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Abstract

With the widespread computerization in science, business, and government, the

efficient and effective discovery of interesting information and knowledge from large

databases becomes essential. Knowledge Discovery in Databases (KDD) or Data

Mining plays a key role in data analysis and has been found to be beneficial in many

fields. Much previous research and many applications have focused on the discovery

of knowledge from the raw data, which means the discovered patterns or knowledge

are limited to the primitive level and restricted to the provided data source. It is

often desirable to discover knowledge at multiple conceptual levels, from specific to

general, which will provide a compact and easy interpretive understanding for the

decision makers. Against this background, this thesis aims to construct and exploit

Attribute-Value Taxonomies (AVT) for compact and accurate classifier learning.

For taxonomy construction, we first introduce the concept of an ontology, a

scheme of knowledge representation which is domain shareable and reusable. An

algorithm is developed to implement the extraction of taxonomies from an existing

ontology. Apart from obtaining the taxonomies from the pre-existing knowledge,

we also consider a way of automatic generation. Some typical clustering algorithms

are chosen to build the tree hierarchies for both nominal and numeric attributes

based on the distribution of classes that co-occur with the values. Although this

automated approach cannot guarantee each generated taxonomy has the same

semantic meanings as manually defined ones, these taxonomies reveal the statistical

distribution characteristic of the data, and can be easily transformed to human-

understandable forms.

In order to generate much simpler and readable trees and smaller, but more

useful, rule sets, we propose methods of using Attribute-Value Taxonomies (AVT)

in the decision tree and association rule classifier learning procedure. We illustrate

our approach by using the C5 tree induction algorithm, and Apriori association rule

algorithm using Receiver Operating Characteristic (ROC) analysis, respectively.

We test our approach on two real world data sets from the UCI repository. The

experimental results show that the AVT-guided learning algorithm enables us to

learn a classifier that is compact but still maintains reasonable accuracy.
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Chapter 1

Introduction

1.1 Background and Motivation

In the last three decades, because of the rapid advancement of computer hardware

and computing technology, terabytes of data are generated, stored, and updated

every day in scientific, business, government, and other organisational databases.

However, as the volume of data increases, the proportion of it that people un-

derstand decreases. As Stoll and Schubert [83] have pointed out, “Data is not

information, information is not knowledge, knowledge is not understanding, un-

derstanding is not wisdom”. The growing amount of data is not very useful until

we can find the right tool to extract interesting information and knowledge from

it. This is more crucial for data analysts, or decision makers who want to make

most use of the existing data to make better decisions or take beneficial actions.

Since the early 1990s, Knowledge Discovery in Databases (KDD) has become a

dynamic, fast-expanding field to fulfill this need. KDD has strong links with a va-

riety of research areas including machine learning, pattern recognition, databases,

statistics, artificial intelligence, knowledge acquisition for expert systems, data vi-

sualisation and data warehousing. This powerful process has been applied to a

1
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great number of real world problems, such as targeting customer types with high

credit risk or cross-sale potential, and predicting good candidates for a surgical pro-

cedure. Success in these and many other diverse areas has spawned an increasing

interest in applying knowledge discovery to many other domains.

Our first motivation relates to the ability of learning associated information

at different levels of a concept hierarchy or taxonomy.

Much previous research and many applications have focused on the discovery

of knowledge from the raw data [5,6,95,108,127], which means that the discovered

patterns or knowledge are limited to the primitive level and restricted to the pro-

vided data source. Finding rules at a single concept level, even it is a high level,

may still not result in discovering desired knowledge, since such knowledge may

already be well-known. In practice, it is often desirable to discover knowledge at

multiple conceptual levels, from specific to general, which will provide a compact

and easy interpretive understanding for the decision makers.

There have been some efforts made to mine multiple level association rules

[27, 50, 62]. To extract multi-level association rules, concept hierarchies or item

taxonomies are needed. A concept hierarchy is modelled by a directed acyclic

graph (DAG) whose nodes represent items and arcs represent “is-a” relations be-

tween two items. Concept hierarchies/taxonomies represent the relationships of

generalization and specification between the items, and classify them at several

levels of abstraction. In the transaction databases, these concept hierarchies are

available or easily established, since either the lower-level concepts or the higher-

level concepts exist in the same database. For example, particular brands of milk

or bread, e.g. “Dairyland” and “Hovis” (brand names), are bottom level instances,

whilst “Milk” and “Bread” are higher level concepts.

The use of concept hierarchies can benefit data mining. This is because the

discovery of interesting knowledge at multiple abstraction levels broadens the scope
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of knowledge discovery and helps users progressively focus on relatively interesting

“hot spots” and deepen the data mining process. However, there are still some

issues that may be of concern:

• The concept hierarchies “hidden” in the databases may not be complex

enough. Generally, the hierarchies of transaction concepts have just two

or three levels. For example, the hierarchy of “Bread” only contains high

level nodes, such as “white”, “brown”, “wheat”, etc., and low level nodes,

such as “Hovis”, “Kingsmill”, “Warburtons”, etc. Thus, the discovered rules

may be either too specific or too general.

• For real world data, unlike transaction data, it may be difficult to form

concept hierarchies, since the data may only occur at a single concept level.

However, for nominal fields or attributes, if the number of distinctive values

are big enough, we can treat these distinctive values as individual concepts,

and build a hierarchy for them, which is called an attribute-value taxonomy

in this thesis.

• There are some predefined concept hierarchies or taxonomies available. It

is worthwhile to exploit such prior knowledge and construct more suitable

taxonomies for the specific applications.

Our second motivation is triggered by the increasing demand of designing

and constructing ontologies for information sharing between organizations, domain

experts and scientific communities.

When our research started, ontology was becoming a hot topic in the area of

bioinformatics, semantic web, etc. Ontologies provide a rich repository of semantic

information and relations. An ontology might encompass a number of taxonomies,

with each taxonomy organizing a subject in a particular way. From the technical

point of view, a taxonomy is often referred as a “tree”, while an ontology is often
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more of a “forest”. Moreover, due to the shareable and reusable character of an

ontology, it can help to facilitate information integration and data mining from

heterogeneous data sets.

There are two research directions for studying ontologies in this thesis:

1. Manually design and present ontologies using ontology language based on

the background knowledge. Maintaining ontology is a long term work which

requires improving and updating its contents so that it adequately captures

all possible activities across domains.

2. Automatically extract taxonomies from the existing ontology. This is more

feasible and realistic when seeking a way of combining ontologies with data

mining process.

1.2 The Aims and Research Design

The overall aim of this research is to develop a methodology that exploits an

attribute-value taxonomy for compact and accurate classifier learning. In this

thesis, two main issues are addressed:

1. How to construct the attribute-value taxonomy (abbreviated as AVT).

2. How to exploit AVT for learning simpler decision trees and smaller sets of

association rules without sacrificing too much accuracy.

1.2.1 Attribute-Value Taxonomy Construction

In order to construct an attribute-value taxonomy, we attempted two different ap-

proaches. The first one is to automatically extract taxonomies from a predefined

ontology, assuming that there is an existing ontology available for the specific do-

main application. The second one is to automatically generate an AVT by using
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some typical clustering algorithms. Apart from producing dendrograms for nom-

inal attribute values using hierarchical clustering algorithms, we also explored an

approach to generate such taxonomies by using partitional algorithms. In general,

partitional algorithms will only split the data into a specific number of disjoint clus-

ters. We propose a bottom-up iterative approach to construct the attribute-value

taxonomies.

1.2.2 Exploitation of AVT for Classifier Learning

Once the AVT is constructed for an attribute, the representation space of this

attribute will no longer be limited to the concepts at a primitive level. The whole

space will be greatly extended with concepts at different abstraction levels. We use

the term, Cut, to present a possible concept tuple, which contains the concepts at

different levels, and covers the space without any intersections among the included

concepts. In other words, for any non-primitive level concept in a concept tuple,

neither its descendant nor its ancestor will occur in this tuple. We are interested

in AVTs that are useful for generating accurate and compact classifiers. However,

due to the large number of possible cuts, it is not computationally feasible to apply

all cuts to build decision tree classifier and learn association rules. In this thesis,

the method of using gain ratio to rank and select the top five cuts is proposed.

We illustrate this methodology with two real world data sets and the experimental

results reveal the expected improvements can be achieved.

1.2.3 Data Sources

Since we aim to exploit AVT for generating more readable and interpretative de-

cision tree and rules, we are more interested in applying our approach to nominal

attributes. There are two necessary criteria for the database that we select to

illustrate our methodology.
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1. The nominal attributes are dominant, not only among the data set attributes,

but also among the decision nodes of generated decision trees.

2. The number of the distinctive values of the nominal attribute is large enough

to form at least a two level concept hierarchy, which is also called attribute-

value taxonomy.

In this thesis, two real world data sets, obtained from the UCI data repository

[12] and meeting the two criteria, are used in our experiments for performance

evaluation.

1. The Adult data set contains information on various individuals, totally 6

numeric and 8 nominal attributes, such as education, marital status, occu-

pation, etc. The income information is simply recorded as either more than

$50K or less than $50K. The distribution of instances is that 75.22% of people

(34,014 instances) earn less that $50K per year, and the rest 11,208 instances

(24.78%) belong to the other class. The Adult data is randomly split into

training and test data, accounting for 2/3 (30,162 instances) and 1/3 (15,060

instances) respectively, once all missing and unknown data are removed. See

appendix B.1 for details.

2. The Mushroom data set contains 22 nominal attributes. The target class

attribute establishes whether an instance is edible or poisonous. There are

8,124 instances in the data set; 51.8% of mushrooms (4,208 instances) are

edible and 48.2% (3,916 instances) are poisonous. The Mushroom data are

also randomly split into training and test data, accounting for 90% and 10%

respectively. See appendix B.2 for details.
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1.3 Thesis Overview

The remainder of this thesis is organized as follows.

In Chapter 2, a brief introduction to KDD and related techniques used in the

thesis are given. Preliminary concepts of taxonomy and attribute-value taxonomy

are also provided. A brief survey of the related work on learning decision trees and

rule-based classifiers by using AVT is given.

In Chapter 3, we review some important issues about ontologies, such as def-

inition, types, representation languages and existing applications. We present an

algorithm for automatically extracting taxonomies from a predefined ontology and

illustrate the technique with some examples.

In Chapter 4, two typical hierarchical clustering algorithms and two partitional

algorithms are introduced and used to perform the automatic generation of an

attribute-value taxonomy. Two real world data sets are chosen for performance

evaluation.

In Chapter 5, we describe an approach that is able to exploit user supplied

attribute-value taxonomies (AVTs) to learn simpler decision tree with reasonable

classification accuracy. Since the complex taxonomies may generate a large number

of cuts, this will easily cause the increase of computing resource, and thus affect

the performance of tree induction algorithm. Some preprocessing efforts need to be

done to properly select the number of top ranked cuts for AVTs according to some

constrains. We present experiments on two data sets for performance comparison

with a standard decision tree learning algorithm.

In Chapter 6, we develop an approach to integrate the AVTs with rule learning

into a framework to train a rule based classifier. The work starts with training a

rule based classifier using the ROC analysis method. Then we apply the attribute-

value taxonomies to the refinement of the learned rule set. The use of AVTs is

based on two different measurements, Gain Ratio and the number of learned rules,
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which can be used to select the possible optimal cuts over the selected attribute-

value taxonomies.

We conclude the thesis work in Chapter 7. A summary and the conclusions from

the study are given. Some interesting future research problems are also addressed.



Chapter 2

Preliminary Concepts and

Related Work

This chapter gives a brief introduction to KDD and related techniques we will

use in the thesis. The concept of taxonomy and attribute value taxonomy are

also introduced. We finally examine the related approaches in the literature on

taxonomy construction and learning classifiers from data by using attribute value

taxonomies.

2.1 Overview of KDD and Data Mining

2.1.1 Definitions

In general, Knowledge Discovery in Databases (KDD) has been considered as the

overall process of discovering useful knowledge from data. In this context, a widely

accepted definition of KDD, extracted from [37] is:

“Knowledge Discovery in Databases is the automatic non-trivial process of iden-

tifying valid, novel, potentially useful, and ultimately understandable patterns in

data.”

9
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As a part or a stage of the KDD process, the definition of Data Mining given

in [37] is:

“Data Mining is a step in the KDD process consisting of particular data min-

ing algorithms that, under some acceptable computational efficiency limitations,

produce a particular enumeration of patterns over the data.”

2.1.2 KDD Process

The KDD Process is a highly iterative, user involved, multi-step process. According

to Fayyad, as shown in figure 2.1, the overall KDD process can be separated into

five steps: Selection, Pre-processing, Transformation, Data Mining and

Interpretation. These five steps are passed through iteratively. Every step can

be seen as a work-through phase. Such a phase requires the supervision of a user

and can lead to multiple intermediate results. The “best” of these human evaluated

results is used for the next iteration, the others should be documented. The brief

descriptions of these steps are given as follows:

Figure 2.1: Steps of the KDD process (Fayyad et al. 1996)

Step 1 - Data Selection:

The goal of this phase is the extraction from a larger data store of only the
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data that is relevant to the data mining analysis. This data extraction helps

to streamline and speed up the process.

Step 2 - Data Preprocessing:

This phase of KDD is concerned with data cleansing and preparation tasks

that are necessary to ensure correct results. Eliminating missing values in the

data, ensuring that coded values have a uniform meaning and ensuring that

no spurious data values exist are typical actions that occur during this phase.

3) Data Transformation This phase of the lifecycle is aimed at converting

the data into a two-dimensional table and eliminating unwanted or highly

correlated fields so the results are valid.

Step 3 - Data Transformation:

This phase of the lifecycle is aimed at converting the data into a two-

dimensional table and eliminating unwanted or highly correlated fields so

the results are valid.

Step 4 - Data Mining:

The goal of the data mining phase is to analyse the data by an appropriate set

of algorithms in order to discover meaningful patterns and rules and produce

predictive models. Various qualities of the knowledge discovered considered

relevant to the particular application are measured (e.g. accuracy, interest,

etc.). The whole process is repeated until knowledge of adequate quality is

obtained. Part of the iteration may involve going over previous steps of the

KDD process, and consulting with the users or domain experts.

Step 5 - Interpretation and Evaluation :

Once the knowledge extraction has taken place and a set of results of ac-

ceptable quality is obtained, the detected pattern needs to be interpreted to

determine whether or not it is interesting. This would normally require some
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involvement on the part of the user/domain expert. In some cases, the inter-

pretation of certain qualities (e.g. novelty, interest) will be delayed to this

step, so iteration to previous steps for another attempt may be necessary.

2.1.3 Data Mining Tasks

The two “high-level” primary goals of data mining are prediction and description,

referred to [37].

1. Prediction involves using some variables or fields in the database to predict

unknown or future values of other variables of interest.

2. Description focuses on finding human-interpretable patterns describing the

data.

The following four primary data mining tasks are usually used for prediction

and description:

• Classification is learning a function that maps (classifies) a data item into

one of several predefined classes. Common algorithms include decision tree

learning, nearest neighbour, naive Bayesian classification, neural networks

and support vector machines.

• Clustering is a common descriptive task where one seeks to identify a finite

set of categories or clusters to describe the data.

• Dependency Modelling (Association rule learning) consists of finding

a model which describes significant dependencies between variables.

• Regression is learning a function which maps a data item to a real-valued

prediction variable.



CHAPTER 2. PRELIMINARY CONCEPTS AND RELATED WORK 13

In this thesis, our work involves the first three tasks. The following two sections

provide a basic introduction to the algorithms of classification and association

rule learning we will use in later chapters. A detailed introduce to some related

techniques of clustering will be given in chapter 4.

2.2 Decision Tree Introduction

A decision tree is a tree structured classifier, where each node is either a decision

node that represents a test on one input attribute, with one branch for each possible

test result, or a leaf node that indicates a value of a target class, i.e. a class the

objects are to be classified.

Given an object in a tuple of input attribute values, it is classified by following a

path from the root down to a leaf node, which is formed by branches corresponding

to the results of the tests applied to the object when visiting the decision nodes.

There are two types of decision trees: one is classification tree if the target

class is categorical; the other is regression tree if the target class is continuous. In

this thesis, we restrict our study to classification trees [141].

2.2.1 Decision Tree Building

Building a decision tree is all a matter of choosing which attribute to test at each

non-leaf node in the tree. There are exponentially many decision trees that can

be constructed from the input attributes, in which some trees are more accurate

than others. Given time consumption, finding a reasonably accurate decision tree,

instead of the optimal one, is generally more feasible. To fulfil this purpose, most

tree induction algorithms employ a top-down, greedy approach to induce trees. A

basic recursive procedure for decision tree building is described as follows.

Let D = {x1, x2, ..., xn} be the set of training data, and C = {C1, C2, ..., Ck}
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be the set of target class to be classified. The attribute set is denoted by A =

{A1, A2, ..., Am}.

1. If all the instances in D belong to the same class Ct (1 ≤ t ≤ k), then create

a leaf node Ct and stop.

2. If D contains instances belong to more than one class, then search for a best

possible test, T , on attribute Ai (1 ≤ i ≤ m) according to some splitting

measure, and create a decision node.

3. Split the current decision node, i.e. partition D into subsets, using that test.

4. Recursively apply the above three steps to each subset of D.

Here, the choice of “best” test is what make the algorithm greedy, and it

normally maximises the chosen splitting criterion at each decision node, so it is

only a locally optimal choice. Some popular splitting measures will be introduced

in the next section.

When a training set is rather small or there is some “noise” in the data (where

“noise” means instances that are misclassified or where some attribute values are

wrong), pursuing high classification accuracy may produce a complex decision tree

that over-fits the training data. As a result, the test data or unseen data may not

be well classified. To solve this problem, tree pruning is a necessary procedure to

avoid building an overfitting tree. This will be discussed in section 2.2.3.

2.2.2 Splitting Measures

There are many measures that can be used to select the best split. These measures

are often based upon the impurity of the nodes. The greater the difference of

impurity between the parent nodes (before splitting) and their child nodes (after

splitting), the better the test condition performs. For a classification tree, the
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impurity is defined in terms of the class distribution of the records before and after

splitting.

Let S denote the subset of data that would be considered by a decision node.

The given target class partitions S into {S1, S2, . . . , Sn}, where all the records in

Si have the same categorical value. Now, say a test, T, on an attribute with k

values partitions S into k subsets, {S ′
1, S

′
2, . . . , S

′
k}, which may be associated with

k descendent decision nodes. Then three commonly used impurity measures and

the corresponding gains used as splitting criterions are defined as follows:

• Information/Entropy Gain:

GainInfo(S, T ) = Entropy(S)−
k∑

j=1

|S ′
j|
|S|

Entropy(S ′
j), (2.1)

Entropy(S) = −
n∑

i=1

|Si|
|S|

log2
|Si|
|S|

. (2.2)

• Gini Index:

GainGini(S, T ) = Gini(S)−
k∑

j=1

|S ′
j|
|S|

Gini(S ′
j), (2.3)

Gini(S) = 1−
n∑

i=1

|Si|2

|S|2
. (2.4)

• Classification Error:

GainError(S, T ) = Error(S)−
k∑

j=1

|S ′
j|
|S|

Error(S ′
j), (2.5)

Error(S) = 1−max{|S1|
|S|

,
|S2|
|S|

, . . . ,
|Sn|
|S|
}. (2.6)

No matter which impurity measure is chosen, the impurity of the parent node
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is always a constant for all test conditions, so maximising the gain is equivalent to

minimising the weighted average impurity of the child nodes.

2.2.3 Tree Pruning Methods

When building a decision tree, a tree pruning step can not only be performed to

simplify the tree by reducing its size, but also help handle the overfitting problem.

Two techniques, pre-pruning and post-pruning, are used to do the pruning.

• Pre-pruning works by setting a stop condition to terminate the further

split during the tree construction. For example, if the observed gain in some

impurity measure, or the number of records at some decision nodes falls

below a predefined threshold, then the algorithm will stop expanding their

child nodes.

• Post-pruning works by pruning some branches from the fully grown tree.

Pruning can be done by replacing, for example, a subtree with a new leaf

node whose class label is determined by the majority class of records occurred

in the subtree, or the most frequently used branch, i.e. the branch has more

training records than others, of the subtree. The tree pruning step terminates

when no further improvement is observed [132].

In practice, post-pruning is more successful, since pre-pruning may lead to

premature termination of the tree growth if the threshold is not set appropriately.

However, additional computations are needed in order to grow the full tree for

post-pruning, which may be wasted when some subtrees will be pruned finally.

2.2.4 Evaluating Decision Tree

There are many approaches to decision tree construction, which lead to quite dif-

ferent trees being produced. Generally, we will be interested in how accurately an
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algorithm can predict or how concise the generated decision tree is. The following

three measures can be used to evaluate the quality of the tree.

• Classification Accuracy: the percentage of those instances in the data for

which, given the values of the input attributes, the tree classifies them to the

correct target class.

• Tree Size: the total number of nodes in the tree, while some others, e.g.

Murthy [104], define it as the number of leaf nodes.

• Maximum Depth: the number of tree levels from the root to the farthest

leaf node.

Obviously, the higher the classification and prediction accuracy, the better

quality the tree has. Apart from accuracy, simpler tree with less tree nodes or

depth may imply better interpretability and computational efficiency.

2.3 Rule Learning Introduction

A rule learning system aims to construct a set of if-then rules. An if-then rule has

the form: IF <Conditions> THEN <Class>. Conditions contains one or more

attribute tests, usually of the form “Ai = vij” for nominal attributes, and “Ai < v”

or “Ai ≥ v” for continuous attributes. Here, v is a threshold value that does not

need to correspond to a value of the attribute observed in examples.

Mining association rules is an important technique for discovering meaningful

patterns in databases. Formally, the problem can be formulated as follows [4].

Let A = {A1, A2, · · · , Am} be a set of m binary attributes called items. Let

D = {x1, x2, · · · , xn} be a set of records called the database. Each record in D

has a unique ID and contains a subset of the items in A [59]. An association rule

is a rule of the form Y ← X, where X,Y ⊆ A, and X,Y are two disjoint sets of
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items. It means that if all the items in X are found in a record then it is likely

that the items in Y are also contained in the record. The sets of items X and Y

are respectively called the antecedent and consequent of the rule [59]. To select

interesting rules from the set of all possible rules, constraints on various measures

of significance and strength can be used. The best-known constraints are minimum

thresholds on support and confidence [5].

supp(Y ← X) = supp(X ∪ Y ) =
CXY

M
(2.7)

conf(Y ← X) =
supp(X ∪ Y )

supp(X)
=

CXY

CX

(2.8)

where CXY is the number of records which contain all the items in X and Y ,

CX is the number of record containing the items in X, and M is the number of

records in the database.

Support, in Equation 2.7, is defined as the fraction of records in the database

which contain all items in a specific rule [4]. Confidence, in Equation 2.8, is an

estimate of the conditional probability P (Y |X).

An association mining problem can be decomposed into two sub-problems:

• Find all combinations of items in a set of records that occur with a specified

minimum frequency. These combinations are called frequent itemsets.

• Calculate rules that express the probable co-occurrence of items within fre-

quent itemsets.

Apriori is the widely used algorithm for calculating the probability of an item

being present in a frequent itemset, given that another item or items are present.

Apriori discovers patterns with frequency above the minimum support threshold,

which express probabilistic relationships between items in frequent itemsets. For
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example, a rule derived from frequent itemsets containing A, B, and C might state

that if A and B are included in a record, then C is likely to also be included.

2.4 Introduction to Taxonomy

Etymologically speaking, taxonomy comes from the Greek term “taxis” (meaning

arrangement or division) and “nomos” (meaning law). Modern taxonomy origi-

nated in the mid-1700s when a Swedish botanist, Carl Linnaeus, named with the

term taxonomy the classification of living beings into hierarchical groups, ordered

from the most generic to the most specific (kingdom, type, order, gender, and

species).

By the beginning of the 1990s, taxonomy was being used in many fields of

knowledge, such as psychology, social sciences and information technology, to name

almost all the access systems to the information that attempt to establish coinci-

dences between the terminology of the user, and that of the system.

2.4.1 Definitions

There are various definitions of taxonomy defined by people from different areas.

We list following two typical definitions.

• A taxonomy is a scheme that partitions a body of knowledge and defines

the relationships among the pieces [107]. It is used for classifying and un-

derstanding the body of knowledge. Such body of knowledge may refer to

almost anything, i.e., animate objects, inanimate objects, places, or events.

• A taxonomy is typically a controlled vocabulary with a hierarchical structure,

with the understanding that there are different definitions of a hierarchy.

Terms within a taxonomy have relations to other terms within the taxonomy.
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These are typically: parent/broader term, child/narrower term, or often both

if the term is at mid-level within a hierarchy.

There are some other names for taxonomy in the literature, for example, con-

cept hierarchy or is-a hierarchy, structured attribute.

2.4.2 Attribute Value Taxonomy

In a typical inductive learning scenario, instances to be classified are represented

as ordered tuples of attribute-values. However, attribute values can be grouped

together to reflect assumed or actual similarities among the values in a domain of

interest or in the context of a specific application. Such a hierarchical grouping of

attribute values yields an attribute value taxonomy (AVT).

As taxonomies are often displayed as a tree structure, the terms within a tax-

onomy are called “nodes”. It can be formally defined as follows.

A taxonomy, T , a finite set of concept C, is a tree structured hierarchy in the

form of a poset (partially ordered set) (T , ≺), where ≺ is the partial order that

presents “is-a” relationship on C.

Hence if A = {A1, A2, ..., Am} represent a set of nominal attributes, and Vi is

the value set of Ai. Then we can construct a set of attribute-value taxonomies,

T = {T1, T2, ..., Tm}, where each Ti has leaf node set equal Vi.

2.4.3 Reasons to use Attribute Value Taxonomy

• The availability of AVTs presents the opportunity to learn classification rules

that are expressed in terms of abstract attribute values leading to simpler,

easier-to-comprehend rules that are expressed in terms of hierarchically re-

lated values.
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• Exploiting information provided by AVTs can potentially perform regulariza-

tion, like the shrinkage [96] technique used by statisticians when estimating

from small samples, to minimise overfitting when learning from relatively

small data sets.

2.4.4 Processes for the construction of taxonomies

Taxonomies can be constructed either manually or automatically. In this section,

we will only give a brief introduction to manual construction of taxonomies. How

to automatically construct attribute-value taxonomies will be discussed in chapter

3 and 4.

Traditionally, the manually constructed taxonomies are totally dependent on

the taxonomist’s intuition, subjective decision, experience, skill, and perhaps in-

sight. Two distinguished techniques for the development of the structure of tax-

onomy are the up to down technique and the down to up technique [26].

• The application of the up to down technique involves the initial identifica-

tion of a limited number of higher categories, and the grouping of the rest

of categories in successive levels of subordination down to the most specific

levels of categories. This technique can be especially useful with a well un-

derstood application domain and is particularly possibility applicable to the

construction of taxonomies for the development of browsing systems.

