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Abstract 

 

 

The genetic basis of adaptation to a gradient of metal contamination in the 

estuarine polychaete worm Nereis diversicolor was studied as a model of adaptive 

evolution. Amplified Fragment Length Polymorphism (AFLP) analysis was used 

to investigate patterns of genetic structure in populations of N. diversicolor from 5 

sites in Cornwall with different levels of copper pollution, including heavily 

contaminated areas of Restronguet Creek. Recent advances in statistical and 

computational techniques applied to dominant AFLP data were assessed and used 

to measure genetic diversity and differentiation within and between populations. 

Relating adaptive traits that allow species to respond to changes in their habitat at 

the phenotypic level to changes at the molecular level provides insight into 

evolutionary responses to environmental change. Toxicity tests confirmed a 

gradient of tolerance to copper in N. diversicolor, corresponding with levels of 

contamination. Correlation between genetic variation and copper tolerance 

indicated that genetic structure was the result of selection for tolerant phenotypes 

rather than isolation by distance.  Lower genetic diversity was found in tolerant 

populations suggesting a bottleneck. Genetic distance between N. diversicolor 

populations was not high enough to indicate separate species. An AFLP genome 

scan revealed signatures of sympatric speciation, identifying a small number of 

highly divergent loci linked to adaptive tolerance to copper, against a background 

of neutral loci, suggesting absence of reproductive isolation. Loci of interest 

associated with divergent selection were present for both tolerant and non-tolerant 

phenotypes, reflecting a cost of tolerance in tolerant populations. The population 

genetics of copper tolerance in N. diversicolor provides a model system for 

exploring rapid evolutionary adaptation to stress in changing environments.  
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Chapter 1   Introduction 

 

 

1.1   Nereis diversicolor ecology in estuarine environments 

 

Monitoring short term effects of disturbance events, pollution and anthropogenic 

pressure, and longer term effects of climate change and sea level rise, requires a 

thorough understanding of the ecology and dynamics of intertidal habitats and 

responses to stress. It is estimated that 70% of the global human population lives 

within 60 km of the coast, plus many of the world‟s largest cities are connected to 

the marine environment, either directly or indirectly via rivers and estuaries (Gray, 

1991). Aquatic environments play an important role in the provision of ecosystem 

services, with a range of associated anthropogenic environmental effects, which 

have subsequently highlighted the need to understand, assess and redress these 

impacts. As sheltered, flat, productive environments surrounding a waterway, 

estuaries have always been a popular site of human habitation, transportation, 

agriculture and industry; with indirect and direct effects on estuarine systems 

(French, 1997). Monitoring the health of brackish water ecosystems such as 

estuaries and lagoons is therefore important for environmental impact assessment 

and coastal management (French, 1997; Townend, 2002).  

 

Estuarine environments involve a complex interplay of physical, chemical and 

biological processes, influenced by both the marine environment and the fresh 

water catchment (Townend, 2002). Abundant fauna are supported by the input 

and cycling of both terrestrial and marine nutrients; including large, dense 

populations of infaunal invertebrates (Connor et al., 2004). Brackish habitats are 

characterised by high spatial and temporal environmental variation, so adaptation 

to estuarine habitats requires tolerance to large fluctuations in abiotic factors such 

as salinity, temperature and oxygen levels (Abbiati & Maltagliati, 1992; Belfiore 

& Anderson, 2001; Van Straalen, 2003). While they are often nutrient rich 

environments, supporting high faunal abundance, temperate estuarine 

environments generally have low biodiversity and are dominated by a few 

specialist species that are adapted to a fluctuating environment. Typical estuarine 

species are polychaetes Nereis diversicolor and Nephtys hombergii, the burrowing 
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amphipod Corophium volutator and the estuarine clams Macoma balthica and 

Scrobicularia plana, of which Nereis diversicolor is usually the most common 

species in muddy estuaries (Murray et al., 2002; Connor et al., 2004).  

 

The distribution of intertidal invertebrates is determined by selection of optimal 

habitat according to adaptation to a niche, tolerance to limiting factors and 

ecological interactions such as competition and predation (Levinton, 2001). Biotic 

interactions such as competition and predation affect the distribution of estuarine 

benthos. Cover of the macro algae Fucus vesiculosus has a negative effect on 

Nereis diversicolor, Corophium volutator and Macoma balthica abundance, 

because it creates a physical barrier and lowers redox potential through organic 

enrichment and prevention of oxygen exchange with the water (Raffaelli, 1999). 

Nereis diversicolor both preys on and competes with Corophium volutator 

(Jensen & Andre, 1993). Invertebrates also fulfil an important role in estuarine 

food webs as prey for higher trophic level species. On British mudflats Nereis 

diversicolor is considered to be the most important food for large shore birds 

(Baird et al., 1985), while the amphipod Corophium volutator is the main food for 

several small shorebird species (Evans et al., 1999). When the mud flats are 

submerged invertebrates provide food for diving ducks and commercially 

important fish. The estuarine clam Macoma balthica is eaten by wading birds, 

shrimps, crabs and fish and is also killed indirectly by disturbance as Nereis 

diversicolor ingests and moves large quantities of sediment (Hiddink et al., 2002).  

 

Abiotic limiting factors affect the distribution of estuarine invertebrates; including 

sediment grain size, sorting and organic content; turbidity, oxygen levels and 

salinity (Evans et al., 1999). There are also interactions between biotic and abiotic 

limiting factors. The strength of recruitment, competition, predation and 

physiological tolerance effects on the diversity, abundance and distribution of 

intertidal benthos is determined by local physical environmental conditions 

(Dayton, 1971). Substrate stability is considered to be one of the most important 

factors controlling benthic species diversity and abundance and diversity are 

thought to increase with increasing substrate stability (Raffaelli & Hawkins, 

1996). Estuaries are tidally dominated coastal systems, with flood and ebb tidal 

currents being the main factor involved in sediment erosion, transport and 
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deposition (Haslett, 2000), which affects the distribution and dispersal of benthic 

fauna.  

 

Estuarine organisms also affect their physical environment: deposit feeding by 

Macoma balthica is responsible for biodeposition; burrows increase sediment 

surface area, permeability and aeration; while mucus secretion by Nereis 

diversicolor, Corophium volutator and nematodes stabilises sediment (Murray et 

al., 2002). Any change in the diversity or abundance of estuarine species would 

therefore have a significant effect on both the physical habitat and the ecology of 

the whole ecosystem.  

 

Estuarine species exhibit a range of adaptations to an intertidal habitat with 

fluctuating salinity and unstable sediment, including osmoregulation and 

temperature regulation mechanisms, burrowing, sediment stabilisation and benthic 

development, which avoids eggs and larvae being transported out to sea and 

allows all life stages to remain in more saline benthic water strata (Green, 1968). 

The degree and character of fresh and salt water mixing is the main limiting factor 

for estuarine flora and fauna. Salinity depends on the rate and volume of fresh 

water input, tidal parameters, basin topography and stratification (Haslett, 2000). 

Estuarine species must be adapted to cope with large, often rapid salinity 

fluctuations, ranging from 35 psu at full salinity to 0-3 psu in fresh water. Most 

marine species cannot tolerate reduced salinity below 10-15 psu so the 

longitudinal salinity gradient produces ecological zonation (Levinton, 2001). 

Many brackish water species that occupy a niche because they can withstand 

lower salinities are outcompeted by other species in marine habitats (Green, 1968; 

Kristensen, 1988). This introduces the theory that there may be a trade off 

between tolerance to limiting factors and competitive advantage in less harsh 

environments, possibly through metabolic costs of tolerance mechanisms that 

divert energy and resources away from growth and reproduction (Sibly & Calow 

1989; Calow & Sibly 1990; Calow & Forbes, 1998; Briggs, 2005; Pook et al., 

2009).  

 

The intertidal polychaete worm Nereis diversicolor is adapted to life in fluctuating 

brackish water environments. Many authors have studied the biology and ecology 
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of N. diversicolor; comprehensively reviewed by Scaps (2002). It is widely 

distributed in the temperate zone, with a geographical range including the Atlantic 

coast of North America, Europe, the Baltic, Black and Caspian seas and the 

Mediterranean, as far south as Morocco. It is found in brackish water habitats, in 

coastal estuaries, lagoons and the low salinity waters that form the majority of the 

Baltic Sea, where it is often the dominant species in estuarine intertidal mud flats 

and shallow subtidal sediment.  

 

It forms large, high density populations, for example 961 per m² (Chambers & 

Milne, 1975) and yet competitively defends individual burrows (Kent & Day, 

1983). It is omnivorous and exhibits a range of different feeding behaviours, from 

scavenging and deposit feeding to filter feeding (Fauchald & Jumars, 1979; Reise, 

1979; Neilsen et al., 1995). It tolerates a wide range of environmental conditions, 

including extremes of temperature and hypoxia (Kristensen, 1984, 1988). Most 

importantly N. diversicolor is a euryhaline osmoregulator, able to tolerate a wide 

range of rapidly fluctuating salinity levels (Hayward & Ryland, 1995), but it tends 

not to be found in fully marine habitats, where it is outcompeted by larger, more 

aggressive species such as Nereis virens (Kristensen, 1988). N. diversicolor is 

therefore a model example of the benefits of adaptation to a particular 

environment having associated costs outside that niche. 

 

N. diversicolor is adapted to remaining in estuaries. It is gonochoric and 

reproduces sexually, but without the epitokous breeding form or swarming 

behaviour observed in marine Nereidids such as Nereis virens (Olive & Garwood, 

1981; Olive et al., 1986; Scaps, 2002). N. diversicolor is semelparous (breeds 

once and dies) and relatively large eggs are left in burrows following histolysis of 

the adult female (Olive & Garwood, 1981; Olive et al., 1986). Dispersal of 

estuarine organisms is more likely in egg, larval and juvenile stages (Bilton et al., 

2002). N. diversicolor juveniles emerge from the burrow when they are around 6 

chaetigers (segments bearing chaetae) in length (Bartels-Hardege & Zeeck, 1990) 

and disperse in the sediment for up to 4 days before burrowing (Marty & Retiere, 

1999). Juveniles of 3 chaetigers  in length, which are not capable of burrowing, 

have been found  in plankton samples, probably due to accidental, passive 

suspension (Marty & Retiere, 1999) but development and dispersal for the 
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majority of juveniles is benthic. Adults can disperse actively by crawling or 

swimming short distances to avoid competition or unfavourable environmental 

conditions (Davey & George, 1986; Ait Alla et al., 2006), or passively through 

sediment erosion and resuspension in strong tidal currents, which could involve 

transport over longer distances, but in general dispersal in this species is low.   

 

Low dispersal, combined with geographical isolation of brackish water habitats 

separated by marine environments means that high levels of differentiation are 

often found between populations of estuarine species (Bilton et al., 2002). 

Differences in ecology, morphology and biology have been found between 

populations of N. diversicolor at a range of spatial scales. Sex ratios are biased 

towards females, with reported proportions of males ranging from 10% in the 

Thames (Dales, 1950) and 18% in north east England (Olive & Garwood, 1981) 

to 40% in the Baltic (Bogucki, 1953). Age of maturity and breeding season varies 

widely between N. diversicolor populations over moderate geographical scales 

(reviewed in Röhner et al., 1997; Scaps, 2002). Age at maturation has been 

estimated as 12 to 18 months (Kristensen, 1984), 18 to 24 months (Chambers & 

Milne, 1975), 24 to 36 months (Möller, 1985) and 33 to 42 months (Olive & 

Garwood, 1981). Breeding seasons around the UK have have been recorded as 

March and June at 2 different locations in the Humber Estuary (Grant et al., 

1990), January – March and June – August in the Ythan Estuary in Scotland 

(Chambers & Milne, 1975), March/April at Blyth on the north east coast (Olive & 

Garwood, 1981), April/May on the south east coast (Nithart, 1998) and August in 

both the Avon Estuary and Restronguet Creek in south west England (Hateley et 

al., 1989; Grant et al., 1990). It is thought that females stop feeding for around 3 

months prior to spawning, to avoid predation and maximise reproductive success 

(Olive et al., 1997; Last & Olive, 1999; Last, 2000). However, eggs can then be 

reabsorbed and feeding recommences until the next breeding season, possibly 

mediated by environmental conditions (Olive et al., 1997). Differences in 

breeding season could be viewed as either a cause or a consequence of temporal 

reproductive isolation between populations. 

 

Interpopulation morphological differences may be the result of differential 

adaptation to local environmental conditions. The form, arrangement and number 
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of hardened scleroprotein paragnaths on the pharynx of Nereididae has been used 

as a quantitative taxonomic trait and it has been suggested that paragnath patterns 

in N. diversicolor could be associated with salinity, sediment type, or different 

diets (reviewed by Hateley et al., 1992; Maltagliati et al., 2006; Bakken et al., 

2009). While there is debate regarding the cause of this morphological variation, it 

has been clearly demonstrated that the trait is heritable and therefore may be an 

evolutionary adaptation to environmental factors (Hateley et al., 1992; 

Khlebovich & Komendantov, 2002). However, a gradient of paragnath number 

along the Humber Estuary by Hateley et al. (1992) suggested a simple pattern of 

isolation by distance. 

 

Brackish habitats are characterised by high spatial and temporal environmental 

variation, so adaptation to estuarine habitats requires general tolerance to large 

fluctuations in abiotic factors such as salinity, temperature and oxygen levels 

(Abbiati & Maltagliati, 1992; Van Straalen, 2003). Evolutionary adaptation to 

extreme habitats is an important factor in the evolution of new species, so there is 

great interest in stress tolerance in intertidal organisms. Stress applies to any 

situation where the fitness of individuals and populations is reduced by a change 

in environmental conditions, either through colonisation of a novel environment 

or the introduction of new conditions (Van Straalen, 2003; Jha, 2004). Where 

different populations of the same species are subjected to different levels of stress 

it provides a useful model for studying stress tolerance mechanisms.  

 

 Tolerance to stress can be defined as the ability to prevent, reduce or repair 

damage (Bickham et al., 2000). Tolerance can develop through acclimation, as the 

result of individual exposure, or at the population genetic level through selection 

and adaptation (Luoma, 1977). Many anthropogenic influences on marine 

environments can be viewed as limiting factors, requiring stress tolerance 

mechanisms and potentially causing adaptation at the population genetic level in 

aquatic orgnisms. Metal pollution in estuaries is a source of environmental stress 

that can exert differential selective pressure on populations (Bickham et al., 2000; 

Belfiore & Anderson, 2001). Exposure to metal pollution can affect individuals, 

populations and communities at morphological, physiological, biochemical and 

genetic levels (Troncoso et al., 2000; Grant, 2002). 
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1.2   Copper tolerance in Nereis diversicolor  

 

Heritable tolerance is a useful model for understanding adaptation as an 

evolutionary process (Grant, 2002). Differences in tolerance to metals have been 

demonstrated in natural populations of Nereis diversicolor, particularly in heavily 

contaminated estuaries in South West England (Bryan & Hummerstone, 1971; 

Bryan & Gibbs, 1983; Grant et al., 1989; Hateley et al., 1989; Briggs, 2005). 

Bryan and Hummerstone (1971) suggested that copper tolerance in N. 

diversicolor is a heritable trait. Grant et al. (1989) and Hateley et al. (1989) then 

demonstrated experimentally that tolerance to copper and zinc are heritable. They 

found a significant difference in tolerance to copper and zinc between N. 

diversicolor from contaminated and uncontaminated sites in Restronguet Creek 

and the relatively unpolluted Avon Estuary and offspring of these two populations 

reared in clean laboratory conditions exhibited the same difference in copper 

tolerance. Heritable tolerance to zinc was also significant but was less 

pronounced, which lead Grant et al. (1989) to suggest that specific tolerance 

mechanisms for Cu and Zn evolved separately.  

 

Correlation between genetic variation and environmental factors supports the 

view that genetic structure is the result of selection for resistant genotypes 

(Luoma, 1977; Belfiore & Anderson, 2001). Studies by Grant et al. (1989), 

Hateley et al. (1989) and Briggs (2005) have found a gradient of tolerance to 

copper in N. diversicolor, which corresponds with levels of copper found in both 

sediments and N. diversicolor tissues. However, metal tolerance in N. diversicolor 

declines outside the most polluted areas, suggesting that copper tolerant are 

outcompeted by non-tolerant worms in cleaner environments (Grant et al., 1989; 

Briggs, 2005). In toxicity tests Briggs (2005) found 100% mortality for relatively 

contaminated sites, including a site with a sediment Cu concentration of 1399 μg 

g
-1

, which indicates that tolerant worms are confined to the most contaminated 

areas by selection against the tolerant phenotype in cleaner areas. Reduced fitness 

in clean environments implies an associated cost of tolerance, which is 

characteristic of heritable tolerance mechanisms (Luoma, 1977; Briggs, 2005; 

Pook et al., 2009). 
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1.3   Tolerance and population genetics 

 

With recent concern regarding anthropogenic effects on the environment, such as 

climate change, habitat loss and pollution, it has become increasingly important to 

understand how species respond to these pressures. Such information allows 

scientists to assess the risk of adverse impacts, predict future effects and address 

conservation issues. Relating adaptive traits that allow species to respond to 

changes in their habitat at the phenotypic level to changes at the molecular level 

provides insight into evolutionary responses to a changing environment (Belfiore 

& Anderson, 2001). Understanding the effects of anthropogenic impacts on 

genetic diversity and differentiation in natural populations is one of the central 

issues in evolutionary and conservation biology but few studies have addressed 

the effects of chemical contamination on population genetics (Bickham et al., 

2000). The population genetics of copper tolerance in N. diversicolor offers a 

model system for exploring evolutionary adaptation to stress.  

 

Population genetics is the study of spatial and temporal genetic variation, within 

and between populations. An understanding of the mechanism, rate and pattern of 

evolutionary adaptation is important in assessing the capacity for organisms to 

respond to anthropogenic effects on their environment. Darwin (1859) identified 

natural selection as the mechanism of adaptive evolution but it was not until the 

rediscovery of Mendel‟s work that the link was made between observable 

phenotypic traits such as copper tolerance and the genes that contribute to them. 

Early theoretical works by Haldane (1924), Fisher (1930) and Wright (1931) 

proposed models of population genetics to explain the effects of dynamic 

evolutionary forces on changes in the genetic structure of populations over time. 

Recent advances in biochemical, molecular, satatistical and computational 

techniques have allowed researchers to measure genetic diversity and 

differentiation directly at the level of proteins and DNA and to fit the data to these 

models. Thus as part of the neo-Darwinian modern evolutionary synthesis, 

population genetics is able to make valuable contributions to interdisciplinary 

studies of evolutionary biology, biogeography, biodiversity, ecology, 

ecotoxicology and conservation.      
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Genetic diversity 

 

Population genetics is largely reducible to the study of allele frequencies. 

Evolution has been defined in terms of allele frequencies, simply as the change in 

the frequency of an allele within a gene pool (Dobshansky, 1937). Individuals in a 

population have different genotypes: combinations of alleles which code for 

phenotypes with varying selective advantages and disadvantages. 

 

An individual diploid, heterozygous organism has 2 different alleles of a gene at a 

locus on homologous chromosomes, with phenotype generally determined by the 

dominant allele. Heterozygosity can refer to the proportion of loci in an individual 

that are heterozygous or the proportion of loci in a population that are potentially 

heterozygous because more than one allele exists. Expected heterozygosity (HE), 

sometimes refered to as gene diversity, is the level of heterozygosity expected in a 

randomly mating population or species (Nei, 1973). The larger the number of 

alleles and the closer they are to equal frequency, the higher the diversity. 

Maintainance of heterozygosity is beneficial because it allows populations to 

retain a reservoir of recessive alleles which may become advantageous under 

changing environmental conditions. It also avoids deleterious recessive alleles 

being expressed in homozygotes. 

 

 

Population size 

 

A population can be defined as a geographically distinct group of individuals that 

actually or potentially interbreed (Hartl & Clark, 2007).  The probability of loci in 

a population having more than one allele increases with increasing population size 

and in very large populations almost all loci are polymorphic. The proportion of 

polymorphic loci in a population is therefore larger than the proportion of 

heterozygous loci in individuals. Heterozygosity in individuals increases with 

increasing proportion of polymorphic loci in the population and therefore with 

increasing population size. It is thought that invertebrates have higher 

heterozygosity than vertebrates due to larger population sizes. Mean 
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heterozygosity detected by protein electrophoresis was found to range from 0.041 

for mammals to 0.148 for molluscs (Nevo et al., 1984).  

 

The size of populations varies over time due to variable success in changing 

environmental conditions. Effective population size Ne is the size of an ideal 

population with the same heterozygosity as the observed population (Wright, 

1931, 1938). In practice this equates to the average number of reproducing 

individuals that contribute alleles to succeeding generations (Crow & Kimura, 

1970). Most natural populations have a much smaller effective population size 

than observed size. Effective population size may be reduced by unequal sex 

ratios or reproductive success and by past reductions in population size. 

Bottlenecks, where a population undergoes a dramatic size reduction, and founder 

effects, where a new population is started by a small number of migrant 

individuals, cause reduced genetic variation and a low effective population size 

(Nei et al., 1975). Carr et al. (1995) found low genetic variation in cod, Gadus 

morhua, due to confinement to a small refuge in the last ice age, with an estimated 

effective population size of Ne = 3 x 10
4
, compared with Nobs ≈ 10

9
.  

 

As an extremely common invertebrate with a low generation time and high 

fecundity Nereis diversicolor has very large observed populations. For example 

50 worms per m
2
 in ~ 2 Km

2
 of mud in Restronguet Creek alone would be a 

population of 108 worms.  N. diversicolor has an unequal sex ratio, although 

ratios of between 2:1 and 10:1 (Scaps, 2002) will not reduce the effective 

population size as much as in harem or eusocial structures with more biased sex 

ratios or reproductive success.  

 

The introduction of metal pollution may have caused a bottleneck, or a founder 

effect following recolonisation of polluted areas, with an associated reduction in 

effective population size and heterozygosity. Lower diversity in a sub-population 

relative to others with the same sex ratio would indicate reduced effective 

population size due to a bottleneck or founder effect. 
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Hardy Weinberg Equilibrium 

 

The Hardy Weinberg principle (Hardy, 1908; Weinberg, 1908) describes the 

relationship between allele frequencies and genotype frequencies in an ideal 

population. Genotype frequencies can be predicted from the frequency of alleles 

at a locus using the formula: 

12 22  qpqp  

For a locus with two alleles, dominant A and recessive a, with allele frequencies p 

and q: freq(A) = p, freq(a) = q and p + q = 1. For a population in Hardy Weinberg 

Equilibrium freq(AA) = p
2
 for the dominant homozygotes, freq(aa) = q

2
 for the 

recessive homozygotes and freq(Aa) = 2pq for the heterozygotes. This also allows 

allele frequencies to be calculated from the frequency of dominant and recessive 

genotypes.  

 

 

 

 

Figure 1.1: Homozygous and heterozygous genotype frequencies for two 

alleles A and a under Hardy Weinberg Equilibrium, for a range of allele 

frequencies from 0 to 1.  

 

A population will reach Hardy Weinberg Equilibrium in one generation of 

random mating. When a population is in equilibrium allele and genotype 

frequencies remain constant over time and genetic variation is maintained. The 

Hardy Weinberg principle assumes infinite population size, non-overlapping 
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generations, random mating and no mutation, drift, migration or selection. In 

practice natural populations rarely reflect these assumptions and the aim of many 

population genetics studies is to investigate how and why populations deviate 

from Hardy Weinberg Equilibrium (Hartle & Clark, 2007).    

 

 

Inbreeding  

 

If an individual mates with a close relative, the offspring may be homozygous for 

an allele that has identity by descent from a common ancestor (Wright, 1951; 

Crow & Kimura, 1970). Non random mating between closely related individuals 

increases homozygosity. Inbreeding in a population changes the genotype 

frequency, and therefore results in deviation from Hardy Weinberg equilibrium, 

but does not change the allele frequency.  

 

Inbred populations are characterised by reduced survival, vigour and fertility 

known as inbreeding depression (Charlesworth & Charlesworth, 1987). In 

outbreeding populations dominant deleterious mutations are quickly eliminated 

but recessive mutations are masked by heterozygosity. Inbreeding causes an 

increase in individuals that are homozygous for recessive deleterious alleles and 

thus phenotypes with reduced vigour. However, it has been argued that inbreeding 

increases the rate at which deleterious alleles are eliminated and so effectively 

speeds up evolution (Crow, 1986). It also favours advantageous recessive alleles 

and increases phenotypic variation. Positive assortative mating can drive 

phenotypic divergence, reinforce divergent selection and ultimately lead to 

speciation.   

 

Random mating between closely related individuals is more likely to occur in 

small populations. Despite large populations, high numbers of offspring with low 

dispersal in Nereis diversicolor could promote inbreeding between closely related 

neighbours, leading to inbreeding depression. However, if reduced heterozygosity 

was simply the result of spatial distribution and low dispersal then tolerant and 

non tolerant populations would show the same inbreeding effects.   
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Mating between individuals from 2 genetically different inbred populations can 

result in hybrid vigour, where the offspring have more advantageous traits than 

the parents (Crow, 1948). This may be due simply to dominance, because 

heterozygosity in the hybrid masks deleterious recessive alleles. Alternatively 

overdominance occurs when the heterozygote has superior fitness to homozygotes 

for either allele. Heterozygote advantage allows the survival of deleterious 

recessive alleles, which cause reduced fitness in homozygotes in inbred 

populations. While F1 hybrids often show hybrid vigour F2 hybrids or 

backcrosses can suffer from hybrid breakdown, with greatly reduced fitness 

(Burton, 1986). Hybrid effects could be apparent in a hybrid zone between 

genetically distinct populations of Nereis diversicolor separated by low dispersal 

or differential tolerance. 

 

In the absence of other evolutionary forces allele frequencies in an inbred 

population do not change. However, allele frequencies in natural populations vary 

in space and over time. Four main processes affect the frequency of alleles in a 

population: mutation, genetic drift, selection and migration. 

 

 

Mutation 

 

Mutation creates new alleles in a population. This is usually a stochastic process, 

although the rate of mutation can be increased by mutagens such as radiation and 

genotoxic chemicals, including arsenic and possibly copper (Jha, 2004). 

 

Mutation rate is often defined as the number of mutations per gene per unit of 

time. In population genetics mutation rate μ is considered to be the rate of new 

alleles per gamete per generation (Hartl & Clark, 2007). The rate at which 

mutations occur affects the rate of change in allele frequencies in a population but 

mutation rates are very low. Experiments on Caenorhabditis elegans by Denver et 

al. (2004) estimated the mutation rate to be 2.1 × 10
-8 

mutations per base pair per 

generation, for a genome of ~ 10
8
 base pairs, giving a haploid genomic mutation 

rate of ~ 2.1 mutations per genome per generation. Most mutations occur in non 

coding DNA, are recessive or have a neutral effect on fitness but occasionally a 
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beneficial mutation in a gene provides scope for evolutionary change. Variation at 

the genetic level allows selection to act on favourable adaptation at the phenotypic 

level. 

 

Advantageous phenotypes could also be attributable to heritable epigenetic 

changes in gene expression that do not involve a change in the underlying DNA 

sequence. Epigenetic modifications such as transcriptional silencing by DNA 

methylation of promoter regions could cause transgenerational differences in gene 

expression, which would not affect AFLP restriction sites in genomic DNA. The 

idea of epigenetic inheritance questions the assumptions of conventional 

population genetic models. Extensive epigenetic variation in natural populations 

could even fill a gap in the Modern Synthesis, explaining complex adaptations 

and macro evolution despite low mutation rate and rare beneficial alleles. 

Adaptation through selection of heritable epigenetic variation may be particularly 

important in small, fragmented populations with low genetic variation (Jablonka 

& Raz, 2009). 

  

Recurrent mutations or epigenetic changes can maintain a deleterious genotype in 

a population despite selection against it, with equilibrium reached when the rate of 

removal by selection balances the rate of replacement by mutation. The frequency 

of new alleles created through mutation that are retained in a population is 

determined by drift and selection.   

 

 

Drift 

 

Allele frequencies in finite natural populations change over time due to random 

genetic drift, with an associated reduction in heterozygosity (Wright, 1931). The 

frequency of alleles changes over successive generations due to random sampling 

in the gametes, which eventually leads to some alleles being lost while others 

become fixed, with all individuals in a population homozygous for a single allele 

at a locus. The probability of an allele becoming fixed due to drift is the same as 

its initial frequency. Populations undergoing genetic drift violate the assumptions 

of the Hardy Weinberg model because both the allele and genotype frequencies 
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change over time, although the genotypes will actually be in Hardy Weinberg 

Equilibrium in each generation, as in Figure 1 (Crow, 1986). 

 

Each generation heterozygosity is reduced by 1/2Ne, where Ne is the effective 

population size ≈ the number of reproducing individuals (Wright, 1931). Genetic 

drift therefore has a greater effect in small populations (Crow & Morton, 1955; 

Crow & Kimura, 1970). Kerr & Wright‟s (1954) experiment on Drosophila 

populations of 4 males and 4 females found that in 70% of cases after only 16 

generations one of 2 alleles for a particular gene was lost and the other fixed. In 

populations with greatly reduced effective population size due to a bottleneck or 

founder effect, drift can outweigh the effects of mutation, migration and selection. 

However, evolution through drift is random rather than adaptive.  

 

Traditionally it has been thought that phenotypic changes are mostly 

advantageous, and therefore must be determined by natural selection, so drift only 

plays a minor part in evolution (Fisher, 1930). However, the neutral theory of 

molecular evolution (Kimura, 1968) argues that drift is the most important force 

affecting allele frequencies, as most phenotypic differences between individuals in 

a population have no adaptive significance and therefore most underlying changes 

at the population genetic level are the result of random mutation and drift rather 

than natural selection. This debate has obvious implications for any attempt to 

link molecular differentiation with adaptive phenotypic traits under selection. 

 

 

Selection 

 

Natural selection (Darwin, 1859) is considered to be the main driving force of 

adaptation and evolution. Under selection individuals with advantageous adaptive 

traits are more successful. Selection pressure causes differential mortality, 

competitive advantage and reproductive success and determines the relative 

proportion of phenotypes in a population. Selection acts directly on phenotypes 

but it also affects both the frequency of alleles and the level of heterozygosity in a 

population at the molecular level. In a sufficiently large population selection 

reduces heterozygosity (Li, 1978). Alleles for an adaptive trait can be under 
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selection while other loci in a genome remain neutral. Non-coding DNA may also 

be subject to selection if it is linked to coding regions of the genome (Barton, 

2000). Selection favours adaptive alleles and eliminates deleterious alleles, 

although if a deleterious allele is co-dominant heterozygotes may have 

intermediate fitness. 

 

The selection coefficient s measures selection pressure opposing the reproductive 

success of a genotype. For s = 0.05 a genotype would be 95% as fit as the 

favoured genotype. There is also a measure of relative fitness w, where w = 1 – s, 

or s can be used as a positive measure of directional selection for adaptive traits. 

 

Haldane (1924) showed that under favourable selection (where s measures 

advantage rather than disadvantage) the time required for an allele frequency to 

change is inversely proportional to the intensity of selection: 
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Where t is the number of generations and P0 and Pt are the initial and final 

frequencies of an allele. For example, for weak selection, e.g. s = 0.01 it takes 

1840 generations to change an allele frequency from 0.01 to 0.99.  

 

A famous example of the effects of selection is the cryptic peppered moth Biston 

betularia (Majerus, 2009). During the industrial revolution as smoke blackened 

white lichen on trees the frequency of light and dark colour morphs of the moth 

changed rapidly under strong selection pressure from birds. This change was too 

fast to be explained by random genetic drift. The moth has discrete annual 

generations and it was thought that a single dominant allele was responsible for 

the melanic phenotype. This allowed Haldane (1924) to use a general selection 

model to show that if the frequency of melanic moths was 0.02 in 1848 and 0.95 

by 1895, the dark form must be one and a half times as fit as the light form, which 

implies selection pressure s ≈ 0.33. 
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Copper extraction in Cornwall began in the 1740s. Assuming 1 generation every 2 

years in Nereis diversicolor (Scaps, 2002), to change an allele frequency from 

0.01 to 0.99 in 130 generations would only require a selection pressure of s = 

0.141, half that estimated for the peppered moth.  

 

At the population level directional selection pushes a population towards one end 

of a phenotypic gradient, while disruptive or divergent selection favours extreme 

traits, which divides populations. However, selection does not necessarily lead to 

change: stabilising selection favours intermediate traits and balancing selection 

allows a range of different advantageous traits. Paradoxically loss of genetic 

diversity through selection for adaptation to a contaminated environment reduces 

the potential for adaptation to other sources of stress (Nevo et al., 1986; Bickham 

et al., 2000). 

 

Interactions between selection pressure and inbreeding, mutation, drift and 

migration determine the amount of genetic variation, both short term at the 

population level and long term on an evolutionary scale. In particular directional 

selection is balanced by immigration, where the flow of less favourable genes can 

reduce or even prevent adaptation. 

 

 

Migration  

 

Gene flow is the movement of genes between geographically distinct populations, 

which has a homogenising effect that counteracts genetic divergence due to drift 

and selection (Wright, 1931). Migration of gametes or individuals between 

populations is the most common mechanism of gene flow. The rate of migration 

or gene flow Nm is the number of migrants per generation exchanged between 

sub populations, where N is the effective population size and m is the migration 

rate.  Change in allele frequency due to migration is proportional to the rate of 

migration and to the difference in allele frequency between the donor and 

recipient populations. Genetic diversity and structure is therefore influenced by an 

organism‟s mode of reproduction, development and dispersal (Wright, 1946; 
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Crisp, 1978; Slatkin, 1985). The dynamic interplay between drift, selection and 

migration determines population structure. 

 

 

Genetic structure 

 

Genetic structure is the geographical subdivision of a population into demes and 

the extent of differentiation between them (Wright, 1931, 1951; Nei, 1972, 1973). 

Most metapopulations have some form of genetic structure, where there is 

deviation from panmixia or Hardy Weinberg equilibrium. Diversity between sub 

populations allows a wider range of traits within a species and a greater capacity 

for adaptation to different environmental conditions (Wright, 1943). When gene 

flow between populations is greatly reduced genetic drift or divergent selection 

can lead to speciation. The relationship between the forces of mutation, 

inbreeding, drift, selection and migration acting on population structure is 

therefore important to the understanding of adaptation and speciation. While 

population structure is determined by the interaction of evolutionary forces it also 

has a feedback effect in mediating adaptive evolution and speciation (McCauley, 

1993). The nature and extent of this role has been the subject of debate  

 

 

Models of population structure 

 

Statistical analysis of differences between populations requires simple models of 

population structure. Models are idealised extremes of possible structures (Slatkin 

& Barton, 1989) and so do not necessarily represent the dynamics found in natural 

populations. Metapopulations may be subdivided into clear sub populations or 

demes or may appear to be continuous.   

 

Isolation allows differentiation of local sub populations. If a population is 

distributed continuously over an area that is large compared to the average 

migration distance of individuals there will be a gradient of differentiation due to 

isolation by distance (Wright, 1943). A positive correlation between genetic and 

geographic distance indicates equilibrium between drift and migration, where 
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replacement of alleles by migration balances loss of alleles due to drift (Malécot, 

1955). A pattern of isolation by distance at equilibrium requires both suitable 

environmental conditions and sufficient time to become established and will 

therefore be more evident in long established populations than in recently 

established populations (Slatkin, 1993; Hutchison & Templeton, 1999). 

Equilibrium is not reached in disturbed habitats characterised by local extinctions 

and recolonisation or in or fragmented habitats where small populations can 

undergo stochastic extinctions (McCauley, 1993). 

 

Basic models of population genetics that focus on migration include continuum, 

stepping stone, lattice and island structures (Slatkin & Barton, 1989). Stepping 

stone models (Kimura, 1953) are described as 2 dimensional because gene flow is 

restricted to migration between adjacent sub populations. The confined, elongated 

shape of rivers and estuaries intuitively suggests a stepping stone structure. Rivers 

and intertidal shores have also been described as 1 dimensional, linear habitats 

(Slatkin, 1985; Templeton et al., 1995).  

 

Alternatively island models (Wright, 1951) allow migration to each deme from 

every other deme.  

 

 

 

 

Figure 1.2: Wright’s island model of gene flow between sub populations.  

 

Wright‟s island model (1951) makes a number of assumptions. It does not include 

mutation or selection. All populations are assumed to have reached equilibrium 
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between migration and drift. Each population has the same number of individuals 

and migrants are exchanged with each of the other populations at the same rate. 

Wright‟s (1969) infinite island model assumes an infinite number of demes. There 

is an infinite number of populations and yet all populations are equally likely to 

exchange migrants with all other populations. 

 

The combination of parameters for gene flow is referred to as Nm (Number of 

migrants) under an island or stepping stone model. The island and stepping stone 

approaches model discrete sub populations or demes, with migration between 

them, where the parameter m is the probability that each individual or gamete is 

an imigrant. Where N is the effective population size and m is the migration rate, 

Nm is the number of migrants per generation exchanged between sub populations. 

Neighbourhood size (4πDσ2) is equivalent under a continuum model. Continuum 

and lattice models consider dispersal of gametes according to a distribution of 

dispersal distances, affected by the density of individuals: Nb = 4πDσ2, where D 

is density and σ is the standard deviation of the distance moved by each gamete 

and is equivalent to m. This is usually referred to as neighbourhood size, Nb, 

rather than gene flow, Nm. 

 

While drift decreases diversity within populations and increases differentiation 

between them migration has the reverse effect. Very little migration is required to 

prevent substantial differentiation due to drift. Wright (1931) demonstrated that in 

an island model of sub populations with Nm > 0.5, gene flow overrides the effects 

of differentiation due to drift, whereas with Nm < 0.5 sub populations will tend 

towards fixation of alleles.  

 

Population structure can also be the result of localised selection on a level that 

outweighs the homogenising effects of gene flow. The rate of migration between 

sub-populations affects the level of differentiation due to selection. Haldane 

(1924) showed that an allele favoured by selection strength s (where s measures 

advantage rather than disadvantage) is maintained at high frequency, against the 

force of gene flow if m < s. The higher the selection pressure, the less likely 

migration is to prevent adaptation. 
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If gene flow overrides the structuring effects of differentiation due to drift in sub 

populations with Nm > 0.5, then in a structured population with Nm > 0.5 the 

genetic differentiation is likely to be the result of selection rather than drift. 

Information on the level and pattern of dispersal in N. diversicolor is important for 

understanding the balance of genetic drift, selection and migration (Slatkin, 1985). 

N. diversicolor has low dispersal capabilities (Scaps, 2002) but a low level of 

migration outweighs the effects of both drift and weak selection so evidence of 

population differentiation despite migration would indicate strong selection 

pressure. Selection against non-tolerant worms at contaminated sites is likely to be 

stronger than selection against tolerant worms at clean sites. Briggs (2005) 

assessed dispersal by comparing the proportion of tolerant and non-tolerant adult 

and juvenile N. diversicolor in Restronguet Creek during the breeding season. 

There was no significant difference in the proportion of tolerant and non-tolerant 

worms among 3 age classes of adult and juvenile N. diversicolor at 6 sites. It is 

likely that this reflects limited migration between sites, although it could also have 

been the result of complete and instant selection against immigrants at both 

contaminated and clean sites.   

 

Temporal structure also affects spatial patterns of population differentiation. Local 

extinction and recolonisation can either increase or decrease differentiation 

between sub populations (McCauley, 1991). Wright (1940) suggested that 

extinction and recolonisation would increase genetic differentiation between local 

populations through founder effects. Bottlenecks and founder effects increase 

differentiation in two ways: initially diversity is decreased relative to surrounding 

populations due to reduced population size, which then exaggerates the effects of 

genetic drift. However, Slatkin (1985) suggested recolonisation could decrease 

genetic differentiation through gene flow, dependent on whether founders were 

from a single source population or from multiple surrounding populations and the 

level of gene flow.  

 

Many statistical analysis methods for population genetics rely on various 

assumptions regarding these models and their parameters. In order to study the 

effects of inbreeding, mutation, drift, migration and selection, the interactions 
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between these factors and their relative contribution to population structure and 

evolutionary change, statistics must therefore be selected and used with care. 

 

 

Speciation 

 

If gene flow between sub populations is reduced to the extent where the effects of 

drift and selection outweigh the balancing effect of migration speciation may 

occur. Any statement regarding the possibility of speciation must necessarily 

include a definition of species. A number of species concepts have been proposed, 

based on morphology, phylogeny, ecology, reproductive isolation or reproductive 

recognition, but they all face problems such as fossil, asexual and hybrid 

organisms.  

 

The biological species concept, first postulated by Ray in the 17th century and 

incorporated into Darwin‟s work, was seen as a solution to the problems presented 

by typological and morphological concepts. The most widely used modern 

definition was suggested by Dobzhansky in 1937 and modified by Mayr in 1942: 

 

“Species are groups of actually or potentially interbreeding natural populations 

which are reproductively isolated from other such groups.”    

 

Because reduced gene flow between populations is such an important factor in 

speciation the biological species concept, based on reproductive isolation, is often 

applied in population genetics. 

 

Barriers to gene flow or reproductive isolating mechanisms can be pre-zygotic, 

preventing fertilisation, or post-zygotic, preventing development of viable or 

fertile offspring (Dobzhansky, 1937). Pre-zygotic isolating mechanisms are 

classified as ecological, temporal, ethological, mechanical and gametic, and post-

zygotic mechanisms as hybrid inviability, hybrid sterility and hybrid breakdown. 

Examples are given in Table 1.1.  
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Reproductive Isolating mechanism Examples 

Pre-zygotic (assortative)  

Ecological occupy different roles or 

niches 

The mosquito Anopheles gambiae breeds in fresh water while Anopheles merus breeds in salt 

water (Coetzee et al., 2000) 

The fish Hypsoblennius gilberti is found in rocky intertidal and shallow subtidal habitats while 

H. jenkinsi only inhabits subtidal clam burrows and Serpulorbis tubes (Stephens et al., 1970) 

Temporal 

 

reproduce at different  

times - seasonal, lunar or 

circadian cycles 

Fucus vesiculosus is fertile May – June and Fucus serratus August – October (Knight & Parke, 

1950; Williams, 1996) 

Synchronised spawning at different times in Montastraea coral species (Knowlton et al., 1997) 

Ethological behavioural recognition 

system; sexual signalling, 

selection or aggression 

Frog species have species-specific mating calls and responses (Gerhardt, 1994) 

Sympatric snapping shrimp, Alpheus, are monogamous and show interspecific aggression 

(Mathews et al., 2002) 

Mechanical physiological incompatibility Many crustaceans and insects have 'lock & key' genitalia e.g. water striders, Gerridae 

(Arnqvist et al., 1997) 

Gametic 

isolation 

 

chemical / molecular 

recognition system 

 

Breeding experiments indicate gametic isolation between molluscs Lacuna marmorata and 

Lacuna unifasciata (Langan-Cranford & Pearse, 1995) 

F. vesiculosus and F. serratus have intraspecific gamete recognition systems (Dring, 1992) 

Post-zygotic   

Hybrid 

inviability 

offspring are not viable Hybrids between the urchin Strongylocentrotus droebachiensis and S. purpuratus or S. 

franciscanus suffer high larval mortality (Levitan, 2002) 

Few hybrids between high and mid shore Littorina saxatilis morphs survive (Hull et al., 1996) 

Hybrid 

sterility 

hybrid adult is sterile Plaice, Pleuronectes platessa and flounder, Platichthys flesus interbreed to produce sterile 

hybrid offspring (Argue & Dunham, 1999) 

Hybrid 

breakdown 

F1 hybrids viable and fertile, 

F2 inviable or sterile 

F1 hybrids of genetically differentiated populations of the copepod Tigriopus californicus are 

vigorous and fertile but F2 hybrid and backcross larvae have high mortality (Burton, 1986) 

 

Table 1.1: Reproductive isolating mechanisms 
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The ecological species concept has recently gained support (Schluter, 2009; 

Scluter & Conte, 2009; Wolf et al., 2010; Johannesson et al., 2010). According to 

Van Valen (1976): 

 

“A species is a lineage (or a closely related set of lineages) which occupies an 

adaptive zone minimally different from that of other lineages in its range”       

 

The ecological species concept focuses on selection as the driving force of 

speciation; where reproductive isolation is the result of adaptation to contrasting 

environmental conditions or niches, which could include differential tolerance to 

limiting factors. Population structure in N. diversicolor could be the result of 

chemical habitat discontinuity, which acts as a physical barrier to gene flow 

between tolerant and non-tolerant worms. Strong selection pressure can drive and 

maintain genotypic clines despite high levels of gene flow (Endler, 1973; 

Schluter, 1996; Nosil et al., 2009).     

 

Disruptive selection occurs in heterogeneous environments and acts to limit gene 

flow outside the niche or adaptive zone, while competition prevents species 

occupying the same niche, maintaining species integrity. A competitive advantage 

in non-tolerant N. diversicolor may compound the effects of disruptive selection 

due to metal tolerance. In this way adaptation to opposing selection pressures can 

create an ecological barrier to gene flow (Beaty et al., 1998). Hybrids, which are 

less well adapted to either niche may form a hybrid zone between two species. 

However, rather than forming a gradient of adaptation, in the case of hybrid 

breakdown the hybrid zone can act as a barrier to gene flow. 

 

As metal tolerance in N. diversicolor declines rapidly outside the most polluted 

areas (Grant et al., 1989), tolerant and non-tolerant populations are found in close 

proximity to each other, which suggests that genetic differentiation between 

adjacent populations is likely to be the result of divergent selection rather than 

geographic distance. This makes Restronguet Creek a good model for studying the 

adaptive evolution of tolerance and the potential for speciation. 
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Recently molecular species concepts have defined taxonomic units based on a 

threshold of genetic difference in a single mitochondrial „barcode‟ gene such as 

COI (CBOL, 2010; Hebert et al., 2003; Blaxter, 2004). This faces the same 

problem as the morphological concept: that the chosen markers or threshold may 

not be appropriate for all taxa (Lorenz et al., 2005) and the question of how 

different species are remains (Will & Rubinoff, 2004). However, thresholds based 

on ratios of difference could be used, for example 10 times the average 

intrapopulation COI haplotype divergence (Witt et al., 2006). An equivalent 

approach using genome scans of large numbers of molecular markers such as 

AFLP can set thresholds based on measures of genetic differentiation in order to 

delimit species.  

 

However, in populations that are in the process of speciation but are not yet 

reproductively isolated, it could be inferred that selection acts on a few genes for 

adaptive traits against a background of the homogenising effects of gene flow, 

characterised by a few highly divergent loci (Beaumont & Nichols, 1996; Wilding 

et al., 2001). AFLP Genome scans can reveal signatures of speciation, by 

identifying individual loci with higher than average differentiation, that are 

associated with adaptive traits, such as tolerance to copper in Nereis diversicolor.   
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1.4    Nereis diversicolor Taxonomy 

 

Phylum Annelida 

Class  Polychaeta 

Order  Phyllodocida 

Family Nereididae 

Genus  Nereis 

Species diversicolor 

 

The taxonomic status and nomenclature of the genus Nereis has been an ongoing 

source of debate and confusion (Breton et al., 2003). Nereis virens and Nereis 

diversicolor are now widely referred to as Neanthes virens and Hediste 

diversicolor. Scaps (2002) blamed the change on Fong & Garthwaite (1994), 

although probably erroneously as Abbiati & Maltagliati used Nereis diversicolor 

in 1989 and Hediste diversicolor in 1992, possibly following Chambers & 

Garwood (1992) who argued that Hediste is separated from other genera of 

Nereididae with conical paragnaths by the presence of fused falcigers in posterior 

neuropodia. This highlights the extent to which taxonomy and phylogeny are 

based on morphological characteristics and raises the prospect of quantitative 

molecular methods resolving taxonomic divisions and relationships. Parsimony 

analysis of 66 morphological characters in Nereidinae by Bakken & Wilson 

(2005) concluded that the genera Neanthes and Nereis were not monophyletic and 

proposed splitting Alitta virens and Hediste diversicolor. However, many 

characters had high levels of homoplasy, the overall phylogeny could not be 

rooted and the authors suggested further analysis using molecular markers.  

 

Scaps (2002) noticed that often molecular biologists prefer Hediste while 

ecologists still use Nereis (but stopped short of suggesting a compromise for 

molecular ecology). From a practical point of view it is perhaps more important 

for scientists to consistently refer to the same taxonomic unit using the same 

name, as is the primary aim of the scientific nomenclature system, than to re-

assign species to the latest genus or sub-genus based on a subjective choice of 

criteria. For the sake of consistency and continuity this study refers to all worms 

formerly known as Nereis as Nereis, with genus names used in other studies 

changed where appropriate.  
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1.5   Aims and hypotheses 

 

The aims of the present study were: 

 

 Investigate the effects of an anthropogenic pollutant on the distribution of 

tolerance in an estuarine species, in order to understand how species 

respond to environmental limiting factors at the population level. 

 Assess the utility and benefits of Amplified Fragment Length 

Polymorphism analysis and a range of statistical analysis methods applied 

to AFLP data for studying genetic diversity and differentiation in a non 

model organism. 

 Identify the effects of selection pressure at the population genetic level as 

an example of divergent adaptive evolution. 

 

To investigate the population level effects of pollution and the potential for 

speciation as a result of selection for tolerance the following hypotheses were 

tested:  

 

 Populations at contaminated sites display tolerance to copper.  

 Populations at contaminated sites are genetically distinct from populations 

at clean sites.  

 Populations at contaminated sites have lower genetic variation than 

populations at clean sites.  

 Genetic structure corresponds with levels of contamination in a mosaic of 

polluted and clean habitats, rather than isolation by distance.  

 Copper acts as a barrier to gene flow. Tolerance is heritable and tolerant 

populations persist at contaminated sites with negligible immigration from 

clean sites.  

 Limited gene flow between tolerant and non tolerant populations is high 

enough to counteract the effects of genetic drift, so interpopulation 

differentiation is likely to be the result of selection pressure. 
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 The fact that tolerant populations have reduced fitness in clean habitats, 

indicative of a cost of tolerance, is demonstrated by non-tolerance loci that 

are fixed at clean sites and absent at contaminated sites. 

