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Abstract 
 
Neural stem cells in the adult mammalian brain have been extensively studied and well 

characterised. However, apart from the classical stem cell niches of the lateral ventricle and 

the hippocampus, other brain areas, including the hypothalamus and amygdala, are 

potential novel stem cell niches. These areas have previously been found to express 

fibroblast growth factor 10 (Fgf10), known to maintain stem cell niches in other tissues. Here 

the hypothalamus and amygdala are investigated as potential novel neural stem cell niches, 

and the possibility of the olfactory bulb as the target of a putative migratory stream from 

the amygdala is assessed. Using a combination of immunohistochemistry, BrdU 

incorporation assays, genetic lineage tracing and in vitro cultures, the properties of Fgf10 

expressing cells were examined. The Fgf10 expressing cells of the hypothalamus, the 

tanycytes, were found to express stem cell markers, and are capable of division in vivo. This 

stem cell niche was found to be generated during development and continues to be present 

into adulthood. Although proliferation is highest in the early post-natal period, it continues 

into later life. The Fgf10+ lineage is able to generate neurons and glia both in vivo and in 

vitro. Given the location of newly generated Fgf10+ lineage derived neurons in the 

hypothalamus, a function in control of energy balance seems likely. In contrast, in the 

amygdala Fgf10+ cells do not appear to be stem cells, but mostly mature neurons. These do 

not express neural stem cell markers or incorporate BrdU. In the olfactory bulb, the majority 

of Fgf10+ cells, which are found in all layers, are mature neurons, of both a glutamatergic 

and GABAergic phenotype. Although the function of Fgf10 in these brain areas is as yet 

unknown, it marks a diverse population of cells, and is a candidate molecule to fulfil a 

number of different functions in these cells. 
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1.1 - Adult neural stem cells 

The adult brain is characterised by a large proportion of terminally differentiated 

cells, the neurons. These cells are incapable of cell division, and as such the adult brain is 

highly sensitive to insults causing cell death, such as neurodegenerative diseases such as 

Alzheimers and Parkinsons, or traumatic injuries such as ischemic stroke. For many years, 

the accepted view was that no stem cells exist in the adult brain, and that any cell loss 

was irreversible. However, as early as the 1960s this view began to change with the work 

of Robert Altman. In a series of experiments with radioactively labelled thymidine (3H-

thymidine) he undertook a search for dividing cells in the adult rodent brain. The first 

study to show cell division in the brain showed incorporation of 3H-thymidine in the rat 

brain, indicative of cell division, following electrolytic lesions (Altman, 1962). Later, he 

showed constitutive cell division in the hippocampus (Altman and Das, 1965), cerebral 

cortex (Altman and Das, 1966) and olfactory bulb (Gould et al., 1999). An electron-

microscopic analysis of these cells showed a neuronal morphology (Kaplan and Hinds, 

1977). Apart from neurogenesis, adult formation of oligodendrocytes was reported by 

Paterson in 1973 (Paterson et al., 1973) and new astrocytes in the post-natal brain were 

found by Schmechel and Rakic in 1979 (Schmechel and Rakic, 1979). These findings were 

not widely accepted. It was only after the detection of seasonal adult neurogenesis in 

songbirds (Barnea and Nottebohm, 1994), (Alvarez-Buylla et al., 1988) that the question 

of adult stem cells in rodents came to the forefront again. 

1.2 – Origin of adult neural stem cells 

Current understanding of the adult neural stem cells suggest their origin is in fact 

during development. The formation of the subventricular zone (SVZ) is a prime example 

(fig 1.1). During embryonic neurogenesis, the primitive neuroepithelium forms the earliest  
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precursor population, these will then from the ventricular zone directly abutting the 

developing ventricles (fig 1.1), and later generate the subventricular zone cells. In these 

layers, the neuroepithelium has transformed into several cell types including radial glia. 

These cells, characterised by expression of both stem cells markers such as nestin and 

BLBP and glial markers such as GLAST are the neural stem cells during development. Their 

highly characteristic morphology consists of a cell body in the ventricular zone, with a 

small basal foot on the ventricular surface, and a long radial projection touching the 

outer, or marginal zone of the developing brain (see fig 1.1). Late during gestation and in 

the perinatal period, the ventricular zone is transformed into the ependymal surface layer 

which, at least in the SVZ, does not have stem cell potential (Charrier et al., 2006), and 

only the SVZ of the lateral ventricle and the dentate gyrus of the hippocampus remain as 

stem cell niches into adulthood. Although many of the embryonic radial glia transform 

into terminally differentiated astrocytes, it has been shown by viral lineage tracing the 

these cells are indeed the source of the adult neural stem cell, as they are capable in later 

life of generating all neural lineages (Merkle et al., 2004) 

 

1.3. – Canonical niches for adult neural stem cells 

Two well-described niches for adult neural stem cells are the subventricular zone (SVZ) of 

the lateral ventricle, and the subgranular zone (SGZ) of the hippocampal dentate gyrus.  

 

1.3.1 Subventricular zone of the lateral ventricle 

 In the SVZ, the NSC niche is closely associated with the ventricular wall. The ventricle is 

lined with a single cell layer of ciliated ependymal cells, which form the barrier between 

the lumen of ventricle and the surrounding tissue. While it was known for a long time that 
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this area contained neural stem cells, for many years it was unknown whether these were 

the ependymal cells or some other cell type. However, most evidence now points to the 

fact that the ependymal cells themselves are not stem cells, but that the stem cells are 

closely associated with the ependyma. The actual stem cells are located in the cell layers 

directly adjacent to the ependymal layer and can have apical processes that extend to the 

lumen and contain a single cilium (Zhao et al., 2003). Three main cell types interact to 

make the SVZ NSC niche (see fig 1.2). The actual glial stem cells, usually called ‘B-cells’, are 

GFAP+/nestin+/BLBP+ slowly dividing cells. These stem cells generate a more rapidly 

dividing transit amplifying cell, the ‘C-cells’ which are GFAP-/Dlx2+. These populations are 

not mutually exclusive, transit amplifying cells can be ‘regressed’ into multipotent stem 

cells by stimulation with EGF (Doetsch et al., 2002). The ‘C-cells’ then in turn produce the 

migratory neuroblasts, the GFAP-/Dlx2+/doublecortin+ ‘A-cells’ which migrate to their 

destination to form new neurons.  

The non-neurogenic terminally differentiated astrocytes in the niche are vital for 

niche maintenance. They envelop and contact all cell types in the niche (Seri et al 2004), 

stimulate neurogenesis (Lim and Alvarez-Buylla, 1999), and may facilitate signalling 

throughout the niche via gap junction coupling (Giaume and Venance, 1998). The 

ependymal cells, although not the stem cells they were once thought to be (Johansson et 

al., 1999), do play an important role in maintaining the stem cells niche by secreting the 

BMP antagonist noggin, preventing premature differentiation (Peretto et al., 2004), and 

the growth factor Fgf2 (Hayamizu et al., 2001). The entire niche is connected by 

specialised basal laminae known as fractones, extending from the local blood vessels,  
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Fig 1.2 – Cytoarchitechture of the canonical neural stem cell niches. (A) The 
stem cell niche of the SVZ is closely connected to the lateral ventricle (LV). The B-
cells are in close proximity to the ependymal cells, and some extend small end-
feet to the ventricular surface itself. The B-cells either generate the transit 
amplifying C-cell, or selfrenew. The C-cells, which under certain conditions can 
revert into B-cells, normally generate migratory neuroblasts, A-cells, which leave 
the SVZ toward the olfactory bulb. The whole niche is invested by a specialised 
basal lamina (BL), extending from local bloodvessels (BV). 
(B) In the hippocampus, the type 1 cells are anchored on bloodvessel (BV) 
derived basal lamina (BL). The type 1 cells generate the intermediate type 2 cells, 
which are neuronal precursors migrating along the radial fibers. Type 2 cells have 
a limited proliferative capacity and generate migratory neuroblasts. The 
neuroblasts  then mature into granular neurons locally.  
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which are thought to bind and concentrate growth factors in the niche (Kerever et al., 

2007). These fractones extend from perivascular macrophages through the SVZ before 

terminating at the ependymal cells. Neural stem cells are in fact clustered around, and 

neuroblasts migrate along, blood vessels, in a laminin/integrin mediated processes 

(Kokovay et al., 2010), (Shen et al., 2008). Apart from laminin-integrin interactions, the 

adhesion protein E-cadherin is required for self-renewal of adult neural stem cells both in 

vivo and in vitro (Karpowicz et al., 2009), indicating the importance of direct cell-cell 

interaction in niche-maintenance. The neuroblasts generated in the SVZ eventually go on 

to form interneurons in the olfactory bulb, which are important to olfactory 

discrimination and memory (Imayoshi et al., 2008). 

 

1.3.2 Subgranular zone of the dentate gyrus 

Many of the basic concepts of the SVZ niche also hold true in the in the 

subgranular zone (SGZ) in the hippocampus, but there are also notable differences. The 

niche here is not associated with a ventricular surface, as the SGZ is not in the vicinity of 

any ventricles (see Fig 1.2b). The stem cells of the SGZ niche are the GFAP+/nestin+/S100β- 

Type 1 cells, which are closely associated with the local vasculature (Gerdes et al., 1983). 

The Type 1 cells produce a Type 2 GFAP- intermediate progenitor cell capable of one or a 

limited number of divisions. These Type2 cells then produce doublecortin+ neuroblasts 

that migrate along the radial fibers of the Type 1 cells to locally form granular neurons 

(Mu et al., 2010). It is still somewhat unclear what the function of the newly generated 

cells is, but they do seem to be required for dentate gyrus dependant learning tasks (Deng 

et al., 2010). 
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1.4 – Potential new niches for adult neural stem cells 

Although the SVZ and SGZ niches have been well studied and thoroughly characterised, 

they may not be the only stem cell niches in the adult mammalian brain (Fig 1.4). The 

hypothalamus and the amygdala as potential stem cell niches will be discussed in detail in 

chapters 3 and 6, respectively. The neocortex, one of the largest areas of the brain, has 

been suggested to contain stem cells. Several areas of the cortex of the primate Macaca 

fascicularies show cells incorporating BrdU, indicating cell division (Sauer and Henderson, 

1988), (Orban et al., 1992). These cells expressed either NeuN or GFAP, indicating 

formation of neurons or glia. The striatum has been found to contain diving cells 

generating neurons in rabbits and primates (Metzger et al., 1995); (Feil et al., 1996). The 

olfactory tubercle sees neurogenesis in primates, but this may be derived from the rostral 

migratory stream originating in the SVZ (Feil et al., 1997). The substantia nigra has been 

observed as a target of migration in the adult mouse (Kellendonk et al., 1996). The vagus 

nucleus of the brain stem of the rat shows cell division and can give rise to neurospheres 

in vitro (Kellendonk et al., 1999). However, in most of these areas there are conflicting 

reports on the presence of neurogenesis or stem cells, and much research remains to be 

done to confirm these areas as neurogenic niches.  
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1.5 - Selfrenewal of adult neural stem cells 

As with any stem cell population, neural stem cells need to undergo selfrenewal 

through either symmetric or asymmetric division, to maintain the number of the 

progenitor pool. A number of factors are required to maintain this selfrenewing capacity. 

Notch1 is required for the maintenance of the adult neural stem cell pools in the SVZ 

(Aguirre et al., 2010) and SGZ (Ables et al., 2010). Conditional deletion of Rbpj, an 

intracellular signalling molecule for notch receptors, causes complete loss of stem cell 

selfrenewal and differentiation of the complete population to transit amplifying cells and 

neuroblasts (Imayoshi et al., 2010). Infusion of the notch ligand Dil4 into the brain leads to 

Fig 1.3 - Schematic location of canonical and potential novel neural stem cell 
niches in the adult brain. In dark blue, the hippocampus (Hi) and subventricular 
zone (SVZ) are known to contain neural stem cells. Other areas that potentially 
contain neural stem cells include the neocortex (Co), striatum (Str), olfactory 
tubercle (Olf), amygdala (Am), hypothalamus (Hy), substantia nigra (SN) and vagus 
nucleus (VN) 
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increased proliferation (Androutsellis-Theotokis et al., 2006). Also involved in the notch 

mediated selfrenewal is the presenilin 1 gene, known to be involved in the pathology of 

Alzheimer’s disease, which is thought to be involved in notch cleavage (Veeraraghavalu et 

al., 2010). The fact that notch is required for stem cell selfrenewal can also explain the link 

between the vasculature and stem cell niches, as vascular derived PEDF induces Notch 

expression in neural stem cells (Andreu-Agullo et al., 2009). The main intracellular 

effectors of Notch signalling are the basic helix-loop-helix transcription factors of the Hes 

family, Hes 1, 3 and 5, which are known to be key repressors of neurogenesis during 

development, preserving the stem cell state (Hatakeyama et al., 2004), (Kageyama et al., 

2005). Other cell-extrinsic factors promoting self-renewal are LIF and CNTF, which use the 

JAK/STAT pathway to promote cell proliferation (Bauer, 2009). 

Sonic hedgehog is expressed selectively in the ventral lateral ventricle ependyma, 

and promotes proliferation of these cells (Palma et al., 2005), as well as specifiying 

neuronal fates in these cells (Ihrie et al., 2011). 

The orphan nuclear receptor TLX has long been known to be important for 

selfrenewal (Shi et al., 2004), as cells deficient in TLX have greatly reduced proliferation 

potential in vitro (Zhang et al., 2008). Inducible knockouts of TLX show a complete loss of 

neurogenesis from the SVZ (Lie et al., 2005), and are impaired in learning tasks (Zhang et 

al., 2008). The effect of TLX in neural stem cells may be mediated by activation of the 

Wnt/β-catenin pathway (Qu et al., 2010), but at least part of the mechanism seems to be 

the histone deacetylase mediated silencing of p21 and PTEN (Sun et al., 2007). The ligand 

for TLX is still unknown, although it is known to be targeted by microRNAs, specifically 7b 

(Zhao et al., 2010) and 9 (Zhao et al., 2009). 
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The transcription factor Sox2 is crucial for stem cell maintenance, as low levels of 

Sox2 in the adult lead to a loss of neural stem cells (Ferri et al., 2004). Sox2 maintains 

neural stem cells through a Shh dependant pathway (Favaro et al., 2009). Another factor 

that is required for stem cell maintenance is BMI1, which promotes selfrenewal in vivo 

and in vitro (Yadirgi et al., 2011). 

Wnt signalling is strongly involved in the neural stem cell biology. Enhancing Wnt 

signalling increases proliferation in the hippocampus (Lie et al., 2005), and blocking Wnt 

signalling decreases proliferation (Qu et al., 2010). Wnt is required for maintenance of the 

stem cell niche, inhibition of Wnt in vivo leads to progenitor depletion followed by 

overproduction of neurons (Wexler et al., 2009). Wnt signalling has been found to 

promote symmetric over asymmetric division (Piccin and Morshead, 2010).  

 

 

1.6 - Neuroblast migration 

The immature progeny of the adult neural stem cell, the neuroblast, is 

characterised by its migratory behaviour, both in the SVZ and in the hippocampus. From 

the SVZ, neuroblasts migrate towards the olfactory bulb, the rostral migratory stream 

(RMS) (Luskin, 1993), (Lois and Alvarez-Buylla, 1994), while in the hippocampus cells only 

migrate short distances locally.   

The RMS starts at the subventricular wall, from which the immature neuroblasts 

(A-cells) align in a chain migration, where cells migrate along each other in direct cell-cell 

contact (fig 1.4). The initiation of the RMS, the departure of neuroblasts from the 

ventricular wall niche, is mediated by a combination of cytoarchitecture and cell signalling  
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events. The direction of the radial glia fibres from which the neuroblasts are born imparts 

the initial direction of migration, which is crucial for the initialisation of the RMS 

(Ghashghaei et al., 2007). The departure of neuroblasts from the SVZ is further promoted 

by repulsive signalling through ROBO/Slit interactions (Perez-Martin et al., 2010), (Nam et 

al., 2007).   

The stream of chain migrating neuroblasts is contained and given directionality by 

a surrounding layer of astrocytes, forming a glial tunnel through which the neuroblasts 

migrate. Although the overall direction of migration is rostrally from the SVZ to the OB, an 

individual neuroblast may undergo a more complex motion, including stops and 

temporary reversals of direction (Nam et al., 2007). Cell-cell contacts are crucial for 

maintaining the migration, as gap junctions between the neuroblasts are required (Marins 

et al., 2009).  Other cell-cell contacts required for the formation and maintenance of the 

chain migration are mediated by integrin/laminin interactions, especially β1 integrins 

(Belvindrah et al., 2007). Other important adhesion molecules are the neural adhesion 

molecules NCAMs, specifically the polysialated form PSA-NCAM. Enzymatic removal of the 

PSA moieties from NCAM in vivo leads to a disturbed RMS morphology and ectopic 

neuroblast migration (Battista and Rutishauser, 2010).  

The glial tunnel also speeds up neuroblast migration, by up to 20% compared to 

the neonatal RMS, where the glial tunnel is not yet formed (Bovetti et al., 2007). The 

presence of the glial tunnel also seems to ease migration by providing a permissible 

extracellular matrix environment, as blocking of MMP activity with a broad spectrum 

inhibitor did not inhibit chain migration in the glial tunnel, but did negatively affect 

migration of individual neuroblasts. (Bovetti et al., 2007). As in the actual stem cell niches, 

the local vasculature plays an important role in migration, many migrating neuroblasts 
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directly contact blood vessels and release of BDNF from the vascular endothelium 

modulates their migration (Whitman et al., 2009), (Snapyan et al., 2009). 

During migration, neuroblasts undergo a characteristic cell morphology change 

cycle.  At the initiation of the migration, a leading process forms, the cytoskeletal 

centrosome translocates to the process, and the nucleus translocates in the direction of 

the migration, after which the cycle repeats. This process is mediated by GSK3β and PKCζ 

controlled dynamic microtubule remodelling (Higginbotham et al., 2006). One of the most 

widely used markers for migrating neuroblasts, doublecortin, is required for these cell 

morphology changes (Koizumi et al., 2006). In the olfactory bulb, the end of the RMS, the 

neuroblasts are induced to break from the chain migration stream, and individually 

migrate to their final destination. The main signal that neuroblasts encounter that drives 

them out of the RMS is reelin (Hack et al., 2002), when reelin is ectopically administered, 

the chain migration of the RMS breaks down (Courtes et al., 2010). Once out of the RMS, 

local cues direct the final localisation and differentiation of the new neurons, see chapter 

6 for further details. 

 

1.7 - Differentiation of neural stem cells 

The exact fate a neural stem cell will adopt is dependant both on cell-intrinsic and 

extrinsic cues. The neuronal differentiation potential of SVZ stem cells is dependent on 

their location within the SVZ, different spatial populations preferentially form specific 

types of neurons through some form of cell-intrinsic programming (Merkle et al., 2007). 

For instance, dopaminergic interneurons are generated mainly from the dorsal SVZ, while 

GABAergic ones mostly originate ventrally. These populations are derived from different 

embryonic origins (Young et al., 2007). Initial neuronal differentiation is induced by the 
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transcription factors NeuroD (Boutin et al., 2010) and Mash1 (Parras et al., 2004). 

Differentiation into glutamatergic neurons is driven by Neurog2 and Tbr2 (Brill et al., 

2009). Differentiation into calretinin positive interneurons is driven by the transcription 

factor Sp8 (Waclaw et al., 2006), and dopaminergic differentiation is driven by Sal3 

(Harrison et al., 2008) and Pax6 (Hack et al., 2005). Following commitment to a neuronal 

fate and arrival at their final destination, the new neurons receive a number of cues to 

start forming dendritic networks and synapses, these include neurotransmitters such as 

glutamate and GABA (Tashiro et al., 2006), (Gascon et al., 2006), and growth factors such 

as BDNF (Bergami et al., 2008). Gradients of these factors may lead neuroblasts to their 

final destination. 

In contrast to neuronal differentiation, little is known about glial differentiation 

from adult neural stem cells. Differentiated glial cells are readily generated from cultured 

neural stem cells, but it seems the majority of progeny in vivo is neuronal. The transition 

from glial stem cell to mature astrocytes is marked by the onset of S100β expression 

(Raponi et al., 2007), and is promoted by BMP4 (Bonaguidi et al., 2005). Oligodendrocytes 

can also be generated from the SVZ cells in vivo. A subset of stem cells already expresses 

the oligodendrocyte transcription factor Olig2 at an early stage of differentiation (Menn 

et al., 2006). In response to experimental demyelination, increased activity of the RMS is 

seen, with an increase in cells expressing Sox9 and Sox 10, transcription factors that are 

associated with oligodendrocyte formation (Nait-Oumesmar et al., 2007). 

In both the SVZ and hippocampus, 50 to 80% of newly generated cells will fail to 

integrate and eventually die (Petreanu and Alvarez-Buylla, 2002; Sun et al., 2004). 
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1.8 Fibroblast growth factors 

Fibroblast growth factors were named after the properties of the first two 

described members of the family, Fgfs 1 and 2 (also known as aFGF and bFGF respectively) 

which act as mitogens for fibroblasts (Thomas et al., 1984); (Bohlen et al., 1984). 

Currently, 22 members of the Fgf family are known, and given the high homology 

between members, and the fully sequenced genomes of model organisms, it is unlikely 

the number will increase. Fgf23 does exist, but this is due to a naming inconsistency, with 

human Fgf19 being the same as mouse Fgf15. A phylogenetic overview of all Fgfs clearly 

shows multiple subfamilies of Fgfs, based on protein homology (see figure 1.5). Members 

of subfamilies often show similar localisations and biological effects. Fgfs are relatively 

small proteins, ranging from 17-29 kDa molecular weight, and have between 13 to 71% 

homology on the protein level. The main conserved regions are in two core regions of 10 

amino acids each, which are responsible for interactions with Fgf receptors (Ornitz and 

Itoh, 2001). 

The majority of Fgfs (1, 3-8, 10, 15, 17-19 and 21-23) contain signal peptides and 

are secreted (Ornitz and Itoh, 2001), while Fgf2 and members of the Fgf9 subfamily (Fgfs 

9, 16 and 20) lack a signal peptide, but are still secreted (Miyamoto et al., 1993), (Miyake 

et al., 1998), (Ohmachi et al., 2000).  Fgfs 11-14 are retained in the cell. 

 

1.9 – Fgf receptors 

Fgfs, with the notable exception of the intracellular Fgfs 11-14, exert their effect 

through the Fgf receptors (FgfR). Five FgfRs have been described so far, although FgfR5 

lacks an intracellular signalling domain, and is thus not capable of signal transduction 

(Sleeman et al., 2001). FgfRs belong to the immunoglobulin family of receptors, with their  
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extracellular domains containing two or three immunoglobulin domains, the 

second and third of which comprise the ligand binding domain, a single-pass 

transmembrane domain and an intracellular split tyrosine kinase domain (figure 1.6a).  

Upon ligand binding, FgfRs form a homodimers (figure 1.6b), in a complex which requires 

sulphate proteoglycans such as heparin as a cofactor (Mohammadi et al., 2005). Upon 

complex formation, several tyrosine residues in the intracellular domain of the FgfR are 

auto-phosporylated, leading to the recruitment of scaffolding and adaptor proteins, most 

prominently fibroblast growth factor substrate 2 (FRS2), which is required for, and 

coordinates further protein binding, leading to the activation a number of possible 

pathways (Gotoh et al., 2005). Binding of a complex with Grb2 and Gab1 activates the PI3 

signalling cascade (Ong et al., 2001), whist binding of Shp2 and SOS activates 

Ras/MAPK/Erk signalling (Hadari et al., 1998) 

In the extracellular domain, the second and third Ig loops bind Fgfs and determine 

ligand specificity. Apart from the four different receptors, further variety is introduced in 

the FgfRs by alternate splicing variants of FgfRs 1-3 (figure 1.6c). Part of the last IgG loop 

can be encoded by a sequence of exons using either exon 8 or exon 9, leading to the FgfR-

IIIb or IIIc isoforms, respectively (Eswarakumar et al 2005). These forms are generally 

shortened to FgfRb/FgfRc. FgfR4 does not undergo alternate splicing, and exists only in 

the IIIc form. The IIIb vs IIIc splice variants different effects on ligand specificity, see table 

1.1. Also, different isoforms have different tissue localisations. 
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Figure 1.6 - Structure, signaling and diversity of the Fgf receptors. The 
FgfRs consist of 3 extracellular IgG loops, the two closest to the 
membrane being the ligand binding domain. A transmembrane domain 
(TM) crosses the membrane and is followed by an intracellular tyrosine 
kinase domain (TK). Upon ligand binding, a homodimer is formed, and the 
tyrosine kinase domains are phosphorylated, leading to further 
downstream signaling. The ligand binding domain of FgfRs 1-3 exists in 2 
isoforms, dependant on alternative splicing of the receptor mRNA. 
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 Table 1.1 – Ligand specificities of the Fgf receptors 
 FgfR1 FgfR2 FgfR3 FgfR4 

Fgf IIIb IIIc IIIb IIIc IIIb IIIc IIIc 

1        
2        
3        
4        
5        
6        
7        
8        
9        

10        
16        
17        
18        
19        
20        

  21*        
22        

23*        
This table show the ligand specificity for each of the FgfR isoforms. Red strong binding, , yellow 
moderate (less than 50% of a strong binding), and green low affinity  (less than 10% of a strong 
response). Data from (Ornitz et al., 1996) and (Zhang et al., 2006). * Fgf21 and Fgf23 require an 
accessory protein, β-klotho, for receptor activation 
 

1.10 Fgf expression and function in developing and adult nervous system 

1.10.1 Fgf1 subfamily (Fgf1 and 2) 

Fgf2 is expressed in selected astrocytes and neurons during development (Xu et 

al., 2005) and adulthood (Gomez-Pinilla et al., 1992). It is also the best known mitogen for 

both embryonic and adult neural stem cells, and is widely used in conjection with EGF in 

culture to promote proliferation and prevent differentiation (Weiss et al., 1996). Fgf2 

knockout animals have been shown to have a reduction in the number of GFAP-positive 

astrocytes, and show blood-brain-barrier defects (Reuss et al., 2003).  
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1.10.2 Fgf4 subfamily (Fgf 4, 5 and 6) 

Fgf4 expression is found in the early notocord, where it is likely involved in setting 

up neural patterning (Shamim et al., 1999). Fgf4 signalling also promotes neurogenesis in 

embryonic stem cells in vitro (Chen et al., 2010). In the adult, Fgf4 expression is seen in 

adult neurogenic niches, including the hippocampus, SVZ and RMS, and was found to both 

increase proliferation of neural stem cells and promote neuronal differentiation in vitro 

(Kosaka et al., 2006). Fgf5 expression was found in both the developing (Goldfarb et al., 

1991) and adult (Haub et al., 1990) nervous system. In adult mouse and human brain, it 

was found to be expressed in neurons in the cortex, hippocampus and thalamus and 

induced neuronal differentiation in PC-12 cells (Ozawa et al., 1998). Prominent expression 

of Fgf5 in the adult brain is seen in the hypothalamus, and is reduced following food 

deprivation, strongly suggesting a role in feeding behaviour (Li et al., 1999). 

 

1.10.3 Fgf7 subfamily (Fgf 3, 7, 10 and 22) 

(Note: Fgf10 will be discussed in detail later) 

Fgf3 is expressed in the developing hindbrain (Mahmood et al., 1996), and is 

thought to be important for patterning during development. It is also expressed in the 

developing forebiran, but is not required for correct forebrain development (Theil et al., 

2008). Fgf7 is expressed in the forebrain ventricular zone, but its function was not known 

at this time (Mason et al., 1994). In the adult, Fgfs 7 and 22 are both expressed in the 

hippocampus (Terauchi et al., 2010). Members of the Fgf7 subfamily Fgfs 7, 10 and 22 

promote neurite outgrowth in culture chick motorneurons, and postnatal inactivation of 

FgfR2, or sequestering of Fgf7 family members by antibodies in the brain disturbs synapse 

formation (Umemori et al., 2004). Fgf7 is involved in formation of inhibitory synapses, 
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while Fgf22 is involved in excitatory synapse formation (Terauchi et al., 2010). The 

importance of these factors is illustrated by the fact that Fgf7 knockouts are more prone 

to epileptic seizures, while Fgf22 knockouts are resistant to induced seizures (Terauchi et 

al., 2010).  

