stoichiometric and involve the bonding of metal ions with 

water. 
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Phase transformation of hydrates occurs due to hydration, dehydration and solvation (or 

dissolution).  These changes occur in response to changes in environmental conditions.  

Crystal hydrates convert to an amorphous phase or anhydrate when dehydrated or can 

convert from a lower to a higher state of hydration producing forms with lower solubility.  

It is important to note, the dehydration kinetics of a hydrate system are dependent to an 

extent on its class as well as particle size and morphology. 

 

1.11 RESEARCH OBJECTIVES 

The overall aim of the research detailed in this thesis was to design and analyze sugar-

based (trehalose, raffinose and sucrose) carrier systems for the protection of nucleic acids.  

The work detailed in this thesis is comprised of three main areas. 

 

The first area focused on investigating the inter-conversion properties of trehalose 

dihydrate with a view to gain further understanding of its bio-protective properties.  Within 

this area, the first objective was address the influence of inter-batch variation on the 

thermal response of trehalose dihydrate by performing a series of thermal, spectroscopic 

and X-ray diffraction techniques on α,α-trehalose dihydrate batches obtained from two 

different manufacturers, Sigma-Aldrich and Acros Organics.  This work described in 

Chapter 3, Section 3.2 highlighted the need for standardised forms of α,α-trehalose 

dihydrate to, in effect “erase” processing history of manufactured α,α-trehalose dihydrate.  

The second objective (based on results from Chapter 3, Section 3.2) was to generate and 

characterise two standardised forms of α,α-trehalose dihydrate by performing a series of 

thermal, spectroscopic and X-ray diffraction techniques.  This work described in Chapter 
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3, Section 3.3, led to the identification of a polymorphic form of α,α-trehalose dihydrate 

which was characterised and is described in Chapter 3, Section 3.3.4.5 

 

Within the second area of this thesis, the first objective described in Chapter 4, was to 

characterise the physicochemical properties and behaviour of amorphous trehalose, 

raffinose and sucrose (generated by spray drying) with reference to their crystalline 

counterparts.  The second objective described in Chapter 5, was to investigate the 

inhibition of non-isothermal crystallisation of amorphous sucrose using sugar additives 

(trehalose and raffinose) and identify quantitative and qualitative relationships connecting 

Tg and the crystallisation onset temperature to the strength and fragility parameters. 

 

The third area of this thesis was to evaluate the degree of degradation of plasmid DNA 

spray dried in the presence of amorphous sugars.  Within this area (detailed in Chapter 6), 

the first objective was to evaluate the percentage degradation of plasmid DNA spray dried 

in the presence of trehalose and raffinose.  The second objective was to observe the effects 

of trehalose and raffinose on A549 cells was explored by performing an MTT assay.  A549 

cells were used as pDNA formulations generated were intended for pulmonary delivery 

therefore, it was important to ensure the materials used did not cause any cell cytotoxicity.  

Transfection studies were then performed using A549 cells and HeLa cells.  The third 

objective within this area was to evaluate the percentage degradation of pDNA spray dried 

in the presence of sucrose, sucrose-raffinose and sucrose-trehalose co-spray dried 

formulations designed in Chapter 5.  

 



 

 

CHAPTER TWO 

MATERIALS AND METHODS 
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2.1 MATERIALS 

α,α-Trehalose dihydrate (batch number 108K7354, ≥99%), crystalline sucrose (batch 

number 058K00541, ≥99.5%),) and raffinose pentahydrate (batch number 039K0016, 

≥98%),) were obtained from Sigma-Aldrich and were used without any further 

purification.  As previously discussed in Chapter 1, an amorphous phase can be generated 

using a variety of methods.  In this study, amorphous sugars (trehalose, raffinose and 

sucrose) were generated by spray drying and they along with their crystalline counterparts 

were analysed using a variety of thermal and analytical techniques.  Section 2.2 details 

theories behind the techniques used, experimental set up as well as methodologies used.  

This section provides a background to each sugar and their common characteristics. 

 

2.1.1 SUGARS 

Simple carbohydrates (i.e. mono-, di-saccharides and oligosaccharides) are commonly 

referred to as sugars.  These sugars are characteristically sweet and are composed of 

carbon, hydrogen and oxygen.  Sugars are usually the main constituent of a biological 

system.  In such systems, they exist as a mixture of other sugars to protect cells or 

membranes.   Sugar alcohols or polyols (e.g. mannitol and sorbitol) are hydrogenated 

carbohydrates (usually mono- or disaccharide sugars).  Sugars and their derivatives 

(including mono-, di-, tri-saccharides, polyols, and esters) are common excipients 

incorporated into pharmaceutical dosage forms.  They possess low toxicity, are available in 

a highly purified state, available at low cost and are reasonably stable under storage and 

processing conditions comparable to pharmaceutical products (Hancock and Shamblin, 

1998).  “Generally Recognised As Safe” (GRAS) substances are those that are not subject 

to pre-market review and approval by The U.S Food and Drug Administration (FDA) as 
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they are generally recognised and evaluated as safe.  Many sugars and other 

pharmaceutical excipients fall under this characterisation.    Lactose, sucrose, trehalose, 

glucose, mannitol and sorbitol are sugars and polyols commonly used as food ingredients 

and pharmaceutical excipients.  Table 2.1 details the basic composition, safety category 

and common uses of these materials.   

 

Table 2.1 Basic composition and safety of common sugars 

SUBSTANCE COMPOSITION SAFETY COMMON USES 

LACTOSE 

Reducing disaccharide consisting of 

galactose and glucose 
monosaccharides linked via a 

glycosidic bond, anhydrous and 

mono-hydrate 

GRAS, FDA 

approved 

Crystal –tabletting 

aid Amorphous – 
tabletting aid, 

pulmonary 

delivery carrier 

GLUCOSE 
Reducing monosaccharide, 

monohydrate 
GRAS Sweetener 

MANNITOL 

Non-reducing acyclic/polyol sugar, 3 

main polymorphic forms (alpha, 

beta, delta) 

GRAS 

Stabiliser, 

sweetener, 

tabletting aid 

SORBITOL 

Non-reducing acyclic/polyol sugar, 

structurally similar to mannitol, 2/3 

hydrate 

GRAS 
Suspending agent, 

sweetener 

SUCROSE 

Non reducing disaccharide 

consisting of glucose and fructose 
monosaccharides linked via a 

glycosidic bond, hygroscopic, 

anhydrous crystal 

GRAS 

Tablet coating aid 

(crystal and 

amorphous ), use 

in food industry 

TREHALOSE 

Non-reducing disaccharide 

consisting of two glucose units, 

linked via a glycosidic bond, 
dihydrate and several anhydrous 

polymorphs 

GRAS 

Cryo-protectant 

Use in food 
industry 
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2.1.1.1   Trehalose 

 

 

Figure 2.1 α,α-Trehalose dihydrate 

 

α,α-Trehalose dihydrate (chemical name α-D-glucopyranosyl, α-D-glucopyranoside) is a 

non-reducing disaccharide, consisting of two α,α units of glucopyranose linked together by 

a α,α-11-glycosidic linkage (Brown et al., 1972).  α,β-trehalose (α-D-glucopyranosyl-β-

D glucopyranoside) is an isomer of α,α-trehalose where two glucose molecules are linked 

through α-β 11-glycosidic bond.   

 

The name trehalose is derived from a desert manna ‘Trehala manna’.  High concentrations 

of trehalose (as high as 30%) was found in the cocoon of the parasitic beetle Trehala 

manna. Trehalose is also found at high concentrations (~20%) in anhydrobiotic organisms 

such as the larvae of Polypedilum vanderplanki which breed in temporal rock pools and 

frequently dry out during the larvae lifetime in Northern Nigeria and Uganda (Furuki et al., 

2005; Gil et al., 1996).  Upon hydration these organisms rapidly resume active metabolism.  

On an industrial scale, trehalose is mainly prepared by extraction from the yeast 

Saccharomyces cerevisiae, also known as Brewer’s yeast.   

 

C12H22O11.2H2O 
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Water and trehalose molecules are held together within the crystal structure by a complex 

hydrogen bond arrangement, where hydroxyl groups of trehalose molecules act as both 

bond donor and acceptors in the hydrogen bond network (Cesaro et al., 2006).  The two 

water molecules in trehalose dihydrate are said to be isolated from each other within the 

crystal lattice, occupying adjacent positions along channels (Ahlqvist and Taylor, 2002).  

The expected water content for trehalose dihydrate is 9.5 % which equates to two moles of 

water (molecular weight of water, 18.02 g/mol, molecular weight of trehalose dihydrate, 

378.33g/mol).   

 

Computer simulations conducted by Sussich et al., (2001) suggested that water molecules 

were liberated from the trehalose crystal by movement from site to site locations along its 

channels at such a rate that the structure of the sugar is not able to relax to a more compact 

form.  Therefore, the architecture of trehalose is maintained in several anhydrous forms as 

inter-molecular forces between the sugar molecules within the lattice can energetically 

support the structure after the removal of water.   

 

Trehalose is often added to protein formulations because of its special properties as a 

stabilizer of biological molecules (biomolecules).  These properties are suspected to be 

because trehalose exists as a stable dihydrate in its crystalline form.  Therefore in its 

amorphous form it is able to act as a “sink”, maintaining a high Tg within the remaining 

amorphous matrix (in the dried state) by removing the plasticizing water (Aldous et al., 

1995).  The amorphous matrix formed on dehydration between trehalose and the 

biomolecule (such as a protein) restricts mobility of the biomolecule, which reduces the 

rate of chemical degradation and prevents aggregation which may occur in the absence of 

trehalose (and other stabilizing sugars) (Crowe et al., 1996). 
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Trehalose is exists in multiple crystalline and amorphous forms.  Trehalose dihydrate (Th) 

is the most common and stable (at room temperature) crystalline form.  The dehydration 

behavior of Th has been extensively studied and is of particular interest due to its relevance 

in desiccation tolerance of anhydrobiotic organisms.  These studies have yielded 

information confirming the existence of hydrous and anhydrous polymorphic forms of 

trehalose.  A stable crystalline anhydrous form (Tβ) and an unstable crystalline anhydrous 

form, Tα were first identified by Reisener et al., (1962).  Tα is an isomorph desolvate of the 

stable dihydrate generated by gentle dehydration of the dihydrate.  Anhydrous 

polymorphic forms of trehalose (Tk) (Nagase et al., 2002) and Tε (Furuki et al., 2005) also 

exists.  Finally, a crystalline form (Tγ), generated by cold crystallization of the partially 

dehydrated dihydrate, has also been identified (Sussich et al., 1998), which is reported to 

be a “transient” crystalline metastable form of trehalose.  These forms are summarized in 

Table 2.2.  Tβ, Tα, Tk, Tε, Tγ anhydrous and hydrous polymorphs will be briefly discussed 

below. 

 

Tβ, Stable anhydrous form of trehalose 

Tβ is generated by rapid heating of Th.  It is less hydroscopic than Th however it is stable at 

room temperatures and has a reported melting point of 210°C. 

 

Tα, Isomorph desolvate of trehalose dihydrate 

Tα is produced as a result of slow dehydration of Th.  It has a reported melting point of 

130ºC.  As mentioned above, Tα is an isomorph desolvate of Th.  The term isomorph 

desolvate accurately defines a desolvate which retains the crystal structure of its parent 

crystal (in this case trehalose dihydrate).  This indicates that the desolvated structure 
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retains the three dimensional (3D) order of the original crystal as defined by space group 

symmetry and lattice parameters (Stephenson et al., 1998).  Isomorph desolvates tend to be 

hygroscopic when re-exposed to elevated humidities.   

 

Tγ, Crystalline metastable form of trehalose 

Tγ was first reported by Sussich et al., (1998).  It was identified during a DSC experiment 

were Th was heated from room temperature at a heating rate 5 to 20°C/min.  An 

exothermic peak was observed after water depletion which was ascribed to the molecular 

re-arrangement resulting in the formation of a new structural order, Tγ.  It was suggested 

that Tγ contained a mixture of Th and Tβ.  It is speculated that this form possible comprises 

of an anhydrous shell around a dihydrate core on a particulate basis (McGarvey et al., 

2003) .  This form appears to “melt” at temperatures about its formation (120-130ºC) 

confirming that it is not a stable form.  Sussich et al., (1998) proposed and later confirmed 

(Sussich et al., 1999) the following explanation for the formation of Tγ.  “A delicate kinetic 

balance exists between water leaving the Th crystal structure and its structural collapse into 

a disordered state.  Unless there is enough time or enough amorphous water still 

encapsulated to allow the trehalose molecules to become structurally organized the water 

depletion may produce either an amorphous state or an unstable open cage water-free 

network.” 

 

TK, generated from Th by vacuum heating and heating in hot air 

TK is a hygroscopic anhydrous form of Th and it was prepared by heating the dihydrate to 

100 °C at 4.5°C/min under vacuum, then further heating at 100°C for a further 30 minute 

under vacuum (Nagase et al., 2002).  It is stable at room temperature and does not appear 
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to transform to other crystalline forms.  Thermal analysis of TK in a sealed pan system saw 

a characteristic endothermic peak at 127ºC.  Further studies by Nagase et al., (2008) 

concluded that TK was identical to Tα though generated by a different route.  Further 

details of this form are discussed elsewhere (Nagase et al., 2002; Nagase et al., 2008). 

 

Tε, anhydrous form generated by dehydration of Th 

Tε is formed upon complete dehydration of Th.  Upon hydration it transforms to Tβ (Furuki 

et al., 2005).  It is a dehydrated state with low crystallinity.  Interestingly with this form, 

humidity conditions have a notable effect on its crystallinity in that crystallinity is higher 

in a high humid environment.   

Table 2.2 Reported crystalline forms of trehalose 

FORM DESCRIPTION 

Th Stable Dihydrate (Brown et al.,1972) 

Tβ Stable Anhydrate (Reisener et al., 1962) 

Tα Isomorph desolvate of Th  (Reisener et al., 1962) 

Tγ Crystalline metastable form (Sussich et al., 1998) 

TΚ 
Generated from Th by vacuum heating and hot air (Nagase et 

al., 2002) 

Tε Intermediate anhydrate (Furuki et al., 2005) 

 

Thermal transitions of trehalose dihydrate appear to be dependent on pan type (closed pan 

(Shafizad.F and Susott, 1973), pin-holed (McGarvey et al., 2003) and open-pan (Dupray et 

al., 2009)) and particle size (Taylor and York, 1998; Horvat, 2003).  Depending on 

experimental conditions the observed thermal response of trehalose dihydrate can give rise 

to the observation of an amorphous phase (characterised by the identification of a Tg), one, 

two or three endotherms and/or a crystallisation exotherm.  Figure 2.2 provides literature 
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examples taken from Shafizad and Susott (1973) and McGarvey et al., (2003) of 

differential scanning calorimetry (DSC) traces of α,α-trehalose dihydrate under different 

conditions.  In experiments where three endotherms have been observed, for example in a 

study by McGarvey et al., (2003) (Figure 2.2ii), the first two low temperature endotherms 

have been attributed to the initial partial dehydration of the dihydrate to the Tγ form (said 

to be a mixture of the dihydrate and stable anhydrate Tβ (Sussich et al., 1998)), then 

subsequent further dehydration of Tγ resulting in the formation of the stable anhydrate Tβ.  

This then melts at ~210ºC.  The single endotherm seen between 40°C and 160°C 

((Macdonald and Johari, 2000) and Figure 2.2ia and b) is attributed to several processes 

involving the decomposition of the dihydrate crystal resulting in molecular rearrangement 

leading to the formation of the stable anhydrate followed by the re-organization of the 

molecules to an anhydrous form of trehalose. 

a)  
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b)  

Figure 2.2 i) DSC trace of α-α-trehalose dihydrate under different conditions: a) hermetically 

sealed; b) covered pan; c), open pan; d) open pan and vacuum (1 mmHg) (Taken from  Shafizad 

and Susott (1973)) ii)DSC and TGA response for α,α-trehalose dihydrate in pin-holed pans 

(10ºC/min) (taken from McGarvey et al., (2003)) 

 

Amorphous trehalose exists with a known reported high glass transition temperature (Tg) 

of 120ºC.  De Giacomo (2008) has proposed the existence of two amorphous phases 

referred to as Tam1 and Tam2 summarized in Table 2.3.  Tam2 is a non-crystallisable 

amorphous phase said to be the undercooled liquid obtained from the melt of Tβ.  By these 

methods the undercooled liquid is unable to crystallise.  Whilst a crystallisable amorphous 

phase, Tam1 is generated from the melt of the isomorph desolvate of the dihydrate Tα.  The 

Tg’s of Tam1 and Tam2 were evaluated by subjecting samples to different cooling rates (from 

0.02°C/min to 20°C/min) and a constant heating rate of 20°C/min.  The extrapolated Tg 

(using both the Tf and Tg onset temperature) observed in the total heat flow was 117.3°C 

for Tam1 and 117.9°C for Tam2 (De Giacomo, 2008).  Characterizations of these amorphous 

forms were performed by studying the process of physical aging with the result that 

different molecular mobility and different activation energies are deduced for the two 
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amorphous forms.  Tα is a monotropic form of Tβ, upon melting of Tα the liquid phase 

generated is an undercooled liquid metastable with respect to Tβ (Sussich and Cesaro, 

2008).  In these conditions the undercooled liquid produced from the melt of Tα 

crystallizes to Tβ. 

Table 2.3 Reported amorphous forms of trehalose 

FORM DESCRIPTION 

Tam1 Crystallisable amorphous phase generated from the melt of Tα 

Tam2 Non-crystalline amorphous phase generated from the melt of Tβ 

 

Trehalose’s ability to interchange between its various forms, as well as its thermal 

behaviour, is of interest because of its protective and stabilizing properties.  In the 

literature there is considerable uncertainty as to how the physical properties of these forms 

relate to the bio-protective properties of trehalose.  Figure 2.3 shows a summary of the 

proposed theories for the interchange between the crystalline anhydrous, hydrous and 

amorphous forms based on literature reports discussed in this section. 
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Figure 2.3 A schematic of trehalose crystalline anhydrous, hydrous and amorphous forms, 

showing the inter-conversion between each form 

 

2.1.1.2   Raffinose 

 

 

Figure 2.4 Raffinose Pentahydrate 

 

Raffinose pentahydrate (also known as melitose) is a non reducing trisaccharide (chemical 

name β-D-fructofuranosyl- o-α-D galactopyranosyl-(16)-α-gluco -pyranosidel) (Berman, 

C18H32O16.5H20 

Tγ Tε Tα 

 

Tam1 

Tβ 

Tam2 

TREHALOSE DIHYDRATE, Th 
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1970). Raffinose is often found in plants and food of plant origin like beans and melons.  

The expected weight loss for raffinose pentahydrate is 15.27%, which is equal to five 

moles of water (molecular weight of water: 18.015g/mol, molecular weight of raffinose 

pentahydrate: 594.5g/mol).  In addition to existing as a stable pentahydrate, upon its 

dehydration it forms less stable intermediate crystalline states (both hydrate and 

anhydrate).  Three of raffinose's water molecules are both proton donors and acceptors, 

whilst the remaining two act as donors forming a hydrogen bond complex (Hogan and 

Buckton, 2001).  The hydration and dehydration characteristics of crystalline forms of 

raffinose correlate with what would be expected based on the location of water molecules 

within the pentahydrate crystalline lattice (Figure 2.5).  It is thought that the three water 

molecules in the structure (water molecules 1,2 and 4) of the crystal lattice play a more 

integral role compared to the latter two water molecules (water molecules 3 and 5)  

(Salekigerhardt et al., 1995; Bates et al., 2007) (Figure 2.5). 

 

 

Figure 2.5 Crystal structure of raffinose pentahydrate showing location of water molecules (taken 

from Bates et al.,(2007)) 
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The existence of a trihydrate form has been identified said to be generated by storing 

raffinose pentahydrate at 30°C in a vacuum oven for 24hours resulting in the loss of two 

water molecules whilst the crystal structure remains unchanged.  Increasing the 

temperature to 60°C resulted in the removal of the remaining three water molecules 

causing the crystal to collapse into an amorphous form (Salekigerhardt et al., 1995).   

A proposed process of dehydration of raffinose pentahydrate is illustrated in Figure 2.6.  

Where initially one molecule of water is lost at 62°C, further heating results in the loss of 

two water molecules at 81°C and 125°C respectively resulting in the formation of an 

anhydrate form (Cheng and Lin, 2006).    

 

 

 

 

 

Figure 2.6 Schematic illustrating a proposed process of dehydration of raffinose pentahydrate and 

the generation of an anhydrate form (taken from Cheng and Lin (2006)) 

 

Salekigerhardt et al., (1995) were not able to generate a completely non-solvated 

anhydrous form of raffinose, but an anhydrous methanolate was generated by re-

crystallizing raffinose from a saturated solution of raffinose pentahydrate in anhydrous 

methanol heated to 50°C.  Upon complete dissolution, the sample was cooled to room 

temperature (24hours) and allowed to re-crystallize at room temperature for a further 

48hours.  Sample had a melting point of 152°C with decomposition.  Other theories 

suggest that upon complete dehydration raffinose pentahydrate converts to its amorphous 

Raffinose, 5H2O 

1H2O 

Raffinose, 4H2O 
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Raffinose, 2H2O 

2H2O 
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form (Chamarthy et al., 2010; Kajiwara and Franks, 1997; Salekigerhardt et al., 1995) 

(Figure 2.7).   

 

 

 

Figure 2.7 Schematic illustrating a proposed process of dehydration resulting in the generation of 

amorphous raffinose (taken from Chamarthy et al., (2010)) 

 

Amorphous raffinose has comparable Tg values to trehalose (at low water content ) 

(expected Tg: 100 to 116°C (Chamarthy et al., 2010; Miller and Lechuga-Ballesteros, 

2006; Kajiwara et al., 1999) and appears to be a better water scavenger because of its 

ability to form pentahydrate crystals when crystallised (Sun et al., 1998).  However even 

with these desirable properties raffinose has a lesser protective ability compared to 

trehalose (Sun et al., 1998).  

 

2.1.1.3   Sucrose 

 

Figure 2.8 Crystalline Sucrose 

Sucrose, a commonly used food ingredient, is a non reducing disaccharide.  It is often 

present in combination with other saccharides in seeds (Wolkers et al., 1998) and in 

Raffinose, 5H2O 
H2O 

vapour 
COMPLETE DEHYDRATION Amorphous Raffinose + 

C12H22O11 
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desiccation tolerate (functional) pollens.  Sucrose can be obtained as a pure anhydrous 

crystalline solid (molecular weight of sucrose: 342.30g/mol) and can easily be formulated 

into a completely amorphous state using a variety of methods including lyophilisation 

(freeze-drying) and spray drying.  Amorphous sucrose easily crystallises at temperatures 

above its glass transition or upon exposure to increasing relative humidity (%RH).  Both 

trehalose (Roe and Labuza, 2005) and raffinose (Leinen and Labuza, 2006; Salekigerhardt 

and Zografi, 1994) are reported to inhibit crystallisation of amorphous sucrose.  Though 

the mechanism of this occurrence by trehalose is not confirmed, it is thought that raffinose 

is able to inhibit crystallisation by the attachment of the fructose (β-D-fructofuranosyl) 

portion of the raffinose molecule to the corresponding fructose (β-D-fructofuranoside) 

portion of the sucrose crystal (Cue et al., 2001). 

 

2.1.2 PLASMID DNA 

Plasmid DNA (pDNA) was used in this study to evaluate the ability of sucrose; trehalose 

and raffinose to preserve the structural integrity of spray dried pDNA.  The plasmid used 

in this study was pEGFP-Arrestin-2, pDNA (Figure 2.9) encoding for enhanced green 

fluorescent protein gene and the intracellular protein β-Arrestin. 
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Figure 2.9 Plasmid DNA Restriction Map and Multiple Cloning Site (MCS) of pEGFP Arrestin-2 

(plasmid DNA encoding enhanced green fluorescent protein gene and the intracellular protein β-

Arrestin) 

 

pEGFP-Arrestin-2 was amplified in Escherichia coli (strain DH5α) grown in Luria-Bertani 

(LB) medium.  pDNA was extracted and purified following steps outlined in the protocol 

for ‘Plasmid DNA Purification using Qiagen Plasmid Giga Kit’ which is based on a 

modified alkaline lysis procedure which yields transfection grade pDNA (QIAGEN®, 

2005).   

 

2.1.2.1   Plasmid DNA Purification using Qiagen Plasmid Giga Kit 

This procedure involves the binding of plasmid DNA to an anion-exchange resin under 

appropriate low salt and pH conditions.  A summary of the components of buffer solution 

used in the extraction of pDNA is detailed in Table 2.4.  pEGFP-Arrestin-2 was amplified 



CHAPTER 2                                                                                                  Materials and Methods 

109 

in Escherichia coli (E.coli) (strain DH5α) grown in Luria-Bertani (LB) medium. LB 

medium consists of tryptone, yeast extract, and sodium chloride.  Tryptone provides a 

source for amino acids to promote bacterial growth, whilst vitamins and trace elements are 

provided by the yeast extract.  Addition of sodium ions aids osmotic balance.  LB medium 

was prepared by suspending 20g of LB broth powder (obtained from Sigma-Aldrich,) in 

one litre of distilled water.  This solution was then autoclaved at 131.5°C using an Astell 

swiftlock autofill sterilizer.  Once solution was cooled 100µg of kanamycin 

(aminoglycoside antibiotic) was added.  A starter culture of 100mL LB medium and E.coli 

DH5α strain was incubated for approximately eight hours at 37°C with vigorous shaking.   

The culture was then diluted in 2.5L of LB medium and then incubated for a further 16 

hours at 37°C with vigorous shaking.  It was important to have sufficient shaking of 

culture as this promotes good bacterial growth.  Bacterial cells were harvested by 

centrifugation of the culture solution for 15 min at 4°C.  A bacterial pellet was produced 

and was re-suspended in 125mL of Buffer P1 containing the ribonuclease RNase A which 

degrades RNA.  For efficient lysis it was important to use a vessel that was large enough to 

allow for complete mixing of the lysis buffer, Buffer P2 containing sodium hydroxide and 

sodium dodecyl sulfate (SDS) which a strong anionic detergent.  125mL of Buffer P2 was 

added to facilitate cell lysis.  The lysate suspension was mixed thoroughly by vigorously 

inverting the flask 6 times and allowed to incubate at room temperature for 5 minutes.   
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Table 2.4 Composition of buffer solutions used in DNA purification 

BUFFER SOLUTION COMPOSITION 

Buffer P 

(resuspension buffer) 

Contains DNase-free RNase A (a ribonuclease used to 

degrade RNA), contains LyseBlue a color indicator which 

provides visual identification of optimum buffer mixing 

Buffer P2 

(lysis buffer) 

Contains sodium hydroxide and SDS which is a strong 

anionic detergent 

Buffer P3 

(neutralization buffer) 
Contains acetic acid 

Buffer QBT 

(equilibration buffer) 

Contain isopropanol, 0.15% Triton® X-100 (v/v) (a non-

ionic surfactant), 750 mM NaCl 

Buffer QC 

(wash buffer) 
Contain isopropanol, 1.0 M NaCl 

Buffer QF 

(elution buffer) 
Contain isopropanol and 1.25 M NaCl 

 

As the colour indicator, LyseBlue had previously been added to Buffer P1 (re-suspension 

buffer) on addition of Buffer P2 (lysis buffer) the cell suspension turned blue (Figure 

2.10).  Mixing resulted in a homogenously coloured suspension.  If the suspension 

contained localised colourless regions or brown cell clumps this would indicate insufficient 

mixing and solution will need to be mixed further until a homogenously colored 

suspension was achieved.  125mL of Buffer P3, a neutralization buffer (containing acetic 

acid) was added to the lysate suspension.  This resulted in precipitation of SDS (the 

anionic detergent), proteins, and other cellular debris whilst plasmid DNA (pDNA) in its 

super-coiled structure was in solution.  The suspension was immediately mixed by 

inverting 6 times and allowed to incubate on ice for 30 minutes.  The precipitated matter 

(proteins and cellular debris) was seen as a fluffy white material.   
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a)  b)  

Figure 2.10 a) Insufficient mixing after addition of Buffer P2 (lysis buffer).b) Correct mixing after 

addition of Buffer P2 (lysis buffer)(Taken from Qiagen®, 2005) 

 

The suspension was mixed until all traces of blue had disappeared, producing a colourless 

suspension (Figure 2.11).  A homogenous colourless suspension indicated that the anionic 

detergent SDS had been effectively precipitated.  The solution was centrifuged twice for 

30 minutes at 4°C to avoid applying suspended or particulate material to the Qiagen-tip as 

suspended material could clog the tip and reduce or eliminate the gravity flow.  Qiagen-tip 

10000 was equilibrated by applying 75mL of Buffer QBT (equilibration buffer).  Once the 

tip was drained completely, the solution was loaded onto the Qiagen-tip and allowed to 

enter the resin by gravity flow.  The tip was washed by adding 600mL of Buffer QC (wash 

buffer).  The first half of the volume of Buffer QC is sufficient to remove any 

contaminants whilst the second half of the volume is necessary to ensure highest yields 

with best achievable purity.  DNA was eluted from Qiagen-tip by adding 100mL of Buffer 

QF (elution buffer) which had high sodium chloride content.  Under high salt conditions 

and by a shift of pH from neutral to 9.0 these alkaline conditions cause the positive charge 

of the anion-exchange resin to be neutralized allowing for the release of pDNA.   
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a) b)  

Figure 2.11 Addition of neutralization buffer (Buffer P3) causes LyseBlue to turn colourless. A 

homogeneous solution with no traces of blue indicates that the SDS has been effectively 

precipitated a) Insufficient mixing after addition of neutralization buffer. b) Correct mixing after 

addition of neutralization buffer. (Taken from Qiagen®, 2005) 

 

Addition of room temperature isopropanol (70mL) to the eluted pDNA precipitated pDNA.  

Solution was mixed and centrifuged for 1hour and 30 minutes at 4ºC.  The solution was 

carefully decanted leaving a pDNA pellet.  10mL of room-temperature 70% ethanol was 

added.  After removal of ethanol, the pDNA pellet was air-dried for 20 min, and re-

dissolved in TE buffer, pH 8.0.  It was necessary to precipitate the DNA and remove salts 

and all traces of alcohol as these can disturb or enzyamtically inhibit activity require for 

restriction or sequencing reactions.  A summary of the process described is provided in 

Figure 2.12. 
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Figure 2.12 Schematic summarizing plasmid DNA extraction and purification using a Qiagen 

Plasmid Giga Kit 

 

2.1.2.2   DNA quantification using ultraviolet spectroscopy 

Ultraviolet spectroscopy is an accepted method for evaluating nucleic acid concentration 

and purity.  It was first described by Warburg and Christian (1942) as a means to measure 

protein purity in the presence of nucleic acid contamination.  Nucleic acid concentration is 

calculated using the Beer-Lambert law, which predicts a linear change in absorbance with 

concentration (Equation 2.1). 

Aλ=ελ lc                                                    Eq.2.1 
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where Aλ is the absorbance at a particular wavelength, c the concentration of the nucleic 

acid, l the path length (which is typically 1cm) and ελ which is the extinction coefficient.  

Average extinction coefficients for 1 mg/ml nucleic acid solutions at 260nm and 280nm 

are 20 and 10 respectively.  To determine the purity of pure nucleic acid, a ratio of the 

average extinction coefficient of the nucleic acids at 260nm and 280nm (20 and 10 

respectively) is used.  Therefore pure nucleic acid samples would have a ratio of 2.  As a 

general rule nucleic acid samples with an A260/A280 greater than approximately 1.7 are 

considered “pure” (Granske, 2008).   

 

pDNA was quantified using a Thermo Scientific NanoDrop 3300 Fluorospectrometer.  

1µL of sample was pipetted onto the instrument.  A pulsed xenon flash lamp provides the 

ultraviolet light source and an internal spectrometer analyzes the light after passing 

through the sample to quantify pDNA. The instrument was controlled using NanoDrop 

1000 Spectrophotometer Version 3.7 software. 

 

2.1.3 HYDROXYPROPYLMETHYLCELLULOSE 

 

Figure 2.13 (Hydroxypropyl)methylcellulose 

Hydroxypropylmethylcellulose (HPMC) is an inert hydrophilic polymer, with a wide 

application of use within the pharmaceutical (e.g. tablet coating, granulation, sustained 
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release and liquid formulations) and food industry (e.g. bakery, salads dressings).  HPMC 

is commonly used in capillary gel electrophoresis experiments for the separation of 

proteins and DNA fragments (Garcia-Canas et al., 2002; Kang et al., 2005) and (to date) is 

not known to protect DNA in any way. 

 

In this study, HPMC was co-spray dried with pDNA where it was used as a carrier for 

pDNA as spray drying pDNA alone did not result in visible particles in the spray drying 

collecting chamber.  This is likely to be due to low mass (500µg of extracted pEGFP 

Arrestin 2 pDNA) used.   