• The application of the down to up technique is based on the initial identifi-

cation of the most specific categories, which are grouped in successive levels

of subordination up to higher levels of categories.
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2.5 RelatedWork on Automatically Learning Tax-

onomy from Data

Some previous work [28, 29, 46, 66, 73, 74, 88, 103, 105, 117, 126, 134] has explored

the construction of taxonomies. Some of this research has incorporated clustering

techniques. Ganti et al. [46] designed CACTUS, an algorithm that uses intra-

attribute summaries to cluster attribute values. Cimiano et al. [28] used clustering

methods to learn taxonomies from text information. Kang et al. [74] implemented

AVT-learner, a hierarchical agglomerative clustering algorithm to construct AVTs

for learning. Yi et al. [142] used a partitional clustering algorithm to build a cluster

hierarchy, which is exploited to guide ontology construction.

Some work utilised specific measurement [94, 105] or prior knowledge, such as

tagging information [134] and structure information [117,140]. Murthy et al. [103]

constructed a taxonomy using term frequency to generate a natural hierarchy.

In [66], a taxonomy is generated automatically using the Heymann algorithm,

which determines the generality of terms and iteratively inserts them in a growing

taxonomy. Punera et al. [117] explored the construction of a taxonomy by learning

n-ary tree based hierarchies of categories with no user-defined parameters, and

Wu et al. [140] proposed to learn from data using abstractions over the structured

class labels as a generalization of single label and multi label problems. Joo et

al. [73] used a genetic algorithm to generate an AVT. Neshati et al. [105] developed

a method to use compound similarity measure for taxonomy construction, and

Markrechi et al. [94] used the new measure of information theoretic inclusion index,

term dependency matrix. Tsui et al. [134] provided a novel approach for generating

Taxonomy using tags.

In addition, some methods also make use of an ontology to form a taxonomy.

Welty et al. [138] adopted several notions from formal ontology and adapted them
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to provide a solid logical framework within which the properties that form a tax-

onomy can be analysed. This analysis helps make intended meaning more explicit,

improving human understanding and reducing the cost of integration. Guarino et

al. [57] concentrated on the ontological nature in order to be able to tell whether a

single is-a link is ontologically well-founded, and discussed techniques based on the

philosophical notions of identity and dependence for information systems design.

To reduce the cost of working with large ontologies, Shearer et al. [126] presented a

classification algorithm to exploit partial information about subclass relationships.

The construction of taxonomies has also been used in visual information and

text processing. Setia et al. [125] proposed to learn a visual taxonomy, given only

a set of labels and a set of extracted feature vectors for each image, to enhance the

user search experience. Li et al. [88] used relational clustering framework DIVA

for document summarisation.

2.6 Related Work on Learning Classifiers Using

an Attribute Value Taxonomy

An important goal of inductive learning is to generate accurate and compact clas-

sifiers from data. In the machine learning field, some previous work on the problem

of learning classifiers from the attribute-value taxonomies has also been explored

in the case of decision tree and rule induction.

2.6.1 Tree Induction Using AVT

To handle taxonomies, Quinlan extended C4.5 decision tree by introducing nominal

attributes for each level of the hierarchy [119]. Taylor et al. [133] employed an

evaluation function in decision tree learning to effectively use ontology within data

mining system.
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Pereira et al. described distributional clustering for grouping words based on

class distributions associated with the words in text classification. Slonim and

Tishby [128] described a technique (called the agglomerative information bottle-

neck method) which extended the distributional clustering approach. Pereira et

al. [110] used Jensen-Shannon divergence for measuring distance between document

class distributions associated with words and applied it to a text classification task.

Baker and McCallum [14] reported improved performance on text classification us-

ing a technique similar to distributional clustering and a distance measure, which

upon closer examination, can be shown to be equivalent to Jensen-Shannon di-

vergence. Dimitropoulos et al. [35] augmented Internet Autonomous System (AS)

Taxonomy to the data set.

Berzal [18] proposed to use multi-way splits for continuous attributes in order

to reduce the tree complexity without decreasing classification accuracy. Kang et

al. [76] exploited a taxonomy of propositionalised attributes as prior knowledge to

generate compact decision trees. Zhang and Honavar designed and implemented

AVT-NBL [75] and AVT-DTL [143] for learning AVT-guided Näıve Bayes and

Decision tree classifiers.

To the best of our knowledge, although some work claimed they have imple-

mented experiments on a broad range of benchmark data sets, the AVTs available

for exploitation are rather simple (many of them are just two level taxonomies).

It is also not clear what kind of AVTs are used and at which level the tuple of

nominal values are used for decision tree learning, since only the accuracy and

number of leaf nodes are reported.

2.6.2 Rule Induction Using AVT

Han et al. [25] proposed an approach to find characterization and classification

rules at high levels of generality using concept taxonomies. Han and Fu [61] fur-
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ther explored hierarchically structured knowledge for learning association rules at

multiple levels of abstraction. In [137], Vasile extended RIPPER, a widely used

rule-learning algorithm, to exploit knowledge in the form of taxonomies over the

values of features used to describe data. Borisova et al. [21] offered a way to solve

the construction of taxonomies and decision rules with a function of rival simi-

larity (FRiS-function). Zhang et al. [144] introduced an ontology-driven decision

tree learning algorithm to learn classification rules at multiple levels of abstraction.

However, these methods do not consider how to combine the rule learning with

the construction of attribute value taxonomies.

In the case of processing a data set with many nominal attributes with large

number of values, the number of cuts and hence the number of tests to be consid-

ered will grow exponentially. To deal with this problem, Almuallim et al. [9] use

information gain to choose a node in an AVT for a binary split, and further in [10],

multiple split tests were considered, where each test corresponds to a cut through

AVT. However these methods still did not consider how to combine the solution

of this problem with classifier learning.

To deal with these problems, our work, in this thesis, not only focuses on

the construction of an AVT using automatic methods, but also considers how

to effectively integrate the construction of an AVT with the machine learning

techniques into one framework to improve the performance of a decision system.



Chapter 3

Extracting Taxonomies from

Ontologies

The construction of taxonomies in a particular domain is a time and labour con-

suming task, and often cannot be reused by other domains, which stimulates us to

find an automatic way for taxonomy construction and hopefully it can be reusable

in domains.

Ontology is a scheme of knowledge representation, originating from philosophy,

and has been gradually adopted by the researchers in the area of computer science.

Since taxonomies are central components of ontologies, and ontologies are domain

shareable and reusable, we propose an algorithm to automatically extract them

from existing ontologies in the latter section of this chapter.

3.1 Ontologies Overview

3.1.1 What are ontologies?

Originally ontologies was a term used in the philosophical discipline. Merriam

Webster dictionary(1721) provides two definitions (1) a branch of metaphysics

26
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concerned with the nature and relations of being and (2) a particular theory about

the nature of being or the kinds of existents. Later it became the topic of academic

interest among philosophers, linguists, librarians, artificial intelligence, and most

recently, of knowledge representation researchers. Now there are diverse areas in

computer science that Ontologies can be applied to, for instance, knowledge rep-

resentation [11, 54, 129], natural language translation [84, 93] or processing [15],

database design [24, 135], information retrieval and extraction [55, 97], knowledge

management and organization [111], electronic commerce [86], semantic web re-

search [8].

There are many forms of specifications that different people termed ontologies.

One widely cited definition of an ontology in the knowledge representation area is

Gruber’s [53]. He stated that “An ontology is an explicit specification of a concep-

tualization.” Here the conceptualization means the objects, concepts, and other

entities that are assumed to exist in some area of interest and the relationships

that hold among them [48]. Or more simply, “An ontology defines a common vo-

cabulary for researchers who need to share information in a domain. It includes

machine-interpretable definitions of basic concepts in the domain and relations

among them” [106].

McGuinness [98] refined the various definitions to a linear ontology spectrum

showed in figure 3.1 below, which is very helpful for us to understand the real

meaning of the ontologies.

From figure 3.1, we can visualize the evolution of ontology from the simple form

(left points) with few functions to the formal and more complex form (right points).

The following explanation for this ontology spectrum is a rewritten description

following McGuinness.

The points to the left of the oblique line cannot be called an ontology, but they

have some original properties of ontologies.
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Figure 3.1: Ontology Spectrum (McGuinness 2002)

• The first point on the left side, represented by a controlled vocabulary, which

is a finite list of terms, may be one of the simplest notations and is a pro-

totype of a possible ontology. Catalogues, as an example, can provide an

unambiguous interpretation of terms.

• A glossary presented as a list of terms with meanings may be another po-

tential ontology specification. But the meanings in the glossary are typically

specified using natural language statements, which are not unambiguous and

thus could not be easily processed by machine.

• Thesauri, the third point from left, provide some additional semantics in

their relations between terms, such as synonym relationships, but do not

provide an explicit hierarchy.

• Early web specifications of term hierarchies, such as Yahoo’s, provide a basic

notion of generalization and specialization. However, Yahoo’s hierarchy is not

a strict subclass or “is-a” [22], while it supports the case that an instance of

a more specific class is also an instance of the more general class [98], which

may be described as an informal “is-a” relationship.

The points to the right of the oblique line meet at least the basic conditions

required by a simple ontology defined by McGuinness [98], and show how ontologies



CHAPTER 3. EXTRACTING TAXONOMIES FROM ONTOLOGIES 29

can become more and more expressive.

• The first two ontologies include strict subclass hierarchies which are necessary

for exploitation of inheritance, i.e. if A is a superclass of B, then if an object

x is an instance of B it necessarily follows that x is an instance of A.

• Frames or properties mean the ontology could include property information

for its concepts or classes. For example, “isMadeFrom” and “Price” are two

common properties for consumer products.

• The ontology also can include value restrictions on a property. For instance,

the “Price” property might be restricted to a lie within a given range.

• More expressive ontologies may also include logic constraints between terms

and more detailed relationships such as disjointness, inverse, part-whole, etc.

3.1.2 Why develop Ontologies?

Ontology borrows ideas from object-oriented software engineering, which allow

people to understand, share and reuse domain knowledge more quickly and more

conveniently. Once an ontology has been defined, it can be reused, inherited, or

modified by other researchers from the same or different domain. Also, some com-

mon operations, or tasks, or configurations, i.e. so-called operational knowledge,

can be separated from domain knowledge and become independent, so that they

can be used by different ontologies, avoiding having to be repeatedly defined by

each of them. For example, the “made-to-order” [123] operation could be shared

by all components ontologies for industry products. Moreover, analyzing domain

knowledge is possible once a declarative specification of the terms is available. For-

mal analysis of terms is extremely valuable when both attempting to reuse existing

ontologies and extending them [99].
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In short, the following benefits, described by Noy [106], can be obtained when

using ontologies.

• Sharing common understanding of the structure of information among people

or software agents

• Enabling reuse of domain knowledge

• Making domain assumptions explicit

• Separating domain knowledge from the operational knowledge

• Enabling the analysis of domain knowledge

3.1.3 Components of an Ontology

In this thesis, we will follow the criterion of simple ontologies defined by McGuin-

ness [98] when building an ontology as a case study in the later section, and we

also use Gómez-Pérez’s [49] description about the components1 of an ontology as

follows, adding the explanations and some examples to each component .

• Concepts are organized in tree-like taxonomies with tree nodes C1, C2, . . . , Cn.

Each Ci can be a object in the real world or a concept which corresponds to

a set of objects.

e.g. The concept “line” corresponds to all lines in the real world.

• Relations are implicit or explicit relations among concepts, i.e. the relations

are inferred from the taxonomy or independent of the taxonomy.

A relation, R, of arity k, can be denoted as a set of tuples of the form

R(Cλ1, Cλ2, . . . , Cλk), where λi ∈ {1, ..., n}, 1 ≤ i ≤ k.

e.g. Subclass-of (Concept1, Concept2) is a binary implicit relation inferred

1Note: According to McGuinness’s definition, “Functions”, “Instances”, and “Axioms” are
not mandatory for a simple ontology.
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from the ontology;

Connected-to(Component1, Component2) could be an explicit

relation defined using an explicit statement within the ontology.

• Functions are properties that relate some concepts to other concepts, and

are denoted by

f : Cλ1 × Cλ2 × . . .× Cλk 7→ Cn, where λi ̸= n, 1 ≤ i ≤ k.

e.g. Mother-of : Person 7→ Female,

Price of a used car : Model × Year × Kilometers 7→ Price.

• Instances relate objects of the real world as a concept.

e.g. Instance-of : Margaret Thatcher 7→ Prime Minister,

Instance-of : Margaret Thatcher 7→ Female.

• Axioms are sentences describing the concepts with logic expressions which

are always true.

e.g. Parallel(line1, line2) ⇒ Disjoint(line1, line2)

Here, “Parallel” is a relation between two instances of the concept “Line”,

and “Disjoint” is the property that always exists for two parallel lines.

3.1.4 Types of Ontologies

Nowadays, an increasing number of ontologies have been developed by different

organizations and are available on the web. They are classified into many different

kinds, such as Top-Level ontologies, Meta or Core ontologies, etc., see [49,56]. Here

we follow the most commonly used classification in [131, 136]. According to their

different generality levels, ontologies can be distinguished into following four main

types:

• Generic ontologies describe very general and basic concepts across domains,

e.g. state, event, process, action, component, etc., which are independent
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of a particular domain. A generic ontology is also referred to as a Core

ontology [136] or as a Top-Level ontology [56].

• Domain ontologies capture the knowledge valid for a particular type of do-

main, and are reusable within the given domain, e.g. electronic, biological,

medical, or mechanical.

• Representation ontologies provide a representational framework without stat-

ing what should be represented and do not refer to any particular domain.

Domain ontologies and generic ontologies are described using the primitives

provided by representation ontologies. An example in this category is the

Frame Ontology used in Ontolingua [53], which defines concepts such as

frames, slots and slot constraints allowing expressing knowledge in an object-

oriented or frame-based way.

• Application ontologies contain all the definitions that are needed to model

the knowledge required for a particular application. Typically, application

ontologies are a mix of concepts that are taken from domain ontologies and

generic ontologies. Application ontologies are not reusable themselves.

3.1.5 Languages and Development Environment for Ontol-

ogy

Ontologies can be built in different ways. Here we list some most representative

languages and environments used when formalizing ontologies.

Ontology Languages

Ontologies must be expressed in a concrete notation, i.e. encoded in some language.

There are a number of languages being proposed for ontology representation, see

[34,38] for an overview. The following languages are the most popular:
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• CycL [87] is a declarative and expressive language, similar to first-order

predicate calculus with extensions. CycL is used to represent the knowledge

stored in Lenat’s Cyc Artificial Intelligence project.

• KIF [47] + Ontolingua [36] KIF (Knowledge Interchange Format) was

developed to solve the problem of heterogeneity of languages for knowledge

representation. It has declarative semantics and provides for the definition

of objects, functions and relations. It is based on the first-order predicate

calculus, with a prefix notation. Ontolingua is a language based on KIF and

on the Frame Ontology [53]. Ontolingua allows ontolgoies to be built by

using KIF expressions, or Frame Ontology vocabulary, or both of them.

• DAML+OIL [33] (DARPA (Defense Advanced Research Projects Agency

of US) Agent Markup Language and Ontology Inference Layer) is a markup

language for web ontology. It attempts to merge the best of existing web lan-

guages such as XML (eXtensive Markup Language) [1] and RDF (Resource

Description Framework) [3], description logics, and frame reasoning systems.

It has been evolved into the OWL (Web Ontology Language) standard [2].

Development Environment

In some sense, the development of ontologies is similar to object-oriented software

engineering, which also has its own life cycle [49]. During the life cycle, ontologies

need to be analyzed and specified, implemented, modified, evaluated and regularly

maintained, so some ontology tools will be needed. There are several ontology

toolkits available commercially and some now available for free. We list some

popular tools as follows.

• Ontolingua Server [36] is exclusively developed for building ontologies in

the ontolingua language by the Knowledge Systems Laboratory at Stanford
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University. It provides a collaborative environment to browse, create, edit,

modify, and use ontologies for geographically distributed groups.

• Protégé-2000 [52] is an ontology editor and a knowledge-base editor, de-

veloped at the Stanford Medical Informatics department. It is also an open-

source, Java tool that provides an extensible architecture for the creation of

customized knowledge-based applications.

• OilEd [16] is an ontology editor developed at the University of Manchester.

It allows the users to construct and manipulate DAML+OIL and OWL, and

use the reasoner to classify and check the consistency of ontologies.

3.1.6 Applications that exploit Ontologies

Various ontologies have been created or used by the people from different domains

during the last few decades. For example, Gene Ontology (GO) 2 is the most

developed and widely used ontology in the biological domain; ONIONS [45] is an

integration of medical terminologies; OntoWordNet [44] is for Linguistic and Cog-

nitive Engineering. For the design criteria and principles of ontology development

please see [49] for details.

In this section, we will give some examples of the ontology-based applications

within the domain of computer science, especially those related to knowledge pre-

sentation and data mining.

Ontologies used in Text Mining

Text mining or Knowledge Discovery in Texts (KDT) is aiming at the previously

unknown information extracted from the different written resources, usually plain

textual documents instead of well structured databases in KDD. There are also

2http://www.geneontology.org/
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some attempts to make use of additional structural information such as HTML or

XML documents in text mining, see [89].

Text clustering and text classification are two main tasks in the text mining

community. The main idea of text clustering is to place, or cluster, documents

with the most words in common into the same group; this is also called unsuper-

vised categorization. The task of text classification, or supervised categorization,

is to assign documents to a list of predefined target categories. So far, existing text

clustering and classification systems are restricted to detecting patterns in the used

terminology only, ignoring the conceptual patterns. For example, terms like “gold”

and “silver” can not be generalized to the common hypernym “precious metal”.

With the help of ontology, researchers can start looking for the benefits that can

be achieved by integrating the explicit conceptual terms found in ontologies into

text mining. Andreas Hotho [67] claims that the set of terms are enriched and

many measures for text clustering results improved when adding general concepts

or replacing terms by concepts from the domain specific ontology. Also for text

classification, the classical document representation can be enhanced and consis-

tent improvement of the results can be achieved through concepts extracted from

background knowledge provided by ontology structure, see [20].

Ontologies for building Semantic Web

Most of existing web contents are designed to be read and understood by humans,

not machines. For example, it is not easy to make a computer accurately find

the cheapest hotel and reserve it for you without any human interference. The

Semantic Web [17] is an extension of the current web in which information is given

in a well-defined, computer-processable format to enable computers and people to

work in cooperation. A popular application of the Semantic Web is Friend of a
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Friend (FOAF) 3, which creates machine-readable homepages describing people’s

personal information and relationships, for example, your name, address, interests,

friends, etc. Holding all these data in the form of FOAF, a computer can then

automatically search and merge some interesting information according to your

complex requests, such as “Show me the pictures of someone who is interested in

skiing and lives near me” or “Show me recent articles written by people at this

meeting”.

XML and RDF are the two standards for establishing semantic interoperability

on the Web. XML addresses document structure; while RDF facilitates interop-

eration because it provides a data model. Ontology becomes the crucial part in a

semantic web since it has been widely accepted as the most advanced knowledge

representation model. OWL Web Ontology Language [2] is specially designed for

this purpose. It adds more vocabulary for describing properties and classes than

RDF. For example, “disjointness”, “exactly one” relations for classes; equality,

symmetry characteristics for properties defined in RDF.

OntoBroker [39] is a typical project which uses ontologies to annotate and wrap

web documents, represents ontologies, and formulates an ontology-based answering

service to perform intelligent access. The tool set of Ontobroker allows us to access

information and knowledge from the web and to infer new knowledge with an

inference engine based on techniques from logic programming.

3http://www.foaf-project.org/
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3.2 Extracting Taxonomies from Ontologies

3.2.1 Motivation

During data preprocessing in data mining, attribute construction aims at improv-

ing the concept representation space. It can be done in several ways, such as

combining attributes to generate new attributes beyond those provided in the in-

put data, removing less relevant or irrelevant attributes, and/or abstracting values

of given attributes, see e.g. [91,92]. This last method is also called concept gener-

alization.

Using attribute-value taxonomies can be a good way to implement the abstrac-

tion of attribute values, since a new set of attribute values can be constructed

by a cut (see Definition 5.1) on the taxonomy tree. But such a taxonomy, man-

ually defined by domain experts, is often viewed as a time consuming task, and

inevitably is sometimes done rather haphazardly, especially for data containing

many attributes each with many values. Moreover, domain experts from different

domains may define different taxonomies involving the same attribute.

Ontologies provide a well-structured knowledge hierarchy for both domain ex-

perts and those undertaking knowledge representation, which can also be shared

or reused among different domains. Ontologies are often constructed from one or

more underlying taxonomies. Above these taxonomies, ontologies also represent

rich associative or logical relationships that hold amongst the concepts or tax-

onomies, based on the background knowledge. For a certain attribute or concept,

the taxonomy rooted in it may not be available straightforwardly from the ontol-

ogy. It appears sensible to think of ways of extracting some interesting taxonomies

from a predefined ontology automatically.
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3.2.2 Language and Type of Ontology Used in this Thesis

We will base our study on DAML+OIL, choosing it for its expressive power of

representation and reasoning ability. In particular, the properties provided by

DAML+OIL, like subClassOf, disjointWith, sameClassAs, and sameIndividualAs,

are the relations that we need when building the concept taxonomies covering

heterogeneous databases or from various sources.

As a part of our early research, we created a Student ontology, using the

DAML+OIL ontology language, and designed various examples for each property

of DAML+OIL. This part of work is shown in appendix A.

Table 3.1 summarizes the properties, which may form axioms, supported by the

DAML+OIL. In this table, 11 properties are defined, and the first two are imported

from RDF(S) [3]. We specify their domain and range in the middle column, that

is, the classes or properties between which these axioms can hold. Examples are

given by using the standard description logic (DL) syntax in the right column.

Table 3.1: DAML+OIL Axiom Elements

Property Name Domain&Range Example

rdfs:subClassOf Class Postgraduate ⊑ Student
rdfs:subPropertyOf ObjectProperty hasSon ⊑ hasChild
daml:sameClassAs Class Man ≡ Human ∩Male
daml:samePropertyAs ObjectProperty hasSupervisor ≡ hasAdvisor
daml:disjointWith Class Male ⊑ ¬Female
daml:inverseOf ObjectProperty hasChild ≡ hasParent−

daml:sameIndividualAs Thing {Football} ≡ {Soccer}
daml:differentIndividualFrom Thing {George Bush} ⊑ ¬{Barack Obama}
daml:TransitiveProperty ObjectProperty hasDescendant
daml:UniqueProperty ObjectProperty hasFather
daml:UnambiguousProperty ObjectProperty isFather

DAML+OIL provides modelling primitives by using a combination of frames

and first-order logic to produce a frame-based ontology. Some people name such an

ontology as a Knowledge Representation (KR) ontology [49, 129, 136], equivalent

to the type Representation ontology. In this thesis, KR ontology and Domain

ontology are used.
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3.2.3 Implementing the Extraction of Taxonomies from On-

tologies

In this section, the output taxonomies will follow this convention, having only the

whole-part (presented by “subClassOf ” in DAML+OIL ontology) or is-a parent-

child relationship. Moreover, each term in these taxonomies will only have one

parent, although some taxonomies may allow poly-hierarchy4.

Actually, such poly-hierarchy occurs in ontologies with which we are dealing. A

reusable KR ontology may contain concepts which are taken from various sources.

Some of them are synonymous, some are distinct, and some may form different

subclass partitions of the same superclass concept. Such combinations can result

in a poly-hierarchy of the concepts.

Independent
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 Description
 History
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Figure 3.2: Hierarchy of Top-Level Categories (Sowa 2000)

Figure 3.2 shows an example of a poly hierarchy. It is a philosophical top-

level categories of a KR ontology, developed by Sowa, and a synthesis of different

logicians’ discoveries referred to in [129]. Here we will not discuss the philosophical

meaning of each category but only take it as a typical example of the basic structure

of a simple real ontology.

4Poly-hierarchy means that a term can have multiple parents, and although the term may
appear in multiple places, it is the same term.
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In figure 3.2, the root ⊤ denotes the universal type, and is the primitive that

satisfies the axioms:

• There exists something: (∃x)⊤(x).

• Everything is an instance of ⊤:(∀x)⊤(x).

• Every type is a subtype of ⊤: (∀t : Type) t ≤ ⊤.

{Independent, Relative, Mediating}, {Physical, Abstract}, and {Continuant,

Occurrent} are the three top partitions at the first level below the root ⊤. The

other categories are then derived as combinations of these three basic partitions.

Table 3.2 displays the relationships between the twelve leaf node categories and

these three top partitions through a matrix.

Table 3.2: Matrix of the Twelve Leaf Node Categories

Physical Abstract
Continuant Occurrent Continuant Occurrent

Independent Object Process Schema Script

Relative Juncture Participation Description History

Mediating Structure Situation Reason Purpose

Given such a poly-hierarchy, we are aiming to extract several simple taxonomies

in which each node (except the root node) has only one parent node.

In practice, an ontology is often formally represented by using an ontology

language, e.g. DAML+OIL, without providing an explicit hierarchical structure

as shown in figure 3.2. To implement the extraction, some preprocessing work can

be done to construct the poly-hierarchy. Two different ways of construction are

described below according to the complexity of the ontology.

Preprocessing an Ontology Hierarchy

Given an ontology, e.g. written in DAML+OIL, its term taxonomy can be con-

structed as follows.
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1. For the small ontologies, say containing less than 20-30 terms/concepts,

the poly-hierarchy can be drawn manually when looking through the ontology

annotations.

2. For the large (over 30 terms, say) and complex ontologies, automatically

searching and storing the terms seems more efficient. Here we will use an example

from appendix A to illustrate the automatic way of taxonomy construction.

<daml:Class rdf:ID="Postgraduate">

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:comment>It represents all the postgraduate students.

</rdfs:comment>

</daml:Class>

Above DAML+OIL annotation is one of class definitions in a Student Ontolgoy.

In DAML+OIL, only the tags starting with “daml:Class” and “rdfs:subClassOf

rdf:resource=”5 are the source of the terms.

Simply exploiting the text searching and matching algorithm, the double quoted

terms appearing in the Class and subClassOf tags can be easily picked up, e.g.

Postgraduate and Student in the above example. The extracted terms will be

stored in a list, and the parent-child relationships can be established by creating

a series of relation lists. Each relation list contains the newly found child term

followed by its parent(s), e.g. {Postgraduate, Student} is the list generated from

above class definition block.

Method and Algorithm for Taxonomic Extraction

The main idea of taxonomic extraction is that we transform the ontology hierarchy

into a directed acyclic graph, which we will call the Directed Acyclic Taxonomy

Graph (DATG) since it has some constraints; we will then exploit some graph

5Note: The tag “<rdfs:subClassOf>” is used to describe a class-specific range restriction, not
the parent class.
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properties to extract the required taxonomies from it. In our DATG, the subClas-

sOf relation guides the direction of the edges.

DATG Definition: the DATG is a directed acyclic graph which satisfies the

following constraints:

1. There is only one vertex which is designated as the root in the DATG, i.e.

the root is the source vertex with zero indegree.

2. DATG has leaf vertices, i.e. the vertices with zero outdegree.

Figure 3.3 shows a sample of a DATG, in which the root is vertex 1 and the

leaf vertices are {7, 8, 9, 10, 11, 12}.
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Figure 3.3: A Sample of DATG

DATG Generation: Transforming an ontology hierarchy to a DATG can be

simply done by adding the direction to each edge of the hierarchy to make it point

towards child vertices and away from parent vertices. The semantic meaning of

those edges is the “subClassOf ” relation.