 

1.10.4 Fgf8 subfamily (Fgfs 8, 17 and 18) 

Fgf8 is a crucial organiser in embryonic brain development. It is expressed in the 

isthmic organiser, which induces polarisation and development of the frontal cortex and 

midline cerebellar structures (Xu et al., 2000), (Cholfin and Rubenstein, 2008). These are 8 

different isoforms of Fgf8, the Fgf8b containing isoforms are required for patterning, 

whereas the Fgf8a forms are not (Guo et al., 2010). The other members of the subfamily 

have similar roles; Fgf17 induces midline and cerebellar patterning and neuronal 

differentiation during neural tube organisation (Cholfin and Rubenstein, 2008), Fgf17 

knockouts have reduced amounts of midline and cerebellar tissues (Xu et al., 2000). Fgf18 

has a comparable, but more widespread expression pattern as Fgf8, and in addition to 

mideline patterning, is also involved in cortical patterning (Liu et al., 2003).  

 

1.10.5 Fgf9 subfamily (Fgfs 9, 16 and 20) 

Fgf9 is required for correct development of the cerebellum, as Fgf9 knockout mice 

have a disrupted radial glia formation and neuronal migration, leading to severe ataxia 

(Lin et al., 2009). Fgf9 also promotes survival of embryonic cholinergic forebrain neurons 

in an autocrine or paracrine manner (Kanda et al., 2000), and promotes survival and 

inhibits astrocytic differentiation from cultured adult neural stem cells (Lum et al., 2009). 

Fgf16 does not seem to be expressed in nervous tissue. Fgf20 in the adult brain is 
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expressed in the substantia nigra, where it has promotes differentiation (Grothe et al., 

2004) and survival of domapinergic neurons (Ohmachi et al., 2000), and in the 

hippocampus, where it may affect hippocampal size (Lemaitre et al., 2010). 

 

1.10.6 iFGF subfamily (Fgfs 11-14) 

The iFGF subfamily, also known as fibroblast homologous factors, are not 

secreted as classical Fgfs and do not interact with Fgf receptors (Olsen et al., 2003). They 

are generally not considered canonical Fgfs, but are expressed in the nervous system, 

where they play a role in neuronal signalling through ion channel modulation (Goldfarb, 

2005). Fgf14 has been shown to be involved in dopamine signaling, and Fgf14 knockout 

mice show movement disorders such as ataxia and dyskinesia (Wang et al., 2002). 

 

1.10.7 hFGF subfamily (Fgfs 15/19, 21 and 23) 

Fgf15, known as Fgf19 in human and rat, influences forebrain development, 

through interactions with Fgf8 and Shh at the isthmic organiser (Gimeno et al., 2003), 

(Gimeno and Martinez, 2007), and is required for progenitor cells to exit the cell cycle to 

generate neurons (Fischer et al., 2011). Fgf21 acts as a circulating hormone, which is 

induced by fasting and can cross the blood-brain-barrier (Hsuchou et al., 2007), where it 

can increase both food intake and energy expenditure (Sarruf et al., 2010). Fgf23 is 

preferentially expressed in the thalamus (Yamashita et al., 2000), but its function in the 

brain is currently unknown. 
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1.11 - Fgf10 

Fgf10 was first indentified in 1996 by the Itoh group (Yamasaki et al., 1996), who 

cloned a novel Fgf mRNA from rat brain and found it coded for a 251 aa, 24-26 kDa 

protein. It was found to have high homology with Fgfs 3 and 7, with which it shared a 

hydrophobic N-terminal region that serves as a secretory signal. By northern blot 

expression was found predominantly in the heart and lungs. Cloning of the human (Emoto 

et al., 1997) and mouse (Tagashira et al., 1997), (Beer et al., 1997) homologues quickly 

followed. Initial study of the role of Fgf10 focussed on lung and limb development. It is 

important to note the field has been greatly hindered by the lack of a working antibody 

for immunohistochemistry. Although numerous commercial vendors offer antibodies for 

Fgf10, these are not capable of detecting endogenous levels of Fgf10 in tissue. The study 

of Fgf10 was greatly advanced by the generation of Fgf10 knockout mouse lines.  

 

1.12 - Fgf10 knockout mice 

The first knockout line was produced in the Simonet lab in 1998, by replacing the 

translation initiation site with a neomycin cassette, to disrupt translation (Min et al., 

1998). It was found that homozygous Fgf10 knockouts were not viable, while surviving 

gestation, the knockout animals died at birth. The obvious feature of these animals was a 

complete lack of limbs. Cause of death was found to be an absence of lungs, confirming 

the crucial role already described of Fgf10 in lung and limb formation. Heterozygous 

mutants were found to be viable, and without obvious phenotype. A second knockout line 

was generated in 1999, confirming these findings (Sekine et al., 1999). Further effects of 

knocking out Fgf10 include absence of the thyroid, pituitary and saliva glands, and defects 

in the stomach, teeth, kidneys, hair follicles and digestive tract (Ohuchi et al., 2000). As a 
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parallel, knockouts of the receptor for Fgf10, FgfR2IIIb, show a similar phenotype (De 

Moerlooze et al., 2000).  

 

1.13 – Mutations in Fgf10 and disease in humans 

The phenotype of Fgf10 knockout mice led to comparisons with human congenital 

disorders with similar phenotypes. Two syndromes, aplasia of the lacrimal and salivary 

glands (ALSG) and lacrimo-auriculo-dento-digital syndrome (LADD) have been associated 

with Fgf10 mutations. For ALSG, which is characterised by reduced development of the 

lacrimal and salivary glands, a number of mutations including several SNPs and a 

truncation of Fgf10 were described in two Swedish families (Entesarian et al., 2005). As 

inheritance of ALSG is dominant, indicating one affected copy of Fgf10 is sufficient to 

cause symptoms, heterozygous Fgf10 knockout mouse were re-examined, and found to 

have a similar hypoplastic glandular phenotype (Entesarian et al., 2005). In a different 

affected family, a mutation causing a splice defect in Fgf10 was found (Scheckenbach et 

al., 2008). In LADD, a syndrome with similar presentation as ALSG with the addition of 

defects in teeth and digits, two affected families were found to have mutations in exons 2 

or 3 of the Fgf10 gene (Milunsky et al., 2006), leading to a loss-of-function for Fgf10 

(Shams et al., 2007). 

 

1.14 Roles of Fgf10 in tissue development 

Little data exists on the role of Fgf10 in the adult, due to the lethality of knocking 

out Fgf10, and the lack of antibodies for Fgf10. However, the functions of Fgf10 during the 

development of many tissues have been studied in detail. In these systems, Fgf10 is 
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generally expressed in mesenchymal cells, signalling to FgfR2IIIb receptors expressed on 

the adjacent epithelial cells. 

 

1.14.1 Lung 

Analysis of Fgf10 expression in the developing lung by both RT-PCR and in situ 

hybridization has shown that Fgf10 is expressed from the start of lung development at 

E9.5 in the mouse, and is maintained through to E11.5, with strongest expression seen in 

the most distal end of the developing lung, largely restricted to the mesenchyme (Bellusci 

et al., 1997). Addition of Fgf10, but not of Fgf7, to cultured E11.5 lung buds embedded in 

a Matrigel substrate elicits extensive budding (Bellusci et al., 1997). Addition of Fgf10 

soaked beads to cultured mesenchyme-free E11 mouse lung explants, showed 

chemoattractant effect of Fgf10 on the distal developing lung (Park et al., 1998). The 

requirement for Fgf10 during lung development was shown conclusively when it was 

found that lung formation in Fgf10 knock-out mouse does not progress past the initial 

formation of the trachea (Sekine et al., 1999). The chemoattractive and proliferative 

effects of Fgf10 in the lung are controlled by a negative feedback of BMP4 in the 

underlying lung endoderm (Weaver et al., 2000). In a gene expression study of embryonic 

lung explants stimulated with Fgf10, it was found that BMP receptor type I and Wnt 

pathway component β-catenin were upregulated by Fgf10, as well as genes involved in 

cytoskeleton remodeling and migration, lipid synthesis and a number of cell cycle genes 

(Lu et al., 2005). Using limited lineage tracing, it was found that Fgf10 positive cells in the 

developing lungs can form parabronchial smooth muscle cells, formation of which is 

reduced in an Fgf10 hypomorphic mouse model (Mailleux et al., 2005). Fgf10 

hypomorphic mice also show a simplified lung architecture, along with a reduction in both 
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epithelial and smooth muscle cell numbers (Ramasamy et al., 2007). In contrast, genetic 

overexpression of Fgf10 leads to epithelial hyperplasia and attenuated differentiation 

(Nyeng et al., 2008). Conditional knock-out of Fgf10 during late lung branching (E12.5) 

causes increased apotosis throughout the lung, and reduces Shh and Patched1 

expression, both also known to be involved in lung morphogenesis (Abler et al., 2009). 

Disturbing the levels of Fgf10 in vivo has clearly indicated Fgf10 has both a mitogenic 

effect and maintains undifferentiated lung progenitors. 

 

1.14.2 Stomach 

 Fgf10 null mice have morphogenic defects in the stomach, with the smooth 

muscle cell layer being absent (Ohuchi et al., 2000). Closer analysis of Fgf10 knockouts has 

shown a reduced stomach size, particularly of the glandular stomach, along with a 

simplified mucosal architecture (Spencer-Dene et al., 2006). In the developing stomach, 

Fgf10 is expressed from at least E11.5 (prior to cell fate specification), and ectopic 

expression of Fgf10 throughout the stomach leads to epithelial hyperplasia at the cost of 

endocrine differentiation, along with an increased proliferative index and disruption of 

normal Notch and Wnt signaling (Nyeng et al., 2007) 

 

1.14.3 - Pancreas 

In the pancreas, Fgf10 expression is detectable by RT-PCR at E12, and is expressed 

throughout development. In culture, a mesenchyme free pancreatic preparation exposed 

to exogenous Fgf10 shows a mitogenic response, along with a more branched 

morphology and a shift in differentiation pattern to favour the exocrine over the 

endocrine lineage (Miralles et al., 1999). In Fgf10 knock-outs a marked reduction in 
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pancreatic epithelium is seen, due to reduced progenitor cell proliferation, which can be 

rescued in vitro by addition of Fgf10 (Bhushan et al., 2001). Ectopic constitutive Fgf10 

expression leads to hyperprofileration of undifferentiated cells, characterised by 

expression of Notch (Norgaard et al., 2003); (Hart et al., 2003). The effect of Fgf10 on 

pancreatic precursors was found to be mediated through the Notch pathways, in a Hes1 

dependant mechanism (Miralles et al., 2006). 

 

1.14.4 Limbs 

 The most striking feature of Fgf10 knock-outs is the complete lack of limb 

development, indicating the crucial role of Fgf10. Formation of limbs starts with the 

induction of the limb bud from the apical ectodermal ridge (AER), where Fgf10 signalling 

from the lateral plate mesoderm induces reciprocal Fgf8 signalling from the AER, 

reinforcing the Fgf10 signal (Ohuchi et al., 1997).  

 

1.14.5 Adipose tissue 

 Fgf10 was found to be highly expressed in the white adipose tissue, specifically in 

the pre-adipocytes, the precursors to mature adipocytes, and acted as a mitogen for the 

pre-adipocytes (Yamasaki et al., 1999), Fgf10 is required for the differentiation of pre-

adipocytes into mature adipocytes (Sakaue et al., 2002), which is clearly illustrated by the 

fact that Fgf10 knockouts have disturbed fat morphogenesis through the downregulation 

of transcription factors C/EBPβ and PPARγ (Asaki et al., 2004). The proliferative effect of 

Fgf10 on pre-adipocytes is mediated through a Ras/MAPK dependant expression of cell 

cycle protein cyclin D2 (Konishi et al., 2006). 
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1.14.6 Teeth 

 Defects in tooth morphogenesis were noted in Fgf10 knock-out mice (Ohuchi et 

al., 2000). Fgf10 is required to maintain the stem cells compartment of the growing 

incisor, with Fgf10 knockouts, or animals in which Fgf10 was sequestered with antibodies 

showing premature growth arrest, which can be rescued with exogenous Fgf10 (Harada et 

al., 2002) 

 

1.14.7 Small intestine 

 The developing duodenum expresses Fgf10 at an early stage (E8.5 in the mouse), 

and loss of Fgf10 leads to duodenal atresia, where the lumen of the duodenum fails to 

form (Kanard et al., 2005). Close examination of the role of Fgf10 by comparison of 

knockouts and animals overexpressing Fgf10 in the small intestine showed that Fgf10 is 

required for maintenance of the intestinal stem cell niche, as overexpression caused an 

expanded and ectopic stem cell compartment, whereas loss of Fgf10 caused premature 

differentiation (Nyeng et al., 2011). 

 

1.14.8 Liver 

 Livers of Fgf10 knockout mice showed a significantly reduced size and number of 

proliferating cells, while analysis in vitro showed that the effect of Fgf10 is mediated via β-

catenin dependent mechanism (Berg et al., 2007). 

 

 

 

 



  Chapter 1 - Introduction 

 40 

1.15 – Expression and functions of Fgf10 in the brain. 

 During development, Fgf10 has an important role in controlling the size of the cortex. In 

the cortex, Fgf10 is expressed at E10.5 and E11.5, although expression in the 

hypothalamus is seen as early as E9.5. In Fgf10 knockouts, the initial transition from 

neuroepithelium to radial glia is delayed. Once the glia are formed, they undergo more 

symmetric divisions, and eventually overproduce neuroblasts, leading to a larger than 

normal cortex (Sahara et al 2009). In the adult brain, Fgf10 expression has been studied 

using in situ hybridisation, with expression reported in the hippocampus, thalamus, 

midbrain, brainstem and the oculomotor, dorsal motor trigeminal facical and hypoglossal 

nuclei (Hattori et al., 1997). However, a more complete description of the expression of 

Fgf10 was performed by Hajihosseini et al, using a lacZ reporter mouse for Fgf10 

(Fgf10nlacZ) (Hajihosseini et al., 2008). This particular reporter strain has a nuclear targeted 

lacZ insert upstream of the Fgf10 promoter, which is produced as a separate protein. 

Owing to the high stability of the β-galactosidase reporter protein, this particular reporter 

strain is also suitable for short term lineage tracing (Fowler et al., 2002).  

 During development, Fgf10-lacZ was found to be expressed in the developing 

hypothalamus, and several brain stem nuclei at E14, while at E18 the expression pattern 

had expanded to also include the cerebellum and dorsal midbrain. The expression range 

of Fgf10-lacZ continues to expand after birth, with the final expression pattern not being 

fully developed until post-natal day 30 to 60 (P30-60). At this stage, areas expressing 

Fgf10-lacZ are the cerebellum, brain stem, ventral telencephalon (including amygdala), 

thalamus, hypothalamus, hippocampus, neocortex and olfactory bulb. It is of interest to 

note that some of these areas are also areas that have recently been implicated to 

contain putative stem cell niches (Gould, 2007). 
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The hypothalamus has in the past been suggested as a potential neural stem cell 

niche, and dividing cells have been detected in this area (Kokoeva et al., 2005). However, 

the specific cells that form the putative stem cells population in the hypothalamus has yet 

to be characterised. Similar to the SVZ, this potential niche is associated with a ventricle, 

in this case the 3rd ventricle. The specialised ependymal cells lining the ventral 3rd 

ventricle, termed tanycytes, have in the past been suggested to be a potential stem cell 

population (Rodriguez et al., 2005). The distribution of Fgf10 and its lacZ reporter in the 

hypotahalamus is suggestive of a stem or progenitor population. An in situ hybridisation 

for Fgf10 mRNA shows Fgf10 transcript exclusively in the ventricle wall, in the tanycytes 

(Fig 1.7a). This is faithfully recapitulated by the reporter lacZ mRNA (Fig 1.7b). However, 

the presence of the reporter protein, which is retained in cells for some time, is found far 

more widespread, with cells located throughout the surrounding hypothalamic tissue, the 

parenchyma (Fig 1.7c). This, coupled with a migratory ‘trailing speck’ phenotype of some 

of the cells located in the parenchyma, has led to the hypothesis that Fgf10 expressing 

progenitors in the ependyma generate progeny that migrates into the surrounding 

hypothalamic parenchyma. 

 The amygdala, also a putative neurogenic niche, also shows considerable Fgf10 

expression, starting after birth (Fig 1.7D). From the amygdala, Fgf10-lacZ expressing cells 

can be seen in a trail through the frontal cortex towards the olfactory bulb (Fig 1.7E-I). In 

the olfactory bulb, Fgf10-lacZ expressing cells are found in multiple layers. RT-PCR for 

Fgf10 has shown active Fgf10 expression in both amygdala and olfactory bulb (Fig 1.7J). 

Given that the olfactory bulb is a known target for migrating neuroblasts, and the 

amygdala may contain neural stem cells, the hypothesis is that Fgf10 expressing cells in  

 



Fig 1.7 - Fgf10 in the adult brain as shown by the Fgf10nlacZ mouse. (A) In the 
hypothalamus, Fgf10 mRNA is found exclusively in the ventricle wall, the ependyma. 
(B) This is faithfully repoduced by the LacZ reproter, the mRNA of which is found in the 
same location. (C) The protein product of the reporter is found far more widespread. 
Some of these cells show a migratory ‘trailing speck’ morphology (inset). (D) A strong 
reporter expression is seen in the amygdala. (E-I) A trainl of Fgf10-lacZ expressing cells 
connects the amygdala with the olfactory bulb, seen in both coronal (E-H) and 
horizontal (I) sections. (J) RT-PCR for Fgf10 shows active expression in both amygdala 
and olfactory bulb bob (OB). Adapted from Hajihosseini et al, 2008 
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the amygdala generate neuroblasts that migrate towards the olfactory bulb, where they 

differentiate. 

 

1.16 - Aims 

In both the hypothalamus and amygdala, the expression patterns of Fgf10 are suggestive 

of a possible neural stem cell or progenitor role for Fgf10 expression cells. Both of these 

areas have previously been shown to contain dividing cells, but the exact identity of these 

cells, and the progeny they generate has yet to be characterised. In this project, the 

putative Fgf10 expressing stem cells in the hypothalamus and amygdala, and their 

putative progeny in the hypothalamus and olfactory bulb, were examined. The main aims,  

and the methods used to investigate them, were as follows: 

 

(1) Improve detection methods for Fgf10 

- Optimisation of both known commercial and novel custom antibodies for Fgf10 in 

Western blot and immunohistochemistry, in order to be able to directly detect 

Fgf10 without the need for transgenic animals 

 

 (2) To characterise the putative stem cells in the hypothalamus and amygdala 

- Immunohistochemistry and Xgal staining in Fgf10nlacZ mice during different 

developmental stages and throughout adulthood to show the development and 

fate of the Fgf10 expressing cells throughout life. 

- Immunohistochemistry for known neural stem cell markers and the β-

galactosidase reporter in Fgf10nlacZ mice to study whether Fgf10 expressing cells 

are neural stem cells. 
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- Neural stem cell culture from adult hypothalamus to confirm presence of stem / 

progenitor cells and investigate their differentiation potential 

(3) To characterise and quantify the putative descendants of Fgf10 expressing 

progenitors in the hypothalamus and amygdala 

- Immunohistochemistry for differentiated neuronal and glial cell markers and β-

galactosidase in Fgf10nlacZ mice at various ages in hypothalamus and 

amygdala/olfactory bulb to study the identity and number of differentiated cells 

derived from the Fgf10 expressing lineage. 

- Inducible genetic lineage tracing using Fgf10CreERT2 mice, to study descendants 

from Fgf10 expressing cells generated during specific periods. 

 (4) To investigate the proliferative capacity of Fgf10+ cells 

- Long term BrdU administration at different ages to investigate the capacity of 

Fgf10 expressing cells to divide. 

- Use of inducible lineage tracing models to search for expansion of the Fgf10 

expressing population during life. 

(5) To investigate the properties of Fgf10+ cells in vitro in a number of culture models 

- Setting up of culture protocols for primary neurons and astrocytes from the 

postnatal hypothalamus 

- Culture of primary cells from Fgf10lacZ mice to assess the capability of the Fgf10 

expressing lineage to generate these differentiated cell types in vitro. 

- To study the potential of FACS as a method of enriching Fgf10-lacZ expressing 

cells 
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2.1 - Mouse lines 

Unless specified otherwise, all mouse lines were bred and maintained as heterozygots on 

a mixed genetic background, according to local regulation for use of transgenic animals. 

2.1.1 Fgf10nlacZ/+ 

Reporter strain for Fgf10. A lacZ cDNA containing a nuclear localization signal is located 

downstream of the Fgf10 promotor, but upstream to the first exon of Fgf10 (Kelly et al., 

2001). As this generates two separate transcripts, rather than a fusion protein, and the β-

galactosidase protein is highly stable in mammalian environment, this allows for 

temporary lineage tracing. This line has been used for lineage tracing experiment in the 

developing heart (Kelly et al., 2001) and lung (Mailleux et al., 2005). The line was normally 

kept on a heterozygous background, but is also viable as homozygotes (Fgf10nlacZ/nlacZ). The 

insertion of the lacZ cDNA causes a slightly hypomorphic phenotype for Fgf10 (Mailleux et 

al., 2005). 

2.1.2 NestincreERT2 

In order to perform inducible genetic lineage tracing on neural stem cells, a CreERT2 cDNA 

was inserted after the nestin promotor. The cDNA was followed by the second intron of 

the nestin gene, which contains a transcriptional enhancer required for strong 

transcription (Imayoshi et al., 2006). 

2.1.3 Fgf10creERT2 

Part of the first exon and downstream intronic sequences of the Fgf10 gene has been 

replaced with a construct containing cDNA for the CreERT2 gene, followed by an 

independent ribosomal entry site (IRES) and a YFP reporter gene. It is important to note 

that since the transgene renders the first exon of the Fgf10 gene dysfunctional, this allele 

is also an Fgf10 knockout, and cannot be bred homozygously. 



Exon 1 Exon 3 

Mlc1v-nlacZ 

NEO 

CreERT2 YPF IRES 

Wt Fgf 10 locus 

Fgf10nlacZ 

Fgf10 knockout 

Fgf10CreERT2 

ROSA26-x 

NEO lacZ 

YFP 

RFP 

Cre-ER 
NestinCreER 

nestin in 2 

Fgf10 lines 

Nestin lines 

Reporter lines 

Exon 2 

Fig 2.1 Transgenic mouse lines used. The normal Fgf10 locus contains a promoter 
followed by three coding exons. In the Fgf10nlacZ reporter mouse, a nuclear targeted 
lacZ has been inserted downstream of the promoter, upstream of the first exon. In 
the Fgf10CreERT2 line, a construct containing CreER2 and a YFP reported separated 
from each other by a IRES site has been inserted in the first exon, replacing the 
Fgf10 gene product with separate CreERT2 and YFP products. The Fgf10 knockout 
line was generated by disrupting transcription of the first exon of Fgf10 by insertion 
of a neomicin cassette.  The NestinCreER line carries a CreER cDNA after the nestin 
promoter, which is followed by the second intron of the nestin gene, which 
contains an important transcriptional enhancer. The ROSA26 reporter lines contain 
a floxed neomicin followed by a lacZ, YFP or RFP cDNA, all under control of the 
ubiquitous ROSA26 promotor 
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2.1.4 ROSA26YFP/ROSA26RFP/ROSA26LacZ 

In these generic reporter strains, yellow or red fluorescent protein (YFP or RFP) or a lacZ 

reporter is inserted in the ubiquitously expressed ROSA26 locus. A loxP flanked neomycin 

cassette preceding the reporter cDNA prevent this from being expressed except in the 

presence of Cre recombinase, upon which it will act as a reporter for recombinase activity. 

These lines are also viable both heterozygously and homozygously 

 

2.1.5 Fgf10 KO 

A neomycin cassette was inserted into the first exon of the Fgf10 locus, effectively 

stopping transcription and forming a Fgf10 knockout (Min et al 1999). The heterozygous 

mouse has minor phenotypes in glandular development (Entesarian et al 2005), but is 

viable, the homozygous knock-out is lethal at birth. 

 

2.1.6 Fgf10CreERT2::Rosa26Tomato 

These lineage tracing mice were not bred locally, but tissues were obtained from Dr 

Saverio Belluci at the Justus Leibig Universität, Giessen, Germany. 

 

2.1.7 Breeding and genotyping 

The genotypes used, and the matings done to generate them are detailed in table 3.1 

Tailsnips were taken from transgenic litters following weaning. The tissue was digested in 

proteinase K at 55°C overnight and spun down to remove undigested tissue, after which 

the genomic DNA was precipitated with isopropanol, and resuspended in 30% TE buffer (3 

mM Tris, 0.3 mM EDTA). The DNA was then used for genotyping by PCR, using the Expand 

Long Template System (Roche).  
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Table 2.1: Crosses used to generate required genotypes 
Parent 1 Parent 2 Resulting genotypes Viable Purpose 
Fgf10lacZ/+ Wt Fgf10lacZ/+ y IM 

Fgf10lacZ/+ Fgf10lacZ/+ 
Fgf10+/+ (wt) 
Fgf10lacZ/+ 
Fgf10lacZ/lacZ 

y 
y 
y 

Western 

Fgf10+/- Fgf10+/- 
Fgf10+/+ (wt)  
Fgf10+/- 
Fgf10-/- 

y 
y 
n 

Western 

Nestincre-ER ROSA26YFP Nestincre-ER::ROSA26YFP y Genetic linage tracing, IM 
Nestincre-ER ROSA26RFP Nestincre-ER::ROSA26RFP y Genetic linage tracing, IM 
Fgf10cre-ERT2 ROSA26lacZ Fgf10cre-ERT2::ROSA26lacZ y Genetic linage tracing, IM 

(note: not all possible resulting genotypes are shown, only those that were used) 
 

The primers used for genotyping are detailed in table 3 
Table 2.2 – Genotyping primers (5’-3’) 
Allele Primers Product 

Fgf10lacZ 

GCA TCG AGC TGG GTA ATA AGC GTT GGC AAT 

LacZ: 0.8 kb 
WT: 0.5 kb 

GAC ACC GAC ACA ACT GGT AAC GGT AGC GAC 
CGA GFG GAG CAT GTA CTT CCG TGT CCT GAA 
TCC CTA CCC AGT CAC AGT CAC AGC TGC ATA 

NestinCreER 
GGC GGA TCC GAA AAG AAA A 

Cre:0.5 kb 
CAG GGC GCG AGT TAG TAG 

Fgf10CreERT2 
AGC AGG TCT TAC CCT TCC AGT ATG TTC C 

Cre: 0.5 kb 
WT:0.3 kb 

TCC ATG AGT GAA CGA ACC TGG TCG 
CTC CTT GGA GGT GAT TGT AGC TCC G 

ROSA26YFP 
AAG ACC GCG AAG AGT TTG TC 

WT: 0.6 kb 
YFP: 0.3 kb 

AAA GTC GCT CTG AGT TGT TAT 
GGA GCG GGA GAA ATG GAT ATG 

ROSA26RFP 
AAG ACC GCG AAG AGT TTG TC 

WT: 0.2 kb 
RFP: 0.3 kb 

TAA GCC TGC CCA GAA GAC TCC 
AAG GGA GCT GCA TGT GAG TA 

ROSA26lacZ 
AAG ACC GCG AAG AGT TTG TC 

WT: 0.2 kb 
lacZ: 0.3 kb 

TAA GCC TGC CCA GAA GAC TCC 
AAG GGA GCT GCA TGT GAG TA 

Fgf10 ko CAC CAA AGA ACG GAG CCG GTTG 
KO: 0.9 kb 

ACT CTT TGG CCT CTA TCT AG 
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2.2 - Animal treatments 

2.2.1 Time mating 

Males and females were housed in separate breeding pairs, and checked daily for vaginal 

plugs. The morning of observation of vaginal plug was taken as E0.5. 

2.2.2 BrdU administration 

Animals were given ad libitum access to drinking water, slightly acidified with 25 mM HCl 

to improve BrdU solubility, containing 1 mg/ml of BrdU (sigma Aldrich) and 0.25 mg/ml 

glucose to mask the bitter flavour of the BrdU and facilitate uptake by the animals. BrdU 

was administered for a total of 21 days, replacing the BrdU solution every 3 days. 