 Selection for tolerant or non tolerant adaptive traits acts on a small 

proportion of highly differentiated loci in tolerant and non-tolerant 

populations, which is a signature of divergent selection. 
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Chapter 2   Toxicity tests for copper tolerance in Nereis diversicolor 

 

 

2.1   Introduction 

 

Gradients of metal contamination affect the biology and ecology of the estuaries, 

creeks and rivers of Cornwall. This study focussed on sites in South West 

Cornwall, with 4 sites around Falmouth and 1 at Hayle, which have been assessed 

in previous research. 

 

 

 

Figure 2.1: Locations of study sites and rivers in Cornwall. 

 

Environments affected by pollution are often characterised by reduced species 

richness and diversity, in a community dominated by opportunistic species like 

Nereis diversicolor that are tolerant to a range of stressors (Jennings et al., 2001). 

The effects of pollution have traditionally been assessed using community 

C 

K 
D 

P H 

Carnon 

Kennal 

Percuil 

Tresillian 

Fal 

Restronguet Creek 

Hayle 

Falmouth 



42 

 

structure indices or the presence of indicator species (Ozoh, 1992b; Begon et al., 

1996). Studies of the effects of environmental variables on macrobenthic and 

meiobenthic community structure in the Fal Estuary have shown that community 

composition correlates more strongly with levels of metal contamination in 

sediments than with other environmental factors (Somerfield et al., 1994a, 1994b; 

Warwick, 2001). MDS analysis of species composition in estuaries in South West 

England by Warwick (2001) found that all sites sampled in the Fal Estuary, 

including heavily contaminated parts of Restronguet Creek (sites K and D in the 

present study) and the uncontaminated Percuil River (site P), were more similar to 

each other than to either of 2 other groups, which were based on mud or sand 

sediment, despite differences in sediment composition within the Fal. 

Communities in the Fal with low diversity, dominated by opportunistic 

polychaetes are an indicator of pollution. However, the difference found by 

Warwick (2001) was largely due to the absence of the usually abundant estuarine 

amphipod Corophium volutator from the whole of the Fal, including 

uncontaminated areas. This is unexplained, particularly as the few C. volutator 

that have been found in the most heavily contaminated part of the Carnon River 

contained relatively low levels of copper, indicating regulation, plus C. Volutator 

have shown very high tolerance to copper in tests, with a 168 h LC50 of 50,000 μg 

l
-1 

Cu (Bryan & Gibbs, 1983). The fact that a few individuals were found high up 

the Carnon River, above the upper limit of N. diversicolor, suggests a distribution 

mediated by competition and predation interactions (Jensen & Andre, 1993). This 

shows that the biota of Restronguet Creek is not typical of estuarine environments 

but does not necessarily reflect the effects of metal contamination. 

 

Increased tolerance to contaminants can be used as a biomarker of pollution 

(Luoma, 1977). Pollution Induced Community Tolerance (PICT) (Blanck et al., 

1988; Millward & Grant, 1995; Grant, 2002) has been used to map contamination. 

Ogilvie & Grant (2008) used PICT to determine the effects of a gradient of metal 

pollution on sediment microbial communities in the Fal and Hayle estuaries. They 

found no consistent relationship between community structure and tolerance, 

which implies that biodiversity indices would not be a useful indicator of 

pollution in this case. Tolerance was strongly correlated with levels of copper but 
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not with other metals, which shows that PICT is a good indicator of pollution 

levels and can additionally identify the particular pollutant causing a toxic effect.   

 

Tolerant populations of a single species can also be used as biomarkers (Luoma, 

1977; Grant, 2002). Tolerant strains of Nereis diversicolor have been widely 

employed as a biomonitor of metal contamination in estuaries (Bryan & 

Hummerstone, 1971; Bryan & Gibbs, 1983; Grant et al., 1989; Hateley et al., 

1989; Virgilio & Abbiati, 2004a; Briggs, 2005; Virgilio et al., 2005). Increased 

tolerance is direct evidence that a pollutant has exerted selection pressure on a 

population and demonstrating heritable tolerance implies an evolutionary 

adaptation with a genetic basis. Luoma (1977) identified four defining attributes 

of heritable tolerance: 

 Tolerance is the result of selection for resistant genotypes. It is heritable 

and can not be induced.  

 It involves specific physiological mechanisms for tolerance to a single 

toxicant or group of toxicants, rather than just selection for more vigorous 

phenotypes. 

 The fitness of tolerant populations is reduced in clean environments. 

 There is a cline of tolerance, with a positive relationship between the 

levels of pollution and tolerance. 

Toxicity tests have been used to explore all of these points. Exposure to low 

concentrations of copper (10 – 30 μg l
-1 

Cu) in laboratory tests has failed to induce 

elevated tolerance (Grant et al., 1989). By growing juvenile worms in clean 

conditions for 4 months before toxicity tests Bryan & Gibbs (1983) showed that 

tolerance was not lost in the absence of copper. Grant et al. (1989) demonstrated 

heritable tolerance in toxicity tests: LT50 values for laboratory bred worms were 

495 hours for offspring of tolerant worms from site R1 / K and 47 hours for 

offspring of non-tolerant worms. Small juvenile tolerant worms at contaminated 

sites also supports heritable tolerance (Hateley et al., 1989; Briggs, 2005).  

 

Nereis diversicolor has specific physiological mechanisms for tolerance to copper, 

involving storage as insoluble granules in membrane bound vesicles in the 

epidermis and nephridia (Bryan, 1976; Brown, 1982). N. diversicolor also exhibits 
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tolerance to copper, zinc and lead but the mechanism of toxicity and thus the 

mechanism of tolerance differs between metals (Bryan & Hummerstone, 1971, 

1973; Grant et al., 1989; Mouneyrac et al., 2003; Geffard et al., 2005). A 

population of N. diversicolor from the Gannel Estuary studied by Bryan & 

Hummerstone (1971) contained more than 100 times the level of lead than other 

populations and yet had low tolerance to copper, which illustrates the fact that 

different mechanisms are responsible for tolerance to different metals. N. 

diversicolor in Restronguet Creek also show tolerance to zinc, having both lower 

permeability to zinc and a more efficient excretory system than non-tolerant 

worms (Bryan & Hummerstone, 1973; Bryan & Gibbs, 1983). Heritable tolerance 

to zinc found by Grant et al. (1989) was significant but less, which suggested that 

tolerance mechanisms for Cu and Zn evolved separately.  

 

Organisms exposed to a cocktail of contaminants may have genes for a range of 

different tolerance mechanisms, which could all have genetic markers in AFLP 

analysis. Sediments in Restronguet Creek contain comparable levels of copper, 

zinc and arsenic (Bryan, 1976), although the latter are generally less toxic to N. 

diversicolor (Bryan & Gibbs, 1983). Similar levels of zinc are found in N. 

diversicolor in all but most contaminated areas and the toxic effects of zinc are 

restricted to an area within 1Km of the head of the estuary (Grant et al., 1989). 

Grant et al. (1989) found no significant difference in zinc tolerance between 

tolerant site R1 / K and mixed site R6 / D and no difference between R6 / D and 

the unpolluted Avon Estuary, which implies that genetic differences found 

between worms tolerant or non-tolerant to copper at these sites are unlikely to be 

confounded by markers for zinc tolerance.   

 

There is evidence that the fitness of tolerant N. diversicolor is reduced in clean 

environments. In toxicity tests Briggs (2005) found 100% mortality for worms 

from relatively contaminated sites, including a site with a sediment Cu 

concentration of 1399 μg g
-1

, which indicates that tolerant worms are confined to 

the most contaminated areas by selection against the tolerant phenotype in cleaner 

areas. This may simply be a metabolic cost of the detoxification mechanism. 

Briggs (2005) and Pook et al. (2009) demonstrated a lower growth rate in tolerant 

worms, compared with non-tolerant worms, under clean conditions. Briggs also 
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found that small physiological costs and benefits of metal tolerance lead to large 

behavioural differences in the outcome of intra-specific aggression. When equal 

sized individuals were paired in clean conditions, only the non-tolerant individual 

survived in 75% of cases, whereas in moderately high copper concentrations a 

similar proportion of tolerant individuals were the survivors. This suggests that 

tolerant worms are excluded from areas with lower contamination through 

competition and predation by non-tolerant N. diversicolor, plus other non-tolerant 

polychaete species such as Nephtys hombergii that are only found at clean sites. 

 

However, rather than defined tolerant and non-tolerant phenotypes, a cline of 

tolerance has been found, with a positive relationship between levels of pollution 

and tolerance. Previous toxicity tests carried out by Grant et al. (1989), Hateley et 

al. (1989) and Briggs (2005) have found a gradient of tolerance in N. diversicolor, 

from the head to the mouth of Restronguet Creek. In the study by Grant et al. 

(1989) tolerance near the mouth (R22) and in Mylor creek (F10) was slightly 

higher than for the unpolluted Avon estuary in toxicity tests with 500 μg l
-1 

Cu, 

showing a fine scale difference. The level of tolerance generally correlated with 

levels of copper found in sediments and in N. diversicolor tissues.  

 

Within Restronguet Creek worms from site R1 / K in the Kennal River have 

higher tolerance to copper than those found nearest to the Carnon River, which 

has higher levels of copper in sediments, due to differences in bioavailability and 

toxicity. Bioavailability and toxicity of copper are affected by environmental 

factors such as salinity, pH, temperature, anoxia, sediment composition and 

organic content (Bryan, 1976; Luoma & Bryan, 1982; Luoma, 1983; Bryan & 

Langston, 1992). Toxicity of copper to N. diversicolor increases with decreasing 

salinity (Ozoh, 1992a, 1994). Briggs (2005) recorded similar salinity at tolerant 

site R1 / K and non-tolerant site TM / P, with mean pore water salinity ± 1 s.e. of 

10.3 ± 0.6 at K and 12.2 ± 0.9 at P, which makes them comparable, compared 

with higher salinity of 26.2 ± 0.9 at site R6 / D further down Restronguet Creek. 

Because copper is more toxic at lower salinities the selection pressure for 

tolerance is greatest in low salinity environments higher up rivers (Bryan, 1976). 

Copper tolerant N. diversicolor in Cornwall are subjected to what are thought to 

be the highest concentrations of copper found in estuaries anywhere in the world. 
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Levels of copper in Restronguet Creek are highest at the head of the Carnon and 

Kennal rivers (Grant et al., 1989). Dissolved copper concentrations are typically 

600 to700 μg l
-1

 and up to 900 μg l
-1

 in the Carnon River at the head of 

Restronguet Creek (Bryan & Gibbs 1983, Bryan & Langston 1992) and copper 

concentrations in river water of up to 450 μg l
-1

 have been recorded in the River 

Hayle (Brown, 1977). However, transects in estuaries have shown that N. 

diversicolor tends to avoid the central channel with the highest fresh water 

influence (Bryan & Gibbs, 1983). Briggs (2005) found pore water copper 

concentrations ± 1 s.e. in sediments at the study sites of only 27.7 μg l
-1 

 ± 9.5 at 

site R1 / K, 19.0 μg l
-1 

 ± 3.1 at R6 / D and 2.3 μg l
-1 

 ± 1.5 at TM / P. Ogilvie & 

Grant (2008) found almost identical concentrations at these sites but a much 

higher pore water concentration of 463 μg l
-1

 Cu was measured at site H in the 

Hayle Estuary. Levels of copper found in sediments are even higher: > 3500 ppm 

Cu has been recorded in Restronguet Creek sediments (Bryan & Gibbs, 1983). In 

acute toxicity tests Bryan & Hummerstone (1971) found that the 96h LC50 value 

of copper for N. diversicolor was 2.3 ppm (2300 μg l
-1

) for tolerant worms and 

0.54 ppm (504 μg l
-1

) for non-tolerant worms (Bryan, 1976) so 500 μg l
-1

 Cu was 

used in the present study. 

 

The concentration of contaminant and type of toxicity test affect the results. 

Burlinson & Lawrence (2007) used chronic tests with stepwise increases in Cu 

over 90 days to reveal differences in tolerance that were not shown by acute tests. 

Other approaches have studied effects of copper on feeding rate (Moreira et al., 

2005) and burrowing behaviour (Bonnard et al., 2009). Acute toxicity tests on N. 

diversicolor have mostly been static water tests without sediment (Bryan & 

Hummerstone, 1971; Bryan & Gibbs, 1983; Grant et al., 1989; Hateley et al., 

1989; Briggs, 2005) but tests have been conducted with clean sand added to 

reduce stress (Burlinson & Lawrence, 2007). As much of the uptake of copper is 

through ingested sediment (Luoma & Bryan, 1982; Scaps, 2002; Wang, 2002) 

toxicity tests have also been carried out with contaminated sediment collected 

from study sites (Briggs, 2005). It is difficult to relate the methods, and thus the 

results, of laboratory experiments to field conditions (Burton, 1979), although 

toxicity tests are a simple way to establish the relative levels and distribution of 

tolerance to copper, in order to relate it to molecular markers. 
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2.2   Study sites 

 

Study sites were chosen based on distributions of copper and copper tolerance in 

Nereis diversicolor determined by previous studies (Bryan & Hummerstone, 

1971; Bryan & Gibbs, 1983; Grant et al., 1989; Hateley et al., 1989; Briggs, 

2005) The Hayle estuary and the upper parts of Restronguet Creek are heavily 

contaminated by metals produced by historical mining activity, with levels of 

copper over 3500 ppm (Bryan & Gibbs, 1983). Copper levels are highest in the 

Carnon River and decline towards the mouth of Restronguet Creek.  

 

Otherwise The Fal Estuary is fairly typical of temperate, macro-tidal coastal ria 

systems. It is a funnel shaped estuary with mud flats decreasing in width 

upstream. Its long length means that compared to other estuaries it has fast tidal 

currents relative to tidal range (Uncles et al., 2002). It is likely to be 

hyposynchronous, where the effect of friction between the tidal water and the bed, 

decreases tidal range, outweighing the effect of margin convergence, which 

increases tidal range (Dyer, 1997). With lower tidal range further up the estuary, 

combined with a narrow configuration, upper parts of the estuary have a relatively 

narrow intertidal zone compared with the large expanses of mud flats nearer the 

mouth, which limits the area available for colonisation and thus acts as a 

constraint on population sizes. 

 

Site  Briggs (2005) Tolerance OS grid reference 

Hayle H  tolerant SW548365 

Kennal K R1 tolerant SW784388 

Devoran D R6 mixed SW803387 

St Clements C  non-tolerant SW852438 

Percuil P TM non-tolerant SW861362 

 

Table 2.1: Study site names and locations; predicted tolerance to copper of 

Nereis diversicolor according to previous studies (Bryan & Hummerstone, 

1971; Bryan & Gibbs, 1983; Grant et al., 1989; Hateley et al., 1989; Briggs, 

2005).   



48 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Maps showing locations of the 5 study sites in South West 

England: sites K, D, C and P around the Fal Estuary and site H at Hayle. 
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The same sites have been used in previous studies by Bryan & Gibbs, 1983; Grant 

et al., 1989; Hateley et al., 1989 and Briggs, 2005 using alternative site names 

given in Table 2.1.  Briggs (2005) found that the mean percentage organic carbon 

content ± 1 s.e. of 3.60 % ± 0.06 at TM / P was lower than 4.31 ± 0.04 at R1 / K 

and 4.52 ± 0.01 at R6 / D. This agrees with observed thick mud at K and D and 

cleaner sand at P in the present study. While Briggs (2005) measured very similar 

median grain size and proportion of silt at sites R1 / K, R6 / D and TM / P, in the 

present study site P was observed to have a much higher overall proportion of 

sand and fine gravel than sites K, D and C. Site H also had sandy sediment with 

lower organic content. Sites D and C had frequent occurance of the clam 

Scrobicularia plana and occasional occurance of the polychaete Nephtys 

hombergii, while site P had abundant amphipods. At sites K and H Nereis 

diversicolor was the only macro fauna found in the sediment. Sites K and P are 

higher up rivers than the other sites and thus have lower salinity and a narrower 

intertidal zone (Bryan & Gibbs, 1983; Briggs, 2005). 
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2.3   Methods 

 

Toxicity tests were used to confirm the current distribution of copper tolerant 

Nereis diversicolor in Cornwall, assess any changes since tests carried out by 

Bryan & Hummerstone (1971), Bryan & Gibbs (1983), Grant et al. (1989) and 

Briggs (2005) and provide a basis for linking genotypes to copper tolerance. In 

addition the F1 offspring produced by a tolerant / non-tolerant cross from a 

breeding experiment were tested to investigate inheritance of copper tolerance.  

 

 

2.3.1   Sample collection, transport and animal husbandry 

 

The number of sites visited on each trip was constrained by distance between 

sites, tides, limiting the number of days that worms were stored for before 

transportation and availability of environmental cabinets to conduct toxicity tests 

in. Sample collection for toxicity tests avoided the breeding season in July / 

August / September. Following higher than expected deaths of adult females 

during a toxicity test in a sample collected close to the breeding season in June, a 

second sample was collected from site K in January. 2 samples were also 

collected from site D in January and October to assess temporal variation in 

toxicity test results and the reproducibility of bulk segregant analysis.    

 

Adult specimens of Nereis diversicolor, > 3 cm in length, were collected by hand 

at low tide, by digging and sorting through mud at the study sites. Worms from 

different sites were kept separate. Initially worms were transported in sediment 

from the study site in large plastic bags, separated from the sediment by sieving 

with tap water and transferred to clean containers in the laboratory. Later worms 

were sieved out in Cornwall and transported in clean sand and artificial sea water 

(ASW) in large plastic storage boxes, which was found to be more successful and 

less smelly on an 8 hour car journey.      

 

Worms were maintained in a laboratory in 30 cm x 40 cm plastic storage boxes, ~ 

50 worms to a box, in 5 cm deep clean sand, covered by a further 15 cm of 17 psu 

artificial sea water (ASW) made with sea salt mix (TropicMarin) and distilled 
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water, aerated with air lines from a compressor. Boxes were kept in natural 

daylight at room temperature, water was changed every few weeks and worms 

were fed once a week with goldfish flakes (Aquarian).  

 

For both toxicity tests and AFLP analysis experiments were carried out as soon as 

possible after collection to avoid possible bias due to competition and 

cannibalism.     

 

 

2.3.2   Breeding experiment 

 

In order to investigate the distribution of copper tolerance in offspring of tolerant 

and non-tolerant crosses a breeding experiment was conducted to coincide with 

the summer breeding season, using 20 females from contaminated site K and 20 

females from clean site C. Worms from these 2 sites were assumed to be tolerant 

and non-tolerant respectively on the basis of previous studies (Bryan, 1976; Bryan 

& Gibbs, 1983). ~ 1 cm of tissue was cut from the posterior end and used for 

DNA extraction, for AFLP analysis of population genetics. The female worms 

were then paired with males from the opposite site, in individual 15 cm x 22 cm 

plastic boxes with clean sand and ASW. Only 1 pair of worms, an F0 Female 

from clean site C and an F0 male from contaminated site K bred, producing 

around 300 offspring in August. 

 

At 11 months old in June and July, 22 pairs of F1 worms were put in separate 15 

cm x 22 cm boxes, 3 larger boxes were set up with 10 females and 1 male and the 

remaining F1 worms were left in 3 original large 30 cm x 40 cm culture boxes ~ 

30 – 40 worms to a box. The F1 worms had gametes and the following August, at 

exactly 2 years old, nearly all simultaneously displayed breeding characteristics 

by changing colour, followed by hystolysis and death, but no F2 offspring were 

produced.   

 

100 F1 offspring were used in a toxicity test at 7 months old. Prior to the toxicity 

test  ~ 0.5 cm of tissue was cut from the posterior end of these worms and frozen 

at -80°C in microcentrifuge tubes for future AFLP analysis. 



52 

 

2.3.3   Toxicity tests 

 

Tolerance to copper was measured for samples of 200 worms from each of the 5 

study sites, plus 100 F1 offspring of a tolerant / non-tolerant cross, using static – 

renewal acute toxicity tests. DNA extraction for AFLP analysis was performed on 

the tails of 30 worms from Hayle that were included in a toxicity test.  

 

All toxicity tests were conducted in 17 psu artificial sea water (ASW) made with 

salt mix (TropicMarin) and distilled water, containing 500 μg l
-1

 Cu from Analar 

grade anhydrous copper sulphate. Copper sulphate solution was made with 1.256 

g CuSO4 in 1 l sterile distilled water (sdH2O) and then 10 ml solution was added 

to a 10 l container of ASW.  Tests were performed in environmental cabinets, at 

15°C, in 12 h light / 12 h dark with 1 light tube. Uptake by the organisms can 

reduce the concentration of the toxin in static water toxicity tests (Ozoh, 1992a), 

so all water was replaced every 24 hours to maintain the test concentration of Cu.  

 

In pilot studies with 5 – 10 worms in the same plastic box subjected to 500 μg l
-1

 

Cu there was high mortality among tolerant worms due to fighting, predation or 

worms aggregating and becoming entangled. The addition of lengths of plastic 

tubing did not fully alleviate this problem. It was therefore decided to conduct 

toxicity tests in individual plastic cups containing 100 ml ASW. This also allowed 

weight, gender, egg size, presence of parasites and time to death to be recorded 

and compared for individual worms.   

 

All worms used in site toxicity tests were > 150 mg, while tolerant / non-tolerant 

cross worms were > 50 mg. ~ 50 worms at a time were removed from sand by 

sieving and kept in plastic boxes in ASW. All healthy worms extracted were used, 

to avoid biased selection of individuals within a sample. Individuals were blotted 

dry on paper and weighed. Each worm was then placed in a clean petri dish and 

tissue was cut from the posterior section using clean scissors and stored at -80°C 

in a microcentrifuge tube, in case it was required for future AFLP analysis. Tissue 

from both samples from site D was intended for use in bulk segregant analysis 

based on the results of the toxicity tests. The size of tissue sample taken was 

relative to the size of the worm, so that an approximately equal percentage of 
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tissue was removed. Coelomic fluid was examined under a binocular microscope 

and the presence and size of eggs and the presence of parasites was recorded.  

 

200 worms plus ‘spares’ were prepared for each sample. Worms were assigned to 

individual plastic cups and left to recover in clean ASW for 3 - 5 days, with 1 - 2 

water changes, before the test began. Any worms that died, looked sick or 

produced eggs during the acclimation period were replaced with spares. 5 – 10 

controls per sample were kept in clean ASW. Worms were not fed during the 

experiments.   

 

During the test the production of eggs by any worms was recorded. Worms were 

checked every 24 hours when the water was changed, death was determined by 

failure to respond to manual stimulation and time to death was recorded to the 

nearest 24 hours. Tests were continued until all worms were dead. 
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2.4   Results 

 

Tolerance to copper was measured with toxicity tests on samples of 200 worms 

from each of the 5 study sites, with 2 separate samples for sites D and K to test 

reproducibility and investigate possible higher than expected mortality in females 

from site K in June; plus 100 F1 offspring of a tolerant / non-tolerant cross. Wet 

weight; gender, defined as female for worms with eggs and male for those 

without; egg size; presence of parasites and time to death to the nearest 24 hours 

were recorded for individual worms.  

 

Site / sample   Number Tolerance Month Swapped Parasites 

Hayle H 200 tolerant February 4 6 

Kennal 1 K1 200 tolerant June 9 4 

Kennal 2 K2 200 tolerant February 39 0 

Devoran 1 D1 200 mixed February 0 5 

Devoran 2 D2 200 mixed November 0 1 

St Clements C 200 non-tolerant November 0 7 

Percuil P 200 non-tolerant June 7 1 

K x C Cross KC 100 ? March  0 0 

 

Table 2.2: Site name and sample abbreviation for 8 samples, from 5 sites plus 

F1 offspring of a K x C cross; predicted tolerance; month in which the 

toxicity test was conducted; number of worms that had to be swapped due to 

death, sickness or production of eggs during the recovery and acclimation 

period and the number of worms used in tests in which parasites were 

observed. 

 

Notably 39 individuals from tolerant sample K2 had to be swapped for spares 

during the recovery and acclimation period because they died or looked sick. As 

worms from Hayle tested at the same time did not suffer the same problem this 

was probably due to a bacterial problem in the Kennal sample boxes, which could 

have affected the results for the remaining worms. Parasites, possibly the 

trematode Zoogonus rubellus (McCurdy & Moran, 2004), were observed in a few 

worms but with no apparent pattern of distribution. The numbers containing 

parasites were too low to test for associated significant difference in weight or 

time to death and were found at levels too low to affect population or community 

structure (Poulin, 1999).   
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2.4.1   Data analysis 

 

The time to death and weight data for all samples resembled a poisson distribution 

and were not normally distributed according to a Kolmogorov-Smirnov test (p < 

0.01), plus there was a significant difference in variances (Levene’s test, p < 

0.001), with variances much larger than the mean. Square root and log 

transformations only normalised some of the samples and failed to stabilise the 

variances so non-parametric Kruskal-Wallis tests were used to test for significant 

difference in time to death and weight between the 8 samples. Non-parametric 

Spearman rank correlations were used to compare weight and time to death. Z 

tests were used to compare mean weight or time to death between 2 samples 

because this test does not require a normal distribution for large samples n > 50 

(Fowler et al., 1998). Cross tabulations were used to explore associations between 

nominal, categorical variables, with chi-square tests to show significant 

divergence from homogeneity and independence. Post hoc standardised residuals 

tests were performed, based on the difference between observed and expected 

frequencies converted to Z-scores, with a Bonferroni correction for multiple 

pairwise comparisons, to determine the source of any difference. Multiple 

regression was also used to explore relationships between variables, although the 

heavily skewed data was not really suitable for regression analysis despite 

transformation.    

 

 

2.4.2   Weight 

 

Smaller worms are more susceptible to copper toxicity, probably due to a higher 

surface to volume ratio (Ozoh 1992a, 1994; Briggs, 2005). Weight was analysed 

to assess whether this could have affected the results of toxicity tests. Sexual size 

dimorphism was also investigated by comparing the weights of worms defined as 

female and male. 

 

 

 



56 

 

 

 

Figure 2.3: Mean weight (mg) ± 1 standard deviation for the 8 samples of 

worms used in toxicity tests (Table A). n = 200 except for KC = 100. 

 

 

 

 

Figure 2.4: Mean weight (mg) ± 1 standard deviation for worms defined as 

female (F) or male (M), for the 8 samples of worms used in toxicity tests 

(Table A). n = 200 except for KC = 100. 
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There was a significant difference in weight between the 8 samples (Kruskal-

Wallis test, H = 328, df = 7, p < 0.001) but the samples appeared to be grouped by 

time of year rather than tolerance (Figure 2.3; Table 2.2). Figure 1 shows that for 

both tolerant sample K1 and non-tolerant sample P tested in June and Samples D2 

and C tested in November the 2 samples had very similar mean weights. Worms 

found at site K were larger in June (K1) approaching the breeding season than in 

February (K2) and worms from site D were smaller in November (D2) after the 

breeding season than in February (D1). This could be attributable to both larger 

size and the extra weight of eggs in mature females. 

 

For all 1500 worms there was a significant difference in mean weight between 

females and worms without eggs defined as male (Z test, Z = 2.162, P < 0.001). 

Females had a higher average weight (mean = 317 mg, s.d. = 146) than males 

(mean = 287 mg, s.d. = 143), which could have been biased by small, immature 

females grouped with males but agrees with other studies that found females to be 

larger (Scaps, 2002). However, figure 2 shows that within samples there was a 

significant difference  in weight between males and females in all except for 

tolerant samples K1 and K2 and mixed sample D2 (Z tests and multiple t test table 

with a Bonferroni correction, p > 0.005), with K2 and D2 having heavier males.         

  

Among the female worms there was a significant difference in mean weight 

between females with large and small eggs (Z test, Z = 2.862, P < 0.001). Females 

with large eggs had a higher average weight (mean = 338 mg, s.d. = 159) than 

females with small eggs (mean = 279 mg, s.d. = 109). The 124 females that 

discharged eggs during the toxicity tests also had a higher average weight (mean = 

416 mg, s.d. = 162) than those that did not (mean = 303 mg, s.d. =  138) (Z test, Z 

= 4.140, P < 0.001), which simply demonstrates that mature females, with large 

eggs weigh more. The 5 males that discharged sperm during tests also had a high 

mean weight (mean = 396 mg, s.d. = 160). This is expected for a semelparous 

species.   

 

Overall there was a significant but very weak negative correlation between weight 

and time to death (rs = -0.069, p < 0.01). Out of the 8 samples 4 showed a 

significant correlation between weight and time to death but 2 correlations were 
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negative, for samples K1 (rs = -0.275, p < 0.001) and D2 (rs = -0.275, p < 0.001), 

while 2 were positive, for samples H (rs = 0.258, p < 0.001) and KC (rs = 0.356, p 

< 0.001). In general weight had no consistent effect on time to death, although the 

weak positive correlation for samples H and KC, which had the lowest average 

weight (Figure 2.3), suggests that there may be an effect on smaller worms and 

thus a higher minimum weight threshold should be used in toxicity tests. 

However, scatter plots of weight against time to death (not shown) for samples K1 

and D2, which had a significant negative relationship between weight and time to 

death, and D1, which had a lot of the largest worms, were a wedge shape, with 

both small and very large worms dying first and intermediate weight worms living 

the longest.  

 

 

2.4.3   Sex ratio and maturity 

 

The presence of sperm could only be clearly determined in a few individuals, so 

gender was recorded as presence / absence data for eggs and worms without eggs 

were nominally defined as males. The overall ratio of females to males across all 

samples was exactly 2:1 but sex ratios and egg size ratios varied between sites: 

 

Site / sample Month % Female % Large eggs 

H February 78% 73% 

K1 June 85% 69% 

K2 February 76% 84% 

D1 February 55% 44% 

D2 November 64% 57% 

C November 53% 38% 

P June 55% 58% 

KC March  71% 96% 

 

Table 2.3: Month in which toxicity tests were performed for each sample; 

percentage of worms defined as female by the presence of eggs; percentage of 

female worms that had eggs subjectively defined as large rather than small. 

 

There was a significant difference in the number of female worms between 

samples (χ
2 

= 93.94, df = 7, p < 0.001). A post hoc standardised residuals test with 

a significance level of 0.05 showed that there was a significantly higher than 
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expected proportion of females in tolerant samples H and K1 compared to D1, 

D2, C and P and in K2 compared to D1, C and P. Interestingly the F1 KC cross 

sample had an intermediate proportion of females, which was not significantly 

different to tolerant or non-tolerant samples. The proportion of females in the KC 

sample may have been downwardly biased because the 7 month old worms, with a 

lower average weight than the wild caught samples, may have included immature 

females without visible eggs.    

 

Egg size was subjectively recorded as small or large. Interestingly in there was an 

easily distinguishable difference between the 2 sizes in most cases, with very few 

worms having intermediate sized eggs, which indicated annual cohorts. A few 

worms had 2 separate sizes of eggs (recorded as large), which may indicate 

gametogenesis over 2 seasons with failure to completely reabsorb the first seasons 

eggs (Olive et al., 1997). 

 

Among the female worms there was a significant difference in the number of 

worms with small or large eggs between samples (χ
2 

= 123.12, df = 7, p < 0.001). 

A post hoc standardised residuals test with a significance level of 0.05 generally 

showed a higher than expected proportion of females with large eggs in tolerant H 

and K samples and small eggs in D, C and P samples as follows:  

 

Sample H K1 K2 D1 D2 C P KC 

Egg size S 
KC KC  H  K1 K2             

KC 

K2  KC H  K1 K2 

KC 

K2  KC  

  L 
D1  C D1  C D1  D2  C  

P 

    H  K1 D1 

D2  C  P 

 

Table 2.4: Post hoc standardised residuals test comparisons of the proportion 

of females with small or large eggs. Samples in the top header row had a 

significantly higher than expected proportion of small or large eggs 

respectively, compared to the samples listed in the column below. 

 

The month in which the samples were tested (Table 2.3 / 2.5) does not appear to 

have affected this ratio. This suggests a possible relationship between proportion 

of mature females and tolerance, rather than time of year, although there was no 

significant difference between the tolerant K1 and non-tolerant P samples, both 

collected in June. There were very few worms with small eggs in the KC cross 
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sample, which could imply that the proportion of females was not downwardly 

biased due to misidentification of immature females. There was no relationship 

between the percentage of females with large eggs and the percentage of females 

that discharged eggs during toxicity tests. 

 

Sample Month 

% Eggs 

discharged 

Mean TTD    

(hours) ±sd 

Median TTD 

(hours) 

H February 8% 390 245 48 

K1 June 40% 303 277 48 

K2 February 10% 307 360 60 

D1 February 10% 192 177 48 

D2 November 7% 229 185 24 

C November 0 0 0 0 

P June 8% 69 37 48 

KC March  0 0 0 0 

 

Table 2.5: Percentage of female worms that discharged eggs during toxicity 

tests; mean time at which eggs were first discharged ± 1 sd; median time to 

death of individual worms after eggs were first discharged. 

 

During the toxicity tests 124 females discharged eggs and 5 males discharged 

sperm. All females that discharged eggs during the toxicity tests had large eggs, 

which shows that egg size corresponds with maturity. Worms that discharged eggs 

or sperm generally died ~ 48 hours after eggs were first discharged (Table 2.5), 

which confirms a semelparous life cycle. A few outliers that survived for 

hundreds of hours after discharging eggs may have been affected by removal of 

the tail section prior to the tests rather than normal breeding. The K1 sample 

tested close to the breeding season in June, in which 40% of females produced 

eggs during the test, actually had a higher mean and median time to death than 

K2, in which only 10% produced eggs (Tables 2.5 and 2.6). Overall the 129 

worms that discharged eggs or sperm during the tests had a significantly higher 

mean time to death (mean = 362 hours, s.d. =  306 ) than those that did not (mean 

= 326 hours, s.d. =  328) (Z test, Z = 1.562, p = 0.015). This could mean that 

mature worms are less susceptible to copper because they are larger or simply that 

the longer worms survive, the more likely they are to produce eggs. More usefully 

it demonstrates that the production of eggs or sperm and subsequent death of N. 
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diversicolor does not downwardly bias the results of time to death toxicity tests 

for copper tolerance. 

 

Despite the fact that mature females with large eggs weigh more, exploratory 

analysis using multiple t test tables with a Bonferroni correction or multiple 

regression did not reveal any strong relationships between the categorical 

variables and weight. There was no clear relationship between proportion of 

females, egg size and the mean weight of samples (Figure 2.3; Table 2.3), which 

suggests that the number of heavier mature females with large eggs is not the most 

important factor determining biomass at the study sites.   

 

 

2.4.4   Time to death    

 

Surprisingly there was fairly high mortality among the controls, with around a 

third of the control worms dying in the first 2 weeks of the experiments. Despite 

daily water changes there was noticeable algal growth and slightly cloudy water in 

the control containers, but not in the test containers, which suggests that the 

controls may have suffered from bacterial infections that were suppressed by 

copper in the test containers. There were also differences in behaviour: test worms 

everted the proboscis and wriggled in response to copper, whereas controls 

showed no unusual behaviour before death. Grant et al. (1989) disregarded data 

from toxicity tests unless control mortality was very low. However, as high 

control mortality in the present study was attributed to bacteria that were 

suppressed by copper in toxicity tests, conditions were considered to be different 

enough to ignore the control results.    

 

In the toxicity tests there was a significant difference in median time to death 

between the 8 samples (Kruskal-Wallis test, H = 431, df = 7, p < 0.001) (Table 

2.6).  

 

Across all samples there was a significant difference in mean time to death 

between females and males (Z test, Z = 2.880, p < 0.001). Females had a higher 

average time to death (mean = 361 hours, s.d. =  344) than worms defined as 
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males (mean = 267 hours, s.d. =  277), which was probably related to higher 

average weight (Figure 2.4) and therefore lower surface area to volume ratio and 

lower susceptibility in worms classified as females.  

 

Site / sample   

median TTD 

(hours) 

Mean TTD 

(hours) ±sd 

Hayle H 240 432 406 

Kennal 1 K1 456 450 501 

Kennal 2 K2 264 445 403 

Devoran 1 D1 216 313 269 

Devoran 2 D2 192 321 264 

St Clements C 144 154 47 

Percuil P 120 126 25 

K x C Cross KC 168 256 194 

 

Table 2.6 : Median and mean ± 1 sd time to death for 8 samples, from 5 sites 

plus F1 offspring of a K x C cross (Table 2.2), exposed to 500 μg l
-1

 Cu in 

toxicity tests. 

 

The 30 worms from tolerant site H used for AFLP analysis had a typical range of 

lethal times from 96 to 1080 hours, with a median time to death of 252 hours and 

mean ± 1 s.d. of 376 ± 274. 

 

Multiple regression analysis used to explore relationships between time to death 

and other variables suffered from multicolinearity problems caused by very weak 

but nevertheless significant relationships between sample, weight and gender 

variables. Simple regression showed that difference in time to death was 

accounted for 0.7% by weight, 1.9 % by gender and 13.9 % by sample, increasing 

to 21.3% by site with replicate samples K2 and D2 and the KC cross data 

removed (all p < 0.01). Population of origin therefore has by far the strongest 

association with levels of tolerance. 

 

Histograms of time to death for the 8 samples clearly show the difference between 

tolerant, non-tolerant and intermediate sites:   
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Figure 2.5: Mortality in toxicity tests for 5 sites and K x C F1 cross  
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Figure 2.5: Mortality in toxicity tests for 5 sites and K x C F1 cross  
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Figure 2.6: Cumulative percentage mortality in toxicity tests for 8 samples, 

from 5 sites plus K x C F1 cross (Table A). n = 200 except for KC = 100. 

 

Figures 3 and 4 show that non-tolerant worms from sites P and C nearly all died 

between 96 and 216 hours. Cumulative mortality at 120 hours was 40% for C and 

71% for P, with 100% mortality at 432 and 264 hours respectively, whereas 

tolerant worms from sites K and H lived for up to 1800 hours.  

 

Similar graphs for the 2 samples from site D shows reproducibility and temporal 

stability. The smooth line for sample K1, coupled with higher mean time to death 

in females that produced eggs during the test compared to those that didn’t, shows 

that testing females close to the breeding season in June did not affect the results. 

However, the bacterial problem that necessitated the replacement of 39 worms in 

the acclimation phase in sample K2 may have caused the peak at 48 hours and 

further deaths earlier than expected in that sample.  

 

The most striking result is the distribution of mortality for the F1 offspring of a C 

x K cross, with a cumulative percentage curve mid way between the curves for 

non-tolerant site C and tolerant site K. This curve is also very similar to those for 

site D, which is thought to have mixed or intermediate tolerance.   
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Rather than a clear distinction between non-tolerant and tolerant sites there 

appears to be a gradient of tolerance: P < C < D < H < K. This raises the question 

of whether some sites such as D have a mixture of non-tolerant and tolerant 

worms or whether there is a more homogeneous local level of tolerance that varies 

between sites. Sites with 2 distinct groups of non-tolerant and tolerant worms 

should have a bimodal distribution of time to death, which is apparent for sample 

D2 to some extent, though sample D1 has a smoother curve that suggests 

intermediate tolerance. Time to death for nearby site K, thought to be all tolerant 

(Bryan & Hummerstone, 1971; Grant et al., 1989; Hateley et al., 1989; Briggs, 

2005) also has a skewed distribution, with higher mortality per day earlier in the 

test between 96 and 216 hours, so it is possible that the histograms for site D and 

for the C x K cross are a combination of non-tolerant and tolerant distributions. 

The alternative explanation is that site K has a small proportion of non-tolerant 

worms. 
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2.5   Discussion 

 

The toxicity test results broadly agreed with the results of other studies on copper 

tolerance in Nereis diversicolor (Bryan & Hummerstone, 1971; Bryan & Gibbs, 

1983; Grant et al., 1989; Hateley et al., 1989; Briggs, 2005; Burlinson & 

Lawrence, 2007), with non-tolerant worms from sites P and C nearly all dying 

before 216 hours and tolerant worms from K and H living for up to 1800 hours.  

 

 

Cu in 

Sediment 

(ppm) 

Cu in 

worms 

(ppm dry) 

Median lethal time 

(hours) 

Study / Estuary / Site 0.5 ppm 1.0 ppm 2.5 ppm 

Bryan (1976) 

     Avon 18 20 100 100 100 

Gannel 296 116 128 100 135 

Tamar 509 397 97 93 111 

Hayle H 712 729 490+ 230 260 

Restronguet K 3500 922 490+ 299 259 

Bryan & Gibbs (1983) 

     Restronguet R1 K 1733 1430 > 400 150 / 250 

 Restronguet R4  >3500 630 

   Restronguet R6 D 2540 832 

   Restronguet R13  2170 932 

   Restronguet R22  1785 271 

   Tresillian F1 C 256 84 

   Mylor F10  1117 289 

   Mylor F11  - 243 

   Place Cove F15 P 31 - 

   Hayle H 728 1210 

   Briggs (2005) 

     Restronguet R1 K 1360 754 974 

  Restronguet R4  2640 771 202 

  Restronguet R6 D 2210 483 103 

  Restronguet R13  1078 379 92 

  Restronguet R22  753 340 52 

  Mylor F10  675 191 - 

  Mylor F11  456 191 52 

  Percuil TM P 92 26 71 

   

Table 2.7: Comparable data from Bryan, 1976; Bryan & Gibbs, 1983; Briggs, 

2005. Average concentration of Cu in sediment and N. diversicolor tissues; 

toxicity to N. diversicolor of  3 different concentrations of copper in 50 % sea 

water at 13-17 °C. Site references are given for original studies, followed by 

the present study. Comparisons with H and K for Bryan (1976) and C and P 

for Bryan & Gibbs (1983) only refer to the same river. All other comparisons 

are the same site, with OS map grid references given in Table 2.1.      
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The exact results of toxicity tests on N. diversicolor vary between studies though. 

The 96 h LC50 value of copper for N. diversicolor was found to be 2.3 ppm Cu 

(2300 μg l
-1

) for tolerant worms and 0.54 ppm (504 μg l
-1

) for non-tolerant worms 

by Bryan (1976), although the median lethal time of 260 hours given by the same 

authors for tolerant worms in 2500 μg l
-1

 Cu contradicts this (Table 2.7). In the 

present study using 500 μg l
-1

 Cu mortality at 96 hours for non tolerant worms 

was only 3 % for site C and 14.5 % for site P but this increased to 40% for C and 

71% for P at 120 hours, which is fairly close to Bryan (1976).  

 

LT50 (median) time to death values calculated by Grant et al. (1989) were 1407 

hours for tolerant site R1 / K and 70 hours for non-tolerant worms from the Avon. 

Similar values were found for tolerant and non-tolerant worms by Briggs (2005) 

(Table 2.7). However, in a study carried out in 2002 Burlinson & Lawrence 

(2007) determined the LT50 for site R1 / K to be 258 hours in only 400 ug l
-1

 Cu. 

In the present study median time to death of 456 hours for one sample from site 

R1 / K was similar to that found by Bryan & Hummerstone (1971) and Bryan & 

Gibbs (1983) but tolerant samples K2 from Restronguet and H from Hayle had 

lower median lethal times than previous studies of 264 and 240 hours. Samples 

D1 and D2 from mixed Restronguet site R6 / D and sample P from the clean 

Percuil River had higher median lethal times than Briggs (2005) (Tables 2.6 and 

2.7). Grant et al. (1989) found that no worms from tolerant site R1 / K died before 

600 hours in 500 μg l
-1 

Cu, contrary to median lethal times for Bryan & 

Hummerstone (1971), Briggs (2005) and the present study, though mean time to 

death in 1000 μg l
-1 

Cu of 100 hours found in the same study by Grant et al. 

(1989) was lower than the median time to death of 299 hours found by Bryan & 

Hummerstone. Mean rather than median survival times (Table 2.6) would be the 

best measure of central tendency if the data was more normally distributed (Grant 

et al., 1989) and may be preferable in any case as they better reflect the range of 

survival times and appear to give a clearer picture of the gradient of tolerance. 

 

The quantity of available copper could have affected the test results. Bryan & 

Hummerstone (1971) tested 10 worms in 500 ml of sea water and Briggs (2005) 

tested groups of up to 17 adult worms in 750 ml ASW. Tests with 1 worm per 100 

ml in the present study effectively used twice the volume of water and copper per 
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worm per day, which could account for the lower lethal times in tolerant 

populations.   

 

The size of worms used can affect the results. Ozoh (1992a, 1994) showed that 

juveniles are more sensitive to copper at 300 and 500 μg l
-1 

Cu, under a range of 

different temperatures and salinities. Briggs (2005) also found that sensitivity to 

copper is correlated with size, with a gradient of median survival times from adult 

worms to juveniles, to very small juveniles. However, between these 3 size 

classes Briggs (2005) found no significant difference in the proportion of different 

sized worms dying before and after 216 hours, with adult worms from tolerant site 

R1 / K having a higher mortality rate early in the experiment than juveniles. Low 

survival time in the largest worms in samples K1, D1 and D2 in the present study 

could indicate higher stress caused by the small volume test conditions adversely 

affecting large adult worms.  Bryan & Hummerstone (1971) used worms of a 

similar size, around 300 mg in toxicity tests, which is recommended for future 

studies. 

 

It could be suggested that if samples D1 and D2 are mixed, the non-tolerant 

worms, with the lowest time to death, were larger due to a selective advantage. 

Briggs (2005) and Pook et al. (2009) found that tolerant N. diversicolor have a 

lower growth rate under clean laboratory conditions. Differences in weight 

between the 8 samples from wild populations in the present study (Figure 2.3) did 

not show a cost of tolerance in terms of reduced size though. Differences were 

most likely related to cyclical differences associated with breeding season, 

particularly for differences between samples from the same site. The fact that 

worms found at site D were smaller in November after the breeding season but of 

a size likely to be older than 3 months again points to a 2 year life cycle, possibly 

with continuous growth. Alternatively, small size at Hayle could be attributed to 

coarse sediment with a lower organic content, for example. A much more 

comprehensive sampling regime across sites and months would be required to 

fully investigate the reasons for differences in average weight.    

 

It is known that pollution influences community structure but metal contamination 

could also affect intraspecific ecological relationships, including sex ratios and 
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sexual size differences observed in the present study. Fisher’s principle that 

sexually reproducing species will tend towards a sex ratio of 1:1 as an 

evolutionarily stable strategy (Fisher, 1930) could be overruled by increasingly 

strong selection against males associated with environmental conditions 

(Hamilton, 1967; Maynard-Smith & Price, 1973). If copper exerts higher selection 

pressure on males because they are smaller, and thus particularly on smaller 

males, this could explain the lower proportion of males at contaminated sites and 

possibly the lack of significant size dimorphism, with comparatively larger males 

at tolerant site K. However, this seems unlikely given that there was no overall 

relationship between size and time to death in adult worms, plus very small 

juvenile worms of both sexes are found at contaminated sites and tolerate high 

levels of copper in toxicity tests (Briggs, 2005). Contrary to the present study 

Pook et al. (2009) found that tolerant females weighed less. Comparatively lower 

weight females at tolerant sites could indicate a cost of tolerance if females at 

contaminated sites invest less energy in egg production but Pook et al. (2009) 

showed that this is not the case, finding no difference in the energetic investment 

in egg production between tolerant and non-tolerant females. This could be further 

investigated with a comparative study of egg size and number.   

 

The ratio of male to female N. diversicolor is usually biased towards females but 

generally varies greatly between areas (reviewed in Scaps, 2002), although 

differences between studies could be attributable to discrepancies in the 

identification of males, and a relationship with environmental conditions has been 

suggested (Bogucki, 1953). Copper has been shown to disrupt sexual 

characteristics in other invertebrates, for example causing imposex in gastropods 

(e.g. Nias et al., 1993). However, there are not thought to be any adverse effects 

of copper on egg production in tolerant N. diversicolor (Ozoh, 1990) so there is no 

apparent direct link between copper and sex ratios. Parasites can also cause 

imposex, as suggested for trematodes in the dog whelk Nucella lapillus (Evans et 

al, 2000), or influence sex ratio in the same way as Wolbachia (Wolf et al., 2010) 

but there was no link between the proportion of females and the low numbers of 

worms with parasites in the present study.  
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It is very difficult to establish causal relationships in natural populations affected 

by multiple biotic and abiotic factors (Burton, 1979; Fowler et al., 1998). Static 

water toxicity test conditions do not recreate natural conditions as copper levels in 

estuarine water are much lower: Briggs (2005) found pore water copper 

concentrations ± 1 s.e. of only 27.7 μg l
-1 

 ± 9.5 at site R1 / K, 19.0 μg l
-1 

 ± 3.1 at 

R6 / D and 2.3 μg l
-1 

 ± 1.5 at TM / P. Much of the exposure to copper 

experienced by natural populations of N. diversicolor is through ingested 

sediments (Luoma & Bryan, 1982; Scaps, 2002; Wang, 2002).   

 

Levels of copper in N. diversicolor have a general trend of correspondence with 

levels found in sediment (Bryan & Gibbs, 1983). Much higher levels of copper 

have been found in the tissues of other polychaete species, including 1210 μg g
-1 

in Perinereis cultrifera at relatively uncontaminated site R22 and 2227 μg g
-1 

in 

Nephtys hombergii at intermediate site R6 / D (Bryan & Gibbs, 1983). Copper 

levels in N. diversicolor of 271 μg g
-1 

at R22 and 832 μg g
-1 

at R6 (Bryan & 

Gibbs, 1983) suggest that even non tolerant N. diversicolor have a higher capacity 

to prevent uptake or excrete copper compared with other species. 

 

Copper is immobilised in membrane bound vesicles in the epidermis in N. 

diversicolor (Bryan, 1976). This does not fully explain the tolerance mechanism 

though, because worms from other estuaries have been found with fairly high 

levels of stored copper but low tolerance in toxicity tests (Bryan, 1976). 

Experiments by Bryan & Gibbs (1983) to measure the uptake of Cu showed that 

uptake was proportional to concentration in non-tolerant worms but tolerant 

worms absorbed Cu most rapidly at low concentrations, indicating an additional 

binding or exchange mechanism. Total uptake by tolerant worms was also much 

lower at higher concentrations, showing reduced permeability or excretion.   