 

Methocel E5 and Methocel K4M Premium were obtained from Colorcon®.  However, 

Methocel E5 was chosen for further experiments as it had a lower viscosity of 5mPa·s (in 

water at 20°C at 2%) compared with Methocel K4M Premium viscosity of 2903mPa·s (in 

water at 20°C at 2°C).  It was also chosen because its viscosity and consistency were 

suitable for spray drying experiments.  A 2%w/v solution was prepared using the 

“hot/cold” technique, where a third of the required volume of water was heated above 

90°C.  HPMC powder was added and mixed using a magnetic stirrer.  Once all the 

particles were thoroughly wetted, to complete solubilisation the remainder of the water 

(cold) was added, solution was spray dried using a Büchi mini spray dryer B-290 with a 

Büchi dehumidifier B-296 attached using parameters detailed in Section 2.2.1. 
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2.2 METHODS 

2.2.1 SPRAY DRYING 

Spray drying is a particle processing technique used to dry aqueous or organic solutions, 

suspensions or pastes into a dry particulate form (powders, granules, or agglomerates.  

This is achieved by spraying the feed into a hot drying medium (usually air).  Spray drying 

allows for the production of precisely defined powders, of which the size, geometry and 

morphology can be determined by the processing parameters used.  The first significant 

industrial use of spray drying was demonstrated for detergents in the 1920s (Masters, 

1976).  It was later used in the pharmaceutical industry around the 1940s for the 

preparation of spray-dried infusions for reconstitution and more recently is used to 

formulate antibiotics, dry powder inhaler formulations and tablet excipients.  A typical 

spray drying process consists of four steps i) atomization of the liquid feed, ii) contact of 

spray and drying medium with heat and mass transfer, iii) drying of spray dried droplets at 

elevated temperatures (removal of moisture) and finally iv) separation of the dried product 

from the air (recovery) (Büchi, 2003).  These processes are indicated on the Büchi Mini 

Spray Dryer B-290 in Figure 2.14. 
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Figure 2.14 The Büchi Mini Spray Dryer B-290, a typical laboratory-size model (taken 

from Büchi, 2003) 

 

Atomization involves the break-up of the liquid feed into small droplets forming a spray.  

There are four types of atomizers available, a pressure nozzle, a two fluid nozzle (used in 

this experiment), a rotary disk atomizer and an ultrasonic nozzle (Moller and Fredsted, 

2009).  The choice of atomizer is dependent on the nature, amount of feed and the desired 

characteristics of the spray dried product.  Typical droplet mass median diameters in 

pharmaceutical spray dryers range from less than 10μm for pulmonary applications to 

upwards of 100μm, which translates to a typical dry particle diameter range of 0.5 to 50μm 

(Vehring, 2008).  An atomizer is generally located at the top of the drying chamber; the 

heated drying medium is introduced through a roof-mounted air/gas dispenser around the 

atomizer which creates a co-current flow of gas and droplets/particles (Figure 2.15).  This 

method of drying takes advantage of evaporative cooling and decreasing temperatures 

downwards; ensuring droplets come into contact with hot drying medium when they are at 

their most moist. 

ATOMISATION 

     CONTACT 

     DRYING 

     RECOVERY 
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Figure 2.15 Schematic showing co-current flow (taken from Büchi, 2003) 

 

For each sugar a 100mL 10%w/v solution was prepared using filtered (0.44µm) distilled 

water.  As both trehalose and raffinose are hydrates in their crystalline form, when 

preparing spray drying solutions it was important to ensure that the concentration was 

calculated as 10%w/v of the anhydrous sugar and not 10%w/v of the hydrated sugar.  The 

solution was first stirred using a magnetic stirrer on a plate for 30minutes to ensure full 

dissolution, then was spray dried using a Büchi mini spray dryer B-290 with a Büchi 

dehumidifier B-296 attached. Trehalose, raffinose and sucrose were co-spray dried with 

100µg of extracted pDNA (mixed by pipeting).  Both samples were spray dried using the 

following parameters: inlet temperature of 125ºC, an average pump flow rate of 

3.7mL/min, 100% aspirator setting and an outlet temperature ranging from 60-80ºC (not 

controlled).  An inlet temperature of 125ºC was chosen as previous studies (Naini et al., 

1998) obtained a crusty product at higher inlet temperatures.  Samples were stored at -80°C 

until use.  This temperature was used as it was over 100°C below the lowest glass 
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transition temperature and therefore it was reasonable to assume that no further changes in 

the glass would take place (Hunter, 2009b).  pDNA loaded samples were stored at -20°C. 

 

2.2.2 BIOLOGICAL EXPERIMENTS 

2.2.2.1 Gel Electrophoresis 

Gel electrophoresis is a technique based on charge migration.  It allows for the separation 

and identification of DNA fragments ranging from 0.1kB to 25kB.  The concentration of 

agarose used for a gel depends primarily on the size of the DNA fragments to be analyzed.  

Low agarose concentrations are used to separate large DNA fragments, whilst high agarose 

concentrations allow resolution of smaller DNA fragments.  Ethidium bromide can be 

added to the agarose gel before or after electrophoresis.  Addition of ethidium bromide 

leads to complexes with plasmid DNA which increases fluorescence.  This means that 

illumination of a stained gel under UV light (254–366nm) allows bands of DNA to be 

visualized against a background of unbound dye (Sauer P, 1998).  Figure 2.16 is a 

schematic summarizing the gel electrophoresis procedure. 

 

In this study gel electrophoresis experiments were conducted using 2% agarose gels to 

separate pDNA.  To make 300mL of a 2% agarose gel, 6g of agarose powder was 

dissolved in [1X] TBE buffer and microwaved for 30 seconds to ensure all of the agarose 

powder was fully dissolved, indicated by a clear solution.  Details of method used to 

prepare [1X] TBE buffer are detailed in Appendix 2.1.  Once the solution temperature had 

reduced to around 55°C ethidium bromide was added to give a final concentration of 

0.5µg/mL.   
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Figure 2.16 Schematic summarising the gel electrophoresis procedure (taken from 

http://www.molecularstation.com/agarose-gel-electrophoresis/) 

 

It was important to ensure ethidium bromide was added once solution was cooled to 

prevent inhalation of fumes as it is carcinogenic.  Therefore this process was conducted in 

a fume cupboard.  The solution was then added to a gel tray and a comb was vertically 

placed approximately an inch from the end of the tray ensuring air bubbles were not 

present.  The gel was allowed to solidify at room temperature.  Once solidified, the comb 

was gently removed and the tray was placed in the electrophoresis chamber and covered by 

[1X] TBE buffer.  Purified plasmid DNA (pDNA) was cut using StuI, HindIII, BamH and 

Not1 restriction enzymes (obtained from Promega).  An analytical scale restriction enzyme 

digestion was performed of a 25µL maximum volume using 1µg of pDNA.  In a sterile 

tube, the components listed in Table 2.1 were assembled in the order listed.  The 

components were then mixed by gentle pipetting and were incubated at 37°C for 3 hours.  

After this [1X] loading buffer was added and mixed by gentle pipetting.  The sample was 

http://www.molecularstation.com/agarose-gel-electrophoresis/
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then added to the well (in the previously prepared gel).  Gel electrophoresis experiments 

were run at 100 volts until the dye markers had migrated an appropriate distance to allow 

DNA to be visualised.  Gels were visualised using a G:Box gel imagining system using the 

GeneSnap software version 7.09.  Gels were analysed using GeneTools version 4.01 and 

ImageJ 1.45s 

Table 2.5 Components used in restriction enzyme digestion of plasmid DNA 

COMPONENT VOLUME 

Sterile, deionised water 16.3µL 

MC Buffer (restriction enzyme buffer) 4 µL 

Acetylated BSA (Bovine serum albumin), 10µg/µL 0.2 µL 

DNA 1µg 

Mix by pipeting then add 

StuI 0.5µL 

HindIII 0.5µL 

BamH 0.5µL 

NotI 0.5µL 

Total Volume (dependant on DNA concentration) ~ 22.5 - 25µL 

 

2.2.2.2  Cell Culture of HeLa and A549 Cells 

Tissue culture is a general term used to describe the removal of cells, tissues or organs 

from any animal or plant and their subsequent placement into an artificial environment 

conducive to growth.  HeLa cell is a cervical cancer cell line that originated from Henrietta 

Lacks, a patient who died of cancer on October 4
th
 1951.  A549 cells are human alveolar 

basal epithelial cells and are grow adherently as a monolayer.  
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HeLa cells are adherent cells and stick to the bottom of the flask used.  Cells were 

passaged when they were 70-80% confluent using PBS-EDTA (Phosphate buffered saline- 

Ethylenediaminetetraacetic acid) 37°C solution and were re-suspended in complete 

DMEM (Dulbecco’s Modified Eagle Medium). 

 

A549 cells were passaged when they were 70-80% confluent using trypsin solution (at 

37°C) and were re-suspended in complete RPMI - 1640 (Roswell Park Memorial Institute) 

medium. 

 

2.2.2.3 Transfection of Plasmid DNA 

Transfection studies involve the induction of exogenous molecules and gene encoding 

molecules (e.g. plasmid DNA or short interfering RNA) to the cell.  Electroporation is a 

transfection technique use to physically alter the cell membrane permeability by applying 

short electrical pulses (over a specified period of time) to the membrane therefore allowing 

exogenous molecules to enter the cell (Figure 2.17) (Rabussay et al., 2003).   

 

Figure 2.17 Schematic showing electroporation of a cell (taken from 

http://www.utwente.nl/ewi/bios/research/Cellsonchips/cell%20electroporation.doc/) 

http://www.utwente.nl/ewi/bios/research/Cellsonchips/cell%20electroporation.doc/
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In this study transfection studies were performed using HeLa and A549 cells (at~85% 

confluent) and pDNA either co-spray dried with trehalose, raffinose and HPMC or not 

spray dried (used as a control) using the protocol described in Appendix 2.3 and 2.4.  

Results of this experiment are detailed in Chapter 6. 

 

2.2.2.4   MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay 

MTT is a yellow tetrazolium dye that is reduced by mitochondrial enzymes resulting in a 

colour change.  This event only occurs in the presence of active mitochondrial reductase 

enzymes i.e. in viable mitochondria therefore, the colour intensity can directly be related to 

the number of viable cells.  It is a useful technique to detect cytotoxic compounds.  A549 

cells were used as pDNA formulations generated were intended for pulmonary delivery 

therefore it is important to ensure the materials used did not cause any cell cytotoxicity. 

 

MTT assay was conducted on A549 cells.  Using a haemocytometer (Appendix 2.2) 

5x10
3
cells were counted and loaded into each well of a 96-well plate.  10mL solutions of 

trehalose, raffinose and HPMC (in phosphate buffered saline solution (PBS)) were 

prepared for the MTT assay was as detailed in Table 2.6.  All solutions were filtered 

(0.22µm).  100µL of each solution was added to each well as detailed in Figure 2.18.  For 

ease of referencing trehalose, raffinose and HPMC solutions are referenced according to 

%w/v where T represents trehalose, R raffinose and H HPMC. Control solutions were 

referenced according to media volume in starting solution (10mL) i.e. C6 represents 

control solution containing 6mL media and 4mL PBS.   
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Table 2.6 Concentrations of sugar and media solutions used in MTT assay 

SAMPLE %W/W VOLUME OF SUGAR 

SOLUTION (ML) 

VOLUME OF MEDIA 

(RPMI-1640) (ML) 

TREHALOSE AND 

RAFFINOSE 

10 4 6 

5 2 8 

3 1.2 8.8 

1 0.4 9.6 

HPMC 

2 4 6 

1 2 8 

0.6 1.2 8.8 

0.2 0.4 9.6 

 

  1 2 3 4 5 6 7 8 9 10 11 12 

A                         

B   C C6 C8.8 T10 T3 R10 R3 H2 H0.6     

C   C C6 C8.8 T10 T3 R10 R3 H2 H0.6     

D   C C6 C8.8 T10 T3 R10 R3 H2 H0.6     

E   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

F   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

G   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

H                         

Figure 2.18 Schematic illustration of a 96-well plate used in an MTT assay where C = 

cells with media only, MA = media (RPMI – 1640) alone, C = control solutions, T = 

trehalose solutions, R = raffinose solutions and H = HPMC solutions,   = phosphate 

buffered saline solution 

 

The 96-well plate was incubated at 37°C for 24hours after which 10µL of MTT was added 

and plate was incubated at 37°C for a further 24hours.  96-well plate was analysed using a 

BMG labtech Polystar Optima microplate fluorimeter.  Results of this experiment are 

detailed in Appendix 2.3. 
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2.2.3 SCANNING ELECTRON MICROSCOPY 

Microscopy involves the study of objects that are too small to be examined by the unaided 

eye (Egerton, 2005).  The first commercial electron microscope was manufactured by 

Cambridge Instruments in 1965 (Clarke, 2002).  Scanning electron microscopy uses a 

focused beam of high-energy electrons to generate a variety of signals at the sample’s 

surface.  The signals derived from the electron-sample interactions reveals information 

which includes the sample morphology and texture. An SEM image is produced as a result 

of the detection and amplification of a number of secondary electrons emitted from the 

sample surface where they have been dislodged by a focused electron beam (from the 

instrument) moving across the sample surface 

 

In this study the particle morphology was evaluated using a Scanning Electroscope JEOL 

JSM 5900LV.  In order to improve conductivity, samples were coated with gold under 

vacuum SC7640 Gold Sputter Coater, 30 seconds 2.2kV 25mA on the rotating stage, 

Quorum technologies.  All micrographs were taken at an acceleration voltage of 20kV. 

 

2.2.4 PARTICLE SIZE ANALYSIS 

2.2.4.1   Laser particle sizing 

Laser diffraction is used as a method for particle size analysis of powders, suspensions, 

emulsions, and sprays.  Laser light is diffracted as a result of its particle interaction.  A 

spherical particle (i.e. that produced by spray drying) produces a ring shaped diffraction 

pattern.  The particle diameter is dependent on the distance of the first minimum (i.e. 

between two rings) to the centre of the particle (Sympatec, 2012) with a small particle 
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having a larger diffraction pattern compared to that of a larger particle (Figure 2.19).  As 

not all particles are spherical the particle sizer used in this study was able to analyse results 

independent of the orientation of the particles by integrating diffraction patterns 

irrespective of particle shape to 180°.   

 

If particles form agglomerates, the laser measures the overall size of the agglomerate 

instead of the size of the primary particles.  A complete dispersion of the sample is 

therefore of importance to ensure accurate particle size measurements  

a)  b)  

c)  

Figure 2.19 Diffraction patterns of a) small particle and b) large particle c) example of a 

calculated diffraction pattern for a non-spherical particle (taken from Sympatec (2012)) 

 

Particle size analysis was performed using a Sympactec laser particle sizer with a 

HELOS/Br detector.  The liquid medium used was rapeseed oil. Two minute dispersion at 
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1000rpm was imposed at the start of each experiment and then three measurements were 

taken with each sample monitored for 10 seconds.  A measuring range of 0.1-875µm was 

used.  Data was exported and analysed using Microsoft Excel 2007. 

 

2.2.4.2   Particle size analysis using the dry sieving method (mechanical agitation) 

Analytical test sieves are made from a woven wire mesh attached to the base of an open 

cylindrical container (BritishPharmacopoeia, 2012).  Mechanical sieving is most suitable 

where the majority of the particles are larger than about 75 µm. For smaller particles, their 

light weight provides insufficient force during sieving to overcome surface forces of 

cohesion and adhesion that cause the particles to stick to each other and to the sieve 

(BritishPharmacopoeia, 2012).  Dry sieving was used in this study as means of separating 

particles into size fractions for DSC analysis.   

 

63, 125, 180, 250 and 355µm sieves were tarred, 25g of trehalose dihydrate was added on 

top (coarsest sieve) and the lid replaced.  Sieves were agitated for 5 minutes and reweighed 

to determine the mass of material of each sieve including the collecting pan.  Sieves were 

re-assembled and agitated for a further 5 minutes; this process was repeated until the mass 

on any of the sieves did not change by more than 5% or 0.1g.  The analysis was repeated 

with a fresh samples using a single sieving time equal to that of the combined times as 

used above which was 40 minutes.  These results are presented in Chapter 3. 
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2.2.5 X-RAY POWDER DIFFRACTION 

X-rays were discovered by Wilhelm Röntgen in 1895.  In X-Ray powder diffraction 

(XRPD) experiments, X-rays are generated by a cathode ray tube which is directed 

towards the sample. When certain geometrical conditions are satisfied (using the Bragg’s 

Law equation, Equation 2.2), the interaction between the rays and sample produces a 

diffracted beam (Klug and Alexander, 1954). Bragg’s Law (Eq.2.2) describes the 

relationship between the wavelength of the incident X-rays, angle of incidence and spacing 

between the crystal lattice planes of atoms.   

nλ =2d sinθ                                                  Eq. 2.2 

where X-rays of wavelength (λ) are incident of angle (θ) on a set of planes with spacing (d) 

(Sands, 1993).  The intensity and position of the X-rays produces are recorded by a 

detector.  A plot of the beam intensity against the angle of emergence produces a 

diffractogram with peaks seen corresponding to lattice spacing providing an insight into 

the orientation and molecular arrangement within a sample.  Materials exhibiting long-

range order (i.e. crystalline materials) produce XRPD diffractograms containing clearly 

defined sharp peaks of varying intensities which corresponds to the uniform lattice 

spacing, arrangements and orientation of molecules within a crystal lattice 

 

XRPD measurements were used for the identification of crystalline samples as well as the 

confirmation of amorphous materials.  Powder diffraction measurements were carried out 

on all amorphous samples using a Thermo-Arl- Xtra with a Cu-X-ray tube.  The X-ray 

tube was operated at 45 kV and 40mA.  Samples were slightly pressed on an aluminium 

sample tray using a glass slide and exposed to Cu Kα radiation (λ= 1.540562nm). The 

XRPD patterns were recorded using diffraction angles (2 θ) from 10° to 60° (step size, 
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0.01°; time per step, 0.5 seconds).  Data was exported and analysed using Microsoft Excel 

2007. 

 

2.2.6 HOT STAGE MICROSCOPY 

Hot stage microscopy experiments involve the controlled heating of a sample viewed 

through a microscope.  Sample changes upon heating can be visually observed through the 

microscope which is attached to a computer where footage can be recorded as well as 

images captured.  Hot stage microscopy when used in conjunction with other thermal 

techniques can provide useful insight into thermal events seen.    

 

In this study a LeicaDML52 microscope with a 10X magnification lens was connected to a 

FP5/FP52, Mettler Toledo Instruments heating stage unit and a FP90 Mettler Toledo 

Instruments central processor unit.  Samples were heated from 25°C to 250°C at a heating 

rate of 2°C/min.  Studio86 Design capture software was used to record and capture thermal 

events in real time. 

 

2.2.7 VARIABLE TEMPERATURE FOURIER TRANSFORM INFRARED SPECTROSCOPY 

Infrared spectroscopy probes molecular vibrations, therefore functional groups can be 

associated with characteristic infrared absorption bands which correspond to the 

fundamental vibrations of the function groups.  Vibrational spectroscopy is a form of 

infrared spectroscopy where molecules are excited by the absorption of infrared light.  

Fourier Transform Infrared spectroscopy (FTIR) is an effective tool for studying the 

molecular structures and abrupt changes in hydrogen bonding (i.e. glass transition) that can 

occur in amorphous sugars (Kacuráková and Mathlouthi, 1996).  The mid infrared region 
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(4000cm
-1

–400cm
-1

) possesses two types of vibrations: stretch vibrations which involve 

bond-length changes and the bending vibrations which involve changes in the bond angles 

(in-plane and out of plane) (Berthomieu and Hienerwadel, 2009).  FTIR spectra of 

crystalline materials are characterized by sharp absorption bands throughout the mid 

infrared region from whilst broader absorption bands are visible for amorphous materials.  

The sharper and more intense peaks observed for crystalline materials is as a result of a 

higher degree of homogeneity of intermolecular interactions leading to less dispersion of 

vibrational levels and higher conformational selectivity (Wolkers et al., 2004). 

 

A Fourier Transform Infrared (FITR) spectrometer consists of an infrared source, a 

detector, a Michelson interferometer consisting of a beam-splitter, a movable mirror 

(which continuously changes the optical path-length in one arm of the interferometer) and 

a Helium-Neon laser which is used as a reference to control the position and velocity of the 

movable mirror (BrukerOptics, 2008).   

 

2.2.7.1  The Michelson Interferometer 

A Michelson Interferometer (Figure 2.20) consists of a fixed mirror, a movable mirror and 

a semi-transparent mirror (beam-splitter).  The infrared beam from the source is divided 

into two beams by the beam-splitter.  One of the two beams reflects off the fixed mirror 

whilst the other beam reflects off the movable mirror.  The two beams are then recombined 

so that they interfere with each other.  The resulting intensity at the detector depends on the 

frequencies of the beam and the distance of the moveable mirror. The variation in intensity 

with mirror position is the interferogram and this is converted into a spectrum using a 

Fourier Transform (BrukerOptics, 2008). 
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Figure 2.20 The Michelson Interferometer consisting of fixed mirror, movable mirror and 

a semi-transparent mirror (adapted from Bruker Optics, 2008) 

 

The attenuated total reflection (ATR) accessory (Figure 2.21) when applied to FTIR can 

be used to probe information about the molecular structure of a sample in the solid state.  

A solid material is compressed onto the ATR crystal area to ensure good contact.  The 

infrared beam penetrates (at nanometer depth) the ATR crystal at one end, reflects along 

the internal surfaces of the crystal and passes out the opposite end (PerkinElmer, 2005). 

 

INFRARED SOURCE 

DETECTOR 

BEAM SPLITTER 

FIXED MIRROR 

MOVEABLE MIRROR 
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Figure 2.21 A multiple reflection ATR system (taken from the PerkinElmer Technical 

information (2005)) 

 

In this study ATR-FTIR absorption measurements were performed using a Bruker 

IFS66/SG spectrometer.  Experiments were performed using the following parameters.  

Resolution 4cm
-1

,
 
scan time 16 scans (also for background) over 4000cm

-1
 -500cm

-1
.  

Spectra was analysed using Opus software version 6.0. 

 

2.2.7.2  Exploratory Data Analysis 

Exploratory data analysis of spectroscopic data obtained in variable temperature ATR-

FTIR experiments were used to identify changes in spectra with increasing temperature 

which could be attributed to structural changes occurring in sample.  

 

2.2.7.2.1   Hierarchical Cluster Analysis  

Cluster analysis identifies groups of samples that behave in a similar manner or show 

similar characteristics.  Hierarchical cluster analysis (HCA) calculates and compares 

distances between samples (or variables) in a data set.  Small distances between samples 

implies similarities with respect to the measurements taken (Infometrix, 2008).  Inter-
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sample distances vary with type and number of measurements; therefore it is essential to 

transform them into a more standard scale of similarity (Eq.2.3). 

 

                            Eq. 2.3 

 

where dab is the multivariate distance between two samples a and b and dmax is the largest 

distance in the data set.  Using this scale, a value of 1 is assigned to identical samples 

whilst a value of 0 to the most dissimilar samples. 

 

A dendrogram (Figure 2.22) is a tree–shaped map constructed from a table of distances.  

The leaves (terminus of branches) represent single samples whilst the length of branches 

linking clusters is related to their similarity (plotted along the top of graph).  This means 

that the longer the branch, the less the similarity the shorter the branch, and the greater the 

similarity.  The dotted vertical line is used to identify clusters (Infometrix, 2008). 

 

Figure 2.22 A dendrogram with 75 samples with four clusters at a similarity value of 0.5 

(taken from Infometrix, 2008) 

Similarity 



CHAPTER 2                                                                                                  Materials and Methods 

134 

2.2.7.2.2   Principal Component Analysis  

Principal component analysis (PCA) is a powerful visualization tool that finds linear 

combinations of original independent variables which account for maximal amounts of 

variation.  PCA is designed to provide an insight into data variability in a multivariate data 

set.  Consequently, allowing for the identification of natural clustering in a data set, as well 

as unusual samples.  This information can be used to assign chemical meaning (or 

biological meaning or physical meaning) to the data patterns that emerge (Infometrix, 

2008).  The first principal component details the largest trend of the data whilst the second 

principal component details the second largest trend within the data set.  Scores analysis 

can be used to illustrate inter-sample relationships.  Data is plotted as a two dimensional 

(2D) scatter plot with a confidence ellipse is superimposed (Figure 2.23).  This ellipse 

represents a 95% confidence level derived from the scores variance and is centered at the 

origin of the two score dimensions displayed  

 

Figure 2.23 Example of a two dimensional PCA scores plot (taken from Infometrix, 2008) 
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Data obtained was analysed using Pirouette Multivariate Data Analysis Software (Version 

4. Infometrix Inc).   

 

2.2.8 DYNAMIC VAPOUR SORPTION 

Sugars, like carbohydrates, are highly hygroscopic and will spontaneously sorb (adsorb 

and/or absorb) water vapour from their surroundings unless stored under completely dry 

conditions (Hancock and Shamblin, 1998).  Sorbed water has the ability to change the 

physical and chemical properties of sugars.  For example, sorbed water can facilitate 

isomerisation (Otsuka et al., 1993) and/or crystallisation processes (Yu et al., 2008) and 

have a plasticizing effect on the sample (Hancock and Zograf, 1996).  Dynamic vapour 

sorption (DVS) is a valuable gravimetric technique used to investigate sample water 

uptake.  Typically the sample is exposed to controlled conditions of temperature and 

humidity (between 0 and 90 %RH) as a function of time.  The change in weight is 

measured as a function of time; in this way the kinetics of water uptake, glass transition 

and water induced crystallisation can be analysed.  A typical DVS instrument consists of a 

balance (which constantly compares the weight of the sample and the reference pans 

throughout the experiment), humidity chamber with humidity sensors (which contains the 

specified humidity which is created by a water reservoir and tightly controlled nitrogen gas 

streams) (Figure 2.24).   
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Figure 2.24 The internal organisation of a typical DVS instrument MFC = Mass Flow 

Controllers (taken from Q5000SA product literature from TA instruments 2010) 

 

Sorption isotherm experiments involve a weighed sample exposed to a series of humidity 

step changes at constant temperature. The sample is held at each humidity level until no 

further weight change is detected or a set time has elapsed.  The humidity is changed in 

controlled relative humidity steps and the process can be repeated in an increasing or 

decreasing procedure.  Three stages of water vapour uptake occur for an amorphous solid.  

An initial uptake of water (surface adsorption) occurs before reaching the glass transition 

and prior to crystallisation, molecular mobility increases allowing bulk water absorption to 

occur (Hancock and Zograf, 1996).  The resultant change in water adsorption rate creates 

an inflection in the adsorption profile which is attributed to the glass transition  (Hassel and 

Hesse, 2007).  A second transition occurs at some point on or after crystallisation which is 

due to increased humidity which prompts molecular re-arrangement to a more stable 

crystalline form (Hunter et al., 2010).   



CHAPTER 2                                                                                                  Materials and Methods 

137 

Crystallization can occur as a result of an increase in molecular mobility of the amorphous 

solid acquired by plasticization via water adsorption, promoting rapid nucleation and 

crystal growth.  This is observed as a decrease in weight in the DVS profile as the 

crystalline form has a lower affinity for water than its corresponding amorphous form 

(Surana et al., 2004).  Finally, a post-crystallisation period occurs whereby the crystalline 

material takes up additional water to complete crystallization.  Crystallisation is a limiting 

factor determining the amount of water vapour that can be taken up by low molecular 

weight sugars for high molecular weight sugars that do not crystallise.  The amount of 

water vapour taken up at very high humidities is almost unlimited (>50%w/v).  Each 

amorphous sugar will sorb a different amount of water vapour under identical conditions as 

a result of its unique physical and chemical properties (Hancock and Shamblin, 1998). 

 

DVS experiments were performed out on a Sorption Analyzer Q5000 (TA instruments) 

using quartz sample pans.  The instrument was calibrated according to the deliquescence 

point of sodium bromide (57.60%RH).  Samples of 1 to 2 mg were added to a tarred 

sample pan and the humidity chamber was sealed shut.  An empty quartz pan was use as 

the reference and all experiments were run at 25°C to observe water kinetics without the 

influence of temperature changes.  The experiments comprised of sequential humidity 

increments of 5%RH steps, from 10 to 90%.  Each step was a maximum of 60 minutes.  

Data obtained was analysed using Universal Analysis 2000 software for Windows 

2000/XP/Vista Version 4.7A. 
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2.2.9 THERMOGRAVIMETRIC ANALYSIS 

Thermogravimetric analysis (TGA) measures weight changes in a material either as a 

function of increasing temperature or isothermally as a function of time under a controlled 

atmosphere.  Weight changes can occur in any material and may be caused by 

decomposition, oxidation or dehydration.  A typical TGA instrument consists of a balance 

(which is key to all TGA instruments), a heating system (or an infrared furnace) which 

controls the sample temperature, a heat exchange which dissipates heat from the furnace 

and mass flow controllers (MFC) which control the purge gas to the balance and furnace 

(Figure 2.25).  The moisture content within a sample is an important quality control 

parameter as it can affect long-term stability and effectiveness as well as short-term 

processability.  Free surface water (a source of problems) and bound water are present in 

most formulations.  Free water refers to water that is absorbed from the environment and is 

not chemically attached to the material whilst bound water refers to water(s) of hydration 

that are chemically bound to the substance.   

 

Figure 2.25 The internal organisation of a typical TGA instrument (taken from Q5000IR product 

literature from TA instruments 2007) 
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The disadvantage of this technique is that while weight changes can clearly be seen it is 

not always possible to determine what may have caused the change leading to possible 

misinterpretation of results. 

 

TGA experiments were performed on a TA instruments Q5000IR TA instrument at a rate 

of 2
o
C/min from 30

o
C to 250

o
C using 10µL TA aluminium pans with corresponding lids.  

Data obtained was analysed using Universal Analysis 2000 software for Windows 

2000/XP/Vista Version 4.7A. 

 

Weight calibrations were performed once a month as recommended by the manufacturer's 

guidelines.  The calibration involved using the automatic weight calibration function where 

the pan differential between two weight calibration pans was used to calibrate the weight.  

Temperature calibration was performed at the heating rate used for TGA experiments.  The 

Curie Point of the paramagnetic magnet nickel was used.  As the standard went through its 

Curie Point, its attraction to the instrument magnet changed which was observed as a 

weight change in TGA trace.  The extrapolated endpoint of this weight change was 

adjusted to comply with nickel’s known Curie Point Temperature (358°C).   

 

2.2.10 CONVENTIONAL DIFFERENTIAL SCANNING CALORIMETRY 

Differential scanning calorimetry (DSC) measurements provides both qualitative and 

quantitative information for both endothermic and exothermic transitions.  Information 

such as crystallisation kinetics and identification of structural relaxations present can be 

obtained from the DSC experiments.  Figure 2.26 is a DSC thermograph of 

polyethyleneterephthalate (PET) showing typical thermal transitions like the glass 
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transition (endothermic), crystallisation (exothermic) and the melt (endothermic) that are 

easily detected by DSC.  With relatively easy sample preparation, DSC can be used to 

analysis both solid and liquid materials.  Experiments can be performed quickly and over a 

wide temperature range.  There are two recognised forms of DSC, heat flux (the most 

common) and power compensation. 

 

 

Figure 2.26 DSC Thermograph of PET showing a) a glass transition, b) a cold 

crystallisation exotherm  and c) a melting endotherm taken from Coleman and Craig 

(1996) 

 

2.2.10.1  Heat Flux DSC 

Heat flux DSC consists of a sample and reference pan placed symmetrically in a furnace 

(Figure 2.27).  When heated, the temperature difference between the two is measured and 

the resultant signal converted to heat flow.  This is performed using a relationship derived 

from Newton’s Law of Cooling and may be considered as a thermal analogue of Ohm’s 

Law (Equation 2.4).  

GLASS TRANSITION 

CRYSTALLISATION 

MELT 
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                                                     Eq. 2.4 

where ∆Q (J) is heat, RT (KJ 
-1

), the thermal resistance of the cell, Ts (K), the temperature 

of the sample and Tr (K), the temperature of the reference.  An assumption is made that the 

thermal gradients within the components of the cell (e.g. between the sample, reference 

and their holders) are negligible. 

 

 

Figure 2.27 Heat Flux DSC Schematic showing sample (S) and reference (R) pan location 

within the same furnace (taken from http://www.anasys.co.uk/library/dsc1.htm) 

 

2.2.10.2  Power Compensation DSC 

Both the sample and reference pans are placed in separate furnaces in power compensation 

DSC (Figure 2.28).  They are heated separately as opposed to both pans being heated from 

the sample source (as in heat flux DSC).   

 

http://www.anasys.co.uk/library/dsc1.htm
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Figure 2.28 Power compensation schematic DSC Schematic showing sample and 

reference (R) pan location in separate furnace (taken from 

http://www.fchpt.stuba.sk/generate_page.php?page_id=2890) 

 

Power compensation DSC works to maintain a zero temperature difference between the 

sample and reference.  The power required to maintain this temperature difference is 

measured and is given by the following expression: 

 

                                                   Eq. 2.5 

 

where P (W) is power, I (A) is the current supplied to the heater and R (Ώ) is the resistance 

of the heater. (Coleman and Craig, 1996).  Equation 2.6 is a simplified equation which 

describes the resultant heat flow at any point in a DSC or MTDSC experiment. 