2.2.3 Tamoxifen administration 

Tamoxifen (Sigma Aldrich) was administered either as an intraperitoneal (IP) 

injection, or via food. For injection, tamoxifen was dissolved at 20 mg/ml in corn oil 

containing 10% ethanol. The injection volume per mouse was 100 μl, resulting in an 

approximate dose of 80-100 mg per kg bodyweight. Food pellets contained 0.4 g of 

tamoxifen per kg dry weight. A number of different dosage regimes were used, these are 

specified in chapter 5.  

 

2.3 - Tissue processing 

Unless otherwise noted, animals used for immunohistochemistry were sacrificed 

with CO2 asphyxiation, followed by transcardial perfusion with 4% paraformaldehyde 

(PFA) in PBS and removal of the brain from the skull. If required, wholemount Xgal 

staining was preformed at this point, with the brain being incubated in 0.5 μg/ml Xgal 

(from a 20 mg/ml stock in DMF) in Xgal staining buffer (2 mM MgCl2, 5 mM K4Fe(CN)6, 5 

mM K3Fe(CN)6 in PBS) at 37°C overnight.  
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Following perfusion, the brain was postfixed in 4% PFA overnight or for 1 hour if 

following Xgal staining. For vibratome sectioning, the following day the tissue was 

dehydrated in a graded ethanol series to absolute ethanol, allowing 1 hour for each step, 

and stored at 4°C until used. For cryostat sectioning, the brain was transferred from the 

post-fix to a cryopotective solution of 30% sucrose in PBS for 3d, embedded in OCT 

(Tissue-Tek), and stored at –80°C until used. For some antibodies, brains were removed 

from the skull without prior fixation, and embedded directly in OCT and frozen, this is 

referred to as ‘fresh frozen’. 

To isolate embryonic tissue, time-mated mothers were sacrificed by CO2 

asphyxiation, followed by cervical dislocation. For embryos younger than E14.5, whole 

embryos were fixed in 4% PFA for 2-3 hours and incubated in Xgal until the staining 

reached sufficient intensity. At E14.5 and over, the embryos were decapitated, brains 

were removed from the embryos and fixed and Xgal stained separately. Embryonic tissue 

destined for immunohistochemistry was treated identically with the exception of the 

omission of the Xgal staining. 

 

2.4 - Sectioning 

For vibratome sectioning, tissues were rehydrated through a graded ethanol 

series, and embedded in 3% agar in dH2O at 80°C for 25 minutes, before being set in the 

desired orientation. 60 µm thick sections were taken on a vibrating microtome (Leica), 

and stored in sequence in well of 48 well plates in PBS.  

Cryostat sections were collected onto slide previously coated with TESPA (3-

aminopropyl-triethoxy silane). To coat, slides were dipped 10 times in acetone, 10 times 

in a 4% TESPA in actone solution, 10 times in actetone, and rinsed under running dH2O 
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before being air-dried overnight. 12 µm sections were generated on a freezing microtome 

(Microm HM560), collected at 2-3 sections per slide, and stored at -80°C. 

When serial sections were used for experiments where exact location is of 

importance, the coordinates of the section in mm from bregma was determined by 

comparing gross morphology to a stereotactic atlas (Franklin and Paxinos, 2008). For 

embryonic sections, an embryonic rat brain for comparable stages was used (Altman and 

Bayer, 1995). Coordinates of sections are given in the distance in mm from the bregma, 

the standard reference point on the skull where the coronal suture meets the saggital 

suture. 

 

2.5 - Immunohistochemistry 

2.5.1 Antigen retrievals 

HCl pre-treatment 

Sections were incubated with 1 M HCl in dH2O at 47°C for 30 minutes, before being 

thoroughly rinsed in PBS. 

Heat mediated (citrate) 

Sections were incubated at 80°C with prewarmed 20 mM sodium citrate containing 0.01% 

Tween 20 at pH 6.0, for 20 minutes, allowed to cool to room temperature, and washed 

several times in PBS. 

Methanol (MeOH) 

Sections were incubated for 20 minutes at room temperature in absolute methanol, 

precooled to -20°C, and washed several times in PBS. 
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Acid/alcohol (Acid/OH) 

Sections were incubated for 20 minutes at room temperature in 5% acetic acid in ethanol, 

precooled to -20°C, and washed several times in PBS. 

Pepsin 

Pepsin was dissolved at 10 mg/ml in 10 mM HCl and diluted to a final concentration of 

200 µg/ml in PBS. Sections were incubated for 35 minutes (vibratome) or 5 minutes 

(cryostat) at room temperature, and washed several times with PBS. 

Trypsin 

Sections were incubated at 37°C for 15 minutes (vibratome) or 3 minutes (cryostat) in 

0.05% Trypsin, 0.1% CaCl2 in dH2O at pH 7.4. 

 

2.5.2 Cryostat section staining 

Depending on the primary antibody, different post-fixes of sections were required. 

Sections were either (1) not post-fixed, (2) fixed in 4% paraformaldehyde at room 

temperature for 20 minutes, (3) in a 1:1 mixture of methanol and acetone at -20°C for 2 

minutes followed by air-drying, or (4) absolute methanol at -20°C for 20 minutes. 

Following fixation, sections were washed three times, each wash being 5 minutes in PBS. 

If required, antigen retrieval was preformed at this stage. Nonspecific binding was 

blocked with 10% normal goat serum (NGS) and 1% Triton X-100 in PBS for 1h at room 

temperature. Antibodies were diluted in 0.2% normal goat serum (NGS), 0.1% Triton in 

PBS, and (except where noted otherwise) incubated overnight at 4°C in a humidified 

chamber. Sections were then washed 3 times 5 minutes in 0.2% NGS and 0.1% Triton, 

before being incubated for 1h at room temperature in 0.2% NGS and 0.5% NP-40 with the 

relevant secondary antibodies conjugated to Alexa 488 or 568 or biotin if further signal 
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amplification was required. For the latter, a second series of 3 washes in 0.2% NGS, 0.1% 

Triton in PBS was followed with 1h at room temperature in stratavidin conjugated to Cy2 

or Texas Red. Sections were then washed 2 times 5 minutes in PBS and counterstained 

with 5 µg/ml Hoescht in PBS for 10 minutes, before being mounted using Vectashield 

(Vector Laboratories) 

 
2.5.3 Vibratome staining 

If required, antigen retrieval was preformed prior to blocking. Nonspecific binding 

was blocked with 20% NGS and 1% Triton in PBS for 2 hours at room temperature. All 

antibody incubations, except where noted otherwise, were at 4°C overnight, in 0.2% NGS 

and 0.1% Triton in PBS. After primary and seconday/teriary antibody incubations, sections 

were washed 5 times 1 hour in 0.2% NGS and 0.1% Triton in PBS. Secondary antibodies 

were used as described in the previous section. Prior to mounting, sections were washed 

6 time 30 minutes in PBS, and counterstained with 5 µg/ml Hoescht in PBS for 10 minutes. 

On Xgal stained sections, peroxidase labeling was preformed. Prior to blocking, 

endogenous peroxidases were quenched with 6% H2O2 in PBS for 90 minutes at room 

temperature. Sections were stained as above, using HRP conjugated secondaries. 

Following the last wash, sectioned were further washed in 50 mM Tris, pH 8.0 for 3 times 

20 minutes, before the staining was visualised using 3,3’ diaminobezidine (DAB). Sections 

were mounted in glycerol gelly (5% gelatin in 50% glycerol). 

 
Antibodies used for both cryostat and vibratome sectioning are detailed in tables 2.3 and 
2.4 
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Table 2.4 Secondary antibodies used 
Host Target Conjugation Manufacturer Cat No Dilution 
Gt Rb Alexa 350 Invitrogen A11046 1:1000 
Gt Rb DyLight 488 Stratech 111-485-003 1:1000 
Gt Rb Alexa 568 Invitrogen  A11011 1:1000 
Gt Rb Biotin Novus NB7169 1:800 

Gt Rb HRP Vector Labs PI-1000 
1:800 
1:30001 

Gt Ms Alexa 488 Invitrogen A11001 1:1000 
Gt Ms Alexa 568 Invitrogen A11004 1:1000 
Gt Ms Biotin Stratech 115-065-205 1:300 

Gt Ms HRP Sigma A4416 
1:300 
1:30001 

Gt Hu 568 Invitrogen A-21091 1:1000 
n/a n/a Streptavidin-Tx Red Stratech 016-070-084 1:800 
n/a n/a Streptavidin-Cy2 Stratech 016-220-084 1:800 

            1 Dilution for western blot 

2.6 - Cell culture 

2.6.1 Culture surface coatings 
 

 For certain cell types, coating of the tissue culture surface was required. Flasks, 

wells or coverslips were coated with poly-D-lysine (PDL) by incubating in a 20 µg/ml PDL 

solution in ddH2O at 37°C overnight. After removal of the coating solution, the surfaces 

were allowed to dry to the air at room temperature for several hours. In some cases, the 

procedure was repeated to make double-coated surfaces. For primary neuron cultures, 

laminin coating was then preformed onto PDL coated surfaces, approximately 1 h prior to 

plating of the neurons. Previously PDL coated surfaces were coated with 1 µg/ml laminin 

1 in DMEM/F12 medium at 37°C. The coating solution was removed immediately prior to 

plating cells, and not allowed to dry at any time. For some neurosphere differentiation 

experiments, poly-L-ornithin (PORN) coating was used. Coverslips were coated with 40, 

100 or 150 µg/ml PORN in ddH2O for 1.5h at room temperature, diluted from a 1 mg/ml 

stock in 150 mM boric acid, pH 8.4. 
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2.6.2 Neurosphere culture 

To establish a neurosphere culture protocol, a number of different protocols were 

assessed. In all cases, animals were sacrificed by CO2 asphyxiation and the brains 

removed from the skull. The subventricular zone and the median eminence of the 

hypothalamus were dissected out in ice-cold PIPES buffered saline or DMEM/F12. Four 

different methods of dissociation were tried (Wachs et al., 2003), prior to all of these the 

tissue was triturated into smaller chunks with a P1000 pipette. 

1. Accutase solution (a proprietary protease solution, Invitrogen) at 37°C for 30 

minutes 

2. 0.05% trypsin in DMEM/F12 at 37°C for 30 minutes 

3. 3 mg/ml Papain in PIPES buffered saline, containing 12 mM NaCl, 5 mM KCl, 1 

mM L-cysteine, 0.2 mM EDTA at 37°C for 30 minutes 

4. Mechanical dissociation by tritrurating using a syringe and 19G, 21G and 23G 

needles followed by filtration through a 60 μm mesh 

Following dissociation, cells were spun down at 1000 rpm for 5 minutes, washed in PBS, 

spun down again at 1000 rpm for 5 minutes, resuspended in medium and counted before 

being cultured in a T25 flask in 5% CO2 at 37°C. In some cases, a density gradient 

purification using Percoll was preformed by loading the cell suspension after dissociation 

on top of a 22% or 11% solution of Percoll in PBS, and centrifugating this for 10 minutes at 

1800 RPM, before resuspending the cell pellet in the usual manner.  

NSC were cultured either in Neurobasal or DMEM/F12 1:1 basal media. All media 

were supplemented with 2% B27 supplement, 2 mM glutamine, 100 μg/ml Primocin, 2 

μg/ml heparin, 20 ng/ml EGF, 10 ng/ml Fgf2. Additionally, for some experiments the basal 

DMEM/D12 medium was further supplemented with 0.6% extra glucose, 0.1% NaHCO3 
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and 50 mM HEPES. This is noted as DMEM/F12 (mod). The exact combinations of 

condition used are detailed in table 2.5. 

Table 2.5 - Conditions used for neurosphere culture 
Dissociation Culture medium Percoll 
Accutase Neurobasal + B27 - 

Mechanical 
Neurobasal + B27 - 
DMEM/F12 + B27 - 

Trypsin DMEM/F12 + B27 - 

Papain 
DMEM/F12 + B27 - 
DMEM/F12 (mod) + B27 22% 
DMEM/F12 (mod) + B27 11% 

 
All NSC were cultured with 5% CO2 at 37°C. Fresh growth factors (FGF2 and EGF) 

were added two times per week. When monitoring growth rates, 10 randomly selected 

neuropsheres were imaged regularly to measure their diameter. Growth rate was 

calculated using 

 

i =
dn

d0

 

 
 

 

 
 

1
n

−1, where 

 

i  is growth rate in %, 

 

d0  initial diameter and 

 

dn diameter after n days in culture. Three weeks after isolation, and every second week 

subsequently, neurospheres were dissociated using the same method as they were 

originally isolated with, spun down at 1000 rmp, and resuspended in fresh medium. 

 To asses the differentiation potential of cultured neurospheres, cells were 

plated on a variety of substrates (single or double coats of 20 µg/ml PDL, or 40, 100 or 

250 µg/ml PORN) in proliferation medium without growth factor and 2 or 10% added heat 

inactivated fetal bovine serum. To promote attachment, 5 to 10 neurospheres were 

plated in the centre of coverslips in an 80 µl drop for 2h, before 500 µl medium was 

added. The spheres were then cultured for 4 more days, before being fixed in 4% 

paraformaldehyde for 15 minutes, and stained for differentiation markers (Tuj1, GFAP 

and Olig2).  
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2.6.3 Primary neurons 

Under aseptic conditions, brains were removed from adult (P60-P90) animals 

following CO2 asphyxiation, and placed in ice-cold DMEM/F12 medium. The 

hypothalamus was dissected out, taking care to include the parenchyma. The tissue was 

transferred to 0.05% trypsin/1 mM EDTA prewarmed to 37°C, broken up by triturating 

with a P1000 pipette and incubated at 37°C for 40 minutes, with regular trituration. Cells 

were then spun down at 1000 RPM for 10 minutes, resuspended in medium (DMEM/F12 

containing 10% FBS, 1% L-glut, 1% Na Pyruvate, 1% Pen/Strep and 10 ng/ml Fgf2) and 

plated at 250.000 cells per well onto PDL and laminin coated 24 well plates, plating 

directly onto the well plastic. 48 hours after plating half the medium wass replaced with 

fresh medium. 3-5 days after plating, differentiated were observed, and cultures were 

fixed for X-gal staining or immunohistochemistry.  

 

2.6.4 Primary astrocytes 

Brains were removed from pups at post-natal day 1-3, and placed into ice-cold 

DMEM. 4 to 6 brains were pooled and transferred to 0.25% trypsin/1 mM EDTA 

containing 1 mg/ml DNAseI, prewarmed to 37°C, broken up by triturating with a P1000 

pipette and incubated at 37°C for 25 minutes, with regular trituration. Cells were then 

spun down at 800 rpm for 5 minutes before being resuspended in medium (DMEM 

containing 10% FBS and 1% Pen/Strep) and plated in T75 flasks with a single PDL coating 

at a density of 1.5 whole brains per flask. Medium was replaced with fresh medium twice 

per week, until cells were confluent, at which point they were be passaged by incubating 

with 0.25% trypsin/1mM EDTA until all astrocytes were detached, as which points cells 

were diluted with fresh medium to obtain a 1:3 split. Alternatively, cells were plated onto 
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13 mm glass coverslips, previously coated with PDL. 24-48 hours after plating onto 

coverslips, cultures were fixed for immunohistochemistry.  

 

2.6.5 Cell lines 

Cell lines used were the mouse embryonic fibroblast line NIH3T3, and the ψ2 line, a 

mouse embryonic fibroblast line stably transfected with a cytoplasmic lacZ (Mann et al., 

1983). Both lines were maintained in T75 flasks. Medium for the 3T3 cells consisted of 

DMEM with 10% FBS, 1% L-glut and 1% Pen/Strep, for the ψ2 cells DMEM with 10% NCS, 

1% L-glut and 1% Pen/Strep was used. Both lines were passaged using 0.25% trypsin/1 

mM EDTA at a 1:30 dilution two times per week. 

 

2.6.6 - Xgal staining on cells 

Cultures were rinsed with PBS, fixed with 0.5% gluteraldehyde in PBS at room 

temperature for 15 minutes, and rinsed thoroughly with PBS, before being incubated in X-

gal staining solution at 37°C until positive cells were observed, typically approximately 30-

90 minutes.  

 

2.7 - Immunocytochemistry 

Cells were rinsed in PBS and fixed in 4% PFA at room temperature for 15 minutes. 

Following fix, cells were washed 5 minutes in PBS, permeabilised with 1% Triton in PBS for 

5 minutes, and washed again with PBS for 5 minutes. The staining protocol is identical to 

that for cryostat sections, with the exception that no detergents were used after 

permeabilisation. 
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2.8 - Microscopy 

Fluorescently stained sections or cells were imaged on a Zeiss Axioimager M2 with 

an Apotome attachment, allowing for optical sectioning and three-dimensional 

reconstructions through the use of structured illumination. Imaged were acquired and 

processed using Axiovision 3.8. Where vibratome sections were used to quantify cell 

numbers, three-dimensional reconstructions were used to avoid double-counting cells. 

Primary cultures grown directly in 24 well plates were imaged using an inverted 

fluorencent microscope. Xgal stained sections were imaged on an upright microscope 

using differential interference contrast (DIC). 

 

2.9 - Flow cytometry 

In order to be able to enrich lacZ+ cells in culture, a flow cytometry method for 

detection was developed based on the β-galactosidase substrate fluorescein-di-β-D-

galactopyranoside (FDG). Cleavage of this substrate by β-galactosidase liberates 

fluorescein, giving a fluorescent signal. Stock solutions of FDG were prepared at 2 mM in 

DMSO or at 20 mM in a 1:1:8 mixture of DMSO:ethanol:ddH2O. Ψ2 cells (positive control) 

and 3T3 cells (negative control) were trypsinised, spun down at 800 rpm for 5 minutes, 

and resuspended at 1x107 cells per ml. The cell suspensions were then mixed in a 1:1 ratio 

with FDG substrate, diluted in ddH2O to the appropriate concentration, to obtain a 

hypotonic loading solution. FDG concentration varied from 40 µM to 2 mM, and loading 

times of 1-5 minutes were used. Following loading, the hypotonic mixture was diluted 10-

fold in ice-cold medium, after which the cells were kept on ice for 15-30 minutes, during 

which the substrate was metabolized to fluorescein in cells expressing β-galactosidase. 

The cell suspensions were then measured for fluorescence on an Accuri C6 flow 
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cytometer, with at least 20.000 events per sample measured with appropriate gating in 

forward- and side-scatter to exclude cell debris. After flow cytometry, the remaining cells 

were counterstained with Hoescht, and observed microscopically to asses substrate 

specificity. In parallel, cells grown on coverslips were also loaded with FDG and observed 

microscopically. 

 

2.10 – Reverse transcriptase PCR 

2.10.1 Sample preparation 

Wildtype C57Bl6 mice were sacrificed by CO2 asphyxiation followed by cervical 

dislocation. Brains were removed from the skull, and the hypothalamus removed, 

snapfrozen on dry ice, and stored at -80°C until use. 3 to 4 hypothalami were pooled for 

RNA isolation. Frozen tissue was thawed on ice in 500 µl Tri reagent for 10 minutes, 

before being dissociated by repeated trituration with a 19G, 21G and 25G needle and 

syringe. 100 µl of chlorophorm was added, and the resulting mixture was incubated at 

room temperature for 3 minutes before being spun at 13000 rpm for 15 minutes at 4°C. 

The aqueous upper phases was transferred to a new tube, 500 µl of isopropanol was 

added, and the RNA precipitate was pelleted by centifugation at 13000 rpm for 15 

minutes at 4°C. The supernatant was removed, and the pellet was washed in 70% ethanol 

and spun again at 13000 rpm for 10 minutes. The supernatant was removed, and the RNA 

pellet was airdried briefly before being resuspended in ddH2O. Concentration and purity 

of RNA was assessed using a Nanodrop spectrophotometer.  
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2.10.2 RT-PCR 

2 step RT-PCR was preformed using Illustra Ready-to-go RT-PCR beads (GE 

Healthsciences), according to manufacturers instructions, using 1 µg of template RNA. 

Primers used are detailed in table 2.6 

Table 2.6: Primers (5’-3’) and product sizes for different FgfR isoforms 
Receptor Primers Product size (bp) 

FgfR1IIIb 
GCA GGG CTG CCT GCC AAC GAG ACA GTG 

300 
GGT CTG GTG CAG TGA GCC ACG CAG ACT G 

FgfR1IIIc 
GCA GGG CTG CCT GCC AAC GAG ACA GTG 

306 
GAA CGG TCA ACC ATG CAG AGT GAT GG 

FgfR2IIIb 
CCC ATC CTC CAA GCT GGA CTG CCT 

317 
CTG TTT GGG CAG GAC AGT GAG CCA 

FgfR2IIIc 
CCC ATC CTC CAA GCT GGA CTG CCT 

310 
CAG AAC TGT CAA CAA TGC AGA GTG 

FgfR3IIIb 
GAC AGA CAC ACG GAT GTG CTG GA 

350 
GTG AAC ACG CAG CAA AAG GCT TT 

FgfR3IIIc 
GAC AGA CAC ACG GAT GTG CTG GA 

348 
AGC ACC ACC AGC CAC GCA GAG 

FgfR4 
TAC AGC TAT CTC CTG GAT GTG CTG 

195 
GAA ACC GTC GGC GCC GAA GCT GCT 

 

The following cycles were used: 

Reverse transciptase 
42°C 15 min 
95°C 5 min 
 
 
 
 

PCR 
95°C 30 sec 
56°C 30 sec 
72°C 1 min 
35 cycles 
 

 

Following RT-PCR, samples were resolved on a 1.8% agarose in TBE gel and visualized 

using ethidium bromide under UV illumination. 
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2.11 - Western blot 

2.11.1 Sample preparation 

Samples for western blotting were prepared from snap-frozen whole brains (E14.5) 

or isolated hypothalami (adults). To obtain embryonic tissue, time-mated mothers were 

sacrificed by CO2 asphyxiation at E14.5, with day of finding plug being E0.5. The embryos 

were removed from the uterus, and heads were removed and snap-frozen on dry ice. For 

adult tissue, processing was identical to that for RT-PCR. Embryonic tissue was used in 

case of Fgf10-/- animals and their littermate controls, as the knockouts are not viable. The 

genotypes of the animals used are detailed in table 2.1.  

For lysis, samples were thawed on ice in ice-cold RIPA buffer (150 mM NaCl, 50 

mM Tris, 1.25 mM EDTA, 1% Triton, 1% sodium deoxicholate, 0.1% SDS) for 10 minutes, 

before being dissociated with a 1 ml syringe using a 19G, 21G and 23G needle. Unlysed 

material was removed from the lysate by centrifugation at 13.000 rpm at 4°C for 10 

minutes, after which the supernatant was transferred to a fresh centrifuge tube and spun 

again to ensure full clearing of the lysate. Protein concentration of the lysates was 

measured by spectrophotometry. Lysates were stored at -80°C until use. 

 

2.11.2 SDS-PAGE and transfer 

45 µg of total protein was prepared for western blotting by mixing with 6X loading buffer 

and ddH2O for a total sample volume of 25 µl. Samples were heated to 100°C for 1 

minute to ensure full denaturation of proteins. In order to probe for Fgf10 (23 kDa) and β-

actin (42 kDa), an 18% resolving gel (18% acylamide, 375 mM Tris, 0.1% ammonium 

persulphate, 0.25% TEMED) with a 5% stacking gel (5% acrylamide, 125 mM Tris, 0.15% 

ammonium persulphate, 0.4% TEMED) was run, to optimize separation of lower 
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molecular weight proteins. Samples were loaded in sample buffer containing  60 mM Tris-

Cl pH 6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol and 0.01% bromophenol blue, 

along with a protein ladder. Gels were run at 35 mA per gel in running buffer (25 mM 

glycine, 250 mM Tris, 0.2% SDS) until the 10 kDa marker reached the bottom of the gel 

(approx 90 minutes). The resolving gel and sufficient filterpaper were soaked in transfer 

buffer (192 mM glycine, 25 mM Tris, 20% methanol) for 20 minutes, while the PDVF 

membrane was activated by rinsing in absolute methanol for 1 minute, after which this 

was also soaked in transfer buffer for 20 minutes. Protein was transferred using the semi-

dry method, at 15V for 45 minutes.  

 

2.11.3 Detection 

Different protocols were used to optimize the detection of Fgf10. This included 

blocking in the traditional milk, or using Millipore BlØk-CH noise canceling reagent. 

Processing was done either using the traditional method, or using the vacuum driven 

Millipore snapID system. Following transfer, membranes were blocked in either 5% non-

fat milk powder in PBST (PBS containing 0.5% Tween-20) or in Millipore BlØk-CH noise 

canceling reagent for 3 hours at room temperature. Antibodies were diluted in 0.5% milk 

in PBST or BlØk-Ch, with anti-Fgf10 at a 1:50 dilution, anti-β-gal at 1:3000 and anti-β-actin 

at 1:10.000. The membranes were incubated with antibody overnight at 4°C (Fgf10, β-gal) 

or 2 h at room temperature (β actin). Membranes were then washed 3 times 30 minutes 

in 0.5% milk in PBST (when blocked in milk) or PBST alone (when blocked in BlØk-Ch), and 

incubated with 1:3.000 HRP conjugated anti-rabbit secondary antibody in the same buffer 

for 1 h at room temperature. Following secondary antibody incubation, all membranes 

were washed in PBST for 3 times 30 minutes, before proceeding to ECL detection. When 
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using the snapID system, antibody incubations were identical, but membranes were 

washed using 3 times 10 ml of PBST, pulled through the membrane under mild vacuum.  

 

2.11.4 ECL detection 

Membranes were incubated in ECL solution, consisting of 100 mM Tris, pH8, 

containing 1.25 mM luminol, 0.2 mM coumaric acid and 0.01% H2O2 for 1 minute and 

exposed to the film (Hyperfilm ECL). Typical exposure times were 1-2 minutes for Fgf10, 

and 5-10 seconds for β-actin, when processing using snapID exposures 3-4 times this were 

required.  

 

2.11.5 Quantification 

Densitometry was preformed in ImageJ. Values are represented as the ratio of 

FGF10 to β-actin. 

 

2.12 Statistical analysis 

When comparing two groups, Student’s t-test was preformed in Microsoft Excel 

2008. For experiments containing multiple different groups, an ANOVA with Tukey post-

hoc test was preformed in SPSS 16.0. Values were expressed as averages with standard 

error of the mean. 
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Optimisation of detection of FGF10 protein in 
immunohistochemistry and Western blot 
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3.1 – Introduction 

In order to study Fgf10, detection of the expression of this factor is required. Although 

a number of methods already exist, these each have their advantages and disadvantages. In 

situ hybridisation for Fgf10 gives clear expression patterns but does not give direct information 

about the protein product of the Fgf10 mRNA. A number of reporter strains, as also used in 

this project, come with their own sets of complications. The Fgf10nlacZ line provides a 

convenient way of detecting the Fgf10 expressing lineage. However, due to the fact the lacZ 

reporter is expressed as a separate mRNA and the β-galactosidase protein is very long lived, 

temporal dynamics of Fgf10 expression cannot be determined with this line. While this 

property does allow for limited lineage tracing in this line, it also complicates interpretation of 

results. 

This novel Fgf10CreERT2 line, as validated in this report, represents an alternative to the 

Fgf10nlacZ line, but suffers from the same limitations regarding timing of expression. Although 

the start of reporter expression can be controlled by administration of tamoxifen, the 

recombination event makes reporter expression permanent, and independent of Fgf10 

promoter activity. Additionally, in these transgenic strains, the reporter is expressed as a 

separate protein in Fgf10 expressing cells, thus not providing any information on the 

subcellular localisation of Fgf10. As Fgf10 is both secreted, and possibly has a nuclear role 

(Kosman et al., 2007), the subcellular localisation of Fgf10 may have functional consequences. 

