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Abstract. We show that Zilber’s conjecture that complex exponentiation
is isomorphic to his pseudo-exponentiation follows from the a priori simpler

conjecture that they are elementarily equivalent. An analysis of the first-

order types in pseudo-exponentiation leads to a description of the elementary
embeddings, and the result that pseudo-exponential fields are precisely the

models of their common first-order theory which are atomic over exponential

transcendence bases. We also show that the class of all pseudo-exponential
fields is an example of a non-finitary abstract elementary class, answering a

question of Kesälä and Baldwin.

1. Introduction

Zilber’s pseudo-exponential fields were defined in [Zil05], as models of certain
axioms. Infinitary logic is used throughout the paper, which shows that the ax-
ioms are expressible by an Lω1,ω(Q)-sentence. Anand Pillay emphasised to me
the importance of understanding the first-order theory of these pseudo-exponential
fields, which we denote by TB. In [KZ11], Zilber and I gave an axiomatization of
TB, assuming the diophantine conjecture CIT. This note takes some steps towards
understanding TB unconditionally, in particular by describing the first-order types
which are realised in pseudo-exponential fields. In section 2, I show the axioms for
pseudo-exponential fields can be written in a first-order way, with two exceptions:
an Lω1,ω-sentence is needed to omit the type of a non-standard integer, and the
quantifier Q (there exist uncountably many) is essential for the countable closure
axiom (CCP), although the axiom can be expressed in an L(Q)-scheme, rather
than just as an Lω1,ω(Q)-sentence. These non-elementary axioms are known to
hold in Cexp, so it follows immediately that if Cexp satisfies the first-order theory
of pseudo-exponential fields then it satisfies the full Lω1,ω(Q)-theory.

The main result of Zilber’s paper is that there is a unique model of his axioms of
cardinality 2ℵ0 , which we call B, and indeed of each uncountable cardinal κ. Thus
we have

Theorem 1. If the complex exponential field Cexp is elementarily equivalent to B,
then it is isomorphic to B.

The isomorphism is Zilber’s main conjecture about Cexp, however Theorem 1
does not make proving the isomorphism any easier, rather it shows that proving
elementary equivalence is just as far out of reach.

The class of pseudo-exponential fields naturally forms an abstract elementary
class (AEC). Hyttinen and Kesälä [HK06] introduced the notion of a finitary AEC,
and the class of pseudo-exponential fields has been used as an example of a non-
finitary AEC, but no proof of this fact has previously appeared in the literature.
From the proof that the Q quantifier cannot be eliminated, it follows quickly that:
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Theorem 2. The category of pseudo-exponential fields (with CCP) together with
closed embeddings is an abstract elementary class which is not finitary.

Section 3 of this note uses the algebra of exponential fields developed in [Kir11]
and [KZ11] to address the issues of elementary embeddings and atomicity for
pseudo-exponential fields. In fact here we can work with a broader class, not
assuming the countable closure axiom, but unfortunately still narrower than the
class of all models of TB. The main technical difficulty is that, without CIT, we
do not understand what saturated models of TB look like, and we do not have
an unconditional quantifier-elimination result, so the proofs have to use less direct
techniques including a careful analysis of the types which are realised.

Theorem 3. The strong embeddings between pseudo-exponential fields (not neces-
sarily with CCP) are exactly the elementary embeddings. In particular, all pseudo-
exponential fields, including those of finite exponential transcendence degree, are
elementarily equivalent.

This theorem complements Theorem 5.13 of [Zil05], which adds the additional
hypothesis of infinite exponential transcendence degree but gets the stronger con-
clusion that strong embeddings are Lω1,ω-embeddings. The stronger conclusion
fails in general.

Finally we show:

Theorem 4. Each pseudo-exponential field (not necessarily with CCP) is an atomic
model of TB over an exponential transcendence base, in the language 〈+, ·, exp〉. In
particular, TB has a prime model. Conversely, every model of TB which is atomic
over an exponential transcendence base is a pseudo-exponential field.

Zilber states in [Zil05, Theorem 5.16] that the uncountable pseudo-exponential
fields (with the countable closure property) are prime over exponential transcen-
dence bases but he uses an expanded language L∗ which is an expansion of our
language by Lω1,ω-definitions, not by first-order definitions. So Theorem 4 does
not follow directly from Zilber’s methods.