Since the ontology hierarchy is a poly-hierarchical tree structured taxonomy,

the transformed graph generally meets the requirements of being a DATG.

If the terms in ontology have already been stored in lists during the prepro-

cessing, this procedure can be skipped.
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Taxonomies Extraction:

We are looking for all the possible sub-DATGs from the DATG, where each

vertex has at most one incoming edge and has zero or more outgoing edges. These

sub-DATGs must contain the root vertex and all the leaf vertices of the original

DATG, since they will be exploited for attribute-value abstraction where the input

attribute values are all the leaf nodes of the ontology hierarchy. Furthermore, if

any internal node is included in a sub-DATG, then all its child nodes should also

be presented in that sub-DATG, so that we can make sure all the top partitions,

like the example shown in figure 3.2, can be individually extracted. We name such

subgraphs as Fully Leaved and Rooted Subgraphs (FLRSs).

FLRS Definition: Formally, a FLRS, G′ = (V ′, E ′), is the subgraph of a

DATG, G = (V,E), where V is the set of vertices and E is the set of directed

edges, and V ′ ⊆ V , E ′ ⊆ E, s.t.

1. ∀ v′ ∈ V ′, the indegree of v′, denoted as deg+(v′), satisfies deg+(v′) = {0, 1}.

2. ∀ e′ ∈ E ′, e′ links two distinct vertices u′ and v′ that u′, v′ ∈ V ′. We then

denote e′ by e′ : u′ → v′.

3. V ′ contains the root vertex of V , and no other vertex has deg+(v) = 0.

4. V ′ contains all the leaf vertices, i.e. ∀ v ∈ V , if deg−(v) = 0, then v ∈ V ′.

5. ∀ v′ ∈ V ′, the outdegree of v′ is denoted as deg−(v′), if deg+(v′) > 0

and deg−(v′) > 0, i.e. v′ is an internal vertex of G, then ∀ v′ → v′′ ∈ E ⇒ v′ →

v′′ ∈ E ′.

FLRS Generation: The pseudo-code in figure 3.4 and 3.5 presents the al-

gorithm for generating FLRSs from a DATG with n vertices. For ease of imple-

mentation, we label the vertices with consecutive integers {1, 2, ..., n}. Here 1 is

assigned to the root vertex by default, and the rest vertices are labelled in a top
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down and left to right order.

Searching FLRS is a recursive procedure. The algorithm starts bottom-up

searching from each leaf vertex, to its parent vertex, recursively until reaching

the root vertex. For each input vertex, the search aims to find its parent vertex

and all its sibling vertices, as well as the vertices derived from them, and store

them as the vertices of a FLRS candidate. The indegrees of vertices are used to

control the iteration in this algorithm: each time when a FLRS is generated, the

indegrees of all the vertices in that FLRS will be decreased by 1, and the iteration

will be terminated when the indegrees of all the vertices are equal to 0. After each

iteration, the edges linking any two vertices (except the root vertex) in the newly

generated FLRS will be removed. Sometimes when the indegrees of all the leaf

vertices are equal to 0, while there are some internal vertices left without being

included by any FLRS, the search procedure will start from these vertices until a

new FLRS is generated. In this way, we make sure every edge is traversed at least

once during the set of FLRSs’ generation, although some of them will be discarded

for not meeting the requirement of being a FLRS.
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Input: a DATG, G = (V,E), V = {v1, v2, ..., vn}, vi ∈ {1, ..., n}, E = {e1, e2, ...}.
Output: a set of FLRSs, G′ = {g′1, g′2, ...}, g′i = (V ′

i , E
′
i), V ′

i ⊆ V, E′
i ⊆ E.

Algorithm:

1. Create the incoming edge list for each vertex: {inL1, inL2, ..., inLn}, where inLi stores all the

parent nodes of vi;

2. Create the outgoing edge list for each vertex: {outL1, outL2, ..., outLn}, where outLi stores

all the child nodes of vi;

3. Calculate the indegree and outdegree for each vertex: {In1, In2, ..., Inn} and {Out1, Out2,

..., Outn};
4. searchFLRS

k = 1; // k is the number of FLRS, behave the kth FLRS g′k is derived by G

while ∃ Ini ∈ {In1, ..., Inn}, Ini ̸= 0 do

if ∀ vi ∈ leaf vertices, Invi = 0 or inLvi is null

then for i = 1 to n do

if Ini ̸= 0

then t = i; // t is a temporary variable to control the while loop

while t ̸= 1 and t /∈ V ′
k and inLl is not null do

t = searchSibling(t);

end while

end if

else for each leaf vertex vi in V do

l = vi; // l is a temporary variable to control the while loop

while l ̸= 1 and l /∈ V ′
k and inLl is not null do

l = searchSibling(l);

end while

end for

end if

add root vertex (default is 1) to V ′
k;

∀ v′ ∈ V ′
k, if Inv′ ̸= 0 then Inv′ = Inv′ − 1;

remove all the non-leaf vertices (except root vertex) in V ′
k from the incoming edge lists;

if V ′
k doesn’t contain all the leaf vertices of V then discard g′k;

else k = k + 1;

end if

end while

end searchFLRS

Figure 3.4: Algorithm for Generating FLRSs from DATG (a)
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// For a given vertex, search for its sibling vertices and store them to the vertices set of the

target FLRS.

searchSibling(vin)

vertex = 0; // vertex is the index of the vertices in inLvin

while vertex is not equal to the size of inLvin do

v′ = inLvin .get(vertex);

if v′ = null

then add vin to V ′
k;

v′ = 1;

break;

else if v′ = 1 //reach the root vertex

then add vin to V ′
k;

break;

else if outLv′ * V ′
k

then add all the vertices in outLv′ to V ′
k;

for each vertex, v′′i , in outLv′ do

if v′′i is not a leaf vertex

then searchLeafVertex(v′′i );

end if

end for

break;

else vertex = vertex+ 1;

v′ = 1;

end if

end if

end if

end while

return v′;

end searchSibling

// For a given vertex, top-down search for all the vertices (until reach to leaf vertices) derived

from it, and store them to the vertices set of the target FLRS.

searchLeafVertex(vin)

isLeaf = False;

while isLeaf = False do

for each vertex, v′in, in outLvin

add v′in to V ′
k if v′in /∈ V ′

k;

if v′in is not a leaf vertex

then searchLeafVertex(v′in);

end if

end for

isLeaf = True;

end while

end searchLeafVertex

Figure 3.5: Algorithm for Generating FLRSs from DATG (b)
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3.2.4 Illustrations of the Algorithm

1. We applied the algorithm on the sample of DATG shown in figure 3.3. Two

FLRSs, whose vertices set are {1, 2, 3, 4, 7, 8, 9, 10, 11, 12} and {1, 5, 6, 7, 8, 9, 10, 11, 12},

are obtained. So the corresponding taxonomies can be directly inferred from these

subgraphs.

2. Similarly, we also tried some extreme situations to test the algorithm.

Figure 3.6 gives two extreme examples of DATG.
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(a) DATG 1

1


2
 4
3


5
 6


7
 8
 9
 10
 11
 12


(b) DATG 2

Figure 3.6: Some Extreme DATGs

For DATG 1, only one FLRS can be extracted, whose vertices set is {1, 2, 3, 4, 7, 8,

9, 10, 11, 12, 13}. The other possible FLRS, {1, 5, 6, 7, 8, 9, 10, 11, 12}, is discarded

since it does not contain all the leaf vertices.

For DATG 2, two FLRSs can be separately extracted in different runs, since

the algorithm forbids any two FLRSs generated from one DATG share the same

internal vertices at the second level from the top, i.e. the direct children vertices

of the root vertex must be divided into different FLRSs without overlapping. The

vertices set is either {1, 2, 3, 4, 7, 8, 9, 10, 11, 12} or {1, 5, 4, 7, 8, 9, 10, 11, 12}. Ver-

tex 6 is not included in any of the FLRSs, since its child vertex 10 will dissatisfy

the first requirement of being a FLRS. Actually, if we consider the semantic mean-

ings in ontology hierarchy, vertice 5 should be the parent vertex of vertice 2 and 3,

or the synonym of their parent vertex, so this case can be prevented. In practice,
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DATG 2 will be presented in another form, see figure 3.7, then only one FLRS can

be extracted, whose vertices are {1, 5, 4, 2, 3, 7, 8, 9, 10, 11, 12}.
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Figure 3.7: Reconstruction of DATG 2

3. When applying the approach to the hierarchy of top-level categories in

figure 3.2, we firstly code the name of each node from top to bottom, as shown

in figure below. After running the algorithm, three taxonomies can be extracted,

shown in figure 3.8 ∼ 3.10, respectively.
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Figure 3.8: Extracted Taxonomy 1 from Figure 3.2
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Figure 3.9: Extracted Taxonomy 2 from Figure 3.2
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Figure 3.10: Extracted Taxonomy 3 from Figure 3.2

3.3 Summary

The main purpose of this chapter is to give a study of ontology and explore the

feasibility of exploiting some unique properties for taxonomy construction and even

for information integration and data mining from semantically heterogeneous data

sets.

The most significant characteristic of ontologies is that they group concepts to-

gether in terms of taxonomies, along with rich associative or logical relationships

that hold amongst the concepts. In section 3.1 we reviewed some important is-

sues about ontologies, such as definition, types, representation languages, existing

applications, etc.

Our work can be divided into two directions. The first direction is ontology

building. As a part of our early research, we created a Student ontology, using the

DAML+OIL ontology language, and designed various examples for each property

of DAML+OIL. This part of work is shown in appendix A.

The second direction is to extract taxonomies from predefined ontologies. Con-

sidering there are so many domain ontologies being defined, and these can be

reused between domains, it seems worthwhile to make use of them to generate

the required taxonomies. In section 3.2, we propose an algorithm of automatically

extracting taxonomies from ontology and illustrate our idea with some examples.



Chapter 4

Constructing AVTs using

Clustering Algorithms

In data mining, some clustering algorithms can be used to automatically gen-

erate a tree structured hierarchy for the data set. In this chapter, we start by

reviewing some typical clustering algorithms. Then we study the behaviour of

these algorithms and consider their efficacy in constructing relevant semantically

interpretable taxonomies. We also propose an iterative approach to build the

attribute-value taxonomies by using some partitional algorithms. Two types of

attribute value, nominal and numeric, are considered in order to construct a suit-

able taxonomy for each case. Two real world data sets are chosen for performance

evaluation.

Since we will be applying clustering to a single field of the data set, only

one dimensional clustering is needed, although clustering algorithms can work

effectively on multi-dimensional data.

50
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In general, clustering algorithms can be classified into two categories: (1) hierar-

chical and (2) partitional. For the given set of data objects, hierarchical algorithms

aim to find a series of nested clusters of data so as to form a tree diagram or den-

drogram; partitioning algorithms will only split the data into a specified number

of disjoint clusters.

4.1 Hierarchical Algorithms

Hierarchical algorithms can also be classified into either agglomerative clustering or

divisive clustering. Agglomerative is a bottom-up approach which starts with each

data item in a cluster and successively merges the closest clusters into larger ones,

until the largest cluster containing all the data is achieved or some termination

conditions hold. Divisive, on the contrary, is a top-down approach which starts

with all the data objects in one single cluster and successively splits it into smaller

clusters, until each object is in one cluster or some termination conditions are met.

4.1.1 Distance Measure

The first key step in a hierarchical clustering is to select a distance measure as the

criterion for forming the clusters.

Given a data set D = {x1, x2, ..., xn}, where each xi = (xi1, xi2, ..., xid) is d-

dimensional, the distances between data objects can be computed by many mea-

sures (see e.g. [72]) including the following common measures.

• Euclidean distance: dis(xi, xj) =
√∑d

k=1(xik − xjk)2.

• Squared Euclidean distance: dis2(xi, xj) =
∑d

k=1(xik − xjk)
2.

• City-block (Manhattan) distance: dis(xi, xj) =
∑d

k=1 |xik − xjk|.
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For one dimensional data, the Euclidean distance and the Manhattan distance

are identical.

For a data set, D, once a distance measure is selected, for any two subsets, S

and T , we can extend dis to following functions.

• dis(S,T) = min{dis(x,y) : x ∈ S, y ∈ T}, which will find the smallest dis-

tance between two clusters, also called Single-link (or nearest neighbour)

[51].

• dis(S,T) = max{dis(x,y) : x ∈ S, y ∈ T}, which will find the largest dis-

tance between two clusters, also called Complete-link (or furthest neigh-

bour) [13].

• dis(S,T) = 1
|S||T|

∑
x∈S

∑
y∈T dis(x,y), which will find the average distance

between two clusters, also called Average-link.

• dis(S,T) = dis(ĉS, ĉT), where ĉS and ĉT are the centroids of S and T re-

spectively.

• dis(S,T) = dis(m̂S, m̂T), where m̂S and m̂T are the medoids of S and T

respectively.

If S ∈ 2D, then Centroid of S is defined by ĉ(S) ∈ D, s.t.
∑

x∈S dis2(x, ĉ(S))

is minimised. For numeric data, if the Euclidean distance is chosen, then the

centroid will be the mean of S, i.e. ĉ(S) = 1
|S|

∑
x∈S x.

The Medoid of S is defined by m̂(S) ∈ S, s.t.
∑

x∈S dis(x, m̂(S)) is min-

imised, so the medoid must be an element of S.

The Diameter of S is defined by diam(S) = max{dis(x,y) : x,y ∈ S}.
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4.1.2 Agglomerative Clustering

There are a number of agglomerative clustering algorithms (see e.g. [58, 77, 81]),

but they mainly differ on which distance measure between clusters is chosen.

Given a data set D = {x1, x2, ..., xn}, the procedure of agglomerative clustering

is as follows.

1. Place each object in its own cluster, construct a list of singleton clusters

L = C1, C2, ..., Cn, and calculate the distance between any two clusters by

using one of the distance measures so as to yield a distance matrix;

2. For each pair of clusters in L, find the two closest clusters (say Ci and Cj)

whose distance is under a certain threshold;

3. Update the cluster list by removing the pair of clusters Ci and Cj from L,

and adding a new merged cluster Ci

∪
Cj to L;

4. Update the distance matrix to reflect the merging operation;

5. Go to step 2 until only one cluster remains, or until no pair of clusters exist

with distance between them greater than the threshold.

4.1.3 Divisive Clustering

Divisive algorithms differ in the way they split the clusters. In this section, the

commonly used DIANA (DIvisia ANAlysis) [81] method is described. Given a data

set D = {x1, x2, ..., xn}, the procedure of DIANA can be described as follows.

1. Place all the data objects in one cluster C0 = {x1, x2, ..., xn}, and calculate

the distance between any pair of objects in C0 to yield a distance matrix.

The algorithm works with a set of clusters, initially just S = {C0};
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2. Let C be the cluster with the largest diameter in S, split it into C1 and C2,

C1 = C, C2 = ∅; find an object xj in C1, which has a maximum average

distance to the others, and then move xj to C2;

3. For each remaining object in C1, compute both its average distance to the

other objects in C1 and the average distance to object(s) in C2. If the former

is greater than the latter, then move this object to C2;

4. Replace C in S by C1 and C2;

5. Go to step 2, until all the clusters contain only one object, or some termi-

nating criterion is met.

Other divisive algorithms that minimise the larger of the two cluster diameters

are described in [122] and [68]. Some algorithms minimise the sum of the two

cluster diameters instead (see e.g. [63]).

4.2 Partitional Algorithms

In partitional clustering, it is often computationally infeasible to try all the possible

splits, so greedy heuristics are commonly used in the form of iterative optimization.

However, when the number of points is small, then an exact algorithm can be

considered, e.g. Fisher’s algorithm [40, 64]. This section will focus on introducing

two algorithms — k-means and Fisher’s algorithm.

Both algorithms require real-valued input data, and can be considered as a

method for numeric attribute value discretisation. Experimental comparisons are

discussed in a later section.
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4.2.1 K-means Clustering

K-means is the most widely used greedy heuristic partitional clustering technique

(see e.g. [41], [100], [70], [71], [124], [130]), and is an iterative centroid-based divisive

algorithm.

Given a data set D = {x1, x2, ..., xn}, the procedure of k-means clustering is as

follows.

1. Select k initial points to act as cluster centroids, c1, c2, ..., ck;

2. Assign each object xi in D to cluster Ci whose centroid ci is the nearest to

xi;

3. For each cluster, recompute its centroid based on the elements assigned to

that cluster;

4. Go to step 2 until the centroids no longer move.

To generate good quality clusters, the k-means algorithm aims to minimise the

within-cluster sum-of-square fitness measure

k∑
i=1

∑
x,y∈Ci

dis2(x, y). (4.1)

If using Euclidean distance as defined in section 4.1.1, then the following

between-cluster measure will be simultaneously maximised.

k∑
i=1

∑
x∈Ci,y /∈Ci

dis2(x, y) (4.2)

The reason is that the sum of measure 4.1 and 4.2 is a constant, which is

∑
x,y∈D

dis2(x, y). (4.3)
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In 1D clustering, this within-cluster fitness measure can be expressed as

k∑
i=1

∑
x,y∈Ci

(x− y)2. (4.4)

The following theorem, proved by Al-Harbi [7], also shows the similarity be-

tween the within-cluster sum-of-square and the centroid measure.

Theorem 4.1 Given a cluster, C, in the Euclidean space Rn, a clustering that

minimises
∑

x∈C dis2(x, ĉ), where ĉ is the centroid of C, will also minimise the

within-cluster sum-of-square measure
∑

x,y∈C dis2(x,y) and vice versa.

Once the k clusters have been found, they can be replaced by their centroids or

medoids. These values can then themselves be clustered. Repeating this process

results in a tree hierarchy of clusters. A case study will be presented later.

4.2.2 Fisher’s Algorithm

Working on an ordered data set, or continuous real values, Fisher’s clustering

algorithm [40, 64] seeks an optimal partition with respect to a given measure,

providing the measure satisfies the certain constraint that if x, y are both in a

cluster and the data z, x < z < y, then z is necessarily also in the same cluster.

Algorithm Description

Given a set of ordered points D = {x1, x2, . . . , xn}, with x1 < x2 . . . < xn on the

real line, we seek a partition of the points into K clusters {C1, C2, . . . , CK}, where

C1 comprises points x1 < x2 . . . < xn1 ,

C2 comprises points xn1+1 < xn1+2 < . . . < xn2 ,

...

CK comprises points xnK−1+1 < xnK−1+2 < . . . < xnK
, and xnK

= xn.
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Thus, such a clustering is uniquely determined by the values xn1 , xn2 , . . . , xnk−1
.

Any clustering of the points of this form will be called an interval-clustering. For

certain quality measures on clusters, an optimal interval clustering will always be

an optimal clustering.

For example, consider a within-cluster fitness measure for the K interval clusters

C = {C1, C2, . . . , CK} of data set D

Fit(D,K) =
K∑
i=1

d(Ci), (4.5)

where, d(Ci) is a measure of the value of the cluster Ci and

d(Ci) =
∑
xj∈Ci

(xj − µi)
2, where µi =

∑
xj∈Ci

xj

|Ci|
. (4.6)

The optimal clustering is the partition which minimises Fit(D,K), and this

must necessarily be an interval clustering.

Theorem 4.2 Providing the fitness measure is of form (4.6), the minimum of

Fit(D,K) is always obtained from an interval clustering.

Proof . Assume C = {C1, C2, . . . , CK} is a non-interval clustering on n points

{x1, . . . , xn}, which minimises Fit(D,K). Then there exists two clusters, Ci and

Cj, s.t. ∃ ximax = max{xi| xi ∈ Ci} xjmin = min{xj| xj ∈ Cj}, ximax > xjmin, but

µi < µj.

Now swap xjmin and ximax, then we get two new clusters, C ′
i and C ′

j, with

µ′
i < µi and µ′

j > µj. We now show that the new clustering has a smaller value of

Fit(D,K) than the old one.

Let Fit′(D,K) denote the fitness measure for the new clustering, then the

differences of Fit(D,K), denoted as ∆Fit(D,K), between the two clusterings can be

represented as:
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∆Fit(D,K) = Fit′(D,K)− Fit(D,K)

=
∑
xi∈Ci

xi ̸=ximax

(xi − µ′
i)
2 + (xjmin − µ′

i)
2 +

∑
xj∈Cj

xj ̸=xjmin

(xj − µ′
j)

2 + (ximax − µ′
j)

2

−
∑
xi∈Ci

xi ̸=ximax

(xi − µi)
2 − (ximax − µi)

2 −
∑
xj∈Cj

xj ̸=xjmin

(xj − µj)
2 − (xjmin − µj)

2

=
∑
xi∈Ci

xi ̸=ximax

(2xi − µ′
i − µi)(µi − µ′

i) + (xjmin − µ′
i)
2 − (ximax − µi)

2

+
∑
xj∈Cj

xj ̸=xjmin

(2xj − µ′
j − µj)(µj − µ′

j) + (ximax − µ′
j)

2 − (xjmin − µj)
2

= [
∑
xi∈Ci

xi ̸=ximax

2xi −
|Ci| − 1

|Ci|
(

∑
xi∈Ci

xi ̸=ximax

2xi + ximax + xjmin)]
ximax − xjmin

|Ci|

+ (xjmin + ximax −

∑
xi∈Ci

xi ̸=ximax

2xi + ximax + xjmin

|Ci|
)(xjmin − ximax +

+
ximax − xjmin

|Ci|
) + [

∑
xj∈Cj

xj ̸=xjmin

2xj −
|Cj| − 1

|Cj|
(

∑
xj∈Cj

xj ̸=xjmin

2xj + ximax + xjmin)] ·

xjmin − ximax

|Cj|
+ (ximax + xjmin −

∑
xj∈Cj

xj ̸=xjmin

2xj + ximax + xjmin

|Cj|
) ·

(ximax − xjmin +
xjmin − ximax

|Cj|
)

= [
∑
xi∈Ci

xi ̸=ximax

2xi − (|Ci| − 1)(ximax + xjmin)]
ximax − xjmin

|Ci|2

+ [
|Ci| − 1

|Ci|
(xjmin + ximax)−

2

|Ci|
∑
xi∈Ci

xi ̸=ximax

xi]
1− |Ci|
|Ci|

(ximax − xjmin)

+ [
∑
xj∈Cj

xj ̸=xjmin

2xj − (|Cj| − 1)(ximax + xjmin)]
xjmin − ximax

|Cj|2

+ [
|Cj| − 1

|Cj|
(xjmin + ximax)−

2

|Cj|
∑
xj∈Cj

xj ̸=xjmin

xj]
|Cj| − 1

|Cj|
(ximax − xjmin)
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= (ximax − xjmin) [
2

|Ci|
∑
xi∈Ci

xi ̸=ximax

xi −
(|Ci| − 1)

|Ci|
(ximax + xjmin)]

+ (ximax − xjmin) [
(|Cj| − 1)

|Cj|
(ximax + xjmin)−

2

|Cj|
∑
xj∈Cj

xj ̸=xjmin

xj]

= (ximax − xjmin) [(µi + µ′
i)− (µ′

j + µj)]

< (ximax − xjmin) (2µi − 2µj) < 0

So we have proved that Fit′(D,K) < Fit(D,K). Repeat this swapping if

there still exists two points, ximax ∈ C ′
i and xjmin ∈ C ′

j, holding ximax > xjmin

but µ′
i < µ′

j, then we can continually obtain another two new clusters with smaller

Fit(D,K) value. The two non-interval clusters, Ci and Cj, can be gradually

transformed into interval clusters with minimum value of Fit(D,K) in this way.

If we apply the above procedure to any other two non-interval clusters in C,

then we finally obtain an interval clustering that can minimise Fit(D,K). There-

fore we have also proved that the optimal clustering is an interval clustering.

Algorithm Implementation

Fisher pointed that the optimal K interval clusters can be deduced from the opti-

malK−1 clusters, which means we can successively compute optimal 2, 3, 4, . . . , K−

1 partitions, and then the optimal K partition. The steps of this dynamic pro-

gramming procedure are listed below.

1. Create a matrix dis(j, k) which contains the values of the measure d(Cjk) for

every possible interval cluster, Cjk = {xj, . . . , xk}, i.e.

dis(j, k) =

 d(Cjk) 1 ≤ j < k ≤ n,

0 1 ≤ k ≤ j ≤ n.

2. Compute the fitness of the optimal 2-partition of any t consecutive points
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set Dt = {x1, x2, ..., xt}, where 2 ≤ t ≤ n, and find the minimum by

Fit(Dt, 2) = min
2≤s≤t

{dis(1, s− 1) + dis(s, t)}, where 2 ≤ t ≤ n.

3. Compute the fitness of the optimal L-interval-partition of any t consecutive

points set Dt = {x1, x2, ..., xt}, where L ≤ t < n, and 3 ≤ L < K by using

Fit(Dt, L) = min
L≤s≤t

{Fit(Ds−1, L−1)+dis(s, t)}, where 3 ≤ L < K and L ≤ t ≤ n.

4. Create a new matrix f(t, L) which stores the fitness computed in the above

two steps for all optimal L-partitions (1 ≤ L < K) on any t points set

Dt = {x1, x2, ..., xt}, where (1 ≤ t ≤ n).

f(t, L) =


Fit(Dt, L) 1 < L < K, 1 ≤ t ≤ n, L < t,

dis(1, j) L = 1, 1 ≤ j ≤ t,

0 1 < L < K, 1 ≤ t ≤ n, L ≥ t.

The optimal K-partition can be discovered from the matrix f(t, L) by finding

the index l, so that f(t,K) = f(l,K − 1) + dis(l, n).

Then the Kth partition is {xl, xl+1, . . . , xn}, and the (K − 1)th partition is

{xl∗ , xl∗+1, . . . , xl−1}, where f(l−1, K−1) = f(l∗−1, K−2)+dis(l∗, l−1),

and so on.

If we repeatedly apply this algorithm on the output clusters, which are replaced

by their centroids or medoids after each run, then the hierarchy of the clusters can

be generated level by level. A case study is implemented in a later section.
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4.2.3 Measures for Cluster Number Selection

Most partitional clustering algorithms assume that the number of clusters is spec-

ified in advance. There are many approaches making an attempt at finding the

appropriate number (see e.g. [101], [19], [139]). Silhouette width [82] is a very

useful measure to show how well the resulting clusters are separated. In this section

we will consider an approach which makes use of this measure to get the optimal

number of clusters.

Let C = {C1, C2, ..., Ck} (1 < k ≤ n) be a clustering on a data set D =

{x1, x2, ..., xn}. For any object x ∈ D, which is assigned to cluster Ci, the average

distance of x to all the other objects in Ci is defined by

avg(x) =


1

|Ci|−1

∑
y∈Ci

dis(x, y) if |Ci| > 1,

0 if |Ci| ≤ 1.

