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Abstract 

Biocatalysts can offer advantages over traditional chemical methodologies in the synthesis of fine 

chemicals but their usage in synthesis remains rare; this can be attributed to a lack of available 

useful biocatalysts, limited substrate scope and poor enzyme stability under harsh chemical 

conditions. There is scope to develop new robust biocatalysts with novel, useful reactivities and also 

to improve the stability of existing enzymes.  

In Nature microorganisms protect themselves from harsh conditions by forming robust multi-cellular 

communities known as biofilms, there is potential to use these structures as robust biocatalysts. 

This thesis details the development of a novel method of engineered biofilm formation by spin-

coating cultures of the biofilm producing E. coli strain PHL644 onto glass microscope slides. This 

technique proved to be fast and reproducible and compared favourably with traditional methods 

and also enabled detailed analysis of the maturation of the biofilm using various microscopy 

techniques. 

Spin coating a strain of E. coli PHL644 that overexpressed the enzyme tryptophan synthase from 

Salmonella typhimurium enabled the assessment of the biocatalytic potential of the spin-coated 

biofilm to perform the PLP-dependent biotransformation reaction between haloindole and L-serine 

to form enantiomerically pure L-halo-tryptophan. The biofilm demonstrated improved yields and 

increased catalytic longevity compared to an equivalent amount of planktonic cells, cell free extract 

or immobilised pure enzyme. 

Additionally, research was also carried out into the expression and over-production of the flavin-

dependent halogenase PrnC. The ability of PrnC to regio-specifically incorporate a chlorine atom 

during Pyrrolnitrin biosynthesis is a feat not easily reproduced by traditional chemical techniques; 

therefore this enzyme represents a potentially powerful new tool for biocatalysis. The enzyme 

proved to be very difficult to produce in E. coli but numerous attempts were made to optimise 

production and purification, providing sufficient amounts of semi-pure protein to test enzyme 

activity with two substrate analogues. 
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Chapter ONE 1 

Chapter 1:  

Background: Utilising Biological Catalysts 

1.1 The role of biological catalysts in chemical synthesis 

Organisms may be thought of as biological factories, capable of synthesising all manner of 

complicated products from the simplest of starting materials. The idea of harnessing this intrinsic 

manufacturing ability of Nature is not a new one; microbial cells and enzymes have been used in the 

production of foods since ancient times. However it has only been in the last few decades that the 

potential of biology has been explored in the arena of chemical synthesis. 

Over 3000 different enzymes have been identified to date1 and many of them have already been 

exploited for organic synthesis. Most common examples include the use of acylases and lipases in 

the production of optically pure amino acids and alcohols from racemic mixtures and the production 

of bulk chemicals such as the nitrile hydratase catalysed formation of acrylamide from acrylonitrile.1 

The discovery that some enzymes such as lipases can be used with organic solvents and in solid 

phase has further encouraged the integration of such biological catalysts into the synthetic chemists 

tool kit.2 

Biocatalysts can offer several advantages over traditional chemical methodologies. Evolution has 

optimised enzymes to perform a specific task and therefore they can act as very efficient catalysts 

with associated rate enhancements (as much as 1012).3 There is also an increasing trend in the 

chemical industry towards greener, more environmentally benign processes and enzymes provide 

the facility to perform complex reactions under mild, often aqueous conditions generating waste 

products that require no special treatment; this contrasts with traditional chemical synthesis 

involving high temperatures, organic solvents and often hazardous reagents and catalysts. 

The main reason behind current utilisation of biocatalysts however is the high degree of regio-, 

stereo- and enantio-selectivity that enzyme reactions provide. This selectivity is due to the way in 

which enzymes control the environment in which the reactions take place; often limiting the number 

of reactive options by preventing access of reagents to peripheral functional groups.3 With 

traditional chemistry, selectivity relies on differing reactivity rates of functional groups and the use 

of tedious protecting and de-protecting steps to block reagent access to sites prone to reaction.4 

The disadvantages of enzymes include their instability when isolated as activity very often is reliant 

on maintaining a specific folded structure. Enzymes are highly optimised and although many exhibit 
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broad substrate specificity it is still hard to predict how even a well characterised enzyme will 

catalyse the conversion of an unnatural substrate. Enzymes such as oxidoreductases also require 

expensive cofactors that need to be recycled and the overproduction of enzymes and fermentation 

processes can involve skills not present in chemistry laboratories. Some of these problems can be 

overcome by using whole cells rather than isolated enzymes and by utilising directed evolution 

techniques to enhance activity, broaden substrate specificity and improve stability.5, 6 

Despite widespread research the number of biocatalysts used for synthesis remains small; this can 

be attributed to a lack of available useful biocatalysts, limited substrate scope and operational 

stability.6 It is therefore important to identify and develop robust enzymes with potentially useful 

applications and to improve stability of existing enzymes. Enzyme stability can be improved by 

increasing the structural rigidity by directed evolution and/or multipoint immobilisation (see Mateo 

20077 and Hernandez 20118 for recent reviews). Problems can arise, however, when these 

techniques used to improve stability lead to poorer catalytic performance. Enzymes are fluid in 

nature and often go through rapid and precise changes in structure during catalysis. Too much 

conformational stability restricts this protein movement and therefore activity.9 Enzymes tend to 

have optimised activity for the physiological temperature of the producing organism, balancing the 

conformational rigidity needed for the environment whilst allowing as much flexibility for catalysis as 

possible.10 Rather than pursue directed evolution strategies to obtain stability at the cost of 

performance, it may perhaps be advantageous to examine robust enzyme casings instead that 

protect the enzyme from less ideal environments. In this arena nature has provided a method of 

protecting biological systems from harsh environments: the biofilm. 

1.2 Biofilms 

1.2.1 Biofilm characteristics 

The archetypal image of bacteria is one of individual, single celled microorganisms existing in free 

floating, planktonic form. However in nature bacteria are predominantly found in surface-attached 

multicellular aggregates known as biofilms.11  In the process of biofilm formation, microorganisms 

make a shift from the classic unicellular paradigm to a state that is analogous to a more complex 

organism where single cells make up part of a greater whole. While biofilm formation was once 

thought to only be in the repertoire of a few specific species, it is now considered to be a near 

universal trait, often with many different species co-existing within a single community. Despite the 

prevalence of these biofilms the actual structure and construction vary enormously with factors such 
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as participating species and the environment influencing formation. In spite of this diversity two 

characteristics have been assigned that define a biofilm: 

The primary characteristic is that the participating cells are surrounded by an extracellular matrix 

that is produced by the cells themselves. This ECM is composed of numerous compounds which are 

known collectively as the EPS. The composition of this matrix varies significantly from species to 

species. Approximately 97% of the ECM is composed of water with the rest made up from a mix of 

secreted polymers, absorbed nutrients, metabolites and products from cells that have lysed.12  Of 

the secreted polymers the most ubiquitous are high molecular weight sugars known as 

exopolysaccharides. It is from these sugars that the EPS derives its name. In addition to these 

polysaccharides, proteins and nucleic acids also form a part of the EPS; because of this the EPS 

acronym can also stand for extracellular polymeric substances. The EPS plays a significant role in 

protecting the enclosed cells from external threats including host defences and also acts as a 

diffusion barrier for toxic molecules. The high percentage of water also potentially offers a hydrating 

shell that protects the bacteria from desiccation.13 

The secondary characteristic is that biofilm development is triggered by extracellular signals. These 

signals include environmental factors and self-produced signalling molecules called autoinducers 

(quorum sensing). This second biofilm attribute is just as diverse as the first with multiple pathways 

in different species, although similar adhesion molecules that promote biofilm formation are found 

in many microorganisms.14 This process is discussed in more detail in section 1.2.3. 

Biofilms in nature often exhibit vast population differences within them and not just because they 

are generally found as a mix of different species. Even single species biofilms that have arisen from a 

single cell often reveal distinct sub-populations. These differences are due to the bacterial cells 

adapting to growth in their individual environment and variations in the extracellular conditions can 

trigger differential gene expression.15 Much of the heterogeneity within biofilms can be explained by 

differences in the chemical environment that exists inside them, particularly involving concentration 

gradients of substrates, products, oxygen or electron acceptors.16 For example in Pseudomonas 

aeruginosa biofilms the activity of oxygen-dependent alkaline phosphatase has been used to show 

that oxygen only penetrates the outer regions of the biofilm.17 This lack of internal available oxygen 

is not just caused by poor diffusion. The matrix is mostly made of water and it has been shown that 

oxygen can diffuse through this at a rate that is 60% of the rate in pure water.18 The lack of oxygen in 

the lower levels is due to the ratio between the amount of oxygen diffusing through the biofilm and 

the rate that it is being respired by cells along the way. Oxygen never reaches the base because it is 

effectively being used up quicker than it can be replaced.15  
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In contrast to this, metabolites accumulate inside the biofilm with lower concentrations on the 

outside. A simple model of a facultative anaerobe where oxygen and nutrients are able to penetrate 

the whole biofilm predicts at least three different states that member cells can live in. The surface 

residing cells inhabit a niche that is replete with both oxygen and substrates and are therefore able 

to grow aerobically. Several layers down the oxygen starts to become depleted but substrates are 

available so the organism grows anaerobically. At the base both oxygen and substrates are limited 

and metabolites are accumulated. These cells are unable to exist normally and would become 

dormant or begin to die.15 Planktonically grown aerobic cultures are constantly provided with 

oxygen; in this case it is the substrate that becomes limited during stationary phase. This high 

oxygen, low substrate state is not present inside the biofilm and has been suggested to explain why 

planktonic cells exhibit a different range of phenotypes than biofilm entrapped cells (also in a 

pseudo stationary phase).15 In a similar fashion, observing DNA and protein synthesis in 

Staphylococcus aureus biofilms grown on agar led to the discovery that in this system metabolic 

activity was occurring only at the surface and the base of the biofilm where the cells were exposed 

to either oxygen or nutrients. The study indicated that roughly two thirds of the biofilm was 

metabolically inactive.19 It is these micro-environments inside the biofilm (which are likely to be 

much more complicated in practise) that give rise to the observed high levels of biofilm 

heterogeneity. 

1.2.2 General models of biofilm formation 

To facilitate the general modelling of biofilm formation, microorganisms can be grouped into two 

classes based on their planktonic state: motile and non-motile. These categories differentiate 

between bacteria that are capable of self propulsion (through propeller like structures such as 

flagella) and those that rely on passive processes like Brownian motion. Separate models exist that 

generalise how these two classes of bacteria form biofilms. 

Biofilms form at the interface of surfaces and initial bacterial attachment to this surface is the 

essential first step in forming a biofilm. In the case of non-motile bacteria movement speed and 

direction is controlled by external factors, therefore when a bacteria comes across a surface it needs 

to act fast if it wants to stick. Hence when conditions are right for biofilm formation, individual 

bacteria increase the expression of adhesion molecules, such as fimbriae, on the cell surface. These 

hair-like structures are short pili fibres that can promote adhesion to either a surface or to other 

bacterial cells already immobilised. By pre-expressing these surface features the bacteria cell stands 

an increased chance of adhesion upon contact with a surface or other surface bound organisms (see 

figure 1.1). An example of this can be found in some staphylococcal species where a large 
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Motile bacteria do not have to rely on chance guiding them to a surface. Locomotive structures such 

as flagella allow them to move directly to a surface. Once localised adjacent to a surface, motility is 

lost and ECM components are synthesised. The initial surface attachment is recognised as the first of 

five distinct stages of motile bacterial biofilm formation.22 At this stage the process is still reversible 

and the cell can either return to a planktonic state or switch to a biofilm mode. Once sufficient 

bacteria have attached to a surface a monolayer is formed, this is described as the second stage. The 

third stage involves migration of colonies within the monolayer to form multi-layered microcolonies. 

The fourth stage is marked by the production of ECM components. Finally a mature biofilm forms 

with characteristic three dimensional structures including the distinctive mushroom shaped colonies 

that are a hallmark of biofilms. This is a generalised view of biofilm formation and it is possible for 

these steps to occur in a different order or simultaneously. For example ECM production usually 

occurs throughout all the stages following the initial attachment. 

The locomotion that flagella provide is significant to biofilm formation. Flagella negative mutants of 

Listeria monocytogenes are defective in biofilm formation.23 The action of the flagella is thought to 

enable bacteria to overcome repulsive electrostatic and hydrodynamic forces found around surfaces 

in order to make that initial surface connection. Initial surface attachment of these mutants can be 

restored by gently pushing the cells toward the surface via centrifugation but full biofilm maturation 

is not seen, suggesting that motility not only influences initial surface attachment but also 

maturation.23  Computer models have also shown that motility plays an important role in the 

formation of the three dimensional morphology within a biofilm.24 The models revealed patterns 

also observed in real life Pseudomonas aeruginosa biofilms and illustrate that non-motile bacteria 

tend to form round colonies whilst motile cells form flat, spread out biofilms. The formation of the 

distinctive mushroom shaped structures are thought to offer motile cells an advantage by becoming 

less affected by mass transfer limitations. The emergence of channels within the surface of a biofilm 

allows the penetration of resources (including water and oxygen) down into the lower echelons of 

the film. The formation of mushroom colonies are driven by substrate concentrations with substrate 

limited bacteria detaching from the biofilm and migrating to an area with higher resources before 

reattaching. The driving force of this movement seems to be twitching motility, a process driven by 

type IV pili fibres, where cells use the small hair-like appendages on the cell surface to drag 

themselves forward, although the flagella may also play a role.24 Studies with E. coli have provided 

additional evidence for the importance of motility for biofilm maturation. Indole is a common 

interspecies signalling molecule and has been shown to repress cell motility in E. coli. Biofilms 

formed in the presence of indole show a shift from the scattered towers seen in its absence to much 

flatter colonies with none of the three dimensional architecture.25 
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In many gram-negative organisms, such as P. aeruginosa, quorum sensing is mediated by a class of 

compounds known as N-acyl-L-homoserine lactones (AHLs). Many species produce compounds in 

this family but variations in the chain length provide signals that are species specific. Some example 

compounds can be seen in figure 1.2A. 

Quorum Sensing was first observed with the bioluminescent marine bacterium Vibrio fischeri and 

the mechanism of this system provides the classic example of quorum sensing which can be applied 

to most gram-negative bacteria (figure 1.2).28 This species of bacteria colonise the light organ of the 

Hawaiian Bobtailed squid. In this organ they grow to high cell densities and induce the expression of 

genes required for bioluminescence. In a case of symbiosis the squid uses the counter-illumination 

to mask its shadow, while the nutrient rich organ allows the bacteria to proliferate in numbers 

unachievable in sea water. This bacterium contains the operon for the luminescent protein 

luciferase (luxICDABE). Expression of this operon is controlled by two proteins: LuxI (autoinducer 

synthase) and LuxR (cytoplasmic autoinducer receptor/DNA binding transcriptional activator). The 

AHL produced by LuxI diffuses out of the cell and AHL extracellular concentration increases with 

increased cell density. At a specific critical concentration AHL binds to LuxR and transcriptional 

activation of the operon proceeds, leading to bioluminescence. The LuxR-AHL complex also induces 

expression of luxI in a positive feedback mechanism which produces more signal.27 

Crystal structures obtained of LuxR type proteins suggest that they possess a specific acyl-binding 

pocket that only permits each LuxR to bind and be activated by its cognate signal.29 Similarly the AHL 

synthases possess an acyl binding pocket that fits a particular side chain. The specificity of each LuxI 

and each LuxR means that in a mixed species environment, with multiple AHL signals, each species 

can distinguish and respond to the correct signals.30 

P. aeruginosa possesses two quorum sensing systems known as las and rhl. Both these systems have 

their own AHL synthase (LasI and RhlI) and transcriptional regulator (LasR and RhlR) and are both 

involved in cell adhesion, biofilm formation and virulence factor expression. Expression of the RhlI 

synthase is activated by the Las pathway, meaning that this must occur before Rhl pathway can be 

activated. This produces a temporally ordered sequence of gene expression that may be critical for 

ordering of early and late events required for successful infection (see figure 1.3). Analysis of gene 

expression demonstrates that some genes respond to one of the inducers while some require 

both.31 Both of these quorum sensing systems have been shown to be important to biofilm matrix 

production and structure. Deletion of the las pathway leads to flat, unstructured biofilm32 while 

deletion of the rhl pathway makes P. aeruginosa biofilms less resistant to antibiotic treatments.33 
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produces lasI which diffuses outside of the cell (red triangles). When the extracellular concentration 

is great enough the AHL can bind to the transcriptional regulator LasR. As well as switching on 

and induces the transcription of 

s in a similar fashion. Diagram reproduced from 
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contain lactone and thiolactone rings, lanthionine and isoprenyl groups. These peptides are not able 

to diffuse across the membrane like AHL signals, so the system utilises a two-component, membrane 

bound histidine kinase receptor to detect the quorum signal. Signal transduction is transferred via a 

phosphorylation cascade that influences the activity of DNA-binding transcriptional regulators which 

control the downstream regulon (for review see Waters 2005).27 

Organism 
Disabled 
AHL 
Pathway 

Effect on Biofilm Reference 

Aeromonas hydrophila ahy Defective maturation 
of biofilm 

Lynch et al. 200234 

Burkholderia cenocepacia cep More susceptible to 
ciprofloxacin 

Huber et al. 200135 

 cci More susceptible to 
SDS* 

Tomlin et al. 200536 

Pseudomonas aeruginosa las Flat, unstructured 
biofilm. More sensitive 
to SDS* 

Davies et al. 199832 

 rhl More susceptible to 
tobramycin and H2O2 

Bjarnsholt et al. 200533 

Pseudomonas putida ppu Formation of a more 
structured biofilm 
with distinct 
microcolonies and 
water channels. 

Steidle et al. 200237 

Serratia liquefaciens swr Thinner biofilm, 
lacking cell aggregates 

Labbate et al. 200438 

Serratia marcescens swr No biofilm dispersal Rice et al. 200539 
    * SDS susceptibility indicates less developed EPS structure 

Table 1.1: Effect of disabled AHL quorum sensing pathways on biofilm formation. Table adapted 

from Irie (2008)40 

The S. aureus quorum sensing system is regulated by the Agr operon. A diagram of the whole 

quorum sensing pathway can be seen in figure 1.4. The signalling peptide AIP is encoded by the agrD 

gene. There are four variations of AIP peptide (see figure 1.4) and four corresponding strains of S. 

aureus depending on which AIP they produce. The peptide product is exported and modified by AgrB 

and detected by the histidine kinase AgrC. This triggers the phosphorylation of AgrA which induces 

the production of further AgrD in a positive feedback loop similar to the AHL pathways. 

Phosphorylated AgrA also activates regulatory gene RNAIII. This leads to downstream effects 

including the repression of cell adhesion factors.41 Through this pathway S. aureus biofilm formation 

is favoured at low cell density. Cells inside a biofilm are benign and not pathogenic. Once the 

concentration of bacteria has reached critical numbers for the quorum sensing pathway to activate, 
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Diagram showing the sequence of events leading to activation of RNAIII. The 

(AIP) is transported out of the cell and modified by the AgrB exporter. Once the extracellular 

concentration of AIP has reached a threshold concentration a phosphorylation cascade is

upon AgrC binding that leads to upregulation of the Agr genes and RNAIII. Images taken from Waters 

2005.27 
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component histidine kinase quorum sensing regulatory system of S. aureus. 

Structures of the four different AIP peptides that different strains of S. aureus produce. (B) 

sequence of events leading to activation of RNAIII. The agrD gene product 

(AIP) is transported out of the cell and modified by the AgrB exporter. Once the extracellular 

concentration of AIP has reached a threshold concentration a phosphorylation cascade is trigged 

upon AgrC binding that leads to upregulation of the Agr genes and RNAIII. Images taken from Waters 
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n of toxins and proteases required for dissemination are switched on. The 

vast numbers of deadly pathogens that can overwhelm a host immune system. In this 

case biofilm development is a way of assembling the troops for a large scale attack and quorum 

sensing is used as the method to control dissemination at the optimum time. 
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1.2.4 Escherichia coli biofilms 

  1.2.4.1  Biofilm formation in Escherichia coli 

Escherichia coli are gram negative rod shaped bacteria that are very commonly found in the 

intestinal tract. Importantly it is a well studied model organism and cultivated strains like E. coli K-12 

are routinely used in all aspects of biology and biotechnology. E. coli was an original test bed for the 

first work on recombinant DNA and is very commonly used for the heterologous expression of 

proteins. Wild type strains are generally harmless and exist in the gut as components of mixed 

species biofilms. Attenuated lab strains however have lost the ability to form biofilms. 

Wild type E. coli is a motile bacterium and therefore initial adhesion is dependent on flagellum. This 

dependency can however be circumvented.  In a non-motile strain of E. coli K-12 (PHL644) that over-

expresses curli surface adhesin fibres, it has been shown that flagella are dispensable for initial 

attachment and biofilm maturation.42 Curli fimbriae are heteropolymeric proteinaceous fibres that 

are known to play a role in cell adhesion. These fibres aggregate at the cell surface to form 

structures with diameters in the range of 6-12 nm. They can reach up to 1 µm in length. As well as 

being demonstrated to play a role in attaching ECM components such as fibronectin, laminin and 

plasminogen (which enables E. coli to adhere to human cells)43, they have also been shown to 

promote cell-cell and cell-surface interactions.42 

The genes encoding production of curli are present in two operons. The csgBA operon encodes the 

structural components such as curlin (major element of curli) while the csgDEFG operon codes for 

the transcriptional regulator csgD and the apparatus to export the fibres to the exterior of the cell 

(csgE-G).44 Expression of these genes is controlled by the OmpR/EnvZ two-component regulatory 

system which is responsible for sensing the osmolarity of the environment. Vidal and co-workers 

observed that, although K-12 E. coli does not generally form biofilms, when grown in continuous 

culture mutants eventually emerge that visibly adhere to the wall of the culture vessel. It was from 

one of these strains that the PHL644 mutant was developed.42 It was established that this curli over-

producing mutant contained a single point mutation (L43R) in the OmpR gene (OmpR234). This 

mutation improves the binding of the regulator to the csgD promoter region and up regulates the 

transcription of csgD. The OmpR234 mutation switches on curli production at much higher levels of 

osmolarity than with the normal laboratory strains of E. coli. With the normal strains the osmolarity 

of the environment has to be exceedingly low before the curli genes are switched on and as a 

consequence the fibres are never seen under lab conditions. As mentioned above the appearance of 

these adhesive fibres is sufficient for mutant K-12 E. coli strains to form thick biofilms in the absence 
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of flagella. Indeed even in strains with active flagella, disruption in the ability to produce these fibres 

results in a 50% decrease in biofilm formation.45 Interestingly the csgD gene that codes for the curli 

structural genes is also involved in the production of cellulose, which forms part of the E. coli EPS. 

Like staphylococcal bacteria another common constituent of the E. coli EPS is β-1,6-N-

acetylglucosamine (β-1,6-GlcNAc) which acts as an adhesin that stabilises the biofilms of many 

species. Treatment of E. coli biofilms with enzymes that degrade this polymer results in almost total 

dispersion, indicating the essential nature of the ECM. 

Other studies have shown that E. coli strains bearing the conjugative plasmid IncF (increases the 

frequency of sex pili on the cell surface) are able to form biofilms despite being deficient in flagella, 

fimbriae and curli.46 These findings seem to suggest that it is possible for motile bacteria to form 

biofilms in the absence of flagella as long as there are sufficient adhesins present on the cell exterior 

to overcome repulsive surface forces. In this case the initial attachment closely resembles the 

techniques employed by wild type non-motile bacteria. 

1.2.4.2  Role of signalling in Escherichia coli biofilm formation 

E. coli is not known to produce AHL signalling molecules and has no AHL synthase-like proteins in its 

genome.13 It does however contain a gene, SdiA, which encodes a protein in the LuxR family. 

Knockout mutants of this gene produce three times less biofilm than the wild type equivalent.47 The 

exact environmental conditions that lead to activation of SdiA are not yet known but the likelihood is 

that although E. coli cannot produce its own AHL signals it is able to detect quorum sensing 

molecules released by other species, perhaps allowing it to respond to signals from other bacteria in 

mixed species biofilms. 

E. coli does however use other signalling molecules to mediated biofilm forming ability independent 

of quorum sensing pathways. Perhaps the most important of these is indole. This is produced inside 

cells in two ways. The first is derived from indole-3-glycerol phosphate during the biosynthesis of 

tryptophan in the α-subunit of the enzyme tryptophan synthase. This indole is consumed by the β-

subunit of the same enzyme and is consequently never free in solution.48 The second pathway 

produces indole during the degradation of tryptophane by the enzyme tryptophanase.49 Indole has 

been shown to play a role in numerous signalling pathways50 but specifically it also plays a somewhat 

ambiguous role in biofilm formation.25 Studies using global transcriptome analyses, confocal 

microscopy, isogenic mutants and dual-species biofilms have shown that indole is a non-toxic signal 

that represses motility in E. coli via the autoinducer-I quorum sensing pathway controlled by the 

SdiA gene.25 Motility is very important both for initial biofilm formation and for the migration of 
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colonies inside biofilms along concentration gradients (the causal event behind mushroom colony 

formation). E. coli biofilms grown in the lab supplemented with 500 µM indole show reduced biofilm 

formation and flat colonies compared to the scattered towers found without addition of indole.  

Conversely however it has also been demonstrated that bacterial species that possess the 

tryptophanase gene (breaks down tryptophan into indole) show enhanced biofilm forming ability. Di 

Martino and co-workers found that a strain carrying a mutation in tnaA, the gene that encodes 

tryptophanase, presented a decreased tendency to form biofilms, a feature that was attenuated 

with the addition of physiological concentrations of indole.51 Transcriptome analysis of this mutant 

found repression of seven different genes associated with motility. So in this case indole seems to 

increase cell motility when fed to this mutant strain. Therefore there seems to be evidence that 

indole can both repress and enhance biofilm formation depending on concentration but in both 

instances it is decreased cell motility that actually leads to reduced biofilm formation. 

Interestingly indole has been seen to stimulate biofilm formation in P. aeruginosa in mixed species 

biofilms with E. coli. Mirroring the presence of AHL receptors in E. coli, this species of Pseudomonas 

does not synthesise indole itself but is able to respond to the production of it in others. The fact that 

it seems to have the opposite reaction (enhancing biofilm formation rather than reducing it) opens 

up the possibility that different species can use these signals to control the population of different 

bacteria.25 Signalling therefore is extremely important to biofilm formation and regulation. 

Understanding it holds the key to creating or combating biofilms at will. 

1.2.5 Mechanisms of biofilm resistance 

There has been significant research into the formation and regulation of biofilms but this has 

historically been motivated by the significant problems they represent to industry and medicine. 

Their robust nature makes them difficult to remove from surfaces and they have been implicated in 

the corrosion of water pipes and industrial reactor fouling.52 Perhaps more importantly is their 

involvement in pathogenesis and infection which is exacerbated by their observed enhanced 

resistance to antibiotics. They are recognised to be involved in a plethora of medical conditions such 

as periodontitis, cystic fibrosis pneumonia, recurrent tonsillitis and chronic wound infections.53 Cells 

within biofilms have been seen to exhibit up to a 1000 fold increase in antibiotic resistance 

compared to the planktonic equivalent.54 The general mechanisms that afford biofilms with this 

increased resistance can be divided into two categories: innate and induced resistance. 

Structural features of the biofilm itself, such as the EPS matrix, can act as an effective barrier against 

hostile environments and antimicrobial compounds. These resistance mechanisms are therefore 
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thought of as an innate attribute arising from the conversion of cells from a planktonic to a surface 

attached lifestyle. Although the increased robustness they bring was probably a large driving force in 

influencing how biofilm structure evolved in the first instance. A summary of the innate resistance 

mechanisms can be seen in figure 1.5.  

We have already seen that oxygen and nutrient diffusion within a biofilm is limited. In the same way 

harmful chemicals must traverse through the EPS matrix in order to reach target cells. The decrease 

seen in antibiotic effectiveness with biofilms may be because less of the compound is actually 

reaching the cells.54 Some studies with P. aeruginosa have demonstrated that some anionic 

compounds within the EPS (most significantly alginate) can trap cationic antimicrobial peptides, 

effectively delaying their diffusion.55 The antibiotic tobramycin is trapped in this manner, although 

the antibiotic still penetrates the biofilm eventually.56 These anionic EPS components can also 

protect biofilm cells by binding toxic heavy metals, allowing bacteria to grow in environments hostile 

to planktonic cells.57 In some cases the production of EPS components like alginate have been seen 

to be up regulated in the presence of sub inhibitory concentrations of antibiotics which further 

supports the view that the EPS plays a vital role in biofilm resistance.58 However there have been 

many studies that show free diffusion of antibiotics through biofilms, ciprofloxacin for example 

penetrates throughout P. aeruginosa biofilms56 but the affect of the drug is only seen on the edge of 

the biofilm, therefore additional resistance mechanisms must exist. The low oxygen and nutrient 

concentrations within a biofilm result in internal cells with reduced metabolic activity and growth 

rates. Many antibiotic compounds act by disrupting cell division. If internal biofilm cells are not 

growing or dividing then these classes of antibiotic will have limited effectiveness.59 This helps to 

explain why the affect of some antibiotics can only be observed on the surface and not lower down 

despite uninhibited diffusion. 

There are cells within the biofilm that take slow metabolism to the extreme degree; these cells are 

called persisters. These are a small subpopulation of bacteria that differentiate into a dormant 

spore-like state that can survive even extreme antibiotic treatment. These types of cell can be found 

in planktonic and biofilm cultures.54 The triggers that direct cells to become persisters usually involve 

a stressful condition such as starvation. Bacteria grown under optimal growth conditions have not 

been seen to develop persisters.60 After receiving the signal that leads to the persister state it can 

take time for the cell to switch back, even if the offending signal is removed. In addition to 

starvation, an increase in the number of persister cells in a culture can be influenced by the amino 

acid starvation stringent response. This is a well known stress response in bacteria that diverts 

resources away from growth towards amino acid synthesis to ensure cell survival. Other factors that 
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encourage the formation of persisters are biofilm formation and quorum sensing pathways although 

the exact mechanisms of these are unclear.60 Finally antibiotic treatment itself has been seen to 

trigger growth arrest and persistence. Some E. coli cells exposed to ciprofloxacin enter the dormant 

state due to the SOS response (cell cycle arrested and DNA repair boosted) that this antibiotic 

induces.61 

Not all cells exposed to the same conditions will turn into persisters however. It is suggested that the 

decision to become persistent is a bi-stable system; essentially persister formation is either set to 

‘on’ or ‘off’. Analogous to a coin toss there are two possible outcomes and small differences in initial 

condition are enough to result in different outcomes at different times.60 Research is still ongoing to 

identify the specific pathways leading to persister formation. 

Figure 1.5: Innate biofilm resistance mechanisms. Cells within a biofilm are surrounded by an 

extracellular matrix (shown as coloured background).  The concentration of oxygen and nutrients 

decreases closer to the centre (shown by colour gradient) which slows the metabolic rate of the 

cells. Faster growing cells are shown at the outside (dark pink) while slowly growing cells are present 

at the base of the biofilm (light pink). Non growing persister cells are dotted around the biofilm 

(blue). Different cells within the biofilm respond to the variations in conditions by displaying a range 

of phenotypes, including antibiotic resistance genes. Antimicrobial compounds are shown as dark 

spots, the concentration of these decreases as they penetrate deeper into the biofilm. Image 

reproduced from Anderson et al. (2008).54 
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As well as the innate mechanisms there are also induced resistance mechanisms that help to protect 

bacteria from stresses. In induced mechanisms, external factors are responsible for triggering 

resistance pathways. We have already seen an example of this in P. aeruginosa where treatment of 

the biofilm with imipenem (a β-lactam antibiotic) led to increased production of the EPS component 

alginate.58 In another study with P. aeruginosa, tobramycin treatment of biofilms resulted in the 

upregulation of two putitive antibiotic efflux systems. Efflux pumps are one of the key mechanisms 

that bacteria utilise to overcome antibiotic challenges as they can remove harmful compounds from 

the cell. Several studies in E. coli have shown that efflux pumps are generally upregulated in biofilms 

and play such an important role that mutations in the relevant efflux pump genes show a decrease 

in the biofilm forming ability of those strains.62, 63 The rapid export of harmful compounds from the 

inside of cells possibly also plays a role in the robustness of biofilms. 

In addition to antimicrobials and toxic metal ions, the robustness of biofilms also protects 

constituent cells from toxic organic solvents. A biofilm composed of the gram negative bacteria 

Zymomonas mobilis has been shown to be more resistant to benzaldehyde than planktonic cells.64 

Biofilm cells demonstrated six times higher metabolic activity than planktonic equivalents after three 

hours of exposure to 30 mM benzaldehyde. Exposure to 50 mM benzaldehyde resulted in the 

complete inactivation of planktonic cells while biofilm cells still exhibited 45% residual metabolism in 

the same time period. A more recent study with a Pseudomonas species demonstrated biofilm 

resistance to styrene that was significantly greater than comparable planktonic cells.65 These results 

indicate that while biofilm resistance is a problem in the medical arena, it may be advantageous in 

the field of biotechnology. 

1.2.6 Biofilms as catalysts 

Biocatalysis is a very effective and environmentally low impact tool for the production of industrially 

relevant chemicals. The family of biocatalysts includes bacteria, fungi and the assortment of 

enzymes that they produce. The advantages of using a biocatalyst include the potential for high 

regio and stereo specificity that the reactions can show and the fact that they can be performed 

under mild conditions. The catalysts themselves are biodegradable and waste streams are generally 

less toxic than traditional chemical equivalents. Sequential reactions can be performed within the 

same cell and therefore circumvent the need to purify intermediates and the associated financial 

cost that accompanies this. 

Biocatalysts can be whole cells or purified enzymes. In industry whole cell catalysts predominate as 

they have a number of advantages over purified enzymes for large scale processes. Compared to 
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isolated enzymes, whole cells do not require lengthy protein purification procedures and the 

enzymes are generally better protected against denaturation caused by non-optimal conditions. 

More complicated, multi-step syntheses also require multiple enzymes and cofactors which can all 

be contained and recycled in single cells.66  

Because of the obvious advantages that biocatalysts afford, there are many examples where 

biocatalysts have been incorporated into chemical synthesis. According to a recent review there are 

125 biotransformation processes currently in use industrially and over half of these are catalysed by 

whole cell systems.67 

One of the main challenges of using enzymes and whole cell systems is the toxicity that can arise due 

to choice of substrate and conditions that are present in many chemical reactions. Limited aqueous 

solubility of potential organic substrates and the toxicity of high concentrations of organic solvents 

to whole cells and isolated enzymes, limits the number of useful biocatalysts available to the 

industry. In some cases biphasic biotransformation systems have been used to great effect to 

solubilise substrates and the development of water immiscible ionic liquids as a less toxic alternative 

to organic solvents for biphasic reactions have been employed,68, 69 but the added expensive of these 

solutions has limited their uptake for large scale industrial processes. 

The robustness of biofilms (demonstrated with increased resistance to antibiotics) is seen as a 

problem in medicine but this increased resilience can be beneficial for biotechnological applications, 

helping the cells to survive in otherwise toxic conditions. The enhanced solvent protection that 

biofilms provide cells has already been discussed. In addition to their increased robustness, a biofilm 

also presents a method of whole cell immobilisation. Of the 66 currently utilised industrial 

biotransformation reactions most are run in batch mode, only seven are continuous flow 

processes.67 Continuous reactor operation is significantly more cost effective than individual batch 

reactions. One of the currently preferred types of bioreactor for whole cells is a membrane reactor 

featuring a permeable membrane that is used to entrap cells but allows the passage of substrates 

and products. The problem with this type of reactor is the cost and high incidence of reactor 

fouling.70 Alternatively the cells themselves can be entrapped within a polymer such as calcium 

alginate cross-linked beads but this requires intricate preparation steps that add to the cost.71 Due to 

the cross links, the transfer of substrates and products through the polymer may be limited. 

Immobilising cells within a biofilm offers an alternative. 

One area where biofilms have found a successful catalytic niche is in the bioremediation of waste 

water, gases and soils. Using biofilms in this manner can be traced back to the early 1880s.70 These 
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days, bioremediation usually involves taking an environmental sample from a hostile environment 

and growing up cultures of bacteria that have adapted to living under those conditions using the 

logic that the organisms would have developed methods to remove or utilise the toxic products. 

Biofilms produced in this way are inevitably composed of mixed species. Using this approach 

processes have been developed to reduce the chemical oxygen demand of waste water streams or 

for nitrification/denitrification processes.70 Continuing developments in bioremediation have 

produced systems that can process harmful industrial waste products. Tetrachloroethylene (also 

known as PCE) is a potentially carcinogenic solvent used as an industrial degreasing agent and in dry 

cleaning fluids. It is one of 14 compounds on the US Environmental Protection Agency’s priority 

pollutant list and very strict release limits are imposed on it. Carter and co-workers demonstrated an 

anaerobic biofilm reactor that converted PCE into lesser chlorinated compounds including vinyl 

chloride at 98% efficiency to levels below that recommended in the Safe Drinking Water Act.72 Other 

examples include the sequestration of selenium and arsenic from waste water using biofilms 

cultured from coal mining effluent73 and the transformation of o-xylene into o-methyl-benzoic acid 

using a biofilm cultured from sewage sludge.74 

In addition to the membrane bound reactor, many bioremediation processes, especially waste water 

treatment, use a variation of a type of reactor system called a rotating biological contactor.70 In this 

process a rotating drum is covered with a thin film of biofilm and waste water passed over it. The 

rate of the rotation is set to a speed that allows optimum contact with the waste stream inside the 

particular system. The transformation of o-xylene and sequestration of selenium and arsenic in the 

previous examples both use this type of system (200 and 160 rpm respectively). The stream is 

recycled over the drum to ensure efficient catalysis. 

The most commonly used industrial reactor system is the bed reactor (figure 1.6). In this type of 

system the catalyst, which could be a biofilm, is coated onto individual supports, usually spherical 

particles. For biofilm formation these particles are packed into the cylindrical reactor before being 

seeded with a bacterial culture. The flow through the reactor is set to low levels (or removed 

altogether) to allow the cells to attach to the surface of the supports. Depending on the type of 

reactor and the species used, a biofilm can take as little as a few days or as long as a couple of weeks 

to form.70 

There are three main types of bed reactor that are generally used. The first type is a packed bed 

reactor. In this system the biofilm coated supports are packed into the reactor and the feed solution 

either added from the top (trickle packed bed reactor) or pumped through the supports from the 

base (submerged packed bed reactor). The liquid is passed through the supports at low pressure and 
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particularly useful when dealing with biphasic reactions which involve liberating a gas from a liquid. 

The gas can be removed from the top of the reactor while it is straightforward to recycle the feed 

stream, as seen in figure 1.6. 

As the fluid velocity increases in the expanded bed and fluidised bed, improved mass transfer of the 

system can be seen as the movement of the beads is analogous to stirring. However the sheer forces 

acting on the biofilm increase with increasing flow rate and can therefore make the formed biofilms 

unstable.  

Apart from a few examples, for instance the production of single species Neurospora crassa fungal 

biofilms for the bioremediation of phenol,75 bioremediation processes utilise biofilms that contain a 

mix of different bacterial species. Controlling biofilm formation and limiting the bacteria to a single 

species opens up the possibility of using immobilised whole cells in the production of targeted 

industrial chemicals. Many of these industrial processes take advantage of pathways already present 

in the biofilm organism, such as the ability of the bakers/brewer’s yeast Saccharomyces cerevisiae to 

produce ethanol. For many ethanol production processes Zymomonas mobilis biofilms formed inside 

reactors has surpassed traditional yeast as the ethanol producer of choice.76 In one example the 

bacteria was adsorbed onto vermiculite which was used as the support inside a biofilm attached 

expanded bed bioreactor. Using this method Bland et al. fermented glucose into ethanol and 

achieved a productivity of 105 g L-1 h-1 which showed enhanced operating parameters over 

traditional free cell reactors (< 4 g L-1 h-1).70, 77 Using similar methods other important biofuels have 

been produced including butanol from biofilms of Clostridium acetobutylicum and 2,3-butanediol 

from Klebsiella pneumoniae biofilms (for extensive list see Qureshi 2005).70 

The applications of immobilised biofilms have been stretched further than simple fermentations and 

involve the formation of other chemicals and the involvement of more complex biotransformations. 

As seen earlier, Z. mobilis biofilms demonstrate a significantly higher tolerance to benzaldehyde than 

planktonic cells. This tolerance was explored using biofilms that were formed inside flow cells. 

Reactor technology was then exploited to produce benzyl alcohol in a continuous flow process. The 

cells were immobilised onto glass beads which were packed into a modified test tube. Benzaldehyde 

was pumped through the beads from the base, making a rudimentary packed bed bioreactor.64 The 

resulting reactor was shown to produce product at a rate of 8.11 g of dry product per day with a 90% 

molar yield after 45 hours. Another interesting example harnesses the methane monooxygenase 

enzyme (MMO) from methanotrophic bacteria. This enzyme is the first step in the methane 

utilisation pathway in these bacteria and has a broad substrate specificity that can oxygenate a 

range of n-alkanes and n-alkenes. Xin and colleges demonstrated the ability of a mixed methotrophic 
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species biofilm to monooxygenate propene to epoxypropane at a rate of 110-150 µmol per day. This 

was run in an attached film fluidised bed bioreactor with the biofilm formed on diatomite particles. 

The reactor was operated continuously for 53 days without any loss in activity.78 The production of 

these optically pure epoxides is important as they are valuable synthons in organic synthesis.79 

All of the examples mentioned so far utilise native pathways already present in the biofilm forming 

species to produce a chemical or perform a biotransformation. The real potential for this technology 

is to engineer genetic pathways or to introduce recombinant DNA to enable the formation of 

biofilms capable of performing a specific programmed task. To achieve this, biofilms need to be 

constructed from genetically well characterised organisms. Li and co-workers screened 68 common 

industrial and laboratory strains of bacteria, spread over 40 genera and 5 phyla. Each was evaluated 

and the strains biofilm forming ability was scored. By testing various culturing conditions, 97% of the 

strains tested were able to form biofilms and over half were classified as having strong biofilm 

forming tendencies.80 Most of these strains are genetically well characterised which shows there is 

huge scope for producing engineered bacterial biofilms that are capable of performing 

biotransformations using recombinant enzymes. Currently however there are very few examples in 

the literature of biotransformations performed by biofilms composed of engineered bacteria strains. 

One of the bacteria screened in the study by Li et al. was a strain of Pseudomonas (VLB120) that was 

known for its ability to mineralize styrene through an (S)-styrene intermediate using the styrene 

monooxygenase StyAB.80  A tubular membrane bound biofilm reactor was demonstrated by Gross et 

al. for this conversion of styrene to (S)-styrene oxide. The strain was engineered to include a 

mutation in the isomerase enzyme that is the second step in the pathway. This led to the process of 

styrene degradation stalling at the formation of (S)-styrene oxide which was the desired product. 

The product is formed in high enantiomeric excess (99.9%). The biofilm reactor was stable for at 

least 55 days at a maximum rate of 16 g of product per litre per day and a yield of 9 mol%.81 

Continuous flow processing allowed the removal of product to prevent product inhibition of the 

enzyme which improved the overall life of the reactor compared to batch processes. 

Currently there are only two examples in the literature of totally recombinant strains of bacteria 

being used for biofilm mediated biotransformations. One of these utilises recombinant E. coli B 

strain KO11 which contains chromosomally integrated genes for ethanol biosynthesis (from Z. 

mobilis).82 Planktonic cells of this strain showed lower levels of ethanol tolerance than traditional 

yeast however biofilm immobilised cells grown on glass micro spheres inside an expanded bed 

bioreactor showed improved stability. Non-immobilised cells saw a decline in ethanol yield to 60% 

after only 8-9 days of continuous fermentation. By contrast the biofilm immobilised E. coli saw a 
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stable conversion of >85% for at least ten days before reaction rate slowed to a still respectable 70% 

for at least another  40 days of fermentation. 

The only other example of recombinant biofilm strains being utilised as immobilised biocatalysts was 

reported by Setyawati et al.83 A recombinant strain of Acetobacter xylinum was transformed with a 

plasmid containing the D-amino acid oxidase (DAAO) enzyme from Rhodosporidium toruloides. DAAO 

catalyses the formation of α-keto acids from corresponding D-amino acids and is useful in the 

resolution of racemic amino acids, the production of amino cephalosporanic acid (a key intermediate 

for the production of new cephalosporin antibiotics) and for the production of the α-keto acids 

themselves. The resulting recombinant strain was allowed to form a biofilm-like structure. A. 

xylinum is a gram negative obligate anaerobe that can produce a thick white cellulose pellicle at air-

liquid interfaces in static culture. During growth the bacterial cells cover themselves in cellulose 

fibres that form an inter-locking weave that surrounds the cells. Although different from traditional 

biofilm structure, the overall effect is the same. These formed pellicles protect the contained cells 

from harsh environments, retain moisture and hold the cells in an aerobic environment. 

Cultures of A. xylinum were shown to form pellicles in static and shaking cultures. Initial evidence of 

cellulose pellicle formation occurred within 3 days. DAAO production was induced by addition of 

IPTG. 4 days after protein induction the immobilised beads were tested for DAAO activity. 100 mg of 

wet beads were used to convert D-alanine into the corresponding α-keto acid in a simple shaking 

flask system. In parallel the same biotransformation was carried out using the same weight of non-

immobilised (non-pellicle) cells and the cell free extract. The activity of the immobilised cells was 

shown to be reduced in comparison to the cell free extract equivalent (less than 10% relative 

activity). The planktonic cells fared better and showed 50% activity relative to the cell extract.83 

The pellicles were revealed to be composed of 75% cellulose EPS and this property was blamed for 

the comparatively bad catalytic performance. This does highlight a possible problem with biofilm 

mediated biocatalysis, that excessive matrix production may limit substrate access to the cells 

themselves.67, 83 This is a conundrum as the matrix production is what makes biofilms so attractive to 

biocatalysis. The advantage is clearly seen when hostile environments or toxic substrates are used, 

but the benefits are less clear when conducting biotransformations under mild conditions.  

Despite the advantages that biofilm biocatalysts can offer to chemical synthesis and the many 

demonstrated applications shown as laboratory concepts, there has not been wide uptake of this 

technology in industry.67 The only real example of a successful application so far is a trickle bed 

reactor for the production of vinegar using biofilms composed of acetic acid bacteria. The bacteria 
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are immobilised onto beechwood shavings and large fermenters up to 60 000 litres have been 

used.70 In 2009 it was estimated that approximately 300-400 of these reactors were in operation.67 

This leaves huge scope for the development of an effective and efficient biofilm attached bioreactor 

that can be shown to be of worthwhile interest to industry. 

Within industry, however, it is not just the problem of enzyme stability that limits biocatalyst uptake; 

the number of biocatalysts capable of performing useful chemistry is still limited. The development 

of new and interesting biocatalysts is essential if this technology is to experience wide application in 

the chemical industry. One such area where biocatalysts are being developed to offer advantages 

over traditional chemical methodologies is biological halogenation. 

1.3 Halogenation as a route to new compounds of medicinal interest 

Nature’s inventory of secondary metabolites has long been mined as a source of medicinal lead 

compounds. In 2005 it was estimated that around half of the drugs in clinical use at the time were 

either natural products themselves, natural product derived or semi-synthetic natural products.84, 85 

However the discovery of new types of natural products with unique modes of action has slowed 

and as a result pharmaceutical companies have increasingly turned to combinatorial chemistry and 

diversity-orientated synthesis to generate large compound libraries.86 These libraries are capable of 

generating vast numbers of potential lead compounds with significant structural diversity but this 

approach results in very low hit rates and the potential for increased side effects due to often less 

specific binding characteristics.85 With the advent of increasingly cheap and rapid genome scanning 

techniques and tools for mining novel bioactive molecules, natural products are returning to favour 

as they are themselves the result of a natural form of high-throughput screen and often therefore 

possess high levels of specificity and potency.  

A key problem with natural products however is that they tend to demonstrate poor physiochemical 

properties or  fail to show levels of activity desirable for therapeutic drugs. This opens up the 

possibility that natural products may be modified to fine-tune activity and create a better lead 

compound. Instead of viewing combinatorial synthesis as an entirely separate entity, strategies are 

now being employed that combine both approaches to introduce semi-synthetic modifications to 

target compounds.87 Within this there is large scope for incorporating novel biocatalysts.  

The introduction of a halogen is a very simple change that can result in large differences to the 

physicochemical properties of a compound. For example, Grüschow et al. have shown that 

incorporation of a halogen into the antimicrobial compound pacidamycin increases its lipophilicity 

which can affect activity.88 Pacidamycins are a family of nucleoside antibiotics that inhibit the 



 

function of translocase I (an enzyme involved in bacterial cell w

unexploited mode of action

residues; some contain a tryptophan residue at the N

ring (meta-tyrosine). The C

Grüschow and co-workers were able to show that the incorporation of a single halogen at the 7 

position of the N-terminal try

abundant tryptophan containing pacidamycin analogues) resulted 

The incorporation was made possible by using precursor directed biosynthesis and 

biotransformation techniques. Tryptophan chlorinated at the 7

commercially available 7

tryptophan synthase (see scheme 1.1). The chlorinated tryptophan was then fed into the growth 

media of the producing organism (

good incorporation into pacidamyc

analogue of pacidamycin 1 proved to have an 

parent compound. Conversely chlorinated pacidamycin 4 was twofold less active than the parent 

compound. This illustrates the profound effect that a single chlorine atom can have on the activity of

a natural product, even if that effect is not consistent or predictable. This also demonstrates how the

enzyme tryptophan synthase can be utilised to produce useful tryptophan analogues that may be

harder to produce using traditional chemistry.

Scheme 1.1: Precursor-directed biosynthesis of chlorinated pacidamycin derivatives. 

tryptophan produced from 7

Feeding to pacidamycin producer 

4. 88 

 
 

function of translocase I (an enzyme involved in bacterial cell wall assembly) using a clinically 

d mode of action.89 Members of this group of antibiotics differ in 

ome contain a tryptophan residue at the N-terminus while others have a 3

tyrosine). The C-terminus either contains alanine, glycine or hydrogen (see scheme 1.1).

workers were able to show that the incorporation of a single halogen at the 7 

terminal tryptophan residue contained within pacidamycin 1 and 4 (the most 

abundant tryptophan containing pacidamycin analogues) resulted in altered cytotoxic properties

The incorporation was made possible by using precursor directed biosynthesis and 

biotransformation techniques. Tryptophan chlorinated at the 7-position was produced from 

commercially available 7-chloroindole using a biotransformation catalysed by the enzyme 

synthase (see scheme 1.1). The chlorinated tryptophan was then fed into the growth 

media of the producing organism (Streptomyces coeruleorubidus) at resting phase where it showed 

good incorporation into pacidamycin 1 and 4 (scheme 1.1). The resulting 7

analogue of pacidamycin 1 proved to have an MIC of 32 μg ml-1 which was four times lower than the 

parent compound. Conversely chlorinated pacidamycin 4 was twofold less active than the parent 

compound. This illustrates the profound effect that a single chlorine atom can have on the activity of

ural product, even if that effect is not consistent or predictable. This also demonstrates how the

enzyme tryptophan synthase can be utilised to produce useful tryptophan analogues that may be

harder to produce using traditional chemistry. 

directed biosynthesis of chlorinated pacidamycin derivatives. 

tryptophan produced from 7-chloroindole by a tryptophan synthase mediated biotransformation. 

Feeding to pacidamycin producer S. coeruleorubidus results in some chlorinated pacida

Chapter ONE 25 

all assembly) using a clinically 

Members of this group of antibiotics differ in the N and C-terminal 

e others have a 3-hydroxyphenyl 

hydrogen (see scheme 1.1). 

workers were able to show that the incorporation of a single halogen at the 7 

ptophan residue contained within pacidamycin 1 and 4 (the most 

in altered cytotoxic properties.88 

The incorporation was made possible by using precursor directed biosynthesis and 

position was produced from 

ormation catalysed by the enzyme 

synthase (see scheme 1.1). The chlorinated tryptophan was then fed into the growth 

at resting phase where it showed 

resulting 7-chloro-tryptophan 

which was four times lower than the 

parent compound. Conversely chlorinated pacidamycin 4 was twofold less active than the parent 

compound. This illustrates the profound effect that a single chlorine atom can have on the activity of 

ural product, even if that effect is not consistent or predictable. This also demonstrates how the 

enzyme tryptophan synthase can be utilised to produce useful tryptophan analogues that may be 

directed biosynthesis of chlorinated pacidamycin derivatives. 7-chloro-

chloroindole by a tryptophan synthase mediated biotransformation. 

in some chlorinated pacidamycin 1 and 



 

 
 

Chapter ONE 26 

1.4 Tryptophan synthase 

1.4.1 Tryptophan synthesis 

Synthesising tryptophan analogues using traditional organic synthetic methods is far from 

straightforward. The first synthesis of a chlorinated tryptophan analogue (7-chlorotryptophan) was 

published in 195590 and even in the years since the standard synthetic methods of producing 

modified tryptophan analogues often involve multi-step processes.91 Obtaining tryptophan that is 

enantiomerically pure is also difficult to achieve by separating out the individual diastereoisomers,92 

although more recently a biocatalytic approach to this problem has been demonstrated by an 

enzymatic optical resolution using an enantiospecific acylase enzyme.93 A far simpler procedure 

involves harnessing the activity of the enzyme tryptophan synthase, the enzyme responsible for the 

final stages of L-tryptophan biosynthesis. 

The facility for tryptophan biosynthesis is missing in mammals but is available to prokaryotes, 

eukaryotic microorganisms and higher plants.94  Tryptophan biosynthesis is controlled by 7 catalytic 

modules (scheme 1.2). In Bacillus subtilis these seven protein domains are encoded by separate 

genes (trpA-G),94 while in other organisms, such as E. coli, several of these domains are encoded 

within a single gene (E. coli trpD for instance encodes the equivalent of the separate trpG and trpD 

genes from B. Subtilis). The role of these domains can be seen in scheme 1.2. The starting point for 

the biosynthesis is chorismate which is converted into anthranilate by the TrpE anthranilate 

synthase. The reaction proceeds with the addition of ammonia (released from glutamaic acid by 

TrpG aminase) and subsequent loss of pyruvate. The gene product of trpD (anthranilate 

phosporibosyl transferase) catalyses the formation of N-(5-Phosphoribosyl)-anthranilate from 

anthranilate and phosphoribosyl pyrophosphate which is then isomerised into the ribulose form (1-

(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phospate) by TrpF. Indoleglycerol phosphate synthase 

(TrpC) then mediates the indole ring formation with loss of water and CO2 that results in indole-3-

glycerol phosphate. This acts as the substrate for the gene product of trpA which forms indole with 

the loss of glyceraldehyde-3-phosphate. Indole is then combined with serine to form tryptophan, 

catalysed by trpB.  Tryptophan synthase consists of the trpA and the trpB catalytic modules. 
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The released G3P is held in the active site to prevent indole from escaping into solution. Instead the 

indole is transferred intramolecularly down a 25Å tunnel into the β-subunit active site for the next 

part of the process. 

1.4.3 The β-subunit reaction 

The reaction performed in the beta subunit is a PLP-catalysed β-replacement reaction between 

indole and L-serine to form L-tryptophan. The reaction is summarised in scheme 1.4. The reaction in 

this subunit occurs in two stages with the first stage occurring before the release of indole from the 

α-subunit. 

 At the start of the first stage the PLP cofactor is bound to an active site lysine residue (βLys87) 

forming an internal aldimine between the PLP and the ε-amino group of the lysine.99 The taking up of 

L-serine into the active site results in a reversible reaction with the internal aldimine to form a gem-

diamine intermediate which results in the loss of lysine and the formation of an external aldimine 

between PLP and serine. The same lysine residue is then suggested to act as a base to abstract the α-

proton of serine to yield a quinonoid intermediate which is stabilised by the delocalisation of 

electrons around the PLP ring. Elimination of water from the serine is driven by the cofactor, PLP, 

returning to its aromatic state and results in the formation of a stable α-aminoacrylate species. This 

concludes the first stage of the β-reaction. The subunit waits for indole to be provided by the α-

subunit before the second stage of catalysis begins. At this point the α-aminoacrylate species exists 

in equilibrium with the external aldimine. This equilibrium is affected by pH, temperature, 

hydrostatic pressure and α-subunit ligands. The external aldimine is favoured under low 

temperature,100 high pressure101 and high pH.100 The binding of α-site ligands favours the formation 

of the aminoacrylate which suggests a temporal order to the catalysis – where events in one 

substrate dictate events in the other.100 

Evidence of this temporal ordering of the two substrates was provided by binding studies with α-site 

ligands such as indoleacetyl glycine or indoleacetyl aspartate. Binding of these substrates in the 

active site of the alpha subunit was seen to disrupt the equilibrium between the two subunits and 

stabilise the α-aminoacrylate Schiff base in the β-subunit, showing formation of intermediate occurs 

independent of the release of indole and that changes in the alpha subunit are capable of adjusting 

behaviour in the beta subunit.102 

The arrival of indole from the alpha subunit triggers the start of the second stage of catalysis which is 

proposed to proceed via a Michael reaction between the indole and the previously formed 

aminoacrylate intermediate. This results in the formation of a resonance-stabilised indoleninium 
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quinonoid carbanion (scheme 1.4). Deprotonation of this intermediate at C3 of the indole forms the 

quinonoid intermediate of L-tryptophan (in scheme 1.4 this is shown to be catalysed by Lys87 

although the involvement of glu109 has also been implicated)104. Protonation of this next 

intermediate generates the external aldimine of L-tryptophan. A transamination reaction with Lys87 

results in the gem-diamine and subsequent release of L-tryptophan and the regeneration of the 

enzyme bound internal aldimine. 

This β-replacement reaction occurs with retention of configuration at the β-carbon due to the fact 

that both the α-proton and the β-hydroxyl leave from the same face when generating the 

aminoacrylate intermediate and that the later Michael reaction occurs on the si-face of the indole to 

produce the (S)-indolenine.105, 106 

1.4.4 Allosteric coupling and kinetics of tryptophan synthase 

As discussed above, it has been shown that substrate binding to the α-subunit stabilises the 

aminoacrylate intermediate required for catalysis and demonstrates allosteric communication 

between the two substrates. This is not surprising as the two separate active sites are linked by a 

substrate channel which suggests that communication between the two subunits is needed to 

ensure cooperation. Due to the unusual nature of the relationship between the two subunits there 

has been significant research into how they communicate.99, 104 

The first evidence of communication comes when the α and β sites are separated. Subunit 

association increases the affinity for the substrates and increases the rates of reaction.107 In an 

isolated state the β-subunit prefers β-chloro-L-alanine, whereas L-serine is the substrate of choice for 

the tetramer, suggested to be because the chloride is an excellent leaving group and so does not 

require optimised catalysis.107 Crystallographic data has suggested that this communication is largely 

mediated by β-helix6 interacting with α-loop2 (contains the active site of the α-subunit). Recent 

studies have suggested that the decrease in activity seen with the isolated β subunit is due to 

substrate gate residues Tyr279 and Phe280 blocking entry to the active site, although access can still 

be granted due to a cleft that forms between two domains of the enzyme in the absence of the α 

subunit.108 Both subunits in an isolated state have also been shown to be more stable and rigid than 

in the tetramer and are therefore unable to perform the conformational changes that are apparently 

important for activity.109 

Further evidence of complex allosteric regulation can be found in the ordering of catalytic events. 