Some of the work for this paper was done while I was visiting the University of
Helsinki, and I am grateful for their hospitality.

2. The axioms for pseudo-exponentiation

We give five axioms capturing Zilber’s definition. Explanations of the terminol-
ogy in axioms 4 and 5 are deferred to the more detailed discussions afterwards. We
use only the language 〈+, ·, exp〉.

1. ELA-field: F is an algebraically closed field of characteristic zero, and
its exponential map exp is a homomorphism from its additive group to its
multiplicative group, which is surjective.

2. Standard kernel: the kernel of the exponential map is an infinite cyclic
group generated by a transcendental element τ .

3. Schanuel Property: The predimension function

δ(x̄) := td(x̄, exp(x̄))− ldimQ(x̄)

satisfies δ(x̄) > 0 for all tuples x̄ from F .
4. Strong exponential-algebraic closedness: If V is a rotund, additively

and multiplicatively free subvariety of Gna × Gnm defined over F and of
dimension n, and ā is a finite tuple from F , then there is x̄ in F such that
(x̄, ex̄) ∈ V and is generic in V over ā.

5. Countable Closure Property: For each finite subset C of F , the expo-
nential algebraic closure eclF (C) of C in F is countable.

Clearly axiom 1 is first-order expressible.
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2.1. Standard Kernel. Write ker(F ) = {x ∈ F | exp(x) = 1}, the kernel of the
exponential map. Define

Z(F ) = {r ∈ F | ∀x[x ∈ ker→ rx ∈ ker]} ,
the multiplicative stabilizer of the kernel.

Axiom 2 can be split into three parts.

2a: The kernel is a cyclic Z-module.
2b: Every element of the kernel is transcendental over Z.
2c Standard integers:

(∀r ∈ Z)
∨
n∈N

r = 1 + · · ·+ 1︸ ︷︷ ︸
n

∨ r + 1 + · · ·+ 1︸ ︷︷ ︸
n

= 0

It is clear that axioms 2a and 2b are first-order expressible, and that 2c is not, but
it is given by a single Lω1,ω-sentence. Equivalently, 2c can be viewed as omitting
the incomplete type of a nonstandard integer.

2.2. The Schanuel Property. Axiom 3, the Schanuel Property, is equivalent to
the following axiom scheme, which is first-order expressible provided axiom 2 holds
so we can quantify over the standard integers: for each n ∈ N, for each subvariety
V ⊆ Gna ×Gnm defined over Q, of dimension n− 1,

(∀x1, . . . , xn)(∃m̄ ∈ Zn r {0̄})

[
(x̄, exp(x̄)) ∈ V →

n∑
i=1

mixi = 0

]
.

2.3. Strong exponential-algebraic closedness. Write G for the algebraic group

Ga × Gm. Each matrix M ∈ Matn×n(Z) defines a homomorphism Gn
M−→ Gn by

acting as a linear map on Gna and as a multiplicative map on Gnm. If V ⊆ Gn, we
write M · V for its image. Note that if V is a subvariety of Gn, then so is M · V .

An irreducible subvariety V of Gn is said to be rotund iff for every matrix
M ∈ Matn×n(Z) we have dimM · V > rkM .

Suppose that (x̄, ȳ) is a generic point of V over F , with the xi being the coordi-
nates from Ga and the yi the coordinates from Gm. We say that V is multiplicatively
free iff the yi do not satisfy any equation of the form

∏n
i=1 y

mi
i = b with the mi ∈ Z,

not all zero, and b ∈ Gm(F ). Equivalently, the projection of V to Gnm does not lie
in any coset of a proper algebraic subgroup of Gnm. Similarly, we say that V is
additively free iff the xi do not satisfy any equation of the form

∑n
i=1mixi = a

with the mi ∈ Z, not all zero, and a ∈ F .

Proposition. Axiom 4, strong exponential-algebraic closedness, is first-order ex-
pressible modulo axioms 1, 2, and 3.