The average distance of x to all the objects in another cluster Cj (1 ≤ j ≤

k, j ̸= i) is denoted by

d(x,Cj) =
1

|Cj|
∑
z∈Cj

dis(x, z). (4.7)

Then we call the cluster, Cm, which has the shortest average distance, the

neighbour of x (x ∈ Ci), i.e.

d(x,Cm) = min{d(x,Cj) : 1 ≤ j ≤ k, j ̸= i}. (4.8)

Let avgmin(x) = d(x,Cm), then the silhouette value of object x is defined by

S(x) =
avgmin(x)− avg(x)

max{avg(x), avgmin(x)}
. (4.9)
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The value of S(x) ranges from -1 to +1, reflecting the following properties:

1. S(x) is close to -1 — Object x is poorly classified, since its dissimilarity

with other objects in its own cluster is much greater than the one in its

neighbour/nearest cluster.

2. S(x) is close to 0 — Object x can be assigned to either Ci or Cm, since its

average distance to both clusters are approximately equal.

3. S(x) is close to +1 — Object x is classified appropriately, since its within-

cluster dissimilarity is much smaller than the smallest between-cluster dis-

similarity.

After computing the silhouette value for all the objects inD, the overall average

silhouette width of D can be defined as follows

Savg(D) =
1

|D|
∑
xi∈D

S(xi). (4.10)

Savg(D) can be then used to select the optimal number of clusters. The optimal

choice for k is that maximises the average silhouette width of data set D, i.e.

max{Savg(D)}.

Figure 4.1 shows an illustration of the average silhouette width plots over all

possible k clusters, where k ranges from 2 to the number of objects in the selected

database. k-means algorithm is applied on the Soybean data set, taken from UCI

Repository [12], which contains 47 objects.

In practice, for a large data set, in order to find the optimal number of clusters

more efficiently, it is not necessary to calculate the average silhouette width for all

the possible k clusters, we could set an upper limit for k instead, i.e. k ≤ kmax,

where kmax < |D|. Although there may be some larger average silhouette widths

when kmax is increased, those corresponding clusterings are not very interesting.



CHAPTER 4. CONSTRUCTING AVTS USING CLUSTERING ALGORITHMS63

Silhouette Plots for Soybean Database
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Figure 4.1: Average Silhouette Width Plots for k-means clustering on
the Soybean Data (the Soybean Data, obtained from UCI repository,
contains 47 instances with 35 numeric attributes and can be classified
into 4 classes.)

The reason is that the larger the kmax is, the more single object clusters are pro-

duced, and the more running time is consumed. Normally, kmax can be set to half

the number of the objects. For the case in figure 4.1, if we set kmax to 24, then the

optimal number of clusters will be 3, where the average silhouette width achieves

its peak.

4.3 Exploiting Hierarchical Algorithms for

Attribute-Values Taxonomies Construction

In this section, two types of hierarchical algorithm are exploited respectively on

both nominal and numeric attribute-values to generate corresponding taxonomies.
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4.3.1 Dealing with Nominal Attributes

The domain of nominal attributes could be any arbitrary finite set of non-numeric

and unordered values. Typical examples include sex/gender attribute with do-

main {Male, Female}, and race/ethnicity attribute with domain such as {White,

Asian, Black, Indian, other}.

To cluster data with nominal attributes, one common approach is to convert

them into numeric attributes, and then apply a clustering algorithm. This is usu-

ally done by “exploding” the nominal attribute into a set of new binary attributes,

one for each distinct value in the original attribute. For example, the sex/gender

attribute can be replaced by two attributes, Male and Female, both with a numeric

domain {0, 1}.

Another way of transformation is using of some distinct numerical (real) values

to represent nominal values. If again, using sex/gender attribute as an example,

a numeric domain {1, 0} is a substitute for its nominal domain {Male, Female}. A

more general technique, frequency based analysis, can also be exploited to perform

this transformation. For instance, the domain of attribute race/ethnicity can be

transformed from {White, Asian, Black, Indian, other} to {0.56, 0.21, 0.12, 0.09,

0.02}, according to their occurrence in the data set.

In this section, we aim to build a taxonomy for nominal values of each spe-

cific categorical attribute by using some hierarchical clustering algorithms. The

statistical based approach seems more appropriate for this task, because it simpli-

fies the transformation job and each numeric value to be transformed also reveals

the statistical information of its original nominal value, such as distribution. Our

transformational scheme is to replace each nominal value with its corresponding

conditional probability (conditional on the target class membership). Particularly,

in order to show the benefits of the attribute construction by using attribute-value

taxonomies, the nominal attributes with big domains (say, the number of values
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are greater than five) are more interested.

4.3.2 Transformation Scheme

We use the Adult data set as an example to illustrate our transformational scheme.

Five nominal attributes, Education, Occupation,Workclass,Marital-status, and Native-

country, are chosen to do the transformation.

The “>50K” class, denoted by Ch, is chosen as the prediction task, and each

value of all selected attributes will be replaced by the conditional probabilities

of the person being classified to Ch, given he/she holds this specific value. The

training data are used for doing this replacement.

Let A = {A1, A2, ..., Am} represent the attributes of Adult data set, and

V = {V1, V2, ..., Vl} be the corresponding value set of A. Given Vij ∈ Vi denotes

the jth value of attribute Ai, the conditional probability above can be defined as

P (Ch | Vij) =
P (Ch, Vij)

P (Vij)
=
|ChVij|
|Vij|

(4.11)

where |ChVij| is the number of instances classified to Ch, whose value of at-

tribute Ai is Vij, and |Vij| is the total number of instances that hold the attribute

value Vij.

For example, suppose Marital-status is the fourth attribute in the Adult data,

and “Divorced” is its second value, then P (Ch | V42) is the probability of the person

who can earn more than $50K per year, given he or she is divorced.

4.3.3 Using Hierarchical Algorithms

AGNES (Agglomerative Nesting) [81] and DIANA (DIvisia ANAlysis) [81] algo-

rithms are used in the following experiments. The Euclidean distance measure,

which is equivalent in the one dimensional case to the absolute difference, is selected
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to calculate the distance between two objects for both cases, and the “complete-

link” method is used in AGNES for computing the distance between two clusters.

We apply both the AGNES and DIANA algorithms, using the R package1, to

the matrix of each selected attribute, and the two generated taxonomies will be

shown in the same figure, see figure 4.2 to figure 4.9. In these figures, the “Height”

in AGNES presents the distance between merging clusters at the successive stages,

whilst it is the diameter of the cluster prior to splitting in DIANA.

Comparing the two resulted taxonomies of each attribute, we find the similarity

between them is very notable. In particular, the two taxonomies of Workclass,

Capital-gain, and Capital-loss are identical. If we inspect each pair of taxonomies,

most clusters at each level are nearly the same. The AGNES hierarchies differ

from DIANA hierarchies on the different order of merging or splitting some small

sets of clusters. For example, the two Education taxonomies only differ depending

upon the decision as to whether we merge the clusters, {7th-8th} and {9th, 11th},

or split them.

The same situation occurs in theMarital-status taxonomies. Cluster {Separated}

is merged with {Married-spouse-absent} in AGNES, while they are split and merged

with the other two clusters in DIANA.

In the Occupation taxonomies, the cluster {{Farmimg-fishing, Armed-Forces},

{Adm-clerical, Machine-op-inspct}} is either merged with cluster {Craft-repair,

Transport-moving} or with cluster {{Handler-cleaners, Other-service}, Priv-house-

serv}.

The two taxonomies of Native-country look very different, but actually they have

the same two clusters at the top level, e.g. {Canada, Germany, Italy, England,

China, Philippines, Hong, United-States, Greece, Cuba, Hungary, France, Taiwan,

Iran, Yugoslavia, India, Japan, Cambodia,} and {Puerto-Rico, Trinadad&Tobago,
1R is a language and environment for statistical computing and graphics. R package can be

found at http://www.r-project.org/.



CHAPTER 4. CONSTRUCTING AVTS USING CLUSTERING ALGORITHMS67

P
re

sc
ho

ol

1s
t−

4t
h

5t
h−

6t
h

7t
h−

8t
h

9t
h

11
th

10
th

12
th

H
S

−
gr

ad

S
om

e−
co

lle
ge

A
ss

oc
−

ac
dm

A
ss

oc
−

vo
c

B
ac

he
lo

rs

M
as

te
rs

D
oc

to
ra

te

P
ro

f−
sc

ho
ol

0
20

40
60

Dendrogram of  agnes(x = prob_e, metric = "euclidean", method = "complete")

agnes (*, "complete")
prob_e

H
ei

gh
t

(a) Applying AGNES Algorithm

P
re

sc
ho

ol

1s
t−

4t
h

5t
h−

6t
h

9t
h

11
th

7t
h−

8t
h

10
th

12
th

H
S

−
gr

ad

S
om

e−
co

lle
ge

A
ss

oc
−

ac
dm

A
ss

oc
−

vo
c

B
ac

he
lo

rs

M
as

te
rs

D
oc

to
ra

te

P
ro

f−
sc

ho
ol

0
20

40
60

Dendrogram of  diana(x = prob_e, metric = "euclidean")

diana (*, "")
prob_e

H
ei

gh
t

(b) Applying DIANA Algorithm

Figure 4.2: Taxonomies of Education by using Hierarchical Algorithms
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Figure 4.3: Taxonomies of Marital-status by using Hierarchical Algo-
rithms
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Figure 4.4: Taxonomies of Occupation by using Hierarchical Algo-
rithms
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Figure 4.5: Taxonomies of Workclass by using Hierarchical Algorithms
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Figure 4.6: Taxonomies of Native-country by using Hierarchical Algo-
rithms
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Figure 4.7: Taxonomies of Age by using Hierarchical Algorithms
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Figure 4.8: Taxonomies of Capital-gain by using Hierarchical Algo-
rithms
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Figure 4.9: Taxonomies of Capital-loss by using Hierarchical Algo-
rithms
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Portugal, Laos, Jamaica, Ecuador, Poland, South, Ireland, Scotland, Thailand,

Outlying-US(Guam-USVI-etc), Holand-Netherlands, Columbia, Dominican-Republic,

Mexico, Guatemala, Peru, Nicaragua, Honduras, Vietnam, El-Salvador, Haiti}.

The same small set of clusters could also be found in the middle of the taxon-

omy, e.g. {Canada, Germany, Italy, England}, {China}, {Philippines, Hong},

{United-States, Greece, Cuba}, {Hungary}, {France, Taiwan, Iran}, {Yugoslavia,

India, Japan, Cambodia}, {Puerto-Rico, Trinadad&Tobago, Portugal, Laos, Ja-

maica}, {Ecuador}, {Poland, South, Ireland}, {Scotland, Thailand}, {Outlying-

US (Guam-USVI-etc), Holand-Netherlands}, {Columbia, Dominican-Republic},

{Mexico, Guatemala, Peru, Nicaragua}, and {Honduras, Vietnam, El-Salvador,

Haiti}. The main differences between the two taxonomies have resulted from the

different mergers of these middle level clusters.

As for the three numeric attributes, there are 72, 118, and 90 unique values for

Age, Capital-gain, and Capital-loss respectively. Moreover, only 65 values of Age, 33

values of Capital-gain, and 26 values of Capital-loss for occur in records with target

class “> 50K”, which means most values of Capital-gain and Capital-loss will be

replaced by 0 conditional probability. In order to show the generated taxonomies

more clearly, we just choose some typical values among those values that hold 0

conditional probability for both Capital-gain and Capital-loss, so there are only 55

and 72 values being plotted in figure 4.8 and 4.9.

Unfortunately, the taxonomies in figures 4.7, 4.8, and 4.9 just capture the

natural structure of the Adult data. It is difficult to find some disjoint subintervals

to present the nodes at higher levels of the taxonomies. For example, in figure 4.7,

the ages between 17 to 23 are clustered with ages between 82 to 88, while age 90,

29/30, 75 are merged in another cluster. In figure 4.8, some pairs of nearby values

are allocated to different clusters, e.g. 10566 and 10605, and 6497 and 6514. The

same thing happens in figure 4.9, e.g. 2201 and 2205, and 1977 and 1974.
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Ideally, we might hope numeric values in a certain interval would be clustered

together. For the three numeric attributes of the Adult data, it seems more in-

terested and reasonable to find the discretisation for the values, rather than the

taxonomies. In the next section, partitional algorithms will be exploited for this

purpose. We will only be interested in finding the optimal clusters for numeric

attributes.

4.4 Exploiting Partitional Algorithms for

Attribute-Value Taxonomy Construction

and Discretisation

As described in section 4.2, the tree hierarchy of clusters can be built from bottom

to top by applying the partitional clustering algorithm repeatedly to the resulting

clusters.

Given a value set, V = {V1, V2, ..., Vl}, of an attribute, A, the procedure of

partitional clustering based attribute-value taxonomy construction is described as

below.

1. Let the number of clusters, k, equal the size of value set, V , then the leaves

of the tree are {Vi} for each value Vi ∈ V . Call this clustering, C.

2. Decrease k under certain criteria, and apply a partitional algorithm to C to

find k clusters.

3. Replace each cluster with its centroid, and reset C to be the new k singleton

clusters.

4. Go to step 2 until k reaches 2.
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In this section, k-means and Fisher’s algorithms are used to construct the

attribute-value taxonomies for the five selected nominal attributes of the Adult

data set. Both partitional algorithms will also be applied to the three numeric at-

tributes, but only to find the optimal k clusters according to the average silhouette

width. The resulting clusters can be then used for numeric value discretisation.

4.4.1 Nominal Attribute-Values Taxonomies Construction

According to above attribute-value taxonomy constructing procedure, the number

of clusters, k needs to be preset before running a partitional algorithm at each

iteration. In order to compare with the taxonomies generated by hierarchical

algorithms, we choose the same or nearest k at each hierarchy level for each selected

attribute. Figure 4.10 to figure 4.14 show the pair of nominal attribute-value

taxonomies built by iteratively exploiting k-means and Fisher’s algorithm.

Generally, the same clusters can be found from the top levels of the taxonomies

produced by k-means and Fisher’s algorithm. In figure 4.10, the only difference

between the two Education taxonomies is that the values in the subset {1st-4th,

5th-6th, 7th-8th, 9th, 10th, 11th, 12th} are clustered in different ways at the bot-

tom level. The same situation can be found in figure 4.12, two subsets of Oc-

cupation {Tech-support, Sales, Protective-serv}, and {Adm-clerical, Armed-Forces,

Machine-op-inspct, Farming-fishing} are clustered differently.

For the two attributes with the smallest domains, i.e. Marital-status and Work-

class, the generated taxonomies are either totally different or identical, see figure

4.11 and figure 4.13. However, comparing the two taxonomies of Marital-status,

we find the one generated by Fisher’s algorithm is more close to the semantic

taxonomy we normally use.

In the two Native-country taxonomies, most small set of clusters are identical

at the second bottom-level when K = 15, e.g. {Canada, Germany, Italy, Eng-
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Figure 4.10: Taxonomies of Education by using Partitional Algorithms
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Figure 4.11: Taxonomies of Marital-status by using Partitional Algo-
rithms
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Figure 4.12: Taxonomies of Occupation by using Partitional Algo-
rithms
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Figure 4.13: Taxonomies of Workclass by using Partitional Algorithms
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Figure 4.14: Taxonomies of Native-country by using Partitional Algo-
rithms
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land} and {Yugoslavia, India, Japan, Cambodia}, except {Ireland} is clustered

with {United-States, Cuba, Greece} by k-means, while it is merged with cluster

{Poland, South} by Fisher’s algorithm.

For each nominal attribute, the average silhouette widths are also calculated

for k up to the number of attribute values, see figure 4.15. The optimal number of

clusters are marked by a red circle in each plot. Interestingly, given the optimal

number k, both k-means and Fisher’s algorithm generate the same optimal clusters,

see table 4.1 for details. These optimal number of clusters are also used when

constructing the AVTs by partitional algorithms, therefore the optimal clustering

will be guaranteed to appear in the taxonomies when k is set to be the optimal

number.

Table 4.1: The optimal clusters for the nominal attribute values of the
Adult data set

Attribute & Optimal Clusters
Cluster No.

Education {Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th},
(k = 4) {HS-grad, Assoc-acdm, Assoc-voc, Some-college},

{Bachelors, Masters}, {Prof-school, Doctorate}
Marital-status {Married-civ-spouse, Married-AF-spouse},
(k = 2) {Never-married, Widowed, Separated, Married-spouse-absent,

Divorced}
{Adm-clerical, Armed-Forces, Machine-op-inspct, Farming-fishing},

Occupation {Craft-repair, Transport-moving}, {Exec-managerial, Prof-specialty}
(k = 5) {Handlers-cleaners, Priv-house-serv, Other-service},

{Sales, Tech-support, Protective-serv}
Workclass {Without-pay},
(k = 2) {Self-emp-inc, Self-emp-not-inc, Local-gov, State-gov, Federal-gov,

Private}
{Canada, Italy, England, Germany, France, Hungary, Yugoslavia,
Greece, United-States, Cuba, China, HongKong, Taiwan, India, Japan,
Iran, Philippines, Cambodia},

Native-country {Outlying-US(Guam-USVI-etc), Holand-Netherlands, Guatemala,
(k = 2) Mexico, Nicaragua, Peru, Columbia, Dominican-Republic, Haiti,

Honduras, Vietnam, El-Salvador, Portugal, Laos, Jamaica,
Puerto-Rico, Trinadad&Tobago, Ecuador, Ireland, Thailand,
Scotland, SouthKorea, Poland}
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Figure 4.15: Silhouette plot for Nominal Attributes
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4.4.2 Numeric Attribute-values Discretisation

There are some approaches successfully dealing with numeric value discretisation.

For instance, equal-width-interval method is one of the traditional methods, which

divides all the attribute values into equal width bins/subintervals. But the problem

is that it does not consider the natural structure of the specific data and the domain

background knowledge.

In this section, we aim to find optimal partitions for the numeric values of

three selected attributes by exploiting both k-means and Fisher’s algorithm on the

conditional probability based value set. These partitions can be directly used or

provide a guide for numeric value discretisation. The average silhouette width will

still play a key role in choosing the optimal number of clusters.

As mentioned in section 4.3.3, less than one third of values in the value set of

both Capital-gain and Capital-loss correspond to the class “> 50K”. Moreover, we

notice that most of these “relevant” values only occur in the data whose target

class is “> 50K”, which means they will be replaced by 1 according to equation

4.11. This will greatly shrink the space of the value set to be clustered. Table

4.2 shows the number of unique values, or the size of the value set for the three

numeric attributes under different conditions. CP presents the converted value set

by using equation 4.11.

Table 4.2: The number of unique values for the numeric attributes of
the Adult data set

Number of Unique Values
Attribute Mean Whole Data Classified as “>50K” CP

Age 37.74 72 65 66

Capital-gain 1219.90 118 33 5

Capital-loss 99.49 90 26 9

After the conversion, the size of value set for Capital-gain and Capital-loss is

dramatically reduced to 5 and 9 respectively.
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Figure 4.16 shows the silhouette plot for all the three numeric attributes over

all the possible k. Similarly, by setting k to be the optimal number of cluster be-

forehand, both k-means and Fisher’s algorithm produce identical optimal clusters

for each attribute, see table 4.3 for detail.

Table 4.3: The optimal clusters for the numeric attribute values of the
Adult data set

Attribute & Optimal Clusters
Cluster No.

{36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
Age 53, 54, 55, 56, 57, 58, 59, 60, 61, 74, 78, 79, 83},

{28, 29, 30, 31, 32, 33, 34, 35, 62, 63, 64, 65, 66, 67, 68, 69, 70,
(k = 3) 71, 72, 73, 75, 77, 81, 84, 90},

{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76, 80, 82, 85, 86, 88}
{3103, 4386, 4687, 4787, 4934, 5178, 5556, 6097, 6418, 6514,
7298, 7430, 7688, 7896, 8614, 9386, 9562,10520, 10605, 11678,
13550, 14084, 14344, 15020, 15024, 15831, 18481 20051, 25124,
25236, 27828, 99999}

Capital-gain {0, 114, 401, 594, 914, 991, 1055 1086, 1151, 1173, 1409, 1424,
1455, 1471, 1506, 1639, 1797, 1831, 1848, 2009, 2036, 2050, 2062,

(k = 2) 2105, 2174, 2176, 2202, 2228, 2290, 2329, 2346, 2354, 2387, 2407,
2414, 2463, 2538, 2580, 2597, 2635, 2653, 2829, 2885, 2907, 2936,
2961, 2964, 2977, 2993, 3137, 3273, 3325, 3411, 3418, 3432, 3456,
3464, 3471, 3674, 3781, 3818, 3887, 3908, 3942, 4064, 4101, 4416,
4508, 4650, 4865, 4931, 5013, 5060, 5455, 5721, 6360, 6497, 6723,
6767, 6849, 7443, 7978, 10566, 22040, 34095, 41310},
{0}, {653, 1485}, {2258, 2377, 3683}, {1564, 1755, 1825, 1848,
1887, 1902, 1977, 2174, 2201, 2231, 2246, 2282, 2392, 2415, 2444,

Capital-loss 2472, 2547, 2559, 2824, 3004},
{155, 213, 323, 419, 625, 810, 880, 974, 1092, 1138, 1258, 1340,

(k = 5) 1380, 1408, 1411, 1504, 1539, 1573, 1579, 1590, 1594, 1602, 1617,
1628, 1648, 1651, 1668, 1669, 1672, 1719, 1721, 1726, 1735, 1740,
1741, 1762, 1816, 1844, 1876, 1944, 1974, 1980, 2001, 2002, 2042,
2051, 2057, 2080, 2129, 2149, 2179, 2205, 2206, 2238, 2267, 2339,
2352, 2457, 2467, 2603, 2754, 3770, 3900, 4356}

If we inspect the optimal clusters of Age, we observe that there are some subin-

tervals that can be extracted from the clusters. For example, the subintervals,

such as [36, 61], [28, 35], [62, 73], and [17, 27], only occur in one specific cluster,

while most values within the range [80, 90] will be clustered with the subinterval

[17, 27]. This is useful information which indicates a rule that if the person’s age is

below 27 or over 80, he will not earn more than $50K per year. In order to reflect
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Figure 4.16: Silhouette plot for Numeric Attributes
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the clustering results, the values of attribute Age can be discretised to following

six boundary bins: [17, 27], [28, 35], [36, 61], [62, 73], [73, 79], and [80, 90].

For Capital-gain and Capital-loss, the situation is more complex. It is not easy

to find some subintervals to represent each cluster without intersection, since for

most values in cluster 1, their nearby values also occur in cluster 2.

Searching the optimal clusters of Capital-gain, we only find the values within

the two subintervals, [8614, 10520] and [25124, 27828], can 100% guarantee the

data hold those values will be classified to “> 50K” class. Besides, the values

within [0, 3103) and (3103, 4101], can indicate the data belongs to class “≤ 50K”.

So the partition of values of Capital-gain is: [0, 4101], [4102, 8613], [8614, 10520],

[10521, 25123], [25124, 27828], and [27829, 99999].

Similarly, the following rules can be found from the clusters of Capital-loss. If a

person’s capital-loss is 0, he/she can earn more than $50K per year; if the capital-

loss is within the range [1980, 2238] and (3004, 4356], he/she will earn less than

$50K per year. Then the vales of Capital-loss can be discretised as [0, 1), [1, 1979],

[1980, 2238], [2239, 3004], and [3005, 4356].

4.4.3 Comparison and Discussion

The above introduction presents our work on constructing AVT using clustering

algorithms on the Adult data set. Compared to the traditional hierarchical clus-

tering algorithms, which prefers to generate a binary-tree structure, the use of

partitional algorithms seems to provide a better solution. This is because, in our

case study, the generated nominal taxonomies are more acceptable from the view

of domain experts. However, it still has some drawbacks.

Firstly, nominal values are clustered based on conditional probability, which

means the taxonomies reflect the statistical features of the data. To complete

the taxonomy, we need to use some concepts to represent the internal nodes of
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the taxonomies, but this is rather difficult in our case. For example, in Native-

country taxonomy, see figure 4.14, it is a challenge to find some suitable terms to

represent the clusters at the middle levels, unless just simply concatenate the terms

of children nodes, e.g. {United-States, Greece, Cuba} {Canada, Germany} and

{Italy, England}. In the numerical case, it becomes even more troublesome, since

there always are some intersections between clusters if we want to use subintervals

to cover all the values within the cluster.

Secondly, these conditional probability based taxonomies are built through

training data. If the test set has a different distribution, this will cause an over-

fitting or under-fitting problem. This occurs frequently in numeric attributes. For

instance, the values of fnlngt in the training data range from 13769 to 1484705,

while test data have a wide range, from 13492 to 1490400. The opposite example

comes from attribute Capital-loss. In training data, its values range from 0 to 4356,

but the range changed from 0 to 3770 in test data.

Actually, the automatic generation of concept taxonomies is itself a knowledge

discovery process. Although the taxonomies generated using clustering algorithms

are not perfect, they let us know the relationships among attribute values and

the dependencies between the conceptual nodes at different levels in the tree like

structure from the statistical point of view. This can be a good guide for us to

adapt, transform, and even re-build the concept taxonomies for different tasks.

We take the Native-country taxonomy as an example. Intuitively, countries are

often divided according to their geographical location, e.g. America, Asia, and

Europe. However, considering their economic situation, they can also be divided

into Developed and Developing country. For the Adult data, the attribute Native-

country is the census of the native country of people who live in US. Since about

90% of the people are US citizen, not all the existing ontologies or taxonomies are

applicable for this case. Furthermore, only 25% US people earn more than $50K per
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year, so the clustering taxonomies reflect this characteristic. Given these various

clustering taxonomies, we are encouraged to inspect the data more carefully, which

may help us to reveal the above facts. In this case, the division of America and

Non-America or simply US and Non-US for Native-country attribute seems more

reasonable.

Finally, to discretise the three numeric attributes of the Adult data, we use

some categories to represent the value intervals, see table 4.4 and table 4.5 for

details. After analysing all the generated taxonomies in this chapter and referring

to the taxonomies proposed in [42], five self-refined taxonomies of Adult nominal

attributes are shown in figure 4.17 to figure 4.21.

Table 4.4: Discretisation for Age

Categorical Value Subintervals

Young [17, 27]
Middle (27, 61]
Old (61, 79]
Very Old (79, 90]

Table 4.5: Discretisation for Capital-gain & Capital-loss

Subintervals
Categorical Value Capital-gain Capital-loss

Low [0, 5000] [0, 1980)
Medium (5000, 11000] [1980, 3100)
High (11000, 25500] [3100, 4356]
Very High (25500, 99999]



CHAPTER 4. CONSTRUCTING AVTS USING CLUSTERING ALGORITHMS91

P

r
e


s
c

h
o


o
l



1
0

t
h




9
t

h


7
t

h
-


8
t

h


5
t

h
-


6
t

h


1
s

t
-
4


t
h



1
1

t
h




1
2

t
h




H

S


-
g

r
a


d


S

o
m


e
-

c
o


l
l
e

g
e




A

s
s


o
c

-
a


c
d

m




A

s
s


o

c
-


v
o

c


B

a
c


h
e

l
o


r
s



P

r
o


f
-
s

c
h


o
o

l


M

a
s


t
e

r


D

o
c


t
o

r
a


t
e



Primary


Education


Primary &

Secondary


Associate

Post-

grad


Under-

grad


Post-Secondary


Figure 4.17: Taxonomy of Education
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Figure 4.19: Taxonomy of Occupation
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Figure 4.20: Taxonomy of Workclass
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Figure 4.21: Taxonomy of Native-country
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4.5 Construction of AVT on the Mushroom Data

Set

In this section we will show the generation of attribute-value taxonomies on the

Mushroom data set by using clustering algorithms. Seven nominal attributes of

the Mushroom data set, Odor, Spore-print-color, Stalk-color-above-ring, Gill-color,

Habitat, Stalk-color-below-ring, and Cap-color, are chosen for taxonomy construc-

tion.