Binding of substrate (or analogue) to the α-subunit triggers the binding of serine to the β-subunit 

and stabilises the aminoacrylate intermediate,110 the formation of which leads to a 30 fold increase 
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in activity of the α-subunit to produce the indole.111 Finally the conversion of the tryptophan 

quinonoid species to the external aldimine of tryptophan triggers the alpha subunit to finally release 

bound G3P, returning it to starting conditions.111 This form of communication is mediated by 

interactions between αGly181 (on α-loop6) and βSer178 (β-helix6). In the absence of α-subunit 

substrate the α-loop6 is disordered,95 on substrate binding this loop is stabilised in a conformation 

that covers the α-active site, forcing it into a closed state.112 Resulting conformational changes also 

move the substrate towards the αGlu49 catalytic residue, favouring the retro-aldol catalysis.104 This 

information has led to the concept that the subunits of tryptophan synthase can be described to 

exist in one of two forms; open or closed. In the absence of ligands both substrates are in the open 

state. As we have seen, binding of IGP to the α-subunit stabilises the loop over the active site and 

takes the subunit to the closed form. This triggers the stabilisation of the aminoacrylate and 

increases the preference of the β-subunit to bind serine, which forces the β-subunit also into the 

closed form and triggers cleavage of indole. This event is mediated by the β-helix6 that interacts 

with the α-subunit. This all favours the Michael reaction with the indole that results in the 

tryptophan external aldimine. The β-subunit enters the open conformation again which destabilises 

the closed α-subunit, increasing the disorder of the closing loop and triggering the release of the G3P 

from the α-subunit to solution. Tryptophan is released from the enzyme and the catalytic cycle can 

begin again. 

Using a spectrophotometric assay, Kawasaki et al. were able to identify the steady state kinetic 

parameters of the tryptophan synthase dimer as well as the kinetics of the individual α and β-

subunit reactions.113 The activity of the α-subunit was determined by varying the concentration of 

indole 3-glycerol phosphate (IGP, 0.02 to 0.2 mM). The production of glyceraldehyde-3-phosphate 

(G3P) within the α/β dimer was followed in the absence of L-serine, using an assay coupled with the 

NADH producing glyceraldehyde-3-phosphate dehydrogenase. The kcat and the Km values of this 

reaction were determined to be 3.6 s-1 and 0.1 mM respectively with a specificity constant (kcat/Km) 

of 1.4 mM-1 s-1. The kcat and Km values for the β-subunit were determined by varying the 

concentration of indole (0.013 to 0.2 mM) in the presence of 40 mM L-serine. The conversion of 

indole to tryptophan was monitored by the change in absorbance at 290 nm. The kcat value for this 

reaction was estimated to be 3.6 s-1 and the Km to be 0.015 mM. Interestingly in the presence of 10 

mM L-serine the Km and kcat of the α-subunit reaction with G3P improved dramatically to 0.02 mM 

and 3.0 s-1 and the turnover increased to 150 mM-1 s-1. This further illustrates the presence of 

allosteric coupling between the subunits and that the activity of the α-subunit is heavily dependent 

on the β-subunit. 
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halogenated at the 4 or 7 position (5-chloro-tryptophan yielded 61% compared to 9% for 7-chloro). 

This is due to the increasing size of the substituent from fluorine to bromine, the larger halogens 

finding it harder to squeeze down the narrow channel between the two subunits of tryptophan 

synthase.116 Perhaps because of this size restriction, iodinated indoles show no conversion at all. 

Steric hinderance is also the reason for decreased activity with the 4- or 7-substitued indoles as 

substitution at this point increases the overall width of the molecule compared to position 5 or 6. 

The amino-tryptophan variants showed the opposite effect, the 5- and 6-substitued amino-

tryptophans yielded 37 and 35% respectively, while 70 and 65% was recorded for the 4 and 7 

positions.117 It is not known what causes this discrepancy but the decreased size and the increased 

hydrogen bonding ability and solubility of these indole analogues compared to the halogenated 

counterparts may offer some explanation. It is possible that despite the problems squeezing down 

the active site tunnel the 4 and the 7 position are preferred inside the active site (perhaps due to 

steric factors) and therefore any factors that improve substrate access (such as smaller substituents 

or improved aqueous solubility) help to highlight this active site preference. However if this was the 

case we would expect to see a similar pattern with the fluorinated compounds as they also exhibit 

improved solubility, similar hydrogen bonding ability and decreased size, which is not the case. 

Comparison of the enzyme kinetics with these different analogues may help to identify if the 

transfer of indole from the α-subunit becomes rate limiting in the presence of sterically bulky groups 

or if another stage in the catalysis is causing the observed reduction in yield. 

This method of harnessing tryptophan synthase shows considerable promise in the preparation of 

enantiopure L-tryptophan analogues. The fact that cell free extracts of E. coli (containing the 

tryptophan synthase gene from Salmonella typhimurium) have been used to catalyse these reactions 

makes this biotransformation very easy to use compared to having to use isolated enzymes, more 

recent developments showed that freeze-drying the cell lysate enabled the catalytic activity of 

tryptophan synthase to be sustained for a longer period (> 2 months) during storage at 

temperatures as high as 5°C.117 

This method has already seen applications in biotechnology. As discussed earlier Goss and co-

workers were able to produce chlorinated pacidamycin analogues using this tryptophan synthase 

biotransformation and a precursor-directed biosynthesis approach.88 More recently the total 

synthesis of chloptosin utilised this biotransformation to produce the 7-chloro-tryptophan starting 

material.118 For this synthesis by Oelke and co-workers the tryptophan synthase methodology was 

compared to more traditional forms of chemical chlorination and was found to be superior.
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Chapter 2: 

Engineered Biofilm Formation and Physical Analysis 

2.1 Traditional methodologies for growing biofilms in the laboratory 

The problems associated with the formation of biofilms, be that medical or industrial, means that 

significant study of the molecular and genetic basis of biofilm formation has been carried out, 

although many questions still remain. The mixed species biofilms that form in nature do not lend 

themselves very well to scientific analysis, therefore various artificial biofilm model systems have 

been developed that can allow biofilm formation under controlled conditions. There are four 

generally used methods that have been utilised in the laboratory (for review see Branda 2005).11 

The most commonly used method involves a piece of equipment called a flow cell. These are used 

for studying submerged biofilms. Inside a flow cell a culture of the biofilm forming bacteria is 

constantly pumped through a circuit of tubing. The tubing is connected to a wider chamber inside 

which a flat substrate is placed (e.g. a glass slide). The pump introduces a slow laminar flow of 

bacteria that passes over the surface; this encourages the migration of bacteria to the interface of 

the substrate and allows initial attachment to occur. A laminar flow of nutrients is important to 

biofilm development as substrate uptake and metabolite excretion within the biofilm generally 

occurs by diffusion. Over time in a static system, with no flow over the surface, metabolites start to 

accumulate at the surface and limit the diffusion of fresh substrates. In a laminar system fresh 

substrates constantly flow over the surface of the biofilm and metabolites are carried away, keeping 

the concentration gradient within the biofilm as healthy as possible. The formation of biofilms on 

glass slides makes it possible to easily observe them, for example by using confocal scanning laser 

microscopy (CSLM). Formation of biofilms in this manner however can be time consuming and not 

particularly useful for high throughput mutant screening. Also not all biofilms grow on solid surfaces, 

some form floating biofilms at liquid-air interfaces. Organisms growing in this sort of biofilm require 

more complex structures to support themselves and in this case a strong laminar flow is 

destabilising. 

A higher throughput method of studying submerged biofilms is in a no-flow system within microtiter 

plates. Although there is a lack of laminar flow the advantages of this method lie with the rapid 

production of large numbers of biofilms and this method has been used to study the genes involved 

in biofilm formation. 
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The final method is the most widely used in biology, although in most cases not intentionally for the 

study of biofilms. Bacterial colonies grown on the surface of agar plates are now recognised as a 

form of biofilm, although not all bacteria will form biofilms under these conditions. Like biofilms 

grown in microtiter plates these biofilms are amenable to high throughput analyses.11 

All four methods have been used effectively to study biofilm systems but there can be differences in 

displayed phenotype if different methods are used. Ultimately none of the four methods can be 

described as the best, and are complementary to each other.23 

The growing interest in harnessing biofilms for biocatalysis presents different challenges that suit the 

flow cell method less well. The ability to easily express a desired recombinant protein within the 

biofilm is a prerequisite of a versatile, customisable immobilised whole cell biocatalyst and many of 

the classically studied biofilm species are not appropriate for this task. Another essential 

requirement for a biocatalytic biofilm is the incorporation of a consistent and predictable quantity of 

biomass to ensure catalytic rate remains comparable between different batches. To this end, a more 

controlled and engineered deposition of a biofilm is attractive. 

2.2 Results and Discussion 

Spin-coating was explored as a method of biofilm formation. This is a method more commonly 

associated with the immobilisation of inorganic catalysts onto surfaces.119  E. coli K-12 mutant strain 

PHL644 (MC4100 malA-kan ompR234) was chosen as the biofilm forming organism.42 This strain 

contains a point mutation in the regulatory protein OmpR which results in the increased activation 

of csgD which leads to the emergence of curli fibres on the cell surface. Traditional K-12 variants are 

not capable of forming stable biofilms so this mutated strain enables the production of a stable 

biofilm comprised of an organism that is genetically well characterised, easy to transform and 

capable of expressing cloned recombinant proteins. 

The spin-coating methodology was developed alongside chemical engineers at the University of 

Birmingham, specifically Dr Andreas Tsoligkas, and was achieved by centrifuging an overnight culture 

grown in LB/2 medium (OD600 > 2) in flasks which contained a standard size glass microscope slide 

placed at the base. The slide was supported on a bed of glass beads (4 mm in diameter) to reduce 

the likelihood of the slide cracking under the centrifugal forces. The slide was pre-treated with a 

poly-lysine (PLL) solution, which is generally used in microscopy to assist in the adherence of cells to 

glass substrates and has previously been shown to assist in the initial attachment of biofilms inside 

flow cells.120 The result after centrifugation was a visible milky layer of microbial growth on the 

surface of the slide (see figure 2.1).  
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Figure 2.1: Example of a spin-coated E. coli PHL644 biofilm. After centrifugation of the E. coli 

PHL644 culture onto a standard microscope slide, a thick milky white layer of cells can be seen 

adhering to the surface of the glass. 

The type of centrifuge rotor used proved to be very important in successfully spin-coating E. coli cells 

onto a surface. The initial spin-coating work was performed using a Jouan C4.22 centrifuge at The 

University of Birmingham. This centrifuge was fitted with a swinging bucket rotor capable of taking 

750 ml centrifuge bottles. The swinging nature of this rotor angles the centrifugal force 

perpendicular to the glass slide, facilitating a top-down coating approach. A similar centrifuge was 

not available at the University of East Anglia. Spin-coating of an equivalent volume was attempted 

using a fixed angle centrifuge but this caused the culture to approach the slide at an incline, 

therefore a smooth and even coverage of cells was not achieved. The E. coli quickly sloughed off the 

slides once transferred into minimal media. 

The only swinging bucket centrifuge available took centrifuge tubes of a maximum 50 ml volume. To 

compensate for this the microscope slides were cut into smaller squares (1.5 cm long) and into small 

rounds (2 cm diameter). The spin-coating was performed in the same way on both types (poly-lysine 

treatment of the reduced size slides and glass beads placed at the bottom of the tubes to prevent 

cracking). Following the coating, the films soon lost their stability in the minimal media (within 24 

hours). This could be due to the increasing surface area to volume ratio as the biofilms become 

smaller. Since the surface is where the majority of sheering forces are found, it is likely that a smaller 

area of biofilm is subjected to relatively higher sheer forces than one with a larger area, promoting 

enhanced stability on the full sized microscope slides. In view of this all, biofilms conducted for this 

study were spin-coated and analysed using the facilities at the School of Chemical Engineering at the 

University of Birmingham. 

The layer of cells that results after spin-coating cannot be defined as a biofilm, to achieve this title 

the individual cells should be networked by extra-cellular matrix components.11 According to studies 
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in the literature, curli formation in E. coli is subject to complex regulation with fibres only being 

produced at temperatures below 30°C, at low osmolarity and in stationary growth phase.44 

Therefore under conditions of high osmolarity and temperature, curli and consequently biofilm 

formation is inhibited. For this reason the microbe coated slides were transferred from the relatively 

highly osmotic LB/2 medium into the minimal M63 medium and left to incubate at 30°C for several 

days with the hope that the selected conditions encouraged curli formation and subsequent biofilm 

maturation. A laminar flow is important to maintaining the concentration gradient on the surface of 

biofilms inside flow cells, so a pseudo laminar flow was introduced by gently agitating the slides in an 

orbital shaker incubator at 70 rpm. This low value was chosen to reduce the sheering forces on the 

surface of the biofilm that a higher rpm would introduce. The slides were monitored using 

environmental scanning electron microscopy (ESEM) for any signs that matrix components were 

being formed. 

In a parallel control experiment, a poly-lysine coated glass slide was placed into a culture of E. coli 

PHL644, that had been grown overnight in LB/2 media to an OD600 of > 2 before being re-suspended 

into M63 media, instead of being spin-coated via centrifugation. This culture was incubated for the 

same period (> 7 days) whilst being very gently agitated. In this culture biofilm formation would rely 

on the traditional method of cells attaching to a substrate without any assistance. 

ESEM images of the spin-coated biofilm (SCB) were captured by Dr Andreas Tsoligkas of the 

University of Birmingham. These images illustrated very different characteristics as the maturation 

period progressed (ESEM images shown in figure 2.2) and the SCB showed a marked increase in 

three dimensional structure compared to the cells that were allowed to form a biofilm by natural 

deposition. Comparison of a three day mature biofilm to a four day old specimen (figure 2.2 B, C) 

showed the formation of channels inside the biofilm and the appearance of deep pores.  These 

pores and channels are often seen during biofilm development and are believed to allow nutrients 

to flow into and waste products to flow out of the biofilms lower strata.121 By day five (figure 2.2, D) 

the spider’s web-like evidence of EPS starting to form around the cells could be seen. On the sixth 

day (figure 2.2, E) the EPS production was very widespread covering all the cells in the white fibrous 

strands of the ECM and by the seventh day (figure 2.2, F) deep channels and pores were seen that 

are consistent with the theory of biofilm formation. The dramatic changes in biofilm surface 

morphology are best illustrated by comparing the third day to the sixth. The biofilm after six days 

maturation appeared to be much rougher with peaks of cells separated by valley-like channels and 

the volume of EPS had increased from a few connections between individual cells to a widespread 

network that encased the microbes into a polysaccharide matrix. The biofilm that was allowed to 
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AFM has been described as being analogous to a record player.122 A molecular needle-like tip is 

attached to a cantilever which has a spring constant that is much smaller than the intermolecular 

spring constant of the atoms being studied; because of this the cantilever is affected by the tiny 

forces acting on the tip from the surface it is in contact with. The changes in cantilever position can 

be followed with an optical deflection detection system. Essentially, a laser is directed onto the end 

of the cantilever and any shift in the position of the cantilever will cause the laser beam to reflect by 

a proportional amount, which can be monitored by photo-detectors. The ratio of the original 

movement of the tip and the deflection of the laser causes the overall change to be amplified by up 

to 1000 times, this means that even deflections as small as 1 nm or less can be recorded. In 

operation the micro-tip presses against the surface of the sample with a small loading force, the tip 

is then raster scanned in the xy plane (horizontally) over the sample, or by moving the sample past a 

static tip. The vertical position of the sample can also be measured in either constant force mode or 

constant height mode. In the first of these methods the force acting on the cantilever is kept 

constant, this is achieved by changing the height of the sample to keep the cantilever in the same 

place. Alternatively the height of the sample can be kept static and the measurements in the z plane 

determined based on the degree of cantilever deflection. In both methods the result is a three 

dimensional image based on the surface topography of the sample. This data can be used to 

construct an image based on the xyz coordinates recorded at each data point and this has been used 

many times to image microbial cells.123 

This AFM technique was employed in a limited capacity to provide an image of the artificially 

engineered spin-coated biofilm (figure 2.3). The resolution of the image is not high enough to make 

out much surface detail of the cells; however it does highlight another important ability of AFM, the 

force measurements from which it gets its name. The way in which AFM works enables molecular 

forces to be measured by recording how much force is required to move the cantilever away from a 

surface, for example the micro-tip can be chemically modified/functionalised and the attractive and 

repulsive forces between the tip and a sample recorded. In this way cell surface charge and 

hydrophobicity can be investigated and ligand and receptor interactions can be probed.124 For 

example, Benoit et al. measured cell-cell interaction forces by immobilising a single cell onto an AFM 

cantilever and approaching the tip towards surface-bound cells.125 

Figure 2.3 highlights the different adhesive forces present within a SCB with the brighter colours 

indicating stronger adhesive forces between the AFM tip and the surface. The darker coloured cells 

can be seen to be surrounded by a highly adhesive region, presumably EPS components. Using this 

method the changing adhesive properties of the SCB as it matures were monitored. Spin-coated 
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Figure 2.3: AFM image of a spin coated engineered biofilm. At low resolution individual cells of E. 

coli PHL644 can be seen clustering together on the glass microscope slide following spin-coating. 

Each pixel represents a single AFM measurement. The relative ‘stickiness’ of different regions of the 

biofilm is also highlighted with the lighter colours indicating stronger adhesive forces to the tip. It 

can be seen that surrounding the darker shapes of the cells are areas of higher adhesion. This 

possibility represents the EPS surrounding the individual organisms. AFM analysis carried out by Dr 

James Bowen of the University of Birmingham. 

biofilms were matured in M63 media and removed after 3-10 days. A 7 mm square section of the 

spin coated biofilm was excised and placed into an AFM BioCell which contained M63 media, the cell 

was equilibrated to 30°C and mounted into the AFM. Inside, the cantilever and the biofilm were 

submerged in the M63. This is known as wet-mode AFM and was performed because it preserves 

the biofilm interactions and avoids surface tension forces between the tip and wet bacterial 

surfaces, this provides more accurate force measurements. The AFM instrument allowed a lateral 

scan range of 100 µm in the x and y direction and a vertical range in the z axis of 90 µm. Five 

different biofilm regions on each sample were tested with a minimum of 10 readings and three 

independently grown biofilms were tested for day 3 to day 10 (the results can be seen in figure 2.4). 

The calculated adhesive forces between the AFM tip and the surface of the SCB on days 3 through 5 

were very low (less than 1 nN). Between days 5 and 6 however there is a dramatic change in the 

forces detected, with adhesion forces showing an average reading of around 40 nN, a value which 

remains more or less constant within biofilms up to the tenth day. There is clearly something 

changing in the structure of the spin-coated biofilm between the fifth and sixth day. Correlation of 

the AFM results with the ESEM images highlight that this change in adhesive forces occurs at the 

same time as mass production of EPS components (figure 2.2, E). The biofilm allowed to deposit 

naturally showed no significant surface adhesion properties even after 7 days in maturation media. 

However for thorough comparison between the spin coating approach and the more traditional flow 



 

Figure 2.4: AFM calculated mean peak forces for the engineered spin coated biofilm over 10 days 

and peak forces within a 7 day mature naturally deposited

adhesion forces acting between the AFM cantilever and the biofilm within the first 5 days of 

maturation or with a 7 day mature biofilm left to deposit naturally. On the 6th day the attractive 

forces within the SCB increas

analysis was conducted by Dr James Bowen of the University of Birmingham.

cell grown natural biofilms, AFM analysis of a 7 day old biofilm of 

cell should be performed.

As well as adhesion forces, distinctive phenomena known as ‘snap

the AFM. These events are caused during contact mode AFM when the cantilever is lowered onto 

the surface of the cells and exerts a known forc

the tip decreases until the tip has no contact with the surface and the overall force acting on the tip 

is zero. Figure 2.5A shows how this process looks when plotted onto a force curve. The x axis sho

the distance of the cantilever from the cell surface, at distance 0 the tip is in contact with the cells. 

As the tip is retracted, the force being applied on the cantilever from the surface decreases 

accordingly. This is illustrated in figure 2.5A as a 

approaches 0 nN it begins to show negative force, this can be explained by attractive forces acting 

on the tip from the surface (these can range from relatively small atomic forces such as van der 

waals or large adhesive forces originating from a cell surface). The retracting force begins to 

compensate for these various attractive forces and the tip begins to retreat from the substrate until 

all attractive and repulsive forces have been annulled and the ca

This can be seen in figure 2.5A as the gradually curving blue

returns to the zero, resting state  (green line, 4)

 
 

Figure 2.4: AFM calculated mean peak forces for the engineered spin coated biofilm over 10 days 
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the surface of the cells and exerts a known force onto it. As the tip is retracted the force acting on 

the tip decreases until the tip has no contact with the surface and the overall force acting on the tip 

. Figure 2.5A shows how this process looks when plotted onto a force curve. The x axis sho

the distance of the cantilever from the cell surface, at distance 0 the tip is in contact with the cells. 

As the tip is retracted, the force being applied on the cantilever from the surface decreases 

accordingly. This is illustrated in figure 2.5A as a red line (1) with decreasing gradient. As this line 

approaches 0 nN it begins to show negative force, this can be explained by attractive forces acting 

on the tip from the surface (these can range from relatively small atomic forces such as van der 

r large adhesive forces originating from a cell surface). The retracting force begins to 

compensate for these various attractive forces and the tip begins to retreat from the substrate until 

all attractive and repulsive forces have been annulled and the cantilever returns to a relaxed state. 

This can be seen in figure 2.5A as the gradually curving blue line (2) as the force acting on the tip 

returns to the zero, resting state  (green line, 4) 
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Figure 2.4: AFM calculated mean peak forces for the engineered spin coated biofilm over 10 days 

biofilm. There are no significant 

adhesion forces acting between the AFM cantilever and the biofilm within the first 5 days of 

maturation or with a 7 day mature biofilm left to deposit naturally. On the 6th day the attractive 

e significantly and remain high for the other four days of study. AFM 

analysis was conducted by Dr James Bowen of the University of Birmingham. 

PHL644 formed within a flow 

off’ events were detected using 

the AFM. These events are caused during contact mode AFM when the cantilever is lowered onto 

e onto it. As the tip is retracted the force acting on 

the tip decreases until the tip has no contact with the surface and the overall force acting on the tip 

. Figure 2.5A shows how this process looks when plotted onto a force curve. The x axis shows 

the distance of the cantilever from the cell surface, at distance 0 the tip is in contact with the cells. 

As the tip is retracted, the force being applied on the cantilever from the surface decreases 

red line (1) with decreasing gradient. As this line 

approaches 0 nN it begins to show negative force, this can be explained by attractive forces acting 

on the tip from the surface (these can range from relatively small atomic forces such as van der 

r large adhesive forces originating from a cell surface). The retracting force begins to 

compensate for these various attractive forces and the tip begins to retreat from the substrate until 

ntilever returns to a relaxed state. 

line (2) as the force acting on the tip 



 

Figure 2.5: Examples of AFM force curves and a cartoon showing d

attraction and retraction. (A

red, the AFM tip is being retracted from the surface. At the end of this stage the tip looses contact 

with the surface (shown with an arrow). At stage (2), highlighted in blue, various attractive forces 

between the tip and the surface cause the force acting on the cantilever to decrease slowly. By stage 

(4), shown in green, the tip has lost contact with the surface forces pre

total force has dropped to 0 nN. The total binding force between the surface and the tip is 

represented by the peak area under the dotted line. 

retraction. (1) The tip is in contact

the tip. (3) The connections between adhesive fibres and the tip ‘snap

large change in cantilever force. (4) The cantilever is in a rest state and has no external 

on it. (C) Force curve showing multiple ‘snap

cause distortions in the curve under the dotted line as a sharp change in force is detected as 

adhesive EPS fibres detach from the AFM ti

arrows. AFM analysis performed by Dr James Bowen of the University of Birmingham.

 
 

Figure 2.5: Examples of AFM force curves and a cartoon showing different stages of cantilever 

attraction and retraction. (A) Example of a simple retraction force curve. At stage (1), highlighted in 

red, the AFM tip is being retracted from the surface. At the end of this stage the tip looses contact 

own with an arrow). At stage (2), highlighted in blue, various attractive forces 

between the tip and the surface cause the force acting on the cantilever to decrease slowly. By stage 

(4), shown in green, the tip has lost contact with the surface forces pre

total force has dropped to 0 nN. The total binding force between the surface and the tip is 

represented by the peak area under the dotted line. (B) Cartoon showing the different stages in tip 

retraction. (1) The tip is in contact the surface. (2) EPS components restrict the vertical movement of 

the tip. (3) The connections between adhesive fibres and the tip ‘snap

large change in cantilever force. (4) The cantilever is in a rest state and has no external 

Force curve showing multiple ‘snap-off’ events during tip retraction. These ‘snap

cause distortions in the curve under the dotted line as a sharp change in force is detected as 

adhesive EPS fibres detach from the AFM tip. Examples of ‘snap-off’ events are highlighted with 

arrows. AFM analysis performed by Dr James Bowen of the University of Birmingham.
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ifferent stages of cantilever 

Example of a simple retraction force curve. At stage (1), highlighted in 

red, the AFM tip is being retracted from the surface. At the end of this stage the tip looses contact 

own with an arrow). At stage (2), highlighted in blue, various attractive forces 

between the tip and the surface cause the force acting on the cantilever to decrease slowly. By stage 

(4), shown in green, the tip has lost contact with the surface forces previously acting upon it and 

total force has dropped to 0 nN. The total binding force between the surface and the tip is 

Cartoon showing the different stages in tip 

the surface. (2) EPS components restrict the vertical movement of 

-off’ one by one causing a 

large change in cantilever force. (4) The cantilever is in a rest state and has no external forces acting 

off’ events during tip retraction. These ‘snap-off’ events 

cause distortions in the curve under the dotted line as a sharp change in force is detected as 

off’ events are highlighted with 

arrows. AFM analysis performed by Dr James Bowen of the University of Birmingham. 



 

Figure 2.6: Examples of retraction events measured using AFM for spin

several days. Repeats of fou

smooth retraction force curve is seen that shows no significant ‘snap

events are seen suggesting increased EPS production. At day 9 multiple ‘snap

suggesting a well developed EPS structure. Arrows indicate examples of such events. AFM analysis 

was performed by Dr James Bowen of the University of Birmingham.

The distinctive ‘snap-off’ events occur when AFM is used in this way to study cell 

tip pulls away from cells, biomolecules from the cell surface can be pulled off with the tip. As the tip 

is retracted these biomolecules are stretched and eventually dissociate, which produces a very 

sudden change in force. These events 

biomolecules are attached then they will dislocate at different times, meaning several sudden 

changes in force measured before the curve returns to zero.  

 
 

Figure 2.6: Examples of retraction events measured using AFM for spin

Repeats of four retraction experiments are presented on a single graph. At day 3 a 

smooth retraction force curve is seen that shows no significant ‘snap-off’ events. At day 5 more 

events are seen suggesting increased EPS production. At day 9 multiple ‘snap

suggesting a well developed EPS structure. Arrows indicate examples of such events. AFM analysis 

was performed by Dr James Bowen of the University of Birmingham. 

off’ events occur when AFM is used in this way to study cell 

tip pulls away from cells, biomolecules from the cell surface can be pulled off with the tip. As the tip 

is retracted these biomolecules are stretched and eventually dissociate, which produces a very 

sudden change in force. These events are marked with an arrow in figure 2.5C. When

biomolecules are attached then they will dislocate at different times, meaning several sudden 

changes in force measured before the curve returns to zero.   
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Figure 2.6: Examples of retraction events measured using AFM for spin-coated biofilms over 

r retraction experiments are presented on a single graph. At day 3 a 

off’ events. At day 5 more 

events are seen suggesting increased EPS production. At day 9 multiple ‘snap-off’ events can be seen 

suggesting a well developed EPS structure. Arrows indicate examples of such events. AFM analysis 

off’ events occur when AFM is used in this way to study cell surfaces. When the 

tip pulls away from cells, biomolecules from the cell surface can be pulled off with the tip. As the tip 

is retracted these biomolecules are stretched and eventually dissociate, which produces a very 

arrow in figure 2.5C. When multiple 

biomolecules are attached then they will dislocate at different times, meaning several sudden 
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When the maturing biofilm (3-10 days old) was analysed by AFM an increasing number of ‘snap-off’ 

events occurred with increasing age of the biofilm (figure 2.6). Table 2.1 shows that with a 3 day old 

biofilm there were only typically 1 or 2 snap-offs events after a minimum of 30 measurements. At 

day 6 (when EPS production had been shown to begin) this number increased to 3-7. Between days 

7 and 9 there were between 5 and 12 events and even greater numbers seen with a 10 day old spin-

coated biofilm. Figure 2.6 shows some example force curves from 3, 5 and 9 day old mature SCBs. 

Day 3 shows a smooth transition between the tip leaving the surface and the return to the resting 

cantilever state. 5 day old biofilms show a few ‘snap-off’ events but the 9 day old biofilm shows a 

largely distorted curve and a large peak area below 0 nN. This increasing peak area indicates an 

increasingly adhesive cell surface. 

Maturation Time (days) Typical number of ‘snap-off’ events 

3 1-2 

4 1-2 

5 1-2 

6 3-7 

7 5-10 

8 5-10 

9 6-12 

10 >12 

Table 2.1: Typical number of ‘snap-off’ events in spin-coated biofilms of different ages. A minimum 

of 30 measurements recorded across three biofilms for each day 

Similar multiple events have been reported in studies of polysaccharides on the surface of yeast cells 

and in the comparison of lipopolysaccharides on the surfaces of gram-positive and gram-negative 

bacteria.126, 127 Since the EPS secreted by biofilms is also mainly composed of polysaccharides it 

seems likely that the events detected in this study are a consequence of increased EPS production 

and matrix formation. The increasing number of these events is further evidence that there are large 

changes occurring on the surface of the spin-coated biofilm during the maturation period and that 

these changes are making the surface more adhesive, linking the cells together into a community.  

The production of the extra-cellular matrix surrounding the cells is one of the main requirements in 

defining a biofilm. The other defining feature is the three dimensional structure, particularly the 



 

characteristic mushroom shaped colonies that emerge as a biofilm matures. Interferometry was

utilised to follow the biofilm as it matured and allowed the measurement of biofilm thickness and 

surface roughness as the maturation period 

performed by Dr Tsoligkas using biofilms made by myself and Dr Tsoligkas.

Figure 2.7: Changes in the overall thickness of the spin

different stages of biofilm maturation, as measured by interferometry. 

shows increasing thickness 

point a sharp decrease in surface roughness is accompanied by no overall

thickness. After day 8 both the thickness and roughness of the biofilm begin to increase again. Error 

bars represent 3 repeats. 

As the biofilm matured from day 3 to day 7 the overall thickness increased from around 30 µm to 40 

µm. The surface roughness of the biofilm also saw an increase from just over 1.5 µm on the third day 

to around 4.5 µm on the seventh. This change can be rationalised by the change in surface features 

of a biofilm as it develops. Figure 2.8 highlights

through as it matures. After 5 days of maturation mushroom colonies start to appear on the surface 

of the biofilm with channels forming between the caps. It is thought that these distinctive shaped 

structures are produced 

mass transfer limitations

distribution of resources down into the lower echelons 

continue to grow and as they do the overall surface corrugation increases, this effect is detected by 

the interferometry as increasing biofilm roughness. 

surface roughness of the film dropped back to less than 1 µm, while the overall thickness of the film 

remained constant. This occurs because the formed mushroom colonies have continued to grow 

larger and larger. Once the mushroom caps have grown large enough they mak

 
 

characteristic mushroom shaped colonies that emerge as a biofilm matures. Interferometry was

utilised to follow the biofilm as it matured and allowed the measurement of biofilm thickness and 

e maturation period increased (figure 2.7). Interferometry

performed by Dr Tsoligkas using biofilms made by myself and Dr Tsoligkas.

Figure 2.7: Changes in the overall thickness of the spin-coated biofilm and the surface roughness at 

stages of biofilm maturation, as measured by interferometry. 

shows increasing thickness (green) and roughness (red) as the biofilm matures up to day 7. At this 

point a sharp decrease in surface roughness is accompanied by no overall

thickness. After day 8 both the thickness and roughness of the biofilm begin to increase again. Error 

 

As the biofilm matured from day 3 to day 7 the overall thickness increased from around 30 µm to 40 

rface roughness of the biofilm also saw an increase from just over 1.5 µm on the third day 

to around 4.5 µm on the seventh. This change can be rationalised by the change in surface features 

develops. Figure 2.8 highlights the changes that the surface of the biofilm goes 

through as it matures. After 5 days of maturation mushroom colonies start to appear on the surface 

of the biofilm with channels forming between the caps. It is thought that these distinctive shaped 

structures are produced by motile bacteria attaching and re-attaching as a result of substrate and 

transfer limitations.24 The formation of channels within the surface of the biofilm aids the 

distribution of resources down into the lower echelons of the film. These mushroom shaped colonies 

continue to grow and as they do the overall surface corrugation increases, this effect is detected by 

the interferometry as increasing biofilm roughness. Figure 2.7 however shows that after 7 days the 

ghness of the film dropped back to less than 1 µm, while the overall thickness of the film 

remained constant. This occurs because the formed mushroom colonies have continued to grow 

larger and larger. Once the mushroom caps have grown large enough they mak
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characteristic mushroom shaped colonies that emerge as a biofilm matures. Interferometry was 

utilised to follow the biofilm as it matured and allowed the measurement of biofilm thickness and 

increased (figure 2.7). Interferometry analysis was 

performed by Dr Tsoligkas using biofilms made by myself and Dr Tsoligkas. 

coated biofilm and the surface roughness at 

stages of biofilm maturation, as measured by interferometry. The engineered biofilm 

as the biofilm matures up to day 7. At this 

point a sharp decrease in surface roughness is accompanied by no overall change in biofilm 

thickness. After day 8 both the thickness and roughness of the biofilm begin to increase again. Error 

As the biofilm matured from day 3 to day 7 the overall thickness increased from around 30 µm to 40 

rface roughness of the biofilm also saw an increase from just over 1.5 µm on the third day 

to around 4.5 µm on the seventh. This change can be rationalised by the change in surface features 

t the surface of the biofilm goes 

through as it matures. After 5 days of maturation mushroom colonies start to appear on the surface 

of the biofilm with channels forming between the caps. It is thought that these distinctive shaped 

attaching as a result of substrate and 

The formation of channels within the surface of the biofilm aids the 

of the film. These mushroom shaped colonies 

continue to grow and as they do the overall surface corrugation increases, this effect is detected by 

Figure 2.7 however shows that after 7 days the 

ghness of the film dropped back to less than 1 µm, while the overall thickness of the film 

remained constant. This occurs because the formed mushroom colonies have continued to grow 

larger and larger. Once the mushroom caps have grown large enough they make contact with the 



 

similar colonies around them (figure 2.8, day 7) and eventually merge

the channels between them and the irregular, bumpy surface is lost but the overall thickness of the 

film has not changed. This results in a 

Figure 2.8: Cartoon showing formation of the biofilm three dimensional structure and emergence

of mushroom shaped colonies together with

matures cells at the surface migrate to form mushroom shaped protuberances on the surface. As the 

mushroom-like caps continue to grow, they fuse together causing the overall thickness of the biofilm 

to increase. On top of the new biofilm surface fresh mushroom 

Interferometry analysis of the spin

appearance of mushroom colonies. Interferometry performed by Dr Andreas Tsoligkas of the 

University of Birmingham.

The loss of the channels in the biofilm once again introduces mass transfer limitations into the 

biofilm. This triggers the same cell movement as before and further mushroom shaped colonies 

begin to form on the surface of the biofilm. This increases the overall thickne

to intensify the surface roughness once again. This effect was seen by analysing 9 and 10 day old 

spin-coated biofilm slides by 

The individual interferometer readings for days 3,5,7 and 9 are shown in

cartoons showing how the formation of surface structural features like mushroom colonies affect 

the surface topography. At day 3 the interferometry results showed a fairly level surface without 

 
 

similar colonies around them (figure 2.8, day 7) and eventually merge. The fused mushrooms lo

the channels between them and the irregular, bumpy surface is lost but the overall thickness of the 

film has not changed. This results in a loss of surface roughness as measured by the interferometer. 

Figure 2.8: Cartoon showing formation of the biofilm three dimensional structure and emergence

of mushroom shaped colonies together with the corresponding interferometry data. 

es cells at the surface migrate to form mushroom shaped protuberances on the surface. As the 

like caps continue to grow, they fuse together causing the overall thickness of the biofilm 

to increase. On top of the new biofilm surface fresh mushroom shaped colonies begin to appear. 

Interferometry analysis of the spin-coated biofilm shows surface roughness increasing with the 

appearance of mushroom colonies. Interferometry performed by Dr Andreas Tsoligkas of the 

University of Birmingham. 

he channels in the biofilm once again introduces mass transfer limitations into the 

biofilm. This triggers the same cell movement as before and further mushroom shaped colonies 

begin to form on the surface of the biofilm. This increases the overall thickne

to intensify the surface roughness once again. This effect was seen by analysing 9 and 10 day old 

coated biofilm slides by interferometry (figure 2.7).  

The individual interferometer readings for days 3,5,7 and 9 are shown in

cartoons showing how the formation of surface structural features like mushroom colonies affect 

the surface topography. At day 3 the interferometry results showed a fairly level surface without 
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. The fused mushrooms lose 

the channels between them and the irregular, bumpy surface is lost but the overall thickness of the 

loss of surface roughness as measured by the interferometer.  

Figure 2.8: Cartoon showing formation of the biofilm three dimensional structure and emergence 

the corresponding interferometry data. As a biofilm 

es cells at the surface migrate to form mushroom shaped protuberances on the surface. As the 

like caps continue to grow, they fuse together causing the overall thickness of the biofilm 

shaped colonies begin to appear. 

coated biofilm shows surface roughness increasing with the 

appearance of mushroom colonies. Interferometry performed by Dr Andreas Tsoligkas of the 

he channels in the biofilm once again introduces mass transfer limitations into the 

biofilm. This triggers the same cell movement as before and further mushroom shaped colonies 

begin to form on the surface of the biofilm. This increases the overall thickness of the film and starts 

to intensify the surface roughness once again. This effect was seen by analysing 9 and 10 day old 

The individual interferometer readings for days 3,5,7 and 9 are shown in figure 2.8 along with 

cartoons showing how the formation of surface structural features like mushroom colonies affect 

the surface topography. At day 3 the interferometry results showed a fairly level surface without 
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much variation in vertical height. The interferometry data for the fifth day displayed increasing 

roughness symptomatic of channels forming between the peaks. The seventh day showed the 

greatest surface roughness with large peaks separated by large troughs consistent with the theory 

that at this stage large mushroom colonies have formed with channels flowing between them. The 

surface of the interferometer studied biofilm at day 9 shows much reduced surface features and is 

more similar to the biofilm on the third day than the seventh. This data strongly correlates with the 

theory that as the biofilm grows it is going through cycles of mushroom colony formation followed 

by fusion and increased biofilm thickness. 

The total biomass that had formed onto the slides that had been matured for 7 days was calculated 

using dry cell weight calculations. The total biomass on 14 different 7 day old spin-coated biofilms 

was re-suspended into sterile water and heated at 100°C. The mass of the cells was measured until a 

constant mass was reached. The total dry biomass was measured to be approximately 80 mgs on 

each slide. In previous biocatalysis work conducted with biofilms it has been noted that producing 

biomass consistently between batches is very difficult using conventional methods.81 If too much 

biomass is produced then mass transfer limitations begin to affect the organism and sloughing of 

cells from the surface can begin, which can lead to the clogging of reactor systems. On the other 

hand if too little biofilm is produced then catalytic rates will be affected. The consistency of biofilms 

produced using this spin-coated method is attractive for biocatalysis as reliability between multiple 

batches is an important starting point for industrial processes. 

Immediately following the spin-coating procedure the film of bacteria does not really fulfil the 

criteria of being a biofilm (i.e. a community of attached cells surrounded by an extracellular matrix) 

and is in actuality just a layer composed of compressed E. coli cells. The analytical results suggest 

that after 6 days in minimal media at low osmolarity there has been a change in the cell behaviour 

and that extracellular matrix components have been produced (as seen as white fibrous material on 

the ESEM and as increased adhesion forces measured by AFM). The three dimensional structure of 

the engineered biofilm is also behaving in a dynamic fashion with mushroom shaped colonies 

forming and fusing (as seen by interferometry).  

All this suggests that despite its humble beginnings the spin-coated engineered biofilm has 

undergone a shift from simply being a layer of compressed cells to a matrix enclosed community of 

bacteria that strongly resembles a biofilm grown in traditional flow cell apparatus. With the 

increased control over deposition and reproducible incorporation of biomass this method seems to 

be able to produce biofilms in a manner that has advantages over traditional methodologies. 
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Chapter 3: 

Performance of the Spin Coated Engineered Biofilm as an Immobilised 

Catalyst and Comparison to the Activity of Planktonic Bacteria and 

Traditionally Immobilised Enzyme 

3.1 Introduction 

3.1.1 Biofilms as biocatalysts 

In the clinical environment biofilms are exclusively viewed as being a menace and are known to play 

a considerable role in a variety of persistent infections, including dental caries (e.g. Streptococcus 

infection) and cystic fibrosis pneumonia (e.g. P. aeruginosa).53, 128 Industrially however, biofilms are 

not seen in such black and white terms. Unwanted biofilms are undesirable in industry because they 

can, amongst other things, foul reactor systems, contaminate food processing equipment and 

reduce heat transfer in heat exchangers or cooling towers.70 The increased robustness of biofilms 

compared to planktonic cells has meant that mixed species biofilms have found some industrial 

applications in bioremediation and waste water treatment.129 Single species biofilms are used in the 

production of fine chemicals such as ethanol or 2,3-butanediol through fermentations or 

biotransformations.64, 70 There are fewer reports of recombinant strains of bacteria being utilised to 

over express a specific protein and perform desired biotransformation reactions. In the last few 

years there has been a surge of interest in the potential of biofilms to perform biotransformation 

reactions and the new method of engineering spin-coated biofilms presented here opens up the 

possibility to form E. coli biofilms that are easy to make, resistant to harsh conditions and capable of 

being produced alongside an enzyme of choice. 

3.1.2 Traditional methods of enzyme immobilisation 

The need for long lived, stable biocatalysis has driven the development in enzyme immobilisation 

techniques. In addition to making enzymes easier to handle this enables the separation of catalyst 

and product to ensure no protein contamination appears in the final material. Immobilisation also 

enables the recycling of enzymes that can be time consuming and expensive to produce. In general 

there are three traditional methods of enzyme immobilisation; binding to a support, entrapment 

and cross-linking (for extensive review see Sheldon 2007).130 
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Enzymes can be bound to supports using physical (hydrophobic, van der Waals), ionic or covalent 

bonding. Physical bonding is the weakest of the three and is generally not strong enough to maintain 

an enzyme-support attachment. Covalent and ionic bonding forces are strong enough to prevent 

enzyme leaching from the support during catalysis. 

Entrapment of enzymes involves capturing them inside a polymer network lattice or inside micro 

spheres. The forces here are not usually strong enough to totally prevent catalyst leaching, so 

additional covalent attachment is often used in parallel. This blurs the line between support binding 

and entrapment techniques. 

The problem with the above methods is that the addition of bulky carriers effectively increases the 

portion of the immobilised catalyst that is not active, resulting in a less favourable mass to catalytic 

activity ratio. 

Thirdly, enzymes can be cross-linked using bifunctional reagents. This technique arose from the 

discovery in the early 1960s that the surface NH2 groups of enzymes can be cross-linked together 

with a chemical joiner such as glutaraldehyde to form enzyme crystals.131 The draw backs of this 

technique however were low activity retention, poor reproducibility and low mechanical stability. 

Since then improvements made to the technique have seen the emergence of cross-linked enzyme 

aggregates.132 In this process enzymes are precipitated by increasing the salt concentration or with 

the addition of organic solvents or non-ionic polymers. The resulting enzyme aggregates are then 

cross-linked to produce a permanently insoluble mass of enzyme that still maintains a pre-organised 

structure. This technique can be mixed with conventional ammonium sulphate precipitation to 

combine the purification and immobilisation steps of an enzyme preparation. 

There is no clear answer as to which method is the best one for a given system, comparison of 

different immobilisation methods for a single enzyme are not easy to find. Although there are 

thousands of papers on enzyme immobilisation the comparison in each is usually between 

immobilised and free enzyme and not between different immobilisation techniques. 

3.2 Biocatalytic performance of the SCB with tryptophan synthase 

To probe the biocatalytic potential of the spin-coated biofilm the enzyme tryptophan synthase was 

selected. This enzyme mediates the PLP (pyridoxal-phosphate) dependent biotransformation 

between indole and L-serine to form L-tryptophan. This enzymatic mechanism has previously been 

harnessed to produce enantiomerically pure L-halo-tryptophan by providing the enzyme with 
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commercially available halogenated indole analogues which are taken up into the active site and 

converted to the corresponding tryptophan.116, 117 

For this study, three different substrates were chosen: 5-fluoroindole, 5-chloroindole and 5-

bromoindole. Indole analogues halogenated at the 5 or 6-position had previously been shown to be 

better substrates for the enzyme (contained with a cell free extract) compared to analogues 

substituted at the 4 or 7 position 116 and they also compare favourably in terms of cost and 

commercial availability. Fluorine containing analogues are also better substrates than either the 

chlorinated or brominated equivalents with tryptophan synthase. A range of indole analogues 

substituted at the same position but containing different halogens will enable the effect of the 

different halogens on the spin-coated biofilm catalyst to be studied. 

3.2.1 Process development 

3.2.1.1 Development of analytical methods to assess tryptophan 

synthase yield 

In the previous studies with tryptophan synthase by Goss et al. (2006), the yield of the tryptophan 

product was directly determined quantitatively by ethyl acetate extraction of the un-reacted indole 

starting material and subsequent purification of the aqueous fraction on reverse phase C18 silica to 

access the pure tryptophan.116 To facilitate the assessment of the ability of the biofilm to mediate 

this biotransformation a higher throughput analysis was needed that could detect formed product at 

low concentrations in small sample volumes. Reverse phase HPLC with PDA detection (190 to 800 

nm) was chosen as the most suitable method for analysis. Tryptophan has UV absorbance properties 

that make it easy to detect with a PDA device (photodiode array). 

Samples of pure 5-fluoro-L-tryptophan, 5-chloro-L-tryptophan and 5-bromo-L-tryptophan were 

obtained by following the procedure of Goss et al. (2006)116
. A cell free extract of E. coli containing 

the tryptophan synthase enzyme (commercially available strain, ATCC 37845) was added to a 

solution of halo-indole, L-serine and PLP, in potassium phosphate buffer, and incubated for 3 days. 

Following this, the unreacted indole was extracted and the tryptophan purified by reverse phase C18 

silica chromatography, yielding samples of all three products, the purifty of which was confirmed by 

NMR and LCMS analysis (see Appendix 1). These were used as HPLC standards to ensure accurate 

identification of product from fractions of the biofilm-catalysed biotransformation reactions. 

A reverse phase HPLC method (LCgrad_MeOH) was developed using a ZORBAX SB-C18 column (4.6 

mm x 15 cm). The mobile phase was a gradient of methanol versus water (with the addition of 0.1% 



 

formic acid to both) at a flow rate of 0.7 ml min

concentration was gradually increased to 95% over 12 minutes. 

methanol wash for 2.5 min

level of 10% and held for a further 5 minutes.

Using this method, the 5-

depending on the hydrophobicity of the s

tryptophan eluted early in this time range, chlorinated substituents later and brominated tryptophan 

eluted latest). The differing retention times of the three analogues 

formation of the different tryptophan products. Using this method 5

demonstrates a retention time of around 7.7 minutes, 5

5-bromo-tryptophan elutes

three products also enables

absorbance) is different for each analogue: 278
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biotransformation reactions 

Analysing samples of halo
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area for different tryptophan analogues

Figure 3.1: Standard curve of 

tryptophan. Plotting HPLC peak area against concentration of sample illustrates the linear 

relationship between the two variables. The resulting gradien

unknown concentrations based on the peak area of a sample. Data based on calculations from 4 

separate samples per data point, standard deviations shown.

 
 

formic acid to both) at a flow rate of 0.7 ml min-1. After an initial 30 seconds at 10%, the methanol 

concentration was gradually increased to 95% over 12 minutes. This was followed by a 95% 

methanol wash for 2.5 minutes before the concentration of methanol was returned to the starting 

level of 10% and held for a further 5 minutes. 

-halo-tryptophan analogue standards were seen to elute

depending on the hydrophobicity of the substituent (unsubstituted tryptophan or fluorinated 

tryptophan eluted early in this time range, chlorinated substituents later and brominated tryptophan 

The differing retention times of the three analogues enables

different tryptophan products. Using this method 5

a retention time of around 7.7 minutes, 5-chloro-tryptophan around 9.4 minutes and 

tryptophan elutes from the column at around 9.8 minutes. The diffe

also enables identification of product formation as the λmax

absorbance) is different for each analogue: 278 nm for 5F-trp, 280 nm for 5

The haloindole starting materials show a much later retention time of around 12

minutes. Comparison of the retention time and λmax values of new peaks formed

biotransformation reactions allows assignment of these new peaks as halo

s of halo-tryptophan standards made up to specific concentrations allowed the 

construction of a standard curve where tryptophan concentration was plotted against HPLC peak 

area for different tryptophan analogues. Figure 3.1 is an example of such a standard

Figure 3.1: Standard curve of HPLC peak area at 280 nm plotted against concentration of 

Plotting HPLC peak area against concentration of sample illustrates the linear 

relationship between the two variables. The resulting gradient of the curve can be used to calculate 

unknown concentrations based on the peak area of a sample. Data based on calculations from 4 

separate samples per data point, standard deviations shown. 
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constructed by measuring the HPLC peak area of samples containing a range of concentrations of 5-

chloro-tryptophan. Peak areas were calculated at the λmax for each tryptophan analogue to obtain 

the most accurate results (e.g. 278 nm for tryptophan and 280 nm for 5-chloro-tryptophan) 

(Appendix 1 contains calibration curves for each of the 5-haloindole substrates). Figure 3.1 illustrates 

the linear relationship between peak area and concentration. At the λmax value the gradient of the 

plot was the same (y=(5x106)x) for all of the halogenated tryptophan analogues tested. This gradient 

of the curve can be used to calculate unknown tryptophan concentration from the HPLC peak area 

of a sample. The concentration of tryptophan can be used to calculate the number of moles present 

in a solution of known volume and therefore the overall yield. 

 To test the accuracy of this yield estimation, two identical biotransformation reactions were 

performed with 5-bromoindole and a cell free extract of the tryptophan synthase producing E. coli 

MW-043, contained within a length of dialysis tubing, using the standard published procedure.116 

The biotransformation reactions were incubated for 2 days, after which the cell lysate was removed. 

A 0.5 ml aliquot of each crude reaction was taken and analysed via the HPLC. Any unreacted indole 

in the reactions was extracted into ethyl acetate and the aqueous layer purified with reverse phase 

C18 silica. The silica was washed with water and the eluent monitored by TLC until all the PLP and 

unreacted serine had been washed off. The tryptophan was eluted in methanol. The solvent was 

removed under reduced pressure and the final yield of the resulting dried tryptophan obtained by 

weighing. Peak areas were obtained from the aliquots analysed via HPLC and the concentration of 5- 

bromo-tryptophan estimated using the standard curve of concentration versus peak area. The 

comparison of 5-bromo-tryptophan yield calculated using both methods is shown in table 3.1. The 

dry weights of the two reactions assigned the final yields as 15 and 23% respectively. The HPLC 

estimations were almost identical at 17 and 21%. This strongly indicated that determining the yield 

of the tryptophan synthase biotransformation reactions using the HPLC offered a fast, reliable, high-

throughput and most importantly accurate way of following the biotransformation reactions. 

 

5-Br-tryptophan 
biotransformation 
reaction 

Dry weight of 5-Br-
tryptophan obtained 
from column 

Yield estimated 
from dry weight 
of product 

Yield estimated 
from HPLC peak 
area 

1 6 mgs 15% 17% 
2 9 mgs 23% 21% 
    

Table 3.1 Comparison of calculated yield of tryptophan as obtained by weight of dry product and 

by estimation of concentration based on HPLC peak area. 
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3.2.1.2 The activity of tryptophan synthase in E.coli PHL644 

planktonic cells 

The cell lysate based tryptophan biotransformation published in the literature116 is based on the 

activity of cell free extracts of E. coli CB149 (in this study named MW-043), a species that is 

commercially available from the American Type Culture Collection (ATCC 37845) and contains the 

pSTB7 plasmid that encodes both subunits of the tryptophan synthase enzyme.113 pSTB7 is an 8.2 kb 

derivative of pBR322 that contains parts of the trp operon from Salmonella typhimurium TB1533 

including the promoter region and the structural genes trpA and trpB that code for the α and β 

subunits of the tryptophan synthase enzyme. The plasmid also contains a truncated version of trpC 

and the terminator sequence. The trp repressor and attenuator regions that normally negatively 

regulate the operon are absent; meaning that production of genes under the trp promoter is 

constitutive and does not need induction. 

If the overall goal of producing this enzyme and performing this biotransformation within the spin-

coated engineered biofilm was to be fulfilled then evidence that the biotransformation could be 

carried out with whole planktonic cells of the biofilm forming strain of E. coli PHL644 had to be 

obtained. The pSTB7 plasmid was purified from cultures of E. coli MW-043 and transformed into 

competent cells of PHL644. The resulting recombinant strain was labelled as E. coli MW-002. 

The PHL644 biofilm forming strain of K-12 E. coli had not been used previously to perform any 

biocatalysis so the activity of this strain with tryptophan synthase was assessed both as whole 

planktonic cells and as a cell free lysate, this allowed direct comparison between PHL644 and the 

original CB149 strain. 

Two 500 ml cultures of E. coli MW-002 were grown overnight using the standard method of 

tryptophan synthase cell lysate preparation (see chapter 7.10.2.3). The bacteria were collected via 

centrifugation and the pellets washed with brine. Following an additional centrifugation the two cell 

pellets were re-suspended in tryptophan synthase lysis buffer (containing 100 mM KH2PO4, 5 mM 

EDTA and 0.1 mM PLP). The first of these cell suspensions was sonicated and cleared by 

centrifugation to produce the cell free lysate. The second was used directly in the biotransformation 

reaction as a planktonic cell suspension. 

5 ml of either the cell lysate or the cell suspension was used to catalyse the conversion of 5-

bromoindole to the corresponding tryptophan. The effect of supplementing the reaction with 2.5% 

organic solvent (either DMSO or acetonitrile) was also trialled to see if enhancing the solubility of 
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the indole in the buffer could improve the overall conversion. The reactions were carried out in 

triplicate and the average yields are shown in table 3.2. 

The mean yield of the whole cell catalysed biotransformation compares favourably with the activity 

of the cell free lysate. Approximately twice the conversion was seen with the planktonic cells under 

all conditions tested. The addition of 2.5% DMSO to the reaction was beneficial to the final yield in 

both the planktonic cells and the cell free lysate reactions. The addition of acetonitrile had the 

opposite effect and reduced the final yield. 

The sonication process undergone by the cell free lysate produces high levels of energy and the 

cultures must be kept on ice throughout to avoid warming the protein solution. Despite the 

precautions this process of lysing cells is an aggressive one and there is evidence that with some 

proteins activity can be lost as a result.133 The proteins contained within intact cells are protected 

from external environmental conditions and proteases that may denature or hydrolyse them. 

Therefore it can perhaps be suggested that the increased activity of the planktonic cell catalyst may 

be due to increased enzyme stability and improved longevity of catalysis compared to the isolated 

and more vulnerable proteins present in the cell lysate. Although with the whole cells there are 

more substrate transport and product removal issues to consider. 

Table 3.2: Comparison of the same 5-bromo-tryptophan biotransformation reaction performed 

with equal volumes of either a suspension of MW-002 planktonic cells or with the equivalent cell 

free lysate. The effect of 2.5% organic solvent was also examined. Reactions were performed in 

triplicate. The yield of the same reaction catalysed by the original CB149 strain from the literature is 

shown for comparison. 

The effect of different buffers on the biotransformation reaction was also studied. In previously 

published work, the tryptophan synthase biotransformation reactions had been carried out at pH 7.8 

in 100 mM mono-basic potassium phosphate buffer (KH2PO4). The effect of lowering the pH to 7 and 

reducing the phosphate concentration to 10 mM was investigated. The biotransformation efficiency 

 % Yield % Yield with addition 
of 2.5% DMSO 

% Yield with 
addition of 2.5% 
ACN 

E. coli MW-002 planktonic 
cells 

18.5 ± 1.4 22.8 ± 0.2 16.9 ± 0.8 

E. coli MW-002 cell free 
lysate 

9.9 ± 0.5 13.5 ±3.6 5.0 ± 1.9 

E. coli CB149 cell free 
lysate (ATCC 37845) 

26116 - - 
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of the biofilm maturation M63 media itself was also tested. The cells from a 20 ml overnight E. coli 

MW-002 culture grown in M63 media were collected and re-suspended into 20 ml of tryptophan 

synthase biotransformation buffer of the appropriate pH or phosphate concentration being tested. 2 

ml of this suspension was added to 18 ml of the relevant reaction buffer which was supplemented 

with serine (5 mM), 5-bromoindole (5 mM), PLP and 5% DMSO (v/v). After three days of incubation 

at 37°C, 1 ml aliquots were taken and analysed by HPLC. The resulting yields of 5-bromo-tryptophan 

can be seen in table 3.3. 

Buffer pH % yield of 5-bromo-
tryptophan (duplicate) 

100 mM 
KH2PO4 

7.8 5.6 ±0 

100 mM 
KH2PO4 

7.0 4.6 ±0.21 

10 mM 
KH2PO4 

7.8 2.7 ±0.14 

10 mM 
KH2PO4 

7.0 2.5 ±0.07 

M63 Media 7.0 3.7 ±0.14 

   

Table 3.3: Comparison of 5-bromo-tryptophan yield performed with different reaction buffers 

The results illustrated that 100 mM phosphate buffer at pH 7.8 gave the best yield with the 

biotransformation reaction (5.6%). This is not surprising as these conditions had been used 

previously because they showed optimum activity with the cell free lysate. Interestingly the reduced 

pH does not seem to be as important to the final yield as the phosphate concentration. Reduction of 

phosphate to 10 mM resulted in the overall yield of the reaction dropping by half while the 

reduction in pH to 7 decreased the yield by about 20%. The M63 media performed fairly well as the 

biotransformation medium. This media consists of a 100 mM phosphate buffer at pH 7 plus other 

nutrients, the extra media components obviously having an effect on the yield as there is a slight 

drop in activity (about 20%) compared to the straight buffer at the same pH. 

3.2.1.3 Selecting biotransformation conditions optimal for biofilm 

catalysis 

For the biotransformation reaction to occur in the optimal conditions seen above, the biofilm would 

have to be removed from the M63 maturation media and placed into a buffer solution. The stability 

of the artificially spin-coated biofilm in reaction buffer was determined.  
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Biofilm coated glass slides were produced using the spin-coating method as detailed in chapter 2 and 

matured for 7 days, this time period had been selected as the optimum maturation period for the 

spin-coated biofilm slides. At this age of maturation the cell stickiness as measured by the AFM was 

at its maximum and therefore EPS production was judged to be at the highest observed level. 

Therefore this was the earliest time period that a fully mature biofilm had formed that could be 

utilised for biocatalysis. 

The stability of the biofilm after being transferred from one media to another and the effect of 

adding 5-bromoindole (5 mM) was examined. The M63 media was gently removed by a syringe from 

a SCB (spin-coated biofilm) slide. This was then immediately replaced with fresh M63 media and the 

flask returned to incubation for 4 hours. 5-bromoindole (5 mM) was then added and the biofilm 

incubated for a further 3 hours. The refractive index of the solution relative to water was taken as an 

estimation of the concentration of cells that had sloughed off the slide (used because the 

concentration of cells was thought to be too low for accurate OD600 measurements). In the same 

way, the M63 media was replaced by the tryptophan synthase 100 mM, pH 7.8 potassium 

phosphate biotransformation buffer. The effects of lowering the potassium phosphate 

concentration ten times and reducing the pH to 7 were also examined as before. These experiments 

were conducted with the assistance of Dr Andreas Tsoligkas of the University of Birmingham. 