Proof. We consider parametric families (Vp)p∈P of subvarieties of Gn, where P is
some parametrizing variety. It is a well-known fact (part of the fibre dimension
theorem) that the set of p such that Vp is irreducible and of dimension n is first-
order definable in the field language. The property of being additively free is not
definable in the field language, since for example the subvariety of G2 given by the
equation

x1 + px2 = 0

is additively free iff p /∈ Q. However, it is definable as follows allowing quantification
over Z:

(∀m̄ ∈ Zn r {0̄})∀z∃x̄

[
x̄ ∈ Vp ∧

n∑
i=1

mixi 6= z

]
.

It is easy to give similar definitions showing that rotundity and multiplicative free-
ness are definable allowing quantification over Z. However, Theorem 3.2 of [Zil05]
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shows that these two properties are even first-order definable in the field language.
For a parametric family (Vp)p∈P of subvarieties of Gn, let P ′ be the set of p ∈ P
consisting of those p such that Vp is irreducible, of dimension n, rotund, and ad-
ditively and multiplicatively free. Consider the following axiom scheme with one
axiom for each family (Vp)p∈P and each natural number r:

(∀p ∈ P ′)(∀ā ∈ F r)(∃x̄ ∈ Fn)(∀m̄ ∈ Qn+r)[
(x̄, ex̄) ∈ Vp ∧

(
n∑
i=1

mixi +

r∑
i=1

mn+iai = 0→
n∧
i=1

mi = 0

)]
This scheme is first-order expressible assuming axiom 2 holds, so we can quantify
over Z and hence over Q. It also follows from axiom 4, since that axiom gives an
x̄ such that (x̄, ex̄) is generic in Vp over ā. Since Vp is additively free, that x̄ does
not satisfy any Q-linear equation over ā, which is all the scheme requires.

Now let V be any rotund, additively and multiplicatively free subvariety of Gn

defined over F and of dimension n, and ā be a finite tuple from F , as in the
hypothesis of axiom 4. Then V is Vp for some parametric family (Vp)p∈P as above,
with p ∈ P ′. By extending ā, we may assume that V is defined over ā. By extending
again and using axiom 3, we may assume that δ(ā) 6 δ(ȳ, ā) for all tuples ȳ from
F (since the values of δ(ā, ȳ) lie in N, so the minimum is attained). Thus for all ȳ,
δ(ȳ/ā) := δ(ȳ, ā)− δ(ā) > 0. Now invoke the axiom scheme to find an x̄. We have
ldimQ(x̄/ā) = n, so we must have td(x̄, ex̄/ā, eā) > n. But dimV = n, so (x̄, ex̄)
must be generic in V over (ā, eā), so a fortiori over ā. Thus axiom 4 is equivalent
to this scheme, modulo axioms 1, 2, and 3. �

On page 87 of [Zil05], Zilber remarks:

The definition [of strongly exponentially-algebraically closed] as-
sumes a “slight saturatedness” of the exponentially-algebraically
closed structure.

This remark had led me to assume that strong exponential-algebraic closedness
was not first-order, even assuming the other axioms, so the above result was some-
what unexpected. Indeed the fact that strong exponential-algebraic closedness is
first-order means that the Zilber’s other notion of exponential-algebraic closedness
is redundant for the construction of the exponential fields which do have standard
kernel and the Schanuel property (although it is used in this note, in §3.1 where
both these properties fail). In [KZ11, Theorem 5.5] we prove that the notions of
exponential-algebraic closedness and strong exponential-algebraic closedness coin-
cide under the additional assumption that the diophantine conjecture CIT is true
(and assuming the other relevant axioms) and it would be interesting to know if
the same result can be proved unconditionally.

2.4. The countable closure property. In any exponential field F there is a
pregeometry called exponential algebraic closure, which we write eclF . We give a
quick account of its definition. Details can be found in [Mac96] or [Kir10]. An
exponential polynomial (without iterations of exponentiation) is a function of the

form f(X̄) = p(X̄, eX̄) where p ∈ F [X1, . . . , Xn, Y1, . . . , Yn] is a polynomial. We
can extend the formal differentiation of polynomials to exponential polynomials in

a unique way such that ∂eX

∂X = eX .
A Khovanskii system of width n consists of exponential polynomials f1, . . . , fn

with equations

(1) fi(x1, . . . , xn) = 0 for i = 1, . . . , n
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and the inequation

(2)

∣∣∣∣∣∣∣
∂f1
∂X1

· · · ∂f1
∂Xn

...
. . .