Following the same steps on the Adult data set described in section 4.3 and

4.4, the same four clustering algorithms are applied to the Mushroom data set,

respectively.

4.5.1 Construction of AVT Using Hierarchical Algorithm

We apply both the AGNES and DIANA algorithms to the matrix of each selected

attribute, and the two generated taxonomies will be shown in the same figure, see

figure 4.22(a) to figure 4.22(b). In these figures, the “Height” in AGNES presents

the distance between merging clusters at the successive stages, whilst it is the

diameter of the cluster prior to splitting in DIANA.
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Figure 4.22: Taxonomies of attribute Odor by using hierarchical algo-
rithms
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Figure 4.23: Taxonomies of attribute Spore print color by using hier-
archical algorithms
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Figure 4.24: Taxonomies of attribute Stalk color above ring by using
hierarchical algorithms
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Figure 4.25: Taxonomies of attribute Gill color by using hierarchical
algorithms
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Figure 4.26: Taxonomies of attribute Stalk color below ring by using
hierarchical algorithms
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Figure 4.27: Taxonomies of attribute Habitat by using hierarchical
algorithms
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Figure 4.28: Taxonomies of attribute Cap color by using hierarchical
algorithms
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4.5.2 Construction of AVT Using Partitional Algorithms

In this section, as a comparison with the use of hierarchical algorithms, we will use

k-means and Fisher’s algorithms to construct the attribute-value taxonomies. We

choose the same or nearest k at each hierarchy level for each selected attribute.

Figure 4.29 ∼ 4.35 show the pair of nominal attribute-value taxonomies built by

iteratively exploiting k-means and Fisher’s algorithm.

(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.29: Taxonomies of attribute Odor by using partitional algo-
rithms

(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.30: Taxonomies of attribute Spore print color by using par-
titional algorithms
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(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.31: Taxonomies of attribute Stalk color above ring by using
partitional algorithms

(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.32: Taxonomies of attribute Gill color by using partitional
algorithms

(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.33: Taxonomies of attribute Stalk color below ring by using
partitional algorithms

(a) Applying Fisher’s Algo-
rithm

(b) Applying k-means Algo-
rithm

Figure 4.34: Taxonomies of attribute Habitat by using partitional al-
gorithms
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(a) Applying Fisher’s Algorithm (b) Applying k-means Algorithm

Figure 4.35: Taxonomies of attribute Cap color by using partitional
algorithms

For each nominal attribute, the average silhouette widths are also calculated

for k up to the number of attribute values, see figure 4.36. The optimal number

of clusters are marked by a red circle in each plot. In this case, given the optimal

number k, both k-means and Fisher’s algorithm generate the same optimal clusters,

see table 4.6 for details. These optimal number of clusters are also assigned to k

appearing at the right level in the taxonomies.

Table 4.6: The optimal clusters for the nominal attribute values of the
Mushroom data set

Attribute & Optimal Clusters
Cluster No.

Odor {anise, almond, none},
(k = 2) {creosote, fishy, pungent, musty, foul, spicy}
Spore-print-color {chocolate, green, white},
(k = 2) {brown, black, orange, yellow, buff, purple}
Stalk-color-above-ring {red, orange, gray},
(k = 2) {cinnamon, buff, yellow, brown, pink, white}
Gill-color {chocolate, green, buff, gray},
(k = 2) {red, pink, purple, orange, brown, yellow, white}
Stalk-color-below-ring {cinnamon, buff, yellow, brown}
(k = 2) {red, orange, pink, white, gray}
Habitat {leaves, urban}, {paths},
(k = 3) {waste, meadows, woods, grasses}
Cap-color {pink, yellow, buff}, {purple, green},
(k = 4) {cinnamon, white}, {red, brown, gray}
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(c) Stalk-color-above-ring
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(f) Habitat
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Figure 4.36: Silhouette plot for the seven nominal attributes of the
Mushroom data set
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4.5.3 Discussion

In comparison with the Adult data set, all of the attributes of the Mushroom data

set are natural attributes. The attribute Odor is related to the chemical material in

mushroom. In general, most poisonous chemical materials emit an abnormal smell

compared with non-poisonous materials, thus the taxonomy of Odor we obtained

in this section is reasonable.

Other attributes, particularly color attributes are not reliable identifiers for

poisonous mushrooms, therefore the generated taxonomies do not show such clear

semantic relationships.

In addition, comparing with the taxonomies generated using different methods,

we find that there are few differences between them. For the Mushroom data set,

we will directly apply the taxonomies generated using the Fisher’s algorithm to

the work in the later chapters.

4.6 Summary

In this chapter, we firstly utilise two typical hierarchical clustering algorithms,

AGNES and DIANA, to perform the automatic generation of attribute value tax-

onomies for some selected attributes of the Adult and the Mushroom data set.

Secondly, as the hierarchical algorithms prefer to generating a binary trees,

we explore to use of partitional algorithm for AVT construction. An iterative

approach is proposed to gradually construct the AVT under some supervision. Here

supervision means setting the number of clusters before clustering. Two partitional

algorithms, k-means and Fisher’s, are selected to evaluate the performance. We

also present a theorem about optimal clustering and provide the proof for it.

A related issue, the selection of the optimal number of clusters by using silhou-

ette width for partitional algorithms, is also introduced and implemented for both
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nominal and numeric attribute values. The obtained optimal numbers are then

assigned to k appearing at the right level in the taxonomies. The two partitional

algorithms have the same performance for a given optimal number of clusters.

All the generated taxonomies are compared, from which we revealed some sta-

tistical characteristic of the data. Although these taxonomies are not completely

compatible with the semantic ones, they provide a good guide on constructing ap-

propriate concept taxonomies for this particular data or for making adjustments

to taxonomies extracted from existing ontologies. Such modification is likely to be

required if a general taxonomy is to be used for a specific database.

Finally, we propose a concept taxonomy for each selected attribute of the Adult

data set after adjusting and adding the interpretation for the internal nodes with

semantic meaning. Whilst, for the Mushroom data set, we directly adopt the

generated taxonomies using the Fisher’s algorithm without a further adaptation.

Although the AVTs generated using clustering algorithms are not perfect in

comparison with completely manual annotations, as a reference, they can be used

for assisting users, analysts or specialists to figure out a better organization so as

to avoid a user’s subjectivity. The taxonomies generated in this chapter will be

used either directly or indirectly (need some refinement) in the later chapters for

performance evaluation by some data mining techniques.



Chapter 5

Exploiting AVTs in Tree

Induction

Decision tree induction is a simple yet successful and widely used technique

for classification and prediction in data mining. In this chapter, attribute-value

taxonomies are exploited to generate improved decision trees in terms of less num-

ber of tree nodes. Prior to running a tree induction algorithm, the database is

enhanced by the inclusion of new data constructed from the taxonomies. A proce-

dure for constructing these data is described and methods for limiting potentially

exponential explosion in the data are discussed. Experiments are carried out using

the Adult and the Mushroom data set and some tree induction algorithms.

5.1 Tree Induction Algorithms

Tree induction algorithms mainly differ in the choice of different splitting measures

to find the “best” test on input attributes and different pruning methods to over-

come the overfitting. There are mainly three families of tree growing algorithms:
102
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• The CLS (Concept Learning System) family: ID3 [118], C4.5 [119], and its

more recent successor C5.0, etc.

• The CART (Classification and Regression Trees) family: CART [23], and

its other versions in statistical packages, e.g. IndCART and S-Plus CART,

etc.

• The AID (Automatic Interaction Detection) family: THAID [102], CHAID

[78,79], XAID [65], etc.

The algorithms in the CLS family were developed by the machine learning com-

munity, using information theory. The CART family is more oriented to statistics

using the concept of impurity (e.g. GINI index), while the AID family grew out

of the social sciences and uses statistical significance tests, e.g. χ2 test, to find the

best split.

In this chapter, the algorithms from the CLS family will be chosen to build

decision tree for the prediction task. More details about CLS are present as follows.

C4.5 and C5.0

When building a decision tree, both C4.5 and C5.0 use the same splitting measure

as ID3, information gain, to seek a locally best test on an attribute. However,

information gain tends to favour the attribute with the large number of unique

values. We may observe that GainInfo defined in equation 2.1 is maximised when

each subset partitioned by a test contains a single instance, but a test that results

in a large number of outcomes may not be desirable since the small number of

records associated with each partition is unlikely to lead to reliable predictions. So

another measure, called gain ratio, is exploited by C4.5 to overcome this problem.

Gain ratio modifies the splitting criterion by taking into account the number of



CHAPTER 5. EXPLOITING AVTS IN TREE INDUCTION 104

outcomes produced by the test, and is defined by

GainRatio(S, T ) =
GainInfo(S, T )

−
∑k

j=1

|S′
j |

|S| log2
|S′

j |
|S|

, (5.1)

where, the denominator part represents the split information, which increases

with the number of splits, which in turn reduces the gain ratio.

Furthermore, the windowing technique is still available as an option in C4.5

and C5.0 when dealing with very large data sets. With windowing, a provisional

decision tree is first built from a randomly selected subset of the training set

(called a window). The tree is then used to classify the remaining data outside

of the window, usually with the result that some data are misclassified. These

misclassified cases are then added to the window, and the tree construction process

is repeated, until the updated tree classifies all the training data outside the window

correctly.

C4.5 and C5.0 also introduce some other enhancements to ID3, see below for

details.

• Handling training data with missing or unknown attribute values –

(1) When doing the test evaluation, C4.5 modifies the splitting criteria by

taking account the unknown rates of a given attribute, so equations 2.1 and

5.1 are modified to

GainInfo(S, T ) =
|S − S0|
|S|

GainInfo(S − S0, T ), (5.2)

and

GainRatio(S, T ) =
GainInfo(S, T )

− |S0|
|S| log2

|S0|
|S| −

∑k
j=1

|S′
j |

|S| log2
|S′

j |
|S|

, (5.3)

where S0 denotes the subset of cases in S whose values of the given attribute

are unknown, and S ′
j denote those subsets of S partitioned by test T on the
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attribute with known outcomes;

(2) when partitioning the training set by a chosen test on an attribute, each

case with missing value is divided into fragments and added to each subset

corresponding to known test outcomes, with a probability proportional to

the number of cases in the relative subset, i.e. with weight |S ′
j|/|S − S0|;

(3) when classifying a case with unknown value of a tested attribute, C4.5

provides a class probability distribution instead of a single class, determined

by exploring all the outcomes and combining them with a weighted sum of the

probabilities traversing down the tree model for each possible classification

result, then the class with the highest probability is chosen as the predicted

class for the test case.

• Handling continuous attributes – ID3 is restricted to deal with attributes with

discrete or symbolic values, while C4.5 creates a threshold for each continuous

attribute, and then splits the training set into those whose attribute value is

above the threshold and those that are less than or equal to it [121].

• Pruning trees after creation – C4.5 uses the error-based pruning (EBP) tech-

nique [60] to prune the tree in a bottom-up fashion. Tree pruning is done

by replacing a subtree either with one of its leaf nodes labelled with the

majority class or by one of its subtrees with the most frequent outcome of

the test (not necessarily the one with the most nodes). This replacement is

performed when the root of the subtree has higher estimated error rate than

its leaf nodes or its largest branch. The pruning terminates when no further

improvement is observed.

• C5.0 supports boosting [120] – To improve the predictive accuracy of the

decision tree, a sequence of tree classifiers are built and combined by us-

ing a boosting technique, so that more instances can be correctly classified.
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Boosting maintains a weight for each instance in the training set (identical

weights are assigned initially), updates them at the end of each round, and

so leads to different classifiers. Finally, the multiple classifiers are combined

by a weighted voting procedure to give improved prediction.

5.2 Applying AVT to Decision Tree Classifier

Learning

5.2.1 Problem Specification

An important goal of machine learning is to discover comprehensible, yet accurate

and robust classifiers [109]. The induction of the decision tree is a supervised clas-

sification process in which prior knowledge regarding classes in the database is used

to guide the discovery. To generate a simple yet useful and easily interpretive tree

is always challenging for data miners, data analyst, and data scientists. Helping

to overcome this problem is the main objective of this chapter.

There is a considerable amount of research on simplicity in decision tree learn-

ing. Simply, the tree size is the measure most relevant to the simplicity of the

tree. Inducing small decision trees is known to be NP-hard [69] and most learning

algorithms perform heuristic pruning techniques to obtain small trees. Many DM

software packages, e.g., C5.0, IBM Intelligent Miner, provide facilities that make

the generation of decision trees a relatively easy task. The data mining analyst

can determine how accurate or simple the generated decision tree is, by using var-

ious parameters, e.g. Minimum Number of Instances per Leaf, Pruning Severity,

Maximum Number of Branches from a Node, Maximum Depth of Tree, etc.

Apart from using the pruning techniques, we also seek other ways for tree

simplification. Motivated by the successful applications of mining multiple level
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association rules by using a concept hierarchy, we aim to explore a methodology of

utilising the attribute-value taxonomies for decision tree building. Since the AVTs

provide an opportunity for attribute abstraction, we can expect that a compact

and easily understanding decision tree will be finally generated after integrating

the AVTs with the decision tree learning process.

Definition 5.1 (CUT) A cut, C, for a tree structured taxonomy, T , with a set of

nodes, N , is a nonsingleton set of nodes, C ⊂ N , s.t.

1. every leaf in the tree is either in C or has an ancestor in C.

2. if n ∈ C, then either n is a leaf or no node in the subtree rooted at n is in C.

Thus every path, comprising a set of ordered nodes from the root to a leaf, can

only contain a single node in C.

Let C(n) be the number of cuts for the tree rooted at n (n ∈ N), then

C(n) =


C(n1)× C(n2) . . .× C(nk) if n is the root and has children n1, n2, . . . , nk,

C(n1)× C(n2) . . .× C(nk) + 1 if n is not the root and has children n1, . . . , nk,

1 if n is a leaf.

a


i


h
g

f
e
d


c
b


k
j


Figure 5.1: An Example of Taxonomy

For the tree in figure 5.1, we have C(b) = 2, C(g) = 2, C(c) = 3, and C(a) = 6.

So the total number of cuts for the tree, rooted at a, is 6. All the six valid cuts
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Table 5.1: Valid Cuts for Figure 5.1 Taxonomy

No Cuts

1 {b, c}
2 {d, e, f, c}
3 {b, g, h}
4 {d, e, f, g, h}
5 {b, i, j, k, h}
6 {d, e, f, i, j, k, h}

are listed in table 5.1.

The cut comprising all the leaf nodes of a taxonomy corresponds to a column

of original data in the database. We call this column of data, the primitive column

for that attribute. In this case, the sixth cut is the primitive.

5.2.2 Methodology Description

In this section, we present the methodology for exploiting attribute-value tax-

onomies to generate simpler decision tree. The methodology contains four steps

described as follows.

1. Given an AVT, all the possible attribute-value tuples, named as cuts, as

defined in definition 5.1, can be searched and extracted, which comprise

disjoint nodes at various levels of the taxonomy.

2. For each valid cut, its Gain Ratio (GR) value is calculated, and then all the

cuts are ranked according to their GR. Each valid cut will be treated as a

new variant of the original attribute. In this way, we create a multiple level

attribute-value representation space.

3. Select a number of top ranked cuts for each nominal attribute with AVT to

form the corresponding new expansions. New columns of data will be derived

according to the following rule:
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Given any non-primitive cut, C, of a taxonomy, for each node,

n ∈ C, all its subtree nodes rooted at n are replaced by n.

To avoid the potential exponential computation in the tree induction, only

the top few (say 5 for example) cuts will be chosen as new variants of the

attribute instead of all the valid cuts. The attribute associated with the new

column is the same as that associated with the primitive column, albeit with

a suitable index. Though the use of these indices is necessary for use within

the tree induction algorithm, they can be ignored when the tree is finally

delivered.

4. Apply the decision tree algorithm to the updated data to generate a relatively

simple tree. It is also desirable that this tree can still maintain reasonable

accuracy.

The use of Gain Ratio to rank and select the cuts of the AVT, as described in

step 2 and 3, will be tested in the following two case studies. This is because for a

data set with a large attribute-value space and a large size, this kind of selection

can save the memory occupation required by the algorithm, but also greatly reduce

the size of the data file expanded with the new columns which is used by the tree

induction algorithm.

5.3 Performance Evaluation

We conducted two case studies to demonstrate the impact on the generated decision

tree by using attribute-value taxonomies for nominal attributes. Both of these two

case studies will follow the steps described in the previous section.
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5.3.1 Case Study 1 – the Adult Data Set

In this case study, we will use the four constructed attribute-value taxonomies of

the Adult data set, as shown in figures 4.17 to 4.21.

In table 5.2, we ranked the four attributes according to their computed in-

formation gain (IG) values. A high IG value may indicate the priority of being

selected as a test when building the decision tree.

Table 5.2: Information Gain of the four Nominal Attributes of the
Adult Data Set

#Rank Name Information Gain

1 Marital-status 0.15747082
2 Education 0.09339399
3 Occupation 0.09319446
4 Workclass 0.01710448

Table 5.3 lists all the nodes’ name of the four selected AVTs along with a code

assigned for each node. Ideally, the name of the internal nodes of the AVT can hold

some semantic meanings, which will make the generated decision tree moreeasy to

understand.

Then all the possible cuts over the taxonomies of each attribute will be ex-

tracted. According to the formula of calculating the total number of cuts as defined

in Definition 5.1, there are totally 5, 27, 8, and 5 cuts that can be extracted from

the Marital-status, Education, Occupation and Workclass taxonomy, respectively.

In order to reduce unnecessary time-consuming computation, we will only select

top five ranked cuts by computing the gain ratio (GR) value of each cut over the

training data. Table 5.4 lists all top five ranked cuts of the four attributes along

with their GR values. In fact, the top five ranked cuts generally contain almost all

important conceptual nodes of the taxonomies, and these listed conceptual nodes

will be treated as new attribute values.
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Table 5.3: Coded Nodes of Four Taxonomies of the Adult Data Set

Attribute Code of Node Node of the Taxonomy

m1 Never−married
m2 Separated
m3 Married−spouse−absent
m4 Divorced

Marital-status m5 Widowed
m6 Married−civ−spouse
m7 Married−AF−spouse

m2−m3−m4−m5 Partner−absent
m6−m7 Partner−present

m2−m3−m4−m5−m6−m7 Married

e1 Preschool
e2 1st−4th
e3 5th−6th
e4 7th−8th
e5 9th
e6 11th
e7 10th
e8 12th
e9 HS−grad
e10 Some−college
e11 Assoc−acdm

Education e12 Assoc−voc
e13 Bachelors
e14 Prof−school
e15 Masters
e16 Doctorate

e2−e3−e4−e5−e6−e7−e8 Primary
e11−e12 Associate
e13−e14 Under−grad
e15−e16 Post−grad

e2−e3−e4−e5−e6−e7−e8−e9 Primary&Secondary
e10−e11−e12−e13−e14−e15−e16 Post−Secondary

o1 Craft−repair
o2 Transport−moving
o3 Machine−op−inspct
o4 Handlers−cleaners
o5 Priv−house−serv
o6 Tech−support
o7 Sales

Occupation o8 Adm−clerical
o9 Exec−managerial
o10 Prof−specialty
o11 Protective−serv
o12 Farming−fishing
o13 Armed−Forces
o14 Other−service

o1−o2−o3−o4−o5 Blue−collar
o6−o7−o8−o9−o10 White−collar
o11−o12−o13−o14 Other

w1 Without−pay
w2 Private
w3 Self−emp−not−inc
w4 Self−emp−inc

Workclass w5 Local−gov
w6 State−gov
w7 Federal−gov

w3−w4 Self−Employ
w5−w6−w7 Gov−Employ

w2−w3−w4−w5−w6−w7 With−pay
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Table 5.4: Ranked Top 5 cuts of Four Taxonomies (Adult)

Attribute Ranked cuts GainRatio

M1 m1 m2−m3−m4−m5 m6−m7 0.103877
M2 m1 m2−m3−m4−m5 m6 m7 0.103362

Marital−status M3 m1 m2−m3−m4−m5−m6−m7 0.099352
M4 m1 m2 m3 m4 m5 m6−m7 0.086894
M5 m1 m2 m3 m4 m5 m6 m7 0.086535

E1 e1 e2−e3−e4−e5−e6−e7−e8−e9 0.042411
e10−e11−e12−e13−e14−e15−e16

E2 e1 e2−e3−e4−e5−e6−e7−e8−e9 0.040801
e10 e11−e12 e13 e14 e15−e16

Education E3 e1 e2−e3−e4−e5−e6−e7−e8−e9 0.040415
e10 e11−e12 e13 e14 e15 e16

E4 e1 e2−e3−e4−e5−e6−e7−e8−e9 0.039950
e10 e11−e12 e13−e14 e15−e16

E5 e1 e2−e3−e4−e5−e6−e7−e8−e9 0.039567
e10 e11−e12 e13−e14 e15 e16

O1 o1−o2−o3−o4−o5 o6−o7−o8−o9−o10 0.031086
o11 o12 o13 o14

O2 o1−o2−o3−o4−o5 o6 o7 o8 o9 0.030483
o10 o11 o12 o13 o14

Occupation O3 o1−o2−o3−o4−o5 o6 o7 o8 o9 0.029177
o10 o11−o12−o13−o14

O4 o1−o2−o3−o4−o5 o6−o7−o8−o9−o10 0.028781
o11−o12−o13−o14

O5 o1 o2 o3 o4 o5 o6 o7 o8 o9 0.027438
o10 o11 o12 o13 o14

W1 w1 w2−w3−w4−w5−w6−w7 0.033005
W2 w1 w2 w3 w4 w5−w6−w7 0.013538

Workclass W3 w1 w2 w3 w4 w5 w6 w7 0.012118
W4 w1 w2 w3−w4 w5−w6−w7 0.009664
W5 w1 w2 w3−w4 w5 w6 w7 0.008767
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Data Preprocessing:

• The Adult data set contains two types of attribute, nominal and numeric.

For some numeric attributes, such as Capital-gain and Capital-loss, they can

be quantised using a simple discretisation with values “Low”, “Medium”,

“High” and “Very High” as described in chapter 4.

• According to the information gain value, the attribute, Native-country, is

least important for decision tree construction. Moreover, 91.2% of people

are Americans, thus it is quantised as “United-States” and “non-US”.

• All twenty cuts listed in table 5.4 will be used as the expansions of the four

original nominal attributes. This is also a way of assigning weight to some

internal conceptual nodes of the taxonomy, since some nodes occur more

than once in the five cuts of the same attribute. For example, the node

“e2−e3−e4−e5−e6−e7−e8−e9” or value “Primary & Secondary” occurs in

all five cuts.

Experiments:

We apply both C4.5 and C5 to the training data with different preprocessing, and

conduct a series of experiments to compare performances using and without using

AVTs. Details are given below.

1. Filtering out the Capital-gain and Capital-loss attributes, and marking the

data as “Original – C”;

2. Expanding the data with all the possible cuts and marking the data as “Orig-

inal + All”;
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3. Expanding the data with the top five ranked cuts and marking the data as

“Original + Top 5”;

4. Discretising the three attributes, Capital-gain, Capital-loss and Native-country,

with the values mentioned in 4.4.3 and 5.3.1 and marking the data as “Dis-

cretised”.

All the experimental results on the Adult data set are shown in tables 5.5 to

5.8.

Table 5.5: Comparison of classification accuracy and depth & size of
decision tree generated by C4.5

Test Data Accuracy Tree Depth # Tree Nodes

Original Data 81.04% 4 21
Original + All/Top 5 81.04% 3 9

Original – C 81.82% 3 27
Original – C + All/Top 5 81.02% 3 8

Discretised Data 80.73% 4 24
Discretised + All/Top 5 79.38% 3 13

Table 5.6: Comparison of classification accuracy and depth & size of a
simple decision tree generated by C5.0

Test Data Accuracy Tree Depth # Tree Nodes

Original Data 85.55% 11 90
Original + All/Top 5 85.23% 9 70

Original – C 81.51% 2 29
Original – C + All/Top 5 82.22% 3 9

Discretised Data 83.92% 5 61
Discretised + All 84.03% 6 46
Discretised + Top5 84.04% 5 34

Discussion:

Our first set of experiments, shown in table 5.5 and 5.6, start with inspecting

the impact of the two attributes, Capital-gain and Capital-loss, on the effectiveness

of classification. After applying the C4.5 and C5.0 algorithms to build a simple
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decision tree with the original data, we notice that these two attributes play an

important role in the tree growth phase. However, as a chosen decision node,

the tests on these two continuous attributes provide a large range, e.g. “Capital-

gain > 4865”, for the further splitting; it is not very helpful to the end users if

this kind of test appears too frequently in the generated tree. In this case, we

consider either filtering out these two attributes or quantising them. The second

set of experiments, shown in the middle of tables 5.5 and 5.6, presents the different

performance of classification. It seems more reasonable to keep and discretise these

two attributes. The corresponding experimental results are listed in both tables.

Some other experiments are conducted on the data with the AVT-based new

expansions. Not only the top five ranked cuts, but also all the valid cuts extracted

from each selected AVT, are used for the attribute expansion. The experimental

results in both table 5.5 and 5.6 show that both cases generate similar performance.

This is also proved that the decision of choosing top five ranked cuts is reasonable

and effective.

Table 5.7: Comparison of classification accuracy and depth & size of
an expert decision tree generated by C5.0 without Boosting but with
75% Pruning Severity and 20 Minimum Records/child branch

Data Set Accuracy(%) Tree Depth # Tree Nodes
Train / Test

Original Data 86.65 / 86.13 16 162
Original + All 86.87 / 86.14 17 160
Original + Top 5 86.79 / 86.18 16 144

Discretised Data 84.64 / 84.48 6 116
Discretised + All 84.94 / 84.64 10 100
Discretised + Top 5 84.78 / 84.44 9 78
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Table 5.8: Comparison of classification accuracy and depth & size of an
expert decision tree generated by C5.0 with Boosting and 75% Pruning
Severity and 20 Minimum Records/child branch

Data Set Accuracy(%) Tree Depth # Tree Nodes
Train / Test

Original Data 86.70 / 86.18 25 162
Original + All 87.19 / 86.57 30 160
Original + Top 5 87.32 / 86.29 26 144

Discretised Data 84.01 / 84.10 7 116
Discretised + All 85.13 / 84.82 11 100
Discretised + Top 5 84.90 / 84.58 10 78

Tables 5.7 and 5.8 show the experimental results of the expert tree construction

using C5.0. There are some parameters available in C5.0 package to allow us to

produce various trees with different complexity.

