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Summary
MicroRNAs are short non-coding RNAs involved in post-transcriptional regulation of multiple messenger RNA targets. The miR-1/
miR-206 family is expressed during skeletal muscle differentiation and is an integral component of myogenesis. To better understand
miR-1/miR-206 function during myoblast differentiation we identified novel target mRNAs by microarray and characterized their
function in C2C12 myoblasts. Candidate targets from the screen were experimentally validated together with target genes that were

predicted by three different algorithms. Some targets characterised have a known function in skeletal muscle development and/or
differentiation and include Meox2, RARB, Fzd7, MAP4K3, CLCN3 and NFAT5, others are potentially novel regulators of myogenesis,
such as the chromatin remodelling factors Smarcd2 and Smarcb1 or the anti-apoptotic protein SH3BGRL3. The expression profiles of

confirmed target genes were examined during C2C12 cell myogenesis. We found that inhibition of endogenous miR-1 and miR-206 by
antimiRs blocked the downregulation of most targets in differentiating cells, thus indicating that microRNA activity and target
interaction is required for muscle differentiation. Finally, we show that sustained expression of validated miR-1 and/or miR-206 targets

resulted in increased proliferation and inhibition of C2C12 cell myogenesis. In many cases the expression of genes related to non-muscle
cell fates, such as chondrogenesis, was activated. This indicates that the concerted downregulation of multiple microRNA targets is not
only crucial to the skeletal muscle differentiation program but also serves to prevent alternative cell fate choices.
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Introduction
MicroRNAs (miRNAs or miRs) are short non-coding RNAs,

found in both plants and animals. In animals, miRNAs bind with

imperfect complementarity to target sites that are typically found
in the 39UTR of messenger RNAs. This results in inhibition of

translation and in many cases transcript degradation (Carthew,

2006; Guo et al., 2010). Post-transcriptional regulation of gene

expression by miRNAs is an important feature of cell
differentiation programs and it has been predicted that there are

many as yet undiscovered miRNAs in the genomes of human and

other higher vertebrates (Bartel, 2004). Although some miRNAs
have been characterised in detail, in most cases there is only

limited information about their function. This is in part due to

the incomplete complementarity of miRNAs with their targets,
which makes the identification of biologically relevant targets

more challenging (Bartel, 2009). Different algorithms predict

numerous potential targets, not all of which are genuinely

affected by miRNAs (Krützfeldt et al., 2006).

C2C12 myoblast cells are widely used as a model for skeletal

muscle cell differentiation. Undifferentiated C2C12 cells express
Myf5 and MyoD; however, the ability of these MRFs to induce

differentiation is blocked under growth conditions. The removal

of growth factors or the downregulation of their receptors leads to
myoblast differentiation, which correlates with expression of

miR-1 and miR-206, two highly related but not identical

microRNAs, which are conserved across many species

(Sweetman et al., 2008). The specific versus redundant

functions of miR-1 and miR-206 are currently not well

understood. In addition, miR-1 and miR-206 are co-expressed

with a member of the miR-133 family, which is generated from

the same primary transcript but has a completely different

sequence and therefore a distinct set of targets (Chen et al., 2006;

Kim et al., 2006; Rao et al., 2006; Sweetman et al., 2008).

Experiments in C2C12 cells suggested that miR-1 and miR-206

promote differentiation of myoblasts through downregulation of

HDAC4 and the p180 subunit of DNA polymerase alpha, whilst

miR-133 promotes proliferation through downregulation of SRF

(Chen et al., 2006; Kim et al., 2006). In addition, it has been

shown that miR-1 and miR-133 influence the differentiation

behaviour of rhabdomyosarcoma cells and it might be possible to

exploit their pro-myogenic functions for therapeutic purposes

(Rao et al., 2010).

In vertebrate embryos, myogenic cells derived from embryonic

somites give rise to skeletal muscles of the trunk and limbs, and

skeletal myogenesis serves as a paradigm for the study of cell fate

commitment in response to instructive cues. We, and others,

showed that miR-1 and miR-206 expression is restricted to

developing skeletal and cardiac muscle during vertebrate

embryogenesis (Sweetman et al., 2006; Darnell et al., 2006;

Wienholds et al., 2005). In addition, they are regulated by the

3590 Research Article

mailto:a.munsterberg@uea.ac.uk


J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

Myogenic Regulatory Factors (MRFs) in vivo (Hinits et al., 2011;

Sweetman et al., 2008; Sweetman et al., 2006) consistent with the

finding that MyoD and myogenin bind to regions upstream of

miR-1 and induce its expression in cell culture (Rao et al., 2006;

van Rooij et al., 2008). Recently we demonstrated that miR-1

and miR-206 mediate appropriate timing of myogenesis in

developing somites by contributing to the downregulation of

Pax3 as committed myoblasts differentiate (Goljanek-Whysall

et al., 2011). We have also identified additional microRNAs

expressed in embryonic somites indicating that multiple

microRNAs are involved in their differentiation (Rathjen et al.,

2009). However, the precise roles of many of these miRs and how

they act to regulate muscle development and differentiation

remain to be identified.

Here we focus on miR-1 and miR-206 and identify novel

targets using two different approaches: microarray screening of

C2C12 cells transfected with miR-206 or antimiR-206, as well

as target predictions by three widely used target prediction

algorithms, PicTar (Krek et al., 2005), TargetScanS (Friedman

et al., 2009; Grimson et al., 2007; Lewis et al., 2005) and

miRanda (Griffiths-Jones et al., 2008). Systematic analyses of

predicted targets led to a list of candidates with potential

biological relevance. A selection of these was experimentally

validated using luciferase reporter assays with 39UTR sensor

constructs, leading to confirmation or elimination of predicted

targets. Confirmed targets were then analysed in vivo, and we

showed that endogenous expression levels of these genes are

sensitive to miR-206/miR-1 overexpression, and that this

miRNA-induced downregulation was inhibited by specific

antimiRs. This approach identified CLCN3, Meox2, Smarcd2,

Smarcb1, Fzd7, MAP4K3, NFAT5 and RARB as miR-1/miR-

206 targets during differentiation of the C2C12 myoblast cell

line. The biological relevance of this regulation was confirmed

by sustained overexpression of targets, which we show interferes

with the myogenic differentiation program of C2C12 cells,

leading to disruption of cell cycle exit, alteration of fibre

morphology or activation of genes related to non-myogenic

differentiation programs. Thus, this approach identified novel

targets for miR-1/miR-206, whose negative regulation is crucial

to orchestrate myogenic differentiation of C2C12 myoblasts.