These limitations could be overcome by the use of a suitable anti-Fgf10 antibody for 

use in immunohistochemistry and Western blotting. A number of companies offer antibodies 

against Fgf10, including Abcam, R&D Systems, Abnova and Santa Cruz. Although many of these 

claim to be able to detect Fgf10 in immunohistochemistry, this does not seem to be reliable, as 

Western blots shown for these antibodies frequently show a band of 40 to 50 kDa, whereas 

Fgf10 is 21-23 kDa (depending on species). Although over-expressed exogenous Fgf10 may be 
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detected using anti-FGF10 antibodies in cells (Kosman et al., 2007), endogenous levels of 

FGF10 have yet to be detected in a reliable manner using commercial antibodies. 

Through collaborators, a novel custom antibody against FGF10 was obtained. This 

antibody was raised in rabbits against a peptide from the sequence of chicken FGF10 

conjugated to keyhole limpet hemocyanin. The immunisation and production protocol is in fig 

3.1. Availability of this novel antibody represents a new possibility of detecting FGF10 in both 

Western blots and immunohistochemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aims 

In order to develop a working protocol for the detection of FGF10 in both 

immunohistochemistry and Western blots, a thorough optimisation of conditions for 

immunohistochemistry for both a number of commercial and the novel custom anti-FGF10 

antibody were preformed. Additionally, the specificity of the novel antibody was analysed with 

Western blotting. 

Fig 3.1: Immunisation and production schedule for production of anti-
Fgf10 antibody. At the start of the protocol, a pre-immunisation bleed was 
taken, and the animals were immunized with the Fgf10 peptide in 
Complete Freund’s Adjuvant (“Imm CFA”). Further immunizations in 
Incomplete Freund’s Adjuvant took place at weeks 3, 5, 9 and 13. (“Imm 
IFA”). Production bleeds took place at weeks 6, 8, 10, 12, 14, 16 and 17. 
Apart from weeks 6 and 8, these bleeds were further processed by column 
affinity purification. 
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3.2 – Results 

3.2.1 Commercial anti-FGF10 antibodies do not work in immunohistochemistry 

In order to optimise staining for FGF10 with three commercially available antibodies in a 

number of different conditions and antigen retrieval techniques were used, these are detailed 

in table 3.1. 

Table 3.1 – Conditions and results of optimisation of commercial anti-FGF10 antibodies 
in IHC 

 

Post-fix Antigen retrieval 

Antibodies 
Santa Cruz Abnova 

Sc-7917 Sc-7375 H00002255-
A01 

Vi
br

at
om

e 
se

ct
io

ns
 

n/a 

- - - - 
Citrate - - - 
MeOH - - - 

Acid/OH - - - 
Pepsin - nd - 
Trypsin - nd - 

Cr
yo

st
at

 s
ec

tio
ns

 

PFA 
- 

- - - 
MeOH - - nd 

PFA 
Citrate 

- - - 
MeOH - - nd 

PFA 
Acid/OH 

- - - 
MeOH - - nd 

PFA 
Pepsin 

nd - - 
MeOH nd - nd 

PFA 
Trypsin 

nd - - 
MeOH nd - nd 

Many different conditions for immunohistochemistry were tried for three commercially 
available anti-FGF10 antibodies, and are detailed in the above table. “-“ signifies no observed 
stain, “nd” is not determined. Abbreviations: MeOH: methanol, Acid/OH: acid/alcohol, PFA: 
paraformaldehyde 

None of the tested conditions resulted in any staining in the brain. 

3.2.2 Custom anti-FGF10 does not appear to be specific for FGF10. 

An affinity purified polyclonal rabbit antibody raised against a chicken FGF10 peptide 

was used in immunohistochemistry. A number of conditions were tried including different 

blocking agents in order to obtain immunoreactivity and improve specificity of any label. 
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Table 3.2 – Conditions and results of optimisation of custom anti-FGF10 antibody in IHC 
 Post-fix Antigen retrieval Blocking Result 

Vi
br

at
om

e 

n/a 

- 20% NGS - 
Citrate 20% NGS - 
MeOH 20% NGS - 

Acid/OH 20% NGS - 

Cr
yo

st
at

 

PFA 
- 10% NGS - 

Citrate 10% NGS - 
Pepsin 10% NGS - 

Ac/MeOH 
- 

10% NGS ++ 
5% BSA + 

2% Milk/2% BSA +/- 
Citrate 10% NGS - 
Pepsin 10% NGS - 

Many different conditions for immunohistochemistry were tried for three commercially available 
anti-FGF10 antibodies, and are detailed in the above table. “-“ signifies no observed stain, “++” 
strong stain and “+” and “+/-“ progressively weaker stains. 

 
Immunoreactvity was seen in a number of the above conditions (fig 3.1). Staining was 

observed across both the ependyma and the parenchyma in many cells, in a pattern more 

widespread than seen with Fgf10 in situ hybridisation or in the Fgf10nlacZ line. In the ependyma, 

staining was observed in many, but not all, cells and was located in a distinct subcellular 

concentration, generally facing the ventricular space. In the ependyma, the staining was more 

punctate, and located mostly perinuclear. In the rest of the brain, widespread 

immunoreactivity was observed (figure 3.2). Pre-immune serum does not show any 

immunoreactivity (data not shown). In the Fgf10 expressing hippocampus, staining was 

observed in most cells, in a punctate pattern similar to that seen in the hypothalamic 

parenchyma. In the neocortex, not known to express Fgf10, sparse staining was seen, with a 

relatively large portion of the cytoplasm of cells filled with punctate labelling.  

 

3.2.3 Custom anti-FGF10 does detect FGF10 in western blot, but is not specific 

When probing adult hypothalamus lysate with the custom anti-FGF10 antibody as 

unpurified serum, a band of 23 kDa, corresponding to the predicted size for mouse FGF10 is 

observed (fig 3.4). However, many higher molecular weight bands are also seen. These are not 

protein complexes, as they are still present in stronger reducing conditions using DTT or TCEP.  



A 

B 

B’ 

C 

C’ 

B 

C 

Figure 3.2 – Immunohistochemistry with custom anti-Fgf10 antibody in the 
hypothalamus. (A) The antibody shows immunoreactivity throughout the 
hypothalamus. (B) The ventricle wall contains many immunoreactive cells. (B’) The 
staining is no located uniformly throughout the cells, but seems to be in clusters. (C) 
In the parenchyma,  a heterogeneous expression pattern is seen. (C’) Here, the 
localisation of the immunoreactivity is cytoplasmic and predominantly perinuclear. 
Scalebars: A: 100 µm, B-C’: 10 µm 

Hoescht Merged Fgf10 
          Chapter 3 

72 



Hoescht Merged Fgf10 

H
ip

po
ca

m
pu

s 
N

eo
co

rt
ex

 

B 

B’ 

A 

A’ 

Figure 3.3 – Immunohistochemistry with custom anti-Fgf10 antibody in the 
hippocampus and neocortex. (A, A’) Most cells in the hippocampus show 
immunoreactivity for the custom anti-Fgf10 antibody, in a characteristic 
cytoplasmic punctate pattern. (B, B’) Many cells in the neocortex also show 
immunoreactivity. Scalebars : A: 25 µm, A’-B’: 10 µm 
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The latter causes an overall decrease of band intensity, but does not improve specificity. The 

pre-immune serum form the same animal does not show any bands (fig 3.4b). When using 

affinity purified serum, bands are both stronger and the detection is somewhat more specific 

as fewer bands are observed. The banding pattern is identical between adult hypothalamus 

lystate and embryonic (E14.5) whole brain lystate, where Fgf10 is highly expressed in the 

developing hypotahlamus. The 23kDa band is not visible in lysates for Fgf10 KO embryonic 

brains, confirming this band is indeed FGF10 (fig 3.4c), but the higher molecular weight bands 

are still present. Specificity is not improved by titrating down antibody concentration, as only 

the strongest bands remain in lower dilutions, which do not include the 23 kDa FGF10 band (fig 

3.4d) 

 

3.2.4 Specificity can be somewhat improved using unconventional blotting techniques 

In a further attempt to improve specificity different blocking reagents and blotting 

methods were tried. Use of the proprietary non-protein BlØk blocking reagent does decrease 

background, and blocks some of the higher molecular weight bands, but does not make the 

antibody fully specific. Combining this buffer with the vacuum-driven SnapID blotting system 

decreases background somewhat, but also decreases general band intensity, which can be 

compensated for by doubling primary antibody concentration. This leads to a similar blot as 

using BlØk in a conventional western. 

Table 3.3 Band patterns and strengths in different methods for blotting for FGF10 
Blotting method 

Band  
size 

Conventional SnapID 
Milk BlØk 
1:50 1:50 1:50 1:25 

23 ++ ++ + ++ 
34 +/- ++ +/- ++ 
42 - +/- +/- + 
45 ++ - - - 
50 ++ + +/- +/- 
60 + ++ + + 
75 ++ - - - 

 



20 kDa 

25 kDa 

37 kDa 

50 kDa 

75 kDa 

20 kDa 

25 kDa 

37 kDa 

50 kDa 

75 kDa 

+DTT +TCEP 

20 kDa 

25 kDa 

37 kDa 

50 kDa 

75 kDa 

1:50 1:100 1:200 1:500 

β-actin 

Pre-immune serum Immunised serum 

Affinity purified serum 

β-actin 

Hy Wt Em KO Em 

Figure 3.4 – Western blotting for Fgf10. (A) Using unpurified immunised serum results 
in many weak bands, including one of the appropriate size for mouse Fgf10 (23 kDa, 
arrowhead). Using harsher reducing conditions (DTT or TCEP) removed some of these 
bands. (B) Pre-immune serum from the same animal does not show any significant 
bands. (C) Affinity purification leads to a cleaner blot, but higher molecular weight 
bands are still present. Fgf10 is detected at 23 kDa in adult hypothalamus (Hy) and Wt 
embryonic brain (Wt Em), but is absent from Fgf10 KO embryonic brain (KO Em). (D) 
Titrating down the antibody concentration does not improve specificity. 

A 

C D 

B +DTT +TCEP 
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20 kDa 

25 kDa 

37 kDa 

50 kDa 

75 kDa 

Conventional SnapID 

Milk BlØk 

1:50 1:50 1:50 1:25 

Figure 3.5 – Optimisation of Western blotting for Fgf10 
with different blotting methods. Compared to the 
baseline western, blocked in milk, the use of the BlØk 
reagent improves the background, and gives fewer bands. 
When this buffer is used on the SnapID blotting system, 
background is low as wel, but overall band intensity is 
reduced. This can be remedied by using higher primary 
antibody concentrations. 
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3.2.5 Custom antibody may be used for quantification of FGF10 protein levels 

To test whether this antibody can be used quantitatively, hypothalamic lysates from 

Fgf10+/+, Fgf10+/lacZ and Fgf10lacZ/lacZ animals were compared. It is known that the lacZ allele 

slightly decreases FGF10 levels, creating a mild hypomorph. When blotting for FGF10, a slight 

decrease in FGF10 levels is seen in the transgenic animals (fig 3.6). Their transgenic nature is 

confimed by blotting for β-galactosidase. When the levels of FGF10 as a ratio of β-actin levels 

are compared, is can be seen that the presence of the transgene decreases the levels of FGF10 

by 35% to 43% for heterozygous and homozygous, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Quantitative use 
of the anti-Fgf10 antibody. 
Fgf10 levels (arrowhead) are 
decreased in heterozygous and 
homozygous transgenic 
animals.  Expression of the 
transgene is confirmed by the 
presence of β-gal protein. 
When quantified, it is clear that 
the transgenic animals do have 
lower Fgf10 protein levels. The 
region of the gel used for 
quantification is indicated by 
the dotted box  
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3.3 Discussion 

 The current inability to detect endogenous FGF10 in tissue or western blots limits the 

options to elucidate the role of FGF10 in the adult brain. Detecting endogenous FGF10 by 

immunohistochemistry would provide an accurate read-out of protein location in time, which 

is not possible with current means. 

Contrary to any tested commercial antibody, the novel anti-FGF10 antibody does 

produce staining in adult brain sections. However, the staining is far more widespread than 

expression of FGF10 as seen by in situ hybridisation or in the Fgf10nlacZ or Fgf10CreERT2 lines. The 

expression throughout the hypothalamus and hippocampus is at odds with the established 

expression pattern, as in situ data has shown the Fgf10 transcript is limited to the epenymda of 

the hypothalamus and a thin layer of the dentate gyrus of the hippocampus. Additionally, 

widespread expression in the neocortex and other brain areas that are not known to express 

Fgf10 makes this expression pattern suspect. Given the large mismatch in immunoreactivity 

seen with this antibody and the established expression domains of Fgf10 makes it unlikely it is 

actually specifically picking up Fgf10. 

This lack of specificity is confirmed by Western blot, where apart from FGF10, a number 

of higher molecular weight bands are also observed. The observed 23 kDa band is FGF10, as it 

is not present in lystates from Fgf10 knockout embryos. Although the higher molecular weight 

bands were generated as a result of the immunisation, as they are not present in the pre-

immunisation serum, these are not directly related to FGF10 as they are still present in the 

knockout lystate. These also do not represent protein complexes, as strongly denaturing 

sample buffers containing DTT or TCEP do not remove these bands. 

Although the background of the Western can be improved with different blotting 

techniques, the band pattern remains virtually identical, indicating that it is not a result of poor 

blocking or processing. Neither are they a result of aspecific secondary antibody binding, as 



  Chapter 3 

79 
 

secondary-only control blots do not show any bands (data not shown). The higher molecular 

weight bands represent crossreactivity of the antibody. The identity of these proteins is 

unknown, the only other proteins to have significant homology with FGF10 are different Fgfs, 

which are all too small to be causing bands at 35+ kDa. 

Despite the aspecificity of the antibody, it can still be used for quantification, as the 

comparison of the different Fgf10 transgenic mice shows. It has long been known that the 

Fgf10nlacZ line is somewhat hypomorphic for Fgf10 (Mailleux et al., 2005). When comparing 

Fgf10+/+, Fgf10lacZ/+ and Fgf10lacZ/lacZ adult hypothalamus lysates, the decrease in FGF10 protein 

levels is clear, confirming the capability for quantification of FGF10 levels of the novel anti-

FGF10 antibody. 

Although it is not capable of reliable detection of FGF10 in immunohistochemistry, the 

new anti-FGF10 antibody does represent a step forward. A reliable way of detecting 

endogenous FGF10 in tissue remains elusive. Ultimately, the best way of detecting FGF10 in/ex 

vivo may be to make a mouse which expresses FGF10 fused to a small peptide tag, such as 

FLAG or HA. An Fgf10FLAG overexpression construct has already been used to study embryonic 

intestine formation (Nyeng et al., 2011).  
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4.1 – Introduction 

The hypothalamus, a brain area crucial in the regulation of many homeostatic 

processes such as blood pressure and energy balance regulation, is located on the ventral 

surface of the brain. It surrounds, and is in close contact with the third ventricle. Ventral to the 

hypothalamus is the pituitary gland, which is closely linked with the homeostatic functions of 

the hypothalamus. The hypothalamus can be further subdivided into a number of areas. The 

single cell layer forming the boundary between the hypothalamus and the ventricle is the 

ependyma. Ventral to the ventricle is the median eminence, while the remainder of the 

hypothalamus is known as the parenchyma. The parchenchyma can be further divided (Garcia 

et al., 2003) into a number (up to several dozen depending on definitions) of anatomically 

distinct nuclei. Major nuclei include the venteromedial and arcuate nuclei. See figure 4.1 for 

schematic locations of major nuclei. 

The cells forming the boundary between the ventral hypothalamus and the 3rd 

ventricle are a specialized ependymal cell type, termed tanycytes (Horstman, 1954). These 

Tanycytes, which are of a glial linage, can be further subdivided into four subtypes based on 

localisation and immunoreactivity. From dorsal to ventral, respectively, these are the α1, α2, 

β1 and β2 types. The α1,2 subtypes are distinguished by their expression of GFAP and S100β, 

which are absent from the β1,2 tanycytes (see Fig 4.2f for their distribution) 

The nucleus and cell body of the tanycytes form the ventricular wall of the ventral 

hypothalamus, but they also project a single long process into the surrounding hypothalamic 

parenchyma. The direct contact with the cerebrospinal fluid (CSF) in the 3rd ventricle gives 

tanycytes a unique position to monitor many metabolic parameters. Particularly the β1,2 

tanycytes, which through their processes link the CSF with the local vasculature, express 

glucose transporters (Garcia et al., 2003) and receptors for circulating hormones such as 

estrogen (Langub and Watson, 1992) and prolactin (Lerant and Freeman, 1998).  
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Fig 4.1 – Anatomy of the adult mouse hypothalamus. (A-E) Nuclei of the 
hypothalamus, rostral to caudal with approximate location from bregma. 
PVN: paraventricular nucleus, AHA: anterior hypothalamic area, DMN: 
dorsomedial nucleus, VMN: ventromedial nucleus, Arc: arcuate nucleus, 
DHA: dorsal hypothalamic  area, ME: median eminence, PHA: posterior 
hypothalamic area.  All based on Paxinos and Franklin, 2004 (F) Location 
of different tanycyte subtypes. 
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The development of the hypothalamus in the mouse starts at E10 and lasts through to 

E16, with the bulk of cells being generated between E11 and E14 (Shimada and Nakamura, 

1973). The sequence of formation is conserved between mice, rats and humans, and follows a 

latero-medial outside-in gradient, with the lateral-most nuclei being generated before more 

central nuclei such as the arcuate and paraventricular nuclei (Ifft, 1972; Koutcherov et al., 

2002; Shimada and Nakamura, 1973). The normal cilated epithelium of the dorsal ventricle 

differentiates at E16 to E18 in the rat (E14-E16 in the mouse), while the specialised tanycytes 

appear around the ventral ventricle after E19 in rat (E17 in mouse) and mature in the perinatal 

period, up to two weeks after birth (Altman and Bayer, 1978; Rutzel and Schiebler, 1980). 

As tanycytes are radial glia-like cells which share many characteristics with the 

neurogenic radial glia of the hippocampus, and other putative neurogenic glia such as the 

Müller glia of the retina (Das et al., 2006) and Bergmann glia of the cerebellum (Sottile et al., 

2006), the notion of a possible progenitor/stem cell role for these cells has long been 

suggested (Rodriguez et al., 2005). The mouse hypothalamus has been found to contain a 

relatively quiescent resident stem cell population in mice, which has been implicated in the 

control of feeding behaviour and energy balance (Bennett et al., 2009; Kokoeva et al., 2005; 

Kokoeva et al., 2007; Pierce and Xu, 2010; Yamauchi et al., 2010). Cell proliferation has also 

been seen in the hypothalamus of rats (Perez-Martin et al., 2010; Xu et al., 2005) and voles 

(Fowler et al., 2003; Fowler et al., 2005).  Hypothalamic proliferation can be stimulated by a 

number of factors, including growth factors such as BDNF (Pencea et al., 2001), CNTF (Kokoeva 

et al., 2005), and IGF1 (Perez-Martin et al., 2010), exogenous drugs such as the antipsychotic 

olanzepine (Yamauchi et al., 2010), neuronal damage (Pierce and Xu, 2010) and 

neurodegenerative disease (Haan and Eisel, unpublished observations). However, none of the 

aforementioned studies has indentified the exact cell type that is the local stem cell or the 

niche cytoarchitecture of the hypothalamus. The factors controlling this putative stem cells 

niche are unknown, but recent evidence suggests that Fgf10 may be involved. 
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Fgf10 is expressed in a specific pattern in the hypothalamus, both during development 

at E14.5 and during adulthood at P60, Fgf10 mRNA expression can be found by in situ 

hybridisation in the ventral ependyma of the third ventricle, which in the adult contains 

tanycytes (Hajihosseini et al., 2008). Given the important role of Fgf10 in maintaining stem cell 

identity in other tissues during development, and the similarities between tanycytes and other 

neurogenic radial glia, the possibility that Fgf10 expressing tanycytes act as progenitor cells is 

tantalising.  

 

Aims 

To investigate whether Fgf10 expressing tanycytes act as stem cells in the 

hypothalamus, the development of this population in the  embryo and the dynamics of the 

population during adulthood were examined. The phenotype of both ependymal and 

parenhcymal Fgf10-lacZ+ cells during development and adulthood was investigated with 

immunohistochemistry for neural stem cell and mature neural markers. 
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4.2 – Results 

4.2.1 Fgf10-lacZ positive cell population is dynamic over time. 

 Serial sectioning of Fgf10nlacZ animals at postnatal ages P4 (n=3), P60 (n=5), P150 

(n=4) and P400 (n=3) and staining for β-galactosidase allowed for an examination of the 

temporal dynamics of Fgf10-lacZ expression in the ependyma/ME and the parenchyma. 

Despite the lack of Fgf10 mRNA expression the parenchyma, the lineage tracing made possible  

by the Fgf10nlacZ line allows for the study of the Fgf10 derived population in this area too.  In 

the ependyma and ME, cell number increases from P4, reaching a significantly higher number 

at P60 (p=0.04), before then gradually declining and dropping significantly below the neonatal 

baseline at P400 (p=0.03) (Fig 4.2a). The postnatal increase in ependymal Fgf10-lacZ+ cells is 

reflected in the distribution of the total positive population, with the fraction of ependymal 

cells significantly increasing up to P60 (p=0.01), before stabilising at later ages (Fig 4.2b). In the 

parenchyma a different pattern was seen, with the highest number of lacZ+ cells directly after 

birth, and a drop in cell number by P150 (p=0.04) and a further decrease by P400 (p=0.002) 

(Fig 4.2c). Not only the total cell number in the parenchyma changes with time, but also their 

distribution. At P4, cells are more densely packed in the parenchyma, located close to the 

ventricle, during maturation, the number of cells drops, and they spread more laterally, 

leading to a lower cell density from P60 onwards (p<0.01) (Fig 4.2d,e) 

 

4.2.2 Fgf10-lacZ positive cells are located across the adult hypothalamus 

Using serial sectioning and anti-β-gal labelling, the distribution of Fgf10-lacZ positive 

cells over the adult hypothalamus was investigated at P60 (n=5) and P150 (n=4). The number 

of β-gal positive cells was counted in the ependymal zone, median eminence and parenchyma 

over the rostral-caudal axis and animals at P60 and P150. In the ependyma, cells are 

widespread, but primarily located around -2.0 to -2.2 mm from bregma, in both P60 and P150  



Fig 4.2 – Fgf10-lacZ expression throughout life. (A) In the ependyma, the Fgf10-lacZ+ 
population increases up to postnatal day 60, before gradually decreasing over time, 
dropping significantly below the level at P4 by P400. (B) These dynamics affect the 
distribution of Fgf10-lacZ+ cells, with the percentage of total cells in the ependyma 
increasing significantly up to P60, before stabilising for the rest of the lifetime. (C) In 
the parenchyma, the highest number of Fgf10-lacZ+ cells is found directly after birth, 
at P4 and decreases with time, becoming significantly lower at P150. (D) The drop in 
total cell number is accompanied by a drop in Fgf10-lacZ+ cell density in the 
parenchyma. (E) Representative images of density and extent of the Fgf10-lacZ 
domain in the parenchyma, visualised with anti-β-gal immunohistochemistry. Scale 
bar represents 50 µm. 
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Figure 4.3 – Distribution pattern of Fgf10-lacZ in the adult hypothalamus. (A) 
Anti-β-gal immunohistochemistry illustrates the different expression patterns of 
Fgf10-lacZ over the rostral-caudal axis. (B) Fgf10-lacZ+ cells are seen throughout the 
hypothalamus, with the majority of cells located between -1.88 and -2.12 mm from 
bregma, no difference is seen in distribution between P60 and P150. (D) Number of 
Fgf10-lacZ+ cells in the ME peak at the same location as in the ependyma, but there is a 
clear drop-off at the caudal end. (F) Two foci of expression are seen in the parenchyma, 
at -1.94 to -2.00 mm from bregma and further rostral at -2.24 mm from bregma.  
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(Fig 4.3b). For the median eminence, the focus of expression is located further rostral, peaking 

around -2.0 mm (Fig 4.3c). In the parenchyma, cell number shows a distinct and reproducible 

two-peaked pattern, with the peaks located at -2.0 mm from bregma and at -2.2 mm (Fig 

4.3d). In all areas, no significant difference in distribution was seen between ages. 

 

4.2.3 Fgf10-lacZ expressing cells are located mostly in the arcuate nucleus 

At P60, the distribution of Fgf10-lacZ expressing cells over the different hypothalamic 

nuclei was examined (Fig 4.4). Rostral-most expression is mostly limited to the dorsomedial 

and arcuate nuclei. Further caudal, expression in the ventromedial nucleus decreases, but is 

maintained in the arcuate nucleus. Around bregma -1.8 to -1.9 mm some expression can be 

seen in the dorsomedial nucleus as well as the median eminence. Towards the caudal end of 

the hypothalamus, expression becomes more restricted to the arcuate nucleus and the 

pituitary gland, ventral of the hypothalamus.  

 

4.2.4 A heterogeneous population of tanycytes express neural stem cell markers 

In order to ascertain whether the tanycytes of the hypothalamus are progenitors or 

stem cells, immunohistochemistry for known stem cell markers was preformed on cryostat 

sections. Double-labelling of BLBP and β-gal reveals that a large proportion of tanycytes 

express both markers (Fig 4.5). These cells show a typical elongated radial glia like morphology 

shown by BLBP. When located in or immediate adjacent the ependyma, the nuclei of these 

cells show a rounded or oval shape, while those nuclei that are located further out from the 

ventricle  show a more elongated morphology. The expression of nestin is more widespread 

(Fig 4.5b), with a comparable tanycyte stain as seen with BLBP, but is also seen in more 

rounded cells located further outward from the ventricle. These more rounded cells also 

express musashi (Fig 4.5c), which is absent in the tanycytes.  
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Figure 4.4 – Distribution of Fgf10-lacZ expression in different hypothalamic nuclei at 
P60. The outlines of the different hypothalamic nuclei are indicated by dotted lines. 
Expression of Fgf10-lacZ is strong in the arcuate nucleus and median eminence. Some 
expression is also located  in the ventromedial and dorsomedial nuclei. Abbreviations: 
AHA: anterior hypothalamic area, VM: ventromedial nucleus, Arc: arcuate nucleus, DM: 
dorsomedial nucleus, ME: median eminence, Pit: pituitary gland, DTM: dorsal 
tuberomammillary nucleus. Scalebar represents 25 µm. Areas based on Paxinos and 
Franklin, 2004 
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Figure 4.5 – Neural stem cell markers in the adult (P60-P90) hypothalamus. Double 
immunohistochemistry on cryostat sections with neural stem cell markers and β-
galactosidase allows for the characterisation of the phenotype of tanycytes. (A) Radial 
glial marker BLBP is expressed throughout the ventral ependyma of the hypothalamus, 
a number of which also express Fgf10-lacZ (arrowheads) (B) The expression pattern of 
nestin is similar, but more widespread than that of BLBP, as apart from cells with a glial 
morphology, also abutting rounded cells are labeled. Examples of both types co-label 
with β-gal (arrowheads). Expression of musashi is found around much of the ventral 
ependyma, but is restricted to rounded cells abutting the ependyma, the majority of 
which are also β-gal+.  Scalebars for A-C represent 20 µm. (D) Quantification of nestin 
expression in the median eminence, the number of nestin expression cells is 
comparable over the examined area, but the number of lacZ+ and double+ cells peaks 
around -2.0 mm from bregma. A constant fraction of lacZ+ cells also express nestin. (E) 
both the distribution of BLBP and double positive cells closely mimics that of nestin. 
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When the distribution and number of cells expression both neural stem cell markers (nestin or 

BLBP) and β-gal is investigated by immunohistochemistry on serial cryostat sections, it 

becomes clear that these cells are not uniformly distributed across the hypothalamus (4.5). 

The number of cells expressing BLBP or nestin is comparable over the range of the 

hypothalamus studied, but the number of these expressing β-gal shows a clear peak at the 

central median eminence, around bregma –1.9 mm. Also obvious from these studies is that the 

proportion of β-gal positive cells also expressing nestin of BLBP is a constant fraction of 50-

70%. It should be noted that due to technical limitations it was not possible to study these 

markers at the same time, but it is likely the nestin+/β-gal+ and BLBP+/β-gal+ populations are in 

fact largely overlapping in the ependyma. It is clear that this putative progenitor/stem cell 

population is not a homogenous population, and is heterogeneous in both localization and 

immunoreactivity.  