...
∂fn
∂X1

· · · ∂fn
∂Xn

∣∣∣∣∣∣∣ (x1, . . . , xn) 6= 0.

where the differentiation here is the formal differentiation of exponential polynomi-
als.

For any subset C of F , we define a ∈ eclF (C) iff there are n ∈ N, a1, . . . , an ∈ F ,
and exponential polynomials f1, . . . , fn with coefficients from Q(C) such that a = a1

and (a1, . . . , an) is a solution to the Khovanskii system given by the fi.

We say that eclF (C) is the exponential algebraic closure of C in F . If a ∈ eclF (C)
we say that a is exponentially algebraic over C in F , and otherwise that it is
exponentially transcendental over C in F .

Theorem 1.1 of [Kir10] states that eclF is a pregeometry in any exponential
field. We have stated axiom 5 in terms of this pregeometry. The definition of the
pregeometry originally used by Zilber is different, and makes sense only assuming
axiom 2. However, when axiom 2 holds, the two definitions agree by [Kir10, The-
orem 1.3]. With Zilber’s original definition one can see that axiom 5 is expressible
as an Lω1,ω(Q)-sentence. Using this definition we can show:

Proposition. Axiom 5, the countable closure property, is expressible as an L(Q)-
scheme.

Proof. For the Khovanskii system on exponential polynomials f = (f1, . . . , fn),
write χf (x̄, z̄) for the first-order formula expressing (1) and (2), where z̄ denotes
the coefficients for the exponential polynomials. Then axiom 5 is expressed by the
L(Q)-sentences

(∀z̄)¬(Qx1)(∃x2, . . . , xn)χf (x̄, z̄)

where f ranges over all finite lists of exponential polynomials with variables z̄ as
coefficients. �

2.5. The complex exponential field and proof of Theorem 1. The complex
exponential field Cexp is the field of complex numbers equipped with the usual

complex exponential function given by exp(z) =
∑
n∈N

zn

n! . Axioms 1 and 2 are
chosen such that Cexp satisfies them. Zilber noted [Zil05, Lemma 5.12] that Cexp

also satisfies axiom 5, the countable closure property. With the definition of eclF

from §2.4, we can give a shorter proof. Given a finite subset C of Cexp, there are only
countably many Khovanskii systems with coefficients from Q(C). The inequation
in a Khovanskii system says that the Jacobian of the functions f1, . . . , fn does not
vanish so, by the implicit function theorem, solutions to a Khovanskii system are
isolated in the complex topology. Hence there are only countably many solutions
to each system, so eclCexp(C) is countable.

We have seen that axioms 3 and 4 are first-order expressible modulo axioms 1
and 2, and certainly Cexp has cardinality 2ℵ0 , so Theorem 1 follows.

2.6. Strong extensions. We now summarize the definitions and results from
[Kir11] and [KZ11] which we shall need.

In this note, a partial exponential subfield of an ELA-field F is a subfield F0 ⊆ F
together with a Q-linear subspace D(F0) of F0 and the restriction of the exponential
map expF to D(F0), such that F0 is generated as a subfield of F by D(F0) ∪
exp(D(F0)). Thus F0 is determined by D(F0). For any finite tuple ā from F we
define

δ(ā/F0) = td(ā, eā/F0)− ldimQ(ā/D(F0))
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and say F0 is strong in F , written F0 C F , iff for all ā ∈ F , δ(ā/F0) > 0.
If B ⊆ F is a subset, then 〈B〉F , the partial exponential subfield of F generated

by B, is the partial exponential subfield F0 with D(F0) equal to the Q-linear span
of B. We write B C F iff 〈B〉F C F .

If F satisfies the Schanuel property or, more generally, if there is C ⊆ B with
C C F , then there is a smallest partial exponential subfield of F which contains
B and is strong in F . We write it as dBeF and call it the hull of B in F . For

any subset B ⊆ F , we write 〈B〉ELAF for the smallest ELA-subfield of F containing

ker(F ) ∪B, and dBeELAF for 〈dBeF 〉ELAF .