Results
Transcript profiling identifies novel potential targets

of miR-206

To identify effects of miR-206 on mRNA levels we generated

transcript profiles of C2C12 cells on day one of myogenic

differentiation, when the endogenous level of miR-206 is still

low (D1-control). This was compared to C2C12 cells transfected

with miR-206 (D1-miR-206), thus prematurely increasing the

activity of miR-206. We also obtained samples on day two of

differentiation (D2), when endogenous miR-206 expression is high.

Cells were either untreated (D2-control) or transfected with an

antimiR that inhibits miR-206 (D2-antimiR) (Fig. 1). Northern

analysis showed that antimiR-206 affected the expression of both

miR-1 and miR-206 (Fig. 2D).

Microarray analyses were performed on a mouse Illumina

array (Cambridge Genomic Services). The data set has been

submitted to the GEO database at NCBI (accession number

GSE34069). Bioinformatics analysis showed that antimiR

transfection affected the expression level of a greater number

of genes than transfection with miR-206 (Fig. 1A,B). It is

possible that at day one most targets are not yet expressed and

therefore increasing miR-206 activity has a limited effect.

Furthermore, the expression profile obtained with D2-antimiR

Fig. 1. Mouse Illumina array of C2C12 cells transfected with miR-206 or with antimiR-206. (A,B) Differential expression histograms for pairwise

comparisons: D1-control versus D1-miRNA (A) and D2-control versus D2-antimiR (B). (C,D) Empirical cumulative distributions of differential expression for

genes with and without miR-206 seed sites: D1-control versus D1-miRNA (C) and D2-control versus D2-antimiR (D). (E,F) Empirical cumulative distributions of

differential expression for genes predicted to be miR-206 targets by TargetScan, PicTar and Miranda: D1-control versus D1-miRNA (E) and D2-control versus

D2-antimiR (F).

miRNA targets promote non-myogenic fates 3591
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is more similar to either D1-control or D1-miR-206 than to

D2-control (Table 1). One possible interpretation of these results

is that the repression of miR-206 partially restores the profiles

observed at day 1.

To assess the effect of the treatments on the expression level of

putative miR-206 targets, we compared the differential expression

empirical distributions of the set of genes containing putative target

sites for miR-206 with that of all other genes (Fig. 1C,D). A putative

target site was defined as a sequence complementary to the seed

region of the miRNA (Rajewsky, 2006). We generated lists of target

sites for perfect matches of six, seven and eight base pairs, required

to mediate miRNA targeting (Grimson et al., 2007). Using the

Mann–Whitney–Wilcoxon test we assessed the significance of the

difference between the sets of genes containing each of these types

of target sites and the set of genes without target site. The only

significant results were obtained for the sets of genes containing 7-

mer and 8-mer matches, in the D2-antimiR and D2-control pairwise

comparison (P-values of 0.009 and 0.006, respectively). The

absence of significant differences between D1-control and D1-

miR-206 confirms the small effect of miR-206 overexpression on

day one. The significant differences between D2-control and D2-

antimiR indicate that there is a large number of genes containing a

putative target site that are de-repressed due to the inhibition of miR-

206 by antimiR-206 transfection.

We also examined the set of targets predicted by three

major target prediction algorithms TargetScanS (TargetScan4.1)

(Friedman et al., 2009; Grimson et al., 2007; Lewis et al., 2005),
PicTar (Krek et al., 2005) and miRanda (Griffiths-Jones et al.,
2008) (supplementary material Fig. S1A). We repeated the

comparison between the empirical distributions between the set
of targets of each program and the set of genes not predicted to be
targets (Fig. 1E,F). Once again, no significant difference was

observed for the D1-miRNA and D1-control pairwise comparison.
For the D2-antimiR and D2-control, the most significant difference
was observed for the set of targets predicted by TargetScan

(P,1028, P,0.74 and P,0.02 for TargetScan, PicTar and
miRanda, respectively).

To assess the impact of miR-206 on the expression profile not
only through direct targeting but also through indirect effects we

functionally annotated genes differentially expressed between
D2-control and D2-antimiR. For genes upregulated in D2-
antimiR, that is, the set of genes that negatively correlates with

the activity level of miR-206, and which therefore should include
most direct targets, the list of significantly enriched annotation
terms contained only generic terms, such as ‘cell cycle’ and

‘acetylation’. For the set of genes downregulated in D2-antimiR
(and that should constitute almost exclusively indirect targets)
most of the enriched terms are related to muscle (supplementary

material Table S1). This would suggest that miR-206 directly
targets a relatively small number of genes that are repressors of a
larger number of muscle-related genes (supplementary material
Table S2 for the list containing these genes). This list includes for

example myogenin, Laminin a5, Myh1, Myh3, Myh8, integrin
a7, integrin b6, fibrillin 1, desmin, troponin 1, troponins T1 and
T3, dystroglycan 1, titin, actinin a2 amongst other interesting

genes that are all associated with muscle structure and function.

Experimental validation of targets for miR-206 and miR-1

We generated a list of candidate miR-206 target genes that
contained a seed site for miR-206 and were upregulated in
the D2-antimiR sample or that were predicted to be miR-206

Fig. 2. miR-206 and miR-1 repress candidate target genes

through elements in the 39UTR. (A) Luciferase reporters

were co-transfected with miRNAs identical to miR-206, miR-

1, miR-140, as indicated. The 39UTR-sensor constructs used

are indicated below the columns. Relative luminescence units

were plotted as a percentage of the control value obtained in

absence of miRNA. A representative experiment of four

independent experiments using two DNA plasmid preparations

is shown. Error bars indicate s.d., n53. Columns represent the

wild-type or mutated (TSm) 39UTR sensor co-transfected with

miR-1 or miR-206 (P,0.05, n53), or with miR-140 (negative

control). (B) Expression of endogenous proteins is regulated

by miR-1 and/or miR-206 in NIH3T3 cells. Protein lysates

were prepared from cells that were mock-transfected or

transfected with miRNAs with or without antimiR-206, as

indicated above each lane. Western blots were probed with the

antibodies indicated next to each panel. (C) Northern blot

showing the expression of mature miR-1 and miR-206 in

differentiated C2C12 cells. These miRNAs were not detected

in NIH3T3 cells. U6 served as a loading control. (D) Northern

blot showing inhibition of miR-1 and miR-206 expression in

differentiated C2C12 cells. Cells cultured in GM were

transfected with antimiR-206 at concentrations indicated

above each panel. Next, cells were cultured in DM for 5 days,

RNA was isolated and probed against mature miR-1 and miR-

206, as well as U6; 50 nM and 100 nM antimiR-206 inhibited

expression of both miR-1 and miR-206.