Following the addition of indole the refractive index of the M63 media relative to water was 

measured to be 0.314. The biotransformation buffer under the same conditions gave a refractive 

index of 0.496, suggesting that the biofilm was more unstable under these circumstances. Halving 

the potassium phosphate concentration to 10 mM had limited effect, resulting in a similar index of 

0.341. The biofilm incubated in medium at lowered pH exhibited greater stability, resulting in a 

refractive index of 0.126. The experiments with the M63 media and pH 7 biotransformation buffer 

were repeated but this time OD600 measurements were taken and 5-bromoindole was not added. As 

expected the detected OD measurements were very low but values were obtained. Three biofilm 

slides transferred into fresh M63 media gave OD600 readings of between 0.06 and 0.08 after 4 hours. 

Slides transferred into the pH 7 biotransformation buffer gave OD readings between 0.03 and 0.035. 

These readings confirmed that the biofilm showed the highest stability when transferred into 100 

mM postassium phosphate reaction buffer at pH 7 compared to fresh M63 media or other 

phosphate buffers at higher pH.  

Since the pH 7 biotransformation buffer resulted in the most stable biofilm and had also showed 

good activity in the planktonic cell biotransformation experiments, this buffer (100 mM KH2PO4, pH 

7.0) was selected as the biofilm biotransformation buffer. 



 

During biofilm maturation a pseudo laminar flow was achieved by agitating the slides in an orbital 

shaker incubator, set at 70 rpm to reduce sheering forces during the formation of the

matrix. The stability of the SCB in this biotransformation buffer at higher agitations was tested by 

monitoring the OD600 of the biofilm media at 70 rpm for 5 hours before increasing the agitation to 

100 rpm for an additional hour before

three separately formed biofilms were measured

During the initial 5 hours of testing the optical density of the buffer did not increase by a significant 

amount within any of the triplic
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Figure 3.2: Tolerance of three separate spin
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period. The rpm was increased to 100 rpm. The increase in OD

sloughing off from the slide. After the increase to 150 rpm the optical density values rose further as 

more and more cells detached from the film. The optical density that corresponds to a fully re

suspended SCB (0.532) is highlighted with a horizontal blank line. Squares, circles and diamonds 

represent results from three separate biofilms.

 
 

During biofilm maturation a pseudo laminar flow was achieved by agitating the slides in an orbital 

shaker incubator, set at 70 rpm to reduce sheering forces during the formation of the
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of the biofilm media at 70 rpm for 5 hours before increasing the agitation to 
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three separately formed biofilms were measured (figure 3.2). 

During the initial 5 hours of testing the optical density of the buffer did not increase by a significant 

amount within any of the triplicate repeats. Total re-suspension of another biofilm slide into the 
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increasing incubation agitation. The optical density of the buffer containing a spin coated biofilm 

was measured for 5 hours at 70 rpm. The optical density did not significantly change over this 

period. The rpm was increased to 100 rpm. The increase in OD600 values in this period indicate cells 

sloughing off from the slide. After the increase to 150 rpm the optical density values rose further as 

more and more cells detached from the film. The optical density that corresponds to a fully re
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During biofilm maturation a pseudo laminar flow was achieved by agitating the slides in an orbital 

shaker incubator, set at 70 rpm to reduce sheering forces during the formation of the adhesive 
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showed approximately 50% of the biomass was still entrapped after one hour at the higher rpm. 

However even this lowest value demonstrates a loss of biomass that is unacceptable, therefore the 

biotransformations would also have to be performed at low rpm to maintain the stability of the 

biofilm. 

3.2.1.4 Determining period of biotransformation based on period of 

maximum biofilm stability 

Measuring the optical density of the buffer to calculate the number of cells that had sloughed off the 

biofilm was used to judge a sensible time frame for biocatalysis. Biofilm coated slides were 

submerged into the biotransformation buffer as before but incubated at a low level of agitation, 70 

rpm. OD600 measurements were then taken on aliquots of the culture over a 40 hour window. The 

results are displayed in figure 3.3. The biofilms for this experiment and the analysis was conducted 

by Dr Andreas Tsoligkas. 

Within the first 10 hours of submersion in buffer, the optical density of the solution increased slowly. 

The biofilm therefore showed only slight dissociation into the medium over this period. As time 

increased the biofilm dissociated further. Between 25 and 30 hours, the mean optical density of a 

number of biofilm containing solutions showed values around 0.05. As seen before, a totally re-

suspended biofilm provided the OD600 value of 0.532 (shown by a solid black line in figure 3.3). This 

value represents total dissociation of the biofilm. The mean OD600 value collected for 30 hour 

submerged biofilms therefore represents a loss of about 10% of the biofilm cells (threshold shown 

by a line of short dashes in figure 3.3). The variation in OD600 values between the different biofilms 

tested at this time period increased, with some biofilms showing up to 20% cell dissociation (shown 

as longer dashed line in figure 3.3). After 40 hours the average OD600 measurement showed a loss of 

more than 20% of the original biomass. The variation in results at this later stage, though, was 

greater than the variation seen at the earlier time points; some biofilms showed only a 10% biomass 

loss after 40 hours, while the biofilms worst affected had lost nearly 50%.  

Due to this increasing inconsistency the 30 hour window was selected as the best period for testing 

biofilm biocatalysis. After this period over 20% of the biofilm may be dissociated and any catalytic 

rate at this point may be attributed to planktonic free cells that had detached into the solution and 

not the surface attached biofilm cells. Cell detachment may also be caused by cell death and this 

could be triggered by the lack of essential metabolic substrates within the biotransformation buffer. 

If the cells have started to die at this point then a corresponding drop of reaction rate may be 

expected and would unfairly influence the reaction kinetics. 
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free lysate illustrated that 5-fluoroindole is the best haloindole substrate for tryptophan synthase, 

usually presenting a yield in excess of 80 percent.117 This high yield was another reason for selecting 

this indole as the first test of biofilm activity; the reaction rate in this case would be limited by the 

biofilm catalyst and not by the substrate, therefore acting as a good indicator of activity. An aliquot 

of the reaction was taken after 24 hours, the reaction stopped by centrifugation to collect bacterial 

cells, and analysed using the HPLC method established previously (LCgrad_MeOH). The results can 

be seen in table 3.4. 

Haloindole Individual reaction yields (%) 
performed in triplicate 

Average yield (%) after 24 
hours 

5-fluoroindole 58,32,26 39 ± 16 
5-bromoindole 24,13,10 11 ± 2 
4-bromoindole 64,41,20 42 ± 22 
   

Table 3.4: Percentage yield of several haloindoles following initial trials of SCB catalytic ability over 

24 hours. 

The HPLC analysis revealed the formation of a new peak at around 7.5 minutes that was identified 

by retention time and PDA spectrum as 5-fluoro-tryptophan, indicating that something inside the 

reaction, presumably the biofilm, was capable of catalysing the biotransformation reaction. The 

reaction was conducted in triplicate with three different biofilm specimens but there was very little 

consistency between the separate films, with the different biofilms converting the 5-fluoroindole in 

58, 32 and 26 percent yield.  

With the general concept proved, other halogenated indoles were trialled as well. 5-bromoindole 

was converted to the corresponding 5-bromo-tryptophan in an average yield of 11% (table 3.4). The 

variation in this reaction was considerably less than with the fluoroindole, showing a standard 

deviation of only 2%. As a further test, 4-bromoindole was selected as an additional substrate. 4-

bromoindole is a liquid at room temperature and this was chosen for a very similar reason as the 

fluoroindole, the liquid state of this indole meant that no lumps of insoluble indole were present in 

the reaction that could possibly knock the biofilm off the slide. 4-bromo-tryptophan was produced 

with an average yield of 42% but again this set of repeats also lacked consistency across the different 

experiments (± 22%). The 4-bromo-tryptophan yield was intriguing as the only previous paper 

reporting this biotransformation listed the overall yield of this reaction as 3% (the highest yielding 

biotransformation with the biofilm in this study reached 64%). It is unclear whether this drastic 

difference in yield is somehow due to the biofilm or if other factors are responsible. The enzymatic 

mechanism of the tryptophan synthase αβ dimer suggests that the increased steric hinderance of a 4 

or 7-substituted indole ring should mean that indole substituted at these positions yields extremely 
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poorly, particularly when incorporating a bulky bromine group. Previous work has backed up this 

theory, which makes this high 4-bromoindole yield particularly anomalous. No further study was 

conducted with this substrate and the reason for this anomaly was not investigated. 

The general lack of consistency with the biofilm biotransformation reactions may be down to several 

factors. Although different biofilms were calculated to contain roughly the same amount of dry 

weight there are going to be slight changes in surface structure. The surface of a biofilm is a dynamic 

system and constantly able to change, this may result in drastic surface area changes that could 

impact the rate of the biotransformation reaction. The fact that the standard deviation is 

significantly less with the 5-bromoindole biotransformation may suggest that the faster rate of the 

5-fluoroindole reaction is exaggerating small differences in substrate concentration or catalyst 

amount. To try to alleviate the inconsistent conversions in the initial trials, indole quantities were 

carefully weighed out on a balance accurate to 1/10th of a milligram for the subsequent 

biotransformation reactions. 

A total of 8 spin coated biofilms were used to conduct identical biotransformation reactions using 5-

chloroindole as the substrate. Aliquots of the reaction mix were taken over the 30 hour period. 

Aliquots were centrifuged to remove any cells and frozen at -20°C prior to HPLC analysis. The 

reactions were conducted on two different preparations of biofilms (4 in each), which were spin-

coated on two different days approximately one month apart. The data obtained by HPLC analysis of 

the results of the two sets of experiments was pooled and the mean, standard deviation and 

standard error of the mean calculated. The percentage yield of the reaction was plotted against time 

figure 3.4b. These repeats showed much less variation between the yields with the standard 

deviation of the 8 samples being at most 10%. This increased reliability may be due to the more 

accurate measurement of starting materials but can also be related to increased experience of 

preparing the spin coated biofilms. When initial tests were carried out the spin coating concept was 

in infancy. By the time these sets of experiments were run the prepared biofilms were more 

consistent and did not show as much instability as biofilms prepared early in the project. 

The 5-chloro-tryptophan time course showed a constant rate of reaction over the entire 30 hours 

tested. This demonstrates that the biofilm was just as active after the 30 hour time period as it was 

when it started. This suggests a level of catalytic longevity that would be important if the biofilm 

concept were to be adapted to a continuous flow system rather than batch.  

A repeat of the biotransformation reactions carried out with 5-fluoroindole as the substrate worked 

much better than the initial tests. Again, this may be due to inconsistency within biofilms generated 



 

early in the project. 4 different biofilms were submerged into identical biotransformation reactions 

containing 5-fluoroindole and good lev

at each time point was 11%). In this biotransformation almost total conversion of the fluorinated 
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Identical biotransformation experiments were carried out with 5-bromoindole as the substrate 

(figure 3.4c). In this instance 7 different biofilms grown on two different days were used to catalyse 

individual reactions. Overall the mean of the biotransformation reactions showed a significantly 

lower overall yield than the fluorinated or chlorinated indoles tested. This lowering of yield with 

increasing size of the indole substituent is consistent with previous work conducted with this 

enzyme.116 The reaction rate was also much slower. However, like the 5-chloroindole 

biotransformation, the overall reaction rate did not decrease during the 30 hour window of the 

biotransformation, suggesting that if left longer the overall yield could be increased. However 

because of the increased uncertainty about biofilm stability after this time frame and the earlier 

proof that planktonic cells could also act as effective biocatalysts, any yield achieved after 

detachment of cells could be the result of planktonic cells rather than the immobilised biofilm 

bacteria. For this reason the biotransformations remained limited to this 30 hour window. 

The seven separate biotransformations with 5-bromoindole showed very low variability between 

batches. The average standard deviation at each time point was only slightly over 1%. This shows 

remarkable consistency between different biofilms batches. The formation of biofilm surface 

topology is dynamic and hard to control; therefore different biofilm batches should show variation in 

surface area and diffusion rates from the surface of the biofilm into the lower strata of cells. 

Consistency of the biofilm catalysed yields seems to be related to the total overall yield. As the 

bromine substituent is exchanged for chlorine and then to fluorine the aqueous solubility of the 

haloindole increases, this seems to also increase the overall yield and the standard deviation of the 

repeats. This gives support to the idea that the rate of this biotransformation is limited by the 

substrate and poorer substrates obscure the differences between biofilm batches. 

3.2.2.2 Ability of the biofilm to be recycled 

The fact that the spin coated biofilm showed no loss of activity over the period tested suggested that 

the biofilm biocatalyst could be recycled from one batch reaction to the next without any observed 

loss in activity. To determine this, a 5-chloroindole biotransformation was performed in the same 

way as before but for the reduced time of 12 hours. After this time the biofilm coated slide was 

removed from the reaction and gently washed with buffer before being re-submerged into a fresh 

reaction of identical set up. This new biotransformation was monitored for an additional 12 hours 

before a third recycle was initiated. This allowed the potential of recycling the biofilm to be 

examined without moving significantly outside of the biofilm stability window of 30 hours. 



 

As before, the recycling experiment was performed with multiple biofilms prepared on two separate 

days, in this case 3 biofilms prepared on one day and 3 on 

the repeats combined together. The plots have been lined up to demonstrate how the rate of 

reaction varies over time. 

Remarkably, the rate of reaction does not seem to alter throughout the different recycles. The 

biofilm catalysed reaction progresses at the same r

conservation of catalytic rate is consistent with the earlier 30 hour biotransformation experiments 

but is still unexpected as the biofilm slide has undergone two different wash steps before catalysing 

the final biotransformation. If this is a genuine result then the spin coated biofilm could have great 

potential for continuous flow processing.

In the earlier biotransformation experiments, however, it was noted that the reactions may be 

limited by indole solubility, which could be masking changes between biofilm batches. There is a 

possibility that the same thing is occurring with the recycled biofilms and that any loss of catalytic 

activity as the biofilm is being recycled may be obscured by the rate limiting

experiments would be needed to determine this to satisfaction.

Figure 3.5: Plots showing three sequential 12 hour biofilm biotransformation reactions with 5

chloroindole performed by recycling the same biofilm. 

reactions leads to little change in catalytic rate over 36 hours. The error bars indicate standard error 

of the mean. 
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3.3 Comparing biofilm biocatalysis to planktonic cells 

Before conducting the biofilm reactions, it had been confirmed that planktonic cells were able to 

catalyse the biotransformation but there was still some doubt over whether the biofilm was doing 

the same or whether it was in fact sloughing off planktonic cells that were performing the reaction in 

solution. To determine this and to quantify if the biofilm acts as a superior catalyst compared to 

planktonic cells, an identical 5-chloroindole biotransformation was performed but with planktonic 

cells. Prior to doing this, however, the amount of planktonic cells equivalent to the biomass coated 

on to the slides had to be determined. 

3.3.1 Determination of SCB equivalent quantities of planktonic cells 

The amount of biofilm biomass present on the surface of a spin coated slide had already been 

determined to be 80 milligrams by measuring the dry cell weight of SCB slides by heating to a 

constant mass. This method of biomass determination has been widely used with biofilm research 

(for a review on biofilm quantification see Lazarova et al. (1995)).134 A planktonic cell suspension was 

prepared by re-suspending a main culture of E. coli PHL644 MW-002 into one tenth of the original 

culture volume of biofilm biotransformation buffer. The quantity of planktonic cells in this cell 

suspension was calculated by drying various volumes of this cell suspension until a constant dry 

mass was achieved. 

Figure 3.6a demonstrates the expected linear relationship between volume of cell suspension and 

dry cell weight. According to the mass results the cell suspension was equal to approximately 10-12 

mg of dry cell weight per ml of suspension. Therefore 6-8 ml of cell suspension would contain a 

biomass approximately equivalent to the amount of immobilised bacteria in the spin coated 

biofilms.  

To make sure the estimation of the quantity of planktonic cells equal to 80 milligrams was as 

accurate as possible an alternative method was also used. Another common method used to 

estimate cell mass is to measure the total protein amount, a commonly used estimation is that the 

total protein content inside cells contributes to almost 50% of the weight of dry cell masses of 

bacteria.135 Aliquots of the cell suspension were taken in the same range of volumes as were used 

for dry cell weight experiments. These aliquots were centrifuged to collect bacterial cell pellets and 

then the cellular proteins released using a modification of the NaOH protocol used by Li et al. 

(2006).64  
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the reaction rate. In fact the initial rate of the planktonic cell reactions was not significantly higher 

than with the biofilm which was an unexpected result. This could indicate a rate limiting factor that 

is independent from catalyst concentration, the poor aqueous solubility of the indole substrate may 

be responsible. 

Overall the evidence from these biotransformations suggest that the spin coated engineered biofilm 

is capable of functioning as a much better immobilised biocatalyst than planktonic cells. The source 

of this advantage comes from the increased duration of catalysis with no observable loss of activity 

over the time window. Questions remain, however, as to the exact cause of this longevity. It may 

simply be down to the fact that biofilm entrapped cells are better able to protect a fragile protein 

from harsh environments. In the case of this biotransformation the lack of available carbon sources 

in the reaction mixture is a possible reason for a drop in bacterial viability. The viability of the 

planktonic cells following the biotransformation is something that should be studied in the future to 

ascertain if this is responsible for the dropping catalytic rate. 

The longevity seen with the spin-coating technology demonstrates the potential for transferring the 

biofilms from batch processes to a continuous flow. Further study is required to demonstrate 

whether biofilm mediated biocatalysis would confer similar advantages to other biotransformations 

in addition to the tryptophan synthase work shown here. 

3.4 Comparison to traditionally immobilised enzyme 

3.4.1 Immobilising tryptophan synthase using Ni-NTA resin 

To fully justify the advantages of using a spin-coated biofilm as an immobilised biocatalyst it was 

deemed necessary to compare the activity of the SCB to a more traditional form of catalyst 

immobilisation. There are many different methods of enzyme immobilisation but a quick and simple 

method of immobilising the tryptophan synthase enzyme onto a support was to utilise an affinity 

tagging approach. Affinity tagging is an initial method of protein purification and a common 

technique is to install a hexa histidine-tag on the N- or C- terminus of the target protein. The 

resulting protein can then be isolated by mixing with Ni-NTA (nitrilotriacetic acid) resin. 

Ni-NTA resin consists of a nitrilotriacetic acid support (a tetradentate chelating absorbent developed 

at Hoffmann-La Roche) that can chelate around ions of nickel. The NTA occupies four of the six 

available ligand binding sites in the coordination sphere of the ion (see figure 3.9) which forms a very 

stable connection that can retain the ion under a wide variety of conditions. The remaining two  
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of imidazole which helps to remove any additional proteins that bind weakly to the chelating resin 

(the extra imidazole competes with histidine for binding). Once all unwanted proteins have been 

removed a wash containing high concentration of imidazole (around 300 mM) e

from the Ni-NTA to leave a solution containing the target protein in fairly high purity.

step is omitted this technique can be used to simply immobilise a target protein onto a solid support 

(the Ni-NTA). This technique is

impractical to use on a large scale as well as the environmental impacts of using large quantities of 

nickel. There is however some precedent of immobilising enzymes onto functionalised 

the properties of histidine tags.

A potential problem with tryptophan synthase, however, is the fact that it c

subunits (α and β). Immobilisation of both may restrict the association between the two but on the 

other hand the association between the two subunits may not be strong enough that both will be 

immobilised if only one is tagged.

3.4.1.1 Ni

Previous experiments had used the commercially available tryptophan synthase containing plasmid 

pSTB7. To enable effective cloning and the straightforward insertion of a poly histidine tag it was 
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NTA to leave a solution containing the target protein in fairly high purity.

step is omitted this technique can be used to simply immobilise a target protein onto a solid support 

NTA). This technique is not widely used as the expense of Ni-NTA purification resin makes it 

impractical to use on a large scale as well as the environmental impacts of using large quantities of 

nickel. There is however some precedent of immobilising enzymes onto functionalised 

the properties of histidine tags.137, 138 

A potential problem with tryptophan synthase, however, is the fact that it c

subunits (α and β). Immobilisation of both may restrict the association between the two but on the 

other hand the association between the two subunits may not be strong enough that both will be 

immobilised if only one is tagged. 

Ni-NTA immobilisation strategy 1 

Previous experiments had used the commercially available tryptophan synthase containing plasmid 

pSTB7. To enable effective cloning and the straightforward insertion of a poly histidine tag it was 
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The Nitrilotriacetic acid (NTA) support 

coordinates with the Nickel at four of the six available ligand binding sites (in red). The two 

remaining ligand binding sites in the coordination sphere of the nickel ion are free to interact with 

tag engineered onto the target protein (in 

blue). Other non tagged proteins can then be washed from the resin leaving only the protein of 

histidine tag present on the target protein. 

involves the addition of Ni-NTA resin to a 

a mixture of cellular proteins and the required tagged protein. The removal of 

any unwanted proteins in solution is achieved by washing the resin with an increasing concentration 

hich helps to remove any additional proteins that bind weakly to the chelating resin 

(the extra imidazole competes with histidine for binding). Once all unwanted proteins have been 

removed a wash containing high concentration of imidazole (around 300 mM) elutes the protein 

NTA to leave a solution containing the target protein in fairly high purity. If this elution 

step is omitted this technique can be used to simply immobilise a target protein onto a solid support 

NTA purification resin makes it 

impractical to use on a large scale as well as the environmental impacts of using large quantities of 

nickel. There is however some precedent of immobilising enzymes onto functionalised surfaces using 

A potential problem with tryptophan synthase, however, is the fact that it consists of two distinct 

subunits (α and β). Immobilisation of both may restrict the association between the two but on the 

other hand the association between the two subunits may not be strong enough that both will be 

Previous experiments had used the commercially available tryptophan synthase containing plasmid 

pSTB7. To enable effective cloning and the straightforward insertion of a poly histidine tag it was  



 

 

Figure 3.10: Plasmid map and annotation of multiple cloning site of pET28a(+). 

main features of the pET28a(+) plasmid (Novagen) including cloning/expression region. The MCS 

region features an N-terminal 6

insertion of a gene product of choice is aided by a selection of restriction enzyme sites. Protein 

production is controlled by the T7lac promoter.
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d map and annotation of multiple cloning site of pET28a(+). Diagram of the 

main features of the pET28a(+) plasmid (Novagen) including cloning/expression region. The MCS 

His Tag (out of frame). The 

insertion of a gene product of choice is aided by a selection of restriction enzyme sites. Protein 



 

decided to place the tryptophan synthase enzyme into the commercially available translational 

vector pET28a(+) (Novagen). This plasmid contains a multiple cloning site to enable the insertion of 

target genes easily and an N

3.10). A C-terminal tag is also available but is presen

extra bases have to be inserted to use it. Several cloning strategies were then undertaken to attempt 

to produce histidine-tagged tryptophan synthase to facilitate immobilisation.

3.4.1

The first strategy attempted was a quick and easy restriction digest and ligation approach. The 

pSTB7 plasmid contains several parts of the trp operon. The important parts are the promoter region 

and the structural genes t

repressor and attenuator regions that normally negatively regulate the operon are absent, meaning 

that production of genes under the trp promoter is constitutive. The pSTB7 plasmid 

3.11) highlights that the two tryptophan synthase structural genes are flanked by an

restriction site and a HindIII site. These sites can be used to remove a 1.7 kb fragment containing 

Figure 3.11: pSTB7 plasmid map. 

tryptophan operon: the trp promoter (P),

genes (shown in red), and the terminator (tt'). Th

have been deleted. The lack of trp repressor and attenuator sequences removals all negative 

regulation from the operon, effectively making translation constitutive. Plasmid map adapted from 

Kawasaki (1987).113 

 

 
 

decided to place the tryptophan synthase enzyme into the commercially available translational 

or pET28a(+) (Novagen). This plasmid contains a multiple cloning site to enable the insertion of 

target genes easily and an N-terminal poly histidine tag to facilitate protein 

terminal tag is also available but is presented outside the frame of translatio

extra bases have to be inserted to use it. Several cloning strategies were then undertaken to attempt 

tagged tryptophan synthase to facilitate immobilisation.

3.4.1.1.1 N-terminal Ni-NTA immobilisation 

synthase β-subunit 

The first strategy attempted was a quick and easy restriction digest and ligation approach. The 

pSTB7 plasmid contains several parts of the trp operon. The important parts are the promoter region 

trpA and trpB that code for the α and the β subunits of the enzyme. The trp 

repressor and attenuator regions that normally negatively regulate the operon are absent, meaning 

that production of genes under the trp promoter is constitutive. The pSTB7 plasmid 

3.11) highlights that the two tryptophan synthase structural genes are flanked by an

restriction site and a HindIII site. These sites can be used to remove a 1.7 kb fragment containing 

Figure 3.11: pSTB7 plasmid map. Plasmid pSTB7 is a derivative of pBR322 containing par

tryptophan operon: the trp promoter (P), truncated trpC (C'), the trpB

genes (shown in red), and the terminator (tt'). The trp attenuator, trpE, trpD

The lack of trp repressor and attenuator sequences removals all negative 

regulation from the operon, effectively making translation constitutive. Plasmid map adapted from 
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decided to place the tryptophan synthase enzyme into the commercially available translational 

or pET28a(+) (Novagen). This plasmid contains a multiple cloning site to enable the insertion of 

terminal poly histidine tag to facilitate protein purification (see figure 

ted outside the frame of translation meaning 

extra bases have to be inserted to use it. Several cloning strategies were then undertaken to attempt 

tagged tryptophan synthase to facilitate immobilisation. 

obilisation of tryptophan 

The first strategy attempted was a quick and easy restriction digest and ligation approach. The 

pSTB7 plasmid contains several parts of the trp operon. The important parts are the promoter region 

that code for the α and the β subunits of the enzyme. The trp 

repressor and attenuator regions that normally negatively regulate the operon are absent, meaning 

that production of genes under the trp promoter is constitutive. The pSTB7 plasmid map (figure 

3.11) highlights that the two tryptophan synthase structural genes are flanked by an EcoRI 

restriction site and a HindIII site. These sites can be used to remove a 1.7 kb fragment containing  

erivative of pBR322 containing part of the 

trpB (shown in blue) and trpA 

trpD, and part of trpC genes 

The lack of trp repressor and attenuator sequences removals all negative 

regulation from the operon, effectively making translation constitutive. Plasmid map adapted from 



 

most of the two tryptophan structural genes. The two sites however fall 

genes.  

Analysis of the sequence of the two 

into the trpB gene. The protein secondary structure was predicted using the UCL bioinformatics 

online server (PSIPRED) 

information is featured in figure 3.14). This

E11 and F12 of the protein, which occur before any emergence of secondary structure. This means 

that the first ten amino acids that are lost when the gene is digested wi

an important role in the structure and function of the subunit. 

The restriction site within the 

200 base pairs before the end. The site translates into K199

structure predictor and the crystal structure can be seen to form part of an α

secondary structure would be lost as a result of this digestion. However the biotransformation step 

is performed by the beta subunit and the alpha subunit is not used; therefore any loss in activity of 

this subunit may not be important. The two subunits are allosterically linked however, with binding 

of substrates to one subunit triggering conformation changes in the o

portions of the C-terminal region of the alpha subunit may interfere with this pattern and reduce 

activity. The crystal structure shows that the C

interface of the two subunits so

Figure 3.12: DNA gel electrophoresis of pSTB7 and tryptophan synthase structural genes 

trpB. (A) Purification gel of EcoRI/HindIII digested pSTB7 shows original 8.2 kb plasmid separated 

into the removed 1.7 kb section of 

Electrophoresis gel showing purified 

10000,8000,6000,5000,4000,3000,2500,2000,1500,1000,750,500,250bp.

 
 

most of the two tryptophan structural genes. The two sites however fall 

Analysis of the sequence of the two genes (figure 3.13) reveals that the EcoRI site falls 31 base pairs 

gene. The protein secondary structure was predicted using the UCL bioinformatics 

server (PSIPRED) and the published tryptophan synthase crystal structure studied

ured in figure 3.14). This revealed that the restriction site on 

E11 and F12 of the protein, which occur before any emergence of secondary structure. This means 

that the first ten amino acids that are lost when the gene is digested with EcoRI are unlikely to play 

an important role in the structure and function of the subunit.  

The restriction site within the trpA gene however appears 595 base pairs into the sequence and over 

200 base pairs before the end. The site translates into K199 and L200 which in both the secondary 

structure predictor and the crystal structure can be seen to form part of an α

secondary structure would be lost as a result of this digestion. However the biotransformation step 

the beta subunit and the alpha subunit is not used; therefore any loss in activity of 

this subunit may not be important. The two subunits are allosterically linked however, with binding 

of substrates to one subunit triggering conformation changes in the other. The loss of significant 

terminal region of the alpha subunit may interfere with this pattern and reduce 

activity. The crystal structure shows that the C-terminus of the alpha subunit is away from the 

interface of the two subunits so binding of the two subunits should remain undisturbed

Figure 3.12: DNA gel electrophoresis of pSTB7 and tryptophan synthase structural genes 

(A) Purification gel of EcoRI/HindIII digested pSTB7 shows original 8.2 kb plasmid separated 

the removed 1.7 kb section of trpB and trpA and the remaining 6.5 kb linearised plasmid. (B) 

Electrophoresis gel showing purified trpB/trpA section. Band sizes from top: 

10000,8000,6000,5000,4000,3000,2500,2000,1500,1000,750,500,250bp. 
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most of the two tryptophan structural genes. The two sites however fall slightly internal to the 

reveals that the EcoRI site falls 31 base pairs 

gene. The protein secondary structure was predicted using the UCL bioinformatics 

published tryptophan synthase crystal structure studied95 (this 

revealed that the restriction site on trpB translates into 

E11 and F12 of the protein, which occur before any emergence of secondary structure. This means  

th EcoRI are unlikely to play 

gene however appears 595 base pairs into the sequence and over 

and L200 which in both the secondary 

structure predictor and the crystal structure can be seen to form part of an α-helix. Large amounts of 

secondary structure would be lost as a result of this digestion. However the biotransformation step 

the beta subunit and the alpha subunit is not used; therefore any loss in activity of 

this subunit may not be important. The two subunits are allosterically linked however, with binding 

ther. The loss of significant 

terminal region of the alpha subunit may interfere with this pattern and reduce 

terminus of the alpha subunit is away from the 

binding of the two subunits should remain undisturbed  

Figure 3.12: DNA gel electrophoresis of pSTB7 and tryptophan synthase structural genes trpA and 

(A) Purification gel of EcoRI/HindIII digested pSTB7 shows original 8.2 kb plasmid separated 

and the remaining 6.5 kb linearised plasmid. (B) 

section. Band sizes from top: 

 



 

Figure 3.13: DNA sequence for the 

to remove the genes from pSTB7 are highlighted. (EcoRI site inside 

trpA gene). The position of the two genes in relation to each other in pSTB

translation (highlighted with black arrows) is shown.

Despite the possible draw backs the method was trialled regardless due to the quick and easy 

methodology. Plasmid DNA was purified from the plasmid containing 

043) and restriction digested with EcoRI and HindIII enzymes (incubated at 37°C overnight). The 

resulting mixture was run on a purification agarose gel and the band that corresponded to the 1.7 kb 

size of the excised fragment was purified from 

The excised gene fragment contained 

fragment into corresponding overhangs of EcoRI/HindIII digested pET28a(+) to form the 

recombinant plasmid pMW17. This plasmid was then transformed

MW-030. 

 
 

quence for the trpB and the trpA gene inside pSTB7. 

to remove the genes from pSTB7 are highlighted. (EcoRI site inside trpB and a HindIII site inside the 

gene). The position of the two genes in relation to each other in pSTB

translation (highlighted with black arrows) is shown. 

Despite the possible draw backs the method was trialled regardless due to the quick and easy 

methodology. Plasmid DNA was purified from the plasmid containing E. coli 

043) and restriction digested with EcoRI and HindIII enzymes (incubated at 37°C overnight). The 

resulting mixture was run on a purification agarose gel and the band that corresponded to the 1.7 kb 

size of the excised fragment was purified from the gel (figure 3.12). 

The excised gene fragment contained DNA overhangs that were used to ligate the 

fragment into corresponding overhangs of EcoRI/HindIII digested pET28a(+) to form the 

recombinant plasmid pMW17. This plasmid was then transformed into 
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gene inside pSTB7. The restriction sites used 

and a HindIII site inside the 

gene). The position of the two genes in relation to each other in pSTB7 and the direction of 

Despite the possible draw backs the method was trialled regardless due to the quick and easy 

E. coli CB149 host strain (MW-

043) and restriction digested with EcoRI and HindIII enzymes (incubated at 37°C overnight). The 

resulting mixture was run on a purification agarose gel and the band that corresponded to the 1.7 kb 

overhangs that were used to ligate the trpB/trpA 

fragment into corresponding overhangs of EcoRI/HindIII digested pET28a(+) to form the 

into E. coli BL21 to form strain 
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Figure 3.15: SDS-PAGE analysis of production of tryptophan synthase from E. coli BL21 MW-030 

induced at 37°C and tryptophan synthase production and Ni-NTA purification at 16°C. (M) 

Precision plus protein marker (Bio-Rad) sizes shown in KDa. (1) Cell pellet of culture grown at 16°C. 

(2) Cell lysate of 16°C culture. (3) Ni-NTA resin flow through. (4) Ni-NTA lysis buffer wash 1. (5) Ni-

NTA lysis buffer wash 2. (6) Ni-NTA wash buffer wash. (7) Ni-NTA elution. (8) Cell pellet grown at 

37°C. (9) Cell lysate grown at 37°C. Expected trpA gene product at 21.7 kDa. Expected trpB gene 

product at 42.9 kDa. 

Two 10 ml LB cultures of this strain were grown at 37°C until the OD600 reached 0.6 (mid log phase of 

growth). Then protein production under the control of the T7 promoter was induced with the 

addition of 0.1 mM (final concentration) IPTG (isopropyl β-D-1-thiogalactopyranoside). One of the 

cultures was then switched to 16°C and incubated for 24 hours, while incubation of the other was 

continued at 37°C for 4 hours. Following incubation the bacteria from both samples were pelleted 

and lysed using chemical cell lysis buffer containing lysozyme (2 mg ml-1). The histidine tagged 

tryptophan synthase produced in the culture grown at 16°C was purified from the resulting 

supernatant using the Ni-NTA purification system and analysed by SDS-PAGE (figure 3.15). 

At both temperatures tested the tryptophan synthase enzyme was produced in good yield. Both 

showed reasonable levels of soluble protein in the cell lysate, although the lower temperature did 

produce more protein over all. The 42.9 kDa beta subunit appeared to be produced at a higher level 

than the smaller 21.7 kDa alpha subunit (the full size of the alpha subunit before truncation would 

have been 28.6 kDa). Ni-NTA purification on the cell lysate produced at 16°C showed the beta 

subunit being purified independently of the alpha subunit (figure 3.15, lanes 4-7). It had been hoped 

that the attachment between the two subunits would be strong enough to co-purify both parts of 

the enzyme together. 
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The expression plasmid pET28a(+) produces recombinant proteins with an attached N-terminal poly 

histidine tag. Closer examination of the crystal structure of tryptophan synthase (figure 3.14) shows 

that the N-terminal region of the beta subunit (shown as a single red residue in the figure) is angled 

upwards towards the alpha subunit. Either the attachment of the two subunits is not strong enough 

to enable co-purification or it is possible that by installing extra sequence at this end the binding of 

the two subunits is being inhibited.  

3.4.1.1.2 Biocatalytic activity of Immobilised β-subunit 

To test activity of the purified beta subunit, a larger culture of E. coli BL21 MW-030 was grown, 

protein production under the T7 promoter induced with IPTG and incubation continued at 37°C for 4 

hours. The cell free lysate was generated by sonication and 5 ml was kept aside. The remaining 

lysate was subjected to Ni-NTA purification and the beta subunit purified as before.  

Figure 3.16 shows the Ni-NTA purification of the beta subunit as followed by SDS-PAGE analysis. The 

end result looked on the SDS-PAGE to be large amount of the tryptophan synthase β-subunit in fair 

purity. Consistent with the previous small scale studies, no real evidence of any associated alpha 

subunit was seen. Estimation of the protein concentration provided by a Bradford type assay 

suggested that after buffer exchange into HEPES protein storage buffer the concentration of the 

beta subunit was 6.26 mg ml-1 (146 µM). 

Figure 3.16: SDS-PAGE analysis of Ni-NTA purification of tryptophan synthase from E. coli BL21 

MW-030 induced at 37°C. (M) Precision plus protein marker (Bio-Rad) sizes shown in KDa. (1) Cell 

pellet. (2) Cell lysate. (3) Ni-NTA column flow through. (4) Ni-NTA lysis buffer wash 1. (5) Ni-NTA lysis 

buffer wash 2. (6) Ni-NTA wash buffer wash 1. (7) Ni-NTA wash buffer wash 2. (8) Ni-NTA resin 

elutant. Expected trpB gene product at 42.9 kDa. 
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The activity of the isolated beta subunit, in catalysing the tryptophan synthase biotransformation, 

was compared to the activity of the 5 ml of cell lysate that had been kept aside before purification. 

The cell lysate should contain both subunits, while the purified protein just contains the beta 

subunit. In this set of experiments the aim was to determine whether the binding of the alpha and 

beta subunits was being prevented by the histidine tag or whether the two subunits were just not 

associated strongly enough to co-purify on Ni-NTA. If the enzyme within the lysate is active but the 

purified beta subunit shows no activity then this would suggest that both subunits are required for 

catalysis and that the histidine tag is not preventing the association of the two subunits within the 

lysate. If neither show activity then the extra affinity tag may be destroying activity. 

Two sets of identical biotransformation reactions were performed in duplicate. The reactions 

contained 5-chloroindole (2 mM) in 50 ml of biotransformation reaction buffer (containing 7 mM 

serine and PLP), supplemented with 5% DMSO. To the first set of experiments, 2.5 ml of the cell 

lysate was added, 70 µl of the purified beta subunit was added to the second (the protein content 

calculated to be roughly similar). The biotransformation reactions were incubated at 37°C for 24 

hours. Aliquots of both reactions were analysed by HPLC. No 5-chloro-tryptophan production was 

seen with either set of experiments. 

This lack of activity with both the pure enzyme and the lysate suggested that it was not the 

purification process that was destroying activity. The most likely explanation is that the attachment 

of the poly-histidine tag is responsible. The cause of this could be that the long tag interferes with 

the interface site of the two subunits and that the multi-subunit enzyme (tryptophan synthase is 

generally found as an α2β2 tetramer) cannot form, resulting in subunit monomers and a drop of 

catalytic activity as a consequence. Alternatively the affinity tag may be directly influencing activity 

by interfering with the conformation of the protein or by blocking the indole substrate tunnel that is 

nearby. The lack of activity may also be due to the truncation of the N-terminal region of the beta 

subunit, although the likelihood of this explanation is reduced due to the small amount of sequence 

lost and the lack of secondary structure at this position. If the alpha subunit is essential to activity of 

the enzyme then the more significant loss of C-terminal sequence information from the alpha 

subunit may be to blame. 

To test whether the activity of the enzyme was just being reduced rather than destroyed the same 

biotransformation experiments were performed again but with 5-fluoroindole. Previous work with 

the cell lysate and in this study with the biofilm demonstrates that this indole acts as a very good 

substrate with yields as high as 90%. However after 24 hours no trace of product formation could be 

seen with HPLC analysis. 
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This rapid method of tryptophan synthase purification did not work. Therefore alternative methods 

of installing a histidine tag onto the beta subunit were explored. 

3.4.1.2 Ni-NTA immobilisation strategy 2 

3.4.1.2.1 Cloning and histidine tagging of the α and β-subunits 

of tryptophan synthase  

The beta subunit had proven to be inactive after the installation of an N-terminal histidine tag; 

therefore the option of a C-terminal tag was explored. To do this another pET vector (Novagen) was 

used: pET21a(+) (see figure 3.17 for plasmid map and MCS diagram). This plasmid uses the same 

T7lac promoter as pET28a(+) but incorporates a C-terminal hexa-histidine tag instead of an N-

terminal. 

Primers were designed that flanked the start and the end of the trpB gene (TRPSYN-B-F1 and 

TRPSYN-B-R1) and introduced a HindIII restriction site at the start and an XhoI site at the end of the 

gene. The gene encoding for the beta subunit was amplified using PCR with purified pSTB7 plasmid 

acting as the template. The resulting PCR product was digested and ligated into pET21a(+) using 

HindIII and XhoI restriction enzymes. The resulting recombinant plasmid was named pMW18 and for 

protein production was transformed into E. coli BL21 to form strain MW-031. 

As seen previously the alpha subunit potentially plays an important role in the activity of the 

enzyme, a theory that is backed up by the literature.107 Therefore two cloning strategies were 

employed to amplify the trpA gene out of pSTB7. The first involved designing primers to flank the 

trpA gene (TRPSYN-A-F1 and TRPSYN-A-R1) and install NdeI and XhoI restriction sites at either end of 

the PCR product. This was digested and ligated into NdeI/HindIII digested pET28a(+) to form 

pMW19. This plasmid was transformed into E. coli BL21 to form the strain MW-032. The plasmid was 

also transformed into competent E. coli BL21 MW-031 cells to form strain MW-034 which expressed 

both tagged subunits in different plasmids. 

The second approach used a different forward primer (TRPSYN-A-F2) to install an NcoI restriction 

site at the start of the trpA gene. In pET28a(+) the NcoI site falls before the start of the histidine tag 

(see figure 3.10), therefore when this second version of the gene was ligated into NcoI/HindIII 

digested pET28a(+) the region of the plasmid containing the histidine tag was lost, producing a 

protein that is un-tagged. This plasmid was named pMW21 and was transformed into chemically 

competent E. coli BL21 MW-031 (already containing the trpB encoding pMW18) cells to form the 

strain MW-036 that could produce both subunits. 



 

 

 

Figure 3.17: Plasmid map and annotation of multiple cloning site of pET21a(+). 

main features of the pET21a(+) (Novagen) including the cloning/expression region. The MCS region 

features a C-terminal 6-His tag. The insertion of a

restriction enzyme sites inside the multiple cloning site (black arrow on plasmid map). Protein 

production is controlled by the T7lac promoter.

 

 

 
 

Figure 3.17: Plasmid map and annotation of multiple cloning site of pET21a(+). 

main features of the pET21a(+) (Novagen) including the cloning/expression region. The MCS region 

His tag. The insertion of a gene product of choice is aided by a selection of 

restriction enzyme sites inside the multiple cloning site (black arrow on plasmid map). Protein 

production is controlled by the T7lac promoter. 
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Figure 3.17: Plasmid map and annotation of multiple cloning site of pET21a(+). Diagram of the 

main features of the pET21a(+) (Novagen) including the cloning/expression region. The MCS region 

gene product of choice is aided by a selection of 

restriction enzyme sites inside the multiple cloning site (black arrow on plasmid map). Protein 
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The pMW19 plasmid containing trpA with an N-terminal histidine tag could be used to purify the 

alpha subunit separately if it was not possible to co-purify the alpha and beta subunits together. 

3.4.1.2.2 Performance of the isolated C-terminally immobilised 

β-subunit 

Biotransformation reactions performed with the N-terminally immobilised β-subunit had failed to 

demonstrate any catalytic activity. As explained earlier this may have to do with the localisation of 

the histidine tag. The strain containing the new C-terminally tagged construct (E. coli BL21 MW-031) 

was grown in 10 ml of LB and protein production under the T7 promoter of pET21a(+)  induced in 

the usual way. Following chemical lysis, small scale Ni-NTA spin purification was carried out on the 

supernatant (see figure 3.18). 

Visualised on SDS-PAGE, the eluent showed two bands at the appropriate size (figure 3.18, lane 5). 

This anomaly could be due to the appearance of a truncated form of the tryptophan synthase. 

Tryptophan synthase naturally exists as a tetramer so potentially there is some binding of the native 

E. coli tryptophan synthase which is being carried through the purification. The native E. coli beta 

subunit will not have the additional C-terminal region installed with the tag so would appear to run 

shorter on the SDS-PAGE. There is also an extremely faint almost invisible band that appears to run 

slightly above the 25 kDa marker. This could be evidence of some association of native alpha subunit 

(around 28 kDa) associating with the tryptophan synthase complex. 

Figure 3.18: SDS-PAGE analysis of small scale NiNTA purification of the tryptophan synthase β-

subunit from E. coli BL21 MW-031 induced at 37°C. (M) Precision plus protein marker (Bio-Rad) 

sizes shown in KDa. (1) Cell pellet. (2) Ni-NTA column flow through. (3) Ni-NTA lysis buffer wash. (4) 

Ni-NTA wash buffer wash. (5) Ni-NTA resin eluent. Expected trpB gene product at 42.9 kDa. 
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A 500 ml culture of MW-031 was grown and the cell free lysate incubated with 2 ml of Ni-NTA resin 

in the usual way. Rather than being purified on a plastic column, the resin was collected via 

centrifugation following the binding incubation period. The supernatent was removed and the resin 

washed with Ni-NTA lysis buffer. The resulting suspension was centrifuged again and this time the 

resin was washed with Ni-NTA wash buffer. A final collection and wash was then performed with the 

tryptophan synthase biotransformation buffer. 

To test the strength of the immobilisation method the resulting resin was re-suspended in 50 ml of 

biotransformation buffer supplemented with 2 mM of 5-fluoroindole. The suspension was then 

incubated at 37°C for 24 hours. After this the resin was collected again and washed twice more with 

Ni-NTA wash buffer before being re-suspended into an identical biotransformation for 24 hours. 

After this final reaction the resin was collected, washed with Ni-NTA wash buffer and the protein 

eluted from the resin using Ni-NTA elution buffer. The rate of conversion for these 

biotransformations was not monitored. The object was to determine whether repeated washing and 

re-suspending was capable of removing the protein from the resin or whether high indole 

concentration would have an effect on binding. Samples were taken of all the wash and suspension 

steps and analysed via SDS-PAGE (figure 3.19). 

Figure 3.19: Stability of Ni-NTA immobilised tryptophan synthase β-subunit (MW-031) to 

biotransformation conditions monitored by SDS-PAGE. (M) Precision plus protein marker (Bio-Rad) 

sizes shown in KDa. (1) Cell pellet. (2) Cell lysate. (3) Biotransformation buffer wash of Ni-NTA resin 

bound tryptophan synthase. (4) Ni-NTA resin wash following 5-fluoroindole biotransformation 

reaction 1. (5) Ni-NTA wash buffer wash. (6) Ni-NTA wash buffer wash 2. (7) Wash following 

biotransformation reaction 2. (8) Ni-NTA wash buffer wash 3. (9) Ni-NTA elution. Expected trpB gene 

product at 42.9 kDa. 
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SDS-PAGE analysis of the resin immobilised enzyme showed very little loss of immobilised enzyme 

during the biotransformations and multiple washes. Some enzyme was lost during the Ni-NTA wash 

buffer washes (lane 6 and 8, figure 3.19) but the SDS-PAGE is relatively clean until the protein is 

eluted off the resin (lane 9, figure 3.19). This all indicates that the Ni-NTA resin functions well as an 

immobilisation scaffold under the conditions of the tryptophan synthase biotransformation. 

To make a comparison to the biofilm immobilised biocatalyst the amount of beta subunit on the Ni-

NTA resin needed to be quantified. Previous results with the Ni-NTA bound N-terminally tagged 

subunit had shown a 6 mg ml-1 concentration of protein on 1 ml of nickel resin. The quantification 

was repeated for the C-terminally tagged subunit. 

A 500 ml culture was grown again and the cell free lysate incubated with 1 ml of Ni-NTA resin as 

before. The resin was washed with Ni-NTA lysis and Ni-NTA wash buffers to remove contaminant 

proteins. The beta subunit was eluted off the resin in 13 ml of Ni-NTA elution buffer. A Bradford type 

assay and a standard curve of known BSA concentration were used to calculate that the eluent 

contained 0.532 mg ml-1 of protein. This corresponded to 6.917 mg of protein in total eluting from 

the 1 ml of nickel resin. 

3.4.1.2.3 Biocatalytic performance of the isolated C-terminally 

immobilised β-subunit and comparison to the SCB 

The only real way to compare the activity of the immobilised pure enzyme with the biofilm was to 

make the assumption that 100% of the protein present in the biofilm was tryptophan synthase, 

obviously an overestimate. The average total protein content of the biofilm was previously 

calculated to be approximately 40 mg. Therefore 6 ml of Ni-NTA resin would contain equivalent 

amounts of protein. The cost of Ni-NTA resin is fairly high so a scale down biotransformation was 

used to keep the resin volume to 1 ml. 

A duplicate of biotransformation reactions were performed that had been scaled down ten times 

compared to the original biofilm biotransformation experiments. 1 ml of Ni-NTA resin (containing 

approximately 6 mg of tryptophan synthase beta subunit) was prepared as before. The resin was 

then added to 7 ml of biotransformation reaction buffer. The reactions were supplemented with 350 

µl of a solution of 5-chloroindole in DMSO (5.7 mg ml-1). This gave a 2 mM final concentration of 

indole and a final 5% DMSO concentration. 

Aliquots of the duplicates were analysed with HPLC to calculate the rate and yield of the beta 

subunit catalysed reactions (figure 3.20). 
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tryptophan synthase β subunit compared to total protein content of SCB. (c) 

biotransformation reaction as catalysed by the C-terminally immobilised tryptophan synthase beta 

nit. Protein concentration (mg ml-1 in buffer) is equivalent to the total protein content of the 

spin coated biofilm. For comparison, traces of the reaction profiles for the same biotransformation 

carried out by the biofilm (a) and the 2x equivalent mass of planktonic cells 

terminally tagged protein, the C-terminally immobilised beta subunit catalyses 

the biotransformation reaction without the addition of the alpha subunit as can be 

.20. This suggests that the localisation of the tag is important to activity. In figure 3.20 the previous

data relating to the biocatalytic rate of the spin-coated biofilm and the 2x equivalent dry weight of 

planktonic cells are shown with dotted grey lines. While the immobilised enzyme seems to initially 

perform at a similar rate to the 2x equivalent amount of planktonic cells (faster than with the biofilm 

immobilised catalyst) activity is lost after a fairly short time (approximately 10 hours) and a lower

overall yield than the planktonic cells is achieved. Although the total protein concentration

planktonic cells is roughly twice as much, the problem of direct quantification is again difficult as the 

assumption is made that all protein inside the planktonic cells is tryptophan synthase, which is 

After the completion of the biotransformation the Ni-NTA resin was washed with Ni

and the protein was eluted in 20 ml of Ni-NTA elution buffer. The total protein concentration

eluent was calculated to be approximately 0.37 mg ml-1 which made a total of 7 mg of protein on the 

resin. This value was consistent with the average quantity on the resin before the biotransformation. 

This demonstrates that the observed loss of activity with the immobilised enzyme was not caused by 

the enzyme dissociating from the resin. Enzyme denaturation is probably to blame. Another 
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explanation could be possible product inhibition; in the whole cell systems the product of the 

biotransformation may be exported from the cells, keeping the internal concentration of 

halotryptophan low which is not the case for the purified enzyme. Recycling the enzyme into a fresh 

biotransformation would help to identify whether inhibition or denaturation is to blame for the loss 

of activity. 

The immobilised enzyme seems to be out performed by the biofilm immobilised catalyst. The 

problem with the direct comparison of the immobilised beta subunit to the biofilm, however, is that 

the absence of the alpha subunit may be limiting the effectiveness of the enzyme due to the 

reported drop in catalytic rate experienced when using the isolated beta subunit.107 Therefore the 

comparison needed to be done with both subunits of the tryptophan synthase. 

3.4.1.2.4 Biocatalytic performance of immobilised α/β subunits 

of tryptophan synthase and comparison to the SCB 

Previously two different plasmids containing variations in the α-subunit had been constructed 

(pMW19 and pMW21).The first contained the trpA gene with an N-terminal histidine tag, the second 

without a tag. Both plasmids had been transformed into competent cells containing the C-terminally 

tagged beta subunit. This produced two strains (MW-034 and MW-036) that contained both the 

alpha and beta subunits inside separate plasmids; one with both subunits histidine tagged and the 

other with only the tagged beta subunit. 

Protein production of both strains was performed in 10 ml cultures which were lysed with lysozyme 

(2 mg ml-1) following incubation. The cell free extracts were mixed with Ni-NTA resin and small scale 

spin purification carried out on each. The amount of purified alpha and beta subunits were assessed 

by SDS-PAGE (figure 3.21). 

In both cases the alpha and the beta subunits of tryptophan synthase were purified with the nickel 

resin. In the case of MW-034, with both of the subunits tagged, significantly higher levels of the 

alpha subunit were purified than the beta subunit (figure 3.21, lane 9). This could be because this 

smaller subunit is being produced at a faster rate than the larger beta subunit. As the ratio of α to β 

is high this means that the majority of the alpha subunit is not bound to a beta subunit making the 

majority of the purified protein useless. More encouragingly the un-tagged alpha subunit present in 

cultures of MW-036 seems to be co-purifying with the tagged beta subunit (figure 3.21, lane 4), 

suggesting that the two subunits are bound together. Similar quantities of both subunits appear to 

be purified. This makes this construct much more likely to be catalytically active. Both subunits 

exhibit the same double banding phenomena that were observed with the isolated pure beta  
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Figure 3.21: SDS-PAGE analysis of production and Ni-NTA purification of both subunits of 

tryptophan synthase from E. coli BL21 MW-034 (lanes 6-9) and MW-036 (lanes 1-4). (M) Precision 

plus protein marker (Bio-Rad) sizes shown in KDa. (1) MW-036 cell pellet. (2) MW-036 cell lysate. (3) 

MW-036 Ni-NTA column flow through. (4) MW-036 Ni-NTA elution. (5) blank. (6) MW-034 cell pellet. 

(7) MW-034 cell lysate. (8) MW-034 Ni-NTA column flow through. (9) MW-034 Ni-NTA elution. 

Expected trpA gene product at 28.6 kDa. Expected trpB gene product at 42.9 kDa. 

subunit. As seen before, it is possible that native E. coli tryptophan synthase subunits are binding 

with the over-expressed recombinant proteins to form the tetramer and are being co-purified with 

the histidine tagged beta subunit. 

The catalytic potential of the immobilised tryptophan synthase containing both subunits was 

explored in the same way as with the isolated beta subunit; with biotransformations in duplicate. A 

Bradford type assay was used to determine that approximately 3.7 mg of the tryptophan synthase 

enzyme was immobilised onto 1 ml of the Ni-NTA resin. The biofilm catalysed biotransformation 

reactions contained a maximum of 40 mg of protein in 70 ml of reaction buffer leading to a 0.5 mg 

ml-1 concentration of protein. To keep this concentration of catalyst the same with 1 ml of Ni-NTA 

resin a 10x scale down of the biofilm reactions was prepared with 2 mM 5-chloroindole. The rate of 

halotryptophan production was followed with HPLC in the standard way. 

The rate of production of 5-chlorotryptophan is shown in figure 3.22. The biotransformation with 

the α/β immobilised enzyme shows an initial rate that is far greater than any of the other systems 

tested. The multi-subunit immobilised enzyme performs significantly better than the beta subunit 

immobilised on its own, providing further evidence that although the alpha subunit does not 

contribute directly to the biotransformation reaction, the allosteric coupling that links the two  
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subunits is very important to activity. The initial rate of reaction with the

however is not long lasting. The rate falls to zero before 10 hours have elapsed, the same finding 

that occurred with the beta immobilised enzyme. The final yield reached was 49%, better than with 

the planktonic cells and with the immobilised beta subunit. 

As before dissociation of immobilised catalyst from the resin before and during the 

biotransformation reactions was followed by SDS-PAGE analysis and the amount of protein still 

contained within the resin following the reactions assessed by a Bradford assay of the 

Following the biotransformation reaction the buffer was removed and the resin washed with fresh 

biotransformation buffer. The resin was collected by centrifugation following each wash and the 

removed. Following a further two washes with Ni-NTA lysis buffer and Ni

buffer, the total protein remaining immobilised to the resin was eluted using Ni

The total quantity of protein remaining on the resin following the biotransformation and subsequent 

washes was calculated to be an average of 2.5 mg (± 0.1 from the two biotransformation reactions). 

This is a loss of about 1.2 mg from the average quantity immobilised onto the resin prior to the 
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Figure 3.23: Analysis of dissociation of immobilised α/β tryptophan synthase from the Ni-NTA 

resin during different stages of biotransformation. (M) Precision plus protein marker (Bio-Rad) sizes 

shown in KDa. (1) MW-036 cell pellet showing β subunit expression and significant α subunit 

production. (2) Standard MW-036 Ni-NTA purification elution fraction for comparison shows both 

the α and β subunits co-purifying on the resin. (3) Analysis of biotransformation buffer following the 

reaction. (4) Resin washed with fresh reaction buffer. (5) Resin washed with Ni-NTA lysis buffer. (6) 

Resin washed with Ni-NTA wash buffer. (7) Post biotransformation elution. Expected trpA gene 

product at 28.6 kDa. Expected trpB gene product at 42.9 kDa. 

reactions. The SDS-PAGE analysis of the reaction and washes showed that some of the alpha subunit 

was dissociating from the resin during the biotransformation reaction (figure 3.23, lane 3). As 

already discussed, the association of the alpha and beta subunits is vital to optimum activity of the 

enzyme. A rough estimation was made, based on the molecular weights of the different subunits 

that in the enzyme complex the beta subunit represented 60% of the total mass. Using this 

estimation the loss of 1.2 mg of protein from the resin equates to around 50-60% of the original 

amount of alpha subunit being lost (assuming no loss of beta subunit). If this is the case then it could 

explain the loss of tryptophan yield during the reaction. However the counter argument is that at 

least 40% of the enzyme remained associated in the α/β state and although the beta subunit had 

been shown to lose activity as an isolated enzyme it would not be enough to explain the total loss of 

activity after such a short period of time. It is much more likely that the enzyme became denatured 

and unable to continue to catalyse the reaction. This improved performance of the α/β dimer 

compared to the isolated β-subunit also makes substrate inhibition a less likely cause of the sudden 

drop in rate seen with the immobilised enzyme after less than 10 hours as you would expect this to 

affect both examples equally.  
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synthase mediated biotransformation between indole and serine was assessed and compared to the 

activity of planktonic cells and purified tryptophan synthase immobilised onto Ni

Comparison of the catalytic activity of the different methods can be seen in figure 3.24 and table 3.5.

It was observed that the biofilm catalysed reactions exhibit much greater longevity than either 

planktonic cells or immobilised enzyme. This is not without president; biofilms of 

oremediation of phenol demonstrated a catalytically active period that was eight 

times longer than the equivalent planktonic cultures.75
 The initial rate of reaction with the 

immobilised enzyme and the planktonic cells was much greater but during the course of the reaction 

the biofilm is capable of maintaining a constant rate for much longer.  

reaction profiles for tryptophan synthase biotransformations performed by 

. Reaction profiles for: (i) 5-fluoroindole (biofilm catalysed), 

chloroindole (immobilised α/β subunits of trp synthase), 
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Table 3.5: Comparative yields of 5-halotryptophans generated by different methods. (1) spin 

coated engineered biofilm, (2) planktonic cells, (3) Ni-NTA resin immobilised α/β subunits, (4) 

enzyme as component of cell-free lysate as demonstrated by Goss et al. (2006).116 

The increased longevity of the biofilm reaction compared to either the planktonic cells or 

immobilised enzyme is consistent with the evidence that bacteria clustered inside these structures 

protect themselves from external stresses. The reaction medium itself does not provide any food 

sources for the bacteria, the drop in catalytic rate with the planktonic cells may simply be caused by 

loss of cell viability or death. However there are many features of biofilms that could potentially 

minimise their effectiveness as biocatalysts compared to individual cells and immobilised enzymes, 

the most obvious is perhaps the dramatic loss of surface area exposed to the substrates.  

Biofilms rely on efficient diffusion of substrates through the surface into the lower layers of cells and 

the removal of waste products in the opposite direction. The chemical heterogeneity that arises 

inside a biofilm leads to individual member cells existing in one of three environments. Cells on the 

surface find themselves with an excess of substrates. At the base poor diffusion leads to an 

accumulation of products, while cells in the middle experience various levels in between.15 As 

explained previously, it has been suggested that the formation of the distinctive mushroom shaped 

colonies often seen on the surface of biofilms are caused by the concentration gradient of substrates 

present at the interface. The resulting channels between the mushrooms act as substrate highways 

to move substrates and products from deeper cells. This essentially means that the access of biofilm-

bound cells to the haloindole starting material is significantly reduced compared to its individual 

planktonic counterparts. The same is therefore true of the halo-tryptophan product which has to 

find its way out of the cell and into the reaction media for collection. 