 

The gradient of tolerance found in the present study broadly coincides with levels 

of copper found in sediment and in N. diversicolor tissues in previous studies 

(Table 2.7). These studies found a gradient of tolerance from the head to the 

mouth of Restronguet Creek, with a general correlation between the level of 

copper in sediments, the level of copper accumulated in N. diversicolor tissues 

and tolerance. Grant et al. (1989), Hateley et al. (1989) and Briggs (2005) all 
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found that the median survival time in toxicity tests was highest for site R1 / K 

and decreased with decreasing concentration of copper in sediments towards the 

mouth of Restronguet Creek. The main exception was site R4, which was closest 

to the most heavily polluted Carnon River. Despite much higher levels of copper 

in sediment at R4, worms in the adjacent River Kennal at site R1 had higher tissue 

concentrations of copper and displayed far higher tolerance (Bryan & Gibbs, 

1983; Briggs, 2005; Table 2.7). This reflects the fact that bioavailability is an 

important factor in the toxicity of copper (Luoma, 1983). 

 

It is thought that the toxicity of copper to N. diversicolor increases with increasing 

temperature (Ozoh, 1992a, 1994) and so heat generated by the breakdown of 

organic matter could increase toxicity at sites with higher organic content. 

However, chelation by organic ions renders copper less toxic so, despite higher 

concentrations of Cu, the sediment at the organic rich, muddy site at Kennal may 

be less toxic than the sandy sediment with a low organic content at Hayle (Bryan, 

1976; Brown, 1977; Bryan & Gibbs, 1983). Compared to Restronguet, levels of 

copper in sediments at Hayle are lower but copper levels in N. diversicolor are 

relatively high (Bryan, 1976; Bryan & Gibbs, 1983; Table 2.7). 

 

The toxicity of copper to N. diversicolor increases with decreasing salinity (Bryan 

& Gibbs, 1983; Ozoh, 1992a, 1994). Bryan & Gibbs (1983) showed that median 

survival time in both tolerant and non-tolerant worms was correlated with salinity, 

with Copper having higher toxicity to N. diversicolor at lower salinities. This 

means that selection pressure is greater higher up the river at R1 / K with 

interstitial salinity of 10.3 than at site R6 / D with salinity of 26.2 (Briggs, 2005), 

despite higher concentrations of copper in sediments at site D. However, When 

Briggs (2005) exposed tolerant and non-tolerant worms to sediment from sites 

with a range of contamination, including R1 / K and R6 / D, at salinity 10 or 17.5, 

for 4 weeks, there was no clear pattern of effects. Surprisingly non-tolerant worms 

in 10 psu salinity actually had the highest survival rate in the most contaminated 

sediments. This suggests that the toxic effects of copper may be sublethal and that 

the distribution of tolerant worms is determined by a combination of factors. 
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As the metal contamination has a terrestrial source the most contaminated areas 

are closest to the head of the estuary. Gradients of contamination and tolerance 

therefore coincide with salinity gradients. Differential adaptation to low salinity in 

N. diversicolor has been proposed by Smith (1977), characterised by reproductive 

and developmental differences. However, the study by Grant et al. (1989) found a 

large difference in tolerance to copper between worms from clean and 

contaminated sites with comparable mean salinity. In the present study copper 

tolerant site R1 / K and non-tolerant site P were a similar distance up their 

respective rivers, with similar interstitial salinity (Briggs, 2005) while tolerant site 

H was much closer to the mouth of the Hayle estuary. This effectively rules out 

differential adaptation to salinity as a driver of genetic variation in this case. 

 

Parallel evolution of tolerance to similar limiting factors has been proposed for 

other species, such as the intertidal winkle Littorina saxatilis (reviewed in 

Johannesson et al., 2010). Limited dispersal means that similar tolerance 

mechanisms may have evolved separately in geographically distant populations of 

N. diversicolor subjected to the same selection pressure. It would be interesting to 

apply the same set of genetic markers to other metal tolerant populations, 

although it would be difficult to find a comparable study site with levels of copper 

as high as those found in Restronguet Creek.      

 

Metal tolerant N. diversicolor have been found in the heavily contaminated 

Pialassa lagoons on the Adriatic coast of Italy. However, Virgilio & Abbiati 

(2004a) and Virgilio et al. (2005) determined the 96h LD50 and 96h LD70 for 

copper to be 340 μg l
-1

 Cu and 480 μg l
-1

 Cu respectively. This is lower than the 

96h LD50 of 504 μg l
-1

 for non-tolerant worms according to Bryan (1976) and the 

used in the present study. Copper levels at Pialassa are only 11 to 280 μg g
-1

 dw 

(Virgilio & Abbiati, 2004a), comparable to the non-tolerant sites in Restronguet 

(Table 2.7). Virgilio et al. (2005) found no significant difference in time to death 

between 3 samples from Pialassa, a site 40 Km away on the Adriatic coast and a 

site 2500 Km away on the Tyrrhenian coast, exposed to 480 μg l
-1

 Cu in acute 

toxicity tests, which suggests that distinct phenotypes or genotypes found at 

Pialassa are attributable to other metals, such as mercury, in a cocktail of 

contaminants. Homogeneity of tolerance to other metals in Restronguet Creek 
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such as zinc (Bryan & Gibbs, 1983; Grant et al., 1989) means that genetic 

differences are more likely to be related to a specific copper tolerance mechanism.  

 

 Studies spanning 30 years have demonstrated temporal stability in levels of 

copper in sediments and the distribution of copper tolerance N. diversicolor over 

time has generally reflected this. However, Briggs (2005) used 216 hours as a 

threshold to define tolerance in chi-square analysis of toxicity tests in 500 μg l
-1 

Cu. Grant et al. (1989) found that no worms from tolerant site R1 / K died before 

600 hours, whereas Briggs found that ~15% of worms collected in 2001 from site 

R1 / K died before 216 hours and would therefore be considered non-tolerant. In 

the present study mortality before 216 hours was higher for R1 / K, with 32.5 % 

and 46 % mortality for samples K1 and K2. 216 hour mortality at mixed site R6 / 

D was also higher in the present study, at 55 % and 59.5 % for samples D1 and 

D2, compared with 33 – 55 % in Briggs (2005). Mortality for site TM / P was 

more rapid in the study by Briggs, with 70 % of worms dead by 72 hours, 

compared with a large increase in mortality up to 71 % between 96 and 120 hours 

in the present study (Figure 2.6). This suggests that the difference was not due to 

any consistent methodological discrepancy. In comparison with the results of 

Hateley et al. (1989) for site R13, Briggs (2005) found sediment concentrations of 

copper to be 20 % lower in 2001 and median time to death of 120 hours rather 

than 400 hours, possibly indicating a reduction in the range of tolerant worms. 

Higher mortality before 216 hours and lower median time to death for site R1 / K  

in the present study, compared to that for worms collected in 1989 by Grant et al. 

and 2001 by Briggs could indicate a reduction in tolerance at this site and possibly 

the presence of some non-tolerant worms. Alternatively there may be some level 

of mortality of tolerant worms in tests, due to factors other than copper toxicity, 

which was coincidently higher in the present study. 

  

Moderately high concentrations of copper in sediment and tissues but low 

tolerance in the Tamar estuary (Table 2.7) suggests that there may be an upper 

threshold of copper toxicity that non-tolerant populations can withstand. Worms 

considered to be non-tolerant are also found in relatively high levels of copper in 

Restronguet Creek, indicating that tolerant worms are confined to the most 

contaminated areas as they are outcompeted by non-tolerant worms in cleaner 



75 

 

areas due to a physiological cost of tolerance (Briggs, 2005). However, the results 

of the present study agree with other authors that there is a gradient of tolerance, 

rather than clearly defined tolerant and non-tolerant phenotypes. In the present 

study non-tolerant site C had a slightly higher level of tolerance than site P, 

coinciding with levels of copper in sediment, for example. Site D could have a 

mixture of tolerant and non-tolerant worms or a more homogeneous intermediate 

level of tolerance. The tolerance mechanism could have a range and possibly 

escalation of different components or a single, simple mechanism with varying 

levels of expression and effectiveness. Both cases could be characterised by 

genotypic differences as the latter would mean differential regulation. In addition, 

a gradient of tolerance could have an associated gradient of physiological costs, 

with an additional range of genotypes. A genotypic survey of worms from the 5 

study sites was therefore employed to elucidate the genetic basis of phenotypic 

responses to toxicity tests.    
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Chapter 3   Amplified Fragment Length Polymorphism Analysis 

 

 

3.1   Introduction 

 

The study of population genetics requires variable molecular markers to provide 

information about individual genotypes, allele frequencies in populations and 

phylogenetic relationships. Amplified Fragment Length Polymorphism analysis 

(AFLP) (Vos et al., 1995) has been used to address a range of questions in 

genetics with increasing popularity (reviewed in Mueller & Wolfenbarger, 1999; 

Bensch & Åkesson, 2005; Bonin et al., 2007; Meudt & Clarke, 2007). Bensch & 

Åkesson (2005) defined the main areas of molecular ecology research that AFLP 

analysis can be employed in as genetic diversity, population structure, 

identification of hybrids, parentage and kinship analysis, phylogenetic 

reconstruction and Quantitative Trait Loci (QTLs).  

 

 

3.1.1 Genetic markers 

 

 Different characteristics are desirable in genetic markers, depending on the aims 

of the study (reviewed in Sunnucks, 2000; Bensch & Åkesson, 2005; Meudt & 

Clarke, 2007). Markers can be proteins, genes or non-coding DNA, with different 

rates of evolutionary change, levels of linkage and susceptibility to selection. A 

single marker for a particular gene of interest may be required or multiple loci can 

be used to analyse genetic diversity. 

 

Markers are either codominant or dominant. Codominant markers can distinguish 

between diploid organisms that are homozygous or heterozygous by detecting 

both alleles, which allows direct determination of allele frequencies (Bonin et al., 

2007). It can be argued that haploid mitochondrial DNA sequencing products are 

codominant, because the markers have a range of positive states, as opposed to 

dominant markers, which are either present or absent (Sunnucks, 2000). Dominant 

markers cannot distinguish between homozygotes and heterozygotes because a 

band on a gel could represent a locus that is homozygous or heterozygous for the 
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band presence allele (Bonin et al., 2007). As a result the accuracy of statistical 

analysis of dominant markers is reduced compared to co-dominant markers (Lynch & 

Milligan, 1994; Sunnucks, 2000; Kosman & Leonard, 2005; Bonin et al., 2007). 

For dominant markers one pair of primers amplify a large number of different 

loci, while co-dominant marker primers amplify a single targeted product. A 

range of different markers can be produced using an increasing number of 

molecular biology methods: 

 

 

AFLP (Amplified Fragment Length Polymorphism Analysis) 

The AFLP technique was first developed by Zabeau & Vos (1993) and Vos et al. 

(1995). Initially it was mainly used by plant biologists (e.g. Ballvora et al., 1995; 

Thomas et al., 1995) but more recently has gained increasing popularity in studies 

of animal populations (Bensch & Akesson, 2005). AFLP analysis has been 

applied to both natural populations and breeding programs of commercially 

important aquatic species such as shellfish, to assess genetic diversity, trace 

species or area of origin and identify markers associated with advantageous traits 

or disease resistance, (e.g. Maldini et al., 2006; Sokolova et al., 2006). It has been 

employed in conservation genetics to study the causes and effects of population 

size, structure, phylogeography and gene flow (reviewed in Lucchini, 2003). It 

has also been applied in studies of evolutionary adaptation to ecological niches, 

including stress tolerance, to look for signatures of differentiation associated with 

speciation (Wilding et al., 2001; Kruse et al., 2003; Campbell & Bernatchez, 

2004).  

 

AFLP is a dominant marker system. Differences in restriction fragment lengths of 

homologous DNA sequences are caused by Single Nucleotide Polymorphisms 

(SNPs), base pair insertions or deletions (INDELs) or microsatellite repeat 

regions, which create or remove restriction enzyme recognition sites (Wong et al., 

2001; Lewin, 2004). In AFLP analysis genomic DNA is digested with restriction 

enzymes and the resulting DNA fragments are selectively amplified by PCR, 

using primer sequences corresponding to the restriction site and adapter sequences 

ligated to the cut ends of the fragment, plus selective bases. Polymorphisms are 
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detected either by polyacrylamide gel electrophoresis or automated sequencing of 

labelled fragments.   

 

RAPD (Random Amplified Polymorphic DNA)  

RAPD analysis was developed independently by 2 groups in 1990 (Welsh & 

McLelland 1990, Williams et al., 1990). DNA fragments produced by random 

PCR amplification of genomic DNA between 2 identical primer sites of arbitrary 

nucleotide sequence (Williams et al., 1990). Mutations in primer sites determine 

whether or not a fragment is produced and presence or absence of bands in gel 

electrophoresis are scored in the same way as AFLP. RAPDs are also dominant 

markers as it is not possible to distinguish between DNA fragments amplified 

from a locus that is heterozygous or homozygous for band presence. 

 

Isoenzymes 

Isoenzymes (Hunter & Merkert, 1957) were one of the first molecular markers to 

be discovered and have been widely used in population genetics. Isozymes are 

enzymes that catalyze the same chemical reaction but are coded for by genes 

located at different loci. Allozymes are variant forms of an enzyme with different 

alleles at the same locus. In Isoenzyme analysis protein is extracted from a sample 

and separated by gel electrophoresis. The isoenzymes move at different rates, due 

to amino acid substitutions with different charges, and bands are identified by a 

staining reaction. Allozyme markers are co-dominant in that both alleles are 

expressed in heterozygous individuals. Scoring depends on the quarternary 

structure of the enzyme: monomeric enzymes have 2 bands for the different 

alleles for heterozygotes but enzymes that form dimers can have 3 bands. Some 

enzymes have multiple isozymes. These factors vary across taxa so considerable 

expertise in scoring band patterns is required.  

 

Microsatellites  

Microsatellites, also called Simple Sequence Repeats (SSR), Short Tandem 

Repeats (STR) and Variable Number Tandem Repeats (VNTR), are tandem 

repeats of short DNA sequence motifs; typically 1 – 10 nucleotides repeated 5 – 

50 times (Lewin, 2004). The number of repeats and therefore the length of the 

microsatellite sequence varies between individuals. New microsatellite markers 
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are discovered using fluorescently labelled probes for common repeat sequences, 

which are then cloned, sequenced and primers are developed for the conserved 

flanking regions. Flanking regions are used as primer sites to PCR amplify 

microsatellites and polymorphisms are detected by gel electrophoresis. The 

markers are multiallelic, with different sequence lengths constituting different 

alleles, highly variable and codominant because they can distinguish between 

homozygotes with 1 band and heterozygotes with 2 bands. Most microsatellites 

are dinucleotide (Li et al., 2002), while microsatellites that occur in coding DNA 

are likely to be trinucleotide and hexanucletide because they do not cause a frame 

shift (Toth et al., 2000). Microsatellites have high mutation rates, tend to occur in 

non-coding DNA and are thought to be selectively neutral (Li et al., 2002).  

 

ISSR (Inter Simple Sequence Repeat)  

ISSR markers (Zietkiewicz et al., 1994) are variable genomic DNA sequences 

that occur between 2 known microsatellite loci, which can be used as primer sites. 

ISSRs are dominant markers Like AFLPs.  

 

RFLP (Restriction Fragment Length Polymorphisms) 

RFLP markers (Botstein et al., 1980) are differences in restriction fragment 

lengths of homologous DNA sequences. RFLP analysis involves digestion of 

genomic DNA by restriction enzymes and separation of fragments by gel 

electrophoresis, which are then transferred to a membrane by Southern blotting 

(Southern, 1975) and labelled hybridization probes are used to detect specific 

target sequences. The probes are initially developed by digesting DNA, excising 

and cloning fragments and screening for RFLPs, which are then sequenced. These 

markers are multiallelic, with different fragment lengths representing different 

alleles, and are codominant because they can distinguish between homozygotes 

and heterozygotes, which have 1 or 2 marker bands respectively. ASO (Allele 

Specific Oligonucleotide) probes offer a simplified version with a dot blot.  

 

CAPS (Cleaved Amplified Polymorphic Sequence)  

CAPS analysis (Konieczny & Ausubel, 1993) involves PCR amplification across 

a particular restriction site using locus specific primers, followed by restriction 

enzyme digestion and gel electrophoresis.  
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SNP (Single Nucleotide Polymorphisms)  

SNPs are single base pair variations in DNA sequence at a specific locus (Lewin, 

2004). SNPs can be insertions or deletions (indels), which shifts the translation 

frame, or substitutions. Due to degeneracy in the genetic code synonymous 

substitutions do not change the amino acid sequence of the protein, while 

nonsynonymous substitutions can cause a missense change in amino acid 

sequence or a nonsense stop codon. SNPs occur in coding and non-coding regions 

of genes and in intergenic regions.  

 

Sequencing  

Sequencing of single, orthologous, nuclear DNA (nDNA), mitochondrial DNA 

(mtDNA) or ribosomal RNA (rRNA) genes using specific or conserved primers is 

widely used in phylogeny and more recently as barcodes to identify and define 

molecular species. Gene sequences with greater variation between than within 

species are also used as barcodes in molecular taxonomy to identify and delimit 

species (Hebert et al., 2003). The rate of base substitution in the target gene 

should be fast enough to show difference between populations or taxa and yet 

slow enough to show evolutionary relationships. Mitochondrial DNA is haploid 

and therefore has a smaller effective population size and a faster rate of change 

than nuclear DNA (Lewin, 2004). 

 

 

3.1.2 Comparison of genetic markers 

 

A summary of the properties of commonly employed markers is given in Table 

3.1. There are some properties of genetic markers, such as low financial and time 

costs, ease of development and accuracy that are desirable in all markers but 

which may be traded in favour of characteristics appropriate to a particular type of 

study. 
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Single 

locus Codominant PCR 

N
o
 loci 

available  

N
o
 loci 

used Variation 

Species 

specific 

Interspecific 

comparisons Reproducibility Cost 

AFLP No No Yes Many Many High No No High Low 

RAPD No No Yes Many Many High No No Moderate Low 

Allozymes Yes Yes No Moderate Moderate Moderate No No Moderate Moderate 

Microsatellites Yes Yes Yes Many Moderate High Yes No Moderate Moderate 

RFLP Yes Yes No Few Few Moderate No Yes High High 

DNA Yes Yes Yes Few Single Low No Yes High Low 

mtDNA Yes N/A Yes Few Single Low No Yes High Low 

 

 

Table 3.1: Summary of the properties of common genetic markers: whether or not they are single or multiple loci, codominant, 

PCR based; the number of loci available and the number used in studies; level of genetic variation; whether they are species 

specific and appropriateness of interspecific comparison; reproducibility and cost  
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The choice of genetic marker is constrained by the technical difficulty and the 

associated financial and time demands involved in identifying, developing and 

using them (Table 3.1). Single Nucleotide Polymorphism (SNP) based markers 

involve relatively high cost and technical difficulty and require prior sequence 

information, so are not widely used for non-model organisms (Morin et al., 2004). 

Isoenzymes are one of the cheapest and easiest molecular markers to develop. 

Compared to RFLP microsatellites offer a relatively inexpensive method of 

producing multiple locus specific markers but developing species specific 

microsatellite primers is time consuming and can be technically difficult. Once 

microsatellite markers have been developed a large number of related ISSR 

markers can then be generated for low cost and effort. While the cost per assay 

may be cheaper for microsatellites than for AFLP the initial development costs 

make the total outlay much higher. 

 

All of the co-dominant methods require prior sequence information for particular 

sequences and primer sites of interest, which is generally not available for non-

model organisms and involves development time and costs. The main advantage 

of random amplification RAPD and AFLP techniques is that they do not require 

any sequence information for the target organism and only require a preliminary 

survey to select available primer combinations (Mueller & Wolfenbarger, 1999; 

Bensch & Åkesson, 2005; Meudt & Clarke, 2007). 

 

Polymerase Chain Reaction (PCR) based techniques have largely superseded 

processes such as RFLP. PCR (Mullis, 1983) is a technique used to replicate DNA 

to produce many copies of a DNA sequence from a small sample. It is a fast and 

relatively simple alternative to cloning to produce the large quantities of DNA 

required by many molecular marker methods. A DNA polymerase enzyme is used 

to synthesise DNA complementary to a template sequence. Nucleotides are added 

to the 3'-OH group of a primer, which allows amplification of a specific region of 

template DNA denoted by the primer sequence. PCR based methods of DNA 

amplification are better than allozymes and RFLP because they can be applied to 

relatively degraded samples, only require very small quantities of DNA, and yet 

can be used to selectively amplify specific regions of DNA. Schirmacher et al. 
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(1998) recommended RAPD for very small animals in preference to allozyme 

electrophoresis, which requires a large sample of protein. 

 

The ability to analyse a low quality sample is an advantage. DNA based 

approaches are preferable to allozymes because DNA is more stable than 

enzymes, which allows extraction from old material and makes sample 

preparation, preservation and storage easier (Schirmacher et al., 1998; Sunnucks, 

2000). As degradation causes DNA sequence to break, the chance of successfully 

amplifying a fragment is proportional to its length (Frantzen et al., 1998). Because 

AFLP amplifies shorter fragments than sequenced loci it is less succeptible to 

DNA degradation. However, the quality and concentration of template DNA and 

other reagents and the amplification cycling conditions do influence the outcome 

of PCR based methods. Longer primers used in sequencing mean greater accuracy 

and reproducibility.  

 

Primers that are transferable between taxa have greater overall utility and cost 

effectiveness. Microsatellite markers are mostly species specific: motifs, mutation 

rate, abundance and distribution in exons, introns and intergenic regions varies 

widely between species (Tóth et al., 2000). Cruz et al. (2005) found large 

differences in microsatellite density between closely related bivalve species, 

although Slate et al. (1998) found some bovine microsatellite loci conserved in 

deer and sheep. The disadvantage of species specific microsatellites is that new 

markers must be found and developed for each organism. This also means that 

they are of questionable use for delimiting species. AFLP and RAPD primers 

amplify DNA from any organism. However, this means that contamination by 

non-target organisms such as parasites, symbionts or bacteria is possible, which 

does not happen with species specific microsatellite markers. Because band 

homoplasy increases dramatically with increasing taxonomic level (Mechanda et 

al., 2004) dominant markers are not comparable between taxa in the same way as 

specific markers with known homology. Data generated from specific sequences 

that are homologous between taxa are directly comparable and allow meta-

analysis. 

 



84 

 

It is important for results to be easily interpretable and reproducible. Isoenzymes 

can have slightly different functions or patterns of gene expression in different 

tissues or developmental stages, which necessitates careful sample selection or 

comparison of multiple samples within a population. In PCR mismatches between 

the primer and the template or short fragments of degraded DNA can result in 

either false positive bands or a reduced amount or a lack of PCR product, giving 

false negative faint or absent bands. AFLP is generally claimed to have better 

reproducibility than RAPD (Jones et al., 1997; Mueller & Wolfenberger, 1999; 

Nybom, 2004). The RAPD technique is reported to be more susceptible to 

laboratory dependent variation caused by different methods than AFLP and the 

results can be more difficult to interpret so it needs carefully developed laboratory 

protocols to be reproducible (Pérez et al., 1998). As AFLP is usually claimed to 

be highly reproducible between runs an agreed system of recording data would 

allow results to be compared between different studies of the same species (Meudt 

& Clarke, 2007).    

 

The most important factor affecting the choice of marker system is the level of 

genetic diversity and divergence required to answer the question being studied 

(Bensch & Åkesson, 2005; Bonin et al., 2007; Meudt & Clarke, 2007). The rate of 

change varies between markers due to differential effects of recombination, 

mutation or selection. Markers with a higher rate of evolution will have greater 

variation and a hierarchy of rate of change and sequence diversity determines the 

usefulness of different markers in different areas of molecular biology. DNA that 

codes for proteins is much less variable than intergenic DNA and introns simply 

due to selection pressure to produce a functional protein (Lewin, 2004). In general 

protein coding regions have much lower heterozygosity per nucleotide than the 

intergenic sequence that makes up a high proportion of DNA. Mean 

heterozygosity detected by protein electrophoresis has ranged from 0.041 for 

mammals to 0.148 for molluscs (Nevo et al., 1984). This means that methods such 

as RAPD and AFLP that sample DNA as a whole should find higher 

heterozygosity than allozymes.  

 

Genetic markers used to infer population characteristics must have sufficient 

variation to detect intraspecific diversity and differentiation. Microsatellites have 
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high mutation rates and therefore high sequence diversity, which makes them 

appropriate for studying genetic diversity or similarity between individuals (Li et 

al., 2002). Microsatellites are considered to be the most rigorous marker for 

parentage analysis (Sunnucks, 2000; Bensch & Åkesson, 2005). In a paternity 

study Gerber et al. (2000) found that 6 microsatellite loci performed better than 

159 AFLP loci. High variability in microsatellites also allows analysis of 

intraspecific diversity and differentiation over short timescales and small spatial 

scales (Schlötterer, 2000). For populations with very low heterozygosity, that 

have undergone a recent bottleneck for example, markers with a high mutation 

rate such as microsatellites will be more informative than lower mutation rate 

markers such as allozymes or RFLP.  

 

Interspecific genetic distances should be higher for RAPD and AFLP data than for 

allozyme data (Van De Zande & Bijlsma, 1995), although Schirmacher et al. 

(1998) found almost identical distances between 3 oligochaete species for RAPD 

compared to previous allozyme studies. Less diverse ISSRs are better suited to 

phylogeography or interspecific differentiation. ISSRs are generally less variable 

than microsatellites but more variable than coding DNA markers, which are used 

for deep phylogeny. A study of phylogenetic trees based on simulated AFLP data 

with different levels of divergence by García-Pereira et al. (2010) confirmed that 

the high variability of AFLP markers means that they are not suitable for 

reconstructing evolutionary relationships over large timescales. Single, relatively 

conserved sequenced loci are generally used for phylogenetic analysis. 

Mitochondrial DNA (mtDNA) has a higher nucleotide substitution rate than most 

nuclear DNA, which means that comparison of nDNA and mtDNA markers can 

be used to identify hybrids. mtDNA is more suitable for studying genetic 

divergence in closely related species or between populations of the same species 

(Nei & Li, 1979). However, Cytochrome C Oxidase I (COI), with the slowest rate 

of change of the 13 mitochondrial genes, is often used in interspecific studies. 

Breton et al. (2003) found no intraspecific sequence variation in cytochrome c 

oxidase I (COI) but quite high variation in cytochrome b (cyt b) for Nereis virens 

and Nereis diversicolor.  
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Molecular markers used to infer population structure due to drift or migration 

should be selectively neutral. Mutations in coding DNA that produce the different 

alleles of allozymes may be advantageous but are often selectively neutral at the 

phenotypic level. Microsatellites tend to occur in non-coding DNA (Li et al., 

2002) and are generally likely to be selectively neutral. In a study of the 

abundance and distribution of microsatellites in the genomes of 326 bivalve 

mollusc species Cruz et al. (2005) found they were more common in introns (245 

loci/Mb) than in exons (85 loci/Mb). Occasionally microsatellites have a 

functional role and so can be subject to selection but this is rare (Li et al., 2002), 

although they may behave like non-neutral markers if they are linked to a gene 

under selection. Microsatellites are therefore considered more appropriate than 

AFLP for studies of effective population size and migration (Luikart & England, 

1999). However, both Microsatellite and AFLP loci can be surveyed for the 

effects of selection using statistical tests and any non-neutral loci excluded from 

the analysis if required. 

 

 As this study was interested in detecting loci under selection the AFLP marker 

system was chosen. Most SNPs occur in non coding sequence and so have no 

effect on phenotype and can not be subject to selection (Lewin, 2004). AFLP and 

RAPD analyses detect SNP and microsatellite differences, which mostly occur in 

selectively neutral non-coding DNA, but the high number of loci surveyed with 

these methods increases the chances of detecting coding DNA, or markers linked 

to it, that is subject to selection (Wong et al., 2001; Mariette et al., 2002; Meudt & 

Clarke, 2007). Using a large number of loci in AFLP also allows statistical 

identification of outlier loci that are likely to be subject to selection (Beaumont & 

Nichols, 1996).  

 

The amount of variability in the data depends on both the variation per marker and 

the number of markers obtained. The number of viable markers is determined by 

the number of suitable loci available in the genome, of which there are many 

microsatellites, a moderate number of allozymes and few specific loci suitable for 

sequencing (Table 3.1). Using a single sequence to estimate diversity has a very 

high rate of sampling error. Studies using many loci have a higher information 

content, with statistical power proportional to the number of loci (Bonin et al., 
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2007). However, compared with using multi-allelic, co-dominant microsatellite 

markers, AFLP and RAPD analyses have a lower information content due to 

dominance (Lynch & Milligan, 1994). This can be overcome to some extent by 

using more AFLP loci to increase the statistical power of genetic diversity and 

differentiation studies. Lynch & Milligan (1994) suggested sampling 2 to 10 times 

more individuals with dominant markers in order to achieve the same statistical 

power as with co-dominant markers and a simulation study by Mariette et al. 

(2002) found that 4 to 10 times more AFLP markers than microsatellite markers 

were required to accurately estimate genomic and interpopulation diversity.  

 

In their comparison of methods applied to common research questions in 

molecular ecology Bensch & Åkesson (2005) somewhat subjectively considered 

AFLP more useful than allozymes, microsatellites, sequencing and SNPs for 

studies of genetic diversity, population structure, Quantitative Trait Loci (QTLs), 

identification of hybrids, and shallow phylogenetic reconstruction. AFLPs were 

only considered to be outperformed by microsatellites for parentage analyses and 

sequencing of specific loci for deep phylogeny. As this study was primarily 

interested in the effects of adaptive tolerance on genetic diversity, population 

structure and loci under selection the AFLP marker system was considered a good 

choice. 
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3.2   Methods 

 

3.2.1   General methods 

 

All glass, plastic and other items described as clean were washed in Decon 90, 

rinsed twice in distilled water and autoclaved if possible. All pipette tips and 

microcentrifuge tubes were autoclaved and stored in sealed boxes.  

 

Buffers and reagents were made with sterile distilled water (sdH2O) and 

autoclaved if possible. Buffer recipes are given in Appendix 1.  

 

Tissue samples were stored in microcentrifuge tubes in a -80 °C freezer.  All 

DNA solution, enzymes, oligonucleotides, and reagents such as formamide 

loading dye were stored in a -20 °C freezer. Other reagents were stored according 

to the manufacturer’s instructions.  

 

Microcentrifuge tubes were kept on ice throughout the AFLP procedure.  

 

Local and national safety regulations and procedures regarding the storage, use 

and documentation of hazardous chemicals and radioactive substances were 

adhered to. 

 

 

3.2.2   DNA extraction 

 

DNA extraction protocols using Trizol reagent or a CTAB method failed to 

produce DNA of sufficient quantity or quality for AFLP analysis. Successful 

DNA extraction was performed using a QIAGEN DNeasy Tissue kit.  

 

Worms were removed from sand by sieving and all female worms extracted were 

used, to avoid biased selection of individuals within a sample. They were kept in 

plastic boxes in 17 psu ASW for at least 1 hour prior to DNA extraction, which 

allowed sand to be expelled from the gut. Individuals were blotted dry on paper, 

placed in a clean petri dish and tissue was cut from the middle section using clean 
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scissors. Frozen samples that had been stored at -80°C were allowed to defrost but 

were kept on ice while tissue was cut.  

 

For each sample ~ 20 mg of tissue was placed in a 1.5 ml microcentrifuge tube 

and 180 µl lysis buffer, plus 20 µl proteinase K were added immediately. Samples 

were incubated in an oven at 55°C over night and vortexed occasionally. 

Following tissue lysis 4 µl of 100 mg ml
-1

 RNase A was added and incubated at 

room temperature for 2 minutes to remove RNA, which can inhibit downstream 

enzymatic reactions. Samples were then vortexed for 15 seconds, 200 μl buffer 

AL was added and mixed by vortexing, and incubated at 70°C for 10 minutes. 200 

μl 100% ethanol was added to each sample and mixed thoroughly by vortexing. 

The lysate mixture was loaded into DNA binding spin columns and 2 wash steps 

were carried out according to the manufacturer’s instructions. Elution was 

performed with 2 x 100 μl of TE elution buffer (10 mM Tris-cl; 0.5 mM EDTA, 

pH 9) supplied with the kit.   

 

DNA concentration and quality and removal of RNA was checked by 

electrophoresis on 1% agarose gels stained with 0.5 μg ml
-1

 ethidium bromide in 

0.5x TBE buffer or with a Nanodrop spectrophotometer. DNA concentration from 

the frozen samples was only ~ 5 – 50 ng μl
-1

 compared with ~ 80 ng μl
-1 

from 

fresh samples, so bulked DNA samples were concentrated using sodium acetate 

and ethanol.  

 

 

3.2.3   AFLP  

 

AFLP involved digestion of genomic DNA with restriction enzymes, ligation of 

adapter sequences to the cut ends of the DNA fragments, followed by selective 

PCR amplification using radioactively labelled primer sequences complementary 

to the adapter sequence and restriction site, plus selective bases. Polymorphisms 

in restriction fragment length were detected by polyacrylamide gel electrophoresis 

and visualised by autoradiography.  
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3.2.3.1   Restriction enzyme digestion  

 

Genomic DNA was digested using 2 different restriction enzymes: MseI, a 

frequent cutter with a 4 base recognition site and PstI, a rare cutter with a 6 base 

recognition site: 

 

Recognition and restriction sites  

 

MseI  

 

T↓TAA 

 

T | T A  A  

A  A T | T 

 

PstI  

 

CTGCA↓G 

 

C   T G C A | G  

G | A C G T   C 

 

PstI was chosen because it is sensitive to cytosine methylation: it is more likely to 

cut non-methylated, euchromatic DNA than methylated, heterochromatic DNA, 

which creates a bias towards coding sequences (Young et al., 1999). 

 

For each sample 10 µl 5x restriction-ligation buffer, 36 µl DNA solution, 2 µl 25 

U PstI restriction enzyme, 2 µl 10 U MseI restriction enzyme (50 µl total reaction 

volume) were added to a 1.5 ml microcentrifuge tube and incubated in an oven at 

37°C for 2 hours. 

 

Initially the volume of DNA solution used for each sample was varied to equalise 

the concentration of DNA e.g. for DNA bands visualised on an agarose gel, 25 µl 

DNA solution and 11 µl sdH2O were used for stronger bands but for weaker bands 

a full 36 µl of DNA solution was used. However, this was found to make no 

difference to the results, probably due to the effects of PCR amplification, so 

subsequently 36 µl of DNA solution was used for all samples.       
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3.2.3.2   Adapter ligation 

 

Adapters 

 

MseI  

 

5’  GACGATGAGTCCTGAG        3’ 

3’              TACTCAGGACTCAT  5’ 

 

PstI 

 

5’  CTCGTAGACTGCGTACATGCA  3’ 

3’          CATCTGACGCATGT              5’ 

 

Adapters were ordered as complimentary single strand oligonucleotides. To make 

the adapter solution forward and reverse oligonucleotides were added to a 1.5 ml 

tube, using 2.5 µl of each and 95 µl sdH2O for 5 µM PstI adapter and 25 µl of 

each and 50 µl sdH2O for 50 µM MseI adapter. The strands were annealed by 

heating at 95°C for 5 minutes to denature and cooling slowly in a plastic block to 

renature. 

 

For the AFLP reaction an adapter ligation master mix was made for the number of 

samples +1, with a 10 µl total reaction volume for each sample, containing 2 µl 5 

x restriction-ligation buffer, 1 µl 5 µM PstI adapter, 1 µl 50 µM MseI adapter, 

1.2µl 10 mM ATP and 5 µl 5U T4 DNA ligase added just before use. DNA ligase 

requires ATP to re-form phosphodiester bonds. 10 µl adapter ligation master mix 

was added to each restriction ligation sample and the tubes were incubated at 

37°C for 3 hours. 

  

 

3.2.3.3   PstI primer labelling 

 

PstI Primer 

 

5'  GACTGCGTACATGCAG + NN  3' 

 

Primers for the rare cutter PstI restriction site were labelled, rather than the MseI 

primers, to avoid too many bands being visualised. PstI primers, with 2 selective 

base, were labelled with a γ
33

P radionucleotide.  
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A PstI primer labelling master mix was used. For 48 x 10 µl AFLP reactions 

enough labelled primer was made for 60 samples (20 µl total reaction volume), 

with 8 µl sdH2O, 4 µl 5x T4 polynucleotide kinase exchange buffer (supplied with 

PNK), 1 µl 10 U T4 polynucleotide kinase (PNK), 3 µl 200 µM PstI primer (final 

concentration 300 ng µl
-1

), 4 µl γ[
33

P]-ATP (= 40 µCi). The tube was incubated in 

a water bath at 37°C for 1 hour.  

 

 

3.2.3.4   MseI primers 

 

MseI Primer 

 

5’  GATGAGTCCTGAGTAA + NNN  3’ 

 

MseI primers, with 3 selective bases, were supplied as 100 µM stock and made up 

as 20 µM using 100 µl stock and 400 µl sdH2O. 

 

  

3.2.3.5   AFLP reaction 

 

An AFLP reaction master mix was made for 60 x 7 µl (420 µl total volume), with 

328 µl sdH2O, 60 µl 10 x PCR buffer, 6 µl 20mM dNTPs, 20 µl γ[
33

P] labelled 

PstI primer and 6 µl Amplitaq DNA polymerase (5 U µl
-1

) added just before use.  

 

For each sample 1 µl restricted – ligated template DNA solution, 2 µl of 

appropriate MseI primer and 7 µl AFLP master mix were added to a thermo strip 

PCR tube (10 µl total reaction volume).    

 

Touchdown PCR amplification was used to avoid mismatch amplification of 

nonspecific products. Annealing at higher temperatures at the start ensures that 

only strictly complimentary sequence is amplified because it prevents mismatches 

from forming stable duplexes. The temperature can then be reduced for later 

cycles when the correct product is more abundant. PCR cycling conditions were 

11 cycles of denaturing at 94°C for 30 seconds; annealing at 65°C for 30 seconds, 

decreasing by 0.7°C every cycle; extension at 72°C for 60 seconds; followed by 
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22 cycles of denaturing at 94°C for 30 seconds; annealing at 56°C for 30 seconds; 

extension at 72°C for 60 seconds.     

 

A single amplification step was used, rather than pre-selective amplification with 

1 selective base followed by selective amplification with up to 4 bases as used in 

Vos et al. (1995) and most other AFLP studies, because a primer + 3 bases alone 

gave a useful number of bands. 

 

 

3.2.4   Polyacrylamide gel electrophoresis 

 

Denaturing polyacrylamide gel electrophoresis was used to separate the DNA 

fragments.   

 

 

3.2.4.1   Equipment 

 

 0.4 mm gels were run on a Bio-Rad Sequi-Gen GT 38 x 50 cm vertical slab gel 

electrophoresis unit.  

 

Glass plates, spacers and combs were cleaned thoroughly with hot water and 

swabbed with 70% ethanol before use. Around every 5 runs the front glass plate 

only was wiped with Sigmacote silicon solution and then swabbed with 70% 

ethanol, to prevent air bubbles forming when the gel was poured and to ensure 

that the gel stuck to the back plate and the front plate could be removed.  

 

 

3.2.4.2   Gel casting  

 

2 gel solutions of 100 ml and 50 ml were prepared in glass beakers. The 100 ml 

solution contained 50 g urea, 10 ml 10x TBE, 11.25 ml  40% acrylamide stock  

(4.5% acrylamide), sdH2O  up to 100 ml and these amounts were halved for the 

50 ml solution. Gel solutions were heated on low heat and mixed with a magnetic 

stirrer until the urea had dissolved. Oxygen inhibits polymerisation of acrylamide, 
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so gel solutions were stirred slowly and gently to avoid air bubbles. 80 µl TEMED 

and 800 µl 10% APS were added to each solution just before use to polymerise 

the gel. The 50 ml solution used for the plug at the bottom of the gel had a higher 

concentration of TEMED & APS so that it polymerised more quickly. The gel 

injection part of the aparatus was missing (and reportedly ineffective) so the 100 

ml gel solution was poured between the plates and any air bubbles removed with 

an improvised thin plastic hook. The shark tooth comb was inserted with the flat 

edge facing down, to form a flat surface at the top of the gel and the gel was left to 

set for 1 hour. 

 

 

3.2.4.3   Gel running 

 

2 Litres of 1 x TBE running buffer was made from 10 x TBE stock, with 200 ml 

TBE, 1800 ml dH2O. 500 ml running buffer was poured into the base of the 

electrophoresis unit, the remaining 1.5 l was poured into the top reservoir, up to 1 

cm below the top of the unit, and the comb was gently removed. The gel was pre 

run at 100 W constant power for 15 minutes to warm it up.  

 

10 µl of formamide loading dye was added to each sample and the PCR tubes 

were heated to 94°C for 2 minutes in a PCR thermocycler, to denature the DNA, 

and then immediately put on ice. Heating, formamide in the loading dye and urea 

in the gel all denature double stranded DNA fragments into single strands with 

lower molecular weight, which allows higher resolution to 1 nucleotide.   

 

The gel was prepared for loading by washing the buffer over the top of the gel 

with a plastic syringe, to remove excess urea, and then inserting the shark tooth 

comb. A Gilson duck billed (flattened) pipette tip was used to quickly load 

samples into the comb wells. Each gel had 48 lanes. The gel was run at 100 W 

constant power for around 1 hour 45 minutes.   

 

The gel was then transferred to Whatman blotting paper, covered with cling film 

and dried on a gel dryer connected to a vacuum pump.  
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3.2.4.4   Autoradiography 

  

In a dark room the dried gel was placed in a light tight cassette box with a 35 x 43 

cm sheet of Kodak Biomax MR scientific imaging film. After 3 days the 

autoradiogram film was developed in an Xograph developing machine.  

 

  

3.2.5   Population genetics survey 

 

AFLP was used to carry out a genomic survey of 30 randomly selected individual 

worms from each of the 5 study sites. Bulked samples of DNA from all 30 

individuals were also analysed to look for segregating loci and for comparison 

with bulk segregant analysis samples for site D. Only female worms were used to 

avoid the possibility of sex linked differences. 3 primer pair combinations were 

used. From an initial survey of 1 PstI primer paired with 25 different MseI 

primers, 3 MseI primers were chosen based on quantity, clarity and 

reproducibility of bands and polymorphisms. In addition GC triple bonds are 

harder to break and have more specific annealing properties than double AT 

bonds, and thus anneal more precisely, so primers with G and C selective bases 

are preferred.  

 

Primer Sequence 

PstI GACTGCGTACATGCAG + CC 

MseI 42 GATGAGTCCTGAGTAA + AGT 

MseI 69 GATGAGTCCTGAGTAA + GCG 

MseI 71 GATGAGTCCTGAGTAA + GGA 

 

Table 3.2: Primers used in population genetics AFLP analysis  

 

The sampling design was robust to bias due to differences between runs because 

samples from different sites were run on each gel. A small number of replicates 

demonstrated 100 % reproducibility of bands between AFLP runs.    
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3.2.6   Bulk segregant analysis 

 

Bulk segregant AFLP analysis (Michelmore et al., 1991; Thomas et al., 1995) was 

used to look for loci that segregated between tolerant and non-tolerant worms. 

Assuming mixed tolerance to copper among worms at Devoran (site D / R6) 

allowed a single site to be used, which avoided genetic variation due to 

geographic distance. Individual tolerance was determined according to the results 

of toxicity tests (Chapter 2) and worms were selected from the 2 extremes of 

tolerance. To test reproducibility and temporal consistency of genetic structure 2 

replicate experiments were conducted, with samples D1 and D2 collected on 2 

separate occasions in February and November 2008 and subjected to separate 

toxicity tests.  

 

For each replicate sample individual DNA extractions were performed for 20 

tolerant and 20 non-tolerant female worms, from frozen tissue that had been 

stored at -80°C. Due to low DNA concentration and purity measured using a 

spectrophotometer only 16 tolerant and 18 non-tolerant DNA samples were used 

in 1 of the replicates. To bulk the DNA samples a 100 µl restriction enzyme 

digestion was done with 20 µl restriction-ligation buffer, 4 µl PstI, 4 µl MseI and 

4 µl of each of the 18 non-tolerant samples or 4.5 µl  of each of the 16 tolerant 

samples = 72 µl. In the second replicate between 2.5 µl and 4.5 µl of each of the 

20 individual DNA samples was used to make up 72 µl of DNA solution in a 100 

µl restriction enzyme digestion, to adjust for differences in DNA concentration. 

AFLP was then carried out as previously described with reagent volumes 

adjusted.  

 

128 primer combinations of 64 MseI primers and 2 PstI primers were tested on the 

4 bulked samples, including the 3 primer pairs used in the population structure 

analysis. 
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3.3   Results 

 

A graphical representation of the AFLP bands produced, assessment of the 

performance of the primer combinations used and a brief overview of simple 

differences in band frequencies between sites are presented here. A range of 

statistical techniques and software packages that are available for analysis of 

AFLP data are surveyed in the next chapter. 

 

 

3.3.1   Data analysis 

 

Contingency tables were used to explore relationships between nominal data 

categories such as sampling site, primer combination and AFLP band 

polymorphism presence / absence, with chi-square tests to show significant 

divergence from homogeneity and independence. Post hoc standardised residuals 

tests, based on the difference between observed and expected frequencies 

converted to Z-scores were performed, with a Bonferroni correction for multiple 

pairwise comparisons, to determine the source of any difference.  

 

ANOVA was used to test for a significant difference in band presence frequency 

between the 5 sites, with an a posteriori Tukey test to show the source of the 

difference. Band presence frequency data for individuals from the 5 sites was 

tested for normality and homogeneity of variances. One set of data for site C was 

not normally distributed at the 0.05 level using a Kolmogorov-Smirnov test (p = 

0.002) but the data showed no significant departures from a normal distribution 

according to a Shapiro-Wilk test (p > 0.05), with the discrepancy probably 

attributable to a high number of individuals with the same frequencies in C. 

However, as ANOVA is a robust test (Underwood, 1997), and there was no 

significant difference in variances (Levene’s test, p > 0.05), ANOVA was 

considered appropriate (Fowler et al., 1998).   

 

Simple Numerical difference was used to measure distinctions between tolerant 

(H/K) and non-tolerant (C/P) groups rather than ratios as it avoids division by 

zero and takes into account the level of presence, ignoring bands such as M71 
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band 23 that had a ratio of 4:1 between H/K and C/P but had a low number of 

band occurrences across all sites. 

 

 

3.3.2   Population genetics survey 

 

To assess the extent of genetic variation and differentiation within and between 

sites in relation to areas of high or low copper contamination AFLP was used to 

carry out a genomic survey of 30 randomly selected individual worms from each 

of the 5 study sites: 

 

H Hayle tolerant 30 randomly selected individuals 

K Kennal tolerant 30 randomly selected individuals 

D Devoran mixed 30 randomly selected individuals 

C St Clements non-tolerant 30 randomly selected individuals 

P Percuil non-tolerant 30 randomly selected individuals 

 

Table 3.3: AFLP sample name, study site, predicted tolerance and number of 

individuals 

 

 

Tables 3.4 – 3.6:  Polymorphic bands from 3 primer combinations 

 

The following tables are a graphical representation of the AFLP bands. The left 

hand tables are band presence counts for 30 randomly selected individuals from 

each of the 5 sites, for the polymorphic bands produced by each of the 3 primer 

combinations. Shading graphically represents the number of bands and does not 

indicate band intensity. 