Table 1. Spearman correlation coefficient between pairs

of samples

D1-control D1-siRNA D2-control D2-antimiR

D1-control 1.00 0.96 0.91 0.95
D1-siRNA 1.00 0.92 0.96
D2-control 1.00 0.92
D2-antimiR 1.00

Journal of Cell Science 125 (15)3592
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targets by at least two of three target prediction databases
(supplementary material Fig. S1). From these we selected

putative targets associated with skeletal muscle development or
differentiation. The transcripts of interest included Meox2, Fzd7
and RARB, which are known to be expressed in embryonic
muscles, including developing limb muscles (Blentic et al., 2003;

Cauthen et al., 2001; Mankoo et al., 2003; Mollard et al., 2000;
Reijntjes et al., 2007), CLCN3, a chloride channel expressed in
adult muscle and heart (Yamamoto-Mizuma et al., 2004),

MAP4K3, a mitogen activated kinase primarily activating the
JNK signalling pathway (Ramjaun et al., 2001) Smarcd2,
Smarcb1, chromatin remodelling factors (Klochendler-Yeivin

et al., 2006; Lickert et al., 2004; Wang et al., 1996), SH3BGRL3
(TIP-B1), a novel TNF inhibitory protein (Berleth et al., 2001)
and NFAT5, a transcription factor expressed in myoblasts and
regenerating muscles (Lopez-Rodrı́guez et al., 1999; O’Connor

et al., 2007). The putative miR-206 and miR-1 target sites are
conserved in human, mouse, rat and chicken, except for Smarcd2
where alignments showed that the seed sequence was poorly

conserved (supplementary material Fig. S1). Sensor constructs
were generated containing the 39UTR with the potential
microRNA binding site(s) (see Materials and Methods) and

tested in luciferase assays. Chicken DF1 cells were transfected
with 39UTR-sensor constructs, Renilla luciferase vector and miR-
1 or miR-206, or with miR-140, which is not predicted to target

these transcripts (Goljanek-Whysall et al., 2011) (Fig. 2A).

A known target, Connexin-43 (GJA1) (Anderson et al., 2006;
Kim et al., 2006), served as a positive control and the GJA1-
39UTR sensor was regulated as predicted by miR-1 and miR-206.

We defined validated targets as those that were efficiently
downregulated by miR-1/miR-206 but where the unrelated miR-
140 had no effect on the expression of the sensor construct. This

approach confirmed Smarcd2, Smarcb1, MAP4K3, Fzd7, Meox2
and RARB as targets for both, miR-1 or miR-206. Interestingly,
the 39UTRs of CLCN3 and SH3BGLR3 were regulated by miR-

206 but not miR-1. The NFAT5 sensor was only weakly
regulated by miR-206 and miR-1. For all confirmed targets
mutation of the putative target site in the 39UTR rendered the
sensor construct insensitive to miR-1 or miR-206 indicating that

interaction with the target site is required (Fig. 2A).

Next, we investigated the ability of miR-1 and miR-206 to
regulate the expression of target genes in a cellular context

(Fig. 2B). We found that NIH3T3 cells expressed robust levels of
most candidate targets (data not shown) but miR-1 and miR-206
were not expressed (Fig. 2C). Therefore these cells were ideal to

investigate whether transfected miR-1 and miR-206 could
regulate expression of the endogenous proteins. To determine if
the effects of miR-1/miR-206 expression were specific we

conducted rescue experiments with co-transfected antimiR-206,
which suppressed the expression of both miR-1 and miR-206 in
C2C12 myoblasts at 50 nM and 100 nM concentration (Fig. 2D).

Consistent with luciferase reporter assays CLCN3 protein

level decreased after transfection with miR-206 but not after
transfection with miR-1 compared to untransfected cells
(Fig. 2B). The reduced levels of CLCN3 protein were restored

by co-transfection of antimiR-206. Western blots of Smarcb1,
Smarcd2, MAP4K3, Fzd7 and RARB showed decreased protein
levels after transfection with miR-1 or miR-206 compared to

untransfected cells (Fig. 2B). In all cases protein levels were
restored to that of controls by co-transfection of antimiR-206.
Meox2 protein level was reduced by miR-1 but was not affected

by miR-206 transfection, although in luciferase assays both miRs

were effective in reducing expression levels. The decreased
levels of Meox2 protein could be restored by co-transfection of
antimiR (Fig. 2B). Consistent with our results from luciferase

assays NFAT5 protein levels were only slightly affected by
transfection of miR-206 or miR-1 (Fig. 2B) and co-transfection
of antimiR restored protein levels to that of controls.

miRNA dependant downregulation of candidate genes
during C2C12 differentiation

To determine whether interactions between miR-1/miR-206 with
these novel targets are biologically relevant we examined their
expression profiles during C2C12 myoblast differentiation. When

grown in differentiation medium (DM) containing low serum,
C2C12 cells differentiate into myotubes within 5 days and miR-1
and miR-206 are expressed by day 2 (Chen et al., 2006; Kim
et al., 2006; Rao et al., 2006; Sweetman et al., 2008). Consistent

with previous reports transfection of C2C12 cells with miR-206
or miR-1 enhanced myogenic differentiation (Chen et al., 2006;
Kim et al., 2006; Nakajima et al., 2006), whereas transfection of

antimiRs inhibited both, miRNA expression (Fig. 2D) and
myogenesis (data not shown).