Catalyst 
 1 2 3 4 

Conditions 
 

30 hours, 30°C 30 hours, 30°C 30 hours, 37°C 3 days, 37°C 

Relative Protein 
Concentration 
 
 

0.6 mg ml-1 (total 
biofilm protein 
content) 

1.2 mg ml-1 
(whole cell 
protein content) 

0.4-0.6 mg ml-1 
(tryptophan 
synthase purified) 

0.4 mg ml-1 (total 
protein content) 

Tryptophan generated 
 
 
5-F 

 
93% conversion 

   
63% conversion116 

5-Cl 78% conversion[a] 40% conversion[b] 49% conversion[c] 50% conversion116 
5-Br 
 

18% conversion[a]   16% conversion116 

[a] Reaction still proceeded at initial rate following 30 hours. [b] No further reaction was observed 
after 24 hours. [c] No further reaction was observed after 6 hours. 
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If a sample were taken of the bacteria contained within the planktonic cell suspension a high degree 

of homogeneity would most likely be seen, with all the cells exposed to the same substrate 

concentration and oxygen levels, theoretically making them capable of performing the 

biotransformation reaction at the same level. Studies of biofilms however show great variation in 

physiological state and the genotypes and phenotypes that are expressed.15 This is understandable 

as location within a biofilm will expose cells to position dependent conditions. For instance positions 

that are replete with substrates and oxygen, replete with substrates but not oxygen and positions 

neither replete with substrate or oxygen. This lack of homogeneous conditions within the biofilm 

leads to different growth rates, with surface cells growing more rapidly than buried ones. This can 

also lead to the formation of persister cells. These cells are in a state of almost total dormancy and 

have been implicated as playing a major role in biofilm antibiotic resistance and obviously these 

dormant cells would be unable to function as biocatalysts. 

It is for these reasons that the performance of the biofilm as a biocatalyst is so interesting. However 

it should be noted that the level of heterogeneity within biofilms prepared using the spin coating 

technology has not been measured. Applying assumptions based on traditionally grown or wild type 

biofilms is dangerous without further study as the spin-coating process may produce biofilms that 

are distinct from examples produced in traditional ways. Cell differentiation and persister cells may 

not be present in our biofilm. However the substrate transport limitations can still be applied with a 

fair degree of certainty. 

During the biofilm catalysed biotransformation experiments it was noted that the lack of 5-

chloroindole and 5-bromoindole solubility may have made the reactions substrate limiting. The 

slower than expected rate of the planktonic cell compared to the biofilm catalysed reactions 

provided evidence that this may indeed be the case. Further experiments with varied 

substrate/catalyst concentration would be required to prove this. One problem with this theory 

however is the huge increase in rate when immobilised, pure enzyme is used. If the indole solubility 

was truly limiting then we would expect to see a much slower conversion with the immobilised 

tryptophan synthase. Studies with the immobilised enzyme catalysing the other 5-haloindole in this 

study would help to pin down the potential solubility issues. 

If the indole solubility in the buffer is not directly responsible, an alternative explanation may lie in 

the mechanism of cellular indole uptake and tryptophan efflux. There may be a limiting step with 

how the different haloindoles are being uptaken into the whole cells, a problem not applicable to 

the purified enzyme. Indeed Ni and co-workers have shown that the efficiency of whole cell 

biocatalysts can be improved by reducing the thickness of the outer membrane, therefore improving 
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the diffusion of the substrates and products.139, 140 Tryptophan synthase is a cytosolic enzyme, 

consequently in both the biofilm and planktonic catalysed reactions the substrates must first enter 

the cells prior to catalysis and the tryptophan product must be excreted into the reaction buffer in 

order to be detected and purified. Studies with Pseudomonas aeruginosa have suggested that the 

increased antibiotic resistance seen with biofilms may be due to the observed upregulation of drug 

efflux pumps.62, 141 If increased efflux is a general feature of biofilms then this may provide a clue as 

to why the biofilm seems to be performing better than planktonic cells. 

Indole is known to play a significant and diverse role in E. coli, particularly as a signalling molecule. In 

this capacity it must be exported into the cells environment before use. The literature supported 

view is that the Mtr transporter (a permease normally responsible for uptake of tryptophan) and the 

AcrEF-TolC multidrug exporter are responsible for indole import and export from the cell;142 

however more recent work concluded that indole transport is actually independent of these 

proteins. Studies with indole and artificial membranes have shown that indole can rapidly cross an E. 

coli lipid bilyaer without assistance.143 

The transport of tryptophan in E. coli is not so well understood. Import of the aromatic amino acids 

is known to be controlled by a general aromatic amino acid permease transporter as well as 

individual specific transporters for the three aromatic amino acids.144 Specific tryptophan uptake is 

controlled mainly by the high affinity permease Mtr which is the same transporter implicated in 

indole import.145 The mechanisms behind efflux of tryptophan however are less clear. While 

exporters have been found for many of the amino acids, there is not much known about the 

transport of the hydrophobic amino acids tyrosine, phenylalanine and tryptophan. The tight 

regulation of the production of these amino acids in vivo is such that specific transport mechanisms 

are thought to not exist. The hydrophobicity of these amino acids is considered to be large enough 

to allow general diffusion through the cell membrane without assistance. However recent studies 

have highlighted the possible involvement of an inner membrane protein in E. coli encoded by the 

gene YddG. This gene is a homologue of one found in Salmonella enterica sv. Typhimurium which 

encodes a transporter protein implicated in the efflux of the toxin methyl viologen.146 Over-

expression of this gene in E. coli led to extracellular accumulation of the hydrophobic amino acids, 

particularly phenylalanine.147 If these transporters are being up regulated in the spin coated biofilms 

compared to the planktonic cells then this could offer another feasible explanation as to why the 

biofilm is performing better.  

The substrate for the tryptophan synthase biotransformation reactions is indole. Indole is known to 

be an important extracellular signalling molecule in a range of different organisms, including E. coli.50 
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It is generally produced during stationary phase and is known to have an effect on gene expression, 

multi-drug exporters and pathogenicity. It also plays a somewhat ambiguous role in biofilm 

formation.25 Studies using global transcriptome analyses, confocal microscopy, isogenic mutants and 

dual-species biofilms have shown that indole is a non-toxic signal that represses motility in E. coli via 

the autoinducer-I quorum sensing pathway controlled by SdiA.25 Motility is very important both for 

initial biofilm formation and for the migration of colonies inside biofilms along concentration 

gradients (the causal event behind mushroom colony formation). E. coli inside flow cells 

supplemented with 500 µM indole showed reduced biofilm formation and flat colonies compared to 

scattered towers found without addition of indole.  Conversely however it has also been 

demonstrated that bacterial species that possess the tryptophanase gene (breaks down tryptophan 

into indole) show enhanced biofilm forming ability. Di Martino and co-workers found that a strain 

carrying a mutation in tnaA, the gene that encodes tryptophanase, presented a decreased tendency 

to form biofilms, a feature that was attenuated with the addition of physiological concentrations of 

indole.51 Transcriptome analysis of this mutant found repression of seven different genes associated 

with motility. So in this case indole seems to increase cell motility when fed to this mutant strain. 

Therefore there seems to be evidence that indole can both repress and enhance biofilm formation 

depending on concentration but in both instances it is decreased cell motility that actually leads to 

reduced biofilm formation.  

In this study however the haloindole substrate was only added after the biofilm had already reached 

maturity. This perhaps changes the overall influence indole had on the biofilm. If the haloindole 

functions as above then perhaps the motility of the E. coli was reduced once the biotransformation 

was underway, therefore promoting biofilm stability rather than inhibiting formation. In order to 

survive biofilms are able to regulate their own size, effectively producing signals that cause cells to 

detach in times of community stress such as carbon source limitations. The addition of indole to the 

buffer may have had the affect of actually stabilising the biofilm and preventing cells from 

dissociating due to lack of energy. The dynamic nature of the biofilm may also have been inhibited as 

cells with limited motility would not be able to make further adjustments to the topology of the 

biofilm. Therefore indole may have actually been an essential component for long term stability. 

SCBs exhibiting different biotransformation pathways may not be as stable as the experiments 

presented here, or the indole may have reduced biofilm stability and other biotransformations may 

exhibit longer lives, further study in this area is required. 



 

 
 

95 Chapter THREE 

There are many features of the spin-coated biofilm that are not fully understood. A full range of 

further experiments dealing with all of them will in the future answer some of the outstanding 

questions. 

3.6 Addressing the questions – future work 

This preliminary work into the development of a versatile biocatalytic biofilm highlights the possible 

advantages such a system possesses. However many questions have been raised during the project 

that could be addressed with further experiments. 

3.6.1 Understanding and improving the SCB as a catalyst 

Many questions still remain unanswered; particularly about how the structure of the spin coated 

biofilm differs from traditional flow cell formed specimens and also how the SCB manages to remain 

consistently active for extended periods.  

One of the key questions is where in the biofilm does catalysis actually occur? Is the indole substrate 

only penetrating a few layers down into the strata, or are the cells lower down in a state of 

dormancy and therefore unlikely to perform as a biocatalyst. In these scenarios only the very top 

layers of cells would be responsible for the biotransformation. When the cells on the surface 

(exposed to hostile conditions and no food) begin to die they could be dissociating from the biofilm 

and being replaced with fresher cells from just below. The dead cells could also be cannibalised to 

provide energy for the rest of the biofilm. Alternatively is catalytic rate kept alive by regeneration of 

fresh tryptophan synthase enzyme inside the biofilm? 

There are a number of further experiments that could address these points, including methods to 

study protein turnover/regeneration. GFP tagging can be used to identify where in the biofilm 

protein production is occurring, also the O2 requiring property of GFP means that combined with 

flavin-dependent anaerobic fluorescent proteins (AFPs) the diffusion of oxygen through the different 

biofilm cells can be measured. Propidium iodide staining could also be used to determine the 

different cell viabilities throughout the biofilm. Confocal microscopy and substrates with fluorescent 

properties could be used to follow how far through the biofilm they diffuse. Fluorescent products 

could also help to identify which areas of the biofilm are actually conducting reactions. Tryptophan 

itself has fluorescent properties which may make it acceptable for this study. 

In addition to trying to understand why the biofilm behaves as a longer lasting catalyst than 

planktonic cells it would be useful to understand why exactly the planktonic catalysed reactions lose 
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activity. Flow cytometry on the planktonic cells following the biotransformation reaction could 

provide evidence to support the idea that conditions within the buffer lead to cell death and the 

corresponding drop in biocatalysis. 

The biofilm mediated reactions tested so far have all been batch systems. The raison d’etre of 

immobilised catalysis is in continuous flow processes. The potential of the SCB as a catalyst has been 

demonstrated but to truly reach its potential methods of immobilising the biofilm as a component of 

flow should be explored. Within this study the biofilms used were limited to a 30 hour reaction 

window. This window would obviously have to be extended to make a long term biocatalytic 

solution viable. To achieve this, the reason for the biofilm dissociation following 30 hours needs to 

be explored. The simplest explanation may be that energy sources and metabolic building blocks are 

largely absent in the reaction buffer. Pulsing in nutrients at intervals may help to maintain a stable 

biofilm. This would have to be carefully investigated as too many nutrients may switch the biofilm 

forming genes off and steer the bacteria back towards a planktonic lifestyle. A range of supports 

should also be investigated to identify a support that is more appropriate to scaled up 

immobilisation than the spin coated slide methodology. 

One of the interesting findings from the biofilm spin coating analysis was the sudden switch in EPS 

production that occurred after 6 days of maturation. This switch may be mediated by a number of 

factors including quorum sensing mechanisms. If the reason for this sudden change can be 

understood then theoretically it may become possible to artificially induce this process earlier to 

produce biofilms that mature much more quickly. 

3.6.2 Addressing the issues raised by the choice of tryptophan 

synthase 

The choice of tryptophan synthase as the benchmark biotransformation has presented some unique 

challenges which make accurately determining the biocatalytic effectiveness of the biofilm difficult. 

The first problem was the solubility of the indole. The low solubility of the 5-bromo and 5-

chloroindole raised questions about whether it was rate limiting in the biotransformation. Simple 

kinetics with the biofilm and planktonic cells would help to resolve this problem. Under normal 

steady state conditions doubling the concentration of the starting material should result in a 

doubling of the rate. The same is true if the amount of catalyst is doubled while the substrate 

concentration is kept constant. If the indole solubility is limiting the reaction than doubling the 

concentration should have less of an effect on the overall rate. This property has perhaps already 

been seen, as using double the amount of planktonic cells compared to the biofilm did not result in a 
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corresponding increase in rate, but more accurate experiments are needed to verify this. This simple 

set of kinetic experiments should also be performed with the immobilised enzyme. If the pure 

enzyme does not experience the same rate limitations then factors such as cell uptake or product 

efflux should be looked at. 

Secondly the choice of the tryptophan synthase biotransformation introduced indole as the 

substrate. As discussed earlier indole is known to play a number of important roles in E. coli, 

particularly important to this study is the effect that indole has on biofilm formation. The choice of 

tryptophan synthase may have been serendipitous; it is possible that indole is having a stabilising 

affect on the spin-coated biofilm. Another biotransformation reaction may not show the same level 

of longevity if indole was not added. Therefore the effect indole has on biofilm stability should be 

studied and the efficiency of other biotransformation reactions tested. 

3.7 Work in progress: potential of other biotransformations: Tryptophan-

7-Halogenase 

The advantages that the SCB presents to tryptophan synthesis has been presented in this study. To 

improve the impact of the work however it needs to be proved that the biofilm is capable of 

catalysing a number of different biotransformations and act as an adaptable scaffold that enzymes 

can be plugged easily into. To this end, the tryptophan-7-halogenase PrnA from the pyrrolnitrin 

biosynthetic cluster was inserted into the biofilm. This is another potentially useful biocatalyst 

candidate which is discussed in more detail in the next chapter. 

The pSTB7 plasmid used for the tryptophan biocatalysis was constitutively active, meaning that the 

protein production switch is always set to ‘on’. The pET vectors utilised in the tryptophan synthase 

immobilisation experiments are typical examples of expression plasmids in that protein translation is 

under the control of a promoter that needs to be turned on. Commonly used promoter systems are 

the T7lac promoter (used in the pET system) and the arabinose induced promoter araBAD. The T7 

system cannot be used in every species of E. coli; the genome of the host organism needs to encode 

for the viral T7 RNA polymerase in order for the promoter to work efficiently. The PHL644 strain 

used to form the SCB does not contain this polymerase gene so it was unknown how well plasmids 

utilising the T7 promoter would work. To this end the propionate induced plasmid pPro-24(s)-gfp 

was also trialled, the additional advantage of this plasmid was the formation of an N-terminal GFP 

fusion protein which may prove useful in following protein expression inside the SCB. 
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Two plasmids that had been prepared by a colleague for a separate but related project were 

transformed into E. coli PHL644 competent cells. The first plasmid was designated pSG22 and was a 

pET21a(+) based plasmid containing the gene for the PrnA halogenase. This enzyme converts 

tryptophan into 7-chlorotryptophan. The resulting strain was identified as E. coli PHL644 MW-040. 

Despite showing generally better levels of protein production than pET21a(+), pET28a(+) could not 

be used with the biofilm as PHL644 contains intrinsic kanamycin resistance which is the selection 

marker for pET28a(+). The other plasmid was designated as pSG49 which consisted of PrnA inside 

the pPro-24-gfp propionate induced plasmid. The resulting strain following transformation was 

identified as E. coli PHL644 MW-042. 

To investigate protein production inside PHL644 under the T7lac promoter a 10 ml culture of MW-

040 was grown in LB and induced with 0.1 mM IPTG once the OD600 of the culture reached 0.6. As a 

control the same volume of culture was grown with E. coli strain BL21 MW-039. This strain consisted 

of pSG22 inside the E. coli strain BL21. The effect of adding or removing IPTG was also trialled. BL21 

contains the necessary genome to be able to produce proteins under the T7lac promoter efficiently. 

Following an additional 4 hours of growth the bacterial cells were lysed and Ni-NTA spin purification 

performed on the resulting cell lysate. The SDS-PAGE analysis of this can be seen in figure 3.25. 

Figure 3.25: SDS-PAGE analysis of PrnA halogenase production under the T7 promoter with E. coli 

BL21 and PHL644 cells with or without the presence of IPTG. (A) Production of PrnA in BL21 cells 

following induction with 0.1 mM IPTG, (B) Production of PrnA in BL21 cells without 0.1 mM IPTG, (C) 

Production of PrnA in PHL644 cells following induction with 0.1 mM IPTG, (D) Production of PrnA in 

PHL644 without 0.1 mM IPTG. (1) Bacterial pellet, (2) Cell free lysate, (3) Ni-NTA column flow 

through, (4) Ni-NTA column elution. PrnA expected size 63.2 kDa.  
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Protein production using E. coli BL21 was consistent with what was expected. Figure 3.25 (A1-4) 

shows a big band in the pellet at approximately the right size (around 63 kDa). Not much soluble 

protein is seen and hardly any appears in the Ni-NTA elution (lane A4). The efficiency of small scale 

chemical lysis is not very high however. The effect of not adding IPTG can be seen to be very 

minimal. A large band can be seen in the pellet fraction in figure 3.25B1. Interestingly the culture 

that was not induced with IPTG shows more protein in the elution fraction. This demonstrates that 

not all promoter controlled protein expression systems are very tight and can leak even when not in 

the presence of the inductant. The same plasmid inside PHL644 cells (figure 3.25C,D) shows only 

small amounts of soluble protein being produced with none being visible in the purified fraction. It 

seems likely on this evidence that the T7 promoter is not ideally used with the biofilm producing 

strain. 

The same experiment was conducted for the propionate induced pSG49 plasmid inside E. coli Bl21 

and PHL644 cells. The results of PrnA production under the propionate promoter can be seen in 

figure 3.26. No real protein band could be seen in either strain of E. coli in the absence of propionate 

Figure 3.26: SDS-PAGE analysis of PrnA halogenase production under the propionate promoter 

with E. coli BL21 and PHL644 cells with or without the presence of 20 mM sodium propionate. (A) 

Production of PrnA in BL21 cells without propionate, (B) Production of PrnA in BL21 cells following 

induction with 20 mM sodium propionate, (C) Production of PrnA in PHL644 cells without 

propionate, (D) Production of PrnA in PHL644 following induction with 20 mM sodium propionate. 

(1) Pre-induction sample, (2) Cell pellet, (3) Cell free lysate. PrnA-GFP fusion expected size 88.35 kDa. 

Position of likely band highlighted with arrow. BL21 and PHL644 Cell pellets and lysates containing 

GFP can be seen fluorescing under uv light following induction with propionate. 
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Figure 3.27 HPLC traces of PrnA halogenase activity of E. coli MW-040. (A) 

reaction at time 0 shows single peak of tryptophan at 6.9 mins. (B) The same biotransformation 6 

the emergence of a secondary peak at 11.75 mins that corresponds to the 

chlorotryptophan (verified by PDA analysis showing λmax of 280 nm)

(figure 3.26A,C). In the cultures that had been induced with 20 mM sodium propionate 

however a new band could be seen at the approximate size (88 kDa). The presence of induced PrnA

GFP was visualised by holding samples of the cell pellets and cell lysates of BL21 and PHL644 under 

ultra violet light. The resulting tubes glowed bright green (figure 3.26). This confirmed

could be produced inside the biofilm producer PHL644 using the propionate promoter. To confirm 

ity of the halogenase within planktonic cells some simple biotransformation reactions were 

set up. The activity of the PHL644 compared to BL21 cells was also investigated. Even though the 

PAGE analysis showed no evidence of over production of T7 induce

these strains were tested for activity anyway. 

PHL644 strains MW-040 and MW-042 were grown in 500 ml of LB and a planktonic cell 

suspension formed in the same way as with the tryptophan synthase planktonic cell experiments.

039 and MW-041 planktonic cell suspensions were prepared in the same way. 
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040. (A) Biotransformation 

The same biotransformation 6 

the emergence of a secondary peak at 11.75 mins that corresponds to the 

of 280 nm). 

(figure 3.26A,C). In the cultures that had been induced with 20 mM sodium propionate 

however a new band could be seen at the approximate size (88 kDa). The presence of induced PrnA-

l pellets and cell lysates of BL21 and PHL644 under 

ultra violet light. The resulting tubes glowed bright green (figure 3.26). This confirmed that PrnA 

could be produced inside the biofilm producer PHL644 using the propionate promoter. To confirm 

ity of the halogenase within planktonic cells some simple biotransformation reactions were 

set up. The activity of the PHL644 compared to BL21 cells was also investigated. Even though the 

PAGE analysis showed no evidence of over production of T7 induced proteins inside PHL644 

042 were grown in 500 ml of LB and a planktonic cell 

suspension formed in the same way as with the tryptophan synthase planktonic cell experiments. E. 

041 planktonic cell suspensions were prepared in the same way. 



 

Figure 3.28 Average PrnA mediated conversion of tryptophan to 7

using planktonic cell suspensions of various 

For each of the strains, 

potassium phosphate reaction buffer, 1 mM 

of the prepared cell suspension was added inside dialysis tubing.

28°C for 24 hours. The reactions were then analysed with HPLC using the same method developed 

for assessing the yield of tryptophan synthase biotransformations. An example of HPLC traces from 

the reaction can be seen in fig

Halogenase activity was present in all of the cell

T7 induced pET21 plasmid inside PHL644. This suggests that active protein is still being produced 

despite no evidence of over production on the

regulated so there is potential for unregulated protein production such as seems to be produced in 

this case. 

Of the four planktonic cell suspensions tested three of them (MW

tryptophan into the chlorinated 

best biocatalyst was the GFP tagged PrnA inside 

yield of just over 90%. 

These studies prove that different en

and that they show biocatalytic activity. Different promoters can be used within the biofilm 

 
 

Figure 3.28 Average PrnA mediated conversion of tryptophan to 7-chlorotryptophan after 24 hours 

using planktonic cell suspensions of various E. coli strains. 

 duplicate biotransformation reactions were set up containing 50 ml of 

potassium phosphate reaction buffer, 1 mM L-tryptophan and 25 mM NaCl. To each reaction 10 ml 

of the prepared cell suspension was added inside dialysis tubing. The reactions were incubated at 

28°C for 24 hours. The reactions were then analysed with HPLC using the same method developed 

for assessing the yield of tryptophan synthase biotransformations. An example of HPLC traces from 

seen in figure 3.27. 

was present in all of the cell-suspension samples (see figure 3.28), even

T7 induced pET21 plasmid inside PHL644. This suggests that active protein is still being produced 

despite no evidence of over production on the SDS-PAGE analysis. The T7 promoter is not negatively 

regulated so there is potential for unregulated protein production such as seems to be produced in 

Of the four planktonic cell suspensions tested three of them (MW-040, 042 and 039) converted

tryptophan into the chlorinated product in the same yield (approximately 50%). Interestingly the 

best biocatalyst was the GFP tagged PrnA inside E. coli BL21 (MW-041) which demonstrated a final 

These studies prove that different enzymes can be inserted into the biofilm producer 

and that they show biocatalytic activity. Different promoters can be used within the biofilm 
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producer. Despite the fact that PHL644 does not have the required genes to over express proteins 

regulated under the T7 promoter there is enough residual activity to show enzyme turnover. 

The next step would be to create a biofilm using these strains and see if the resulting immobilised 

biocatalyst is capable of showing enhanced catalytic longevity compared to the planktonic cell 

solution shown here. This would help to demonstrate the versatility of the SCB and therefore the 

wide scope of this biofilm biocatalyst technology to the world of industrial biocatalysis.
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and Halogenation 
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produced by the same marine organism, Salinispora tropica, which incorporates hydrogen at the 

same position as the chlorine (0.7 nM compared to 5.2 nM).158 The removal of this chlorine leaving 

group renders a less stable compound that is vulnerable to hydrolysis and therefore represents a 

less potent inhibitor. Incorporation of fluorine at this position, using mutasynthesis techniques to 

replace the salL gene (responsible for chlorination of salinosporamide) with the fluorinase gene flA, 

results in a compound with slightly reduced proteosome inhibition than the chlorinated 

salinosporamide A (1.5 nM). This is to be expected as the high energy required to break the C-F bond 

makes displacement by the active site hydroxyl unlikely, making the binding of 

fluorosalinosporamide reversible. The fluorinated analogue does however show three fold better 

activity than the non-halogenated salinosporamide B. The ability of the fluorine to form hydrogen 

bonds within the active site has been implicated as the reason for this increase.159 

Rebeccamycin (1) is an anti-tumour drug with activity against topoisomerase I. Removal of the 

chlorine actually increases the in vitro anti-tumour activity of the compound which suggests that the 

halogen is not essential.160 However cell antiproliferative assays show the opposite result with the 

chlorinated variant possessing higher activity. These results suggest that the inclusion of the chlorine 

aids in the transport of the compound across the cell membrane, Rodrigues and co-workers 

suggested that subsequent cleavage of the chlorine bond may occur inside the cell to improve 

activity of the final compound.160 

4.2 Biological Halogenation 

We have seen that nature produces a range of halogenated natural products and there are a 

number of classes of enzyme that are responsible for the introduction of these groups. Selective 

halogenation of natural products to enhance their activity is attractive for medicinal chemistry; 

understanding the mechanisms involved in biological halogenation may give rise to new and 

alternative synthetic catalysts for halogenation. 

Many different organisms produce halogenases but they can generally all be grouped into two main 

categories.149 Members of the first category require dioxygen for activity and tend to be very 

substrate specific; these enzymes require either flavin or α-ketoglutarate as a co-substrate. 

Members of this class are referred to as O2-dependent halogenases. The second class are less rigid 

when it comes to choice of substrate and utilise hydrogen peroxide and therefore are known as 

haloperoxidase enzymes (HPO).151 Both classes function by first generating a reactive hypohalite 

species (X+) by a two-electron oxidation of the halide.150 The electron deficient nature of this species 

(in most cases a hypohalous acid) allows the enzyme to halogenate nucleophilic carbon centres. 
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Enzymes of this type have been found that incorporate chloride, bromide and iodide but neither 

dioxygen or hydrogen peroxide have the power to oxidise fluorine, therefore no fluorinated 

compounds are produced using these enzymes. The mechanisms that produce the limited number of 

fluorinated natural products will be briefly discussed later. 

4.2.1 Haloperoxidases (HPOs) 

There are two types of haloperoxidase which either contain heme or vanadate as a cofactor. In 

heme-dependent HPOs the formation of the hypohalous acid is a redox process while the vanadate-

dependent halogenases do not change their oxidation state but function as lewis acids.149 Further 

classification of the HPO class of enzymes is based on which halides they accept as substrates, their 

name derives from the most electronegative halide that can be used. Chloroperoxidase enzymes can 

catalyse the oxidation of chloride, bromide and iodide, bromoperoxidases oxidise bromide and 

iodide, while iodoperoxidases can only accept iodide.149 

The proposed mechanism of action for the heme-dependent HPOs involves the binding of peroxide 

axial to the enzyme bound FeIII-porphyrin complex (figure 4.3). Loss of water results in a FeIV-oxo 

species which is intercepted by the halide to from a FeIII-hypohalite species. This enzyme bound 

species can potentially be used directly for halogenation or free hypohalous acid can be released 

which can perform halogenation on substrates not adjacent to the active site. The lack of substrate 

specificity of these enzymes and the fact that these enzymes work best at acidic pH has resulted in 

the wide belief that the free acid is the primary agent responsible for halogenation.150 It is an 

enzyme of this class that produces the iodinated mammalian thyroid horme (4) (figure 4.1) in an 

iterative fashion with several passes of halogenation occurring to yield the final tetra-iodinated 

product.  

The vanadium-dependent enzymes are found widely in marine organisms that produce brominated 

natural products, although some examples of these enzymes in terrestrial organisms have been 

found.161 In a similar fashion to the heme-dependent HPOs, the vanadium centre binds hydrogen 

peroxide and activates it ready for halide attack (figure 4.3). The difference is that the metal ion does 

not act as a redox centre but more like a lewis acid. Binding of the peroxide to the vanadium forms a 

reactive peroxo intermediate which reacts with a halide to form the vanadium-bound hypohalite. As 

with the heme-dependent enzymes it is unclear whether this enzyme bound intermediate is the 

active halogenation species or whether hypohalous acid is released,150 the general lack of substrate 

specificity with these enzymes would suggest the latter. The formation of free acid is also supported 

by studies showing that the formation of brominated organic substrates does not occur  
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Figure 4.3: Formation of hypohalous acid (HOX) by Haloperoxidase enzymes. 

dependent HPOs generate the X+ equivalent ion needed to halogenate electron rich 

substrates. The formed hypohalous acid can either function as an enzyme

dissociate to act free in solution.150 

stoichiometrically, with H2O2 being consumed faster than brominated product is formed. This 

strongly indicates that free HOBr is being produced and is then lost from the active site in t

ubstrate.162 
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 Mechanism of non-heme Fe
2+

/ α-ketoglutarate/O

dependent halogenases 

The information gained on this class of halogenase enzymes was obtained by studying the enzyme 

SyrB2. This enzyme is responsible for chlorinating the γ-methyl group of 

biosynthesis of syringomycin E in Pseudomonas syringae (8) (figure 4.4).165

halogenated secondary metabolites, the phytotoxicity of this compound is strongly dependent 

on the presence of the halogen and shows three times less activity in the absence of chlorine

has also been shown that this enzyme will only halogenate peptidyl carrier prot

threonine and can also incorporate bromide in additional to the chloride.166

Figure 4.4: Examples of natural products halogenated by non-heme Fe

dependent halogenases. (8) syringomycin E, (9) barbamide and (10) jamaicamide.

The crystal structure of SyrB2 shows that as with the α-KG-dependent oxygenase enzymes; the non

heme iron centre is bound by two histidine residues, α-ketoglutarate and water

sets the halogenase apart, and presumably imparts its specific activity as a halogenase, is that the 

site that would normally be occupied by a carboxylate with the oxygenases (aspartate or glutamate) 

is occupied by chlorine which, together with the other ligands, gives the Fe centre an oxi

The proposed catalytic cycle for non-heme Fe2+ halogenases can be seen 

dioxygen results in the decarboxylation of the α-KG and forms a Fe4+-oxo-species. This highly reactive 
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Figure 4.5: Catalytic cycle of the 

represents the methyl group of the carrier protein

is catalysed by molecular oxygen. A highly reactive Fe

hydrogen radical from the aliphatic carbon centre of the substrate, which subsequently abstracts the 

halide to yield the halogenated product.

species abstracts a hydrogen radical from the aliphatic carbon centre of the substrate, which 

subsequently abstracts the halide to yield the halogenated product.

mechanisms have been proposed for the biosynthesis of several other halogenated natural products 

including barbamide (9) and jamaicamide 
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The second class of dioxygen dependent halogenation enzymes are the FADH
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carried out by the groups of van Pée and Naismith on PrnA has resulted in this enzyme becoming the 

model for how all enzymes in this family operate.

 
 

Figure 4.5: Catalytic cycle of the non-heme Fe
2+

/α-ketoglutarate/O2-dependent halogenases. 

represents the methyl group of the carrier protein-bound substrate.149 Decarboxylation

is catalysed by molecular oxygen. A highly reactive Fe4+-oxo-species forms which abstracts a 

hydrogen radical from the aliphatic carbon centre of the substrate, which subsequently abstracts the 

halide to yield the halogenated product. 

abstracts a hydrogen radical from the aliphatic carbon centre of the substrate, which 

subsequently abstracts the halide to yield the halogenated product.149 Similar enzymes with identical 

mechanisms have been proposed for the biosynthesis of several other halogenated natural products 

and jamaicamide (10).168, 169 

Mechanism of FADH2-dependent halogenases

The second class of dioxygen dependent halogenation enzymes are the FADH

halogenases. The first examples of this type were discovered to be involved in pyrrolnitrin 

biosynthesis.163, 170 

workers identified the pyrrolnitrin gene cluster, four enzymes (PrnA, B, C and 

D) were shown to be the sole enzymes required for biosynthesis (insertion of these four genes into 

resulted in the production of pyrrolnitrin).170 Pyrrolnitrin is a dichlorinated molecule and gene 

were used to prove that within the cluster PrnA and PrnC both act as halogenase enzymes 

to regioselectively install one of the chlorine atoms each.171 The significant a

carried out by the groups of van Pée and Naismith on PrnA has resulted in this enzyme becoming the 

model for how all enzymes in this family operate. 
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Figure 4.6: Examples of chlorinated natural products produced by FADH

Pyrrolnitrin (11), thienodolin (12), pyrroindomycin B 

and DIF-1 (16). 

As the name of the family suggests, essential to the mechanism of flavin

enzymes is the presence of reduced flavin. FADH2 is not very stable and tends to be quickly oxidised 

back into FAD, therefore the FAD must be reduced in situ by or for the halogenase when it is 

ready to be used. The purification and characterisation of PrnA was reported in 200

where it was determined that PrnA was able to regio-selectively halogenate 

This protein is one of a group of FADH2-dependent halogenases from 

different biosynthetic clusters that utilise tryptophan as their substrate. 

comparison of the different products of these enzymes and provides a definition for the numbering 

system convention around the indole ring. RebH catalyses an identical reaction to PrnA to produce 

tryptophan during the biosynthesis of rebeccamycin (1) (figure 4.1). Despite

exactly the same function the two enzymes only share a similarity of 54% which highlights the 

remarkable variation present between members of this family of enzymes. Two other similar 

tryptophan halogenases have been found that are capable of chlorinating tryptophan at different 

positions. PyrH from pyrroindomycin B (13) biosynthesis in Streptomyce

tryptophan at the 5 position.173 The enzyme Thal from Streptomyces albogriseolus 

halogenase involved in the biosynthesis of the alkaloid natural product t

More recently another tryptophan-6-halogenase, stth, has been isolated from 
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Figure 4.6: Examples of chlorinated natural products produced by FADH2-dependent halogenase 
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Streptomyces rugosporus chlorinates 

Streptomyces albogriseolus is characterised as 
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Figure 4.7: Regioselective chlorination of L-tryptophan by different FADH

Different members of the family regio-selectively install a chlorine atom at a different position 

around the indole ring. The numbering convention for the indole ring is shown.

This enzyme was located by genome analysis inside an NRPS cluster and the function 

identified by purification and characterisation but the product of the cluster remains unknown

han halogenase enzymes share approximately 40-50% sequence identity, with Thal and 

RebH showing the most similarity at 63%. The fact that these similar enzymes produce only a single 

tryptophan isomer demonstrates that, unlike the HPOs, FADH2-depende

with extremely high selectivity. 

During the purification of PrnA, a second protein component was initially co

ntial for halogenation activity in vitro.172 This component was identified as a flavin 

reductase, a class of redox enzyme that reduces FAD into FADH2 by consuming NAD(P)H. The earlier 

studies that had identified the essential genes for pyrrolnitrin did not exp

production in the recombinant E. coli host despite the fact that no flavin reductase gene ha

.170 During the initial activity assays with PrnA it was determined that the 

flavin reductase was an unspecific enzyme that could be substituted by other similar enzymes, for 

instance the flavin reductase SsuE found in E. coli strains (this enzyme prefers NADPH over NADH as 

The halogenase enzyme is able to accept any form of reduced FAD regardless 

of its origin, even chemically reduced flavin (regenerated using organometallic c

In 2007 another enzyme from Pseudomonas was discovered, PrnF, which

flavin reductase which prefers NADH as a cofactor to reduce FAD.177 This ability to mix and match 
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halogenases with different methods of reducing flavin demonstrates a potential flexibility in 

applications.  

The general catalytic cycle of th

4.8. Reduced flavin is generated by the flavin reductase mediated oxidation of NAD(P)H and is 

released into solution. This is then taken up by the halogenase enzyme and reacts with molecular

oxygen to form a peroxide

has shown that the FADH

chloride attacks the peroxide species to generate hypochlorous acid (HOCl); this is the same 

proximal chlorinating agent produced in the haloperoxidase class of halogenase enzymes and 

generates a Cl+ equivalent that enables the halogenation of electron rich carbon centres.

Figure 4.8: General catalytic mechanism for the generation of HOCl chlorinating agent in FADH

dependent halogenase enzymes. 
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reduced form. 
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The general catalytic cycle of the flavin-reductase/halogenase coupled reaction is shown in figure 

Reduced flavin is generated by the flavin reductase mediated oxidation of NAD(P)H and is 

released into solution. This is then taken up by the halogenase enzyme and reacts with molecular

oxygen to form a peroxide-linked isoalloxazine ring. Information from the crystal structure of PrnA 

has shown that the FADH2 and chloride ion are bound at the same site of the enzyme.

eroxide species to generate hypochlorous acid (HOCl); this is the same 

proximal chlorinating agent produced in the haloperoxidase class of halogenase enzymes and 

equivalent that enables the halogenation of electron rich carbon centres.

re 4.8: General catalytic mechanism for the generation of HOCl chlorinating agent in FADH

dependent halogenase enzymes. FAD is first reduced to FADH2 by the oxidation of NAD(P)H within 

the active site of a flavin reductase enzyme. Inside the active site of the halogenase, FADH

with molecular oxygen to form a peroxide species. Hypochlorous acid is generated following attack 

of this species by chloride. HOCl is then channelled to the halogenase substrate binding site. Loss of 

water regenerates the FAD which can again be recycled by the flavin reductase back to the active 
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A very similar process to generate the flavin hydroperoxide (FAD-OOH) occurs in flavin-dependent 

monooxygenases and there is significant sequence homology between the two sets of enzymes. 

Both the monooxygenases and the halogenases share a conserved flavin binding module near the N-

terminus with the general sequence GxGxxG. Another flavin-dependent halogenase conserved 

sequence however is not found in the monooxygenases and has the sequence WxWxIP. The two 

tryptophan residues in this motif are located close to the flavin binding site and have been proposed 

to block the binding of substrate close to the flavin, therefore preventing the enzyme from acting as 

a monooxygenase.178 However exchange of these conserved tryptophan residues, individually or 

together, for phenylalanine results in no change in halogenation activity. No change in activity is 

seen even if the first of the tryptophan residues is exchanged for alanine. Only when the second 

conserved tryptophan is exchanged for alanine is any change observed but all enzyme activity is lost 

in this case and no monooxygenase activity is seen.179 The lack of apparent function for these 

conserved residues is strange considering that they are absolutely conserved in all FADH2-dependent 

halogenases but the evidence does not seem to support the theory that they function to block 

monooxygenase activity. 

The crystal structure of PrnA shows that the tryptophan binding site is not located adjacent to the 

flavin binding site but down a 10 Å long tunnel. The hypochlorous acid is channelled down this 

tunnel to reach the substrate binding pocket. Work performed on the FADH2-dependent halogenase, 

RebH, supports this view. Yeh and co-workers proved that the flavin redox chemistry is completed 

before the tryptophan substrate is halogenated and that the formation of the reactive HOCl species 

can occur in the absence of substrate, therefore showing that the generation of the hypochlorous 

acid and the chlorination of product are not coupled processes.180 

The very first proposed mechanism for the FAD-dependent halogenases was suggested by Yeh and 

co-workers in 2005, prior to the crystal structure of PrnA being obtained, based on the chemistry 

performed by RebH.181 Following the formation of the flavin-hydroperoxide (FAD-OOH) the chlorine 

was suggested to attack this species to generate an FAD-O-Cl intermediate. Halogenation was then 

achieved by attack on this intermediate by the aromatic π electrons of the tryptophan substrate. The 

findings from the crystal data and the identification of the formation of HOCl disproved this theory. 

Information from the crystal structure showed that a lysine residue (K79), which is conserved in all 

flavin-dependent halogenases, was located at the end of the hypochlorous acid tunnel. The 

importance of this lysine was determined by exchanging it for alanine which led to a total loss of 

activity. Dong et al. suggested that this lysine residue formed a hydrogen bond to the HOCl which 

positioned it in order to react with tryptophan in a regio-selective manner (figure 4.9).178  
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Figure 4.9: Early proposed FADH2-dependent halogenase mechanism. Mechanism based on initial 

crystal data of PrnA by Dong et al. 2005.178 Conserved lysine-79 forms a hydrogen bo

HOCl, positioning it to react with tryptophan. Glutamate-346 abstracts the proton from the resulting 

Wheland intermediate to generate 7-chloro-tryptophan. 

This is followed by electrophillic addition of the chlorine to tryptophan, generating a W

intermediate which is deprotonated by a nearby glutamate residue (E346), leading to product.

workers characterised and crystallised the similar tryptophan

and presented evidence that questioned the PrnA mechanism put forward by Dong 

potent oxidant and is capable of reacting indiscriminately with many biological molecules including 

protein side chains; however Yeh and co-workers described that despite purifying out RebH 

following incubation with FADH2 and NaCl (preventing formation of fresh chlorinating species) the 

enzyme retained chlorinating activity even 48 hours later when introduced to the 

sence of the flavin cofactor, suggesting the presence of a long lived chlorinating 

species. The crystal structure of RebH revealed that the apoenzyme contained a solvent exposed 

active site and it was viewed doubtful that the HOCl could be maintained for s

conditions and would presumably have to be generated and consumed by the enzyme as quickly as 
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mechanism was therefore proposed (figure 4.11) that incorporated these findings. In this 

mechanism the negative charge on the glutamate interacts with the hydrogen of the HOCl which 

results in enhanced Cl+ electrophilicity and also helps to localise the chlorine species at the right 

position for regio-selective incorporation. In the absence of substrate the hypochlorous acid is in 

equilibrium with the chloramine detected by Yeh et al.
182 

The lack of conserved E346 in other flavin-dependent halogenases however suggests that this 

cannot be a universal mechanism for all the enzymes of this family which is made up of a large 

number of enzymes accepting different substrates. The tryptophan halogenases make up a small 

number of the FADH2-dependent family. There are examples of flavin-dependent halogenases that 

chlorinate phenolic or pyrrole moieties during multienzymatic NRPS assembly lines, for example in 

the biosynthesis of chlorotetracycline (15)
149 or during pyoluteorin (14) biosynthesis.183 Other 

examples are post-production halogenases such as the enzyme ChlA which dichlorinates the 

polyketide derived morphogen DIF-1 (16) (differentiation-inducing factor 1) following release from 

the PKS machinery.184 

Despite the range of different enzymes, the tryptophan halogenases remain the best studied of the 

family. Investigations on a flavin-dependent halogenase with different substrate specificity may help 

to answer some of the remaining questions in order to better understand and characterise this 

broad family.  

4.2.3 Enzymatic fluorination 

Fluorine is more electronegative than chlorine, bromine or iodine, therefore the formation of an F+ 

equivalent is very difficult. Fluorinase enzymes must therefore utilise a different mechanism to the 

other halogenases.149 A nucleophilic mechanism has to be involved but F- has a very high enthalpy of 

hydration and only under rigorously stringent conditions can the sheath of water be removed and F- 

act as a nucleophile. For this reason biological reactions with fluoride are very rare but there are a 

number of natural products that do incorporate fluorine (figure 4.12),156 most of which are toxins. 

For these reasons, fluorinase enzymes show significant differences from the other halogenase 

enzymes mentioned above. 

The first known fluorinase enzyme was identified as a 5’-fluoro-5’-deoxyadenosine synthetase, FlA, 

and was isolated from a culture of Streptomyces cattleya. This enzyme uses S-adenosyl-L-methionine 

(SAM) as a co-substrate in the reversible conversion of SAM to 5’-fluoro-5’deoxyadenosine which is 

subsequently converted by other enzymes to fluoroacetate (5) (figure 4.1) and 4-fluorothreonine 

(19) (figure 4.14) to yield the final fluorinated natural products.185 Within FlA the fluorine is thought  
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the active site.194 In PrnB the tryptophan is orientated to block access of the catalytic iron residues to 

the sites favoured by traditional dioxygenase enzymes. Following this ring rearrangement (figure 

4.15), the resulting pyrrole moiety is then halogenated again at the 3 position by PrnC. The resulting 

aminopyrrolnitrin is then oxidised by PrnD, to form the final product. PrnD is another unusual 

enzyme that catalyses an arylamine oxidation reaction in a flavin-dependent manner.195  

The pyrrolnitrin biosynthetic cluster contains many unusual enzymes that may have great potential 

as future valuable biocatalysts. Perhaps most attractive of them is the pyrrole halogenase PrnC. As 

noted before halogenation is a simple change that can result in vast changes in biological activity. 

Introducing halogens into pyrrole species in a regio-selective fashion and under mild conditions is 

something that is hard to do with conventional chemical techniques and presents PrnC as an 

attractive target enzyme for biocatalysis. 

Although PrnC is a largely uncharacterised halogenase enzyme the protein sequence contains both 

the flavin binding motif and the double tryptophan motif that are the hallmarks of FADH2-dependent 

halogenase enzymes. PrnC has very low sequence identity (14%) to the other flavin-dependent 

halogenase in the cluster, PrnA. This is perhaps not unexpected due to the large variation in protein 

sequence seen in these types of enzyme, even between PrnA and RebH which catalyse identical 

reactions. The protein sequence of PrnC shows very little similarity to any other enzyme, the closest 

protein homolog is HalA from an Actinoplanes sp with 42% homology (which is unsurprising since 

PrnC probes were used to identify it as a halogenase enzyme).196
 This enzyme is involved in the 

biosynthesis of pentachloropseudilin (24), a natural product that has a structure very similar to 

pyrrolnitrin. However it is not known whether it is a specific pyrrole halogenase as the exact 

substrate of HalA is ambiguous.196 

Despite the lack of protein homologs there are several known flavin-dependent halogenases that 

produce chlorinated pyrrole moieties (figure 4.16), such as PltA in pyoluteorin biosynthesis (14), 

HrmQ during hormaomycin production (25) and Pyr29 in pyrrolomycin A biosynthesis (26).197, 198 In 

these examples, however, the substrates are produced via PKS/NRPS pathways and are bound to 

peptidyl carrier proteins during the halogenation. In the case of PltA it has been shown that only the 

carrier protein bound substrate is accepted and the enzyme will not halogenate free pyrrole-2-

carboxylate183 and it has been suggested that HrmQ has the same restriction.149In the biosynthesis of 

pyoluteorin, proline is bound as a thioester to the PltL carrier protein and is subsequently 

desaturated to a pyrrolyl-S-PltL intermediate which is then chlorinated regio-selectively at C-5 

followed by a subsequent chlorination at C-4 by the same enzyme, PltA (see figure 4.17). 
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PrnC, in contrast, halogenates a free substrate (monodechloroaminopyrrolnitrin) and is not involved 

in PKS or NRPS machinery. There are not currently any other confirmed examples of another pyrrole 

halogenase that acts in this manner. The close homolog HalA may be able to halogenate a free 

substrate but not enough is currently known about this enzyme to say for certain. Pyrrolomycin A is 

halogenated by Pyr29 as a carrier protein bound intermediate; however this natural product 

contains many analogues including pyrrolomycin B, C and D (27-29). These analogues are produced 

from pyrrolomycin A following the release from the PKS enzymes, alterations include the addition of 

a phenyl ring and further chlorination steps (figure 4.16). Pyr29 may also be involved in these later 

chlorinations and may therefore also function on free substrates, although other enzymes may be 

involved.198 

At the present time however PrnC is the only enzyme with proven (in vivo) activity on an isolated 

substrate and therefore represents a potentially more flexible candidate for biotechnological 

applications. Interestingly it is also one of the few examples were a pyrrole moiety is selectively 

halogenated only once (the other being HrmQ from hormaomycin biosynthesis). Characterisation of 

this enzyme and determination of substrate specificity would not only be useful in helping to 

understand the general mechanism of the flavin-dependent halogenases but would also present a 

fine candidate for the generation of novel halogenated compounds. 

4.2.5 Biotechnological potential for FADH2-dependent halogenases 

The diversity seen in the halogenated natural products available to nature demonstrates the 

profound effect halogenation can have on activity. Harnessing these enzymes could provide a route 

to halogenation at specific sites of substrates that are perhaps not possible with direct chemical 

halogenations. They may be useful either in the search for better more effective drugs or simply as a 

tool in chemical synthesis. 

The incorporation of these halogenases into the biosynthetic clusters of several natural products has 

already resulted in the production of numerous unnatural halogenated metabolites. One of the first 

examples was carried out by Heide et al., where the HrmQ halogenase from hormaomycin 

biosynthesis (25) was used to generate two new chlorinated clorobiocin derivatives. Clorobiocin (6) 

(figure 4.2) normally contains a 5-methylpyrrole moiety but deletion of the relevant 

methyltransferase and expression of the HrmQ halogenase resulted in the new analogues being 

produced.197 More recently the group of Sarah O’Connor demonstrated that the insertion of the 

gene for the tryptophan-7-halogenase RebH or the tryptophan-5-halogenase PyrH into the medicinal 

plant Catharanthus roseus resulted in the generation of regio-selectively chlorinated alkaloid 
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products that were derived from tryptophan.199 In complimentary work Goss et al. were able to 

generate chlorinated analogues of the tryptophan containing pacidamycin antibiotic from 

Streptomyces coeruleorubidus by the insertion of the tryptophan-7-halogenase PrnA into the 

producing organism. This resulted in pacidamycin analogues that contained a 7-chloro-tryptophan 

residue.200 As discussed in chapter 1, the incorporation of chlorine at this position resulted in 

changes in activity.88 This previous work however had been conducted by feeding halogenated 

tryptophan produced by tryptophan synthase biotransformation reactions, the incorporation of the 

halogenase gene made the production of chlorinated pacidamycin more efficient. In addition to this 

Suzuki-Miyaura cross-coupling reactions were performed with the pacidamycin analogues under 

aqueous conditions using a method pioneered in the same group to produce a number of new semi-

synthetic analogues with a variety of aryl substituents.200, 201 This technique could be used to 

generate libraries of new natural product analogues with interesting pharmacological properties. 

The main problem with the flavin-dependent halogenase enzymes however is their strict substrate 

specificity. PrnA has been show to accept a number of other indole derivatives but the regio-

selectivity is lost which limits the enzymes potential.202 Within pyrrolnitrin biosynthesis it has also 

been shown that PrnC is unable to accept monodechloroaminopyrrolnitrin as a substrate when it is 

chlorinated at the 6 rather than the 7-position of the phenyl group.174 

The origin of the regio-selectivity of the flavin-dependent tryptophan halogenases was determined 

in 2009 when the structure of PyrH was solved. It was discovered that the binding of the tryptophan 

substrate in the active site exposed the C5 position to the key catalytic lysine residue.203 The other 

reactive positions around the indole ring are all protected by bulky, aromatic amino acid side chains, 

essentially mimicking protecting group chemistry.  This information helped to explain why PrnA lost 

regio-selectivity when tested with other indole derivatives as orientation in the active site is very 

important. Using this knowledge site-directed mutagenesis was used to alter the active site of PrnA 

to remove some of the bulkier residues. This resulted in a mixture of 7- and 5-chloro-tryptophan 

being produced.204 The absence of di-chlorinated product was suggested to be due to a lack of space 

in the active site.  

Recently a new fungal FADH2-dependent halogenase from the fungi Pochonia chlamydosporia has 

been identified, Rdc2, which is similar to HrmQ as it is also a post-PKS halogenase.205 This halogenase 

has been shown to halogenate various natural products into mono- or di-halogenated derivatives. 

This highlights the potential of PrnC as a potential new pyrrole halogenation tool and how a greater 

understanding of its structure and function could lead to a general halogenase capable of regio-

selective halogenation of pyrrole moieties. 
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Chapter 5: 

Overexpression and Purification of PrnC 

5.1 Promoter systems used to induce protein expression 

The tryptophan synthase containing plasmid pSTB7, used extensively in the previous chapters, is 

constitutively active and therefore continuously expresses the contained genes. Generally however 

this is not desirable when producing recombinant proteins as unregulated production can affect 

culture growth rates, decrease the protein yield and can lead to protein aggregation and the 

formation of inclusion bodies.206 If the recombinant protein is toxic to the producing organism 

premature production can also affect the culture viability and lead to loss of the plasmid from 

significant numbers of the cell population.  Therefore it is advantageous to delay protein expression 

until optimal growth rate is reached and before nutrients begin to become scarce. For this reason 

most expression systems are regulated under a promoter which must be induced before protein 

production can begin. Two of the most commonly used are the T7lac promoter and the araBAD 

promoter. 

5.1.1 T7lac promoter 

The T7 promoter was first developed by Studier et al. and is based on the bacteriophase T7 RNA 

polymerase.207 This polymerase is very selective and so active that most of the host cells resources 

are channelled into target gene expression. Target genes are cloned into plasmids that are under the 

control of T7 transcription and translation signals (recognised by the T7 RNA polymerase). E. coli 

does not naturally contain this RNA polymerase; so to enable protein expression from target genes 

under the control of this promoter expression hosts that contain a chromosomal copy of the T7 RNA 

polymerase gene (such as E. coli BL21) must be used. This ensures that the target gene cannot be 

transcribed by the natural E.coli RNA polymerase and so controlling T7 RNA polymerase production 

affectively controls target gene expression. The T7 polymerase itself is under the control of the E. 

coli lac promoter.207 

In the T7lac system expression of both the vector and the integrated T7 RNA polymerase gene is 

provided under lacUV5 control. This involves a lac operator sequence downstream of the T7 

promoter and a coding sequence for the lac repressor protein LacI (both taken from the lac operon 

which controls the expression of lactose metabolism genes in E. coli). In the absence of lactose the 

repressor protein encoded by lacI can bind to the operator sites, effectively preventing the T7 RNA 
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polymerase from transcribing the target gene. Transcription of the T7 RNA polymerase gene itself by 

the natural polymerase of the host cell is also inhibited by the lac repressor protein.  

When lactose (or non-hydrolysable mimic isopropyl β-D-1-thiogalactopyranoside, IPTG) is introduced 

this binds to and displaces the lac repressor, which in turn leads to the loss of inhibition of T7 RNA 

polymerase production which allows the binding of the T7 polymerase to the T7 promoter region on 

the plasmid. This switches on the production of any protein encoded by the genes downstream of 

the T7 promoter. 

In organisms that naturally carry the lac operon it is used to ensure that the genes required to 

metabolise lactose as a carbon source are only activated if necessary i.e. when glucose is not 

available but lactose is. Therefore as a double control glucose also acts as a repressor of this system, 

limiting the association between the RNA polymerase and the DNA in high glucose concentrations. 

This is achieved by binding of the catabolite activator protein (CAP) which assists in the binding of 

the RNA polymerase to the DNA. To be activated CAP must be first bound to cyclic adenosine 

monophosphate (cAMP), the abundance of which is inversely proportional to glucose 

concentration.208, 209 

This gene expression system is widely used in the pET system (Novagen). 

5.1.2 araBAD promotor 

The araBAD system of protein expression utilises a different catabolic pathway regulatory system to 

control target gene expression, this time from the L-arabinose operon controls the breakdown of 

arabinose into D-xyulose-5-phosphate that can be metabolised by the pentose phosphate pathway. 

The operator and promoter regions araO and araI and the araC gene that encodes for an activator 

protein are included in expression plasmids, such as pBAD, that utilise the control of this promoter 

system. 

In the absence of arabinose the activator protein binds to the araI and the araO regions of the DNA 

which results in the formation of a 210 base pair loop which prevents the association of the RNA 

polymerase machinery with the DNA, preventing target gene expression. When arabinose is present, 

the activator forms a different conformation which allows the RNA polymerase to bind to the 

promoter region and transcribe the downstream genes. Similar to the T7lac promoter CAP binding is 

also required; therefore glucose inhibits the expression of downstream genes in the same way.210 

Because DNA polymerase binding is actively inhibited in the absence of arabinose, proteins under 

the arabinose promoter generally have very low basal expression levels. 
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5.2 Results and Discussion 

5.2.1 Halogenase work prior to start of PhD 

Work conducted during an industrially funded summer studentship (unpublished results) focused on 

the cloning, expression and substrate specificity of four flavin-dependent halogenase enzymes. 

Three of these were tryptophan halogenases from different natural product biosynthetic clusters; 

PyrH, Thal and PrnA (tryptophan 5,6 and 7-halogenases respectively). The final enzyme was the third 

enzyme in the biosynthesis of pyrrolnitrin, PrnC. These four enzymes were cloned into the pET21a(+) 

(Novagen) vector and expressed in E. coli BL21. Following cell lysis all four enzymes were present in 

the insoluble fraction when grown at 37, 28 or 16°C with PrnC in particular showing almost no 

solubility at all. Transfer of the three tryptophan halogenase genes into pET28a(+) (Novagen) 

resulted in an increase in soluble protein produced at 16°C. Of all these enzymes PrnC is perhaps the 

most interesting from a mechanistic point of view and is the least characterised of all the four 

enzymes tested. Placing the gene for PrnC into an expression vector other than pET21a(+) may 

improve the low levels of solubility seen previously and help to produce sufficient quantities of 

purified enzyme to facilitate characterisation and possible crystallisation. 

5.2.2 Production of PrnC under the araBAD promoter 

5.2.2.1 Bioinformatics and strategy for improving PrnC expression 

In the work conducted prior to the start of this PhD, good levels of soluble protein for the three 

tryptophan halogenase enzymes had been achieved but no improvement could be made on PrnC 

production. The protein sequences of the three tryptophan halogenase enzymes PyrH, Thal and PrnA 

and the pyrrole halogeanse PrnC were compared in an attempt to understand this difference in 

solubility. 

Multiple protein sequence alignment (figure 5.1) showed that the three tryptophan halogenase 

enzymes shared at least 41% homology with each other with the most similar enzymes being PrnA 

and Thal (56%). Comparison between these three halogenases and PrnC showed a significantly lower 

sequence homology. The most similar to PrnC was observed to be Thal but even these enzymes only 

share 17% sequence similarity. 

This is perhaps not a surprising result. The three tryptophan halogenases utilise the same substrate 

whereas PrnC selectively chlorinates a pyrrole moiety. Despite all the differences, however, there 

are a few similarities that all three enzymes share with the rest of the flavin-dependent family. There 
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are two conserved motifs present within the sequence of all the flavin-dependent halogenases. The 

first is a flavin binding module located near the N-terminus of the protein, this has the consensus 

sequence GxGxxG.211 The second conserved motif has the consensus sequence WxWxIP and is 

located closer to the centre of the protein. This module was suggested to prevent the enzyme from 

functioning as a monooxygenase by restricting substrate binding close to the FAD211 but mutagenesis 

evidence failed to support this hypothesis and currently the function of this conserved region is 

unknown.179 Both of these conserved sequences are present in PrnC as well as the three tryptophan 

halogenase enzymes (these sequences are highlighted in red in the multiple protein sequence 

alignment in figure 5.1) which is to be expected as all are assigned as FADH2-dependent enzymes. 

Alignment of the three tryptophan halogenases highlights the conserved lysine residue (K79 for 

PrnA) which is necessary for catalysis for all FADH2-dependent halogenases and a glutamate residue 

(E346 for PrnA) which is only conserved and essential for activity within the FADH2-dependent 

halogenase enzymes that utilise tryptophan as the substrate. The alignment did not identify these 

residues in PrnC but the catalytic lysine should be present for the enzyme to mediate halogenation 

using the same mechanism, but the location of this residue in the sequence of PrnC is unknown. 

There are 28 lysine residues in PrnC and in the absence of a crystal structure site-directed 

mutagenesis of each of these sites would be required to ascertain which of them have catalytic 

activity.  

 

Sequence A Length Sequence B Length Score 

PyrH 511 PrnA 537 41.0 

PyrH 511 Thal 531 41.0 

PrnA 537 Thal 531 56.0 

PyrH 511 PrnC 567 10.0 

Thal 531 PrnC 567 17.0 

PrnA 537 PrnC 567 14.0 

     

Table 5.1: Protein sequence Homology of Four Flavin-dependent Halogenase Enzymes. PrnA and 

Thal share the most sequence similarity, while PrnC and PyrH share the least. 