 

The right hand tables show band presence / absence for bulked samples from the 

same 30 individuals from each of the 5 sites, for polymorphic bands produced by 

each of the 3 primer combinations. Shading indicates relative band intensity 

within bands and between bands subjectively classified as darker and lighter 

bands. 
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Table 3.4: PstI 1 / MseI M42   

 

Band H K D C P 

 
Band H K D C P 

8 0 1 0 0 0 

 

8 0 0 0 0 0 

9 0 0 5 1 3 

 

9 0 0 0 0 0 

10 30 24 26 29 29 

 

10 1 1 1 1 1 

11 30 28 30 30 30 

 

11 1 1 1 1 1 

12 30 30 29 30 30 

 

12 1 1 1 1 1 

13 30 30 13 10 0 

 

13 1 1 1 1 0 

14 30 29 30 29 30 

 

14 1 1 1 1 1 

17 28 30 30 29 29 

 

17 1 1 1 1 1 

19 0 4 4 4 1 

 

19 0 0 0 0 0 

25 0 0 4 4 29 

 

25 0 0 0 0 1 

26 0 0 0 1 0 

 

26 0 0 0 0 0 

27 2 2 1 2 0 

 

27 0 0 0 0 0 

28 0 0 5 22 5 

 

28 0 0 0 1 0 

30 1 6 13 2 0 

 

30 0 0 1 0 0 

31 29 29 21 8 1 

 

31 1 1 1 0 0 

33 0 0 0 19 25 

 

33 0 0 0 1 1 

34 30 30 30 7 5 

 

34 1 1 1 0 0 

35 0 1 12 22 25 

 

35 0 0 1 1 1 

36 30 30 30 29 29 

 

36 1 1 1 1 1 

37 6 14 10 18 9 

 

37 1 1 1 1 1 

39 0 0 1 6 0 

 

39 0 0 0 0 0 

40 30 30 30 29 29 

 

40 1 1 1 1 1 

41 0 0 3 8 0 

 

41 0 0 0 0 0 

42 30 30 28 30 30 

 

42 1 1 1 1 1 

44 23 24 30 29 30 

 

44 1 1 1 1 1 

46 0 2 1 4 1 

 

46 0 0 0 0 0 

49 0 0 0 1 0 

 

49 0 0 0 0 0 

50 11 4 23 27 30 

 

50 1 1 1 1 1 

51 2 2 1 10 4 

 

51 1 1 1 1 1 

52 22 14 17 6 0 

 

52 1 1 1 0 0 

57 30 30 19 6 5 

 

57 1 1 1 1 1 

58 0 1 0 0 0 

 

58 0 0 0 0 0 

59 7 6 0 0 0 

 

59 0 0 0 0 0 

62 30 25 14 13 4 

 

62 1 1 1 1 1 

63 0 0 5 17 14 

 

63 0 0 0 1 1 

65 20 22 26 23 25 

 

65 1 1 1 1 1 

67 0 10 6 0 0 

 

67 0 1 1 0 0 

70 27 27 27 28 14 

 

70 1 1 1 1 1 

78 30 30 30 6 4 

 

78 1 1 1 1 0 

79 0 0 8 24 29 

 

79 0 0 1 1 1 

87 27 30 30 23 14 

 

87 1 1 1 1 1 

89 30 30 27 23 30 

 

89 1 1 1 1 1 

90 30 30 22 20 21 

 

90 1 1 1 1 1 

91 0 0 10 24 29 

 

91 0 0 1 1 1 

95 1 1 3 3 0 

 

95 0 0 0 0 0 
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Table 3.5: PstI 1 / MseI M69   

 

Band H K D C P 
 

Band H K D C P 

1 0 0 7 24 30 
 

1 0 0 1 1 1 

2 0 0 0 24 30 
 

2 0 0 0 1 1 

4 5 9 5 16 11 
 

4 0 0 0 0 0 

5 12 9 10 13 19 
 

5 0 0 0 0 0 

6 0 0 0 1 0 
 

6 0 0 0 0 0 

7 0 0 5 24 24 
 

7 0 0 0 1 1 

8 30 30 26 6 4 
 

8 1 1 1 0 0 

10 0 0 0 2 0 
 

10 0 0 0 0 0 

12 30 30 30 30 27 
 

12 1 1 1 1 1 

13 0 0 1 0 0 
 

13 0 0 0 0 0 

14 30 30 25 6 8 
 

14 1 1 1 1 1 

15 30 30 29 30 30 
 

15 1 1 1 1 1 

19 27 19 20 25 29 
 

19 1 1 1 1 1 

21 0 0 0 0 2 
 

21 0 0 0 0 0 

22 13 28 16 6 4 
 

22 1 1 1 0 0 

23 10 7 12 19 21 
 

23 1 1 1 1 1 

31 30 30 30 25 18 
 

31 1 1 1 1 1 

32 30 30 22 1 2 
 

32 1 1 1 0 0 

34 3 0 1 1 0 
 

34 0 0 0 0 0 

38 30 30 30 7 1 
 

38 1 1 1 1 0 

39 29 28 30 30 30 
 

39 1 1 1 1 1 

41 30 30 30 29 30 
 

41 1 1 1 1 1 

42 1 0 1 0 0 
 

42 0 0 0 0 0 

50 0 3 1 2 0 
 

50 0 0 0 0 0 

51 30 30 30 27 30 
 

51 1 1 1 1 1 

54 30 30 28 16 30 
 

54 1 1 1 1 1 

55 30 30 30 21 30 
 

55 1 1 1 1 1 

57 0 0 10 24 30 
 

57 0 0 0 1 1 

58 30 30 26 6 0 
 

58 1 1 1 1 0 

59 9 13 22 28 28 
 

59 0 0 1 1 1 

60 0 0 0 1 0 
 

60 0 0 0 0 0 
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Table 3.6 PstI: 1 / MseI M71 

 

Band H K D C P 

 
Band H K D C P 

3 0 0 13 23 30 

 

3 0 0 1 1 1 

4 9 19 10 5 1 

 

4 0 0 0 0 0 

5 0 0 11 25 29 

 

5 0 0 0 1 1 

6 0 22 27 28 30 

 

6 0 1 1 1 1 

7 0 1 13 24 29 

 

7 0 0 1 1 1 

8 0 0 0 12 3 

 

8 0 0 0 0 0 

9 30 30 29 29 30 

 

9 1 1 1 1 1 

13 28 21 20 26 25 

 

13 1 1 1 1 1 

14 4 11 14 13 5 

 

14 0 1 1 1 1 

15 29 2 11 12 12 

 

15 1 1 1 1 1 

16 0 0 5 8 5 

 

16 0 0 0 0 0 

18 29 30 29 14 8 

 

18 1 1 1 1 1 

20 0 0 0 0 1 

 

20 0 0 0 0 0 

22 10 19 22 19 15 

 

22 1 1 1 1 1 

23 3 5 2 2 0 

 

23 0 0 0 0 0 

24 0 0 2 5 11 

 

24 0 0 0 0 0 

30 2 29 28 30 30 

 

30 0 1 1 1 1 

31 1 1 2 0 0 

 

31 0 0 0 0 0 

37 2 2 19 24 30 

 

37 0 0 1 1 1 

39 0 1 7 4 11 

 

39 0 0 0 0 1 

40 3 0 4 17 17 

 

40 0 0 0 1 1 

41 0 7 0 1 2 

 

41 0 0 0 0 0 

42 24 12 12 5 0 

 

42 1 1 1 0 0 

43 25 28 24 27 29 

 

43 1 1 1 1 1 

44 0 2 0 0 0 

 

44 0 0 0 0 0 

49 29 11 5 6 3 

 

49 1 1 1 1 0 

50 14 8 8 0 2 

 

50 1 1 1 0 0 

51 30 30 30 6 3 

 

51 1 1 1 0 0 

52 24 2 7 16 11 

 

52 1 1 1 1 1 

57 5 3 0 0 0 

 

57 0 0 0 0 0 

60 0 4 3 3 2 

 

60 0 0 0 0 0 

65 4 0 0 1 0 

 

65 0 0 0 0 0 

66 1 0 0 0 0 

 

66 0 0 0 0 0 

68 0 3 2 0 0 

 

68 0 0 0 0 0 

69 4 3 4 5 2 

 

69 0 0 0 0 0 

70 30 30 30 30 29 

 

70 1 1 1 1 1 
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Some polymorphic bands, such as M42 bands 57 and 62 (Table 3.4), have a 

gradient of band presence counts through sites H, K, D, C, P, while others are split 

between groups of sites, having a high number of bands in 2 or 3 of the 5 sites and 

none in the others. Out of the 112 polymorphic bands the difference between the 

number of bands present in individuals from tolerant sites H + K and non-tolerant 

sites C + P was 15 or less for 68 bands and 45 or more for 22 bands.   

 

Graphical representation of the 112 polymorphic bands (Tables 3.4 – 3.6) appears 

to show more polymorphic bands that were complete (present in all 30 

individuals) or absent (0 individuals) in sites H and K and more bands that were 

polymorphic within a site (present in 1-29 individuals) in sites D and C, though 

this is less apparent for primer M71 (Table 3.6). 

 

MseI 

Primer loci monomorphic polymorphic  

% 

polymorphic  

single 

presence  

single 

absence  

M42 105 65 45 43% 4 1 

M69 64 33 31 48% 4 2 

M71 78 42 36 46% 2 1 

all loci 247 140 112 45% 10 5 

 

Table 3.7: AFLP results for 30 individuals from each of the 5 sites, produced 

by 3 primer combinations. Number of loci produced; number of bands that 

were monomorphic or polymorphic; percentage polymorphism; number of 

bands with a single presence or absence. 

 

The number of bands scored from each of the 3 AFLP primer combinations 

ranged from 64 to 105. M42 had a higher number of clearly defined bands than 

M69 and M71 over the same distance, particularly at the lower end of the 

fingerprint. Overall 45% of the scored bands were polymorphic, with little 

variation between the 3 primer combinations in the percentage of polymorphic 

bands and no significant difference in the number of polymorphic and non-

polymorphic bands among the 3 primer combinations (χ
2
, df = 2, p > 0.05). There 

were twice as many instances of a single band presence than a single absence 

within a band. 

 

There was a significant difference in band presence frequency in individuals 

between the 5 sites (ANOVA, F 4,145 = 5.55, p < 0.001). Band presence 



103 

 

frequency was significantly higher for K (mean = 186, s.d. = 3.11) and D (mean = 

186, s.d. = 3.51) than for H (mean = 183, s.d. = 2.98) and P (mean = 183, s.d. = 

2.77) (a posteriori Tukey test, P = 0.05). 

 

  M42 M69 M71   Total 

site  poly loci % poly loci % poly loci % poly loci % 

H 14 88 16% 9 54 17% 20 65 31% 43 207 21% 

K 22 94 23% 8 53 15% 23 69 33% 53 216 25% 

D 30 99 30% 19 59 32% 27 71 38% 76 229 33% 

C 38 101 38% 25 61 41% 27 71 38% 90 233 39% 

P 25 92 27% 14 56 25% 23 70 33% 62 218 28% 

 

Table 3.8: Percentage variation within sites for each of the 3 primer 

combinations, calculated as the percentage of bands present that were 

polymorphic for each site. Bands that were polymorphic across sites were 

therefore counted as non-polymorphic when present in all 30 individuals 

within a site and not counted when absent within a site. 

 

All sites had a lower number of bands present within the site than the total number 

of bands across all sites. D and C had the highest total numbers of bands present 

within the site out of 247 possible bands. The percentage of bands present that 

were polymorphic was also lower within sites than across all sites, suggesting 

greater variation among than within sites.  

 

complete bands polymorphic bands 

  M42 M69 M71 total M42 M69 M71 total 

H 74 45 45 164 14 9 20 43 

K 72 45 46 163 22 8 23 53 

D 69 40 44 153 30 19 27 76 

C 63 36 44 143 38 25 27 90 

P 67 42 47 156 25 14 23 62 

total 345 208 226 

 

129 75 120 

  

Table 3.9: Counts of complete and polymorphic bands within sites for each of 

the 3 primer combinations. Bands that were polymorphic across sites were 

counted as non-polymorphic when present in all 30 individuals within a site 

and not counted when absent within a site. 

 

There was a weak significant difference in the number of within site bands that 

were complete or polymorphic between the 3 primer combinations (χ
2 

= 6.89, df = 

2, p < 0.05). Differences in the number of complete and polymorphic bands 
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between sites were significant for M42 (χ
2 

= 12.37, df = 4, p < 0.05) and M69 (χ
2 

= 13.84, df = 4, p < 0.01) but not for M71 (χ
2
, df = 4, p > 0.05).  

 

When all 3 primer combinations were combined there was a significant difference 

in the number of complete and polymorphic bands between sites (χ
2 

= 21.13, df = 

4, p < 0.001). A post hoc standardised residuals test with a significance level of 

0.05 revealed that H had a higher than expected number of complete bands 

compared to D and C, while K had a higher than expected number of complete 

bands compared to C. D had a higher than expected number of polymorphic bands 

compared to H, while C had a higher than expected number of polymorphic bands 

compared to H and K.  

 

complete bands  absent bands polymorphic bands 

  M42 M69 M71 total M42 M69 M71 total M42 M69 M71 total 

H 14 12 3 29 17 10 13 40 14 9 20 43 

K 12 12 4 28 11 11 9 31 22 8 23 53 

D 9 7 2 18 6 5 7 18 30 19 27 76 

C 3 3 2 8 4 3 7 14 38 25 27 90 

P 7 9 5 21 13 8 8 29 25 14 23 62 

total 45 43 16 

 

51 37 44 

 

129 75 120 

  

Table 3.10: Number of polymorphic bands that were complete (present in all 

30 individuals), absent (0 individuals), or polymorphic (1-29 individuals) 

within each of the 5 sites for the 3 primer combinations.   

 

Further analysis of the polymorphic bands showed that there was a significant 

difference in the number of within site bands that were complete, absent or 

polymorphic between the 3 primer combinations (χ
2 

= 21.32, df = 4, p < 0.001). 

Differences in the number of complete, absent and polymorphic bands between 

sites were significant for M42 (χ
2 

= 31.52, df = 8, p < 0.001) and M69 (χ
2 

= 26.23, 

df = 8, p < 0.001) but not for M71 (χ
2
, df = 8, p > 0.05).  

 

When all 3 primer combinations were combined there was a significant difference 

in the number of complete, absent and polymorphic bands between sites (χ
2 

= 

51.88, df = 8, p < 0.001). A post hoc standardised residuals test with a 

significance level of 0.05 revealed that H and K had a higher than expected 

number of complete bands, while C had a lower than expected number of 
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complete bands. K had a higher than expected number of absent bands compared 

to C and H had a higher than expected number of absent bands compared to both 

D and C. D had a higher than expected number of polymorphic bands compared 

to H and K, and C had a higher number of polymorphic bands than all of the other 

sites except D.  

 

These results for only the polymorphic bands match those for chi square analysis 

of the number of non-polymorphic and polymorphic bands present within sites, 

between primers and between sites for all scored loci. This is consistent with 

higher diversity in sites C and D. 

 

 

3.3.3   Bulk segregant analysis 

 

Bulk segregant analysis was used to identify loci that segregated between tolerant 

and non-tolerant worms. Tolerant and non-tolerant samples from mixed site D 

were from the 2 extremes of time to death recorded in toxicity tests. Bulked 

samples of the 30 individuals from each of the 5 sites were used for comparison.  

 

H Hayle tolerant 30 randomly selected individuals 

K Kennal tolerant 30 randomly selected individuals 

D Devoran mixed 30 randomly selected individuals 

C St Clements non-tolerant 30 randomly selected individuals 

P Percuil non-tolerant 30 randomly selected individuals 

D1T Devoran tolerant 20 individuals from toxicity test 1 - bulked 

D2T Devoran tolerant 20 individuals from toxicity test 2 - bulked 

D1N Devoran non-tolerant 20 individuals from toxicity test 1 - bulked 

D2N Devoran non-tolerant 20 individuals from toxicity test 2 - bulked 

 

Table 3.11: Samples, predicted tolerance and number of individuals used in 

bulk segregant analysis    

 

Comparison of polymorphic bands from bulked samples with those derived from 

AFLP analysis of individual worms demonstrated the limitations of bulked 

samples. In all 3 primer combinations some bands that were present in a high 

number of individuals were absent or faint in the bulk analysis, particularly at the 
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top of the fingerprint. The mean (± 1 s.d.) within site band presence count for 

bands that did not show up in the bulk analysis was 4.03 ± 3.37 but this does not 

constitute a threshold over which bands showed up. There were differences in 

intensity between ‘darker’ and ‘lighter’ bands throughout the bulk analyses, which 

did not necessarily correspond with band presence counts in individuals, for 

example M71 bands 9 – 18 (Table 3.6). There were also differences in intensity 

within bands, which in cases such as M42 band 35 did represent band presence 

counts in analysis of individuals. However, M42 band 62 had a noticeable 

difference in band intensity in the bulk analysis between site D, with a band 

presence count of 14, and site C, with a band presence count of 13. M71 band 52 

appeared lighter for site H, with a band presence count of 24 than for sites C and 

P, with band presence counts of 16 and 11. In general, though, the bulk analysis 

did pick up the major differences where bands were split between tolerant and 

non-tolerant sites. 

 

PstI MseI Band H K D1T D2T D1N D2N C P D 

1 M42 30 0 0 1 1 1 1 0 0 13 

    35 0 0 0 0 1 1 1 1 12 

    57 1 1 1 1 1 1 1 1 19 

    79 0 0 1 1 1 1 1 1 8 

    91 0 0 0 0 1 1 1 1 10 

1 M69 1 0 0 0 0 1 1 1 1 7 

    14 1 1 1 1 1 1 1 1 25 

    57 0 0 0 0 1 1 1 1 10 

1 M71 4 1 1 1 1 0 0 0 0 10 

    7 0 0 0 0 1 1 1 1 13 

    52 1 0 0 0 1 1 1 1 7 

 

Table 3.12: Bulk segregant analysis. Band presence / absence for 2 tolerant 

(D1T and D2T) and 2 non-tolerant (D1N and D2N) bulked samples, plus sites 

H, K, C and P bulks, for the 3 primer combinations used in AFLP analysis of 

individuals from the 5 sites. Shading indicates relative band intensity within 

bands. Individual band presence counts for 30 individuals from site D are 

also shown. 

 

For the 4 bulked samples, identified as tolerant or non-tolerant according to the 

results of toxicity tests, out of the 112 polymorphic bands from AFLP analysis 

with 3 primer combinations, 11 bands showed some level of difference between 

tolerant and non-tolerant bulks. There was some coincidence between band 

presence counts in the sample of 30 individuals and the bulked samples from D: 
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for higher counts bands tended to be present in all bulk samples with a difference 

in intensity indicating a difference in band count, whereas for the lower counts 

there was a clearer distinction suggesting a presence / absence split. In all cases 

except M71 band 52 (H) band presence in the tolerant and non-tolerant bulk 

samples from D agreed with band presence for the tolerant (H/K) and non-tolerant 

(C/P) sites.   
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3.4   Discussion 

 

A range of criteria determine the suitability of molecular markers for population 

genetics studies of non model organisms, including sensitivity to genetic diversity 

and distance, the number of markers required for data analysis and the technical 

expertise, time and costs involved.  In practice the AFLP technique was found to 

be technically demanding and suffered from unexplained failures. However, in 

comparison with other molecular techniques it is relatively simple, rapid and 

inexpensive (Mueller & Wolfenbarger, 1999; Bensch & Åkesson, 2005; Bonin et 

al., 2007; Meudt & Clarke, 2007) and in the present study it proved to be highly 

reproducible, in agreement with Jones et al. (1997) and Nybom (2004).  

 

The choice of molecular marker system was constrained by the fact that in 

genomics Nereis diversicolor is a non-model organism. Bleidorn et al. (2006) 

commented that the use of RAPD rather than mtDNA markers in a number of 

phylogeographic studies has been due to a lack of suitable primers for 

amplification of variable regions of the mitochondrial genome in annelid species. 

RAPD and AFLP markers provide a useful alternative when no prior sequence 

information is available.  

 

The large number of polymorphic AFLP markers is useful for estimating genetic 

diversity, identifying population structure, and inferring interpopulation 

relationships, while mtDNA sequences are considered more reliable for 

phylogenetic reconstruction (Bensch & Åkesson, 2005; Reitzel et al., 2007). A 

number of authors have recommended using a combination of AFLPs and 

mtDNA sequences to analyse population structure (Timmermans et al., 2005; 

Reitzel et al., 2007). 

 

Due to differences in the level of genetic diversity detected by different marker 

systems the results are generally not comparable. Reitzel et al. (2007) stated that 

the results of RAPD and AFLP studies are not directly comparable, for example. 

However, the results of AFLP and RAPD studies are often similar. Kruse et al. 

(2003) carried out RAPD and AFLP analysis on 70 individuals from populations 

of the polychaete Scoloplos armiger 2 – 95 Km apart. 4 RAPD primers produced 
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116 bands, all of which were polymorphic. As in the present AFLP study, no 

individuals shared the same band profile, which shows that RAPD and AFLP are 

similar, equally sensitive markers. In the Kruse et al. study cluster analysis based 

on RAPD and AFLP loci showed the same 2 deeply diverged clades of intertidal 

and subtidal ecotypes but the relationships between individuals within these 

clades were different. AFLP analysis was based on a subset of only 22 individuals 

and the number of AFLP loci was not stated, although bootstrap values were 

much higher than for RAPD.  

 

The main advantage of AFLP analysis is the large amount of data generated. 

Some AFLP studies exclude bands with a presence frequency of less than 0.05 or 

0.01 from data analysis, on the basis that in a sufficiently large population 

virtually all loci will have more than one allele (Nei, 1973). However, this should 

not be applied to the relatively small sample populations in AFLP analysis. Other 

authors exclude bands with a frequency below 0.05 or above 0.95 from 

calculations of the proportion of polymorphic loci as a margin of error. For this 

study of 150 individuals this cut off would mean excluding bands with ≤ 7 

presences or absences. As this threshold is arbitrary and it is unlikely that this 

level of scoring error occurs the proportion of polymorphic loci was calculated 

simply as scored. 

 

The percentage of polymorphic AFLP bands varies between studies. This could be 

attributable to the choice of primers and is not necessarily a comparable measure 

of diversity between species. In a study of ecotypes of the intertidal winkle 

Littorina saxatilis, adapted to high and low shore conditions, Wilding et al. (2001) 

found that 290 out of 306 loci (95 %) were polymorphic, which is much higher 

than 45 % in the present study. Other studies have found variation in the number 

of loci per primer combination, for example Eco + CTC - Mse + CGA yielding 43 

polymorphic bands and Eco + CAG - Mse + CGA yielding 80 in Wilding et al. 

(2001). In reviewing RAPD studies on polychaetes Bleidorn et al. (2006) 

commented on the possibility that lack of differenciation in RAPDs could be due 

to primer choice. This highlights the advantage of using a number of AFLP primer 

combinations. 
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The disadvantage of AFLP data is that it is considered to be dominant, as band 

presence is dominant to band absence. For a particular locus a band will be 

present for individuals that are homozygous or heterozygous for the band 

presence allele and absent only for individuals that are homozygous for the band 

absence allele. A possible way to distinguish between band presence homozygotes 

and heterozygotes would be to analyse progeny or haploid tissue of each 

individual with the dominant allele (Clark & Lanigan, 1993). This has worked for 

tree macrogametophytes (Isabel et al., 1995; Szmidt et al., 1996) but it would be 

very difficult to extract sufficient DNA for analysis from individual worm eggs. 

Breeding experiments to produce progeny of specific pairs proved difficult, with 

only 1 successful F1 cross and no F2 offspring.  

 

The wide range of statistical analyses that can be applied to AFLP data despite the 

problems associated with dominance, including relatively recent advances in 

computational techniques, are assessed in the following chapter.  
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Chapter 4   Statistical analysis of AFLP data 

 

 

4.1   Introduction 

 

The potential for meaningful statistical analysis of genetic marker data is a 

consideration when chosing a marker system. Analyses can be affected by the 

number of loci, comparability between taxa, homoplasy of comigrating bands, 

assumptions about underlying models and dominance (Bonin et al., 2007; Meudt 

& Clarke, 2007). The strongest criticism of dominant markers is that dominance 

limits the information available for statistical analyses, which rely on assumptions 

and estimation as a result (Sunnucks, 2000; Kosman & Leonard, 2005). However, 

recent advances in both statistical and computational techniques have allowed a 

number of software packages to be adapted for dominant data. One of the main 

aims of this study was therefore a comparison of a range of statistical analysis 

methods commonly applied to population genetic data and assessment of their 

suitability for dominant AFLP markers. 

 

In AFLP data band presence is dominant to band absence. For a particular locus a 

band will be present for individuals that are homozygous or heterozygous for the 

band presence allele and absent only for individuals that are homozygous for the 

band absence allele. Because AFLP markers are dominant there is no empirical 

information regarding the frequency of dominant and recessive alleles or the 

distribution of heterozygosity (Mueller & Wolfenbarger, 1999; Bensch & 

Åkesson, 2005; Bonin et al., 2007; Meudt & Clarke, 2007). Many algorithms for 

calculating genetic diversity and divergence rely on a measure of allele frequency, 

which can only be estimated for AFLP data (Lynch & Milligan, 1994). 

 

Approaches to the statistical analysis of AFLP profiles can be classified as band 

based or frequency based (Kosman & Leonard, 2005). Band based methods 

compare the pattern of band presence (1) and absence (0) between individuals. 

Allele frequency based methods involve estimates of allele frequencies at each 

AFLP locus, which are then used in classical population genetics methods to 
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survey genetic diversity or differentiation within and between sample populations 

(Bonin et al., 2007). 

 

Sunnucks (2000) considered 3 levels of molecular change, which provide 

information at different levels of population biology, as individual genotypes, 

allele frequencies in populations and phylogenetic relationships. Selection 

pressure acting on phenotypes at the individual level has structural effects at the 

population level. Analysis methods can be classified as individual based, 

analysing differences between individuals, or population based, analysing 

differences per marker within and between populations (Bonin et al., 2007; Meudt 

& Clarke, 2007). In general calculations at the individual level are band based, 

while calculations of diversity and distance for populations tend to be allele 

frequency based. The exceptions to this are the Shannon index, AMOVA,  

Borowsky‟s (2001) measure of nucleotide diversity and Hill and Weir‟s (2004) 

band based method for estimating Wright‟s (1931) F statistics, which all analyse 

band presence frequencies at the population level.  

 

Methods have recently been developed to identify highly divergent outlier loci 

that may be associated with evolutionary adaptation (Beaumont & Nichols, 1996; 

Wilding et al., 2001). This approach has been successfully employed in AFLP 

studies of directional or divergent selection that could lead to sympatric speciation 

(Wilding et al., 2001; Bonin et al., 2006; Savolainen et al., 2006).   

 

There is a range of mathematical measures available to assess the amount of 

genetic diversity and differentiation within and between individuals, populations 

and AFLP loci of interest (Bonin et al., 2007). Some analysis methods are similar 

and produce similar results (e.g. FST vs. GST) and they should all reveal the same 

general pattern of genetic diversity and structure in a data set, but it is important to 

look at all of them in order to understand the relationships between them and to 

compare results with the range of different measures used in the literature. 

Application of a combination of complimentary statistical analysis methods to the 

AFLP data for Nereis diversicolor provides corroboration of estimates of genetic 

diversity and population differentiation within the study and allows comparison 

with statistics given in other work.  
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Figure 4.1: Summary of statistical analysis methods appropriate for binary, 

dominant molecular marker data 
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4.2   Individual level analysis methods 

 

Individual level statistical analysis methods are all based on the pattern of AFLP 

band presence and absence between individuals, scored as presence (1) and 

absence (0). 

 

 

4.2.1   Dissimilarity and distance measures  

 

Individual level, band based analysis methods are based on pairwise similarity, 

dissimilarity (1 – similarity) or distance between individuals. A similarity matrix 

can be created using correlation or covariance (which are not suitable for binary 

data) or one of a range of similarity coefficients and distance measures based on 

band presence and absence shared between individuals. 

 

Requirements of further analysis methods should be considered when choosing a 

measurement. The properties of similarity and distance measures affect their 

suitability for use in estimates of genetic diversity for dominant molecular marker 

data (Bonin et al., 2007). Some methods require the input data to have metric and 

Euclidean properties, for example (Caillez & Kuntz, 1996; Reif et al., 2005). The 

choice of similarity coefficient or distance measure can also affect the outcome of 

subsequent multivariate analysis (Jackson et al., 1989; Duarte et al., 1999; Meyer 

et al., 2004).  
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  Box 4.1: Similarity coefficients assessed for use with binary AFLP data   

 

 

 

Individual i 

Band presence (1) Band absence (0) 

Individual j Band presence (1) a b 

Band absence (0) c d 
 

where n = a + b + c + d 

 

 

 

  Jaccard (1908)  
 

cba

a


 

 

Czekanowski (1913) / Dice (1945) / Sørensen (1948) 
 

cba

a

2

2

 
 

Ochiai (1957) 
 

  caba

a

  
 

Sokal and Sneath (1963) 
 

cba

a

22   
 

Russell and Rao (1940) 
 

dcba

a


 

 

Simple matching (Sokal & Michener, 1958)  
 

dcba

da




 

 

Rogers and Tanaimoto (1960) 
 

dcba

da





22
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The Jaccard similarity coefficient measures the number of shared band presences 

between 2 individuals as a proportion of the total number of bands present in at 

least 1 of the 2 individuals. It ignores shared band absences and therefore avoids 

the problem of band absence homoplasy where a shared band absence is due to 

different mutations (Vekemans et al., 2002). The Czekanowski / Dice / Sørensen 

coefficient gives more weight to bands present in both individuals and therefore to 

similarity between individuals. Other coefficients are reducible to simpler 

coefficients for binary data: for example Gower equates to Jaccard, while Bray-

Curtis similarity (Bray & Curtis, 1957), designed for counts of species in ecology, 

and Nei and Li (1979) genetic dissimilarity are the same as the Czekanowski / 

Dice / Sørensen coefficient when applied to binary data. Rogers distance, 

appropriate for allelic informative co-dominant molecular markers, is equivalent 

to the simple matching coefficient for AFLP data, but only when applied to inbred 

populations (Reif et al., 2005). The simple-matching coefficient includes double 

band absences and gives them the same weight as double band presences, which 

may not be appropriate for cases of frequent band absence homoplasy. However, 

this coefficient maximizes the amount of information obtained from AFLP 

profiles. In the Russell and Rao coefficient shared band absence is only included 

in the denominator and so contributes to dissimilarity. None of these coefficients 

address the issue of band presence homoplasy due to comigrating bands 

(Koopman & Gort, 2004). 

 

There are many other, slightly different permutations: Shi (1993) lists the 

formulae and properties of 39 similarity coefficients that can be applied to binary 

data. Similarity coefficients are more suitable for binary AFLP data if they are 

metric. Distance (d) between pairs of points (i,j,k) is considered to be metric if: 

 

1)  d(i,j) ≥ 0     (non-negativity)   

2)  d(i,j) = 0 if and only if i = j  (identity of indiscernibles) 

2)  d(i,j) = d(j,i)   (symmetry) 

3)  d(i,k) ≤ d(i,j) + d(j,k)   (triangle inequality) 

 

All of the similarity coefficients explored in the present study (Box 4.1) are non-

negative and have symmetry by including both b and c, which avoids under or 

http://www3.interscience.wiley.com/cgi-bin/fulltext/117989784/main.html,ftx_abs#b43
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over estimating similarity. All except Russell and Rao have a scale from 0 to 1, 

where identity (b = c = 0) equals 1. This allows conversion of similarity (S) to 

dissimilarity (1 - S), which is required by many multivariate methods. The Russell 

and Rao coefficient has been described as metric (Jackson et al., 1989; Shi, 1993), 

following Gower & Legendre‟s (1986) statement that it is metric on a scale of 0 to 

1. However, it does not conform to the identity of indiscernibles because when b = 

c = 0, similarity is a/a+d rather than 1. Triangle inequality is desirable because 

there is much less distortion when a similarity matrix is converted to a 

dissimilarity matrix if the matrices have the same geometric properties (Shi, 

1993). The Czekanowski / Dice / Sørensen and Ochiai coefficients are not metric 

in this respect. 

 

Euclidean distance is the straight line distance between 2 points positioned on a 

plane, relative to fixed coordinate axes. For 2 points i = (i1, i2,..., in) and j = ( 

j1, j2,..., jn) in n-dimensional Euclidean space, the distance from i to j is given by: 

22

22

2

11 )(...)()(j)i,(d nn jijiji   

  



n

i

ii ji
1

2
    

 

For binary presence / absence data as in box 4.1 this equates to: 

 

cb   

 

For AFLP data i and j are the band presence / absence profiles of 2 individual 

worms and n is the number of bands. Euclidean distance ranges from 0 to            

and is therefore likely to increase with increasing number of bands, which means 

that this distance measure can not be compared between studies based on different 

numbers of loci. Euclidean distance itself is not considered to be an appropriate 

distance measure for data with zero values and when applied to binary data it does 

not consider shared band presence, so it is not a suitable measure of dissimilarity 

for AFLP data.  

 

n2
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A Euclidean distance measure is required by some multivariate analysis 

techniques, such as metric MDS, hierarchical cluster analysis and Analysis of 

MOlecular VAriance (AMOVA) (Excoffier et al., 1992). For n > 3 dimensional 

Euclidean space any dissimilarity measure is Euclidean if the resulting distances 

between all pairs of points in a set of points (dissimilarity matrix) are Euclidean. 

Detailed definitions and explanations of the mathematical properties of Euclidean 

dissimilarity measures are given in Gower & Legendre (1986) and Caillez and 

Kuntz (1996). For the similarity coefficients in Box 4.1 dissimilarity is not 

Euclidean. However, for all of these coefficients the square root of the 

dissimilarity is both metric and Euclidean (Gower and Legendre, 1986), so they 

can be used in multivariate analyses that require Euclidean properties with this 

transformation.  

 

A number of empirical studies comparing similarity coefficients have produced 

differing results and concluded that the outcome depends on the relative 

frequency of presences (1) and absences (0) in the data set (e.g. Gower & 

Legendre, 1986). In a review of AFLP statistical analysis approaches Bonin et al. 

(2007) recommended testing for correlation between similarity coefficients as per 

Duarte et al. (1999). Weak correlation between band presence based coefficients 

and those that include shared band absence could indicate frequent band absence 

homoplasy, in which case a band presence based coefficient should be used.  

 

Dissimilarity coefficients can be calculated for each pair of individuals within a 

sample and simply averaged to give a basic measure of within population genetic 

diversity, which can be compared between groups. A pairwise similarity or 

dissimilarity matrix can also be used in ordination and cluster analysis to define 

groups and represent similarity within and between groups. The choice of 

similarity or distance measure affects the outcome of clustering and ordination 

techniques (Jackson et al., 1989; Duarte et al., 1999; Meyer et al., 2004). In 

practice a range of similarity indices have been used in ordination and clustering 

to analyse AFLP data, with very few authors stating why they have chosen a 

particular measure, which could cause inconsistencies in analysis and comparison 

of results (Jackson et al., 1989; Duarte et al., 1999; Kosman & Leonard, 2005).  

 

http://www3.interscience.wiley.com/cgi-bin/fulltext/117989784/main.html,ftx_abs#b92
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4.2.2   Multi Dimensional Scaling ordination analysis (MDS) 

 

Ordination analysis can be used to create a 2 or 3 dimensional map of multi-

dimensional data relationships, with distances between points on ordination plots 

representing dissimilarities between individuals. There are several ordination 

methods available to represent multivariate data. Of these both Principal 

Coordinates Analysis (PCoA) and Principal Component Analysis (PCA) are 

criticised because they lose distance information when multi-dimensional 

information is reduced to a 2 dimensional plane (Gower, 1966). In addition PCA 

was designed for use with Euclidean distance measures and although it has been 

argued that non-Euclidean similarity measures also produce acceptable results in 

PCA, it is considered to be the least suitable multivariate technique for binary data 

(ter Braak, 1985; Jackson et al., 1989). Multiple Correspondence Analysis is 

appropriate for presence / absence data (ter Braak, 1985) and has been 

successfully applied in a number of AFLP studies (e.g. Sanchez et al., 1999). 

However, it is based on a chi-squared distance calculation, which prevents the use 

of other distance measures, plus it has been criticised for the complexity of both 

the concept and the algorithm, which limits its implementation and availability in 

software. MDS and cluster analysis are suitable for AFLP data because they do 

not require the data to be normally distributed. A further advantage of using MDS 

and cluster analysis together is that the same dissimilarity matrix is analysed 

directly in both cases, which creates consistency between the analyses.   

 

In Multi Dimentional Scaling ordination analysis (MDS) the distances between 

the points on a plot are compared to the original dissimilarities between data 

points using regression. The goodness of fit of the regression is calculated to give 

a stress value and the points are rearranged to reduce stress. This process is 

repeated iteratively until the lowest stress value is achieved and the plot best 

represents the data. Metric MDS uses parametric linear or curvilinear regression 

models while non-metric MDS uses non-parametric, montonic regression. The 

regression model used to define the relationship between dissimilarity and 

distance, the stress value calculation method and the distortion algorithm all affect 

the outcome of MDS, and a range of different methods are available, so it is 

important to choose one that is appropriate for binary AFLP data. 
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Non-metric MDS is a more appropriate multivariate ordination technique for 

AFLP data because the underlying model does not have strict linear requirements 

and allows the use of a dissimilarity matrix created using non-metric similarity 

coefficients. In non-metric MDS the distances between the points on the plot have 

the same rank order as the corresponding dissimilarities between individuals 

(Kruskal, 1964). MDS allows distortion of the 2D plot to best represent rank order 

distance, which is more appropriate for binary data than PCoA, which uses 

rotation of the points to best represent variance. Additionally, the scaling feature 

of MDS reduces the size effects of frequency of band presence for shared 

presence based similarity coefficients (Jackson et al., 1989). The outcome of 

MDS is therefore affected by both the measure used for the input dissimilarity 

matrix and the scaling algorithm itself. 

 

A lot of authors use MDS for AFLP data analysis without stating why a particular 

similarity coefficient or MDS algorithm was chosen. Different coefficients and 

different algorithms included in software produce different results, which affects 

comparisons of MDS between studies. Given that there have been a number of 

empirical comparisons of the effect of similarity coefficients on clustering 

methods (Jackson et al., 1989; Johns et al., 1997; Duarte et al., 1999; Meyer et 

al., 2004) but no equivalent investigations regarding MDS, the present study 

includes a comparison of similarity coefficients employed in different MDS 

methods.  

 

 

4.2.3   Cluster analysis 

 

Cluster analysis classifies individuals into discrete groups. It is affected by both 

the choice of similarity coefficient used to construct the dissimilarity matrix (Box 

4.1) and the clustering algorithm used (Figure 4.2). Cluster analysis methods can 

be non-hierarchical, where each individual is assigned to a cluster in multi 

dimensional space, or hierarchical, where the relationships between individuals 

are shown as a dendrogram (Sneath & Sokal, 1973). 

 



121 

 

 

Cluster analysis methods 

 

non-hierarchical hierarchical 

exclusive 

e.g. K-means 

overlapping 

e.g. fuzzy 

clustering 

probabilistic 

 
divisive agglomerative 

single linkage 

complete linkage 

average linkage 

 
 

 

Figure 4.2: Summary of cluster analysis methods 

 

K means clustering is a partitional clustering method, which involves chosing a 

number of clusters, K, and iteratively assigning individuals to the cluster with the 

closest centroid. Fuzzy clustering is similar but individuals have a degree of 

belonging to different clusters. These two techniques are affected by the input 

number of clusters, produce different results for different runs depending on 

cluster initialisation and measure variance, so are not recommended for 

dissimilarity coefficients of binary data. Probabilistic methods attempt to fit the 

data to a model and therefore depend on the availability of a suitable model.  

 

Hierarchical cluster analysis can be divisive (top down), where the sample is 

divided into successively smaller clusters, or agglomerative (bottom up), where 

each individual is assigned to a cluster and the clusters are joined to form 

successively larger clusters. Hierarchical, agglomerative clustering techniques use 

different definitions of distance between two clusters. Single linkage is the 

minimum distance between any one member of each cluster, whereas complete 

linkage is the maximum distance between any one member of each cluster. Single 

linkage tends to allow „chaining‟ whereas complete linkage produces a larger 

number of evenly sized clusters (Shi, 1993). Average linkage, commonly refered 

to as Unweighted Pair Group Method with Arithmetic mean (UPGMA) is the 

mean distance between all members of each cluster. Hierarchical, agglomerative 
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clustering with UPGMA linkage is considered to be the most appropriate method 

for binary data and is the most widely used clustering method for AFLP data. 

 

Jackson et al. (1989) identified some problems associated with cluster analysis as 

false clusters found in closely related data; clusters of outliers; tied or similar 

values producing multiple different dendrograms; size effects, where cluster 

initiation is based on high presence frequency, and associated chaining, where 

individuals with lower presence frequency are added to these clusters. Similarity 

coefficients that emphasise shared similarity such as Jaccard, Czekanowski / Dice 

/ Sørensen and Russel and Rao could encourage cluster formation to be initiated 

among individuals with the highest band presence frequency, whereas coefficients 

that include shared band absence, such as simple matching and Rogers and 

Tanimoto coefficients would allow cluster initiation for high or low band 

frequencies. However, the study by Jackson et al. was based on ecological data 

for presence / absence of fish species, with a wide range of frequencies. Size 

effects are much less likely to be a problem for AFLP data, which tends to have a 

narrower range of band presence frequencies between groups.  

 

Jackson et al. (1989) surveyed the effects on cluster analysis of ecological 

presence / absence data for 6 similarity coefficients: Jaccard, Czekanowski / Dice 

/ Sørensen, Ochiai, Russel and Rao, simple matching, Rogers and Tanimoto; plus 

Phi and Yule association measures. Estimates of dendrogram dissimilarity showed 

little difference between the Jaccard and Czekanowski / Dice / Sørensen 

coefficients and between the simple matching and Rogers and Tanimoto 

coefficients, indicating some redundancy when these similarity coefficients are 

applied to binary data. 

 

Statistical analysis in RAPD studies has largely focussed on individual level 

distance measures and cluster analysis methods. Similar studies by Johns et al. 

(1997) and Duarte et al. (1999) produced dissimilarity matrices of RAPD marker 

data for 8 different similarity coefficients: Jaccard, Czekanowski / Dice / 

Sørensen, Ochiai, Ochiai II, Russell and Rao, Simple matching, Rogers and 

Tanaimoto and Anderberg. They compared the coefficients using correlations of 

genetic dissimilarities and examined their effects on cluster analysis. They found 



123 

 

that despite correlations between distance measures all being higher than 0.86, use 

of the different similarity coefficients did have some effect on clustering, 

particularly in grouping individuals with high genetic similarity. This study was 

repeated for AFLP data by Meyer et al. (2004) and produced the same results. 

 

Schmidt & Westheide (2000) tested 5 cluster analysis methods on Nei & Li 

(1979) distances (equivalent to the Czekanowski / Dice / Sørensen coefficient 

when applied to binary data) for RAPD loci. UPGMA (unweighted pair group 

method using arithmetic averages), WPGMA (weighted pair-group method using 

arithmetic averages), Complete Linkage, Single Linkage (Sneath & Sokal, 1973), 

and Neighbour Joining (Saitou & Nei, 1987) gave the same results for both inter 

and intra specific relationships and for both a highly differentiated and a 

genetically homogeneous species. Kruse et al. (2003) also found that for RAPD 

data UPGMA and Neighbour Joining gave similar results, both with low bootstrap 

values. While the choice of similarity coefficient may affect results slightly, the 

choice of clustering method appears to have little effect on cluster analysis.   
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4.3   Individual level results 

 

4.3.1   Comparison of dissimilarity and distance measures 

 

Correlations of distance and dissimilarity matrices were used to compare 

similarity measures and to look for a discrepancy between shared band presence 

based measures and those that include shared absence, which could indicate band 

absence homoplasy. 

 

For all 150 individuals dissimilarity matrices were generated using the Jaccard, 

Czekanowski / Dice / Sørensen, Ochiai, Sokal and Sneath, Russell and Rao, 

Simple matching and Rogers and Tanaimoto similarity coefficients, and a distance 

matrix was generated for Euclidean distance. Dissimilarity and distance matrices 

were created in R (R Development Core Team, 2007) using the distance function 

of the ecodist package (Goslee & Urban, 2007) or the ade4 package (Chessel et 

al., 2004). All matrices were lower triangle, with no diagonal, suitable for further 

analysis in R.  

 

Pairwise correlations were calculated between the matrices. Despite the fact that 

the coefficients are based on counts of presence / absence matches and 

mismatches, they are derived from binary data and are therefore proportions, 

which require data to be arcsine transformed in order to use a parametric 

correlation measure. Non-parametric Spearman rank correlations were therefore 

used to accommodate the data type and to allow comparison with other authors 

(Jackson et al., 1989; Johns et al., 1997; Duarte et al., 1999; Meyer et al., 2004).  

 

Testing the statistical significance of a simple correlation between distance 

matrices is not appropriate because distances in a matrix are not independent of 

each other, as changing one sample would change n − 1 distances to each of the 

other samples. To overcome the problem of non-independence Mantel 

permutation tests were used. Both matrices were randomly rearranged and the 

distribution of correlation test statistics over 1000 permutations was compared to 

the original test statistic to obtain a p value for significance. Mantel tests were 
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performed using the mantel function in the vegan package (Oksanen et al., 2007) 

in R (RDCT, 2007) with a Spearman rank correlation and 1000 permutations.  

 

Mean within site dissimilarity was also calculated as a measure of genetic 

diversity for dissimilarity matrices for each of the 5 sites generated using the 

Jaccard, Russell and Rao and Simple matching coefficients. These coefficients 

were selected to represent the 3 groups of coefficients because Russell and Rao 

and Jaccard are the simplest measures that do and do not include shared absence 

respectively and the simple matching coefficient has been used in AMOVA 

(Excoffier et al., 1992). The dissimilarity data was still not normally distributed 

after arcsin transformation for proportions (Kolmogorov-Smirnov test, p < 0.001), 

so a non-parametric Kruskal Wallis H test was used to test for significant 

difference in diversity between the sites. 

 

 

 

Table 4.1: Mean distance or dissimilarity between all 150 individuals from all 

5 sites, from matrices created using Euclidean distance (ED), Jaccard (J), 

Czekanowski / Dice / Sørensen (CDS), Ochiai (O), Sokal and Sneath (SS), 

Russell and Rao (RR), Simple matching (SM), Rogers and Tanaimoto (RT).  
 

 

  ED J CDS O SS RR SM RT 

ED - 0.999 0.999 0.999 0.999 0.909 1 1 

J 0.999 - 1 1 1 0.922 0.999 0.999 

CDS 0.999 1 - 1 1 0.922 0.999 0.999 

O 0.999 1 1 - 0.999 0.922 0.999 0.999 

SS 0.999 1 1 0.999 - 0.922 0.999 0.999 

RR 0.909 0.922 0.922 0.922 0.922 - 0.909 0.909 

SM 1 0.999 0.999 0.999 0.999 0.909 - 1 

RT 1 0.999 0.999 0.999 0.999 0.909 1 - 

 

Table 4.2: Spearman rank correlations between the 9 distance and 

dissimilarity matrices (Mantel test, p < 0.001). 

  mean s.d.   

ED 5.206 1.227 

 J 0.368 0.081 

 CDS 0.271 0.064 

 O 0.271 0.064 

 SS 0.485 0.095 

 RR 0.558 0.023 

 SM 0.331 0.078 

 RT 0.441 0.094 
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The results in Table 4.2 are almost identical to those found by other authors 

(Johns et al., 1997; Duarte et al., 1999; Meyer et al., 2004) and have same rank 

order.  

 

The similarity coefficients fall into 3 groups, according to Box 4.1. Jaccard (J), 

Czekanowski / Dice / Sørensen (CDS), Ochiai (O), and Sokal and Sneath (SS) do 

not include shared absence (d). Within this group presence / absence mismatches 

(b and c) are upweighted in Sokal and Sneath, giving higher mean dissimilarity, 

and shared presence (a) is upweighted in Czekanowski / Dice / Sørensen and 

Ochiai, which both produce(d) almost identical results with the lowest 

dissimilarity. The simple matching (SM) and Rogers and Tanaimoto (RT) 

coefficients include shared absence as similarity, and therefore show lower 

respective dissimilarity than J and SS. SM and RT behaved in the same way as 

Euclidean distance. The Russell and Rao (RR) coefficient behaved differently to 

all of the others because shared absence contributes to dissimilarity. The fact that 

it only has shared presence as the denominator meant that it was more similar to 

the J / CDS / O / SS group than to SM / RT. 

 

Strong correlation between band presence based coefficients (J / CDS / O / SS) 

and those that include shared band absence (SM / RT) indicate that band absence 

homoplasy is very low (Duarte et al., 1999; Bonin et al., 2007). Correlation 

between the Jaccard and simple matching coefficients was 0.999, which supports 

the use of simple matching in AMOVA despite the influence of shared absence. 

 

                SM       J     RR   correlation 

            mean  s.d.   mean   s.d.  mean   s.d. SM vs RR  

H 0.204 0.028 0.234 0.031 0.530 0.007 0.272 

K 0.235 0.026 0.267 0.028 0.535 0.008 0.405 

D 0.301 0.037 0.337 0.039 0.542 0.012 0.703 

C 0.313 0.083 0.347 0.086 0.548 0.027 1.000 

P 0.243 0.050 0.275 0.054 0.535 0.013 0.522 

All 0.331 0.078 0.368 0.081 0.558 0.023 0.909 

 

Table 4.3:  Mean within site dissimilarity for each of the 5 sites using simple 

matching (SM), Jaccard (J) and Russell and Rao (RR) similarity coefficients. 

Spearman rank correlations between dissimilarity matrices created using the 

simple matching and Russell and Rao coefficients (Mantel test, p < 0.001). 
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As expected the mean dissimilarity within each site (Table 4.3) was lower than the 

mean dissimilarity for all 150 individuals (Table 4.1). There was a significant 

difference in within site diversity between the sites for all 3 coefficients according 

to Kruskal Wallis H tests (Jaccard: χ
2 

= 1039, df = 4, p < 0.001; Russell & Rao: χ
2 

= 229, df = 4, p < 0.001; simple matching: χ
2 

= 1067, df = 4, p < 0.001). H and K 

had lower within site dissimilarity than D and C. 

 

Among the coefficients Russell and Rao showed the highest mean dissimilarity 

with the least variation both within and between sites. Dissimilarity was lower in 

K than in P according to the Jaccard coefficient but the same according to the 

Russell and Rao coefficient. Correlations between the simple matching and Russel 

and Rao coefficients showed a weak correlation for H, modest correlations for K 

and P and strong correlations for D and C. H had the highest number of 

completely absent bands (Chapter 3, Table 3.10), and therefore the highest shared 

band absence. Because shared absence is treated as similarity in the simple 

matching coefficient but contributes to dissimilarity in the Russell and Rao 

coefficient dissimilarity was higher in H according to Russell and Rao.  

 

 

4.3.2   Comparison of Multi Dimensional Scaling (MDS) ordination methods 

 

For Multi Dimensional Scaling (MDS) ordination analysis, dissimilarity matrices 

were created for each site and for all 150 individuals using Euclidean distance and 

Jaccard, Czekanowski / Dice / Sørensen, Ochiai, Sokal and Sneath, Russell and 

Rao, simple matching and Rogers and Tanaimoto similarity coefficients (Box 

4.1).  

 

MDS was performed in R (RDCT, 2007) for each of these distance measures 

using the non-metric MDS functions sammon and isoMDS in the MASS package 

(Venables & Ripley, 2002), nmds in the ecodist package (Goslee & Urban, 2007) 

plus the metric MDS function cmdscale in the stats package (RDCT, 2007). 

 

cmdscale produces classic metric MDS, which uses eigenvalues analysis rather 

than a stress calculation in a similar way to PCoA (Gower, 1966). isoMDS is 
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Kruskal's non-metric multidimensional scaling method (Kruskal, 1964). The 

author of the non-metric MDS function nmds (Goslee & Urban, 2007) also cites 

Kruskal (1964) but does not give any further information about the algorithm 

used. Sammon mapping (Sammon, 1969) is very similar to nonlinear metric MDS 

but it includes an inverse weighting in the stress calculation, which preserves 

small distances between closely related individuals but tends to throw outliers out 

into a circle around the edge of the plot. The authors of the sammon R function 

describe it as “non-metric multidimensional scaling” (Venables & Ripley, 2002). 

 

MDS plots for 30 individuals from each site and for all 150 individuals were 

compared visually to assess the effects of different distance measures and scaling 

algorithms on MDS analysis of AFLP data.  