Target gene expression was examined by QPCR and Western

blots of differentiating C2C12 cells in the presence or absence of
antimiR-206 (Fig. 3A–C). Expression of Connexin-43 (GJA1)
served as a positive control and, as previously reported by others,

transcripts were downregulated significantly from day 2 of
C2C12 cell myogenic differentiation (Kim et al., 2006); this was
inhibited by blocking miRNA function through transfection of
antimiR-206 (data not shown). Similarly, CLCN3, Smarcd2 and

Smarcb1 transcripts were reduced during C2C12 myogenic
differentiation (Fig. 3A) and inhibition of miR-1/miR-206 with
antimiR-206 prevented the downregulation of these transcripts

and levels remained at 80–100% of that seen in undifferentiated
cells at day 0 (Fig. 3B).

Transcripts for Meox2, RARB and NFAT5 were reduced during

myogenesis from day 1 or day 2 onwards (Fig. 3A). However,
downregulation of Meox2, RARB and NFAT5 transcript levels
was only partially inhibited in the presence of antimiR-206

(Fig. 3B). This indicates that additional mechanisms, independent
of miR-1/miR-206 function, are involved in the negative
regulation of Meox2, NFAT5 and RARB expression during
C2C12 cell differentiation.

There was no detectable change in Fzd7 and MAP4K3
transcript levels during C2C12 cell myogenesis (Fig. 3A),
indicating that miR-1/miR-206 may downregulate Fzd7 and

MAP4K3 proteins mainly through inhibition of translation.

Next, we determined the effects of miR-1/miR-206 on protein
expression in differentiating C2C12 cells. Western blot analyses

demonstrated that endogenous CLCN3, Smarcd2, MAP4K3, NFAT5
and RARB proteins were downregulated significantly during
myogenic differentiation from day two onwards. Smarcb1, Fzd7

and Meox2 protein levels were downregulated from day 3 or later
(Fig. 3C). Transfection of antimiR-206, which blocks expression of
miR-1/miR-206 in differentiating C2C12 cells (Fig. 2D; Fig. 3D),

inhibited the downregulation of these target genes.

Sustained expression of miR-1/miR-206 targets inhibits
C2C12 cell myogenesis

To investigate whether miRNA-mediated target repression is
essential for myogenesis, we examined the consequences of

miRNA targets promote non-myogenic fates 3593
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forced expression of target genes. We transfected C2C12 cells

with eukaryotic expression constructs lacking the 39UTR. Based

on GFP controls the transfection efficiency was around 30%.

Western blots showed that this led to significantly increased

levels of target proteins. In all cases, elevated protein levels were

still evident at day 5 of differentiation (supplementary material

Fig. S2) and there was no evidence of increased apoptosis

(supplementary material Fig. S4). After transfection C2C12 were

cultured in growth (GM) or differentiation medium (DM) and

myogenic differentiation was assessed by immunostaining of

myosin heavy chain (MyHC) with MF20 antibody (Fig. 4A,B).

Mock-transfected C2C12 cells cultured in GM did not differentiate

until day 5, when a few myotubes were detected due to depletion of

growth factors. In contrast, after culture in DM, myotubes were

observed at day 3, and by day 5 most cells had differentiated and

were labelled by immunostaining with MF20 (Fig. 4B). First we

examined the effects of antimiR-206 transfection, which prevents

effective downregulation of all target genes (Fig. 3C). This led to

impaired myogenic differentiation, evidenced by fewer MF20

positive fibres (Fig. 4B) and by determining the fusion index and

the total myotube area, which were both reduced. The cells

transfected with antimiR-206 were more similar to cells grown in

GM (Fig. 4C,D).

The antimiR-206 prevents downregulation of all miR-1/miR-

206 targets. Next we determined the effect of a single target on

myogenic differentiation and expression plasmids were

transfected individually. In most cases sustained target gene

expression led to delayed myogenic differentiation of C2C12

cells as shown by MF20 staining. Representative examples are

shown (Fig. 4A). Following transfection with CLCN3, MAP4K3,

Fzd7, SH3BGRL3, Smarcd2, Smarcb1 and NFAT5 only very few

MF20 positive myotubes were detected after 3 days in DM

(Fig. 4A and not shown) when compared to mock-transfected

cells (Fig. 4B). After 5 days in DM myotubes were present in

Fig. 3. Transcript and protein levels of candidate targets are regulated by miRs during C2C12 myogenesis. (A,B) qPCR for the transcripts indicated

was performed on cDNA from C2C12 myogenic cells on the days indicated by different shaded columns. Cells were grown in differentiation medium (DM) in the

absence (A) or in the presence of antimiR (B), as indicated. Normalised values are plotted. (C) Protein lysate was harvested from C2C12 cells or from C2C12 cells

treated with antimiR on the days indicated below each lane. Western blots were probed with the antibodies indicated next to each panel. Inhibition of miR-1/

miR-206 results in loss of downregulation of target genes. (D) Northern blot shows expression of miR-206 during C2C12 cell differentiation in the presence

or absence of antimiR-206 as indicated. U6 served as loading control. AntimiR-206 was efficient in blocking miR-206 expression during differentiation.

Journal of Cell Science 125 (15)3594
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transfected C2C12 cells, however their number was reduced,

either strongly (MAP4K3, Fzd7, Meox2, RARB, Smarcb1) or

weakly (SH3BGLR3, NFAT5), when compared to control cells

(Fig. 4A,B). The negative effect on myogenic differentiation was

confirmed by determining the fusion index and the total myotube

area (Fig. 4C,D). The fusion index, determined by the number of

nuclei per fiber divided by the number of total nuclei, was

significantly reduced for most targets compared to control cells in

DM (Fig. 4C). In addition, in most cases the percentage of total

image area covered by myotubes (total myotube area) was

significantly reduced (P50.05) with the exception of NFAT5

(P50.1). Co-transfection of antimiR-206 with the target genes

enhanced the negative effect on myogenic differentiation

(Fig. 4A,C,D), although the inhibition was sometimes not as

great as that seen with antimiR-206 alone (see Discussion).