From these two tables, we find the use of the top five ranked cuts obtained

from the AVTs can generate a simpler decision tree by reducing the number of

tree nodes by more than 10%. Simultaneously, the classification accuracy is kept

stable. This is because the top five ranked cuts can be expected to contain more

reasonable combinations of nodes when compared to those found in other cuts of

the attribute-value taxonomies.

Conclusion:

1. Data preprocessing is an important way to reduce some possible redundant

information by removing some attributes or doing the discretisation on nu-

meric attributes. In addition, the selection of the top five ranked cuts from

the AVTs by using Gain Ratio value also appears to be efficient and effective.

From our experimental results, these data processing steps can effectively

simplify the decision tree by reducing the number of tree nodes by more

than 10% without undue sacrifice of classification accuracy.

2. Even if sometimes we might have to sacrifice the accuracy slightly, it is still
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arguably worthwhile since a much simpler tree and more easily interpreted

tree can be generated.

5.3.2 Case Study 2 – the Mushroom Data Set

In this section, we will conduct the same experiments on the Mushroom data set

as we did on the Adult data set.

As shown in figures 4.29(a) to 4.35(a), the AVTs of the seven nominal at-

tributes, Odor, Spore-print-color, Stalk-color-above-ring, Gill-color, Habitat, Stalk-

color-below-ring, and Cap-color, will be used in our experiments.

• Table 5.9 lists the ranked attributes along with their information gain values.

• Table 5.12 lists all of the seven selected attributes together with their possible

values and variants, as well as assigned code.

• All the possible cuts of the seven attributes are extracted, based on the

attribute value taxonomies generated in chapter 4. Table 5.13 lists the top

five ranked cuts of each taxonomy along with their gain ratio values.

Table 5.9: Information Gain of the seven Nominal Attributes of the
Mushroom data set

#Rank Name Information Gain

1 Odor 0.89728426

2 Spore-print-color 0.46200583

3 Stalk-color-above-ring 0.37871288

4 Gill-color 0.26576852

5 Stalk-color-below-ring 0.24580019

6 Habitat 0.13583585

7 Cap-color 0.02980838

Then we use the algorithm C5.0 to generate decision trees on both original data

and the new updated data after replacing the seven selected nominal attributes
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Table 5.10: Comparison of classification accuracy and depth & size of
an expert decision tree generated by C5.0 without Boosting but with
85% Pruning Severity and 5 Minimum Records/child branch

Data Set Accuracy Tree Depth # Tree Nodes
Train / Test

Original Data 98.73% / 100% 4 11
Original + Top 5 98.56% / 100% 1 2

Table 5.11: Comparison of classification accuracy and depth & size
of an expert decision tree generated by C5.0 with Boosting and 75%
Pruning Severity and 10 Minimum Records/child branch

Data Set Accuracy Tree Depth # Tree Nodes
Train / Test

Original Data 98.89% / 100% 4 9
Original + Top 5 98.42% / 100% 1 2

with the 35 new columns derived from the top five ranked cuts of the AVTs listed

in table 5.13. The experimental results are shown in table 5.10 and 5.11.

It is clear that the number of the tree nodes are greatly decreased by more than

70% after applying AVTs on the data with only a slight sacrifice of the classification

accuracy.



CHAPTER 5. EXPLOITING AVTS IN TREE INDUCTION 119

Table 5.12: Coded Nodes of Seven Taxonomies of the Mushroom data

set

Attribute Code of Node Node of the Taxonomy

A51 anise
A52 creosote
A53 fishy
A54 almond
A55 pungent

Odor A56 musty
(A5) A57 foul

A58 spicy
A59 none

A51-A54 good smell
A51-A54-A59 normal smell

A52-A53-A55-A56-A57-A58 abnormal smell

A201 white
A202 green
A203 orange
A204 yellow
A205 buff

Spore-print A206 brown
-color A207 black
(A20) A208 purple

A209 chocolate
A202-A209 dark green
A206-A207 dark brown

A203-A204-A205-A208 bright colour

A141 cinnamon
A142 red
A143 buff
A144 gray
A145 white
A146 orange
A147 brown

Stalk-color A148 pink
-above-ring A149 yellow

(A14) A141-A143-A149 bright yellow
A141-A143-A147-A149 bright+dark yellow

A142-A144-A146 red+gray

A91 purple
A92 brown
A93 chocolate
A94 green
A95 red
A96 yellow
A97 pink

Gill-color A98 black
(A9) A99 buff

A910 gray
A911 orange

Continued on next page



CHAPTER 5. EXPLOITING AVTS IN TREE INDUCTION 120

Table 5.12 – Continued from previous page
Attribute Code of Node Node of the Taxonomy

A912 white
A91-A92 purple+brown
A94-A99 green+buff
A95-A911 red+orange
A98-A912 black+white

A151 cinnation
A152 buff
A153 pink
A154 yellow
A155 orange

Stalk-color A156 brown
-below-ring A157 white

(A15) A158 gray
A159 red

A151-A152-A154 bright yellow
A151-A152-A154-A156 bright+dark yellow

A155-A158-A159 red+gray

A221 leaves
A222 urban
A223 waste
A224 woods

Habitat A225 grasses
(A22) A226 meadows

A227 paths
A224-A225 woods+grasses
A221-A222 leaves+urban
A223-A226 waste+meadows

A31 purple
A32 pink
A33 yellow
A34 brown
A35 buff

Cap-color A36 white
(A3) A37 cinnamon

A38 red
A39 green
A310 gray

A31-A39 purple+green
A32-A33-A35 pink+yellow+buff
A34-A38-A310 brown+red+gray

A36-A37 white+cinnamon
A34-A36-A37-A38-A310 white+cinnamo+brown+red+gray
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Table 5.13: Ranked Top 5 Cuts of Seven Taxonomies (Mushroom)

Attribute Ranked cuts GainRatio

O1 A51-A54-A59 A52-A53-A55-A56-A57-A58 0.899592
O2 A51-A54 A52-A53-A55-A56-A57-A58 A59 0.649771

Odor O3 A51 A52-A53-A55-A56-A57-A58 A54 A59 0.603608
O4 A51-A54-A59 A52 A53 A55 A56 A57 A58 0.496059
O5 A51-A54 A52 A53 A55 A56 A57 A58 A59 0.410120

P1 A201 A202-A209 A203-A204-A205-A208 A206-A207 0.283036
P2 A201 A202-A209 A203 A204 A205 A206-A207 A208 0.274511

Spore-print P3 A201 A202 A203-A204-A205-A208 A206-A207 A209 0.273754
-color P4 A201 A202 A203 A204 A205 A206-A207 A208 A209 0.265778

P5 A201 A202-A209 A203-A204-A205-A208 A206 A207 0.218228

S1 A141-A143-A147-A149 A142-A144-A146 A145 A148 0.157661
S2 A141-A143-A149 A142-A144-A146 A145 A147 A148 0.148087

Stalk-color S3 A141-A143-A147-A149 A142 A144 A145 A146 A148 0.145732
-above-ring S4 A141 A142-A144-A146 A143 A145 A147 A148 A149 0.145057

S5 A141-A143-A149 A142 A144 A145 A146 A147 A148 0.137598

G1 A91-A92 A93 A94-A99 A95-A911 A96 A97 0.141402
A98-A912 A910

G2 A91-A92 A93 A94-A99 A95 A96 A97 0.140327
A98-A912 A910 A911

Gill-color G3 A91-A92 A93 A94 A95-A911 A96 A97 0.140203
A98-A912 A99 A910

G4 A91-A92 A93 A94 A95 A96 A97 A98-A912 0.139147
A99 A910 A911

G5 A91-A92 A93 A94-A99 A95-A911 A96 A97 0.133152
A98 A910 A912

B1 A151-A152-A154-A156 A153 A155-A158-A159 A157 0.137669
B2 A151-A152-A154 A153 A155-A158-A159 A156 A157 0.133830

Stalk-color B3 A151 A152 A153 A154 A155-A158-A159 A156 A157 0.130415
-below-ring B4 A151-A152-A154-A156 A153 A155 A157 A158 A159 0.127413

B5 A151-A152-A154 A153 A155 A156 A157 A158 A159 0.124553

H1 A221-A222 A223-A226 A224-A225 A227 0.093162
H2 A221-A222 A223 A224-A225 A226 A227 0.091744

Habitat H3 A221 A222 A223-A226 A224-A225 A227 0.086098
H4 A221 A222 A223 A224-A225 A226 A227 0.085064
H5 A221-A222 A223-A226 A224 A225 A227 0.064569

C1 A31-A39 A32-A33-A35 A34-A36-A37-A38-A310 0.031481
C2 A31 A32-A33-A35 A34-A36-A37-A38-A310 A39 0.031298

Cap-color C3 A31-A39 A32 A33 A34-A36-A37-A38-A310 A35 0.025732
C4 A31 A32 A33 A34-A36-A37-A38-A310 A35 A39 0.025612
C5 A31-A39 A32-A33-A35 A34-A38-A310 A36-A37 0.022215



CHAPTER 5. EXPLOITING AVTS IN TREE INDUCTION 122

5.4 Summary

This chapter presents a methodology for exploiting attribute-value taxonomies to

generate simple but easily understood decision tree with reasonable classification

accuracy. Two real world data sets with a good number of nominal attributes are

chosen to illustrate our methodology.

Once the AVT is constructed, no matter whether it is manually defined or

automatically generated, the first thing is to search and extract all the valid cuts

according to our definition.

We have observed that as AVTs increase in complexity, there is an exponential

rise in the number of cuts and hence of potentially new columns of attributes. This

growth will ultimately damage the performance of any tree induction algorithm.

We have discussed how a simple measure such as gain ratio might be used to limit

the number of new attributes created, but further research is required to determine

the true effectiveness of this approach.

With the two case studies, we have shown how AVTs can be used to simplify

decision trees quite dramatically without significant loss of accuracy.



Chapter 6

Exploiting AVTs in Rule

Induction

In this chapter, we aim to explore how the use of attribute-value taxonomies

(AVTs) can improve the classification performance when using rule induction. In

our work, we first explore a rule based classifier using receiver operating charac-

teristic (ROC) analysis; then we develop a new approach to integrate the search

of the optimal cuts of the AVTs with rule learning into one framework. Our work

is tested on the Adult and the Mushroom data sets.

6.1 Overview of the ROC Analysis for Rule Learn-

ing

The most popular strategy for learning classification rules is the covering or separate-

and-conquer strategy. It has its roots in the early days of machine learning in the

AQ family of rule learning algorithms [80]. It is popular in propositional rule

123
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learning (CN2 [30,31], Ripper [32], or CBA [90]).

For a two-class classifier, the examples in the training set are often labelled as

positive and negative with respect to a specific requirement. Under this condition,

learning a set of rules with the rule learning algorithm aims to cover the positive

examples as much as possible whilst covering the negative examples as little as

possible.

Table 6.1 shows a two-by-two confusion matrix, which can represent the dispo-

sitions of a set of instances given a classifier. In Table 6.1, we use capital letters to

denote the total number of positive (P ) and Negative (N) objects in the training

set. p denotes the number of true positives and n the number of false positives

covered by a rule. Here, the percentage p/P of correctly classified positive objects

and the percentage n/N of incorrectly classified negative are respectively denoted

by TPR and FPR.

Receiver Operating Characteristic (ROC) analysis has been introduced in ma-

chine learning as a powerful tool for evaluation of classifiers [116]. ROC analysis

has several properties that could be explored in machine learning. For threshold-

based classifiers, it is possible to spread the classification criterion over all possible

trade-offs of hits (true positive) and error (false positive) rates. If we describe the

ROC analysis in a two-dimensional space where the axes represent the false and

true positive rates, the result is an ascending curve, rising from (0,0), where all the

instances are classified as negative, to (1,1), where all the instances are classified

as positive. The more sharply the curve rises, the better is the classifier. The area

under the ROC curve (AUC) represents the probability that a randomly chosen

positive example will be rated higher than a negative instance [115].

In this chapter, the ROC analysis provides a graphical plot of the fraction of

true positives vs. the fraction of false positives for a binary classifier system in a

two-dimensional plane, where the false positive rate (FPR) is on the x-axis against
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Figure 6.1: Illustration of the paths through coverage space

the true positive rate (TPR) on the y-axis [43].

Table 6.1: The confusion matrix

True Target Class
Positive Negative

Predict True Positives False Positives
Positive (p) (n)
Predict False Negatives True Negatives
Negative (P-p) (N-n)

Total P N

The rule learning is to add a rule to a rule set and increase the coverage of the

rule set. This means that more examples are classified as positive. All positive

examples that are uniquely covered by the newly assessed rule contribute to an

increase of the true positive rate on the training data. Conversely, covering addi-

tional negative examples may be viewed as increasing the false positive rate on the

training data. Therefore, adding rule Ri+1 to rule set Ri effectively moves from a

point Ri = (ni/N, pi/P ) to a new point Ri+1 = (ni+1/N, pi+1/P ). Moreover, Ri+1

will typically be closer to (N,P ) and father away from (0,0) than Ri.
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Figure 6.1 shows such a process of rule learning. From this figure, it can be

seen that learning a rule set may be viewed as a path through coverage space,

where each point on the path corresponds to the addition of a rule to the set.

Such a coverage path starts at (0,0), which does not cover any examples. Adding

a rule then moves to a new point in coverage space, which corresponds to a set

consisting of all rules that have been learned so far. The final rule set learned by a

classifier will typically correspond to the last point on the curve before it reaches

(n/N ,p/P ).

6.2 Rule Selection Using the ROC Analysis

Our approach is to implement a selection step based on the ROC curve. The basic

idea is to insert a rule in the rule list if the insertion leads to a point outside the

current ROC convex hull, otherwise the rule is discarded . The selection of rule is

based on the assumption that larger covering space can be obtained when selecting

the rule locating outside the convex hull [114].

In the application of rule selection using the ROC analysis based method, rules

are selected separately for each class, and are kept in an ordered rule list. For a

two-class classifier, one class is labelled as positive and the other class is negative.

The ROC analysis compares different classifiers according to their TPR and FPR,

which also allows to plot classifier in a two dimensional space, one dimension for

each of these two measurements.

Figure 6.2 shows how a new rule is inserted in the convex hull. As we introduced

in the last section, each rule can be described by two measures, fpr and tpr. So

we can obtain pairs of points (fpri, tpri) according to the covered examples by

various rules in a rule set. We try to insert a new rule R1. As the actual convex

hull is formed only by the line connecting (0,0) and (1,1), R1 will be inserted if



CHAPTER 6. EXPLOITING AVTS IN RULE INDUCTION 127

(a) The first rule learning (b) The first rule is inserted in the rule
set

(c) The position of R2 is inside the con-
vex hull, hence, R2 should not be in-
serted

(d) Update the position of R2

(e) The position of R2 is outside the con-
vex hull

(f) Update the position of R1

Figure 6.2: Example of rule learning using ROC analysis
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the slope, defined as tpr/fpr, of the new rule is larger than 1, which also means

the position of the point is over the line. Then the convex hull is updated to be

defined by the three points, (0,0), (fpr1, tpr1), and (1,1). This case can be found

in figure 6.2(a) and 6.2(b). We now try to insert a second rule, R2, after the first

rule R1 had been inserted. There are two cases that can occur. The first case is

that the slope of R2 is less than that of R1 while the slope of R2 is larger than

R1’s slope for the second case. The two cases are shown in figure 6.2(c) and 6.2(e),

respectively. As mentioned before, the new rule could share some examples with

these learned rules (in this case R1), so we will removing the shared examples and

adapt the coordinates of the rules on the convex hull. For the first case shown in

figure 6.2(c), the shared examples covered by R2 will be removed, and the value

of fpr2 and tpr2 will be updated to be fpr′2 and tpr′2. The coordinate of rule R2,

therefore, will be (fpr1 + fpr′2, tpr1 + tpr′2), as shown in figure 6.2(d) . For the

second case shown in figure 6.2(e), rule R2 lies outside of the R1. So we keep the

value of fpr2 and tpr2, and only remove the shared examples covered by R1. So

the coordinate of rule R1 will also be updated to be (fpr2 + fpr′1, tpr2 + tpr′1) as

shown in figure 6.2(f).

In our practical application of the ROC algorithm, we still meet some problems.

The first is the occurrence of concavities in the convex hull, and the second is the

order of rules presented to ROC analysis.

For the first problem, it is because some rules we are trying to insert do not

keep the hull convex. Actions can be taken as described in [112] to detect the

concavities and remove the rules that cause the concavities and try to reinsert

the rule but the adaptation procedure is complex. Since we focus more on the

application of taxonomy on the rule-based classification, the constructor of the

rule-based classifier just provides us a platform. So, we utilise a simple method to

try to remove the rules which may cause the concavities in the convex hull. The
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Algorithm: An Algorithm for Rule Learning Using ROC Analysis

(1) Input: A rule set, RS = {R1, R2, ..., Rn}, for a given target class,

which are generated by using Apriori association rule learning algorithm.

(2) Pre-processing:

I. Prune the rules according to the threshold of Support and Confidence of a rule.

II. Rank the order of the rules according to their gradient, where

gradientRi
= tprRi

/fprRi
.

RS ′ = ∅
foreach Ri ∈ RS

| if ( (SupportRi
> Thresholdsupp) and (ConfidenceRi

> Thresholdconf ) )

| then

| RS ′ = RS ′ ∪ {Ri}.
| endif

endfor

Sort RS according to the gradient, then RS = {R1, R2, ..., Rn}

(3) Rule Learning:

RS ′
refined = ∅

foreach Rj ∈ RS’

| if Rj belongs to convex hull of RS

| then RS ′
refined = RS ′

refined ∪Rj

| Update the values of tpr and fpr of rules in RS −RS ′
refinedby removing

| the examples covered by the new rule Rj;

| endif

| foreach Rk ∈ RS ′
refined

| if tprRk
< thresholdtpr

| then remove Rk from RS ′
refined

| endif

| endfor

endfor

(4) Output: The final rule set RS ′
refined

Figure 6.3: Rule learning algorithm using ROC analysis
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simple concavities’ removal is dependent on the value of the slope of a rule to be

inserted after the overlapped examples covered by those learned rules have been

removed. If the latest slope of a rule to be inserted is less than a threshold, then

the rule will be discarded.

For the second problem, [113] uses the Euclidean distance to the point (0,1)

in the ROC space. Here, we adopt another way to make an initial order by only

computing the initial gradient of a rule without any examples being removed. This

ranking means the first processed rule has a lower gradient while the later ones

have high gradient, which are often thought of as useful rules for the construction

of a good classifier. The pseudo code of our modified rule learning algorithm is

given in Figure 6.3.

By using the rule learning algorithm, we can build a classifier based on the

refined rule set for each class. For classifying a new given instance, the algorithm

evaluates the classification of the new instance in both rule sets for the positive

and negative classes. Each rule set will return the values of tpr and fpr of each

rule, which can cover this new instance. We therefore select a rule with respect to

the value of gradient. The classification follows the rule with the largest value.

6.3 Applying the attribute-value taxonomies to

the rule-based classifier

In this section, we propose exploiting AVTs within the rule based classifier. We

aim to further reduce the number of rules whilst maintaining an appropriate clas-

sification performance.

We here still use the same attribute-value taxonomies, their related coded nodes

and the five top-ranked cuts of each AVT as described in chapter 5. Although

each attribute might only contain dozens of cuts over its AVT, the total number
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of combinations of these cuts over the selected attributes increase exponentially.

So a key problem is how to select the optimal cuts over the AVTs. We introduce

two different approaches to handle this problem. The first approach (Top-1) is to

update the original data set using the top-ranked cuts which are ranked by the

computed gain ratio (GR) value. The second approach (Top-5) is to search the

optimal path over the top five ranked cuts according to the number of generated

rules.

6.3.1 Use of Top-ranked Cuts (Top-1)

We assume that the cuts with the largest gain ratio value will be the optimal path.

After selecting the top-ranked cuts, we can hence update the original data using

the attribute value nodes contained in the selected cuts, and then train a new rule

based classifier using ROC analysis.

6.3.2 Use of Optimal Path over Top Five Ranked Cuts

(Top-5)

In Top-1, we actually utilised two assumptions. The first assumption is that the

attributes are independent to each other, and the second one is that the top-ranked

cut is the best cut. However, the first assumption ignores the dependencies among

these attributes, and the second assumption ignores a fact that the top one cut

ranked by gain ratio value cannot be guaranteed to be in the optimal solution.

Because of these reasons, a divide-and-conquer strategy will be used and an

illustration is shown in Figure 6.4. In this strategy, we will firstly rank the at-

tributes according to their information gain (IG) values. The related IG values of

the attributes have been listed in table 5.2 and 5.9 for the Adult and theMushroom

data set, respectively. We assume the attribute with the larger IG value should
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Figure 6.4: An illustration of searching the optimal paths over the top
five ranked cuts of the attributes of Adult data set (M, E, O, W are the
four nominal attributes)

be processed earlier because they are more important to classification than other

attributes with smaller IG values.

In the following steps, we only test the attribute-value cuts of one attribute,

whilst keeping other attributes unchanged. The cut of the current attribute gener-

ating the minimum number of learning rules will be selected, and then the cuts of

the next attribute will be processed using the same steps. In Figure 6.4, each col-

umn represents all the possible cuts of an attribute-value taxonomy, the directed

lines are the possible linkages between two different attributes. The dashed line

denotes the sub-optimal choices when adding a cuts of a new attribute while the

solid line denotes the optimal choice.

6.4 Performance Evaluation on the Adult Data

Set

6.4.1 Performance Using the ROC Analysis

The Adult data set is selected to evaluate the performance using the ROC analysis.

Table 6.2 shows the number of generated association rules using different numbers

of antecedents. When the length of antecedent is 3 or 4, a large number of rules are
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generated whilst a very small number of rules is obtained when only 1 antecedent

is used. Here, it seems to be more appropriate to use 2 antecedents. In order

to further reduce the time consumed in computation, we pre-prune the rules by

setting the minimal threshold of Support and Confidence. The number of rules

after being pruned based on various thresholds of Support and Confidence are

listed in Table 6.3.

Table 6.2: The number of rules using different number of antecedents

Number of Antecedents 1 2 3 4

Number of Rules 148 4422 61118 432994

Table 6.3: The number of rules after being pruned by setting the min-
imal values of Support and Confidence

Confidence Support (%)
(%) 0.1 0.2 0.5 1 2

0 3068 2368 2048 1590 1140
10 2441 2119 1676 1320 973
20 2132 1849 1464 1164 863
30 1879 1625 1268 1008 739
40 1715 1486 1167 910 662
50 1534 1319 1024 795 570
60 1354 1153 881 680 478
70 1190 1013 762 528 401

After obtaining the pruned rules, we rank the presentation order of each rule

according to their gradients. The earlier the rule is presented, the larger gradient

value it has. Therefore, the position of each rule on the convex hull will be changed

based on the adaptation as shown in figure 6.2(c) and 6.2(d). Considering the size

of the Adult data set, which contains 30162 instances, we set the Support threshold

as 0.1% (≈ 30 instances). After setting the Support threshold, we test the rule

based classifier based on the ROC analysis with different Confidence threshold

varying from 40% to 70%. In addition, in our method, we set a TPR threshold.

Each time when a new rule is inserted, the tpr and fpr of those learned rules will
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be updated. If the new tpr is less than the threshold, this rule will be removed

from the convex hull.

Table 6.4 shows the performances using ROC analysis, where we list the number

of rules in the final rule set, the accuracy rate on the training set and test set, and

the covering rate of the rules of the two trained convex hulls for <=50K and >50K,

respectively. Here, we can find that a reasonable performance can be obtained

when setting the TPR and Confidence threshold as 0.4% and 60%, respectively.

Table 6.4: Performances of rule based classifier using ROC analysis

Conf. TPR #Rule Covering Rate Covering Rate Accuracy (%)
(%) (%) (> / <=) (<=50K ,%) (>50K ,%) (train/test)

(FPR/TPR) (FPR/TPR)

40 0 123/312 99.81/100 60.56/99.05 84.62/84.60

40 0.1 72/128 86.61/99.74 53.74/98.36 84.45/84.30

40 0.2 51/88 85.60/99.70 52.63/97.93 84.56/84.38

40 0.3 39/71 85.61/99.69 48.15/96.81 84.17/83.96

40 0.4 35/55 84.48/99.63 44.16/94.97 84.00/83.80

50 0 101/312 99.81/100 38.34/88.97 84.48/84.35

50 0.1 67/128 86.61/99.74 36.01/88.31 84.48/84.33

50 0.2 46/89 86.17/90.71 34.90/87.54 84.47/84.33

50 0.3 35/71 84.71/99.65 30.33/86.13 84.44/84.21

50 0.4 32/55 84.48/99.63 26.34/84.31 84.08/83.91

60 0 74/312 99.81/100 15.63/70.35 84.61/84.58

60 0.1 49/128 86.61/99.74 14.45/69.67 84.46/84.29

60 0.2 34/89 85.60/99.69 13.13/68.06 84.62/84.41

60 0.3 27/71 84.70/99.65 12.84/67.18 84.30/84.08

60 0.4 25/55 84.48/99.63 12.82/67.08 84.20/84.02

70 0 47/312 99.81/100 4.86/42.11 82.44/82.33

70 0.1 31/128 86.61/99.74 4.59/41.78 82.41/82.24

70 0.2 22/89 85.60/99.69 4.31/40.90 82.42/82.19

70 0.3 18/71 84.70/99.65 4.13/40.18 82.32/82.12

70 0.4 16/55 84.48/99.63 4.11/40.09 82.31/82.21

Figure 6.5 (a) and (b) further show the ROC curves of the results on the training

and test data with setting different TPR thresholds when the confidence threshold

is fixed to be 60%. In these two figures, TPR = 0 means there is no further rule



CHAPTER 6. EXPLOITING AVTS IN RULE INDUCTION 135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

TPR=0
TPR=0.001
TPR=0.002
TPR=0.004

(a) training data
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(b) test data

Figure 6.5: ROC curves example of the results on the Adult train-
ing and test data with different TPR thresholds when the confidence
threshold is fixed (Conf.=60%)
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prune caused by the TPR threshold, which seems to generate a slightly better

classification performance than those with other thresholds. However, given the

large number of pruned rules using TPR = 0, as shown in table 6.4, the loss of

accuracy after setting the TPR threshold is trivial. This reflects the effectiveness

of rule selection when using the ROC based approach.