 

MDS stress values measure goodness of fit of the plot to the original data and 

vary in range between MDS methods. Stress values decreased with increasing 

number of dimensions used in MDS. However, it is difficult to plot more than 3 

dimensions and the majority of authors only use 2, so all MDS plots in the 

analysis were 2 dimensional. Stress values were compared to mean dissimilarity 

using Spearman rank correlations. This was done for Jaccard, Russell and Rao and 

Simple matching dissimilarity matrices, for 30 individuals from each of the 5 sites 

and for all 150 individuals, to assess the effects of sample size and dissimilarity 

on stress.    

 

Procrustes analysis was also used to compare MDS plots, using the procrustes 

function in the vegan package (Oksanen et al., 2007) in R (RDCT, 2007). This 

seeks to minimise the sum of squared differences between 2 plots, through 

scaling, translation, reflection and rotation. The procrustes m
2 

statistic is a 

measure of the difference between the geometric shape, and therefore the 

configuration of the points, between 2 plots. The significance of m
2
 was tested 

using permutation tests based on 1000 permutations. Pairwise m
2 

differences (all 

p<0.001) were calculated for each combination of the 4 MDS algorithms and 8 

dissimilarity measures and the resulting 32 x 32 matrix was used to create an 

MDS plot of MDS plots.    
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    cmdscale - Jaccard       isoMDS - Jaccard   

 

            stress = 9.180 

   

 

 

         isoMDS - Russell and Rao           isoMDS - simple matching 

 

      stress = 11.913          stress = 8.900 

  

 

 

Figure 4.3: MDS ordination plots of all 150 individuals produced with metric 

cmdscale MDS, from a Jaccard dissimilarity matrix, and non-metric isoMDS, from 

Jaccard, Russell and Rao and simple matching dissimilarity matrices.  
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    nmds – Jaccard                            nmds – Jaccard 

 

 stress = 0.300  R
2
 = 0.738        stress = 0.298  R

2
 = 0.745 

 
 

 

         nmds - Russell and Rao          nmds - simple matching 

 

      stress = 0.425  R
2
 = 0.464        stress = 0.290  R

2
 = 0.756 

 
 

 

Figure 4.4: MDS ordination plots of all 150 individuals produced with non-metric 

nmds, from Jaccard, Russell and Rao and simple matching dissimilarity matrices.  
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      sammon - Euclidean distance                sammon - Jaccard  

   

      stress = 0.093         stress = 0.175 

 
 

 

        sammon - Czekanowski / Dice / Sørensen                sammon - Ochiai 

 

       stress = 0.110         stress = 0.130 

 
 

 

Figure 4.5: MDS ordination plots of all 150 individuals produced using the 

sammon MDS algorithm, applied to dissimilarity matrices of 7 different similarity 

coefficients, plus Euclidean distance 
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      sammon - Sokal and Sneath       sammon - Russell and Rao 

 

      stress = 0.105         stress = 0.156 

 
 

 

        sammon -Simple matching             sammon - Rogers and Tanaimoto 

 

      stress = 0.114         stress = 0.200 

 
 

Figure 4.5: MDS ordination plots of all 150 individuals produced using the 

sammon MDS algorithm, applied to dissimilarity matrices of 7 different similarity 

coefficients, plus Euclidean distance 

 

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4

sss <- sammon(allss)$points[,1]

s
s
s
 <

- 
s
a

m
m

o
n

(a
ll
s
s
)$

p
o

in
ts

[,
2

]

K1K2

K3

K4

K5

K6

k7

K8 K9

K10
K11

K12

K13

K14

K15

K16

K17

K18

K19

K20

K21

K22

K23

K24

K25

K26 K27
K28

K29

K30

C1

C2 C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

D1

D2D3 D4

D5

D6

D7

D8

D9
D10

D11D12

D13

D14

D15

D16
D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29 D30

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18
P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

H1

H2

H3

H4
H5

H6

H7

H8 H9

H10
H11

H12

H13

H14

H15

H16

H17
H18

H19 H20

H21

H22

H23

H24

H25

H26

H27

H28

H29H30

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4

srr <- sammon(allrr)$points[,1]

s
rr

 <
- 

s
a

m
m

o
n

(a
ll
rr

)$
p

o
in

ts
[,
2

]

K1

K2

K3
K4

K5

K6

k7

K8

K9

K10K11

K12

K13

K14

K15

K16

K17

K18

K19

K20

K21

K22

K23
K24

K25

K26

K27

K28

K29

K30

C1

C2
C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

H1

H2

H3

H4

H5

H6

H7
H8 H9 H10

H11

H12

H13

H14

H15

H16

H17

H18H19

H20

H21

H22

H23

H24

H25

H26

H27
H28

H29

H30

-0.4 -0.2 0.0 0.2

-0
.3

-0
.2

-0
.1

0
.0

0
.1

0
.2

0
.3

ssm <- sammon(allsm)$points[,1]

s
s
m

 <
- 

s
a

m
m

o
n

(a
ll
s
m

)$
p

o
in

ts
[,
2

]

K1
K2

K3

K4

K5

K6

k7

K8
K9

K10
K11

K12

K13

K14

K15

K16

K17

K18K19

K20

K21

K22

K23

K24

K25

K26

K27

K28
K29

K30

C1

C2

C3

C4

C5

C6
C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23C24

C25

C26

C27

C28

C29

C30

D1

D2

D3 D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14
D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

D30

P1

P2

P3

P4

P5

P6

P7

P8 P9P10

P11

P12

P13

P14
P15 P16

P17

P18

P19

P20

P21

P22
P23

P24

P25

P26P27P28P29

P30

H1
H2 H3H4

H5 H6

H7

H8
H9

H10
H11

H12

H13H14

H15

H16

H17

H18

H19
H20H21

H22
H23

H24

H25

H26

H27

H28

H29

H30

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

srt <- sammon(allrt)$points[,1]

s
rt

 <
- 

s
a

m
m

o
n

(a
ll
rt

)$
p

o
in

ts
[,
2

]

K1
K2

K3K4

K5

K6

k7

K8 K9

K10
K11

K12K13

K14

K15

K16

K17

K18

K19

K20

K21

K22

K23

K24

K25

K26
K27

K28 K29

K30

C1

C2
C3

C4

C5

C6
C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18
C19

C20

C21C22

C23C24

C25
C26C27

C28
C29

C30

D1 D2

D3

D4

D5

D6
D7

D8

D9

D10

D11
D12

D13
D14 D15

D16

D17

D18

D19

D20

D21

D22
D23D24

D25

D26

D27

D28

D29

D30

P1

P2

P3

P4
P5 P6
P7

P8

P9
P10

P11

P12

P13
P14P15 P16

P17

P18

P19P20

P21

P22

P23

P24

P25

P26
P27 P28 P29

P30

H1H2H3H4H5
H6

H7

H8 H9

H10H11

H12

H13H14
H15

H16

H17
H18

H19

H20

H21H22

H23

H24

H25

H26

H27

H28

H29
H30



133 

 

For metric cmdscale MDS there was very little observable difference between any 

of the plots produced using the different dissimilarity measures, so only Jaccard is 

shown in Figure 1. Compared to non-metric isoMDS, using a parametric 

algorithm had the effect of emphasising distance between rather than within sites, 

with the more variable C and D sites more closely grouped and the least 

polymorphic H and K sites more spread out and further apart from each other.  

 

The plots produced by non-metric isoMDS (Figure 4.3) were all fairly similar to 

each other, apart from the position of a few outliers, except Russell and Rao, 

which appeared more spread out (Figure 4.3). The fact that H and K were more 

spread out compared to D and C in the Russell and Rao plot is consistent with this 

coefficient treating the high shared absence in H and K as dissimilarity. Stress 

values ranged from 8.900 for simple matching to 9.453 for Sokhal and Sneath and 

11.913 for Russell and Rao. 

 

For non-metric nmds (Figure 4.4) the plots all appeared to be fairly similar, except 

for reflection or rotation of the whole plot, the position of some outliers and a 

wider spread of points for Russell and Rao again. Stress values ranged from 0.289 

for Czekanowski / Dice / Sørensen and Ochiai to 0.318 for Sokhal and Sneath and 

0.425 for Russell and Rao. nmds also gives an R
2
 value for goodness of fit, which 

ranged from 0.761 for Czekanowski / Dice / Sørensen to 0.698 for Sokhal and 

Sneath and 0.466 for Russell and Rao.     

 

Use of the Sammon algorithm in MDS produced widely differing results for 

different dissimilarity measures (Figure 4.4). Stress values ranged from 0.093 for 

Euclidean distance to 0.200 for Russell and Rao. The inversely weighted 

normalisation factor in Sammon mapping that is intended to preserve relationships 

between closely related points could be generally affected by distance: the Sokal 

and Sneath and Russell and Rao matrices had the highest mean dissimilarity 

(Table 4.1) and appeared to have the most spread out, circular plots. The fact that 

b + c distance is upweighted in Sokal and Sneath could explain the similarity to 

the plot for Euclidean distance. However, the plots for simple matching and 

Rogers and Tanaimoto contradict the close relationship with Euclidean distance 

shown by the correlations in Table 4.2. The plot for the Ochiai similarity 
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coefficient was quite different to that for Czekanowski / Dice / Sørensen, which 

contradicts other evidence suggesting redundancy. However, almost identical 

plots and stress values for isoMDS (Figure 4.3) supported the similarity of these 2 

coefficients. In general the sammon plots did not represent the correlations 

between similarity coefficients and there was no obvious relationship between 

mean dissimilarity, standard deviation or stress and Sammon plot appearance 

across all distance measures. This coincides with the experience of authors who 

recently applied the technique to properties of chemical compounds and 

concluded that “generation of the Sammon map is an uncontrollable objective 

procedure that ignores the experimental classification” (Ivanenkov et al., 2009).   

 

Treatment of outliers varied with both distance measure and MDS method. 

According to the dissimilarity matrices P2 was an obvious outlier, with fairly high 

dissimilarity to all other individuals, including those from its own site. In all of the 

metric cmdscale plots it appeared towards the centre of the plot, next to D2, 

despite having higher dissimilarity to D2 than D2 did to surrounding D points. For 

isoMDS and nmds the position of a few points, including D2 and some of the 

variable C group, varied but P2 was always at the edge of the plot, far away from 

all other points. With sammon MDS P2 was variously positioned towards the 

middle with D2 (Jaccard, Czekanowski / Dice / Sørensen, Ochiai, Simple 

matching, Rogers and Tanaimoto) or at the edge next to D2 (Euclidean distance, 

Russell and Rao, Sokal and Sneath,). Some sammon plots also showed apparent 

outliers that did not feature in sammon plots for other coefficients.   

 

Removing P2 did not change the configuration of the plots for cmdscale. It had no 

noticeable effect on the variable configurations and stress values for nmds, which 

suggests that nmds is robust to distortion caused by outliers, whereas removal of 

P2 lowered the stress value slightly for sammon and isoMDS plots. It did not 

change the configuration of the plots for isoMDS but it did allow the points to 

spread out, which is explained by the fact that non-metric MDS displays rank 

order and not actual distance. Removing P2 changed the shape, configuration and 

selection of other outliers in sammon plots.  
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Outliers are difficult to place on a 2D plot and have more variable positions, 

usually associated with slightly different local minimum values of stress 

producing different plots, where the configurations of closely related individuals 

are very similar but the outliers have very different relative positions. nmds 

automatically repeats the ordination a number of times (default 10) and selects the 

plot with the lowest final stress. Repeated nmds runs did produce different plots 

with different minimum stress values for the same similarity coefficient (e.g. 

Jaccard, Figure 4.4). However, with cmdscale, isoMDS and Sammon, repeating 

the MDS analysis made no difference to the plot configuration or the stress value. 

The fact that the stress values were exactly the same should indicate that the 

global minimum stress had been found. However, it is possible that the algorithms 

kept finding the same local minimum stress value within the plot, which could 

account for the unexpected position of known outliers such as P2.  

 

dissimilarity dissimilarity isoMDS nmds sammon 

measure mean s.d. stress stress stress 

ED 5.206 1.227 8.935 0.290 0.093 

J 0.368 0.081 9.180 0.300 0.175 

CDS 0.271 0.064 8.973 0.289 0.110 

O 0.271 0.064 8.962 0.289 0.130 

SS 0.485 0.095 9.453 0.318 0.105 

RR 0.558 0.023 11.913 0.425 0.156 

SM 0.331 0.078 8.900 0.290 0.114 

RT 0.441 0.094 9.367 0.304 0.200 

 

Table 4.4: Stress values for non-metric MDS plots of all 150 individuals; for 

isoMDS, nmds and sammon MDS algorithms; using Euclidean distance (ED) 

and Jaccard (J), Czekanowski / Dice / Sørensen (CDS), Ochiai (O), Sokal and 

Sneath (SS), Russell and Rao (RR), Simple matching (SM) and Rogers and 

Tanaimoto (RT) dissimilarity.  

 

Stress values have different ranges for different algorithms and so can not be 

compared between MDS methods. For all 150 individuals there was a strong, 

positive correlation between mean dissimilarity for the 7 similarity coefficients 

and stress for isoMDS and nmds (Spearman rank correlations, p < 0.01) but not 

for sammon. There were no significant relationships between standard deviation 

and stress. 
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                           isoMDS        nmds   sammon 

  SM J RR SM J RR SM J RR 

H 23.587 23.799 22.114 0.336 0.344 0.421 0.110 0.112 0.150 

K 27.394 27.753 24.800 0.365 0.371 0.420 0.121 0.123 0.149 

D 18.161 18.074 19.156 0.336 0.340 0.411 0.106 0.109 0.145 

C 0.938 0.183 0.452 0.297 0.304 0.403 0.092 0.095 0.140 

P 15.558 15.107 32.563 0.311 0.311 0.418 0.094 0.096 0.147 

All 8.900 9.180 11.913 0.290 0.300 0.466 0.114 0.175 0.156 

 

Table 4.5: Stress values for MDS plots of each of the 5 sites and all 150 

individuals; for isoMDS, nmds and sammon MDS algorithms; using simple 

matching (SM), Jaccard (J) and Russell and Rao (RR) similarity coefficients.  

 

For the samples of 30 individuals nmds and sammon stress values generally 

increased with increasing mean dissimilarity between the 3 different similarity 

coefficients: SM < J < RR. However, there was no obvious overall relationship 

between stress and the mean or standard deviation of dissimilarity (Tables 4.1 and 

4.3). There were some significant relationships between mean or standard 

deviation of dissimilarity and stress between the 5 sites: all strong negative 

correlations (p < 0.01), where the higher the dissimilarity or variation in 

dissimilarity was the lower the stress value was, but with only 5 data points these 

relationships may not be meaningful and there was no overall pattern associated 

with MDS method or similarity coefficient. 

 

For isoMDS and nmds all plots of 30 individuals from the same site except C had 

higher stress values than the plot of all 150 individuals, whereas for sammon all 

plots except K / SM had lower stress for 30 than for 150 individuals (Table 4.5). 

This shows that preserving small distances works better for small, closely related 

data sets in sammon, while nmds and isoMDS cope better with large, dissimilar, 

variable AFLP data sets.  

 

All MDS methods suffer from “the curse of dimensionality” (Faith et al., 2006, 

quoting Bellman, 1961): the larger the data matrix and associated dimensionality, 

the less variance there is in distances between points. In Sammon the higher stress 

levels associated with the larger data set and the wider, more even spread of 

points, with less separation between groups in the 2D plots (Figure 4.5) suggests 

that the inversely weighted distance normalisation algorithm in Sammon mapping 
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that preserves small distances is particularly susceptible to this effect. The plots 

for nmds were also more spread out with less clearly defined groups compared to 

cmdscale and isoMDS and looked similar to some of the Sammon plots.  

 

 

 

 
 

 

Figure 4.6: isoMDS plot of procrustes analysis m
2
 distances between MDS 

plots produced by applying cmdscale (C prefix, blue), isoMDS (I prefix, red), 

nmds (N prefix, green) and sammon (S prefix, orange) algorithms to 

Euclidean distance (ED), Jaccard (J), Czekanowski / Dice / Sørensen (CDS), 

Ochiai (O), Sokal and Sneath (SS), Russell and Rao (RR), Simple matching 

(SM) and Rogers and Tanaimoto (RT) distance or dissimilarity matrices for 

all 150 individuals. 
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Figure 4.7: Procrustes plots of MDS of Jaccard dissimilarity for all 150 

individuals, showing the difference between 2 MDS plots produced using 

isoMDS (IJ) and nmds (NJ),  m
2
 = 0.345, and between 2 separate runs of 

nmds (NJ), m
2
 = 0.443. Rotation is shown by the cross hairs and the blue 

arrows are changes in the position of points between the 2 plots. 

-0.10 -0.05 0.00 0.05 0.10

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

0
.1

0

Procrustes errors

Dimension 1

D
im

e
n

s
io

n
 2

-0.10 -0.05 0.00 0.05 0.10

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

Procrustes errors

Dimension 1

D
im

e
n

s
io

n
 2

NJ → NJ  m
2
 = 0.443 

 IJ → NJ  m
2
 = 0.345 

 



139 

 

MDS analysis of procrustes m
2
 distances between the different MDS algorithms 

and similarity coefficients grouped the plots by algorithm, with cmdscale and 

isoMDS forming tight groups, while nmds and sammon were more spread out 

(Figure 4.6). There was no obvious relationship between mean dissimilarity, stress 

and difference between the plots. After excluding reflection, rotation, translation 

and scale, procrustes analysis only compares the remaining geometric shape of the 

points, so the larger spread of nmds and sammon plots was due to greater 

difference in the relative position of the points. There was no connection with the 

fact that the original nmds and sammon MDS plots appeared more spread out due 

to scale. The configurations of the nmds and sammon plots were therefore 

affected to a greater extent by the choice of dissimilarity coefficient; in particular 

Russell and Rao, which was an outlier for all algorithms and caused serious 

problems for the nmds algorithm. These results were surprising because visually 

the nmds plots for different similarity coefficients all appeared very similar to 

each other, while the appearance of the sammon plots varied much more widely.   

 

The configuration of nmds plots varies between runs so procrustes differences 

within and between groups are variable with respect to nmds (Figure 4.7). 

Comparing replicate nmds plots for the same similarity coefficient to each other 

gave m
2 

values of ~ 0.3 for simple matching (NSM), ~ 0.4 for Jaccard (NJ) and ~ 

0.6 for Russell and Rao (NRR). The fact that these differences coincide with 

difference from the other methods and stress values suggests that nmds has 

increasing difficulty resolving a configuration for these similarity coefficients. 

 

The peculiar behaviour of the Sammon algorithm, described by the authors of the 

R function simply as non-metric multidimensional scaling, plus the variation in 

configuration, spread and stress value ranges between MDS methods 

demonstrates that care should be taken when selecting a method and also in 

comparisons of MDS plots in the literature. The fact that for algorithms other than 

sammon the MDS algorithms were not greatly affected by the similarity 

coefficient used to generate input matrix (except for the Russell and Rao 

coefficient) suggests that as with cluster analysis the choice of dissimilarity 

measure is not necessarily important in MDS. The lack of difference between the 

plots could simply reflect the close correlation of the similarity coefficients for 
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this data set but it could also show that rank ordering of points in non-metric MDS 

successfully eliminates the effects of band presence frequency or shared absence 

homoplasy on different measurements of genetic distance. Further in silico 

analysis of data sets designed to simulate band absence homoplasy would address 

this question. 

 

 

4.3.3   Multidimensional scaling ordination analysis 

 

 
 

 

Figure 4.8: isoMDS plot of a Jaccard dissimilarity matrix of 150 individuals 

from 5 sites: Hayle (H), Kennal (K), Devoran (D), St Clements (C) and 

Percuil (P). 
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Based on a combination of the performance of the different similarity coefficients 

and MDS algorithms, their appropriateness for binary AFLP data, plus availability 

of information about what is „in the box‟, isoMDS analysis of a Jaccard 

dissimilarity matrix was selected to represent genetic relationships in Nereis 

diversicolor within and between sites. 

 

The MDS analysis showed clear differentiation by site, with the copper tolerant 

(H and K) and non-tolerant (C and P) samples forming distinct groups. However, 

individuals from non tolerant site C were split between the tolerant and non-

tolerant groups. Site D, with intermediate copper pollution and tolerance, had the 

greatest diversity, with some individuals grouped with the tolerant samples from 

H and K. Mortality in toxicity tests after 216 hours of worms thus considered to 

be tolerant (Briggs, 2005) was 45 % and 40.5 % for samples D1 and D2 from 

mixed site R6 / D (Chapter 2, 2.3.4). This coincides with around 40 – 45 % of  

worms from site D grouped with the tolerant worms in Figure 4.8. 

 

 

4.3.4   Cluster analysis 

 

Comparison of hierarchical, agglomerative clustering methods found that single 

linkage allowed „chaining‟ to form 2 large clusters, whereas complete linkage 

produced a larger number of evenly sized clusters. Hierarchical, agglomerative 

clustering with Unweighted Pair Group Method with Arithmetic mean (UPGMA) 

linkage produced the plot that most closely resembled the MDS plot in Figure 4.8.   

 

With UPGMA linkage there were small differences between cluster analysis plots 

for the 9 different dissimilarity measures, with similarity between plot 

configurations corresponding closely with correlations between the 9 distance and 

dissimilarity matrices in Table 4.2. All differences were among closely related 

individuals.  
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Figure 4.9: Hierarchical, agglomerative cluster analysis of a Jaccard dissimilarity matrix, with Unweighted Pair Group Method 

with Arithmetic mean (UPGMA) linkage, for 150 individuals from 5 sites (H – green, K – orange, D – blue, C – red, P – purple) 
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There was no evidence of frequency based chaining. There was a significant 

difference in band presence frequency in individuals between the 5 sites according 

to ANOVA (Chapter 3, 3.3.2), which can present a problem for cluster analysis. 

However, the ecological data set of counts of fish species that Jackson et al. 

(1989) used to illustrate this phenomenon had a comparatively much wider range 

of frequencies. ANOVA compares the ratio of between group variance to within 

group variance. The result was significant because the variance between groups 

was greater than the variance within groups but both variances were relatively low 

and there was actually a low range of AFLP band presence frequencies, so the 

cluster analysis should not have been affected by size issues. 

 

The grouping of individuals according to site was almost exactly the same as for 

MDS analysis, which supports the validity and complementary nature of these two 

methods. 17 individuals from mixed site D (57 %) formed a distinct cluster. 

Compared to this group tolerant sites K and H were more closely related, despite 

the large geographic distance between them. 

 

 

4.3.5   Correlation between genetic and geographic distance 

 

Mantel permutation tests (Mantel, 1967) with a Spearman rank correlation and 

1000 permutations were carried out to test for correlation between genetic and 

geographic distance at the individual level. The test calculated pairwise 

correlations between the geographical distance matrix and a matrix of Jaccard 

dissimilarity coefficients for AFLP. This was done for all 150 individuals from all 

5 sites and also excluding site H, to assess the effects of the large geographical 

distance between H and the other sites.  

 

Map co-ordinates could not be used for geographic distance as Nereis diversicolor 

usually travels by sea, so distance between sites following the coast line was 

estimated with a piece of string. A 150 x 150 geographical distance matrix was 

constructed for distances between the sites in Km and converted to a lower 

triangle, no diagonal matrix using the R function as.dist (RDCT, 2007).  
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  H K D C P 

H 0 141 138 145 137 

K 141 0 3 15 16 

D 138 3 0 13 13 

C 145 15 13 0 20 

P 137 16 13 20 0 

 

Table 4.6: Estimated distances between sites in Km 

 

Mantel tests showed that there was a modest positive correlation between 

geographic distance and genetic dissimilarity for all 150 individuals from all 5 

sites (r = 0.482,  p<0.001) but a very weak positive correlation when site H was 

excluded (r = 0.132,  p<0.001).  

 

The positive correlation between geographic distance and genetic dissimilarity 

reported by the Mantel test was mainly due to the fact that it included 

comparisons between individuals within sites (0 geographic distance) and there 

was greater similarity within than between sites. This test may be more 

appropriate for single samples spread out over a gradient of geographical distance. 

However, the very weak correlation when geographically distant site H was 

excluded demonstrated that geography only plays a limited part in the genetic 

differentiation between tolerant and non-tolerant worms. In contrast according to 

the MDS analysis tolerant site K shares more genetic similarity with tolerant site 

H, 141 Km away, than it does with mixed site D, 3 Km away.     

 

At the population genetic level a positive correlation between geographic and 

genetic distance should indicate isolation by distance and equilibrium between 

drift and migration in long established sub populations (Malécot, 1955; Slatkin, 

1993). In a study using Mantel tests of pairwise FST values between populations 

against geographic distance in the freshwater mussel Pseudanodonta complanata 

Skidmore et al. (2010) found no significant correlation between geographic and 

genetic distance (r = 0.260, n = 12 populations with 1000 permutations, p = 139) 

but demonstrated isolation by distance after removing populations from a single 

river noted for anthropogenic introductions (r = -0.489, n = 11, P < 0.001).  
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4.4   Population level analysis methods 

 

The forces of mutation, drift, selection and migration change allele frequencies in 

subdivided populations, allowing evolutionary divergence. The structure of 

genetic differentiation between sub populations can be used to assess the level and 

pattern of divergence. 

 

Population level calculations of genetic diversity and differentiation analyse 

differences per marker within and between populations (Bonin et al., 2007). 

Allele frequency based methods include a number of mathematical measures of 

genetic diversity and differentiation within and between populations, based on 

allele frequencies at each locus (Kosman & Leonard, 2005). Because AFLP 

markers are dominant there is no empirical information available regarding the 

frequency of dominant and recessive alleles within or between individuals and 

populations. The allele frequency based approach to AFLP data analysis therefore 

relies on estimation of allele frequencies (Lynch & Milligan, 1994). Estimation 

methods can either assume Hardy Weinberg Equilibrium or include additional 

information regarding the inbreeding coefficient FIS (Chong et al., 1994).  

 

An invited review of AFLP statistical analysis methods by Bonin et al. (2007) 

listed 5 procedures for estimating allele frequencies as square-root, Lynch & 

Milligan (1994), Bayesian (Zhivotovsky, 1999), moment-based (Hill & Weir, 

2004) and Holsinger et al. (2002). However, the moment based method of Hill & 

Weir is actually a method of calculating genetic diversity and distance statistics. It 

is based on genotype frequencies, which implies assumptions about allele 

distributions but does not directly involve a calculation of allele frequencies. The 

Holsinger approach is another Bayesian method for estimating allele frequencies. 

Kraus (2000) included simple band frequency per locus as a possible method, 

though this is only suitable for haploid or self-fertilising species and over 

estimates allele frequencies when applied to diploid, random mating populations. 

The 3 main types of procedure for calculating allele frequencies from dominant, 

diploid data can therefore be classified as square root, Lynch & Milligan and 

Bayesian methods.      
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4.4.1 Estimating allele frequencies from AFLP data 

 

Square root 

The proportion of a population that is heterozygous at a locus is most easily 

calculated as 1 – homozygosity. If a population is in Hardy Weinberg Equilibrium 

then the frequency of the recessive null allele at each locus can be estimated as the 

square root of the frequency of null homozygotes (Clark & Lanigan, 1993). For 

AFLP data this is the square root of the frequency of absent bands. 

e.g. For 11  10  01  00 the frequency of the null allele (0)  is  √0.25  =  0.5  

This estimation method is downwardly biased for low frequencies of null 

homozygotes, particularly in small sample sizes (Lynch & Milligan, 1994). 

However, in a simulation of RAPD nucleotide divergence run by Clark & Lanigan 

(1993) there was very little error in estimates of divergence due to this bias.  

 

The square root procedure, assuming Hardy Weinberg equilibrium, can be 

implemented in genetics analysis software such as Popgene (Yeh et al., 1999) and 

AFLP-SURV (Vekemans et al., 2002) if no measure of the inbreeding coefficient 

FIS is provided. 

 

Lynch & Milligan 

To address downward bias of null alleles with low frequencies Lynch and 

Milligan (1994) introduced a method of estimating null allele frequencies by 

including the variance of the frequency of null homozygotes in the calculation:  

 

  1

28

var
1













x

x
xq

 

 

where x is the frequency of the null allele calculated using the square root method.  

 

Bayesian  

Bayes‟ theorem expresses the relationship between the conditional probability of 

event A, given B, and the converse conditional probability of B, given A: 
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   
 B

AAB
BA

P

P|P
)|(P 

 

Where: 

P(A|B) is the posterior probability of A, given B.  

P(B|A) is the posterior probability of B given A.  

P(A) is the prior probability of A, with no information about B. 

P(B) is the prior probability of B, which acts as a normalizing constant.  

 

In experimental terms it is the posterior probability of a hypothesis, after evidence 

is observed, in terms of the prior probabilities of the hypothesis, the evidence and 

the probability of the evidence given the hypothesis. 

 

The Bayesian estimation method assumes that the distribution of allele 

frequencies (p) follows a beta distribution: 

 

  

 

(Wright, 1937 in Cabellero et al., 2008), where θ = 4Nm[n/(n – 1)], N is the 

subpopulation size, n is the number of subpopulations, m is the migration rate, p  

is the average allele frequency in the total population, and Γ is the gamma 

function.  

 

The beta distribution is a family of continuous probability distributions with 2 

parameters, α and β. Beta distributions are used in Bayesian statistics as conjugate 

prior distributions for binomial distributions. A uniform prior distribution is a 

special case of the beta distribution, with parameters α  = 1 and β  = 1. Bayesian 

methods for population level statistics allow the use of different α and β 

parameters for beta prior probability distributions. The software AFLP-SURV 

(Vekemans et al., 2002) offers allele frequency estimation using uniform or non-

uniform priors, while DFDIST (Beaumont & Nichols, 1996) and Hickory 

(Holsinger & Lewis, 2007) allow user specified parameters. DFDIST suggests α  

= 0.25, β  = 0.25, while Hickory claims to employ default parameters that give 

“vague” priors, although these appear to be uniform α  = 1, β  = 1.   
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Zhivotovsky (1999) introduced a Bayesian approach to estimating null allele 

frequencies, which was shown in simulations to give nearly unbiased estimates of 

heterozygosity and genetic distance measures including F statistics. It is 

considered to be robust to moderate departure from Hardy–Weinberg equilibrium. 

The Bayesian method also performed best in comparisons of square root, Lynch 

and Milligan and Bayesian allele frequency estimation applied to empirical AFLP 

data with known allele frequencies from co-dominant markers (Isabel et al., 1995; 

Zhivotovsky, 1999). The Zhivotovsky method is used in AFLP-SURV and 

DFDIST. 

 

Holsinger et al. (2002) developed a Markov Chain Monte Carlo (MCMC) 

Bayesian method to estimate allele frequencies which is implemented in the 

software Hickory (Holsinger & Lewis, 2007).  

 

Loci with no null homozygotes in the sample can still have null alleles in 

heterozygotes, masked by dominant band presence. Null allele frequencies for 

complete, monomorphic bands are always zero for the square root method and can 

not be resolved by the Lynch & Milligan equasions but they are estimated by the 

Bayesian method.   

 

 

4.4.2   Including known FIS in allele frequency estimates   

 

Suare root and Bayesian estimates of allele frequency can include the inbreeding 

coefficient FIS if it is known. In order to estimate nucleotide divergence for RAPD 

data Chong et al. (1994) used an FIS value from a previous study of co-dominant 

markers to estimate allele frequency. They defined the expected frequencies of 

band presence (pp, pq, qp) and band absence (qq) at a locus, where p and q are 

marker (1) and null (0) alleles, as: 

 

f(p-) = 1 – (q2 + (l-q)qFIS)  

f(qq) = q2 + (l-q)qFIS   
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Iteration was then used to estimate q. This approach is implemented in Popgene 

and AFLP-SURV if an FIS value is provided.  

 

 

4.4.3   Estimating population diversity  

 

4.4.3.1   S   Shannon index of phenotypic diversity (Shannon, 1948)  

 

ii ppS 2log
 

where pi is the frequency of  band presence at the ith locus within a population. 

The Shannon diversity index is a band based measure that gives more weight to 

band presence than to band absence, which addresses the issue of band absence 

homoplasy. The application of a general index of diversity to genetic data was 

advocated by Lewontin (1972). However, this was criticised by Nei (1973) as 

lacking any interpretable connection with genetic diversity.   

 

 

4.4.3.2   H   Gene diversity (Nei, 1973) 
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Where pi and qi are the frequency of presence or absence at each locus i and n is 

the number of loci. An unbiased version, where N is the number of individuals is:  
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Nei‟s (1973) gene diversity is a measure of the average genetic diversity per locus 

within a population, and is equivalent to expected heterozygosity (HE) in a 

random mating population. Nei introduced the term gene diversity on the 

understanding that heterozygosity was not appropriate for non-random mating 
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populations, but most authors simply refer to H as heterozygosity. The maximum 

possible diversity increases with increasing number of alleles at a locus and tends 

towards 1 for multiallelic marker systems, with an equal frequency of each allele 

at a locus having the greatest diversity. For binary data Nei‟s gene diversity 

ranges between 0 and 0.5 rather than 1, with 0 being identity and 0.5 being 

maximum diversity (Kosman, 2003). Complete AFLP bands have 0 gene diversity 

and bands with an equal frequency of presence and absence have a gene diversity 

of 0.5. Therefore it is not appropriate to compare measures of gene diversity 

between dominant and codominant markers. 

 

Nei's gene diversity and the average mismatch dissimilarity (b + c / n) between 

individuals within a population are identical measures of diversity per individual 

for binary data (Kosman, 2003).  

 

Multiallelic markers such as RFLPs, microsatellites and SNPs have a theoretical 

maximum gene diversity of 1.0, rather than 0.5 for dominant markers. The 

presence of multiple alleles can provide additional information regarding gene 

diversity, though rare alleles contribute little to the overall measure of gene 

diversity. 

 

 

4.4.4   Estimating population differentiation  

 

4.4.4.1  ΦST   AMOVA (Excoffier et al., 1992) 

 

Analysis of MOlecular VAriance (Excoffier et al., 1992) is a band based method 

used to estimate ΦST, a measure of genetic differentiation between sub 

populations. It is similar to ANOVA but uses permutation tests for significance to 

avoid the issue that binary data is not normally distributed. Genetic diversity is 

partitioned within and between populations, based on a distance matrix. As it 

analyses variance AMOVA requires a Euclidean distance measure in order to be 

strictly rigorous. Excoffier et al. (2005) use squared Euclidean distance in their 

software Arlequin, which may not be appropriate for binary data. Other more 
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suitable distance measures such as similarity coefficients with Euclidean 

properties could be used.  

 

A nested AMOVA can be calculated for a hierarchy of levels of population 

structure. The varience components can then be used to calculate Φ statistics for 

each level to determine, for example, differentiation between groups of sub 

populations associated with tolerant and non tolerant sites.  

 

The advantage of AMOVA over allele frequency based methods is that it does not 

rely on as many assumptions about the statistical properties of the data or the 

underlying model of population structure, although it does assume that loci are 

independent and mating is random.  

 

 

4.4.4.2  F statistics  Wright (1951)  

 

Wright (1951) defined the following relationships with regard to heterozygosity, 

where F is the level of fixation, the increase in homozygosity in individuals and 

populations due to inbreeding or drift: 

 

FIT   Overall Fixation index  

 

T

IT
IT

H

HH
F


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The mean reduction in heterozygosity per individual, relative to the total 

population. It is the product of non-random mating within sub-populations and 

random drift among sub populations: 

 

    STISIT 111 FFF 
 

 

This equasion is only applicable when there are 2 alleles at a locus (Nei, 1973).  
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FIS   Inbreeding coefficient 

 

S

IS
IS

H

HH
F




 

 

The mean reduction in heterozygosity per individual due to non-random mating in 

a population, measured on the scale -1 (all heterozygous) to +1 (all homozygous), 

with FIS = 0 being Hardy Weinberg Equilibrium (p
2
 + 2pq + q

2
 = 1). It is used as a 

measure of the amount of inbreeding and deviation from Hardy Weinberg 

Equilibrium in sub populations. For marker and null alleles A and a at a locus, 

with frequencies p and q = 1 - p, the expected genotype frequencies in a 

segregating population have the following probabilities (Lynch & Milligan, 

1994): 

 

  ISIS

2 1PAA pFFp   

 IS12PAa Fpq   

  ISIS

2 1Paa qFFq 
 

 

FIS is also the probability that 2 alleles in an individual are identical by descent. 

According to Wright‟s (1934) method of path analysis the probability of identity 

by descent is FIS = 0.5 for self fertilisation, FIS = 0.25 for mating between siblings 

and FIS = 0.125 for uncle-neice or cousin mating. In a study of mice, for example, 

Selander (1970) found high inbreeding of FIS = 0.182 

 

FST   Fixation index  

 

T

ST
ST

H

HH
F




 

 

FST is a measure of genetic differentiation. It is the mean reduction in 

heterozygosity in sub-populations, relative to the total population, due to genetic 

drift. It measures the proportion of genetic diversity that is due to differentiation 
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between sub populations, where 0 is no difference and 1 is complete 

differentiation, with sub-populations fixed for different alleles.  

 

The classic method of estimating FST is according to Weir and Cockerham (1984). 

Weir and Cockerham used alternative notation in their re-definition of F statistics 

that are widely used in the literature: F ≈ FIT  θ ≈ FST  f ≈ FIS     

 

 

4.4.4.3  GST   Gene differentiation (Nei, 1973) 
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ST
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G
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  

 

GST (Nei, 1973) is an alternative measure of genetic differentiation between 

subpopulations. Because heterozygosity increases with population size, 

heterozygosity for the total population of an orgasnism, HT, will be higher than 

the average heterozygosity in sub-populations, SH . GST is the proportion of the 

heterozygosity in the total population (HT) that occurs between (DST) rather than 

within (HS) populations. 

 

 

4.4.4.4   Relationship between FST and GST 

 

FST and GST differ in that FIS and FIT measure the deviations of genotype 

frequencies from Hardy Weinberg proportions, while Nei‟s measure uses gene 

identities (Nei, 1973). For 2 alleles GST is equivalent to Wright‟s FST (Nei, 1973). 

Wright‟s equasion only holds true for 2 alleles so GST is recommended for 

multiple alleles; equivalent to the weighted average of FST across all alleles (Weir 

& Cockerham, 1984). AFLP analysis effectively considers band presence and 

absence as 2 alleles so FST and GST are both appropriate. However, unlike FST, GST 

can be applied to more than 2 alleles per locus and to more than 2 populations, 

which can be of unequal size, which makes it more suitable for multiple sub-

populations. It is also claimed that H is robust to ploidy, the level of mutation, 
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selection, and migration and the method of reproduction (Nei, 1973; Crow & 

Aoki, 1984). Due to differences in the calculation method FST and GST do give 

different estimates of differentiation, which must be considered when comparing 

studies. 

 

 

4.4.4.5   Moment FST  (Hill and Weir, 2004) 

 

Hill and Weir (2004) suggested a moment-based method of estimating FST 

directly from the distribution of genotype frequencies, using the mean and 

variance of the observed frequency of null homozygotes per locus. This approach 

assumes Hardy Weinberg equilibrium, independent loci (linkage equilibrium), 

zero mutation rate and equal genetic distance between populations, which implies 

an island model. Rather than using the variance of estimated allele frequencies as 

in the Lynch and Milligan method, using variance within and between genotype 

frequencies was found to be more robust to low frequencies of null homozygotes. 

The method also performed better compared to calculations of genetic distance 

measures based on allele frequencies estimated using the square root method. A 

comparison of the square root and Hill and Weir procedures applied to AFLP data 

for groups of pig breeds with high and low polymorphism by Foulley et al. (2006) 

confirmed that the Hill and Weir method is more accurate in the case of low 

heterozygosity. However, according to Bonin et al. (2007) this method is not 

widely used and it is not implemented in any relevant software.  

 

 

4.4.4.6  Lynch & Milligan FST (1994)  

 

   iii qqqH var212 i   

 

Where q is the frequency of the null allele for the ith locus. Lynch & Milligan 

(1994) proposed calculating unbiased H, F and D statistics by including the 

variance of the frequency of null alleles in the calculation. Lynch & Milligan 

calculations of H, F and D do not necessarily have to be based on allele 
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frequencies derived by their estimation method. In the software AFLP-SURV 

Vekemans et al. (2002) have included options to estimate allele frequencies using 

square root and Bayesian methods but not Lynch & Milligan; whereas their F, H 

and D calculations do use the Lynch & Milligan method of including variance.  

 

Lynch & Milligan also recommended restricting analysis to AFLP loci with a null 

homozygote frequency greater than 3 / the number of samples. For 150 samples 

this would be 0.02, so bands with ≤ 3 absences would be excluded from the 

analysis. The result is a loss of information, bias in the choice of loci for analysis 

and strong effects of sample size, which could affect estimates of genetic diversity 

and differentiation (Isabel et al., 1999; Zhivotovsky, 1999). Comparisons of 

methods including and excluding such loci by (Kraus 2000) revealed only a low 

level of bias. This method has only been used in a few papers (reviewed in 

Nybom & Bartish, 2000) and is not implemented in AFLP-SURV.  

 

 

4.4.4.7   π Nucleotide diversity  

 


ijj

ij
i xx

 

 

Where xi and xj are the respective frequencies of the ith and jth sequences in the 

population and πij is the number of nucleotide differences per site between the ith 

and jth sequences. Nei and Li‟s (1979) measure of nucleotide diversity is the 

average number of differences per nucleotide site between two randomly chosen 

DNA sequences. This is analogous to estimating genetic diversity from allele 

frequency data. It was originally proposed to analyse restriction enzyme 

fragments of  mitochondrial DNA but has been adapted for dominant markers 

such as RAPD (Borowski, 2001) and AFLP (Innan et al., 1999).  
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Borowsky‟s (2001) method of calculating π is band based:  

 

m

e

4

3


 

 

where Φe is the proportion of band mismatches (b + c) between two randomly 

selected individuals, and m is the number of nucleotides screened. For AFLP data, 

m is the total number of bases in both restriction sites, plus the selective 

extensions. This assumes Hardy Weinberg Equilibrium, an absence of band 

absence homoplasy and a low value of  π. 

 

Clark and Lanigan (1993) suggested a method of calculating π is based on prior 

estimation of allele frequencies. Innan et al.‟s (1999) extension of this method for 

AFLP data assumes Hardy Weinberg Equilibrium, plus a GC content of ~50%. 

They point out that estimations of nucleotide diversity may not be accurate when 

there is no information about the frequency of indels and nucleotide substitutions. 

According to Bonin et al. (2007) nucleotide diversity calculations are rarely 

applied to AFLP data, though it was included in a comparison of methods by Tero 

et al. (2005). The manual for the software AFLP-SURV (Vekemans et al., 2002) 

states the intention to calculate nucleotide diversity for AFLP data but it has not 

been implemented yet 

 

 

4.4.4.8    D   Genetic distance (Nei, 1972, 1978) 

 

 
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D = -ln I 

 

where pi and qi are the frequencies of the ith alleles in 2 populations. Nei‟s 

genetic distance (1972) is defined as the number of allele differences per locus 

between 2 populations. It is derived from a calculation of normalised genetic 
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identity (I), which is 0 when 2 populations have no alleles in common and 1 when 

they have the same alleles in the same frequencies. Genetic distance (D) is –ln(I). 

It assumes that all loci have the same neutral rate of mutation, mutation and drift 

are in equilibrium and effective population sizes are stable. 

 

Nei’s Unbiased genetic distance (1978) includes a correction for small sample 

sizes.  

 

Reynolds’ distance (Reynolds et al., 1983) 

 

-ln(FST) 

 

This distance measure is the equivalent of Nei’s distance applied to F statistics. 

  

 

4.4.5   Estimating the inbreeding coefficient FIS  

 

Inbred individuals tend to be more homozygous and therefore have more null 

homozygous band absences than expected by chance. However, the frequency of 

band absence at a locus can be explained either by the frequency of the null allele 

or by the level of inbreeding, so it is not possible to estimate both simultaneously 

(Dasmahapatra et al., 2007). Populations can have different mean FIS but the same 

variance (Hartle & Clark, 2007). 2 different approaches have attempted to 

overcome this circular argument and estimate FIS from AFLP data. 

 

 

4.4.5.1   Bayesian FIS  Holsinger et al. (2002) 

 

Holsinger et al. (2002) developed a Bayesian approach to estimate the inbreeding 

coefficient FIS, implemented in the software Hickory (Holsinger & Lewis, 2007). 

Assuming that FIS and FST are similar across loci and a beta distribution of allele 

frequencies, it estimates the parameters of this distribution rather than individual 

allele frequencies and so avoids estimating allele frequencies and FIS 

simultaneously. This is one of only a few methods that attempts to estimate the 
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level of inbreeding and departure from Hardy-Weinberg equilibrium for dominant 

markers and was thus an important development in the analysis of AFLP data.  

However, the additional information used to calculate FIS, derived from 

differences in genotype distributions at loci with different frequencies, is limited 

(Hill & Weir, 2004). Estimations of FIS using this method have been criticised as 

unreliable (Bonin et al., 2007) and biased (Dasmahapatra et al., 2007) and 

Holsinger & Lewis themselves advise using it with caution.   

 

 

4.4.5.2   Iterative FIS  Dasmahapatra et al. (2007) 

 

Dasmahapatra et al. (2007) suggested an iterative method to estimate FIS, based 

on the assumption that wild populations generally have a low proportion of inbred 

individuals (Marshall et al., 2002 in Dasmahapatra et al., 2007). To solve the 

circularity problem they simply assumed that at least half of the individuals in a 

population were outbred (FIS = 0) and therefore had allele frequencies in Hardy 

Weinberg equilibrium. Under this assumption low variance in band absence 

frequency implied low FIS, while high variance implied high FIS. Their 

FAFLPcalc program is a Visual Basic macro used in Excel, which iteratively 

searches for the best fit between raw band frequencies and simulated band 

frequencies with different values of FIS. So far this method has only been used in 

1 other paper (Honnay et al., 2009). 

 

 

4.4.6   Estimating gene flow Nm from FST 

 

Where N is the effective population size and m is the migration rate, Nm is the 

number of migrants per generation exchanged between sub populations, often 

described as gene flow.  

 

For Nm > 0.5 gene flow is high enough to prevent differentiation due to genetic 

drift, whereas for Nm < 0.5 sub populations will tend towards fixation of alleles 

(Wright, 1931). Alternatively structure can be the result of localised selection, on 

a level that outweighs the homogenising effects of gene flow. If Nm > 0.5 
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overrides the effects of differentiation due to drift, then if a population has Nm > 

0.5 and yet has genetic structure the differentiation is likely to be the result of 

selection rather than drift.    

 

There is an inverse relationship between gene flow Nm and the fixation index FST 

as migration between sub populations increases heterozygosity and reduces 

differentiation (Wright, 1931):  

 

 

 

Figure 4.10: Relationship between fixation index FST and gene flow Nm for 

an island model of migration. 
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Therefore the following equation can be used to estimate gene flow from FST: 
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Estimating Nm from FST  has been criticised because the underlying island model 

and assumptions involved do not reflect real populations (Whitlock & McCauley, 

1999). Using FST to estimate Nm only gives an accurate description of the 

relationship between gene flow and genetic drift if FST is robust to the effects of 
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mutation, selection and number of demes. Crow & Aoki (1984) showed that under 

a model of island population structure and neutral mutation FST is nearly 

independent of mutation rate and number of demes. Slatkin & Barton (1989) 

investigated the effects of selection on FST and found little difference under 

different levels of selection, demonstrating that FST is robust to violations of 

island model assumptions. Using to FST estimate Nm is a circular argument, 

although FST has been shown to co-vary with direct estimates of migration 

(Neigel, 1997) and it is useful  for comparison with other studies (Neigel, 2002). 

 

In addition this approach assumes equilibrium between drift and migration in the 

sub populations, in accordance with Wright‟s island model (Rousset, 1997). 

According to Hutchison & Templeton (1999) migration – drift equilibrium is not 

the case for most natural populations. Malécot (1955) showed that in a stepping 

stone model of population structure a positive correlation between genetic and 

geographic distance indicates that populations are in migration – drift equilibrium. 

According to (Slatkin & Barton, 1989) the relationship between FST and Nm is 

approximately equivalent in stepping stone and island models. A significant 

positive correlation between genetic and geographic distance according to a 

Mantel test could therefore be considered evidence for equilibrium under either 

model, in which case the equasion based on F statistics would be appropriate.   

 

Slatkin & Barton (1989) reviewed 3 methods for estimating the level of gene flow 

in a population: FST, maximum likelihood and rare alleles. The rare alleles method 

is based on the fact that frequency of private alleles, defined as AFLP bands that 

only occur in a single sub population sample, should be inversely proportional to 

gene flow (Slatkin, 1985).  

 

Slatkin & Barton compared these methods using simulated data and found that 

FST and rare alleles gave similar results and showed comparable sensitivity to 

different levels of selection and population structure, whereas maximum 

likelihood methods gave biased results when a low number of sub populations 

were sampled. Due to the practical difficulty in accurately estimating rare alleles 

for small samples of dominant markers Waples (1987) and Slatkin & Barton 

(1989) recommended estimating gene flow from FST.  
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4.4.7   FST simulations to identify loci under selection 

 

Surveying a large number of AFLP loci allows identification of outlier loci that 

may be of interest (Luikart et al., 2003). Alleles for an adaptive trait under 

selection are expected to have a higher frequency in a population compared to 

neutral alleles. Genetic differentiation between sub populations is therefore 

expected to be higher for loci under disruptive selection. It is possible to identify 

loci that are potentially under divergent selection by comparing heterozygosity 

(H) within sub populations and genetic differentiation (FST) between populations 

with a neutral model of evolution. The distribution of FST as a function of 

heterozygosity is relatively robust to population structure, demography and 

mutation rate (Beaumont & Nichols, 1996; Beaumont, 2005). 

 

The software DFDIST (Beaumont & Nichols, 1996) simulates neutral loci in a 

subdivided population according to the symmetrical infinite island model, with 

equilibrium between migration and drift (Wright, 1951). The distribution of FST 

for the empirical data is compared with the simulated neutral Fst distribution to 

identify outlier loci. Loci with very low or high Fst, which fall outside the neutral 

distribution, are considered to be candidates for selection. 