 

Figure 5.1: Multiple sequence alignment of four flavin

residues highlighted with an asterix, conserved residues with two dots and semi

single dot. Family conserved motif (WxWxIP) and flavin binding motif (GxGxxG) are highlighted in 

red. Key catalytic residues present 

 
 

: Multiple sequence alignment of four flavin-dependent halog

residues highlighted with an asterix, conserved residues with two dots and semi

single dot. Family conserved motif (WxWxIP) and flavin binding motif (GxGxxG) are highlighted in 

red. Key catalytic residues present in PrnA (K79 and E346) are highlighted in blue.

129 Chapter FIVE 

dependent halogenase proteins. Identical 

residues highlighted with an asterix, conserved residues with two dots and semi-conserved with a 

single dot. Family conserved motif (WxWxIP) and flavin binding motif (GxGxxG) are highlighted in 

in PrnA (K79 and E346) are highlighted in blue. 



 

Figure 5.2: Secondary structure prediction of PrnC based on protein sequence. 

the amino acid composition of PrnC using the online PSIPRED predictor from the Bloomsbury Centre 

for Bioinformatics from University College London.

(R1-R3) are highlighted with arrows. 

Due to the lack of homology between PrnC and the other enzymes tested, it is difficult to suggest 

methods to improve the expre

alone. PrnC is a slightly larger enzyme than the others 

charged amino acids (lysine and arginine) at the C

difference may be enough to alter the solubility of PrnC relative to the other halogenase enzymes 

tested or help to target PrnC for faster degradation. The possibility that the enzyme could be 

 
 

Figure 5.2: Secondary structure prediction of PrnC based on protein sequence. 

the amino acid composition of PrnC using the online PSIPRED predictor from the Bloomsbury Centre 

matics from University College London.212 Truncation positions of produced PrnC variants 

R3) are highlighted with arrows.  

Due to the lack of homology between PrnC and the other enzymes tested, it is difficult to suggest 

methods to improve the expression of folded, soluble protein based on the sequence alignment 

alone. PrnC is a slightly larger enzyme than the others (table 5.1) and contains more positively 

charged amino acids (lysine and arginine) at the C-terminal end of the protein (figure 5.1). T

difference may be enough to alter the solubility of PrnC relative to the other halogenase enzymes 

tested or help to target PrnC for faster degradation. The possibility that the enzyme could be 

130 Chapter FIVE 
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truncated to remove some of these positively charged amino acids was explored in an attempt to 

improve folding; however this could ultimately have an effect on activity. 

The use of online secondary structure prediction tools (PSIPRED from UCL)212, 213 enabled a rough 

assessment of the degree of structural complexity present at the C-terminus of PrnC. The analysis 

suggested that the terminal region of the enzyme contained some significant secondary structure 

(figure 5.2). Ideally truncations should be made in regions that contain no structural features as 

these are usually involved in activity or conformation. To this end any truncations introduced at the 

C-terminal end of PrnC may result in loss of activity or further problems with folding. 

5.2.2.2 Cloning of PrnC variants and ligation into pBAD vector 

The pBAD/HisA plasmid was chosen as the protein expression vector. This is a pBR322 derived 

plasmid designed for regulated, dose-dependent recombinant protein expression and purification in 

E. coli (see figure 5.3). The vector utilises the araBAD promoter from E. coli which is induced in the 

presence of L-arabinose. Optimum levels of protein expression can be produced by adjusting the 

concentration of arabinose used. The vector carries an N-terminal hexa-histidine tag which carries 

some advantages over the C-terminal tag used in the previous work and may help to improve 

solubility. Proteins are synthesised by the ribosome from the N-terminal end and the folding process 

often begins co-translationally, therefore installing an affinity tag at the C-terminal end of the 

protein ensures that only full length proteins are purified. A disadvantage is that because of the way 

protein folding occurs, C-terminal tags are more likely to become internalised inside the protein,214 

meaning they are unavailable for purification, they can also make the resulting protein more 

unstable.  

To facilitate the cloning of prnC into pBAD forward and reverse PCR primers were designed to flank 

the prnC gene and insert unique restriction sites to enable insertion into the vector. Comparison of 

the restriction sites inside the pBAD multiple cloning site (MCS) with internal restriction sites present 

within the prnC gene identified BglII as an appropriate restriction site for the forward primer. Most 

of the other sites in the MCS were also present inside prnC so could not be used for the cloning. This 

problem was circumvented by augmenting the reverse primer with an MfeI (MunI) recognition site. 

Following digestion MfeI generates sticky ends that are compatible with EcoRI, meaning that 

although the initial recognition sites are different the resulting overhangs from each enzyme are 

able to ligate together with the consequential loss of the original recognition site for both enzymes. 

These compatible ends are illustrated in figure 5.3. A single forward primer was therefore designed, 

incorporating the BglII restriction site, the primer was designated PrnC-Bgl. Three reverse primers 
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A preliminary polymerase chain reaction (PCR) amplification was carried out using the forward 

primer and each of the three reverse primers. A range of annealing temperatures was tested (54.8, 

58.4, 64.0 and 68.2°C) and the effect of the addition of 5% dimethyl sulfoxide (DMSO) was also 

examined. Pfu polymerase was used which operates at an elongation rate of 2 min per kb. Therefore 

as prnC is slightly less than 2 kb in size an extension time of 4 minutes was used. The results of the 

various PCR reactions were analysed on an agarose electrophoresis gel (visualised with ethidium 

bromide under UV light) and can be seen in figure 5.4 (parts A and B). No PCR product for prnC-R1 

was seen at any temperature lower than 68.2°C. 5% DMSO addition was also seen to be necessary 

for a band of the correct size to appear on the gel. 

In the presence of DMSO, the PCR product of prnC-R2 was seen to be produced at all temperatures 

except the lowest (54.8°C). In the absence of DMSO only an annealing temperature of 64°C showed 

any evidence of product. An annealing temperature of 68.2°C with 5% DMSO showed the least 

number of non-specific amplifications (figure 5.4B) and therefore was selected as the optimum 

conditions for this PCR. 

None of the conditions tested produced any of the prnC-R3 variant. In an attempt to improve the 

amplification of the heavily truncated prnC-R3 the effect of increasing the DMSO concentration to 

10% or the addition of 2.5% formamide was investigated. DMSO is known to improve the 

amplification of DNA by disrupting base-pairing and reducing inter- and intra- strand re-annealing 

therefore reducing the incidence of secondary DNA structure such as hairpin loops that can interfere 

with recognition by the primer.215 Formamide has also been shown to improve the specificity of PCR 

reactions.216 It has been proposed that organic additives like formamide can bind to the major and 

minor grooves of the DNA, destabilising the double helix,217 as a consequence of this the melting 

temperature of DNA is reduced which improves the efficiency of the PCR reaction at lower annealing 

temperatures. All of the primers were tested with the new conditions in combination with increasing 

the annealing temperature to 72°C. The resulting PCR products were analysed by electrophoresis 

and visualised gels can be seen in figure 5.4C. 

For the prnC-R1 and –R2 reactions adding increased amounts of DMSO or formamide drastically 

reduced the effectiveness of the PCR reaction and the effect of increasing the annealing 

temperature to 72°C seemed to reduce the specificity of the reaction relative to the previous 

optimum conditions. Increased DMSO or formamide also did not show any improvement to the 

amplification of prnC-R3, however keeping the DMSO concentration to 5% but increasing the 

annealing temperature did show clear bands, for the first time, indicating the production of the  
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truncated prnC variant R3. These conditions for R3 were chosen for scale up as they represented the 

only successful reaction. 

Based on the PCR optimisation results the two longest prnC variants (R1 and R2) were scaled up to 

100 µl PCR reactions. The less specific R3 reaction was scaled up to 200 µl scale. Due to the high 

number of low molecular weight amplifications in this case, the extension time for the PCR reaction 

was increased to 10 minutes. Following this, the PCR products were purified by gel electrophoresis. 

The PCR product of prnC-R3 visualised by EtBr produced several bands but clearly showed that only 

the top band was of the correct size to be the product, this band only was excised with the other 

two variants. The resulting purification yielded much lower quantities of DNA than the other two (R1 

and R2) but was sufficient to continue to the next step. 

Following purification the PCR products were digested with BglII and MfeI restriction enzymes and 

ligated into similarly digested pBAD vector (BglII, EcoRI). The three resulting plasmids were identified 

as pMW03-05. The plasmids were sequenced (DNA sequencing facility, University of Cambridge) to 

ensure no mutations had arisen during the PCR and then transformed into chemically competent E. 

coli XLI-Blue cells for long term storage (MW-005, -006 and -007) and into E. coli BL21 for protein 

expression studies (MW-008, -009 and -010). 

5.2.2.3  Protein expression of PrnC variants in E. coli 

With the araBAD promoter system the level of protein production can be controlled by varying the 

concentration of the L-arabinose inductant. In general terms the closer protein production is to 

optimum then the better the overall protein solubility will be. A pilot study was first undertaken to 

determine the optimum concentration of arabinose for PrnC production. A range of 10 ml cultures 

inoculated with E. coli BL21 MW-008 were allowed to reach an optical density of 0.5 (at 600nm) at 

37°C before being induced with a range of arabinose concentrations (0.2 – 0.00002% (m/v)) and 

returned to incubation for 4 hours. Subsequent analysis by SDS-PAGE (sodium dodecyl sulphate 

polyacrylamide gel electrophoresis) showed very low levels of protein expression even with 0.2% 

arabinose. 

Larger scale cultures (500 ml) of all three PrnC variants (E. coli BL21 MW-008, MW-009 and MW-010) 

inoculated with ampicillin were grown in the same way and induced with 0.2% L-arabinose. 

Following induction the cells were transferred to a lower temperature of 16°C for 24 hours to 

promote better protein folding. The cell lysate was then generated via sonication. 10 ml of this cell 

lysate was subjected to small scale Ni-NTA spin purification to isolate the PrnC enzyme. 
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Figure 5.5: SDS-PAGE analysis of the 0.2% (w/v) L-arabinose induced protein expression of PrnC 

variants R1-3 inside E. coli BL21. No clear band corresponding to PrnC was seen in any of the 

constructs. Lanes are as follows: (M) Protein marker (Biorad). Sizes are in KDa. (1) Pre-induction 

sample. (2) Protein content of cell debris. (3) Protein content of cell free lysate. (4) Protein content 

following Ni-NTA purification. Expected sizes of PrnC: R1 – 64.8 kDa, R2 – 63 kDa and R3 – 61.6 kDa. 

The resulting fractions, including a sample of the cell debris left in the pellet following sonication and 

centrifugation, were analysed by SDS-PAGE (see figure 5.5). The results showed no large, clear bands 

corresponding to the protein of interest. There did not even seem to be any protein of significance 

present in the insoluble fraction.  A repeat showed the same result. 

The insertion of prnC into pBAD and the resulting attempts to express the protein in E. coli BL21 was 

not successful. The pBAD manual suggests using a recA, endA strain such as E. coli TOP10. These 

strains carry a mutation in the araD gene which makes them capable of transporting arabinose but 

not metabolising it. This is suggested to be important to protein expression when using the araBAD 

promoter to ensure levels of the inductant remain constant inside the cell and do not decrease over 

time.218
 

E. coli DH10B has a genotype that is identical to TOP10 and thus was selected as an alternative host 

for prnC/pBAD expression. For this study just the plasmid containing the full prnC gene was 

(pMW03) transformed into chemically competent DH10B cells to form E. coli DH10B MW-021. To 

verify the insertion of the gene into the E. coli DH10B host, plasmid DNA was extracted from the 

resulting strain and double restriction digested to prove that the prnC gene was present. Two bands 

corresponding to DNA of the expected size were visualised on an ethidium bromide stained 

electrophoresis gel, strongly implicating the presence of the correct gene. 



 

 
 

137 Chapter FIVE 

Figure 5.6: SDS-PAGE analysis of PrnC-R1 production in E. coli DH10B MW-021 with varying 

concentrations of L-arabinose. No clear evidence of PrnC production can be seen. Lanes are as 

follows: (M) Protein marker (Biorad). Sizes are in KDa. (1) Pre-induction sample. (2) Protein content 

of cell debris. (3) Protein content of cell free lysate. Expected sizes of PrnC: R1 – 64.8 kDa.  

Three 10 ml scale cultures of MW-021 were grown at 37°C until an OD600 of 0.5 was reached. As 

before a range of L-arabinose concentrations were trialled to try to find the optimum level (0.2-

0.0002%). Following induction the cells were cooled to 16°C for 24 hours. The cells were lysed and 

the lysate was analysed together with samples of the culture before induction and samples of the 

cell pellet on SDS-PAGE (figure 5.6). However, despite being transferred into a more suitable host, 

there was still no evidence of over production of PrnC using the pBAD vector. Transferring the gene 

into a different vector may help to resolve these issues. 

5.2.3 Expressing PrnC gene inside pET28a(+) 

5.2.3.1  Cloning methods 

In my previous work with the tryptophan halogenases, transferring the genes into pET28a(+) 

resulted in improved levels of soluble protein. Therefore primers were designed to enable the 

insertion of the prnC gene into this vector. The multiple cloning site inside pET28a(+) contains an 

EcoRI site (see figure 5.7) which that meant that the same reverse primer could be used for cloning 

as was used for the pBAD construct (PrnC-R1). There is no BglII site contained within the multiple 

cloning site however so another primer was used that contained an NdeI restriction site (chosen as 

this was upstream of the EcoRI site in the MCS). This primer was obtained from a co-worker working 

on a parallel project and was designated PrnC-1. 



 

Figure 5.7: Key features of the pET28a(+) expression vector and annotation of the multiple cloning 

site. pET28a(+) is a cloning and expression vector from Novagen. The multiple cloning site features 
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terminal His6 tag and an optional C-terminal His6 tag (provided outside of the reading frame). 

The MCS also contains a number of unique restriction sites to enable insertion of recombinant 

genes. Control of protein production is provided by the T7lac promoter. 

s with the pBAD construct, a trial PCR was first performed to determine the optimum levels of gene 

new combination of primers. The trial demonstrated that the optimum 

conditions to produce the maximum amount of prnC with the highest specificity was a 60°C 

annealing temperature with the addition of 5% DMSO (see figure 5.8). 

138 Chapter FIVE 

: Key features of the pET28a(+) expression vector and annotation of the multiple cloning 

pET28a(+) is a cloning and expression vector from Novagen. The multiple cloning site features 

d outside of the reading frame). 

The MCS also contains a number of unique restriction sites to enable insertion of recombinant 

ed to determine the optimum levels of gene 

. The trial demonstrated that the optimum 

with the highest specificity was a 60°C 



 

Figure 5.8: DNA gel electrophoresis analysis of 

different conditions. Analysis of PCR reactions carried out with the PrnC

different annealing temperatures and the effect of adding 5% final concentration of DMSO to the 

reactions. Expected PCR products are PrnC

arrow. 1kb ladder (promega) sizes from top: 10000, 8000, 6000, 5000, 4000, 3000, 25

1000, 750, 500, 250bp. Selected optimal PCR conditions are highlighted with a black arrow.

These conditions were used for

excised and gel purified. 

from the previous prnC PCR product. 

MfeI and was subsequently ligated into pET28a(+)that had been 

formed the plasmid pMW06. For protein expression the plasmid was transformed into 

form strain MW-012. Confirmation of the inserted gene was obtained by isolating the plasmid from 

the strain and double digesting it with NdeI and PvuII. The 

insert the gene (MfeI) was destroyed during ligation into the EcoRI site of the plasmid, therefore 

PvuII was used as an alternative. This enzyme does not cut pET28a(+) but does cut the 

1181 base pairs from the start. T

generate a fragment approximately  1181 base pairs in size and a remaining vector fragment of 5892 

base pairs. These expected fragments were present following t

confirming the presence of the insert inside pMW06. The plasmid 

confirm the presence of the insert, ensuring that the gene was in the correct frame for translation 

and that no errors had been introduced during amplification.

 
 

el electrophoresis analysis of prnC-P1 gene PCR amplification under a variety of 

Analysis of PCR reactions carried out with the PrnC

temperatures and the effect of adding 5% final concentration of DMSO to the 

reactions. Expected PCR products are PrnC-P1 (1704 bp). The expected size is marked with a white 

arrow. 1kb ladder (promega) sizes from top: 10000, 8000, 6000, 5000, 4000, 3000, 25

1000, 750, 500, 250bp. Selected optimal PCR conditions are highlighted with a black arrow.

These conditions were used for a 100µl scale up and the band corresponding to the correct size was 

excised and gel purified. This new PCR product was designated prnC-P1, in order to differentiate it 

PCR product. prnC-P1 was treated with the res

and was subsequently ligated into pET28a(+)that had been digested with NdeI and EcoRI. This 

mid pMW06. For protein expression the plasmid was transformed into 

012. Confirmation of the inserted gene was obtained by isolating the plasmid from 

the strain and double digesting it with NdeI and PvuII. The second restricti

insert the gene (MfeI) was destroyed during ligation into the EcoRI site of the plasmid, therefore 

PvuII was used as an alternative. This enzyme does not cut pET28a(+) but does cut the 

1181 base pairs from the start. Therefore if prnC is present inside the vector a double diges

a fragment approximately  1181 base pairs in size and a remaining vector fragment of 5892 

base pairs. These expected fragments were present following the restriction digest, 

confirming the presence of the insert inside pMW06. The plasmid DNA 

confirm the presence of the insert, ensuring that the gene was in the correct frame for translation 

and that no errors had been introduced during amplification. 

139 Chapter FIVE 

amplification under a variety of 

Analysis of PCR reactions carried out with the PrnC-1 and PrnC-R1 primers at 

temperatures and the effect of adding 5% final concentration of DMSO to the 

P1 (1704 bp). The expected size is marked with a white 

arrow. 1kb ladder (promega) sizes from top: 10000, 8000, 6000, 5000, 4000, 3000, 2500, 2000, 1500, 

1000, 750, 500, 250bp. Selected optimal PCR conditions are highlighted with a black arrow. 

a 100µl scale up and the band corresponding to the correct size was 

, in order to differentiate it 

was treated with the restriction enzymes NdeI and 

digested with NdeI and EcoRI. This 

mid pMW06. For protein expression the plasmid was transformed into E. coli BL21 to 

012. Confirmation of the inserted gene was obtained by isolating the plasmid from 

second restriction recognition site used to 

insert the gene (MfeI) was destroyed during ligation into the EcoRI site of the plasmid, therefore 

PvuII was used as an alternative. This enzyme does not cut pET28a(+) but does cut the prnC gene 

is present inside the vector a double digest should 

a fragment approximately  1181 base pairs in size and a remaining vector fragment of 5892 

he restriction digest, strongly 

DNA was also sequenced to 

confirm the presence of the insert, ensuring that the gene was in the correct frame for translation 



 

 
 

140 Chapter FIVE 

5.2.3.2 Protein expression, purification and initial activity assays 

with E. coli BL21 MW-012 

5.2.3.2.1 Protein expression and purification of PrnC and PrnF 

A 500 ml main culture of E. coli BL21 MW-012 was grown at 37°C until an OD600 of 0.6 was reached. 

Protein expression was then induced with the addition of 0.1 mM final concentration of IPTG, the 

culture was then grown at 16°C for an additional 24 hours. The cell free extract was generated and 

subjected to Ni-NTA purification to check for the production of the his-tagged halogenase enzyme. 

The samples were analysed by SDS-PAGE (see figure 5.9). Following the purification steps, a very 

faint band of the appropriate size for PrnC-P1 could be seen in the elution fraction (figure 5.9, A7). 

There seemed to be significantly more protein in the cell lysate than was present in the cell debris 

pellet (figure 5.9, A2 and 3 respectively), which was significantly better than the expression levels 

shown with the pBAD vector. It can be seen from figure 5.9 (A4) however that despite fair levels of 

protein present in the cell lysate, the protein of the required molecular weight was being washed 

Figure 5.9: SDS-PAGE analysis of PrnC-P1 production in E. coli BL21 MW-012 and of PrnF 

production in E. coli BL21 RG-5066. (A) Ni-NTA purification of PrnC from culture of MW-012 as 

followed by SDS-PAGE. (B) Ni-NTA purification of flavin reductase PrnF from culture of RG-5066 as 

followed by SDS-PAGE analysis. Lanes are as follows: (M) Protein marker (Biorad). Sizes are in KDa. 

(1) Pre-induction sample. (2) Protein content of cell debris. (3) Protein content of cell free lysate. (4) 

Proteins not bound to Ni-NTA resin. (5) Proteins washed off resin with Ni-NTA lysis buffer. (6) 

Proteins washed off resin with Ni-NTA wash buffer. (7) Elution from Ni-NTA resin following wash 

with Ni-NTA elution buffer. Expected sizes: PrnC – 64.8 kDa, PrnF – 21 kDa (indicated by white 

arrows). 
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straight off the Ni-NTA resin and that the observed levels of resin binding were very low. This 

perhaps suggests that the poly histidine tag attached to the protein is poorly available and may be 

internalised. 

The elution fraction from the Ni-NTA column was concentrated tenfold. The protein was then buffer 

exchanged from the imidazole containing elution buffer into a HEPES protein storage buffer 

containing glycerol which enabled long term storage by flash freezing with liquid nitrogen. The 

amount of protein present in the eluent was assessed by means of a Bradford type assay which was 

prepared by first constructing a standard curve of concentration versus absorbance based on 

samples of known concentration of bovine serum albumin (BSA) in the range of 0.2-1.0 mg ml-1. 

A sample of the elutant containing purified PrnC-P1 was diluted two times to bring the colour 

change of the Bradford reagent into the linear range of the BSA standards. Recording the 

absorbance of the standards allowed a standard curve to be drawn; comparison of the PrnC-P1 

absorbance to this standard curve allowed the estimation of the protein concentration of the eluant 

to be 1.2 mg ml-1 which corresponds to a protein concentration of 17.2 µM. This concentration is 

very low but was considered sufficient to attempt some initial activity assays on the enzyme. 

As a flavin-dependent halogenase, PrnC requires a second flavin-reductase enzyme in order to 

function. Therefore a previously prepared strain (E. coli BL21 RG-5066) which had been transformed 

with a vector (the pET21a(+) based pSG24) containing the gene for PrnF was used to inoculate 500 

ml of LB and growth, protein expression and Ni-NTA purification were performed under the same 

conditions used for MW-012. The purification of PrnF can be seen in figure 5.9, B. Unlike PrnC, the 

flavin reductase was expressed at very high levels and was largely soluble. There was no problem 

with binding to the Ni-NTA resin and a large amount of protein was eluted as the final step of the 

purification (figure 5.9, B7). Following identical volume reduction and buffer exchange steps, the 

protein concentration of PrnF was also assessed using the Bradford type assay. In this case the 

protein sample had to be diluted twenty times to bring the colour change into the range of the BSA 

standards. The absorbance measurements at 595 nm allowed the concentration of PrnF to be 

estimated as 14.7 mg ml-1, which meant an overall concentration of 700 µM (significantly higher 

than PrnC). 

5.2.3.2.2 Initial assay of PrnC activity 

At this time the natural substrate for PrnC (monodechloroaminopyrrolnitrin) was not available so a 

selection of other available pyrrole derivatives were trialled as possible substrates for the enzyme. 

The compounds used were a selection of pyrroles that were present in the laboratory. The candidate 
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Figure 5.10: Structure of the natural substrate for PrnC and the structures of the pyrrole 

The natural substrate for PrnC is the pyrrole 

moiety in monodechloroaminopyrrolnitrin. The structures below this represent the nine different 

molecular weights are included. 

pyrroles were examined for how easy they were to detect with the HPLC and LCMS as this would be 

the method used to determine product formation. Nine pyrrole related compounds were found to 

for this process as they produced clear peaks on the HPLC and had masses that were 

shown in figure 5.10 together with the structure of the 
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this period of incubation all the reactions were quenched by the addition of an equal volume of 

formic acid (10%) and centrifuged to remove the precipitated protein. 

The samples were analysed by HPLC to see if any formed product could be detected. No additional 

peaks appeared in the chromatogram, indicating that no halogenated pyrrole was being produced. 

Analysis with LCMS also failed to detect evidence of chlorinated product (Appendix 2 contains the 

HPLC traces from this experiment). 

The negative results in the assays can be explained by several factors. The most obvious is that the 

natural substrate was not tested and that the pyrrole derivatives available are not able to function as 

a substrate for PrnC. This would be consistent with the general report of high substrate specificity 

seen with the members of the FADH2-dependent family of halogenase enzymes.202 Alternatively the 

concentration of the enzyme may have been too low for effective assaying and was certainly too low 

to enable the generation of a crystal structure. The overall levels of production of soluble protein 

was low but acceptable, the main issue arose from the lack of binding to the purification resin. If this 

binding could be improved then higher concentrations of pure protein may be obtainable. 

5.2.3.3  Steps to improve binding of PrnC to Ni-NTA resin 

5.2.3.3.1 Altering quantity of Ni-NTA resin and adjusting buffer 

composition 

The initial approach taken to try to improve the binding efficiency of PrnC-P1 to the Ni-NTA 

purification resin was to simply adjust the composition of the Ni-NTA buffers and to vary the amount 

of resin added to the cell lysate. The ionic strength of the buffer was lowered by reducing the NaCl 

content from 300 mM to 150 mM. Normally higher ionic strengths are required to reduce the 

amount of non-specific ionic bonding to the resin by other proteins136 but in this case it was lowered 

to see if it would have an effect on the binding of PrnC. The amount of Ni-NTA resin used was also 

increased fourfold. The two different buffer systems with different NaCl concentrations were tested 

with both quantities of nickel resin. Neither adjustment showed any effect on the binding of PrnC to 

the resin. It is likely that all or part of the polyhistidine tag is buried inside the protein or otherwise 

unavailable for binding, therefore more significant changes to the protein were trialled. 

5.2.3.3.2 Carrying out the Ni-NTA binding step in the absence of 

imidazole 

The Qiagen Ni-NTA purification handbook suggests that in the case of poor target protein binding, 

imidazole concentration in the binding step can be reduced.136 The Ni-NTA lysis buffer used 
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previously contained 10 mM imidazole, this is already at the lower end of the recommended level 

but if PrnC-P1 is binding at really low affinity then removing it altogether may have some impact on 

binding. 

A 500 ml culture of E. coli BL21 MW-012 was grown and protein production induced in the usual 

way. The culture was then split in half and the cells collected. One half was re-suspended and 

sonicated in standard Ni-NTA lysis buffer, the other was re-suspended and sonicated in buffer 

containing no imidazole. The lysate of each culture was cleared and added to 0.5 ml of Ni-NTA resin 

that had been pre-equilibrated into the appropriate buffer (with or without imidazole). After 

incubation the resins were applied to columns and the flow-through collected. Both sets of resin 

were then washed with aliquots of the appropriate lysis buffer before being treated according to the 

standard Ni-NTA purification protocol with the usual wash and elution buffers containing imidazole. 

The purifications were followed by SDS-PAGE analysis and can be seen in figure 5.11. 

The standard Ni-NTA purification showed a similar result as before; the majority of the protein was 

either in the insoluble form or was not adhering to the nickel resin. Only a very faint band of the 

appropriate size could be seen in the eluant (figure 5.11, lane A8). Disappointingly, removing the  

Figure 5.11: SDS-PAGE analysis showing the effect of removing imidazole from the binding step of 

the Ni-NTA purification of PrnC-P1. Lanes are as follows: (M) Protein marker (Biorad). Sizes are in 

KDa. (1) Protein content of cell debris. (2) Protein content of cell free lysate. (3) Proteins showing no 

adherence to Ni-NTA resin. (4-5) Proteins removed from resin following Ni-NTA lysis buffer wash. (6-

7) Proteins removed from resin following Ni-NTA wash buffer wash. (8) Proteins eluted off Ni-NTA 

resin with elution buffer. Expected size of PrnC – 64.8 kDa. (A) Standard purification of PrnC-P1 in 

the presence of 10 mM imidazole showed very minimal levels of purified PrnC, the band at the 
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correct size can barely be seen following coomassie straining. (B) Removal of imidazole during the 

resin binding step demonstrated no significant improvement. 

Imidazole from the initial binding step did not seem to improve matters. As can be seen in figure 

5.11B, the majority of the protein was still being produced in an insoluble form. Although perhaps 

the elution buffer contains slightly more protein than the adjacent purification containing imidazole; 

this is certainly not conclusive. Due to this lack of improvement imidazole was returned to the 

binding buffer for all subsequent PrnC purifications. 

5.2.3.3.3 Quikchange mutagenesis on pMW06 to increase the 

length of His6 tag 

In order to improve the binding efficiency of PrnC-P1 to the Ni-NTA resin, site directed mutagenesis 

was performed on pMW06 to insert two additional histidine residues into the affinity tag to make a 

His8 tag. This was designed to increase the overall length of the tag and perhaps help to compensate 

if some of it is internalised by the protein. For analysis this had the effect of increasing the protein 

weight slightly to 67.24 kDa. The site directed mutagenesis was based on the Quikchange protocol 

from Stratagene.219 

Mutagenic primers were designed to amplify the entire plasmid but with the addition of two extra 

histidine residues. The primer design guidelines from the protocol were followed to produce two 

primers that contained the desired mutation in the middle, with 10-15 base pairs of correct 

sequence on both sides, and that annealed to the same sequence on opposite DNA strands of the 

plasmid. Primers were required to be between 25 and 45 base pairs long with a melting temperature 

of less than or equal to 78°C (the Tm was calculated using a formula provided with the protocol – Tm 

= 81.5 + 0.41 (%GC) – 675/N, where N is equal to the primer length not including the inserted bases). 

The two primers designed were designated pET28a-8xHis-F1 and pET28a-8xHis-R1. 

A purified sample of pMW06 was used as the template for a PCR reaction using the two mutagenic 

primers. The PCR reaction was run using the conditions outlined in the Strategene protocol which 

suggested 18 cycles of reaction with 55°C annealing and a 68°C extension temperature.219 The 

extension time was set at 15 minutes with a final extension of 30 minutes. A range of template 

concentrations were initially chosen: 10 – 500 ng. A series of no primer controls were also set up in 

parallel. 

Following the PCR reaction the enzyme DpnI was added to each tube, this enzyme digests the 

methylated template DNA and increases the chance of transformation occurring with a mutated 
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vector. The no primer control reactions were used to judge the efficiency of this DpnI digest. 5 µl of 

each of the PCR products were transformed into aliquots of E. coli DH10B chemically competent cells 

using the standard transformation protocols and plated onto LB-agar plates. Following incubation at 

37°C overnight all the plates contained large numbers of colonies, including the control plates. 

Carrying out a second DpnI digest on the PCR product prior to a repeat transformation into E. coli 

DH10B showed no improvement. 

The PCR reaction was repeated with just two concentrations of plasmid DNA: 50 and 500 ng. This 

time the DpnI digest was carried out using fresh enzyme. Following transformation the control plate 

for the 500 ng reaction contained approximately 200 colonies, the actual plate contained at least 

three times as many. The 50 ng plates showed approximately equal numbers of colonies on both the 

reaction and control. A second round of DpnI digestion on the PCR product prior to a repeat 

transformation reduced the number of colonies on the control plate significantly.  

Four colonies were picked from the 500 ng plate and used to inoculate 10 ml of LB; the plasmids 

were purified from the resulting cultures and sent for forward sequencing to identify whether any of 

them carried the mutated gene. Of the four colonies two contained the desired mutation. Full 

sequencing of the first colony revealed no other mutations in the gene so was carried forward for 

protein expression studies with the designation pMW12. For protein expression the plasmid was 

transformed into E. coli BL21 and given the strain designation MW-016. 

500 ml cultures of this strain were grown up alongside cultures of the original MW-012 strain 

containing the unaltered pMW06 plasmid. Protein expression was induced with IPTG and growth 

switched to 16°C for 24 hours. The cell lysates were then incubated with Ni-NTA resin for purification 

of the PrnC. The side by side comparison of the two plasmids can be seen in figure 5.12. 

The purification of the normal PrnC construct (pMW06, MW-012) showed consistent results with 

previous experiments; the majority of the PrnC can be seen in the insoluble fraction with most of the 

PrnC in the lysate and not being retained by the nickel resin. The mutated construct with the longer 

histidine tag shows similar results. The elution lane however (figure 5.12B lane 4) does show a 

slightly higher amount of purified enzyme, indicating that the longer histidine tag may be improving 

the binding. 
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Figure 5.12: Side by side comparison of MW-012 and MW-016 production and Ni-NTA purification 

of PrnC. Lanes are as follows: (M) Protein marker (Biorad). Sizes are in KDa. (1) Protein content of 

cell debris. (2) Protein content of cell free lysate. (3) Proteins showing no adherence to Ni-NTA resin. 

(4) Proteins eluted off Ni-NTA resin with elution buffer. Expected size of PrnC – 64.8 kDa. (A) 

Purification of E. coli MW-012 containing PrnC-P1 with a His6 tag. Consistent with previous work the 

purification of PrnC-P1 showed mostly insoluble protein with a small amount present in the purified 

elution fraction. (B) Purification of E. coli MW-016 containing mutated plasmid pMW12; PrnC with a 

His8 tag. Purification of the mutated PrnC-P1 with the longer histidine tag also showed the majority 

of protein in the cell pellet. Compared to the unmutated PrnC, however, there does seem to be a 

larger amount of protein present in the elution.  

5.2.3.4  Other methods to improve protein solubility 

5.2.3.4.1 Auto-induction of E. coli BL21 MW-012 

Protein production under the T7 promoter is switched on in the presence of allolactose (or the non-

hydrolysable mimic IPTG) but is inhibited in the presence of glucose. In standard protein induction 

cells are grown to mid log phase and then induced with IPTG. The regulation of the T7lac operon by 

glucose can be used to slowly induce protein expression without the sudden on switch that is used 

conventionally. The underlying concept is that turning on protein production gradually leads to less 

protein aggregation and the formation of fewer inclusion bodies,206 therefore producing more 

soluble protein. This is achieved by growing the culture in a medium that contains both glucose and 

lactose. At the start of the culture glucose is in abundance so protein expression is repressed but as 
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it is metabolised by the cells the repression begins to decrease and gene expression begins. As more 

and more of the glucose is used up the activation of the T7lac promoter increases, resulting in a very 

smooth transition from ‘off’ to ‘on’. 

A culture of E. coli BL21 MW-012 (containing the pMW06 PrnC-P1 plasmid) was initially grown up in 

2 ml of glucose rich medium (ZYP-0.8G supplemented with 50 μg ml-1 of kanamycin) until the culture 

reached an OD600 of approximately 6. The presence of high levels of glucose (0.8%) should inhibit 

PrnC protein production at this point. This culture was used as a starter culture and 400 ml of ZYP-

5052 media was inoculated with 200 µl of this starter. This main media contained glucose (0.07%), 

glycerol (0.7%) and lactose (0.27%) as potential carbon sources. The main culture was incubated for 

15 hours at 24°C during which time the glucose and glycerol would be consumed preferentially over 

the lactose and production of PrnC would slowly be induced. 

The cell free lysate was generated and subjected to Ni-NTA purification as described previously. The 

purification process was followed by SDS-PAGE (can be seen in figure 5.13). 

Figure 5.13: SDS-PAGE analysis of PrnC-P1 production and Ni-NTA purification in E. coli BL21 MW-

012 under auto-induction conditions. Lanes are as follows: (M) Protein marker (Biorad). Sizes are in 

kDa. (1) Protein content of cell debris. (2) Protein content of cell free lysate. (3) Proteins showing no 

adherence to Ni-NTA resin. (4) Proteins removed from resin following Ni-NTA lysis buffer wash. (5) 

Proteins removed from resin following Ni-NTA wash buffer wash. (6) Proteins eluted off Ni-NTA resin 

with elution buffer. Expected size of PrnC – 64.8 kDa. The cell debris in lane 1 shows significant levels 

of insoluble protein compared to the cell lysate, lane 2. The elutant in lane 6 shows many 

contaminating proteins but a more intense band at the appropriate size range suggests PrnC is being 

purified. 
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Despite the theoretical advantages of using auto-induction to produce larger amounts of soluble 

protein, in this case the opposite seems to have occurred. Although the overall production of PrnC 

seemed to be good it was almost exclusively present in the insoluble cell debris fraction (figure 5.13 

lane 1). Some of the protein was purified using the Ni-NTA resin but the levels are low enough that 

the required protein seems to make up only about half of the protein present in the elutant, with 

the rest composed of other contaminant proteins. 

Auto-induction did not seem to offer any particular improvements over the standard method of 

inducing protein expression used earlier. 

5.2.3.4.2 Co-expression of PrnC with chaperone proteins 

The mutated plasmid pMW12 containing the lengthened histidine tag had demonstrated improved 

binding properties with the Ni-NTA resin compared to the non-mutated pMW06. Despite the 

improved performance the majority of the protein was still insoluble and localised inside the cell 

pellet after sonication. Numerous methods to improve this had been largely unsuccessful so a new 

approach was trialled; the inclusion of chaperone proteins. 

As a protein begins to fold a number of partially folded intermediate states are formed along the 

way. These intermediates have a tendency to aggregate with each other which can lead to the 

formation of inclusion bodies; this can be exacerbated when the protein is being overexpressed (see 

Fink 1999 for review)206. The role of molecular chaperones is to prevent this protein aggregation. 

There are several families of molecular chaperones with many also being known as heat shock 

proteins because protein aggregation has a higher propensity when protein is produced at higher 

temperatures due to the increased rate of protein production. One family of chaperone proteins are 

known as HSP70 chaperones and they function by sequestering partially folded proteins and thereby 

preventing aggregation with other non-native proteins but they do not actively become involved in 

the folding process. An example of this kind of chaperone is DnaK from E. coli. Another family are 

the HSP60 chaperones which contain a large central cavity where partially or unfolded proteins can 

be accommodated, isolating the protein to enable proper folding. The E. coli chaperone GroEL is an 

example of this family. Members of both of these families require cochaperones (also known as 

chaperonins) for activity; GroEL requires a protein known as GroES, while DnaK has two co-proteins 

known as DnaJ and grpE.206 Protein aggregation may be a reason why PrnC is predominantly 

insoluble even at low temperatures; overexpression of molecular chaperones may assist in the 

proper folding of the enzyme. 
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Three plasmids were purchased from Takara Bio Inc220 that contained different molecular 

chaperones. Plasmid pGro7, which contains the groEL-groES chaperone system;221 pKJE7 which 

contains the dnaK-dnaJ-grpE chaperone system221 and the third plasmid; pTf16 which contains the 

gene for trigger factor (tig), a comparatively more recently identified chaperone that has been 

shown to improve protein folding in E. coli.222 All three plasmids contain chloramphenicol resistance 

and the araB promoter which means that chaperone over production is induced by increasing L-

arabinose concentration.  The three plasmids were all transformed into E. coli BL21 cells (RG-5310, 

RG-5311 and RG-5313 respectively), cultures of these strains were themselves made chemically 

competent and each transformed with the prnC-containing pMW12 vector to form strains E. coli 

BL21 MW-022, MW-023 and MW-024. Colonies containing both plasmids were selected with 

kanamycin (for pMW12 selection) and chloramphenicol resistance. Colony PCR was used to check 

that the colonies contained the prnC gene. 

Starter cultures of all three strains were used to inoculate 10 ml of LB media supplemented with 

both antibiotics and with arabinose to induce the expression of the chaperone protein at 37°C. For 

each chaperone three different arabinose concentrations were trialled; 0.05, 0.2 and 0.4%. IPTG was 

added (0.1 mM) to induce the production of PrnC once the OD600 of the cultures reached 0.5. 

Incubation temperature was lowered to 16°C and growth continued for 24 hours. The cell free 

extracts of the cultures were generated and visualised with SDS-PAGE (figure 5.14).  

Analysis of the groEL/groES strain (figure 5.14A) showed a thick band, at around 60 kDa, appearing in 

the cell pellet and the cell lysate. This band increased in size as the arabinose concentration 

increased. A similar band was also present in the pre-induction sample. This all suggests that the 

band in question is GroEL which has a mass of 60 kDa. This presents a problem for identifying any 

improvement with PrnC, with a mass of 67.24 kDa the two proteins would be hard to separate with 

SDS-PAGE. The chaperonin GroES has a low molecular weight (10 kDa) and would not be seen on this 

gel. Ni-NTA purification may help to resolve this issue. 

The dnaK system, the second chaperone trialled, has a similar problem as the chaperone is 70 kDa in 

size. The two chaperonins (dnaJ and grpE) are 40 kDa and 22 kDa so do not obscure the PrnC signal. 

The SDS-PAGE gel of this co-expression (figure 5.14B) showed two prominent protein bands 

between the 50 and the 75 kDa marker proteins of the ladder. These two bands could be PrnC and 

the dnaK chaperone. As PrnC has a lower molecular weight it should be represented by the lower 

band which is more prominent in the cell lysate than the top band. This would seem to suggest that 

the chaperone is having the desired effect. However the lower band is present in the pre-induction 

sample (figure 5.14B lanes 1) but this may be to do with the T7 promoter ‘leaking’ expression in the 
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Figure 5.14: SDS-PAGE analysis of PrnC and chaperone protein co-production. The levels of PrnC 

and chaperone expression and degree of solubility of PrnC are shown. Chaperones were induced at a 

range of L-arabinose concentrations; 0.05, 0.2 and 0.4%. Expected size of PrnC – 67.24 kDa. Lanes 

are as follows: (M) Protein marker (Biorad). Size in kDa. (1) Pre-IPTG Induction sample. (2) Proteins 

present in insoluble pellet fraction. (3) Proteins present in soluble cell lysate.  (A) Co-expression of 

PrnC with the pGro7 plasmid carrying the groEL/groES chaperone system. Expected size of groEL – 

60 kDa, groES – 10 kDa. (B) Co-expression of PrnC with pKJE7 plasmid carrying the dnaK-dnaJ-grpE 

chaperones. Expected size of dnaK – 70 kDa, dnaJ – 40 kDa, grpE – 22 kDa. (C) Co-expression of PrnC 

with thepTF16 vector carrying the trigger factor chaperone. Expected size of tig – 56 kDa. 
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absence of the inducer. This is reinforced by there being no evidence of any of the two chaperonins 

being present in the pre-induction sample. Interestingly the top band shows higher levels of 

expression with the lower concentration of arabinose, so this value might represent the optimum 

expression level of these genes. As before the overall results are inconclusive as to whether the 

chaperone is enhancing PrnC production, purification of the affinity tagged PrnC may help to 

illuminate matters. 

The final chaperone tested with PrnC was the trigger factor (tig). This chaperone has a molecular 

weight of 56 kDa so should not run at the same position as PrnC. This chaperone could not be seen 

to be overexpressed at the correct size. A prominent band was visible in the region of 40 kDa, but 

this is too low to be the chaperone. Another band can be visualised close to the 75 kDa marker. This 

band is faint in all of the cell lysate fractions and can be seen in the pre-induction as well. The size of 

this protein is too large to represent PrnC. No obvious evidence of PrnC overexpression could be 

seen. 

The experiment was repeated using the same range of L-arabinose concentration to induce 

production of the chaperone but this time the resulting cell lysates were resolved using Ni-NTA small 

scale spin purification with the aim of pulling out the PrnC from the chaperones of the same size. All 

three chaperone containing PrnC strains were purified using this method. The insoluble, soluble and 

purified fractions were analysed on SDS-PAGE as before (figure 5.15). 

Figure 5.15A shows the results of the purification of the pGro chaperone and PrnC. The cell pellet 

and the cell lysate showed the same large band in the 50-75 kDa range that had been seen in the 

earlier expression trials. Following the Ni-NTA purification this large band was isolated. The size of 

the band was bigger than anticipated and raises the possibility that the chaperone may be co-

purifying with the halogenase enzyme. The two proteins are so close in size that it is not really 

possible to tell them apart using this method of analysis. The gel gives a slight impression that there 

may be two bands in the eluting fraction but this could also be a gel artefact and is not conclusive 

proof that the chaperone is being dragged through the purification. 

The strain carrying the pKJE7 plasmid with the dnaK chaperone carried two bands in the cell lysate in 

the 50-75 kDa region. This is consistent with the previous results where the higher band was 

identified as belonging to the chaperone (70 kDa) while the lower band was consistent with the size 

of the mutated PrnC (67.24 kDa). However following the Ni-NTA purification, the top band was 

purified in preference over the lower one (figure 5.15B lane 3) for all the arabinose concentrations. 

This could indicate that the top band is PrnC and not the lower one which would be inconsistent 
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Figure 5.15: SDS-PAGE analysis of PrnC and chaperone protein co-expression and small scale Ni-

NTA spin purification. Illustrates levels of PrnC and chaperone expression and degree of solubility of 

PrnC. Chaperones induced at a range of L-arabinose concentrations; 0.05, 0.2 and 0.4%. Expected 

size of PrnC – 67.24 kDa. Lanes are as follows: (M) Protein marker (Biorad). Size in kDa. (1) Proteins 

present in insoluble pellet fraction. (2) Proteins present in soluble cell lysate. (3) Proteins purified 

using Ni-NTA resin. (A) Co-expression of PrnC with the pGro7 plasmid carrying the groEL/groES 

chaperone system. Expected size of groEL – 60 kDa, groES – 10 kDa. (B) Co-expression of PrnC with 

pKJE7 plasmid carrying the dnaK-dnaJ-grpE chaperones. Expected size of dnaK – 70 kDa, dnaJ – 40 

kDa, grpE – 22 kDa. Possible locations of chaperone and chaperonins in the Ni-NTA eluent can be 

seen in lane 3 marked with red squares. (C) Co-expression of PrnC with thepTF16 vector carrying the 

trigger factor chaperone. Expected size of tig – 56 kDa. 
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with the calculated molecular weight. The previous experiment had shown that the lower band was 

present before IPTG induction of the PrnC plasmid which again provides evidence that it is actually 

the upper band that contains PrnC. However there is also evidence that in the Ni-NTA purified layer 

the two chaperonins that work alongside dnaK are also present. Bands on the SDS-PAGE that are 

likely to represent these co-chaperones are highlighted with red boxes in one of the elution lanes of 

figure 5.15B. These two prominent bands are in the 37-50 kDa and the 20 kDa range respectively so 

it becomes highly likely that these two bands represent dnaJ (40 kDa) and grpE (22 kDa). If these two 

chaperonins are being purified then it is logical to assume that dnaK is also, once again shifting the 

identity of the purified protein back to the chaperone and not the halogenase enzyme. Either way 

the uncertainty that this provides makes this chaperone system less desirable as an expression 

strain. 

The repeat of the pTf16 (trigger factor) containing strain (MW-024) also produced multiple bands in 

the purified fraction. Figure 5.15C shows two bands in the cell debris, the lysate and the Ni-NTA 

elution. The upper band is presumably the larger PrnC (67.24 kDa) while the lower band is assigned 

as the tig chaperone (56 kDa). Both bands could be seen purifying together in more or less equal 

quantities on the nickel resin. Overall levels of purification were also seen to be very low. 

In all three cases it appears that some chaperone protein is co-purifying with the PrnC enzyme. In 

the case of trigger factor this is very clear. GroEL is too close in size to PrnC to be sure if both are 

being purified together and the same is true for PrnC and dnaK. The use of protein sequencing 

techniques or MALDI analysis could help to resolve this question in the future. 

To test whether the chaperones themselves are capable of binding to the Ni-NTA resin in the 

absence of PrnC, a further two 10 ml cultures were grown, cell lysates generated and Ni-NTA 

purified in the same way as before. The cultures included the mutated PrnC on its own (pMW12, E. 

coli BL21 MW-016) and the groEL/groES chaperones on their own (pGro7, E. coli BL21 RG-5310).  

Figure 5.16 shows that in the absence of chaperone the PrnC construct does not bind very well to 

the Ni-NTA resin and is mostly found in the insoluble cell pellet. Equally the chaperone, although it 

does express very well in the cell lysate, does not show much affinity to the resin in its isolated state. 

This very clearly demonstrates that it cannot be the chaperone alone that is generating the large 

purified band in figure 5.15. However the evidence still points to the fact that the chaperone is co-

purifying and contaminating the pure protein, although the exact proportions are not known. 
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Figure 5.16: SDS-PAGE analysis of individual Ni-NTA purification of PrnC and GroEL/ES molecular 

chaperones. PrnC and GroEL/ES proteins were purified with Ni-NTA resin. Lanes are as follows: (M) 

Protein marker (Biorad). (1) Proteins present in insoluble pellet fraction. (2) Proteins present in 

soluble cell lysate. (3) Proteins showing no adherence to Ni-NTA resin. (4) Proteins purified using Ni-

NTA resin. Both PrnC and the chaperone demonstrated poor binding to the resin. 

5.2.3.4.3 Placing PrnC into the ligation independent vector 

pNYCOMPS-LIC-FH10T-ccdB 

While attempting to improve the solubility of PrnC within pET28a(+), another vector became 

available for use in the laboratory. This was a pNYCOMPS-LIC-FH10T-ccdB vector (Arizona State 

University Biodesign Institute, see figure 5.17 for map). There are a number of features of this 

plasmid that differ from those found in pET28a(+). This vector contains a Flag epitope (conserved 

sequence DYKDDDDK) which is hydrophilic and so is likely to reside on the surface of the fusion 

protein and not be buried internally. The flag tag is also fused to a 10-histidine tag to enable nickel 

purification. The biggest difference between this vector and the ones tried previously is the lack of a 

multiple cloning site; insertion of a recombinant gene is instead achieved by ligation independent 

cloning methodology.223 

The vector contains two SnaBI restriction sites (one at position 5314 and another at 6841) the 

process of inserting a new gene into the vector begins by digesting the vector at these points. SnaBI 

generates blunt ends after digestion. The lost section of the vector contains two selectable markers. 

The first is a gene that encodes for chloramphenicol resistance and the second is the lethal gene 

ccdB (a DNA gyrase inhibitor).224 The idea behind this is that any competent E. coli cells taking up un-

altered vector would die due to translation of the lethal gene. If used in E. coli strains that have a 

specific mutation in the gyrase enzyme, the chloramphenicol resistance can be used as a negative 

marker. 
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rose gel purification to isolate the vector from the 

removed section, the plasmid was treated with T4 DNA polymerase. This enzyme possesses 3’ to 5’ 

exonuclease activity. This is normally a DNA repair mechanism which involves the enzyme excising 

om the 3’ end and replacing the removed DNA bases with fresh ones. However if the 

replacement bases are not available then a 5’ overhang will be generated at the end of the DNA 

strand. The LIC vector is designed to contain only A, T and C bases on the vector side of the SnaBI 

restriction sites for the first 15 base pairs at which point a G base is positioned. If the T4 polymerase 

is only provided with dGTP then the first 15 base pairs will be excised until the enzyme comes across 

The pNYCOMPS vector (Arizona State University 

contains two SnaBI restriction sites (one at 5314 and the other at 6841) which 

allows the removal of this region, which contains a gene for chloramphenicol resistance and another 

lethal gene. Formation of sticky overhangs at either end of the created gap allows 

the insertion of a recombinant gene carrying complementary DNA overhangs. Protein production is 
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the G base at which point it will be able to replace the excised G with a fresh one and dissociate. This 

occurs at both ends of the DNA and creates 5’ overhangs as shown in figure 5.17. These created 

overhangs can be used to insert a recombinant gene that is engineered to contain complementary 

overhanging DNA. 

Fresh PCR primers were designed for prnC to insert a specific DNA sequence at the start and the end 

of the PCR product. This insert was identical to the base pair sequence removed from the plasmid by 

the T4 DNA polymerase (figure 5.17, B). In this way an identical digest with the polymerase on the 

PCR product will result in sticky ends that are complementary to the plasmid. The difference is that 

the T4 DNA polymerase will be digesting the complementary strand so the reaction will need to have 

dCTP added instead of dGTP to ensure the dissociation of the enzyme. The forward and reverse 

primers were designated PrnC_LIC-F1 and PrnC_LIC-R1a. To ensure that the T4 DNA polymerase 

dissociates before the start of the prnC gene an extra codon, GGA (encoding for glycine), was added 

before the start of prnC. This starts with a G and therefore the complimentary strand will contain a C 

codon that will stall the polymerase. The same was performed with the reverse primer with the 

insertion of a GCC codon (alanine) which will make the polymerase dissociate in the presence of 

dCTP. 

The previously established PCR conditions for prnC-P1 were used with the new primers to amplify 

the prnC gene with the addition of the extra sequence at both ends. The resulting PCR product was 

identified as prnC-LIC and was produced with a high level of specificity (see figure 5.18). This product  

Figure 5.18: DNA gel electrophoresis purification of prnC-LIC gene amplification performed using 

the pre-established PrnC PCR conditions. Expected size of PCR product prnC-LIC is 1739 bp and is 

marked with a white arrow. 1kb ladder (promega) sizes from top: 10000, 8000, 6000, 5000, 4000, 

3000, 2500, 2000, 1500, 1000, 750, 500, 250bp. PCR reaction showed very pure band at the 

appropriate size. 
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was gel purified and both the purified pNYCOMPS vector and the insert were treated with T4 DNA 

polymerase in the presence of a single dNTP (dGTP for the vector and dCTP for the insert).  

The reactions were incubated for 30 minutes at 22°C before EDTA was added to a final 

concentration of 10 mM and the reaction heated to 75°C for 20 minutes to inactivate the 

polymerase enzyme. Following this, 6 µl of the sticky ended vector was mixed with 3 µl of the sticky 

ended insert without further purification. A no-insert control was also performed. The resulting 

mixtures were incubated at room temperature for 10 minutes before 3 µl of EDTA was added to the 

reactions which were rapidly heated to 75°C and then slowly cooled back to room temperature. 2 µl 

was then used to transform chemically competent E. coli DH10B cells. 

The following day a few large colonies were visible on the control plate and a similar number of large 

colonies were observed on the reaction plate. In addition to these a number of smaller colonies 

could also be seen on the reaction plate. Ten large and nine small colonies were picked from the 

reaction plate and colony PCR used to determine which, if any, contained prnC-LIC. After the colony 

PCR only one of the ten large colonies was shown to contain the prnC-LIC gene (figure 5.19A). This 

was expected as the larger colonies were also seen on the no insert control plate. The one large 

colony that did show evidence of prnC-LIC was located very near a smaller colony so cross 

contamination during colony picking may have caused this anomaly. Conversely every single small 

colony picked was positive for prnC (figure 5.19B), one of these colonies was picked and plasmid 

DNA recovered, sequencing of which confirmed the presence of the prnC insert without any 

mutations. This plasmid was designated pMW22 and the E. coli DH10B strain carrying this was 

designated as MW-037. The plasmid was transformed into E. coli BL21 for protein expression studies 

(forming strain MW-038). 

Starter cultures of the LIC strain MW-038 were used to inoculate 500 ml cultures of LB (+ 50 μg ml-1 

of kanamycin). Culture growth and protein production under the pNYCOMPS T7 promoter was 

carried out using the same methods as with the pET28a(+) based constructs. The resulting cell free 

extracts were incubated with 1 ml of Ni-NTA resin and purified in the same way as before. The 

purification process was visualised by SDS-PAGE (figure 5.20). The majority of the PrnC was still 

located in the insoluble fraction with very little seen in the cell lysate (figure 5.20 lane 1 and 2). 

Following purification and subsequent concentration the elution did seem to contain much more 

protein than previous strains tested. The only concern was the presence of what looked like two 

bands at the appropriate size. However this shadowing was also observed occurring with the ladder 

so is probably a gel artefact rather than a real result. Re-boiling the samples and running the analysis 

again continued to show this double band effect. This result also highlights the earlier work with the  



 

 

 

 

 

Figure 5.19: Colony PCR of large and small colonies present following ligation independent cloning 

with prnC and pNYCOMPS. 

The smaller colonies (B) all clearly contained the new gene. The single positive

have been the result of cross

product prnC-LIC is 1739 bp and is marked with a white arrow. 1kb ladder sizes from top: 10000, 

8000, 6000, 5000, 4000, 3000, 2500, 2

 

 

 

 
 

CR of large and small colonies present following ligation independent cloning 

and pNYCOMPS. The majority of the large colonies (A) showed no evidence of 

all clearly contained the new gene. The single positive

have been the result of cross-contamination during the colony picking process. Expected size of PCR 

is 1739 bp and is marked with a white arrow. 1kb ladder sizes from top: 10000, 

8000, 6000, 5000, 4000, 3000, 2500, 2000, 1500, 1000, 750, 500, 250bp.  
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CR of large and small colonies present following ligation independent cloning 

showed no evidence of prnC insert. 

all clearly contained the new gene. The single positive result in lane A8 may 

contamination during the colony picking process. Expected size of PCR 

is 1739 bp and is marked with a white arrow. 1kb ladder sizes from top: 10000, 
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chaperone proteins where a similar double banding effect suggested the co-purification of the 

chaperone proteins with PrnC. As before MALDI analysis would be useful to determine the exact 

composition of this second band. 

Figure 5.20: SDS-PAGE analysis of the purification of PrnC-LIC from pNYCOMPS vector. There is a 

large amount of PrnC in the insoluble fraction. The Ni-NTA elution of the nickel resin however shows 

a band of increased size compared to previous constructs. Lanes are as follows: (M) Protein marker 

(Biorad). Size in kDa. (1) Proteins present in insoluble pellet fraction. (2) Proteins present in soluble 

cell lysate. (3) Proteins showing no adherence to Ni-NTA resin. (4) Proteins washed off resin 

following Ni-NTA lysis buffer wash. (5) Proteins washed off resin following Ni-NTA wash buffer wash. 

(6) Proteins purified using Ni-NTA resin. Expected PrnC  size – 67.24 kDa (shown with white arrow). 

5.2.4 Selection of best constructs and large scale production and 

purification 

Many different constructs had been trialled in the attempt to optimise the production of pure PrnC 

enzyme for crystal trials and enzyme characterisation. Of all the different methods used two were 

selected as the best candidates: MW-022 (pMW12 + pGro7 chaperones) (section 5.2.3.4.2) and MW-

038 (Ligation independent) (section 5.2.3.4.3). These two were selected as they produced the most 

protein after Ni-NTA purification. 

Both selected constructs were grown in 1 litre of LB culture. MW-022 was supplemented with 0.2% 

L-arabinose to induce the production of the groEL/ES chaperone. Growth was performed at 37°C 

until the density of the cultures reached the appropriate OD600 (0.5 for MW-022 and 0.8 for MW-

038) and then protein production was induced with IPTG and incubation switched to 16°C for a  
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Figure 5.21: SDS-PAGE analysis of PrnC purification of the two chosen constructs. Lanes are as 

follows: (M) Protein marker (Biorad). Size in kDa. (1) Proteins present in insoluble pellet fraction. (2) 

Proteins present in soluble cell lysate. (3) Proteins showing no adherence to Ni-NTA resin. (4) 

Proteins washed off resin following Ni-NTA lysis buffer wash. (5-6) Proteins washed off resin 

following Ni-NTA wash buffer wash. (7) Proteins purified using Ni-NTA resin following concentration 

to 1 ml. Expected PrnC size – 67.24 kDa. (A) Purification of MW-038. The elution lane shows a good 

amount of PrnC present although there are a number of impurities. The same double banding 

feature can be seen that was observed in earlier experiments with this construct. (B) Purification of 

MW-022. A good amount of protein is present in the eluting fraction at the appropriate size range 

however as previously noted this could be due to the presence of chaperone protein groEL (size 70 

kDa). A fair amount of non-specific proteins can also be seen. 
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further 22 hours. The cell extracts were generated via sonication and the Ni-NTA purification carried 

out using 2 ml of nickel resin. The resin was washed in the usual way, then binding proteins eluted 

from the resin using buffer containing a high concentration of imidazole (300 mM). The eluting 

fractions were combined and concentrated down to 1 ml. The buffer was then exchanged into 

HEPES protein storage buffer (1000x dilution of original elution buffer) and aliquoted into 100 µl 

fractions which were flash frozen and stored at -80°C until required. 

The purification of both constructs was followed by SDS-PAGE analysis and the results can be seen in 

figure 5.21. Both constructs resulted in good amount of protein of the appropriate size, although the 

identity of the protein with MW-022 is still in doubt as some molecular chaperone may also be 

present. The LIC construct MW-038 shows the same double banding shadow that was observed in 

earlier studies again the identity of this is unknown. Both constructs also show additional protein 

contamination. This level of purity would not be sufficient for crystal structure studies but should be 

adequate for initial assessment of the activity of the enzyme and its substrate specificity; with a 

future aim of purifying the protein to homogeneity by FPLC (fast protein liquid chromatography). 