The removal of growth factors from the culture leads to cell

cycle exit and activation of the C2C12 myogenic differentiation

program. To investigate whether miR-1/miR-206 targets affected

C2C12 cell proliferation we measured BrdU incorporation

(Fig. 4E,F). When cultured in GM 80% of cells incorporated

BrdU compared to 12% of cells cultured in DM. Transfection of

miR-1/miR-206 targets significantly increased the number of

C2C12 cells cultured in DM that incorporated BrdU, CLCN3

(38%), Smarcd2 (28%), Smarcb1 (52%), MAP4K3 (58%),

Fzd7 (29%), RARB (70%), NFAT5 (25%), SH3BGRL3

(46%) (Fig. 4E). The exception was Meox2, which showed

no significant increase in the number of BrdU-positive cells

(Fig. 4E); representative images are shown (Fig. 4F). Together,

these data show that downregulation of miR-1/miR-206 target

genes in committed myoblasts is critical and failure to do so

inhibits C2C12 myogenic differentiation due to effects on

different cellular processes such as proliferation and/or

myoblast fusion.

We next asked whether inhibition of miR-1/miR-206 activity

or overexpression of individual microRNA targets after the onset

of C2C12 differentiation could affect myogenesis. C2C12

cells were cultured in DM and transfected on day 3 with

either antimiR-206 or with target gene expression constructs

(transfection efficiency was 10–15%). After a further 3 days of

culture in DM myogenic differentiation was analysed by staining

with MF20 antibody and determination of fusion and

differentiation indices (Fig. 5A–C). C2C12 cells transfected

with antimiR-206, which inhibits miR-1/miR-206 activity and

affects all targets, resembled cells cultured in GM and fewer

MF20 positive myotubes were seen compared to control cells

cultured in DM (Fig. 5A). The fusion index and total myotube

area were both reduced and were similar to cells cultured in GM

(Fig. 5B,C). Next we determined the effect of individual target

genes. Transfection of expression constructs on day 3 led to

impaired myogenesis to varying degrees by day 6. The most

dramatic effects were observed with CLCN3 and Meox2;

however, expression of all other targets after the onset of

Fig. 4. Downregulation of target genes by miR-1 and miR-

206 is required for myogenic differentiation. C2C12 cells

were transfected with expression constructs encoding for target

genes, as indicated. Following transfection, C2C12 cells were

cultured in differentiation medium (DM), as indicated.

(A) C2C12 cells transfected with target genes or co-transfected

with AM206 and target genes were cultured in DM and

immunostained for MHC after 3 and 5 days of culture (MF20,

green; DAPI, blue). (B) The staining obtained was compared

with control mock-transfected cells cultured in DM, which

express MHC (green) at day 3 and at day 5. By contrast, only

few differentiated fibres (green) are present in cells cultured in

GM for 5 days. Cells transfected with antimiR-206 (AM206)

and cultured in DM show delayed myogenesis.

(C,D) Quantification of fusion index and total myotube area

following transfection and culture of C2C12 cells is shown.

Overexpression of all target genes inhibited C2C12

differentiation significantly (P,0.05) with the exception of

NFAT5. Cells overexpressing RARB and SH3BGRL3

differentiated efficiently compared with the DM control,

probably due to their increased proliferation and consequent

growth factor depletion from the culture medium. C2C12

co-transfected with target genes and AM206 showed a greater

delay in myogenesis. GM, growth medium; DM, differentiation

medium. (E,F) Proliferation of C2C12 cells following

transfection with target genes and culture in DM was

determined by anti-BrdU antibody (red). (E) The percentage of

BrdU-positive cells is shown. Error bars indicate s.d. from three

independent experiments. (F) C2C12 overexpressing selected

target genes and cultured in GM showed similar proliferation

rate to C2C12 cells cultured in GM.
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C2C12 cell myogenesis led to reduced fusion and total myotube
area.

C2C12 myoblasts activate alternative differentiation
programs after sustained expression of miR-1/miR-206
target genes

C2C12 and primary myoblasts can transdifferentiate into
osteogenic or adipogenic cells following treatment with bone
morphogenic proteins (BMPs) or adipogenic inducers,

respectively (Asakura et al., 2001; Nakajima et al., 2006).
To investigate whether miR-1/miR-206 targets can promote

alternative differentiation programs, we used quantitative RT-

PCR and histological stains to examine osteogenesis, adipogenesis

and chondrogenesis (Fig. 6). Osteogenic markers included early

and late markers, osterix and osteocalcin, as well as alkaline

phosphatase staining. Collagen 10A (Col10A) and the matrix

metalloproteinase, MMP13 as well as Alcian Blue staining were

used to indicate chondrogenic differentiation. TM4SF1 and leptin

were used to assay for adipogenesis.

None of the microRNA-regulated genes reported here were able

to induce adipogenesis-related gene expression in C2C12 cells

(data not shown). In contrast, osterix and osteocalcin were detected

Fig. 5. Downregulation of target genes by miR-1 and miR-

206 is required for terminal myogenic differentiation.

C2C12 cells were transfected with expression constructs

encoding for the indicated target genes at day 3 of

differentiation when myotubes started to form. (A) Following

transfection, C2C12 cells were cultured in differentiation

medium (DM) until day 6 and then immunostained for MHC

(MF20, green; DAPI, blue). (B,C) Quantification of fusion

index and total myotube area is shown. Overexpression of all

target genes inhibited terminal differentiation of committed

C2C12 cells significantly (P,0.05). Cells transfected with

Smarcb1 also displayed unusual morphology.

Fig. 6. Overexpression of target genes in C2C12

cells leads to expression of chondrogenic and/or

osteogenic markers. C2C12 cells were transfected

with target genes and cultured in DM. (A,C) q-PCR

showed that expression of AM206 or selected target

genes led to increased expression of osteogenic

(A) and chondrogenic (C) markers, compared with

cells cultured in DM. (A) Expression of AM206 and

all target genes shown led to significantly increased

expression (P,0.05) of the early osteogenic marker

osterix compared with mock-transfected control

cells and some genes also increased expression of

the late osteogenic marker, osteocalcin. (B) C2C12

cells transfected with AM206 or the target genes

indicated showed positive alkaline phosphatase

staining compared with controls. C2C12 cells

treated with BMP-4 served as a positive control for

osteogenic differentiation. Smarcd2, Smarcb1,

RARB and NFAT5 were less efficient in inducing

osteogenesis compared with AM206- or MAP4K3-

transfected cells and only ,10% of cells stained

positive for alkaline phosphatase. (C) Relative

expression levels of chondrogenic markers: Col10A

and MMP13 in cells transfected with Smarcd2 or

SH3BGRL3 were significantly higher (P,0.05)

than in control C2C12 cells or undifferentiated

C28/I2 cells. Transfection of AM206 did not result

in increase of chondrogenic markers. Differentiated

C28/I2 cells served as a positive control. (D) Alcian

Blue staining indicating chondrogenic

differentiation. Approximately 20% of cells

displayed positive Alcian Blue staining after

transfection with Smarcd2 or SH3BGRL3.
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in C2C12 cells cultured in DM and transfected with antimiR-206
or expression plasmids encoding Smarcd2, Smarcb1, MAP4K3 or