Proposition (A). Suppose F is an ELA-field with standard kernel, and b̄ is a finite
tuple from F such that b̄ C F . Then there is m ∈ N+ such that the isomorphism

type of
〈
b̄
〉ELA
F

is determined by the algebraic locus V = Loc(b̄/m, eb̄/m/ ker(F )), a

subvariety of Gn, and does not depend on F . Furthermore,
〈
b̄
〉ELA
F

is strong in F .

Proof. The existence of some m ∈ N+ such that the partial exponential subfield〈
b̄
〉
F

is determined up to isomorphism by V follows from the Thumback Lemma,

[Kir11, Fact 2.15], or see [Zil06, Theorem 2] for a proof. Then [Kir11, Theorem 2.18]

applies to show that
〈
b̄
〉ELA
F

is uniquely determined and strong in F . �

Proposition (B). If F CM is a strong extension of ELA-fields such that ker(F ) =
ker(M), M is generated as an ELA-field by F and a finite tuple b̄ ∈Mn, and either
F is countable or ker(F ) is ℵ0-saturated, then there is m ∈ N+ such that the iso-

morphism type of M as an extension of F is determined by V = Loc(b̄/m, eb̄/m/F ).
Furthermore, b̄ can be chosen to be Q-linearly independent over F , and then V is
rotund, additively and multiplicatively free, and of dimension at least n. The exten-
sion is exponentially algebraic, that is M = eclM (F ), if and only if dim(V ) = n.

In this case, we write M as F |V , “F extended by V ”.

Proof. See §3 and §5 of [Kir11] for the case where F is countable. In the case where
ker(F ) is ℵ0-saturated, the analysis is exactly the same except that one needs to
use [KZ11, Theorem 3.3] in place of [Kir11, Theorem 2.18]. �

2.7. Lω1,ω-theory. Let Ψ be an Lω1,ω-sentence expressing axioms 1—4. For any
natural number n, it is easy to give an Lω1,ω-sentence Φn specifying that F has
exponential-transcendence degree equal to n.

From §2.6, we see that axiom 4, strong exponential-algebraic closedness, is
equivalent (assuming axioms 1, 2, and 3) to an existential closedness property
for exponentially-algebraic strong ELA-extensions, which do not extend the kernel.
Lemma 5.9 of [Kir11] shows these extensions can be freely amalgamated, so, at
least in the countable case, we can characterize the models as certain Fräıssé limits.
Indeed any ELA-field F which is countable or has ℵ0-saturated kernel has a unique
smallest strongly exponentially-algebraically closed extension, which we write as
F∼. For more details, see [Kir11, §6].

In particular, each of the Lω1,ω-sentences Ψn := Ψ∧Φn and Ψ∞ := Ψ∧
∧
n∈N ¬Φn

is countably categorical by the uniqueness of Fräıssé limits (or specifically by [Kir11,
Corollary 6.10]), and hence complete. For Ψ∞ this was already proved in [Zil05,
Theorem 5.13]. Clearly these are the only completions of Ψ as Lω1,ω-theories. In
particular, Ψ∞ gives the complete L∞,ω-theory of B. We write Bn for the unique
countable model of Ψn.

2.8. Necessity of Q and proof of Theorem 2. We now show that the Q quan-
tifier cannot be eliminated.
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Proposition. The countable closure property is not expressible in L∞,ω, even mod-
ulo axioms 1—4.

Proof. The idea is to find and use an exponentially algebraic regular (in fact strongly
minimal) type which is totally categorical and orthogonal to the generic (exponen-
tially transcendental) type, and to the kernel.