A Bradford-type assay was used to assess the protein concentration within the eluting fraction of 

both constructs. As before a standard curve of BSA concentration versus absorbance at 595 nm 

facilitated the estimation of the protein concentration of MW-022 (PrnC + pGro7 chaperones) to be 

10.6 mg per millilitre (158 µM) and the concentration of MW-038 (PrnC-LIC) to be 3.86 mg per 

millilitre (57.53 µM). 

5.3 Conclusions and future work 

Numerous attempts were made to optimise the production of soluble PrnC protein. Some 

improvement was made by increasing the length of the his-tag from six to eight histidine residues, 

which suggested that the affinity tag was not fully exposed on the surface of the protein. Further 

improvements to protein folding were made by co-expression of PrnC with the groEL /groES 

chaperone protein, although this made attempts at the purification of PrnC more complicated. 

Analysis of the purified protein with MALDI would be needed to verify this purification and to 

determine if any chaperone protein was being co-purified and to what extent. 

The production of PrnC within the ligation independent plasmid pNYCOMPS-LIC also improved the 

solubility of produced PrnC, possibly due to the presence of the FLAG epitope. Purification may also 

have been aided by the presence of an affinity tag consisting of ten histidine residues. This construct 

also exhibited a double banding effect however and the composition of this pure protein should also 

be examined with MALDI. 
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Both constructs show a significant improvement in protein yield when compared to levels present at 

the beginning of the project and sufficient quantities can now be purified to begin preliminary 

characterisation of PrnC. Further purification steps would however be needed to enable progress 

towards a crystal structure.  
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Chapter 6: 

Testing the Activity of Purified PrnC 

6.1 Development of the assay 

The activity of PrnC has not yet been demonstrated, with the previous attempt at assessing activity 

with purified protein having failed (chapter 5.2.3.2.2). We therefore chose to use another flavin 

dependent halogenase from the same biosynthetic cluster in order to benchmark the assay before 

investigating the activity of the purified PrnC enzyme obtained at the end of the previous chapter. 

The activity of tryptophan-7-halogenase, PrnA, has been demonstrated by the van Pee laboratory172 

and was also assessed as part of an Astrazeneca funded summer project that took place prior to the 

start of this PhD. The same assay used to investigate PrnA could also be applied to PrnC. Therefore 

the original PrnA assays were repeated, alongside PrnC, as a positive control to ensure all the assay 

components were functioning correctly, including the second flavin reductase enzyme that is 

required to maintain levels of FADH2 in solution. 

6.1.1 Producing PrnF and PrnA 

Two strains previously prepared for the industrially funded summer studentship containing the 

tryptophan halogenase PrnA (RG-5076) and the flavin reductase PrnF (RG-5066) were selected for 

use as a positive control. PrnA had been amplified by Dr Sabine Grüschow from genomic DNA of 

Pseudomonas fluorescens Pf-5 by PCR. During the summer studentship this gene was cloned into 

pET28a(+) with an N-terminal hexahistidine tag (for purification) to form plasmid pSG28. PrnF was 

prepared in a similar way but was cloned into pET21a(+) with a C-terminal histidine tag to form 

plasmid pSG24. These plasmids were both individually transformed into competent E. coli BL21 cells 

to form strains RG-5076 and RG-5066 respectively. 

Both of these strains were grown in 500 ml of LB. Once the OD600 of the cultures had reached 0.8 the 

production of the proteins was induced by IPTG and growth cooled to 16°C for a further 20 hours. 

The cell lysate of each was generated by sonication and the proteins purified on Ni-NTA resin. Buffer 

exchange and storage was performed in the same way as previously used with PrnC. Visualisation of 

this purification by SDS-PAGE revealed that PrnA was produced at a fair level and at reasonable 

purity required for these assays. PrnF produced at very good levels and in very pure form (see figure 

6.1). 
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Figure 6.1: SDS-PAGE analysis of PrnA and PrnF purification. Lanes are as follows: (M) Protein 

marker (Biorad). Sizes in kDa. (1) Proteins present in insoluble pellet fraction. (2) Proteins present in 

soluble cell lysate. (3) Proteins showing no adherence to Ni-NTA resin. (4-5) Proteins washed off 

resin following Ni-NTA lysis buffer wash. (6) Proteins washed off resin following Ni-NTA wash buffer 

wash. (7) Proteins purified using Ni-NTA resin following concentration down to 1 ml. Expected PrnA 

size – 63.2 kDa and PrnF – 21 kDa is shown with a white arrow. (A) Purification of RG-5076. The 

elution lane shows a good amount of PrnA present. (B) Purification of RG-5066. A very good amount 

of PrnF protein is present in the eluting fraction. 

As with the PrnC constructs, a Bradford style assay was used to determine the protein concentration 

of both proteins. PrnA was estimated to contain 2.2 mg of protein per millilitre (34.81 µM) and PrnF 

concentration estimated to be 11.15 mg per millilitre (530.95 µM). As seen with the flavin reductase 

produced for the preliminary PrnC assays in the last chapter, the concentration of PrnF was deemed 

too high to be directly added to the assays so was diluted ten times before use. 
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The flavin reductase component is essential to the activity of the halogenase enzymes in this family. 

This enzyme continually recycles the flavin cofactor back into the reduced form (FADH

NADH. Before setting up the halogenase assays, the activity of PrnF was assessed. The conversion of 

from the reduced form to the oxidised form can be monitored by following the UV 

absorbance at 340 nm. Reduced NADH has a distinctive UV absorption spectra with two peaks; one 

another at 340 nm (see figure 6.2). When it is oxidised the peak at 340 nm disappears. 

Therefore by monitoring the flavin reductase reaction at 340 nm it is possible to observe the 

oxidation of NADH in real time as the flavin substrate is being reduced by PrnF.

Simple assays were set up in 1 ml cuvettes containing NADH (200 µM), FAD (30 µM) and NaCl (50 

HCl buffer pH 7.5. The absorbance of the resulting cuvette was monitored for a 

set amount of time (initially for 30 minutes but later reduced to 20). Half way through this time 

period, 10 µl of the PrnF enzyme (diluted 10x in protein storage buffer, final concentration 53 µ

prepared above was added and any change in absorbance monitored at 340 nm.

In the absence of enzyme (blank protein buffer added to assay) the absorbance was not seen to 

decrease over the 30 minutes of the reaction (figure 6.3A).When the enzyme was added (10x diluted

Figure 6.2: UV spectrum of NAD+ and NADH at 260 and 340 nm. The NADH spectrum exhibits two 

bsorbance values at about 260 nm and at 340 nm which is shown in the diagram with a dotted 

line. Oxidation to NAD+ results in the loss of absorption at 340 nm which is represented in the 

diagram with a solid line. This can be used to distinguish between the reduced and oxidised forms of 
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Figure 6.3: Consumption of NADH over time by PrnF, present at different concentrations, as 

monitored by the absorbance change at 340 nm. (A) Absorbance change of the assay solution over 

30 minutes. Buffer was added after 15 minutes as a negative control. No absorbance change was 

Absorbance of assay solution in the absence of FAD cofactor at 340 nm over 20 

minutes. Reaction was supplemented with PrnF after 10 minutes. A slow decrease in absorbance 

ved in the absence of added FAD, possibly due to bound FAD present within the purified 

Absorbance of assay mixture over 20 minutes. A 10 fold diluted PrnF solution was added 

following 10 minutes. A rapid loss of absorbance at 340nm correspondin

(D) Absorbance of assay mixture over 20 minutes. A 1000 fold diluted PrnF 

solution was added following 10 minutes. A slower loss of absorbance at 340nm corresponding to 

oxidation of NADH by the enzyme was seen compared to the 10 fold diluted PrnF. Enzyme solution 

always added half way through run as indicated by position of black arrow.
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from stock) to a second reaction the absorbance at 340 nm rapidly decreased suggesting that the 

NADH was being very quickly oxidised to NAD+ (figure 6.3C). Decreasing the enzyme concentration 

(1000x dilution, 5.3 µM) slowed this rate of oxidation down to an observable level (figure 6.3D). This 

reduction in rate with lowering of enzyme concentration very clearly demonstrates that this is an 

enzyme dependent process, therefore showing that the prepared and purified PrnF was performing 

its function and could be used for the halogenase assays. Interestingly when the reaction was 

allowed to proceed in the absence of FAD substrate and the less diluted enzyme (10x), the 

absorbance at 340nm slowly decreased (figure 6.3B). This is likely to be due to FAD being bound in 

the active site of the purified enzyme (the purified protein contains a distinctive yellow appearance). 

With the activity of PrnF demonstrated, the activity of PrnA was assessed as a positive control. 

6.1.3 Testing PrnA activity 

A simple assay was designed to assess the activity of PrnA based on previous work within our lab as 

well as procedures reported in the literature.202 PrnA enzyme prepared earlier (50 µl, final 

concentration 17.5 µM) was added to an assay mixture containing FAD (10 µM), NADH (5 mM), NaCl 

(100 mM), L-tryptophan (1 mM) and PrnF (4 µl 10x dilute) in a final volume of 100 µl Tris-HCl, pH 7.5. 

Tryptophan is the substrate for PrnA, while the NaCl acts as a source of chloride ions. As a negative 

control experiment, one reaction was supplemented with the same volume of protein buffer instead 

of the PrnA containing buffer solution. 

The reactions were incubated at 30°C for approximately 18 hours before the reaction was quenched 

with the addition of equal volumes of formic acid. Following centrifugation to collect the 

precipitated protein, the samples were analysed for tryptophan production using the same HPLC 

method developed for the detection of halo-tryptophan in chapter 2 (method LCgrad_MeOH). The 

HPLC traces can be seen in figure 6.4. In the absence of halogenase enzyme there was a single peak 

at 7 minutes that corresponded to the retention time of the tryptophan substrate (figure 6.4A). The 

large initial peak appearing from 2 minutes is the signal of NADH. When PrnA was added to the 

enzyme mixture an additional peak appeared on the HPLC at the later retention time of 9 minutes 

(figure 6.4B). The retention time and PDA spectrum of the new peak was consistent with 7-chloro-

tryptophan standards analysed on HPLC at the same time and the shows the formation of product 

with the enzyme. Comparison of the peak areas of the starting material and product enabled the 

overall conversion to be estimated to be 11.5%. This yield however was much lower than previous 

work conducted with this enzyme. Further studies highlighted that the stock of NADH was the cause 

of this lower than expected yield. The percentage of oxidised/reduced NADH in a solution of known  
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Figure 6.4: HPLC chromatograms of the activity of PrnA. (A) Chromatogram of the no PrnA control. 

In the absence of halogenase enzyme a single peak corresponding to un-halogenated tryptophan can 

be seen with the retention time of approximately 7 minutes. (B) The chromatogram of the assay in 

nA shows the un-halogenated tryptophan peak at 7 minutes. A new peak has 

formed with a later retention time of 9 minutes. This corresponds to the retention time of 

(C) The same assay conducted with fresh NADH demonstrates enhanced 

ormance over the degraded NADH stock. The tryptophan peak at 7 minutes has vanished and is 

replaced with the 9 minute peak corresponding to the chlorinated product. In all three 

chromatograms there is a very large peak at 3 minutes corresponding to NADH.
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concentration can be estimated by measuring the absorbance of the solution at 340nm and using 

the beer-lambert law (A = εcl). This law states that the absorbance is equal to the product of the 

extinction coefficient of the compound (ε), the concentration of the sample (c) and the path length 

of the cuvette (l). Using this law, the extinction coefficient of NADH at 340 nm (6220 M-1 cm-1), the 

known concentration of the sample and the path length of 1 cm it was calculated that only 20% of 

the NAD stock was in the reduced form. This meant that the old stock of NADH had oxidised and was 

limiting the halogenase reaction. A fresh solution was made and the same calculation estimated a 

greater than 94% proportion of NAD in reduced form. This new solution was used in a set of repeat 

experiments. 

This effect of replacing the NADH with a freshly purchased batch was significant. As can be seen in 

figure 6.4C, after 18 hours of reaction the 7 minute tryptophan peak completely disappeared to be 

replaced with a 9 minute peak corresponding to the product with an estimated yield of greater than 

95%. It is unknown whether the same factor may have been limiting the results of the preliminary 

PrnC assays prepared earlier with the pyrrole substrates. Using fresh NADH may have improved the 

findings. 

This reaction was successful and provided a positive control, and an assay that could be utilised to 

assess in parallel other flavin dependent halogenase enzymes. The assay was now ready to be 

applied to PrnC, an enzyme for which no activity had previously been demonstrated in vitro.  

6.2 PrnC assays 

6.2.1 Assays and HPLC analysis 

The previous preliminary assays conducted with purified PrnC did not result in any product 

formation. The exact reason for this was unknown but could well be due to the fact the none of the 

substrates tested were the actual monodechloroaminopyrrolnitrin substrate that this enzyme is 

postulated to act upon (scheme 6.1).170 The substrate specificity of this family of enzymes is known 

to be strict, in vivo studies by Seibold et al. had previously suggested that PrnC does not accept 

monodechloroaminopyrrolnitrin chlorinated at the 6 position rather than at the 7, suggesting the 

substrate specificity of PrnC is very high.174 However the addition of a bulky chlorine substituent may 

prevent this modified substrate from fitting inside the substrate binding pocket so other, less bulky 

substrates may fare better. 
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Scheme 6.1: Reaction catalysed by PrnC and PrnF. PrnC selectively chlorinates the pyrrole moiety of 

monodechloroaminopyrrolnitrin (the product of previous enzymes in the biosynthetic pathway PrnA 

and PrnB). PrnC utilises FADH2 to generate the Cl+ equivalent needed for the electrophilic aromatic 

substitution reaction. The reduced form of this FAD cofactor is continually re

nzyme PrnF which oxidises NADH. 

To properly attempt the characterisation of PrnC the natural substrate had to be chemically 

synthesised. The synthesis was kindly attempted by synthetic chemists working within the 

laboratory: Dr Abhijeet Deb Roy and Tony Abou Fayyad. Full details of the

compound characterisation can be found in appendix 3. The approach was loosely based on and 

et al. (2009).225 Two different synthetic routes were 

Route 1 enabled the generation of the natural substrate monodechloroaminopyrrolnitrin (4

pyrrole) which is shown as compound 35 in scheme 6

two slightly modified substrates, the first (compound 38) being the natural

phenyl ring (4-(2-amino-phenyl)-pyrrole) and the second (compound 
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were easier and faster to synthesise so were prepared as initial testing substrates while the more 
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Scheme 6.2: Synthetic scheme for the preparation of possible PrnC substrate and analogues. The 

starting material for the synthesis was pyrrole, 30, which was protected and brominated to yield 

At this point the synthesis diverged. Route 1 allowed the generation of the PrnC substrate 

monodechloroaminopyrrolnitrin by the generation of the N-TIPS-pyrrole

bromo-6-chloroaniline and subsequent deprotection of 

The second route coupled 32 with 2-nitrophenylboronic acid to yield 4

Deprotection yielded product 39 while hydrogenation followed by deprotection yielded product 

Reaction conditions are shown. Full experimental details can be found 

nd subsequent deprotection to yield the product, 35. However after several attempts the 

pinacolboronate ester could not be successfully synthesised.  Therefore a modified 

route took the protected, brominated pyrrole, 32, and converted it into the boronic acid, 

(scheme 6.2). Suzuki cross-coupling with 2-bromo-6-chloroaniline resulted in the 
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Scheme 6.3: First attempted synthetic strategy to obtain the natural PrnC substrate 35. 

starting material for the synthesis was N-TIPS-pyrrole, 32. The proposed route involved the 

pyrrole-3-pinacolboronate ester 40, which would be coupled with 2

34. Deprotection of 34 would yield monodechloroaminopyrrolnitrin 

of the pinacolboronate ester, however, failed after several attempts.

therefore this was the first compound tested for activity with PrnC. The identity of the compound 

H and 13C NMR and high resolution mass spectrometry at the EPSRC Nati

Mass Spectrometry Service at Swansea identified the correct mass of m/z 

Both variants of PrnC purified earlier (The PrnC-LIC and the mutated PrnC grown in the presence of 

groEL/ES molecular chaperones) were tested for activity against this substr

substrates studied this one is the least like the natural one. The amine group at position 2 of the 

phenyl ring has been replaced with a nitro group relative to the natural substrate, the chlorine at 

position 3 is also missing. The chlorine normally present at this position is sterically bulky and may 

play a role in orientating the substrate correctly in the active site, therefore if any chlorination 

occurs with this substrate it may appear stereospecifically altered. 

e performed a 0.5 mM solution of this substrate was analysed on the HPLC 

using the standard tryptophan method (LCgrad_MeOH) to assess whether or not a new method 

would have to be designed for these compounds. The resulting chromatogram (figure 6.5) showed

very clear peak corresponding to the compound at 12 minutes. The purity of the compound and the 

detection by the PDA detector were good enough that trial assays were performed with PrnC. The 

only problem was that the compound was seen to elute in 90% methanol at the start of the wash 

phase. Any chlorinated product would be expected to elute later due to the increased lipophilicity. 
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Figure 6.5: Reverse phase HPLC chromatogram of 0.5 mM 4-(2-nitro-phenyl) pyrrole (compound 

A very clear peak of compound 39 was seen by the HPLC. The early peak at 1.5 minutes was also 

present in the blank. LC method: LCgrad_MeOH. 

Therefore a new solvent gradient with a slower increase in methanol concentration was applied. The 

new method raised the percentage of methanol: water from 10% to 95% over 20.5 minutes (the 

previous method increased the same over just 12.5 minutes). This new method was called 

LCgrad_Pyrrole. Using this new improved gradient the compound eluted at 16.03 minutes in 75% 

ays were designed to be very similar to the successful PrnA assays used previously. 

50 µl of PrnC solution (final enzyme concentration of 28.5 µM of LIC or 80 µM of the pGro construct) 

was added to a final volume of 100 µl containing PrnF (2 µM), FAD (10 µM), NAD (5 mM), NaCl (100 

(1 mM) in 20 mM Tris-HCl buffer, pH 7.5. A control reaction containing just 

protein storage buffer instead of PrnC solution was also performed. The reactions were incubated at 

30°C for four hours. The assays were analysed by HPLC to check for any signs of product formation.

The enzyme blank looked much the same as the earlier standard of the compound with a large new 

3 minutes which is consistent with the presence of 

ddition of PrnC however results in the formation of new peaks not present in the blank or the 

standard. The PrnC construct co-expressed with chaperone proteins shows the formation of a small 

peak at 16.8 minutes, adjacent to the peak representing the starting material (

also the possibility of another smaller peak at around 18 minutes. However this peak is very small 

 

LIC construct shows very similar results. Two new peaks have appeared adjacent to t

starting material, one at 16.8 minutes and another at around 18 minutes (

additional peak (16.8 minutes) was assumed to belong to mono-halogenated product while it was 

supposed that the possible lack of regio-selectivity due to the loss of chlorine from the substrate, 
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Figure 6.6: Reverse phase HPLC traces of initial trials on the halogenation of compound 39 by PrnC. 

(A) This assay was run in the absence of halogenase enzyme and shows a clear starting material peak 

at 16.2. (B) Assay performed with PrnC grown in the presence of chaperones shows the starting 

material at 16.14 minutes. Additional peaks can be seen that are not present in the enzyme control. 

There is a new small peak at 16.8 and an even smaller one at 18 min. 

the PrnC-LIC protein again shows the starting material at 16.18 min. Multiple new peaks not present 

in the standard or the control can be seen at 16.8 and at 18 min. The large initial peak at 2

is NADH. LC method: LCgrad_P

may enable the enzyme to halogenate the substrate more than once and therefore result in the 

formation of multiple products.

Just as with the tryptophan halogenase assays an estimation of the conversion was made based on 

the relative peak areas of t

the substrate had transformed into the second HPLC peak by the chaperone pGro7

enzyme. The PrnC-LIC enzyme was estimated to have converted 24% of the starting material
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This assay was run in the absence of halogenase enzyme and shows a clear starting material peak 

Assay performed with PrnC grown in the presence of chaperones shows the starting 

material at 16.14 minutes. Additional peaks can be seen that are not present in the enzyme control. 

There is a new small peak at 16.8 and an even smaller one at 18 min. (C) 

LIC protein again shows the starting material at 16.18 min. Multiple new peaks not present 

in the standard or the control can be seen at 16.8 and at 18 min. The large initial peak at 2

is NADH. LC method: LCgrad_Pyrrole 

may enable the enzyme to halogenate the substrate more than once and therefore result in the 

formation of multiple products. 

Just as with the tryptophan halogenase assays an estimation of the conversion was made based on 

the relative peak areas of the different peaks. Based on the first peak it was estimated that 15% of 

the substrate had transformed into the second HPLC peak by the chaperone pGro7

LIC enzyme was estimated to have converted 24% of the starting material
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Figure 6.6: Reverse phase HPLC traces of initial trials on the halogenation of compound 39 by PrnC. 

This assay was run in the absence of halogenase enzyme and shows a clear starting material peak 

Assay performed with PrnC grown in the presence of chaperones shows the starting 

material at 16.14 minutes. Additional peaks can be seen that are not present in the enzyme control. 

 The reaction performed by 

LIC protein again shows the starting material at 16.18 min. Multiple new peaks not present 

in the standard or the control can be seen at 16.8 and at 18 min. The large initial peak at 2-3 minutes 

may enable the enzyme to halogenate the substrate more than once and therefore result in the 

Just as with the tryptophan halogenase assays an estimation of the conversion was made based on 

he different peaks. Based on the first peak it was estimated that 15% of 

the substrate had transformed into the second HPLC peak by the chaperone pGro7 containing PrnC 

LIC enzyme was estimated to have converted 24% of the starting material into a 
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product. Even though the LIC construct was technically lower in protein concentration it appeared to 

perform better than the protein grown in the presence of molecular chaperones, this may be 

evidence to suggest that some of the chaperone proteins had been co-purified with PrnC and 

therefore not all the protein present was catalytically active. This assumed higher purity of the 

ligation independent cloning protein was sufficient to restrict later assays to this construct. The 

identity of the new peaks was not known and therefore it was not possible to prove that product 

had been formed. LCMS analysis was needed to confirm activity. 

The extended gradient does not seem to be necessary as the possible halogenated compounds 

retention times are not shifted dramatically, therefore to enable higher throughput analysis the 

shorter LCgrad_MeOH method was reclaimed for future analysis. 

With the completion of the synthesis of the other two substrates they were also tested with the 

PrnC-LIC enzyme. 1 mM solutions of the natural substrate 35 (monodechloroaminopyrrolnitrin) and 

the second analogue 38 (4-(2-aminophenyl) pyrrole) were first analysed with the HPLC to check 

retention times.  

The HPLC trace of the natural substrate (A, figure 6.7) did not show the expected peak. The only 

major peak present (apart from cluster of peaks present in the blank at 2-3 minutes) showed at 5 

minutes. The retention time of the substrate analogue 39 had previously been shown to be 12 

minutes using the same HPLC method (LCgrad_MeOH), it was expected that the presence of the 

additional chlorine atom in the natural substrate would increase the hydrophobicity of the natural 

substrate comparatively. As such the early appearance of the peak at 5 minutes seems incongruous. 

The intensity of the peak is also extremely low compared to the previous substrate analogue at the 

same concentration, suggesting a lower than expected concentration and therefore a significant 

issue with purity. These two factors made it doubtful that the synthesised natural substrate was of 

the correct structure. Analysis of the 1H and 13C NMR data for compound 35 and high resolution 

mass spectrometry analysis (appendix 3) failed to identify the correct product and therefore the 

attempt to synthesise the natural substrate was deemed a failure. The attempt to characterise PrnC 

was continued with the two non-natural substrates. 

The HPLC trace of the substrate analogue 38 was much more in line with expectations (B, figure 6.7), 

showing a clear peak with approximately the same intensity and retention time as the substrate 

analogue 39. The presence of a few smaller peaks in the same region of the HPLC (7-9 minutes and 

13-14 minutes) suggest possible impurities in the synthesised compound and potentially even  

 



 

Figure 6.7: Reverse phase HPLC chromatogram of 1 mM 4

38) and monodechloroaminopyrrolnitrin (compound 35). (A) 

natural substrate (monodechloroaminipyrrolnitrin) failed to display a clear peak. The major 

this compound at 5 minutes seems too low in retention time and intensity to be the correct 

compound. (B) Standard sample of the second substrate analogue, 

10-11 minutes. Some residual smaller peaks may indicate imp

LCgrad_MeOH 

evidence of product decomposition. 

and high resolution mass spectrometry confirmed the structure of product 

With the natural substrate discounted

of assays identical to the conditions used for the initial testing of 

concentration to enable eventual effective LCMS analysis of the reactions. 

Compound 39 (4-(2-nitro

enzyme. Repeating this experiment produced the same result: HPLC traces of the reaction mixture 

showed three peaks in the range of 11

seen to elute using this HPLC 

starting material and halogenated products. The 

analysis. 

 
 

se phase HPLC chromatogram of 1 mM 4-(2-amino-phenyl) pyrrole (compound 

38) and monodechloroaminopyrrolnitrin (compound 35). (A) Standard sample of the synthesised 

natural substrate (monodechloroaminipyrrolnitrin) failed to display a clear peak. The major 

this compound at 5 minutes seems too low in retention time and intensity to be the correct 

Standard sample of the second substrate analogue, 38, demonstrates a clear peak at 

11 minutes. Some residual smaller peaks may indicate impurities in the sample. LC method: 

evidence of product decomposition. 1H and 13C NMR analysis of the synthesised starting material 

and high resolution mass spectrometry confirmed the structure of product 

With the natural substrate discounted, the two remaining compounds 38 

of assays identical to the conditions used for the initial testing of 39 above but with reduced NADH 

concentration to enable eventual effective LCMS analysis of the reactions. 

itro-phenyl) pyrrole) had already shown a possible positive result with the 

enzyme. Repeating this experiment produced the same result: HPLC traces of the reaction mixture 

showed three peaks in the range of 11-13 minutes where the starting material had pre

seen to elute using this HPLC method (B, figure 6.8). These multiple peaks could correspond to 

halogenated products. The samples were set aside for mass spectrometry 
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Figure 6.8: Reverse phase HPLC traces of hal

and 39, by PrnC-LIC. (A) 

amino-phenyl) pyrrole) shows the same peak at 11 minutes that was present in the previous control 

reactions. Other multiple peaks are present in the 10 minute region of the starting material. 

Reaction performed with compound 

visible in the control experiments. Two additional peaks can be seen in the

where the starting material elutes. Between 2

method: LCgrad_MeOH. 

The reaction mixture with the aminated substrate analogue 

resulted in multiple peaks when analysed by the HPLC 

material run on the HPLC 

method.  In this region there were three unknown peaks in the reaction mixture analysed by t

HPLC (A, figure 6.8). It was unclear

products or decomposition products. The fact that the substrate analogues, 

chlorine substituent on the phenyl ring relative to the

to flexible regio-selective halogenation with possible multiple products which may explain the 

appearance of multiple peaks. As with the other assays tested mass spectrometric analysis would be 

useful in answering the outstanding

 

 

 
 

Figure 6.8: Reverse phase HPLC traces of halogenation assays with PrnC substrate analogues; 38 

 The reaction performed by the PrnC-LIC protein with compound 

phenyl) pyrrole) shows the same peak at 11 minutes that was present in the previous control 

ther multiple peaks are present in the 10 minute region of the starting material. 

Reaction performed with compound 39 (4-(2-nitro-phenyl) pyrrole) also shows the peak at 11 min 

visible in the control experiments. Two additional peaks can be seen in the

where the starting material elutes. Between 2-3 minutes the broad NADH peak can be seen again. LC 

 

The reaction mixture with the aminated substrate analogue 38 (4-(2-amino

peaks when analysed by the HPLC (A, figure 6.8). Samples

material run on the HPLC had a retention time of between 10 and 11 minutes using this HPLC 

method.  In this region there were three unknown peaks in the reaction mixture analysed by t

, figure 6.8). It was unclear what these peaks represented; starting material, halogenated 

products or decomposition products. The fact that the substrate analogues, 

chlorine substituent on the phenyl ring relative to the natural substrate may make them more prone 

selective halogenation with possible multiple products which may explain the 

appearance of multiple peaks. As with the other assays tested mass spectrometric analysis would be 

outstanding questions.  
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6.2.2 Analysis of the substrates and r

1 mM standards of the two substrate analogues were analysed by LC

Xbridge-Pac using an electrospray ionisation source (ESI) in positive 

Unfortunately none of the two compounds showed the correct mass when analysed with the LCMS; 

the 4-(2-amino-phenyl)-pyrrole, 

gave three masses of m/z 

the instrument at UEA as the high resolution mass spectrometry data from Swansea had previously 

verified the masses of the substrates. Despite the incorrect mass results for the starting materials 

the earlier HPLC analysis had identified new peak formation when these compounds were exposed 

Figure 6.9: LCMS analysis of PrnC substrate analogues 38 and 39. 

showing the total ion chromatogram and the mass spectrum of the m
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Analysis of the substrates and reaction mixtures with LCMS

1 mM standards of the two substrate analogues were analysed by LC-

ac using an electrospray ionisation source (ESI) in positive ion mode (figure 6.9).

Unfortunately none of the two compounds showed the correct mass when analysed with the LCMS; 

pyrrole, 38, gave a mass of m/z 205 and the 4-

m/z 313, 335 and 350. This may be due to insufficient ionisation conditions on 

the instrument at UEA as the high resolution mass spectrometry data from Swansea had previously 

verified the masses of the substrates. Despite the incorrect mass results for the starting materials 

he earlier HPLC analysis had identified new peak formation when these compounds were exposed 

Figure 6.9: LCMS analysis of PrnC substrate analogues 38 and 39. Analysis of substrate compounds 

showing the total ion chromatogram and the mass spectrum of the major peak. Expected structure 

minated analogue 38. (B) Nitro analogue 39. LCMS method: LC
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to PrnC, therefore the same assays were also analysed by LCMS to determine the identity of these 

new peaks. 

The total ion chromatograms and the PDA 

Figure 6.10. Ions that corresponded to the theoretical molecular weight of the starting material were 

Figure 6.10: LCMS analysis of PrnC assays with substrate analogues 38 and 39. 

compounds showing the total ion chromatogram and the PDA spectrum over the 15 minute LCMS 

analysis. Abundance of ions of the expected 

abundance of ions representing chlorinated product

Abundance of ions of the 

of the starting material is shown in green, abundance of ions representing chlorination of these 

detected ions is shown in olive.

shows no evidence of halogenated product but the PDA trace clearly shows the formation of a new 

PDA peak at a later retention time than the starting material (7.5 min)

containing substrate analogue 

material and a smaller peak that corresponds to a mass that is M+34 of the detected starting 

material but the earlier retention time is 

individual peaks, 1 and 2, found in chromatogram 
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Figure 6.10: LCMS analysis of PrnC assays with substrate analogues 38 and 39. 

compounds showing the total ion chromatogram and the PDA spectrum over the 15 minute LCMS 

analysis. Abundance of ions of the expected m/z of the starting material are shown in red, the 

abundance of ions representing chlorinated product of that starting material are shown in blue. 

Abundance of ions of the m/z of the actual starting material identified in the previous LCMS analysis 

of the starting material is shown in green, abundance of ions representing chlorination of these 

ns is shown in olive. (A) Enzyme assay mixture containing substrate analogue 

shows no evidence of halogenated product but the PDA trace clearly shows the formation of a new 

PDA peak at a later retention time than the starting material (7.5 min). 

containing substrate analogue 38. PDA trace shows a large peak corresponding to the starting 

material and a smaller peak that corresponds to a mass that is M+34 of the detected starting 

material but the earlier retention time is counter-intuitive. (C) Individual mass spectra of the two 

, found in chromatogram B. 
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targeted as well as the actual mass of the starting material that had been detected in the earlier 

LCMS analysis of the pure synthesised compounds. Ions representing monochlorination of both 

potential starting masses were also targeted. The HPLC traces of the two substrate analogues (38 

and 39) both demonstrated the formation of new peaks that may represent reaction products. 

The LCMS analysis of a standard sample of compound 39 (4-(2-nitro-phenyl)-pyrrole) showed a 

single ion peak at around 5.8 minutes. This peak was composed of ions of m/z 313 which matches 

the mass of the detected starting material. No evidence of the chlorination of this precursor ion (m/z 

347) could be found (figure 6.10A). A small peak of m/z 189 was detected which could represent the 

expected mass of the synthesised compound but this was very small and did not match any peaks 

found on the PDA analysis and for these reasons it is unlikely that this peak represents the starting 

material. The PDA chromatogram displayed three major peaks at 1, 5.9 and 7 minutes. The peak at 1 

min can be explained by the presence of the NADH cofactor while the other two presumably 

represented the substrate and a possible halogenated or breakdown product. The peak at 5.9 

minutes is represented by the large 313 ion peak in the mass spectrum, so presumably represents 

starting material. The second peak has a later retention time which would be consistent with the 

addition of a chlorine atom and so could potentially represent product, however no associated ion 

peak was present on the mass chromatogram and no mass of m/z 347 (M+Cl) could be seen. If this 

second peak does represent the product then a lack of associated mass could be explained by poor 

ionisation conditions. Another ionisation method such as APCI (atmospheric pressure chemical 

ionisation) may help to detect the compound responsible for this second PDA peak. 

Analysis of the assay with the alternative substrate analogue, compound 38 (4-(2-amino-phenyl)-

pyrrole), also showed two additional peaks in the PDA analysis at 5.1 and 5.9 minutes in addition to 

the NADH peak (figure 6.10B). The second of these peaks was also present in the total ion 

chromatogram (figure 6.10B) at a retention time of 6 minutes. This peak corresponded to a mass of 

m/z 205 (figure 6.10 C2) which is the same as the detected mass for the starting material. The 5.1 

minute peak on the PDA trace was represented by a mass of 239 (figure 6.10B). This mass is +34 of 

205 and could therefore correspond to the chlorination product of the ion peak at 6 minutes. 

However this peak is very small and occurs at an earlier retention time than the starting material 

making it extremely unlikely that this is the correct product. Targeted analysis at m/z 158 and 193 

(which represent the correct molecular mass of compound 38 and its potential monochlorinated 

product) showed no corresponding ions. 
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Due to the uncertainty of the LCMS data collected the standard solutions of all three compounds 

and samples of the three reaction assays were sent to the John Innes Centre (Norwich) 

Metabolomics facility for higher resolution LC-MS analysis.  

6.2.3 John Innes Centre (JIC) Metabolomics LCMS Analysis 

LCMS analysis at the John Innes Centre (JIC) was performed by Dr Lionel Hill. The standard samples 

of the compounds were analysed at 200 μM and the reaction mixtures were diluted fourfold prior to 

analysis. Samples were run on a Surveyor hplc attached to a DecaXPplus ion trap MS. Separation was 

on a 150x2mm 4μ PolarRP column using a gradient of methanol versus 0.1% formic acid in water, 

using the method LC_JIC_Method1 at 0.3 ml min-1 (see materials and methods for details). Detection 

was by UV (200-600nm) and positive mode electrospray MS. 

LCMS analysis of the aminated analogue, 38, demonstrated a major peak at around 13 minutes on 

both the UV and MS base peak chromatograms (A and B, figure 6.11). This peak is associated with a 

mass of m/z 205 (C, figure 6.11), which is identical to the mass detected for this compound with the 

LCMS instruments at UEA. The extra mass of +46 (relative to the hydrogen adduct of the expected 

mass m/z 159), is the mass of formic acid, which both the UEA and JIC chromatography was run 

with. Therefore it was proposed that this mass could be accounted for by the incorporation of 

formate with the product without condensation, although this was deemed extremely unlikely. Re-

running the LCMS in the absence of formic acid retained this 205 mass, strongly indicating that this 

result is genuine. MS2 analysis of this peak failed to show the appearance of any new mass peaks (C, 

figure 6.11). There was an additional smaller peak on the UV and base peak chromatogram at 18.1 

min that corresponded to m/z 405, which does not correspond to any expected masses. A further 

peak also appeared on the MS base chromatogram at 19.2 minutes but this was associated with m/z 

of 367 and so also did not correspond to any expected mass value. The isotope pattern on the 

parent ion (D, figure 6.11) suggests the presence of boron in this compound. Boronic acids were 

used during the synthesis of these compounds (figure 6.11) and perhaps this isotope pattern 

indicates the presence of contamination from this process. None of the starting materials or 

reagents in the synthesis have a mass of 204 however so the presence of boron cannot currently be 

explained without further investigation. 

The LCMS analysis of the assay mixture detected two possible small UV peaks at the retention time 

of the starting material (approximately 12-13 minutes) (A, figure 6.12) but no obvious related peaks 

were visible on the MS base chromatogram. Small peaks in this time range were also visible in the  



 

Figure 6.11: JIC Mass spectrometry analysis of compound 

chromatogram. (B) MS base peak chromatogram shows clear single peak at 13.25 minutes.

and MS2 analysis of 13.25 peak from the base chromatogram assigns a 

compound. MS2 fragmentation did not identi

precursor ion found at 13.25 minutes suggests presence of boron.

 
 

Figure 6.11: JIC Mass spectrometry analysis of compound 38 200 μM standard. (A) 

MS base peak chromatogram shows clear single peak at 13.25 minutes.

and MS2 analysis of 13.25 peak from the base chromatogram assigns a 

compound. MS2 fragmentation did not identify any new peaks (D) Isotope pattern of the 205 

precursor ion found at 13.25 minutes suggests presence of boron. 
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38 200 μM standard. (A) UV 

MS base peak chromatogram shows clear single peak at 13.25 minutes. (C) MS 

and MS2 analysis of 13.25 peak from the base chromatogram assigns a m/z value of 205 for this 

Isotope pattern of the 205 



 

Figure 6.12: JIC Mass spectrometry analysis of compound 38 PrnC reaction mixture. (A) 

chromatogram. No clear starting material can be seen.

(M+H of the predicted product).

Abundance of m/z 215 in the reaction mix (M+Na of the predicted product) and fragmentation MS2 

analysis of the peak at 14 minutes. 

fragmentation MS2 analysis of the peak at 14 minutes.

 
 

Figure 6.12: JIC Mass spectrometry analysis of compound 38 PrnC reaction mixture. (A) 

No clear starting material can be seen. (B) Abundance of m/z 

(M+H of the predicted product). (C) Abundance of m/z 193 in the starting material standard. 

215 in the reaction mix (M+Na of the predicted product) and fragmentation MS2 

k at 14 minutes. (E) Abundance of m/z 215 in the starting material standard and 

fragmentation MS2 analysis of the peak at 14 minutes. 
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Figure 6.12: JIC Mass spectrometry analysis of compound 38 PrnC reaction mixture. (A) UV 

m/z 193 in the reaction mix 

193 in the starting material standard. (D) 

215 in the reaction mix (M+Na of the predicted product) and fragmentation MS2 

215 in the starting material standard and 



 

 
 

185 Chapter SIX 

standard sample of the starting material so can probably be discounted as relating to either starting 

material or product. Targeted MS2 analysis showed peaks for masses corresponding to the hydrogen 

and sodium adducts of the possible product (m/z of 193 and 215 respectively) (B and D, figure 6.12). 

These peaks however were mostly discounted as insignificant as a similar targeted MS2 for the same 

masses in the starting material standard sample also show these ion peaks at the same retention 

times (C, E, figure 6.12). It is possible that the 14 minute peak in the chromatogram targeting the 

sodium adduct of the product (D, figure 6.12) represents a new product as the intensity is much 

higher in the reaction mix than the starting material (E, figure 6.12), but the MS2 spectrum at 14 

minutes in both the reaction mix and the starting material show the same masses (D, E, figure 6.12), 

which suggests no new product formation. 

The analysis of the standard sample of the final substrate analogue 39 (4-(2-nitro-phenyl)-pyrrole) 

showed a clear peak on the UV chromatogram at 16.57 min (A, figure 6.13) which was consistent 

with a clear peak on the MS base peak chromatogram that corresponded to an m/z of 189 (B and C, 

figure 6.13). This is the correct mass of the expected hydrogen adduct of the starting material (see 

scheme 6.2). The UEA in-house LCMS had previously failed to detect this mass when an identical 

sample was analysed, instead three mass peaks of 313, 335 and 350 were detected (figure 6.9). 

These masses could not be explained at the time but the fact that both the high resolution Swansea 

analysis and now the JIC analysis detected the correct compound strongly infers that the mass 

detected at UEA was an artefact caused by perhaps ion addition or dimerisation and that the specific 

ionisation conditions could be to blame for the different results. Even with this new information the 

formation of the three UEA peaks could not be explained. The m/z 313, 335 and 350 peaks 

represented additions relative to the known m/z 193 starting material of +124, +146 and +161. 

Relative to each other the peaks are m/z 313, m/z 313+22 and m/z 313+37. Again this pattern of ion 

additions could not be rationalised. Since the JIC LCMS analysis had confirmed the correct mass the 

reaction product was studied with increased interest. 

The UV analysis of the reaction mixture showed very little sign of starting material or product (A, 

figure 6.14). There was a small peak visible at 12.52 minutes but this was also visible in the starting 

material and also in most of the UV chromatograms of the other substrate analogue as well. 

Similarly the MS base-peak also showed very little activity apart from the usual broad peak at 2.4 

minutes consistent with the hydrogen adduct of the NADH cofactor (m/z 664). Targeted MS2 

analysis was conducted looking for the starting material (m/z 189) and the hydrogen and sodium 

adducts of the expected chlorinated product (m/z 223 and 245 respectively). Very small amounts of 

the starting material were found (A, figure 6.15) and no significant evidence of the hydrogen adduct  
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Figure 6.13: JIC Mass spectrometry analysis of compound 39 200 μM standard. (A) UV 

MS base peak chromatogram shows single ion peak at 16.57 min. (C) MS analysis 

of the 16.57 peak from the base chromatogram shows ion corresponding to m/z 189. 
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MS base-peak chromatogram. Neither the UV chromatogram or the MS base 

peak chromatogram showed any evidence of product or starting material.

of a chlorinated product could be found (B, figure 6.15). The targeted MS2

however detect a small peak at 17.16 minutes (C, figure 6.15), but this was shown to fragment to 

226 which also appears in the starting material so is unlikely to be evidence of chlorinated 
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the earlier HPLC results which clearly seemed to indicate new compound formation with the 
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activity was with the nitro-compound 39. Although the in-house LCMS analysis failed to detect the 

mass of the correct compound (detected three masses of m/z 313, 335 and 350 instead) the 

higher resolution analysis conducted at the John Innes Centre did detect the correct mass suggesting 

that the detection method used at UEA was to blame. Furthermore the LCMS PDA data of the assay 
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Figure 6.14: JIC Mass spectrometry analysis of compound 39 PrnC reaction mixture. (A) UV 

Neither the UV chromatogram or the MS base 

peak chromatogram showed any evidence of product or starting material. 

targeted MS2 for the sodium adduct did 

but this was shown to fragment to 

226 which also appears in the starting material so is unlikely to be evidence of chlorinated 

no evidence of product was seen in any of the assays analysed. This is counter intuitive to 

the earlier HPLC results which clearly seemed to indicate new compound formation with the 

two compounds tested the most convincing evidence of enzyme 

house LCMS analysis failed to detect the 

313, 335 and 350 instead) the 

at the John Innes Centre did detect the correct mass suggesting 

that the detection method used at UEA was to blame. Furthermore the LCMS PDA data of the assay 

analysed at UEA did show a secondary peak forming at a later retention time than the starting 

strongly suggested chlorination activity. This peak however was not  



 

 

 

Figure 6.15: JIC Mass spectrometry analysis of compound 39 PrnC reaction mixture. (A) 

of m/z 189 starting material in the reaction mix. 

of the predicted chlorinated product). 

predicted chlorinated product) and the MS2 fragmentation analysis of this peak to 

showing abundance of m/z

 
 

Figure 6.15: JIC Mass spectrometry analysis of compound 39 PrnC reaction mixture. (A) 

189 starting material in the reaction mix. (B) Abundance of m/z 223 in the reaction mix (M+H 

of the predicted chlorinated product). (C) Abundance of m/z 245 in the reaction mix (M+Na of the 

predicted chlorinated product) and the MS2 fragmentation analysis of this peak to 

m/z 245 to 226 in the starting material sample. 
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Figure 6.15: JIC Mass spectrometry analysis of compound 39 PrnC reaction mixture. (A) Abundance 

223 in the reaction mix (M+H 

245 in the reaction mix (M+Na of the 

predicted chlorinated product) and the MS2 fragmentation analysis of this peak to m/z 226. (D) MS2 
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associated with any detected ion suggesting again that the ionisation method used was not 

appropriate. 

6.2.4 Repeats of PrnC assays with substrate analogue 39 

Due to this tentative evidence of enzyme activity the nitro compound 39 (4-(2-nitro-phenyl)-pyrrole) 

was added to a triplicate set of PrnC assays together with no PrnC, no PrnF, no flavin, no NADH and 

no substrate controls. The triplicates were prepared separately to ensure no mistakes were made in 

preparation. The assays were again analysed by HPLC using method LC_gradTrpMeOH. 

This new set of PrnC assays generated a few expected results; the NADH negative control (D, figure 

6.16) showed a clear single peak at 12.5 minutes which was consistent with the peak of the starting 

material (labelled as peak a on figure 6.16) and the no substrate control showed a broad initial peak 

at 2.5 minutes consistent with NADH and no 12.5 minute substrate peak (B, figure 6.16). The PrnC 

negative control showed peaks at 2.5 and 12.5 minutes consistent with the NADH and un-reacted 

starting material, although several smaller peaks were also visible just prior to the substrate peak at 

approximately 12 minutes (labelled as peaks b and c on A, figure 6.16). These peaks were not visible 

in the no-substrate control and may represent a decomposition product suggesting the substrate 

may not be stable under the assay conditions. The reaction mixture showed a single peak of the 

starting material at 12.5 minutes and suggested no evidence of product formation, which was 

contrary to the earlier assays which did show new peak formation. However a strange result 

emerged with the negative flavin and flavin reductase assays; these two controls clearly showed the 

formation of two major peaks in the region of the substrate although the retention time relative to 

the PrnC negative control is shifted downstream slightly, giving them a retention time more similar 

to the two postulated decomposition peaks (b and c) identified in the no PrnC control. The flavin 

reductase negative control showed a major peak at around 12 minutes (peak b) and a minor peak at 

11.5 minutes (peak c) (B, figure 6.16). The FADH2 negative control (C, figure 6.16) showed two peaks 

of identical height at 11.5 and 12 minutes (c and b respectively). These peaks and their retention 

times matched very closely the multiple peaks that were detected in the first set of PrnC assays 

conducted with this substrate (figure 6.6) but their presence in the flavin negative controls and not 

in the actual assay mixture is unexpected, as is the shift in retention time which would normally 

indicate that the compounds had become more polar, not something that would be expected with a 

chlorinated product. A possible peak can be seen in both negative assays at around 12.5 minutes, 

suggesting that the two new peaks may indeed relate to possible decomposition products and not  



 

Figure 6.16: HPLC chromatograms of PrnC assays and controls conducted with compound 39. (A) 

No enzyme (PrnC) control.

smaller peaks appear earlier and may represent decomposition products (peaks b and c). 

flavin reductase (PrnF) control.

However the ratio between them is different. 

c are again visible. (D) No additional NADH cofactor control.

starting material can be seen.

material can be seen. 

the substrate itself or any chlorinated product which would be expected to have a retention time 

later than 12.5 minutes. 

The results of these assays are inconclusive with possible decomposit

and appearance of major peaks in two of the negative controls and none in the actual reaction 

mixture. These results were reproducible throughout all of the triplicates which were prepared at 

different times, and thus the pos

 
 

: HPLC chromatograms of PrnC assays and controls conducted with compound 39. (A) 

No enzyme (PrnC) control. The starting material (labelled peak a) can be seen at 12.5 minutes, two 

smaller peaks appear earlier and may represent decomposition products (peaks b and c). 

flavin reductase (PrnF) control. The same three peaks can be seen as were observed in the control. 

wever the ratio between them is different. (C) No additional flavin cofactor control.

No additional NADH cofactor control. Only the single peak corresponding to 

starting material can be seen. (E) No substrate control. (F) Complete assay mixture.

the substrate itself or any chlorinated product which would be expected to have a retention time 

 

The results of these assays are inconclusive with possible decomposition of the substrate occurring 

and appearance of major peaks in two of the negative controls and none in the actual reaction 

mixture. These results were reproducible throughout all of the triplicates which were prepared at 

different times, and thus the possibility of sample contamination was ruled out indicating that thi
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: HPLC chromatograms of PrnC assays and controls conducted with compound 39. (A) 

material (labelled peak a) can be seen at 12.5 minutes, two 

smaller peaks appear earlier and may represent decomposition products (peaks b and c).  (B) No 

The same three peaks can be seen as were observed in the control. 

No additional flavin cofactor control. Peaks a,b and 

Only the single peak corresponding to 

Complete assay mixture. Only starting 

the substrate itself or any chlorinated product which would be expected to have a retention time 
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and appearance of major peaks in two of the negative controls and none in the actual reaction 

mixture. These results were reproducible throughout all of the triplicates which were prepared at 
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a genuine result with this synthetic compound. The lack of apparent activity except in the absence of 

reduced flavin is very peculiar as PrnC is a FADH2 dependent enzyme. Previous assays did show  

multiple peak formation in the presence of FADH2 and PrnF. These results suggest that the addition 

of reduced flavin or reducing the flavin in situ is perhaps inhibiting the reaction, or that the reduced 

flavin reacts with the substrate leading to its decomposition. Further study is needed to establish 

what it occuring. In an attempt to understand the origin of the possible product or decomposition 

peaks (b and c), LCMS analysis was conducted on all of the samples. 

As with the previous set of LCMS analysis conducted at UEA no sign could be found of the expected 

starting material (m/z 189) or that of the chlorinated product (m/z 223). As before the major ion 

detected was m/z 313 with minor peaks of m/z 335, 350 and 376 (B, figure 6.17). However the 

quantity of these ions was not consistent throughout the different samples with a relatively large 

abundance in the negative PrnF and FADH2 controls (A and B, figure 6.17), a much smaller amount in 

the reaction mixture (D, figure 6.17) and no trace of starting material in the NADH negative control 

(C, figure 6.17). This inconsistency in detection of the starting material from samples that should 

contain equal amounts, together with the incorrect detected mass does indicate potential problems 

with the ionisation conditions. The PrnF negative control also showed the potential starting material 

eluting from the reverse phase column at around 2 minutes and not the 7 minutes observed in the 

other compounds. This was probably due to the reverse phase column not being probably 

equilibrated into the starting conditions of 5% methanol from the 50% storage conditions. 

Despite the incorrect mass being detected it was known from the JIC analysis that the correct mass 

is present inside the samples but was not being properly detected by the instrument at UEA. 

Therefore an additional ion was targeted that represented the chlorinated product of the 313 ion 

that was being detected (m/z 347), just in case this was a dimerisation event or an alternative ion 

adduct. In most of the samples there was no detection of this ion either, however the FADH2 

negative control showed a peak on the total ion chromatogram at approximately 8 minutes when 

the m/z 347 was targeted (labelled as peak 2 on C, figure 6.17), this shift in retention time would be 

consistent with chlorinated product. The MS spectrum (2C, figure 6.17) gave a new major peak at 

m/z 347 which could possibly correspond to the starting material plus the 34 mass units of chlorine. 

The isotope pattern of this ion also strongly indicates the presence of chlorine with a +36 peak 

appearing to be occurring at roughly 35% abundance that does not appear in the isotope pattern of 

the starting material. Interestingly there were also a number of smaller peaks of m/z 369 and 384. 

These two  
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Figure 6.17 UEA LCMS analysis of the repeat PrnC assays with substrate 39. 

chromatograms of the assays are shown with the abundance of the known starting material 

and possible chlorinated product m/z 223 are shown amplified 100 times. The abundance of 

previously detected on this instrument with the standard has also been amplified and the possible 

chlorinated product of this ion has also been amplified (m/z 347). 

chromatogram for the flavin reductase negative control. (B)Total ion and PDA chromatograms of the 

negative control and individual MS spectrum for the peaks labelled 1 and 2 including the 
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Figure 6.17 UEA LCMS analysis of the repeat PrnC assays with substrate 39. Total ion 

chromatograms of the assays are shown with the abundance of the known starting material m/z 189 

. The abundance of m/z 313 

previously detected on this instrument with the standard has also been amplified and the possible 

347). (A) Total ion and PDA 

Total ion and PDA chromatograms of the 

negative control and individual MS spectrum for the peaks labelled 1 and 2 including the 
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isotope pattern for each ion. (C)Total ion and PDA chromatograms of the negative NADH control. (D) 

Total ion and PDA chromatograms of the reaction mixture. The large TIC peak at 10.5-11 minutes 

was contamination within the instrument and was present in the blank. 

additional masses represent the addition of 34 mass units to the minor peaks m/z 335 and 350 

present in the starting material (1C, figure 6.17). These additional peaks also exhibit an isotope  

pattern indicative of chlorine. This strongly suggests that chlorinated product may have been formed 

and that this product may exhibit a similar adduct profile or be dimerising in the same way as the 

starting material. This evidence is very preliminary however and unconfirmed at this stage. The 

really interesting thing is why this compound would be appearing in the negative flavin control and 

not in the actual assay mix. The emergence of this peak fits with the HPLC data where the new peaks 

appeared only in the absence of reduced FADH. Interestingly, although there were also new peaks in 

the negative PrnF control when analysed by the HPLC the m/z 347 ion did not appear with the LCMS 

analysis, although the quantity of peak c was much greater in the FADH2 control than in the PrnF 

control suggesting that the chlorinated product may have been below detectable levels in the PrnF 

control when analysed by the LCMS.  

6.3 Conclusions and future work 

The preliminary results of the activity assays of PrnC is not very encouraging but a major contributing 

factor is the failure to obtain the natural substrate 35 and the ionisation and detection problems 

experienced with the other substrate analogues. The only potential positive result was with 

compound 39 and the tentative mass of chlorinated starting material detected by the LCMS in the 

FADH2 negative control and this was based on the detected mass of m/z 313 and not of the actual 

mass of the starting material but the isotope pattern clearly indicated the incorporation of chlorine. 

To be able to fully test PrnC and study its enzyme kinetics and substrate flexibility, the natural 

substrate would have to be synthesised and confirmed to be of the correct structure, having this 

confirmed natural substrate would be essential to progress the work on this enzyme further. In 

addition to this the ionisation problems with the substrate analouges would have to be solved 

possibly with the utilisation of negative ion mode ESI or APCI (atmospheric pressure chemical 

ionisation) instead of the positive mode ESI method used for this work, however it should be noted 

that the JIC LCMS was run with positive mode ESI without any detection issues but optimisation of 

the UEA instrument will perhaps require different conditions and should be studied. 

In addition, improvements perhaps can be made to the production of PrnC itself to obtain more 

purified protein. Many optimisation methods were trialled within this study on the enzyme 
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expressed within E. coli but even the optimised methods selected did not afford the purified protein 

at great yield. The closest known sequence homolog to PrnC is another flavin-dependent halogenase 

(from an Actinomycete sp.) known as HalA which shares 42% homology.196 When this enzyme was 

isolated it was found to be produced in a largely insoluble form within E. coli. Pseudomonas 

aureofaciens CAN was found to be a more suitable alternative for the production of good levels of 

soluble protein. It may be worthwhile in the future to explore alternative production hosts for PrnC 

including species of Pseudomonas to try to optimise production of protein. 

Despite the many setbacks and problems, significant progress has however been made towards the 

production and characterisation of PrnC during the course of this project. If future work focuses on 

improving the production of soluble protein and continuing to improve the synthesis of the natural 

substrate then the potential of PrnC as an adaptable pyrrole halogenase may be explored further.



 

 
 

195 Chapter SEVEN 

Chapter 7: 

Materials and Methods 

7.1 General equipment 

Microbial cultures were incubated in a Gallenkamp INR-200 orbital shaker incubator or an Innova 

4300 incubator shaker (New Brunswick Scientific). For incubations below ambient temperature an 

Innova 42 refrigerated orbital shaker incubator was used (New Brunswick Scientific).pH 

measurements were taken using a Fisherbrand Hydrus 300 pH meter. Centrifugation was carried out 

using a Beckmann Avanti J-25 centrifuge fitted with a JLA 9.1000 rotor (16800g max), a JA-12 rotor 

(23200g max) or a JA-20 rotor (48400g max). Alternatively centrifugation was carried out with a 

Thermo Scientific IEC CL30R centrifuge fitted with a T41 swing-out rotor (3082g max) or a Fisher 

Scientific accuSpin microcentrifuge (16060g max). Biofilms were spin-coated using a Jouan C4.22 

centrifuge fitted with a swinging bucket rotor. Cultures were sonicated using a Status US200 ultra-

sonicator (Philip Harris Scientific) fitted with a Titanteller TT13 13 mm titanium flat tip (Bandelin). 

PCR reactions were carried out using a Techne TC-512 thermocycler. HPLC analysis was performed 

on a Shimadzu Prominence HPLC system. This was comprised off a degasser unit (DGU-20A3), a 

liquid chromatograph (LC-20AB) fitted with an autosampler (SIL-20A). Compounds were detected by 

a PDA diode array detector (SPD-M20A). Mass spectrometry was carried out using either a Shimadzu 

single quadrupole LC-mass spectrometer equipped with an electrospray ionisation source at the 

University of East Anglia or a ThermoFinnigan DecaXPplus ion trap and Surveyor HPLC system at the 

John Innes Centre (Norwich, UK). DNA sequencing was carried out by the Cambridge DNA 

Sequencing Facility (Cambridge University, UK). Optical densities and UV spectra were obtained with 

a Lambda Bio+ spectrophotometer (Perkin-Elmer). Freeze drying was performed on a MicroModulyo 

freeze drier (Thermo Savant). 

7.2 General procedures 

Chemicals, buffer and media components were purchased from BD Biosciences, Melford, 

ForMedium, Fisher Scientific, Sigma-Aldrich or Alfa-Aesar unless otherwise stated. For long term 

storage microorganisms were stored at -80°C as a 20% (v/v) glycerol stock in H2O. Microorganisms 

were cultured under sterile conditions using a Faster BH-EN class II vertical laminar airflow cabinet or 

on the bench adjacent to a Bunsen flame. Materials and media were sterilised with a Boxer 

Benchtop Denley autoclave (121°C for 20 minutes at 1.3 bar) or were sterilised by filtration through 

a 0.2 μm membrane.  
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7.3 Media 

Media Composition 

Luria-Bertani (LB) 
broth 

Tryptone  
Yeast extract  
NaCl 
H2O 

10 g 
5 g 

10 g 
Final volume 1 L 

LB/2 LB media diluted by half into sterile distilled water 
M63 Minimal 
Media 

KH2PO4 
(NH4)2SO4  
Succinic acid 
Glucose 
MgSO4.7H2O (50 mg/ml) 
FeSO4.2H2O (50 mg/ml) 
H2O 

13.6 g 
2.0 g 
2.5 g 
2.0 g 
4 ml 

0.01 ml 
Final volume to 1 L 

ZY Tryptone 
Yeast extract 
H2O  

10 g 
5 g 

925 ml 
20X NPS (NH4)2SO4  

KH2PO4 
NaH2PO4 
H2O 

6.6 g 
13.6 g 
14.2 g 
90 ml 

pH adjusted to 6.75 with 10N NaOH 
50X 5052 Glycerol 

Glucose 
α-Lactose 
H2O 

25 g 
2.5 g 
10 g 

73 ml 
ZYP-0.8G ZY media 

1M MgSO4 
 40% glucose 
20x NPS media  

93 ml 
0.1 ml 

2 ml 
5 ml 

MgSO4 added before 20X NPS to avoid precipitation 
ZYP-5052 ZY media 

1M MgSO4 
50X 5052 
20X NPS 

372 ml 
0.4 ml 

8 ml 
20 ml 

Media recipes were prepared with distilled water and then autoclave sterilised. Antibiotic and 

mineral solutions were also prepared in distilled water and filter sterilised through a 0.2 μm 

membrane. Agar solid media was prepared by the addition of 1.5 % bacteriological agar prior to 

being autoclaved. 