 

                                                                                                                Eq. 2.6 

 

where         is the total heat flow,  Cp is the thermodynamic heat capacity (i.e. that due to 

the energy stored within the sample, β the rate of temperature change and f(Tt) is the heat 

flow from any kinetically controlled chemical or physical process (Reading et al., 1993). 

Equation 2.7 shows that during a typical DSC experiment the heat flow is determined by 

the heat capacity.  The heat capacity is defined as the amount of heat required to raise the 

http://www.fchpt.stuba.sk/generate_page.php?page_id=2890
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temperature of one gram of sample by one degree Celsius.  The heat capacity at constant 

pressure (Cp) is give by the following equation 

 

                                                     Eq. 2.7 

 

Where Q is the heat exchanged or heat energy (J), H, the enthalpy and the subscripts ‘p’ 

and ‘n’ signify the conditions of constant pressure and composition.  Finally, T (K) is the 

temperature.  Cp can be expressed as JK
-1

mol
-1

 or as the specific Cp JK
-1

g
-1

. 

Cp (at constant pressure) may also be expressed as described in equation 2.7 

 

                                                                        Eq. 2.8 

 

where           is the heat flow and           is the heating rate. 

 

DSC measurements were performed on a TA instruments DSC Q2000 with a refrigerated 

cooling system (RCS) attached.  Dry nitrogen was used with the sample purge flow at 

50mL/min.  All DSC experiments and calibrations were performed using a Perkin Elmer 

40 µL, 0.15mm aluminium pan (B014-3021) with an accompanying aluminium 0.05mm 

pin-holed lid (B700-1014) unless otherwise stated.  Data obtained was analysed using 

Universal Analysis 2000 software for Windows 2000/XP/Vista Version 4.7A. 

 

2.2.11 MODULATED TEMPERATURE DIFFERENTIAL SCANNING CALORIMETRY 

Modulated Temperature DSC (MTDSC) was introduced in 1993 by Professor Mike 

Reading, under the name of Modulated DSC.  It is an extension of DSC where a sine wave 
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modulation is applied to the standard (linear) temperature (Figure 2.29).  As a result of the 

sine wave modulation, the heating rate is no longer constant but varies in a periodic 

(modulated) fashion (Reading et al., 1993).  The period (i.e. time taken for one complete 

oscillation, i.e. reciprocal frequency) of temperature modulations is selected to allow for 

sufficient time for the heat flow to and from the sample during the temperature cycles.   

 

 

Figure 2.29 Temperature as a function of time for a typical DSC and MTDSC experiment 

(taken from Verdonck et. al.,(1999)) 

 

The total heat flow (only parameter observed in DSC experiments) is composed of two 

components, the kinetic component (f(Tt), non-reversing) and the heat capacity (Cpβ, 

reversing) component$ (Reading et al., 1993; Jones et al., 1997).  MTDSC measures the 

total heat flow as well as the two individual components, the reversing and non-reversing 

components.  Figure 2.30 shows the de-convoluted signals i.e. the total heat flow, 

reversing heat flow and non-reversing heat flow which is calculated by subtracting the 

reversing heat flow from the total heat flow. 
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Figure 2.30 Deconvoluted signals (total heat flow, reversing heat flow and the non-

reversing heat flow which is calculated by subtracting the reversing heat flow signal from 

the total heat flow signal) for MTDSC experiments of a quenched PET sample (taken from 

Thomas (2005)) 

(Thomas, 2005) 

In MTDSC experiments, Fourier Transform is used to separate the signals into the 

reversing and non-reversing components.  As the reversing component is related to the 

sample’s heat capacity, the glass transition event is accurately detected in the reversing 

heat flow.  The Tg is shifted slightly in the reversing heat flow compared with the transition 

in the total heat flow, because the glass transition is a kinetic event and is affected by the 

applied frequency (Jones et al., 1997).  The enthalpic relaxation and subsequent re-

crystallisation are seen only in the non-reversing heat flow.  MTDSC allows for the 

separation of overlapping transitions such as re-crystallisation and glass transition (Figure 

2.30), which is of benefit when characterising complex materials.  Tg in this thesis were 

calculated using the reversing signal for accuracy.   
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The general recommendations to select optimised MTDSC parameters for all thermal 

events (i.e. the underlying linear heating rate, R, temperature modulation amplitude, A, and 

temperature modulation period, P) are provided in Table 2.6. 

(Guinot and Leveiller, 1999) 

Table 2.7 General recommendations to select optimised MTDSC parameters for all 

thermal events (Taken from Guinot and Leveiller (1999))  

PARAMETER RECOMMENDED RANGES OF EXPERIMENTAL 

VALUES 

Modulation period (P) 40–100 s; a value of 60 s is generally recommended 

when using standard aluminum crimped pans and 

nitrogen purge gas 

Underlying linear heating rate (R) 1–5°C:min; a value of 5°C:min should not be 

exceeded to allow for the specimen to follow the 

modulation; values below 1°C:min should be preferred 

whenever possible to ensure enough 

Modulation amplitude (A) ±0.1°C to ±3°C for a given linear heating rate, R, and 

period, P; larger values: enhanced sensitivity; smaller 

values: enhanced resolution 

 

To ensure optimal instrument performance routine calibrations i.e. baseline calibration, 

temperature and cell constant were performed on a monthly basis and also with any change 

of experimental parameters including pan type.  Calibrations were performed using the TA 

instruments software “Advantage for Q series calibration wizard”.  The DSC temperature 

was calibrated using n-octadecane (Tm = 28.24°C), indium (Tm = 256.66°C) and Tin (Tm 

=231.93°C) at 0.5,1 2, 10, 50 and 100ºC/min.  The heat capacity constant calibration was 

performed using aluminium oxide TA sapphire discs at 0.5, 1 and 2°C/min with ± 0.212°C 

modulation amplitude and 60 s period. 
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2.2.12 QUASI-ISOTHERMAL MODULATED TEMPERATURE DIFFERENTIAL SCANNING 

CALORIMETRY  

MTDSC experiments are dependent not only on the underlying heating rate but also the 

modulation amplitude and period.  As a result the modulated heating rate, the modulated 

heat flow and therefore heat capacity can have finite values even when the underlying 

heating rate is zero (i.e. under quasi-isothermal conditions).  Quasi-isothermal MTDSC 

(Qi-MTDSC) is a variant of MTDSC where the temperature of the sample is modulated 

around a constant underlying temperature for a specified time.  The temperature is then 

incrementally ramped up or down through a transition consisting of a series of quasi-

isothermal data sets.  This effectively means that the heating rate is negated (i.e. 0ºC/min) 

by holding the sample at a range of selected temperatures about which the sample is 

modulated (Lai et al., 2010).  This technique enables the analysis of energetic transitions in 

the absence of kinetic effects (i.e. removing the influence of time).  In addition, the true 

temperature range over which an event occurs can be ascertained as thermal lags 

associated with the instrument and sample can be negated using this technique (Manduva 

et al., 2008; Hill et al., 1998). 

 

As discussed in Section 2.2.11, in MTDSC experiments Fourier Transform is used to 

separate the total heat flow signal into the reversing and non-reversing components.  The 

reversing heat capacity is obtained as a result of the ratio of the amplitudes of the 

modulated heat flow over the modulated temperature multiplied by the cell constant (Jones 

et al., 1997).  The non-reversing component is determined by subtracting the reversing heat 

flow from the total heat flow. In order to convert from reversing heat capacity to reversing 

heat flow, the signal needs to be multiplied by the heating rate. In Qi-MTDSC 

experiments, the heating rate is zero therefore the non-reversing component cannot be 
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determined, as illustrated in Figure 2.31.  As a result of this the reversing heat capacity 

was the signal used for analysis in Qi-MTDSC experiments in this study, as illustrated in 

Figure 2.31 (taken from Judovits and Gupta (2011).   

 

Figure 2.31 A schematic for Qi-MTDSC using a TA instruments 2920 DSC (taken from 

Judovits and Gupta (2011)) 

 

The measured glass transition temperature (in DSC experiments) is based on the change in 

the heat capacity.  The magnitude of a glass transition and the ability to detect it varies 

with heating and/or cooling rate.  The heating or cooling rate can reduce not only the 

sensitivity but the shape and temperature of the transition.  Using Qi-MTDSC it is possible 

to achieve heat capacity trends that agree with theoretical predictions of the 

transitions(Manduva et al., 2008).  Qi-MTDSC is a useful technique in identifying sample 

de-vitrification.  In a study by Verdonck et al.,(1999) PET was heated below its Tg an 

increase in heat capacity was observed and corresponding to the de-vitirication of PET at 

Tg.  A decrease in heat capacity was detected as the sample reached a temperature where 

cold crystallisation occurred (Verdonck et al., 1999) (Figure 2.32).   

(Judovits and Gupta, 2011) 
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Qi-MTDSC methods were employed in this study as it not only allowed for the 

equilibrium (or at least close to equilibrium) state of a system as a function of temperature 

to be observed but also facilitated the observation of the process by which that equilibrium 

is reached. 

 

Figure 2.32 Heat capacity changes at a glass transition followed by crystallisation using 

Qi-MTDSC (taken from Verdonck et al 1999) 

 

Qi-MTDSC methods were performed using a TA instruments DSC Q2000 with a 

temperature modulation of ±1°C and a period of 60 seconds with 2°C incremental 

increases over a set temperature range staying isothermal at each increase for 20 minutes.  

Data obtained was analysed using Universal Analysis 2000 software for Windows 

2000/XP/Vista Version 4.7A. 

 

GLASS TRANSITION 

CRYSTALLISATION 
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2.2.12.1 Lissajous Figures 

Lissajous figures are composed of two sinusoidally oscillating signals plotted against each 

other and are commonly used to investigate the response of a system to an applied 

modulated stimulus. 

x = a x sin(2πft)                                                     Eq. 2.9 

y = b x sin (2πft + σ)                                                   Eq. 2.10 

where a and b are amplitudes, f the frequency, t is time and σ is the phase difference 

(Gough, 1995).  If the amplitudes (a and b) are equal, this suggests that the stimulus or 

response are both sinusoidal with equal frequency and will therefore produce a curve that 

takes the form of a closed ellipse (Pockett, 2004).  The shape of the figure produced 

depends on the frequency and phase of the two signals and can be altered when there are 

changes in frequency (y-axis) and phase difference (x-axis) which could result in a variety 

of curves (Gough, 1995).  A Lissajous figure in Qi-MTDSC is a plot of the modulated heat 

flow as a function of time derivative of modulated temperature (Figure 2.33).  An ellipse is 

generated when the modulated heat flow is out of phase with the sample temperature 

derivative and a phase lag has developed between the signals (Pockett, 2004).   
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Figure 2.33 Example of Lissajous figures produced by plotting the Modulated Heat Flow 

(W/g) and Derivative Modulated Temperature (°C/min) of various rations and phase 

differences (adapted from Kett, (2000)) 

 

The slope of the ellipse yields information about the heat capacity of the system whilst the 

width gives information about heat dissipation (Kett, 2000).  A clear difference between 

the slope and width of ellipses above and below the transition should be visible.  Lissajous 

figures may also be used in order to determine if a loss of steady state parameters has 

occurred as seen in previous studies (Hill et al., 1999). 

 

2.2.13 HYPERDSC® 

Slow heating rates can result in good resolution but poor sensitivity, whilst fast heating 

rates can result in poor resolution but good sensitivity (Gaisford, 2008).  Fast heating rates 

have the same total heat flow as in a DSC or MTDSC experiment.  However as 
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experiments occur over a shorter time period thermal event appears larger (Lappalainen et 

al., 2006).  Using fast heating rates sample changes that may occur during slow heating 

(DSC or MTDSC) can be eliminated or reduced, allowing for the characterisation of 

samples in their "as received" state (Gabbott et al., 2003).  This technique is also of 

particular advantage for materials possessing properties that may change upon prolonged 

exposure to increased temperatures like amorphous products or formulations of biological 

molecules (Gaisford, 2008).  High speed or high performance conventional DSC operates 

at extremely fast heating rates from 200°C/min up to 750°C/min  

 

High speed conventional DSC experiments were performed using a Perkin Elmer 8500 

with 2
nd

 generation HyperDSC® technology at heating rates of 500°C/min and 750
o
C/min 

over a temperature range of -90
o
C to 300

o
C.  The instrument was calibrated using both 

indium and zinc standards.  Perkin Elmer 40 µL pans were used with an accompanying 

pin-hole lid for all experiments.  Data obtained was analysed using Pyris Manager software 

version 10.1.0.0411. 



 

 

CHAPTER THREE 

THE GENERATION AND CHARACTERISATION OF 

STANDARDISED FORMS OF TREHALOSE DIHYDRATE 
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3.1 BACKGROUND 

The influences of batch variation of trehalose dihydrate have been briefly explored by 

Armstrong et al., (1996).  This published abstract detailed work conducted on three 

different α,α-trehalose dihydrate batches by Armstrong et al., (1996). One batch exhibited 

a re-crystallisation exotherm at 170°C which was absent in the other two batches and two 

out of the three batches saw a melting endotherm at ~215°C (Armstrong et al., 1996).  

Differences were identified in DSC traces at 10°C/min and reducing the heating rate to 

2°C/min did not eliminate these differences.  Polymorphism was not identified using X-ray 

powder diffraction techniques.  These results showed that whilst sample presentation and 

experimental conditions can influence the thermal response, the sample origin can also 

have affect on the crystal texture and consequently the observed thermal response which 

may persist after subsequent handling and processing.   

 

At the time of the study presented here, further studies investigating the thermal transitions 

of α,α-trehalose dihydrate had not taken into account the possible contribution of inter-

batch or intra-batch variations contributing to the thermal response.  Preference in 

purchasing choice was only briefly addressed by Macdonald and Johari (2000), where they 

stated they preferred to purchase trehalose dihydrate from Aldrich chemicals over Sigma 

Chemicals Co. who at the time had a dihydrate sample of unstated purity which had 

previously been used elsewhere (Sussich et al., 1998; Ding et al., 1996).  The objective of 

the work detailed in this section was to address the influence of inter-batch variation on the 

thermal response of trehalose dihydrate by performing a series of thermal, spectroscopic 

and X-ray diffraction techniques on three α,α-trehalose dihydrate batches obtained from 

two different manufacturers, Sigma-Aldrich and Acros Organics.   
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All materials are required to meet expectations of regulatory authorities though 

pharmacopoeia (e.g. British Pharmacopoeia) verification of materials is often only based 

on the identity, purity and chemical stability of the material, with only limited testing on 

particle and powder physical properties (Moreton, 2009).  This results in materials like 

microcrystalline cellulose (Rowe et al., 1994) or lactose (Gamble et al., 2010) showing 

unexpected characteristics as certificate of analysis does not provide confidence of 

equivalency between batches.  Several factors can results in batch to bath variation 

including (but are not limited to) variability in raw materials used, the manufacturing 

process as well as storage conditions (Moreton, 2009). 

 

Trehalose exists in multiple crystalline anhydrous and hydrated forms and is thought to 

exist in two different amorphous forms, both with comparable Tg values.  These properties 

were discussed in more detail in Chapter 2.  The stable dihydrate undergoes a series of 

transformations giving rise to the generation of either dehydrated, partially hydrated or 

anhydrous crystalline forms or amorphous forms of trehalose.  The interchange between 

these various forms is of considerable interest because of trehalose’s ability to act as a 

protectant and/or stabilizing agent in pharmaceutical formulations.  Reported thermal 

transitions of trehalose dihydrate vary with environmental conditions such as variations in 

humidity (Furuki et al., 2005), sample dehydration at low relative humidity at ambient 

temperature (Jones et al., 2006) and sample dehydration and analysis at varied heating 

rates (Willart et al., 2003; Rani et al., 2006).   

Manufacturers' and suppliers' literature does not appear to acknowledge the existence of 

the various thermal transitions of trehalose dihydrate.  Material Safety Data Sheets 

(MSDS) from Sigma-Aldrich, Acros and Fisher Bio-reagents all had listed melting points 

for trehalose dihydrate as 97-99°C.  This melting point value appears to generally be 
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observed under high ambient vapour pressure and when moisture is retained within the 

system, suggesting dissolution of crystals as opposed to crystal melt.  Investigations by 

Shafizad and Susott (1973) found observed dissolution of trehalose dihydrate crystals at 

100°C in a tightly packed capillary tube, whilst in a capillary containing single crystals 

upon gentle heating dissolution of crystals was seen at 135°C.  These early experiments 

shed light on the effect of environmental conditions on the thermal response of trehalose 

dihydrate as well as confusion which may arise from varied thermal responses.   

 

Sample particle size appears to have a notable effect on the thermal response of trehalose 

dihydrate.  Taylor and York (1998a) conducted DSC and dynamic TGA experiments at 

10°C/min on different trehalose dihydrate particle size fractions (45, 75, 150, 250 and 

425µm) (Figure 3.1).  TGA data suggested water loss commenced at a lower temperature 

with decreasing particle size, to such an extent that the smallest particle fraction of <45µm 

had virtually completed dehydration by 110ºC compared with large (>425µm) particles 

which at 110ºC were just entering the temperature region of maximal weight loss.  They 

concluded that two routes of crystallization existed for trehalose dihydrate and these routes 

were primarily dependent on the particle size of the crystals (Figure 3.2).  More 

specifically, they suggested that larger particles crystallize directly to the stable crystalline 

anhydrate (Tβ) via a solid-solid transition whilst smaller particles crystallize from an 

amorphous liquefied phase. 
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Figure 3.1 a) DSC traces of different particle size fractions of trehalose dihydrate heated at 10 °C 

min-1. b) Dynamic TGA traces of different particle size fractions of trehalose dihydrate heated at 

10 °C min
-1

. From left to right: <45, 45-75, 75-150, 150-250, 250-425, >425µm. The dashed line 

shows the material as supplied. (Taken from Taylor and York (1998a) 

 

 

 

 

 

 

Figure 3.2 Route of crystallisation for large (>425 µm) particles and small (<45µm) particles 

(Adapted from Horvat (2003) and Taylor and York, (1998a)) 

 

In order to fully understand the differences in the route of crystallisation for large 

(>425µm) and small (<45µm) particles factors which may influence the re-organisation of 

the dehydrate phase should be considered.  It is well known that smaller particle size 

results in increased surface area.  The larger surface area of smaller trehalose dihydrate 

particles would contribute to a faster dehydration rate however; the degree of disorder 

within the crystal lattice would also have a significant effect on the dehydration behaviour.  

Trehalose dihydrate obtained would have been subjected to milling during production; 
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smaller particles are a result of more extensive milling compared to larger particles.  

Therefore, smaller particles will be more disordered and likely to undergo more superficial 

dehydration.  Dehydration would further accelerate the degree of disorder within the 

crystal lattice, as water plays an integral structural role within the crystal lattice of 

trehalose dihydrate.  

 

3.2 PRELIMINARY WORK 

3.2.1  STUDY OBJECTIVES 

In this study, the effects of inter- batch variability of α,α-trehalose dihydrate were explored 

by performing a series of physico-chemical studies on three trehalose dihydrate batches 

obtained from two different manufacturers.   

 

3.2.2  GENERAL METHODOLOGY 

An array of techniques were use in this chapter to characterise three batches of α,α-

trehalose dihydrate: two obtained from Sigma-Aldrich (product code T9531) Batch A 

(batch number 058K7357) and Batch B (batch number 020M7023) and the third from 

Acros Organics (product code 182550250) (batch number A0232606).  For ease of 

referencing Sigma-Aldrich Batch A will be referred to as Sigma A and Sigma-Aldrich 

Batch B will be referred to as Sigma B.  All samples had a stated purity of ≥99% and were 

used “as received” from the manufacturers without any further purification.  Particle 

morphology was determined using scanning electron microscopy (SEM), whilst particle 

size analysis was performed using laser diffraction.  Sigma B particles were also subjected 

to separation into size fractions using the dry sieving method (mechanical agitation).  X-
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ray powder diffraction (XRPD) and ATR-FTIR were used as qualitative techniques to 

identify any differences in hydrogen bonding arrangement and crystal structure between 

batches.  Thermal characterisation of batches was performed using differential scanning 

calorimetry (DSC) and thermogravimetric analysis (TGA) to determine sample water 

content.  Hot stage microscopy (HSM) was used in conjunction with DSC to capture visual 

images of the samples to aid interpretation of observed thermal events.  Full details of 

these techniques are outlined in Chapter 2, unless otherwise stated in the results and 

discussion section. 

 

3.2.3  RESULTS AND DISCUSSION 

3.2.3.1   Particle size and morphology analysis  

Particle size analysis was performed using laser diffraction where the particle diameter is 

related to the light scattered through a variety of angles; further details of this technique are 

described in Chapter 2.  Results are presented as the density distribution of particles (log 

of the volume size of the distribution) versus particle size.  Figure 3.3 (1.5 to 801µm) 

shows the density distribution for all batches.  Sigma B particles showed a bi-modal 

distribution with a mixture of large particles ranging between 360-660µm and smaller 

particles 1.5-5µm.  Sigma A particles also displayed a bi-modal distribution between 160-

460µm and 33-140µm.  The Acros batch appeared to have a tri-modal distribution of 

particles, containing large particles ranging between 560-801µm, 160-460µm and finally 

smaller particles 1.5-33µm.  It is interesting to note the differences in distribution between 

all the batches, especially between Sigma-Aldrich batches.  As mentioned earlier the 

particle size has an effect on the thermal behaviour of α,α-trehalose dihydrate with two 
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different routes of crystallisation identified for large (>425µm) and small (<45µm) 

particles.   

 

Figure 3.3 Plot showing particle size distributions for all batches (1.5 – 801.5µm) 

 

Particle morphology was studied using scanning electron microscopy (SEM).  .  Figure 3.4 

shows SEM images for all three batches.  The SEM image for Sigma A illustrates large 

square shaped crystals with minimal aggregation, whilst Sigma B particles appeared to 

possess a high degree of aggregation where smaller particles had adhered to larger particles 

forming an agglomerate.  This appears to have occurred at a greater extent with Sigma B 

compared to Sigma A and the Acros batch.  Acros particles were rectangular in shape with 

evidence of some aggregation.   
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a)  b)  

c)  

Figure 3.4 SEM images of un-fractionated a) Sigma A b) Sigma B c) Acros particles. Scale bar 

corresponds to a) 100µm b) 200µm and c) 200µm 

 

3.2.3.2   XRPD analysis  

XRPD diffractograms for all batches (Figure 3.6, 3.7, 3.8) were compared with calculated 

XRPD diffractogram obtained from crystal structures of trehalose dihydrate (Brown et al., 

1972) deposited in the Cambridge Structural Database (CSD) (Figure 3.5).  The XRPD 

diffractogram obtained from CSD was used as a reference. 

 

XRPD profile of all batches (Figure 3.6, 3.7, 3.8) showed characteristic XRPD and 

expected diffractograms for α,α-trehalose dihydrate with intense peaks of ca. 2θ 23.8⁰ and 

15.2⁰ and a small peak of ca.2θ 8.8⁰ observed.  Though characteristic and expected peaks 

were identified in all samples, XRPD profile of all batches differed from the XRPD 
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diffractogram obtained from CSD.  The reduced intensity in peaks seen in the Acros batch 

diffractogram at 30 to 60° was due to scaling.  However, differences in the XRPD profile 

of all batches relative to the reference profile suggested structural variations between the 

batches indicating that the crystalline structure of the batches were not entirely similar.   

 

 

Figure 3.5 XRPD diffractogram of Trehalose dihydrate obtained from the Cambridge Structural 

Database (CSD) (Brown et al., 1972) 
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Figure 3.6 XRPD diffractogram of Sigma A  

 

Figure 3.7 XRPD diffractogram of Sigma B  
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Figure 3.8 XRPD diffractogram of Acros Batch  

 

3.2.3.3   Spectroscopic analysis  

Figure 3.9 shows ATR-FTIR spectra of all three batches, which are in agreement with 

literature reports for α,α-trehalose dihydrate (Gil et al., 1996; Kacuráková and Mathlouthi, 

1996) and showed characteristic peaks at 3500cm
-1

, 1650cm
-1

, 994cm
-1

 and 954cm
-1

.  A 

sharp band at ~3500cm
-1

 corresponds to the OH stretch vibration of water with hydrogen 

boding to other molecules.  The peak observed at ~3500cm
-1

 corresponds to the stretch 

vibrations of two crystal water molecules in trehalose dihydrate.  This peak was observed 

in all samples along with a few shoulder peaks between 3600 and 3000cm
-1

.  A peak 

observed at ~1650cm
-1

 is referred to as the H2O scissoring mode of crystal water, 

identification of this peak confirms the presence of crystal water within a sample.  Peaks 

observed at ~994cm
-1

 and ~954cm
-1

 correspond to the α-(11) glycosidic bond.  Though 

batches showed differences in particle size distributions and XRPD profile, ATR-FTIR 

spectra of all batches were identical.   



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

165 

 
Figure 3.9 ATR-FTIR spectra of Sigma A (pink), Sigma B (red), Acros (blue) 

 

3.2.3.4   Thermal analysis  

The objective of the work described in this section was to characterise the thermal 

properties of Sigma A, B and the Acros batch using conventional DSC (DSC), 

thermogravimetric analysis (TGA) and hot stage microscopy (HSM).  DSC experiments 

were performed using pin-holed pans at 2°C/min from 30°C to 250°C to study sample 

thermal transitions.  Noise was observed in the baseline of Sigma B and Acros particles 

during DSC experiments.  Therefore, hot stage microscopy (HSM) studies were used in 

conjunction with DSC (using the same heating parameters) to capture visual images of the 

samples to aid interpretation of observed thermal events.  Details of these techniques are 

fully discussed in Chapter 2.   

 

Figures 3.10, 3.11 and 3.12 show the DSC traces for all batches.  Noise in the baseline was 

not observed in any sample before the first transition occurring ~95°C.  The DSC heat flow 
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signal for Sigma A (Figure.3.10) showed a sharp low temperature endotherm at onset 

95.4°C with no presence of noise in the baseline.  A broad degradation endotherm was 

observed at onset 222.8°C.  Two low temperature endotherms were observed in DSC 

experiments conducted on Sigma B (Figure 3.11) at onsets 94.6°C and 99.6C whilst a 

single low temperature endotherm was observed at onset 96°C for the Acros (Figure 3.12) 

batch.  For both samples, this was followed by noise in their baselines with a series of 

endotherms observed at higher temperatures and an irregularly-shaped endotherm at onset 

~201°C and peak 208°C.   

 

Measured water contents (TGA) for Sigma A, B and Acros batches were 9.02%, 9.20% 

and 9.14% respectively.  These values were within the expected water content values of 

trehalose dihydrate of 9.5%.   

 

Figure 3.10 Typical TGA (blue line) and DSC (black line) heat flow signal for un-fractionated 

Sigma A at 2°C/min using a pin-holed pan  
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Figure 3.11 Typical TGA (blue line) and DSC (black line) heat flow signal for un-fractionated 

Sigma B at 2°C/min using a pin-holed pan  

 

Figure 3.12 Typical TGA (blue line) and DSC (black line) heat flow signal for un-fractionated 

Acros at 2°C/min using a pin-holed pan. 

 

Similar events i.e. noise in baseline at higher temperatures for un-fractionated α,α-

trehalose dihydrate have been observed (Horvat, 2003) and were thought to be attributed to 
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a difference in the rate of dehydration of smaller particles (<45µm) compared with the 

larger particles (>425µm).  All batches had varied particle size distribution which could be 

attributed to the observed thermal response.  Noise was observed in all repeats of Sigma B 

and Acros batches.  The results obtained identified notable differences in thermal response 

between batches.  To shed light on these events HSM studies were conducted to capture 

visual images of the samples to aid interpretation of the thermal events. 

 

HSM studies were conducted on all three batches: all were cohesive, agglomerated, 

coloured and showed birefringence at 30°C (Figure 3.13, 3.14 and 3.15).  Birefringence 

results from the refractive index of a sample, which is derived from a ratio between the 

speed of light within a vacuum and the speed of light within the sample.  It refers to colour 

produced when polarised light passes through a crystal.  A sample is deemed birefringent 

when a light ray splits into two beams when passing through it having the effect of 

birefringence (or double refraction).  Figure 3.13 shows HSM images captured at specific 

temperatures for Sigma A samples on heating at 2°C/min.  On heating a change in 

birefringence was observed starting at 100.3°C continuing to 119.5°C with crystals 

appearing darker and becoming more opaque.  Further heating resulted in dissolution of 

crystals starting at 121.8°C in some crystals with complete dissolution of all crystals at 

136.8°C.  Crystallisation started at 168.1°C resulting in fully formed crystals at 188.1°C 

with their consequent melt at 214.6°C.  Figure 3.14 display HSM images captured at 

specific temperatures for Sigma B samples on heating at 2°C/min.  On heating a change in 

birefringence was observed starting at 99°C continuing to 125°C with crystals appearing 

darker and becoming more opaque.   Further heating resulted in the dissolution of crystals 

starting at 137.5°C in crystal (marked X) with complete dissolution of all crystals at 

143.2°C.  Crystallisation started in the crystal marked X 143.2°C.  Full crystallisation in all 
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crystals was observed at 172.1°C with their consequent melt at 210.2°C and 213.4°C 

respectively.  Figure 3.15 shows HSM images captured at specific temperatures for Acros 

samples on heating at 2°C/min.  On heating a change in birefringence was observed 

starting at 97.3°C continuing to 149.3°C with crystals appearing darker and becoming 

more opaque.  Further heating resulted in the dissolution of crystals starting at 149.3°C in 

crystal (marked X) and followed by almost immediate crystallisation growth.  Complete 

dissolution of all crystals occurred at 159.9°C with their melt observed at 211.8°C.   

 

 

 

 

30°C 100.3°C 

136.8°C 168.1°C 

CRYSTALLISATION 
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Figure 3.13 Hot stage microscopy images captured at specific temperatures for Sigma A 

sample heated at 2°C/min 
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Figure 3.14 Hot stage microscopy images captured at specific temperatures for Sigma B sample 

heated at 2°C/min 
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Figure 3.15 Hot stage microscopy images captured at specific temperatures for Acros sample 

heated at 2°C/min 

 

Overall the results obtained from HSM studies on all batches suggested the change in 

birefringence observed at ~97ºC could be as a result of dehydration of the stable dihydrate 

(Th) possibly producing the isomorph desolvate of the dihydrate (Tα), which possess the 

same crystal structure of the parent crystal (in this instance Th) with reduced hydration.  

Further heating resulted in the dissolution of crystals and generation of a liquid.  

Crystallization was observed from the liquid with the growth of needle-shaped crystals 

from nucleation points.  It could be assumed that the generated crystals were that of the 

anhydrate Tβ as they melted at approximately ~210°C (the documented melting point of 

Tβ).  Whilst these results were insightful they were contrary to results obtained in DSC 

experiments conducted at 2°C/min.  In particular, the identification of a crystallisation 

event in HSM studies occurring at ~160°C in all batches.  Evidence of cold crystallisation 

was not observed in DSC studies.   

 

Reasons for difference between DSC and HSM studies could be because HSM studies are 

conducted in an open air environment.  Relating this in DSC terms, HSM studies could 

211.8°C 



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

173 

reflect events occurring in an open pan experiment.  This would have an influence on 

results especially with trehalose dihydrate whose thermal response has been shown to be 

greatly influenced by pan type.  Unfortunately, to date advances in the HSM technique has 

not taken this into account.  Open pan studies were not conducted due to risk of cell 

contamination.   

 

3.2.3.4.1   Using the dry sieving method to separate Sigma B particles 

As both Sigma B particles and Acros particles displayed noise in the baseline in DSC 

experiments, the dry sieving method was adopted to separate particles into size fractions 

for further DSC analysis.  This was to ascertain whether the observed effects were particle 

dependent as suggested by Horvat, (2003).  Dry sieving methods involve the stacking of 

analytical sieves on top of each other in order of coarseness and then placing the test 

powder on the top sieve.  Sieves are subjected to a period of mechanical agitation resulting 

in the separation of particles into size fractions.  To allow for sufficient fraction collection 

a minimum initial sample mass of 25g was required.  As this amount was not available 

with the Acros batch only Sigma B particles were analysed in this manner.   

 

Sigma B contained a varied distribution of particles.  In order to identify the cause of the 

noise observed in the baseline of DSC profiles the dry sieving method was used as a means 

of separating the particles into the following particle fractions <63µm, 63 to 125µm, 125 to 

180µm, 180 to 250µm, 250 to 355µm for DSC analysis.  The majority of particles (~52%) 

in this batch were sized at 355µm and above (Table 3.1). 
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Table 3.1 Particle size distribution of Sigma B obtained by the dry sieving method 

Particle size (µm) % 

250 to 355 51.99 

180 to 250 5.31 

125 to 180 8.93 

63 to 125 4.15 

<63 3.53 

 

Figure 3.16 shows a DSC trace of fractionated batch B particles.  The first low temperature 

endotherm was observed at (onset) 94.78°C (<63µm), 94.86°C (63 to 125µm), 94.58°C 

(125 to 180µm), 94.64°C (180 to 250µm) and 94.41°C (250 to 355µm), i.e. no real 

difference.  Interestingly an exotherm was observed immediately at 99.80°C (180 to 

250µm) and 101.63°C (250 to 355µm) but not in all size fractions.  Noise was observed at 

higher temperatures from 143°C to 175.98°C (62µm), 115.06°C to 171.69°C (125µm), 

160.45°C to 177.28°C (180µm), 149.30°C to 174.75°C (250µm) and 141.31°C to 

172.98°C (355µm).  An irregular shaped melting endotherm was observed in all particle 

size fractions at 208°C (63µm), 208.15°C (125µm), 208.09°C (180µm), 207.57°C 

(250µm) and 207.16°C (355µm).   