 

The success of DFDIST in identifying loci under selection depends on the number 

of such loci in the genome and their average effects, the estimate of
 
genetic 

differentiation used and
 
the critical probability chosen to detect outliers (Cabellero 

et al., 2008). 

 

 

4.4.8   Linkage disequilibrium 

  

Genetic linkage is the non-independent assortment of alleles or markers due to 

proximity on the same chromosome. In population genetics linkage disequilibrium 

is the non-random association of alleles or markers at different loci (Luikart et al., 

2003). This may be attributable to linkage or to loci on different chromosomes 

that are functionally related or subject to the same selection pressure. Stabilising 

selection can cause negative linkage disequilibrium, with loci associated less than 
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expected by chance, while disruptive selection can increase positive linkage 

disequilibrium, with loci associated more than expected by chance (Walsh & 

Lynch, 2007).  Recombination in random mating reduces linkage disequilibrium 

in successive generations, so high disequilibrium can signify a recent bottleneck. 

However, disequilibrium due to a high number of negative associations in a 

sample indicates cryptic population subdivision or admixture (Slate & Pemberton, 

2007).    

 

Linkage disequilibrium can be measured using contingency tables as the 

difference between observed and expected distribution of band frequencies 

(Excoffier et al., 2005). Pairs of AFLP markers show significant linkage 

disequilibrium if they occur together more or less frequently than expected by 

chance. 

 

Linkage disequilibrium can be used in association mapping to identify groups of 

linked loci that are associated with phenotypic traits and potentially the subject of 

disruptive selection. 

 

 

 

Measure min max 

Shannon 0 lnS 

H 0 0.5 

FST, GST, ΦST 0 1 

FIS -1 1 

Distance measures 0 1 

π 0 1 

Nm 0 25 x 10
6
 

 

Table 4.7: Summary of scales of measurement for population level statistics 

for dominant data  
 
 
 

 

 

 

 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118543924/main.html,ftx_abs#b61
http://www3.interscience.wiley.com/cgi-bin/fulltext/118543924/main.html,ftx_abs#b61
http://www3.interscience.wiley.com/cgi-bin/fulltext/118543924/main.html,ftx_abs#b61
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4.5   Population level results 

 

A comprehensive range of estimations of population level diversity, 

differentiation and distance were calculated for the total sample population of 150 

individuals (T), divided into 5 sub populations of 30 individuals for each of the 5 

study sites H, K, D, C and P (Chapter 2, Table 2.1). The results of different 

methods of calculating similar measures of diversity and differentiation were 

compared and contrasted to assess their suitability for use with dominant AFLP 

data. 

 

 

4.5.1   Software for population level analyses 

 

There are a large number of free software packages for genetic data analysis, 

(reviewed by Excoffier & Heckel, 2006; Bonin et al., 2007). A survey of the 

available software found the following packages to be suitable for the calculations 

of population level diversity and differentiation required by this study: 

 

 
Authors Available from 

Popgene Yeh et al. (1999) http://www.ualberta.ca/~fyeh/index.htm  

AFLP-SURV Vekemans et al. (2002) http://www.ulb.ac.be/sciences/lagev/aflp-surv.html 

Hickory Holsinger & Lewis (2007) http://darwin.eeb.uconn.edu/hickory/software.html  

AFLPcalc Dasmahapatra et al. (2007) www.ucl.ac.uk/taxome/kanchon/ 

Arlequin Excoffier et al. (2005) http://cmpg.unibe.ch/software/arlequin3/  

DFDIST Beaumont & Nichols (1996) http://www.rubic.rdg.ac.uk/cgi-bin/MarkBeaumont/  

 

Table 4.8: Software used for population level analyses 

 

Some have been specifically adapted to accommodate dominant data, e.g. 

Popgene, while others allow dominant data to be analysed using the settings for 

haploid data, e.g. Arlequin. Other software packages tested were less successful 

and either would not run at all under Microsoft Windows Vista, e.g. Genepop 

(Raymond & Rousset, 1995), or could not be run without crashing, e.g. PCO 

(Anderson, 2003).  

 

 

http://www.ualberta.ca/~fyeh/index.htm
http://www.ulb.ac.be/sciences/lagev/aflp-surv.html
http://darwin.eeb.uconn.edu/hickory/software.html
http://cmpg.unibe.ch/software/arlequin3/
http://www.rubic.rdg.ac.uk/cgi-bin/MarkBeaumont/
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4.5.2 Shannon index of phenotypic diversity 

 

While it is not recommended for use with AFLP data, the Shannon index of 

phenotypic diversity S (Shannon, 1948) was calculated using Popgene, for 

comparison with other studies. This is a band fequency based measure of 

diversity. 

 

 
S s.d. 

H 0.070 0.174 

K 0.083 0.187 

D 0.135 0.231 

C 0.165 0.251 

P 0.100 0.200 

T 0.175 0.251 

 

Table 4.9: Shannon index of phenotypic diversity S for 5 sub populations and 

the total population of 150 individuals (T). 

 

The results followed the same order of diversity for the 5 sites as individual level 

analyses, T > C > D > P > K > H, with sites C and D being the most diverse, 

while copper tolerant sites H and K had much lower diversity. 

 

Kruse et al. (2003) used the Shannon index as a measure of diversity in an RAPD 

study of sibling species in Scoloplos armiger. S was much higher, ranging from 

0.37 to 1.59 within sites. They also used the Shannon index to partition diversity 

within and between sites and found similar high differentiation for the Shannon 

index HST = 0.89 and AMOVA ΦST = 0.81 . As ΦST is usually higher than FST or 

GST (Bonin et al., 2007 and the present study), the even higher HST appears to be 

the least useful of the band frequency based population level statistics. 

 

 

4.5.3   ΦST  AMOVA 

   

The other band based method commonly used in population studies with 

dominant data is Analysis of MOlecular VAriance (Excoffier et al., 1992), which 
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partitions variance within and between sub populations to give an estimate of 

differentiation between the sub populations, ΦST. AMOVA was performed for the 

5 sub populations using Arlequin (Excoffier et al., 2005) to measure genetic 

diversity and differentiation. 

 

A nested AMOVA of 3 hierarchical levels of population structure was also 

performed, which partitioned the variance between sub populations within groups, 

between groups and between sub populations. The variance components were 

then used to calculate Φ statistics of differentiation; ΦGT between groups within 

the total population, ΦSG between sub populations within groups and ΦST between 

sub populations within the total population. Significance was based on non-

parametric permutation tests with 1000 permutations.  

 

For all 5 sub populations ΦST = 0.436 (d.f. = 4,145; p < 0.001), with the variation 

partitioned 56.4% within populations and 43.6% between populations.  

 

Group 1     HK HK HKD 

Group 2  CP DCP CP 

% Variation between groups 50.75 29.00 42.82 

% Variation between sub pops within groups 8.57 21.16 10.46 

% Variation within sub pops 40.68 49.83 46.72 

Variance between groups (Va) 10.188 5.126 8.073 

Variance between sub pops within groups (Vb) 1.721 3.741 1.972 

Variance within sub pops (Vc) 8.166 8.808 8.808 

Total variance (Vt) 20.076 17.674 18.853 

ΦGT Between groups within total pop (Va/Vt) 0.508 0.290 0.428 

ΦSG Between sub pops within groups (Vb/Vb+Vc) 0.174 0.298 0.183 

ΦST Between sub pops within total pop (Va+Vb/Vt) 0.593 0.502 0.533 

 

Table 4.10: Nested AMOVA for sub populations divided into 2 groups: 

tolerant sites H and K against non-tolerant sites C and P; mixed site D 

grouped with the non tolerant sites and with the tolerant sites. Percentage 

variation, variance components and Φ statistics of differentiation were 

calculated in Arlequin with a hierarchy of sub populations, groups and total 

population. According to permutation tests with 1000 permutations the 

variance component Va and ΦGT between groups was not significant in all 3 

cases (p > 0.1) but all other values were significant (p < 0.001). 

 



166 

 

The non-significant value for the variance component and Φ statistic between 

groups can be explained by the small number of demes in each group. The 

probability of obtaining a value more extreme than the observed value by chance 

was p < 0.001 in all cases but the probability of obtaining a value equal to the 

observed value by chance was higher due to the use of permutation tests on small 

groups, so P(rand. value >= obs. value) was not significant (Excoffier et al., 

2005). This is a general problem with performing nested AMOVA on small 

groups. The other variance components were significant and the Φ statistics did 

follow the same hierarchical rule as Wright‟s F statistics, where 1 - ΦST = (1 - 

ΦSG) (1 - ΦGT). While the non-significant results should be viewed with caution, 

the test can be considered informative to some extent. However, calculating 

statistics of genetic differentiation based on partitioning the variance gave slightly 

different values for ΦST between the 5 sub populations depending on the 

hierarchical grouping.  

 

There was high (non-significant) genetic differentiation between groups of 

tolerant and non-tolerant sites. Groups of the 2 tolerant and 2 non-tolerant sites, 

without the mixed site, had the highest variation between groups and the least 

variation between sub populations within groups, with differentiation between 

groups (ΦGT = 0.508) accounting for most of the differentiation between sub 

populations (ΦST = 0.593). There was greater variation between groups than 

within sub populations, whereas when the mixed site was included there was 

greater variation within sub populations than between groups. There was less 

difference between the 2 groups and more difference between sub populations 

within groups when mixed site D was grouped with non-tolerant sites C and P 

than when it was grouped with H and K, which indicates that site D is more 

similar to the tolerant sites. 

 

Johnson et al. (2005) found comparable results between species in a plant genus, 

with 35.7% of the total variation between species and ΦST = 0.615. A hierarchical 

AMOVA on different spatial scales conducted on the sea anemone Nematostella 

vectensis by Reitzel et al. (2007) partitioned the variance 24.9% between regions, 
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45.2% between populations within regions and 29.8% between sub populations 

within populations.   

 

Because AMOVA is a band based analysis of genotype frequencies the results 

should not be compared with allele frequency based estimations of genetic 

differentiation such as FST (Excoffier et al., 2005). To illustrate this difference and 

investigate the extent of deviation between estimates of genetic diversity and 

differentiation in general a range of methods were compared. 

 

 

4.5.4   Comparison of genetic differentiation measures  

 

A number of different measures and calculation methods can be used to estimate 

genetic diversity and differentiation (Figure 4.1). Values of genetic differentiation 

measures GST, FST and ΦST based on different genotype or allele frequency 

estimation methods were compared. There are discrepancies in the results of these 

estimations, both between different measures and between values of the same 

measure based on different allele frequency and differentiation calculation 

methods, which affects comparisons of measurements between studies. To assess 

the extent of this difference 16 estimations of differentiation were obtained for 

150 individuals in 5 sub populations, according to the following methods: 

  Allele frequency estimation method Calculation method Software 

BF N Band frequency Nei (1973) spread sheet 

BF LM Band frequency Lynch & Milligan AFLP-SURV 

SR N Square root Nei (1973) Popgene 

SR LM  Square root Lynch & Milligan AFLP-SURV 

Bnu N Bayesian (Zhivotovsky), non-uniform  Nei (1973) spread sheet 

Bnu LM Bayesian (Zhivotovsky), non-uniform  Lynch & Milligan AFLP-SURV 

Bu N Bayesian (Zhivotovsky), uniform  Nei (1973) spread sheet 

Bu LM Bayesian (Zhivotovsky), uniform  Lynch & Milligan AFLP-SURV 

B H f free Bayesian (Holsinger)  Holsinger, f free model Hickory 

B H full Bayesian (Holsinger)  Holsinger, full model Hickory 

B H f = 0 Bayesian (Holsinger)  Holsinger, f = 0 model Hickory 

ΦST
 AMOVA AMOVA Arlequin 

 

Table 4.11: Abbreviations for allele frequency and genetic differentiation 

estimation methods and software used in analyses.  
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Where possible both GST and FST were calculated using the same method. These 

methods were chosen because they are freely available in software and therefore 

reflect the range of statistics that are reported in the literature, although 3 

calculations of GST according to Nei (1973) were done by hand, based on allele 

frequencies produced by AFLP-SURV, in order to compare them with Lynch & 

Milligan calculations for the same allele frequencies. (AFLP-SURV uses the 

Lynch & Milligan method for GST but not for allele frequency estimations). 

 

 

 

Figure 4.11: Estimates of GST (G), FST (F) and ΦST for 150 individuals in 5 sub 

populations, calculated using 16 different methods (Table 4.11). 

 

-0.200

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

BF    

N    

G 

BF    

LM    

G

BF    

LM    

F

SR    

N    

G

SR    

LM    

G

SR    

LM    

F

Bnu    

N    

G

Bnu    

LM    

G

Bnu    

LM    

F

Bu    

N    

G

Bu    

LM    

G

Bu    

LM    

F

B H    

f free    

G

B H    

full    

G

B H    

f = 0    

G

ΦST

D
if

fe
re

n
ti

a
ti

o
n



169 

 

All 4 estimates of FST were slightly lower than GST for the same method. 

According to Holsinger & Lewis (2007) FST should be larger than GST because it 

includes drift over time rather than just among contemporary populations.  

 

Estimates of differentiation were highest for the band based measures: GST and FST 

with allele frequency estimates based on band frequencies (BF), plus band 

frequency variance (AMOVA ΦST). 

 

The estimates for the Bayesian method with uniform priors (Bu) were all very low 

and negative for GST calculated according to Nei, with HT lower than mean HS, 

which is not possible. The Nei calculation used allele frequencies from AFLP-

SURV, which produced a positive result for Lynch & Milligan calculations based 

on the same allele frequencies. It is possible that the Lynch & Milligan correction 

solved the problem but examination of the allele frequencies suggested an error in 

data reported by the software. The Bu N method was not included in further 

analyses.  

 

Other calculations according to Nei were lower than for Lynch & Milligan for the 

band frequency and Bayesian methods but higher for square root. There was less 

difference between the square root and Bayesian non uniform values for Lynch & 

Milligan, which suggests that their correction may have a smoothing effect across 

methods, but in general there was little difference between all SR and Bnu 

methods. For the Holsinger Bayesian method GST increased with increasing 

values of FIS included in the three models:  f = 0 < full model < f free, with the full 

model GST similar to that for the Bayesian non uniform Lynch & Milligan 

method.     

    

A comparison of methods by Bonin et al. (2007) based on AFLP data for 13 plant 

species had comparable results, with high values for the band based methods, very 

low and in 2 cases negative values for Bayesian uniform Lynch & Milligan and 

similar values for Bayesian non uniform Lynch & Milligan and Holsinger full 

model. However, they generally had the highest results for square root GST from 
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Popgene (SR N G), and therefore a larger difference between GST and FST copared 

to this study. Most of their species had lower FST < 0.25. 

 

Based on these results and the benefits of GST proposed by Crow & Aoki (1984), 

GST was selected over FST to perform a more detailed analysis of heterozygosity 

within and between the 5 sub populations. 

 

 

4.5.5   Estimation of genetic diversity and differentiation  

 

To analyse genetic diversity and differentiation in the 5 sub populations 

heterozygosity HS, total heterozygosity HT and the differentiation estimate GST 

were calculated using 3 different methods, based on 4 different allele frequency 

estimation methods, with 3 different models for the Holsinger procedure (Table 

4.11).  

 

 BF 

N 

BF 

LM 

SR 

N 

SR 

LM 

Bnu 

N 

Bnu 

LM 

Bu 

LM 

B H 

f free 

B H 

full 

B H 

f = 0 

HS  H 0.041 0.043 0.044 0.057 0.057 0.060 0.182 0.107 0.115 0.129 

HS  K 0.054 0.056 0.052 0.065 0.070 0.073 0.189 0.128 0.134 0.145 

HS  D 0.089 0.092 0.087 0.100 0.116 0.121 0.216 0.197 0.200 0.206 

HS  C 0.101 0.105 0.108 0.120 0.139 0.144 0.229 0.230 0.234 0.241 

HS  P 0.059 0.061 0.063 0.076 0.081 0.085 0.195 0.147 0.153 0.166 
 

0.069 0.071 0.071 0.083 0.093 0.096 0.202 0.162 0.167 0.177 

HT 0.115 0.127 0.113 0.124 0.131 0.144 0.236 0.256 0.256 0.258 

GST 0.400 0.437 0.372 0.331 0.293 0.332 0.142 0.366 0.347 0.314 

 

Table 4.12: HS for 5 sub populations, HT and GST calculated using different 

methods. 

 

 

SH
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Figure 4.12: HS for 5 sub populations, HT and GST calculated using different 

methods. H is measured on the scale 0 – 0.5, while GST is a proportion 

measured on the scale 0 – 1. 

 

As in figure 4.11 the band frequency based methods over estimated HT and 

therefore GST. The Bayesian method with uniform priors had very high HS for all 

sites compared to HT and thus low GST. HS values for The Holsinger methods had 

a wider range and were much higher but the proportional relationship between 

mean HS and HT was similar to the Square root and Bayesian non uniform 

methods, giving a similar GST value. 
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All methods showed the same relative differences in HS between the sites and the 

same order of diversity as other analyses, with site C having very high diversity 

compared to HT. For the Holsinger Bayesian method HS decreased with increasing 

values of FIS included in the three models:  f = 0 > full model > f free. Including 

FIS in the full model had a greater effect on H, K and P than on C and D compared 

to the f = 0 model.  

 

 

4.5.6   Including FIS in allele frequency estimates   

 

Known values of the inbreeding coefficient FIS can be included in allele frequency 

estimates, using the method of Chong et al. (1994). To examine the effects of 

including FIS in population level statistics GST and FST were calculated for 150 

individuals in 5 sub populations, for a range of FIS values from 0 to 1. 4 different 

methods from Table 4.11 were used, due to availability in Popgene (SR N) and 

AFLP-SURV (SR LM, Bu LM, Bnu LM), which both include FIS according to the 

method of Chong et al.. As GST is the proportion of H in the total population (HT) 

that occurs between rather than within sub populations (HS) it should increase 

steadily with increasing reduction in H in sub populations (FIS). 

 

FIS 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

SR N 0.374 0.380 0.386 0.392 0.396 0.400 0.402 0.403 0.403 0.402 0.401 

SR LM  0.327 0.333 0.340 0.345 0.350 0.354 0.356 0.358 0.359 0.359 0.357 

Bu LM 0.142 0.180 0.214 0.241 0.264 0.281 0.294 0.304 0.310 0.315 0.316 

Bnu LM 0.332 0.274 0.302 0.324 0.340 0.353 0.362 0.371 0.375 0.379 0.381 

 

Table 4.13: GST calculated for a range of FIS values, using 4 different 

methods.  
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Figure 4.13: GST calculated for a range of FIS values, using 4 different 

methods.  

 

Estimates of FST using the same methods matched the pattern for GST exactly but 

were slightly lower (not shown). As in figure 4.11 GST based on the square root 

allele frequency estimation method is higher calculated according to Nei (1973) 

than with the Lynch & Milligan correction and relatively low for the Bayesian 

method with uniform priors. Including FIS had a much greater effect on the two 

Bayesian methods than on the square root methods, although for values of FIS 

considered to be high (~ 0.3), the Bayesian results are still lower than the square 

root results.  

 

In general GST increased with increasing FIS as expected. There appears to be an 

anomaly at FIS = 0 for the Bayesian method with non uniform priors (BNU LM), 

confirmed by the fact that for FIS = 0.001 GST = 0.259. The comparison of 

methods applied to 13 plant species by Bonin et al. (2007) had a similar 

anomalous result with this method, but only for 1 species with relatively high FST. 

The fact that it did not happen for the other 2 methods in AFLP-SURV, including 

another Bayesian method, suggests a software problem with the BNU LM 

method.  
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GST for both square root methods curves down slightly towards FIS = 1, which 

also happened in Bonin et al.‟s comparison for some species, while others 

followed slightly u shaped or irregular patterns. The fact that Popgene and AFLP-

SURV produced comparable results for the square root method suggests that this 

phenomenon is not a software problem. It may be an artefact of the Chong et al. 

method of introducing FIS into allele frequency estimates. 

 

 

4.5.6.1   Bayesian FIS  (Holsinger et al., 2002) 

 

The MCMC Bayesian approach of Holsinger et al. (2002), implemented in the 

software Hickory (Holsinger & Lewis, 2007) was used to calculate the inbreeding 

coefficient, f. Holsinger et al. use Weir & Cockerham‟s (1984) notation, where f ≈ 

FIS and θ ≈ FST. In Hickory v1.1 they give 3 estimates of fixation: θ
I
, which is 

equivalent to Wright‟s FST, θ
II
, which is similar to Nei‟s GST, and their own 

Bayesian GSTB. θ
I
 should be larger than θ

II
 because it includes drift over time 

rather than just among contemporary populations.  

 

Hickory fits 4 models of the distribution of allele frequencies across loci to the 

data: a full model, an f = 0 model with zero inbreeding (Hardy Weinberg 

equilibrium), a θ = 0 model with zero differentiation between populations and an f 

free model. It produces an estimate of f and in the full model estimates of
 
f and θ 

affect each other. 

 

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) can be used 

to choose a model. D  is a measure of how well the model fits the data and pD is 

an estimate of the number of parameters required to do this. The best model has 

the lowest DIC and differences in DIC between the models reveal information 

about the distribution of genetic diversity.   

 

Hickory excludes monomorphic loci from the analysis. Of the 247 loci the 112 

polymorphic loci were included in the analysis while the 135 monomorphic loci 

were excluded. 
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Analyses were run using the default MCMC sampler values (burn-in = 5000, 

number of samples = 25000, thinning factor
 
= 5) and the default uniform α  = 1 

and β  = 1 parameters for the beta prior probability distribution. The results of 

replicate runs only varied by ~0.000001, which shows that the Markov chain was 

converging. 

  

  D  D


 pD DIC 

full model 1428 1173 255 1683 

f = 0 1424 1087 338 1762 

θ = 0 6119 6020 99 6218 

f free 1526 1144 382 1908 

 

Table 4.14: Model choice criteria for 4 models produced using the Bayesian 

approach in Hickory (Holsinger & Lewis, 2007). 

 

The full model had the lowest DIC value and was therefore considered to be the 

best model. The difference in DIC values between the full model and the f = 0 

model of 79 or ~ 5% should be evidence of inbreeding. However, most of this 

difference was accounted for by the difference in pD values, the number of 

parameters required to fit the model, and the values for D and D


are slightly 

lower for the f = 0 model. According to Holsinger & Lewis this implies that the f 

= 0 model is as likely as the full model. The very large difference between the full 

and θ = 0 models indicates that there are large differences in allele frequency 

distributions between the 5 populations.   

 

 

 

  full model s.d. f = 0 s.d. θ = 0 s.d. f free s.d. 

θ 
I
 0.571 0.034 0.536 0.021 0.454 0.027 0.592 0.019 

θ 
II

 0.406 0.038 0.366 0.021 x x 0.432 0.022 

HS  H 0.115 0.012 0.129 0.006 0.257 0.003 0.107 0.006 

HS  K 0.134 0.009 0.145 0.006 0.257 0.003 0.128 0.006 

HS  D 0.200 0.007 0.206 0.006 0.257 0.003 0.197 0.007 

HS  C 0.234 0.008 0.241 0.005 0.257 0.003 0.230 0.007 

HS  P 0.153 0.011 0.166 0.006 0.257 0.003 0.147 0.007 

SH  0.167 0.008 0.177 0.003 0.257 0.003 0.162 0.004 

HT 0.256 0.003 0.258 0.003 0.257 0.003 0.256 0.004 

GSTB 0.347 0.027 0.314 0.009 x x 0.366 0.012 

 

Table 4.15: Population level statistics for 112 polymorphic loci, for 4 models 

produced using the Bayesian approach in Hickory (Holsinger & Lewis, 2007). 
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As expected HS was higher for all sub-populations under the f = 0 model than 

under the full model, which includes the estimate of inbreeding. Sites C and D had 

higher heterozygosity and less difference in HS between the f = 0 model and the 

full model compared to the other sites, which implies lower inbreeding. 

 

All 3 measures of differentiation were higher for the full model than for the f = 0 

model, as the introduction of a coefficient of inbreeding within sub populations 

meant that more of the calculated HT was partitioned between sub-populations. θ
I
 

(~FST) was larger than θ
II
(~GST) (opposite to Gst / Fst above). As both of these 

measures were much larger than GSTB and other measures of differentiation they 

were not considered in further analyses. 

 

  full model s.d. θ = 0 s.d. f free s.d. 

f H 0.499 0.291 0.824 0.160 0.502 0.289 

f K 0.553 0.297 0.917 0.081 0.497 0.288 

f D 0.555 0.292 0.915 0.078 0.504 0.288 

f C 0.491 0.276 0.874 0.106 0.501 0.289 

f P 0.473 0.301 0.842 0.144 0.510 0.287 

f 0.368 0.393 0.924 0.075 0.494 0.291 

 

Table 4.16: Inbreeding coefficient f calculated for all 150 individuals and for 

each sub population of 30 individuals, using the Bayesian approach in 

Hickory (Holsinger & Lewis, 2007).  

 

Estimates for sub populations may be unreliable due to small sample size: 

statistics for the total population were based on 112 polymorphic loci for 150 

individuals, whereas sub population estimates were based on between 43 and 90 

polymorphic loci for 30 individuals.  

 

As expected the inbreeding coefficients for the sub populations were higher than 

for the total population. These values did not appear to correspond with the values 

of HS for the 5 sites but f  is applied as a coefficient and the percentage decrease in 

HS between the f = 0 model and the full model was in order H > P > K > D > C. 
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f 

HS                  

f = 0 

HS           

full  

% 

decrease 

H 0.499 0.129 0.115 10.853 

K 0.553 0.145 0.134 7.586 

D 0.555 0.206 0.200 2.913 

C 0.491 0.241 0.234 2.905 

P 0.473 0.166 0.153 7.831 

 

Table 4.17: Percentage decrease in HS between the f = 0 model and the full 

model for 5 sub populations. 

 

The inbreeding coefficient 0.368 for the total population was high. However, 

according to Figure 4.13 this value would not have a great impact on estimates of 

GST if it was included using the Chong method. The difference in GST between the 

2 Holsinger models f = 0, GST = 0.314 and f = 0.368, GST = 0.347 was closer to the 

effects of FIS on GST for the Lynch & Milligan square root method than for the 

other Bayesian methods. 

 

4.5.6.2   Iterative FIS (Dasmahapatra et al., 2007) 

The iterative method of Dasmahapatra et al. (2007) was also used to estimate FIS, 

with the program FAFLPcalc, a Visual Basic macro used in Excel.  

 

  FIS 

H -0.121 

K -0.126 

D -0.068 

C -0.041 

P -0.110 

Total -0.007 

 

Table 4.18: Inbreeding coefficient FIS calculated for all 150 individuals and 

for each sub population of 30 individuals, using the Dasmahapatra et al.  

method in AFLPcalc. 

The results were very different to those for the Holsinger method, with negative 

values indicating more heterozygous individuals than expected under Hardy 

Weinberg equilibrium and FIS values for the 5 sites in a completely different 

order. Higher FIS in the total population than in sub-populations is unlikely. The 

discrepancy between the 2 methods of estimating FIS questions the results. 
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4.5.7   Genetic distance  

 

Nei‟s genetic distance (1972) and unbiased genetic distance (1978) were 

calculated for 150 individuals in 5 sub populations, using Popgene. UPGMA 

dendrograms were constructed, based on the unbiased (1978) pairwise distances 

between sub populations, to show the relationships between the populations. A 

range of values of FIS were applied according to the method of Chong et al. 

(1994), including the full model f values for the 5 individual sub populations from 

Table 4.16, produced using Hickory. 

 

  H K D C P 

H **** 0.984 0.971 0.917 0.885 

K 0.016 **** 0.982 0.926 0.893 

D 0.030 0.018 **** 0.961 0.935 

C 0.086 0.077 0.040 **** 0.981 

P 0.122 0.114 0.067 0.020 **** 

 

Table 4.19: Nei’s (1972) genetic distance (lower triangle) and genetic identity 

(upper triangle) between 5 sub populations, FIS = 0. 

 

 

  H K D C P 

H **** 0.985 0.972 0.919 0.886 

K 0.015 **** 0.984 0.927 0.894 

D 0.029 0.017 **** 0.962 0.936 

C 0.085 0.076 0.038 **** 0.982 

P 0.121 0.112 0.066 0.018 **** 

 

Table 4.20: Nei’s (1978) unbiased genetic distance (lower triangle) and 

genetic identity (upper triangle) between 5 sub populations, FIS = 0. 

 

 

  H K D C P 

H **** 0.983 0.972 0.910 0.878 

K 0.018 **** 0.986 0.921 0.888 

D 0.029 0.014 **** 0.957 0.933 

C 0.094 0.083 0.044 **** 0.985 

P 0.131 0.119 0.070 0.015 **** 

 

Table 4.21: Nei’s (1978) unbiased genetic distance (lower triangle) and 

genetic identity (upper triangle) between 5 sub populations, with FIS from 

Table 4.16 included for each sub population. 
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Pairwise distances were very similar for the biased and unbiased distances (Tables 

1 and 2), with all distances slightly lower for the unbiased measure. The mean 

unbiased pairwise distance was D = 0.058.  

 

According to Thorpe & Solé-Cava (1994) values of Nei‟s (1978) genetic identity 

above 0.9 (distance below D ≈ 0.11) indicate conspecific populations, while 

identity below 0.8 (distance above D ≈ 0.22) suggests interspecific differentiation. 

 

In a study of 22 allozyme loci Maltagliati et al. (2001) found high unbiased 

genetic distance (D = 0.185) between 2 samples of the nereid polychaete 

Perinereis cultrifera. They suggested that this level of divergence was high 

enough to indicate sibling species, although it fell in the grey area between the 

accepted thresholds. The highest unbiased distance in this study, D = 0.121 

between polluted site H and clean site P, was almost as high and fell above the 

threshold for conspecificity.  
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Genetic distance 

Figure 4.14: UPGMA dendrogram based on Nei’s (1978) unbiased genetic 

distance, FIS = 0.  

 

 

                  
 

Genetic distance 

Figure 4.15: UPGMA dendrogram based on Nei’s (1978) unbiased genetic 

distance, with FIS from Table 1 included for each sub population. 
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Figures 4.14 and 4.15 both show the close relationship between the 2 polluted 

sites and the mixed / intermediate site: H, K and D, and between the 2 clean sites: 

C and P. This agrees with the individual level cluster analysis (Figure 4.9). Figure 

4.14 shows distances under Hardy Weinberg equilibrium, FIS = 0, while Figure 

4.15 includes FIS values for the 5 individual sub populations. For FIS = 0 (Figure 

4.14) the 2 polluted sites H and K had the least genetic distance between them, 

despite the large geographic distance between these sites. However, with FIS 

values for the 5 sub populations included sites K and D were more closely related. 

The pairwise distance between sub populations decreased for H / D, K / D and C / 

P and increased for all other pairs, including K / H (Table 4.21). Including the 

same value of FIS for each of the 5 sub populations produced the same 

dendrogram as Figure 2 for FIS ≥ 0.2. To some extent including a coefficient of 

inbreeding for local sub populations appeared to emphasise genetic differentiation 

associated with geographic distance, though this did not hold for H / D.     

  

 

4.5.8   Gene flow between populations  

 

Gene flow Nm was calculated using the equasion of Wright (1951): 

 









 1

1

4

1

STF
Nm  

 

Because Wright‟s F statistics are based on his island model of population 

structure, using FST to calculate gene flow assumes equilibrium between drift and 

migration. Isolation by distance indicates migration - drift equilibrium. The results 

of the Mantel test (section 4.3.5) showed a significant positive correlation 

between genetic dissimilarity and geographical distance (r = 0.482, p<0.001). 

Significant correlations between geographical distance and Nei‟s unbiased 

distance, D (r = 0.114, p<0.001) and pairwise FST between populations (r = 0.236, 

p<0.001) were also positive, although weaker. It could therefore be considered 

that the migration – drift equilibrium assumption was not violated and the above 

equasion was appropriate. 
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Nm among all 5 sub populations was calculated for FST and GST, assuming that 

GST is equivalent to FST for AFLP data, derived using the square root method of 

allele frequency estimation (Table 4.11). For  FST = 0.321 Nm = 0.529, while for 

GST = 0.372 Nm = 0.422.   

 

Popgene, which uses the square root method to calculate “FST /GST”, is the only 

software for dominant markers that reports an estimate of gene flow. According to 

Popgene Nm = 0.839. The manual states that Nm is calculated from the estimate of 

FST using the method of Slatkin & Barton (1989), who employed Wright‟s (1951) 

equasion, as above. However, the results output stated that Nm was calculated 

according to McDermott & McDonald (1993), who used the equasion: 

 









 1

1

2

1

STF
Nm

 

 

This form of Wright‟s equasion, with 2Nm instead of 4Nm , is intended for use in 

studies of haploid organisms. Popgene offers a choice of calculations for haploid 

or diploid organisms but uses the same equasion for both, so it is likely that there 

is a bug in the software and the value of Nm was actually 0.419. 

 

This is comparable with low gene flow associated with low dispersal found in 

fresh water salamanders (Templeton et al., 1995) and turtles (Nm = 0.6) (Souza et 

al., 2002) inhabiting rivers.  

 

According to Wright (1931) in sub populations with Nm > 0.5, gene flow 

overrides the effects of differentiation due to drift, whereas sub populations with 

Nm < 0.5 will tend towards fixation of alleles. According to Porter (1990) Nm > 1 

indicates high gene flow between populations, promoting genetic similarity, Nm = 

0.5 – 1 is considered weak gene flow, while for Nm 0 – 0.5 populations are almost 

completely isolated, with drift far outweighing gene flow. Nm ~ 0.5 for Nereis 

diversicolor is low but only very limited gene flow is required to outweigh drift. 

Nm = 0.5 is the threshold above which genetic differentiation in a structured 
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population is likely to be the result of selection rather than drift, so it could be 

suggested that this is the case based on these results.      

 

Pairwise FST was calculated for each pair of populations using Arlequin, which 

was then used to calculate pairwise estinmates of Nm. Regression of pairwise Nm 

values against geographic distance was performed to show the isolation by 

distance effect associated with a continuous or stepping stone model of gene flow 

(Slatkin, 1993). 

 

 

 
H K D C P 

H **** 0.730 0.646 0.213 0.112 

K 0.255 **** 1.462 0.262 0.138 

D 0.279 0.146 **** 0.627 0.318 

C 0.540 0.488 0.285 **** 1.887 

P 0.691 0.645 0.440 0.117 **** 

 

Table 4.22: Pairwise FST (lower triangle) and gene flow Nm (upper triangle) 

between 5 sub populations. All pairwise FST values were significant, p < 

0.001. 

 

The pairwise FST values have a similar pattern to pairwise genetic distance 

measured by Nei‟s D (section 4.5.7), although they most closely resemble the 

values for D including estimates of the inbreeding coefficient FIS (Table 4.21, 

Figure 4.15), with greater differentiation between the 2 tolerant sites H and K than 

between K and the mixed / intermediate site D, which are closer geographically. 

 

The slope of the regression is a function of dimensionality in the stepping stone 

model. A slope of -1.0 is expected for a 1 dimensional, linear stepping stone 

model, while a slope of -0.5 is expected for a 2 dimensional model (Slatkin, 

1993). An r value of -0.38 suggests a 2 dimensional model, which may be the case 

in the radiation of rivers that constitute the Fal estuary. 

 

Black et al. (1994) found a similar pattern of gene flow between neighbouring 

populations in the deep sea tube worm Riftia pachyptila inhabiting a linear 

archipelago of hydrothermal vents (r = -0.634).  



184 

 

4.5.9   FST simulations to identify loci under selection 

 

Population differentiation due to a balance of mutation, drift and migration is 

characterised by even differentiation across all loci and a spatial pattern of 

isolation by distance or evidence of a general physical barrier to gene flow, 

whereas divergence due to divergent selection despite limited gene flow affects a 

small proportion of loci, with less differentiation in the majority of loci.     

 

The DFDIST package uses simulation to model the distribution of FST expected 

for neutral loci in the absence of selection. The empirical data set is compared 

with the simulation and loci lying outside the neutral distribution are identified as 

outliers and thus possibly subject to selection.      

 

DFDIST is a modification of the FDIST program originally written by Beaumont 

& Nichols (1996), developed specifically for dominant markers. It uses the 

Bayesian method of Zhivotovsky (1999) to estimate allele frequencies and 

calculates FST according to Weir & Cockerham (1984). There are 4 programs 

involved: Ddatacal estimates H and FST, Dfdist does the FST simulation, pv2 

calculates p values and cplot2 gives the probability level quantiles for the 

simulated FST distribution.  

 

Ddatacal asks the user to input critical values, plus α and β parameters for the 

Bayesian prior probability distribution, and was used with the suggested defaults: 

 Critical frequency for the most common allele: 0.999 

 P for trimmed mean (weighted by H between sub populations): 0.3 

 Parameters for the Zhivotovsky beta prior distribution: 0.25 0.25 

 

The trimmed mean FST excludes the 30% highest and lowest FST values for outlier 

loci, to give an estimate of neutral FST (Bonin et al., 2006), which is used as the 

target average FST value in the simulation. 

 

The authors recommend setting the critical frequency to 0.99 to exclude loci 

where the most frequent allele has a frequency 0.99. This removed 13 loci with 1 
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single presence or absence in 150 individuals that had lower than expected FST. 

However, setting the critical frequency for the most common allele to 0.99 gave 

almost identical values for raw and trimmed mean FST of 0.352, so the critical 

frequency was set to 0.999 to include all 112 loci. 

 

Using these settings the weighted mean FST was 0.343 and the trimmed weighted 

mean was 0.337.  

 

Dfdist required 8 user defined parameters to simulate a neutral Fst distribution: 

 Total number of demes: 5  

 Number of samples: 5  

 Target average Weir & Cockerham FST: 0.337 

 Sample size: 30  

 θ (4Nmμ) for the metapopulation N: 0.04 

 The number of realisations (loci): 50,000 

 Parameters for the Zhivotovsky beta prior distribution: 0.25 0.25 

 Maximum allowable frequency across samples of the most common allele: 

0.999 

 

Cabellero et al. (2008) found that different values of θ between 0.004 and 0.1 

made no difference to the results, so the suggested default of 0.04 was used. 

 

The Dfdist simulation was run with the trimmed weighted mean FST 0.337, 

calculated by the Ddatacal program, as the target average. The trimmed mean FST 

gives the best model of a neutral distribution by excluding the outliers. The 

average FST for the simulation produced by Dfdist was 0.300. 

 

pv2 was run with the default smoothing proportion of 0.04. The confidence 

intervals for the outliers were based on 50,000 resampled loci from Dfdist.  

 

cplot2 was run with the default smoothing proportion of 0.04 and a critical 

probability for detecting outliers of 0.95. Most studies that have used DFDIST had 

a 0.95 confidence interval, though the authors recommend 0.99 and Cabellero et 
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al. suggest 0.9995 to avoid false positive results. For 0.9995 only one locus fell 

outside the neutral distribution, so significance was sacrificed in favour of 

detecting loci of interest and 0.95 was used. 

 

An R script was used to plot empirical FST against heterozygosity, with 0.95 < p < 

0.05 coloured red and blue respectively, plus 5%, 50%, and 95% confidence 

intervals for the simulated distribution. 

 

 

 
 

Figure 4.16: FST as a function of heterozygosity for 112 polymorphic loci, 

with 5%, 50%, and 95% confidence intervals for a simulated neutral 

distribution of FST. Numbered loci are outliers with lower than expected FST, 

p < 0.05 (blue), outliers with higher than expected FST, p > 0.95 (red) and 

additional loci of interest identified by bulk segregant analysis (orange). 
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12 loci (10%) were identified as outliers with p > 0.95, having higher FST than 

expected under a neutral model of evolution and so likely to be the subject of 

divergent selection. Of these 9 loci fell above the 95% confidence limit for the 

neutral distribution of FST.  

 

Using a similar approach Wilding et al. (2001) found that 5% of AFLP loci 

showed greater differentiation than expected, above the 99% quantile, in divergent 

forms of Littorina saxatilis. In a review of 14 AFLP genome scan studies Nosil et 

al. (2009) reported a range of 0.5 – 26% outlier loci, with most studies finding 5 - 

10% outliers and 1 - 5% replicated in pair-wise comparisons. 25 - 100% of these 

outliers were specific to ecotypes and they typically showed high linkage 

disequilibrium between ecotypes.  

 

 

4.5.10   Linkage disequilibrium 

 

A linkage disequilibrium test for non-random association between loci was 

performed in Arlequin (Excoffier et al., 2005). This test is an extension of the 

Fisher exact test, based on χ
2
 contingency tables of observed and expected 

association of AFLP bands for each pair of polymorphic loci (Slatkin, 1994). It is 

effectively a permutation test, with alternative contingency tables generated using 

a Markov chain. The default settings of 10,000 Markov chain steps and 1000 

dememorisation (burn in) steps were used. The significance level of linkage 

disequilibrium for each pair of loci is the proportion of possible contingency 

tables with a probability less than or equal to the observed contingency table. 

Pairs of AFLP markers were considered to be in significant linkage disequilibrium 

if they were associated more or less frequently than expected by chance, with loci 

that occurred together more or less frequently considered to be in positive or 

negative linkage disequilibrium respectively.  
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 N
o
 pairs LD % LD N

o
 loci LD % LD N

o
 LD ± s.d. 

H 903 84 9.30 43 42 97.67 3.91 2.31 

K 1378 150 10.89 53 53 100 5.66 2.48 

D 2850 349 12.25 76 76 100 9.18 5.58 

C 4005 1068 26.67 90 88 97.78 24.24 17.83 

P 1891 397 20.99 62 62 100 12.84 7.07 

All 6216 2121 34.12 112 112 100 38.30 22.45 

 

Table 4.23: Exact test for linkage disequilibrium. Number of pairs of 

polymorphic loci for each of the 5 sites and for all 150 individuals; number 

and percentage of AFLP marker pairs with significant linkage 

disequilibrium (p < 0.05); number of polymorphic loci for each of the 5 sites 

and for all 150 individuals; number and percentage of loci in significant 

linkage disequilibrium with at least one other (p < 0.05) and mean number of 

loci in significant linkage disequilibium per polymorphic locus (± 1 s.d.). 

 

In a study of 452 AFLP markers in maize Stich et al. (2006) found significant 

linkage disequilibrium (p < 0.05) for about 15% of marker pairs within both of 

two different groups, which is similar to the intra-site results for Nereis 

diversicolor. Nearly all polymorphic loci were in significant linkage 

disequilibrium with at least 1 other marker. Percentage linkage disequilibrium 

between pairs of loci and the number of non-randomly associated markers per 

locus varied as a function of the number of polymorphic loci.  

 

Linkage diseqilibrium is not necessarily a function of distance between loci on a 

chromosome: it can indicate groups of loci that are functionally linked or subject 

to the same selection pressure. The appearance of linkage disequilibrium can also 

be caused by cryptic sub populations or admixture between genotypes with 

different allele frequencies, which may be the case with the most diverse site C, 

although it does not explain the lower value for the mixed tolerant and non 

tolerant site D or the high value for low diversity site P. The higher linkage 

disequilibrium for all 150 individuals than for separate sites is likely to be 

negative disequilibrium reflecting genetic differentiation between the sites. There 

was no evidence of higher linkage disequilibrium due to bottleneck or disruptive 

selection effects in tolerant sites H and K. 

 

Linkage disequilibrium was further investigated in 20 loci of interest that 

segregated between tolerant and non-tolerant groups in the bulk segregant analysis 
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(Chapter 3, Table 3.12) or were identified as likely to be under disruptive 

selection by the DFDIST analysis (Figure 4.16).  

 

locus 6 14 17 18 31 39 40 44 46 47 56 63 65 73 74 77 78 81 104 105 

6 *** + + - + + - - - - + + + - + - + - + NS 

14 + *** + - + + - - - - + + + - + - + - + - 

17 + + *** - + + - - - - + + + - + - + - + NS 

18 - - - *** - - + + + + - - - + - + - - - NS 

31 + + + - *** + - - - - + + + - + - + - + NS 

39 + + + - + *** - - - - + + + - + - + - + NS 

40 - - - + - - *** + + + - - - + - + - + - NS 

44 - - - + - - + *** + + - - - + - + - + - NS 

46 - - - + - - + + *** + - - - + - + - + - NS 

47 - - - + - - + + + *** - - - + - + - + - NS 

56 + + + - + + - - - - *** + + - + - + - + NS 

63 + + + - + + - - - - + *** + - + - + - + NS 

65 + + + - + + - - - - + + *** - + - + - + NS 

73 - - - + - - + + + + - - - *** - + - + - NS 

74 + + + - + + - - - - + + + - *** - + - + NS 

77 - - - + - - + + + + - - - + - *** - + - NS 

78 + + + - + + - - - - + + + - + - *** - + NS 

81 - - - - - - + + + + - - - + - + - *** - NS 

104 + + + - + + - - - - + + + - + - + - *** NS 

105 NS - NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS *** 

 

Table 4.24: Matrix of significant positive (+) and negative (-) linkage 

disequilibrium between 20 loci of interest for all 150 individuals (p < 0.05). 

Locus numbers are sequential for the 112 polymorphic loci, to match the 

DFDIST analysis (Figure 4.16). All but 1 associations were non-significant 

(NS) for locus 105. 

 

For these 20 markers the mean number of loci in significant linkage disequilibium 

per polymorphic locus ± 1 s.d was 64.25 ± 14.54, which was much higher and less 

variable than the average for all loci of 38.30 ± 22.45, indicating large groups of 

associated loci. Positive and negative associations clearly split the markers into 2 

distinct groups, with positive linkage disequilibrium within groups and negative 

linkage diseqilibrium between groups. Markers 6, 14, 17, 31, 39, 56, 63, 65, 74, 

78 and 104 in one group occurred more frequently in tolerant sites H and K, while 

the other group of markers 18, 40, 44, 46, 47, 73, 77 and 81 occurred more 

frequently in non-tolerant sites C and P. This does suggest divergent selection for 

particular combinations of genes. 
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4.5.11   Loci of interest 

 

Linkage disequilibrium is used in association mapping to identify groups of linked 

loci that are associated with phenotypic traits and potentially the subject of 

disruptive selection. Linkage disequilibrium associated with copper tolerance 

supports the identification of 19 of the 20 loci that segregated between tolerant 

and non-tolerant groups in the bulk segregant analysis, or were identified as likely 

to be under disruptive selection by the DFDIST analysis, as loci of interest: 

 

Locus Band 
Bulks / 

Selection 

LD 

Group 
H K D C P 

14 M42 30 Bulks T 1 6 13 2 0 

18 M42 35 Bulks N 0 1 12 22 25 

40 M42 79 Bulks N 0 0 8 24 29 

44 M42 91 Bulks N 0 0 10 24 29 

56 M69 14 Bulks T 30 30 25 6 8 

78 M71 4 Bulks T 9 19 10 5 1 

81 M71 7 Bulks N 0 1 13 24 29 

105 M71 52 Bulks NS 24 2 7 16 11 

31 M42 57 Both T 30 30 19 6 5 

46 M69 1 Both N 0 0 7 24 30 

73 M69 57 Both N 0 0 10 24 30 

6 M42 13 Selection T 30 30 13 10 0 

17 M42 34 Selection T 30 30 30 7 5 

39 M42 78 Selection T 30 30 30 6 4 

47 M69 2 Selection N 0 0 0 24 30 

63 M69 32 Selection T 30 30 22 1 2 

65 M69 38 Selection T 30 30 30 7 1 

74 M69 58 Selection T 30 30 26 6 0 

77 M71 3 Selection N 0 0 13 23 30 

104 M71 51 Selection T 30 30 30 6 3 

 

Table 4.25: Band presence counts for 30 individuals from each of the 5 sites, 

for 20 polymorphic bands associated with tolerant and non-tolerant groups 

in the bulk segregant analysis (Table 3.12) or identified as likely to be under 

selection by the DFDIST analysis (Figure 4.16), split into 2 groups of loci in 

linkage disequilibrium (LD) that were more frequent for Tolerant (T) or 

non-tolerant (N) sites.   

 

8 of the 12 outlier loci identified as potentially under selection by DFDIST in 

Figure 4.16 were fixed for the tolerant sites H and K. Loci 65, 104, 39 and 17 

which had particularly high H and FST were fixed in H, K and D, with a low 

presence in C and P. However, only 2 of the 11 loci identified in the bulk 
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segregant analysis as segregating between tolerant and non tolerant worms from 

site D were fixed for the tolerant sites H and K. It is interesting that bands 

associated with non-tolerant sites were identified as divergent as well as bands 

associated with tolerance, indicating positive selection for 2 divergent ecotypes. 

 

Loci 31, 46 and 73 were identified in both the bulk segregant and DFDIST 

analysis. While they did not have high enough FST to be considered candidates for 

selection, a further 4 of the 11 loci identified by the bulk segregant analysis had 

fairly high FST according to DFDIST (Figure 4.16). Despite segregating in the 

bulks loci 14, 18, 78 and 105 had less clear patterns of association with tolerance 

across the 5 sites and lower FST, plus 105 was not in significant linkage 

disequilibrium with the other markers, so these loci are of less interest. The 

consensus of a combination of 3 different analysis methods suggests that loci 31, 

46 and 73 are the best candidates for further investigation by sequencing. 