6.4.2 Performance Evaluation Using AVT on Rule Learn-

ing

We still use the attribute-value taxonomies of the four nominal attributes of the

Adult data set, Education, Occupation, Martial-status, and Work-class. Table 5.3

has listed all the coded nodes of the four taxonomies, whilst the top five ranked

cuts, denoted by the coded nodes, of each attribute value taxonomy along with

their gain ratio values were also given in table 5.4. We firstly utilise Top-1 by

viewing the cut with highest gain ratio value as the optimal cut of the AVT, and

apply it to the ROC based rule learning. Table 6.5 shows the performances using

(after) and without using (before) attribute-value taxonomies(AVTs). It is easy to

find that the number of the learned rules using AVTs is less than that without using

AVTs when the TPR threshold varying in the range of 0.1% and 0.8%. Especially,

when the TPR threshold is 0.8%, the number of rules can be reduced to 44, whilst

the classification accuracy can also be improved by more than 3% in comparison

with that of not using AVTs.
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Table 6.5: Performances of a rule based classifier before and after using
attribute-value taxonomies (Top-1)

TPR # Rule Accuracy (%) (train/test)
(%) before after Change(%) before after Change(%)

0.1 177 94 -46.9 84.46/84.29 84.23/83.66 -0.27/-0.75

0.2 122 81 -33.6 84.62/84.41 84.21/83.66 -0.48/-0.89

0.3 98 67 -31.6 84.30/84.08 84.09/83.67 -0.25/-0.49

0.4 80 61 -23.8 84.20/84.02 84.19/83.77 -0.01/-0.29

0.6 57 50 -12.3 84.11/84.00 84.17/83.74 +0.07/-0.31

0.8 45 44 -2.2 81.13/81.06 84.10/83.63 +3.7/+3.2

Following the description of the Top-5 approach, we start from Marital-status

as it is in the first place among the four attribute sets according to its information

gain value. Table 6.6 shows the number of generated rules after searching through

the cuts of the AVTs over the four attributes. Here, for each AVT, only the five top

ranked cuts are used. From this table, we can find the top-ranked cut of the AVT

of three attributes (Marital-status, Education, and Workclass) actually generate

more rules than other cuts do. In addition, although the number of learned rules

using cut M4 and M5 is the same, we select cut M4 because it has larger gain

ratio value. We then test all the possible cuts of the Education taxonomy after

selecting M4. Following the same steps, we finally obtain the cut path over the

four attribute-value taxonomies. When setting different TPR thresholds, e.g. 0.6%

and 0.8%, the obtained cut path over all cuts of AVTs is M4, E3, O1, and W4,

and the number of learned rules are 46 and 40, respectively.

As a comparison, the results using the original data, Gain Ratio, and the

number of rules are listed in Table 6.7. We can hence find that the use of the

second measurement can reduce the number of rules by more than 10%, while a

slightly better classification accuracy (about 3%) is obtained on the test set when

the TPR threshold is 0.8%.

We also run a 16-time 3-fold cross validation on the Adult data set. Figure

6.6 shows the classification accuracy when different methods are utilised. In this
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Table 6.6: Selection of an optimal cuts over the four attribute-value
taxonomies of the Adult data set

Step1 Step2 Step3 Step4

Attr. #R Attr. #R Attr. #R Attr. #R

Threshold = 0.6%; Supp. = 0.1%; Conf. = 60%

M1 59 M4+E1 60 M4+E3+O1 49 M4+E3+O1+W1 48

M2 59 M4+E2 60 M4+E3+O2 54 M4+E3+O1+W2 48

M3 59 M4+E3 56 M4+E3+O3 51 M4+E3+O1+W3 49

M4 57 M4+E4 60 M4+E3+O4 56 M4+E3+O1+W4 46

M5 57 M4+E5 61 M4+E3+O5 52 M4+E3+O1+W5 47

Threshold = 0.8%; Supp. = 0.1%; Conf. = 60%

M1 46 M4+E1 52 M4+E3+O1 42 M4+E3+O1+W1 42

M2 46 M4+E2 51 M4+E3+O2 47 M4+E3+O1+W2 42

M3 47 M4+E3 48 M4+E3+O3 43 M4+E3+O1+W3 43

M4 45 M4+E4 50 M4+E3+O4 48 M4+E3+O1+W4 40

M5 45 M4+E5 51 M4+E3+O5 47 M4+E3+O1+W5 42

figure, Top-1 indicates that we use the top-ranked cut to update the original date

and Top-5 means the optimal searched path over the top five ranked cuts of the

attributes. We can find the use of our approach can generate a slightly higher

classification accuracy than that not using the attribute-value taxonomies. The

number of rules is reduced in all cases.

6.5 Performance Evaluation on the Mushroom

Data Set

In this section we present the performance evaluation on the Mushroom data set

following the same evaluation procedures on the Adult data set as described in

section 6.4.

6.5.1 Performance Evaluation Using the ROC Analysis

Table 6.8 shows the number of generated rules when using different numbers of

antecedent. As with the Adult data set, the use of 2 antecendents is more feasible.
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Table 6.7: Comparison of performances using different settings

Conf. TPR #Rule Covering Rate Covering Rate Accuracy (%)
(%) (%) (<=50K ,%) (>50K ,%) (train/test)

(FPR/TPR) (FPR/TPR)

Original data without using Attribute-Value Taxonomies

60 0.6 57 82.95/99.58 12.09/65.90 84.11/84.00

60 0.8 45 66.34/93.57 11.84/65.34 81.13/81.06

Using top-ranked cuts (Top-1)

60 0.6 50 83.75/99.67 15.47/72.32 84.17/83.74

60 0.8 44 83.55/99.66 14.81/71.59 84.10/83.63

Using the optimal paths over the top-five cuts (Top-5)

60 0.6 46 83.47/99.65 13.31/68.07 84.05/84.19

60 0.8 40 83.19/99.61 13.22/67.31 83.82/83.94

To reduce the time consumed in computation, we pre-prune the rules by setting the

Support and Confidence threshold, and the number of pruned rules using different

thresholds are listed in Table 6.9.

Table 6.8: The number of rules using different number of antecedents

Number of Antecedents 1 2 3 4

Number of Rules 119 14161 426703 6267767

For theMushroom data set, we focus on the rules generated using larger Support

and Confidence thresholds to reduce the interference caused by some redundant

information. In our work, the Support threshold is set as 1%, while the Confidence

threshold is set within the range from 80% to 98%. The TPR threshold ranges

from 0.6% to 0.8%.
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Table 6.9: The number of rules after being pruned by setting the min-
imal values of Support and Confidence

Confidence Support (%)
(%) 0.1 0.2 0.5 1

10 6845 6384 5800 4921
20 4486 4254 3939 3468
30 4111 3879 3571 3110
40 3826 3596 3290 2851
50 3564 3336 3044 2612
60 3327 3100 2811 2383
70 2829 2604 2334 1917
80 2548 2325 2057 1662
90 2127 1949 1688 1320
95 2127 1949 1688 1320
98 2005 1784 1525 1147

Table 6.10: Performances of rule based classifier using ROC analysis

Conf. TPR #Rule Covering Rate Covering Rate Accuracy (%)
(%) (%) (Edi./Poi.) (Poi. ,%) (Edi. ,%) (train/test)

(FPR/TPR) (FPR/TPR)

80 0.6 13/11 0/98.92 0/99.16 99.07/99.28
80 0.7 11/11 0/98.92 0/97.82 98.36/98.57
80 0.8 11/11 0/98.92 0/97.82 98.36/98.57

90 0.6 13/11 0/98.92 0/99.16 99.07/99.28
90 0.7 11/11 0/98.92 0/97.82 98.36/98.57
90 0.8 11/11 0/98.92 0/97.82 98.36/98.57

95 0.6 13/11 0/98.92 0/99.16 99.07/99.28
95 0.7 11/11 0/98.92 0/97.82 98.36/98.57
95 0.8 11/11 0/98.92 0/97.82 98.36/98.57

98 0.6 13/11 0/98.92 0/99.16 99.07/99.28
98 0.7 11/11 0/98.92 0/97.82 98.36/98.57
98 0.8 11/11 0/98.92 0/97.82 98.36/98.57
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Figure 6.6: Classification accuracy on the Adult data set with 16-time
3-fold cross validations (Conf=60% and TPR=0.8%)

Table 6.10 shows the classification performances using the ROC analysis on

the original data set when varying the Confidence and the TPR thresholds, re-

spectively. We can find there are no variations when four different Confidence

threshold values are set, respectively. This is because almost all the key rules

generated to distinguish the EDIBLE mushroom (Edi.) from POISONOUS ones

(Poi.) are kept even if the Confidence threshold value is set as large as 98%. Here,

we choose three values (0.6, 0.7 and 0.8) as the TPR threshold, respectively. As an

important constraint on the ROC analysis, the large TPR value (TPR=0.8%) can

cause about 0.7% reduction in classification accuracy compared with a small TPR

value (TPR=0.6%). This is because, when setting a larger TPR threshold, more

rules are removed. Thus some instances are misclassified. However, the number

of learned rules when setting the TPR threshold as 0.8% is smaller than when the

TPR threshold is 0.6%.

Figure 6.7 (a) and (b), respectively, illustrate the ROC curves according to the

classification results on the training and test data when the confidence threshold
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(a) training data
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(b) test data

Figure 6.7: ROC curves example of the results on the Mushroom train-
ing and test data with different TPR thresholds when the confidence
threshold is fixed (Conf.=98%)
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is fixed to be 98% and the TPR threshold changes from 0.001 to 0.004. In these

two figures, we can find there are few differences among theses curves although

four different TPR thresholds are set. This is because, after using the ROC based

approach, we still obtain the most important rules, which can cover almost all

instances in the training and test set.

6.5.2 Performance Evaluation Using AVT on Rule Learn-

ing

To apply the constructed attribute-value taxonomies on the Mushroom data set

to the ROC analysis, similar to the work on the Adult data set, we also use the

top-ranked cuts extracted from the AVTs of the Mushroom data set. The coded

nodes of the attributes are listed in table 5.12 and the ranked cuts of each attribute

are in table 5.13.

When using Top-1, the top-ranked cut with largest gain ratio value is selected

to update the original data set, and then the new rules dependent on the ROC

analysis is obtained. As a comparison, table 6.11 shows the results before and after

updating the original data. It is clear that the use of an attribute value taxonomy

can significantly reduce the number of rules by more than 50%, whilst there are

also small improvements for the classification performances .

Table 6.11: Performances of a rule based classifier before and after
using attribute-value taxonomies (Top-1) on the Mushroom data set

TPR # Rule Accuracy (%) (train/test)
(%) before after Change(%) before after Change(%)

0.1 33 15 -54.5 99.73/99.76 99.82/99.64 +0.09/-0.12

0.2 27 14 -48.1 99.43/99.40 99.72/99.52 +0.29/+0.12

0.3 25 13 -48 99.22/99.40 99.61/99.52 +0.39/+0.12

0.4 24 13 -45.8 99.22/99.40 99.61/99.52 +0.39/+0.12

0.6 24 11 -54.1 99.22/99.40 99.61/99.52 +0.39/+0.21

0.8 23 10 -56.5 98.81/98.83 99.24/99.04 +0.43/+0.21
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Following the same steps to find the optimal inter-AVT combinations for the

Adult data set, we search through the top-five attribute value cuts of each attribute.

The search is based on the measurement that the cuts generating the minimum

number of rules will be selected. In each step, the original data set is updated

using one of the cuts of the current attributes, and we then compare which cuts

generates the minimum rules in the same condition. Table 6.12 shows the results

of searching the optimal cuts through the AVTs of the seven attributes when the

TPR threshold are set as 0.6% and 0.8%, respectively. From this table, we find that

the number of learned rules is reduced more than 50% when the TPR threshold is

0.8%. In addition, the optimal path is the top-ranked cuts of each attribute (O1,

P1, S1, G1, B1, H1, C1 ), which is different from the results we obtained on the

Adult data set. This case is mainly caused by two factors:

1. The selected top ranked cuts are able to reasonably categorise different at-

tribute values into their related semantic clusters.

2. The attribute Odor of the Mushroom data set plays a dominant role in

searching the optimal cuts. This means there are few variations of the rule

numbers after searching through the AVT of Odor.

In comparison with the Adult data set, the structure obtained on the attribute

values of the Mushroom data set is simpler. In some complex cases, like the Adult

data set, although the top-ranked cuts can generally generate a better performance

than other cuts ranked behind it, it does not mean it will be an optimal choice as

a whole. This also indicates the necessity of implementing our method to search

for the optimal path.

Table 6.13 compares the recognition performances on the original Mushroom

data set, the data set updated using Top-1 and the data set updated using Top-5,

respectively. When the TPR threshold is set at 0.6%, better classification per-
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formances are obtained, 99.61%, on the training set and, 99.52%, on the test set,

whilst a smaller number of rules (10 rules) are generated with the threshold set

at 0.8%. When using AVTs, both Top-1 and Top-5 can significantly improve ef-

ficiency by reducing the number of learned rules in comparison with the original

data set. To test the effectiveness, we also run a 10-fold cross validation.

Table 6.13: Comparison of performances using different settings

Conf. TPR #Rule Covering Rate Covering Rate Accuracy (%)
(%) (%) (Poi. ,%) (Edi. ,%) (train/test)

(FPR/TPR) (FPR/TPR)

Original data without using Attribute-Value Taxonomies
98 0.6 24 0/98.92 0/99.16 99.07/99.28
98 0.8 22 0/98.92 0/97.82 98.36/98.57

Using top-ranked cuts (Top-1)
98 0.6 11 0/99.54 0/99.62 99.61/99.52
98 0.8 10 0/98.75 0/99.62 99.24/99.04

Using the optimal paths over the top-five cuts (Top-5)
98 0.6 11 0/99.54 0/99.62 99.61/99.52
98 0.8 10 0/98.75 0/99.62 99.24/99.04
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Figure 6.8: Classification accuracy on the Mushroom data set with
16-time 10-fold cross validations (Conf=98% and TPR=0.8%)

Figure 6.8 shows the classification accuracy by implementing cross validation

on the Mushroom data set for 16 times when different methods are utilised. In
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this figure, we find the use of Top-1 and Top-5 generates the same performance

(the curves using Top-1 and Top-5 overlap with each other), but both methods

have slightly better performances than obtained without using AVTs.

6.6 Summary

This chapter proposes a novel framework of integrating AVTs with ROC analysis

for learning a better rule classifier. We used two approaches to implement the

integration. The first approach (Top-1) is to update the original data set by using

the top-ranked cuts. The second approach (Top-5) is to search for an optimal

path over the top five ranked cuts of each selected attribute. The search proce-

dure is based on the minimum number of learned rules over the attribute-value

taxonomies. In our experiments, when comparing with the performances without

using AVTs, we obtained better performances in both rule reduction and accuracy.

The use of AVTs can reduce the number of learned rules by more than 10% on the

Adult data set and by about 50% on the Mushroom data set. For the Adult data

set, we improve the accuracy by 3% when the TPR threshold is 0.8%, while we

also obtained a slightly better classification accuracy on the Mushroom data set.

The use of Top-5 outperforms Top-1 on the Adult data set after running cross

validation for 16 times. This is because Top-1 assumes that the cut with largest

gain ratio value is the optimal cut, and ignores the dependency between attributes.

For the Mushroom data set, there is no difference in classification accuracy when

using Top-1 and Top-5. This is mainly because that the “Odor” attribute plays

a dominant role in performance evaluation. It is reasonable to expect Top-5 to

be more suitable for processing more complex taxonomies compared with the first

approach.



Chapter 7

Conclusions and Future Work

7.1 Overview

This chapter summarizes our research work as a whole, draws some conclusions

according to the experimental performances described in previous chapters, dis-

cusses some phenomena in our work, and finally gives some suggestions for future

work based on our discussion.

7.2 Thesis Summary

The overall aim of our research is to develop a methodology that exploits attribute-

value taxonomies (AVTs) for compact and accurate classifier learning. In this the-

sis, we proposed the automatic construction of attribute-value taxonomies (AVTs)

using ontology and clustering methods. We exploited the generated AVTs, with

or without manual adjustment, for learning simpler decision trees and smaller sets

of association rules without sacrificing too much accuracy. In our experiments, we

148
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test our approaches on two relatively large data sets, the Adult and the Mushroom

data set.

• In chapter 3, we gave a study of ontologies and explored the feasibility of

exploiting some unique properties for taxonomy construction. Our work

can be divided into two directions. The first direction is ontology build-

ing. we reviewed some important issues about ontologies, such as defini-

tion, types, representation languages, existing applications, etc. As a part of

our early research, we created an illustrative Student ontology, using the

DAML+OIL ontology language, and designed various examples for each

property of DAML+OIL. This part of our work is shown in appendix A.

The second direction is to extract taxonomies from predefined ontologies.

After explaining the relationship between an ontology and a taxonomy, we

proposed an algorithm for automatically extracting taxonomies from an on-

tology. In our work, we treat an ontology as a poly-hierarchy. Then taxonomy

extraction transforms the ontology hierarchy into a directed acyclic taxon-

omy graph (DATG). In our DATG, the properties of ontology are used to

guide the direction of the edges. Then our goal is to search and find all the

possible subgraphs of the DATG that may become a taxonomy, named as

Fully Leaved and Rooted Subgraphs (FLRS). We implemented the algorithm

and illustrated this method with some case studies.

• In chapter 4, we utilised two hierarchical clustering algorithms (agglomerative

and divisive clustering) and two partitional algorithms (k-means and Fisher’s

algorithm) to automatically construct concept based taxonomies. Such tax-

onomies were generated from the nominal and numeric values provided by

the attributes of the Adult and the Mushroom data sets, respectively. Com-

paring with the hierarchical algorithms which prefer to generate a binary
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tree, the use of the partitional algorithms is able to construct the non-binary

taxonomy under some supervision, viz. setting the number of clusters before

clustering. A related issue, the selection of the optimal number of clusters

for partitional algorithms, is also involved and a technique is implemented

for both nominal and numeric attribute values. Both partitional algorithms

have the same performance for a given optimal number of clusters.

All the generated taxonomies are compared, which revealed some statistical

characteristic of the data. Although these taxonomies are not completely

compatible with the semantic ones, they provide a good guide on construct-

ing appropriate concept taxonomies for this particular data or for making

adjustments to taxonomies extracted from existing ontologies. Such modifi-

cation is likely to be required if a general taxonomy is to be used for a specific

database. We also proposed a concept taxonomy for each selected attribute

after adjusting and naming the internal nodes of the taxonomy with suitable

semantically intelligent terms.

The taxonomies constructed using the automatic methods help us to find the

relationships and dependencies between attributes values. From a subjective

point of view, we think the generated attribute-value taxonomies are useful

to our work, and we used them in tree and rule induction in later chapters

for objective performance evaluation.

• In chapter 5, we presented a methodology of exploiting attribute-value tax-

onomies (AVT) to generate a simple decision tree with reasonable classifica-

tion accuracy. We trained a decision tree based classifier to test the effec-

tiveness and efficiency of the classification performance on the Adult and the

Mushroom data sets when using and not using the generated AVTs. In our

experiments, we used gain ratio (GR) as a measure to select the top ranked
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cuts through the attribute-value taxonomies (AVTs). This step can improve

the efficiency when searching for the useful cuts in complex taxonomies. We

found that there are salient reductions in the number of tree nodes, more

than 10% on the Adult data set and more than 70% on the Mushroom data

set, observed when using the taxonomies. At the same time, there is little

loss of classification accuracy.

• In chapter 6, we developed a novel framework for integrating the attribute-

value taxonomies (AVTs) with ROC analysis for learning a better rule clas-

sifier. In our work, we used two approaches to implement the integration.

The first approach is to select a cut with the largest gain ratio value and

update the original data set using the top-ranked cut. The second approach

is to search for an optimal path over the top five ranked cuts of the selected

attributes. The optimal cut path will be determined according to the num-

ber of learned rules. In comparison with the approach without using AVTs,

our two approaches can reduce the number of rules on the Adult data set

by about 10% and the number of rules on the Mushroom data set by about

50%. In addition, the classification accuracy using our approaches also con-

sistently outperform the method without using AVTs on the Adult and the

Mushroom data set after implementing cross validation for 16 times.

7.3 Discussion

Although the use of AVTs brings benefits, two points on the AVTs construction

are still worth discussion. The first is the difference between the use of the ontology

based method and that of the automatic methods using clustering algorithms. The

other is about the impact of the data set on the construction of AVTs.
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Construction of AVTs using ontology and clustering methods

In this thesis, we proposed two different approaches to build attribute-value tax-

onomies (AVTs). The first approach described in chapter 3 is to extract the tax-

onomies from the ontologies pre-defined by domain experts. The second one is

dependent on the clustering methods for an automatic construction of AVT, which

is presented in chapter 4.

Ontologies are broader in scope than AVTs. An ontology might encompass a

number of taxonomies, with each taxonomy organizing a subject in a particular

way. This is the motivation of our work described in chapter 3 exploring how

to extract the related taxonomies from ontologies. Ontologies generally represent

knowledge in a strict form so that computers can derive meaning by traversing the

various relationships. This means complex and general ontologies require many

subjective definitions and interpretations, provided by manual interference. For

taxonomies, the linkages between parent and child branches were much simpler

in nature compared to an ontology. We find that it is possible to build an AVT

with an automatic method using the simple relationship, such as is-a. This is the

motivation of our work in chapter 4.

Compared with the second approach, the first one has the advantage of be-

ing able to bring some precise and semantic relationships between the conceptual

nodes. To generate taxonomies through the first approach, some possible false

connections and dependencies can be avoided, which sometimes occur when using

automatic methods. However, the second approach is more feasible and practical

than the use of ontology, especially when building taxonomies without the domain

specific ontologies pre-defined by experts in the field. This will arise in the vast

majority of cases. Indeed, pre-defined ontologies on the Adult and the Mushroom

data sets, used in this thesis, do not exist . Hence, we focus on the second approach

in our work.
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The impact of the characteristics of a data set on the construction of

AVTs

When using an automatic method to build an AVT, the quality of the resultant

AVT is dependent on two main factors. The first factor is the size of the data set,

and the second one is the nature of the attributes and their values.

The automatic construction of the AVT finds correlations between attribute

values. A larger data set can statistically describe the correlations more accurately,

especially when processing a data set where many nominal attributes have a large

number of values. This is one reason why, in our work, we selected the Adult and

the Mushroom data set, which contains 48842 and 8124 instances, respectively.

Secondly, the construction of a meaningful AVT actually relies on the the char-

acteristics of the attribute values. A meaningful AVT can generate a readable

information structure, and let people easily understand what each node in the

AVT represents. More importantly, a meaningful AVT can make it reusable be-

tween domains.

Although some data sets contain many attributes, their attribute values can

only provide simple numeric information. This means that some possible latent

semantic information that the attribute values possess might be ignored. However

such information sometimes may be useful in AVT construction, e.g. age. This is

another reason why we select the Adult data set in our work since the attributes

and their values in this data contains rich semantic information. For example, the

latent semantic information of the attribute value “PhD” is that people with a

PhD degree are more likely to possess high skills and make greater contribution to

society and thus find it easier to obtain a higher salary package.

It may be thought that attributes with few values will have relatively less

information than those with more values. However, we notice that the attributes

with more values can play a more important role in classification than others. For
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example, the attribute ”Odor” of the Mushroom data set only has nine values,

which is less than some other attributes we selected, but this attribute and its

AVT are dominant in the Mushroom data set. This also indicates the importance

of our work in ranking the attributes along with their values according to their

computed gain ratio values.

7.4 Conclusion

Our study demonstrates that the use of attribute value taxonomies (AVTs) is both

practical and desirable when processing a data set with many attributes and a large

number of attribute values.

• The construction of AVT using clustering methods provides an effective way

to automatically analyse the correlations among attribute values and gen-

erate conceptual nodes in a hierarchical format. Moreover, it is also more

flexible than the ontology based approach, whose application is limited to

the pre-defined structure built using the domain specific expert knowledge.

• The use of gain ratio (GR) provides a reasonable measure to search the valu-

able cuts through the conceptual nodes of a complex AVT. When combining

the extracted cuts with the decision tree, the size of the decision tree can be

reduced without the loss of classification accuracy.

• The use of a ROC based approach is more efficient in rule learning when com-

pared to conventional methods, such as the Apriori association rule learning

algorithm. Moreover, the combination of the ROC based rule learning algo-

rithm with the AVT can further reduce the number of learned rules, while

the classification performance is still kept stable with few variations.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 155

7.5 Future Work

Some promising directions for future work in using attribute-value taxonomies in

classifier learning include:

• With increasing use of ontologies and the merging of data from various de-

positories, data mining is becoming an increasingly complex task. Since

the availability of embedded taxonomies may be usefully exploited by re-

searchers, the extraction of these taxonomies from ontologies needs to be

automated. In chapter 3, we have shown how these can be defined using

“Subclass-of” and “Disjoint-with”. When databases are constructed from

various sources, not all instances from different entries need necessarily be

leaves of the taxonomy; the internal nodes (subclasses) can also appear. It

is desirable to develop ways of handling such data in tree induction. In ad-

dition, to enhance the ability to construct a domain specific taxonomy using

a general ontology, the use of some external semantic information resources,

such as WordNet, to expand the space of conceptual relationships is also an

interesting research topic.

• When constructing a taxonomy on a data set, especially on a data set with

a large number of attributes and attribute values, there often exists the

possibility that there will be several different hierarchy structures of the

taxonomy that can be generated either through automatic methods or by

domain taxonomists. This raises some problems, such as “which structure

will be the most representative one?” or “how can we merge or integrate these

different taxonomies into one taxonomy which is best suited to the domain

application?” It seems worthwhile to develop some new measurements to

select the optimal structure according to some possible specific requirements,

context information, and computational efficiency. The methods used in
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multi-model ensembles may be another good approach to do this work.

• From the taxonomists’ point of view, a taxonomy is not a static and closed

system. This is because new specimens will be discovered, existing classifica-

tions need to be revised, and new scientific knowledge may be gained through

new methods. It is of interest to explore approaches for adjusting an existing

taxonomy when adding new information to it. Some related techniques used

in finite state automata (FSA) and graphical models may be used to handle

this problem.
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performance systems: PROTÉGÉ-II solutions to sisyphus-2. International

Journal of Human-Computer Studies, (44):303–332, 1996.



BIBLIOGRAPHY 172

[124] S. Z. Selim and M. A. Ismail. K-means-type algorithms: a generalized con-

vergence theorem and characterization of local optimality. In IEEE Trans.

on Pattern Analysis and Machine Intelligence, volume 6, pages 81–86, 1984.

[125] L. Setia and H. Burkhardt. Learning taxonomies in large image databases. In

Proceedings of SIGIR Workshop on Multimedia Information Retrieval, 2007.

[126] R. Shearer and I. Horrocks. Exploiting partial information in taxonomy con-

struction. In Proceedings of the 8th International Semantic Web Conference,

pages 569–584, 2009.

[127] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Mataqueries for data min-

ing. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

editors, Advances in Knowledge Discovery and Data Mining, pages 375–398.

AAAI/MIT press, 1996.

[128] N. Slonim and N. Tishby. Document clustering using word clusters via the

information bottleneck method. In Proc. of the 23rd annual international

ACM SIGIR conference on Research and development in information re-

trieval, page 208215. ACM Press, 2000.

[129] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Compu-

tational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[130] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-

tering techniques. In Proc. of World Text Mining Conference, KDD2000,

Boston.

[131] R. Studer, R. Benjamins, and D. Fensel. Knowledge engineering: Principles

and methods. Data and Knowledge Engineering, (25):161–197, 1998.



BIBLIOGRAPHY 173

[132] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Pearson Education, Boston, 2006.

[133] Merwyn G. Taylor, Kilian Stoffel, and James A. Hendler. Ontology-based

induction of high level classification rules. In In Proceddings of the SIGMOD

Dataming and Knowledge Discovery Workshop, 1997.