Let F0 = B0, and adjoin an extra element a such that ea = a. This a generates
a well-defined ELA-field extension F0|V of F0, where V is the subvariety of G
given by the equation x = y. Let F1 = (F0|V )∼, the strong exponential-algebraic
closure of F0|V . By construction, F1 satisfies axioms 1—5, and is an exponentially-
algebraic extension of F0, so has the same exponential transcendence degree, 0.
Thus F1

∼= F0.
Now suppose that b̄ is any finite tuple from F0 and let A = db̄eELAF0

. Then ACF0

and since F0CF1 we also have ACF1. By the general Fräıssé construction, or more
specifically by Proposition 6.9 of [Kir11], F0 and F1 are both isomorphic over A
to its strong exponential-algebraic closure A∼, so in particular to each other. The
same holds for any finite tuple b̄, so it follows that the inclusion F0 ↪→ F1 is an
L∞,ω-embedding. Now we can iterate the construction to get a chain

F0 ↪→ F1 ↪→ F2 ↪→ · · · ↪→ Fα ↪→ · · ·
of length ω1. The union Fω1

of this chain will be L∞,ω-equivalent to each element
of the chain, hence to B0, but {a ∈ Fω1

| ea = a} has cardinality ℵ1, and each such
element is exponentially algebraic, so the countable closure property fails. �

We say that an embedding F1 ↪→ F2 of pseudo-exponential fields is a closed
embedding iff the image of F1 is exponentially-algebraically closed in F2, that is,
eclF2(F1) = F1. The category of all pseudo-exponential fields together with closed
embeddings forms an abstract elementary class (AEC). The notion of an AEC being
finitary was introduced by Hyttinen and Kesälä [HK06] and studied also by Kueker
[Kue08]. Using Definition 3.1 of Kueker’s paper, an AEC K is finitary iff whenever
M,N ∈ K and f : M ↪→ N is an L-embedding such that, for every finite tuple ā
from M , there is a K-embedding g : M → N such that g(ā) = f(ā), then f is a
K-embedding.

In the above proof we showed that the inclusion map F0 ↪→ F1 satisfied this last
condition, but clearly it is not a closed embedding. Thus Theorem 2 is established.
The Proposition shows that our AEC is not closed under Lω1,ω-equivalence, and
one could use Kueker’s result that finitary AECs are closed under Lω1,ω-equivalence
to give another, less direct, proof of Theorem 2.

3. The first-order theory and elementary embeddings

3.1. The exponentially transcendental type. Let f1, . . . , fn be exponential
polynomials in variables x1, . . . , xn, and, as before, write χf (x̄) for the first-order
formula corresponding to the Khovanskii system on the fi, now suppressing the
variables z̄ corresponding to coefficients of the fi.

Given any exponential field F , and any set A of parameters from F , the expo-
nentially transcendental type over A is the set of formulas

(∀x2, . . . , xn)[¬χf (x, x2, . . . , xn)]

where n ranges over all positive natural numbers and f ranges over all n-tuples of
exponential polynomials with coefficients from A. Write p|A(x) for this type over
A. For the exponential fields under consideration it is a consistent partial type. In
some cases, for example Rexp, the type is not complete.

Proposition. In TB, for any set of parameters A, the type p|A(x) is complete.
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Proof. It is enough to prove the result for finite A. So let M be an ℵ0-saturated
model of TB, and A a finite subset of M . Suppose a, b ∈M are each exponentially
transcendental over A. Let M0 = eclM (A). We will set up a back-and-forth system
showing that tp(a/M0) = tp(b/M0). In particular tp(a/A) = tp(b/A).

Firstly, note that the partial E-field extensions of M0 generated by a and b are
isomorphic, since we have td(a, ea/M0) = td(b, eb/M0) = 2. Furthermore, since a
and b are exponentially transcendental over M0, these partial E-fields are strong in
M . By Proposition 2.6(B), there is an isomorphism

θ1 : 〈M0, a〉ELAM
∼=- 〈M0, b〉ELAM

between the ELA-subfields of M generated by M0 ∪ {a}, and M0 ∪ {b}, fixing M0

and sending a to b. Furthermore, these ELA-subfields of M are strong in M .
Now suppose we have n-tuples ā and b̄ in M , each Q-linearly independent over

M0, with a1 = a and b1 = b and an isomorphism

θn : dM0, āeELAM
∼=- dM0, b̄eELAM

between the strong ELA-subfields of M generated by M0 ∪ ā, and M0 ∪ b̄, fixing
M0 and sending ai to bi for i = 1, . . . , n.