 



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

175 

 

Figure 3.16 Typical DSC heat flow signal for fractionated Sigma B <63µm, 63 to 125µm, 

125 to 180 µm, 180 to 250µm and 250 to 355µm at 2°C/min using a pin-holed pan  

 

The results detailed in this study showed that samples with reduced particle size still 

exhibited noise in the DSC baseline at higher temperatures (i.e. greater than 160°C).  This 

is contrary to previous studies where α,α-trehalose dihydrate particles (obtained from 

Pfanstiehl Laboratories Inc. Waukegan, IL USA) of size >180µm showed noise in their 

baselines at high temperatures, whilst particles below this range did not have a noisy 

baseline (Horvat, 2003).  These results did not confirm the influence of particle size on the 

thermal response. Therefore, reasons for differences between Sigma B response and the 

other samples could not be attributed to differences in particle size but differences in 

intrinsic properties of each batch which have not identified using thermal analysis 

techniques.     
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3.2.4 CONCLUSION 

In this study, the effects of inter-batch variability of α,α-trehalose dihydrate were explored 

by performing a series of physico-chemical studies on three trehalose dihydrate batches 

obtained from two different manufacturers.  Results are summarized in Table 3.2.  The 

results in this study showed a high level of inter-batch variability between trehalose 

dihydrate batches.  Results obtained suggested that Sigma B and Acros batches differed 

from Sigma A particles.  Interestingly, XRPD data suggested structural variations between 

the batches indicating that the crystalline structure of the batches were not entirely similar.  

Thermal analysis characterisation of batches did not confirm the influence of particle size 

on the thermal response. 

 

This phenomenon has previously been investigated elsewhere with microcrystalline 

cellulose (polymer) and anhydrous lactose (low molecular weighted sugar).  The effect of 

batch variation (Landin et al., 1993a) and country of origin (Landin et al., 1993b; Rowe et 

al., 1994) on the properties of microcrystalline cellulose were explored.   

 

Chemical composition and physical structure of microcrystalline cellulose was 

significantly dependent on both the raw materials, country of origin as well as 

manufacturing conditions.  A study by Gamble et al.,(2010) demonstrated difference in the 

solid state properties of batches of anhydrous lactose obtained from three different 

manufactures.  Whilst the variability between the samples was low there was some 

evidence of batch to batch variability.  None of the differences observed appeared to have 

a significant impact on the compression or compaction properties of the batches.  
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Table 3.2 Summary of Sigma A, B and Acros batches results 

 SIGMA A SIGMA B ACROS 

PARTICLE SIZE Bi-modal distribution 

160-460µm and 33-

140µm 

Bi-modal distribution 

360-660µm and 1.5-

5µm 

Tri-modal distribution 

560-801µm, 160-

460µm and 1.5-33µm 

SEM large square shaped 

crystals with minimal 

aggregation 

high degree of 

aggregation, 

agglomerate 

rectangular in shape 

with some aggregation 

XRPD Expected peaks for α,α-trehalose dihydrate ca. 2θ 23.8⁰ and 15.2⁰ and a 

small peak of ca.2θ 8.8⁰  observed however differences in the XRPD 

profile of all batches relative to the reference profile 

ATR-FTIR Characteristic ATR-FTIR spectra showing peaks at 3500cm
-1
, 1650cm

-1
, 

994cm
-1

 and 954cm
-1

 

DSC Endotherms observed 

at 95.4°C and 222.8°C 

Endotherms observed 

at 94.6°C, 99.6C and 

201°C noise in 

baseline 

Endotherms observed 

at 96°C and 208°C 

noise in baseline 

WATER CONTENT 9.02% 9.20% 9.14% 

HOTSTAGE 

MICROSCOPY 

Change in birefringence observed at ~97ºC, Further heating resulted in 

the dissolution of crystals and generation of a liquid.  Crystallization was 

observed from the liquid with the growth of needle-shaped crystals from 

nucleation points generated crystals melted at approximately ~210°C 

 

 

Inter-batch variability can occur with all materials however, an issue arises if the 

variability has a significant impact on data interpretation or (if used as part of a 

formulation) if these difference would have a significant impact on formulation 

performance.  Whilst the latter is outside the objectives of this study, the results detailed in 

this section have shown that inter-batch variability had an impact on data interpretation of 

the properties of trehalose dihydrate.  Physico-chemical characterisation of batches did not 

shed light on reason for batch variability.  Leading to the conclusion that differences 

observed here could have been due to the raw materials used or manufacturing process as 
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previously identified with other materials.  These results highlighted a need for 

“standardised forms” of α,α-trehalose dihydrate to “erase” any processing history in order 

to achieve a clear understanding of the thermal transitions of α,α-trehalose dihydrate and 

ensure thermal transitions observed and forms identified are not only reproducible but are 

not due to inter- batch variations. 

 

3.3  GENERATION AND CHARACTERISATION OF STANDARDISED SAMPLES OF 

α,α-TREHALOSE DIHYDRATE   

3.3.1 STUDY OBJECTIVE 

Previous work in the literature identifying and characterising the thermal transitions of α,α-

trehalose dihydrate failed to take into account the possible effects of inter- and intra-batch 

variability on the observed response.  Preliminary work detailed in Section 3.2 performed a 

series of thermal, spectroscopic and X-ray diffraction techniques on α,α-trehalose 

dihydrate obtained from two different manufacturers.  Results obtained highlighted the 

need for standardised forms of α,α-trehalose dihydrate to, in effect, “erase” the processing 

history of manufactured trehalose dihydrate, and to achieve a clearer understanding of the 

thermal transitions which cannot be attributed to inter- batch variations. 

 

The main objective of this study was to generate standardised forms of α,α-trehalose 

dihydrate.  By performing a series of physico-chemical experiments, characterise forms 

with a view to gain a further and clearer understanding of the thermal transitions of α,α-

trehalose dihydrate with a focus on transitions occurring between 30°C and 160°C.   
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3.3.2  SAMPLE PREPARATION 

Two methods were employed to produce two different forms of trehalose dihydrate.  

Method I was based on work by Dupray et al. (2009), whilst method II was based on water 

sorption studies (detailed in Chapter 4).   

 

3.3.2.1  Method I, α,α-trehalose dihydrate crystals generated by slow evaporation 

of a 46.6%w/w saturated solution 

Crystals were generated by preparing a saturated trehalose solution (46.6%w/w) (solubility 

of trehalose dihydrate at 20ºC (Lammert et al., 1998)).  46.6g of trehalose (dihydrate 

calculated as anhydrous was dissolved in 100g of distilled (filtered 0.45µm) water.  The 

solution was left to re-crystallise by slow evaporation at room temperature.  For ease of 

referencing, these samples will now be referred to as Th1.  This method was originally used 

by Dupray et al., (2009) to generate large dihydrate crystals, though full details of crystal 

size were not provided by the author crystals used in their study were 2-4mm in length and 

4-10mg in weight.  Whilst it was not their intention to generate a standardized form of Th, 

by dissolving trehalose dihydrate and allowing the formation of new crystals this in effect 

eliminated any manufacturer processing effects that may contribute to thermal response.   

 

3.3.2.2  Method II, α,α-trehalose dihydrate crystals generated by exposure of 

amorphous trehalose to 75%RH at room temperature 

Preliminary water sorption studies on amorphous trehalose used the preset sorption 

isotherm method of the Dynamic Vapour Sorption (DVS) (details of this method are 

outlined in Chapter 2 and results are detailed in Chapter 4), which measures the amount of 
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water adsorbed over a range of RH% at a constant temperature.  Based on these results 

freshly prepared amorphous trehalose samples (generated by spray drying) were exposed 

to 75%RH (using a sodium chloride saturated solution stored at room temperature) for 

twelve hours to ensure full crystallisation.  For ease of referencing, these samples will now 

be referred as Th2. 

 

3.3.3  METHODOLOGY 

An array of techniques were employed in this chapter to characterise the generated 

standardised forms.  Particle morphology was determined using scanning electron 

microscopy (SEM) and particle size analysis using laser diffraction.  Powder X-ray 

Diffraction (XRPD) and ATR-FTIR were use as qualitative techniques to confirm 

crystallinity as well as compare hydrogen bonding arrangement between samples.  

Thermal characterisation of samples was performed using thermogravimetric Analysis 

(TGA), conventional DSC (DSC) (at fast heating rates), modulated temperature DSC 

(MTDSC), quasi-isothermal MTDSC (Qi-MTDSC) and variable temperature ATR-FTIR 

to study thermal events.  Hot stage microscopy (HSM) was used in conjunction with DSC 

techniques to capture visual images of the samples to aid interpretation of the thermal 

events observed in MTDSC and Qi-MTDSC.  Full details of these techniques are outlined 

in Chapter 2 unless otherwise stated in the results and discussion section. 
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3.3.4  RESULTS AND DISCUSSION 

3.3.4.1. Particle morphology and size analysis of standardised trehalose 

dihydrate batches 

SEM images of Th1 (Figure 3.17a and b) saw particles were irregularly shaped with little 

aggregation.  Th2 particles (Figure 3.17c and d) were also irregular in shape and little 

particle aggregation.  The particles however, had different surface textures with Th1 

particles possessing more angular, defined edges whilst Th2 particles possessed smooth 

edges.   

a)  

b)  
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c)  

d)  

Figure 3.17 SEM image of a) Th1 b) Th1 Cross section showing grain boundaries c)Th2   

d)Th2 Cross section showing grain boundaries. Scale bar corresponds to 500µm (a, c and 

d) and 100 µm (b) 

 

Particle size analysis was performed using laser particle diffraction.  Th1 particles showed a 

bi-modal distribution with particle size ranging between 68µm and 196µm and a small 

portion of samples were 1.5µm in size (Figure 3.18).  Th2 particles (Figure 3.19), showed a 

normal distribution with particles ranging from 1.5µm to 280µm.  Overall Th1 and Th2 

particles were similar in size range therefore any differences observed in thermal response 

of these samples could be assumed not to be due to differences in particle size. 
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Figure 3.18 Plot showing particle size distribution from Th1 

 

Figure 3.19 Plot showing particle size distribution from Th2 

 

3.3.4.2  X-Ray Diffraction Analysis 

XRPD diffractogram obtained from crystal structures of trehalose dihydrate (Brown et al., 

1972) deposited in the Cambridge Structural Database (CSD) (Figure 3.5).  The XRPD 

diffractogram obtained from CSD was used as a reference. 

 

XRPD diffractograms for Th1 (Figure 3.20) and Th2 (Figure 3.21) confirmed both samples 

were crystalline.  Both forms possessed characteristic XRPD pattern for trehalose 
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dihydrate where peaks of ca. 2θ 23.81⁰ (Th1), 23.96° (Th2) and 15.08⁰ (Th1), 15.50° (Th2) 

and a smaller peak of ca.2θ 8.69⁰ (Th1). 8.92° (Th2).  

 

Figure 3.20 XRPD diffractogram of Th1 standardised form generated by slow evaporation 

(method I)  

 

Figure 3.21 XRPD diffractogram of Th2 standardised form generated by exposure of 

amorphous trehalose to 75%RH at room temperature (Method II) 
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XRPD diffractograms of both Th1 and Th2 showed slight variations in peak intensities.  

This is related to variation in the scattering intensity of molecules within the crystal 

structures and arrangement within their crystal lattice 

 

3.3.4.3  Spectroscopic analysis  

Figure 3.22 shows ATR-FTIR spectra of Th1 and Th2, which are in agreement with 

literature reports for α,α-trehalose dihydrate (Gil et al., 1996; Kacuráková and Mathlouthi, 

1996) and showed characteristic peaks at 3500cm
-1

, 1650cm
-1

, 994cm
-1

 and 954cm
-1

.  

These results show that although samples were generated via different methods, the 

resulting spectra are identical.   

 

Figure 3.22 ATR-FTIR spectra of Th1 (blue) and Th2 (red) 

 

3500cm
-1

 

1650cm
-1

 

994cm
-1

  954cm
-1

 



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

186 

3.3.4.4  Thermal analysis  

The objective of the work detailed in this section was to thoroughly characterise the 

thermal properties of Th1 and Th2 using thermal analysis techniques.  Thermogravimetric 

Analysis (TGA) was used to determine the water content whilst conventional DSC (DSC) 

(at fast heating rates), modulated temperature DSC (MTDSC) and quasi-isothermal 

MTDSC (Qi-MDSC) were used to study the thermal transitions.  Hot stage microscopy 

(HSM) was used in conjunction with both DSC studies to capture visual images of the 

samples to aid interpretation of observed thermal events.  Variable temperature ATR-FTIR 

was also used as a means of studying molecular changes as a function of temperature.   

 

3.3.4.4.1  Effect of pan type on thermal response: pin holed pans  

Previous studies observing the influence of pan-type on thermal response of α,α-trehalose 

dihydrate concluded that pan-type had a profound effect on the resultant thermal response.  

In this section the influence of pan type on thermal behaviour of both Th1 and Th2 was 

explored using a pin-holed and a closed pan system.  Open pan system experiments were 

not conducted due to risk of cell contamination.   

 

Figure 3.23 is a typical MTDSC total, non-reversing and reversing heat flow signals for 

Th1 at 2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan.  The 

baseline was clear and two endotherms were observed in MTDSC experiments.  The first 

at onset 96.3°C whilst the second broad endotherm observed at 224.3°C most likely 

corresponded to the degradation temperature.  Figure 2.24 is a typical TGA weight loss 

profile of Th1 heated at 2°C/min to 250°C.  Th1 crystals had a water content of 8.99% 

(expected 9.5%).  TGA profile saw an initial decrease in weight loss at 72°C (2%), 
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followed by a second decrease at 109°C (5%) after which steady weight loss continued 

until 220ºC, where a dramatic decrease in weight was observed, characteristic of sample 

decomposition. 

 

 

Figure 3.23 Typical MTDSC total, non-reversing and reversing heat flow signals for Th1 at 

2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan 

 

Figure 3.24 Typical TGA weight loss profile of Th1 heated at 2°C/min to 250°C 
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Figure 3.25 is a typical MTDSC total, non-reversing and reversing heat flow signals for 

Th2 at 2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan.  

Three endotherms were observed at (onset) 91.6°C, 106.1°C and 209.9°C.  Th2 crystals had 

a water content of 9.66%.  Figure 3.26 illustrates a typical TGA weight loss profile of Th2 

heated at 2°C/min to 250°C.  TGA profile saw an initial decrease in weight at 72°C (3%) 

followed by another weight loss event at 107°C (6%).  Further weight loss was observed 

until 220ºC, when a large decrease in weight was observed characteristic sample 

decomposition.   

 

 

Figure 3.25 Typical MTDSC total, non-reversing and reversing heat flow signals for Th2 at 

2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan 
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Figure 3.26 Typical TGA weight loss profile of Th2 heated at 2°C/min to 250°C using pin-

holed pan 

 

The TGA responses for Th1 and Th2 differed.  Th2 contained slightly more water in its 

crystal structure compared to Th1 however, both were within expected values.  MTDSC 

studies saw a different response for Th1 and Th2 samples.  On heating, a single low 

temperature endotherm was identified in Th1 samples compared to low temperature 

endotherms in Th2 samples.  Both observed a single endothermic peak at 224.3°C (Th1) and 

209.9°C (Th2). 
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were observed.  The first endotherm was observed at (onset) 95.4°C whilst the second 

endotherm at (onset) 119.6°C.  TGA experiments (Figure 3.28) indicated a water content 

of water content of 8.98% and weight loss profile similar to that observed in pin-holed 

experiments. 

 

 

 

Figure 3.27 Typical MTDSC total, non-reversing and reversing heat flow signals for Th1 at 

2°C/min ±0.212°C modulation over a 60 second period using a closed pan system 
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Figure 3.28 Typical TGA weight loss profile of Th1 heated at 2°C/min to 250°C using a 

closed pan system 
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the first low temperature endotherm correlates to the crystallisation of the stable anhydrate 

Tβ.  However, at low temperatures it would be more accurate to assume the form generated 

is the isomorph desolvate of the stable dihydrate, Tα.  This form is generated by 

evaporation of the dihydrate (Th).  The stable dihydrate and Tα share a reversible 

relationship: when Tα is exposed to moisture it is reverted back to the dihydrate at low 

temperatures when water is still present in the system.   

a)  

b)  
Figure 3.29 a) Typical MTDSC total, non-reversing and reversing heat flow signals for Th2 at 

2°C/min ±0.212°C modulation over a 60 second period using a closed pan system b) a close up of 

possible crystallisation seen after low temperature endotherm. 
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Figure 3.30 Typical TGA weight loss profile of Th2 heated at 2°C/min to 250°C using a 

closed pan system 

 

MTDSC and TGA results for Th1 and Th2 samples are summarised in Table 3.3.  Both 

MTDSC and TGA results indicated that when both samples are heated in a closed pan 

system, water loss is impeded which in turn alters the temperature for phase transitions.  

The loss of two water molecules occurred over the same temperature range in both Th1 and 

Th2 using both pin hole and closed pans.  As discussed in Chapter 2, water molecules 

within a trehalose dihydrate crystal play an integral role in its structure.  The observed 

differences in thermal response may be explained with reference to the crystal structure, 

molecular arrangement and location of water molecules within Th1 and Th2.   
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Table 3.3 Summary of endotherm values (°C) for Th1 and Th2 MTDSC heat flow 

experiments at 2°C/min ±0.212°C modulation over a 60 second period and TGA weight 

loss data of Th1 and Th2 heated at 2°C to 250°C  

 Th1 Th2 

ENDOTHERM 

1 (°C) 

ENDOTHERM 

2 (°C) 

ENDOTHERM 

3 (°C) 

ENDOTHERM 

1 (°C) 

ENDOTHERM 

2 (°C) 

ENDOTHERM 3 

(°C) 

Pin holed pan 96.3 

(±0.15) 

224.3 

(±1.9) 

- 91.6 

(±0.24) 

106.1 

(±0.57) 

209.9(±0.07) 

Closed pan  95.4 

(±0.0) 

227.8 

(±3.0) 

- 93.9 

(±0.33) 

220.8 

(±1.3) 

 

               WATER CONTENT (%) 

 Th1 Th2 

Pin holed pan 8.99 (±0.01) 9.66 (±0.13) 

Closed pan  8.98 (±0.01) 9.56 (±0.08) 

 

3.3.4.4.3   Effect of heating rate on thermal response of standardized forms of α,α-

trehalose dihydrate 

Slow heating rates result in good resolution of thermal events, but unfortunately with poor 

sensitivity, whilst fast heating rates results in poor resolution but good sensitivity of 

thermal events (Gaisford, 2008).  Previous studies have identified the dehydration process 

of trehalose dihydrate to be dependent on the heating rate (Sussich et al., 2002; Sussich and 

Cesaro, 2008).  In this section the effect of heating rate on the thermal response of Th1 and 

Th2 was explored.  Th1 and Th2 were subjected to increasing heating rates from 2 to 

100°C/min.  Higher heating rates were used to further eliminate possible kinetic effects on 

the observed thermal transitions.  Slow heat/cool experiments were conducted using 

MTDSC with a focus on characterising thermal events occurring from 30°C to 160°C.  

Finally, Qi-MTDSC experiments were conducted to allow for the thermal characterisation 
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of both standardised samples without the influence of heating rate.  All experiments in this 

section were conducted using a Perkin Elmer 40 µL, 0.15mm aluminium pan (B014-3021) 

with an accompanying aluminium 0.05mm pin-holed lid (B700-1014).  

 

Conventional 2, 20, 50 and 100°C/min using a TA Instruments Q2000 

DSC experiments were conducted at 2, 20, 50 and 100°C/min using a TA Instruments 

Q2000.  Figure 3.31 shows a typical DSC heat flow signal for Th1 at 2, 20, 50 and 

100°C/min using a pin-holed pan.  A single endotherm was observed at 96.3°C for Th1 in 

DSC experiments conducted at 2°C/min.  At 20°C/min however, three endotherms were 

observed at 99.6°C, 125.0°C and 208.4°C.  Two endotherms were observed at 100°C/min 

and 50°C/min at 106.8°C, 134.4°C and 101.3°C, 132.5°C respectively.  At high heating 

rates (i.e. 100 and 50°C/min) experiments were not performed over 250°C due to 

instrument limitations and cell contamination risks.  Three endotherms were observed in 

all DSC experiments (at 2, 20, 50 and 100°C/min) for Th2 (Figure 3.32). The onset 

temperatures appeared to shift with increasing heating rate for the first two endotherms, 

but not for the third endotherm which remained relatively constant at ~210°C.  The results 

for both Th1 and Th2 are summarised in Table 3.4.   
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Figure 3.31 Typical DSC heat flow signal for Th1 at 2, 20, 50 and 100°C/min using a pin-

holed pan 

 

Figure 3.32 Typical DSC heat flow signal for Th2 at 2, 20, 50 and 100°C/min using a pin-

holed pan 
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Table 3.4 Endotherm values (°C) for Th1 and Th2 DSC  heat flow experiments at heating rates of 

experiments at 2, 20, 50 and 100°C/min ±0.212°C modulation over a 60 second period using a pin-

holed pan 

 Th1 Th2 

ENDOTHERM 

1 

ENDOTHERM 

2 

ENDOTHERM 

3 

ENDOTHERM 

1 

ENDOTHERM 

2 

ENDOTHERM 

3 

2°C/min 96.3°C 

(±0.50) 

- - 95.5°C 

(±0.80) 

105.8°C 

(±2.17) 

210.1°C 

(±2.02) 

20°C/min 99.6°C  

(±0.00) 

125.0°C 

(±0.45) 

208.4°C 

(±2.14) 

96.8°C 

(±0.02) 

120.9°C 

(±0.30) 

210.9°C 

(±0.17) 

50°C/min 101.3°C 

(±0.26) 

132.5°C 

(±0.86) 

- 101.7°C  

(±0.78) 

127.0°C  

(±1.22) 

211.2°C  

(±0.04) 

100°C/min 106.8°C 

(±1.9) 

134.4°C 

(±0.34) 

- 103.3°C  

(±1.0) 

130.8°C  

(±2.18) 

209.9°C  

(±0.44) 

 

Th1 appeared sensitive to increasing heating rate with a different thermal response observed 

at 2°C/min compared to the thermal response observed at 20°C/min, 50°C/min and 

100°C/min, whilst increasing the heating rate did not have an effect on the thermal 

response of Th2.  The reason for the differences observed could be related to the influence 

of water residence time on each sample; however, further experiments are required to 

confirm this theory.   

 

HyperDSC® at 500°C/min and 750°C/min  

Figure 3.33 and Figure 3.34 show HyperDSC
®

 heat flow responses for Th1 and Th2 at 

heating rates of 500 and 750
o
C/min.  In both cases, an endotherm was observed at 106

o
C 
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(Th1) and 102
o
C (Th2) at 500

o
C/min and 125

o
C (Th1) and 104

o
C (Th2) summarised in Table 

3.3.  At 750
o
C/min (Figure 3.33 and Figure 3.34) an additional exotherm was seen at 

150
o
C (in both samples).   

 

Figure 3.33 Typical HyperDSC
® 

heat flow signal for Th1 at 500 and 750°C/min using a 

pin-holed pan 

 

Figure 3.34 Typical HyperDSC
® 

heat flow signal for Th2 at 500 and 750°C/min using a 

pin-holed pan 
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A single endotherm was observed for Th2 at 500 and 750
o
C/min which differed 

significantly from data obtained in MTDSC pin-holed experiments.  A reason for this 

change is likely to be because the heating rate used in HyperDSC
®
 experiments is too fast 

to allow the second thermal event seen at lower rates to occur.  The exotherm observed at 

750C/min in both samples was attributed to baseline re-equilibrium effects.  Given that at 

high heating rates, the time to cross the same temperature window (as in MTDSC and DSC 

experiments) is reduced, any amorphous states achieved by dehydration at high heating rates 

would not be able to re-crystallise  

 

Table 3.5 Endo- and exotherm values (°C) for Th1 and Th2 DSC heating rate experiments at 

500 and 750°C/min using a pin-holed pan (n =3) 

 Th1 Th2 

ENDOTHERM  EXOTHERM  ENDOTHERM EXOTHERM 

500°C/min 106°C      

(±0.2) 

__ 102°C              

(±1.2) 

__ 

750°C/min 125°C      

(±0.5) 

150°C     

(±0.3) 

104°C              

(±0.6) 

150°C        

(±0.80) 

 

Use of slow heating and cooling rates (2, 1 and 0.5°C/min)  

The dehydration process of trehalose dihydrate and the products formed are dependent on 

the heating rate, which in turn relates to the residence time and interaction between crystal 

water and trehalose.  Slow heating/cooling MTDSC experiments were conducted to 

observe these effects with a focus on identifying products formed if any after the low 
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temperature endotherms observed in Section 3.3.4.4.1.  Slow heating and cooling MTDSC 

experiments were performed on Th1 at 0.5, 1 and 2°C/min using a ±0.212°C modulation 

over a 60 second period.  The first heat saw a single endothermic peak (Figure 3.35) 

invariant with heating rate in the total heat flow at 96.3°C (0.5°C/min), 96.2°C (1°C/min) 

and 96.0°C (2°C/min).   

 

Figure 3.35 Typical MTDSC total heat flow signal (1
st
 heat) for Th1 at 0.5, 1 and  2°C/min 

±0.212°C modulation over a 60 second period using a pin-holed pan 

 

The in-situ generation of an amorphous form of Th1 was observed at all heating rates 

indicated by a step change in the reversing heat flow signal on the cooling cycle 

characteristic of a Tg at 106.2°C at 0.5°C/min, 108.2°C at 1°C/min and 92.8°C at 2°C/min 

(Figure 3.36).  The presence of water in the glassy forms generated was confirmed by Tg 

values being lower than reported in the literature (expected Tg = 117°C (Jain and Roy, 

2009)).  The Tg of amorphous trehalose is expected to decrease by approximately 10°C for 

each 1% of water, compared to the anhydrous value (Crowe et al., 1996).   
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a)  

b)  

c)  

Figure 3.36 Typical MTDSC (cooling) reversing heat flow signal for Th1 at a)0.5°C/min  

b)1°C/min c) 2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan 
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glass transition observed was considered to be the “true” non-plasticized Tg of the 

amorphous form generated, as the residual moisture content of the samples was expected 

to be very low.  It is expected that water was driven off in the first heat and then on the 

second heat therefore Tg values obtained during the second heat would be influenced by 

less residual moisture compared to Tg values obtained during the cooling cycle.    

a)  

b)  
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c)  

Figure 3.37 Typical MTDSC (2
nd

 heat) reversing heat flow signal for Th1 at a) 0.5°C/min b) 

1°C/min c) 2°C/min ±0.212°C modulation over a 60 second period using a pin-holed pan 

 

A broad endotherm (Figure 3.38) was observed in the total heat flow (second heat) 

invariant of heating rate at ~206°C.  Interestingly, an exotherm was observed during 

1°C/min MTDSC experiments at 179.6°C seen in the total heat flow and the non-reversing 

heat flow but was not present in the reversing heat flow (Figure 3.40b). 
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b)  

c)  

Figure 3.38 Typical MTDSC (2
nd

 heat ) Total heat flow signal for Th1 at a)0.5°C/min  b)(in total, 

reversing and non-reversing heat flow) 1°C/min c) 2°C/min ±0.212°C modulation over a 60 second 

period using a pin-holed pan 

 

Slow heating and cooling MTDSC experiments were conducted on Th2 at 0.5, 1 and 

2°C/min ±0.212°C modulation over a 60 second period using pin holed pans.  The first 

heating cycle saw two broad low temperature endothermic peaks invariant with heating 

rate in the total heat flow as depicted in Figure 3.39.  The first was observed at 92.8°C 

(0.5°C/min), 93.2°C (1°C/min) and 95.1°C (2°C/min).  The second endotherm was seen at 

101.9°C (0.5°C/min), 102.3°C (1°C/min) and 102.4°C (2°C/min).   
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Figure 3.39 Typical MTDSC (1
st
 heat) total heat flow signal for Th2 at 0.5, 1 and 2°C/min 

±0.212°C modulation over a 60 second period using a pin-holed pan 

 

On cooling and on the second heating a glass transition was not detected in the reversing 

heat flow (insert Figure 3.40).   

 

Figure 3.40 Typical MTDSC (2
nd

 heat) total heat flow and cooling (insert) in reversing heat flow 

signal for Th2 at 0.5, 1 and 2°C/min±0.212°C modulation over a 60 second period using a pin-

holed pan 
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An endotherm was observed (Figure 3.41) in the second heat (in the total heat flow) at 

206.7°C (0.5°C/min), 209.3°C (1°C/min) and 209.6°C (2°C/min).  Though a Tg was not 

identified but an endotherm observed at ~212°C (in the total heat flow) in variant of 

heating rate.   

 

Figure 3.41 Typical MTDSC (2
nd

 heat) Total heat flow signal for Th2 at 0.5, 1, 2 °C/min ±0.212°C 

modulation over a 60 second period using a pin-holed pan 

 

Table 3.6 provides a summary of all values obtained during MTDSC slow heating 

experiments conducted at 0.5, 1, and 2°C/min for Th1 and Th2 samples.  In general, Th1 

samples did show a difference in thermal response with decreasing heating rate.  The in-

situ generation of an amorphous phase was observed in all heating rates.  During the 

second heat invariant of heating rate, an endotherm was observed at ~206°C.  An exotherm 

was also observed prior to the final endotherm in the total and non-reversing heat flow 

during 1°C/min experiments (at ~179°C). This was not observed at other heating rates and 

suggests that conditions in the 1°C/min experiments were favourable for sufficient nuclei 
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formation and growth within the amorphous phase when heated above Tg to a detectable 

limit.  This phenomenon has been documented elsewhere (Sussich and Cesaro, 2008) in a 

study observing the effects of heating rate on the thermal response of α,α-trehalose 

dihydrate at a heating rate of 1°C/min and 30°C/min using an open pan DSC system.  It 

was speculated that conditions at a slow heating rate of 1°C/min compared to studies at a 

higher heating rate of 30°C/min, provided enough time to “cross the Tg - Tm window” and 

allow the amorphous form generated from the melt of the anhydrous form, Tα at 130°C to 

undergo cold crystallisation.  Should this theory be accurate, an exotherm would be 

expected at an even slower heating rate of 0.5°C/min; however this was not observed.   

 

In comparison, MTDSC slow heating experiments conducted on Th2 saw the same thermal 

response invariant of heating rate.  Two low temperature endotherms were observed in the 

first heat.  It was concluded that a Tg was not detected in Th2 experiment as it had a weaker 

glass transition signal compared to the Tg observed in the cooling cycle in Th1 experiments.  

To gain better resolution of weak glass transitions, a large modulation amplitude should be 

used typically around ±1.5 to 2°C (Guinot and Leveiller, 1999).  This was taken into 

consideration when choosing experimental parameters for quasi-isothermal MTDSC 

experiments.  Modulation amplitude of ±1°C was chosen to improve resolution of the 

weaker glass transition, a larger value was not used so as to prevent the modulation from 

over-spanning the transition width (Guinot and Leveiller, 1999).  An endotherm was 

observed at ~209°C in the total heat flow in all heating rates. 