 

Out of the 20 loci of interest there were 6 pairs of bands that occurred 

consecutively on electrophoresis gels:   

 

Locus Band 
Bulks / 

Selection 

LD 

Group 
H K D C P 

 

17 M42 34 Selection T 30 30 30 7 5 

18 M42 35 Bulks N 0 1 12 22 25 

 

39 M42 78 Selection T 30 30 30 6 4 

40 M42 79 Bulks N 0 0 8 24 29 

 

46 M69 1 Both N 0 0 7 24 30 

47 M69 2 Selection N 0 0 0 24 30 

 

73 M69 57 Both N 0 0 10 24 30 

74 M69 58 Selection T 30 30 26 6 0 

 

77 M71 3 Selection N 0 0 13 23 30 

78 M71 4 Bulks T 9 19 10 5 1 

 

104 M71 51 Selection T 30 30 30 6 3 

105 M71 52 Bulks NS 24 2 7 16 11 

 

Table 4.26: Consecutive pairs of bands from the 20 loci of interest.  
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Assuming that the range of a 30cm AFLP fingerprint is about 50 – 500 bases; 

these bands were separated by around 1 – 4 mm, which equates to a difference of 

around 2 - 6  base pairs between fragment lengths. These pairs of bands could be 

due to an insertion or deletion polymorphism, a different number of repeats in a 

microsatellite region or a transposon; making the same sequence slightly longer or 

shorter in different genotypes. The pairs could be associated with different alleles 

of the same gene, which may be homozygous for individuals with 1 band and 

heterozygous for individuals with both bands, which was more apparent in mixed 

site D. Loci 73 and 74, for example, were both identified as potentially under 

selection, with individuals having the band associated with either the tolerance or 

the non-tolerance linkage disequilibrium group, except for some individuals from 

sites C and D that had both bands.  

 

The coincidence of these results shows that bulk segregant analysis, combined 

with statistical identification of loci that are potentially under selection and 

distinct groups with significant linkage disequilibrium, is a useful set of 

complimentary tools for finding markers of interest in a non-model organism.  
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Chapter 5   Discussion 

 

 

Understanding the relationship between environmental factors, the distribution of 

phenotypes in a metapopulation and evolutionary change at the molecular level is 

a central theme in molecular ecology and there is widespread interest in 

environmental effects on genomic variability and structure in natural populations. 

A number of population genomics studies have used AFLP genome scans to look 

for patterns of population structure and signatures of directional or divergent 

selection associated with environmental gradients, heterogeneous habitats and 

phenotypic variation (reviewed in Luikart et al., 2003; Nosil et al., 2009). Most of 

these studies focus on naturally occurring clines, which allow gradual adaptation 

over long time scales. Evolutionary adaptation to more rapidly changing 

environments is an increasingly important topic in the light of climate change, sea 

level rise and even more immediate anthropogenic impacts such as eutrophication 

and pollution events.  There have been infrequent opportunities to investigate 

strong selection driving rapid evolution in response to recently introduced effects 

and few studies have addressed the impacts on population genetics of 

contaminants in aquatic environments (reviewed in Hebert & Luiker, 1996; Beaty 

et al., 1998; Bickham et al., 2000; Belfiore and Anderson, 2001; Medina et al., 

2007). Introduced anthropogenic environmental change can be far more rapid than 

naturally occurring change, which requires a faster evolutionary response 

(Stockwell et al., 2003; Hendry, 2004; Medina et al., 2007; Hendry et al., 2008), 

so differential tolerance to pollution provides an interesting model system to study 

patterns and timescales of genetic diversity and divergence associated with recent 

reduction in population size and rapid adaptation in natural populations (Beaty et 

al., 1998; Bickham et al., 2000; Belfiore & Anderson, 2001; Medina et al., 2007). 

In addition, genetic markers that are specifically related to stress tolerance can be 

used as an indicator in biological monitoring (Nevo et al., 1984; Ozoh, 1992b).   

 

Evolutionary adaptation to a new environment has predictable effects at the 

molecular level. A dramatic reduction in the size of a population due to a genetic 

bottleneck or founder effect could result in loss of genetic diversity, with reduced 

heterozygosity within the population (Bickham et al., 2000; Belfiore & Anderson, 
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2001). Selection for tolerant phenotypes and thus associated genotypes will 

decrease diversity and the effects of inbreeding and drift will be exaggerated in a 

small population (Hebert & Luiker, 1996). Rare alleles that were neutral or even 

deleterious in the ancestral environment may confer a selective advantage in the 

new environment. Alleles for beneficial adaptive traits will increase in frequency 

and with divergent selection or directional selection along a cline, genetic 

differention between populations will increase.  For example, the frequency of the 

allele for a reduced number of lateral body armour plates in the stickleback 

Gasterosteus aculeatus is 1% in oceanic populations but up to 100% in freshwater 

habitats due to strong positive selection in freshwater. It is also thought that 

selection for this trait has caused widespread, repeated parallel evolution in 

isolated, locally adapted populations (Colosimo et al., 2005; Barrett et al., 2008; 

Mäkinen et al., 2008). 

 

In addition to selection pressure genetic diversity and differentiation in natural 

populations is shaped by mutation, genetic drift, and migration, on different 

spatial and temporal scales. Rather than the infinitely large panmictic populations 

that form the theoretical basis for classical models of population genetics, the 

structure of most natural populations is characterised by isolation by distance to 

some extent (Wright, 1943). Genetic differentiation between populations involves 

a balance of selection, drift and migration, with the strength of selection 

determining the rate of evolution and barriers to gene flow allowing divergence 

and ultimately speciation (Dobzhansky, 1937; Mayr, 1942). Divergent selection 

for adaptive traits affects genetic diversity and differentiation and differential 

tolerance to stress factors can constitute a partial barrier to gene flow, potentially 

leading to non-allopatric speciation. Heritable tolerance to relatively recently 

introduced copper pollution in populations of the estuarine polychaete worm 

Nereis diversicolor provides a good model for understanding evolutionary 

processes involved in rapid adaptation under strong divergent selection (Grant, 

2002).  

 

Advances in population genetics techniques have allowed scientists to infer the 

history of population changes, assess current population status and anticipate the 

direction of future changes (Belfiore & Anderson, 2001). Molecular markers can 
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be used to assess population diversity and differentiation, delimit species, provide 

phylogenetic and phylogeographic information about likely evolutionary 

relationships and relate phenotypes to environmental variation where 

morphological and biological analysis fails (Knowlton, 2000; Bonin et al., 2007). 

Genome scans using the large numbers of loci offered by dominant molecular 

marker systems like AFLP can be used to investigate the effects of evolutionary 

adaptation to environmental factors at molecular, individual and population levels 

(Luikart et al., 2003).  

 

The present study focussed on identifying and characterising adaptive genetic 

divergence. Differential tolerance to copper was found to correlate with genetic 

differences between populations. The tolerant populations had reduced 

heterozygosity, consistent with a bottleneck or founder effect under strong 

selection. There was high differentiation between the 5 populations, with genetic 

similarity based on ecotype rather than geographical distance. A combination of 

analyses revealed a number of outlier loci associated with either tolerant or non-

tolerant phenotypes, indicating divergent selection favouring copper tolerance in 

polluted habitats or competitive ability in clean environments; which is potentially 

acting as a barrier to gene flow and driving non-allopatric speciation.  

 

A prerequisite for any study of speciation is the definition and identification of 

separate species. Benthic marine invertebrates often have a small number of 

conspicuous diagnostic features, which defies morphological taxonomy. Marine 

organisms with low dispersal and yet very large geographic distributions can turn 

out to be groups of morphologically similar but genetically distinct species 

(Palumbi, 1992; Thorpe & Solé-Cava, 1994; Knowlton, 1993, 2000). 

Morphologically similar sibling species may also occur sympatrically in different 

ecological niches (Solé-Cava et al., 1985; Kruse et al., 2003; Johannesson et al., 

2010). Alternatively, morphotypes thought to be distinct species may be the result 

of phenotypic plasticity in response to environmental variation (Vrijenhoek, 

2009). Many marine invertebrates are asexual and hybridisation is common 

between sexually reproducing marine invertebrates considered to be 

morphologically distinct species, which also confounds the biological species 

concept (Knowlton, 1993, 2000).  
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Morphological species boundaries can be particularly difficult to determine in 

polychaetes due to similar interspecific characteristics (Fong & Garthwaite, 1994; 

Breton et al., 2003; Bleidorn et al., 2006) or intraspecific variation due to 

phenotypic plasticity (Vrijenhoek, 2009). Rice (1991) cited studies that 

collectively proposed the existence of cryptic sibling species in 13 different 

spionid polychaetes. The Nereididae are a diverse and abundant family of 

polychaete worms, with a wide range of reproductive, developmental and life 

history characteristics, inhabiting marine and estuarine environments around the 

world (Fauchald, 1977; Fong & Garthwaite, 1994; Breton et al., 2003). However, 

with over 500 species in the family (Bakken & Wilson, 2005; Rousset et al., 

2007) and a paucity of distinguishing morphological characteristics that is typical 

of marine invertebrates, assessment of diversity, differentiation and evolutionary 

relationships within and between species can be difficult.  

 

Using parsimony analysis of 66 morphological characters in 52 species level taxa 

in the sub-family Nereidinae, which is based on the presence of paragnaths, 

Bakken & Wilson (2005) decided that the genera Composetia, Neanthes, 

Perinereis and Nereis were not monophyletic, and therefore not supported, with 

many characters having high levels of homoplasy. It has been suggested that the 

number, form and arrangement of paragnaths on the pharynx could be a 

diagnostic and quantitative morphological trait in Nereididae (Hateley et al., 

1992; Bakken & Wilson, 2005; Bakken et al., 2009). While paragnaths have been 

successfully used to delimit some species such as Nereis japonica (Fong & 

Garthwaite, 1994), Hutchings & Reid (1991) found that paragnaths alone were of 

no use in delimiting Platynereis species and Maltagliati et al. (2006) found high 

similarity in paragnaths between Perinereis cultrifera and Nereis diversicolor.  

 

A molecular phylogenetic analysis of 217 species of Annelida found that the 

accepted clade Nereidiformia was not monophyletic, with members scattered 

among 5 different clades (Rousset et al., 2007) (although notably only 3 species 

of Nereididae were included in this analysis, to represent over 500 nominal 

species in this family). Measurements of similarity and difference at the molecular 

level offer a new solution to the problem of taxonomy, species concepts and 

speciation. However, molecular species definitions that rely on quantitative 
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analysis of molecular marker data set arbitrary thresholds of genetic difference, 

which may not be appropriate across all grouos of organisms (Solé-Cava & 

Thorpe, 1991; Thorpe & Solé-Cava, 1994; Hebert et al., 2003; Blaxter, 2004; Witt 

et al., 2006).  

  

Molecular markers have been widely employed to identify and delimit sibling 

species on the basis of genetic distance.  A number of sibling species have been 

proposed within the Nereididae (reviewed in Fong & Garthwaite, 1994). Nereis 

diversicolor has previously been considered to be part of a morphological species 

complex including Nereis limnicola and Nereis japonica (Fong & Garthwaite, 

1994), while a number of authors have suggested that Nereis diversicolor is itself 

a species complex (Röhner et al., 1997; Breton et al., 2003; Audzijonyte et al., 

2008). Appendix 3 summarises allozyme studies referred to in the text.  

 

Differences in life history or larval development can be used to distinguish 

species, although this is not easily applicable to the identification of adults and 

molecular markers may be more useful in resolving species complexes in this 

respect. The morphologically similar species complex of Nereis diversicolor from 

Europe, Nereis limnicola from the Pacific coast of North America and 2 forms of 

Nereis japonica from Japan inhabit similar brackish environments but are isolated 

by both geographic distance and reproductive behaviour. N. limnicola is a 

viviparous hermaphrodite, whereas N. diversicolor is gonochoric, with demersal 

larvae. N. japonica consists of two different forms with different life history traits: 

one that undergoes partial epitokal metamorphosis and swarms to produce small 

eggs and planktonic larvae and one without epitokes that produces large eggs and 

demersal larvae in burrows, similar to N. diversicolor. Fong & Garthwaite (1994) 

used 10 allozyme loci to separate N. limnicola, N. diversicolor and the large egg 

form of N. japonica.  They confirmed that they were indeed separate species, with 

average interspecific genetic distance of Nei’s (1978) D = 0.977. Sato & Masuda 

(1997), Sato (1999) and Sato & Nakashima (2003) later used similar studies to 

resolve the Asian species complex of 3 forms of N. japonica.  

 

The genetic distances between N. limnicola, N. diversicolor and the different 

forms of N. japonica were considered large enough for them to be separate 
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species. Some authors have also suggested that N. diversicolor is a complex of 

different species (Röhner et al., 1997; Breton et al., 2003; Audzijonyte et al., 

2008), which raises the question of what level of genetic differentiation should be 

used to delimit species. According to Thorpe & Solé-Cava (1994) values of Nei’s 

(1978) genetic identity above 0.9 (distance below D ≈ 0.11) indicate populations 

of the same species, while identity below 0.8 (distance above D ≈ 0.22) suggests 

interspecific differentiation.  

 

RAPD markers have been used to investigate sibling species in polychaetes, 

including Hesionides areneria and Stygocapitella subterranea (Schmidt & 

Westheide, 2000). For 27 individuals from 3 populations of Stygocapitella 

subterranea 14 primers produced 335 loci, with 20, 17 and 14 diagnostic loci 

respectively separating North Sea, US Atlantic and Pacific populations. 5 different 

methods of cluster analysis agreed on 3 distinct clades. They also compared 65 

individuals from 8 internationally distributed populations of Hesionides areneria 

with H. bengalensis and H. Maxima using 468 RAPD loci. Within H. areneria 

there were no diagnostic loci and cluster analysis showed no large groups or 

differentiation. Average Nei & Li (1979) genetic distances ranged from 0.33 to 

0.41 within populations and 0.36 to 0.44 between populations for H. Areneria, 

while distances between the 3 Hesionides species ranged from 0.84 to 0.9. 

Average Nei & Li (1979) distances in S. subterranean ranged from 0.17 to 0.34 

within populations and 0.58 to 0.62 between populations, leading Schmidt & 

Westheide to propose separate Stygocapitella species, although they noted that the 

values were not as high as other typical interspecific distances calculated from 

RAPD data, for example between the Hesionides species or 0.74 between Nerilla 

antennata and N. mediterranea (Schmidt & Westheide, 1998). A study of 3 

oligochaete species by Schirmacher et al. (1998) using 199 RAPD loci found 

interspecific Nei & Li (1979) distances ranging from 0.85 and 0.86 to only 0.17 

between Enchytraeus variatus and E. crypticus, which were thought to be 

reproductively isolated. They also found low intraspecific distances in all 3 

species, with no 2 individuals separated by more than 0.05. 

 

In the present study mean Czekanowski / Dice / Sørensen distance (which is 

equivalent to Nei & Li (1979) distance when applied to binary data)  between all 
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150 individuals from all 5 sites was 0.271, with average intrapopulation distances 

not much lower. This could demonstrate moderately high intraspecific diversity in 

N. diversicolor in comparison with other studies but probably not separate 

species. However, despite the fact that they are similar dominant marker systems 

the results of RAPD and AFLP analyses may not be directly comparable. 

 

Allozyme electrophoresis studies have found a varied range of different genetic 

distances between populations of Nereis diversicolor (Fong & Garthwaite, 1994; 

Abbiati & Maltagliati, 1996; Röhner et al., 1997; Virgilio & Abbiati, 2004b; 

Virgilio et al., 2005; Virgilio & Abbiati, 2006)(Summarised in Appendix 3). 

Röhner et al. (1997) found Nei’s (1972) D = 0.265 between the North Sea and the 

Baltic, while Abbiati & Maltagliati (1996) found Nei’s (1978) D = 0.356 between 

populations on the Tyhrrhenian and Adriatic coasts of Italy. These high values of 

D are above the suggested threshold of D ≈ 0.22 for separate species (Thorpe & 

Solé-Cava, 1994).  

 

Other marker systems have found high differentiation between populations of N. 

diversicolor. Cossu et al. (2004) found AMOVA ΦST = 0.469 between 5 

populations around the Tyrrhenian Sea using 5 ISSR markers. Breton et al. (2003) 

found high differentiation in mitochondrial DNA cytochrome b gene sequences: 

AMOVA was ΦST = 0.313 on a national scale and ΦST = 0.453 internationally. 

These values are very similar to the level of differentiation estimated by AMOVA 

in the present study, ΦST = 0.436. Breton et al. (2003) observed a very high 6.6% 

DNA sequence divergence in cyt b between the NW Atlantic (Canada) and NE 

Atlantic and Mediterranean samples from France, while Audzijonyte et al. (2008) 

found 4.4 – 7.3 % mtDNA COI sequence divergence between lineages, apparently 

high enough to indicate separate species (CBOL, 2010).  

 

However, it is possible that high population diversity and differentiation is 

common in polychaetes and thus the suggested distance thresholds are too low or 

not applicable. Comparably high intraspecific genetic distances have been found 

between populations of some other polychaete species, such as D = 0.159 for 

Syllis gracilis (Maltagliati et al., 2000). In a study of 22 allozyme loci Maltagliati 

et al. (2001) found high genetic divergence (Nei’s D = 0.185; FST = 0.381) 
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between 2 samples of the Nereidid polychaete Perinereis cultrifera from a 

brackish and a marine habitat less than 2 Km apart and thought that they may be 

sibling species. In contrast Nei’s (1978) distance D = 0.035 between populations 

of Neanthes succinea from the Adriatic and Tyrrhenian coasts of Italy was much 

lower than distances of D = 0.272 to D = 0.356 between comparable populations 

of N. diversicolor (Abbiati & Maltagliati, 1992, 1996). A study of 10 allozyme 

loci by Fong & Garthwaite (1994) found fairly low Nei’s (1978) D = 0.001 – 

0.046 for N. limnicola from 4 geographically distant sites in California and 

Oregon but very high differentiation for 2 N. diversicolor populations from the 

German coast of the North Sea separated by only 30 km with D = 0.310, again 

above the interspecific threshold, suggesting sibling species in N. diversicolor.  

 

Interspecific distances between recognised Nereidid species derived from 

allozyme markers have been much higher though, ranging from D = 0.500 

between N. limnicola and N. japonica (Fong & Garthwaite, 1994) to D = 1.81 

separating N. diversicolor and N. limnicola (Fong & Garthwaite, 1994) and D = 

1.180 separating N. diversicolor and Neanthes succinea (Abbiati & Maltagliati, 

1996). A ratio view of distance thresholds suggests that genetic distance between 

populations of N. diversicolor found by the present study and others is not high 

enough to declare separate species. 

 

The present study found relatively high differentiation between 5 N. diversicolor 

populations 3 - 145 Km apart, with Nei’s (1978) D between pairs of populations 

ranging from D = 0.015 to D = 0.121,  FST between pairs of populations ranging 

from FST = 0.117 to FST = 0.691 and differentiation between all populations FST = 

0.32. 2 of the pairwise genetic distances between populations in the present study 

fell above the threshold level of divergence for conspecifics (D > 0.11) but below 

the value of genetic distance that indicates interspecific differentiation (D > 0.22) 

(Thorpe & Solé-Cava, 1994). While it is unlikely that any study has revealed 

sibling species in N. diversicolor there is widespread interest in patterns of 

differentiation and the potential for speciation in this species.   

 

High genetic diversity, high interpopulation differentiation and the apparent 

complexity of N. diversicolor population dynamics has lead researchers to try to 
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explain spatial and temporal patterns of population structure. Population structure 

is determined by genetic drift, gene flow, inbreeding, selection and stochastic 

processes such as mortality and recruitment. Gene flow homogenizes allele 

frequencies between populations, whereas barriers to gene flow, genetic drift and 

selection can lead to differentiation. The extent and pattern of genetic diversity 

and differentiation within and between populations gives an indication of the 

relative importance of factors contributing to structured populations. 

 

Possible causes of observed diversity and differentiation in N. diversicolor have 

been identified as: 

 Genetic drift in isolated populations 

 Inbreeding 

 Isolation by distance under a stepping stone model of limited gene flow 

 Spatial and temporal patchy recruitment  

 Larger or longer scale invasions by different evolutionary lineages 

 Historical bottleneck or founder events 

 Local adaptation to environmental conditions under selection pressure 

 Sympatric sibling species? 

 

The global pattern of population structure in Nereis diversicolor is of interest as 

an example of a low dispersal organism adapted to isolated brackish water 

environments, which could explain the observed structure in the present study.   

N. diversicolor is a euryhaline species able to tolerate a wide range of 

environmental conditions and yet its range is confined to isolated brackish water 

habitats by competition outside its ecological niche (Kristensen, 1988). Genetic 

drift occurs in isolated populations leading to reduced heterozygosity and 

interpopulation differentiation. In general brackish water species have low 

heterozygosity and high genetic differentiation between populations due to 

isolation in estuaries and lagoons separated by full salinity open sea (Abbiati & 

Maltagliati, 1992; Bilton et al., 2002).  
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Population size also affects diversity: populations with a larger effective 

population size tend to have higher heterozygosity while the effects of genetic 

drift are magnified in small populations (Crow & Morton, 1955; Crow & Kimura, 

1970; Kijima & Fujio, 1984). Methods of reproduction, larval development and 

dispersal therefore affect the level and nature of population structure (Crisp, 

1978). Species with planktonic dispersal have a high effective population size and 

tend to exhibit high genetic diversity within populations and low differentiation 

between local populations, while species with limited gene flow due to benthic 

development and dispersal often have low intrapopulation diversity and high 

interpopulation differentiation due to genetic drift (Kruse et al., 2003). Species 

adapted to estuarine environments tend not to have pelagic eggs or larvae, which 

would have a low probability of recruitment to a suitable habitat if they were 

transported out of the estuary, and so have low dispersal capabilities (Fong & 

Garthwaite, 1994; Scaps, 2002). N. diversicolor produces relatively large eggs in 

burrows, followed by benthic larval development and dispersal (Dales, 1950; 

Fong & Garthwaite, 1994; Scaps, 2002). Low dispersal, combined with the 

physical geographical isolation of brackish water habitats separated by marine 

environments could lead to highly differentiated populations with low 

heterozygosity due to genetic drift in relatively small, isolated populations.  

 

Interspecific studies of polychaetes with different levels of adaptations to brackish 

environments, such as salinity tolerance and mode of larval dispersal, have been 

used to investigate the influence of biological and ecological characteristics on 

genetic variation between and within species (Abbiati & Maltagliati, 1996). 

Abbiati & Maltagliati (1992) used 21 allozyme loci to investigate genetic 

differentiation between 2 populations of the Nereidid polychaete Neanthes 

succinea from the Adriatic and Tyrrhenian coasts of Italy. N. succinea is found in 

brackish habitats but unlike N. diversicolor it is a poor osmoregulator and does 

not tolerate salinity below 15 psu. It also has a life history more suited to marine 

habitats, with an epitokous stage and planktonic larvae. Between the 2 populations 

Nei’s D = 0.035 and, based on 7 polymorphic loci, FST = 0.341. The inbreeding 

coefficient FIS = 0.012 was low, while mean heterozygosity was H = 0.022 and H 

= 0.044 for the 2 populations. Heterozygosity and genetic identity between 

populations of N. succinea were both higher than they had previously found for N. 
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diversicolor confined to estuaries (Abbiati & Maltagliati, 1989 in Abbiati & 

Maltagliati, 1992). In a comparable study Abbiati & Maltagliati (1996) then used 

17 allozyme loci to assess genetic diversity and differentiation between 4 

populations of N. diversicolor from the Adriatic and Tyrrhenian coasts of Italy. 

Mean heterozygosity within populations was low, range H =  0.014 – 0.034, but 

not much lower than they had found for N. succinea (Abbiati & Maltagliati, 

1992), so the hypothesis of lower heterozygosity in species with more estuarine 

life history traits was not necessarily supported.  

 

The level of intrapopulation heterozygosity found by Abbiati & Maltagliati for 

both species was low compared to other marine invertebrates (Solé-Cava & 

Thorpe, 1991), for example up to 0.148 for molluscs (Nevo et al., 1984). Nóbrega 

et al. (2004) found very high genetic diversity and low differentiation in the 

ascidian Phallusia nigra along 8000 Km of the Atlantic coast, with H = 0.28, FST 

= 0.083, Nm = 2.8. However, Kyle & Boulding (2000) found that population 

genetic structure in 4 species of Littorina with different developmental traits was 

not related to dispersal potential. Sato (1999) found lower intrapopulation 

diversity in the form of Nereis japonica with planktonic larvae, while Kruse et al. 

(2003) found higher differentiation between populations of the more mobile 

subtidal form of Scoloplos armiger. This shows that developmental mode and 

dispersal potential are not necessarily the most important driving force in marine 

invertebrate population genetics.   

 

Levels of genetic diversity found in Nereis diversicolor have been notably 

variable. Mean observed heterozygosity for 2 N. diversicolor populations found 

by Fong & Garthwaite (1994) were quite different at H = 0.023 and H = 0.2, the 

latter being relatively high compared to H = 0.050 for N. limnicola and H = 0.040 

for N. japonica, although lower heterozygosity was expected in N. limnicola 

because it is a largely self fertilising hermaphrodite. However, these values were 

based on only 9 loci, plus the 2 samples of N. diversicolor only consisted of 14 

and 26 individuals respectively and only 1 sample of N. japonica was examined, 

which may have allowed sampling errors. Other studies have found similar ranges 

of observed heterozygosity in N. diversicolor populations, for example H = 0.012 

- 0.052 (Virgilio et al., 2003), H = 0.025 - 0.064 (Virgilio & Abbiati, 2004b) and 
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mean observed heterozygosity values were not significantly different between the 

8 populations studied by Virgilio & Abbiati (2004b). In contrast Röhner et al. 

(1997) found low observed heterozygosity in 8 populations, H = 0.000 - 0.015.  

 

Levels of estimated intra-population heterozygosity between H ≈ 0.05 and H ≈ 0.1 

found by the present study had a similar range to previous studies on N. 

diversicolor but were generally higher, and were fairly high compared to other 

species (Nevo et al., 1984). The results could be due to overestimation of H for 

AFLP data, or it could reflect the fact that, compared to AFLP loci, allozymes are 

highly conserved and so have lower heterozygosity (Lewin, 2004). Differences 

between the results of allozyme studies could be an artefact of the number and 

choice of loci. Alternatively, differences in heterozygosity between geographical 

areas could be attributable to genuine phylogeographic effects. 

 

While a number of allozyme studies have found low heterozygosity, DNA 

sequence markers have found relatively high genetic diversity coupled with high 

differentiation between N. diversicolor populations. Breton et al. (2003) compared 

large scale population genetic structure of Nereis virens and N. diversicolor using 

the mitochondrial DNA cytochrome b gene. It was anticipated that N. virens 

populations would have lower differentiation due to pelagic larval dispersal. N. 

virens from 12 locations in North America, Europe and Japan only had 3 

haplotypes, one of which was shared by 89% of individuals, whereas N. 

diversicolor from 1 area in Canada and 2 in France showed much higher diversity, 

with 12 different haplotypes and no haplotype occurring in more than 1 sample. 

There was considerable sequence diversity in N. diversicolor, with 18.9% of 

nucleotide sites polymorphic. A preliminary study of mtDNA cytochrome c 

oxidase I (COI) also found much higher sequence variation for Nereis 

diversicolor than for Nereis virens. Breton et al. explained this as relatively low 

diversity in N. virens due to a past bottleneck. Alternatively this could be viewed 

as comparatively high diversity in N. diversicolor. Relatively high heterozygosity 

shows that genetic diversity in N. diversicolor is generally not affected by 

isolation, probably as a result of very large local population sizes.  
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In addition, only a low level of gene flow between populations is required to 

balance the effects of genetic drift (Wright, 1931). Nereis diversicolor is not 

biologically restricted to brackish habitats because it can tolerate a wide range of 

salinity, so limited migration of larvae or adults, and therefore local gene flow 

between estuaries, is possible. Armonies (1999) noted that juvenile Scoloplos 

armiger and Arenicola marina are susceptible to erosion of intertidal sediment 

and passive transport in the water column, so this is likely to be the case for N. 

diversicolor. Gene flow is also facilitated through limited migration of adults 

(Scaps, 2002). The average level of gene flow estimated in the present study (Nm 

≈ 0.5) was just high enough to override the effects of genetic drift, which implies 

an alternative explanation for the observed differentiation between populations. 

 

Population structure associated with reduced heterozygosity in small, isolated 

populations can also be the result of inbreeding. Deviation from Hardy Weinberg 

equilibrium and Wright’s inbreeding coefficient FIS can be calculated more easily 

and more accurately for codominant allozyme markers than for AFLP. Studies of 

Nereidid polychaetes using codominant markers have generally found negligible 

levels of inbreeding. Allozyme studies on Neanthes succinea (Abbiati & 

Maltagliati, 1992); Nereis limnicola, Nereis japonica and Nereis diversicolor 

(Fong & Garthwaite, 1994) have found no overall significant departure from 

Hardy Weinberg equilibrium, with very low, non-significant values of FIS. 

However, Maltagliati et al. (2001) found FIS = 0.489 in Perinereis cultrifera. 

Significant deviation from Hardy Weinberg equilibrium was found for 3 loci in 

only 1 of 8 populations of N. diversicolor by Röhner et al. (1997), while in the 

study by Abbiati & Maltagliati (1996) there were 2 cases of departure from Hardy 

Weinberg equilibrium by a single locus in a single population but mean FIS values 

showed no significant heterozygote deficiency in any of the populations overall. 

Virgilio & Abbiati (2006) found high FIS values up to FIS = 0.651 within samples 

but the 6 loci chosen for the study were known to be particularly divergent and 

possibly associated with local selection, so the estimated level of inbreeding and 

heterozygote deficiency at these loci was not representative of overall genetic 

structure.   
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However, the study of 21 allozyme loci in 8 populations by Virgilio & Abbiati 

(2004b) found high intrapopulation heterozygote deficiency, with 12 departures 

from Hardy Weinberg equilibrium out of 86 combinations of loci and a high 

inbreeding coefficient f = 0.391, for the same areas where Abbiati & Maltagliati 

found no inbreeding in 1996. As a result of this discrepancy it is difficult to 

determine which of the 2 widely different inbreeding coefficients estimated by 2 

different methods for AFLP data in the present study is more likely (FIS = 0 vs FIS 

= 0.368). Based on G tests of allozyme data Hateley et al. (1992) found no 

significant departure from Hardy Weinberg equilibrium in 4 populations of worms 

from Restronguet Creek, including tolerant site R1 / K at Kennal and mixed site 

R6 / D at Devoran, but they only tested 2 loci.  

 

Virgilio & Abbiati (2004b) suggested that the occurrence of significant f values 

spread across most of the analysed loci indicated that either inbreeding or 

population subdivision was the reason for low heterozygosity, as these processes 

are expected to operate across all loci, rather than selection, which acts on 

particular loci associated with adaptive advantage. N. diversicolor has very large 

populations and no known mechanism of sexual selection, so inbreeding seems 

unlikely, although it could result from mating within high numbers of low 

dispersal siblings. Agreement by the majority of studies that inbreeding is low 

suggests that drift or selection or are more likely causes of relatively low 

heterozygosity and high differentiation found in N. diversicolor populations.  

 

Genetic structure in species with low dispersal capabilities is often characterised 

by isolation by distance (Wright, 1943). Some studies have found very little 

genetic distance between local populations of N. diversicolor. Abbiati & 

Maltagliati (1996) found zero genetic distance between 2 Tyhrrhenian populations 

in adjacent estuaries 15 Km apart, while Virgilio et al. (2003) found D = 0.000 – 

0.003 in 5 adjacent lagoons. Virgilio & Abbiati (2004b) found more moderate 

Cavalli-Sforza & Edwards distances of DC = 0.028 – 0.085 between 6 moderately 

geographically distant populations 9 – 175 Km apart around the Adriatic coast 

(although this measure is not directly comparable with Nei’s distance). Abbiati & 

Maltagliati (1996) found Nei’s (1978) D = 0.356 between populations 2,500 Km 

apart on the Tyhrrhenian and Adriatic coasts. This suggests that genetic distance 



207 

 

between N. diversicolor populations could simply be related to geographic 

distance in a pattern of isolation by distance, characteristic of drift in a species 

with low dispersal. 

 

Abbiati & Maltagliati (1996) found that, while there was little difference in 

observed heterozygosity between N. diversicolor and N. succinea, Nei’s (1978) 

unbiased distance between N. diversicolor populations ranged from D = 0.272 to 

D = 0.356 between the 2 Italian coasts, with FST = 0.848 between the 4 

populations, which was much higher than they had found for N. succinea (Abbiati 

& Maltagliati, 1992). This supported their theory regarding high population 

differentiation in limited dispersal brackish water species, compared with a 

similar species found in the same areas with more marine developmental and 

dispersal characteristics. The pattern of genetic distance between the 4 sites was 

consistent with isolation by distance due to lower dispersal in N. diversicolor. 

There was no difference between the 2 Tyhrrhenian coast samples ~ 15 Km apart 

(D = 0.00005) but the authors thought that they were distant enough 

geographically for common ancestry to be a more likely explanation for genetic 

identity than gene flow. Contrary to the Abbiati & Maltagliati (1996) study, 

Röhner et al. (1997) found no strong evidence of isolation by distance on an 

international scale for 8 populations of N. diversicolor from Scotland, the 

Netherlands, Denmark and 5 locations around the Baltic from Germany to 

Finland. Virgilio & Abbiati (2004b) compared differentiation between 6 N. 

diversicolor populations along the Adriatic coast of Italy, 9 – 175 Km apart, and 2 

Tyrrhenian populations 2500 Km away. Superficially they found high 

differentiation and isolation by distance characteristic of discontinuous 

distribution and low dispersal. However, as in the present study Multi 

Dimensional Scaling ordination analysis (MDS) showed 2 distinct clusters, 

although in this case simply corresponding to the 2 coasts. Cavalli-Sforza and 

Edward’s (1967) genetic distance was DC = 0.068 between the 2 Tyrrhenian 

populations, DC = 0.028 – 0.085 between the 6 Adriatic populations and DC = 

0.100 – 0.180 between the 2 coasts. Mantel tests showed a positive correlation 

between genetic differentiation and geographic distance only when both coasts 

were included in the analysis. Differentiation in the Adriatic populations alone 
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was moderately high (θ = 0.097) but the pattern of genetic structure along the 

Adriatic coast was not related to geographic distance.    

 

In the present study the 4 Restronguet Creek populations K, D, C and P were 

separated from each other by 3 – 20 Km and from the Hayle population H by 

~140 Km. Nei’s (1978) distance ranges were D = 0.017 – 0.112 within the 

Restronguet area, which is a wider range over a smaller area than was found by 

Virgilio & Abbiati (2004b), and D = 0.015 – 0.121 between the 2 coasts 

(Restronguet and Hayle), which does not suggest a relationship with geographic 

distance. At a geographical distance of 137 Km the differentiation between sites H 

and P of D = 0.121 could appear to be due to isolation by distance and associated 

drift but D = 0.015 between sites H and K 141 Km apart did not fit a pattern of 

isolation by distance. While a Mantel test did show a positive correlation between 

geographic distance and genetic dissimilarity there was only a very weak 

correlation when geographically distant site H was excluded, which showed that 

geography only played a very limited part in the genetic differentiation between 

tolerant and non-tolerant worms. MDS and cluster analysis confirmed the 

presence of 2 groups of genotypes, unrelated to geography, with tolerant site K 

sharing more genetic similarity with tolerant site H 141 Km away than it did with 

mixed site D and non-tolerant sites C and P 3 – 20 Km away. This coincidence of 

phenotypes and genotypes appears to be evidence for population structure based 

on divergent selection for adaptive ecotypes.  

 

However, genetic distance between populations of N. diversicolor has been found 

to be highly variable both spatially and temporally. Separate studies have found 

genetic distance between populations of N. diversicolor on the Tyhrrhenian and 

Adriatic coasts of Italy ranged from D = 0.100 to D = 0.180 (Virgilio & Abbiati, 

2004b) and  D = 0.272 to D = 0.356 (Abbiati & Maltagliati, 1996). In a study of 

temporal genetic changes at 4 sites on the Adriatic and Tyrrhenian coasts over a 

period of 3 years (2001 – 2003) Virgilio & Abbiati (2006) found distances 

ranging from DC = 0.035 to DC = 0.195 and differentiation ranging from FST = 

0.017 to FST = 0.274 between years. This variation could be attributable to the low 

number of markers used in allozyme studies (Belfiore & Anderson, 2001).  
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Small spatial and temporal scale population structure could be determined by 

stochastic processes such as mortality events and patchy recruitment. Temporal 

variation in N. diversicolor population structure was demonstrated by Virgilio & 

Abbiati (2006), by sampling 4 sites on the Adriatic and Tyrrhenian coasts of Italy 

(3 at Pialassa and 1 at Serchio) twice over a period of 3 years (2001 – 2003). 

Allele frequencies, percentage of polymorphic loci and mean observed 

heterozygosity at the six allozyme loci (ALD, FH, HBDH, LDH, PGI and SDH) 

varied considerably both spatially and temporally. Observed heterozygosity at 

Serchio ranged from H = 0.045 in 2001 to H = 0.201 in 2003. Genetic distance 

ranging from DC = 0.035 to DC = 0.195 and FST values ranging from FST = 0.017 

to FST = 0.274 between years showed significant temporal differentiation within 

all 4 sites. The combination of local genetic fragmentation and temporal 

differentiation lead Virgilio & Abbiati (2006) to propose “chaotic genetic 

patchiness” within estuaries. Nereis diversicolor population dynamics are 

characterised by periodical mass mortality followed by recruitment peaks simply 

because it is a semelparous organism with a breeding season. Mortality events 

may additionally be caused by extremes of factors such as tides, weather, 

predation, disturbance or anthropogenic inputs (Kent & Day, 1983). Sweepstake 

reproductive success, where a small number of individuals are responsible for 

patchy recruitment, may be a major process affecting local genetic structure of N. 

diversicolor within estuaries (Virgilio & Abbiati, 2004b, 2006). 

 

The small 10m
2
 sampling sites in this study were assumed to be panmictic, but 

variation in allele frequencies could have been caused by sympatric recruitment of 

individuals from 2 or more populations. The Wahlund effect of mixed recruitment 

from different populations was the preferred explanation for parapatric genetic 

types found by Röhner et al. (1997) and complex patterns of genetic structure 

found in a heavily polluted lagoon environment by Virgilio et al. (2003). A 

subdivided population, with recruitment from 2 different populations could 

explain the mixed genotypes found at sites C and D in the present study. Toxicity 

tests appeared to show a cline of tolerance, although the fact that this was the case 

for all sites implies that a range of tolerance within sites is an artefact of the tests. 

There was some evidence of possible bimodal peaks in tolerance for 1 sample 

from site D and interestingly the ~ 40/60 split between worms classified as 
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tolerant or non-tolerant according to Briggs (2005) fitted the proportions of site D 

worms grouped with the tolerant site H and K worms or closer to the non-tolerant 

site C and P worms in MDS analysis. This suggests 2 divergent ecotypes, with 

either mixed recruitment of both types at sites C and D or possibly an intermediate 

type or hybrid zone. 

Structure due to patchy recruitment over much larger spatial and temporal scales 

can be viewed as a pattern of invasions by different evolutionary lineages. Deep 

divergence between such lineages of N. diversicolor found in sympatry has lead 

authors to suggest the existence of separate species (Röhner et al., 1997; Breton et 

al., 2003; Audzijonyte et al., 2008). In allozyme studies in both the Baltic and the 

North Sea Röhner et al. (1997) found 2 distinct genetic types, A and B, which 

occurred sympatrically in 4 cases, and suggested that the pattern of local and 

international differentiation in N. diversicolor could be due to the presence of 

sibling species. There was very high differentiation between the 8 populations 

(FST = 0.892), which was almost the same as that found by Abbiati & Maltagliati 

(1996) between the 2 coasts of Italy. Röhner et al. (1997) identified the same 3 

loci as responsible for differentiation in the study by Fong & Garthwaite (1994) 

and assigned the 2 populations from that study to type A and B accordingly. 

UPGMA cluster analysis of Nei’s (1972) genetic distance between the 8 

populations clearly showed 2 separate groups based on divergence at these 3 loci. 

Group A contained 2 populations from the North Sea and 1 from the far side of 

the Baltic in Finland, while the other North Sea population was grouped with the 

rest of the Baltic samples in group B. Nei’s (1972) D within groups was low, D = 

0 – 0.004 for A and  D = 0 – 0.01 for B, while distance between the 2 groups 

ranged from D = 0.197 to D = 0.265, above the threshold for separate species. 

Gene flow calculated from pairwise FST values was correspondingly high within 

the 2 groups and very low between the groups. 

 

4 of the sites assigned to group B had a minority of type A alleles. Röhner et al. 

(1997) speculated that heterozygotes at 3 of these sites could be explained by 

parapatric hybridisation between the 2 types. For the site that only had type A or 

B homozygotes, and significantly lower heterozygosity than expected under 

Hardy Weinberg equilibrium, they proposed either the Wahlund effect of 

admixture between 2 sub-populations or reproductive isolation between sympatric 
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types as the most likely explanation. The suggestion of hybridisation in 3 mixed 

type A and B populations but not in a fourth with the same 2 genotypes seems 

counterintuitive, unless one population had independently developed a 

reproductive isolating mechanism. This study examined 13 allozyme loci, of 

which only 5 were polymorphic. Basing the existence of 2 distinct genetic types 

and possible sympatric speciation on the behaviour of 3 of these loci in a small 

number of samples highlighted the need for further research with more loci in 

more populations.    

 

Audzijonyte et al. (2008) studied 4 divergent allozyme loci (MDH I, MDH II, 

PEP, GPT), plus mitochondrial DNA cytb and COI gene sequences to survey 

Nereis diversicolor from 31 sites around the Baltic Sea. They found 2 highly 

differentiated genetic types, as suggested by Fong & Garthwaite (1994) and 

Röhner et al. (1997) and proposed that they should be considered separate species 

on the basis of reproductive isolation. Type A was dominant in the Northern 

Baltic while only type B was found on the southern Baltic coasts of Poland, 

Germany and Denmark. 5 samples were type A only, 6 were type B only but 19 

samples contained both types.  

 

Reproductive isolation without hybridisation, in accordance with the biological 

species concept, can be demonstrated for putative sympatric species by a lack of 

individuals that are heterozygous for diagnostic markers. Out of a total of 1,157 

individuals Audzijonyte et al. (2008) found no heterozygotes at any of the 4 

allozyme loci. In the intermediate region around southern Finland and Estonia 

both types were found together, but the absence of heterozygous genotypes 

indicated a lack of hybridisation between the 2 sympatric genetic types. 

Audzijonyte et al. stated that concordant divergence at 4 diagnostic allozyme loci, 

over a wide geographical area, plus the complete absence of heterozygotes where 

the 2 types occurred in sympatry, was sufficient evidence for reproductive 

isolation and therefore separate biological species. However, Röhner et al. (1997) 

did find heterozygotes. Of the 2 loci common to both studies, MDH I was 

homozygous but MDH II was heterozygous in 2 individuals at each of 2 sites (4% 

of each sample). The third allozyme locus considered to be diagnostic of the 2 

types by Röhner et al. (IDH I), but not used by Audzijonyte et al., also had 
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heterozygote genotypes. In the Fong & Garthwaite (1994) study the N. limnicola 

and N. japonica samples were all monomorphic for the same MDH II allele, while 

N. diversicolor type B shared an IDH I allele with N. limnicola. This highlights 

the danger of using a small number of allozyme loci to lump or split species. 

 

Analysis of 138 COI and 25 cyt b sequences by Audzijonyte et al. (2008) did not 

agree with the proposed division into 2 types. They found 4 distinct, strongly 

diverged lineages, with 4.4 – 7.3 % COI sequence divergence between them and, 

while type A were mostly grouped in a single clade, there were 3 type B clades, 

with ΦST as high as 0.94 between some of the type B sites. There were 8 cases 

(5%) of individuals with a mismatch between allozyme type and A / B 

mitochondrial DNA clade assignment. Disagreement between the 2 markers 

occurred for both sympatric A / B sites and sites where only 1 genetic type was 

found. According to Audzijonyte et al. (2008) lineage mismatch could indicate 

past mtDNA introgression but that requires fertile hybrids, which contradicts the 

idea of reproductively isolated biological species, unless speciation was recent. 

 

Virgilio et al. (2009) used mitochondrial DNA cytb and COI gene sequences to 

study phylogeography of N. diversicolor across a large proportion of its 

geographical range, at 16 locations from the NE Atlantic coasts of Europe and 

Morocco, plus the Mediterranean, Black and Caspian Seas. Their analyses also 

included the cytb sequences for the NW Atlantic, NE Atlantic and Mediterranean 

from the study by Breton et al. (2003), who had found a 6.6% DNA sequence 

divergence between Canada and France, and the cyt b and COI sequences for the 

2 putative species A and B reported in the Baltic by Audzijonyte et al. (2008). 

Both diversity and differentiation were generally high: for a concatenated cyt b + 

COI data set of 74 haplotypes only 4 haplotypes were shared by more than 1 

population. The COI sequence (345 bp) had 64 haplotypes with 88 polymorphic 

sites and an average sequence divergence of 6.7% (SE = 0.78%), while the cyt b 

sequence (290 bp) had 52 haplotypes with 68 polymorphic sites and an average 

sequence divergence of 4.5% (SE = 0.74%). Sequence divergence in COI > 2% is 

considered to indicate different species (CBOL, 2010), although this is the subject 

of extensive debate and may not be a suitable threshold for invertebrate 

taxonomy. 
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Different phylogenetic reconstruction methods, using different sequences as an 

outgroup gave a different arrangement of clades for cyt b, COI and concatenated 

cyt b + COI sequences but the overall groups were the same. Phylogenetic 

analyses indicated 5 distinct clades from NE Europe, Portugal and Morocco, the 

Western Mediterranean, the Adriatic and the Black and Caspian Seas. All trees 

split the individuals from the Baltic between clades. The best resolved rooted tree, 

for COI with Nereis japonica as outgroup, grouped all of the individuals 

originally assigned to Baltic A with those from NE Europe, while all but 1 of the 

Baltic B individuals were split between the Western Mediterranean and Black / 

Caspian Sea clades, suggesting three different sympatric lineages in the Baltic.  

 

The divergent population structure of N. diversicolor at different spatial scales in 

the Baltic could be explained by multiple historical invasions of the “sea of 

invaders” (Leppäkoski et al., 2002). Most of the Baltic Sea is a single, huge 

brackish environment, with greatly reduced salinity due to terrestrial runoff, and 

so does not experience the same barrier of full salinity found between estuaries as 

other Seas. However, Nereis diversicolor is euryhaline so this should not make a 

difference to dispersal. The Wahlund effect of more recent, smaller scale patchy 

recruitment from older lineages could explain the local sympatric occurrence of 

divergent genotypes in the present study.   

 

The 5 individuals from Severn Estuary on the west coast of the UK examined by 

Virgilio et al. (2009) were scattered throughout the NE Europe clade, grouped 

with individuals from France, Germany, the Netherlands and Baltic type A. This 

agrees with the assignment of individuals from East Scotland to type A by Röhner 

et al. (1997). The fact that populations from Northern France, on the other side of 

the English Channel were also type A (Breton et al., 2003) makes it likely that all 

populations in the present study would belong to the same NE Europe mtDNA 

clade. Virgilio et al. (2009) showed that relatively conserved mitochondrial gene 

sequences were a useful marker for investigating the existence of sibling species 

and ascertaining the large scale genetic structure of N. diversicolor at the 

international level but are of less use for investigating small scale local 

differentiation.  
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Variable levels of diversity between local regions could indicate historical 

colonisation effects, different levels of isolation and drift or selective effects of 

local environmental conditions. In their study of differentiation over different 

spatial scales Virgilio & Abbiati (2004b) concluded that large scale differentiation 

in N. diversicolor may have been related to different evolutionary histories of 

Adriatic and Tyrrhenian populations but small scale structure was more likely to 

be influenced by adaptation to local environmental conditions. Abbiati & 

Maltagliati (1996) suggested that differentiation between 4 populations of N. 

diversicolor from an estuary and a canal on the Tyhrrhenian coast of Italy, an 

island off the Tyhrrhenian coast and a lagoon on the Adriatic coast could have 

been due to eco-physiological barriers between the different habitat types 

resulting in local adaptation, rather than isolation by distance due to genetic drift. 

However, in the study by Virgilio et al. (2009) nucleotide (π) and haplotype (h) 

diversity was high for the North European coasts (n = 35, π = 0.032, h = 0.992) 

and Black and Caspian Seas (n = 21, π = 0.032, h = 0.976) but relatively low for 

the Adriatic (n = 35, π = 0.002, h = 0.524), with 24 out of 35 individuals sharing 

the same haplotype. The fact that the least diverse Adriatic samples were from 4 

different lagoon and estuary habitats in Italy and Croatia which makes local 

adaptation effects on diversity seem less likely in this case.   

 

Abbiati & Maltagliati (1996) described the pattern of 15 polymorphic allozyme 

loci in 4 populations of N. diversicolor as “peculiar”. 4 loci with alleles that were 

either monomorphic or absent in different populations (FST = 1) made the highest 

contribution to very high differentiation of FST = 0.848. This agrees with the 

present study, which also found that a number of loci were either fixed or absent 

in different populations. The occurrence of some fixed alleles suggests restricted 

gene flow between populations but could also be loci under selection, or neutral 

loci hitchhiking: linked with genes that are subject to selection (Barton, 2000). 

 

Röhner et al. (1997) also found that their results were characterised by a few 

highly divergent allozyme loci responsible for most of the difference, with 

different alleles fixed for different populations. They studied 8 populations of N. 

diversicolor from the Tay estuary in Scotland, an estuary in the Netherlands, a 
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fjord in Denmark, and from 5 locations around the Baltic from Germany to 

Finland. The authors did not give any information regarding levels of pollution so 

it is assumed that all of the study sites were relatively clean. The North Sea is 

tidal, whereas the Baltic Sea is non-tidal and the Danish fjord had very limited 

tidal effects but they found no genetic structure associated with habitat type or 

tidal regime.  

 

For genetic markers to be subject to selection they must be associated with a 

heritable phenotype that conveys a selective advantage. Rather than looking for a 

connection between genetic type and environmental factors a number of authors 

have focussed on linking variation in morphological or physiological traits to 

evolutionary adaptation to local environmental conditions at the molecular level. 

Other studies, including the present one, have explored a three way correlation 

between environmental factors, tolerant phenotypes and genetic variation to 

support the hypothesis that genetic structure is the result of selection for adaptive 

traits (Luoma, 1977; Belfiore & Anderson, 2001; Nosil, 2009).   

 

A number of studies have found intraspecific differences in paragnath number and 

distribution in Nereidids, including Nereis virens (Breton et al., 2004) and Nereis 

diversicolor (reviewed by Hateley et al., 1992; Maltagliati et al., 2006). 