Let c ∈M . We want to find d ∈M and an isomorphism

θn+1 : dM0, ā, ceELAM
∼=- dM0, b̄, deELAM

extending θn. Write F = dM0, āeELAM . By extending ā and b̄, we may assume

M0 ∪ āCM , so F = 〈M0, ā〉ELAM , and similarly F ′ :=
〈
M0, b̄

〉ELA
M

CM .

If c ∈ F then take d = θn(c). If c is exponentially transcendental over F
then, using ℵ0-saturation, we can find d exponentially transcendental over A ∪ b̄,
which is therefore exponentially transcendental over F ′ = dM0, b̄eELAM , and the
same argument as above gives us θn+1.

Otherwise, since F CM , there is a finite tuple c̄ of shortest length extending c
such that δ(c̄/F ) = 0. By Proposition 2.6(B), c̄ generates an ELA-extension of the
form FCF |V where V is the locus of (c̄, ec̄) over F , and V is rotund, additively and
multiplicatively free, and of dimension equal to the length of the tuple c̄. Let α be a
finite tuple of parameters from F over which V is defined, and consider the variety
V ′ defined by the same formula as V but with parameters β = θn(α). Without loss
of generality we may assume that b̄ is Q-linearly independent over M0.
M was chosen to be an ℵ0-saturated model of TB. As such, we do not know

that M is strongly exponentially-algebraically closed, because we do not know
that axiom 4 is unconditionally first-order. However, M does satisfy the axiom
of exponential-algebraic closedness, (see [KZ11, §5.5]), which in combination with

the ℵ0-saturation gives us (d̄, ed̄) ∈ V ′(M), generic in V ′ over β ∪ b̄, and such that
no Q-linear combination of d̄ and b̄ is exponentially algebraic over A, because these
conditions can be expressed by a partial type over the finite set β ∪ b̄ ∪A.

Then d̄ is Q-linearly independent over M0 ∪ b̄, so (d̄, ed̄) is generic in V ′ over

M0 ∪ b̄ ∪ eb̄, and, using Proposition 2.6(B) once more, (d̄, ed̄) is generic in V ′ over
F ′. Hence the ELA-extension of F ′ generated by d̄ is of the form F ′|V ′, and so we
have an isomorphism θn+1 extending θn as required. �

3.2. Non-isolation of the exponentially transcendental type.

Proposition. If M |= TB and A is any set of parameters from M , then the type
p|A(x) is not isolated.
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Proof. By completeness of p|A(x) and the compactness theorem, if it were isolated
by some formula then it would be isolated by a finite subtype of the form

q(x, ā) =

r∧
i=1

(∀x2, . . . , xni)[¬χfi(x, x2, . . . , xni , ā)]

where ā is the finite tuple from A consisting of all coefficients from the exponential
polynomials in the fi. Let N = max {ni | i = 1, . . . , r}.

Define e0(x) = x and en+1(x) = exp(en(x)) for n ∈ N. Then in fact for any tuple
b̄ in B, there is c ∈ B such that eN+1(c) = c and c, e1(c), . . . , eN (c) are algebraically
independent over b̄, by strong exponential-algebraic closedness. Then B |= q(c, b̄)
because any tuple witnessing that c is exponentially algebraic must span the N+1-
dimensional Q-vector space spanned by {en(c) |n = 0, . . . , N }, but the Khovanskii
systems in q look only at tuples of length up to N . Hence

TB ` ∀ȳ∃x[q(x, ȳ) ∧ eN+1(x) = x].

So there is c ∈ M with M |= q(c, ā) but c exponentially algebraic over ā. Hence
p|A(x) is not isolated. �

3.3. Isolated types. Let F |= Ψ and let X be an exponential transcendence base
for F . Any element of Z lies in the definable closure of ∅, and the kernel generator
τ is model-theoretically algebraic, with −τ being the only conjugate. So the kernel
of F is model-theoretically algebraic. Now let ā be an n-tuple from F , and let X0

be the smallest subset of X such that ā ∈ ecl(X0). Let b̄ be an r-tuple which is a

Q-linear basis for D(dX0, τ, āeF ) over X0 ∪ {τ}, let V = Loc(b̄, eb̄/X0, τ), and let
M ∈ Matn×r(Q) be such that ā = Mb̄. Consider the first-order formula ϕ(x̄) given
by