7.4 Buffers and stock solutions 

Solution Function Composition 

General Solutions 

2.5 mM dNTPs  25 µl of each 10 mM stock of dATP, dGTP, dTTP and dCTP added 
together to a 100 µl final volume 
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10% 
Ammonium 
persulfate 

 1g of ammonium persulfate in 10 ml of H2O 

Ethidium 
Bromide 

 A 10mg/ml solution of EtBr in H2O 

40% Glycerol 
(v/v) 

 200 ml of glycerol added to 500 ml of H2O 

10 M KOH  112g of KOH in 200 ml of H2O. Add KOH slowly while stirring in 
an ice bath. 

10x Ligation 
buffer 

 Tris Base 
MgCl2 
DTT 
ATP 

300mM 
100mM 
100mM 

10mM 
pH adjusted to 7.8 with HCl 

10 M NaOH  80g of NaOH in 200 ml of H2O. Add NaOH slowly while stirring in 
an ice bath. 

10% SDS (w/v)  Add 100g of SDS to 1000 ml of H2O. Stir solution at 60°C until all 
solid has dissolved 

1M Tris-HCl 
Buffer 

 121.14g of Tris Base in 800 ml of H2O. pH adjusted to required 
value with 37% HCl then volume topped up to 1000 ml. Different 
concentration Tris buffers made by adjusting mass of tris base 
added or by dilution of 1M stock. 

Solutions for Gel Electrophoresis 

50X TAE Concentrated 
Electrophoresis 
running buffer 

EDTA 
Glacial acetic acid  
Tris-base 

0.05 M 
1 M 
2 M 

pH adjusted to 8.0 with HCl 
TAE Ready to use diluted Electrophoresis running buffer  prepared by diluting 20 ml of 50X 

TAE into 1000 ml 
SDS-PAGE Solutions 

Coomassie 
Brilliant Blue 
staining 
solution 

For visualising 
proteins on SDS-
PAGE gels 

Coomassie Brilliant Blue R-250 
Methanol 
H2O 
Glacial acetic acid 

0.25 g 
500 ml 
400 ml 
100 ml 

Destaining 
Solution 

For visualising 
proteins on SDS-
PAGE gels 

Methanol 
H2O 
Glacial acetic acid 

500 ml 
400 ml 
100 ml 

Gel Drying 
Solution 

 Methanol 
Glycerol 
Acetic acid 
H2O 

400 ml 
100 ml 

75 ml 
425 ml 

12% Resolving 
Gel Solution 

Acrylamide gel for 
separation of 
proteins. Makes 2 
Gels 

30% Acrylamide (+0.8% Bisacrylamide) 
1.5 M Tris (pH 8.8) 
10% SDS (w/v) 
H2O 
Just before pouring: 
10% Ammonium persulfate 
TEMED 

4.0 ml 
2.5 ml 
0.1 ml 
3.2 ml 

 
0.1 ml 

4 µl 
SDS-PAGE 
Running Buffer 

 Glycine 
Tris Base 
SDS 

250 mM 
25 mM 

0.1% (w/v) 
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5% Stacking Gel Acrylamide gel for 
loading of protein 
samples. Makes 2 
gels 

30% Acrylamide (+0.8% Bisacrylamide) 
1.5 M Tris (pH 6.8) 
10% SDS (w/v) 
H2O 
Just before pouring: 
10% Ammonium persulfate 
TEMED 

0.5 ml 
0.38 ml 
0.03 ml 

2.1 ml 
 

0.03 ml 
4 µl 

2x SDS Loading 
Dye 

Loading Dye for 
Protein Sample 

1M Tris-Cl pH 6.8 
10% SDS 
Bromophenol blue 
Glycerol 
H2O 
(1M Dithiothreitol 
The above solution was stored without DTT at 
room temperature. Before use a 4 ml aliquot 
was taken and 1 ml of 1M DTT added. This was 
split into 1 ml portions and stored at -20°C. 

5 ml 
20 ml 
0.1 g 

10 ml 
5 ml 

10 ml) 

Solutions for Competent Cell Preparation 

KMES I Competent cell 
Preparation 
solution 

CaCl2 
KMES 
MgCl2 
MnCl2 
H2O 

60 mM 
25 mM 

5 mM 
5 mM 

pH adjusted to 5.8 with KOH 
Final volume to 200 ml 

Autoclaved 
KMES II Competent cell 

storage solution 
KMES storage buffer is prepared by the addition of 10% glycerol 
to KMES I 

Alkaline Lysis Solutions for DNA isolation 

Alkaline Lysis I  Re-suspension 
buffer 

D-glucose monohydrate 

Tris-base 
EDTA 

50 mM 
25 mM 
10 mM 

pH adjusted to 8.0 with HCl  
Autoclaved and stored at 4 °C 

Alkaline Lysis II Lysis Buffer 10 M NaOH 
10% SDS (w/v) 

0.2 ml 
1 ml 

Solution should be freshly prepared 
and stored at room temperature 

Alkaline Lysis III Neutralisation 
Buffer 

5M Potassium acetate 
Glacial Acetic Acid 
H2O 

60 ml 
11.5 ml 
28.5 ml 

Autoclaved and stored at 4 °C 
EB Buffer DNA Storage Buffer 10 mM Tris-HCl (pH 8.5) 
Chemical Cell Lysis Buffers 

Lysis Buffer  1 Chemical Lysis 
Buffer 

Tris-Cl 
 NaCl 
Glycerol 
 
 
Supplemented with 2 
mg/ml lysozyme before 
use 

50 mM 
25mM 

5% 
pH adjusted to 8.0 with HCl 
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Lysis Buffer 2 Chemical Lysis 
Buffer with EDTA 

Tris-Cl 
 NaCl 
EDTA 
Glycerol 
 
Supplemented with 2 
mg/ml lysozyme before 
use 

50 mM 
25mM 

2.5 mM 
5% 

pH adjusted to 8.0 with HCl 
 

NiNTA Purification Buffers 

NiNTA Lysis 
Buffer 

Lysis Buffer NaH2PO4 
NaCl 
Imidazole 

50 mM 
300 mM 

10 mM 
pH adjusted to 7.8 with 10M NaOH 

NiNTA Wash 
Buffer 

Wash Buffer NaH2PO4 
NaCl 
Imidazole 

50 mM 
300 mM 

40 mM 
pH adjusted to 7.8 with 10M NaOH 

NiNTA Elution 
Buffer 

Elution Buffer NaH2PO4 
NaCl 
Imidazole 

50 mM 
300 mM 
300 mM 

pH adjusted to 7.8 with 10M NaOH 
Protein Storage 
Buffer 

Long term protein 
storage buffer 

Hepes 
NaCl 
Glycerol 

20 mM 
50 mM 

10 % 
pH adjusted to 7.4 with 10M NaOH 

Ni-NTA Purification Optimisation Buffers 

Reduced NaCl 
Lysis Buffer 

 NaH2PO4 
NaCl 
Imidazole 

50 mM 
150 mM 

10 mM 
pH adjusted to 7.8 with 10M NaOH 

Reduced 
Imidazole Lysis 
Buffer 

 NaH2PO4 
NaCl 

50 mM 
150 mM 

pH adjusted to 7.8 with 10M NaOH 
Tryptophan Synthase Biotransformation Buffers 

Tryptophan 
Synthase Lysis 
Buffer 

Generation of 
tryptophan 
synthase cell free 
lysates 

KH2PO4 
EDTA 
PLP 

100 mM 
5 mM 

0.1 mM 
pH adjusted to 7.8 with 10M KOH 

Potassium 
Phosphate 
Reaction Buffer 

Tryptophan 
synthase 
biotransformation 
buffer 

KH2PO4 
L-serine 
PLP 

100 mM 
7 mM 

0.2 mM 
pH adjusted to 7.0 with 10M KOH 

Low Phosphate 
Reaction Buffer 

 KH2PO4 
L-serine 
PLP 

10 mM 
7 mM 

0.3 mM 
pH adjusted to 7.0 or 7.8 with 10M 

KOH 
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7.5 Antibiotics 

Antibiotic Stock Concentration Culture Concentrations 

Ampicillin sodium salt (Amp) 100 mg ml-1 in H2O 100 μg ml-1 

Kanamycin sulfate (Kan) 50 mg ml-1  in H2O 50 μg ml-1 

Chloramphenicol (Clm) 25 mg ml-1 in EtOH 25 μg ml-1 

Prior to making solutions kanamycin sulfate was stored at room temperature, ampicillin sodium salt 

at 5°C and chloramphenicol was stored at -20°C. Aqueous stock solutions of antibiotics were 

sterilised by filtration through a 0.2 μm membrane. The ethanolic chloramphenicol solution was 

used without further sterilisation. All stock solutions were stored at -20°C. For most applications, 

unless otherwise stated, the stock solutions were diluted 1000x into culture medium to give the final 

concentration of antibiotic.  

7.6 Plasmids 

Plasmid Description; Relevant Genotype Source 

pBAD/HisA 4.1 kb vector for protein expression in E. coli (with optional C-

terminal His6 tag) 

araBAD promoter; araC; AmpR 

Invitrogen 

pET21a(+) 5.4 kb vector (optional C-terminal His6 tag) for protein 
expression in E. coli 

T7 promoter; lacI; AmpR 

Novagen 

pET28a(+) 5.3 kb vector (N-terminal His6 tag with optional C-tag) for 
protein expression in E. coli  

T7 promoter; lacI; KanR 

Novagen 

pNYCOMPS-
LIC-FH10T 
ccdB 

6.8 kb vector (with N-terminal flag epitope, His10 tag) for 
protein expression  

T7 promoter; FH10T; ccdB; ClmR; KanR 

DNASU Plasmid 
Repository 

pPro24-gfp Propionate induced 5.7 kb vector for expression of GFP fusion 
proteins  

prpBCDE promoter; prpR; gfpuv; AmpR 

Addgene 

pGro7 L-arabinose induced vector containing groEL-groES chaperone  

araBAD promoter; araC; groES; groEL; ClmR 

Takara 

pJKE7 L-arabinose induced vector containing dnaK-dnaJ-grpE 
chaperone  

araBAD promoter; araC; dnaK; dnaJ; grpE; ClmR 

Takara 
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pTF16 L-arabinose induced vector containing tig chaperone  

araBAD promoter; araC; tig; ClmR 

Takara 

pSTB7 Constituently active vector expressing tryptophan synthase 
from Salmonella typhimurium  

Trp promoter; trpABC; AmpR 

Isolated from 
culture from 
American Type 
Culture 
Collection (ATCC 
37845) 

pMW03 1.7 kb BglII/MfeI restricted PCR fragment (Primers PrnC-bgl, 
PrnC-R1)containing prnC gene cloned into BglII/EcoRI restricted 
pBAD-HisA  

This study 

pMW04 1.6 kb BglII/MfeI restricted PCR fragment (Primers PrnC-bgl, 
PrnC-R2)containing C-terminally truncated(Δ50bp)  prnC gene 
cloned into BglII/EcoRI restricted pBAD-HisA 

This study 

pMW05 1.6 kb BglII/MfeI restricted PCR fragment (Primers PrnC-bgl, 
PrnC-R3)containing C-terminally truncated (Δ84bp) prnC gene 
cloned into BglII/EcoRI restricted pBAD-HisA 

This study 

pMW06 1.7 kb NdeI/EcoRI restricted PCR fragment (Primers PrnC-1, 
PrnC-R1) containing prnC gene cloned into the corresponding 
site on pET28a(+) 

This study 

pMW12 Quikchange mutagenesis on pMW06 to increase size of N-
terminal His6 tag to His8 tag (mutagenesis primers pET28a-
8xHis-F1, pET28a-8xHis-R1) 

This study 

pMW17 Fragment containing tryptophan synthase genes trpA and trpB 
restricted out of pSTB7 (HindIII/EcoRI) and ligated into 
corresponding restriction sites of pET28a(+) 

This study 

pMW18 1194 bp HindIII/XhoI restricted PCR fragment (Primers TRPSYN-
B-F1, TRPSYN-B-R1) containing tryptophan synthase trpB gene 
cloned into corresponding sites of pET21a(+) 

This study 

pMW19 806 bp NdeI/XhoI restricted PCR fragment (Primers TRPSYN-A-
F1, TRPSYN-A-R1) containing tryptophan synthase trpA gene 
cloned into corresponding sites of pET28a(+) 

This study 

pMW21 806 bp NcoI/XhoI restricted PCR fragment (Primers TRPSYN-A-
F2, TRPSYN-A-R1) containing tryptophan synthase trpA gene 
cloned into pET28a(+) before His6 tag. 

This study 

pMW22 PCR amplified fragment containing prnC (Primers PrnC_LIC-F1, 
PrnC_LIC-R1a) was cloned into pNYCOMPS-LIC-FH10T-ccdB 
using ligation independent cloning methodology. 

This study 

pSG22 prnA tryptophan-7-halogenase gene PCR amplified from 
Pseudomonas fluorescens Pf-5 gDNA cloned into pET21a(+) 

SG* 

pSG24 prnF flavin reductase gene PCR amplified from Pseudomonas 

fluorescens Pf-5 gDNA cloned into pET21a(+) 
SG* 

pSG28 prnA tryptophan-7-halogenase gene PCR amplified from 
Pseudomonas fluorescens Pf-5 gDNA cloned into pET28a(+) 

SG* 

pSG49 prnA gene PCR amplified from Pseudomonas fluorescens Pf-5 

gDNA cloned into pPro(s)-GFP vector to create PrnA-GFP fusion 
protein 

SG*
 

*These plasmids obtained for this study were designed by my colleague Dr Sabine Grüschow for a 

separate but related project 
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7.7 Micro-organisms 

Strain Description; Relevant Genotype Source 

Pseudomonas sp. 

Pseudomonas fluorescens 

Pf-5 

Pyrrolnitrin Producer. Genome template for 
pyrrolnitrin biosynthetic genes. 

 

Escherichia coli sp. 
XL1-Blue MR Used for general cloning and DNA propagation. 

∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 
supE44 thi-1 recA1 gyrA96 relA1 lac.  

Stratagene 

BL21 (DE3) Used for protein production under the control of 
most promoters 
F–

ompT hsdSB(rB
–mB

–) gal dcm (DE3) 

Novagen 

DH10B Used for general cloning and DNA propagation. 
Also used to express proteins controlled under 
the araBAD promoter.  
F- mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 
∆lacX74 recA1 endA1 araD139 ∆(ara, leu)7697 
galU galK λ-rpsL nupG 

Invitrogen 

PHL644 Biofilm forming strain. Contains ompR mutation 
that promotes curli formation resulting in biofilm 
formation. 
araD139 D(argF-lac)U169 rpsL150 relA1 flbB5301 
deoC1 ptsF25 rbsR malA-kan ompR234 

Vidal et al. 
(1998)42 

CB149 Tryptophan synthase host strain containing 
pSTB7 plasmid 
Δtrp EDCBA2 hsdR514 (rk- mk+) supE44 supF58 
lacY1 lacU169 galK2 galT22. 

ATCC 37845 

PHL644 MW-002 Biofilm strain containing pSTB7 plasmid for 
expression of tryptophan synthase 

This study 

XL1-Blue MR MW-005 Used for storage and propagation of pMW03 
plasmid 

This study 

XL1-Blue MR MW-006 Used for storage and propagation of pMW04 
plasmid 

This study 

XL1-Blue MR MW-007 Used for storage and propagation of pMW05 
plasmid 

This study 

BL21 (DE3) MW-008 Expression strain for pMW03 PrnC halogenase 
under araBAD promoter 

This study 

BL21 (DE3) MW-009 Expression strain for pMW04 truncated PrnC 
haogenase under araBAD promoter 

This study  

BL21 (DE3) MW-010 Expression strain for pMW05 truncated PrnC 
halogenase under araBAD promoter 

This study 

BL21 (DE3) MW-012 Expression strain for pMW06. PrnC halogenase 
under T7 promoter 

This study 

BL21 (DE3) MW-016 Expression strain for pMW12. PrnC halogenase 
fusion protein mutant with His8 tag 

This study 

DH10B MW-021 DNA propagation and protein expression strain 
for pMW03. PrnC under araBAD promoter. 

This study 

BL21 (DE3) MW-022 Expression strain for pMW12 co-expressed with 
pGro7 chaperone protein 

This study 
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BL21 (DE3) MW-023 Expression strain for pMW12 co-expressed with 
pJKE7 chaperone proteins 

This study 

BL21 (DE3) MW-024 Expression strain for pMW12 co-expressed with 
pTf16 chaperone protein 

This study 

DH10B MW-029 Cloning and DNA propagation strain for pMW17. 
Tryptophan synthase genes restricted out of 
pSTB7 

This study 

BL21 (DE3) MW-030 Expression strain for pMW17. Tryptophan 
synthase genes restricted out of pSTB7 

This study 

BL21 (DE3) MW-031 Expression strain for pMW18 This study 
DH10B MW-032 Cloning and DNA propagation strain for pMW19 This study 
DH10B MW-033 Cloning and DNA propagation strain for pMW20 This study 
BL21 (DE3) MW-034 Expression strain for pMW18 (tryptophan 

synthase β subunit) and pMW19 (α subunit 
tagged) 

This study 

DH10B MW-035 Cloning and DNA propagation strain for pMW21 This study 
BL21 (DE3) MW-036 Expression strain containing pMW18 and pMW21 

for co-expression of both α and β subunits of 
tryptophan synthase 

This study 

DH10B MW-037 Cloning and DNA propagation strain for pMW22 This study 
Bl21 (DE3) MW-038 Expression strain for pMW22. PrnC in LIC vector This study 
BL21 (DE3) MW-039 Expression strain for pSG22. PrnA This study 
PHL644 MW-040 Strain for expressing PrnA in a biofilm This study 
BL21 (DE3) MW-041 Strain for expressing PrnA-gfp fusion protein  This study 
PHL644 MW-042 Strain for expressing pSG49, PrnA-gfp fusion 

protein in a biofilm 
This study 

CB149 MW-043 Host strain for pSTB7 tryptophan synthase genes ATCC 37845 
BL21 (DE3) RG-5066 Strain for expressing pSG24 PrnF flavin reductase SG* 
BL21 (DE3) RG-5076 Strain for expressing pSG28 PrnA halogenase SG* 

*These strains obtained for this study were constructed by my colleague Dr Sabine Grüschow for a 

separate but related project 

7.8 Primers 

Primer Sequence Restriction 

site 

Source 

PrnC-Bgl 5’-TTTAGATCTTGACTCAGAAGAGCCCCGC  BglII This 
study 

PrnC-R1 5’-TTCAATTGTTACTTCTTCAGAGCCAAGCCG MfeI This 
study 

PrnC-R2 5’-TTCAATTGTTATCACGCGAACATCGGGTTGTAG MfeI This 
study 

PrnC-R3 5’-TTCAATTGTTATCACACCTCTGCCGGCGCG MfeI This 
study 

PrnC-1 5’-AGATTATCCATATGACTCAGAAGAGCCCCGCGAAC NdeI SG* 

pET28a-8xHis-
F1 

5’- CAGCAGCCATCATCATCACCATCATCATCACAGCAGC  This 
study 

pET28a-8xHis-
R1 

5’- GCTGCTGTGATGATGATGGTGATGATGATGGCTGCTG  This 
study 
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TRPSYN-B-F1 5’- TTTAAGCTTATGACAACACTTCTCAACCC HindIII This 
study 

TRPSYN-B-R1 5’- TTCTCGAGGATTTCCCCTCGCGCTT XhoI This 
study 

TRPSYN-A-F1 5’- TTTTTTTCATATGGAACGCTACGAAAATTTATTTGC NdeI This 
study 

TRPSYN-A-R1 5’- TTTCTCGAGTTATGCGCGGCTGGC XhoI This 
study 

TRPSYN-A-F2 5’- TTCCATGGGCGAACGCTACGAAAATTTATTTGC NcoI This 
study 

PrnC_LIC-F1 5’- TATTTTCAATCCTACGGAATGACTCAGAAGAGCCCCG  This 
study 

PrnC_LIC-R1a 5’- TTCCCTCAATATTATACGCCTTACTTCTTCAGAGCCAAGCC  This 
study 

Restriction sites are indicated in italics. *These primers obtained for this study were designed by my 

colleague Dr Sabine Grüschow for a separate but related project. Primers were designed to be 

between 15 and 25 base pairs in length with a base stacking Tm of between 55 and 65 °C. The 

melting temperatures (Tm) of the forward and reverse primers were kept within 4°C of each other. 

7.9 General molecular biology procedures 

7.9.1 In silico procedures 

DNA sequences were obtained from either the EMBL-EBI (European bioinformatics institute) or the 

NCBI GenBank nucleotide database (National Center for Biotechnology Information). Nucleotide 

sequence homologues were identified by NCBI blastn software using the nucleotide collection 

database. Protein sequences were obtained from the EMBL-EBI protein database. The BLAST 

software used to search for protein sequence homologues was either the NCBI blastp software using 

the non-redundant protein sequences database (nr) or the SIB BLAST Network Service (Swiss 

Institute of Bioinformatics). Multiple sequence alignments were performed with ClustalW2 software 

(EMBL-EBI). DNA sequences were translated into protein sequences using the ExPASy translate tool 

(Swiss institute bioinformatics). Protein secondary structure was predicted using the online PSIPRED 

predictor from the Bloomsbury Centre for Bioinformatics from University College London. 

Restriction endonuclease sites within nucleotide sequences were identified with NEBcutter software 

V2.0 (New England Biolabs). The theoretical melting temperatures (Tm) of PCR primer oligos were 

calculated using the Biomath Tm calculator (Promega); base-stacking melting temperatures were 

calculated under PCR master mix conditions adjusting for Mg2+ concentration (1.5 mM). Protein 

molarity calculations were converted from milligrams per millilitre using the Biomath Protein Molar 

Conversion calculator (promega). 



 

 
 

205 Chapter SEVEN 

7.9.2 Standard cell culture conditions 

E. coli cultures were grown under the following conditions unless otherwise stated. E. coli cells from 

a stock culture (stored at -80°C) were streaked onto an LB-agar plate using a sterile toothpick. Single 

colonies on the plate were achieved by the method of dilution streaking (following general protocol 

in Sambrook & Russel 2001)226 and incubating the agar plate at 37°C for 12-15 hours. From this plate 

single colonies were picked and used to inoculate a 10 ml LB starter culture (supplemented with 

antibiotic if appropriate) which was grown in an orbital shaker incubator (37°C, 180 rpm) for 

approximately 12 hours. This starter culture was then diluted 100 fold into fresh LB media of the 

required volume for the main culture. Small scale cultures (<20 ml) were grown in 50 ml screw cap 

centrifuge tubes. Pre-sterilised media was added to these tubes under aseptic conditions. Larger 

cultures (≥ 20 ml) were grown in conical flasks, with bungs in the top, which were autoclaved 

containing media prior to use. 

7.9.3 DNA purification 

7.9.3.1  High quality plasmid purification 

Plasmids needed for sequencing and/or transformation were purified using Plasmid Mini Kits 

(Qiagen) using a modification of the manufacturer’s protocol. All buffers referred to are provided by 

the manufacturer. To improve DNA yield a larger culture than stated in the protocol was used. A 20 

ml main culture of LB, inoculated with the required strain of E. coli starter culture, was incubated 

under standard E. coli growth conditions overnight (approximately 15 hours). The culture was then 

centrifuged (1500g, 15min, 4 °C) and the resulting pellet re-suspended in 0.6 ml of Buffer P1. The 

mixture was then aliquoted into two 0.3 ml portions. 0.3 ml of lysis buffer P2 was then added to 

each portion and mixed by inversion. This was followed by incubation at room temperature for 5 

minutes. 0.3 ml of neutralisation buffer P3 was then added to each aliquot; the contents were mixed 

and incubated on ice for a further 5 minutes. The mixture was then centrifuged (16060g, 10 min, 4 

°C) to remove the unwanted insoluble matter. The contents of the two tubes were then combined 

and applied to an equilibrated Qiagen tip 20 column. From this point the standard manufacturer’s 

protocol was followed. 

7.9.3.2  Plasmid purification by alkaline lysis 

A 10 ml main culture of E. coli was grown under standard conditions overnight. From this, 1 ml of 

culture was taken and centrifuged (16060g, 30 sec) in a 1.5 ml microcentrifuge tube and the 

supernatant removed. The pellet of cells was re-suspended in 100 µl of cold alkaline lysis solution 1 
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and vortexed to mix. 200 µl of alkaline lysis solution 2 was added. The contents were mixed by 

inversion and then placed on ice. 150 µl of cold alkaline lysis solution 3 was added and the contents 

again mixed by inversion. After 3-5 minutes on ice the contents were centrifuged (16060g, 5 min) 

and the supernatant collected. The DNA was recovered by precipitation using 2 volumes of ethanol, 

vortexed and left to stand for 2 minutes before centrifugation (16060g, 30 min). The pellet was 

washed with 1 ml of 70% ethanol and the tube inverted a few times before being centrifuged again 

(16060g, 10 min). The supernatant was removed and the tube left to dry slightly before the DNA was 

dissolved in 30 µl of EB buffer. 5 µl of DNA solution was set aside to be analysed via agarose gel 

electrophoresis. 

7.9.3.3  Other DNA purification methods 

Other DNA purifications (from PCR reactions, restriction digests or ligation reactions) were carried 

out using a QIAquick PCR Purification Kit (Qiagen). Purification of a specific size fragment of DNA 

from a mixture was achieved by first separating out the different DNA fragments by gel 

electrophoresis and excising out the slice of agarose containing the DNA using a scalpel. The DNA 

was then purified using a QIAquick Gel Extraction Kit (Qiagen). Both Qiagen kits were carried out 

according to the manufacturer’s instructions. 

7.9.4 Agarose gel electrophoresis 

TAE buffer was made as a 50x stock and diluted fifty-fold when required. 0.8 g of electrophoresis 

grade agarose was added to TAE buffer (100 ml) in a conical flask and heated in the microwave (2 

min, 90% power). The solution was mixed and returned to the microwave (2 min, 90% power). The 

resulting gel was cooled slightly (approximately 60 °C) before 2.5 µl of ethidium bromide solution 

(10% w/v) was added. The mixture was swirled to ensure good dispersal of the ethidium bromide. 

The gel was then poured into an electrophoresis rack fitted with two well-forming combs. The gel 

was then allowed to solidify before the combs were removed. The agarose gel was submerged into 

an electrophoresis tank containing TAE buffer.  

Samples for analysis were prepared by the addition of 6x marker dye (1 part dye added to 5 parts 

DNA solution). 5 µl of 1kb DNA ladder (promega) was loaded into the first well using a micropipette. 

The samples to be analysed were then added into the adjacent wells (generally 5 µl for analytical 

purposes). Electric current was then applied (120 volts). After the DNA samples had run for long 

enough to enable satisfactory separation the current was removed. The DNA was visualised by 

viewing under UV light. 
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To enable DNA purification from an electrophoresis gel a high quality agarose reagent was used. The 

gel tray and the electrophoresis tank were washed before use and fresh TAE buffer used to minimise 

cross contamination. Five prongs on the comb were taped up to create a larger well to enable the 

loading of greater volumes of DNA into a single well. After satisfactory separation the band that 

corresponded to the required DNA fragment was visualised under UV light and excised from the gel 

using a scalpel and the resulting slice weighed. A Gel Extraction kit (Qiagen) was then used to purify 

the required DNA fragment. This kit was carried out according to the manufacturer’s instructions. 

7.9.5 Polymerase chain reaction 

7.9.5.1  Specific PCR conditions 

PCR 

Target 

Use in this 

Study 

Template 

DNA 

Primers Annealing 

Temperature 

Extension 

Time 

PrnC 

Cloning PrnC 
into pBAD/HisA 

P. 

fluorescens 

Pf-5 
genomic 
DNA 

PrnC-Bgl, PrnC-R1 68°C 

10 min 

PrnC-Bgl, PrnC-R2 68°C 

PrnC-Bgl, PrnC-R3 72°C 

Cloning PrnC 
into pET28a(+) 

PrnC-1, PrnC-R1 60°C 

Producing PrnC 
with long 
overhangs to 
enable LIC 
cloning 

PrnC_LIC-F1, PrnC_LIC-
F2 

60°C 6 min 

TrpA 

Tryptophan 
synthase α 
subunit with N-
terminal His6 
tag 

pSTB7 
plasmid 

TRPSYN-A-F1, TRPSYN-
A-R1 

55°C 3 min 

Tryptophan 
synthase α 
subunit with no 
His6 tag 

TRPSYN-A-F2, TRPSYN-
A-R1 

TrpB Tryptophan 
synthase β 
subunit with C-
terminal His6 
tag 

TRPSYN-B-F1, TRPSYN-
B-R1 
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7.9.5.2  General PCR protocol 

A typical PCR reaction involved first an initial denaturation (2 min at 94°C). This was followed by 30 

cycles of denaturation (1 min at 94°C), annealing (1 min at primer specific temperature) and 

extension (72°C, time dependent on gene). After the 30 cycles the PCR was completed by a final 

extension step (10 min at 72°C) and the samples held at 4°C until ready to be used. 

To establish optimal PCR conditions duplicate small scale initial reactions were performed at 50 µl 

scale using a range of annealing temperatures; 55, 60, 65 and 70°C. A typical reaction contained Pfu 

DNA polymerase buffer (5 µl, 10x concentrated stock solution, Promega), dNTPs (4 µl of 2.5 mM 

dNTPs stock), forward and reverse primers (0.5 µl of each), template DNA (1-2 µl), and Pfu DNA 

polymerase enzyme (0.5 µl, 3U/µl, Promega). To half the reactions 2.5 µl of DMSO was also added to 

a final concentration of 5% (v/v). The reactions were completed to 50 µl with sterile H2O. With Pfu 

DNA polymerase an estimated extension time of 2 min per kb of template DNA was used. 

The initial PCR reactions were analysed via agarose gel electrophoresis and the conditions that 

produced the optimum amount of DNA of the target size were scaled up to a 100 µl reaction. This 

was split up into individual 33.5 µl reaction volumes which were combined after the PCR was 

complete. The amplified DNA of required size was then usually gel purified. Every PCR reaction 

contained within this study was enhanced with the addition of 5% DMSO which was included in 

every scaled up PCR. 

7.9.5.3  Colony PCR 

Colony PCR was generally used to identify single colonies that contained the desired gene after 

competent cell transformation. For every four colonies picked a PCR solution of Biomix Red reagent 

was made (Bioline). 25 µl of Biomix Red (2x concentrated stock solution) was added to both the 

relevant forward and reverse primers (0.5 µl of each) and 2.5 µl DMSO (5% final volume (v/v)).  

12.5 µl of sterile water was added to each of four PCR tubes. 4 colonies of the transformation plate 

were numbered and each colony was picked using a sterile toothpick. The toothpick was then 

quickly lowered into one of the PCR tubes containing sterile water and removed. The same toothpick 

was then used to inoculate 0.5 ml of LB in a 1.5 ml microcentrifuge tube (supplemented with 

appropriate antibiotic). These cultures were incubated in an orbital shaker incubator for 4-6 hours 

(37 °C, 180 rpm). 

7.1 µl of the Biomix Red PCR solution prepared above was added to each tube to complete the PCR 

reactions. PCR reactions were then performed using annealing temperatures established during 
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initial PCR trials of the gene. Biomix Red polymerase operates at 15-30 seconds per kb of template 

DNA. Therefore the extension time was shortened to half of that used with Pfu polymerase. 

After the PCR reactions were complete they were analysed using agarose gel electrophoresis. If one 

or more colonies showed amplified DNA of the correct size, one was chosen and the corresponding 

0.5 ml culture was used to inoculate a 10 ml culture of LB (+ antibiotic) which was incubated in an 

orbital shaker incubator for 12-16 hours (37°C, 180rpm). From this culture a permanent bacterial 

stock was taken and stored at -80°C. 

7.9.6 Restriction digests 

7.9.6.1  General restriction digest protocol 

DNA was digested with restriction endonuclease enzymes (Roche, Fermentas or NEB) according to 

the manufacturer’s instructions using the recommended buffer. If more than a single enzyme was 

used then the buffer that showed greatest compatibility was selected. The volume of the reaction 

was then adjusted with sterile H2O and incubated at 37°C for approximately 1 hour before analysis 

by gel electrophores. Most reactions were inactivated by heating to 65°C for 5 minutes. A PCR 

purification kit was used to purify the restricted DNA (Qiagen). 

7.9.6.2  Restriction digest of plasmids 

Plasmid DNA was digested using the general restriction digest protocol in a 100 µl final volume. To 

ensure good levels of digestion, reactions were digested overnight at 37°C. After this time 1 µl of 

shrimp alkaline phosphatase (SAP) was added to dephosphorylate the cut ends of the DNA to 

prevent internal ligation of the plasmid. The reaction was incubated at 37°C for 1 hour. The reaction 

was stopped with, and the DNA purified using a PCR purification kit. 

7.9.7 Ligation of insert and plasmid 

50-100 ng of vector DNA was incubated with approximately twice as much insert DNA in a solution 

containing 2 µl ligation buffer (10x concentrated stock) and 1U of T4 DNA ligase (Roche, 1U/µl). The 

solution was completed to a 20 µl final volume with sterile H2O. The solution was kept on ice and 

allowed to reach room temperature slowly as the ice melted overnight.  If a ligation reaction was 

unsuccessful a repeat reaction with the addition of 2.5 mM ATP (final concentration) was sometimes 

successful. 
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A non-insert control was usually prepared simultaneously. This consists of an identical ligation 

reaction but without the addition of insert DNA. This control measures the amount of vector self 

ligation. 

A successful ligation was tested either by colony PCR or by the preparation of the plasmid from the 

E. coli host and subsequent double restriction digest to remove a section of DNA containing the 

inserted gene of known length. The digest was analysed by agarose gel electrophoresis and the size 

of the excised fragment examined. 

7.9.8 Preparation of chemically competent E. coli cells 

A starter culture of the pertaining E. coli strain was grown in LB following the standard protocol. The 

culture was then diluted fifty-fold into fresh LB media and incubation continued at 37 °C until an 

optical density OD600 of 0.4 was reached (approximately 4 hours). 

The culture was then chilled on ice for 10 minutes and subsequently centrifuged (1500g, 10 min, 4 

°C). The supernatant was decanted and the pellet re-suspended in equal volumes of pre-chilled 

KMES buffer 1 (4 °C). This cell suspension was placed on ice for 60 minutes. The cells were then 

centrifuged (1500g, 10 min, 4 °C) and the pellet re-suspended in 10% of the original culture volume 

of pre-chilled KMES buffer 2 (4 °C). The cell suspension was split into 100 µl aliquots into pre-chilled 

1.5 ml microcentrifuge tubes and stored at -80 °C. 

7.9.9 Plasmid transformation into bacterial host 

7.9.9.1  General transformation protocol 

To transform vector DNA into a host organism, the DNA (7 µl of a ligation mixture or 0.5-1 µl of pure 

plasmid DNA) was added to a 100 µl aliquot of chemically competent cells. The mixture was allowed 

to sit on ice for 30 minutes before the cells were heat shocked by submersion into a water bath at 

42°C for 45 seconds. The competent cells were then returned to the ice for a further 2 minutes. 0.5 

ml of LB media was then added to the cell aliquot and the cells shaken inside an orbital shaker 

incubator for 45 minutes (37°C, 180 rpm). After this time the cells were spread onto LB-agar plates 

(supplemented with relevant selection antibiotic) and left to incubate at 37°C for 12-14 hours or 

until single colonies had appeared.  
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7.9.9.2  Insertion of multiple plasmids into single host 

If more than one plasmid was required inside a single host then one of the desired plasmids was 

transformed first. From this strain chemically competent cells were prepared again and the 

transformation repeated with the second plasmid. Separate selection markers on each plasmid (such 

as resistance to two different antibiotics) can be used to distinguish clones that contain both the 

desired plasmids. 

7.9.10  Other molecular biology protocols 

  7.9.10.1 Ligation independent cloning (LIC) 

   7.9.10.1.1 Preparation of LIC vector 

The ligation independent vector (pNYCOMPS-LIC-FH10T-ccdB) was purified from a culture of E. coli 

DH10B containing the plasmid according to the standard method of plasmid DNA purification. A 

1527 base pair fragment of the plasmid was then removed by digestion with SnaBI (Fermentas) for 3 

hours (37°C). SnaBI is a blunt cutting restriction enzyme that leaves behind blunt ended DNA. The 

excised fragment contains chloramphenicol resistance (ClmR) and toxic gene that stop undigested 

vector from propagating in host after bacterial transformation.  The blunt ended vector DNA was 

purified from the excised fragment by agarose gel electrophoresis.  

The 3’ to 5’ exonuclease activity of T4 DNA polymerase was then harnessed. This enzyme excises the 

DNA from the 3’ end in the absence of dNTPs to create a 5’ overhang. The size of this overhang is 

limited by the inclusion of a guanosine (G) nucleotide 15 base pairs from the blunt end of the DNA 

strand. The rest of the overhang contains only A,T and C base pairs. By supplementing the T4 DNA 

polymerase reaction with only dGTP and no other nucleotide the polymerase enzyme will excise the 

DNA from the 3’ end until meeting the first G base, causing the polymerase to stall and creating a 15 

base pair overhang. This same process occurs at the opposite end of the linearised plasmid resulting 

in a non-complimentary 17 base pair overhang. 

10 µl of plasmid purified pNYCOMPS-LIC-FH10T-ccdB was treated with 1 µl of T4 DNA polymerase (5 

U/µl, Fermentas) in 5 µl reaction buffer (5x concentrated). The reaction was supplemented with 8 µl 

dGTP (2.5 mM) and 1 µl of sterile H2O. The reaction was incubated for 30 minutes at 22°C. 4 µl of 

100 mM EDTA was then added before heating the reaction to 75°C for 20 minutes to denature the 

polymerase. 
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7.9.10.1.2 Preparation of LIC insert 

Primers were designed to contain complimentary base pair overhangs to the LIC vector after T4 DNA 

polymerase treatment. This sequence was added to the beginning of previous PrnC primers. A PCR 

reaction using these primers (PrnC_LIC-F1, PrnC_LIC-R1a) was carried out using the PCR conditions 

listed above (section 7.9.5.2). The resulting PCR product was gel-purified and T4 DNA polymerase 

used to create 5’ overhangs. Because the overhangs of the insert are complimentary to the vector 

the overhang contains only A,T and G base pairs and the polymerase will stall once it reaches the 

first dCTP. 3 µl of purified PCR product was treated with 1 µl of T4 DNA polymerase (5 U/µl, 

Fermentas) in 5 µl reaction buffer (5x concentrated). The reaction was supplemented with 8 µl dCTP 

(2.5 mM) and 8 µl of sterile H2O. The reaction was incubated for 30 minutes at 22°C. 4 µl of 100 mM 

EDTA was then added before heating the reaction to 75°C for 20 minutes to denature the 

polymerase. 

7.9.10.1.3 LIC ligation protocol 

3 µl of digested insert DNA was added to 6 µl of prepared vector DNA. A no insert control was also 

prepared by supplementing 3 µl of H2O in place of insert. The reactions were incubated at room 

temperature for 10 minutes. 3 µl of 100 mM EDTA was added and the reactions heated to 75°C. The 

reactions were then cooled slowly back to room temperature. 2 µl of the mixture was then used to 

transform chemically competent E. coli DH10B cells. The following day successful transformants 

were identified using colony PCR and double restriction digest. Final confirmation of inserted genes 

was achieved by sending the purified plasmid for full sequencing. 

7.9.10.2 Performing Quikchange site-directed mutagenesis 

7.9.10.2.1 Designing Quikchange primers 

Site-directed mutagenesis of pMW06 was performed to increase the length of the His6 tag to His8. 

This was performed based on the Quikchange protocol (Stratagene). Mutagenic primers were 

designed based on the guidelines in the protocol. Two primers were designed that contained the 

desired mutation in the middle of the primer with 10-15 base pairs of correct sequence on either 

side that annealed to the same sequence but on opposite strands of the plasmid. Primers were 

designed to be between 25 and 45 bases in length with a melting temperature (Tm) of ≤ 78°C. The Tm 

was calculated using the following equation (where N is the primer length not including 

inserted/deleted bases): Tm = 81.5 + 0.41 (%GC) – 675 / N  
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The optimal GC content should be 40% and the primer should terminate in one or more GC bases. 

The resulting primers were designated pET28a-8xHis-F1 and pET28a-8His-R1. 

7.9.10.2.2 Quikchange mutagenesis protocol 

The plasmid pMW06 was purified as detailed previously. PCR reactions were prepared as follows 

using either 50 ng or 500 ng of DNA. pMW06 template DNA (0.25 and 2.5 µl respectively)was added 

to Pfu DNA polymerase buffer (5 µl), mutagenic primers (1 µl of each) and dNTPs (4 µl of 25 mM 

stock). Pfu DNA polymerase (1 µl) was added and H2O added to a final volume of 50 µl. A no primer 

control was also added. 

A modified PCR method was used. This consisted of an initial denaturation step (95°C, 30 seconds) 

followed by 18 cycles of denaturation (95°C, 30 seconds), annealing (55°C, 60 seconds) and 

extension (68°C, 15 minutes). A final extension completed the PCR cycle (68°C, 30 minutes). DpnI 

endonuclease was then added (1 µl) to each reaction to digest the methylated template DNA and 

incubated for 1 hour (37°C). The no primer control was used to determine the efficiency of this 

digest. 5 µl of the PCR mixture was used to transform chemically competent E. coli DH10B cells. After 

overnight incubation there were many cells visible on the control plate and many more on the 500 

ng plate. A second round of DpnI digestion yielded a clearer difference between the control plate 

and the PCR plate. 4 colonies were picked from the 500 ng plate and grown in 10 ml of LB. The 

resulting culture was used to prepare pure plasmids which were sent for DNA sequencing to identify 

transformants carrying the mutation in the histidine tag. Two of the colonies were found to contain 

the additional histidine residues.  

7.10 General proteomic methods 

7.10.1  Protein production 

7.10.1.1 Optimisation of arabinose induction of the araBAD promoter 

Using standard culture conditions, a series of five 10 ml main LB cultures were inoculated with a 

starter culture of E. coli (BL21 or DH10B transformed with the pBAD based plasmid of choice). The 

cultures were incubated at 37 °C for 4 hours. Once the OD600 of the cultures had reached ≈ 0.5, 1 ml 

of culture was removed and centrifuged (16060g, 1 min) to act as a pre-induction control. Different 

final concentrations of arabinose were added to each of the cultures (0.2, 0.02, 0.002, 0.0002 and 

0.00002% arabinose final concentration). The cultures were incubated for a further 4 hours. 1 ml 

was then taken from each of the cultures and centrifuged (16060g, 1 min). The pellets were analysed 
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by SDS-PAGE analysis to check for varying levels of protein expression. The percentage of arabinose 

that produced the most protein was carried forward to larger scales. 

7.10.1.2 Optimised production of protein under araBAD promoter 

Main E. coli BL21 or DH10B cultures (transformed with the pBAD plasmid of choice) were prepared 

from starter cultures grown in the standard way. The main cultures were left to incubate at 37 °C in 

an orbital shaker incubator until an OD600 of approximately 0.5 was reached (around 3 hours). 

Protein expression was then induced with arabinose (final concentration determined by initial 

optimization efforts) and left to incubate for 20 hours at 16 °C. After this time the cultures were 

centrifuged (1500g for 10 ml culture, 3315g for 500 ml culture, 20 min, 5 °C), the media removed 

and the pellet stored at -20°C for at least 12 hours before protein purification or SDS-PAGE analysis. 

  7.10.1.3 Production of protein under T7lac promoter 

A main culture of E. coli BL21 cells (transformed with plasmid of choice under the control of the T7 

promoter) was inoculated with a starter culture prepared under standard culture conditions and 

incubated in an orbital shaker incubator (37 °C, 180 rpm) until an OD600 of between 0.6 and 0.8 was 

achieved. A 0.5 ml sample was set aside as a pre-induction control before 0.1 mM IPTG (isopropyl β-

D-1-thiogalactopyranoside) final concentration was added to induce the T7 promoter. The culture 

was then incubated for 20 hours at low temperature (16 °C, 180 rpm). After this time the cultures 

were centrifuged (1500g for 10 ml culture, 3315g for 500 ml culture, 20 min, 5 °C), the media 

removed and the pellet stored at -20°C for at least 12 hours before protein purification or SDS-PAGE 

analysis. 

  7.10.1.4 Auto-induction of proteins cloned into pET28a(+) 

Single colonies of E. coli (transformed with the pET28a(+) based plasmid of choice) were used to 

inoculate 2 ml of ZYP-0.8G media (+ 50 µg/ml kanamycin) which was incubated in an orbital shaker 

incubator (37 °C, 180 rpm, 12 hours) until the culture was slightly turbid. 200 µl of this starter 

culture was used to inoculate 400 ml of ZYP-5052 (+ 50 µg/ml kanamycin). 1 ml was taken at this 

point to serve as a post-induction control sample for SDS-PAGE analysis. The culture was then 

returned to an orbital shaker incubator at a lower temperature and higher rpm (24 °C, 220 rpm) for 

15 hours. After this time the cultures were centrifuged (1500g for 10 ml culture, 3315g for 500 ml 

culture, 20 min, 5 °C), the media removed and the pellet stored at -20°C for at least 12 hours before 

protein purification or SDS-PAGE analysis. 
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7.10.1.5 Production of protein under the propionate promoter 

A main culture of E. coli BL21 or PHL644 (containing a pPro24(s)-gfp based plasmid) was prepared 

from a starter culture grown under standard conditions. This main culture was incubated in an 

orbital shaking incubator (37°C, 180 rpm) until the OD600 reached ≈0.6. Sodium propionate was then 

added to a final concentration of 20 mM (200 µl of 1M stock added to every 10 ml) and incubation 

continued for 5 hours for 10 ml cultures or switched to a lower temperature for 500 ml cultures and 

incubated for longer (16°C, 20 hours, 180 rpm). After this time the cultures were centrifuged (1500g 

for 10 ml culture, 3315g for 500 ml culture, 20 min, 5 °C), the media removed and the pellet stored 

at -20°C for at least 12 hours before protein purification or SDS-PAGE analysis 

7.10.1.6 Co-production of PrnC with chaperone proteins 

3 main LB cultures were grown up for each of the 3 chaperone/PrnC constructs (E. coli BL21 MW-

022, MW-023 and MW-024) using the usual culturing method. The three cultures were 

supplemented with decreasing concentrations of L-arabinose (0.4, 0.2 and 0.05% final concentration 

(w/v)) and incubated at 37°C until an OD600 of 0.5 was recorded. Production of the PrnC gene was 

then induced with the addition of 0.1 mM IPTG. Incubation was switched to 16°C for a further 24 

hours. Following incubation the cells were pelleted by centrifugation (1500g, 15 min, 4°C) and 

chemical lysis carried out to generate a cell free lysate. This lysate was subjected to small scale Ni-

NTA purification which was analysed by SDS-PAGE. The initial concentration of arabinose that 

produced the best results was scaled up to 500 ml scale and Ni-NTA purification used to purify the 

resulting PrnC. 

7.10.2  Generation of cell-free lysates 

  7.10.2.1 Chemical cell lysis 

For small scale cultures (< 200 ml) chemical cell lysis was used instead of sonication. A pellet of cells 

prepared from an original 10 ml culture volume was re-suspended in 1 ml of chemical lysis buffer (+ 

2 mg/ml lysozyme). If Ni-NTA purification was not to be used as the next step then chemical lysis 

buffer containing additional EDTA was used instead. The cell suspension was incubated at 5°C for 

between 30 to 60 minutes. Once a viscous solution had formed it was passed several times through 

a G23 gauge needle to loosen the mixture. The culture was then centrifuged to collect the cell debris 

(14000g, 20 min, 4°C) and the supernatant either used straight away or frozen at -20°C for long term 

storage 
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  7.10.2.2 Cell lysis by sonication 

A pellet of cells prepared from an original 500 ml culture was re-suspended in 40 ml lysis buffer. The 

cells were harvested again (3315g, 20 min, 5°C) and the buffer removed. This process was repeated 

once more to remove as much of the growth media as possible. The pellet was once more re-

suspended in 40 ml of lysis buffer which was then sonicated (8.20 min 10% pulse 49% power). From 

this point on work was kept on ice or otherwise carried out at 5°C or below. The lysate was cleared 

by centrifugation (20442g, 30 min, 4 °C) and the supernatant either used straight away or frozen at -

80°C for long term storage. 

  7.10.2.3 Generation of tryptophan synthase cell lysate 

A 500 ml culture of E. coli MW-043 was inoculated from a 12 hour starter culture in the usual way, it 

was then returned to the incubator overnight for 12-15 hours before being centrifuged (3315g, 20 

min, 5°C). The resulting pellet of cells was re-suspended in 40 ml of saturated NaCl solution. The cells 

were harvested again (3315g, 20 min, 5°C) and the buffer removed. This process was repeated once 

more to remove as much of the growth media as possible. The pellet was then re-suspended in 40 

ml of tryptophan synthase lysis buffer and sonicated (8.20 min 10% pulse 49% power). From this 

point on work was kept on ice or otherwise carried out at 5°C or below. The lysate was cleared by 

centrifugation (20442g, 30 min, 4 °C) and the supernatant either used straight away or frozen at -

80°C for long term storage. 

7.10.3  Protein purification 

7.10.3.1 Standard Ni-NTA purification protocols 

7.10.3.1.1 Ni-NTA Spin purification 

Protocol for Ni-NTA purification for 1 ml cleared cell lysate from an original 10 ml culture volume. 

 80 µl of Ni-NTA slurry (50% resin in ethanol) was equilibrated into Ni-NTA lysis buffer in a 1.5 ml 

capped microcentrifuge tube. This was achieved by centrifugation of the slurry (16060g, 2 min) to 

separate the resin from the ethanol storage buffer. The ethanol was removed and the resin re-

suspended in an additional 100 µl of lysis buffer. The resin was centrifuged again and the buffer 

removed. This was repeated three times to remove the ethanol. Cleared cell lysate was then added 

to the equilibrated Ni-NTA slurry (≈ 40 µl resin). The lysate/resin suspension was then incubated at 4 

°C for 1 hour on a slowly rotating wheel (approximately 30 rpm). After this time the resin/cell lysate 

suspension was centrifuged (14000g, 2 min, 4 °C) and the lysate removed. 30 µl was kept for SDS-



 

 
 

217 Chapter SEVEN 

PAGE analysis. The resin was washed with 0.5 ml of Ni-NTA lysis buffer then with 0.3 ml of Ni-NTA 

wash buffer. The resin suspension was centrifuged after each wash (14000g, 2 min, 4°C), the 

supernatant removed and 30 µl retained for analysis. Finally the protein was eluted from the resin 

with 0.2 ml of Ni-NTA elution buffer. The resin was centrifuged and the 30 µl of the elution buffer 

removed for analysis. All fractions were analysed via SDS-PAGE Gel Electrophoresis. 

   7.10.3.1.2 Standard NiNTA purification 

Protocol for Ni-NTA Purification of 40 ml cell lysate generated from 500 ml original culture volume. 

 2 ml of Ni-NTA slurry (≈ 1 ml resin) was equilibrated with 2 x 20 ml washes of Ni-NTA lysis buffer 

followed by centrifugation (1500g, 5 min, 4 °C) each time to collect the resin and allow the 

supernatant to be pipetted off. The 40 ml cell-free lysate was added to the resin and incubated at 4 

°C for 1 hour on a slowly rotating wheel (30 rpm). The resin suspension was then added to a plastic 

column (Biorad) and the supernatant allowed to flow through under gravity. A Bradford micro-assay 

was used to measure the amount of protein eluting from the column. The resin in the column was 

washed with 2 x 15 ml washes of Ni-NTA lysis buffer and samples of the flow through tested for 

decreasing levels of protein being washed off. 2 x 15 ml washes of Ni-NTA wash buffer were then 

added to the column and the flow-through collected and analysed for protein elution. This step was 

continued until little protein was seen coming off the column as visualized by the micro Bradford 

assay (3 x 15 ml washes normally suffice). The protein binding tightly to the Ni-NTA resin was eluted 

using approximately 25 ml of elution buffer. The flow-through was collect in 1 ml fractions, 5 µl of 

each were tested using the micro-Bradford assay. The fractions containing the strongest blue colour 

and therefore the most protein were combined together. The protein solutions were concentrated 

down to 1.5 ml (2700g, ≈30 min, 4 °C) using Amicon Ultra 15 centrifugal filter devices with an 

Ultracel-10 membrane (Millipore). For long term storage the protein solution was topped back to 15 

ml with protein storage buffer and concentrated down to 1.5 ml again. This was repeated twice 

more until the elution buffer had been diluted into storage buffer 1000 times. 50-100 µl aliquots 

were placed into pre-chilled 1.5 ml microcentrifuge tubes and flash frozen with liquid nitrogen and 

then stored at -80 °C. Samples of each stage were retained to enable analysis by SDS-PAGE.  

7.10.3.2 Optimisation of NiNTA binding by PrnC 

7.10.3.2.1 Removal of imidazole during binding step 

A 500 ml culture of E. coli BL21 MW-015 was grown and protein production under the T7lac 

promoter induced using the standard protocols. The resulting pellet was re-suspended in 50 ml of 
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Ni-NTA lysis buffer containing no imidazole. The suspension was split into two aliquots which were 

pelleted again (2580g, 10 min, 5°C). One of the resulting cell pellets was re-suspended into standard 

lysis buffer and the other into lysis buffer containing no imidazole. The cells were sonicated in the 

usual way and the lysate cleared. 1 ml of Ni-NTA resin (equilibrated with lysis buffer with or without 

imidazole) was added to each of the lysate fractions and standard Ni-NTA purification carried out. 

The purifications were analysed by SDS-PAGE. 

7.10.4  Protein quantification 

  7.10.4.1 Bradford total protein assay 

A 10 mg ml-1 solution of Bovine Serine Albumin (BSA) was used to create a number of serial dilutions 

resulting in 0.2, 0.4, 0.6, 0.8 and 1 mg ml-1 solutions of BSA. 

1 ml of Bradford reagent (Biorad) was placed into a series of spectrophotometer cuvettes. 20 µl of 

each of the protein standard solutions were added to a separate cuvette which was lightly agitated 

to mix. 20 µl of the sample of protein of unknown concentration was also added to a cuvette 

containing the Bradford reagent. If required, the unknown protein solution was diluted in order for 

the strength of the colour of the reagent to fall within the range of the BSA standards. The samples 

were incubated at room temperature for around 20 minutes before the absorbance of each was 

recorded at 595 nm. The readings were carried out in duplicate. 

A standard curve of BSA concentration versus absorbance was constructed using the data. From this 

standard curve the unknown concentration of the protein sample was deduced from the absorbance 

readings taking into account any dilution factor that had been introduced along the way. 

  7.10.4.2 Micro-Bradford assay 

100 µl of Bradford reagent (Biorad) was placed into the wells of a 96-well plate. 5-10 µl of the Ni-

NTA purification column flow-through was added to one of the wells. The strength of the blue colour 

indicates the concentration of protein present in the sample. 

7.10.5  Analysis of proteins by SDS-PAGE gel electrophoresis 

  7.10.5.1 Preparation of a 12% acrylamide gel 

For the analysis of protein via SDS-PAGE (Sodium dodecyl sulfate polyacrylamide gel electrophoresis) 

a 12% resolving gel was mixed according to the values in section 7.4. As soon as the ammonium 

persulfate and TEMED (tetramethylethylenediamine) are added the polymerisation of the gel begins. 
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Therefore the solution was pipetted into a gel caster as quickly as possible. A thin layer of IPA 

(propan-2-ol) was then added to the top of the gel before allowing the gel to set (around 30 min to 1 

hour). The IPA layer was then decanted and the top of the gel washed with some distilled water. A 

5% stacking gel was then mixed following the recipe in section 7.4. The stacking gel was poured on 

top of the already set resolving gel and a comb inserted to form the wells. The gel was then allowed 

to polymerise. Once gel was set the comb was removed. 

7.10.5.2 Sample preparation and running of SDS-PAGE 

Samples for analysis were diluted in equal volumes of 2x SDS loading dye and boiled for 10 minutes. 

5-10 µl of sample was then loaded into each of the wells of the SDS gel. Any empty wells were filled 

with blank loading dye. The SDS-PAGE tank was filled with running buffer and a current of 200 volts 

was applied until the blue loading dye reached the bottom of the gel. After completion the stacking 

gel was removed and the resolving gel placed into a Coomassie Brilliant Blue staining solution and 

left to stain overnight on a shaking platform. To de-stain the gels they were placed into de-staining 

solution (section 7.4) and heated in the microwave for 2 minutes. The solution was then left to cool 

before the de-staining solution was removed and replaced by fresh. The process was repeated until 

satisfactory de-staining had occurred. After this time the acrylamide gels were stored in distilled 

H2O. 

The gels were dried by placed them into drying solution (section 7.4) and laying them between two 

film sheets. The slides of the sheets were clamped between two metal frames and allowed to dry. 

The acrylamide gel could then be cut out and stored. Alternatively after de-staining the gel was 

scanned into digital format for storage. 

7.11 Biofilms and immobilised biocatalysts 

7.11.1  Artificially spin-coated biofilm 

  7.11.1.1 Spin-coated biofilm protocol 

Prior to biofilm formation, glass microscope slides (75 mm by 25 mm, VMR) were coated with 

approximately 4 ml of 0.1% (w/v) poly-lysine (PLL) in water (Sigma), which was then dried overnight 

in an oven at 60°C. 10 μl of a culture of E. coli PHL644 MW-002 was streaked onto an agar plate 

(supplemented with ampicillin) and incubated at 37°C for 14 hours. Single colonies were picked and 

used to inoculate 200 ml of ½ LB (1:1 LB:H2O, supplemented with ampicillin). The culture was 

incubated in an orbital shaker (30°C, 180 rpm) for 16 hours.    
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Following incubation, cultures were transferred aseptically into sterile 750 ml polypropylene 

centrifuge bottles (Beckman Coulter UK Ltd.) containing the PLL-coated glass slides supported on a 

bed of glass beads (200 g, soda-glass beads, 4 mm diameter) to provide a flat surface to prevent 

cracking during centrifugation. The slides were centrifuged (1851g, 10 min) in a centrifuge fitted with 

a swinging bucket rotor. After centrifugation the glass slides were gently placed in 500 ml sterilised 

wide necked Erlenmyer flasks (Fisher Scientific) containing 70ml of M63 medium (supplemented 

with ampicillin). The spin coated biofilms were incubated in an orbital shaker incubator (30 °C, 70 

rpm), set at a low speed to minimise bacteria shearing from the biofilm, for a maturation period of 7 

days.   

7.11.1.2 Testing stability of the spin-coated biofilm 

In order to utilise the engineered biofilm as an immobilised catalyst, its stability to the reaction 

buffer and incubation rpm was tested. Buffer stability tests were carried out by placing the 

engineered biofilm (matured for 7 days) into the reaction buffer. The M63 biofilm maturation 

medium was carefully removed from the biofilm-coated slide using a syringe. Un-adhered, 

planktonic cells were removed from the biofilm by gentle re-submersion of the slides and washing in 

aliquots of reaction buffer (2 x 50 ml), which was then also removed. The washed biofilm slides were 

then submerged in 70 ml of potassium phosphate reaction buffer and placed into an orbital shaker 

incubator (30°C, 70 rpm) and incubated for up to 45 hours. At intervals, 1 ml aliquots of reaction 

buffer were removed and the OD600 measured in order to determine the amount of planktonic cells 

that had left the biofilm. A biofilm coated slide was totally re-suspended into 70 ml of reaction 

buffer and the OD600 of this used to represent the value of 100% dissociation. 