 

 

4.2.5 Fgf10-lacZ positive cells express FgfR1-IIIc and 3-IIIc, but not FgfR2 or FgfR4 

In order to profile the expression of Fgf receptors in the adult hypothalamus in general 

and on Fgf10-lacZ positive cells in specific, a combined immunohistochemistry and RT-PCR 

approach was taken (Fig 4.6). The general expression pattern of the receptors was determined 

with immunohistochemistry, while the isoform was determined by RT-PCR.  FgfRs 1, 2 and 3 

were found to be expressed in the hypothalamus by immunohistochemistry. FgfR1 shows a 

widespread expression throughout the hypothalamus, including some of the ependymal cells. 

In contrast, FgfR2 is widely expressed in the cells of the hypothalamic parenchyma, but not 

expressed in the ependyma. FgfR3 shows an expression pattern similar to FgfR1, but shows 

stronger expression in the ependyma. Fgf10-lacZ+ cells were found to express FgfRs 1 and 3, 

but not 2. RT-PCR was preformed using iso-form specific primers on RNA isolated from micro- 
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Fig 4.6 – Expression of Fgf receptors in the hypothalamus. (A) FgfR1 is expressed 
throughout the hypothalamus on many cells, including some in the ependyma. Fgf10-
lacZ+ cells in the ependyma express FgfR1. (B) There is widespread expression of 
FgfR2 in the hypothalamus, but this is excluded form the ependyma, and no Fgf10-
lacZ+ cells were observed to express FgfR2 (C) Expression pattern fo FfgR3 mimics 
that of FgFR1, again Fgf10-lacZ+ cells express FgfR3 (D) Using isoform specific primers 
in RT-PCR, it can be seen that only the IIIc isoform of Fgfrs 1, 2 and 3 are expressed in 
the hypothalamus. Scalebars for A-C represent 100 µm, for A’ and C’ this is 5 µm 
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dissected median eminence, showing that only the IIIc isoforms of receptors 1, 2 and 3 are 

expressed, and receptor 4 is absent from the hypothalamus. 

 

4.2.6 Expression pattern of Fgf10-lacZ is largely set up before birth 

To investigate the development of the Fgf10-lacZ expressing population, whole-mount 

Xgal staining and serial sectioning of Fgf10nlacZ embryonic brains of different stages was 

preformed (Fig 4.7). At the earliest examined stage, embryonic day 10 (E10), Fgf10-lacZ 

expressing cells are limited to the hypothalamic ependyma. At this stage, this is the only area 

of expression in the brain. At E12.5 expression is similar, and is limited to the ependyma and 

the developing pituitary gland, directly ventral to the hypothalamus. By E14.5, Fgf10-lacZ 

expressing cells in the anterior hypothalamus are found more laterally, on the ventral surface 

of the hypothalamus. At E16.5, expression is similar to E14.5. Shortly before birth, at E18.5, the 

domain of expression is extended dorsally, while in the posterior a prominent lateral streak of 

cells is located along the ventral surface of the hypothalamus. Additionally, further expression 

in other regions of the brain is seen as well. After birth, at P4 the expression pattern is 

essentially identical to the adult, and the prominent lateral streak seen at E18.5 is no longer 

present. 

Shortly before birth (E18.5) the expression pattern throughout the brain has both 

similarities and differences with the adult pattern (Fig 4.8). The most striking difference in the 

hypothalamus is the prominent ventral streak of cells, which is seen throughout the 

anterior/rostral to posterior/caudal axis. The streak is only a few cells wide and extends up to 

300 µm laterally. Additionally, a second population of cells is seen in a more dorso-lateral 

position, which are not present after birth.  

In the neocortex at E18.5, a number of isolated Fgf10-lacZ+ cells can be seen, with 

greater frequency than in the adult. Various thalamic nuclei show prominent expression, these 

are the paraventricular, laterodorsal and ventral lateral geniculate thalamic nuclei. Additional  
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Fig 4.8 - Detailed expression pattern of Fgf10-lacZ before birth 
(E18.5) (A) In the hypothalamus, apart from a strong  expression in 
the parenchyma abutting the ventricle, a population of cells on the 
ventral surface of the brain can be seen. (B) Expression in isolated 
cells throughout the neocortex (C, D) Expression is seen in a number 
striatal nuclei, including the stria medullaris and the paraventricular 
thalamic nucleus (C) and in the ventral lateral genticulate and 
laterodorsal thalamic nuclei and the fimbria (D). (E) Expression is 
seen in isolated cells in or near the hippocampus. 
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expression is seen in the stria medullaris and the fimbria. Lastly, some scattered cells can be 

observed in the hippocampus, but their number is lower than in the adult. At this stage, there 

is also prominent expression in various hindbrain nuclei (data no shown). 

 

4.2.7 The Fgf10 expressing lineage contributes to embryonic hypothalamic neurogenesis. 

To investigate the contribution of the Fgf10-lacZ expressing population to the 

development of the hypothalamus, the expression of the pan-neuronal marker Tuj1 and the 

postmitotic neuronal marker NeuN was examined during the embryonic neurogenesis phase, 

at E12.5 and E14.5. At E12.5, the peak of neurogenesis, widespread Tuj1 expression is seen 

(fig4.9a-d). At this stage, many Fgf10-lacZ expressing cells label with Tuj1, with the notable 

exception of a population in the central ependyma. During this stage, no NeuN expressing cells 

are found in the hypothalamus (fig4.9e). Towards the end of neurogenesis, at E14.5, 

expression of Tuj1 is essentially ubiquitous, with the notable exception of the ependyma 

(fig4.9f). Two distinct Fgf10-lacZ expressing populations are seen, a Tuj1 negative ependymal 

population and a Tuj1 positive parenchymal population (fig4.9g,h). NeuN expression at E14.5 is 

widespread, but Fgf10-lacZ expressing cells do not express this post-mitotic marker at this 

stage(Fig 4.9i). 

 

4.2.8 Fgf10 expressing lineage contributes neurons and glia to the hypothalamic parenchyma  

β-gal+ cells in the hypothalamic parenchyma do not express neural stem cell markers, 

and the assumption is that these cells are derived from the tanycytes. Immunohistochemistry 

for markers of mature neurons (NeuN) and glial cells  (GFAP) was performed on sections of 

Fgf10nlacZ mice (Fig 4.10). NeuN is widely expressed in the hypothalamic parenchyma, and at 

early post-natal ages (P4), many Fgf10-lacZ+ cells express NeuN. By P60 however, only a small 

fraction of Fgf10-lacZ+ cells continue to express NeuN. At P60, only rare Fgf10-lacZ expressing  
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Fig 4.9 - Expression of Fgf10-lacZ and neuronal markers in the developing 
hypothalamus. (A) The immature marker Tuj1 is widely expressed in the E12.5 
hypothalamus, boxes indicate location of images B, C and D. (B) A population of cell in 
the central ependyma expresses high levels of β-gal, but no Tuj1. (C) A more lateral 
population of cells expressed high levels of β-gal, the majority of which also express 
Tuj1. (D) Cells located more ventrally express low levels of β-gal, and are interspersed 
with Tuj1 positive fibers, but only a minority of cell themselves express Tuj1. (E) The 
mature neuronal marker NeuN is not expressed in the hypothalamus at E12.5. (F) At 
E14.5, Tuj1 expression is limited to the parenchyma, and is excluded from the 
ependymal zone, boxes indicate location of images G and H. (G) In the parenchyma, 
β-gal colocalises with Tuj1. (H) The strong expression of β-gal in the ependyma does 
not overlap with Tuj1 (I) At 14.5, NeuN is expressed in certain populations of the 
hypothalamus, but not in the β-gal expressing population. Scalebars in A, E, F, I: 250 
µm, in B, C, D, G, H: 10 µm. 
 

β-gal / Tuj1 / Hoescht 

β-gal / NeuN / Hoescht 

β-gal / NeuN / Hoescht 

3V 3V 3V 3V 

3V 3V 3V 3V 

3V 3V 3V 3V 

3V 3V 3V 3V 

          Chapter 4 

97 



Fig 4.10 – Expression of neural makers on Fgf10-lacZ expressing cells in the post-
natal hypothalamic parenchyma. (A,A’) At P4, the mature marker NeuN is expressed 
throughout the hypothalamic parenchyma, and a significant fraction of Fgf10-lacZ+ 
cells co-label. (B, B’) At P60, NeuN expression in the parenchyma is relatively weaker, 
and only a small minority of Fgf10-lacZ+ cells co-label. (C,C’) Astrocyte marker GFAP is 
widely expressed, but only a few of these also express Fgf10-lacZ. Scalebars in all 
represent 10 μm. (D) The percentage co-localisation with both NeuN and GFAP varies 
over the age of the animals. At P4, and P30, a significant fraction of Fgf10-lacZ+ cells 
express NeuN, while none express GFAP. At P60 and P150 however, both NeuN and 
GFAP are expressed by a small minority of Fgf10-lacZ+ cells. Scalebars: 10 µm 
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GFAP+ glia are seen. When the degree of colabeling is quantified in different ages, the 

dynamics of this system become obvious. Shortly after birth, up to 12% of Fgf10-lacZ+ cells 

label with NeuN but this percentage rapidly drops to 6% at P30 before stabilising at between 1 

and 2% at later ages. In contrast, no GFAP+/lacZ+ cells were observed at P4 or P30, but a small 

(0.5-1%) fraction was seen at later ages. 
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4.3 - Discussion 

The Fgf10 expressing tanycytes of the hypothalamus represent a possible neural 

progenitor or stem cell population. The identities and number of both these tanycytes and 

their putative descendants were determined via immunohistochemistry. Investigating the 

dynamics of the number of Fgf10-lacZ expressing cells in different areas of the hypothalamus is 

illustrative of the different properties of these populations. The expansion of the ependymal 

population between P4 and P60 shows the continued expansion of this population, suggesting 

these cells are dividing. The fact that this is mostly a selective amplification of the ependymal 

population, rather than a generalised expansion of Fgf10-lacZ expression is evidenced by the 

increase in the ependymal population as a fraction of total cell number. However, after P60 

their number declines, indicating a likely decrease of mitotic activity. In contrast, the 

parenchymal population, which has been generated from a Fgf10 expressing population, but 

no longer expresses Fgf10, seems be largely generated by birth, and only declines after that. 

Between P4 and P60, the parenchymal domain of expression becomes larger, which together 

with a decrease in cell number leads to a lower cell density. The further decrease in cell 

number after P60 is accompanied by a shrinking of the expression domain. These 

morphological changes indicate a degree of plasticity in this population.  

Expression of Fgf10-lacZ in the adult is not uniform over the hypothalamus, but is 

clustered in a number of areas. In the ependyma, the highest cell number seen in the widest 

extent of the ventricle, with the median eminence expression largely mirroring this. Expression 

in the parenchyma is more interesting, and is located mostly, but not exclusively in the 

arcuate, dorsomedial and ventromedial nuclei. This localisation may give hints about the 

function of Fgf10-lacZ expressing cells, the arcuate and ventromedial nuclei are strongly linked 

to energy balance and feeding behaviour (Louis-Sylvestre et al., 1980; Meister, 2007), while 

the dorsomedial nucleus has also been linked to the control of circadian rhythms, including 
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that of feeding (Chou et al., 2003; Meister, 2007), hinting to some form of homeostatic role for 

these cells. 

The expression patterns of the neural stem cell markers used provide information about the 

exact cytoarchitecture of the putative neural stem cell niche of the adult hypothalamus. The 

expression of BLBP is limited to the tanycytes, and clearly shows their radial morphology, 

highly reminiscent of embryonic cortical or adult hippocampal radial glia. The expression 

pattern of nestin is wider, apart from labelling a similar population as BLBP, a population of 

rounded cells abutting the radial cells is also labelled. It is very likely that the nestin positive 

tanycytes and BLBP positive tanycytes in fact represent the same population of cells, but due 

to technical limitations a double or triple labelling for both was not possible. It is known that 

nestin is expressed in transit amplifying cells (‘A’-cells) of the SVZ (Mignone et al., 2004), and it 

is likely the nestin expressing cells of a rounded morphology in the hypothalamus represent a 

similar population. Expression of musashi, known in the SVZ to label both stem cells and transit 

amplifying cells (Obermair et al., 2010), is restricted to the rounded cells, and is absent from 

the radial glia like cells. In this niche, musashi expression seems to be limited to a putative 

transit amplifying cell population, in contrast to the SVZ. Also in contract to the SVZ, the radial 

glial cells do not express GFAP, expression of which is limited to the dorsal half of the 

ependyma. Throughout the ventral hypothalamus, there is a heterogeneous expression of 

Fgf10, approximately 60% of cells expressing the β-gal reporter also express nestin or BLBP. 

The fraction of β-gal positive cells expressing nestin or BLBP is constant over the 

hypothalamus, but their absolute number peaks around the central median emenince, at -2.0 

mm from bregma. All observed musahi expressing cells were also β-gal positive. The 

heterogeneous nature of the potential stem cell niche is no surprise, it is known that the 

subventricular niche is also highly heterogeneous, and has a mosaical organisation (Merkle et 

al., 2007).  
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The fact that β-gal positive cells only express FgfR1IIIc and FgfR3IIIc means only Fgfs 1, 

2, 4, 5, 8, 9, 16, 17, 18, and 20 can signal to these cells, the absence of any FgfR2 expression on 

these cells excludes the entire Fgf7 family, 3, 7, 10 and 22. This also excludes the possibility of 

autocrine or paracrine signalling of β-gal+ tanycytes.  

During development, the initial focus of Fgf10-lacZ expression is in the ependyma, 

before the onset of neurogenesis, but it is only after E14.5 that the first Fgf10-lacZ expressing 

mature neurons are seen, suggesting the Fgf10-lacZ positive population is involved in the late 

generation of hypothalamic neurons. Initial appearance of Tuj1+ / Ffg10-lacZ+ cells is at E12.5, 

but these are located in what will become the median eminence, rather than the parenchyma. 

This likely indicates a migration of neuronal precursors in the E12.5 to E14.5 timeframe. By 

E14.5 the population has segregated in Tuj1+ parenchymal neuronal precursors and Tuj1- cells 

in the ependyma, the putative continued stem cell population. As the number of Fgf10-lacZ 

expressing cells in the parenchyma continues to increase up to birth, this population must 

continue to generate new cells even after the bulk of neurogenesis has been completed and 

represents a late developmental contribution to the hypothalamus. This can be addressed 

using inducible genetic lineage tracing during late gestation. This is also reflected by the fact 

that none of the Fgf10-lacZ+ cells at E14.5 double-label with NeuN, indicating they have not yet 

fully matured as neurons. At early postnatal timepoints, there is considerable expression of 

NeuN in the Fgf10-lacZ population, but this rapidly decreases as animals mature. Combined, 

these observations show that the Fgf10-lacZ+ population is formed very early on during 

development as a hypothalamic precursor population, which then contributes neurons the late 

developing hypothalamus that mature close to or around birth. Although a small fraction of 

Fgf10-lacZ+ cells in the mature animal continue to express mature neuronal markers, the vast 

majority do not. This does not have to mean that the perinatal LacZ+/Neun+ cells are lost from 

the hypothalamus but may represent the turn-over of reporter protein, as these cells no 

longer express Fgf10. The differences between the embryonic and adult Fgf10-lacZ+ 
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populations are also illustrated by the fact that the embryonic population does not seem to 

generate any glia, whereas lacZ+/GFAP+ glia can been seen from P60 onwards. However, the 

biggest remaining question is what the majority of Fgf10-lacZ+ cells in the adult hypothalamus 

are, as these are neither neurons nor glia. At least some of these can represent an immature 

population of neuronal precursors, which do not express NeuN. Immunohistochemistry for the 

early neuronal marker Tuj1 in the adult is impractical as the ubiquitous expression of this 

marker in all neuronal fibres makes distinguishing individual cells impossible, but it may be 

possible to use other immature neuronal markers, such as HuC, which also stains nuclei, 

making distinguishing individual cells possible 

If migration from the ependymal zone into the surrounding parenchyma does take 

place as would be required for adult cell contribution, expression of migratory markers such as 

PSA-NCAM or doublecortin would be expected. However, no immunoreactivity for either of 

these markers was found anywhere in the hypothalamus (data not shown). It may be that 

expression levels are too low to be detected by immunohistochemistry, as genetic reporting 

for doublecortin has seen recombination in the adult hypothalamus, in cells surrounding the 

ventricle (Zhang et al., 2010). 

In summary, the contribution of the Fgf10+ lineage to the hypothalamus is twofold, an 

initial wave of neurons during late embryonic development, and a continued low-level 

contribution in the adult, capable generating both neurons and glia. The lineage seems have an 

important role in generating the various hypothalamic nuclei during development, and may 

represent a source for maintaining the population in the adult. Given the crucial homeostatic 

functions of the hypothalamus, one like function of this population may be providing for 

plasticity in response to environmental factors affecting homeostasis. 
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5.1 – Introduction 

The tanycytes of the hypothalamus have long been suggested to be a potential 

population of progenitor or neural stem cells. In order to investigate this is vivo, detection of 

cell division is required, as the only dividing neural cells are the adult neural stem cells and 

their immediate progeny. Detection of division can be done by immunohistochemistry for 

markers expressed only in actively cycling cells, such as Ki67 (Gerdes et al., 1983), PCNA 

(Miyachi et al., 1978) or phospho-histone H3 (Hans and Dimitrov, 2001). Ki67 is expressed 

thoughout the cell cycle, whereas PCNA is expressed during S-phase and phospho-histone H3 

mainly during M-phase. However, these markers can only provide a snapshot of cell division in 

a given tissue at the time of death of the animal. A different, and sometimes more informative 

way of detecting cell division relies on the incorporation of a labelled nucleotide into the DNA 

of a dividing cell during DNA replication, labelling cells during S-phase. The traditional, though 

now largely superseded, method used radioactively tagged thymidine (3H-thymidine) as the 

marker, detecting any dividing cells by autoradiography (Firket and Verly, 1958).  

Currently the nucleotide of choice is 5’-bromo-2’-deoxyuridine (BrdU), which can be 

detected by immunohistochemistry. Any dividing cell will incorporate the marker and retain it 

in its genetic structure. In theory, any labelled cell will retain incorporated BrdU, although 

subsequent rounds of division may dilute the labelling. By sacrificing BrdU treated animals 

immediately or shortly following administration, a snapshot of the actively dividing population 

can be obtained. If animals are sacrificed longer after administration, survival of cells born 

during the period of administration can be assessed. There are a number of routes for BrdU 

administration, the most common of which is intraperitoneal injection. However, this is 

inconvenient for longer administration times, as it requires a daily injection. Additionally, this 

leads to fluctuating BrdU levels, as the biological halflife of BrdU is short.  A different approach 

is to use a micro-osmotic pump for direct intra-cerebroventricular infusion, delivering the BrdU 
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directly into the brain. This is amenable to long-term experiments and will give high local BrdU 

doses, but requires stereotactic surgery to emplace.  Both these methods have been used in 

the adult hypothalamus before, with several studies showing dividing cells are present in the 

adult hypothalamus in mice (Bennett et al., 2009; Kokoeva et al., 2005; Kokoeva et al., 2007; 

Pierce and Xu, 2010; Yamauchi et al., 2010), rats (Perez-Martin et al., 2010; Xu et al., 2005) and 

voles (Fowler et al., 2002). However, most of these studies used short-term labelling, and the 

phenotype of these cells was generally not fully characterised. 

Simply detecting cell division is not always informative of the fate of newly generated 

cells. In order to do in vivo lineage tracing on potential neural stem cells, the Cre-lox system 

can be used, originally developed in vitro by Brain Sauer (Sauer and Henderson, 1988). The Cre 

recombinase protein, originally isolated from a P1 bacteriophage, is capable of targeted site-

specific recombination of DNA at sites flanked by specific short sequences known as loxP sites. 

The Cre recombinase was first introduced into a transgenic mouse line in 1992 (Orban et al., 

1992) allowing targeted in vivo mutation of the mouse genome. When used for lineage tracing, 

it requires the use of a cross of two mouse lines. The first line, usually referred to as the 

‘driver’, has the sequence for Cre recombinase inserted downstream of the promoter of the 

gene of interest causing Cre expression in any cells expressing this gene. By limiting the 

expression of Cre to cells expressing a specific gene, spatially restricted activation is achieved. 

This line can then be crossed with a reporter strain, in which a specific gene is transcribed 

upon Cre activation. 

As the conventional Cre recombinase is constitutively active, it is not possible to 

control the timing of its expression. In order to overcome this limitation, novel variants of Cre 

were developed that consisted of fusion proteins of Cre with a different regulatory protein 

that allow activation of Cre by administration of an exogenous chemical. This was first 

achieved by a Cre recombinase fusion with the human estrogen receptor (CreER) (Metzger et 

al., 1995), which was later improved by use of a mutated estrogen receptor (the CreERT) (Feil 
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et al., 1996). The estrogen receptor is normally sequestered in the cytoplasm, excluding the 

fused Cre from the nucleus. When the synthetic receptor agonist tamoxifen is administered, 

the complex translocates to the nucleus, and recombination can take place. A further mutation 

of this fusion protein, the CreER(T2), shows higher ligand specificity and is now commonly used 

(Feil et al., 1997). An alternative is a fusion with a mutated progesterone receptor (Kellendonk 

et al., 1996), which was successfully used for recombination in the mouse brain (Kellendonk et 

al., 1999).  

The activation of Cre recombinase leads to the homologous recombination of genomic 

DNA flanked by the loxP recognition site (usually known as a floxed allele). The loxP sites are 

directional, when both loxP sites are in the same direction, the flanked sequence is excised 

from the genome, while if they are opposed, the sequence is reinserted into the genome in the 

opposite direction. Cre activity can be used both to stop gene expression and to activate it, 

depending on the specific genomic construct. If the loxP sites flank a gene of interest (or 

required portion thereof), recombination will cause the excision of the gene, in effect creating 

a knockout. In contrast, when Cre recombinase is used for lineage tracing, an inducible 

reporter gene can be activated by including a floxed stop codon upstream of the reporter 

gene, which is removed upon recombination, allowing for transcription of the reporter gene. 

Commonly used reporter genes are lacZ (producing the β-galactoside protein) and GFP or any 

of its variants such as YFP, RFP or Tomato. In order to accurately report Cre activity anywhere, 

the reporter gene must be capable of being expressed in any tissue, and thus should be driven 

by a ubiquitously active promoter. Generally, the promoter of choice for these reporters is the 

ROSA26 locus, which was initially found to drive generalised expression of a retrovirally 

introduced gene trapping construct carrying a lacZ gene (Zambrowicz et al., 1997). This locus 

was modified by introduction of a floxed transcriptional termination signal, usually in the form 

of a neomycin resistance cassette, to form a Cre reporter allele, initially driving lacZ (Mao et 

al., 1999; Soriano, 1999), and later driving fluorescent reporters (Mao et al., 2001; Srinivas et 
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al., 2001). Using Cre mediated recombination is the most reliable manner of lineage tracing 

available today for a number of reasons. Firstly, recombination will only take place in cells 

expressing the gene of interest, in contrast to dye labelling or retroviral labelling, which labels 

cells based on location. Furthermore, due to the genomic rearrangement by the Cre 

recombinase, reporter expression is continued indefinitely, regardless of cell division. 

 

Aims 

In order to determine the mitotic potential of Fgf10-lacZ expressing cells in the adult 

brain, a combination immunohistochemistry and long-term BrdU administrations was used. 

The long term fate of newly generated cells was investigated using genetic lineage tracing 

combined with immunohistochemistry. 
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5.2 - Results 

5.2.1 Ki67 labelling shows limited cell proliferation in the adult hypothalamus 

Labelling of Ki67 in the adult hypothalamus shows only a small number of cells which 

are proliferating (fig 5.1). Only a small portion of the Fgf10-lacZ positive cells, located in the 

ependyma, also express Ki67.  

 

5.2.2 Cumulative BrdU administration shows widespread proliferation, including a subset of 

Fgf10-lacZ+ cells 

Long term drinking water administration of BrdU was compared to a more traditional 

administration protocol, consisting of daily intraperitoneal injections of 100 mg BrdU per kg 

bodyweight over 5 days. When compared in both a traditional neurogenic niche, the dentate 

gyrus of the hippocampus, and the hypothalamus, it is clear that a 21d drinking water 

administration labels more cells that the short term injection regime (fig 5.2), thus showing 

this method is more sensitive.  

After 21d of cumulative BrdU administration , the hypothalamus shows widespread 

BrdU incorporation, with substantial amounts of cells in the parenchyma. However, despite 

both being widespread, only a small number of β-gal+ cells incorporate BrdU. The double-

positive cells were located exclusively in, or were abutting the ventral ependyma, and 

frequently appeared as doublets, indicating a recent division (fig 5.3).  

 

 

 

 

 

 



Fig 5.1 – Expression of Ki67 in the adult 
hypothalamus. Ki67 is only rarely 
expressed in the adult hypothalamus. 
There are both Ki67+/lacZ- (open 
arrowhead) and Ki67+/lacZ+ cells (closed 
arrowhead). Scalebar for D: 250 µm, for 
E: 5 µm 

Fig 5.2 - Comparison of different administration routes for BrdU. (A) 
Schematic administration regimes for both. In both the hippocampus (B,C) 
and the hypothalamus (D,E) it is clear that a long term cumulative labeling 
protocol labels more cells than a traditional administration regime.  
Scalebar: 250 µm 
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Fig 5.3 – BrdU incorporation after 21 days of administration. After immunohistochemistry 
for BrdU and β-gal, it can be seen that the expression patterns are not similar, and there is 
little overlap in expression. However, double-positive cells are present, both as single cells 
(open arrowheads) and doublets (filled arrowheads), likely indicating a recent mitotic event.  
Scalebars for C, G: 250 µm, D, H: 10 µm 
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5.2.3 Both total and Fgf10-lacZ expressing BrdU incorporating populations decrease with age 

As it is known from other stem cell niches the number of proliferating cells decreases 

with age, animals of different ages were administered BrdU to asses the temporal dynamics of 

hypothalamic cell division (fig 5.4). Animals used were at P28-35 (n=3), P70 (n=3) and P438 

(n=3). Basal levels of BrdU incorporation is at 400±1 cells per hypothalamus at the earliest 

timepoint, and drops steadily throughout age before reaching an average of 116±7 at P438, a 

significant (p=0.02) decrease. The vast majority of these cells are in the parenchyma, at P28-32 

the ependyma contains just 12±1 BrdU incorporating cells, again this population decreases 

significantly (P<0.004), to 3±0.3 at P438. The number of BrdU incorporating cells that also 

expresses Fgf10-lacZ is low, with a base-line population at P28-35 of 12±4 cells. As is seen in 

the general BrdU incorporating population, the β-gal+/BrdU+ population also decrease with 

age, staring of at 12±4 cells at P28-32, before completely disappearing by P438. 

 

5.2.4 Majority of Fgf10-lacZ+ cells do not divide after cessation of embryonic neurogenesis 

To asses the mitotic potential of the Fgf10-lacZ lineage to the hypothalamus after the 

end of embryonic neurogenesis, BrdU was administered by daily IP injections to time-mated 

mothers at E15.5 and E16.5. This led to widespread BrdU incorporation in the hypotahalmus, 

noticeably more numerous than in the adult (fig 5.5) However, as in the adult, the portion of 

these that also express Fgf10-lacZ is small, and limited to the ependyma.  