 

 



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

208 

Table 3.6 Summary of endotherm and Tg values for Th1 and Th2 MTDSC  slow heating and cooling 

experiments conducted at a heating rate of 0.5, 1, and 2°C/min ±0.212°C modulation over a 60 

second period using a pin-holed pan (n=3) 

 Th1 

FIRST HEAT 

(TOTAL HEAT 

FLOW) 

ENDOTHERM 

COOLING CYCLE 

(REVERSING HEAT 

FLOW) 

Tg 

2
ND

 HEAT 

(REVERSING HEAT 

FLOW) 

Tg 

2
ND

 HEAT 

(TOTAL HEAT 

FLOW) 

ENDOTHERM 

0.5°C/min 96.3°C (±0.72) 106.2°C (±0.63) 

∆Cp  0.58J/g·°C 

117.4°C (±0.56) 

∆Cp  0.55J/g·°C 

206.1°C (±1.41) 

1°C/min 96.2°C (±0.13) 108.2°C (±0.56) 

∆Cp  0.45J/g·°C 

110.8°C (±0.34) 

∆Cp  0.42J/g·°C 

(179.6°C 
(±0.70)Exotherm)   

206.97°C (±2.13) 

2°C/min 96.0°C (±0.75) 92.8°C (±0.21) 

∆Cp  0.46J/g·°C 

95.9°C (±1.45) 

∆Cp  0.57J/g·°C 

206.3°C (±1.56) 

                   Th2 

 FIRST HEAT 

(TOTAL HEAT FLOW) 

 

COOLING CYCLE 

AND 

2
ND

 HEAT 

(REVERSING HEAT 

FLOW) 

Tg 

2
ND

 HEAT 

(TOTAL HEAT 

FLOW) 

ENDOTHERM 
ENDOTHERM 1 ENDOTHERM 2 

0.5°C/min 92.8°C (±0.08) 101.9°C (±1.29) - 206.7°C (±1.78) 

1°C/min 93.2°C (±2.04) 102.3°C (±1.75) - 209.3°C(±0.06) 

2°C/min 95.1°C (±0.05) 102.4°C (±2.75) - 209.6°C (±0.63) 

 

Use of Quasi Isothermal MTDSC 

Qi-MTDSC is a variant of MTDSC where the experimental temperature is modulated 

around a constant underlying temperature for a specified time, after which the temperature 

is incrementally ramped up or down so as to obtain a profile through a transition (Manduva 

et al., 2008).  The heating rate is negated by holding the sample at a range of selected 

temperatures about which the sample is modulated.  The reversing heat capacity is signal 
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used in Qi-MTDSC experiments, reasons for this and further details of this technique were 

discussed in full detail in Chapter 2.  Qi-MTDSC experiments were conducted from 80°C 

to 160°C to characterise the transitions occurring within this temperature range and shed 

light on thermal response observed in slow heating MTDSC experiments.  Parameters used 

were chosen to improve the resolution of the weaker glass transition of the glass produced 

from the structural collapse of Th2. 

 

A typical Qi-MTDSC trace showing the reversing heat capacity signal as a function of 

time (temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments) 

from 80°C to 160°C for Th1 is shown in Figures 3.42.  The temperature range through 

which the heat capacity alters as the sample undergoes a series of thermal transitions is 

clearly seen.  The sudden change in heat capacity observed at 96°C in the Qi-MTDSC 

trace (Figure 3.42) correlated to the single endotherm seen in MTDSC experiments.  The 

heat capacity did not level off immediately, instead increased from 110°C to 128°C after 

which it reached a plateau.  
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Figure 3.42 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of Th1 at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments using a pin-

holed pan 

 

Qi-MTDSC trace for Th2 is shown in Figure 3.43.  An incremental increase in heat 

capacity was observed from 80°C to 86°C followed by an abrupt decrease seen at 88°C 

which was then followed by a dramatic and sudden increase in heat capacity at 90°C.  A 

decrease in heat capacity was observed from 92 to 110°C followed by a steep, but gradual 

increase from 112°C to 128°C.  After this event, a plateau in heat capacity followed by a 

decrease in heat capacity from 142°C to 154°C was observed.   
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Figure 3.43 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of Th2 at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments using a pin-

holed pan 

 

As discussed in Chapter 2, Qi-MTDSC is a useful technique in identifying sample de-

vitrification.  In a study by Verdonck et al., (1999) PET was heated below its Tg an 

increase in heat capacity was observed and corresponding to the de-vitrification of PET at 

Tg.  A decrease in heat capacity was detected as the sample reached a temperature where 

cold crystallisation occurred (Verdonck et al., 1999).  The results obtained in this section 

suggest on heating both Th1 and Th2 are dehydrated resulting in structural collapse and the 

in-situ generation of a glassy state.  This was observed for Th1 in slow heating MTDSC 

experiments were a glass transition was observed in cooling cycle and second heat cycle in 

the reversing heat flow.  A glass transition was not observed in the cooling cycle or second 

heat cycle in slow heating MTDSC experiments for Th2.  It was concluded that a Tg was 

not detected in Th2 slow MTDSC experiments as it had a weaker glass transition signal 

compared to the Tg observed in the cooling cycle in Th1 experiments.  This was taken into 
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consideration when choosing Qi-MTDSC parameters.  Qi-MTDSC experiments did not 

detect a cold crystallisation event between 80°C and 160°C from the glass produced from 

the structural collapse of Th1, however a cold crystallisation event was detected from the 

glass produced by Th2 (onset 142°C).   

 

A Lissajous figure in Qi-MTDSC is a plot of the modulated heat flow as a function of time 

derivative of modulated temperature.  Lissajous figures can be used to aid further 

interpretation of energetic transitions identified in Qi-MTDSC experiments.  Figure 3.44 

displayed a change in heat capacity at 96°C which correlated to the endotherm observed 

earlier in the study.  Lissajous figures were plotted for Th1 at 80°C and 96°C (Figure 3.44) 

in order to analyse and draw conclusion from any changes observed.  80°C was chosen as 

it was assumed based on previous results that at this temperature no thermal events 

occurred.  Both the slope and width of the Lissajous figures changed from 80°C to 96°C.  

A change in slope is suggestive of a change in heat capacity within the sample, whilst a 

change in width relates to the heat dissipation of the system.  The change in heat 

dissipation observed in this experiment could be related to the evaporation of crystal water 

from Th1, HSM studies were conducted to confirm this and are discussed in the following 

section.  Ellipses at 96°C were not as superimposed as they were at 80°C suggestive of an 

underlying change taking place as a function of time.  A change in ellipse shape is usually 

suggestive of an additional energetic process taking place e.g. melting or crystallisation, 

however, this was not observed here   



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

213 

 

Figure 3.44 Typical Lissajous figure in Qi-MTDSC as modulated heat flow (as a function of time 

derivative of modulated temperature) signal for Th1 at 80°C (black) and 96°C (red) using pin-holed 

pans 

 

A typical Lissajous figure for Th2 (plotted as modulated heat flow as a function of time 

derivative of modulated temperature) at 80°C and 86°C is shown in Figure 3.45.  Lissajous 

plots identified a change in width which as discussed earlier relates to the heat dissipation 

of the system, as well as a change in slope which correlates to the heat capacity of the 

system.  These results suggest that at 86°C an event occurs similar to that identified at 

96°C in Th1  
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Figure 3.45 Typical Lissajous figure in Qi-MTDSC as modulated heat flow (as a function of time 

derivative of modulated temperature) signal for Th2 at 80°C (black) and 86°C (red) using a pin-

holed pan 

 

Qi-MTDSC experiments conducted on Th2 at 90°C shown in Figure 3.40 (also shown in 

Figure 3.46a showed an increase in the heat capacity in four stages depicted as 90-1, 90-2, 

90-3 and 90-4 on the trace.  90-1 corresponded to the first 2 minutes of the isothermal 

period (sample held at 90°C isothermally for 20 minutes).  Whilst 90-2, 90-3 and 90-4 

corresponded to data obtained from 2 to 8minutes, 8 to 13minutes and 13 to 20 minutes of 

the isothermal period respectively.  In order to gain further insight into these changes, the 

modulated heat flow as a function of time derivative of modulated temperature was plotted 

generating a Lissajous figure (Figure 3.46b).  The plotted Lissajous figures did not appear 

to change drastically in slope however they did appear to increase drastically in width (heat 

dissipation) and a distortion of shape with increasing time at 90°C.  Ellipse distortion was 

suggestive of an addition energetic process occurring like a melting event at 90°C. 

 

-0.2

-0.1

0.0

0.1

0.2

M
o

d
u

la
te

d
 H

e
a

t 
F

lo
w

 (
W

/g
)

-8 -6 -4 -2 0 2 4 6 8

Deriv. Modulated Temperature (°C/min)

80°C
86°C

Exo Up Universal V4.7A TA Inst



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

215 

a)  

 

b)  

Figure 3.46 a) Typical Qi-MTDSC Reversing heat capacity (as a function of time) signal for un-

fractionated Th2 at 90°C b) Typical Lissajous figure in Qi-MTDSC as modulated heat flow (as a 

function of time derivative of modulated temperature )signal for un-fractionated Th2 at 90°C 

showing different changes in heat capacity when held isothermal for 20 minutes 

 

To shed light on the results obtained in this section HSM studies were conducted on both 

Th1 and Th2 from 30°C to 250°C. 
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3.3.4.4.4  Visualisation of thermal events using hot stage microscopy 

During HSM experiments, Th1 and Th2 were subjected to a controlled heating programme 

from 30°C to 250°C at 2°/min.  Transitions were visualised via a video capture 

microscope.  Both particles were coloured and showed birefringence at 30°C (Figure 3.47 

and 3.48).  Figure 3.47 shows HSM images captured at specific temperatures for Th1 

samples on heating at 2°C/min.  A change in birefringence was observed on heating, 

commencing at 84°C and continuing to 98.8°C with crystals appearing darker and 

becoming more opaque.  Further heating resulted in the dissolution of some crystals at 

118°C, with complete dissolution of all crystals at 145°C.  Crystallisation commenced at 

166°C resulting in fully formed crystals at 205.7°C with their subsequent melt at 209°C.   

 

 

  

30°C 98.8°

C 

119.2°C 145°C 
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Figure 3.47 Hot stage microscopy images captured at specific temperatures for Th1 sample 

heated at 2°C/min 

 

Th2 samples (Figure 3.48) on heating showed a change in birefringence at 89.9°C 

continuing to 95.7°C with crystals appearing darker and becoming more opaque.  Further 

heating resulted in the dissolution of all crystals, starting at 135°C in some crystals with 

complete dissolution of all crystals at 190°C.  Crystallisation was not observed in this 

experiment. 
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CRYSTALLISATION 



CHAPTER 3                    Generation and characterisation of standardised forms of trehalose dihydrate 

218 

  

Figure 3.48 Hot stage microscopy images captured at Th2 sample which at 2°C/min 

 

HSM studies for Th1 showed evaporation from the crystal lattice started at 84°C (identified 

by a change in birefringence).  This event was identified in Qi-MTDSC studies as a change 

in width of the Lissajous figure at 96°C and in MTDSC experiments (at ~96°C) where an 

endotherm was observed.  Further heating in HSM studies resulted in dissolution of 

crystals which lead to crystal formation (from the liquid) at ~ 205°C.  This was identified 

in slow heat/cool MTDSC experiments conducted at 1°C/min at ~179°C however due to 

experimental limitations such events were not observed in Qi-MTDSC studies.   

 

HSM studies for Th2 showed evaporation from the crystal lattice at ~95°C which was 

identified in Qi-MTDSC studies at a lower temperature (86°C) as a change in width of the 

Lissajous figures (similar to Th1).  After dissolution of Th2 crystals crystallisation was not 

observed in HSM studies which was contrary to Qi-MTDSC and MTDSC (closed pan at 

2°C/min) studies.   

 

135°C 190°C 
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As previously discussed, reasons for difference between Qi-MTDSC, MTDSC and HSM 

studies could be because HSM studies are conducted in an open air environment.  Relating 

this in DSC terms, HSM studies could reflect events occurring in an open pan experiment.  

Open pan studies were not conducted due to risk of cell contamination.   

 

3.3.4.5   Variable temperature ATR-FTIR at 2°C/min 

The heating and cooling of a sample results in phase changes which leads to a change in 

the physical property of the sample.  As discussed earlier in Chapter 2, ATR-FTIR is a 

form of vibrational infrared spectroscopy where molecules are excited by the absorption of 

infrared light.  During variable temperature ATR-FTIR experiments a sample is subjected 

to controlled heating over a set temperature range, spectra is taken at controlled intervals 

(e.g. every minute).  As the spectra is sensitive to both inter- and intra- molecular changes 

that occur as a result of heat changes, it is an effective technique for the studying of 

molecular structures and abrupt changes in hydrogen bonding as a function of temperature.   

 

In this study variable temperature ATR-FTIR was used as a complementary qualitative 

technique in conjunction with DSC, MTDSC and Qi-MTDSC studies to observe changes 

in molecular characteristics due to increased temperature which could be attributed to 

structural changes leading to the formation of anhydrous crystalline or amorphous forms of 

trehalose.  Variable temperature ATR-FTIR experiments conducted on Th2 confirmed the 

presence of a crystalline material identified in Qi-MTDSC studies.  A crystalline sample 

was not identified in variable temperature ATR-FTIR studies conducted on Th1.  

Unfortunately, due to experimental limitations heating higher than 200°C was not possible 

with the heating plate used in this experiment.  Therefore, the identification of the 
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crystalline material identified in HSM studies at 205.7°C was not possible.  Exploratory 

data analysis of spectroscopic data (i.e. hierarchical cluster analysis (HCA) and principle 

component analysis (PCA)) was used to identify changes in spectra with increasing 

temperature which could be attributed to structural changes occurring in sample.   

 

Variable temperature ATR-FTIR experiments were conducted as described in Chapter 2 

with an applied heating rate of 2°C/min from 30°C to 198°C spectra were obtained at 1 

minute intervals.  Exploratory data analysis of spectroscopic data HCA and PCA was 

conducted on data obtained.  As discussed in Chapter 2, HCA calculates and compares 

distances between samples (or variables) in a data set.  A similarity value of 1 is assigned 

to identical samples whilst a value of 0 to the most dissimilar samples.  PCA is a powerful 

visualization tool that finds linear combinations of original independent variables which 

account for maximal amounts of variation.  Scores analysis can be used to illustrate inter-

sample relationships.  Data is plotted as a two dimensional (2D) scatter plot with a 

confidence ellipse is superimposed.  This ellipse represents a 95% confidence level derived 

from the scores variance and is centered at the origin of the two score dimensions 

displayed.  Further details of both these techniques are discussed in Chapter 2.   

 

As previously discussed ATR-FTIR spectra of α,α-trehalose dihydrate shows characteristic 

peaks at 3500cm
-1

, 1650cm
-1

, 994cm
-1

 and 954cm
-1

.  A sharp band at ~3500cm
-1

 

corresponds to the OH stretch vibration of water with hydrogen boding to other molecules.  

The peak observed at ~3500cm
-1

 corresponds to the stretch vibrations of two crystal water 

molecules in trehalose dihydrate.  A peak observed at ~1650cm
-1

 is referred to as the H2O 

scissoring mode of crystal water, identification of this peak confirms the presence of 
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crystal water.  Peaks observed at ~994cm
-1

 and ~954cm
-1

 correspond to the α-(11) 

glycosidic bond.   

 

Figure 3.50 illustrates variable temperature ATR-FTIR spectra of Th1 showing two clusters 

as identified in HCA data.  Figure 3.49 shows the results of the HCA dendrogram of Th1 

for variable temperature ATR-FTIR spectra obtained from 30°C to 198°C at a heating rate 

of 2°C/min spectra at 1 minute intervals.  HCA dendrogram identified two clusters with a 

relatively low similarity value of approximately 0.3 indicating that samples identified 

within these clusters were relatively dissimilar.  The first cluster correlated to spectra 

obtained at 30°C to 116°C, whilst the second cluster correlated to spectra obtained at 

118°C to 198°C (Figure 3.50).  Analysis of ATR-FTIR spectra showed that from 30°C to 

116°C (depicted in red Figure 3.50) Th1 was crystalline as characterised by sharp 

absorption bands at 3500cm
-1

, 1650cm
-1

, 994cm
-1

 and 954cm
-1

.  At 118°C spectra changed 

and exhibited broad features which are an indication of a wide range of hydrogen bond 

lengths and orientations within a sample characteristic of an amorphous form.  The peak 

observed at 3500cm
-1

 corresponds to the stretch vibrations of two crystal water molecules 

in trehalose dihydrate disappeared.  A shift in the peak observed ~1650cm
-1

 which 

correlates to residual water shifted in the amorphous form which indicated that water 

molecules in the crystalline form are more strongly hydrogen bonded to trehalose 

molecules compare to water molecules bound in the amorphous form.  This phenomenon 

has been observed elsewhere (Wolkers et al., 2004).  No further changes in the spectra 

were observed between 188°C to 198°C as expected.  
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Figure 3.49 A hierarchical cluster analysis dendrogram of Th1 for variable temperature ATR-FTIR 

spectra obtained from 30°C to 198°C at a heating rate of 2°C/min spectra at 1 minute intervals  

 

 

Figure 3.50 Variable temperature ATR-FTIR spectra of Th1 showing two clusters as identified in 

HCA data (black) correlates to spectra at 30°C to 116°C, (red) correlates to spectra at 118°C to 

198°C 

 

Figure 3.51 shows the results of the hierarchical cluster analysis dendrogram of Th2 for 

variable temperature ATR-FTIR spectra obtained from 30°C to 198°C at a heating rate of 

3500cm
-1

 

1650cm
-1

 

994cm
-1

  954cm
-1
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2°C/min spectra at 1 minute intervals.  Figure 3.52 illustrates Variable temperature ATR-

FTIR spectra of Th2 showing three clusters as identified in HCA data.  HCA dendrogram 

identified three clusters with a relatively low similarity value of approximately 0.22 

indicating the samples identified within these clusters were comparatively dissimilar.  The 

first cluster correlated to a spectra obtained at 30°C to 116°C, the second to a spectra 

obtained at 118°C to 134°C and the third cluster to a spectra obtained at 136°C to 198°C 

(Figure 3.52).  Analysis of the spectra showed that from 30°C to 116°C (depicted in green 

in Figure 3.52) Th2 was crystalline as characterised by sharp absorption bands at 3500cm
-1

, 

1650cm
-1

, 994cm
-1

 and 954cm
-1 

in a similar trend to Th1 samples.  Spectra changed at 

118°C, the peaks observed at 3500cm
-1

 and 1650cm
-1

 disappeared and a peak at 3300cm
-1

 

was observed along with peaks at 994cm
-1

 and 954cm
-1

.  Spectra changed at 136°C 

changed and exhibited broad features indicative of a wide range of hydrogen bond lengths 

and orientations within a sample characteristic of an amorphous form. 

 

Figure 3.51 A hierarchical cluster analysis dendrogram of Th2 for variable temperature 

ATR-FTIR spectra obtained from 30°C to 198°C at a heating rate of 2°C/min spectra at 1 

minute intervals 
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Figure 3.52 ATR-FTIR spectra of Th2 showing three clusters as identified in HCA data (green) 

correlates to spectra at 30°C to 116°C, (red) correlates to spectra at 118°C to 134°C (black) 

correlates to spectra at 136°C to 198°C 

 

HCA identified an intermediate crystalline entity (which will now be referred to as Thx) 

that started forming at 118°C.  Further analysis of HCA dendrogram coupled with two 

dimensional PCA scores data (Figure 3.53) and ATR-FTIR spectra showed that an 

intermediate crystalline entity was fully formed at 118°C.  As discussed previously, spectra 

changed at 136°C to features characteristic of an amorphous form.  These results implied 

that an amorphous form was generated by the melt of the intermediary crystalline entity, 

Thx.  Two dimensional PCA scores data for both Th1 and Th2 (Figure 2.50 and Figure 2.51) 

showed the variable temperature ATR-FTIR spectra was divided into two groups and three 

groups respectively.   
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Figure 3.53 Two dimensional PCA scores plot of Th1 

 

Figure 3.54 Two dimensional PCA scores plot of Th2 
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PCA data and HCA data were in agreement for all the points as can be seen from the 

colour coding.  PCA data was however, able to identify difference in molecular 

arrangement between both samples from 30°C to 116°C. 

 

3.3.4.6   Generation and basic characterisation of Thx form 

Variable temperature ATR-FTIR studies showed that Th1 and Th2 experienced similar 

transitions from 30°C to 116°C after which their transitions differed.  An intermediary 

crystalline structure was identified after heating Th2 at 118°C.  Further investigations into 

this intermediary state were performed using variable temperature ATR-FTIR by heating 

Th2 at 2°C/min from 116°C to 120°C and holding isothermally for 12 hours to ensure full 

formation (Figure 3.55).  This procedure was carried to test out the reproducibility of the 

crystalline form generated.  After this, Thx samples were generated by heating Th2 in an 

oven pre-heated at 120°C with no vacuum.  Upon generation of this sample, it was 

characterised using SEM, XRPD, TGA and MTDSC techniques.    

 

ATR-FTIR results showed that the crystalline form generated after Th2 was held 

isothermally at 120°C for 12 hours was similar to that generated in previous ATR-FTIR 

studies characterised by the presence of peaks at 3300cm
-1

, 994cm
-1

 and 954cm
-1

.  This 

crystalline form was then generated in an oven pre-heated to 120°C with no vacuum and 

was again tested to confirm it was the same as that observed in variable temperature ATR-

FTIR studies of Th2 (Figure 3.56). 
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Figure 3.55 ATR- FTIR Spectra of Th2 at 120°C (blue), Th2 held isothermal for 12hours 

(red) 

 

 

Figure 3.56 ATR- FTIR Spectra of Th2 at 120°C (blue), Th2 held isothermal for12hours 

(red), Thx generated at 120°C in an oven (blue) 

Th2 at 120°C 

Th2 at 120°C 

Th2 Isothermal after 12hours 

Thx  

Th2 Isothermal after 12hours 
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Particle morphology of Thx was determined using SEM techniques.  SEM images of Thx are 

illustrated in Figure 3.57.  Thx samples were irregular in shape and had a different texture 

and morphology to Th2.  Particles were agglomerated together and appeared chalky in 

character. 

 

a)  

b)  

Figure 3.57 a) SEM image of Thx b) Cross section showing grain boundaries. Scale bar 

corresponds to a) 50µm b) 10 µm  

 

XRPD studies were performed on Thx to confirm its solid state. XRPD diffractogram of Thx 

(Figure 3.58) exhibited clearly defined sharp peaks of varied intensities.  These peaks 

correspond to the uniform lattice spacing and arrangements and orientation of molecules in 

the crystal lattice.  Peaks at 2θ 6.94°, 2θ 17.70°, 2θ 20.78° and 2θ 22.72° were identified.  

In previous studies the anhydrous form Tα has been identified by a peak existing at ca.2θ 
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16° which does not appear in the XRPD diffractogram of the dihydrate or the stable 

anhydrous form Tβ (Furuki et al., 2005).  Tβ is defined by peaks at ca.2θ 6.7°, ca.2θ 20.5° 

and ca.2θ 22.5.  Interestingly, XRPD diffractogram appeared to have an amorphous halo 

which was not evident in XRPD diffractograms of Th1 or Th2 

 

 

Figure 3.58 XRPD diffractogram of Thx  

 

In this study, MTDSC experiments were performed on Thx at 2°C/min with a ±0.212°C 

modulation over a 60 second period  A typical MTDSC total and reversing heat flow signal 

of Thx is shown in Figure 3.59.  The results obtained here proved very interesting.  In the 

reversing heat flow signal (amplified image provided in Figure 3.60), a step change 

characteristic of a glass transition event (with associated enthalpic recovery) was observed 

at 121.77°C with a heat capacity change (∆Cp) of 0.5206J/g·°C.  In the total heat flow, a 

single endotherm was observed at 210.27°C. 
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Figure 3.59 Typical MTDSC total and reversing heat flow signals for Thx at 2°C/min 

±0.212°C modulation over a 60 second period using a pin-holed pan

 

Figure 3.60 Typical MTDSC reversing heat flow signals for Thx at 2°C/min±0.212°C 

modulation over a 60 second period using a pin-holed pan 

 

A typical TGA profile for Thx conducted at 2°C/min (Figure 3.61) showed very interesting 

results.  Sample appeared to gain weight (1.4%) and then lost weight at 133°C (1.0%). 
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Figure 3.61 Typical TGA profile for Thx 

 

These preliminary TGA, MTDSC and XRPD data suggested that Thx is a form of  trehalose 

with XRPD characteristics similar to Tα and Tβ though also displaying an amorphous halo 

suggesting an amorphous element.  MTDSC results suggested Thx was amorphous by the 

presence of a glass transition seen before the melt at ~210°C and no other endotherms 

observed prior to the glass transition event.  No crystallisation was observed after the glass 

transition.  TGA data showed some very interesting results, showing weight gain and not 

expected weight loss with increasing temperature followed by a dramatic decrease in 

weight at 133°C. 

 

Previous studies (Sussich and Cesaro, 2008; De Giacomo, 2008) have suggested the 

existence of a non-crystallisable amorphous form of trehalose (Tam2) generated from the 

melt of an anhydrous trehalose form (in the literature this is reported as Tβ which melts at 
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210°C).  Final MTDSC experiments conducted on Thx were performed to identify if any 

transitions were observed on gentle heating Thx past its melt and cooling at the same 

heating temperature.   

 

Experiments involved heating Thx from 100°C to 215°C at 2°C/min.  The sample was held 

isothermally at 215°C for 5 minutes to ensure full melting of Thx and melting of any 

possible nuclei present.  Sample was then cooled at 2°C/min to 25°C and finally reheated 

to 250°C.  A typical MTDSC reversing heat flow signal for Thx in the cooling cycle is 

shown in Figure 3.62.  A Tg was observed at 116.89°C (∆Cp, 0.32J/g·°C).  In the heating 

cycle shown in Figure 3.63 a Tg was observed at a slightly higher temperature of 117.53°C 

(∆Cp, 0.72J/g·°C).  A total heat flow signal for the amorphous form generated by the melt 

of Thx is also depicted in Figure 3.63.  Further heating past the Tg showed identified a 

broad endotherm observed at 227°C. 

 

Figure 3.62 Typical MTDSC (cooling cycle) reversing heat flow signals for Thx at 2°C/min 

±0.212°C modulation over a 60 second period using a pin-holed pan 
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Figure 3.63 Typical MTDSC (heating cycle) reversing heat flow signals for Thx at 2°C/min 

±0.212°C modulation over a 60 second period using a pin-holed pan 

 

These results showed that an amorphous form was generated from the melt of Thx.  De 

Giacomo, (2008) has proposed the existence of two amorphous phases referred to as Tam1 

and Tam2.  Tam2 (Tg 117.9°C) is a non-crystallisable amorphous phase said to be the liquid 

obtained from the melt of Tβ which occurs at ~210°C  By these methods the liquid is 

unable to crystallise.  Whilst a crystallisable amorphous phase, Tam1 (Tg 117.3°C) is 

generated from the melt of the isomorph desolvate of the dihydrate Tα which occurs at 

~135°C.  The results detailed in this section confirmed the generation of an amorphous 

form from the melt of Thx however, Thx has been preliminarily identified as a mixture of 

Tα, Tβ possessing an amorphous element to its form.  Further characterisation of this form 

is required to fully determine the correlation of these finds to findings in the literature.  

Further experiments were not conducted on Thx as this was outside of the objectives of this 
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3.4 SECTION SUMMARY 

In this section the properties of Th1, Th2 and Thx are summarised in this section before a 

conclusion is reached on the results. 

 

The main objective of this study was to generate standardised forms of trehalose dihydrate 

and characterise samples with an aim to gain a further and clearer understanding of the 

thermal transitions of trehalose dihydrate with a focus on the transitions that occur between 

30°C to 160°C.  Two methods were employed to generate two different standardised forms 

of trehalose dihydrate.  Method I was based on a method by Dupray et al., (2009).  Th1 

samples were generated by slow evaporation of a 46.6%w/w (solubility of trehalose 

dihydrate at 20°C (Lammert et al., 1998)) saturated trehalose solution, whilst method II 

was based on water sorption studies (further discussed in Chapter 4) where amorphous 

trehalose was exposed to 75%RH (using a sodium chloride saturated solution stored at 

room temperature) generating Th2 samples.  Thx was generated by heating Th2 in an oven 

pre-heated at 120°C with no vacuum.   

 

Th1 

Th1 was confirmed to be trehalose dihydrate using XRPD and ATR-FTIR techniques were 

characteristic XRPD peaks and FTIR peaks were observed.   

 

Thermal characterisation of Th1 showed that transitions were greatly influenced by pan 

type and heating rate.  In both pin hole and closed pan systems a single low temperature 

endotherm was observed, the higher temperature endotherm observed at 224.3°C in pin-
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holed pan studies shifted to 119.6°C in closed pan experiments.  At 20°C/min fast heating 

DSC experiments three endotherms were observed (two low temperature endotherms and 

one higher temperature endotherm) were observed in contrast to tow endotherms and a 

single endotherm observed at 50, 100, 500 and 750°C/min.   

 

Slow heat/cool MTDSC experiments were conducted to observe the effects of heating rate 

on the products formed after the low temperature endotherm was observed.  Results 

suggested that on heating; Th1 was dehydrated resulting in structural collapse and the in-

situ generation of a glassy liquid.  This phenomenon was confirmed in Qi-MTDSC and 

variable temperature ATR-FTIR studies.  HSM studies identified crystallisation from this 

liquid at ~202°C unfortunately due to experimental limitations these effects were not 

reproduced in Qi-MTDSC or variable temperature ATR-FTIR studies.  However a 

crystallisation exotherm was observed in slow heat/cool MTDSC experiments in the 

second heat at 1°C/min at ~179°C/min.   

 

Dupray et al., (2009) conducted open pan DSC and TGA experiments on Th1 at 1°C/min 

(Figure 3.64).  The first endotherm (1) was assigned to dehydration associated with a 

transition from trehalose dihydrate to an amorphous form.  An exotherm (2) was observed 

linked to a cold crystallisation event corresponding to the re-crystallisation of the stable 

anhydrate Tβ.  Dupray et al., (2009) suggest that the second low temperature endotherm 

was caused by a migration of a fluid phase beneath the crystallized surface which leaves 

the crystal at ~124°C (3).  This was then followed by the melt of Tβ (4). 
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Figure 3.64 DSC (plan line) and TGA (dotted line) curves for Th1 taken from Dupray et al., (2009) 

at a heating rate of 1°C/min 

 

Th2 

Th2 was confirmed to be trehalose dihydrate using XRPD and ATR-FTIR techniques were 

characteristic XRPD peaks and FTIR peaks were observed.   

 

Thermal characterisation of Th2 showed that transitions were influenced by pan type and to 

a lesser extent heating rate.  Three endotherms were observed in pin-holed experiments in 

contrast to two endotherms observed in closed pan studies.  The second endotherm 

observed in pin-holed studies was attributed to water loss.  MTDSC and TGA results 

indicated that when both samples are heated in a closed pan system, water loss is impeded 

which in turn alters the temperature for phase transitions.   
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In slow/cool MTDSC experiments, Tg was not detected in the cooling cycle or in the 

second heat.  This could have been due to a weaker glass transition signal compared to the 

Tg observed in the cooling cycle and second heat in Th1 experiments.  Modulation 

amplitude of ±1°C was chosen to improve resolution of the weaker glass transition in Qi-

MTDSC experiments.  An endotherm was observed at ~209°C in the total heat flow in all 

heating rates in slow MTDSC experiments.  These results were not supported by HSM 

studies. 

 

Qi-MTDSC suggested that on dehydration of Th2 resulted in structural collapse and the in-

situ generation of a glassy liquid.  However, variable temperature ATR-FTIR showed that 

upon heating Th2, Thx was formed at 118°C.  

 

Thx samples were generated by heating Th2 in an oven pre-heated at 120°C with no 

vacuum.  These preliminary TGA, MTDSC and XRPD data suggested that Thx is a form of 

trehalose with XRPD characteristics similar to Tα and Tβ though also displaying an 

amorphous halo suggesting an amorphous element.  Further MTDSC experiments 

confirmed the generation of an amorphous form from the melt of Thx Further 

characterisation of this form is required to fully determine the correlation of these finds to 

findings in the literature.   

 

Figure 3.65 is a schematic illustrating the thermal transitions of Th1, Th2 and Thx identified 

from experiments conducted in this study.  This shows that dehydration of Th1 resulted in 

structural collapse leading to the generation of an amorphous form.  Further heating lead to 
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the re-crystallisation of Tβ confirmed by the subsequent melt at ~210°C.  In contrast, 

dehydration of Th2 resulted in the structural collapse and molecular re-arrangement to Thx 

further heating resulted in generation of an amorphous liquid.   

 

 

 

 

Figure 3.65 schematic illustrating the thermal transitions of Th1, Th2 and Thx 

 

3.5 CONCLUSION 

Preliminary work detailed in Section 3.2 aimed to determine the influence of inter- and 

intra-batch variations on the thermal response of trehalose dihydrate by performing a series 

of thermal, spectroscopic and X-ray diffraction techniques on trehalose dihydrate obtained 

from two different manufacturers.  Results obtained confirmed the need for standardised 

forms of trehalose dihydrate to “erase” the processing history of in order to achieve a clear 

understanding of the thermal transitions of trehalose dihydrate. 

 

The main objective of the work detailed in this section was to generate standardised forms 

of trehalose dihydrate and characterise samples with an aim to gain a further and clearer 

understanding of the thermal transitions of trehalose dihydrate with a focus on the 

transitions that occur between 30°C to 160°C.  Two methods were employed to generate 

two different standardised forms of trehalose dihydrate.  Method I was based on a method 
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by Dupray et al., (2009).  Th1 samples were generated by slow evaporation of a 46.6%w/w 

(solubility of trehalose dihydrate at 20°C (Lammert et al., 1998)) saturated trehalose 

solution, whilst method II was based on water sorption studies (further discussed in 

Chapter 4) where amorphous trehalose was exposed to 75%RH (using a sodium chloride 

saturated solution stored at room temperature) generating Th2 samples. 