Khlebovich & Komendantov (2002) found that paragnath patterns in Nereis 

diversicolor populations were stable over time and that therefore likely to be a 

heritable rather than a plastic trait. Hateley et al. (1992) demonstrated 

experimentally that sediment type had no influence on plasticity in the 

development of paragnaths and that the trait was substantially heritable in crosses. 

Genetic differences between populations may be the result of either limited gene 

flow between sites or selection acting on paragnath patterns.  It has been 

suggested that paragnath variation may correspond with environmental factors 

(Bakken et al., 2009). Intraspecific variation associated with sediment grain size 

has been demonstrated for Nereis diversicolor (Garcia-Arberas & Rallo, 2000) 

and Perinereis vallata (Bakken et al., 2009) and with salinity for Nereis 

diversicolor (Barnes, 1978) and Perinereis cultrifera (Maltagliati et al., 2001). 

However, in a comparison of their own results with other studies of paragnaths 
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Hateley et al. (1992) found no consistent relationship between paragnath pattern 

and sediment type or salinity for Nereis diversicolor. Hateley et al. (1992) and 

Maltagliati et al. (2006) both suggested that inter-population differences in 

paragnath pattern may be adaptations to different diets. However, a gradient of 

paragnath number along the Humber in the study by Hateley et al. also suggested 

a simple genetic pattern of isolation by distance. They stated that as there was no 

evidence of a selective advantage, or of reduced heterozygosity associated with 

strong selection pressure, drift in isolation was more likely, despite the fact that 2 

of the estuaries studied were only 2 Km apart. Other intraspecific studies 

combining paragnath patterns with molecular markers have found much greater, 

smaller scale genetic differentiation than was indicated by paragnath data alone 

for Perinereis cultrifera (Maltagliati et al., 2001) and Nereis diversicolor (Virgilio 

et al., 2006). This suggests that if paragnath pattern is an example of phenotypic 

diversity due to drift or divergent adaptation in Nereis diversicolor then it is not 

the strongest influence on genetic differentiation.  

 

Allozyme studies have been used to investigate genetic patterns associated with 

heritable tolerance to metal pollution in N. diversicolor (Hateley et al., 1992; 

Virgilio et al., 2003; Virgilio & Abbiati, 2004a; Virgilio et al., 2005; Virgilio et 

al., 2006). Hateley et al. (1992) compared variation at 2 allozyme loci, LDH I and 

LDH II, from sites around the UK in the Humber Estuary, Avon Estuary, plus 

Mylor and Restronguet Creeks in Cornwall, which are only 2 Km apart. They 

found high genetic differentiation between estuaries but only weak differentiation 

within estuaries. LDH I allele frequencies for Restronguet Creek showed higher 

polymorphism and were significantly different to the other 3 estuaries, while 

Mylor Creek was significantly different to the other sites at the LDH II locus. 

Toxicity tests carried out for Restronguet creek, using a Cu concentration of 1.0 

mg l
-1

, found no significant difference in time to death between the 2 LDH I 

phenotypes, and therefore no connection between this marker and copper 

tolerance.  

 

Virgilio et al. (2003) studied the relationship between sediment contamination, 

tissue contamination and allozyme structure in N. diversicolor from the heavily 

polluted Pialassa lagoons on the Adriatic coast, at 4 sites with different levels of 



217 

 

mercury and 1 clean site. Mercury concentrations in tissues were correlated with a 

gradient of contamination in sediments, although there were significant 

differences in concentrations of mercury found in the tissues of individuals both 

between and within sites. There was no genetic distance between the sites 

according to Nei’s (1978) D = 0.000 – 0.003 but despite the proximity of the sites 

χ
2
 analyses revealed significant differences between allele and genotype 

frequencies. There was a low level of genetic differentiation at 6 of the 19 

allozyme loci, of which differentiation at LDH, PGI and SDH corresponded with 

levels of contamination while variation at ALD, FH and HBDH did not. The 

percentage of polymorphic loci, mean number of alleles per locus and observed 

heterozygosity were lower at the contaminated sites than at the clean site. 

Significant departures from HWE were observed for some loci in both 

contaminated and clean sites, but this was more common for the most 

contaminated site, with heterozygote deficiency at 3 loci.   

 

In the Virgilio & Abbiati (2004b) study of 8 sites the Pialassa population also had 

a much lower percentage of polymorphic loci, mean number of alleles per locus 

and observed heterozygosity compared to the other sites, despite a higher sample 

size. There was relatively high genetic distance between Pialassa and the other 

Adriatic sites, shown by an nMDS plot of Cavalli-Sforza & Edwards (1967) 

distances. The environmental condition of the other sites was not stated though.  

 

Virgilio & Abbiati (2004a) carried out laboratory experiments on N. diversicolor 

exposed to copper stress, from 3 sites ~ 10 Km apart in the contaminated Pialassa 

lagoons. For each of the 3 sites 2 replicates of 35 individuals were exposed to 0.34 

mg L
-1

 Cu
2+

 (96h LD 50) in acute toxicity tests. The genotypes of dead and 

surviving individuals after 96 hours were analysed using the 6 allozyme loci 

found to be of interest in their 2003 study of mercury contamination at Pialassa. 

There was no significant difference in observed heterozygosity between dead and 

surviving individuals at any locus. Under laboratory conditions the effect of 

copper stress on N. diversicolor appeared to be related to individual genotypes at 

ALD and PGI allozyme loci. Individuals from all 3 sites with the genotypes 

ALD
100/100

 and PGI
102/102 

had significantly lower mortalities than genotypes 

homozygous or heterozygous for the alternative allele. This could indicate 



218 

 

sympatric divergence between individuals homozygous for tolerant and non-

tolerant genotypes, or stochastic recruitment from different sources, but finding 

the same pattern of subdivided populations at 3 different polluted sites seems 

unlikely if one type has a competitive advantage.  

To test if genotypic associations with tolerance were consistent over larger spatial 

scales Virgilio et al. (2005) surveyed copper tolerance in N. diversicolor from 3 

sites on the Adriatic and Tyrrhenian coasts of Italy, including the Pialassa 

lagoons, a site 40 Km away on the Adriatic coast and a site 2500 Km away on the 

Tyrrhenian coast. Cavalli-Sforza & Edwards (1967) distances of 0.008 between 

the 2 Adriatic sites and 0.074 between the 2 coasts were fairly consistent with 

previous studies on these spatial scales (Abbiati & Maltagliati, 1996; Virgilio et 

al., 2003; Virgilio & Abbiati, 2004b) and did not appear to be related to levels of 

contamination. The level of differentiation between the 3 sites was relatively low 

(θ = 0.047) and the inbreeding coefficient was high (f = 0.543), although these 

statistics were based on only 3 loci. There was no significant difference in time to 

death between the 3 populations exposed to 0.48 mg L
-1

 Cu
2+

 (96h LD 70) in 

acute toxicity tests but this may simply reflect similar levels of copper 

contamination at all 3 locations. It should be noted that copper levels at Pialassa 

are 11 to 280 μg/gdw (Virgilio & Abbiati, 2004a) while copper levels at 

Restronguet are up to 4000 μg/gdw (Bryan & Hummerstone, 1971) and so likely 

to exert a greater selective effect. 

 

Virgilio et al. (2005) investigated the relationship between time to death and 

genotype at 3 allozyme loci, ALD, PGI and FH. Genotype-tolerance association at 

the ALD locus was consistent among all 3 populations to some extent, with 

ALD
102/102 

individuals, homozygous for the non-tolerance allele, having the 

shortest survival times. However, at 1 site heterozygotes had a higher predicted 

median time to death than individuals homozygous for the tolerant allele, which 

contradicts the suggested homozygote advantage. In contrast to previous studies 

there was a reasonable number of both heterozygotes and homozygotes for both 

tolerance and non-tolerance associated genotypes found at all 3 sites, which does 

not suggest divergent selection for a particular genotype. There were no 

significant associations between genotype and time to death for the PGI locus and 
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the PGI
102/102 

allele previously found to be associated with tolerance (Virgilio & 

Abbiati, 2004a) actually had the lowest predicted median time to death.  

 

Comparison with the Virgilio & Abbiati (2004a) study confirmed a consistent 

relationship between ALD genotype and copper tolerance but the relationship 

between tolerance and the PGI locus was not consistent spatially or temporally. 

Virgilio et al. (2006) later found no relationship between concentrations of metals 

and distribution of ALD genotypes. In the study by Virgilio et al. (2003) 

differentiation at the ALD locus did not correspond with levels of mercury 

contamination, while the relationship between LDH and SDH loci and mercury 

contamination found at Pialassa in 2003 was not apparent for copper in the 2004a 

study. This last discrepancy may be related to different effects of copper and 

mercury, as the latter directly affects enzyme function as a heavy metal. However, 

the general lack of agreement between studies questions the usefulness of these 

allozyme markers as indicators of tolerance to metals.  

 

In the study of Neanthes succinea by Abbiati & Maltagliati (1992) 1 out of 21 

allozyme loci showed much higher locus specific diversity and differentiation 

(FST = 0.694) than the others, plus significant deviation from Hardy Weinberg 

equilibrium. The allozyme PGI has been associated with mercury contamination 

Virgilio et al. (2003). Hvilson (1983) found significant differences in PGI allele 

frequencies between dead and surviving mussels Mytilus edulis exposed to copper 

while Nevo et al. (1981) found that particular PGI genotypes in gastropods 

Monodonta turbinata and M. turbiformis were more common in contaminated 

areas and showed higher tolerance to copper and zinc.   

 

Koehn & Bayne (1989) proposed a heterozygote advantage for enzymes such as 

PGI that are involved in metabolism, on the basis that heterozygotes require less 

energy to maintain basal metabolism and therefore have more energy available to 

respond to stress. Troncoso et al. (2000) surveyed 5 polymorphic allozyme loci in 

the scallop Argopecten purpuratus obtained from a commercial hatchery and 

exposed to copper in acute toxicity tests. They found no difference in allele or 

genotype frequencies between dead and surviving individuals but there was a 

significant difference in heterozygosity at 2 loci. For the PGI locus there was a 
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significant excess of heterozygotes among survivors and a positive relationship 

between heterozygosity and survival. A general positive relationship between 

degree of heterozygosity and survival in marine species exposed to mercury was 

proposed by Nevo et al. (1984) and has been found in the caddis fly Nectopsyche 

albida (Benton & Guttman, 1992), for example. However, the results of allozyme 

studies on other aquatic organisms have not shown a consistent relationship 

between tolerance to metal contamination and either heterozygote or homozygote 

advantage (Roark & Brown, 1996). A negative relationship between 

heterozygosity and tolerance to metal exposure was found in mussels Mytilus 

edulis exposed to copper (Hoare et al., 1994) and higher tolerance to mercury has 

been exhibited by homozygous individuals in the fish Gambusia affınis (Diamond 

et al., 1989). Virgilio et al. (2003) suggested that low heterozygosity associated 

with tolerance in N. diversicolor supported the hypothesis of a selective 

disadvantage of heterozygotes.  

 

The present study also found lower estimated heterozygosity associated with 

copper tolerance at the most contaminated sites. Possible effects of both allozyme 

alleles being expressed in heterozygotes would not be apparent in DNA based 

AFLP markers though, so it is likely that relatively lower heterozygosity found at 

some sites was the product of drift or selection rather than a direct result of 

heterozygote advantage or disadvantage. Some studies have demonstrated rapid 

accumulation of mutations and an associated increase in genetic diversity in 

polluted environments due to genotoxic effects (Yauk & Quinn, 1996; Rogstad et 

al., 2003). Most mutations are deleterious though, which leads to lower 

population viability (Berckmoes et al., 2005). Pollution is more often associated 

with reduced genetic diversity, due to selection pressure (Ma et al., 2000; Van 

Straalen & Timmermans, 2002; Ross et al., 2002) or bottleneck effects of reduced 

population size (Bickham et al., 2000, Medina et al., 2007). However, studies of 

population differentiation under selection do not all find associated reduced 

diversity (Nosil et al., 2009), and this may be an effect of the strength of selection. 

 

Lower heterozygosity found at tolerant sites H and K in the present study could be 

the result of a bottleneck or founder effect following the introduction of metal 

pollution and strong selection pressure, possibly reinforced by assortative habitat 
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selection or mating. The distribution of genotypes in MDS and cluster analysis 

suggests that comparatively high heterozygosity at sites C and D could be 

attributable to the Wahlund effect of mixed recruitment, or lower selection 

pressure and intermediate adaptation. Relatively low heterozygosity at site P, with 

the lowest tolerance, could be due to isolation by distance: non-tolerant site P and 

tolerant site K, both with relatively low heterozygosity, were further up a river 

than the other sites. Rather than divergent selection for ecotypes a study of 

guppies Poecilia reticulata by Crispo et al. (2006) found a pattern of isolation by 

geographic distance and physical barriers to dispersal, with genetic diversity 

decreasing up rivers. However, tolerant site H in the present study is probably the 

least isolated geographically, in a wide estuary mouth, close to other less polluted 

sites, but has the lowest heterozygosity, which is evidence for reduced diversity 

due to strong selection. Low heterozygosity at non-tolerant site P could therefore 

be due to the effects of selection for non-tolerance traits.  

 

Estuarine species are often generally characterised by low genetic diversity, due to 

low dispersal, drift in isolation and selection pressure from stressful fluctuations 

in natural environmental factors (Crisp, 1978; Abbiati & Maltagliati, 1992; 

Belfiore & Anderson, 2001) but overall Nereis diversicolor displays relatively 

high genetic diversity. This may have facilitated adaption to copper pollution 

where most other species were eliminated but it also presents a paradox. If 

selection for a particular fitness related trait in a population reduces genetic 

diversity, and the performance of populations is positively related to genetic 

variation, then a population with lower variation has reduced ability to respond to 

other selection pressures. The recent focus of conservation policy on maintaining 

biodiversity includes the genetic diversity of species. Loss of genetic diversity due 

to a particular selection pressure reducing the potential for populations to adapt to 

a range of different environmental changes that they may face in the future, such 

as climate change, is of current concern (Nevo et al., 1986). However, high 

differentiation between N. diversicolor populations offers a diverse range of 

phenotypes at the species level, which may have different selective advantages 

under changing environmental conditions. On wider spatial and temporal scales 

stochastic recruitment and invasions by diverse, divergent lineages has allowed 
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colonisation of a range of conditions by phenotypes with different adaptations, 

ensuring the widespread success of N. diversicolor.    

 

Initial divergence between ecotypes can occur over small, non-allopatric spatial 

scales in response to strong divergent selection for adaptations to different 

environmental factors (Rice & Hostert, 1993; Schluter, 1996, 2001, 2009; Rundle 

& Nosil, 2005; Hedrick, 2006; Butlin et al., 2008). Studies using large numbers of 

molecular markers have found local differentiated populations with divergent 

phenotypes and corresponding genotypes that segregate according to ecotype 

(reviewed in Luikart et al., 2003; Nosil et al., 2009). Divergent selection acting in 

contrasting directions in non-allopatric populations can lead to isolation by 

adaptation (IBA) and potentially ecological speciation (Rundle & Nosil, 2005; 

Nosil et al., 2009). Directional or divergent selection can be attributed to abiotic 

physical and chemical gradients, such as temperature, salinity and pollution, or 

biotic clines of competition, predation or food preference, and can act on 

biochemical, physiological, morphological, ecological or life history traits.  

 

AFLP genome scans have found directional or divergent genetic differentiation 

associated with a gradient of altitude in the frog Rana temporaria (Bonin et al., 

2006); environmental variables in the pine weevil Hylobius abietis (Joost et al., 

2007); host plant choice in larch bud moth (Emilianov et al., 2004), the stick 

insect Timema cristinae (Nosil et al., 2008), the leaf beetle Neochlamisus 

bebbianae (Egan et al., 2008) and pea aphids (Via & West, 2008); dwarf and 

normal ecotypes of lake whitefish Coregonus clupeaformis (Campbell & 

Bernatchez, 2004); wave action and predation resistant ecotypes, with some 

evidence of reproductive isolation, in the intertidal snail Littorina saxatilis 

(Wilding et al., 2001; Grahame et al., 2006; Butlin et al., 2008) and soil type 

adaptation, reinforced by the reproductive isolating mechanism of different 

flowering times in Howea palm trees (Savolainen et al., 2006). The present study 

found strong differentiation between Nereis diversicolor populations, with high 

values of D and FST, based on environmental copper levels and tolerance to 

copper rather than geographic distance. 
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Differentiation in RAPD, AFLP and mtDNA sequences between ecotypes of the 

cosmopolitan polychaete Scoloplos armiger is considered high enough for 

speciation (Kruse, 2003; Kruse et al., 2003; Kruse & Reise, 2003; Kruse et al., 

2004; Bleidorn et al., 2006). Sibling species of S. armiger have different 

developmental traits, sperm morphology, larval morphology and ecology (Kruse, 

2003; Kruse et al., 2003; Kruse & Reise, 2003; Kruse et al., 2004). An intertidal 

form has egg cocoons while a subtidal form has pelagic larvae, which was initially 

thought to be poecilogony - a type of plasticity where a genetically homogeneous 

species employs different modes of development in different environmental 

conditions. The intertidal form has also been shown to have higher tolerance to 

sulphide and hypoxia than the subtidal form (Kruse et al., 2003) and differences 

between the 2 forms are now thought to be heritable adaptations to intertidal or 

subtidal habitats (Bleidorn et al., 2006). Genetic differentiation could be 

explained by a lack of migration between habitat types, selection through 

predation of egg cocoons in the subtidal and high post settlement larval mortality 

in the intertidal or reproductive isolation. The two forms occur sympatrically in 

the North Sea, with no evidence of hybrids, and laboratory breeding experiments 

have demonstrated reproductive isolation (Kruse & Reise, 2003).  

 

Evolutionary adaptation to local selection pressures affects patterns of genetic 

structure in natural populations. In the absence of heritable adaptations to 

selection pressure S. armiger would have relatively homogeneous 

metapopulations characterised by isolation by distance (Wright, 1943). Kruse et 

al. (2003) carried out RAPD and AFLP analysis on S. armiger to test the 

hypothesis of genetic isolation by habitat type against isolation by distance. 1 

intertidal and 1 subtidal sample ~ 2 Km apart were collected from each of 4 

locations: 3 7 – 16 Km apart, plus a more distant subtidal sample 95 Km away. In 

UPGMA cluster analysis of Nei & Li (1979) distances for both RAPD and AFLP 

data the intertidal and subtidal samples formed distinct clusters, indicating less 

genetic distance between habitats than between sites, including the geographically 

distant site. For RAPD the Shannon diversity index ranged from 0.37 to 1.59 

within sites, which is a wider range and much higher than S = 0.175 in the present 

study. AMOVA also showed very high intrapopulation variation: ΦST = 0.81 
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compared with ΦST = 0.436 in the present study. A hierarchical AMOVA 

partitioned the variance 81% within sites, -3% (0%) between sites and 22% 

between intertidal and subtidal habitats. Assuming clean and contaminated sites 

are habitat types, in the present study the variance was partitioned 41% within 

sites, 8% between sites and 51% between habitats, showing lower within site 

diversity but greater differentiation between habitats. Kruse et al. (2003) also 

found higher genetic diversity in the subtidal population, which they attributed to 

a higher effective population size due to wider dispersal of pelagic larvae. 48 out 

of 116 bands were only found in subtidal samples but interestingly there were no 

bands specific to intertidal samples, in contrast to the present study which found 

loci specific to both tolerant and non-tolerant sites, indicating divergent selection. 

 

On an international scale cox3-trnQ-nad6 mtDNA phylogeny recovered 5 

different clades of S. armiger in the NE Atlantic and NE Pacific, with intertidal 

and subtidal types from the North Sea forming 2 distinct clades (Bleidorn et al., 

2006). Tree topology and distances between clades generated by different 

phylogenetic analysis methods were largely unresolved, but suggested that 

geographic distance makes a bigger contribution to mtDNA differentiation in this 

species complex than adaptative evolution underlying the observed 

morphological, developmental and ecological differences between local ecotypes. 

This is unsurprising as mtDNA is used for large spatial and temporal scale 

phylogeny precisely because of the relatively neutral, conserved nature of the 

mitochondrial genome. Dominant markers such as RAPD and AFLP that sample a 

large number of loci throughout the nuclear genome are far more likely to detect 

small numbers of small scale, recent changes, particularly at loci that are subject 

to selection. 

 

In the absence of reproductive isolation selection can act on a small number of 

genes for adaptive traits, against a background of the homogenising effects of 

gene flow, characterised by a few highly divergent loci (Lewontin & Krakauer, 

1973; Rice & Hostert, 1993; Beaumont & Nichols, 1996; Wilding et al., 2001). 

On smaller spatial scales non-allopatric speciation is possible under strong 

divergent selection, despite gene flow between populations. In a review of 
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laboratory experiments on the development of reproductive isolation Rice & 

Hostert (1993) concluded that isolation can rapidly evolve between parapatric or 

even sympatric populations if divergent selection is strong enough relative to gene 

flow. This model of speciation is characterised by initial divergence at a few loci 

maintained by selection, while divergence in the rest of the genome is prevented 

by gene flow; in contrast to uniform divergence across all loci characteristic of 

isolation by distance or a physical barrier to gene flow. A signature pattern of 

differentiation at a small proportion of loci, compared with less differentiation in 

the majority of loci, indicates divergent selection. Simulation to predict the 

expected distribution of differentiation across neutral loci, given an average level 

of divergence between loci can therefore be used to identify outlier loci under 

selection (Lewontin & Krakauer, 1973; Beaumont & Nichols, 1996). A pattern of 

linkage disequilibrium at a few loci associated with selective factors, compared 

with a relative lack of divergence at the majority of loci, could also be considered 

evidence for the early stages of non-allopatric speciation due to selection. The 

present study identified ~ 10% of AFLP loci as outliers, with higher FST than 

expected under a neutral model of evolution and so likely to be under divergent 

selection. This is consistent with a review of 14 AFLP genome scan studies (Nosil 

et al., 2009) which found a range of 0.5 – 26% outlier loci, with most studies 

having 5 - 10% outliers and 1 - 5% replicated in pair-wise comparisons. 25 - 

100% of these outliers specific to ecotypes and typically high linkage 

disequilibrium between ecotypes.  

 

A well studied example of non-allopatric speciation under divergent selection is 

the intertidal winkle Littorina saxatilis, which displays repeated parallel evolution 

of clines in heritable shell morphology, associated with vertical gradients of wave 

action, predation by crabs and crushing, on rocky shores in the UK, Spain and 

Sweden (Johannesson et al., 1993, 1995; Hull et al., 1996; Wilding et al., 2001; 

Rolan-Alvarez et al., 2004; Grahame et al., 2006, plus studies reviewed in Butlin 

et al., 2008 and Johannesson et al., 2010). In the UK L. saxatilis has distinct high 

and mid shore forms, which display partial reproductive isolation due to both 

assortative mating (Hull, 1998; Pickles & Grahame, 1999) and a high rate of 

inviable embryos in hybrid zone intermediate shell morphs, suggesting a post-

zygotic isolating mechanism (Hull et al., 1996). However, rather than complete 
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isolation, the pattern of differentiation still shows a signature of the early stages of 

speciation due to divergent selection, beginning with outlier divergence in a small 

set of gene loci.  

 

Wilding et al. (2001) compared FST values for 306 AFLP loci with the distribution 

of FST values expected in the absence of selection, estimated from a simulation 

model. For high and mid shore samples from 4 sites separated from each other by 

4 – 26 Km, with 50 individuals per sample, 15 loci (5%) showed greater 

differentiation than expected, with FST values higher than the 0.99 quantile. 

Randomisation tests (similar to a Mantel test) showed no relationship between FST 

values and geographic distance but when the 15 divergent loci were removed from 

the analysis there was a pattern of differentiation associated with distance. 

Neighbour joining trees of Nei’s distance between sites with and without outlier 

loci agreed with this. FST values ranged from 0.0052 between 2 samples of the 

same type collected from the same site to 0.0230 – 0.0318 between the same 

ecotype at different sites; 0.0247 – 0.0396 between high and mid shore ecotypes 

at the same site and up to 0.0633 between different ecotypes from different sites. 

These values are much lower and less variable than values of FST found by the 

present study. FST values were 0.117 between 2 non-tolerant sites, 0.255 between 

2 tolerant sites and ranged from 0.488 to 0.691 between ecotypes, reflecting high 

diversity and differentiation between all sites; particularly between ecotypes, 

regardless of geography. Tolerant site K is far more similar genetically to tolerant 

site H 141 Km away than to site P 16 Km away. 

 

Wilding et al. (2001) found no fixed differences between the 2 ecotypes, whereas 

the present study found 2 loci that may be fixed at the 2 tolerant sites and absent 

at non-tolerant site P and 6 loci that were fixed at site P and absent at the 2 

tolerant sites. Outlier loci specific to both extreme ecotypes is good evidence for 

divergent selection. Heritable tolerance can be associated with a loss of fitness in 

other respects: a “cost of tolerance” (Luoma, 1977) which creates a competitive 

disadvantage. This may be the result of pleiotropy, where a change in a single 

gene affects multiple phenotypic traits, genetic linkage with tolerance genes or an 

indirect trade-off between adaptive traits and general fitness (Harper et al., 1997; 

Barton, 2000; Medina et al., 2007). Tolerance mechanisms may require increased 



227 

 

energy expenditure or interfere with other physiological processes such as nutrient 

uptake (Calow & Forbes, 1998; Briggs, 2005; Pook et al., 2009). Briggs (2005) 

observed both slower growth and lower aggression in tolerant N. Diversicolor. 

The fact that metal tolerant N. Diversicolor are not found in large numbers at 

clean sites (Bryan & Hummerstone, 1971; Grant et al., 1989; Briggs, 2005) 

implies selection against tolerant phenotypes in clean conditions, probably as a 

result of intraspecific competition with non-tolerant N. Diversicolor and 

interspecific interactions under higher biodiversity. Pollution affects the diversity, 

abundance, distribution and ecological interactions of organisms: pollution 

tolerant communities have lower species richness and abundance, and thus a 

lower requirement for competition. The 2 selection pressures of copper and 

competition driving divergence are absent or reduced in the opposing habitat so 

this is an example of divergent selection, with different phenotypes favoured by 

opposing environmental and ecological conditions.   

 

An interesting similarity between Littorina saxatilis ecotypes and the present 

study is that the 2 extremes of the cline are controlled by abiotic and biotic factors 

respectively and both studies found linkage disequilibrium between loci 

associated with opposing ecotypes, indicating divergent rather than directional 

selection. Strong positive or negative linkage disequilibrium among all but 1 of 

the 20 loci of interest identified by bulk segregant or outlier analysis is further 

supporting evidence for divergent selection. Among 15 differentiated loci 

showing linkage disequilibrium for Littorina saxatilis ecotypes Grahame et al. 

(2006) found 2 pairs of bands separated in size by a single base pair, which they 

thought may be allelic. The present study found 6 pairs of consecutive bands 

among the 20 loci of interest, 4 of which were tolerant / non-tolerant segregating 

bands. However, hitchiking by linked loci (Barton, 2000) means that loci of 

interest are not necessarily functionally involved in adaptation. Divergent effects 

on linked loci increases with strength of selection (Nosil et al., 2009), which could 

explain the number of loci with moderately high FST in the present study. 

Grahame et al. (2006) did not find a consistent pattern of hybrid zone linkage 

disequilibrium across shores, and so no firm evidence of loci that are tightly 

linked in the genome, protecting them from recombination or introgression and 

facilitating evolutionary adaptation based on a complex set of multiple loci. In the 
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present study lower linkage disequilibrium at site D, with intermediate tolerance, 

suggests an intermediate type rather than a hybrid zone, while high linkage 

disequilibrium at site C could indicate a Wahlund effect of patchy recruitment, 

which agrees with the picture of genotypes portrayed by MDS analysis. 

 

The extent to which divergent selection can drive differentiation throughout the 

genome, in loosely linked and unlinked neutral regions, is unclear. Population 

differentiation with gene flow is characterised by divergence at loci subject to 

selection but if selection is strong enough to constitute a barrier to gene flow, or 

an additional reproductive isolating mechanism develops, then non-allopatric 

divergence would also affect neutral loci. Selection acts against gene flow through 

mortality or reduced fitness of immigrants (Hendry, 2004). This may be 

reinforced by assortative mating, either directly by mate choice or through habitat 

selection, or through development of a post-zygotic isolating mechanism. By 

acting as a partial barrier to gene flow selection can also promote differentiation 

through drift in neutral loci (Hendry, 2004; Grahame et al., 2006; Nosil et al., 

2009). Nosil et al. (2008) found that neutral genetic differentiation was positively 

correlated with the degree of adaptive divergence in host plant preference between 

pairs of Timema cristinae stick insect populations, for example.  

 

Following the study of outlier loci in Littorina saxatilis ecotypes by Wilding et al. 

(2001) a subsequent study by Grahame et al. (2006) examined the effects of 

adaptive divergence on neutral loci, using vertical transects of samples from 

contiguous high to mid shore habitats on the same shore. Again there was a steep 

cline in outlier allele frequencies, coinciding with a cline in shell morphology. 

They also found higher FST in non-outlier loci between than within ecotypes, 

regardless of geographic distance, which is characteristic of a general barrier to 

gene flow due to assortative habitat or mate choice or post-zygotic isolation. 

Linkage disequilibrium between outlier loci was high in the middle of the cline 

with intermediate allele frequencies. Combined with intermediate morphology 

and intermediate genotypes at differentiated loci in a few individuals, this 

indicates a hybrid zone between differentiated populations, which potentially acts 

as a barrier to gene flow in itself through hybrid infertility. However, this pattern 
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could be consistent with either non-allopatric divergence or secondary contact 

following allopatric divergence (Rice & Hostert, 1993). 

 

Anecdotally, the fact that only one tolerant / non-tolerant cross was successful in 

the present study, with no F2 offspring, could indicate a reproductive isolating 

mechanism, possibly hybrid sterility, but further investigation is required. The 

large number of loci with lower than expected FST found by the present study 

suggests that reproductive isolation is not the case in Nereis diversicolor. The 

level of gene flow calculated from FST between populations was just high enough 

to override the effects of drift in isolated populations (Wright, 1931) so this 

appears to be a case of divergence despite gene flow. However, selection acts on 

islands of differentiation at loci coding for or linked to adaptive traits first. Small 

scale evolutionary change in populations associated with heritable tolerance to 

pollution is often rapid, occurring over a few generations (Medina et al., 2007). 

Studies on genetic change over generations in copepods exposed to toxic stress by 

Gardeström et al. (2006, 2008) have shown that pollution can cause 

microevolutionary genetic changes in populations over very short timescales. As 

the strong selection pressure exerted by a pollution event requires rapid evolution 

over a relatively short time scale there simply may not have been enough time for 

the slower process of drift in neutral loci. 

 

In the present study of 247 loci around 20 proved to be interesting, potentially 

subject to selection, with 3 loci consistently identified by a combination of bulk 

segregant, outlier and linkage disequilibrium analyses the best candidates for 

further investigation. One of the main advantages of AFLP is the large amount of 

data generated.  Using a much larger number of AFLP loci compared to allozyme 

studies reduced sampling error and increased the chances of finding loci that 

consistently segregated with copper tolerance. To be useful as an indicator, 

associations between genetic markers and tolerance responses should also be 

consistent in space and time (Diamond et al., 1991; Heagler et al., 1993) and not 

confounded by other factors (Beaty et al., 1998; Belfiore & Anderson, 2001). 

Through agreement between toxicity tests carried out at different times, coupled 

with segregation of loci of interest both in replicate bulk segregant analyses and 

between study sites, the present study has demonstrated spatial and temporal 



230 

 

stability in associations between AFLP markers and copper tolerance. Future 

work could include studies on wider spatial scales to investigate the presence of 

loci of interest in other areas contaminated by metals. Geographic distance or 

local variation in other environmental variables such as salinity, substrate or tidal 

regime could be responsible for the observed pattern of diversity and 

differentiation, and future analyses could be employed to control for this. 

Segregation studies that look for markers associated with differential tolerance in 

individuals from the same site can overcome the problem of differences in other 

variables between sites and in the present study bulk segregant analysis of mixed 

site D worked well. However, this approach relies on finding a site with 

intermediate contamination and mixed genotypes and still faces the possibility 

that different phenotypes could be inhabiting slightly different ecological niches 

in sympatry, for example different food sources (Schluter, 1996; Campbell & 

Bernatchez, 2004). In this study agreement between analyses and the strength of 

the relationship between environmental levels of copper, copper tolerance 

phenotypes and the distribution of differentiated genotypes implies that divergent 

selection for tolerance must be the main factor controlling population genetics.   

 

Genetic distance between Nereis diversicolor populations is not high enough to 

indicate separate species and there is little evidence of divergence in neutral loci 

that would indicate a general barrier to gene flow. However, an AFLP genome 

scan revealed signatures of speciation, by identifying individual loci that are 

associated with adaptive tolerance to copper. Highly differentiated outlier loci 

contrasted with neutral loci is characteristic of non-allopatric divergence despite 

gene flow in populations under strong, divergent selection pressure. Loci of 

interest associated with disruptive selection were present for both tolerant and 

non-tolerant phenotypes, possibly indicating a cost of tolerance in tolerant 

populations and selection for competitive advantage in non-tolerant populations. 

There was no strong evidence of isolation by distance, which would be 

characterised by uniform differentiation across all loci, or general reduced 

heterozygosity in an isolated brackish water species. Lower diversity at 

contaminated sites could be the result of a historical bottleneck or founder effect, 

or the results of strong selection for tolerant genotypes. Toxicity tests confirmed a 

gradient of tolerance to copper in N. diversicolor, which corresponds with patterns 
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of genetic diversity and differentiation. Thus the clear correspondence between 

environment, phenotype and genotype, with a pattern of genetic diversity and 

differentiation that is representative of populations under strong, divergent 

selection makes heritable tolerance to copper in Nereis diversicolor a valuable 

model for investigating adaptive evolution and the mechanism of non-allopatric 

speciation in natural populations subjected to anthropogenic selection pressure. 
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Appendix 1   Buffers and stock solutions used in AFLP analysis 

 

 

Stock solutions labelled as 5x are 5 times the normal working strength of the solution. 

For 1x dilute to1 part in 5 (i.e., 100 mL of 5x stock and 400 mL water to get a 1x 

solution). 

 

0.5M EDTA (pH 8.0) – disodium ethylenediaminetetraacetate  

186.1g EDTA .2H2O 

1 Litre dH2O 

Disodium EDTA will not dissolve until the solution is adjusted to approximately pH 

8.0. Add EDTA to 800 mL dH2O, add ~ 20g NaOH pellets to adjust pH and stir 

vigorously on a magnetic stirrer. Use pH meter to monitor pH.  

Sterilise by autoclaving 

 

TBE buffer 

T – Tris base – hydroxymethyl-aminomethane - buffer - maintains constant pH 

B – Boric acid – provides correct ion concentration 

E – EDTA - ethylenediaminetetraacetic acid (usually disodium EDTA) – chelates 

divalent metal cations (e.g. magnesium) required for nuclease activity. 

 

Stock TBE is 5x  

Agarose gels - 0.5x TBE (5 mL TBE, 45 mL dH2O / 100 mL TBE, 900 mL dH2O) 

1x TBE (10 mL TBE, 40 mL dH2O) 

 

5x TBE buffer 

54 g Tris base 

27.5 g boric acid 

20 mL 0.5M EDTA (pH 8)  

Make up to 1 Litre with dH2O 

Sterilise by autoclaving 

 

10x TBE 

For 1 Litre: 

108 g  Tris 

55 g boric acid 

40 ml 0.5M EDTA pH 8.0 

800 ml sdH2O 

autoclave 

 

5x Restriction-Ligation buffer 

50 mM Tris-HAc adjusted to pH 7.5 with acetic acid 

50 mM MgAc 

250 mM KAc    

25 mM DTT   

6 ml H2O ??? 

See Book 2 
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10% APS  

10 % = 1 g per 10 ml sdH2O   

Storage: 1 month in fridge  

Formamide loading dye 

98% formamide 

1% bromophenol blue 

1%  xylene cyanol 

 

 

Ethidium bromide 

* Wear gloves & mask 

10 mg / mL 

1g ethidium bromide 

100 mL dH2O 

Store in a dark container at room temperature  

 

Use 0.5 μg / mL for staining agarose gels  

10 mg / mL = 10 μg / μL 

For 40 mL gel use 40 x  0.5 μg = 20 μg = 2 μL 

 

6x Gel loading buffer 

1.5g Ficoll 

8.5 mL dH2O 

25 μL bromophenol blue or orange g dye 

(For 1x use 10 mL 6x buffer & 50 mL dH2O) 

 

 

1x CTAB buffer  (CTAB - Hexadecyltrimethylammonium bromide) 

For 100 mL 

2% CTAB  (2g) 

1.4M  NaCl  (8.18g) 

100 mM Tris-HCl (pH 8.0)  (10 mL of 1M stock)  

20 mM EDTA  (4 mL of 0.5M stock) 

1% Polyvinylpyrrolidone (PVP-40)  (1 g) 

0.2 % 2-mercaptoethanol  (200 μl) – Add to buffer just before extraction 

 

Proteinase K 

10 mg/ml stock 

1 mg proteinase K in 100 μl dH2O 

Split into 10 x 10 μl in tubes & store in freezer 

 



Appendix 2: procrustes analysis m
2
 distances between MDS plots produced by applying cmdscale, isoMDS, nmds and sammon algorithms to Euclidean 

distance (ED), Jaccard (J), Czekanowski / Dice / Sørensen (CDS), Ochiai (O), Sokal and Sneath (SS), Russell and Rao (RR), Simple matching (SM) and 

Rogers and Tanaimoto (RT) distance or dissimilarity matrices for all 150 individuals. 

 

ED J CDS O SS RR SM RT ED J CDS O SS RR SM RT ED J CDS O SS RR SM RT ED J CDS O SS RR SM RT

ED 0.000 0.000 0.000 0.002 0.005 0.000 0.001 0.069 0.083 0.068 0.067 0.119 0.072 0.073 0.140 0.263 0.296 0.238 0.267 0.263 0.562 0.253 0.239 0.202 0.217 0.147 0.177 0.229 0.319 0.147 0.111

J 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.077 0.091 0.075 0.074 0.128 0.072 0.081 0.146 0.264 0.299 0.240 0.269 0.260 0.565 0.257 0.240 0.207 0.215 0.148 0.178 0.231 0.317 0.147 0.109

CDS 0.000 0.000 0.000 0.002 0.005 0.000 0.001 0.070 0.084 0.068 0.068 0.120 0.069 0.074 0.141 0.264 0.295 0.237 0.267 0.262 0.561 0.253 0.240 0.203 0.217 0.147 0.177 0.229 0.317 0.147 0.111

O 0.000 0.000 0.000 0.002 0.005 0.000 0.001 0.070 0.084 0.068 0.068 0.120 0.069 0.074 0.141 0.264 0.295 0.237 0.266 0.263 0.561 0.253 0.240 0.203 0.216 0.147 0.177 0.229 0.317 0.147 0.111

SS 0.002 0.001 0.002 0.002 0.003 0.002 0.001 0.089 0.103 0.087 0.086 0.142 0.079 0.093 0.156 0.266 0.306 0.245 0.272 0.258 0.570 0.264 0.240 0.213 0.214 0.149 0.179 0.235 0.316 0.148 0.106

RR 0.005 0.004 0.005 0.005 0.003 0.005 0.004 0.099 0.116 0.098 0.096 0.160 0.084 0.103 0.183 0.266 0.298 0.232 0.269 0.254 0.579 0.252 0.231 0.188 0.195 0.125 0.156 0.211 0.282 0.125 0.092

SM 0.000 0.000 0.000 0.000 0.002 0.005 0.001 0.069 0.083 0.068 0.067 0.119 0.072 0.073 0.140 0.263 0.296 0.238 0.267 0.263 0.562 0.253 0.239 0.202 0.217 0.147 0.177 0.229 0.319 0.147 0.111

RT 0.001 0.000 0.001 0.001 0.001 0.004 0.001 0.079 0.093 0.078 0.077 0.131 0.076 0.083 0.148 0.263 0.302 0.242 0.269 0.259 0.567 0.259 0.240 0.207 0.215 0.148 0.178 0.231 0.318 0.147 0.108

ED 0.069 0.077 0.070 0.070 0.089 0.099 0.069 0.079 0.013 0.003 0.003 0.021 0.075 0.002 0.034 0.334 0.341 0.260 0.286 0.303 0.535 0.250 0.307 0.238 0.334 0.247 0.274 0.281 0.425 0.249 0.233

J 0.083 0.091 0.084 0.084 0.103 0.116 0.083 0.093 0.013 0.013 0.014 0.023 0.091 0.012 0.036 0.349 0.345 0.296 0.314 0.331 0.518 0.262 0.322 0.267 0.356 0.274 0.303 0.308 0.452 0.273 0.261

CDS 0.068 0.075 0.068 0.068 0.087 0.098 0.068 0.078 0.003 0.013 0.000 0.020 0.068 0.002 0.033 0.339 0.341 0.262 0.290 0.308 0.539 0.249 0.307 0.248 0.332 0.246 0.271 0.284 0.423 0.249 0.232

O 0.067 0.074 0.068 0.068 0.086 0.096 0.067 0.077 0.003 0.014 0.000 0.021 0.067 0.002 0.034 0.337 0.343 0.261 0.287 0.305 0.541 0.248 0.305 0.243 0.331 0.243 0.269 0.281 0.421 0.247 0.230

SS 0.119 0.128 0.120 0.120 0.142 0.160 0.119 0.131 0.021 0.023 0.020 0.021 0.105 0.020 0.009 0.365 0.369 0.311 0.324 0.370 0.533 0.278 0.360 0.307 0.406 0.320 0.342 0.350 0.502 0.321 0.303

RR 0.072 0.072 0.069 0.069 0.079 0.084 0.072 0.076 0.075 0.091 0.068 0.067 0.105 0.076 0.130 0.327 0.344 0.250 0.281 0.305 0.559 0.259 0.288 0.244 0.287 0.207 0.224 0.250 0.313 0.212 0.190

SM 0.073 0.081 0.074 0.074 0.093 0.103 0.073 0.083 0.002 0.012 0.002 0.002 0.020 0.076 0.031 0.342 0.340 0.265 0.292 0.309 0.539 0.248 0.315 0.247 0.338 0.253 0.278 0.291 0.431 0.256 0.237

RT 0.140 0.146 0.141 0.141 0.156 0.183 0.140 0.148 0.034 0.036 0.033 0.034 0.009 0.130 0.031 0.370 0.392 0.342 0.354 0.395 0.544 0.310 0.401 0.347 0.443 0.362 0.381 0.392 0.543 0.366 0.331

ED 0.263 0.264 0.264 0.264 0.266 0.266 0.263 0.263 0.334 0.349 0.339 0.337 0.365 0.327 0.342 0.370 0.399 0.422 0.281 0.431 0.679 0.378 0.419 0.353 0.388 0.328 0.342 0.359 0.468 0.314 0.320

J 0.296 0.299 0.295 0.295 0.306 0.298 0.296 0.302 0.341 0.345 0.341 0.343 0.369 0.344 0.340 0.392 0.399 0.316 0.440 0.484 0.627 0.317 0.393 0.358 0.387 0.329 0.326 0.414 0.455 0.338 0.369

CDS 0.238 0.240 0.237 0.237 0.245 0.232 0.238 0.242 0.260 0.296 0.262 0.261 0.311 0.250 0.265 0.342 0.422 0.316 0.295 0.346 0.678 0.218 0.356 0.268 0.335 0.253 0.280 0.310 0.360 0.273 0.278

O 0.267 0.269 0.266 0.266 0.272 0.269 0.267 0.269 0.286 0.314 0.290 0.287 0.324 0.281 0.292 0.354 0.281 0.440 0.295 0.396 0.644 0.299 0.478 0.356 0.413 0.337 0.388 0.367 0.452 0.365 0.340

SS 0.263 0.260 0.263 0.263 0.258 0.254 0.263 0.259 0.303 0.331 0.308 0.305 0.370 0.305 0.309 0.395 0.431 0.484 0.346 0.396 0.698 0.365 0.333 0.335 0.365 0.295 0.360 0.338 0.440 0.317 0.322

RR 0.562 0.565 0.561 0.561 0.570 0.579 0.562 0.567 0.535 0.518 0.539 0.541 0.533 0.559 0.539 0.544 0.679 0.627 0.678 0.644 0.698 0.645 0.673 0.642 0.650 0.638 0.633 0.664 0.724 0.645 0.644

SM 0.253 0.257 0.253 0.253 0.264 0.252 0.253 0.259 0.250 0.262 0.249 0.248 0.278 0.259 0.248 0.310 0.378 0.317 0.218 0.299 0.365 0.645 0.364 0.236 0.366 0.278 0.309 0.247 0.356 0.278 0.324

RT 0.239 0.240 0.240 0.240 0.240 0.231 0.239 0.240 0.307 0.322 0.307 0.305 0.360 0.288 0.315 0.401 0.419 0.393 0.356 0.478 0.333 0.674 0.364 0.236 0.327 0.255 0.279 0.270 0.368 0.240 0.297

ED 0.202 0.207 0.203 0.203 0.213 0.188 0.202 0.207 0.238 0.267 0.248 0.243 0.307 0.244 0.247 0.347 0.353 0.358 0.268 0.356 0.335 0.642 0.236 0.236 0.242 0.125 0.161 0.061 0.200 0.123 0.224

J 0.217 0.215 0.217 0.216 0.214 0.195 0.217 0.215 0.334 0.356 0.332 0.331 0.406 0.287 0.338 0.443 0.388 0.387 0.335 0.413 0.365 0.650 0.366 0.327 0.242 0.151 0.166 0.240 0.249 0.150 0.156

CDS 0.147 0.148 0.147 0.147 0.419 0.125 0.147 0.148 0.247 0.274 0.246 0.243 0.320 0.207 0.253 0.362 0.328 0.329 0.253 0.337 0.295 0.638 0.278 0.255 0.125 0.151 0.079 0.128 0.177 0.063 0.138

O 0.177 0.178 0.177 0.177 0.179 0.156 0.177 0.178 0.274 0.303 0.271 0.269 0.342 0.224 0.278 0.381 0.342 0.326 0.280 0.388 0.360 0.633 0.309 0.279 0.161 0.166 0.079 0.163 0.196 0.098 0.161

SS 0.229 0.231 0.229 0.229 0.235 0.211 0.229 0.231 0.281 0.308 0.284 0.281 0.350 0.250 0.291 0.392 0.359 0.414 0.310 0.367 0.338 0.664 0.247 0.270 0.061 0.240 0.128 0.163 0.177 0.133 0.234

RR 0.319 0.317 0.317 0.317 0.316 0.282 0.319 0.318 0.425 0.452 0.423 0.421 0.502 0.313 0.431 0.543 0.468 0.455 0.360 0.452 0.440 0.637 0.356 0.368 0.200 0.249 0.177 0.196 0.177 0.185 0.269

SM 0.147 0.147 0.147 0.147 0.148 0.125 0.147 0.147 0.249 0.273 0.249 0.247 0.321 0.212 0.256 0.366 0.314 0.338 0.273 0.365 0.317 0.645 0.278 0.240 0.123 0.150 0.063 0.098 0.133 0.185 0.121

RT 0.111 0.109 0.111 0.111 0.106 0.092 0.111 0.108 0.233 0.261 0.232 0.230 0.303 0.190 0.237 0.331 0.320 0.369 0.278 0.340 0.322 0.644 0.324 0.297 0.224 0.156 0.138 0.161 0.234 0.269 0.121
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Study 
 

Species N
o
 loci N

o
 pops Scale H range D range FST FIS 

Present study - AFLP 
 

Nereis diversicolor 112 / 247 
 

local 0.044 - 0.063 0.015 - 0.121 0.321 0.368? 

Abbiati & Maltagliati 1992 Neanthes succinea 7 / 21 2 national 
 

0.035 0.341 
 

Fong & Garthwaite 1994 Nereis diversicolor 9 / 10 2 local 0.023 - 0.200 0.31 
  

  
Nereis limnicola 

 
4 local 

 
0.001 - 0.046 

  

  
N. limnicola - N. japonica 

    
0.500 - 0.565 

  

  
N. diversicolor - N. japonica 

    
0.786 - 1.056 

  

  
N. diversicolor - N. limnicola 

    
0.775 - 1.181 

  
Abbiati & Maltagliati 1996 Nereis diversicolor 15 / 17 4 national 0.014 - 0.034 0.000 - 0.356 0.848 

 

  
N. diversicolor - N. succinea 

 
6 

  
1.8 

  
Rohner et al. 1997 Nereis diversicolor 5 / 13 8 international 

 
0.000 - 0.265 ** 0.892 

 
Maltagliati et al. 2000 Syllis gracilis 

  
local 

 
0.159 0.674 

 
Maltagliati et al. 2001 Perinereis cultrifera 

  
local 

 
0.185 0.381 0.489 

Virgilio et al. 2003 Nereis diversicolor 15 / 19 5 local 0.012 - 0.052 0.000 – 0.003 
  

Virgilio & Abbiati 2004b Nereis diversicolor 18 / 21 8 national 0.025 - 0.064 0.10 - 0.180* 
  

  
Nereis diversicolor 

 
2 local 

 
0.068* 

  

  
Nereis diversicolor 

 
6 local 

 
0.028 - 0.085 0.097 0.391 

Virgilio et al.  2005 Nereis diversicolor 3 2 local 
 

0.008* 
  

  
Nereis diversicolor 3 2 national 

 
0.074* 

  

  
Nereis diversicolor 3 3 national 

 
0.008 - 0.074* 0.047 0.543 

Virgilio & Abbiati 2006 Nereis diversicolor 6 4+4 national 0.045 - 0.201 0.035 - 0.195* 0.017 - 

0.274 
 

    
4+4 temporal 

   
 

Appendix 3: Summary of genetic diversity, distance, differentiation and inbreeding found by allozyme electrophoresis studies. Distance 

measures are Nei (1978), Nei (1972)* or Cavalli-Sforza & Edwards**. No
 loci is the N

o 
polymorphic loci out of total surveyed. 
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