The stability of the engineered biofilm to agitation was assessed by re-submerging a spin-coated 

biofilm into reaction buffer as above and incubating at 70 rpm for 5 hours. After 5 hours the 

agitation was increased to 100 rpm for 1 hour before the agitation was increased again to 150 rpm 

for a further hour. At intervals, 1 ml aliquots of reaction buffer were removed and the refractive 

index of the solution or the OD600 measured in order to determine the amount of planktonic cells 

that had left the biofilm. 

7.11.1.3 UEA spin-coating protocol 

   7.11.1.3.1 Full size glass slides 

The spin-coating method of biofilm formation developed in Birmingham University labs was adapted 

for use back at UEA. 
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Glass slides (75 mm by 25 mm, VMR) were placed onto a bed of glass beads (150g, soda-glass beads, 

4 mm diameter) inside 1000 ml centrifuge tubes (Beckman). The tubes and their contents were then 

autoclaved. A layer of poly-lysine was applied to the top of the glass slide under sterile conditions 

and dried overnight at 40°C. 

A 200 ml culture of E. coli PHL644 MW-002 (+ ampicillin) was inoculated from a starter culture and 

allowed to incubate in an orbital shaker incubator for 16 hours (37°C, 180rpm). The culture was then 

poured into the pre-prepared centrifuge tubes and the culture centrifuged (1865g, 10 min, 4°C) in a 

fixed-angle centrifuge rotor. The coated slides were then handled in the same way as in the standard 

spin-coating biofilm formation protocol. 

   7.11.1.3.2 Reduced size glass slides 

Glass slides (75 mm by 25 mm, VMR) were cut into smaller squares (1.5 cm in length) or into rounds 

(2 cm diameter). Glass beads and the reduced size glass slides were autoclaved. Approximately 10 ml 

of glass beads were placed into a 50 ml screw capped centrifuge tube and a reduced size glass slide 

adjusted to sit on top. 0.3 ml of poly-lysine was applied to the surface of the slides and the lid loosely 

fastened. The slides were allowed to dry at 37°C for 24 hours. 

A 200 ml culture of E. coli PHL644 MW-002 (+ ampicillin) was inoculated from a starter culture and 

allowed to incubate in an orbital shaker incubator for 16 hours (37°C, 180rpm). 20 ml of the culture 

was then poured into the 24 pre-prepared centrifuge tubes and the culture centrifuged (1500g, 10 

min, 4°C). The LB media was carefully removed using a syringe. Using tweezers the glass slides were 

transferred into sterile 250 ml conical flasks. 2x 10 ml of M63 was used to gently wash the slides 

before the media was removed with a syringe. 30 ml of fresh M63 media was then added (+ 

ampicillin) and the slides incubated in an orbital shaker incubator at low rpm (28°C, 60 rpm, 7 days). 

 7.11.2  Generation of naturally deposited biofilms 

Natural biofilms were generated by harvesting the 16-hour cultures (generated above) by 

centrifugation (1851g, 15 mins), and re-suspending the bacteria in 70 ml of M63 medium in a 500 ml 

wide necked Erlenmyer flask into which the PLL coated glass slide was introduced. The slide was 

incubated for 7 days (30°C, 70 rpm) in an orbital shaker incubator.   
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7.11.3  Immobilisation of tryptophan synthase onto Ni-NTA resin 

7.11.3.1 Restriction digest of trpA and trpB out of pSTB7 and ligation 

into pET28a(+) 

The plasmid pSTB7 was purified from E. coli CB149 MW-043. The genes representing the two 

subunits of tryptophan synthase are flanked by HindIII and EcoRI restrictions sites. 30 µl of purified 

plasmid was digested with 4 µl of HindIII and EcoRI (Roche 10U/µl) in 52 µl of H2O and 10 µl buffer 

(Roche Buffer B). The restriction digest was incubated at 37°C overnight before being run on agarose 

gel to separate out the linearised plasmid (6.3 kb) and excised genes (1.8 kb). The band 

corresponding to the excised genes was gel purified and ligated into pET28a(+) that had been doubly 

digested with the same enzymes. The ligation mix contained 5 µl of vector DNA with 9 µl of the 

purified excised trpA and trpB genes. Standard ligation protocol was followed and the finished vector 

(pMW17) was transformed into E. coli DH10B for long term storage (MW-029) and E. coli  BL21 

(MW-030) for protein expression. This would have the result of producing a His6 fusion trpB gene 

which can be used to immobilise the β-subunit of tryptophan synthase onto Ni-NTA resin. 

  7.11.3.2 Cloning trpA and trpB into pET vectors using PCR 

The trpB gene of tryptophan synthase from Salmonella enterica sv Typhimurium TB1533 was 

amplified from the plasmid pSTB7 using the TRPSYN-B-F1 and R1 primers. PCR conditions are shown 

in section 7.9.5.2. A restriction digest was carried out on the PCR product with HindIII and XhoI 

which was subsequently ligated into the corresponding restriction sites of pET21a(+) (Novagen) to 

give pMW18. This provided a route to the C-His-tagged β-subunit of tryptophan synthase under the 

control of the T7 promoter and ampicillin selection marker.  

The trpA gene of Tryptophan Synthase was also amplified from pSTB7 using the TRPSYN-A-F1 and R1 

primers. A restriction digest was carried out on the PCR product with NdeI and XhoI restriction 

enzymes and subsequent ligation into pET28a(+) (Novagen) was performed to give pMW19. This 

provided a route to the N-terminally His6 tagged α-subunit of tryptophan synthase. 

Also the trpA gene of Tryptophan Synthase was amplified from pSTB7 using the TRPSYN-A-F2 and R1 

primers. A restriction digest was carried out on the PCR product with NcoI and XhoI restriction 

enzymes and subsequent ligation into pET28a(+) (Novagen) was performed to give pMW21. The 

NcoI restriction site is upstream of the N-terminal His-tag sequence in pET28a(+) therefore trpA was 

expressed under the T7 promoter and kanamycin resistance marker without a poly-histidine tag.  
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pMW17 was transformed into E. coli DH10B for long term storage at -80°C (MW-029) and E. coli 

BL21 for protein expression (MW-030). pMW18 was transformed into E. coli BL21 for protein 

expression (MW-031). Chemically competent cells were constructed from E. coli BL21 MW-031 and 

either pMW19 or pMW21 were co-transformed into this strain to form E. coli BL21 MW-034 and 

MW-036 respectively. The host expressing both genes was obtained by dual selection with ampicillin 

and kanamycin. 

  7.11.3.3 Immobilisation of tryptophan synthase subunits 

 LB (10 ml) supplemented with appropriate antibiotic(s) was inoculated with a His6 tryptophan 

synthase fusion protein containing strain (E. coli BL21 MW-030, MW-034 or MW-036) and incubated 

in an orbital shaker incubator (37°C, 180 rpm) for 12 hours. This starter culture was then used to 

inoculate 500 ml of LB (+ appropriate antibiotics) which was then also placed in an orbital shaking 

incubator (37°C, 180 rpm). Once an OD600 of between 0.6-0.8 was reached protein production was 

induced by the addition of 0.1 mM IPTG and growth continued (37°C, 180 rpm) for 4 hours. The cells 

were then collected by centrifugation (3315g, 20 min, 5°C) and the cell free extract prepared using 

the general method. The His-tagged tryptophan synthase subunits were then incubated with Ni-NTA 

(Ni-nitrilotriacetic acid) resin using the standard protocol for Ni-NTA purification (section 7.10.3.1.2). 

After incubation the resin was then sequentially washed by re-suspension in 10 ml of lysis buffer 

followed by 10 ml of wash buffer to remove any weakly binding protein impurities from the resin, 

collecting the resin via centrifugation prior to each wash. The resin-bound protein was then used 

directly for biotransformation or quantification analysis. 

7.11.4  Quantification of biocatalyst amounts 

7.11.4.1 Quantification of dry cell biomass of the spin-coated biofilm 

by plate drying 

The total biomass was determined for 14 slides that had been coated with engineered biofilm and 

left to mature for 7 days. This was achieved by disrupting and re-suspending the biofilms in sterile 

water into pre-weighed centrifuge tubes using a vortex mixer for 30 minutes then centrifuged 

(13165g, 15 min). The supernatant was removed and the biomass allowed to dry at 100oC for 24 hrs. 

The mass was measured every 5 to 8 hours, the dry biomass being determined when the mass 

stopped decreasing.   
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7.11.4.2 Quantification of the dry cell biomass of 1ml of planktonic 

cell suspension 

LB (10 ml) supplemented with ampicillin was inoculated with E. coli PHL644 MW-002 and incubated 

in an orbital shaker incubator (37°C, 180 rpm). After the culture reached an OD600 of 0.6 it was 

diluted 100-fold into 500 ml of fresh LB supplemented with ampicillin and incubation continued. 

Once growth had reached stationary phase (OD600 > 1) the cells were harvested by centrifugation 

(7529g, 20 min, 5°C) and the pellet was washed and re-suspended in 50 ml of potassium phosphate 

reaction buffer. The dry mass of cells was directly measured by taking aliquots of various volumes of 

the cell suspension, centrifuging them (16060g, 60 seconds) and drying the cells in an oven (60°C) for 

4 days in pre-weighed vessels until a constant mass was reached. The masses of the dried cells were 

then obtained. This demonstrated a linear relationship between the volume of cell suspension and 

the dry cell biomass. 

7.11.4.3 Quantification of biomass of planktonic cells by Bradford 

total protein assay 

LB (10 ml) supplemented with ampicillin was inoculated with E. coli PHL644 MW-002 and incubated 

in an orbital shaker incubator (37°C, 180 rpm). After the culture reached an OD600 of 0.6 it was 

diluted 100-fold into 500 ml of fresh LB supplemented with ampicillin and incubation continued. 

Once growth had reached stationary phase (OD600 > 1) the cells were harvested by centrifugation 

(7259g, 20 min, 5°C) and the pellet was washed and re-suspended in 50 ml of potassium phosphate 

reaction buffer. Aliquots of a range of volumes (0.2 – 2 ml) were taken from this suspension of cells. 

The cells were collected by centrifugation (16060g, 60 seconds) and re-suspended in 1 ml of water. 

To release cellular proteins, 100 μl of 10% (w/v) NaOH was added and the sample incubated at 30°C 

for 30 minutes. The samples were then heated at 100 °C for 15 minutes and then allowed to cool. 80 

μl of 2M HCl was then added to neutralise the pH. The samples were centrifuged (16060g, 10 

minutes). The supernatant was removed, diluted tenfold with water. The protein concentration in 

these samples was assessed by Bradford assay. The amount of cell suspension equal to 80 mg dry 

mass (total dry biomass of biofilm) was calculated to be 6 ml using the assumption that the average 

total protein content in cells is approximately equal to 50% dry cell weight.64  
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7.11.4.4 Quantification of tryptophan synthase immobilised onto Ni-

NTA resin 

The quantity of tryptophan synthase catalyst loaded onto the Ni-NTA resin was assessed by eluting 

the purified protein off the resin with 10 ml of Ni-NTA elution buffer. The amount of protein that had 

been immobilised onto the resin was determined by a Bradford assay (Biorad) and the relative 

amount of the α and β subunits was estimated by SDS-PAGE analysis. 

7.11.5  Biotransformations 

  7.11.5.1 Tryptophan synthase biotransformations 

   7.11.5.1.1 Tryptophan synthase cell lysate biotransformations 

A cell free lysate was prepared from a culture of E. coli CB149 MW-043 following the method of 

tryptophan synthase lysate preparation. For long term storage the lysate was stored at -80°C or 

freeze-dried and stored at 5°C. 5-bromo-, 5-chloro- or 5-fluoroindole (2 mM) was added to a 250 ml 

conical flask containing 50 ml of potassium phosphate reaction buffer. 3 ml of prepared E. coli CB149 

MW-043 cell free lysate was added to dialysis tubing and added to the reaction. The reaction was 

placed into an orbital shaking incubator (37°C, 180 rpm) for 48 hours. The reaction was either 

analysed by HPLC or purified by reverse-phase chromatography on C18 silica.  

For C18 silica purification the unreacted indole was removed by washing with 2x 100ml ethyl 

acetate. The aqueous layer was reduced in volume under reduced pressure to approximately 10-20 

ml. This was applied to 30 g of C18 silica (sigma) which was washed with H2O until nothing could be 

seen eluting off the column by TLC visualised with ninhydrin. The L-halotryptophan was recovered by 

washing with 10 ml aliquots of MeOH until no further elution off the column could be seen. The 

MeOH was removed in vacuo to yield the pure L-halotryptophan. The HCl salt of the halotryptophan 

was made by re-dissolving in 2M HCl and removing the acid in vacuo to yield the crystalline salt. 

5-fluoro-tryptophan was yielded as a pale pink crystalline solid (18mg, 0.081 mmol, yield: 83%). 1
H 

NMR (D2O): δ ppm 3.29 (dd, J=15.4, 7.1 Hz, 1H), 3.36 (dd, J=15.4, 5.4 Hz, 1H), 4.23 (t, J=6.2 Hz, 1H), 

6.94 (td, J=9.3, 2.4 Hz, 1H), 7.24 (d, J=2.4 Hz, 1H), 7.26 (s, 1H), 7.36 (dd, J=8.9, 4.5 Hz, 1H);MS (ESI): 

m/z: (M+H) 222.95 (100%), 223.95 (14%); UV/λmax: 278 nm. 

5-chlorotryptophan was yielded as a pink crystalline solid (11.9mg, 0.05 mmol, yield: 50%). 1
H NMR 

(D2O): δ ppm 3.24 (dd, J=15.2, 7.1 Hz, 1H), 3.31 (dd, J=15.4, 5.4 Hz, 1H), 4.21 (t, J=6.2 Hz, 1H), 7.09 (d, 
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J=9.7 Hz, 1H), 7.21 (s, 1H), 7.32 (d, J=8.7 Hz, 1H), 7.51 (s, 1H); MS(ESI): m/z: (M+H) 238.96 (100%), 

239.96 (12.54%), 241.02 (33.42%); UV/λmax: 280 nm. 

5-bromotryptophan was yielded as a sandy brown crystalline solid (6.5mg, 0.023 mmol, yield: 23%). 

1
H NMR (D2O): δ ppm 3.28 (dd, J=15.4, 7.3 Hz, 1H), 3.36 (dd, J=15.4, 5.3 Hz, 1H), 4.20 (t, J=6.3 Hz, 

1H), 7.23 (s, 1H), 7.26 (d, J=8.7 Hz, 1H), 7.33 (d, J=8.7 Hz, 1H), 7.74 (s, 1H); MS(ESI): m/z: (M+H) 

282.90 (100%), 283.90 (12.83%), 284.90 (95.61%), 285.90 (11.98%); UV/λmax: 287 nm. 

7.11.5.1.2 Comparison of tryptophan synthase activity of 

planktonic cultures and the cell free lysate of E. coli 

PHL644 

Two 500 ml cultures of E. coli MW-002 were grown overnight using the standard conditions of 

tryptophan synthase cell lysate preparation. Following overnight growth the cells were collected via 

centrifugation (3315g, 20 min, 5°C) and the supernatent removed. Each pellet was then washed with 

saturated sodium chloride solution (40 ml) followed by an additional centrifugation (3315g, 20 min, 

5°C) to collect the cells. The supernatant was removed and the pellet re-suspended in tryptophan 

synthase lysis buffer (40 ml). One of the resulting cell suspensions was sonciated to generate the cell 

free lysate (8.20 min, 10% pulse, 49% power); the other was kept as a planktonic cell suspension. 

5 ml of either the cell lysate or the cell suspension was placed inside dialysis tubing which was added 

to tryptophan synthase biotransformation buffer (50 ml) containing 5-bromoindole (5 mM). In 

addition the effect of 2.5% (v/v) DMSO or acetonitrile was examined by adding 1.75 ml of either 

solvent to the biotransformation reaction. The yields of the biotransformation reactions were 

assessed in the usual tryptophan synthase biotransformation method by extraction with ethyl 

acetate and purification by reverse phase chromatography. 

7.11.5.1.3 Effect of buffer composition on tryptophan synthase 

activity of planktonic cultures of E. coli PHL644 

Cells from a 20 ml overnight culture of E. coli MW-002 grown in M63 media were collected via 

centrifugation (1500g, 15 min, 4°C) and the media removed. The cell pellet was re-suspended into 20 

ml of tryptophan synthase buffer containing either 100 mM or 10 mM KH2PO4 at either pH 7.0 or 

7.8. 2 ml of the resulting planktonic cell suspension was added to a further 18 ml of the re-

suspension buffer. The biotransformation was supplemented with 5-bromoindole (5 mM) and 5% 

DMSO. The reactions were incubated at for 3 days (37°C, 180 rpm). Following this a 1 ml aliquot was 
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taken, centrifuged (16060g, 5 min) to remove the planktonic cells. The yield of the biotransformation 

reaction was assessed by HPLC analysis (LCgrad_MeOH). 

7.11.5.1.4 Comparison of planktonic cell biotransformations to 

spin-coated biofilm catalyst 

10 ml of LB supplemented with ampicillin was inoculated with E. coli PHL644 MW-002 and incubated 

in an orbital shaker (37°C, 180 rpm). After the culture reached an OD600 of 0.6 it was diluted 100-fold 

into 500 ml of fresh LB supplemented with ampicillin and incubation continued. The cells were 

harvested by centrifugation (3315g, 20 min, 5°C) once growth had reached stationary phase (OD600 > 

1) and the pellet was washed and re-suspended in 50 ml potassium phosphate reaction buffer.  

It was determined that 12 ml of cell suspension contained approximately 140-160 mg of dry cell 

biomass (see determination of planktonic cell biomass, section 7.11.4). This volume of cell 

suspension was added to a 250 ml conical flask containing 58 ml of potassium phosphate reaction 

buffer, giving a final volume of 70 ml. The flask was supplemented with 0.7 M DMSO and 2 mM 5-

chloroindole. The biotransformation reactions were placed into an orbital shaker incubator (30°C, 70 

rpm) and incubated under the same conditions as the biofilm mediated biotransformations. 0.5 ml 

aliquots of the reaction buffer were taken every hour for the first 7 hours and then at regular 

intervals thereafter. Any reaction in the samples was stopped by centrifugation (16060g, 5 min) to 

collect any planktonic cells in suspension. The concentration of 5-chlorotryptophan in each of the 

aliquots was determined by HPLC analysis (LCgrad_MeOH). 

7.11.5.2 Biofilm mediated biotransformations 

7.11.5.2.1 Biofilm mediated tryptophan synthase 

biotransformation 

The biofilm maturation M63 medium was carefully removed from a 7 day mature spin-coated 

biofilm covered slide using a syringe. Un-adhered, planktonic cells were removed from the biofilm by 

gentle re-submersion and washing in aliquots of reaction buffer (2 x 50 ml), which was then also 

removed. The washed biofilm slide was then submerged in 70 ml of reaction buffer supplemented 

with 0.7 M DMSO and either 2 mM 5-chloroindole (0.0212 g), 2 mM 5-fluoroindone (0.0189 g), or 2 

mM 5-bromoindole (0.0274g). The biotransformation reactions were placed into an orbital shaker 

incubator (30°C, 70 rpm), set at a low speed to minimise cell shearing, and incubated for 30 hours. 

0.5 ml Aliquots of the reaction buffer were taken every hour for the first 7 hours and then at regular 

intervals thereafter. Any reaction in the samples was stopped by centrifugation (16060g, 5 min) to 
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collect any planktonic cells in solution. The concentration of 5-halotryptophan in each of the aliquots 

was determined by HPLC analysis (LCgrad_MeOH). 

   7.11.5.2.2 Recycling the Biocatalytic Biofilm  

Biotransformation reactions with the biofilm were set up as previously. After 10 hours reaction time 

the reaction mix was carefully removed using a syringe. The biofilm was carefully re-submerged in 70 

ml of potassium phosphate reaction buffer which was then carefully removed again. This was 

repeated to remove any transformed tryptophan and un-reacted indole. Fresh reaction buffer was 

added (70 ml) and a fresh amount of haloindole (2 mM) added. The reaction was then resumed for 

another 10 hours. After this time the recycling protocol was repeated once more. 

7.11.5.3 Biotransformation with Ni-NTA immobilised tryptophan 

synthase 

Tryptophan synthase was immobilised onto the Ni-NTA resin as previously described. Having been 

washed with lysis and wash buffers the resin was further washed with 10 ml of reaction buffer 

before the resin was collected and the buffer removed.  The amount of catalyst immobilised onto 

the resin was calculated as described earlier and the biotransformation reaction scaled down 

appropriately so as to maintain an enzyme concentration that was equivalent to the average 

calculated enzyme quantity present in the biofilm (0.6 mg/ml).  

To begin the biotransformation the immobilised tryptophan synthase was re-suspended in the 

appropriate volume of reaction buffer suitable to the quantity of immobilised enzyme. This was 

supplemented with 0.7 M DMSO and 2 mM 5-chloroindole. The biotransformation was incubated in 

an orbital shaker (37 °C, 180 rpm) for 30 hours and aliquots taken throughout this period to monitor 

the reaction by HPLC analysis. After this time the resin was again collected by centrifugation (1500g, 

5 min, 4°C) and the biotransformation buffer removed. The resin was washed successively with 10 

ml of potassium phosphate reaction buffer, Ni-NTA lysis buffer and then Ni-NTA wash buffer. The 

immobilised protein was then removed from the resin by a final wash with 10 ml Ni-NTA elution 

buffer. The total amount of protein remaining on the resin was again measured by a Bradford assay 

and the relative amounts of the two subunits estimated if appropriate by SDS-PAGE analysis. 
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7.11.5.4 Flavin-dependent halogenase activity assays 

7.11.5.4.1 Preparation of purified halogenases and flavin 

reductase 

500 ml of LB (+ appropriate antibiotic) was inoculated with E. coli BL21 containing the desired 

halogenase construct from a starter culture in the usual way. Cultures were incubated for 4 hours in 

an orbital shaker incubator (37 °C, 180rpm) before being induced with 0.1 mM final concentration 

IPTG. Incubation was continued at 16 °C for a further 24 hours. Cell lysates were prepared by 

washing, re-suspending and sonicating the cultures as previously described (section 7.10.2) and Ni-

NTA purification was carried out. 

7.11.5.4.2 Tryptophan-7-halogenase whole-cell catalysed 

biotransformations 

A 500 ml LB culture of E. coli transformed with a PrnA containing plasmid (BL21 MW-039, BL21 MW-

041, PHL644 MW-042 or BL21 RG-5076) was prepared and protein production induced using the 

general culturing method. After growth the centrifuged bacterial pellet was washed in Ni-NTA lysis 

buffer (50 ml) before being pelleted again (1500g, 10 min, 4°C) and re-suspended in potassium 

phosphate buffer (10 mM KH2PO4, pH 7.2). 10 ml of this cell suspension was added into dialysis 

tubing which was tied at both ends. The tubing was then placed into a conical flask (250 ml) 

containing potassium phosphate buffer (10 mM KH2PO4 pH 7.2), tryptophan (1 mM) and NaCl (25 

mM). The reactions were placed into an orbital shaker incubator (28°C, 180 rpm) for 24 hours. A 100 

µl sample of the reaction was taken at time zero and at 2, 6 and 24 hours and the concentration of 

7-chloro-tryptophan established by HPLC analysis (LCgrad_MeOH). 

7.11.5.4.3 Flavin reductase assays 

Flavin reductase enzyme PrnF was Ni-NTA purified from cultures of E. coli BL21 RG-5066. Flavin 

reductase enzyme solution (0.3 µM) was added to an assay containing NADH (200 µM), FAD (30 µM), 

NaCl (50 mM), Tris-HCl (20 mM, pH 7.5) in a total volume of 1 ml. The PrnF enzyme was added half 

way through the time course and the decreasing absorbance of the assay was followed at 340 nm 

over either 20 or 30 minutes, corresponding to the oxidation of NADH. An assay containing no FAD 

was used as a blank. 
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7.11.5.4.4 Purified tryptophan halogenase assays 

Tryptophan Halogenase enzyme PrnA was purified from cultures of E. coli BL21 RG-5076. 100 µl 

reactions were carried out using Ni-NTA purified enzymes without further purification with 

appropriate controls. PrnA (25 µM) was added to an assay containing NADH (5 mM), FAD (10 µM), 

NaCl (100 mM), L-tryptophan (1 mM) and flavin reductase (2.5 µM PrnF) in Tris-HCl buffer (20 mM, 

pH 7.5). Protein storage buffer was used instead of protein solution for a no-enzyme control. The 

reactions were incubated at 30°C for 18 hours. The reactions were stopped by the addition of equal 

volumes of 10% formic acid and centrifuged (16060g, 15 min) before HPLC analysis (LCgrad_MeOH). 

7.11.5.4.5 Preliminary purified PrnC assays 

PrnC enzyme was purified from cultures of E. coli BL21 MW-012. 100 µl reactions were carried out 

using Ni-NTA purified PrnC and PrnF enzymes using a range of pyrrole as a substrate (10mM stock 

solutions in DMSO) with appropriate controls. 4 µM of PrnC and 1 µM of PrnF were added to an 

assay containing NADH (1 mM), FAD (10 µM) and Pyrrole substrate (1 mM) in Tris-HCl buffer (15 

mM, pH 7.5). The effect of the addition of 10% isopropyl alcohol was also examined. A no-enzyme 

control contained blank protein storage buffer instead of enzyme containing buffer. The reactions 

were set up in 1.5 ml microcentrifuge tubes and carried out at 30 °C for 30-60 minutes. Equal 

volumes of 10% formic acid were added to quench the reactions and the tubes were centrifuged 

(16060g, 15 min). The samples were analysed by HPLC (method: LCgrad_MeOH) and LCMS (method: 

LC-Xbridge-Pac). 

   7.11.5.4.6 PrnC activity assays 

PrnC was purified from cultures of E. coli BL21 MW-022 or MW-038. 100 µl reactions were carried 

out using Ni-NTA purified enzymes without further purification with appropriate negative controls. 

The standard PrnC assay contained NADH (5 mM), FAD (10 µM), NaCl (100 mM) in 100 μl of Tris-HCl 

buffer (20 mM, pH 7.5) and supplemented with flavin reductase enzyme PrnF (2 μM). Potential 

substrates were added to a final concentration of 1 mM. Reactions were started with the addition of 

the PrnC enzyme at various concentrations. Initial assays of activity used PrnC-LIC at 28 μM and 

PrnC-pGro at 80 μM. The standard PrnC assay utilised PrnC-LIC at a concentration of 7 μM and PrnC-

pGro at 19 μM. Protein storage buffer was used instead of protein solution for no-enzyme controls. 

The reactions were incubated at 30°C for up to 18 hours. The reactions were stopped by the addition 

of equal volumes of 10% formic acid and centrifuged (16060g, 15 min) before HPLC analysis (using 

gradients LCgrad_MeOH or LCgrad_Pyrrole) or LCMS analysis (using gradient LC-XBridge-Pac at UEA 

or LC-JIC-Method1 at JIC). 
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7.12 Analytical methods 

7.12.1  Biofilm analysis 

7.12.1.1 Biofilm analysis using atomic force microscopy (AFM) 

Biofilm-coated glass slides were removed from the media after 3-10 days of growth and a 7 x 7 mm 

area was carefully excised and firmly secured in a BioCell (JPK, Germany) containing 2 ml of M63 

medium in order to perform the wet mode experiments at 30°C. The temperature in the BioCell was 

allowed to equilibrate at 28°C and then mounted in a NanoWizard II AFM (JPK, Germany) 

incorporating a CellHesion module (JPK, Germany), providing a lateral scan range of 100 µm x 100 

µm, and a vertical range of 90 µm. A minimum of 10 force measurements were collected on at least 

three different surface locations, the peak vertical deflection of the cantilever (nm) was converted to 

a peak force (N) via multiplication of the deflection by the manufacturer specified cantilever spring 

constant of 0.9 N m-1. In this study, microfabricated rectangular Si cantilevers (450 µm length) were 

used with pyramidal oxide sharpened tips (MikroMasch, Estonia) and a scan velocity of 5 μm s-1 was 

employed throughout. Each force measurement was repeated for five different biofilm regions on 

the same sample and averaged over three separately grown biofilms giving a total usually in excess 

of 100 force curves.     

7.12.1.2 Environmental scanning electron microscopy (ESEM) and 

vertical scanning inteferometry (VSI) 

Biofilm samples were also examined using environmental scanning electronic microscopy (ESEM). 

The methods used to treat the biofilm prior to ESEM and VSI imaging have been previously discussed 

and standardised by Bozzola and Russell (1992)227. The biofilm samples were immersed in 2.5% 

glutaraldehyde for one day in order to preserve the structure of living tissue with no alternation 

from the living state. After the primary fixation with glutaraldehyde, the biofilm samples were 

dehydrated using 50%, 70%, 90% 100% ethanol and 100% dried ethanol for 15 mins on each 

concentration and repeated twice. After fixation and rinsing, the samples were critical point dried 

using a critical point dryer (Agar Scientific) and then mounted onto microscope stubs for Pt coating 

using an Emscope SC 500 sputter coater (Emscope, Ashford, UK), and examined using a XL-30 FEG 

ESEM (Cambridge Instruments, Cambridge, UK). The Pt-coated biofilm glass slides were placed into 

the motorised operating stage of a MicroXAM interferometer (Omniscan, UK), which operated using 

a white light source and a 50X objective lens. Three-dimensional topographical surface profiles were 

acquired with a resolution of 0.2 μm pixel-1, which were subsequently stitched together. Scanning 
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Probe Image Processor software (Image Metrology, Denmark) was employed for the analysis of 

acquired images. Surface profiles were acquired for five different biofilm regions on the same 

sample. The average roughness was calculated on pixel by pixel basis from five different sampling 

areas with a resolution of 419 μm x 312 μm (2095 pixels x 1560 pixels). The biofilm thickness was 

also measured using inteferometry. A thin line was cut through the biofilm to the glass slide using a 

sharp razor and the thickness was measured relative to the glass slide from 5 different sampling 

areas. The razor did not cut into the glass slide. 

7.12.2  HPLC and LCMS Methods 

7.12.2.1 LCgrad_MeOH and HPLC analysis of tryptophan and 

halotryptophan 

HPLC samples were run on a Shimadzu HPLC with a ZORBAX (SB-C18 4.6 mm x 15 cm) column run 

with methanol versus water run at a rate of 0.7 ml min-1. Both solvents were acidified with 0.1% 

formic acid and run using the gradient described in the table below. 

LCgrad_MeOH HPLC gradient showing 
increase of mobile phase (methanol) 
over time. 
Time (minutes) % Methanol 

0 10 
0.5 10 
12.5 95 
15 95 
16 10 
21 10 

The concentration of halo-tryptophan was calculated based on a standard curve of HPLC peak area 

versus concentration. Samples of pure L-halo-tryptophan (5-chloro, 5-bromo or 5-fluoro) of known 

concentration, ranging from 0.125 mM to 2 mM, were analysed by HPLC using the method described 

above. A standard curve of the relationship between HPLC peak area and concentration was 

constructed and the relationship between peak area and concentration was found to be linear. From 

this standard curve the unknown concentration of halo-tryptophan in the biotransformation samples 

was determined and an estimation of the overall yield was calculated. To confirm the accuracy of the 

HPLC concentration estimation a standard tryptophan synthase cell lysate biotransformation of 5-

chlorotryptophan was performed. A sample of this reaction was analysed by HPLC and a yield 

calculated from the peak areas. The same sample was applied to reverse-phase silica and column 

purified using the tryptophan synthase method. From this the overall yield of the reaction was 

calculated and compared to the estimated HPLC value. 
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The different 5-halo-tryptophans were distinguished on the HPLC by retention time (r.t) and PDA 

spectrum/λmax values: 5-fluoro-tryptophan - r.t: 7.74 min, λmax: 278 nm; 5-chloro-tryptophan - r.t: 

9.4 min, λmax: 280 nm; 5-bromo-tryptophan – r.t: 9.83 min, λmax: 287 nm. 

7.12.2.2 LCgrad_Pyrrole and HPLC analysis of PrnC substrates 

HPLC samples were run on a Shimadzu HPLC with a ZORBAX (SB-C18 4.6 mm x 15 cm) column run 

with methanol versus water run at a rate of 0.7 ml min-1. Both solvents were acidified with 0.1% 

formic acid and run using the gradient described in the table below. 

LCgrad_Pyrrole HPLC gradient 
showing increase of mobile phase 
(methanol) over time. 
Time (minutes) % Methanol 

0 10 
0.5 10 
20.5 95 
25 95 
26 10 
27 10 

7.12.2.3 UEA LCMS analysis 

Mass spectrometry at UEA was carried out using a Shimadzu single quadrupole LC-mass 

spectrometer equipped with an electrospray ionisation source. Separation was on a C18 XBridge 

column (2.1 x 100 mm, 3.5 μm, Waters) using the following gradient of acetonitrile versus 0.1% 

formic acid in water with a flow rate of 0.35 ml min-1 . 

LC-XBridge-Pac gradient showing 
increase of mobile phase (methanol) 
over time. 
Time (minutes) %Acetonitrile 

0 10 
0.5 10 
9 95 
11 95 
11.5 2 
14 2 

Compounds were detected using a PDA detector and electrospray MS in positive ion mode. UV 

spectra were collected from 200-600nm. 

 



 

 
 

234 Chapter SEVEN 

7.12.2.4 JIC LCMS analysis of PrnC standard substrates and assay 

mixtures 

Standard 5 mM solutions were made of the PrnC substrates in 5% DMSO. These were diluted 25 fold 

with 20% MeOH prior to analysis. The reaction mixtures were expected to be about 1mM, so were 

diluted ten fold with 20% MeOH. The samples were centrifuged and the supernatant transferred to 

glass inserts for analysis. Initial broad screening runs demonstrated no problems caused by the 

DMSO, but also little sign of product. Therefore new more concentrated samples were prepared by 

diluting original samples 3 fold for the targeted runs.  

7.12.2.4.1 Broad screening method 

Samples were run on a Surveyor HPLC attached to a DecaXPplus ion trap MS (both Thermo). 

Separation was on a 150×2mm 4μ PolarRP column (Phenomenex) running the following gradient of 

methanol versus 0.1% formic acid in water, at 0.3 ml min-1 and 30°C: 

LC_JIC_Method1 gradient showing 

increase of mobile phase (methanol) 

over time. 

Time (minutes) % Methanol 

0 2 

1 2 

20 95 

22 95 

22.5 2 

28.8 2 

 

Detection was by UV and electrospray MS. UV spectra were collected from 200-600nm. MS analysis 

was performed with duplicate runs in positive and negative mode (only positive data was used for 

data analysis as the negative data added nothing). The instrument was set up to collect full scan data 

from m/z 100-800 and data-dependent zoom-scans and MS2 of the most abundant precursors in the 

range 100-400. MS2 was carried out at 35% collision energy and with an isolation width of m/z 4.0, 

with dynamic exclusion to ensure that after three spectra had been collected for a precursor ion, it 

would be ignored for 0.5min in favour of the next most abundant precursor ion. Spray chamber 

conditions were 50 units sheath gas, 5 units aux gas, 350°C capillary temperature, and 3.8kV spray 

voltage using a steel needle kit. 
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7.12.2.4.2 Targeted method 

The targeted method was identical to the screening method but without zoom-scans and data-

dependent MS2 scans were exchanged for targeted scans of the masses expected for the hydrogen 

and sodium adducts of the products. Individual methods were used for each expected starting 

material and product to ensure that there were enough scans across any chromatographic peak (too 

many different scan events slow down the instrument and make it difficult to recognise a peak as 

genuine when it contains only one or two scans) 

. 



 

Appendix 1: Production and Analysis of 5

Production of pure 5-halo

To enable the assignment of new HPLC peaks formed during the biotransformation reactions with 

tryptophan synthase in this study, pure quantities of the 5

chloro and 5-bromo) we

contained within this study. The halo

to yield crystalline solids. These solids were characterised by 

so they could be used as standard samples for HPLC analysis.

Characterisation of pure

1
H NMR: 

(D2O): δ ppm 3.29 (dd, J=15.4, 7.1 Hz, 1H), 3.36 (dd, 

(td, J=9.3, 2.4 Hz, 1H), 7.24 (d, 

LCMS: 

Figure A1.1: Total ion chromatogram and MS analysis of the major ion peak visible on the LCMS 

analysis of 5-fluoro-tryptophan

The calculated molecular mas

chromatogram for the sample of pure 5

minutes (figure A1.1). This peak corresponded to a major ion of 

hydrogen adduct of the product (M+H).

 

 
 

Appendix 1: Production and Analysis of 5-halo-tryptophan

halo-tryptophans 

To enable the assignment of new HPLC peaks formed during the biotransformation reactions with 

tryptophan synthase in this study, pure quantities of the 5-series of halo

bromo) were synthesised using the tryptophan synthase biotransformation method 

contained within this study. The halo-tryptophans were purified by reverse

to yield crystalline solids. These solids were characterised by 1H NMR and LCMS to verify 

so they could be used as standard samples for HPLC analysis. 

Characterisation of pure 5-fluoro-tryptophan by
 1

H NMR and LCMS and HPLC

=15.4, 7.1 Hz, 1H), 3.36 (dd, J=15.4, 5.4 Hz, 1H), 4.23 (t, 

=9.3, 2.4 Hz, 1H), 7.24 (d, J=2.4 Hz, 1H), 7.26 (s, 1H), 7.36 (dd, J=8.9, 4.5 Hz, 1H)

Figure A1.1: Total ion chromatogram and MS analysis of the major ion peak visible on the LCMS 

tryptophan 

The calculated molecular mass of 5-fluoro-tryptophan (C11H11N2O2F) is 222.08. The total ion 

chromatogram for the sample of pure 5-fluoro-tryptophan showed a single peak at around 7.7 

minutes (figure A1.1). This peak corresponded to a major ion of m/z 222.95 which represents the 

gen adduct of the product (M+H). 
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tryptophan Standards 

To enable the assignment of new HPLC peaks formed during the biotransformation reactions with 

series of halo-tryptophans (5-fluoro, 5-

re synthesised using the tryptophan synthase biotransformation method 

tryptophans were purified by reverse-phase chromatography 

H NMR and LCMS to verify their purity 

H NMR and LCMS and HPLC 

=15.4, 5.4 Hz, 1H), 4.23 (t, J=6.2 Hz, 1H), 6.94 

=8.9, 4.5 Hz, 1H) 

Figure A1.1: Total ion chromatogram and MS analysis of the major ion peak visible on the LCMS 

F) is 222.08. The total ion 

tryptophan showed a single peak at around 7.7 

222.95 which represents the 



 

HPLC: 

Analysis of the 5-fluoro-

retention time of 7.6 minutes (figure A1.2). The PDA spectrum of the compound shows a λ

of 278 nm. The retention ti

an unknown sample. 

Figure A1.2: HPLC trace and PDA spectrum of 5

The concentration of 5-fluoro

peak area if a number of standard solutions of 5

5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables the 

construction of a standard curve with a gra

estimate 5-fluoro-tryptophan concentration in an unknown sample. For increased accuracy the peak 

areas are calculated at the specific λ

Figure A1.3: Standard curve constructed of 5

area at 278 nm. 

 

 

 
 

-tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 7.6 minutes (figure A1.2). The PDA spectrum of the compound shows a λ

of 278 nm. The retention time and the PDA spectrum can be used to identify 5

Figure A1.2: HPLC trace and PDA spectrum of 5-fluoro-tryptophan showing the 

fluoro-tryptophan in an unknown sample can be calculate

peak area if a number of standard solutions of 5-fluoro-tryptophan of known concentrations (0.125

5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables the 

construction of a standard curve with a gradient of y=5E+06x (figure A1.3). Thi

tryptophan concentration in an unknown sample. For increased accuracy the peak 

areas are calculated at the specific λmax of 278 nm. 

Figure A1.3: Standard curve constructed of 5-fluoro-tryptophan concentration versus HPL
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tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 7.6 minutes (figure A1.2). The PDA spectrum of the compound shows a λmax value 

me and the PDA spectrum can be used to identify 5-fluoro-tryptophan in 

tryptophan showing the λmax as 278 

tryptophan in an unknown sample can be calculated from the HPLC 

tryptophan of known concentrations (0.125- 

5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables the 

dient of y=5E+06x (figure A1.3). This can be used to 

tryptophan concentration in an unknown sample. For increased accuracy the peak 

tryptophan concentration versus HPLC peak 



 

Characterisation of pure

1
H NMR: 

 (D2O): δ ppm 3.24 (dd, J=15.2, 7.1 Hz, 1H), 3.31

(d, J=9.7 Hz, 1H), 7.21 (s, 1H), 7.32 (d, 

LCMS: 

Figure A1.4: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

LCMS analysis of 5-fluoro

The calculated molecular mass of 5

chromatogram for the sample of pure 5

minutes (figure A1.4). This peak corresponded to a major ion of 

the hydrogen adduct of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of chlorine with two isotope peaks at 238.96 (100%) and 241.02 (33.42%) which 

correspond to the 35C and 37C isotopes of chlorine which have relative abundances of 10

32.1%. 

HPLC: 

Analysis of the 5-chloro-

retention time of 9.3 minutes (figure A1.5). The PDA spectrum of the compound shows a λ

of 280 nm. The retention time and the PDA spectrum can be used to id

an unknown sample. 

 
 

Characterisation of pure 5-chloro-tryptophan by
 1

H NMR and LCMS and HPLC

=15.2, 7.1 Hz, 1H), 3.31 (dd, J=15.4, 5.4 Hz, 1H), 4.21

9.7 Hz, 1H), 7.21 (s, 1H), 7.32 (d, J=8.7 Hz, 1H), 7.51 (s, 1H) 

Figure A1.4: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

fluoro-tryptophan. The isotope pattern of the major ion is shown.

The calculated molecular mass of 5-chloro-tryptophan (C11H11N2O2Cl) is 238.67. The total ion 

chromatogram for the sample of pure 5-chloro-tryptophan showed a single peak at around 6 

minutes (figure A1.4). This peak corresponded to a major ion of m/z 238.96 (100%) which represents 

of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of chlorine with two isotope peaks at 238.96 (100%) and 241.02 (33.42%) which 

correspond to the 35C and 37C isotopes of chlorine which have relative abundances of 10

-tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 9.3 minutes (figure A1.5). The PDA spectrum of the compound shows a λ

of 280 nm. The retention time and the PDA spectrum can be used to identify 5

238 Appendix 1  

H NMR and LCMS and HPLC 

=15.4, 5.4 Hz, 1H), 4.21 (t, J=6.2 Hz, 1H), 7.09 

Figure A1.4: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

tryptophan. The isotope pattern of the major ion is shown. 

Cl) is 238.67. The total ion 

tryptophan showed a single peak at around 6 

238.96 (100%) which represents 

of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of chlorine with two isotope peaks at 238.96 (100%) and 241.02 (33.42%) which 

correspond to the 35C and 37C isotopes of chlorine which have relative abundances of 100 and 

tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 9.3 minutes (figure A1.5). The PDA spectrum of the compound shows a λmax value 

entify 5-chloro-tryptophan in 



 

Figure A1.5: HPLC trace and PDA spectrum of 5

The concentration of 5-chloro

peak area if a number of standard solutions of 5

– 2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). Thi

estimate 5-fluoro-tryptophan concentration in an unknown sample. For increased accuracy the peak 

areas are calculated at the specific λ

Figure A1.6: Standard curve constructed of 5

area at 280 nm. 

 

 

 

 

 

 

 
 

Figure A1.5: HPLC trace and PDA spectrum of 5-chloro-tryptophan showing the 

chloro-tryptophan in an unknown sample can be calculated from the HPLC 

f standard solutions of 5-chloro-tryptophan of known concentrations (0.125 

2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). Thi

tryptophan concentration in an unknown sample. For increased accuracy the peak 

areas are calculated at the specific λmax of 278 nm. 

Figure A1.6: Standard curve constructed of 5-chloro-tryptophan concentration versus HPLC
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tryptophan showing the λmax as 280 

tryptophan in an unknown sample can be calculated from the HPLC 

tryptophan of known concentrations (0.125 

2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). This can be used to 

tryptophan concentration in an unknown sample. For increased accuracy the peak 

tryptophan concentration versus HPLC peak 



 

Characterisation of pure

1
H NMR: 

 (D2O): δ ppm 3.28 (dd, J=15.4, 7.3 Hz, 1H), 3.36

(s, 1H), 7.26 (d, J=8.7 Hz, 1H), 7.33 (d, 

LCMS: 

Figure A1.7: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

LCMS analysis of 5-bromo

The calculated molecular mass of 5

chromatogram for the sample of pure 5

minutes (figure A1.7). This peak corresponded to a major ion of 

the hydrogen adduct of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of bromine with two isotope peaks at 282.90 (100%) and 284.90 (95.61%) which 

correspond to the 79Br and 81Br isotopes of bromine which share almost the same abundanc

have relative abundances of 100 and 95.61% each.

HPLC: 

Analysis of the 5-bromo

retention time of 9.59 minutes (figure A1.7). The PDA spectrum of the compound shows a λ

of 287 nm. The retention time and the PDA spectrum can be used to id

an unknown sample. 

 
 

Characterisation of pure 5-bromo-tryptophan by
 1

H NMR and LCMS and HPLC

=15.4, 7.3 Hz, 1H), 3.36 (dd, J=15.4, 5.3 Hz, 1H), 4.20

=8.7 Hz, 1H), 7.33 (d, J=8.7 Hz, 1H), 7.74 (s, 1H) 

 

Figure A1.7: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

bromo-tryptophan. The isotope pattern of the major ion is shown.

The calculated molecular mass of 5-bromo-tryptophan (C11H11N2O2Br) is 282.0. The total ion 

chromatogram for the sample of pure 5-bromo-tryptophan showed a single peak at around 10 

minutes (figure A1.7). This peak corresponded to a major ion of m/z 282.90 (100%) which represents 

of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of bromine with two isotope peaks at 282.90 (100%) and 284.90 (95.61%) which 

correspond to the 79Br and 81Br isotopes of bromine which share almost the same abundanc

have relative abundances of 100 and 95.61% each. 

bromo-tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 9.59 minutes (figure A1.7). The PDA spectrum of the compound shows a λ

of 287 nm. The retention time and the PDA spectrum can be used to identify 5
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H NMR and LCMS and HPLC 

=15.4, 5.3 Hz, 1H), 4.20 (t, J=6.3 Hz, 1H), 7.23 

Figure A1.7: Total ion chromatogram and MS analysis of the major total ion peak visible on the 

tryptophan. The isotope pattern of the major ion is shown. 

Br) is 282.0. The total ion 

tryptophan showed a single peak at around 10 

282.90 (100%) which represents 

of the product (M+H). The isotope pattern of this ion strongly suggests the 

incorporation of bromine with two isotope peaks at 282.90 (100%) and 284.90 (95.61%) which 

correspond to the 79Br and 81Br isotopes of bromine which share almost the same abundance and 

tryptophan product by HPLC (LC_gradMeOH) gave a clear peak with a 

retention time of 9.59 minutes (figure A1.7). The PDA spectrum of the compound shows a λmax value 

entify 5-bromo-tryptophan in 



 

Figure A1.8: HPLC trace and PDA spectrum of 5

The concentration of 5-bromo

peak area if a number of standard solutions of 5

– 2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). This can be used to 

estimate 5-bromo-tryptophan concentration in an unknown sample. For increased accuracy the 

peak areas are calculated at the specific λ

Figure A1.9: Standard curve constructed of 5

area at 278 nm. 

 

 

 

 

 

 

 

 

 
 

Figure A1.8: HPLC trace and PDA spectrum of 5-bromo-tryptophan 

bromo-tryptophan in an unknown sample can be calculated from the HPLC 

peak area if a number of standard solutions of 5-bromo-tryptophan of known concentrations (0.125 

2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). This can be used to 

tryptophan concentration in an unknown sample. For increased accuracy the 

peak areas are calculated at the specific λmax of 287 nm. 

Figure A1.9: Standard curve constructed of 5-bromo-tryptophan concentration versus HPLC peak 
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tryptophan in an unknown sample can be calculated from the HPLC 

tryptophan of known concentrations (0.125 

2.5 mM) are analysed. Plotting the resulting integrated peak areas versus concentration enables 

the construction of a standard curve with a gradient of y=5E+06x (figure A1.6). This can be used to 

tryptophan concentration in an unknown sample. For increased accuracy the 

tryptophan concentration versus HPLC peak 
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1
H NMR of 5-fluoro-tryptophan 
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1
H NMR of 5-chloro-tryptophan 
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1
H NMR of 5-bromo-tryptophan 

 

 



 

Appendix 2: Initial PrnC Assays with Variety of Pyrrole Substrates

Figure A2.1: Range of pyrrole substrates tested with purified PrnC enzyme from chapter 5.

As described in chapter 5.2.3.2.2 a selection of available pyrrole derivatives were trialled as possible 

substrates for PrnC. The candidate pyrroles were examined for how easy they were to detect with 

the HPLC as this would be the method used to d

compounds were found to be amenable for this process as they produced clear peaks on the HPLC 

(figure A2.1). No evidence of chlorinated product could be detected with any of the pyrroles tested. 

The table below shows HPLC traces of the s

peak at 2.5 min in assay mixtures is attributed to the NADH cofactor.
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Appendix 2: Initial PrnC Assays with Variety of Pyrrole Substrates

Figure A2.1: Range of pyrrole substrates tested with purified PrnC enzyme from chapter 5.

As described in chapter 5.2.3.2.2 a selection of available pyrrole derivatives were trialled as possible 

substrates for PrnC. The candidate pyrroles were examined for how easy they were to detect with 

the HPLC as this would be the method used to determine product formation. Nine pyrrole related 

compounds were found to be amenable for this process as they produced clear peaks on the HPLC 

(figure A2.1). No evidence of chlorinated product could be detected with any of the pyrroles tested. 

low shows HPLC traces of the standard compounds and the reaction 

peak at 2.5 min in assay mixtures is attributed to the NADH cofactor. 
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Appendix 2: Initial PrnC Assays with Variety of Pyrrole Substrates 

Figure A2.1: Range of pyrrole substrates tested with purified PrnC enzyme from chapter 5.2.3.2.1. 

As described in chapter 5.2.3.2.2 a selection of available pyrrole derivatives were trialled as possible 

substrates for PrnC. The candidate pyrroles were examined for how easy they were to detect with 

etermine product formation. Nine pyrrole related 

compounds were found to be amenable for this process as they produced clear peaks on the HPLC 

(figure A2.1). No evidence of chlorinated product could be detected with any of the pyrroles tested. 
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Appendix 3: Chemical Synthesis of PrnC Substrate Ana

The following synthesis was carried out by Antoine Abou Fayad

compounds for the assessment of the activity of PrnC.

Scheme A3.1: General scheme of the synthetic routes to the PrnC natural substrate mono

dechloro-aminopyrrolnitrin 35 and unnatural analogues 38 and 39.

(4-(2-amino-3-chloro-phenyl)

The protected, brominated pyrrole, 

with 2-bromo-6-chloroaniline resulted in 

The TLC of this reaction showed several spots and the purification 

without decomposition. Therefore 

before purification.  

 
 

Appendix 3: Chemical Synthesis of PrnC Substrate Analogues

The following synthesis was carried out by Antoine Abou Fayad with the aim of providing 

compounds for the assessment of the activity of PrnC. 

Scheme A3.1: General scheme of the synthetic routes to the PrnC natural substrate mono

olnitrin 35 and unnatural analogues 38 and 39. 

phenyl)-pyrrole) (monodechloroaminopyrrolnitrin)

The protected, brominated pyrrole, 32, was converted into the boronic acid. Suzuki cross

chloroaniline resulted in the N-TIPS protected monodechloroaminopyrrolnitrin, 

TLC of this reaction showed several spots and the purification could not be accomplished 

without decomposition. Therefore the crude material was taken directly through the next 2 steps 
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(1-(triisopropylsilyl)-1H-pyrrol-3-yl)boronic acid (33) (200mg), Na2Cl4Pd (4 mol%), Sphos (2.5 equiv. 

to Pd catalyst), K2CO3 (5 equiv.), and 2-bromo-6-chloroaniline (1.2 equiv.) were placed in a 

microwave vial and purged with N2. Degassed water:acetonitrile (1:9) and a magnetic stirrer bar. The 

reaction was placed into the microwave. Continuous microwave irradiation of 250 W was used for 

90 minutes; the temperature was increased from room temperature to 90°C and then kept constant 

for the duration. The mixture was allowed to cool to room temperature. TLC (Solid phase: silica on 

aluminum plate, eluent: hexane: ethyl acetate 9:1, visualization: UV, iodine) showed the formation 

of compound (34) with an Rf of 0.628. The reaction mixture was diluted in ethyl acetate (30ml) and 

extracted with saturated sodium bicarbonate (2x20ml). The organic layer was dried over magnesium 

sulfate, filtered, and then concentrated. This yielded a compound that did not match the desired 

target after full characterization.  

4-(2-nitrophenyl)-1-(triisopropylsilyl)-1H-pyrrole 

4-bromo-1-(triisopropylsilyl)-1H-pyrrole (32) (200mg, 0.66mmol), Na2Cl4Pd (4 mol%), Sphos (2.5 

equiv. to Pd catalyst), K2CO3 (5 equiv.), and 2-nitrobenzene boronic acid  (1.2 equiv.) were placed in a 

microwave vial and purged with N2 . Degassed water:acetonitrile (1:9)  and a magnetic stir bar. The 

vial was then placed into the microwave. Continuous microwave irradiation of 250 W was used for 

90 minutes, the temperature increasing from room temperature to 90°C and then kept constant for 

the duration. The mixture was then allowed to cool to room temperature. TLC (Solid phase: silica on 

aluminum plate, eluent: hexane: ethyl acetate 9:1, visualization: UV, iodine) was taken and showed 

the formation of compound (36) with an Rf of 0.628. Afterwards, reaction mixture was diluted in 

ethyl acetate (30ml) and extracted with saturated solution of sodium bicarbonate (2x20ml). The 

organic layer was dried over magnesium sulfate, filtered, and then concentrated. The crude material 

was purified using column chromatography (Solid phase: silica, eluent (hexane: ethyl acetate 13:1 

with 5% triethylamine) affording 4-(2-nitrophenyl)-1-(triisopropylsilyl)-1H-pyrrole (36) as a thick dark 

yellow oil (156mg, 0.453mmol, yield: 68%).  1H NMR ((CD3)2CO): δ ppm 1.132 (d, J =7.4, 18H), 1.547 

(dq, J = 7.7, 15.3, 3H), 6.413 (dd, J = 1.6, 2.6, 1H), 6.908 (t, J = 2.3, 1H), 7.056 (t, J = 1.5,1H), 7.407 

(ddd, J = 1.5, 7.6, 8.0, 1H), 7.584 (td, J = 1.5, 8.0, 1H), 7.664 (ddd,J = 1.1, 3.1, 4.6, 1H); 13C NMR 

((CD3)2CO): δ ppm 151.278, 133.202, 132.271, 130.979, 128.235,127.147, 124.716, 124.632, 122.742, 

111.943, 19.081, 13.232; HRMS (ESI) m/z: calculated for C19H28N2O2Si: 344.1920. Found 344.1927. 
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2-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)aniline 

4-(2-nitrophenyl)-1-(triisopropylsilyl)-1H-pyrrole (50mg, 0.145mmol) was dissolved in methanol 

(5ml) in a 25ml round bottom flask and Pd-C (20% w/w) was carefully added to the solution (under 

hydrogen atmosphere with a pressure of 1 atm). the reaction mixture was left stirring for 2 hours at 

room temperature. A TLC (Solid phase: silica on aluminum plate, eluent: hexane: ethyl acetate 9:1, 

visualization: UV, iodine) was taken after the 2 hours and it showed the formation of compound (37) 

with an Rf of 0.510. The reaction mixture was filtered through a plug of celite (eluent: warm 

methanol). The solution was concentrated and purified using column chromatography (Solid phase: 

silica, eluent(hexane: ethyl acetate 13:1 with 5% triethylamine) affording 2-(1-(triisopropylsilyl)-1H-

pyrrol-3-yl)aniline (35mg, 0.111mmol, yield: 76%) as a yellow oil.  .  1H NMR ((CD3)2CO):δ 1.162 (d, J 

=8.54 Hz, 18H), 1.582 (td, J = 14.86, 7.82 Hz, 3H), 6.514 (dd, J = 2.74, 1.60 Hz, 1H), 6.632 (d, J =1.10 

Hz, 1H), 6.734 (m, 1H), 6.946 (m, 2H), 7.041 (s, 1H), 7.172 (dd, J = 7.67, 1.35 Hz,1H); 13C NMR 

((CD3)2CO): δ ppm 143.603, 129.624, 126.865, 124.634, 123.817, 122.512,122.227, 118.468, 115.421, 

110.634, 17.821, 11.635; HRMS (ESI) m/z: calculated for C19H30N2Si: 314.2178. Found 314.2187. 

4-(2-nitrophenyl)-1H-pyrrole: 

4-(2-nitrophenyl)-1-(triisopropylsilyl)-1H-pyrrole (100mg, 0.29mmol) was dissolved in anhydrous THF 

(20ml) in a 50ml round bottom flask that was wrapped in aluminum foil due to the light sensitivity. 

Tetra-n-butylammonium fluoride (TBAF) (2equiv.) was added to the reaction and mixture was left 

stirring at room temperature for 30 minutes. A TLC (Solid phase: silica on aluminum plate, eluent: 

hexane: ethyl acetate 4:1, visualization: UV, iodine) was taken showing formation of compound (38) 

with an Rf value of 0.16 and no trace of starting material was found. Reaction was quenched with 

aqueous ammonium chloride solution (5ml). Afterwards, reaction mixture was diluted in ethyl 

acetate (30ml) and extracted with aqueous ammonium chloride solution (10ml) three times. Organic 
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layer was then dried over magnesium sulfate, filtered, and then concentrated. The crude material 

was filtered over a silica plug (eluent: 6:1 hexane: ethyl acetate (100ml) followed by 1:1 hexane: 

ethyl acetate (100ml)), affording 4-(2-nitrophenyl)-1H-pyrrole as a dark yellow oil. 1H NMR 

((CD3)2CO): 6.252 (dd, J = 1.7, 2.5, 1H) , 6.872 (dd, J = 1.8, 2.7, 1H), 7.053 (d, J = 1.6, 1H), 7.382 (ddd, J 

= 1.5, 7.5, 8.0, 1H), 7.571 (ddd, J = 1.2, 7.6, 8.5, 1H), 7.634 (m, 1H), 10.28 (s, 1H); 13C NMR ((CD3)2CO) 

δ ppm 142.782, 141.823, 129.356, 126.513, 125.079, 121.254, 117.756, 116.886, 113.163, 101.895; 

HRMS (ESI) m/z: calculated for C10H8N2O2: 188.06. Found 188.045 

 

2-(1H-pyrrol-3-yl)aniline 

2-(1H-pyrrol-3-yl)aniline was prepared same way as described above to yield compound (39) with an 

Rf of 0.21 as a yellow  sticky oil. 1H NMR ((CD3)2CO):δ 6.343 (dd, J =2.5, 4.1, 1H), 6.622 (td, J = 1.2, 

7.4, 1H), 6.746 (dd, J = 1.0, 7.9, 1H), 6.878 (dd, J = 2.6, 4.7, 1H), 6.941 (td, J = 1.5, 7.9, 1H), 7.021(dd, J 

= 1.8, 4.1, 1H),   7.149(dd, J = 1.5, 7.5, 1H); 13C NMR ((CD3)2CO)  δ ppm 146.681, 131.029, 128.184, 

123.121, 123.594, 120.142, 119.096, 117.772, 116.920, 109.454; HRMS (ESI) m/z: calculated for 

C10H10N2: 158.0844. Found 158.0847. 
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1
H NMR of compound 35 (4-(2-amino-3-chloro-phenyl)-pyrrole) (monodechloroaminopyrrolnitrin) 
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1
H NMR of compound 39 4-(2-nitrophenyl)-1H-pyrrole: 
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13
C NMR of compound 39 4-(2-nitrophenyl)-1H-pyrrole: 
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1
H NMR of compound 38 2-(1H-pyrrol-3-yl)aniline 
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13
C NMR of compound 38 2-(1H-pyrrol-3-yl)aniline 
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