 

In contrast to trehalose dihydrate batches Sigma B and Acros batch a clearer baseline was 

observed in MTDSC studies conducted on standardised forms Th1 and Th2.  Using 

standardised forms of trehalose dihydrate, physico-chemical properties identified could be 

attributed to the intrinsic properties of the sample and preparation method and not due to 

sample variability.  Using standardised forms, a clearer understanding of the thermal 

transitions and thermal behaviour of trehalose dihydrate on heating were able to be made.    



 

 

CHAPTER FOUR 

CHARACTERISATION OF AMORPHOUS AND 

CRYSTALLINE SUGARS 
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4.1 BACKGROUND 

In order to proceed with further experiments, it was important to have an understanding of 

the basic physico-chemical properties of the amorphous samples generated.   

 

4.2 STUDY OBJECTIVE 

The objective of the work detailed in this chapter was to generate pure amorphous sugars 

(via spray drying) and characterise their physico-chemical properties using a range of 

diffraction, spectroscopic and thermal techniques with reference to their crystalline 

counterparts.  Standardised forms of trehalose dihydrate (Th1 and Th2) were extensively 

characterised in the previous Chapter full details of these results are presented in Chapter 

3.  

4.3 GENERAL METHODOLOGY 

Amorphous sugar samples (trehalose, raffinose and sucrose) were generated via spray 

drying.  Full details of the method and spray drying parameters used are detailed in 

Chapter 2.  Particle morphology and size distribution were determined using scanning 

electron microscopy (SEM) and particle size analysis using laser diffraction.  X-ray 

powder diffraction (XRPD) and ATR-FTIR were use as techniques to distinguish between 

the natures of the amorphous and crystalline samples.  Modulated temperature DSC 

(MTDSC) was used to thermally characterise samples.  Thermogravimetric analysis (TGA) 

was use to determined sample water content.  Kinetics of water uptake was investigated in 

amorphous samples using dynamic vapour sorption (DVS).  Full details of these 
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techniques are outlined in Chapter 2 unless otherwise stated in the results and discussion 

section.   

 

4.4 RESULTS AND DISCUSSION 

4.3.1 PARTICLE SIZE AND MORPHOLOGY ANALYSIS OF CRYSTALLINE AND 

AMORPHOUS SAMPLES 

Figure 4.1 and Figure 4.2 show SEM images for raffinose pentahydrate and crystalline 

sucrose respectively.  SEM images of raffinose pentahydrate (Figure 4.1) showed 

obviously large crystals as well as smaller crystals that appeared needle-shaped in 

character.  At a higher magnification (Figure 4.1b), smaller crystals identified in Figure 

4.1 are confirmed to be needle-like crystals and were also accompanied by smaller 

irregular shaped crystals.   

a)  
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b)  

Figure 4.1 SEM images of raffinose pentahydrate.  Scale bar corresponds to a) 500µm b) 

100µm. 

 

Figure 4.2 show SEM images of crystalline sucrose showing a large rectangular shaped 

crystalline and a large crystal agglomerate (Figure 4.2b) made up of fused smaller crystals.   

 

a)  
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b)  

Figure 4.2 SEM images of crystalline sucrose.  Scale bar corresponds to 100µm. 

 

Generally, it is expected that amorphous particles generated via spray drying are spherical 

in shape.  The particle morphology of amorphous samples produced in this study proved 

intriguing and are shown in Figure 4.3, Figure 4.4 and Figure 4.5.  Amorphous trehalose 

(Figure 4.3), raffinose (Figure 4.4) and sucrose (Figure 4.5) particles were spherical in 

shape and appeared solid in structure.  However, SEM images for both amorphous 

trehalose and raffinose samples suggested that particle formation occurred because of 

smaller particles were being engulfed to make larger particles.  It is likely that this 

phenomenon was because of droplet evaporation in the spray drying process.  The size and 

morphology of particles generated by spray drying is determined by the stage at which 

droplet evaporation occurs (Moran and Buckton, 2007); solid particles formed are 

generally smaller than the droplet from which they have precipitated.  Droplets with a 

lower solid content will be formed at a later stage in the process therefore resulting in 

smaller particles. This variation in rates of evaporation of different droplet sizes may help 

to explain the observations in amorphous trehalose and raffinose samples.  Typical droplet 

mass median diameters in pharmaceutical spray dryers range from less than 10μm for 
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pulmonary applications to upwards of 100μm, which translates to a typical dry particle 

diameter range of 0.5 to 50μm (Vehring, 2008).   

 

Figure 4.3 SEM images of a) amorphous trehalose. Scale bar corresponds 5µm  

 

  

Figure 4.4 SEM images of amorphous raffinose.  Scale bar corresponds to 10µm  

 

Amorphous sucrose particles (Figure 4.5) showed evidence of a high degree of particle 

fusion and possible evidence of deliquescence.  Deliquescence (see Chapter 1 for further 
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details) occurs when water is absorbed onto the particle surface enhancing molecular 

mobility leading to the dissolution of the amorphous solid; this process makes particles 

“sticky” and can promote crystallisation (Salameh and Taylor, 2005).   

 

  

Figure 4.5 SEM image amorphous sucrose. Scale bar corresponds to 50µm  

 

Aggregates were observed in all amorphous samples where smaller particles had fused 

together forming an agglomerate.  This can occur when samples are close to their glass 

transition temperature in the spray dryer collection vessel making them sticky.  

Unfortunately, this can hinder product flow and stability.  However, it can easily be 

prevented if the experimental outlet temperature can be controlled.  Unfortunately, in this 

experiment it was not possible to control the outlet temperature.   

 

Comparing SEM images of both amorphous and crystalline samples, it is apparent that the 

two forms have different morphologies and that the spray drying process results in a 

decrease in particle size and change a in morphology relative to crystalline samples. 
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Particle size analysis was performed using laser diffraction.  Results presented (Figure 4.6, 

4.7 and 4.8) shows particle size analysis as the density distribution of particles (log of the 

volume size distribution) versus particle size.  Raffinose pentahydrate particles (Figure 

4.6) demonstrated a broad bi-modal distribution with the smallest crystals approximately 

5µm in size and the largest particles approximately 490µm in size.  Crystalline sucrose 

particles (Figure 4.7) were distributed between approximately between 400µm and 800µm.  

It is possible that the bi-modal distribution observed in raffinose pentahydrate particle size 

analysis was due to the morphology of raffinose pentahydrate crystals where the length and 

the width possibly produced two different distributions.  This event could possibly negate 

laser diffraction results making them unreliable.   

 

Figure 4.6 Average particle size distribution for raffinose pentahydrate 
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Figure 4.7 Average particle size distribution for crystalline sucrose 

 

Spray dried amorphous particles (Figure 4.8) were of a more normal distribution with 

amorphous sucrose particles possessing a larger particle size distribution (approximately 

5µm - 55µm) which could possibly be due to particle fusion and aggregate formation.  

Unfortunately, should aggregation occur, the laser diffraction system measures the overall 

size of the agglomerate instead of the size of the primary particles.  Amorphous raffinose 

and amorphous trehalose particles were both normally distributed between 5µm-40µm and 

5µm-45µm respectively.  The particle size distributions for all amorphous particles 

generated in this study were similar, which was expected as the same spray drying 

conditions (i.e. same nozzle, inlet temperature and pump flow rate) were used for the 

preparation of each sample.   
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Figure 4.8 Average particle size distribution for amorphous trehalose, amorphous 

raffinose and amorphous sucrose 

 

Overall, the results presented confirmed findings in SEM experiments in that crystalline 

and amorphous samples possess different particle size and morphology.  Amorphous 

samples showed a reduced particle size compared with their crystalline counterparts.  With 

raffinose pentahydrate and crystalline sucrose particles ranging from 5µm - 490µm and 

2µm - 90µm (respectively).  Amorphous raffinose, trehalose and sucrose particles ranged 

from 5µm - 45µm and 5µm -55µm respectively. 
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4.3.2.  X-RAY DIFFRACTION ANALYSIS OF CRYSTALLINE AND AMORPHOUS 

SAMPLES 

Crystalline and amorphous samples of the same material are chemically identical but 

physically distinct.  The XRPD profile for raffinose pentahydrate (Figure 4.9) displayed 

characteristic and expected peaks for raffinose pentahydrate at ca. 2θ 10.3°, 13.2° and 

20.7° (Berman, 1970).  Crystalline sucrose (Figure 4.10) showed characteristic and 

expected peaks at 2θ 11.6°, 13.1°, 18.8°, 19.6° and 24.6° (Hynes and Lepage, 1991).   

 

 

Figure 4.9 XRPD diffractogram of raffinose pentahydrate 



CHAPTER 4                                        Characterisation of amorphous and crystalline sugars 

251 

 

Figure 4.10 XRPD diffractogram of crystalline sucrose 

It can clearly be seen that crystal sugar (raffinose pentahydrate and crystalline sucrose) 

diffractograms produced a serious of clearly defined peaks of varying intensities which 

corresponds to the uniform lattice spacing and the arrangements and orientation of the 

molecules in agreement with the literature.   

 

XRPD diffractograms for amorphous samples (Figure 4.11) showed an “amorphous halo” 

pattern showing no sign of peaks, indicating the absence of crystallinty (within instrument 

detection limits).  The observed “amorphous halo” pattern occurs as a result of relative 

random arrangements of molecules within the amorphous materials.  XRPD results for 

both amorphous and crystalline samples highlights the distinct differences in molecular 

arrangements between the two states. 



CHAPTER 4                                        Characterisation of amorphous and crystalline sugars 

252 

a) b)  

c)  

Figure 4.11 XRPD diffractogram of a) amorphous raffinose b) amorphous sucrose c) amorphous 

trehalose 

 

4.3.3.  SPECTROSCOPIC ANALYSIS OF CRYSTALLINE AND AMORPHOUS SAMPLES  

Due to the temperatures used in the spray drying process to evaporate the solvent (in this 

case water), the spray-dryer glassware tended to get warm during particle processing.  This 

includes the sample collection vessel and hence because of this there was some potential 

for the material produced at the start of processing to increase in temperature and re-

crystallise before the run was finished.  It was therefore important to check the amorphicity 

of the sample produced.   

 

4.3.3.1  Crystalline Samples 

ATR-FTIR spectra of raffinose pentahydrate and crystalline sucrose exhibited sharp 

absorption bands characteristic of crystalline sugars (Figure 4.12).  The peak observed at 
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1650cm
-1

 in raffinose pentahydrate spectra (Figure 4.12) confirms the presence of water 

within its crystalline structure.  A peak was not observed at 1650cm
-1

 for crystalline 

sucrose (Figure 4.12) suggesting the presence of water was not detected in ATR-FTIR 

studies.   

 

Figure 4.12 ATR-FTIR spectra of raffinose pentahydrate ( blue ) and crystalline sucrose ( 

red ) 

 

4.3.3.2  Amorphous Samples 

ATR-FTIR spectra of amorphous trehalose, raffinose and sucrose all exhibited board 

features compared to their crystalline counterparts.  Broad features are an indication of a 

wide range of hydrogen bond lengths and orientations within a sample.  The peak observed 

at ~1650cm
-1

 is an indicator of the presence of water within an amorphous sugar sample.  

Amorphous raffinose and trehalose samples (Figure 4.13) both had smaller peaks at 

~1650cm
-1

 compared to their crystalline counterparts implying as expected that these 

amorphous samples had lower water contents compared to their corresponding crystal 
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hydrate counterparts.  ATR-FTIR spectra for amorphous sucrose saw an absorbance peak 

at ~1650cm
-1

.  These results suggested that amorphous sucrose had a greater amount of 

water in its structure compared to its crystalline counterpart.   

 

Figure 4.13 ATR- FTIR Spectra of amorphous raffinose (blue), amorphous sucrose (red) 

and amorphous trehalose (green) 

 

Sharper and more intense peaks in a crystalline solid compared to an amorphous solid is 

due to a higher degree of homogeneity of intermolecular interactions, increased hydrogen 

bond density and strength (Wolkers et al., 2004) compared to its amorphous counterpart.  

ATR-FTIR experiments further confirmed evidence of no crystallisation material present 

in amorphous samples as all samples exhibit broad peaks.  Hence, these results confirmed 

the generation of pure amorphous sugars by spray drying in this study.  
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4.3.4  THERMAL ANALYSIS OF AMORPHOUS AND CRYSTALLINE SAMPLES 

In this section, thermal properties of both crystal and amorphous samples were explored 

using modulated temperature DSC (MTDSC) and thermogravimetric analysis (TGA).  All 

amorphous samples were analysed using pin-holed pans.  Tg values were obtained in two 

heating cycles to observed the true un-plasticized Tg (in the second heat).   

 

4.3.4.1 Raffinose pentahydrate and amorphous raffinose 

Figure 4.14 is typical MTDSC trace (2°C/min ±0.212°C modulation over a 60 second 

period) and TGA weight profile (2°C/min) for raffinose pentahydrate determined under a 

pin-holed pan system.  A single endothermic peak was observed in the MTDSC total heat 

flow at (onset) 80.6°C.  These results were contrary to that seen by Cheng and Lin (2006) 

but in agreement with reports elsewhere (Iglesias et al., 2000; Chamarthy et al., 2010).  

DSC experiments (performed under an open pan system) by Cheng and Lin (2006) saw 

three endothermic peaks at 56, 73 and 85°C which were attributed to a step-wise sequence 

of weight loss of five water molecules of raffinose pentahydrate to its anhydrate form.  The 

expected weight loss for raffinose pentahydrate is 15.27%, which is equal to five moles of 

water.  The total weight loss observed in TGA experiment was 15.07% (Figure 4.14b), 

which equated to a loss of five moles of water.  At 30°C to 67.3°C, the equivalent of one 

mole of water was lost, after this a further three moles of water was lost over the same 

temperature range as the melt endotherm observed in MTDSC studies  Finally, a further 

one mole of water was lost after the melt endotherm had occurred. 
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a)  

b)  

Figure 4.14 A typical MTDSC (in the total heat flow) for raffinose pentahydrate at 

2°C/min ±0.212°C modulation over a 60 second period and b) A typical TGA weight loss 

profile for raffinose pentahydrate heated at 2°C/min using a pin-holed pan 

 

Three of raffinose pentahydrate’s water molecules are located in a tunnel within the 

structure of raffinose where they act as both hydrogen donors and acceptors in a complex 

hydrogen bond network with raffinose (Bates et al., 2007; Salekigerhardt et al., 1995).  The 

two other water molecules are situated outside of the tunnel and act only as hydrogen bond 

donors, one to raffinose and one to water and exhibit longer and weaker bonding than the 
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other three water molecules (Bates et al., 2007).  Due to the molecular arrangement of the 

water molecules in a raffinose pentahydrate crystal, it could be assumed that the latter two 

water molecules would initially leave the structure upon dehydration at a lower 

temperature as they are loosely bound to the raffinose crystal structure (Kajiwara et al., 

1999).   

 

The results obtained from MTDSC, coupled with TGA data in this study, suggest initially 

at lower temperatures a mole of water is lost on heating.  The temperature range in which 

three moles of water were released from raffinose pentahydrate overlapped with the 

endotherm observed in MTDSC.  As three of the five water molecules are strongly bound 

to raffinose they will only be released from the crystal lattice when sufficient energy is 

obtained to disrupt its structure, releasing the three remaining water molecules.   

 

A typical MTDSC trace for amorphous raffinose in the reversing heat flow signal is shown 

in Figure 4.15.  A low Tg on the first heat (Figure 4.15a) was observed at 51.2°C (∆Cp 

0.49J/g·°C) (expected Tg: 100 to 116°C (Chamarthy et al., 2010; Miller and Lechuga-

Ballesteros, 2006; Kajiwara et al., 1999).  The low Tg observed here was as a result of the 

plasticising effects of residual water. On the second heat a higher un-plasticized Tg (Figure 

4.15b) was observed at 116.1°C (∆Cp 0.37J/g·°C).  TGA weight loss profile (Figure 4.16) 

determined sample water content at 2.3%. 
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a)  

b)  

Figure 4.15 A typical MTDSC in the reversing heat flow signal for amorphous raffinose at 

2°C/min ±0.212°C modulation over a 60 second period showing  a)plasticized Tg at 51.2°C (first 

heat) b) un-plasticized Tg at 116.1°C using pin holed pans 
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Figure 4.16 Typical TGA weight loss profile of amorphous raffinose heated at 2°C/min 

using a pin holed pan system 

 

4.3.4.2 Amorphous trehalose 

A typical MTDSC trace for amorphous trehalose in the reversing heat flow signal is shown 

in Figure 4.17.  A low Tg on the first heat (Figure 4.17a) was observed at 51.8°C (∆Cp 

0.48J/g·°C) (expected Tg = 117°C (Jain and Roy, 2009)). The low Tg observed here was as 

a result of the plasticising effects of residual water. On the second heat a higher un-

plasticized Tg (Figure 4.17b) was observed at 119.9°C (∆Cp 0.42J/g·°C) TGA weigh loss 

profile (Figure 4.18) determined sample water content at 3.2%. 
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a)  

b)  

Figure 4.17 A typical MTDSC in the reversing heat flow signal for amorphous 

trehalose at 2°C/min ±0.212°C modulation over a 60 second period showing  

a)plasticized Tg at 51.8°C (first heat) b) un-plasticized Tg at 119.9°C using pin holed 

pans 
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Figure 4.18 Typical TGA weight loss profile of amorphous trehalose heated at 2°C/min 

using a pin holed pan system 

 

4.3.4.3  Crystalline sucrose and amorphous sucrose 

A single melt endotherm was observed in the total heat flow at 181.55°C in MTDSC 

experiments performed on crystalline sucrose (Figure 4.19), which was in agreement with 

previous report (Roos, 1993).  A small endotherm occurring just before the main melting 

endotherm of sucrose has been identified in previous studies conducted by Beckett et al., 

(2006) and Bhandari and Hartel, (2002).   The presence of the endotherm has been linked 

to the purity of crystalline sucrose used in particular in terms of its mineral salt content, 

and not associated with by the presence of amorphous material within the crystalline lattice 

as suggested (Bhandari and Hartel, 2002).  The water content observed for this crystalline 

sample was 0.0358%. Previous studies (Naini et al., 1998), did not detect weight loss in 

TGA profile which suggested crystalline sucrose did not possess water within its structure.   
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Figure 4.19 A typical MTDSC (in the total heat flow) for crystalline sucrose at 2°C/min 

±0.212°C modulation over a 60 second period (black line) and a typical TGA weight loss 

profile for raffinose pentahydrate heated at 2°C/min (blue line) using a pin-holed 

 

A typical MTDSC trace for amorphous sucrose in the reversing heat flow signal is shown 

in Figure 4.20.  A low Tg on the first heat (Figure 4.20a) was observed at 36.5°C (∆Cp 

0.70J/g·°C).  The low Tg observed here was as a result of the plasticising effects of residual 

water. On the second heat a higher un-plasticized Tg (Figure 4.20b) was observed at 

63.1°C (∆Cp 0.35J/g·°C).  TGA weigh loss profile (Figure 4.21) determined sample water 

content at 1.8%. 
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a)  

b)  

Figure 4.20 A typical MTDSC in the reversing heat flow signal for amorphous sucrose at 

2°C/min ±0.212°C modulation over a 60 second period showing  a)plasticized Tg at 

36.5°C (first heat) b) un-plasticized Tg at 63.1°C using pin holed pans 
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Figure 4.21 Typical TGA weight loss profile of amorphous sucrose heated at 2°C/min 

using a pin holed pan system 

 

The variation in reported Tg values for amorphous sucrose (ranging from 28°C to 78°C) in 

the literature (summarized in Table 4.1) appears dependent on several factors such as 

sample processing, residual moisture content (Roos, 1993), and physical aging and 

measurement method (Yu et al., 2008).  Plasticized and un-plasticized Tg values obtained 

in this study were comparable to literature values (though with slightly higher water 

contents) of amorphous sucrose samples generated by freeze drying (Ottenhof et al., 2003) 

and rapid drying of sugar solution (Wolkers et al., 1998) respectively.   
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Table 4.1 Reported literature Tg values of amorphous sucrose 

Tg (°C) ADDITIONAL INFORMATION REFERENCE 

21.8 22%RH, 4.7% water content, DSC 3°C/min Freeze dry (Ottenhof et al., 2003) 

33.2 11%RH, 3.3% water content, DSC 3°C/min , Freeze 

dry 

(Ottenhof et al., 2003) 

58.6 0%RH, 0.5% water content, DSC 3°C/min , Freeze dry (Ottenhof et al., 2003) 

60 Quenched melt, DSC (Mathlouthi et al., 

1986) 

62 Rapid drying of sugar solution, VT-FTIR 1°C/min (Wolkers et al., 1998) 

67 DSC 5°C/min, made amorphous from melt (Roos, 1993) 

72.9 HyperDSC100°C/min, Spray Dry (Lappalainen et al., 

2006) 

78 DSC 20°C/min, Freeze dry (Shamblin and 

Zografi, 1999) 

 

4.3.5 DYNAMIC VAPOUR SORPTION ANALYSIS OF AMORPHOUS SAMPLES 

Amorphous sugars are generally hygroscopic and have a strong tendency to take up water 

vapour.  In the presence of water, acting as a plasticiser, the Tg is lowered.  This indicates 

that the difference between the temperature of the sample and the proximity to the glass 

transition will also decrease and therefore crystallisation will become progressively easier 

during the experiment (Hunter et al., 2010).  Crystallisation is usually the limiting factor 

determining the amount of water vapour taken up by low molecular weight amorphous 

sugars (Hancock and Shamblin, 1998).  Amorphous sugars in their crystalline form exists 

as hydrates (i.e. raffinose and trehalose).  To undergo recrystallisation these amorphous 

sugars must acquire the minimum number of water molecules required to convert to its 

stable hydrate.  For example, amorphous raffinose must acquire a minimum of 5 water 

molecules per raffinose molecule to form a stable pentahydrate.  Whilst amorphous 
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trehalose must acquire a minimum of 2 water molecules per trehalose molecule to form a 

stable hydrate (Hancock and Shamblin, 1998).  

 

4.3.5.1   Amorphous Trehalose 

Figure 4.22 is a typical sorption isotherm curve for amorphous trehalose exposed to 10 to 

90%RH at sequential increments of 5%RH at 25°C.  The curve shows that the sample lost 

water at 10%RH (quantity was dependent on the original water content of the sample).  

From 20 to 30%RH, the sample absorbed a relatively small amount of water.  Water 

absorption at lower humidities is likely to be absorbed onto the surface of the amorphous 

particles.  The amount of water absorbed at 40 to 50%RH increased dramatically 

suggesting that at 40%RH and 50%RH water was being absorbed into the amorphous 

particles and not just on the surface.  At 60%RH, initially the sample showed some 

absorption signified by an increase in weight this was quickly followed by a sharp loss of 

water (seen as a decrease in weight).  The weight loss observed here was due to 

recrystallisation of the amorphous trehalose to trehalose dihydrate.  The total weight 

change determined from 10%RH to the end of recrystallisation was 8.33%.  The starting 

water content was 3.20%, therefore total water content by the end of the experiment was 

11.53%.  Gradual water loss (indicated as a decrease in the DVS profile) continued at 

80%RH and 90%RH was attributed to ongoing crystallisation of small amounts of 

amorphous trehalose in the core as observed elsewhere (Hunter, 2009a).   
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Figure 4.22 Sorption isotherm curve for amorphous trehalose exposed to 10 to 90%RH at 

sequential increments of 5%RH steps at 25°C  
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weight change from 10%RH to the end of recrystallisation was 11.68%.  The starting water 

content was 2.28%, therefore total water content by the end of the experiment was 13.96%.  

Further weight loss was not observed at 90%RH.   

 

a)  

b)  

Figure 4.23 Sorption isotherm curve for amorphous raffinose exposed to 10 to 90%RH at 

sequential increments of 5%RH steps at 25°C b) close up crystallisation transition 
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4.3.5.3   Amorphous Sucrose 

It was expected that amorphous sucrose would re-crystallise at a lower humidity compared 

to amorphous trehalose and amorphous raffinose as previous reports show humidity 

induced crystallization occurs at between 40%RH to 80%RH in partially amorphous 

sucrose (Yu et al., 2008).  DVS experiments conducted on amorphous sucrose samples did 

not have the same DVS profile as amorphous trehalose and raffinose samples.  Figure 4.24 

is a typical sorption isotherm curve for amorphous sucrose exposed to 10 to 90%RH at 

sequential increments of 5%RH at 25°C.  The curve showed that the sample lost a small 

amount of water (signified as a decrease in weight) at 10% RH, (a similar behaviour was 

observed for both amorphous trehalose and amorphous raffinose).  This was followed by a 

large increase in weight at 40%RH and 90%RH, a decrease in weight was not observed.   

 

 

Figure 4.24 Sorption isotherm curve for amorphous sucrose exposed to 10 to 90%RH at 

sequential increments of 5%RH steps at 25°C 
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These results were not as expected.  The effect of crystal formation on the water balance in 

amorphous system is dependent on the type of crystal to be formed (Iglesias et al., 1997).  

Generally, amorphous sucrose is not expected to absorb large amounts of water below its 

deliquescence point (75%RH) a decrease in water content below this relative humidity 

would indicate sucrose crystallisation (Salekigerhardt and Zografi, 1994).  Though the 

DVS profile did not show clear evidence of recrystallisation, the sample appeared solid 

after DVS experiments confirming crystallisation of amorphous sucrose had occurred but 

was not detected. 

 

Amorphous materials can sorb large quantities of water vapour because water moles may 

additionally be absorbed into the bulk of the amorphous material instead of being restricted 

to the particle surface.  The amount of water absorbed is not directly related to the specific 

surface area of the solid.  A decrease in the weight profile occurs as the crystalline form 

has a lower affinity for water than its corresponding amorphous form (Surana et al., 2004). 

The onset of crystallisation is the highest weight value prior to the dramatic decrease in 

weight observed.  Factors controlling water vapour absorption for amorphous materials 

include the material’s physico-chemical properties, such as hydrophilicity, molecular 

weight, experimental temperature, relative humidity and the strength and nature of any 

interactions between the water and amorphous molecules (Hancock and Zograf, 1996).  

The results detailed in this study show that each amorphous sugars would sorb different 

amounts of water vapour under identical experimental conditions because of their 

individual physico-chemical properties. 
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4.5 CONCLUSION 

The objective of the work detailed in this chapter was to generate pure amorphous sugars 

(via spray drying) and characterise their physico-chemical properties using a range of 

diffraction, spectroscopic and thermal techniques.   A summary of the results obtained in 

the section  

Table 4.2 Summary of physico-chemical properties of crystalline samples (n=3) 

 RAFFINOSE PENTAHYDRATE CRYSTALLINE SUCROSE 

PARTICLE SIZE 
Bi-modal distribution 5µm - 

490µm 
400µm and 800µm 

SEM 

Large crystals and smaller 

crystals that appeared needle-

shaped in character. 

Large rectangular shaped crystals 

and a crystal agglomerate made 

up of fused smaller crystals 

XRPD 

Expected peaks for raffinose 

pentahydrate at ca. 2θ 10.3°, 

13.2° and 20.7° 

Expected  peaks at 2θ 11.6°, 

13.1°, 18.8°, 19.6° and 24.6° 

ATR-FTIR 

Characteristic of crystalline 

sugars peak observed at 1650cm
-1

 

confirming presence of water 

within crystalline structure 

Characteristic of crystalline 

sugars no peak observed at 

1650cm
-1

 

DSC 

Single endothermic peak was 

observed in the MTDSC total heat 

flow at (onset) 80.6°C 

A single melt endotherm was 

observed in the total heat flow at 

181.55°C in MTDSC 

experiments performed on 

crystalline sucrose 

WATER 

CONTENT 
15.07% 0.0358%. 
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Table 4.3 Summary of physico-chemical properties of amorphous samples (n=3) 

 AMORPHOUS RAFFINOSE AMORPHOUS TREHALOSE AMORPHOUS SUCROSE 

PARTICLE 

SIZE 
5µm - 45µm 5µm - 45µm 5µm -55µm 

SEM Spherical particles 
High degree of particle 

fusion 

XRPD Amorphous halo 

ATR-

FTIR 
Exhibited board features compared to their crystalline counterparts 

DSC 

PLASTICIZED 

Tg 

UN-

PLASTICIZED 

Tg 

PLASTICIZED 

Tg 

UN-

PLASTICIZED 

Tg 

PLASTICIZED 

Tg 

UN-

PLASTICIZED 

Tg 

51.2°C (∆Cp 

0.49J/g·°C) 

116.1°C (∆Cp 

0.37J/g·°C) 

51.8°C (∆Cp 

0.48J/g·°C) 

119.9°C (∆Cp 

0.42J/g·°C) 

36.5°C (∆Cp 

0.70J/g·°C) 

63.1°C (∆Cp 

0.35J/g·°C) 

WATER 

CONTENT 
2.3%. 3.2%. 1.8%. 

DVS Crystallisation observed Crystallisation observed 
No crystallisation 

observed 

 

In conclusion, amorphous sucrose, trehalose and raffinose were successfully generated by 

spray drying as confirmed by XRPD and ATR-FTIR results.  Though same spray drying 

parameters were used for all samples, sample water contents ranged from 1.84% to3.20%.  

Presence of water had a profound effect on Tg in all samples.  Un-plasticized Tg values 

were all within expected ranges.  With amorphous trehalose and raffinose displaying 

similar plasticized and un-plasticized Tg values.  Both amorphous trehalose and raffinose 

had higher Tg values than sucrose.  In DVS studies water induced crystallization was 

observed in amorphous trehalose and raffinose samples.  However, crystallization was not 



CHAPTER 4                                        Characterisation of amorphous and crystalline sugars 

273 

observed in amorphous sucrose samples though after DVS experiments sample appeared 

solid.   



 

 

CHAPTER FIVE 

USE OF SUGAR ADDITIVES (TREHALOSE AND 

RAFFINOSE) TO IMPROVE THE STABILITY OF 

AMORPHOUS SUCROSE  
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5.1 BACKGROUND 

In the previous chapter (Chapter 4), the physico-chemical properties of the amorphous 

samples generated was determined.  Both amorphous trehalose and raffinose displayed 

higher Tg values (as expected) compared to amorphous sucrose.  These findings prompted 

this study whereby sucrose was co-spray dried with sugar additives, trehalose and raffinose 

and the effects of increasing sugar additive on amorphous sucrose stability was observed. 

The main objective of this study was to investigate the use of the fragility parameter m and 

the strength parameter D as predictors of amorphous stability of generated co-spray dried 

samples.   

 

DSC experiments were conducted to calculate the activation energy for structural 

relaxation around Tg (∆ETg) for all samples using the heating/cooling rate dependence of 

Tg (Moynihan et al., 1974).  ∆ETg values obtained were then used to calculate the fragility 

parameter (m) (Equation 5.1) and strength parameter (D) (Equation 5.2).  These 

parameters can be used to predict amorphous stability, as they reflect molecular mobility 

and interactions, although firm evidence for their predictive power is not yet available 

(Beckett et al., 2006; Graeser et al., 2009).  Quasi-Isothermal MTDSC (Qi-MTDSC) 

techniques were employed to observe if co-spray dried samples existed as one or two 

amorphous phases evident by the presence of either one or two glass transition events. 

 

The amorphous state can be deliberately generated to obtain higher drug bioavailability 

and, for excipients, is essential for stabilization of proteins and small molecules in freeze-

dried and spray dried products.  The advantageous properties of the amorphous state are as 
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a result of the thermodynamic properties of the amorphous state reflected in excess 

entropy, enthalpy and free energy (Graeser et al., 2009).  These factors along with 

enhanced molecular mobility in the amorphous state unfortunately also result in physical 

instability (i.e. recrystallisation).  Hence prevention of recrystallization from the 

amorphous state is of considerable interest.  

 

Crystallisation of an amorphous sample is dependent on two stages, nucleation and crystal 

growth (Van Scoik and Carstensen, 1990).  Cold crystallisation occurs when the 

amorphous sample or glass is heated beyond its Tg.  When crystallisation is the instability 

of concern, one is more concerned with the temperature of onset of crystallisation (Tc) than 

the rate of crystal growth.  Tc can be determined using isothermal and/or non-isothermal 

DSC techniques. 

 

Amorphous physical stability may be tentatively predicted using a range of fundamental 

parameters especially those with an emphasis on molecular mobility; these include the 

"fragility" of a liquid. The fragility of a liquid is a measure of the temperature dependence 

of the viscosity approaching Tg.  This is discussed in more detail in Chapter 1.  The 

fragility parameter (m), can be described using the following equation  

                                                               m = ∆ETg                                         Eq. 5.1 

                                                                                (ln (10))RTg 

 

where ∆ETg (can be calculated by using the scanning rate dependency of Tg) is the 

activation enthalpy for structural relaxation around the Tg and R is the gas constant (8.314 

JK
-1

mol
-1

). A large m value indicates rapidly changing dynamics at Tg which equates to 
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fragile behaviour (Crowley and Zografi, 2001).  Generally strong liquids have m values 

less than 40 whilst fragile liquids have m values greater than 75. Strong liquids have high 

viscosity at Tm and are resistant to structural changes, whilst fragile liquids exhibit lower 

viscosities at Tm and are less resistant to structural changes therefore are less stable (Baird 

et al., 2010).  Heat capacity changes at Tg for strong liquids are small because of minimal 

molecular mobility; however, they are larger for fragile liquids due to greater molecular 

mobility changes (Angell, 1995).  With reference to the melting temperature (Tm), strong 

liquids have higher viscosities at Tm and are resistant to structural changes.  Fragile liquids 

exhibit lower viscosities at Tm and are therefore less resistant to structural changes 

(Crowley and Zografi, 2001). 