[134] E. Tsui, W. M. Wang, C. F. Cheung, and A. Lau. A conceptrelationship

acquisition and inference approach for hierarchical taxonomy construction

from tags. Information Processing Management, 46(1):44–57, 2010.

[135] R. Van de Riet, H. Burg, and F. Dehne. Linguistic issues in information sys-

tems design. In N. Guarino, editor, Formal Ontology in Information Systems.

IOS Press, 1998.

[136] G. van Heijst, A. Th. Schreiber, and B. J. Wielinga. Using explicit ontologies

in KBS development. International Journal of Human-Computer Studies

/Knowledge Acquisition, (45):183–292, 1997.

[137] F. Vasile, A. Silvescu, D-K. Kang, and V. Honavar. Tripper: An attribute

value taxonomy guided rule learner. In Proceedings of the Tenth Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pages 55–

59, Berlin, 2006.

[138] Christopher Welty and Nicola Guarino. Supporting ontological analysis of

taxonomic relationships. In Proceedings of International Conference on Con-

ceptual Modeling, pages 51–74, 2001.

[139] M. A. Wong and T. Lane. A kth nearest neighbor clustering procedure.

In Journal of the Royal Statistical Society, number 45 in Series B, pages

362–368. 1983.



BIBLIOGRAPHY 174

[140] F. Wu, J. Zhang, and V. Honavar. Proceedings of the symposium on ab-

straction, reformulation, and approximation (sara 2005). In Lecture Note of

Springer-Verlag, pages 313–320, 2005.

[141] H. Yi, B. Iglesia, and V. J. Rayward-Smith. Using concept taxonomies

for effective tree induction. In International Conference of Computational

Intelligence and Security (CIS), volume 3802 of Lecture Notes in Computer

Science, pages 1011–1016. Springer, 2005.

[142] H. Yi and V. J. Rayward-Smith. Using a clustering algorithm for domain

related ontology construction. In Proc. of the International Conference on

Know ledge Engineering and Ontology Development(KEOD), pages 336–341,

2009.

[143] J. Zhang and V. Honavar. Learning decision tree classifiers from attribute

value taxonomies and partially specified data. In Proc. of the Twentieth In-

ternational Conference on Machine Learning (ICML),, volume 20(2), pages

880–887. 2003.

[144] J. Zhang and Honavar V. G. Silvescu, A. Ontology-driven induction of deci-

sion trees at multiple levels of abstraction. In Proceedings of the 5th Interna-

tional Symposium on Abstraction, Reformulation and Approximation, pages

316–323, 2002.



Appendix A

DAML+OIL Overview

DAML+OIL is a semantic markup language for Web resources. It builds on earlier

W3C standards such as RDF [3] and RDF Schema, and extends these languages

with richer modelling primitives. DAML+OIL provides modelling primitives com-

monly found in frame-based languages [33].

The following sections will focus on the introduction of DAML+OIL’s syntax

and usage through a self-defined Student Ontology in the style of the annotated

DAML+OIL markup language. Figure A.1 shows a simple hierarchy of Student

Ontology, where Student, Faculty, and Accommodation are three main classes,

linked by some meaningful relationships described by the dashed lines.
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Figure A.1: Student Ontology
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A.1 Namespace of DAML+OIL

A namespace in DAML+OIL refers to a schema or ontology, where terms associated

with this namespace are defined. It can be represented by XML elements, since

all the statements in DAML+OIL are RDF statements, which are written in XML

using XML namespaces [XMLNS] and URIs(Uniform Resource Identifier). An

example of the definition of a DAML+OIL namespace is shown below, starting

with an XML document tags and the definitions of several entities.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>

<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>

<!ENTITY xsd ’http://www.w3.org/2000/10/XMLSchema#’>

<!ENTITY daml ’http://www.daml.org/2001/03/daml+oil#’>

]>

<rdf:RDF

xmlns:rdf = "&rdf;"

xmlns:rdfs = "&rdfs;"

xmlns:xsd = "&xsd;"

xmlns:daml = "&daml;">

</rdf:RDF>

From the above definition, there are four different namespaces, rdf, rdfs,

xsd, and daml, involved in the DAML+OIL ontology. Each of them is grouping

identifiers for sets of vocabularies, shown as follows.

rdf: RDF specific vocabulary itself rdfs: RDF schema vocabulary

xsd: XML schema datatypes daml: DAML specification on the

XML

All theses namespaces are defined within the RDF tag, where all the abbrevi-

ations following the ampersand(&) will be replaced with the full namespaces by

the XML parser when parsing the RDF document.
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A.2 Structure of DAML+OIL Ontology

A DAML+OIL ontology consists of zero or more headers, followed by zero or

more class elements, property elements, and instances. We will give specific

statement for each part with the example in the following section.

A.2.1 Header

There are several classes and properties defined in this header part, such as title,

date, creator, description, etc. See the following definition for the detail.

<daml:Ontology rdf:about="">

<dc:title>"An example of ontology"</dc:title>

<dc:date>12 Jan. 2003</dc:date>

<dc:creator>H Y YI</dc:creator>

<dc:description>An case study on ontology and DAML+OIL language.

</dc:description>

<daml:versionInfo>V1.0<daml:versionInfo>

<daml:imports rdf:resource="http://www.w3.org/2001/10/daml+oil"/>

</daml:Ontology>

In the header’s definition, the daml:Ontology element asserts that this is an

ontology; the about attribute will typically be empty, indicating that the subject of

this assertion is this document; the daml:versionInfo element generally contains

a string giving the information about this version, but it does not contribute to

the logical meaning of the ontology.

Inside the Ontology element, using the daml:imports statement, we can list

any other referenced DAML+OIL ontologies that apply to the current DAML+OIL

resource.

A.2.2 Object and Datatype

DAML+OIL divides the world into two disjoint parts. One part, called the

Datatype domain, consists of the values that belong to XML Schema datatypes.



APPENDIX A. DAML+OIL OVERVIEW 178

Datatype values are used to help define classes, simply by including their URIs

within a DAML+OIL ontology, but they are not DAML individual objects. For

example, “http://www.w3.org/2000/10/XMLSchema#decimal” refers to the stan-

dard location for datatype decimal. The other part, called the Object domain,

consists of objects that are considered to be members of classes described within

DAML+OIL or RDF.

A.2.3 DAML+OIL Classes and Class Elements

DAML+OIL provides many classes to describe objects, for instance,Class, Thing,

Nothing, ObjectProperty, etc. Here, we will introduce some important classes

along with examples.

1. Class: In order to describe objects, it is useful to define some basic types.

This is done by giving a name for a class, which is the subset of the universe which

contains all the objects of that type, e.g.

<rdfs:Class rdf:ID="Class">

<rdfs:label>Class</rdfs:label>

<rdfs:comment>The class of all "object" classes.

</rdfs:comment>

</rdfs:Class>

2. Thing: is the type of “Class”, i.e., all the object X are of type “Thing”. The

properties, such as unionOf and complementOf, used in the following example will

be introduced in the later section.

<Class rdf:ID="Thing">

<rdfs:label>Thing</rdfs:label>

<rdfs:comment>The most general (object) class in DAML. This is

equal to the union of any class and its complement.

</rdfs:comment>

<unionOf rdf:parseType="daml:collection">

<rdfs:Class rdf:about="#Nothing"/>

<rdfs:Class>

<complementOf rdf:resource="#Nothing"/>
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</rdfs:Class>

</unionOf>

</Class>

3. Nothing: is the value of “complementOf” applied to “Thing”, i.e., “Noth-

ing” is the complement of “Thing”. The definition in DAML+OIL is:

<Class rdf:ID="Nothing">

<rdfs:label>Nothing</rdfs:label>

<rdfs:comment>The class with no things in it.

</rdfs:comment>

<complementOf rdf:resource="#Thing"/>

</Class>

4. ObjectProperty: properties that relate objects to other objects, e.g.

<daml:ObjectProperty rdf:ID="liveIn">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#Accommodation"/>

<rdfs:comment> Students live in accommodation.

</rdfs:comment>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="Upgraded">

<rdfs:domain rdf:resource="#MPhilStudent"/>

<rdfs:range rdf:resource="#PhDStudent"/>

<rdfs:comment> MPhil students will become PhD students

after upgrading.

</rdfs:comment>

</daml:ObjectProperty>

5. DatatypeProperty: properties that relate object properties to datatype

values, e.g.

<daml:DatatypeProperty rdf:ID="Age">

<rdfs:comment>Age is a DatatypeProperty whose range is xsd:decimal.

Age is also a UniqueProperty.

</rdfs:comment>

<rdfs:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger"/>

<rdfs:type rdf:resource =
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"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>

</daml:DatatypeProperty>

A class element, daml:Class, contains (part of) the definition of an object

class. A class element refers to a class name and contains zero or more following

elements.

1. subClassOf : asserts that the referred class C is a subclass of the class-

expression mentioned in the property, e.g.

<daml:Class rdf:ID="Postgraduate">

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:comment>It represents all the postgraduate students.

</rdfs:comment>

</daml:Class>

2. sameClassAs: asserts that P is equivalent to the named class, e.g.

<daml:Class rdf:ID="Sophomore">

<daml:sameClassAs rdf:resource="#2ndYearStudent"/>

</daml:Class>

3. equivalentTo: When applied to a property or a class, it has the same

semantics as the sameClassAs element, e.g.

<daml:Class rdf:ID="Overseas">

<daml:equivalentTo rdf:resource="#International"/>

</daml:Class>

4. disjointWith: asserts that referred class C is disjoint with the class expres-

sion in the property, e.g.

<daml:Class rdf:ID="Research">

<rdfs:subClassOf rdf:resource="#Postgraduate"/>

<rdfs:subClassOf rdf:resource="#Student"/>

<daml:disjointWith rdf:resource="#Taught"/>

</daml:Class>
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5.oneOf : contains a list of the objects that are its instances, e.g.

<daml:Class rdf:ID="Degree">

<daml:OneOf rdf:parseType="daml:collection">

<Degree rdf:ID="Bachelor"/>

<Degree rdf:ID="GraduateDiploma"/>

<Degree rdf:ID="Master"/>

<Degree rdf:ID="MasterByResearch"/>

<Degree rdf:ID="MPhil"/>

<Degree rdf:ID="PhD"/>

</daml:OneOf>

</daml:Class>

6. unionOf : defines the class that consists exactly of all the objects that belong

to at least one of the class expressions from the list, e.g.

<daml:Class rdf:about="Student">

<rdfs:comment> Students in a university are a union of Home/EU

and International students.

</rdfs:comment>

<daml:UnionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Home/EU"/>

<daml:Class rdf:about="#Overseas"/>

</daml:UnionOf>

</daml:Class>

7. disjointUnionOf : asserts that all of the classes defined by the class expres-

sions of a disjointUnionOf element must be pairwise disjoint, and their union must

be equal to the referred-to class, e.g.

<daml:Class rdf:about="Postgraduate">

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:comment>Each postgraduate is either a taught or a research student.

</rdfs:comment>

<daml:disjointUnionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Research"/>

<daml:Class rdf:about="#Taught"/>

</daml:disjointUnionOf>

</daml:Class>
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8. intersectionOf : defines the class that consists of exactly all the objects

that are common to all class expressions from the list, e.g.

<daml:Class rdf:ID="PhD">

<rdfs:subClassOf rdf:resource="#Postgraduate"/>

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:comment> A PhD student must have been upgraded from MPhil.

</rdfs:comment>

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#MPhil"/>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasUpgraded"/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

9.complementOf : defines the class that consists of exactly all the objects

that do not belong to the class expression, e.g.

<daml:Class rdf:ID="Undergraduates">

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:comment> Undergraduate student must not be a postgraduate student.

</rdfs:comment>

<daml:complementOf rdf:resource="#Postgraduates"/>

</daml:Class>

A.2.4 DAML+OIL Property Restrictions

A property restriction is a special kind of class expression. It implicitly defines an

anonymous class, namely the class of all objects that satisfy the restriction. So all

the restrictions are enclosed in a special subClassOf element.

There are two kinds of restrictions: ObjectRestriction and DatatypeRestriction,

working on object and datatype properties respectively.

A daml:Restriction element contains an daml:onProperty element, which

refers to a property name, and one or more of the following elements.
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1. toClass: defines the class of objects X for which it hold that if the pair (X,

Y) is an instance of P, then Y is an instance of the class expression or datatype,

e.g.

<daml:Class rdf:ID="Overseas">

<rdfs:Comment>It presents the generic terms about overseas student.

</rdfs:Comment>

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasNationality"/>

<daml:toClass rdf:resource="#NonEurope"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

2. hasValue: contains an individual object or a datatype value. If we call the

instance Y, then this property defines the class of object X for which (X,Y) is an

instance of P, e.g.

<daml:Class rdf:ID="TaughtMasterStudent">

<rdfs:Comment>It presents the generic terms about the taught

student who pursues a masters degree.

</rdfs:Comment>

<rdfs:subClassOf rdf:resource="#Postgraduate"/>

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#DegreeWillBeGained"/>

<daml:hasValue rdf:resource="#Master"/>

</daml:Restriction>

</daml:subClassOf>

</daml:Class>

3. hasClass: defines the class of object X for which there is at least one instance

Y of the class expression or datatype such that (X, Y) is an instance of P, e.g.

<daml:Class rdf:ID="PartTimeStudent">

<rdfs:Comment>Part-time students may work part-time.

</rdfs:Comment>
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<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasJob"/>

<daml:hasClass rdf:resource="PartTimeJob"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

4. cardinality: defines the class of all objects that have exactly N distinct

values for the property P, e.g.

<daml:Class rdf:ID="Research">

<rdfs:subClassOf rdf:resource="#Postgraduate"/>

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="2">

<daml:onProperty rdf:resourcee="#hasSupervisor"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

5.maxCardinality: defines the class of all objects that have at most N distinct

values for the property P, e.g.

<daml:Class rdf:ID="Student">

<rdfs:subClassOf>

<daml:Restriction daml:maxCardinality="1">

<daml:onProperty rdf:resource="#hasStudentID"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

6. minCardinality: defines the class of all objects that have at least N distinct

values for the property P, e.g.

<daml:Class rdf:ID="Student">

<rdfs:Comment>Each student should have at least one Email address.

</rdfs:Comment>

<rdfs:subClassOf>
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<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#hasEmailAddress"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

7. cardinalityQ: defines the class of all objects that have exactly N distinct

values for the property P that are instances of the class expression or datatype

(and possibly other values not belonging to the class expression or datatype), e.g.

<daml:Class rdf:ID="ResearchPostgraduate">

<rdfs:subClassOf rdf:resource="#Postgraduate"/>

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinalityQ="2">

<daml:onProperty rdf:resource="#hasSupervisor"/>

<daml:hasClassQ rdf:resource="#Supervisor"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

8.maxCardinalityQ This property defines the class of all objects that have at

most N distinct values for the property P that are instances of the class expression

or datatype (and possibly other values not belonging to the class expression or

datatype).

<daml:Class rdf:ID="StudentID">

<rdfs:subClassOf>

<daml:Restriction daml:maxCardinalityQ="1">

<daml:onProperty rdf:resource="#hasIdentify"/>

<daml:hasClassQ rdf:resource="Student"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

9. minCardinalityQ: defines the class of all objects that have at least N dis-

tinct values for the property P that are instances of the class expression or datatype

(and possibly other values not belonging to the class expression or datatype).
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<daml:Class rdf:ID="PartTimeStudent">

<rdfs:subClassOf rdf:resource="#Student"/>

<rdfs:subClassOf>

<daml:Restriction daml:minCardinalityQ="1">

<daml:onProperty rdf:resource="#hasJob"/>

<daml:hasClassQ rdf:resource="PartTimeJob"/>

</daml:Restriction>

</rdfs:subClassOf>

A.2.5 DAML+OIL Property Elements

A DAML+OIL property element contains zero or more following properties.

1. subPropertyOf : states that every pair (X, Y) that is an instance of P is

also an instance of the named property, e.g.

<daml:ObjectProperty rdf:ID="hasSon">

<rdfs:subPropertyOf rdf:resource="#hasChild"/>

<rdfs:domain rdf:resource="#Human"/>

<rdfs:range rdf:resource="#Male"/>

</daml:ObjectProperty>

2. domain: asserts that the property P only applies to instance of the class

expression of the property. It is already used in the above example.

3. range: asserts that the property P only assumes values that are instance of

the class expression of the property. See the example of subPropertyOf.

4. samePropertyAs: asserts that P is equivalent to the named property,

which allows us to establish synonymy, e.g.

<daml:ObjectProperty rdf:ID="hasSupervisor">

<daml:samePropertyAs rdf:resource="#hasAdvisor"/>

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#Supervisor"/>

</daml: ObjectProperty>
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5. inverseOf : asserts that P is the inverse relation of the named property, then

the pair (Y, X) is an instance of the named property.

<daml:ObjectProperty rdf:ID="hasChild">

<daml:inverseOf rdf:resource="#hasParent"/>

<rdfs:domain rdf:resource="#Human"/>

<rdfs:range rdf:resource="#Human"/>

</daml: ObjectProperty>

6. TransitiveProperty: is the subclass of ObjectProperty. This asserts that

P is transitive if the pair(X, Y) is an instance of P, and the pair(Y, Z) is an instance

of P, then the pair(X, Z) is also an instance of P. e.g.

<daml:TransitiveProperty rdf:ID="hasAncestor">

<rdfs:domain rdf:resource="#Human"/>

<rdfs:range rdf:resource="#Human"/>

</daml:TransitiveProperty>

7. UniqueProperty: asserts that P can only have one (unique) value Y for

each instance X, i.e., each subject uniquely identifies the object (value) of the

property. e.g.

<daml:UniqueProperty rdf:ID="hasFather">

<rdfs:subPropertyOf rdf:resource="#hasParent"/>

<rdfs:domain rdf:resource="#Human"/>

<rdfs:range rdf:resource="#Male"/>

</daml:UniqueProperty>

8. UnambigousProperty: is a subclass of ObjectProperty, which asserts that

an instance Y can only be the value of P for a single instance X, that means a

property whose object uniquely identifies its subject. So the inverse property of a

UniqueProperty is always an UnambigousProperty and vice versa. e.g.

<daml:UnambigousProperty rdf:ID="isFather">

<daml:inverseOf rdf:resource="#hasFather"/>

<rdfs:domain rdf:resource="#Male"/>

<rdfs:range rdf:resource="#Human"/>

</daml:UnambigousProperty>
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A.2.6 Instances

Instances of both classes (i.e., objects) and of properties (i.e., pairs) are written in

RDF and RDF Schema syntax, e.g.

<Home/EU rdf:ID="UKStudent">

<rdfs:label>UKStudent</rdfs:label>

<rdfs:comment>UKStudent is Home/EU student.</rdfs:comment>

</Home/EU>

<International rdf:ID="AsiaStudent">

<rdfs:label>AsiaStudent</rdfs:label>

<rdfs:comment>AsiaStudent is international student.</rdfs:comment>

</International>

The following two elements are used when stating two instances are same or

distinct.

1. sameIndividualAs: is used to state that instance objects are the same.

Note that equivalentTo can be also used here, but the former is preferred since it

is exclusive for the identical instance object, e.g.

<Postgraduate rdf:ID="HY Yi">

<rdfs:label>HY Yi</rdfs:label>

<rdfs:comment>HY Yi is a postgraduate student.</rdfs:comment>

<hasIDNumber><xsd:String rdf:value="a261008"/></hasIDNumber>

</Postgraduate>

<Postgraduate rdf:ID="Ellen Yi">

<rdfs:label>Ellen</rdfs:label>

<rdfs:comment>Ellen is HY Yi’s English name.</rdfs:comment>

<daml:sameIndividualAs rdf:resource="#HY Yi"/>

</Postgraduate>

2. differentIndividualFrom: is used to state that instance objects are dis-

tinct, e.g.

<Student rdf:ID="Adam">

<rdfs:label>Adam</rdfs:label>

<rdfs:comment>Adam is a student.</rdfs:comment>

<hasIDNumber><xsd:String rdf:value="a123456"/></hasIDNumber>

<daml:differentIndividualFrom rdf:resource="#Ellen"/>

</Student>
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Data Description

B.1 Adult Data Set

The Adult data set in UCI data repository is extracted from the 1994 and 1995

current population surveys conducted by the U.S. Census Bureau. It contains

information on various individuals, such as education, marital status, occupation,

etc. Particularly, the income information is simply recorded as either more than

$50K or less than $50K.

Given this information, some data mining tasks can be carried out, for example,

clustering or classification. In this thesis, we are interested in finding the classi-

fiers for prediction, which could identify whether a person’s earning exceeds $50K

according to all the other information. This prediction is very practical for some

government agencies, e.g. the taxation bureau to detect fraudulent tax refund

claims.

189
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B.1.1 Attributes

Table B.1 lists all the 14 attributes as well as their possible values. Attribute

Fnlwgt1 is a weight determined by considering people’s demographic characteristics.

*Class presents the person’s income.

B.1.2 Distribution

The original Adult data is randomly split into train and test data, accounting for

2/3 and 1/3 respectively. The distribution of instances for the target class is shown

in table B.2.

B.1.3 Missing and Unreliable Data

The attribute Workclass, Occupation, and Native-country contain missing data,

marked by “?” in records. There are a total of 3620 records contain missing

values.

Besides the missing values exist in data, following unusual cases also catch our

attention.

1. If the value of attribute Relationship is either “Husband” or “Wife”, there is

a clear one-to-one correlation between these two values and the ones of at-

tribute Sex. That is, “Husband” should correspond to “Male”, and “Wife”

corresponds to “Female”. But there are two records have the opposite cor-

respondence, which may be due to recording mistake.

2. There are 148 records, with 0.49% occurrences in the training data, have the

maximum value of “99999” for attribute Capital-gain. If observing the distri-

bution of the values of this attribute, we find there is a great gap between

the second largest value, which is 41310, and the maximum value. So this is

1See ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/adult.names for detail.
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Table B.1: The Attributes of Adult Data Set

No.
Attribute Values Distinct

Values
Age In the range [17,90] 72
Fnlwgt In the range [13492,1490400] 20,263
Capital-gain In the range [0,99999] 118
Capital-loss In the range [0,4356] 90
Hours-per-week In the range [1,99] 94
Workclass Self-emp-not-inc, Self-emp-inc, Federal-gov, 7

Local-gov, State-gov, Private, Without-pay.
Preschool, 1st-4th, 5th-6th, 7th-8th, 9th,

Education 10th, 11th, 12th, HS-grad, Assoc-acdm, 16
Assoc-voc, Some-college, Prof-school,
Bachelors, Masters, Doctorate.
Married-civ-spouse, Divorced, Never-married,

Marital-status Separated, Widowed, Married-spouse-absent, 7
Married-AF-spouse.
Tech-support, Craft-repair, Handlers-cleaners,
Exec-managerial, Prof-specialty, Other-service,

Occupation Sales, Machine-op-inspct, Transport-moving, 14
Armed-Forces, Admclerical, Priv-house-serv,
Farming-fishing, Protective-serv.

Relationship Wife, Own-child, Husband, Not-in-family, 6
Unmarried, Other-relative.

Race Asian-Pac-Islander, Amer-Indian-Eskimo, 5
White, Black, Other.

Sex Male, Female. 2
United-States, Cambodia, England, Germany,
Puerto-Rico, Outlying-US(Guam-USVI-etc),
Greece, Canada, Japan, India, South, China,
Cuba, Iran, Honduras, Poland, Jamaica, Peru,

Native-country Portugal, Ireland, Italy, Dominican-Republic, 41
Philippines, Mexico, Ecuador, Taiwan, Haiti,
Guatemala, Nicaragua, Scotland, Yugoslavia,
El-Salvador, France, Trinadad&Tobago, Laos,
Columbia, Thailand, Vietnam, Hong, Hungary,
Holand-Netherlands.

*Class “<= 50K”, “> 50K”. 2
(Target Class)
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Table B.2: Target Class Distribution

Data set Target Class % Records

Train (with missing) ≤ 50K 75.91 24,720
Train (with missing) > 50K 24.09 7,841

Test (with missing) ≤ 50K 76.38 12,435
Test (with missing) > 50K 23.62 3,846

an unusual value, and it could be an assigned value for missing data, or the

maximum possible value representing a real value which is equal or greater

to it.

3. There are 68 records, with 0.23% occurrences in the training data, have the

value less than 20 for attribute Hours-per-week and 0 for Capital-gain, but

belong to class “>50K”.

All these records could be considered as unreliable data or outliers, and need

to be checked with the domain expert. However, for the experiments undertaken

in this thesis, these records and attribute values will still be used, but the records

with missing values will be removed.

B.2 Mushroom Data Set

TheMushroom data set was obtained by mushroom records drawn from the Audubon

Society Field Guide to North American Mushrooms [85], and was donated to the

UCI repository by Jeff Schlimmer.

This data set includes descriptions of hypothetical samples corresponding to

23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525).

Each species is identified as definitely edible, definitely poisonous, or of unknown

edibility and not recommended. This latter class was combined with the poisonous
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one.

B.2.1 Distribution

There are totally 8,124 instances in Mushroom data set, and table B.3 lists the

instance distribution in two classes.

Table B.3: Target Class Distribution

Target Class % Records

edible 51.8 4208
poisonous 48.2 3916

B.2.2 Attributes

Table B.4 lists all the 22 attributes as well as their possible values. *Class presents

whether it is edible or poisonous.

B.2.3 Missing Data

Only one of the attributes, Stalk-root, contains missing values. There are 2,480

missing values for this attribute, accounting for 30.5% of the total values.
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Table B.4: The Attributes of Mushroom Data Set

No.
Attribute Values Distinct

Values
cap-shape bell, conical, convex, flat, knobbed, sunken 6
cap-surface fibrous, grooves, scaly, smooth 4
cap-color brown, buff, cinnamon, gray, green, pink, purple

red, white, yellow 10
bruises? bruises, no 2
odour almond, anise, creosote, fishy, foul, musty, none

pungent, spicy 9
gill-attachment attached, descending, free, notched 4
gill-spacing close, crowded, distant 3
gill-size broad, narrow 2
gill-color black, brown, buff, chocolate, gray, green, orange

pink, purple, red, white, yellow 12
stalk-shape enlarging, tapering 2
stalk-root bulbous, club, cup, equal, rhizomorphs

rooted, missing=? 7
stalk-surface-above-ring fibrous, scaly, silky, smooth 4
stalk-surface-below-ring fibrous, scaly, silky, smooth 4
stalk-color-above-ring brown, buff, cinnamon, gray, orange, pink

red, white, yellow 9
stalk-color-below-ring brown, buff, cinnamon, gray, orange, pink

red, white, yellow 9
veil-type partial, universal 2
veil-color brown, orange, white, yellow 4
ring-number none, one, two 3
ring-type cobwebby, evanescent, flaring, large, none

pendant, sheathing, zone 8
spore-print-color black, brown, buff, chocolate, green, orange

purple, white, yellow 9
population abundant, clustered, numerous, scattered

several, solitary 6
habitat grasses, leaves, meadows, paths, urban

waste, woods 7
*Class edible, poisonous. 2
(Target Class)