 

 

 

 

 

 

 



Fig 5.4 – BrdU incorporation and double-labeling with Fgf10-lacZ in young and aged 
Fgf10nlacZ animals. (A) The hypothalamic population of BrdU decreases with aging, reaching a 
significantly lower level by P430. (B) In the ependymal tanycyte population, a similar 
decrease is observed(C) The number of BrdU incorporating Fgf10-lacZ cells also decreases 
with aging to  an extent that none can be observed at P430. 
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Fig 5.5 – BrdU incorporation in the hypothalamus at E16.5. Neurogenesis in the 
hypothalamus is finished by E16.5, but there is still significant cell proliferation, as evidenced 
by widespread BrdU incorporation. A fraction of ependymal Fgf10-lacZ+ cells incorporates 
BrdU. Scalebars  in C: 100 µm, in D: 10 µm 
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3.2.5 Inducible nestinCreERT2 animals are not suitable for adult lineage tracing 

In order to fate-map the descendents of hypothalamic tanycytes, NestinCreERT2 were 

crossed with ROSA26YFP or ROSA26RFP reporter animals, generating nestinCreERT2::ROSA26YFP and 

nestinCreERT2::ROSA26RFP double transgenic animals. The reporter alleles were used both 

heterozygously and homozygously. A number of induction protocols were used, including daily 

IP injections of tamoxifen for 7 days, twice daily injections for 5 days, or food pellets for 14 

days. At no time in either the YFP or RFP reporter animals was any recombination seen by 

native fluorescence, in either the hypothalamus or known neural stem cell niches. In order to 

increase the detection sensitivity for YFP, two different anti-GFP antibodies were used (see 

table 2.3), which haven been described to detect YFP. However, no staining was ever 

observed. With the current protocols, no detectable recombination was ever detected.  

 

5.2.6 Inducible genetic lineage tracing confirms Fgf10 expression in the hypothalamus 

An inducible lineage tracing system was set up using Fgf10CreERT2::Rosa26lacZ mice. A 

number of administration regimes were tried, the details for the mice used, treatments 

applied and recombination rates seen are in tables 5.1. 

Table 5.1 – Optimisation of tamoxifen administration 
Animals Treatments Recombination rates 

Age Sex Inj (d) 
Tamox 
diet (d) 

Normal 
diet (d) 

No of 
cells 

% 
Ependymal/ME 

% 
Parenchyma 

44 M  14 10 29 89.7 10.3 
57 M 5 (2x/d) 10 8 77 64.9 35.1 
57 M 5 (2x/d) 10 38 37 59.5 40.5 
61 M 7 6 5 49 34.7 65.3 
83 F 5 5  5 80.0 20.0 
83 F 6 7 5 81 80.2 19.8 

 

Recombined cells were observed throughout the hypothalamus (fig 5.6), with the most 

recombination being observed in the ependyma, although there was large inter-animal  

 

 



Fig 5.6 – Recombination in Fgf10CreERT2::ROSA26lacZ mice induced with 
tamoxifen. (A,A’) Wholemount Xgal staining reveals successful recombination in 
the hypothalamus.(B-D) Recombined cells are found over the rostral-caudal axis, 
and in both ependyma and parenchyma . Scalebars: B-D: 250 µm, D’,D’’: 10 µm 
(E) Location of B-D 
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variability in both numbers and localisation of recombined cells. Expression in the ependyma is 

strongly clustered around -2 mm from bregma, whereas recombination in the ME is further 

caudal, with the majority of expression between -2.1 and -2.4 mm from bregma. In contrast, in 

the parenchyma recombination takes place over a much wider range, with recombined cells 

observed from -1.0 to -2.6 mm from bregma. A peak of expression is reached around -1.7 mm 

from bregma, but this is not a distinct as that of the ependyma or ME. The details of the 

animals used for quantification of recombination dynamics are in table 5.2 

Table 5.2 – Animals used for assessing recombination dynamics. (Light gray is short 
treatments, dark gray long treatments) 

 

Animals Treatments Recombination rates  

Age Sex Inj (d) 
Tamox 
Diet (d) 

Normal 
diet 

No of cells % Ependymal/ME % Parenchyma  

28 F 7 10 7 53 47.2 52.8 

P2
8-

32
 28 F 7 10  48 66.7 33.3 

28 F 7 10 36 159 42.8 57.2 
28 F 7 10 48 96 47.9 52.1 
32 F 7 10 22 129 55.0 45.0 
32 F 7 10 22 199 57.3 42.7 

42 F 7 10 12 124 59.7 40.3 

P4
0-

42
 42 F 7 10 12 57 59.6 40.4 

40 F 7 10 36 112 57.1 42.9 

42 F 7 10 24 100 58.0 42.0 

42 F 7 10 24 87 58.6 41.1 

57 M 7 9 8 68 36.8 63.2 
P5

3-
60

 57 M 7 9 8 87 65.6 34.4 

60 F 7 10 9 90 65.6 34.4 

60 F 7 10 9 110 61.8 38.2 

53 M 7 10 32 54 68.5 31.5 

53 M 7 10 32 59 74.6 25.4 

68 F 7 10 7 50 96.0 4.0 

P6
8-

70
 68 F 7 10 13 60 88.3 11.7 

70 M 7 10 7 23 65.2 34.8 
70 F 7 10 9 105 70.5 29.5 
70 F 7 10 27 56 69.6 30.4 
70 F 7 10 39 69 42.0 58.0 

After 7 days of tamoxifen, 10 days of tamoxifen containing diet and approx 10 days of 

normal food, the baseline level of recombination in variable between animals, but averages 

between 60 and 90 cells per animal, depending on the age (fig 5.7). No significant effect of  

 



Fig 5.7 – Recombination dynamics in Fgf10CreERT2::ROSAlacZ mice over age. (A) At young 
ages (P28-P32), a significant increase in cell number is seen with longer times post-
induction , in both ependyma and parenchyma. (B) This increase does not result in a 
greater proportion of ependyma cells. (C-H) At later ages, this effect is no longer seen. 
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starting age is seen on baseline levels of recombination. With longer post-induction intervals 

(14 to 40 days after last tamoxifen), to asses any expansion of this population over times, 

difference can be seen. When induction is started at young ages (P28-P32) longer post-

induction intervals reveal a significantly expanded recombined total population (p=0.02), with 

both ependyma and parenchyma showing expansion (p=0.04 and p=0.01 respectively). This 

expansion does not affect the distribution of the recombined cells, as no significant difference 

can be seen in the fraction of cells that is located in the ependyma. At later ages (P40-42, P53-

60 or P68-70) no significant differences are seen between short and long post-induction 

intervals. 

 

5.2.7 Recombined cells do not express glial markers 

The phenotype of recombined cells was investigated by immunohistochemistry. No 

recombined cells express the glial marker GFAP. In the ependymal layer, the domain of GFAP 

expression and the area of recombination are mutually exclusive (fig 5.8a).  

 

5.2.8 Direct lineage tracing shows Fgf10 expressing cells generate hypothalamic neurons 

To directly asses the neuronal contribution of the Fgf10+ lineage, NeuN labelling was 

performed on recombined brains. Double positive cells were observed in both young adult 

(P28) and at later ages (P40 and P60) (fig 5.8 b-d) 

 

5.2.9 Embryonic induction of Fgf10CreERT2::ROSA26lacZ animals shows Fgf10 distribution 

To investigate the activity of Fgf10 after embryonic neurogenesis, time-mated mothers 

received daily IP injections of tamoxifen at E15.5, E16.5 and E17.5 before being sacrificed at 

E18.5. At this time, few recombined cells can be seen in the hypothalamic ependyma (fig 5.9a-

c). In addition, sparse recombination can be seen in the cortex (fig 5.9d) hippocampus (fig 

5.9e), hindbrain (fig5.10a,b) and olfactory bulb (fig 5.10d). Interestingly, a dense cluster of  



Fig 5.8 – Fate of recombined cells in Fgf10CreERT2::ROSA26lacZ mice. (A) 
The domain of ependyamal recombination (cells indicated by 
arrowheads) is mutually exclusive with GFAP expression. (B,C,D) 
Throughout early adulthood (P28, P40 and P60) a subset of recombined 
cells in the parenchyma express the neuronal marker NeuN  
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Fig 5.9 – Recombination in Fgf10CreERT2::ROSAlacZ mice at E18.5. Late 
during development, sparse recombination is seen in the 
hypothalamus, in both wholemount (A,B) and sections (C-D). Further 
recombination is occasionally seen in the neocortex (E) and 
hippocampus (F). Scalebars C-F: 250 µm 
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Fig 5.10 – Recombination in Fgf10CreERT2::ROSAlacZ mice at E18.5. (A,B) 
Recombination is see throughout the hindbrain. (C) View towards caudal of the 
olfactory bulb (OB). Recombination in the frontal brain is seen in the frontal cortex 
adjacent to the OB. (D) Rare recombination event in the OB proper. (E, E’) Cluster 
of recombined cells in between the frontal cortex and the olfactory bulb. 
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recombined cells can be observed on the surface of the fontal cortex, directly adjacent to the 

olfactory bulb (fig 5.10c,e). 

 

5.2.10 Fgf10CreERT2::Rosa26Tomato mice confirms lineage tracing results 

Use of a fluorescent reporter strain with the Fgf10CreERT2 mice allows for more 

convenient double-labelling for lineage tracing purposes. When induced at P60 with the same 

administration regime as for Fgf10CreERT2::Rosa26lacZ mice, these mice shows extensive 

recombination in the hypothalamus (Fig 5.11). The Tomato reporter protein fills up the entire 

cytoplasm, highlighting the radial processes of the tanycytes (Fig 5.11a). Double-labelling with 

GFAP shows the recombined tanycytes do not express this astrocytic marker, confirming what 

was seen with the Rosa26lacZ reporter. In the parenchyma, recombined cells show a clear 

neuronal morphology, with axonal networks highlighted by the fluorescent reporter (Fig 

5.11b,c). The majority of these cells also express NeuN.  

 

5.2.11 Fgf10CreERT2::Rosa26Tomato mice show more widespread recombination 

In the rest of the brain, the Fgf10CreERT2::Rosa26Tomato mice show recombination in areas where  

the Rosa26lacZ mice do not. Apart from the hypothalamus, recombination is seen in the 

amygdala (see Chapter 6), hippocampus (Fig 5.12a) and cortex (Fig 5.12b). In the hippocampus, 

very sparse labelling is seen in NeuN expressing neurons in the CA1 region, with axons 

projection deeper into the hippocampus towards the dentate gyrus. In the cortex, several 

neurons in the deeper cortical layers are labelled, showing long axons projecting towards the 

pial surface of the brain.  

 

 

 

 



Tomato / GFAP / Hoescht 

Tomato / NeuN / Hoescht 

Fig 5.11 – Recombination in hypothalamus in 
Fgf10CreERT2::ROSA26Tomato mice copies that in ROSA26lacZ mice. (A) 
Using a fluorescent Tomato reporter, recombination mimicked that 
of the LacZ reporter. The Tomato fills up to cells, highlighting the 
tanycyte processes Recombination does not colocalise with GFAP 
expression (B,C) Many recombined cells in the parenchyma have 
both neuronal morphology and express NeuN. Scalebars: A,B,C: 
250 µm, B’,C’: 10 µm 
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Fig 5.12 – Widespread recombination in Fgf10CreERT2::ROSA26Tomato mice (A) 
Recombined hippocampal NeuN+ in the CA1 region neuron projecting an 
axon deeper into the hippocampus. (B) Recombined cortical pyramidal 
neuron, the reporter highlights both the axonal and dendritic networks of this 
neuron. Scalebars: A: 250 µm, A’, B: 10 µm 

A 

B 

A’ 

          Chapter 5 

125 



  Chapter  5 

126 
 

5.3 Discussion 

If a stem or progenitor cell population is present in the hypothalamus, cell division 

would take place. Labelling with the proliferation associated protein Ki67 shows sparse 

immunoreactivity in the hypothalamus, with some of the Ki67+ ependymal cells also labelling 

with β-gal. A more complete picture of cell division is achieved using BrdU administration. 

Given the low rates of baseline BrdU incorporation seen in previous studies, a novel protocol 

using a long-term cumulative BrdU administration via the drinking water was used. This 

labelled substantially more cells than traditional short-term IP injection protocols, in both 

traditional neurogenic niches (dentate gyrus) and the hypothalamus.  

Although long term BrdU administration is more sensitive than traditional short-term 

IP injections, it also increases the total dose received. This present a potential confounding 

factor in that there may be significant cytotoxicity of the BrdU, disturbing the normal 

proliferation in the hypothalamus and leading to cell death. Immunohistochemisty for marker 

of apoptosis such as activated caspase 3 would need to be undertaken in BrdU treated animals 

to exclude this possibility. 

BrdU incorporation in the hypothalamus is throughout the ependyma and 

parenchyma. Only a minority of tanycytes incorporate BrdU during 21 days, indicating not all 

Fgf10 expressing cells actively divide. Some cells in the hypothalamus do express β-gal and 

incorporate BrdU, these are located exclusively in the ependyma or directly adjacent to it, 

further strengthening the notion that this is the location of the actual dividing stem cells.  

Many of the double-positive cells are located just adjacent, but not in, the ependymal 

layer. Two factors may affect this localisation. It is known from the embryonic neural tube and 

early postnatal SVZ that the nucleus of radial glia is mobile during the cell cycle, as it displays 

interkinetic nuclear migration (Tramontin et al., 2003). During the G1 phase, the cell nucleus 

moves outward into the radial fibre, where S phase takes place. During G2 phase, the nucleus 
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moves back to the ventricular surface, where mitosis takes place. BrdU will be incorporated 

during S-phase and retained during the rest of the cell cycle, leading to labelled nuclei being 

located throughout the radial extent of the cell. Alternatively, the relative localisation of 

labelled cell may represent two different populations. The most mitotic cells in other 

neurogenic niches are known to be the transit amplifying cells, rather than the radial glial stem 

cells. AraC infusion into the SVZ ablates the population of transit amplifying cells, but leaves 

the radial glia population largely intact, indicating these are not highly mitotic (Doetsch et al., 

1999). In analogy to the to the SVZ, the resident stem cells would be the radial 

BLBP+/nestin+/musahi- cells, which rarely incorporate BrdU, while a population of transit 

amplifying BLBP-/nestin+/musashi+ cells, which have a rounded morphology reminiscent of 

transit amplifying cells, divide more frequently.  The majority of BrdU incorporating cells in 

the hypothalamus do not express Fgf10-lacZ. At this time it is unknown what these cells are, it 

is likely many of these are of a non-neural lineage, which may include blood vessel endothelial 

cells and resident microglia. Further immunohistochemistry will shed light on this. 

 During the lifetime, the number of dividing cells detected in the hypothalamus at any 

given time decreases. This can be due to either a lengthening of the cell cycle, causing fewer 

cells to be in S-phase at any given time, due to cells entering quiescence in G0 or due to a loss 

of cells altogether. The decrease of mitotic activity correlates with the decrease in total Fgf10-

lacZ+ cell number seen, and would suggest a turn-over of cells, with a reduced replacement 

capacity as the animals age.  

BrdU incorporation during late embryonic neurogenesis (E14.5 to E16.5) shows that by 

this stage the Fgf10-lacZ population is already largely quiescent, as double-positive cells are 

rare. This correlates with the expression of Tuj1 on the majority of parenchymal Fgf10-lacZ+ 

cells by E12.5, showing that most of the proliferation is over by this stage, and cells are 

maturing. The main embryonic contribution of the Fgf10 expressing lineage to the 
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hypothalamus thus corresponds with the timing of wider neurogenesis in the hypothalamus, 

with a small population remaining mitotically active in late gestation and into adulthood. 

Both the dynamics and progeny of these dividing cells were investigated through 

genetic lineage tracing. Tamoxifen induced recombination in Fgf10CreERT2::ROSA26LacZ adults 

shows a far more limited expression pattern than is seen in Fgf10nlacZ animals. Recombination 

is limited to the hypothalamus, and is low efficiency. From in situ data it is known that Fgf10 is 

expressed throughout the ventricle floor, but only a fraction of these cells actually recombine. 

In other regions known to actively express Fgf10 in the adult, such as the hippocampus, no 

recombination is seen at all. The preferential recombination in the hypothalamus may reflect 

higher activity of the Fgf10 promoter in this area compared to others. A different fact to take 

into account is the highly vascularised nature of the hypothalamus, potentially leading to 

locally high doses of tamoxifen. Excision efficiency of Cre recombinase is known to be 

tamoxifen dose-dependant (Hayashi and McMahon, 2002). It may be possible to obtain a more 

complete recombination in the hypothalamus and other areas by using higher tamoxifen 

doses, but the dose used in the current experiments (80-100 mg/kg) is already at the high end 

of the commonly used doses in literature, so complete recombination in this particular mouse 

line will likely be impossible to achieve.  

The temporal dynamics of expression were studied by inducing recombination at 

different ages, and assessing the recombined population at different times after induction. 

When young animals (P28-P30 at start of induction) are sacrificed 14 days or more after the 

cessation of tamoxifen administation, the recombined population significantly expands 

compared to shortly after administration. This increase in cell number clearly illustrates the 

proliferative capacity of the Fgf10 expressing population at this stage, as any more cells 

formed after the cessation of tamixofen administration must be solely due to cell division. In 

approximately 21 days, the Fgf10 population more than doubles, showing an approximate cell 

cycle time of 14 to 21 days, which is similar to that indicated by BrdU incorporation rates. In 
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contrast, when recombination is induced at later ages, the proliferation effect is no longer 

seen, which correlates with a decreased mitotic activity seen with BrdU incorporations. 

Since in general approximately half of recombined cells at any time are in the 

parenchyma, where according to in situ data Fgf10 is not expressed, it is likely considerable 

migration takes place during the three or more weeks after the start of tamoxifen 

administration. The neuronal identity of these cells is evidenced by NeuN expression, and their 

clearly neuronal morphology as seen in the Rosa26Tomato reporter. The fact that recombined 

cells express NeuN unequivocally shows that the Fgf10 expressing lineage continues to 

contribute neurons to the hypothalamus post-natally. Since recombined NeuN expressing cells 

are seen up to P60, the Fgf10+ tanycyte population is clearly continuing to supply new cells to 

the hypothalamus, although at a low level as no overall increase in cell number can be seen at 

this age. Although no GFAP expressing recombined glia were seen in the parenchyma, the 

relative rarity of Fgf10 expressing glia in general (see chapter 3) combined with the observed 

recombination efficiency makes detection of any recombined glia unlikely.  

Induction of recombination during late gestation shows the continued expression of 

Fgf10 in the hypothalamus after embryonic neurogenesis. Only few cells recombine, but given 

the shorter administration times and the lower doses likely to be achieved in utero, this is not 

surprising. It is interesting to note that embryonic recombination takes place in several areas 

that show expression in the adult in the Fgf10nlacZ line, but do not show recombination in the 

Fgf10CreERT2::ROSA26lacZ line in the adult. This includes prominent recombination in hindbrain 

nuclei and scattered recombination in the cortex, hippocampus and olfactory bulb. This points 

to the possibility that these only have low-level or indeed no active Fgf10 expression in the 

adult, and what is seen in the Fgf10nlacZ line is solely retained reporter protein from promoter 

activity during late gestation.  

The combination of BrdU incorporation assays and genetic lineage tracing clearly 

shows that a continued population of Fgf10-lacZ positive cells continues to exist after the 
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cessation of embryonic neurogenesis and into adulthood. This population contributes neurons 

during embryonic neurogenesis, and continues to contribute small numbers of neurons and 

glia into adulthood. Although the population may be largely quiescent by P40, it still has the 

potential to divide and to contribute new cells to the parenchyma up to P60. In aged animals 

however, this population may be terminally post-mitotic. 

 



 
 
 
 
 

Chapter 6 
 

In vitro culture and characterisation of  
Fgf10-lacZ expressing primary cells 
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6.1 – Introduction 

While cells can be readily studied post-mortem in fixed tissue, some properties can 

only be examined in living cells. This necessitates setting up a primary culture system to isolate 

and grow these cells in vitro. The different cell types in the adult brain require different 

isolation protocols and culture conditions to survive in vitro, with astrocytes being readily 

culturable, and neurons and neural stem cells far more difficult to grow from the adult brain. 

The long-standing culture system for neural stem cells is the neurosphere assay. Here, 

the tissue of interest is dissected out, digested to a single cell solution, and cultured in a 

defined serum-free medium containing EGF and FGF2. Unless a suitable adhesion factor is 

provided, these cells remain non-adherent, and will divide to form clonal clusters of neural 

stem cells, termed neurospheres. This was first shown in a landmark paper by Reynolds and 

Weiss (Reynolds and Weiss, 1992), where the striatum was isolated, suggesting a probable SVZ 

origin for these neurospheres.  They also showed these cells were capable of generating 

neurons. Later it was shown that neurospheres can also give rise to astrocytes and 

oligodendrocytes (Vescovi et al., 1993). 

Neurospheres have also been isolated from the hippocampus (Gage et al., 1995), 

spinal cord (Weiss et al., 1996), amygdala  (Arsenijevic et al., 2001) and hypothalamus (Xu et 

al., 2005). The fact that cells in neurospheres maintain their neurogenic potential even after 

long term (>1 year) culture was shown by transplanting these cells into the rat brain and 

showing they generate mature hippocampal granular neurons (Gage et al., 1995) 

Primary neurons have been grown from many areas in the embryonic brain, including 

cortex (Yavin and Menkes, 1973), hippocampus (Walicke et al., 1986), spinal cord (Deloulme et 

al., 1991), striatum and substantia nigra (Brewer, 1995). However, culturing viable neurons 

from the adult brain is more difficult. From the adult, hippocampal neurons have been 
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cultured (Brewer, 1997). Primary neurons have been isolated from the embryonic (Lui et al., 

1990), newborn (Lolait et al., 1983) and adult (Yamashita et al., 1992) hypothalamus. More 

recently, immortalised cell lines have been derived from primary hypothalamic neurons (Dalvi 

et al., 2011; Gingerich et al., 2009). 

Primary astrocytes, first cultured in the early 70s (Booher and Sensenbrenner, 1972), 

represent a good model of astrocyte function in vivo. They maintain similar electrical 

properties to their in vivo counterparts (Kimelberg, 1983) and express similar proteins to in 

vivo astrocytes, including markers such as GFAP, S100β, receptors for glutamate (Bowman and 

Kimelberg, 1984) and GABA (Kettenmann and Schachner, 1985), and glutamate transporters 

(Swanson et al., 1997). Primary astrocytes have also been cultured from embryonic (Garcia-

Segura et al., 1989) and neonatal (Ernsberger et al., 1990) hypothalamus. 

Although neural stem cells, neurons and astrocytes have been cultured from the adult 

hypothalamus, these cells have not been studied much in vitro. Establishing reliable protocols 

to culture these different cell types from the adult hypothalamus will allow for detailed study 

of their properties, and to asses the function of Fgf10 in these cells. 

 

 

Aims 

In order to investigate the properties of hypothalamic Fgf10-lacZ expressing neural cells in 

vitro, culture protocols for these cell types were established, and the phenotype and 

proliferative capacity of the Fgf10-lacZ+ cells examined. Additionally, the potential of using 

FACS to enrich Fgf10-lacZ expressing cells was assessed. 

 

 

 

 



  Chapter 6 

134 
 

6.2 – Results 

6.2.1 The adult mouse hypothalamus is capable of generating neurospheres 

In order to confirm that the hypothalamus contains stem cells that can form 

neurospheres in vitro, a number of different combinations were tried to find an optimal 

protocol. The protocols tried and results found are details in table 6.1. It was found that the 

hypothalamus is capable of generating neurospheres under a number of conditionss.  

Table 6.1 Protocols used for neurosphere generation and their efficacy 

Dissociation Culture medium Percoll 

Results 
SVZ ME 

Typical 
yield 

Growth 
Typical 
yield 

Growth 

Accutase Neurobasal + B27 n/a 1.5x106 +/- 1.2x106 +/- 

Mechanical 
Neurobasal + B27 n/a 1.4x106 - 1.1x106 - 
DMEM/F12 + B27 n/a 1.4x106 ++ 1.1x106 ++ 

Trypsin DMEM/F12 + B27 n/a  1.3x106 - 1.0x106 - 

Papain 
DMEM/F12 + B27 n/a 1.5x106 - 1.2x106 - 

DMEM/F12 (mod) + B27 22% 0.8x106 - 0.5x106 - 
DMEM/F12 (mod) + B27 11% 0.9x106 + 0 .6x106 +/- 

The efficacies of different protocol are variable. Mechanical dissociation in 
combination with culturing in a DMEM/F12 based medium gives the most reliable 
generation of neurospheres. Accutase dissociation and culture in Neurobasal medium 
also works, as does papain dissociation with Percoll purification and culture in 
modified DMEM/F12, however these are not as efficient. ++, +, +/- represent high, 
medium and low efficiency, respectively. – indicates no successful culture. 

 

Hypothalamic neurospheres were found to be comparable to SVZ derived ones in size 

and morphology (Fig 6.1a), although fewer were initially generated for comparable amounts of 

tissue digested. Hypothalamic neurospheres were found to be capable of efficient regrowth 

after passaging for up to 5 passages. When comparing average diameter of neurospheres over 

time between hypothalamus and SVZ, no significant difference was found over the first three 

passages (Fig 6.1b. Growth rates over the different passages were found to be identical as well 

(Fig 6.1c).  
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Fig 6.1 – Neurosphere formation from the adult hypothalamus (A) Neurospheres of 
comparable size and morphology of those from the SVZ can be grown from the 
hypothalamus, and are capable of regrowth after passaging. (B) The average diameter of 
neurospheres over time is not significantly different between SVZ and hypothalamus 
derived culture. (C) Average growth rates for different passages are the same between 
SVZ and hypothalamus cultures. Scalebars represent 100 μm 
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6.2.2 Hypothalamic neurospheres differentiate readily on a number of substrates 

Individual neurospheres were placed onto glass coverslips coated with a variety of 

substrate concentrations, single or double coatings of poly-D-lysine (PDL) at 20 µg/ml or 

coatings of poly-D-ornithine (PORN) at 40, 100 or 250 µg/ml were used. Cells were cultured 

without growth factor, in the presence of 2 or 10% added fetal bovine serum to promote 

differentiation. Under all conditions, spheres attached and cells were observed migrating 

outwards after 24 to 48 hours (Fig 6.2). No appreciable difference was seen between 

conditions. 

 

6.2.3 Hypothalamic neurospheres are multipotent 

When induced to differentiate by withdrawal of growth factors and addition of serum, 

single hypothalamic neurospheres can form all three neural lineages (Fig 6.3), Tuj1+ neurons, 

GFAP+ astrocytes and Olig2+ oligodendrocytes. A small number of cells express both Tuj1 and 

GFAP. 
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Fig 6.2 – Substrate dependency of neurosphere differentiation. Neurospheres 
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6.2.4 The Fgf10-lacZ+ lineage readily forms astrocytes in vitro 

Dissociated newborn brains from Fgf10nlacZ animals were plated under astrocyte 

growth promoting conditions, resulting in many astrocytes at 3 to 4 DIV. Xgal staining reveals 

many of these are lacZ positive, and have a characteristic astrocyte morphology (Fig 6.4a,b).  

Some Xgal positive cells in these cultures can be observed to divide (Fig 6.4c), and many Xgal 

positive cells were observed in small clusters. Immunohistochemistry for GFAP confirmed that 

these cells are indeed astrocytes (Fig 6.4d) 

In some instances, spherical cell masses were observed, surrounded by a dense patch 

of cells. Many of these were Xgal positive and of these, many were surrounded by a halo of 

Xgal positive cells (Fig 6.5). Some Xgal negative spheres were observed, but were a minority 

and of a smaller size than the Xgal positive one. 