SH3BGRL3 (Fig. 6A). Transfection of RARB and NFAT5
plasmids also led to expression of osteogenic markers, however,
at relatively low levels. Histological staining for alkaline

phosphatase resulted in a strong signal, comparable to that in
control cells cultured in BMP-4, or in cells transfected with
antimiR-206 or MAP4K3 (Fig. 6B). The chondrogenic markers
MMP13 and Cola10A were significantly increased in C2C12 cells

transfected with Smarcd2 or SH3BGRL3 (Fig. 6C) and these cells
also stained positive for Alcian Blue (Fig. 6D). We used
differentiated chondrocytes, C28/I2, as control.

Finally, we investigated whether transfection of C2C12
cells on day 3 of differentiation could activate osteogenic or
chondrogenic gene expression after a further three days culture

(supplementary material Fig. S3). Surprisingly, some alkaline
phosphatase positive cells were detected after transfection of
antagomiR-206 or transfection of expression plasmids encoding

Smarcd2 or SH3BGRL3. Alcian Blue signal was seen in very
small patches of C2C12 cells after transfection with SH3BGRL3.
These data indicate that inappropriate expression of at least some

miR-1/miR-206 target genes can promote cell fates closely
related to but distinct from skeletal muscle.

Discussion
Skeletal myogenesis serves as an important paradigm for
cell differentiation and the muscle differentiation program is

recapitulated in C2C12 cells. To determine the role of miR-1/
miR-206 during skeletal myogenesis, we identified potential
targets based on mRNA profiling following manipulation of miR-

206 activity in C2C12 cells, predictions by multiple algorithms
and prior knowledge of genes known to be involved in
myogenesis. This approach has helped to avoid false positive

hits; however, it is likely that there are additional targets that
have yet to be confirmed. We focused on targets that were more
likely to be biologically relevant and most of the targets selected
for further study have been implicated in skeletal or cardiac

myogenesis. Using a number of complementary assays we
validated nine novel miR-1/miR-206 targets from our screen.

Interestingly, inhibiting miRNA function by antimiR-206
affected the expression of a greater number of genes in C2C12
cells than overexpression of miR-206 (Fig. 1A,B). This may
indicate that many miR-206 targets are not yet expressed on day

one of differentiation and therefore increasing the level of miR-
206 had a limited effect. Conversely, some target genes involved
in embryonic myogenesis may no longer be expressed in C2C12

myoblasts, which are derived from adult satellite cells. An
example of this is Pax3, which we showed recently, is targeted by
miR-206 during the progenitor to myoblast transition (Goljanek-

Whysall et al., 2011) but was not identified in this new screen,
although it has been reported that Pax3 and the highly related
Pax7 are regulated by miR-1/miR-206 during satellite cell

activation (Chen et al., 2010; Hirai et al., 2010).

The finding that the expression profile obtained from the D2-
antimiR-206 sample was similar to D1 control suggests that

repression of miR-206 partially restores day 1 expression profiles
(Table 1). Functional annotation of genes differentially expressed
between D2-control and D2-antimiR-206 showed that genes

downregulated in the D2-antimiR-206 group, so-called anti-
targets, were enriched for terms related to muscle (supplementary
material Table S1). This suggests that miR-206 directly targets,

and negatively regulates a relatively small number of genes,
which would otherwise repress a larger number of muscle-related

genes (supplementary material Table S2 for the list containing
these genes). This is consistent with previous findings, which
reported that after introduction of miR-1/miR-206 a significant
number of upregulated genes were related to muscle structure and

function. Similar to our observations the authors suggested that
this is most likely due to indirect effects after the primary
differentiation-inducing stimuli of the miRNAs (Kim et al.,

2006).

We validated candidate genes using in vitro and cell based
approaches. miR-1 and miR-206 downregulated luciferase sensor

constructs whilst introduction of specific mutations into the
potential miR target site showed that this was dependant on the
presence of these conserved target sites in the 39UTR of
the respective genes (Fig. 2A). Notably not all confirmed target

sites are equally regulated by miR-1 and miR-206. For example,
the target site we identified in CLCN3 is regulated by miR-206 but
not miR-1 while the Meox2 site is more strongly affected by miR-1

than miR-206. Furthermore, transfection of miR-206 and miR-1
led to a significant reduction of the putative target proteins in
NIH3T3 cells, whilst co-transfection with antimiRs restored

protein expression to normal levels (Fig. 2B). This indicates that
miR-1/miR-206 can interact with endogenous mRNAs in a cellular
context.

During C2C12 cell myogenic differentiation miR-206 and

miR-1 are highly expressed from day 2 onwards (Sweetman et al.,
2008; Chen et al., 2006; Kim et al., 2006; Rao et al., 2006) and,
consistent with previous observations, inhibition of miR-1/miR-

206 activity led to impaired myogenesis (Fig. 4B) (Chen et al.,
2006). Increased microRNA expression was associated with
reduced expression of the novel targets in C2C12 cells

(Fig. 3A,C) and suggests that downregulation of these genes
may be required to facilitate myogenic differentiation. This was
confirmed by sustained expression of target genes in C2C12 cells

undergoing differentiation following plasmid transfection. All
expression plasmids led to a significant increase of protein levels
compared to normal endogenous levels (supplementary material
Fig. S2) and these increased protein levels were still seen at day 5

of differentiation. Transfection of validated miR-1/miR-206
targets had a negative effect on myogenesis, which was further
enhanced by co-transfection of antimiR-206 in all cases.