 

D is a variable referred to as the strength parameter and can be described using the 

following equation   

                                           D = (ln(10))m
2

min                                             Eq. 5.2 

               m - mmin 

 

where mmin is a minimum value for m (τ at Tg is approximately 100s (measured using DSC 

at 10K/min) (Moynihan et al., 1974) whilst τ0 represents a timescale of vibrational motions 

of approximately 10
-14

s (Crowley and Zografi, 2001).  Using these approximations mmin 

has been defined as 16 in previous studies (Crowley and Zografi, 2001).  Strong liquids 

have large D values (greater than 30) whilst fragile liquids have relatively low D values 

(less than 10).  
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5.1.1 STUDY OBJECTIVES 

Previous studies have been performed with the aim of improving the stability of an 

amorphous sucrose system by adding a small percentage of another sugar (Leinen and 

Labuza, 2006; Salekigerhardt and Zografi, 1994; Roe and Labuza, 2005) or amino acids 

(Lu, 2011).  Whilst previous studies have evaluated the use of additives to improved 

temperature-induced crystallisation of amorphous sucrose, they have not investigated the 

effect these additive have on amorphous stability.  The objective of this study was to 

investigate the use of the fragility parameter m and the strength parameter D as predictors 

of amorphous stability of generated co-spray dried samples.   

 

5.1.2 GENERAL METHODOLOGY 

Previous studies on amorphous sucrose stabilisation used high percentages of additives (up 

to 80%w/w) (Davidson and Sun, 2001; Salekigerhardt and Zografi, 1994).  In this study 

sucrose was co-spray dried with trehalose and raffinose at an addition of 2.5, 4, 5.26 and 

11.11%w/w of total sucrose amount (dry mass)) using the following parameters : inlet 

temperature of 125ºC, an average pump flow rate of 3.7mL/min, 100% aspirator setting 

and an outlet temperature ranging from 60-80ºC (not controlled).  For ease of reference, 

samples will be referred to in terms of additive dry weight where T represents trehalose, S 

sucrose and R raffinose. 2.5, 4, 5.26 and 11 correspond to addition of 2.5, 4, 5.26 and 

11.11%w/w trehalose and raffinose (of total sucrose amount) i.e. ST2.5, ST4, ST5.26, 

ST11.11 and SR2.5, SR4, SR5.26 and SR11.11. 
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X-ray powder diffraction (XRPD) studies were performed to confirm sample amorphicity.  

ATR-FTIR studies were used to compare hydrogen bond arrangement of co-spray dried 

samples to ensure there was no interaction between sucrose and the additive.  DSC was 

used to calculate the activation enthalpy for structural relaxation around the Tg (∆ETg) 

using the heating rate dependency of Tg.  DSC experiments were conducted using pin-

holed pans and Tg values were obtained at 2, 5, 10, and 20°C/min.  It was essential for the 

cooling rate used to be equal to the subsequent heating rate, if not ∆ETg values obtained 

would not be accurate.  Thermogravimetric analysis (TGA) was used to obtain sample 

water content. Full details of these techniques are outlined in Chapter 2 unless otherwise 

stated in the results and discussion section. 

 

5.2 RESULTS AND DISCUSSION 

5.2.1 X-RAY DIFFRACTION ANALYSIS OF AMORPHOUS SAMPLES  

Typical XRPD diffractograms are illustrated in Figure 5.1 (amorphous sucrose), Figure 

5.2 (co-spray dried sucrose and trehalose samples) and Figure 5.3 (co-spray dried sucrose 

and raffinose).  It is well known that molecules in the amorphous phase are located 

randomly; they do however, exhibit short range molecular, translational and conformation 

order.  The XRPD diffractograms of all the traces appeared different, though they all 

possessed the characteristic “amorphous halo” pattern showing no sign of peaks and 

therefore indicating the absence of crystallinity (within the detection limits of the 

technique and equipment). The differences in halo shapes can be attributed to the 

identification of locations of short-range molecular order within the samples.  An example 

of this is with ST2.5 samples (Figure 5.2) and SR4 (Figure 5.3) where clear differences in 
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the halo pattern were observed.  Should crystallisation have occurred as a result of 

processing, peaks representing either isolated sucrose, raffinose or trehalose crystals would 

have been present in diffractograms.  These results show that fully amorphous samples 

containing a mixture of sucrose, raffinose and trehalose mixes were generated by spray 

drying.   

 
Figure 5.1 XRPD diffractogram of amorphous sucrose  

 

Figure 5.2 XRPD diffractogram of amorphous sucrose-trehalose samples 
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Figure 5.3 XRPD diffractogram of amorphous sucrose-raffinose samples 
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Figure 5.4 ATR-FTIR Spectra of amorphous sucrose and ST samples 

 

Figure 5.5 ATR-FTIR Spectra of amorphous sucrose and SR samples 
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5.2.3 SAMPLE WATER CONTENT 

TGA studies were conducted to determine sample water content.  Water content of 

amorphous sucrose in Chapter 4 was 1.8% (Figure 5.6).  ST and SR samples were 

generated using the same parameters used to generate amorphous sucrose samples 

therefore water contents were expected to be similar.  

 

Figures 5.7 to 5.10 are TGA weight loss profiles for ST2.5 (1.2%), ST4 (1.9%), ST5.26 

(2.5%) and ST11.11 (1.7%) samples.  Sample water content was similar although ST5.26 

samples had a slightly higher water content than the other ST samples. 

 

 

Figure 5.6 Typical TGA weight loss profile of amorphous sucrose heated at 2°C/min using a pin 

holed pan system 
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Figure 5.7 Typical TGA weight loss profile of ST2.5 heated at 2°C/min using a pin holed pan 

system 

 

Figure 5.8 Typical TGA weight loss profile of ST4 heated at 2°C/min using a pin holed pan system 

 

Figure 5.9 Typical TGA weight loss profile of ST5.26 heated at 2°C/min using a pin holed pan 

system 
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Figure 5.10 Typical TGA weight loss profile of ST11.11 heated at 2°C/min using a pin holed pan 

system 
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samples had a slightly higher water content than the other SR samples. 

 
Figure 5.11 Typical TGA weight loss profile of SR2.5 heated at 2°C/min using a pin holed pan 
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Figure 5.12 Typical TGA weight loss profile of SR4 heated at 2°C/min using a pin holed pan 

system 

 

Figure 5.13 Typical TGA weight loss profile of SR5.26 heated at 2°C/min using a pin holed pan 

system 

 

Figure 5.14 Typical TGA weight loss profile of SR11.11 heated at 2°C/min using a pin holed pan 

system 
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5.2.4 CALCULATION OF AMORPHOUS STABILITY PARAMETERS 

5.2.4.1 Determination of activation enthalpy (∆ETg) for structural relaxation around 

Tg (∆ETg), calculated from the heat rate dependency of Tg 

DSC experiments were conducted to calculate the activation energy for structural 

relaxation around Tg (∆ETg) for all samples.  In this study, ∆ETg was evaluated from the 

heating/cooling rate (q) dependence of Tg (Moynihan et al., 1974).  The heating rate 

dependency of Tg is usually measured using cooling/heating rates within the range of 2.5 to 

40°C/min, as either poor sensitivity or significant temperature lags are observed beyond 

each extreme (Crowley and Zografi, 2001).  DSC experiments were conducted at 2, 5, 10 

and 20°C/min samples were first heated, cooled and then heated again to obtain un-

plasticised Tg values.  Activation energies were evaluated using the heating rate 

dependency of the Tg, where Tg values were obtained in the second heat at 2, 5, 10 and 

20°C/min and were plotted according Equation 5.3.   

 

                                                        d ln q    = ∆HAct                                          Eq.5.3 

                                                         d(1/Tg)          R 

 

where R is the universal gas constant (8.314 JK
-1

mol
-1

) and q is the heating rate.  ∆ETg was 

calculated by multiplying the gradient of the graph by the gas constant. 

 

A typical DSC heat flow signal for amorphous sucrose samples at 2, 5, 10 and 20°C/min is 

provided in Figure 5.15.  Tg values (summarised in Table 5.1) obtained here where used to 

plot the natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.16. 
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Figure 5.15 A typical DSC heat flow signal for amorphous sucrose at 2,5,10 and 20°C/min  

 

 

Table 5.1 Summary of Tg values obtained from DSC heat flow signal for amorphous 

sucrose at 2, 5, 10 and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg (°C) Tg (K) 1000/Tg 

(K
-1

) 

2 0.6931 14.89 287.89 3.4735 

5 1.6094 16.75 289.75 3.4513 

10 2.3026 17.43 290.43 3.4432 

20 2.9957 18.87 291.87 3.4262 
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Figure 5.16 Activation energy determination from DSC heating rate experiments on amorphous 

sucrose. 

 

A typical DSC heat flow signal for ST2.5 samples at 2, 5, 10 and 20K/min is provided in 

Figure 5.17.  Tg values (summarised in Table 5.2) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.18. 
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b)   

c)  

Figure 5.17 A typical DSC heat flow signal for ST2.5 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min and at c)5°C/min 

 

Table 5.2 Summary of Tg values obtained from DSC heat flow signal for ST2.5 at 2, 5, 10 

and 20°C/min 

Heating 

rate, q 

(K/min) 

ln q Tg(°C) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 32.12 305.12 3.2774 

5 1.6094 36.39 309.39 3.2322 

10 2.3026 36.03 309.03 3.2359 

20 2.9957 37.13 310.13 3.2245 

 

-2.55

-2.50

-2.45

-2.40

-2.35

-2.30

-2.25

H
e

a
t 

F
lo

w
 (

W
/g

)

5 10 15 20 25 30 35 40 45

Temperature (°C)

20°C/min
2°C/min
5°C/min
10°C/min

Exo Up Universal V4.7A TA Instruments

-2.2

-2.0

-1.8

-1.6

H
e

a
t 

F
lo

w
 (

W
/g

)

0 10 20 30 40 50 60

Temperature (°C)

20°C/min
2°C/min
5°C/min
10°C/min

Exo Up Universal V4.7A TA Instruments



CHAPTER 5                                                                             Co-spray dried sugars 

291 

Figure 5.18a is a plot of the natural logarithm of the heating rate versus 1/Tg for ST2.5.  

The R
2
 value was 0.7700.  This low R

2
 value was due to the data point correlating the Tg 

observed at 5°C/min (data point is shown in red in Figure 5.18a).  This plot was removed 

and the line of best fit was recalculated (Figure 5.18b) the new R
2
 value was 0.9919, the 

gradient of this line was used to calculate the ∆ETg. 

a)  

b)  

Figure 5.18 Activation energy determination from DSC heating rate experiments on ST2.5.a) with 

2.5,10 and 20°C/min values plotted b) with 2,10 and 20°C/min values plotted 
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A typical DSC heat flow signal for ST4 samples at 2, 5, 10 and 20°C/min is provided in 

Figure 5.19.  Tg values (summarised in Table 5.3) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.20. 

 

a)  

b)  

Figure 5.19 A typical DSC heat flow signal for ST4 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min  
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Table 5.3 Summary of Tg values obtained from DSC heat flow signal for ST4 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

ln q Tg(°C) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 33.4 306.4 3.2637 

5 1.6094 39.03 312.03 3.2048 

10 2.3026 40.11 313.11 3.1938 

20 2.9957 41.84 314.84 3.1762 

 

 

Figure 5.20 Activation energy determination from DSC heating rate experiments on ST4 

 

A typical DSC heat flow signal for ST5.26 samples at 2, 5, 10 and 20°C/min is provided in 

Figure 5.21 Tg values (summarised in Table 5.4) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.22. 
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a)  

b)  

Figure 5.21 A typical DSC heat flow signal for ST5.26 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min  
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Table 5.4 Summary of Tg values obtained from DSC heat flow signal for ST5.26 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg(K) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 42.23 315.23 3.1723 

5 1.6094 46.21 319.21 3.1327 

10 2.3026 48.56 321.56 3.1098 

20 2.9957 47.54 320.54 3.1197 

 

Figure 5.22a is a plot of the natural logarithm of the heating rate versus 1/Tg for ST2.5.  

The R
2
 value was 0.7744.  This low R

2
 value was due to the data point correlating the Tg 

observed at 20°C/min (data point is shown in red).  This data point was removed and the 

line of best fit was recalculated (Figure 5.22b) the new R
2
 value was 0.9919, the gradient 

of this line was used to calculate the ∆ETg. 
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b)  

Figure 5.22 Activation energy determination from DSC heating rate experiments on ST5.26.a) with 

2.5,10 and 20°C/min values plotted b) with 2, 5 and 10°C/min values plotted 

 

A typical DSC heat flow signal for ST11.11 samples at 2, 5, 10 and 2°C/min is provided in 

Figure 5.23 Tg values (summarised in Table 5.5) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.24. 
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b)  

Figure 5.23 A typical DSC heat flow signal for ST11.11 a) at 2,5,10 and 20°C/min b) close up 

of DSC heat flow signal at 2°C/min  

 

Table 5.5 Summary of Tg values obtained from DSC heat flow signal for ST5.26 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg(K) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 42.16 315.16 3.1730 

5 1.6094 46.39 319.39 3.1310 

10 2.3026 50.17 323.17 3.0943 

20 2.9957 50.82 323.82 3.0881 

 

 

Figure 5.24 Activation energy determination from DSC heating rate experiments on ST11.11 
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The activation enthalpy of structural relaxation at Tg, ∆ETg was calculated by multiplying 

the gradient values obtained from the natural logarithm of the heating rate versus 1000/Tg 

by the gas constant, R (8.314JK
-1

mol
-1

) as per Equation 5.3.  These results are presented in 

Table 5.6. 

 

Table 5.6 ∆ETg calculated from the heating rate dependency of Tg for Amorphous Sucrose and ST 

samples 

SAMPLE GRADIENT 

ACTIVATION ENTHALPY OF 

STRUCTURAL RELAXATION AT Tg, 

∆ETg (kJ/mol) 

Sucrose 49.618 413 

ST2.5 42.241 351 

ST4 24.763 206 

ST5.26 31.584 263 

ST11.11 24.477 204 

 

 

A typical DSC heat flow signal for SR2.5samples at 2, 5, 10 and 20K/min is provided in 

Figure 5.25.  Tg values (summarised in Table 5.7) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.26. 
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a)  

b)  

Figure 5.25 A typical DSC heat flow signal for SR2.5 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min  

 

Table 5.7 Summary of Tg values obtained from DSC heat flow signal for SR2.5 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg(K) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 32.785 305.785 3.2703 

5 1.6094 34.08 307.08 3.2565 

10 2.3026 36.305 309.305 3.2331 

20 2.9957 37.095 310.095 3.2248 
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Figure 5.26 Activation energy determination from DSC heating rate experiments on SR2.5 

 

A typical DSC heat flow signal for SR4 samples at 2, 5, 10 and 20°C/min is provided in 

Figure 5.27.  Tg values (summarised in Table 5.8) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.28. 
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b)  

Figure 5.27 A typical DSC heat flow signal for SR4 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min  

 

Table 5.8 Summary of Tg values obtained from DSC heat flow signal for SR4 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg(K) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 25.705 298.705 3.3478 

5 1.6094 28.595 301.595 3.3157 

10 2.3026 31.635 304.635 3.2826 

20 2.9957 33.625 306.625 3.2613 

 

Figure 5.28 Activation energy determination from DSC heating rate experiments on SR4 
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A typical DSC heat flow signal for SR5.26 samples at 2, 5, 10 and 20°C/min is provided in 

Figure 5.29.  Tg values (summarised in Table 5.9) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.30. 

 

a)  

b)  

Figure 5.29 A typical DSC heat flow signal for SR5.26 a) at 2,5,10 and 20°C/min b) close up of 

DSC heat flow signal at 2°C/min  
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Table 5.9 Summary of Tg values obtained from DSC heat flow signal for SR5.26 at 2, 5, 10 

and 20°C/min 

Heating 

rate , q 

(K/min) 

Ln q Tg(K) Tg(K) 1000/Tg 

(K
-1

) 

2 0.6931 37 310 3.2258 

5 1.6094 39.41 312.41 3.2009 

10 2.3026 41.46 314.46 3.1801 

20 2.9957 43.26 316.26 3.1620 

 

 

Figure 5.30 Activation energy determination from DSC heating rate experiments on SR5.26 

 

A typical DSC heat flow signal for SR11.11 samples at 2, 5, 10 and 20°C/min is provided 

in Figure 5.31.  Tg values (summarised in Table 5.10) obtained here where used to plot the 

natural logarithm of the heating rate versus 1000/Tg (according to Equation 5.3) to 

calculate the ∆ETg and is shown in Figure 5.32. 
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Figure 5.31 A typical DSC heat flow signal for SR11.11 at 2,5,10 and 20°C/min 
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(K
-1

) 
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Figure 5.32 Activation energy determination from DSC heating rate experiments on SR11.11 
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Table 5.12 is a summary of the activation enthalpy of structural relaxation at Tg for 

amorphous sucrose, ST and SR samples.  Structural relaxation in a glass-forming liquid 

refers to the kinetically restricted re-arrangement of the liquid structure in response to 

changes in external variables such as temperature.  It is generally thought that the atomic 

or molecular re-arrangements taking place during structural relaxation are similar to those 

occurring during viscous flow in response to a shear stress (Moynihan et al., 1996). In 

general, increasing percentage of sugar additive (trehalose and raffinose) reduced ∆ETg 

values from 412kJ/mol in pure amorphous sucrose samples to 204kJ/mol for ST11.11 and 

161kJ/mol for SR11.11.  In the amorphous state, low free volume results in large activation 

energy for molecular motions.  As temperature is increased, the free volume is increased 

which facilitates molecular motion as well as lowers activation energy (Dranca et al., 

2009).   

 

Table 5.12 ∆ETg calculated from the heating rate dependency of Tg for Amorphous Sucrose with or 

without sugar additive  

% SUGAR ADDITIVE ACTIVATION ENTHALPY OF STRUCTURAL RELAXATION AT 

Tg, ∆ETg (kJ/mol) 

TREHALOSE RAFFINOSE 

0 412 

2.5 351 384 

4.0 206 215 

5.26 263 297 

11.11 204 161 
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∆ETg values obtained from this study were used to calculate the fragility parameter (m) 

(Equation 5.1) and strength parameter (D) (Equation 5.2).   

 

5.2.4.2 Calculation of fragility and strength parameters 

The fragility and strength parameters for all samples were calculated as per Equation 5.1 

and Equation 5.2 respectfully.  Strength parameter D was calculated using an mmin value of 

16 and mmin value determined using Tg values obtained from this study.  It was assumed 

that τ at Tg was approximately 100s (Moynihan et al., 1974) whilst τ0 represented a 

timescale of vibrational motions of approximately 10
-14

s (Crowley and Zografi, 2001).  

Calculated mmin for samples was 17 expected for ST5.26 and ST11.11 formulations which 

had an mmin value of 18.  Values obtained using mmin =16 gave lower D values than 

calculated mmin however, the trends were still the same.   

 

The results for amorphous sucrose, ST and SR samples are summarised both Table 5.13, 

Table 5.14 and Table 5.15.  Strong liquids have fragility (m) values less than 40, strength 

(D) values greater than 30 whilst fragile liquids have m values greater than 75, D values 

less than 10.  A clear relationship was not established between the percentage of sugar 

additive and m and D.  However, some trends were apparent.  SR4, SR11.11, ST4 and 

ST11.11 samples had m values less than 40 and were therefore identified as strong liquids.  

Whilst using D, SR11.11, ST4 and ST11.11 samples appeared to be strong liquids by 

possessing D values greater than 30.  The results in this study showed that at the highest 

percentage sugar additive (i.e. SR11.11 and ST11.11), the highest values of D and the 

lowest values of m were observed.  Both m and D parameters indicated that both SR11.11 

and ST11.11 were the strongest glass formers and would therefore be associated with 

greater amorphous sucrose stability.   
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Table 5.13 Calculated fragility parameter, m (Eq5.1) using ∆ETg calculated from the heating rate 

dependency of Tg for Amorphous Sucrose, ST and SR samples  

  

∆ETg 

(J/mol) ln10 

Tg (K) (at 

10K/min) ln10RTg m 

Sucrose 412000 

2.3026 

290.43 5559.94 74 

ST2.5 351000 309.03 5916.01 59 

ST4 206000 313.11 5994.12 34 

ST5.26 263000 321.56 6155.89 43 

ST11 204000 323.17 6186.71 33 

SR2.5 384000 309.305 5921.28 65 

SR4 215000 304.635 5831.88 37 

SR5.26 297000 314.46 6019.96 49 

SR11 161000 309.2 5919.27 27 

 

Table 5.14 Calculated strength parameter, D (Eq.5.2) using ∆ETg calculated from the heating rate 

dependency of Tg for Amorphous Sucrose, ST and SR samples using mmin =16 

  ln10 m mmin
2
 m-mmin D 

Sucrose 

2.3026 

74 

256 

58 10 

ST2.5 59 43 14 

ST4 34 18 32 

ST5.26 43 27 22 

ST11 33 17 35 

SR2.5 65 49 12 

SR4 37 21 28 

SR5.26 49 33 18 

SR11 27 11 53 

 

Table 5.15 Calculated strength parameter, D (Eq.5.2) using ∆ETg calculated from the heating rate 

dependency of Tg for Amorphous Sucrose, ST and SR samples using mmin from data 

  ln10 m mmin mmin
2
 m-mmin D 

Sucrose 

2.3026 

74 17 305 57 12 

ST2.5 59 17 306 42 17 

ST4 34 17 306 17 42 

ST5.26 43 18 307 25 28 

ST11 33 18 307 15 46 

SR2.5 65 17 306 47 15 

SR4 37 17 306 19 36 

SR5.26 49 17 306 32 22 

SR11 27 17 306 10 73 
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5.2.4.4 Characterisation using quasi-isothermal modulated temperature dsc  

Qi-MTDSC is a variant of MTDSC where the experimental temperature is modulated 

around a constant underlying temperature for a specified time, after which the temperature 

is incrementally ramped up or down so as to obtain a profile through a transition (Manduva 

et al., 2008).  The effect of heating rate is negated by holding the sample at a range of 

selected temperatures about which the sample is modulated.  Further details of this 

technique are described in Chapter 2.  Qi-MTDSC experiments were conducted on all 

samples generated to identify if co-spray dried samples existed as a single mixed 

amorphous system (indicated by observation of one glass transition event) or if the sugars 

existed as separate amorphous phases (indicated by observation of two glass transition 

events).  Qi-MTDSC experiments identified that ST2.5, ST11.11 and SR4 existed in 

separate amorphous phases indicated by the identification of two glass transition events.   

 

As discussed previously, in a study conducted by Verdonck et al., (1999), PET was heated 

below its Tg an increase in heat capacity was observed and corresponding to the de-

vitrification of PET at Tg.  A decrease in heat capacity was detected as the sample reached 

a temperature where cold crystallisation occurred (Verdonck et al., 1999).   

 

Typical Qi-MTDSC traces, reversing heat capacity signal as a function of time at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 3°C increments from 

0°C to 130°C for all samples are shown in Figure 5.33 to Figure 5.39.  Samples were 

evaluated once residual water had been driven off prior to experiment.   
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An increase in heat capacity characteristic of a glass transition event was observed from 

67.97°C to 81.98°C for amorphous sucrose (Figure 5.33).  This was followed by an abrupt 

decrease in heat capacity at 103.99°C characteristic of a cold crystallisation event.   

 

 

Figure 5.33 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of 

amorphous sucrose at a temperature modulation of ±1°C, 20 minute isothermal periods with 2°C 

increments using a pin-holed pan 

 

Qi-MTDSC experiments conducted on ST2.5 (Figure 5.34) showed evidence of two glass 

transitions occurring prior to cold crystallisation.  The heat capacity increased in a manner 

characteristic of a glass transition event at 17.91°C to 47.91°C.  Heat capacity appeared to 

plateau from 47.91°C to 53.91°C.  A small decline in heat capacity was observed at 

59.91°C which could have been due to molecular re-arrangement.  This was followed by 

an increase in heat capacity at 71.91°C to 95.91°C characteristic of a glass transition.  At 

98.91°C heat capacity dramatically decreased characteristic of cold crystallization.  In this 

sample, it can be assumed that this first glass transition event identified in Qi-MTDSC 
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experiments corresponds to the glass transition of sucrose.  The small decrease in heat 

capacity observed at 59.91°C is likely to correspond to molecular re-arrangement of 

sucrose molecules towards its more stable crystalline form.  However, the presence of 

trehalose molecules (with increased molecular mobility as it approaches its Tg) could have 

further slowed molecular mobility of sucrose molecules and therefore delaying re-

arrangement to its crystalline form.  The second glass transition observed is assumed to be 

the glass transition of amorphous trehalose.   

 

Figure 5.34 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of ST2.5 at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments using a pin-

holed pan 

 

Qi-MTDSC experiments conducted on ST4 and ST5.26 both depicted in Figure 5.35a and 

b saw an increase in heat capacity characteristic of a glass transition at 68.91°C to 83.92°C 
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capacity characteristic of a cold crystallisation event at 107.91°C and 101.98°C 

respectively.   

 

a)  

b)  

Figure 5.35 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments for a) ST4 b) 

ST5.26 using a pin-holed pan 
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Qi-MTDSC experiments conducted on ST11.11 (Figure 5.36) showed evidence of two 

glass transition events similar to observe trend in ST2.5 samples.  An increase in heat 

capacity was observed at 65.92°C to 86.98°C, followed by another increase at 92.98°C to 

110.98°C.  A change in heat capacity was not observed until a gradual decrease at 

122.99°C to 134°C.  The first glass transition event was attributed to the glass transition of 

amorphous sucrose whilst the second event was attributed to the glass transition of 

amorphous trehalose.  

 

Figure 5.36 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of ST11.11 

at a temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments using a 

pin-holed pan 
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a)  

b)   

Figure 5.37 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal at a 

temperature modulation of ±1°C, 20 minute isothermal periods with 2°C increments for a) 

SR2.5 b) SR5.26 using a pin-holed pan 

 

SR4 thermal profile obtained from Qi-MTDSC experiments (Figure 5.38), displayed 
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Further increase in heat capacity was observed to 110.99°C, which was then followed by a 

dramatic decrease in heat capacity at 113.99°C.   

 

Figure 5.38 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of 

SR4 at a temperature modulation of ±1°C, 20 minute isothermal periods with 2°C 

increments using a pin-holed pan 

 

SR11.11 thermal profile obtained from Qi-MTDSC experiments (Figure 5.39) proved 

intriguing, an increase in heat capacity was observed at 11.93°C to 20.94°C after which no 
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Figure 5.39 Typical Qi-MTDSC reversing heat capacity (as a function of time) signal of 

SR11.11 at a temperature modulation of ±1°C, 20 minute isothermal periods with 2°C 

increments using a pin-holed pan 

 

In this section Qi-MTDSC experiments were conducted on all samples to identify if co-

spray dried samples existed as a single mixed amorphous system (indicated by a single 

glass transition event) or if the sugars co-existed as separate amorphous phases (indicated 

by the observation of two glass transition events).   

 

Qi-MTDSC experiments identified that the following samples as existing in separate 

amorphous phases ST2.5, ST11.11 and SR4 indicated by the identification of two glass 

transition events.  Qi-MTDSC experiments were also able to confirm the absence of a 

crystallisation event in SR11.11 samples.  These promising results propose low nucleation 

rates in SR11.11 samples compared to other samples generated.  This phenomenon has 

been observed elsewhere (Salekigerhardt and Zografi, 1994), where raffinose at 10% 

additive (equivalent to 6.8mol %) showed no indication of crystallisation.   
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5.3 CONCLUSION 

In the previous chapter (Chapter 4), the physico-chemical properties of the amorphous 

samples generated was determined.  These findings prompted this study whereby sucrose 

was co-spray dried with sugar additives, trehalose and raffinose.  The main objective of 

this study was to investigate the use of the fragility parameter m and the strength parameter 

D as potential predictors of physical stability of generated co-spray dried samples.   

 

∆ETg values obtained from DSC experiments saw a general trend with increasing 

percentage of sugar additive (trehalose and raffinose). ∆ETg values were reduced from 

412kJ/mol in pure amorphous sucrose samples to 204kJ/mol for ST11.11 and 161kJ/mol 

for SR11.11.  ∆ETg values were then used to calculate the fragility parameter (m) (Equation 

5.1) and strength parameter (D) (Equation 5.2). 

 

Both m and D parameters indicated that both SR11.11 and ST11.11 were the strongest 

glass formers and would therefore be associated with greater amorphous sucrose stability.   

 

Qi-MTDSC experiments identified that the following samples as existing in separate 

amorphous phases ST2.5, ST11.11 and SR4 indicated by the identification of two glass 

transition events.  These results suggest this property may play a role in impeding 

crystallisation of amorphous sucrose.  Though, further studies would be required to 

confirm this.  Qi-MTDSC experiments also saw the absence of a crystallisation event in 

SR11.11 samples.   
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In conclusion, in this study the potential for raffinose and trehalose to improve the stability 

of amorphous sucrose has been examined.  m, D were used as theoretical predictors of 

amorphous stability.  Addition of both trehalose and raffinose appeared to improve 

predicted amorphous stability with greatest effect at the highest concentrations.  

 



 

 

CHAPTER SIX 

OBSERVING THE ABILITY OF TREHALOSE, 

RAFFINOSE AND SUCROSE TO PREVENT 

DEGRADATION OF SPRAY DRIED PLASMID DNA 
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6.1 BACKGROUND 

Results in the previous chapter showed that addition of trehalose and raffinose improved 

predicted stability of amorphous sucrose formulations.  In this chapter the potential for 

these sugar-based formulations in preserving the structural integrity of spray dried pDNA 

was explored.   

 

Systemic delivery of a biopharmaceutical by pulmonary delivery allows for rapid and 

predictable onset of action, avoidance of first-pass hepatic metabolism and degradation 

within the gastrointestinal tract.  This approach is particularly suitable for the treatment of 

localised pulmonary diseases (e.g. chronic obstructive pulmonary diseases) as lower 

dosages are required compared to the oral route, therefore potential side effects are reduced 

(Kuruba et al., 2009; Timsina et al., 1994).   

 

Spray-drying can be used to develop biopharmaceutical particles for the pulmonary 

delivery.  Spray-drying nucleic acids runs the risk of loss of biological activity, sample 

instability as well as thermal degradation, as a result of shearing stresses in the spray 

drying nozzle (Levy et al., 1999).  A temperature difference of approximately 15°C exists 

between the hot drying air and droplet surface, therefore the temperature experienced by 

the droplets is generally lower than the temperature of the drying air.  This is due to 

evaporative cooling (Shoyele and Cawthome, 2006).   

 

Carbohydrates such as raffinose and trehalose have the ability to stabilize and protect 

biological molecules (Quaak et al., 2010; Li et al., 2005).  The protective properties of 
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these non-condensing agents have been ascribed to both specific and kinetic effects.  At a 

specific level, they interact with biological structures and stabilise them during drying.  

During the drying process, hydrogen bonds between bio-molecules and sugar replace 

essential water molecules therefore retaining the structure of the biological molecule.  At 

the kinetic level, these sugars form an amorphous matrix surround the bio-molecules 

influencing the kinetics of reactions responsible for its deteriorations during storage 

(Schebor et al., 2010).   

 

6.2 STUDY OBJECTIVE 

The first object in this study was to evaluate the percentage degradation of pDNA spray 

dried in the presence of trehalose, raffinose and HPMC.    Within this objective the effects 

of trehalose, raffinose and HPMC on A549 cells was explored by performing an MTT 

assay.  A549 cells were used as pDNA formulations generated were intended for 

pulmonary delivery therefore it is important to ensure the materials used did not cause any 

cell cytotoxicity.  Transfection studies were then performed using A549 cells and HeLa 

cells. 

 

The second objective of this study was to evaluate the percentage degradation of pDNA 

spray dried in the presence of sucrose, SR2.5, SR11.11, ST2.5 and ST11.11 formulations 

designed in Chapter 5.  Sucrose, trehalose and raffinose are well known cryoprotectants, 

therefore, it was expected that the addition of trehalose and raffinose to sucrose 

formulations would enhance the overall protective ability of spray dried pDNA minimising 

DNA degradation caused by the spray drying process.   
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6.3 METHODOLOGY 

pDNA was extracted, purified and quantified as detailed in Chapter 2.  Purified pDNA was 

obtained as a concentration of 2.17mg/mL and 1.92mg/mL with a purity assessed by its 

A260/A280 ratio of 1.92 and 1.91 respectively.  100µg pDNA was co-spray dried with a 

10%w/v aqueous solution of HPMC (inert, non-protective carrier for pDNA), raffinose, 

trehalose , sucrose, ST2.5,11.11 and SR2.5,11.11 samples using the following parameters: 

inlet temperature of 125ºC an average pump flow rate of 3.7mL/min, 100% aspirator 

setting and an outlet temperature ranging from 60-80ºC (not controlled).   