Fig 6.3 – Differentiation of hypothalamus derived neurospheres. Single neurospheres can 
form all three lineages, neurons (Tuj1+), astrocytes (GFAP+) and oligodendrocytes (Olig2+). 
Some cells express both Tuj1 and GFAP. Scale bars represent 100 μm  
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D 

Fig 6.4 – Fgf10-lacZ expressing primary astrocyte cultures. (A) Primary 
astrocytes isolated from Fgf10nlacZ animals readily produce Xgal positive 
astrocytes. (B) The morphology of these cells is characteristic of  
astrocytes (C) In some instances, dividing Xgal positive cells can be 
observed. (D) immunohistochemistry for GFAP in parallel cultures 
confirms this population as astrocytes. Scale bars represent 10 μm 
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Fig 6.5 – Formation of spherical cell structures in astrocycte cultures. Several Xgal 
positive spheres of cells can be seen, which are commonly surrounded by a halo of positive 
cells in a monolayer (A-C) Heterogeneous Xgal+ and Xgal- spheres were also observed (D). 
Occasionally, positive (closed arrowheads) and negative spheres (open arrowheads) form 
in close proximity (E,F). Isolated negative spheres are observed, but are generally rare and 
smaller than positive spheres. Scale bars represent 50 μm 
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6.2.5 A subset of hypothalamic primary neurons express Fgf10-lacZ in vitro 

Primary neurons isolated from the adult hypothalamus were plated onto either glass 

coverslips coated with PDL or PDL and laminin, or directly into 24 well plates coated with PDL 

or PDL and laminin. Negligible adherence and growth was found on the glass substrates, these 

were not further used (data not shown). When cultured onto coated tissue culture plastics, 

some cell survival was seen on PDL-only coatings, but PDL/laminin was far more efficient. Both 

Xgal positive and Xgal negative cells were observed, the negative cells only appeared as single 

cells, or at most 2 or 3 cells together, whereas the positive cells appeared as anything from 

single cells to clusters of upwards of 25 cells (Fig 6.6a-c). These cells show a neuronal 

morphology (Fig 6.6d,e), and express Tuj1 (Fig 6.6f), confirming their neuronal identity. Cells 

were plated at 2.5x105 cells per well of a 24 well plate, average cell number after 4 DIV was 

141±20, or 0.06±0.01% of the initial population indicating the low survival rate of these cells. A 

majority of cells (71.3±3.5%) expressed lacZ (Fig  6.7b). When the size of cell clusters was 

analysed, all Xgal negative cells were found to exist in clusters of 5 cells or less, whereas of the 

Xgal positive cells, 19.5±3.1% had a clustersize of 5-10 cells, 4.2±5.1% 10-15 cells, and 

31.1±4.9% had a clustersize of 15 cells or more (Fig 6.7c) 
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Fig 6.6 – Culture of Fgf10-lacZ+ primary hypothalamic neurons. Within a  neuron 
culture, single Xgal positive cells, small clusters and large clusters of cells can be 
seen (A-C). These cells show a characteristic complex neuronal morphology (D, 
E). (F) immunohistochemistry for Tuj1 in parralel cultures confirms the neuronal 
identity of these cells. Scale bars  represent 25 µm 
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Fig 6.7 - Quantitative differences between Xgal+ and Xgal- cells in neuronal culture. 
(A) Survival of hypothalamic cells under neruonal culture condition is low. (B) The 
majority of cells in neuronal cultures are Xgal positive. (C) Xgal positive cells readily 
from large clusters of cells, whereas Xgal negative cells do not. 

A B 

C 

          Chapter 6 

143 



  Chapter 6 

144 
 

6.2.6 Flow cytometry as a method of purifying lacZ expresssing cells 

In order to set up a protocol to purify lacZ expressing cells by FACS, the ψ2 cell line was 

used as a model. This embryonic fibroblast cell line has stable expression of a cytoplasmic β-gal 

in approximately 30% of its cells (Fig 6.8a). ψ2 cells were loaded with either 40 or 200 µM FDG 

and incubated for 15 or 30 minutes afterwards to allow the substrate to be metabolised into 

fluorescein. FDG loaded 3T3 fibroblasts, which do not express lacZ, were used as a negative 

control. When assessed by flow cytometry, all β-gal expressing samples show a fluorescence of 

at least an order of magnitude higher than the negative control. The fluorescence is more 

dependent on time of incubation than initial concentration, as both the 40 µM and 200 µM 

samples with 30 minutes of incubation show higher fluorescence than their 15 minutes 

counterparts (Fig 6.8b). When cells are grown on PDL coated glass coverslips and loaded with 

FDG according to identical protocols, the FDG labelling can be seen to be cytoplasmic as 

expected, and labels the expected 30 to 35% of cells (Fig 6.8b). When the fluorescence of an 

ungated sample was quantified, the expected 30% of events is positive (Fig 6.8e). However, 

when the forward and side-scatter of this sample is examined, it is clear that is contains large 

amounts of cell debris. When the sample is gated to remove this debris from the analysis, all 

remaining events, the actual cells, have a high fluorescence, with no negative cells (Fig 6.8g,h). 

When a cell suspension of loaded cells was examined microscopically, all cells showed 

fluorescence (Fig 6.8i), indicating specificity of FDP loading is lost via an unknown mechanism 

during trypsinisation of cells and subsequent analysis, meaning this method currently is 

unsuitable for isolationg lacZ expressing cells 

 

 

 

 

 



Fig 6.8 - Use of FDG for cell sorting of β-gal expressing cells. (A) Flow diagram for a typical 
flow cytometry experiment using FDG. (B) Xgal expression in the model cells used, ψ2. (C)  
Flow cytometry data for 4 different conditions of FDG staining, the fluoresence intensity is 
more dependant on incubation time than concentration. (D) Parallel coverslips confirm the 
specificity and of FDG loading compared to Xgal staining. (E, F) Scatterplot and fluorescence 
intensity for an ungated positive sample. (G, H) Scatterplot and fluorescence intensity for the 
same sample gated to remove cell debris from the data shows that according to flow 
cytometry all cells are positive. (I) After trypsinasation of cells and flow cytometry, the FDG 
loses specificity and labels all cells.  
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6.3 Discussion 

Culture of primary cells from the post-natal brain allows for the properties of these to 

be examined readily. Here, primary cultures of neurospheres, astrocytes and neurons were 

established from the post-natal hypothalamus. Results from all primary cultures indicate the 

proliferative capacity of Fgf10-lacZ hypothalamic progenitors. The hypothalamus is capable of 

generating multipotent neurospheres, which are comparable to those derived from the SVZ 

However, the fact that neurospheres can be grown from the hypothalamus is by itself not firm 

evidence for the presence of a stem cell. There has been debate in the literature about the 

specific neurosphere-forming cell type isolated from different areas of the brain, and whether 

these represent true stem cells or progenitor cells. Although it is generally accepted that SVZ 

derived populations are capable of forming all three lineages, whether these cells exist in the 

hippocampus is less clear. Earlier in vitro work suggested the presence of separate populations 

of neuronal and glial restricted progenitors (Bull and Bartlett, 2005; Seaberg and van der Kooy, 

2002), whereas in vivo lineage tracing more recently showed that although the majority of 

hippocampal radial glia form either glia or neurons, but a minority form both (Bonaguidi et al., 

2011).  

Analysis of single differentiated hypothalamic neurospheres shows these are 

multipotent and capable of forming neurons, astrocytes and oligodendrocytes. A small number 

of cells express both astrocytic marker GFAP and neuronal marker Tuj1. It has previously been 

describes that some neurons in Alzheimer’s patients express GFAP (Hol et al., 2003 ), but this 

has not been described in baseline conditions. The identity and functions of these GFAP+/Tuj+ 

cells is unknown at present.  

While these results suggest hypothalamic stem cells are mutlpoptent, it is known from 

the literature that neurospheres can merge and fuse into chimeric spheres (Singec et al., 2006; 

Singec and Quinones-Hinojosa, 2008), thus it is possible that what appears to be a single 
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multipotent sphere is actually comprised of previously fused neuronal-restricted and glial-

respected spheres. The only way to resolve this in vitro is to culture neurospheres form 

isolated single cells. 

The degree of mitotic activity seen in hypothalamic neurospheres is not representative 

of the in vivo situation as evidenced by BrdU administration experiments, as in culture the cells 

are activated by the Fgf2 and EGF required to maintain them in an undifferentiated state. The 

main receptors for Fgf2, FgfR1IIIc and FgfR3IIIc, are widely expressed in the hypothalamus (see 

Chapter 3), so isolated cells would be able to show a response to an Fgf2 stimulus, which 

includes stimulation of mitosis (Gensburger et al., 1987). Likewise, there is strong EGFR 

expression in the hypothalamus (Ma et al., 1994). It is known from earlier studies that cells 

that are quiescent or divide rarely in vivo can be induced to divide more frequently, for 

instance when the SVZ niche is depopulated of fast dividing cells by cytotoxic agents, it is 

rapidly repopulated by a population of previously quiescent cells (Doetsch et al., 1999; 

Morshead et al., 1994). Also, administration of exogenous EGF can cause transit amplifying 

cells to regress into a multipotent state (Doetsch et al., 2002). Thus, the use of growth factor 

will likely skew the mitotic activity of the cells in vitro compared to the in vivo situation.  

Apart from neurospheres, differentiated cell types can also be cultured from the adult 

hypothalamus. When culturing astrocytes from early postnatal brain, apart from the normal 

monolayers, occasionally spherical cell masses were seen adhering to the astrocytes 

monolayer. The majority of these were found to express lacZ, and included a halo of lacZ 

positive cells in the monolayer directly surrounding the sphere. Their morphology and 

organisation is reminiscent of a progenitor population. These spherical assemblies could be 

classical neurospheres, however this is unlikely given the culture conditions. The astrocyte 

medium did not contain EGF or Fgf2, normally required to maintain neurospheres, and the 

medium was augmented with 10% fetal bovine serum, which normally promotes 

differentiation. Although the surrounding halo of lacZ expressing cells with an astrocytic 
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morphology does indicate probable differentiation, a neurosphere under the given conditions 

and culture times would most likely have completely differentiated. Some reports in the 

literature have described spherical assemblies of glial progenitors derived from human 

glioblastomas, these have been termed gliospheres (Chakraborty et al., 2011; Chearwae and 

Bright, 2008). The glial assemblies seen here may be similar to these.  

When dissociated adult hypothalamus tissue was cultured under conditions promoting 

neuronal survival, large clusters of lacZ expressing neuronal cells were observed, with the 

neuronal phenotype being confirmed by immunoreactivity for Tuj1. As mature neurons rarely 

if ever divide in culture, this must indicate cell division by some other cell type concurrently 

isolated, most likely either a neural stem cell or a transit amplifying cell followed by in situ 

generation of neurons. This provides further evidence for the presence of a mitotic Fgf10 

expressing progenitor in the adult hypothalamus.  

In situ division is also evidenced by the total numbers of lacZ expressing cells versus 

the number of negative cells, while only a minority of all hypothalamic cells in vivo express 

lacZ, the majority of cells in vitro do express the reporter. This effect could be due to a 

preferential survival of lacZ expressing cells, but given the observed clustering, expansion of 

the population through division is more likely. Further examination of these types of cultures 

with Ki67 labelling or BrdU incorporation assays would confirm division is taking place. Some 

larger clusters, reaching up to 25 or 30 cells in numbers indicate multiple division events during 

the 5 DIV. The presence of Fgf2 in the medium, used to promote neuronal survival, would be 

more than adequate to stimulate cell division from responsive progenitor cells. In contrast, 

lacZ negative cells were ever only observed as single cells, most likely genuine primary 

neurons, rather than being generated in the culture. This contrast clearly illustrates the 

difference between lacZ expressing progenitors and lacZ negative neurons in the 

hypothalamus.  
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Although the use of FDG to sort these cells by flow cytometry has not been successful, 

the possibility of using FACS to enrich Fgf10 expressing populations remains. Instead of using 

FDG, the bright fluorescence seen in Fgf10CreERT2::RosaTomato could be used as an alternative 

sorting marker. This could then be used for a number experiments, for instance to easily set up 

clonal cultures of Fgf10 expressing neurospheres and     dissect out the neurogenic potential of 

ependymal versus parancymal cells by co-sorting for the ependymal marker CD133. 

The ability to culture these different lacZ expressing cell types will provide a useful in 

vitro model system in which the function of Fgf10 in these cells can be evaluated though loss- 

and gain-of-function. 
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7.1 – Introduction 

The olfactory bulbs (OB), located at the rostral end of the rodent brain, are the areas 

crucial for the sense of smell. It is here where the projections of olfactory neurons of the nasal 

cavity project to in order to transmit the information they sense from the environment. The 

OB is a privileged brain area that is continually supplied with new neurons by the rostral 

migratory stream during adulthood. The OB has a characteristic layered structure. On the 

outside surface (but not part) of the OB the olfactory nerve layer (ONL), which contains the 

projections of the olfactory neurons in the nasal cavity. The OB proper contains, from the 

outside in, the glomerular layer (GL), external plexiform layer (EPL), mitral cell layer (MCL), 

internal plexiform layer (IPL) and the granular cell layer (GCL), see Fig 7.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.1 – Structure of the olfactory bulb. A coronal section and schematic of the adult 
mouse olfactory bulb, showing the layered structure. Layers are the granular cell layer 
(GCL), external plexiform layer (EPL), mitral cell layer (MCL), internal plexiform layer 
(IPL) and granular layer (GL)  
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The GL, which shows characteristic rounded structures called glomeruli, is where the 

olfactory neurons synapse onto local interneurons (Mombaerts, 2006). The EPL contains 

mainly interneuron dendrites, as well as dendrites arising from deeper granular cells, 

modulating the activity of the interneurons via inhibitory synapses (Hamilton et al., 2005). The 

MCL contain the cell bodies of the mitral cells, the interneurons that receive their information 

from the olfactory neurons in the glomeruli, and then send it on to different brain areas 

including several cortical areas and the amygdala (Shipley and Adamek, 1984). The thin IPL 

contain dendrites form the GSL. The GCL contains large numbers of inhibitory granular cells, 

mediating activity of the mitral cells (Shepherd et al., 2007). 

The OB is continually supplied with new neurons via the rostral migratory stream. 

Neuroblasts arrive at the olfactory bulb at between day 2 and 7 after starting migration, they 

then migrate radially within the olfactory bulbs at days 5 to 9, during days 9 to 13 cells have 

reached their final position and start sending out dendrites, which by day 20 have formed into 

a complete dendritic network, and fully functionally integrated by day 30 (Mizrahi, 2007). Of 

the newly generated cells that reach the olfactory bulbs, approximately 50% will eventually fail 

to fully integrate into the local circuitry and will die (Petreanu and Alvarez-Buylla, 2002; 

Winner et al., 2002).  

Interneurons are contributed to three layers during adulthood, the glomerular, 

external plexiform and granular layers (Lledo et al., 2008; Yang, 2008). Different areas of the 

SVZ produce distinct populations of adult neurons, in a cell-intrinsic manner (Merkle et al., 

2007). These distict SVZ populations have different embryonic origins (Young et al., 2007).  

Most new neurons assume a GABAergic fate, expressing markers such as GAD67, GAD67, 

calbindin, calretinin or parvalbumin, and a second group assumes a dopaminergic fate, 

expressing tyrosine hydroxylase (TH) (Panzanelli et al., 2007; Parrish-Aungst et al., 2007).  
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The function of newly generated neurons is unclear. Olfactory enrichment stimulates 

survival of newly generated neurons (Rochefort et al., 2002), but conflicting results following 

ablation or reduction of neurogenesis show impaired (Gheusi et al., 2000; Sakamoto et al., 

2011) or normal olfactory discrimination (Imayoshi et al., 2008). 

During development, cells migrate from the amygdala to the olfactory bulb (Xu et al., 

2008). Recently, it has been suggested that this contribution may continue into adulthood 

(Hajihosseini et al., 2008). Using the Fgf10nlacZ reporter mouse, a population of Fgf10 

expressing cells have been found in the amygdala and the olfactory bulb, as well as a trail of 

Fgf10-lacZ positive cells linking these areas. In order for the amygdala to be the source of this 

putative migratory trail, a type of progenitor cell should be present. Whether the amygdala 

contains a resident stem cell population is not definitively known, but neurogenic potential for 

the amygdala has been noted. In several species of lower primates, BrdU incorporation in the 

amygdala was noted, but only double-labeling with neuronal markers was undertaken, 

showing that at least neurogenesis takes place in the adult (Bernier et al., 2002). In two 

different species of voles, a constitutive level of BrdU incorporation and formation of neurons 

and glia was noted, that increased in response to social housing (Fowler et al., 2002) and sex 

hormone levels (Fowler et al., 2003; Fowler et al., 2005).  In the rat, a population of BrdU 

incorporating gliogenic cells has been described, which also generate neurons in response to a 

neuropathic pain stimulus (Goncalves et al., 2008). Repeated chemically induced seizures also 

induced a neurogenic population in the rat amygdala (Park et al., 2006). EGF/FGF2 responsive 

cells were able to be cultured from amygdalar tissue from human patients suffering from 

epilepsy, and were multipotent and selfrenewing (Arsenijevic et al., 2001). A stem cell 

population has as yet not been described in the mouse, but the cluster of Fgf10 expression 

previously seen in the mouse amygdala provides a hint for a possible local progenitor 

population, that may serve as a source for a putative migratory stream to the olfactory bulb. 
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Aims 

At this time, nothing is known about the identity or function of these Fgf10 expressing 

cells in amygdala or olfactory bulb. Here, using immunohistochemistry, BrdU incorporation 

assays and genetic lineage tracing, the properties of Fgf10 expressing cells in the amygdala are 

investigated. The fate of Fgf10 expressing cells in the olfactory bulb is examined using 

immunohistochemistry.  
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7.2 – Results 

7.2.1 Distribution of Fgf10-lacZ positive cells in the OB is suggestive of a migrational behaviour 

Through serial sectioning of Xgal-stained brains, the distribution of Fgf10-lacZ+ cells in 

the OB was studied. In adult animals (P60, male: n=11, female: n=3), a low, but reproducible 

number of 30±2 cells per pair of olfactory bulbs were found (fig 7.2a). There was no sexual 

dimorphism in this number. In aged animals (P200, male: n=3, female: n=3), the number of 

cells drops to 19±1, representing a significant decrease (p=0.002) compared to P60, again 

without any significant sexual dimorphism. In order to examine the rostral-caudal distribution 

of the Fgf10-lacZ+ cells, the olfactory bulb was divided into 5 equal areas, designated 1/5 to 

5/5, rostral to caudal (fig 7.2b). The majority of the cells are in the caudal-most segments of 

the OB (fig 7.2c). An ANOVA with Tukey post-hoc tests shows areas 4 and 5 contain 

significantly more cells than area 1 (p<0.05). This difference is not longer visible in aged 

animals (fig 7.2d). 

The distribution of Fgf10-lacZ+ cells amongst the different layers of the OB was also 

examined, with cells being found in all layers (fig 7.3), with the relative proportions not 

differing significantly between sex or age. However, an interesting pattern emerges when the 

distribution of cells over the different layers is split up in the different rostral-caudal areas. In 

the caudal-most segment, the majority of cells reside in the granular layer, but further caudally 

this peak shift outwards towards the mitral layer, before finally peaking in the glomerular layer 

in the rostral-most segment. The combination of the distribution over the rostral-caudal axis, 

and the shifting distribution pattern over the different layers, is highly suggestive of a 

migrational stream entering the granular layer, and gradually undergoing radial migration 

outwards towards the glomerular layer. 
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Fig 7.2 – Quantification and distribution of Fgf10-lacZ+ cells in the olfactory 
bulb. (A) At P60, the olfactory bulbs contain approximate 30 positive cells, 
whereas at P200 this has dropped significantly to approximately 19. There is 
no sexual dimorphism. (B) Areas defined for rostral-caudal distribution 
studies. (C) When analysing the rostral-caudal distribution of the Fgf10-lacZ 
expressing cells, significantly more cells can be seen in the caudal parts of the 
OB, again with no sexual dimorphism. (D) At P200, this rostral-caudal gradient 
is no longer observed.  

R
os

tr
al

 
C
au

da
l 

1/5 
2/5 
3/5 
4/5 
5/5 

A B 

C 

D 

          Chapter 7 

156 



0% 

10% 

20% 

30% 

40% 

50% 

GL EPL MCL IPL GCL 

%
 o

f l
ac

Z 
po

st
iv

e 
ce

lls
 

Cell layer of OB 

P60 
Male 

P60 
Female 

0% 

10% 

20% 

30% 

40% 

50% 

GL EPL MCL IPL GCL 

%
 o

f l
ac

Z 
po

st
iv

e 
ce

lls
 

Cell layer of OB 

P200 Male 

P200 
Female 

Fig 7.3 – Distribution of Fgf10-lacZ+ cells over the layers of 
the OB. (A) At P60, positive cells are spread throughout the 
layers of the OB, with the thin IPL having fewer cell than 
other layers in both males and females (B) At P200 this 
distribution remains unchanged. (C) Distribution over layers 
is dependant on rostral-caudal position. A shift from GCL to 
GL is seen towards rostral. GL:glomerular layer, 
EPL:external plexiform layer, MCL: mitral cell layer, EPL: 
external plexiform layer, GCL: granular cell layer. 
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Fig 7.4 – Expression of NeuN in Fgf10-lacZ+ cells throughout the olfactory bulb. 
Fgf10-lacZ expressing cells in all layers of the OB also express the mature neuronal 
marker NeuN. The proportion of Fgf10-lacZ+ cells labelling with NeuN varies between 
layers. Scalebars represent 25 µm 
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7.2.2 The majority of Fgf10-lacZ positive cells in the OB differentiate into neurons 

It is known that the fate of newgly generated neurons in the OB is to form interneurons, 

the proportion of Fgf10-lacZ+ cells forming mature neurons was investigated by double-

labeling with β-gal and NeuN. Double-positive cells were found in all layers of the OB (fig 7.4), 

but the exact proportion is different in each layer. The vast majority of cells in the granular, 

internal plexiform and mitral layers are NeuN+, while only a minority of cells in the external 

plexiform and glomerular layer are.  

 

7.2.3 Fgf10-lacZ positive cells in the OB form both dopaminergic and GABAergic neurons 

As the most common types of interneurons in the OB are dopaminergic (excitatory) and 

GABAergic (inhibitory), double labelling of β-gal with tyrosine hydroxylase (rate limiting 

synthesis enzyme for dopamine) and GAD67 (producing enzyme of GABA) was preformed. A 

subset of the Fgf10-lacZ+ cells in the glomerular layers (to which TH expression is limited) were 

found to be dopaminergic neurons (fig 7.5a). Similarly, only a subset of the glomerular GAD67+ 

cells were also Fgf10-lacZ+ (fig 7.5b), while none of the scattered GAD67+ cells in deeper layers 

of the OB were double-positive. In both instances, low number of double-positive cells 

prevented any meaningful quantification based on location. 

 

7.2.4 Fgf10-lacZ positive astrocytes are rare in the OB 

The proportion of Fgf10-lacZ+ cells that form astrocytes was examined by double-

labeling of β-gal and GFAP. Only rare examples of double-positive cells were found (fig 7.6), 

with some brains not showing any examples at all, indicating glial formation is only a minor 

differentiation branch for Fgf10-lacZ+ cells in the OB. 
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Fig 7.5 – Fgf10-lacZ expressing cells form both dopaminergic and GABAergic 
neurons. (A,B) Expression of tyrosine hydroxilase marks several periglomerular 
Fgf10-lacZ positive cells as dopaminergic neurons. (C) More rarely, Fgf10-lacZ cells 
express GAD67, indicating a GABAergic facte. In all, dotted lines indicate the local 
glomeruli. Scalebars represent 25 µm 
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7.2.5 Fgf10-lacZ expression in amygdala is limited mostly, but not exclusively, to neurons 

Anti β-gal immunohistochemistry reveals the extent of Fgf10-lacZ expression in the 

amygdala at various ages. At both P30 and P60 widespread, but sparse labeling with anti β-gal 

is observed. Upon double-labeling with NeuN, most Fgf10-lacZ positive cells also express 

NeuN, although a minority do not (fig 7.7). 

 

7.2.6 Neural stem cell markers are not expressed in the amygdala 

Immunohistochemistry for NSC markers nestin, musashi and BLBP showed no 

expression of these markers in the amygdala. 

 

 

 

Fig 7.6 – Fgf10-lacZ expressing astrocyte in the OB. GFAP positive Fgf10-lacZ 
expressing astrocytes were only rarely observed in the OB. Scalebar represents 
25 µm  
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Fig 7.7 – Expression of Fgf10-lacZ and NeuN in the amygdala at different ages. (A) By 
P30, widespread expression of Fgf10-lacZ can be observed. (B) The majority of Fgf10-
lacZ positive cells  express NeuN (closed arrowheads), but some do not (open 
arrowhead). (C) Expression patterns at P60 are similar to P30 (D) Again, although the 
majority of Fgf10-lacZ expressing cells express NeuN, not all do. Scalebars: A, C: 250 
µm, C,D: 25 µm 
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7.2.7 Active Fgf10 expression is maintained into adulthood in some amygdala cells.  

In order to study whether active Fgf10 expression is maintained in the adult, 

Fgf10CreET2::Rosa26lacZ inducible reporter mice were induced at postnatal day 40, and 

Fgf10CreERT2::Rosa26Tomato mice at P60. Occasional low-level recombination, far sparser than the 

expression in Fgf10nlacZ mice, is seen was the amygdala (fig 7.8). Double-labeling with NeuN 

showed that some, but not all, recombined cells express this neuronal marker. 

 

7.2.8 Constitutive cell division in the adult amygdala, but not by Fgf10-lacZ positive cells. 

Long-term cumulative BrdU labeling via the drinking water of Fgf10nlacZ mice over 21 

days shows widespread incorporation throughout the amygdala (fig 7.9). However, none of 

these BrdU incorporating cells also express Fgf10-lacZ. 
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Fig 7.8 – Genetic lineage tracing in amygdala. Recombination  can seen be with 
the Fgf10CreERT2 driver using both ROSAlacZ (A) and ROSATomato (C) reporters. Both 
NeuN+ (B) and NeuN- recombined cells (D) are seen. Scalebars: A,C: 250 µm, B,D: 
10 µm 
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Fig 7.9 – Constitutive cell division in the amygdala. Cumulative BrdU labelling shows 
constitutive cell division in the amygdala at both the P28 (A) and P60 (B). At P60, 
proliferation seems increased However, no double-labelling with β-gal is seen (A’,B’). 
Scalebars for all : 250 µm 
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7.3 Discussion 

The OB has a privileged position within the adult brain, as it is continuously 

replenished with new neurons throughout adulthood by the rostral migratory stream (RMS). 

Although the major source for these, the subventricular zone of the lateral ventricle, has been 

well characterised (Luskin 1993), it is possible that other sources for new OB neurons exist. 

Indeed, the future amygdala served as a source of cells for the OB during development (Xu et 

al., 2008). Previously, a putative Fgf10 expressing migratory stream connecting the amygdala 

and the OB has been described (Hajihosseini et al 2008). This represents a potential novel 

source of new neurons for the OB during adulthood.  

The distribution pattern of Fgf10-lacZ positive cells, with cell numbers tapering off 

toward the rostral end of the OB, is suggestive of migration into the OB from elsewhere. In the 

RMS, retroviral lineage tracing has shown that cells migrating into the OB enter though the 

granular zone, before moving radially into the glomerular layer (Luskin 1993). If Fgf10-lacZ 

positive cells do enter the OB from outside, a concentration of cells at the caudal end would be 

expected. This is backed up by the fact that in the caudal-most areas cells are predominantly in 

the granular zone, whereas further rostral, cells are found more in the glomerular zone, 

mimicking the pattern seen in the well characterised RMS.  

It has been well characterised that the SVZ generates fewer neuroblasts, and fewer 

new neurons are contributed to the OB in aged animals (Bouab et al 2011, Ahlenius et al 2009, 

Luo et al 2006). This is mirrored by the Fgf10-lacZ+ cells in the OB, which show a significant 

decrease of up to 40% between P60 and P200. However, the fact that these cells can still be 

observed at P200 suggests they are continually generated during adulthood, rather than 

during embryonic or early postnatal timeframes, as it is unlikely the lacZ reporter would be 

stable in the absence of expression for this length of time.  Previously, it has been shown that 

the OB already contains a few Fgf10-lacZ expressing cells as early as P5 (Hajihosseini et al., 
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2008), showing that although numbers may change, the Fgf10-lacZ population is present in the 

OB throughout life.  

Even if the distribution pattern of Fgf10-lacZ+ cells over the OB is highly reminiscent of 

that seen by newly formed cells from the RMS, that in itself cannot be taken as evidence for a 

migratory stream. The vast majority of Fgf10-lacZ+ cells in the OB are post-mitotic neurons,  

suggesting that at any given time there are only a small number of migratory cells, if any. Also, 

it is known that NeuN does not mark all post-mitotic neurons in the olfactory bulb, with 

particularly poor performance in the glomerular layer (Bagley et al., 2007), meaning the actual 

fraction of Fgf10-lacZ+ cells in the OB that are neurons is likely to be even higher than 

determined here. Although rare Fgf10-lacZ expressing GFAP+ glia have been observed, their 

low frequency suggest this is not a predominant fate for this lineage. Detailed genetic lineage 

tracing will be required to verify the origin and timing of differentiation of these cells. 