However, co-transfection of both target gene expression
plasmid plus antimiR-206 was sometimes less effective than
transfection with antimiR-206 alone. There are different possible

explanations for this. The transfection of plasmid DNA plus
antimiR may lead to less efficient uptake of antimiR. We also
show that sustained overexpression of target genes increased

proliferation (Fig. 4E,F). Therefore cells reached confluency
faster and cultures were depleted of growth factors, which can
then promote spontaneous differentiation. This would ameliorate
the negative effects on myogenesis.

The inhibitory effects varied from almost complete inhibition
of myotube formation (e.g. CLCN3) to only slight phenotypic
changes, such as formation of thinner fibres containing a smaller

number of nuclei (e.g. Fzd7, RARB) (Fig. 4A,B). This was
quantified by determination of fusion index and total myotube
area (Fig. 4C,D) using established approaches (Ricotti et al.,

2011). To examine possible effects of miR-1/miR-206 inhibition
after the onset of differentiation, we modified miRNA levels, by
antimiR-206 transfection at day 3 (in DM). At this point C2C12
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myoblasts have elongated and begun to fuse and express
sarcomeric myosin, detectable with MF20 immunostaining.

They also express high levels of miR-1/miR-206 (e.g. Chen
et al., 2006; Sweetman et al., 2008) (Fig. 3D; Fig. 4B). However,
after antimiR-206 transfection both fusion index and total
myotube area were dramatically reduced and were similar to

that of cells kept in growth medium (Fig. 5B,C). Despite low
transfection efficiency, transfection of individual target genes at
day 3 also negatively affected C2C12 cell myogenesis, with the

strongest effects apparent for the CLCN3 chloride channel
(Fig. 5A). For RARB, NFAT5 and SH3BGRL3 the negative
effect on myogenesis appeared to be stronger when cells were

transfected at day 3 compared to transfection at day 0. At present
we cannot explain the reasons for this observation. However, it is
possible that this is related to specific functions of these genes,
which are currently not well understood.

Together our results showed that modifying miRNA activity or
the levels of single targets had a negative effect on myogenesis, even
when performed after the onset of differentiation. This illustrates

that miRNA function is pivotal for the successful execution and
maintenance of the differentiation program. In addition, most of the
genes investigated enhanced cell proliferation when introduced into

C2C12 cells cultured in differentiation medium (Fig. 4E,F).

To establish whether any of the validated miR-1/miR-206
targets are associated with alternative differentiation programs we
examined the expression of adipogenic, chondrogenic and

osteogenic markers. miR-206 has been shown to be expressed in
osteoblasts; however, it needs to be downregulated to facilitate
their differentiation (Inose et al., 2009). This is consistent with data

from C2C12 cells, which no longer express miR-1 after induction
of osteoblastic differentiation (Nakajima et al., 2006). Whist the
importance of miR-1/miR-206 for myogenic differentiation and

maturation is widely recognised, it has been suggested that miR-1/
miR-206 are less important for cell fate determination (Chen et al.,
2006; Nakajima et al., 2006). Interestingly, we show here that

inhibition of miR-1/miR-206 activity or sustained expression of a
number of novel target genes not only interferes with myogenesis
(Figs 4,5) but can also lead to the activation of osteogenic and
chondrogenic markers (Fig. 6, supplementary material Fig. S3).

These findings confirm that miR-1 and miR-206 activity is integral
to myogenesis at both the early commitment stages (Goljanek-
Whysall et al., 2011) and during the subsequent differentiation

process. We propose a dual function whereby miRNA mediated
downregulation of genes, which would enhance non-myogenic
programs and/or promote proliferation, is crucial for both the

complete cellular commitment as well as efficient execution of the
differentiation program. This is similar to our recent observations
in developing embryos, where we showed that miR-206

contributes to the complete silencing of Pax-3, a pro-myogenic
gene expressed in skeletal muscle progenitor cells (Goljanek-
Whysall et al., 2011). This downregulation facilitates the transition
of progenitor to committed myoblast, and similar regulatory

interactions are also important during the activation of satellite
cells (Chen et al., 2010; Hirai et al., 2010).

Thus, miR-1 and miR-206 represent a core mechanism ensuring

efficient cell fate commitment and myogenic differentiation, in
developing embryos, satellite cells and in C2C12 myoblasts. Our
study identifies a series of novel targets for miR-1/miR-206, and

demonstrates that their coordinated downregulation is required to
prevent continued myoblast proliferation and the expression of
genes associated with alternative cell fates.

Materials and Methods
DNA constructs and luciferase assay

The modified pGL3 vector (Promega) (Tuddenham et al., 2006) contained 39 UTR
regions that were PCR amplified from chick embryo cDNA (HH stage 17–26). To
mutate the predicted target sites a BamHI site (miR-1/miR-206 target sites) was
introduced, which led to point mutations and facilitated identification of clones. A
list of primers used is available in supplementary material Table S3.

DF1 chicken dermal fibroblasts were cultured in 96-well plates and transfected
using Lipofectamine 2000 (Invitrogen) with either WT or mutant sensor constructs
(200 ng), with or without miR-206/miR-1 (50 nM) (Sigma) as described
(Goljanek-Whysall et al., 2011). The empty pGL3 vector or transfection with
miR-140, which is not predicted to target any of the genes screened were used as a
negative controls. Each experiment had triplicate samples and was carried out four
times using two independent plasmid preparations of each reporter. Protein was
extracted after 48 hours, luciferase activity was measured using a multilabel
counter (Victor2, Perkin–Elmer, MA) and normalised to Renilla luciferase.
Relative reporter activity for miR treated cells was obtained by normalisation to
non-miR-treated WT or mutant constructs, respectively. P-values were calculated
by Student’s t-test.

Cell culture, western blots and analysis of cell differentiation

Mouse NIH3T3 cells were cultured in DMEM supplemented with 10% FBS and
1% penicillin/streptomycin. NIH3T3 cells were transfected with miR-206 or miR-
1 (50 nM, Sigma), with or without antimiR-206 (100 nM, Ambion) using
Lipofectamine 2000. Protein was extracted after 48 hours following standard
protocols using lysis buffer with protease and protein phosphatase inhibitors
(Roche), 20 mg cell lysate was run on 4–12% polyacrylamide gels and blotted onto
nitrocellulose using a semidry blotter (Bio-Rad). Primary antibodies (1:500 or
1:1000) and secondary antibodies coupled to HRP (Jackson Laboratories) were
applied for 1 hour each at room temperature. Primary antibodies used: CLCN3
(LifeSpan Biosciences), Meox2, SMARCD2, SMARCB1, NFAT5, RARB,
caspase-9 and actin (Abcam, Cambridge, UK).