 

Spray-dried pDNA powder samples were stored at -20°C prior to analysis.  After spray 

drying, powders were dissolved in sterile deionised water and an amount equivalent to 1µg 

of pDNA was cut using StuI, HindIII, BamH and Not1 restriction enzymes resulting in 5 

DNA fragments of 2780, 2000, 1200, 600 and 700 base pairs.  pDNA digests were 

subjected to gel electrophoresis using 2% agarose gels to separate pDNA fragments.  Gels 

were visualised using a G:Box gel imaging system, and were analysed using GeneTools 

version 4.01 and ImageJ 1.45s.  ImageJ was used to evaluate percentage degradation by 

densitometric analysis of the ethidium bromide stained DNA bands from spray dried 

pDNA formulations relative to equal amounts of extracted pDNA (pDNA not subjected to 

spray drying) processed in an identical manner. 
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6.4 RESULTS AND DISCUSSION 

6.4.1 MTT ASSAY AND TRANSFECTION STUDIES 

MTT assays was conducted using trehalose, raffinose (1, 3, 5 and 10%w/v) and HPMC 

solutions (0.2, 0.6, 1 and 2%w/v) to determine if these materials had any effect on cell 

viability (24hour MTT exposure).  Full details of this technique are outline in Chapter 2, 

MTT assay plate are shown in Appendix 2.3 (Figure A.2) and graphical presentation of 

results are depicted in Figure 6.1.   

 

MTT assay results saw that each of the three excipients (trehalose, raffinose and HPMC) 

exerted concentration dependent cytotoxicity as demonstrated by reductions in the 

mitochondrial reduction of the MTT probe.  Of the three excipients tested HPMC was the 

most potent at reducing cell viability.  The application of 0.2%w/v HPMC causing a ~35% 

reduction in cell viability, increasing to a ~70% reduction by the 2% w/v solution. The 

application of 1%w/v raffinose and trehalose caused a ~23% and ~14% reduction in cell 

viability which increased to ~65% and ~69% reduction by 10%w/v solutions respectfully.   

 

Observation of cells under the microscope after 48hours exposure did not however show 

any visible evidence of cell death.  This indicates that the nature of the cytotoxicity was 

subtle enough to disrupt the mitochondrial integrity of the A549 cells but was insufficient 

to cause gross damage to the cells which can cause cell detachment.  To date there is not 

literature evidence available to support these findings in this study.  
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a)  

b)  

c)  

Figure 6.1 Cytotoxicity of a) trehalose b) raffinose and c) HPMC on A549 cells (24hour MTT 

exposure) assessed by MTT assay.  The % cell viability was compared to control cells (n =3, error 

bars represent standard deviation of mean) 
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Transfection studies performed using the cancerous lung epithelial cell line, A549 (method 

used detailed in Appendix 2.5) did not prove successful (Figure 6.2a).  . The faint green 

color in Figure 6.2a is due to cellular autofluorescence which is commonly observed at 

high laser power and long exposure times.  

 

Identical transfection experiments performed using the non-pulmonary HeLa cell line 

(Appendix 2.6) proved successful with the addition of sodium butyrate which can be added 

to increase the efficiency of a transfection (Goldstein et al., 1989)(Figure 6.2b).  

Application of 10µg of pEGFP Arrestin 2 (control) at a total pDNA dose per well of 3.3µg 

gave a low transfection efficiency as evidenced by a low number of GFP positive cells 

(green in Figure 6.2b).  Application of 10µg of pEGFP Arrestin 2 spray dried at 125°C 

inlet temperature in the presence of trehalose (total pDNA dose per well of 3.3µg) gave a 

low transfection efficiency as well as evidence of cellular autofluorescence (Figure 6.2c).  

Application of 10µg of pEGFP Arrestin 2 spray dried at 125°C inlet temperature in the 

presence of either raffinose or HPMC (Figure 6.2d and 6.2e) did not show any evidence of 

transfection.  However, both samples showed evidence of cellular autofluorescence.   

 

These results suggested pEGFP Arrestin 2 spray dried at 125°C inlet temperature in the 

presence of trehalose retained its biological functionality as opposed to pEGFP Arrestin 2 

spray dried in the presence of raffinose and HPMC.   

 

Further transfection experiments were not conducted due to time restrictions. 
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a) b)  

c) d)  

e)   

Figure 6.2 a) Showing unsuccessful transfection studies using A549 cells (control using 10µg of 

pEGFP Arrestin 2) showing non-specific fluorescence b)Showing successful transfection of HeLa 

cells (control using 10µg of pEGFP Arrestin 2) showing low transfection efficiency c)Showing 

successful transfection of HeLA cells using 10µg of pEGFP Arrestin 2 spray dried in the presence 

of 10%w/v trehalose  d)Showing unsuccessful transfection studies using HeLa cells 10µg of 

pEGFP Arrestin 2 spray dried in the presence of 10%w/v raffinose e) 10µg of pEGFP Arrestin 2 

spray dried in the presence of 2%w/v HPMC  
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6.4.2 CO-SPRAY DRYING PDNA WITH TREHALOSE AND RAFFINOSE AT 125°C 

Figure 6.3 shows 2% agarose gel electrophoresis of spray dried powders containing 

linearized pEGFP-Arrestin-2 by digestion with restriction enzymes.  By this process 

pDNA was cut into 5 DNA fragments of 2780, 2000, 1200, 600 and 700 base pairs.  

Analysis of data in this manner was chosen to assess the full effects of the spray drying 

process on the pDNA molecule. 

 

The band seen at 2780 bp was visible in all samples, the 2000 bp band was visible in all 

formulations (at a greatly reduced intensity with pDNA co-spray dried with HPMC) except 

for pDNA co-spray dried with raffinose the bands at 1200, 600 and 700 bp were all visible 

in all formulations albeit at varied intensities.  The band at 2000 bp not observed in pDNA 

co-spray dried in the presence of raffinose was suspected to be due to insufficient digest as 

the band seen at 2780bp had a stronger than expected intensity.  These results indicated 

that pDNA was degraded by the spray drying process at 125°C when observing differences 

between lanes 1 to 3 and lane 4 (pDNA without spray drying). 
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Figure 6.3 2% agarose gel electrophoresis of spray dried powders containing linearized pEGFP-

Arrestin-2 by digestion with restriction enzymes. Lane 1 Raffinose co-spray dried with pDNA Lane 

2 HPMC co-spray dried with pDNA; Lane 3: Trehalose co-spray dried with pDNA and Lane 4 

pEGFP Arrestin 2 (without spray drying) at 125°C  

 

ImageJ was used to evaluate percentage degradation by densitometric analysis of the 

ethidium bromide stained DNA bands from spray dried pDNA formulations relative to 

equal amounts of extracted pDNA (pDNA not subjected to spray drying) processed in an 

identical manner.  These results were then calculated as percentage degradation (% 

degradation).  In this study, HPMC was co-spray dried with pDNA where it was used as a 

carrier for pDNA as spray drying pDNA alone did not result in visible particles in the 
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spray drying collecting chamber.  This is likely to be due to low mass (500µg of extracted 

pEGFP Arrestin 2 pDNA) used.  

 

At 125°C inlet temperature (Figure 6.4) 53% of pDNA co-spray dried with HPMC was 

degraded.  Addition of both trehalose and raffinose reduced the percentage degraded from 

53% (HPMC control) to 22% (trehalose) and 30% (raffinose).   

 

Figure 6.4 Degradation of pDNA co-spray dried with HPMC, trehalose and raffinose at 125 ºC 

spray drying inlet temperature (n =3, error bars represent standard deviation of mean).  

 

As discussed earlier, spray drying nucleic acids like pDNA can result in loss of biological 

activity and thermal degradation as a result of shearing stressing in the spray drying nozzle.  

These promising results indicate that co-spray pDNA in the presence of either trehalose 

and raffinose offered protection (~78% trehalose, ~70% raffinose) and reduced pDNA 
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degradation to a greater extent than in the presence of HPMC which in this study was used 

as a carrier of pDNA and was not expect to possess any protective properties.    

 

6.4.3 CO-SPRAY DRYING SR2.5, SR11.11, ST2.5 AND ST11.11 WITH PDNA AT 125°C  

Figure 6.5 shows 2% agarose gel electrophoresis of spray dried powders containing 

linearized pEGFP-Arrestin-2 by digestion with restriction enzymes.  By this process 

pDNA was cut into 5 DNA fragments of 2780, 2000, 1200, 600 and 700 base pairs.  A 

band was visible in all sucrose, ST and SR samples at 2780bp at varied intensities.  SR2.5, 

ST11.11 and SR11.11 co-spray dried formulations had faint bands visible at 1200bp.  No 

other bands were visible in formulation digests.   

 

Figure 6.5 2% agarose gel electrophoresis of spray dried powders containing linearized 

pEGFP-Arrestin-2 by digestion with restriction enzyme.  Lane 1 Sucrose co-spray dried with 

pDNA; Lane 2 ST2.5 co-spray dried with pDNA; Lane 3 ST11.11co-spray dried with pDNA; Lane 

4 SR2.5co-spray dried with pDNA; Lane 5 SR11.11co-spray dried with pDNA and Lane 6 pEGFP 

Arrestin 2 (without spray drying) at 125°C  
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As with previous studies detailed in this Chapter, ImageJ was used to evaluate percentage 

degradation by densitometric analysis of the ethidium bromide stained DNA bands from 

spray dried pDNA formulations relative to equal amounts of extracted pDNA (pDNA not 

subjected to spray drying) processed in an identical manner.  These results were then 

calculated as percentage degradation (% degradation) and are presented in Figure 6.6.  It 

can clearly be seen that pDNA spray dried in the presence of sucrose, ST and SR 

formulations did not prevent pDNA degradation as effectively as trehalose and raffinose 

alone.  pDNA spray dried in the presence of sucrose saw 90% degradation.  Addition of ST 

and SR formulations appeared to reduce this with SR11.11 formulations showing 80% 

degradation compared to 90% seen with sucrose formulations.  Surprisingly, HPMC 

appeared to prevent pDNA degradation at a greater extent (53% degradation) than sucrose, 

ST and SR formulations.  This was not expected as HPMC was used as a carrier for pDNA 

and was not expected to exert a protective property as there are no literature reports of this 

phenomenon.   

 

Figure 6.6 Percentage degradation plot of sucrose, ST2.5, SR2.5, ST11.11 and SR11.11 co-spray 

dried with pDNA at 125 ºC spray drying inlet temperature (n =3, error bars represent standard 

deviation of mean) 
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Previous studies observing the effects of sucrose (Kuo, 2003; Quaak et al., 2010) and 

trehalose (Quaak et al., 2010) at higher concentrations (~20%-30%) used compared to in 

this study, have illustrated the use of these sugars in protecting pDNA.  However, 

experiments conducted by Quaak et al., (2010) involved the assessment of the effect of 

disaccharides on naked pDNA stability after freeze-drying.  Kuo, (2003) co-spray dried 

pCMV-luc (a plasmid which contains the luciferase reporter gene under the control of the 

CMV promoter) with 20%w/v or 30%w/v sucrose solutions and observed the effects the 

outlet temperature (at 56, 69, 94 and 122°C) had on the structural integrity of the pDNA 

used.  Results in their study saw the integrity of pDNA was changed by the spray-drying 

process even when spray drying outlet temperature was decreased to 56°C.  In this study 

the outlet temperature was not controlled as this function was not available on the spray 

dryer used.  However, direct comparisons between their results and results detailed in this 

chapter are not possible as the inlet temperature used in Kuo, (2003) study was not stated.   

 

6.5 CONCLUSION 

The first object in this study was to compare the ability of raffinose and trehalose to 

prevent plasmid DNA (pDNA) degradation of spray dried DNA.  Within this objective the 

effects of trehalose, raffinose and HPMC on A549 cells was explored by performing an 

MTT assay as well a transfection studies using A549 cells and HeLa cells. 

 

The second objective of this study was to co-spray drying pDNA with sucrose, SR2.5, 

SR11.11, ST2.5 and ST11.11 formulations designed in Chapter 5.  Sucrose, trehalose and 

raffinose are well known cryoprotectants it was expected that the addition of trehalose and 
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raffinose to the sucrose formulation would enhance its protective function over spray dried 

pDNA and therefore minimising DNA degradation caused by the spray drying process.   

 

Results from the MTT assay performed on A549 cells using trehalose, raffinose and 

HPMC solutions suggested reduction in cell viability with increasing concentration of all 

three materials.  Transfection studies were attempted with A549 cells however, did not 

prove successful.  Transfection studies using non-pulmonary HeLa cell line proved 

successful.  These results saw transfection efficiency in pDNA spray dried in the presence 

of trehalose however, transfection efficiency was not observed in pDNA spray dried in the 

presence of raffinose or HPMC.  The results detailed in this study have shown that spray 

drying pDNA in the presence of sucrose, raffinose, trehalose and surprisingly HPMC 

results in a prevention of pDNA degradation though, this occurs to a greater extent with 

trehalose and raffinose.  pDNA spray-dried in the presence of sucrose, SR and ST 

formulations did not show ideal characteristics as % degradation was greater in these 

samples than with trehalose, raffinose and HPMC.  Prevention of pDNA degradation of 

pDNA spray dried in the presence of HPMC appeared  

(Redway, 2012; Przybylowski et al., 2007; Maa et al., 1998) 
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7.1  THESIS CONCLUSIONS  

The overall aim of the research detailed in this thesis was to design and analyze sugar-

based (trehalose, raffinose and sucrose) carrier systems for the protection of naked pDNA 

formulations generated by spray drying.  The work detailed in this thesis was composed of 

three main areas.   

 

The first area (detailed in Chapter 3) focused on investigating the inter-conversion 

properties of trehalose dihydrate to observe if an in-depth understanding of its physical 

properties will provide an insight into its bio-protective properties.  Within this area, the 

first objective addressed the influence of inter-batch variation on the thermal response of 

trehalose dihydrate.  The influences of batch variation of trehalose dihydrate had been 

briefly explored by Armstrong et al., (1996) where results showed that whilst sample 

presentation and experimental conditions could influence the thermal response, sample 

origin can also have affect on the crystal texture and consequently the observed thermal 

response.  At the time of this thesis further studies investigating the thermal transitions of 

α,α-trehalose dihydrate had not taken into account the possible contribution of inter-batch 

or intra-batch variations contributing to the thermal response.  Only preference in 

purchasing choice had briefly been addressed by Macdonald and Johari (2000).  In 

Chapter 3, Section 3.2, a series of thermal, spectroscopic and X-ray diffraction techniques 

were conducted on three α,α-trehalose dihydrate batches obtained from two different 

manufacturers, Sigma-Aldrich (Sigma A and Sigma B) and Acros Organics (Acros batch).  

The results showed that a high level of inter-batch variability existed between trehalose 

dihydrate batches tested.  Results obtained showed that Sigma B and Acros batches 

differed from Sigma A particles.  XRPD data suggested structural variations between the 
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batches indicating that the crystalline structure of the batches were not entirely similar.  

Overall, physico-chemical characterisation of batches did not shed light on reason for 

batch variability.  Differences observed in this study could have been due to the raw 

materials used, manufacturing process or impurities un-detectable using spectroscopic and 

thermal techniques.   

 

A recent review (Ohtake and Wang, 2011) on the use of trehalose suggested that the 

purification process of trehalose dihydrate is related to its intended use.  With purification 

of trehalose for use in food applications lower than that intended for pharmaceutical 

products.  Variations in the levels of purity can increase the presence of impurities like 

arsenic, heavy metals, microbes, reducing sugars and endotoxin (Ohtake and Wang, 2011).  

Special attention is required if the raw materials are produced from a tapioca source (starch 

extracted from cassava native to South America), as there is risk that cyanide may be 

present. 

 

Inter-batch variability is an issues if the variability has a significant impact on data 

interpretation or (if used as part of a formulation) if these difference would have a 

significant impact on formulation performance.  Investigating the latter was outside the 

objectives of this study; however, results in this section did show that inter-batch 

variability had an impact on data interpretation of the properties of trehalose dihydrate. 

These intriguing results illustrated the effect inter-batch variability could have on data 

interpretation.  It was concluded that in order to have a clearer understanding of the 

thermal transitions α,α-trehalose dihydrate standardised forms where required to eliminate 
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any processing effects and produce reproducible data providing clearer insight into the 

thermal transitions of α,α-trehalose dihydrate not influenced by inter-batch variations.   

 

The second objective (based on results from Chapter 3, Section 3.2) was to generate and 

characterise two standardised forms of α,α-trehalose dihydrate by performing a series of 

thermal, spectroscopic and X-ray diffraction techniques.  This work described in Chapter 

3, Section 3.3, led to the identification of a polymorphic form of α,α-trehalose dihydrate 

which was characterised and is described in Chapter 3, Section 3.3.4.5 

 

The main objective of this section was to generate standardised forms of trehalose 

dihydrate and characterise samples with an aim to gain a further and clearer understanding 

of the thermal transitions of trehalose dihydrate with a focus on the transitions that occur 

between 30°C to 160°C.  The results detailed in this study showed that the two 

standardised forms generated had different thermal responses.  Dehydration of Th1 resulted 

in structural collapse leading to the generation of an amorphous form.  Further heating lead 

to the re-crystallisation of Tβ confirmed by the subsequent melt at ~210°C.  In contrast, 

dehydration of Th2 resulted in the structural collapse and molecular re-arrangement to Thx 

further heating resulted in generation of an amorphous liquid.  The discovery of Thx which 

appeared to be an anhydrate (possible Tα and Tβ) and amorphous mixture (from XRPD 

data) confirmed the existence of an intermediary crystalline state with an XRPD profile 

that has not been identified in the literature.  These promising results which were not 

influenced by inter-batch variability has provided a clearer understanding of the thermal 

transitions of trehalose showing two possible routes in which it can convert in a bid to 

protect delicate biological molecules  
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Sussich and Cesaro, (2008) used the time-temperature transition (TTT) principle to shed 

light on the biological relevance of the physical properties of trehalose.  They propose that 

using this principle transformation time scales measured at high temperatures within a 

calorimeter have a counterpart in slower phenomena occurring at nature temperatures 

(Sussich and Cesaro, 2008).  The TTT principle (is also referred to as the time-temperature 

superposition principle (TTS)) is well known in polymer science.  First proposed by 

Lenderman (1943) and later further developed by Williams et al., (1955).  The underlying 

principle is that processes involved in molecular relaxation or molecular re-arrangement in 

viscoelastic materials (like polymers) occur at faster rates at higher temperatures and are 

equivalent between time and temperature.  Therefore the time which these processes occur 

can be reduced if the measurement is conducted at elevated temperatures and resultant data 

is transposed to lower temperatures.  TTS appears to only be valid for materials with 

thermorheological simplicity like polymers (Dealy J and Plazek D, 2009).  Therefore 

application of TTS to the thermal transitions of trehalose is questionable and not applicable 

as trehalose is not known to display thermorheological simplicity.  

 

The findings in this study have an implication on both past and future experiments 

conducted on trehalose dihydrate.  The findings in this thesis raise the question of the 

authenticity of previous results obtained with the identification of various anhydrous 

polymorphs.  The future use of the standardised forms generated in this study will 

minimise variations in polymorphs identified.  Like in the case of Nagase et al., who in 

2002 reported the discovery of a new anhydrous polymorph TK but later in 2008, 

concluded that TK was identical to Tα though generated by a different route.   
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Within the second area of this thesis, the first objective described in Chapter 4, was to 

generate pure amorphous sugars (via spray drying) and characterise their physico-chemical 

properties using a range of diffraction, spectroscopic and thermal techniques.  The second 

objective described in Chapter 5, was to investigate the use of the fragility parameter m 

and the strength parameter D as potential predictors of amorphous stability of generated 

co-spray dried samples.  Quasi-Isothermal MTDSC (Qi-MTDSC) techniques were 

employed to observe if co-spray dried samples existed as one or two amorphous phases 

evident by the presence of either one or two glass transition events. 

 

These results showed that the addition of both raffinose and trehalose had an overall 

positive effect on the predicted stability of amorphous sucrose formulations, with greatest 

effect at the highest concentrations.  According to Qi-MTDSC data ST2.5, ST11.11 and 

SR4 existed in separate amorphous phases indicated by the identification of two glass 

transition events.  These results intriguing results suggest this property may play a role in 

impeding crystallisation of amorphous sucrose.  Qi-MTDSC experiments also saw the 

absence of a crystallisation event in SR11.11 samples.   

 

It was concluded that ST11.11 and SR11.11 formulations were the strongest glasses and 

therefore possessed greater amorphous stability.  

 

The third area of this thesis was to evaluate the degree of degradation of plasmid DNA 

spray dried in the presence of amorphous sugars.  Within this area (detailed in Chapter 6), 

the first objective was to evaluate the percentage degradation of plasmid DNA spray dried 

in the presence of trehalose and raffinose.  The second objective was to observe the effects 
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of trehalose and raffinose on A549 cells was explored by performing an MTT assay.  A549 

cells were used as pDNA formulations generated were intended for pulmonary delivery 

therefore it is important to ensure the materials used did not cause any cell cytotoxicity.  

Transfection studies were then performed using A549 cells and HeLa cells.  The third 

objective within this area was to evaluate the percentage degradation of pDNA spray dried 

in the presence of sucrose, SR2.5, SR11.11, ST2.5 and ST11.11 formulations designed in 

Chapter 5.  

 

Results from the MTT assay performed on A549 cells using trehalose, raffinose and 

HPMC solutions suggested reduction in cell viability with increasing concentration of all 

three materials.  Transfection of A549 cells was not successful, however, transfection in a 

non-pulmonary cell line (HeLa) cells was successful.  Transfection of pDNA spray dried in 

the presence of trehalose in HeLa cells was successful. 

 

The results detailed in this study have shown that spray drying pDNA in the presence of 

sucrose, raffinose, trehalose and surprisingly HPMC resulted in a prevention of pDNA 

degradation though, this occurs to a greater extent with trehalose and raffinose.  The results 

obtained from this study indicated that co-spray drying pDNA with either trehalose or 

raffinose over sucrose could reduce thermal degradation and structural changes that can 

occur as a result of the spray drying process, though further formulation strategies and 

manipulation of processing parameters are required to optimize formulation.   
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Overall, two key messages can be concluded from the work detailed in this thesis.  Firstly, 

the observed thermal transitions of α,α-trehalose dihydrate can be influenced 

environmental factors as well as inter-batch variability which can affect authenticity of 

polymorphous and amorphous forms identified.  The use of the standardised forms 

generated in this study would result in a clearer understanding of the physical properties of 

trehalose dihydrate which could lead to a better understanding of its bio-protective 

properties.   

 

Secondly, addition of raffinose and trehalose to amorphous sucrose formulations improved 

the predicted amorphous stability of the formulations.  These promising results could have 

an effect of future formulation strategies involving amorphous sucrose stability.  As 

previous work has focused on the ability of these additives to improve onset of 

crystallisation studies are yet to be conducted on the use of thermodynamic parameters to 

predict of amorphous stability. 

 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

Whilst conducting the experiments in this thesis possible areas for further research were 

highlighted.  It was not possible to explore these areas as they were either outside the 

objectives of this thesis or beyond the scope of time available.  Recommendations for 

future work has been categorised by chapter. 
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Chapter 3 – Generation and Characterisation of Standardised Forms of Trehalose 

Dihydrate  

The majority of the work conducted on Th1 and Th2 was conducted on pin-holed pans, it 

would be of interest to repeat these experiments and compare the effect of pan type on the 

thermal response during slow heat/cool MTDSC experiments and Qi-MTDSC 

experiments.  An investigation observing the effects of dehydrating Th1 and Th2 at 

temperatures correlating the occurrence of the low temperature endotherms observed in 

MTDSC traces could prove insightful. 

 

Full characterisation of Thx in the same manner as Th1 and Th2 would be essential in 

mapping out the inter-conversion process of trehalose.  

 

Many studies conducted on trehalose dihydrate have been conducted on α,α-trehalose 

dihydrate.  However, there are not many studies investigating the thermal transitions of 

α,β-trehalose an isomer of α,α-trehalose where two glucose molecules are linked through 

α-β 11-glycosidic bond.  α,β-trehalose can be obtained as a mono-hydrate or as an 

anhydrous crystal.  It would be of interest and importance in understanding trehalose to 

characterize this isomer.   

 

Chapter 5 – Use of Sugar Additives (trehalose and raffinose) to Improve the Stability of 

Amorphous Sucrose  

Having predicted improved amorphous stability by addition of sugar additives, the next 

stage would be to compare predicted stability to actual stability.  This would be conducted 

by evaluating the onset of crystallisation time in samples and performing stability studies 

over a period of time. 
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Chapter 6 - Observing the ability of sucrose, raffinose and trehalose to preserve the 

structural integrity of spray dried plasmid DNA  

The results obtained in this preliminary study could prove insightful for future 

formulations.  As the transfection protocol for A549 cells was not successful in this study 

future experiments could be adapted to use the transfection agent Lipofectamine
®

 as 

opposed to using the electroporation method used in this study.  Alternatively, 

formulations strategies could be employed to explore the addition of a cationic agent for 

example chitosan to improve stability as well as possibly aid transfection of pDNA into the 

cell.   

 

Further experiments could be conducted using different spray drying parameters for 

example lowering the inlet temperatures.  However, this might compromise formulation 

physical stability as reduced inlet temperatures would result in higher water contents 

leading to increased risk of crystallisation.   

 

Once the ideal formulation has been identified for pulmonary delivery, it would be 

essential to conduct in vitro powder aerosolization and deposition characterisation.  This 

would involve using a two-stage glass impinger used to represent the upper and lower 

respiratory tract and is used to assess drug delivery from a delivery device.  In addition, 

cellular studies as a tool for biological evaluation of the formulation safety, stability and 

efficacy would be conducted.  This will involve conducting an MTT assay and transfection 

studies using A549 cells. (Li et al., 2011) (Badrinarayanan et al., 2007; Przybylowski et al., 

2007) 
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APPENDIX 

APPENDIX 2.1 PREPARATION OF [X1] TBE BUFFER 

10.8g of TRIS ( Hydroxymethylaminomethane) Base Ultra Pure (obtained from Sigma 

with 99% purity), 5.5g Boric acid (Fisher Scientific analytical reagent grade) and 0.93g 

EDTA (ethylenediaminetetraacetic acid) (Sigma-Aldrich grade with approximately 99% 

titration) was dissolved in 800mL of distilled water.  The volume was further adjusted to 

1L with additional distilled water. 

 

APPENDIX 2.2 COUNTING CELLS USING A HAEMOCYTOMETER (PROTOCOL 

TAKEN FROM ABCAM
®
) 

The haemocytometer was cleaned using 70% ethanol.  The shoulders of the 

haemocytometers was moistened and a coverslip was fized onto it using gentle pressure 

and small circular motions. An indication of when the coverslip is placed correctly is by 

visualization of Newton’s rings therefore the depth of the chamber is ensured.  The cell 

suspension was prepared by gentle agitation of the flask containing the cells.  Before the 

cells had a chance to settle 1mL of this suspension was taken out (using a 1mL Serological 

Pipette) and was placed into an eppendorf.  Using a Gilson pipette 10µL of cell suspension 

was drawn up and carefully used to fill the haemocytometer by gently resting the end of 

the Gilson tip at the edge of the chambers allowing the sample to be drawn out of the 

pipette by capillary action.  The haemocytometer was then placed under a microscope and 

the grid lines were focused using 10X objective of the microscope.  Focusing on one set of 
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the 16 corner square (as indicated in Figure A.1) the number of cells in this area of 16 

squares were counted using a hand tally counter.  

 

 

Figure A.1 Haemocytometer with cells for counting (taken from 

http://www.cf.ac.uk/biosi/staffinfo/kille/Methods/Cellculture/HAEMO.html) 

 

The haemocytometer is designed so that the number of cells in one set of 16 corner squares 

is equivalent to the number of cells x 10
4
 / mL.  Therefore, to obtain the cell count:  The 

total count from 4 sets of 16 corner = (cells / ml x10
4
) X4 squares from one 

haemocytometer grid.  

 

APPENDIX 2.3 RESULTS FROM MTT ASSAY  

MTT assay plates were prepared as shown in Figure A.2a and results are presented in 

Figure A.2b.  For ease of referencing trehalose, raffinose and HPMC solutions are 

referenced according to %w/v where T represents trehalose, R raffinose and H HPMC. 

http://www.cf.ac.uk/biosi/staffinfo/kille/Methods/Cellculture/HAEMO.html
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Control solutions were referenced according to media volume in starting solution (10mL) 

i.e. C6 represents control solution containing 6mL media and 4mL PBS. 

  1 2 3 4 5 6 7 8 9 10 11 12 

A                         

B   CA C6 C8.8 T10 T3 R10 R3 H2 H0.6     

C   CA C6 C8.8 T10 T3 R10 R3 H2 H0.6     

D   CA C6 C8.8 T10 T3 R10 R3 H2 H0.6     

E   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

F   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

G   MA C8 C9.6 T5 T1 R5 R1 H1 H0.2     

H                         

a)  

b)         

Figure A.2 Schematic illustration of a 96-well plate used in an MTT assay where C = cells with 

media only, MA = media (RPMI – 1640) alone, C = control solutions, T = trehalose solutions, R = 

raffinose solutions and H =  HPMC solutions,   = phosphate buffered saline solution 
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APPENDIX 2.4 PREPARING A 6-WELL PLATE  

Materials 

6 well plate 

70% ethanol in 50mL centrifuge tube 

Waste bottle 

Plastic tweezers 

Cover slips 

Medium (complete DMEM)  

Cells 

Method 

1. Label plates 

2. Open lid of 70% ethanol 

3. Take tweezers and coverslips 

4. Dip 1 coverslip into 70% ethanol and then place in well 

5. Repeat for all other wells 

6. Add 1mL medium to wells to remove residual ethanol as this can have a negative 

effect on cells, and then pipette out. 

7. Once this is done it is time to add the medium and then the cells 

8. Unscrew medium lid 

9. Take a pipette (12mL) 

10. Add 2mL of medium into each well used 
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11. Place in 37°C incubator 

12. Loosen cells  

13. When this is done take loosen cells and and dropwise onto coverslips 

14. Shake plates gently 

15. Place in incubator 

APPENDIX 2.5 TRANSFECTION OF A549 CELLS  

1. Ensure cells are at ~85% confluency 

2. Remove medium  

3. Add 5mL of trypsin 

4. Swirl around cells ~15 times 

5. Remove trypsin 

6. Incubate at 37°C for 3-5mins 

7. Add 5mL of fresh media 

8. Use Haemocytometer to calculated number of cells (detailed in Appendix 2.2) 

1000,000 cells required for successful transfection 

9. Spin down cells 

10. Add 1mL pre-warmed PBS twice 

11. Remove PBS 

12. Add 250µL EPS (Li et al ’07 used FBS) and 125µg of transfer RNA (tRNA) 

(10mg/mL on packaging 12.5µL of solution required),  10µg plasmid DNA, 1% 

(2.5µL) DMSO 

13. Mixture was incubated at room temperature for 30minutes 

14. Electroporation setting U001 
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15. 250µL of serum free RPMI was added to the cells before further incubation at 

room temperature for 30minutes 

16. Use a 6 well plate (pre-prepared Appendix 2.3) 

17. Cells were added to 5mL of  pre-warmed complete RPMI 

18. Add transfected A549 cells 

19. Leave plate incubated at 37°C for 2hours 

20. Add 20 µL  of Sodium Butyrate into ONE well of each sample 

21. Incubate for 42-48hrs  

APPENDIX 2.6 TRANSFECTION OF HELA CELLS  

1. Ensure cells are at ~85% confluency 

2. Remove medium  

3. Add 2mL PBS + EDTA solution 

4. Swirl around cells  

5. Incubate at 37°C for 5-10mins 

6. Give a gentle “bash” to resuspend 

7. Take out resuspended cells and add to an eppendorf 

8. Use Haemocytometer to calculated number of cells (detailed in Appendix 2.2) 

1000,000 cells required for successful transfection 

9. Spin down cells (4000g for 10mins) 

10. Wash ONCE in 1mL simple DMEM (Ø)  

11. Spin down again 

12. Take medium off and resuspend  
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13. (into eppendorf) Add 250µL EPS (electroporation solution) and 125µg of 

transfer RNA (tRNA) (10mg/mL on packaging 12.5µL of solution required), 10 

µg  plasmid DNA, 2.5µL of 1% DMSO 

14. Incubated at room temperature for 30minutes 

15. Take out 250 µL add to cuvette (discard of the rest) 

16. Electroporation setting U001 

17. Add 250µL of simple DMEM (Ø) added to the cuvette,  

18. Taken out suspension and place in an eppendorf (using cell pipette) and 

incubate in eppendorf at room temperature for 30mins  

19. Use a 6 well plate (pre-prepared Appendix 2.3) 

20. Add transfected HeLa cells 

21. Leave plate incubated at 37°C for 2hours 

22. Add 20 µL  of Sodium Butyrate into ONE well of each sample 

23. Incubate for 42-48hrs  



 

 

 