∃ȳ[(ȳ, eȳ) ∈ V ∧ ȳ is Q-linearly independent over X0 ∧ x̄ = Mȳ]

where here Q is the field of fractions of the definable subring Z, not the quantifier.
Since F has standard integers, Q(F ) will be Q. Now if F |= ϕ(ā′) and b̄′ is a

witness for ȳ then ldimQ(b̄′/X0, τ) = r, but dimV = r and δ(b̄′/X0) = 0, so (b̄, eb̄)
is generic in V over X0 ∪ {τ}. Hence b̄′ ∈ ecl(X0) and, by Proposition 2.6(A),

there is an isomorphism between
〈
X0, b̄

〉ELA
F

and
〈
X0, b̄

′〉ELA
F

, preserving X0 and

τ and sending b̄ to b̄′. Since XrX0 is exponentially-algebraically independent over

eclF (X0), this extends to an isomorphism between
〈
X1, b̄

〉ELA
F

and
〈
X1, b̄

′〉ELA
F

for
any countable subset X1 of X. Then by strong exponential-algebraic closedness of
F , b̄ and b̄′ are back-and-forth equivalent over any such X1, and hence have the
same first-order type over X. Hence ā and ā′ have the same type over X. Thus
the formula ϕ isolates the first-order type of ā over X.

3.4. Elementary equivalence. We can now prove the second part of Theorem 3,
showing that all the Bn for n ∈ N are elementarily equivalent to B. Let ā be an
exponentially algebraically independent n-tuple in B, and add parameters for ā.
The type of a non-standard integer is a non-isolated (partial) type, and, by the
above, the exponentially transcendental type over ā is also non-isolated. Hence,
by the omitting types theorem, there is a countable model M of TB containing ā
which omits both types. Then M |= Ψn and, by countable categoricity of Ψn, M
is isomorphic to Bn. Hence Bn |= TB.

3.5. Atomic models and proof of Theorem 4. From 3.3 above, the first-order
type over an exponential transcendence base of any finite tuple from any model
F |= Ψ is isolated by a single first-order formula in the language 〈+, ·, exp〉, so each
such F is an atomic model of the expansion of TB by parameters for the exponential
transcendence base. In particular, B0 is atomic over ∅, and a countable atomic



10 JONATHAN KIRBY

model is prime, so B0 is the prime model of TB. For the converse statement, any
model of TB which is atomic over an exponential transcendence base has standard
integers and hence is a model of Ψ, that is, of axioms 1 – 4. That completes the
proof of Theorem 4.

3.6. Elementary embeddings and the end of the proof of Theorem 3. If
an embedding F1 ⊆ F2 of models of Ψ is not strong then there are finite tuples
āC F1 and b̄ ∈ Fn2 such that b̄ is Q-linearly independent over ā and δ(b̄/ā) < 0, so

(b̄, eb̄) lies in some algebraic variety V defined over (ā, eā) of dimension less than n.
The first-order formula expressing the existence of such a b̄ is true of ā in F2 but
false in F1, and hence the inclusion of F1 in F2 is not elementary.

Now suppose F1 C F2 is a strong extension of models of Ψ. We use the Tarski-
Vaught test to show that F1 4 F2. So let ā be a tuple from F1, b ∈ F2, and ϕ(x̄, y)
a first-order formula such that F2 |= ϕ(ā, b). Extending ā if necessary, we may
assume that ā C F1, and so ā C F2. Since the kernel does not extend, the ELA-
subfield F0 of F2 generated by ā is contained in F1. If b is exponentially algebraic
over ā, then it generates a strong ELA-extension of the form F0 C F0|V for some
perfectly rotund V . There is an isomorphic strong ELA-extension inside F1 by
strong exponential-algebraic closedness of F1, and the element c corresponding to b
under the isomorphism realises the same principal formula as b in F2. In particular,
F2 |= ϕ(ā, c). Otherwise b is exponentially transcendental over ā, and, since the
exponentially transcendental type is approximated by isolated exponentially alge-
braic types as in 3.2 above, we can again find such a c in F1, depending on the
formula ϕ. So F1 4 F2. That completes the proof of Theorem 3.
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