Mouse C2C12 cells were maintained in growth medium (GM: DMEM, 10%
FBS, 1% penicillin-streptomycin). Myogenic differentiation was induced in sub-
confluent cells in differentiation medium (DM: DMEM, 2% horse serum, 1%
penicillin-streptomycin) as described (Sweetman et al., 2008). After transfection
with antimiRs (50 nM, Ambion), cells were incubated in DM. Whole cell lysates
were extracted on the day of transfection and then every 24 hours for 5 days.
Osteogenic differentiation of C2C12 cells was induced in DMEM supplemented
with 5% horse serum and 400 ng/ml human recombinant BMP-4 for 6 days as
described (Katagiri et al., 1994). To examine alkaline phosphatase activity
histochemically, cells were fixed and stained as described (Katagiri et al., 1994).

C28/I2 cells were cultured and induced to chondrogenic differentiation as
described previously (Greco et al., 2011). Alcian Blue staining was performed as
previously described (Swingler et al., 2012) and C28/I2 cells served as positive
control. For adipogenic differentiation, C2C12 cells were grown to confluency in
GM and switched to an adipogenic medium as described (Akimoto et al., 2005).
Apoptosis was induced by 2 mM H2O2 for 6 hours as described (Salucci et al., 2010).

To determine the C2C12 fusion index we counted the number of nuclei in
myotubes and divided this by the total number of nuclei, after multiplication by
100 the y-axis in Fig. 4C, Fig. 5B represents percent of nuclei within myotubes.
The total myotube area represents the percent of total image area covered by
myotubes. Both were established using six different microscopic fields from three
different experiments using ImageJ.

Microarray samples and annotation methods

We chose two time points that showed the highest differences in mRNA levels of a
known miR-206 target (GJA1). Control C2C12 cells were cultured in DM and
harvested at day 1 or day 2 (D1 control, D2 control). To activate miR-206
prematurely, cells were transfected with miR-206 and RNA was harvested at day 1
(D1 miRNA group). To inhibit miR-206, C2C12 cells were treated with antimiR-
206 and harvested at day 2 of differentiation (D2 antimiR-206 group). Three
replicate samples of RNA were harvested and Illumina’s MouseWG-6 V2
BeadChip microarrays were probed. Pre-processing of microarray data was
performed using R and Bioconductor. Normalisation was performed using the
lumi package (Du et al., 2008). Microarray probes were annotated using
the lumiMouseIdMapping package. 39UTR sequences were downloaded from
Ensembl. Functional annotation was performed using the DAVID webserver
(Huang et al., 2008). The data was submitted to GEO (accession number
GSE34069) and meets the MIAME requirements.

RNA isolation and northern analysis

Standard methods were used as described previously (Sweetman et al., 2008).

Quantitative real time PCR

cDNA was generated using random hexamers and Superscript II reverse
transcriptase (Invitrogen). TaqMan primers for real-time PCR reactions were
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obtained from Applied Biosystems as follows: Meox2: Mm00801881_m1; NFAT5:
Mm00467257_m1; RARb: Mm01319674_ m1; GJA1: Mm00439 105_m1; CLCN3:
Mn01348786_m1; Evi1: Mm00514810_m1; SMARCB1: Mm00448 776_m1;
SMARCD2: Mm00473467_g1. 18S ribosomal RNA was used as an internal
control to normalise for differences in the amount of total RNA in each sample.
TaqMan 18S primers and a 59-VIC-labelled probe were used according to the
manufacturer’s instructions (Applied Biosystems). Each experiment had triplicate
samples and the values for day 1–5 were normalised to the value obtained for day 0.
Cell fate was analysed using SYBR Green qPCR SuperMix (Invitrogen) and
following primers: OsterixF: 59-GGGTTAAGGGGAGCAAAGTCAGAT-39,
OsterixR: 59-CTGGGGAAAGGAGGCACAAAGAAG-39, OsteocalcinF: 59-CT-
GAGTCTGACAAAGCCTTC-39, OsteocalcinR: 59-GCTGTGACATCCATACTT-
GC-39, Col10F: 59-ATTATCCACTGCTCCTGGGCAGA-39, Col10R: 59-ATAGA-
TTCTGGTGCTGGGAGATGCG-39, MMP13F: 59-AAAGACAGATTCTTCTGG-
CGCCTG-39. Mouse b-actin was used as reference gene.

Expression vectors for validated target genes and BrdU incorporation assay

Expression plasmids encoding target genes were obtained from Source Bioscience
Life Sciences (I.M.A.G.E. full length cDNAs). The expression vectors were
pCMV.Sport 6 (4396bp) and pCMV.Sport6.1 (4177bp), empty pCMV.Sport6
served as control. The I.M.A.G.E. clone numbers are as follows, Smarcd2:
2647494, Smarcb1: 3154501, CLCN3: 6833732, Fzd7: 6844727, Meox2: 008594,
MAP4K3: 6825201, RARB: 30608242, NFAT5: 40083218, SH3BGRL3: 341987.
C2C12 cell proliferation was assessed by BrdU incorporation as described (Shan
et al., 2007). Briefly, C2C12 cells were seeded on glass coverslips and transfected
as described (Sweetman et al., 2008). Control cells were treated with lipofectamine
only. After 4 h incubation cells were labelled with 10 mM of BrdU (Sigma-
Aldrich) for 3 h and harvested after an additional 24 h. Cells were fixed in 4%
paraformaldehyde and stained with BrdU antibody (1:100) and donkey anti-mouse
IgG (FITC conjugated, 1:250; Jackson ImmunoResearch Laboratories). BrdU
quantification was assessed by analysing 6 different microscopic fields from three
different experiments by dividing the number of nuclei stained positive with anti-
BrdU antibody by the total number of nuclei. C2C12 cell differentiation was
assessed by MF20 staining (Sweetman et al., 2008). Images were analysed using
Axiovision and ImageJ. P-values were calculated by Student’s t-test.
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