The Fgf10-lacZ expressing lineage contributes both GABAergic and dopaminergic 

neurons to the olfactory bulb. It has been appreciated that inhibitory GABAergic interneurons, 

and newly generated ones in particular, are required for modulating local neuronal activity in 

response to changing environmental stimuli, allowing for appropriate circuit plasticity (Gheusi 

et al., 2000; Lledo et al., 2006). Dopeminergic interneurons, although frequently also capable 

of synthesising GABA (Gall et al., 1987), represent a separate population from the main 

GABAergic population, with different localisation. Their function however is similar; 

modulation of local neuronal activity by inhibitory signalling (Cave and Baker, 2009). Although 

the function of the specifically Fgf10-lacZ positive population of GABAergic and dopaminergic 

neurons has not been assessed, based on their location a similar function could be expected. 

Although there are only a small number of Fgf10-lacZ expressing neurons in the OB, the fact 

that their number is comparable between animals and sexes does suggest a functional 

relevance. What this function is will have to be addressed using loss-of-function or genetic 

ablation experiments. 
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The source of these Fgf10-lacZ expressing neurons is unknown, but has been 

speculated to be the amygdala. A resident population of Fgf10-lacZ positive cells is found in 

the amygdala is present soon after birth, but not before (data not shown), and is maintained at 

later ages.  Although most Fgf10-lacZ expressing cells are in the medial amygdala, adjacent to 

the hypothalamus, the domain of expression includes the basolateral amygdala and the 

adjacent piriform cortex, making an assessment of function based on localisation difficult if not 

impossible. For the amygdala to be the source for a migratory stream to the OB, a resident 

progenitor or stem cell population would be required, but no expression of NSC markers such 

as BLBP, nestin or musashi has been found. The absence of nestin expression is confirmed by 

the lack of observed recombination in nestinCreERT2 mice (Chen et al., 2009). Interestingly 

though, doublecortinCreERT2 mice show recombination in the piriform cortex, which is on the 

route between the amygdala and the olfactory bulb (Zhang et al., 2010). This migratory marker 

would be expected to be expressed by neuroblasts. 

If not progenitor or neural stem cells, what is the identity of amygdalar Fgf10-lacZ+ 

cells? The majority of these cells express the post-mitotic neuronal marker NeuN, showing 

them to be mature neurons. A significant minority however, does not express NeuN, and 

represent an as yet uncharacterised population. 

To ensure that the expression of Fgf10-lacZ seen in the adult Fgf10nlacZ is genuine, 

rather than accumulated reporter protein from the perinatal period, when these cells first 

appear, Fgf10CreERT2::ROSA26lacZ and Fgf10CreERT2::ROSA26tomato reporter mice were used. 

Recombination in the amygdala in both shows the continued expression of Fgf10, and that 

most, but not all of these cells are in fact mature neurons. The possibility remains that the 

Neun- recombined cells may be a progenitor population. 

Long-term cumulative BrdU administration shows numerous dividing cells in the 

amygdala, in accordance with literature. However, none of these BrdU incorporating cells 

express Fgf10-lacZ. This, as well as the lack of NSC marker expression and widespread co-
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localisation with Neun, makes it unlikely for the Fgf10-lacZ expressing population to be stem 

cells. The BrdU incorporating cells may be part of non-neural lineages such as microglia or 

endothelial cells, or they may be not have originated in the amygdala and migrated in from a 

different brain area, as has been suggested in (Bernier et al., 2002) 

The current work can neither prove nor disprove the notion that the Fgf10-lacZ 

expressing cells in the olfactory bulb are derived from the amygdala, but with the results found 

here it is unlikely that the Fgf10-lacZ expression cells in the amygdala represent a stem cell 

population. Therefore it is unlikely that, at least in the adult, the amygdala contributes cells to 

the olfactory bulb. It may well be that there is a migrational stream between the amygdala and 

the olfactory bulb, but that this is only during late development and/or early postnatal stages. 

Indeed, in the developing mouse brain, a putative migratory stream of NKX2.1 expressing cells 

has been described between the amygdala and the olfactory bulb (Xu et al., 2008).  The only 

way to conclusively prove the olfactory bulb Fgf10-lacZ expressing cells are produced from the 

amygdala in adulthood is through some from of genetic lineage tracing. The Fgf10CreERT2 line 

combined with the efficient ROSA26Tomato reporter may be suitable for this. An alternative 

would be linage tracing via stereotactically injected retrovirus. 

As it has previously been shown by RT-PCR that there is continued Fgf10 expression in 

the olfactory bulb in the adult (Hajihosseini et al., 2008), the lacZ expressing cells seen at later 

age could have migrated into the olfactory bulb at an earlier stage and continue to express 

Fgf10 and lacZ. Whatever its origin, the Fgf10-expressing lineage contributes functional 

neurons to the adult olfactory bulb. This population, may be required to perform a specific 

function, given its different origin from the vast majority of other newly generated 

interneurons. The exact functions and origins of this population remain to be investigated. 
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Formation of new cells in the adult mammalian brain, though long not 

believed to take place, has now been widely accepted in the neuroscience 

community. The classical neurogenic niches, the subventricular zone of the lateral 

ventricle and the subgranular zone of the hippocampus, have both been well studied 

and characterised. However, increasing amounts of data suggest that these are not 

the only areas in the adult brain capable of supporting proliferation. Amongst others, 

the hypothalamus and amydala have been under investigation as novel stem cell 

niches. Previously, these areas have been found to express Fgf10, which is known 

from development of many peripheral organs to be involved in stem cell 

maintenance. Here, the phenotype and proliferative capacity of Fgf10 expressing cells 

have been investigated during development and throughout adulthood in the 

hypothalamus, olfactory bulb and amygdala through immunohistochemistry, BrdU 

administration, in vitro culture of primary cells and genetic lineage tracing.  

In the hypothalamus, the basis for the putative adult stem cell niche is present 

early during during development. There is strong Fgf10-lacZ expression even at E10, 

before the start of neurogenesis of the hypothalamus. This indicates this population is 

specified very early on during brain development, soon after neural tube closure. This 

early origin underlines the likely importance of the Fgf10-lacZ expression population. 

The Fgf10 expressing lineage contributes new neurons to the hypothalamus by the 

middle of the neurogenic window (E12.5), but these do not mature until after the end 

of the bulk of neurogenesis (>14.5). In between the end of neurogenesis and birth, a 

substantial number of Fgf10-lacZ expressing cells form neurons, indicating the 

importance of this population during late formation of the hypothalamus.  

Although Fgf10-lacZ expression is maintained into adulthood, the number of 

expressing cells that also express neuronal markers drastically decreases during early 

adulthood, indicating a twofold role for Fgf10 in this system. After its role in  
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Fig 8.1 Timecourse of events in the hypothalamus. Expression of Fgf10 mRNA is present 
from as early as E10, and the Fgf10 promoter is still active as late as P80. The total number of 
Fgf10-lacZ expressing cells increases up to birth, after which it remains relatively constant for 
2 months before declining over the rest of the lifetime.  Formation of new Fgf10-lacZ 
expressing neurons are starts between E10 and E12, peaks prior to E14, and continues at 
much lower levels to at least P60. The neurons generated from the Fgf10-lacZ expressing 
lineage survive in the adult to at least P150. Fgf10-lacZ+ glia start to be formed between P30 
and P60, and are present till at least P150. Proliferative capacity in the hypothalamus is large 
during initial neurogenesis starting form E10 onwards, still considerable at E18, and decline 
steadily after birth. However, proliferation still takes place in animals as old as P400. The 
Fgf10-lacZ+ expression cells proliferate continuously at low levels during late gestation and 
beyond, but proliferation decreases more markedly than in the general population, and has 
ceased prior to P400. Question marks indicate the particular property not been examined in 
later stages than indicated. 
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widespread embryonic and possibly early postnatal neurogenesis, this population 

continues to contribute low levels of neurons to the hypothalamus, as confirmed up 

to P60 with Fgf10CreERT2 mediated lineage tracing, and up to P150 with colocalisation in 

Fgf10nlacZ mice. Additionally in the adult, glial differentiation is seen, which is a switch 

from the neuronal-only differentiation profile seen during development and up to 

P30.  

Immunohistochemistry for a number of different stem cell markers has allowed 

for the cytoarchitecture of the neural stem cell niche of the hypothalamus to be 

characterised. The radial glia-like tanycytes, expressing BLBP and nestin are the 

resident stem cells. In both late development and in the adult, these cells only rarely 

divide, as they show low rates of BrdU incorporation. However, the population is 

capable of expansion, as evidenced by genetic lineage tracing, indicating symmetrical 

division of these progenitor cells. The location of BLBP-/nestin+/mushashi+ rounded 

cells directly abutting the radial BLBP+ fibers suggests there are transit amplifying cells, 

migrating along the radial fibers. Some of these cells also show BrdU incorporation, 

but this may be retained labelling from an asymmetric division event of a tanycyte.  

The radial glial-like tanycytes likely represents a continuous progenitor 

population from the earliest stages of development, progressing from proliferative 

neuroepithelium around E10, to immature tanycytes and finally to radial tanycytes 

around birth and into adulthood, closely resembling the process in the developing SVZ 

(Merkle et al., 2004). 
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Fig 8.2 – Comparative cytoarchitecture of the classical NSC niches and the hypothalamus. 
(A) In the SVZ, nestin+/BLBP+/GFAP+ stem cells (SC) are associated with the ciliated ependyma 
of the lateral ventricle, these produce nestin+/DLX+/GFAP+ transit amplifying cells (TAC) that 
produce doublecortin+ migratory neuroblasts (NB). These cells are all invested by a blood 
vessel (BV) derived basal lamina (BL) (B) In the hippocampus, the radial glial stem cells 
produce transit amplifying cells that form migratory neuroblasts that locally from granular 
neurons (C) The hypothalamus has properties similar to both niches, but is heterogeneous. 
The Fgf10 expressing stem cell is closely associated with the ventricle as in the SVZ, but the 
BLBP+/nestin+ stem cells of a radial morphology as in the hippocampus. The tanycytes seem to 
produce a BLBP-/nestin+/musashi+ transit amplifying/intermediate progenitor cell that 
migrates along the radial fibres to produce both neurons and glia (D) Proposed lineage model 
for the hypothalamic stem cells. The tanycyte stem cell can either amplify through symmetric 
division or produce and transit amplifying cell through asymmetric division. The TAC then goes 
on to produce either neurons or glia. For cells that do not express Fgf10 the lineage is not 
know as yet. 
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The function of the Fgf10-lacZ+ lineage derived neurons in the hypothalamus 

is not known at this time, and will require further investigation of the exact neuronal 

type that these cells form. However, given the fact that the majority of cells are found 

in the arcuate nucleus and median eminence can give hints for their possible function. 

The arcuate nucleus contains many neuroendocrine neurons, including those 

expressing agouti-related peptide (AgRP) (Gropp et al., 2005), neuropeptide Y (NPY) 

(Kalra and Kalra, 2003) and proopiomelanocortin (POMC) (Millington, 2007), which 

are strong regulatory factors for feeding behaviour and energy balance. Apart from 

likely expressing many neuroendocrine substances, these hypothalamic neurons are 

also likely to express receptors for hormones produces elsewhere in the body that are 

involved in energy balance, such as leptin from fat tissue and ghrelin from the 

stomach. This makes it likely for the newly generated neurons to be involved in 

control of feeding behaviour. Indeed, this has previously been suggested (Kokoeva et 

al., 2005; Pierce and Xu, 2010). 

The regulation of proliferation in the hypothalamus is still an unknown area, 

but given the crucial role of the hypothalamus in the control of feeding behaviour and 

homeostasis, diet and energy requirement is a tempting field to look for regulators. 

Indeed, it is well known that dietary factors can influence neurogenesis in the adult 

hippocampus (Stangl and Thuret, 2009). For instance, a high fat diet can decrease 

hippocampal proliferation in male rats (Lindqvist et al., 2006), while an antioxidant 

rich blueberry supplemented diet can increase proliferation (Casadesus et al., 2004). 

Interestingly, in the latter, this was associated with an increase in IGF1 levels, a factor 

which has also been shown to be capable of increasing hypothalamic proliferation. 

Hypothalamic stem cells as a method for providing plasticity in response to 

environmental factors such as diet is a compelling notion. 
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In the amygdala, in contrast to the hypothalamus, Fgf10-lacZ expressing cells 

do not express neural stem cell markers, and do not incorporate BrdU. They are 

formed around birth, somewhere between E18.5 and P4, and in adulthood most of 

these are NeuN expressing mature neurons. Although widespread BrdU incorporation 

was seen, confirming reports from the literature and suggesting the presence of stem 

cells in the amygdala, the Fgf10-lacZ expressing cells are likely not these stem cells. 

Although the subtype of neurons that express Fgf10-lacZ has not been determined, 

the main neuronal subtypes in the amygdala are serotonergic, glutamatergic and 

GABAergic and it is likely the Fgf10-lacZ expression cells are part of one or more of 

these populations. Although the possibility remains that some of the NeuN negative 

Fgf10-lacZ expressing cells represent some kind of stem cell, the complete lack of 

neural stem cell marker expression and BrdU incorporation makes this unlikely. 

The hypothesis that the amygdala is the source of a novel migratory stream 

towards the olfactory bulbs, at least in the adult, seems unlikely. The possibility of a 

migration during late development or early life exists, but the fact that Fgf10CreERT2 

mice show sporadic recombination in the olfactory bulb at E18.5, when little or no 

Fgf10 expression is seen in the amygdala, makes this unlikely as well. 

Regardless of their source, the cells derived from the Fgf10 expressing lineage 

in the olfactory bulb form the two main subtypes of inhibitory neurons, dopaminergic 

and GABAergic, which are also the celltypes produced from the RMS. These cells may 

be involved in olfactory discrimination and consolidation of olfactory memory. 

Whether the Fgf10 expressing cells in the OB have a similar role remains to be seen, 

but their phenotype and location suggest this may be the case. 

In the adult brain, Fgf10 thus seems to mark two different populations of cells, 

both stem cells in the hypothalamus and differentiated neurons in the amygdala and 
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olfactory bulb. Why is this one molecule expressed in two such different populations, 

and does it have different functions in different cells? 

The role of Fgf10 in differentiated neurons is likely to aid in synaptogenesis in 

these cells. FGF10, as well as the closely related FGF7 and 22, have been shown to 

promote formation of synapses in vitro (Umemori et al., 2004). This is also likely the 

case in the hippocampus, where Fgf10 is not expressed in the neural stem cell niche, 

but in the granular layer where newly formed neurons differentiate and mature. 

However, this is obviously not the case in the hypothalamus, where the Fgf10 derived 

differentiated neurons no longer express Fgf10 mRNA. 

How these two apparently different roles for Fgf10 are regulated is unclear, 

but it may be related to the subcellular location of Fgf10. Although due to the lack of 

antibodies there is little data on the localisation of Fgf10, there is data to suggest that 

apart from its classical secretory signalling Fgf10 may also localise to the nucleus 

(Kosman et al., 2007). This is especially likely for Fgf10 in the hypothalamus, since the 

receptor for Fgf10 is not expressed anywhere near the cells expressing Fgf10.  

The closely related Fgf3 has long been known to be both secreted and 

imported into the nucleus, and has both a bipartite nuclear import motif and a 

secretory signalling peptide (Kiefer et al., 1994). Forced nuclear expression of Fgf3 

causes a decrease in proliferation of cells in vitro (Kiefer and Dickson, 1995), and this 

effect is regulated by an Fgf3 binding protein, NoBP (Reimers et al., 2001). On the 

contrary, nuclear expression of Fgf10 has been shown to have a proliferative effect, 

which cytoplasmic Fgf10 lacks (Kosman et al., 2007). It may be possible that in the 

hypothalamus, Fgf10 is located in the nucleus and its function is to maintain the 

proliferative capacity of progenitor cells. In areas where Fgf10 does not seem to mark 

neural stem cells, it may be instead preferentially secreted and have a role in synaptic 

organisation. This also explains the lack of FgfR2IIIb expression in the hypothalamus, 
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as a nuclear role for Fgf10 as a maintainer of proliferative capacity would not 

necessarily require the expression of the receptor on the cell surface. 

The continued decrease of the Fgf10 population in total as evidenced in the 

Fgf10nlacZ mouse, and the decrease in proliferative capacity as shown in 

Fgf10CreERT2::ROSA26lacZ mice and with BrdU incorporation assays suggests Fgf10 is not 

the only signal required to maintain proliferation in the hypothalamic tanycytes. 

Further signals must be required to maintain active proliferation, as the proliferative 

capacity of Fgf10 expressing cells decreases with age, while Fgf10 expression is 

maintained. This factor would be present in the early post-natal hypothalamus, 

allowing for continued proliferation, and is downregulated later in life, leading to a 

decrease in proliferation and cell number. A likely candidate for this proliferative 

factor is the classical mitogen Fgf2, which is widely expressed in the adult 

hypothalamus (Gonzalez et al., 1994). It’s main receptors, FgfR1-IIIc and FgfR3-IIIc are 

also expressed throughout the hypothalamus (Chapter 4). Other interesting 

possibilities are IGF1, CNTF and BDNF, which have already been shown to stimulate 

proliferation in the hypothalamus (Kokoeva et al., 2005; Pencea et al., 2001; Perez-

Martin et al., 2010). However, no data exists on whether the expression levels of 

these factors change as animals age, so it remains to be confirmed whether they are 

involved in the regulation of Fgf10 expressing progenitors. 

The possible involvement of cell extrinsic growth factors and Fgf10 for 

proliferation in the hypothalamus suggests a two-step mechanism for initiation and 

maintenance of proliferation. The presence of Fgf10 in the cell, most likely the 

nucleus, provides for a permissive environment for proliferation, possibly through a 

nuclear interacting protein as is the case with Fgf3. The presence of Fgf10 may be 

required for, or promote the activity of transcriptional machinery involved in 

proliferation. This proliferation is then initiated by a second signal, likely a cell-
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extrinsic growth factor activating the MAPK (Fgf2, BNDF), Jak/STAT (CNTF) or Akt 

(IGF1) pathway. The downstream effect of these pathways can be the transcription of 

genes involved in proliferation.  

Indeed, it has been observed that in the developing cortex of Fgf10 knockouts, 

the radial glia progenitor population is decreased, and cells instead become post-

mitotic neurons (Sahara and O'Leary, 2009), underscoring the putative requirement 

for Fgf10 to maintain proliferative capacity in at least some cells. 

This possible requirement in the hypothalamus is also suggested by in vitro 

experiments. In neuronal cultures, cells not expressing Fgf10 were only found as single 

cells, or small clusters. On the other hand, Fgf10 expressing cells were seen in large 

clonal clusters, likely generated in situ by a precursor cell type. This illustrates that 

even in the presence of a powerful mitogen, Fgf2, Fgf10 negative cells from the adult 

hypothalamus will not show a mitotic response, whereas those expressing Fgf10 do. 

The Fgf10 expressing tanycytes in the hypothalamus after approximately P40 thus 

represents a potential source of new cells, keeping a proliferative capacity by Fgf10 

expression, but requiring a further signal to actually induce proliferation. This 

represents a quiescent reservoir of cells which can be primed to respond to a need for 

new cells. 

These two different putative roles for Fgf10 in the adult brain, maintenance of 

stem cells and promotion of synapse formation, clearly illustrate the pleiotropic 

nature of Fgf10 and the likely importance of this factor both during developments and 

adulthood. 
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Future work 

In the hypothalamus, the phenotype of neurons derived from the Fgf10 

expressing lineage can be characterised with immunohistochemistry. Likely 

candidates to be expressed in these cells, particularly those in the arcuate nucleus are 

AgRP, POMC, NPY and leptin receptors. Expression of these markers would underline 

the possible role for these cells in energy balance.  

The genetic lineage tracing performed here can be expanded to longer 

timeframes to assess the long-term survival of the adult-generated Fgf10 expressing 

neurons. Along with this, apoptosis can be studied to determine the fraction of these 

cells that fail to integrate and die.  

In vitro, clonal analysis of neurospheres can be undertaken, growing spheres 

form single isolated cells to ensure each individual neurosphere is multipotent, rather 

than a restricted progenitor and to study the expression of Fgf10 on a single cell level 

during proliferation and differentiation. Also, this system would be amenable to loss- 

and gain-of-function experiments, allowing for the study of the role of Fgf10 in neural 

progenitors. 

The relative importance of the local niche environment of the hypothalamus 

can be assessed through grafting experiments. For instance, it is known that 

embryonic cortical neural progenitors, which are normally multipotent, become 

restricted to glial lineages once transplanted into the non-neurogenic adult spinal cord 

(Cao et al., 2001). Conversely, if the niche environment of the hypothalamus 

promotes and/or maintains multipotency, transplantation of restricted progenitors 

such as adult spinal cord glial progenitors into the hypothalamus may result in these 

regaining multipotency. 

In vivo clonal analysis can be undertaken by titrating tamoxifen doses down to 

a level that only one or a few cells in any brain recombine, allowing for the progeny of 
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individual cells to be examined. This approach has been successfully used in the 

hippocampus (Bonaguidi et al., 2011). Alternatively, a very attractive and elegant 

solution would be to combine the Fgf10CreERT2 line with the recent “Brainbow” reporter 

strains, in which recombined cells can assume a number of different fluorescent 

colours through combinatorial recombination of a number of different floxed 

fluorescent reporter proteins (Livet et al., 2007). This would allow for the lineage of 

many cells to be individually traced in a single brain.  

In the amygdala, further characterisation of Fgf10 derived neurons can be 

undertaken, with the most likely candidate neuronal subtypes being serotonergic, 

glutamatergic and GABAergic. 

To assess the function of Fgf10 in the brain, Fgf10CreERT2::Fgf10loxP mice can be 

utilised. In these mice, one allele of the Fgf10 gene is knocked out by the presence of 

the Cre allele, whereas the other allele can be removed by activation of the Cre, thus 

creating an inducible knockout, and circumventing the lethality of constitutive Fgf10 

knockouts. The inclusion of the ROSA26lacZ or ROSATomato reporter allele in these mice 

would allow for the detection of cells in which Cre is active and from which Fgf10 has 

been removed. 

To take this approach one step further, Fgf10 expressing cells could be 

selectively ablated using inducible expression of a suicide gene. This could be done 

with existing mouse lines, crossing the Fgf10CreERT2 line to an existing mouse line 

carrying a Cre-activatable herpes simplex thymidine kinase (Chen et al., 2004). This 

would result in expression of thymidine kinase in Fgf10 expressing cells following 

tamoxifen administration, which can then be selectively ablated using ganciclovir. This 

model could be used to asses the function of the cells generated by the Fgf10 

expressing lineage. 



  Chapter 8 

182 

In order to validate the potential two-role model of Fgf10 function in the adult 

brain and its mechanism, more data on the subcellular localisation of Fgf10 is 

required. In vitro experiments with fluorescently tagged fusion proteins and 

mutagenesis, currently ongoing, will provide information. In vivo, the most convenient 

way of determining subcellular localisation this would be with immunohistochemistry, 

but as no antibodies are available, this remains impossible. Generation of an Fgf10 

reporter mouse carrying an Fgf10 fusion protein with a fluorescent or different tag 

would currently be the only option for these investigations. A different intriguing 

possibility to asses the importance of nuclear Fgf10 localisation would be a the 

generation of a mouse in which the nuclear localisation site of Fgf10 is disrupted, or, if 

this gives a non-viable phenotype, a line where a floxed wt Fgf10 is upstream of the 

mutant Fgf10, allowing for inducible replacement of the wt with the mutant.  

Although this work here presented has started the characterisation of the 

Fgf10 expressing lineage in the brain, future work will determine its function and 

importance of Fgf10 and the cells in which it is expressed. 
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List of abbreviations 

AER Apical ectodermal ridge 

aFGF acidic fibroblast growth 

factor (Fgf1) 

ALSG aplasia of lacrimal and 

salivary glands  

ANOVA analysis of variance 

AraC cytarabine 

BDNF brain derived neurotrophic 

factor 

bFGF basic fibroblast growth 

factor (Fgf2) 

BLBP brain lipid binding protein 

BMP bone morphogenic factor 

BrdU 5-bromo-2’-deoxiuridine 

C/EBPβ ccaat-enhancer-binding 

proteins 

cDNA complementary DNA 

CFA complete Freund’s adjuvans 

CNTF ciliary neurotrophic factor 

CreER Cre recombinase - estrogen 

receptor fusion protein 

CSF Cerebrospinal fluid 

Dll4 delta-like 4 

DLX distal-less 

DMEM Dulbecco’s modified Eagle’s 

medium 

DTT dithiothreitol 

ECL Enhanced 

chemoluminescence 

EDTA ethylenediaminotetra- 

 acetic acid 

EGF epidermal growth factor 

En Embryonic day n 

 
EPL External plexiform layer 

Erk extracellular signal-activated 

kinase 

FACS fluorescence activated cell 

sorting 

FDG fluoresceine-di-β-D-

galactopyranoside 

Fgf fibroblast growth factor 

FgfR Fgf receptor 

FLAG NDYDDDDKC peptide tag 

FRS2 FgfR substrate 2 

Gab1 GRB2-associated-binding 

protein 

GABA γ-aminobutyric acid 

GCK3β germinal centre kinase 3β 

GCL granular cell layer 

GFAP glial fibrilary acidic protein 

GL glomerular layer 

GLAST glutamate aspartate 

transporter 

Grb2 growth factor receptor 

bound protein 2 

Gt goat 

HA heamaglutinin 

HCl Hydrochloric acid 

HEK human embryonic kidney 

Hes hairey and enhancer of split 

hFgf hormonal Fgf 

HRP horseradish peroxidase 

Hu human 

IFA incomplete Freund’s 

adjuvans 

iFgf intracellular Fgf 
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Ig immunoglobulin 

IHC immunohistochemistry 

IPL internal plexiform layer 

IRES independent ribosomal 

entry site 

JAK/STAT Janus activated kinase / 

signal transducer and 

activator of transciption 

kDA kiloDalton 

KO knockout 

L-glut L-glutamine 

LADD lacrimo-auriculo-dento-

digital syndrome 

Lif leukaemia inhibitory factor 

MAPK mitogen activated protein 

kinase 

Mash1 mammalian achaete 

homolog 

MCL mitral cell layer 

MeOH methanol 

MMP matrix metaloprotease 

Ms mouse 

NeuN neuronal nuclei 

NeuroD neuronal differentiation 

Neurog2 neurogenin 2 

NGS normal goat serum 

NSC neural stem cell 

OB olfactory bulb 

Olig2 oligodendrocyte 

transcription factor 2 

ONL olfactory nerve layer 

PAGE polyacrylamide gel 

electrophoresis 

Pax6 transcription factorpaired 

box 6 

PCNA proliferating cell nuclear 

antigen 

PDL poly-D-lysine 

PEDF pigment epithelium-derived 

growth factor 

Pen/strep penicillin/ 

streptomycin 

PFA paraformaldehyde 

PI3 phosphoinositide 3-kinase 

PIPES piperazine-N,N’bis(2-

ethanesulfonic acid) 

PKCζ protein kinase ζ 

Pn Post-natal day n 

PORN poly-L-ornithin 

PPARγ peroxisome proliferator-

activated receptor γ 

RFP red fluorescent portein 

RIPA radio immunoprecipitation 

assay 

RMS rostral migratory stream 

ROBO roundabout 

rpm revolutions per minute 

RT-PCR reverse transcriptase 

polymerase chain reaction 

Sal3 saccaromyces cerevisiae 

allosuppressor 

SDS sodium dodecyl sulphate 

SGZ subgranular zone 

Shh sonic hedgehog homolog 

Shp2 Src homology phosphatase 2 

SOS son of sevenless homolog 

SOX Sry-related HMG box 
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Sp8 specificiy protein 8 

SVZ  subventricular zone 

Tbr2 T-box brain gene 

TCEP tris(2-carboxyethyl) 

phosphine 

TE Tris-EDTA 

TESPA 3-aminopropyl-triethoxy 

silane 

TLX tailless 

Tris tris(hydroxymethyl)amino 

methane 

Tuj1 neurons-specific class II β-

tubulin 

Tx red Texas Red 

Wnt Int1 and wingless 

YFP yellow fluorescent protein 
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